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Universal flux patterns and their interchange
in superconductors between types I and II
A. Vagov 1,2✉, S. Wolf3, M.D. Croitoru4 & A.A. Shanenko4✉

Experiments with the crossover superconductors between standard types I and II revealed

exotic magnetic flux patterns where Meissner domains coexist with islands of the vortex

lattice as well as with vortex clusters and chains. Until now a comprehensive theory for such

configurations has not been presented. We solve this old-standing fundamental problem by

developing an approach which combines the perturbation expansion of the microscopic

theory with statistical simulations and which requires no prior assumption on the vortex

distribution. Our study offers the most complete picture of the interchange of the super-

conductivity types available so far. The mixed state in this regime reveals a rich manifold of

exotic configurations, which reproduce available experimental results. Our work introduces a

pattern formation mechanism that originates from the self-duality of the theory that is uni-

versal and not sensitive to the microscopic details.
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Magnetic response of a superconductor is one of its most
important characteristics crucial for many applications.
By their magnetic properties superconducting materials

are divided into two types, I and II, depending on whether the
magnetic field is fully expelled (Meissner state) or penetrates the
superconducting condensate forming the mixed Shubnikov state.
The magnetic flux enters a superconductor in the form of Abri-
kosov vortices, which carry a single flux quantum each and are
mutually repulsive, tending to arrange themselves in a periodic
lattice1. This dual classification is related with the ratio κ = λL/ξ
of the magnetic London penetration depth λL and condensate
coherence length ξ- type I takes place at κ≲ 1 and type II does
at κ≳ 1. The Ginzburg-Landau (GL) theory for superconductors
offers an exact critical value κ0 ¼ 1=

ffiffiffi
2

p
at which the types

interchange.
Detailed investigations of the magnetic response revealed a class

of materials with κ ~ 1 whose magnetic properties belong to neither
of these two common types2–9. Experiments demonstrated that
such crossover or inter-type (IT) materials develop the so-called
intermediate mixed state (IMS), where the magnetic field penetrates
a superconductor but forms a rich manifold of exotic spatial con-
figurations made of Meissner domains coexisting with islands of the
vortex lattice, vortex clusters, chains, etc. Observed configurations
were sensitive to variations in the temperature and magnetic
field but generally not to material characteristics pointing to the
universality of the underlying physics.

Earlier theory studies linked unconventional flux patterns of
the IMS to non-monotonic interactions between vortices,
attractive at long and repulsive at short distances10–17, which lead
to an instability of Abrikosov lattices towards their fragmentation
into clusters16,18–20. In order to distinguish the IT regime from
the standard type II superconductivity the name type II/1 was
proposed. However, it has been recently demonstrated21–23 that
the physics of the IT regime cannot be fully explained by the
pairwise non-monotonic vortex interactions. The physical
grounds of this regime are in the proximity to the critical
Bogomolnyi (B) point (κ0, Tc)24, where Tc is the superconducting
transition temperature. This point, which separates type I and
type II superconductivity at T → Tc, is specified by the self-dual
and infinitely degenerate condensate state, which hosts all pos-
sible, including exotic, flux-condensate configurations. At T < Tc
the degeneracy is removed and those exotic configurations shape
the properties of the IMS in a finite IT domain in the κ–T phase
diagram. This mechanism has a variety of physical consequences,
including strong many-vortex interactions23, totally missing in
the type-II/1 concept.

Although the IT regime is long known and appears a funda-
mental property, which essentially amends the existing dual
classification of superconductivity types, comprehensive theore-
tical studies of its IMS flux configurations are still absent. The
main reason for this lack of progress is that the calculations must
be done beyond the GL theory since the latter fails for this regime
in bulk superconductors. Numerical solution of the microscopic
equations is very demanding because the IMS is inhomogeneous
and highly irregular rendering conventional a priori assumptions
on the vortex distribution, e.g., the Abrikosov lattice, useless.
Owing to these difficulties theory efforts focused on studying
properties of few-vortex systems, such as the pair vortex
interaction12,13,15–17 or on the analysis of stability of the periodic
Abrikosov lattice16,18–20 in order to determine boundaries of the
IT domain.

This work presents a comprehensive theoretical study that
classifies flux-condensate patterns in the IMS and their inter-
change across the IT domain. This is achieved by advancing the
approach that combines the perturbation expansion for the
microscopic equations in the B-point vicinity with statistical

simulations. The method requires no prior assumption on vortex
distributions and can be regarded as first principle calculations
for the vortex matter.For the calculations we use the standard
Bardeen-Cooper-Schrieffer (BCS) model with the s-wave paring
on a spherical Fermi surface and without impurities. However,
universality of the physical mechanism behind the IT regime
ensures the qualitative results do not depend on the microscopic
details, in particular, on the symmetry of the Cooper pairing and
on the band structure.

Results
Universality of vortex configurations. In the limit T → Tc the
BCS theory reduces to the GL equations which have the critical
point κ= κ0 separating the superconductivity types I and II. This
defines the critical B point (κ0, Tc) for the BCS theory on the κ–T
plane. A peculiar feature of this point is the degeneracy of
its condensate state—the Gibbs free energy of the condensate,
calculated within the GL theory at κ0, is the same for all config-
urations of the mixed state. However, when T < Tc the GL and
BCS deviate one from another, the degeneracy is removed
and the Gibbs free energy becomes configuration dependent.
Nevertheless, the proximity to the B point still affects the
condensate state in a finite domain in the κ–T plane—the IT
domain21. The physics of this domain can be captured by
employing the perturbation expansion for the microscopic
superconductivity theory with the small parameters being the
proximity to the critical temperature τ= 1− T∕Tc

12,21,25–27 and
the deviation from the critical GL parameter δκ = κ− κ016,17,21.
The expansion yields a remarkably simple expression for the
leading contributions to the Gibbs free energy21

G ¼G � GM

Λ
¼ �I δκ

κ0
þ C1 I þ C2Jð Þ τ;

Λ ¼ L
2π

H2
cλ

2
L;

ð1Þ

where GM is the energy of the uniform Meissner state, Hc and λL
are the thermodynamic critical field and the magnetic penetration
depth of the GL theory, L is the sample size in the z direction.
Constants C1 and C2 are combinations of the coefficients of the
perturbation expansion for the Gibbs free energy, and I and J
are calculated from the solution of the scaled dimensionless GL
theory (see Methods section)

I ¼
Z

jΨj2 1� jΨj2� �
d2r; J ¼

Z
jΨj4 1� jΨj2� �

d2r: ð2Þ

The Gibbs free energy difference in Eq. (1) depends on the
microscopic parameters of the model via the prefactor Λ and two
constants C1 and C2. For the chosen single-band model (no
impurities) with a spherical Fermi surface one obtains C1 ≈−0.41
and C2 ≈ 0.68.

It is important that the structure of the IT domain in the κ-T
plane is, in fact, qualitatively independent of the microscopic
structure of the bands or of the details of the pairing in general.
The prefactor Λ in Eq. (1) merely determines the energy scale.
At the same time the integral I and J are obtained from the
dimensionless GL Eq. (4), which are model independent. To trace
the role of the remaining constants C1 and C2, we consider the
boundaries of the IT domain, κmax and κmin, determined,
respectively, by the appearance of the long-range vortex attraction
and by the possibility of the flux to create the mixed state21. This
yields the IT interval as δκ∕(τκ0) ∈ [C1, 2C2+ C1]. It is non-zero if
C2 > 0 and also the internal structure of the IT domain is
preserved in this case.

One sees that the appearance of the finite IT domain, facilitated
by removing the B-point degeneracy, depends only on a sign of a
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single parameter C2. However, details of the removal microscopic
mechanism, which are formally encoded in the perturbative
corrections to the GL theory, are not important if qualitative
characteristics of the IT domain are of interest—the latter depend
only on the GL solution. In this way the theory of the IT domain
in this work has the same generality as the GL theory itself.

IMS vortex patterns. We now investigate IMS vortex config-
urations in the IT interval κmin < κ< κmax. This interval depends
on temperature T as well as on the constants Λ, C1 and C2 in
Eq. (1). However, as discussed above, the structure of the IT
domain in the vicinity of the B point is universal, while the
constants affect only the axis scaling on the κ-T phase diagram of
the IMS states. Thus we are free to take the results obtained for
the spherical Fermi surface model. For the same reason we can
take arbitrary τ, here we set it τ = 1–the IT interval is then
δκ∕κ0 ∈ [−0.41, 0.95]. The remaining free parameter of the system
is the magnetic field which determines the number of vortices.

Most energetically favorable vortex configurations are found by
using the following three steps (details of the calculations are given
in Methods section): (1) we obtain the N-vortex solution of the GL
theory with the vortex positions (xi, yi) (i = 1…N), (2) the
solution is substituted into Eq. (2) and then into Eq. (1) to
calculate the energy of the vortex state, (3) finally, the dependence
of the energy obtained in (1) and (2) is used in the statistical
Monte-Carlo (Metropolis) minimization algorithm28 in order to
find the vortex configuration with the minimal energy. This
combination of the perturbation expansion around the B point,
the GL theory and the Metropolis algorithm offers a practical tool
to study vortex configurations in the IT domain and is expected to
yield quantitatively correct results down to relatively low
temperatures21. It does not require any prior knowledge of the
vortex distribution and may thus be regarded as the first principle
calculations for the vortex matter.

The results are summarized in Fig. 1, which shows colour
density plots for the spatial profiles of the condensate density
∣Ψ(x, y)∣2 of the stable vortex configurations. Columns in the
figure are obtained for δκ in the interval [−0.3, 0.3]—the values
are shown on the horizontal δκ axis. The rows correspond to
different values of the averaged field B, shown on the vertical
axis in the units of the critical field Hc. Selected values of δκ are
chosen to represent all types of IMS vortex configurations and
their evolution across the IT domain. The most left column
is calculated for δκ=−0.3, which corresponds to a type I
superconductor.

Above the upper boundary of the IT domain, δκ> δκmax, the
superconductivity is of type II allowing only for Abrikosov
repulsive single-quantum vortices, which form a standard
triangular Abrikosov lattice. Below this boundary, δκ< δκmax,
the vortex–vortex interactions become attractive at large and
(initially) repulsive at short distances. The interaction potential
has thus a minimum at some distance r023 so that the lattice
becomes unstable towards formation of vortex clusters with the
average inter-vortex distance close to r0. However, the clustering
takes place only when the vortex density in the system is less then
r�2
0 , so that the Abrikosov lattice remains stable at B≳Φ0=r

2
0 (Φ0

denotes the magnetic flux quantum). Notice, that r0 grows when
δκ approaches the upper boundary, so that r0 → ∞ in the limit
δκ ! δκmax. Consequently, the clustering is observed at progres-
sively smaller fields for larger δκ (which requires larger samples).

This is seen in Fig. 1 by comparing results for different values
of δκ. For example, for δκ= 0.3κ0 the clustering is visible only at
B= 0.05Hc whereas for δκ= 0.13κ0 it is observed (vortex islands
embedded in the Meissner phase) already at B= 0.1Hc. At δκ=
0.1κ0 the clustering persists up to B= 0.2Hc. For yet smaller δκ

one can trace a complete evolution of vortex patterns with
increasing field - from few-vortex clusters embedded in the
Meissner state to small Meissner islands surrounded by vortex
matter. Between these two limiting cases, there is also a regime
where Meissner islands are separated by vortex chains. In Fig. 1
the vortex chains can be observed at δκ= 0 and δκ= 0.03.
At sufficiently large fields Meissner islands eventually disappear
and the Abrikosov lattice occupies all available space. These
transformations of the vortex matter agree with available
experimental results on IMS vortex patterns2–9.

Results at large fields in Fig. 1 show that when B approaches the
critical value Hc, the vortex lattice distorts and then melts,
becoming a liquid. The distortion starts at B≃ 0.7Hc and the liquid
state appears for B≳ 0.8Hc. When the field further increases up to
B≃ 0.9Hc, normal phase islands are formed inside the IMS. At the
critical field B=Hc the superconductivity disappears, however,
Fig. 1 still demonstrates isolated domains of the superconducting
phase. Melting of the Abrikosov lattice and formation of droplets
of the normal phase at B ~Hc were investigated earlier for type II
superconductors and can be explained by many physical reasons,
including temperature fluctuations29,30. Here the distortion of the
lattice is induced by a near degeneracy of the vortex matter close to
the energy minimum. The degeneracy takes place when the system
reaches the critical field and it is also strongly enhanced by the
proximity to the degenerate B point. As a consequence, the
algorithm yields a vortex state in a local energy minimum, which
needs very large convergence time to achieve. Obtained config-
urations can thus be seen as instantaneous snapshots of a typical
fluctuation configuration.

Figure 1 reveals another important feature—even at lower
fields the vortex matter changes from a solid to a liquid phase at
δκ ≈−0.05. For δκ≳−0.05 the vortex matter appears in the form
of clusters and islands with a hexagonal Abrikosov lattice inside
them. The average distance between vortices in these clusters is
close to r0, which reduces when δκ decreases23. At δκ≲−0.05 the
pairwise vortex–vortex interaction becomes fully attractive with
r0= 0 and the vortex distribution inside clusters and islands
changes qualitatively—the lattice is replaced by a vortex liquid.
This crossover is also accompanied by the appearance of notable
differences of vortex structure inside the clusters and at their
boundaries. This fact manifests itself in the presence of the
surface tension (surface layer) in the liquid phase. This tension
grows when δκ decreases and, as a result, vortex clusters approach
a circular shape typical for liquid droplets. This transformation is
seen in Fig. 1 at δκ=−0.15κ0 and −0.2κ0. The vortex packing in
the liquid phase increases at smaller δκ, which is manifested, e.g.,
in that droplets of the Meissner phase survive up to larger fields
when δκ decreases: at δκ=−0.2κ0 droplets of the Meissner phase
are observed up to B= 0.7Hc, at δκ=−0.25κ one sees them up to
B= 0.8Hc, and at δκ=−0.28κ0 they persist even up to B= 0.9Hc.

The appearance of the liquefied vortex matter is a clear
manifestation of the inadequacy of the type II/1 concept for the
IT regime and its central assumption that the non-monotonic
pairwise vortex interaction is the main underlying mechanism for
the formation of the IMS. Indeed, the results demonstrate that the
vortex matter liquefies when the pairwise interaction becomes
fully attractive and thus, according to the type II/1 concept,
vortex clusters should always be unstable towards merging
into giant multi-quantum vortices. The fact that large vortex
clusters-droplets are still stable is a confirmation for the earlier
conclusion23 that the vortex matter is shaped by many-vortex
interactions which remain repulsive at short distances for larger
clusters. In Fig. 1 the dominant role of the many-vortex
interactions is illustrated by the transformation of giant
vortices into vortex clusters taking place at small δκ. Giant
multi-quantum vortices (lamellas) appear as a precursor of the
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type I regime for δκ=−0.2κ0, −0.25κ0, and −0.28κ0. One sees
that multi-quantum vortices are formed at smaller fields and their
size (flux) increases with the field. However, when giant vortices
reach a threshold size, they are turned into liquid droplets of
single-quantum vortices. When the system approaches type I the
threshold size increases such that vortex clusters disappear
altogether at the lower boundary of the IT domain and the
standard intermediate state of type I replaces the IMS.

The results can also be represented by the phase diagram on
the κ–T plane. Such a diagram cannot show all configurations
observed at different magnetic fields and we consider only low
field patterns [Fig. 2]. In this diagram the IT domain originates in
the B point (red) and is limited by the boundaries κmin and κmax.
It contains the upper part (κ≳ κ0), with the “solid” vortex matter,
and the lower part (κ≲ κ0), where the vortex matter liquefies,
with the division line κ ≈ κ0 marking the onset of the stability of
single vortex states21,22. Until now experimental studies dealt
with the materials in the upper part of the diagram, such as Nb9

and ZrB128, and our results fully explain observed solid vortex
clusters. However, the vortex liquid and giant vortices in the
lower part of the diagram remain to be studied experimentally.

Discussion
This work presents a first universal theory of IMS vortex
configurations in superconductors between types I and II. Three
fundamental ingredients of the theory are the perturbative
correction to the GL theory, the Bogomolnyi equations, and the
Metropolis algorithm. The self-duality of the Bogomolnyi equa-
tions makes it possible to represent the free energy as a function

of the vortex positions and to employ the Metropolis algorithm to
find stable vortex configurations.

The calculations reveal a rich variety of qualitatively different
vortex patterns: vortex lattices, clusters of solid and liquid vortex
matter embedded in the Meissner state, vortex chains separating
condensate islands, and giant vortices as a precursor of the type I
regime. Results of the work offer a deeper understanding
of fundamentals of the superconductivity phenomenon by
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revealing details of the interchange between conventional super-
conductivity types via the IT regime. This regime is independent
of peculiarities of the microscopic model and can be regarded as a
separate generic IT superconductivity type, that can be observed
in many superconducting materials.

The work demonstrates typical IMS vortex patterns, however,
without detailed analysis of their quantitative characteristics, such
as vortex density correlation functions and related form factors.
Such a study requires a more specialized analysis beyond the
scope of this work. Similarly, we did not touch a question on
whether the interchange of different vortex configurations are
accompanied by phase transitions. Also, although the applied
formalism is known to yield quantitatively correct results down to
relatively low temperatures T ~ 0.5Tc21, it is not yet clear whether
the obtained IMS patterns change in the limit of T → 0. The
results do not depend on details of the superconductivity model
and thus apply to a wide class of materials. In particular, a similar
approach applies for the case of many contributing carrier bands
and consequently such multiband superconductors should have a
similar IT domain with the IMS configurations, at least near the
critical temperature. Whether this applies for the entire tem-
perature range and, in particular, at temperatures below the
hidden criticality31, remains to be seen. We believe that further
more detailed theoretical studies in this directions will soon shed
light of these fundamental problems.

Finally, we note that our work introduces a new mechanism for
the pattern formation, that originates from the self-duality of the
theory and complements existing pattern formation models32–34.
We expect that this mechanism can apply to other systems, in
condensed matter and beyond, where vortex patterns appear as
the result of breaking the self-duality. Notice that there are many
examples of self-dual gauge theories35, including, in particular,
those used to describe planar condensed matter systems36.

Methods
Self-dual GL theory. At κ= κ0 the GL theory becomes self-dual, which implies
that the condensate function Ψ and the field B (after an appropriate scaling21) are
related algebraically as

B ¼ 1� jΨj2: ð3Þ
At this point the GL theory simplifies and, by representing the condensate function
as Ψ= e−φΦ with φ being the magnetic scalar potential, can be written in the form
of the Bogomolnyi equations

ð∂2x þ ∂2yÞφ ¼ 1� e�2φjΦj2; ð∂x þ i∂yÞΦ ¼ 0; ð4Þ
also known as Sarma equations, which are to be solved in order to obtain I and J
in Eq. (2).

N-vortex solutions. To find the solution to the GL equations in the form of Eq. (4)
we first note that any analytical function Φ(ζ) of the complex argument ζ ¼ x þ iy
satisfies the second of Eq. (4). To obtain the N-vortex solution one takes ΦðζÞ ¼QN

i¼1ðζ � ζ iÞ that has N zeros at the vortex positions ζ i ¼ xi þ iyi . We note in
passing that without the self-duality condition (3), Eq. (4) describe the Landau
ground state of a charged particle in the magnetic field B (obtained from φ)37.
When vortices are arranged in a periodic lattice, this ansatz yields the famous
Abrikosov ansatz for the vortex lattice1. In the actual numerical calculations it is
more convenient to represent the N-vortex condensate function as

ΨðζÞ ¼ e�δφðζÞ YN
i¼1

ΨiðζÞ; ΨiðζÞ ¼ Ψð1Þðζ � ζ iÞ; ð5Þ

where Ψ(1)(ζ) is the solution of Eq. (4) for an isolated single-quantum vortex located
at the coordinates origin while δφ satisfies the equation

∂2x þ ∂2y

� �
δφ ¼

X
i

jΨij2 � 1
� �þ 1�

Y
i

Ψij j2e�2δφ; ð6Þ

which must be solved with the asymptotic boundary condition δφ → 0 far from the
vortex cores. The calculations are done on a square d × d with the periodic
boundary conditions, where d= L/λL is chosen sufficiently large so that vortex
configurations are not affected by the boundaries. The obtained Ψ is then used to
calculate I and J and then G.

Metropolis algorithm. The energy of the vortex state is calculated using Eq. (1)
where the N-vortex solution, obtained above, is substituted. This gives the Gibbs
energy difference Gðfζ jgÞ as a function of the vortex positions. When the total flux
is fixed this quantity can be used as the free energy of the vortex system.

The energy Gðfζ jgÞ is minimized by the statistical Metropolis algorithm28. The
minimum of the functional is found by varying sequentially all vortex positions
ζnewi ¼ ζoldi þ δζ i and then calculating the corresponding energy change
ΔG ¼ Gold �Gnew. When ΔG< 0, the move is accepted; when ΔG> 0, one
compares a random number p ∈ [0, 1] with the exponential weight
w ¼ expð�ΔG=T�Þ—the move is accepted for p < w and rejected if p > w. The
effective “temperature” T * as well as the variations δζi are chosen to ensure better
convergence of the algorithm. Notice that the prefactor Λ in the expression for G
in Eq. (1) is absorbed in T * and can be omitted.

Data availability
The data and the code that support the findings of this study are available from the
corresponding author upon a reasonable request.
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