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Abstract 

Based on recent developments caused by the big data revolution, data science has massively increased 

its importance for businesses. Within the marketing context, various types of customer data have 

become available in enormous amounts and need to be processed as efficiently as possible for creating 

valuable knowledge. Therefore, data scientistsô performance has become crucial for marketing de-

partments to achieve competitive advantages in the modern highly digitalized economy. 

Within the raising field of data science, machine learning has become an outstanding trend since these 

approaches are able to automatically solve numerous classification and prediction problems with 

enormous performance. Thus, machine learning is seen as a key technology which will radically 

transform business practice in the future. Even though machine learning has already been applied to 

various marketing tasks, research is still at an early stage requiring further investigations of how 

marketing can successfully benefit from machine learning applications. 

Besides these data-driven opportunities provided by digitalization, technostress has evolved into an 

enormous downside of digitalized workplaces, leading to a significant decrease in employeesô per-

formance. However, existing research lacks to provide evidence about different coping strategies and 

their potential to support employees in overcoming technostress. Furthermore, research currently fails 

to consider technostress regarding both highly digitalized occupational groups like data scientists and 

respective workplace environments for providing a deeper understanding of how employees suffer 

from stress caused by the use of digital technologies. 

Due to these recent challenges for data scientists, this cumulative thesis provides useful insights and 

new opportunities by focusing on machine learning and technostress issues as two aspects which 

promise major potentials for enhancing data scientistsô performance in todayôs marketing contexts. 

Five research papers are included for effectively tackling both fields of research: three papers deliver 

both methodological and empirical findings for extending machine learning in marketing research by 

examining model architectures as well as applying machine learning to recent marketing problems. 

In addition, two research papers contribute to research by providing knowledge about technostress 

issues of data scientists as a heterogeneous and highly digitalized occupational group as well as ex-

amining different coping strategies for effectively overcoming stress due to the use of digital tech-

nologies. Beyond that, the findings deliver practical implications for marketing managers who aim to 

improve the performance of data scientists in a contemporary marketing environment. 
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 Introduction 

1 Motivation 

Due to its enormous economic value, relevant data has become the oil of businesses (van der Aalst, 

2014). During the last decade, the big data revolution has provided numerous opportunities and chal-

lenges for applying data science to create valuable knowledge out of customer data (Erevelles et al., 

2016; Lukosius & Hyman, 2019). Based on enormous accompanying developments regarding the 

availability, collectability, and storage of huge amounts of various data, nearly every department 

within a company has got new opportunities of developing improvements in decision making: various 

recent studies have already confirmed the importance of this data-driven decision making (see, e. g., 

Ferraris et al. (2019); Müller et al. (2018); Wamba et al. (2017)), showing that the application of data 

science for analysing big data increases the performance of organisations and, thus, builds competi-

tive advantages. I. e., it is particularly important to perform data science instead of just storing the 

data as well as the contained information (Chen et al., 2012; Davenport, 2006). In this context, mar-

keting has always been a popular application field of this data-driven decision making (Provost & 

Fawcett, 2013; Wedel & Kannan, 2016). 

For efficiently meeting these big data developments of todayôs marketing environment and, therefore, 

creating competitive advantages caused by data-driven decision making, it is indispensable for com-

panies to employ experts who are capable of fulfilling the numerous data science tasks concerning 

working with and creating knowledge out of data (Davenport & Patil, 2012; Erevelles et al., 2016; 

van der Aalst, 2014). Hence, the relevance of such employees ï so-called data scientists ï has ex-

ceedingly raised during the last decade due to the availability, capture, and storage of huge amounts 

of data due to the digital transformation and, thus, has led to a major demand for these employees 

(Davenport, 2020; Ismail & Abidin, 2016; Mauro et al., 2018; Murawski & Bick, 2017). Due to their 

massive importance for building competitive advantages out of data-driven decision making, it is 

crucial for companies to aim for improving the performance of data scientists. In this context, broad 

methodological as well as domain (e. g., marketing) knowledge for effectively solving data science 

problems is highly required (Ayankoya et al., 2014; Manieri et al., 2015; Waller & Fawcett, 2013). 

Therefore, data scientists need to constantly train their skills and competences by adopting recent 

trends and innovative technologies for further improving their task-specific performance and, conse-

quently, building competitive advantages. 
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Within the wide field of data science research, machine learning has become the outstanding trend 

which has reached particular importance for gaining competitive advantages due to the developments 

of the big data revolution (Cui et al., 2006; Hazen et al., 2014; Ma & Sun, 2020; Saura, 2020). In the 

following years, machine learning will fundamentally transform core processes within nearly all com-

paniesô business practice (Brynjolfsson & Mcafee, 2017). In this context, it has been proven that 

marketing may also strongly benefit from machine learning applications as they represent the state of 

the art within marketing analytics (Hagen et al., 2020; Huang & Rust, 2018; Jordan & Mitchell, 2015; 

Rust, 2020; Wedel & Kannan, 2016). Therefore, it is highly important to understand how these mod-

els are composed for effectively tackling marketing tasks by applying machine learning models (Ma 

& Sun, 2020). However, machine learning within marketing research is still at an early stage, requir-

ing further studies and enhancements in the future for constantly extending this promising area of 

research (Chintagunta et al., 2016a; Chintagunta et al., 2016b; Dimetreska et al., 2018; Ma & Sun, 

2020; Saura, 2020). 

Besides the opportunities and changes offered by the digital transformation and, in particular, the big 

data revolution, these developments may also enormously demand employees (Okkonen et al., 2019; 

Schwemmle & Wedde, 2012; Timonen & Vuori, 2018). In this context, a massive psychological dark 

side of digitalization has been risen next to its advantages, affecting both productivity and well-being 

of employees: using information and communication technologies (ICT) at work causes technostress 

which represents a specific form of stress induced by the frequent use of digital technologies at work 

(Ayyagari et al., 2011; Ragu-Nathan et al., 2008; Tarafdar et al., 2007; Tarafdar et al., 2010). Tech-

nostress has become of particular relevance due to the rapid implementation of countless ICT during 

the last two decades (Hartl, 2019; Osmundsen et al., 2018), leading to the consideration of the digital 

transformation at work as a double-edged sword (Apt et al., 2016). For overcoming technostress at 

work, employees require suitable resources like, e. g., organisational factors (Ragu-Nathan et al., 

2008), environmental aspects (Galluch et al., 2015), and inhibitors at employeeôs level (Srivastava et 

al., 2015; Sumiyana & Sriwidharmanely, 2020). However, the application of various coping strategies 

which may be actively and autonomously implemented by the employee is inadequately examined in 

technostress research and, therefore, requires further investigations (Pirkkalainen et al., 2019; 

Tarafdar et al., 2019). 

Moreover, research currently fails to consider technostress in the context of specific occupational 

groups but focuses on general relationships between technostress constructs instead (Ayyagari et al., 

2011; Fischer & Riedl, 2020; Ragu-Nathan et al., 2008; Tarafdar et al., 2007; Tarafdar et al., 2010; 
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Tarafdar et al., 2011; Tarafdar et al., 2015). Since the investigation of stress within separate occupa-

tional groups in order to create knowledge regarding their specific regularities is widely established 

in psychological research (see, e. g., Grace & van Heuvelen (2019); Rees & Cooper (1992); Travers 

& Cooper (1993)), the examination of technostress in the context of data scientists as a highly 

digitalized job group appears to be necessary for supporting data scientists in overcoming technostress 

and, thus, improving their performance. 

Due to these necessities and recommendations for future research, this doctoral thesis aims to provide 

useful knowledge for further improving the performance of data scientists in modern marketing con-

texts. To achieve this goal, the focus is on both machine learning applications to marketing problems 

and employeesô technostress issues as these topics have been proven to act as crucial aspects for 

creating competitive advantages in todayôs digitalized business world. Based on this general goal, the 

prevailing research questions are proposed as follows: 

RQ1: How can data scientists improve their performance by successfully applying machine 

learning algorithms in contemporary marketing contexts? 

RQ2: How can data scientists improve their performance by effectively overcoming tech-

nostress at work? 

As provided in Figure 1, this thesis contains five research papers which tackle either RQ1 regarding 

the topic of machine learning applications (research papers #1 - #3) or RQ2 regarding technostress 

issues (research papers #4 - #5) as important aspects of data scientistsô marketing performance. These 

papers have already been published or are currently under review within sophisticated academic jour-

nals. 
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Figure 1. Contextual Framework of this Thesis 

In the context of machine learning applications, this thesis delivers new opportunities of applying 

supervised machine learning models to marketing and, further, compares various algorithms regard-

ing their performance at solving a specific task. Moreover, a deeper understanding of how these al-

gorithms may be successfully compiled is offered so marketers are able to receive important 

knowledge for creating models which achieve high task-specific performance in order to enhance 

return on investment. 

In addition, this thesis also provides insights into technostress as an enormous downside of digitali-

zation data scientists have to struggle with. By that, technostress knowledge regarding data scientists 

as a specific occupational group as well as the examination of different coping strategies to success-

fully overcome technostress is to be examined for enabling data scientists to overcome performance 

threats caused by ICT use. 

To achieve this, this thesis is structured as follows: in chapter , the theoretical background of data 

science and machine learning in todayôs marketing, data scientists as a highly digitalized occupational 

group as well as technostress research and, further, the research agenda including a detailed overview 

of the included research papers is outlined. These research papers are then provided in the following 

chapters  to  within this thesis. Finally, chapter  provides a summarizing conclusion of the 

compiled findings. 
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2 Theoretical Background 

2.1 Data Science in Contemporary Marketing 

Within the marketing context, the systematic utilization of quantitative data has an impressive history 

of more than 100 years (Wedel & Kannan, 2016). Within this bright history, the founding of the 

Marketing Science Institute by the initiative of the Ford Foundation and the Harvard Institute of Basic 

Mathematics for Applications in Business in 1961 is seen as the major impact for successfully apply-

ing analytics to marketing issues (Winer & Neslin, 2014). Since then, the field of data science has 

been widely used for extending marketing research (Wedel & Kannan, 2016). 

In modern business environments, both the opportunities and challenges for applying data science to 

create valuable knowledge out of customer data have been massively raised due to the big data revo-

lution (Erevelles et al., 2016; Lukosius & Hyman, 2019). Overall, big data is defined as huge datasets 

containing structured and/or unstructured data that can be processed and analysed for creating 

knowledge such as patterns and trends out of it (Hazen et al., 2014). In this context, the big data 

revolution is differing from conventional data collection by several characteristics called the three 

Vs: volume, i. e., huge amounts of available data; velocity, i. e., rapid processes of data creation in 

real-time; and variety, i. e., the creation of numerous types of unstructured data (Chintagunta et al., 

2016a; Erevelles et al., 2016; Lycett, 2013). Furthermore, the collection and analysis of big data is 

also associated with two other characteristics called veracity and value (Lycett, 2013; Wedel & 

Kannan, 2016): while veracity is described as the importance of considering the quality of collected 

data regarding reliability and validity (IBM, 2012; Wedel & Kannan, 2016), value represents the 

focus on data which is valuable for gaining domain-specific knowledge (Lycett, 2013). 

In the context of marketing, the big data revolution has transformed consumers into permanent gen-

erators of both traditional, structured, and transactional data as well as more contemporary, unstruc-

tured, and behavioural data leading to a transformation of marketing decision making (Erevelles et 

al., 2016). Digital data which is collected through online and mobile applications provides valuable 

insights on consumersô feelings, behaviours, and interactions around products, services, and market-

ing actions (Wedel & Kannan, 2016). The analysis of such data enables marketers to gain knowledge 

out of complex and dynamic data of consumersô behaviour and markets (Chintagunta et al., 2016a): 

while surveys and experiments may enable rapid and diverse data collection as well, big data mostly 

exhibits observational characteristics (Ma & Sun, 2020; Wedel & Kannan, 2016). 
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Due to these developments, companies aim for processing the collected data in order to create valu-

able insights (Provost & Fawcett, 2013). In this context, research has already proven the success of 

data-driven decision making by showing that applying data science to big data ï so-called big data 

analytics ï increases the performance of organisations (Ferraris et al., 2019; Müller et al., 2018; 

Wamba et al., 2017). Consequently, the conduct of data analysis instead of just storing the data and 

its contained information is of special relevance for building competitive advantages (Chen et al., 

2012; Davenport, 2006). Therefore, the field of data science is closely related to big data, both mas-

sively increasing in popularity within both research and business practice (Waller & Fawcett, 2013). 

Generally, data science represents the application of quantitative and qualitative methods to extract 

valuable information for solving relevant problems and predicting outcomes (Waller & Fawcett, 

2013). In doing so, the term data analytics is used interchangeably (Agarwal & Dhar, 2014). Data 

science utilizes numerous data mining techniques which perform the extraction of knowledge from 

data, aiming for the overarching goal of improving the quality of businessesô decision making 

(Provost & Fawcett, 2013). For performing high-quality data science, very broad domain knowledge, 

e. g., for solving marketing problems, is mandatory as well (Ayankoya et al., 2014; Manieri et al., 

2015; Waller & Fawcett, 2013). 

Since big data is massively changing marketing processes, many of the methods developed by mar-

keting academics in the past support todayôs decision making in customer relationship management, 

marketing mix, and personalization leading to an increased financial performance (Wedel & Kannan, 

2016). The application of data science methods on big data has become crucial for decision making 

in marketing (Amado et al., 2018), realising that big data is only able to offer valuable insights if it is 

efficiently analysed. Thus, bringing together data science and marketing research has evolved an es-

sential interdisciplinary field within marketing analytics, using a broad set of methods for measuring, 

analysing, predicting, and managing marketing performance in order to maximise effectiveness and 

return on investment (Wedel & Kannan, 2016). 

The usage of knowledge extracted out of big data for marketing decision making also helps marketing 

managers to receive credibility within companies (Rogers & Sexton, 2012): marketers may take ad-

vantage of collected big data in various ways, e. g., for interaction with customers via chatbots (Luo 

et al., 2019), for product and service personalization (Anshari et al., 2019), and automatic implemen-

tation of real-time marketing actions like online advertising (Jabbar et al., 2020) in order to increase 

perceived customer value, satisfaction, and loyalty which leads to higher success of these marketing 
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actions (Wedel & Kannan, 2016). Furthermore, data science has been broadly applied for performing 

targeted marketing, online advertising, customer relationship management, and cross-selling recom-

mendations (Provost & Fawcett, 2013). To achieve this, big data offers many different types of data 

including clickstream, social media, video, image, text, and location data as sources of useful 

knowledge (Ma & Sun, 2020; Wedel & Kannan, 2016). In this context, direct marketing has particu-

larly gained benefits out of data science, i. e., in terms of collecting, analysing, and interpreting data 

(Palacios-Marqués et al., 2016; Provost & Fawcett, 2013; Tiago & Veríssimo, 2014). 

Consequently, marketing research deals with the benefits of analysing these kinds of data via data 

science approaches aiming to provide useful knowledge out of it, i. e., online reviews for identifying 

customersô suggestions for improvements and, thus, increasing product and service quality (Qi et al., 

2016), social media data for evaluating brand equity and competitive positions (Godey et al., 2016), 

mobile retail data for better recommendations and personalized offerings (Portugal et al., 2018), GPS 

data for geo-targeting customers with contextual promotions (Banerjee et al., 2013), keyword search 

for improving the design of companiesô websites and advertising (Ghose & Yang, 2009), and click-

stream data for recognizing segments of customers (Schellong et al., 2017). 

Due to the opportunities provided by the big data revolution, marketing research constantly moves 

away from conventional approaches and focuses on dynamic and analytical decision making (Li et 

al., 2018). More specifically, the availability of big data has enormously increased interest in the 

empirical-then-theoretical approach which aims to develop marketing theory based on observed em-

pirical findings. In this context, modern marketers require advanced analytical skills for handling big 

data, i. e., data mining tools, cognitive computing, and machine learning approaches (Lukosius & 

Hyman, 2019). Consequently, future marketing research needs to extend the application of data sci-

ence and, in particular, machine learning approaches on various types of data for gaining new com-

petitive advantages by further improving marketing decision making in modern digitalized environ-

ments (Chintagunta et al., 2016a; Chintagunta et al., 2016b). 
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2.2 Machine Learning in Marketing 

Basically, machine learning represents a subgroup within the artificial intelligence paradigm 

(Goodfellow et al., 2017) which is described as programming a digital computer for acting compara-

ble to humans and animals who apply the process of learning (Samuel, 1959). Within machine learn-

ing, the concept of learning represents the automatic search for more suitable representations of input 

data with respect to a given task (Chollet & Allaire, 2018). I. e., such algorithms improve their per-

formance in solving a specific (marketing) problem by collecting relevant experience out of other 

examples and, therefore, are rather trained than programmed. 

Machine learning models may be distinguished between supervised, unsupervised, and reinforcement 

learning approaches (Jordan & Mitchell, 2015; Ma & Sun, 2020; Stinis, 2019). Within supervised 

learning, the algorithm is trained via labelled training data, i. e., the training examples contain both 

input values and the accompanying output value. The supervised model defines a classifier or predic-

tor function which denotes the output based on the given input by processing the given training data. 

During training, the model is optimised by processing a validation set after each iteration (Ma & Sun, 

2020). After the training section is finished, the model can classify unknown data based on the pattern 

information detected during the learning process. The most popular supervised machine learning ap-

proaches comprise decision trees (Breiman et al., 1984), support vector machines (Cortes & Vapnik, 

1995), naʾve bayes (Duda et al., 1973), k-nearest neighbour (Cover & Hart, 1967), and artificial neural 

networks (Jain et al., 1996), which have been further developed into numerous high-performing var-

iants, e. g., tree-based ensemble learning methods (Opitz & Maclin, 1999; Rokach, 2010), convolu-

tional neural networks (LeCun et al., 1989), and long short term memory neural networks (Hochreiter 

S. & Schmidhuber, 1997). In the marketing context, important supervised learning problems comprise 

natural language processing tasks like, e. g., sentiment classification of online texts (Dhaoui et al., 

2017), customer churn prediction (Vafeiadis et al., 2015), and customer loyalty evaluation (Ansari & 

Riasi, 2016). 

For performing unsupervised learning, the training data is unlabelled and does not contain any output 

variables. The algorithm aims to detect useful features and patterns which have not been identified 

yet (Dimitrieska et al., 2018; Ma & Sun, 2020; Saura, 2020). Unsupervised machine learning models 

are, inter alia, clustering algorithms (Xu & Wunsch, 2005) and topic models like latent dirichlet allo-

cation (Blei et al., 2003), which are already well-established in marketing research (Ma & Sun, 2020). 
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Recent developments within unsupervised learning particularly deal with unsupervised artificial neu-

ral network architectures such as deep autoencoders (Vincent et al., 2010) and deep belief networks 

(Hinton et al., 2006). Typical unsupervised marketing issues constitute customer segmentation (Tsai 

et al., 2015) or discovering topics in online communities (Reisenbichler & Reutterer, 2019). 

Finally, reinforcement learning represents a class of algorithms where the model aims to optimize a 

learning function which is connected to its environment (Jordan & Mitchell, 2015; Kaelbling et al., 

1996). The model (or agent) is performing a reaction to a given input and, thereby, changes the current 

state of the environment. This change is announced to the agent as a feedback signal indicating 

whether the action impacts the state positively or negatively. The agent is then aiming to increase the 

long-term sum of these feedbacks by systematic trial and error. In this context, the main distinction 

to supervised learning is that the model is told the new current state, but not which action would have 

been the best choice for enhancing it (Kaelbling et al., 1996). Reinforcement learning problems are 

usually implemented for control-theoretic settings where the agent learns a control strategy for acting 

in an unknown dynamical environment (Jordan & Mitchell, 2015). Reinforcement learning has raised 

relevance due to the successful implementation within artificial neural networks which are able to 

process large amounts of input data and, subsequently, discover complex relationships between ac-

tions and environments (Bruyn et al., 2020). However, even though reinforcement learning enhanced 

relevance within overall business practice (Ma & Sun, 2020), it merely plays a minor role in market-

ing contexts due to the popularity of supervised learning approaches (Bruyn et al., 2020). 

Based on the existence and availability of big data within online marketing contexts, machine learning 

applications in marketing research particularly address digital marketing (Saura, 2020). More specif-

ically, machine learning approaches are particularly suitable within e-commerce marketing since it 

has been proven to be both easy and cheap to collect online customer behaviour data in such an 

automated environment (Kohavi & Provost, 2001). In this context, it is highly important to perform 

classification and prediction in real-time since the Internet has been shown to be a very fast-paced 

environment (Jabbar et al., 2020). Due to the automatised nature of machine learning, these algo-

rithms can perform such real-time reactions and, hence, are capable of influencing customer behav-

iour.  

Even though marketing research has already dealt with machine learning models in great detail, the 

rapid developments within the digital revolution and, in particular, both the infinity of countless types 

of customer data as well as the possibility of creating new algorithms or improving existing models 
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lead to a high necessity of constantly expanding this area of marketing research. Therefore, further 

research regarding innovative and successful machine learning approaches as well as new marketing 

applications is highly recommended for creating competitive advantages out of companiesô marketing 

activities (Ma & Sun, 2020; Saura, 2020). Overall, the utilization of machine learning in the market-

ing context is still at an early stage which will strongly enhance in the future (Dimitrieska et al., 2018; 

Ma & Sun, 2020). Therefore, further studies which successfully apply machine learning to new mar-

keting issues and, particularly, shed light on practical implementations of such models are highly 

important for enhancing modern marketing research and practice (Chintagunta et al., 2016a; 

Chintagunta et al., 2016b). In this context, the excellent performance of supervised learning ap-

proaches in complex marketing tasks particularly strikes which in turn implies focusing on innovative 

supervised models. 

2.3 The Data Scientist 

From a global perspective, a data scientist may be described as an expert who extracts knowledge 

from collected data as well as manages both the whole data lifecycle and relevant IT infrastructures 

(Manieri et al., 2015). However, research has proven that the occupational group of data scientists 

appears to be very heterogeneous in the context of required skills and tasks (Davenport, 2020; Ismail 

& Abidin, 2016; Mauro et al., 2018) and, therefore, has to be considered in more detail. In this context, 

research has already defined job profiles (Costa & Santos, 2017) and educational curricula (Richards 

& Marrone, 2014), or collected information from experts (Mikalef et al., 2018; Stanton & Stanton, 

2016) to identify a data scientist's required skills and occupational roles. 

Regarding the job-related skill variety as proposed by Hackman & Oldham (1976), data scientists 

require a wide field of both hard and soft skills, i. e., specific knowledge due to the use of numerous 

ICT as well as advanced skills in mathematics, statistics, machine learning, and communication skills 

(Costa & Santos, 2017; Doyle, 2019; Ismail & Abidin, 2016; Richards & Marrone, 2014). 

Besides this variety of skills, data scientists also exhibit heterogeneous work profiles which occur due 

to the various application fields, structures within the respective company, and various data science 

objectives: several studies have pointed out different occupational profiles associated with ódata sci-

entistô as the generic term, e. g., business analysts, data engineers, statisticians, and data analysts 

(Baġkarada & Koronios, 2017; Ho et al., 2019; Mauro et al., 2018). These job titles occur due to the 

separate process stages of the data lifecycle the respective employees are then working at. 
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Considering this variety of skills, roles, and tasks within the occupational group of data scientists, 

both business practice and research stated that it seems to be unrealistic to find employees fulfilling 

all the required demands and, hence, created the term "Unicorn Data Scientist" for such experts 

(Baġkarada & Koronios, 2017; Davenport, 2020; Davenport & Patil, 2012). Therefore, defining a data 

scientist as an overall expert who extracts knowledge from collected data as well as manages the 

whole data lifecycle and relevant IT infrastructures as proposed by Manieri et al. (2015) appears 

inappropriate.  

Furthermore, the tasks of the data lifecycle which aim to create knowledge out of collected data are 

fulfilled by several employees working in various affiliations due to the presence of huge amounts of 

data in many departments within a company (Janssen et al., 2017) and, moreover, the necessity of 

advanced domain knowledge for performing data science (Ayankoya et al., 2014; Manieri et al., 2015; 

Waller & Fawcett, 2013). These employees do not work as full -time data scientists but, at the same 

time, require data science skills for answering specific questions. However, such workers who fulfil 

analytical work tasks of data scientists are often not classified as one but keep other job titles which 

are closely related to their respective department. This wide spreading of employees who perform 

data science within companies leads to difficulties in detecting these employees within a company: 

due to the given heterogeneity of skills, roles, and tasks, they can neither be detected by job titles nor 

department affiliations. 

Overall, managers need to be able to detect data scientists within the company for significantly en-

hancing their performance. However, research currently lacks to provide a more practically based 

definition of data scientists as an occupational group because the focus is on both a universal but 

unrealistic definition as well as numerous job titles around different tasks within the data lifecycle. 

Furthermore, since various employees within different departments of a given company fulfil data 

science tasks by holding other occupational names, a title-based definition appears to be inappropriate 

for detecting them. Consequently, since employees who frequently fulfil data scientistsô tasks appear 

to be a crucial source for creating competitive advantages and, at the same time, detecting them is an 

indispensable prerequisite for improving their job performance, a definition with a strong reference 

to reality appears to be necessary. 
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2.4 Technostress 

As already pointed out, the digital transformation and the big data revolution offer enormous oppor-

tunities and chances for improving the performance of businesses. However, the rapid velocity of 

these developments enormously demands employees to adopt new capabilities for efficiently han-

dling work tasks as well (Okkonen et al., 2019; Schwemmle & Wedde, 2012; Timonen & Vuori, 

2018), resulting in a massive psychological dark side of digitalization: using ICT at work causes 

technostress as a specific form of stress induced by the frequent use of digital technologies at work 

which affects both productivity and well-being of employees (Ayyagari et al., 2011; Ragu-Nathan et 

al., 2008; Tarafdar et al., 2007; Tarafdar et al., 2010). Conceptually introduced as employeesô inabil-

ity to handle the use of digital technologies in a healthy way by Brod (1984), technostress became of 

particular importance due to the rapid implementation of numerous ICT (Hartl, 2019; Osmundsen et 

al., 2018), leading to an ambivalence of digital transformation at work (Apt et al., 2016). 

Overall, technostress is induced if employees perceive an inability to successfully establish numerous 

requirements and trends regarding digital technologies. Such feelings may occur with regard to, e. g., 

skills which are no longer required, an information overload, frequent interruptions during tasks at 

work, or the overlap of work and leisure time (Tarafdar et al., 2010). In this context, technostress is 

triggered by several specific stimuli called technostress creators which have been defined by Tarafdar 

et al. (2007) as follows: 

¶ Techno-uncertainty ï employeesô confusion caused by new technological developments at 

work. 

¶ Techno-insecurity ï the fear of being replaced by either other employees with higher ICT 

affinity or by a digital technology itself. 

¶ Techno-overload ï requirements to work faster, longer, and more which are induced by ICT. 

¶ Techno-invasion ï blurring boundaries between work and leisure matters or time periods. 

¶ Techno-complexity ï employees ̀feelings of missing skills regarding ICT use at work. 

Besides this well-established distinction, technical problems like system failures during ICT use rep-

resented by techno-unreliability (Riedl et al., 2012) and workflow disruptions due to ICT usage de-

scribed by techno-interruptions (Galluch et al., 2015) have been classified as additional stressors due 

to the use of ICT as well. 
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If an employeeôs perceptions of these technostress creators go beyond given personal and job-related 

resources, the upcoming technostress leads to technostress-related strains which represent individual's 

psychological, physical, or behavioural responses to technostress creators (Atanasoff & Venable, 

2017). Examples for such strains are, inter alia, mental exhaustion (Ayyagari et al., 2011; Srivastava 

et al., 2015) and psychological detachment (Barber et al., 2019; Santuzzi & Barber, 2018). Tech-

nostress is also related to negative job-related consequences for employees, e. g., lower productivity 

at work (Tarafdar et al., 2007; Tarafdar et al., 2015), less job satisfaction and loyalty to the employer 

(Tarafdar et al., 2011) as well as serious health issues like higher burnout rates (Srivastava et al., 

2015). 

For reducing technostress and its negative consequences, it is necessary to have access to resources 

which may inhibit the negative effects of occurring technostress creators (Pirkkalainen et al., 2019; 

Tarafdar et al., 2011; Tarafdar et al., 2019). In this context, several organisational technostress inhib-

itors have been discovered, i. e., providing technical support, literacy facilitation, and involvement 

facilitation (Ragu-Nathan et al., 2008). Furthermore, other factors have been proven as successfully 

stemming technostress, e. g., timing and method control (Galluch et al., 2015) at environmental level 

and technology self-efficacy (Tarafdar et al., 2015) as well as personality traits (Srivastava et al., 

2015; Sumiyana & Sriwidharmanely, 2020) at the employeeôs level. In contrast, the adaption of dif-

ferent ways of coping which are of particular importance in overcoming stress due to individualsô 

abilities to implement such strategies on their own are insufficiently investigated in the technostress 

context (Tarafdar et al., 2019). 

Coping strategies are generally defined as cognitive and behavioural attempts which aim to manage 

specific external or internal demands which are perceived as challenging an individualôs resources 

(Lazarus & Folkman, 1984). Coping strategies are often distinguished in different types, e. g., prob-

lem-focused and emotion-focused coping (Folkman et al., 1986), functional and dysfunctional coping 

(Erschens et al., 2018), proactive and reactive coping (Pirkkalainen et al., 2019), or, in more detail, 

up to 14 different ways to overcome stress (Carver, 1997). Nevertheless, there is not a clear consensus 

considering the role of coping: while information systems research has followed the transactional 

theory of stress (Lazarus & Folkman, 1984) for a long time and, therefore, considered coping as a 

mediator (see, e. g., Gaudioso et al. (2016); Hauk et al. (2019); Zhao et al. (2020)), a few recent 

information systems studies (Nisafani et al., 2020; Pirkkalainen et al., 2019) as well as studies from 

industrial and organisational psychology (Lewin & Sager, 2009; Searle & Lee, 2015; Yip et al., 2008) 

assume coping as moderating the relationship between job-related stressors and strains. At the same 
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time, coping strategies in technostress contexts are highly under-studied and need further interdisci-

plinary investigation (Pirkkalainen et al., 2019; Tarafdar et al., 2019). 

Besides these general issues regarding technostress, related research also lacks to create a deeper 

connection between technostress and specific job groups: prior studies primarily focus on general 

relationships between technostress constructs (Ayyagari et al., 2011; Fischer & Riedl, 2020; Ragu-

Nathan et al., 2008; Tarafdar et al., 2007; Tarafdar et al., 2010; Tarafdar et al., 2011; Tarafdar et al., 

2015) but, at the same time, do not consider specific job titles in order to get a more individual un-

derstanding of employees' technostress and further to examine whether there is a need to define dif-

ferent strategies to overcome technostress even within a job class. While various psychological stud-

ies investigate stress within occupational groups in order to gain a deeper understanding of their re-

spective specificities (see, e. g., Grace & van Heuvelen (2019); Rees & Cooper (1992); Travers & 

Cooper (1993)) and, further, examine relationships between several workplace attributes and work 

stress (i. e., customer contact (Hartline & Ferrell, 1996), leadership function (Ganster, 2005; 

Hambrick et al., 2005), and educational background (Golubic et al., 2009) as job-related characteris-

tics and company size (Dekker & Barling, 1995; van Dijkhuizen & Reiche, 1980) as well as different 

dimensions of organisational culture within enterprises (Lansisalmi et al., 2000; Thompson et al., 

1996) as company-related characteristics), current technostress research fails to offer job-specific 

findings. However, such investigations are of prominent relevance regarding job categories with a 

high level of digitalization at work since technostress and ICT use are closely related. In this context, 

data scientists are both particularly suitable and important for examining technostress due to their 

highly digitalized workplaces and their crucial role in gaining competitive advantages for companies.  

Overall, both employees and employers are highly recommended to pay high attention to technostress 

issues and, moreover, to aim to reduce technostress. Consequently, further interdisciplinary as well 

as context-related technostress research is highly required. 
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3 Research Agenda 

Considering the circumstances explained above, there is a great importance for marketing business 

practice to improve the performance of data scientists in marketing contexts leading to a high recom-

mendation of further research within this topic. On the one hand, the countless opportunities for more 

purposeful and personalized marketing activities provided by machine learning and, specifically, su-

pervised learning approaches are of enormous importance for marketers who aim to extract 

knowledge out of various customer data and, subsequently, use this information in order to increase 

the performance of marketing activities. On the other hand, the danger of increased technostress 

caused by the rapid developments of digitalization that employees have to deal with has to be closely 

observed as well. Considering the particular importance of people who work as data scientists due to 

their crucial role in data-driven decision making, employers are highly recommended to avoid high 

levels of technostress within this highly digitalized occupational group. However, research still lacks 

both job-specific and coping-related investigations regarding negative consequences of ICT use. For 

effectively meeting these issues and, consequently, solving the research questions provided in this 

thesisô motivation, five research papers are included in the following chapters  to . In doing so, 

research papers #1 - #3 meet RQ1 regarding machine learning applications in marketing and, further, 

research papers #4 - #5 tackle RQ2 by considering technostress issues as important aspects for im-

proving the performance of data scientists in contemporary marketing contexts. 

Research paper #1 meets RQ1 by investigating the potentials of deep neural networks (long short 

term memory networks, specifically) in the context of sentiment analysis tasks. By precisely perform-

ing the sentiment analysis task of the widely utilized IMDB large movie dataset (Maas et al., 2011), 

the paper provides an examination of 8 hyperparameters within the model and how these hyperpa-

rameters influence network performance. The hyperparameters were separately varied within their 

characteristic values for investigating the influence of the respective hyperparameter on the overall 

network performance. While 5 hyperparameters have been shown to increase classification accuracy, 

3 other variants surprisingly lowered the network performance. Furthermore, the improvements could 

not be cumulated within the network which leads to the assumption of various interaction effects 

between the hyperparameters. Hence, research paper #1 contributes to the deeper understanding of 

the functioning within machine learning applications for automatically analysing online reviews.  

Since the expansion of machine learning for improving data-driven decision making in marketing is 

highly recommended, research paper #2 and research paper #3 both address RQ1 by focusing on new 
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applications of machine learning within marketing tasks. At first, research paper #2 successfully im-

plements various practically relevant machine learning models for automatically predicting call cen-

tre arrivals and compares these approaches with conventional time series models regarding prediction 

accuracy. For doing this, the models were trained with two call centre datasets provided by a German 

online retailer containing half-hourly time series samples of 174.5 weeks, i. e., 31,410 observations 

each. For comparing these models, four different lead times were implemented as well as cross-vali-

dation with an expanding rolling window which constitutes an iterative process where the training 

data is rolled forward during model training. Results show that machine learning algorithms may 

outperform traditional models with a random forest approach delivering the strongest performance. 

Furthermore, this paper enhances the practical implementations of machine learning by providing a 

methodological walk-through encoding of the comparison process.  

In contrast, research paper #3 focuses on the important e-commerce problem of online shopping cart 

abandonment by utilizing different machine learning algorithms for automatically predicting such 

abandoners based on their clickstream behaviour. With a sample of 821,048 aggregated clickstreams, 

numerous machine learning approaches were trained and compared with standard logistic regression 

as a conventional benchmark model regarding predictive performance and practicability. In doing so, 

the paper provides a deep methodological contribution on successfully applying machine learning to 

online shopping cart abandonment, proving that machine learning approaches are able to deliver 

stronger prediction accuracy as classic models. Within the implemented approaches, gradient boost-

ing with regularization yielded the best results for unknown test data but, at the same time, a decision 

tree approach as well as boosted logistic regression provided comparable accuracy with clearly less 

model complexity. Hence, these methods have proven to be interesting alternatives due to their suc-

cessful trade-off between performance and practicability. 

For considerably contributing to RQ2, research papers #4 and #5 both focus on technostress issues as 

the striking downside of digitalization at work. Research paper #4 meets the appeal for further inter-

disciplinary technostress research regarding the role of different coping strategies for overcoming 

technostress at work (Pirkkalainen et al., 2019; Tarafdar et al., 2019): based on a sample of 3,362 

German knowledge workers collected by an external panel during a larger technostress research pro-

ject, a moderated mediation model via covariance-based structural equation modelling was developed 

for investigating the effectiveness of two reactive coping strategies (active-functional and dysfunc-

tional) as moderating the relationship between stressors due to the use of ICT and employeesô ex-

haustion, with exhaustion mediating the influence of technology-related stressors on productivity. 
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Thereby, this paper brings together psychological and information systems research by applying the 

job-demands resources model (Demerouti et al., 2001) to technostress research, conceptualizing cop-

ing as a personal resource. The results provided valuable findings, showing that a higher level of 

technostress-related job demands is associated with higher levels of both exhaustion and productivity, 

proving that employees should be demanded by ICT use at a medium level. Furthermore, while ac-

tive-functional coping is associated with less exhaustion and, in contrast, dysfunctional coping is 

related to a higher level of it, both coping strategies have been found to buffer the effects of tech-

nostress on exhaustion contradicting prior results regarding the effects of dysfunctional coping. This 

means that, besides the negative consequences in long-term, dysfunctional coping like drinking alco-

hol or refusing to accept existing problems may help overcoming technostress under certain condi-

tions which, in turn, has to be carefully considered by both employers and employees. 

At last, research paper #5 meets the lack of research regarding job-specific knowledge of technostress 

by examining technostress within the heterogeneous and highly digitalized occupational group of data 

scientists. At first, the paper tackles the problems of classifying data scientists due to their heteroge-

neity of roles and tasks by delivering a definition approach of data scientists based on their use of 

ICT. Subsequently, four different groups of data scientistsô workplaces were detected by performing 

latent class analysis via job- and company-related workplace attributes which are associated with 

general work stress on a sample of 486 German data scientists. These groups were then compared via 

global and pairwise van der Waerden normal score tests for gaining insights into how different types 

of data scientists perceive the challenges of technostress. Results show that data scientists working at 

different workplaces exhibit significant distinctions of technostress creators, strains due to the use of 

ICT, and job performance. In this context, the technostress-related findings partially contradict results 

of work stress studies. Thus, the paper contributes to technostress research by examining findings of 

work stress research in technostress context: it provides evidence that data scientists as an important 

occupational group which has been shown to be crucial for creating competitive advantages must not 

be unified in the context of technostress but, instead, differ in their perception of technostress with 

respect to their workplace environment. Managers are therefore recommended to implement more 

specific strategies to provide support for data scientists in overcoming technostress at work. 

An overview of the described research papers can be seen in Table 1. Subsequently, the described 

research papers are provided in the following chapters  to  within this thesis.
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Paper Title  Authors Content Methodology Data 

#1 

Working in Detail: 

How LSTM 

Hyperparameter 

Selection Inþuences 

Sentiment Analysis Results 

Nicholas Daniel Derra 

Daniel Baier 

Å performs the IMDB large movie dataset sentiment analysis task 

via deep long short term memory (LSTM) networks 

Å analyses the effects of 8 hyperparameters via separate variation 

Å investigates the potential of cumulating positive effects of 

hyperparameter variants on overall network performance 

Deep LSTM 

networks 

50,000 online 

movie reviews 

#2 

Call Me Maybe: 

Methods and Practical 

Implementation of Artiýcial 

Intelligence in Call Center 

Arrivalsô Forecasting 

Tobias Albrecht 

Theresa Maria Rausch 

Nicholas Daniel Derra 

Å successfully implements machine learning models to call 

centre arrivals' forecasting 

Å compares machine learning approaches and conventional time 

series models via cross-validation with an expanding rolling 

window 

Å enhances practical implementation of machine learning by 

providing a methodological walk-through example of the 

developed comparison process 

Various machine 

learning 

approaches; 

conventional 

time series models 

2 datasets of 

call centre arri-

vals (31,410 

observations 

each) 

#3 

Predicting Online Shopping 

Cart Abandonment with 

Machine Learning 

Approaches  

Theresa Maria Rausch 

Nicholas Daniel Derra 

Lukas Wolf 

Å successfully implements machine learning models to online 

shopping cart abandonment prediction 

Å compares machine learning approaches with standard logistic 

regression as a conventional benchmark model regarding 

prediction performance and practicability 

Various machine 

learning 

approaches; 

standard logistic 

regression 

821,048 

aggregated 

clickstream 

observations 

#4 

Mitigating the Negative 

Consequences of ICT Use: 

The Moderating Effect of 

Active-Functional and 

Dysfunctional Coping  

Julia Becker 

Nicholas Daniel Derra 

Christian Regal 

Torsten M. Kühlmann 

Å brings together psychology and information systems research 

Å conceptualizes coping as a personal resource within the JD-R 

model, moderating the relationship of stressors due to ICT use 

and exhaustion 

Å investigates the role of active-functional and dysfunctional 

coping as reactive strategies for overcoming technostress, 

focusing on both organisational and individual outcomes 

Covariance-based 

structural equation 

modelling 

3,362 German 

knowledge 

workers 

#5 

Examining Technostress at 

Different Types of Data 

Scientistsô Workplaces 

Nicholas Daniel Derra 

Christian Regal 

Simon Henrik Rath 

Torsten M. Kühlmann 

Å defines employees who work as data scientists via the 

specific usage of digital technologies 

Å classifies different types of data scientists' workplaces 

based on 8 general workplace attributes which are related to 

overall work stress 

Å examines technostress within the occupational group of data 

scientists by comparing the detected subclasses in terms of tech-

nostress creators, strains due to the use of ICT, and overall job 

performance 

Latent class 

analysis; 

van der Waerden 

normal score test 

486 German 

data scientists 

Table 1. Overview of Included Research Papers within this Thesis
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Sentiment analysis of written customer reviews is a powerful way to generate 

knowledge about customer attitudes for future marketing activities. Meanwhile, 

Deep Learning as the most powerful machine learning method is of particular 

importance for sentiment analysis tasks. Due to this current relevance, an LSTM 

network based on a literature review to solve the challenging classification task 

of the IMDB Large Movie Dataset is created. Hyperparameters are varied sep-

arately from each other to better understand their single influences on the over-

all model accuracy. Furthermore, we transformed variants with positive impacts 

into a final model in order to investigate whether the impacts can be cumulated. 

While preparing the amount of training data and the number of iteration steps 

resulted in a higher accuracy, pre-trained word vectors and higher network ca-

pacity did not work well separately. Even though implementing the variants 

with positive influences together raised the model´s performance, 

the improvement was lower than some single variants. 

Keywords: Sentiment Analysis, Deep Learning, LSTM, Hyperparameter, Optimization 
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1 Introduction 

Sentiment analysis (SA) has been one of the largest fields of research in natural language processing 

(NLP), data mining, text mining and information retrieval since the beginning of the 21st century. 

Due to the ever-increasing use of internet and online activities (e-commerce, forums, blogs and social 

networks) for presenting personal opinions about products and services, the analysis of the resulting 

huge amounts of data (Big Data) is of particular importance for marketing managers (Zhang et al, 

2018b). Meanwhile, Deep Learning (DL) algorithms deliver stronger results in processing sequential 

text data for SA tasks than other Machine Learning (ML) methods do (LeCun et al, 2015). For this, 

the current literature focuses on the development of models that classify popular benchmark datasets 

(IMDB Large Movie Dataset by Maas et al (2011); Yelp Dataset by Zhang et al (2015)) with a new 

accuracy high score. We argue that in this context only the overall performance of an architecture is 

observed while the various influences of individual hyperparameters on the model performance are 

insufficiently analysed. For this reason, the separate effects of various hyperparameters within an 

LSTM network for the IMDB Large Movie Dataset sentiment analysis task are observed through 

separate variation. Simultaneously, after a short introduction (Section 1), the discussion of theoretical 

backgrounds including SA (Section 2.1) and DL models for SA (Section 2.2) as well as the descrip-

tion of the IMDB dataset (Section 3.1) and related work (Section 3.2), an LSTM which is able to 

solve the IMDB SA task with high accuracy is constructed (Section 3.3). Within this model, 8 hy-

perparameters are separately varied to investigate their impact on classification performance. Subse-

quently, the variations with a positive impact on validation accuracy are transformed into a final 

model in order to cumulate the effects. This final model is then compared with the single hyperpa-

rameter variants by test accuracy. In addition, the machine times required are also measured (Section 

3.4). Finally, the results are discussed in Section 4. 

2 Theoretical Background 

2.1 Sentiment Analysis 

SA, also called mood analysis, is the field of computational studies of emotions as well as opinions, 

feelings, evaluations and attitudes towards objects such as products, services, organizations, individ-

uals, events, topics and issues as well as their characteristics (Ain et al, 2017; Medhat et al, 2014). 

They are analysed in forums, blogs, social networks, e-commerce websites, reports and other internet 

sources (Ravi and Ravi, 2015). SA is a subset of both NLP and affective computing (AC) (Yadollahi 

et al, 2017; Zhang et al, 2018a) and can therefore be seen as an intersection of both areas of research. 
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It is carried out by methods of information retrieval and data mining (Ravi and Ravi, 2015). While 

the different SA tasks can be correctly subdivided into the subareas of opinion mining (analysis of 

contained opinions in texts) and emotion mining (analysis of contained emotions in texts) (Yadollahi 

et al, 2017), a more comprehensive approach summarizing opinions and emotions (Ravi and Ravi, 

2015) seems to be more effective. Since the concept of a sentiment encompasses both opinions and 

emotions, a precise SA can only be achieved by analysing both areas simultaneously (Ain et al, 2017; 

Medhat et al, 2014). 

While SA is often used as a synonym for sentiment or polarity classification, it is considered to be 

the central SA task (Cambria et al, 2013). However, in this article this trend of literature is taken into 

account (see inter alias Araque et al (2017) and Medhat et al (2014)) so the term SA is used inter-

changeably after the various fields of SA tasks were shown. A sentiment, respectively polarity clas-

sification, is the recognition of the sentiment orientation within a text and the classification into one 

of at least two classes. As the most common task in SA, the polarity classification classifies texts 

according to their opinion into a predefined sentiment polarity, whereby both binary, tertiary and finer 

n-grade classifications are possible (Ravi and Ravi, 2015). Polarity classification can take place on 

three granularity levels, regardless of the classification object (opinion, emotion or both). For this, 

the document, sentence and aspect level are differentiated (Medhat et al, 2014; Yadollahi et al, 2017; 

Zhang et al, 2018a) where the polarity classification at the document level is considered to be the 

most common. At the document level, a complete text document is considered as the smallest unit. 

This document expresses an overall positive or negative opinion or emotion and it is usually assigned 

either to the positive or the negative class (Aggarwal and Aggarwal, 2017; Medhat et al, 2014; Yadol-

lahi et al, 2017; Zhang et al, 2018a). Yet, the length of the document is irrelevant (Yadollahi et al, 

2017). At this level it is assumed that not every single sentence contains an opinion relating to the 

subject so the document contains irrelevant sentences (Aggarwal and Aggarwal, 2017). Since the 

IMDB sentiment classification task is to classify film ratings of different lengths and without focusing 

on specific aspects with respect to their polarity, the IMDB task is performed at the document level. 

Approach Reference Accuracy 
Support Vector Machines (SVM) Wang and Manning (2012) 89.16% 

Maximum Entropy (ME) Brychcín and Habernal (2013) 92.24% 
Naive Bayes (NB) Narayanan et al (2013) 88.80% 

NB-SVM Mesnil et al (2014) 91.87% 
Decision Trees (DT) Zhou and Feng (2017) 89.16% 
Deep Learning (DL) Howard and Ruder (2018) 95.40% 

Table 1: ML methods for the IMDB sentiment classification task 
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The polarity classification approaches can be divided into ML-based, lexicon-based, while hybrid 

approaches are ultimately a combination of ML with a previously created lexicon (Maynard and 

Funk, 2011; Ravi and Ravi, 2015). ML techniques treat sentiment classifications as text classification 

tasks and use syntactic and linguistic properties to solve problems (Medhat et al, 2014). They clearly 

outperform the semantic approaches in dealing with specific tasks (Ravi and Ravi, 2015). They are 

divided into methods of supervised, unsupervised and semi-supervised learning, whereby unsuper-

vised ML methods only play a minor role in SA research and are only marginally or not explained in 

the relevant overview literature (Medhat et al, 2014; Ravi and Ravi, 2015; Yadollahi et al, 2017). 

For polarity classification with supervised learning, probabilistic classifiers such as Bayesian Net-

works, Naive Bayes classifiers and Maximum Entropy classifiers, linear classifiers such as Support 

Vector Machines and Artificial Neural Networks (Deep Learning), Decision Trees and Rule-based 

classifiers are frequently used (Medhat et al, 2014; Ravi and Ravi, 2015). In terms of the IMDB Large 

Movie Dataset, the classification performance of the different methods is shown in table 1. Thereby, 

DL models have achieved a large number of correct classification rates higher than 92% in recent 

years, massively outperforming other ML approaches (compare our literature review in Section 4). 

The current IMDB benchmark performed with DL achieves 95.40% accuracy (Howard and Ruder, 

2018). To summarize, while ML approaches have task-specific higher accuracy than lexicon produc-

tion, DL outperforms conventional ML. 

2.2 Deep Learning 

DL approaches are part of the research field of artificial intelligence (AI) (Arel et al, 2010) as well as 

a methodologically emerging area of ML called Representation Learning. Within DL methods, sev-

eral stages of representation transformation take place in succession (LeCun et al, 2015). Meanwhile, 

DL is defined as a class of ML techniques based on Artificial Neural Networks (ANN) that use nu-

merous (hidden) process layers in hierarchical architectures to learn characteristics and recognize 

patterns from data (Deng, 2011, 2014). However, the depth required for the concept of DL is not 

uniformly defined in research (Schmidhuber, 2015). 

In the context of ANNs, the concept of learning describes a process for updating the network archi-

tecture and the weights of neuron connections to efficiently handle a specific task (Jain et al, 1996). 

In DL, the most commonly used supervised learning algorithm is the backpropagation method for 

error minimization which allowed to map direct connections of neurons over several layers so that 

the weights within the ANNs were efficiently learned (Deng, 2014; Schmidhuber, 2015). In general, 
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backpropagation is a special case of the general gradient descent process (Schmidhuber, 2015). This 

approach by Rumelhart et al (1986) repeatedly adjusts the weights within an ANN to minimize the 

difference between the actual output vector and the known output vector setpoint for finding an opti-

mal set of weights. The quality of the weights is described by the difference between the actual and 

target output vectors in a quadratic error function. 

Basically, Deep Neural Networks are classified in Feed Forward (FNN) and Recurrent (RNN) Neural 

Networks (Jain et al, 1996; Schmidhuber, 2015). Furthermore, the forward models are divided into 

Deep Autoencoders (DAE), Deep Belief Networks (DBN) and Convolutional Neural Networks 

(CNN) (Deng, 2014; Zhang et al, 2018b). The recurrent networks were later developed into so-called 

Long Short Term Memories (LSTM) (Gers et al, 1999; Hochreiter and Schmidhuber, 1997). While 

DAEs and DBNs are only used for (unsupervised) pre-training in polarity classification tasks, one-

dimensional CNNs, but especially RNNs and their powerful relatives LSTMs are able to classify text 

data very well (LeCun et al, 2015). 

RNNs are more powerful than any forward DL model because of their ability to create memories 

(Schmidhuber, 2015). Due to the backward links, they can account for time sequences and are there-

fore perfect in processing sequential data, e.g. natural language. RNNs have a cyclic architecture and 

are able to learn the data properties through a memory from previous inputs (Jain et al, 1996; Zhang 

et al, 2018a). The memory of an RNN is its ability to process all the elements of a sequence where 

the input of a unit thus consists of two parts, the current input and the output of previous calculations 

(Zhang et al, 2018a). This is possible because the information from previous calculations is stored as 

an internal state within the RNN (LeCun et al, 2015; Zhang et al, 2018a). 

However, especially at deep RNNs, the vanishing or exploding gradients during backpropagation 

training has proved to be very problematic due to long-term dependencies (Bengio et al, 1994; 

Hochreiter, 1991; Schmidhuber, 2015; Zhang et al, 2018a). To address this phenomenon called fun-

damental DL problem, LSTMs were developed (Gers et al, 1999; Hochreiter and Schmidhuber, 

1997). Today, the most successful RNNs are based on this architecture (Deng, 2014; Schmidhuber, 

2015). By using so-called constant error carousels, also known as memory cells, LSTMs are able to 

remember processes that already took place many time steps ago. These units are connected to them-

selves with a weight of 1 and thus copy their own state. This connection is linked to another unit, 

called gate unit, which decides when to erase the learned memory, which information is erased, and 

which new information is stored in the memory (Gers et al, 1999; Hochreiter and Schmidhuber, 1997; 
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LeCun et al, 2015; Zhang et al, 2018a). Accordingly, a distinction is made between input, forget and 

output gate units (Hochreiter and Schmidhuber, 1997; Zhang et al, 2018a). The additional possibility 

of forgetting information and the associated influence on the internal memory enables the effective 

use of long-term dependencies without vanishing or exploding gradients. 

Conventional RNNs and LSTMs can only use the information of previous time steps and therefore 

do not use all available information of sequential data (Zhang et al, 2018a). For this reason, Bidirec-

tional LSTMs (BiLSTM) have been developed. They consist of two opposing LSTMs stacked on top 

of each other and are thereby able to process text sequences forward and backward at the same time. 

Finally, the internal states of both networks are taken into account for calculating the output of the 

bidirectional network (Schuster and Paliwal, 1997). The bidirectional architecture often provides bet-

ter sentiment classification results than its unidirectional counterparts since the context between a 

given word within a text and its subsequent words might be as important as the context to previous 

words for classifying the sentiment of this word (see, e.g., Howard and Ruder (2018), Johnson and 

Zhang (2016)). 

The danger in supervised learning processes, so-called overfitting, is often caused by a limited amount 

of training data, too many parameters to be learned (the network capacity) or a large number of train-

ing epochs. In such a case, the network learns to identify specific characteristics of the training data 

which are irrelevant or even obstructive for classifying unknown data (Srivastava et al, 2014). Thus, 

the task-specific generalization decreases with additional training epochs so the model loses massive 

usefulness in the analysis of unknown data. RNNs -particularly their bidirectional variants- are quite 

susceptible to overfitting due to their huge capacity (memory architecture and additional backward 

neuron connections) so that such models are usually trained with fewer epochs than other architec-

tures in order to learn cumbersome specific features (Hong and Fang, 2015). 

In addition, to avoid overfitting, another hyperparameter can be integrated into the model. This 

method, known as dropout regularization, randomly sets a share of its output per layer to zero, thus 

extracting a thinned net from the original complex model. The size of this eliminated share is deter-

mined by the dropout rate. As a result, the network does not learn any irrelevant patterns contained 

in the training data which improves unknown data performance a lot (Srivastava et al, 2014). The 

additional implementation of a recurrent dropout rate makes this method implementable for RNNs 

(Gal and Ghahramani, 2015). 
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Since DL algorithms (like other ML methods as well) can not use text data as input, datasets in text 

form have to be converted into numerical vectors (Zhang et al, 2018a). This results in very high-

dimensional property vectors (called One Hot Encoding (OH)) since each word contained must be 

assigned its own value. ML applications, therefore, require a feature selection step that removes un-

important properties or words for the task to be performed and thus reduces the dimensionality with-

out reducing the quality of the subsequent classification (Rui et al, 2016; Yang and Pedersen, 1997).  

An advantage of sentiment classification via DL is that, in contrast to other ML methods, no feature 

selection is necessary to avoid these high-dimensional feature vectors since DL models are able to 

handle high-dimensional data very well and process a feature selection by using the embedding layer 

for training so-called word embeddings. Using a specific algorithm, it generates smaller numerical 

vectors and at the same time more information contained by removing the words which are irrelevant 

for the classification task. Examples of such word embedding algorithms are Word2Vec (Mikolov et 

al, 2013) and GloVe (Pennington et al, 2014). The word embeddings and the weights are learned 

simultaneously based on the present training data. If there is insufficient training data for a classifi-

cation task, pre-trained word embeddings calculated using one of the two algorithms can be used. 

Such pre-trained vectors are freely available via internet (for Word2Vec: see Google (2013), for 

GloVe: see Stanford (2014)). 

3 Experiments 

3.1 Dataset 

The IMDB Large Movie Dataset was developed by Maas et al (2011). It was designed to meaning-

fully test and compare binary sentiment classification methods. This dataset contains 100,000 film 

ratings from the Internet Movie Database (50,000 labeled and 50,000 unlabeled samples), with each 

movie represented by a maximum of 30 ratings (Maas et al, 2011). The goal of the IMDB SA task is 

to correctly classify whether a movie rating is positive or negative. The average length of a review 

document is 231 words (Wang and Manning, 2012). Within the labeled data, there are 25,000 positive 

and 25,000 negative reviews each, with only clearly polarized contributions taken into account. 

Therefore, neutral reviews are not included. The labeled dataset is also divided into 25,000 reviews 

for training and testing each (Maas et al, 2011). The unlabeled training dataset with 50,000 reviews 

is intended to, e.g., train a semi-supervised architecture with unsupervised pre-training. This dataset 

contains positive, neutral and negative sentiments (Maas et al, 2011). In general, is has to be men-

tioned that the particular difficulty of classifying film ratings presents a major challenge for all ML 
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methods (Turney, 2002). The basic difficulties and challenges in text analysis, including irony, sar-

casm, various word diffractions, synonyms, stop words, etc. are just as demanding as the different 

lengths of the evaluation documents. 

3.2 Related Work 

Reference Architecture  Specific Architecture Test Accuracy 
Le and Mikolov (2014) FNN PV-FNN 92.58% 

Dai and Le (2015) LSTM SA-LSTM 92.80% 
Johnson and Zhang (2015) CNN RE-CNN 93.49% 

Dieng et al (2016) RNN Topic-RNN 93.72% 
Johnson and Zhang (2016) LSTM OH-BiLSTM 94.06% 

Miyato et al (2016) LSTM VA-LSTM 94.09% 
Gray et al (2017) LSTM Block-Sparse LSTM 94.99% 

Radford et al (2017) LSTM Byte-Level LSTM 92.88% 
Xu et al (2017) RNN SSVAE-RNN 92.77% 

Howard and Ruder (2018) LSTM ULMFiT  95.40% 

Table 2: DL models for the IMDB sentiment classification task 

The IMDB Large Movie Dataset classification task has already been solved by a variety of high-

performance models, especially during the last 4 years the accuracy of the task has been improved 

regularly. The currently best architecture was set up by Howard and Ruder (2018) with their ULMFiT 

model and achieves an accuracy of 95.40% in classifying the IMDB test data. The 10 most powerful 

DL architectures are listed in Table 2. Within these models, it is noticeable that LSTMs were used 

disproportionately (6 out of 10). Also, Merity et al (2017) describe these architectures as particularly 

advantageous for language modelling tasks, as LSTMs are more resistant to the fundamental deep 

learning problem of the vanishing gradient than other architectures. In addition, Johnson and Zhang 

(2015) also demonstrated the efficient use of CNNs for sentiment classification. Although they do 

not match the accuracy of the best LSTM models, they are convincing due to their competitive clas-

sification rates and comparatively low computational effort. However, LSTMs seem to be more 

promising in setting a new accuracy high score. The literature review also shows that the implemen-

tation of unsupervised elements, especially for pre-training, has positive effects on the performance 

of deep learning models (8 out of 10 models contained unsupervised learning structures). Neverthe-

less, due to the question regarding the influences of individual hyperparameters on the overall classi-

fication performance, the implementation of unsupervised pre-training is superfluous. 
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3.3 Model 

 

Figure 1: The LSTM model 

As Figure 1 shows, our LSTM model has a bidirectional architecture, similar to Howard and Ruder 

(2018) model, but it initially contains only 2 BiLSTM layers and 20 units per layer and direction. 

After the initial embedding layer which is used for training the word embeddings, both BiLSTM 

layers are utilized for learning representations. The final, fully-connected dense layer executes the 

binary classification of the 25,000 training (respectively test) samples with a sigmoid function. As an 

optimizer the "RMSprop" algorithm (Hinton et al, 2012) is used, as a loss function a binary cross 

entropy. The number of words used as features is 10,000, and the maximum review length is 500 

words. The model is trained for 5 epochs (which is a good number of epochs compared to the results 

of Hong and Fang (2015) for highly regularized LSTMs) with a batch size of 100, the validation split 

is 20% (5,000 samples, respectively). 

In this model, the following hyperparameters are now to be varied to examine their single impact on 

the correct classification rate: The number of words considered as features, the sequence length of 

the comments, the proportion of validation data, the use of pre-trained GloVe word embeddings, the 

number of hidden BiLSTM layers, the number of units per hidden layer, the dropout and recurrent 

dropout rates (for preventing overfitting), and the size of the data batches (during training, the training 

data is divided into batches of a fixed size which are given successively through the network; the 
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weights of the network are updated after every batch). For each hyperparameter, a specific value is 

set and a variant is selected that suggests a greater learning performance. Within the experiment, only 

one hyperparameter is chosen into its variant value at the same time. The other hyperparameters stay 

at their default value. The selected values are summarized in table 3. 

The hyperparameters "validation data" and "batch size" were chosen lower in the variant since a larger 

amount of training data as well as smaller batches suggest a better classification performance. Since 

an adaptation of the network parameters takes place after each batch, smaller batches mean a higher 

number of such adjustments and thus deeper learning processes. For all other values, however, a 

stronger performance is assumed if the values are higher. The values are changed separately while 

the other hyperparameters maintain their default configuration. The determined values are then com-

pared with the global default variant using the validation data performance in order to show their 

single impacts on the network performance. In this way, 8 comparison pairs are created (1 for each 

hyperparameter). If a hyperparameter variation has a positive effect on the validation performance, it 

will be transformed into a final model which will be compared to the default configuration for inves-

tigating whether the effects on accuracy can be cumulated to a high-performing model. The hyperpa-

rameter "dropout" is tested for preventing overfitting during training. At the same time, the machine 

times are observed. The computations are accomplished with Amazon Web Services (m4.2xlarge, 

32GB). 

3.4 Results 

Model Default Variant  Train Acc Train Loss Val Acc Val Loss Machine Time 
Standard ðï ðï 94.60% 0.1541 87.84% 0.2905 18 min 20 sec 

Max features 10,000 20,000 95.89% 0.1258 88.68% 0.3106 18 min 7 sec 
Max len 500 1,000 95.49% 0.1326 88.66% 0.2947 18 min 1 sec 
Val split 0.2 0.1 95.18% 0.1395 88.48% 0.2931 19 min 26 sec 
GloVe no Yes 50.23% 0.6932 50.14% 0.6930 16 min 

Units / Layer 20 100 94.52% 0.1574 86.12% 0.2992 44 min 17 sec 
Layer 2 3 94.98% 0.1421 87.74% 0.3195 26 min 31 sec 

Dropout no Yes 91.65% 0.2275 86.74% 0.3513 21 min 28 sec 
Batch size 100 50 95.10% 0.1431 88.90% 0.2916 28 min 16 sec 

Table 3: Training and validation results of the default configuration and the variants 

Without any hyperparameter variation, the default model reaches 94.60% training and 87.84% vali-

dation accuracy. The values of the loss function were 0.1541 for training and 0.2905 for validation. 

Due to overfitting in unregularized BiLSTMs, this value is already reached during the 2nd training 

epoch. Nevertheless, our model performs on a quite respectful level since there is no pre-training 

integrated. The training session required 18 minutes and 20 seconds. 
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The increase of word features (10,000 to 20,000 words) provided 95.89% training and 88.68% vali-

dation accuracy (loss function: 0.1258 resp. 0.3106) which means an increase of 0.84% in validation 

performance compared to the default model. This result was reached in the 2nd epoch as well, another 

rapid overfitting was observed. The training required 18 minutes and 7 seconds which was surpris-

ingly less than the default model. Since the accuracy rate was higher, this hyperparameter variant was 

implemented in the final model. 

The increase of the maximum sample length (500 to 1,000) also improved the performance (95.49% 

for training and 88.66% for validation accuracy, 0.1326 resp. 0.2947 for the loss function values), 

this time an increase of 0.82% in validation accuracy compared to the default model was observed. 

Not surprisingly, the 2nd training epoch performed best, this variation needed 18 minutes and 1 sec-

ond training time. This variant was also implemented into the final model. 

Changing the ratio of training and validation data from 80:20 to 90:10 resulted in a further increase 

in validation accuracy to 88.48% (+ 0.64%) which was already achieved during the 2nd epoch (train-

ing accuracy: 95.18%; loss function values were 0.1395 for training resp. 0.2931 for validation). 

Subsequently, overfitting could be observed again. This was accompanied by an increase in compu-

ting time to 19 minutes and 26 seconds. Since the accuracy increased due to the greater amount of 

training data, the final model will also be trained with the higher number of samples. 

The use of pre-trained word embeddings from the GloVe database caused a massive loss of accuracy. 

While computing time was clearly the shortest at precisely 16 minutes, a training accuracy of 50.23% 

and a validation accuracy of only 50.14% could be achieved (loss function values: 0.6932 for training 

resp. 0.6930 for validation), which corresponds to a validation accuracy loss of 37.70% compared to 

the default model. This very poor performance is due to the lack of task-specific training of the word 

embeddings, which means that the values remained almost constant over the 5 epochs. The strong 

benefits of pre-training in literature, as found in Howard and Ruderôs (2018) model, are achieved 

through huge datasets used to learn the word embeddings and weights. At the same time, the word 

embeddings are not frozen, but constantly adapted during the learning process. While the GloVe word 

embeddings used here is also based on just 400,000 words, for example, WIKITEXT-103 incorpo-

rates embedding vectors for about 103,000,000 words. Thus, the word embeddings used are far from 

having enough information to precisely solve the specific classification task of the IMDB dataset. 

The pre-trained embedding vectors are therefore not integrated into the final model. However, unsu-

pervised pre-training is indispensable for creating a particularly powerful architecture if it is carried 
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out with very large amounts of useful information and the parameters found are then further adapted 

to the task. 

Increasing the units per hidden layer from 20 to 100 led to a massive increase in computational time 

to 44 minutes and 17 seconds. This is the consequence of the higher computational effort since the 

additional units also process a large amount of information during the training. However, the valida-

tion accuracy fell by 1.72% to 86.12% (training: 94.52%) and the values of the loss function were 

worse as well (0.1574 for training and 0.2992 for validation). This result is particularly surprising 

given the fact that the most powerful LSTM models from the literature have clearly greater capacities. 

However, the performance can not be explained by overfitting, since the training data were not clas-

sified very well and the best validation performance was not achieved until the 5th epoch. This result 

indicates additional influences between different hyperparameters, which go beyond separate varia-

tions of individual parameters. Due to the inadequate outcome of this study, the final model does not 

require an increase in the number of units as the higher storage capacity should lead to an increase in 

classification performance, which was clearly missed. 

The integration of a third BiLSTM layer, similar to Howard and Ruder (2018) network, also resulted 

in a lower validation accuracy of 87.74% (training accuracy: 94.98%) and worse values of the loss 

function (0.1421 for training and 0.3195 for validation), however, this difference is lower compared 

to the higher number of units (-0.1% vs default configuration). This ratio was reached during the 3rd 

epoch so overfitting can be observed another time (presumably by additional network capacity). The 

machine time increased to 26 minutes and 31 seconds. Although this result does not necessarily pre-

clude the inclusion of a third hidden layer to the final model, due to the increased machine time and 

the simultaneous (minor) deterioration of the accuracy, the third BiLSTM layer will not be included. 

Using a dropout / recurrent dropout regularization with the values 0.2 / 0.2 reduced the validation 

accuracy of the model by 1.1% to 86.74% (training accuracy: 91.65%) with simultaneous increase of 

the calculation time to 21 minutes and 28 seconds. The values of the loss function were 0.2275 for 

training and 0.3513 for validation. However, the dropout was introduced to avoid overfitting and thus 

increase the stability of the model. Since the top value was reached in the fifth epoch, the dropout 

was successful so that the regularization is to be evaluated advantageously and integrated into the 

final model. 

The use of a smaller batch size (50 versus 100 samples) brought the highest validation accuracy gain 

of a single changed hyperparameter (1.06% to 88.90%). The training performance was 95.10% and 
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the values of the loss function were 0.1431 for training and 0.2916 for validation. It is also positive 

that the validation quota could be reached twice (epoch 2 and 3) before overfitting begins. In this 

case, the model benefits from a higher number of parameter adjustments regarding the smaller batch 

size. However, machine time was quite high at 28 minutes and 16 seconds, due to the smaller denom-

ination of the training data. By increasing the performance, the final model will be trained with 

smaller batches as well. 

Model Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Machine Time 
Standard model 94.60% 0.1541 87.84% 0.2905 87.01% 0.3652 18 min 20 sec 
Max features 95.89% 0.1258 88.68% 0.3106 86.54% 0.3603 18 min 7 sec 

Max len 95.49% 0.1326 88.66% 0.2947 86.87% 0,3301 18 min 1 sec 
Val split 95.18% 0.1395 88.48% 0.2931 87.60% 0,3361 19 min 26 sec 
GloVe 50.23% 0.6932 50.14% 0.6930 52.81% 1.2817 16 min 

Units / Layer 94.52% 0.1574 86.12% 0.2992 86.04% 0.3741 44 min 17 sec 
Layer 94.98% 0.1421 87.74% 0.3195 85.90% 0.3415 26 min 31 sec 

Dropout 91.65% 0.2275 86.74% 0.3513 85.53% 0.3599 21 min 28 sec 
Batch size 95.10% 0.1431 88.90% 0.2916 87.51% 0.3534 28 min 16 sec 

Final model 93.01% 0.1948 88.36% 0.3042 87.46% 0.3779 83 min 28 sec 

Table 4: Results of the hyperparameter variants incl. the final model and test data performances 

On the basis of the discussed validation results of the hyperparameter variations, the default config-

uration should now be modified seeking for a more powerful final model. A total of 5 single hyperpa-

rameter variants could be identified as well-working, including the higher number of words consid-

ered as features, the larger comment length, the use of smaller batch size, the greater amount of train-

ing data, and the integration of dropout regularization to avoid overfitting (as the validation results 

showed, overfitting in LSTMs is a big issue to deal with). The tested pre-trained GloVe word embed-

dings, on the other hand, could not be taken into account due to the massive loss of accuracy. Also, 

the implementation of additional layers and units could not improve the network. 

The training of the final model was highly more computationally intensive than the variants of indi-

vidual hyperparameters (83 minutes and 28 seconds). This observation is not surprising due to the 

observed calculation times of the individual variations, the computational effort of the individual 

hyperparameters just adds up in the final model. The accuracy, however, reached 93.10% for training 

and 88.36% for validation which corresponds to an increase of 0.52% in validation performance com-

pared to the default configuration (reached in the 5th epoch so the dropout implementation was suc-

cessful in avoiding overfitting). But, at the same time, it is highly noteworthy that the performance in 

the validation data is worse than in the variants of the individual positive-acting hyperparameters 

which were set to improve the network accuracy (dropout regularization was implemented to avoid 

overfitting). This means that LSTM hyperparameters do not just work on their own but seem to in-
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teract with the other hyperparameter settings. In fact, this experimental design is well-suited for un-

derstanding the effects of the various hyperparameters on the network in general, but it is not optimal 

for finding the strongest setting within an LSTM. Nonetheless, the final model has achieved a higher 

validation performance than the already well-performing default configuration. 

For further evaluating the variants and the final model compared to the default configuration, the test 

dataset of the IMDB dataset was classified. For this, the raw test data was preprocessed as well as the 

training data (vectorization and word embeddings learned by embedding layer). The default config-

uration achieved 87.01% test accuracy while the created final model achieved a comparatively 

stronger accuracy of 87.46%. Compared with the single variants, the separate variation of the valida-

tion split and the batch size were even outperforming the final model while the variant of the valida-

tion split reached the highest test accuracy (87.60%) with a machine time of 19 minutes and 26 sec-

onds. To summarize, the test classification performance could be increased by 0.45% (resp. approx-

imately 113 additionally correctly classified comments) through varying the 5 hyperparameters clas-

sified as positive and by 0.59% (resp. approximately 148 additionally correctly classified comments) 

through the separate variation of the validation split compared to the default model. The 0.45% in-

crease in classification performance represents an improvement associated with highly increased 

computational time requirements while the higher increase of 0.59% could be reached with only a 

small gain of machine time. 

4 Discussion / Conclusion 

The aim of this work was to investigate the impacts of single hyperparameter variants within an 

LSTM network to perform the IMDB Large Movie Dataset SA task. For this purpose, an LSTM 

network based on the task-specific DL models from the literature of recent years was created. A total 

of 8 hyperparameters contained in this network were separately varied and compared with the default 

configuration by their validation performance. In this way, 5 hyperparameters (maximum number of 

words taken into account as characteristics, maximum comment length, dropout regularization, use 

of a larger training dataset, and the use of a smaller batch size) could be demonstrated as positive 

influences while implementing additional hidden layers, additional units per layer and pre-trained 

GloVe word embeddings could not achieve any positive effects. The variants which improve the 

validation accuracy were then transformed into a final model to see whether the impacts of the sepa-

rate hyperparameters could be added. While the validation data performance of the final model was 

higher than the default model, some single variants outperformed the final model so the effects of 
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single variants were not able to be cumulated. In addition, comparing the default configuration, the 

separate variants and the final model based on test data accuracy, the default model achieved 87.01% 

with a machine time of 18 minutes and 20 seconds, while the final model achieved 87.46% at a clearly 

higher computation time of 83 minutes and 28 seconds. At the same time, the separate variants of the 

validation split and the batch size even outperformed the final model due to test accuracy and machine 

time (with the separate variation of the validation split as the overall best configuration performing a 

test accuracy of 87.60%). In this way, the already precisely classifying default configuration could 

be increased by a further 0.45% (approximately 113 additional comments) through creating the final 

model and even 0.59% with a separate variant. In fact, the separate influences of the hyperparameter 

variants on accuracy could not be cumulated but, at the same time, the machine time did. 

Looking at the separate variants, it is striking that the better performance was not achieved by in-

creasing the network capacity (additional layers or units per layer) but the consideration of a larger 

number of features, longer comments and a larger number of training samples were able to raise 

accuracy, even the use of smaller batch sizes contributed to a stronger performance. In particular, the 

network was able to benefit from larger amounts of data and a greater number of iteration steps. At 

the same time, the results for the variants that result in an increase in capacity (number of units / 

layers) are surprisingly negative and should not be implemented as a single variant in BiLSTMs which 

already have a large network capacity. Overall, the results indicate interactions between the various 

hyperparameters that can not be observed in this experimental setup with separate variants. This is 

supported by the current literature who use a much higher capacity than the model configured here. 

Accordingly, higher capacities should definitely not be excluded from the construction of DL models 

for performing SA, rather such changes should be examined together with other hyperparameter var-

iants in order to possibly further increase the classification performance. 

In spite of the lower classification performance compared to the currently best models, it was possible 

to clearly demonstrate how the single hyperparameters of an LSTM model influence the performance 

of the overall architecture. In comparison to the architecture by Howard and Ruder (2018), the per-

formances of the model used here are significantly lower. This is due to the fact that Howard and 

Ruder (2018) use a huge unlabeled dataset for efficiently pre-training their network. In addition, they 

combined different hyperparameters for increasing the network capacity (additional BiLSTM layers 

and more units per layer) while preventing overfitting with dropout regularization. The results of their 

ULMFiT model indicate interactions between the different hyperparameters as our experiment with 

separate variants did. 
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While the separate influences of the hyperparameter variants on overall accuracy could be shown 

precisely, the experiment has to be limited due to the fact that the validation split during the training 

epochs has been set randomly so small variances due to different validation samples can not be ex-

cluded. Though, since every configuration is trained for 5 epochs with 5 different validation splits, 

the risk of a variance at the validation results is negligible. Furthermore, no effects between the indi-

vidual parameter variants were analyzed. These effects could be observed by the surprisingly poor 

classification results for those variants which increase network capacity and the accuracy of the final 

model compared to different single hyperparameter variants. In this respect, the investigation is lim-

ited, and we would like to encourage further research in the field of hyperparameter variants in LSTM 

networks. In particular, studies that use this paper as a first step to understand the single hyperparam-

eter effects on the network and go on investigating combinations of variants (i.e. using a fractional 

factorial design (see, e. g., Gunst and Mason (2009)) can further advance the currently still fragile 

state of research. We believe that a deeper understanding of hyperparameter influences in LSTMs 

will definitely help to outperform the current IMDB Large Movie Dataset highscore with new and 

innovative LSTM models. 
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Abstract:  Machine learning (ML) techniques within the artificial intelligence (AI) para-

digm are radically transforming organizational decision-making and busi-

nessesô interactions with external stakeholders. However, in time series fore-

casting for call center management, there is a substantial gap between the po-

tential and actual use of AI-driven methods. This study investigates the capa-

bilities of ML models for intra-daily call center arrivalsô forecasting with re-

spect to prediction accuracy and practicability. We analyze two datasets of an 

online retailerôs customer support and complaints queue comprising half-hourly 

observations over 174.5 weeks. We compare practically relevant ML ap-

proaches and the most commonly used time series models via cross-validation 

with an expanding rolling window. Our findings indicate that the random forest 

(RF) algorithm yields the best prediction performances. Based on these results, 

a methodological walk-through example of a comprehensive model selection 

process based on cross-validation with an expanding rolling window is provided 

to encourage implementation in individual practical settings. 

Keywords: Artificial Intelligence, Machine Learning, Call Center Forecasting, Predictive 

Analytics 
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1 Introduction 

Artificial Intelligence (AI) is considered the key enabler for the digitalization of a company in a broad 

spectrum of areas (Brynjolfsson and McAfee, 2017). Today, in the course of increasing availability 

of data, affordable as well as scalable processing power, and the development of advanced machine 

learning (ML) techniques, AI is about to radically transform how firms make decisions (Agrawal et 

al., 2019). It is expected to facilitate the internal decision-making processes of organizations by mak-

ing it smarter, faster, and overall more efficient. To benefit from this potential competitive advantage, 

companies need to identify existing domain problems, find compatible AI solutions, and put an im-

plementation concept into practice (Overgoor et al., 2019). This requires a thorough understanding 

of the task-specific capabilities and feasibility of AI methods like ML. So far, a lack of expertise in 

this area paired with a high level of perceived complexity is often preventing the implementation of 

ML solutions in practical settings (Tambe et al., 2019). 

Particularly the interaction of companies with external stakeholders, such as customers, is about to 

be fundamentally transformed by AI (Kaplan and Haenlein, 2019). Fueled by an almost unlimited 

flow of information about their customers, service-oriented companies in particular, can capitalize on 

AI-driven decision support. Based on latent characteristics and previous customer behavior, ML tech-

niques can predict future interactions (Wedel and Kannan, 2016). One of the most prevalent and 

dominant points of interaction between many organizations and their customers and therefore, critical 

for managing customer experience, are call centers or customer service centers (Whiting and Donthu, 

2006). To constantly provide high service quality in the form of short waiting times at this touchpoint, 

a sufficient number of call center agents is needed (Atlason et al., 2008). Consequently, the process 

of predicting call arrival volumes and deciding on the required staffing level is a critical success factor 

in this area. In this connection, the capabilities of innovative ML techniques promise more flexible 

and precise predictions and thus, the possibility of enhanced organizational planning and better cus-

tomer service. 

Despite the encouraging prospects for service improvement and cost savings, a comprehensive un-

derstanding of the potential of ML models for creating additional value in call center forecasting is 

lacking. In order to gain more profound insights into the performance and practicability of such AI-

driven models in this context, research comprising a methodological perspective with a focus on pre-

diction accuracy as well as a practical angle on the selection and implementation of models is re-

quired. 
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This study proposes a two-step approach that, in the first step, provides a thorough understanding of 

the forecast accuracy of ML methods in call arrival forecasting and, in the second step, makes the 

underlying process of method comparison and selection feasible to decision-makers in practice. Spe-

cifically, we conduct an in-depth analysis of the forecast accuracy of viable ML models based on the 

call arrival data of a real German online retailer. Using two different datasets, i.e., the customer sup-

port and customer complaints queue of the corresponding call center, we perform a comprehensive 

method comparison opposing selected ML models to the three most commonly used time series mod-

els in this field. In the second step, we provide a methodological walk-through example for a valid 

model selection process based on cross-validation with an expanding rolling window. We illustrate 

the practical implementation of the process in a programming environment that is accessible to non-

machine learning experts and practitioners using the random forest (RF) algorithm as the best-per-

forming model for an in-depth example. 

This paper therefore aims to present a starting point for shifting traditional call center forecasting 

towards a paradigm drawing on AI-driven methods. By systematically evaluating the predictive po-

tential of ML models in comparison to commonly used methods, new sophisticated but yet applicable 

models for practical use are identified. In a business setting, following the explicated implementation 

in a reproducible programming environment is supposed to empower practitioners to develop insights 

on the use of ML for forecasting call center arrivals in individual data environments. 

The remainder of this paper is structured as follows: In Section 2, we present the theoretical back-

ground of AI-driven methods in customer analytics and review the state of research in call center 

arrivalsô forecasting, before adequate ML models for this field are introduced. Subsequently, in Sec-

tion 3, we describe the methodology of our research. In Section 4, we present the results of our anal-

ysis for two different customer service channels and in Section 5, we discuss the theoretical contri-

bution and the limitations of our study. We then illustrate the implementation of the best-performing 

RF model by giving a detailed code and walk-through example and demonstrate methodological as 

well as practical implications of the proposed approach. Finally, Section 7 presents a summary and 

concluding remarks. 
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2 Theoretical Background 

2.1 Artificial Intelligence in Customer Analytics 

For businesses, the strategic challenge of understanding and managing customer relationships is be-

coming increasingly important and demanding at the same time. While organizations today have easy 

access to enormous amounts of data about their customers, extracting relevant information to support 

prospective decision-making and thus, standing out from competitors in the long term has become a 

difficult hurdle to overcome for many of them (Kitchens et al., 2018). In the course of these changing 

market dynamics, businesses slowly realize the potential of AI in predictive analytics to enhance 

organizational decision-making by forecasting customer-related data and, therefore, effectively infer 

their future behavior (Huang and Rust, 2018). Predictive analytics techniques generally comprise 

statistical models and other empirical methods aimed at creating predictions as well as approaches 

for assessing the quality of those predictions in practice (Shmueli and Koppius, 2011). More recently, 

ML as a subset of AI has been added to the domains contributing effectively to business prediction 

problems as they provide a way to handle complex problems by forecasting future data based on more 

extensive sets of historical values (Chen et al., 2012). In literature, innovative ML approaches have 

been successfully applied to various customer analytics problems such as customer preferences anal-

ysis (Yang and Allenby, 2003), customer retention (Donkers et al., 2003), and customer profitability 

management (Reinartz et al., 2005). 

However, so far, the practical implementation of ML models in predictive customer analytics is lim-

ited (Wedel and Kannan, 2016). Drawing on the early distinction between forecasting methods and 

forecasting systems proposed by Harrison and Stevens (1976) may explain this slow adoption. While 

the former transforms input data into output information in a mere technical way, the latter in addition 

includes the people concerned with the forecast and the resulting actions. Based on that view, the 

evaluation and selection of a forecasting system explicitly go well beyond the accuracy of its predic-

tion model and includes meaning and usability in practical implementation. In terms of this applica-

bility, many ML approaches still exhibit shortcomings as they do not provide much insight into the 

influence and dynamics of the underlying factors that lead to the prediction results (Martens et al., 

2011; Najafabadi et al., 2015). Due to this lack of comprehensibility and interpretability, many ML 

techniques are commonly considered as black box models (Doshi-Velez and Kim, 2017; Guidotti et 

al., 2019). Moreover, such models are frequently perceived as complex regarding the implementation. 

A high number of hyperparameters gives models the flexibility of adapting to a multitude of business 
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problems but, at the same time, makes it complex for the user to build and optimize the ML algorithm. 

This especially applies to the broad class of artificial neural networks (Bergstra et al., 2011; Paliwal 

and Kumar, 2009). For the above reasons, other categories of ML approaches come into the focus for 

practical use. 

Widely established methods like support vector machines and Bayesian approaches promise ease of 

use while maintaining good performance levels on data sets characterized by moderate complexity 

(Arora et al., 1998; Verbeke et al., 2011). Tree-based models, and in this field especially ensemble 

learning methods like RF and gradient boosting, gained popularity for their robustness and flexibility 

in modeling inputïoutput relationships of various types and volumes of highly complex data (Fang 

et al., 2016; Lemmens and Croux, 2006). Research found them to provide high prediction accuracy 

as well as descriptive results in diverse customer analytics problems such as churn analysis (Burez 

and van den Poel, 2009) and credit risk management (Fantazzini and Figini, 2009). In addition, a 

small number of hyperparameters makes their construction, customization, and optimization more 

manageable and comprehensible (Breiman, 2001).  

2.2 Call Center Arrivalsô Forecasting 

In recent years, the role of call centers has fundamentally changed in many organizations and across 

all industries. While call centers previously only had an information function which did not exceed 

simple order processes, nowadays, more and more complex tasks and customer demands need to be 

fulfilled across multiple communication channels using modern digital technology (Aksin et al., 

2007). However, instead of experiencing declining importance in the course of this transformational 

process, the opposite is the case. Call centers are increasingly transforming into customer interaction 

centers that form the basis for an efficient and value-oriented customer relationship management 

(Gans et al., 2003). They constitute an interface to the customer and provide complex services, while, 

at the same time, giving companies the opportunity of collecting large amounts of otherwise inacces-

sible customer data (Ibrahim et al., 2016). Subsequently, it is possible to anticipate customer needs 

and behavior through data analysis and forecasting techniques (Taylor, 2008). Based on those in-

sights, internal processes and external expectations can be aligned to optimize business performance 

as well as customer experience. 

One of the most important internal processes in call centers is the staffing of agents as customer 

service representatives who directly handle tasks such as order taking, complaint resolution, infor-

mation, and help desk functions as well as after-sales and supplementary services (Dean, 2007; Koole 
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and Pot, 2005). While overstaffing results in high personnel costs, understaffing can lead to extended 

waiting times for customers and consequently causes lower perceived service quality, decreasing 

customer satisfaction, and a lack of customer loyalty (Brady and Cronin, 2001). To determine the 

optimal staffing level, an accurate and robust prediction of call arrival volumes based on historical 

data is needed (Weinberg et al., 2007). Hence, the search for appropriate forecasting methods is the 

focus of scholars and practitioners alike. However, preceding literature so far mainly investigated 

traditional statistical models without taking into account the substantial changes coming along with 

the transforming role of call centers in organizations (Gans et al., 2003). Today, the increasing volume 

and variety of data through a multitude of channels as well as the necessity of realtime analysis and 

predictions call for more flexible and powerful methods.  

Call center arrivals are count data limited to non-negative integers. Such discrete data are frequently 

estimated as Poisson arrival rates (see e.g., Cezik and LôEcuyer (2008); Taylor (2012)). However, 

with arrival rates not being easily predictable, other researchers point out ascertained randomness of 

arrivals in real call centers (see e.g., Aksin et al. (2007); Shen and Huang (2008)). Generally, call 

center arrivals data exhibit specific characteristics and challenges that affect the forecasting process. 

Firstly, an important feature of call arrival rates is their time dependence that typically manifests itself 

in intraday (or subdaily), daily, weekly, monthly, or yearly seasonalities as repeating patterns in the 

arrival counts (Ibrahim et al., 2016). Secondly, the data are often high-dimensional and sensitive to 

contextual factors. Hence, additional information like holidays, promotional activities, and other spe-

cial events may improve model predictions by indicating variations and outliers in the data (Barrow 

and Kourentzes, 2018). Thirdly, procedural characteristics are affecting the forecasting of incoming 

calls, such as (a) the specific call type (e.g., complaints, order taking, or after-sales service) associated 

with the forecast, (b) the length of forecast intervals, which may commonly range from monthly or 

weekly to daily or even sub-daily (i.e., hourly, half-hourly etc.) time spans, and (c) the period between 

the creation of the forecast and the first interval of the prediction, i.e., the lead time. Lead time is an 

organizational parameter resulting from staffing regulations and is assumed to strongly affect forecast 

accuracy as more recent data promise better predictions (Aksin et al., 2007; Rausch and Albrecht, 

2020). Given these properties, the need for methods with high modeling flexibility, while being able 

to handle time dependencies and complex data structures, becomes evident. 

With time dependence often being considered as one of the predominant features of the call arrival 

data, common forecasting techniques in research mostly originate from the field of time series anal-

ysis with call arrivals being a set of contiguous, dependent observations ώὸ  πȟρȟςȟȢȢȢ, each one 
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being recorded sequentially at time t (Box et al., 2015). The most widely investigated and compared 

methods in literature include simple stationary time series models as well as the nonstationary sea-

sonal autoregressive integrated moving average (ARIMA) model (Box and Jenkins, 1970), Holt Win-

tersô exponential smoothing models (Holt, 2004; Winters, 1960), and random walk methods (Taylor, 

2008). While ARIMA and exponential smoothing provide sophisticated complementary solutions to 

the general forecasting problem (Hyndman and Athanasopoulos, 2018) and constitute the most com-

monly used approaches in call center forecasting due to their high prediction accuracy (Andrews and 

Cunningham, 1995; Barrow and Kourentzes, 2018; Mabert, 1985; Taylor, 2012; Thompson and Tiao, 

1971), the random walk model is frequently utilized as a benchmark within literature due to its naÌēve 

forecasts and its informative value for model comparisons (Taylor, 2008). Besides, regression analy-

sis in the form of generalized linear models (GLM), linear fixed-effects, random-effects, and mixed-

effects models is implemented for call arrivalsô forecasting (Avramidis et al., 2004; Ibrahim and 

LôEcuyer, 2013; Nelder and Wedderburn, 1972). 

In contrast, research on ML techniques in call center arrivalsô forecasting is still in its infancy. Ebadi 

Jalal et al. (2016) first indicate time-sensitive ML models to be eligible for forecasting call volumes 

in call centers. To improve short-term accuracy in call arrivalsô forecasting, Barrow (2016) developed 

a hybrid method adjusting seasonal moving average predictions by means of nonlinear artificial neu-

ral networks and found it to outperform traditional time series models like ARIMA and Holt Wintersô. 

Moreover, ML is shown to be capable of modeling complex outliers and thus, to improve call arrival 

prediction accuracy and to yield better results than ARIMA and an innovation state space model 

(ETS) (Barrow and Kourentzes, 2018). Recently, Rausch and Albrecht (2020) investigated RF algo-

rithm as another ML method in their comparison of novel time series and regression models for call 

center arrivals forecasting. RF was found to yield higher prediction accuracy for nearly all of the 

considered lead time constellations. Despite first promising findings and the investigation of several 

approaches, current research lacks a comprehensive understanding of the full capabilities of ML in 

call center forecasting. To close this gap, an extensive assessment of the forecast accuracy of ML 

models in comparison to the most commonly used methods is still to be done. However, according to 

comparisons of common methods conducted on call center data, the selection of the best forecasting 

method can ultimately be highly dependent on the characteristics of the specific prediction problem 

(Andrews and Cunningham, 1995; Taylor, 2008). Therefore, a feasible process of model comparison 

and selection needs to be established to give methodological guidelines to practitioners and to match 

the set of researched forecasting methods with those considered in practice. Today, although a lot of 
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progress has been made regarding the development of advanced methods, call arrivalsô forecasting in 

real business environments is frequently still done based on experience or ordinary stochastic models 

with limited predictive capabilities (Ibrahim et al., 2016). 

2.3 Machine Learning Approaches 

Models from the field of ML are assumed to improve call center arrivalsô forecasting and extend the 

range of feasible methods by providing additional robustness and accuracy to predictions. As the 

practicability of models play a central role in this field of application, non-parametric ML algorithms, 

that are comprehensible and comparatively easy to implement, such as tree-based models, k-nearest 

neighbor (KNN) algorithm, and support vector machines, come to the fore (Coussement and van den 

Poel, 2008; Li et al., 2010; Singh et al., 2017). 

2.3.1 Bagging: Random Forest 

Tree-based methods are frequently utilized in business prediction problems since they yield desirable 

accuracies despite their ease of use (Breiman, 2001). In bagging, successive decision trees are grown 

independently from earlier trees, i.e., each tree is constructed using a bootstrap sample of the data 

(Breiman, 1996). A subclass of bagging methods are RFs, as proposed by Breiman (2001), which add 

an additional layer of randomness to bagging and change how the trees are constructed. Thereby, 

non-parametric the RF algorithm is one of the most widely used ML algorithms, supported by its 

robustness towards outliers and its moderate computation time compared with boosting and other 

bagging methods (Breiman, 2001). 

The algorithm draws ὲ  bootstrap samples from the training data and then grows an unpruned 

regression tree for each bootstrap sample by randomly sampling ά  of the predictors at each node 

and choosing the best split among them. More formally, the resulting RF is an ensemble of ὄ trees 

Ὕ ὢȟȣȟὝ ὢ , where ὢ ὼȟȣȟὼ  is a ὴ-dimensional vector of predictors associated with a 

dependent variable; the ensemble produces ὄ outputs ώ Ὕ ὢȟȣȟώ Ὕ ὢ , where ώȟὦ

ρȟȣȟὄ is the prediction for the dependent variable by the ὦth tree (Svetnik et al., 2003). The outputs 

of all ὲ  trees are aggregated to produce one final prediction ὣ; for regression trees it is the average 

of the single tree predictions (Liaw and Wiener, 2002). I.e., the RF prediction is the unweighted 

average over the ensemble: 

ὣ
ρ

ὄ
ώ Ὕ ὢ  
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To tune the hyperparameters, an estimate of the error rate based on training data can be obtained: at 

each bootstrap iteration, the data which is not in the bootstrap sample, i.e., the out-of-bag (OOB) data 

n, is predicted by using the tree grown with the bootstrap sample. Then the OOB predictions are 

aggregated, and the error rate is calculated (Liaw and Wiener, 2002). In each bootstrap training set, 

about one-third of the sample is left out, i.e., is used for OOB predictions (Breiman, 2001). 

2.3.2 Boosting: Gradient Boosting Machines 

In contrast to bagging, boosting constructs successive weak learners (e.g., decision trees) to produce 

a final strong learner. Each sequentially added weak learner intends to correct the preceding learners 

(Schapire, 1990). Thereby, gradient boosting (machines) fits the new predictor or learner to the re-

sidual errors made by the preceding predictors or learners and uses gradient descent to identify the 

errors in the previous predictions, i.e., gradient boosting allows the optimization of an arbitrary dif-

ferentiable loss function (Friedman, 2001; Friedman, 2002). Formally, ὐ are the number of leave 

and the tree partitions the input space into ὐ joint regions Ὑ ȟȣȟὙ  and predicts a constant 

value in each region. ‎  is the multiplier chosen as an optimal value for each of the treeôs regions to 

minimize the loss function ὒ. Then the generic gradient tree boosting model can be defined as 

Fmx=Fm-1x ‎ ρὼɴ Ὑ ȟwith ɔ
im
=ÁÒÇÍÉÎ ὒώȟὊ ὼ ‎

ᶰ

Ȣ 

Since gradient boosting frequently leads to overfitting, regularization techniques can be included to 

constrain the fitting procedure. E.g., dropout regularization ï inspired by neural networks in a deep 

learning context ï grows consecutive trees from the residual errors of a subset or sample of previous 

trees instead of using all previous trees (Rashmi and Gilad-Bachrach, 2015). 

2.3.3 K-Nearest Neighbor 

The KNN algorithm is frequently considered due to its simplicity in comparison with other ML ap-

proaches. The algorithm was first formalized by Cover and Hart (1967) for classification tasks: given 

an unlabeled instance, the algorithm finds a group of Ὧ most similar objects (or nearest neighbors 

respectively) given its features by computing the distance ὨȢȟȢ (e.g., Euclidean distance) between 

them and further, assigns a class label which matches the class of the majority of the Ὧ neighbors. 

This concept can easily be extended to regression tasks where the output is the average of the Ὧ near-

est neighbors, i.e., 



61 
 

 

ὣ
ρ

ὑ
ώ 

where ώ is the Ὥth case of the nearest neighbors. 

2.3.4 Support Vector Regression 

Suppose we are given a space of input patterns ת, i.e., the training data, ὼȟώ ȟȣȟὼȟώ Ṓ

ת ᴙ with ώ being the output vectors and ὼ are the input vectors. The basic support vector ma-

chine is a non-probabilistic binary linear classifier and it non-linearly maps input vectors into a higher 

dimensional feature space in which a linear decision surface, i.e., a separating hyperplane, is con-

structed (Cortes and Vapnik, 1995; Vapnik, 1982). Thus, its representation of the training data as 

points in the feature space is separated into categories by the hyperplane and predictions of new in-

stances are classified into those categories. The main aim in ‐-support vector regression (SVR) (Vap-

nik, 1995) is based on the same principles but with minor differences: the function Ὢὼ should have 

at most ‐ deviation from the actual targets for the training data and simultaneously, should be as flat 

as possible (Smola and Schölkopf, 2004). In the linear and most basic case, Ὢ is taking the form 

Ὢὼ ộ‫ȟὼỚ ὦ with ȟὦɴת‫ᶰ ᴙ 

where ộϽȟϽỚ is the dot product in the space of input patterns ת. To ensure flatness, a small can be ‫ 

obtained by a convex optimization problem: 

minimize 
ρ

ς
ᴁ‫ᴁ 

subject to 
ώ ộ‫ȟὼỚ ὦ ‐
ộ‫ȟὼỚ ὦ ώ ‐

 

It assumes that function Ὢapproximates all pairs ộὼȟώỚ with ‐ precision. Slack variables ‚ȟ‚ᶻ can 

cope with such otherwise infeasible constraints of the optimization problem. Moreover, kernels can 

be used to make SV algorithms nonlinear by transforming the data into a higher dimensional feature 

space (Smola and Schölkopf, 2004). 
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3 Methodology 

3.1 Preliminary Data Analysis 

We analyze call center data of a leading German online retailer for fashion that were gathered and 

selected iteratively and in close exchange with the local data experts and department managers. Over-

all, the retailerôs call center comprises four different queues: customer complaints, customer support, 

personal consultation service, and order taking. In this paper, we investigate two datasets describing 

the call arrival volume of the customer support and customer complaints queue. Both are open from 

7 a.m. to 10 p.m. from Monday through Saturday. The half-hourly datasets comprise 31,410 obser-

vations or 174.5 weeks of data from January 2, 2016 to May 7, 2019. One day comprises 30 obser-

vations, one week consists of 180 observations, and one year comprises 9,367.5 observations consid-

ering leap years. We exclude two weeks of data (or 360 observations) since these values are missing 

due to an internal system change for interval capturing. 

 

Fig. 1. Overall call arrival volume of customer support queue. 
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Fig. 2. Averaged call distribution per day for customer support queue. 

For the customer support queue, the maximum number of call arrivals per half hour is 378, and the 

data comprise 2,218 zeroes, i.e., intervals without call arrivals. The customer support data are over-

dispersed, exhibiting a mean of 70.9539 and a variance of 2,181.6742. We conducted an Augmented 

Dickey Fuller (ADF) test to check whether the data have unit root and hence, are nonstationary: we 

cannot reject the null hypothesis of unit root in the data with a p-value of 0.9798 at lag order 9,360 

(value of test statistic -0.5469) and thus, assume that our data are nonstationary. Consequently, we 

have to apply time series decomposition to our time series models. Drawing on seasonal-trend de-

composition based on Loess (STL) (Cleveland et al., 1990), the time series is detrended and desea-

sonalized resulting in a seasonal component SĔ t and a seasonally adjusted component AĔ t , i.e., the 

data without a seasonal component. The latter can be forecasted with any non-seasonal forecasting 

method, whereas the seasonal component is forecasted by using the last period of the estimated com-

ponent, i.e., a seasonal naÌēve method. Finally, inverting the decompositionôs transformations yields 

the forecasts of the original time series (Brockwell et al., 2002). 

Figure 1 depicts the arrival volume of the customer support queue during the 174.5 weeks of our data. 

Apparently, the call arrival volume remains more or less constant throughout the considered period. 
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With respect to the averaged call distribution per day in Figure 2, Mondays are the busiest days with 

an extremely high peak in the morning hours. The remaining weekdays exhibit a relatively similar 

course with a peak in the morning and a second peak during the afternoon. In contrast, there are few 

call arrivals on Saturdays. 

 

Fig. 3. Overall call arrival volume of customer complaints queue. 
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Fig. 4. Averaged call distribution per day for customer complaints queue. 

Regarding the customer complaints queue, the maximum number of call arrivals per interval is 53, 

and the dataset contains 6,551 intervals without call arrivals. Since we cannot reject the null hypoth-

esis of the ADF test with a p-value of 0.7905 at lag order 9,360 (value of test statistic -1.5009) we 

assume our data to have unit root and, consequently, to be nonstationary. Accordingly, time series 

decomposition is applied to the time series model. Similar to the customer support queue, Figure 3 

shows the overall arrival volume of the customer complaints queue: the call arrival volume remains 

relatively constant over time, but there is a slight increase towards the end of the dataset. Figure 4 

reveals that the customer complaintsô averaged call distribution per day is similar to the customer 

support queue on a lower level. 

We model predictor variables (summarized in Table 1) to yield more accurate forecasts. Largely, our 

variables align with those of extant literature such as weekdays and billing periods (Aldor-Noiman et 

al., 2009) or holidays and catalog mailings (Andrews and Cunningham, 1995). 
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Table 1: Predictor Variables. 

Variable Description 

Time-of-the-day 
Nominal variable capturing the time-of-the-day-effect;  

30 half-hourly values ranging from 7 a.m. to 9:30 p.m. 

Day-of-the-week 
Nominal variable capturing the day-of-the-week-effect;  

six values ranging from Monday to Saturday 

Holiday 
Nominal variable capturing the effect of German public holidays;  

16 values for public holidays and ordinary weekdays 

Day after holiday 
Dummy variable capturing the effect of days after German public holidays,  

two values for days after holidays and ordinary weekdays 

Outlier 

Nominal variables capturing the effect of outliers;  

four values for extreme outliers as well as outliers (marked by the 

management), days on which the call center is closed, and ordinary weekdays 

School holidays 
Metric variable capturing the effect of German school holidays;  

specifying the number of German states having school holidays 

Year 
Nominal variable capturing the effect of busier seasons;  

eight values for semiannual sections from January 2016 to May 2019 

CW0-3 
Four dummy variables capturing the effect of catalog mailings on the first 

weekend, as well as the first, the second, and the third week after release 

MMail1-2,  

MPost1-2,  

DMail1-2 

Six dummy variables capturing the effect of reminders via e-mail (MMail) 

as well as via mail (MPost) and due date e-mails (DMail) on the day of 

delivery and the day after 

3.2 Research Design 

To evaluate the predictive power of adequate ML approaches and to ensure the practical value of our 

study, we follow a two-step approach. It comprises the analysis of prediction performance in the form 

of a method comparison in line with extant forecasting research (see e.g., Taylor (2008); Cao and 

Parry (2009)) and, as proposed by Buitinck et al. (2013), an in-depth walk-through example of the 

process of model comparison and selection to make the practical implementation accessible to deci-

sion-makers and non-experts. 

In the first step, we conduct a model comparison of selected ML methods, presented in Section 2.3 

(i.e., gradient boosting with dropout (GBD), gradient boosting with L1 and L2 regularization (GBR), 

KNN, RF, and SVR) with the three most commonly used time series models identified in Section 2.2 

(i.e., ARIMA, ETS, and RW, for further formal information on these time series approaches readers 

are referred to the Appendix). The included methods summarized in Table 2 cover sophisticated ML 
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and time series models as well as standard benchmark techniques. The model performance is evalu-

ated based on the two datasets described in Section 3.1, and we include four different lead times in 

our experimental setup (three weeks, two weeks, one week, and no lead time from the forecast origin). 

This is done to validate our results as well as to assess the flexibility of the investigated models in an 

authentic forecasting situation that is comparable to real call center settings with specific organiza-

tional requirements like staffing regulations. We thereby aim to provide an extensive and robust as-

sessment of the prediction accuracy of feasible ML models in call center arrivalsô forecasting. 

For model validation, we apply cross-validation with an expanding rolling window. Thereby, the 

initial model is fitted with its optimized hyperparameters using 118 weeks or 21,270 observations 

from January 2, 2016 to April 7, 2018 as training data. We then predict one week or 180 observations 

(i.e., forecast horizon Ὤ  ρψπ). For the next iteration k, we roll the training data one week forward, 

re-optimize the modelôs hyperparameters or re-estimate the model respectively, and predict one week 

further. We repeat this step 52 times, i.e., for one year, and thus, Ὧ  υς. As stated earlier, we have 

to exclude two weeks of data from October 22, 2018 to November 4, 2018 and thus, we predict 9,000 

observations. We evaluate the modelsô performance by comparing the predictions with the actual 

values, i.e., the test data, and hence, compute forecast accuracy. 
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Table 2: Models for comparison. 

Model type Model Description 

 

 

ML  

approaches 

GBD 

Algorithm builds an ensemble of weak tree learners, min- 

imizes the modelôs loss by adding weak learners sequen- 

tially using a gradient descent like procedure, and ran- 

domly drops boosting tree members 

GBR 

Algorithm builds an ensemble of weak linear base learners 

and utilizes L1 (Lasso Regression) as well as L2 

(Ridge Regression) regularization 

KNN 
Algorithm predicts an observation by averaging the 

values of the k nearest neighbors 

RF 

Algorithm builds an ensemble of decision trees using a 

bootstrap sample of the data for each tree and averages the 

aggregated prediction of the trees 

SVR 

Algorithm builds a separating hyperplane into the feature 

space of output and input vectors which should have at most 

Ů deviation from the actual targets and should 

be as flat as possible 

 

Time series 

models 

STL 

+ 

ARIMA  

Time series is decomposed based on the Loess procedure 

and the seasonally adjusted component is fore- casted 

based on the time seriesô lagged values and lagged errors 

STL 

+ 

ETS 

Time series is decomposed based on the Loess procedure 

and the seasonally adjusted component is fore- 

casted based on previous level and error 

STL RW 

- 

DRIFT 

Time series is decomposed based on the Loess procedure 

and the seasonally adjusted component is forecasted based 

on the time seriesô last observation and the 

average of changes between consecutive observations 

Note: ARIMA = autoregressive integrated moving average, ETS = error, trend, seasonal (innovation state space model), 

GBD = gradient boosting with dropout, GBR = gradient boosting with regularization, KNN = k-nearest neighbor, RF = 

random forest, RWDRIFT = random walk with drift, STL = seasonal-trend decomposition based on Loess, SVR = sup-

port vector regression. 

 

 



69 
 

 

As performance measures for forecast accuracy, we draw on the mean absolute error (MAE) and the 

root mean squared error (RMSE) 

MAE В ȿὣ ὣȿ       RMSE В ὣ ὣό 

where the test subset is given by ὣ, the predicted values are ὣ, and Ὕ is the number of predicted 

values. Both error measures are frequently utilized by literature to determine accuracy (e.g., see (Al-

dor-Noiman et al., 2009; Ibrahim et al., 2016; Taylor, 2008; Weinberg et al., 2007)) since they are 

easy to interpret and further, scale-dependent and therefore, suitable to compare forecasts on the same 

scale. Complementary, we report the computation time of both the benchmark time series models as 

well as the ML approaches to capture computational complexity and add practical value to the results. 

In the second step, in Section 6, we provide a methodological walk-through example for a valid model 

selection process based on cross-validation with an expanding rolling window. By illustrating differ-

ent sequences of the implemented programming code used in the experimental design of the first step, 

we conduct the comparison and selection of the most suitable forecasting method comprehensible to 

organizational decision-makers and detach the studyôs value from specific characteristics of our da-

tasets by making the implemented approach reproducible. Additionally, we aim to provide further 

evidence for the practical applicability of adequate ML algorithms in call center forecasting. There-

fore, we do not only describe the generic programming of time series cross-validation with an ex-

panding rolling window but further give detailed insights into the implementation of RF algorithm as 

the best-performing ML model in our preceding analysis. We also provide guidance on how to meas-

ure MAE, RMSE, and computation time in the process. For the methodological walkthrough, we 

make use of the open-source statistical programming language R (Ihaka and Gentleman, 1996). 

Drawing on the combined results of both method evaluation and overall implementation process, we 

then derive practical implications for organizations. 

4 Results 

Drawing on the results for the customer support queue in Table 3 and Table 4, the RF algorithm 

outperforms the remaining approaches in every lead time constellation: with respect to both MAE 

and RMSE, the model yields the most accurate forecasts. The GBD, GBR, and SVR models yield 

comparable results, whereas the KNN approach was the most inaccurate forecasting method. Gener-

ally, every considered ML approach is superior to the benchmark time series models for all lead time 

constellations (except for the KNN method). Among the time series models, the ETS model is the 
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best-performing approach. Overall, the modelsô performances worsen slightly with increasing lead 

time. 

Regarding computation time, the RWDRIFT model was excelling with an estimation time of 39 sec-

onds1 for 52 iterations of the expanding rolling window. The remaining time series models yield 

comparable low computation times with 142.41 seconds for ETS and 1,260.94 seconds for ARIMA. 

The AI-driven methods are computationally more intensive with 61,423.71 seconds estimation time 

for GBR, 93,861.33 seconds for KNN, 171,380.33 seconds for SVR, and 184,367.70 seconds for 

GBD. With 75,185.62 seconds for the estimation procedure of the rolling window, the RF algorithm 

provides an acceptable trade-off between accuracy and computation time: for the prediction of one 

iteration k (i.e., of the forecast horizon h = 180 observations), the model takes 24.1 minutes. 

Table 3: MAE results for customer support arrivalsô forecasts. 

Lead time 

Model 
No lead time One week Two weeks Three weeks 

GBD 13.4601 13.6603 13.9540 14.2203 

GBR 12.9393 13.1488 13.3987 13.7386 

KNN 18.2068 18.8704 19.2332 19.8064 

RF 11.7544 11.8129 12.0648 12.8134 

SVR 13.2325 13.2063 13.2256 13.6019 

STL+ARIMA  14.5263 14.7407 15.5448 15.8520 

STL+ETS 14.5152 14.5382 15.2424 15.7428 

STL+RW 14.6651 14.6334 15.2941 15.7877 

Note: The best accuracy results for each lead time are marked in bold. ARIMA = autoregressive integrated moving av-

erage, GBR = gradient boosting with regularization, GBD = gradient boosting with dropout, ETS = error, trend, sea-

sonal (innovation state space model), KNN = k-nearest neighbor, RF = random forest, RWDRIFT = random walk with 

drift, STL seasonal-trend decomposition based on Loess, SVR = support vector regression. 

 

 

 

 

 

 
1 With 40 GB RAM. 
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Table 4: RMSE results for customer support arrivalsô forecasts. 

Lead time 

Model 
No lead time One week Two weeks Three weeks 

GBD 18.8706 19.0480 19.3644 19.9452 

GBR 18.1216 18.3299 18.6043 19.3079 

KNN 24.9867 25.9203 26.3528 27.6355 

RF 15.5678 16.6541 16.8929 18.4903 

SVR 18.3313 18.4081 18.3059 18.9199 

STL+ARIMA  22.7009 23.1810 24.2187 25.0726 

STL+ETS 22.9251 23.0876 23.9239 24.7768 

STL+RW 23.0503 23.1555 23.9506 24.7793 

Note: The best accuracy results for each lead time are marked in bold. ARIMA = autoregressive integrated moving av-

erage, GBR = gradient boosting with regularization, GBD = gradient boosting with dropout, ETS = error, trend, sea-

sonal (innovation state space model), KNN = k-nearest neighbor, RF = random forest, RWDRIFT = random walk with 

drift, STL seasonal-trend decomposition based on Loess, SVR = support vector regression. 

To check the robustness of our results, we further consider the queue for customer complaints call 

arrivals. Since there are less call arrivals compared to the customer support queue, the MAE and 

RMSE are generally lower. Similar to the previous findings, the RF yields the most accurate forecasts 

compared with the remaining approaches for all considered lead times except for the MAE result with 

two weeks lead time for which GBR is found to be superior (see Table 5 and 6). Aside from RF, GBR 

is outperforming the RWDRIFT model. 

The remaining models (i.e., GBD, KNN, and SVR) generate slightly more inaccurate forecasts. More-

over, with the lead time extending, the MAE and RMSE results worsen steadily in most cases. 
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Table 5: MAE results for customer complaints arrivalsô forecasts. 

Lead time 

Model 
No lead time One week Two weeks Three weeks 

GBD 3.7668 3.8067 3.8933 3.9694 

GBR 3.6058 3.6962 3.3783 3.8362 

KNN 4.5016 4.7366 4.8095 4.8350 

RF 3.3561 3.4348 3.5629 3.6746 

SVR 4.3283 4.2826 4.3224 4.2830 

STL+ARIMA  3.7197 3.7639 3.8297 3.9073 

STL+ETS 3.6990 3.7475 3.8199 3.9163 

STL+RW 3.6589 3.7460 3.7968 3.9017 

Note: The best accuracy results for each lead time are marked in bold. ARIMA = autoregressive integrated moving av-

erage, GBR = gradient boosting with regularization, GBD = gradient boosting with dropout, ETS = error, trend, sea-

sonal (innovation state space model), KNN = k-nearest neighbor, RF = random forest, RWDRIFT = random walk with 

drift, STL seasonal-trend decomposition based on Loess, SVR = support vector regression. 

Table 6: RMSE results for customer complaints arrivalsô forecasts. 

Lead time 

Model 
No lead time One week Two weeks Three weeks 

GBD 5.3580 5.4212 5.5593 5.6714 

GBR 5.2140 5.3527 5.4871 5.5734 

KNN 6.4708 6.8279 6.9224 6.9549 

RF 4.9422 5.0672 5.2338 5.3791 

SVR 5.9909 6.0502 6.1240 5.9487 

STL+ARIMA  5.5152 5.5807 5.6783 5.8243 

STL+ETS 5.4833 5.5559 5.6635 5.8210 

STL+RW 5.3958 5.4754 5.5949 5.7647 

Note: The best accuracy results for each lead time are marked in bold. ARIMA = autoregressive integrated moving av-

erage, GBR = gradient boosting with regularization, GBD = gradient boosting with dropout, ETS = error, trend, sea-

sonal (innovation state space model), KNN = k-nearest neighbor, RF = random forest, RWDRIFT = random walk with 

drift, STL seasonal-trend decomposition based on Loess, SVR = support vector regression. 

To gain further insights regarding the modelsô performance, we plotted the last predicted week (i.e., 

180 observations) for the customer support queue. Figure 5 depicts the time series modelsô predic-

tions, whereas Figure 6 illustrates the machine learning modelsô predictions. On the first day of the 

week (i.e., Monday), the call center was closed, and consequently, this led to an exceptionally high 

arrival volume on the day after. Apparently, the time series models cannot capture such special days 

due to the lack of additional information, i.e., predictor variables indicating e.g. holidays and days 
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after. The remaining ML models capture ordinary weekdays and further, such special days more ac-

curately since they allow for the inclusion of explanatory variables for prediction. Consequently, the 

ML approaches exceed the time series models regarding predictive performance. 

 

Fig. 5. Last predicted week of the time series models. 

Note: The bold line represents the actual values. ARIMA = autoregressive integrated 

moving average, ETS = error, trend, seasonal (innovation state space model), 

RWDRIFT = random walk with drift. 
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Fig. 6. Last predicted week of the machine learning models. 

Note: The bold line represents the actual values. GBD = gradient boosting with drop-

out, GBR = gradient boosting with regularization, KNN = k-nearest neighbor, RF = 

random forest, SVR = support vector regression. 

5 Discussion 

The underlying investigation entails several theoretical implications and contributions made to liter-

ature. We present a starting point for shifting traditional call center forecasting literature towards a 

new paradigm drawing on AI-driven methods by providing a comprehensive understanding of the 

predictive potential of ML models. As traditional forecasting literature (Mabert, 1985; Thompson and 

Tiao, 1971; Andrews and Cunningham, 1995; Taylor, 2008, 2012; Barrow and Kourentzes, 2018) is 

predominantly characterized by the use of time series models, we intend to broaden this perspective: 

Across the two datasets examined, our investigated ML algorithms outperform benchmark models as 

well as more sophisticated time series models that prior studies most commonly focused on (e.g., 

ARIMA, exponential smoothing, etc.) in nearly all lead time constellations. Thereby, extending the 

research on call arrival forecasting techniques with ML approaches like GBR, GBD, KNN, RF, and 

SVR in this analysis leads to a wider range of methods to generate predictions that are more accurate. 
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Our comprehensive model comparison underpins the preliminary findings of previous studies (Bar-

row, 2016; Ebadi Jalal et al., 2016; Rausch and Albrecht, 2020), which used single AI-driven methods 

like RF or neural networks, indicating that ML techniques are capable of improving the accuracy of 

call center arrivalsô forecasts. Our results prove that tree-based methods and particularly the RF al-

gorithm yield the highest potential for significantly improving forecast accuracy. This finding is rep-

licated for a considerably lower level of call arrival volume in the customer complaints queue. 

With regard to the modelsô practicability, which was neglected by extant literature so far, we are first 

to consider simultaneously different lead times (i.e., three weeks, two weeks, one week, and no lead 

time), the trade-off between complexity (i.e., estimation time and computation effort), and forecast 

accuracy in the model comparison. Extant call center forecasting literature focused mainly on forecast 

accuracy as a primary decision criterion or considered varying forecast horizons (Aldor-Noiman et 

al., 2009; Barrow, 2016; Taylor, 2008, 2012) while keeping lead times constant and neglecting com-

plexity. Results prove the leading ML models, and especially RF, to be highly relevant for practical 

use as their forecast accuracy is less affected by lead time extension. Computation effort, on the other 

hand, is moderate, and implementation is feasible. 

Additionally, we took a closer look at the main reasons for the superiority of ML models. Shedding 

light on the predictions of special days, such as days after holidays, indicates that ML methods excel 

in coping with anomalous values as predictor variables are included in 19 the generated ex-post fore-

casts. Hence, one of the main aspects of ML approaches outperforming traditional time series models 

is assumed to be the ability to capture additional information on the predicted date or customer contact 

activities by businesses with the inclusion of predictor variables. Thereby, this characteristic of ML 

techniques makes them not only stand out in terms of forecast accuracy when it comes to outliers 

(Barrow and Kourentzes, 2018) but also positively affects the overall prediction performance over 

longer time periods. Nevertheless, albeit few suggestions regarding useful predictor variables have 

been made (e.g., catalog mailings and holidays (Andrews and Cunningham, 1995) or billing cycles 

(Aldor-Noiman et al., 2009)), research still lacks a comprehensive understanding on suitable predictor 

variables for call center arrivalsô forecasting. We thus add to the existing body of literature by high-

lighting that variables such as the time of the day, day of the week, holidays, days after holidays, 

catalog mailings, and reminders provide valuable information for modeling ex-post forecasts. 

The empirical results reported herein should be considered in the light of some limitations. The pri-

mary limitation to the generalization of these results accompanies one of the strengths of the study. 
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Keeping in mind the required balance between prediction accuracy and model complexity, we focus 

on practical relevance in our model selection and neglect models like e.g. sophisticated types of arti-

ficial neural networks since such models are time-consuming in estimation, and thus, inadequate for 

practical use. We also refrain from developing and testing an own method. With an abundance of 

different ML methods and modifications in literature, we apply ready-to-use methods that are com-

paratively easy to implement and present a methodological extension to research in the form of a 

novel implementation focus. Second, the modelsô prediction performances are depending on the un-

derlying data and, thus, are assumed to vary slightly for different datasets. Therefore, we validate the 

modelsô forecast accuracy on two datasets to prove the robustness of our results and further provide 

the methodological tutorial for testing the identified ML modelsô performance on other datasets. We 

do not distinguish between different forecast horizons like several other studies as we re-estimated 

our models for every week rolling forward from forecast origin, and thus, the forecast horizon con-

stantly remains one week, i.e., 180 observations. 

6 Practical Implications: Methodological Walk-Through for Call Center 

Arrivalsô Forecasting 

Based on the results of the conducted model comparison, organizations are suspected of benefiting 

from including ML approaches in their process of evaluating and selecting the most suitable method 

for forecasting call center arrivals and therefore, to support their staffing decisions. To make the un-

derlying process of method comparison and selection accessible to decision-makers in practice as 

well as to overcome its perceived high complexity and organizationsô lack of expertise, we provide a 

methodological walk-through example based on cross-validation with an expanding rolling window. 

In doing so, we propose to view the question of method in call center forecasting as the overall issue 

of implementing a forecasting system that includes prediction accuracy as well as practicability for 

the user. By presenting a methodological tutorial, we aim to overcome the dependence of method 

comparisons on data characteristics and, at the same time, accelerate the adoption of ML techniques 

in this field. On these grounds, we provide a description of the generic cross-validation approach in 

the programming environment R as well as an in-depth example of RF algorithm as the best-perform-

ing model of our previous analysis. 
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Fig. 7. R Code for rolling expanding window with generic for-loop. Note: The bold variables have 

to be replaced depending on the specific dataset. 

Figure 7 illustrates a generic for-loop for the expanding rolling window that can be utilized to 

identify the most accurate model. Let ὲ be the ὲ  observation (i.e., row) of the dataset, ά be the 

ά  variable (i.e., column) of the dataset, and Ὤ be the forecast horizon. 

After analyzing and preprocessing the data as described in Section 3.1, we define an empty nu-

meric vector the results are stored in sequentially during the loop. The for-loop itself can be iterated 

Ὧ times: let the forecast horizon Ὤ be e.g. one week and out-of-sample predictions with cross valida-

tion shall be generated for one year, then Ὧ υς, i.e., 52 weeks. For each iteration Ὧ ρȟςȟȣȟὑ 

during the loop we define the training and test subset which roll forward for one unit of the forecast 

horizon Ὤ, i.e., Ὥz Ὤ. Since ρz Ὤ observations are added during the first iteration for syntax reasons, 

Ὤ observations are subtracted from the training and test subsets ὲ  and ὲ  respectively) to 

yield the intended initial training and test subsets.  

After the loop finishes, the looptime is reported with the toc() function to survey the modelsô com-

putation time as a potentially crucial aspect for decision-makers. Further, in case some models 

might generate negative predictions we set the minimum value for predictions to zero with pmax(). 

The MAE and RMSE are both calculated by inserting the vector of actual values as the first argu-

ment and the vector of predicted values as the second argument. 
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Fig. 8. R Code for rolling expanding window with random forest. Note: The bold variables have to 

be replaced depending on the specific dataset. 

To test a modelôs predictive ability, it can be integrated into the generic for-loop. Figure 8 demon-

strates the R Code for the loop with the implemented RF. To achieve ease of use as well as to guar-

antee high model accuracy, we make use of Rôs tuneRanger package, which automatically tunes the 

forestôs hyperparameters (i.e., ά , minimum node size, and sample fraction) by creating a regres-

sion task with makeRegrTask() (Probst et al., 2019). 

The package is favorable since it utilizes sequential model-based optimization (SMBO)2 as a tuning 

strategy, which is faster and moreover, better regarding its performance than standard tuning pack-

ages (Probst et al., 2019). It conducts an SMBO with 30 random points for the initial design (i.e., 

random points drawn from the hyperparameter space) and 70 iterative steps in the optimization pro-

cedure. Optionally, the number of iterations Ὥ can be inserted manually. ά  values are sampled 

from πȟὴ with ὴ being the number of predictors. Sample size values are sampled from πȢςz

 
2 For detailed information on the SMBO procedure, readers are referred to Probst et al. (2019). 
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ὲȟπȢωz ὲ with the number of observations ὲ. Node size values are sampled with higher probability 

for smaller values by sampling ὼ from πȟρ and hence, transforming the value by ὲz πȢς . Fur-

ther, out-of-bag predictions during the fitting procedure can be evaluated with several different error 

measures (mean squared error (MSE
OOB

) as default for regression). The number of trees ὸ can be 

inserted optionally: research found the modelôs performance peak to be reached during the construc-

tion of the first 100 trees (Probst et al., 2012). 

Subsequent to the fitting procedure, predictions based on unknown test data are generated. By 

using the append() function, the predictions with length h are attached sequentially for k iterations. 

As described in Section 3.2, the MAE and RMSE results allow for a practically valid comparison 

of different models. 

The methodological walk-through combined with the preceding results of the model comparison lead 

to several practical implications for businesses and organizational decisionmakers. First, the hypoth-

esized improvement of call center arrivalsô forecasting accuracy was confirmed for the selection of 

feasible ML methods. Thereby, the range of applicable methods providing robust and accurate pre-

dictions in this field is extended to suitable ML algorithms. In comparison with commonly used fore-

casting techniques, ML models generate more precise forecasts in almost every case. That way, un-

necessary costs caused by overstaffing as well as customer dissatisfaction originating from long wait-

ing times due to understaffing can be avoided: In case the forecasts overestimate the actual customer 

support call arrival volume, decision-makers can save approximately 1.833 call center agents per day 

on average if RF (best-performing ML model) compared to ETS (best-performing time series model) 

is employed. Vice versa, in case the forecasts underestimate the actual call arrival volume, customers 

would need to wait approximately 0.414 minutes less on average if RF is implemented instead of 

ETS. Furthermore, the findings also indicate that decisionmakers are recommended to minimize lead 

time in case it is possible in the scope of staffing regulations. 

Overall, we exclusively investigated models standing out due to the favorable trade-off between ac-

curacy and practicability, especially in terms of complexity regarding estimation time as well as com-

putation effort. The comprehensibility and ease of implementation of treebased models as best-per-

forming methods is further verified by the applied example above. From a general perspective, or-

ganizations are encouraged to use the demonstrated process of cross-validation with an expanding 

 
3 If the processing time is 10 minutes per call arrival and the working hours per call center agent are 8 hours per day. 
4 If the processing time is 10 minutes per call arrival and there are 70.95 call arrivals per interval on average. 
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rolling window not only to test and implement different approaches for call center arrivalsô forecast-

ing but also to adapt it for any forecasting task based on sequential data (e.g., e-mail arrivals, product 

sales, etc.). The implementation of this approach in an accessible programming environment further 

fills the need of practitioners for a task-specific guideline for the selection of AI-driven methods and 

helps to overcome the practicability issues identified in literature. 

7 Conclusion 

The process of forecasting call center arrival volumes in an increasingly complex data environment 

is predestinated to capitalize on AI-driven methods by improving internal decision making. Accurate 

forecasts generated by ML algorithms are assumed to generate cost savings and service improvements 

through precise staffing. However, insights on and practical use of ML in call center arrivalsô fore-

casting are limited. 

Acting on the assumed potential of ML in this field as well as on the existing constraints regarding 

practicability in organizational use, this paper follows a two-step approach of model performance 

evaluation and practical implementation. The first step constitutes an extensive model comparison of 

selected feasible ML methods with common as well as sophisticated time series models using the call 

center arrival data of a large online retailer. In the second step, the implementation of the model 

evaluation and selection process based on cross validation with an expanding rolling window is made 

accessible for practitioners by providing a methodological walk-through example. 

The results of the method comparison confirm the hypothesized high potential of ML models for 

accuracy improvements based on two datasets and various lead times investigated. Tree-based meth-

ods and particularly RF algorithm yield the best prediction performances and therefore approve as 

preferable alternatives to commonly used methods. These findings are substantiated by the imple-

mentation example using RF as the best-performing model. By providing an efficient and reproduci-

ble way of assessing the case-specific value of ML methods in forecasting for organizations within a 

programming environment, the dependence of method comparison results on data characteristics as 

well as the lack of comprehensibility and methodological expertise in practical settings are mitigated 

or even eliminated. 

This paper therefore presents a starting point for shifting traditional call center forecasting towards a 

new paradigm drawing on AI-driven methods by demonstrating the high predictive potential of ML 
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models in comparison to commonly used methods. From a practical perspective, this study contrib-

utes to an improved understanding for businesses on how to deal with the increasingly complex task 

of forecasting call center arrivals caused by the datafication of customer relationships. Being aware 

of the general applicability of ML models to yield high forecast accuracy, organizations are now 

enabled to test ML techniques in individual practical settings by adapting the proposed implementa-

tion of a valid model selection process in time series forecasting. Improvements in prediction accu-

racy achieved by this approach can directly be capitalized on through optimized staffing. Future re-

search is encouraged to extend the predictions to concrete staffing recommendations incorporating 

average service times. As a whole, this work suggests that taking the next step in call center arrivalsô 

forecasting research towards advanced ML, such as deep neural networks and hybrid approaches, is 

likely to be beneficial. In this case, the evaluation of these methods beyond forecasting accuracy is 

recommended to ensure the practical value of future findings. 
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Appendix: Time Series Models 

Overall, one strength of time series models is their ability to generate predictions only based on the 

time seriesô previous values without any other contextual information and thus, they are adequate 

models if information is scarce. The non-seasonal ARIMA (p, d, q) model (Box and Jenkins, 1970) 

assumes that a with Ὠ degrees differenced time series depends on its past values being ὴ periods apart 

and on a finite number ή of prior forecast errors ‐ with ὴ, Ὠ, and ή being non-negative integers. Thus, 

it consists of an autoregressive process as well as moving average process 

ώ ὧ ‰ώ Ễ ‰ώ ‐ —‐ Ễ —‐  

with ώ being the differenced time series, ‰  being the parameter for autoregressive process, — be-

ing the parameter for moving average process, and ‐ being the error. Since its development in the 

1970s, the ARIMA model is among the most popular forecasting approaches across numerous appli-

cation contexts, as it was found to perform well in the short-term (Barrow, 2016) and further, is suit-

able for a variety of data types with different characteristics as there are stationary as well as nonsta-

tionary ARIMA methods (Hyndman and Athanasopoulos, 2018). 

While ARIMA models intend to capture autocorrelations in the data, exponential smoothing models 

draw on trend and seasonality in the data (Hyndman and Athanasopoulos, 2018). Holt-Wintersô ex-

ponential smoothing model (Holt, 2004; Winters, 1960) was proposed in the late 1950s and weight 

the averages of the time seriesô previous observations. Thereby, the weights are decreasing exponen-

tially the further the observations lie in the past. The component form of simple exponential smooth-

ing can be defined as 

Љ ρ ‌Љ ‌ώ  

ώ ȿ Љ  

with horizon Ὤ  ρȟςȟȢȢȟ smoothing parameter π  ‌  ρ and series level (or smoothed value) Љ 

at time ὸ. If the exponential smoothing model further allows for additive or multiplicative errors, it 

evolves into an innovations state space model ETSȟȟ for (Error= {Additive (A), Multiplicative 

(M)}, Trend= {None (N), A}, Seasonal= {N, A, M}): 

Љ Љ ‌‐  

ώ Љ ‐  
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where ‌ is the smoothing parameter and Љis the series level (or smoothed value) at time ὸ. Random 

walk models are frequently used for nonstationary data as random walks typically consist of long 

periods of apparent (upward or downward) trends and exhibit sudden changes in direction (Hyndman 

and Athanasopoulos, 2018). The forecasts from the random walk model are equal to the time seriesô 

last observation: 

ώ  ώ   ‐ 

As an extension to the basic model, the drift parameter ὧ is frequently added which is the average of 

changes between consecutive observations: 

ώ  ὧ  ώ   ‐ 

If ὧ is positive, there is an increase in the average of changes between consecutive observations and 

thus, the prediction ὣ will tend to drift upwards and vice versa for negative values of ὧ. 
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Abstract:  Excessive online shopping cart abandonment rates constitute a major challenge 

for e-commerce companies and can inhibit their success within their competi-

tive environment. Simultaneously, the emergence of the Internetôs commercial 

usage results in steadily growing volumes of data about consumersô online be-

havior. Thus, data-driven methods are needed to extract valuable knowledge 

from such big data to automatically identify online shopping cart abandoners. 

Hence, this contribution analyzes clickstream data of a leading German online 

retailer comprising 821,048 observations to predict such abandoners by propos-

ing different machine learning approaches. Thereby, we provide methodologi-

cal insights to gather a comprehensive understanding of the practicability of 

classification methods in the context of online shopping cart abandonment pre-

diction: our findings indicate that gradient boosting with regularization outper-

forms the remaining models yielding an F1-Score of 0.8569 and an AUC value 

of 0.8182. Nevertheless, as gradient boosting tends to be computationally infea-

sible, a decision tree or boosted logistic regression may be suitable alternatives, 

balancing the trade-off between model complexity and prediction accuracy. 
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1 Introduction 

To strengthen a companyôs position within its competitive environment, marketers need to be able to 

precisely predict potential customers regarding their purchase and, further, non-purchase behavior. 

Considering this in the context of online shopping environment, customers frequently place items in 

their virtual shopping cart for reasons other than immediate purchase. This phenomenon is known as 

shopping cart abandonment and is particularly apparent in the context of e-commerce: it is the be-

havioral outcome of consumers placing item(s) in their online shopping cart without making a pur-

chase by completing the checkout process during that online session (Huang et al., 2018; Kukar-

Kinney and Close, 2010). Extant literature investigated the behavioral perspective of online shopping 

cart abandonment by identifying inhibitors to the purchase process: financial risks and concerns about 

delivery and return policies (Kukar-Kinney and Close, 2010) the usage of shopping carts as organi-

zation tools or for entertainment purposes (Kukar-Kinney and Close, 2010), and inhibitors at the 

checkout stage like perceived transaction inconvenience and privacy intrusion (Rajamma et al., 2009) 

are ï inter alia ï the main factors leading to online shopping cart abandonment. 

With the spread of the Internetôs commercial usage, the ability to track consumersô online activities 

allows companies to collect unbiased information about consumersô behavior. The detailed records 

of past usage behaviors comprised by log files and resulting clickstream data can be analyzed by 

marketers to gain valuable insights. In this context, clickstream data have frequently been modeled 

to derive implications for website design or advertising efforts (see, for example, Chatterjee et al. 

(2003) and Montgomery et al. (2004)) and further, to predict consumersô future behaviors, e.g. re-

garding purchase (see, for example, Bucklin and Sismeiro (2003) and Moe and Fader (2004a)). 

Thus, the antecedents of online shopping cart abandonment are well understood by behavioral litera-

ture and clickstream data has been studied by methodological research to analyze consumersô behav-

ior. The rise of the Internet and the era of big data resulted in an excessive ódataficationô (Kelly and 

Noonan, 2017; Lycett, 2013) of the organizational environment yielding the field of business intelli-

gence comprising data analytics and predictive analytics approaches (Chen et al., 2012). However, 

despite the richness of clickstream data, prior shopping cart abandonment literature still lacks data-

driven methods based on machine learning which make use of this information source to predict such 

abandoning customers. This might be due to the insufficient awareness of suitable intelligent ap-

proaches to extract knowledge from the steadily growing volumes of data (Fayyad et al., 1996).  
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To address this research gap, we utilize clickstream data of a leading German online retailer to train 

and subsequently compare different machine learning approaches for the prediction of online shop-

ping cart abandonment (i.e., tree-based methods (more specifically, adaptive boosting, boosted lo-

gistic regression, decision tree, gradient boosting with regularization, gradient boosting, gradient 

boosting with dropout, random forest, and stochastic gradient boosting), k-nearest neighbor, naïve 

bayes, multi-layer perceptron with dropout, and a support vector machine with radial basis kernel). 

We successfully implement these machine learning methods for online shopping cart abandonment 

prediction and compare them with logistic regression as a standard non-machine learning benchmark 

model regarding their predictive performance. 

Our paper makes several key contributions to the preceding literature. By combining the research 

fields of both shopping cart abandonment as well as clickstream data analysis with machine learning 

approaches, we particularly shed light on the practicability of machine learning methods in this ap-

plication context, as this was neglected by prior research. Further, we provide insights into the char-

acteristics of customers abandoning their shopping cart based on clickstream data that is unsuscepti-

ble to self-selection, relatively unobtrusive, and easy to gather. We extensively review literature on 

classification methods to identify shopping cart abandonments and present validation procedures as 

well as performance metrics for such methods. Our findings can be useful both for marketing intelli-

gence research by extending the field of machine learning applications in marketing contexts through 

automatically predicting online shopping cart abandoners and for practitioners to actively prevent 

such abandonments by several real time reactions, e. g. providing real-time purchase incentives, and 

moreover, to gain insights into machine learning methods. 

The remainder of this paper is organized as follows: the subsequent section describes the related work 

on online shopping cart abandonment and clickstream data. Further, Section 3 summarizes the back-

ground on machine learning approaches for classification. Section 4 outlines the methodology com-

prising a preliminary data analysis and the research design. In Section 5 and 6, we present the findings 

and discuss both theoretical and practical implications, limitations, as well as directions for future 

research. Finally, Section 7 draws a conclusion. 
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2 Related Work 

2.1 Online Shopping Cart Abandonment  

The online shopping cart abandonment phenomenon causes substantial losses of turnover for online 

retailers (Huang et al., 2018; Rajamma et al., 2009) resulting in a weakened position within their 

competitive environment. Therefore, extant marketing literature addressed this problem by drawing 

on a behavioral perspective to identify and understand essential determinants of online shopping cart 

abandonment: Rajamma, Paswan, and Hossain (2009) focused on potential inhibitors at the checkout 

stage and found increased perceived transaction inconvenience (e.g., long registration forms) and 

high perceived risk (e.g., perceived security of information asked) to enhance online shopping cart 

abandonment. Partially, these findings seem to be applicable to new customers which are unfamiliar 

with the checkout process. Similarly, (Kukar-Kinney and Close, 2010) findings indicate that privacy 

intrusion and security concerns rather lead to the consumersô decision to buy the product from a 

stationary offline store. Further, they found the entertainment value of shopping carts, the use of 

shopping carts as an organization tool, the wait for sale, and the concerns about costs to be antecedents 

of shopping cart abandonment (Kukar-Kinney and Close, 2010). Their identified determinants were 

supported by Close and Kukar-Kinney (2010) proving that customersô tendencies to add items to the 

online shopping cart for reasons other than immediate purchase are ï inter alia ï due to organizational 

purposes. Huang, Korfiatis, and Chang (2018) focused on mobile shopping cart abandonment in their 

study. They found intrapersonal (i.e., conflicts regarding mobile shopping attributes and low self-

efficacy regarding mobile shopping) and interpersonal (i.e., discrepancies from the otherôs attitudes 

to self-attitudes) conflicts to disturb consumersô emotions during mobile shopping, and in turn, im-

plying shopping cart abandonment. Overall, their findings indicate that the utilized device for online 

shopping might impact purchase behavior as well. Cho, Kang, and Cheon (2006) proved that con-

sumersô confusion by information overload, high value-consciousness, negative past experiences, in-

tention to conduct price comparisons, and unreliable websites are likely to trigger online shopping 

cart abandonment1. 

 
1 Cho, Kang, and Cheon (2006) defined online shopping cart abandonment rather as a hesitation reaction which implies 

that the customer actively drops items placed in his/her shopping cart. Thus, their definition differs slightly from the 

definition of Kukar-Kinney and Close (2010), which was used in this study for an understanding of shopping cart aban-

donment. 
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2.2 Clickstream Data 

Drawing on a more holistic perspective of online shopping behavior, further literature shifted away 

from explanatory behavioral approaches to data-driven methods predicting online purchase behavior 

in general. Typically, such predictions are based on clickstream data (see, e.g., Moe and Fader 

(2004a), Sismeiro and Bucklin (2004), or van den Poel and Buckinx (2005)). Clickstream data model 

the navigation path a customer takes through the online shop (Montgomery, 2001; Montgomery et 

al., 2004) and can be extracted from log files which register all requests and information transferred 

between the customerôs computer and the companyôs commercial web server (Bucklin and Sismeiro, 

2003).  

Examples for using clickstream data to predict online shopping behavior are ï inter alia - Moe and 

Fader (2004a) who proposed a conversion model predicting each customerôs probability of making a 

purchase based on purchase and visit history. The same authors (Moe and Fader, 2004b) also devel-

oped a model for evolving visiting behavior and further, they examined the relationship between 

visiting frequency and purchasing propensity. They found consumers visiting an e-commerce site 

more frequently to have a greater propensity to buy (Moe and Fader, 2004b). Van den Poel and 

Buckinx (2005) predicted purchase behavior and investigated the contribution of different variables: 

they proved (1) general clickstream variables (i.e., number of days since last visit, and speed of click-

stream behavior during last visit), (2) more detailed clickstream variables (i.e., number of accessories 

(and personal pages and products respectively) viewed during last visit), (3) demographic variables 

(i.e., gender and the fact of supplying personal information), and (4) historical purchase behavior (i.e., 

number of days since last purchase and number of past purchases) to be meaningful predictors. Mont-

gomery et al. (2004) set up different models to predict purchase conversion probability by modeling 

path information. 

Moreover, clickstream data was frequently utilized by research to predict not only purchase behavior 

but further similar outcome variables. For instance, Bucklin and Sismeiro (2003) investigated drivers 

affecting the length of time spent viewing a website and the visitorôs decision to continue browsing 

or to exit the website. Sismeiro and Bucklin (2004) decomposed the purchase process into sequences 

that must be completed for a purchase to take place (i.e., completion of product configuration, input 

of personal information, and order confirmation with provision of credit card data) and predicted the 

probability of completion for each task with covariates of browsing behavior, repeat visitation, use 

of decision aids, input effort, and information gathering. 
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3 Machine Learning Approaches for Classification 

Overall, e-commerce as a research subject is suitable for the application of machine learning ap-

proaches as proposed by Kohavi and Provost (2001): online retailers can easily and inexpensively 

collect rich data with respect to the online behavior of customers (i.e., clickstream data) and, further, 

implement data mining and machine learning applications since political and social barriers are sub-

stantially lower than for traditional businesses. Consequently, typical problems for successfully ap-

plying machine learning (i.e., the need for a large volume of controlled and reliable data, data with 

sufficient descriptions, the ability to evaluate results, and to integrate applications successfully) are 

reduced by the characteristics of e-commerce environment (Kohavi and Provost, 2001). 

Machine learning constitutes a new paradigm within data science research and emerged in the course 

of the artificial intelligence era, which, in turn, was first coined by Samuel (1959) describing it as 

ñthe programming of a digital computer to behave it in a way which, if done by human beings [é], 

would be described as involving the process of learningò. In this context, learning may be understood 

as the automatic search for more useful representations of data regarding a specific task (Chollet and 

Allaire, 2018). Machine learning algorithms and systems are consequently trained rather than explic-

itly programmed. During this process, these systems find statistical structure in given examples which 

are relevant to the task and derive rules for automating the task using guidance from a feedback signal 

(Cui et al., 2006). Thereby, classification algorithms are types of supervised learning approaches 

within machine learning which predict a qualitative response for an observation, i.e., they assign an 

observation to a category (James et al., 2013): Formally, let ώȟὼ  bet a training set, where ώᶰ

πȟρȟςȟȣȟὑ ρ is the class membership and ὼ ᴙ  is the vector of predictor values, then the task 

is to learn a function to predict the class label ώ from ὼ. Thereby, ὑ ς in case of binary classifi-

cation and ὑ ς in case of multi-class classification tasks.  

Drawing on the online shopping cart abandonment problem, the prediction of purchasers and non-

purchasers (i.e., customers abandoning their shopping cart) can be considered a binary classification 

task. Common machine learning approaches for binary classification include ï inter alia ï tree-based 

methods, support vector machines, naïve bayes, k-nearest neighbor, and neural networks. The ap-

proaches are explained in detail hereinafter. 
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3.1 Tree-Based Approaches 

One of the most common machine learning approaches are tree-based methods which descend from 

single decision trees, as proposed by Breiman et al. (1984). Basically, decision trees are flowchart-

like structures that generate ñif-elseò rules and thereby allow for prediction of observation classes. 

Thereby, classification and regression tree models follow a recursive top-down approach in which 

binary trees aim to partition the predictor space with predictor variables ὼȟȣȟὼ into subsets in 

which the distribution of the dependent variable ώ is successively more homogeneous (Chipman et 

al., 1998).  

Generally, single decision trees have the advantage of being easy to interpret and to understand (Moro 

et al., 2014). However, they frequently lead to overfitting, i.e., the model learns to identify specific 

characteristics of the training data which are irrelevant or even obstructive for the classification of 

unknown data (Friedman, 2001; Srivastava et al., 2014). This results in drawbacks of predictive 

performance and less expressiveness of the models. Ensemble learning methods that construct several 

individually trained decision trees and combine their results into a classifier outperforming the single 

predictions (Opitz and Maclin, 1999; Rokach, 2010) may offer a solution to this problem. In this 

context, two widely used methods of aggregating trees are boosting and bagging. 

In boosting, a family of algorithms converts weak learners (i.e., models that achieve accuracy just 

above random guessing) to strong learners with a powerful predictive capacity. The idea is to train 

weak learners sequentially with each weak learner trying to correct its predecessor (Schapire et al., 

1998). Thus, each decision tree is built using feedback from previously grown trees (James et al., 

2013). Popular boosting algorithms include adaptive boosting ñAdaBoostò (Freund and Schapire, 

1997), boosted logistic regression ñLogitBoostò (Friedman et al., 2000), gradient boosting machines 

ñGBò (Friedman, 2001, 2002), and stochastic gradient boosting ñSGBò (Friedman, 2002)2. For 

instance, AdaBoost as a basic boosting algorithm makes predicitions by combining the output of 

weak learners to a weighted sum and putting higher weights on incorrectly classified instances 

ώ sign‌ Ὤ ὼ  

 
2 The concepts of AdaBoost, LogitBoost, and gradient boosting are closely related as all approaches produce an ensemble 

of weak learners but ï in contrast to AdaBoost and LogitBoost ï gradient boosting models minimize the modelôs loss by 

adding weak learners sequentially using a procedure similar to gradient descent, i.e., it allows arbitrary differentiable loss 

functions to be used. 
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with the weak hypothesis Ὤ  detected by the weak learner and its importance ‌ .  

In contrast to boosting, bagging (or bootstrap aggregating) grows successive trees independently from 

earlier trees, i.e., each tree is constructed using a bootstrap sample of the data and, hence, a majority 

vote is taken for prediction (Breiman, 1996). Random forests add an additional layer of randomness 

to bagging and change how the trees are constructed: in standard decision trees each node is split 

using the best split among all predictor variables whereas in random forests the nodes are split using 

the best among a subset of predictors randomly chosen at that node (Breiman, 2001; Liaw and Wiener, 

2002). Due to the recursive structure of tree-based methods they often capture interaction effects 

between variables. However, since we focus on the performane of the models and not the importance 

of specific variables, we will not consider interaction effects further in our study. 

Overall, tree-based methods have been found to outperform other established approaches across a 

variety of different classification tasks such as IP traffic flow classification (Williams et al., 2006), 

customer churn prediction (Vafeiadis et al., 2015), or ï similar to our context ï prediction of online 

purchase intention (Bogina et al., 2019; Boroujerdi et al., 2014; Zheng and Liu, 2018). They are 

particularly favorable since ensemble methods are able to reduce both bias and variance of the single 

learning algorithms: While individual models may get stuck in local minima, a weighted combination 

of several different local minima ï produced by ensemble methods ï are able to minimize the risk of 

choosing the wrong local minimum (Dietterich, 2002). 

3.2 Support Vector Machines 

Aside from tree-based methods, support vector machines are powerful tools for classification tasks 

(James et al., 2013). The basic support vector machine is solving pattern recognition problems by 

mapping data into a multidimensional input space and constructing an optimal hyperplane that sepa-

rates the space into homogenous partitions3 (Cortes and Vapnik, 1995; Vapnik, 1982). Predictions of 

new instances are then classified into those partitions. The support vector machine aims at construct-

ing a classifier in the form of 

ώ  sign‌ώɣὼȟὼ ὦ 

 
3 A hyperplane is defined as a flat affine subspace of dimension ὴ ρ with ὴ being the number of dimensions (i.e., the 

number of considered predictor variables) (James et al. 2013). Basically, the óhyperplaneô is a line if the feature space is 

two-dimensional (i.e., two predictor variables) and a simple plane if the space is three-dimensional (i.e., three predictor 

variables). 
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where ‌  are positive real constants, ὦ is a real constant, and ɣ(Ā,Ā) represents the hyperplane (e.g., 

ɣ(ὼȟὼ) = ὼὼ in case of a linear support vector machine) (Suykens and Vandewalle, 1999). Aside 

from the linear case, Boser, Guyon, and Vapnik (1992) proposed a non-linear classifier by applying 

the so-called kernel trick which allows the algorithm to fit the hyperplane in a transformed feature 

space.  

We used a support vector machine with radial basis kernel for the comparison of machine learning 

models. However, support vector machines may become computationally infeasible on very large 

datasets like clickstream data (L'Heureux et al., 2017). 

3.3 Naʾve Bayes 

The naʾve bayes approach is a basic classifier based on applying the Bayesô theorem with the naʾve 

assumption that the attributes are conditionally independent (Duda et al., 1973). The classifier assigns 

a new case to a class label ώ ὅ by deriving the maximum a posteriori probability: 

ώ ÁÒÇ ÍÁØ
ȟȣȟ
 ὴὅ ὴὼȿὅ  

Naïve bayes as a generative classifier is frequently utilized for classification tasks due to its simplic-

ity, efficiency, and efficacy (Muhammad and Yan, 2015). 

3.4 K-Nearest Neighbor 

Another basic approach, the k-nearest neighbor algorithm, classifies an observation by a majority 

vote of the observationôs neighbors (Cover and Hart, 1967). The underlying assumption of the algo-

rithm is that observations which lay closely together within the predictor space (i.e., neighbors) will 

have the same class label. Thus, the classifier weights the class of the nearest neighbors strikingly 

high in order to predict the class label of an unclassified sample (Cover and Hart, 1967). The class is 

thereby assigned by taking the majority vote of the k nearest neighbors, with k being the number of 

neighbors that are considered during the classification task. The nearest neighbors are determined 

with the help of arbitrary distance functions (e.g., Euclidian distance ὨȢȟȢ). For new observations 

ώȟὼ the nearest neighbor ώ ȟὼ  within the training set is defined by 

Ὠὼȟὼ ÍÉÎὨὼȟὼ  

and ώ ώ  ï the class of the nearest neighbor ï is selected as prediction for ώ. ὼ  and ώ  describe 

the Ὦth nearest neighbor of ὼ and its class membership ώ.  
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K-nearest neighbor as a local learning approach may be suitable for online shopping cart abandon-

ment prediction tasks since it is able to alleviate the challenge of imbalanced data (L'Heureux et al., 

2017). 

3.5 Artificial Neural Networks 

Artificial neural networks are highly parallelized computer systems comprising process units (i.e., 

neurons) located on process layers with numerous weighted interconnections performing a learning 

process to create meaningful data representations (Jain et al., 1996). Regarding the concept of deep 

learning, artificial neural networks may use a number of hidden process layers (the depth of a 

network) between input and output layer containing non-linear operations in hierarchical 

architectures to learn characteristics and recognize patterns from given data (Bengio, 2009; Deng, 

2011; Hinton et al., 2006). The concept of learning within deep learning (or artificial neural networks, 

respectively) describes a process of updating the network architecture and the weights of the neuron 

connections (Jain et al., 1996). To improve the performance, the optimizer is implementing a 

backpropagation algorithm to minimize the discrepancy between the actual and the target output 

vector (i.e., the loss score) by adjusting the weights (Rumelhart et al., 1986; Schmidhuber, 2015). To 

avoid overýtting, a regularization method called dropout can be integrated in the network which 

randomly sets a share of its output per layer to zero (Srivastava et al., 2014). 

Concerning their connection structure (i.e., topology), neural network architectures can be distin-

guished between feedforward networks (e.g., multi-layer perceptrons (Deng, 2011; Zhang et al., 

2018)) with neuron connections running to the output layer acyclically and recurrent networks (e.g., 

long short-term memories (Hochreiter and Schmidhuber, 1997)) containing backward connections to 

build cyclic architectures (Jain et al., 1996; Schmidhuber, 2015). The most commonly used 

feedforward neural networks ï multi -layer perceptrons ï can be defined as 

ώ ‍ ‍Ὣ ‎ ‎ὴ  

where Ὅ denotes the number of inputs ὴȟ Ὄ is the number of hidden nodes in the network, the weights 

‫ ‍ȟ‎  with ‍ ‍ȟȣȟ‍  and ‎ ‎ ȟȣȟ‎  are for the hidden and output layer 

respectively, ὫϽ is the transfer function (e.g., sigmoid logistic), and ‍ as well as ‎  are the biases 

of each node (Zhang et al., 1998).  
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Multi -layer perceptrons were found to outperform other machine learning approaches for purchase 

intention prediction only after balancing the class distribution with oversampling (Sakar et al., 2019) 

since deep learning approaches are frequently sensitive to class imbalance (L'Heureux et al., 2017). 

4 Methodology 

4.1 Preprocessing and Preliminary Data Analysis 

The purpose of this study is to predict shopping cart abandonment by making use of machine learning. 

The machine learning models explained in Section 3 are compared to find the best classifier for this 

task. The clickstream data were gathered from server log files of a leading German online retailer 

which primarily distributes fashion. The data were created by the online retailer through extracting 

the customersô chronological online shop activities out of sequential log files. Each log file observa-

tion comprised one action or activity (e.g., a click) of a certain customer such as adding a product to 

the cart or clicking on a product to view its details. Subsequently, each customerôs activities during a 

session were assigned to summarizing variables. Hence, all activities of a customer were aggregated 

to one observation with different variables describing the session. Thereby, a session is a period of 

sustained web browsing or a sequence of the userôs page viewings until the user exits the online shop 

(Montgomery et al., 2004). The data comprise 3,511,037 observations or sessions between February 

1, 2019 and April 30, 2019, i.e., three months. Further, the data contain 18 explanatory variables for 

each observation or session listed in Table 1 many of which are consistent with van den Poel and 

Buckinxô (2005) findings. We are only interested in visitors who made use of the virtual shopping 

cart during the session, i.e., who placed item(s) in their cart. In line with Close and Kukar-Kinney 

(2010), shopping cart usage is thus defined as necessary precondition for shopping cart abandonment. 

Thus, we filtered out customers which did not add any items to their shopping cart during the session, 

so-called just-browsing customers, and 821,048 observations (23,38%) remained. We modeled the 

dependent variable ï shopping cart abandonment ï as a dummy variable using the information about 

the customerôs compiled and ordered shopping carts (variables BASKETS_BB and BASKETS) dur-

ing the session: 

Y
ρ if number of compiled shopping carts>0 & number of ordered shopping carts=0;      
π if number of compiled shopping carts>0 & number of ordered shopping carts>0.      
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Our data contain 520,653 (63.41%) observations of shopping cart abandonments (or non-purchasers 

respectively) and 300,395 (36.59%) observations of purchasers. Hence, the dataset is relatively bal-

anced. We excluded the variable for the number of ordered shopping carts (BASKETS_BB) and the 

value of ordered shopping carts (VALUE_BB) further for prediction4.  

Table 1: Variables of Clickstream Data. 

Variable Index Description 

Shopping Cart Abandon-
ment 

SCA 

Dependent dummy variable capturing cus-
ǘƻƳŜǊΩǎ ǎƘƻǇǇƛƴƎ ŎŀǊǘ ŀōŀƴŘƻƴƳŜƴǘ 

9
ρ ÉÆ ÃÕÓÔÏÍÅÒ ÁÂÁÎÄÏÎÅÄȠ      
π ÏÔÈÅÒ×ÉÓÅȢ                               

 

Number of Ordered Shop-
ping Carts 

BASKETS_BB 
Metric predictor variable capturing the number 
ƻŦ ǎƘƻǇǇƛƴƎ ŎŀǊǘǎ ƻǊŘŜǊŜŘ ŘǳǊƛƴƎ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ 
session 

Number of Compiled 
Shopping Carts  

BASKETS 
Metric predictor variable capturing the number 
of shopping carts compiled during the cus-
ǘƻƳŜǊΩǎ ǎŜǎǎƛƻƴ 

Number of Logins  LOGS 
Metric predictor variable capturing the number 
ƻŦ ƭƻƎƛƴǎ ŘǳǊƛƴƎ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǎŜǎǎƛƻƴ 

Number of Existing Cus-
ǘƻƳŜǊǎΩ [ƻƎƛƴǎ ǘƻ ǘƘŜ {ŜŎπ
ond Step of the Ordering 
Process 

LOGS_CUST_STEP2 

Metric predictor variable capturing the number 
of logins of existing customers to the second step 
ƻŦ ǘƘŜ ǇǳǊŎƘŀǎƛƴƎ ǇǊƻŎŜǎǎ ŘǳǊƛƴƎ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ 
session 

Number of New Custom-
ŜǊǎΩ [ƻƎƛƴǎ ǘƻ ǘƘŜ {ŜŎƻƴŘ 
Step of the Ordering Pro-
cess 

LOGS_NEWCUST_STEP2 

Metric predictor variable capturing the number 
of logins of new customers to the second step of 
ǘƘŜ ǇǳǊŎƘŀǎƛƴƎ ǇǊƻŎŜǎǎ ŘǳǊƛƴƎ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ 
session 

Number of Overall Page 
Viewings  

PIS 
Metric predictor variable capturing the number 
ƻŦ ƻǾŜǊŀƭƭ ǇŀƎŜ ǾƛŜǿƛƴƎǎ ŘǳǊƛƴƎ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ 
session 

Number of Shopping Cart 
Page Viewings  

PIS_AP 
Metric predictor variable capturing the number 
of shopping carts page viewings during the cus-
ǘƻƳŜǊΩǎ ǎŜǎǎƛƻƴ 

Number of Detailed Prod-
uct Page Viewings 

PIS_DV 
Metric predictor variable capturing the number 
of detailed product page viewings during the cus-
ǘƻƳŜǊΩǎ ǎŜǎǎƛƻƴ 

Number of Category 
Overview Page Viewings 

PIS_PL 

Metric predictor variable capturing the number 
of category overview page viewings (i.e., all 
products within a category) during the cus-
ǘƻƳŜǊΩǎ ǎŜǎǎion 

Number of Department 
Page Viewings  

PIS_SHOPS 

Metric predictor variable capturing the number 
of department page viewings (i.e., all categories 
ǿƛǘƘƛƴ ŀ ŘŜǇŀǊǘƳŜƴǘύ ŘǳǊƛƴƎ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǎŜǎπ
sion 

Number of Detailed Prod-
uct Page Viewings Using 
Search Function 

PIS_SDV 
Metric predictor variable capturing the number 
of detailed product page viewings after using the 
ǎŜŀǊŎƘ ŦǳƴŎǘƛƻƴ ŘǳǊƛƴƎ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǎŜǎǎƛƻƴ 

 
4 These variables are values referring to the customersô order and, thus, they would not be known ex-ante for prediction. 
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Variable Index Description 

Number of Search Results 
Page Viewings  

PIS_SR 
Metric predictor variable capturing the number 
of overall search results page viewings during the 
ŎǳǎǘƻƳŜǊΩǎ ǎŜǎǎƛƻƴ 

Number of Product Types 
in Shopping Cart 

POSITIONS 
Metric predictor variable capturing different 
product types in the shopping cart during the 
ŎǳǎǘƻƳŜǊΩǎ ǎŜǎǎƛƻƴ 

Number of Items in Shop-
ping Cart 

QUANTITY 
Metric predictor variable capturing the number 
of items in the shopping cart during the cus-
ǘƻƳŜǊΩǎ ǎŜǎǎƛƻƴ 

Value of Ordered Shop-
ping Carts 

VALUE_BB 
Metric predictor variable capturing the value of 
shopping carts ordered ŘǳǊƛƴƎ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ 
session 

New Customer NEW_CUST 

Predictor dummy variable capturing new cus-
tomers 

8ρφ
ρ ÉÆ ÎÅ× ÃÕÓÔÏÍÅÒȠ      
π ÏÔÈÅÒ×ÉÓÅȢ                  

 

Accessing Online Shop via 
Desktop 

WEB_CUST 

Predictor dummy variable capturing customers 
that access the online shop via desktop 

8ρχ
ρ ÉÆ ÁÃÃÅÓÓÉÎÇ ÖÉÁ ÄÅÓËÔÏÐȠ      
π ÏÔÈÅÒ×ÉÓÅȢ                                

 

Accessing Online Shop via 
Mobile Phone 

MOBILE_CUST 

Predictor dummy variable capturing customers 
that access the online shop via mobile phone 

8ρψ
ρ ÉÆ ÁÃÃÅÓÓÉÎÇ ÖÉÁ ÍÏÂÉÌÅ ÐÈÏÎÅȠ      
π ÏÔÈÅÒ×ÉÓÅȢ                                           

 

Figure 1 illustrates the relationship between the page viewing and login variables by demonstrating 

the customerôs clickstream in the online shop: the customer typically starts browsing departments 

(PIS_SHOPS), then selects a certain category within a department (PIS_PL), and further, chooses a 

certain product within a category (PIS_DV). Optionally, the customer uses the shopôs search engine 

(PIS_SR) to look systematically for a specific product (PIS_SDV). To make a purchase, the customer 

can either directly sign in (LOGS) or check the items in the shopping cart (PIS_AP) first and then 

sign in and hence, proceed to the second step of the purchasing process (LOGS_CUST_STEP2 or 

LOGS_NEWCUST_STEP2). However, signing in to the second step of the purchasing process does 

not necessarily lead to a purchase of the customer. 
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Figure 1: Main Clickstream of Customers in the Online Shop. 

Note: LOGS = Number of Logins, LOGS_CUST_STEP2 = Number of Existing Customersô Logins to the Second Step 

of the Ordering Process, LOGS_NEWCUST_STEP2 = Number of New Customersô Logins to the Second Step of the 

Ordering Process, PIS = Number of Overall Page Viewings, PIS_AP = Number of Shopping Cart Page Viewings, 

PIS_DV = Number of Detailed Product Page Viewings, PIS_PL = Number of Category Overview Page Viewings, 

PIS_SDV = Number of Detailed Product Page Viewings Using Search Function, PIS_SHOPS = Number of Department 

Page Viewings, PIS_SR = Number of Search Results Page Viewings. 

Nevertheless, with respect to the descriptive statistics in Table 2, we find that existing customers (or 

new customers respectively) which subsequently make a purchase sign in to the second step of the 

ordering process approximately 5.93 times (or 4.46 times respectively) more often than non-purchas-

ers. Generally, purchasers sign in more often (1.03 logins on average) than non-purchasers (0.93 

logins on average). This might indicate that the cause for shopping cart abandonment frequently oc-

curs before the customer proceeds to the checkout stage.  

Furthermore, the number of purchasersô overall page viewings is 2.09 times higher than of non-pur-

chasers on average. Overall, customers abandoning their shopping cart browse less pages than pur-

chasers ï regardless of the pagesô type. Particularly, the median reveals that there are significant 

differences regarding the number of page viewings between purchasers and abandoners: the median 

of abandonersô overall page viewings is 12, 1 for department viewings, and 0 for all other types of 

page viewings. In contrast, purchasersô median for overall page viewings is 35, 6 for department 

viewings, and for example, 2 for shopping cart viewings. 

On average, purchasers add more items and different product types (3.48 and 3.38 respectively) to 

their shopping cart than non-purchasers (2.95 and 2.88 respectively). 
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There is a larger absolute (48,839) and relative (9.38%) proportion of new customers among the ob-

servations of shopping cart abandonments than among those making a purchase (15,387 observations 

or 5.12% respectively). Moreover, there is a larger proportion of mobile shoppers among customers 

abandoning their shopping cart (45.85%) compared to the observations of purchasers (28.1%). The 

latter descriptive findings are consistent with the results of preceding (behavioral) research: e.g., as 

argued earlier, Huang, Korfiatis, and Chang (2018) proved that online shopping cart abandonment 

occurs more frequently for customers using a mobile device due to high emotional ambivalence. Moe 

and Fader (2004a) found that ï among new customers ï online conversion rate is lower as purchasing 

thresholds and perceived risks are high for unexperienced visitors. 

Table 2: Descriptive Statistics of Clickstream Data. 

Variable 

Observations of Shopping Cart Abandon-
ments (n=520,653) 

 Observations of Purchasers  
(n=300,395) 

Mean SD Median Min Max  Mean SD Median Min Max 

BASKETS  0.99 0.11 1 0 2  1.09 0.40 1 0 49 
LOGS  0.93 0.27 1 0 2  1.03 0.21 1 0 2 
LOGS_CUST_ 
STEP2 

0.06 0.23 0 0 1  0.32 0.47 0 0 1 

LOGS_NEWCUST_ 
STEP2 

0.02 0.13 0 0 1  0.07 0.26 0 0 1 

PIS 22.26 27.47 12 1 513  46.45 37.06 35 2 593 
PIS_AP 1.05 2.17 0 0 71  3.06 3.42 2 0 57 
PIS_DV 3.42 7.48 0 0 200  6.53 9.76 3 0 203 
PIS_PL 3.99 11.37 0 0 279  8.75 17.00 1 0 315 
PIS_SHOPS 7.68 17.55 1 0 405  15.87 25.14 6 0 396 
PIS_SDV 1.40 3.92 0 0 142  3.13 5.46 1 0 127 
PIS_SR 2.82 7.48 0 0 222  5.71 10.18 2 0 208 
POSITIONS 2.88 3.31 2 1 66  3.38 3.31 2 1 111 
QUANTITY 2.95 3.55 2 1 143  3.48 3.49 2 1 143 

 Counts Proportion  Counts Proportion 

NEW_CUST 48,839 9.38%  15,387 5.12% 
WEB_CUST 214,455 41.29%  171,789 57.19% 
MOBILE_CUST 238,694 45.85%  84,401 28.1% 

Note: BASKETS = Number of Carts Compiled, LOGS = Number of Logins, LOGS_CUST_STEP2 = Number of Existing 

Customersô Logins to the Second Step of the Ordering Process, LOGS_NEWCUST_STEP2 = Number of New Custom-

ersô Logins to the Second Step of the Ordering Process, MOBILE_CUST = Customer Accessing via Mobile Phone, 

NEW_CUST = New Customer, PIS = Number of Overall Page Viewings, PIS_AP = Number of Shopping Cart Page 

Viewings, PIS_DV = Number of Detailed Product Page Viewings, PIS_PL = Number of Category Overview Page View-

ings, PIS_SDV = Number of Detailed Product Page Viewings Using Search Function, PIS_SHOPS = Number of Depart-

ment Page Viewings, PIS_SR = Number of Search Results Page Viewings, POSITIONS = Number of Product Types, 

QUANTITY = Number of Items, WEB_CUST = Customer Accessing via Desktop. 

4.2 Experimental Setup 

Since each machine learning approach and its subsequent refinements and modifications exhibit in-

dividual strengths and weaknesses in dependence of the underlying data and the requested task it is 

highly recommended in the machine learning literature to compare and test different algorithms 
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(Moro et al., 2014; Razi and Athappilly, 2005). Thus, we compared different models of those pro-

posed in Section 3 to predict shopping cart abandonment for our data, listed in Table 3. Additionally, 

we included a standard logistic regression model in our comparison serving as a non-machine learning 

benchmark method. 

Table 3: Machine Learning Approaches for Comparison. 

Approach Description 
Adaptive Boosting (AdaBoost) Ensemble of weak learners, algorithm puts higher weights 

on incorrectly classified instances 

Boosted Logistic Regression (LogitBoost) Algorithm applies logistic regression techniques to the 
AdaBoost method by minimizing the logistic loss 

Decision Tree (DT) Algorithm recursively partitions the predictor space into 
subsets in which the distribution of the dependent variable 
is successively more homogeneous 

Gradient Boosting (Linear Base Learner) with 
L1 and L2 Regularization (GBReg) 

Ensemble of weak learners (with linear base learners), 
algorithm applies L1 (Lasso Regression) and L2 (Ridge 
Regression) Regularization 

Gradient Boosting (Tree Base Learner) 
(GBTree) 

Ensemble of weak learners (with tree base learners), 
algorithm minimizes the moŘŜƭΩǎ ƭƻǎǎ ōȅ ŀŘŘƛƴƎ ǿŜŀƪ 
learners sequentially using a gradient descent like 
procedure 

Gradient Boosting (Tree Base Learner) with 
Dropout (GBDropout) 

See GBTree, but the algorithm randomly drops boosting 
tree members 

k-Nearest Neighbor (KNN) Algorithm classifies an observation by assigning it to the 
class most common among its Ὧ nearest neighbors 

Multi-Layer Perceptron Network with Drop-
out (MLPDropout) 

Feedforward Neural Network with dropout regularization 
technique 

Naïve Bayes (NB) !ƭƎƻǊƛǘƘƳ ƛǎ ōŀǎŜŘ ƻƴ ǘƘŜ .ŀȅŜǎΩ ǘƘŜƻǊŜƳ ŀƴŘ ŎƭŀǎǎƛŦƛŜǎ ŀƴ 
observation by deriving the maximum a posteriori probabil-
ity 

Random Forest (RF) Ensemble of decision trees, algorithm predicts new data by 
aggregating the predictions of the trees 

Stochastic Gradient Boosting (SGB) Algorithm fits base learner at each iteration on the 
subsample of the data ς instead of the full ς drawn at 
random without replacement 

Support Vector Machine with Radial Basis 
Kernel (SVMRadial) 

Support vector machine implementation with radial basis 
kernel  

 

To estimate and, hence, validate the models, we randomly partitioned the data into a training and a 

test subset in a 67/33 ratio, i.e., 67% (or 550,098 observations respectively) of the data are used as 

training data and 33% (or 270,950 observations respectively) are used as test data. 
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We performed Ὧ-fold cross-validation with the training data to fit the models and optimized their 

hyperparameters respectively (Geisser, 1975; Stone, 1974): the sample, i.e., the training data, is ran-

domly split into Ὧ equal sized subsamples ꜠ ȟ꜠ ȟȣȟ꜠ . Of the Ὧ subsamples, one single subsample 

is retained as validation data to test the fitted model subsequently and the remaining Ὧ ρ subsam-

ples are used as training data to fit the model. This step is repeated Ὧ times with each of the Ὧ sub-

samples serving as validation data once. Drawing on machine learning literature, Ὧ ρπ is fre-

quently utilized since it provides an adequate trade-off between methodôs variance and methodôs bias 

(i.e., trade-off between the estimated parameterôs expected value and the estimated value) (Bradley, 

1997; Breiman, 1996; Kohavi, 1995; Tibshirani and Tibshirani, 2009; Zhang, 1993). Thus, we applied 

10-fold cross-validation. 

Further, to validate and evaluate our modelsô performance, we considered different performance met-

rics that indicate the modelsô predictive ability. In a binary decision problem, the classifier labels 

observations as either positive or negative. Consequently, the classification procedure yields four 

different outputs in a ςὼς confusion matrix: the sample is either correctly classified as positive (true 

positive (TP)), correctly classified as negative (true negative (TN)), falsely classified as positive (false 

positive (FP) or Type II error), or falsely classified as negative (false negative (FN) or Type I error). 

Thereby, accuracy is one of the most commonly used measures for classification performance due to 

its simplicity (see e.g., Kohavi (1995)). It is the ratio between correctly classified samples to the total 

number of samples: 

Accuracy=
TP+TN

P+N
 

However, recent research shifted away from solely presenting accuracy results since accuracy as-

sumes balanced class distribution and equal error costs (i.e., Type I errors are equivalent to Type II 

errors) which is rarely the case in real world applications (Davis and Goadrich, 2006; Provost and 

Fawcett, 1997). To address these problems, a receiver operating characteristics (ROC) curve and thus, 

the area under the ROC curve (AUC)5 have been increasingly used by the machine learning commu-

nity since they are insensitive to changes in class distributions and scale-invariant (Bradley, 1997; 

Fawcett, 2006). A ROC graph is a two-dimensional depiction of classification performance to meas-

ure different classifiersô performances and captures the trade-off between benefits (i.e., true positives) 

and costs (i.e., false positives) (Fawcett, 2006). It is created by plotting the true positive rate (TPR) 

 
5 In literature, the area under the ROC curve is frequently referred to as AUROC instead of AUC. 
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(or sensitivity or recall respectively) against the false positive rate (FPR) (or ρ specificity respec-

tively) (Bradley, 1997; Fawcett, 2006; Hand, 2009; Provost and Fawcett, 2001): 

TPR=Sensitivity=Recall=
TP

P
;    FPR=1-Specificity=

FP

N
;    Specificity=

TN

N
 

The classifierôs AUC value is a portion of the area of the unit square and its value ranges from 0.0 to 

1.0 (perfect classification). It should be higher than 0.5 which equals the AUC of an uninformative 

classifier (Bradley, 1997; Fawcett, 2006). An important statistical property of the AUC is that a clas-

sifierôs AUC is equivalent to the probability that the classifier will rank a randomly chosen positive 

observation higher than a randomly chosen negative observation (Fawcett, 2006).  

An alternate performance measure is the F1-Score comprising both precision and recall: 

Precision=
TP

TP+FP
Ƞ     F1=2Ā

Precision Ā Recall

Precision+Recall
 

Ideally, the performance measure is chosen by properly reflecting the investigationôs aims to avoid 

misleading conclusions. Since our data is relatively balanced it seems reasonable to consider accuracy 

as a basic performance metric. However, as we intend to convert customers abandoning their shop-

ping carts into purchasers our main aim is to correctly classify actual positives (i.e., observations of 

shopping cart abandonments) by minimizing the Type I error. Consequently, the higher the recall the 

less false negatives (i.e., shopping cart abandonments classified as purchasers) have been predicted. 

Besides, we intend to maximize the proportion of actual positives among the predicted positives by 

minimizing the Type II error, i.e., purchasing customers should not be classified as non-purchasers. 

Thus, the higher the precision the less false positives have been predicted. The F1-Score considers 

the trade-off between recall and precision. Therefore, we determined the F1-Score, recall, and preci-

sion as our main performance metrics for the test data. Additionally, to yield valid results, we con-

sidered the ROC curve or the AUC respectively as a performance metric since it is a common measure 

of separability capturing the trade-off between both TPR (or sensitivity or recall respectively, analo-

gous to F1-Score) and FPR (i.e., how many negative instances are falsely classified as positive among 

the negative instances). For the training data, the best classifier during hyperparameter optimization 

was automatically chosen based on the AUC values. 

Although prediction accuracy (i.e., AUC, F1-Score, and accuracy) is frequently the main decision 

criterion when comparing different machine learning models, the modelsô complexity in terms of 

computation time and computation effort (e.g., numbers of hyperparameters to be optimized) is of 
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similar importance regarding the application in practice and should therefore be considered as well 

(Doshi-Velez and Kim, 2017; Guidotti et al., 2019; Tambe et al., 2019). 

5 Findings  

Drawing on the training results in Table 4, gradient boosting with regularization outperformed the 

remaining approaches with an AUC of 0.9008. The final gradient boosting modelôs fitted hyperpa-

rameters did not include the lasso regression technique (L1 regularization) but made use of the ridge 

regression technique (L2 regularization). The gradient boosting with tree base learners and random 

forest yielded comparable results (AUC of 0.8953 and 0.8954 respectively) whereas naïve bayes and 

boosted logistic regression realized the lowest AUC values (0.8218 and 0.8381 respectively). 

Regarding estimation time, the benchmark logistic regression, decision tree, and boosted logistic re-

gression performed the fastest 10-fold cross validation to optimize the hyperparameters (20.3, 225.07, 

and 380.0 seconds respectively). The support vector machine and adaptive boosting were the most 

time-consuming models to estimate (1,306,838.6 and 703,903.9 seconds respectively). Gradient 

boosting with regularization yielded a moderate estimation time (4,021.28 seconds) and thus, pro-

vides an appropriate trade-off between AUC and estimation time. 

 

 

 

 

 

 

 

 

 

Table 4: Training Data Results. 

Model Fitted Parameters AUC 
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Parameter Fitted Value Estimation Time 
(Seconds)6 

Logistic Regression   0.8003 20.3 

AdaBoost 
Number of Trees  50 

0.8698 703,903.9 
Method  Adaboost.M1 

LogitBoost Number of Boosting Iterations  21 0.8381 380.0 

DT Complexity Parameter 0.0129 0.7988 225.07 

GBReg 

Number of Boosting Iterations  150 

0.9008 4,021.28 
L2 Regularization  0.1 

L1 Regularization  0 

Learning Rate 0.3 

GBTree 

Number of Boosting Iterations  150 

0.8953 6,701.14 

Maximum Tree Depth  3 

Shrinkage  0.4 

Minimum Loss Reduction  0 

Subsample Ratio of Columns  0.8 

Minimum Sum of Instance 
Weight  

1 

Subsample Percentage  1 

GBDropout 

Number of Boosting Iterations  150 

0.8952 49,794.27 

Maximum Tree Depth  3 

Shrinkage  0.4 

Minimum Loss Reduction  0 

Subsample Ratio of Columns  0.8 

Minimum Sum of Instance 
Weight  

1 

Subsample Percentage  0.75 

Fraction of Trees dropped 0.01 

Probability of Skipping Dropout  0.95 

KNN 

Maximum Number of Neigh-
bors 

30 

0.8828 127,773.4 
Distance 2 

Kernel  Optimal 

MLPDropout 

Number of Hidden Units  768 

0.8807 218,894.0 

Dropout Rate  0.35 

Batch Size  64 

Learning Rate  0.000006 

Rho  0.2 

Learning Rate Decay  0 

Activation Function  Sigmoid 

Epochs 30 

NB 

Laplace Correction 0 

0.8218 5,757.49 Distribution Type 
Kernel Density 
Estimation 

Bandwidth Adjustment 0.3 

RF 

Number of Randomly Selected 
Predictors  

14 

0.8954 171,587.7 Splitting Rule  Gini 

Minimal Node Size  35 

SGB Number of Boosting Iterations  150 0.8800 2,033.17 

 
6 With 40 GB RAM. 
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Maximum Tree Depth  3 

Shrinkage  0.1 

Minimum Terminal Node Size  10 

SVMRadial 
Sigma  0.1818 

0.8808 1,306,838.6 
Cost  0.5 

Note: The highest AUC value is marked in bold. AdaBoost = Adaptive Boosting, DT = Decision Tree, GBDropout = 

Gradient Boosting with Dropout, GBReg = Gradient Boosting with L1 and L2 Regularization, GBTree = Gradient Boost-

ing with Tree Base Learners, KNN = k-Nearest Neighbor, LogitBoost = Boosted Logistic Regression, MLPDropout = 

Multi -Layer Perceptron Network with Dropout, NB = Naïve Bayes, RF = Random Forest, SGB = Stochastic Gradient 

Boosting, SVMRadial = Support Vector Machine with Radial Basis Kernel. 

Since we are rather interested in the fitted modelsô performances on new and unknown data, the test 

data results in Table 5 exhibit a higher practical relevance than the preceding results: similarly to the 

training data results, the gradient boosting model with regularization was superior to the remaining 

models regarding the test data. It yielded the best AUC (0.8182) and accuracy (82.29%) results. In 

line with these findings, the F1-Score (0.8569) proves that the model is the most suitable approach in 

our comparison to balance the trade-off between precision and recall. With respect to its confusion 

matrix in the Appendix, the gradient boosting model classified 28,209 abandonments falsely as pur-

chasers (16.42% of all abandonments) and 19,767 purchasers as abandonments respectively (19.94% 

of all purchasers). This is further reflected by the model's precision (0.8790) and recall (0.8358), i.e., 

there is a high proportion of both correctly predicted abandonments among all correctly and falsely 

predicted abandonments (87.90%) and correctly predicted abandonments among all actual abandon-

ments (83.58%). 

Although naïve bayes realized an extremely high recall (0.9996), its precision (0.6351) is just slightly 

better than random guessing. This is due to its negligible Type I error (i.e., 68 abandonments classified 

as purchasers (0.0004% of all abandonments)) and its substantial Type II error (i.e., 98,677 purchasers 

classified as abandonments (99.52% of all purchasers)). Consequently, by focusing exclusively either 

on precision or recall, one could draw misleading conclusions regarding model selection. The F1-

Score of the naïve bayes model (0.7767) reveals that it constitutes a suboptimal choice. 

Similarly, albeit the decision tree classified a high proportion of purchasers correctly and only 12,688 

(i.e., 12.80% of all purchasers) wrong, it categorized 55,634 cart abandonments as purchasers (i.e., 

32.38% of all abandonments). Thus, due to its high Type I error, its recall is extremely low (0.6762), 

but it realized the highest precision value of all models (0.9015). 

Generally, our results indicate a substantial predictive ability of the most tree-based methods (i.e., 

gradient boosting with regularization (and linear base learners), gradient boosting (with tree base 
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learners), gradient boosting with dropout (and tree base learners), and random forest) compared with 

the remaining machine learning approaches. The latter were outperformed by tree-based models with 

regard to all relevant performance metrics (AUC, accuracy, and F1-Score).7 

Logistic regression as a non-machine learning benchmark approach yielded the lowest F1-Score but 

realized a higher AUC value than several other machine learning approaches like boosted logistic 

regression, k-nearest neighbor, multi-layer perceptron, naïve bayes, and support vector machine. Nev-

ertheless, it did not perform better than the tree-based methods (except for adaptive boosting, decision 

tree, and stochastic gradient boosting) with regard to AUC. 

Moreover, the k-nearest neighbor algorithm as a basic machine learning approach outperformed more 

sophisticated algorithms like the multi-layer perceptron, the stochastic gradient boosting, and adap-

tive boosting with respect to its AUC value (0.7962). 

Table 5: Test Data Results. 

Model 
Performance Metrics 

AUC Accuracy Precision Recall Cм-Score 

Logistic Regression 0.8012 78.94% 0.6677 0.8454 0.7461 
AdaBoost 0.7516 78.54% 0.8024 0.8777 0.8384 
LogitBoost 0.7623 77.19% 0.8349 0.7981 0.8161 
DT 0.7741 74.78% 0.9015 0.6762 0.7728 
GBReg 0.8182 82.29% 0.8790 0.8358 0.8569 
GBTree 0.8105 81.78% 0.8701 0.8377 0.8536 
GBDropout 0.8123 81.84% 0.8731 0.8350 0.8536 
KNN 0.7962 80.5% 0.8585 0.8290 0.8435 
MLPDropout 0.7911 80.36% 0.8503 0.8378 0.8440 
NB 0.5022 63.56% 0.6351 0.9996 0.7767 
RF 0.8108 81.75% 0.8711 0.8359 0.8531 
SGB 0.7902 80.08% 0.8521 0.8299 0.8409 
SVMRadial 0.7956 81.23% 0.8479 0.8578 0.8528 

Note: For each column, the highest value is marked in bold. AdaBoost = Adaptive Boosting, DT = Decision Tree, 

GBDropout = Gradient Boosting with Dropout, GBReg = Gradient Boosting with L1 and L2 Regularization, GBTree = 

Gradient Boosting with Tree Base Learners, KNN = k-Nearest Neighbor, LogitBoost = Boosted Logistic Regression, 

MLPDropout = Multi-Layer Perceptron Network with Dropout, NB = Naïve Bayes, RF = Random Forest, SGB = Sto-

chastic Gradient Boosting, SVMRadial = Support Vector Machine with Radial Basis Kernel. 

 

 

 

 
7 Tree-based approaches are typically not subject to multicollinearity (Climent et al. 2019). Thus, we did not remove any 

correlated variables during the training process. 
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6 Discussion 

Our findings contribute to a deeper understanding regarding the successful implementation of ma-

chine learning methods for predicting online shopping cart abandoners with a strong forecast perfor-

mance in order to apply marketing techniques in real-time to convert them to purchasers. Thus, we 

discuss our findingsô theoretical contribution and practical implications in this Section. We also dis-

cuss limitations and propose suggestions for future research. 

6.1 Theoretical Contribution 

Overall, we fill a research gap by identifying suitable machine learning approaches for online shop-

ping cart abandonment prediction not only in terms of accuracy but, further, in terms of practicability. 

Thereby, we contribute to literature in several ways. First, we are able to characterize customers 

abandoning their shopping cart descriptively with our data. Preceding literature on shopping cart 

abandonment (e.g., Close and Kukar-Kinney (2010), Huang et al. (2018), or Kukar-Kinney and Close 

(2010)) primarily shed light on behavioral aspects of the abandonment process with experimental 

designs. In contrast, our research deals with unbiased clickstream data comprising an exceptionally 

high number of observations. Our data indicate that there is a higher proportion of new customers 

and mobile shoppers among customers abandoning their shopping carts compared to purchasers 

whereas the latter add more items to their shopping cart and view an increased number of pages on 

average.  

Second, we contribute to literature by proposing a broad range of machine learning models to com-

pare their performance regarding online shopping cart abandonment prediction and, thus, to predict 

future customers abandoning their shopping carts in real-time. Prior literature either drew on a be-

havioral perspective to understand the antecedents of shopping cart abandonment or predicted ï more 

generally ï purchase behaviors with conservative approaches and less observations (see e.g., Huang 

et al. (2018), Kukar-Kinney and Close (2010), or Sismeiro and Bucklin (2004)). For our data, the 

gradient boosting with regularization yielded the highest accuracy (82.29%). However, with respect 

to our main aim, to minimize the Type I error (i.e., abandoners falsely classified as purchasers) and 

the Type II error (i.e., purchasers falsely classified as abandoners), we focused on the F1-Score cap-

turing the trade-off between precision and recall. Consistent with the accuracy results, the gradient 

boosting with regularization outperformed the remaining models regarding the F1-Score (0.8569). 

Additionally, it realized the highest AUC value (0.8182) compared to the other models.  
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Overall, we found tree-based methods to be superior to the remaining machine learning approaches 

and logistic regression as a benchmark non-machine learning approach aligning with prior research 

comparing machine learning approaches in different application fields like customer churn prediction 

or phishing detection (Abu-Nimeh et al., 2007; Caruana and Niculescu-Mizil, 2006; Vafeiadis et al., 

2015) and ï similar to our context ï prediction of online purchase intention (Bogina et al., 2019; 

Boroujerdi et al., 2014; Zheng and Liu, 2018). Thus, we complement the literature on machine 

learning comparisons in a marketing context. 

Moreover, despite the striking importance of prediction accuracy as a decision criterion for appropri-

ate machine learning approaches, the modelsô practicability with respect to modeling complexity as 

an essential criterion is of particular importance (Doshi-Velez and Kim, 2017; Guidotti et al., 2019; 

Tambe et al., 2019) but, at the same time, is often neglected by current research. Thus, we considered 

the modelsô complexity in terms of computation time and computation effort (e.g., numbers of hy-

perparameters to optimize) to add to literature. Thereby, the decision tree approach and boosted lo-

gistic regression yielded only slightly worse AUC results compared to gradient boosting with regu-

larization and, simultaneously, their complexity in terms of both computation effort and time was 

rather low. Hence, in case of online shopping cart abandonment prediction, a decision tree model and 

boosted logistic regression perform well in balancing the trade-off between accuracy and complexity. 

Further, as stated by prior literature, we found the support vector machine approach to be extremely 

computationally infeasible (L'Heureux et al., 2017) despite its acceptable prediction accuracy. 

6.2 Practical Implications 

Our research may help to gather a comprehensive understanding of machine learning approaches for 

prediction or classification, particularly with regard to online shopping cart abandonment prediction. 

More specifically, our research provides multifold practical implications for decision makers.  

Since research about advanced machine learning approaches in marketing contexts is still in its in-

fancy (e.g., Cheung et al. (2003) and Cui et al. (2006)) we reviewed relevant literature to provide an 

introduction to such models, its potential applications, as well as performance metrics, and common 

methods for validation: for machine learning models, Ὧ-fold cross-validation is a common method to 

optimize the modelsô hyperparameters. Decision makers should draw on either recall as a perfor-

mance measure if their main aim is to correctly classify abandonments or precision if they intend to 

avoid falsely classified purchasers. The F1-Score considers the trade-off between both. Besides, the 
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AUC is a common measure of separability since it is insensitive to skewed class distributions. Over-

all, tree-based approaches and particularly boosting methods are superior to the remaining machine 

learning models regarding forecast accuracy within online shopping cart abandonment prediction. 

Random forest yields comparable results but is rather time-consuming to estimate (171,587.7 seconds 

estimation time). The support vector machine and adaptive boosting are computationally intensive 

with estimation times of 1,306,838.6 and 703,903.9 seconds respectively.  

Aside from pointing out methodological aspects, we drew on an economical perspective to enhance 

an organizationôs turnover: with regard to our data, the mean value of purchasersô ordered shopping 

carts (VALUE_BB) is 271.73 euro and they add 3.479 items into their shopping cart on average and 

thus, we expect the online retailerôs sales loss for each shopping cart abandonment to be around 230 

euro with 2.945 items in their shopping cart on average. Therefore, we determined a suitable approach 

to correctly identify shopping cart abandonments as well as purchasers: our findings indicate that 

gradient boosting with regularization outperformed the remaining approaches. Organizations can im-

plement this method to predict non-purchasers in real-time when a sufficient amount of information 

about the customerôs activities during the session has been collected. Overall, we found particularly 

tree-based machine learning approaches such as random forest or gradient boosting to outperform 

traditional classification approaches such as logistic regression and decision tree, which are fre-

quently utilized by practitioners. 

Drawing on an overall practicability perspective, decision makers may take a slight loss in prediction 

accuracy into account if, instead, the modelôs complexity in terms of computation time and effort is 

substantially lower: in our application context, decision tree and boosted logistic regression yielded 

acceptable prediction results and their computation effort was substantially lower compared to gradi-

ent boosting methods. 

6.3 Limitations and Future Research 

Our research is subject to limitations which stimulate further research. First, the set of useful variables 

for prediction was limited. With respect to extant literature (see e.g., Bucklin and Sismeiro (2003), 

Moe and Fader (2004a), or van den Poel and Buckinx (2005)), we expect e.g. demographic variables, 

historical purchase behavior, or the time customers spend on the single pages to be informative vari-

ables. Further, we did not have information about the customersô identity and thus, could not deter-

mine whether there were recurring customers. However, this information could be of great interest 

for analyzing online behavior and predicting shopping cart abandonment. For instance, Huang et al. 



116 
 

 

(2018) anticipated that some customers might use the mobile phone for initial purchase stages (i.e., 

browsing and collecting information) and then switch to the computer for completing the purchase. 

However, such customers are listed as two distinct sessions in the current data. Another missing in-

formation concerns the value of abandoned shopping carts. While there is a variable that indicates 

the value of ordered carts (i.e., VALUE_BB), the value of abandoned carts can only be estimated. In 

line with extant literature on shopping cart abandonment (e.g., Close and Kukar-Kinney (2010); Ku-

kar-Kinney and Close (2010)), it can be assumed that the value of ordered items influences abandon-

ing rates and, thus, could aid the prediction of such. Moreover, if detailed information about spent 

time and further, the chronological order of customersô actions in the online shop would be available, 

we could decompose the session into sequences or segments. Then, we could determine a critical 

point in the customerôs session in which abandonment can be predicted reliably with the F1-Score or 

the AUC exceeding a defined threshold (see e.g., Sismeiro and Bucklin (2004)). Hence, future re-

search could replicate the present study with more detailed data, e.g. between-site clickstream data 

(i.e., panel data collected by media measurement company), that are typically more comprehensive 

and frequently used in clickstream analyses (see e.g., Moe and Fader (2004a)). 

Second, we excluded just-browsing customers from our investigation. A possible direction for future 

research could be to conduct a multi-class classification by differentiating between purchasers, aban-

donments, and just-browsing customers, similar to the cluster analysis of Moe (2003). 

Third, the modelsô performance strongly depends on the optimized hyperparameters which may be a 

time-consuming procedure for some of the models. Therefore, we considered only a limited range of 

possible hyperparameter values. Moreover, other values of Ὧ in cross-validation could lead to differ-

ent results.  

Lastly, a real-time implementation requires a certain amount of data to be collected before the model 

can make a reliable decision. 

By implementing these models, companies may detect shopping cart abandoners in real-time and 

subsequently convert some of them into purchasers by making use of targeted marketing measures 

such as individual chat pop-ups, coupons or special discounts. For instance, Close and Kukar-Kinney 

(2010) suggest human-human interactions (i.e., live chats with employees or other online shoppers) 

to avoid shopping cart abandonment. These could pop-up on the website if the online user is predicted 

to abandon by the machine learning model. Therefore, future research is recommended to test whether 
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pop-up messages and offers impact customersô online shopping behavior and can prevent online 

shopping cart abandonment. 

7 Conclusion 

Online shopping cart abandonment can inhibit corporate growth and hence, harm a companyôs suc-

cess within its competitive environment. Simultaneously, the emergence of the Internetôs commercial 

usage leads to the ability to track consumersô online activities and online behavior resulting in click-

stream data. 

Thus, to identify online shopping cart abandoners by extracting valuable knowledge from such click-

stream data we proposed different machine learning approaches. We analyzed data of a German 

online retailer comprising 821,048 observations and fitted the models using 10-fold cross validation. 

Thereby, our paper contributes to extant literature by combining research fields of both online shop-

ping cart abandonment and clickstream data with machine learning approaches. 

Our data indicate that among customers abandoning their shopping carts there is a higher proportion 

of new customers and mobile shoppers compared to purchasers whereas the latter add more items to 

their shopping cart and have a higher number of page viewings on average. Moreover, our comparison 

results prove that gradient boosting with regularization is a suitable method to distinguish between 

abandonments and purchasers yielding an AUC of 0.8182, an F1-Score of 0.8569, and an accuracy 

of 82.29%. Nevertheless, a decision tree or boosted logistic regression may be suitable alternatives 

yielding only slightly less accurate prediction results and being computationally more feasible. 

Nevertheless, research on clickstream data combined with machine learning approaches is still in its 

infancy ï particularly in a marketing context. Thereby, machine learning will be inevitable for e-

commerce businesses to be successful in the long-term and the analysis provided in this paper shall 

stimulate further research on this topic. 
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Appendix: Confusion Matrices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Prediction 
Actual 

0 (Purchaser) 1 (Abandonment) 

Logistic Regression 
0 (Purchaser) 83,817 41,722 

1 (Abandonment) 15,335 130,076 

AdaBoost 
0 (Purchaser) 62,009 21,005 

1 (Abandonment) 37,143 150,793 

LogitBoost 
0 (Purchaser) 72,036 34,692 

1 (Abandonment) 27,116 137,106 

DT 
0 (Purchaser) 86,464 55,634 

1 (Abandonment) 12,688 116,164 

GBReg 
0 (Purchaser) 79,385 28,209 

1 (Abandonment) 19,767 143,589 

GBTree 
0 (Purchaser) 77,662 27,875 

1 (Abandonment) 21,490 143,923 

GBDropout 
0 (Purchaser) 78,294 28,352 

1 (Abandonment) 20,858 143,446 

KNN 
0 (Purchaser) 75,687 29,383 

1 (Abandonment) 23,465 142,415 

MLPDropout 
0 (Purchaser) 73,803 27,869 

1 (Abandonment) 25,349 143,929 

NB 
0 (Purchaser) 475 68 

1 (Abandonment) 98,677 171,730 

RF 
0 (Purchaser) 77,903 28,197 

1 (Abandonment) 21,249 143,601 

SGB 
0 (Purchaser) 74,409 29,217 

1 (Abandonment) 24,743 142,581 

SVMRadial 
0 (Purchaser) 72,724 24,427 

1 (Abandonment) 26,428 147,371 
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Abstract:  Through the course of rapid digitalization, negative consequences and strain 

resulting from the use of information and communication technologies at work 

have become an important topic of debate. With this paper, we contribute to the 

current discourse by examining how employees mitigate technostress. We 

transfer theory from psychology to information systems literature by investigat-

ing a moderated mediation model where coping was conceptualized as a per-

sonal resource in line with the job demands-resources model. The moderating 

effects of two different reactive coping strategiesðactive-functional and dys-

functionalðwere investigated within a final sample of 3,362 German 

knowledge workers. By using covariance-based structural equation modelling, 

we found that technology-related demands are associated with higher level of 

both strain and productivity. We found a competitive mediation effect where 

the direct effect of demands on productivity is of opposite direction as the indi-

rect mediated effect via strain. These effects are buffered by both active-func-

tional and dysfunctional coping. They reduce the extent to which demands lead 

to strain. Further, active-functional coping is associated with lower strain 

whereas dysfunctional coping is associated with higher strain. The contribution 

of this paper for technostress research is discussed and implications for future 

research are given. The recommendations for employers and employees are 

highlighted. 

Keywords: Negative Consequences of ICT Use; Technostress; Strain; Coping; Active-

Functional coping; Dysfunctional coping 
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1 Introduction 

Digitalization's rapid progression leads to comprehensive and ubiquitous change that affects individ-

uals, economies, and society (Gimpel et al., 2018). Digital transformation is driven by a wide variety 

of digital technologies and their adoption (Hartl, 2019; Osmundsen, Iden, & Bygstad, 2018). Even 

though many opportunities and chances accompany this development (e.g., products and services can 

be offered in less time or with better quality), there are some downsides. In particular, the use of 

information and communication technologies (ICT) in occupational settings may cause stress. During 

the last years, research has noted this as a specific form of stress called technostress (Ayyagari, 

Grover, & Purvis, 2011; Tarafdar, Tu, & Ragu-Nathan, 2010; Tarafdar, Tu, Ragu-Nathan, & Ragu-

Nathan, 2007). The term technostress itself was coined in the 80s by Brod (1984, p. 16), who desig-

nated it as a personËs ñinability to cope with the new computer technologies in a healthy mannerò. 

This is the case if individuals do not feel able to adapt to or keep pace with the increasing technolog-

ical changes, for example, when e-mails are perceived as constant interruptions or the boundaries 

between the work life and private life become blurred due to the need for constant availability 

(Tarafdar et al., 2010). Hence, the impact of digitalization on an employeeôs working environment 

must be regarded as ambivalently (Apt, Bovenschulte, Hartmann, & Wischmann, 2016). 

It has been shown that technology-related factors that induce stress are associated with a re-

duction in productivity, job satisfaction, and loyalty to the employer as well as an increased risk of 

burnout and a poor work-life balance (Ayyagari et al., 2011; Califf, Sarker, & Sarker, 2020; Khaoula, 

Khalid, & Omar, 2020; Srivastava, Chandra, & Shirish, 2015; Tarafdar et al., 2010; Tarafdar, Tu, 

Ragu-Nathan, & Ragu-Nathan, 2011). Research has also identified several organizational and indi-

vidual factors that positively moderate the relationship between techno stressors and health and or-

ganizational outcomes (Srivastava et al., 2015; Tarafdar, Pullins, & Ragu-Nathan, 2015). 

All these beneficial factors have in common that they are outside the individualôs scope of 

influence. They are either organizational factors (Ragu-Nathan, Tarafdar, Ragu-Nathan, & Tu, 2008) 

or inherent stable personality traits (Sumiyana & Sriwidharmanely, 2020). But little is known about 

actual behaviours or thoughts that the individual deploys to mitigate the harmful effects of tech-

nostress. A few studies are concerned with coping, but these conceptualize coping as a mediator be-

tween technostress and strain in line with the transactional model of stress (Lazarus & Folkman, 

1984). In contrast, research from industrial and organizational psychology emphasizes the role that 

coping plays as a personal resource (Searle & Lee, 2015), moderating the relationship between job 

demands and strain (Bakker & Demerouti, 2017). Accordingly, the neglect of coping as a moderator 






























































































































































