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Abstract 

Based on recent developments caused by the big data revolution, data science has massively increased 

its importance for businesses. Within the marketing context, various types of customer data have 

become available in enormous amounts and need to be processed as efficiently as possible for creating 

valuable knowledge. Therefore, data scientists’ performance has become crucial for marketing de-

partments to achieve competitive advantages in the modern highly digitalized economy. 

Within the raising field of data science, machine learning has become an outstanding trend since these 

approaches are able to automatically solve numerous classification and prediction problems with 

enormous performance. Thus, machine learning is seen as a key technology which will radically 

transform business practice in the future. Even though machine learning has already been applied to 

various marketing tasks, research is still at an early stage requiring further investigations of how 

marketing can successfully benefit from machine learning applications. 

Besides these data-driven opportunities provided by digitalization, technostress has evolved into an 

enormous downside of digitalized workplaces, leading to a significant decrease in employees’ per-

formance. However, existing research lacks to provide evidence about different coping strategies and 

their potential to support employees in overcoming technostress. Furthermore, research currently fails 

to consider technostress regarding both highly digitalized occupational groups like data scientists and 

respective workplace environments for providing a deeper understanding of how employees suffer 

from stress caused by the use of digital technologies. 

Due to these recent challenges for data scientists, this cumulative thesis provides useful insights and 

new opportunities by focusing on machine learning and technostress issues as two aspects which 

promise major potentials for enhancing data scientists’ performance in today’s marketing contexts. 

Five research papers are included for effectively tackling both fields of research: three papers deliver 

both methodological and empirical findings for extending machine learning in marketing research by 

examining model architectures as well as applying machine learning to recent marketing problems. 

In addition, two research papers contribute to research by providing knowledge about technostress 

issues of data scientists as a heterogeneous and highly digitalized occupational group as well as ex-

amining different coping strategies for effectively overcoming stress due to the use of digital tech-

nologies. Beyond that, the findings deliver practical implications for marketing managers who aim to 

improve the performance of data scientists in a contemporary marketing environment. 
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Ⅰ Introduction 

1 Motivation 

Due to its enormous economic value, relevant data has become the oil of businesses (van der Aalst, 

2014). During the last decade, the big data revolution has provided numerous opportunities and chal-

lenges for applying data science to create valuable knowledge out of customer data (Erevelles et al., 

2016; Lukosius & Hyman, 2019). Based on enormous accompanying developments regarding the 

availability, collectability, and storage of huge amounts of various data, nearly every department 

within a company has got new opportunities of developing improvements in decision making: various 

recent studies have already confirmed the importance of this data-driven decision making (see, e. g., 

Ferraris et al. (2019); Müller et al. (2018); Wamba et al. (2017)), showing that the application of data 

science for analysing big data increases the performance of organisations and, thus, builds competi-

tive advantages. I. e., it is particularly important to perform data science instead of just storing the 

data as well as the contained information (Chen et al., 2012; Davenport, 2006). In this context, mar-

keting has always been a popular application field of this data-driven decision making (Provost & 

Fawcett, 2013; Wedel & Kannan, 2016). 

For efficiently meeting these big data developments of today’s marketing environment and, therefore, 

creating competitive advantages caused by data-driven decision making, it is indispensable for com-

panies to employ experts who are capable of fulfilling the numerous data science tasks concerning 

working with and creating knowledge out of data (Davenport & Patil, 2012; Erevelles et al., 2016; 

van der Aalst, 2014). Hence, the relevance of such employees – so-called data scientists – has ex-

ceedingly raised during the last decade due to the availability, capture, and storage of huge amounts 

of data due to the digital transformation and, thus, has led to a major demand for these employees 

(Davenport, 2020; Ismail & Abidin, 2016; Mauro et al., 2018; Murawski & Bick, 2017). Due to their 

massive importance for building competitive advantages out of data-driven decision making, it is 

crucial for companies to aim for improving the performance of data scientists. In this context, broad 

methodological as well as domain (e. g., marketing) knowledge for effectively solving data science 

problems is highly required (Ayankoya et al., 2014; Manieri et al., 2015; Waller & Fawcett, 2013). 

Therefore, data scientists need to constantly train their skills and competences by adopting recent 

trends and innovative technologies for further improving their task-specific performance and, conse-

quently, building competitive advantages. 
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Within the wide field of data science research, machine learning has become the outstanding trend 

which has reached particular importance for gaining competitive advantages due to the developments 

of the big data revolution (Cui et al., 2006; Hazen et al., 2014; Ma & Sun, 2020; Saura, 2020). In the 

following years, machine learning will fundamentally transform core processes within nearly all com-

panies’ business practice (Brynjolfsson & Mcafee, 2017). In this context, it has been proven that 

marketing may also strongly benefit from machine learning applications as they represent the state of 

the art within marketing analytics (Hagen et al., 2020; Huang & Rust, 2018; Jordan & Mitchell, 2015; 

Rust, 2020; Wedel & Kannan, 2016). Therefore, it is highly important to understand how these mod-

els are composed for effectively tackling marketing tasks by applying machine learning models (Ma 

& Sun, 2020). However, machine learning within marketing research is still at an early stage, requir-

ing further studies and enhancements in the future for constantly extending this promising area of 

research (Chintagunta et al., 2016a; Chintagunta et al., 2016b; Dimetreska et al., 2018; Ma & Sun, 

2020; Saura, 2020). 

Besides the opportunities and changes offered by the digital transformation and, in particular, the big 

data revolution, these developments may also enormously demand employees (Okkonen et al., 2019; 

Schwemmle & Wedde, 2012; Timonen & Vuori, 2018). In this context, a massive psychological dark 

side of digitalization has been risen next to its advantages, affecting both productivity and well-being 

of employees: using information and communication technologies (ICT) at work causes technostress 

which represents a specific form of stress induced by the frequent use of digital technologies at work 

(Ayyagari et al., 2011; Ragu-Nathan et al., 2008; Tarafdar et al., 2007; Tarafdar et al., 2010). Tech-

nostress has become of particular relevance due to the rapid implementation of countless ICT during 

the last two decades (Hartl, 2019; Osmundsen et al., 2018), leading to the consideration of the digital 

transformation at work as a double-edged sword (Apt et al., 2016). For overcoming technostress at 

work, employees require suitable resources like, e. g., organisational factors (Ragu-Nathan et al., 

2008), environmental aspects (Galluch et al., 2015), and inhibitors at employee’s level (Srivastava et 

al., 2015; Sumiyana & Sriwidharmanely, 2020). However, the application of various coping strategies 

which may be actively and autonomously implemented by the employee is inadequately examined in 

technostress research and, therefore, requires further investigations (Pirkkalainen et al., 2019; 

Tarafdar et al., 2019). 

Moreover, research currently fails to consider technostress in the context of specific occupational 

groups but focuses on general relationships between technostress constructs instead (Ayyagari et al., 

2011; Fischer & Riedl, 2020; Ragu-Nathan et al., 2008; Tarafdar et al., 2007; Tarafdar et al., 2010; 
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Tarafdar et al., 2011; Tarafdar et al., 2015). Since the investigation of stress within separate occupa-

tional groups in order to create knowledge regarding their specific regularities is widely established 

in psychological research (see, e. g., Grace & van Heuvelen (2019); Rees & Cooper (1992); Travers 

& Cooper (1993)), the examination of technostress in the context of data scientists as a highly 

digitalized job group appears to be necessary for supporting data scientists in overcoming technostress 

and, thus, improving their performance. 

Due to these necessities and recommendations for future research, this doctoral thesis aims to provide 

useful knowledge for further improving the performance of data scientists in modern marketing con-

texts. To achieve this goal, the focus is on both machine learning applications to marketing problems 

and employees’ technostress issues as these topics have been proven to act as crucial aspects for 

creating competitive advantages in today’s digitalized business world. Based on this general goal, the 

prevailing research questions are proposed as follows: 

RQ1: How can data scientists improve their performance by successfully applying machine 

learning algorithms in contemporary marketing contexts? 

RQ2: How can data scientists improve their performance by effectively overcoming tech-

nostress at work? 

As provided in Figure 1, this thesis contains five research papers which tackle either RQ1 regarding 

the topic of machine learning applications (research papers #1 - #3) or RQ2 regarding technostress 

issues (research papers #4 - #5) as important aspects of data scientists’ marketing performance. These 

papers have already been published or are currently under review within sophisticated academic jour-

nals. 
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Figure 1. Contextual Framework of this Thesis 

In the context of machine learning applications, this thesis delivers new opportunities of applying 

supervised machine learning models to marketing and, further, compares various algorithms regard-

ing their performance at solving a specific task. Moreover, a deeper understanding of how these al-

gorithms may be successfully compiled is offered so marketers are able to receive important 

knowledge for creating models which achieve high task-specific performance in order to enhance 

return on investment. 

In addition, this thesis also provides insights into technostress as an enormous downside of digitali-

zation data scientists have to struggle with. By that, technostress knowledge regarding data scientists 

as a specific occupational group as well as the examination of different coping strategies to success-

fully overcome technostress is to be examined for enabling data scientists to overcome performance 

threats caused by ICT use. 

To achieve this, this thesis is structured as follows: in chapter Ⅰ, the theoretical background of data 

science and machine learning in today’s marketing, data scientists as a highly digitalized occupational 

group as well as technostress research and, further, the research agenda including a detailed overview 

of the included research papers is outlined. These research papers are then provided in the following 

chapters Ⅱ to Ⅵ within this thesis. Finally, chapter Ⅶ provides a summarizing conclusion of the 

compiled findings. 
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2 Theoretical Background 

2.1 Data Science in Contemporary Marketing 

Within the marketing context, the systematic utilization of quantitative data has an impressive history 

of more than 100 years (Wedel & Kannan, 2016). Within this bright history, the founding of the 

Marketing Science Institute by the initiative of the Ford Foundation and the Harvard Institute of Basic 

Mathematics for Applications in Business in 1961 is seen as the major impact for successfully apply-

ing analytics to marketing issues (Winer & Neslin, 2014). Since then, the field of data science has 

been widely used for extending marketing research (Wedel & Kannan, 2016). 

In modern business environments, both the opportunities and challenges for applying data science to 

create valuable knowledge out of customer data have been massively raised due to the big data revo-

lution (Erevelles et al., 2016; Lukosius & Hyman, 2019). Overall, big data is defined as huge datasets 

containing structured and/or unstructured data that can be processed and analysed for creating 

knowledge such as patterns and trends out of it (Hazen et al., 2014). In this context, the big data 

revolution is differing from conventional data collection by several characteristics called the three 

Vs: volume, i. e., huge amounts of available data; velocity, i. e., rapid processes of data creation in 

real-time; and variety, i. e., the creation of numerous types of unstructured data (Chintagunta et al., 

2016a; Erevelles et al., 2016; Lycett, 2013). Furthermore, the collection and analysis of big data is 

also associated with two other characteristics called veracity and value (Lycett, 2013; Wedel & 

Kannan, 2016): while veracity is described as the importance of considering the quality of collected 

data regarding reliability and validity (IBM, 2012; Wedel & Kannan, 2016), value represents the 

focus on data which is valuable for gaining domain-specific knowledge (Lycett, 2013). 

In the context of marketing, the big data revolution has transformed consumers into permanent gen-

erators of both traditional, structured, and transactional data as well as more contemporary, unstruc-

tured, and behavioural data leading to a transformation of marketing decision making (Erevelles et 

al., 2016). Digital data which is collected through online and mobile applications provides valuable 

insights on consumers’ feelings, behaviours, and interactions around products, services, and market-

ing actions (Wedel & Kannan, 2016). The analysis of such data enables marketers to gain knowledge 

out of complex and dynamic data of consumers’ behaviour and markets (Chintagunta et al., 2016a): 

while surveys and experiments may enable rapid and diverse data collection as well, big data mostly 

exhibits observational characteristics (Ma & Sun, 2020; Wedel & Kannan, 2016). 
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Due to these developments, companies aim for processing the collected data in order to create valu-

able insights (Provost & Fawcett, 2013). In this context, research has already proven the success of 

data-driven decision making by showing that applying data science to big data – so-called big data 

analytics – increases the performance of organisations (Ferraris et al., 2019; Müller et al., 2018; 

Wamba et al., 2017). Consequently, the conduct of data analysis instead of just storing the data and 

its contained information is of special relevance for building competitive advantages (Chen et al., 

2012; Davenport, 2006). Therefore, the field of data science is closely related to big data, both mas-

sively increasing in popularity within both research and business practice (Waller & Fawcett, 2013). 

Generally, data science represents the application of quantitative and qualitative methods to extract 

valuable information for solving relevant problems and predicting outcomes (Waller & Fawcett, 

2013). In doing so, the term data analytics is used interchangeably (Agarwal & Dhar, 2014). Data 

science utilizes numerous data mining techniques which perform the extraction of knowledge from 

data, aiming for the overarching goal of improving the quality of businesses’ decision making 

(Provost & Fawcett, 2013). For performing high-quality data science, very broad domain knowledge, 

e. g., for solving marketing problems, is mandatory as well (Ayankoya et al., 2014; Manieri et al., 

2015; Waller & Fawcett, 2013). 

Since big data is massively changing marketing processes, many of the methods developed by mar-

keting academics in the past support today’s decision making in customer relationship management, 

marketing mix, and personalization leading to an increased financial performance (Wedel & Kannan, 

2016). The application of data science methods on big data has become crucial for decision making 

in marketing (Amado et al., 2018), realising that big data is only able to offer valuable insights if it is 

efficiently analysed. Thus, bringing together data science and marketing research has evolved an es-

sential interdisciplinary field within marketing analytics, using a broad set of methods for measuring, 

analysing, predicting, and managing marketing performance in order to maximise effectiveness and 

return on investment (Wedel & Kannan, 2016). 

The usage of knowledge extracted out of big data for marketing decision making also helps marketing 

managers to receive credibility within companies (Rogers & Sexton, 2012): marketers may take ad-

vantage of collected big data in various ways, e. g., for interaction with customers via chatbots (Luo 

et al., 2019), for product and service personalization (Anshari et al., 2019), and automatic implemen-

tation of real-time marketing actions like online advertising (Jabbar et al., 2020) in order to increase 

perceived customer value, satisfaction, and loyalty which leads to higher success of these marketing 
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actions (Wedel & Kannan, 2016). Furthermore, data science has been broadly applied for performing 

targeted marketing, online advertising, customer relationship management, and cross-selling recom-

mendations (Provost & Fawcett, 2013). To achieve this, big data offers many different types of data 

including clickstream, social media, video, image, text, and location data as sources of useful 

knowledge (Ma & Sun, 2020; Wedel & Kannan, 2016). In this context, direct marketing has particu-

larly gained benefits out of data science, i. e., in terms of collecting, analysing, and interpreting data 

(Palacios-Marqués et al., 2016; Provost & Fawcett, 2013; Tiago & Veríssimo, 2014). 

Consequently, marketing research deals with the benefits of analysing these kinds of data via data 

science approaches aiming to provide useful knowledge out of it, i. e., online reviews for identifying 

customers’ suggestions for improvements and, thus, increasing product and service quality (Qi et al., 

2016), social media data for evaluating brand equity and competitive positions (Godey et al., 2016), 

mobile retail data for better recommendations and personalized offerings (Portugal et al., 2018), GPS 

data for geo-targeting customers with contextual promotions (Banerjee et al., 2013), keyword search 

for improving the design of companies’ websites and advertising (Ghose & Yang, 2009), and click-

stream data for recognizing segments of customers (Schellong et al., 2017). 

Due to the opportunities provided by the big data revolution, marketing research constantly moves 

away from conventional approaches and focuses on dynamic and analytical decision making (Li et 

al., 2018). More specifically, the availability of big data has enormously increased interest in the 

empirical-then-theoretical approach which aims to develop marketing theory based on observed em-

pirical findings. In this context, modern marketers require advanced analytical skills for handling big 

data, i. e., data mining tools, cognitive computing, and machine learning approaches (Lukosius & 

Hyman, 2019). Consequently, future marketing research needs to extend the application of data sci-

ence and, in particular, machine learning approaches on various types of data for gaining new com-

petitive advantages by further improving marketing decision making in modern digitalized environ-

ments (Chintagunta et al., 2016a; Chintagunta et al., 2016b). 
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2.2 Machine Learning in Marketing 

Basically, machine learning represents a subgroup within the artificial intelligence paradigm 

(Goodfellow et al., 2017) which is described as programming a digital computer for acting compara-

ble to humans and animals who apply the process of learning (Samuel, 1959). Within machine learn-

ing, the concept of learning represents the automatic search for more suitable representations of input 

data with respect to a given task (Chollet & Allaire, 2018). I. e., such algorithms improve their per-

formance in solving a specific (marketing) problem by collecting relevant experience out of other 

examples and, therefore, are rather trained than programmed. 

Machine learning models may be distinguished between supervised, unsupervised, and reinforcement 

learning approaches (Jordan & Mitchell, 2015; Ma & Sun, 2020; Stinis, 2019). Within supervised 

learning, the algorithm is trained via labelled training data, i. e., the training examples contain both 

input values and the accompanying output value. The supervised model defines a classifier or predic-

tor function which denotes the output based on the given input by processing the given training data. 

During training, the model is optimised by processing a validation set after each iteration (Ma & Sun, 

2020). After the training section is finished, the model can classify unknown data based on the pattern 

information detected during the learning process. The most popular supervised machine learning ap-

proaches comprise decision trees (Breiman et al., 1984), support vector machines (Cortes & Vapnik, 

1995), naїve bayes (Duda et al., 1973), k-nearest neighbour (Cover & Hart, 1967), and artificial neural 

networks (Jain et al., 1996), which have been further developed into numerous high-performing var-

iants, e. g., tree-based ensemble learning methods (Opitz & Maclin, 1999; Rokach, 2010), convolu-

tional neural networks (LeCun et al., 1989), and long short term memory neural networks (Hochreiter 

S. & Schmidhuber, 1997). In the marketing context, important supervised learning problems comprise 

natural language processing tasks like, e. g., sentiment classification of online texts (Dhaoui et al., 

2017), customer churn prediction (Vafeiadis et al., 2015), and customer loyalty evaluation (Ansari & 

Riasi, 2016). 

For performing unsupervised learning, the training data is unlabelled and does not contain any output 

variables. The algorithm aims to detect useful features and patterns which have not been identified 

yet (Dimitrieska et al., 2018; Ma & Sun, 2020; Saura, 2020). Unsupervised machine learning models 

are, inter alia, clustering algorithms (Xu & Wunsch, 2005) and topic models like latent dirichlet allo-

cation (Blei et al., 2003), which are already well-established in marketing research (Ma & Sun, 2020). 
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Recent developments within unsupervised learning particularly deal with unsupervised artificial neu-

ral network architectures such as deep autoencoders (Vincent et al., 2010) and deep belief networks 

(Hinton et al., 2006). Typical unsupervised marketing issues constitute customer segmentation (Tsai 

et al., 2015) or discovering topics in online communities (Reisenbichler & Reutterer, 2019). 

Finally, reinforcement learning represents a class of algorithms where the model aims to optimize a 

learning function which is connected to its environment (Jordan & Mitchell, 2015; Kaelbling et al., 

1996). The model (or agent) is performing a reaction to a given input and, thereby, changes the current 

state of the environment. This change is announced to the agent as a feedback signal indicating 

whether the action impacts the state positively or negatively. The agent is then aiming to increase the 

long-term sum of these feedbacks by systematic trial and error. In this context, the main distinction 

to supervised learning is that the model is told the new current state, but not which action would have 

been the best choice for enhancing it (Kaelbling et al., 1996). Reinforcement learning problems are 

usually implemented for control-theoretic settings where the agent learns a control strategy for acting 

in an unknown dynamical environment (Jordan & Mitchell, 2015). Reinforcement learning has raised 

relevance due to the successful implementation within artificial neural networks which are able to 

process large amounts of input data and, subsequently, discover complex relationships between ac-

tions and environments (Bruyn et al., 2020). However, even though reinforcement learning enhanced 

relevance within overall business practice (Ma & Sun, 2020), it merely plays a minor role in market-

ing contexts due to the popularity of supervised learning approaches (Bruyn et al., 2020). 

Based on the existence and availability of big data within online marketing contexts, machine learning 

applications in marketing research particularly address digital marketing (Saura, 2020). More specif-

ically, machine learning approaches are particularly suitable within e-commerce marketing since it 

has been proven to be both easy and cheap to collect online customer behaviour data in such an 

automated environment (Kohavi & Provost, 2001). In this context, it is highly important to perform 

classification and prediction in real-time since the Internet has been shown to be a very fast-paced 

environment (Jabbar et al., 2020). Due to the automatised nature of machine learning, these algo-

rithms can perform such real-time reactions and, hence, are capable of influencing customer behav-

iour.  

Even though marketing research has already dealt with machine learning models in great detail, the 

rapid developments within the digital revolution and, in particular, both the infinity of countless types 

of customer data as well as the possibility of creating new algorithms or improving existing models 
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lead to a high necessity of constantly expanding this area of marketing research. Therefore, further 

research regarding innovative and successful machine learning approaches as well as new marketing 

applications is highly recommended for creating competitive advantages out of companies’ marketing 

activities (Ma & Sun, 2020; Saura, 2020). Overall, the utilization of machine learning in the market-

ing context is still at an early stage which will strongly enhance in the future (Dimitrieska et al., 2018; 

Ma & Sun, 2020). Therefore, further studies which successfully apply machine learning to new mar-

keting issues and, particularly, shed light on practical implementations of such models are highly 

important for enhancing modern marketing research and practice (Chintagunta et al., 2016a; 

Chintagunta et al., 2016b). In this context, the excellent performance of supervised learning ap-

proaches in complex marketing tasks particularly strikes which in turn implies focusing on innovative 

supervised models. 

2.3 The Data Scientist 

From a global perspective, a data scientist may be described as an expert who extracts knowledge 

from collected data as well as manages both the whole data lifecycle and relevant IT infrastructures 

(Manieri et al., 2015). However, research has proven that the occupational group of data scientists 

appears to be very heterogeneous in the context of required skills and tasks (Davenport, 2020; Ismail 

& Abidin, 2016; Mauro et al., 2018) and, therefore, has to be considered in more detail. In this context, 

research has already defined job profiles (Costa & Santos, 2017) and educational curricula (Richards 

& Marrone, 2014), or collected information from experts (Mikalef et al., 2018; Stanton & Stanton, 

2016) to identify a data scientist's required skills and occupational roles. 

Regarding the job-related skill variety as proposed by Hackman & Oldham (1976), data scientists 

require a wide field of both hard and soft skills, i. e., specific knowledge due to the use of numerous 

ICT as well as advanced skills in mathematics, statistics, machine learning, and communication skills 

(Costa & Santos, 2017; Doyle, 2019; Ismail & Abidin, 2016; Richards & Marrone, 2014). 

Besides this variety of skills, data scientists also exhibit heterogeneous work profiles which occur due 

to the various application fields, structures within the respective company, and various data science 

objectives: several studies have pointed out different occupational profiles associated with ‘data sci-

entist’ as the generic term, e. g., business analysts, data engineers, statisticians, and data analysts 

(Baškarada & Koronios, 2017; Ho et al., 2019; Mauro et al., 2018). These job titles occur due to the 

separate process stages of the data lifecycle the respective employees are then working at. 
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Considering this variety of skills, roles, and tasks within the occupational group of data scientists, 

both business practice and research stated that it seems to be unrealistic to find employees fulfilling 

all the required demands and, hence, created the term "Unicorn Data Scientist" for such experts 

(Baškarada & Koronios, 2017; Davenport, 2020; Davenport & Patil, 2012). Therefore, defining a data 

scientist as an overall expert who extracts knowledge from collected data as well as manages the 

whole data lifecycle and relevant IT infrastructures as proposed by Manieri et al. (2015) appears 

inappropriate.  

Furthermore, the tasks of the data lifecycle which aim to create knowledge out of collected data are 

fulfilled by several employees working in various affiliations due to the presence of huge amounts of 

data in many departments within a company (Janssen et al., 2017) and, moreover, the necessity of 

advanced domain knowledge for performing data science (Ayankoya et al., 2014; Manieri et al., 2015; 

Waller & Fawcett, 2013). These employees do not work as full-time data scientists but, at the same 

time, require data science skills for answering specific questions. However, such workers who fulfil 

analytical work tasks of data scientists are often not classified as one but keep other job titles which 

are closely related to their respective department. This wide spreading of employees who perform 

data science within companies leads to difficulties in detecting these employees within a company: 

due to the given heterogeneity of skills, roles, and tasks, they can neither be detected by job titles nor 

department affiliations. 

Overall, managers need to be able to detect data scientists within the company for significantly en-

hancing their performance. However, research currently lacks to provide a more practically based 

definition of data scientists as an occupational group because the focus is on both a universal but 

unrealistic definition as well as numerous job titles around different tasks within the data lifecycle. 

Furthermore, since various employees within different departments of a given company fulfil data 

science tasks by holding other occupational names, a title-based definition appears to be inappropriate 

for detecting them. Consequently, since employees who frequently fulfil data scientists’ tasks appear 

to be a crucial source for creating competitive advantages and, at the same time, detecting them is an 

indispensable prerequisite for improving their job performance, a definition with a strong reference 

to reality appears to be necessary. 
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2.4 Technostress 

As already pointed out, the digital transformation and the big data revolution offer enormous oppor-

tunities and chances for improving the performance of businesses. However, the rapid velocity of 

these developments enormously demands employees to adopt new capabilities for efficiently han-

dling work tasks as well (Okkonen et al., 2019; Schwemmle & Wedde, 2012; Timonen & Vuori, 

2018), resulting in a massive psychological dark side of digitalization: using ICT at work causes 

technostress as a specific form of stress induced by the frequent use of digital technologies at work 

which affects both productivity and well-being of employees (Ayyagari et al., 2011; Ragu-Nathan et 

al., 2008; Tarafdar et al., 2007; Tarafdar et al., 2010). Conceptually introduced as employees’ inabil-

ity to handle the use of digital technologies in a healthy way by Brod (1984), technostress became of 

particular importance due to the rapid implementation of numerous ICT (Hartl, 2019; Osmundsen et 

al., 2018), leading to an ambivalence of digital transformation at work (Apt et al., 2016). 

Overall, technostress is induced if employees perceive an inability to successfully establish numerous 

requirements and trends regarding digital technologies. Such feelings may occur with regard to, e. g., 

skills which are no longer required, an information overload, frequent interruptions during tasks at 

work, or the overlap of work and leisure time (Tarafdar et al., 2010). In this context, technostress is 

triggered by several specific stimuli called technostress creators which have been defined by Tarafdar 

et al. (2007) as follows: 

• Techno-uncertainty – employees’ confusion caused by new technological developments at 

work. 

• Techno-insecurity – the fear of being replaced by either other employees with higher ICT 

affinity or by a digital technology itself. 

• Techno-overload – requirements to work faster, longer, and more which are induced by ICT. 

• Techno-invasion – blurring boundaries between work and leisure matters or time periods. 

• Techno-complexity – employees` feelings of missing skills regarding ICT use at work. 

Besides this well-established distinction, technical problems like system failures during ICT use rep-

resented by techno-unreliability (Riedl et al., 2012) and workflow disruptions due to ICT usage de-

scribed by techno-interruptions (Galluch et al., 2015) have been classified as additional stressors due 

to the use of ICT as well. 
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If an employee’s perceptions of these technostress creators go beyond given personal and job-related 

resources, the upcoming technostress leads to technostress-related strains which represent individual's 

psychological, physical, or behavioural responses to technostress creators (Atanasoff & Venable, 

2017). Examples for such strains are, inter alia, mental exhaustion (Ayyagari et al., 2011; Srivastava 

et al., 2015) and psychological detachment (Barber et al., 2019; Santuzzi & Barber, 2018). Tech-

nostress is also related to negative job-related consequences for employees, e. g., lower productivity 

at work (Tarafdar et al., 2007; Tarafdar et al., 2015), less job satisfaction and loyalty to the employer 

(Tarafdar et al., 2011) as well as serious health issues like higher burnout rates (Srivastava et al., 

2015). 

For reducing technostress and its negative consequences, it is necessary to have access to resources 

which may inhibit the negative effects of occurring technostress creators (Pirkkalainen et al., 2019; 

Tarafdar et al., 2011; Tarafdar et al., 2019). In this context, several organisational technostress inhib-

itors have been discovered, i. e., providing technical support, literacy facilitation, and involvement 

facilitation (Ragu-Nathan et al., 2008). Furthermore, other factors have been proven as successfully 

stemming technostress, e. g., timing and method control (Galluch et al., 2015) at environmental level 

and technology self-efficacy (Tarafdar et al., 2015) as well as personality traits (Srivastava et al., 

2015; Sumiyana & Sriwidharmanely, 2020) at the employee’s level. In contrast, the adaption of dif-

ferent ways of coping which are of particular importance in overcoming stress due to individuals’ 

abilities to implement such strategies on their own are insufficiently investigated in the technostress 

context (Tarafdar et al., 2019). 

Coping strategies are generally defined as cognitive and behavioural attempts which aim to manage 

specific external or internal demands which are perceived as challenging an individual’s resources 

(Lazarus & Folkman, 1984). Coping strategies are often distinguished in different types, e. g., prob-

lem-focused and emotion-focused coping (Folkman et al., 1986), functional and dysfunctional coping 

(Erschens et al., 2018), proactive and reactive coping (Pirkkalainen et al., 2019), or, in more detail, 

up to 14 different ways to overcome stress (Carver, 1997). Nevertheless, there is not a clear consensus 

considering the role of coping: while information systems research has followed the transactional 

theory of stress (Lazarus & Folkman, 1984) for a long time and, therefore, considered coping as a 

mediator (see, e. g., Gaudioso et al. (2016); Hauk et al. (2019); Zhao et al. (2020)), a few recent 

information systems studies (Nisafani et al., 2020; Pirkkalainen et al., 2019) as well as studies from 

industrial and organisational psychology (Lewin & Sager, 2009; Searle & Lee, 2015; Yip et al., 2008) 

assume coping as moderating the relationship between job-related stressors and strains. At the same 
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time, coping strategies in technostress contexts are highly under-studied and need further interdisci-

plinary investigation (Pirkkalainen et al., 2019; Tarafdar et al., 2019). 

Besides these general issues regarding technostress, related research also lacks to create a deeper 

connection between technostress and specific job groups: prior studies primarily focus on general 

relationships between technostress constructs (Ayyagari et al., 2011; Fischer & Riedl, 2020; Ragu-

Nathan et al., 2008; Tarafdar et al., 2007; Tarafdar et al., 2010; Tarafdar et al., 2011; Tarafdar et al., 

2015) but, at the same time, do not consider specific job titles in order to get a more individual un-

derstanding of employees' technostress and further to examine whether there is a need to define dif-

ferent strategies to overcome technostress even within a job class. While various psychological stud-

ies investigate stress within occupational groups in order to gain a deeper understanding of their re-

spective specificities (see, e. g., Grace & van Heuvelen (2019); Rees & Cooper (1992); Travers & 

Cooper (1993)) and, further, examine relationships between several workplace attributes and work 

stress (i. e., customer contact (Hartline & Ferrell, 1996), leadership function (Ganster, 2005; 

Hambrick et al., 2005), and educational background (Golubic et al., 2009) as job-related characteris-

tics and company size (Dekker & Barling, 1995; van Dijkhuizen & Reiche, 1980) as well as different 

dimensions of organisational culture within enterprises (Lansisalmi et al., 2000; Thompson et al., 

1996) as company-related characteristics), current technostress research fails to offer job-specific 

findings. However, such investigations are of prominent relevance regarding job categories with a 

high level of digitalization at work since technostress and ICT use are closely related. In this context, 

data scientists are both particularly suitable and important for examining technostress due to their 

highly digitalized workplaces and their crucial role in gaining competitive advantages for companies.  

Overall, both employees and employers are highly recommended to pay high attention to technostress 

issues and, moreover, to aim to reduce technostress. Consequently, further interdisciplinary as well 

as context-related technostress research is highly required. 
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3 Research Agenda 

Considering the circumstances explained above, there is a great importance for marketing business 

practice to improve the performance of data scientists in marketing contexts leading to a high recom-

mendation of further research within this topic. On the one hand, the countless opportunities for more 

purposeful and personalized marketing activities provided by machine learning and, specifically, su-

pervised learning approaches are of enormous importance for marketers who aim to extract 

knowledge out of various customer data and, subsequently, use this information in order to increase 

the performance of marketing activities. On the other hand, the danger of increased technostress 

caused by the rapid developments of digitalization that employees have to deal with has to be closely 

observed as well. Considering the particular importance of people who work as data scientists due to 

their crucial role in data-driven decision making, employers are highly recommended to avoid high 

levels of technostress within this highly digitalized occupational group. However, research still lacks 

both job-specific and coping-related investigations regarding negative consequences of ICT use. For 

effectively meeting these issues and, consequently, solving the research questions provided in this 

thesis’ motivation, five research papers are included in the following chapters Ⅱ to Ⅵ. In doing so, 

research papers #1 - #3 meet RQ1 regarding machine learning applications in marketing and, further, 

research papers #4 - #5 tackle RQ2 by considering technostress issues as important aspects for im-

proving the performance of data scientists in contemporary marketing contexts. 

Research paper #1 meets RQ1 by investigating the potentials of deep neural networks (long short 

term memory networks, specifically) in the context of sentiment analysis tasks. By precisely perform-

ing the sentiment analysis task of the widely utilized IMDB large movie dataset (Maas et al., 2011), 

the paper provides an examination of 8 hyperparameters within the model and how these hyperpa-

rameters influence network performance. The hyperparameters were separately varied within their 

characteristic values for investigating the influence of the respective hyperparameter on the overall 

network performance. While 5 hyperparameters have been shown to increase classification accuracy, 

3 other variants surprisingly lowered the network performance. Furthermore, the improvements could 

not be cumulated within the network which leads to the assumption of various interaction effects 

between the hyperparameters. Hence, research paper #1 contributes to the deeper understanding of 

the functioning within machine learning applications for automatically analysing online reviews.  

Since the expansion of machine learning for improving data-driven decision making in marketing is 

highly recommended, research paper #2 and research paper #3 both address RQ1 by focusing on new 
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applications of machine learning within marketing tasks. At first, research paper #2 successfully im-

plements various practically relevant machine learning models for automatically predicting call cen-

tre arrivals and compares these approaches with conventional time series models regarding prediction 

accuracy. For doing this, the models were trained with two call centre datasets provided by a German 

online retailer containing half-hourly time series samples of 174.5 weeks, i. e., 31,410 observations 

each. For comparing these models, four different lead times were implemented as well as cross-vali-

dation with an expanding rolling window which constitutes an iterative process where the training 

data is rolled forward during model training. Results show that machine learning algorithms may 

outperform traditional models with a random forest approach delivering the strongest performance. 

Furthermore, this paper enhances the practical implementations of machine learning by providing a 

methodological walk-through encoding of the comparison process.  

In contrast, research paper #3 focuses on the important e-commerce problem of online shopping cart 

abandonment by utilizing different machine learning algorithms for automatically predicting such 

abandoners based on their clickstream behaviour. With a sample of 821,048 aggregated clickstreams, 

numerous machine learning approaches were trained and compared with standard logistic regression 

as a conventional benchmark model regarding predictive performance and practicability. In doing so, 

the paper provides a deep methodological contribution on successfully applying machine learning to 

online shopping cart abandonment, proving that machine learning approaches are able to deliver 

stronger prediction accuracy as classic models. Within the implemented approaches, gradient boost-

ing with regularization yielded the best results for unknown test data but, at the same time, a decision 

tree approach as well as boosted logistic regression provided comparable accuracy with clearly less 

model complexity. Hence, these methods have proven to be interesting alternatives due to their suc-

cessful trade-off between performance and practicability. 

For considerably contributing to RQ2, research papers #4 and #5 both focus on technostress issues as 

the striking downside of digitalization at work. Research paper #4 meets the appeal for further inter-

disciplinary technostress research regarding the role of different coping strategies for overcoming 

technostress at work (Pirkkalainen et al., 2019; Tarafdar et al., 2019): based on a sample of 3,362 

German knowledge workers collected by an external panel during a larger technostress research pro-

ject, a moderated mediation model via covariance-based structural equation modelling was developed 

for investigating the effectiveness of two reactive coping strategies (active-functional and dysfunc-

tional) as moderating the relationship between stressors due to the use of ICT and employees’ ex-

haustion, with exhaustion mediating the influence of technology-related stressors on productivity. 
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Thereby, this paper brings together psychological and information systems research by applying the 

job-demands resources model (Demerouti et al., 2001) to technostress research, conceptualizing cop-

ing as a personal resource. The results provided valuable findings, showing that a higher level of 

technostress-related job demands is associated with higher levels of both exhaustion and productivity, 

proving that employees should be demanded by ICT use at a medium level. Furthermore, while ac-

tive-functional coping is associated with less exhaustion and, in contrast, dysfunctional coping is 

related to a higher level of it, both coping strategies have been found to buffer the effects of tech-

nostress on exhaustion contradicting prior results regarding the effects of dysfunctional coping. This 

means that, besides the negative consequences in long-term, dysfunctional coping like drinking alco-

hol or refusing to accept existing problems may help overcoming technostress under certain condi-

tions which, in turn, has to be carefully considered by both employers and employees. 

At last, research paper #5 meets the lack of research regarding job-specific knowledge of technostress 

by examining technostress within the heterogeneous and highly digitalized occupational group of data 

scientists. At first, the paper tackles the problems of classifying data scientists due to their heteroge-

neity of roles and tasks by delivering a definition approach of data scientists based on their use of 

ICT. Subsequently, four different groups of data scientists’ workplaces were detected by performing 

latent class analysis via job- and company-related workplace attributes which are associated with 

general work stress on a sample of 486 German data scientists. These groups were then compared via 

global and pairwise van der Waerden normal score tests for gaining insights into how different types 

of data scientists perceive the challenges of technostress. Results show that data scientists working at 

different workplaces exhibit significant distinctions of technostress creators, strains due to the use of 

ICT, and job performance. In this context, the technostress-related findings partially contradict results 

of work stress studies. Thus, the paper contributes to technostress research by examining findings of 

work stress research in technostress context: it provides evidence that data scientists as an important 

occupational group which has been shown to be crucial for creating competitive advantages must not 

be unified in the context of technostress but, instead, differ in their perception of technostress with 

respect to their workplace environment. Managers are therefore recommended to implement more 

specific strategies to provide support for data scientists in overcoming technostress at work. 

An overview of the described research papers can be seen in Table 1. Subsequently, the described 

research papers are provided in the following chapters Ⅱ to Ⅵ within this thesis.
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Paper Title Authors Content Methodology Data 

#1 

Working in Detail: 

How LSTM 

Hyperparameter 

Selection Influences 

Sentiment Analysis Results 

Nicholas Daniel Derra 

Daniel Baier 

• performs the IMDB large movie dataset sentiment analysis task 

via deep long short term memory (LSTM) networks 

• analyses the effects of 8 hyperparameters via separate variation 

• investigates the potential of cumulating positive effects of 

hyperparameter variants on overall network performance 

Deep LSTM 

networks 

50,000 online 

movie reviews 

#2 

Call Me Maybe: 

Methods and Practical 

Implementation of Artificial 

Intelligence in Call Center 

Arrivals’ Forecasting 

Tobias Albrecht 

Theresa Maria Rausch 

Nicholas Daniel Derra 

• successfully implements machine learning models to call 

centre arrivals' forecasting 

• compares machine learning approaches and conventional time 

series models via cross-validation with an expanding rolling 

window 

• enhances practical implementation of machine learning by 

providing a methodological walk-through example of the 

developed comparison process 

Various machine 

learning 

approaches; 

conventional 

time series models 

2 datasets of 

call centre arri-

vals (31,410 

observations 

each) 

#3 

Predicting Online Shopping 

Cart Abandonment with 

Machine Learning 

Approaches  

Theresa Maria Rausch 

Nicholas Daniel Derra 

Lukas Wolf 

• successfully implements machine learning models to online 

shopping cart abandonment prediction 

• compares machine learning approaches with standard logistic 

regression as a conventional benchmark model regarding 

prediction performance and practicability 

Various machine 

learning 

approaches; 

standard logistic 

regression 

821,048 

aggregated 

clickstream 

observations 

#4 

Mitigating the Negative 

Consequences of ICT Use: 

The Moderating Effect of 

Active-Functional and 

Dysfunctional Coping  

Julia Becker 

Nicholas Daniel Derra 

Christian Regal 

Torsten M. Kühlmann 

• brings together psychology and information systems research 

• conceptualizes coping as a personal resource within the JD-R 

model, moderating the relationship of stressors due to ICT use 

and exhaustion 

• investigates the role of active-functional and dysfunctional 

coping as reactive strategies for overcoming technostress, 

focusing on both organisational and individual outcomes 

Covariance-based 

structural equation 

modelling 

3,362 German 

knowledge 

workers 

#5 

Examining Technostress at 

Different Types of Data 

Scientists’ Workplaces 

Nicholas Daniel Derra 

Christian Regal 

Simon Henrik Rath 

Torsten M. Kühlmann 

• defines employees who work as data scientists via the 

specific usage of digital technologies 

• classifies different types of data scientists' workplaces 

based on 8 general workplace attributes which are related to 

overall work stress 

• examines technostress within the occupational group of data 

scientists by comparing the detected subclasses in terms of tech-

nostress creators, strains due to the use of ICT, and overall job 

performance 

Latent class 

analysis; 

van der Waerden 

normal score test 

486 German 

data scientists 

Table 1. Overview of Included Research Papers within this Thesis



19 
 

 

References 

Agarwal, R., & Dhar, V. (2014). Editorial —Big Data, Data Science, and Analytics: The Opportunity 

and Challenge for IS Research. Information Systems Research, 25(3), 443–448. 

https://doi.org/10.1287/isre.2014.0546 

Amado, A., Cortez, P., Rita, P., & Moro, S. (2018). Research Trends on Big Data in Marketing: A 

Text Mining and Topic Modeling Based Literature Analysis. European Research on Management 

and Business Economics, 24(1), 1–7. https://doi.org/10.1016/j.iedeen.2017.06.002 

Ansari, A., & Riasi, A. (2016). Modelling and Evaluating Customer Loyalty Using Neural Networks: 

Evidence from Startup Insurance Companies. Future Business Journal, 2(1), 15–30. 

https://doi.org/10.1016/j.fbj.2016.04.001 

Anshari, M., Almunawar, M. N., Lim, S. A., & Al-Mudimigh, A. (2019). Customer Relationship 

Management and Big Data Enabled: Personalization & Customization of Services. Applied Com-

puting and Informatics, 15(2), 94–101. https://doi.org/10.1016/j.aci.2018.05.004 

Apt, W., Bovenschulte, M., Hartmann, E. A., & Wischmann, S. (2016). Foresight-Studie „Digitale 

Arbeitswelt“ [Foresight Study: Digital Working World]. https://www.bmas.de/SharedDocs/ 

Downloads/DE/PDF-Publikationen/Forschungsberichte/f463-digitale-arbeitswelt.pdf 

Atanasoff, L., & Venable, M. A. (2017). Technostress: Implications for Adults in the Workforce. The 

Career Development Quarterly, 65(4), 326–338. https://doi.org/10.1002/cdq.12111 

Ayankoya, K., Calitz, A., & Greyling, J. (2014). Intrinsic Relations between Data Science, Big Data, 

Business Analytics and Datafication. In Proceedings of the Southern African Institute for Com-

puter Scientist and Information Technologists Annual Conference 2014 on SAICSIT 2014 Empow-

ered by Technology (pp. 192-198). Association for Computing Machinery, New York City, New 

York, USA. https://doi.org/10.1145/2664591.2664619 

Ayyagari, R., Grover, V., & Purvis, R. (2011). Technostress: Technological Antecedents and Impli-

cations. MIS Quarterly, 35(4), 831-858. https://doi.org/10.2307/41409963 

Banerjee, S., Viswanathan, V., Raman, K., & Ying, H. (2013). Assessing Prime-Time for Geotarget-

ing with Mobile Big Data. Journal of Marketing Analytics, 1(3), 174–183. 

https://doi.org/10.1057/jma.2013.16 



20 
 

 

Barber, L. K., Conlin, A. L., & Santuzzi, A. M. (2019). Workplace Telepressure and Work-Life Bal-

ance Outcomes: The Role of Work Recovery Experiences. Stress and Health: Journal of the In-

ternational Society for the Investigation of Stress, 35(3), 350–362. 

https://doi.org/10.1002/smi.2864 

Baškarada, S., & Koronios, A. (2017). Unicorn Data Scientist: The Rarest of Breeds. Program, 51(1), 

65–74. https://doi.org/10.1108/PROG-07-2016-0053 

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. Journal of Machine 

Learning Research, 3(Jan), 993–1022. 

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression Trees. 

Chapman & Hall. 

Brod, C. (1984). Technostress: The Human Cost of the Computer Revolution. Addison-Wesley.  

Bruyn, A. de, Viswanathan, V., Beh, Y. S., Brock, J. K.-U., & Wangenheim, F. von (2020). Artificial 

Intelligence and Marketing: Pitfalls and Opportunities. Journal of Interactive Marketing, 51, 91–

105. https://doi.org/10.1016/j.intmar.2020.04.007 

Brynjolfsson, E., & Mcafee, A. (2017). The Business of Artificial Intelligence. Harvard Business 

Review, 1–20. https://hbr.org/cover-story/2017/07/the-business-of-artificial-intelligence 

Carver, C. S. (1997). You Want to Measure Coping but Your Protocol‘s too Long: Consider the Brief 

COPE. International Journal of Behavioral Medicine, 4(1), 92–100. 

https://doi.org/10.1207/s15327558ijbm0401_6 

Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data 

to Big Impact. MIS Quarterly, 36(4), 1165–1188. https://doi.org/10.2307/41703503 

Chintagunta, P., Hanssens, D. M., & Hauser, J. R. (2016a). Marketing and Data Science: Together 

the Future is Ours. Marketing Intelligence Review, 8(2), 18–23. https://doi.org/10.1515/gfkmir-

2016-0011 

Chintagunta, P., Hanssens, D. M., & Hauser, J. R. (2016b). Editorial - Marketing Science and Big 

Data. Marketing Science, 35(3), 341–342. https://doi.org/10.1287/mksc.2016.0996 

Chollet, F., & Allaire, J. J. (2018). Deep Learning with R. Manning.  

Cortes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), 273–297. 

https://doi.org/10.1007/BF00994018 



21 
 

 

Costa, C., & Santos, M. Y. (2017). The Data Scientist Profile and its Representativeness in the Euro-

pean E-Competence Framework and the Skills Framework for the Information Age. International 

Journal of Information Management, 37(6), 726–734. https://doi.org/10.1016/j.ijinfo-

mgt.2017.07.010 

Cover, T., & Hart, P. (1967). Nearest Neighbor Pattern Classification. IEEE Transactions on Infor-

mation Theory, 13(1), 21–27. https://doi.org/10.1109/TIT.1967.1053964 

Cui, G., Wong, M. L., & Lui, H.-K. (2006). Machine Learning for Direct Marketing Response Mod-

els: Bayesian Networks with Evolutionary Programming. Management Science, 52(4), 597–612. 

https://doi.org/10.1287/mnsc.1060.0514 

Davenport, T. H. (2006). Competing on Analytics. Harvard Business Review, 84(1), 98–107. 

Davenport, T. H., & Patil, D. J. (2012). Data Scientist. Harvard Business Review, 90(5), 70–76. 

Davenport, T. (2020). Beyond Unicorns: Educating, Classifying, and Certifying Business Data Sci-

entists. Harvard Data Science Review. Advance online publication. 

https://doi.org/10.1162/99608f92.55546b4a 

Dekker, I., & Barling, J. (1995). Workforce Size and Work-Related Role Stress. Work & Stress, 9(1), 

45–54. https://doi.org/10.1080/02678379508251584 

Demerouti, E., Bakker, A. B., Nachreiner, F., & Schaufeli, W. B. (2001). The Job Demands-Re-

sources Model of Burnout. The Journal of Applied Psychology, 86(3), 499–512. 

https://doi.org/10.1037//0021-9010.86.3.499 

Dhaoui, C., Webster, C. M., & Tan, L. P. (2017). Social Media Sentiment Analysis: Lexicon Versus 

Machine Learning. Journal of Consumer Marketing, 34(6), 480–488. 

https://doi.org/10.1108/JCM-03-2017-2141 

Dimitrieska, S., Stankovska, A., & Efremova, T. (2018). Artificial Intelligence and Marketing. En-

trepreneurship, 6(2), 298–304. 

Doyle, A. (2019). Important Job Skills for Data Scientists. https://www.thebalancecareers.com/list-

of-data-scientist-skills-2062381 

Duda, R. O., Hart, P. E., & Stork, D. G. (1973). Pattern Classification and Scene Analysis. Wiley.  

Erevelles, S., Fukawa, N., & Swayne, L. (2016). Big Data Consumer Analytics and the Transfor-

mation of Marketing. Journal of Business Research, 69(2), 897–904. 

https://doi.org/10.1016/j.jbusres.2015.07.001 



22 
 

 

Erschens, R., Loda, T., Herrmann-Werner, A., Keifenheim, K. E., Stuber, F., Nikendei, C., Zipfel, 

S., & Junne, F. (2018). Behaviour-Based Functional and Dysfunctional Strategies of Medical Stu-

dents to Cope with Burnout, Medical Education Online, 23(1), 1-11. 

https://doi.org/10.1080/10872981.2018.1535738 

Ferraris, A., Mazzoleni, A., Devalle, A., & Couturier, J. (2019). Big Data Analytics Capabilities and 

Knowledge Management: Impact on Firm Performance. Management Decision, 57(8), 1923–

1936. https://doi.org/10.1108/MD-07-2018-0825 

Fischer, T., & Riedl, R. (2020). On the Stress Potential of an Organisational Climate of Innovation: 

A Survey Study in Germany. Behaviour & Information Technology, 67(1), 1–22. 

https://doi.org/10.1080/0144929X.2020.1836258 

Folkman, S., Lazarus, R. S., Dunkel-Schetter, C., DeLongis, A., & Gruen, R. J. (1986). Dynamics of 

a Stressful Encounter: Cognitive Appraisal, Coping, and Encounter Outcomes. Journal of Person-

ality and Social Psychology, 50(5), 992–1003. https://doi.org/10.1037/0022-3514.50.5.992 

Galluch, P., Grover, V., & Thatcher, J. (2015). Interrupting the Workplace: Examining Stressors in 

an Information Technology Context. Journal of the Association for Information Systems, 16(1), 

1–47. https://doi.org/10.17705/1jais.00387 

Ganster, D. C. (2005). Response: Executive Job Demands: Suggestions from a Stress and Decision-

Making Perspective. Academy of Management Review, 30(3), 492–502. 

https://doi.org/10.5465/amr.2005.17293366 

Gaudioso, F., Turel, O., & Galimberti, C. (2016). Explaining Work Exhaustion from a Coping Theory 

Perspective: Roles of Techno-Stressors and Technology-Specific Coping Strategies. Studies in 

Health Technology and Informatics, 219, 14–20. https://doi.org/10.3233/978-1-61499-595-1-14 

Ghose, A., & Yang, S. (2009). An Empirical Analysis of Search Engine Advertising: Sponsored 

Search in Electronic Markets. Management Science, 55(10), 1605–1622. 

https://doi.org/10.1287/mnsc.1090.1054 

Godey, B., Manthiou, A., Pederzoli, D., Rokka, J., Aiello, G., Donvito, R., & Singh, R. (2016). Social 

Media Marketing Efforts of Luxury Brands: Influence on Brand Equity and Consumer Behavior. 

Journal of Business Research, 69(12), 5833-5841. https://doi.org/10.1016/j.jbusres.2016.04.181 

Golubic, R., Milosevic, M., Knezevic, B., & Mustajbegovic, J. (2009). Work-Related Stress, Educa-

tion and Work Ability Among Hospital Nurses. Journal of Advanced Nursing, 65(10), 2056–2066. 

https://doi.org/10.1111/j.1365-2648.2009.05057.x 



23 
 

 

Goodfellow, I., Bengio, Y., & Courville, A. (2017). Deep Learning. MIT. 

Grace, M. K., & van Heuvelen, J. S. (2019). Occupational Variation in Burnout Among Medical 

Staff: Evidence for the Stress of Higher Status. Social Science & Medicine, 232, 199–208. 

https://doi.org/10.1016/j.socscimed.2019.05.007 

Hackman, J.R., & Oldham, G. R. (1976). Motivation Through the Design of Work: Test of a Theory. 

Organizational Behavior and Human Performance, 16(2), 250–279. https://doi.org/10.1016/0030-

5073(76)90016-7 

Hagen, L., Uetake, K., Yang, N., Bollinger, B., Chaney, A. J. B., Dzyabura, D., Etkin, J., Goldfarb, 

A., Liu, L., Sudhir, K., Wang, Y., Wright, J. R., & Zhu, Y. (2020). How can Machine Learning 

Aid Behavioral Marketing Research? Marketing Letters, 31(4), 361–370. 

https://doi.org/10.1007/s11002-020-09535-7 

Hambrick, D. C., Finkelstein, S., & Mooney, A. C. (2005). Executive Job Demands: New Insights 

for Explaining Strategic Decisions and Leader Behaviors. Academy of Management Review, 30(3), 

472–491. https://doi.org/10.5465/amr.2005.17293355 

Hartl, E. (2019). A Characterization of Culture Change in the Context of Digital Transformation. In 

Proceedings of the 25th Americas Conference on Information Systems AMCIS (pp. 1-10). Sympo-

sium conducted at the meeting of the Association for Information Systems, Cancun, Mexico. 

Hartline, M. D., & Ferrell, O. C. (1996). The Management of Customer-Contact Service Employees: 

An Empirical Investigation. Journal of Marketing, 60(4), 52–70. 

https://doi.org/10.1177/002224299606000406 

Hauk, N., Göritz, A. S., & Krumm, S. (2019). The Mediating Role of Coping Behavior on the Age-

Technostress Relationship: A Longitudinal Multilevel Mediation Model. PloS One, 14(3), 1-22. 

https://doi.org/10.1371/journal.pone.0213349 

Hazen, B. T., Boone, C. A., Ezell, J. D., & Jones-Farmer, L. A. (2014). Data Quality for Data Science, 

Predictive Analytics, and Big Data in Supply Chain Management: An Introduction to the Problem 

and Suggestions for Research and Applications. International Journal of Production Economics, 

154, 72–80. https://doi.org/10.1016/j.ijpe.2014.04.018 

Hinton, G., Osindro, S., & Teh, Y.-W. (2006). A Fast Learning Algorithm for Deep Belief Nets. 

Neural Computation, 18(7), 1527–1554. 

Ho, A., Nguyen, A., Pafford, J. L., & Slater, R. (2019). A Data Science Approach to Defining a Data 

Scientist. SMU Data Science Review, 2(3), Article 4. 



24 
 

 

Hochreiter S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 

1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735. 

Huang, M.-H., & Rust, R. T. (2018). Artificial Intelligence in Service. Journal of Service Research, 

21(2), 155–172. https://doi.org/10.1177/1094670517752459 

IBM (2012). What is Big Data? http://www-01.ibm.com/software/data/bigdata/ 

Ismail, N. A., & Abidin, A. Z. (2016). Data Scientist Skills. Journal of Mobile Computing & Appli-

cation, 3(4), 52–61. https://doi.org/10.9790/0050-03045261 

Jabbar, A., Akhtar, P., & Dani, S. (2020). Real-Time Big Data Processing for Instantaneous Market-

ing Decisions: A Problematization Approach. Industrial Marketing Management, 90, 558–569. 

https://doi.org/10.1016/j.indmarman.2019.09.001 

Jain, A. K., Mao, J., & Mohiuddin, K. M. (1996). Artificial Neural Networks: A Tutorial. Computer, 

29(3), 31–44. https://doi.org/10.1109/2.485891 

Janssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors Influencing Big Data Decision-Mak-

ing Quality. Journal of Business Research, 70(1), 338–345. 

Jordan, M. I., & Mitchell, T. M. (2015). Machine Learning: Trends, Perspectives, and Prospects. 

Science, 349(6245), 253–255. https://doi.org/10.1126/science.aac4520 

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning: A Survey. Journal 

of Artificial Intelligence Research, 4, 237–285. 

Kohavi, R., & Provost, F. (2001). Applications of Data Mining to Electronic Commerce. In F. Provost 

& R. Kohavi (Eds.), Provost, Kohavi (Hg.) 2001 – Applications of Data Mining to Electronic 

Commerce (pp. 5–10). Springer. 

Lansisalmi, H., Peiro, J. M., & Kivimaki, M. (2000). Collective Stress and Coping in the Context of 

Organizational Culture. European Journal of Work and Organizational Psychology, 9(4), 527–

559. https://doi.org/10.1080/13594320050203120 

Lazarus, R. S., & Folkman, S. (1984). Stress, Appraisal, and Coping. Springer.  

LeCun, Y., Boser, B., Denker, J., Henderson, D., Howard, R., Hubbard, W., & Jackel, L. (1989). 

Handwritten Digit Recognition with a Back-Propagation Network. Advances in Neural Infor-

mation Processing Systems, 2, 396–404. 



25 
 

 

Lewin, J. E., & Sager, J. K. (2009). An Investigation of the Influence of Coping Resources in Sales-

Persons‘ Emotional Exhaustion. Industrial Marketing Management, 38(7), 798–805. 

https://doi.org/10.1016/j.indmarman.2008.02.013 

Li, J., Ni, X., Yuan, Y., & Wang, F. Y. (2018). A Hierarchical Framework for Ad Inventory Alloca-

tion in Programmatic Advertising Markets. Electronic Commerce Research and Applications, 

31(May), 40–51. https://doi.org/10.1016/j.elerap.2018.09.001. 

Lukosius, V., & Hyman, M. R. (2019). Marketing Theory and Big Data. The Journal of Developing 

Areas, 53(4), 1-9. https://doi.org/10.1353/jda.2018.0082. 

Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. Humans: The Impact of Arti-

ficial Intelligence Chatbot Disclosure on Customer Purchases. Marketing Science, 38(6), 937–947. 

https://doi.org/10.1287/mksc.2019.1192 

Lycett, M. (2013). ‘Datafication’: Making Sense of (Big) Data in a Complex World. European Jour-

nal of Information Systems, 22(4), 381–386. https://doi.org/10.1057/ejis.2013.10 

Ma, L., & Sun, B. (2020). Machine Learning and AI in Marketing – Connecting Computing Power 

to Human Insights. International Journal of Research in Marketing, 37(3), 481–504. 

https://doi.org/10.1016/j.ijresmar.2020.04.005 

Maass, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning Word Vectors 

for Sentiment Analysis. In Proceedings of the 49th Annual Meeting of the Association for Com-

putational Linguistics: Human Language Technologies (pp. 142-150). Association for Computa-

tional Linguistics, Stroudsburg, Pennsylvania, USA. 

Manieri, A., Brewer, S., Riestra, R., Demchenko, Y., Hemmje, M., Wiktorski, T., Ferrari, T., & Frey, 

J. (2015). Data Science Professional Uncovered: How the EDISON Project will Contribute to a 

Widely Accepted Profile for Data Scientists. In Proceedings of the 7th IEEE International Confer-

ence on Cloud Computing Technology and Science (CloudCom’15) (pp. 588–593). IEEE, Wash-

ington, DC, USA. https://doi.org/10.1109/CloudCom.2015.57 

Mauro, A. de, Greco, M., Grimaldi, M., & Ritala, P. (2018). Human Resources for Big Data Profes-

sions: A Systematic Classification of Job Roles and Required Skill Sets. Information Processing 

& Management, 54(5), 807–817. https://doi.org/10.1016/j.ipm.2017.05.004 

 

 



26 
 

 

Mikalef, P., Giannakos, M. N., Pappas, I. O., & Krogstie, J. (2018). The Human Side of Big Data: 

Understanding the Skills of the Data Scientist in Education and Industry. In 2018 IEEE Global 

Engineering Education Conference (EDUCON) (pp. 503–512). IEEE, New York City, New York, 

USA. https://doi.org/10.1109/EDUCON.2018.8363273 

Müller, O., Fay, M., & vom Brocke, J. (2018). The Effect of Big Data and Analytics on Firm Perfor-

mance: An Econometric Analysis Considering Industry Characteristics. Journal of Management 

Information Systems, 35(2), 488–509. https://doi.org/10.1080/07421222.2018.1451955 

Murawski, M., & Bick, M. (2017). Digital Competences of the Workforce – a Research Topic?. Busi-

ness Process Management Journal, 23(3), 721–734. https://doi.org/10.1108/BPMJ-06-2016-0126 

Nisafani, A. S., Kiely, G., & Mahony, C. (2020). Workers’ Technostress: A Review of its Causes, 

Strains, Inhibitors, and Impacts. Journal of Decision Systems, 61(10), 1–16. 

https://doi.org/10.1080/12460125.2020.1796286 

Okkonen, J., Vuori, V., & Palvalin, M. (2019). Digitalization Changing Work: Employees’ View on 

the Benefits and Hindrances. In Á. Rocha, C. Ferrás, & M. Paredes (Eds.), Information Technology 

and Systems: Proceedings of ICITS 2019 (pp. 165–176). Springer, Cham, Switzerland. 

Opitz, D., & Maclin, R. (1999). Popular Ensemble Methods: An Empirical Study. Journal of Artificial 

Intelligence Research, 11, 169–198. https://doi.org/10.1613/jair.614 

Osmundsen, K., Iden, J., & Bygstad, B. (2018). Digital Transformation: Drivers, Success Factors, 

and Implications. In Proceedings of the 12th Mediterranean Conference on Information Systems 

MCIS. Symposium conducted at the meeting of the Association for Information Systems, Corfu, 

Greece. https://aisel.aisnet.org/mcis2018/37/ 

Palacios-Marqués, D., Welsh, D. H., Méndez-Picazo, M. T., Palacios-Marqúes, D., Welsh, D. H. B., 

& Méndez-Picazo, M. T. (2016). The Importance of the Activities of Innovation and Knowledge 

in the Economy: Welcome to the Journal of Innovation and Knowledge. Journal of Innovation 

and Knowledge, 1(1), 1–2. https://doi.org/10.1016/j.jik.2016.02.002 

Pirkkalainen, H., Salo, M., Tarafdar, M., & Makkonen, M. (2019). Deliberate or Instinctive? Proac-

tive and Reactive Coping for Technostress. Journal of Management Information Systems, 36(4), 

1179–1212. https://doi.org/10.1080/07421222.2019.1661092 

Portugal, I., Alencar, P., & Cowan, D. (2018). The Use of Machine Learning Algorithms in Recom-

mender Systems: A Systematic Review. Expert Systems with Applications, 97, 205–227. 

https://doi.org/10.1016/j.eswa.2017.12.020 



27 
 

 

Provost, F., & Fawcett, T. (2013). Data Science and its Relationship to Big Data and Data-Driven 

Decision Making. Big Data, 1(1), 51–59. https://doi.org/10.1089/big.2013.1508 

Qi, J., Zhang, Z., Jeon, S., & Zhou, Y. (2016). Mining Customer Requirements from Online Reviews: 

A Product Improvement Perspective. Information & Management, 53(8), 951–963. 

https://doi.org/10.1016/j.im.2016.06.002 

Ragu-Nathan, T. S., Tarafdar, M., Ragu-Nathan, B. S., & Tu, Q. (2008). The Consequences of Tech-

nostress for End Users in Organizations: Conceptual Development and Empirical Validation. In-

formation Systems Research, 19(4), 417–433. https://doi.org/10.1287/isre.1070.0165 

Rees, D., & Cooper, C. L. (1992). Occupational Stress in Health Service Workers in the UK. Stress 

Medicine, 8(2), 79–90. https://doi.org/10.1002/smi.2460080205 

Reisenbichler, M., & Reutterer, T. (2019). Topic Modeling in Marketing: Recent Advances and Re-

search Opportunities. Journal of Business Economics, 89(3), 327–356. 

https://doi.org/10.1007/s11573-018-0915-7 

Richards, D., & Marrone, M. (2014). Identifying the Education Needs of the Business Analyst: An 

Australian Study. Australasian Journal of Information Systems, 18(2). 

https://doi.org/10.3127/ajis.v18i2.803 

Riedl, R., Kindermann, H., Auinger, A., & Javor, A. (2012). Technostress from a Neurobiological 

Perspective. Business & Information Systems Engineering, 4(2), 61–69. 

https://doi.org/10.1007/s12599-012-0207-7 

Rogers, D., & Sexton, D. (2012). Marketing ROI in the Era of Big Data: The 2012 BRITENYAMA 

Marketing in Transition Study. Columbia Business School’s Center on Global Brand Leadership. 

www.iab.net/media/file/2012-BRITE-NYAMA-Marketing-ROI-Study.pdf  

Rokach, L. (2010). Ensemble-Based Classifiers. Artificial Intelligence Review, 33(1-2), 1–39. 

https://doi.org/10.1007/s10462-009-9124-7 

Rust, R. T. (2020). The Future of Marketing. International Journal of Research in Marketing, 37(1), 

15–26. https://doi.org/10.1016/j.ijresmar.2019.08.002 

Samuel, A. L. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal 

of Research and Development, 3(3), 210–229. https://doi.org/10.1147/rd.33.0210 

Santuzzi, A. M., & Barber, L. K. (2018). Workplace Telepressure and Worker Well-Being: The In-

tervening Role of Psychological Detachment. Occupational Health Science, 2(4), 337–363. 

https://doi.org/10.1007/s41542-018-0022-8 



28 
 

 

Saura, J. R. (2020). Using Data Sciences in Digital Marketing: Framework, Methods, and Perfor-

mance Metrics. Journal of Innovation & Knowledge. Advance online publication. 

https://doi.org/10.1016/j.jik.2020.08.001 

Schellong, D., Kemper, J., & Brettel, M. (2017). Generating Consumer Insights from Big Data Click-

stream Information and the Link with Transaction-Related Shopping Behavior. In Proceedings of 

the 25th European Conference on Information Systems (ECIS). Association for Information Sys-

tems, Atlanta, Georgia, USA. 

Schwemmle, M., & Wedde, P. (Eds.). (2012). Digitale Arbeit in Deutschland: Potenziale und Prob-

lemlagen. Friedrich-Ebert-Stiftung, Medienpolitik.  

Searle, B. J., & Lee, L. (2015). Proactive Coping as a Personal Resource in the Expanded Job De-

mands–Resources Model. International Journal of Stress Management, 22(1), 46–69. 

https://doi.org/10.1037/a0038439 

Srivastava, S. C., Chandra, S., & Shirish, A. (2015). Technostress Creators and Job Outcomes: The-

orising the Moderating Influence of Personality Traits. Information Systems Journal, 25(4), 355–

401. https://doi.org/10.1111/isj.12067 

Stanton, A. D.’A., & Stanton, W. W. (2016). The Relationship Between Big Data, Data Science, 

Digital Analytics and the Skills and Abilities Needed to Optimise Marketing Decisions. Applied 

Marketing Analytics, 2(3), 265–279. 

Sumiyana, S., & Sriwidharmanely, S. (2020). Mitigating the Harmful Effects of Technostress: Induc-

ing Chaos Theory in an Experimental Setting. Behaviour & Information Technology, 39(10), 

1079–1093. https://doi.org/10.1080/0144929X.2019.1641229 

Stinis, P. (2019). Enforcing Constraints for Time Series Prediction in Supervised, Unsupervised and 

Reinforcement Learning. ArXiv:1905.07501. 

Tarafdar, M., Cooper, C. L., & Stich, J.‐F. (2019). The Technostress Trifecta ‐ Techno Eustress, 

Techno Distress and Design: Theoretical Directions and an Agenda for Research. Information 

Systems Journal, 29(1), 6–42. https://doi.org/10.1111/isj.12169 

Tarafdar, M., Pullins, E., & Ragu-Nathan, T. S. (2015). Technostress: Negative Effect on Perfor-

mance and Possible Mitigations. Information Systems Journal, 25(2), 103–132. 

https://doi.org/10.1111/isj.12042 



29 
 

 

Tarafdar, M., Tu, Q., & Ragu-Nathan, T. S. (2010). Impact of Technostress on End-User Satisfaction 

and Performance. Journal of Management Information Systems, 27(3), 303–334. 

https://doi.org/10.2753/MIS0742-1222270311 

Tarafdar, M., Tu, Q., Ragu-Nathan, B. S., & Ragu-Nathan, T. S. (2007). The Impact of Technostress 

on Role stress and Productivity. Journal of Management Information Systems, 24(1), 301–328. 

https://doi.org/10.2753/MIS0742-1222240109 

Tarafdar, M., Tu, Q., Ragu-Nathan, T. S., & Ragu-Nathan, B. S. (2011). Crossing to the Dark Side: 

Examining Creators, Outcomes and Inhibitors of Technostress. Communications of the ACM, 

54(9), 113–120. https://doi.org/10.1145/1995376.1995403 

Thompson, N., Stradling, S., Murphy, M., & O‘neill, P. (1996). Stress and Organizational Culture. 

The British Journal of Social Work, 26(5), 647–665. https://doi.org/10.1093/oxfordjour-

nals.bjsw.a011139 

Tiago, M. T. P., & Veríssimo, J. M. C. (2014). Digital Marketing and Social Media: Why Bother? 

Business Horizons, 57(6), 703–708. https://doi.org/10.1016/j.bushor.2014.07.002 

Timonen, H., & Vuori, J. (2018). Visibility of Work: How Digitalization Changes the Workplace. In 

Proceedings of the 51st Hawaii International Conference on System Sciences. Association for In-

formation Systems, Atlanta, Georgia, USA. https://doi.org/ 10.24251/HICSS.2018.634 

Travers, C. J., & Cooper, C. L. (1993). Mental Health, Job Satisfaction and Occupational Stress 

Among UK Teachers. Work & Stress, 7(3), 203–219. 

https://doi.org/10.1080/02678379308257062 

Tsai, C. F., Hu, Y. H., & Lu, Y. H. (2015). Customer Segmentation Issues and Strategies for an 

Automobile Dealership with Two Clustering Techniques. Expert Systems with Applications, 32(1), 

65–76. https://doi.org/10.1111/exsy.12056 

Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. (2015). A Comparison of 

Machine Learning Techniques for Customer Churn Prediction. Simulation Modelling Practice and 

Theory, 55, 1–9. https://doi.org/10.1016/j.simpat.2015.03.003 

van der Aalst, W. M. (2014). Data Scientist: The Engineer of the Future. In Mertins K., Bénaben F., 

Poler R., & Bourrières JP (Eds.), Enterprise Interoperability VI: Proceedings of the I-ESA Con-

ferences (Vol. 7, pp. 13–26). Springer International Publishing, Basel, Switzerland. 

https://doi.org/10.1007/978-3-319-04948-9_2 



30 
 

 

van Dijkhuizen, N., & Reiche, H. M. (1980). Psychosocial Stress in Industry: A Heartache for Middle 

Management? Psychotherapy and Psychosomatics, 34(2-3), 124–134. 

Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P.-A. (2010). Stacked Denoising 

Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Cri-

terion. Journal of Machine Learning Research, 11, 3371–3408. 

Waller, M. A., & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: a Revolu-

tion that will Transform Supply Chain Design and Management. Journal of Business Logistics, 

34(2), 77–84. https://doi.org/10.1111/jbl.12010 

Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J.-f., Dubey, R., & Childe, S. J. (2017). Big Data 

Analytics and Firm Performance: Effects of Dynamic Capabilities. Journal of Business Research, 

70(1), 356–365. https://doi.org/10.1016/J.JBUSRES.2016.08.009 

Wedel, M., & Kannan, P. K. (2016). Marketing Analytics for Data-Rich Environments. Journal of 

Marketing, 80(6), 97–121. https://doi.org/10.1509/jm.15.0413 

Winer, R. S., & Neslin, S. A. (2014). The History of Marketing Science. World Scientific Publishing. 

https://doi.org/10.1142/9128 

Xu, R., & Wunsch, D. (2005). Survey of Clustering Algorithms. IEEE Transactions on Neural Net-

works, 16(3), 645–678. https://doi.org/10.1109/TNN.2005.845141 

Yip, B., Rowlinson, S., & Siu, O. L. (2008). Coping Strategies as Moderators in the Relationship 

between Role Overload and Burnout. Construction Management and Economics, 26(8), 871–882. 

https://doi.org/10.1080/01446190802213529 

Zhao, X., Xia, Q., & Huang, W. (2020). Impact of Technostress on Productivity from the Theoretical 

Perspective of Appraisal and Coping Processes. Information & Management, 57(8), 103265. 

https://doi.org/10.1016/j.im.2020.103265 

 

 

 

 

 

 

 



31 
 

 

Ⅱ Working in Detail: How LSTM Hyperparameter Selec-

tion Influences Sentiment Analysis Results 

Authors: Derra, Nicholas Daniel; Baier, Daniel 

Published in: Archives of Data Science, Series A (2020), Vol. 6, No. 1, pp. 1-22, 

DOI: 10.5445/KSP/1000098011/10 

Abstract: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sentiment analysis of written customer reviews is a powerful way to generate 

knowledge about customer attitudes for future marketing activities. Meanwhile, 

Deep Learning as the most powerful machine learning method is of particular 

importance for sentiment analysis tasks. Due to this current relevance, an LSTM 

network based on a literature review to solve the challenging classification task 

of the IMDB Large Movie Dataset is created. Hyperparameters are varied sep-

arately from each other to better understand their single influences on the over-

all model accuracy. Furthermore, we transformed variants with positive impacts 

into a final model in order to investigate whether the impacts can be cumulated. 

While preparing the amount of training data and the number of iteration steps 

resulted in a higher accuracy, pre-trained word vectors and higher network ca-

pacity did not work well separately. Even though implementing the variants 

with positive influences together raised the model´s performance, 

the improvement was lower than some single variants. 

Keywords: Sentiment Analysis, Deep Learning, LSTM, Hyperparameter, Optimization 
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1 Introduction 

Sentiment analysis (SA) has been one of the largest fields of research in natural language processing 

(NLP), data mining, text mining and information retrieval since the beginning of the 21st century. 

Due to the ever-increasing use of internet and online activities (e-commerce, forums, blogs and social 

networks) for presenting personal opinions about products and services, the analysis of the resulting 

huge amounts of data (Big Data) is of particular importance for marketing managers (Zhang et al, 

2018b). Meanwhile, Deep Learning (DL) algorithms deliver stronger results in processing sequential 

text data for SA tasks than other Machine Learning (ML) methods do (LeCun et al, 2015). For this, 

the current literature focuses on the development of models that classify popular benchmark datasets 

(IMDB Large Movie Dataset by Maas et al (2011); Yelp Dataset by Zhang et al (2015)) with a new 

accuracy high score. We argue that in this context only the overall performance of an architecture is 

observed while the various influences of individual hyperparameters on the model performance are 

insufficiently analysed. For this reason, the separate effects of various hyperparameters within an 

LSTM network for the IMDB Large Movie Dataset sentiment analysis task are observed through 

separate variation. Simultaneously, after a short introduction (Section 1), the discussion of theoretical 

backgrounds including SA (Section 2.1) and DL models for SA (Section 2.2) as well as the descrip-

tion of the IMDB dataset (Section 3.1) and related work (Section 3.2), an LSTM which is able to 

solve the IMDB SA task with high accuracy is constructed (Section 3.3). Within this model, 8 hy-

perparameters are separately varied to investigate their impact on classification performance. Subse-

quently, the variations with a positive impact on validation accuracy are transformed into a final 

model in order to cumulate the effects. This final model is then compared with the single hyperpa-

rameter variants by test accuracy. In addition, the machine times required are also measured (Section 

3.4). Finally, the results are discussed in Section 4. 

2 Theoretical Background 

2.1 Sentiment Analysis 

SA, also called mood analysis, is the field of computational studies of emotions as well as opinions, 

feelings, evaluations and attitudes towards objects such as products, services, organizations, individ-

uals, events, topics and issues as well as their characteristics (Ain et al, 2017; Medhat et al, 2014). 

They are analysed in forums, blogs, social networks, e-commerce websites, reports and other internet 

sources (Ravi and Ravi, 2015). SA is a subset of both NLP and affective computing (AC) (Yadollahi 

et al, 2017; Zhang et al, 2018a) and can therefore be seen as an intersection of both areas of research. 
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It is carried out by methods of information retrieval and data mining (Ravi and Ravi, 2015). While 

the different SA tasks can be correctly subdivided into the subareas of opinion mining (analysis of 

contained opinions in texts) and emotion mining (analysis of contained emotions in texts) (Yadollahi 

et al, 2017), a more comprehensive approach summarizing opinions and emotions (Ravi and Ravi, 

2015) seems to be more effective. Since the concept of a sentiment encompasses both opinions and 

emotions, a precise SA can only be achieved by analysing both areas simultaneously (Ain et al, 2017; 

Medhat et al, 2014). 

While SA is often used as a synonym for sentiment or polarity classification, it is considered to be 

the central SA task (Cambria et al, 2013). However, in this article this trend of literature is taken into 

account (see inter alias Araque et al (2017) and Medhat et al (2014)) so the term SA is used inter-

changeably after the various fields of SA tasks were shown. A sentiment, respectively polarity clas-

sification, is the recognition of the sentiment orientation within a text and the classification into one 

of at least two classes. As the most common task in SA, the polarity classification classifies texts 

according to their opinion into a predefined sentiment polarity, whereby both binary, tertiary and finer 

n-grade classifications are possible (Ravi and Ravi, 2015). Polarity classification can take place on 

three granularity levels, regardless of the classification object (opinion, emotion or both). For this, 

the document, sentence and aspect level are differentiated (Medhat et al, 2014; Yadollahi et al, 2017; 

Zhang et al, 2018a) where the polarity classification at the document level is considered to be the 

most common. At the document level, a complete text document is considered as the smallest unit. 

This document expresses an overall positive or negative opinion or emotion and it is usually assigned 

either to the positive or the negative class (Aggarwal and Aggarwal, 2017; Medhat et al, 2014; Yadol-

lahi et al, 2017; Zhang et al, 2018a). Yet, the length of the document is irrelevant (Yadollahi et al, 

2017). At this level it is assumed that not every single sentence contains an opinion relating to the 

subject so the document contains irrelevant sentences (Aggarwal and Aggarwal, 2017). Since the 

IMDB sentiment classification task is to classify film ratings of different lengths and without focusing 

on specific aspects with respect to their polarity, the IMDB task is performed at the document level. 

Approach Reference Accuracy 
Support Vector Machines (SVM) Wang and Manning (2012) 89.16% 

Maximum Entropy (ME) Brychcín and Habernal (2013) 92.24% 
Naive Bayes (NB) Narayanan et al (2013) 88.80% 

NB-SVM Mesnil et al (2014) 91.87% 
Decision Trees (DT) Zhou and Feng (2017) 89.16% 
Deep Learning (DL) Howard and Ruder (2018) 95.40% 

Table 1: ML methods for the IMDB sentiment classification task 



34 
 

 

The polarity classification approaches can be divided into ML-based, lexicon-based, while hybrid 

approaches are ultimately a combination of ML with a previously created lexicon (Maynard and 

Funk, 2011; Ravi and Ravi, 2015). ML techniques treat sentiment classifications as text classification 

tasks and use syntactic and linguistic properties to solve problems (Medhat et al, 2014). They clearly 

outperform the semantic approaches in dealing with specific tasks (Ravi and Ravi, 2015). They are 

divided into methods of supervised, unsupervised and semi-supervised learning, whereby unsuper-

vised ML methods only play a minor role in SA research and are only marginally or not explained in 

the relevant overview literature (Medhat et al, 2014; Ravi and Ravi, 2015; Yadollahi et al, 2017). 

For polarity classification with supervised learning, probabilistic classifiers such as Bayesian Net-

works, Naive Bayes classifiers and Maximum Entropy classifiers, linear classifiers such as Support 

Vector Machines and Artificial Neural Networks (Deep Learning), Decision Trees and Rule-based 

classifiers are frequently used (Medhat et al, 2014; Ravi and Ravi, 2015). In terms of the IMDB Large 

Movie Dataset, the classification performance of the different methods is shown in table 1. Thereby, 

DL models have achieved a large number of correct classification rates higher than 92% in recent 

years, massively outperforming other ML approaches (compare our literature review in Section 4). 

The current IMDB benchmark performed with DL achieves 95.40% accuracy (Howard and Ruder, 

2018). To summarize, while ML approaches have task-specific higher accuracy than lexicon produc-

tion, DL outperforms conventional ML. 

2.2 Deep Learning 

DL approaches are part of the research field of artificial intelligence (AI) (Arel et al, 2010) as well as 

a methodologically emerging area of ML called Representation Learning. Within DL methods, sev-

eral stages of representation transformation take place in succession (LeCun et al, 2015). Meanwhile, 

DL is defined as a class of ML techniques based on Artificial Neural Networks (ANN) that use nu-

merous (hidden) process layers in hierarchical architectures to learn characteristics and recognize 

patterns from data (Deng, 2011, 2014). However, the depth required for the concept of DL is not 

uniformly defined in research (Schmidhuber, 2015). 

In the context of ANNs, the concept of learning describes a process for updating the network archi-

tecture and the weights of neuron connections to efficiently handle a specific task (Jain et al, 1996). 

In DL, the most commonly used supervised learning algorithm is the backpropagation method for 

error minimization which allowed to map direct connections of neurons over several layers so that 

the weights within the ANNs were efficiently learned (Deng, 2014; Schmidhuber, 2015). In general, 
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backpropagation is a special case of the general gradient descent process (Schmidhuber, 2015). This 

approach by Rumelhart et al (1986) repeatedly adjusts the weights within an ANN to minimize the 

difference between the actual output vector and the known output vector setpoint for finding an opti-

mal set of weights. The quality of the weights is described by the difference between the actual and 

target output vectors in a quadratic error function. 

Basically, Deep Neural Networks are classified in Feed Forward (FNN) and Recurrent (RNN) Neural 

Networks (Jain et al, 1996; Schmidhuber, 2015). Furthermore, the forward models are divided into 

Deep Autoencoders (DAE), Deep Belief Networks (DBN) and Convolutional Neural Networks 

(CNN) (Deng, 2014; Zhang et al, 2018b). The recurrent networks were later developed into so-called 

Long Short Term Memories (LSTM) (Gers et al, 1999; Hochreiter and Schmidhuber, 1997). While 

DAEs and DBNs are only used for (unsupervised) pre-training in polarity classification tasks, one-

dimensional CNNs, but especially RNNs and their powerful relatives LSTMs are able to classify text 

data very well (LeCun et al, 2015). 

RNNs are more powerful than any forward DL model because of their ability to create memories 

(Schmidhuber, 2015). Due to the backward links, they can account for time sequences and are there-

fore perfect in processing sequential data, e.g. natural language. RNNs have a cyclic architecture and 

are able to learn the data properties through a memory from previous inputs (Jain et al, 1996; Zhang 

et al, 2018a). The memory of an RNN is its ability to process all the elements of a sequence where 

the input of a unit thus consists of two parts, the current input and the output of previous calculations 

(Zhang et al, 2018a). This is possible because the information from previous calculations is stored as 

an internal state within the RNN (LeCun et al, 2015; Zhang et al, 2018a). 

However, especially at deep RNNs, the vanishing or exploding gradients during backpropagation 

training has proved to be very problematic due to long-term dependencies (Bengio et al, 1994; 

Hochreiter, 1991; Schmidhuber, 2015; Zhang et al, 2018a). To address this phenomenon called fun-

damental DL problem, LSTMs were developed (Gers et al, 1999; Hochreiter and Schmidhuber, 

1997). Today, the most successful RNNs are based on this architecture (Deng, 2014; Schmidhuber, 

2015). By using so-called constant error carousels, also known as memory cells, LSTMs are able to 

remember processes that already took place many time steps ago. These units are connected to them-

selves with a weight of 1 and thus copy their own state. This connection is linked to another unit, 

called gate unit, which decides when to erase the learned memory, which information is erased, and 

which new information is stored in the memory (Gers et al, 1999; Hochreiter and Schmidhuber, 1997; 
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LeCun et al, 2015; Zhang et al, 2018a). Accordingly, a distinction is made between input, forget and 

output gate units (Hochreiter and Schmidhuber, 1997; Zhang et al, 2018a). The additional possibility 

of forgetting information and the associated influence on the internal memory enables the effective 

use of long-term dependencies without vanishing or exploding gradients. 

Conventional RNNs and LSTMs can only use the information of previous time steps and therefore 

do not use all available information of sequential data (Zhang et al, 2018a). For this reason, Bidirec-

tional LSTMs (BiLSTM) have been developed. They consist of two opposing LSTMs stacked on top 

of each other and are thereby able to process text sequences forward and backward at the same time. 

Finally, the internal states of both networks are taken into account for calculating the output of the 

bidirectional network (Schuster and Paliwal, 1997). The bidirectional architecture often provides bet-

ter sentiment classification results than its unidirectional counterparts since the context between a 

given word within a text and its subsequent words might be as important as the context to previous 

words for classifying the sentiment of this word (see, e.g., Howard and Ruder (2018), Johnson and 

Zhang (2016)). 

The danger in supervised learning processes, so-called overfitting, is often caused by a limited amount 

of training data, too many parameters to be learned (the network capacity) or a large number of train-

ing epochs. In such a case, the network learns to identify specific characteristics of the training data 

which are irrelevant or even obstructive for classifying unknown data (Srivastava et al, 2014). Thus, 

the task-specific generalization decreases with additional training epochs so the model loses massive 

usefulness in the analysis of unknown data. RNNs -particularly their bidirectional variants- are quite 

susceptible to overfitting due to their huge capacity (memory architecture and additional backward 

neuron connections) so that such models are usually trained with fewer epochs than other architec-

tures in order to learn cumbersome specific features (Hong and Fang, 2015). 

In addition, to avoid overfitting, another hyperparameter can be integrated into the model. This 

method, known as dropout regularization, randomly sets a share of its output per layer to zero, thus 

extracting a thinned net from the original complex model. The size of this eliminated share is deter-

mined by the dropout rate. As a result, the network does not learn any irrelevant patterns contained 

in the training data which improves unknown data performance a lot (Srivastava et al, 2014). The 

additional implementation of a recurrent dropout rate makes this method implementable for RNNs 

(Gal and Ghahramani, 2015). 
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Since DL algorithms (like other ML methods as well) can not use text data as input, datasets in text 

form have to be converted into numerical vectors (Zhang et al, 2018a). This results in very high-

dimensional property vectors (called One Hot Encoding (OH)) since each word contained must be 

assigned its own value. ML applications, therefore, require a feature selection step that removes un-

important properties or words for the task to be performed and thus reduces the dimensionality with-

out reducing the quality of the subsequent classification (Rui et al, 2016; Yang and Pedersen, 1997).  

An advantage of sentiment classification via DL is that, in contrast to other ML methods, no feature 

selection is necessary to avoid these high-dimensional feature vectors since DL models are able to 

handle high-dimensional data very well and process a feature selection by using the embedding layer 

for training so-called word embeddings. Using a specific algorithm, it generates smaller numerical 

vectors and at the same time more information contained by removing the words which are irrelevant 

for the classification task. Examples of such word embedding algorithms are Word2Vec (Mikolov et 

al, 2013) and GloVe (Pennington et al, 2014). The word embeddings and the weights are learned 

simultaneously based on the present training data. If there is insufficient training data for a classifi-

cation task, pre-trained word embeddings calculated using one of the two algorithms can be used. 

Such pre-trained vectors are freely available via internet (for Word2Vec: see Google (2013), for 

GloVe: see Stanford (2014)). 

3 Experiments 

3.1 Dataset 

The IMDB Large Movie Dataset was developed by Maas et al (2011). It was designed to meaning-

fully test and compare binary sentiment classification methods. This dataset contains 100,000 film 

ratings from the Internet Movie Database (50,000 labeled and 50,000 unlabeled samples), with each 

movie represented by a maximum of 30 ratings (Maas et al, 2011). The goal of the IMDB SA task is 

to correctly classify whether a movie rating is positive or negative. The average length of a review 

document is 231 words (Wang and Manning, 2012). Within the labeled data, there are 25,000 positive 

and 25,000 negative reviews each, with only clearly polarized contributions taken into account. 

Therefore, neutral reviews are not included. The labeled dataset is also divided into 25,000 reviews 

for training and testing each (Maas et al, 2011). The unlabeled training dataset with 50,000 reviews 

is intended to, e.g., train a semi-supervised architecture with unsupervised pre-training. This dataset 

contains positive, neutral and negative sentiments (Maas et al, 2011). In general, is has to be men-

tioned that the particular difficulty of classifying film ratings presents a major challenge for all ML 
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methods (Turney, 2002). The basic difficulties and challenges in text analysis, including irony, sar-

casm, various word diffractions, synonyms, stop words, etc. are just as demanding as the different 

lengths of the evaluation documents. 

3.2 Related Work 

Reference Architecture Specific Architecture Test Accuracy 
Le and Mikolov (2014) FNN PV-FNN 92.58% 

Dai and Le (2015) LSTM SA-LSTM 92.80% 
Johnson and Zhang (2015) CNN RE-CNN 93.49% 

Dieng et al (2016) RNN Topic-RNN 93.72% 
Johnson and Zhang (2016) LSTM OH-BiLSTM 94.06% 

Miyato et al (2016) LSTM VA-LSTM 94.09% 
Gray et al (2017) LSTM Block-Sparse LSTM 94.99% 

Radford et al (2017) LSTM Byte-Level LSTM 92.88% 
Xu et al (2017) RNN SSVAE-RNN 92.77% 

Howard and Ruder (2018) LSTM ULMFiT 95.40% 

Table 2: DL models for the IMDB sentiment classification task 

The IMDB Large Movie Dataset classification task has already been solved by a variety of high-

performance models, especially during the last 4 years the accuracy of the task has been improved 

regularly. The currently best architecture was set up by Howard and Ruder (2018) with their ULMFiT 

model and achieves an accuracy of 95.40% in classifying the IMDB test data. The 10 most powerful 

DL architectures are listed in Table 2. Within these models, it is noticeable that LSTMs were used 

disproportionately (6 out of 10). Also, Merity et al (2017) describe these architectures as particularly 

advantageous for language modelling tasks, as LSTMs are more resistant to the fundamental deep 

learning problem of the vanishing gradient than other architectures. In addition, Johnson and Zhang 

(2015) also demonstrated the efficient use of CNNs for sentiment classification. Although they do 

not match the accuracy of the best LSTM models, they are convincing due to their competitive clas-

sification rates and comparatively low computational effort. However, LSTMs seem to be more 

promising in setting a new accuracy high score. The literature review also shows that the implemen-

tation of unsupervised elements, especially for pre-training, has positive effects on the performance 

of deep learning models (8 out of 10 models contained unsupervised learning structures). Neverthe-

less, due to the question regarding the influences of individual hyperparameters on the overall classi-

fication performance, the implementation of unsupervised pre-training is superfluous. 
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3.3 Model 

 

Figure 1: The LSTM model 

As Figure 1 shows, our LSTM model has a bidirectional architecture, similar to Howard and Ruder 

(2018) model, but it initially contains only 2 BiLSTM layers and 20 units per layer and direction. 

After the initial embedding layer which is used for training the word embeddings, both BiLSTM 

layers are utilized for learning representations. The final, fully-connected dense layer executes the 

binary classification of the 25,000 training (respectively test) samples with a sigmoid function. As an 

optimizer the "RMSprop" algorithm (Hinton et al, 2012) is used, as a loss function a binary cross 

entropy. The number of words used as features is 10,000, and the maximum review length is 500 

words. The model is trained for 5 epochs (which is a good number of epochs compared to the results 

of Hong and Fang (2015) for highly regularized LSTMs) with a batch size of 100, the validation split 

is 20% (5,000 samples, respectively). 

In this model, the following hyperparameters are now to be varied to examine their single impact on 

the correct classification rate: The number of words considered as features, the sequence length of 

the comments, the proportion of validation data, the use of pre-trained GloVe word embeddings, the 

number of hidden BiLSTM layers, the number of units per hidden layer, the dropout and recurrent 

dropout rates (for preventing overfitting), and the size of the data batches (during training, the training 

data is divided into batches of a fixed size which are given successively through the network; the 
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weights of the network are updated after every batch). For each hyperparameter, a specific value is 

set and a variant is selected that suggests a greater learning performance. Within the experiment, only 

one hyperparameter is chosen into its variant value at the same time. The other hyperparameters stay 

at their default value. The selected values are summarized in table 3. 

The hyperparameters "validation data" and "batch size" were chosen lower in the variant since a larger 

amount of training data as well as smaller batches suggest a better classification performance. Since 

an adaptation of the network parameters takes place after each batch, smaller batches mean a higher 

number of such adjustments and thus deeper learning processes. For all other values, however, a 

stronger performance is assumed if the values are higher. The values are changed separately while 

the other hyperparameters maintain their default configuration. The determined values are then com-

pared with the global default variant using the validation data performance in order to show their 

single impacts on the network performance. In this way, 8 comparison pairs are created (1 for each 

hyperparameter). If a hyperparameter variation has a positive effect on the validation performance, it 

will be transformed into a final model which will be compared to the default configuration for inves-

tigating whether the effects on accuracy can be cumulated to a high-performing model. The hyperpa-

rameter "dropout" is tested for preventing overfitting during training. At the same time, the machine 

times are observed. The computations are accomplished with Amazon Web Services (m4.2xlarge, 

32GB). 

3.4 Results 

Model Default Variant Train Acc Train Loss Val Acc Val Loss Machine Time 
Standard —– —– 94.60% 0.1541 87.84% 0.2905 18 min 20 sec 

Max features 10,000 20,000 95.89% 0.1258 88.68% 0.3106 18 min 7 sec 
Max len 500 1,000 95.49% 0.1326 88.66% 0.2947 18 min 1 sec 
Val split 0.2 0.1 95.18% 0.1395 88.48% 0.2931 19 min 26 sec 
GloVe no Yes 50.23% 0.6932 50.14% 0.6930 16 min 

Units / Layer 20 100 94.52% 0.1574 86.12% 0.2992 44 min 17 sec 
Layer 2 3 94.98% 0.1421 87.74% 0.3195 26 min 31 sec 

Dropout no Yes 91.65% 0.2275 86.74% 0.3513 21 min 28 sec 
Batch size 100 50 95.10% 0.1431 88.90% 0.2916 28 min 16 sec 

Table 3: Training and validation results of the default configuration and the variants 

Without any hyperparameter variation, the default model reaches 94.60% training and 87.84% vali-

dation accuracy. The values of the loss function were 0.1541 for training and 0.2905 for validation. 

Due to overfitting in unregularized BiLSTMs, this value is already reached during the 2nd training 

epoch. Nevertheless, our model performs on a quite respectful level since there is no pre-training 

integrated. The training session required 18 minutes and 20 seconds. 
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The increase of word features (10,000 to 20,000 words) provided 95.89% training and 88.68% vali-

dation accuracy (loss function: 0.1258 resp. 0.3106) which means an increase of 0.84% in validation 

performance compared to the default model. This result was reached in the 2nd epoch as well, another 

rapid overfitting was observed. The training required 18 minutes and 7 seconds which was surpris-

ingly less than the default model. Since the accuracy rate was higher, this hyperparameter variant was 

implemented in the final model. 

The increase of the maximum sample length (500 to 1,000) also improved the performance (95.49% 

for training and 88.66% for validation accuracy, 0.1326 resp. 0.2947 for the loss function values), 

this time an increase of 0.82% in validation accuracy compared to the default model was observed. 

Not surprisingly, the 2nd training epoch performed best, this variation needed 18 minutes and 1 sec-

ond training time. This variant was also implemented into the final model. 

Changing the ratio of training and validation data from 80:20 to 90:10 resulted in a further increase 

in validation accuracy to 88.48% (+ 0.64%) which was already achieved during the 2nd epoch (train-

ing accuracy: 95.18%; loss function values were 0.1395 for training resp. 0.2931 for validation). 

Subsequently, overfitting could be observed again. This was accompanied by an increase in compu-

ting time to 19 minutes and 26 seconds. Since the accuracy increased due to the greater amount of 

training data, the final model will also be trained with the higher number of samples. 

The use of pre-trained word embeddings from the GloVe database caused a massive loss of accuracy. 

While computing time was clearly the shortest at precisely 16 minutes, a training accuracy of 50.23% 

and a validation accuracy of only 50.14% could be achieved (loss function values: 0.6932 for training 

resp. 0.6930 for validation), which corresponds to a validation accuracy loss of 37.70% compared to 

the default model. This very poor performance is due to the lack of task-specific training of the word 

embeddings, which means that the values remained almost constant over the 5 epochs. The strong 

benefits of pre-training in literature, as found in Howard and Ruder’s (2018) model, are achieved 

through huge datasets used to learn the word embeddings and weights. At the same time, the word 

embeddings are not frozen, but constantly adapted during the learning process. While the GloVe word 

embeddings used here is also based on just 400,000 words, for example, WIKITEXT-103 incorpo-

rates embedding vectors for about 103,000,000 words. Thus, the word embeddings used are far from 

having enough information to precisely solve the specific classification task of the IMDB dataset. 

The pre-trained embedding vectors are therefore not integrated into the final model. However, unsu-

pervised pre-training is indispensable for creating a particularly powerful architecture if it is carried 
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out with very large amounts of useful information and the parameters found are then further adapted 

to the task. 

Increasing the units per hidden layer from 20 to 100 led to a massive increase in computational time 

to 44 minutes and 17 seconds. This is the consequence of the higher computational effort since the 

additional units also process a large amount of information during the training. However, the valida-

tion accuracy fell by 1.72% to 86.12% (training: 94.52%) and the values of the loss function were 

worse as well (0.1574 for training and 0.2992 for validation). This result is particularly surprising 

given the fact that the most powerful LSTM models from the literature have clearly greater capacities. 

However, the performance can not be explained by overfitting, since the training data were not clas-

sified very well and the best validation performance was not achieved until the 5th epoch. This result 

indicates additional influences between different hyperparameters, which go beyond separate varia-

tions of individual parameters. Due to the inadequate outcome of this study, the final model does not 

require an increase in the number of units as the higher storage capacity should lead to an increase in 

classification performance, which was clearly missed. 

The integration of a third BiLSTM layer, similar to Howard and Ruder (2018) network, also resulted 

in a lower validation accuracy of 87.74% (training accuracy: 94.98%) and worse values of the loss 

function (0.1421 for training and 0.3195 for validation), however, this difference is lower compared 

to the higher number of units (-0.1% vs default configuration). This ratio was reached during the 3rd 

epoch so overfitting can be observed another time (presumably by additional network capacity). The 

machine time increased to 26 minutes and 31 seconds. Although this result does not necessarily pre-

clude the inclusion of a third hidden layer to the final model, due to the increased machine time and 

the simultaneous (minor) deterioration of the accuracy, the third BiLSTM layer will not be included. 

Using a dropout / recurrent dropout regularization with the values 0.2 / 0.2 reduced the validation 

accuracy of the model by 1.1% to 86.74% (training accuracy: 91.65%) with simultaneous increase of 

the calculation time to 21 minutes and 28 seconds. The values of the loss function were 0.2275 for 

training and 0.3513 for validation. However, the dropout was introduced to avoid overfitting and thus 

increase the stability of the model. Since the top value was reached in the fifth epoch, the dropout 

was successful so that the regularization is to be evaluated advantageously and integrated into the 

final model. 

The use of a smaller batch size (50 versus 100 samples) brought the highest validation accuracy gain 

of a single changed hyperparameter (1.06% to 88.90%). The training performance was 95.10% and 
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the values of the loss function were 0.1431 for training and 0.2916 for validation. It is also positive 

that the validation quota could be reached twice (epoch 2 and 3) before overfitting begins. In this 

case, the model benefits from a higher number of parameter adjustments regarding the smaller batch 

size. However, machine time was quite high at 28 minutes and 16 seconds, due to the smaller denom-

ination of the training data. By increasing the performance, the final model will be trained with 

smaller batches as well. 

Model Train Acc Train Loss Val Acc Val Loss Test Acc Test Loss Machine Time 
Standard model 94.60% 0.1541 87.84% 0.2905 87.01% 0.3652 18 min 20 sec 

Max features 95.89% 0.1258 88.68% 0.3106 86.54% 0.3603 18 min 7 sec 
Max len 95.49% 0.1326 88.66% 0.2947 86.87% 0,3301 18 min 1 sec 
Val split 95.18% 0.1395 88.48% 0.2931 87.60% 0,3361 19 min 26 sec 
GloVe 50.23% 0.6932 50.14% 0.6930 52.81% 1.2817 16 min 

Units / Layer 94.52% 0.1574 86.12% 0.2992 86.04% 0.3741 44 min 17 sec 
Layer 94.98% 0.1421 87.74% 0.3195 85.90% 0.3415 26 min 31 sec 

Dropout 91.65% 0.2275 86.74% 0.3513 85.53% 0.3599 21 min 28 sec 
Batch size 95.10% 0.1431 88.90% 0.2916 87.51% 0.3534 28 min 16 sec 

Final model 93.01% 0.1948 88.36% 0.3042 87.46% 0.3779 83 min 28 sec 

Table 4: Results of the hyperparameter variants incl. the final model and test data performances 

On the basis of the discussed validation results of the hyperparameter variations, the default config-

uration should now be modified seeking for a more powerful final model. A total of 5 single hyperpa-

rameter variants could be identified as well-working, including the higher number of words consid-

ered as features, the larger comment length, the use of smaller batch size, the greater amount of train-

ing data, and the integration of dropout regularization to avoid overfitting (as the validation results 

showed, overfitting in LSTMs is a big issue to deal with). The tested pre-trained GloVe word embed-

dings, on the other hand, could not be taken into account due to the massive loss of accuracy. Also, 

the implementation of additional layers and units could not improve the network. 

The training of the final model was highly more computationally intensive than the variants of indi-

vidual hyperparameters (83 minutes and 28 seconds). This observation is not surprising due to the 

observed calculation times of the individual variations, the computational effort of the individual 

hyperparameters just adds up in the final model. The accuracy, however, reached 93.10% for training 

and 88.36% for validation which corresponds to an increase of 0.52% in validation performance com-

pared to the default configuration (reached in the 5th epoch so the dropout implementation was suc-

cessful in avoiding overfitting). But, at the same time, it is highly noteworthy that the performance in 

the validation data is worse than in the variants of the individual positive-acting hyperparameters 

which were set to improve the network accuracy (dropout regularization was implemented to avoid 

overfitting). This means that LSTM hyperparameters do not just work on their own but seem to in-
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teract with the other hyperparameter settings. In fact, this experimental design is well-suited for un-

derstanding the effects of the various hyperparameters on the network in general, but it is not optimal 

for finding the strongest setting within an LSTM. Nonetheless, the final model has achieved a higher 

validation performance than the already well-performing default configuration. 

For further evaluating the variants and the final model compared to the default configuration, the test 

dataset of the IMDB dataset was classified. For this, the raw test data was preprocessed as well as the 

training data (vectorization and word embeddings learned by embedding layer). The default config-

uration achieved 87.01% test accuracy while the created final model achieved a comparatively 

stronger accuracy of 87.46%. Compared with the single variants, the separate variation of the valida-

tion split and the batch size were even outperforming the final model while the variant of the valida-

tion split reached the highest test accuracy (87.60%) with a machine time of 19 minutes and 26 sec-

onds. To summarize, the test classification performance could be increased by 0.45% (resp. approx-

imately 113 additionally correctly classified comments) through varying the 5 hyperparameters clas-

sified as positive and by 0.59% (resp. approximately 148 additionally correctly classified comments) 

through the separate variation of the validation split compared to the default model. The 0.45% in-

crease in classification performance represents an improvement associated with highly increased 

computational time requirements while the higher increase of 0.59% could be reached with only a 

small gain of machine time. 

4 Discussion / Conclusion 

The aim of this work was to investigate the impacts of single hyperparameter variants within an 

LSTM network to perform the IMDB Large Movie Dataset SA task. For this purpose, an LSTM 

network based on the task-specific DL models from the literature of recent years was created. A total 

of 8 hyperparameters contained in this network were separately varied and compared with the default 

configuration by their validation performance. In this way, 5 hyperparameters (maximum number of 

words taken into account as characteristics, maximum comment length, dropout regularization, use 

of a larger training dataset, and the use of a smaller batch size) could be demonstrated as positive 

influences while implementing additional hidden layers, additional units per layer and pre-trained 

GloVe word embeddings could not achieve any positive effects. The variants which improve the 

validation accuracy were then transformed into a final model to see whether the impacts of the sepa-

rate hyperparameters could be added. While the validation data performance of the final model was 

higher than the default model, some single variants outperformed the final model so the effects of 
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single variants were not able to be cumulated. In addition, comparing the default configuration, the 

separate variants and the final model based on test data accuracy, the default model achieved 87.01% 

with a machine time of 18 minutes and 20 seconds, while the final model achieved 87.46% at a clearly 

higher computation time of 83 minutes and 28 seconds. At the same time, the separate variants of the 

validation split and the batch size even outperformed the final model due to test accuracy and machine 

time (with the separate variation of the validation split as the overall best configuration performing a 

test accuracy of 87.60%). In this way, the already precisely classifying default configuration could 

be increased by a further 0.45% (approximately 113 additional comments) through creating the final 

model and even 0.59% with a separate variant. In fact, the separate influences of the hyperparameter 

variants on accuracy could not be cumulated but, at the same time, the machine time did. 

Looking at the separate variants, it is striking that the better performance was not achieved by in-

creasing the network capacity (additional layers or units per layer) but the consideration of a larger 

number of features, longer comments and a larger number of training samples were able to raise 

accuracy, even the use of smaller batch sizes contributed to a stronger performance. In particular, the 

network was able to benefit from larger amounts of data and a greater number of iteration steps. At 

the same time, the results for the variants that result in an increase in capacity (number of units / 

layers) are surprisingly negative and should not be implemented as a single variant in BiLSTMs which 

already have a large network capacity. Overall, the results indicate interactions between the various 

hyperparameters that can not be observed in this experimental setup with separate variants. This is 

supported by the current literature who use a much higher capacity than the model configured here. 

Accordingly, higher capacities should definitely not be excluded from the construction of DL models 

for performing SA, rather such changes should be examined together with other hyperparameter var-

iants in order to possibly further increase the classification performance. 

In spite of the lower classification performance compared to the currently best models, it was possible 

to clearly demonstrate how the single hyperparameters of an LSTM model influence the performance 

of the overall architecture. In comparison to the architecture by Howard and Ruder (2018), the per-

formances of the model used here are significantly lower. This is due to the fact that Howard and 

Ruder (2018) use a huge unlabeled dataset for efficiently pre-training their network. In addition, they 

combined different hyperparameters for increasing the network capacity (additional BiLSTM layers 

and more units per layer) while preventing overfitting with dropout regularization. The results of their 

ULMFiT model indicate interactions between the different hyperparameters as our experiment with 

separate variants did. 
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While the separate influences of the hyperparameter variants on overall accuracy could be shown 

precisely, the experiment has to be limited due to the fact that the validation split during the training 

epochs has been set randomly so small variances due to different validation samples can not be ex-

cluded. Though, since every configuration is trained for 5 epochs with 5 different validation splits, 

the risk of a variance at the validation results is negligible. Furthermore, no effects between the indi-

vidual parameter variants were analyzed. These effects could be observed by the surprisingly poor 

classification results for those variants which increase network capacity and the accuracy of the final 

model compared to different single hyperparameter variants. In this respect, the investigation is lim-

ited, and we would like to encourage further research in the field of hyperparameter variants in LSTM 

networks. In particular, studies that use this paper as a first step to understand the single hyperparam-

eter effects on the network and go on investigating combinations of variants (i.e. using a fractional 

factorial design (see, e. g., Gunst and Mason (2009)) can further advance the currently still fragile 

state of research. We believe that a deeper understanding of hyperparameter influences in LSTMs 

will definitely help to outperform the current IMDB Large Movie Dataset highscore with new and 

innovative LSTM models. 
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Abstract: Machine learning (ML) techniques within the artificial intelligence (AI) para-

digm are radically transforming organizational decision-making and busi-

nesses’ interactions with external stakeholders. However, in time series fore-

casting for call center management, there is a substantial gap between the po-

tential and actual use of AI-driven methods. This study investigates the capa-

bilities of ML models for intra-daily call center arrivals’ forecasting with re-

spect to prediction accuracy and practicability. We analyze two datasets of an 

online retailer’s customer support and complaints queue comprising half-hourly 

observations over 174.5 weeks. We compare practically relevant ML ap-

proaches and the most commonly used time series models via cross-validation 

with an expanding rolling window. Our findings indicate that the random forest 

(RF) algorithm yields the best prediction performances. Based on these results, 

a methodological walk-through example of a comprehensive model selection 

process based on cross-validation with an expanding rolling window is provided 

to encourage implementation in individual practical settings. 

Keywords: Artificial Intelligence, Machine Learning, Call Center Forecasting, Predictive 

Analytics 
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1 Introduction 

Artificial Intelligence (AI) is considered the key enabler for the digitalization of a company in a broad 

spectrum of areas (Brynjolfsson and McAfee, 2017). Today, in the course of increasing availability 

of data, affordable as well as scalable processing power, and the development of advanced machine 

learning (ML) techniques, AI is about to radically transform how firms make decisions (Agrawal et 

al., 2019). It is expected to facilitate the internal decision-making processes of organizations by mak-

ing it smarter, faster, and overall more efficient. To benefit from this potential competitive advantage, 

companies need to identify existing domain problems, find compatible AI solutions, and put an im-

plementation concept into practice (Overgoor et al., 2019). This requires a thorough understanding 

of the task-specific capabilities and feasibility of AI methods like ML. So far, a lack of expertise in 

this area paired with a high level of perceived complexity is often preventing the implementation of 

ML solutions in practical settings (Tambe et al., 2019). 

Particularly the interaction of companies with external stakeholders, such as customers, is about to 

be fundamentally transformed by AI (Kaplan and Haenlein, 2019). Fueled by an almost unlimited 

flow of information about their customers, service-oriented companies in particular, can capitalize on 

AI-driven decision support. Based on latent characteristics and previous customer behavior, ML tech-

niques can predict future interactions (Wedel and Kannan, 2016). One of the most prevalent and 

dominant points of interaction between many organizations and their customers and therefore, critical 

for managing customer experience, are call centers or customer service centers (Whiting and Donthu, 

2006). To constantly provide high service quality in the form of short waiting times at this touchpoint, 

a sufficient number of call center agents is needed (Atlason et al., 2008). Consequently, the process 

of predicting call arrival volumes and deciding on the required staffing level is a critical success factor 

in this area. In this connection, the capabilities of innovative ML techniques promise more flexible 

and precise predictions and thus, the possibility of enhanced organizational planning and better cus-

tomer service. 

Despite the encouraging prospects for service improvement and cost savings, a comprehensive un-

derstanding of the potential of ML models for creating additional value in call center forecasting is 

lacking. In order to gain more profound insights into the performance and practicability of such AI-

driven models in this context, research comprising a methodological perspective with a focus on pre-

diction accuracy as well as a practical angle on the selection and implementation of models is re-

quired. 
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This study proposes a two-step approach that, in the first step, provides a thorough understanding of 

the forecast accuracy of ML methods in call arrival forecasting and, in the second step, makes the 

underlying process of method comparison and selection feasible to decision-makers in practice. Spe-

cifically, we conduct an in-depth analysis of the forecast accuracy of viable ML models based on the 

call arrival data of a real German online retailer. Using two different datasets, i.e., the customer sup-

port and customer complaints queue of the corresponding call center, we perform a comprehensive 

method comparison opposing selected ML models to the three most commonly used time series mod-

els in this field. In the second step, we provide a methodological walk-through example for a valid 

model selection process based on cross-validation with an expanding rolling window. We illustrate 

the practical implementation of the process in a programming environment that is accessible to non-

machine learning experts and practitioners using the random forest (RF) algorithm as the best-per-

forming model for an in-depth example. 

This paper therefore aims to present a starting point for shifting traditional call center forecasting 

towards a paradigm drawing on AI-driven methods. By systematically evaluating the predictive po-

tential of ML models in comparison to commonly used methods, new sophisticated but yet applicable 

models for practical use are identified. In a business setting, following the explicated implementation 

in a reproducible programming environment is supposed to empower practitioners to develop insights 

on the use of ML for forecasting call center arrivals in individual data environments. 

The remainder of this paper is structured as follows: In Section 2, we present the theoretical back-

ground of AI-driven methods in customer analytics and review the state of research in call center 

arrivals’ forecasting, before adequate ML models for this field are introduced. Subsequently, in Sec-

tion 3, we describe the methodology of our research. In Section 4, we present the results of our anal-

ysis for two different customer service channels and in Section 5, we discuss the theoretical contri-

bution and the limitations of our study. We then illustrate the implementation of the best-performing 

RF model by giving a detailed code and walk-through example and demonstrate methodological as 

well as practical implications of the proposed approach. Finally, Section 7 presents a summary and 

concluding remarks. 
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2 Theoretical Background 

2.1 Artificial Intelligence in Customer Analytics 

For businesses, the strategic challenge of understanding and managing customer relationships is be-

coming increasingly important and demanding at the same time. While organizations today have easy 

access to enormous amounts of data about their customers, extracting relevant information to support 

prospective decision-making and thus, standing out from competitors in the long term has become a 

difficult hurdle to overcome for many of them (Kitchens et al., 2018). In the course of these changing 

market dynamics, businesses slowly realize the potential of AI in predictive analytics to enhance 

organizational decision-making by forecasting customer-related data and, therefore, effectively infer 

their future behavior (Huang and Rust, 2018). Predictive analytics techniques generally comprise 

statistical models and other empirical methods aimed at creating predictions as well as approaches 

for assessing the quality of those predictions in practice (Shmueli and Koppius, 2011). More recently, 

ML as a subset of AI has been added to the domains contributing effectively to business prediction 

problems as they provide a way to handle complex problems by forecasting future data based on more 

extensive sets of historical values (Chen et al., 2012). In literature, innovative ML approaches have 

been successfully applied to various customer analytics problems such as customer preferences anal-

ysis (Yang and Allenby, 2003), customer retention (Donkers et al., 2003), and customer profitability 

management (Reinartz et al., 2005). 

However, so far, the practical implementation of ML models in predictive customer analytics is lim-

ited (Wedel and Kannan, 2016). Drawing on the early distinction between forecasting methods and 

forecasting systems proposed by Harrison and Stevens (1976) may explain this slow adoption. While 

the former transforms input data into output information in a mere technical way, the latter in addition 

includes the people concerned with the forecast and the resulting actions. Based on that view, the 

evaluation and selection of a forecasting system explicitly go well beyond the accuracy of its predic-

tion model and includes meaning and usability in practical implementation. In terms of this applica-

bility, many ML approaches still exhibit shortcomings as they do not provide much insight into the 

influence and dynamics of the underlying factors that lead to the prediction results (Martens et al., 

2011; Najafabadi et al., 2015). Due to this lack of comprehensibility and interpretability, many ML 

techniques are commonly considered as black box models (Doshi-Velez and Kim, 2017; Guidotti et 

al., 2019). Moreover, such models are frequently perceived as complex regarding the implementation. 

A high number of hyperparameters gives models the flexibility of adapting to a multitude of business 
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problems but, at the same time, makes it complex for the user to build and optimize the ML algorithm. 

This especially applies to the broad class of artificial neural networks (Bergstra et al., 2011; Paliwal 

and Kumar, 2009). For the above reasons, other categories of ML approaches come into the focus for 

practical use. 

Widely established methods like support vector machines and Bayesian approaches promise ease of 

use while maintaining good performance levels on data sets characterized by moderate complexity 

(Arora et al., 1998; Verbeke et al., 2011). Tree-based models, and in this field especially ensemble 

learning methods like RF and gradient boosting, gained popularity for their robustness and flexibility 

in modeling input–output relationships of various types and volumes of highly complex data (Fang 

et al., 2016; Lemmens and Croux, 2006). Research found them to provide high prediction accuracy 

as well as descriptive results in diverse customer analytics problems such as churn analysis (Burez 

and van den Poel, 2009) and credit risk management (Fantazzini and Figini, 2009). In addition, a 

small number of hyperparameters makes their construction, customization, and optimization more 

manageable and comprehensible (Breiman, 2001).  

2.2 Call Center Arrivals’ Forecasting 

In recent years, the role of call centers has fundamentally changed in many organizations and across 

all industries. While call centers previously only had an information function which did not exceed 

simple order processes, nowadays, more and more complex tasks and customer demands need to be 

fulfilled across multiple communication channels using modern digital technology (Aksin et al., 

2007). However, instead of experiencing declining importance in the course of this transformational 

process, the opposite is the case. Call centers are increasingly transforming into customer interaction 

centers that form the basis for an efficient and value-oriented customer relationship management 

(Gans et al., 2003). They constitute an interface to the customer and provide complex services, while, 

at the same time, giving companies the opportunity of collecting large amounts of otherwise inacces-

sible customer data (Ibrahim et al., 2016). Subsequently, it is possible to anticipate customer needs 

and behavior through data analysis and forecasting techniques (Taylor, 2008). Based on those in-

sights, internal processes and external expectations can be aligned to optimize business performance 

as well as customer experience. 

One of the most important internal processes in call centers is the staffing of agents as customer 

service representatives who directly handle tasks such as order taking, complaint resolution, infor-

mation, and help desk functions as well as after-sales and supplementary services (Dean, 2007; Koole 
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and Pot, 2005). While overstaffing results in high personnel costs, understaffing can lead to extended 

waiting times for customers and consequently causes lower perceived service quality, decreasing 

customer satisfaction, and a lack of customer loyalty (Brady and Cronin, 2001). To determine the 

optimal staffing level, an accurate and robust prediction of call arrival volumes based on historical 

data is needed (Weinberg et al., 2007). Hence, the search for appropriate forecasting methods is the 

focus of scholars and practitioners alike. However, preceding literature so far mainly investigated 

traditional statistical models without taking into account the substantial changes coming along with 

the transforming role of call centers in organizations (Gans et al., 2003). Today, the increasing volume 

and variety of data through a multitude of channels as well as the necessity of realtime analysis and 

predictions call for more flexible and powerful methods.  

Call center arrivals are count data limited to non-negative integers. Such discrete data are frequently 

estimated as Poisson arrival rates (see e.g., Cezik and L’Ecuyer (2008); Taylor (2012)). However, 

with arrival rates not being easily predictable, other researchers point out ascertained randomness of 

arrivals in real call centers (see e.g., Aksin et al. (2007); Shen and Huang (2008)). Generally, call 

center arrivals data exhibit specific characteristics and challenges that affect the forecasting process. 

Firstly, an important feature of call arrival rates is their time dependence that typically manifests itself 

in intraday (or subdaily), daily, weekly, monthly, or yearly seasonalities as repeating patterns in the 

arrival counts (Ibrahim et al., 2016). Secondly, the data are often high-dimensional and sensitive to 

contextual factors. Hence, additional information like holidays, promotional activities, and other spe-

cial events may improve model predictions by indicating variations and outliers in the data (Barrow 

and Kourentzes, 2018). Thirdly, procedural characteristics are affecting the forecasting of incoming 

calls, such as (a) the specific call type (e.g., complaints, order taking, or after-sales service) associated 

with the forecast, (b) the length of forecast intervals, which may commonly range from monthly or 

weekly to daily or even sub-daily (i.e., hourly, half-hourly etc.) time spans, and (c) the period between 

the creation of the forecast and the first interval of the prediction, i.e., the lead time. Lead time is an 

organizational parameter resulting from staffing regulations and is assumed to strongly affect forecast 

accuracy as more recent data promise better predictions (Aksin et al., 2007; Rausch and Albrecht, 

2020). Given these properties, the need for methods with high modeling flexibility, while being able 

to handle time dependencies and complex data structures, becomes evident. 

With time dependence often being considered as one of the predominant features of the call arrival 

data, common forecasting techniques in research mostly originate from the field of time series anal-

ysis with call arrivals being a set of contiguous, dependent observations 𝑦(𝑡)  =  0, 1, 2, . .., each one 
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being recorded sequentially at time t (Box et al., 2015). The most widely investigated and compared 

methods in literature include simple stationary time series models as well as the nonstationary sea-

sonal autoregressive integrated moving average (ARIMA) model (Box and Jenkins, 1970), Holt Win-

ters’ exponential smoothing models (Holt, 2004; Winters, 1960), and random walk methods (Taylor, 

2008). While ARIMA and exponential smoothing provide sophisticated complementary solutions to 

the general forecasting problem (Hyndman and Athanasopoulos, 2018) and constitute the most com-

monly used approaches in call center forecasting due to their high prediction accuracy (Andrews and 

Cunningham, 1995; Barrow and Kourentzes, 2018; Mabert, 1985; Taylor, 2012; Thompson and Tiao, 

1971), the random walk model is frequently utilized as a benchmark within literature due to its na¨ıve 

forecasts and its informative value for model comparisons (Taylor, 2008). Besides, regression analy-

sis in the form of generalized linear models (GLM), linear fixed-effects, random-effects, and mixed-

effects models is implemented for call arrivals’ forecasting (Avramidis et al., 2004; Ibrahim and 

L’Ecuyer, 2013; Nelder and Wedderburn, 1972). 

In contrast, research on ML techniques in call center arrivals’ forecasting is still in its infancy. Ebadi 

Jalal et al. (2016) first indicate time-sensitive ML models to be eligible for forecasting call volumes 

in call centers. To improve short-term accuracy in call arrivals’ forecasting, Barrow (2016) developed 

a hybrid method adjusting seasonal moving average predictions by means of nonlinear artificial neu-

ral networks and found it to outperform traditional time series models like ARIMA and Holt Winters’. 

Moreover, ML is shown to be capable of modeling complex outliers and thus, to improve call arrival 

prediction accuracy and to yield better results than ARIMA and an innovation state space model 

(ETS) (Barrow and Kourentzes, 2018). Recently, Rausch and Albrecht (2020) investigated RF algo-

rithm as another ML method in their comparison of novel time series and regression models for call 

center arrivals forecasting. RF was found to yield higher prediction accuracy for nearly all of the 

considered lead time constellations. Despite first promising findings and the investigation of several 

approaches, current research lacks a comprehensive understanding of the full capabilities of ML in 

call center forecasting. To close this gap, an extensive assessment of the forecast accuracy of ML 

models in comparison to the most commonly used methods is still to be done. However, according to 

comparisons of common methods conducted on call center data, the selection of the best forecasting 

method can ultimately be highly dependent on the characteristics of the specific prediction problem 

(Andrews and Cunningham, 1995; Taylor, 2008). Therefore, a feasible process of model comparison 

and selection needs to be established to give methodological guidelines to practitioners and to match 

the set of researched forecasting methods with those considered in practice. Today, although a lot of 
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progress has been made regarding the development of advanced methods, call arrivals’ forecasting in 

real business environments is frequently still done based on experience or ordinary stochastic models 

with limited predictive capabilities (Ibrahim et al., 2016). 

2.3 Machine Learning Approaches 

Models from the field of ML are assumed to improve call center arrivals’ forecasting and extend the 

range of feasible methods by providing additional robustness and accuracy to predictions. As the 

practicability of models play a central role in this field of application, non-parametric ML algorithms, 

that are comprehensible and comparatively easy to implement, such as tree-based models, k-nearest 

neighbor (KNN) algorithm, and support vector machines, come to the fore (Coussement and van den 

Poel, 2008; Li et al., 2010; Singh et al., 2017). 

2.3.1 Bagging: Random Forest 

Tree-based methods are frequently utilized in business prediction problems since they yield desirable 

accuracies despite their ease of use (Breiman, 2001). In bagging, successive decision trees are grown 

independently from earlier trees, i.e., each tree is constructed using a bootstrap sample of the data 

(Breiman, 1996). A subclass of bagging methods are RFs, as proposed by Breiman (2001), which add 

an additional layer of randomness to bagging and change how the trees are constructed. Thereby, 

non-parametric the RF algorithm is one of the most widely used ML algorithms, supported by its 

robustness towards outliers and its moderate computation time compared with boosting and other 

bagging methods (Breiman, 2001). 

The algorithm draws 𝑛𝑡𝑟𝑒𝑒 bootstrap samples from the training data and then grows an unpruned 

regression tree for each bootstrap sample by randomly sampling 𝑚𝑡𝑟𝑦 of the predictors at each node 

and choosing the best split among them. More formally, the resulting RF is an ensemble of 𝐵 trees 

{𝑇1(𝑋), … , 𝑇𝐵(𝑋)}, where 𝑋 = {𝑥1, … , 𝑥𝑝} is a 𝑝-dimensional vector of predictors associated with a 

dependent variable; the ensemble produces 𝐵 outputs {�̂�1 = 𝑇1(𝑋), … , �̂�𝐵 = 𝑇𝐵(𝑋)}, where �̂�𝑏 , 𝑏 =

1, … , 𝐵 is the prediction for the dependent variable by the 𝑏th tree (Svetnik et al., 2003). The outputs 

of all 𝑛𝑡𝑟𝑒𝑒 trees are aggregated to produce one final prediction �̂�; for regression trees it is the average 

of the single tree predictions (Liaw and Wiener, 2002). I.e., the RF prediction is the unweighted 

average over the ensemble: 

�̂� =
1

𝐵
∑ �̂�𝐵

𝐵

𝑏=1

(𝑇𝐵(𝑋)) 
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To tune the hyperparameters, an estimate of the error rate based on training data can be obtained: at 

each bootstrap iteration, the data which is not in the bootstrap sample, i.e., the out-of-bag (OOB) data 

n, is predicted by using the tree grown with the bootstrap sample. Then the OOB predictions are 

aggregated, and the error rate is calculated (Liaw and Wiener, 2002). In each bootstrap training set, 

about one-third of the sample is left out, i.e., is used for OOB predictions (Breiman, 2001). 

2.3.2 Boosting: Gradient Boosting Machines 

In contrast to bagging, boosting constructs successive weak learners (e.g., decision trees) to produce 

a final strong learner. Each sequentially added weak learner intends to correct the preceding learners 

(Schapire, 1990). Thereby, gradient boosting (machines) fits the new predictor or learner to the re-

sidual errors made by the preceding predictors or learners and uses gradient descent to identify the 

errors in the previous predictions, i.e., gradient boosting allows the optimization of an arbitrary dif-

ferentiable loss function (Friedman, 2001; Friedman, 2002). Formally, 𝐽𝑚 are the number of leave 

and the tree partitions the input space into 𝐽𝑚  joint regions 𝑅1𝑚, … , 𝑅𝐽𝑚𝑚 and predicts a constant 

value in each region. 𝛾𝑖𝑚 is the multiplier chosen as an optimal value for each of the tree’s regions to 

minimize the loss function 𝐿. Then the generic gradient tree boosting model can be defined as 

Fm(x)=Fm-1(x) + ∑ 𝛾𝑖𝑚

𝐽𝑚

𝑖=1

1(𝑥 ∈ 𝑅𝑖𝑚), with γ
im

= arg min
𝛾

∑ 𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛾)

𝑥𝑖∈𝑅𝑖𝑚

. 

Since gradient boosting frequently leads to overfitting, regularization techniques can be included to 

constrain the fitting procedure. E.g., dropout regularization – inspired by neural networks in a deep 

learning context – grows consecutive trees from the residual errors of a subset or sample of previous 

trees instead of using all previous trees (Rashmi and Gilad-Bachrach, 2015). 

2.3.3 K-Nearest Neighbor 

The KNN algorithm is frequently considered due to its simplicity in comparison with other ML ap-

proaches. The algorithm was first formalized by Cover and Hart (1967) for classification tasks: given 

an unlabeled instance, the algorithm finds a group of 𝑘 most similar objects (or nearest neighbors 

respectively) given its features by computing the distance 𝑑(. , . ) (e.g., Euclidean distance) between 

them and further, assigns a class label which matches the class of the majority of the 𝑘 neighbors. 

This concept can easily be extended to regression tasks where the output is the average of the 𝑘 near-

est neighbors, i.e., 
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�̂� =
1

𝐾
∑ 𝑦𝑖

𝐾

𝑖=1

 

where 𝑦𝑖 is the 𝑖th case of the nearest neighbors. 

2.3.4 Support Vector Regression 

Suppose we are given a space of input patterns 𝒳, i.e., the training data, {(𝑥1, 𝑦1), … , (𝑥𝑘 , 𝑦𝑘)} ⊂

𝒳 × ℝ with 𝑦𝑘 being the output vectors and 𝑥𝑘 are the input vectors. The basic support vector ma-

chine is a non-probabilistic binary linear classifier and it non-linearly maps input vectors into a higher 

dimensional feature space in which a linear decision surface, i.e., a separating hyperplane, is con-

structed (Cortes and Vapnik, 1995; Vapnik, 1982). Thus, its representation of the training data as 

points in the feature space is separated into categories by the hyperplane and predictions of new in-

stances are classified into those categories. The main aim in 𝜀-support vector regression (SVR) (Vap-

nik, 1995) is based on the same principles but with minor differences: the function 𝑓(𝑥) should have 

at most 𝜀 deviation from the actual targets for the training data and simultaneously, should be as flat 

as possible (Smola and Schölkopf, 2004). In the linear and most basic case, 𝑓 is taking the form 

𝑓(𝑥) = 〈𝜔, 𝑥〉 + 𝑏 with 𝜔 ∈ 𝒳, 𝑏 ∈ ℝ 

where 〈∙,∙〉 is the dot product in the space of input patterns 𝒳. To ensure flatness, a small 𝜔 can be 

obtained by a convex optimization problem: 

minimize 
1

2
‖𝜔‖2 

subject to {
𝑦𝑡 − 〈𝜔, 𝑥𝑖〉 − 𝑏 ≤ 𝜀
〈𝜔, 𝑥𝑖〉 + 𝑏 − 𝑦𝑖 ≤ 𝜀

 

It assumes that function 𝑓approximates all pairs 〈𝑥𝑖, 𝑦𝑖〉 with 𝜀 precision. Slack variables 𝜉𝑖, 𝜉𝑖
∗ can 

cope with such otherwise infeasible constraints of the optimization problem. Moreover, kernels can 

be used to make SV algorithms nonlinear by transforming the data into a higher dimensional feature 

space (Smola and Schölkopf, 2004). 
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3 Methodology 

3.1 Preliminary Data Analysis 

We analyze call center data of a leading German online retailer for fashion that were gathered and 

selected iteratively and in close exchange with the local data experts and department managers. Over-

all, the retailer’s call center comprises four different queues: customer complaints, customer support, 

personal consultation service, and order taking. In this paper, we investigate two datasets describing 

the call arrival volume of the customer support and customer complaints queue. Both are open from 

7 a.m. to 10 p.m. from Monday through Saturday. The half-hourly datasets comprise 31,410 obser-

vations or 174.5 weeks of data from January 2, 2016 to May 7, 2019. One day comprises 30 obser-

vations, one week consists of 180 observations, and one year comprises 9,367.5 observations consid-

ering leap years. We exclude two weeks of data (or 360 observations) since these values are missing 

due to an internal system change for interval capturing. 

 

Fig. 1. Overall call arrival volume of customer support queue. 
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Fig. 2. Averaged call distribution per day for customer support queue. 

For the customer support queue, the maximum number of call arrivals per half hour is 378, and the 

data comprise 2,218 zeroes, i.e., intervals without call arrivals. The customer support data are over-

dispersed, exhibiting a mean of 70.9539 and a variance of 2,181.6742. We conducted an Augmented 

Dickey Fuller (ADF) test to check whether the data have unit root and hence, are nonstationary: we 

cannot reject the null hypothesis of unit root in the data with a p-value of 0.9798 at lag order 9,360 

(value of test statistic -0.5469) and thus, assume that our data are nonstationary. Consequently, we 

have to apply time series decomposition to our time series models. Drawing on seasonal-trend de-

composition based on Loess (STL) (Cleveland et al., 1990), the time series is detrended and desea-

sonalized resulting in a seasonal component Sˆ t and a seasonally adjusted component Aˆ t , i.e., the 

data without a seasonal component. The latter can be forecasted with any non-seasonal forecasting 

method, whereas the seasonal component is forecasted by using the last period of the estimated com-

ponent, i.e., a seasonal na¨ıve method. Finally, inverting the decomposition’s transformations yields 

the forecasts of the original time series (Brockwell et al., 2002). 

Figure 1 depicts the arrival volume of the customer support queue during the 174.5 weeks of our data. 

Apparently, the call arrival volume remains more or less constant throughout the considered period. 
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With respect to the averaged call distribution per day in Figure 2, Mondays are the busiest days with 

an extremely high peak in the morning hours. The remaining weekdays exhibit a relatively similar 

course with a peak in the morning and a second peak during the afternoon. In contrast, there are few 

call arrivals on Saturdays. 

 

Fig. 3. Overall call arrival volume of customer complaints queue. 
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Fig. 4. Averaged call distribution per day for customer complaints queue. 

Regarding the customer complaints queue, the maximum number of call arrivals per interval is 53, 

and the dataset contains 6,551 intervals without call arrivals. Since we cannot reject the null hypoth-

esis of the ADF test with a p-value of 0.7905 at lag order 9,360 (value of test statistic -1.5009) we 

assume our data to have unit root and, consequently, to be nonstationary. Accordingly, time series 

decomposition is applied to the time series model. Similar to the customer support queue, Figure 3 

shows the overall arrival volume of the customer complaints queue: the call arrival volume remains 

relatively constant over time, but there is a slight increase towards the end of the dataset. Figure 4 

reveals that the customer complaints’ averaged call distribution per day is similar to the customer 

support queue on a lower level. 

We model predictor variables (summarized in Table 1) to yield more accurate forecasts. Largely, our 

variables align with those of extant literature such as weekdays and billing periods (Aldor-Noiman et 

al., 2009) or holidays and catalog mailings (Andrews and Cunningham, 1995). 
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Table 1: Predictor Variables. 

Variable Description 

Time-of-the-day 
Nominal variable capturing the time-of-the-day-effect;  

30 half-hourly values ranging from 7 a.m. to 9:30 p.m. 

Day-of-the-week 
Nominal variable capturing the day-of-the-week-effect;  

six values ranging from Monday to Saturday 

Holiday 
Nominal variable capturing the effect of German public holidays;  

16 values for public holidays and ordinary weekdays 

Day after holiday 
Dummy variable capturing the effect of days after German public holidays,  

two values for days after holidays and ordinary weekdays 

Outlier 

Nominal variables capturing the effect of outliers;  

four values for extreme outliers as well as outliers (marked by the 

management), days on which the call center is closed, and ordinary weekdays 

School holidays 
Metric variable capturing the effect of German school holidays;  

specifying the number of German states having school holidays 

Year 
Nominal variable capturing the effect of busier seasons;  

eight values for semiannual sections from January 2016 to May 2019 

CW0-3 
Four dummy variables capturing the effect of catalog mailings on the first 

weekend, as well as the first, the second, and the third week after release 

MMail1-2,  

MPost1-2,  

DMail1-2 

Six dummy variables capturing the effect of reminders via e-mail (MMail) 

as well as via mail (MPost) and due date e-mails (DMail) on the day of 

delivery and the day after 

3.2 Research Design 

To evaluate the predictive power of adequate ML approaches and to ensure the practical value of our 

study, we follow a two-step approach. It comprises the analysis of prediction performance in the form 

of a method comparison in line with extant forecasting research (see e.g., Taylor (2008); Cao and 

Parry (2009)) and, as proposed by Buitinck et al. (2013), an in-depth walk-through example of the 

process of model comparison and selection to make the practical implementation accessible to deci-

sion-makers and non-experts. 

In the first step, we conduct a model comparison of selected ML methods, presented in Section 2.3 

(i.e., gradient boosting with dropout (GBD), gradient boosting with L1 and L2 regularization (GBR), 

KNN, RF, and SVR) with the three most commonly used time series models identified in Section 2.2 

(i.e., ARIMA, ETS, and RW, for further formal information on these time series approaches readers 

are referred to the Appendix). The included methods summarized in Table 2 cover sophisticated ML 
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and time series models as well as standard benchmark techniques. The model performance is evalu-

ated based on the two datasets described in Section 3.1, and we include four different lead times in 

our experimental setup (three weeks, two weeks, one week, and no lead time from the forecast origin). 

This is done to validate our results as well as to assess the flexibility of the investigated models in an 

authentic forecasting situation that is comparable to real call center settings with specific organiza-

tional requirements like staffing regulations. We thereby aim to provide an extensive and robust as-

sessment of the prediction accuracy of feasible ML models in call center arrivals’ forecasting. 

For model validation, we apply cross-validation with an expanding rolling window. Thereby, the 

initial model is fitted with its optimized hyperparameters using 118 weeks or 21,270 observations 

from January 2, 2016 to April 7, 2018 as training data. We then predict one week or 180 observations 

(i.e., forecast horizon ℎ =  180). For the next iteration k, we roll the training data one week forward, 

re-optimize the model’s hyperparameters or re-estimate the model respectively, and predict one week 

further. We repeat this step 52 times, i.e., for one year, and thus, 𝑘 =  52. As stated earlier, we have 

to exclude two weeks of data from October 22, 2018 to November 4, 2018 and thus, we predict 9,000 

observations. We evaluate the models’ performance by comparing the predictions with the actual 

values, i.e., the test data, and hence, compute forecast accuracy. 
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Table 2: Models for comparison. 

Model type Model Description 

 

 

ML 

approaches 

GBD 

Algorithm builds an ensemble of weak tree learners, min- 

imizes the model’s loss by adding weak learners sequen- 

tially using a gradient descent like procedure, and ran- 

domly drops boosting tree members 

GBR 

Algorithm builds an ensemble of weak linear base learners 

and utilizes L1 (Lasso Regression) as well as L2 

(Ridge Regression) regularization 

KNN 
Algorithm predicts an observation by averaging the 

values of the k nearest neighbors 

RF 

Algorithm builds an ensemble of decision trees using a 

bootstrap sample of the data for each tree and averages the 

aggregated prediction of the trees 

SVR 

Algorithm builds a separating hyperplane into the feature 

space of output and input vectors which should have at most 

ε deviation from the actual targets and should 

be as flat as possible 

 

Time series 

models 

STL 

+ 

ARIMA 

Time series is decomposed based on the Loess procedure 

and the seasonally adjusted component is fore- casted 

based on the time series’ lagged values and lagged errors 

STL 

+ 

ETS 

Time series is decomposed based on the Loess procedure 

and the seasonally adjusted component is fore- 

casted based on previous level and error 

STL RW 

- 

DRIFT 

Time series is decomposed based on the Loess procedure 

and the seasonally adjusted component is forecasted based 

on the time series’ last observation and the 

average of changes between consecutive observations 

Note: ARIMA = autoregressive integrated moving average, ETS = error, trend, seasonal (innovation state space model), 

GBD = gradient boosting with dropout, GBR = gradient boosting with regularization, KNN = k-nearest neighbor, RF = 

random forest, RWDRIFT = random walk with drift, STL = seasonal-trend decomposition based on Loess, SVR = sup-

port vector regression. 
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As performance measures for forecast accuracy, we draw on the mean absolute error (MAE) and the 

root mean squared error (RMSE) 

MAE =
1

𝑇
∑ |𝑌𝑖 − �̂�𝑖|

𝑇
𝑖=1        RMSE = √

1

𝑇
∑ (𝑌𝑖 − �̂�𝑖)²𝑇

𝑖=1  

where the test subset is given by 𝑌𝑖, the predicted values are �̂�𝑖, and 𝑇 is the number of predicted 

values. Both error measures are frequently utilized by literature to determine accuracy (e.g., see (Al-

dor-Noiman et al., 2009; Ibrahim et al., 2016; Taylor, 2008; Weinberg et al., 2007)) since they are 

easy to interpret and further, scale-dependent and therefore, suitable to compare forecasts on the same 

scale. Complementary, we report the computation time of both the benchmark time series models as 

well as the ML approaches to capture computational complexity and add practical value to the results. 

In the second step, in Section 6, we provide a methodological walk-through example for a valid model 

selection process based on cross-validation with an expanding rolling window. By illustrating differ-

ent sequences of the implemented programming code used in the experimental design of the first step, 

we conduct the comparison and selection of the most suitable forecasting method comprehensible to 

organizational decision-makers and detach the study’s value from specific characteristics of our da-

tasets by making the implemented approach reproducible. Additionally, we aim to provide further 

evidence for the practical applicability of adequate ML algorithms in call center forecasting. There-

fore, we do not only describe the generic programming of time series cross-validation with an ex-

panding rolling window but further give detailed insights into the implementation of RF algorithm as 

the best-performing ML model in our preceding analysis. We also provide guidance on how to meas-

ure MAE, RMSE, and computation time in the process. For the methodological walkthrough, we 

make use of the open-source statistical programming language R (Ihaka and Gentleman, 1996). 

Drawing on the combined results of both method evaluation and overall implementation process, we 

then derive practical implications for organizations. 

4 Results 

Drawing on the results for the customer support queue in Table 3 and Table 4, the RF algorithm 

outperforms the remaining approaches in every lead time constellation: with respect to both MAE 

and RMSE, the model yields the most accurate forecasts. The GBD, GBR, and SVR models yield 

comparable results, whereas the KNN approach was the most inaccurate forecasting method. Gener-

ally, every considered ML approach is superior to the benchmark time series models for all lead time 

constellations (except for the KNN method). Among the time series models, the ETS model is the 
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best-performing approach. Overall, the models’ performances worsen slightly with increasing lead 

time. 

Regarding computation time, the RWDRIFT model was excelling with an estimation time of 39 sec-

onds1 for 52 iterations of the expanding rolling window. The remaining time series models yield 

comparable low computation times with 142.41 seconds for ETS and 1,260.94 seconds for ARIMA. 

The AI-driven methods are computationally more intensive with 61,423.71 seconds estimation time 

for GBR, 93,861.33 seconds for KNN, 171,380.33 seconds for SVR, and 184,367.70 seconds for 

GBD. With 75,185.62 seconds for the estimation procedure of the rolling window, the RF algorithm 

provides an acceptable trade-off between accuracy and computation time: for the prediction of one 

iteration k (i.e., of the forecast horizon h = 180 observations), the model takes 24.1 minutes. 

Table 3: MAE results for customer support arrivals’ forecasts. 

Lead time 

Model 
No lead time One week Two weeks Three weeks 

GBD 13.4601 13.6603 13.9540 14.2203 

GBR 12.9393 13.1488 13.3987 13.7386 

KNN 18.2068 18.8704 19.2332 19.8064 

RF 11.7544 11.8129 12.0648 12.8134 

SVR 13.2325 13.2063 13.2256 13.6019 

STL+ARIMA 14.5263 14.7407 15.5448 15.8520 

STL+ETS 14.5152 14.5382 15.2424 15.7428 

STL+RW 14.6651 14.6334 15.2941 15.7877 

Note: The best accuracy results for each lead time are marked in bold. ARIMA = autoregressive integrated moving av-

erage, GBR = gradient boosting with regularization, GBD = gradient boosting with dropout, ETS = error, trend, sea-

sonal (innovation state space model), KNN = k-nearest neighbor, RF = random forest, RWDRIFT = random walk with 

drift, STL seasonal-trend decomposition based on Loess, SVR = support vector regression. 

 

 

 

 

 

 
1 With 40 GB RAM. 



71 
 

 

Table 4: RMSE results for customer support arrivals’ forecasts. 

Lead time 

Model 
No lead time One week Two weeks Three weeks 

GBD 18.8706 19.0480 19.3644 19.9452 

GBR 18.1216 18.3299 18.6043 19.3079 

KNN 24.9867 25.9203 26.3528 27.6355 

RF 15.5678 16.6541 16.8929 18.4903 

SVR 18.3313 18.4081 18.3059 18.9199 

STL+ARIMA 22.7009 23.1810 24.2187 25.0726 

STL+ETS 22.9251 23.0876 23.9239 24.7768 

STL+RW 23.0503 23.1555 23.9506 24.7793 

Note: The best accuracy results for each lead time are marked in bold. ARIMA = autoregressive integrated moving av-

erage, GBR = gradient boosting with regularization, GBD = gradient boosting with dropout, ETS = error, trend, sea-

sonal (innovation state space model), KNN = k-nearest neighbor, RF = random forest, RWDRIFT = random walk with 

drift, STL seasonal-trend decomposition based on Loess, SVR = support vector regression. 

To check the robustness of our results, we further consider the queue for customer complaints call 

arrivals. Since there are less call arrivals compared to the customer support queue, the MAE and 

RMSE are generally lower. Similar to the previous findings, the RF yields the most accurate forecasts 

compared with the remaining approaches for all considered lead times except for the MAE result with 

two weeks lead time for which GBR is found to be superior (see Table 5 and 6). Aside from RF, GBR 

is outperforming the RWDRIFT model. 

The remaining models (i.e., GBD, KNN, and SVR) generate slightly more inaccurate forecasts. More-

over, with the lead time extending, the MAE and RMSE results worsen steadily in most cases. 
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Table 5: MAE results for customer complaints arrivals’ forecasts. 

Lead time 

Model 
No lead time One week Two weeks Three weeks 

GBD 3.7668 3.8067 3.8933 3.9694 

GBR 3.6058 3.6962 3.3783 3.8362 

KNN 4.5016 4.7366 4.8095 4.8350 

RF 3.3561 3.4348 3.5629 3.6746 

SVR 4.3283 4.2826 4.3224 4.2830 

STL+ARIMA 3.7197 3.7639 3.8297 3.9073 

STL+ETS 3.6990 3.7475 3.8199 3.9163 

STL+RW 3.6589 3.7460 3.7968 3.9017 

Note: The best accuracy results for each lead time are marked in bold. ARIMA = autoregressive integrated moving av-

erage, GBR = gradient boosting with regularization, GBD = gradient boosting with dropout, ETS = error, trend, sea-

sonal (innovation state space model), KNN = k-nearest neighbor, RF = random forest, RWDRIFT = random walk with 

drift, STL seasonal-trend decomposition based on Loess, SVR = support vector regression. 

Table 6: RMSE results for customer complaints arrivals’ forecasts. 

Lead time 

Model 
No lead time One week Two weeks Three weeks 

GBD 5.3580 5.4212 5.5593 5.6714 

GBR 5.2140 5.3527 5.4871 5.5734 

KNN 6.4708 6.8279 6.9224 6.9549 

RF 4.9422 5.0672 5.2338 5.3791 

SVR 5.9909 6.0502 6.1240 5.9487 

STL+ARIMA 5.5152 5.5807 5.6783 5.8243 

STL+ETS 5.4833 5.5559 5.6635 5.8210 

STL+RW 5.3958 5.4754 5.5949 5.7647 

Note: The best accuracy results for each lead time are marked in bold. ARIMA = autoregressive integrated moving av-

erage, GBR = gradient boosting with regularization, GBD = gradient boosting with dropout, ETS = error, trend, sea-

sonal (innovation state space model), KNN = k-nearest neighbor, RF = random forest, RWDRIFT = random walk with 

drift, STL seasonal-trend decomposition based on Loess, SVR = support vector regression. 

To gain further insights regarding the models’ performance, we plotted the last predicted week (i.e., 

180 observations) for the customer support queue. Figure 5 depicts the time series models’ predic-

tions, whereas Figure 6 illustrates the machine learning models’ predictions. On the first day of the 

week (i.e., Monday), the call center was closed, and consequently, this led to an exceptionally high 

arrival volume on the day after. Apparently, the time series models cannot capture such special days 

due to the lack of additional information, i.e., predictor variables indicating e.g. holidays and days 



73 
 

 

after. The remaining ML models capture ordinary weekdays and further, such special days more ac-

curately since they allow for the inclusion of explanatory variables for prediction. Consequently, the 

ML approaches exceed the time series models regarding predictive performance. 

 

Fig. 5. Last predicted week of the time series models. 

Note: The bold line represents the actual values. ARIMA = autoregressive integrated 

moving average, ETS = error, trend, seasonal (innovation state space model), 

RWDRIFT = random walk with drift. 
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Fig. 6. Last predicted week of the machine learning models. 

Note: The bold line represents the actual values. GBD = gradient boosting with drop-

out, GBR = gradient boosting with regularization, KNN = k-nearest neighbor, RF = 

random forest, SVR = support vector regression. 

5 Discussion 

The underlying investigation entails several theoretical implications and contributions made to liter-

ature. We present a starting point for shifting traditional call center forecasting literature towards a 

new paradigm drawing on AI-driven methods by providing a comprehensive understanding of the 

predictive potential of ML models. As traditional forecasting literature (Mabert, 1985; Thompson and 

Tiao, 1971; Andrews and Cunningham, 1995; Taylor, 2008, 2012; Barrow and Kourentzes, 2018) is 

predominantly characterized by the use of time series models, we intend to broaden this perspective: 

Across the two datasets examined, our investigated ML algorithms outperform benchmark models as 

well as more sophisticated time series models that prior studies most commonly focused on (e.g., 

ARIMA, exponential smoothing, etc.) in nearly all lead time constellations. Thereby, extending the 

research on call arrival forecasting techniques with ML approaches like GBR, GBD, KNN, RF, and 

SVR in this analysis leads to a wider range of methods to generate predictions that are more accurate. 
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Our comprehensive model comparison underpins the preliminary findings of previous studies (Bar-

row, 2016; Ebadi Jalal et al., 2016; Rausch and Albrecht, 2020), which used single AI-driven methods 

like RF or neural networks, indicating that ML techniques are capable of improving the accuracy of 

call center arrivals’ forecasts. Our results prove that tree-based methods and particularly the RF al-

gorithm yield the highest potential for significantly improving forecast accuracy. This finding is rep-

licated for a considerably lower level of call arrival volume in the customer complaints queue. 

With regard to the models’ practicability, which was neglected by extant literature so far, we are first 

to consider simultaneously different lead times (i.e., three weeks, two weeks, one week, and no lead 

time), the trade-off between complexity (i.e., estimation time and computation effort), and forecast 

accuracy in the model comparison. Extant call center forecasting literature focused mainly on forecast 

accuracy as a primary decision criterion or considered varying forecast horizons (Aldor-Noiman et 

al., 2009; Barrow, 2016; Taylor, 2008, 2012) while keeping lead times constant and neglecting com-

plexity. Results prove the leading ML models, and especially RF, to be highly relevant for practical 

use as their forecast accuracy is less affected by lead time extension. Computation effort, on the other 

hand, is moderate, and implementation is feasible. 

Additionally, we took a closer look at the main reasons for the superiority of ML models. Shedding 

light on the predictions of special days, such as days after holidays, indicates that ML methods excel 

in coping with anomalous values as predictor variables are included in 19 the generated ex-post fore-

casts. Hence, one of the main aspects of ML approaches outperforming traditional time series models 

is assumed to be the ability to capture additional information on the predicted date or customer contact 

activities by businesses with the inclusion of predictor variables. Thereby, this characteristic of ML 

techniques makes them not only stand out in terms of forecast accuracy when it comes to outliers 

(Barrow and Kourentzes, 2018) but also positively affects the overall prediction performance over 

longer time periods. Nevertheless, albeit few suggestions regarding useful predictor variables have 

been made (e.g., catalog mailings and holidays (Andrews and Cunningham, 1995) or billing cycles 

(Aldor-Noiman et al., 2009)), research still lacks a comprehensive understanding on suitable predictor 

variables for call center arrivals’ forecasting. We thus add to the existing body of literature by high-

lighting that variables such as the time of the day, day of the week, holidays, days after holidays, 

catalog mailings, and reminders provide valuable information for modeling ex-post forecasts. 

The empirical results reported herein should be considered in the light of some limitations. The pri-

mary limitation to the generalization of these results accompanies one of the strengths of the study. 
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Keeping in mind the required balance between prediction accuracy and model complexity, we focus 

on practical relevance in our model selection and neglect models like e.g. sophisticated types of arti-

ficial neural networks since such models are time-consuming in estimation, and thus, inadequate for 

practical use. We also refrain from developing and testing an own method. With an abundance of 

different ML methods and modifications in literature, we apply ready-to-use methods that are com-

paratively easy to implement and present a methodological extension to research in the form of a 

novel implementation focus. Second, the models’ prediction performances are depending on the un-

derlying data and, thus, are assumed to vary slightly for different datasets. Therefore, we validate the 

models’ forecast accuracy on two datasets to prove the robustness of our results and further provide 

the methodological tutorial for testing the identified ML models’ performance on other datasets. We 

do not distinguish between different forecast horizons like several other studies as we re-estimated 

our models for every week rolling forward from forecast origin, and thus, the forecast horizon con-

stantly remains one week, i.e., 180 observations. 

6 Practical Implications: Methodological Walk-Through for Call Center 

Arrivals’ Forecasting 

Based on the results of the conducted model comparison, organizations are suspected of benefiting 

from including ML approaches in their process of evaluating and selecting the most suitable method 

for forecasting call center arrivals and therefore, to support their staffing decisions. To make the un-

derlying process of method comparison and selection accessible to decision-makers in practice as 

well as to overcome its perceived high complexity and organizations’ lack of expertise, we provide a 

methodological walk-through example based on cross-validation with an expanding rolling window. 

In doing so, we propose to view the question of method in call center forecasting as the overall issue 

of implementing a forecasting system that includes prediction accuracy as well as practicability for 

the user. By presenting a methodological tutorial, we aim to overcome the dependence of method 

comparisons on data characteristics and, at the same time, accelerate the adoption of ML techniques 

in this field. On these grounds, we provide a description of the generic cross-validation approach in 

the programming environment R as well as an in-depth example of RF algorithm as the best-perform-

ing model of our previous analysis. 
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Fig. 7. R Code for rolling expanding window with generic for-loop. Note: The bold variables have 

to be replaced depending on the specific dataset. 

Figure 7 illustrates a generic for-loop for the expanding rolling window that can be utilized to 

identify the most accurate model. Let 𝑛 be the 𝑛𝑡ℎ observation (i.e., row) of the dataset, 𝑚 be the 

𝑚𝑡ℎ variable (i.e., column) of the dataset, and ℎ be the forecast horizon. 

After analyzing and preprocessing the data as described in Section 3.1, we define an empty nu-

meric vector the results are stored in sequentially during the loop. The for-loop itself can be iterated 

𝑘 times: let the forecast horizon ℎ be e.g. one week and out-of-sample predictions with cross valida-

tion shall be generated for one year, then 𝑘 = 52, i.e., 52 weeks. For each iteration 𝑘 = 1,2, … , 𝐾 

during the loop we define the training and test subset which roll forward for one unit of the forecast 

horizon ℎ, i.e., 𝑖 ∗ ℎ. Since 1 ∗ ℎ observations are added during the first iteration for syntax reasons, 

ℎ observations are subtracted from the training and test subsets (𝑛𝑡𝑟𝑎𝑖𝑛  and 𝑛𝑡𝑒𝑠𝑡  respectively) to 

yield the intended initial training and test subsets.  

After the loop finishes, the looptime is reported with the toc() function to survey the models’ com-

putation time as a potentially crucial aspect for decision-makers. Further, in case some models 

might generate negative predictions we set the minimum value for predictions to zero with pmax(). 

The MAE and RMSE are both calculated by inserting the vector of actual values as the first argu-

ment and the vector of predicted values as the second argument. 
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Fig. 8. R Code for rolling expanding window with random forest. Note: The bold variables have to 

be replaced depending on the specific dataset. 

To test a model’s predictive ability, it can be integrated into the generic for-loop. Figure 8 demon-

strates the R Code for the loop with the implemented RF. To achieve ease of use as well as to guar-

antee high model accuracy, we make use of R’s tuneRanger package, which automatically tunes the 

forest’s hyperparameters (i.e., 𝑚𝑡𝑟𝑦, minimum node size, and sample fraction) by creating a regres-

sion task with makeRegrTask() (Probst et al., 2019). 

The package is favorable since it utilizes sequential model-based optimization (SMBO)2 as a tuning 

strategy, which is faster and moreover, better regarding its performance than standard tuning pack-

ages (Probst et al., 2019). It conducts an SMBO with 30 random points for the initial design (i.e., 

random points drawn from the hyperparameter space) and 70 iterative steps in the optimization pro-

cedure. Optionally, the number of iterations 𝑖 can be inserted manually. 𝑚𝑡𝑟𝑦 values are sampled 

from [0, 𝑝]  with 𝑝  being the number of predictors. Sample size values are sampled from [0.2 ∗

 
2 For detailed information on the SMBO procedure, readers are referred to Probst et al. (2019). 
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𝑛, 0.9 ∗ 𝑛] with the number of observations 𝑛. Node size values are sampled with higher probability 

for smaller values by sampling 𝑥 from [0,1] and hence, transforming the value by [(𝑛 ∗ 0.2)𝑥]. Fur-

ther, out-of-bag predictions during the fitting procedure can be evaluated with several different error 

measures (mean squared error (MSE
OOB

) as default for regression). The number of trees 𝑡 can be 

inserted optionally: research found the model’s performance peak to be reached during the construc-

tion of the first 100 trees (Probst et al., 2012). 

Subsequent to the fitting procedure, predictions based on unknown test data are generated. By 

using the append() function, the predictions with length h are attached sequentially for k iterations. 

As described in Section 3.2, the MAE and RMSE results allow for a practically valid comparison 

of different models. 

The methodological walk-through combined with the preceding results of the model comparison lead 

to several practical implications for businesses and organizational decisionmakers. First, the hypoth-

esized improvement of call center arrivals’ forecasting accuracy was confirmed for the selection of 

feasible ML methods. Thereby, the range of applicable methods providing robust and accurate pre-

dictions in this field is extended to suitable ML algorithms. In comparison with commonly used fore-

casting techniques, ML models generate more precise forecasts in almost every case. That way, un-

necessary costs caused by overstaffing as well as customer dissatisfaction originating from long wait-

ing times due to understaffing can be avoided: In case the forecasts overestimate the actual customer 

support call arrival volume, decision-makers can save approximately 1.833 call center agents per day 

on average if RF (best-performing ML model) compared to ETS (best-performing time series model) 

is employed. Vice versa, in case the forecasts underestimate the actual call arrival volume, customers 

would need to wait approximately 0.414 minutes less on average if RF is implemented instead of 

ETS. Furthermore, the findings also indicate that decisionmakers are recommended to minimize lead 

time in case it is possible in the scope of staffing regulations. 

Overall, we exclusively investigated models standing out due to the favorable trade-off between ac-

curacy and practicability, especially in terms of complexity regarding estimation time as well as com-

putation effort. The comprehensibility and ease of implementation of treebased models as best-per-

forming methods is further verified by the applied example above. From a general perspective, or-

ganizations are encouraged to use the demonstrated process of cross-validation with an expanding 

 
3 If the processing time is 10 minutes per call arrival and the working hours per call center agent are 8 hours per day. 
4 If the processing time is 10 minutes per call arrival and there are 70.95 call arrivals per interval on average. 
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rolling window not only to test and implement different approaches for call center arrivals’ forecast-

ing but also to adapt it for any forecasting task based on sequential data (e.g., e-mail arrivals, product 

sales, etc.). The implementation of this approach in an accessible programming environment further 

fills the need of practitioners for a task-specific guideline for the selection of AI-driven methods and 

helps to overcome the practicability issues identified in literature. 

7 Conclusion 

The process of forecasting call center arrival volumes in an increasingly complex data environment 

is predestinated to capitalize on AI-driven methods by improving internal decision making. Accurate 

forecasts generated by ML algorithms are assumed to generate cost savings and service improvements 

through precise staffing. However, insights on and practical use of ML in call center arrivals’ fore-

casting are limited. 

Acting on the assumed potential of ML in this field as well as on the existing constraints regarding 

practicability in organizational use, this paper follows a two-step approach of model performance 

evaluation and practical implementation. The first step constitutes an extensive model comparison of 

selected feasible ML methods with common as well as sophisticated time series models using the call 

center arrival data of a large online retailer. In the second step, the implementation of the model 

evaluation and selection process based on cross validation with an expanding rolling window is made 

accessible for practitioners by providing a methodological walk-through example. 

The results of the method comparison confirm the hypothesized high potential of ML models for 

accuracy improvements based on two datasets and various lead times investigated. Tree-based meth-

ods and particularly RF algorithm yield the best prediction performances and therefore approve as 

preferable alternatives to commonly used methods. These findings are substantiated by the imple-

mentation example using RF as the best-performing model. By providing an efficient and reproduci-

ble way of assessing the case-specific value of ML methods in forecasting for organizations within a 

programming environment, the dependence of method comparison results on data characteristics as 

well as the lack of comprehensibility and methodological expertise in practical settings are mitigated 

or even eliminated. 

This paper therefore presents a starting point for shifting traditional call center forecasting towards a 

new paradigm drawing on AI-driven methods by demonstrating the high predictive potential of ML 
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models in comparison to commonly used methods. From a practical perspective, this study contrib-

utes to an improved understanding for businesses on how to deal with the increasingly complex task 

of forecasting call center arrivals caused by the datafication of customer relationships. Being aware 

of the general applicability of ML models to yield high forecast accuracy, organizations are now 

enabled to test ML techniques in individual practical settings by adapting the proposed implementa-

tion of a valid model selection process in time series forecasting. Improvements in prediction accu-

racy achieved by this approach can directly be capitalized on through optimized staffing. Future re-

search is encouraged to extend the predictions to concrete staffing recommendations incorporating 

average service times. As a whole, this work suggests that taking the next step in call center arrivals’ 

forecasting research towards advanced ML, such as deep neural networks and hybrid approaches, is 

likely to be beneficial. In this case, the evaluation of these methods beyond forecasting accuracy is 

recommended to ensure the practical value of future findings. 
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Appendix: Time Series Models 

Overall, one strength of time series models is their ability to generate predictions only based on the 

time series’ previous values without any other contextual information and thus, they are adequate 

models if information is scarce. The non-seasonal ARIMA (p, d, q) model (Box and Jenkins, 1970) 

assumes that a with 𝑑 degrees differenced time series depends on its past values being 𝑝 periods apart 

and on a finite number 𝑞 of prior forecast errors 𝜀 with 𝑝, 𝑑, and 𝑞 being non-negative integers. Thus, 

it consists of an autoregressive process as well as moving average process 

𝑦𝑡
′ = 𝑐 + 𝜙1𝑦𝑡−1

′ + ⋯ + 𝜙𝑝𝑦𝑡−𝑝 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + ⋯ + 𝜃𝑞𝜀𝑡−𝑞 

with 𝑦𝑡
′ being the differenced time series, 𝜙𝑝 being the parameter for autoregressive process, 𝜃𝑞 be-

ing the parameter for moving average process, and 𝜀 being the error. Since its development in the 

1970s, the ARIMA model is among the most popular forecasting approaches across numerous appli-

cation contexts, as it was found to perform well in the short-term (Barrow, 2016) and further, is suit-

able for a variety of data types with different characteristics as there are stationary as well as nonsta-

tionary ARIMA methods (Hyndman and Athanasopoulos, 2018). 

While ARIMA models intend to capture autocorrelations in the data, exponential smoothing models 

draw on trend and seasonality in the data (Hyndman and Athanasopoulos, 2018). Holt-Winters’ ex-

ponential smoothing model (Holt, 2004; Winters, 1960) was proposed in the late 1950s and weight 

the averages of the time series’ previous observations. Thereby, the weights are decreasing exponen-

tially the further the observations lie in the past. The component form of simple exponential smooth-

ing can be defined as 

ℓ𝑡 = (1 − 𝛼)ℓ𝑡−1 + 𝛼𝑦𝑡  

�̂�𝑡+ℎ|𝑡 = ℓ𝑡  

with horizon ℎ =  1, 2, . ., smoothing parameter 0 ≤  𝛼 ≤  1 and series level (or smoothed value) ℓ𝑡 

at time 𝑡. If the exponential smoothing model further allows for additive or multiplicative errors, it 

evolves into an innovations state space model ETS(·,·,·) for (Error= {Additive (A), Multiplicative 

(M)}, Trend= {None (N), A}, Seasonal= {N, A, M}): 

ℓ𝑡  = ℓ𝑡−1 + 𝛼𝜀𝑡  

𝑦𝑡  = ℓ𝑡−1 + 𝜀𝑡  
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where 𝛼 is the smoothing parameter and ℓ𝑡is the series level (or smoothed value) at time 𝑡. Random 

walk models are frequently used for nonstationary data as random walks typically consist of long 

periods of apparent (upward or downward) trends and exhibit sudden changes in direction (Hyndman 

and Athanasopoulos, 2018). The forecasts from the random walk model are equal to the time series’ 

last observation: 

�̂� =  𝑦𝑡−1  +  𝜀𝑡 

As an extension to the basic model, the drift parameter 𝑐 is frequently added which is the average of 

changes between consecutive observations: 

�̂� =  𝑐 + 𝑦𝑡−1  + 𝜀𝑡 

If 𝑐 is positive, there is an increase in the average of changes between consecutive observations and 

thus, the prediction �̂� will tend to drift upwards and vice versa for negative values of 𝑐. 
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Abstract: Excessive online shopping cart abandonment rates constitute a major challenge 

for e-commerce companies and can inhibit their success within their competi-

tive environment. Simultaneously, the emergence of the Internet’s commercial 

usage results in steadily growing volumes of data about consumers’ online be-

havior. Thus, data-driven methods are needed to extract valuable knowledge 

from such big data to automatically identify online shopping cart abandoners. 

Hence, this contribution analyzes clickstream data of a leading German online 

retailer comprising 821,048 observations to predict such abandoners by propos-

ing different machine learning approaches. Thereby, we provide methodologi-

cal insights to gather a comprehensive understanding of the practicability of 

classification methods in the context of online shopping cart abandonment pre-

diction: our findings indicate that gradient boosting with regularization outper-

forms the remaining models yielding an F1-Score of 0.8569 and an AUC value 

of 0.8182. Nevertheless, as gradient boosting tends to be computationally infea-

sible, a decision tree or boosted logistic regression may be suitable alternatives, 

balancing the trade-off between model complexity and prediction accuracy. 

Keywords: E-Commerce; Shopping Cart Abandonment; Prediction; Classification; 

Machine Learning; Supervised Learning 
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1 Introduction 

To strengthen a company’s position within its competitive environment, marketers need to be able to 

precisely predict potential customers regarding their purchase and, further, non-purchase behavior. 

Considering this in the context of online shopping environment, customers frequently place items in 

their virtual shopping cart for reasons other than immediate purchase. This phenomenon is known as 

shopping cart abandonment and is particularly apparent in the context of e-commerce: it is the be-

havioral outcome of consumers placing item(s) in their online shopping cart without making a pur-

chase by completing the checkout process during that online session (Huang et al., 2018; Kukar-

Kinney and Close, 2010). Extant literature investigated the behavioral perspective of online shopping 

cart abandonment by identifying inhibitors to the purchase process: financial risks and concerns about 

delivery and return policies (Kukar-Kinney and Close, 2010) the usage of shopping carts as organi-

zation tools or for entertainment purposes (Kukar-Kinney and Close, 2010), and inhibitors at the 

checkout stage like perceived transaction inconvenience and privacy intrusion (Rajamma et al., 2009) 

are – inter alia – the main factors leading to online shopping cart abandonment. 

With the spread of the Internet’s commercial usage, the ability to track consumers’ online activities 

allows companies to collect unbiased information about consumers’ behavior. The detailed records 

of past usage behaviors comprised by log files and resulting clickstream data can be analyzed by 

marketers to gain valuable insights. In this context, clickstream data have frequently been modeled 

to derive implications for website design or advertising efforts (see, for example, Chatterjee et al. 

(2003) and Montgomery et al. (2004)) and further, to predict consumers’ future behaviors, e.g. re-

garding purchase (see, for example, Bucklin and Sismeiro (2003) and Moe and Fader (2004a)). 

Thus, the antecedents of online shopping cart abandonment are well understood by behavioral litera-

ture and clickstream data has been studied by methodological research to analyze consumers’ behav-

ior. The rise of the Internet and the era of big data resulted in an excessive ‘datafication’ (Kelly and 

Noonan, 2017; Lycett, 2013) of the organizational environment yielding the field of business intelli-

gence comprising data analytics and predictive analytics approaches (Chen et al., 2012). However, 

despite the richness of clickstream data, prior shopping cart abandonment literature still lacks data-

driven methods based on machine learning which make use of this information source to predict such 

abandoning customers. This might be due to the insufficient awareness of suitable intelligent ap-

proaches to extract knowledge from the steadily growing volumes of data (Fayyad et al., 1996).  
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To address this research gap, we utilize clickstream data of a leading German online retailer to train 

and subsequently compare different machine learning approaches for the prediction of online shop-

ping cart abandonment (i.e., tree-based methods (more specifically, adaptive boosting, boosted lo-

gistic regression, decision tree, gradient boosting with regularization, gradient boosting, gradient 

boosting with dropout, random forest, and stochastic gradient boosting), k-nearest neighbor, naïve 

bayes, multi-layer perceptron with dropout, and a support vector machine with radial basis kernel). 

We successfully implement these machine learning methods for online shopping cart abandonment 

prediction and compare them with logistic regression as a standard non-machine learning benchmark 

model regarding their predictive performance. 

Our paper makes several key contributions to the preceding literature. By combining the research 

fields of both shopping cart abandonment as well as clickstream data analysis with machine learning 

approaches, we particularly shed light on the practicability of machine learning methods in this ap-

plication context, as this was neglected by prior research. Further, we provide insights into the char-

acteristics of customers abandoning their shopping cart based on clickstream data that is unsuscepti-

ble to self-selection, relatively unobtrusive, and easy to gather. We extensively review literature on 

classification methods to identify shopping cart abandonments and present validation procedures as 

well as performance metrics for such methods. Our findings can be useful both for marketing intelli-

gence research by extending the field of machine learning applications in marketing contexts through 

automatically predicting online shopping cart abandoners and for practitioners to actively prevent 

such abandonments by several real time reactions, e. g. providing real-time purchase incentives, and 

moreover, to gain insights into machine learning methods. 

The remainder of this paper is organized as follows: the subsequent section describes the related work 

on online shopping cart abandonment and clickstream data. Further, Section 3 summarizes the back-

ground on machine learning approaches for classification. Section 4 outlines the methodology com-

prising a preliminary data analysis and the research design. In Section 5 and 6, we present the findings 

and discuss both theoretical and practical implications, limitations, as well as directions for future 

research. Finally, Section 7 draws a conclusion. 
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2 Related Work 

2.1 Online Shopping Cart Abandonment  

The online shopping cart abandonment phenomenon causes substantial losses of turnover for online 

retailers (Huang et al., 2018; Rajamma et al., 2009) resulting in a weakened position within their 

competitive environment. Therefore, extant marketing literature addressed this problem by drawing 

on a behavioral perspective to identify and understand essential determinants of online shopping cart 

abandonment: Rajamma, Paswan, and Hossain (2009) focused on potential inhibitors at the checkout 

stage and found increased perceived transaction inconvenience (e.g., long registration forms) and 

high perceived risk (e.g., perceived security of information asked) to enhance online shopping cart 

abandonment. Partially, these findings seem to be applicable to new customers which are unfamiliar 

with the checkout process. Similarly, (Kukar-Kinney and Close, 2010) findings indicate that privacy 

intrusion and security concerns rather lead to the consumers’ decision to buy the product from a 

stationary offline store. Further, they found the entertainment value of shopping carts, the use of 

shopping carts as an organization tool, the wait for sale, and the concerns about costs to be antecedents 

of shopping cart abandonment (Kukar-Kinney and Close, 2010). Their identified determinants were 

supported by Close and Kukar-Kinney (2010) proving that customers’ tendencies to add items to the 

online shopping cart for reasons other than immediate purchase are – inter alia – due to organizational 

purposes. Huang, Korfiatis, and Chang (2018) focused on mobile shopping cart abandonment in their 

study. They found intrapersonal (i.e., conflicts regarding mobile shopping attributes and low self-

efficacy regarding mobile shopping) and interpersonal (i.e., discrepancies from the other’s attitudes 

to self-attitudes) conflicts to disturb consumers’ emotions during mobile shopping, and in turn, im-

plying shopping cart abandonment. Overall, their findings indicate that the utilized device for online 

shopping might impact purchase behavior as well. Cho, Kang, and Cheon (2006) proved that con-

sumers’ confusion by information overload, high value-consciousness, negative past experiences, in-

tention to conduct price comparisons, and unreliable websites are likely to trigger online shopping 

cart abandonment1. 

 
1 Cho, Kang, and Cheon (2006) defined online shopping cart abandonment rather as a hesitation reaction which implies 

that the customer actively drops items placed in his/her shopping cart. Thus, their definition differs slightly from the 

definition of Kukar-Kinney and Close (2010), which was used in this study for an understanding of shopping cart aban-

donment. 
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2.2 Clickstream Data 

Drawing on a more holistic perspective of online shopping behavior, further literature shifted away 

from explanatory behavioral approaches to data-driven methods predicting online purchase behavior 

in general. Typically, such predictions are based on clickstream data (see, e.g., Moe and Fader 

(2004a), Sismeiro and Bucklin (2004), or van den Poel and Buckinx (2005)). Clickstream data model 

the navigation path a customer takes through the online shop (Montgomery, 2001; Montgomery et 

al., 2004) and can be extracted from log files which register all requests and information transferred 

between the customer’s computer and the company’s commercial web server (Bucklin and Sismeiro, 

2003).  

Examples for using clickstream data to predict online shopping behavior are – inter alia - Moe and 

Fader (2004a) who proposed a conversion model predicting each customer’s probability of making a 

purchase based on purchase and visit history. The same authors (Moe and Fader, 2004b) also devel-

oped a model for evolving visiting behavior and further, they examined the relationship between 

visiting frequency and purchasing propensity. They found consumers visiting an e-commerce site 

more frequently to have a greater propensity to buy (Moe and Fader, 2004b). Van den Poel and 

Buckinx (2005) predicted purchase behavior and investigated the contribution of different variables: 

they proved (1) general clickstream variables (i.e., number of days since last visit, and speed of click-

stream behavior during last visit), (2) more detailed clickstream variables (i.e., number of accessories 

(and personal pages and products respectively) viewed during last visit), (3) demographic variables 

(i.e., gender and the fact of supplying personal information), and (4) historical purchase behavior (i.e., 

number of days since last purchase and number of past purchases) to be meaningful predictors. Mont-

gomery et al. (2004) set up different models to predict purchase conversion probability by modeling 

path information. 

Moreover, clickstream data was frequently utilized by research to predict not only purchase behavior 

but further similar outcome variables. For instance, Bucklin and Sismeiro (2003) investigated drivers 

affecting the length of time spent viewing a website and the visitor’s decision to continue browsing 

or to exit the website. Sismeiro and Bucklin (2004) decomposed the purchase process into sequences 

that must be completed for a purchase to take place (i.e., completion of product configuration, input 

of personal information, and order confirmation with provision of credit card data) and predicted the 

probability of completion for each task with covariates of browsing behavior, repeat visitation, use 

of decision aids, input effort, and information gathering. 
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3 Machine Learning Approaches for Classification 

Overall, e-commerce as a research subject is suitable for the application of machine learning ap-

proaches as proposed by Kohavi and Provost (2001): online retailers can easily and inexpensively 

collect rich data with respect to the online behavior of customers (i.e., clickstream data) and, further, 

implement data mining and machine learning applications since political and social barriers are sub-

stantially lower than for traditional businesses. Consequently, typical problems for successfully ap-

plying machine learning (i.e., the need for a large volume of controlled and reliable data, data with 

sufficient descriptions, the ability to evaluate results, and to integrate applications successfully) are 

reduced by the characteristics of e-commerce environment (Kohavi and Provost, 2001). 

Machine learning constitutes a new paradigm within data science research and emerged in the course 

of the artificial intelligence era, which, in turn, was first coined by Samuel (1959) describing it as 

“the programming of a digital computer to behave it in a way which, if done by human beings […], 

would be described as involving the process of learning”. In this context, learning may be understood 

as the automatic search for more useful representations of data regarding a specific task (Chollet and 

Allaire, 2018). Machine learning algorithms and systems are consequently trained rather than explic-

itly programmed. During this process, these systems find statistical structure in given examples which 

are relevant to the task and derive rules for automating the task using guidance from a feedback signal 

(Cui et al., 2006). Thereby, classification algorithms are types of supervised learning approaches 

within machine learning which predict a qualitative response for an observation, i.e., they assign an 

observation to a category (James et al., 2013): Formally, let {𝑦𝑘, 𝑥𝑘}𝑘=1
𝑁  bet a training set, where 𝑦𝑘 ∈

{0,1,2, … , 𝐾 − 1} is the class membership and 𝑥𝑘 = ℝ𝑛 is the vector of predictor values, then the task 

is to learn a function to predict the class label 𝑦𝑘 from 𝑥𝑘. Thereby, 𝐾 = 2 in case of binary classifi-

cation and 𝐾 > 2 in case of multi-class classification tasks.  

Drawing on the online shopping cart abandonment problem, the prediction of purchasers and non-

purchasers (i.e., customers abandoning their shopping cart) can be considered a binary classification 

task. Common machine learning approaches for binary classification include – inter alia – tree-based 

methods, support vector machines, naïve bayes, k-nearest neighbor, and neural networks. The ap-

proaches are explained in detail hereinafter. 
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3.1 Tree-Based Approaches 

One of the most common machine learning approaches are tree-based methods which descend from 

single decision trees, as proposed by Breiman et al. (1984). Basically, decision trees are flowchart-

like structures that generate “if-else” rules and thereby allow for prediction of observation classes. 

Thereby, classification and regression tree models follow a recursive top-down approach in which 

binary trees aim to partition the predictor space with predictor variables 𝑥1, … , 𝑥𝑘  into subsets in 

which the distribution of the dependent variable 𝑦 is successively more homogeneous (Chipman et 

al., 1998).  

Generally, single decision trees have the advantage of being easy to interpret and to understand (Moro 

et al., 2014). However, they frequently lead to overfitting, i.e., the model learns to identify specific 

characteristics of the training data which are irrelevant or even obstructive for the classification of 

unknown data (Friedman, 2001; Srivastava et al., 2014). This results in drawbacks of predictive 

performance and less expressiveness of the models. Ensemble learning methods that construct several 

individually trained decision trees and combine their results into a classifier outperforming the single 

predictions (Opitz and Maclin, 1999; Rokach, 2010) may offer a solution to this problem. In this 

context, two widely used methods of aggregating trees are boosting and bagging. 

In boosting, a family of algorithms converts weak learners (i.e., models that achieve accuracy just 

above random guessing) to strong learners with a powerful predictive capacity. The idea is to train 

weak learners sequentially with each weak learner trying to correct its predecessor (Schapire et al., 

1998). Thus, each decision tree is built using feedback from previously grown trees (James et al., 

2013). Popular boosting algorithms include adaptive boosting “AdaBoost” (Freund and Schapire, 

1997), boosted logistic regression “LogitBoost” (Friedman et al., 2000), gradient boosting machines 

“GB” (Friedman, 2001, 2002), and stochastic gradient boosting “SGB” (Friedman, 2002)2. For 

instance, AdaBoost as a basic boosting algorithm makes predicitions by combining the output of 

weak learners to a weighted sum and putting higher weights on incorrectly classified instances 

�̂� = sign ( ∑ 𝛼𝑚ℎ𝑚(𝑥)

𝑀

𝑚=1

) 

 
2 The concepts of AdaBoost, LogitBoost, and gradient boosting are closely related as all approaches produce an ensemble 

of weak learners but – in contrast to AdaBoost and LogitBoost – gradient boosting models minimize the model’s loss by 

adding weak learners sequentially using a procedure similar to gradient descent, i.e., it allows arbitrary differentiable loss 

functions to be used. 
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with the weak hypothesis ℎ𝑚 detected by the weak learner and its importance 𝛼𝑚.  

In contrast to boosting, bagging (or bootstrap aggregating) grows successive trees independently from 

earlier trees, i.e., each tree is constructed using a bootstrap sample of the data and, hence, a majority 

vote is taken for prediction (Breiman, 1996). Random forests add an additional layer of randomness 

to bagging and change how the trees are constructed: in standard decision trees each node is split 

using the best split among all predictor variables whereas in random forests the nodes are split using 

the best among a subset of predictors randomly chosen at that node (Breiman, 2001; Liaw and Wiener, 

2002). Due to the recursive structure of tree-based methods they often capture interaction effects 

between variables. However, since we focus on the performane of the models and not the importance 

of specific variables, we will not consider interaction effects further in our study. 

Overall, tree-based methods have been found to outperform other established approaches across a 

variety of different classification tasks such as IP traffic flow classification (Williams et al., 2006), 

customer churn prediction (Vafeiadis et al., 2015), or – similar to our context – prediction of online 

purchase intention (Bogina et al., 2019; Boroujerdi et al., 2014; Zheng and Liu, 2018). They are 

particularly favorable since ensemble methods are able to reduce both bias and variance of the single 

learning algorithms: While individual models may get stuck in local minima, a weighted combination 

of several different local minima – produced by ensemble methods – are able to minimize the risk of 

choosing the wrong local minimum (Dietterich, 2002). 

3.2 Support Vector Machines 

Aside from tree-based methods, support vector machines are powerful tools for classification tasks 

(James et al., 2013). The basic support vector machine is solving pattern recognition problems by 

mapping data into a multidimensional input space and constructing an optimal hyperplane that sepa-

rates the space into homogenous partitions3 (Cortes and Vapnik, 1995; Vapnik, 1982). Predictions of 

new instances are then classified into those partitions. The support vector machine aims at construct-

ing a classifier in the form of 

�̂� =  sign [∑ 𝛼𝑘𝑦𝑘ψ(𝑥, 𝑥𝑘) + 𝑏

𝑁

𝑖=1

] 

 
3 A hyperplane is defined as a flat affine subspace of dimension 𝑝 − 1 with 𝑝 being the number of dimensions (i.e., the 

number of considered predictor variables) (James et al. 2013). Basically, the ‘hyperplane’ is a line if the feature space is 

two-dimensional (i.e., two predictor variables) and a simple plane if the space is three-dimensional (i.e., three predictor 

variables). 
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where 𝛼𝑘 are positive real constants, 𝑏 is a real constant, and ψ(∙,∙) represents the hyperplane (e.g., 

ψ(𝑥, 𝑥𝑘) = 𝑥𝑘
𝑇𝑥 in case of a linear support vector machine) (Suykens and Vandewalle, 1999). Aside 

from the linear case, Boser, Guyon, and Vapnik (1992) proposed a non-linear classifier by applying 

the so-called kernel trick which allows the algorithm to fit the hyperplane in a transformed feature 

space.  

We used a support vector machine with radial basis kernel for the comparison of machine learning 

models. However, support vector machines may become computationally infeasible on very large 

datasets like clickstream data (L'Heureux et al., 2017). 

3.3 Naїve Bayes 

The naїve bayes approach is a basic classifier based on applying the Bayes’ theorem with the naїve 

assumption that the attributes are conditionally independent (Duda et al., 1973). The classifier assigns 

a new case to a class label �̂� = 𝐶𝑘 by deriving the maximum a posteriori probability: 

�̂� = arg max
𝑘𝜖{1,…,𝐾}

 𝑝(𝐶𝑘) ∏ 𝑝(𝑥𝑖|

𝑛

𝑖=1

𝐶𝑘) 

Naïve bayes as a generative classifier is frequently utilized for classification tasks due to its simplic-

ity, efficiency, and efficacy (Muhammad and Yan, 2015). 

3.4 K-Nearest Neighbor 

Another basic approach, the k-nearest neighbor algorithm, classifies an observation by a majority 

vote of the observation’s neighbors (Cover and Hart, 1967). The underlying assumption of the algo-

rithm is that observations which lay closely together within the predictor space (i.e., neighbors) will 

have the same class label. Thus, the classifier weights the class of the nearest neighbors strikingly 

high in order to predict the class label of an unclassified sample (Cover and Hart, 1967). The class is 

thereby assigned by taking the majority vote of the k nearest neighbors, with k being the number of 

neighbors that are considered during the classification task. The nearest neighbors are determined 

with the help of arbitrary distance functions (e.g., Euclidian distance 𝑑(. , . )). For new observations 

(𝑦, 𝑥) the nearest neighbor (𝑦(1), 𝑥(1)) within the training set is defined by 

𝑑(𝑥, 𝑥(1)) = min
𝑘

(𝑑(𝑥, 𝑥𝑘)) 

and �̂� = 𝑦(1) – the class of the nearest neighbor – is selected as prediction for 𝑦. 𝑥(𝑗) and 𝑦(𝑗) describe 

the 𝑗th nearest neighbor of 𝑥 and its class membership 𝑦.  
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K-nearest neighbor as a local learning approach may be suitable for online shopping cart abandon-

ment prediction tasks since it is able to alleviate the challenge of imbalanced data (L'Heureux et al., 

2017). 

3.5 Artificial Neural Networks 

Artificial neural networks are highly parallelized computer systems comprising process units (i.e., 

neurons) located on process layers with numerous weighted interconnections performing a learning 

process to create meaningful data representations (Jain et al., 1996). Regarding the concept of deep 

learning, artificial neural networks may use a number of hidden process layers (the depth of a 

network) between input and output layer containing non-linear operations in hierarchical 

architectures to learn characteristics and recognize patterns from given data (Bengio, 2009; Deng, 

2011; Hinton et al., 2006). The concept of learning within deep learning (or artificial neural networks, 

respectively) describes a process of updating the network architecture and the weights of the neuron 

connections (Jain et al., 1996). To improve the performance, the optimizer is implementing a 

backpropagation algorithm to minimize the discrepancy between the actual and the target output 

vector (i.e., the loss score) by adjusting the weights (Rumelhart et al., 1986; Schmidhuber, 2015). To 

avoid overfitting, a regularization method called dropout can be integrated in the network which 

randomly sets a share of its output per layer to zero (Srivastava et al., 2014). 

Concerning their connection structure (i.e., topology), neural network architectures can be distin-

guished between feedforward networks (e.g., multi-layer perceptrons (Deng, 2011; Zhang et al., 

2018)) with neuron connections running to the output layer acyclically and recurrent networks (e.g., 

long short-term memories (Hochreiter and Schmidhuber, 1997)) containing backward connections to 

build cyclic architectures (Jain et al., 1996; Schmidhuber, 2015). The most commonly used 

feedforward neural networks – multi-layer perceptrons – can be defined as 

�̂� = 𝛽0 + ∑ 𝛽ℎ𝑔 (𝛾0𝑖 + ∑ 𝛾ℎ𝑖𝑝𝑖

𝐼

𝑖=1

)

𝐻

ℎ=1

 

where 𝐼 denotes the number of inputs 𝑝𝑖, 𝐻 is the number of hidden nodes in the network, the weights 

𝜔 = (𝛽, 𝛾)  with 𝛽 = [𝛽1, … , 𝛽𝐻]  and 𝛾 = [𝛾11, … , 𝛾𝐻𝐼]  are for the hidden and output layer 

respectively, 𝑔(∙) is the transfer function (e.g., sigmoid logistic), and 𝛽0 as well as 𝛾0𝑖 are the biases 

of each node (Zhang et al., 1998).  
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Multi-layer perceptrons were found to outperform other machine learning approaches for purchase 

intention prediction only after balancing the class distribution with oversampling (Sakar et al., 2019) 

since deep learning approaches are frequently sensitive to class imbalance (L'Heureux et al., 2017). 

4 Methodology 

4.1 Preprocessing and Preliminary Data Analysis 

The purpose of this study is to predict shopping cart abandonment by making use of machine learning. 

The machine learning models explained in Section 3 are compared to find the best classifier for this 

task. The clickstream data were gathered from server log files of a leading German online retailer 

which primarily distributes fashion. The data were created by the online retailer through extracting 

the customers’ chronological online shop activities out of sequential log files. Each log file observa-

tion comprised one action or activity (e.g., a click) of a certain customer such as adding a product to 

the cart or clicking on a product to view its details. Subsequently, each customer’s activities during a 

session were assigned to summarizing variables. Hence, all activities of a customer were aggregated 

to one observation with different variables describing the session. Thereby, a session is a period of 

sustained web browsing or a sequence of the user’s page viewings until the user exits the online shop 

(Montgomery et al., 2004). The data comprise 3,511,037 observations or sessions between February 

1, 2019 and April 30, 2019, i.e., three months. Further, the data contain 18 explanatory variables for 

each observation or session listed in Table 1 many of which are consistent with van den Poel and 

Buckinx’ (2005) findings. We are only interested in visitors who made use of the virtual shopping 

cart during the session, i.e., who placed item(s) in their cart. In line with Close and Kukar-Kinney 

(2010), shopping cart usage is thus defined as necessary precondition for shopping cart abandonment. 

Thus, we filtered out customers which did not add any items to their shopping cart during the session, 

so-called just-browsing customers, and 821,048 observations (23,38%) remained. We modeled the 

dependent variable – shopping cart abandonment – as a dummy variable using the information about 

the customer’s compiled and ordered shopping carts (variables BASKETS_BB and BASKETS) dur-

ing the session: 

Y = {
1 if number of compiled shopping carts>0 & number of ordered shopping carts=0;      

0 if number of compiled shopping carts>0 & number of ordered shopping carts>0.      
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Our data contain 520,653 (63.41%) observations of shopping cart abandonments (or non-purchasers 

respectively) and 300,395 (36.59%) observations of purchasers. Hence, the dataset is relatively bal-

anced. We excluded the variable for the number of ordered shopping carts (BASKETS_BB) and the 

value of ordered shopping carts (VALUE_BB) further for prediction4.  

Table 1: Variables of Clickstream Data. 

Variable Index Description 

Shopping Cart Abandon-
ment 

SCA 

Dependent dummy variable capturing cus-
tomer’s shopping cart abandonment 

Y = {
1 if customer abandoned;      
0 otherwise.                               

 

Number of Ordered Shop-
ping Carts 

BASKETS_BB 
Metric predictor variable capturing the number 
of shopping carts ordered during the customer’s 
session 

Number of Compiled 
Shopping Carts  

BASKETS 
Metric predictor variable capturing the number 
of shopping carts compiled during the cus-
tomer’s session 

Number of Logins  LOGS 
Metric predictor variable capturing the number 
of logins during the customer’s session 

Number of Existing Cus-
tomers’ Logins to the Sec-
ond Step of the Ordering 
Process 

LOGS_CUST_STEP2 

Metric predictor variable capturing the number 
of logins of existing customers to the second step 
of the purchasing process during the customer’s 
session 

Number of New Custom-
ers’ Logins to the Second 
Step of the Ordering Pro-
cess 

LOGS_NEWCUST_STEP2 

Metric predictor variable capturing the number 
of logins of new customers to the second step of 
the purchasing process during the customer’s 
session 

Number of Overall Page 
Viewings  

PIS 
Metric predictor variable capturing the number 
of overall page viewings during the customer’s 
session 

Number of Shopping Cart 
Page Viewings  

PIS_AP 
Metric predictor variable capturing the number 
of shopping carts page viewings during the cus-
tomer’s session 

Number of Detailed Prod-
uct Page Viewings 

PIS_DV 
Metric predictor variable capturing the number 
of detailed product page viewings during the cus-
tomer’s session 

Number of Category 
Overview Page Viewings 

PIS_PL 

Metric predictor variable capturing the number 
of category overview page viewings (i.e., all 
products within a category) during the cus-
tomer’s session 

Number of Department 
Page Viewings  

PIS_SHOPS 

Metric predictor variable capturing the number 
of department page viewings (i.e., all categories 
within a department) during the customer’s ses-
sion 

Number of Detailed Prod-
uct Page Viewings Using 
Search Function 

PIS_SDV 
Metric predictor variable capturing the number 
of detailed product page viewings after using the 
search function during the customer’s session 

 
4 These variables are values referring to the customers’ order and, thus, they would not be known ex-ante for prediction. 
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Variable Index Description 

Number of Search Results 
Page Viewings  

PIS_SR 
Metric predictor variable capturing the number 
of overall search results page viewings during the 
customer’s session 

Number of Product Types 
in Shopping Cart 

POSITIONS 
Metric predictor variable capturing different 
product types in the shopping cart during the 
customer’s session 

Number of Items in Shop-
ping Cart 

QUANTITY 
Metric predictor variable capturing the number 
of items in the shopping cart during the cus-
tomer’s session 

Value of Ordered Shop-
ping Carts 

VALUE_BB 
Metric predictor variable capturing the value of 
shopping carts ordered during the customer’s 
session 

New Customer NEW_CUST 

Predictor dummy variable capturing new cus-
tomers 

X16 = {
1 if new customer;      
0 otherwise.                  

 

Accessing Online Shop via 
Desktop 

WEB_CUST 

Predictor dummy variable capturing customers 
that access the online shop via desktop 

X17 = {
1 if accessing via desktop;      
0 otherwise.                                

 

Accessing Online Shop via 
Mobile Phone 

MOBILE_CUST 

Predictor dummy variable capturing customers 
that access the online shop via mobile phone 

X18 = {
1 if accessing via mobile phone;      
0 otherwise.                                           

 

Figure 1 illustrates the relationship between the page viewing and login variables by demonstrating 

the customer’s clickstream in the online shop: the customer typically starts browsing departments 

(PIS_SHOPS), then selects a certain category within a department (PIS_PL), and further, chooses a 

certain product within a category (PIS_DV). Optionally, the customer uses the shop’s search engine 

(PIS_SR) to look systematically for a specific product (PIS_SDV). To make a purchase, the customer 

can either directly sign in (LOGS) or check the items in the shopping cart (PIS_AP) first and then 

sign in and hence, proceed to the second step of the purchasing process (LOGS_CUST_STEP2 or 

LOGS_NEWCUST_STEP2). However, signing in to the second step of the purchasing process does 

not necessarily lead to a purchase of the customer. 
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Figure 1: Main Clickstream of Customers in the Online Shop. 

Note: LOGS = Number of Logins, LOGS_CUST_STEP2 = Number of Existing Customers’ Logins to the Second Step 

of the Ordering Process, LOGS_NEWCUST_STEP2 = Number of New Customers’ Logins to the Second Step of the 

Ordering Process, PIS = Number of Overall Page Viewings, PIS_AP = Number of Shopping Cart Page Viewings, 

PIS_DV = Number of Detailed Product Page Viewings, PIS_PL = Number of Category Overview Page Viewings, 

PIS_SDV = Number of Detailed Product Page Viewings Using Search Function, PIS_SHOPS = Number of Department 

Page Viewings, PIS_SR = Number of Search Results Page Viewings. 

Nevertheless, with respect to the descriptive statistics in Table 2, we find that existing customers (or 

new customers respectively) which subsequently make a purchase sign in to the second step of the 

ordering process approximately 5.93 times (or 4.46 times respectively) more often than non-purchas-

ers. Generally, purchasers sign in more often (1.03 logins on average) than non-purchasers (0.93 

logins on average). This might indicate that the cause for shopping cart abandonment frequently oc-

curs before the customer proceeds to the checkout stage.  

Furthermore, the number of purchasers’ overall page viewings is 2.09 times higher than of non-pur-

chasers on average. Overall, customers abandoning their shopping cart browse less pages than pur-

chasers – regardless of the pages’ type. Particularly, the median reveals that there are significant 

differences regarding the number of page viewings between purchasers and abandoners: the median 

of abandoners’ overall page viewings is 12, 1 for department viewings, and 0 for all other types of 

page viewings. In contrast, purchasers’ median for overall page viewings is 35, 6 for department 

viewings, and for example, 2 for shopping cart viewings. 

On average, purchasers add more items and different product types (3.48 and 3.38 respectively) to 

their shopping cart than non-purchasers (2.95 and 2.88 respectively). 
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There is a larger absolute (48,839) and relative (9.38%) proportion of new customers among the ob-

servations of shopping cart abandonments than among those making a purchase (15,387 observations 

or 5.12% respectively). Moreover, there is a larger proportion of mobile shoppers among customers 

abandoning their shopping cart (45.85%) compared to the observations of purchasers (28.1%). The 

latter descriptive findings are consistent with the results of preceding (behavioral) research: e.g., as 

argued earlier, Huang, Korfiatis, and Chang (2018) proved that online shopping cart abandonment 

occurs more frequently for customers using a mobile device due to high emotional ambivalence. Moe 

and Fader (2004a) found that – among new customers – online conversion rate is lower as purchasing 

thresholds and perceived risks are high for unexperienced visitors. 

Table 2: Descriptive Statistics of Clickstream Data. 

Variable 

Observations of Shopping Cart Abandon-
ments (n=520,653) 

 Observations of Purchasers  
(n=300,395) 

Mean SD Median Min Max  Mean SD Median Min Max 

BASKETS  0.99 0.11 1 0 2  1.09 0.40 1 0 49 
LOGS  0.93 0.27 1 0 2  1.03 0.21 1 0 2 
LOGS_CUST_ 
STEP2 

0.06 0.23 0 0 1  0.32 0.47 0 0 1 

LOGS_NEWCUST_ 
STEP2 

0.02 0.13 0 0 1  0.07 0.26 0 0 1 

PIS 22.26 27.47 12 1 513  46.45 37.06 35 2 593 
PIS_AP 1.05 2.17 0 0 71  3.06 3.42 2 0 57 
PIS_DV 3.42 7.48 0 0 200  6.53 9.76 3 0 203 
PIS_PL 3.99 11.37 0 0 279  8.75 17.00 1 0 315 
PIS_SHOPS 7.68 17.55 1 0 405  15.87 25.14 6 0 396 
PIS_SDV 1.40 3.92 0 0 142  3.13 5.46 1 0 127 
PIS_SR 2.82 7.48 0 0 222  5.71 10.18 2 0 208 
POSITIONS 2.88 3.31 2 1 66  3.38 3.31 2 1 111 
QUANTITY 2.95 3.55 2 1 143  3.48 3.49 2 1 143 

 Counts Proportion  Counts Proportion 

NEW_CUST 48,839 9.38%  15,387 5.12% 
WEB_CUST 214,455 41.29%  171,789 57.19% 
MOBILE_CUST 238,694 45.85%  84,401 28.1% 

Note: BASKETS = Number of Carts Compiled, LOGS = Number of Logins, LOGS_CUST_STEP2 = Number of Existing 

Customers’ Logins to the Second Step of the Ordering Process, LOGS_NEWCUST_STEP2 = Number of New Custom-

ers’ Logins to the Second Step of the Ordering Process, MOBILE_CUST = Customer Accessing via Mobile Phone, 

NEW_CUST = New Customer, PIS = Number of Overall Page Viewings, PIS_AP = Number of Shopping Cart Page 

Viewings, PIS_DV = Number of Detailed Product Page Viewings, PIS_PL = Number of Category Overview Page View-

ings, PIS_SDV = Number of Detailed Product Page Viewings Using Search Function, PIS_SHOPS = Number of Depart-

ment Page Viewings, PIS_SR = Number of Search Results Page Viewings, POSITIONS = Number of Product Types, 

QUANTITY = Number of Items, WEB_CUST = Customer Accessing via Desktop. 

4.2 Experimental Setup 

Since each machine learning approach and its subsequent refinements and modifications exhibit in-

dividual strengths and weaknesses in dependence of the underlying data and the requested task it is 

highly recommended in the machine learning literature to compare and test different algorithms 
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(Moro et al., 2014; Razi and Athappilly, 2005). Thus, we compared different models of those pro-

posed in Section 3 to predict shopping cart abandonment for our data, listed in Table 3. Additionally, 

we included a standard logistic regression model in our comparison serving as a non-machine learning 

benchmark method. 

Table 3: Machine Learning Approaches for Comparison. 

Approach Description 
Adaptive Boosting (AdaBoost) Ensemble of weak learners, algorithm puts higher weights 

on incorrectly classified instances 

Boosted Logistic Regression (LogitBoost) Algorithm applies logistic regression techniques to the 
AdaBoost method by minimizing the logistic loss 

Decision Tree (DT) Algorithm recursively partitions the predictor space into 
subsets in which the distribution of the dependent variable 
is successively more homogeneous 

Gradient Boosting (Linear Base Learner) with 
L1 and L2 Regularization (GBReg) 

Ensemble of weak learners (with linear base learners), 
algorithm applies L1 (Lasso Regression) and L2 (Ridge 
Regression) Regularization 

Gradient Boosting (Tree Base Learner) 
(GBTree) 

Ensemble of weak learners (with tree base learners), 
algorithm minimizes the model’s loss by adding weak 
learners sequentially using a gradient descent like 
procedure 

Gradient Boosting (Tree Base Learner) with 
Dropout (GBDropout) 

See GBTree, but the algorithm randomly drops boosting 
tree members 

k-Nearest Neighbor (KNN) Algorithm classifies an observation by assigning it to the 
class most common among its 𝑘 nearest neighbors 

Multi-Layer Perceptron Network with Drop-
out (MLPDropout) 

Feedforward Neural Network with dropout regularization 
technique 

Naïve Bayes (NB) Algorithm is based on the Bayes’ theorem and classifies an 
observation by deriving the maximum a posteriori probabil-
ity 

Random Forest (RF) Ensemble of decision trees, algorithm predicts new data by 
aggregating the predictions of the trees 

Stochastic Gradient Boosting (SGB) Algorithm fits base learner at each iteration on the 
subsample of the data – instead of the full – drawn at 
random without replacement 

Support Vector Machine with Radial Basis 
Kernel (SVMRadial) 

Support vector machine implementation with radial basis 
kernel  

 

To estimate and, hence, validate the models, we randomly partitioned the data into a training and a 

test subset in a 67/33 ratio, i.e., 67% (or 550,098 observations respectively) of the data are used as 

training data and 33% (or 270,950 observations respectively) are used as test data. 
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We performed 𝑘-fold cross-validation with the training data to fit the models and optimized their 

hyperparameters respectively (Geisser, 1975; Stone, 1974): the sample, i.e., the training data, is ran-

domly split into 𝑘 equal sized subsamples 𝒟1, 𝒟2, … , 𝒟𝑘. Of the 𝑘 subsamples, one single subsample 

is retained as validation data to test the fitted model subsequently and the remaining 𝑘 − 1 subsam-

ples are used as training data to fit the model. This step is repeated 𝑘 times with each of the 𝑘 sub-

samples serving as validation data once. Drawing on machine learning literature, 𝑘 = 10 is fre-

quently utilized since it provides an adequate trade-off between method’s variance and method’s bias 

(i.e., trade-off between the estimated parameter’s expected value and the estimated value) (Bradley, 

1997; Breiman, 1996; Kohavi, 1995; Tibshirani and Tibshirani, 2009; Zhang, 1993). Thus, we applied 

10-fold cross-validation. 

Further, to validate and evaluate our models’ performance, we considered different performance met-

rics that indicate the models’ predictive ability. In a binary decision problem, the classifier labels 

observations as either positive or negative. Consequently, the classification procedure yields four 

different outputs in a 2𝑥2 confusion matrix: the sample is either correctly classified as positive (true 

positive (TP)), correctly classified as negative (true negative (TN)), falsely classified as positive (false 

positive (FP) or Type II error), or falsely classified as negative (false negative (FN) or Type I error). 

Thereby, accuracy is one of the most commonly used measures for classification performance due to 

its simplicity (see e.g., Kohavi (1995)). It is the ratio between correctly classified samples to the total 

number of samples: 

Accuracy=
TP+TN

P+N
 

However, recent research shifted away from solely presenting accuracy results since accuracy as-

sumes balanced class distribution and equal error costs (i.e., Type I errors are equivalent to Type II 

errors) which is rarely the case in real world applications (Davis and Goadrich, 2006; Provost and 

Fawcett, 1997). To address these problems, a receiver operating characteristics (ROC) curve and thus, 

the area under the ROC curve (AUC)5 have been increasingly used by the machine learning commu-

nity since they are insensitive to changes in class distributions and scale-invariant (Bradley, 1997; 

Fawcett, 2006). A ROC graph is a two-dimensional depiction of classification performance to meas-

ure different classifiers’ performances and captures the trade-off between benefits (i.e., true positives) 

and costs (i.e., false positives) (Fawcett, 2006). It is created by plotting the true positive rate (TPR) 

 
5 In literature, the area under the ROC curve is frequently referred to as AUROC instead of AUC. 
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(or sensitivity or recall respectively) against the false positive rate (FPR) (or 1 − specificity respec-

tively) (Bradley, 1997; Fawcett, 2006; Hand, 2009; Provost and Fawcett, 2001): 

TPR=Sensitivity=Recall=
TP

P
;    FPR=1-Specificity=

FP

N
;    Specificity=

TN

N
 

The classifier’s AUC value is a portion of the area of the unit square and its value ranges from 0.0 to 

1.0 (perfect classification). It should be higher than 0.5 which equals the AUC of an uninformative 

classifier (Bradley, 1997; Fawcett, 2006). An important statistical property of the AUC is that a clas-

sifier’s AUC is equivalent to the probability that the classifier will rank a randomly chosen positive 

observation higher than a randomly chosen negative observation (Fawcett, 2006).  

An alternate performance measure is the F1-Score comprising both precision and recall: 

Precision=
TP

TP+FP
;     F1=2∙

Precision ∙ Recall

Precision+Recall
 

Ideally, the performance measure is chosen by properly reflecting the investigation’s aims to avoid 

misleading conclusions. Since our data is relatively balanced it seems reasonable to consider accuracy 

as a basic performance metric. However, as we intend to convert customers abandoning their shop-

ping carts into purchasers our main aim is to correctly classify actual positives (i.e., observations of 

shopping cart abandonments) by minimizing the Type I error. Consequently, the higher the recall the 

less false negatives (i.e., shopping cart abandonments classified as purchasers) have been predicted. 

Besides, we intend to maximize the proportion of actual positives among the predicted positives by 

minimizing the Type II error, i.e., purchasing customers should not be classified as non-purchasers. 

Thus, the higher the precision the less false positives have been predicted. The F1-Score considers 

the trade-off between recall and precision. Therefore, we determined the F1-Score, recall, and preci-

sion as our main performance metrics for the test data. Additionally, to yield valid results, we con-

sidered the ROC curve or the AUC respectively as a performance metric since it is a common measure 

of separability capturing the trade-off between both TPR (or sensitivity or recall respectively, analo-

gous to F1-Score) and FPR (i.e., how many negative instances are falsely classified as positive among 

the negative instances). For the training data, the best classifier during hyperparameter optimization 

was automatically chosen based on the AUC values. 

Although prediction accuracy (i.e., AUC, F1-Score, and accuracy) is frequently the main decision 

criterion when comparing different machine learning models, the models’ complexity in terms of 

computation time and computation effort (e.g., numbers of hyperparameters to be optimized) is of 
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similar importance regarding the application in practice and should therefore be considered as well 

(Doshi-Velez and Kim, 2017; Guidotti et al., 2019; Tambe et al., 2019). 

5 Findings  

Drawing on the training results in Table 4, gradient boosting with regularization outperformed the 

remaining approaches with an AUC of 0.9008. The final gradient boosting model’s fitted hyperpa-

rameters did not include the lasso regression technique (L1 regularization) but made use of the ridge 

regression technique (L2 regularization). The gradient boosting with tree base learners and random 

forest yielded comparable results (AUC of 0.8953 and 0.8954 respectively) whereas naïve bayes and 

boosted logistic regression realized the lowest AUC values (0.8218 and 0.8381 respectively). 

Regarding estimation time, the benchmark logistic regression, decision tree, and boosted logistic re-

gression performed the fastest 10-fold cross validation to optimize the hyperparameters (20.3, 225.07, 

and 380.0 seconds respectively). The support vector machine and adaptive boosting were the most 

time-consuming models to estimate (1,306,838.6 and 703,903.9 seconds respectively). Gradient 

boosting with regularization yielded a moderate estimation time (4,021.28 seconds) and thus, pro-

vides an appropriate trade-off between AUC and estimation time. 

 

 

 

 

 

 

 

 

 

Table 4: Training Data Results. 

Model Fitted Parameters AUC 
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Parameter Fitted Value Estimation Time 
(Seconds)6 

Logistic Regression   0.8003 20.3 

AdaBoost 
Number of Trees  50 

0.8698 703,903.9 
Method  Adaboost.M1 

LogitBoost Number of Boosting Iterations  21 0.8381 380.0 

DT Complexity Parameter 0.0129 0.7988 225.07 

GBReg 

Number of Boosting Iterations  150 

0.9008 4,021.28 
L2 Regularization  0.1 

L1 Regularization  0 

Learning Rate 0.3 

GBTree 

Number of Boosting Iterations  150 

0.8953 6,701.14 

Maximum Tree Depth  3 

Shrinkage  0.4 

Minimum Loss Reduction  0 

Subsample Ratio of Columns  0.8 

Minimum Sum of Instance 
Weight  

1 

Subsample Percentage  1 

GBDropout 

Number of Boosting Iterations  150 

0.8952 49,794.27 

Maximum Tree Depth  3 

Shrinkage  0.4 

Minimum Loss Reduction  0 

Subsample Ratio of Columns  0.8 

Minimum Sum of Instance 
Weight  

1 

Subsample Percentage  0.75 

Fraction of Trees dropped 0.01 

Probability of Skipping Dropout  0.95 

KNN 

Maximum Number of Neigh-
bors 

30 

0.8828 127,773.4 
Distance 2 

Kernel  Optimal 

MLPDropout 

Number of Hidden Units  768 

0.8807 218,894.0 

Dropout Rate  0.35 

Batch Size  64 

Learning Rate  0.000006 

Rho  0.2 

Learning Rate Decay  0 

Activation Function  Sigmoid 

Epochs 30 

NB 

Laplace Correction 0 

0.8218 5,757.49 Distribution Type 
Kernel Density 
Estimation 

Bandwidth Adjustment 0.3 

RF 

Number of Randomly Selected 
Predictors  

14 

0.8954 171,587.7 Splitting Rule  Gini 

Minimal Node Size  35 

SGB Number of Boosting Iterations  150 0.8800 2,033.17 

 
6 With 40 GB RAM. 
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Maximum Tree Depth  3 

Shrinkage  0.1 

Minimum Terminal Node Size  10 

SVMRadial 
Sigma  0.1818 

0.8808 1,306,838.6 
Cost  0.5 

Note: The highest AUC value is marked in bold. AdaBoost = Adaptive Boosting, DT = Decision Tree, GBDropout = 

Gradient Boosting with Dropout, GBReg = Gradient Boosting with L1 and L2 Regularization, GBTree = Gradient Boost-

ing with Tree Base Learners, KNN = k-Nearest Neighbor, LogitBoost = Boosted Logistic Regression, MLPDropout = 

Multi-Layer Perceptron Network with Dropout, NB = Naïve Bayes, RF = Random Forest, SGB = Stochastic Gradient 

Boosting, SVMRadial = Support Vector Machine with Radial Basis Kernel. 

Since we are rather interested in the fitted models’ performances on new and unknown data, the test 

data results in Table 5 exhibit a higher practical relevance than the preceding results: similarly to the 

training data results, the gradient boosting model with regularization was superior to the remaining 

models regarding the test data. It yielded the best AUC (0.8182) and accuracy (82.29%) results. In 

line with these findings, the F1-Score (0.8569) proves that the model is the most suitable approach in 

our comparison to balance the trade-off between precision and recall. With respect to its confusion 

matrix in the Appendix, the gradient boosting model classified 28,209 abandonments falsely as pur-

chasers (16.42% of all abandonments) and 19,767 purchasers as abandonments respectively (19.94% 

of all purchasers). This is further reflected by the model's precision (0.8790) and recall (0.8358), i.e., 

there is a high proportion of both correctly predicted abandonments among all correctly and falsely 

predicted abandonments (87.90%) and correctly predicted abandonments among all actual abandon-

ments (83.58%). 

Although naïve bayes realized an extremely high recall (0.9996), its precision (0.6351) is just slightly 

better than random guessing. This is due to its negligible Type I error (i.e., 68 abandonments classified 

as purchasers (0.0004% of all abandonments)) and its substantial Type II error (i.e., 98,677 purchasers 

classified as abandonments (99.52% of all purchasers)). Consequently, by focusing exclusively either 

on precision or recall, one could draw misleading conclusions regarding model selection. The F1-

Score of the naïve bayes model (0.7767) reveals that it constitutes a suboptimal choice. 

Similarly, albeit the decision tree classified a high proportion of purchasers correctly and only 12,688 

(i.e., 12.80% of all purchasers) wrong, it categorized 55,634 cart abandonments as purchasers (i.e., 

32.38% of all abandonments). Thus, due to its high Type I error, its recall is extremely low (0.6762), 

but it realized the highest precision value of all models (0.9015). 

Generally, our results indicate a substantial predictive ability of the most tree-based methods (i.e., 

gradient boosting with regularization (and linear base learners), gradient boosting (with tree base 
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learners), gradient boosting with dropout (and tree base learners), and random forest) compared with 

the remaining machine learning approaches. The latter were outperformed by tree-based models with 

regard to all relevant performance metrics (AUC, accuracy, and F1-Score).7 

Logistic regression as a non-machine learning benchmark approach yielded the lowest F1-Score but 

realized a higher AUC value than several other machine learning approaches like boosted logistic 

regression, k-nearest neighbor, multi-layer perceptron, naïve bayes, and support vector machine. Nev-

ertheless, it did not perform better than the tree-based methods (except for adaptive boosting, decision 

tree, and stochastic gradient boosting) with regard to AUC. 

Moreover, the k-nearest neighbor algorithm as a basic machine learning approach outperformed more 

sophisticated algorithms like the multi-layer perceptron, the stochastic gradient boosting, and adap-

tive boosting with respect to its AUC value (0.7962). 

Table 5: Test Data Results. 

Model 
Performance Metrics 

AUC Accuracy Precision Recall F1-Score 

Logistic Regression 0.8012 78.94% 0.6677 0.8454 0.7461 
AdaBoost 0.7516 78.54% 0.8024 0.8777 0.8384 
LogitBoost 0.7623 77.19% 0.8349 0.7981 0.8161 
DT 0.7741 74.78% 0.9015 0.6762 0.7728 
GBReg 0.8182 82.29% 0.8790 0.8358 0.8569 
GBTree 0.8105 81.78% 0.8701 0.8377 0.8536 
GBDropout 0.8123 81.84% 0.8731 0.8350 0.8536 
KNN 0.7962 80.5% 0.8585 0.8290 0.8435 
MLPDropout 0.7911 80.36% 0.8503 0.8378 0.8440 
NB 0.5022 63.56% 0.6351 0.9996 0.7767 
RF 0.8108 81.75% 0.8711 0.8359 0.8531 
SGB 0.7902 80.08% 0.8521 0.8299 0.8409 
SVMRadial 0.7956 81.23% 0.8479 0.8578 0.8528 

Note: For each column, the highest value is marked in bold. AdaBoost = Adaptive Boosting, DT = Decision Tree, 

GBDropout = Gradient Boosting with Dropout, GBReg = Gradient Boosting with L1 and L2 Regularization, GBTree = 

Gradient Boosting with Tree Base Learners, KNN = k-Nearest Neighbor, LogitBoost = Boosted Logistic Regression, 

MLPDropout = Multi-Layer Perceptron Network with Dropout, NB = Naïve Bayes, RF = Random Forest, SGB = Sto-

chastic Gradient Boosting, SVMRadial = Support Vector Machine with Radial Basis Kernel. 

 

 

 

 
7 Tree-based approaches are typically not subject to multicollinearity (Climent et al. 2019). Thus, we did not remove any 

correlated variables during the training process. 
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6 Discussion 

Our findings contribute to a deeper understanding regarding the successful implementation of ma-

chine learning methods for predicting online shopping cart abandoners with a strong forecast perfor-

mance in order to apply marketing techniques in real-time to convert them to purchasers. Thus, we 

discuss our findings’ theoretical contribution and practical implications in this Section. We also dis-

cuss limitations and propose suggestions for future research. 

6.1 Theoretical Contribution 

Overall, we fill a research gap by identifying suitable machine learning approaches for online shop-

ping cart abandonment prediction not only in terms of accuracy but, further, in terms of practicability. 

Thereby, we contribute to literature in several ways. First, we are able to characterize customers 

abandoning their shopping cart descriptively with our data. Preceding literature on shopping cart 

abandonment (e.g., Close and Kukar-Kinney (2010), Huang et al. (2018), or Kukar-Kinney and Close 

(2010)) primarily shed light on behavioral aspects of the abandonment process with experimental 

designs. In contrast, our research deals with unbiased clickstream data comprising an exceptionally 

high number of observations. Our data indicate that there is a higher proportion of new customers 

and mobile shoppers among customers abandoning their shopping carts compared to purchasers 

whereas the latter add more items to their shopping cart and view an increased number of pages on 

average.  

Second, we contribute to literature by proposing a broad range of machine learning models to com-

pare their performance regarding online shopping cart abandonment prediction and, thus, to predict 

future customers abandoning their shopping carts in real-time. Prior literature either drew on a be-

havioral perspective to understand the antecedents of shopping cart abandonment or predicted – more 

generally – purchase behaviors with conservative approaches and less observations (see e.g., Huang 

et al. (2018), Kukar-Kinney and Close (2010), or Sismeiro and Bucklin (2004)). For our data, the 

gradient boosting with regularization yielded the highest accuracy (82.29%). However, with respect 

to our main aim, to minimize the Type I error (i.e., abandoners falsely classified as purchasers) and 

the Type II error (i.e., purchasers falsely classified as abandoners), we focused on the F1-Score cap-

turing the trade-off between precision and recall. Consistent with the accuracy results, the gradient 

boosting with regularization outperformed the remaining models regarding the F1-Score (0.8569). 

Additionally, it realized the highest AUC value (0.8182) compared to the other models.  
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Overall, we found tree-based methods to be superior to the remaining machine learning approaches 

and logistic regression as a benchmark non-machine learning approach aligning with prior research 

comparing machine learning approaches in different application fields like customer churn prediction 

or phishing detection (Abu-Nimeh et al., 2007; Caruana and Niculescu-Mizil, 2006; Vafeiadis et al., 

2015) and – similar to our context – prediction of online purchase intention (Bogina et al., 2019; 

Boroujerdi et al., 2014; Zheng and Liu, 2018). Thus, we complement the literature on machine 

learning comparisons in a marketing context. 

Moreover, despite the striking importance of prediction accuracy as a decision criterion for appropri-

ate machine learning approaches, the models’ practicability with respect to modeling complexity as 

an essential criterion is of particular importance (Doshi-Velez and Kim, 2017; Guidotti et al., 2019; 

Tambe et al., 2019) but, at the same time, is often neglected by current research. Thus, we considered 

the models’ complexity in terms of computation time and computation effort (e.g., numbers of hy-

perparameters to optimize) to add to literature. Thereby, the decision tree approach and boosted lo-

gistic regression yielded only slightly worse AUC results compared to gradient boosting with regu-

larization and, simultaneously, their complexity in terms of both computation effort and time was 

rather low. Hence, in case of online shopping cart abandonment prediction, a decision tree model and 

boosted logistic regression perform well in balancing the trade-off between accuracy and complexity. 

Further, as stated by prior literature, we found the support vector machine approach to be extremely 

computationally infeasible (L'Heureux et al., 2017) despite its acceptable prediction accuracy. 

6.2 Practical Implications 

Our research may help to gather a comprehensive understanding of machine learning approaches for 

prediction or classification, particularly with regard to online shopping cart abandonment prediction. 

More specifically, our research provides multifold practical implications for decision makers.  

Since research about advanced machine learning approaches in marketing contexts is still in its in-

fancy (e.g., Cheung et al. (2003) and Cui et al. (2006)) we reviewed relevant literature to provide an 

introduction to such models, its potential applications, as well as performance metrics, and common 

methods for validation: for machine learning models, 𝑘-fold cross-validation is a common method to 

optimize the models’ hyperparameters. Decision makers should draw on either recall as a perfor-

mance measure if their main aim is to correctly classify abandonments or precision if they intend to 

avoid falsely classified purchasers. The F1-Score considers the trade-off between both. Besides, the 
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AUC is a common measure of separability since it is insensitive to skewed class distributions. Over-

all, tree-based approaches and particularly boosting methods are superior to the remaining machine 

learning models regarding forecast accuracy within online shopping cart abandonment prediction. 

Random forest yields comparable results but is rather time-consuming to estimate (171,587.7 seconds 

estimation time). The support vector machine and adaptive boosting are computationally intensive 

with estimation times of 1,306,838.6 and 703,903.9 seconds respectively.  

Aside from pointing out methodological aspects, we drew on an economical perspective to enhance 

an organization’s turnover: with regard to our data, the mean value of purchasers’ ordered shopping 

carts (VALUE_BB) is 271.73 euro and they add 3.479 items into their shopping cart on average and 

thus, we expect the online retailer’s sales loss for each shopping cart abandonment to be around 230 

euro with 2.945 items in their shopping cart on average. Therefore, we determined a suitable approach 

to correctly identify shopping cart abandonments as well as purchasers: our findings indicate that 

gradient boosting with regularization outperformed the remaining approaches. Organizations can im-

plement this method to predict non-purchasers in real-time when a sufficient amount of information 

about the customer’s activities during the session has been collected. Overall, we found particularly 

tree-based machine learning approaches such as random forest or gradient boosting to outperform 

traditional classification approaches such as logistic regression and decision tree, which are fre-

quently utilized by practitioners. 

Drawing on an overall practicability perspective, decision makers may take a slight loss in prediction 

accuracy into account if, instead, the model’s complexity in terms of computation time and effort is 

substantially lower: in our application context, decision tree and boosted logistic regression yielded 

acceptable prediction results and their computation effort was substantially lower compared to gradi-

ent boosting methods. 

6.3 Limitations and Future Research 

Our research is subject to limitations which stimulate further research. First, the set of useful variables 

for prediction was limited. With respect to extant literature (see e.g., Bucklin and Sismeiro (2003), 

Moe and Fader (2004a), or van den Poel and Buckinx (2005)), we expect e.g. demographic variables, 

historical purchase behavior, or the time customers spend on the single pages to be informative vari-

ables. Further, we did not have information about the customers’ identity and thus, could not deter-

mine whether there were recurring customers. However, this information could be of great interest 

for analyzing online behavior and predicting shopping cart abandonment. For instance, Huang et al. 
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(2018) anticipated that some customers might use the mobile phone for initial purchase stages (i.e., 

browsing and collecting information) and then switch to the computer for completing the purchase. 

However, such customers are listed as two distinct sessions in the current data. Another missing in-

formation concerns the value of abandoned shopping carts. While there is a variable that indicates 

the value of ordered carts (i.e., VALUE_BB), the value of abandoned carts can only be estimated. In 

line with extant literature on shopping cart abandonment (e.g., Close and Kukar-Kinney (2010); Ku-

kar-Kinney and Close (2010)), it can be assumed that the value of ordered items influences abandon-

ing rates and, thus, could aid the prediction of such. Moreover, if detailed information about spent 

time and further, the chronological order of customers’ actions in the online shop would be available, 

we could decompose the session into sequences or segments. Then, we could determine a critical 

point in the customer’s session in which abandonment can be predicted reliably with the F1-Score or 

the AUC exceeding a defined threshold (see e.g., Sismeiro and Bucklin (2004)). Hence, future re-

search could replicate the present study with more detailed data, e.g. between-site clickstream data 

(i.e., panel data collected by media measurement company), that are typically more comprehensive 

and frequently used in clickstream analyses (see e.g., Moe and Fader (2004a)). 

Second, we excluded just-browsing customers from our investigation. A possible direction for future 

research could be to conduct a multi-class classification by differentiating between purchasers, aban-

donments, and just-browsing customers, similar to the cluster analysis of Moe (2003). 

Third, the models’ performance strongly depends on the optimized hyperparameters which may be a 

time-consuming procedure for some of the models. Therefore, we considered only a limited range of 

possible hyperparameter values. Moreover, other values of 𝑘 in cross-validation could lead to differ-

ent results.  

Lastly, a real-time implementation requires a certain amount of data to be collected before the model 

can make a reliable decision. 

By implementing these models, companies may detect shopping cart abandoners in real-time and 

subsequently convert some of them into purchasers by making use of targeted marketing measures 

such as individual chat pop-ups, coupons or special discounts. For instance, Close and Kukar-Kinney 

(2010) suggest human-human interactions (i.e., live chats with employees or other online shoppers) 

to avoid shopping cart abandonment. These could pop-up on the website if the online user is predicted 

to abandon by the machine learning model. Therefore, future research is recommended to test whether 
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pop-up messages and offers impact customers’ online shopping behavior and can prevent online 

shopping cart abandonment. 

7 Conclusion 

Online shopping cart abandonment can inhibit corporate growth and hence, harm a company’s suc-

cess within its competitive environment. Simultaneously, the emergence of the Internet’s commercial 

usage leads to the ability to track consumers’ online activities and online behavior resulting in click-

stream data. 

Thus, to identify online shopping cart abandoners by extracting valuable knowledge from such click-

stream data we proposed different machine learning approaches. We analyzed data of a German 

online retailer comprising 821,048 observations and fitted the models using 10-fold cross validation. 

Thereby, our paper contributes to extant literature by combining research fields of both online shop-

ping cart abandonment and clickstream data with machine learning approaches. 

Our data indicate that among customers abandoning their shopping carts there is a higher proportion 

of new customers and mobile shoppers compared to purchasers whereas the latter add more items to 

their shopping cart and have a higher number of page viewings on average. Moreover, our comparison 

results prove that gradient boosting with regularization is a suitable method to distinguish between 

abandonments and purchasers yielding an AUC of 0.8182, an F1-Score of 0.8569, and an accuracy 

of 82.29%. Nevertheless, a decision tree or boosted logistic regression may be suitable alternatives 

yielding only slightly less accurate prediction results and being computationally more feasible. 

Nevertheless, research on clickstream data combined with machine learning approaches is still in its 

infancy – particularly in a marketing context. Thereby, machine learning will be inevitable for e-

commerce businesses to be successful in the long-term and the analysis provided in this paper shall 

stimulate further research on this topic. 
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Appendix: Confusion Matrices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model Prediction 
Actual 

0 (Purchaser) 1 (Abandonment) 

Logistic Regression 
0 (Purchaser) 83,817 41,722 

1 (Abandonment) 15,335 130,076 

AdaBoost 
0 (Purchaser) 62,009 21,005 

1 (Abandonment) 37,143 150,793 

LogitBoost 
0 (Purchaser) 72,036 34,692 

1 (Abandonment) 27,116 137,106 

DT 
0 (Purchaser) 86,464 55,634 

1 (Abandonment) 12,688 116,164 

GBReg 
0 (Purchaser) 79,385 28,209 

1 (Abandonment) 19,767 143,589 

GBTree 
0 (Purchaser) 77,662 27,875 

1 (Abandonment) 21,490 143,923 

GBDropout 
0 (Purchaser) 78,294 28,352 

1 (Abandonment) 20,858 143,446 

KNN 
0 (Purchaser) 75,687 29,383 

1 (Abandonment) 23,465 142,415 

MLPDropout 
0 (Purchaser) 73,803 27,869 

1 (Abandonment) 25,349 143,929 

NB 
0 (Purchaser) 475 68 

1 (Abandonment) 98,677 171,730 

RF 
0 (Purchaser) 77,903 28,197 

1 (Abandonment) 21,249 143,601 

SGB 
0 (Purchaser) 74,409 29,217 

1 (Abandonment) 24,743 142,581 

SVMRadial 
0 (Purchaser) 72,724 24,427 

1 (Abandonment) 26,428 147,371 
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Abstract: Through the course of rapid digitalization, negative consequences and strain 

resulting from the use of information and communication technologies at work 

have become an important topic of debate. With this paper, we contribute to the 

current discourse by examining how employees mitigate technostress. We 

transfer theory from psychology to information systems literature by investigat-

ing a moderated mediation model where coping was conceptualized as a per-

sonal resource in line with the job demands-resources model. The moderating 

effects of two different reactive coping strategies—active-functional and dys-

functional—were investigated within a final sample of 3,362 German 

knowledge workers. By using covariance-based structural equation modelling, 

we found that technology-related demands are associated with higher level of 

both strain and productivity. We found a competitive mediation effect where 

the direct effect of demands on productivity is of opposite direction as the indi-

rect mediated effect via strain. These effects are buffered by both active-func-

tional and dysfunctional coping. They reduce the extent to which demands lead 

to strain. Further, active-functional coping is associated with lower strain 

whereas dysfunctional coping is associated with higher strain. The contribution 

of this paper for technostress research is discussed and implications for future 

research are given. The recommendations for employers and employees are 

highlighted. 

Keywords: Negative Consequences of ICT Use; Technostress; Strain; Coping; Active-

Functional coping; Dysfunctional coping 
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1 Introduction 

Digitalization's rapid progression leads to comprehensive and ubiquitous change that affects individ-

uals, economies, and society (Gimpel et al., 2018). Digital transformation is driven by a wide variety 

of digital technologies and their adoption (Hartl, 2019; Osmundsen, Iden, & Bygstad, 2018). Even 

though many opportunities and chances accompany this development (e.g., products and services can 

be offered in less time or with better quality), there are some downsides. In particular, the use of 

information and communication technologies (ICT) in occupational settings may cause stress. During 

the last years, research has noted this as a specific form of stress called technostress (Ayyagari, 

Grover, & Purvis, 2011; Tarafdar, Tu, & Ragu-Nathan, 2010; Tarafdar, Tu, Ragu-Nathan, & Ragu-

Nathan, 2007). The term technostress itself was coined in the 80s by Brod (1984, p. 16), who desig-

nated it as a person´s “inability to cope with the new computer technologies in a healthy manner”. 

This is the case if individuals do not feel able to adapt to or keep pace with the increasing technolog-

ical changes, for example, when e-mails are perceived as constant interruptions or the boundaries 

between the work life and private life become blurred due to the need for constant availability 

(Tarafdar et al., 2010). Hence, the impact of digitalization on an employee’s working environment 

must be regarded as ambivalently (Apt, Bovenschulte, Hartmann, & Wischmann, 2016). 

It has been shown that technology-related factors that induce stress are associated with a re-

duction in productivity, job satisfaction, and loyalty to the employer as well as an increased risk of 

burnout and a poor work-life balance (Ayyagari et al., 2011; Califf, Sarker, & Sarker, 2020; Khaoula, 

Khalid, & Omar, 2020; Srivastava, Chandra, & Shirish, 2015; Tarafdar et al., 2010; Tarafdar, Tu, 

Ragu-Nathan, & Ragu-Nathan, 2011). Research has also identified several organizational and indi-

vidual factors that positively moderate the relationship between techno stressors and health and or-

ganizational outcomes (Srivastava et al., 2015; Tarafdar, Pullins, & Ragu-Nathan, 2015). 

All these beneficial factors have in common that they are outside the individual’s scope of 

influence. They are either organizational factors (Ragu-Nathan, Tarafdar, Ragu-Nathan, & Tu, 2008) 

or inherent stable personality traits (Sumiyana & Sriwidharmanely, 2020). But little is known about 

actual behaviours or thoughts that the individual deploys to mitigate the harmful effects of tech-

nostress. A few studies are concerned with coping, but these conceptualize coping as a mediator be-

tween technostress and strain in line with the transactional model of stress (Lazarus & Folkman, 

1984). In contrast, research from industrial and organizational psychology emphasizes the role that 

coping plays as a personal resource (Searle & Lee, 2015), moderating the relationship between job 

demands and strain (Bakker & Demerouti, 2017). Accordingly, the neglect of coping as a moderator 
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proposed by Frese (1986) is still present within the research field of technostress in information sys-

tems (IS) and was only recently addressed by few research articles (Nisafani, Kiely, & Mahony, 2020; 

Pirkkalainen, Salo, Tarafdar, & Makkonen, 2019) focusing on the role of proactive and reactive cop-

ing (Pirkkalainen et al., 2019). Hence, coping responses to technostress are under-studied and inter-

disciplinary enrichment between psychological literature and IS research is needed (Pirkkalainen et 

al., 2019; Tarafdar, Cooper, & Stich, 2019). The disciplines share a common and joint research inter-

est but yet, most articles about technostress are published in IS journals and only few in psychological 

journals disrupting the flow of information, knowledge and exchange of theories from one discipline 

to the other (Bondanini, Giorgi, Ariza-Montes, Vega-Muñoz, & Andreucci-Annunziata, 2020).  

In this paper, we aim to provide evidence that coping as a personal resource moderates the 

relationship between (techno)stress and strain as proposed by the psychological theory of job de-

mands-resources (JD-R) model (Demerouti, Bakker, Nachreiner, & Schaufeli, 2001) complementing 

the perspective of coping as mediator of emotional responses that is grounded in the transactional 

theory of stress (Lazarus & Folkman, 1984). Thereby, we contribute to research by investigating the 

influence of technostress on organizational and individual-level outcomes while modelling coping as 

a moderator in line with the workplace-specific JD-R. This includes the conceptualization of strain 

mediating the influence of technology-related demands on work productivity. Furthermore, we em-

phasize the importance of distinguishing between functional and dysfunctional coping, two forms of 

reactive coping, to gather insights about the differentiation of effective and less effective ways to 

overcome strain related to digital technology use. 

The present manuscript is structured as follows: first, we will address the theoretical back-

ground and give an overview of the current research streams in IS and psychology regarding the 

negative consequences of ICT use. Subsequently, based on the existing literature, we designed a con-

ceptual model that integrates the relationships between techno stressors, their impact on strain, well-

being, organizational outcomes, and the moderating effect of individual coping behaviours. This 

model guided our empirical study on the impacts of technostress. Lastly, we will summarize and 

carefully discuss the empirical findings and give an outlook for future research. 
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2 Theoretical Background 

2.1 Technostress 

The concept of technostress is anchored in the transactional theory of stress (Lazarus & Folkman, 

1984). Stress is a process where individuals appraise the demands of a given situation as taxing or 

exceeding their resources while interacting with their environment. Consequently, technostress refers 

to stress that arises during ICT usage (Tarafdar et al., 2019). Tarafdar et al. (2007) emphasize that “in 

the organizational context, technostress is caused by individuals’ attempts and struggles to deal with 

constantly evolving ICT and the changing physical, social, and cognitive requirements related to their 

use” (p. 304). Hence, employees might experience technostress due to an increased usage of ICT at 

the workplace (Ragu-Nathan et al., 2008). 

Previous research has identified several factors that may induce technostress. The five most-

cited techno stressors are those characterized by Tarafdar et al. (2007): Complexity refers to situations 

where employees do not feel able to handle job-related technologies due to a perceived lack of skills. 

Insecurity relates to employees´ fear of being replaced by new technologies or other employees, re-

sulting in losing their job. Invasion is connected to blurred boundaries between work-related and 

private periods. Situations where employees have to work faster, longer, and even more due to ICT 

usage represent overload. At last, uncertainty describes employees´ confusion in ICT use caused by 

new developments regarding the organization's technologies. Besides these well-established techno 

stressors there are other aspects which are discussed as demanding: Riedl, Kindermann, Auinger, and 

Javor (2012) investigated unreliability, which refers to ICT troubles like system breakdowns. Fur-

thermore, a disturbed workflow through interruptions has been considered as another technology-

related stressor (Galluch, Grover, & Thatcher, 2015). Too many interruptions in the leisure time via 

mobile technologies are a source of stress leading to work-family conflict and lower adoption of IS 

in the workplace (Tams, Ahuja, Thatcher, & Grover, 2020). This is in line with current findings where 

technical problems, disruptions (in the workflow or meetings), communication overload, and contin-

uing work tasks at home were identified as stressful events related to ICT use (Braukmann, Schmitt, 

Ďuranová, & Ohly, 2018). 

The described factors may lead to strain, which is defined as an employee´s psychological, 

physical, or behavioural response to techno stressors (Atanasoff & Venable, 2017). In this context, 

several studies have already dealt with different facets of strain like mental exhaustion (i.e., feeling 

burned out and drained (Ayyagari et al., 2011; Srivastava et al., 2015)), or problems of psychological 
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detachment (Barber, Conlin, & Santuzzi, 2019; Santuzzi & Barber, 2018). Furthermore, technostress 

is also associated with adverse organizational outcomes (i.e., lower productivity (Tarafdar et al., 

2007; Tarafdar et al., 2015), lower user satisfaction (Fischer & Riedl, 2020), and lower employee’s 

loyalty to the employer (Tarafdar et al., 2011). 

To reduce technostress, Ragu-Nathan et al. (2008) investigated three situational factors and 

organizational mechanisms: technical support, literacy facilitation (users are encouraged to share their 

experiences with and knowledge about new technologies), and involvement facilitation (users are 

consulted in the implementation of new technologies and are actively encouraged to try them out). 

These technostress-inhibitors operated as moderators of the relationship between technostress and 

job-satisfaction, organizational commitment, and continuance commitment. Other factors that influ-

ence the relationship between techno stressors and outcomes are timing control and method control 

(Galluch et al., 2015). Furthermore, individual moderating variables like technology self-efficacy 

(Tarafdar et al., 2015) and personality traits like openness, agreeableness, neuroticism, and extraver-

sion (Srivastava et al., 2015) have been identified. 

2.2 Coping with Technostress 

According to the transactional theory of stress (Lazarus & Folkman, 1984, p. 141), coping is defined 

“as constantly changing cognitive and behavioural efforts to manage specific external and/or internal 

demands that are appraised as taxing or exceeding the resources of the person”. These efforts are 

commonly classified into different styles of coping. Besides the broadly acknowledged distinction 

between problem-focused coping (directed at the problem itself in terms of modifying or improving 

the person-environment relation) and emotion-focused coping (comprising strategies which aim at 

regulating stressful emotions) proposed by Folkman, Lazarus, Dunkel-Schetter, DeLongis, and Gruen 

(1986), more fine-grained taxonomies include active coping, seeking instrumental social support, re-

ligion, positive reinterpretation, mental disengagement or behavioural disengagement—only to name 

a few (Carver, Scheier, & Weintraub, 1989). In a more detailed approach, 14 different coping styles 

have been differentiated (Carver, 1997). Thereby, active coping and seeking instrumental social sup-

port can be subsumed under problem-focused coping, whereas positive reinterpretation and turning 

to religion are examples of positively related emotion-focused coping. Hence, these two higher-level 

categories reflect active-functional strategies (Prinz, Hertrich, Hirschfelder, & Zwaan, 2012). In con-

trast, coping strategies where individuals try to avoid the overall issue and escape from the problem 

instead of tackling it at source are considered dysfunctional. Examples are mental and behavioural 
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disengagement as well as alcohol and drug consumption (Carver et al., 1989). 

Research using this more fine-grained taxonomy found that active coping is associated with 

lower exhaustion (Gaudioso, Turel, & Galimberti, 2017). The use of active-functional strategies, such 

as seeking social support, is negatively associated with burnout (Erschens et al., 2018). It has also 

been observed that maladaptive, dysfunctional coping like behavioural disengagement is associated 

with increased work exhaustion (Gaudioso et al., 2017; Prinz et al., 2012) and strain (Hauk, Göritz, 

& Krumm, 2019). In total, there is some evidence that active-functional coping strategies positively 

influence employees’ well-being and organizational outcomes, whereas dysfunctional coping nega-

tively impacts those outcomes. However, it is not clear how coping moderates the relationship be-

tween techno stressors and organizational as well as health outcomes. Active-functional coping 

should be beneficial, whereas dysfunctional coping may be seen as a malfunctioning strategy to over-

come the long-term consequences of stress. 

There is no consensus in research whether coping strategies should be considered a moderator 

or mediator. Frese (1986) mentioned this issue in his study and highlights that this specific distinction 

is often neglected. As emphasized above, the technostress framework from IS literature is based on 

Lazarus and colleagues (Folkman et al., 1986; Lazarus & Folkman, 1984), where coping is modelled 

as a mediator. Several studies have already addressed this in the context of technostress research 

(Gaudioso, Turel, & Galimberti, 2016; Hauk et al., 2019; Zhao, Xia, & Huang, 2020). Maladaptive 

coping, for example, translates invasion and overload through the strain facets of work-family conflict 

and distress into higher exhaustion. In contrast, adaptive coping strategies mediate the same relation-

ship resulting in lower work exhaustion (Gaudioso et al., 2017). Behavioural disengagement mediates 

the relationship between age and technology-induced strain operationalized as emotional and physical 

exhaustion (Hauk et al., 2019). 

At the same time, stressors and work demands, which also include stress resulting from the 

use of ICT, constitute a typical subject of matter in psychological investigations (Barber et al., 2019; 

Braukmann et al., 2018; Day, Paquet, Scott, & Hambley, 2012; Day, Scott, & Kelloway, 2010; 

Golden, 2012; Sonnentag, Kuttler, & Fritz, 2010). In this context, coping strategies have been dis-

covered numerous times as a moderating variable: Lewin and Sager (2009) found that problem-fo-

cused coping strategies moderate the impact of stressors on emotional exhaustion. Yip, Rowlinson, 

and Siu (2008) provide evidence that coping buffers the negative effects of job stressors on burnout. 

Similarly, Searle and Lee (2015) found that pro-active coping moderates the relationship between 

demands and burnout. Ashill, Rod, and Gibbs (2015) show in their study that self-directed coping 
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mitigates dysfunctional effects of job demand stressors on emotional exhaustion while other-directed 

coping buffers the relationship between job demands and job performance. Recently published arti-

cles in IS also started to model coping as a moderator (Nisafani et al., 2020; Pirkkalainen et al., 2019). 

Investigating coping as a moderator, psychological research widely uses the JD-R model 

(Demerouti et al., 2001) as the theoretical foundation which has been applied and expanded to explain 

the relationship between job demands, personal resources, and strain (e.g., exhaustion as one facet of 

burnout (Demerouti, Mostert, & Bakker, 2010)). In keeping with the JD-R model, “job resources 

refer to those physical, psychological, social, or organizational aspects of the job that may do any of 

the following: be functional in achieving work goals, reduce job demands and the associated physio-

logical and psychological costs, stimulate personal growth and development” (Demerouti et al., 2001, 

p. 501). ”Personal resources can be seen as the beliefs individuals have in their ability to act on the 

environment” (Bakker & Demerouti, 2017, p. 275). How people cope with stress can be treated as a 

personal resource as well (Searle & Lee, 2015). Personal resources can buffer the impact of job de-

mands on strain, while strain variables like exhaustion negatively affect employees’ job performance 

(Bakker & Demerouti, 2017). According to Ninaus, Diehl, Terlutter, Chan, and Huang (2015) and 

Patel, Ryoo, and Kettinger (2012), it can also be differentiated between demands and resources within 

ICT use. Employees may benefit from ICT use, but it also increases demands and causes strain (Bak-

ker & Demerouti, 2017). These resources also include coping strategies to mitigate strain directly 

(Ângelo & Chambel, 2014). The JD-R model has also been used as a theoretical foundation for con-

ceptualizing technostress (Christ-Brendemühl & Schaarschmidt, 2020; Florkowski, 2019; Mahapatra 

& Pati, 2018; Ninaus et al., 2015; Wang, Kakhki, & Uppala, 2017) but it has not been applied in 

investigating coping strategies as a moderator in the technostress context yet. We aim to close this 

theoretical gap. 

3 Research Model and Hypotheses Development 

We are referring to the agenda postulated by Tarafdar et al. (2019) who claim a lack of research on 

coping strategies and its effects on the relationships between techno stressors and outcomes. Simul-

taneously, other researchers (Nisafani et al., 2020; Pirkkalainen et al., 2019) call for further investi-

gations of coping strategies and how they might lead to different coping outcomes. To fill this gap, 

the respective moderating effects of active-functional and dysfunctional coping behaviour are the 

focus of our examination. Another reason for this is that Pirkkalainen et al. (2019) focus on the effects 

of proactive (i.e., strengthening one’s ability to cope) and reactive coping, neglecting the different 
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types of reactive coping. Based on the findings above, we developed a research model (the simplified 

moderated mediation model is displayed in Figure 1) building on both psychological literatures re-

garding job demands as well as negative consequences of ICT use and technostress literature from 

the IS domain. 

The model establishes a relation between job demands, strain (represented through exhaus-

tion), and job performance (represented through productivity) - with strain mediating the impact of 

job demands on job performance - as well as the moderating effect of coping as a resource which is 

in line with the JD-R model (Bakker & Demerouti, 2017). Furthermore, the direct effect of coping on 

strain, as proposed by Ângelo and Chambel (2014), is included. To our understanding, the techno 

stressors described above represent technology-related job demands resulting from the use of ICT for 

work purposes. The wording ‘demands’ will be subsequently used. Therefore, in the model, the sec-

ond-order construct job demands comprises the five techno stressors (Tarafdar et al., 2007) mentioned 

and explained above: complexity, insecurity, invasion, overload, and uncertainty. Also, interruptions 

and unreliability (ICT hassles) were identified as affective events related to ICT use that may have 

negative consequences for well-being (Braukmann et al., 2018). 

In line with the proposed model, we deduct hypotheses for the relationships between job de-

mands, exhaustion, productivity, and coping. It has been shown that technostress is associated with 

lower productivity and simultaneously, techno stressors can induce strain. Further, the JD-R model 

proposes that strain translates into lower job performance, so we assume: 

Hypothesis 1a: Job demands are negatively associated with the productivity of employees. 

Hypothesis 1b: The relationship between job demands and productivity is mediated by ex-

haustion. 

Even though the psychological framework of the JD-R model has already been applied in the 

technostress context (Day et al., 2010; Florkowski, 2019; Mahapatra & Pati, 2018; Ninaus et al., 

2015; Patel et al., 2012; Wang et al., 2017), there is no research concerning coping strategies moder-

ating the relationship between techno stressors and outcomes yet. For investigating these effects in 

our model, we differentiate between active-functional and dysfunctional coping. First, active-func-

tional coping (like support-seeking behaviour and searching for solutions or improvements in a stress-

ful situation) is associated with a lower level of exhaustion. In contrast, dysfunctional coping (like 

displacing reality, escaping behaviour, and the consumption of alcohol or drugs) is related to an in-

creased level of exhaustion; we propose accordingly: 
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Hypothesis 2a: Active-functional coping is negatively related to employees’ level of exhaus-

tion. 

Hypothesis 2b: Active-functional coping acts as a moderator, mitigating the negative impact 

of techno stressors on exhaustion. 

Hypothesis 3a: Dysfunctional coping is positively related to employees’ level of exhaustion. 

Hypothesis 3b: Dysfunctional coping acts as a moderator reinforcing the negative conse-

quences of techno-stressors on exhaustion. 

 

Figure 1. The proposed research model of the assumed relationships in accordance with Nisafani et 

al. (2020). 

4 Method 

4.1 Sample 

Data for this study was collected within the setting of a larger research project supervised by an 

interdisciplinary committee from which ethical approval for the survey was obtained. For more in-

formation concerning ethics, please see the declaration at the end of this manuscript. Except for one 

published paper and one paper in preparation where the five techno stressors proposed by Tarafdar et 

al. (2007), which were assessed with the scales developed by Ragu-Nathan et al. (2008), were used, 

none of the variables (and scales, respectively) utilized in the present study have already been used 

in previous publications based on data from the same project. Respondents were acquired via an 
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external research panel and paid a small incentive for participation in the study. Participants gave 

informed consent, which means they actively agreed that they are over 18 years of age, have read the 

information on intentions of the research project, ethics and processing of data and data protection by 

ticking a box. A contact person was listed, and they were informed that they had the possibility to 

withdraw their consent to participate without giving reasons or incurring disadvantages at any time. 

Subjects were guaranteed that their answers were collected anonymously as far as possible. “Protect-

ing respondent anonymity and reducing evaluation apprehension” helps to reduce possible common 

method bias (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003, p. 888). To do so, we reminded par-

ticipants that there are no right or wrong answers and that we are interested in their honest opinion at 

the introduction of each subsection, trying to minimize method bias. The panellist company was in-

structed to collect answers from German knowledge workers. Knowledge workers are defined as 

employees working in an occupation where information is a resource, tool and result of work (Klotz, 

1997). Examples for relevant professions are technicians, engineers, scientists, finance, controlling, 

managers, journalists, consultants, and lawyers. The questionnaire included control variables to test 

our sample's representativeness, namely age, sex, employment status, occupational title and sector, 

number of hours worked per week, and education. Further, intensity of technology use for work pur-

poses was assessed. In the first step, the answers of n = 445 participants were collected for a quanti-

tative pre-test of the scales. In a second step, answers for the main study were collected. This final 

sample consisted of n = 3,362 respondents. Preliminary analysis showed that the distribution of par-

ticipants according to the control variables age, sex, and sectors (Federal Statistical Office of Ger-

many, 2018a, 2018b) is representative of the German working population. About 46% percent of 

participants were female and 54% male. The mean age was 42.44 years (SD = 11.39). 23% of the 

participants have a secondary school education, 27% finished a vocational apprenticeship, 19% had 

a bachelor’s degree, 27% finished with a master’s degree, and 4% percent completed a Ph.D. Most 

participants (30%) worked in the public or private service sector, followed by 15% who worked in 

the trade, transport or hotel sector, followed by the producing sector without construction industry 

(15%), business services industry (14%), information and communication (11%), finance- and insur-

ance services (7%), construction sector (4%), land- and housing sector (2%), and agriculture, forestry, 

and fishing (< 1%). 
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4.2 Measures 

We relied on established, validated scales in the survey. All questions were administered in German. 

If necessary, the items were translated from the original language. Therefore, three German native 

speakers translated the questions in parallel. They met afterwards to resolve discrepancies and agreed 

on the best translation. In this step, we tried to avoid common method bias. The following rules were 

applied to all items in the translation procedure: “keep questions simple, specific, and concise; avoid 

double-barrelled questions; decompose questions relating to more than one possibility into simpler, 

more focused questions; and avoid complicated syntax.” (Podsakoff et al., 2003, p. 888). The 

measures were subjected to extensive testing with participants who had not been involved in the 

research process previously to identify ambiguous terms and to ensure understanding of the translated 

items. In this quantitative pre-test, the scales' quality and psychometric properties were evaluated 

based on the answers of n = 445 participants. 

Complexity, insecurity, invasion, overload, and uncertainty were assessed with the scales de-

veloped by Ragu-Nathan et al. (2008). Complexity was measured using five items, for example: “I 

need a long time to understand and use new technologies”. The scale for insecurity encompasses five 

items, including “I have to constantly update my skills to avoid being replaced.” Invasion comprises 

three items (e.g., “I have to be in touch with my work even during my vacation due to this technol-

ogy”). Overload was measured with four items. An example is “I am forced by this technology to 

work with very tight time schedules”. Lastly, uncertainty was measured with four items (e.g., “There 

are constant changes in computer software in our organization”). Additionally, interruptions were 

assessed with three items published by Galluch et al. (2015), for example, “I experienced many dis-

tractions during the task” and finally, unreliability (Ayyagari et al., 2011) was also measured with 

three items (e.g., “The features provided by digital technologies are dependable”). We used a five-

point Likert-type rating scale from 0 = I do not agree at all to 4 = I totally agree for all items. 

Exhaustion was measured with a subscale of the Maslach Burnout Inventory (Maslach & 

Jackson, 1986). It contains nine items, for example, “I feel emotionally drained by my work”. A five-

point Likert-type rating scale ranging from 0 = I do not agree at all to 4 = I totally agree was used. 

Productivity was measured with four items (Chen & Karahanna, 2014). It describes self-eval-

uated work performance (fulfilment of work tasks and general demands). An example item is “I have 

a reputation in this organization for doing my work very well”. Ratings were made on a five-point 

Likert-type rating scale ranging from 0 = I do not agree at all to 4 = I totally agree. 
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Coping was assessed with a selection of 15 items from the Brief COPE (Carver, 1997). We 

used the existing German translation of the inventory (Knoll, Rieckmann, & Schwarzer, 2005). While 

the original scale contains 28 items paired up in 14 subscales with two items each, the subscales from 

Prinz et al. (2012) that build on the Brief COPE consist of nine items for active-functional coping and 

six items for dysfunctional coping. Active-functional coping comprises for example, “I’ve been tak-

ing action to try to make the situation better”. An example for dysfunctional coping is “I’ve been 

using alcohol or other drugs to make myself feel better”. Answers were assessed on a three-point 

frequency scale ranging from 0 = never to 2 = often. The items are displayed in Table 6 in the Ap-

pendix. 

The covariate technology use was assessed with one self-developed item: “How often do you 

use digital technologies for your work?”. Frequency answers were given from 0 = never to 4 = several 

times a day.  

4.3 Means of Analysis 

After running descriptive analyses, we subjected the items for the two coping subscales identified by 

Prinz et al. (2012) to an exploratory factor analysis (EFA) with varimax rotation (see Appendix) to 

see whether the expected two factors are extracted because the authors of the original scale did not 

provide this clustering (see Table 5 in the Appendix). The relationships of the variables we propose 

in our research model were analysed using covariance-based structural equation modelling (Jöreskog, 

1970). We utilized the widely used open-source software R and the integrated development environ-

ment R-Studio (R Development Core Team, 2019; RStudio Team, 2019). For specific analyses, we 

used complementary packages in addition to the R base program (i. e., lavaan (Rossel, 2012), psych 

(Revelle, 2019), GPARotation (Bernaards & Jennrich, 2005), and semTools (Jorgensen, Pornprasert-

manit, Schoemann, & Rossel, 2019)). 

To test nonlinear and interactive effects in structural equation models, Kenny and Judd (1984) 

proposed the product indicator (PI) approach. The products of the observed variables are used as 

indicators for the latent interaction term in the measurement model. To create the product term, the 

indicator with the highest reliability should be chosen (Saris, Batista-Foguet, & Coenders, 2007), 

while the product shows optimal reliability as an indicator of the latent interaction variable, whereby 

the power of the test of the latent moderator increases by an increase in the reliability of the indicator 

(Saris et al., 2007). When using product indicators, missing independency of higher-order indicators 

from the lower-level indicators due to the multiplication of the two variables is a problem. Statistical 
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procedures have been introduced to deal with this dependency of higher-order indicators to lower-

order indicators. Lin, Wen, Marsh, and Lin (2010) propose a double mean centring strategy. This 

approach performs well and eliminates the need for the constraint of the inclusion of a mean structure, 

as introduced by Jöreskog and Yang (1996). Double mean centring also performs better with non-

normal data than (single) mean centring and orthogonalization. It can be combined with different 

matching strategies of indicators and is available with most commercial SEM software. Hence, to 

create the indicators for the latent interaction term between techno stressors and coping, we used the 

PI approach in which indicators were chosen and matched according to reliability. The product terms 

were double mean centred (Lin et al., 2010). 

5 Results 

5.1 Measurement Models 

Preceding the analysis of the proposed relationships in our hypothesis, we tested the measurement 

models of the endogenous (strain and productivity) and exogenous (job demands and coping) latent 

variables. Job demands were modelled as a second-order construct (reflected in the seven technology-

related stressors) with both first-order and second-order indicators being reflective. For more infor-

mation about the choice of measurement model please compare Ragu-Nathan et al. (2008, p. 428). 

The moderated mediation was set up as Hayes (2013) described and based on the in-depth explana-

tions (Stride, Gardner, Catley, & Thomas, 2019). Coping moderates the relationship between the 

independent variable (IV) job demands and the mediator exhaustion (IV–Mediator path) and, further, 

has a direct effect on exhaustion. 

We first assessed means and standard deviations, item reliabilities (loadings), and internal 

consistency (Cronbach’s alpha). Table 1 shows an overview of the scales’ properties. For brevity of 

presentation, the values in the table reflect the final measurement model after deletion of single indi-

cators. 
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Table 1. Descriptive statistics, factor loadings, and reliability of the scales in the study. 

 

Cronbach’s alpha was above 0.70 for all constructs, as recommended (Nunnally & Bernstein, 

1994). The test of item reliability showed good results. The factor loadings for each indicator should 

be above the value of 0.70, indicating that the underlying latent factor accounts for more than 50% 

of the variance in the respective indicator (Fornell & Larcker, 1981). Most loadings met this thresh-

old. For the items of the two coping constructs and one item of invasion, values below the threshold 

of 0.70 were observed. The reliability of constructs is evaluated by the average variance extracted 

(AVE). It determines whether the latent construct accounts for more than 50% of its indicator’s var-

iance on average. This threshold was met by invasion and dysfunctional coping, whereas it was below 

0.50 for active-functional coping due to very low loadings, even below 0.60. The two items with the 

lowest loading were removed, which improved the AVE of active-functional coping to 0.51. Further, 

two items of the latent interaction term between active functional coping and technostress displayed 

loadings below 0.60. Hence, they were taken out of the model as well.  

Internal consistency measures like Cronbach’s alpha are not sufficient to imply homogeneity 

and unidimensionality of constructs (Tavakol & Dennick, 2011). Hence, in addition, we analysed the 

discriminant validity of the latent endogenous constructs with the Fornell-Larcker criterion (Fornell 

Scale Items M SD Loadings α 

Complexity 5 1.22 1.04 0.77–0.87 0.91 

Insecurity 5 1.23 1.03 0.72–0.82 0.87 

Interruptions 3 1.59 1.16 0.85–0.90 0.90 

Invasion 3 1.28 1.12 0.64–0.88 0.82 

Overload 4 1.62 1.10 0.70–0.85 0.88 

Uncertainty 4 1.80 1.04 0.74–0.85 0.87 

Unreliability 3 1.82 1.10 0.85–0.92 0.91 

Exhaustion 9 1.50 1.09 0.76–0.91 0.96 

Productivity 4 2.62 0.85 0.81–0.83 0.89 

Active-functional coping (A) 6 0.73 0.60 0.68–0.76 0.86 

Dysfunctional coping (D) 4 0.28 0.45 0.62–0.79 0.80 
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& Larcker, 1981) based on AVE and the correlations among the latent constructs. It is considered as 

given if the square root of the AVE (printed along the diagonal of the correlation matrix) is higher 

than the correlations with the other latent variables (off-diagonal elements) (Fornell & Larcker, 

1981). The results are displayed in Table 2. All correlations between the latent variables were signif-

icant at the level p < 0.001. The square root of the AVE printed along the diagonal is higher than the 

correlations with respective other components for each of the latent factors. This suggests that the 

discriminant validity of the endogenous constructs in our model is given. 

In addition to the procedural remedies which we have taken to avoid common method bias, 

which is described in the method section, we conducted Harman‘s single factor test (Harman, 1967) 

to infer whether common method variance that potentially results in common method bias seems a 

problem in our data set. Results of an unrotated principal component analysis to which we subjected 

all study items show that about 14% is the highest proportion of variance attributed to the first factor. 

Accordingly, common method variance and, hence, common method bias is not considered a prob-

lem.
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Table 2. Discriminant validity according to the Fornell-Larcker criterion. 

Scale (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Complexity (1) 0.82           

Insecurity (2) 0.68 0.76          

Interruptions (3) 0.60 0.54 0.87         

Invasion (4) 0.62 0.72 0.57 0.78        

Overload (5) 0.67 0.71 0.71 0.66 0.81       

Uncertainty (6) 0.43 0.62 0.41 0.50 0.55 0.80      

Unreliability (7) 0.54 0.52 0.63 0.48 0.64 0.44 0.88     

Exhaustion (8) 0.49 0.41 0.50 0.42 0.53 0.21 0.42 0.85    

Productivity (9) -0.12 -0.02 -0.04 0.02 -0.01 0.11 -0.04 -0.18 0.82   

Active-functional coping (10) 0.19 0.15 0.27 0.14 0.27 0.13 0.26 0.20 0.12 0.71  

Dysfunctional coping (11) 0.49 0.49 0.38 0.50 0.42 0.31 0.34 0.43 -0.02 0.45 0.71 
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5.2 Structural Model 

After validating the measurement model, we analysed the structural model to test our 

hypotheses. Unweighted least squares (ULS) were used as an estimator for the evaluation 

of the model because ULS perform better with non-normal and ordinal data as they do 

not make assumptions about the distribution (Forero, Maydeu-Olivares, & Gallardo-Pu-

jol, 2009). Standard errors were obtained through bootstrapping with 1,000 iterations. We 

tested the models stepwise: First, only the covariate was included, then the IV was added. 

Next, the mediator variable strain was included and in the last step, we set up the full 

moderated mediation model. The results are displayed in Table 3. 

We assessed the root mean square error of approximation (RMSEA), the square 

root mean residual (SRMR), the Tucker-Lewis index (TLI), and the comparative fit index 

(CFI) as indicators of model fit. The χ² test statistic is not available with ULS estimation. 

The absolute fit index RMSEA indicates a good model fit at values smaller than 0.05, just 

like the SRMR. CFI and TLI indicate satisfactory model fit greater than 0.95 and a good 

fit at values above 0.97 (Geiser, 2011). Strict cut-off values were applied to check the 

model's suitability since it has been shown that in ULS estimations, the indices tend not 

to detect model–data misfit or misspecifications as efficiently as in maximum likelihood 

(ML) estimations (Xia & Yang, 2019). Overall, the moderated mediation model showed 

a good fit. SRMR was 0.05, indicating only a small divergence between the empirically 

observed and model-implied covariance matrix. RMSEA was 0.05 slightly above the 

strict threshold of 0.05. CFI and TLI indicate a good fit of the model (both, CFI = 0.98, 

TLI = 0.98) with values higher than 0.97. Even with the strict cut-off criteria, the model 

seems to fit the data well. Next, we regarded the regression paths of model 4 to evaluate 

our hypotheses (cf. Table 7 in the Appendix for standard errors and z values of the mod-

erated mediation model). 
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Table 3. Results of the model estimation: direct and moderation effects. 

 Model 1 Model 2 Model 3 Model 4 

 Exhaustion Productivity Exhaustion Productivity Exhaustion Productivity Exhaustion Productivity 

Intensity of technology use -0.03* 0.08*** -0.03* 0.07*** -0.03* 0.07*** -0.03* 0.07*** 

Job demands (TS creators) - - - -0.02 0.57*** 0.11*** 0.44*** 0.12*** 

Strain (exhaustion) - - - -0.18***  -0.25***  -0.25*** 

Active-functional coping (A) - - - -   -0.05*  

Dysfunctional coping (D) - - - -   0.31***  

Coping (A) × job demands - - - - -  -0.05**  

Coping (D) × job demands - - - - -  -0.12***  

R² <0.00 0.01 <0.00 0.03 0.32 0.05 0.36 0.05 

Δ R² 0.00 0.01 0.00 0.02 0.32 0.02 0.04 0.00 

Note. Standardized path coefficients are displayed. Bootstrapped standard errors were used for the interpretation of the results. * p < .05, ** p < 

.01, *** p < .001.
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Results of the mediation analysis show that job demands are significantly related to produc-

tivity as well as exhaustion. Further, exhaustion is significantly related to productivity. At the same 

time, the calculated total effect of job demands on productivity (c = c' + (a × b)) was not significant 

(c = 0.01 (0.03), z = 0.57, p = .568) while the total indirect effect (ab = a × b) of job demands on 

productivity via exhaustion was significant (ab = -0.11 (0.02), z = -7.61, p < .001). Thus, Hypothesis 

1a must be rejected, whereas the results support Hypothesis 1b. Contrary to our expectations, job 

demands are positively related to job performance and higher productivity. Furthermore, job demands 

are positively associated with exhaustion as expected and higher levels of exhaustion go along with 

lower productivity. When both effects are significant but the indirect effect (ab) and the direct effect 

c’ point to different directions, we speak of competitive mediation (Zhao, Lynch, & Chen, 2010). 

The direct effect of active-functional coping on exhaustion was significant, as well as the 

direct effect of dysfunctional coping on exhaustion (see Table 3). The results support the assumptions 

in Hypotheses 2a and 3a. The use of active-functional coping strategies like support-seeking or ac-

tively trying to change the stressful situation is associated with lower levels of exhaustion. In contrast, 

trying to deal with a threatening situation through denial or consumption of alcohol or drugs to over-

come negative feelings is associated with higher levels of exhaustion. 

Active-functional coping significantly moderates the relationship between job demands and 

exhaustion. The negative sign of the path coefficient of the latent interaction term indicates that the 

negative consequences of ICT use are mitigated. The same applies to dysfunctional coping. The sign 

of the path estimate for the latent interaction term is also negative. Contrarily to our expectations, the 

use of dysfunctional coping strategies does not reinforce the effect of job demands on exhaustion but 

buffers it instead (see Table 3). Hence, Hypothesis 2b is supported by the data, whereas Hypothesis 

3b must be rejected. 

Additionally, indirect effects were calculated based on the path coefficients and low, medium, 

and high levels of the two moderator variables (M ± 1 SD). This analysis differentiates between the 

total indirect and conditional indirect effects (simple slopes for each combination of conditions). The 

results are displayed in Table 8 in the Appendix. All combinations of low, medium, and high values 

for each moderator variable point to the same direction. Coping may reduce the detrimental effect of 

job demands on exhaustion as well as mitigate the negative impact of ICT use on strain. The analyses 

also show that the effect of dysfunctional coping is larger than the effect of active-functional coping 

(compare Table 4). 
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Table 4. Conditional indirect effects from the moderated mediation model. 

High D 

(+1 SD) 
-0.07*** -0.06*** -0.05** 

Medium D 

(M) 
-0.09*** -0.09*** -0.08*** 

Low D 

(–1 SD) 
-0.12*** -0.11*** -0.10*** 

 Low A  

(–1 SD) 

Medium A 

(M) 

High A 

(+1 SD) 

Note. Standardized path coefficients are displayed. Bootstrapped standard errors were used for the 

interpretation of the results of the conditional indirect effects. * p < .05, ** p < .01, ***p < .001. 

6 Discussion 

Our results from the covariance-based structural equation model revealed several unexpected in-

sights. First, besides the negative indirect effect between job demands and productivity (through me-

diation via exhaustion), there is a positive direct effect. This positive effect means that, with increas-

ing job demands, productivity rises, which intuitively seems contradictory. This kind of relationship 

is described in the goal setting theory (Locke & Latham, 2002). Difficulties and hard to achieve goals 

motivate people to do their best for goal achievement until their capability or commitment reaches a 

limit. Accordingly, a curvilinear relationship between general stress or work pressure and perfor-

mance is observed (Hofmans, Debusscher, Dóci, Spanouli, & Fruyt, 2015; Leung, Huang, Su, & Lu, 

2011): people who feel fewer demands are not able to utilize their full potential, and productivity is 

low. With increasing demands, productivity raises until a specific turning point is reached: if this 

level is exceeded and the perceived demands are demanded too much, productivity drops. The curvi-

linear relationship between demands and productivity refers to a rather short period, so there is a 

temporal aspect. The temporal consideration is reinforced by the fact that long-term increased strain, 

(i. e., chronic strain), can ultimately lead to burnout (Janssen, 2001).  

Another reason for the positive effect of job demands on productivity is a potential suppressor 

effect, which occurs when the direct and indirect effects on a dependent variable have opposite signs 

and, therefore, an inconsistent mediation is present (Tzelgov & Henik, 1991). In the literature, it is 

considered to be realistic that two opposing direct and indirect effects with similar magnitude almost 

neutralize each other so the total effect is not significant (MacKinnon, Krull, & Lockwood, 2000). 
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For example, let’s take the hypothetical example of workers making widgets, where X is intelligence, 

M is boredom, and Y is widget production (McFatter, 1979). Intelligent workers tend to get bored 

and produce less, but smarter workers also tend to make more widgets. Therefore, the overall relation 

between intelligence and widgets produced may actually be zero, yet there are two opposing media-

tional processes. Therefore, besides the observed positive relationship between technostress and 

productivity, an increase in demands may simultaneously lead to a higher level of exhaustion, result-

ing in lower productivity. Hence, we argue that, despite the positive relationship between job demands 

and productivity, technostress may lower productivity in a long-term view or have no positive impact 

on productivity. On the other hand, however, technological job demands increase the strain, leading 

to long-term health effects and negatively impact organizational objectives from a long-term perspec-

tive. Therefore, technostress should be reduced for organizational and human reasons. 

 Considering the role of coping for overcoming technostress, our results initially confirm prior 

research regarding the direct effects: a broad application of active-functional strategies is negatively 

related to exhaustion. In contrast, a broad application of dysfunctional coping may increase it. In 

doing so, dysfunctional coping exhibits a stronger direct impact on exhaustion. A possible explana-

tion for this could be the nature of active-functional coping: strategies from the active-functional 

category (such as actively seeking to change the stressful situation) require individuals’ energy and 

cause cognitive effort in implementation, which, in turn, may reduce the buffering effect on exhaus-

tion. 

In contrast, surprisingly, both active-functional and dysfunctional coping reduces the relation-

ship between job demands and exhaustion. Furthermore, we even observed considerably higher val-

ues for dysfunctional coping regarding the buffering effect on the relationship between job demands 

and exhaustion. This implies that even though dysfunctional strategies go along with higher exhaus-

tion, their moderating effect on the relationship between job demands and strain is stronger compared 

to active-functional strategies. This is particularly interesting because dysfunctional coping is said to 

be detrimental. The consumption of alcohol or drugs, for example, may lead to long-term adverse 

effects on physical and mental health (Kahler, Ramsey, Read, & Brown, 2002). Moreover, passive 

denial of a given situation has been proven to be a concept that is related to the development of 

depression (Kortte, Wegener, & Chwalisz, 2003; Naditch, Gargan, & Michael, 1975) - another reason 

why dysfunctional coping seems to be a bad strategy to tackle strain. 

Nevertheless, these dysfunctional coping strategies seem to help reduce the harmful effects of 

strain resulting from modern technologies in our sample. The reasons for this relationship emerge 
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when the time perspective is taken into account: coping strategies from the dysfunctional category, 

such as alcohol or denial of the problem, may result in short-term cognitive and emotional relief. 

From a long-term perspective, however, alcohol consumption naturally leads to other serious health 

consequences. The low level of content-related involvement with job demands leads to a reduced 

competence build-up, which ultimately means that resources are not strengthened. Therefore, we ar-

gue that dysfunctional coping, despite its short-term positive effects, would reinforce the conse-

quences of demands in the long-term and, thus, should be avoided for efficiently overcoming tech-

nostress. 

In conclusion, we see in Table 4 that a broad portfolio of coping strategies consisting of both 

active-functional and dysfunctional coping reduces the indirect negative effect of technostress via 

strain on productivity and, thus, also the suppressor effect. This implies that employees who use many 

different coping strategies from both categories would experience less exhaustion, ultimately leading 

to more productivity due to the additional direct effect of demands. On the other hand, the data show 

that employees with generally few different coping strategies can benefit from the suppressor effect 

as the total effect of the demands on productivity diminishes. However, they are still exposed to the 

negative consequences in terms of exhaustion. Employees who focus on a broad portfolio in one of 

the two categories reduce the negative indirect effects of demands on productivity via strain to such 

an extent that the positive direct effect of demand on productivity potentially remains significant, 

although the negative health effects - even if in reduced form - should not be neglected. In this context, 

it is shown that employees who utilize dysfunctional coping strategies can reduce the indirect effect 

more strongly, resulting in overall higher productivity, while, at the same time, causing more exhaus-

tion than with active-functional coping, which in turn leads to less increase in productivity. The long-

term consequences of dysfunctional copying have already been discussed in the previous paragraph. 

6.1 Theoretical Contribution 

Our research provides three important contributions to research on technostress and coping, namely: 

(1) investigating the influence of technostress and coping on organizational and individual-level out-

comes; (2) modeling coping as a moderator applying the workplace-specific JD-R model as a meta-

lens; and (3) emphasize the importance of the distinction between functional and dysfunctional cop-

ing of technostress concerning organizational and individual-level outcomes. We will discuss each 

contribution in detail in die following paragraphs. 

In addition to the aspects discussed previously, our research addresses the call by Sarker, 

Chatterjee, Xiao, and Elbanna (2019) that most manuscripts in high-quality journals are concerned 
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merely with the organizational outcomes. In a socio-technical system – i.e., a system focusing on the 

reciprocal interaction between technology as the technical component and employee as the social 

component (Lee, Thomas, & Baskerville, 2015; Ryan, Harrison, & Schkade, 2002) - it is important 

to consider both organizational and individual-level outcomes to create synergies (Griffith, Fuller, & 

Northcraft, 1998; Pava, 1983; Wallace, Keil, & Rai, 2004). Therefore, our research addresses the 

influence of functional and dysfunctional coping on both organizational (productivity) and individ-

ual-level outcomes (exhaustion).  

Furthermore, in the context of technostress, we have applied the JD-R model as a theoretical 

meta-lens, in which both organizational and individual-level outcomes play a key role and which has 

not been applied in this context before (Bondanini et al., 2020). Thus, in comparison to the transac-

tional model of Lazarus and Folkman (1984), which is usually used in the technostress literature, we 

applied a model that is explicitly focused on the working context. In this, we have also decided to 

model coping as a moderator, which has also been applied in recently published studies on coping 

and technostress (Nisafani et al., 2020; Pirkkalainen et al., 2019) and is in line with the JD-R model. 

Hence, according to our opinion and recent literature, coping can also act as a moderator and have a 

buffering effect on the relationship between technostress creators and long-term outcomes. This em-

phasizes the difference to “coping […] as a mediator of short-term emotional reactions” known from 

Lazarus and Folkman (1987, p. 147).  

In addition to modelling coping as a moderator, we also distinguished the specific nature of 

coping and examined the influence of different coping styles. Thus, we extend recent literature 

(Nisafani et al., 2020; Pirkkalainen et al., 2019) which focused on a distinction between proactive 

coping (i.e., strengthening one’s ability to cope) - and reactive coping, neglecting the different types 

of reactive coping. Dysfunctional coping like alcohol or drug consumption as a reactive form of cop-

ing has not been thoroughly investigated. For example, addiction in the context of ICT use is most 

salient in behavioural addiction like consumption of pornography or extensive gaming (Tarafdar, 

Maier, Laumer, & Weitzel, 2020) while there is less focus on substance abuse. We were able to pro-

vide evidence that this aspect should not be neglected in IS research. 

Furthermore, we shed light on the role of coping mechanisms used to reduce technostress and, 

therefore, provide knowledge for the conceptual model of Nisafani et al. (2020) that is in its current 

form solely covering causal effects of technostress. By doing this, we expand the current knowledge 

of the existing technostress literature dealing with coping, which is an as-yet less studied research 

area (Pirkkalainen et al., 2019; Tarafdar et al., 2019).  
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Overall, technostress research is a highly interdisciplinary field, while it simultaneously is the 

very essence of IS research community (Sarker et al., 2019). Such plurality of research perspectives 

is important to create a deeper understanding of emerging threats due to ICT use. Accordingly, this 

paper brings together psychology and IS research by successfully applying the JD-R model to inves-

tigate the relationships between job demands, exhaustion, and productivity and examining the role of 

coping in the context of ICT use. Within our study, we extend the synthesis of these research fields 

by particularly meeting the recommendations for further investigating the under-researched role of 

strategies that individuals deploy to overcome strain caused by ICT used in an occupational setting.  

6.2 Practical Implications 

Our results provide valuable insights for practitioners who aim to meet technostress efficiently. 

Therefore, we extend the recently published conceptual model of work-related technostress by 

Nisafani et al. (2020) by adding active-functional and dysfunctional coping to the list of existing 

inhibitors, thus addressing the gap mentioned by the authors. In doing this, we support organizations 

to better deal with the organizational and individual-level outcomes of using ICTs and provide three 

suggestions, namely: (1) the appropriate level of demands; (2) the effect of different types of coping 

strategies; and (3) a categorization of employees with different coping styles. 

First, for optimizing employees’ job performance, employers should ensure that their employ-

ees are exposed to the right level of demands for achieving a high level of productivity. A very low 

as well as an excessive level of job demands should be avoided. Otherwise, the employee would be 

under- or overcharged which may result in lower job performance.  

Second, regarding coping strategies for meeting technostress, both employees and employers 

have to carefully deal with the temptations of dysfunctional coping due to the stronger influence on 

the relationship of job demands and exhaustion: dysfunctional strategies may induce serious conse-

quences in a long-term perspective, e. g., alcohol consumption naturally leading to negative health 

consequences which disturb employees’ life as a whole, or a low level of content-related involvement 

with job demands leading to a reduced competence build-up. In this context, employers have to be 

aware of both their economic as well as social responsibilities: they may increase the support for their 

employees in applying active-functional coping in order to reduce its effort and, hence, increase the 

beneficial effects of these strategies in overcoming technostress. Simultaneously, even though dys-

functional coping may seem to be an adequate strategy to overcome technostress, it is crucial to con-

vey the fact that other problems, like addiction, could arise in the long run as well. Employers should 
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be aware of this double-edged sword and take preventive measures to identify individuals with ad-

diction risk. In practice, there are some common measures to identify and support employees with 

addictive behaviour, e. g., companies and work councils hold regular information events to sensitize 

both managers and employees to the subject of addiction. Besides, managers should participate in 

training programs to provide them with the necessary know-how to identify and support potentially 

addicted employees. Overall, stakeholders like companies, works councils, managers, employees, 

company doctors, occupational safety specialists, among others, should ensure this is put to practice 

and promote appropriate handling of dysfunctional coping. 

Third, to reinforce the mitigating effect of coping strategies to overcome technostress, com-

panies should further support their employees regarding their specific coping behaviour: employees 

who use few different ways of coping should be encouraged to acquire a broader repertoire of various 

coping strategies for effectively tackling different kinds of stressful situations. At the same time, em-

ployees who predominantly use one kind of strategy (active-functional or dysfunctional) are recom-

mended to adopt the other category as well and should be supported by their employer in expanding 

their respective coping behaviour. In this context, it appears highly important to be aware of the long-

term health issues of dysfunctional coping, especially if employees often use dysfunctional strategies 

(predominantly or in combination with active-functional strategies). Hence, employers should ensure 

to provide know-how regarding these long-term issues by establishing specific health initiatives. 

6.3 Limitations and Future Research 

Besides the provided insights, our study has several limitations that have to be considered. We used 

a cross-sectional study design to investigate coping as a moderator where the relationships are based 

on covariance analysis. Thereby, it is important to note that this does not imply causality. We cannot 

infer whether dysfunctional coping leads to higher exhaustion from the cross-sectional data assessed 

at one point in time. Causality may just flow the other way round. For example, individuals who feel 

exhausted might tend to cope with stressful situations in a dysfunctional manner by consuming alco-

hol, drugs, or behavioural disengagement, respectively. This would mean that dysfunctional coping 

is not that dysfunctional at all. Besides, we have looked at coping strategies in general instead of 

actual coping actions to derive broader findings. In doing so, we took Prinz et al. (2012) as a reference 

and looked at two possible coping strategies - namely active-functional coping and dysfunctional 

coping. Although we could already derive compelling contributions and implications from this dis-

tinction, a differentiated consideration regarding coping strategies could lead to further insights. Fi-

nally, we have focused our analyses only on one component of strain - exhaustion. In addition to this, 
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there are further options such as other burnout facets, absence duration, or general health complaints, 

which may be taken into account. 

To summarize, applying the JD-R model within the technostress context by considering cop-

ing as moderating the relationship of technostress creators and strain delivers interesting insights con-

tradicting prior results. For future research, we argue that coping as a moderator should be further 

investigated. Our results extend current knowledge in the IS in terms of coping for overcoming tech-

nostress while arguing for further interdisciplinary studies necessary to provide useful knowledge. In 

doing so, it might be particularly interesting to provide longitudinal and cross-level designs to inves-

tigate the effects of dysfunctional coping. The evidence suggests that causality flows in both direc-

tions (Hauk et al., 2019). Behavioural disengagement leads to increased strain, and, in turn, a higher 

level of strain leads to increased behavioural disengagement at a later point in time. Further coping 

responses are dynamic und users shift from one strategy to another in the process of coping (Salo, 

Makkonen, & Hekkala, 2020). Hence, it would be interesting to understand coping processes better 

across time. Furthermore, considering a broader set of different coping strategies could lead to more 

sophisticated results and enable practitioners to design and support more specific measures to address 

the negative consequences of ICT use. 

Overall, since we successfully put together both IS and psychological stress literature and 

therefore address the call for further studies proposed by Tarafdar et al. (2019), this paper enriches 

technostress research regarding the moderating effects of coping strategies and, building on this, fur-

ther studies which examine coping as moderating the effects of technostress on various outcomes are 

highly recommended. 
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Appendix 

Table 5. Rotated component matrix from exploratory factor analysis of the two coping subscales. 

 Factor 

Item 1 2 

Brief COPE 2 0.57  

Brief COPE 3  0.67 

Brief COPE 4  0.74 

Brief COPE 5 0.58  

Brief COPE 7 0.72  

Brief COPE 8  0.59 

Brief COPE 10 0.72  

Brief COPE 11  0.75 

Brief COPE 13 0.49 0.48 

Brief COPE 14 0.75  

Brief COPE 15 0.62  

Brief COPE 21 0.53 0.41 

Brief COPE 23 0.67  

Brief COPE 25 0.65  

Brief COPE 26 0.41 0.53 

Note. Results of a principal axis factoring with varimax rotation. Number of factors was determined 

through parallel criterium. Factor loadings < .35 are not printed. Cross-loadings are in boldface, 

these items were excluded for the analysis of the measurement and the structural model. 
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Table 6. Items of the coping scales: wording, descriptive statistics, and factor loadings. 

 M SD Loading 

Active-functional coping     

Brief COPE 7: I’ve been taking action to try to make 

the situation better. 

0.88 0.84 0.70 

Brief COPE 10: I’ve been getting help and advice 

from other people. 

0.76 0.77 0.76 

Brief COPE 14: I’ve been trying to come up with a 

strategy about what to do. 

0.86 0.84 0.72 

Brief COPE 15: I’ve been getting comfort and under-

standing from someone. 

0.50 0.69 0.70 

Brief COPE 23: I’ve been trying to get advice or help 

from other people about what to do. 

0.63 0.73 0.72 

Brief COPE 25: I’ve been thinking hard about what 

steps to take. 

0.69 0.84 0.68 

Dysfunctional coping    

Brief COPE 3: I’ve been saying to myself “this isn’t 

real”. 

0.34 0.61 0.69 

Brief COPE 4: I’ve been using alcohol or other drugs 

to make myself feel better. 

0.24 0.54 0.77 

Brief COPE 8: I’ve been refusing to believe that it has 

happened. 

0.34 0.59 0.63 

Brief COPE 11: I’ve been using alcohol or other drugs 

to help me get through it. 

0.22 0.53 0.79 

Note. Items which were excluded during the analysis of the measurement model are omitted. Factor 

loadings were obtained from confirmatory factor analysis in SEM. 
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Table 7. Detailed results of the moderated-mediation model 

 Productivity  Exhaustion 

Predictor Est SE za  Est SE za 

Job demands -0.12*** 0.04 4.19  -0.44*** 0.06 14.64 

Exhaustion -0.25*** 0.02 -9.22     

Active-functional coping (A)     -0.05* 0.05 -2.25 

Dysfunctional coping (D)     0.31*** 0.09 8.10 

Coping (A) × job demands     -0.05** 0.03 -2.61 

Coping (D) × job demands     -0.12*** 0.06 -4.85 

R²  0.05    0.36  

Note. Standardized path coefficients are displayed. aBootstrapped standard errors were used for the 

interpretation of the results. 
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Table 8. Conditional indirect effects from the moderated mediation model. 

Moderator values  Indirect effect 

A D  Est SE za 

Low A (–1 SD) Low D (–1 SD)  -0.12*** 0.02 -8.22 

Medium A (M) Low D (–1 SD)  -0.11*** 0.02 -8.04 

High A (+1 SD) Low D (–1 SD)  -0.10*** 0.02 -7.58 

      

Low A (–1 SD) Medium D (M)  -0.09*** 0.02 -6.80 

Medium A (M) Medium D (M)  -0.09*** 0.02 -6.51 

High A (+1 SD) Medium D (M)  -0.08*** 0.02 -5.96 

      

Low A (–1 SD) High D (+1 SD)  -0.07*** 0.02 -3.93 

Medium A (M) High D (+1 SD)  -0.06*** 0.02 -3.58 

High A (+1 SD) High D (+1 SD)  -0.05** 0.02 -3.13 

Note. Standardized path coefficients are displayed. aBootstrapped standard errors were used for the 

interpretation of the results of the indirect effects. * p < .05, ** p < .01, ***p < .001. 

 

 

  



154 
 

 

References 

Ângelo, R. P., & Chambel, M. J. (2014). The role of proactive coping in the Job Demands–

Resources Model: A cross-section study with firefighters. European Journal of Work and 

Organizational Psychology, 23(2), 203–216. https://doi.org/10.1080/1359432X.2012.728701 

Apt, W., Bovenschulte, M., Hartmann, E. A., & Wischmann, S. (2016). Foresight-Studie „Dig-

itale Arbeitswelt” [Foresight Study “Digital Working World”]. Retrieved from 

https://www.bmas.de/SharedDocs/Downloads/DE/PDF-Publikationen/Forschungsber-

ichte/f463-digitale-arbeitswelt.pdf 

Ashill, N. J., Rod, M., & Gibbs, T. (2015). Coping with stress: A study of retail banking service 

workers in Russia. Journal of Retailing and Consumer Services, 23, 58–69. 

https://doi.org/10.1016/j.jretconser.2014.12.006 

Atanasoff, L., & Venable, M. A. (2017). Technostress: Implications for adults in the workforce. 

The Career Development Quarterly, 65(4), 326–338. https://doi.org/10.1002/cdq.12111 

Ayyagari, R., Grover, V., & Purvis, R. (2011). Technostress: Technological antecedents and im-

plications. MIS Quarterly, 35(4), 831. https://doi.org/10.2307/41409963 

Bakker, A. B., & Demerouti, E. (2017). Job demands-resources theory: Taking stock and looking 

forward. Journal of Occupational Health Psychology, 22(3), 273–285. 

https://doi.org/10.1037/ocp0000056 

Barber, L. K., Conlin, A. L., & Santuzzi, A. M. (2019). Workplace telepressure and work-life 

balance outcomes: The role of work recovery experiences. Stress and Health: Journal of the 

International Society for the Investigation of Stress, 35(3), 350–362. 

https://doi.org/10.1002/smi.2864 

Bernaards, C. A., & Jennrich, R. I. (2005). Gradient projection algorithms and software for arbi-

trary rotation criteria in factor analysis. Educational and Psychological Measurement, 65(5), 

676–696. https://doi.org/10.1177/0013164404272507 

Bondanini, G., Giorgi, G., Ariza-Montes, A., Vega-Muñoz, A., & Andreucci-Annunziata, P. 

(2020). Technostress dark side of technology in the workplace: A scientometric analysis. In-

ternational Journal of Environmental Research and Public Health, 17(21). 

https://doi.org/10.3390/ijerph17218013 

 

 



155 
 

 

Braukmann, J., Schmitt, A., Ďuranová, L., & Ohly, S. (2018). Identifying ICT-related affective 

events across life domains and examining their unique relationships with employee recovery. 

Journal of Business and Psychology, 33(4), 529–544. https://doi.org/10.1007/s10869-017-

9508-7 

Brod, C. (1984). Technostress: The Human Cost of the Computer Revolution. Reading, MA: 

Addison-Wesley. 

Califf, C. B., Sarker, S., & Sarker, S. (2020). The bright and dark sides of technostress: A mixed-

methods study involving healthcare IT. MIS Quarterly, 44(2), 809–856. 

https://doi.org/10.25300/MISQ/2020/14818 

Carver, C. S. (1997). You want to measure coping but your protocol's too long: Consider the 

brief COPE. International Journal of Behavioral Medicine, 4(1), 92–100. 

https://doi.org/10.1207/s15327558ijbm0401_6 

Carver, C. S., Scheier, M. F., & Weintraub, J. K. (1989). Assessing coping strategies: A theoret-

ically based approach. Journal of Personality and Social Psychology, 56(2), 267–283. 

https://doi.org/10.1037//0022-3514.56.2.267 

Chen, A., & Karahanna, E. (2014). Boundaryless technology: Understanding the effects of tech-

nology-mediated interruptions across the boundaries between work and personal life. AIS 

Transactions on Human-Computer Interaction, 6(2), 16–36. 

https://doi.org/10.17705/1thci.00059 

Christ-Brendemühl, S., & Schaarschmidt, M. (2020). The impact of service employees’ tech-

nostress on customer satisfaction and delight: A dyadic analysis. Journal of Business Re-

search, 117, 378–388. https://doi.org/10.1016/j.jbusres.2020.06.021 

Day, A., Paquet, S., Scott, N., & Hambley, L. (2012). Perceived information and communication 

technology (ICT) demands on employee outcomes: The moderating effect of organizational 

ICT support. Journal of Occupational Health Psychology, 17(4), 473–491. 

https://doi.org/10.1037/a0029837 

Day, A., Scott, N., & Kevin Kelloway, E. (2010). Information and communication technology: 

Implications for job stress and employee well-being. In P. L. Perrewé & D. C. Ganster (Eds.), 

Research in Occupational Stress and Well Being: Vol. 8. New developments in theoretical 

and conceptual approaches to job stress (pp. 317–350). https://doi.org/10.1108/S1479-

3555(2010)0000008011 

https://doi.org/10.1016/j.jbusres.2020.06.021


156 
 

 

Demerouti, E., Bakker, A. B., Nachreiner, F., & Schaufeli, W. B. (2001). The job demands-

resources model of burnout. The Journal of Applied Psychology, 86(3), 499–512. 

https://doi.org/10.1037//0021-9010.86.3.499 

Demerouti, E., Mostert, K., & Bakker, A. B. (2010). Burnout and work engagement: A thorough 

investigation of the independency of both constructs. Journal of Occupational Health Psy-

chology, 15(3), 209–222. https://doi.org/10.1037/a0019408 

Erschens, R., Loda, T., Herrmann-Werner, A., Keifenheim, K. E., Stuber, F., Nikendei, C., Zip-

fel, S., & Junne, F. (2018). Behaviour-based functional and dysfunctional strategies of medi-

cal students to cope with burnout. Medical Education Online, 23(1), 1–11. 

https://doi.org/10.1080/10872981.2018.1535738 

Federal Statistical Office of Germany (2018a). Erwerbstätige und Arbeitnehmer nach 

Wirtschaftsbereichen (Inlandskonzept) 1 000 Personen [Employees by economic sector (na-

tional concept) by unit of 1000 persons]. Retrieved from https://www.desta-

tis.de/DE/Themen/Arbeit/Arbeitsmarkt/Erwerbstaetigkeit/Tabellen/arbeitnehmer-

wirtschaftsbereiche.html 

Federal Statistical Office of Germany (2018b). Erwerbstätige und Erwerbstätigenquote nach Ge-

schlecht und Alter 2008 und 2018: Ergebnis des Mikrozensus [Employment and employment 

rate by gender and age in 2008 and 2018: results of the microcensus]. Retrieved from 

https://www.destatis.de/DE/Themen/Arbeit/Arbeitsmarkt/Erwerbstaetigkeit/Tabel-

len/erwerbstaetige-erwerbstaetigenquote.html 

Fischer, T., & Riedl, R. (2020). On the stress potential of an organisational climate of innovation: 

A survey study in Germany. Behaviour & Information Technology, 67(1), 1–22. 

https://doi.org/10.1080/0144929X.2020.1836258 

Florkowski, G. W. (2019). HR technologies and HR-staff technostress: an unavoidable or com-

batable effect? Employee Relations: The International Journal, 41(5), 1120–1144. 

https://doi.org/10.1108/ER-08-2018-0214 

Folkman, S., Lazarus, R. S., Dunkel-Schetter, C., DeLongis, A., & Gruen, R. J. (1986). Dynamics 

of a stressful encounter: Cognitive appraisal, coping, and encounter outcomes. Journal of Per-

sonality and Social Psychology, 50(5), 992–1003. https://doi.org/10.1037/0022-

3514.50.5.992 

 

https://doi.org/10.1080/0144929X.2020.1836258


157 
 

 

Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor analysis with ordinal 

indicators: A Monte Carlo study comparing DWLS and ULS estimation. Structural Equation 

Modeling: A Multidisciplinary Journal, 16(4), 625–641. 

https://doi.org/10.1080/10705510903203573 

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable 

variables and measurement error. Journal of Marketing Research, 18(1), 39–50. 

https://doi.org/10.2307/3151312 

Frese, M. (1986). Coping as a moderator and mediator between stress at work and psychosomatic 

complaints. In D. Meichenbaum (Series Ed.) & M. H. Appley & R. Trumbull (Vol. Eds.), The 

Plenum Series on Stress and Coping: Vol. 2. Dynamics of stress (pp. 183–206). 

https://doi.org/10.1007/978-1-4684-5122-1_10 

Galluch, P., Grover, V., & Thatcher, J. (2015). Interrupting the workplace: Examining stressors 

in an information technology context. Journal of the Association for Information Systems, 

16(1), 1–47. https://doi.org/10.17705/1jais.00387 

Gaudioso, F., Turel, O., & Galimberti, C. (2016). Explaining work exhaustion from a coping 

theory perspective: Roles of techno-stressors and technology-specific coping strategies. Stud-

ies in Health Technology and Informatics, 219, 14–20. https://doi.org/10.3233/978-1-61499-

595-1-14 

Gaudioso, F., Turel, O., & Galimberti, C. (2017). The mediating roles of strain facets and coping 

strategies in translating techno-stressors into adverse job outcomes. Computers in Human Be-

havior, 69, 189–196. https://doi.org/10.1016/j.chb.2016.12.041 

Geiser, C. (2011). Datenanalyse mit Mplus: Eine anwendungsorientierte Einführung [Data ana-

lysis with Mplus. An application-oriented introduction.] (2nd rev. ed.). 

https://doi.org/10.1007/978-3-531-93192-0 

Gimpel, H., Hosseini, S., Huber, R. X. R., Probst, L., Röglinger, M., & Faisst, U. (2018). Struc-

turing digital transformation: A framework of action fields and its application at ZEISS. Jour-

nal of Information Technology Theory and Application, 19(1), 31–54. 

Golden, T. D. (2012). Altering the effects of work and family conflict on exhaustion: Telework 

during traditional and nontraditional work hours. Journal of Business and Psychology, 27(3), 

255–269. https://doi.org/10.1007/s10869-011-9247-0 

Griffith, T. L., Fuller, M. A., & Northcraft, G. B. (1998). Facilitator influence in group support 

systems: Intended and unintended effects. Information Systems Research, 9(1), 20–36. 



158 
 

 

Harman, H. H. (1967). Modern factor analysis (2. rev. ed.). Chicago, IL: University of Chicago 

Press. 

Hartl, E. (2019). A characterization of culture change in the context of digital transformation. In 

Proceedings of the 25th Americas Conference on Information Systems AMCIS. Symposium 

conducted at the meeting of the Association for Information Systems, Cancun, Mexico. Re-

trieved from https://aisel.aisnet.org/amcis2019/national_cultures_and_is/national_cul-

tures_and_is/2/ 

Hauk, N., Göritz, A. S., & Krumm, S. (2019). The mediating role of coping behavior on the age-

technostress relationship: A longitudinal multilevel mediation model. PloS One, 14(3), 1-22. 

https://doi.org/10.1371/journal.pone.0213349 

Hofmans, J., Debusscher, J., Dóci, E., Spanouli, A., & Fruyt, F. de (2015). The curvilinear rela-

tionship between work pressure and momentary task performance: The role of state and trait 

core self-evaluations. Frontiers in Psychology, 6, 1–11. 

https://doi.org/10.3389/fpsyg.2015.01680 

Janssen, O. (2001). Fairness perceptions as a moderator in the curvilinear relationships between 

job demands, and job performance and job satisfaction. Academy of Management Journal, 

44(5), 1039–1050. https://doi.org/10.2307/3069447 

Jöreskog, K. G. (1970). A general method for estimating a linear structural equation system. ETS 

Research Bulletin Series, 1970(2), i-41. https://doi.org/10.1002/j.2333-8504.1970.tb00783.x 

Jöreskog, K. G., & Yang, F. (1996). Nonlinear structural equation models: The Kenny-Judd 

model with interaction effects. In G. A. Marcoulides & R. E. Schumacker (Eds.), Advanced 

structural equation modeling. Issues and techniques (pp. 57–88). 

SemTools: Useful Tools for Structural Equation Modeling (Version 0.5-2) [Computer software] 

(2019). Retrieved from https://CRAN.R-project.org/package=semTools 

Kahler, C. W., Ramsey, S. E., Read, J. P., & Brown, R. A. (2002). Substance-induced and inde-

pendent major depressive disorder in treatment-seeking alcoholics: Associations with dys-

functional attitudes and coping. Journal of Studies on Alcohol, 63(3), 363–371. 

https://doi.org/10.15288/jsa.2002.63.363 

Kenny, D. A., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent 

variables. Psychological Bulletin, 96(1), 201–210. https://doi.org/10.1037/0033-

2909.96.1.201 



159 
 

 

Khaoula, S., Khalid, C., & Omar, T. (2020). The impact of stress due to digital communication 

on productivity: The exploratory study. International Journal of Business and Administrative 

Studies, 6(4). https://doi.org/10.20469/ijbas.6.10003-4 

Klotz, U. (1997). Informationsarbeit und das Ende des Taylorismus [Information work and the 

end of Taylorism]. In J. Krämer, J. Richter, J. Wandel, & G. Zinsmeister (Eds.), Talheimer 

Sammlung kritisches Wissen: Vol. 23. Schöne neue Arbeit: Die Zukunft der Arbeit vor dem 

Hintergrund neuer Informationstechnologien (1st ed., pp. 113–134). Mössingen-Talheim: 

Talheimer. 

Knoll, N., Rieckmann, N., & Schwarzer, R. (2005). Coping as a mediator between personality 

and stress outcomes: A longitudinal study with cataract surgery patients. European Journal 

of Personality, 19(3), 229–247. https://doi.org/10.1002/per.546 

Kortte, K. B., Wegener, S. T., & Chwalisz, K. (2003). Anosognosia and denial: Their relationship 

to coping and depression in acquired brain injury. Rehabilitation Psychology, 48(3), 131–136. 

https://doi.org/10.1037/0090-5550.48.3.131 

Lazarus, R. S., & Folkman, S. (1984). Stress, Appraisal, and Coping (11. [print.]). New York: 

Springer. 

Lazarus, R. S., & Folkman, S. (1987). Transactional theory and research on emotions and coping. 

European Journal of Personality, 1(3), 141–169. 

Lee, A. S., Thomas, M., & Baskerville, R. L. (2015). Going back to basics in design science: 

from the information technology artifact to the information systems artifact. Information Sys-

tems Journal, 25(1), 5–21. 

Leung, K., Huang, K.‑L., Su, C.‑H., & Lu, L. (2011). Curvilinear relationships between role 

stress and innovative performance: Moderating effects of perceived support for innovation. 

Journal of Occupational and Organizational Psychology, 84(4), 741–758. 

https://doi.org/10.1348/096317910X520421 

Lewin, J. E., & Sager, J. K. (2009). An investigation of the influence of coping resources in 

salespersons' emotional exhaustion. Industrial Marketing Management, 38(7), 798–805. 

https://doi.org/10.1016/j.indmarman.2008.02.013 

Lin, G.‑C., Wen, Z., Marsh, H., & Lin, H.‑S. (2010). Structural equation models of latent inter-

actions: Clarification of orthogonalizing and double-mean-centering strategies. Structural 

Equation Modeling: A Multidisciplinary Journal, 17(3), 374–391. 

https://doi.org/10.1080/10705511.2010.488999 

https://doi.org/10.20469/ijbas.6.10003-4
https://doi.org/10.1037/0090-5550.48.3.131


160 
 

 

Locke, E. A., & Latham, G. P. (2002). Building a practically useful theory of goal setting and 

task motivation: A 35-year odyssey. American Psychologist, 57(9), 705–717. 

https://doi.org/10.1037/0003-066X.57.9.705 

MacKinnon, D. P., Krull, J. L., & Lockwood, C. M. (2000). Equivalence of the mediation, con-

founding and suppression effect. Prevention Science, 1(4), 173. 

Mahapatra, M., & Pati, S. P. (2018). Technostress creators and burnout: A Job Demands-Re-

sources Perspective. In Sigmis-CPR'18: Proceedings of the 2018 ACM SIGMIS Conference 

on Computers and People Research (pp. 70–77). New York, NY, USA: ACM Association for 

Computing Machinery. https://doi.org/10.1145/ 3209626.3209711 

Maslach, C., & Jackson, S. E. (1986). Maslach Burnout Inventory (2nd ed.). Palo Alto, CA: 

Consulting Psychologist Press. 

McFatter, R. M. (1979). The use of structural equation models in interpreting regression equa-

tions including suppressor and enhancer variables. Applied Psychological Measurement, 3(1), 

123–135. https://doi.org/10.1177/014662167900300113 

Naditch, M. P., Gargan, M. A., & Michael, L. B. (1975). Denial, anxiety, locus of control, and 

the discrepancy between aspirations and achievements as components of depression. Journal 

of Abnormal Psychology, 84(1), 1–9. https://doi.org/10.1037/h0076254 

Ninaus, K., Diehl, S., Terlutter, R., Chan, K., & Huang, A. (2015). Benefits and stressors - per-

ceived effects of ICT use on employee health and work stress: An exploratory study from 

Austria and Hong Kong. International Journal of Qualitative Studies on Health and Well-

Being, 10, 28838. https://doi.org/10.3402/qhw.v10.28838 

Nisafani, A. S., Kiely, G., & Mahony, C. (2020). Workers’ technostress: A review of its causes, 

strains, inhibitors, and impacts. Journal of Decision Systems, 61(10), 1–16. 

https://doi.org/10.1080/12460125.2020.1796286 

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric Theory. McGraw-Hill Series in Psy-

chology. New York, NY: McGraw-Hill. 

Osmundsen, K., Iden, J., & Bygstad, B. (2018). Digital transformation: Drivers, success factors, 

and implications. In Proceedings of the 12th Mediterranean Conference on Information Sys-

tems MCIS. Symposium conducted at the meeting of the Association for Information Systems, 

Corfu, Greece. Retrieved from https://aisel.aisnet.org/mcis2018/37/ 

https://doi.org/10.1037/0003-066X.57.9.705
https://doi.org/10.1177/014662167900300113
https://doi.org/10.1037/h0076254
https://doi.org/10.1080/12460125.2020.1796286


161 
 

 

Patel, J., Ryoo, S., & Kettinger, W. (2012). Theorizing the dual role of information technology 

in technostress research. In Proceedings of the 18th Americas Conference on Information Sys-

tems AMCIS. Symposium conducted at the meeting of the Association for Information Sys-

tems, Seattle, Washington, USA. 

Pava, C. H. P. (1983). Designing managerial and professional work for high performance: A 

sociotechnical approach. National Productivity Review, 2(2), 126–135. 

https://doi.org/10.1002/npr.4040020204 

Pirkkalainen, H., Salo, M., Tarafdar, M., & Makkonen, M. (2019). Deliberate or instinctive? 

Proactive and reactive coping for technostress. Journal of Management Information Systems, 

36(4), 1179–1212. 

Podsakoff, P. M., MacKenzie, S. B., Lee, J.‑Y., & Podsakoff, N. P. (2003). Common method 

biases in behavioral research: A critical review of the literature and recommended remedies. 

The Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-

9010.88.5.879 

Prinz, P., Hertrich, K., Hirschfelder, U., & Zwaan, M. de (2012). Burnout, Depression und De-

personalisation – Psychologische Faktoren und Bewältigungsstrategien bei Studierenden der 

Zahn- und Humanmedizin [Burnout, depression and depersonalisation -psychological factors 

and coping strategies in dental and medical students]. GMS Zeitschrift Für Medizinische Aus-

bildung, 29(1), 1-14. https://doi.org/10.3205/zma000780 

R: A Language and Environment for Statistical Computing (Version 3.6.1) [Computer software] 

(2019). Vienna, Austria: R Foundation for Statistical Computing. Retrieved from 

https://www.r-project.org/ 

Ragu-Nathan, T. S., Tarafdar, M., Ragu-Nathan, B. S., & Tu, Q. (2008). The consequences of 

technostress for end users in organizations: Conceptual development and empirical validation. 

Information Systems Research, 19(4), 417–433. https://doi.org/10.1287/isre.1070.0165 

Psych: Procedures for Psychological, Psychometric, and Personality Research (Version 1.8.12) 

[Computer software] (2019). Evanston, IL: Northwestern University. Retrieved from 

https://CRAN.R-project.org/package=psych 

Riedl, R., Kindermann, H., Auinger, A., & Javor, A. (2012). Technostress from a neurobiological 

perspective. Business & Information Systems Engineering, 4(2), 61–69. 

https://doi.org/10.1007/s12599-012-0207-7 

https://doi.org/10.1002/npr.4040020204


162 
 

 

Rossel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical 

Software, 48(2), 1–36. 

RStudio: Integrated Delopment Environment for R (Version 1.2.5001) [Computer software] 

(2019). Boston, MA: PCB. Retrieved from http://www.rstudio.com/ 

Ryan, S. D., Harrison, D. A., & Schkade, L. L. (2002). Information-technology investment deci-

sions: when do costs and benefits in the social subsystem matter? Journal of Management 

Information Systems, 19(2), 85–127. 

Salo, M., Makkonen, M., & Hekkala, R. (2020). The interplay of IT users’ coping strategies: 

Uncovering momentary emotional load, routes, and sequences. MIS Quarterly, 44(3), 1143–

1175. https://doi.org/10.25300/MISQ/2020/15610 

Santuzzi, A. M., & Barber, L. K. (2018). Workplace telepressure and worker well-being: The 

intervening role of psychological detachment. Occupational Health Science, 2(4), 337–363. 

https://doi.org/10.1007/s41542-018-0022-8 

Saris, W. E., Batista-Foguet, J. M., & Coenders, G. (2007). Selection of indicators for the inter-

action term in structural equation models with interaction. Quality & Quantity, 41(1), 55–72. 

https://doi.org/10.1007/s11135-005-3956-2 

Sarker, S., Chatterjee, S., Xiao, X., & Elbanna, A. (2019). The sociotechnical axis of cohesion 

for the IS discipline: Its historical legacy and its continued relevance. MIS Quarterly, 43(3), 

695–720. 

Searle, B. J., & Lee, L. (2015). Proactive coping as a personal resource in the expanded job 

demands–resources model. International Journal of Stress Management, 22(1), 46–69. 

https://doi.org/10.1037/a0038439 

Sonnentag, S., Kuttler, I., & Fritz, C. (2010). Job stressors, emotional exhaustion, and need for 

recovery: A multi-source study on the benefits of psychological detachment. Journal of Vo-

cational Behavior, 76(3), 355–365. https://doi.org/10.1016/j.jvb.2009.06.005 

Srivastava, S. C., Chandra, S., & Shirish, A. (2015). Technostress creators and job outcomes: 

Theorising the moderating influence of personality traits. Information Systems Journal, 25(4), 

355–401. https://doi.org/10.1111/isj.12067 

Stride, C. B., Gardner, S. E., Catley, N., & Thomas, F. (2019). Mplus code for mediation, mod-

eration and moderated mediation models. Retrieved from http://www.off-

beat.group.shef.ac.uk/FIO/models_and_index.pdf 

https://doi.org/10.25300/MISQ/2020/15610


163 
 

 

Sumiyana, S., & Sriwidharmanely, S. (2020). Mitigating the harmful effects of technostress: In-

ducing chaos theory in an experimental setting. Behaviour & Information Technology, 39(10), 

1079–1093. https://doi.org/10.1080/0144929X.2019.1641229 

Tams, S., Ahuja, M., Thatcher, J., & Grover, V. (2020). Worker stress in the age of mobile tech-

nology: The combined effects of perceived interruption overload and worker control. The 

Journal of Strategic Information Systems, 29(1), 101595. 

https://doi.org/10.1016/j.jsis.2020.101595 

Tarafdar, M., Cooper, C. L., & Stich, J.‐F. (2019). The technostress trifecta ‐ techno eustress, 

techno distress and design: Theoretical directions and an agenda for research. Information 

Systems Journal, 29(1), 6–42. https://doi.org/10.1111/isj.12169 

Tarafdar, M., Maier, C., Laumer, S., & Weitzel, T. (2020). Explaining the link between tech-

nostress and technology addiction for social networking sites: A study of distraction as a cop-

ing behavior. Information Systems Journal, 30(1), 96–124. https://doi.org/10.1111/isj.12253 

Tarafdar, M., Pullins, E., & Ragu-Nathan, T. S. (2015). Technostress: Negative effect on perfor-

mance and possible mitigations. Information Systems Journal, 25(2), 103–132. 

https://doi.org/10.1111/isj.12042 

Tarafdar, M., Tu, Q., & Ragu-Nathan, T. S. (2010). Impact of technostress on end-user satisfac-

tion and performance. Journal of Management Information Systems, 27(3), 303–334. 

https://doi.org/10.2753/MIS0742-1222270311 

Tarafdar, M., Tu, Q., Ragu-Nathan, B. S., & Ragu-Nathan, T. S. (2007). The impact of tech-

nostress on role stress and productivity. Journal of Management Information Systems, 24(1), 

301–328. https://doi.org/10.2753/MIS0742-1222240109 

Tarafdar, M., Tu, Q., Ragu-Nathan, T. S., & Ragu-Nathan, B. S. (2011). Crossing to the dark 

side: Examining creators, outcomes and inhibitors of technostress. Communications of the 

ACM, 54(9), 113–120. https://doi.org/10.1145/1995376.1995403 

Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International Journal of 

Medical Education, 2, 53–55. https://doi.org/10.5116/ijme.4dfb.8dfd 

Tzelgov, J., & Henik, A. (1991). Suppression situations in psychological research: Definitions, 

implications, and applications. Psychological Bulletin, 109(3), 524–536. 

https://doi.org/10.1037/0033-2909.109.3.524 

https://doi.org/10.1080/0144929X.2019.1641229
https://doi.org/10.1016/j.jsis.2020.101595
https://doi.org/10.1111/isj.12253
https://doi.org/10.1037/0033-2909.109.3.524


164 
 

 

Wallace, L., Keil, M., & Rai, A. (2004). How software project risk affects project performance: 

An investigation of the dimensions of risk and an exploratory model. Decision Sciences, 

35(2), 289–321. 

Wang, W., Kakhki, M. D., & Uppala, V. (2017). The interaction effect of technostress and non-

technological stress on employees’ performance. In Proceedings of the Americas Conference 

on Information Systems: Organizational Transformation & Information Systems (SIGORSA). 

[S. l.]: Association for Information Systems. 

Xia, Y., & Yang, Y. (2019). Rmsea, CFI, and TLI in structural equation modeling with ordered 

categorical data: The story they tell depends on the estimation methods. Behavior Research 

Methods, 51(1), 409–428. https://doi.org/10.3758/s13428-018-1055-2 

Yip, B., Rowlinson, S., & Siu, O. L. (2008). Coping strategies as moderators in the relationship 

between role overload and burnout. Construction Management and Economics, 26(8), 871–

882. https://doi.org/10.1080/01446190802213529 

Zhao, X., Xia, Q., & Huang, W. (2020). Impact of technostress on productivity from the theoret-

ical perspective of appraisal and coping processes. Information & Management, 57(8), 

103265. https://doi.org/10.1016/j.im.2020.103265 

Zhao, X., Lynch, J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths 

about mediation analysis. Journal of Consumer Research, 37(2), 197–206. 

https://doi.org/10.1086/651257 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.1016/j.im.2020.103265


165 
 

 

Ⅵ Examining Technostress at Different Types of Data Sci-

entists’ Workplaces 

Authors: Derra, Nicholas Daniel; Regal, Christian; Rath, Simon Henrik; Kühlmann, 

Torsten M. 

Submitted to: Scandinavian Journal of Information Systems (2020) 

Abstract: Data scientists represent a heterogeneous occupational group that has reached 

high relevance due to the wide-spread availability of quantitative data generated 

in the rapid progress of digital transformation. These employees play a crucial 

role in gaining competitive advantages for companies out of such big data. In 

this context, employees who frequently analyse data often occupy different job 

titles and, therefore, are difficult to detect. At the same time, a psychological 

downside of digitalization, which is called technostress, has risen. However, 

these issues caused by the use of information and communication technologies 

are rarely examined in the context of specific occupational groups and work-

place attributes. Considering these challenges, this article extends current tech-

nostress research by focusing on technostress within the specific job class of 

data scientists. We classify different types of data scientists' workplaces through 

performing latent class analysis using several workplace attributes within a 

sample of n=486 German data scientists. Subsequently, we reveal considerable 

distinctions between these classes regarding the intensity of technostress crea-

tors, strains due to ICT use, and job performance. We discuss our empirical 

findings and deliver theoretical contributions as well as practical implications 

for both employees and employers and starting points for future research. 

Keywords: Technostress, Strain, Digitalization, Workplace, Data Scientist 
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1 Introduction 

Digitalization has already changed numerous aspects of individuals, economies, and society 

(Fitzgerald et al. 2013; Gimpel et al. 2018). Doing this with an enormous progression also greatly 

changes the architectures and environments of workplaces and, therefore, challenging employees in 

requiring new capabilities for efficiently handling work tasks (Okkonen et al. 2019; Schwemmle & 

Wedde 2012; Timonen & Vuori 2018). Digitalization also created new digital jobs or excessively 

raised their relevance for companies, for example, information security officers (Botta et al. 2007), 

software developers (Britto et al. 2018), and data scientists (Murawski & Bick 2017). Considering 

data scientists, this job class has been proven to be very heterogeneous in the context of tasks and 

required skills (Davenport 2020; Ismail & Abidin 2016; Mauro et al. 2018). Furthermore, employees 

who fulfil analytical work tasks of data scientists are often not classified as such but occupy other job 

titles. Thus, data scientists are hard to detect within companies. Therefore, further knowledge 

regarding the attributes of data scientists’ workplaces is required. 

Further, the digital transformation is mainly characterized by implementing a vast number of digital 

technologies (Hartl 2019; Osmundsen et al. 2018)). Besides the advantages of those innovative digital 

tools, the work-related use of information and communication technologies (ICT) may induce a 

specific form of stress called technostress (Ayyagari et al. 2011; Ragu-Nathan et al. 2008; Tarafdar 

et al. 2007; Tarafdar et al. 2010). This concept has already been introduced during the 1980s as the 

inability to healthfully handle ICT use (Brod 1984). Technostress may occur if employees feel unable 

to successfully adapt or to keep up with the multiple developments regarding digital technologies due 

to skills which are no longer required because of new software, an abundance of information, frequent 

interruptions through numerous communication channels, or the overlap of work and leisure time 

through continuous availability (Tarafdar et al. 2010). Considering this, the changes through digital 

transformation at work have to be classified as ambivalently (Apt et al. 2016). 

Several studies have also shown that, in general, technostress is related to lower productivity, job 

satisfaction, and loyalty to the employer as well as negative consequences regarding health outcomes 

(Ayyagari et al. 2011; Srivastava et al. 2015; Tarafdar et al. 2010; Tarafdar et al. 2011). Hence, there 

is a particular importance of further investigating technostress at work. Existing research, however, 

primarily focuses on the general circumstances of technostress perceived by employees (Ayyagari et 

al. 2011; Ragu-Nathan et al. 2008; Tarafdar et al. 2007; Tarafdar et al. 2019) but, at the same time, 

lacks to take a more in-depth look at specific job profiles in order to get a more specific understanding 
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of employees' technostress and, further, to examine whether there is a need to define different 

strategies to overcome technostress. Such investigations are of prominent relevance regarding job 

categories with a high level of digitalization at the workplace due to the close connection of 

technostress and ICT use. 

Considering psychological research, numerous studies have already dealt with specific occupational 

groups regarding their respective level of work stress (see, for example, Grace & van Heuvelen 

(2019), Rees & Cooper (1992), Travers & Cooper (1993)). Furthermore, it has been shown that 

various job-related (see, for example, Hambrick et al. (2005), Hartline & Ferrell (1996)) and 

company-related (see, for example, Dekker & Barling (1995), Thompson et al. (1996)) are associated 

with different levels of work stress as well. However, current technostress research neglects this job-

related context and particularly focuses on general relationships of technostress constructs (Ayyagari 

et al. 2011; Ragu-Nathan et al. 2008; Tarafdar et al. 2007; Tarafdar et al. 2019). Therefore, we argue 

that a substantial gap in technostress research has to be filled to gain a deeper understanding of stress 

due to ICT use in an organisational context. For overcoming this deficit, we propose an extension of 

technostress research by examining technostress in the context of specific job profiles. Thereby, we 

aim to investigate technostress within the occupational group of data scientists, which has been 

proven to play a crucial role in gaining competitive advantages for companies in today’s business 

environments (Costa & Santos 2017; Ismail & Abidin 2016; Mauro et al. 2018). To achieve this, our 

study is structured as follows: first, we outline the theoretical background of data scientists and 

technostress research. Building on this, we define categories of data scientists’ workplaces based on 

job attributes using a sample of 𝑛 = 486  employees who fulfil data science work tasks. The 

empirically generated categories are analysed with respect to technostress creators, strains due to ICT 

use, and job performance. To conclude, we will discuss our results and provide theoretical 

contributions and practical implications as well as approaches for future research. 

2 Theoretical Background 

2.1 Data Scientists 

Various studies have already confirmed the importance of data-driven managerial decision-making 

(Ferraris et al. 2019; Müller et al. 2018; Wamba et al. 2017), showing that big data analytics increase 

the performance of organisations and, thus, build competitive advantages. Employees who are able 

to efficiently handle and create knowledge out of data have reached particular relevance through the 
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increased availability, compilation, and storage of huge amounts of data provided by the digital trans-

formation of businesses, leading to a great demand for these employees (Davenport 2020; Ismail & 

Abidin 2016; Mauro et al. 2018). Though, it has been challenging to pinpoint tasks and responsibili-

ties of these so-called data scientists: researchers have explored job profiles (Costa & Santos 2017), 

educational curricula (Richards & Marrone 2014), or gathered key insights from experts (Mikalef et 

al. 2018; Stanton & Stanton 2016) to identify a data scientist's required skills and knowledge. 

Regarding the occupational dimension of skill variety proposed by Hackman & Oldham (1976), the 

data scientist's job is associated with a wide variety of required skills and knowledge domains. In this 

context, analytical and statistical skills are particularly relevant (Costa & Santos 2017; Doyle 2019; 

Ismail & Abidin 2016; Richards & Marrone 2014). Following this skill variety, analyses of occupa-

tional profiles have shown that under the single term "data scientist", many different occupational 

roles have been developed in business practice, e. g., business analysts, data engineers, statisticians, 

and data analysts (Baškarada & Koronios 2017; Ho et al. 2019; Mauro et al. 2018). This variety of 

roles exists due to the heterogeneous application domains, organisational structures, and purposes of 

data processing. Therefore, a data scientist's job can be regarded as more of an umbrella term com-

prising heterogeneous tasks and requirements (Doyle 2019; Mauro et al. 2018).  

Considering this variety of tasks and requirements, research has summarized that a person fulfilling 

all the requirements of a data scientist can hardly be found in the labour market – rendering the person 

a "Unicorn Data Scientist" (Baškarada & Koronios 2017; Davenport 2020; Davenport & Patil 2012). 

Therefore, defining a data scientist as an expert who extracts knowledge from collected data as well 

as manages the whole data lifecycle and regarded IT infrastructures as proposed by (Manieri et al. 

2015) seems to be unrealistic in the context of real company environments. Furthermore, recent sudies 

focus on examining data scientists’ tasks and roles but, at the same time, little is known about the 

workplace environments of data scientists. 

In addition, employees who fulfil some of a data scientist’s tasks are also hard to find within a 

company. The tasks of efficiently analysing data are spread on several employees with various job 

titles since large datasets occur in nearly every department of a company (Janssen et al. 2017) and, 

moreover, due to the necessity of exhibiting broad domain knowledge for efficiently performing data 

science (Waller & Fawcett 2013). Consequently, these employees do not work at the analysis of data 

full-time and do not hold related occupational titles, but, at the same time, their job descriptions 

require data science skills and they frequently fulfil data science tasks. Hence, employees who 
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frequently work as part-time data scientists can not be detected through classifications based on job 

titles but have to be identified by their tasks. Nevertheless, for enhancing data scientists’ performance 

by tackling technostress, it is crucial to detect employees who frequently fulfil data scientist tasks. 

In this context, considering the job description for data scientists proposed by the German Federal 

Employment Agency (2020), data scientists do screen work, comprising both customer interaction 

and teleworking. Their work is mostly dependent on the usage of numerous ICT: they frequently use 

a variety of hard- and software including operating systems, the internet, telephone, network systems, 

information and knowledge management systems, development software, and statistical software. 

However, almost all of these ICTs are not job-specific since their use is generally common in office 

workplaces. Yet, the frequent application of statistical software seems to be a well-performing attrib-

ute to classify a data scientist’s workplace since data science work implicates the analysis of various 

data. Therefore, we define an employee working as a data scientist not as a person holding specific 

job titles but based on the everyday use of statistical software programs. 

2.2 Technostress 

According to the Transactional Model of Stress, stress refers to a process where individuals appraise 

a given situation's demands as going beyond their resources (Lazarus & Folkman 1984). For the use 

of digital technologies, technostress represents a specific type of stress emerging from ICT use 

(Tarafdar et al. 2019). Technostress results from individuals' efforts to handle ICTs’ progression and 

the shift of physical, social, and cognitive demands within the working context (Tarafdar et al. 2007). 

Hence, employees are likely to experience technostress (Ragu-Nathan et al. 2008). 

Technostress is induced by several specific factors known in the literature. A wide-spread categori-

zation of these factors (or technostress creators, respectively) has been proposed by Tarafdar et al. 

(2007), distinguishing: 

- Techno-uncertainty as employees' confusion created by new developments regarding the 

technologies used at the workplace; 

- Techno-insecurity as employees' fear of being replaced by other employees with higher 

knowledge in ICT use or by ICT itself; 

- Techno-overload as employees` requirements to work faster, longer, and even more due to 

ICT usage; 
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- Techno-invasion as blurred boundaries between work-related and private issues and time pe-

riods; 

- Techno-complexity as employees`feelings of having a lack of skills in handling job-related 

technologies. 

Suppose individuals appraise the intensity or frequency of the technostress creators above-mentioned 

as exceeding their existing resources. In that case, these technostress creators culminate in tech-

nostress-related strain, defined as the generic term for an individual's psychological, physical, or be-

havioural responses to technostress creators (Atanasoff & Venable 2017). Since strains are strongly 

related to a reduced level of job performance (Bakker et al. 2008; Bakker & Demerouti 2017; Taris 

2006), overcoming strain at work is of particular importance to both employers and employees. In 

this context, technostress research distinguishes several facets of strain due to ICT use, for example, 

mental exhaustion (Srivastava et al. 2015) or psychological detachment (Barber et al. 2019; Santuzzi 

& Barber 2018).  

Since strain is a general construct with various manifestations (Cooper et al. 2001), it is crucial to 

focus on emerging strains related to technostress creators (Ayyagari et al. 2011; Salanova et al. 2007). 

Thus, for examining the overall level of strain induced by ICT use, an analysis of strain associated 

with specific technostress creators is required. The relationships between technostress creators and 

strains due to the use of ICT as well as job performance are depicted in Figure 1. 
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Figure 1. The relationships between technostress creators, strains due to the use of ICT, and job per-

formance 

In the past, studies that dealt with technostress have focused on the relationships between these 

established constructs in general (Ayyagari et al. 2011; Fischer & Riedl 2020; Ragu-Nathan et al. 

2008; Tarafdar et al. 2007; Tarafdar et al. 2010; Tarafdar et al. 2011; Tarafdar et al. 2015) but, at the 

same time, little is known about technostress in the context of occupational groups as well as specific 

workplace-related attributes. In contrast, numerous psychological studies investigate occupational 

groups separately in order to gain a deeper understanding of their respective specificities (see, for 

example, Grace & van Heuvelen (2019), Rees & Cooper (1992), Travers & Cooper (1993)). In 

addition, psychological research has already proven relationships between several workplace 

characteristics and stress caused by occupational settings: work stress is therefore associated with 

jobs that exhibit customer contact (Hartline & Ferrell 1996) or a leadership function (Ganster 2005; 

Hambrick et al. 2005). Furthermore, Golubic et al. (2009) have provided empirical evidence that 

lower educational background is related to higher work stress levels. Considering company-related 

characteristics, work stress is also related to the company size (Dekker & Barling 1995; van 

Dijkhuizen & Reiche 1980) and different dimensions of organisational culture within a company 

(Lansisalmi et al. 2000; Thompson et al. 1996). More specifically, higher levels of work stress are 

associated with large enterprises (Dekker & Barling 1995), less perceived support culture (Dekker & 

Barling 1995), and greater bureaucracy (Chan et al. 2000). 
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Due to these findings, we argue that it is necessary to investigate technostress within specific 

occupational groups and, moreover, in the context of various workplace attributes to create a more 

detailed understanding of occurring technostress for being able to assist employees with overcoming 

it. Due to their importance for modern businesses and their highly digitalized workplaces, we consider 

the occupational group of data scientists suitable for examining technostress. Since research has 

proven several relationships between workplace attributes and work stress, we aim to determine 

whether different classes of data scientists’ workplaces differ in terms of technostress creators, 

technostress-related strains, and overall job performance. 

3 Methodology 

3.1 Sample 

The data we used for our examination were collected within a large research project examining tech-

nostress among German employees and developing preventive measures to efficiently reduce tech-

nostress at work. After running a quantitative pre-test containing 𝑛𝑝𝑟𝑒 = 445 participants, the data 

of the main study with a sample size of 𝑛𝑓𝑖𝑛𝑎𝑙 = 4,560 participants was collected by an external panel 

provider. The applied questionnaire included numerous control variables to test representativity (age, 

sex, industry, employment status, number of hours worked per week). Regarding the control variables 

age, sex, and industry, preliminary analysis showed that the main study sample represents the German 

workforce (Federal Statistical Office of Germany 2018a, 2018b). The participants confirmed they 

were over 18 years old and have read the information about the research project itself, data processing, 

and data protection. Participants have further been informed that withdrawal from their approval of 

participation anytime without any negative consequences. After completing the questionnaire, an ex-

pense allowance was paid to the participants. 

For identifying data scientists within our sample, we subsampled full-time workers 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑢𝑟𝑠 𝑤𝑜𝑟𝑘𝑒𝑑 𝑝𝑒𝑟 𝑤𝑒𝑒𝑘 ≥ 35) who utilize statistical software daily. After data clean-

ing (invalid responses and outliers), the subsample consisted of 𝑛 = 486 data scientists. Within the 

sample, the female-male ratio is 32.30% to 67.70% and about 55.14% of the participants possess 

an academic background (see Table 1). 
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Gender N % Digital Literacy n % 

Male 329 67.70 Low 74 15.22 

Female 157 32.30 High 412 84.78 

      

Age  N % Education n % 

<21 23 4.73 Primary School Education 5 1.03 

21-24 112 23.04 Secondary School Education 43 8.85 

25-39 147 30.25 High School 60 12.35 

40-59 128 26.34 Completed Apprenticeship 110 22.63 

60-64 46 9.47 College Degree (Bachelor) 104 21.40 

>65 30 6.17 College Degree (Master) 141 29.01 

   Dissertation (PhD) 23 4.73 

Table 1. Demographic properties of the sample (n=486) 

3.2 Measures 

The questionnaire was phrased in German. Three German native speakers translated the questions 

which were originally formulated in English and established a final wording for translating the items. 

The questions were kept simple, specific, concise, without ambiguous questions, comprehensible for 

avoiding common method bias (Podsakoff et al. 2003). Since decreasing evaluation apprehension 

reduces common method bias as well (Podsakoff et al. 2003), participants were further informed that 

the items could not be answered right or wrong. Finally, the measures were carefully validated with 

a quantitative pre-test with 𝑛𝑝𝑟𝑒 = 445 external respondents. Besides the construction requirements 

described above, we additionally performed Harman's single factor test (Harman 1967) to consider 

possible common method bias within our data. For this, we conducted an unrotated principal compo-

nent analysis with all items we used for group comparisons (Chang et al. 2010; Podsakoff et al. 2003; 

Tehseen et al. 2017). Since the highest proportion of variance attributed to one factor was about 

17.07%, common method bias is not considered as a problem within the examined data. 

Considering the heterogeneity of data scientists' workplaces, we asked the participants for both job-

related and company-related attributes in order to develop a general picture of their respective work-

places. For this, we focused on attributes which have already been proven to be related to employees’ 

stress at work, i. e., customer contact (Hartline & Ferrell 1996), the required educational level (Golu-

bic et al. 2009) and leadership function (Ganster 2005; Hambrick et al. 2005) for the job dimension 

and, further, company size (Dekker & Barling 1995; van Dijkhuizen & Reiche 1980) and organisa-

tional culture (Chan et al. 2000; Dekker & Barling 1995; Lansisalmi et al. 2000; Thompson et al. 

1996) representing the company dimension. Since the use of ICT at work also represents a highly 
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relevant characteristic in the context of technostress, we added the workplace’s degree of digitaliza-

tion as another job-related attribute. 

Customer contact, leadership function, the level of requirement, and company size were asked in a 

binary format (see Table 2). Following Gimpel et al. (2019), we measured the degree of digitalization 

via the number of technologies used at work and their frequency of use. In doing so, we asked for the 

use of 40 widely used technologies (Gimpel et al. 2018), using a 5-point rating scale ranging from 

0 =  𝑛𝑒𝑣𝑒𝑟 to 4 =  𝑠𝑒𝑣𝑒𝑟𝑎𝑙 𝑡𝑖𝑚𝑒𝑠 𝑎 𝑑𝑎𝑦. The number and the frequency of technologies at work 

were then combined to a degree of digitalization, which is classified into four categories through 

median splits: few technologies rarely used, few technologies frequently used, many technologies 

rarely used, and many technologies frequently used. For describing organisational culture, we used 

the organisational culture index with its elements innovativeness, support, and bureaucracy as pro-

posed by (Wallach 1983) with a 5-point rating scale from 0 = 𝑛𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙 to 4 = 𝑒𝑛𝑡𝑖𝑟𝑒𝑙𝑦. Median 

splits transformed the answers into binary categories. 

Aspect Indicators Characteristics 

Job Customer Contact Yes; No 

Leadership Function  Yes; No 

Requirement Level Non-academic; Academic 

Degree of Digitization Few, Rarely; Few, Often; 

Many, Rarely; Many, Often 

Company Company Size less than 250; 250 or more 

Innovative Culture low; high 

Supportive Culture low; high 

Bureaucratic Culture low; high 

Table 2. Overview of the measures and their ranges for LCA 

The five technostress creators – techno-uncertainty, techno-insecurity, techno-overload, techno-inva-

sion, and techno-complexity – were assessed by established and validated scales proposed by Ragu-

Nathan et al. (2008): techno-uncertainty was measured with four items (e.g., "There are constant 

changes in computer software in our organisation."); techno-insecurity is captured by five items (e. 

g., "I have to constantly update my skills to avoid being replaced."); techno-overload was measured 

with four items (e. g., "I am forced by this technology to work with very tight time schedules."); 

techno-invasion encompasses 3 items (e.g., "I have to be in touch with my work even during my 

vacation due to this technology."); techno-complexity includes five items (e. g., "I need a long time 

to understand and use new technologies"). All items for measuring technostress creators, strain due 
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to the use of ICT, and job performance, were asked using a 5-point Likert-type rating scale ranging 

from 0 =  𝐼 𝑑𝑜 𝑛𝑜𝑡 𝑎𝑔𝑟𝑒𝑒 𝑎𝑡 𝑎𝑙𝑙 to 4 =  𝐼 𝑡𝑜𝑡𝑎𝑙𝑙𝑦 𝑎𝑔𝑟𝑒𝑒. For measuring strain due to ICT use, the 

participants responded to the question "And how much does that strain you?" after every item regard-

ing the respective technostress creator. For measuring the strain due to the use of ICT, we used a 5-

point Likert-type rating scale from 0 = 𝑛𝑜𝑡 𝑎𝑡 𝑎𝑙𝑙 to 4 = 𝑣𝑒𝑟𝑦 𝑙𝑎𝑟𝑔𝑒𝑙𝑦. By that, we measured the 

overall level of strain due to ICT use and determined the level of strain caused by the respective 

technostress creator. In addition, job performance was measured by four self-report items regarding 

work performance as proposed by Chen & Karahanna (2014). The items asked for both fulfilling 

general workplace demands and success in handling work tasks (e. g., "I have a reputation in this 

organisation for doing my work very well."). 

3.3 Means of Analysis 

For analysing the data, we utilized the open-source software R (R Development Core Team 2019) 

and the R Studio user interface (RStudio Team 2019). After subsampling the daily-users of statistical 

software and examining the data through descriptive analysis, we performed a Latent Class Analysis 

(LCA) using the workplace attributes explained above to identify subgroups of data scientists. 

We used the attributes – customer contact, leadership function, required educational level, degree of 

digitization, company size, level of innovativeness, level of support, and level of bureaucracy – as 

indicators and conducted LCAs that specified 2 to 8 classes each while repeating these computations 

ten-times for robustness. We applied well-established fit measures for evaluating LCA models using 

log-likelihood-ratio 𝐺² test for goodness of fit, which has been proven to work better than 𝜒² test for 

LCA (Nylund et al. 2007) and both the Akaike Information Criterion AIC (Akaike 1974) and the 

Bayesian Information Criterion BIC (Schwarz 1978) for model comparison. We implemented LCA 

using the specific R package 'poLCA' (Linzer & Lewis 2011). 

After identifying the best latent class model, we compared the discovered classes of data scientists 

regarding their perceived level of technostress creators, strain due to ICT use, and job performance 

through running group comparisons. Since descriptive analysis showed that the data is both not nor-

mally distributed and contains heterogeneity of variance, we implemented the van der Waerden nor-

mal score test (van der Waerden 1952) since it has proven to deliver superior results compared to 

both parametric (ANOVA test) and nonparametric (Kruskal-Wallis test) test irrespective of whether 

the assumptions of normality and homogeneity of variance apply for the samples (Hageman 1992; 

Tucker 1994). 
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Similar to the Kruskal-Wallis test, the van der Waerden normal score test replaces ranks with so-

called normal scores 𝑊𝑖,𝑗 which are inverse normal statistics calculated from quantiles within the 

standard normal distribution through 

𝑊𝑖,𝑗 = Φ−1(
𝑅(𝑋𝑖,𝑗)

𝑁 + 1
) 

where Φ − 1 denotes the normal quantile function, 𝑋𝑖,𝑗 is the 𝑖th value within the 𝑗th group, 𝑅(𝑋𝑖,𝑗) 

is the the assigned rank of 𝑋𝑖,𝑗, 𝑛𝑖 is the size of sample 𝑖, and 𝑁 =  ∑ 𝑛𝑖 is the size of all samples 

combined. The van der Waerden normal score test statistic 𝑊 is then defined as 

𝑊 =  
(𝑁 − 1) ∑

(∑ 𝑊𝑖,𝑗)²𝑗

𝑛𝑖
𝑖=1

∑ ∑ 𝑊𝑖,𝑗
2

𝑗=1𝑖=1

 

with 𝑊𝑖,𝑗 as the 𝑗th expected normal score in the 𝑖th sample (Feir-Walsh & Toothaker 1974; van der 

Waerden 1952). 

We first examined global comparisons for every technostress creator, strain variable, and job perfor-

mance (α = 0.05). If a global test was significant, we further implemented pairwise comparisons with 

controlling for family-wise error rates via Holm-Bonferroni method (Holm 1979) for investigating 

the specific differences between the data scientist workplaces. For investigating the effect sizes, we 

further considered Vargas and Delaney's A (Vargha & Delaney 2000). 

Since perceived technostress is also related to employees' age (Ragu-Nathan et al. 2008; Şahin & 

Çoklar 2009), we further tested for homogeneity of the latent groups regarding age through another 

van der Waerden normal score test. The result was not significant (𝑝 =  0.275), so the groups' dif-

ferences regarding technostress cannot be explained by age differences. 

4 Results 

4.1 Latent Class Analysis 

Considering LCA’s results regarding data scientists' workplace attributes, we first exclude the model 

with two classes of workspaces since this model is significant for log-likelihood-ratio G² (compare 

Table 3). Regarding goodness of fit, the model with eight classes achieves the best values. Simulta-

neously, the model with four classes shows the best (or rather lowest) value for AIC, while the model 

with three classes performs best for BIC. Thus, these models have to be examined in more detail. 
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Given our goal of detecting explainable workplace classes, a split into eight types would separate the 

sample into sparse groups and, further, seems rather complex, which can be seen at high scores in 

both AIC and BIC. Therefore, the model with eight groups is rejected. Regarding AIC, the model 

with four classes is preferred, while model three performs best in BIC, so both models seem to be 

comparable in balancing fit and complexity. Based on these results, we compare the models' goodness 

of fit where the model with four classes outperforms regarding log-likelihood-ratio G². Furthermore, 

considering the sample's distribution among the different types of workplaces within the models, we 

find a noticeable imbalance through a very dominant type containing more than 50% of the sample 

within the 3-type model. Hence, we select the model with four classes. 

Classes df log-likelihood G² p (G²) χ² p (χ²) AIC BIC 

2 465 -2626.427 536.590 0.012 675.376 0.001 5294.854 5382.764 

3 454 -2578.857 441.149 0.659 500.940 0.063 5221.713 5355.672 

4 443 -2556.279 395.993 0.947 480.029 0.109 5198.558 5378.565 

5 432 -2545.930 375.296 0.977 472.970 0.085 5199.860 5425.915 

6 421 -2537.080 358.023 0.988 459.732 0.094 5204.588 5476.691 

7 410 -2529.055 340.752 0.992 421.515 0.375 5209.316 5527.468 

8 399 -2523.295 329.021 0.997 392.895 0.882 5219.586 5583.786 

Table 3. The goodness of fit measures of the LCA for the varying number of assumed classes 

Table 4 shows the impact of the indicators' characteristics on the respective association of a data 

scientist with a type of workplace as well as the distribution of the sample. We consider influences 

with a probability of ≥
2

3
 for binary and ≥

1

3
 for quaternary indicators as a major characteristic. 
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Dimension Indicators Characteristic 
Latent Class 

Type 1 

(83) 

Type 2 

(91) 

Type 3 

(225) 

Type 4 

(87) 

Job Customer 

Contact 

Yes 0.906 0.857 0.834 0.508 

No 0.094 0.143 0.166 0.492 

Leadership 

Function 

Yes 0.651 0.669 0.906 0.200 

No 0.349 0.332 0.094 0.800 

Requirement 

Level 

Non-academic 0.794 0.380 0.295 0.475 

Academic 0.207 0.620 0.705 0.526 

Degree of 

Digitization 

Few, Rarely 0.106 0.200 0.070 0.150 

Few, Often 0.586 0.281 0.182 0.660 

Many, Rarely 0.153 0.346 0.421 0.081 

Many, Often 0.155 0.172 0.327 0.110 

Company Company Size less than 250 0.914 0.614 0.319 0.055 

250 or more 0.087 0.386 0.681 0.945 

Innovativeness low 0.209 0.923 0.064 0.342 

high  0.792 0.077 0.936 0.659 

Support low 0.167 0.783 0.094 0.526 

high  0.833 0.217 0.906 0.474 

Bureaucracy low 0.194 1.000 0.074 0.239 

high  0.806 0.000 0.926 0.761 

Table 4. The probabilities that one class holds a specific characteristic; bold values are remarkable for the respective type 

of workplace compared to the other types 

Considering these results, we are now able to distinguish classes of data scientists' workplaces as 

follows: 

Type 1 – Customer Service Management within SMEs (CSM-SME): workplaces that require di-

rect contact to the customer; furthermore, the data scientists working here use only a few ICT but 

make often use of them; this workplace is particularly common in small and medium-sized companies 

and does not require academic know-how; employees tend to work in innovative companies with a 

strong supportive culture but, at the same time, have to deal with high bureaucracy. 

Type 2 – Customer Interaction Lead Position with Low Levels of Innovativeness, Support, and 

Bureaucracy (CIL-noISB): workplaces with leadership function that also require customer contact; 

these workplaces tend to appear within enterprises exhibiting a low culture of innovation and support 

as well as bureaucracy; in addition, a broad range of ICT is exploited while the individual technolo-

gies are rarely used. 
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Type 3 – Customer Interaction Lead Position within Large Enterprises (CIL -LE): workplaces 

comprising direct contact with customers which are also associated with both academic background 

and a leadership position; herein, a large number of ICT is utilized in different frequencies; this work-

place type often occurs in large enterprises having a high level of innovative, support, and bureau-

cratic culture. 

Type 4 – Back Office Expertise within Large Enterprises (BOE-LE): workplaces that are not 

associated with management responsibilities; only a few ICT are used here but, at the same time, 

these technologies are frequently utilized; this type of workplace is particularly common in large 

companies holding a dominant bureaucratic culture. 

Considering the distribution of data scientists in this context, it is notable that the highest percentage 

of data scientists are assigned to CIL-LE with about 46.3% (𝑛𝐶𝐼𝑀−𝐿𝐸 = 225) while the other types 

of workplaces are comparably distributed with 17.0% to 18.70% each (for a detailed view of the 

respective group structures, see Appendix 3). 

4.2 Van Der Waerden Normal Score Test 

We now compare the four types in terms of both technostress creators and strains caused by ICT as 

well as their perceived job performance. As already pointed out, we explicitly distinguish technostress 

creators and strain due to ICT use as proposed in technostress literature (Ayyagari et al. 2011; Sa-

lanova et al. 2007). Table 5 shows the results for the five technostress creators and their related strains 

as well as the perceived job performance. The 25%, 50%, and 75% quantiles, as well as mean and 

standard deviation, are given for the four types of workplaces each. 

Data scientists working at CIL-LE workplaces report the highest values regarding the technostress 

creators uncertainty, insecurity, overload, and invasion compared to the other classes and, further, the 

highest cumulated demands regarding the five technostress creators as well (𝑚𝑒𝑎𝑛𝑐𝑢𝑚 = 1.965). 

Concerning the remaining facet techno-complexity, data scientists from CIL-noISB workplaces re-

port the highest value. 

Regarding technostress-related strains, CIL-LE data scientists only hold the highest values for strains 

from two technostress creators, namely insecurity and invasion. However, these data scientists gen-

erally have the highest strains across all facets in total (𝑚𝑒𝑎𝑛 = 1.441). The highest values for both 

overload- and uncertainty-related strains is now at CIL-noISB-type and no longer for CIL-LE. Fur-

thermore, CIL-noISB occupies the highest value for complexity-related strain, consistent with the 
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respective technostress creator. Interestingly, data scientists report the highest value for CIL-LE 

workplaces' job performance, despite overall highest values for technostress creators and strains due 

to digital technologies. In contrast, CIL-noISB report a clearly worse job performance compared to 

the other classes. Besides these issues, data scientists of the other workplace classes (CSM-SME and 

BOE-LE) do not show any apparent peculiarities in both technostress creators and strains due to the 

use of ICT as well as job performance. 
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    Technostress Creator Strain due to ICT use 

Type Construct 
25% 

Quantile 

50% 

Quantile 

75% 

Quantile 
M SD 

25% 

Quantile 

50% 

Quantile 

75% 

Quantile 
M SD 

CSM-SME 

(n = (83) 

Uncertainty 1.125 2.000 2.875 1.925 1.112 0.000 0.750 2.000 1.051 1.080 

Insecurity 0.400 1.200 1.900 1.282 1.082 0.000 0.600 1.600 0.872 0.992 

Overload 1.000 2.000 2.750 1.795 1.185 0.000 1.000 2.000 1.211 1.119 

Invasion 0.333 1.667 2.500 1.546 1.288 0.000 0.667 2.000 1.108 1.165 

Complexity 0.200 1.000 2.100 1.241 1.127 0.000 0.800 2.000 1.063 1.080 

Job Performance - - - - - 2.500 3.000 3.250 2.825 0.775 

CIL-noISB 

(n = 91) 

Uncertainty 1.125 2.000 2.750 1.926 1.059 0.500 1.500 2.000 1.412 1.031 

Insecurity 0.600 1.800 2.200 1.523 0.968 0.000 1.400 2.000 1.266 1.029 

Overload 1.125 2.000 2.500 1.852 1.005 0.625 2.000 2.500 1.646 1.108 

Invasion 0.500 1.667 2.333 1.557 1.077 0.500 1.667 2.000 1.451 1.004 

Complexity 0.700 1.800 2.20 1.527 0.964 0.200 1.600 2.000 1.336 1.043 

Job Performance - - - - - 1.750 2.000 2.750 2.159 0.824 

CIL-LE 

(n = 225) 

Uncertainty 2.000 2.750 3.000 2.546 0.885 0.500 1.500 2.000 1.392 1.053 

Insecurity 1.000 2.000 2.400 1.800 1.066 0.200 1.200 2.200 1.308 1.101 

Overload 1.500 2.250 2.750 2.080 1.049 0.500 1.750 2.500 1.623 1.126 

Invasion 1.000 2.000 2.667 1.887 1.146 0.333 1.667 2.333 1.596 1.189 

Complexity 0.400 1.400 2.400 1.514 1.197 0.000 1.000 2.200 1.284 1.155 

Job Performance - - - - - 2.500 3.000 3.500 3.027 0.693 

BOE-LE 

(n = 87) 

Uncertainty 1.625 2.000 2.500 2.060 0.879 0.000 1.000 2.000 1.129 1.076 

Insecurity 0.600 1.200 2.000 1.411 1.028 0.000 0.200 1.400 0.795 0.992 

Overload 1.250 2.000 2.875 1.948 1.186 0.125 1.250 2.250 1.385 1.169 

Invasion 0.000 1.333 2.000 1.215 1.081 0.000 0.333 1.667 0.935 1.126 

Complexity 0.200 1.000 1.900 1.136 1.025 0.000 0.600 1.600 0.887 0.990 

Job Performance - - - - - 2.000 2.500 3.000 2.641 0.771 

Table 5: 25%-Quantile, 50%-Quantile, 75%-Quantile, mean (M), and standard deviation (SD) of both technostress creators and related strain, for four classes of data 

scientists' workplaces; bold values indicate the highest value for a technostress creators 
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For examining whether the detected types of workplaces differ in their levels of technostress creators 

and strains, we first conducted global van der Waerden normal score tests on the four classes of 

workplaces. Table 6 shows the results of these global tests. 

Dependent Variable Technostress Creator Strain 

Techno-Uncertainty < 0.001 0.036 

Techno-Insecurity 0.001 < 0.001 

Techno-Overload 0.155 0.020 

Techno-Invasion < 0.001 < 0.001 

Techno-Complexity 0.028 0.007 

Job Performance < 0.001 

Table 6. p-values for global van der Waerden normal score tests comparing the workplace classes of data scientists 

Considering technostress creators, there are global differences within the subgroups for the factors 

techno-uncertainty, techno-insecurity, techno-invasion, and techno-complexity. Concerning the tech-

nostress-related strains, the results show that at least one class significantly differs from the others at 

every single technostress creator. Finally, job performance includes significant differences as well. 

Subsequently, we use pairwise van der Waerden normal score tests with alpha adjusting by applying 

the Holm–Bonferroni method (Holm 1979) to determine which types of workplaces differ signifi-

cantly. We utilized Vargas and Delaney's A (Vargha & Delaney 2000) for investigating the effect 

sizes. In the following, we focus on reporting significant differences that show at least a moderate 

effect to meet the call for statistical and practical significance (Mohajeri et al. 2020). For exact values 

and results from all deducted tests, see Appendix 1 and 2, respectively. 

Techno-Uncertainty 

For techno-uncertainty as a technostress creator, CIL-LE workplaces significantly distinguish from 

all other types and show explicitly higher values than all other classes. However, in terms of strain, 

there are no significant differences between the groups. Although a previously conducted general van 

der Waerden normal score test detected a significant difference between the workplace types, this 

difference is no longer identifiable at the level of pairwise comparisons. Thus, there is no significant 

difference concerning strains due to techno-uncertainty. This phenomenon of a globally significant 

and non-significant pairwise-test results can be observed when weak significant results (the global 

test had a p-value of 0.036) are further "penalized" by the correction procedure and are therefore no 

longer significant. 
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Techno-Insecurity 

Regarding techno-insecurity as a technostress creator , CIL-LE again differs from CIL-SME, alt-

hough, however, the difference is moderate. In this context, CIL-LE reports higher values. On the 

other hand, there are several significant differences in strains, e. g., CIL-LE considerably distin-

guishes from BOE-LE and moderately from CIL-SME, with CIL-LE exhibiting higher values. Like-

wise, CIL-noISB moderately differs from BOE-LE whereby CIL-noISB reports higher values. 

Techno-Overload 

Techno-overload as a technostress creator does not report any significant differences between the 

workplace classes. Interestingly, there is a moderate difference in related strain between CSM-SME 

and CIL-noISB, with CIL-noISB surpassing the other. 

Techno-Invasion 

Considering techno-invasion as a technostress creator, there is a significant variance between CIL-

LE and BOE-LE, with CIL-LE reporting clearly higher values. In terms of strain and besides the 

respective significant difference between CIL-LE and BOE-LE, there are also significant distinctions 

between CIL-LE and CSM-SME as well as CIL-noISB and BOE-LE. In this context, CIL-LE has 

moderately higher values than CSM-SME and significantly higher values than BOE-LE. In compar-

ison, BOE-LE reports clearly higher values than CIL-noISB. 

Techno-Complexity 

Although the general van der Waerden normal score test detected a significant deviation between the 

workplace types in terms of technostress creators, this difference disappears at the level of pairwise 

comparisons. Thus, there is no significant variance concerning techno-complexity as a technostress 

creator. In contrast, significant differences regarding strain due to techno-complexity between BOE 

and both CIL-noISB and CIL-LE were observed, with BOE-LE reporting moderately smaller values. 

Job Performance 

The differences between the types of data scientists' workplaces regarding job performance show that 

CIL-LE is distinctly different from both CIL-noISB and BOE-LE holding higher job performances. 

Furthermore, CIL-noISB also performs significantly worse than workplace CSM-SME and BOE-LE. 

To sum up, CIL-LE incumbents highly differ from both CSM-SME incumbents and BOE-LE incum-

bents reporting higher values for technostress creators and technostress-related strains. At the same 

time, there are also differences between CIL-noISB incumbents and BOE-LE incumbents in terms of 
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strain due to both techno-invasion and techno-complexity. In contrast, CIL-LE employees report 

higher values for perceived job performance despite their higher demands in both technostress crea-

tors and strain due to ICT use. 

5 Discussion 

In general, data scientists represent a highly digitalized occupational group that is important for to-

day’s companies to create knowledge and, accordingly, competitive advantages out of big data. In 

this paper, we contribute to the problems of detecting employees who fulfil data scientists’ tasks by 

(i) providing a definition based on data scientists’ ICT use which is closer to businesses’ reality com-

pared to other definitions in the context of job titles and (ii) detecting classes of data scientists’ work-

places which differ regarding job-related and company-related attributes. In doing so, we found four 

kinds of workplaces: customer service management within SMEs (CSM-SME), customer interaction 

lead position with low levels of innovativeness, support, and bureaucracy (CIL-noISB), customer 

interaction lead position within large enterprises (CIL-LE), and back office expertise within large 

enterprises (BOE-LE), with CIL-LE being the largest class of data scientists’ workplaces. This sug-

gests that data scientists more likely hold lead positions within large enterprises and exhibit customer 

contact. These findings are clearly against associating data scientists' workplaces with in-house tasks. 

Therefore, data science expertise should be considered when hiring employees for leadership work-

places since these workplaces often require the fulfilment of data scientist tasks. Further, it is quite 

surprising that data scientists often report high levels of innovativeness and support along with high 

bureaucracy (and low levels each, respectively), which seems to be contradicting. Moreover, it is 

worth pointing out that data scientists' lead positions are likely to utilize many ICT technologies but 

use them quite rarely. In contrast, employees without lead responsibilities tend to use relatively few 

technologies commonly. Thus, leaders have to gain broader knowledge due to the use of ICT. 

Subsequently, we found significant differences between the groups regarding technostress. The 

groups report different levels of technostress creators as well as related strains and, in particular, vary 

regarding the composition of technostress’ roots (i. e., the technostress creators) and suffering (i. e., 

the technostress-related strains). The results suggest that data scientists holding leadership positions 

are higher demanded by ICT developments which may be caused by top-down strategies for launch-

ing new technologies. Furthermore, leaders within SMEs seem to be less demanded due to new ICT 

compared to leaders in large enterprises. Also, it is notable that CIL-LE seem to feel more replaceable 
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than CSM-SME incumbents regarding ICT knowledge, while there is no significant difference com-

pared to BOE-LE incumbents. I. e., the combination of leadership and working within a large enter-

prise seems to guide data scientists to feel less important for their company in terms of ICT-related 

knowledge. The results further indicate that the use of many technologies which is highly connected 

to leadership workplaces generally leads to higher strains in this regard and, moreover, strain due to 

techno-invasion rather occurs within large companies. Lastly, it is also noteworthy that BOE-LE in-

cumbents report significantly less techno-complexity than both the leadership workplace classes. 

Hence, the findings lead to the conclusion that data scientists who work as leaders are especially in 

danger of perceiving technostress creators as well as strain due to the use of ICT and, further, em-

ployees within large enterprises are more likely to perceive strain due to techno-invasion. 

Overall, CIL-LE incumbents reported the highest levels of both perceived technostress creators and 

technostress-related strain but, at the same time, assessed themselves with the strongest job perfor-

mance. Since technostress has been shown to negatively influence job performance (Bakker et al. 

2008; Bakker & Demerouti 2017; Taris 2006), CIL-LE incumbents seem to overcome this issue more 

efficiently compared to the other classes of data scientists. In this context, one factor could be that 

CIL-LE workplaces are highly associated with innovative and supportive culture within the enterprise 

which may enhance the feeling of being productive and, further, lead to success in performing active 

coping strategies like seeking social support (Carver et al. 1989). This suggestion is supported by the 

fact that CIL-noISB incumbents which represent the other leadership class report the worst job per-

formance: they seem to suffer more from technostress by getting less support in overcoming it. 

5.1 Theoretical Contribution 

Considering technostress as an important aspect of health at the workplace both employers and em-

ployees have to carefully deal with, we contribute to current technostress research by successfully 

adapting concepts of work stress research regarding workplace attributes to technostress context. 

More specifically, we provide a job-specific view of technostress considering the highly digitalized 

and heterogeneous job class of data scientists by comparing the detected groups of data scientists’ 

workplaces concerning technostress creators, technostress-related strains, and job performance. 

Comparing our results with prior findings regarding the relationships between workplace attributes 

and general stress at work, we found both equivalent and contradicting results: while technostress 

goes along with workplaces exhibiting a leadership function and higher level of bureaucracy which 

is in line with findings regarding overall work stress (Chan et al. 2000; Ganster 2005; Hambrick et 
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al. 2005), a higher level of education surprisingly appears to be associated with technostress as well, 

disagreeing with the relationship of work stress and education (Golubic et al. 2009). Moreover, tech-

nostress is associated with the use of many ICT at work independent of a rare usage while the frequent 

use of less technologies does not go along with higher technostress. The results further suggest that 

customer contact is also related to technostress perception which is in line with the relationship of 

customer contact and overall stress at work (Hartline & Ferrell 1996). In contrast, there are no clear 

impacts regarding the presence of large companies as well as high levels of both innovative and sup-

portive culture since these attributes go along with both minor and major technostress issues. 

5.2 Practical Implications 

Our results provide important practical aspects for employers who aim to protect their data scientists 

from technostress. The variability of perceived technostress between the four types of data scientist 

workplaces suggests implementing different strategies for dealing with technostress within each 

group. 

Overall, CIL-LE workplaces are associated with the highest level of both technostress creators and 

strains due to ICT use, so this class requires the highest support in overcoming technostress. As part 

of support, employers are recommended to explain both the launch process and the requirements of 

new ICT developments timely and in more detail for countering techno-uncertainty as well as to 

establish a single point of contact for employees where they may provide feedback whether a tech-

nology use is efficient for monitoring techno-overload. Furthermore, managers are suggested to pro-

tect the blurring boundaries between work and leisure by limiting employees’ availability to their 

work time for tackling techno-invasion as well as to periodically communicate with their data scien-

tists, underlining that they are important for the company in order to overcome techno-insecurity. 

Regarding CIL-noISB incumbents, employers should concentrate on providing support regarding the 

use of the numerous ICT which have to be handled at these workplaces. By replacing redundant 

technologies and providing further tutorials for the remaining ones as well as explaining recent de-

velopments regarding the ICT used within the company, data scientists will be able to gain more 

profound and required know-how and the perceived strains due to techno-uncertainty and techno-

complexity may be significantly reduced. Moreover, CIL-noISB incumbents should also be supported 

in protecting blurred boundaries, e. g., by defining clear rules regarding home office or the private 
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use of ICT provided by the company such as mobile phones and laptops. Finally, since these work-

places are associated with significantly lower job performance than all other classes, appreciating 

achieved productivity is highly recommended. 

Since CSM-SME and BOE-LE incumbents generally report relatively low values in technostress and, 

at the same time, good performance, we suggest focusing on appreciating these groups of data scien-

tists. Further, general support regarding technostress by providing knowledge about the topic and 

strategies to overcome technostress is recommended. 

5.3 Limitations and Future Research 

Even though this paper is able to offer a deeper understanding of the heterogeneous and highly 

relevant job class of data scientists and, further, the level of technostress within these jobs, our 

investigations have several limitations that have to be taken into account. First, a self-reporting survey 

in the context of technostress is generally in danger of social desirability bias. Second, we used eight 

important workplace attributes for detecting classes of data scientist workplaces, but, at the same 

time, more indicators could help differentiate workplaces, for example, the possibility of using home 

office or flex time, which was not part of our study. Third, since we aimed to measure the overall 

level of strains in the context of technostress creators, we could not provide evidence regarding more 

fine-grained distinctions of strain, e. g., the various facets of burnout or different health issues. Lastly, 

we asked participants for their overall job performance which does not exhibit a certain causality to 

the technostress level. 

Nevertheless, we were able to provide a deeper understanding of data scientists' workplaces as a job 

class which has reached particular importance due to the rapid evolution of digitalization at work. 

Moreover, we proved that technostress should also be considered in the context of individual job 

classes in order to effectively deal with it. Therefore, our investigations may be seen as a first step 

for future examinations of technostress within specific job classes and, further, with respect to other 

workplace attributes to distinguish the necessary internal and external resources to deal with 

technostress. In this context, we recommend to particularly focus on other high-digitalized jobs like, 

e. g., IT specialists or online marketing experts. 
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Appendix 

Appendix 1 

 CIL-noISB CIL-LE BOE-LE 

 Creator Strain Creator Strain Creator Strain 

Techno-Uncertainty 

CSM-SME 1.000 0.180 < 0.001 0.10 1.000 1.000 

CIL-noISB - - < 0.001 1.000 1.000 0.350 

CIL-LE - - - - < 0.001 0.300 

BOE-LE - - - - - - 

Techno-Insecurity 

CSM-SME 0.481 0.072 0.001 0.006 > 0.5 1.000 

CIL-noISB - - 0.147 1.000 > 0.5 0.025 

CIL-LE - - - - 0.067 < 0.001 

BOE-LE - - - - - - 

Techno-Overload 

CSM-SME 1.000 0.080 0.350 0.037 1.000 > 0.5 

CIL-noISB - - 0.390 > 0.5 1.000 0.443 

CIL-LE - - - - 1.000 0.434 

BOE-LE - - - - - - 

Techno-Invasion 

CSM-SME > 0.5 0.277 0.134 0.007 0.134 0.418 

CIL-noISB - - 0.066 0.418 0.134 0.017 

CIL-LE - - - - < 0.001 < 0.001 

BOE-LE - - - - - - 

Techno-Complexity 

CSM-SME 0.319 > 0.5 0.261 > 0.5 1.000 > 0.5 

CIL-noISB - - 1.000 > 0.5 0.155 0.026 

CIL-LE - - - - 0.075 0.015 

BOE-LE - - - - - - 

Table 7. p-values for the pairwise van der Waerden tests comparing the types of workplaces regarding 

technostress creators; bold values indicate significant results with α = 5% with Holm–Bonferroni 

correction (Holm 1979) 

 

 CIL-noISB CIL-LE BOE-LE 

CSM-SME < 0.001 0.079 0.079 

CIL-noISB - < 0.001 < 0.001 

CIL-LE - - < 0.001 

BOE-LE - - - 

Table 8. p-values for the pairwise van der Waerden tests comparing the types of workplaces regarding 

job performance; bold values indicate significant results with α = 5% with Holm–Bonferroni 

correction (Holm 1979) 
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Appendix 2 

 CIL-noISB CIL-LE BOE-LE 

 Creator Strain Creator Strain Creator Strain 

Techno-Uncertainty 

CSM-SME 0.498 0.397 0.337 0.405 0.467 0.474 

CIL-noISB - - 0.329 0.504 0.472 0.578 

CIL-LE - - - - 0.668 0.572 

BOE-LE - - - - - - 

Techno-Insecurity 

CSM-SME 0.421 0.388 0.364 0.382 0.452 0.525 

CIL-noISB - - 0.423 0.489 0.546 0.630 

CIL-LE - - - - 0.613 0.640 

BOE-LE - - - - - - 

Techno-Overload 

CSM-SME 0.479 0.385 0.423 0.392 0.461 0.459 

CIL-noISB - - 0.429 0.504 0.481 0.570 

CIL-LE - - - - 0.539 0.564 

BOE-LE - - - - - - 

Techno-Invasion 

CSM-SME 0.490 0.406 0.416 0.384 0.572 0.552 

CIL-noISB - - 0.409 0.466 0.600 0.650 

CIL-LE - - - - 0.672 0.666 

BOE-LE - - - - - - 

Techno-Complexity 

CSM-SME 0.406 0.417 0.435 0.446 0.518 0.552 

CIL-noISB - - 0.509 0.516 0.624 0.637 

CIL-LE - - - - 0.589 0.603 

BOE-LE - - - - - - 

Table 9. Vargha and Delaney's A for for the pairwise comparisons of the types of workplaces 

regarding technostress creators; bold values indicate moderate or strong effects (Tomczak & 

Tomczak 2014); grey values are not significant 

 

 CIL-noISB CIL-LE BOE-LE 

CSM-SME 0.737 0.433 0.588 

CIL-noISB - 0.211 0.343 

CIL-LE - - 0.646 

BOE-LE - - - 

Table 10. Vargha's and Delayne's A for the pairwise comparison of the types of workplaces regarding 

job performance; bold values indicate moderate and strong effects (Tomczak & Tomczak 2014); grey 

values are not significant 
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Appendix 3 

Aspect Indicators Characteristic 

Latent Class 

CSO-

SME 

(83) 

CIL-

noISB 

(91) 

CIL-

LE 

(225) 

BOE-

LE 

(87) 

All 

Job Customer 

Contact 

Yes 74 79 190 42 385 

No 9 12 35 45 101 

Leadership 

Function 

Yes 49 62 208 12 331 

No 34 29 17 75 155 

Requirement 

Level 

Non-academic 71 35 67 43 216 

Academic 12 65 158 44 270 

Degree of 

Digitization 

Few, Rarely 10 18 14 14 56 

Few, Often 57 25 37 61 180 

Many, Rarely 9 32 96 4 141 

Many, Often 7 16 78 8 109 

Company Company Size less than 250 83 56 74 2 215 

250 or more 0 35 151 85 271 

Innovativeness low 18 84 11 31 144 

high  65 7 214 56 342 

Support Low 15 71 19 46 151 

high  68 20 206 41 335 

Bureaucracy Low 18 91 12 21 142 

high  65 0 213 66 344 

Table 11. Number of data scientists exhibiting a certain characteristic within a type of workplace 

 

 

 

 

 

 

 

 

 

 



191 
 

 

References 

Akaike, H., (1974). A new look at the statistical model identification. IEEE Transactions on 

Automatic Control, (19:6): 716–723. doi: 10.1109/TAC.1974.1100705. 

Apt, W., Bovenschulte, M., Hartmann, E. A. and Wischmann, S., (2016). Foresight-Studie „Digitale 

Arbeitswelt“. Forschungsbericht, Berlin (accessible from https://nbn-

resolving.org/urn:nbn:de:0168-ssoar-47039-5). 

Atanasoff, L. and Venable, M. A., (2017). Technostress: Implications for adults in the workforce. The 

Career Development Quarterly, (65:4): 326–338. doi: 10.1002/cdq.12111. 

Ayyagari, Grover and Purvis, (2011). Technostress: Technological antecedents and implications. MIS 

Quarterly, (35:4): 831–858. doi: 10.2307/41409963. 

Bakker, A. B. and Demerouti, E., (2017). Job demands-resources theory: Taking stock and looking 

forward. Journal of Occupational Health Psychology, (22:3): 273–285. doi: 

10.1037/ocp0000056. 

Bakker, A. B., van Emmerik, H. and van Riet, P., (2008). How job demands, resources, and burnout 

predict objective performance: A constructive replication. Anxiety, Stress, & Coping, (21:3): 

309–324. doi: 10.1080/10615800801958637. 

Barber, L. K., Conlin, A. L. and Santuzzi, A. M., (2019). Workplace telepressure and work-life 

balance outcomes: The role of work recovery experiences. Stress and Health, (35:3): 350–362. 

doi: 10.1002/smi.2864. 

Baškarada, S. and Koronios, A., (2017). Unicorn data scientist: the rarest of breeds. Program, (51:1): 

65–74. doi: 10.1108/PROG-07-2016-0053. 

Botta, D., Werlinger, R., Gagné, A., Beznosov, K., Iverson, L. and Fels, S.: Fisher, B., (2007). 

Towards understanding IT security professionals and their tools. In: Proceedings of the 3rd 

symposium on usable privacy and security (SOUPS): 100–111. New York, NY: ACM. 

Britto, R., Cruzes, D. S., Smite, D. and Sablis, A., (2018). Onboarding software developers and teams 

in three globally distributed legacy projects: A multi-case study. Journal of Software: Evolution 

and Process, (30:4): 1-17. doi: 10.1002/smr.1921. 

Brod, C., (1984). Technostress: The human cost of the computer revolution, Reading, MA: Addison-

Wesley. 



192 
 

 

Carver, C. S., Scheier, M. F. and Weintraub, J. K., (1989). Assessing coping strategies: A theoretically 

based approach. Journal of Personality and Social Psychology, (56:2): 267–283. doi: 

10.1037//0022-3514.56.2.267. 

Chan, K. B., Lai, G., Ko, Y. C. and Boey, K. W., (2000). Work stress among six professional groups: 

the Singapore experience. Social Science & Medicine, (50:10): 1415–1432. doi: 

10.1016/S0277-9536(99)00397-4. 

Chang, S. J., van Witteloostuijn, A. and Eden, L., (2010). From the editors: Common-method 

variance in international business research. Journal of International Business Studies, (41:2): 

178–184. doi: 10.1057/jibs.2009.88. 

Chen, A. and Karahanna, E., (2014). Boundaryless technology: Understanding the effects of 

technology-mediated interruptions across the boundaries between work and personal life. AIS 

Transactions on Human-Computer Interaction, (6:2): 16–36. 

Cooper, C. L., Dewe, P. J., and O’Driscoll, M. P., (2001). Organizational stress: A review and 

critique of theory, research, and applications, Thousand Oaks, CA: Sage. 

Costa, C. and Santos, M. Y., (2017). The data scientist profile and its representativeness in the 

European e-Competence framework and the skills framework for the information age. 

International Journal of Information Management, (37:6): 726–734. doi: 

10.1016/j.ijinfomgt.2017.07.010. 

Davenport, T., (2020). Beyond unicorns: Educating, classifying, and certifying business data 

scientists. Harvard Data Science Review, (2:2). doi: 10.1162/99608f92.55546b4a. 

Davenport, T. H. and Patil, D. J., (2012). Data scientist. Harvard Business Review, (90:5): 70–76. 

Dekker, I. and Barling, J., (1995). Workforce size and work-related role stress. Work & Stress, (9:1): 

45–54. doi: 10.1080/02678379508251584. 

Doyle, A., (2019). Important job skills for data scientists. https://www.thebalancecareers.com/list-of-

data-scientist-skills-2062381, Accessed October 7, 2020. 

Federal Statistical Office of Germany, (2018a). Erwerbstätige und Arbeitnehmer nach 

Wirtschaftsbereichen je 1.000 Personen [Employees by economic sector by unit of 1,000 

persons]. 

https://www.destatis.de/DE/Themen/Arbeit/Arbeitsmarkt/Erwerbstaetigkeit/Tabellen/arbeit, 

Accessed October 12, 2020. 

Federal Statistical Office of Germany, (2018b). Erwerbstätige und Erwerbstätigenquote nach 

Geschlecht und Alter 2008 und 2018: Ergebnis des Mikrozensus [Employment and 



193 
 

 

employment rate by gender and age in 2008 and 2018: Results of the microzensus]. 

https://www.destatis.de/DE/Themen/Arbeit/Arbeitsmarkt/Erwerbstaetigkeit/Tabellen/erwerbst

aetige-erwerbstaetigenquote.html, Accessed October 12, 2020. 

Feir-Walsh, B. J. and Toothaker, L. E., (1974). An empirical comparison of the anova f-test, normal 

scores test and kruskal-wallis test under violation of assumptions. Educational and 

Psychological Measurement, (34:4): 789–799. 

Ferraris, A., Mazzoleni, A., Devalle, A. and Couturier, J., (2019). Big data analytics capabilities and 

knowledge management: impact on firm performance. Management Decision, (57:8): 1923–

1936. doi: 10.1108/MD-07-2018-0825. 

Fischer, T. and Riedl, R., (2020). On the stress potential of an organisational climate of innovation: 

A survey study in Germany. Behaviour & Information Technology, (67:1), 1–22. 

https://doi.org/10.1080/0144929X.2020.1836258. 

Fitzgerald, M., Kruschwitz, N., Bonnet, D., and Welch, M., (2013). Embracing Digital Technology. 

A New Strategic Imperative. MIT Sloan Management Review, (55:2): 1-16. 

Ganster, D. C., (2005). Response: Executive Job Demands: Suggestions from a Stress and Decision-

Making Perspective. Academy of Management Review, (30:3): 492–502. doi: 

10.5465/amr.2005.17293366. 

German Federal Employment Agency, (2020). Berufenet. Berufsinformationen einfach finden. 

https://berufenet.arbeitsagentur.de/berufenet/faces/index?path=null/suchergebnisse/kurzbesch

reibung&dkz=129987&such=data+scientist, Accessed October 6, 2020. 

Gimpel, H., Lanzl, J., Manner-Romberg, T., and Nüsken, N., (2018). Digitaler Stress in Deutschland. 

Eine Befragung von Erwerbstätigen zu Belastung und Beanspruchung durch Arbeit mit 

digitalen Technologien. Düsseldorf, Germany: Hans-Böckler-Stiftung. 

Gimpel, H., Lanzl, J., Regal, C., Urbach, N., Wischniewski, S., Tegtmeier, P., Kreilos, M., Kühlmann, 

T. M., Becker, J., Eimecke, J. and Derra, N. D., (2019). Gesund digital arbeiten?!: Eine Studie 

zu digitalem Stress in Deutschland. Augsburg, Germany: Projektgruppe Wirtschaftsinformatik 

des Fraunhofer FIT. doi: 10.24406/fit-n-562039.  

Golubic, R., Milosevic, M., Knezevic, B. and Mustajbegovic, J., (2009). Work-related stress, 

education and work ability among hospital nurses. Journal of advanced nursing, (65:10): 2056–

2066. doi: 10.1111/j.1365-2648.2009.05057.x. 



194 
 

 

Grace, M. K. and van Heuvelen, J. S., (2019). Occupational variation in burnout among medical staff: 

evidence for the stress of higher status. Social Science & Medicine, (232): 199–208. doi: 

10.1016/j.socscimed.2019.05.007. 

Hackman, J. and Oldham, G. R., (1976). Motivation through the design of work: test of a theory. 

Organizational Behavior and Human Performance, (16:2): 250–279. doi: 10.1016/0030-

5073(76)90016-7. 

Hageman, S. J., (1992). Alternative methods for dealing with nonnormality and heteroscedasticity in 

paleontological data. Journal of Paleontology: 857–867. 

Hambrick, D. C., Finkelstein, S. and Mooney, A. C., (2005). Executive job demands: New insights 

for explaining strategic decisions and leader behaviors. Academy of Management Review, 

(30:3): 472–491. doi: 10.5465/amr.2005.17293355. 

Harman, H. H., (1967). Modern factor analysis: University of Chicago press. 

Hartl, E., (2019). A characterization of culture change in the context of digital transformation. In: 25th 

Americas Conference on Information Systems (AMCIS). Cancún, Mexiko. 

Hartline, M. D. and Ferrell, O. C., (1996). The management of customer-contact service employees: 

An empirical investigation. Journal of Marketing, (60:4): 52–70. doi: 

10.1177/002224299606000406. 

Ho, A., Nguyen, A., Pafford, J. L. and Slater, R., (2019). A data science approach to defining a data 

scientist. SMU Data Science Review, (2:3): 1-21. 

Holm, S., (1979). A simple sequentially rejective multiple test procedure. Scandinavian journal of 

statistics, (6:2): 65–70. 

Ismail, N. A. and Abidin, A. Z., (2016). Data scientist skills. Journal of Mobile Computing & 

Application, (3:4): 52–61. 

Janssen, M., van der Voort, H. and Wahyudi, A., (2017). Factors influencing big data decision-

making quality. Journal of Business Research, (70:1): 338–345. doi: 

0.1016/j.jbusres.2016.08.007. 

Lansisalmi, H., Peiro, J. M. and Kivimaki, M., (2000). Collective stress and coping in the context of 

organizational culture. European Journal of Work and Organizational Psychology, (9:4): 527–

559. doi: 10.1080/13594320050203120. 

Lazarus, R. S., and Folkman, S., (1984). Stress, appraisal, and coping, New York, NY: Springer 

publishing company. 



195 
 

 

Linzer, D. A. and Lewis, J. B., (2011). poLCA: An R package for polytomous variable latent class 

analysis. Journal of statistical software, (42:10): 1–29. 

Manieri, A., Brewer, S., Riestra, R., Demchenko, Y., Hemmje, M., Wiktorski, T., Ferrari, T. and 

Frey, J., (2015). Data science professional uncovered: How the EDISON project will contribute 

to a widely accepted profile for data scientists. In: Proceedings of the 7th IEEE International 

Conference on Cloud Computing Technology and Science (CloudCom’15): 588–593: IEEE. 

Mauro, A. de, Greco, M., Grimaldi, M. and Ritala, P., (2018). Human resources for big data 

professions: A systematic classification of job roles and required skill sets. Information 

Processing & Management, (54:5): 807–817. doi: 10.1016/j.ipm.2017.05.004. 

Mikalef, P., Giannakos, M. N., Pappas, I. O. and Krogstie, J., (2018). The human side of big data: 

Understanding the skills of the data scientist in education and industry. In: Global Engineering 

Education Conference (EDUCON): 503–512: IEEE. doi: 10.1109/EDUCON.2018.8363273. 

Mohajeri, K., Mesgari, M. and Lee, A. S., (2020). When statistical significance is not enough: 

Investigating relevance, practical significance, and statistical significance. MIS Quarterly, 

(44:2): 525–559. doi: 10.25300/MISQ/2020/13932. 

Müller, O., Fay, M. and vom Brocke, J., (2018). The effect of big data and analytics on firm 

performance: An econometric analysis considering industry characteristics. Journal of 

Management Information Systems, (35:2): 488–509. doi: 10.1080/07421222.2018.1451955. 

Murawski, M. and Bick, M., (2017). Digital competences of the workforce – a research topic? 

Business Process Management Journal, (23:3): 721–734. doi: 10.1108/BPMJ-06-2016-0126. 

Nylund, K. L., Asparouhov, T. and Muthén, B. O., (2007). Deciding on the number of classes in latent 

class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural 

equation modeling: A multidisciplinary Journal, (14:4): 535–569. 

Okkonen, J., Vuori, V. and Palvalin, M., (2019). Digitalization changing work: Employees’ view on 

the benefits and hindrances. In: Á. Rocha, C. Ferrás & M. Paredes (Eds.). Information 

Technology and Systems. Proceedings of ICITS 2019: 165–176. Cham, Switzerland: Springer. 

Osmundsen, K., Iden, J. and Bygstad, B., (2018). Digital transformation drivers, success factors, and 

implications. In: The 12th Mediterranean Conference on Information Systems (MCIS). Corfu, 

Greece. 

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y. and Podsakoff, N. P., (2003). Common method biases 

in behavioral research: a critical review of the literature and recommended remedies. The 

Journal of applied psychology, (88:5): 879–903. doi: 10.1037/0021-9010.88.5.879. 



196 
 

 

R Development Core Team, (2019). R: A language and environment for statistical computing, 

Vienna, Austria: R Foundation for Statistical Computing. 

Ragu-Nathan, T. S., Tarafdar, M., Ragu-Nathan, B. S. and Tu, Q., (2008). The consequences of 

technostress for end users in organizations: conceptual development and empirical validation. 

Information Systems Research, (19:4): 417–433. doi: 10.1287/isre.1070.0165. 

Rees, D. and Cooper, C. L., (1992). Occupational stress in health service workers in the UK. Stress 

medicine, (8:2): 79–90. doi: 10.1002/smi.2460080205. 

Richards, D. and Marrone, M., (2014). Identifying the education needs of the business analyst: An 

australian study. Australasian Journal of Information Systems, (18:2). doi: 

10.3127/ajis.v18i2.803. 

RStudio Team, (2019). RStudio: Integrated delopment environment for R, Boston, MA: PCB. 

Şahin, Y. L. and Çoklar, A. N., (2009). Social networking users’ views on technology and the 

determination of technostress levels. Procedia - Social and Behavioral Sciences, (1:1): 1437–

1442. doi: 10.1016/j.sbspro.2009.01.253. 

Salanova, M., Llorens, S., Cifre, E. and Nogreda, C., (2007). El tecnoestrés: Concepto, medida e 

intervención psicosocial. [Technostress: Concept, measurement and prevention]. Notatechia de 

Prevencion, (730). Madrid, Spain: INSHT. 

Santuzzi, A. M. and Barber, L. K., (2018). Workplace telepressure and worker well-being: The 

intervening role of psychological detachment. Occupational Health Science, (2:4): 337–363. 

doi: 10.1007/s41542-018-0022-8. 

Schwarz, G., (1978). Estimating the dimension of a model. The Annals of Statistics, (6:2): 461–464. 

Schwemmle, M. & Wedde, P. (Eds.), (2012). Digitale Arbeit in Deutschland. Potenziale und 

Problemlagen, Bonn: Friedrich-Ebert-Stiftung, Medienpolitik. 

Srivastava, S. C., Chandra, S. and Shirish, A., (2015). Technostress creators and job outcomes: 

theorising the moderating influence of personality traits. Information Systems Journal, (25:4): 

355–401. doi: 10.1111/isj.12067. 

Stanton, A. D. and Stanton, W. W., (2016). The relationship between big data, data science, digital 

analytics and the skills and abilities needed to optimise marketing decisions. Applied Marketing 

Analytics, (2:3): 265–279. 

Tarafdar, M., Cooper, C. L. and Stich, J.-F., (2019). The technostress trifecta ‐ techno eustress, techno 

distress and design: Theoretical directions and an agenda for research. Information Systems 

Journal, (29:1): 6–42. doi: 10.1111/isj.12169. 



197 
 

 

Tarafdar, M., Tu, Q., Ragu-Nathan, B. S. and Ragu-Nathan, T. S., (2007). The impact of technostress 

on role stress and productivity. Journal of Management Information Systems, (24:1): 301–328. 

doi: 10.2753/MIS0742-1222240109. 

Tarafdar, M., Pullins, E. and Ragu-Nathan, T. S., (2015). Technostress: Negative effect on 

performance and possible mitigations. Information Systems Journal, (25:2), 103–132. 

https://doi.org/10.1111/isj.12042. 

Tarafdar, M., Tu, Q. and Ragu-Nathan, T. S., (2010). Impact of technostress on end-user satisfaction 

and performance. Journal of Management Information Systems, (27:3): 303–334. doi: 

10.2753/MIS0742-1222270311. 

Tarafdar, M., Tu, Q., Ragu-Nathan, T. S. and Ragu-Nathan, B. S., (2011). Crossing to the dark side. 

Communications of the ACM, (54:9): 113–120. doi: 10.1145/1995376.1995403. 

Taris, T. W., (2006). Is there a relationship between burnout and objective performance? A critical 

review of 16 studies. Work & Stress, (20:4): 316–334. doi: 10.1080/02678370601065893. 

Tehseen, S., Ramayah, T. and Sajilan, S., (2017). Testing and controlling for common method 

variance: A review of available methods. Journal of Management Sciences, (4:2): 142–168. 

Thompson, N., Stradling, S., Murphy, M. and O’neill, P., (1996). Stress and organizational culture. 

The British Journal of Social Work, (26:5): 647–665. 

Timonen, H. and Vuori, J., (2018). Visibility of work: How digitalization changes the workplace. In: 

Proceedings of the 51st Hawaii International Conference on System Sciences. Waikoloa 

Village, HI, USA. 

Tomczak, M. and Tomczak, E., (2014). The need to report effect size estimates revisited. An overview 

of some recommended measures of effect size. Trends in Sport Sciences, (21:1): 19–25. 

Travers, C. J. and Cooper, C. L., (1993). Mental health, job satisfaction and occupational stress among 

UK teachers. Work & Stress, (7:3): 203–219. doi: 10.1080/02678379308257062. 

Tucker, J. W., (1994). Generalized van der Waerden identities. Journal of Physics A: Mathematical 

and General, (27:3): 659–662. 

van der Waerden, B. L., (1952). Order tests for the two-sample problem and their power. Indagationes 

Mathematicae, (14:1): 453–458. 

van Dijkhuizen, N. and Reiche, H. M., (1980). Psychosocial stress in industry: A heartache for middle 

management? Psychotherapy and psychosomatics, (34:2-3): 124–134. 



198 
 

 

Vargha, A. and Delaney, H. D., (2000). A critique and improvement of the “CL” common language 

effect size statistics of McGraw and Wong. Journal of Educational and Behavioral Statistics, 

(25:2): 101–132. doi: 10.2307/1165329. 

Wallach, E. J., (1983). Individuals and organizations: The cultural match. Training and Development 

Journal, (37:2): 29–36. 

Waller, M. A. and Fawcett, S. E., (2013). Data science, predictive analytics, and big data: A revolution 

that will transform supply chain design and management. Journal of Business Logistics, (34:2): 

77–84. doi: 10.1111/jbl.12010. 

Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J., Dubey, R. and Childe, S. J., (2017). Big data 

analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 

(70:1): 356–365. doi: 10.1016/J.JBUSRES.2016.08.009.



199 
 

 

Ⅶ Conclusion 

Overall, data science has reached outstanding relevance within modern marketing research since the 

big data revolution has provided countless new opportunities of collecting customer data and, subse-

quently, gaining valuable knowledge out of such data. For creating competitive advantages out of 

these circumstances, it is crucial for companies to improve the performance of their marketing data 

scientists. In this context, new applications of machine learning approaches as well as effectively 

overcoming technostress as a huge downside of digitalization have been shown to be particularly 

important aspects of improving the performance of data scientists in contemporary marketing con-

texts. Despite its importance, machine learning research is still at an early stage within marketing 

research, with numerous opportunities of further examining new tasks and types of data. Furthermore, 

technostress research lacks investigations regarding both coping strategies for overcoming tech-

nostress and technostress issues within specific occupational groups. For tackling these gaps, the fol-

lowing research questions were proposed within this thesis: 

RQ1: How can data scientists improve their performance by successfully applying machine 

learning algorithms in contemporary marketing contexts? 

RQ2: How can data scientists improve their performance by effectively overcoming tech-

nostress at work? 

Referring to the improvement of data scientists’ performance by successfully applying machine learn-

ing algorithms in contemporary marketing contexts, this thesis delivers the following insights: 

i. By applying deep long short term memory neural networks for classifying sentiments of writ-

ten customer reviews, the intuitive variation of hyperparameters within the network architec-

ture does not necessarily lead to improvements in accuracy. Furthermore, positive impacts on 

the network classification performance caused by hyperparameter variants cannot be accumu-

lated automatically by just combining the underlying hyperparameter variants. Therefore, 

both researchers and practitioners have to consider the possibilities of unintuitive hyperpa-

rameter impacts including interaction effects when optimising deep learning models. 

ii. Machine learning approaches successfully perform call centre arrivals’ forecasting tasks, with 

random forest models yielding the highest prediction accuracy. Thereby, machine learning 

can outperform conventional time series models. Within the context of time series data, cross-
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validation containing an expanding rolling window constitutes a powerful instrument for com-

paring different approaches aiming for an optimised model selection in both research and 

practical environment. 

iii. Machine learning approaches successfully tackle the widespread e-commerce problem of 

online shopping cart abandonment by predicting such abandoners based on aggregated click-

stream data. To achieve this, gradient boosting with regularization delivers the strongest per-

formance. At the same time, standard decision tree and boosted logistic regression provide 

similar results while exhibiting less model complexity and, therefore, represent serious alter-

natives. Hence, practitioners are recommended to consider their respective computational ca-

pacities and machine learning capabilities when deciding upon a machine learning approach 

for online shopping cart abandonment prediction.  

Regarding the improvement of data scientists’ performance by effectively overcoming technostress 

at work, the following deductions are provided: 

iv. Increasing stressors due to the use of ICT are associated with higher levels of both exhaustion 

and productivity. Therefore, employers should avoid extremely low as well as excessive levels 

of technology-related job demands in order to optimise their employees’ productivity. 

v. By applying reactive coping as a personal resource moderating the relationship of stressors 

due to ICT use and employees’ exhaustion within technostress context, active-functional cop-

ing is associated with lower exhaustion while dysfunctional strategies are, in turn, related to 

higher exhaustion. Simultaneously, both ways of coping buffer the relationship between tech-

nostress creators and exhaustion as a facet of strain. Furthermore, employees who utilize a 

broad set of various coping strategies may benefit more from applying coping. Nevertheless, 

both managers and employees are highly recommended to be aware of the long-term disad-

vantages dysfunctional strategies imply regarding health and performance outcomes.  

vi. Due to their heterogeneity of roles and tasks, defining data scientists due to job titles appears 

to be inappropriate. Therefore, employers are recommended to use data scientists’ specific 

use of digital technologies for detecting employees who fulfil data scientists’ tasks. 

vii. Considering general job- and company-specific workplace attributes, data scientists’ work-

places can be classified into four different groups. These groups differ in the context of tech-

nostress, i. e., regarding technostress creators, strains due to the use of ICT, and overall job 

performance. In this context, workplaces with customer contact, a leadership function, high 

education, and a high level of bureaucracy are associated with perceiving more technostress, 
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partially contradicting prior findings in the context of general stress at work. Overall, these 

findings lead to the necessity of providing different support strategies for effectively over-

coming technostress depending on the respective class of data scientists. 

Considering these results, this thesis provides new theoretical insights within machine learning and 

technostress as important branches of research which have reached outstanding relevance due to the 

developments of the big data revolution. Moreover, the revealed findings deliver practical implica-

tions marketing managers are highly recommended to be aware of since marketing may strongly 

benefit from high-performing data scientists who are able to extract valuable knowledge out of vari-

ous types of customer data. 

For future research, it is important to note that both machine learning and technostress research still 

provide numerous issues researchers have to deal with in order to improve the performance of data 

scientists in marketing contexts. Therefore, further studies regarding the application of new machine 

learning algorithms, the examination of new kinds of marketing data, or investigations of new coping 

strategies to effectively overcome technostress are highly recommended. 
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Appendix 

Appendix A: Index of Research Papers 

Since this thesis is of cumulative nature, several research papers have served as a basis for it. These 

papers are either published in or submitted to academic journals. In the following, an overview of 

these papers as well as the respective journals is provided. 

Research Paper #1 (Chapter Ⅱ): Derra, N. D., and Baier, D. (2020). Working in Detail: How LSTM 

Hyperparameter Selection Influences Sentiment Analysis Results. 

This paper has been published in the Archives of Data Science, Series A, 6(1), 1-22. 

https://doi.org/10.5445/KSP/1000098011/10. 

Research Paper #2 (Chapter Ⅲ): Albrecht, T., Rausch, T. M., and Derra, N. D. (2021). Call Me 

Maybe: Methods and Practical Implementation of Artificial Intelligence in Call Center Arrivals’ 

Forecasting. 

This paper has been published in the Journal of Business Research, 123, 267-278. 

https://doi.org/10.1016/j.jbusres.2020.09.033. 

(VHB JOURQUAL 3: Category B) 

Research Paper #3 (Chapter Ⅳ): Rausch, T. M., Derra, N. D., and Wolf, L. (2020). Predicting 

Online Shopping Cart Abandonment with Machine Learning Approaches. 

This paper has been published in the International Journal of Market Research, Online First, 1-24. 

https://doi.org/10.1177/1470785320972526. 

(VHB JOURQUAL 3: Category D) 

Research Paper #4 (Chapter Ⅴ): Becker, J., Derra, N. D., Regal, C., and Kühlmann, T. M. (2020). 

Mitigating the Negative Consequences of ICT Use: The Moderating Effect of Active-Functional and 

Dysfunctional Coping. 

This paper is currently under review at the Journal of Decision Systems. 

(VHB JOURQUAL 3: Category B) 

Research Paper #5 (Chapter Ⅵ): Derra, N. D., Regal, C., Rath, S. H., and Kühlmann, T. M. (2020). 

Examining Technostress at Different Types of Data Scientists’ Workplaces. 

This paper is currently under review at the Scandinavian Journal of Information Systems. 

(VHB JOURQUAL 3: Category C) 
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Appendix B: Individual Contribution to the Included Research Papers 

The included research papers of this thesis were composed by several authors within different settings 

each. Hereafter, the composition frame of the various papers is described as well as my respective 

individual contribution. 

Research paper #1, which is presented in chapter Ⅱ, was composed by two researchers. As the lead 

author of this paper, I was mainly responsible for all parts of the study including its conceptualization 

and motivation, the theoretical background, pre-processing and analyses of the data, drawing up the 

paper, and editing it during the review process including the correspondence with the journal. Daniel 

Baier constantly participated by providing important and valuable recommendations for all parts of 

the paper during the creation process. 

Research paper #2, which is presented in chapter Ⅲ, was worked out by three authors. Based on the 

conceptual framework of Tobias Albrecht and Theresa Rausch, I substantially contributed within 

several parts of the study, i. e., supplying practically relevant literature, the exchange of knowledge 

with practitioners and the implementation of machine learning models (in particular, the trial of 

LSTM models within the study), establishing the two-step research approach, writing the article, and 

improving the paper during the review process. 

Research paper #3, which is presented in chapter Ⅳ, was written by three researchers as well. To-

gether with Theresa Rausch, I was centrally involved in all parts of the study including the develop-

ment of its conceptualization, the selection and implementation of the machine learning models, the 

literature review, writing the article, and editing during the review process. Lukas Wolf was mainly 

responsible for the elaboration of the literature review and collaborated during the review process. As 

the corresponding author, I was further responsible for correspondence with the journal. 

Research paper #4, which is presented in chapter Ⅴ, was composed by four authors. With Julia 

Becker as the lead author being mainly responsible for the article, I considerably contributed to the 

paper at carrying out the literature review and, further, supported the conceptualization of the study 

as well as data analysis, writing the article, and editing during the review process. Christian Regal 

collaborated within the study’s conceptualization, data collection, data analysis, writing the article as 

well as the review process. Torsten M. Kühlmann supported the overall development and the writing 

process by constant advices and recommendations for improving the study. 
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Research paper #5, which is presented in chapter Ⅵ, was written by four researchers. As the lead 

author, I was mainly responsible for nearly all parts of the article, i. e., conceptualizing the study, 

conducting the literature review, the data analysis, the writing process, and the correspondence with 

the journal. Christian Regal supported the conceptualization of the study, data collection, data analy-

sis, and writing the article. Simon Rath was involved in the literature review and Torsten M. Kühl-

mann constantly provided important comments and recommendations for improving the quality of 

the paper. 


