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Abstract
Standard evolutionary game theory investigates the evolutionary fitness of alternative
behaviors in a fixed and single decision problem. This paper instead focuses on deci-
sion criteria, rather than on simple behaviors, as the general behavioral rules under
selection in the population: the evolutionary fitness of classic decision criteria for
rational choice is analyzed through Monte Carlo simulations over various classes of
decision problems. Overall, quantifying the uncertainty in a probabilistic way and
maximizing expected utility turns out to be evolutionarily beneficial in general. Mini-
mizing regret also finds some evolutionary justifications in our results, while maximin
seems to be always disadvantaged by differential selection.

Keywords Ecological rationality · Evolutionary selection · Decision criteria ·
Population games

1 Introduction

One of the most fundamental questions that sparked the development of probability
and decision theory is how to evaluate and choose from different uncertain prospects,
such as lottery tickets or business ventures. Among the candidates that have been
advanced in the literature, the decision criterion dictating to maximize a subjectively
expected utility enjoys the largest favor at present, especially among economists.

In the wake of behavioral experiments, though, subjective expected utility maxi-
mization has been objected to not only on descriptive but also on normative grounds.
Criticisms have particularly targeted its probabilistic sophistication: for expected util-
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ity maximization to be applicable in a given decision problem, the decision maker is
required to hold probabilistic beliefs about the state of the world and/or the actions
of the opponents. In technical terms, all uncertainty must be measurable, namely,
all uncertainty must be reduced to a probability measure. Decision-theoretic exper-
iments have disproved the descriptive accuracy of such a view on uncertainty (e.g.,
Allais (1953), Ellsberg (1961)), but objections regarding the rightfulness of denying
all non-probabilistic uncertainty have been raised from a normative standpoint too
(Levi (1974), Gärdenfors (1979), Gärdenfors and Sahlin (1982), Levi (1982), Levi
(1985), Gilboa et al. (2009), Gilboa et al. (2012)).

Two of the main alternative decision criteria that have been proposed for guiding
rational choice in situations of uncertainty are expected utility maximinimization and
regret minimization. Unlike expected utility maximization, these two criteria allow
both probabilistic and non-probabilistic uncertainty. Maximin can be traced back at
least to the work in Wald (1939), von Neumann and Morgenstern (1944), and Wald
(1945). It has been later proposed as prominent alternative to expected utility max-
imization in numerous other works (e.g., Gärdenfors (1979), Gärdenfors and Sahlin
(1982), Levi (1982)) and famously axiomatized by Gilboa and Schmeidler (1989).
It prescribes to pick the option that maximizes the utility in the worst-case scenario.
Regret minimization, firstly advanced by Savage (1951), has been recently axioma-
tized by Hayashi (2008) and Stoye (2011), and it dictates to choose the option that
minimizes the loss in the worst-case scenario.

In the presence of multiple candidates, the meta-problem of selecting among dif-
ferent criteria for rational decision making arises. There are at least two different
approaches that can shed some light on this meta-problem and guide our choices. The
first and traditional one is axiomatic: some decision-theoretic axioms are considered
healthy rationality principles (e.g., transitivity, Mas-Colell et al. (1995)), and decision
criteria are compared and evaluated on the the basis of the axioms they satisfy or do
not satisfy.

The second approach is game-theoretic: it thinks of different criteria as general
behavioral rules, or higher-order strategies, and it analyzes and compares their evo-
lutionary fitness. This second approach is thus ecological: fitness and performance of
each criterion have to be expected to vary depending on the characteristics of envi-
ronment (e.g., the existing competitors, the decision problems at hand, and the like).

Philosophical as well as biological research has largely profited from the game-
theoreticmethodology (Skyrms (1996),BergstromandGodfrey-Smith (1998), Skyrms
(2004), Okasha (2007), Zollman (2008), Skyrms (2010), Huttegger and Zollman
(2010), Huttegger and Zollman (2013)). Different from classic evolutionary game
theory, however, the ecological approach proposed here views decision criteria, rather
than simple behaviors, as the types under selection.1 In order to study the differential
selection of general behavioral rules, the standard single-game model of evolutionary
game theory is thus expanded to include a variety of different games, and therefore
named multigame model. To exemplify, consider an environment consisting of two
different games, the Prisoner’s Dilemma and a coordination game:

1 To the best of our knowledge, evolutionary competitions where the types under selection are general
decision criteria have not been yet investigated, with only a few exceptions (Galeazzi and Franke (2017),
Klein et al. (2018)).
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PD I I I
I 1;1 3;0
I I 0;3 2;2

CG I I I
I 1;1 1;0
I I 0;1 3;3

Suppose that these two games are played in a population with two agent types
differing in the decision criterion: the expected utility maximizer with uniform prior,
that assigns equal probability to all the actions of the other and picks the option that
maximizes his or her own expected utility, and themaximinimizer, that simply chooses
the option that maximizes the utility in the worst-case scenario. In the Prisoner’s
Dilemma, both these criteria prescribe action I , since it leads to the highest expected
utility (1/2 + 3/2 = 2 > 0/2 + 2/2 = 1) as well as to the highest minimal utility
(min{1, 3} = 1 > 0 = min{0, 2}). In the coordination game, on the other hand, action
I I is associated with the highest expected utility (1/2+1/2 = 1 < 0/2+3/2 = 3/2),
while action I is associated with the highest minimum (min{1, 1} > min{0, 3}).

The two decision criteria therefore dictate the same action in the Prisoner’s
Dilemma, but different actions in the coordination game. Had the Prisoner’s Dilemma
been the only game in the environment, the evolutionary pressure would have been
the same on both types in the population. By introducing the coordination game, the
two subpopulations may instead be subject to differential selection. Adding the coor-
dination game to the environment thus allowed us to make a distinction we would
otherwise not have been able to make.

Richer environments would permit finer discriminations: for instance, in an envi-
ronment consisting only of the Prisoner’s Dilemma and the coordination game above,
the maximin decision criterion is not behaviorally distinguishable from the decision
criterion that always prescribes action I . These two criteria would instead dictate
different actions in many other games which can be part of richer environments. Intu-
itively, moreover, the richer in different games, the less biased against or in favor of
certain criteria the environment will be.2

The core of this paper compares different decision criteria in terms of their evolu-
tionary fitness. The investigation includes themain candidates for rational choice under
uncertainty proposed in the literature. In particular, we contrast the maximization of
expected utility with maximin expected utility and regret minimization.

Special attention is given to regret minimization, as recent axiomatizations have
focused only on one of the (at least) two possible versions of regret minimization
for decision making under unmeasurable uncertainty (Hayashi 2008; Stoye 2011).
Here, instead, we consider both these ways of minimizing regret and compare their
evolutionary performances.

The structure of the paper is as follows. Section 2 introduces the main characters by
defining the decision criteria that we will encounter throughout the paper. Section 3
sets the stage by presenting the model we use in our investigations, whose results for
interactive and individual decision making are in Sects. 5 and 6, respectively. Finally,
Sect. 7 concludes by relating to the existing literature and the closing remarks.

2 The model introduced below, however, allows the converse too: one could purposely select a specific set
of games when interested in studying the evolution in a specific environment.
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2 Decision criteria

In this section, we formally define the decision criteria which are studied in the follow-
ing sections. As game theory can be seen as interactive decision theory, the relevant
decision criteria are introduced in a decision-theoretic setting. In doing so, however,
we pay attention to use formal notation that is consistent with the multigame setting
developed in the next sections.

The main alternatives investigated in this paper are four: maximization of expected
utility, maximin expected utility, and two forms of regret minimization. In the fol-
lowing analysis, the term rationality is uniquely understood and used in its ecological
acceptation, in the sense of being advantageous and beneficial for the individual to
survive and thrive.

By and large, decision criteria are functions associating a decision problem with
an action choice. A decision problem can be formalized as a tuple (S, A, Z , c) where
S is a set of possible states of the world, A is the agent’s set of actions,3 Z is a set of
outcomes, and c is the outcome function

c : S × A → Z .

On the top of the objective structure (S, A, Z , c) of the decision problem, there
are two crucial subjective components: the agent’s subjective utility u and the agent’s
subjective belief B. The subjective utility is a real-valued function associating each
possible outcome with a numerical subjective utility

u : Z → R.

The subjective belief of the agent is encoded by a set B, whose elements can be
objects of different nature, depending on the belief representation in the model. For
instance, in a qualitative approach, the belief set B may be just a subset of possible
states of the world B ⊆ S which the agent considers possible or most plausible.
In a more quantitative approach, the belief set may be a set of probability measures
B ⊆ �(S), where �(S) denotes the set of all probability measures p over the set S.

All decision criteria considered here can be thus thought of as functions associating
a subjective utility and a subjective belief with an action choice:

Decision Criterion: Utilities × Beliefs → Actions.

In order to output an action, the decision criterion must be able to resolve the kind
of uncertainty encoded by the belief set B. For instance, if the belief set B is not a
singleton set containing a unique probability measure, but rather a set of states B ⊆ S,
actions cannot be associated with expected utilities, and the maximization of expected
utility is hence unfit to solve the choice problem. In those cases, the agent has to resort
to other criteria, such as maximin or regret minimization.

3 Throughout this paper, S and A are finite sets. This assumption can be dropped by accommodating the
usual measure-theoretic issues.
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In the following, we assume that B is a nonempty set of probability measures. The
advantage of this choice is that it allows to encompass the main approaches to the
formal representation of beliefs mentioned above. The models where the belief of the
agent is given in terms of a set of states B = S′ ⊆ S can be alternatively expressed
by the set of probability measures B = �(S′). The models assuming Bayesian agents
with probabilistic beliefs are the special cases where the set B ⊆ �(S) is a singleton.

2.1 Expected utility maximization

Of all decision criteria advanced in the literature, the maximization of a subjective
expected utility has gained most favor for defining rational choice. Given a decision
problem where the belief set B is represented by a single probability measure p ∈
�(S), the subjective expected utility of each action a ∈ A is

Ep[u|a] =
∑

s∈S
u(c(s, a)) · p(s).

According to expected utility maximization, the rational choice to make is to pick
an action a∗ such that

a∗ ∈ argmaxa∈AEp[u|a].

Whenever the uncertainty of the agent is not measurable, i.e., whenever the set B is
not representable by a single probability measure, each action a is thus associated with
an expected utility Eq [u|a] for each probability measure q ∈ B. Under unmeasurable
uncertainty, also known as ambiguity, the maximization of subjective expected utility
is thus unable to assign each option a unique expected-utility value and to prescribe
a course of action accordingly. When faced with unmeasurable uncertainty, the agent
necessitates more general decision criteria to evaluate her options.

2.2 Maximin expected utility

The most famous criterion for decision making under ambiguity is probably the
maximinimization of subjective expected utility, or just maximin expected utility.
This criterion dictates to rank the actions according to the minimal expected utility
and then choose among the top-ranked:

a∗ ∈ argmaxa∈A min
p∈B Ep[u|a].

Note that maximin expected utility is adequate for choice under both unmeasurable
and measurable uncertainty. When the uncertainty is measurable, that is when B
is reduced to a singleton, maximin expected utility reduces to the maximization of
expected utility.

123



Synthese

2.3 Linear regret minimization

Another important criterion for decision under both measurable and unmeasurable
uncertainty is regret minimization, which comes in at least two different forms. The
more common version of regret minimization is the one that we call linear, and has
recent axiomatizations in Hayashi (2008) and Stoye (2011).

To formalize linear regret minimization, let us first define the linear regret of action
a given probability measure p as the following quantity:

rL (a, p) := Ep

[
max
a′∈A

u(c(s, a′)) − u(c(s, a))

]
=

∑

s∈S
p(s) ·

(
max
a′∈A

u(c(s, a′)) − u(c(s, a))

)
.

Linear regret minimization prescribes to pick an action a∗ such that

a∗ ∈ argmina∈A max
p∈B rL(a, p).

Linear regret minimization also prescribes the same action choice as expected utility
maximization in case of measurable uncertainty (see Appendix A).

2.4 Nonlinear regret minimization

An equally reasonable version of regret minimization is the one we call nonlinear
regret minimization. Let us define the nonlinear regret of action a given probability
measure p as the quantity

rN (a, p) := max
a′∈A

Ep[u|a′] − Ep[u|a] = max
a′∈A

∑

s∈S
p(s) · u(c(s, a′)) −

∑

s∈S
p(s) · u(c(s, a)).

Nonlinear regret minimization accordingly prescribes to opt for an action a∗ such
that

a∗ ∈ argmina∈A max
p∈B rN (a, p).

Similarly to linear regret minimization, nonlinear regret minimization too agrees
with expected utility maximization on the action that shall be chosen in case of mea-
surable uncertainty (see Appendix A).

Example 1 To better appreciate the behavioral difference between the two ways of
understanding and minimizing regret, consider the following example. A bag contains
ten marbles, which are either blue or red. Seven marbles are red, one is blue, and
nothing else is known about the remaining two (the corresponding belief set can be
simply expressed as {0.1, 0.2, 0.3}, where it suffices to state the probability of a blue
marble only, since drawing a red marble is the complementary event). A marble will
be drawn from the bag and an agent has the chance to bet on its color according to the
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(a)

(b)

(c)

Fig. 1 An example where the choices prescribed by linear regret and nonlinear regret differ. Figure 1a,
c picture, respectively, the linear and the nonlinear regret of the two bets. The uncertainty about the bag
is represented by the interval between the two vertical dotted lines, with the left line corresponding to a
probability of a blue marble of 0.1 (i.e., the remaining twomarbles are red) and the right line to a probability
of 0.3 (i.e., the remaining marbles are all blue). (Color figure online)

payoffs given in Fig. 1b: a winning bet on blue yields 3, a winning bet on red yields
1, and losing bets cost nothing.

A linear regret minimizer will look at Fig. 1a and pick the action corresponding
to the line whose highest point within the dotted interval is lower. A linear regret
minimizer is hence indifferent between R and B, as the two lines reach equally high
maxima within the dotted interval (where the maximum of rL(R) is reached when the
probability of a blue marble is 0.3, and the maximum of rL(B)when that probability is
0.1). On the contrary, a nonlinear regret minimizer will prefer to bet on red: as depicted
in Fig. 1c, the maximum reached by rN (R) within the dotted interval is lower than the
maximum of rN (B).

It is worth stressing that in order to resolve the same uncertainty about the bag
of marbles through expected utility maximization, a single probability distribution
is needed. Given the knowledge on the composition of the bag (7 red marbles, 1
blue marble, 2 either red or blue marbles), it is reasonable for an expected utility
maximizer to discard all probability distributions that are out of the interval delimited
by the two vertical dotted lines and opt for a distribution that assigns probability of
a blue marble between 0.1 and 0.3. In what follows, we assume that the expected
utility maximizer reaches a probabilistic belief by averaging the points of the belief
set, e.g., (0.1 + 0.2 + 0.3)/3 = 0.2 in the case of the bag of marbles. The expected
utilitymaximizermay thus be viewed as resolving unmeasurable uncertainty bymeans
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of the principle of insufficient reason, or principle of indifference, which prescribes
to assign equal probabilistic weight to all possible alternatives. In the following, by
expected utility maximizer we hence mean a decision maker employing the principle
of insufficient reason first and the maximization of expected utility next.

All candidate criteria for rational choice that we have seen agree in all those cases
where the belief of the agent is represented by a unique probability measure. The
disagreement about the course of action to be taken arises when the agent is unmea-
surably uncertain. Maximin expected utility and both versions of regret minimization
may all prescribe different behaviors, whereas the maximization of expected utility is
of no help unless the uncertainty is reduced to a probabilistic belief.

3 Themodel

In the multigame model, the environment consists of a set of symmetric games with
n possible actions. The multigame model is defined by a repeated loop with four
steps. First, n2 fitness values are randomly drawn from a set of i.i.d. possible values
{0, . . . , v}, and a new fitness game is thereby generated.4

I ... n
I v1,1 ... v1,n
... ... ... ...

n vn,1 ... vn,n

Second, a belief set B is selected at random by the following procedure: a set
{p1, . . . pm} of m i.i.d. points is randomly drawn from a uniform distribution over the
simplex �({I , . . . , n}). Each point pi is thus a probability measure over the actions
of the opponent, and we set B = {p1, . . . , pm}.5 Third, the action prescribed by each
decision criterion is computed and all decision criteria in the population are paired to
play the game. Fourth and finally, the fitness achieved by each criterion against the
others is recorded, and the process repeats.

Three remarks on the model are in order. First, the players hold the same beliefs
independent of their criterion. The reason is that we aim to study the ecological value
of different decision criteria ceteris paribus. It would otherwise be possible that one
criterion outperforms another in terms of evolutionary fitness just because of the dif-
ference in beliefs, e.g., because one player happens to have better information than
the other, rather than because one criterion is actually fitter than the other. We hence
vary only the decision criteria between players, all else being equal.

Second, no constraints on beliefs of rationality are imposed. By construction of the
model, one agent may in fact believe that the other will play a dominated action with
positive probability.

4 Since the games are symmetric, it suffices to write the values for the row player only.
5 For maximin and the two regret minimizations, this is equivalent to set B = C ({p1, . . . pm }), where
C ({p1, . . . , pm }) denotes the convex hull of the set of points {p1, . . . , pm }. (See Appendix A.) This is
relevant because those three decision criteria are usually represented by means of a convex compact set of
probability measures (Gilboa and Schmeidler 1989; Hayashi 2008; Stoye 2011).
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It is beyond the scope of this paper to compare alternative decision criteria when
further assumptions on belief of rationality are put in place. To reiterate, here we
limit ourselves to a merely ecological understanding of rationality, in the sense of
being evolutionarily successful, and therefore do not impose any epistemic constraints,
except for the fact that the players hold the same beliefs independent of their criterion.
We leave the study of the interplay between evolutionary success and epistemically
sophisticated agents to future work.

Third, in order for expected utility maximization to produce a decision, the possibly
unmeasurable uncertainty has to be reduced to measurable uncertainty. Given the
uncertainty encoded in B = {p1, . . . , pm}, we assume that a Bayesian agent assigns
equal probability 1/m to all the points in B. This gives rise to the probabilistic belief

p(a) = 1

m

m∑

i=1

pi (a)

for all a ∈ A.6

4 Method

We analyze the evolutionary competition between different criteria through Monte
Carlo simulations.7 The parameters of the model are the following:

– n: the number of actions in the symmetric games, A = {a1, . . . , an}
– m: the number of points in the belief set, B = {p1, . . . , pm}
– v: the maximum of the possible fitness values {0, . . . , v}

We test the model for the parameters n = {2, 3, 5, 7, 9, 12, 15}, m = {2, 3, 7}, and
v = {50, 100}. Ten simulation runs are performed for each possible combination
(n,m, v) of parameter values. Each simulation run represents a multigame consisting
of 10000 randomly generated games.

5 Results

Each simulation run outputs a table with the average fitnesses accumulated over the
10000 randomly generated games by each decision criterion:

LRm N Rm Mm EU
LRm 32,228 32,26 32,248 32,27
N Rm 32,229 32,175 32,198 32,15
Mm 31,788 31,771 31,847 31,769
EU 32,356 32,303 32,379 32,286

The table above, for instance, shows the average accumulated fitnesses of the
four decision criteria (linear regret minimization LRm, nonlinear regret minimiza-

6 As already stressed in Example 1, this may be seen as the Bayesian applying the principle of insufficient
reason to the belief set in order to quantify the uncertainty in a probabilistic way.
7 The source code is available from the authors upon request.
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Table 1 Number of times EU
strictly dominates all other
criteria for all combinations of m
(in the rows), n (in the columns),
and v (v = 50 in Table 1a, and
v = 100 in Table 1b)

(a)

2 3 5 7 9 12 15

2 0 0 4 8 7 8 8

3 0 1 10 10 10 10 10

7 0 7 10 10 10 10 10

(b)

2 3 5 7 9 12 15

2 0 0 5 5 7 6 5

3 0 0 9 10 10 10 10

7 0 10 10 10 10 10 10

tion N Rm, maximin expected utility Mm, and expected utility maximization EU )
for n = 3,m = 7 and v = 50. Specifically, the number in each cell is the average
accumulated fitness of a player making choices according to the criterion of the cor-
responding row when paired with a player who complies with the prescriptions by the
criterion of the corresponding column.

5.1 Qualitative analysis

Imagining a population of agents whose decision criteria are the competing traits
in the population, the evolutionary selection of the decision criteria would then be
driven by the fitness accumulated in the multigame. Looking at the results for the
tested parameters, a few things can be noted. Table 1a, b show that expected utility
maximization EU turns out to be strictly better than the other decision criteria in many
but not all cases.

This comes from the fact that, out of the ten multigames for each combination
of parameters, the average accumulated fitnesses are most of the times highest in
the row corresponding to EU . When this happens, expected utility maximization is
the only evolutionarily stable criterion, and a monomorphic state of EU -types is the
only evolutionarily stable state of the population (under replicator-mutator dynamics,
Nowak (2006)). That is, the sole monomorphic population that cannot be invaded by
mutants using a different criterion is a population consisting entirely of expected utility
maximizers, and any initial population configuration will lead to a monomorphic state
of EU -types, provided that there is a nonzero chance of expected utility maximizers
to spring by mutation from the other types.

There are, however, exceptions to the evolutionary supremacy of expected utility
maximization. Under maximal unmeasurable uncertainty, expected utility maximiza-
tion, linear regret minimization and nonlinear regret minimization are provably
equivalent when n = 2, and therefore are all evolutionarily stable, whereas maximin
is provably inferior (see Galeazzi and Franke (2017)). Furthermore, the nonlinear
version of regret remains equivalent to utility maximization under nonmaximal uncer-
tainty too, for n = 2 and m = 2.
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Table 2 Number of times LRm
strictly dominates all other
criteria for all combinations of m
(in the rows), n (in the columns),
and v (v = 50 in Table 2a, and
v = 100 in Table 2b)

(a)

2 3 5 7 9 12 15

2 10 5 1 0 0 0 0

3 10 0 0 0 0 0 0

7 8 0 0 0 0 0 0

(b)

2 3 5 7 9 12 15

2 10 5 0 0 0 0 0

3 10 1 0 0 0 0 0

7 9 0 0 0 0 0 0

These considerations partly explain why expected utility maximization turns out
never strictly dominant in Tables 1a, b form = 2.Moreover, in these and the remaining
cases where EU is not strictly dominant, linear regret minimization comes out undom-
inated by expected utility maximization and sometimes even as the strictly dominant
criterion, as shown in Table 2a, b.

5.2 Statistical analysis

Pooling together all ten Monte Carlo simulations for each of the parameter combina-
tions, we also perform statistical analyses of the differences in fitness between different
criteria. Figure 2 for instance shows the performances of the decision criteria against
linear regret minimization and nonlinear regret minimization.

In order to spare space, Fig. 2 pictures only the fitnesses against two of the four
criteria for m = 2 and v = 50, but all four cases look alike. The horizontal axis
represents the parameter n, i.e., the number of actions in the games, and average
accumulated fitnesses are given by the values in the vertical axis. For each fitness
value, the related 95% confidence interval is also reported by means of a vertical
segment limited above and below by small horizontal bars.

As already observed in Sect. 5.1 (Table 2a, b), the red and purple lines, correspond-
ing respectively to nonlinear regret minimizers and expected utility maximizers, are
initially indistinguishable from each other in both graphs of Fig. 2 at n = 2, while the
blue line corresponding to linear regret minimization lies above them. It is possible
to appreciate from the picture, however, that the difference in fitness between linear
regret minimization and expected utilitymaximization is never statistically significant.

As for the case of m = 2 in general, Fig. 2 shows also that maximinimizers are
always the worst off for all n, even though the difference in fitness with respect to the
other criteria is statistically significant solely in games with two actions. Moreover,
expected utility maximization becomes superior to the other criteria in games with five
or more actions for m = 2, although the difference is never statistically significant.

Figure 3a depicts a representative picture for the case of m = 3, i.e., B =
{p1, p2, p3}.
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Fig. 2 First, the average
fitnesses, as functions of the
number n of actions in the
games, accumulated by the four
criteria when paired with linear
regret minimization for m = 2
and v = 50; second, the same
average accumulated fitnesses
when the four criteria are paired
with nonlinear regret
minimization
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Fig. 3 a The average fitnesses,
as functions of the number n of
actions in the games, of the four
criteria when paired with linear
regret minimization for m = 3
and v = 50. b The average
fitnesses, as functions of the
number n of actions in the
games, of the four criteria when
paired with linear regret
minimization for m = 7 and
v = 50
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The situation is qualitatively similar to the case m = 2, but important statistical
differences are also found. First of all, nonlinear regret minimization and utility max-
imization are no longer equivalent for n = 2, and both ways of minimizing regret turn
out to have initially higher accumulated fitness than utility maximization. For n = 3
instead, linear regret minimization and expected utility maximization perform almost
identically, while the accumulated fitness achieved by nonlinear regret minimizers
is slightly lower. When the number n of actions in the games increases to five and
more, expected utility maximizers are the best off. Importantly, the difference in fit-
ness between expected utilitymaximization and the other criteria is always statistically
significant in games with seven or more actions (Fig. 3a). It is also noticeable that the
performance by utility maximizers is always statistically distinguishable from that by
maximinimizers for all parameters n, while the difference between maximin and the
two types of regret minimization becomes statistically insignificant as the number of
actions increases.

These tendencies are even more pronounced as the numberm of points in the belief
set goes up. Figure 3b shows the situation form = 7. There, the small initial advantage
of linear regret minimization is already overtaken by expected utility maximizers at
n = 3 (although the confidence intervals of EU , LRm, and N Rm are still overlapping
for games with only two or three actions, n = 2, 3). For games with five or more
actions, the gap between utility maximization and the others becomes even bigger
than in previous cases (m = 2, 3), and always statistically significant.

In general, as m increases, the accumulated fitnesses of every criterion increase
as well, suggesting an evolutionary benefit in having a larger belief set.8 Further, the
expected utility maximizers seem to profit more than the others from larger parameters
m, in that their fitness peaks at n = 5 (rather than at n = 3) form = 7. Nonlinear regret
minimization, instead, suffers from the combination of high m and high n more than
the competitors and is even outperformed by maximin, sometimes in a statistically
significant way (see Fig. 3b at n = 15 for instance).

Overall, it turns out that expected utility maximization is largely favored in inter-
active decision problems where the possible alternatives are many. The difference in
fitness between utility maximizers and the others becomes always statistically sig-
nificant when a large number n of actions is combined with a large number m of
points in B. With few possible actions, instead, linear regret minimization seems to
perform slightly better than the other criteria, but rarely in a statistically significant
way.When one considers the rationality of different criteria in ecological terms, there-
fore, rationality may become a context-dependent concept, which cannot be studied
in vacuum and independent of the environment in which decisions take place. This is
what emerges from our multigame model for interactive decision making. Next, we
analyze the case of individual decision making.

8 While it is reasonable to expect that higher values of m correspond in the long run to belief sets with
larger area, volume or hypervolume, it is also possible that belief sets with lower m be larger than belief
sets with higher m in some cases. Take, for instance, the case of games with 3 actions (the simplex is hence
a two-dimensional object): a belief set generated by 4 points (m = 4) has on average larger area than one
generated by 3 points, but the 3-points convex hull may well be larger than the 4-points convex hull in some
cases.
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6 Individual decisions

A little modification of the previous model allows us to investigate the evolutionary
fitness of the criteria introduced above in the context of individual decision making
too. In individual decision problems, all the uncertainty about the outcome of an action
is caused by the uncertainty about the actual state of the world, as no other player is
simultaneously involved in the same decision problem. Let us denote by k the number
of possible states of the world, |S| = k. We then assume that the realization of a
state s ∈ S obeys a certain probability distribution p ∈ �(S), extracted at random
from a uniform distribution on �(S), which hence determines the actual expected
fitness of each possible action in the decision problem at hand. The rest of the model
remains unchanged: at each time step, n ·k fitness values are randomly drawn, together
with a belief set B, to generate the single-agent decision problem.9 Therefore, the
set B = {p1, . . . , pm} ⊆ �(S) now encodes the agent’s uncertainty about the actual
probability p, as in the example with the bag of marbles in Sect. 2. Differently than the
game-theoretic framework of Sect. 3, themodeler has thus the possibility to distinguish
between two instructive cases and analyze them separately: the case where the actual
probability p is in the convex hull of the belief set, p ∈ C ({p1, . . . , pm}), termed
the case of good beliefs; and the case where p ∈ �(S)\C ({p1, . . . , pm}), termed bad
beliefs.

6.1 Good beliefs

Figures 4 and 5a picture the average accumulated fitnesses of the criteria under
consideration. Similarly to the game-theoretic scenario, expected utility maximization
turns out to be the most profitable criterion. In fact, the advantage is even more marked
in individual decisions than in games: apart from the case of n = 2 and m = 2, where
EU and N Rm are still equivalent, utility maximizers have strictly higher accumulated
fitness than the competitors for all other tested parameters. Moreover, this difference
in fitness is statistically significant in most of the cases.

A notable difference with respect to the results of Sect. 5 is that the accumulated
fitness is here mostly increasing in n, whereas it was mainly decreasing in interactive
situations (itwas increasing fromn = 2 ton = 3anddecreasing thenceforth).A related
difference is that, while the average accumulated fitness in individual decisions is close
to that in interactive decisions for n = 2, the two substantially diverge as the number
of actions increases. Overall, hence, the accumulated fitnesses in individual decision
making with good beliefs are higher for all criteria. Notice, however, that only EU
keeps improving its fitness as n goes up for all m, while the other criteria experience
a small decrease in fitness when a large number n of actions is combined with a large
numberm of points in B. Moreover, in Figs. 4 and 5a, the average accumulated fitness
decreases as m increases, contrary to the interactive setting: in individual decisions
with good beliefs, larger belief sets seem to be detrimental.

9 The values that we tested also remained the same as in Sect. 3 for all parameters v, n and m, while
k ∈ {2, 3, 7}.
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Fig. 4 First, the average
fitnesses, as functions of the
number n of actions in the
individual decisions,
accumulated by the four criteria
in single-agent decision
problems where the agent holds
good beliefs for m = 2 and
v = 50; second, the same
average accumulated fitnesses
for m = 3 and v = 50
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Fig. 5 a The average fitnesses,
as functions of the number n of
actions in the individual
decisions, accumulated by the
four criteria in single-agent
decision problems where the
agent holds good beliefs for
m = 7 and v = 50. b The
average fitnesses, as functions of
the number n of actions in the
individual decisions,
accumulated by the four criteria
in single-agent decision
problems where the agent holds
bad beliefs for m = 2 and
v = 50
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Nonlinear regret minimization comes out here as the second-best criterion. This is
different from the results obtained for interactive decision making in Sect. 5, where
linear regret minimization was mostly superior to nonlinear regret minimization. In
the next section, the investigation on the case of individual decisions under bad beliefs
seems to confirm that both this last observation and the general improvement in accu-
mulated fitness experienced by all criteria depend on the fact that beliefs are often bad
in the game-theoretic setting.

6.2 Bad beliefs

Figures 5b and 6 show the situation where p ∈ �(S)\C ({p1, . . . , pm}). These
graphs and those of Sect. 5 look extremely alike, thus supporting the conclusion that
the major differences in fitness between Sects. 5 and 6.1 are due to the agents holding
bad rather than good beliefs.

Some observations made in Sect. 5 with regard to the optimality of linear regret
minimization should then be reconsidered. In light of the last findings, the cases in
favor of the ecological rationality of linear regret minimization stem from situations
in which the agents’ beliefs are bad. On the one hand, it is hence possible to find
some settings where linear regret minimization would be ecologically sustainable. On
the other hand, if one enlarges the scope of rationality also to more intentional and
introspective acceptations, it would then be difficult to justify the rationale of adopting
linear regret minimization when making decisions: one should go for the option that
minimizes linear regret only when believing his or her own beliefs bad. Yet, this
broader account of rationality may also imply that one updates to new beliefs in order
to include the actual probability p whenever recognizing his or her own beliefs as bad,
possibly prior to any decision. We leave this last observation for future development,
though, in that it implies a broader notion of rationality than the merely ecological one
that we investigate in this paper.

Finally, a general remark is in order. Overall, reducing the uncertainty to a Bayesian
belief and maximizing expected utility turns out to be evolutionarily beneficial. In this
respect, another possible interpretation of the results is that the decision criterion does
not really matter when one sticks to Bayesianism, in that all criteria are equivalent
under probabilistic beliefs, as we have seen in Sect. 2. Our findings would thus become
especially relevant for those situations where the agent is unable to reduce the uncer-
tainty to a probability measure, and has to resort to some criterion fit for unmeasurable
uncertainty, such as maximin or regret minimization. The analysis of the accumulated
fitnesses in both games and individual decisions then seems to favor the nonlinear
version of regret minimization in such situations, while maximin does not receive any
convincing evolutionary support from these models.

7 Concluding remarks

Besides the axiomatic representations, investigations about the evolutionary fitness
of different decision criteria may prove to be instructive and shed new light on ratio-
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Fig. 6 The average fitnesses, as
functions of the number n of
actions in the individual
decisions, accumulated by the
four criteria in single-agent
decision problems where agents
hold bad beliefs for m = 3 and
v = 50 (first), and for m = 7
and v = 50 (second)
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nal decision making. Rather than considering various decision criteria as alternative
philosophical theories, we think of them as high-level strategies that may coexist
in the same environment and play off against each other. Allowing different crite-
ria to coexist and interact in the same model may then help to better understand the
biological and ecological advantages and disadvantages of each of them. In the multi-
gamemodel, representing uncertainty by a single probabilitymeasure andmaximizing
expected utility turns out to be largely advantageous in terms of evolutionary fitness.
Furthermore, whenever this reduction is not possible to the agent, regret minimization
almost always outperforms the other prominent criterion for choice under unmeasur-
able uncertainty, i.e., maximin expected utility. In this respect, this paper extends the
results in Galeazzi and Franke (2017) by focusing on n × n games in general and by
distinguishing between two types of regret minimization, and it shows that the ecolog-
ical advantage of nonlinear regret minimization in particular is statistically significant
especially when the agent’s beliefs are not completely off.

The idea that the concept of rationality hinges on the interplay between the struc-
ture of the environment and the computational limitations of the agent can be traced
back at least to the work by Herbert Simon (e.g., Simon (1955, 1990)) and is still
widely exploited in the research on heuristics by Gerd Gigerenzer and colleagues
(e.g., Gigerenzer and Goldstein (1996), Goldstein and Gigerenzer (2002)). Heuristics,
however, are normally understood as simple rules of thumb to tackle specific tasks,
differently from decision criteria that are supposed to be general principles fit for all
sorts of decision problems.

The need of elevating the analysis from expressed behavior to underlying psycho-
logical mechanisms has also been advocated in theoretical biology and behavioral
ecology (e.g., Fawcett et al. (2013)). In economics, similar thoughts have led evolu-
tionary game theorists to the study of the evolution of preferences, where subjective
utility functions rather than simple behaviors become the types under selective pres-
sure (e.g., Robson and Samuelson (2011), Heifetz et al. (2007b), Heifetz et al. (2007a),
Dekel et al. (2007), Alger and Weibull (2013)). An orthogonal but related research
direction investigates the evolution of learning: keeping utility function and decision
criterion fixed, the goal is to understand which learning procedures are more beneficial
than others (e.g., Blume and Easley (2006)).

We view the results presented here as complementary to the evolution of preferences
and the evolution of learning. A specific utility function, a specific learning rule (which
updates the agent’s beliefs over time), and a specific decision criterion can be seen as
three different individual traits, jointly determining the choices of the agent bearing
them. A general model, which we shall leave to future investigation, should hence
study the evolutionary selection of all these traits in combination.
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A.Appendix

A.1 Equivalence under Measurable Uncertainty

To see the equivalence between linear regret minimization and expected utility maxi-
mization under measurable uncertainty, note that from

a∗ ∈ argmina∈A max
p∈B rL(a, p)

it follows that, for all a ∈ A,

max
p∈B Ep

[
max
a′∈A

u(c(s, a′)) − u(c(s, a∗))
]

≤ max
p∈B Ep

[
max
a′∈A

u(c(s, a′)) − u(c(s, a))

]
.

Since Ep is a linear operator, it follows from B containing a single measure that

Ep

[
max
a′∈A

u(c(s, a′))
]

− Ep
[
u|a∗] ≤ Ep

[
max
a′∈A

u(c(s, a′))
]

− Ep [u|a]

and therefore a∗ ∈ argmaxa∈AEp[u|a].
Similarly, the equivalence between nonlinear regret minimization and expected

utility maximization under measurable uncertainty directly follows from the definition
of rN (a, p). If B = {p} and a∗ is the action minimizing nonlinear regret, then, for all
a ∈ A,

maxa′
∑

s p(s) · u(c(s, a′)) − ∑
s p(s) · u(c(s, a∗))

≤
maxa′

∑
s p(s) · u(c(s, a′)) − ∑

s p(s) · u(c(s, a))

and hence

−
∑

s∈S
p(s) · u(c(s, a∗)) ≤ −

∑

s∈S
p(s) · u(c(s, a)).

Equivalence between B andC (B)

We show that the optimal choices for a belief set B = {p1, . . . , pm} always coincide
with the optimal choices for the convex hull of that belief set C (B) for maximin and
the two versions of regret minimization. To see this, consider for instance the game
and the projection of the points from the belief set B onto the corresponding expected
utilities of I pictured in Fig. 7.
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Fig. 7 A symmetric game on the left; on the right, a possible belief set B consisting of five points from the
simplex �({I , I I , I I I }) and the relative convex hull C (B). The projections onto the plane representing
action I correspond to the expected utilities associated with those five points

Since both the utility function u and the linear regret function rL are linear in prob-
ability, and linear functions on a convex compact set reach minimum and maximum at
some extreme point, it follows that interior points ofC (B) play no role in determining
the optimal choice for both the maximinimizer and the linear regret minimizer.

The same holds true for nonlinear regret minimization, even though the nonlinear
regret function rN is not linear in probability. Notice that we can rewrite the nonlinear
regret rN (a j , p) of action a j ∈ A given p as

max
{
Ep[u|a1] − Ep[u|a j ], . . . , Ep[u|an] − Ep[u|a j ]

}
.

From the functions Ep[u|ai ] − Ep[u|a j ] being linear, and hence convex, in p for all
i ∈ {1, . . . , n}, it follows that rN (a j , p) is also convex in p, since it is the pointwise
maximum function of a set of convex functions. A convex function on a convex
compact set C (B) reaches its maximum at some extreme point. The maximum of
rN (a j , p) is therefore attained at some point in B.
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