
Vol:.(1234567890)

The Journal of Supercomputing (2021) 77:3484–3515
https://doi.org/10.1007/s11227-020-03402-y

1 3

A performance‑ and energy‑oriented extended tuning
process for time‑step‑based scientific applications

Natalia Kalinnik1 · Robert Kiesel2 · Thomas Rauber1  · Marcel Richter2 ·
Gudula Rünger2

Published online: 25 August 2020
© The Author(s) 2020

Abstract
Scientific application codes are often long-running time- and energy-consuming par-
allel codes, and the tuning of these methods towards the characteristics of a specific
hardware is essential for a good performance. However, since scientific software is
often developed over many years, the application software usually survives several
hardware generations, which might make a re-tuning of the existing codes necessary.
To simplify the tuning process, it would be beneficial to have software with inherent
tuning possibilities. In this article, we explore the possibilities of tuning methods for
time-step-based applications. Two different time-step-based application classes are
considered, which are solution methods for ordinary differential equations and par-
ticle simulation methods. The investigation comprises a broad range of tuning pos-
sibilities, starting from the choice of algorithms, the parallel programming model,
static implementation variants, input characteristics as well as hardware parameters
for parallel execution. An experimental investigation shows the different characteris-
tics of the application classes on different multicore systems. The results show that a
combination of offline and online tuning leads to good tuning results. However, due
to the different input characteristics of the two application classes, regular versus
irregular, different tuning aspects are most essential.

Keywords  Time-stepping methods · Ordinary differential equation · Particle
simulation · Offline tuning · Online tuning · Multicore

1  Introduction

The design and implementation of efficient parallel simulation codes are still a very
time-consuming and cumbersome task, which requires not only insight into the sci-
entific problem to be simulated but also advanced programming capabilities and

 *	 Thomas Rauber
	 rauber@uni‑bayreuth.de

Extended author information available on the last page of the article

http://orcid.org/0000-0002-3102-6858
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03402-y&domain=pdf

3485

1 3

A performance- and energy-oriented extended tuning process…

knowledge of the hardware behavior. Many decisions have to be taken, starting with
the choice of the simulation method and including several further choices, such as
the programming model, the data structures or the code structuring. For the goal to
achieve a good performance as well as a low energy consumption, there are more
decisions at runtime, such as the choice of the operational frequency or the number
of cores for a multicore platform. The multitude of choices for implementation and
execution influences the performance and energy consumption for the execution of
the final program, such that it is almost impossible to pick the most efficient alter-
native without extensive planning. When considering time-step-based simulation
applications, another influencing factor can be crucial, which is the dependence of
the computation behavior on the input data and the varying data during computa-
tion. For this class of applications, we explore the design and implementation pos-
sibilities and propose an extended tuning process which includes early choices, such
as the algorithmic and programming model choice, as well as the influence of the
input data and varying data during runtime.

Time-step-based simulation applications are used to simulate scientific problems
with an inherent time evolution. The coarse structure of such applications distin-
guishes between a loop over discrete time steps and the space-based data which are
manipulated in each time step providing modified data for the next time step. The
solution of such a problem might be the series of space data resulting from the time
step computations or only the final result after a series of time steps. Several classes
of algorithms exist for solving such problems with time evolution. In this article, we
consider solvers for systems of ordinary differential equations and particle simula-
tion methods for long-range interactions in N-body problems.

Ordinary differential equations (ODEs) are differential equations describ-
ing a function in dependence on its derivative in one independent variable, which
is referred to as time variable. The numerical integration determines the function
value at consecutive points in time by calculating the function value at this time
point based on previously computed function values. For a concrete solver imple-
mentation, the choices are the specific algorithm, such as an Euler method or
a Runge–Kutta method, or the programming model, such as MPI, Pthreads or
OpenCL. The choice has to be suitable for the architecture and the algorithm. Most
important is the influence of the start value and the computation structure of the
right-hand side of the ODE, which depends on the problem modeled; sparse prob-
lems and dense problems can be distinguished.

Particle simulation methods are used to simulate the interaction of a set of given
particles, where the kind of interaction is given by the underlying problem and might
be the calculation of forces between particles. The particle problem might comprise
interactions only between particles being close in space but also long-range interac-
tions where interactions between all particle have to be computed and contribute
to the result. The simulation is done in time steps such that each time step takes
the particle and their properties, such as velocity and position, and recomputes the
properties in the time kernel such that this new information is used in the subsequent
simulation. The important property of a particle simulation is that the positions of
the particles are not fixed but the particle distribution may vary with the simula-
tion which in turn has influence on the computation structures and the performance.

3486	 N. Kalinnik et al.

1 3

Thus, qualities of the particle sets, such a homogeneous distribution in the space can
change to an inhomogeneous distribution and vice versa, which can be a challenge
for the tuning.

The choice for the different implementations and execution details can take
place at different stages of programming and execution. In general, such a tuning
process distinguishes between offline and online tuning, where offline tuning com-
prises all choices which are taken without knowledge about the actual input data
and online tuning can include such knowledge at runtime. In this article, we propose
an extended version of the tuning stages especially suited for the holistic tuning of
time-step-based simulation algorithms. The offline tuning is extended by including
the algorithm choice step in which an algorithm is chosen from a set of algorithms
solving the same problem. Also, a design decision with incomplete knowledge about
the input data is included by choosing a program structure suitable for the charac-
teristics of the data, i.e., the access structure, without knowing the exact content.
An important observation is that the program code in each time step is perform-
ing the same computation, however with varying data. Thus, the offline tuning can
concentrate on this inner kernel. The online tuning can exploit the repeated compu-
tation of the kernel computation of a time step. We propose an online tuning con-
sisting of several tuning stages with an early stage covering the early times steps
and a later stage covering the following time steps, separately. The advantage is that
data-dependent information gathered in the early time steps can be exploited in later
time steps. Also, an adaptation of the choices is possible in a continuous way for the
entire simulation time with updates after a fixed number of steps.

To make this approach work, the provision of different program variants for a
simulation method is necessary as well as an assessment of this program variants by
different metrics, e.g., the execution time or the energy consumption. We propose
the key concepts and present the workflow of the extended tuning process together
with the essential components. For parallel program variants, the exploitation of
parallelism and frequency scaling is included in the tuning process. In summary, the
contributions of this article include:

•	 A performance and energy analysis of particle simulation methods and solution
methods for ODEs on different multicore architectures and for several input data
sets;

•	 The identifications of parameters with a large influence on the performance and
energy consumption and the analysis of their amenability for offline and online
tuning for these time-step-based simulation applications;

•	 An investigation of the potential for interaction between offline and online tuning
steps and of the use of information gathered in the offline phase to support the
choices in the online phase;

•	 A proposal of an extended tuning process approach to balancing the offline and
online tuning stages, which exploits the time-step-based nature of the simulation
applications.

The article is structured as follows. Related work is discussed in Sect. 2. Sec-
tion 3 introduces essential definitions and proposes an extended tuning process for

3487

1 3

A performance- and energy-oriented extended tuning process…

time-step-based simulation algorithms. Section 4 studies solver for ODEs for differ-
ent input problems. Section 5 investigates the potential for tuning of particle simula-
tions by considering several algorithm, programming models, data parameters and
frequencies. Section 6 concludes.

2 � Related work

Early tuning approaches such as ATLAS [37] and PHiPAC [5] aim at problems from
dense linear algebra. They generate a lot of implementation variants of the specific
kernels, execute them and determine the (near) optimal configuration offline, i.e.,
during compilation and installation of the library on the target platform. For some
application areas, the performance strongly depends on the properties of the input
data. In these cases the best variant has to be selected at application runtime online
when the structure of the input data is known. An example for such an application
area is signal processing, with auto-tuning libraries FFTW [9] and SPIRAL [28]. All
these approaches have been developed for the optimization of a specific numerical
application and can take the specific characteristics of the application into consid-
eration. In this article, we propose an approach that has been designed for general
time-step-based applications and therefore captures a wider class of algorithms from
different areas.

Tuning techniques have been also used to optimize the performance of stencil
computations on CPUs and GPUs, see, for example, PATUS [6], Pochoir [34], Hal-
ide [29]. In these approaches, a stencil is specified through a domain-specific lan-
guage (DSL) and the DSL description is used to generate different implementation
variants that are evaluated at runtime. YASK [38] also provides a DSL to describe
stencil computations and uses genetic-algorithm-based auto-tuning to generate opti-
mized codes for Intel Xeon and Intel Xeon Phi architectures. Stencil computations
capture a large class of applications from different areas, including time-stepping
applications. However, the approaches mentioned do not exploit the time-stepping
nature of the applications, if it exists, as it is done in this article. Instead, they are
focused on the optimization of the individual stencils.

There are application-independent frameworks to simplify self-adaptivity such as
active harmony [35], Parcae [30], Periscope [11] and OpenTuner [1]. Active har-
mony generates new code versions at runtime using a source-to-source compiler and
user-specified loop transformations and is a pure online approach. Parcae generates a
task-based execution model based on an user-level runtime system and a compiler to
translate specified parallel constructs. Similar frameworks in this direction include
Perpetuum [21] and PetaBricks [1]. In contrast to our approach, these frameworks
are application independent and they are also not targeted towards time-stepping
algorithms.

The generation of different code variants is an important part of many tun-
ing approaches. The polytope model [8] and compiler-based approaches [29]
are often used in this context. The search space of code variants explored can
be large, and therefore, efficient heuristic search strategies are important. Open-
Tuner [1] provides several search strategies and uses a multiarm bandit technique

3488	 N. Kalinnik et al.

1 3

to choose automatically the best strategy for the target application. The choice of
the MPI library used (such as OpenMPI [10] or MPICH), the MPI parameter set-
tings and the underlying MPI algorithms can affect the resulting performance and
energy consumption of parallel variants. For example, the optimal MPI algorithm
for a collective operation often depends on the message size, the target hardware
architecture and number of processes used. In [33] Periscope is extended to auto-
matically optimize the values of MPI configuration parameters. The approach
supports performance analysis and tuning of MPI parameters at runtime.

All tuning approaches mentioned above are search-based. An alternative to
search-based approaches is the use of machine learning techniques such as neu-
ral networks and support vector machines (SVMs). Nitro [25] uses SVMs in an
offline phase to build a model through training and to consult it at runtime for
the selection of the best configuration. An overview of compiler-based frame-
works considering machine learning approaches is presented in [3]. The poten-
tial of using a reinforcement learning for tuning MPI communication libraries is
explored in [7]. Such machine learning techniques are currently not included in
our approach, but they could in principle help to select candidate configurations
for both particle simulation methods and ODE solvers.

The state of the art in tuning and auto-tuning in high-performance applications
is described in [4]. A framework to exploit domain knowledge in order to reduce
the search space and to optimize the distribution of work and various platform-
specific parameters (such as tile sizes, thread blocks, shared memory, unrolling)
is presented in [27]. The auto-tuning approach is embedded in heterogeneous
compiler Polly-ACC [12]. Auto-tuning approaches for minimizing the energy
consumption have been investigated in [26, 36].

Tuning techniques are also important in many other application areas. An
important example is weather forecasting systems that are often very time-con-
suming and can therefore benefit much from a good tuning. Many weather fore-
casting systems are based on the weather research and forecasting (WRF) model.
This model is considered in [24], and it is investigated how to obtain the best
WRF configuration, including compilers, MPI libraries and hybrid shared mem-
ory paradigms. In contrast to our work, one specific application is considered and
no different code variants are taken into consideration.

The two application fields, particle simulation methods and solving differen-
tial equations, are well-known fields, which are also examined individually. In
the approach of [18], an online tuning is presented to optimize the performance
of parallel solution methods of solving differential equations. This approach
does not consider the energy consumption and does not optimize the number of
threads. Runtime and energy consumption of particle simulations are examined
in [16, 22]. The tuning potential with respect to performance for particle simula-
tion methods and solving differential equations is examined in [20]. A perfor-
mance and energy analysis of these applications is presented in [19]. In this arti-
cle, we extend this work by considering the tuning potential for both execution
time and energy consumption and present an approach for combining offline and
online tuning.

3489

1 3

A performance- and energy-oriented extended tuning process…

3 � Extended tuning process for time‑stepping methods

In this section, we outline our approach for a systematic exploration of different tun-
ing possibilities that are available for time-step-based scientific applications.

3.1 � Tuning possibilities and configurations

The execution of a scientific application depends on several parameters that have
to be selected at different levels. This includes the selection of a specific simula-
tion algorithm, the selection of a programming model, the generation of a specific
program variant, the usage of specific compiler options and the setting of the param-
eters for the hardware environment. The selection of these parameters influences the
resulting execution time and energy consumption. Depending on the specific appli-
cation, different input data may require different parameter settings for the best per-
formance. An illustration for the different choices is given in Fig. 1.

Depending on the application area, different algorithms may be available for
performing a simulation. An example is particle simulation methods where differ-
ent grid-based and tree-based simulation algorithms are available, see Sect. 5, and
the initial distribution of the particles determines which simulation algorithm is
suited best. Different programming models can be used for the implementation of

Fig. 1   Illustration of the design space for the configurations of a scientific simulation. The dashed lines
indicate the design choices for: the algorithm, programming model, program variant, parameter space
and the hardware parameter

3490	 N. Kalinnik et al.

1 3

the selected simulation algorithm, such as MPI, Cuda or OpenCL. For a specific
simulation algorithm, different program variants may be available that represent dif-
ferent implementations obtained, e.g., by the use of program transformations. Such
program transformations can be parameterized by parameters, such as block sizes
for loop tiling or unrolling factors for loop unrolling. Since many transformations
can be applied for different loops in different combinations, a large number of possi-
ble program variants may result. Such program variants can also be generated auto-
matically by a compiler tool. For the generation of the executable program, different
compiler options can be used, controlling, e.g., vectorization or optimizing trans-
formations. A large number of combinations for compiler options are possible [2].
For the final execution of the application code, different hardware parameters can
be selected, including the number of executing threads or processes as well as the
operational frequency via DVFS (dynamic voltage frequency scaling).

In the following, especially in the experiments with the time-step-based methods,
we use the following definitions:

Definition 1  A program variant is an implementation of a simulation algorithm
available as source code. Different program variants of the same algorithm are iden-
tical in their numerical behavior but may differ in their memory access pattern or
their order of computations. Program variants can be generated by using program
transformations such as loop interchange or loop unrolling.

Definition 2  A configuration of a scientific application code is an executable pro-
gram implementation resulting from specific choices for the algorithm, subcompo-
nents, programming model, program variant, compiler options, hardware parameters
and program parameters.

3.2 � Tuning opportunities for time‑step‑based applications

Time-step-based simulation applications have several properties from which a tun-
ing process can benefit. These properties include:

•	 the similarity of the computational structure of the computation kernel of each
time step,

•	 the dependence of the computations performed in each time step on the input
data,

•	 the similarity of the characteristics and the data access structure to the input data
in each time step,

•	 the potential of parallelism across the space in each time step.

Computation structure of time kernel For time-step-based applications, a dynamic
behavior of the computations in each time step and a dependence on the initial
input data is possible. Thus, even when starting with a configuration that is opti-
mal for the first time steps, the simulation data may evolve in such a way that
another configuration would be more appropriate after some time steps. Such a

3491

1 3

A performance- and energy-oriented extended tuning process…

dynamic behavior cannot be forecast in advance and it cannot be determined a
priori which configuration should be used for which time steps, especially if the
computation behavior is highly input dependent.

Dependence of the computation structure on data To capture the existence of
a dynamic behavior, we distinguish between regular and irregular time-stepping
scientific applications: a regular time-step-based application does not change
its computational behavior between different time steps, whereas an irregular
time-step-based application is characterized by the dynamic computation behav-
ior described above, which may lead to a change in the performance and energy
behavior during the course of the time steps. For regular applications, the perfor-
mance and energy behavior can be independent of the input data or it may depend
on specific properties of the input data. For example, ODE solvers may lead to
quite different performances depending on the right-hand side of the ODE system
to be solved. Since the property of being regular or irregular is a property of the
simulation algorithm, this is the same for each time step and does not change in
a simulation run. For ODE solvers, the access pattern to the input data and the
data structures storing the simulation data during the simulation can be sparse
or dense or mixed, but it is fixed during runtime. For particle systems, the input
data can be homogeneous or inhomogeneous or mixed and the characteristics can
change during the simulation due to the evolvement of the particle system.

Tuning for parallelism The series of time steps in time-step-based algorithms is
inherently sequential, since the result, such as a new data value or a new distribution
of particles, is used as input for the next time step. However, there is usually a poten-
tial of parallelism within the calculation of each time step. For ODE solvers, the
potential of parallelism is called parallelism across the space when systems of dif-
ferential equations are solved and the function value computed in each time step is a
potentially large vector. For particle simulation methods, the parallelism stems from
the calculation of the interactions between the particles which can be distributed
among processing units. Due to the varying particle distribution, the sorting meth-
ods resorting the particles for locality can help to reduce imbalances and to speed up
the calculation by spatial locality. The tuning for parallelism includes:

•	 the number of cores and processes or threads used,
•	 frequencies scaling for energy reduction,
•	 simultaneous investigation of parallelism and application parameters, e.g.,

number of cores and gridsize,
•	 load balancing in particle simulation methods by sorting algorithms,
•	 load balancing in simulation algorithms for an execution on heterogeneous

CPU+GPU platforms.

Thus, in general, the tuning method for parallelism within a time step are reflected
by standard techniques. However, the interaction between time steps in the tuning
stages of the online tuning can be beneficial for performance improvement.

3492	 N. Kalinnik et al.

1 3

3.3 � Extended tuning process in different phases of program execution

Due to the multitude of different design decisions of a configuration, a systematic
way of investigating and applying tuning steps in a specific time-step-based algo-
rithm is advantageous. In this subsection, we propose such a systematic tuning pro-
cess. For each choice of algorithm, hardware platform and programming model, a
separate investigation of the tuning process is done. The tuning process is performed
at different stages of program generation and execution. For time-step-based appli-
cations, it can be distinguished between offline tuning and online tuning:

•	 Offline tuning Offline tuning is performed at the generation time of the execut-
able program and before the actual execution of the simulation. The hardware
environment and the pool of available program variants is known. Offline tun-
ing includes the selection of a pool of variants that is suitable for the hardware
environment, the selection of transformation parameters for the different variants
and the selection of compiler options. However, the input data are not available
and the optimization goal may still be unspecified. The result of offline tuning is
a pool of executable program variants that can be used for the time steps of the
simulation.

•	 Online tuning Online tuning is performed during the execution of the simula-
tion. All tuning information is available as well as the input data, the optimiza-
tion goal and user-defined restrictions. Online tuning can be performed before
the first time step, during the first time steps and also between the different time
steps: before the first time step, suitable program variants can be selected that fit
to the characteristics of the input data. During the first time steps, performance
and energy measurements can be used to select the program variant best suited.
Between the time steps, a dynamic behavior of the simulation progress can be
captured and can be used for selecting variants for the following time steps.

The offline tuning phase is executed before the simulation starts and, thus, has no
information about the actual input data. In this phase, performance and energy mod-
els can be used to predict the runtime and energy consumption of different algo-
rithms and program variants [31]. These models can then be used to provide a coarse
ranking of program variants and to select a candidate set of variants for the online
phase. Regarding the overhead of the offline phase, the evaluation, selection and
ranking of a potentially large number of program variants may be time-consuming,
but for a given hardware environment, programming model and a fixed set of pro-
gram variants it has to be performed only once for any input data that is processed
within the online phase. In order to organize information within the tuning process,
a decision tree and a history database can be used, as shown in Fig. 2. The deci-
sion tree can be considered as a link between the offline phase and the online phase
which transfers relevant information from the offline phase to the online phase.

The online phase is based on the provision of user-defined information, such as
the optimization goal. Moreover, the actual input data are now available. There are
four major steps to be performed within the online phase: adaptation, tuning, simu-
lation loop and monitoring; see Fig. 3 for an illustration. All these steps can be done

3493

1 3

A performance- and energy-oriented extended tuning process…

by a tool or can be incorporated in the development of the time-step-based simula-
tion. The online phase starts with the adaptation component which selects a suit-
able subset of configurations using the information about the actual input data. The
resulting pool of configurations, referred to as candidate pool, is used in the subse-
quent tuning steps. The tuning step evaluates configurations from the previously cre-
ated candidate pool by executing single time steps and recording the measured per-
formance and energy behavior with regard to the optimization goal. The performed

Fig. 2   Illustration of the offline tuning phase which is executed before the input data is available. Ele-
ments with a blue frame refer to input and result data, which may be used multiple times within the tun-
ing process

Fig. 3   Illustration of the online tuning phase which is to be performed when all tuning information is
available. Elements with a blue frame refer to input and result data, which may be used multiple times
within the tuning process

3494	 N. Kalinnik et al.

1 3

time steps contribute to the solution of the problem, which means that no dummy
data but the real input data are processed. For the simulation, the best configura-
tion is chosen from the previously evaluated configurations to process a number of
time steps. The task of the monitoring is to verify the performance behavior of the
currently running configuration and to initiate a repetition of the tuning cycles if
required.

3.4 � Workflow of the overall tuning process

Figure 4 illustrates the workflow for the extended tuning process combining offline
and online tuning opportunities. The online part of the tuning process is shown with
its internal structure using the following main components:

•	 Adaptation The adaptation step processes information provided by the offline
phase to create the candidate pool of configurations for the subsequent compo-
nents. Based on the pool of program variants determined by the offline phase, the
adaptation step refines the program variants and selects those variants that fit to
the characteristics of the input data and the optimization goal. Accordingly, the
adaptation step includes the generation of program variants obtained by setting
specific parameter values for program transformations, the management of the
distribution of data and the selection of program variants based on the user input.

•	 Tuning The tuning step evaluates configurations of the candidate pool to find the
best program variant and its parameter values. This is done by performance and
energy measurements during the first time steps. The size of the candidate pool
obtained by the adaptation step determines the number of time steps needed for
the tuning step. In accordance with the specified optimization goal, the best con-
figuration is passed to the simulation loop.

Fig. 4   Illustration of the general tuning structure including offline and online tuning

3495

1 3

A performance- and energy-oriented extended tuning process…

•	 Simulation loop The simulation loop executes the actual time-step-based simula-
tion algorithm. It performs a number of time steps with the current configura-
tion determined by the tuning step and ensures that the performance stays similar
between the time steps. The tuning overhead is reduced to a minimum and pro-
gress towards the solution is focused.

•	 Monitoring The monitoring step observes the progress of the simulation loop
and the performance of the time steps. If a larger performance degradation is
observed, the tuning step can be re-entered to revise the decision on the con-
figuration used for the simulation loop. This decision is based on performance or
energy measurements.

The workflow of the extended tuning process can be understood as a sequentially
processed list of main steps which comprise relevant tuning decisions. Regarding
the depicted workflow, the tuning process will always start with the adaptation step,
the tuning step and the simulation loop in this order. Accordingly, a set of configura-
tions is created in the adaptation step, evaluated in the tuning step and the best con-
figuration is then used to perform many time steps in the simulation loop.

The characteristics of the simulation data may change during the course of the
simulation, especially for irregular simulation applications. Thus, the need for
changing the running configuration may arise during the simulation. Therefore, the
proposed monitoring step is a central component to incorporate tuning steps to find
a better configuration for the current state of the simulation data. The required tun-
ing steps may lead to different tuning overheads, e.g., depending on the comparison
between the measured and the expected performance. In order to differentiate the
degree of overhead caused by the monitoring step to find a new configuration, the
resulting overhead can be categorized as minimal, minor or extensive. Since any
set of applied tuning steps leads to a new configuration for the next instance of the
simulation loop, this cyclic behavior and the degree of expected overhead are encap-
sulated in the following three tuning cycles; see Fig. 4 for an illustration:

•	 Extensive tuning cycle The extensive tuning cycle is required, if the set of pro-
gram variants and the related configurations have become insufficient. Thus,
the adaptation step has to be re-entered and the set of program variants must be
improved by adding or removing configurations to match the current simulation
data. A major tuning overhead may result.

•	 Minor tuning cycle The minor tuning cycle is required, if the currently used con-
figuration needs to be changed. Therefore, program variants or parameter values
may have to be adapted. The tuning steps are executed to find a better configura-
tion from the available ones. A minor tuning overhead results.

•	 Simulation cycle Only the necessary performance measurements are executed in
addition to the computations of the simulation. These measurements are required
to monitor the performance of the running configuration. A minimum tuning
overhead results.

The online tuning phase ends after the last simulation time-step. After the storage
of the results, which is handled by the application, the tuning process accesses the

3496	 N. Kalinnik et al.

1 3

post tuning phase. In this phase all information relevant to the tuning process are
gathered, sorted by significance and compressed to store only relevant data for later
evaluation of the decisions made during the tuning process and the achieved perfor-
mance by the selected program variants and configurations. These data can be used
to enhance future tuning processes.

3.5 � Case studies and experimental evaluation

To evaluate the potential for adaptivity of time-step-based methods, experimen-
tal studies with the two application fields, which are solution methods for ODEs
and particle simulation methods, are conducted. The tuning goals are both execu-
tion time and energy consumption. The energy consumption for particle simula-
tion methods is gathered with the Performance Application Programming Inter-
face (PAPI) 5.6 and the Running Average Power Limit (RAPL) interface to read
the appropriate model-specific registers (MSRs). For the measurements of the ODE
solvers, the LIKWID toolset has been used. All application codes are compiled
using the GNU Compiler Collection (GCC). Each measurement was repeated mul-
tiple times to avoid artifacts in the results, while the exact number of runs differs
between the application fields. The average of the measurements is shown. Since
the performance and energy behavior is influenced by different factors for different
applications, we provide an analysis of a variety of tuning parameters, including the
operational frequency, the degree of parallelism and application-specific parameters.

4 � Solution methods for ordinary differential equations

4.1 � Numerical method

Numerical solution methods for ODEs compute an approximate solution for a given
ordinary differential equation of the form

by performing a series of time steps � = 0, 1,… until the end of the predefined inte-
gration interval [t0, te] is reached [14]. Starting at time t0 with the initial approxima-
tion �0 = �0 , at each time step � a new approximation �

�+1 is computed using the
approximation �

�
 and, depending on the specific method, possibly further previously

computed approximations. Sophisticated methods estimate the local error � commit-
ted at each time step. Based on this error estimate, the step size for the next time step
hnew can be adapted such that a larger step size can be chosen where a small step size
is not needed to obtain the required accuracy, and, hence, the overall number of time
steps and the computation time is reduced. If � is below a user-defined tolerance
TOL, the approximation is accepted and the algorithm proceeds with the next time
step, generally using a larger step size. If, however, the new approximation does not
satisfy the required accuracy, the step size control algorithm rejects the current time
step and repeats it with a smaller step size.

(1)��(x) = � (x, �(x)) with �(x0) = �0.

3497

1 3

A performance- and energy-oriented extended tuning process…

As example method, iterated Runge–Kutta (IRK) methods which perform a fixed
number p = m − 1 of corrector steps in each time step � using the approximation �

�

of the preceding time step are considered. In each corrector step k, a fixed number s
of stage vectors �(k)

l
 is computed using the stage vectors �(k−1)

i
 from the preceding

time step k − 1 and evaluating the function � defined by the ODE to be solved:

After the last corrector step, the stage vectors are combined and an approximation
�
�+1 for the next time step � + 1 is computed. An additional approximation of lower

order can be computed additionally for error control and for the selection of the step
size hnew for the next time step.

The coefficient matrix A = (ali) ∈ ℝ
s,s , the vector � = (ci) ∈ ℝ

s , the order p, and
the number of stages s are determined by the implicit RK method used as corrector
method.

4.2 � Pool of configurations

The implementation of the corrector steps given by (2) leads to a nested loop struc-
ture with four dimensions iterating over:

1.	 the corrector steps ( k = 1,… ,m),
2.	 the argument vectors �(k)

l
 ( l = 1,… , s),

3.	 the summands of
∑s

i=1
ali�

(k−1)

i
 ( i = 1,… , s),

4.	 the system dimension ( j = 1,… , n).

The four-dimensional loop structure allows an application of typical loop transfor-
mations such as loop interchange, loop unrolling, or loop tiling. Taking the param-
eters of the transformations such as tile sizes and unrolling factors into account, a
large number of code variants can be generated and it is not a priori clear, which of
these variants will lead to the best performance or to the minimum energy consump-
tion on a given hardware system.

Furthermore, many ODE systems, in particular those of large dimension which
arise from partial differential equations (PDEs) discretized by the method of lines,
are sparse, i.e., they are characterized by a right-hand-side (rhs) function � which
uses only a small number of components of the argument vector � to compute one
component of the function result. For many sparse ODE systems, an ordering of
the components can be chosen such that the components of the argument vector y
accessed by the function evaluation are located within a limited index range near the
component index evaluated. This property of the function � , called limited access
distance d(�) [23], allows the implementation of specialized variants by overlapping

(2)

k = 1,… ,m, l = 1,… , s ∶

�
(k)

l
= �

�
+ h

�

s
∑

i=1

ali�
(k−1)

i
,

with �
(k−1)

i
= � (t

�
+ cih� ,�

(k−1)

i
),

3498	 N. Kalinnik et al.

1 3

of vectors and using pipeline-like computational structure of the corrector steps [23].
Additionally, it also allows an efficient lock-based synchronization.

Table 1 summarizes the implementation variants. The variants [18, 23] exploit
parallelism across the system, i.e., the n equations of the ODE system are distributed
among the available number of threads p. The variants differ in the loop and the data
structures used. This results in different utilizations of the cache and the memory
hierarchy and consequently leads to different locality behaviors of the variants. Gen-
eral implementation variants in the pool can be applied to arbitrary ODE problems,
where the rhs function � (t, �) may access all components of the vector � . All general
implementation variants require global communication and barrier operations. The
variants E and EAblock are derived from the variant A and use the same data struc-
tures. They require two barrier operations per stage s. All other general variants are
derived from the variant D and require only one barrier operation per corrector step
m.

Specialized variants exploit a limited access distance of the function � . These
variants partition the ODE system into nB = n∕B blocks. The block size B must
be greater than or equal to the access distance, i.e., B ≥ d(�) , such that the func-
tion evaluation of each block J depends only on the argument vector blocks J − 1 ,
J and J + 1 . Variants ppDb1m and ppDb1mt exploit the limited access distance by
a loop interchange of the j and the k-loop, leading to a pipeline-like computational
structure of the corrector steps. The j-loop running over the system dimension from
1,… , n becomes the outermost loop. Figure 5 illustrates the pipelined computation
of the corrector steps for the case m = 4 . The boxes in this figure correspond to
blocks of the matrices Y (k) and to blocks of the approximation vectors 𝐲̂

�+1 and �
�+1 .

The numbers inside the boxes indicate the order in which the blocks are computed.
Because the access distance is limited, at most three blocks from the previous cor-
rector step k − 1 are needed to compute one block in step k. For example, in Fig. 5,
the blocks with numbers 13, 18, and 23 are required to compute block number 24.
Thus, at each pipelining step (iteration of the j-loop with stride B) all blocks on one
diagonal across the corrector steps can be computed. Since the length of the pipeline
is m, we assume that the ODE system is partitioned into at least m blocks.

Specialized variants exchange data only between neighbors, global barriers are
no longer required. Instead, specialized variants need only locks for the synchroniza-
tion. Depending on the size of the ODE system and the time needed for the evalu-
ation of function � , the specialized implementation variants may achieve a higher
scalability than the general variants.

Fig. 5   Computation order of the
pipelining of the corrector steps
used in ppDb1m and ppDb1mt
for m = 4 corrector steps

3499

1 3

A performance- and energy-oriented extended tuning process…

4.3 � Experimental setup and evaluation

Figures 6 and 7 show the performance of different multithreaded implementation
variants of the IRK method for two example problems: the 2D Brusselator equa-
tion (BRUSS2D) [14] and the vibrating string problem (STRING) [14]. The test
problems were derived from PDE systems by a spatial discretization using the
method of lines. BRUSS2D was discretized on an N × N grid and has a dimension
n = 2N2 . The interleaving storage of grid points results in function f accessing
only 2N components of y to compute one component of the function result, i.e.,
the function f of BRUSS2D has a limited access distance d(�) = 2N . The second
test problem STRING results from the discretization of a 1D PDE using N grid
points. STRING has dimension n = 2N and a limited access distance d(�) = 3 . In
the figure the time per step is plotted against the increasing number of threads.

The experiments have been performed on a system with two Intel Xeon E5-2697
v3 processors, each equipped with 14 cores, 35 MB shared cache and maximum
frequency 2.6 GHz. In the experiments Intel Turbo Boost has been enabled. As RK
method we use the LobattoIIIC (8) [14] method with s = 5 stages and m = 7 compu-
tation steps. Parallel variants of the ODE methods are developed using Pthreads and
C, compiled with GCC 4.8.5 and -O3 optimization level.

Table 1   Candidate pool of parallel implementation variants [18, 23]

Variant Loop structure Remarks

General implementation variants
A k–l–i–j Vector-oriented: inner loops over system dimension;

high spatial locality
E k–l–j–i Exploits temporal locality of the i-loop, i.e., writes to

argument vector components
EAblock k–l–j–i–jj Similar to E, but loop tiling of the j-loop with the i-loop
D k–i–j–l Exploits temporal locality of the l-loop, i.e., reads from

results of function evaluations
Dblock k–i–j–l–jj Similar to D, but loop tiling of the j-loop with the l-loop
PipeDe2m k–j–i–l Based on D; j-loop surrounds l- and i-loop; exploits

temporal locality of the i- and the l-loop
PipeDb2m k–j–i–jj–l Similar to PipeDe2m, loop tiling of j-loop with i-loop
PipeDb2mt k–j–i–(jj)–l–jj Similar to PipeDb2m, but loop tiling expanded to the

l-loop
Specialized implementation variants
PipeDb1m k–j–i–jj–l Similar to PipeDb2m, but the vectors �(k)

l
 are over-

lapped to reduce space requirements
PipeDb1mt k–j–i–(jj)–l–jj Similar to PipeDb1m, but loop tiling expanded to the

l-loop
ppDb1m j–k–i–jj–l Based on PipeDb1m; j- and k-loop are interchanged

using a pipelining approach
ppDb1mt j–k–i–(jj)–l–jj Similar to ppDb1m, but loop tiling expanded to the

l-loop

3500	 N. Kalinnik et al.

1 3

Considering the diagrams in Figs. 6 and 7, it can be noticed that the fastest imple-
mentation variant depends on the system size, the number of threads executing the
program and the ODE test problem. For the BRUSS2D problem and system size
N = 460 or n = 4232 ⋅ 102 the variant EAblock delivers the best performance for the
thread numbers p ≤ 20 , closely followed by the variants E and A, whereas for the
STRING problem and n = 4232 ⋅ 102 the variant E is the fastest variant until p ≤ 8 ,
followed by the variants EAblock and A. For BRUSS2D with n = 4232 ⋅ 102 and
p > 20 , the variants A, E, EAblock are the slowest implementations, while all other
variants obtain similar performance. For the same system size and the STRING
problem, the variants Dblock and PipeDb2mt offer the best performance for p ≤ 24 ,
whereas for p = 28 the specialized variants ppDb1mt and PipeDb1mt are the fastest.

For the BRUSS2D and N = 2960 or n = 175232 ⋅ 102 , the variant EAblock is the
fastest variant for p ≤ 12 . For even larger number of threads, the specialized vari-
ants PipeDb1mt and PipeDb1m exhibit the best performance, closely followed by

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

x 10
−7 BRUSS2D, N=460, LobattoIIIC(8)

Threads

R
un

tim
e

pe
r

st
ep

 a
nd

 c
om

po
ne

nt
 (

s)

A
ppDb1m
Dblock
PipeDb2mt
EAblock
PipeDb1m
E
D
ppDb1mt
PipeDb2m
PipeDb1mt
PipeDe2m

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

x 10
−7 BRUSS2D, N=2960, LobattoIIIC(8)

Threads

R
un

tim
e

pe
r

st
ep

 a
nd

 c
om

po
ne

nt
 (

s)

A
ppDb1m
Dblock
PipeDb2mt
EAblock
PipeDb1m
E
D
ppDb1mt
PipeDb2m
PipeDb1mt
PipeDe2m

Fig. 6   Execution time per step and component of IRK method for BRUSS2D example for n = 4232 ⋅ 102
(top) and n = 175232 ⋅ 102 (bottom) for different numbers of threads

3501

1 3

A performance- and energy-oriented extended tuning process…

the variant PipeDb2mt. For the STRING problem with n = 175232 ⋅ 102 , the variant
PipeDe2m is the fastest variant over the entire range of threads considered, the vari-
ant E is relatively closed to PipeDe2m up to thread numbers p ≤ 4 . For the STRING
problem, the variants A and EAblock are the slowest variants for p ≤ 8 , the variant
E ranks in the midfield. For the BRUSS2D problem the variant A is the slowest one,
the variants E and EAblock ranks in the midfield.

The main reason for the low performance of the variants A, E and EAblock for an
increasing number of threads are high synchronization costs. These variants require
two barrier operations per stage in each computation step [for LobattoIIIC (8) 10
barriers in each corrector step m], whereas all other variants need only one barrier
per corrector step or use locks for the synchronization of the threads.

The experiments in Figs. 6 and 7 indicate that ODE methods require online tun-
ing due to the strong dependency on the input data. Further, the experiments show
that for ODE methods an offline tuning can be beneficial for the online tuning. In

0 5 10 15 20 25 30
0

0.5

1

1.5
x 10

−7 STRING, N=211600, LobattoIIIC(8)

Threads

R
un

tim
e

pe
r

st
ep

 a
nd

 c
om

po
ne

nt
 (

s) A
ppDb1m
Dblock
PipeDb2mt
EAblock
PipeDb1m
E
D
ppDb1mt
PipeDb2m
PipeDb1mt
PipeDe2m

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−7 STRING, N=8761600, LobattoIIIC(8)

Threads

R
un

tim
e

pe
r

st
ep

 a
nd

 c
om

po
ne

nt
 (

s) A
ppDb1m
Dblock
PipeDb2mt
EAblock
PipeDb1m
E
D
ppDb1mt
PipeDb2m
PipeDb1mt
PipeDe2m

Fig. 7   Execution time per step and component of IRK method for STRING example for n = 4232 ⋅ 102
(top) and n = 175232 ⋅ 102 (bottom) for different numbers of threads

3502	 N. Kalinnik et al.

1 3

the offline phase micro-benchmarks can be used to measure the time for a barrier
operation on the target platform for different numbers of threads to estimate the syn-
chronization overhead of the general implementation variants. This information can
be used to limit the number of variants evaluated in the online phase. In the online
phase we can measure the runtime of the fastest specialized implementation variant
and avoid the execution of the general implementation variants if their synchroni-
zation overhead is expected to be higher than the runtime of the best specialized
implementation. Another idea is to use performance models in the offline phase,
such as the ECM model, in order to predict the execution time of variants or at least
to forecast their performance ranking [32].

Figure 8 demonstrates that for variants with loop tiling an appropriate selection
of the tile size is important to achieve a good performance. The diagrams visual-
ize the variation of the performance of the tiled implementation variants EAblock
and PipeDb2mt for different numbers of threads for the BRUSS2D problem with
n = 175232 ⋅ 102 . More precisely, the diagrams show by which percentage the
execution time for a specific tile size is slower than the best execution time for
the particular number of threads considered and over the entire range of tile sizes.
The tile size is varied from 16 (representing two cache lines of 64 Byte each)
to n/28 (maximum number of components per thread, if we have 28 threads) by
doubling the tile size to generate the next sample point. For the variant EAblock,
the maximum variation in the performance with respect to the best tile size sam-
pled lies between 28% and 61%. For the variant PipeDb2mt, the maximum vari-
ation is between 26 and 170%. It can be observed that the best range of tile sizes
depends on the implementation variant. For implementation variant EAblock and
all thread numbers considered a good performance can be observed for small tile
sizes in the range [16, 64], where the performance is less than 3% away from the
optimum. Additionally, the runtime of a tiled implementation is also influenced
by the number of threads executing the program. For tile sizes larger than 64 and
up to tile size 65536, the maximum variation in the performance for 8 threads is
5–16%, for 12 threads 1–8% and for 20 and 28 threads ≤ 3%.

In the case of the variant PipeDb2mt, the best range of tile sizes depends on
the number of threads considered. For 8 and 12 threads, the tile sizes in the range
[128, 32768] perform best, for 20 threads in the range [128, 16384] and for 28
threads in the ranges [128, 512] and [2048, 16384] and are less than 3% away
from the optimum.

Since the search space of possible tile sizes is very large, an exhaustive search
over all tile sizes and for all tiled variants in the candidate pool is too expensive to
be performed in the online phase. An offline phase can help to reduce the search
space of potential tile sizes. In the offline phase, potentially good tile sizes can be
preselected using an analytical model which is based on working spaces of the
loop structures and describes the behavior of the implementation variants [18].
The preselected set of tile sizes can then be evaluated in the online phase.

Figure 9 shows the performance, the energy and the power consumption with
respect to the clock frequency on the Intel Xeon E5-2630 system, equipped with
16 cores and 20 MB shared L3 cache. The IRK variants are executed with 16
threads as test example BRUSS2D with n = 175232 ⋅ 102 is used. The energy

3503

1 3

A performance- and energy-oriented extended tuning process…

measurements do not include DRAM consumption and Turbo Boost is disabled.
All implementations perform 60 time steps.

The results show that the best frequency depends on the optimization goal. The
variant yielding the best performance for a given frequency is not necessarily the
one with minimum energy consumption. When tuning towards the minimum exe-
cution time, the best time is achieved at a frequency of 2.4 GHz with the variant
PipeDb1mt, while the smallest amount of energy is consumed by one of the vari-
ants PipeDb1mt or PipeDb2mt at a frequency of 2.2 GHz. Even though the variants
PipeDb1mt and PipeDb2mt are not the fastest variants at this frequency, they show
the lowest power usage. The variant leading to the best performance at 2.2 GHz is
EAmt, but compared to the PipeDb1mt variant it consumes 15% more power and is
only 3% faster. The experiments also show that the energy consumption of the vari-
ants is affected not only by the execution time but also by the power consumption.

We conclude that the variant and the frequency found to be the best for obtaining
the minimum execution time are not necessarily the best for obtaining the lowest
energy consumption and vice versa. In a multiobjective scenario, we would like to
find the best configuration(s) (variant and parameter) for both objectives: minimum
energy consumption and minimum execution time. One way to accomplish this is to

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

Tile size

R
un

tim
e

de
gr

ad
at

io
n

(%
)

EAblock, BRUSS2D

threads=8
threads=12
threads=20
threads=28

10
1

10
2

10
3

10
4

10
5

0

5

10

15

20

25

30

Tile size

R
un

tim
e

de
gr

ad
at

io
n

(%
)

PipeDb2mt, BRUSS2D

threads=8
threads=12
threads=20
threads=28

Fig. 8   Impact of the tile size on the performance of the EAblock (top) and PipeDb2mt (bottom) variants
for different numbers of threads for BRUSS2D problem with n = 175232 ⋅ 102

3504	 N. Kalinnik et al.

1 3

use fixed weight metrics such as the energy delay product (EDP) reducing the mul-
tiobjective problem to a single-objective problem [36]. Another approach is to find a
set of non-dominated solutions (configurations), also called Pareto front. The Pareto
front consists of solutions that cannot be improved according to an optimization goal
without worsening another goal.

4.4 � Summary of the observations for ODE solvers

The experiments in Sect. 4.3 show that the performance and the energy consump-
tion of ODE methods are significantly influenced by the characteristics of the input
data. Important factors are the access pattern of the rhs function � and the number of
equations constituting the problem, as well as the number of threads or parallel pro-
cesses the ODE solver is start with. For different input data, different configurations
(program variants and parameter values) may lead to the minimum energy consump-
tion or the minimum execution time.

Since the complete input information is only available at runtime, ODE methods
require online tuning. ODE solvers compute an approximate solution by perform-
ing a time-stepping procedure with a large number of time steps. This time-step-
ping nature of ODE methods can be exploited naturally for online tuning such that

1.2 1.4 1.6 1.8 2 2.2 2.4
40

50

60

70

80

90

100
BRUSS2D, N=2960

Frequency [GHz]

R
un

tim
e

[s
]

A
ppDb1m
Dblock
PipeDb2mt
EAblock
PipeDb1m
E
D
ppDb1mt
PipeDb2m
PipeDb1mt
PipeDe2m

1.2 1.4 1.6 1.8 2 2.2 2.4
5000

6000

7000

8000

9000

10000

11000
BRUSS2D, N=2960

Frequency [GHz]

E
ne

rg
y

co
ns

um
pt

io
n

[J
]

A
ppDb1m
Dblock
PipeDb2mt
EAblock
PipeDb1m
E
D
ppDb1mt
PipeDb2m
PipeDb1mt
PipeDe2m

Fig. 9   Runtime, energy and power consumption of the different variants of the IRK method executed
with 16 threads for varying clock frequencies. Test system BRUSS2D with n = 175232 ⋅ 102

3505

1 3

A performance- and energy-oriented extended tuning process…

the evaluation of the configurations already contributes to the solution process. A
simple online tuning approach could be to use the first time steps of the integra-
tion to successively evaluate different configurations to find the best one and then
to compute all remaining time steps with this configuration. The main obstacle for
the application of such a pure online tuning approach is a large search space of code
variants and parameters that would need to be tested at runtime. A lot of code vari-
ants can be generated by applying correctness-preserving program transformations.
Furthermore, variants with loop tiling require an appropriate selection of the tile
size to achieve good performance. Parallel implementations of ODE solvers offer
further options for tuning, e.g., in the choice of data structures and their distribu-
tion among the threads or processes as well as communication and synchronization
routines. The runtime and the energy behavior of parallel variants depend also on
the number of threads or processes used and their mapping to the resources of the
given hardware system. For the case of energy efficiency as objective function, the
selection of the operational frequency for DVFS also plays an important role. The
resulting search space is large and some of the configurations could be quite slow or
energy intensive, leading to a high tuning overhead. Thus, in order to minimize the
time spent at runtime in a searching process, online tuning should be combined with
offline tuning.

For ODE methods a separate offline phase, performed before the first time step,
can be used to shrink the search space and to identify the most promising configura-
tions based on the information about the details of the hardware or with help of ana-
lytical models, heuristics and micro-benchmarks. Furthermore, the offline phase can
be used to estimate synchronization and communication overheads for different con-
figurations and input scenarios with the help of micro-benchmarks. This information
can be used together with a performance model to predict a performance ranking of
different implementation variants [32] and different parameter values. All evaluated
configurations can be arranged in a decision tree according to their ranking, which is
then forwarded to the online tuning phase.

In addition, the offline tuning phase can be used to preselect potentially good tile
sizes for variants with loop tiling. For this purpose an analytical model can be build,
based on working spaces of the loop structures of the implementation variants [18].
The preselected set of tile sizes can then be evaluated in the online phase. In general,
it is sufficient to select a tile size that lies in a range of tile sizes with acceptable
near-optimal performance. This range differs for different implementation variants
and depends on the number of cores used.

5 � Particle simulation methods for long‑range interactions

In this section, we examine particle simulation methods for long-range interactions
and explore their tuning potential. The section is structured in an introduction part
of particle simulations, an explanation of the configurations, an evaluation part with
experiments and a summary of this case study.

3506	 N. Kalinnik et al.

1 3

5.1 � Particle simulation

Particle simulation methods are widely used in various areas of computational sci-
ence, such as chemistry or physics. To simulate the interactions of the particles over
time, the time is simulated in discrete time steps, in which new information for each
particles, e.g., positions and velocities, is calculated.

Listing 1 shows the pseudocode of a time-step-based particle simulation. First the
solver method has to be initialized. After reading the particle system, some solver-
specific parameters can be set. Then, the time-step-based simulation is started. Each
time step, first computes the particle interactions based on the current positions of
the particles and then computes new positions and velocities of the particles based
on the previously computed interactions. These positions are used as input for the
following time step.

The calculation of the interactions of N particles with a direct method, i.e., the
calculation of the interaction of each particle with every other particle, requires
O(N2) operations, where N denotes the number of particles in the system. To reduce
the complexity of the interaction calculation, there exist more efficient methods with
splitting techniques which comprise near-field interactions with a direct method and
separate far-field interactions, which are often approximated. This is especially cru-
cial for particle simulations with long-range particle interactions, such as Coulomb
or gravitational interactions, which have a strong impact in the resulting computa-
tion time.

The far-field interactions can be computed with Fourier-based methods, which
often use the fast Fourier transforms (FFTs), e.g., the particle–particle non-equis-
paced FFT (P2NFFT). Fourier-based methods are efficient for homogeneous parti-
cle systems [15]. Another approach is the computation based on multipole expan-
sions [13], e.g., with the fast multipole method (FMM).

Particle systems can be given in different particle distributions and can change
their distribution over the time steps. Figure 10 illustrates the four particle systems,
which are used in this article. The Cube and the Grid Face (first and second images
in Fig. 10) are homogeneous particle systems in which the particles are uniformly
distributed in the particle system. The Ball and Two Balls (third and fourth images
in Fig. 10) are inhomogeneous particle systems. The particles distribution is irregu-
lar in these particle system, e.g., clustered in the examples.

3507

1 3

A performance- and energy-oriented extended tuning process…

5.2 � Configuration of particle simulations

A configuration for a particle simulation consists of multiple pairs of values, with
one pair describing a setting of the particle simulation. The configuration is split in
three parts as described in Sect. 3 to set the algorithm parameter space, the program
variant parameter space and the hardware parameter space. Each parameter space
has a list of parameters, with a number of parameters being a possible configuration.

The algorithm parameter space includes the simulation algorithms like FMM and
P 2NFFT and their parallelizations, potentially using different programming models.
For both algorithms, there exists an MPI parallelization and for the P 2NFFT near-
field part there also exists an OpenCL parallelization. The program variant param-
eter space includes solver-specific settings, such as the gridsize for P 2NFFT or the
maximum tree depth for FMM. These solver-specific settings can be set before the
program starts without a new compilation. The hardware parameter space defines
the compute node to use, e.g., a Xeon or an i7 system, and its specific settings, such
as the operational frequency of the CPU or the number of MPI processes used. Fig-
ure 11 illustrates a set of possible configurations for particle simulations which will
be used for the experimental evaluation. The illustrates the parameter space of the
three parts, e.g., the gridsize of the P 2NFFT algorithm with the MPI implementation
can be set from 2 to 512. The hardware list consists of two compute nodes with dif-
ferent possible settings, depending on the available hardware on the compute node.
The configuration 1 shows a possible configuration of how the particle simulation
can be performed.

5.3 � Experimental evaluation

Experimental setup The experiments with varying configurations have been per-
formed on two HPC systems. The first system consists of two Intel Xeon E5-2683
v3 processors with 14 cores each, which have a maximum frequency of 2.0 GHz.
Some experiments are also executed with an Intel Core i7-4770K desktop processor
with 4 cores at 3.5 GHz. The energy measurements do only include the CPU, i.e.,
it does not include the energy consumption of the DRAM or any other component
in the system. All measurements are repeated five times to obtain the average val-
ues shown in the figures. Intel Turbo Boost has been disabled for the experiments.

Fig. 10   Illustration of four particle systems. Two homogeneous (Cube and Grid Face) and two inhomo-
geneous systems (Ball and Two Balls)

3508	 N. Kalinnik et al.

1 3

The Scalable Fast Coulomb Solvers (ScaFaCoS) library is used for different particle
simulation methods which are parallelized using MPI.

Experimental results and evaluation Figure 12 shows the execution time (left) and
the energy consumption (right) of the FMM and P 2NFFT solver applied to the four
different particle systems illustrated in Fig. 10 and five particle system sizes on the
Intel Xeon system with 56 MPI processes. The diagrams show that for small homo-
geneous particle systems, the P 2NFFT solver is better, but for larger systems, i.e.,
more than 50,000 particles, the FMM solver outperforms the P 2NFFT solver. If the
particle system is inhomogeneous, the FMM solver outperforms the P 2NFFT with a
smaller system size than for homogeneous systems, e.g., 5000 particles for the Two
Balls system. The results for the energy consumption confirm the observations, as
they show the same behavior as the runtime. If the distribution and the number of
particles are known before the first time step starts, an appropriate particle simula-
tion solver can be chosen to obtain the lowest runtime or energy consumption.

Particle simulation solvers have specific parameters to tune their behavior by
changing the split between near-field and far-field computations, e.g., by choosing
the maximal tree depth for FMM or the gridsize for P 2NFFT. Figure 13 depicts the
optimal gridsize for the particle system Two Balls and Cube, i.e., an inhomogene-
ous and a homogeneous system. The optimal gridsize leads to a minimum runtime,
energy consumption or even both. The Intel Xeon and the Intel Core i7 system are
used with MPI processes that correspond to cores plus hyper-threading, i.e., 56 pro-
cesses on the Intel Xeon and 8 processes on the Intel Core i7. The figure shows the
optimal gridsize for both the runtime (left) and energy consumption (right). With
more particles in the particle system the optimal gridsize generally increases. The
optimal gridsize differs with the HPC system used and also the distribution of the
particles. For a system with less cores, a smaller gridsize is generally the best for
runtime and energy consumption. Also, some differences in the behavior of runt-
ime and energy consumption can be seen. Since the optimal gridsize changes with
the distribution of the system, after some time steps the parameters may have to be
adjusted to reflect to possible changes.

Fig. 11   Illustration of possible configurations for particle simulations

3509

1 3

A performance- and energy-oriented extended tuning process…

Figure 14 shows the runtime and energy consumption for varying processor fre-
quencies. The two methods FMM and P 2NFFT with the particle system Two Balls
are considered on the Intel Core i7 system with 8 MPI processes. The experiments
for frequencies are executed on the Intel Core i7, since it has a wider frequency
range, i.e., 0.8 GHz to 3.5 GHz compared to 1.2 GHz to 2.0 GHz on the Intel Xeon
system. The runtime is strongly decreasing with an increasing processor frequency.
The energy consumption shows a slight U-shape with the lowest energy consump-
tion at around 1.2 GHz. The best energy consumption for 5000 particles is achieved
at the same frequency as for 50,000 particles; only with smaller particle systems a
larger fluctuation of the results can be observed. Thus, to find the optimal proces-
sor frequency to obtain the lowest energy consumption for big particle systems a
microbenchmark could be used that determines the optimal processor frequency for
a small particle system with around 5000 particles.

An OpenCL implementation of the near-field part of the P 2NFFT solver from the
ScaFaCoS library was presented in [17]. Thus, the ScaFaCoS library is not bound to
CPUs, but the use of GPUs is possible for the near-field part.

Fig. 12   Runtime (left) and energy consumption (right) of the FMM and P 2NFFT solver on the Intel
Xeon system for different particle systems with different numbers of particles

Fig. 13   Optimal gridsize of the P 2NFFT solver with a homogeneous and an inhomogeneous system with
different sizes on a Xeon system compared to the Intel Core i7 system

3510	 N. Kalinnik et al.

1 3

Figure 15 left shows the runtime of the near-field part tested on the Intel Xeon
E5-2683 v3 processor and compared with the OpenCL implementation on a Nvidia
Geforce GTX Titan Black for the same particle system. The y-axis shows a logarith-
mic scale. The runtime increases with increasing number of particles. This effect is
bigger on the CPU. For small particle systems, the OpenCL overhead is too big for a
good performance. The runtime on the GPU increases very slowly across all particle
system sizes tested, since most of the time is needed for the transfer to the GPU and
not for the computation. The CPU has a better runtime on the cube particle system
than on the two balls particle system, but the reverse is true for the GPU. For small
particle systems, the CPU is faster, but for bigger particle systems the GPU is faster.

Figure 15 right shows the runtime of the near-field part for different GPUs:
(i) the Titan system with one and two GPUs; (ii) the Tesla system with a Nvidia
Tesla C2050/C2075 Rev. a1 card. The figure shows that the runtime increases with
increasing number of particles. The Tesla system is always faster than the Titan sys-
tems. The usage of two GPUs has more overhead that the usage of one GPU and
thus is useful only for bigger particle systems. For small particle systems, the usage
of just one GPU is faster.

The experiment leads to the following estimation for the offline and the online
phase. The frequency can be set in the offline phase. For the lowest runtime, the
highest frequency has to be selected, but for the lowest energy consumption a mid-
range frequency is needed. The exact frequency can be determined by testing.

For a good estimation of the gridsize, the number of particles and the number of
processes have to be considered, which are only available in the online phase. What
also has to be considered is the fact that the particle system can change its distribu-
tion over time steps and, thus, some parameters may have to be adjusted during the
simulation. Since the number of particles is constant, the choice of the particle sim-
ulation solver does not have to be changed, but its parameters might need an adjust-
ment. For example, in the online tuning phase, the gridsize can be optimized by test-
ing different solver parameters. After some time steps, the distribution of the particle
system might have changed, thus, a different particle simulation solver parameter

Fig. 14   Runtime (left) and energy consumption (right) depending on the processor frequency for differ-
ent particle solver methods with the inhomogeneous Two Balls particle system on the Intel Core i7 sys-
tem

3511

1 3

A performance- and energy-oriented extended tuning process…

may have to be used to achieve a better performance or energy consumption. There-
fore, after a certain number of time steps (e.g., after 1000 time steps) the parameter
selection can be tested, e.g., by varying the gridsize during some time steps. If a per-
formance gain can be observed when increasing or reducing the gridsize, the corre-
sponding direction can be further investigated until the best performance is reached.
The specific number of time steps after which the parameter selection is reviewed
is significantly influenced by factors such as the chosen step size and the relative
movement of particles between two successive time steps.

5.4 � Summary of the observations for particle simulation methods

The experiments in the preceding subsection have The performance and energy con-
sumption of particle simulation solvers are influenced by the size and distribution of
the input data, i.e., the particle system. For different particle system distributions or
sizes, different configurations, i.e., choice of particle simulation solver and param-
eters, are required. Since the particles influence each other and thus change their
position in the particle system, the particle system can change its distribution over
time steps, which leads to a different configuration required to get the lowest runt-
ime or energy consumption. Also, the choice of the hardware, which is part of the
configuration, plays an important role. With the OpenCL implementation, the usage
of GPUs is possible for particle simulations and useful for bigger particle systems,
but has a too big overhead for small particle systems.

As shown by the benchmarks, the input data have to be known for a selection of
an advantageous particle simulation solver. Hence, this selection has to be done with
the start of the online tuning phase. Because the particle distribution for the particle
simulation solver may change, a monitoring in the online tuning phase is required to
adjust the parameters of the configuration. Observations for the processor frequen-
cies have shown that the optimal settings for runtime and energy consumption can
differ, i.e., highest frequency for lowest runtime, but a lower frequency for the low-
est energy consumption. Optimal solver parameters, e.g., gridsize for P 2NFFT, vary
too much, such that they have to be adjusted over time, i.e., by online tuning.

Fig. 15   Runtime of the near-field part of the P 2NFFT solver on an CPU compared with the OpenCL
implementation on a GPU (left) and on different GPUs (right)

3512	 N. Kalinnik et al.

1 3

The offline phase for particle simulation solvers is required to set start param-
eters for the first time steps. A first configuration may be made based on available
hardware. The selection for the processor frequency for DVFS can be set to maxi-
mum to get the best runtime. If the tuning goal is the lowest energy consumption,
a lower frequency has to be set which varies with the given hardware. But as the
particle simulation solver decision is highly dependent on the input data a decision
of an optimal particle simulation solver cannot be done offline. Also, solver-specific
parameters are too variable to be adjusted by offline tuning.

As both offline and online optimization are important for tuning particle simula-
tion solvers, a combined approach that uses both phases is required. An offline tun-
ing is required to get a good startup configuration for the particle simulation, and
an online tuning to optimize some parameters, e.g., solver-specific parameters, and
monitor the particle simulation runtime and energy consumption to achieve the best
results in the time steps even after particle movements.

6 � Conclusions

This article has proposed an extended online tuning process for time-step-based sim-
ulation methods which is based on an interaction between offline information gath-
ering and online exploitation of this information. More precisely, the process builds
up a pool of simulation codes which represent code configurations where a configu-
ration is a program variant with additional decision. The online tuning can benefit
from the pool by choosing an appropriate implementation variant. Two case studies
have been investigated, and it has been shown how the relevant aspects for tuning
can be extracted, relevant program variants can be identified and assessed by execu-
tion time and/or energy. For the particle simulation, different algorithm FMM and
P2NFFT, different programming models MPI and OpenCL, different input data Ball
and Cube and different hardware CPU and GPU have been chosen and assessed. For
ODE solvers, two application problems leading to different right-hand sides of the
equation to be solved are considered. In this case, the pool of implementation vari-
ants results from the application of code transformation.

Acknowledgements  This work was supported by the German Ministry of Science and Education
(BMBF) project SeASiTe, Grant No. 01IH16012A and No. 01IH16012B.

Funding  Open Access funding provided by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

3513

1 3

A performance- and energy-oriented extended tuning process…

References

	 1.	 Ansel J (2014) Autotuning programs with algorithmic choice. PhD thesis. Massachusetts Institute of
Technology. http://group​s.csail​.mit.edu/commi​t/paper​s/2014/ansel​-phd-thesi​s.pdf

	 2.	 Ansel J et al (2014) OpenTuner: an extensible framework for program autotuning. In: International
Conferences on Parallel Architectures and Compilation Techniques. http://group​s.csail​.mit.edu/
commi​t/paper​s/2014/ansel​-pact1​4-opent​uner.pdf

	 3.	 Ashouri AH et al (2017) Automatic tuning of compilers using machine learning. Springer, Berlin
	 4.	 Balaprakash P et al (2018) Autotuning in high-performance computing applications. Proc IEEE

106(11):2068–2083. https​://doi.org/10.1109/JPROC​.2018.28412​00
	 5.	 Bilmes J et al (1997) Optimizing matrix multiply using PHiPAC: a portable, high-performance,

ANSI C coding methodology. In: Proceedings of the 11th International Conferences on Supercom-
puting. ICS’97. Vienna, Austria, pp 340–347. ISBN: 0-89791-902-5

	 6.	 Christen M, Schenk O, Burkhart H (2011) PATUS: a code generation and autotuning framework for
parallel iterative stencil computations on modern microarchitectures. In: Proceedings of the 25th
IEEE International Parallel and Distributed Processing Symposium

	 7.	 Fanfarillo A, Del Vento D (2019) AITuning: machine learning-based tuning tool for run-time com-
munication libraries. arXiv​: 1909. 06301 [cs.LG]

	 8.	 Feld D et al (2013) Facilitate SIMD-code-generation in the polyhedralmodel by hardware-aware
automatic code-transformation. In: Proceedings of 3rd International Workshop on Polyhedral Com-
pilation Techniques, pp 45–54

	 9.	 Frigo M, Johnson S (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231
	10.	 Gabriel E et al (2004) Open MPI: goals, concept, and design of a next generation MPI implementa-

tion. In: Proceedings of the 11th European PVM/MPI Users’ Group Meeting, pp 97–104
	11.	 Gerndt M, César E, Benkner S (eds) (2015) Automatic tuning of HPC applications—the periscope

tuning framework. Shaker Verlag, Herzogenrath
	12.	 Grosser T, Hoefler T (2016) Polly-ACC: transparent compilation to heterogeneous hardware. In:

Proceedings of the 30th International Conference on Supercomputing (ICS’16)
	13.	 Greengard L (1988) The rapid evaluation of potential fields in particle systems. MIT Press, Boston
	14.	 Hairer E, Nørsett SP, Wanner G (1993) Solving ordinary differential equations I: nonstiff problems.

Springer, Berlin
	15.	 Hockney RW, Eastwood JW (1988) Computer simulation using particles. Taylor & Francis Inc,

Bristol
	16.	 Hofmann M, Kiesel R, Rünger G (2018) Energy and performance analysis of parallel particle solv-

ers from the ScaFaCoS library. In: Proceedings of the 2018 ACM/SPEC International Conference
on Performance Engineering (ICPE 2018). ACM, pp 88–95. ISBN: 978-1-4503-5095-2. https​://doi.
org/10.1145/31844​07.31844​09

	17.	 Hofmann M et al (2018) A hybrid CPU/GPU implementation of computationally intensive parti-
cle simulations using OpenCL. In: 2018 17th International Symposium on Parallel and Distributed
Computing (ISPDC), pp 9–16. https​://doi.org/10.1109/ISPDC​2018.2018.00011​

	18.	 Kalinnik N, Korch M, Rauber T (2014) Online auto-tuning for the timestep-based parallel solu-
tion of ODEs on shared-memory systems. J Parallel Distrib Comput 74(8):2722–2744. https​://doi.
org/10.1016/j.jpdc.2014.03.006

	19.	 Kalinnik N et al (2018) Exploring self-adaptivity towards performance and energy for time-stepping
methods. In: Proceedings of the 2018 30th International Symposium on Computer Architecture and
High Performance Computing (SBAC-PAD 2018). IEEE

	20.	 Kalinnik N et al (2018) On the autotuning potential of time-stepping methods from scientific com-
puting. In: Proceedings of the 11th Workshop on Computer Aspects of Numerical Algorithms
(CANA’18), vol 15. ACSIS, pp 329–338. https​://doi.org/10.15439​/2018F​169

	21.	 Karcher T, Pankratius V (2011) Run-time automatic performance tuning for multicore applications.
In: Euro-Par 2011. Part I. Ed. by E. Jeannot, R. Namyst, and J. Roman. LNCS 6852, pp 3–14

	22.	 Kiesel R, Rünger G (2019) Performance and energy evaluation of parallel particle simulation algo-
rithms for different input particle data. In: Position Papers of the 2019 Federated Conference on
Computer Science and Information Systems (FedCSIS 2019), 12th Workshop on Computer Aspects
of Numerical Algorithms (CANA’19), vol 19, pp 31–37. https​://doi.org/10.15439​/2019F​344

http://groups.csail.mit.edu/commit/papers/2014/ansel-phd-thesis.pdf
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
http://groups.csail.mit.edu/commit/papers/2014/ansel-pact14-opentuner.pdf
https://doi.org/10.1109/JPROC.2018.2841200
http://arxiv.org/abs/1909
https://doi.org/10.1145/3184407.3184409
https://doi.org/10.1145/3184407.3184409
https://doi.org/10.1109/ISPDC2018.2018.00011
https://doi.org/10.1016/j.jpdc.2014.03.006
https://doi.org/10.1016/j.jpdc.2014.03.006
https://doi.org/10.15439/2018F169
https://doi.org/10.15439/2019F344

3514	 N. Kalinnik et al.

1 3

	23.	 Korch M, Rauber T (2007) Locality optimized shared-memory implementations of iterated Runge–
Kutta methods. In: Euro-Par 2007. Parallel Processing, vol 4641. Springer LNCS. Springer, Berlin,
pp 737–747

	24.	 Moreno R et al (2020) Seeking the best weather research and forecasting model performance: an
empirical score approach. J Supercomput 1:1. https​://doi.org/10.1007/s1122​7-020-03219​-9

	25.	 Muralidharan S et al (2014) Nitro: a framework for adaptive code variant tuning. In: 28th IEEE
International Parallel and Distributed Processing Symposium (IPDPS 2014), pp 501–512

	26.	 Panyala A et al (2017) Exploring performance and energy tradeoffs for irregular applications. J Par-
allel Distrib Comput 104.C:234–251. https​://doi.org/10.1016/j.jpdc.2016.06.006

	27.	 Pfaffe P, Grosser T, Tillmann M (2019) Efficient hierarchical online-autotuning: a case study on
polyhedral accelerator mapping’. In: Proceedings of the ACM International Conference on Super-
computing. ICS’19. ACM, pp 354–366. https​://doi.org/10.1145/33303​45.33303​77

	28.	 Püschel M et al (2005) SPIRAL: code generation for DSP transforms. Proc IEEE 93(2):232–275
	29.	 Ragan-Kelley J et al (2013) Halide: a language and compiler for optimizing parallelism, locality,

and recomputation in image processing pipelines. In: Proceedings of the 34th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI’13), pp 519–530

	30.	 Raman A et al (2012) Parcae: a system for flexible parallel execution. In: Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI’12, pp
133–144

	31.	 Rauber T, Rünger G, Stachowski M (2019) Model-based optimization of the energy efficiency of
multi-threadedapplications. In: Sustainable Computing: Informatics and Systems 22, pp 44–61.
ISSN: 2210-5379. https​://doi.org/10.1016/j.susco​m.2019.01.022

	32.	 Seiferth J et al (2018) Applicability of the ECM performance model to explicit ODE methods on
current multi-core processors. In: High Performance Computing. Springer, pp 163–183

	33.	 Sikora A et al (2016) Autotuning of MPI applications using PTF. In: Proceedings of the ACM
Workshop on Software Engineering Methods for Parallel and High Performance Applications.
SEM4HPC’16. ACM, pp 31–38. https​://doi.org/10.1145/29160​26.29160​28

	34.	 Tang Y et al (2011) The Pochoir stencil compiler. In: Proceedings of the Twenty-third Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA’11), pp 117–128

	35.	 Tiwari A, Hollingsworth JK (2011) Online adaptive code generation and tuning. In: Proceedings
of the 2011 IEEE International Parallel & Distributed Processing Symposium (IPDPS 2011), pp
879–892

	36.	 Tiwari A et al (2012) Auto-tuning for energy usage in scientific applications. In: Proceedings of the
2011 International Conference on Parallel Processing. Euro-Par’11. Springer, Bordeaux, France, pp
178–187

	37.	 Whaley RC, Petitet A, Dongarra J (2001) Automated empirical optimizations of software and the
ATLAS project. Parallel Comput 27(1–2):3–35

	38.	 Yount C et al (2016) YASK-yet another stencil kernel: a framework for HPC stencil code-genera-
tion and tuning. In: Proceedings of the 6th International Workshop on Domain-Specific Languages
and High-Level Frameworks for HPC. WOLFHPC’16. IEEE, pp 30–39. https​://doi.org/10.1109/
WOLFH​PC.2016.8

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Affiliations

Natalia Kalinnik1 · Robert Kiesel2 · Thomas Rauber1  · Marcel Richter2 ·
Gudula Rünger2

	 Natalia Kalinnik
	 natalia.kalinnik@uni‑bayreuth.de

	 Robert Kiesel
	 robert.kiesel@informatik.tu‑chemnitz.de

https://doi.org/10.1007/s11227-020-03219-9
https://doi.org/10.1016/j.jpdc.2016.06.006
https://doi.org/10.1145/3330345.3330377
https://doi.org/10.1016/j.suscom.2019.01.022
https://doi.org/10.1145/2916026.2916028
https://doi.org/10.1109/WOLFHPC.2016.8
https://doi.org/10.1109/WOLFHPC.2016.8
http://orcid.org/0000-0002-3102-6858

3515

1 3

A performance- and energy-oriented extended tuning process…

	 Marcel Richter
	 marcel.richter@s2011.tu‑chemnitz.de

	 Gudula Rünger
	 ruenger@cs.tu‑chemnitz.de

1	 University of Bayreuth, Bayreuth, Germany
2	 Technical University Chemnitz, Chemnitz, Germany

	A performance- and energy-oriented extended tuning process for time-step-based scientific applications
	Abstract
	1 Introduction
	2 Related work
	3 Extended tuning process for time-stepping methods
	3.1 Tuning possibilities and configurations
	3.2 Tuning opportunities for time-step-based applications
	3.3 Extended tuning process in different phases of program execution
	3.4 Workflow of the overall tuning process
	3.5 Case studies and experimental evaluation

	4 Solution methods for ordinary differential equations
	4.1 Numerical method
	4.2 Pool of configurations
	4.3 Experimental setup and evaluation
	4.4 Summary of the observations for ODE solvers

	5 Particle simulation methods for long-range interactions
	5.1 Particle simulation
	5.2 Configuration of particle simulations
	5.3 Experimental evaluation
	5.4 Summary of the observations for particle simulation methods

	6 Conclusions
	Acknowledgements
	References

