
 

 

New Approaches to the Synthesis of  

Porous and/or High Surface Area 

Transition Metal Oxides  

 

 
Dissertation 

 
Zur Erlangung des akademischen Grades 

eines Doktors der Naturwissenschaften (Dr. rer. nat.) 

im Fach Chemie der Fakultät für Biologie, Chemie und Geowissenschaften 

der Universität Bayreuth 

 
 
 

 
 

vorgelegt von 

Ram Sai Yelamanchili 
aus Indien 

 
 
 

 
 

Bayreuth, 2008 
 



 

 

 

 

Die vorliegende Arbeit wurde in der Zeit von April 2005 bis August 2008 am Lehrstuhl 

für Anorganische Chemie I der Universität Bayreuth durchgeführt. 

 

 

Vollständiger Abdruck der von der Fakultät für Biologie, Chemie und 

Geowissenschaften der Universität Bayreuth zur Erlangung des akademischen Grades 

eines Doktors der Naturwissenschaften genehmigten Dissertation. 

 

 

Dissertation eingereicht am: 05.09.2008 

Zulassung durch die Promotionskommission: 10.10.2008 

Wissenschaftliches Kolloquium: 

 

 

Amtierender Dekan: Prof. Dr. Axel H. E. Müller 

 

 

 

Prüfungsausschuss: 

Prof. Dr. J. Breu (Erstgutachter) 

Prof. Dr. M. Ballauff (Zweitgutachter) 

Prof. Dr. A. Müller 

Prof. Dr. H. Keppler 
 

 



 

 

Acknowledgements 
 

A journey, be in personal or professional life, is easier when you travel together. Many 

people have accompanied, contributed their time and knowledge to my research career. It 

is a pleasant opportunity for me to express my gratitude for all of them. First, I would 

like to express my sincere appreciation to my supervisor, Prof. Dr. Josef Breu, for his 

intelligence, insight, constructive suggestions, generosity, and for guiding me through 

entire doctoral research work at the Inorganic Chemistry I, Universität Bayreuth.  

 

More so, I am indebted for encouragement and invaluable suggestions to my graduation 

committee members, Prof. Dr. Hans Keppler, Prof. Dr. Gerd Müller. I am acknowledging 

my obligations to the Oxide Materials International Graduate School, and Elitenetzwerk 

Bayern (ENB) program for funding my research projects. I am thankful to Prof. Dr. Axel 

H. E. Müller and Prof. Dr. Matthias Ballauff, University of Bayreuth, for accepting the 

collaborations, and their valuable time. I am very thankful to Prof. Dr. Ulrich Wiesner, 

Cornell University, USA for accepting collaboration, hosting me in his department, and 

his valuable suggestions. I am also thankful to Mr. Andreas Walther, Dr. Yan Lu, Mr. 

Bolisetty Sreenath, University of Bayreuth, and Dr. Marleen Kamperman, Cornell 

University, for collaborations, their valuable time and interesting discussions. I offer my 

special thanks to all the colleagues, technical and administrative staff of the Inorganic 

Chemistry I and BGI for the assistances, encouragements and support.  

 

It gives me great pleasure to thank my parents, brother and my wife for their love, 

unfailing support, tremendous patience, trust and encouragement they have shown in 

their own way during my long period of career. 

I remain  

Ram Sai Yelamanchili 

Bayreuth, September 2008 



 

 



Contents 
________________________________________________________________________ 

 

Table of Contents 

Chapter 1 Introduction                                                                                 1 
1.1 Nanomaterials and Nanoscience                                                               1 

1.2 What is Mesoscience and why?                                                                2 

1.3 Synthesis approaches: Bottom-up and Top-down                                    4 

1.4 Types of templates: Endo- and Exo- templates                                        4 

1.5 Organics as structure directing agents and templates                               6 

1.6 General problems                                                                                      8 

1.7 Objectives of this thesis                                                                            9 

1.8 References                                                                                               10 

Chapter 2 Synopsis                                                                                      13 

Chapter 3 Summary/Zusammenfassung                                                   24 

List of Publications                                                                                      28 

Individual contribution to joint publications                                            29 

Curriculum Vitae                                                                                        31 

Erklärung                                                                                                     32 

Appendix Publications                                                                                33 

A 1 Core-crosslinked block copolymer nanorods as templates for grafting  
       [SiMo12O40]4- Keggin ions                                                                                         34 

A 2 Synthesis of high surface area Keggin-type polyoxometalates using  

       core-crosslinked block copolymer nanorods and nanospheres                                  41 
A 3 Hexagonally ordered mesoporous Keggin-type polyoxometalates                           66 

A 4 Shaping colloidal rutile into thermally stable and porous mesoscopic titania-balls  89 

 
 



Chapter 1 Introduction 
________________________________________________________________________ 

 1

Chapter 1 

Introduction 

 
1.1 Nanomaterials and Nanoscience 

 

We all know from reality that good things come in small packages. Therefore, 

technologies in the twenty first century emphasize the miniaturization of devices into the 

nanometer range while their ultimate performance is concomitantly enhanced. This raises 

many issues regarding new materials for achieving specific functionality and selectivity. 

Thus, recently there is a tremendous excitement in the study of fundamental properties of 

nanoscale materials, their organization to form superstructures and applications. The unit 

of nanometer derives its prefix nano from a Greek word meaning dwarf or extremely 

small. One nanometer spans 3-5 atoms lined up in a row. The nanoscale is not just the 

middle ground between molecular and macroscopic but also a dimension that is 

specifically geared to the gathering, processing, and transmission of chemical-based 

information [1-2]. Nanoscience refers to a field of applied science and technology whose 

theme is the control of matter on the atomic and molecular scale, generally 100 

nanometers or smaller [1,3-4]. It also involves the fabrication of devices or materials that 

lie within the nano size range.  

 

Although widespread interest in nanomaterials is recent, the concept was raised over 50 

years ago. In a classic talk given on December 29th 1959 at the annual meeting of the 

American Physical Society at the Caltech entitled ‘There´s Plenty of Room at the 

Bottom’ Richard Feynman said [2], “The principles of physics, as far as I can see, do not 

speak against the possibility of maneuvering things atom by atom. It is not an attempt to 

violate any laws; it is something, in principle, that can be done; but in practice, it has not 

been done because we are too big.” Over the past decade, nanomaterials have been the 

subject of enormous interest. Nanomaterials are already an integral part of today's data 

storage media, semiconductor manufacturing, biomedical research, emerging memory, 

computing, optical, and sensing devices [4-10]. Nanoparticles, nanowires, nanotubes, and 
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nanoscale films along with nanofabrication technologies will allow for continued 

advancements in a wide range of applications [1,5-8,11-22]. A greater understanding of 

the manipulation of matter at the nanoscale has led to a number of advances in materials 

science, ranging from the development of novel optical and electronic properties and the 

formation of high strength materials, which mimic nature, all the way to stimuli-

responsive materials applicable to a range of applications [6-17].  

 

What makes the nanomaterials so different? Their extremely small size featured by 

nanomaterials is of the same scale as the critical size for physical phenomena. This leads 

to size dependant effects of the electronic structures (quantum dot effects). Additionally, 

surfaces and interfaces are also important in explaining nanomaterial behavior. 

Nanomaterials characteristically exhibit physical and chemical properties different from 

the bulk materials, because of their having at least one spatial dimension in the size range 

of 1±100 nm. For example, in bulk materials only a relatively small percentage of atoms 

will be at or near a surface or interface whereas in nanomaterials, the small volume 

ensures that many atoms, perhaps half or more in some cases, will be near or at 

interfaces. When the materials are nanoscopic, surface dependant properties such as free 

energy, and reactivity can be quite different from material properties of the bulk [13-15].  

 

1.2 What is Mesoscience and why? 

 

If we have nano, what is meso? It is well known that different materials properties, 

defined by physicochemical underlying principles, scale with the physical size with 

distinct length scales in the meso region. Meso is not directly related to a length scale, but 

to a principle of operation. It is in-between molecular and solid-state chemistry, in-

between a molecular and a continuum approach, in-between covalent chemistry and 

micromechanical techniques [12-13]. Therefore, meso can mean different things. For 

instance, in case of porous materials the International Union of Pure and Applied 

Chemistry (IUPAC) has classified materials into three different classes, microporous < 2 

nm, mesoporous 2 - 50 nm, macroporous > 50 nm [14,23-25]. These designations strictly 
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refer to the pore sizes and not the dimensions of the material between pores. In this 

context, pore length scales are set by a convention and the mesoscale is clearly 

intermediate between that of the micro and macro scale. In soft matter science, again 

mesophases are ubiquitous and involved in a scale of complexity when utilized as 

structure directing templates for making mesostructured forms of matter. In this context, 

meso extends over a wider size range, 2 - 500 nm [12,13,16]. The nano-size is just a side 

aspect where as a mesophase is classified by its order and its mode of self-organization. 

Manipulation and control of chemical structures on the mesoscale has recently developed 

to a very promising and aesthetically appealing area of chemistry. 

 

Mesoscience can be defined as the controlled generation of objects with characteristic 

features on the mesoscale with chemical reactions and principles. It is not just classical 

covalent chemistry to be employed on mesostructures but also involves routes and 

chemical strategies especially designed to be effective in the nano- and micro- range. 

Mesoscience bridges the world of molecules connected by molecular bonds and the 

chemical engineering of micron-sized structures [12]. In general, chemistry is the art of 

manipulating bonds, interactions, arrangements of atoms, groups, components in a 

controlled and reproducible fashion. However, in terms of mesoscience chemists want to 

control size, shape, surface area, and curvature for mesocomponents such as hybrids, and 

porous systems. Additionally, mutual arrangement, morphology and order are something 

more specific for the mesoscience. Mesoscience can engineer a completely disordered 

state to a partially ordered enroute to a completely ordered state of matter. Through 

mesoscience it is possible to design various chemical and physical strategies to arrange 

the morphology of matter to finely divided particulate, fiber, film, monolith, sphere, 

superlattice and patterned forms [12-19]. 

 

Synthetic hybrid materials, in which organic and inorganic components are integrated by 

means of self-assembly approaches, are also beginning to reveal certain advantages when 

fashioned at the mesoscale [13]. Hybrid structures of this type are interesting as their 

properties can significantly exceed those of its component parts. 



Chapter 1 Introduction 
________________________________________________________________________ 

 4

1.3 Synthesis approaches: Bottom-up and Top-down 

 

Top-down and bottom-up are the two approaches used for assembling/structuring 

materials and devices on nano and mesoscale. Bottom-up approaches attempt to have 

smaller components arrange themselves into more complex assemblies, while top-down 

approaches try to create nanoscale devices by using larger, externally-controlled 

components [3]. Alignment of nanoparticle building blocks into ordered superstructures 

by bottom-up approaches is one of the key topics of modern colloid and materials 

chemistry [4,15]. In this area, much can be learned from the processes of 

biomineralization, which lead to well defined organic–inorganic hybrid materials with 

superior materials properties, complex morphologies and hierarchical order spanning 

different length scales [13]. Through bottom-up approaches, controlled self-organization 

of nanoparticles can lead to new materials with attractive properties.  

 

Bottom-up approaches use the chemical properties of single molecules to cause single-

molecule components to automatically arrange themselves into some useful 

conformation. These approaches utilize the concepts of molecular self-assembly and/or 

molecular recognition. The top-down approach, in contrast, often uses the traditional 

workshop or microfabrication methods where externally-controlled tools are used to cut, 

mill and shape materials into the desired shape and order [3,25-29]. Micropatterning 

techniques, such as photolithography and ink-jet printing belong to this category [27,29]. 

In brief, bottom-up approaches should be able to produce devices in parallel and much 

cheaper than top-down methods, but could potentially be overwhelmed as the size and 

complexity of the desired assembly increases.  

 

1.4 Types of templates: Endo and Exo templates 

 

Materials with pores and/or high surface area are of interest, academically and 

industrially, to many scientific disciplines. Such materials can be prepared using 

templating pathways. Templating approaches can offer a high degree of control over 
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structural and textural properties of materials. Generally, templates can be categorized 

into two types, endo- and exo- templates [3,27,29]. When molecular or supramolecular 

units are added to the synthesis mixture, these units are occluded in the growing solid and 

leave a pore system after their removal. These kinds of templates are called 

“endotemplates”. Alternatively, materials with structural pores can be used as scaffolds in 

which another solid is created. After removal of the scaffold, a porous or finely divided 

material remains, depending on the connectivity in the scaffold. Such materials are called 

“exotemplates”. In some processes, it is possible to create one-to-one replica of the 

template. This replication process can be so perfect to justify the use of the term 

“nanocasting” to describe this process [21]. 

 

It is necessary to understand the templating procedures and its consequences in detail. 

The ability to template at the micro, meso, and macro scale in a wide variety of materials 

has resulted in the discovery of fascinating porous and/or high surface area materials. 

Judicious choice of the templating procedure can offer unprecedented control of the 

structure and texture on length scales between nanometers and micrometers. High surface 

area materials are possible by structuring materials on the nanometer level. Whether the 

solid is ordered or disordered is of limited importance with respect to high surface areas 

[3]. High surface area materials may be crystalline, they may be ordered on a mesoscopic 

length scale, but amorphous on the atomic length scale, or they may be fully disordered. 

Porous materials with controlled porosity, well-defined textures and morphologies are 

expected to function as improved-performance stationary phases for separation processes 

[23-34]. Porous materials with mesoscopic dimensions also offer advantages as 

mesocuvettes and mesoreactors, for example as hosts for the synthesis and stabilization 

of semiconductor clusters whose size dependent properties only appear at the mesoscale 

[12]. However, it must be noted that a periodic pore structure has in general no specific 

advantage over disordered and in many applications, periodic pore structures are by 

principle coupled to serious disadvantages, such as low surface area [3]. An important 

class of structures directing agents or templates used for the synthesis of porous and/or 

high surface area materials is the organics such as surfactants and block copolymers. 
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1.5 Organics as structure directing agents and templates 

 

In presence of organics such as surfactants and block copolymers, combined principles of 

self-assembly, polymer, colloidal and inorganic chemistries were used to synthesize 

materials with various functionalities and properties [15,16,35-37]. This is because these 

organic materials self-assemble into a variety of nano- and mesostructures with well-

defined shape and size resulting in the discovery of fascinating hybrid materials (Figure 

1). For example, in a simple binary system of water-surfactant, surfactant molecules 

manifest themselves as very active (in respect to self-assembly) components that realize 

variable supramolecular structures as function of increasing concentrations [16,36]. 

While at low concentrations isolated molecules are present and with increasing 

concentrations molecules aggregate together to form micelles of different structures. As 

the concentration continues to increase, hexagonal, lamellar and cubic phases appear. The 

particular phase present in a surfactant aqueous solution at a given concentration depends 

not only on the concentrations but also on the nature of the surfactant itself like the length 

of the hydrophobic carbon chain, hydrophilic head group, and counter ion. Even the 

environmental parameters like pH, temperature, the ionic strength, and other additives 

can influence the phase formation [37]. However, two main limitations exist for 

surfactant-templated synthetic procedures: (a) typical wall thickness obtained is in the 

range of 8–13 A˚, which is a serious limitation regarding structural stability in catalysis; 

(b) limited pore size offered by molecular surfactants [26]. Block copolymers exhibit a 

similar self-assembly behaviour like surfactants. Amphiphilic block copolymers therefore 

belong to an important family of surfactants, widely used in detergency, emulsifying, 

coating, thickening, etc [26]. The self-assembly characteristics of these block copolymers 

permit to control the superstructure, to vary the typical length scales and to add specific 

functions. 

 

The use of amphiphilic block copolymers with higher molecular weights can be expected 

to yield materials with large pores, with potentially thicker walls and correspondingly 

enhanced hydrothermal stabilities [26]. Block copolymers are indeed interesting as 
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supramolecular templates as they are capable to impart larger pores and thicker walls. 

Block copolymers have been increasingly used to organize mesostructured composite 

solids, because the architectures of the amphiphilic block copolymers can be rationally 

adjusted to control the interactions between the inorganic and organic species, the self-

assembly, and especially the processibility than with low molecular weight surfactants 

[22,26,34,35]. 

 

 

                                         
 
 
 

                                    
 
 
 
 

                                         

Micelle 

Cylindrical Micelle 

Vesicle 

HEX 

FCC 

Gyroid 
BCC

LAM 

 
Figure 1. Schematic representation of the nano and mesostructures that can be obtained 

with organics such as block copolymers under various reaction conditions [reproduced 

from ref. 36]. 
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1.6 General problems 

 

The use of surfactants and block copolymers as structure directing agents and/or 

templates has resulted in the discovery of fascinating silica molecular sieves such as 

MCM-41, and SBA-15 [22-27]. These materials, which possess a regular hexagonal array 

of uniform pore openings, aroused a worldwide resurgence in the research field of porous 

and/or high surface area materials. There has been a great deal of interest in synthesizing 

transition-metal oxide analogues of these materials, because transition metal oxides have 

variable oxidation states and populated d-bands, which are lacking in aluminium and 

silicon oxides [22,25,28]. However, the synthesis procedures developed for MCM-41 and 

SBA-15 works well only for silica related systems under established reaction conditions. 

Control of the synthesis process becomes very difficult with even minor changes in the 

reaction system. This is the reason, why only few mesoporous materials are reported 

which have been synthesized applying templating with surfactants or high molecular 

weight block copolymers. Even in case of well-studied SBA-15 slight alteration of 

reaction conditions will lead to the collapse of the mesostructure [38]. In the case of 

SBA-15 like materials, if any particular functionality has to be achieved then necessary 

changes should be done only after the rigid silica mesostructure is formed in the solution. 

Nevertheless, once the rigid silica mesostructure is formed, it does not offer much space 

for synthesizing the materials with different functionalities. In brief, these methods 

cannot be readily used for other systems such as transition metal oxides [37].  

 

This is because there are two major problems involved in the synthesis of porous and/or 

high surface area transition metal oxides. Firstly, the very quick formation of insoluble 

inorganic oxide oligomer species [25]. As a result, the interactions with the template may 

be rendered insufficient to form the desired structures. Secondly, the drastic change in 

behavior of block copolymers with the addition/presence of inorganic precursors [35-38]. 

It is very difficult to predict the phase behavior of the block copolymers with changes in 

reaction conditions. The synthesis process of transition metal oxide materials involves the 

control of pH, condensation, reaction temperature, aging temperature, time, etc. Hence, 
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the use of routine approaches with commercial block copolymers does not offer much 

flexibility for the synthesis of porous and/or high surface area materials with desired 

morphologies. Therefore, there is a substantial need to search for new approaches that 

offer flexibility in terms of reaction conditions and can be readily applied for different 

metal oxide systems. 

 

1.7 Objectives of this thesis 

 

We hypothesize and thereby explore the applicability of new approaches to the synthesis 

of porous and/or high surface area materials, particularly transition metal oxides. The 

ability to manipulate and control chemical structures on the mesoscale is greatly 

enhanced when taking advantage of an electrostatic interaction of inorganic building 

blocks and organic templates. This not only prevents phase segregation reliably but also 

allows to apply larger building blocks like oligomers and even colloids to be structured 

on the mesoscale. The structure directing process is of course complex and involves a 

number of interactions and bonds that need to be controlled [12]. But supramolecular 

assembly of charged precursors (oligomeries and colloids) over the oppositely charged 

templates by the strong Coulomb interactions gives a great deal of control. The 

supramolecular assembly of charged colloids on the mesoscale for instance only requires 

the optimization of the surface potentials of the colloid. It is our aim to explore the 

applicability of charged soft templates (block copolymers) for the synthesis of porous 

and/or high surface area transition metal oxides by using charged metal oxide oligomers 

or colloids as inorganic precursors instead of very reactive molecular alkoxide precursors. 

The discrete and charged metal oxide clusters (e.g. polyoxometalates) represent local 

minima in respect to the formation of extended oxide structures through condensation. 

Moreover, the problems related with the micelle stability could be overcome by freezing 

the dynamics through crosslinking. Another approach is to prepare composite films 

through evaporation induced self-assembly (EISA) by carefully choosing the block 

copolymers compositions and fractions. 
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Chapter 2  

Synopsis 
 
Bottom-up approaches to achieve miniaturization goals use the uniform nanoscopic 

supramolecular structures that result from organized macromolecule packing, the so-

called ‘self-assembly’ process [1-5]. As mentioned in the introduction, organic materials 

have the ability to self-assemble into a variety of nanostructures with well-defined shape 

and size. An important class of organics used for the synthesis of porous and/or high 

surface area materials is the class of amphiphilic block copolymers. Block copolymers 

consist of two or more chemically different polymer blocks which are covalently linked 

together to form a complex macromolecule [1-3,6]. If the constituents of polymers are 

immiscible, microphase separation is induced on a scale that is related to the size of the 

copolymer chains. Because of the chemical immiscibility of the covalently linked 

segmental chains, block copolymers tend to self-assemble into a variety of well-ordered 

nanostructures with almost continuously tunable resolution from several to hundreds of 

nanometers [2-4,7-25]. Depending on the segmental interactions, the polymer molecular 

weight, and the volumetric composition, different microdomain structures are formed 

with typical length scales in the range between 5 and 100 nm.  

 

 
Figure 2. Thermodynamic equilibrium morphologies in a typical AB diblock copolymer 

depending on the volume fraction of component A (φA). S: spheres, arranged in a body 

centered cubic lattice; C: cylinders, arranged on a hexagonal lattice; G: gyroid, 

bicontinuous double-gyroid phase; L: lamella structure (reproduced from ref. 1). 

 

Diblock copolymers which have blocks of comparable volume fractions exhibit a lamella 

structure [2,7]. Upon decreasing or increasing the volume fraction of one block gyroid, 
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cylindrical, and spherical microdomains are formed (Figure 2). Through various 

templating processes and approaches using these block copolymer structures, functional 

nanostructures can be generated. The self-assembly characteristics of these block 

copolymers permit to control the superstructure, to vary the typical length scales and to 

add specific functions. Indeed, the properties of block copolymers can be continuously 

tuned by adjusting the solvent composition, molecular weight or polymer architecture 

[14]. Two main processes can be recognized in the formation of hybrid mesophases using 

these block copolymers. Firstly, creation of an organized texture due to the self-assembly 

properties of the block copolymers and secondly, formation of an inorganic network 

[2,4]. The former process results in a microphase separation that divides the space in to 

two domains, hydrophilic and hydrophobic. The inorganic components are placed in one 

of the spatially separated parts of these nanoheterogeneous systems. Condensation 

reactions will give rise to an extended inorganic network. Three fundamental interactions 

will control the final supramolecular structure; block copolymer–block copolymer, 

inorganic–inorganic and block copolymer–inorganic. These interactions take place in 

each of the microsegregated phases, or at the inorganic-template hybrid interface (HI) 

[2,5-7,17-22]. The solvent will also take part in mesophase formation. 

 

However, these self-assembled block copolymer nanostructures are very sensitive to the 

reaction conditions such as pH, temperature, solvent, ionic strength and so on [2,26-29]. 

The stability of the self-assembled nanostructures is especially important for the synthesis 

of materials that ask for changes in reaction conditions. The synthesis procedures 

developed for silica systems such as MCM-41 and SBA-15 works well only for other 

silica related systems under established reaction conditions [2-4,9-14,17-28]. The 

cooperative self-assembling process of surfactant and inorganic precursor is very 

sensitive to reaction conditions [17,29]. In case of SBA-15, the micrographs from cryo-

TEM revealed that spheroid micelles form during the first 10 min and they evolve into 

thread like micelles within 20-25 min, which become longer and straighter with time. 

After 40 min, bundles with the dimensions similar to those found in the final material 

appeared, although there was no sign of a hexagonal arrangement up to 40 min. The 2 h 
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samples showed some areas of hexagonal ordered structures, which become very clear at 

2 h 50 min [29]. Even slight modifications of this process will affect the cooperative self-

assembly and hence lead to different/unexpected mesostructures. This imposes severe 

restrictions when trying to extend the concept beyond silica-based materials [19,20,25]. 

This is the main reason, why only few porous and/or high surface area transition metal 

oxides are reported which have been synthesized applying surfactants or high molecular 

weight block copolymers. Especially, transition metal oxides are difficult to be cast into 

thermally stable porous and/or high surface area oxides, because controlling fast 

hydrolysis rates of metal alkoxide precursors, the subsequent condensation reaction, and 

the ripening of the oxohydroxide gels would ask for more flexibility in reaction 

conditions [30-40]. Hence, there is a substantial need to develop new approaches that 

offer flexibility in terms of reaction conditions and can be readily applied for different 

metal oxide systems. 

 

Therefore, we are exploring new approaches to overcome these problems. Firstly, instead 

of dynamic polymer micelles we use rigid polymeric templates in the synthesis of porous 

and/or high surface area metal oxides. Rigidity could be achieved through cross-linking 

the non-continuous phase in the block copolymer [41]. In addition, we use charged 

polymers as templates. This is because strong coulomb interactions between template and 

oxide systems can lead to the formation of desired and stable hybrid materials. Secondly, 

instead of very reactive alkoxide precursors we explore polyoxometalates as 

comparatively stable secondary building units. These polyoxometalates represent local 

minima in respect to the formation of extended oxide structures through condensation 

[30]. Besides, Keggin-type polyoxometalates (Keggin POM), discrete transition metal 

oxide clusters, exhibit fascinating properties and applications due to their high ion 

conductivity, electron density, rapid and reversible oxidative-reductive processes [30-40]. 

But, low surface areas of Keggin POMs limits the accessibility to the active sites and 

limit their efficiency and applications. Keggin POMs with high surface areas and 

controllable nanostructures are of interest in a variety of applications such as high 

performance catalysts. 
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Scheme 1. Overview of our approaches to the synthesis of porous and/or high surface 

area metal oxides using different cationic polymer templates and anionic oxide 

precursors. Strong coulomb interactions between cationic templates and anionic oxide 

precursors drive composite formation. 

 

Following the above principles, we have designed new approaches to achieve Keggin 

POMs with high surface areas. High surface areas could be achieved by synthesizing 

Keggin POM framework composite materials with discrete nanostructures, and/or Keggin 

POM framework porous materials. Discrete nanostructures are possible through charged 

soft templates. In the first approach, crosslinking of non-continuous phase of the block 

copolymers will freeze the dynamics of polymer nanostructures. Resultant self-assembled 

polymeric nanostructures are stable and resistant to changes in reaction conditions. In 

these systems, cationic PB-P2VP block copolymer nanostructures were used to graft 

anionic Keggin POMs (Scheme 1). 
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The second approach we followed was the evaporation-induced self-assembly (EISA) 

process. Brinker and co-workers pionereed this approach to encompass the synthesis 

methods leading to ordered hybrid mesophases from dilute solutions [18,19]. EISA can 

be considered a liquid crystalline template based method. Starting from solutions below 

the critical micellar concentration, permits one to obtain thin films or gels with excellent 

homogeneity. This method is particularly interesting to work with non-silica systems, 

where condensation has to be thoroughly controlled [2,7,18]. Following the principles of 

EISA, we have developed a new synthesis route for the synthesis of hexagonally ordered 

mesoporous keggin POM framework using an amphiphilic diblock copolymer. The 

underlying principles of our approach are as follows. Firstly, keggin POM itself is used as 

inorganic precursors so that keggin POM units (diameter of keggin POM is ca. 1.2 nm) 

act as nanobuilding blocks which in respect to further condensation are already in a local 

minimum. Secondly, an amphiphilic diblock copolymer, poly(isoprene-b-

dimethylaminoethylmethacrylate) (PI-b-PDMAEMA), is used as a structure directing 

agent that contains a hydrophilic PDMAEMA block and an sp2 hybridized carbon 

containing hydrophobic PI block [19]. When neutral polymer solution in tetrahydrofuran 

(THF) is added to the keggin POM (which is a heteropolyacid) solution in THF, the 

amine units in the PDMAEMA will be protonated. Thus, formation of the inorganic-

organic composite is driven by strong coulombic interactions between the protonated 

amine and keggin POM anions. In addition, when heat-treated under an inert 

environment, the PI block containing sp2 carbons will be converted to an amorphous 

carbon material. This in situ generated carbon acts as a rigid support to mesostructured 

keggin POM walls and prevents structure collapse during heat treatment. Further 

calcinations in air will finally remove amorphous carbon and mesoporous hexagonally 

ordered structures could be obtained. 

 

In contrast to the above approaches where cationic organic templates and anionic oxide 

precursors were used for the composite formation, we also tested the composite 

formation using anionic templates and cationic oxide precursors (Scheme 2). As 

expected, this approach also leads to the formation of well-defined stable crystalline 
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composites. Herein, we presented a new approach to the direct synthesis of crystalline 

polymer-titania composites with well-defined crystalline forms through mesoscale 

supramolecular assembly of crystalline titania colloids over spherical polyelectrolyte 

brush (SPB) particles [6,42]. The supramolecular assembly of charged colloids achieved 

through the strong coulombic interactions between the anionic SPB colloids and cationic 

crystalline titania colloids. The strong coulomb interactions between anionic polymer 

chains and cationic crystalline titania colloids, whose surfaces are naked and therefore 

reactive, are the key factors in this  approach for the organic-inorganic crystalline 

composite formation. 

 

Step A: 

 
Step B: 

 
Scheme 2. Step A: Synthesis of rutile composites using cationic rutile colloids and 

anionic SPB. Step B: Formation of porous rutile balls by two-step calcination. Heat 

treatment under argon and further calcination in air will lead to porous rutile balls with 

mesoporous crystalline walls. 



Chapter 2 Synopsis 
_____________________________________________________________ 

 19

Briefly, this thesis includes four publications/manuscripts, which are presented in the 

appendix. Firstly, dynamics of the polymeric nanostructures were frozen by cross-linking 

the non-continuous phase of the block copolymers. These core-crosslinked block 

copolymer nanorods were used as templates for the synthesis of Keggin POM 

nanostructures by grafting [SiMo12O40]4- Keggin ions over the template. Developed 

polymer-Keggin POM nanostructures showed high surface areas with well dispersion of 

Keggin POMs over polymer rods. This synthesis strategy was extended with spherical 

micelles with different charge and metal contaning Keggin POMs. Interestingly, spherical 

polymer-Keggin POM nanocomposites exhibit much higher surface areas than their 

worm-like composite counterparts. These developed hybrid Keggin POM nanostructures 

are expected to be useful in several catalysis applications. The developed hybrid Keggin 

POM materials are amorphous. However, by controlled annealing experiments they may 

be crystallized into corresponding metal oxide phases. We have studied the calcinations 

conditions where amorphous Keggin POM hybrids were first converted to corresponding 

amorphous metal oxides through loss of phosphate ligands present in the hybrids. Later, 

these amorphous metal oxides were calcined to crystallize into corresponding metal oxide 

phases.  

 

In another approach, the principles of EISA technique were followed to synthesize 

hexagonally ordered Keggin POM framework mesostructured films using PI-

PDMAEMA block copolymers. Stepwise calcination of 1:4 (polymer:Keggin POM) 

films under inert argon atmosphere followed by a second calcination under air lead to 

hexagonally ordered Keggin POM framework mesoporous materials. To the best of our 

knowledge, these are the first hexagonally ordered mesoporous oxides with Keggin POM 

framework. 

 

Composite materials with crystalline metal oxide framework and corresponding 

thermally stable porous materials, particularly crystalline TiO2, have immense potential 

for applications in various fields. Evolution of rutile and anatase nanocrystals at low 

temperatures was studied using different inorganic acids. We have developed modified 
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routes to the synthesis of well-defined rutile and anatase nanocrystals under aqueous 

conditions. These nanocrystals are stabilized by anionic inorganic ligands such as 

chloride, sulphate and exhibit positively charged surfaces. In general, supramolecular 

assembly of charged colloids can be directed over the oppositely charged templates by 

the strong coulombic interactions. This kind of supramolecular assembly of charged 

colloids on the mesoscale can be achieved by optimization of the surface potential of the 

colloidals. We have studied the pH vs zetapotential properties of the crystalline colloids 

and polymer brush particles. Using this information charged titania nanocrystals were 

mesoscopically structured onto anionic spherical polyelectrolyte brushes through strong 

coulomb interactions. In general, majority of the reports required heat treatment to 

achieve the crystalinity. However, this mesoscopic supramolecular apparoach allows us 

the direct synthesis of crystalline oxide composites. Following these principles, we have 

reported a direct facile, low temperature approach to synthesize TiO2 composites with 

well-defined crystalline forms using spherical polyelectrolyte brushes as templates. It is 

worth to note that in this system anionic template and cationic oxide precursors were used 

where as in our former approaches cationic templates and anionic oxide precursors were 

used. 
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Chapter 3  

Summary 

 
We have explored the applicability of hypothesized approaches to the synthesis of porous 

and/or high surface area transition metal oxides. In addition, applicability and advantage 

of charged templates where strong Coulomb interactions favour the supramolecular 

arrangements/assembly were studied. The problems related with the dynamics of 

polymeric nanostructures for the synthesis of predesigned mesostructures could be 

avoided by crosslinking micelles, strictly speaking non-continuous phase in the bulk 

structure. Thereby, we presented a new approach for the grafting of Keggin POMs 

around the core-crosslinked PB-P2VP worm-like polymer templates (A 1 and 2). The 

produced POM-1 exhibits high dispersion, improved surface area and is thus expected to 

be useful in catalytic, electrochemical and biotechnology related applications. The 

general applicability of the method to other Keggin POMs and spherical polymer 

nanostructures were studied. Developed Keggin POMs-1 to 6 showed high dispersion of 

Keggin POM and surface areas. To the best of our knowledge, our approaches lead to 

Keggin POM nanocomposites with the highest surface areas reported todate. As-

synthesized Keggin POM nanocomposites are amorphous. We have studied the removal 

of polymer template and crystallization of hybrid to corresponding metal oxides through 

step-wise calcinations under argon followed by air.  

 

We have presented another approach to the synthesis of high surface area and 

mesoporous keggin POM framework materials using amphiphilic PI-PDMAEMA block 

copolymers (A 3). The calcined mesoporous materials exhibit Keggin POM hexagonal 

pore structure with high keggin POM dispersion, improved surface area. These developed 

materials are expected to be useful in catalytic applications. A fundamental principle 

involved in this method is that an attractive interaction between the organic block 

copolymer and the keggin POM precursors is obtained via Coulombic interactions 

through in situ quaternization (protonation) of PDMAEMA part, which also ensure the 

formation of a homogeneous hybrid material without any macrophase separation. Further, 
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step-wise calcinations under argon and air lead to evolution of mesoporous keggin POM 

material. To the best of our knowledge, this is the first hexagonally ordered mesoporous 

Keggin POM framework material. 

 

We have presented a low-temperature, non-hydrothermal synthesis route to rutile 

nanocrystals. Both rutile and anatase nanocrystals exhibit positive surface charges. In 

contrary to the above approaches where polymer templates are cationic and inorganic 

precursors are anionic, in this case, inorganic nanocrystals are cationic and polymer 

templates are anionic. In this approach, we have demonstrated that crystalline TiO2 

nanocomposites with well-defined crystalline form could be directly synthesized at 

temperatures as low as 40 oC by mesostructuring the positively charged crystalline titania 

colloids over anionic spherical polyelectrolyte brush particles under aqueous conditions. 

Stepwise calcinations first under argon followed with a second calcination in air lead to 

the complete removal of polymer template without collapse and hollow porous spheres 

with crystalline framework are obtained. Porosity and surface areas increased 

dramatically after stepwise calcinations. Moreover, the porous rutile nanomaterials are 

photocatalytically active. We proved that our hypothesis to the synthesis of crystalline 

TiO2 nanocomposites with well-defined crystalline form and morphologie is feasible. 
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Zusammenfassung 
 

Im Mittelpunkt dieser Dissertation stehen Synthese und Charakterisierung poröser 

Materialien mit hoher spezifischer Oberfläche. Untersucht wurde dabei auch die 

Übertragbarkeit theoretischer Überlegungen auf die Synthese dieser Substanzen. 

Insbesondere sollten die Vorzüge geladener Template dargelegt werden, welche durch 

ihre starken Coulomb-Wechselwirkungen supramolekulare Strukturen ausbilden können 

und somit vorteilhaft zur Synthese der Materialien genutzt werden können. Ein während 

der Synthese von porösen Materialien oft auftretendes Problem ist die Dynamik der 

Polymer-Nanostrukturen bei der Ausbildung der für einen Templatmechanismus 

notwendigen Mesostrukturen. Die hier verwendete Templatgenerierung umgeht dieses 

Problem, indem eine Vernetzung der Micellen untereinander als strukturfixierendes 

Element eingeführt wird. Es wird eine neue Synthesemethode gezeigt, mit der Keggin-

Polyoxometallate (Keggin-POM) unter Verwendung des Polymertemplats PB-P2VP 

dargestellt werden können. Das Templat PB-P2VP liegt in einer wurmartigen 

Morphologie vor und bietet die gewünschte Vernetzung zwischen den Micellen. Das mit 

dieser Methode synthetisierte POM-1 zeigt eine hohe Dispersion und eine große 

Oberfläche. Diese Vorteile begründen ihr Potential für die Anwendung in der Katalyse, 

Elektrochemie oder Biochemie. Nachfolgend wurde die Übertragbarkeit dieser 

Synthesemethode auf andere Keggin-POM untersucht (A 1 und 2). Die daraus 

resultierenden Keggin-POM-1 bis -6 zeigten ebenfalls die hohe Dispersion und große 

Oberflächen. Die hier vorgestellte Synthesemethode liefert Keggin-POM-

Nanocomposite, deren Oberfläche über den bis dato publizierten liegt. 

 

Weiterhin wird eine Synthesemethode für mesoporöse Keggin-POM-Materialien mit 

großer Oberfläche vorgestellt, welche sich amphiphiler PI-PDMAEMA-Blockpolymere 

bedient. Das nach Calcinierung erhaltene mesoporöse Material zeigt eine hexagonale 

Porenstruktur aus Keggin-POM, hohe Dispersion der Keggin-POM und hohe 

Oberflächenwerte (A 3). Die Anwendung dieser Materialien kann in der Katalyse 

gesehen werden. Die Besonderheit dieser Synthesemethode liegt in der Coulomb-
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Wechselwirkung zwischen dem organischen Block-Copolymer und der Keggin-POM-

Anion. Die Ladung am organischen Block-Copolymer wird in situ durch 

Quarternisierung (Protonierung) des PDMAEMA-Teils generiert, was eine 

Phasenseparation verhindert und damit die Ausbildung eines homogenen Hybridmaterials 

begünstigt. Das mesoporöse Keggin-POM-Material wird im nachfolgenden Schritt durch 

Calcinieren an Luft bzw. Argon erzeugt. Nach unserem Wissen stellt dieses Produkt das 

erste hexagonal geordnete mesoporöse Keggin-POM-Material dar.  

 

Zusätzlich wird eine Synthese von Rutil-Nanokristallen bei niedriger Temperatur und 

unter nicht-hydrothermalen Bedingungen vorgestellt. Rutil-Nanokristalle weisen bei 

niedrigem pH ein positives Zetapotential auf. Im Gegensatz zu den in A 1-3 

beschriebenen Synthesen, bei denen die Polymertemplate kationisch und die 

inorganischen Vorstufen anionisch geladen sind, liegen in dieser Synthese dagegen die 

Polymertemplate anionisch und die inorganischen Vorstufen kationisch geladen vor. Es 

konnte gezeigt werden, dass hochkristalline TiO2-Nanopartikel unter wässrigen 

Bedingungen selbst bei niedrigen Temperaturen (40 °C) erzeugt werden können. Als 

Templat wurden dabei sphärische Polyelektrolyt-Partikel verwendet. Durch die 

Calcinierung unter Argon und anschließend unter Luft konnte das Polymertemplat 

vollständig und ohne Zerstörung der anorganischen Struktur oder Morphologie entfernt 

werden. Als Produkt wurden hohle Kugeln mit porösen Wänden, die einen hohem Grad 

an Kristallinität aufweisen, erhalten. Sowohl die Porosität als auch die Oberfläche steigt 

mit jedem Calcinierungsschritt dramatisch an. Bei den Eigenschaften dieser Rutil-

Nanomaterialien konnte die photokatalytische Aktivität belegt werden. 
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Individual Contribution to Joint Publications 

 

The publications/manuscripts, which are presented in the appendix, were obtained in 

cooperation with other co-workers in different departments. My contributions to each 

publication are specified below. 

 

Appendix A1 

This work has been published with the title “Core-crosslinked block copolymer 

nanorods as templates for grafting [SiMo12O40]4- Keggin ions” by Yelamanchili, R. S., 

Walther, A., Müller, A. H. E., Breu, J., in Chem. Commun. 489-491 (2008). 

 

 I have performed all the composite synthesis experiments and characterization. 

 A. Walther, from Macromolecular Chemistry II, synthesized and crosslinked 

worm-like PB-P2VP block copolymers. 

 J. Breu and A. H. E. Mueller contributed to the discussion. 

 

 

Appendix A2 

This work with the title “Synthesis of high surface area Keggin-type polyoxometalates 

using core-crosslinked block copolymer nanorods and nanospheres” by 

Yelamanchili, R. S., Lunkenbein, T., Walther, A., Müller, A. H. E., Breu, J., is to be 

submitted to Langmuir. 

 

 I have performed all the composite synthesis experiments, characterization, 

calcinations and crystallization studies. 

 T. Lunkenbein, a diploma student, did some synthesis experiments under my 

supervision. 

 A. Walther, from Macromolecular Chemistry II, synthesized and crosslinked 

worm-like/spherical PB-P2VP block copolymers. 

 J. Breu and A. H. E. Mueller contributed to the discussion. 
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Appendix A3 

 

This work with the title “Hexagonally Ordered Mesoporous Keggin-type 

Polyoxometalates” by Yelamanchili, R. S., Kamperman, M., Kiya, Y., Lee, Abruna, H. 

D., J., Breu, J., Wiesner, U., is to be submitted to Nature Mater.. 

 

 I have performed all the composite film synthesis experiments, calcinations, and 

characterization. 

 M. Kamperman from Department of Materials Science and Engineering, Cornell 

University synthesized PI-PDMAEMA block copolymer, performed SAXS and 

some TEM measurements. 

 Y. Kiya from Department of Chemistry and Chemical Biology, Cornell 

University performed cyclic voltagram experiments. 

 J. Breu, J. Lee, H. D. Abruna and U. Wiesner contributed to the discussion. 

 

 

Appendix A4 

This work with the title “Shaping colloidal rutile into thermally stable and porous 

mesoscopic titania-balls” by Yelamanchili, R. S., Lu, Y., Lunkenbein, T., Miyajima, N., 

Yan, L., Ballauff, M., Breu, J., has been submitted to Small. 

 

 I have performed all the composite film synthesis experiments, calcinations, and 

characterization using PXRD, FESEM, TEM and N2 sorption measurements. 

 Y. Lu from Physical Chemistry I synthesized polyelectrolyte brush and did 

FESEM, TEM measurements. 

 T. Lunkenbein, a diploma student, did some synthesis experiments under my 

supervision. 

 N. Miyajima performed HRTEM measurements. 

 L. Yan prepared the scheme. 

 J. Breu, and M. Ballauff contributed to the discussion. 
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A 1 Core-crosslinked block copolymer nanorods as templates for grafting 

[SiMo12O40]4- Keggin ions  

 

This work has been published with the title “Core-crosslinked block copolymer 

nanorods as templates for grafting [SiMo12O40]4- Keggin ions” by Yelamanchili, R. S., 

Walther, A., Müller, A. H. E., Breu, J., in Chem. Commun. 489-491 (2008). 

 

 
 



Core-crosslinked block copolymer nanorods as templates for grafting
[SiMo12O40]42 Keggin ions{{

Ram Sai Yelamanchili,a Andreas Walther,b Axel H. E. Müller*b and Josef Breu*a

Received (in Cambridge, UK) 18th September 2007, Accepted 22nd November 2007

First published as an Advance Article on the web 7th December 2007

DOI: 10.1039/b714435k

Core-crosslinked PB-P2VP block copolymer nanorods are used

as templates for the synthesis of Keggin-type heteropolyox-

ometalate (POM) nanostructures by grafting [SiMo12O40]
42

Keggin ions on the template.

The organic template-directed synthesis of inorganic materials has

attracted world wide attention due to the ability of organics to self-

assemble into a variety of micelle nanostructures with well-defined

shape and size.1–3 An important class of organic templates used for

the synthesis of materials is the amphiphilic block copolymers.4

However, block copolymer micelles are very sensitive to the

reaction conditions. Change in pH, temperature, solvent, or ionic

strength can lead to micelle transformation or disintegration. For

example, when polybutadiene-block-poly(2-vinylpyridine) (PB-

P2VP) with 80% PB is dissolved in THF, worm-like micelles are

formed in solution. Addition of water or protonation leads to a

micelle transformation thus leading to undesired changes in the

template morphology (see ESI{). Hence, the use of polymeric

micelles to synthesize inorganic materials with desired morphol-

ogies is not always possible due to the dynamic nature of micelles.

The micelle stability is especially important for the synthesis of

materials which ask for changes in reaction conditions.

In this communication, we present a novel synthesis strategy for

the development of inorganic nanostructures using core-cross-

linked stable polymer templates. Scheme 1 summarizes this novel

approach for the synthesis of desired inorganic nanostructures.

Firstly, a block copolymer is synthesized which microphase-

separates into a well-defined cylindrical bulk structure. Generally,

adjusting the volume fractions and molecular weight of the block

copolymer allows a facile tunability of the dimensions and shapes

of the desired polymeric template. Secondly, it is possible to freeze

the dynamics of the polymeric nanostructures by crosslinking the

core, shell or even the surface.5 In the present study, the core of the

micelles is crosslinked and the resultant polymeric micelles are

stable and resistant to changes in reaction conditions. Thirdly,

protonation or quaternization can be performed at controllable

rate to achieve charge matching between the polymer template and

inorganic complexes. Fourthly, anionic inorganic precursors are

grafted on the charged template and the inorganic/organic

nanocomposite will precipitate. Please note, that when using an

acidic inorganic precursor, quaternization of polymer template and

grafting of the corresponding anion take place simultaneously.

Keggin-type heteropolyoxometalates (POM) were chosen as

inorganic precursors due to the following reasons.

Polyoxometalates (POM), the discrete metal-oxygen cluster

compounds mainly of transition metals, exhibit fascinating

properties and applications.6 The properties of the POMs,

particularly of the Keggin-type, depend mainly on the nature of

the counter cation and the composition of the POM anion.7 POMs

with high surface areas and controllable nanostructures are of

interest in a variety of applications such as high performance

catalysts (acid and redox), sensor devices and electrodes (due to

their high ion conductivity, electron density, rapid and reversible

oxidative-reductive processes).7,8 But, POMs present relatively

small surface areas, the surface area of commercial H4SiMo12O40

is 4 m2 g21, which hinders accessibility to the active sites and as a

result the applications of POMs are limited.7 Hence, there is a

great demand to develop POM materials with high surface area.

The efficiency of the POMs can be increased by two approaches.

(1) using high surface area solids as supports to disperse POM and

(2) developing composite materials with POMs as building blocks.

Mesoporous silica materials like MCM-41 or SBA-15 have very

high surface area (ca. 800–1000 m2 g21) and these materials were

used as supports for the dispersion of POM.9,10 There are also

reports using carbon, silica gel, titanium gel, aluminium, etc. as

solid supports for the dispersion of POM.11 Even though, the

accessible surface area for POMs can be increased by these

methods, limitations rely on low POM loading, leaching of the

active sites into the reaction medium and pore blocking in porous

supports. Another approach involves the synthesis of POM

nanocomposites using organic surfactants or polymers.12,13

However, the accessible surface area is lower and the organic

templates need to be removed to allow free access to the POM

aDepartment of Inorganic Chemistry I, University of Bayreuth, 95447,
Bayreuth, Germany. E-mail: josef.breu@uni-bayreuth.de;
Fax: +49 921552788; Tel: +49 921552530
bDepartment of Macromolecular Chemistry II, University of Bayreuth,
95447, Bayreuth, Germany. E-mail: axel.mueller@uni-bayreuth.de;
Fax: +49 921553393; Tel: +49 921553399
{ Dedicated to Professor H.-P. Böhm on the occasion of his 80th birthday.
{ Electronic supplementary information (ESI) available: Experimental
details, TEM, SEM, and XRD. See DOI: 10.1039/b714435k

Scheme 1 Synthesis of [SiMo12O40]
42 Keggin nanostructures using core-

crosslinked PB-P2VP worm-like polymer template and H4[SiMo12O40].
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active sites but the hybrid structures tend to collapse during the

template removal.12 Neumann and co-workers used polymeric

micelles to synthesize POM nanoparticles and observed improved

catalytic activities for the developed POM nanostructures.14 All

together, these results indicate that the synthesis of chemically and

physically well defined, discrete POM nanostructures with a highly

accessible surface area is of great interest. But the synthesis of

POM nanostructures requires the control of various reaction

parameters like pH, temperature, ionic strength, etc. Hence, the

templating micelles should be stable and resistant to changes in the

reaction parameters.

To prove our concept, a well-defined PB-P2VP block copolymer

with 30 wt % PB and a molecular weight of 2.0 6 105 g mol21 was

synthesized by anionic polymerization (see ESI{). The weight

fractions are chosen in such a way that it forms a cylindrical

morphology in the bulk state with PB-cylinders embedded in a

P2VP matrix. The unsaturated PB-cores were crosslinked using a

commercial photointiator to lock the cylindrical structure. The

core-crosslinked cylinders exhibit worm-like morphologies when

dissolved in THF or acetone. The block copolymer nanostructures

were characterized using scanning electron microscopy (SEM),

transmission electron microscopy (TEM), energy dispersive

X-ray analysis (EDX), and Fourier transform infrared (FTIR)

measurements.

The TEM images of the core-crosslinked PB-P2VP worm-like

polymer template are shown in Fig. 1. The core-corona structure

of the worm-like polymer template is revealed due to the different

electron penetrability of the PB core and P2VP corona. The

diameter of the PB core is approximately 40 nm and the P2VP

corona extends ca. 35 nm around the PB-core. The total diameter

of the worm-like polymeric rods is ca. 110 nm. As sonication is

necessary for the dissolution of the crosslinked PB-P2VP template,

worm-like polymer rods with different lengths are observed. Fig. 2

shows the SEM image of worm-like polymer rods, where the

smooth surface of the polymer cylinders can be observed.

The Keggin-type POM nanostructures can be synthesized by

adding the PB-P2VP worm-like polymer solution to the

H4SiMo12O40 (POM) solution. Experimental details are provided

in the ESI.{ When neutral polymer rods in THF are added to the

POM solution (which is a heteropolyacid) the 2-vinylpyridine units

in the arms will be protonated, while the POM-anions are

simultaneously grafted onto the template. Thus formation of the

inorganic–organic nanocomposites is driven by strong Coulombic

interactions between the 2-vinylpyridinium arms of the core-

crosslinked PB-P2VP worm-like micelles and the inorganic POM

anions. The polymer–POM nanocomposite is referred hereafter as

POM-1. The produced POM-1 was characterized using SEM,

EDX, TEM, FTIR, X-ray diffraction (XRD) and N2 sorption

measurements.

The formation of POM-1 can be directly observed by SEM and

TEM. In comparison to the pure polymer nanorods (Fig. 2), the

surface of the POM-1 is rough (Fig. 3). The surface roughness of

the POM-1 is due to the grafting of [SiMo12O40]
42 Keggin around

the polymer template. The selected area EDX spectrum clearly

shows the presence of Si, Mo and C and confirms the grafting of

[SiMo12O40]
42 Keggin around the template. The surface roughness

due to the presence of [SiMo12O40]
42 Keggin POM around the

polymer template becomes also obvious when comparing the

TEM images of the pure polymer template (Fig. 1) with POM-1

(Fig. 4). The interaction of the inorganic [SiMo12O40]
42 Keggin

POM with the P2VP block of the core-crosslinked PB-P2VP

worm-like polymer template also changed the dimensions of

the resultant composite nanostructures. In the absence of the

[SiMo12O40]
42 Keggin POM anions, the P2VP corona of the core-

crosslinked PB-P2VP worm-like polymer rods is stretched (ca.

35 nm around the core). Addition of [SiMo12O40]
42 Keggin POM

Fig. 1 TEM images of the core-crosslinked PB-P2VP worm-like polymer

template at different magnifications.

Fig. 2 SEM image of the core-crosslinked PB-P2VP worm-like polymer

template.

Fig. 3 SEM image of the [SiMo12O40]
42 Keggin POM grafted onto core-

crosslinked PB-P2VP worm-like polymer template (inset: EDX spectrum).
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caused the complexation of the 2-vinylpyridine units in the arms

with the Keggin anions and as a result the P2VP corona shrinks

from initial ca. 35 nm to ca. 15–20 nm. The [SiMo12O40]
42 Keggin

POM-grafted worm-like polymer rods exhibit overall diameters in

the range of ca. 60–65 nm, significantly smaller than the initial

pure worm-like polymer rod.

The grafting of [SiMo12O40]
42 Keggin POM over wormlike

polymer rods was further verified by FTIR analysis. FTIR spectra

of the pure H4SiMo12O40 Keggin POM, POM-1 and core-

crosslinked polymer rod template are shown in Fig. 5. It has been

widely reported that the Keggin-type heteropolyoxometalates

show four characteristic bands, which are the fingerprint of the

Keggin structure.15 There are four kinds of oxygen atoms in

H4SiMo12O40 (Oa—oxygen in SiO4 tetrahedra, Od—terminal

oxygen atom to Mo, Ob—corner sharing oxygen and Oc—edge

sharing oxygen) and these characteristic bands were observed at nas

(Mo–Od) 2952 cm21, nas (Mo–Ob–Mo) 2794 cm21, nas (Mo–Oc–

Mo) 2864 cm21 and nas (Si–Oa) 2902 cm21. The FTIR spectrum

of the POM-1 corresponds well to the superposition of the spectra

of the pure Keggin type heteropolyoxometalates and PB-P2VP

polymer rod template which is clear evidence that the Keggin

structure stayed intact when being grafted onto the worm-like

polymer rods.

In addition, wide-angle powder XRD patterns of the pure

H4[SiMo12O40] Keggin POM, core-crosslinked worm-like polymer

template and POM-1 were recorded (see ESI{). In contrast to the

pure H4[SiMo12O40] Keggin POM, XRD patterns of POM-1 do

not show any characteristic peaks for H4[SiMo12O40]. This

amorpous nature is an indication of the very high degree of

dispersion of Keggin POM in the polymer matrix.10d The N2

sorption measurements of POM-1 show that the developed Keggin

POM nanostructures have a 37 m2 g21 surface area, whereas the

commercially available POM (H4SiMo12O40) only has a 4 m2 g21

surface area.

In conclusion, we presented a novel approach for the grafting of

Keggin-type heteropolyoxometalates around the core-crosslinked

PB-P2VP worm-like polymer templates. The produced POM-1

exhibit high dispersion, improved surface area and are thus

expected to be useful in catalytic, electrochemical and biotechnol-

ogy related applications. An investigation of the properties of the

POM-1 is ongoing together with steps aimed at the synthesis of

other metal oxide nanostructures. The method appears to be

generally applicable. For instance, [PMo12O40]
32 Keggin-type

POM nanostructures can be synthesized following the same

procedure (see ESI{).
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Core-crosslinked block copolymer nanorods as templates for 
grafting [SiMo12O40]4- keggin ions 
Ram Sai Yelamanchili,a Andreas Walther,b Axel H. E. Müllerb and Josef Breu *a 
 
Experimental section:  

Synthesis of polymer and crosslinking reactions: The synthesis of the polybutadiene-

block-poly(2-vinylpyridine) diblock copolymers (PB-P2VP) was accomplished via 

sequential living anionic polymerization. Butadiene polymerization was initiated with 

sec-BuLi at -70°C, and butadiene was allowed to polymerize at -10°C for 8 h. After 

subsequent cooling to -70°C, 2-vinylpyridine was added to the reaction mixture. After 1h 

reaction time the polymerization was terminated with degassed methanol, and the product 

precipitated in a water/methanol mixture. According to NMR and GPC, coupled to a 

multi-angle laser light scattering detector, the polymer synthesized is PB30P2VP70
200. The 

subscript numbers denote the mass fraction in percent, and the superscripts give the 

number-average molecular weight in kg/mol. For crosslinking of the block copolymer in 

the bulk state, a 10 wt% solution of PB-P2VP in THF was allowed to evaporate slowly in 

the presence of 40 wt% of Lucirin TPO, corresponding to the amount of polymer. After 

complete evaporation of the solvent and film annealing, the films were crosslinked on a 

UV lamp (cut-off < 350 nm) for 2 – 6 hours. Subsequently, soxhlet extraction was 

performed in THF and the insoluble product underwent ultrasonication in a THF 

dispersion  in order to obtain soluble PB-P2VP core-crosslinked cylinders.  

 

Synthesis of [SiMo12O40]4- keggin-type POM nanostructures: The template directed 

synthesis of the polyoxometalate nanostructures was carried out at room temperature. The 

core-crosslinked PB-P2VP polymer solution in THF (0.5 wt%) (colour less) was added to 

10 mL of 10-2 M H4[SiMo12O40] in THF (yellow solution due to yellow colour of the 

H4[SiMo12O40]) with continuous stirring for 6h. With the addition of polymer solution, a 

coloured precipitate was produced while the yellow colour of the POM solution starts 

fading. The yellow precipitate was formed by grafting coloured [SiMo12O40]4-  on the 

polymer template. When the solution reached the neutralization point the yellow colour 
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of the solution had disappeared completely due to complete grafting of the coloured 

H4[SiMo12O40] on the polymer template. The resultant precipitate was allowed to age in 

the reaction mixture for 12 h. Finally, the precipitate was washed 3 times with deionized 

water and kept at 100oC for 12h to dry. 

[PMo12O40]3- keggin-type POM nanostructures were synthesized following the same 

procedure while using H3[PMo12O40] .xH2O as keggin source. 

 
Fig. S1. Cryo-TEM images of the (a) 1 wt% of PB80-P2VP20 (64,900 g/mol) in THF 

wormlike micelles without core crosslinking, (b) 1 wt% of PB80-P2VP20 (64,900 

g/mol) in THF acidified with 2M HCl.  

 
Fig. S2. Powder X-ray diffraction patterns of (a) core-crosslinked PB-P2VP 

polymeric nanorod template (b) pure H4[SiMo12O40] and (c) POM-1 
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Fig. S3 SEM image of the [PMo12O40]3- keggin POM grafted over core-crosslinked PB-
P2VP worm-like polymer template  
 

 

 
Fig. S4 EDX spectrun of the [PMo12O40]3- keggin POM grafted over core-crosslinked 

PB-P2VP worm-like polymer template 
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A 2 Synthesis of high surface area Keggin-type polyoxometalates using core-crosslinked 

block copolymer nanorods and nanospheres 

 

This work with the title “Synthesis of high surface area Keggin-type polyoxometalates 

using core-crosslinked block copolymer nanorods and nanospheres” by 

Yelamanchili, R. S., Lunkenbein, T., Walther, A., Müller, A. H. E., Breu, J., is to be 

submitted to Langmuir. 
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Abstract  

The organic template-directed synthesis of organic-inorganic nanocomposites has attracted world wide 

attention due to the ability of organics to self-assemble into a variety of micelle nanostructures with 

well-defined shape and size. But the polymer micelles are very sensitive to the reaction conditions such 

as pH, temperature, solvent, ionic strength. Any tiny change in the reaction system may lead to micelle 

transformation into other supramolecular structures. Hence, the use of polymeric micelles to synthesize 

organic-inorganic nanocomposites with pre-designed morphologies is not always possible due to this 

dynamic nature of micelles. Herein, we present a new strategy to synthesize pre-designed organic-

inorganic hybrid nanocomposites using diblock copolymers with unsaturated cores (polybutadiene-

poly(2-vinylpyridine), PB-P2VP). The non-continuous phase of the bulk structure is crosslinked to 

freeze the dynamics and the resultant polymeric nanostructures are stable and resistant to changes in 

reaction conditions. Moreover, the block copolymers used carry ionizable coronas. Therefore the 

composite formation can be driven by  electrostatic interactions between soft template and inorganic 

precursor. Consequently, these core-crosslinked PB-P2VP block copolymer nanorods and nanospheres 

are ideal templates for mesostructuring Keggin-type heteropolyoxometalates (Keggin POM). 

Homogenous nanocomposites are reliably formed by grafting different Keggin POM anions on the 

protonated, cationic soft template. The as-synthesized amorphous Keggin POM nanocomposites exhibit 

high surface areas and are expected to be useful in catalytic applications.  

 

KEYWORDS: Block copolymers, Crosslinking, Nanocomposites, Nanostructures, Polyoxometalates 
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Introduction 

 

Synthesis of organic-inorganic nanocomposites using organic templates has attracted world wide 

attention due to the ability of organics to self-assemble into a variety of nanostructures with well-

defined shape and size.1-4. In particular, block copolymers allow easy control of organic-inorganic 

hybrid morphology down to the nanometer scale.4;5. Since macroscopic properties crucially depend on 

both composition and morphology, properties can thus be tailored by combining principles of self-

assembly, polymer, colloidal, and inorganic chemistries resulting in nanocomposites with a variety of 

functionalities and properties.4-7 However, the dynamics observed between different micelle structures, 

represents major obstacle with the use of these supramolecular soft templates. Polymer micelles are 

very sensitive to the reaction conditions. Change in pH, temperature, solvent, ionic strength can lead to 

micelle transformation.8;9 Consequently, in many cases the conditions required for the formation of the 

desired template structure do not match with those requirements for the controlled 

condensation/assembly of the inorganic precursors around the template.  

For instance, Keggin-type heteropolyoxometalates (Keggin POM), the discrete metal-oxygen cluster 

compounds mainly of transition metals, exhibit fascinating properties and applications.10-15 The 

properties of the POMs, particularly of the Keggin-type, depend mainly on the nature of the counter 

cation and the composition of the Keggin POM anion.10-12 Due to their high ion conductivity, electron 

density, rapid and reversible oxidative-reductive processes Keggin POMs are of interest in variety of 

technological applications such as high performance catalysts, sensor devices and electrodes.11-15 

Commercial Keggin POMs present relatively small surface areas. The surface area of commercial 

Keggin POMs such as H3PMo12O40 .6H2O is 3 m2g-1 and H4SiMo12O40 .6H2O is 4 m2g-1. Due to these 

small surface areas accessibility to the active sites is minimum and as a result the applications of Keggin 

POMs are limited.10;11 For many of these applications, it would therefore be highly desirable to increase 

the surface area of these compounds by shaping them into a mesostructured morphology 

Until now, the surface area of the Keggin POMs was increased following two approaches. Firstly, 
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Mesoporous silica materials like MCM-41, SBA-15 with high surface areas (ca. 800–1000 m2g-1) were 

used as supports for the dispersion of Keggin POM.16-23 There are also reports using carbon, silica gel, 

titanium gel, aluminosilicate, etc, as solid supports for Keggin POM.23-26 Among many other factors, the 

activity of supported Keggin POMs depends crucially on the strength of interaction with the surface 

sites. For instance, with aluminosilicate supports, both the number and the average acid strength of the 

Brönsted acid sites of the Keggin POMs decrease.16 In brief, while the accessible surface area for 

Keggin POMs may indeed be increased by these high surface area supports, limitations rely on low 

Keggin POM loading, leaching of the active sites into the reaction medium and detrimental interactions 

with the supports. 

Secondly, Keggin POM nanocomposites have been synthesized using organic surfactants or polymers 

as soft templates. 11;23-28 While nanocomposites with a variety of two dimensional and three dimensional 

mesostructures were accessible,24-26 the surface area could not be increased significantly because the 

templates could not be removed without concomitant collapse of the mesoscopic morphologies. While 

the above reports use neutral acids as inorganic precursors, Neumann and co-workers used the anions in 

combination with spherical micelles of cationic surfactant. Unfortunately he did not report surface 

areas, but observed improved catalytic activities might be an indication for higher surface areas.29 This 

in turn might suggest that high surface area materials might be accessible by taking advantage of 

coulombic interactions between inorganic precursor and soft template. It is this hypothesis that initiated 

our investigations. 

Earlier, we have reported the synthesis of PB-P2VP/[SiMo12O40]4- nanocomposites (PB-P2VP = 

polybutadiene-poly(2-vinylpyridine)).using core-crosslinked PB-P2VP block copolymer nanorods as 

templates.8 In the present report, the expansion of the synthesis strategy to different Keggin POMs and 

spherical polymer systems is discussed. Keggin POMs with different charge and metal centers were 

used to study the general applicability of this approach. In addition, we studied the influence of 

calcinations on morphology and surface area. Scheme 1 summarizes our approach for the synthesis of 

pre-designed Keggin POM nanostructures. Firstly, a block copolymer is synthesized which microphase-
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separates into a well-defined cylindrical or spherical bulk structure. Generally, adjusting the volume 

fractions and molecular weight of the block copolymer allows a facile tunability of the dimensions and 

shapes of the desired polymeric template. Secondly, the dynamics of the polymeric nanostructures are 

frozen by crosslinking the core.8;30 Thereby nanostructures are obtained that are stable and resistant to 

changes in reaction conditions such as different pH and solvent conditions. Thirdly, the pyridine 

moieties in the corona are basic enough to be protonated in situ upon addition of the Keggin POMs 

which are heteropoly acids. Fourthly, by this quaternization a strong Coulomb interaction between the 

cationic soft template and the anionic inorganic precursors is triggered and the organic-inorganic 

nanocomposite will precipitate. 

 

Scheme 1. Synthesis of Keggin POM nanocomposites using core-crosslinked PB-P2VP polymer 

templates of different structure and Keggin POM.  

PB-P2VP
block copolymer

PB-core crosslinked
worm-like 

polymeric nanorod

Keggin-POM
grafting over

polymeric nanorod

PB

P2VP
Cylinder morphology

in bulk state

Spherical  morphology
in bulk state

PB-core crosslinked
Polymer spheres

Keggin-POM
grafting over

polymeric spheres

PB-P2VP
block copolymer

PB-core crosslinked
worm-like 

polymeric nanorod

Keggin-POM
grafting over

polymeric nanorod

PB

P2VP
Cylinder morphology

in bulk state

Spherical  morphology
in bulk state

PB-core crosslinked
Polymer spheres

Keggin-POM
grafting over

polymeric spheres  



 

6

Experimental Section  

Synthesis of polymer templates. A well-defined PB-P2VP block copolymer with 30 wt-% PB and a 

molecular weight of 2.0 × 105 g/mol was synthesized by anionic polymerization. The synthesis of the 

polybutadiene-poly(2-vinylpyridine) diblock copolymers (PB-P2VP) was accomplished via sequential 

living anionic polymerization. Butadiene polymerization was initiated with sec-BuLi at -70°C, and 

butadiene was allowed to polymerize at -10°C for 8 h. After subsequent cooling to -70°C, 2-

vinylpyridine was added to the reaction mixture. After 1h reaction time, the polymerization was 

terminated with degassed methanol, and the product precipitated in a water/methanol mixture. 

According to NMR and GPC, coupled to a multi-angle laser light scattering detector, the polymer 

synthesized is PB30P2VP70
200. The subscript numbers denote the mass fraction in percent, and the 

superscripts give the number-average molecular weight in kg/mol. For crosslinking of the block 

copolymer in the bulk state, a 10 wt% solution of PB-P2VP in THF was allowed to evaporate slowly in 

the presence of 40 wt% of Lucirin TPO, corresponding to the amount of polymer. After complete 

evaporation of the solvent and film annealing, the films were crosslinked on a UV lamp (cut-off < 350 

nm) for 2 – 6 hours. Subsequently, soxhlet extraction was performed in THF and the insoluble product 

underwent ultrasonication in THF dispersion in order to obtain soluble PB-P2VP core-crosslinked 

cylinders. The weight fractions are chosen in such a way that it form a cylindrical morphology in the 

bulk state with PB-cylinders embedded in a P2VP matrix. The unsaturated PB-cores were crosslinked 

using a commercial photointiator to lock the cylindrical structure. The core-crosslinked cylinders 

exhibit worm-like morphologies when dissolved in THF or acetone.  

 

Synthesis of Keggin POM nanocomposites. The core-crosslinked PB-P2VP, worm-like or spherical, 

polymer solution in THF (0.5 wt%) was added to 10 mL of 10-2 M Keggin POM (e.g.; H4SiMo12O40 

.6H2O) in THF with continuous stirring for 6h. With the addition of polymer solution to Keggin POM 

solution, coloured precipitates produced. When the basic PB-P2VP polymer solutions were added to the 

Keggin POM (which is a heteropolyacid) solution, some of the P2VP units are protonated. Thus, in the 
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case of P2VP strong Coulomb interactions with the Keggin POM anions provide an additional driving 

force for organic-inorganic composite formation. In this way coloured precipitates were produced by 

grafting coloured Keggin POMs over the polymer templates. When the neutralization point was reached 

the colour of the Keggin POM solution had disappeared completely due to the complete grafting of the 

Keggin POMs over the polymer template. The resultant precipitate aged in the reaction mixture for 12 

h. The precipitate was washed 3 times with deionized water and kept for overnight drying at 100oC. The 

polymer-Keggin POM nanocomposites are referred hereafter as Keggin POM-X (see Table 1 for 

labels).  

 

Instruments and measurements: Field-emission scanning electron microscopy (FESEM) was performed 

using a LEO Gemini microscope equipped with a field emission cathode. Transmission electron 

microscopy (TEM) was performed on a Zeiss CEM 902 microscope at an accelerating voltage of 80 kV. 

Samples for TEM analysis were prepared by sonicating the samples in ethanol for 2 min followed by 

depositing one drop on a holey carbon film supported by a copper grid using a Pasteur pipette. Fourier 

transform infrared (FTIR) spectroscopy data was collected on a Brucker IFS66V using KBr pellets. 

Before the measurements, samples were heated to 100 oC for 12 hours and KBr pellets were pressed. 

Powder X-ray diffraction (PXRD) measurement was performed at 25 °C on a Panalytical XPERT-PRO 

diffractometer in reflection mode using Cu Kα radiation. Nitrogen physisorption was conducted at 77 K 

on a Quantachrome Autosorb 1 instrument. Prior to the measurements, the samples were degassed at 

373 K for 24 h. Ambient-temperature. All calcinations were done step-wise in a tube furnace, first under 

argon atmosphere with step-wise heating (200 oC – 5 h, and 375 oC – 12 h), followed with a second 

calcination in air with step-wise heating (200 oC – 2 h, and 300 oC – 5 h) at 3 oC min-1 heating and 

cooling rate. 
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Results and Discussion  

Polymer Templates. As outlined in the the introduction, bi- and tri-block-copolymers are meanwhile 

well established as structure- directing agents for preparing mesostructured organic-inorganic composite 

materials. With established neutral templates like Pluoronic 123, the final morphology is determined by 

the cooperative self-organization of the organic template and the molecular inorganic precursor into 

three-dimensionally structured arrays which is driven by van der Waals-, multipole-multipole-

interactions, and hydrogen bonding. The synthesis of Keggin POM nanostructures with pre-designed 

morphology and composition would be greatly corroborated by the flexibility in reaction conditions 

offered by stable polymer nanostructures. Unlike dynamic templates like Pluronic 123, rigid templates, 

as used in this study, are resistant to changes in reaction parameters like pH, temperature, ionic strength, 

etc. Furthermore, Coulomb interactions between quaternized P2VP chains of the polymer templates and 

anionic Keggin POMs are the key factors for the robust formation of polymer Keggin POM composites. 

The rigid, core-crosslinked worm-like and spherical polymer nanostructures were examined by 

transmission electron microscopy (TEM). Images are shown in Fig. 1. The core-corona structure of the 

polymer templates are revealed due to the different electron penetrability of the PB core and P2VP 

corona. In case of the worm-like polymer template, the diameter of the PB core is approximately 40 nm 

and the P2VP corona extends ca. 35 nm around the PB-core (Fig. 1a). The total diameter of the worm-

like polymeric rods is ca. 110 nm. As sonication is necessary for the dissolution of the core-crosslinked 

PB-P2VP template, worm-like polymer rods may break during this treatment and different lengths are 

observed. In case of spherical polymer templates (Fig. 1b), the total diameter of the spheres is ca. 30 

nm. Fig. 2 shows the FESEM image of worm-like polymer rods at different magnification, where the 

smooth surface of the polymer cylinders can be observed. Efforts to record FESEM images of core-

crosslinked spherical polymer templates were not successful due to the small size and resolution limits 

of the microscope.  

 

Polymer-Keggin POM nanocomposites. In an earlier report, we have proved the applicability of our 
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novel approach by grafting [SiMo12O40]4- ions on core-crosslinked PB-P2VP block copolymer 

nanorods. The resultant Keggin POM nanocomposites showed high surface areas and good dispersion 

of the Keggin POM over polymer nanorods. Similarly, in this report the polymer-Keggin POM 

nanocomposites are synthesized by adding the PB-P2VP polymer template solution (worm-like or 

spherical) to different Keggin POM solutions (e.g., H3PMo12O40), also in THF. When neutral polymer 

templates (worm-like or spherical) in THF are added to the Keggin POM solution (which is a 

heteropolyacid) the 2-vinylpyridine units in the template arms will be protonated. The anionic POMs 

then assemble driven by strong Coulomb interactions between the cationic 2-vinylpyridinium arms. The 

polymer-Keggin POM nanocomposites are labeled as Keggin POM-X (see Table 1). The polymer-

Keggin POM nanocomposites were characterized using field emission scanning electron microscopy 

(FESEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), N2 sorption 

measurements, and Fourier transform infrared (FTIR) measurements. 

 

Figure 1. TEM images of the core-crosslinked PB-P2VP worm-like and spherical polymer templates. 
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Figure 2. FESEM images of the core-crosslinked PB-P2VP worm-like polymer template at different 
magnifications.  

 

Worm-like polymer-Keggin POM nanocomposites. Addition of core-crosslinked polymer templates to 

different metal centered Keggin POMs, as observed before, resulted Keggin POM grafted polymer-

Keggin POM nanocomposites. FESEM images of worm-like polymer-Keggin POM nanocomposites, 

Keggin POM-1, 2, and 3 are shown in Fig. 3 (a, b, and c). In comparison to the pure core-crosslinked 

polymer nanorods (Fig. 2), the surface of the Keggin POM-1, 2, and 3 is rough (Fig. 3). The surface 

roughness of the Keggin POM-1, 2, and 3 is due to the grafting of Keggin POM anions around the core-

crosslinked polymer template. Please note, that the length of core-crosslinked polymer nanorod 

templates, as expected, does not influence the composite formation. The Coulomb interactions renders 

the assembly very robust. When core-crosslinked polymer nanorods are dispersed in THF solution by 

prolonged stirring instead of sonication the length of the nanorods as observed in the bulk is preserved 

in the solution. When these very long nanorods were added to Keggin POM solution, Keggin POM 

composites with a interesting microstructure are obtained. Bundles of these very long rod-like 

composite structures are textured similar to a filter pad. (see ESI Fig. S1). TEM images of Keggin 

POM-1 and 2 are shown in Fig. 4 (a and b). The surface roughness of the worm-like polymer template 

due to the precipitation of Keggin POM anions around the rigid cationic template are also obvious when 

comparing the TEM images of the pure polymer template (Fig. 1a) with Keggin POM-1 and 2 (Fig. 4 a 
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and b). HRTEM images (Fig. 4 c and d). of the composites suggest that Keggin POMs are indeed 

homogenously assembled around the template as would be expected for a composite formation 

mechanism based on homogeneous Coulomb interactions. 

 

Table 1. Properties of the polymer-Keggin POMs nanocomposites. 

Sample composite composition surface area[a] 

(m2g-1) 

 commercial Keggin POMs  

H4SiMo12O40 .6H2O  4 

H3PMo12O40 6H2O  3 

H3PW12O40 .6H2O  4 

 worm-like polymer-Keggin POM 

composites 

 

Keggin POM-1 worm-like PB-P2VP + H4SiMo12O40 .6H2O 39 

Keggin POM-2 worm-like PB-P2VP + H3PMo12O40 6H2O 34 

Keggin POM-3 worm-like PB-P2VP + H3PW12O40 .6H2O 36 

 spherical polymer-Keggin POM 

composites 

 

Keggin POM-4 spherical PB-P2VP + H4SiMo12O40 .6H2O 49 

Keggin POM-5 spherical PB-P2VP + H3PMo12O40 6H2O 58 

Keggin POM-6 spherical PB-P2VP + H3PW12O40 .6H2O 54 

[a] 5 point BET  
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Figure 3. FESEM images of (a) Keggin POM-1, (b) Keggin POM-2, (c) Keggin POM-3, (d) Keggin 

POM-4, (e) Keggin POM-5, and (f) Keggin POM-6.  
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Figure 4. TEM and HRTEM images of the (a and c) Keggin POM-1 and (b and d) Keggin POM-2. 

 

In addition, wide-angle powder XRD patterns of the commercial Keggin POMs and Keggin POM-1, 

2, and 3 were recorded (see ESI Fig. S2). In contrast to the commercial Keggin POMs, XRD patterns of 

Keggin POM-Xs do not show any characteristic peaks for crystalline Keggin POMs, which is also an 

indication of very high dispersion of Keggin POMs in the polymer matrix. The grafting of Keggin POM 

anions over polymer templates was further verified by FTIR analysis. FTIR spectra of the commercial 

Keggin POMs, and Keggin POM-1, 2, and 3 were shown in Fig. 5. It has been widely reported that the 

Keggin-type POMs show four characteristic bands, which are the fingerprint of the Keggin 

structure.12;31 There are four kinds of oxygen atoms in Keggin POMs, e.g.; in H4SiMo12O40 .6H2O 
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these characteristic bands were observed at νas (Mo-Od) – 952 cm-1, νas (Mo-Ob-Mo) – 794 cm-1, νas (Mo-

Oc-Mo) – 864 cm-1, and νas (Si-Oa) – 902 cm-1. H3PMo12O40 .6H2O exhibits these characteristic bands at 

νas (Mo-Od) – 960 cm-1, νas (Mo-Ob-Mo) – 870 cm-1, νas (Mo-Oc-Mo) – 785 cm-1, and νas (P-Oa) – 1065 

cm-1 where as H3PW12O40 .6H2O exhibits these characteristic bands at νas (W-Od) – 990 cm-1, νas (W-Ob-

W) – 890 cm-1, νas (W-Oc-W) – 810 cm-1, and νas (P-Oa) – 1080 cm-1. The FTIR spectrum of the Keggin 

POM-1, 2, and 3 corresponds well to the superposition of the spectra of the commercial Keggin POMs 

and PB-P2VP polymer templates, which is an indication that the Keggin structure stayed intact when 

being grafted around the polymer templates. However, there is a shift observed in the frequencies for 

Mo-O-Mo, and W-O-W (both corner and edge shared) vibrations, the basal oxygens which are involved 

in de-protonation reactions of Keggin POMs. Both vibrations shift to higher wave numbers indicating 

that there is a change in the degree of protonation of the Keggin POMs dispersed in the polymer matrix 

in comparison to commercial Keggin POMs. The N2 sorption measurements of Keggin POM-1, 2 and 3 

show that the developed Keggin POM nanocomposites exhibit high surface areas. Keggin POM-1, 2, 

and 3 exhibit 39, 34, and 36 m2g-1 surface areas, respectively where as the commercially available 

corresponding Keggin POMs only has 4, 3, and 4 m2g-1 surface areas. Approximately 10 times increase 

in surface areas was observed.  

 

Spherical polymer-Keggin POM nanocomposites. The crosslinking step offers easy control over the 

template structure. Therefore we are not limited to worm-like structures. To proof the general 

applicability we also synthesized composites applying spherical templates. The same procedure as for 

worm-like composites was followed for the synthesis of spherical polymer-Keggin POM 

nanocomposites. FESEM images of spherical polymer-Keggin POM nanocomposites, Keggin POM-4, 

5, and 6, are shown in Fig. 3 (d, e, and f). The results are in accord with worm-like polymer-Keggin 

POM nanocomposites. TEM images of the spherical polymer-Keggin POM nanocomposites Keggin 

POM-4, and 5 were shown in Fig. 6. In comparison to the pure core-crosslinked polymer nanospheres 

(Fig. 1b), the roughness of the surfaces of Keggin POM-4 and 5 clearly indicats the composite 
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formation by grafting of Keggin POMs over the spherical polymer template (Fig. 6).  
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Figure 5. FTIR spectra of the pure Keggin POMs and corresponding polymer-Keggin POM 

nanocomposites; A: H4SiMo12O40 .6H2O (a), Keggin POM-1 (b), and Keggin POM-4 (c); B: 

H3PMo12O40 .6H2O (a), Keggin POM-2 (b), and Keggin POM-5 (c); C: H3PW12O40 .6H2O (a), Keggin 

POM-3 (b), and Keggin POM-6 (c). 
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Figure 6. TEM images of the (a) Keggin POM-4 and (b) Keggin POM-5. 

In the spherical polymer-Keggin POM nanocomposites the interaction of grafted Keggin POMs leads 

to a three-dimensional network of spherical composite particles forming mesopores and macropores. 

The N2 sorption measurements of Keggin POM-Xs also show that the obtained Keggin POM 

nanocomposites exhibit high surface areas. Keggin POM-4, 5, and 6 exhibit 49, 58, and 54 m2g-1 surface 

areas, respectively where as the commercially available corresponding Keggin POMs only have 4, 3, 

and 4 m2g-1 surface areas. Approximately a 15 times increase in surface areas was observed. In 

comparison to the worm-like polymer-Keggin POM composites, spherical polymer-Keggin POM 

nanocomposites exhibit higher surface areas.  

 

Calcination studies 

Calcination studies. The acidic and oxidizing properties of Keggin POM have been used in the 

field of catalysis, in fundamental and applied research.11;12 Many catalytic reactions are performed at 

temperatures above 300 °C, where the organic templates are no longer stable. Therefore it would be 

desirable to convert the composite materials into purely inorganic ones without loosing the morphology. 

Additionally one would expect an increase of surface area if the rods could be successfully turned into 

hollow tubes. Hence, the thermal behavior of Keggin POM-2 has been investigated in some detail using 

IR and PXRD. Above 450 oC, the Keggin structure is completely destroyed.11;12 In general, 
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decomposition of H3PMo12O40 6H2O occurs in a wide temperature range, leading to mixtures of α- and 

β-MoO3. As mentioned earlier, core-crosslinked PB-P2VP was used for grafting Keggin POM which 

has hydrophilic P2VP block and sp2 hybridized carbon containing hydrophobic PB blocks. When 

subsequently heat treated under an inert environment the sp2 carbon containing PB block of the 

composites convert to amorphous carbon material. Such in-situ carbon has been shown to act as a rigid 

support for titania walls. Subsequently, the carbon support could be removed without collapse of the 

mesostructure. Following this strategy, Keggin POM-2 was calcined in two steps in a tube furnace in 

order to remove the template: Calcinations at 375 oC for 12 h in argon was followed by at calcinations 

at 300 oC for 5 h in air to remove the carbon formed in situ during the first step. It is worth noting that 

when first heat-treated under argon the characteristic ‘fingerprint-like’ band structure is lost, see Figure 

7 c. During pyrolysis under argon some of the Mo(VI) centers apparently are reduced, resulting in the 

disappearances of the νas (Mo-Ob-Mo), and νas (Mo-Oc-Mo) vibrations. However, the final heat-

treatment in air not only removes the carbon but it also re-oxidizes Mo to Mo(VI) centers and the 

characteristic ‘fingerprint-like’ band-structure of the Keggin POM is fully restored. (Fig. 7d). 

PXRD patterns did not show any characteristic crystalline peaks indicating that the material is still 

amorphous (see ESI Fig. S3) after the heat treatment. FESEM images of argon calcined samples still 

show the rod-like morphology (Fig. 8a). Upon further calcinations in air FESEM images show that long 

rod-like structures were broken down into smaller but still rod-like morphologies. Unfortunately, the N2 

sorption measurements of calcined Keggin POM-2 show that the surface area is decreased to 27 m2g-1, 

and 22 m2g-1 for argon and air calcined samples, respectively whereas the corresponding Keggin POM-

2 has 34 m2g-1 surface area. At the present stage, our attempts to increase the surface areas by removal 

of the polymer template were unsuccessful. But it might be possible by sonicating or grinding the argon 

calcined samples. An investigation of this aspect is ongoing. Additionally, the removal of the 

phosphorous from the herteropolyacids by gentle annealing in vacuum followed by a crystallization of 

the amorphous molybdenum oxide walls into stable and metastable phases MO3 will be investigated. 
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Figure 7. FTIR spectra of the (a) commercial H3PMo12O40 .6H2O, (b) Keggin POM-2, (c) 
corresponding argon calcined at 375 oC for 12 h, and (d) argon calcined and then air calcined at 300 oC 
for 5 h  samples. 

 

Figure 8. FESEM images of the (a) argon calcined POM-2 at 375 oC for 12 h, and (b) argon calcined 

and then air calcined POM-2 air calcined at 300 oC for 5 h. 
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Summary  

In conclusion, we presented a new approach for the synthesis of high surface area Keggin-type 

polyoxometalates by grafting Keggin-type heteropolyoxometalates around the protonated, core-

crosslinked PB-P2VP worm-like/spherical polymer templates. Composite formation is extremely robust 

because it is driven by Coulomb interactions between template and inorganic precursor. Our approach 

allows easy control over the synthesis and morphology of Keggin POM nanocomposites.  

The produced polymer-Keggin POM nanocomposites exhibit high dispersion, greatly improved 

surface areas and are thus expected to be useful in catalytic and electrochemical related applications. To 

the best of our knowledge, we report the highest surface areas achieved for polymer-Keggin POM 

nanocomposites up to date. 
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Figure S1. FESEM images of Keggin POM-2 using core-crosslinked long polymer templates. 
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Figure S2. Powder X-ray diffraction patterns of (A): (a) H4SiMo12O40 .6H2O, (b) Keggin POM-1, and 

(c) Keggin POM-4; (B): (a) H3PMo12O40 6H2O, (b) Keggin POM-2, and (c) Keggin POM-5; and (C): 

(a) H3PW12O40 .6H2O, (b) Keggin POM-3, and (c) Keggin POM-6.  
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Figure S3. Powder X-ray diffraction patterns of (a) H3PMo12O40 6H2O, (b) Keggin POM-2, and (c) 

argon calcined Keggin POM-2.  
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Introduction 

The ability of organic materials to self-assemble into a variety of nanostructures 

with well-defined shape and size has resulted in their role as structure directing agents 

(SDA) or templates in the discovery of fascinating organic-inorganic hybrid materials1-3. 

An important class of organic SDAs or templates used for the synthesis of hybrid and/or 

porous materials is the class of amphiphilic block copolymers3-4. Combined principles of 

self-assembly, polymer, colloidal, and inorganic chemistries were used to synthesize 

materials with unknown functionalities and properties5-9. On the other side, Keggin-type 

polyoxometalates (Keggin POM), discrete clusters with frameworks built mainly from 

transition metal oxo anions, exhibit unique properties leading to applications in fields 

such as catalysis, electrochemistry, and host-guest chemistry10-14. For instance, Keggin-

type vanado-molybdo-phosphates have been extensively studied as active catalysts for 

the selective oxidation of several alkanes, aldehydes and acids15-16.  

Up until today, however, the relatively small surface areas of Keggin POMs (3 

m2g-1 for commercial H3PMo12O40) hinders accessibility to the active sites and limits 

their applications10. High surface area mesoporous Keggin POMs are expected to be 

useful in a variety of applications such as high performance acid and redox catalysis, 

sensor devices and electrodes, due to their high ion conductivity, electron density, and 

rapid and reversible oxidative-reductive processes12-14. 

Since the discovery of mesoporous silica MCM-417, and SBA-158, these high 

surface area solids were used for the dispersion and/or encapsulation of Keggin POMs17-

19. Even though the accessible surface area for Keggin POMs can be increased by these 

methods, limitations result from low Keggin POM loading, leaching of the active sites 
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into the reaction medium and pore blocking in porous supports10. Furthermore, attempts 

have been made to prepare mesostructured pure Keggin POM hybrid materials enroute to 

high surface area porous materials. Stein and co-workers have synthesized layered 

materials consisting of H2W12O40
5. Whittingham and co-workers have reported a similar 

material6. On the other hand, Ichinose and coworkers have described composite materials 

with a layered array of polyanions20. Iwamoto and co-workers prepared hexagonally 

mesostructured arrays of heteropolyanion composites21. Another approach involves the 

synthesis of POM nanocomposites using organic surfactants or polymers22. However, the 

accessible surface area for these composite materials is lower than that of the pure POM5. 

To allow free access to the Keggin POM active sites the organic templates need to be 

removed, but until now template removal resulted in collapse of the hybrid structures21,5. 

Neumann and co-workers used polymeric micelles to synthesize Keggin POM 

nanoparticles and observed improved catalytic activities23. Earlier, some of us have 

reported discrete polymer-Keggin POM worm-like nanostructures by grafting Keggin 

POMs on core-crosslinked block copolymers24. All together, these results show the 

general applicability of the use of organic materials (surfactants, and block copolymers) 

as SDAs and/or templates for the synthesis of mesostructured materials with polyanions 

such as Keggin ions. However, until now high surface area mesoporous materials with 

hexagonally ordered and uniform pores from Keggin ion frameworks have not been 

reported.  

Here we describe the synthesis of hexagonally ordered mesoporous Keggin POM 

using amphiphilic diblock copolymers as structure directing agents. Scheme 1 

summarizes the approach. Keggin POM itself is used as inorganic precursor.  Because of 
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the small size of the Keggin cluster below 2 nm5,10 it is not expected to perturb the 

polymer chain conformations much thus favouring molecular mixing with the hydrophilic 

block of the block copolymer25. Poly(isoprene-block-dimethylamino ethylmethacrylate) 

(PI-b-PDMAEMA) and poly(isoprene-block-ethylene oxide) (PI-b-PEO) were used as 

structure directing agents with hydrophilic PDMAEMA or PEO blocks and sp2 

hybridized carbon containing hydrophobic PI blocks26 while the PEO block carries no 

ionizable groups, some of the amine units in the PDMAEMA block are protonated when 

solutions of this polymer are added to a Keggin POM (which is a heteropolyacid) 

solution. Thus, in the case of PDMAEMA the effect of Coulomb interactions with the 

Keggin POM anions can be studied as an additional driving force for organic-inorganic 

composite formation. When subsequently heat treated under an inert environment, the sp2 

hybridized carbon containing PI blocks of the composites convert to amorphous carbon 

material. This in-situ carbon acts as a rigid support to mesostructured Keggin POM walls 

and prevents structure collapse during heat treatment27. As we will show, at the same 

time some of the Mo(VI) centers of the Keggin POM are reduced. Final calcinations in 

air remove the in-situ formed carbon and re-oxidize the Mo(VI) centers of the Keggin 

POM, resulting in mesoporous materials with intact Keggin POM structures.  
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Scheme 1. Synthesis of mesoporous materials with Keggin POM framework using an 

amphiphilic diblock copolymer and H3[PMo12O40]. 

 

Well-defined PI-b-PDMAEMA and PI-b-PEO block copolymers with 33 wt% 

PDMAEMA and a molecular weight of 3.0 × 104 g mol-1 and 23 wt% PEO and a 

molecular weight of 1.6 × 104 g mol-1, respectively, were synthesized by anionic 

polymerization (see experimental section). PI-b-PDMAEMA or PI-b-PEO and Keggin 

POM were separately dissolved in THF. The polymer solution was added slowly to the 

Keggin POM solution under stirring at room temperature. Volatiles were evaporated after 

casting the block copolymer/Keggin POM solutions into dishes in air at 50 °C resulting 

in amorphous hybrid films of 0.5-1 mm thickness. Films were prepared with seven 

different PI-b-PDMAEMA : Keggin POM and four different PI-b-PEO : Keggin POM 

weight ratios (1:0.5, 1:1, 1:1.5, 1:2, 1:3, 1:4, and 1:7 and 1:1, 1:1.5, 1:2 and 1:3, 

respectively).  
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Figure 1. Materials characterization by photography and electron microscopy. 

Photographs of polymer-Keggin POM composite films prepared from PI-b-PDMAEMA 

and H3[PMo12O40] with different PI-b-PDMAEMA to Keggin POM loadings: a, 1: 0.5 

and b, 1: 4. TEM images of as-made and heat-treated 1:4 PI-b-PDMAEMA/ Keggin 

POM composite materials: c, as-made material with PI appearing as bright cylinders in a 

PDMAEMA/ Keggin POM matrix (dark); d, argon calcined material; e-g, air calcined 

mesoporous Keggin POM materials at different magnifications. Dotted lines in g indicate 

mesopores of different sizes.  
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Figure 1a and b show representative images of films obtained from 1:0.5 and 1:4 

weight ratios for the PI-b-PDMAEMA based composites (see ESI Figure S1 for images 

of the other compositions). At low Keggin POM content films were transparent with 

green colour. As the Keggin POM content increased films showed a dark blue colour. In 

general, the molybdenum compound turns blue in air because of both its partial reduction 

and hydrolysis to form the so-called molybdenum blues10-11. For all weight ratios films 

were homogeneous and did not show any signs of macrophase separation. The Keggin 

POM anions selectively swell the hydrophilic block of the block copolymers. The 

resulting polymer-Keggin POM composite films were calcined in two consecutive steps. 

Heating under argon atmosphere to 375 °C removed all organic components and 

converted the PI block into amorphous carbon. Additionally, some of the Mo(VI) centers 

become reduced. Subsequent heating in air to 300-350 °C oxidized this carbon away and 

re-oxidized all Mo to Mo(VI) again resulting in the final materials. Our preparation 

method could be referred to as a one-pot synthesis, as all the processing steps can be 

carried out in a single container from mixing the precursors, casting the films to the final 

calcined products. 

As-made and calcined materials were characterized using combinations of small 

angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), transmission electron 

microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman 

spectroscopy and N2 sorption measurements.  Here, we focus mostly on the discussion of 

materials with organic to inorganic reactant mass ratios of 1:3 – 1:4. Figure 2 shows 

small angle (a, b) and wide angle powder (c) X-ray scattering (SAXS and WAXS) traces 

of as-synthesized Keggin POM polymer hybrids and calcined materials.  
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Figure 2. Materials characterization by X-ray scattering. a, SAXS patterns of as-

made PI-b-PEO/ Keggin POM 1:3 composite (A) and as-made PI-b-PDMAEMA/ Keggin 

POM 1:4 composites (B-D). b, 2-D SAXS pattern of air-calcined mesoporous Keggin 

POM material obtained from PI-b-PDMAEMA/ Keggin POM 1:4 composite. c, SAXS 

patterns of argon calcined (A) and air calcined (B, C) mesoporous Keggin POM materials 

obtained from PI-b-PDMAEMA/ Keggin POM 1:4 composite. d, Wide angle PXRD 

patterns of as-made PI-b-PDMAEMA/ Keggin POM 1:4 composite (A) and air-calcined 

mesoporous Keggin POM material (B). 
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A representative SAXS trace of PI-b-PEO derived as-made organic-inorganic 

hybrids with 1:3 weight ratio is depicted in Figure 2a(A). It exhibits a first order 

maximum with corresponding d-spacing of 19.2 nm and at least one higher order 

reflection at angular position of 4 of the first-order maximum, consistent with a 

lamellar structure. SAXS traces of three PI-b-PDMAEMA derived as-made hybrids with 

1:4 weight ratio, Figure 2aB, C and D, show first-order peaks with corresponding d-

spacing of 20.7, 19.9 and 22.1 nm, respectively, and at least two higher order reflections 

at angular position of 3 and 4 of the first-order maximum, consistent with PI 

cylinders packed in a hexagonal lattice. As is evident from these traces there is a 

noticeable variation in d-spacing between samples prepared with essentially identical 

Keggin POM/ PI-b-PDMAEMA block copolymer weight ratios under the same 

experimental conditions as well as between different measurements on the same sample 

(see below). These variations may be due to strong cluster formation between oppositely 

charged block copolymer chains and the Keggin POM structures in solution. Upon film 

casting the mobility of the clusters is obviously high enough to form structures with long-

range order. But due to the relatively strong Coulomb interactions the distribution of 

cluster sizes may lead to variations in domain thickness in the bulk. 

TEM studies corroborated structure assignments from SAXS experiments. Figure 

1C shows a representative image of a 1:4 PDMAEMA/ Keggin POM composite with 

hexagonal mesostructure. As-made Keggin POM polymer hybrids did not show any 

peaks in PXRD patterns characteristic for the parent crystalline Keggin POM suggesting 

that the Keggin POM is well dispersed in the polymer matrix (see Figure 2dA). 
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Table 1. Wave number values (cm-1) and assignment of FTIR bands of the Keggin POM 

composites and mesoporous materials 

sample νas  

(P-Oa) 

νas  

(Mo-Ob-Mo) 

νas  

(Mo-Oc-Mo) 

νas  

(Mo-Od) 

commercial Keggin 

POM (H3PMo12O40) 

1064 869 785 961 

polymer-Keggin POM 

composite 

1060 878 794 956 

air calcined mesoporous 

Keggin POM 

1061 874 799 960 

 

Figure 3a shows representative FTIR spectra of (A) the parent Keggin POM 

(H3PMo12O40) and (B) 1:4 PI-b-PDMAEMA-Keggin POM hybrid material. Keggin 

POMs generally show four characteristic bands, which is a fingerprint of the Keggin 

structure10,28. There are four kinds of oxygen atoms in H3PMo12O40 (Oa – oxygen in PO4 

tetrahedra, Od – terminal oxygen atom to Mo, Ob – corner sharing oxygen and Oc – edge 

sharing oxygen) giving rise to characteristic bands at νas (Mo-Od) – 963 cm-1, νas (Mo-Ob-

Mo) – 870 cm-1, νas (Mo-Oc-Mo) – 785 cm-1, and νas (P-Oa) – 1067 cm-1, in agreement 

with what was observed for the commercial Keggin POM (Figure 3a(A)). The FTIR 

spectrum of the as-made PI-b-PDMAEMA-Keggin POM hybrid (Figure 3a(B)) 

corresponds well with an overlay of the spectra of PI-b-PDMAEMA and commercial 

Keggin POM, suggesting that the Keggin structure stayed intact upon composite 

formation. A summary of the peak positions of the various materials is given in Table 1. 

The observed shift in wavenumber for both of the Mo-O-Mo vibrations is likely due to a 

change in the environment of the Keggin POM anions dispersed in the polymer matrix in 

comparison to the commercial Keggin POM.  
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Table 2. Properties of mesoporous Keggin POM materials 

sample surface area[a] (m2g-1) pore size[b] (nm) 

commercial non-porous Keggin POM 3.0 3.7 

argon calcined mesoporous Keggin POM 27.0 9.5 

air calcined mesoporous Keggin POM 30.0 12.2 

[a] 5 point BET [b] BJH desorption branch 

 

The as-made films were subsequently heat treated under argon in a tube furnace 

to 375 °C in several stages. During this process, the hydrophilic block is burnt off and the 

Keggin POM is thought to sinter into wall material. At the same time, part of the PI is 

converted to an amorphous carbon that lines the Keggin POM walls of the resulting 

cylindrical pores in analogy to what has recently been observed for transition metal 

oxides based composites27. Structural characterization of samples heat-treated under 

argon suggested that the nanostructure was preserved. Diffractograms of heat-treated 1:4 

PI-b-PDMAEMA/ Keggin POM composites (Figure 2cA) show a first-order peak with 

corresponding d-spacing of 19.5 nm and at least two higher order reflections at angular 

position of 3 and 4 of the first-order maximum consistent with a hexagonal lattice. 

This structural assignment was corroborated by TEM studies (Figure 1d). Nitrogen 

physisorption measurements (Figure 3bA) of porous Keggin POMs calcined under argon 

exhibit a type IV nitrogen sorption isotherm with specific surface area of 27 m2g-1. In 

contrast, the commercial Keggin POM (H3PMo12O40) only has a surface area of 3 m2g-1, 

see Table 2. The pore size estimate of the mesoporous material based on the Barrett-

Joyner-Halenda (BJH) method29 is 9.5 nm, see insert (A) in Figure 3b.  
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Figure 3. Materials characterization. a, FTIR spectra of the commercial Keggin POM 

H3[PMo12O40] (A), as-made 1:4 PI-b-PDMAEMA/ Keggin POM composite (B), 

corresponding argon calcined (C), and air calcined (D) mesoporous Keggin POM 

materials. b, Nitrogen physisorption isotherms of argon calcined (A) and air calcined (B) 

mesoporous Keggin POM materials obtained from PI-b-PDMAEMA/ Keggin POM 1:4 

composite (inset: corresponding pore size distributions). c, Raman spectra of argon 

calcined (A) and air calcined (B) mesoporous Keggin POM materials obtained from PI-b-

PDMAEMA/ Keggin POM 1:4 composite. d, CVs for (A) commercial Keggin POM, (B) 

as-made 1:4 PI-b-PDMAEMA/ Keggin POM composite , and (C) mesoporous Keggin-
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type H3PMo12O40 modified GCEs in 2 M H2SO4. The scan rate in all cases was 50 mV/s. 

Note that the current values are normalized to the amount of H3PMo12O40 modified on 

GCEs. 

Subsequent calcinations of the argon-heated material in air to 300-350 °C 

preserved the inverse hexagonal structure. SAXS diffractograms of two different pieces 

of the same air calcined material (Figure 2c,B and C) show first-order peaks with 

corresponding d-spacings of 18.4 and 22.7 nm, respectively, and at least two higher order 

reflections at angular positions of 3 and 4 of the first-order maxima, consistent with a 

hexagonal lattice. Variations in d-spacing within one sample are also evident from the 2-

D SAXS pattern in Figure 2b showing first-order Bragg spots at slightly different radial 

positions. The structural assignment was corroborated and d-spacing variations within 

one sample were confirmed by TEM studies. The TEM image in Figure 1g shows 

variations in lattice spacings and pore sizes between different grains of the same 

hexagonally ordered sample. From SAXS (Figure 2cB and C) and TEM results (Figure 

1E and F) it is evident, however, that this does not result in loss of long range order in the 

final materials.  

Retention of the structure upon heating in air was also corroborated by N2 

physisorption (Figure 3bB). The oxidized material shows again a type IV nitrogen 

sorption isotherm with specific surface area of 30 m2g-1. The pore size according to the 

BJH method is 12.2 nm. This is slightly larger than the pore size of the material heat-

treated under argon and is expected from the loss of in-situ formed carbon. WAXS 

patterns of the calcined (under argon or under air) material did not show any of the 

characteristic reflections expected from crystalline Keggin POM (see Figure 2d,B). When 
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studied by FTIR, however, the material calcined under argon and subsequently under air 

clearly showed the four ‘fingerprint-like’ bands characteristic of the Keggin structure 

(Figure 3aD). This is consistent with the results of electrochemical studies, see below. It 

is worth noting that when first heat-treated under argon the characteristic ‘fingerprint-

like’ band structure is lost, see Figure 3a,C. During pyrolysis under argon some of the 

Mo(VI) centers apparently are reduced, resulting in the disappearances of the νas (Mo-Ob-

Mo), and νas (Mo-Oc-Mo) vibrations. Our results suggest that final heat-treatment in air 

removes the carbon and re-oxidizes Mo to Mo(VI) centers of the Keggin POM. 

 Separate Raman spectroscopy studies were performed to establish the presence of 

the in-situ-formed carbon and its removal in the final material. A spectrum for a Keggin 

POM material heat-treated under argon to 375 °C is shown in Figure 3c,A. Two bands 

appear around 1600 cm-1 and 1350 cm-1 from graphitic carbon (G-band) and disordered 

carbon (D-band), respectively, typical for amorphous carbon materials27. On subsequent 

calcination in air at 350 °C, the bands disappeared (Fig. 3c,B), suggesting removal of the 

carbon.  

Figure 3d compares representative cyclic voltammograms (CVs) for PI-b-

PDMAEMA derived nanocomposite (as-made) and mesoporous (heated first under argon 

and then under air) H3PMo12O40 modified glassy carbon electrodes (GCEs) in 2 M 

H2SO4, with that of commercial H3PMo12O40 Keggin POM. It should be noted that these 

experiments were primarily performed to establish the preservation of the Keggin POM 

structure and catalytic activity after mesoporous materials formation. Indeed, all samples 

exhibited three two-electron redox processes, characteristic of a Keggin structure30, over 

the potential range from -0.05 V to +0.60 V vs. Ag/AgCl. This is clear proof that the 
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Keggin structure is intact even after conversions to nanocomposite and mesoporous 

materials. 

In summary, we have demonstrated that the block copolymers PI-b-PDMAEMA 

and PI-b-PEO can be used as structure directing agents for Keggin POM. We have 

reported on nanocomposites with lamellar and hexagonal morphologies. High 

temperature treatment of hexagonally ordered nanocomposites resulted in mesoporous 

Keggin POM with open and accessible pores. To the best of our knowledge, this is the 

first time that an ordered mesoporous Keggin POM material has been obtained through a 

block copolymer-type bottom-up approach. This approach has the potential to open a new 

field for the development of nanostructured Keggin POM materials with novel property 

profiles. 

 

Experimental Section 

Block copolymer synthesis: The block copolymers PI−b−PDMAEMA and PI-b-

PEO were polymerized by anionic polymerization as described elsewhere31-33. Gel 

permeation chromatography (GPC) was used to determine the molecular weight of the 

first blocks (polyisoprene, PI) and the polydispersity of the block copolymers. 1H NMR 

was used to determine the overall molecular weights of the block copolymers. The 

resulting PI-b-PDMAEMA polymer had a molecular weight of 31 kg/mol and 33 wt.-% 

PDMAEMA with a polydispersity of 1.04 and the PI-b-PEO polymer had a molecular 

weight of 16 kg/mol and 23 wt.-% PEO with a polydispersity of 1.05. 

Synthesis of composites: The polymer-Keggin POM composite films were 

prepared by adding the PI-b-PDMAEMA or PI-b-PEO polymer solution in THF (J. T. 
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Baker, 99%, used as received) to a separate solution of H3PMo12O40 xH2O (Aldrich, used 

as received) in THF under continuous stirring. In a typical synthesis of a 1: 4 

polymer:Keggin POM composite film, 0.1 g of block copolymer was dissolved in 2 mL 

of THF. This solution was added to the H3PMo12O40 in THF solution (0.4 g Keggin POM 

in 3 mL of THF) at room temperature under continuous stirring. After 30 min, films were 

cast by evaporation of the solvent in air on a hot plate at 50 °C. Following the same 

procedure films with different polymer:Keggin POM weight ratios were obtained.  

Calcination of the samples: Calcinations were always performed in 2 steps. 

First, under argon atmosphere with step-wise heating (150 °C – 5 h, 250 °C - 3 h, and 375 

°C – 10 h), followed with a second calcination in air with step-wise heating (100 °C – 2 

h, 200 °C – 3 h, 300 °C – 5 h (and 350 °C – 5 h)).  

 

Characterization: 

FTIR: data was collected on a Brucker IFS66V using KBr pellets. Before the 

measurements, samples were heated to 100 oC for 12 hours and KBr pellets were pressed. 

Raman: Ambient-temperature Raman spectroscopy experiments were performed using a 

Jobin Yvon Labram spectrometer with a 632.8 nm He-Ne excitation line and laser output 

power of 8 mW. The laser beam was focused using a 50× objective, resulting in a spot 

having a diameter of ∼5 μm. 

SAXS: data was obtained at the Cornell High Energy Synchrotron Source (CHESS) and 

on a Rigaku RU300 copper rotating anode X-ray spectrometer (λ = 1.54 Å) operated at 

40 kV and 50 mA. Data were collected with a CCD 2-D detector operating at X-ray 

energy of 1.223 Å and with a homebuilt 1 K × 1 K pixel CCD detector, respectively. 
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PXRD: patterns were collected using a PANalytical X-ray diffractometer with Ni-filtered 

Cu Kα radiation (40 kv, 40 mA) at 0.008° step size and 1.2 s step time over 5 < 2θ < 80° 

range. 

TEM: was performed on a Zeiss CEM 902 microscope at an accelerating voltage of 80 

kV. Samples for TEM analysis were prepared by sonicating the samples in ethanol for 2 

min followed by depositing one drop on a holey carbon film supported by a copper grid 

using a Pasteur pipette. 

BET: Nitrogen physisorption was conducted at 77 K on a Quantachrome Autosorb 1 

instrument. Prior to the measurements, the samples were degassed at 373 K for 24 h. 

 

Preparation and Characterization of Polyoxometalate, H3PMo12O40, Modified 

Electrodes: H3PMo12O40 modified electrodes were prepared by casting dispersions 

containing H3PMo12O40, Nafion® (5 wt% solution in lower aliphatic alcohols/H2O mix, 

Aldrich, used as received), isopropanol (IPA, Mallinckrodt Chemicals, used as received), 

and H2O on glassy carbon electrodes (GCEs) (Pine Instrument Co., 5.0 mm diameter). 

The dispersions were prepared by mixing H3PMo12O40, 20 µl of a Nafion solution, 1000 

µl of IPA, and 3980 µl of H2O. The mixtures were sonicated for 10 minutes to 

homogenize. 8 µl of the dispersion was cast on a GCE with a micro-pipet (10 µl, Gilson, 

Inc.) and subsequently dried under vacuum at room temperature for an hour to obtain the 

H3PMo12O40 modified GCEs. 

Electrochemical characterization of H3PMo12O40 modified electrodes was carried 

out at room temperature via cyclic voltammetry (CV) (Hokuto Denko Co. (Japan), model 

HSV-100). Measurements were taken in a three-electrode cell configuration using a 
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GCE, a large area Pt coil counter electrode, and a potassium chloride-saturated Ag/AgCl 

(Bioanalytical Systems, Inc., BAS) reference electrode without regard to the liquid 

junction potential, and against which all potentials are reported. The working electrode 

was polished with 0.3 µm and 0.05 µm alumina slurries (REFINETEC Ltd.), rinsed with 

Millipore water and acetone, and dried prior to use. Unless otherwise noted, all 

experiments were carried out in a 2 M sulfuric acid (H2SO4, 99.999%, Aldrich, used as 

received) solution, which was thoroughly purged using pre-purified nitrogen gas. The 2 

M H2SO4 electrolyte solutions employed were prepared with Millipore water (18 MΩcm, 

Millipore Milli-Q).  

The specific electrochemical activity of the three samples, a total faradaic charge 

due to redox reactions of H3PMo12O40 normalized to the amount of H3PMo12O40 on 

GCEs, was 2.3, 4.4 and 4.1 Cg-1 for the parent Keggin POM, nanocomposite and 

mesoporous material, respectively. However, the H3PMo12O40 materials studied (i.e., 

parent, nanocomposite, and mesoporous materials) were found to partially dissolve in the 

IPA/H2O solution during the modification of H3PMo12O40 on GCEs. Therefore, 

comparison of the specific electrochemical activity of the different samples is only 

qualitative. In particular, under the experimental conditions employed in this study, the 

full potential of the high-surface-area property of the mesoporous H3PMo12O40 is not 

taken advantage of. 
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Abstract 

High crystallinity and controlled porosity are advantageous for many applications such as 

energy conversion and power generation. Despite many efforts in the last decades, the direct 

synthesis of organic-inorganic composite materials with well crystalline transition metal 

oxides is still a major challenge. In general molecular precursors serve as inorganic precursors 

and heat treatment is required to convert as-synthesized amorphous composites to stable 

crystalline materials. Herein, we present an alternative approach to the direct synthesis of 

crystalline polymer-metal oxide composites by using spherical polyelectrolyte brush (SPB) as 
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the template system. Pre-synthesized electrostatically stabilized rutile nanocrystals which 

carry a positive surface charge were used as inorganic precursors. In this approach, the strong 

Coulomb interactions between anionic polyelectrolyte brush chains and cationic crystalline 

rutile colloids, which surfaces are naked and therefore reactive, are the key factors for the 

organic-inorganic crystalline composite formation. Stepwise calcinations first under argon 

followed with a second calcination in air lead to the complete removal of polymer template 

without collapse and porous rutile balls are obtained. The results suggest that any colloids that 

carry a surface charge might serve as inorganic precursors when charged templates are used. 

It is expected that this hierarchical route to structure oxides at the mesoscale is generally 

applicable. 

 
1. Introduction 

 Extensive research efforts have been devoted to the development of rational synthesis 

pathways for porous inorganic materials. Potential applications in catalysis, photocatalysis, 

adsorbents, sensors, and electrode materials have been driving this research. [1-3] However, for 

distinct applications the potential can only be optimized for well crystalline materials. It is 

well known, for instance, that amorphous volumes in mesoporous titania promote the 

recombination of photo-excited electrons and holes and by this way limit the photocatalytic 

efficiency.[4,5] In addition the crystalline state will increase thermal and mechanical stability. 

When using soft organic materials such as block copolymers as structure directing templates, 

only very few examples are known where the inorganic material in the organic-inorganic 

hybrids obtained spontaneously, is indeed well crystalline.[4,6] Even if colloidal crystals are 

used as templates,[7] usually, the precipitated walls of the as-made hybrid materials turn out to 

be amorphous and have to be converted to completely crystalline walls in a subsequent 

tedious crystallization treatment. Often this post-synthesis treatment is some kind of annealing 

at elevated temperatures which bears the risk of loosing the hierarchical structure. Moreover, 
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when the inorganic materials show polymorphism, controlling the crystal structure and thus 

the materials properties is an additional challenge that needs to match with the heat treatment. 

Often, the original phase, structures or morphologies change/collapse during the 

crystallization process.[4,8,9] 

 While in the vast majority of synthesis pathways molecular[4,6] or oligomeric[10] 

building blocks serve as inorganic precursors, a rather obvious strategy has been neglected in 

the past: When using polyelectrolytes as organic templates, the surface potential of pre-

synthesized nanocrystals might be utilized to overcome phase segregation and arrange the 

inorganic material around the template. If the nanocrystals are only electrostatically stabilized, 

the surfaces might still be reactive enough to render covalent bonding between the 

nanocrystals in the walls of the hybrid material possible, leading to thermally and 

mechanically stable materials. A proof of this synthesis concept has been delivered already 

some years ago when synthesis methods were developed that produce zeolites which show 

hierarchical bimodal pore size distributions.[11-17] Nanosized zeolite “seeds” (protozeolitic 

nanoclusters) were used as building blocks, which were directly assembled into hexagonal, 

cubic, wormhole, and foamlike framework structures applying supramolecular structure-

directing templates. Unfortunately, to our knowledge the general applicability of this very 

appealing synthesis concept for other oxide materials has not been explored.  

 Here we report the assembly of electrostatically stabilized nanoscopic rutile around 

spherical polyelectrolyte brushes (SPB).[18-20] SPB are colloidal particles consisting of a solid 

polystyrene core and a dense surface layer of polyelectrolytes. During the calcination of the 

rutile-SPB-hybrid, the “naked” nanocrystals are crosslinked and thermally and mechanically 

stable mesoscopic rutile balls with interparticle mesoporosity are obtained. Colloidal rutile 

has been chosen as inorganic precursor because crystalline titania-based materials are of 
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considerable interest due to their technological applications as photoconductors, sensors, 

photocatalysts, and dye sensitized solar cells, optoelectronic devices.[16,21-33] 

2. Results and Discussion 

Outline of the synthesis concept: 

 Titania comes in three crystalline polymorphs: anatase, rutile, and brookite. Each 

crystalline phase has different physical properties, such as refractive index, chemical 

reactivity, and photochemical reactivity.[25,27,34-36] Consequently, different applications ask for 

distinct polymorphs and control of crystal structure might be a prerequisite. Versatile 

synthesis methods such as chemical vapour deposition,[37] liquid phase deposition,[38] sol-

gel,[39] non-hydrolytic sol-gel, hydrothermal/solvothermal,[40] and template methods[41,42] were 

developed for the synthesis of titania composites. Generally, as-made composites are 

amorphous materials and additional efforts are needed for the crystallization of these 

amorphous materials, which is a quite tricky process as mostly, the original structures or 

morphologies used to change/collapse during this crystallization process.[4,8,9] 

 There are only two reports in the literature where highly crystalline composite 

materials have been obtained spontaneously, i.e., in a simple “one-pot”-type procedure. 

Firstly, Lee et al. [4] have used a block copolymer which converts to a sturdy, amorphous 

carbon material under appropriate heating conditions that is sufficiently rigid to allow 

crystallization at high temperatures. This approach resulted in mesoporous anatase.  

 Secondly, in an earlier paper we have demonstrated that SPB particles can be used as 

well-defined nanoreactors for the spontaneous “one-pot” generation of well crystalline, 

photocatalytically active anatase nanoparticles at room temperature.[6] The sulfonate groups 

(SO3
-) on the polyelectrolyte brush chains preferentially associate with titanium metallorganic 

compounds.[43,44] Consequently, the molecular titanium precursor is hydrolysed and titania 

condenses around the brush particles.[6] However, when using molecular precursors the crystal 
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structure of the precipitated walls is controlled by the polyelectrolyte template and the 

synthesis of other titania polymorphs like rutile is impossible. This is because strong ligands 

like sulphate, sulfonate, and phosphate show strong affinity to titania surfaces which strictly 

paves the way to the nucleation of anatase.[45-47] 

 
Scheme 1. Synthesis of rutile composites using cationic rutile colloids and anionic SPB. 

 
Scheme 2. Formation of porous rutile balls by two-step calcination. Firstly, by heat treatment 

of rutile composite under argon, the sp2 carbon containing SPB is converted to a amorphous 

carbon material, which acts as a rigid support to rutile nanocrystals and prevents the 

mesostructure from collapse. Secondly, further calcination in air will remove carbon and 

porous rutile balls with mesoporous crystalline walls are obtained. 

 Since the crystal structure can not be controlled in the presence of the soft template, it 

is essential to follow the alternative route for mesostructuring as outlined in the introduction. 

Firstly, nanoscopic rutile is synthesized under acidic aqueous conditions. Because of the low 

pH (1.0), which is far below the isoelectric point of rutile, these nanocrystals exhibit high 
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positive surface charge. Secondly, these crystalline and surface charged rutile colloids can be 

structure directed onto the anionic SPB particles to form crystalline rutile nanocomposites 

with well-defined structure, shape, and size (Scheme 1-2). The strong Coulomb interactions 

between anionic polymer chains and the cationic crystalline rutile colloids, whose surfaces are 

naked and therefore reactive, are the key factors in this approach for the organic-inorganic 

crystalline composite formation. It is the surface reactivity of the naked rutile colloids that, 

thirdly, paves the way to thermally and mechanically stable mesostructured porous rutile balls 

obtained by the subsequent calcination. Please note that in contrast to the earlier report,[6] 

synthesis in this approach was done using colloidal rutile crystals as titania source instead of 

starting from titanium molecular precursors.  
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Figure 1. PXRD patterns of as-synthesized rutile composite (a), and porous rutile balls after 

calcinations (b). For comparison standard rutile (bottom) peaks are included.  
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Synthesis of nanoscopic rutile precursors: 

 As stressed above for this synthesis strategy control of both, size and the chemical 

nature of the surface of the colloid is essential. Therefore, we have developed a modified low-

temperature, non-hydrothermal synthesis route for colloidal rutile which is only 

electrostatically stabilized. Any kind of steric stabilization would be detrimental by reducing 

the surface reactivity. To emphasize and clarify the subtle peculiarities of our nanorutile 

synthesis, published procedures shall be reviewed briefly first. Obviously, this review cannot 

claim to be exhaustive. 

 Generally, anatase is easier to be made nanocrystalline and various particle shapes and 

sizes have been synthesized by several synthesis routes.[48-50] Direct synthesis of nanoscopic 

rutile under mild conditions is difficult and often needs very stringent 

hydrothermal/solvothermal treatments because low-temperature routes generally tend to 

produce the kinetically favoured anatase polymorph.[45-47,51,52] Several synthesis routes were 

proposed for the synthesis of rutile using non-aqueous solvents, organic surfactants and ionic 

liquids. [45-47,52] However, as outlined above for our synthesis approach, TiO2 nanocrystals 

capped/stabilized with organic surfactants can not be readily used because their surface is 

coated or stabilized with organic material. In the present study, rutile nanoparticles were 

synthesized under aqueous conditions by using 2M HCl as the reaction medium and titanium 

n-butoxide as the precursor. Please note that under these “simple” conditions, rutile colloids 

could be obtained under very mild conditions at 40 oC in 2 hours. Phase purity was confirmed 

by powder X-ray diffraction (PXRD), and high resolution transmission electron microscopy 

(HRTEM) (see ESI Figure S1-2). HRTEM images show a rather rough and therefore reactive 

surface. Surface roughness might be crucial for the subsequent connection between 

nanocrystals.  
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Figure 2. FESEM images of rutile composites with different polymer:rutile ratio (weight), 

1:0.2 (a), 1:0.4 (b), 1:0.6 (c), and 1:1 (d). 

Mesostructuring of nanoscopic rutile precursors: 

 In all cases freshly prepared colloidal rutile solutions were used for the crystalline 

titania-composite synthesis. As-synthesized rutile colloids are positively charged with zeta 

potentials of 51 mV and SPB particles are negatively charged with zetapotentials of -51 mV, 

both at pH 1. The strong Coulombic interactions reliably control the supramolecular assembly 

of charged colloids over the oppositely charged soft templates. After mixing the anionic SPB 

solution with the as-synthesized rutile colloids, the Coulomb interactions of rutile colloids and 

brush chains lead to the formation of organic-inorganic rutile composite. Figure 1a shows the 

PXRD patterns of the as-synthesized rutile composites. Please note that PXRD patterns of 

polymer brush particles do not show any reflections (see ESI Figure S3). From Figure 1a, it 

can be seen that when pre-formed rutile nanocrystals were used to prepare the composite, only 

rutile peaks are observed. Addition of SPB to colloidal rutile solutions did not change the 
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crystalline form of the pre-formed rutile nanocrystals. Thus, crystalline titania-composites 

with designed shape, size and crystalline forms can be obtained by this approach.  

 
Figure 3. TEM (a) and HRTEM (b) images of rutile composites prepared from rutile 

nanocrystals. 

 The influence of different amounts of rutile colloids on the morphology of rutile 

composites has been studied (Figure 2). Comparison to the as-synthesized rutile composites, 

pure SPB particles show smooth surfaces (see ESI Figure S4). Rutile composite formation 

due to incorporation of rutile colloids into the polyelectrolyte brush layer of the SPB 

templates generates rough surfaces. At low rutile to SPB weight ratio, the SPB particle 

surfaces are homogeneously covered with a thin layer of rutile nanocrystals (Figure 2a and b). 

When further increasing the relative amount of rutile colloids, eventually leads to the 

generation of phase segregated secondary rutile besides the rutile composites (Figure 2c). 

More of these secondary rutile aggregates were observed with even higher relative 

concentration of rutile (Figure 2d). For further investigations, rutile composites prepared with 

the polymer to rutile weight ratio at 1:0.4 were used in order to avoid the influence from the 

secondary rutile aggregates.  
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Table 1. Properties of synthesized rutile composites and porous rutile balls.  

sample surface area[a] 
(m2g-1) 

pore size[b] 

(nm) 

Rutile composite  

As-synthesized 

Argon calcined 

Air calcined 

 

76.9 

122.9 

134.5 

 

non-porous 

17-32 

17-33 

   

[a] 5 point BET [b] BJH desorption branch 
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Figure 4. N2 sorption isotherms of rutile composites and porous rutile balls obtained after 

argon and air calcinations (inset: corresponding pore size distribution). 

 Figure 3 show TEM and HRTEM images of the rutile composite with 1:0.4 

(polymer:rutile/wt:wt) composition. It is evident from the TEM image that the rutile colloids 

were immobilized homogeneously into the brushes. Fig. 3b shows a HRTEM image of the 
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rutile composite, in which the crystal lattice planes can be clearly seen on the surface of the 

PS core. Zeta potential measurement at pH 1 indicates that rutile composite exhibits negative 

zeta potential of -35 mV where as as-synthesized rutile colloids are positively charged with 

zeta potentials of 51 mV and SPB particles are negatively charged with zeta potentials of -51 

mV. The zeta potential measurements show that even after composite formation rutile 

composites are electrostatically stabilized. N2 sorption analysis of the as-synthesized rutile 

composites revealed a high surface area of 76.9 m2g-1 and the rutile composites are non-

porous (Table 1 and Figure 4).  
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Figure 5. Raman spectra of rutile composites after (a) argon and (b) air calcinations showing 

the characteristic carbon D- and G-bands. 

 The subsequent heat treatment of the as-synthesized rutile composite under an inert 

environment leads to the conversion of the sp2 carbon containing SPB particles to amorphous 

carbon material. This in-situ carbon acts as a rigid support to rutile nanocrystals and prevents 

structure collapse during heat treatment. Further calcinations in air will remove carbon walls 
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and porous structures with rutile framework are obtained by this approach.[4] Following these 

principles, the as-synthesized rutile composites are heated in a tube furnace under argon, 

followed by further heating in air, both at 500°C. During this process, SPB particles are first 

converted to an amorphous carbon that lines the rutile nanocrystals resulting macropores. 

Raman spectra establish the presence of the in-situ formed carbon during argon calcinations 

and its consequent removal in the final air calcined materials (Figure 5a and 5b). After argon 

calcinations, two bands appear around 1600 cm-1 and 1350 cm-1 from graphitic carbon (G-

band) and disordered carbon (D-band), respectively, typical for amorphous carbon 

materials.[4] The carbon walls can be completely removed by subsequent air calcinations, 

which lead to the formation of hollow spheres built from interconnected rutile nanocrystals. 

The original spherical morphology is preserved during both calcinations steps as evidenced 

from the FESEM and TEM images (Figure 6a and 6b). Calcination of the rutile composite 

leads to a macroporous scaffold of interconnected rutile nanocrystals. Macropores (diameter 

~100 nm) are formed by removing the PS core of the template while mesopores are formed 

between the rutile crystals by removal of the polyelectrolyte brush. PXRD measurements 

were done to check if any TiC was formed and reflections corresponding to TiC were not 

observed.  

a ba b

 
Figure 6. FESEM images of porous rutile balls obtained after calcinations (a: argon calcined, 

b: air calcined), inserts are the TEM images of the samples. 
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 The N2 sorption isotherm of the argon calcined porous rutile balls shows the formation 

of mesopores (Table 1 and Figure 4). The BET surface area increased to 122.9 m2g-1, with 

pore sizes ranging from 17 to 32 nm. Subsequent calcinations in air to remove the carbon lead 

to a further increase of surface area, 134.5 m2g-1, with pores ranging from 17 to 33 nm (Table 

1 and Figure 4). This indicates that rutile balls with porous walls are formed after two-step 

heat treatment of the rutile composites. As evidenced by PXRD (Figure 1b), the walls of the 

porous balls are built by rutile nanocrystals that are interconnected to construct thermally and 

mechanically stable porous rutile balls. It is worth to note that calcinations of pure rutile 

nanocrystals under similar conditions causes strong densification of the material and no 

porosity can be observed, which demonstrates that SPB particles play an important role in the 

formation of structure-stable porous rutile balls.  

0 100 200 300

0,1

1

A
/A

0

t, [min]  
Figure 7. A/A0 versus time of porous rutile balls on the photodegradation of RhB. Parameter 

of the different curves is the concentration of porous rutile balls in the solution. Quadrangles: 

1g/l; triangles: 0.75g/l; circles: 0.5g/l; diamonds: 0.25g/l; crosses: without porous rutile balls. 

The concentration of the reactants was as follows: [RhB] = 0.02mmol/l, T = 20°C. 
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Photocatalysis measurements:  

 The photocatalytic activity of the porous rutile balls was evaluated by measuring the 

degradation of the organic dye, Rhodamine B (RhB). When UV light irradiated the dispersion 

containing porous rutile balls and RhB, a decoloration phenomenon occurred, which indicates 

that the RhB dye decomposed in the presence of porous rutile balls under UV irradiation.[53] 

The kinetics of this reaction can be monitored by UV/VIS spectroscopy as shown in Figure S5. 

After addition of porous rutile balls the absorption band of RhB at 552 nm decreased rapidly 

under UV irradiation and had a slight blue shift, which indicates the formation of some N-di-

ethylated intermediates during the photocatalytic degradation of RhB.[53] Additional 

experiment demonstrates that when RhB solution was irradiated by UV in the absence of 

porous rutile balls the degradation of RhB is negligible.  

0 20 40 60 80 100 120 140 160
0,000

0,004

0,008

0,012

k ap
p, 

[m
in

-1
]

S, [m2/l]  
Figure 8. Analysis of the rate constant kapp obtained from Figure 7 as a function of the surface 

area of porous rutile balls normalized to the unit volume of the system. 

 Moreover, as shown in Figure 7 a linear relation between ln(ct/c0) versus time t has 

been obtained at the initial stage when porous rutile balls were used as catalyst, which could 
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be directly used to evaluate the apparent photocatalytic rate. From Figure 7, it can be seen that 

porous rutile balls can work effectively as the photo-catalyst for the degradation of RhB. Also, 

the rate constants are found to increase with the concentration of porous rutile balls. 

Furthermore, we assume the catalysis takes place on the surface of the rutile balls, and the 

apparent rate constant kapp will be proportional to the total surface S of the porous rutile balls 

present in the system:[19,20] 

ttapp
t Sckck

dt
dc

1==−             (1) 

where ct is the concentration of RhB at time t, k1 is the rate constant normalized to S, the 

surface area of porous rutile balls normalized to the unit volume of the system. Here, surface 

area obtained from N2 sorption measurements has been used to calculate S (Table 1). Figure 8 

shows apparent rate constant as a function of the total surface area of porous rutile balls in the 

system. Evidently, kapp is found to vary linearly with the total surface S of the porous rutile 

balls, which demonstrates that the catalysis takes place on the surface of rutile balls as 

expected. From Figure 8, a photo-catalytic activity k1 = 7.77*10-5 min-1m-2L can be obtained. 

Since anatase is the better photocatalyst, this value is of course lower than that of the as-

prepared anatase composites (k1 = 8.41*10-3 min-1m-2L) we reported recently.[6]  

3. Conclusions 

 In conclusion, we demonstrated that crystalline nanoscopic rutile can be obtained at 

temperatures as low as 40 oC under aqueous conditions. This nanoscopic, electrostatically 

stabilized rutile can be used as inorganic precursor and crystalline nanocomposites can be 

directly synthesized using spherical polyelectrolyte brush particles as the template. Stepwise 

calcinations first under argon followed with a second calcination in air lead to the complete 

removal of polymer template without collapse of the mesostructure. The rutile nanocrystals 

are connected upon heat treatment and porous titania balls with a crystalline framework are 
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obtained. Pore volumes and surface areas increased dramatically after stepwise calcinations. 

Moreover, the porous rutile balls are photocatalytic active. Most importantly, the results proof 

that the alternative route to mesostructured hybrid materials using preformed colloids as 

inorganic precursors is not limited to zeolite materials. This alternative approach was tested 

also using electrostatically stabilized anatase nanocrystals which carry a positive surface 

charge and, as expected, lead to the thermally stable and mesoscopic porous anatase balls. 

Hence, it is expected that this hierarchical route to structure oxides at the mesoscale is 

generally applicable. 

4. Experimental Section 

 Synthesis of polyelectrolyte brush: PS core covered with a thin layer of photo initiator, 

2-[p-(2-Hydroxy-2-methylpropiophenone)]-ethyleneglycol methacrylate (HMEM), was 

prepared by conventional emulsion polymerization, which has been described in detail 

previously.[18] The polyelectrolyte brushes were prepared by photo-emulsion polymerization. 

Diluted PS core solution (2.5 wt.-%) was mixed with defined amount of functional monomer 

styrene sulfonic acid sodium salt (NaSS; Aldrich, 30 mol-% with regard to the amount of 

styrene) under stirring. Photo-emulsion polymerization was done by use of UV irradiation at 

room temperature for 60 minutes. Thereafter the brush particles were cleaned 10 times by 

dialysis against purified water (membrane: cellulose nitrate with 100 nm pore size supplied by 

Schleicher & Schuell).  

 Synthesis of rutile nanocomposites from crystalline colloids: For the synthesis of 

crystalline rutile nanocomposite starting from crystalline rutile colloids, titanium (IV) n-

butoxide (0.4 mL) was added dropwise at a rate of 1 mL/min to 1.0 mL of a 2M HCl solution 

at 40 oC, while continuously stirring. Initially precipitate appears with the addition of titanium 

n-butoxide and disappears with stirring. Precipitation starts again in 30 mins. After 2 h, pH 

was adjusted to 1 using 1M NaOH. PS-NaSS brush solution (1.0 g PS-NaSS in 5 mL of 2M 



Submitted to  
 

 - 18 - 

HCl) was adjusted to pH 1 using 1M NaOH and then added to crystalline rutile reaction 

mixture while continuously stirring at 40 oC. After 4 h, stirring was stopped and let it settle 

down over night. Settled rutile composite was washed three times with water and then freeze 

dried. 

 Photocatalytic activity measurements: The photocatalytic activity of porous rutile balls 

were measured in terms of the decolourisation of Rhodamine B (RhB). The UV source was a 

150 W Hg lamp (44 mm long) with higher radiation intensity level in wavelength ranges 280-

360 and 460-510 nm, which was surrounded by a circulating water jacket (Heraeus) to cool 

the lamp. All runs were conducted at ambient pressure and temperature. The distance between 

the Hg lamp and the reactor was 10 cm for each experiment. For a typical run, 0.02 g porous 

rutile balls and 20 ml RhB (2×10-5 M) aqueous solution were mixed together in a quartz glass 

reactor under stirring. This reaction dispersion was magnetically stirred in the dark for ca. 30 

min prior to irradiation to establish the adsorption/desorption equilibrium of the dye on the 

catalyst surface. At given irradiation time intervals, 1.5 ml of sample was taken out and 

separated by centrifugation at 5000 rpm for 10 minutes. UV-Vis spectra were taken for the 

supernatant in the range of 400-650 nm. The rate constant of the reaction was determined by 

measuring the change in intensity of the peak at 552 nm with time.  

 Instruments and measurements: Photo-emulsion polymerization was done in a UV-

reactor (Heraeus TQ 150 Z3, range of wavelengths 200-600 nm). Cryogenic transmission 

electron microscopy was done as reported.[54] Field-emission scanning electron microscopy 

(FESEM) was performed using a LEO Gemini microscope equipped with a field emission 

cathode. The UV-spectra were measured by Lambda 25 spectrometer supplied by Perkin 

Elmer. Powder X-ray diffraction (PXRD) measurement was performed at 25 °C on a 

Panalytical XPERT-PRO diffractometer in reflection mode using Cu Kα radiation. Zeta 

potential measurements were done using Malvern Zetasizer ZS instrument. All the solutions 
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were prepared using 0.001M KCl and 1gl-1 sample concentration. Nitrogen physisorption was 

conducted at 77 K on a Quantachrome Autosorb 1 instrument. Prior to the measurements, the 

samples were degassed at 373 K for 24 h. Ambient-temperature Raman spectroscopy 

experiments were performed using a Jobin Yvon Labram spectrometer with a 632.8 nm He-

Ne excitation line and laser output power of 8 mW. The laser beam was focused using a 50× 

objective, resulting in a spot having a diameter of ∼5 μm. All calcinations were done step-wise 

in a tube furnace, first under argon atmosphere with step-wise heating (200 oC – 5 h, and 500 

oC – 2 h), followed with a second calcination in air with step-wise heating (200 oC – 2 h, and 

500 oC – 2 h) at 3 oC min-1 heating and cooling rate. 
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Figure S1. PXRD pattern of the rutile nanocrystals synthesized in absence of polymer brush. 

For comparison standard rutile (bottom) peaks were given. 

 

 
Figure S2. HRTEM images of rutile nanocrystals synthesized in absence of polymer brush at 

different magnifications. 
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Figure S3. PXRD pattern of the PS-NaSS polyelectrolyte brush particles. 
 

 
Figure S4. FESEM image of the PS-NaSS polyelectrolyte brush particles.  
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Figure S5. Successive UV-vis spectra of RhB photocatalytic degradation in the presence of 
porous rutile balls (1g/l) under UV irradiation. 
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