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Different Types of Photon Entanglement from a Constantly
Driven Quantum Emitter Inside a Cavity
Tim Seidelmann,* Michael Cosacchi, Moritz Cygorek, Doris E. Reiter, Alexei Vagov,
and Vollrath M. Axt

Bell states are the most prominent maximally entangled photon states. In a
typical four-level emitter, like a semiconductor quantum dot, the photon
states exhibit only one type of Bell state entanglement. By adding an external
driving to the emitter system, also other types of Bell state entanglement are
reachable without changing the polarization basis. In this work, it is shown
under which conditions the different types of entanglement occur and
analytical equations are given to explain these findings. Furthermore, special
points are identified, where the concurrence, being a measure for the degree
of entanglement, drops to zero, while the coherences between the two-photon
states stay strong. Results of this work pave the way to achieve a controlled
manipulation of the entanglement type in practical devices.

1. Introduction

Entanglement of quantum states is one of the most remark-
able and interesting physical effects that separate the quan-
tum mechanical from the classical world.[1,2] Entanglement
can be used to test quantum mechanical principles on a fun-
damental level, for example, by revealing violations of Bell
inequalities.[2,3] Furthermore, many fascinating and innovative
applications, for example, in quantum cryptography,[4,5] quan-
tum communication,[6,7] or quantum information processing
and computing,[8–11] rely on entangled photon pairs.
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The defining property of an entangled bi-
partite system is that its quantummechani-
cal state cannot be factorized into parts cor-
responding to the constituent subsystems.
There are four prominent states, which are
maximally entangled and known as the Bell
states, established for two entangled pho-
tons with horizontalH polarization and ver-
tical V polarization

|Φ±⟩ = 1√
2
(|HH⟩ ± |VV⟩), (1)

|Ψ±⟩ = 1√
2
(|HV⟩ ± |VH⟩). (2)

In the following we will refer to these states asΦ Bell state (ΦBS)
and ΨBS. To create maximally entangled states, one of the best
established routes is via the cascaded relaxation in few-level sys-
tems like atoms, semiconductor quantum dots or F-centers.[12–15]

In this paper, we study under which driving conditions, a four-
level emitter (FLE) placed in a microcavity produces entangled
photons being either in a ΦBS or ΨBS. We demonstrate that
a constantly driven FLE undergoes a sharp transition between
regions of high ΦBS and ΨBS entanglement for a certain two-
photon resonance. At the transition the degree of entanglement
drops to zero at a special point, because the quantum state of
the system becomes factorizable. We will further study all two-
photon resonances revealing a rich variety of different scenarios
with or without switching the type of entanglement and with or
without special points of zero concurrence.

2. Generation of Entangled States

The generation procedure of entangled photons in a typical (non-
driven) four-level system is as follows [see also Figure 1 (left)]:
In a first step the uppermost state is prepared, for example, by
using two-photon resonant or near-resonant excitation with short
coherent pulses[16–24] or adiabatic rapid passage protocols.[25–28]

The excited emitter then decays into a superposition of the two
intermediate states which can be reached from the uppermost
state by emission of either a horizontally or vertically polarized
photon. In the subsequent decay to the ground state a second
photon is emitted. Since a component in the superposition that
was created by emitting a photon with a given polarization gives
rise to a second photon having the same polarization aΦBS two-
photon state is generated. Experiments and theoretical studies
in semiconductor quantum dots demonstrated the possibility to
generate ΦBS entanglement.[3,16,29–50]
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The situation changes profoundly when the few-level system
is continuously driven by an external laser. Then additionally, it
becomes possible to createΨBS entanglement. A possible mech-
anism could be that the uppermost state emits a horizontally po-
larized photon via one path way, is then re-excited by the laser
and then emits a vertically polarized photon via the other path.
Since the sequence of emission of a pair ofH,V orV,H polarized
photons is identical, this process results in an entangled ΨBS.
Note that the states |HV⟩ and |VH⟩ are distinguished by the tem-
poral order of the H or V polarized photon emissions. Indeed,
Sánchez Muñoz et al. found that under specific conditions the
resulting two-photon state is close to the ΨBS.[51] Here we will
show that ΨBS entanglement occurs under various conditions,
but alsoΦBS entanglement is supported by a driven FLE system.
The key is adjusting the cavity modes to two-photon transitions
between the emerging laser-dressed states of the FLE. The sit-
uation of constant driving was also studied experimentally,[52,53]

where the emission spectra clearly demonstrated the transition
from the bare states toward the laser-dressed states.
To create entangled photon states in an optimal way, the FLE

is embedded inside a microcavity. By this, the coupling to the
cavity enhances the light-collection efficiency and the photon
emission rate due to the Purcell effect.[42,54] Additionally, the
energetic placement of the cavity modes can have a profound
impact on the resulting degree of entanglement. By placing
the cavity modes in resonance with a two-photon transition of
the emitter[29,32,33,47,51,55] direct two-photon emission processes
dominate over sequential single-photon ones. Since the direct
two-photon emission is much less affected by a possible which-
path information this configuration results in a high degree of
entanglement of the emitted photon pairs,[32,33] at least at low
temperature.[29]

3. Driven Four-Level Emitter

3.1. Bare State Picture

We consider an externally driven FLE embedded inside a micro-
cavity, adopting the model from ref. [51]. The FLE comprises the
energetic ground state |G⟩ at energy 0, two degenerate interme-
diate states |XH/V⟩ with energy ℏ𝜔X, and the upper state |XX⟩
at energy 2ℏ𝜔X − EB. Note that it is quite common to find the
state |XX⟩ not exactly at twice the energy of the single excited
states, which in quantum dots is known as the biexciton bind-
ing energy.[2,55,56] Optical transitions which involve the state |XH⟩
(|XV⟩) are evoked by horizontally (vertically) polarized light. Fol-
lowing ref. [51], we assume the fine-structure splitting between
these two intermediate states to be zero. A sketch of the FLE is
shown in Figure 1 (left). The Hamiltonian of the FLE reads

ĤFLE = ℏ𝜔X

(|XH⟩⟨XH| + |XV⟩⟨XV|) + (2ℏ𝜔X − EB
)|XX⟩⟨XX|.

(3)

The FLE is continuously driven by an external laser with fre-
quency 𝜔L and driving strength Ω. The laser driving is assumed
to be linearly polarized, such that the H and V polarized tran-
sitions are driven with equal strength ensuring that there is
no preferred polarization and, consequently, no which-path

Figure 1. Left: Sketch of the FLE including optical selection rules for tran-
sitions with either horizontally (H) or vertically (V) polarized light. In
addition, an external laser field excites the system. Right: Sketch of the
laser-dressed states.

information is introduced by the external laser. In the frame
co-rotating with the laser frequency 𝜔L the corresponding
Hamiltonian reads

ĤL = Ω
(
�̂�D + �̂�

†
D

)
; �̂�D =

(
�̂�H + �̂�V

)
∕
√
2 (4)

with the transition operators

�̂�H = |G⟩⟨XH| + |XH⟩⟨XX|, (5a)

�̂�V = |G⟩⟨XV| + |XV⟩⟨XX|. (5b)

We fix the laser frequency to ℏ𝜔L = (2ℏ𝜔X − EB)∕2, such that
the energetic detuning between emitter transitions and laser is
set to

Δ0 := ℏ
(
𝜔X − 𝜔L

)
=

EB
2
. (6)

By this, we resonantly drive the two-photon transition between
ground state |G⟩ and upper state |XX⟩.
The FLE is embedded inside a microcavity and coupled to two

orthogonal linearly polarized cavity modes with energies ℏ𝜔c
H

and ℏ𝜔c
V, which we assume to be energetically degenerate, that

is, 𝜔c := 𝜔c
H = 𝜔c

V. The cavity mode is best defined with respect
to the driving laser frequency (or the two-photon resonance to|XX⟩) via the cavity laser detuning
Δ := ℏ

(
𝜔c − 𝜔L

)
= ℏ𝜔c −

(
ℏ𝜔X − Δ0

)
. (7)

The Hamiltonian describing the cavity modes and their interac-
tion with the FLE reads

Ĥc =
∑

𝓁=H,V

Δâ†𝓁 â𝓁 + ĤFLE-c. (8)

In matrix form, using the basis |XX⟩, |XH⟩, |XV⟩, and |G⟩, the
interaction Hamiltonian is given as

ĤFLE-c =

⎛⎜⎜⎜⎜⎝
0 gâH gâV 0

gâ†H 0 0 gâH
gâ†V 0 0 gâV
0 gâ†H gâ†V 0

⎞⎟⎟⎟⎟⎠
, (9)

where the emitter-cavity coupling constant g is assumed equal for
all transitions. The bosonic operators â†H/V (âH/V) create (annihi-
late) one cavity photon with frequency 𝜔c andH∕V polarization.
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Note that Ĥc is again written in the rotating frame. From the in-
teraction Hamiltonian we can already see that in the un-driven
situation the cascade from the state |XX⟩ into the state |G⟩ can
only go via the emission of twoH or twoV polarized photons and
therefore can result exclusively in the generation of ΦBS entan-
glement.

3.2. Laser-Dressed States

The creation of entangled two-photon states is facilitated by res-
onant transitions between quantum states of the FLE with the
emission of two photons. Further analysis of the system dynam-
ics reveals that such transitions take place not between the orig-
inal FLE basis states but between the dressed states of the laser
driven FLE, obtained by diagonalizing ĤFLE + ĤL. For the diag-
onalization we go into a frame rotating with the laser frequency
𝜔L. The eigenenergies of the dressed states read

EU = 1
2

(
Δ0 +

√
Δ2
0 + 8Ω2

)
(10a)

EM = Δ0 (10b)

EN = 0 (10c)

EL = 1
2

(
Δ0 −

√
Δ2
0 + 8Ω2

)
(10d)

and the corresponding laser-dressed states are

|U⟩ = c(|G⟩ + |XX⟩) + c̃
(|XH⟩ + |XV⟩) (11a)

|M⟩ = 1√
2

(|XH⟩ − |XV⟩) (11b)

|N⟩ = 1√
2
(|G⟩ − |XX⟩) (11c)

|L⟩ = c̃(|G⟩ + |XX⟩) − c
(|XH⟩ + |XV⟩) (11d)

with the coefficients

c = 2Ω√
8Ω2 +

(
Δ0 +

√
Δ2
0 + 8Ω2

)2 , c̃ =
√

1
2
− c2. (12)

A sketch of the four laser-dressed states is given in Figure 1 (right
panel). The dependence of the dressed state energies on the driv-
ing strength Ω is illustrated in Figure 2. The uppermost |U⟩ and
the lowest |L⟩ states have contributions of all four original (bare)
FLE states. In the limiting case of strong driving the contribu-
tion coefficients c and c̃ approach 1∕2. On the other hand, the
composition and energies of the intermediate dressed states |M⟩
(“middle”) and |N⟩ (“null”) are independent of Ω. In general, the
laser-dressed states and the transition energies between them are
functions of Ω. Therefore, also the cavity frequency associated
with a two-photon resonance between two given dressed states
depends on the driving strength, the only exception being the
resonance between the states |M⟩ and |N⟩.

Figure 2. Energies of the laser dressed states (in the units of the emitter-
laser detuning Δ0) as a function of the driving strength Ω (in the units of
the emitter-cavity coupling strength g).

The Hamiltonian describing the coupling to the cavity also
changes profoundly by using the dressed state basis and now
reads in the basis |U⟩, |M⟩, |N⟩, |L⟩

ĤDS-c = g

⎛⎜⎜⎜⎜⎜⎜⎝

2
√
2cc̃ â†D c â†A −c̃ â†D

√
2(c̃2 − c2)â†D

c â†A 0 −1√
2
â†A c̃ â†A

c̃ â†D
1√
2
â†A 0 −c â†D√

2(c̃2 − c2)â†D c̃ â†A c â†D −2
√
2c c̃ â†D

⎞⎟⎟⎟⎟⎟⎟⎠
+ c.c.

(13)

with â†D = (â†H + â†V)∕
√
2 and â†A = (â†H − â†V)∕

√
2 being the cre-

ation operators in the diagonal and anti-diagonal polarization,
respectively.
One notes that the two-photon transitions between the dressed

states can follow different pathways that connect those states.
Considering as an example the transition from |U⟩ to |L⟩, one
path is to emit two photons with anti-diagonal polarization A via
the intermediate state |M⟩, while another path is a self interaction
within |U⟩ and then a direct transition to |L⟩ via emission of two
diagonallyD-polarized photons. This already indicates that due to
the constant optical driving it is not clear a priori, which entan-
glement type occurs. We will show below that new types of entan-
glement become possible and analyze their respective strength.

3.3. Cavity Losses and Radiative Decay

To account for cavity losses and radiative decay, present in every
FLE-cavity system, we introduce Lindblad-type operators

Ô,Γ �̂� = Γ
2

(
2Ô�̂�Ô† − �̂�Ô†Ô − Ô†Ô�̂�

)
, (14)

where Ô is the systemoperator associatedwith a loss process with
corresponding loss rate Γ in the bare state system. The dynamics
of the statistical operator of the system �̂� is then determined by
the Liouville-von Neumann equation

d
dt
�̂� = �̂� := − i

ℏ

[
Ĥ, �̂�
]
+
∑

𝓁=H,V

{â𝓁 ,𝜅
+ |G⟩⟨X𝓁 |,𝛾 + |X𝓁⟩⟨XX|,𝛾

}
�̂�,

(15)

Adv. Quantum Technol. 2021, 4, 2000108 2000108 (3 of 14) © 2020 The Authors. Advanced Quantum Technologies published by Wiley-VCH GmbH



www.advancedsciencenews.com www.advquantumtech.com

Table 1. Fixed system parameters used in the calculations.

Parameter Value

Emitter-cavity coupling strength g 0.051 meV

Detuning Δ0 20 × g = 1.02 meV

Cavity loss rate 𝜅 0.1 × g∕ℏ ≈ 7.8 ns−1

Radiative decay rate 𝛾 0.01 × g∕ℏ ≈ 0.78 ns−1

where [⋅, ⋅] denotes the commutator, 𝜅 is the cavity loss rate, and
𝛾 the radiative decay rate. The complete system Hamiltonian Ĥ
includes all contributions discussed in Section 3.1. The system
is assumed initially in the ground state |G⟩ without any cavity
photons. Note that we performed all numerical calculations in
the rotating frame with the laser frequency 𝜔L and use the bare
state system, while for the interpretation the dressed state picture
is advantageous.
The parameter values used in our simulations are listed in

Table 1, where we followed ref. [51]. The frequency of the cavity
mode is taken to ℏ𝜔c = 1.5 eV. The adopted parameter values
correspond to a high quality cavity resonator with Q = 1.5 × 105.

4. Photon Entanglement

4.1. Two-Photon Density Matrix

The basis for quantifying the degree of entanglement is the de-
termination of the two-photon density matrix 𝜌2p. Experimen-
tally, 𝜌2p can be reconstructed using methods of quantum state
tomography,[57] a technique based on polarization-resolved two-
time coincidence measurements. The detected signals are pro-
portional to the two-time correlation functions

G(2)
jk,lm(t, 𝜏) =

⟨
â†j (t)â

†
k(t + 𝜏)âm(t + 𝜏)âl(t)

⟩
, (16)

where {j, k, l, m} ∈ {H,V}, t is the real time when the first pho-
ton is detected, and 𝜏 the delay time between the detection of
the first and the second photon. Note that in experiments one
typically measures photons that have already left the cavity. How-
ever, considering the out-coupling of light out of the cavity to be
a Markovian process, Equation (16) can also describe G(2)

jk,lm(t, 𝜏)
measured outside the cavity.[10,30]

In experiments data is typically averaged over finite real time
and delay time windows. Thus, the experimentally reconstructed
two-photon density matrix is calculated as [30,51]

𝜌
2p
jk,lm(𝜏) =

G
(2)

jk,lm(𝜏)

Tr
{
G
(2)
(𝜏)
} , (17)

where G
(2)
is the time-averaged correlation with

G
(2)

jk,lm(𝜏) =
1

Δt 𝜏

t0+Δt

∫
t0

dt

𝜏

∫
0

d𝜏 ′G(2)
jk,lm(t, 𝜏

′). (18)

Here, 𝜏 (Δt) is the delay time (real time) window used in the co-
incidencemeasurement and t0 is its starting time. The trace Tr{⋅}
is introduced for normalization. For simplicity we refer to 𝜌2p as
the two-photon density matrix in the following.
Throughout this work we calculate the two-photon density ma-

trix for the system that reached its steady state so that the t-
average is independent of t0 andΔt. The steady state of the system
�̂�s is defined by

d
dt
�̂�s = �̂�s = 0. This state is obtained numerically

by letting the system evolve in time until its density matrix be-
comes stationary. We will further set 𝜏 = 50 ps, which is a realis-
tic value for the delay time window used in experiment.[58] More
details on the calculation of the two-time correlation functions
for systems including Markovian loss processes can be found in
ref. [60].

4.2. Concurrence

Using the two-photon density matrix we determine the corre-
sponding concurrence C,[59] which is a widely accepted measure
for the degree of entanglement of a bipartite system. The concur-
rence is calculated from a given two-photon density matrix 𝜌2p

according to [47,57,59]

C = max
{
0,
√
𝜆1 −
√
𝜆2 −
√
𝜆3 −
√
𝜆4

}
(19)

where 𝜆j are the (real and positive) eigenvalues in decreasing or-
der, 𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ 𝜆4, of the matrix

M = 𝜌2p T (𝜌2p)∗ T, (20)

where T is an anti-diagonal matrix of rank 4 with elements
{−1, 1, 1,−1} and (𝜌2p)∗ is the complex conjugated two-photon
density matrix. In the standard situation without driving, where
only aΦBS |Φ±⟩ can be generated, the full expression for the con-
currence reduces to C = 2|𝜌2pHH,VV |. Thus, the degree of entangle-
ment is closely related to the corresponding coherences in the
two-photon density matrix. Note that like the two-photon density
matrix 𝜌2p(𝜏) also the concurrence C(𝜏) depends on the measure-
ment window 𝜏. A finite delay time window 𝜏 is necessary for the
detection of ΨBS entanglement since the two contributions that
build up |Ψ+⟩ in Equation (2) can only be distinguished if the two
photons are detected at different times.[51]

For the numerical calculation of the concurrence we use the
following procedure: First, following ref. [60], the averaged two-

time photon correlation G
(2)
is calculated. This quantity is then

used to obtain the time-averaged two-photon density matrix in
Equation (17). Finally from the two-photon density matrix the
concurrence is determined according to Equation (19). Note that
we do not use any further approximations in the calculation of

G
(2)
.

5. Two-Photon Transition Between Upper and
Lower Dressed State

The emission of entangled two-photon states is associated with
two photon transitions between the dressed FLE states. The
dressed FLE states feature two-photon emissions, which are
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Figure 3. a) Concurrence as function of the laser driving strength Ω for the full model (solid line), the analytic approximation C(r) presented in Equa-
tion (29) (dotted line), and with a finite fine-structure splitting 𝛿 = 0.1Δ0 (dashed line). Inset: Dressed state energies as a function of the driving strength
and the two-photon resonant cavity modes (green arrows) for three selected Ω values. b–d) Absolute value of the two-photon density matrix |𝜌2p(𝜏)| for
driving strength (b) Ω1 = 8 × g, (c) Ω2 = 12.25 × g, and (d) Ω3 = 30 × g (indicated by vertical lines in (a)).

largest every time the cavity frequency is tuned in resonance with
a possible two-photon transition, that is, when twice the photon
energy (here Δ) is equal to the transition energy between the
dressed state pairs. Therefore, the analysis is focused on these
resonant situations.
We start our analysis with the case where the cavity photons

are in resonance with the transition between the states |U⟩ and|L⟩, that is, the cavity frequency is always tuned such that
Δ =

EU − EL
2

= 1
2

√
Δ2
0 + 8Ω2. (21)

Notice, that keeping this condition requires the cavity frequency
𝜔c to change with the driving strength Ω. This resonance for a
driven FLE was considered in earlier works,[51] where a possibil-
ity to achieve a high degree of ΨBS entanglement was demon-
strated. Here we demonstrate that ΨBS entanglement is not the
only type of two-photon entanglement that can be obtained. It
will be shown that by varying the driving strength (while keeping
the system at the considered resonance) the FLE can reach the
domain of ΦBS entanglement, separated from that of the ΨBS
by a special critical point of zero concurrence.

5.1. Transition Between𝚽BS and 𝚿BS Entanglement

The concurrence as a function of the driving strengthΩ is shown
in Figure 3a, where the inset illustrates the resonance in ques-
tion. In full agreement with earlier calculations[51] one observes
ΨBS entanglement when the driving is strong. However, when

the driving strength is lowered the entanglement changes its type
to ΦBS entanglement. A sharp transition between the two types
occurs at a special critical point Ω ≈ 12.25 × g where the concur-
rence is exactly zero. The ΦBS entanglement obtained for weak
driving reflects the fact that for small Ω the system approaches
the undriven case. Recalling that ΨBS entanglement has been
found in ref. [51] for higher Ω, it is clear that a transition has to
take place in between.
More insight into the entanglement change is obtained by

calculating the corresponding two-photon density matrices as
presented in Figure 3b for the driving strength Ω1 = 8 × g and
Figure 3d Ω3 = 30 × g. At Ω1 the occupations of the states |HH⟩
and |VV⟩ and their coherence clearly dominate over the remain-
ing elements representing ΦBS entanglement. A very different
behavior is found at Ω3 = 30 × g, where the occupations of the
states |HV⟩ and |VH⟩ and the corresponding coherences exhibit
the highest values and, consequently, are associated with ΨBS
entanglement.
Let us now focus on the special point at Ω2 = 12.25 × g. The

two-photon density matrix at the special point, shown in Fig-
ure 3c, reveals that the concurrence does not vanish because of
the absence of coherences. On the contrary, all coherences are
close to their maximal possible value of about 0.25. Further anal-
ysis reveals that the corresponding two-photon state is

|𝜓sp⟩ = 1
2
(|HH⟩ − |HV⟩ − |VH⟩ + |VV⟩)

= 1√
2

(|H1⟩ − |V1⟩) 1√
2

(|H2⟩ − |V2⟩). (22)
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Figure 4. Schematic depiction of the possible transitions connecting|U, 0, 0⟩ to the two-photon states |L, 1, 1⟩, |L, 2, 0⟩, and |L, 0, 2⟩. All but the
direct two-photon emission process (bold orange arrow) are eliminated in
the Schrieffer–Wolff transformation.

Remarkably, this is a pure state and |𝜓sp⟩ can be factorized
into a product of two one-photon states describing the first and
second detected photon, respectively (indicated by 1 and 2).
Since |𝜓sp⟩ can be factorized, it is not entangled and, thus, the
concurrence vanishes at this point. Therefore, instead of a direct
transition from highΦBS to high ΨBS entanglement the system
passes through this special point with vanishing degree of
entanglement.
We note that the special point occurs at a distinct resonance

condition. Beside the two-photon transition between the two out-
ermost dressed states, also the one-photon process between the
intermediate states |M⟩ and |N⟩ becomes resonant.

5.2. Effective Hamiltonian of the System at the Resonance

In order to understand the underlying physics of the crossover
between the entanglement types we derive an effective Hamilto-
nian that describes the most relevant transition processes involv-
ing the |U⟩ and |L⟩ states. To be more specific, we account only
for the uppermost state without photons |U, 0, 0⟩ and the low-
est states with two photons |L, 1, 1⟩, |L, 2, 0⟩, and |L, 0, 2⟩. Here,|𝜒 , nH, nV⟩ is the product state of |𝜒⟩ ∈ {|U⟩, |M⟩, |N⟩, |L⟩} and
the photon number state forH and V polarization.
Besides the direct two-photon transitions, there are several

other possibilities to go from the initial to the final states. One
example are subsequent one photon transitions, either going
via one of the intermediate states or by a self-interaction and
then a one-photon process. Also, from the final states, a sequen-
tial photon emission and absorption (or the other way around)
can take place. These processes are depicted in Figure 4. There-
fore, the states mentioned above are coupled to a bunch of other
states, namely the one-photon states |𝜒 , 1, 0⟩, |𝜒 , 0, 1⟩ and the
three-photon states |𝜒 , 3, 0⟩, |𝜒 , 2, 1⟩, |𝜒 , 1, 2⟩, and |𝜒 , 0, 3⟩ (with
𝜒 ∈ {U,M,N, L}), while the latter can be reached in sequential
emission/absorption processes.
Using a Schrieffer–Wolff transformation, it is now possible to

encode these transitions into a single matrix, acting only within
the basis spanned by the direct two-photon transitions, that is,|U, 0, 0⟩, |L, 1, 1⟩, |L, 2, 0⟩, and |L, 0, 2⟩.[61,62] A Schrieffer–Wolff
transformation thereby performs a block-diagonalization, which
decouples the desired states from the rest. This is reasonable,
because the removed states are strongly off-resonant in this situ-

ation and, thus, represent a small perturbation. More details on
the Schrieffer–Wolff transformation can be found in Appendix A.
After the Schrieffer–Wolff transformation, which is treated

within the photon number states, we afterward perform addition-
ally a basis transformation to rotate the system partially into the
Bell basis with {|U, 0, 0⟩, |L, 1, 1⟩, |L,Φ+⟩, |L,Φ−⟩}. In this repre-
sentation |L, 1, 1⟩ corresponds to the possibility of ΨBS entan-
glement, where two photons are generated such that one is H-
and the other V -polarized. However, without further analysis, we
cannot distinguish between Ψ±BS entanglement. The effective
Schrieffer–Wolff Hamiltonian is then given by

̂̃H(2)
UL = g2

⎛⎜⎜⎜⎜⎜⎝

𝛿UL 𝛾UL1 −𝛾UL2 0

𝛾UL1 −𝛿UL 𝛼UL 0

−𝛾UL2 𝛼UL −𝛿UL 0

0 0 0 −𝛿UL

⎞⎟⎟⎟⎟⎟⎠
(23)

with

𝛿UL =
(
c̃2 − c2

)( 2
Δ0

+ 4
ΔUL

)
𝛾UL1 = 4cc̃ 1

Δ0
− 16cc̃

(
c̃2 − c2

) 1
ΔUL

𝛾UL2 = 16cc̃
(
c̃2 − c2

) 1
ΔUL

𝛼UL = 1
Δ0

−
(
1 − 16c2c̃2

) 1
ΔUL

, (24)

where ΔUL = EU − EL. The given expressions contain only the
most important contributions. The full expressions can be found
in Appendix A.1. It is interesting to note that the coefficients 𝛾UL1∕2
stem from the subsequent emission of two single photons (faded
orange arrows in Figure 4) and simultaneous two-photon emis-
sion, while 𝛼UL accounts for the fact that from the two photon
states, coupling to higher (lower) photon states can take place
and therefore couple different types of two-photon states (faded
red arrows in Figure 4). An example for the latter case is the cou-
pling of |L, 2, 0⟩→ |L, 2, 1⟩, followed by a photon number reduc-
tion via |L, 2, 1⟩ → |L, 1, 1⟩ illustrating why different two-photon
states are coupled.
From this Hamiltonian, we can now deduce which type of en-

tanglement is created: First of all we find that the state |L,Φ−⟩
is decoupled, such that we see that photons with this type of en-
tanglement are not created. In contrast, the initial state |U, 0, 0⟩
is coupled to the |L,Φ+⟩ state via 𝛾UL2 and to the state |L, 1, 1⟩ via
𝛾UL1 . Therefore in principle bothΦBS andΨBS entanglement can
be created. The different types of entangled states are coupled via
the coefficient 𝛼UL, however, we will for now neglect this coupling
(see discussion at the end of the next section). Which type of en-
tanglement dominates depends on the ratio

r =
𝛾UL1

𝛾UL2

= 4
(

Ω
Δ0

)2
− 1
2
. (25)

This means, we obtain preferably ΦBS entanglement, when
𝛾UL2 > 𝛾UL1 (or |r| < 1), and preferably ΨBS entanglement if
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Figure 5. Effective coupling constants 𝛾UL1 and 𝛾UL2 and the ratio
r = 𝛾UL1 ∕𝛾UL2 as function of the driving strength Ω.

𝛾UL2 < 𝛾UL1 (or |r| > 1). Figure 5 displays the ratio r as well as the
couplings 𝛾UL1 and 𝛾UL2 as a function of the driving strengthΩ. In-
deed, r = 1 corresponds toΩsp =

√
3∕8Δ0 and we obtain our spe-

cial point, when both types of entanglement are occurring with
equal weight and we have zero concurrence since their superpo-
sition results in a factorizable state.

5.3. Approximate Two-Photon Density Matrix

Further insight is obtained by calculating the two-photon den-
sity matrix assuming the delay window 𝜏 is small and can be ne-
glected so that

𝜌
2p
jk,lm(𝜏) ≈ Tr

{
âm âl �̂�s â

†
j â

†
k

}
(26)

where is a normalization constant and �̂�s describes the steady
state of the system. Note that only states with at least two photons
inside the cavity contribute to the two-photon density matrix. Ne-
glecting the coupling 𝛼UL in the effective Hamiltonian (23) and
performing another basis transformation, one finds that the only
two-photon state coupled to |U, 0, 0⟩ is
|𝜓s⟩ = 1√(

𝛾UL1

)2 + (𝛾UL2

)2 (𝛾UL1 |L, 1, 1⟩ − 𝛾UL2 |L,Φ+⟩). (27)

Therefore, in this approximation, also the contribution to the
steady state which contains two photons inside the cavity should
be proportional to |𝜓s⟩. Consequently, the approximate normal-
ized two-photon density matrix can be calculated by inserting
𝜌s = |𝜓s⟩⟨𝜓s| into Equation (26) which results in
𝜌2papprox =

1
2(1 + r2)

⎛⎜⎜⎜⎝
1 −r −r 1
−r r2 r2 −r
−r r2 r2 −r
1 −r −r 1

⎞⎟⎟⎟⎠ , (28)

For this simplified density matrix, we can analytically calculate
the concurrence C [Equation (19)] to

C(r) = |1 − r2|
1 + r2

. (29)

In Figure 3a the approximate result C(r) is included as a dotted
line. The approximate solution agrees quite well with the nu-
merical results. This underlines the idea that the concurrence
depends essentially on the ratio r. Also for the approximate so-
lution we have the special point at r = 1 and the regions of high
entanglement and the corresponding type of entanglement can
be directly extracted from the analytical result. Below the special
point we have |r| < 1, therefore, r2 < |r|, resulting in a density
matrix of ΦBS entanglement. The maximum concurrence value
appears around Ω = 1

2
√
2
Δ0 ≈ 7.1 × g where the ratio r passes

through zero. Above Ωsp, we have r ≥ 1 and r2 > r. Thus, in this
regime one obtainsΨBS entanglement in the two-photon density
matrix.
We now discuss the deviations between the numerical and the

approximate result for the concurrence. One obvious reason for
the difference is the obmission of the coupling between the two-
photon states (via one- or three-photon states), as indicated by
𝛼UL in Equation (23). This coupling mixes ΦBS and ΨBS, such
that in the full model, the total obtained concurrence is reduced.
Nonetheless, neglecting 𝛼UL for the analysis is reasonable, when
taking the cavity losses into account. By analyzing the values of
𝛼UL and 𝛾UL, we find that these are always smaller than the cavity
loss rate 𝜅. This means that the losses relax the system before the
coupling between the different photon states becomes efficient.
Another reason for the deviations is that for low driving strength
values, other transitions between the laser-dressed states besides
the discussed direct two-photon one become important as they
get closer to resonance.

5.4. Influence of a Finite Fine-Structure Splitting

So far only the situation of degenerate intermediate bare states|XH⟩ and |XV⟩ has been analyzed. However, an often discussed
asymmetry in the system is a possible finite fine-structure split-
ting 𝛿 between these two intermediate states.[29,32,41,45,46] A fi-
nite fine-structure splitting introduces which-path information
into the system and can, therefore, result in a reduced degree of
entanglement.[3,29,32]

In Figure 3a the influence of a finite splitting 𝛿 on the con-
currence is shown, where 𝛿 = ℏ𝜔XH

− ℏ𝜔XV
is the difference

between the energies of the horizontally and vertically polar-
ized intermediate state ℏ𝜔XH∕V

= ℏ𝜔X ± 𝛿∕2. Even in the case
of a rather large splitting 𝛿 = 0.1Δ0, the resulting degree of
entanglement as measured by the concurrence is only weakly
influenced by the fine-structure splitting. Furthermore, all main
features discussed before remain unchanged: A sharp transition
between regions of high ΦBS and ΨBS entanglement takes
place at a special point of vanishing concurrence. Note that the
chosen parameters reflect the often realized situation where
the fine-structure splitting is one order of magnitude smaller
than the binding energy.[3,16,41,45] Thus, the energies of the laser-
dressed states and their character do not change significantly.
Therefore, also the resonance conditions and optical selection
rules stay roughly the same leading to very similar results.
Consequently, the resulting two-photon state and its degree
of entanglement are robust against a possible fine-structure
splitting.
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Figure 6. Concurrence as function of the cavity laser detuningΔ for fixed values of the external laser driving a)Ω = 8 × g, b)Ω = 12.25 × g, c)Ω = 30 × g,
and d) Ω = 40 × g. The color code indicates the type of entanglement: blue curves symbolize ΦBS and red curves are ΨBS entanglement. The vertical
lines mark the position of photon resonances labeled by np 𝜒1|𝜒2. e) Energy of the laser-dressed states as a function of the driving strength Ωmarking
the four selected two-photon resonance conditions which correspond to the two-photon resonances of the same color in panels (a)–(d). f) Concurrence
and mean photon number ⟨n⟩ for Ω = 12.25 × g in the vicinity of Δ = ΔMN∕2.

6. Entanglement at the Other Two-Photon
Transitions

Having discussed the transition between |U⟩ and |L⟩, we now
want to examine the behavior of the other two-photon res-
onances. In particular, there are three other two-photon res-
onances matching the transitions between the corresponding
dressed states (given by Δ𝜒1𝜒2

= E𝜒1
− E𝜒2

) in the system at

ΔUM

2
=

ΔNL

2
= 1
4

(√
Δ2
0 + 8Ω2 − Δ0

)

ΔUN

2
=

ΔML

2
= 1
4

(√
Δ2
0 + 8Ω2 + Δ0

)
ΔMN

2
=

Δ0

2
. (30)

Therefore, to sweep through the respective resonances, we now
fix the driving strength and vary the cavity laser detuning Δ.
The corresponding concurrence is calculated and the results are
shown in Figure 6 for four different driving strength values Ω =
8 × g, 12.25 × g, 30 × g, and 40 × g.
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The type of entanglement is encoded in the color: Blue lines
are for ΦBS and red lines for ΨBS entanglement. On first sight,
we find that both types of entanglement occur when we vary
Δ. In addition to a strong concurrence at the four two-photon
resonances, we find several other cavity detuning values with
non-vanishing concurrence. We can attribute these to the one-
photon resonances U|M and N|L and several three-photon
resonances, which occur between the respective states. Accord-
ingly, we have labeled all resonances by np 𝜒1|𝜒2, which denotes
the n-photon resonances between the laser-dressed states |𝜒1⟩
and |𝜒2⟩.
Figure 6e shows the dressed states as a function of the driv-

ing strength and we used colored arrows to mark the different
two-photon resonances. The same colors are used to indicate the
position of the two-photon resonances in Figure 6a–d. Before we
will go through the two-photon resonances one-by-one (note that
we already discussed the 2pU|L resonance), let us briefly remark
some general findings:
While some n-photon transitions are always associated with

the same type of entanglement, others can change from one
to the other. This change may happen as a result of changing
the cavity laser detuning or the driving strength. Furthermore,
in between some of the resonance conditions the concurrence
value stays at a finite level, whereas it passes through zero in
other situations. A striking feature is the appearance of a sec-
ond special point with vanishing concurrence between regions
of high entanglement when the cavity laser detuning is approx-
imately Δ ≈ ΔUM∕2 = ΔNL∕2, which we will discuss in detail in
Section 6.2.
Next, we will go through the two-photon resonances one-by-

one. For each two-photon resonance we perform a Schrieffer–
Wolff transformation, followed by a rotation of the states, such
that each Hamiltonian in the following is given in the basis

{|𝜒1, 0, 0⟩, |𝜒2, 1, 1⟩, |𝜒2,Φ+⟩, |𝜒2,Φ−⟩} (31)

with 𝜒1 being the higher energy state and 𝜒2 being the lower
energy state of the 2p 𝜒1|𝜒2 resonance. More details on the
Schrieffer–Wolff transformation are given in Appendix A.

6.1. Two-PhotonM|N Resonance

We start by looking at 2pM|N, which is the only two-photon tran-
sition for which the resonance condition does not depend on the
driving strength. The corresponding transitions are marked by a
light green line in Figure 6. At this resonance the concurrence
always displays ΦBS entanglement. While the concurrence is
mostly maximal at the resonance, we find a decrease in strength
at the maximum at Ω = 12.25 × g.
We use the Schrieffer–Wolff transformation to obtain the ef-

fective Hamiltonian

̂̃H(2)
MN = g2

⎛⎜⎜⎜⎜⎝
𝛿MN 0 0 𝛾MN

2

0 −𝛿MN −𝛿MN 0

0 −𝛿MN −𝛿MN 0

𝛾MN
2 0 0 −𝛿MN

⎞⎟⎟⎟⎟⎠
(32)

with

𝛿MN = 2
(
c̃2 − c2

) 1
ΔUL

𝛾MN
2 = −4 c c̃ 1

ΔUL
. (33)

Note that these are shortened expressions and the full expres-
sions can be found in Appendix A.2. From the Hamiltonian, it
is obvious that the initial state is only coupled to the final state|N,Φ−⟩, while the other two-photon states become uncoupled.
This is in agreement with Figure 6, where we only find ΦBS en-
tanglement at the 2pM|N resonance.
The smaller height in concurrence at Ω = 12.25 × g (see also

Figure 6f), can be traced back to the occurrence of several reso-
nance conditions at the same driving strength, in particular the
one-photon transitions 1p U|M and 1p N|L. This is confirmed
by looking at the mean photon number ⟨n⟩ = ⟨â†HâH + â†VâV⟩ as
displayed in Figure 6f. The alignment of several resonance con-
ditions causes the peak to split into two separate resonances, as
indicated by the mean photon number. Due to the additional
one-photon resonances three-photon states with all four possi-
ble combinations of polarized photons gain a noticeable popu-
lation and the extracted (two-photon) coherence 𝜌

2p
HH,VV reaches

only about half the value of the occupations 𝜌2pHH,HH and 𝜌
2p
VV,VV.

As a result, the degree of entanglement is strongly reduced.

6.2. Two-Photon U|M and Two-Photon N|L Resonance
Next we consider the two-photon resonances between the laser-
dressed states |U⟩ and |M⟩, and between |N⟩ and |L⟩, which have
the same energy. In Figure 6, these resonances are indicated by
a dark green line. From Figure 6, we see that here always a sharp
transition betweenΦBS andΨBS entanglement takes place. This
is highlighted in Figure 7a, which presents a closer look at this
resonance condition for Ω = 30 × g. Figure 7b–d display the cor-
responding two-photon densitymatrices for three selected detun-
ing values. With rising cavity laser detuning the entangled state
created inside the cavity changes from ΦBS to ΨBS entangle-
ment, passing through a special point at Δ ≈ 0.836Δ0 where the
concurrence drops to zero.
Here, we have two transitions, for which the corresponding

Schrieffer–Wolff analysis yields the Hamiltonians

̂̃H(2)
UM = g2

⎛⎜⎜⎜⎜⎝
𝛿UM1 − 𝛿UM2 0 0 𝛾UM2

0 𝛿UM3 𝛼UM 0

0 𝛼UM 𝛿UM3 0

𝛾UM2 0 0 𝛿UM3

⎞⎟⎟⎟⎟⎠
(34)

and

̂̃H(2)
NL = g2

⎛⎜⎜⎜⎜⎜⎝

𝛿UM1 − 𝛿UM2 𝛾NL1 𝛾NL2 0

𝛾NL1 𝛿NL3 𝛼NL 0

𝛾NL2 𝛼NL 𝛿NL3 0

0 0 0 𝛿NL3

⎞⎟⎟⎟⎟⎟⎠
(35)
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Figure 7. a) Concurrence and mean photon number ⟨n⟩ for Ω = 30 × g.
Vertical lines indicate the position of Δ̃UM (Equation (37)) and Δ̃NL
(Equation (38)). b–d) Absolute values of the two-photon density matrices|𝜌2p(𝜏)| for Δ as indicated.

with the coefficients given in Appendix A.3. While the Hamilto-
nian ̂̃H(2)

UM has the same form as ̂̃H(2)
MN in Equation (32), theHamil-

tonian ̂̃H(2)
NL has a form similar to ̂̃H(2)

UL in Equation (23).
From the effective Hamiltonian, it is evident that the isolated

2p U|M resonance supports only ΦBS entanglement, while the
isolated 2pN|L resonance has competing channels for bothΦBS
andΨBS entanglement. From the coefficients, we can deduce the
strengths of the competing channels, finding that

|𝛾NL1 | = |𝛾NL2 | + 2
√
2c̃

2Δ0 + ΔUM
. (36)

Therefore the ratio 𝛾NL1 ∕𝛾NL2 is always larger than 1 and the pre-
ferred type of entanglement for the 2p N|L resonance is always
ΨBS entanglement.
A zoom in around the two-photon transition at Δ = ΔUM∕2,

presented in Figure 7a for Ω = 30 × g, shows clearly that two
peaks appear, a ΦBS one and a ΨBS one. The approximate posi-
tion of these peaks can be determined by the diagonal elements
of the Schrieffer–Wolff Hamiltonians in Equation (34) and Equa-
tion (35). Due to the transformation, diagonal elements appear
encoded by 𝛿

𝜒1𝜒2

j , which slightly shift the resulting resonance,
such that now we have the resonances for the 2p U|M transition
with ΦBS entanglement at

Δ̃UM = 1
2

(
ΔUM + (𝛿UM1 − 𝛿UM2 ) − 𝛿UM3

)
(37)

and the 2p N|L transition with ΨBS entanglement at

Δ̃NL =
1
2

(
ΔUM + (𝛿UM1 − 𝛿UM2 ) − 𝛿NL3

)
. (38)

The values of the different 𝛿𝜒1𝜒2j are given in Appendix A.3. In-
deed, the position of the peak maxima visible in Figure 7 agree
well with these shifted resonances (indicated by vertical lines).

This interpretation is confirmed by themean photon number ⟨n⟩
(dotted line in Figure 7) which also displays two separatemaxima,
indicating two close-by resonances (confer Figure 7a).
Also, the 𝛿𝜒1𝜒2j depend sensibly on the driving strength Ω. For

a driving strength being smaller than Ωm =
√
3Δ0 ≈ 34.6 × g we

find that Δ̃UM < Δ̃NL, while for Ω > Ωm this order is reversed.
Therefore, in Figure 6d for a driving strength Ω = 40 × g the ar-
rangement of ΨBS and ΦBS entanglement is swapped.
In between the regions ofΦBS andΨBS entanglementwe have

the special point at (Δ̃UM + Δ̃NL)∕2. From the density matrix at
this special point (confer Figure 7c), we see that the concurrence
does not vanish due to the lack of coherences. We find that at the
special point the generated two-photon state is essentially the su-
perposition of the two density matrices created by each transition
individually with

𝜌
2p
sp2 =

1
2

⎡⎢⎢⎢⎣
1
2

⎛⎜⎜⎜⎝
0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞⎟⎟⎟⎠ +
1
2

⎛⎜⎜⎜⎝
1 0 0 −1
0 0 0 0
0 0 0 0
−1 0 0 1

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ (39)

This can be rewritten into

𝜌
2p
sp2 =

1
2
|𝜓 (+)

sp2⟩⟨𝜓 (+)
sp2| + 1

2
|𝜓 (−)

sp2⟩⟨𝜓 (−)
sp2|, (40)

with

|𝜓 (±)
sp2⟩ = 1√

2

(|H1⟩ ± i|V1⟩) 1√
2

(|H2⟩ ± i|V2⟩). (41)

Thus, the density matrix can be written as a mixed state, where
both contributing states are products of two one-photon states,
that is, the states are factorizable states, and, accordingly, the cor-
responding concurrence vanishes.
We emphasize that this is a different type of special point than

the one discussed in Section 5.1 where the system approaches a
pure factorizable state. Another difference in comparison to the
2p U|L resonance can be found in the limit Ω → ∞. While the
concurrence obtained at the 2pU|L resonance approaches a high
finite value and becomes independent of the driving strength, the
concurrence for the 2p U|M and 2p N|L resonances approach
zero. In the limiting case the difference Δ̃UM − Δ̃NL vanishes and,
therefore, the two resonances merge together and the different
types of entanglement cancel each other.

6.3. Two-Photon U|N and Two-PhotonM|L Resonance
Finally, we analyze the remaining two resonances 2p U|N and
2p M|L. In Figure 6 we see that always ΦBS occurs at this
transition.
The analysis with the Schrieffer–Wolff transformation results

in a similar situation as discussed in the previous subsection 6.2:
The Hamiltonian of the 2pM|L transition has the same form as
the 2p U|M transition [Equation (34) or also Equation (32)] and
therefore promotes exclusively ΦBS entanglement. On the other
hand, the Hamiltonian of the 2p U|N transition has the same
form as the 2pN|L transition [Equation (35) or also Equation (23)]
and therefore promotes both ΦBS and ΨBS entanglement. The
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Table 2. Various scenarios: Similarities and differences at the different two-photon resonances.

Resonance Small driving Ω Large driving Ω Special point Limit Ω → ∞

2p U|L Ω < 12.25 × g: ΦBS Ω > 12.25 × g: ΨBS for Ω ≈ 12.25 × g high ΨBS ent.

2pM|N always ΦBS none high ΦBS ent.

2p U|M always ΦBS in between the two close-by resonances resonances coincide and ent. vanishes

2p N|L always ΨBS in between the two close-by resonances resonances coincide and ent. vanishes

2p U|N Ω < 20 × g: ΦBS Ω > 20 × g: ΨBS not observed for Ω ≤ 40 × g resonances coincide and ent. vanishes

2pM|L ΦBS (irrelevant) ΦBS (dominant) not observed for Ω ≤ 40 × g resonances coincide and ent. vanishes

dominating type of entanglement depends on the ratio of 𝛾UN1 to
𝛾UN2 , but also on the splitting from the other resonances given
by the diagonal elements 𝛿𝜒1𝜒2j . For small driving strength values
Ω < 20 × g the 2p U|N transition dominates the dynamics and
the resulting entanglement is ΦBS entanglement. For larger Ω
both two-photon resonances become of equal importance and a
transition betweenΦBS andΨBS entanglement is expected, sim-
ilar to the results presented in Section 6.2. But, in contrast to the
previous section, here, the splitting of the two peaks is too small
for the given driving strength values, therefore, we only observe
ΦBS entanglement in Figure 6. The corresponding Hamiltoni-
ans and constants are given in Appendix A.4.
By investigating the various two-photon resonances we are

able to understand the origins of all regions of high entanglement
observable in Figure 3 and 6. We stress that, we find a rich variety
of different scenarios depending on the considered resonance
condition, which are all equally fascinating. For example, at the
2pM|N resonance one always obtains a highΦBS entanglement.
In contrast to this, in case of the 2p U|L transition, the type of
entanglement undergoes a sharp transition at a special point
of vanishing concurrence when the driving strength is varied.
Additionally, a second type of special point can occur between
two close-by resonances, as demonstrated by the 2p U|M and
2p N|L resonances. Table 2 provides a short overview over the
similarities and differences between the various scenarios at the
different two-photon resonances. Using the same analytic for-
malism based on a Schrieffer–Wolff transformation, we are able
to successfully predict the resulting type of entanglement at all
two-photon resonances, and even more important, we can also
explain these various features.

7. Conclusion

In conclusion, we have investigated the possible types of entan-
glement generated by a driven four-level emitter-cavity system.
We found that two different types of entanglement can occur,
which we classified as ΦBS and ΨBS entanglement.
By adjusting the driving strength as well as the cavity detuning,

we found a rich picture showing a finite concurrence at various
transitions. Using a Schrieffer–Wolff transformation, we were
able to give analytical insight into the occurrence of the differ-
ent types of entanglement showing that either ΦBS or a mix-
ture of ΦBS and ΨBS is promoted at the two-photon transitions.
Most excitingly, we found special points, where the concurrence,
a measure for the entanglement, drops to zero, though the cor-
responding coherences in the two-photon density matrix are not

absent. Instead, factorizable (and therefore not entangled states)
are reached.
In principle, the resulting type of Bell state could also be

changed afterward, for example, by the use of waveplates or
polarization filters. But these additional components often lead
to a significant loss of photon yield. These kinds of losses can
be avoided when the target photonic state is generated directly.
Furthermore, although ΦBS and ΨBS entanglement can be
converted into each other by postprocessing, they are clearly
distinguishable in a fixed basis and reflect the systems ability to
get entangled in more than one fashion. Seeing that entangle-
ment, being one of the most remarkable and interesting physical
effects that separates the quantummechanical from the classical
world, can change its character by just adding an external driving
to a few-level emitter is exciting from a fundamental point of
view and can also lead to new possibilities for using few-level
emitters in quantum information technology.

Appendix A: Schrieffer–Wolff Transformation

For the Schrieffer–Wolff transformation we consider the FLE-
cavity system without losses and use the states |𝜒 , nH, nV⟩ where|𝜒⟩ ∈ {|U⟩, |M⟩, |N⟩, |L⟩} is one of the four laser-dressed states
defined in Section 3.2 and nH (nV) denotes the number of pho-
tons present in the horizontally (vertically) polarized cavitymode.
The direct two-photon transition from |𝜒1⟩ to |𝜒2⟩ involves only
the states

A : |𝜒1, 0, 0⟩, |𝜒2, 1, 1⟩, |𝜒2, 2, 0⟩, |𝜒2, 0, 2⟩. (A.1)

As discussed in Section 5.2, there are also several other paths
to create the two-photon states, thereby coupling the aforemen-
tioned states. These processes are depicted in Figure 4 and in-
clude the states

B : |𝜒 , 1, 0⟩, |𝜒 , 0, 1⟩,
|𝜒 , 3, 0⟩, |𝜒 , 2, 1⟩, |𝜒 , 1, 2⟩, |𝜒 , 0, 3⟩, (A.2)

where the one- and three-photon states include all four bare
states, that is, |𝜒⟩ = |U⟩, |M⟩, |N⟩, |L⟩. This results in a 28 × 28
matrix. To reduce this to a 4 × 4 matrix for the relevant states
in subset A [see Equation (A.1)], we use a Schrieffer–Wolff
transformation.[61,62] In the transformation, we perform a
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block-diagonalization of the system Hamiltonian via the unitary
transformation

e−ŜĤeŜ, (A.3)

where Ŝ is an anti-Hermitian operator.[61] After the decoupling
procedure, the states in set B [see Equation (A.2)] can be disre-
garded as they are insignificant for the system dynamics. This
formalism can be applied here since, for a given two-photon
resonance, where the cavity laser detuning matches half the
transition energy between the states |𝜒1⟩ and |𝜒2⟩, one-photon
transition processes between the laser-dressed states are typically
strongly off-resonant.
In second order the effective Hamiltonian for the states

in set A is then given by Ĥ(2)
𝜒1𝜒2

= {H(2)
a,a′}𝜒1𝜒2 with the matrix

elements[61]

H(2)
a,a′ = Ha,a′ +

1
2

{∑
b

Ha,bHb,a′

[
1

Ea − Eb
+ 1
Ea′ − Eb

]}
, (A.4)

where a runs over the states in subset A, the index b runs over
the states in B, and

Ej = ⟨j|Ĥ|j⟩ = E𝜒 +
(
nH + nV

)
Δ (A.5)

is the energy of the state |j⟩ = |𝜒 , nH, nV⟩ ∈ A, B. The matrix ele-
ments are calculated from the system Hamiltonian with

Ha,a′ = Ea𝛿a,a′ , (A.6)

This term can be dropped since it represents a constant energy
shift as the four states in set A are energetically degenerate.
The remaining matrix elements for a ≠ b are given by the
coupling Hamiltonian in the dressed state basis [Equation (13)]
with

Ha,b = ⟨a|ĤDS-c|b⟩ (A.7)

After the Schrieffer–Wolff transformation we perform a rotation
to the basis

|𝜒1, 0, 0⟩, |𝜒2, 1, 1⟩, |𝜒2,Φ+⟩, |𝜒2,Φ−⟩ (A.8)

using

̂̃H(2)
𝜒1𝜒2

= T†Ĥ(2)
𝜒1𝜒2

T with T =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 1√
2

1√
2

0 0 1√
2

− 1√
2

⎞⎟⎟⎟⎟⎟⎠
(A.9)

We performed this procedure for all two-photon resonances.

A.1. Effective Hamiltonian for the 2p U|L Resonance
The effective Hamiltonian is

̂̃H(2)
UL = g2 ×

⎛⎜⎜⎜⎜⎝
𝛿UL 𝛾UL1 −𝛾UL2 0

𝛾UL1 −𝛿UL − 𝛿UL3 𝛼UL 0

−𝛾UL2 𝛼UL −𝛿UL − 𝛿UL3 0

0 0 0 −𝛿UL − 𝛿UL3

⎞⎟⎟⎟⎟⎠
(A.10)

in the basis |U, 0, 0⟩, |L, 1, 1⟩, |L,Φ+⟩ and |L,Φ−⟩ with
𝛿UL =

(
c̃2 − c2

)( 2
Δ0

+ 4
ΔUL

)

𝛿UL3 =
8
(
c̃2 − c2

)2
3ΔUL

+ 2c̃2

ΔUL + Δ0∕2
+ 2c2

ΔUL − Δ0∕2

𝛾UL1 = 4cc̃ 1
Δ0

− 16cc̃
(
c̃2 − c2

) 1
ΔUL

𝛾UL2 = 16cc̃
(
c̃2 − c2

) 1
ΔUL

𝛼UL = 1
Δ0

−
(
1 − 16c2c̃2

) 1
ΔUL

− 1
2
𝛿UL3 + 2c̃2

ΔUL + Δ0∕2
. (A.11)

A.2. Effective Hamiltonian for the 2p M|N Resonance

The effective Hamiltonian is

̂̃H(2)
MN = g2 ×

⎛⎜⎜⎜⎜⎝
𝛿MN 0 0 𝛾MN

2

0 −𝛿MN + 𝛿MN
3 𝛼MN 0

0 𝛼MN −𝛿MN + 𝛿MN
3 0

𝛾MN
2 0 0 −𝛿MN + 𝛿MN

3

⎞⎟⎟⎟⎟⎠
(A.12)

in the basis |M, 0, 0⟩, |N, 1, 1⟩, |N,Φ+⟩ and |N,Φ−⟩ with
𝛿MN = 2

(
c̃2 − c2

) 1
ΔUL

𝛿MN
3 = − 4c̃2

2Δ0 + ΔUL
− 2
3Δ0

− 4c2

2Δ0 − ΔUL

𝛾MN
2 = −4 c c̃ 1

ΔUL

𝛼MN = −𝛿MN + 1
2
𝛿MN
3 + 1

3Δ0
. (A.13)
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A.3. Effective Hamiltonians for the 2p U|M and 2p N|L Resonance
The effective Hamiltonian for the 2p U|M resonance is

̂̃H(2)
UM = g2 ×

⎛⎜⎜⎜⎜⎝
𝛿UM1 − 𝛿UM2 0 0 𝛾UM2

0 𝛿UM3 𝛼UM 0

0 𝛼UM 𝛿UM3 0

𝛾UM2 0 0 𝛿UM3

⎞⎟⎟⎟⎟⎠
for

|U, 0, 0⟩|M, 1, 1⟩|M,Φ+⟩|M,Φ−⟩
(A.14)

where

𝛿UM1 = −16c
2c̃2

ΔUM
+ 2c̃2

2Δ0 + ΔUM
+

4(c̃2 − c2)2

2Δ0 + 3ΔUM

𝛿UM2 = − 2c2

ΔUM
+ 1
2Δ0 + ΔUM

+ 2c̃2

2Δ0 + 3ΔUM

𝛿UM3 = − 4c2

3ΔUM
+ 2
2Δ0 − ΔUM

+ 4c̃2

2Δ0 + ΔUM

𝛾UM2 = −
4
√
2c2c̃

ΔUM
−

√
2c̃

2Δ0 + ΔUM
+
2
√
2
(
c̃2 − c2

)
c̃

2Δ0 + 3ΔUM

𝛼UM = −𝛿UM2 − 1
2
𝛿UM3 (A.15)

The effective Hamiltonian for the two-photon transition between
the states |N⟩ and |L⟩ is given by
̂̃H(2)
NL = g2 ×

⎛⎜⎜⎜⎜⎝
𝛿UM1 − 𝛿UM2 𝛾NL1 𝛾NL2 0

𝛾NL1 𝛿NL3 𝛼NL 0

𝛾NL2 𝛼NL 𝛿NL3 0

0 0 0 𝛿NL3

⎞⎟⎟⎟⎟⎠
for

|N, 0, 0⟩|L, 1, 1⟩|L,Φ+⟩|L,Φ−⟩
(A.16)

with

𝛿NL3 = −32c
2c̃2

ΔUM
− 4c2

3ΔUM
−

8(c̃2 − c2)
2Δ0 + 5ΔUM

− 4c̃2

2Δ0 + 3ΔUM

𝛾NL1 = 𝛾UM2

𝛾NL2 = 𝛾UM2 +
2
√
2c̃

2Δ0 + ΔUM

𝛼NL = −𝛿UM1 + 1
2
𝛿NL3 + 4c̃2

2Δ0 + ΔUM
+ 4c̃2

2Δ0 + 3ΔUM
(A.17)

A.4. Effective Hamiltonians for the 2p U|N and 2p M|L Resonance
For the 2p U|N transition we obtain

̂̃H(2)
UN = g2 ×

⎛⎜⎜⎜⎜⎝
𝛿UN1 − 𝛿UN2 𝛾UN1 𝛾UN2 0

𝛾UN1 𝛿UN3 𝛼UN 0

𝛾UN2 𝛼UN 𝛿UN3 0

0 0 0 𝛿UN3

⎞⎟⎟⎟⎟⎠
for

|U, 0, 0⟩|N, 1, 1⟩|N,Φ+⟩|N,Φ−⟩
. (A.18)

The energies and coupling strengths are

𝛿UN1 = −16c
2c̃2

ΔUN
+ 2c2

ΔUN − 2Δ0
+

4
(
c̃2 − c2

)2
3ΔUN − 2Δ0

𝛿UN2 = − 2c̃2

ΔUN
+ 1

ΔUN − 2Δ0
+ 2c2

3ΔUN − 2Δ0

𝛿UN3 = − 4c̃2

3ΔUN
− 2
2Δ0 + ΔUN

− 4c2

2Δ0 − ΔUN

𝛾UN1 = −
4
√
2cc̃2

ΔUN
−

√
2c

ΔUN − 2Δ0
−
2
√
2
(
c̃2 − c2

)
c

3ΔUN − 2Δ0

𝛾UN2 = 𝛾UN1 +
2
√
2c

ΔUN − Δ0

𝛼UN = 𝛿UN2 + 1
2
𝛿UN3 − 2

ΔUN − 2Δ0
+ 2
2Δ0 + ΔUN

. (A.19)

For the 2pM|L transition we have
̂̃H(2)
ML = g2 ×

⎛⎜⎜⎜⎜⎝
𝛿UN1 − 𝛿UN2 0 0 𝛾UN1

0 𝛿ML
3 𝛼ML 0

0 𝛼ML 𝛿ML
3 0

𝛾UN1 0 0 𝛿ML
3

⎞⎟⎟⎟⎟⎠
for

|M, 0, 0⟩|L, 1, 1⟩|L,Φ+⟩|L,Φ−⟩
(A.20)

with

𝛿ML
3 =

8
(
c̃2 − c2

)2
2Δ0 − 5ΔUN

− 4c̃2

3ΔUN
+ 4c2

2Δ0 − 3ΔUN
− 32c2c̃2

ΔUN

𝛼ML = −𝛿UN1 + 1
2
𝛿ML
3 + 4c̃2

3ΔUN
. (A.21)
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