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Abstract
The blood cells called blood platelets play a crucial role in keeping the blood circulatory
system intact. Circulating through the human body within the flowing blood, platelets
are responsible for the quick stop of a bleeding. A prime property of the platelets is the
margination, i.e., the adaption of a near-wall location in the flowing blood. However, the
blood flow does not only facilitate their main function, but also contributes significantly
to their highly efficient formation. The large number of 1011 blood platelets forms daily in
the bone marrow in a strongly flow-accelerated process. In addition to the external fluid
forces, actively generated stresses in the cell cortex, a thin layer of cytoskeletal filaments
and motor proteins tethered to the cell membrane, are important for the development of
blood platelets.
While simulations of passive elastic cells in flow are abundant, a combination with

active cortex mechanics has so far not been addressed. In the present thesis, a simulation
tool is developed, which allows such a combination. In a fully three-dimensional manner,
the computational tool combines an arbitrarily deforming, elastic active cell cortex plus
membrane with a dynamic coupling to a flowing liquid. By utilizing active gel and thin
shell theory, the force balance equations are expressed on a triangulated membrane and
forces resulting from active stresses are calculated using a parabolic fitting procedure.
Suspending fluid flow dynamics as well as a two-way coupling of flow and membrane
mechanics are achieved using a lattice-Boltzmann/immersed boundary scheme or the
boundary integral method. On the same footing including the parabolic fitting procedure,
a second three-dimensional simulation method is developed which considers an active
cortex in the long time, i.e., viscous, limit. Here, a heterogeneous active stress distribution
triggers flow inside the cell cortex. We numerically determine the flow velocity by globally
solving the force balance equations by means of a minimization ansatz. Both simulation
methods are extensively validated.
A particular interesting feature of a cell cortex is the occurrence of anisotropic active

stress. Based on the mathematical description it becomes clear that a cortical active
stress is analogous to the surface tension of a liquid despite their fundamentally different
origin. Therefore, the Rayleigh-Plateau instability, which is known to describe the
break-up of a cylindrical liquid jet into droplets, has also been predicted to occur in
the presence of a cortical active stress. However, the question arises how an anisotropic
active stress, in contrast to the isotropic surface tension, alters this instability. We
analytically derive dispersion relations for a fluid-fluid interface as well as a shear and/or
bending elastic membrane under the influence of an anisotropic interfacial tension. Our
theoretical analysis accompanied by numerical simulations uncovers a strong impact of
the anisotropy on the instability, where fragment size decreases and instability dynamics
becomes faster for dominating azimuthal tension. Most remarkably, the interplay of
elasticity and tension anisotropy can restrict the instability and can render the interface
stable.
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In blood platelet formation, progenitor cells trapped in the bone marrow develop
long, finger-like membrane protrusions into blood vessels. These protrusions fragment
into numerous platelets in the presence of blood flow. Using our developed simulation
tool, we identify a biological Rayleigh-Plateau instability as the fundamental biophysical
origin of the highly efficient formation of the blood platelets. We confirm the cortical
activity as key ingredient for this fragmentation. In addition, we systematically study the
influence of external blood flow, where we find a significant acceleration of the formation
with increasing flow velocity in agreement with experiments. Simulations show that
this acceleration is especially pronounced in a homogeneous flow field, which sheds light
onto an efficient design of microfluidic devices for in vitro platelet production. In the
presence of shear, we find an explanation for the formation of larger preplatelets, which
are intermediate progenitors of blood platelets.
While it is well known that released blood platelets are expelled towards the vessel

wall in a process called margination in blood flowing through straight channels, their
behavior in vessel networks is hardly understood. In this thesis, we investigate their flow
behavior passing through a vessel bifurcation as well as a vessel confluence. While our
simulations show that their distinct near-wall position is robust along a bifurcation, we
observe platelets located within an additional (red blood) cell-free layer in the vessel
center behind a confluence. By determining the shear induced diffusion coefficient, we
are able to draw conclusions on platelet dynamics in a vessel network, where succeeding
confluences would lead to a more continuous distribution of blood platelets across the
vessel diameter. Therefore, the observed antimargination behind a confluence can explain
differences in platelet distribution between the arterial part with abundant bifurcations
and the venous part of the microcirculation with a lot of confluences previously found in
vivo.

Key words
Active membranes · Rayleigh-Plateau instability · anisotropic tension · blood platelets ·
blood platelet biogenesis · blood flow · (anti)margination · cell mechanics · fluid-particle
interaction · computational fluid dynamics · biological physics
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Zusammenfassung
Die als Blutplättchen bezeichneten Blutkörperchen sind für ein intaktes Kreislaufsystem
von großer Bedeutung. Sie oszillieren mit dem Blut durch den menschlichen Körper
und sorgen für einen schnellen Stopp von Blutungen. Eine wichtige Eigenschaft von
Blutplättchen ist dabei die Margination, welche ihre Lokalisierung nahe von Gefäßwänden
in fließendem Blut beschreibt. Jedoch begünstigt der Blutfluss die Blutplättchen nicht
nur in ihrer Funktion, er spielt auch eine große Rolle in deren hocheffizienter Erzeugung.
Ein unter Strömung stark beschleunigter Prozess im Knochenmark sorgt für die tägliche
Produktion von 1011 Blutplättchen. Zusätzlich zu den Kräften aufgrund des äußeren
Blutflusses sind aktiv generierte Spannungen im Zellkortex, einer dünnen Schicht von
Filamenten des Zytoskeletts und Motorproteinen verknüpft mit der Zellmembran, essentiell
für den Entstehungsprozess der Blutplättchen.
Während Computersimulationen von passiv elastischen Zellen im Fluss weite Ver-

breitung finden, wurde deren Kombination mit der aktiven Mechanik des Zellkortex
bisher nicht berücksichtigt. In dieser Arbeit wird eine Simulationsmethode entwickelt,
welche diese Kombination ermöglicht. Die komplett dreidimensionale Simulationsmethode
koppelt einen beliebig deformierten, elastischen und aktiven Zellkortex zusammen mit der
Zellmembran an ein äußeres Fluid. Unter Zuhilfenahme der Theorie aktiver Gele und der
Theorie dünner Membranen wird das Kräftegleichgewicht auf dem triangulierten Zellkor-
tex formuliert und die Kräfte, welche aus der aktiven Spannung resultieren, werden mittels
einer parabolischen Anpassung berechnet. Die Gitter-Boltzmann-/Immersed-Boundary-
oder die Randwertintegral-Methode ermöglichen die Berechnung von Fluiddynamik und
eine dynamische beiderseitige Kopplung von Fluid und Membranmechanik. Auf selbiger
Basis der parabolischen Anpassung wird darüber hinaus eine weitere dreidimensionale
Simulationsmethode für den Zellkortex im Langzeitlimit, d.h. für einen viskosen Kortex,
entwickelt. Hier sorgt die aktive Spannung für einen Fluss innerhalb des Zellkortex. Durch
das globale Lösen des Kräftegleichgewichts durch einen Minimierungsansatz wird die
Flussgeschwindigkeit numerisch bestimmt. Beide Simulationsmethoden werden ausgiebig
validiert.

Ein besonders interessanter Aspekt des Zellkortex ist das Auftreten anisotroper aktiver
Spannung. Aufgrund einer ähnlichen mathematischen Beschreibung ist die aktive Kortex-
spannung analog zur Oberflächenspannung einer Flüssigkeit. Daran erkennt man, dass die
Rayleigh-Plateau-Instabilität, welche das Auseinanderbrechen eines zylindrischen Wasser-
strahls in Tröpfchen beschreibt, auch in Folge einer aktiven Kortexspannung auftreten
kann. Wie eine anisotrope Spannung im Gegensatz zur isotropen Oberflächenspannung
diese Instabilität beeinflusst, ist bisher ungeklärt. In dieser Arbeit werden analytische
Dispersionsrelationen sowohl für eine Fluid-Fluid-Grenzfläche als auch für eine scher-
und biegeelastische Membran unter Einfluss anisotroper Spannung hergeleitet. Die theo-
retische Beschreibung im Zusammenspiel mit Simulationen zeigt einen starken Einfluss
anisotroper Spannung, wobei mit dominierender azimutaler Spannung die Fragmentgröße
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abnimmt und die Dynamik schneller wird. Bemerkenswerterweise kann die Elastizität
zusammen mit der aktiven Spannung zu einer Beschränkung und sogar zur Unterdrückung
der Instabilität führen.

Die Blutplättchen entstehen aus langen, fingerartigen Membranfortsätzen, welche von
den Vorläuferzellen im Knochenmark in die Blutbahn ausgebildet werden. Diese Fortsätze
zerbrechen unter Einfluss des Blutflusses in zahlreiche Blutplättchen. Durch Computer-
simulationen mit der entwickelten Methode kann gezeigt werden, dass eine biologische
Rayleigh-Plateau-Instabilität den biophysikalischen Mechanismus der hocheffizienten
Blutplättchenbildung darstellt. Dabei wird die wichtige Rolle des aktiven Zellkortex
bestätigt. Darüber hinaus zeigen die Simulationen eine systematische Beschleunigung
des Entstehungsprozesses mit steigender äußerer Flussgeschwindigkeit im Einklang mit
Experimenten. Im Hinblick auf eine effiziente Gestaltung von Mikrofluidikkanälen zur
künstlichen Erzeugung von Blutplättchen, tritt die stärkste Beschleunigung in einem
homogenen Flussfeld auf. Im Scherfluss wird eine Erklärung für die Bildung größerer
Präplättchen gefunden, welche als eine Vorform von Blutplättchen auftreten können.
Während die Margination eine viel untersuchte Beschreibung der wand-nahen Lokali-

sierung der Blutplättchen in geraden Gefäßen darstellt, ist der Einfluss von verzweigten
Gefäßen kaum verstanden. In dieser Arbeit werden Blutplättchen im Blutfluss inner-
halb einer Bifurkation oder eines Zusammenflusses von Gefäßen untersucht. Comput-
ersimulationen zeigen, dass die Position nahe der Wand durch eine Bifurkation nicht
beeinflusst wird, aber hinter einem Zusammenfluss von Gefäßen dazu führt, dass die
Blutplättchen in die Kanalmitte migrieren. Durch die Bestimmung des scher-induzierten
Diffusionskoeffizienten können Aussagen zum Verhalten in einem Netzwerk von Gefäßen
getroffen werden. Hierbei führen mehrere Zusammenflüsse hintereinander zu einer kon-
tinuierlichen Verteilung von Blutplättchen über den Gefäßdurchmesser. Somit kann die
Antimargination experimentelle Unterschiede zwischen der Blutplättchenverteilung in
arteriellen Gefäßen mit überwiegend Bifurkationen und venösen Gefäßen mit überwiegend
Gefäßzusammenflüssen erklären.

Schlüsselwörter
Aktive Membranen · Rayleigh-Plateau-Instabilität · anisotrope Spannung · Blutplättchen
· Blutplättchenbildung · Blutfluss · (Anti-)Margination · Zellmechanik · Fluid-Partikel-
Wechselwirkung · Strömungssimulationen · biologische Physik
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1 Introduction
An important aspect of the biological cell’s ability to sustain life is the mechanical
function including cellular shape regulation, which goes back to proteins acting in an
orchestrated fashion [1, 2]. During polymerization and depolymerization of cytoskeletal
protein filaments, e.g., actin, or movement of associated motor proteins such as myosin,
chemically stored energy is constantly converted into mechanical work [1]. This drives
cytoskeletal assemblies out of equilibrium and within the assembly mechanical stress is
actively generated [3 – 6]. The non-equilibrium character of active stress [7 – 9] leads to new
physical phenomena: the formation of protrusions on artificial vesicles [10], density and
orientational instabilities [11, 12], the emergence of structures [13, 14], and spontaneous
flows [15, 16]. In particular considering a biological cell, a thin layer of an active protein
network made up of actin and myosin tethered to the plasma membrane, which is termed
cell cortex, plays an important role. In turn, the biological composition and physical
effects go hand in hand to determine cell behavior, among others leading to deformations
and thus strongly regulating the cell shape [8, 17 – 21]. Often, cellular processes take
place in aqueous environment such as blood flow, where cells constantly move and are
exposed to external forces due to viscous stress. Therefore, not only active stress but
also the flowing environment influences the cell shape [22, 23].
In the field of biological physics, the development of new tools [24, 25], such as the

hydrodynamic theory of active gels [3, 26] covering the behavior of a cell cortex [27 – 29], is
of great importance to describe and understand cellular processes [9, 29, 30]. Concerning
a dynamically deforming shape, from the theoretical description often either predictions
on instabilities are deduced [9, 13, 31 – 36] or equations are solved numerically to obtain
the evolving cell shape [20, 37 – 41]. An analytical investigation of the flow field has
been done inside a weakly deforming sphere subjected to active stress [42, 43]. Except
the determination of the equilibrium shape of an elastic shell with a preferred curvature
accounting for myosin activity [44] and the work by Torres-Sánchez et al. [45], who model
a three-dimensional viscous cell cortex [45, 46], those methods are restricted to small
deformations and/or axisymmetry. Furthermore, previous studies do not account for the
full dynamics of a suspending fluid. Therefore, the framework of active gel theory could
so far not been used to explore the combination of active stress in the cell cortex and
external fluid dynamics in a three-dimensional fashion.

An important consequence of the presence of active stress is the occurrence of instabil-
ities [11, 12, 47, 48]. Also an instability analogous to the Rayleigh-Plateau instability
is predicted for a positive and isotropic active stress [32, 33, 49]. The Rayleigh-Plateau
instability is well known for the break-up of a liquid jet driven by surface tension [50 – 54]
and has been reported for vesicles in presence of an externally induced tension [55 – 58].
However, in contrast to a liquid jet or a vesicle, where an isotropic tension at the interface
or membrane is present, the active stress in cytoskeletal assemblies can be anisotropic
[59 – 62]. Therefore, the cell cortex, which together with the cell membrane represents the
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1 Introduction

interface between the interior and exterior of a cell, or a tissue layer can be subject to an
anisotropic stress [20, 63 – 65]. The influence of an anisotropic interfacial tension on the
Rayleigh-Plateau instability is unknown. Another property which has great impact on
the mechanical behavior of a cell or tissue is its elasticity [23, 66 – 69]. While the influence
of bending elasticity on the Rayleigh-Plateau instability of a vesicle has been addressed
[56, 58, 70 – 73], the role of shear elasticity remains largely unknown [32, 33]. In addition,
in cells or tissues both elasticity and anisotropic active stress often accompany each other.

By biomedical studies, a crucial role of active cortical mechanics has also been reported
for the biogenesis, i.e., formation, of blood platelets [74 – 77]. Blood platelets, which
are the cellular constituents of blood responsible for an intact circulatory system [78],
are constantly produced in large numbers in the blood vessels of the bone marrow [79].
Their direct progenitor cells form long tubular extensions into the blood flow, which
fragment into the later platelets [79]. In particular, it has been shown that a disturbed
actin-myosin cortex in the extensions inhibits proper platelet formation [74, 80 – 83].
In addition, several experiments highlight a crucial role of external fluid flow, where a
strong acceleration of the formation has been reported [84 – 89]. Therefore, the formation
of blood platelets is a prime example of a biological process combining active cortex
mechanics and external fluid flow. Despite these experimental observations, a fundamental
understanding of the formation process on the one hand and the reason for the strong
impact of fluid mechanics on the other hand is still absent.

Released blood platelets adopt a characteristic near-wall position in the flowing blood,
which goes back to a mechanism called margination [90]. In the flowing blood, the
deformable red blood cells migrate towards and enrich in the center of a blood vessel.
This in turn triggers the expulsion of the platelets into the near-wall, (red blood) cell-free
layer [90 – 93]. Whereas margination is well understood in straight channels [94 – 110],
investigations of more complex vessel geometries are limited to an aneurysm [111, 112],
a channel expansion [113], or a vessel constriction [114 – 117]. While experiments [118,
119] highlight a different distribution of platelets on the two sides of the microcirculatory
vessel system, first studies of blood flow in branching vessels or networks focus on the
red blood cell behavior [120 – 128]. How margination is affected by vessel branching in
networks has so far not been addressed.
The aim of the present thesis is to go from the development of a three-dimensional

computational method for cortical cell mechanics in interplay with external fluid flow to
the investigation of physical and biological processes in the light of active cell mechanics
and blood flow. It provides biophysical insight into and an explanation for blood platelet
formation as well as platelet motion in vessel networks. In this course, which is illustrated
in figure 1.1, the present thesis starts with the development of simulation tools. On the
one hand, we cover three-dimensional deformations of an elastic cell cortex together with
the cell membrane triggered by the presence of active stress. Here, the cell cortex with
membrane is dynamically coupled to the internal fluid and the external blood flow. On
the other hand, a cell cortex in the viscous limit is considered, where the flow velocity
in the cell cortex due to active stress is dynamically obtained on the evolving cortex.
Active stress is incorporated into a numerical thin shell model representing cortex and
membrane embedded in a three-dimensional environment. Both methods have the same
numerical basis for geometrical thin shell representation, but work with a fundamentally
different solution scheme. These methods push the research forth towards a realistic cell
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Fig. 1.1: Scope of the present thesis. In the course of the present thesis, two simulation methods
are developed, one for an elastic [pub1] and one for a viscous cell cortex [pub2] subjected to
active stress in three dimensions. Considering anisotropic active stresses often occurring in the
cell cortex, the framework of the Rayleigh-Plateau instability is extended analytically and by
means of simulations to include effects by anisotropic interfacial tension [pub3],[pub4]. Finally,
a biological Rayleigh-Plateau instability, which is accelerated with increasing external flow
velocity, is proposed as biophysical mechanism of blood platelet biogenesis [pub5]. Platelet
behavior in blood flowing through a vessel bifurcation and confluence is investigated [pub6],
where we report platelet antimargination triggered by a vessel confluence.

model covering the cortex. By its flexibility the model allows for application to the vast
variety of different constitutive laws which account for the active cortex mechanics.

In a next step, physical processes with a new characteristic in the light of active
mechanics are investigated. We extend the picture of the Rayleigh-Plateau instability, i.e.,
the pearling instability of jets, vesicles, and cellular tubes, to include anisotropic tension
or active stress. We combine the theory describing this instability with active mechanics,
where an anisotropic active stress is often observed in contrast to the classical instability
with isotropic surface tension. The goal here is to provide an analytical extension to
the general theory which is accompanied by simulations using the developed method
focusing on anisotropic active stress. We explore the Rayleigh-Plateau instability of jets
and vesicles or cells, highlighting the strong impact of anisotropic interfacial tension, both
without and with interface elasticity. Blood platelet biogenesis is a beautiful example,
where active cortical mechanics is strongly coupled to external blood flow and which
therefore requires a coupled description for a detailed biophysical understanding. Using
our developed three-dimensional simulation tool, we address the biophysical origin and the
strong acceleration of platelet formation. Based on the Rayleigh-Plateau instability due to
actin-myosin driven cortical active stress, we investigate blood platelet biogenesis from a
numerical point of view. We thus provide the biological Rayleigh-Plateau instability as the
biophysical mechanism underlying platelet formation and report a striking acceleration
by the interplay of the instability and external fluid flow. Finally, released blood platelets
are considered in blood flowing through a branching vessel. In the present thesis, we
systematically shed light onto the margination of platelets in a vessel bifurcation and a
vessel confluence, as they appear in the organism. This is a large step to an understanding
of margination in realistic complex vessel networks as they become more and more subject
of blood flow research [125, 127, 128].
This first part of this cumulative thesis provides the basics for and a summary of the

publications that led to this thesis in a compact and coherent manner. The publications
together with a list of the individual author contributions are attached to the thesis in
part II. The remainder of the first part is structured as follows: in section 2, we first
summarize the important aspects of cell biology, its realization in a physical membrane
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1 Introduction

model with special emphasis on the active mechanics, followed by a short introduction
into fluid mechanics. The developed simulation methods are outlined in section 3. In
section 3.1, we first introduce the numerical basis of the developed simulation methods
for an active cell cortex in three dimensions. Next, we present the simulation method for
an active elastic cell cortex and membrane in section 3.2 and afterwards for a viscous
active cell cortex in section 3.3. In section 4, we discuss the Rayleigh-Plateau instability
under the influence of anisotropic stress in section 4.1 and its application to blood platelet
biogenesis under the influence of blood flow in section 4.2. In section 5, we summarize
our results on the platelet distribution in flowing blood within a vessel bifurcation and
confluence. We conclude in section 6 and give an outlook.
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2 Modeling of biological membranes in
the context of blood flow

In the following, necessary background information for the publications is presented. It
starts with a biological introduction on the cell membrane and the cell cortex in section
2.1. Then, the modeling of cell membranes in thin shell theory is introduced in section
2.2 with a compact overview of differential geometry and the treatment of mechanical
properties. Section 2.3 deals with the active mechanics with a special focus on the cell
cortex. In section 2.4, first the fluid mechanics covering aspects of blood flow is addressed.
Then, a short overview of theoretical fluid mechanics is given, followed by an introduction
into the simulation methods used in this thesis.

2.1 Biology of the cell membrane and cortex
One key feature of a cell is its encapsulation, which is achieved by the plasma membrane [1].
However, the plasma membrane not only separates the cell interior from its environment,
but also contributes to the cell’s elastic behavior and thus to the cell shape. The
membrane consists of two layers made of amphiphilic lipid molecules, which form a lipid
bilayer with a height of a few nanometers [1]. The hydrophilic head groups of the lipid
molecules are oriented towards the aqueous environment in the cell interior and exterior,
the hydrophobic tails are oriented towards each other and form the core of the bilayer.
While the bilayer behaves as a fluid in the plane of the layer [129] and consequently its
resistance to shear deformation is zero [67], out-of-plane bending leads to exposure of
the hydrophobic tails to water. As a consequence, the bilayer has a certain resistance to
such bending deformations [67]. The preferred curvature of the membrane depends on
the shape and sort of the lipid molecules the bilayer is composed of [130 – 132].
In addition, proteins that are linked to the interior side of the plasma membrane

strongly influence cell mechanics [1]. A prominent example is the protein spectrin which
forms long filaments that in turn form a triangulated [133] mesh-like, thin network that
completely underlines the plasma membrane of red blood cells [1] and blood platelet
progenitors [134]. Spectrin provides the membrane with an additional resistance to shear
deformation [135] and thus is highly important for the cell shape [134, 136]. A eukaryotic
cell further consists of complex networks of cross-linked, structural protein filaments,
the cytoskeleton, which spans through the whole cell. The cytoskeleton consists of
microtubules, actin, and intermediate filaments [1]. Microtubules form by polymerization
of globular proteins into long tubes whereas polymerizing strings assemble into long
filaments in case of actin and intermediate filaments [1].

The cytoskeleton is further responsible for a dynamic reorganization of the cell shape,
another important factor of eukaryotic life. A highly dynamic reorganization and move-
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2 Modeling of biological membranes in the context of blood flow

ment in the cytoskeleton is among others crucial for transport processes, cell division, and
cell movement [1]. Here, a network of actin located underneath and linked to the plasma
membrane called cell cortex plays a special role [1, 137]. The cortex is responsible for the
separation of two daughter cells during cell division, called cytokinesis, movement and
the regulation of the cell shape [1, 19, 137 – 140]. On the one hand, cortex reorganization
is driven by continuous polymerization and depolymerization of the actin filaments,
on the other hand motor proteins can move the filaments relatively to each other [1].
The motor protein associated to actin is myosin. To microtubules both kinesin and
dynein motor proteins can bind. The dynamic processes, polymerization and motor
protein movement, are established by the presence of Adenosine triphosphate (ATP)
and Guanosine triphosphate (GTP), the molecular storage units of chemical energy in
the cell. Some types of proteins including the motor proteins are capable of converting
ATP into Adenosine diphosphate (ADP) by hydrolysis and using the released energy for
movement or other functions. Motor proteins in turn convert chemically stored energy
into mechanical work. The dynamic processes taking place in the cell are constantly
fueled by energy on the very small scale of single proteins [1, 3].

2.2 Modeling a membrane in thin shell theory
For red blood cells [23, 135, 141], blood platelets [142], their progenitors [143], but also
for actin shells created in artificial vesicles [144] and cells in general [137] a cortex height
in the order of hundred nanometers is reported. Therefore, the height of the plasma
membrane and cortex together is small compared to a typical cell diameter in the order of
several microns. As a consequence, the thin shell theory [145 – 147] has been established
in membrane modeling, where membrane and cortex are represented by an infinitely thin
shell.
In the following, we first start by introducing the important concepts of differential

geometry, which is the framework of thin shell theory. Afterwards, we detail the treatment
of membrane and cortex mechanics.
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Fig. 2.1: Membrane and cortex as thin shell. a) The thin shell is parametrized by X(s1, s2) with
in-plane coordinate vectors eα, where α = 1, 2, and normal vector n. C represents a line along
the thin shell with a line element ds. b) A force f is acting on a line element of the thin shell
with in-plane normal vector ν. The force is decomposed along the in-plane coordinate vectors
in terms of the surface stress tα.
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2.2 Modeling a membrane in thin shell theory

2.2.1 Differential geometry
Because of their relatively small thickness, the plasma membrane and cortex are treated
as a thin shell, a two dimensional manifold in three-dimensional space [148]. The thin
shell representing both the plasma membrane and cortex is sometimes called membrane
[pub1]. Figure 2.1 a) provides a sketch. Mathematically, the thin shell is parametrized
by a vector X = X(s1, s2) depending on the two coordinates s1, s2. In-plane coordinate
vectors, which point along the interface, can be derived from the parametrization by a
partial derivative

eα = ∂

∂sα
X =: ∂αX, (2.1)

where Greek letters refer to the thin shell coordinates and take the values α, β, γ, δ = 1, 2.
The local unit normal vector on the membrane n can be deduced from the two in-plane
coordinate vectors by a cross product

n = e1 × e2

|e1 × e2|
. (2.2)

The in-plane coordinate vectors and the normal vector build a coordinate system

(e1, e2,n) , (2.3)

defined at each point located on the thin shell. Therefore, they provide a local coordinate
system, where the three coordinate vectors themselves are vectors in the three-dimensional
space. Each general vector can be decomposed into its components along these coordinate
vectors

a = aβeβ + ann, (2.4)
where the upper index refers to a contravariant component and a lower index corre-
spondingly to a covariant component. Here and in the following, the Einstein sum
convention is used, which implies a sum over an index occurring twice, as covariant as
well as contravariant index. With Latin indices we refer to three-dimensional Cartesian
coordinates, they take the values i, j, k = 1, 2, 3 and the Einstein sum convention simply
applies to a double occurring index.
On the membrane, an arbitrary line C can be considered with the line element ds

pointing along dX. From the first fundamental form

ds2 = g11 ds1 ds1 + 2g12 ds1 ds2 + g22 ds2 ds2 = dX · dX, (2.5)

which allows for the measurement of length and area element on the membrane, the
metric tensor can be derived

gαβ = eα · eβ. (2.6)
The contravariant or inverse metric gαβ is defined by the relation gαγgγβ = δβα with δβα
being the Kronecker symbol. For a symmetric tensor, i.e., t βα = t αβ , such as the Kronecker
symbol, the order of covariant and contravariant indices can be changed and therefore no
distinction of the order in the mathematical symbol is necessary. Using the metric tensor
the index of a tensor component can be raised or lowered

aα = gαβaβ, aα = gαβa
β, (2.7)

tαβ = gβγtαγ, tαβ = gαγt
γ
β. (2.8)
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2 Modeling of biological membranes in the context of blood flow

Partial derivatives of the metric tensor components are given by a combination of the
Christoffel symbols, which in turn are defined by

Γγαβ = 1
2g

γδ (∂αgβδ + ∂βgδα − ∂δgαβ) . (2.9)

The Christoffel symbols further allow for a generalization of the derivative along the
in-plane coordinates to the covariant derivative. The covariant derivative in contrast
to the partial one transforms in a covariant manner [149] and is given for a scalar φ, a
general vector aβ, and a general tensor tαβ by

∇αφ = ∂αφ, ∇αa
β = ∂αa

β + Γβαγaγ, (2.10)
∇αt

βγ = ∂αt
βγ + Γβαδtδγ + Γγαδtβδ. (2.11)

An important property, which strongly discriminates a deformed thin shell from
the description of a three-dimensional body, is the curvature of the thin shell. It is
characterized by the second fundamental form

cαβ dsα dsβ = dX · dn, (2.12)

which is the variation of the normal vector projected onto a line element. Corresponding
to the second fundamental form the (extrinsic) curvature tensor is defined by

cαβ = ∂αX · ∂βn = − (∂αeβ) · n, (2.13)

where the minus together with the second identity stems from the derivative of the
identity eα · n = 0 [149]. For the curvature tensor, two scalar invariants can be defined
[149], the mean curvature

H = 1
2g

αβcαβ, (2.14)

and the Gaussian curvature
K = det

(
cβα
)
. (2.15)

The covariant derivative of an in-plane coordinate vector is given by the equation of
Gauss [148, 149]

∇αeβ = −cαβn, (2.16)

the covariant derivative of the normal vector by the equation of Weingarten [148, 149]

∇αn = cβαeβ, (2.17)

and the covariant derivative of the metric vanishes

∇αg
βγ = 0, ∇αgβγ = 0. (2.18)

Using equation (2.4), the covariant derivative of a general vector a can be obtained

∇αa = (∇αaβ + ancαβ)eβ + (∇αa
n − aβcβα)n. (2.19)
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2.2 Modeling a membrane in thin shell theory

2.2.2 Mechanical properties
The thin shell theory has to cover the mechanical properties of the membrane including
the cortex. Both internal membrane mechanics and interaction with the environment
result in forces on the membrane. In strong analogy to the well-known Cauchy stress
tensor and Cauchy’s law in three-dimensional continuum mechanics [150], the force on
the membrane can be expressed in terms of stress vectors [145]

f = ναt
α ds, (2.20)

where f is the force on a line C, which is characterized by the in-plane normal vector
ν as sketched in figure 2.1 b). The force on a local area element on the membrane is
calculated by the line integral over the force in equation (2.20) along the contour of the
area element. We term tα as the surface stress [pub1]. It can be decomposed in analogy
to equation (2.4)

tα = tαβeβ + tαnn, (2.21)
with the components along the in-plane coordinates being the in-plane surface stress tαβ
and the normal components named transverse shear stress tαn [69, 151, 152].

The surface stress tα covering internal mechanics is a sum of the different contributions
from the different mechanical properties of the membrane [68]

tα = tαel + tαvisc + tαact, (2.22)

where we here consider elastic surface stress tαel, viscous surface stress tαvisc, and actively
generated surface stress tαact. Furthermore, torques can arise which are described by
moments such as active moments [9] or bending moments [69, 151].
In addition to the internal mechanical stresses, external forces are acting on the

membrane, which are in equilibrium with the internal membrane forces [68, 145]. When
the membrane is immersed in a fluid, forces from the fluid act onto the membrane. The
fluid forces acting onto a membrane are given by the projection of the three-dimensional
fluid stress tensor σ on the normal vector of the interface [150]

f̂i = σijnj. (2.23)

A cell membrane is typically surrounded by an external medium (outer fluid) and
encloses the cytoplasm (inner fluid). Considering the forces from both fluids f̂ out and f̂ in,
respectively, leads to the traction jump across the membrane ∆f using equation (2.23)

∆f = f̂
out − f̂ in =

(
σout − σin

)
· n. (2.24)

The traction jump can again be decomposed into the components ∆fα along the in-plane
coordinate vectors and the component ∆fn along the normal vector. For negligible inertia
the traction jump is in equilibrium with the membrane forces f , which are deduced
from the surface stress in equation (2.22). This equilibrium results in the force balance
equations

∇αt
αβ + cαβt

β
n + ∆fα = 0, (2.25)

∇αt
α
n − cαβtαβ + ∆fn = 0, (2.26)
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2 Modeling of biological membranes in the context of blood flow

which are the component-wise expression of (cf. equation (2.19))

∇αt
α + ∆f = 0, (2.27)

and equivalent to the notation ∇s · T with stress tensor T and surface gradient ∇s as
used by Barthès-Biesel [68].

2.2.3 Passive elasticity and viscosity of a membrane
Under the action of forces a membrane (together with the cortex) can be deformed.
The passive elasticity describes the force as response to a deformation, which drives the
membrane back into an undeformed state (or towards the stress free shape). The elastic
response is described in terms of a constitutive law accounting for a certain material or a
certain class of materials.
For the elastic response of a red blood cell membrane towards shearing and area

dilatation the Skalak law has been proposed [66]

W SK = κS

12
[(
I2

1 + 2I1 − 2I2
)

+ CI2
2

]
, (2.28)

which gives the energy density W SK in terms of the deformation invariants I1 and I2, the
shear modulus κS, and the area dilatation coefficient C. The deformation invariants can
either be deduced from the deformation gradient [68, 153] or directly from the metric of
the undeformed Gαβ and deformed membrane gαβ [145, 154, 155] by

I1 = Gαβgαβ − 2, (2.29)
I2 = det

(
Gαβ

)
det (gαβ)− 1, (2.30)

as explicitly performed in the publications [pub1] and [pub4]. The resistance towards
shearing stems from the spectrin network in red blood cells which underlines the plasma
membrane and the resistance towards area dilatation stems from the plasma membrane
itself. We note that for C = 1 and small deformations the Skalak law is equivalent to the
Neo-Hookean law for membrane elasticity [156 – 158].
For the elastic response to bending deformations of lipid membranes the Helfrich law

[67] is widely used [68, 69, 159, 160] determining the bending energy density

WHF = 2κB(H −H0)2 + κKK, (2.31)

where κB is the bending modulus, κK the Gaussian curvature modulus and H0 the
reference curvature. The term including the Gaussian curvature K often can be neglected
because of the Gauss-Bonnet theorem [149, 161]. Therefore, a finite elastic bending
energy in equation (2.31) and a corresponding restoring force arise from deviations of the
mean curvature H from the reference curvature H0.

From the energy density functional of the elastic constitutive law, e.g., equations (2.28)
and (2.31), the force on the membrane can be deduced in two ways: the gradient of the
energy with respect to the position on the membrane can be calculated [69, 153] or in
the framework of thin shell theory the contribution to the surface stress tαel is derived by
derivatives with respect to the metric and curvature tensors [145]. The surface stress in
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2.3 Active mechanics of the cell cortex

turn enters the force balance equations (2.25) and (2.26). The latter approach has been
performed in the publications [pub1] and [pub4].

In the long-time limit the cell cortex behaves as a viscous fluid [20, 31, 37, 40, 162]. In
analogy to the Newtonian stress tensor of a three-dimensional fluid (cf. equation (2.33)
below), viscosity of the cortex enters as another contribution tαvisc to the surface stress
in equation (2.22) [9, 163 – 166]. Similar to a three-dimensional compressible fluid [150]
a planar shear viscosity ηs and a planar bulk viscosity ηb are introduced [9, 167, 168].
Viscous stresses, furthermore, depend on the surface velocity gradient, i.e., derivatives of
the velocity along the thin shell. For a further discussion and explicit equations we refer
to section 3.3 with equations (3.20) and (3.21) and publication [pub2].

2.3 Active mechanics of the cell cortex
Cytoskeletal networks such as the cell cortex are not only of great importance for cell
functionality from the biological point of view [1], but are also part of a flourishing
field of soft matter research as they represent a special class of material, namely active
matter [3]. The constant conversion of chemically stored energy into mechanical work
drives these kind of systems out of equilibrium on the scale of single molecules [3]. Kruse
et al. [26] developed a hydrodynamic theory covering the non-equilibrium mechanics of
cytoskeletal networks. The key quantity covering the actively induced forces is the active
stress [169, 170]. Due to the general viscoelastic nature of cytoskeletal networks, the
whole framework is called active gel theory [3, 4, 26, 29, 30, 171 – 175]. With its constant
progress, active gel theory has been successfully used to describe the final stage of cell
division, cytokinesis, where the cell locally contracts and separates into two daughter
cells [31, 37, 38, 40, 176 – 178], remodulation of the cortex necessary for cell motility [162,
179 – 182], and cell shape regulation [18 – 20, 183, 184]. Salbreux et al. [9] presented a
concise theory on thin shells made of active matter.
An active material is classified by a constitutive law for the active stress [9]. In case

of an active thin shell, the in-plane component of the active contribution to the surface
stress in equation (2.22) can be constituted

t β
actα =

(
t1a 0
0 t2a

)
, (2.32)

with components along the principal directions. From a distribution of active stress,
e.g., across the height of a tissue, in addition active moments [9] can arise contributing
to the normal component tαn, which, however, are beyond the scope of this thesis. In
general, active stresses are classified as extensile or contractile [174]. The active stress
nature is illustrated in figure 2.2 for a patch of active material. Further, it is classified as
isotropic, i.e., being of equal strength in each direction, or anisotropic, i.e., with strength
depending on the direction. The active stress strongly depends on the type of cytoskeletal
filaments and motor proteins and the structure of their assembly [174]. By cross-linking
or interaction of filaments by motor proteins different structures emerge, e.g., bundles,
asters, or contractile stress fibers [185, 186]. The type of observed structures such as asters
depends on the walking direction of the motor proteins [174, 187] and in turn affects active
stress nature. Microtubule bundles with mixed polarity are mainly dipolar extensile [174,
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contractile extensile

anisotropic

isotropic

Fig. 2.2: Active stress nature. An active material (in the center) either tends to contract (contractile
nature, left) or to expand itself (extensile nature, right) under the action of the actively induced
stress, such as by motor protein movement. Depending on filament orientation and packing,
contraction/expansion can be isotropic (top) or anisotropic (bottom). The illustration is based
on figure 4 of ref. [174].

188, 189]. Using a kinesin-driven filament gliding assay, Stanhope et al. [190] tuned the
active stress of microtubule bundle networks from extensile to contractile by varying the
concentration of microtubules and cross-linkers. Refs. [186, 191, 192] reported isotropic
bulk contraction for a microtubule/dynein network composed of asters. Dynein motor
proteins can induce aster formation in microtubule networks and furthermore can bridge
between neighboring asters leading to contractile network formation [191, 193, 194].
Oriola et al. [195] refer to ref. [191] and state that contraction of dynein systems might
drive contractile stresses in the spindle apparatus as well. Dynein mediated sliding of
microtubule filaments is known to drive the extension of axon protrusions [196] and
membrane protrusions of the blood platelet progenitors [87], which suggest an extensile
nature in these situations. Actin-myosin networks including the cell cortex are known
to be contractile, i.e., actin-myosin assemblies contract in each direction [21, 60, 137,
197 – 202]. In the cell cortex, actin-myosin often forms a disordered network [1, 60, 202].
Koenderink et al. [197] reported that for cross-linked actin filaments the contractile stress
generated by myosin II is isotropic. Furthermore, the strength of cross-linking within a
network triggers the contractility [200, 202 – 205]. Filament orientation can further lead
to an anisotropic, active cortical stress [20, 31, 40, 59 – 65].
In order to incorporate the active stress into a continuum theory, such as the thin

shell theory in section 2.2, a constitutive law has to be chosen representing the system
of interest. The simplest approach is to consider a spatially constant and isotropic
active stress with its magnitude depending on the chemical potential difference of ATP
hydrolysis. In principal, the active stress can vary with the density of actin-myosin [20, 39,
206]. An advection-diffusion approach can be used to describe the density of actin, where
further polymerization and depolymerization can be incorporated using reaction rates
[13, 20, 31, 39]. Furthermore, the active stress depends on the orientation of cytoskeletal
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2.4 Blood flow mechanics

filaments and formed structures such as stress bundles [1, 185]. As a consequence the
active stress can become anisotropic [20, 31, 40, 59 – 65]. An explicit dynamic dependency
can be modeled by the introduction of a vectorial polar orientation or a nematic tensor
field [3, 26, 31, 40, 189]. Further variations include asymmetric membranes [9] and chiral
active matter [30].
Due to the small length scale and the complexity of the systems of interest, precise

values of quantities such as the active stress are scarce. Using cortical laser ablation in
combination with active gel theory, the active stress relative to a friction coefficient has
been measured to be on the order of 10µm2s−1 and the viscoelastic relaxation time to be
on the order of 10 s in zebrafish cells and embryonic cells of the nematode Caenorhabditis
elegans [207]. The latter value is in agreement with reported values of the relaxation time
between 10 and 100 s for cortical actin [208, 209]. A cortical tension of 2× 10−5 Nm−1 has
been reported for neutrophils [210]. In a zebrafish embryo, a cellular cortical tension of
2× 10−5− 8× 10−5 Nm−1 has been found [211]. For fibroblasts, a typical cortical tension
of 10−4 Nm−1 has been reported [212] and tensions in the same order of magnitude occur
for macrophages [213] and for carcinoma cells [214]. The cortical tension predicted for
blood platelets is about 1× 10−5 Nm−1 [142]. For activated blood platelets, an estimation
[pub5] based on reported three-dimensional stresses [215, 216] gives an active surface
stress of 10−3 Nm−1. Finally, a tension on the order of 10−3 Nm−1 has been measured for
HeLa cells in mitosis [200, 217].

2.4 Blood flow mechanics

2.4.1 Blood flow
Flowing blood may be the most important fluid for many complex living organisms. In
a human body a wide network of vessels, the circulatory system, connects the different
organs, limbs, and tissues. Both large vessels near the heart and very fine, structured
vessels in the tissue occur. Blood represents a fluidic environment for many cells and is
constantly in motion. The circulatory system continuously sustains the transport and
supply of oxygen to all tissues of the organism. Furthermore, in the blood nutrients and
other gases are transported.

Blood consists of cells which are immersed in the blood plasma. The blood plasma itself
is a Newtonian fluid [218] of viscosity η = 1.2× 10−3 Pas and density ρ = 1000 kg/m3

[219, 220]. The oxygen is bound by the hemoglobin of anucleate blood cells, called
erythrocytes or red blood cells. The red blood cells typically have a biconcave shape
in rest with a diameter of 8µm and a height of about 2µm and form the main cellular
constituent of blood [221]. Their volume fraction, approximately the hematocrit, ranges
from 45% in large vessels towards 20% in small vessels [222 – 224]. Immune cells, the
lymphocytes or white blood cells, either tackle infections in the blood stream or are
enriched at sites of inflammation or infection of a tissue. In total, a healthy and functional
organism requires a mechanism to keep the blood circulatory system intact. The blood
cells responsible for an intact circulatory system are the anucleate thrombocytes or blood
platelets. In case of an injury, the blood platelets are activated, quickly stop the bleeding,
close the defect and therefore are of great importance for hemostasis [78].
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2 Modeling of biological membranes in the context of blood flow

All blood cells derive from a common progenitor in the bone marrow, the hematopoietic
stem cell [225]. Following the hierarchy from the hematopoietic stem cell downwards, one
precursor cell forms both red blood cells and blood platelets [226]. Further differentiation
leads to the megakaryocyte which is the direct progenitor cell to the blood platelets. A
megakaryocyte grows long membrane protrusions into the sinusoidal blood vessels of the
bone marrow [75]. These protrusions form swellings [75] and eventually rupture releasing
those swellings, which mature into functional blood platelets in the blood flow [227].

2.4.2 Theoretical fluid dynamics
The constitutive equation for a simple and incompressible liquid such as the blood plasma
is expressed by the Newtonian stress tensor [150]

σ = −pI + η
[(
∇v + (∇v)T

)]
, (2.33)

with shear viscosity η, velocity vector field v(r, t) and scalar pressure field p(r, t) both
depending on position r and time t and with I being the unit matrix. The time evolution
of the velocity field, i.e., fluid dynamics, is governed by the Navier-Stokes equation for an
incompressible fluid

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p+ ν∆v, (2.34)

where ν = η
ρ
is the kinematic viscosity and ρ the density. Depending on the properties of

the system of interest the non-linear left hand side of the Navier-Stokes equation (2.34)
accounting for fluid inertia can exceed or is negligible compared to the viscous stress, the
second term on the right hand side of equation (2.34). The relative strength of inertia
and viscous stress is quantified by the dimensionless Reynolds number

Re = ρL0V0

η
, (2.35)

where L0 is a typical length in the system and V0 a typical velocity. In the limit of small
Reynolds number, inertia effects are negligible and the linear Stokes equation becomes
valid

−∇p+ η∇2v = 0. (2.36)

In the other limit of dominating inertia effects, the Euler equation can be used

∂v

∂t
+ (v · ∇)v = −1

ρ
∇p. (2.37)

In addition to the Navier-Stokes equation (2.34), or in the discussed limits the Stokes
equation (2.36) or Euler equation (2.37), the set of fluid equations is closed by the
incompressibility condition or continuity equation

∇ · v = 0. (2.38)

The set of fluid equations is accompanied by boundary conditions. At a non-moving
solid wall the fluid velocity has to vanish according to the no-slip boundary condition [150].
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2.4 Blood flow mechanics

At a moving interface the no-slip condition implies the kinematic boundary condition [54,
152, 228, 229]

d
dtu = v|X′ , (2.39)

which relates the time derivative of the interface deformation u to the fluid velocity v at
the position of the interface X ′.

2.4.3 Computational fluid dynamics
When systems become complex, maybe with an additional coupling to particle dynamics,
an analytical solution of the Navier-Stokes equation (2.34) often cannot be achieved.
Therefore, fluid dynamics is often solved numerically and therefore a variety of methods
in the field of computational fluid dynamics has evolved. In the following, the methods
used in this thesis, the lattice-Boltzmann/immersed boundary and the boundary integral
method, are shortly outlined.

Lattice-Boltzmann method

In contrast to other common methods such as finite volume or finite element method, the
lattice-Boltzmann method does not discretize and solve the Navier-Stokes equation directly.
It is rather a mesoscopic approach which is based on the single particle distribution
function f(r,p, t) depending on position r and momentum p of a particle as well as time
t [230 – 232]. The dynamics of the distribution function is determined by the Boltzmann
equation. The Chapman-Enskog analysis proves that the Boltzmann equation leads to
fluid behavior as governed by the Navier-Stokes equation [232, 233].

In the numerical realization, the lattice-Boltzmann method, a fluid is considered to be
discretized on a regular Eulerian grid with nodes at position xj and discretized velocities
ci. We use the D3Q19 scheme with i = 0, . . . , 18 in three dimensions. The Boltzmann
equation becomes the lattice-Boltzmann equation

fi (xj + ci∆t, t+ ∆t) = fi (xj, t) + Ωi (xj,F j, t) , (2.40)

with Ωi the collision operator and ∆t a time increment. The collision operator Ωi governs
changes in the distribution function due to collisions and further contains forces F j, e.g.,
acting from a cell membrane onto the fluid. Those forces are transmitted to the fluid nodes
by the immersed boundary method, as detailed below. We use a multiple relaxation time
scheme [232] for the collision operator Ωi. Equation (2.40) can be integrated numerically
including an update of the discrete distribution function due to the collision operator and
propagation. The multiple relaxation time scheme further allows for the incorporation of
thermal fluctuations of the fluid [234, 235]. Solid boundaries can easily be implemented
by the bounce back scheme [232], whereas for elastic, deformable, and moving boundaries
the lattice-Boltzmann method is accompanied by the immersed boundary method.

Immersed boundary method

The immersed boundary method provides a fluid-interface coupling for a deformable,
moving boundary such as the cell membrane [236, 237]. The interface is represented
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2 Modeling of biological membranes in the context of blood flow

by a Lagrangian grid of nodes immersed in the Eulerian fluid grid. In the present
thesis, a discretization of the interface by nodes connected to triangles is used. From the
corresponding constitutive equation the force per node f is calculated as, e.g., detailed
in section 3.2 and in publication [pub1]. This force serves as input for fluid dynamics at
the position of the membrane X ′

F j =
∫
f (X ′, t) δ (X ′ − xj) d2X ′, (2.41)

and is mapped from the Lagrangian membrane mesh to the Eulerian fluid mesh by
extrapolation from each membrane node to the surrounding fluid nodes. With the
interface force as input, fluid dynamics is solved by a lattice-Boltzmann time step.
Afterwards, each interface node is advected with local fluid velocity, where the same
interpolation scheme is used as for force spreading. All in all, the immersed boundary
method provides a two-way, dynamic coupling of interface and fluid.
In the present thesis, the combined lattice-Boltzmann/immersed boundary method

implemented in the software package ESPResSo [238, 239] has been used and extended.

Boundary integral method

In the limit of a small Reynolds number Re� 1, the boundary integral method can be
used [110, 151, 240], which is directly based on the linearity of the Stokes equation (2.36)
and as a consequence intrinsically neglects fluid inertia. Fluid dynamics is solved using
the Green’s functions of the Stokes equation. Elastic interfaces such as the cell membrane
are discretized and at each node on the discrete interface the traction jump in equation
(2.24) calculated from the membrane forces is prescribed. Using the Green’s functions, the
velocity in the simulation domain can be obtained for the current geometrical arrangement
by the boundary integral equations. The interface nodes are then advected with the fluid
velocity evaluated at the node position according to the kinematic boundary condition
(2.39).
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3 Numerical models for an active cell
cortex

Following the thin shell theory from section 2.2, in section 3.1 the basics for the numerical
representation of the cortex in a three-dimensional simulation is provided including the
parabolic fitting procedure used to calculate geometrical properties and derivatives on
the discrete cortex. In section 3.2, the computational method for an elastic, active cell
cortex developed in publication [pub1] is introduced and in section 3.3 we summarize the
method for a viscous cell cortex presented in publication [pub2].

σout

σin

n

e1

e2

c

1

3
24

5
6

n

eξ

eη

Fig. 3.1: Numerical membrane representation. Plasma membrane of the cell (blue) and cell cortex
(red), as sketched on the left, are modeled together as thin shell (center) with the coordinate
system (e1, e2,n) defined on the thin shell. Constitutive equations for the thin shell recover the
elastic, viscous, or active physical properties of the membrane and the cortex. The thin shell is
surrounded by an outer fluid and encloses an inner fluid described by the stress tensor σout

and σin, respectively. In numerical simulations the thin shell is discretized by nodes connected
to triangles (right). Considering its neighbors, a local coordinate system (eξ, eη,n) can be
constructed on each node. Adapted from publication [pub1] with permission from APS and the
left image from publication [pub5] with permission from the National Academy of Sciences..

3.1 Numerical representation of the cortex
In the following, we outline our numerical model for the cell cortex, which is based on
a parabolic fitting procedure. As described in section 2.2, plasma membrane and cell
cortex sketched on the left hand side of figure 3.1 are condensed into a deformable thin
shell (center of figure 3.1). For its representation in numerical simulations we use a
discretization of the thin shell by N points that are connected to triangles. This is a
common approach for vesicle or cell simulations [69, 151, 240 – 242]. On the thin shell
each node can be considered together with its neighborhood defined by the triangles
adjacent to the central node. A node with its neighborhood is illustrated on the right
hand side of figure 3.1.
As discussed above, thin shell theory is based on a coordinate system defined on the

shell, e.g., in equation (2.3). The first step in the numerical procedure is the construction
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3 Numerical models for an active cell cortex

of the local coordinate system at the position of each node rc

(eξ, eη,nc)rc . (3.1)

At first, the unit normal vector nc = n at the position of the central node is obtained by
an average of the normal vectors nt on the adjacent triangles Tc

nc =
∑

t∈Tc
ntβt. (3.2)

The normal vector on each triangle nt is obtained by the cross product of the two
vectors connecting the central node and its two neighbors. In equation (3.2) each normal
vector is weighted by the angle βt of these two vectors. As the next step, for the first
in-plane coordinate vector one neighbor node is chosen as reference, which is arbitrary but
remains fixed during the simulation. The vector from the central node to the reference
neighbor, e.g., x1, can be converted to the first in-plane unit vector by Gram-Schmidt
orthogonalization and the second one can be obtained by a cross-product

eξ = x1 − (x1 · nc)nc
|x1 − (x1 · nc)nc|

, eη = nc × eξ
|nc × eξ|

. (3.3)

Now, each vector from the central node can be expressed in the local coordinate system
in equation (3.1) with in-plane coordinates ξ, η.

Following thin shell theory in section 2.2 we have so far obtained the coordinate system
on the discrete shell and we can decompose an arbitrary vector along those coordinates.
This leaves us with the calculation of geometrical quantities, such as the metric tensor
and the curvature tensor, but also the derivative of quantities defined on the shell. We
achieve these using a parabolic fitting procedure such as used for calculation of bending
forces [240]. The basic idea behind the parabolic fitting procedure is a Taylor expansion
in the local coordinate system up to the second order around the central node. For an
arbitrary function f the expansion in local in-plane coordinates (ξ, η) takes the form

f(ξ, η) = fc + Aξ +Bη + C

2 ξ
2 + D

2 η
2 + Eξη, (3.4)

where fc is the function value at the central node. A to E represent the derivatives up to
second order in the local coordinate system

A = ∇ξf |rc , B = ∇ηf |rc ,
C = ∇ξ∇ξf |rc , D = ∇η∇ηf |rc , E = ∇ξ∇ηf |rc ,

(3.5)

which are evaluated at the position of the central node. Considering the function value
fa at each of the N neighboring nodes and the theoretical expansion in equation (3.4)
evaluated at the corresponding position (ξa, ηa) the squared residuum is defined as

χ2 =
∑

a∈N
[fa − f (ξa, ηa)]2 =

∑

a∈N

[
fa − fc − Aξa −Bηa −

C

2 ξ
2
a −

D

2 η
2
a − Eξaηa

]2
. (3.6)

By minimization with respect to the parameter set (A,B,C,D,E)

∇(A,B,C,D,E)χ
2 = 0, (3.7)
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3.2 A numerical model for an elastic cell cortex coupled to a fluid

the derivatives along the local in-plane coordinates evaluated at the central node in
equation (3.5) are obtained as fitting parameters. The minimization involves solving a
linear system of equations (3.7) for A to E, which can be done either using numerical
lower-upper (LU) decomposition or by analytically inverting the matrix.
Is the parabolic fitting applied to a vector field, e.g., a velocity field defined on the

cortex or the position of the nodes, each spatial component of the vector can be fitted
separately in the same way as detailed above. Using the positions of the neighboring nodes
as input, the fitting leads to the first and second derivatives of the shell parametrization,
which are used to compute the metric tensor in equation (2.6) as well as the curvature
tensor in equation (2.13) on the discrete shell. Eventually, the area per node can be
calculated using Meyer’s mixed area [243].
The main quantity of interest in our numerical models is the active stress in the cell

cortex. We start by prescribing the active stress from a constitutive law on the undeformed
cortex, where typically an analytical expression is possible in a reference coordinate system
(cf. equation (2.3)), such as cylindrical or spherical coordinates. Numerically, for each
node of the undeformed discrete shell a coordinate system as given in equation (3.3) is
constructed. The two coordinate systems share the normal vector, which means that
both the analytical and numerical in-plane coordinate vectors are located in the same
plane. Therefore, the in-plane coordinate vectors are tilted by an angle β. In order to
project the active stress from the analytical in-plane coordinates to the numerical in-plane
coordinates a rotation matrix D(β) is applied to the in-plane surface stress tensor

DtαβactD
−1. (3.8)

During simulation the active stress expressed in the local coordinate system, which
co-moves with the deforming thin shell, is used for active force calculation.

3.2 A numerical model for an elastic cell cortex coupled
to a fluid

3.2.1 Active force calculation
On short time scales, where no reorganization of the cortex network takes place, it can be
modeled as an elastic polymer network subjected to active stresses due to motor protein
movement [9, 33]. Consequently, the surface stress in equation (2.22) consists of an elastic
and an active part

tα = tαel + tαact. (3.9)

In simulations, the elastic stress tαel is not explicitly computed, but rather an algorithm
is used [153, 160] which directly calculates the elastic forces from the energy density given
by the Helfrich constitutive law in equation (2.31) and the Skalak constitutive law in
equation (2.28) for bending and shear elasticity, respectively. In contrast, the stress is
the starting point of force calculation for the active contribution. For a given constitutive
law the active stress can either be calculated on the discrete membrane, e.g., with a
coupling to a concentration field of either ATP or actin-myosin, or can be prescribed in a
reference coordinate system and converted into the local coordinate system as detailed
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3 Numerical models for an active cell cortex

in the previous section. According to the force balance equations (2.25) and (2.26), the
active forces acting from the membrane onto the fluid are given by

fβact = ∇αt
αβ
act, (3.10)

fnact = −cαβtαβact. (3.11)

In each time step of the simulation these forces are calculated for each node on the
deformed thin shell. The gradient of the active stress is calculated on the deformed
thin shell by a parabolic fitting procedure as detailed in section 3.1 with respect to
the components of the active in-plane surface stress. The derivatives directly give the
tangential active force at the position of the central node. By a parabolic fitting procedure
with respect to the position vector of the nodes in local coordinates, as also detailed
in section 3.1 the second derivatives of the position vector are obtained according to
equation (3.5). In turn, the curvature tensor in equation (2.13) is obtained by the negative
projection of the second derivatives in the local coordinate system onto the normal vector
on the node. By contraction with the active in-plane surface stress in local coordinates the
active normal force is computed. Eventually, the actual force per node in N is obtained
by multiplication with the local area per node.
Using, e.g., the lattice-Boltzmann/immersed boundary introduced in section 2.4, the

active elastic cortex can be coupled to a suspending fluid. The actual force per node
serves as input for the immersed boundary method and is spread to the surrounding
fluid nodes according to equation (2.41). After solving fluid dynamics for one time step
by the lattice-Boltzmann method, all membrane nodes are advected with the local fluid
velocity. Alternatively, as done in publication [pub3], the force per node can be directly
incorporated into the boundary integral method, which solves for the fluid velocity for
given forces at the membrane (or respectively for given traction jump across the membrane
being the inverse membrane force). All in all, the equations for force calculation together
with the fluid equations of motion including the dynamic coupling are a closed set of
equations.

3.2.2 Validation
Once constructed, each simulation method needs proper validation. For validation of
the combined lattice-Boltzmann/immersed boundary method in case of passive elastic
cells based on the Skalak Hamiltonian in equation (2.28) and the Helfrich Hamiltonian in
equation (2.31) we refer to references [69, 160, 244, 245] and the Supplemental Information
of publication [pub6]. In publication [pub1], an in-depth validation for active elastic
membranes has been performed, which is outlined in the following.

Validation is based on analytical results for an axisymmetric active, elastic membrane in
absence of a suspending fluid [33]. However, we note that the very good agreement between
theoretical results and simulations including fluid dynamics in case of the Rayleigh-Plateau
instability under the influence of anisotropic interfacial tension in section 4.1 and in
publication [pub3] can also be seen as additional validation. Berthoumieux et al. [33]
provide the Green’s function, which describes the axial deformation ur(z) triggered by a
small, local, δ-distributed perturbation to the homogeneous active stress Ta. The Green’s
function for a cylindrical membrane of radius R has in the Fourier space with coordinate
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3.2 A numerical model for an elastic cell cortex coupled to a fluid

q associated to z the form

G(q) = 1
3κB

2κSR2 (Rq)4 + ( 3Ta
2κS
− 3κB

4κSR2 )(Rq)2 + 3
2 − 3Ta

2κS

. (3.12)

We utilized the Green’s function G to analytically predict the deformation to a Gaussian
distributed perturbation in the active stress with respect to the axial position z. One
in-plane component of the active stress tensor is chosen to be

tαact =
(
Ta + δTαa (z)

)
eα, (3.13)

where no summation applies to the index α and with

δTαa (z) = Tαa exp
(
− z

2

R2

)
. (3.14)

The Gaussian distributed active stress leads to a smooth deformation, which can be
reproduced in simulations. By means of linear response theory [246, 247], the resulting
membrane deformation in the real space is given by the convolution of the Green’s
function in equation (3.12) [33] and the active stress perturbation in equation (3.14)

ur(z)
R

= − 3
2RκS

∞∫

−∞
G(z − z′)δT φa (z′) dz′ + 3

4RκS

∞∫

−∞
G(z − z′)δT za (z′) dz′. (3.15)

This analytical result for the deformation of the membrane can directly be compared to
simulations of a cylindrical membrane subject to an active stress perturbation according
to equation (3.14). In publication [pub1] we report excellent agreement between the
analytical and numerical solution together with proper convergence of the error with
increasing resolution of the membrane mesh.

Furthermore, by analyzing the parameter combinations for which the Green’s function
diverges, Berthoumieux et al. [33] predict transitions to two instabilities giving an
analytical formula of the corresponding thresholds, one to a buckling instability for
negative active stress and one to a Rayleigh-Plateau like instability for a positive active
stress. The threshold for the active stress is obtained depending on both shear and bending
elasticity. Here, our three-dimensional algorithm can be again tested with respect to the
instability threshold. It goes even one step further and provides the three-dimensional
membrane shape while undergoing the predicted instability. To do so, we consider an
initially cylindrical, elastic membrane and apply either a homogeneous negative (extensile)
or a homogeneous positive (contractile) active stress. Our three-dimensional simulations
show both types of instability with the threshold being in very good agreement with
the analytical predictions. Analyzing the three-dimensional shapes of the membrane
undergoing the buckling instability, we unravel an additional non-axisymmetric instability.
For isotropic tension non-axisymmetric buckling occurs whereas for anisotropic tension
with vanishing φ-component a pattern purely along the axis is obtained.

3.2.3 Cell division in shear flow
As a first model application of our elastic cortex model we consider a cell with a cortical
ring of increased active stress, which resembles the situation of cytokinesis in cell division

23



3 Numerical models for an active cell cortex
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Fig. 3.2: Active membrane in interplay with external fluid flow. Cytokinesis during cell division
in external shear flow is considered as first model application of the active elastic membrane
method. a) An increase in active stress around the equator of the prolate ellipsoidal cell (red
shaded area) in interplay with the external flow field leads to a combined deformation of the
cell. b) The resulting flow field inside the dividing cell can be analyzed with arrows indicating
flow direction and velocity magnitude color coded. Reprinted from publication [pub1] with
permission from APS.

[31, 37, 38, 176 – 178, 248]. The generic two-way coupling of membrane mechanics and
fluid flow allows us first to investigate the flow developing inside the cell and second to
investigate the interplay of active cortex mechanics and external fluid flow. For passive
and active elastic properties of the membrane plus cortex we use typical values reported
for cells [23, 212, 213]. We consider an ellipsoidal cell membrane with a diameter of 7µm
and a length of 14µm which is endowed with shear elasticity κS = 5× 10−6 N/m, C = 1,
and bending elasticity κB = 2× 10−19 Nm. We further use a constant contractile active
stress Ta = 8× 10−5 N/m and a six-fold increased azimuthal active stress compared to
Ta around the equator, as sketched in figure 3.2 a) by the red shaded area.

First, in a quiescent fluid our method allows us to analyze the membrane shape during
equatorial contraction over time and in addition the developing flow field inside the
dividing cell. While the contractile stress first leads to a rounding of the two daughter
cells at the poles, a distinct flow from the equatorial plane towards the poles develops.
Going one step further, we apply an external shear flow with a shear rate of about
1400 s−1 which results in a non-axisymmetric membrane deformation as shown in figure
3.2 a). The total deformation arises according to the interplay of the active stress and
the external flow, both leading to an intertwined separation of the daughter cells and
shearing of the cell. Our method again allows us to analyze the flow field over time in this
non-axisymmetric situation as shown in figure 3.2 b). In sum, this setup nicely illustrates
the two-way coupling of active membrane mechanics and fluid flow.

3.3 A numerical model for a viscous cell cortex

3.3.1 Velocity field on the discrete cortex

In the following, we consider a cortex in the long-time limit, where reorganization processes
and motion of filaments under the action of motor proteins in the cortex take place [1].
On time scales larger than the viscoelastic relaxation time the active gel theory can be
formulated in the viscous limit [20, 31, 37, 40, 162]. The total surface stress in equation
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3.3 A numerical model for a viscous cell cortex

(2.22) thus consists of a viscous and an active stress

tα = tαvisc + tαact. (3.16)

The viscous surface stress consists of in-plane components tαβv

tαvisc = tαβv eβ, (3.17)

and we consider an in-plane, isotropic active stress in the following

tαact = ζgαβeβ = ζδαβe
β, (3.18)

with its magnitude ζ = ζ(s1, s2) depending on the position on the membrane.
In contrast to the deformation field, which enters the method for an elastic cortex

implicitly in the Skalak law (2.28) and Helfrich law (2.31), the key quantity here is the
velocity field v of the cortex. The velocity field is a three-dimensional vector which can
be expressed in local coordinates

v = vαeα + vnn with vα = v · eα and vn = v · n. (3.19)

Analogous to the stress tensor in three-dimensional fluid dynamics in equation (2.33),
in-plane gradients in the cortical velocity will contribute to the viscous stress. Therefore,
we consider the in-plane velocity gradient

vαβ = 1
2 [(∇αv) · eβ + (∇βv) · eα] . (3.20)

A key difference to three-dimensional fluid dynamics is the contribution of the normal
velocity itself, rather than its gradient, to the velocity gradient in equation (3.20) by a
coupling to the curvature tensor as can be seen from equation (2.19).

We take into account an in-plane shear viscosity ηs as well as an in-plane bulk viscosity
ηb. Therefore, the constitutive law for the viscous surface stress becomes [9]

tαβv = 2ηs
(
vαβ − 1

2v
γ
γg

αβ
)

+ ηbv
γ
γg

αβ. (3.21)

Combining the viscous surface stress in equation (3.21) and the active surface stress
in equation (3.18) according to equation (3.16), the force balance equations (2.25) and
(2.26) for a force free cell cortex become

2ηs∇αv
αβ + (ηb − ηs)∇αv

γ
γg

αβ = −∇αζ
αβ, (3.22)

−2ηscαβvαβ − (ηb − ηs) vγγcαβgαβ = −P + cαβζ
αβ, (3.23)

where P is the pressure difference between inner and outer fluid. The force balance
equations are accompanied by several constraints. We consider an isolated cell and
as a consequence the total velocity and angular momentum are zero. In addition, the
cytoplasm is incompressible. These three constraints are expressed mathematically by
the integrals

∫

S

v dS =
N−1∑

ν=0
vνAν = 0,

∫

S

r × v dS =
N−1∑

ν=0
rν × vνAν = 0,

∫

S

v · n dS =
N−1∑

ν=0
vν · nAν = 0,

(3.24)
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3 Numerical models for an active cell cortex

where the first equality corresponds to the discretization of the cortex and Aν is the area
per node.

This leaves us with the force balance equations valid on the whole membrane, i.e., for
each node on the discrete membrane, and with the constraints. Together, they form a
closed system of equations, which can be solved for the velocity field v and the pressure
difference across the cortex P . The goal is to solve the viscous force balance equation for
the velocity field v on the discrete cortex numerically. This is again based on a parabolic
fitting procedure as detailed in section 3.1. Corresponding to equation (3.4) we expand
the velocity vector up to second order around each node ν with velocity vν

v (ξ, η) = vν +∇ξv︸ ︷︷ ︸
Av

ξ +∇ηv︸ ︷︷ ︸
Bv

η + 1
2 ∇ξ∇ξv︸ ︷︷ ︸

Cv

ξ2 + 1
2 ∇η∇ηv︸ ︷︷ ︸

Dv

η2 +∇ξ∇ηv︸ ︷︷ ︸
Ev

ξη. (3.25)

In contrast to before, the parabolic fitting procedure is not directly performed, because
the actual velocity is now unknown. We rather invert the parabolic fitting procedure, i.e.,
the minimization of the theoretical expansion to the value at the neighboring nodes. We
do so analytically to obtain the derivatives at node ν as a function of the velocity values
of the node itself and its neighbors a(ν) = 1, . . . Nν

Av = Av

(
vν , {va(ν)}

)
. (3.26)

The second essential step is to define a squared difference for the force balance equations
(3.22) and (3.23) evaluated in the local coordinate system (cf. equation 3.1) at each node.
In the following, we abbreviate the left hand side as l.h.s.ρ and correspondingly the
right hand side as r.h.s.ρ with the index ρ = 1, 2, n enumerating the three force balance
equations. Furthermore, the discretized constraints in equation (3.24) are considered
with Lagrange multipliers λi and we define in total

χ2 =
∑

ρ

∑

ν

(
l.h.s.νρ − r.h.s.νρ

)2
+ λ1

(
N−1∑

ν=0
vxνAν − 0

)
+ λ2

(
N−1∑

ν=0
vyνAν − 0

)

+ λ3

(
N−1∑

ν=0
vzνAν − 0

)
.

(3.27)

Here, the constraint of zero total velocity splitting up into its three spatial components
is given for illustration. The χ2 is then expressed in terms of the velocity derivatives,
which in turn depend on the actual velocity evaluated at all nodes. Together with the
derivatives analytically depending on the velocity values according to equation (3.26),
the χ2 can be minimized with respect to the velocity values

arg min
{vν}

χ2 = arg min
{vxν},{vyν},{vzν}

χ2. (3.28)

In stark contrast to the elastic method in section 3.2 where forces are locally and
independently calculated, the coupled system of equations cannot be solved locally.
Rather the force balance equations, which are similar to a Poisson equation, have to be
solved globally. The dimensions of the system of coupled equations excluding additional
constraints is (3N + 1)× (3N + 1) for the 3 components of the velocity vector evaluated
at the N nodes plus the pressure.
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3.3 A numerical model for a viscous cell cortex

This system of equations we write in matrix form as

∂χ2/∂vx0
∂χ2/∂vy0
∂χ2/∂vz0

...
∂χ2/∂vxN−1
∂χ2/∂vyN−1
∂χ2/∂vzN−1
∂χ2/∂P

→
→
→
...
→
→
→
→




. . . . . .
... . . .

... . . .







vx0
vy0
vz0
...

vxN−1
vyN−1
vzN−1
P




=




...

...




. (3.29)

Numerically solving this system of equations (3.29), e.g., by LU decomposition, gives the
velocity field v on the cortex as set of the velocity values at the nodes {vν}.

3.3.2 Validation
In order to validate the numerical model of the cell cortex in the viscous limit we choose
two different approaches: in the static case the velocity field obtained on a spherical cortex
is compared to analytical solutions, which we obtain for an active stress distribution in
terms of spherical harmonics. This further allows for a detailed comparison of the different
quantities in simulations with the theoretical results. Next, we consider a dynamically
deforming cell cortex with an active stress increasing around the equator, where we
can compare the three-dimensional dynamic deformation and evolving flow field on the
cortex to axisymmetric simulations [249, 250] performed by our collaboration partners in
publication [pub2].
First, we apply an active stress expressed in spherical harmonics

ζ(θ, φ) = ζ0 +
∑

n,m

ζnmYnm(θ, φ), (3.30)

with a constant offset active stress ζ0, Ynm being the spherical harmonics and ζnm the
expansion coefficients. Expanding the velocity field on the cortex in terms of vector
spherical harmonics, expressing the viscous surface stress tensor as function of tensorial
spherical harmonics and applying identities of those, we are able to derive analytical
conditions to the expansion coefficients from the viscous force balance equations. The
analytical conditions then give an analytical expression for the velocity field for given
active stress distribution.

The analytical procedure itself can be used for two different test setups: the full force
balance equations which lead to a pure normal velocity on the cortex is tested on the
one hand. On the other hand, the normal force balance can be replaced by a condition
fixing the normal velocity to zero. The latter, somewhat artificial test setup allows
us to obtain an analytical solution for a finite tangential velocity along the cortex. In
both scenarios we can apply the algorithm described above and obtain numerical results
in excellent agreement with the analytical solution. This is done for an axisymmetric
as well as a non-axisymmetric active stress in terms of Y20 and Y21, respectively. The
three-dimensional velocity profile on the spherical cortex for the full system in case of the
axisymmetric active stress in terms of Y20 with ηs = 1 and ηb = 1 in simulation units is
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Fig. 3.3: Validation for a viscous active cortex. a) Three-dimensional velocity field numerically
obtained on a static spherical cortex subjected to an axisymmetric active stress distribution
in terms of the spherical harmonics Y20 with the arrows giving the velocity direction and the
color coding for the velocity magnitude. b) The numerically obtained velocity with pure normal
component depending on the polar angle θ is in very good agreement with the corresponding
analytical solution. c) Initial and d) final velocity field on an evolving cortex with viscosities
ηs = 1 and ηb = 1 subjected to an active stress distribution according to equation (3.31) with
exponent p = 4, width σ = 10, offset ζ0 = 1, and magnitude ζ̂ = 1. e) The dynamics in
terms of the pole to pole and equatorial furrow radius (dots) agrees very well with results
from axisymmetric simulations (lines). Time is considered relative to the time scale ta = ηs

ζ0
.

Reprinted from publication [pub2].
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shown in figure 3.3 a). The comparison of the numerically obtained normal velocity with
the analytical solution over the polar angle is shown in figure b), where we obtain a very
good agreement. These scenarios further show that the presented algorithm converges
properly with the error decreasing systematically with increasing resolution.

In a second step, we consider an isotropic, axisymmetric active stress which increases
around the equator according to

ζ(θ, φ) = ζ0 + ζ̂ exp
(
−σ

(
θ − π

2

)p)
, (3.31)

with the exponent p being an even number, the magnitude ζ̂ and the width σ. For given
active stress, we solve for the velocity field on the discrete cortex and use the normal
velocity for an update of the cortex shape by applying the Euler algorithm. For an active
stress distribution with exponent p = 4, offset active stress ζ0 = 1, and amplitude ζ̂ = 1
with the viscosities ηs = 1 and ηb = 1 in simulation units, we show the velocity profile
on the initial and the finally deformed cortex in figure 3.3 c) and d), respectively. The
prescribed active stress leads to a contraction around the equator and, corresponding to
the incompressibility of the cortex interior, to an extension at the poles. The dynamics
of both the equatorial contraction and the pole extension is in very good agreement with
results from the axisymmetric simulations of our collaborators as shown in figure 3.3 e).
In addition, we compare the velocity field on the deformed, three-dimensional cortex
to the one obtained by axisymmetric simulations at different times. Both tangential
and normal velocity show very good agreement. In total, this successfully validates our
three-dimensional model of a cell cortex in the viscous limit.
As a first test application of a deforming cell cortex in a non-axisymmetric situation,

we apply our developed method to consider an initially spherical cortex with an active
stress according to equation (3.31) and subjected to an initial shear deformation. In ref.
[pub2], we analyze the cortex evolution and the velocity field on the deforming cortex
over time.
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4 Rayleigh-Plateau instability for
anisotropic tension and blood
platelet formation

The Rayleigh-Plateau instability is a well known phenomenon, which describes the
instability leading to break-up of a liquid jet into droplets [54]. It is known to be
driven by the surface tension γ of the jet interface [54, 251]. The surface tension leads
to a pressure difference between the inner and outer fluid of the jet according to the
Young-Laplace equation [54, 150]

p = γ

(
1
Rφ

+ 1
Rz

)
, (4.1)

where Rφ and Rz are the radius of curvature in azimuthal and axial direction, respectively.
Initially, the jet is cylindrical with an unperturbed radius R0. A periodic undulation
of the jet interface with wavelength λ along its axis leads to a spatial variation of the
pressure p. Considering the first term of the Young-Laplace equation (4.1), at the site
of a neck, the pressure contribution γ

Rφ
increases due to a decrease of the local radius.

Correspondingly, γ
Rφ

decreases at the site of a bulge. This mechanism amplifies the
undulation even further. In contrast, the second term γ

Rz
leads to an opposing effect: the

curvature in axial direction leads to a positive pressure perturbation at a bulge and a
negative one at a neck. This stabilizes the interface. The balance of both effects leads
to a dominant perturbation mode, at which the interface becomes unstable and which
grows fastest. For an ideal fluid jet with passive ambient fluid, the fastest growing wave
number km = 2π

λm
fulfills the condition [51, 54]

kmR0 = 0.697. (4.2)
Based on the work of Plateau [50], a dispersion relation was first derived by Rayleigh

[51], which yields the criterion in equation (4.2). For a viscous liquid jet in air again
Rayleigh [252] and Chandrasekhar [253] derived a dispersion relation, which has been
generalized to include an external fluid of arbitrary density and viscosity by Tomotika
[52]. Experiments [55] have first shown that a Rayleigh-Plateau instability also occurs
for tubular vesicles under externally induced tension [55 – 58, 164, 254]. Considering cell
or tissue tubes, the active stress in the cortex has been proposed to trigger a Rayleigh-
Plateau like instability [32, 33], which we confirmed by three-dimensional simulations
[pub1]. Indeed, an active stress in the cell cortex bares a striking similarity to surface
tension as it enters the in-plane component of the surface stress in equation (2.22) in the
same way (cf. equation (2.32)) as surface tension does in case of a liquid jet

t β
actα =

(
Ta 0
0 Ta

)
, t β

jetα

(
γ 0
0 γ

)
, (4.3)
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4 Rayleigh-Plateau instability for anisotropic tension and blood platelet formation

for isotropic, contractile active stress Ta > 0. Therefore, despite their fundamental
difference both isotropic active stress and surface tension lead to the same physical
behavior. This analogy we use in the next section, where we refer to the term interfacial
tension in general. Interestingly, there is a remarkable difference between cortical stress
in cells or tissues and the classical scenario of a liquid jet with isotropic surface tension:
cells often have an anisotropic, cortical active stress [20, 31, 40, 59 – 65].

In section 4.1, we summarize the effects which a stress anisotropy has on the Rayleigh-
Plateau instability as investigated in detail in publications [pub3] and [pub4]. We combine
analytical linear stability analyses with computer simulations based on our developed
method [pub1]. The break-up of a liquid jet has a striking similarity to cell shapes
occurring during blood platelet formation. Using our computational model [pub1], in
section 4.2, we show that a biological Rayleigh-Plateau instability can explain the flow
accelerated formation of blood platelets [pub5].

4.1 Rayleigh-Plateau instability of anisotropic interfaces

4.1.1 Anisotropic interfacial tension
In cells, often structures such as stress fibers [185] form, which can orientate in a regular
fashion, e.g., under the influence of external flow [255, 256]. Therefore, anisotropic stress
can occur in the cell cortex [20, 63 – 65]. A prominent example is the formation of the
cortical ring [1] where anisotropic stress drives cell division [31, 37, 40, 257]. Furthermore,
cortical anisotropic stress is important for the cell shape [20] and polarization of a cell
[64]. Motivated by the occurrence of anisotropic active stress and its analogy to surface
tension, the question arises how this anisotropy can alter the Rayleigh-Plateau instability.
In the following, we consider an interface subjected to an anisotropic tension. Therefore,
as one part of the total surface stress in equation (2.22), we consider an in-plane active
stress tαact = tαβ,acte

β being anisotropic with

tφact = γφeφ, tzact = γzez, (4.4)

where γφ and γz represent a general anisotropic interfacial tension. The latter can also
account for anisotropic surface tension, because of the analogy discussed above. Due
to its generality and the broad range of parameters, our description covers a variety of
systems. First, an interface with pure anisotropic interfacial tension is considered which
encloses an inner fluid and is surrounded by an outer fluid. Afterwards, we combine the
anisotropic interfacial tension with interface elasticity including bending and/or shear
elasticity, which becomes important for vesicles, cells and tissues [23, 32, 68].

4.1.2 Linear stability analysis
In order to perform a linear stability analysis we perturb the radius of the initially
cylindrical interface of radius R0 in a periodic fashion

R(z, t) = R0 + δR(z, t) = R0 +R0ε0 eωt cos(kz), (4.5)
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4.1 Rayleigh-Plateau instability of anisotropic interfaces

with ε0 being a small amplitude, k = 2π
λ

the wave number, i.e., the magnitude of a wave
vector pointing along the axis z of the interface, and ω the growth rate of the perturbation
mode. The result of the linear stability analysis is a relation for the growth rate depending
on the wave number, which allows to identify perturbations to which the interface is
unstable (with positive growth rate) and the dominant mode that evolves fastest in
time. The anisotropic interfacial tension, our key ingredient, modifies the Young-Laplace
equation (4.1) in the way that both curvature components now are weighted differently
by the two components of the interfacial tension in equation (4.4)

p = γφ

Rφ

+ γz

Rz

. (4.6)

This relation follows by contraction of the curvature tensor in equation (2.13) with
cφφ = 1

Rφ
and czz = 1

Rz
and the in-plane components of the surface stress in equation (4.4).

This contraction equals the pressure difference according to the normal force balance
equation (2.26) with the fluid force in equation (2.24) proportional to the pressure, cf.
equation (2.33). In the modified Young-Laplace equation (4.6) the destabilizing and the
stabilizing mechanism of the Rayleigh-Plateau instability as introduced at the beginning
of this chapter are now weighted differently.
We first consider the suspending fluid in the limit of a small Reynolds number as

often applicable to vesicles and cells [68, 151]. Therefore, we can solve the linear Stokes
equation (2.36) which we modify to account for the presence of the interface

−∇p+ η∇2v + δ (r −R0) γ
φε0

R0

(
1− γz

γφ
(R0k)2

)
cos(kz)er = 0, (4.7)

where the interfacial force due to anisotropic interfacial tension enters via a ring force
[53]. The system of equations is closed by the continuity equation (2.38). We solve this
system of equations by introducing the Hankel transformation Hν and the inverse Hankel
transformation H−1

ν of order ν of a general function f , which is defined by [258]

F (s) = Hν [f ] =
∞∫

0

f(r)rJν(sr) dr, f(r) = H−1
ν [F ] =

∞∫

0

F (s)sJν(sr) ds, (4.8)

with the Bessel function Jν(x) of first kind and order ν. By introducing the Hankel
transform of the velocity components and the pressure, we obtain the components of the
modified Stokes equation (4.7) and the continuity equation (2.38) in the Hankel space.
The equations in Hankel space can be solved analytically and the obtained velocity and
pressure is transformed back into real space.
At the interface the no-slip boundary condition to the velocity field applies, which

relates the radial motion of the interface to the radial fluid velocity vr according to
equation (2.39), which in linear order leads to

∂R

∂t
= R0ε0ω eωt cos(kz) = vr(r = R), (4.9)

where the derivative of the interface perturbation given by equation (4.5) has been
inserted. Evaluating the transform of the radial velocity from Hankel space to real space
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4 Rayleigh-Plateau instability for anisotropic tension and blood platelet formation

at the interface, eventually leads to an equation which can be solved for the growth rate.
This finally leads to the dispersion relation

ωStokes(k) = γφ

R0η

(
1−γ

z

γφ
(R0k)2

)[
I1(kR0)K1(kR0)

+ kR0

2
(
I1(kR0)K0(kR0)− I0(kR0)K1(kR0)

)]
,

(4.10)

with Iν(x) the modified Bessel function of first kind and Kν(x) of second kind and of
order ν. Equation (4.10) is the dispersion relation for the Rayleigh-Plateau instability
in the limit of the Stokes equation with the same viscosity of the inner and outer fluid.
The dispersion relation gives the growth rate for each mode of wave number k. In case of
a negative growth rate the interface is stable with respect to the corresponding mode,
in case of a positive growth rate the interface is unstable and the corresponding mode
grows.
Because the prefactor and the factor containing the Bessel functions are positive for

positive wave number k, the root of the dispersion relation is determined by

1− γz

γφ
(R0k)2 = 0, (4.11)

and therefore strongly influenced by the ratio γz

γφ
that accounts for the anisotropy of the

interfacial tension. This is in stark contrast to the classical Rayleigh-Plateau instability,
which is covered as well by setting γz

γφ
= 1, where the root of the dispersion relation only

depends on the radius of the fluid tube. For the axial tension γz exceeding the azimuthal
tension γφ the range of unstable modes shrinks and vice versa. All in all, the axial tension
dampens the dispersion relation and stabilizes the interface, while the azimuthal tension
destabilizes the interface.
Utilizing the concept of the ring force and the Hankel transform, we further consider

an interface enclosing an ideal fluid and surrounded by an ideal fluid with same density.
Here, the Euler equation (2.37) in linear order of the velocity has to be solved, which can
be done in a similar way as solving the Stokes equation. In this limit we end up with the
dispersion relation

ω2
Euler(k) = γφ

ρR3
0
(kR0)2

(
1− γz

γφ
(kR0)2

)
I1(kR0)K1(kR0). (4.12)

Furthermore, we derived the dispersion relation for a liquid jet of an ideal fluid immersed
in air [pub3], which is given by

ω2
jet(k) = γφ

kR0

ρR3
0

(
1− γz

γφ
(kR0)2

)
I1(kR0)
I0(kR0) . (4.13)

Both equations in the ideal fluid limit differ from the one in the Stokes regime by a
different prefactor and distinctive combinations of the Bessel functions. However, the
tension anisotropy enters in the same way. As a consequence, the discussion on unstable
modes above holds for the limit of the Euler equation, as well.
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Fig. 4.1: Tension anisotropy strongly alters the dominant wavelength of the Rayleigh-
Plateau instability. We compare the analytically obtained wavelength to simulation results
both in the limit of a) the Stokes equation together with simulations using boundary integral
method and in the limit of b) an ideal fluid governed by the Euler equation together with
lattice-Boltzmann simulations. Analytical results for the ideal fluid limit with (red) and without
(blue) an outer fluid differ only slightly. Simulation snapshots as insets show the interface
shape for various tension anisotropies. c) Lattice-Boltzmann/immersed boundary (LBM/IBM)
simulations covering fluid inertia show a transition in the dominant wavelength for typical
vesicle parameters.

4.1.3 Analytical and simulation results

In addition to the change in the range of unstable modes, the fastest growing mode
determined by the maximum of the dispersion relation is altered by the tension anisotropy.
Both the value of the maximum growth rate and the corresponding dominant wavelength
is altered, which determines the size of the droplets or vesicles pinching off. From
the analytical results, the dispersion relations in equations (4.10), (4.12), (4.13), the
maximum can be determined. In addition to the analytical linear stability analysis,
we performed simulations of an anisotropic interface using the method developed in
publication [pub1] combined with the boundary integral method as well as the lattice-
Boltzmann/immersed boundary method. The combination of both methods enable
simulations with a dimensionless Ohnesorge number Oh = η√

ρR0γ
of infinity (boundary

integral method) covering the Stokes limit and a very small Ohnesorge number (lattice-
Boltzmann method) corresponding to the Euler limit. In both types of simulations
the inner and outer fluid have the same density and/or viscosity and thus their results
can directly be compared to the dispersion relations in equations (4.10) and (4.12). In
one simulation, we apply a perturbation of fixed wavelength to the interface at the
beginning and analyze its evolution over time. For fixed parameters, simulations with
varying wavelength can be directly compared in order to extract the dominant mode.
A simulation using an interface subjected to the dominant mode with reasonably small
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4 Rayleigh-Plateau instability for anisotropic tension and blood platelet formation

initial amplitude allows for investigation of the corresponding growth rate.
In the Stokes as well as in the ideal fluid limit we obtain a growth rate strongly

decreasing with increasing tension anisotropy with very good agreement between theory
and simulations. In figure 4.1, we show the dominant wavelength λm depending on tension
anisotropy in the limit of a Stokes fluid in a) and an ideal fluid in b). In both cases the
wavelength decreases with dominating azimuthal tension, i.e. γz

γφ
< 1, and increases for

γz

γφ
> 1 compared to the classical result for isotropic tension kR0 = 0.697 (ideal fluid) and

kR0 = 0.562 (Stokes limit). This can be explained by the stabilizing nature of the axial
tension, where a longer wavelength leads to less curvature contributing to the modified
Young-Laplace equation. Weighted more for increasing anisotropy, the stabilizing axial
tension dampens the growth rate and increases the dominant wavelength. Simulation
results agree very well with the analytical solution and snapshots of the interface shape
are shown as insets in figure 4.1. Compared to the ideal fluid the wavelength in the
Stokes limit is larger, which may be attributed to the additional viscous stress stabilizing
the interface.

This direct comparison of both simulation methods also shows the influence of inertia
on interface dynamics. While in boundary integral simulations inertia is intrinsically
absent, lattice-Boltzmann simulations cover the full fluid behavior governed by Navier-
Stokes equation including inertia. Therefore, we perform Lattice-Boltzmann simulations
with typical vesicle parameters, a diameter 2R0 = 1 µm, an interfacial tension of
γφ = 10−4 Nm−1 reported for neutrophils [212] within the range given by ref. [259], and
for the surrounding fluid a density ρ = 1000 kgm−3 and a viscosity η = 1.2× 10−3 Pas.
The simulations as performed in publication [pub3] show a transition in the dominant
wavelength in figure 4.1 c) between Stokes regime at anisotropy close to zero and ideal
fluid regime at large anisotropy. This transition is accompanied and explained by a
change in the Ohnesorge number Ohz referring to the axial tension γz.

Using analytical calculations based on the Hankel transformation we further explored
the influence of interface viscosity in the Stokes limit. We observe similar effects on the
wavelength and growth rate under the influence of the tension anisotropy as described
above for the Stokes regime. Except, for very large interface viscosity the instability is
dampened and therefore the growth rate strongly decreases and the wavelength increases.
Our simulations allow us further to go beyond the linear stability analysis. The time

till break-up obtained from simulations can be compared to an estimation based on
the analytical growth rate from linear stability analysis. The difference of both gives
the nonlinear correction to linear break-up time [260] which we obtain depending on
the tension anisotropy. While this correction slightly increases with increasing tension
anisotropy for an ideal fluid, we observe a stronger and reversed effect in the limit of
Stokes flow, where the correction even changes sign. Solving fluid and interface equations
of motion numerically in the limit of the long wavelength approximation [261 – 263],
we were able to investigate the influence of tension anisotropy on the formation of a
satellite droplet. The latter forms during jet break-up between the main droplets and
is significantly smaller than the main droplets with typically 3 % of the volume [54,
260, 264]. A large tension anisotropy leads to a stabilization of the satellite droplet,
which increases in length and volume and becomes cylindrical instead of spherical at
intermediate Ohnesorge numbers.
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4.1 Rayleigh-Plateau instability of anisotropic interfaces

4.1.4 Elastic interfaces
The next step is the consideration of interface elasticity as done in publication [pub4],
which is of great importance in the context of vesicles, cells, or tissues. First, we include
bending elasticity using the Helfrich constitutive law (2.31), which leads to contributions
to the elastic part of the surface stress tαel in equation (2.22). The additional elastic
surface stress enters the force balance equations (2.25) and (2.26) and as a consequence
the pressure perturbation in addition to the anisotropic interfacial tension. Therefore,
the ring force in the Stokes equation (4.7) becomes

δ (r −R0) γ
φε

R0

(
1− γz

γφ
(kR0)2 − κB

γφR2
0

(
1− 2(kR0)2 + (kR0)4

))
cos(kz)er, (4.14)

for a reference curvature of a cylinder H0 = 1
2R0

. The derivation of the dispersion relation
can be performed as before and we eventually obtain the dispersion relation of the form

ωB(k) = γφ

R0η

(
1− γz

γφ
(R0k)2 − κB

γφR2
0

(
1− 2(kR0)2 + (k0R)4

))
(4.15)

[
I1(kR0)K1(kR0) + kR0

2
(
I1(kR0)K0(kR0)− I0(kR0)K1(kR0)

)]
.

The bending contribution to the dispersion relation in equation (4.15), which enters with
the bending modulus κB, is purely stabilizing, thus negative for positive wave number
except its root at kR0 = 1.
With increasing bending elasticity the root of the total dispersion relation shifts to

smaller wave numbers as illustrated by figure 4.2 a). In figure 4.2 a) we show the root of
the dispersion relation depending on γz

γφ
with each curve for fixed bending modulus given

by color code. For symmetry reasons, we only show the curves for positive wave numbers.
Up to κB

γφR2
0

= 1 modes in the region kR0 ∈ ]0; kmaxR0[ are growing, where kmax is the
maximum or cut-off wave number for which the growth rate becomes zero. The range of
unstable modes becomes smaller with increasing bending resistance and increasing tension
anisotropy. For larger bending modulus κB

γφR2
0
> 1 the dispersion relation develops a second

root and the range of unstable modes is restricted towards both small and large wave
numbers (blue curves). Most remarkably, parameter combinations of bending elasticity
and tension anisotropy exist, for which the interface is stable to all wave numbers and
therefore the cylindrical interface remains stable.

In figure 4.2 b) the threshold of the instability is systematically investigated in the phase
space of tension anisotropy and bending resistance. Both increasing bending resistance
and increasing tension anisotropy can lead to a transition across the threshold. Below
the threshold, the interface undergoes a Rayleigh-Plateau instability with the fastest
growing wavelength λm color coded. Beyond the threshold the interface is stable. In the
top left region unstable modes are restricted towards both small and large wave numbers
(cf. figure 4.2 a)). Around isotropic interfacial tension, i.e., γz

γφ
= 1, the wavelength is

hardly affected by the bending resistance, whereas a strong alteration is observed at large
anisotropy. In contrast to the wavelength, the growth rate is influenced mainly by the
anisotropy rather than the bending resistance, except the region close to the instability
threshold.
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Fig. 4.2: Interface stability under the influence of bending elasticity and tension anisotropy.
a) The root of the dispersion relation in terms of the wave number kR0 is shown depending
on tension anisotropy on the ordinate and bending resistance by color code (with the value
increasing along the black arrow). Underneath the curves the interface undergoes a Rayleigh-
Plateau instability. With increasing bending resistance a second root of the dispersion relation
develops and towards large tension anisotropy the interface becomes stable. b) The phase
diagram with respect to tension anisotropy and bending resistance shows the parameter region,
where unstable modes exist. The dominant wavelength of the instability is given by color code.

Next, we consider an interface with shear elasticity and/or area dilatation governed by
the Skalak constitutive law (2.28). Here, we first derive the elastic tensions and forces
according to the force balance equations (2.25), (2.26) from the Skalak Hamiltonian
depending on the deformation of the interface. Different to the situations of a pure
anisotropic interface or including bending elasticity, we now obtain a non-vanishing
tangential force. As a consequence the ring force in the modified Stokes equation (4.7)
now has a component in axial direction. We again transform the equations of fluid motion
into Hankel space and solve for the velocity components where the stresses at the interface
in turn depend on the velocity components evaluated at the interface. The kinematic
boundary condition again relates the radial velocity at the interface to the growth rate.
Combining those equations and solving the resulting relation for the growth rate finally
leads to the dispersion relation of a shear elastic interface. The whole procedure is
detailed in publication [pub4]. This dispersion relation still contains integrals over Bessel
functions which can be solved either analytically or numerically.
Shear elasticity is purely damping and has also a strong influence on the Rayleigh-

Plateau instability triggered by anisotropic interfacial tension with the wavelength strongly
increasing with anisotropy. We again observe a stable phase but now with the threshold
due to shear elasticity not depending on tension anisotropy. However, the threshold
systematically decreases with increasing resistance to area dilatation. Combining all three
ingredients, tension anisotropy, bending as well as shear elasticity, eventually leads to a
combination of the described effects. The stable phase extends due to the combination of
bending and shear elasticity with the instability threshold again depending on tension
anisotropy.

These findings allow us to conclude that a large variety of modifications of the Rayleigh-
Plateau instability arise from anisotropic tension together with interface elasticity. Not
only the dynamics of the instability is altered, but also the size of the fragments and the
interface can remain stable.
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4.2 Blood platelet biogenesis as flow-accelerated instability

4.2 Blood platelet biogenesis as flow-accelerated
instability

4.2.1 Motivation
Because of their short life span of several days, the large number of 1011 blood platelets
is produced per day in the bone marrow of the human body [77, 143, 265], which requires
an efficient mechanism for platelet biogenesis. Their progenitor cell, the megakaryocyte,
in a first step forms long, initially cylindrical membrane protrusions called proplatelets,
as shown in the experimental micrograph in figure 4.3 a). In the bone marrow, the
megakaryocytes are trapped at the wall of the sinusoidal blood vessels and extend the
proplatelets into the blood stream [75]. In a second step, swellings form along the
extended proplatelet as shown in b) and c), which eventually are released into the blood
stream as premature platelets [75, 84]. In an additional route of platelet formation, larger
structures are released from the megakaryocyte which are called preplatelets and which
fracture into individual platelets in the blood stream.
Experiments have shown that the extension of the proplatelets is driven by cortical

microtubule sliding [87] and attributed an important role in swelling formation to the
actin-myosin cortex [74, 80 – 83, 266 – 269]. In the light of in vitro production of blood
platelets for platelet transfusion [270, 271], intensive effort is under way to build efficient
microfluidic devices for platelet production [85 – 89, 227, 270, 272 – 274]. In those devices
a strong acceleration of the production under the influence of external fluid flow has been
reported [84 – 89]. However, a detailed understanding of the swelling formation from a
biophysical point of view and of the acceleration in fluid flow has so far been absent.
In the following, we utilize our method developed in publication [pub1] in order to

propose the biological Rayleigh-Plateau instability due to anisotropic cortical stress, which
is discussed in section 4.1, as the biophysical mechanism of blood platelet biogenesis
[pub5]. Furthermore, we show that this mechanism leads to a pronounced acceleration of
platelet biogenesis in the presence of an external fluid flow and that it can explain the
occurrence of preplatelets, the intermediate progenitors in platelet biogenesis [275].

4.2.2 Computational model of a proplatelet
Starting point of our computational model is the already extended proplatelet in order
to shed light onto the biophysical origin of swelling formation. The initial setup of the
simulation is shown in figure 5.1 d). We model the proplatelet initially as a cylindrical
membrane, which is fixed on one side (mimicking the fixed megakaryocyte) and possesses
a free, capped end. The radius of the proplatelet is chosen as R0 = 1.5 µm [88], its length
being 90 times the radius. The proplatelet is immersed in an external fluid with the
properties of blood plasma with density ρ = 1000 kgm−3 and viscosity η = 1.2× 10−3 Pas.
The proplatelet can be confined, e.g., between two flat walls with a Poiseuille flow in-
between, as shown in figure 4.3 d). For the channel diameter we use 23.5 µm as reported
for sinusoidal blood vessels in the bone marrow [276].

Key entity of our model is the cortical active stress. The actin-myosin in the proplatelet
cortex is modeled by an isotropic contractile active stress [277], as also discussed in
section 2.3. In concert with the actin-myosin contractility, we consider the microtubules
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Fig. 4.3: Blood platelet formation in experiments and simulations. a), b), c) In vitro blood
platelet formation in a microfluidic bioreactor. a) The trapped megakaryocytes form long
membrane protrusions, the proplatelets. In order to illustrate the periodic arrangement of the
megakaryocytes in the bioreactor the megakaryocyte shown in the white box in c) is reinserted
on the left side of the figures. b), c) Along the proplatelet shaft swellings develop, which
are eventually released as premature blood platelets. d), e), f) Blood platelet formation in
Poiseuille flow with a maximum velocity of v = 3.33 mm/s using simulations. d) The initially
cylindrical, elastic proplatelet is subject to anisotropic, contractile active stress accounting for
actin-myosin contractility in concert with microtubule driven extension along the axis. e) The
proplatelet undergoes a biological Rayleigh-Plateau instability, which leads to swellings along
the proplatelet shaft in agreement with the experimental images. f) Two swellings fuse into a
larger structure, which is attributed to shear-induced re-orientation and contractility of the
proplatelet. Reprinted from publication [pub5] with permission from the National Academy of
Sciences.

by an anisotropic active stress being extensile mainly along the proplatelet axis, because
microtubule sliding is known as the origin of proplatelet extension [87]. Both contributions
add up and in total we endow the proplatelet with an anisotropic, contractile in-plane
active stress

t β
actα =

(
T za 0
0 T φa

)
, (4.16)

with T za = 0.75T φa and T φa = 2.5× 10−5 Nm−1. This value of active stress is chosen
with respect to the cortical tension reported for platelets [142] due to the lack of direct
experimental data for the proplatelet cortex. The proplatelet membrane is further endowed
with shear elasticity using the Skalak model in equation (2.28) with κS = 5× 10−6 Nm−1

and C = 100 and bending elasticity using the Helfrich model in equation (2.31) with
κB = 2× 10−19 Nm. The anisotropic contractility is well beyond the threshold discussed
in section 4.1 [pub4] and the one for isotropic tension discussed in publication [pub1] and
reference [33].

4.2.3 Flow-accelerated biological Rayleigh-Plateau instability
First, considering a quiescent surrounding fluid, the proplatelet starts to contract at
its free tip and subsequently undergoes a biological Rayleigh-Plateau instability. This
instability leads to periodic swellings along the proplatelet shaft which are connected
by membrane strings. Swelling formation in simulations nicely resembles proplatelet
shapes observed in experiments as shown in figure 4.3 a) - c). Those swellings will
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4.2 Blood platelet biogenesis as flow-accelerated instability
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Fig. 4.4: Acceleration of the platelet formation in Poiseuille flow. a) Kymograph showing the
dynamics of the biological Rayleigh-Plateau instability shown in figure 4.3 d), e), f) with respect
to axial position x and time t. The proplatelet with constant initial radius (light blue) form
swellings which are visible by the dark blue bands in the kymograph. b) Systematic variation of
the external fluid flow velocity shows a strong acceleration of the swelling formation. Reprinted
from publication [pub5] with permission from the National Academy of Sciences.

be finally released into the blood stream and each of the released swellings eventually
matures into platelets in the blood stream. With the contractile active stress resembling
actin-myosin as main input, our simulation results indeed support the experimental
evidence that actin-myosin is crucial for proper platelet formation [74, 80 – 83, 266 – 269]
and provide a detailed explanation on the biophysical level: if the actin-myosin system
is perturbed by biochemical intervention [74, 80, 82, 83], the driving mechanism of the
biological Rayleigh-Plateau instability is absent and accordingly no swellings will form.
In addition, the instability determines the size of the blood platelets after formation
by its intrinsic, dominant wavelength. Indeed, an estimation based on the criterion in
equation (4.2) for the classical Rayleigh-Plateau instability leads to volumes of premature
platelets in accordance with the reported platelet size distribution [278, 279], as detailed
in publication [pub5].

Motivated by the natural flowing environment in the blood vessels of the bone marrow
[276, 280] and by experimental evidence of accelerated platelet formation in presence of
fluid flow in microfluidic devices [84 – 89], we next consider blood platelet formation in
Poiseuille flow as shown in figure 4.3 d). As in the quiescent fluid, the proplatelet undergoes
the biological Rayleigh-Plateau instability and forms swellings as shown in figure 4.3 e)
in very good agreement with the experimentally observed shapes. Furthermore, we find
that two separate swellings can fuse as shown by comparison of figure 4.3 e) and f). Such
fusion events can explain the release of larger structures called preplatelets, which are
frequently observed in the blood flow in addition to the platelets [275].
First, to investigate swelling fusion in more detail, we additionally consider a pure

shear flow rather than a Poiseuille flow. In the shear flow swelling fusion occurs as well,
which points to velocity gradients as reason for swelling fusion. Therefore, the interplay of
proplatelet re-orientation together with the cortical contractility can explain the swelling
fusion. Swelling fusion in Poiseuille flow is also shown by the kymograph in figure 4.4 a).
Going one step further, the proposed biological Rayleigh-Plateau instability can further
explain the break-up of a released, elongated preplatelet into two separate platelets due
to actin-myosin contractility.

41



4 Rayleigh-Plateau instability for anisotropic tension and blood platelet formation

Next, we aim for a more detailed understanding of the influence of external fluid flow.
Therefore, we consider the spatio-temporal evolution of the proplatelet shape in terms
of a kymograph as shown in figure 4.4 a). By tracing the evolution from the constant
initial radius to the final radius of each swelling, which is shown as a dark blue band in
the kymograph, the duration of swelling formation can be determined: we consider the
time difference between an initial deformation of 2% and the radius reaching a plateau
value, the final swelling radius. This procedure is done for four swellings and for varying
external fluid flow velocity. Figure 4.4 b) shows a strong acceleration of the swelling
formation with increasing flow velocity. Comparing different flow conditions we report less
pronounced acceleration in shear flow, but a systematic acceleration in a homogeneous
flow. This points to the extension of the proplatelet under the influence of the pulling of
the flow as the origin for the strong acceleration.
All in all, our simulations reproduce the features of both in vivo and in vitro blood

platelet formation. While being strongly accelerated with increasing flow velocity, the
biological Rayleigh-Plateau instability leads to platelets of nearly constant volume as
shown in publication [pub5]. Therefore, we conclude that the platelet size after formation
is determined by the dominant wavelength of the instability. Furthermore, the interplay
of the elasto-hydrodynamic instability with fluid flow on the one hand explains the strong
acceleration in agreement with experiments [84 – 89]. On the other hand, the presence
of shear leading to swelling fusion accounts for the formation of preplatelets. Due to
no/less preplatelet formation and an efficient acceleration, the homogeneous flow may
be the most promising flow condition for in vitro bioreactors. In total, we are able to
provide a biophysical mechanism which explains the efficient formation of blood platelets
accelerated by fluid flow.

42



5 Antimargination of platelets in vessel
confluences

5.1 Motivation
Once released into the blood stream, the blood platelets circulate through the vessel
network and become activated by signaling processes in case of a vessel rupture [119].
Activated platelets form clots, which shall prevent a rapid and massive loss of blood [119].
For this task platelet location close to the vessel wall is advantageous, which is provided
by a process called margination [104, 281]. In a cellular suspension, the deformable red
blood cells are known to migrate to the channel center, both due to a lift force away from
the wall [282, 283] and due to gradients in the flow velocity [92, 284]. The accumulation
of red blood cells in the channel center leads to the formation of a cell-free layer next
to the wall with vanishing red blood cell concentration [218, 285]. In contrast, a stiff
particle alone does not migrate in inertia-less flows [150]. However, in suspension with
the red blood cells a stiff particle is expelled into the cell-free layer due to heterogeneous
collisions with the red blood cells [281, 286]. This process, termed margination, leads to
a strong increase in platelet concentration next to the vessel wall.

Margination has been observed in straight channels with various types of cross-section
both experimentally [95, 98, 104, 105] and in simulations [90, 94, 96, 97, 106, 107,
287]. It has been studied in constricted microchannels [116, 117], and also the effect of
different particle shapes [100, 101, 103, 109, 110] and red blood cell concentration on the
margination has been investigated in detail [99, 102, 108]. In the physiological blood
network, the circulatory system, however, a multitude of vessel branching occurs. Larger
vessels mainly split up into smaller ones in a cascade of bifurcations on the arterial side
of the blood circulatory system until in the smallest vessels oxygen is transmitted to the
tissue. Afterwards, the small vessels fuse into larger ones in a cascade of confluences
towards the vena cava leading back to the heart. Experimental findings indeed indicate a
strong difference in platelet distribution between the arterial side with more platelets
near the wall [118] and a larger number of platelets integrated in clots [119] and the
venous side with a more continuous distribution of platelets. While several studies have
investigated the red blood cell distribution in bifurcations [120, 122 – 124, 288 – 290],
microparticle behavior is scarcely addressed [291, 292]. Refs. [125 – 128] provide a first
step towards simulations of more complex vessel networks.

Motivated by the reported difference in platelet concentration [118, 119] and to provide a
deeper understanding of blood flow in vessel networks, margination in a vessel bifurcation
as well as in a vessel confluence is investigated in publication [pub6] of the present thesis.
Bifurcation and confluence are the main entities in a realistic vessel network and therefore
our simulations provide a fundamental insight and basis for studies of networks. The
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5 Antimargination of platelets in vessel confluences
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Fig. 5.1: Vessel branching. A suspension of microparticles (green), which mimic stiff particles such as
drug carriers or blood platelets, and red blood cells (red) flowing through a vessel bifurcation
in a) and a vessel confluence in b). The hematocrit, i.e., the volume fraction of red blood cells,
is about 12%. Reprinted from publication [pub6] with permission from CellPress.

simulation setup and the main findings are outlined in the following.

5.2 Computational model of a vessel bifurcation and
confluence

We simulate a suspension of stiff microparticles, which can either represent blood platelets
or synthetic microparticles like drug carries, and red blood cells in both a vessel bifurcation
as shown in figure 5.1 a) as well as a vessel confluence in b). The microparticles are
modeled as rigid spheres with a diameter of 3.2µm, but the shape is also varied to an
oblate ellipsoid to mimic the typical shape of blood platelets. In case of the stiff particles
a regular inner mesh is used in addition to the thin shell to ensure particle stiffness. The
red blood cells are modeled with a diameter of 7.82µm and using the Skalak constitutive
law (2.28) accounting for shear elasticity with κS = 5× 10−6 N/m and area dilatation
C = 100 together with the Helfrich law (2.31) accounting for bending elasticity with
κB = 2× 10−19 Nm. Fluid properties are chosen to mimic blood plasma behavior with a
density ρ = 1000 kg/m3 and viscosity 1.2× 10−3 Pas.
In order to systematically investigate the influence of vessel bifurcation and vessel

confluence separately, inflow and outflow boundary conditions have been implemented
similar to ref. [293]. Therefore, a straight, cylindrical reference channel is simulated,
where red blood cell and platelet concentration are obtained resembling what is known
for margination in straight channels [90]. The temporal sequence of cell and particle
positions is used to construct an inflow at the entrance of the bifurcation and at the
entrance of both daughter channels of a confluence in figure 5.1 a) and b) on the left.
Accordingly, further away from the bifurcation and the confluence red blood cells are
located in the channel center and microparticles next to the wall. Cells or particles
reaching the end of the bifurcation or confluence system are removed from the simulation.
We use a small hematocrit, i.e., volume fraction of red blood cells, of Ht = 12% (shown
here) and a large hematocrit of Ht = 20% covering the physiologically relevant range. A
typical mean velocity at the channel entrance is 2.5 mm/s. In case of the bifurcation in
figure 5.1 a) one main channel of radius 16µm splits up into two daughter channels with
radius 11.5µm on a length of 13µm. The vessel confluence in figure 5.1 b) consists of two
channels with radius 16µm and separation of 39µm between the center-lines merging in
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5.3 Main results

a)

b)

c)

Fig. 5.2: Cell distribution behind a vessel bifurcation. a) Red blood cell (RBC) concentration in
the (upper) daughter channel of the vessel bifurcation shown in figure 5.1 a). The cell-free layer
with vanishing concentration becomes asymmetric. b), c) Cross-sectional concentration of b) red
blood cells (RBC) and c) microparticles (micro) such as blood platelets at the beginning of the
daughter channel behind a vessel bifurcation at x = 57µm. Despite remaining marginated, no
blood platelets are located at the bottom of the daughter channel. Reprinted from publication
[pub6] with permission from CellPress.

one larger channel with radius 17.5µm.

5.3 Main results
Vessel bifurcation

Up to a distance of about 10 µm before the vessel bifurcation (and also before the vessel
confluence) the red blood cells gather around the channel center and accordingly next to
the vessel wall a cell-free layer depleted of any cells is visible. Approaching the bifurcation,
the cells start to flow into the two daughter channels and the cell-free layer decreases. As
shown in figure 5.2 a), the cell-free layer in the daughter channel becomes asymmetric
[123, 289] and the red blood cells are shifted towards the inner wall of the upper (or
lower) channel. Remarkably, the asymmetry remains stable over the whole length of the
daughter channel. As seen in the cross-sectional concentration profile in figure 5.2 b), a
spot of increased red blood cell concentration is visible next to the inner wall. Related to
this, an analysis of axial concentration as detailed in publication [pub6] shows a peak in
red blood cell concentration at the apex of the bifurcation, where cells can get trapped
and a lingering of cells is observable [125].

Arriving at a near-wall position, the marginated state, the blood platelets remain next
to the wall behind the bifurcation as seen in the cross-sectional concentration profile
in figure 5.2 c). However, no platelets can reach the inner wall of the upper daughter
channel (or lower daughter channel, correspondingly). Therefore, the region at the inner
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5 Antimargination of platelets in vessel confluences

a)

b)

c)

Fig. 5.3: Cell distribution behind a vessel confluence. a) Red blood cell (RBC) concentration in
the larger channel behind the vessel confluence shown in figure 5.1 b). In the channel center
an additional, robust cell-free layer develops. b), c) Cross-sectional concentration of b) red
blood cells (RBC) and c) microparticles (micro) such as blood platelets at the beginning of
the main channel behind a vessel confluence at x = 55µm. A significant fraction of 16% of the
blood platelets are located in the channel center, thus undergo antimargination. Reprinted
from [pub6] with permission from CellPress.

wall with a larger amount of red blood cells lacks any blood platelets. All in all, the
blood platelets retain their near-wall position, thus remain marginated, throughout a
vessel bifurcation.

Vessel confluence

Approaching a vessel confluence as shown in figure 5.1 b), the cell-free layer also becomes
asymmetric at the end of the daughter channel due to the motion of the red blood cells
towards the main channel. Entering the main channel at the confluence, red blood cells
from both the upper and the bottom vessel compete for the channel center, where as a
consequence an additional cell-free layer develops as seen in the concentration profile in
figure 5.3 a). The central cell-free layer is also visible in the cross-sectional concentration
profile in b) evaluated at the beginning of the main channel. This central cell-free layer,
being especially pronounced left and right, remains robust over the total length of the
main channel (cf. figure 5.3 a)).
In contrast to the vessel bifurcation, the blood platelets do not remain marginated

throughout the vessel confluence. A remarkable fraction of 15.8% of blood platelets
undergoes antimargination and is located in the central cell-free layer behind the confluence
as shown by figure 5.3 c). This antimargination is confirmed by in vivo experiments
performed by our collaboration partners using synthetic microparticles. The platelets
remain close to the center for the complete length of the main channel considered in our
simulations. Calculating the shear-induced diffusion coefficient of the blood platelets, we
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5.3 Main results

can estimate a length of 5 mm required for the blood platelets to be completely marginated
again. In addition, the axial concentration of blood platelets shows a pronounced peak at
the vessel confluence, which we can attribute to the platelets arriving at the very top or,
respectively, bottom of the confluence, which therefore have a larger residence time at
the confluence.

Consequences

Thus, a network of bifurcations on the arterial side of the circulatory system can retain
the demixing of the red blood cells and the blood platelets. The latter remain near
the vessel wall. Considering a series of succeeding confluences this no longer holds. An
estimation based on shear-induced diffusion as performed in publication [pub6] leads
to a value of 5 mm required for complete margination of the blood platelets, whereas
a succeeding vessel confluence appears typically after half to one millimeter [224, 294].
Therefore, the interplay of antimargination through confluences and margination in-
between results in a stronger mixing of blood platelets and red blood cells and therefore
a more continuous distribution of platelets across the vessel diameter is expected after
several confluences. This is in very good agreement with experimental observations in
the venous side of the circulatory system made up of numerous vessel confluences [118].
Furthermore, our proposed mechanism agrees with findings by Casa et al. [119] reporting
more platelet-laden clots on the arterial side, where vessels consecutively bifurcate into
smaller ones, compared to the venous side.

47





6 Conclusions and outlook
In this thesis, we developed an algorithm that dynamically computes active forces and
the deformation of a cell membrane with underlying cortex in three dimensions. Its
combination with a fluid solver such as the lattice-Boltzmann method by means of the
immersed boundary method further allows for a dynamic coupling with an external
fluid flow. An application of the algorithm to other fluid solvers is easily possible, as
demonstrated with the boundary integral method in publication [pub3]. The parabolic
fitting procedure used for force calculation on the deformed elastic active cortex has been
further utilized for construction of a viscous cortex model, which extends the application
towards processes involving reorganization of the cell cortex.
By combining the developed numerical tool with analytical theory, we were able

to generalize the framework of the Rayleigh-Plateau instability to include anisotropic
interfacial tension. This anisotropy strikingly influences the dynamics of the Rayleigh-
Plateau instability as well as the size of the resulting droplets or vesicles after break-up.
In combination with membrane and cortex elasticity, which is relevant for vesicles, cells,
and tissues, cortical tension anisotropy leads to a broad spectrum of behavior. Depending
on the anisotropy cell elasticity can even suppress the instability.

The concept of the biological Rayleigh-Plateau instability triggered by cortical active
stress was further used to shed light onto the biophysical mechanism underlying blood
platelet biogenesis. Considering one proplatelet immersed in blood flow explicitly, our
simulations reproduce its fragmentation process into platelets with the actin-myosin
contractility as basic entity. The combined lattice-Boltzmann/immersed boundary sim-
ulations allowed us to further study the influence of external flow systematically. We
reported a strong acceleration due to fluid flow with increasing flow velocity. We therefore
provided biophysical, fundamental and mechanical insight into blood platelet biogenesis.

For the released blood platelets we could show that their distinct near-wall position in
the flowing blood is sustained by a vessel bifurcation. In stark contrast, our simulations
uncover an antimargination of blood platelets in the confluence of two vessels, which
has been supported by experimental measurements. Therefore, we were able to explain
observed differences in platelet distribution between the arterial and venous side of the
microcirculatory system.

On the methods developed and the results reported in this thesis various future research
work can be based. The input for the numerical method in publications [pub1] and [pub2]
is the constitutive law for the active stress. Up to now, we have considered isotropic
or anisotropic active stress with spatial variation but being constant over time. Due
to its generality, both methods can be extended to include a time-dependent active
stress. Accordingly, different constitutive laws can be implemented. A prominent example
would be a reaction-diffusion mechanism [49, 295] of either the actin, myosin or even
the ATP concentration field. In particular, in the viscous cortex model in publication
[pub2] a quantity on the cortex can be advected with local cortex velocity. Another
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6 Conclusions and outlook

methodological direction would be to include dynamically evolving polar or nematic order
of the cytoskeletal filaments in the cortex [26, 189]. Furthermore, active moments could
be considered, which account for a variation in active stress across the membrane height
[9]. A typical example is tissue mechanics, where active stress differs between the apical
and basal interface [296, 297].
The investigation of the influence of anisotropic interfacial tension on the Rayleigh-

Plateau instability can be extended to the consideration of anisotropic, passive elastic laws.
An anisotropically structured cortical network may also lead to an elastic response to
deformation depending on the direction of the deformation itself. Therefore, one can think
of a constitutive law similar to the used Skalak Hamiltonian which in addition includes a
dependency on the direction of the deformation. Rather than using a Hamiltonian for the
constitutive law, one could also consider a formulation starting from the surface stress
similar to what is done for the active stress in publication [pub1]. This easily allows
for the incorporation of anisotropy by converting the elasticity modulus into a tensorial
modulus. A first simple approach could include linear, anisotropic elasticity. Furthermore,
the plasma membrane can exhibit anisotropic structure and one can consider the Helfrich
Hamiltonian generalized to include an anisotropic membrane [298].
The presented theory on the anisotropic Rayleigh-Plateau instability in publications

[pub3] and [pub4] can be furthermore generalized to describe a liquid jet neglecting the
ambient medium for arbitrary Reynolds number by modifying the dispersion relation
derived by Chandrasekhar [253]. In presence of an outer fluid, Tomotika [52] presents a
general dispersion relation, where anisotropic interfacial tension can also be incorporated.
This generalization can be done including the bending elasticity of the plasma membrane
or a surfactant as well. The presence of a surfactant leads furthermore to tension gradients
along the interface, which could also be considered [72]. Furthermore, the discussion
could be extended to the buckling instability under the influence of tension anisotropy
with focus on the orientation of the resulting pattern, as already seen in publication
[pub1], maybe under additional influence of external fluid flow.

In the course of platelet biogenesis, also larger structures, the preplatelets, are released
into the blood flow [275]. Extension of those preplatelets in concert with actin-myosin
contractility leads to the break-up of a preplatelet into two separate platelets, as shown by
simulations in the Supplemental Information of publication [pub5]. Here, the dynamics of
such a preplatelet could be investigated in more detail under the influence of external flow.
Furthermore, the explicit treatment of the cortical microtubule coil [275], the marginal
band, would allow for mechanical and detailed insights into preplatelet conversion.
An additional application of the elastic cortex model in publication [pub1] could be

the adhesion of cells. Smeets et al. [299] study the separation of two adhered cells and in
addition micro-pipette aspiration in simulations. Our method can overcome one main
limitation of this investigation [299], namely the linear elasticity. Our method has been
extensively used with the strain hardening Skalak law (2.28), but can also be used with
the strain softening Neo-Hookean law [156]. Furthermore, the coupling to an inner and
outer fluid can be used to investigate cell-cell separation in external flow.
One ingredient of the presented methods is the consideration of the cell’s interior as

viscous fluid. The cell’s interior can also behave in a viscoelastic fashion [300, 301]. The
constant development of the lattice-Boltzmann method includes a lattice-Boltzmann
method for viscoelastic fluids [302 – 304]. A combination of our cortex model and a
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viscoelastic lattice-Boltzmann method together with a tracing algorithm detecting the
cell’s interior [305] could account for the viscoelastic properties of the cell cytoplasm.
The presented method [pub1] to cope with forces resulting from cortical active stress
can furthermore be coupled to an elastic cell model, where the interior of the cell is
considered elastic [306]. The developed method in publication [pub1] can be easily used
to further include an active cell cortex. In total, the present thesis can also contribute
to the development of a more realistic and a possibly complete numerical model of a
biological cell.
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Active gel theory has recently been very successful in describing biologically active materials such as actin
filaments or moving bacteria in temporally fixed and simple geometries such as cubes or spheres. Here we
develop a computational algorithm to compute the dynamic evolution of an arbitrarily shaped, deformable thin
membrane of active material embedded in a three-dimensional flowing liquid. For this, our algorithm combines
active gel theory with the classical theory of thin elastic shells. To compute the actual forces resulting from
active stresses, we apply a parabolic fitting procedure to the triangulated membrane surface. Active forces are
then dynamically coupled via an immersed-boundary method to the surrounding fluid whose dynamics can
be solved by any standard, e.g., Lattice-Boltzmann, flow solver. We validate our algorithm using the Green’s
functions of Berthoumieux et al. [New J. Phys. 16, 065005 (2014)] for an active cylindrical membrane subjected
(i) to a locally increased active stress and (ii) to a homogeneous active stress. For the latter scenario, we predict
in addition a nonaxisymmetric instability. We highlight the versatility of our method by analyzing the flow field
inside an actively deforming cell embedded in external shear flow. Further applications may be cytoplasmic
streaming or active membranes in blood flows.

DOI: 10.1103/PhysRevE.99.062418

I. INTRODUCTION

Many biological processes such as cell division or locomo-
tion depend on the ability of living cells to convert chemical
energy into mechanical work [1]. A prominent mechanism to
achieve such a conversion are motor proteins which perform
work through a relative movement of cross-linked cytoskeletal
filaments. This movement induces active stresses in the cell
cortex [2–7] which are transmitted via anchor proteins to the
plasma membrane separating the interior of the cell from its
surroundings. Active stresses have an inherent nonequilibrium
character and are the basis of physically unique processes
in active fluid layers such as instabilities [8,9], the emer-
gence of spontaneous flows [10], or the creation of geomet-
rical structures [11,12]. They are furthermore responsible for
large shape deformations during cell morphogenesis [13–15],
cell division [16–21], cell locomotion [22–26], cell rheology
[27,28], or spike formation on artificial vesicles [29].

In recent years a theoretical framework has been developed
describing cytoskeleton and motor proteins together as an ac-
tive continuous gel [30–39]. This active gel theory in general
treats the cell cortex as a viscoelastic medium with additional
active contributions. On time scales short compared to the
viscoelastic relaxation time active gel theory can be formu-
lated in the elastic limit [3]. For thin active 2D membranes
embedded in 3D space, active gel theory can be reformulated
into force balance equations using the formalism of differen-
tial geometry [3,6]. Any active stress in the membrane is then
balanced by a counterstress, usually due to viscous friction,

*christian.baecher@uni-bayreuth.de
†stephan.gekle@uni-bayreuth.de

from the external medium. The force balance equations can
be applied on fixed membrane geometries such as spheres,
cylinders, or flat layers. This often results in the prediction
of regions in parameter space where the prescribed shape is
expected to become unstable [11,16,29,40–42]. Despite being
a powerful qualitative tool, such calculations cannot make
statements about the precise shape of the active membrane
after the instability has set in.

To obtain actual shape predictions, a number of works start
instead from a parametrized, free membrane shape which is
adjusted so as to fulfill the force balance equations for a given
set of parameters and boundary conditions. This procedure
can be carried out either analytically [3,43] or numerically
[15,20,21,44–46]. For example, Berthoumieux et al. [3] de-
rived Green’s functions to predict the deformation of an
infinitely long cylindrical active, elastic membrane resulting
from the application of a point active stress. For certain param-
eter ranges, these Green’s functions exhibit divergences which
have been interpreted as mechanical (buckling or Rayleigh-
Plateau-like) instabilities of the cylindrical membrane. Sain
et al. [21] investigated the axisymmetric dynamics of the
furrow in cytokinesis. Turlier et al. [20] computed the time
evolution of an axisymmetric membrane undergoing cytoki-
nesis by advecting tracer points discretizing the membrane.
Callan-Jones et al. [15] predicted a transition to a polarized
cell shape because of an instability of the cell cortex. Rey-
mann et al. [45] matched axisymmetric, theoretical results
to observed cell shapes during cytokinesis using measured
velocity and order parameter fields as input for the theory.
Heer et al. [47] determined the equilibrium shape of an elastic
tissue layer folded into a deformable ellipsoidal shell, where
myosin activity is incorporated as a preferred curvature of the
shell. Klughammer et al. [48] analytically calculated the flow
inside a sphere that slightly deforms due to a traveling band
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of surface tension, which mimics cortical active tension, under
the assumption of rotational symmetry. In all of these works
the full dynamics of the external fluid was neglected and
nearly all of them restricted themselves to deformations from
simple rest shapes in the steady state. There currently exists no
analytical or numerical method to compute the dynamical de-
formation of an arbitrarily shaped active membrane immersed
in a three-dimensional (3D) moving Newtonian fluid.

In this work, we develop a computational algorithm to
predict the dynamic deformation of arbitrarily shaped thin
membranes discretized by a set of nodes connected via flat
triangles. Starting from prescribed active stresses on the dis-
cretized membrane our algorithm computes the correspond-
ing forces on every membrane node via a parabolic fitting
procedure taking into account the full deformed surface ge-
ometry. Knowledge of the nodal forces then enables the
dynamic coupling to a surrounding 3D fluid via the immersed-
boundary method (IBM). The Navier-Stokes dynamics for the
surrounding fluid is solved here by the Lattice-Boltzmann
method (LBM), but other flow solvers can straightforwardly
be incorporated. With this, our method allows the study of the
dynamic evolution of active membranes in general external
flows. It thus builds a bridge between the extensive literature
on active fluids and the similarly extensive work on elastic
cells, vesicles, and capsules in flows [49–56]. In biological
situations often a flowing environment is present rendering the
dynamic coupling of external fluid and membrane deforma-
tions necessary. Our proposed method allows such a coupling
and thus the computation of dynamically evolving nonequi-
librium shapes. Possible applications of our method include
the study of active cell membranes inside the bloodstream or
active cellular compartments in cytoplasmic streaming flows.

First in Sec. II, we extensively describe the LBM-IBM for
a dynamic coupling of an elastic membrane and a suspending
fluid. In Sec. III we start with the problem formulation in the
framework of thin shell theory using differential geometry.
Next, we describe our algorithm for three-dimensional active
force calculation in Sec. IV. In Sec. V we provide an in-depth
validation of our algorithm based on the analytical results
for a cylindrical active membrane in the case of infinitesimal
deformations by Berthoumieux et al. [3]. As an application,
Sec. VI A presents the flow field inside a dividing elastic
cell, where active stresses trigger membrane deformations
that in turn lead to fluid flow. In Sec. VI B we analyze the
same system in externally driven shear flow. Eventually, we
conclude our work in Sec. VII.

II. DYNAMIC COUPLING OF MEMBRANE AND FLUID

A. Lattice-Boltzmann method for fluid dynamics

The Lattice-Boltzmann method (LBM) is an efficient and
accurate flow solver which is well described in the literature
[57–60]. In the following we therefore summarize only the
basic concepts. In contrast to macroscopic, e.g., finite element,
methods based directly on the discretized Navier-Stokes equa-
tion (NSE), LBM starts from the Boltzmann equation which
is a common tool in statistical mechanics. Using Chapman-
Enskog analysis the NSE are recovered from the Boltzmann
equation [60,61].

(a) (b)

FIG. 1. (a) D3Q19 LBM scheme with the discrete velocity set
(solid arrows) connecting nearest and next nearest neighboring fluid
nodes (dots). (b) 3D illustration of the immersed-boundary method.
A continuous membrane is discretized by Lagrangian nodes (red
and orange dots) that are connected by triangles. The membrane is
immersed in a Eulerian grid representing the fluid (blue dots). The
velocity at a Lagrangian node is obtained by interpolation from the
eight closest fluid nodes (illustrated for the two orange membrane
nodes in the middle by the blue shaded cubes). The same stencil is
used to transmit the forces from the membrane to the fluid.

The Boltzmann equation provides insight into a system
on mesoscopic length scales by means of the continuous
particle distribution function f (r, p, t ) where r, p, and t refer
to position of the particles, momentum of the particles, and
time, respectively. The expression f (r, p, t ) dr d p dt gives the
probability to find a particle (fluid molecule) in the phase-
space volume dr d p at (r, p) in the time interval t to t + dt .
The dynamic evolution of the particle distribution function
f (r, p, t ) is given by

df

dt
= ∂ f

∂t
+ v · ∇r f + F · ∇p f = � (1)

with � being the collision operator accounting for redistribu-
tion of molecules due to collisions.

Discretization of space, momentum space, and time leads
from the Boltzmann equation (1) to the Lattice-Boltzmann
equation. The discretization of the spatial domain is carried
out using a cubic Eulerian grid. The distance between the
fluid nodes is �x = 1 in simulation units. In contrast to other
methods, LBM also discretizes the momentum (velocity)
space, i.e., f = f (x j, pi, t ) such that only a discrete set of
velocities is allowed at each node. Here, we use the common
D3Q19 scheme with 19 discrete velocity vectors, which is
illustrated in Fig. 1(a). Thus, each node contains one popula-
tion f (x j, pi, t ) for each momentum pi, which moves with the
corresponding velocity ci away from the node x j within one
time step. As an abbreviation the distribution functions are
labeled by an index according to their discrete momentum (or
velocity), i.e., f (x j, pi, t ) = fi(x j, t ). Finally, discrete time
steps from t to t + �t are considered. Under discretization
the Boltzmann equation in (1) becomes the Lattice-Boltzmann
equation [60]

fi(x j + ci�t, t + �t ) = fi(x j, t ) + �i(x j, t )�t . (2)

The numerical integration of the Lattice-Boltzmann equation
in time is split into two steps, collision and propagation.
Collision is done by an approximation of the collision operator
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in Eq. (2). The idea for the approximation of the collision
operator is that the populations should relax towards the
Maxwellian equilibrium distribution function in the absence
of driving forces. Here, we use the multiple relaxation time
scheme. In the framework of the multiple relaxation time
scheme the relaxation is done in moment space of the pop-
ulations with individual relaxation rates for the different mo-
ments [58,60]. Moments corresponding to conserved density
and momentum do not have a relaxation time, while two re-
laxation rates related to bulk and shear viscosity, respectively,
are chosen for moments corresponding to the stress tensor.
For further discussion on the relaxation rates and moments
used in our LBM implementation we refer to Refs. [58,62]. In
the second step, the streaming, the populations after collision
propagate according to the associated velocities.

We note that our LBM implementation supports adding
thermal fluctuations to the fluid dynamics mimicking a given
thermal energy kBT corresponding to fluctuating hydrody-
namics [62]. Thermal fluctuations are taken into account by
adding a random noise to those relaxed moments of the mul-
tiple relaxation time scheme which correspond to elements
of the stress tensor [58,62]. We note that our approach using
thermal fluctuations is different from considering a separate
temperature field [63–65] as, e.g., required for convection
flows [63]. Although they are not per se necessary, we employ
thermal fluctuations in the present paper to speed up the onset
of instabilities.

Although we do not consider solid walls in the present
paper, we note that they can be realized by bounce back
boundary conditions [60], where populations streaming to-
wards nodes beyond a boundary are simply reflected. In the
case of moving elastic objects (Sec. II B) having close contact
to solid walls as it is considered, e.g., in Ref. [66], at least
one fluid node between the object and the solid boundary is
required in our method.

Typical LBM grids used in this work have dimensions
of 126 × 72 × 72 or 100 × 100 × 100. Except in the case
of the shear flow with moving boundaries in Sec. VI B, our
LBM simulations use periodic boundary conditions for the
fluid. A typical simulation run, e.g., in Fig. 6 consists of
107 time steps. Onset of Rayleigh-Plateau like instabilities
in Fig. 7 typically appears after approximately 8 × 106 time
steps. Simulations are performed with the simulation package
ESPRESSO [67–69] which has been extended to include thin
membranes using the immersed-boundary method described
next.

B. Immersed-boundary method for membrane dynamics

The framework of the immersed-boundary method (IBM)
[70–72] allows for the coupling of a cellular membrane to the
suspending fluid, where the fluid is simulated using LBM as
described in the previous section, Sec. II A. The IBM consists
of two central steps: elastic forces acting on the membrane
are transmitted to the fluid and due to no-slip boundary
condition the massless membrane is advected with the local
fluid velocity.

The membrane of a cell is represented by an infinitely thin
elastic sheet in the framework of thin shell theory [73–75]. In
our numerical simulations the membranes is discretized by a

set of nodes that are connected by flat triangles [51,76–78].
These represent the elastic membrane as a Lagrangian mesh
immersed into the Eulerian fluid mesh as illustrated in
Fig. 1(b).

Physical behavior of the membrane is characterized by ap-
propriate constitutive laws which are described in Sec. III. The
resulting forces are calculated on the deformed Lagrangian
membrane mesh as described in Sec. IV. To transmit these
forces into the fluid, the incompressible NSE for the fluid
velocity u(x, t ) becomes [77]

∂u
∂t

+ (u · ∇)u

= − 1

ρ
∇p + ν�u + 1

ρ

∫
f (X ′, t )δ(X ′ − x) d2X ′, (3)

with p the pressure, ν the kinematic viscosity, ρ the density,
and f the membrane force per area acting on the membrane,
which is parametrized by X ′. The Dirac δ function ensures that
the forces only act at the position of the actual membrane. Cor-
respondingly, the Lattice-Boltzmann equation (2) changes to

F j =
∫

f (X ′, t )δ(X ′ − x j ) d2X ′, (4)

fi(x j + ci�t, t + �t ) = fi(x j, t ) + �i(x j, F j, t )�t . (5)

After an update of the fluid dynamics (LBM algorithm),
which now include the forces from the membrane F j , the
massless membrane nodes are advected with the local fluid
velocity thus satisfying exactly the no-slip boundary condition
[71]. Moving with the local fluid velocity is expressed for a
membrane node xn ∈ X ′ by [70,71]

dxn

dt
= u(xn(t ), t ) =

∫
u(x, t )δ(x − xn) d3x (6)

with u(xn, t ) being the fluid velocity at the position of the
membrane node. In simulations Eq. (6) is integrated numer-
ically using a Euler scheme in order to move each membrane
node from time t to t + �t .

The core of both steps, force transmission and movement
with local fluid velocity, is the interpolation between the
Eulerian fluid grid and the Lagrangian membrane grid. Con-
sidering the discretization and the resulting spatial mismatch
of membrane nodes and fluid nodes, as illustrated in Fig. 1(b),
it becomes clear that an interpolation is necessary. On the one
hand the ideal point force at the site of a membrane node
must be spread to the adjacent fluid nodes. On the other hand
to obtain the local fluid velocity at the site of a membrane
node the velocity of the adjacent fluid nodes is interpolated.
This means the δ distributions in Eqs. (4) and (6) must be
discretized. The interpolation between fluid and membrane is
carried out by an eight-point stencil. As illustrated for two
membrane nodes by the blue shaded cubes in Figs. 1(b), for
each membrane node a cube containing the eight nearest fluid
nodes is considered. A linear interpolation between the eight
fluid points is performed [79].

A typical mesh for a cylinder in the present study contains
17 100 Lagrangian membrane nodes and 34 200 triangles.
Simulating a cylindrical membrane, as it is partly shown in
Fig. 4, is done using periodic boundary conditions for the fluid
in all directions and for the membrane in the direction of the
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σout

σint β
aα

n

e1

e2

FIG. 2. Left: The cell cortex underlying the plasma membrane consists of cytoskeletal filaments and motor proteins. The latter constantly
convert energy into mechanical work. Right: Membrane and cortex are condensed into a thin shell with normal vector n and in-plane
coordinates e1, e2. Mechanical work of motor proteins results in an active in-plane surface stress t β

aα . Forces from the cytoplasm inside the
cell and from the extracellular medium onto the membrane can be treated by the 3D fluid stress tensors σ in

i j and σ out
i j .

cylinder axis. The latter is achieved by connecting membrane
nodes at the end of the box to those at the beginning of the
box.

C. Validation of LBM-IBM for passive, elastic membranes

Our implementation of the force calculation and the LBM-
IBM have extensively been tested for passive, elastic mem-
branes in previous publications [52,56,78,80–82].

The algorithm for the passive, elastic force calculation has
been validated in Refs. [52,78] by comparison with exact
results in static situations as well as for a capsule in shear flow.
For red blood cells flowing through a rectangular channel very
good agreement with in vitro experiments has been found
[56,80].

The mixed LBM-IBM has been extensively validated for
suspensions of red blood cells and rigid particles in complex
geometries. In [81] the concentration profile of cells across
the channel diameter (affected by cross streamline migration,
which is triggered by the passive elasticity of the cells) has
been successfully compared to well-established literature re-
sults. In Ref. [82] we have performed a validation based on the
Zweifach-Fung effect for red blood cell suspension in branch-
ing channels. Furthermore, in the Supplementary Information
of Ref. [82] we have shown red blood cell shapes for a single
cell in tube flow and in a rectangular channel, respectively,
that are in very good agreement with previous studies using
dissipative particle dynamics [83] and the boundary integral
method [56], respectively. The stability and behavior of stiff
particles realized by IBM has been shown and validated in
Refs. [81] and [82] for a spherical particle based on the Stokes
relation (sphere pulled through a quiescent fluid as well as a
fixed sphere in homogeneous flow) and an ellipsoidal particle
rotating in shear flow.

In addition to the well-established passive elasticity, in this
paper we introduce active elastic forces into simulations of
membranes; see Sec. IV. We refer to Sec. V for the validation
in the case of an active, elastic cell membrane.

III. FORCE BALANCE IN THIN SHELL FORMULATION
INCLUDING ACTIVE STRESSES

A. Physical model

We consider the plasma membrane and the cytoskeletal
filaments within the cell cortex, sketched in Fig. 2, as a

single physical entity which for simplicity we denote in the
following as “the membrane.” Since this membrane is small
in height compared to the cell diameter it is described as
an infinitely thin shell. Thin shell theory treats the mem-
brane as a two-dimensional manifold embedded in the three-
dimensional environment, e.g., the intra- and extracellular
fluid, thereby accounting for membrane curvature. For a con-
densed introduction into the required differential geometry on
such manifolds as well as present conventions we refer the
reader to Ref. [84] and Sec. 1 of the Appendix of this work,
respectively. Here, we only note that Greek indices refer to
coordinates on the membrane, i.e., α, β = 1, 2, and Einstein
summation convention is used. In this work, we consider the
short-time limit of a purely elastic membrane noting that our
algorithm can, without substantial difficulty, be extended to
viscous or viscoelastic membranes.

The key quantity in the framework of thin shell theory are
the in-plane surface stresses tαβ and moments mαβ [73,74,85].
The in-plane surface stress tensor or stress resultant [74] tαβ

is the 3D elastic stress tensor for the material forming the
membrane projected onto the membrane and integrated over
the membrane thickness h [74] (dimensions of a force per
length, i.e., N/m) [86]. It is a function of in-plane coordi-
nates α, β and contains only in-plane components such that
its matrix representation has dimensions 2 × 2. Besides the
in-plane surface stresses, we introduce the normal surface
stress which is sometimes denoted as a shearing force [73]
or transverse shear surface stress tα

n [76,78]. The in-place
surface stresses tαβ contain a contribution from passive, elastic
stresses as well as from active, force-generating mechanisms.
Both contributions superpose linearly and thus can be treated
separately [3,6]. Passive elastic stresses can be further split
into different contributions such as, e.g., shear and bending
resistances [50,78,88]. The moment tensor or stress couples
[74] mαβ account for stress distribution across the membrane
[74] (dimensions of a torque per unit length, i.e., N). We
denote the corresponding normal surface moment by mn. For
explicit materials building up the membrane corresponding
constitutive laws are required to derive explicit forms for
in-plane surface stresses and moments.

Considering the passive, elastic properties of membranes
in most cases constitutive laws are formulated in terms of a
strain energy functional. For many biological membranes such
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as red blood cells the passive, elastic forces arise from the
resistance to shear deformation of the cortical, cytoskeletal
network and the resistance to bending deformation and area
dilatation of the plasma membrane. For shear resistance and
area dilatation Skalak et al. [89] proposed an appropriate
energy density functional,

wSK(I1, I2) = κS

12

[(
I2
1 + 2I1 − 2I2

) + CI2
2

]
. (7)

The energy density depends on the invariants I1, I2 of the
transformation between undeformed and deformed mem-
branes [50,89]. Both invariants are defined in Eq. (A23) and
(A24) of the Appendix. Resistance to shear is characterized
by the shear modulus κS while resistance to area dilatation is
characterized by CκS with C much larger than unity for nearly
area-incompressible membranes. For bending resistance the
Helfrich model is used [78,90],

wHF = 2κB(H − H0)2 + κK K, (8)

with κB being the bending modulus, H denoting the local
mean curvature, H0 the spontaneous curvature, κK the Gaus-
sian modulus, and K the Gaussian curvature. On the one
hand, from a given energy functional, in-plane surface stresses
and moments can be deduced by functional derivatives with
respect to the strain tensor [74,91] and curvature tensor,
respectively [78,92,93]. On the other hand, in numerical
algorithms the explicit introduction of stresses is typically
bypassed and forces on the nodes discretizing the membrane
are often computed directly by deriving a discretized version
of the energy functional, here equations (7) and (8), with
respect to the node positions [50,78,94]. This approach is used
here as well for the passive elastic forces. For bending force
calculation we use the method denoted by B in Ref. [52].

For actively generated forces, however, this approach is
not applicable since, due to their inherent nonequilibrium
character, an energy functional cannot be defined in a strict
sense. Instead, active contributions are usually given in terms
of active stresses whose strength and direction can either
be temporally constant or depend on additional quantities
such a local concentration of motor proteins [6]. We will in
the following construct a numerical method which explicitly
applies these active stresses and derives the corresponding
active forces on the discretized membrane nodes. These forces
are then used to introduce a two-way coupling between active
membrane dynamics and a surrounding hydrodynamic flow.
For simplicity of demonstration and in order to connect to
the analytical axisymmetric solutions of [3], we restrict our-
selves to temporally constant active in-plane surface stresses.
Time-dependent active stresses or active moments can be
included without substantial modification of our numerical
framework.

B. Force balance for deformable active membranes
embedded in a 3D fluid

As sketched in Fig. 2, we consider a membrane immersed
in an external fluid and enclosing an internal fluid, the cytosol.
Coupling of the membrane to the internal and external fluid
with the stress tensor σ in

i j and σ out
i j , respectively, is described

by the traction jump [51,76,88]

− f j = (
σ out

i j − σ in
i j

)
ni (9)

with Latin subscripts denoting 3D coordinates and the com-
ponents ni of the local unit normal vector onto the membrane
pointing towards the external fluid. Transforming to the in-
plane coordinate system the traction jump can—as a vector
on the membrane in general—be decomposed into tangential
and normal components,

− f = − f αeα − f nn. (10)

Neglecting membrane inertia the traction jump between the
internal and external fluid is balanced by membrane forces
(per unit area). In the present situation, these arise from
elastic and active contributions. Looking ahead, the numerical
method, which we will construct in the following section,
will compute elastic forces f α

e and f n
e via the classical dis-

cretized energy functional route, bypassing for simplicity the
introduction of elastic stresses, while active forces need to
be computed explicitly from active stresses and moments. It
is thus convenient to write the force balance for a thin shell
[3,6,73,88,91] as

∇′
αtαβ

a + C′β
α tα

na + f β
e = f β, (11)

∇′
αtα

na − C′
αβtαβ

a + f n
e = f n, (12)

∇′
αmαβ

a + C′β
α mα

na = ε′β
α tα

na, (13)

∇′
αmα

na − C′
αβmαβ

a = −ε′
αβtαβ

a , (14)

with active contributions to the in-plane and normal sur-
face stress tαβ

a , tα
na and active contributions to the moments

mαβ
a , mα

na. The geometrical quantities are the curvature tensor
C′

αβ , the Levi-Civita tensor ε′
αβ , and the covariant deriva-

tive ∇′
α taken on the deformed membrane as defined in the

Appendix. On the basis of Eqs. (11) and (12) it becomes clear
that the negative traction jump is the force exerted from the
membrane on the fluid. We now consider the active contri-
butions to the traction jump in the case of vanishing active
moments (mαβ

a = mα
na = 0) and vanishing active transverse

shear surface stress (tα
na = 0),

f β
a = ∇′

αtαβ
a = tαβ

a ,α + 
′α
αγ tγ β

a + 
′β
αγ tαγ

a , (15)

f n
a = −C′

αβtαβ
a , (16)

where we have used the definition of the covariant derivative
on the membrane [see Eq. (A20)] in the first line. To simulate
the temporal dynamics and coupling to the external fluid
of our discretized active membrane, we need to compute
the forces on each membrane node corresponding to active
in-plane surface stresses. According to Eqs. (15) and (16)
the curvature tensor, the Christoffel symbols, and the active
in-plane surface stresses together with their derivatives have to
be known locally on each node on a deformed surface. In the
next section we will develop an algorithm to compute these
quantities numerically for the discretized thin shell embedded
in a 3D environment.
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FIG. 3. The central node at rc is surrounded by N neighbors. The
discretization is chosen such that all nodes on the cylindrical mesh
in Fig. 4 have six neighbors. For the ellipsoid in Fig. 10, topology
requires at least 12 triangles with N = 5 while all others have N =
6. From the surrounding triangles a local normal vector n at rc can
be computed. Together with the position of one neighbor local in-
plane coordinate vectors eξ , eη can be constructed. Applying the first
step of Gram-Schmidt orthonormalization leads to eξ and the cross
product of n and eξ to eη.

IV. ALGORITHM FOR ACTIVE FORCE CALCULATION
ON ARBITRARILY SHAPED DISCRETIZED MEMBRANES

Our algorithm starts from active in-plane surface stresses
and computes the corresponding active forces on the dis-
cretized membrane. The key ingredient of the algorithm is
the discrete computation of geometrical properties on the
discretized, deformed membrane, such as the curvature tensor
or Christoffel symbols. This is achieved by a parabolic fitting
procedure and using the force balance equations (15) and
(16) as described in Sec. IV B based on a local coordinate
system which we introduce in Sec. IV A. With these forces
the active membrane dynamics can be bidirectionally coupled
to a surrounding fluid flow which is computed separately
using either an overdamped dynamics or a Lattice-Boltzmann
method.

A. Local coordinate system

As sketched in Fig. 3 each membrane node rc has a
neighborhood consisting of N nodes, which are labeled in
an ordered fashion around the central node. The choice of
the starting node is arbitrary initially, but has to be retained
through the simulation. In Fig. 12 we provide evidence that
the choice of the starting node does not affect simulation
results. At the site of the central node a local coordinate sys-
tem (eξ , eη, n) can be defined, where we denote the in-plane
coordinate vectors [eα (α = ξ, η) in the Appendix] by eξ and
eη. We determine the local unit normal vector n by the mean
weight by angle of the normal vectors on the surrounding
triangles [95]. The first in-plane vector eξ is calculated using
the vector from the central node to the first neighbor x1 =
r1 − rc. The first step of the Gram-Schmidt orthogonalization
is applied and the vector is normalized,

eξ = x1 − (x1 · n)n
|x1 − (x1 · n)n| . (17)

The second in-plane coordinate vector is calculated by the
cross product

eη = n × eξ

|n × eξ | . (18)

Using this method we can assign to every node at every time
step a unique coordinate system which is adapted to the local
deformed membrane geometry. We denote coordinates along
eξ and eη by ξ and η, respectively. In a figurative sense, we
comove with a cytoskeletal filament initially positioned at rc

pointing towards x1.

B. Parabolic fitting

To obtain local geometrical quantities such as the curvature
tensor on the deformed membrane we perform a parabolic fit-
ting procedure based on the local coordinate system derived in
the previous section. An arbitrary point r̄ in the neighborhood
of the central node rc can be expressed by a Taylor expansion
around rc up to the second order. For the ith component of the
vector r̄ with i = x, y, z we obtain

r̄i(ξ, η) ≈ rc
i + Aiξ + Biη + 1

2 (Ciξ
2 + Diη

2 + 2Eiξη), (19)

with ξ , η being the coordinates along eξ and eη, respectively.
Using this expression we can apply a parabolic fitting pro-
cedure (see also [51,52] where a similar procedure has been
used to compute passive bending forces) considering all N
neighboring nodes with a squared deviation from the fitted
surface,

χ2
i =

N∑
ν=1

(
rν

i − r̄ν
i

)2
, (20)

with i = x, y, z. By minimizing the χ2
i we obtain the coef-

ficients Ai–Ei. Using Eq. (19) we are able to analytically
calculate the derivative of χ2

i with respect to the coefficients
Ai–Ei. The derivative of χ2

i being zero in case of minimization
then leads to a linear equation system for Ai–Ei. This linear
equation system is solved numerically in the simulation us-
ing lower-upper decomposition. The paraboloid fitted to the
neighborhood around rc provides a good approximation of the
local curvature for typical cell shapes [52]. By construction,
the fitting coefficients equal the derivatives of the membrane
parametrization vector r̄ with respect to local coordinates at
the site of the central node,

Ai = r̄i,ξ , Bi = r̄i,η, Ci = r̄i,ξξ , Di = r̄i,ηη, Ei = r̄i,ξη,

(21)

or, equivalently,

A = r̄,ξ |rc , B = r̄,η|rc , C = r̄,ξξ |rc ,

D = r̄,ηη|rc , E = r̄,ξη|rc . (22)

Thus, we are able to calculate geometrical quantities, as
defined in the Appendix, at the site of the central node in local
coordinates with α̃, β̃, γ̃ = ξ, η, such as the metric tensor

gα̃β̃ =
(

A · A A · B
B · A B · B

)
, (23)

the curvature tensor

Cα̃β̃ =
(−C · n −E · n

−E · n −D · n.

)
, (24)

and the derivatives of the metric tensor, e.g.,

gξξ,ξ = (A · A),ξ = 2A · C, (25)
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which are necessary for the calculation of the Christoffel
symbols. The tensor gα̃β̃ is obtained by inverting the metric

gα̃β̃ since gα̃γ̃ gγ̃ β̃ = δ
β̃
α̃ . Thus, we can further calculate C β̃

α̃ =
Cα̃γ̃ gγ̃ β̃ and Cα̃β̃ = gα̃γ̃C β̃

γ̃ . We note that this procedure can
be used without any restriction on the deformed membrane
as well. Correspondingly, we obtain the metric tensor g′

α̃β̃
,

the curvature tensor C′
α̃β̃

, and the Christoffel symbols on the
deformed surface.

Equation (15) for the in-plane, active force includes a par-
tial derivative tαβ

a ,α , which is calculated using another parabolic
fitting procedure. As done in Eq. (19) for the position in local
coordinates we can expand the active in-plane surface stress
tαβ around the components of the central node t cαβ

a ,

t̄αβ
a (ξ, η) = t cαβ

a + Aαβ
a ξ + Bαβ

a η

+ 1
2

(
Cαβ

a ξ 2 + Dαβ
a η2 + 2Eαβ

a ξη
)
. (26)

Corresponding to Eq. (20) we consider here the squared

deviation from the expanded active stress t̄ α̃β̃
a ,

χ2
a =

N∑
ν=1

(
t α̃β̃ν
a − t̄ α̃β̃ν

a

)2
, (27)

with t α̃β̃ν
a being one component of the active in-plane surface

stress of the νth neighboring node in local coordinates. Thus,
the corresponding fitting coefficients Aa and Ba represent
the partial derivative of the active in-plane surface stress
component with respect to the coordinate ξ and η, respec-
tively, whereas the coefficients Ca − Ea represent the second
derivatives. We note that the matrix for the fit is the same as
for the position. We perform one fitting procedure for each
component, i.e., α̃ = ξ, η and β̃ = ξ, η.

With the method proposed here, we are able to calculate
the covariant derivative, which consists of a partial derivative
and Christoffel symbols, and perform the contraction of active
in-plane surface stress tensor and curvature tensor in the local
coordinate system to determine the traction jump given by
Eqs. (15) and (16), which we repeat here for the deformed
membrane in the local coordinate system

f β̃
a = t α̃β̃

a ,α̃ + 
′α̃
α̃γ̃ t γ̃ β̃

a + 

′β̃
α̃γ̃ t α̃γ̃

a , (28)

f n
a = −C′

α̃β̃
t α̃β̃
a , (29)

in the case of vanishing active moments and vanishing trans-
verse shear stress. We note that the in-plane surface stress is
the analog of the Cauchy stress tensor in three dimensions
[3,88] and thus acting on the deformed membrane [96].
Equations (28) and (29) give the discrete forces (per area)
on one membrane node. These forces then enter the fluid
solver as illustrated in Sec. II B or are used for the relax-
ation dynamics in the overdamped limit (see Sec. 3 of the
Appendix).

To convert the traction jump from Eqs. (28) and (29) into
a nodal force we use Meyer’s mixed area approach [78,95]:
in the case of nonobtuse triangles the area is calculated using

Voronoi area AVoronoi defined by

AVoronoi = 1

8

N∑
ν=1

[cot(αν ) + cot(βν )]|xν | (30)

with the angles α and β opposite to the edge connecting the
central node and the νth neighbor node within the adjacent
triangles and in the case of obtuse triangles the midpoint of
xν that is opposite of the obtuse angle is chosen instead of the
circumcenter point for each triangle.

C. Specification of active in-plane surface stress

Active stresses in membranes are often generated by ATP-
fueled molecular motors “walking” along cross-linked rodlike
structures such as actin filaments or microtubules. As a direct
consequence, active stresses are often anisotropic with the
direction of contractile or extensile stresses specified in a ma-
terial frame moving and deforming along with the membrane
itself. This naturally leads to a convenient specification of the
active in-plane surface stress tensor tαβ

a in the local coordinate
system introduced in Sec. IV A. Since the labeling of the
neighbors around each node remains unchanged throughout
the simulation, the distance vector x1 = r1 − rc represents a
material vector. Its normalized in-plane counterpart eξ , given
in Eq. (17), together with eη, given in Eq. (18), constitute
the associated material frame. Imagining one cytoskeletal
filament for an illustrative picture, the anchoring position of
the filament is tracked by the node position rc, while the
orientation of the filament is tracked by the fixed choice of the
first neighbor r1. We again note that the choice of the starting
node for the labeling, here 1, does not affect simulation
results, as shown in Fig. 12.

The active in-plane surface stress tensor tαβ
a itself is not

computed by our method but needs to be specified as an input
quantity according to a corresponding constitutive law for
the surface stress [3,6]. Our algorithm allows for an arbitrary
choice of active in-plane surface stress, subject to condi-
tion (14) for vanishing active moments, including spatially
heterogeneous, anisotropic or time-dependent stresses. For
the latter, coupling to a convection-diffusion model of active
substances such as ATP or myosin (with the magnitude of
tαβ
a proportional to local ATP or myosin concentration) is

methodologically possible. Thus, if the concentration field of
ATP or myosin is solved or prescribed on the membrane, e.g.,
by discretizing the convection-diffusion equation, the active
stress can be calculated from the local concentration. The
corresponding active forces and their coupling to the sur-
rounding fluid dynamics are then straightforwardly achieved
by the present algorithm, which allows for a spatially varying
active stress. In the present work, we consider only temporally
constant active stresses. Active stresses can thus conveniently
be specified in the initial configuration of the membrane. For
this, we first choose an intuitive coordinate system (e1, e2)
appropriate for the initial shape of the undeformed cell mem-
brane. The active in-plane surface stresses in this coordinate
system are of the form

t β
aα =

(
t 1
a1 t 2

a1

t 1
a2 t 2

a2

)
, (31)
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where the mixed form with upper and lower index is cho-
sen such that the right-hand side contains physical material-
specific constants with dimensions of N/m [3]. Because of the
dynamical deformation of the membrane, the active in-plane
surface stress of Eq. (31) needs to be mapped into the local
coordinate system at each node. This can be achieved by
mapping the coordinate system (e1, e2) to the local coordinate
system (eξ , eη).

In many situations, the intuitive coordinate system (e1, e2)
will correspond to cylindrical coordinates or spherical co-
ordinates, e.g., for a rounded cell during mitosis [14]. By
construction of the intuitive in-plane coordinate system and
the local coordinate system both normal vectors, e.g., er , for
a cylinder or a sphere and the local n are equal initially. Thus,
the initial in-plane coordinate system (e1, e2) can be converted
directly into the local coordinate system (eξ , eη) on every node
individually,

t α̃β̃
a = D tαβ

a D−1, (32)

with D being a rotation matrix around the local unit nor-
mal vector n, with α = 1, 2 and α̃ = ξ, η. We thus obtain
the active in-plane surface stress along the local coordinate
vectors eξ and eη. The rotation in Eq. (32) is performed once
at the beginning of a simulation. Since the local coordinate
system eξ , eη is comoving with the membrane material, the

active in-plane surface stress tensor t α̃β̃
a , expressed in these

coordinates, does not change over time.
The parabolic fitting procedure in Eq. (27) requires the

difference in active stress between neighboring nodes. The
differences in active stress are calculated in the intuitive
coordinate system, in which the active stresses are prescribed.
Because active stresses do not change in time, calculation
of the differences can be done also once at the beginning of
the simulation. Projection into the local coordinate system for
each node is done in the same way as for active stresses in
Eq. (32).

Along a certain direction, the cytoskeletal filaments may
tend to contract or to expand, respectively, resulting in a
contractile or extensile active in-plane surface stress [37]. The
contractile or extensile nature of the cytoskeletal filaments
manifests itself in the sign of the active stress, namely a pos-
itive (negative) stress corresponds to a contractile (extensile)
nature. In active matter consisting of cytoskeletal filaments,
active stresses often possess different signs in different di-
rections. Imagining two antiparallel polar filaments that are
cross-linked by a motor protein walking in opposite directions
on both filaments, a relative extensile shift of both filaments
together with a lateral contraction occurs.

V. VALIDATION

In this section we provide an in-depth validation of our
algorithm to compute the dynamics of active membranes
embedded in a 3D fluid. For this, we first compute the de-
formation obtained when an initially unstressed cylindrical
membrane is subjected to a localized perturbation due to
active stresses. Our numerical results are in excellent agree-
ment with analytical predictions by Berthoumieux et al. [3]
which were obtained using a Green’s-function approach in
the limit of small deformations. Next, we apply homogeneous

active stresses again to an initially cylindrical membrane. In
agreement with the analytical predictions of [3], we observe
two kinds of axisymmetric instabilities. Going beyond the
axisymmetric calculations of [3], our numerical method then
predicts the existence of a third nonaxisymmetric instability.

To account for the dynamics of the surrounding fluid, we
employ two qualitatively different approaches. In the first
approach, we use simple overdamped dynamics such that the
surrounding fluid acts purely as a viscous frictional damp-
ing; see Sec. 3 of the Appendix. In the second approach,
we consider the full fluid dynamics of the surrounding liq-
uid by solving the Navier-Stokes equations using a Lattice-
Boltzmann method; see Sec. II A. Two-way coupling to the
active membrane dynamics is provided by the immersed-
boundary method, as detailed in Sec. II B.

A. Green’s function formalism

We here briefly recall the central analytical results of [3]
which will be used to validate our numerical computations in
the subsequent paragraphs. In [3] the active in-plane surface
stresses have the form

t β
aα =

(
Ta + T z

a δ(z) 0
0 Ta + T φ

a δ(z)

)
(33)

on the initially unperturbed cylinder surface where the local
coordinates α and β correspond to polar coordinates z and
φ, respectively (cf. Sec. IV C). We note that the component t z

az
being positive represents a contractile stress along the cylinder
axis and t z

az being negative represents an extensile stress, as
seen on the basis of the buckling instability reported for neg-
ative stress in Ref. [3]. A positive t φ

aφ represents a contractile
stress in azimuthal direction, which causes a contraction of
the cylinder. The latter becomes clear by considering the de-
formation caused by T φ

a according to the Green’s function. In
Eq. (33) Ta represents an isotropic homogeneous background
active stress while T z

a and T φ
a are the amplitudes of point

active stresses along each of the two coordinate axes. δ(z) is
the Dirac delta distribution.

As in Ref. [3], we focus on the radial deformation ur (z)
of a cylinder with initial radius R resulting from an az-
imuthal in-plane surface stress T φ

a . At the end of Sec. V C
we perform a validation for an axial in-plane surface stress
T z

a . Berthoumieux et al. [3] consider a 3D elastic material
and perform a projection onto the membrane resulting in the
surface stretching modulus S and the bending modulus B as
surface elastic parameters, together with the 3D Poisson ratio
ν. The strength of the homogeneous active in-plane stress is
measured by the dimensionless number g = Ta

S and bending
forces are quantified by the relative bending modulus b = B

SR2 .
The radial deformation of a cylindrical shell with radius R is
then given by the Green’s function Grφ (z) as

ur (z)

R
= −Grφ (z)T φ

a = −T φ
a

RS
G(z). (34)

An expression for G(z) is given in Fourier space [3] by

G(q) = 1

2b(Rq)4 + (g − 2νb)(Rq)2 + 2(1 − ν2) − g
(35)

with G(z) being the inverse Fourier transform of RG(q).
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Tφ
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z

(a) (b) (c)

FIG. 4. (a) We consider a local increase in active in-plane surface stress of a cylindrical membrane. (b), (c) Membrane meshes as in main
text with two different resolutions, (a) �z = 0.2, �φ = 0.2 and (b) �z = 0.1, �φ = 0.15, respectively.

In our numerical method, elastic forces are derived from
the Skalak and Helfrich energy functionals as defined in
Eqs. (7) and (8), respectively, which represent an accurate and
widely used description of the elastic properties of biological
cell membranes. In the limit of small deformations we show
in Sec. 2 of the Appendix that the Skalak and Helfrich model,
which we use in this study, and the elastic model used by
Berthoumieux et al. [3] are related by S = 2

3κS and B = 1
2κB.

In the following these relations are used to calculate the
Green’s function in Eq. (35) and the corresponding defor-
mation in Eq. (34) for comparison to our simulations. We
furthermore set the bulk Poisson ratio ν = 1

2 , corresponding
to a 3D incompressible material, and the Skalak parameter
C = 1. Then the Skalak law becomes equivalent to the Neo-
Hookean membrane law which is built to model a membrane
made of a 3D incompressible material [88]. For the shear
modulus S we show in Sec. 2 of the Appendix that the
shear related in-plane surface stresses determining the Green’s
function agree between the Skalak law and the model used
by Ref. [3] in the limit of small deformation. Although we
can relate the parameter of Helfrich model to the model
used in Berthoumieux et al. [3] by B = 1

2κB as illustrated in
the Appendix, the Helfrich model alters the in-plane surface
stresses, which in turn alter the Green’s function. However,
since we consider the limit B → 0 this has no effect for the
Green’s function used for validation of our simulations.

B. Singular active perturbation

We start by simulations of overdamped dynamics of an ini-
tially stress-free cylindrical shell subjected to a local increase
in active in-plane surface stress. The active in-plane surface
stress from Eq. (33) simplifies to

t β
aα =

(
0 0
0 T φ

a

)
δ(z), (36)

as sketched in Fig. 4(a). Simulations are carried out with
R = 1, κS = 1, C = 1, κB = 0.001, and T φ

a = −0.01 in sim-
ulation units. We employ two different triangulations of the
cylindrical shape which are shown in Figs. 4(b) and 4(c). In
the coarse mesh, the axial distance between rings of nodes
is �z = 0.2 and the azimuthal spacing is about �φ = 0.2
radians. The finer mesh uses an axial spacing of �z = 0.1 and
an azimuthal spacing of about �φ = 0.15 radians.

In Fig. 5 we compare the final shape of the shell as
observed in 3D simulations for the two different resolutions
and compare it to the prediction of the Green’s function in
Eq. (34). The analytical Green’s function shows a peak in de-
formation of finite width centered at the site of active in-plane
surface stress perturbation (z = 0) that decays with increasing
distance, reaches a shallow minimum at around z ≈ ±0.7,

and then approaches zero for z → ±∞. Although for both
resolutions the resulting amplitude of the peak in deformation
from the simulation is close to the Green’s function and both
show a similar shape, we observe a significant deviation of
the 3D simulation results from the theoretical expectation.
Especially, the simulations cannot reproduce correctly the
predicted shallow minima next to the main peak. We note
that the deviations for singular perturbation also appear using
the Lattice-Boltzmann-immersed-boundary method instead of
overdamped dynamics (results not shown).

This observed deviation can be explained by the idealized
singular nature of the active in-plane surface stress which is
impossible to accurately reproduce on a discretized membrane
shape. Along the cylinder axis, i.e., along the z direction,
only one ring of nodes with z = 0 is attributed with finite
active in-plane surface stress. Correspondingly, only these
nodes are subjected to active forces and cause the neighboring
nodes to move due to the elastic nature of the cylinder.
We note that the central nodes—with active in-plane surface
stress—experience a significantly larger deformation than
their direct, adjacent neighbor nodes, as seen in Fig. 5. This
steep gradient in deformation resulting in locally very large
curvature cannot be completely resolved by the parabolic fit.
Thus, the procedure fails to resolve the deformation caused
by a point perturbation, although obtained deformations are
similar in shape and nearly match the amplitude of the Green’s
function. Given that in real applications, all perturbations can
be expected to be nonsingular, we proceed to investigate the
behavior of our algorithm for spatially smooth active stresses.
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-4 -3 -2 -1  0  1  2  3  4

u r
 /
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z / R

Green's function
Δz = 0.2, Δφ = 0.2

Δz = 0.1, Δφ = 0.15

FIG. 5. The final deformation resulting from three-dimensional
simulations of a singular active stress shows the same shape as
the analytical prediction of the Green’s function. However, peak
height deviates from the theory. This can be attributed to the singular
nature of the perturbation which is difficult to resolve numerically.
Deformations are obtained for the parameter set T φ

a = −0.01, κS =
1, C = 1, and κB = 10−3.
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FIG. 6. (a) Comparison of the deformation obtained by the 3D overdamped dynamics with the theoretical expectation for a cylindrical shell
with 160 nodes along z direction subjected to a Gaussian distributed active in-plane surface stress with κS = 1, κB = 10−5, and T φ

a = −0.01.
3D simulations are in very good agreement with the theory. (b) Comparison of the deformation obtained with LBM-IBM simulations for
C = 1 and κB ≈ 10−4 with the theoretical prediction for the same setup with perturbation in φ stress T φ

a and (c) with perturbation in z stress
T z

a . (d) Increasing resolution of both membrane and fluid mesh show convergence of the relative error per node for the parameter set of (b) for
a perturbation in T φ

a (red dots) as well as for the parameter set of (c) for a perturbation in T z
a (blue triangles). The error decreases proportional

to N−1
z and proportional to N−2

z , respectively. In (b) and (c) simulations are done for 300 nodes in z direction.

C. Localized smooth perturbation

As a prototypical smooth distribution, we choose a Gaus-
sian distributed active in-plane surface stress of the form

t β
aα =

(
0 0
0 T φ

a

)
exp

(
− z2

R2

)
, (37)

where T φ
a is again a constant amplitude. For this distribution,

the predicted deformation can be obtained by superposing
a distribution of Green’s functions [Eq. (34)] leading to the
deformation

ur (z)

R
= −

∫ ∞

−∞
Grφ (z − z′)T φ

a exp(−z′2/R2) dz′. (38)

We use the Green’s function in Fourier space given in Eq. (35)
and the Fourier transform of the Gaussian∫ ∞

−∞
exp(−z2/R2) exp(−iqz)d

( z

R

)
= √

π exp

(
−1

4
(Rq)2

)
.

Using the convolution theorem in Fourier space and trans-
forming back to real space leads to

ur (z)

R
= − 1

2π

R

S

∫ ∞

−∞

√
πT φ

a exp
[ − 1

4 (Rq)2
]

2b(Rq)4 − 2νb(Rq)2 + 2(1 − ν2)

× exp(iqz)dq.

The integral can be solved analytically in the limit of small
bending rigidity b 	 1 (which corresponds well with the
chosen simulation parameters) to obtain

ur (z)

R
= −T φ

a

S

1

2(1 − ν2)
exp

(
− z2

R2

)
. (39)

Alternatively, we can solve the integral in Eq. (38) numeri-
cally, which does not lead to any differences for small bending
modulus (results not shown).

In Fig. 6(a) we compare the 3D simulation results using
overdamped dynamics for parameters R = 1, κS = 1, C = 1,
κB = 10−5, and T φ

a = −0.01 to the analytical prediction of
Eq. (39). The Gaussian distribution of active in-plane surface
stress leads to a much smoother and broader peak of deforma-
tion than the singular perturbation of the previous subsection.
Our simulation results are now in very good agreement with
the theoretical prediction.

To go one step further, with applications in mind such as an
active membrane in a flowing liquid, we now replace the sim-
ple overdamped fluid dynamics with a full Navier-Stokes dy-
namics solved by the Lattice-Boltzmann method and coupled
to the active membrane via the immersed-boundary method
as described in Sec. II. In Fig. 6(b) we compare simulation
results obtained by the LBM-IBM to the theoretical Green’s
function. Again, our simulations are in very good agreement
with the analytical theory. In Fig. 6(b) we include three sets of
active in-plane surface stress and shear modulus with constant
κB = 0.000 18 which are chosen such that the ratio of active
in-plane surface stress and shear modulus g remains constant.
Thus, the Green’s function predicts identical deformation in
all three cases which is indeed observed in our simulations.

We now proceed to the validation for a perturbation in z
stress, i.e., the active in-plane surface stress takes the form

t β
aα =

(
T z

a 0
0 0

)
exp

(
− z2

R2

)
, (40)
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with the constant amplitude T z
a . Corresponding to Eq. (38) the

deformation can be obtained by [3]

ur (z)

R
=

∫ ∞

−∞
Grz(z − z′)T z

a exp(−z′2/R2) dz′, (41)

with Grz(s) = ν
RS G(z) and takes in analogy to Eq. (39) the

form

ur (z)

R
= T z

a

S

ν

2(1 − ν2)
exp

(
− z2

R2

)
. (42)

In Fig. 6(c) we compare LBM-IBM simulation results for
three different perturbations and shear moduli for R = 1, C =
1, and κB = 0.000 18 to the theory. Our simulation results are
in very good agreement with the theory and by comparing
Figs. 6(b) and 6(c) we observe half the maximum deformation
for |T φ

a | = |T z
a | which is indeed predicted by the theory for

ν = 1
2 .

As a further test of algorithm accuracy we now perform a
convergence study based on the setup in Fig. 6(b) as well as
in 6(c). We compare the deformation obtained by simulation
usim

r and by Green’s function uGreen
r by calculating the relative

error per node defined as

ε = 1

Nz

√∑
zi

{[
usim

r (zi ) − uGreen
r (zi)

]
/uGreen

r (0)
}2

, (43)

where Nz denotes the number of nodes along the cylinder axis
and the difference is in relation to the maximal deformation
given by the Green’s function. In Fig. 6(d) we show the rela-
tive error per node in dependency of the number of membrane
nodes. With increasing resolution the error per node steadily
decreases in both cases. The converge rate, however, is dif-
ferent for T φ

a which decreases with slope N−1
z and T z

a which
decreases more quickly with N−2

z . This may be due to the fact
that the Green’s function is derived from linearized equations
of motion [3], whereas simulations are also valid for larger
deformations. A perturbation in T z

a shows half the maximal
deformation as a perturbation in T φ

a as predicted in Eq. (42)
and thus is in better agreement with the Green’s function.
The steady decrease in error demonstrates the accuracy of the
presented algorithm for active force calculation.

From Fig. 6 we conclude that our algorithm presented in
Sec. IV together with elastic force calculations gives reliable
results for a reasonably smooth distribution of active in-plane
surface stress. The very good accuracy of the predictions is
achieved for the simple overdamped dynamics as well as for
the substantially more complex and flexible combination of
an active membrane with the Lattice-Boltzmann-immersed-
boundary method.

D. Homogeneous perturbation: Instability diagram

To provide another test of our algorithm we perform simu-
lations of a cylindrical membrane which now is subjected to a
homogeneous active in-plane surface stress,

t β
aα =

(
Ta 0
0 Ta

)
, (44)

with Ta = const. This situation corresponds to a membrane
with constant motor protein activity and isotropic cortex

FIG. 7. Phase diagram of a cylindrical shell with relative, active
in-plane surface stress g = Ta/S = 3Ta/(2κS ) and relative bending
modulus b = B/(SR2) = 3κB/(4κSR2) from 3D LBM-IBM simula-
tions in comparison to the theoretically predicted thresholds [3].
On the left of the dotted line we apply a negative active stress,
on the right of the dotted line we apply a positive active stress.
For small negative or positive active stress (around the dotted line)
the cylindrical membrane is stable. For large negative stresses, a
buckling instability is observed. For large positive active in-plane
surface stress a Rayleigh-Plateau like instability occurs. The theo-
retically predicted instability thresholds [3] and our 3D LBM-IBM
simulations are in excellent agreement in both cases. Insets illustrate
the shape of the shell corresponding to different values of active
in-plane surface stress. The labels a, b, c refer to Fig. 8.

architecture. We note again that positive Ta represents con-
tractile and negative Ta extensile stress in the z or φ direction.
Although they did not explicitly compute the deformation
for this situation, Ref. [3] predicts two unstable regions in
g-b-parameter space for which the Green’s function could be
shown to diverge. The predicted instability thresholds serve us
as a further validation of our simulation method.

By varying both the relative active in-plane surface stress
g = Ta/S = 3Ta/(2κS ) and the relative bending modulus b =
B/(SR2) = 3κB/(4κSR2) we obtain the phase diagram in
Fig. 7 and compare it to the predicted instability thresholds
given by Berthoumieux et al. [3]. On the right, for large
g, Berthoumieux et al. [3] predict an instability occurring
for Ta > 4

3κS (1 − ν2) shown by the vertical orange line in
Fig. 7. Indeed, for simulations in this range we observe an
instability with local contraction of the cylinder (see inset
of Fig. 7 for a shape illustration). The threshold obtained
by our simulations closely matches the analytically predicted
threshold. This instability is analogous to a Rayleigh-Plateau
instability of a liquid jet with the positive, contractile active
in-plane surface stress playing the role of the surface tension.
To the left of the threshold a fairly large region is observed in
which the initial cylindrical shape remains stable. For negative
g (extensile stress), [3] predicts a buckling instability when
Ta < −2

√
κBκS
R2 . To compare to our simulations, we prescribe

an active stress only along the cylinder axis, i.e., t z
az = Ta

and t φ

aφ = 0. This corresponds to a contracting, cylindrical
membrane and the resulting shape beyond the threshold is
illustrated in Fig. 7 at the bottom left. Our simulations agree
very well with the predicted instability onset depending on the

062418-11

pub1



CHRISTIAN BÄCHER AND STEPHAN GEKLE PHYSICAL REVIEW E 99, 062418 (2019)

FIG. 8. Membrane shape for different values of negative active in-plane surface stress for fixed bending modulus b = 0.011 25. In the
upper row the membrane is subjected to both z and φ stress, while in the lower row the membrane is subjected to z stress only. For z stress only
we observe a buckling instability in (a). However, for isotropic stress we observe an instability introducing nonaxisymmetric deformations at
intermediate stresses in (b) where no buckling instability occurs. (c) For smaller active stress the cylindrical membrane remains stable in both
cases. Corresponding points in the phase diagram in Fig. 7 are labeled a–c.

relative active in-plane surface stress and the relative bending
modulus.

In addition, we investigate the transition to buckling in
more detail and carry out simulations imposing an active
tension in azimuthal and axial direction t z

az = t φ

aφ = Ta, which
corresponds exactly to the scenario considered by [3]. In
Fig. 8 we compare these simulations (top row) with the ones
in Fig. 7 (bottom row), respectively. At large (negative) active
stress in (a) we observe an instability in both simulations,
however only the simulation with a purely axial stress clearly
corresponds to a buckling instability. The instability in the top
row exhibits a nonaxisymmetric character. For slightly smaller
active stress in Fig. 8(b) the nonaxisymmetric instability
remains for the isotropic stress, but the membrane becomes
stable for z stress only. Decreasing the active stress further,
we observe a stable cylindrical membrane in both cases, as
shown in (c).

From Fig. 8 we conclude that an additional instability is
present (not related to buckling) caused by a finite azimuthal
stress t φ

aφ . This additional instability induces nonaxisymmetric
deformations and thus is not observed in the axisymmetric
treatment of Ref. [3] nor in our axisymmetric simulations for
which also the onset of the buckling instability is in exact
agreement with the analytical prediction as shown in Fig. S2
of the Supplemental Material [97].

So far, we have validated our algorithm to agree with
theoretical predictions on the basis of the Green’s function. To
obtain a validation in the nonlinear regime beyond the Green’s
function, we compare our 3D simulations to simulations of
an axisymmetric membrane, as detailed in the Supplemental
Material [97]. We do this by comparing the membrane shape
in the case of a buckling instability. In Fig. 9 we show
the deformation obtained from the axisymmetric simulation
and compare it to three simulations using 3D LBM-IBM.
The three 3D simulations are done for different resolutions
�z/R. We use the nondimensional parameters g = −0.75
and b = 0.011 25. On the one hand all three 3D simulations
show the same deformation and wavelength and on the other
hand they agree in the wavelength with the axisymmetric
simulation method. The wavelength of the buckling instability
is about 1.75R for both very different simulation techniques.
In the case of small bending elasticity Berthoumieux et al. [3]
predict a wavelength at the threshold, where the denominator
of the Green’s function in Eq. (35) becomes zero for finite
wave vector q. The predicted wavelength is λ = 1.9R which is
reasonably close to the value observed with simulations. The
difference may arise from the periodicity of the shell in our

simulations and/or from finite bending together with being
beyond the threshold. Nevertheless, the excellent agreement
between the axisymmetric and 3D simulations provides strong
evidence for the reliability of our algorithm also in the range
of large deformations.

VI. MODEL APPLICATION: CELL DIVISION
IN SUSPENDING FLUID

In the following we present a first application of our
method including fluid flow. This illustrates the versatility and
applicability of our combined LBM-IBM method for active
cell membranes. For this, we consider a dividing ellipsoidal
cell. Except the fact that we employ an elastic rather than
a viscous cortex, our setup resembles the situation of cell
cytokinesis [16,17,19–21]. Cell cytokinesis as part of cell
division is a prominent subject of active matter research in
biological physics [13,18,98]. Most previous studies, e.g.,
[20] or [21], investigated the dynamics of cell cytokinesis
for an axisymmetric membrane without considering internal
fluid flow. References [99] and [100] analyzed the flow field
inside a dividing cell where the contractile ring is modeled
as an additional force using the immersed-boundary method
and phase field model, respectively. Ref. [101] analyzed the
flow field by means of the phase field model as well, but
considered the cortical ring as a shrinking elastic loop. Here,
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FIG. 9. Comparison of the deformation obtained for the buck-
ling instability of an initially cylindrical membrane subjected to a
homogeneous active in-plane surface stress with g = −0.75 and b =
0.011 25. We compare the wavelength of the deformation obtained
in 3D LBM-IBM simulations with different resolutions �z/R to one
obtained by axisymmetric simulation. For a sample illustration of
the 3D shape we refer to the inset on the left-hand side of Ref. 7. All
simulations show the same wavelength for the buckling instability.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 10. (a) Similar to cell division an elastic cell membrane, which is subjected to homogeneous active stress and a local increase in
azimuthal active stress in the red shaded area, contracts locally as shown in (b). Panels (c)–(h) show the outline of the deforming membrane
(red nodes) in the central plane and the developing flow field (arrows) inside the cell over time. Eventually, a flow away from the contracting
region towards the poles of the cell is observed. Arrows indicate the flow direction while the color indicates the flow velocity. Relative time is
t/tmax = (a) 0, (b) 1, (c) 4 × 10−4, (d) 0.08, (e) 0.16, (f) 0.51, (g) 0.86, (h) 1.0.

we consider cell division triggered by active stresses including
an external flow leading to a fully 3D asymmetric membrane
shape during the division. We first analyze the flow field
dynamically evolving inside the dividing cell surrounded by
a quiescent medium in Sec. VI A and then extend this setup
by considering a dividing cell in an external shear flow in
Sec. VI B.

A. Flow field inside a dividing cell

We consider a prolate ellipsoidal cell of diameter 7 μm
and length 14 μm which is endowed with an isotropic ac-
tive stress Ta = 8 × 10−5 N/m. In addition, in an interval
of �θ ≈ π

12 around the equator the active stress in the az-
imuthal direction is increased by a factor of 6 according
to a step function. The membrane is endowed with shear

elasticity κS = 5 × 106 N/m, C = 1, and bending elasticity
κB = 2 × 10−19 Nm which are in the range of typical cell
membranes.

We present the initial 3D membrane shape in Fig. 10(a) and
a deformed 3D shape in Fig. 10(b). In both cases we illustrate
the region with increased active stress along φ direction by the
red shaded area. The shape and the developing flow field in the
central plane, which includes the long axis of the ellipsoid,
are shown over time in Figs. 10(c)–10(h). Here, the active
stress triggers active deformation of the membrane which
in turn triggers fluid flow inside the cell. We note that the
fluid velocity at the position of the membrane corresponds
to membrane motion, which moves with local fluid velocity
due to no-slip condition as described in Sec. II B. At the
beginning the membrane contracts around the poles [left and
right in Fig. 10(c)] due to the isotropic contractile active
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 11. An elastic dividing cell membrane in shear flow. (a) An increase in azimuthal active stress in the red shaded area of an ellipsoidal
cell membrane triggers a local contraction as shown in (b) while the externally driven shear flow also deforms the membrane. Panels (c)–(h)
show the outline of the deforming membrane (red nodes) in the central plane and the developing flow field (arrows) as perturbation to the shear
flow over time. We here refer also to the Supplemental Material Video 1. The presence of the shear flow renders both the cell shape and the
flow field asymmetric. Relative time is t/tmax = (a) 0, (b) 1, (c) 1.3 × 10−3, (d) 0.07, (e) 0.17, (f) 0.52, (g) 0.88, (h) 1.0.

stress. The contraction at the poles causes a rounding which
triggers a flow field pointing away from the poles at the
beginning. Simultaneously, the membrane starts contracting
around the equator; see Figs. 10(c) and 10(d). In Fig. 10(d)
four vortices are present around the equator and four at the
corners of the figure. After some time the contraction at the
poles stops, see Figs. 10(e) and 10(f), and only the contraction
at the equator proceeds. With progressive contraction a flow
away from the midplane towards the poles develops. As it is
visible in Figs. 10(g) and 10(h), the site of maximal velocity
towards the poles is located at x ≈ ±10. Thus, it does not
coincide with the center of the two spheroids pinching off
at x ≈ ±18, but is rather shifted towards the equatorial plane
at x = 0. Approaching the poles of the ellipsoid the velocity
decreases.

B. Dividing cell in shear flow

In the previous section we considered an initially quiescent
fluid. Here, we go one step further and include an externally
driven flow interacting with the membrane. We apply a shear
flow with a shear rate γ̇ ≈ 1400 s−1. All other parameters are
the same as in the previous section.

The cell membrane as illustrated in Fig. 11(a) deforms now
due to the local increase in active stress [red shaded area in
(a) and (b)] but also due to the external shear flow. This be-
comes visible by the nonsymmetrically deformed membrane
in Fig. 11(b). Figures 11(c)–11(h) show the flow field relative
to the shear flow, i.e., from each velocity vector the corre-
sponding background flow is subtracted. The time evolution
of the cell shape and the flow field is also illustrated in the
Supplemental Material Video 1. In contrast to the previous
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section, the shear flow triggers an asymmetric deformation
and in turn an asymmetric flow inside the cell. The rounding
together with the flow from the poles towards the equator is
less pronounced [compare Fig. 11(d) to Fig. 10(d)].

The flow field inside a dividing cell suspended in a shear
flow shows how the actively deforming membrane couples to
a background flow and imposes perturbation on the shear flow.
Both the active stress present in the cell cortex as well as the
external flow trigger membrane deformation.

VII. CONCLUSION

We presented a computational algorithm to compute the
dynamical deformation of arbitrarily shaped active biological
(cell) membranes embedded in a 3D fluid. Active stresses
in cells typically arise from the activity of motor proteins.
Constitutive equations for active stresses in membranes have
been developed recently [6,30] in the framework of differ-
ential geometry and form the theoretical basis for our com-
putational method. The membranes are discretized by a set
of nodes connected via flat triangles. The key ingredient of
our algorithm is the computation of the active force acting
on each node starting from prescribed active stresses via
a parabolic fitting procedure on the deformed membrane.
Besides active forces, the method also includes passive elastic
forces derived from the well-established Skalak and Helfrich
models for cell membranes. In simple cases, the surrounding
fluid can be considered a purely frictional medium, such that
the membrane nodes follow simple overdamped dynamics in
time. For more realistic situations, we introduced a powerful
and versatile coupling between the active membrane and the
surrounding fluid via the immersed-boundary method. This
technique incorporates the full Navier-Stokes dynamics for
the surrounding liquid, solved here via the Lattice-Boltzmann
method. Thus, our method allows us to go beyond the determi-
nation of equilibrium shapes of active elastic membranes and
allows for simulations of dynamically deforming biological
cells immersed in an external flow.

We successfully validated our algorithm for two distinct
situations of an elastic, initially cylindrical membrane: (i) a
local, Gaussian distributed active stress and (ii) a homoge-
neous active stress. For (i) our numerical results are in excel-
lent agreement with the analytically predicted deformation of
Berthoumieux et al. [3] and show convergence with increasing
resolution. Overdamped dynamics and IBM-LBM dynamics
are in good agreement. For (ii) we recovered both the buck-
ling as well as the Rayleigh-Plateau-like instability predicted
by [3]. Comparison to our own numerical solutions of the
axisymmetric problem shows very good agreement with the
full 3D algorithm also in the regime of large deformation not
covered by [3]. In addition, our computations reveal the exis-
tence of a thus far unobserved nonaxisymmetric instability in
the case of extensile axial and azimuthal stresses. In order to
illustrate the versatility of our method, we analyzed the flow
field inside an elastic, dividing cell membrane in shear flow.
This represents the first investigation of the dynamic two-way
coupling between active deformations and externally driven
fluid flow. In this work, we considered temporally constant
active stresses, but the inclusion of time-dependent active

stresses computed, e.g., by a convection-diffusion model of
active substances is straightforwardly possible.

Our computational method significantly extends the range
of physical problems to which existing active membrane
theories can be applied. First, it is not restricted to simple
shapes such as cylinders or spheres (or small deformations
thereof) allowing efficient and accurate treatment of arbitrary
membrane shapes and deformations. Second, our method
couples the active membrane dynamics to the full Navier-
Stokes dynamics of the surrounding fluid. In the described
LBM-IBM scheme a viscosity contrast of the inner and outer
fluid—as it is well known in the case of red blood cells
[50]—can furthermore be incorporated, which allows for an
even more realistic model of living cells. This opens up a
wide range of applications in external flows such as active
cells in the bloodstream or active cellular compartments in
cytoplasmic streaming flows which currently remain largely
unexplored. A particularly interesting application could be the
formation of platelets from megakaryocytes which, according
to a set of recent experiments [102,103], crucially depends on
the interplay between active processes and external flows.
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APPENDIX

1. Membrane in thin shell formulation

In this Appendix, we summarize the necessary basics and
conventions of differential geometry on thin shells used in this
work. For a more detailed description we refer the reader to
Refs. [73,84]. The 2D manifold in general is parametrized
by two coordinates s1, s2. We denote vector components on
the manifold by Greek letters α, β = 1, 2 and vector com-
ponents in Euclidean space by latin letters i, j, k = x, y, z.
Moreover, we use the Einstein summation convention, i.e.,
double occurrence of an index in sub- and superscript implies
a sum over this index. A partial derivative with respect to sβ is
denoted by a comma, i.e., for an arbitrary vector v this implies
vα,β = ∂vα/∂sβ .

The membrane in the undeformed state is parametrized by
the vector

X (s1, s2, t ). (A1)

From the local in-plane coordinates

eα = X ,α (A2)

the metric tensor is defined by

gαβ = eα · eβ, (A3)
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with g = det(gαβ ). The inverse metric gαβ can be obtained by
the expression

gαγ gγ β = δβ
α (A4)

with δβ
α denoting the Kronecker delta being 1 for α = β and 0

otherwise. For a general vector vα , vα or tensor tαβ , t β
α , tα

β , tαβ

subscript indices denote covariant components and superscript
indices denote contravariant components. An index can be
raised by

vα = vβgβα, t β
α = tαγ gγ β (A5)

or lowered by

vα = vβgβα, tαβ = t γ
α gγ β . (A6)

A surface element is defined by dS = √
gds1ds2. The

Christoffel symbols are given by



γ

αβ = 1
2 gγ δ[gαδ,β + gβδ,α − gαβ,δ]. (A7)

The in-plane coordinate vectors eα provide a local coordinate
system together with the unit normal vector on the membrane

n = e1 × e2

‖e1 × e2‖ . (A8)

Considering the local unit normal vector allows for the defini-
tion of the curvature tensor

Cαβ = −eβ,α · n. (A9)

A covariant derivative of an arbitrary vector vα or tensor tαβ

defined on the membrane is given by

∇αvβ = vβ
,α + 
β

αγ vγ , (A10)

∇αtβγ = tβγ
,α + 


β

αδt
δγ + 


γ

αδt
βδ. (A11)

On the membrane the Levi-Civita tensor is given by

εαβ = √
g

(
0 1

−1 0

)
, εαβ = 1√

g

(
0 1

−1 0

)
. (A12)

An arbitrary vector vα defined on the manifold with respect
to eα with α = 1, 2 can be decomposed into an in-plane and a
normal contribution

vα = tαβeβ + tα
n n (A13)

with tαβ being the component of a tensor and tα
n the compo-

nent of a vector.
A connection from the in-plane coordinates to the Eu-

clidean coordinates can be drawn by the expression

eα = ei
αE i (A14)

with ei
α being the ith component of eα and E i being the ith

Euclidean unit vector. A three dimensional tensor ti j can be
projected onto the membrane via

tαβ = ti je
i
αe j

β. (A15)

External or internal forces may lead to a deformation of
the membrane characterized by the deformation field u. The
membrane in the deformed state is parametrized by

X ′(s1, s2) = X (s1, s2) + u(s1, s2). (A16)

We denote all vectors or tensors that are evaluated on the
deformed surface by a prime. Corresponding to the change of
local coordinate vectors e′

α = X ′
,α and normal vector n′ both

the metric tensor and the curvature tensor changes to

g′
αβ = e′

α · e′
β, (A17)

C′
αβ = −e′

β,α · n′. (A18)

The Christoffel symbols have to be computed using g′
αβ and

the covariant derivative becomes

∇′
αvβ = ∂ ′

αvβ + 
′β
αγ vγ , (A19)

∇′
αtβγ = ∂ ′

αtβγ + 

′β
αδt

δγ + 

′γ
αδt

βδ. (A20)

2. Elastic in-plane surface stresses

In the following we compare the elastic in-plane surface
stresses used in Ref. [3] to those obtained for Skalak energy
density in Eq. (7). We consider the displacement vector in
Eq. (A16) decomposed into axial and normal deformation,

u = uzez + urn. (A21)

For the given energy density in Eq. (7) the in-plane surface
stresses are obtained by [74,104,105]

tαβ

SK = 2

J

∂wSK

∂I1
gαβ + 2J

∂wSK

∂I2
g′αβ (A22)

with the invariants

I1 = gαβg′
αβ − 2, (A23)

I2 = det(gαβ ) det(g′
αβ ) − 1, (A24)

and with J = √
I2 + 1. Using Eqs. (A16) and (A17) and the

deformation in Eq. (A21) we obtain for the metric on the
deformed membrane in the limit of small deformations

g′
αβ =

(
1 + 2∂zuz 0

0 1 + 2 ur
R

)
(A25)

and for the in-plane surface stresses

t zz
SK = 2

3
κS

[
(1 + C)∂zuz + C

ur

R

]
, (A26)

tφφ

SK = 2

3
κS

[
1

R2
C∂zuz + (1 + C)

ur

R3

]
. (A27)

These equations can be compared to the tensions in Eq. (11) of
Ref. [3] for the elastic model used by Berthoumieux et al. [3].
The latter is based on Hooke’s law in three dimensions which
is projected onto the membrane. By comparing the stresses
we find agreement in the limit of small deformations for the
relation of the stretching modulus S to the shear modulus used
in Eq. (7) of

S = 2
3κS (A28)

and C = 1. This relation is used for the Green’s function to
match both elastic models.
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FIG. 12. (a) Color code for the neighbor node serving as reference to construct the local coordinate system on the cylindrical membrane
at the site of the central node. (b) Deformation obtained for a cylindrical membrane subjected to a Gaussian perturbation in active in-plane
surface stress along z direction for different reference neighbor nodes. The setup is identical to Fig. 6(c) with T z

a = 0.01 and κS = 1.0. Obtained
deformations are in very good agreement regardless of the choice of reference neighbor node. (c) Neighbor node serving as reference to
construct the local coordinate system on the ellipsoidal membrane at the site of the central node. (d) Cell membrane shape for different
reference neighboring node νref at a given time corresponding to Fig. 10(g). Except for slight deviations in the region of largest curvature in
case of neighboring nodes 2 and 5, all membrane shapes are in very good agreement. (e) Membrane shapes in shear flow for different reference
neighboring node νref at a given time corresponding to Fig. 11(g) are in very good agreement. Thus, we prove evidence that the choice of the
reference neighboring node does not affect simulation results.

We furthermore can compare the bending modulus used
in Berthoumieux et al. [3] to the one appearing in the Hel-
frich energy in Eq. (8) [78]. Berthoumieux et al. [3] defines
B = Eh3/[24(1 − ν2)] with the Youngs modulus E and the
thin shell height h. Comparing this to the expression κB =
Eh3/[12(1 − ν2)] of Pozrikidis [106] we obtain the relation

B = 1
2κB. (A29)

3. Overdamped dynamics method and simulation analysis

a. Overdamped dynamics

As a different approach than the LBM-IBM, we use a
model program based on overdamped dynamics to solve for
the final, equilibrium shape of the membrane in the case of
validation. The resulting active and elastic forces F calculated

for every node enter the equation of motion of the correspond-
ing node rc which is given by

F = γ ṙc, (A30)

where γ is a friction coefficient. We solve the equations for all
nodes using Euler integration scheme. We fix the nodes at the
boundaries of the cylinder by harmonic springs of strength
1000κS . This results in nearly vanishing deformation at the
boundary of the cylinder.

b. Simulation analysis

To obtain the shape shown for example in Fig. 6(a) or
Fig. 6(b) we average the final, radial deformation over all
nodes at a certain z position. Due to the averaging and inherent
errors in the bending algorithm [52] the deformation ur does
not reach exactly zero far away from the perturbation in active
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stress, but shows a constant offset of 5 × 10−4, which we
eliminate in the figures.

4. Choice of reference neighbor does not
influence simulation results

In Sec. IV A we explain how the local coordinate system
is built using the first neighboring node as reference for the
first in-plane coordinate vector eξ . This fact is also important
for the projection of the active stress into the local coordinate
system, as mentioned in Sec. IV C. In the following we show
that the choice of the reference neighboring node is arbitrary
and does not influence simulation results.

Therefore, we first consider the cylindrical membrane
subjected to a homogeneous perturbation in active in-plane
surface stress along the z direction T z

a . We use exactly the
setup analyzed in Fig. 6(c) with T z

a = 0.01 and κS = 1.0. We
systematically change the reference neighbor node serving for
construction of the local coordinate system as illustrated in
Fig. 12(a). Figure 12(b) shows that the deformation obtained
in simulations is the same for every choice of reference
neighbor node and agrees very well with the theoretically
obtained Green’s function. In the case of T z

a perturbation the
in-plane derivatives of the active in-plane surface stress are
crucial and trigger the deformation. Thus, Fig. 12 provides
evidence for the correct calculation of derivatives regardless of
the choice of reference neighbor node and furthermore shows
the choice is arbitrary.

Furthermore, in order to take into account a more com-
plex membrane geometry, we use the setup in Fig. 10 and
compare the dynamics for five different choices of reference

neighboring node. Choosing the sixth neighbor is not possible
for the ellipsoidal geometry as the surface tiling requires
at least 12 nodes with five neighbors only. We consider an
initially ellipsoidal cell membrane endowed with active stress,
which in azimuthal direction increases around the equator.
The increased active stress triggers the cell membrane to
contract. In Fig. 10 we show the dynamically evolving flow
field inside the cell. Here, we redo the simulation and for
each simulation we choose a different neighbor node to build
the local coordinate system, which moves with the deforming
membrane in time. In Fig. 12(c) we show the five different
choices.

In Fig. 12(d) we consider the point in time corresponding to
Fig. 10(g) and show the radial position of all membrane nodes
as function of the position along the axis. All simulations with
different reference neighbor show the same membrane shape
and are in very good agreement. We note that slight deviations
occur at the site of strongest indentation, which results also in
the strongest curvature. At this position, the parabolic fit is not
capable of covering the strongly deformed membrane shape
completely and thus slight deviations occur. In Fig. 12(e) we
do the same for a dividing cell in shear flow corresponding
to Fig. 11(g). We show the node positions within the plane
containing the long axis of the cell and the shear axis of
the external flow. All simulations with different reference
neighbor show the same membrane shape in shear flow and
are in very good agreement. Thus, Figs. 12(d) and 12(e)
provide evidence that the choice of reference neighbor is
indeed arbitrary and does not alter the simulation in case of
a dynamically deforming membrane coupled to a suspending
fluid.
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I. NUMERICS FOR AN AXISYMMETRIC ACTIVE ELASTIC CYLINDER

Here we provide a detailed derivation of the numerical method used to obtain the ax-

isymmetric shapes shown in figure 9 of the main text.

A. Axisymmetric, cylindrical shell

We consider a cylindrical shell under the assumption of axisymmetry. In the following we

calculate the traction jump for the axisymmetric membrane for linear elasticity. The shell

is parametrized using cylindrical coordiantes with s1 = z and s2 = φ so that

X(z, φ) = R cosφex +R sinφey + zez. (1)

We obtain for the in-plane coordinates ez = (0, 0, 1), eφ = (−R sinφ,R cosφ, 0), and

n = (− cosφ,− sinφ, 0). We follow Berthoumieux et al. [1] regarding conventions, thus the

normal vector points inwards into the cylinder. The metric and curvature tensor become

gαβ =


1 0

0 R2


 Cαβ =


0 0

0 R


 . (2)

Due to axisymmetry the deformation can be written as

u = uz(z)ez + un(z)n. (3)

and following equation (3) we obtain the metric on the deformed surface using g′αβ = e′α ·e′β

g′αβ =


1 + 2∂zu

z 0

0 R2 − 2Run


 . (4)

Accordingly, the in-plane strain tensor can be calculated

uαβ =


∂zu

z 0

0 −Run


 . (5)

With the expressions above we can calculate the curvature tensor

C ′αβ = (∂α∂βX
′) · n′ (6)

∗ christian.baecher@uni-bayreuth.de
† stephan.gekle@uni-bayreuth.de
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on the deformed membrane to be

C ′αβ =


∂

2
zu

n 0

0 R− un


 . (7)

The Levi-Civita tensor on the deformed surface for small deformations is

ε′αβ = (R +R∂zu
z − un)


 0 1

−1 0


 . (8)

The Christoffel symbols on the deformed membrane are

Γz′zz ' ∂2
zu

z, Γz′φφ ' R∂zu
n, Γφ′zφ ' −

1

R
∂zu

n, Γφ′φz ' −
1

R
∂zu

n,

Γφ′φφ = 0, Γφ′zz = 0, Γz′φz = 0, Γz′zφ = 0.

B. Force balance in axisymmetric formulation

In this section we consider the force balance equations in the case of an axisymmetric,

cylindrical shell. The force balance (eqs. (11) - (12) in the main text) takes the following

form in cylindrical coordinates

∇′ztzza +∇′φtφza − C ′zz tzna − C ′zφ tφna + f ze = f z (9)

∇′ztzφa +∇′φtφφa − C ′φz tzna − C ′φφ tφna + fφe = fφ (10)

∇′ztzna +∇′φtφna + C ′zzt
zz
a + C ′zφt

zφ
a + C ′φzt

φz
a + C ′φφt

φφ
a + fne = fn. (11)

Elastic forces In the framework of our 3D simulations presented in the main text, elastic

forces are computed by direct derivation of a discretized energy functional with respect to

nodal positions. Here, we follow a different route and use elastic in-plane surface stresses in

order to follow closely ref. [1]. Elastic properties of the shell are considered in the framework

of Hooke’s law for a three dimensional, elastic, isotropic solid with the stress tensor

σij =
E

1 + ν

(
eij +

ν

1− 2ν
ekkδij

)
(12)

depending in a linear fashion on the strain tensor eij = ui,j + uj,i with E being the Young’s

modulus and ν the Poisson ratio. From the bulk equation (12) expressions for the intrinisc

3
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in-plane surface stress tensor and moments on the thin shell can be derived [1]

t̄eαβ = 2S


∂zu

z − ν un
R

0

0 νR2∂zu
z − unR


 (13)

m̄eαβ = 2BR


 0 −R2∂2

zu
n − νun

ν∂2
zu

n + un

R2 0


 , (14)

with S the stretching and B the bending modulus. Following Salbreux and Jülicher [2] by

using eq. (16) and (17) of [2] we calculate the in-plane surface stress and moment tensor via

tαβe = t̄αβe +
1

2

(
mγαC β

γ +mγβC α
γ

)
(15)

mαβ
e = −m̄αγ

e ε βγ (16)

and obtain

tzze = t̄zze (17)

tzφe = t̄zφe (18)

tφze = t̄φze (19)

tφφe = t̄φφe −
2Bν

R3
∂2
zu

n − 2B

R5
un (20)

and

mzz
e = −2B∂2

zu
n +

2Bν

R2
un (21)

mzφ
e = 0 (22)

mφz
e = 0 (23)

mφφ
e = −2Bν

R2
∂2
zu

n − 2B

R4
un. (24)

We obtain for the normal surface stress

tzne = ∂zm
zz + 2(∂2

zu
z)mzz + (− 1

R
∂zu

n)mzz + (R∂zu
n)mφφ (25)

tφne = 0, (26)

and by inserting the in-plane moments we eventually get

tzne = −2B∂3
zu

n +
2Bν

R2
∂zu

n. (27)
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Thus following

fβe = ∇′αtαβe + C ′βα t
α
n,e (28)

fne = ∇′αtαn,e − C ′αβtαβe (29)

we get for the elastic forces

f ze = 2S∂2
zu

z − 2Sν

R
∂zu

n (30)

fφe = 0 (31)

fne = −2B∂4
zu

n −
(

2B

R4
+

2S

R2

)
un +

2Sν

R
∂zu

z (32)

Active forces We neglect the contributions of active moments and normal stress and

use the active in-plane surface stress in the general form

t βaα =


t

z
a(z) 0

0 tφa(z)


 . (33)

From the force balance in cylindrical coordinates we obtain the active force with components

f za = ∂zt
z
a −

1

R
tza∂zu

n +
1

R
tφa∂zu

n (34)

fφa = 0 (35)

fna = ∂2
zu

ntza +

(
1

R
+

1

R2
un
)
tφa . (36)

Both elastic force and active force together determine the traction jump, which is required

for simulations.

C. Numerical method

In order to determine the shape of the membrane in the steady state for the axisymmetric

problem we perform an overdamped relaxation. We discretize the contour of the membrane

(which is a line in case of the axisymmetric formulation) by a series of marker points.

According to the traction jump in equations (9) to (11) we calculate the forces of the

membrane using quintic splines for the derivatives of the deformation. Once the forces are

determined, we consider the equations of motion in the overdamped limit for each membrane

node

F = γṙ. (37)
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This means we introduce a friction term in the equations of motion and neglect inertia.

Equations of motion are solved by the Euler integration scheme. As boundary condition for

the deformation we choose the first and second derivative to vanish on both ends.

-0.002
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 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

-4 -2  0  2  4

u n
 / 

R

z / R

Green's function
simulation Δz = 0.10
simulation Δz = 0.05

simulation Δz = 0.025

Figure 1. Comparison of the numerical solution of the axisymmetric problem for three different

resolutions with the Green’s function analytically predicted by Berthoumieux et al. [1]. Numerics

and analytics agree very well in the case of a small, local, active in-plane surface stress T φa = −0.025.

Shapes are obtained for R = 1, S = 1, b = 0.02, and g = 0.

D. Results

In order to validate our axisymmetric numerical method, we first compare the numerical

results to the predicted Green’s function of Berthoumieux et al. [1]. For the introduction of

the Green’s function we refer to the section V.A of the main text. As in section V.B of the

main text we apply an active in-plane surface stress tensor of the form

t βaα =


0 0

0 T φa


 δ(z). (38)

We compare axisymmetric simulations to the analytical Green’s function in figure 1 for

the parameter set T φa = −0.025, T za = 0, b = 0.02, g = 0 for three different resolutions

∆z. Figure 1 shows that our numerical method on the one hand does not depend on spatial

discretization and on the other hand is in very good agreement with the theoretical expected

deformation due to the Green’s function given by ref. [1] including the shallow minima next

to the main peak.
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Figure 2. Phase diagram of a cylindrical shell with homogeneous, relative, active in-plane surface

stress g = ta/S and relative bending modulus b = B/(SR2) for axisymmetric simulations. The

Poisson ratio is ν = 1
2 . For negative active in-plane surface stress a buckling instability occurs. The

simulations match the predicted [1] critical active in-plane surface stress very well. For positive

active in-plane surface stresses an instability occurs characterized by a deformation larger than

the cylinder radius which happens even before the threshold predicted by [1] (orange dotted line).

Insets show membrane shapes corresponding to the different phases.

As in section V.D of the main text for the full 3D method, we next consider a finite,

homogeneous, active in-plane surface stress ta 6= 0 without any singular perturbation, i.e.,

T za , T
φ
a = 0. In this case Berthoumieux et al. [1] predicts two kinds of instabilities depending

on the magnitude of active in-plane surface stress: for negative active in-plane surface stress

beyond ta < −2
√

3BS
R2 a buckling instability takes place and for positive active in-plane

surface stress they predict an instability for ta > 2S(1 − ν2). This allows us to perform

simulations for different parameter sets (g, b) and to construct a phase diagram classifying

the final shape. The resulting phase diagram is shown in figure 2.

For negative, active in-plane surface stress g < 0 our axisymmetric numerics are in very

good agreement with the predicted instability threshold for a broad range of relative bending

moduli b. In the case of positive, active in-plane surface stress g > 0 the cylindrical shell

contracts. Whereas the membrane in 3D shows an instability similar to a Rayleigh-Plateau

instability of a liquid jet, in 2D the cylindrical membrane contracts homogeneously, since
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Figure 3. Final deformation of a cylinder with homogeneous active in-plane surface stress in

the axisymmetric simulations for a bending modulus b ≈ 0.015. Near the threshold g = 1.5

the deformation increases strongly and nearly diverges (divergence not completely covered by

numerics).

volume conservation is not enforced in the axisymmetric case. Beyond a certain threshold,

the deformation becomes larger than the cylinder radius R. This serves us as a criterion for

an instability. The Green’s function found by Berthoumieux et al. [1] diverges for g = 1.5,

which is beyond our instability threshold. The discrepancy may be explained by the fact

that our criterion is more realistic than that of Berthoumieux et al. which is based on the

Green’s function only. Nevertheless, we note that our instability threshold does not depend

on the bending modulus, as predicted by ref. [1].

In order to discuss the latter issue in further detail we show in figure 3 the final de-

formation ufinal
n /R depending on the relative, active in-plane surface stress g. We define

the instability threshold by |ufinal
n | = R. Beyond this threshold the deformation increases

strongly, but our numerics do not cover the divergence predicted. However, we have to note

that the behavior beyond the threshold is not physical in a strict sense.

In conclusion, this section proves that our axisymmetric numerical simulations are in very

good agreement with the predicted theory and consequently can be used for validation of

the three dimensional method as done in figure 8 of the main text.
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A. Analytical solution in terms of spherical harmonics 38

Abstract
Dynamic cellular processes are often driven by the cell cortex, which is a highly dynamic
network of cytoskeletal filaments where motor proteins actively induce stresses. In the
present manuscript, we develop a simple three-dimensional computational model of a
cell cortex in the viscous limit, where active stresses trigger flows within the cortex.
Combining active gel and thin shell theory, we directly solve the force balance equations
for the velocity field on a discrete and arbitrarily deforming cortex. We do so in two
essential steps, where a minimization ansatz is used to fulfill the force balance equations
and derivatives of the velocity field at each node are expressed in terms of an analytically
inverted parabolic fitting procedure. Constraints on the velocity field are incorporated
using the formalism of Lagrange multipliers. As validation in the static case we present
an analytical test setup with an active stress distribution either resulting in a tangential
or normal velocity in terms of spherical harmonics, where we successfully compare the
numerical results to the derived analytical solution. Further, we test our algorithm in
a dynamic situation of a viscous cortex with an active stress distribution resembling a
cortical ring, where we successfully compare our three-dimensional results to simulations
based on an axisymmetric description of the viscous active cell cortex. Going one step
further we investigate the cell cortex subject to an initial shear deformation and analyze
the dynamic evolution. Because our developed method is based on the general force
balance equation, it can easily be extended to different constitutive laws or to include a
dynamic coupling to a suspending fluid.

1. Introduction
Motor proteins in the cell are capable of converting chemically stored energy into move-
ment and mechanical work [1] and therefore drive biophysical systems out of thermo-
dynamic equilibrium [2]. Such motor proteins actively induce stresses [2–5], which lead
to the formation of patterns [6–9] or spontaneous flows [10–18]. In particular in the
cell cortex, which is a network of cytoskeletal actin filaments and myosin proteins [1],
such an active material is confined to a thin layer. Together with the connected plasma
membrane the cell cortex can strongly deform and therefore plays a crucial role in the
regulation of the cell shape [19–23] and movement [24–29]. A prominent example is the
cytokinesis in cell division, where a ring of actomyosin leads to furrow constriction and
the separation of the two daughter cells [30–34].
The class of cytoskeletal filaments and motor proteins is successfully described in the

framework of active gel theory [2, 35–37]. Key ingredient is the actively induced force
from the motor proteins, which leads to an active stress in the material [38, 39]. In
addition, polymerization and depolymerization leads to transient changes within the
active gel [20, 35]. Focusing on the cell cortex of actomyosin or epithelial tissue, active
gel theory has recently been formulated in the framework of thin shell theory [40]. The
generic active gel theory [35] incorporates the viscoelastic nature of the cytoskeletal
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assemblies, where the presence of an active stress triggers both elastic deformations and
viscous flows. Starting from the viscoelastic theory two limits of the cortex behavior can
be considered, the elastic limit [40–43] and the viscous limit [21, 28, 30, 33, 40, 44, 45],
where flows arise. In the cell cortex, flows regulate cell morphogenesis with special impact
on cell polarization [8, 19–21]. Here, a cell can undergo a transition from the spherical
shape towards a pear-like shape depending on active stress and polymerization rate
[20, 21]. In addition, a transition from spherical to oblate cell shape accompanied by
concentration variations of the stress regulator has been reported [8]. An instability
leading to a constant cortical flow has further been reported for cell movement [24,
46]. Marth et al. [27] analyzed the flow field inside and outside a moving cell in two
dimensions. In addition, cell division has successfully been modeled [30, 31, 33, 34, 44, 47]
including an threshold active stress needed to complete cytokinesis [33]. Furthermore,
embryogenesis is regulated by active stress induced flows [48, 49], where anisotropy of
the flows can lead to polarization [48].
Such investigations involving the cell cortex are often based on analytical calculations

[21, 30, 41, 44], but also simulations get into the focus [9, 33, 42, 45, 46, 50, 51]. Farutin
et al. [46] investigated cell crawling by coupling cortical mechanics to the boundary
integral equation in axisymmetric treatment. Turlier et al. [33] used a numerical, ax-
isymmetric formulation of cell cytokinesis advecting tracer points at the position of the
membrane. Mietke et al. [9] developed another axisymmetric simulation method dis-
cretizing the arc length of the cellular membrane. Including myosin activity in terms
of a preferred curvature, Heer et al. [50] determined the equilibrium of a tissue shell.
Bächer and Gekle [42] have developed a three-dimensional simulation model of an active
cell cortex in the elastic limit which is dynamically coupled to a fluid using the lattice-
Boltzmann/immersed boundary method. Torres-Sánchez et al. [45] developed a fully
three-dimensional computational model of a viscous active cell cortex based on finite el-
ement method. A generalization to arbitrary topology using local Monge parametrization
method has been provided [51]. Despite the model developed in refs. [45, 51], investiga-
tions of a cortex in the viscous limit are restricted to axisymmetry.
In the present manuscript we develop a new and direct method, which numerically

obtains the velocity profile in a three-dimensional, thin, and arbitrarily deformed active
cell cortex in the viscous limit. We use the thin shell formulation combined with active
gel theory [40] to obtain the force balance equations for the cortex involving active and
viscous stresses. The force balance equations are discretized using a parabolic fitting
procedure. Using an analytical inversion of the parabolic expansion and fitting of the
cortical velocity field, we evaluate the force balance equation on the discrete nodes of the
cortex depending on the velocity field. Solving the resulting system of coupled equations
globally on the cortex by means of a minimization ansatz, we eventually solve for the
cortical velocity field. Considering the normal component of the velocity, the cortex
shape can be evolved in time in order to obtain the deforming cell shape. We provide
an in-depth validation to analytical results on an undeformed, spherical cortex and to
axisymmetric simulations for the evolving shape and cortical flow field. In addition, we
apply an initial shear to the cortex and investigate the dynamic evolution. Due to its
simplicity our proposed algorithm can be the basis for a dynamic coupling of a viscous
active cortex or a tissue to a suspending fluid using, e.g., a coupled immersed boundary
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and lattice-Boltzmann method.
We first introduce the force balance equations of the cell cortex treated as viscous

thin shell in section 2. Afterwards, we present the discretization of the cortex based on a
parabolic fitting procedure and the numerical solution procedure in section 3. In section
4, we validate our method to analytical calculations and axisymmetric simulations in
a detailed manner and apply our algorithm to a dynamic non-axisymmetric situation.
Eventually, we conclude in section 5.

2. Thin shell formulation of a viscous active cortex
In the following we consider a cell cortex in the viscous limit subject to active stress
leading to reorganization of the cortex in terms of effective flows within the actomyosin
network [37, 40]. Since the cortex is typically very small compared to the cell diameter
[1], it is considered as thin shell [40, 52], i.e., as two dimensional manifold in three-
dimensional space. The framework for the mathematical description of a thin shell is the
differential geometry [53], which we introduce in section 2.1. Due to its viscous nature,
forces from velocity gradients arise in the cell cortex in addition to the presence of the
active stress. The goal of the presented method is to determine the velocity field in the
cell cortex under consideration of viscous and active forces present in the cortex and
expressed in terms of thin shell formulation. In section 2.2 we provide the analytical
formulation of the force balance for the viscous active cortex, which we express in terms
of the velocity and its derivatives in section 2.3.

2.1. Differential geometry
In general, the two dimensional thin shell representing the cell cortex is parametrized by
the vector X(s1, s2) in three-dimensions which depends on two coordinates s1, s2. The
latter determine the in-plane position on the thin shell. From the parametrization X
two in-plane coordinate vectors pointing locally along the thin shell are derived

e1 = ∂X

∂s1 , e2 = ∂X

∂s2 , (1)

and using those a unit normal vector on the thin shell can be defined

n = e1 × e2
|e1 × e2|

. (2)

The metric tensor of the thin shell is defined by

gαβ = eα · eβ, (3)

and its curvature tensor by
Cαβ = − (∂α∂βX) · n, (4)

with Greek indices α, β, γ = 1, 2 referring to the in-plane coordinates s1, s2. In the
following, we use Einstein sum convention where a double occurrence of an upper (con-
travariant) and lower (covariant) index implies a sum. We denote the partial derivative
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along the in-plane coordinates of a general function f by ∂αf and the covariant deriva-
tive by ∇αf [53]. The covariant derivative of the in-plane and normal coordinate vector
is given by the equation of Weingarten and Gauss

∇αn = Cβαeβ ∇αeβ = −Cαβn. (5)

The key quantity of interest for the viscous active cortex is the cortical velocity field
v. It is defined on the cortex, thus depending on (s1, s2), but is a three-dimensional
vector. Therefore, it can be decomposed in the local coordinate system on the thin shell
by projection onto the in-plane and normal coordinate vector

vα = v · eα and vn = v · n, (6)

with its in-plane components vα and its normal component vn such that

v = vαeα + vnn. (7)

The total in-plane vectorial component of the velocity field can further be determined
by

vt = (1− nn) · v, (8)
with the projector nn onto the normal vector, which is the outer product of the normal
vector with itself, and with 1 the unit matrix. The velocity gradient on the thin shell is
defined as [40]

vαβ = 1
2 [∇αvβ +∇βvα] + Cαβv

n, (9)

which is equivalent to the definition in vector notation

vαβ = 1
2 [(∂αv) · eβ + (∂βv) · eα] = 1

2 [(∇αv) · eβ + (∇βv) · eα] . (10)

2.2. Force balance for a viscous active cortex
Forces in the cortex, e.g., arising due to gradients in the velocity, are described by a stress
tensor, as done in three-dimensional hydrodynamics [52, 54]. Here, the stress tensor is
defined on the thin shell and therefore denoted as surface stress tensor [42, 52]. The
stresses decomposed into in-plane and normal component are written as

tα = tαβeβ + tαnn. (11)

For vanishing normal stresses tn, the force balance for an external force free thin shell
becomes

∇αtαβ = 0 (12)
−Cαβtαβ = 0. (13)

We consider a viscous cortex with planar shear ηs and bulk viscosity ηb, which is
subject to active forces described by the active surface stress tensor ζαβ. Accordingly,
the constitutive equation reads [40]

tαβ = tαβv + ζαβ, (14)
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with the viscous surface stress tensor

tαβv = 2ηsṽαβ + ηbv
γ
γg

αβ, (15)

where ṽαβ = vαβ − 1
2v

γ
γg

αβ. The active stress ζαβ describes internal forces in the cortex
which stem from active processes, such as motor proteins walking along cytoskeletal
filaments by conversion of chemically stored energy [35, 37, 40]. In the following, we
assume that the distribution of active stress in the cortex is known, but our method
allows for a potential coupling of active stress to a concentration field, e.g., myosin.
Inserting the surface stress tensor (14) into the force balance equations (12) and (13) we
obtain for the force free cortex

2ηs∇αvαβ + (ηb − ηs)∇αvγγgαβ = −∇αζαβ (16)
−2ηsCαβvαβ − (ηb − ηs) vγγCαβgαβ = Cαβζ

αβ. (17)

Our goal is to solve the force balance equations (16) and (17) for the velocity field for a
given active stress distribution ζαβ.

2.3. The force balance in terms of the velocity
The aim of this section is a formulation of the force balance equations (16) and (17) in
terms the velocity vector and its derivatives, which is directly used for the numerical
algorithm in section 3. Motivated by the parabolic fitting procedure to determine curva-
ture and derivatives on a discrete thin shell [42, 55], we start with a parabolic expansion
of the velocity vector in in-plane coordinates (s1, s2) at given position rν on the thin
shell

v
(
s1, s2

)
= vν+(∇1v)︸ ︷︷ ︸

Av

s1+(∇2v)︸ ︷︷ ︸
Bv

s2+ 1
2 (∇1∇1v)︸ ︷︷ ︸

Cv

s1s1+ 1
2 (∇2∇2v)︸ ︷︷ ︸

Dv

s2s2+(∇1∇2v)︸ ︷︷ ︸
Ev

s1s2,

(18)
with vν = v(rν) and Av −Ev being the first and second derivative of the velocity field
v with respect to in-plane coordinates at position rν . Using the parabolic expansion of
the velocity field in equation (18), we can first directly express the velocity gradient (10)
in terms of the velocity derivatives Av −Ev

v11 = Av · e1 v22 = Bv · e2 (19)

v12 = v21 = 1
2 (Av · e2 +Bv · e1) (20)

The trace of the velocity gradient is

vγγ = vαβg
αβ = g11v11 + 2g12v12 + g22v22

= g11Av · e1 + g12 [Av · e2 +Bv · e1] + g22Bv · e2. (21)

Next, we can calculate the derivative of the velocity gradient tensor in equation (10),
which becomes under use of the equations of Weingarten and Gauss (5)

∇αvβγ = 1
2 (∇α∇βv) · eγ −

1
2Cαγ (∇βv) · n+ 1

2 (∇α∇γv) · eβ −
1
2Cαβ (∇γv) · n. (22)

6

pub2



Using the fact ∇αgβγ = 0, we can calculate the derivative of the contravariant compo-
nents of the velocity gradient by

∇αvβγ = gβεgδγ∇αvεδ. (23)

Furthermore, we calculate the derivative of the velocity gradient’s trace via

∇αvγγ = ∇α
(
gγβvβγ

)
= gγβ∇αvβγ

= g11∇αv11 + g12∇αv12 + g21∇αv21 + g22∇αv22

using the formula for the gradient in equation (22). Writing down these equations for
fixed indices α, β, γ = 1, 2, they can be explicitly written in terms of Av −Ev.
In the final step, we aim for a formulation of the force balance equations (16), (17) in

terms of the velocity derivatives. Inserting the constitutive law for the viscous active cor-
tex (14) and the definition of the viscous surface stress (15), the force balance equations
have the form

2ηsgγα∇αvβγ + (ηb − ηs)
(
∇αvγγ

)
δαβ = −∇αζαβ (24)

−2ηsCαβvαβ − (ηb − ηs) vγγCδδ = Cαβ ζ
β
α , (25)

where we used vαβ = vβγg
γα and gαβg

βγ = δγα. The components of the force balance
equation in this form can be explicitly expanded using the expressions derived above.
Writing down each component on its own and collecting terms with respect to Av −Ev

we end up with the first tangential force balance equation in the form
(
−2ηsg11C11n− 3ηsg21C12n− ηsg22C22n− (ηb − ηs) g11C11n− (ηb − ηs) g12C12n

)
·Av

(
−ηsg21C11n− ηsg22C21n− (ηb − ηs) g12C11n− (ηb − ηs) g22C12n

)
·Bv

(
+2ηsg11e1 + ηsg

21e2 + (ηb − ηs) g11e1 + (ηb − ηs) g12e2
)
·Cv

(
+ηsg22e1

)
·Dv

(
+3ηsg21e1 + ηsg

22e2 + (ηb − ηs) g12e1 + (ηb − ηs) g22e2
)
·Ev

= −∇1ζ
1
1 −∇2ζ

2
1 , (26)

the second tangential force balance equation
(
−ηsg11C12n− (ηb − ηs) g12C22n− ηsg12C22n− (ηb − ηs) g11C21n

)
·Av

(
−ηsg11C11n− 3ηsg12C21n− 2ηsg22C22n− (ηb − ηs) g12C21n− (ηb − ηs) g22C22n

)
·Bv

(
+ηsg11e2

)
·Cv

(
+ηsg12e1 + 2ηsg22e2 + (ηb − ηs) g12e1 + (ηb − ηs) g22e2

)
·Dv

(
+ηsg11e1 + 3ηsg12e2 + (ηb − ηs) g11e1 + (ηb − ηs) g12e2

)
·Ev

= −∇1ζ
1
2 −∇2ζ

2
2 , (27)
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and the normal force balance equation
(
−2ηsC11e1 − 2ηsC12e2 − C (ηb − ηs) g11e1 − C (ηb − ηs) g12e2

)
·Av

(
−2ηsC12e1 − 2ηsC22e2 − C (ηb − ηs) g12e1 − C (ηb − ηs) g22e2

)
·Bv

= C1
1ζ

1
1 + C2

1ζ
1
2 + C1

2ζ
2
1 + C2

2ζ
2
2 . (28)

On the right hand side of the tangential force balance the active stress appears which
we consider symmetric and isotropic, i.e.,

ζβα = ζ(s1, s2)δβα. (29)

The derivatives of the active stress

∇1ζ
1
1 = ∇1ζ

2
2 = ∇1ζ(s1, s2),

∇2ζ
1
1 = ∇2ζ

2
2 = ∇2ζ(s1, s2),

can be calculated from the given active stress distribution ζ(s1, s2) on the deforming
thin shell. From equation (29) we can directly use

∇1ζ
2
1 = 0, ∇1ζ

1
2 = 0

∇2ζ
2
1 = 0, ∇2ζ

1
2 = 0.

rν

n

eξ

eη

Figure 1: Cortex discretization. Discretization of a thin shell by nodes connected to triangles (left).
For each node rν a local coordinate system with in-plane coordinate vectors eξ, eη and normal
vector n is constructed. The velocity field, its derivatives and the force balance equations can
be expressed in this local coordinate system (eξ, eη,n) at the position rν .

3. Computational model for a viscous active cortex
As introduced above, our aim is to calculate the corresponding velocity field for given
active stress on a deforming cortex numerically. In the following, we illustrate the steps
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of the numerical calculation of the velocity field. First, we discretize the thin shell rep-
resenting a cell cortex and the velocity field in section 3.1. This allows us to write down
the force balance equations (16) and (17) for each node of the discrete thin shell. The
latter can be solved for the velocity field by a minimization ansatz as detailed in 3.2. We
introduce constraints on the velocity field in section 3.3. Furthermore, the active stress
in the cell cortex together with the incompressibility of the cell’s interior, the cytosol,
imposes a pressure difference inside the cell, which we treat in section 3.4. An additional
contribution to the surface stress from a bending viscosity is introduced in section 3.5.
In order to solve the system of equations we need the derivatives of the velocity field in
equation (18) as functions of the velocity values at all discrete nodes, this step we illus-
trate in section 3.6. The final step to build a matrix for the equation system is detailed
in section 3.7.

3.1. Discretization of the cortex
In our numerical implementation we discretize the thin shell representing the cortex plus
membrane by nodes, which we refer to by their position rν and/or index ν = 0, . . . N−1,
whereN is the total number of nodes. The nodes are connected to flat triangles [55–58], as
sketched in figure 1. Here, the triangles serve us as a tool to determine the neighborhood
of each node rν . The numbering of neighbor nodes is arbitrary but in ordered fashion.
For each node on the membrane we define a local coordinate system as done in ref. [42]
and sketched on the right hand side of figure 1. First, by averaging all normal vectors
of the adjacent triangles weighted by angle [59], we obtain the local normal vector n on
the node rν . By connecting the ν-th node to one of its neighbors and subtracting the
normal component of the resulting vector, we get the first in-plane coordinate vector eξ.
By a normalized cross-product of n and eξ the second in-plane coordinate vector eη is
obtained. Thus, we have for each node a local coordinate system

(eξ, eη,n)ν = (eξ, eη,n) . (30)

The local curvature tensor at the position of the central node and expressed in the local
coordinate system in equation (30) can obtained by a parabolic fitting procedure with
respect to node position as detailed in ref. [42].
The key quantity of interest, the velocity v, is a three-dimensional vector in the three-

dimensional Cartesian space

v = vxex + vyey + vzez, (31)

with ei, i = x, y, z the Cartesian unit coordinate vectors. Because the velocity field is
defined on the thin shell, we can evaluate the velocity at each node ν giving viν = vi(rν).
In total, the velocity field consists of the velocity of each node

vx = {vxν}ν∈{0;...N−1},

vy = {vyν}ν∈{0;...N−1},

vz = {vzν}ν∈{0;...N−1}.

(32)
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The velocity components in the local coordinate system (30) can easily be obtained by
projection onto the corresponding local coordinate vectors according to equation (6)

vξ = v · eξ, vη = v · eη, vn = v · n. (33)

With the derivatives of the velocity vector introduced in equation (18) evaluated in local
coordinates, i.e., Av = ∇ξv . . .Ev = ∇ξ∇ηv, we can write down the velocity gradient
(10) in the local coordinate system, e.g., the component

vξη = 1
2 [Av · eη +Bv · eξ] .

For the actual calculation of the derivatives of the velocity vector we refer to section 3.6.
Using the derivatives of the velocity and the velocity gradient in local coordinates, we
are able to write down the force balance equations (16) and (17) for each node ν in its
local coordinate system. Considering the tangential force balance equations (26) and (27)
together with the normal force balance equation (28), we end up with three equations
of motion. These we refer to in the following by its left hand side, which depends on the
velocity vectors vν , and by the right hand side, which does not depend on the velocity
vectors. Therefore we have three coupled equations of motions which the velocity field
has to fulfill

l.h.s.ν1 = r.h.s.ν1 ,
l.h.s.ν2 = r.h.s.ν2 ,
l.h.s.νn = r.h.s.νn,

(34)

where the index 1,2 labels the two tangential force balance equations and the index n
labels the normal force balance equation. By the superscript ν we refer to the equation
in local coordinates of node ν, thus the force balance evaluated at position rν of node ν.

3.2. Minimization ansatz for the force balance
The overall goal is to solve the force balance equations for the velocity field. The solution
fulfills the force balance on the complete thin shell, i.e., the force balance equations
must be fulfilled at every node rν . With the evaluation of the force balance at a node
in equation (34), as a consequence the difference between left hand side and right hand
side has to vanish. Consequently, we can define

χ2 =
∑

ν

[
(l.h.s.ν1 − r.h.s.ν1)2 + (l.h.s.ν2 − r.h.s.ν2)2 + (l.h.s.νn − r.h.s.νn)2

]
, (35)

with the sum ∑
ν

over all nodes. For the exact solution the χ2 would become zero, for
the correct numerical solution the χ2 becomes minimal. Thus, in simulations we have to
solve for the set vxν , vyν , vzν (32), which minimizes χ2 in equation (35). We therefore have
to calculate

arg min
{vν}

χ2 = arg min
{vxν},{vyν},{vzν}

χ2. (36)
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In order to perform this minimization, we calculate the derivatives of χ2 in equation
(35) with respect to the velocity components of each node viν . Due to minimization the
derivatives equal zero and we can separate this equality for terms linear in viν and terms
independent of the velocity under use of the parabolic expansion of the velocity field in
equation (18). In total, this leads to a system of linear equations in matrix form, where
we have 3N rows due to the derivatives w.r.t. to the N velocities with 3 components
each and we have 3N columns due to the N velocities with 3 components each in the
solution vector.
In order to calculate the corresponding matrix to the system of linear equations we

have to evaluate the left hand side and right hand side of all three force balance equations
on each node in the local coordinate system (30). This we do using the velocity derivatives
in local coordinates as detailed in 3.1. For details on the dependency on the actual
velocity values we refer to section 3.7. The system of equations can finally be solved
numerically using LU-Decomposition.

3.3. Constraints
The algorithm described above solves the force balance equations, which are partial
differential equations in the velocity. Because only derivatives of the velocity field oc-
cur, a constant velocity can be added without violating the force balance equations.
Furthermore, these derivatives are directional and under certain circumstances, e.g., ax-
isymmetry, a velocity in azimuthal direction can be added. Therefore, we need to specify
certain constraints to the velocity field, which correspond to boundary conditions for the
partial differential equations.
First, we use that the total velocity of the cortex has to vanish, i.e.,

∫

S

v dS =
N−1∑

ν=0
vνAν = 0, (37)

where the second equality is the discretization to a sum over all nodes ν and Aν being
the local area of node ν. The local area is calculated using Meyer’s mixed area [42, 59].
Second, we use the fact that the total angular momentum of the cortex must vanish,

i.e.,
∫

S

r × v dS =
N−1∑

ν=0
rν × vνAν = 0. (38)

In addition, we use a vanishing total normal velocity vn which corresponds to an
incompressible liquid inside the cell, i.e.,

∫

S

v · ndS =
N−1∑

ν=0
vν · nAν = 0. (39)

To incorporate the constraints into the solution procedure we use the concept of a
Lagrange multiplier. The constraints (37) and (38) impose three conditions due to the
three components of the velocity vector whereas constraint (39) imposes one condition.
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This means we introduce three or respectively one Lagrange multiplier per constraint.
The constraint times the Lagrange multiplier is added to the χ2 in equation (35), e.g.,

χ2 =
∑

ρ

∑

ν

(
l.h.s.νρ − r.h.s.νρ

)2
+ λ1

(
N−1∑

ν=0
vxνAν − 0

)
+ λ2

(
N−1∑

ν=0
vyνAν − 0

)

+ λ3

(
N−1∑

ν=0
vzνAν − 0

)
,

(40)

for the total velocity constraint (37) as illustration and with ρ = 1, 2, n. Concerning the
minimization procedure in section 3.2, we add one row per Lagrange multiplier to the
matrix, which corresponds to the derivative of χ2 w.r.t. to the Lagrange multiplier, e.g.,
∂χ2

∂λ1
. In addition, the row corresponding to the derivative w.r.t. a certain velocity compo-

nent now includes a contribution from the constraint including the Lagrange multiplier.
Therefore, we extend the solution vector by the Lagrange multiplier and the matrix gets
additional columns, so that it stays quadratic in the end. The additional right hand side
component includes the velocity-independent terms of the constraint, which is zero for
all constraints in equations (37) - (39).

3.4. Consideration of pressure
In the following, we detail the treatment of the pressure in addition with the incom-
pressibility constraint of the enclosed fluid. First, the incompressibility constraint with
an additional Lagrange multiplier (which is independent of the pressure) is discretized

λp

(∫
vn dA

)
= λp

∑

ν

vnνAν =
∑

ν

λpv
n
νAν︸ ︷︷ ︸

=χ̂2
p

=
∑

ν

χ̂cp, (41)

where we introduce χ̂cp representing the incompressibility constraint per node. In general,
we use the notation that χ̂2 denotes the force balance or χ̂c a constraint per node. The
latter can be used to represent the general structure of the χ2

χ2 =
∑

ν

χ̂2 +
∑

ν

χ̂c. (42)

Next, the pressure can be deduced from the hydrodynamics traction jump, i.e., from
the force acting from the fluid onto the membrane and cortex

∆f =
(
σout − σin

)
· n, (43)

where the three dimensional stress tensor of the incompressible inner fluid is proportional
to the pressure [54], i.e.,σ· ∝ −p·, and the normal component takes the form

∆fn = −pout + pin. (44)

As pressure P we identify the pressure difference between internal and external fluid

P = pin − pout. (45)
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The traction jump enters the normal force balance equation on the right hand side with
a minus sign. Therefore, the normal force balance is extended by the pressure P

l.h.s.νn = −Cαβtαβv + P
!= Cβαζ

α
β = r.h.s.νn. (46)

We now define the adapted χ̂2
n for the normal force balance together with the incom-

pressibility constraint χ̂cp per node

χ2
n + χ2

p = (l.h.s.νn − r.h.s.νn)2 + λp (vxνnx + vyνny + vzνnz)Aν . (47)

Due to the additional pressure variable the matrix has an additional row

∂χ2

∂P
= ∂χ2

n

∂P
=
∑

ν

∂χ̂2
n

∂P
!= 0, (48)

which leads to
∑

ν

[
(l.h.s.νn − r.h.s.νn) ∂l.h.s.

ν
n

∂P

]
= 0

∑

ν

[
l.h.s.νn

∂l.h.s.νn
∂P

]
=
∑

ν

r.h.s.νn
∂l.h.s.νn
∂P

,

with ∂l.h.s.νn
∂P = +1. Furthermore, the matrix has an additional column

∂χ2

∂viν
∝ ∂l.h.s.νn

∂viν
l.h.s.νn ({vµ}, P )︸ ︷︷ ︸
=
∑
µ,i

∂l.h.s.νn
∂viµ

viµ+P

(49)

for the node itself. For a neighboring node µ 6= ν

∂χ2

∂viµ
∝ ∂l.h.s.νn

∂viµ
l.h.s.νn ({vσ}, P )︸ ︷︷ ︸
=
∑
σ,i

∂l.h.s.νn
∂viσ

viσ+P

. (50)

3.5. Bending viscosity for better stability
For reasons of numerical stability, we consider an additional contribution to the surface
stress tensor which corresponds to contributions due to a bending viscosity [40]. The
aim of this additional bending contribution, which is chosen to be small, is to include
a condition on the second derivative of the normal velocity. Therefore, we consider a
parabolic expansion of the normal velocity in the same way as for the velocity vector
in equation (18). Note, due to smallness and the limitations of the parabolic expansion
we neglect the tangential contribution to the force balance equation. The normal com-
ponents of the velocity are obtained from and related to the three-dimensional velocity
by the the projection onto the normal vector (6). We consider the time derivative of the
curvature tensor in the Eulerian frame according to Salbreux and Jülicher [40]

∂tC
β
α = −∇α∇βvn − vnCαγCβγ , (51)
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and the derivative of the trace

∂tC
γ
γ = −∇γ∇γvn − vnCγδCγδ = −∇γ∇γvn − vnC δ

γ C
γ
δ. (52)

Further the derivative of the metric w.r.t. time is given by

∂tg
αβ = 2vnCαβ. (53)

We extend the surface stress by bending viscosities η̄ and η̄b leading to the term

t αβb = 2η̄∂t
(
Cαβ − 1

2C
γ
γ g

αβ
)

+ η̄b∂tC
γ
γ g

αβ

= 2η̄
(
−∇α∇βvn − vnCαγ Cβγ − Cγγ vnCαβ

)
+ (η̄b − η̄)

(
−∇γ∇γvn − vnC δ

γ C
γ
δ

)
gαβ.

The normal force balance contribution is calculated by the contraction with the curvature
tensor

t αβb Cαβ = 2η̄
(
−∇α∇βvn − vnCαγC γ

β − Cγγ vnCαβ
)
Cαβ

+ (η̄b − η̄)
(
−∇γ∇γvn − vnC δ

γ C
γ
δ

)
gαβCαβ

= 2η̄
(
−∇α∇βvn − vnCαγC γ

β − CvnCαβ
)
Cαβ

+ (η̄b − η̄)
(
−∇γ∇γvn − vnC δ

γ C
γ
δ

)
C,

with C = gαβCαβ. With the derivatives of the normal velocity, the trace of the second
derivative becomes

∇γ∇γvn = gαβ∇α∇βvn = g11Cvn + g22Dvn . (54)

We further use
CαβC

αβ = C11C
11 + 2C12C

12 + C22C
22 = C̃, (55)

and

CαγC
γ
β C

αβ = C̄,

to obtain in total

t αβb Cαβ =
(
−2η̄C11 − (η̄b − η̄)Cg11

)
Cvn +

(
−2η̄C22 − (η̄b − η̄)Cg22

)
Dvn − 4η̄C12Evn

+
(
−2η̄C̄ − 2η̄CC̃ − (η̄b − η̄)CC̃

)
vn. (56)

This contribution can be added to the normal force balance equation and can be incor-
porated to the solution procedure detailed above in a straightforward manner.
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3.6. Velocity derivatives as a function of neighboring velocity vectors
Up to now, we have written the force balance equations (26), (27), (28) in terms of
derivatives of the velocity vector in local coordinates Av − Ev. What remains is to
express these derivatives by means of the actual velocity vectors at all nodes. Therefore,
we consider the neighborhood of a node, as sketched in figure 1. Considering all Nν

neighboring nodes a(ν) of node ν, the coefficients Av − Eν can be expressed by the
velocity vector evaluated at the central node and at the sites of the neighboring nodes

Av = Av

(
vν , {va(ν)}

)
with a(ν) = 1, . . . Nν . (57)

In order to do so we write down the velocity at some distance around the (central) node
ν in the local coordinates of the central node ξ, η

v̄ (ξ, η) = vν +Avξ +Bvη + 1
2Cvξ

2 + 1
2Dvη

2 +Evξη, (58)

which is the parabolic expansion (18) evaluated in the local coordinate system (30).
Plugging in the position of the neighbor nodes in the local coordinates of the central
node, i.e., ξa(ν), ηa(ν), the expanded velocity has to equal the actual velocity va of the
neighbor node a(ν). Therefore, the squared difference of expanded and actual velocity
has to be minimal

χ2
v =

Nν∑

a=1

[
v̄
(
ξa(ν), ηa(ν)

)
− va

]2
. (59)

With the differential form

d(χ2
v) =

∑

i

Nν∑

a=1
2 (v̄ − va)i dvi, (60)

we are able to minimize χ2
v with respect to the components of the fitting coefficients,

e.g., Ajv
∂(χ2

v)
∂Ajv

=
∑

i

∑

a

2 (v̄ − va)i
∂v̄i

∂Ajv︸ ︷︷ ︸
ξδij

=
∑

a

2 (v̄ − va)j ξ
!= 0. (61)

Here, we clearly see that each component j = x, y, z is minimized individually. Perform-
ing the minimization by calculating all derivatives with respect to Av, . . .Ev we end up
with a system of linear equations with Av −Ev building the solution vector. By solving
this system we obtain Av − Ev in terms of the velocity evaluated at the central and
neighbor nodes.

Analytic inversion of the parabolic fitting

We solve this system of linear equations analytically. Without restriction, we illustrate
the procedure in the following for the fitting parameters not as vectors but as scalars.
To go back to vectors the following can be done for all three components separately. We
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consider a parabolic expansion of a quantity f around a central node and consider the
equality with the value of f at the position of the neighbors a, as done in equation (59)

f̄ν(ξa, ηa) = fν + Pνa
!= fa(ν), (62)

with
Pνa = Aξa +Bηa + 1

2Cξ
2
a + 1

2Dη
2
a + Eξaηa. (63)

We consider a χ2
f analogous to equation (59) and proceed as done in equation (61) with

a minimization of χ2
f and obtain

∂

∂A

(
χ2
f

)
= 2

∑

i

[
fa(ν) − f̄ν(ξa, ηa)

]
ξa = 0,

∂

∂B

(
χ2
f

)
= 2

∑

i

[
fa(ν) − f̄ν(ξa, ηa)

]
ηa = 0,

∂

∂C

(
χ2
f

)
= 2

∑

i

[
fa(ν) − f̄ν(ξa, ηa)

] 1
2ξ

2
a = 0,

∂

∂D

(
χ2
f

)
= 2

∑

i

[
fa(ν) − f̄ν(ξa, ηa)

] 1
2η

2
a = 0,

∂

∂E

(
χ2
f

)
= 2

∑

i

[
fa(ν) − f̄ν(ξa, ηa)

]
ξaηa = 0,

and re-writing these equations using equation (62) we get
∑

a

Pνaξa =
∑

a

(
fa(ν) − fν

)
ξa,

∑

a

Pνaηa =
∑

a

(
fa(ν) − fν

)
ηa,

∑

a

Pνa
1
2ξ

2
a =

∑

a

(
fa(ν) − fν

) 1
2ξ

2
a,

∑

a

Pνa
1
2η

2
a =

∑

a

(
fa(ν) − fν

) 1
2η

2
a,

∑

a

Pνaξaηa =
∑

a

(
fa(ν) − fν

)
ξiηa.

Inserting (63) we obtain for example for the first equation

(
∑

a

ξ2
a)A+ (

∑

a

ηaξa)B + (
∑

a

1
2ξ

3
a)C + (

∑

a

1
2η

2
aξa)D + (

∑

a

ηaξ
2
a)E =

∑

a

(fa(ν) − fν)ξa.

(64)
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Taking all equations together and using the separation with respect to the fitting coef-
ficients we obtain a system of linear equations

α ·




A

B

C

D

E




=




∑
a(fa(ν) − fν)ξa

∑
a(fa(ν) − fν)ηa

∑
a(fa(ν) − fν)1

2ξ
2
a

∑
a(fa(ν) − fν)1

2η
2
a

∑
a(fa(ν) − fν)ξaηa




= rs, (65)

with rs denoting the right hand side and the symmetric 5×5 matrix α, i.e., αmn = αnm
with m,n = 1, . . . , 5, being



α11 = ∑
a
ξ2
a

α12 = ∑
a
ξaηa α22 = ∑

a
η2
a αmn = αnm

α13 = ∑
a

1
2ξ

3
a α23 = ∑

a

1
2ξ

2
aηa α33 = ∑

a

1
4ξ

4
a

α14 = ∑
a

1
2ξaη

2
a α24 = ∑

a

1
2η

3
a α34 = ∑

a

1
4ξ

2
aη

2
a α44 = ∑

a

1
4η

4
a

α15 = ∑
a
ξ2
aηa α25 = ∑

a
ξaη

2
a α35 = ∑

a

1
2ξ

3
aηa α45 = ∑

a

1
2ξaη

3
a α55 = ∑

a
ξ2
aη

2
a




.

(66)
By inverting the matrix α to β = α−1 we can obtain the fitting parameters by




A
B
C
D
E




= β · rs. (67)

Using Mathematica, we obtain the inverse of a general symmetric 5 × 5 matrix α with
entries αmn, which we term βmn. Inserting the actual values αmn as given above, we
calculate the numerical elements of the inverse matrix βmn.
With the inverse matrix and using equation (67) we obtain the fitting coefficients

A =
5∑

n=1
β1nrsn = A({fµ}), (68)

B =
5∑

n=1
β2nrsn = B({fµ}), (69)

C =
5∑

n=1
β3nrsn = C({fµ}), (70)

D =
5∑

n=1
β4nrsn = D({fµ}), (71)

E =
5∑

n=1
β5nrsn = E({fµ}), (72)
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as functions of the set of quantity f evaluated at the nodes {fµ}. Thus, A−E are linear
combinations of the function values, in detail of the function evaluated at the central
node ν and the corresponding neighbors. As a consequence the derivatives ∂

∂fµ
A can

easily be calculated.
In order to calculate the derivatives we re-write the expressions for the coefficients.

Using the definition of rs in eq. (65) we obtain

A =
∑

a

(
β11ξa + β12ηa + β13

1
2ξ

2
a + β14

1
2η

2
a + β15ξaηa

)

︸ ︷︷ ︸
pAa

fa+

(−1)
[
β11

(∑
ξa
)

+ β12
(∑

ηa
)

+ β13

(∑ 1
2ξ

2
a

)
+ β14

(∑ 1
2η

2
a

)
+ β15

(∑
ξaηa

)]

︸ ︷︷ ︸
pAν

fν ,

B =
∑

a

(
β12ξa + β22ηa + β23

1
2ξ

2
a + β24

1
2η

2
a + β25ξaηa

)
fa+

(−1)
[
β12

(∑
ξa
)

+ β22
(∑

ηa
)

+ β23

(∑ 1
2ξ

2
a

)
+ β24

(∑ 1
2η

2
a

)
+ β25

(∑
ξaηa

)]
fν ,

C =
∑

a

(
β13ξa + β23ηa + β33

1
2ξ

2
a + β34

1
2η

2
a + β35ξaηa

)
fa+

(−1)
[
β13

(∑
ξa
)

+ β23
(∑

ηa
)

+ β33

(∑ 1
2ξ

2
a

)
+ β34

(∑ 1
2η

2
a

)
+ β35

(∑
ξaηa

)]
fν ,

D =
∑

a

(
β14ξa + β24ηa + β34

1
2ξ

2
a + β44

1
2η

2
a + β45ξaηa

)
fa+

(−1)
[
β14

(∑
ξa
)

+ β24
(∑

ηa
)

+ β34

(∑ 1
2ξ

2
a

)
+ β44

(∑ 1
2η

2
a

)
+ β45

(∑
ξaηa

)]
fν ,

E =
∑

a

(
β15ξa + β25ηa + β35

1
2ξ

2
a + β45

1
2η

2
a + β55ξaηa

)
fa+

(−1)
[
β15

(∑
ξa
)

+ β25
(∑

ηa
)

+ β35

(∑ 1
2ξ

2
a

)
+ β45

(∑ 1
2η

2
a

)
+ β55

(∑
ξaηa

)]
fν .

Using the notation indicated in the first line, we can write

A =
∑

a

pAa fa + pAν fν ,

B =
∑

a

pBa fa + pBν fν ,

C =
∑

a

pCa fa + pCν fν ,

D =
∑

a

pDa fa + pDν fν ,

E =
∑

a

pEa fa + pEν fν . (73)
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The prefactors in front of fν and fa, respectively, are the derivatives of the coefficients
with respect to fµ (in case of µ = ν and µ = a(ν), respectively).

3.7. Summary of the algorithm
Eventually, we put everything together to close the numerical algorithm. First, we pre-
scribe an analytical expression for the active stress, which we evaluate on the discrete
cortex. Its derivatives and the curvature tensor on the discrete and deforming cortex
are calculated using a parabolic fitting procedure analogous to equation (18) but with
respect to the active stress magnitude ζ or the position vector, respectively. We then
use the inverse parabolic fitting (73) to obtain the derivatives up to second order of the
velocity vector Av −Ev in local coordinates. We use the derivatives to express the force
balance equations (34) or respectively (26), (27), (28) in terms of the velocity compo-
nents of all nodes. This step allows us to build the matrix of the minimization method
(36). In the following, we present the necessary steps in more detail.
As detailed in section 3.6, we obtain the derivatives as functions of the velocity at the

central node ν and its neighbors a = 1, . . . Nν

Av = Av (vν , {va}) . (74)

This analogously holds for the derivatives Bv − Ev. To keep the notation clear in the
following, we introduce the short-hand notation

4 = viν (75)

with i = x, y, z the spatial component and ν a node. Thus, 4 represents one arbitrary
velocity component and thus can take 3N values, but can without loss of generality be
restricted to the central node and its neighbors (in case we just consider those depen-
dencies, e.g., in derivatives). Furthermore, 4 can contain the pressure or a Lagrange
multiplier. In addition, we abbreviate the components of the velocity derivatives by

�i with � ∈ {Av,Bv,Cv,Dv,Ev}. (76)

According to section 3.6 and equation (74) we can expand the derivatives as linear
combination of the velocity components

�i =
∑

4

∂�i

∂44. (77)

In total, the minimization consists of derivatives of the force balance equations at each
node with respect to the velocity components

∂l.h.s.ρ
∂4 =

∑

�i

∂l.h.s.ρ
∂�i

∂�i

∂4 . (78)

For illustration, we write down the derivative for one force balance equation, e.g., with
index 1 the derivative of χ2

1 being part of χ2 in equation (35), with respect to one velocity

19

pub2



component of one node 4,♦ = viµ

∂

∂4
∑

ν

(l.h.s.ν1 − r.h.s.ν1)2 = 2
∑

ν

(l.h.s.ν1 − r.h.s.ν1) ∂l.h.s.
ν
1

∂4 =

2
∑

ν

l.h.s.ν1
∂l.h.s.ν1
∂4 − 2

∑

ν

r.h.s.ν1
∂l.h.s.ν1
∂4 .

This corresponds to one line in the system of linear equations with the second term
becoming the right hand side of the system and the first term to be sorted into columns
using the expansion

∑

ν

l.h.s.ν1
∂l.h.s.ν1
∂4 =

∑

ν

∑

♦

∂l.h.s.ν1
∂♦

∂l.h.s.ν1
∂4 ♦,

where we further canceled out the factor 2. We note that to both derivatives ∂l.h.s.ν1
∂♦ and

∂l.h.s.ν1
∂4 the chain rule with respect to �i applies

∂l.h.s.ν1
∂♦ =

∑

�i

l.h.s.ν1
∂�i

∂�i

∂♦ (79)

where we calculate the derivative ∂�i
∂♦ using the results in section 3.6.
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Figure 2: Axisymmetric active stress on a spherical cortex. a) An axisymmetric active stress
distribution in terms of Y20 is considered on a spherical cortex. b), c) The full system i) is
solved as well as d), e) the purely tangential system. b) The three-dimensional velocity field
is shown as obtained by the numerical solution of the full system. c) While the tangential
velocity is zero, the normal velocity depending on the polar angle θ agrees very well with
the analytical prediction. d) The three-dimensional velocity field is shown as obtained by the
numerical solution for solving the tangential force balance only. e) While the normal velocity
is zero, the absolute value of the tangential velocity depending on the polar angle θ agrees very
well with the analytical prediction. For both the full system i) in f) and the purely tangential
system ii) in g), the error of the velocity converges with increasing resolution.
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4. Validation and application
In the following, we intensively validate the developed algorithm for a viscous active
cell cortex in three-dimensions. First, we consider in section 4.1 a static spherical cortex
subjected to an active stress distribution in terms of spherical harmonics. We compare
the resulting velocity field on the cortex to analytical solutions derived in the appendix A.
Next, for a dynamically deforming cortex we compare our three-dimensional algorithm
to simulations using an axisymmetric simulation method in section 4.2. Eventually, we
consider a first test application in section 4.3.

4.1. Velocity profile by spherical harmonics on a static spherical cortex
As a first test setup, we compare three-dimensional numerical results on a static spherical
cortex to corresponding analytical solutions. We consider an active stress distribution
expanded in terms of spherical harmonics Ynm(θ, φ)

ζαβ(θ, φ) = ζ(θ, φ)gαβ =
(
ζ0 +

∑

n,m

ζnmYnm(θ, φ)
)
gαβ, (80)

where ζ0 is a constant offset and ζnm are the expansion coefficients of the active stress
distribution. For the given active stress profile in equation (80), we derive an analytical
solution for the velocity field v in appendix A. We expand the tangential velocity in
terms of vector spherical harmonics vt = ∑

n,m
Anm∂αYnme

α with coefficients Anm and

the normal velocity in terms of spherical harmonics vn = ∑
n,m

NnmYnm with coefficients

Nnm. The force balance equations (16), (17) then lead to analytical relations for the
velocity expansion coefficients Anm and Nnm depending on ζnm. These relations are
given in equations (A.9), (A.10) and determine the velocity field. In the following, we
consider the quantities in units of the radius and the planer shear viscosity with R = 1
and ηs = 1. On the one hand, considering the full system of equations (case i)), the
sum of the conditions (A.9) and (A.10) implies a vanishing in-plane velocity, i.e., the
expansion coefficients of the in-plane velocity vanish

Ai)
nm = 0. (81)

In turn, the normal velocity has to fulfill

N i)
nm = − R

2ηb
ζnm. (82)

In summary, the solution for the velocity field for given active stress ζnm is

vi) = − R

2ηb
ζnmYnmn, (83)

with vanishing tangential component.
On the other hand, this system can be utilized to test the in-plane velocity separately

(case ii)). For vanishing bulk viscosity ηb = 0 and fixing the normal velocity vn to zero,
i.e., implying

N ii)
nm = 0, (84)
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(instead of solving the normal force balance), the tangential force balance equations lead
to a condition for the tangential velocity coefficients

Aii)
nm = 1

[n(n+ 1)− 2]ζnm, (85)

which is obtained from equation (A.9). Thus, for solving the tangential force balance
equation only and for a vanishing normal velocity, we obtain an analytical solution for
the velocity

vii) = Anm (∂αYnm) eα = 1
[n(n+ 1)− 2]ζnm (∂αYnm) eα, (86)

for given active stress coefficient ζnm.
In both cases, the analytical solution in equation (83) for i) the full system and in

equation (86) for ii) the pure tangential system allows us a direct comparison between
the analytical and numerical solution. Using the three-dimensional algorithm developed
above, we consider a discrete cortex with 2562 nodes and 5120 triangles without bending
viscosity. After applying an active stress distribution in terms of spherical harmonics
according to equation (80), we solve numerically for the three-dimensional velocity field.
In the following, the comparison to the analytical solution is performed by considering
two types of error measures. One the one hand, we consider the absolute value of the
difference between numerical v and analytical solution van per node and average over
all nodes

〈ε〉 = 1
N

∑

ν

|v − van|. (87)

On the other hand, we calculate the sum of the squared difference of the velocities relative
to the maximum velocity, average, and take the square root to obtain the relative error

εrel =

√√√√√
1
N

∑
ν

[
(vx − van

x )2 +
(
vy − van

y

)2
+ (vz − van

z )2
]

||van,max|| . (88)

We first consider an axisymmetric active stress distribution in terms of ζ20Y20 with
ζ20 = 1 as shown in figure 2 a) on the discrete cortex. We further use ηb = 1 and an active
stress offset of ζ0 = 0. A variation of the active stress offset leads to a finite pressure
difference, but the velocity field is not altered. Figure 2 shows the full, three-dimensional
velocity profile obtained numerically and the velocity depending on the polar angle θ in
comparison to the analytical solution for both b), c) the full system i) and d), e) the
purely tangential system ii). In the first case, the normal velocity is finite and points
inward the cell around the equator and outward at both poles. In the second case,
the tangential velocity is finite and directed from the equator towards the poles. Each
three-dimensional simulation shows very good agreement with the analytical solution,
as shown by the comparison over the polar angle. As a next step, we quantify the error
〈ε〉 as well as εrel given in equation (87) and (88), respectively, and vary the resolution
of the discrete spherical cortex. For both systems i) and ii) shown in figure 2 f) and g),
respectively, we obtain a systematic decrease of both errors with increasing resolution.
The error shows a scaling inverse proportional to the number of nodes.
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Figure 3: Asymmetric active stress. a) A non-axisymmetric active stress distribution in terms of Y21
is considered. b) The three-dimensional velocity field is shown as obtained by the numerical
solution of the i) full system and c) by the numerical solution of the ii) tangential force balance
only. The error d) of the normal velocity for the full system as well as e) the error of the
tangential velocity for the reduced system of tangential force balance converges with increasing
resolution.

We then proceed in figure 3 with a non-axisymmetric distribution of active stress in
terms of ζ21Y21 with ζ21 = 1 and ζ0 = 1 shown in a). As a consequence, the cortical
velocity profile is no longer axisymmetric. Figure 3 b) shows the three-dimensional ve-
locity field for the full system i) and figure 3 c) shows the three-dimensional velocity
field for the purely tangential system ii) with normal velocity restricted to zero. Figure
b) shows four patches of large normal velocity. Opposite patches show either an outward
or an inward pointing normal velocity. In-between, the normal velocity becomes zero.
At the sites where in figure b) the normal velocity is maximal, the tangential velocity
in c) vanishes. Similar to figure 2 the tangential velocity points from sites with outward
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pointing normal velocity in 3 b) towards sites with inward pointing normal velocity in
3 b). Again, we observe very good agreement between numerical and analytical solution
as can be seen by the error shown in figure 3 d) and e) for both systems i) and ii),
respectively. We again observe a decrease in the error with increasing number of nodes.
In total, we obtain numerical solutions for the velocity field on the static cortex in a very
good agreement with analytical predictions together with a proper scaling for improving
resolution. This validates our developed three-dimensional algorithm for a viscous active
cortex in a first step.

 0.001

 0.01

 1  2  3  4  5

E
rr
o
r 
ε

Reference neighbor node

<ε>
εrel

Figure 4: Variation of the reference neighboring node. The choice of the reference neighboring
node, which serves for the construction of the local coordinate system, does not influence the
numerical solution as illustrated by the constant error.

Eventually, we use the full setup with non-axisymmetric active stress distribution in
figure 3 with 2562 nodes to systematically study the influence of the reference neighbor
node, which serves for the construction of the local coordinate system in simulation,
as detailed in section 3.1. We systematically vary the reference neighbor node, run one
simulation per reference neighbor node, and quantify the deviation to the analytical
solution in terms of the errors in equation (87) and (88). Figure 4 shows a constant error
for varying reference neighbor node. Therefore, we are able to conclude that the choice
of the reference neighbor node for local coordinate system construction is arbitrary.
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Figure 5: Dynamically deforming viscous active cortex. a) The active stress distributed according
to equation (89) with exponent p = 8, offset ζ0 = 1, and amplitude ζ̂ = 1 is shown color coded
on the initially spherical, discrete cortex. Towards the equator the isotropic active stress in-
creases. b) Resulting velocity profile on the initial cortex and c) velocity on the finally deformed
cortex. In the finally deformed state the normal velocity vanishes.

4.2. Dynamics of a viscous active cortex
Having tested the algorithm for the static scenario in the previous section, we now want
to apply the algorithm to the situation of a dynamically evolving viscous active cortex.
We consider an active stress distribution similar to what is known for cytokinesis, i.e.,
the separation of the two daughter cells during cell division [30, 32, 33, 47]. We consider
an isotropic active stress distribution with constant offset ζ0 at the poles θ = 0, θ = π and
an increasing active stress around the equator θ = π

2 similar to an equatorial contractile
ring. We therefore apply

ζ1
1 (θ, φ) = ζ2

2 (θ, φ) = ζ(θ, φ) = ζ0 + ζ̂ exp
(
−σ

(
θ − π

2

)p)
, (89)

where ζ̂ is the amplitude of active stress increase around the equator, p the exponent,
and σ the width of the active stress distribution. We choose for the active stress ζ0 =
1, σ = 10, the planar shear viscosity ηs = 1, and the bulk viscosity ηb = 1. We use an
initially spherical mesh with 2562 nodes and 5120 triangles.
For the given active stress distribution in equation (89) and for given cortex shape,

we solve numerically for the three-dimensional velocity field v on the discrete cortex.
We split up the total velocity field v into the tangential velocity vt = (1− nn) · v and
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the normal velocity vn = nn · v. Only the normal velocity leads to flows in the cortex
that change the overall cortex shape. Therefore, we integrate the cortex evolution by
advecting each node ν with its normal velocity vνn. The latter is done using the Euler
algorithm

rν(t+ ∆t) = rν(t) + vνn(t)∆t, (90)

with a time step ∆t, which is typically chosen to be ∆t = 5× 10−4ta with the time scale
ta = ηs

ζ0
. On the evolving cortex, we repeat the procedure. This is done as long as the

normal velocity on the whole cortex vanishes, i.e., until the cortex has reached a final,
steady state.
We first consider a broad distribution of active stress with exponent p = 8 in equation

(89) with ζ̂ = 1 as shown in figure 5 a). We apply a bending viscosity of η̄ = 0.0005ηs and
η̄b = 0.0025ηs. Figure b) shows the velocity field on the initially spherical cortex. Because
of the dominating contractile active stress around the equator, the normal velocity points
towards the cell interior around the equator. As a consequence of the incompressibility of
the enclosed fluid, the normal velocity points outward at the poles. Therefore, the velocity
leads to an expansion of the cortex along the z-axis and a simultaneous contraction
around the equator. Integration of the cortex evolution leads to the shape shown in
figure c), where we also show the final velocity field on the deformed cortex. Here, no
normal velocity remains, but a finite tangential velocity points towards the equator.
For this setup, we compare the three-dimensional dynamics to the one obtained by

axisymmetric simulations [60, 61] in detail in figure 6. We compare with simulations of
axially symmetric viscous active surfaces, described in detail in [60]. There the boundary
value problem describing the force and torque balances is integrated numerically using a
fourth-order collocation method, while the surface evolves in time following a Lagrangian
description with a re-parametrization to arc length at each time step. For the comparison
of the axially symmetric and the three-dimensional method the imposed active tension
profile is evolved by attaching the initial profile to a Eulerian grid introduced for this
purpose [61]. For comparison between the simulation methods, on the one hand, we
track half the distance of the upper and the lower pole of the cortex over time. On the
other hand, we analyze the furrow size at the cortex equator by calculating the radius
of the equatorial ring. Both quantities are shown over time in figure 6 a). While the
pole to pole distance increases over time, the cortex contracts at the equator and thus
the furrow radius decreases. Both quantities reach a constant plateau at longer time,
which corresponds to the convergence of the simulation. We obtain excellent agreement
between three-dimensional and axisymmetric simulation.
To go one step further, we also compare the velocity field on the discrete cortex at

different times. On the left hand side of figure 6 we show the absolute value of the
tangential velocity vt depending on the axial position z. On the right hand side we show
the normal velocity vn. This is done at different times b), c) t/ta = 0.01, d), e) t/ta = 1.5,
and f), g) t/ta = 3. The velocity is shown with respect to va = R0

ta
. While the tangential

velocity increases over time, i.e., with increasing deformation of the cortex, the normal
velocity decreases until the cortex reaches its final shape (the latter is shown in figure
5 c)). Overall, our developed three-dimensional algorithm leads to a velocity field on the
evolving cortex, which is in very good agreement with the axisymmetric simulation.
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Figure 6: Comparison of cortex dynamics. a) Comparison of the pole to pole radius and furrow radius
at the equator between axisymmetric (lines) and from three-dimensional simulation (dots) for
the setup shown in figure 5 with p = 8, ζ0 = 1, ζ̂ = 1. b) - g) The velocity profile obtained from
axisymmetric simulation and three-dimensional simulation is compared at different time steps.
Tangential (left) and normal (right) velocity depending on the position z

R0
along the axis are

shown at time b), c) t/ta = 0.1, d), e) t/ta = 1.5, f), g) t/ta = 3. Both simulation methods are
in very good agreement.
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In addition, we consider an active stress distribution around the equator, which is
narrower with exponent p = 4 in equation (89) and systematically vary the amplitude ζ̂.
Figure 7 shows the active stress distribution for ζ̂ = 1 as illustration in a) together with
the corresponding shape and velocity profile in the b) initial and c) final state. Figure
7 d) and e) show the initial and final state for ζ̂ = 2 and figure f) and g) for ζ̂ = 3.
We use η̄ = 0.0005ηs and η̄b = 0.0025ηs in a), b), c) and η̄b = 0.0035 in d), e), f), g).
With increasing amplitude of the active stress the cortex farther extends at the poles
and constricts around the equator more strongly. The final tangential velocity increases
systematically, which is due to the gradient in the active stress distribution increasing
with increasing magnitude and constant offset. We again compare the dynamics based
on the pole to pole radius and the furrow size as well as the velocity field at different
times to axisymmetric simulations. In figure 8, we show the comparison for the amplitude
ζ̂ = 1, in figure 9 for ζ̂ = 2, and in figure 10 for ζ̂ = 3. Again, we show in each figure
the temporal comparison of the cortex evolution in a) and the velocity comparison in
b) - g). In all cases the results obtained with the developed three-dimensional algorithm
agree very well with the results obtained using the axisymmetric simulations. A slight
difference occurs for larger ζ̂ due to a small influence of the bending viscosity η̄b, which
we choose larger in three-dimensional simulations for the reason of stability.
Overall, the comparison to axisymmetric simulations clearly shows the accuracy of

the developed algorithm for a viscous active cortex in three dimensions also in case of
dynamic cortex evolution.
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Figure 7: Varying active stress amplitude. a) The active stress distribution according to equation
(89) with exponent p = 4, offset stress ζ0 = 1, and amplitude ζ̂ = 1 is shown color coded
on the initially spherical, discrete cortex. b), c) Resulting velocity profile on the initial cortex
(left) and on the finally deformed cortex (right) with arrows illustrating the direction and color
coded magnitude. d), e) Velocity profile for an active stress magnitude of ζ̂ = 2 as well as f), g)
for an active stress magnitude ζ̂ = 3. In the finally deformed state the normal velocity vanishes.
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Figure 8: Comparison of cortex dynamics for ζ̂ = 1. a) Comparison of the pole to pole radius and
furrow radius at the equator between axisymmetric (lines) and three-dimensional simulation
(dots) for the system shown in figure 7 a), b), c) with p = 4, ζ0 = 1, ζ̂ = 1. b) - g) The velocity
profile obtained from axisymmetric simulation and three-dimensional simulation is compared
at different time steps. Tangential (left) and normal (right) velocity depending on the position
z
R0

are shown at time b), c) t/ta = 0.1, d), e) t/ta = 1.5, f), g) t/ta = 3. Both simulation
methods are in very good agreement.
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Figure 9: Comparison of cortex dynamics for ζ̂ = 2. a) Comparison of the pole to pole radius and
furrow radius at the equator between axisymmetric (lines) and three-dimensional simulation
(dots) for the system shown in figure 7 d), e) with p = 4, ζ0 = 1, ζ̂ = 2. b) - g) The velocity
profile obtained from axisymmetric simulation and three-dimensional simulation is compared
at different time steps. Tangential (left) and normal (right) velocity depending on the position
z
R0

are shown at time b), c) t/ta = 0.1, d), e) t/ta = 1.5, f), g) t/ta = 3. Both simulation
methods are in very good agreement.
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Figure 10: Comparison of cortex dynamics for ζ̂ = 3. a) Comparison of the pole to pole radius and
furrow radius at the equator between axisymmetric (lines) and three-dimensional simulation
(dots) for the system shown in figure 7 f), g) with p = 4, ζ0 = 1, ζ̂ = 3. b) - g) The velocity
profile obtained from axisymmetric simulation and three-dimensional simulation is compared
at different time steps. Tangential (left) and normal (right) velocity depending on the position
z
R0

are shown at time b), c) t/ta = 0.1, d), e) t/ta = 1.5, f), g) t/ta = 3. Both simulation
methods are in very good agreement.
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Figure 11: Sheared cortex. a) A cortex subject to an initial shear of γx = 0.35 is shown with the active
stress distribution according to equation (89) with ζ̂ = 3.5 color coded. The velocity field is
shown on the evolving cortex over time with arrows indicating the direction and magnitude
given by color code for time b) t/ta = 3.5 × 10−3, c) t/ta = 3.5 × 10−2, d) t/ta = 8.75 × 10−2,
and e) t/ta = 3.5. While the cortex contracts around the equator and extends at the poles,
it relaxes back to a shape nearly oriented as the active stress distribution on the undeformed
cortex.

4.3. A first application
In order to provide a first application of an evolving cortex in a non-axisymmetric situa-
tion, we consider in the following a cell cortex subjected to an active stress distribution
according to equation (89) which is sheared initially. We use the same values for the
viscosity as above, i.e., ηs = 1 and ηb = 1, an exponent p = 4 for the active stress distri-
bution with constant offset ζ0 = 1 and amplitude ζ̂ = 3.5. For the bending viscosity we
choose η̄ = 1× 10−4ηs and η̄b = 5× 10−3ηs. Initially, we deform the cortex according to
a shear strain of γx = 0.35 along the x-axis. On the one hand, we consider the active
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stress distribution with gradient along the polar angle θ, i.e., along the z-axis. On the
other hand, we rotate the cortex before the deformation such that the gradient of the
active stress distribution nearly aligns with the shear.
For the first setup, the active stress distribution is shown in figure 11 a). We show

in figure 11 b) - e) the dynamic evolution of the cortex with the velocity magnitude
per node color coded and the velocity direction indicated by arrows. Shapes with the
velocity profile are shown for time b) t/ta = 3.5× 10−3, c) t/ta = 3.5× 10−2, d) t/ta =
8.75× 10−2, and e) t/ta = 3.5. Initially, a large normal velocity is observed in figure a)
with a kind of stripe pattern. More or less along the long axis of the sheared cortex
the velocity points inwards the cell cortex. In direction perpendicular to the shear, the
velocity points outwards the cell cortex. This illustrates the tendency of the cell cortex to
realign with respect to the symmetry of the active stress distribution on the undeformed
cortex, which is similar to the one shown in figure 7 a). The reorientation is visible
throughout the time evolution as well. Eventually, the cell cortex is nearly aligned with
the initial gradient of the active stress distribution. This points to the symmetry of the
active stress distribution being the driving mechanism behind this reorientation. From
figure d) to e) it can be seen that the cortex also contracts around the equator.
Next, we consider the dynamic evolution of the cortex subject to the same initial shear

with rotated active stress distribution as shown in figure 12 a). Again the evolution of
the cortex is shown in figure b) - e) at the same time steps. Initially, the flow field shows
four patches of large velocity in b). The evolving flow field first leads to a broadening of
the cortex and a slight reorientation, presumably with respect to the symmetry of the
active stress distribution. Subsequently, the cortex contracts around the equator with
the eventual shape shown in figure e). The tangential velocity is directed from the poles
to the equator.
Both test applications illustrate the applicability of our algorithm to non-axisymmetric

situations with a three-dimensional deformation of the cortex.

5. Conclusion
By directly solving the force balance equations in thin shell formulation taking into ac-
count cortical viscosity as well as active stress, we developed a simulation algorithm for
a cell cortex in the viscous limit in a fully three-dimensional situation. The cell cortex
is represented as thin shell in the framework of active gel theory. Using an inverted
parabolic fitting procedure, we were able to express the force balance equations on each
node of the discretized cortex in terms of the velocity components. Eventually, the veloc-
ity components are obtained by solving the force balance equations on the whole cortex
using a minimization ansatz. Extensive validation to presented analytical solutions in
the static case as well as to axisymmetric simulations in a dynamic situation showed very
good agreement. As a first application in a non-axisymmetric situation, we considered a
cortex with differently orientated active stress distribution which is subject to an initial
shear deformation.
The generality of the presented algorithm, which directly solves the force balance

equations, allows for a straightforward application to different constitutive laws for cortex
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behavior and active stress. Furthermore, the active stress distribution on the discrete
cortex could be coupled to a concentration field, e.g., taking into account cytoskeleton
polymerization and depolymerization. A coupling to an external environment can be also
done by adding corresponding external forces to the force balance equations. This would
allow a dynamic coupling to a suspending fluid in combination with a fluid solver. All
in all, the developed numerical tool can be the basis for future investigations of various
three-dimensional scenarios of cell and tissue morphogenesis.
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Figure 12: Tilted sheared cortex. a) A cortex subject to an initial shear of γx = 0.35 is shown with
the active stress distribution according to equation (89) with ζ̂ = 3.5 but rotated with an
angle of 45◦ towards the direction of the shear color coded. The velocity field is shown on
the evolving cortex over time with arrows indicating the direction and magnitude given by
color code for time b) t/ta = 3.5 × 10−3, c) t/ta = 3.5 × 10−2, d) t/ta = 8.75 × 10−2, and e)
t/ta = 3.5. While the cortex contracts around the equator and extends at the poles, it retains
its overall orientation.
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Appendices
A. Analytical solution in terms of spherical harmonics
In the following, we derive an analytical solution for the spherical cortex of radius R
with an active stress distribution in terms of spherical harmonics as given by equation
(80). According to the expansion of the active stress in terms of spherical harmonics
we choose as ansatz an expansion of the normal velocity in spherical harmonics vn =
v ·n = ∑

n,m
NnmYnm together with the in-plane velocity expressed as by vector spherical

harmonics [62], such that the velocity becomes

v =
∑

n,m

[
Anms

1
nm +Bnms

2
nm +NnmYnmn

]
, (A.1)

with s1
nm = ∂αYnme

α and s2
nm = n × s1

nm. The azimuthal velocity vanishes and we
therefore directly use Bnm = 0. We further express the pressure in terms of spherical
harmonics

P = P0 +
∑

n,m

PnmYnm, (A.2)

where P0 is a constant uniform pressure difference, which accounts for the Laplace pres-
sure due to the offset active stress 〈ζ〉. In the following, we consider a constant uniform
pressure in the cell’s interior and therefore the spherical harmonics in the pressure have
to vanish, i.e., Pnm = 0.
With the velocity gradient and its trace in the form

vαβ = 1
2 [∇αvβ +∇βvα] + Cαβv

n, vγγ = ∇γvγ + Cγγ v
n,

the viscous surface stress (15) becomes

tv,αβ = 2ηs
(1

2 [∇αvβ +∇βvα] + Cαβv
n − 1

2gαβ∇γv
γ − 1

2gαβC
γ
γ v

n
)

+ ηb
(
∇γvγ + Cγγ v

n
)
gαβ.

Inserting the ansatz (A.1), using the identity∇γ∇γYnm = −n(n+1)Ynm for the spherical
harmonics, and using further the definition of the trace-less tensorial spherical harmonics
S

(n,m)αβ
1 = ∇α∇βYnm − 1

2g
αβ∇γ∇γYnm we can write the viscous surface stress as

tαβv = 2ηs
∑

n,m

[
AnmS

(n,m)αβ
1 +NnmC

αβYnm −
1
2g

αβCγγNnmYnm

]

+ ηbg
αβ
∑

n,m

(
−Anmn(n+ 1)Ynm + CγγNnmYnm

)
. (A.3)

and its trace becomes

t γvγ = 2ηb
∑

n,m

(
−Anmn(n+ 1)Ynm + CγγNnmYnm

)
. (A.4)
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We now solve the three force balance equations, where the tangential ones translate
into two separate scalar equations

∇α∇βtαβ = 0 (A.5)
εγβ∇γ∇αtαβ = 0 (A.6)

tαβCαβ = ∆P. (A.7)

First, we re-write the normal force balance equation (A.7) using Cβα = 1
Rδ

β
α and the

trace of the viscous stress (A.4) and of the active stress (80) such that the normal force
balance becomes

2ηb
1
R

∑

n,m

[
−Anmn(n+ 1)Ynm + CγγNnmYnm

]
+ 2
R

∑

n,m

ζnmYnm + 2
R
ζ0 = P0,

which has to be fulfilled for the linear independent spherical harmonics separately and
we thus obtain the relation

−2ηbAnmn(n+ 1) + ηb
4
R
Nnm + 2ζnm = 0,

where we have identified P0 = 2
Rζ0, the Laplace pressure. Next, we consider the first in-

plane force balance equation (A.5). We calculate the second derivative of the in-plane sur-
face stress tensor using the identity for the tensorial spherical harmonics∇α∇βS(n,m)αβ

1 =
n(n+1)

2 [n (n+ 1)− 2]Ynm and obtain for the separate spherical harmonics coefficients the
relation

(ηs + ηb)Anmn2(n+ 1)2 − 2ηsAnmn(n+ 1)− 2ηb
R
Nnmn(n+ 1)− n(n+ 1)ζnm = 0.

(A.8)

Eventually, we note that the second in-plane force balance equation (A.6) is automat-
ically fulfilled due to the relation ε γβ ∇γ∇αS

(n,m)αβ
1 = 0. The two conditions for the

spherical harmonics coefficients following from the force balance equations can be rear-
ranged into the following form

(ηs + ηb)Anmn(n+ 1)− 2ηsAnm −
2ηb
R
Nnm − ζnm = 0 (A.9)

−ηbAnmn(n+ 1) + 2ηb
R
Nnm + ζnm = 0, (A.10)

which determine the solution for the velocity field.
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Numerous experiments and theoretical calculations have shown that cylindrical vesicles
can undergo a pearling instability similar to the Rayleigh–Plateau instability of a liquid
jet when they are subjected to external tension. In a living cell, a Rayleigh–Plateau-like
instability could be triggered by internal tension generated in the cell cortex. This
mechanism has been suggested to play an essential role in biological processes such as
cell morphogenesis. In contrast to the simple, passive and isotropic membrane of vesicles,
the cortical tensions generated by biological cells are often strongly anisotropic. Here,
we theoretically investigate how this anisotropy affects the Rayleigh–Plateau instability
mechanism. We do so in the limit of both low and high Reynolds numbers and accordingly
cover cell behaviour under anisotropic cortical tension as well as fast liquid jets with
anisotropic surface tension. Combining analytical linear stability analysis with numerical
simulations we report a strong influence of the anisotropy on the dominant wavelength of
the instability: increasing azimuthal with respect to axial tension leads to destabilisation
and to a shorter break-up wavelength. In addition, compared to the classical isotropic
Rayleigh–Plateau situation, the range of unstable modes grows or shrinks when the
azimuthal tension is higher or lower than the axial tension, respectively. We explore
nonlinear effects like an altered break-up time and formation of satellite droplets under
anisotropic tension. In Part 2 (Bächer et al. J. Fluid Mech., vol. xxx, 2021, Ax) of this
series we continue our analysis by analytically investigating the influence of bending and
shear elasticity, usually present in vesicles and cells, on this anisotropic Rayleigh–Plateau
instability.

Key words: instability, capsule/cell dynamics, membranes

1. Introduction

The break-up of liquid jets into droplets, triggered by surface tension, was already
investigated intensively by Plateau in the second half of the 19th century (Plateau 1873).
Based on the concept of the fastest growing perturbation, Rayleigh derived a relation

† Email address for correspondence: stephan.gekle@uni-bayreuth.de
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910 A46-2 K. Graessel, C. Bächer and S. Gekle

between the radius of the liquid jet and the dominant wavelength which determines the
size of the droplets for an ideal fluid in the absence of an outer medium (Rayleigh
1878). Later, he extended the theoretical description of this Rayleigh–Plateau instability to
viscous jets in the inertialess Stokes limit (Rayleigh 1892). Again in the Stokes limit, the
presence of an outer medium with arbitrary viscosity ratio between inner and outer fluid
has been investigated by Tomotika (1935). A simplified version for the important case of
equal viscosities has been presented by Stone & Brenner (1996). The Rayleigh–Plateau
instability is a prime example of the beauty of fluid mechanics and possesses great
relevance in various applications. We refer to the review article by Eggers & Villermaux
(2008) for further details.

However, pearling and break-up due to the Rayleigh–Plateau mechanism are not
restricted to liquid jets. In 1994, Bar-Ziv & Moses (1994) reported a pearling instability
for a tubular vesicle. A vesicle consists of a lipid bilayer membrane confining an interior
fluid and is often considered as a model system for a biological cell (Seifert 1997). Under
local application of laser tweezers the vesicle formed pearls (Bar-Ziv & Moses 1994).
Using a hydrodynamic theory Nelson, Powers & Seifert (1995) and Goldstein et al. (1996)
explained the pearling of the vesicle by a laser induced tension, which in turn triggers
a Rayleigh–Plateau-like instability. Pearl formation starts at the site of application of the
laser and the instability then propagates along the cylindrical vesicle (Goldstein et al.
1996; Bar-Ziv, Tlusty & Moses 1997). Later, several experimental studies demonstrated
different ways to induce the tension which is required for the pearling instability (Powers
2010). Pulling on membrane tethers with optically trapped particles (Bar-Ziv, Moses &
Nelson 1998; Powers, Huber & Goldstein 2002), protein mediated anchoring of membrane
tethers to a substrate (Bar-Ziv et al. 1999), applying a magnetic field (Ménager et al. 2002),
electric field (Sinha, Gadkari & Thaokar 2013) or osmotic pressure gradient (Yanagisawa,
Imai & Taniguchi 2008; Sanborn et al. 2013) can all lead to pearling. Furthermore,
Kantsler, Segre & Steinberg (2008) reported the transition of a finite-size, tubular vesicle
to a pearling state due to stretching in an extensional flow and noted that the transition
is reversible when the external flow stops. In shear flow the instability has also been
observed (Pal & Khakhar 2019). Boedec, Jaeger & Leonetti (2014) derived theoretically
the growth rate for the instability of a cylindrical vesicle under tension. They treat the
fluid surrounding the vesicle in the limit of the Stokes equation and allow for variations
of the tension along the vesicle. By means of boundary integral simulations Narsimhan,
Spann & Shaqfeh (2015) showed that the initial shape of a closed vesicle in extensional
flow influences the number of fragments after pearling.

In contrast to passive vesicles, where the tension triggering the Rayleigh–Plateau
instability has to be imposed from the outside, living biological cells are able to
internally create active stresses in their cytoskeletal network (Kruse et al. 2005; Marchetti
et al. 2013; Prost, Jülicher & Joanny 2015; Salbreux & Jülicher 2017; Jülicher, Grill
& Salbreux 2018). Such cytoskeletal networks can build a thin layer that underlies
the plasma membrane, named the cell cortex (Alberts et al. 2007; Köster & Mayor
2016; Chugh & Paluch 2018), in which the action of motor proteins leads to active
tension at the cell’s interface (Chugh et al. 2017). A positive constant active tension
caused by a homogeneous (Pleines et al. 2013) actomyosin distribution in the cortex
describes the internal tendency of the cytoskeleton to contract (Needleman & Dogic
2017). Alternatively, proteins which anchor at the plasma membrane can trigger a
pearling instability (Tsafrir et al. 2001) by bending the membrane and thus inducing a
non-zero curvature (Campelo & Hernández-Machado 2007; Jelerčič & Gov 2015). For a
viscous active surface Mietke et al. (2019a) and Mietke, Jülicher & Sbalzarini (2019b)
report a Rayleigh–Plateau instability with mechano-chemical regulation. For a biological
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Anisotropic Rayleigh–Plateau instability. Part 1 910 A46-3

tissue composed of multiple cells Hannezo, Prost & Joanny (2012) provide an energy
argument based on an effective surface tension. Berthoumieux et al. (2014) considered
the Green’s function for an elastic cell membrane subjected to active tension, which
again leads to the prediction of a Rayleigh–Plateau instability. Bächer & Gekle (2019)
confirmed the instability threshold predicted by Berthoumieux et al. (2014) and presented
the shape of a membrane undergoing Rayleigh–Plateau instability in three-dimensional
simulations of active membranes. For soft materials the Rayleigh–Plateau instability is an
important mechanism in beaded object formation (Mora et al. 2010) and the production
of synthetic vesicles (Anna 2016; Pal & Khakhar 2019). Especially in the biological
context, Rayleigh–Plateau-like instabilities have been proposed to play an important role
in microtubuli-driven cell deformation (Emsellem, Cardoso & Tabeling 1998), as a driving
mechanism behind mitochondrial fission (Gonzalez-Rodriguez et al. 2015) as well as for
pathological shapes of blood vessels during vasoconstriction (Alstrøm et al. 1999).

All the above mentioned studies on the Rayleigh–Plateau instability in different contexts
have in common that they consider an isotropic tension. However, in reality, cytoskeletal
systems often exhibit strong anisotropy (Reymann et al. 2012; Murrell et al. 2015;
Blackwell et al. 2016; Zhang et al. 2018), e.g. due to the formation of stress fibres
(Tojkander, Gateva & Lappalainen 2012). Accordingly, the tension in the cell cortex can be
anisotropic (Rauzi et al. 2008; Mayer et al. 2010; Behrndt et al. 2012; Callan-Jones et al.
2016), which is important for many biological phenomena such as cell-shape regulation
(Callan-Jones et al. 2016), cell polarisation (Mayer et al. 2010), ingression formation
(Reymann et al. 2016), the formation of a furrow during cell division (White & Borisy
1983; Salbreux, Prost & Joanny 2009) and the production of blood platelets (Bächer,
Bender & Gekle 2020). For a solid rod in the absence of any kind of fluid, Gurski &
McFadden (2003) proposed an instability mechanism based on the bulk anisotropy of the
underlying crystal lattice for the growing of nanowires. How anisotropic surface tension
affects the Rayleigh–Plateau instability of vesicles, cells or even liquid jets, however,
remains an open question.

In this work, we analytically extend the framework of the Rayleigh–Plateau instability to
include anisotropic interfacial tension for low (Stokes fluid) and high (ideal fluid) Reynolds
numbers. In both situations, we derive the dispersion relation depending on the tension
anisotropy and report a striking influence on the dominant wavelength and maximum
growth rate of the instability. Compared to the classical Rayleigh–Plateau criterion for
isotropic surface tension, we observe a decrease in wavelength for dominating azimuthal
tension and an increase for dominating axial tension. The analytical predictions agree
very well with numerical simulations using a boundary integral method (BIM) and a
lattice-Boltzmann/immersed boundary method (LBM/IBM). From these simulations we
also compute the nonlinear correction to the linear break-up time. Including interface
viscosity in the stability analysis for the Stokes regime also influences the dominant
wavelength and growth rate of the instability albeit less pronounced than the tension
anisotropy. Finally, we use a long-wavelength expansion to investigate the formation
of satellite droplets (Ashgriz & Mashayek 1995; Martínez-Calvo et al. 2020) under
anisotropic interfacial tension. In Part 2 (Bächer, Graessel & Gekle 2021) we consider
the anisotropic Rayleigh–Plateau instability of vesicles or capsules endowed with bending
and shear elasticity.

We start by introducing our theoretical model for an anisotropic interface, the coupling
to the surrounding fluid as well as the numerical methods used in the simulations in § 2. We
then present the dispersion relation for the Rayleigh–Plateau instability of an anisotropic
interface obtained by analytical linear stability analysis in § 3 first for a Stokes fluid in
§ 3.1 and then for an ideal fluid in § 3.2. In § 4.1 we discuss the effect of anisotropic
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η, ρ

ε ηo, ρo

Rz

Rφ
2R0

R(z, t)

z

γ z
γφ

λ

FIGURE 1. Illustration of the set-up. We consider a complex interface which can be either a
liquid jet of Newtonian fluid in the limit of vanishing viscosity η or the membrane of a vesicle
or cell immersed in a fluid in the limit of the Stokes equation, i.e. density ρ = 0. The fluid jet is
immersed in an ambient fluid with η0, ρ0. The cylindrical interface of initial radius R0 (dashed
line) is subjected to a periodic perturbation with amplitude ε (solid blue line). The interface is
parametrised by the position along the cylinder axis z and the radius R(z, t). We consider the
interfacial tension in the axial direction γ z (orange) different from that in the azimuthal direction
γ φ (green), both of which contribute to the membrane force acting onto the fluid with different
curvature components (grey circles).

interfacial tension on the dominant wavelength of the instability by comparing analytical
and simulation results and show a transition between Stokes fluid and ideal fluid in
§ 4.2. In § 4.3 we discuss the dominant growth rate in comparison to numerical results.
Nonlinear corrections of the linear break-up time are investigated in § 4.4. In § 5 we
discuss the combination of anisotropic tension and interface viscosity and finally present
the formation of satellite droplets under the influence of tension anisotropy for an ideal
fluid jet without ambient fluid in § 6. We conclude in § 7.

2. Description of an anisotropic interface

2.1. Problem illustration
We consider a general complex interface, as sketched in figure 1, which is surrounded by a
fluid on both sides. This can either represent the interface of a liquid jet in the co-moving
frame or the membrane of a vesicle or biological cell. As usual (Eggers & Villermaux
2008; Boedec et al. 2014), we assume that the interface is infinitely long. In the analytical
stability analysis we consider an axisymmetric interface, which is parametrised by the
axial position z and the local radius R(z, t). Initially, the interface is cylindrical with radius
R(z, 0) = R0. At arbitrary time t the interface is subjected to a perturbation δR(z, t), such
that the local radius is given by R(z, t) = R0 + δR(z, t).

In order to perform a linear stability analysis of the complex interface in the presence
of anisotropic interfacial tension, we apply a periodic perturbation to its shape (Drazin &
Reid 2004). The perturbation of the interface is illustrated in figure 1: it modulates the
radius in z-direction along the cylinder axis with amplitude ε(t) = ε0 eωt, a wavelength
λ and a corresponding wavenumber k = 2π/λ of the wave vector pointing along the
cylinder axis. The perturbation with initial amplitude ε0 grows in time with growth rate ω.
Accordingly, the interface of the jet can be described by its radius as

R(z, t) = R0 + ε0 exp(ωt + ikz). (2.1)
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Anisotropic Rayleigh–Plateau instability. Part 1 910 A46-5

Throughout this work, we consider an anisotropic interfacial tension, i.e. the value of
the axial tension differs from the value of the azimuthal tension. This anisotropic tension
accounts for two fundamentally different situations. First, in a liquid jet anisotropy can
arise, e.g. from covering the interface with passive anisotropic surfactant molecules, thus
extending the classical concept of liquid–liquid surface tension to an anisotropic situation.
Second, in biological cells or tissue, an active biological machinery, cytoskeletal filaments
with motor proteins underlining the plasma membrane, can produce anisotropic tensions at
the interface as described in more detail in the Introduction. Due to their usually contractile
nature, these active tensions enter the physical equations in the same way as the classical
surface tension, despite their fundamentally different origin. In the following, we therefore
use the same symbol and refer to both scenarios with the general term interfacial tension.

2.2. Interface coupled to a surrounding fluid
Interfacial tension leads to internal forces being transmitted from the interface to the fluid
(Green & Zerna 1954; Barthès-Biesel 2016; Salbreux & Jülicher 2017). In contrast to
the classical isotropic Rayleigh–Plateau scenario, we assign anisotropic tension to the
interface, i.e. we distinguish between the azimuthal γ φ and the axial interfacial tension
γ z. As sketched in figure 1 the periodic perturbation along the axis changes the curvature
of the interface both in the azimuthal and in the axial direction. In azimuthal direction
the curvature 1/Rφ is the inverse of the local radius of the interface Rφ = R(z, t), where
we follow the convention that the curvature of a cylinder is positive. Accordingly, the
curvature along the axis is given by the negative second derivative of the radius, 1/Rz =
−R′′ such that the curvature is negative at a neck and positive at a bulge (compare figure 1).
The derivative R′′ follows directly from (2.1).

The anisotropic tension does not depend on the position along the interface, therefore
its derivative vanishes and for a liquid–liquid interface no internal forces tangential to
the interface arise (Green & Zerna 1954; Salbreux & Jülicher 2017). The internal force
normal to the interface is given by the interfacial tension components weighted by the
corresponding principal curvature. Balance of forces requires that this normal force is
in equilibrium with the difference in tractions exerted by the fluids on either side of the
interface. Thus, the normal traction jump across the interface Δf n reads

γ φ

Rφ

+ γ z

Rz
= Δf n. (2.2)

The traction jump is given by the projection of the three-dimensional viscous stress
tensor of the outer and inner fluid onto the interface normal vector (Chandrasekharaiah
& Debnath 1994). For an incompressible interface or for negligible viscous effects, i.e.
for an ideal fluid, the traction jump is determined by the pressure p of the fluid. With the
normal vector pointing outwards from the interface and considering the outer and inner
fluid as incompressible, the traction jump in normal direction is thus given by

Δf n = −pout + pin = p(r = R), (2.3)

with pressures pout and pin of the outer and inner fluid, respectively, and p(r = R) denoting
the pressure difference at the interface. Together (2.2) and (2.3) lead to

γ φ

Rφ

+ γ z

Rz
= p(r = R), (2.4)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 7
9.

19
9.

38
.2

48
, o

n 
22

 Ja
n 

20
21

 a
t 0

9:
54

:2
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
94

7
pub3



910 A46-6 K. Graessel, C. Bächer and S. Gekle

for an incompressible interface or an ideal fluid interface. The relation in (2.4) reduces
to the classical Young–Laplace equation γ /R = p in the limit of isotropic surface tension
γ = γ φ = γ z and vanishing curvature along z, i.e. Rz → ∞. The anisotropic interfacial
tension thus leads to a pressure disturbance of the inner fluid, where the two contributions
of the interfacial tension are weighted with their respective radii of curvature.

2.3. Fluid dynamics
The motion of the fluid inside and outside the jet is in general described by the
Navier–Stokes equation

∂v

∂t
+ (v · ∇) v = − 1

ρ
∇p + νΔv, (2.5)

with the velocity field v, fluid density ρ, kinematic viscosity ν = η/ρ and shear
viscosity η. Density and viscosity of the outer fluid are denoted by ρo and ηo, respectively.
The fact that the liquid is incompressible, which is true for both the liquid of a jet and
the liquid encapsulated in a vesicle, leads furthermore to the continuity equation for the
incompressible liquid

∇ · v = 0. (2.6)

The Navier–Stokes and continuity equations together govern the motion of the fluid.
Besides the well-known Reynolds number Re = ρR0V0/η with a typical velocity V0 and

the unperturbed interface radius R0 as the typical length, we use the Ohnesorge number
(Eggers & Villermaux 2008), which relates characteristic scales of the interface and the
surrounding fluid

Oh = η√
ρR0γ

. (2.7)

In our anisotropic scenario with γ z /= γ φ we define two distinct Ohnesorge numbers Ohz
and Ohφ for the respective interfacial tensions.

In the limit of small velocities or large viscosity, i.e. the Stokes regime, the Reynolds
number approaches zero while the Ohnesorge number becomes large. In this regime, the
Navier–Stokes equation can be replaced by the linear Stokes equation

0 = −∇p + ηΔv. (2.8)

In the limit of large velocities or small viscosity, i.e. for an ideal fluid, the Reynolds number
is larger than one and the Ohnesorge number becomes small. Here, the Euler equation
applies

∂v

∂t
+ (v · ∇) v = − 1

ρ
∇p. (2.9)

2.4. Numerical simulations
We aim for a comparison of our main analytical results, the dominant wavelength of the
instability and its growth rate presented in §§ 4.1 and 4.3, respectively, with numerical
simulations solving the coupled fluid and interface dynamics. The simulations further
provide us a glimpse on the nonlinear aspects of the instability dynamics. For a Stokes
fluid and an ideal fluid with an outer fluid with the same properties, we perform
three-dimensional boundary integral method and lattice-Boltzmann/immersed boundary
method simulations, respectively.
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Anisotropic Rayleigh–Plateau instability. Part 1 910 A46-7

2.4.1. Three-dimensional numerical investigation of the instability
We consider a fluid column, the liquid jet, immersed in an ambient fluid. We use

fully three-dimensional simulations, thus testing also for non-axisymmetric instabilities
triggered by anisotropic interfacial tension (which we did not observe).

The interface encapsulates a Newtonian fluid and is surrounded by another Newtonian
fluid of the same density ρ0 = ρ or viscosity η0 = η. For the fluid, periodic boundary
conditions are chosen in each of the three spatial directions together with a kinematic
boundary condition at the interface. Fluid dynamics is either solved by the BIM or the
LBM/IBM, as detailed below.

Following the set-up sketched in figure 1, we consider an initially cylindrical interface
which is modelled as a thin shell and which we discretise by nodes connected to triangles.
Anisotropic tension of the interface is realised using the recently developed and validated
computational method for active membranes in flows (Bächer & Gekle 2019). This
approach can treat both the anisotropic surface tension of a liquid jet in the co-moving
frame and the anisotropic active tension of a biological cell cortex on the same footing.
To investigate the instability dynamics, we initially apply a small periodic perturbation to
the cylindrical interface, as shown in figure 1. From this initial configuration the temporal
evolution of the interface and the suspending fluid is solved including a dynamical two
way coupling of interface and fluid. The method to determine the dominant wavelength
and growth rate is described in appendix A.

2.4.2. Boundary integral method
As the simulation method at zero Reynolds number we use the BIM to solve the fluid

dynamics (Pozrikidis 2001; Zhao et al. 2010). The BIM solves the Stokes equation in the
presence of discretised boundaries based on hydrodynamic Green’s functions. It directly
solves for the fluid velocity at the nodes of the discretised interface for given interface
shape and interfacial force density. As a consequence of using the Stokes equation, in
BIM simulations inertial effects are excluded. Neglecting inertial effects corresponds to
Re = 0 and an Ohnesorge number Oh → ∞. Membrane forces due to interfacial tension
are calculated as detailed in Bächer & Gekle (2019). As the interfacial tension in the
simulation we use γ φ ≈ 10 pN μm−1, a typical tension expected for blood cells (Dmitrieff
et al. 2017). For details on the implementation of the BIM we refer to Guckenberger &
Gekle (2018).

As the box size, we consider the length of the cylindrical tube, which is typically 80
times the tube radius, along the axis and ten times the tube radius in lateral directions.
A typical discretisation of the interface consists of approximately 17 000 nodes and 32 500
triangles. We do not use periodic boundary conditions for the membrane due to technical
issues of the implementation used for BIM simulations. We rather place the outer rings of
nodes exactly at the beginning and end of the box, respectively, and fix the nodes by elastic
springs. Due to an insufficient number of neighbouring nodes, at the boundary nodes the
force from the interfacial tension is not calculated. We note that using this set-up, the
fluid encapsulated by the membrane remains inside. For the initial small deformation of
the interface we choose the amplitude ε0 = 0.02. The fluid viscosity is chosen as η ≈
1.2 × 10−3 Pa s. We simulate for approximately 100 time steps with adaptive step size and
a total simulation time of approximately 20 ms.

2.4.3. Lattice-Boltzmann/immersed boundary method
As a method to solve fluid dynamics at large/finite Reynolds number, we use the

LBM (Aidun & Clausen 2010; Krüger et al. 2016) together with the IBM (Peskin 2002;
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910 A46-8 K. Graessel, C. Bächer and S. Gekle

Mittal & Iaccarino 2005; Bächer, Schrack & Gekle 2017; Mountrakis, Lorenz & Hoekstra
2017; Bächer et al. 2018). Our LBM/IBM is implemented in the software package
ESPResSo (Limbach et al. 2006; Roehm & Arnold 2012; Arnold et al. 2013; Weik et al.
2019) and has been extensively validated (Gekle 2016; Guckenberger et al. 2016; Bächer
et al. 2018; Bächer & Gekle 2019).

The LBM solves the fluid dynamics on the basis of the mesoscopic Boltzmann equation
and accounts for the fluid dynamics according to the full Navier–Stokes equation. The
fluid thus has a finite density, a finite viscosity and, therefore, a finite Ohnesorge number.
The fluid is discretised by an Eulerian grid and populations representing the distribution
functions for the different velocities are assigned to each fluid node. We here use the
D3Q19 velocity set and a typical fluid mesh with dimensions of approximately 650 × 40 ×
40 with some simulation lattices extending up to 800 × 40 × 40. A typical simulation runs
for 500 000 steps. In the limit of an ideal fluid we choose Ohnesorge numbers in the range
of 10−3–10−4. Initially, the fluid has zero velocity.

The discretised interface is coupled to the background fluid using the IBM. A typical
interface contains 18 240 nodes and 36 480 triangles, has a radius of 6 LBM grid cells
and is periodic along the axial direction with an initial perturbation amplitude ε0 = 0.02
in simulations to determine the dominant wavelength. An additional refined simulation
set-up is used for determination of the dominant growth rate, where we simulate one
period of the dominant mode with initial perturbation ε0 = 0.002 and increased resolution
with a radius of 13 LBM grid cells. Here, a typical fluid lattice consists of 180 × 70 × 70
nodes and a membrane mesh of 15 416 nodes and 30 832 triangles. We again note that
axisymmetry is not imposed and that the simulations are fully three-dimensional. The
average distance between two interface nodes is approximately the length of one LBM
grid cell. An interface node moves with the local fluid velocity which is interpolated at
the node position from the surrounding fluid nodes by an eight-point stencil. The force
stemming from the interfacial tension and acting from the membrane onto the fluid at
the site of each interface node is transmitted to the fluid by the same eight-point stencil
interpolation scheme. Thus, the IBM provides a dynamic two way coupling of membrane
and fluid.

3. Dispersion relation for anisotropic interfacial tension

3.1. Anisotropic Rayleigh–Plateau instability for a Stokes fluid
Biological cells as well as their synthetic counterpart (vesicles) are typically a few tens
micrometres in size. Therefore, we consider the limit of small Reynolds numbers, i.e.
Re � 1, where the Navier–Stokes equation (2.5), reduces to the linear Stokes equation
(2.8) which together with the continuity equation (2.6) describes the fluid behaviour. In the
following, we consider identical fluid viscosity inside and outside the vesicle, i.e. ηo = η.
Our aim is to obtain the dispersion relation in the case of anisotropic interfacial tension,
which gives the growth rate depending on the wavenumber of the perturbation (2.1). As
detailed in appendix B.1 we perform a linear stability analysis and obtain the dispersion
relation for a Stokes fluid

ω(k) = γ φ

R0η

(
1 − γ z

γ φ
(R0k)2

)[
I1(kR0)K1(kR0)

+kR0

2
(I1(kR0)K0(kR0) − I0(kR0)K1(kR0))

]
, (3.1)
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Anisotropic Rayleigh–Plateau instability. Part 1 910 A46-9

with Iν(x), Kν(x) being the modified Bessel functions of the first and second kind,
respectively, and of order ν.

Positive values of ω correspond to growing perturbations (2.1), whereas perturbation
modes with negative growth rate are dampened. Because of the positive prefactor ωS

0 =
γ φ/(R0η), which is the inverse of the viscocapillary time based on the azimuthal tension
γ φ , and the positive modified Bessel functions for positive kR0, the tension anisotropy
determines the range of growing, i.e. unstable, modes. We obtain from (3.1) the range of
growing modes for values of kR0 between −√

γ φ/γ z and
√

γ φ/γ z. This range depends
on the square root of the anisotropy of the interfacial tension. We recover for isotropic
tension γ z = γ φ = γ the range of growing wavelengths between −√

γ φ/γ z = −1 and√
γ φ/γ z = 1 as found by Plateau (1873). So in the case of the classical Rayleigh–Plateau

instability, the growing wavelengths do not depend on the interfacial tension γ but only on
the undisturbed radius R0 of the jet (Drazin & Reid 2004). Here, in addition the anisotropy
of interfacial tension enters as a factor.

We show in figure 2(a) the dispersion relation of the classical Rayleigh–Plateau
instability, i.e. for isotropic interfacial tension. The growth rate ω is plotted only against
positive kR0 due to symmetry. We further distinguish the individual contributions from γ φ ,
the first term in (3.1), and from γ z, the second term in (3.1), and plot them in orange and
green, respectively, together with the total dispersion relation in blue. It is the interplay of
the two contributions of the interfacial tension γ z and γ φ that determines the dispersion
relation. The azimuthal tension γ φ , i.e. the first term in (3.1), is positive and thus the
system would be unstable against any perturbation with arbitrary wavenumber. However,
this is not the case, because this term is balanced by the damping contribution from γ z.
Both contributions together determine a finite maximum of the dispersion relation, which
corresponds to the dominant mode that grows fastest.

We now consider an anisotropic interface were the contributions γ φ and γ z are no longer
identical. Their changing ratio leads to a different weighting of the contributions to the
dispersion relation (3.1). If the destabilising contribution from γ φ rises compared to γ z

as shown in figure 2(b), the range of growing wavelengths increases. On the other hand,
if γ φ decreases relative to γ z, the range becomes smaller (see figure 2c). Because the
destabilising γ φ contribution reaches a maximum at kR0 = 1.59 and tends to zero for
kR0 → ∞, independent of the anisotropy ratio, also for vanishing γ z → 0 a well-defined
mode at finite kR0 has the largest growth rate. This is shown by figure 2(d) in the case
of γ z = 0 with an extended kR0-range on the horizontal axis. In the limit γ φ = 0 all
modes are stable. Furthermore, changes in the anisotropy ratio shift the position of the
maximum of the dispersion relation. If γ φ > γ z (figure 2b), the position of the maximum
of ω shifts to larger values of kR0, if γ φ < γ z the maximum is found at smaller kR0 as
shown in figure 2(c). This means for dominating axial tension γ z the instability wavelength
increases.

3.2. Anisotropic Rayleigh–Plateau instability for an ideal fluid
Performing again a linear stability analysis using the same solution procedure as before,
we calculate the dispersion relation for an ideal fluid jet with same density inside and
outside the jet as detailed in appendix B.2. We obtain the dispersion relation

ω2 = γ φ

ρR3
0

(kR0)
2

(
1 − γ z

γ φ
(kR0)

2

)
I1(kR0)K1(kR0). (3.2)
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1

Dispersion relation

γ z contribution

γφ contribution
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kR0
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γφ = 0.0

γ z

γφ
= 0.5

γ z

γφ = 2.0

γ z

γφ = 1.0

(b)

(a)

(c)

(d )

FIGURE 2. Dispersion relation in the Stokes regime for η = ηo. Curves are shown for
(a) isotropic interfacial tension γ z/γ φ = 1.0 and for anisotropic interfacial tension with
(b) γ z/γ φ = 0.5 and (c) γ z/γ φ = 2.0. We distinguish the contributions from γ φ (green) and
γ z (orange). An anisotropic tension strongly alters the range of growing modes and shifts the
maximum towards larger kR0 in (b) or smaller kR0 in (c). (d) Dispersion relation for vanishing
axial interfacial tension, i.e. γ z = 0. The γ φ contribution (green) has its maximum at kR0 = 1.59
in each of the panels, because γ φ is kept constant. Thus, although all modes are unstable in (d),
in principle, there still exists a well-defined finite dominant wavelength for a Stokes fluid due to
fluid stresses.

Compared to the dispersion relation for a Stokes fluid in (3.1), we here obtain an
equation for the squared growth rate ω2. According to the ansatz for the perturbed interface
in (2.1), perturbations with real and positive ω will grow. Imaginary ω describe oscillatory
perturbations of the surface which do not grow in time. Imaginary ω correspond to
negative values of ω2. Each positive ω2 has a positive and negative solution ω. The positive
solution will grow while the negative is damped. Thus, we are interested in non-negative
values of ω2 which are obtained from (3.2). This leads to the same expression for the
range of growing wavelengths as for the Stokes fluid in § 3.1 because the relevant factor
in the dispersion relation is identical, i.e. the anisotropy ratio γ z/γ φ enters the equation
in the same way. However, the prefactor of the growth rate changes ω2

0 = γ φ/(ρR3
0), it

now depends on the density rather than on the viscosity and is the squared inverse of
the capillary time based on the azimuthal tension γ φ . Furthermore, the geometrical factor
containing the Bessel functions is remarkably different.
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1
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(c)

FIGURE 3. Dispersion relation for an ideal fluid with ρ = ρo. Curves are shown for (a) isotropic
interfacial tension γ z/γ φ = 1.0 and for anisotropic interfacial tension with (b) γ z/γ φ = 0.5 and
(c) γ z/γ φ = 2.0. We distinguish the contributions from γ φ (green) and γ z (orange). While γ z is
purely damping, γ φ is destabilising. An anisotropic tension strongly alters the range of growing
modes and shifts the maximum towards larger kR0 in (b) or smaller kR0 in (c).

The dispersion relation (3.2) for the ideal fluid is shown in figure 3(a–c) for same
values of the anisotropy ratio as in figure 2(a–c). We again observe a strong variation
of the maximum position and range of unstable modes with changing anisotropy ratio.
A remarkable difference to the Stokes fluid is the shape of the γ φ contribution. Here for
an ideal fluid the destabilising γ φ contribution no longer reaches a maximum at finite kR0
but instead increases indefinitely. Thus, in the limit γ z = 0 all modes are unstable with
steadily increasing growth rate. Compared to the Stokes fluid, the total dispersion relation
is furthermore more asymmetric between kR0 = 0 and

√
γ φ/γ z and the maximum shifts

towards larger wavenumbers (compare e.g. figure 2b to figure 3b).
In appendix E we further generalise our results to the dispersion relation including a

general density and viscosity contrast as derived by Tomotika (1935).

4. Quantitative analysis of the effects due to tension anisotropy

4.1. Dominant wavelength
Having determined the range of (un)stable wavenumbers in the previous section, we now
explicitly investigate how tension anisotropy affects the value of the dominant, i.e. fastest
growing, wavelength λm. This quantity is of practical interest as it determines the size of
the fragmented vesicles/droplets and provides an intrinsic length scale of the instability.
For arbitrary ratios γ z/γ φ , we use Mathematica to determine numerically the maximum
of the dispersion relation (3.1) and (3.2). We further perform fully three-dimensional
simulations of a membrane endowed with interfacial tension using BIM and LBM/IBM,
as detailed in § 2.4. While BIM intrinsically solves the fluid dynamics in the Stokes limit,
LBM/IBM simulations are run for Oh ≈ 0.00025, i.e. very close to the ideal fluid limit.
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(a)

FIGURE 4. Dominant wavelength as function of the anisotropy in interfacial tension.
(a) Simulation results from BIM for the Stokes fluid are in very good agreement with the
analytical results obtained from the dispersion relation (3.1). (b) Results for the ideal fluid from
LBM/IBM agree very well with dominant wavelength obtained from the analytical dispersion
relation (3.2). While the whole curve is at larger values in the Stokes limit, in both cases the
dominant wavelength increases steadily with increasing γ z/γ φ . Simulation snapshots of the
interface are shown for different ratios γ z/γ φ over a length of about 55R0 as insets.

The result of the linear stability analysis is compared to the simulation results in figure 4.
The solid lines show how the position of the maximum of the dispersion relations (3.1)
(orange line in figure 4a) and (3.2) (red line in figure 4b), i.e. the dominant wavelength
λm, changes with the ratio γ z/γ φ . The simulation results for the Stokes fluid using BIM
are drawn as triangles, those for the ideal fluid using LBM/IBM as squares. Both are in
very good agreement with the respective theoretical predictions. For the Stokes fluid the
obtained value kmR0 ≈ 0.562 (i.e. λm/R0 ≈ 11.18) for isotropic tension γ z/γ φ = 1 is in
good agreement with Tomotika (1935) and Stone & Brenner (1996). For the ideal fluid
the dominant wavelength is smaller compared to the Stokes limit, which is true for all
values of kR0. For both Stokes fluid and ideal fluid increasing the ratio γ z/γ φ leads to
an increase in the wavelength compared to its value at isotropic tension (illustrated by
the insets from simulations on the right-hand sides of figures 4a and 4b). For decreasing
ratio the opposite happens, the wavelength decreases (see inset from simulations at the
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Anisotropic Rayleigh–Plateau instability. Part 1 910 A46-13

top of figures 4a and 4b). Over the entire range of interfacial tension ratios we observe
a nonlinear dependence of the wavelength on the anisotropy ratio. In the Stokes regime
at an anisotropy ratio of zero a finite wavelength dominates. This is due to the fact that
the γ φ-contribution to the dispersion relation, as shown in figure 2(d), does not diverge
for large wavenumbers but rather has a maximum at kmR0 = 1.59 which corresponds to
a wavelength of λm = 3.96R0. This value matches the y-axis intercept of the dominant
wavelength in figure 4(b). For the ideal fluid, however, for vanishing anisotropy ratio the
wavelength goes to zero. In the limit of infinite ratio the wavelengths tend to infinity for
both Stokes and ideal fluid.

In order to explain the effect of anisotropic interfacial tension, we first recall the classical
Rayleigh–Plateau mechanism where two opposing effects influence the break-up. Since the
radius in the region of a constriction is smaller than in a peak region, a pressure gradient
develops pushing fluid out of the constriction and thus amplifying the disturbance. At the
same time, however, due to the perturbation of the surface, the radius of curvature along
the z-direction is negative in the region of the constriction and positive in the region of
a peak. As can be seen from the Young–Laplace equation (2.4) this introduces another
pressure gradient dragging the liquid back from the peak regions thus counteracting the
pressure difference due to variations of the radius. The instability is a result of the interplay
of both effects. An anisotropic interfacial tension weights these effects by either the
azimuthal tension γ φ or axial tension γ z. Thus, a change in the ratio of the interfacial
tension leads to a change in the weighting, shifting the region of growing wavelength and
also altering the most unstable wavelength. This argument is illustrated by the three cases
of the dispersion relation with its different contributions shown in figures 2 and 3.

The limit λm → ∞ for γ z → ∞ can be understood on the basis of the Young–Laplace
equation for anisotropic interfacial tension in (2.4), as well. For infinite γ z a finite
curvature along z would result in an infinite pressure difference. Thus, the interfacial
tension must be balanced by a vanishing curvature, i.e. by an infinite curvature radius,
which is equivalent to an infinite wavelength.

Finally, we discuss the limit γ z → 0. We start with considering the ideal fluid. Due
to finite γ φ every circular segment of the interface along the cylinder axis tends to
contract. The incompressibility of the liquid inside prevents this homogeneous contraction.
This means that a volume conserving neck–tail perturbation between two neighbouring
thin circular segments, thus with very small wavelength and very large curvature in
the z-direction, can in principle be established. Since γ z → 0 there is no counteracting
contribution which balances this tendency. The monotonic increase of the growth rate for
the γ φ-contribution with increasing k, as shown by the course of the dispersion relation in
figure 3, suggests that such a perturbation grows fastest. This, in total, results in λm → 0
for the ideal fluid. In the Stokes limit, however, the γ φ-contribution is finite for large
kR0, possibly due to viscous stresses from the fluid which have a damping effect on the
perturbation.

4.2. Transition between the two regimes
In the following, we will show that the border between the Stokes regime and the ideal
fluid limit is not necessarily clear cut. In fact, by varying nothing more than the anisotropy
ratio, the system can undergo a transition from one regime to the other. To demonstrate this
transition, we present simulations using the LBM/IBM for typical parameters of biological
cells/vesicles. We choose an interfacial tension of γ φ = 10−4 N m−1, which is the cortical
tension reported for neutrophils (Tinevez et al. 2009) and in the middle of the range
of typical tensions reported by Winklbauer (2015). As typical diameter of the tubular
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FIGURE 5. Transition between both regimes. (a) LBM/IBM simulations with typical vesicle
and cell parameters (green dots) show dominant wavelengths between the two curves obtained
in the limit of a Stokes fluid (orange) and an ideal fluid (red). (b) The transition between the two
regimes in the wavelength is accompanied by a strong variation in the Ohnesorge number with
respect to the tension along the axis z, i.e. Ohz.

vesicle we choose 2R0 = 1 μm and for the surrounding fluid density ρ = 1000 kg m−3

and viscosity η = 1.2 × 10−3 Pa s.
The dominant wavelength is shown in figure 5(a) as a function of the anisotropy

ratio with green dots. For a clear comparison we also show the Stokes fluid dispersion
relation in orange and the relation for the ideal fluid in red. The numerical simulations
exhibit a transition between the two curves. For a small anisotropy ratio we obtain a finite
wavelength, which nearly matches the result in the Stokes regime. In the case of isotropic
tension we obtain a dominant wavelength of kmR0 ≈ 0.628 (i.e. λm/R0 ≈ 10.005), a value
in between the one for the ideal fluid and the Stokes regime. For larger values of the
anisotropy ratio we end up close to the curve for an ideal fluid.

We explain the transition between both regimes by the varying Ohnesorge number,
which is shown in figure 5(b). By varying the anisotropy ratio, either the Ohnesorge
number Ohφ or Ohz varies, while the other can be kept constant. Here, we keep Ohφ ≈ 5.5
shown by the dark-green downwards-pointing triangles in figure 5(b). Consequently, Ohz
changes from 30 to approximately 2.5, as shown by the light-green upwards-pointing
triangles. The transition in the Ohnesorge number Ohz is matched by the transition in
the wavelength. At small anisotropy ratios with large Ohnesorge number, the wavelength
is close to the analytical prediction for the Stokes equation. This is in good agreement
with the Stokes equation having Oh → ∞. Towards larger anisotropy ratios the Ohnesorge
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Anisotropic Rayleigh–Plateau instability. Part 1 910 A46-15

number becomes smaller and the wavelength approaches the predictions for an ideal
fluid. We thus conclude that finite inertia effects trigger the transition, even though the
Ohnesorge number is still larger than one. Our results clearly show that finite inertia
effects can alter the Rayleigh–Plateau instability of tubular vesicles, even though their
micrometric dimensions may at first sight suggest the opposite.

4.3. Dominant growth rate
We now investigate the growth rate of the most unstable mode ωm, i.e. the value of the
maximum of the dispersion relation, in a quantitative manner. Using Mathematica we
determine the maximum growth rate for varying tension anisotropy from the analytical
dispersion relation. In addition, we perform simulations as described in § 2.4, where we
extract the growth rate as described in appendix A.

The results in the limit of a Stokes fluid are shown in figure 6(a) and the limit of
an ideal fluid is shown in figure 6(b). With increasing tension anisotropy the dominant
growth rate decreases strongly. This can again be explained by the stabilising nature of
the axial tension γ z which slows down the instability. For tension anisotropy approaching
infinity the growth rate approaches zero. At tension anisotropy equal zero we observe a
finite growth rate of ωm ≈ 0.087 for the Stokes fluid in (a), which results from viscous
stresses in the Stokes fluid. In stark contrast, for an ideal fluid in (b) the maximum growth
rate increases more strongly and even diverges for tension anisotropy to zero due to the
destabilising nature of the azimuthal tension γ φ . Simulation results for the Stokes fluid
with BIM (triangles) and for the ideal fluid with LBM/IBM (squares) are in very good
agreement with the corresponding analytical results. From the inverse of the growth rate
the linear break-up time can be estimated, which is the time it takes until a droplet or
vesicle pinches off. From figure 6 we can conclude that with decreasing tension anisotropy
the break-up of the interface is strongly accelerated.

4.4. Nonlinear correction to the linear break-up time
After discussing dispersion relation, growth rate and dominant wavelength obtained
by linear stability analysis, we now proceed to investigate the nonlinear behaviour of
the Rayleigh–Plateau instability. This is covered by the simulations presented above
using BIM for a Stokes fluid and LBM/IBM for an ideal fluid. In the following, we
extract the nonlinear correction of the linear break-up time (Ashgriz & Mashayek 1995;
Martínez-Calvo et al. 2020), which we define based on (A 1) by

Δtnl = tb − ln(ε−1
0 )

ωm
, (4.1)

from simulations with initial perturbation amplitude ε0 as described in appendix A. This
correction compares the break-up time obtained from simulations tb to the linear break-up
time obtained from the maximum growth rate of the dispersion relation ωm and is shown
in figure 7 in relation to tb. In the limit of a Stokes fluid the nonlinear correction varies
strongly: we observe a change of sign above an anisotropy ratio of about γ z/γ φ = 0.5
where the correction becomes strongly negative. The nonlinear correction for the ideal
fluid for the LBM/IBM is smaller, positive, and slightly increases with increasing tension
anisotropy. For isotropic tension but varying Marangoni number of a surfactant-covered
fluid jet Martínez-Calvo et al. (2020) report effects going in the same direction with a
more pronounced variation of the nonlinear correction of the linear break-up time towards
the Stokes limit and less variation towards the ideal fluid limit.
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FIGURE 6. Growth rate of the dominant mode as a function of the anisotropy in interfacial
tension. The dominant growth rate according to the dispersion relation (a) for a Stokes fluid
(3.1) (orange line) and (b) for an ideal fluid (3.2) (red line) is shown with corresponding
BIM simulations (triangles) and LBM/IBM simulations (squares), respectively, depending on
the tension anisotropy γ z/γ φ . The dominant growth rate decreases steadily and strongly with
increasing tension anisotropy. While the decrease with increasing anisotropy is similar, the
growth rate is one order of magnitude larger for the ideal fluid and it does not remain finite
at zero anisotropy in contrast to the Stokes fluid in (a). In both cases simulation results are in
perfect agreement with the theory.

5. Influence of interface viscosity

We now investigate how anisotropic interfacial tension influences the instability
wavelength and growth rate in the Stokes regime if the interface in addition possesses
interface viscosity (Boussinesq 1913; Scriven 1960; Whitaker 1976; Hajiloo, Ramamohan
& Slattery 1987; Powers 2010; Yazdani & Bagchi 2013; Narsimhan et al. 2015;
Martínez-Calvo & Sevilla 2018; Guglietta et al. 2020). The dispersion relation in presence
of interface viscosity and tension anisotropy is derived in appendix B.3 and reads

ω = γ φ

ηR0

(
1 − γ z

γ φ
(kR0)

2

) (
1 + 2ηS

ηR0
kR0ξ

)−1 [
I1(kR0)K1(kR0)

+kR0

2
(I1(kR0)K0(kR0) − I0(kR0)K1(kR0))

]
(5.1)
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FIGURE 7. Nonlinear correction of the linear break-up time for varying tension anisotropy. The
nonlinear correction of the linear break-up time is shown relative to the break-up time tb obtained
from simulations. In the limit of an ideal fluid the LBM/IBM simulations show a slightly
increasing nonlinear correction to the linear break-up time with increasing tension anisotropy.
In contrast, BIM simulations show the reversed behaviour for a Stokes fluid, where in addition
the sign changes and the amplitude variations are more pronounced.

with the abbreviation

ξ = − 1
2 [kR0I1(kR0)K1(kR0) − kR0I0(kR0)K0(kR0)] . (5.2)

For vanishing interface viscosity ηS the dispersion relation correctly reduces to (3.1).
From the dispersion relation we numerically calculate the dominant wavelength λm

and the corresponding growth rate ωm for varying anisotropy ratio γ z/γ φ and interface
viscosity ηS, which we measure relative to fluid viscosity η. Phase diagrams of the
dominant wavelength and the corresponding growth rate are shown in figures 8(a) and
8(b), respectively. Typical values for the interface viscosity of vesicles and red blood cells
reported in the literature vary from 10−10 Pa s m to 10−7 Pa s m (Dimova et al. 2006; den
Otter & Shkulipa 2007; Guglietta et al. 2020). In combination with typical fluid viscosities
(§ 2.4) and sizes of the order of R0 = 1 μm for vesicles and R0 = 4 μm for red blood
cells this leads to typical viscosity ratios 2ηS/(ηR0) = 0.1–40. In figure 8 these values
correspond to the range from approximately −1 to approximately 1.6 on the ordinate. For
fixed values of the viscosity ratio, an increase in the anisotropy ratio leads to a larger
dominant wavelength and smaller maximum growth rate. This is in line with the results
discussed above for zero interface viscosity in §§ 4.1 and 4.3. Especially in the region of
small interface viscosities, changes in ηS have little effect on dominant wavelength and
growth rate, but also around a fraction of 1 the anisotropy dominates. If the interface
viscosity ηS becomes very large compared to the fluid viscosity, the growth rate tends to
zero, as a more viscous interface leads to a slower dynamics of the perturbation. The latter
is consistent with the results of Narsimhan et al. (2015) for isotropic interfaces. We also
note that the maximum wavenumber of the instability, beyond which perturbations do not
grow, is influenced only by the anisotropy ratio and not the viscosity ratio, because the
root of the dispersion relation (5.1) is determined by the first term in brackets.
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FIGURE 8. Influence of interface viscosity on the anisotropic Rayleigh–Plateau instability.
Phase diagrams for (a) the dominant wavelength and (b) the corresponding growth rate. The
dominant wavelength increases both with increasing anisotropy ratio and increasing interface
viscosity ηS. The growth rate of the dominant perturbation decreases with increasing anisotropy
ratio and interface viscosity. Despite the increase in the wavelength and the slowing down of the
instability for very large values of the interface viscosity, the tension anisotropy is the dominating
parameter.

6. Formation of satellite droplets for an ideal fluid jet without ambient fluid under
influence of tension anisotropy

We eventually consider an ideal fluid jet without ambient fluid, i.e. η0 = 0 and ρ0 � ρ.
In appendix C we derive the dispersion relation including anisotropic interfacial tension
and show that for the ideal fluid jet without ambient fluid similar results hold as for the
ideal fluid discussed in §§ 3.2 and 4. To compare our analytical results to simulations of an
ideal fluid jet without ambient fluid we develop an axisymmetric simulation method based
on a long-wavelength (or small-k) approximation as detailed in appendix D. We consider
the Navier–Stokes equation (D 9) together with the kinematic boundary condition (D 10)
in the small-k approximation and solve them numerically. From the dynamic evolution the
dominant growth rate and wavelength can be calculated, similarly to the procedure for the
three-dimensional simulations detailed in appendix A. They are in good agreement with
the theory as detailed in appendix C. We further obtain the jet shape over time.

With this, we are able to study the formation of satellite droplets under anisotropic
interfacial tension. Satellite droplets are typically much smaller than and form in between
the main drops during break-up of a liquid jet for certain parameter combinations (Eggers
& Dupont 1994; Eggers 1997; Martínez-Calvo et al. 2020). In the presence of an ambient
fluid (BIM and LBM/IBM simulations) we do not observe satellite droplet formation,
which may be related to limitations in the resolution of our simulation and the fact that
we do not simulate the actual pinch-off. In the following, we therefore investigate satellite
droplet formation using the small-k simulations for a liquid jet without ambient fluid at
varying tension anisotropy and viscosity. Starting with the zero-viscosity, ideal fluid jet
(Oh = 0), we observe satellite droplets as shown at the bottom of figure 9. As the dominant
wavelength increases with increasing anisotropy, the satellite droplet at the bottom right
of figure 9 is more elongated compared to the left one. However, both satellites possess
the same relative volume of approximately Ξ = 3 % (Rutland & Jameson 1970; Lafrance
1975; Mansour & Lundgren 1990; Ashgriz & Mashayek 1995; Eggers 1997), which is
defined as the volume integral over the satellite droplet divided by the volume integral
over one period of the perturbation (Martínez-Calvo et al. 2020). For the ideal fluid jet, Ξ
is independent of the tension anisotropy.
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FIGURE 9. Formation of satellite droplets under the influence of tension anisotropy in the
absence of an ambient fluid ρo = 0, ηo = 0. Relative volume Ξ of the satellite droplet for
varying tension anisotropy γ z/γ φ and varying Ohnesorge number Oh. Parameter combinations
for the shapes shown around the colour map are indicated in the phase diagram by black
crosses. For the ideal fluid jet without ambient fluid with ρo = 0 (Oh = 0) the relative volume
of 3 % remains constant while for the Stokes fluid without ambient fluid ηo = 0 (large Oh) no
satellites appear. In the intermediate range, a significant influence of tension anisotropy on the
relative volume is observed. Especially, the satellite droplet becomes cylindrical for large tension
anisotropy, as shown in the top right image.
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As our small-k simulations are based on the full Navier–Stokes equation, they allow
us to explore the effect of fluid viscosity measured in terms of the Ohnesorge number
Oh on the satellite droplet. In the centre of figure 9 we show the relative volume Ξ
in a colour map. For isotropic interfacial tension, we observe a decrease in the satellite
volume, which is in agreement with results reported by Martínez-Calvo et al. (2020)
in the absence of surfactants. With increasing Ohnesorge number the phase diagram in
figure 9 shows a growing influence of the anisotropy. For a small but non-zero Oh ≈ 0.2,
the volume assumes its maximum at γ z/γ φ = 0 and decreases with increasing anisotropy.
At higher Oh, the effect is reversed and the volume strongly increases with increasing
tension anisotropy. In contrast to Oh = 0, at larger Ohnesorge number Oh = 0.9 the shape
of the satellite droplet is strongly influenced by an increase in tension anisotropy from
γ z/γ φ = 0.5 to γ z/γ φ = 3.5 as illustrated by the images at the top of figure 9. For
small anisotropy (upper left shape) the satellite droplet is small and spherical but most
remarkably for larger tension anisotropy (upper right) it develops a more cylindrical shape,
it is longer and larger. In both cases the satellite droplet is connected to the main droplets
by a thin fluid string. At very large Ohnesorge number beyond one, i.e. towards the Stokes
regime, the satellite volume decreases to zero over the whole range of anisotropy. All in
all, over a broad range of intermediate Ohnesorge numbers we observe a striking influence
of tension anisotropy on the satellite droplet, where at larger Oh larger tension anisotropy
stabilises the satellite droplet.

7. Conclusion

Using linear stability analysis supported by numerical simulations we generalised the
Rayleigh–Plateau mechanism for the break-up of a liquid cylinder to situations where
the interfacial tension is anisotropic. Two physically relevant situations were studied: a
vesicle/biological cell in the limit of small Reynolds number (Stokes equation) and an ideal
fluid in the limit of large Reynolds number (Euler equation). We found that anisotropic
interfacial tension alters not only the range of growing perturbations but also strongly
affects the dominant wavelength of the instability. If the axial tension is inferior/superior
to the azimuthal tension, the dominant wavelength becomes smaller/larger than the
wavelength of the classical isotropic Rayleigh–Plateau instability. For strong anisotropy,
the dominant wavelength can even lie outside the instability range of the classical isotropic
Rayleigh–Plateau instability. The predictions of our linear stability analysis were found to
be in excellent agreement with numerical simulations using a boundary integral method
at low and a lattice-Boltzmann/immersed boundary method at high Reynolds number.
LBM/IBM simulations with typical vesicle/cell parameters, which include finite inertia
effects, show a transition in the wavelength for decreasing Ohnesorge number from the
Stokes regime to the ideal fluid. Using simulations, we found the nonlinear correction to
the linear break-up time to decrease/increase with the anisotropy ratio in the Stokes/Euler
limits, respectively. We found that including viscosity of the interface surrounded by
Stokes fluid leads to an increase in the dominant wavelength and a slower dynamics of the
perturbation. However, except at very large interface viscosity, changes are small compared
to the effects of varying tension anisotropy. Finally, we showed that the satellite droplet
volume of 3 % is not affected by varying tension anisotropy in the limit of an ideal fluid.
For Ohnesorge numbers just below one, the satellite volume decreases with increasing
anisotropy.

In Part 2 we investigate the alteration of the anisotropic Rayleigh–Plateau instability
due to the bending and shear elasticity present in a typical cell. Besides biological cells,
our results apply to synthetic interfaces with anisotropic properties such as nematic liquid
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FIGURE 10. Illustration of the analysis of the numerical simulations. (a) For fixed values
of the anisotropic interfacial tension, in this case γ z/γ φ = 0.4, we run multiple simulations
with varying wavelengths of the interface perturbation. One simulation corresponds to one
wavelength, which is determined by the number of maxima (different curves) per box length. The
radius averaged over all maxima divided by the unperturbed radius R0 is shown over time. The
inset shows the growth up to a radius of 110 % of R0. The first simulation to reach this threshold
is considered as the fastest growing mode. (b) LBM/IBM simulations of a single period of the
perturbation with increasing resolution and smaller initial perturbation amplitude ε0 = 0.002
allow us to determine the growth rate (here shown for different perturbation wavelengths with
γ z/γ φ = 2 in comparison to the analytical solution (3.2)) and the nonlinear correction of the
linear break-up time.

crystals confined to interfaces (Keber et al. 2014) or cell-laden hydrogels extruded from a
nozzle during bioprinting applications (Snyder et al. 2015; Mandrycky et al. 2016).
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Appendix A. Simulation analysis

In the following we explain in detail the analysis procedure of the BIM and LBM/IBM
simulations. In order to analyse in simulations both the wavelength of the dominant mode
and its growth rate we consider the interface shape over time for a given perturbation and
track a local maximum corresponding to a later droplet/vesicle as shown in figure 10(a).
In order to obtain the most unstable mode for given anisotropic interfacial tension
in the simulations, we consider a cylindrical interface of fixed anisotropic interfacial
tension immersed in a fluid of fixed properties and apply a series of perturbations
with varying wavelength. One simulation corresponds to one perturbation with fixed
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910 A46-22 K. Graessel, C. Bächer and S. Gekle

wavelength. The initial amplitude of the perturbation is chosen as ε(t = 0) = 0.02R0 in
all simulations. Note that a multiple of the wavelength has to fit in the simulation box and
we thus vary the wavelength in discrete steps. Figure 10(a) shows an example of a series
of simulations for given anisotropic interfacial tension γ z/γ φ = 0.4 using the LBM/IBM.
In this example we force a perturbation with 10–17 maxima onto a cylindrical interface
in a box of length 650 grid cells. Each curve corresponds to a simulation with different
wavelength of the perturbation. In each of the simulations the radius at the position of the
different maxima is tracked over time. The curves show the local radius at the position
of the maxima, averaged over all maxima, varying in time. From the initial amplitude
ε(t = 0) = 0.02R0 all modes grow with a different speed. In order to determine the fastest
growing wavelength, we define a threshold for the amplitude εcrit = 0.1R0, which can
be considered as an upper limit of small deformations. The inset of figure 10 shows
the growth of all modes up to the radius R0 + εcrit. The mode which first reaches this
threshold, is considered as the fastest growing mode and its corresponding wavelength
as the most unstable wavelength. This procedure can be applied to different values of
the anisotropy ratio γ z/γ φ and allows us to numerically determine the most unstable
wavelength depending on tension anisotropy. With increasing wavelength we increase the
box length in order to ensure a good resolution for this procedure. Nevertheless, the finite
box size and the resulting discrete variation of the wavelength result in discretisation
effects. In order to account for these discretisation effects we compute the range in
wavelength which cannot be distinguished due to the discrete variation: adding/subtracting
half the wavelength is not possible for a given box length, because we necessarily enforce
an integral number of wavelengths in the simulation box. This range is given in the figures
as error bars of the simulation results.

The growth rate is calculated as the quotient of the derivative of the maximum radius
over time and the maximum radius itself, in a regime of linear growth. In BIM simulations
we use the series of perturbations as detailed above, for the LBM/IBM simulations we
consider one period of the dominant perturbation with increased resolution and initial
perturbation amplitude ε0 = 0.002. Figure 10(b) shows the growth rate determined from
simulations for varying wavenumber in comparison to the analytically obtained dispersion
relation (3.2) for LBM/IBM simulations. An error is estimated from the average value of
the quotient which determines the growth rate.

As a measure of the nonlinear behaviour covered by the simulations, we further extract
the nonlinear correction to the linear break-up time Δtnl defined in (4.1). To do so we
determine the break-up time in the simulation tb by tracking a minimum of the interface
shape over time and extrapolating the last time steps towards a radius of zero. From the
analytical evolution of a perturbation based on the linear stability analysis as given in (B 1)
the linear break-up time can be calculated at the position of a minimum by

Rmin = R0 − R0ε0 eωt != 0. (A 1)

The difference between tb and the linear break-up time determines the nonlinear correction
as given by (4.1).

Appendix B. Analytical derivation of the dispersion relations

B.1. Dispersion relation for a Stokes fluid
In the following we consider the inner and outer fluid in the Stokes limit with same
viscosity, i.e. ηo = η. The following calculations are based on the method introduced by
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Anisotropic Rayleigh–Plateau instability. Part 1 910 A46-23

Stone & Brenner (1996). We use an ansatz of a cylindrical interface which is slightly
perturbed in a periodic fashion with time dependent amplitude ε(t) � 1. For later
convenience we write the equation describing the shape as

R = R0 (1 + ε(t) cos(kz)) , (B 1)

which is a slightly different notation but equivalent to the ansatz in (2.1). We calculate
the traction jump at the interface Δfn in (2.2), which is equal to the negative membrane
force, using (B 1) and assuming that the magnitude of the interface perturbation is small,
i.e. ε � 1,

γ φ

R(z, t)
+ γ z

Rz(z, t)
≈ γ φ

R0
(1− ε cos(kz))−γ z ∂

2R
∂z2

= γ φ

R0

(
1−

[
1 − γ z

γ φ
(kR0)

2

]
ε cos(kz)

)
.

(B 2)
The traction jump can be decomposed into a constant pressure contribution p0 = γ φ/R0
and a perturbation in the traction jump

− γ φ

R0
ε

(
1 − γ z

γ φ
(R0k)2

)
cos(kz), (B 3)

which is evaluated at the position of the unperturbed interface due to linearisation
(Tomotika 1935; Stone & Brenner 1996). The goal now is to solve the Stokes equation
(2.8) in the presence of the traction jump perturbation (B 3). This is done by considering
a ring force representing the traction jump (Stone & Brenner 1996) such that the Stokes
equation becomes

− ∇p + η∇2v + êrδ (r − R0)
γ φε

R0

(
1 − γ z

γ φ
(R0k)2

)
cos(kz) = 0. (B 4)

The ring force in the radial direction (third term entering in (B 4) with the radial unit
vector êr) accounts for the presence of the membrane, from which a force due to interfacial
tension is acting on the fluid. The interfacial force is evaluated at the undeformed radial
position of the infinitely thin interface. As a consequence the ring force enters with a delta
distribution δ(r − R0).

In line with the periodic perturbation of the radius of the interface in (B 1), a periodic
ansatz for the velocity components and the pressure field is chosen (Stone & Brenner 1996)

vr(r, z) = γ φε

η
v̄r(r) cos(kz), (B 5)

vz(r, z) = γ φε

η
v̄z(r) sin(kz), (B 6)

p(r, z) = γ φε

R0
p̄(r) cos(kz), (B 7)

where, due to the perturbation of the interface (B 1) and kinematic boundary conditions,
the radial velocity is written with a cosine while the axial velocity due to continuity
equation (2.6), which involves a derivative with respect to z, is written with a sine. The
prefactor of the velocities γ φ/η is chosen such that v̄r and v̄z become dimensionless,
where the same applies for the pressure prefactor. The velocity prefactor γ φ/η is identical
to the viscocapillary velocity based on the azimuthal tension γ φ . The amplitude of the
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910 A46-24 K. Graessel, C. Bächer and S. Gekle

perturbation varies in time, i.e. ε = ε(t). For solving the Stokes equation we introduce
the Hankel transforms (Poularikas 2000) of the velocity amplitudes Vr(s), Vz(s) and the
pressure P(s)

Vr(s) = H1 [v̄r] =
∫ ∞

0
v̄r(r)rJ1(sr) dr, (B 8)

Vz(s) = H0
[
v̄z

] =
∫ ∞

0
v̄z(r)rJ0(sr) dr, (B 9)

P(s) = H0
[
p̄
] =

∫ ∞

0
p̄(r)rJ0(sr) dr, (B 10)

together with their inverse transforms

v̄r(r) = H−1
1 [Vr] =

∫ ∞

0
Vr(s)sJ1(sr) ds, (B 11)

v̄z(r) = H−1
0

[
Vz

] =
∫ ∞

0
Vz(s)sJ0(sr) ds, (B 12)

p̄(r) = H−1
0 [P] =

∫ ∞

0
P(s)sJ0(sr) ds, (B 13)

where Jν is the Bessel function of the first kind and order ν.
For the transformation of the Stokes equation (B 4) and continuity equation (2.6)

into Hankel space we use the following identities for the Bessel differential operators
(Poularikas 2000):

H1

[
∂2

∂r2
f + 1

r
∂

∂r
f − 1

r2
f
]

= −s2H1
[
f
]

(B 14)

and

H0

[
∂2

∂r2
f + 1

r
∂

∂r
f
]

= −s2H0
[
f
]
. (B 15)

Together with the Hankel transform of the ring force

H1

[
δ (r − R0)

γ φε

R0

(
1 − γ z

γ φ
(R0k)2

)
cos(kz)

]
= J1(sR0)γ

φε

(
1 − γ z

γ φ
(R0k)2

)
cos(kz),

(B 16)
we are able to write down the continuity equation together with the two components of the
Stokes equation in Hankel space

sVr + kVz = 0, (B 17)

s
R0

P − (s2 + k2)Vr +
(

1 − γ z

γ φ
(R0k)2

)
J1(sR0) = 0, (B 18)

k
R0

P − (
s2 + k2) Vz = 0. (B 19)

We can solve this system of equations for the radial velocity in Hankel space and obtain

Vr =
(

1 − γ z

γ φ
(R0k)2

)
k2 1

(s2 + k2)2
J1(sR0), (B 20)
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Anisotropic Rayleigh–Plateau instability. Part 1 910 A46-25

which leads to the radial velocity in real space using the inverse Hankel transform

vr = γ φε

η
cos(kz)

(
1 − γ z

γ φ
(R0k)2

)
k2

∫ ∞

0

sJ1(sR0)J1(sr)
(s2 + k2)2

ds. (B 21)

As done in the case of the ideal fluid jet without ambient fluid, we consider a
perturbation of the interface growing with rate ω, i.e.

ε(t) = ε0 eωt. (B 22)

The kinematic boundary condition at the interface leads to

vr(r = R0, z) = R0∂tε cos(kz) = R0ωε cos(kz), (B 23)

and using (B 21) we obtain the growth rate

ω = γ φ

R0η

(
1 − γ z

γ φ
(R0k)2

)∫ ∞

0

k2sJ1(sR0)
2

(s2 + k2)2
ds. (B 24)

The integral can be evaluated (Gradshteı̆n, Ryzhik & Jeffrey 2007, 6.535), taking the
derivative with respect to variable k in the denominator) and we obtain the dispersion
relation for a Stokes fluid in (3.1).

B.2. Dispersion relation for an ideal fluid
Below we perform a linear stability analysis in the ideal fluid limit. Since the perturbation
of the interface between both fluids is small, also the perturbation of the velocity is small.
Because we consider a co-moving frame, the velocity vector contains only the perturbation
and thus is small, vi � 1, as well. As a consequence, the nonlinear term in the Euler
equation is of second order and can be neglected, leading to the linear Euler equation

∂v

∂t
= − 1

ρ
∇p. (B 25)

We here solve the linearised Euler equation (B 25) which is valid for each position (r, z)
both in the inner and in the outer fluid of same density ρo = ρ. Note that the continuity
equation does not change compared to the previous section.

In the linearised Euler equation we add the traction jump that here equals a pressure
disturbance occurring at the interface due to interfacial tension according to (2.4), which
is expanded as done in (B 1) and enters in terms of a ring force. In turn we have to solve

∂

∂t
v = − 1

ρ
∇p + êrδ(r − R0)

1
ρ

γ φε

R0

(
1 − γ z

γ φ
(kR0)

2

)
cos(kz). (B 26)

In the linearised Euler equation (B 25) the density appears rather than the viscosity. In
the perturbation ansatz for the velocity (B 5) and (B 6) the prefactor changes accordingly
to

√
γ φ/(ρR0). The prefactors are chosen such that v̄r(r), v̄z(r) are again dimensionless.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 7
9.

19
9.

38
.2

48
, o

n 
22

 Ja
n 

20
21

 a
t 0

9:
54

:2
8,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
94

7
pub3



910 A46-26 K. Graessel, C. Bächer and S. Gekle

In total, after transformation into the Hankel space, we obtain the analytical equations

sVr = −kVz, (B 27)

ωVz =
√

γ φ

ρR0
kP, (B 28)

ωVr =
√

γ φ

ρR0
sP + R0

√
γ φ

ρR0
J1(sR0)

(
1 − γ z

γ φ
(kR0)

2

)
, (B 29)

which are solved for the radial component of the velocity, as done in the case of the Stokes
equation in § 3.1. We obtain for the velocity

vr(r, z) = k2R0

ω

γ φ

ρR0
ε cos(kz)

(
1 − γ z

γ φ
(kR0)

2

) ∫ ∞

0

sJ1(sR0)J1(sr)
k2 + s2

ds (B 30)

and using the kinematic boundary condition we obtain the squared growth rate

ω2 = k2 γ φ

ρR0

(
1 − γ z

γ φ
(kR0)

2

) ∫ ∞

0

sJ2
1(sR0)

k2 + s2
ds. (B 31)

We can again evaluate the integral (Gradshteı̆n et al. 2007, 6.535) and the resulting
dispersion relation for an ideal fluid is given in (3.2).

B.3. Dispersion relation taking interface viscosity into account
We now derive a dispersion relation for a system where, in addition to the fluid viscosity
η, a viscosity of the interface ηS is considered. The solution method starts from the Stokes
equation and is again based on the previous B.1. Here, the interface viscosity results in an
additional force acting from the interface onto the fluid (Scriven 1960; Narsimhan et al.
2015; Sprenger et al. 2020). The component normal to the interface is given by

f n
i.v. = 2ηS

R0
∂zvz = 2ηS

R0

γ φ

η
εv̄z(R0)k cos(kz), (B 32)

where surface incompressibility and for the second identity the velocity ansatz from (B 6)
is used. Similar to Powers (2010) we do not consider any tangential component of the
viscous force. This additional normal force contribution appears as an additional term in
the ring force in (B 4) such that (B 18) in the Hankel space becomes

s
R0

P − (
s2 + k2) Vr +

(
1 − γ z

γ φ
(kR0)

2 + 2ηS

ηR0
v̄z(R0)kR0

)
J1(sR0) = 0. (B 33)

Analogously, the radial velocity in Hankel space from (B 20) becomes

Vr =
(

1 − γ z

γ φ
(R0k)2 + 2ηS

ηR0
v̄z(R0)kR0

)
k2 1

(s2 + k2)2
J1(sR0), (B 34)

which is then transformed back to obtain vr, which still depends on v̄z(R0). In order to
obtain v̄z(R0), we use the continuity equation (B 17) to relate Vz to Vr and insert (B 34),
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Anisotropic Rayleigh–Plateau instability. Part 1 910 A46-27

then transform Vz back from Hankel space and thus identify

v̄z(R0) = −
(

1 − γ z

γ φ
(R0k)2 + 2ηS

ηR0
v̄z(R0)kR0

) ∫ ∞

0

s2kJ1(sR0)J0(sR0)(
s2 + k2

)2 ds, (B 35)

which is then solved for v̄z(R0). Following the same steps as in appendix B.1 we then
calculate the growth rate ω:

ω = γ φ

ηR0

(
1 − γ z

γ φ
(R0k)2 + 2ηS

ηR0
v̄z(R0)kR0

)
k2

∫ ∞

0

sJ1(sR0)
2

(s2 + k2)2
ds. (B 36)

The integral in this equation has already been solved in appendix B.1. Combining (B 36)
and the solution for v̄z(R0) and solving the integral in (B 35) (based on 49(13) and 49(14)
of Erdelyi et al. 1954) leads to the dispersion relation in (5.1).

Appendix C. Dispersion relation for an ideal fluid jet without ambient fluid

In deriving the dispersion relation for an ideal fluid jet without ambient fluid we follow
the ansatz by Eggers & Villermaux (2008). Here, we consider the outer fluid to have no
influence, i.e. ηo = 0 and ρo � ρ. As we perform a linear stability analysis, we again use
the linearised version of the Euler equation (B 25). By the linearised Euler equation (B 25)
and the continuity equation (2.6) the pressure p must fulfil a Laplace equation

∇2p = 0. (C 1)

Corresponding to the interface perturbation, a perturbation ansatz for the pressure
distribution in the jet is chosen (Eggers & Villermaux 2008)

p(z, r, t) = p0 + δp(z, r, t), (C 2)

with constant pressure p0 and a general perturbation δp. At the interface, the pressure is
determined by the modified Young–Laplace equation which according to (2.4) is

p0 + δp(r = R) = γ φ

R(z, t)
+ γ z

Rz(z, t)
. (C 3)

The pressure perturbation can be separated into the periodic perturbation in the z-direction,
its magnitude F(r) depending on the radial position and the constant prefactor δp̄

δp(z, r, t) = δp̄F(r) exp(ωt + ikz). (C 4)

The pressure obeys the Laplace equation (C 1), which in cylindrical coordinates and using
that p does not depend on the angular coordinate φ, reads

∂2p
∂r2

+ 1
r

∂p
∂r

+ ∂2p
∂z2

= 0. (C 5)

Now, using (C 2) for the pressure and inserting (C 4) leads to a partial differential equation
for the function F(r)

∂2F
∂r2

+ 1
r

∂F
∂r

− k2F(r) = 0. (C 6)
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910 A46-28 K. Graessel, C. Bächer and S. Gekle

This equation is solved by the modified Bessel function of the first kind and of order zero

F(r) = I0(kr). (C 7)

Using the perturbation ansatz (2.1) for the interface and considering anisotropic interfacial
tension, the perturbation in the pressure in (C 3) is in analogy to (B 3) given by

δp(r = R) = − ε0

R2
0

(
γ φ − γ zR2

0k2) exp(ωt + ikz). (C 8)

From (C 4) and (C 7) we have the relation δp = δp̄I0(kr) exp(ωt + ikz), which together
with (C 8) leads to the magnitude of the pressure perturbation

δp̄ = − ε0

R2
0

(
γ φ − γ zR2

0k2) 1
I0(kR0)

. (C 9)

Since ε0 � R0 we can evaluate the modified Bessel functions at the position of the
unperturbed interface R0.

In line with the ansatz for the pressure a perturbation ansatz for the velocity is chosen,

v = v0 + δv, (C 10)

with v0 the velocity of the unperturbed jet, which vanishes in the co-moving frame. The
motion of the interface is governed by the kinematic boundary condition

∂R
∂t

+ vz
∂R
∂z

= δvr(r = R). (C 11)

The velocity perturbation is linked to the pressure by the linearised Euler equation (B 25),
its r-component in cylindrical coordinates reads

∂δvr

∂t
= − 1

ρ

∂p
∂r

. (C 12)

Combination of the derivative with respect to time t of (C 11), where in linearised form
the second term on the left-hand side vanishes, and (C 12) gives

∂2R
∂t2

= − 1
ρ

∂p
∂r

∣∣∣∣
r=R

. (C 13)

Inserting the ansatz for the interface radius (2.1) on the left and the one for the pressure
(C 2) on the right-hand side of (C 13) and using the fact that I′0(x) = I1(x) leads to

ω2 = − k
ρε0

δp̄I1(kr)
∣∣∣∣
r=R

. (C 14)

Evaluating the modified Bessel functions at R0 and inserting (C 9) finally yields the
dispersion relation for an ideal fluid jet without ambient fluid

ω2 = γ φ

ρR3
0

kR0

[
1 − γ z

γ φ
(kR0)

2

]
I1(kR0)

I0(kR0)
. (C 15)

This dispersion relation is shown in figures 11(a)–11(c) for different values of the
anisotropy ratio. The general shape of the dispersion relation and the changes due to
variation of the anisotropy ratio are similar to that discussed in § 3.2.
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FIGURE 11. Results for an ideal fluid jet without ambient fluid. The dispersion relation for an
ideal fluid jet without ambient fluid with ρo = 0 is shown for (a) isotropic interfacial tension
γ z/γ φ = 1.0 and for anisotropic interfacial tension with (b) γ z/γ φ = 0.5 and (c) γ z/γ φ = 2.0.
We distinguish the contributions from γ φ (green) and γ z (orange). Depending on the tension
anisotropy (d) wavelength and (e) growth rate (blue curves) are shown in comparison with
the results presented above in figures 4(b) and 6(b) for an ideal fluid (red curves). While the
wavelength is similar to the case of an ideal fluid, for small and intermediate anisotropy ratios
the growth rate is visibly larger.
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910 A46-30 K. Graessel, C. Bächer and S. Gekle

In figures 11(d) and 11(e) dominant wavelength and corresponding maximal growth
rate for the ideal fluid jet without ambient fluid are drawn as blue lines. For isotropic
tension γ z/γ φ = 1 we recover the well-known result (Rayleigh 1878; Drazin & Reid
2004; Eggers & Villermaux 2008) for the dominant wavelength of kmR0 ≈ 0.697 (i.e.
λm/R0 ≈ 9.015). Simulations for the ideal fluid jet without ambient fluid based on the
small-k approximation are included as blue triangles. They agree well with the analytical
results. For comparison the curves and simulations for the ideal fluid from 4(b) and
6(b) are shown as red lines/squares. In figure 11(d) we see that the curves are quite
similar, i.e. the dominant wavelength changes only slightly when there is no ambient fluid.
The corresponding growth rate is significantly influenced by an additional ambient ideal
fluid at small and intermediate tension anisotropy, while the influence vanishes for large
anisotropy as we can observe in figure 11(e).

Appendix D. Long-wavelength description

D.1. Dynamic equations for jet simulations
In the following, we derive the fluid equations of motion in long-wavelength (or small-k)
approximation (Weber 1931; Eggers & Dupont 1994; García & Castellanos 1994; Eggers
1997) for a fluid jet without ambient fluid, i.e. ηo = ρo = 0. The final equations are then
solved numerically as detailed below to obtain the dynamic nonlinear evolution of an
ideal jet interface in absence of an ambient fluid. The perturbation of the interface is
considered to have a wavelength considerably longer than the radius of the liquid jet.
Therefore, a typical radial length is small compared to a typical axial length, i.e. terms with
a dependency on the radial position enter with a factor ε̂ � 1 (Eggers & Villermaux 2008).
The axial velocity is expanded in radial direction using a Taylor series and considering
axisymmetry

vz(z, r) = v0(z) + v2(z)ε̂2r2 + O(r4). (D 1)

From the continuity equation (2.6) one can obtain the radial velocity

vr = − 1
2v

′
0ε̂r − 1

4v
′
2ε̂

3r3 + O(r5), (D 2)

where a prime denotes the partial derivative with respect to z. Similarly, we consider an
expansion of the pressure with respect to the radial position

p(z, r) = p0(z) + p2ε̂
2r2 + O(r4). (D 3)

We further calculate the force from the inner fluid of the jet onto the interface using the
outward unit normal vector on the interface given by

n = 1√
1 + R′2

(
êr − R′êz

)
, (D 4)

with êz the unit vector along the jet axis. The normal component of the force is given
by the projection of the three-dimensional fluid stress twice onto the normal vector
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Anisotropic Rayleigh–Plateau instability. Part 1 910 A46-31

(Chandrasekharaiah & Debnath 2014)

− n · σ · n 	 +p0 + ηv′
0 (D 5)

and the tangential force evaluated at the interface r = R is

− t · σ · n 	 −η
(
2Rv2 − 1

2 Rv′′
0 − 3v′

0R′) , (D 6)

with t pointing along the interface which is perpendicular to n in the plane. Combining
the force from the internal fluid and the force due to anisotropic interfacial tension the
pressure at the interface follows

p0 = γ φ

(
1
R

− γ z

γ φ
R′′

)
− ηv′

0. (D 7)

In addition, we obtain from the tangential force across the interface

v2 = 1
4
v′′

0 + 3
2

1
R

v′
0R′. (D 8)

The Navier–Stokes equation determining the fluid dynamics finally becomes

∂tv0 + v0v
′
0 = − 1

ρ
γ φ

(
1
R

− γ z

γ φ
R′′

)′
+ 1

ρ
ηv′′

0 + ν
(
4v2 + v′′

0

)
. (D 9)

The kinematic boundary condition is also considered up to terms in lowest order with
respect to ε̂, which gives the dynamics of the interface

∂tR = −v0R′ − 1
2 Rv′

0. (D 10)

The closed system of coupled equations (D 9) and (D 10) can then be solved numerically.
We consider a one-dimensional interface which is discretised by 220 points. We initially
perturb the interface according to (D 11) with ε0 = 0.001 and initialise the velocity profile
v0(z) with zero. Derivatives of the radius and velocity profile are calculated at each time
step using quintic splines. This allows us to calculate (D 8) and the right-hand side of (D 9)
and (D 10). For solving the equations a three step Runge–Kutta algorithm is used with a
typical time step of Δt = 0.00025.

D.2. Dispersion relation in the long-wavelength description
The aim of the following discussion is to derive a simple, analytical equation for the
wavenumber and growth rate of the most unstable perturbation mode. This we use to
prescribe the dominant mode in small-k simulations of a fluid jet with varying Ohnesorge
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910 A46-32 K. Graessel, C. Bächer and S. Gekle

number. As ansatz for the periodic interface perturbation growing in time we use

R(z, t) = R0 + R0ε0 cos(kz) exp (ωt) (D 11)

and for the velocity
v0 = v̂ε0 sin(kz) exp (ωt) . (D 12)

Inserting the ansatz into the kinematic boundary condition (D 10) leads to

v̂ = −2
ω

k
(D 13)

in linear order in ε0. The Navier–Stokes equation leads to

ωv̂ = −γ φ

ρ

(
k

R0
− γ z

γ φ
k3R0

)
− 3

η

ρ
k2v̂. (D 14)

Combining both equations results in the dispersion relation for a fluid jet without ambient
fluid in the small-k approximation

ω2 = 1
2

γ φ

ρR3
0

(
(kR0)

2 − γ z

γ φ
(kR0)

4

)
− 3

η

ρR2
0
(kR0)

2ω, (D 15)

which now depends on tension anisotropy, fluid density and viscosity.
The dispersion relation in the small-k approximation (D 15) can be solved analytically

for the position of the maximum, i.e. the dominant mode

(kR0)max = 1√
2

γ z

γ φ
∓ 3

√
2

γ z

γ φ
Oh

(D 16)

and the dominant growth rate is determined by

ω2
m = 1

2
γ φ

ρR3
0

⎛
⎜⎜⎜⎝ 1

2
γ z

γ φ
∓ 3

√
2

γ z

γ φ
Oh

−
γ z

γ φ(
2

γ z

γ φ
∓ 3

√
2

γ z

γ φ
Oh

)2

⎞
⎟⎟⎟⎠

− 3
η

ρR2
0

ωm

2
γ z

γ φ
∓ 3

√
2

γ z

γ φ
Oh

. (D 17)

In the limit of an ideal fluid jet, i.e. for vanishing viscosity and vanishing Ohnesorge
number we obtain for the maximum growth rate

ω2
m = 1

8
γ φ

ρR3
0

1
γ z

γ φ

, (D 18)

which approximates the blue curve in figure 11(e). We observe that in the framework of
the small-k approximation the dominant growth rate scales with the tension anisotropy to
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FIGURE 12. Comparison of the small-k approximation with the analytical results. The inset
shows the dispersion relation obtained by the small-k approximation (orange line) compared
to the analytically obtained accurate dispersion relation (C 15) for an ideal fluid jet without
ambient fluid (blue line) for a tension anisotropy of γ z/γ φ = 0.5. Systematically varying the
tension anisotropy shows that the error (D 19) between exact theory and approximation strongly
decreases towards large tension anisotropy. Therefore, the small-k approximation is less accurate
for small anisotropy, but becomes a very accurate approximation for large anisotropy.

the power of minus one half. Analogously, the dominant wavelength in the limit of an ideal
fluid jet scales with the square root of the tension anisotropy, as can be seen from (D 16).
We note that the full dispersion relation with contributions of the Bessel functions leads
to deviations from this scaling behaviour.

In figure 12 we compare the full dispersion relation obtained analytically for an ideal
fluid jet without ambient fluid (C 15) to the one obtained in the small-k limit (D 15) for
vanishing viscosity. The inset shows the two dispersion relations for an anisotropy ratio of
γ z/γ φ = 0.5. We analyse the deviation of the approximation quantitatively by calculating
the squared difference averaged over all sample points relative to the maximum of the
dispersion relation

εdisp =

√√√√〈(
ω2 − ω2

ska

)2
〉

ω4
max

(D 19)

as the error. We observe a strong increase of the error towards small anisotropy.
Nevertheless, the deviation for γ z/γ φ = 0.1 is approximately 15 % and thus the
approximation still reasonable accurate. Increasing the anisotropy results in the deviation
approaching zero, i.e. the approximation becomes perfectly accurate towards large tension
anisotropy.

Appendix E. General dispersion relation

We use the insights from the detailed derivations of the dispersion relations in the
appendices B and C to obtain the modifications due to anisotropic interfacial tension of
more general dispersion relations. From the dispersion relation in presence of an ambient
Stokes fluid (3.1) or an ambient ideal fluid (3.2) we follow Tomotika (1935) and introduce
a general density Nρ = ρ/ρo and viscosity contrast Nη = η/ηo between inner and outer
fluid. We use the following abbreviations concerning the wavenumber and the modified
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910 A46-34 K. Graessel, C. Bächer and S. Gekle

Bessel functions

y2 = (kR0)
2 + ω

ρ

η
R2

0 F(x) = x
I0(x)

I1(x)
G(x) = x

K0(x)

K1(x)
, (E 1a–c)

where an additional superscript o indicates definition with the corresponding parameters
of the outer fluid. The dispersion relation in presence of an ambient medium with a density
and viscosity contrast (Tomotika 1935) including anisotropic interfacial tension then takes
the form

ρo2R4
0

ηo2
ω2Nρ

[
F(kR0)F(yoR0) + G(kR0)G(yR0)

] − 4(kR0)
4 (

1 − Nη

)2
F(yoR0)G(yR0)

+
(

2(kR0)
2(Nη − 1) + ωNo

ρ

ρR2
0

ηo

)2

F(kR0)G(yR0)

+
(

2(kR0)
2(Nη − 1) − ω

ρoR2
0

ηo

)2

F(yoR0)G(kR0)

−
(

2(kR0)
2(Nη − 1) + ω

ρoR2
0

ηo
(Nρ − 1)

)2

F(kR0)G(kR0)

+ (kR0)
2

(
γ φρoR0

ηo2

(
1 − γ z

γ φ
k2R2

0

)
+ 2ω

ρoR2
0

ηo
(Nη − 1)

)
[
F(kR0) − F(yoR0) + NρG(kR0) − NρG(yR0)

]
= 0. (E 2)

This general dispersion relation includes the Stokes fluid in (3.1) as well as the dispersion
relation for an ideal fluid (3.2) in the corresponding limits. These are obtained by first
considering identical fluids inside and outside, i.e. Nρ = 1 and Nη = 1. Second, for the
Stokes fluid an expansion of the Bessel functions in the limit of small density is necessary,
while for the ideal fluid the viscosity is set to zero and identities for the Bessel functions
are used to rewrite the remaining terms.

Starting from the dispersion relation for an ideal fluid jet without ambient fluid (C 15)
we follow Chandrasekhar (1961) to obtain the general dispersion relation for a jet in a
passive ambient medium. The general dispersion relation including tension anisotropy in
this case has the form

2(kR0)
2ω

ρ

η
R2

0 (2F(kR0) − 1) + 4(kR0)
4 (F(kR0) − F(y)) + ω2 ρ2

η2
R4

0F(kR0)

− γ φρR0

η2
(kR0)

2

(
1 − γ z

γ φ
(kR0)

2

)
= 0. (E 3)

This contains the dispersion relation of an ideal fluid jet in (C 15) in the limit of negligible
viscosity.
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Rayleigh–Plateau instability of anisotropic
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elastic interfaces
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Cylindrical vesicle and cell membranes under tension can undergo a Rayleigh–Plateau
instability leading to break-up. In Part 1 (Graessel et al., J. Fluid Mech., vol. xxx, 2021,
Ax) we showed that anisotropic tension, created by active biological processes underneath
the cell membrane, can significantly influence this process for a liquid–liquid interface.
Here, we study the combined influence of anisotropic tension and membrane elasticity
on the Rayleigh–Plateau instability. We analytically derive the dispersion relation for
an interface endowed with bending and/or shear elasticity considering explicitly the
dynamics of the suspending fluid. We find that the combination of bending elasticity and
tension anisotropy leads to three qualitatively different regimes for the Rayleigh–Plateau
scenario: (i) the classical regime in which short wavelengths are stable and long
wavelengths are unstable, (ii) the suppressed regime in which the system is stable against
all perturbation wavelengths and (iii) the restricted regime, in which a stable region at
short and another one at long wavelengths are separated by a range of unstable modes
centred around the dimensionless wavenumber kR0 = 1. The width of this unstable range
as well as the dominant wavelength of the instability depend on the bending modulus
and tension anisotropy. For shear elasticity and area dilatation, on the other hand, only the
classical and the suppressed regimes are observed, with the transition between them being
independent of the tension anisotropy.

Key words: capsule/cell dynamics, membranes, instability

1. Introduction

The break-up of cylindrical vesicles under external tension has been successfully
described by a Rayleigh–Plateau mechanism in direct analogy to the break-up of a
liquid jet due to surface tension (Bar-Ziv & Moses 1994; Goldstein et al. 1996;
Kantsler, Segre & Steinberg 2008; Powers 2010; Sanborn et al. 2013; Boedec, Jaeger
& Leonetti 2014; Narsimhan, Spann & Shaqfeh 2015; Pal & Khakhar 2019). In living
cells, a Rayleigh–Plateau instability has further been proposed for fission of mitochondria

† Email address for correspondence: stephan.gekle@uni-bayreuth.de
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910 A47-2 C. Bächer, K. Graessel and S. Gekle

(Gonzalez-Rodriguez et al. 2015) and for blood platelet formation (Bächer, Bender &
Gekle 2020).

In contrast to passive systems such as vesicles or liquid jets, living cells can actively
produce tensions within their cell membrane (Prost, Jülicher & Joanny 2015; Salbreux
& Jülicher 2017; Jülicher, Grill & Salbreux 2018). These tensions, in turn, are often
anisotropic (Rauzi et al. 2008; Salbreux, Prost & Joanny 2009; Mayer et al. 2010; Behrndt
et al. 2012; Reymann et al. 2012; Murrell et al. 2015; Blackwell et al. 2016; Callan-Jones
et al. 2016; Reymann et al. 2016; Zhang et al. 2018), which has substantial consequences
for the Rayleigh–Plateau scenario as we have demonstrated by linear stability analysis and
numerical simulations for a fluid interface in Part 1 of this series (Graessel, Bächer &
Gekle 2021): if azimuthal tensions are stronger than axial tensions, the range of unstable
wavelengths grows and the most unstable mode shifts towards a shorter wavelength.

Another crucial difference between liquid jets and cell or vesicle membranes is the
elastic response of the latter. The elastic response typically consists of independent
contributions which can be related to different structural components of the membrane.
First, the lipid bilayer induces a resistance to bending as well as area dilatation. Second,
biological cells possess a cellular cortex, located directly beneath the lipid bilayer (Alberts
et al. 2007), in which cross-linked polymers such as spectrin form an elastic network which
adds a resistance to shear deformation. Over the last decades, a series of semi-empirical
constitutive laws have been shown to fairly accurately describe these resistances. For
bending, the Helfrich Hamiltonian (Helfrich 1973; Guckenberger & Gekle 2017) is the
most widely used description, while for shear and area dilatation the Skalak (Skalak et al.
1973) as well as neo-Hookean laws (Barthès-Biesel, Diaz & Dhenin 2002; Barthès-Biesel
2016; Jaensson & Vermant 2018) have been established. The elasticity is not only
important for the regulation of vesicle or cell shape (Fischer 2004; Barthès-Biesel 2016;
Jelerčič 2017), it is further known to drive wrinkling on the vesicle surface (Finken &
Seifert 2006; Li & Sarkar 2008; Finken, Kessler & Seifert 2011; Dupont et al. 2015;
Narsimhan et al. 2015) and can lead to budding of vesicles (Seifert, Berndl & Lipowsky
1991; Seifert & Lipowsky 1995).

A small number of theoretical studies have so far investigated the influence of these
elastic properties on the Rayleigh–Plateau instability of vesicles and cells. Bending
elasticity has been shown to set a threshold for the tension required to trigger the instability
(Nelson, Powers & Seifert 1995; Goldstein et al. 1996; Powers 2010; Patrascu & Balan
2020). Furthermore, Campelo & Hernández-Machado (2007) show by simulations that
a non-zero curvature in the Helfrich Hamiltonian due to membrane anchoring proteins
(Tsafrir et al. 2001) is capable of triggering a Rayleigh–Plateau instability. Boedec et al.
(2014) investigate the growth rate and the most unstable wavelength for a general tension
with respect to bending elasticity. They show that increasing the bending modulus leads
to a smaller range of unstable modes compared to the classical Rayleigh–Plateau regime,
where modes grow up to a wavenumber equal to the undeformed tube radius (Rayleigh
1878; Drazin & Reid 2004). Beyond a threshold bending modulus, they find that the
instability is suppressed (Boedec et al. 2014). Considering shear elasticity, Hannezo,
Prost & Joanny (2012) use an energy argument to predict a Rayleigh–Plateau instability
of a tissue tube above a critical active tension depending on the Young’s modulus of
the tissue. Going in the same direction, Berthoumieux et al. (2014) derive the Green’s
function of an elastic membrane subjected to active tension. Both approaches, however,
do not lead to the full dispersion relation for the growth of perturbations. To the best
of our knowledge, a full linear stability analysis including shear elasticity has so far
not been carried out. Furthermore, and most importantly, all the above studies on the
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Anisotropic Rayleigh–Plateau instability. Part 2 910 A47-3

Rayleigh–Plateau instability under the influence of bending and shear elasticity consider
isotropic tension.

In this paper, motivated by the frequent observation of anisotropic active tensions in
cell membranes, we explore the diversity of the Rayleigh–Plateau instability which results
from the interplay of tension anisotropy and interface elasticity. We first consider bending
elasticity in the framework of the Helfrich model and analytically derive the dispersion
relation in the Stokes limit by a linear stability analysis. In addition to the classical
scenario with a single wavenumber separating stable from unstable modes, we find that
bending elasticity introduces a new restricted regime in which an intermediate range of
unstable modes is bounded from above and below by two separate stable ranges. Bending
resistance can also lead to a regime where the interface is stable against all perturbations,
the onset of which strongly depends on the tension anisotropy. We also provide a detailed
investigation of the influence of the reference curvature. We show that the scenario
remains qualitatively unchanged when replacing the Stokes by the Euler equation for
the fluid dynamics. Next, we consider shear elasticity and area dilatation based on the
Skalak law and calculate the corresponding dispersion relation in the Stokes limit. The
dominant wavelength is found to increase due to the damping nature of the shear elasticity.
Above a critical shear modulus only a stable phase exists, the critical value decreases
when strengthening the resistance to area dilatation. While the threshold to the stable
phase is independent of tension anisotropy, increasing the latter systematically increases
the instability wavelength. Investigating the interplay of bending and shear elasticity, we
analyse the resulting dispersion relation and observe a combination of the characteristic
features of both effects with strong influence of the tension anisotropy.

We start by introducing the description of a deformable, elastic interface in § 2 which
requires a different theoretical basis than the purely viscous interfaces in Part 1. In § 3 we
proceed with the interfacial forces due to bending elasticity based on the Helfrich model
and in § 3.1 perform a linear stability analysis which leads to the dispersion relation. Next,
we analyse the growing modes and the different regimes induced by the bending elasticity
(§ 3.2), followed by the dominant wavelength in § 3.3. In § 3.4 we systematically vary the
reference curvature. As a next step we derive the dispersion relation for shear resistance
and area dilatation based on the Skalak law and investigate the stability and dominant
wavelength under the influence of both Skalak elasticity and tension anisotropy in § 4.
Eventually, we combine bending and shear resistance in § 5. We conclude in § 6.

2. Problem set-up: a deformable elastic interface surrounded by fluid

2.1. Differential geometry of a deformable interface
We consider an initially cylindrical elastic interface subjected to an axisymmetric periodic
perturbation along its axis, as illustrated in figure 1. In contrast to Part 1, the elasticity of
the interface now requires us to consider the total deformation u of an interface point from
its initial location, and not only the local curvature and velocity. For this we employ the
differential geometry (Kreyszig 1968) of thin shells as detailed in Green & Zerna (1954),
Deserno (2015), Salbreux & Jülicher (2017) and Bächer & Gekle (2019), whose notation
we follow. In the following, we introduce all quantities used in the linear stability analysis.

The undeformed state of the interface is a cylinder with radius R0 in the radial direction
r, which is parametrised in cylindrical coordinates by azimuthal angle φ and axial
position z

X 0 = X 0(φ, z) = R0êr + zêz (2.1)
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910 A47-4 C. Bächer, K. Graessel and S. Gekle

z
X (φ, z)

X0

ez

n
eφ

cφ
φ

cz
z

FIGURE 1. Cylindrical, elastic interface under periodic perturbation. We consider an
axisymmetric interface between an inner, enclosed and an outer, surrounding fluid. The surface
of the complex interface is parametrised by X (φ, z), the undeformed reference state (dotted line)
is described by X 0. The in-plane coordinate vectors which point along the interface are eφ and ez,
the unit normal vector on the interface n points outwards. In addition to the azimuthal curvature
cφφ along eφ the perturbation leads to an axial curvature cz

z along ez.

with the normalised radial êr = (cosφ, sinφ, 0) and axial coordinate vector êz = (0, 0, 1).
A periodic perturbation along the axis leads to a deformation u of the interface

u = X − X 0 = urêr + uzêz, (2.2)

where we parametrise the deformed interface with varying radius R(z) = R0 + ur(z) by

X = X (φ, z) =
⎛
⎝ R(z) cosφ

R(z) sinφ
z + uz(z)

⎞
⎠ . (2.3)

In the following, we consider small amplitude perturbations and therefore keep only terms
up to linear order in the deformation (Berthoumieux et al. 2014; Daddi-Moussa-Ider,
Lisicki & Gekle 2017). The in-plane coordinate vectors, i.e. the coordinate vectors along
the deformed interface, are

eφ = ∂

∂φ
X =

⎛
⎝ −R sinφ

R cosφ
0

⎞
⎠ , ez = ∂

∂z
X =

⎛
⎝ R′ cosφ

R′ sinφ
1 + u′

z

⎞
⎠ , (2.4a,b)

with the prime denoting a derivative with respect to z. From the in-plane coordinate vectors
the metric on the deformed interface can be calculated (Kreyszig 1968) and linearised

gαβ = eα · eβ =

⎛
⎜⎝ R2 0

0
(
1 + u′

z

)2 + R′2

⎞
⎟⎠ ≈

(
R2

0 + 2R0ur 0
0 1 + 2u′

z

)
, (2.5)

with α, β = φ, z. The inverse metric defined by gαγ gγβ = δβα takes the form

gαβ =

⎛
⎜⎜⎝

1
R2

0

0
1(

1 + u′
z

)2 + R′2

⎞
⎟⎟⎠ ≈

⎛
⎝ 1

R2
0

− 2
ur

R3
0

0

0 1 − 2u′
z

⎞
⎠ . (2.6)
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Anisotropic Rayleigh–Plateau instability. Part 2 910 A47-5

We obtain the metric on the undeformed interface Gαβ by setting the deformation to zero

Gαβ =
(

R2
0 0

0 1

)
, Gαβ =

⎛
⎝ 1

R2
0

0

0 1

⎞
⎠ . (2.7a,b)

From the metric the Christoffel symbols can be calculated by

Γ
γ

αβ = 1
2 gγ δ

(
∂βgαδ + ∂αgβδ − ∂δgαβ

)
, (2.8)

where indices occurring twice are summed over according to the Einstein notation. By the
use of the Christoffel symbols the covariant derivative of an arbitrary tensor tαβ is defined
by

∇αtβγ = ∂αtβγ + Γ
β

αδt
δγ + Γ

γ

αδt
βδ. (2.9)

The unit normal vector on the interface, which points outwards, can be calculated in
linearised form as

n = eφ × ez

|eφ × ez| ≈
⎛
⎝ cosφ

sinφ
−R′

⎞
⎠ . (2.10)

The curvature tensor, which is defined by cαβ = −(∂αeβ) · n, becomes on the deformed
interface

cβα ≈
⎛
⎝ 1

R(z)
0

0 −R′′

⎞
⎠ . (2.11)

On the undeformed surface the curvature tensor is

Cβ
α =

⎛
⎝ 1

R0
0

0 0

⎞
⎠ . (2.12)

2.2. Mechanical properties of the interface
The mechanical properties of the interface are (i) the anisotropic interfacial tension and
(ii) the resistance to elastic deformations. If in addition interface viscosity is included, we
would expect effects similar to those discussed in Part 1. In general, mechanical properties
of the interface are described by the surface stress (Green & Zerna 1954; Barthès-Biesel
2016; Guckenberger & Gekle 2017; Salbreux & Jülicher 2017; Bächer & Gekle 2019),
which can be expressed in vector notation as

tβ = tβαeα + tβn n, (2.13)

with its in-plane components tβα and the normal component tβn . As introduced above, we
split the surface stress into an (i) anisotropic and an (ii) elastic contribution

tβ = tβaniso + tβel. (2.14)

As discussed in Part 1, anisotropic interfacial tension can have different origins. In
this paper, we focus on biological cells where proteins in the cell cortex produce an
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910 A47-6 C. Bächer, K. Graessel and S. Gekle

active tension, which enters the anisotropic contribution of the surface stress (2.14).
A positive active tension accounts for the internal tendency of the cortical protein network
to contract. Similar to surface tension triggering the Rayleigh–Plateau instability of a
liquid jet (Eggers & Villermaux 2008), such a contractile active tension in the cell
cortex can lead to a Rayleigh–Plateau instability of a cell or tissue tube (Hannezo et al.
2012; Berthoumieux et al. 2014; Bächer & Gekle 2019; Bächer et al. 2020). In contrast
to the classical surface tension, however, here, a constitutive law directly prescribes
the active, thus interfacial, tension (rather than deriving it from an interfacial energy)
(Salbreux & Jülicher 2017; Bächer & Gekle 2019). In analogy to Part 1, the anisotropic
interfacial tension is denoted by γ φ and γ z, distinguishing azimuthal and axial directions,
respectively, and it contributes to the surface stress as

tβaniso,α =
(
γ φ 0
0 γ z

)
. (2.15)

The normal component of the anisotropic surface stress vanishes, i.e. tβaniso,n = 0. We
assume that the anisotropic tension is constant along the interface and therefore derivatives
of the anisotropic tension vanish, i.e. ∇αtβγaniso = 0.

In addition to Part 1, we here consider a resistance to elastic deformations, which splits
into the three different contributions due to bending deformation, shear deformation and
area dilatation. The surface stress due to elasticity tαel can be derived from constitutive
laws typically defining an energy functional, which covers the elastic properties (Green
& Zerna 1954). In the present paper we use the Helfrich law for bending elasticity with
the bending modulus κB and the Skalak law for shear elasticity with modulus κS and area
dilatation with modulus CκS. The corresponding contributions to the surface stress tαel are
derived in §§ 3.1 and 4.1, respectively.

We end this section with a discussion of typical values for vesicles and cells. For the
active cortical stress values in the range of 10−5–10−3 N m−1 have been reported depending
on the cell type (Lomakina et al. 2004; Krieg et al. 2008; Tinevez et al. 2009; Bergert et al.
2012; Fischer-Friedrich et al. 2014; Chugh et al. 2017; Dmitrieff et al. 2017). Exact values
for the anisotropy of the active stress are scattered as well. Mayer et al. (2010) report
a polar tension half the angular tension for an ellipsoidal embryo, Behrndt et al. (2012)
report a factor of 4 in the case of epiboly. Reymann et al. (2016) report anisotropy in terms
of a nematic order parameter which takes values from −0.04 to 0.12. Rauzi et al. (2008)
consider planar anisotropy from 1 to 4. Typical values for the bending modulus are in a
range from 10−20–10−18 Nm (Goldstein et al. 1996; Freund 2014; Guckenberger & Gekle
2017). The shear elasticity of a red blood cell is in the range 10−6–10−5 N m−1 (Freund
2014) and the Youngs modulus of a tissue tube is approximately 104–106 Pa (Laurent et al.
1994; Hannezo et al. 2012). Eventually, the typical radii from vesicles to tissue tubes varies
from approximately half a micrometre (Bar-Ziv & Moses 1994; Goldstein et al. 1996) to
several micrometres (Freund 2014) to a millimetre. All in all, this leads to a wide parameter
space, which we cover by presenting phase diagrams for a broad range of dimensionless
parameters in the following sections.

2.3. Coupling to the surrounding fluid
Due to the presence of the surrounding fluid, in addition to the surface stress, forces
from the fluid act on the interface, which are described by the traction jump across the
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Anisotropic Rayleigh–Plateau instability. Part 2 910 A47-7

membrane (Pozrikidis 2001; Daddi-Moussa-Ider & Gekle 2018)

Δf = Δf αeα + Δf nn, (2.16)

with components parallel to the interface denoted by Δf α and components along the
outward pointing normal vector by Δf n. The traction jump is given by the difference
of the three-dimensional (i, j = x, y, z) stress tensors σ out

ij , σ in
ij of the outer and inner

fluid, respectively, projected onto the normal vector of the interface (Chandrasekharaiah
& Debnath 2014)

Δfj = (
σ out

ij − σ in
ij

)
ni. (2.17)

For a Newtonian and incompressible fluid with shear viscosity η the stress tensor is
(Chandrasekharaiah & Debnath 2014)

σ = −pI + η
[(∇v + (∇v)T

)]
, (2.18)

where v(r, t) is the velocity field and p(r, t) the pressure of the fluid.
The interface is considered in mechanical equilibrium with the fluid enclosed by the

interface and the surrounding fluid. Therefore, interfacial forces derived from the surface
stress (2.14) together with the traction jump (2.16) fulfil the force balance equation (Green
& Zerna 1954; Barthès-Biesel 2016; Salbreux & Jülicher 2017)

∇βtβ + Δf = 0. (2.19)

The interfacial forces acting from the interface onto the fluid are thus given by either the
derivative of the surface stress or the negative traction jump and denoted by

f ≡ ∇βtβ = −Δf . (2.20)

Decomposing the force balance into components parallel and normal to the interface and
using (2.14), (2.15) and (2.16) leads to the force balance equations in the form

∇αtαβel + cβα tαel,n = −Δf β, (2.21)

∇αtαel,n − cαβ tαβel − cαβ tαβaniso = −Δf n. (2.22)

In contrast to Part 1, the interface elasticity causes a traction jump in the tangential
component Δf β along the interface and, in addition, modifies the normal force balance.
For the exact form of the elastic surface stresses we again refer to §§ 3.1 and 4.1. According
to the normal component of the force balance equation (2.22) the anisotropic interfacial
tension leads to a contribution

cαβ tαβaniso = γ z

Rz
+ γ φ

Rφ
, (2.23)

which balances the normal component of the traction jump. In the present paper we
consider an interior fluid which has the same viscosity as the surrounding fluid.

3. Bending elasticity restricts anisotropic Rayleigh–Plateau instability

3.1. Dispersion relation from the Helfrich Hamiltonian
We now investigate the influence of bending elasticity on the anisotropic Rayleigh–Plateau
instability of an interface specifically aiming at the description of vesicle and cell
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910 A47-8 C. Bächer, K. Graessel and S. Gekle

membranes composed of a lipid bilayer. This bilayer resists bending deformations,
i.e. changes of the mean curvature H, which is given by half the trace of the curvature
tensor (2.11) (Deserno 2015; Daddi-Moussa-Ider et al. 2017)

H = 1
2 cγγ = 1

2

(
cz

z + cφφ
)
. (3.1)

Deformations which lead to a mean curvature H different from the reference curvature
H0 trigger elastic forces. Due to the Gauss–Bonnet theorem the Gaussian curvature
does not affect the interface elasticity (Deserno 2015; Daddi-Moussa-Ider et al. 2017).
The resistance to bending is described by the Helfrich Hamiltonian (Helfrich 1973;
Guckenberger & Gekle 2017) with the elastic bending modulus κB as a measure of the
bending elasticity

WHF = 2κB(H − H0)
2. (3.2)

As detailed above, the bending elasticity contributes to the elastic surface stress tαel
in (2.14). This contribution can be derived from the Helfrich Hamiltonian (3.2) using
thin shell theory (Capovilla & Guven 2002; Guven 2004; Powers 2010; Deserno 2015;
Guckenberger & Gekle 2017), which leads to the general form

tαel,B = 2κB (H − H0)
2 gαβeβ − 2κB (H − H0) cαβeβ + 2κB∇β (H − H0) gαβn. (3.3)

In the following, we explicitly consider the initially cylindrical interface, subjected to a
deformation as given by (2.2) and shown in figure 1. Using the curvature tensor (2.11) the
mean curvature of the interface in linearised form is

H ≈ 1
2

(
1
R0

− ur

R2
0

− u′′
r

)
. (3.4)

In contrast to previous works (Powers 2010; Boedec et al. 2014) we first choose as reference
curvature the curvature of the unperturbed cylindrical interface that can be obtained from
the curvature tensor of the undeformed interface (2.12)

H0 = 1
2R0

. (3.5)

In § 3.4, we investigate the influence of different values for the reference curvature.
Linearising the surface stress (3.3) and splitting it into tangential and normal components
gives

tβel,Bα = 2κB(H − H0)
2δβα − 2κB(H − H0)cβα ≈ κB

(
ur

R2
0

+ u′′
r

)
cβα (3.6)

tαel,B,n = 2κB∇β(H − H0)gαβ ≈ −κB∇β

(
ur

R2
0

+ u′′
r

)
gαβ. (3.7)

Using (2.6) to explicitly write out the z-component of the last equation gives

tz
el,B,n = −κB

(
u′

r

R2
0

+ u′′′
r

)
gzz ≈ −κB

(
u′

r

R2
0

+ u′′′
r

)
= −κB

(
u′

r

R2
0

+ u′′′
r

)
, (3.8)

and for the φ-component tφel,B,n = 0. The tangential component of the force balance (2.21)
results in a vanishing tangential bending force f αB = 0 consistent with the general case
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Anisotropic Rayleigh–Plateau instability. Part 2 910 A47-9

(Guckenberger & Gekle 2017). The normal component of the force balance (2.22) has two
contributions from the bending elasticity

−cαβ tαβel,B = −cφφtφel,Bφ − cz
zt

z
el,Bz ≈ −κB

(
ur

R4
0

+ u′′
r

R2
0

)
, (3.9)

∇αtαel,B,n = ∇zt
z
el,B,n ≈ −κB

(
u′′

r

R2
0

+ u′′′′
r

)
. (3.10)

Eventually, the linearised form of the normal component of the elastic force due to bending
is obtained as

f n
B = −κB

[
ur

R4
0

+ 2u′′
r

R2
0

+ u′′′′
r

]
. (3.11)

This is consistent with the result given in Daddi-Moussa-Ider et al. (2017).
In a next step, we perform an analytical linear stability analysis of the interface. The goal

is to derive the dispersion relation, which relates the growth rate ω of a perturbation to its
wavenumber k = 2π/λ with wavelength λ. We use a perturbation ansatz for the interface
depicted in figure 1 of the form

R(z, t) = R0 (1 + ε cos(kz)) , ε = ε0 eωt, (3.12)

with amplitude ε growing in time. Due to the bending force (3.11) and the anisotropic
interfacial tension (2.15) the normal force balance (2.22) leads to the traction jump at the
interface of the form

Δf n = γ φ

R0
+

[
−γ

φ

R0
+ γ zk2R0 + κB

(
1
R3

0

− 2k2

R0
+ k4R0

)]
ε cos(kz). (3.13)

As can be seen from (2.17) and (2.18) the traction jump includes the pressure at the
interface p0 + δp(r = R), where p0 denotes the pressure difference of the undeformed
interface and δp(r = R) the pressure perturbation as a consequence of the interface
perturbation (3.12). By comparing the constant terms, which do not arise from the
perturbation, on both sides of (3.13) we identify the Laplace pressure for the unperturbed
interface as

p0 = γ φ

R0
. (3.14)

The perturbation in the traction jump in (3.13) due to the disturbance of the interface is
now balanced not only by the contribution from anisotropic interfacial tension as in (B 3)
of Part 1 but also by contributions from the resistance to bending.

The motion of inner and outer fluid with same density ρ and viscosity η are in general
governed by the Navier–Stokes equation and continuity equation, the solution of which is
the velocity v and pressure field p of the fluid. In the following, we consider a fluid in the
limit of small Reynolds number, which is usually a very good approximation for vesicles
and cells (Freund 2014; Barthès-Biesel 2016). Thus, for the inner and outer fluid the Stokes
equation holds, which we solve in presence of the interface using the same approach as in
Part 1. Compared to Part 1 the traction jump (3.13) includes a fourth-order polynomial in
the wavenumber stemming from bending, which behaves in the same way with respect to
the variables r, z as the anisotropic tension does in (B 3) of Part 1. We thus can continue as
described in appendix B.1 of Part 1 to derive the dispersion relation: we choose a periodic
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910 A47-10 C. Bächer, K. Graessel and S. Gekle

ansatz also for the velocities in the r- and z-directions and for the pressure p, then transform
their amplitudes to Hankel space, where we solve the Stokes and continuity equation for
the velocity components. Transformation back to real space and inserting the results into
the kinematic boundary condition at the interface finally leads to the dispersion relation in
the Stokes regime including bending elasticity

ω(k) = ωS
0

(
1 − γ z

γ φ
(kR0)

2 − B
(
1 − 2(kR0)

2 + (kR0)
4))

×
[

I1(kR0)K1(kR0)+ kR0

2
(I1(kR0)K0(kR0)− I0(kR0)K1(kR0))

]
, (3.15)

with the relative bending modulus B = κB/(γ
φR2

0). The dispersion relation consists of
a constant prefactor ωS

0 = γ φ/(R0η) fixing the dimensions of the growth rate, the factor
accounting for membrane forces

F(k) =
[

1 − γ z

γ φ
(kR0)

2 − B
(
1 − 2 (kR0)

2 + (kR0)
4)] (3.16)

and a factor of Bessel functions, which is positive for positive argument kR0 and
stems from the fluid dynamics. For a similar setting but with isotropic tension, Boedec
et al. (2014) and Powers (2010) derive dispersion relations including in addition tension
gradients and surface viscosity, respectively. These derivations also differ in the choice of
reference curvature, as mentioned above, which leads to different factors in the bending
contribution.

In appendix A we in addition show the result for an ideal fluid described by the Euler
equation, which is derived from the Navier–Stokes equation in the limit of vanishing
viscosity, where we solve the Laplace equation for the pressure.

3.2. Bending elasticity introduces stability

3.2.1. Qualitative description
The dispersion relation (3.15) of an anisotropic interface including bending elasticity,

which gives the growth rate ω for each mode with wavenumber kR0, is shown in figure 2
as a blue line. Additionally, we show the γ z-contribution from the anisotropic interfacial
tension in orange, the γ φ-contribution in green and the bending contribution as a red,
dashed line. From the left to the right column we increase the anisotropy ratio from
γ z/γ φ = 0.5 to the isotropic case γ z/γ φ = 1.0 in the middle and up to γ z/γ φ = 2.0 on
the right. From top to bottom the bending resistance increases from B = 0 in the first line
2(a) to B = 2.0 in the last line (e). Where the dispersion relation takes positive values,
modes with corresponding wavenumber kR0 will grow, i.e. the interface is unstable to
these modes. In contrast, modes with negative growth rate are damped, correspondingly
the interface is stable to these modes. The maximum of the dispersion relation determines
the dominant, i.e. fastest growing, wavelength, which eventually defines the size of the
fragments (Drazin & Reid 2004). The γ φ-contribution is purely positive, thus destabilises
the interface, whereas the γ z-contribution is purely negative and dampens the instability.
We observe that the bending part dampens the growth rate for all wavenumbers except
kR0 = 1, where the bending energy (3.2) and thus the force (3.11) vanish since the mean
curvature equals the reference curvature. This further illustrates that the initial cylindrical
interface remains stable if solely bending elasticity is considered.
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Anisotropic Rayleigh–Plateau instability. Part 2 910 A47-11
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FIGURE 2. Dispersion relations for bending resistance and anisotropic interfacial tension. We
distinguish the contributions from bending resistance B (red), γ φ (green) and γ z (orange). From
left to right the anisotropy ratio increases, whereas from top to bottom the bending resistance
increases, with values given as labels. The bending and γ z contributions are stabilising for all
wavenumbers, while the γ φ-contribution destabilises the interface. Bending either reduces the
unstable range from its right, large kR0, boundary (classical regime) and/or restricts the range
of growing modes by the appearance of another positive root to its left, small kR0, boundary
(restricted regime). The maximum of the dispersion relation shifts depending on bending
resistance. Large bending and anisotropy in (d,e) on the right can even lead to a purely negative
dispersion relation, thus completely suppressing the Rayleigh–Plateau instability (suppressed
regime).

For γ z/γ φ = 0.5 (left column), increasing the bending modulus leads to a shift of the
right-most root towards smaller values and thus entails a shrinking of the range of unstable
modes. The position of the maximum shifts towards larger wavenumbers. For the isotropic
case γ z/γ φ = 1.0 (middle column), however, shrinkage of the range is not observed: the
right stability boundary remains at the Rayleigh–Plateau value kR0 = 1 and is not affected
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910 A47-12 C. Bächer, K. Graessel and S. Gekle

by bending as the bending contribution is identically zero at kR0 = 1. Yet, also in the
isotropic case, we observe a shift of the maximum to larger wavenumbers. In the right
column, where γ z/γ φ = 2.0, once again a shrinking range is observed. Interestingly, the
variation in the position of the maximum is now reversed and it shifts towards smaller
wavenumbers. Most remarkably, for B ≥ 1 the total dispersion relation is purely negative.

From figure 2, we can identify three different regimes occurring at certain combinations
of tension anisotropy and bending modulus. The first case, resembling what is known from
the classical Rayleigh–Plateau scenario (Rayleigh 1878), we term the classical regime.
Here, the dispersion relation has one root at wavenumber zero and another at a larger
wavenumber kmax R0. Thus, modes in the range ]0; kmax R0[ are growing. The classical
regime is located at low to moderate values of the bending modulus and persists for
all anisotropy ratios. The second case, which we term the restricted regime appears
at moderate anisotropy ratio and large enough bending contribution (first two columns
in row e). Here, the dispersion relation develops another root at a finite wavenumber
kminR0 < kmax R0. Therefore, modes with small enough wavenumber become stable while
modes with intermediate wavenumber ]kminR0; kmax R0[ still grow. Thus, bending elasticity
restricts the range of growing modes from above and from below. Finally, for large bending
modulus (rows (d) and (e)) an anisotropy of γ z/γ φ = 2.0 can lead to a completely negative
dispersion relation: no modes are growing and the cylindrical interface remains stable.
We call this stable phase the suppressed regime. The fact that bending can, in principle,
suppress the instability has also been reported by Boedec et al. (2014) for isotropic
tension if the reference curvature vanishes (H0 = 0). Our results in figure 2 show that
the combination of anisotropic tension and bending elasticity can lead to suppression of
the instability also for the natural case of a cylindrical reference curvature H0 = 1/(2R0).

In appendix A we show in figure 12 that for an ideal fluid the destabilising
γ φ-contribution does not possess a maximum and the maximum of the dispersion relation
shifts towards larger kR0. In this work, we explicitly consider only positive interfacial
tension for which the Rayleigh–Plateau instability occurs. We note briefly that for
negative axial tension γ z, independent of the sign of γ φ , the dispersion relation still
shows a maximum at a finite wavenumber, as it does in figure 2. This corresponds to a
buckling instability with finite wavelength due to the extensile nature of the axial tension
(Berthoumieux et al. 2014; Bächer & Gekle 2019).

3.2.2. Quantitative discussion
We now turn to a quantitative analysis of the range of unstable modes. As discussed

based on figure 2, the unstable range is either (i) bounded on the left by kR0 = 0 and
on the right by the single positive root of the dispersion relation (classical regime),
(ii) bounded on the left and right by the two positive roots of the dispersion relation
(restricted regime) or (iii) completely absent (suppressed regime). The roots of the
dispersion relation in turn are given by the roots of F(k) in (3.16). For vanishing bending
resistance the single root obeys

γ z

γ φ

∣∣∣∣
root,B=0

= 1
(kR0)2

, (3.17)

whereas for finite bending resistance the roots obey

γ z

γ φ

∣∣∣∣
root,B /= 0

= 1
(kR0)2

− B 1
(kR0)2

+ 2B − B(kR0)
2. (3.18)
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FIGURE 3. Range of unstable modes as a function of tension anisotropy and bending modulus.
The curves show the roots of the dispersion relation such that regions above the curves are stable,
while regions below are unstable. For bending moduli between 0 and 1 the single root shifts to
the left. Bending moduli above 1 in addition lead to a second root at finite wavenumber, which
determines the left border of the unstable domain. Thus, bending elasticity restricts the range of
unstable modes and for large bending modulus a critical tension anisotropy exists, above which
the cylinder remains stable. For a three-dimensional illustration we refer to the supplementary
gnuplot script, supplementary material available at https://doi.org/10.1017/jfm.2020.946.

Figure 3 shows the range of unstable modes with increasing bending modulus B coded
by colours and with tension anisotropy on the ordinate. Each curve represents the strictly
positive root(s) (kR0 > 0) of the dispersion relation. The area underneath a curve thus
corresponds to unstable modes and the area above a curve to stable modes.

At vanishing bending (dark green curve), for each tension anisotropy there exists only
a single root marking the right boundary of the unstable range. The unstable range
shrinks when tension anisotropy increases. However, the right boundary goes to infinity for
infinitesimal small anisotropy, thus for the anisotropy being zero all modes are unstable.
When adding a small bending contribution (lighter green curves), the right boundary shifts
to the left and the unstable range shrinks, qualitatively independent of the anisotropy. All
green curves correspond to the classical regime with the left root of the dispersion relation
being at kR0 = 0 (not shown in figure 3) and a finite root on the right. Increasing bending
resistance further, at B = 1 (orange) the factor F in (3.16) becomes zero at kR0 = 0, so
the orange curve is the only one which intersects the ordinate. It is also the first to exhibit
an upper bound at γ z/γ φ = 2.0 indicating the appearance of the suppressed regime for all
γ z/γ φ ≥ 2. Further increasing the bending modulus (blue curves) leads to another root at
finite wavenumbers and a corridor of unstable modes develops as seen in figure 2(e) in
the first two columns. All blue curves correspond to the restricted regime. The corridor
of unstable modes narrows for increasingly larger bending modulus and is centred around
kR0 = 1. In addition, the instability threshold (maximum of the curves), which indicates
the transition from the restricted to the suppressed regime, shifts to smaller values of the
tension anisotropy. Interestingly, for isotropic tension, the right root is pinned at kR0 = 1
and is not affected by bending contributions.

3.2.3. Phase diagram
The goal now is to derive a relation for the instability threshold as a function of B and

γ z/γ φ . For this, we again consider the factor F(k) in (3.16). For positive k the sign of the
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growth rate is determined by F(k). If F(k) < 0 ∀ k > 0, all perturbations decay and the
interface is stable indicating the suppressed regime

γ z

γ φ
>

1 − B
(kR0)

2 + 2B − B (kR0)
2 . (3.19)

If B < 1, the right-hand side tends to infinity for small kR0 (see first term) and thus the
condition (3.19) is violated, i.e. growing perturbations do exist for any γ z/γ φ . This is
the classical regime. For B ≥ 1, a suppressed regime exists whenever condition (3.19) is
fulfilled for all values of kR0, especially for the maximal value of the right-hand side.
Determining the position kR0|max of this maximal value and inserting it into (3.19) we can
determine a critical value above which the suppressed regime appears

γ z

γ φ

∣∣∣∣
crit

= −2 [B (B − 1)]1/2 + 2B. (3.20)

For γ z/γ φ larger than this critical value, no perturbation grows. For B = 1 (3.20) yields
the critical value γ z/γ φ|crit = 2. This corresponds to the intersection of the orange line
with the ordinate in figure 3, where the two roots which determine the unstable range
collapse. For large bending energy the critical value (3.20) approaches one. This manifests
itself in the maximum of the dark blue line in figure 3.

The detailed variation of the threshold determined by (3.20) is illustrated by the
phase diagrams in figure 4(a,b). In the region where unstable modes exist, (a) dominant
wavelength λm and (b) maximum growth rate ωm are colour coded. We obtain the dominant
wavelength, i.e. the position of the positive maximum of the dispersion relation, by
calculating the root of its derivative using Mathematica, and in turn the maximum growth
rate from the dispersion relation. At the top of the phase diagram, i.e. at large bending
modulus, a corridor exists at small anisotropy ratios, which broadens with decreasing
bending modulus. In this corridor the range of unstable modes is bounded by two roots of
the dispersion relation, this is the restricted regime. For B < 1 unstable modes always exist
and the instability wavelength increases with increasing tension anisotropy, we termed this
the classical regime.

In total, our results show that bending resistance can suppress the Rayleigh–Plateau
instability in a certain parameter space: the bending force is another damping factor in
the dispersion relation as is γ z, which explains why this strong increase happens for
large bending elasticity and large γ z. However, at anisotropy ratios smaller than one,
there always exists a corridor of unstable modes where the destabilising γ φ-contribution
dominates the stabilising γ z-contribution and in total the dispersion relation becomes
positive.

3.3. Bending elasticity affects dominant wavelength and growth rate
We now discuss the dominant wavelength of the instability in more detail. Figure 4(c)
shows the dominant wavelength depending on the anisotropy ratio for different values
of the bending modulus. We note that curves in figure 4(c) are horizontal lines in the
phase diagram 4(a), i.e. drawn for constant bending modulus at the same values as
used in figure 2. In general, the wavelength decreases towards small anisotropy and vice
versa, which means that smaller fragments form for γ z/γ φ ≤ 1 and larger ones for larger
anisotropy. The red curve without bending elasticity recovers the result shown in figure
4(a) of Part 1. Next, the blue and orange curves for B = 0.1 and B = 0.5 show that small
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FIGURE 4. (a,b) Phase diagrams with bending resistance and anisotropic tension. The solid grey
line indicates the instability threshold below which the interface undergoes a Rayleigh–Plateau
instability. For bending moduli above 1, the range of unstable modes is restricted. The border to
the classical regime is independent of the tension anisotropy. Strong bending elasticity B ≥ 1
together with γ z/γ φ > 1 can suppress the instability (white region). In the unstable phase
(a) the dominant wavelength λm and (b) the maximum growth rate ωm are given by colour
code. Crosses correspond to the dispersion relations in figure 2. (c,d) Dominant wavelength
and growth rate for different values of the bending modulus. Increasing bending resistance (from
red to green) changes the wavelength strongly, especially at very large anisotropy ratio. For large
enough bending contribution and larger anisotropy ratios, the instability is suppressed (lilac and
green curve) with the growth rate decreasing towards zero at the threshold. Curves correspond
to horizontal lines in the phase diagrams (a,b).

and moderate bending resistances do not significantly affect the dominant wavelength.
Especially for anisotropy values around the isotropic case γ z/γ φ = 1.0, the bending
resistance only slightly lowers the wavelength. Increasing bending further, however, the
lilac curve for B = 1.0 shows a qualitatively different behaviour: the wavelength strongly
bends upwards and tends to infinity for γ z/γ φ → 2.0. This corresponds to the tension
anisotropy approaching the instability threshold in figure 4(a). Finally, the green curve for
B = 2.0 abruptly ends at an anisotropy ratio slightly larger than 1. This corresponds to
figure 2(e) where in the last column the maximum is negative and therefore no instability
wavelength exists and this is again due to the threshold in the phase diagram 4(a). Before
this abrupt end is reached, the wavelength is nearly the same for all values of γ z/γ φ .

We further investigate the influence of anisotropy on the dominant growth rate in the
phase diagram 4(b) and specifically for certain values of the bending modulus in 4(d).
Most remarkably, the growth rate is not significantly affected by the bending modulus at
small anisotropy. In contrast, at large anisotropy increasing the bending modulus reduces
the growth rate. For the lilac and green curve, where bending suppresses the instability at
large anisotropy the growth rate goes to zero with the anisotropy reaching the threshold.
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3.4. Influence of reference curvature
Up to now, we assumed H0 = 1/(2R0). However, in real systems, such as cell membranes,
the bending reference shape (where bending forces vanish) can be different from the
equilibrium shape (where the sum of all forces vanishes) leading to H0 /= 1/(2R0) for a
cylindrical equilibrium shape. The limits H0 = 0 and H0 = 1/R0 refer to a flat or spherical
reference shape, respectively. For a membrane made of lipid molecules both the shape and
the mixture of the lipids determines the reference curvature (Burger 2000; Fuller & Rand
2001; Dimova 2019). The effect of the reference curvature on the shape of vesicles and
cells has been intensively studied (Seifert et al. 1991; Fischer 2017). Especially, for the
Rayleigh–Plateau instability a non-zero reference curvature has been used to explain the
effect of anchoring proteins (Tsafrir et al. 2001; Campelo & Hernández-Machado 2007).
To complete our discussion, we therefore vary in the following the reference curvature and
investigate its effect on the dispersion relation and the phase diagram. For a general value
of H0, the normal component of the interfacial force due to the bending elasticity (3.11)
takes the form

f n
B = −

(
4H2

0R2
0 − 1

)
κB

2R3
0

− ur(z)
(

3κB

2R4
0

− 2H2
0κB

R2
0

)

−
(

−2H2
0κB + 4H0κB

R0
+ κB

2R2
0

)
∂2

z ur − κB∂
4
z ur. (3.21)

Considering both the anisotropic tension and bending elasticity with general reference
curvature, we can identify the constant part of the pressure analogously to (3.14) as

p0 = γ φ

R0
+

(
4H2

0R2
0 − 1

)
κB

2R3
0

. (3.22)

For a reference curvature smaller than that of a cylinder the second term becomes negative
and the corresponding contribution to p0 counteracts the tendency of the interface to
increase the radius in order to minimise the curvature (Goldstein et al. 1996). For H0 = 0
the reference pressure p0 equals the one obtained by Powers (2010) and Boedec et al.
(2014).

Omitting details, we derive the dispersion relation in the Stokes regime starting from
(3.21) in the same manner as above. The result is shown in figure 5 for systematically
increasing reference curvature. We choose (a) the value of a flat membrane H0 = 0,
(b) H0 = 1/(4R0) a value smaller, (c) H0 = 3/(4R0) a value larger than H0 = 1/(2R0) –
which is used in figure 2 – and eventually (d) H0 = 1/R0, corresponding to a spherical
reference shape. In figure 5 we show in the left column results for γ z/γ φ = 0.5, in
the middle for γ z/γ φ = 1.0 and in the right column for γ z/γ φ = 2.0. The value of the
bending coefficient is fixed at B = 1.0, thus the curves can be directly compared to
figure 2(d) where H0 = 1/(2R0). For vanishing reference curvature in figure 5(a) we
observe a strongly damping bending contribution such that the dispersion relation is purely
negative and no mode is unstable. Increasing the reference curvature to H0 = 1/(4R0) in
5(b) reduces damping, but does not qualitatively change the picture. For H0 = 1/(2R0)

(which was already shown in figure 2d) the sign for some wavenumbers changes, leading
to unstable modes. Most remarkably, a further increase in the reference curvature to
H0 = 3/(4R0) in figure 5(c) even leads to positive values of the bending contribution to
the dispersion relation. This trend continues for the spherical reference shape H0 = 1/R0
in figure 5(d). Therefore, the larger the reference curvature the larger the maximum of the
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FIGURE 5. Influence of the reference curvature on the dispersion relation. Curves are shown for
different reference curvatures in the different rows and from the left column to the right column
the anisotropy ratio increases while the bending modulus B = 1.0 remains fixed. In (a) the flat
reference curvature leads to strong damping, which suppresses the instability. Increasing the
reference curvature weakens this damping nature in (b) and eventually in (c,d) leads to positive
values even of the bending contribution itself. Thus, a reference curvature beyond that of a
cylinder can destabilise the interface.

dispersion relation becomes and the broader the range of unstable modes is. Variation of
the anisotropy ratio which increases from left to right leads to damping of the dispersion
relation and thus shifts the maximum to smaller wavenumbers. We note that the linear
stability analysis considers small deformations and thus describes the initial behaviour of
the interface after the onset of the instability. Therefore, for reference curvatures larger
than that of a cylinder, despite the (initially) positive growth rates the tube might not break
up completely but assume an undulated final shape, which minimises the total surface
energy (Goldstein et al. 1996).

To further clarify the effect of different reference curvatures on the instability we show
phase diagrams in figure 6. For vanishing reference curvature in figure (a), we observe an
instability threshold which is nearly independent of the tension anisotropy γ z/γ φ . Only
at very small anisotropy the threshold slightly shifts towards larger bending modulus. The
nearly constant threshold of B = 2/3 matches the critical value obtained for isotropic
tension by Boedec et al. (2014). Increasing the reference curvature to H0 = 1/(4R0) in
6(b) the threshold shifts towards a larger bending modulus for all anisotropy values.
Moreover, the threshold bends upwards towards smaller anisotropy in a more pronounced

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 7
9.

19
9.

38
.2

48
, o

n 
22

 Ja
n 

20
21

 a
t 0

9:
55

:4
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
94

6
pub4



910 A47-18 C. Bächer, K. Graessel and S. Gekle

0

0
0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0

5

10

15

20

25

30

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

2 4 6 8 10

0.5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 2 4 6 8 10

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

γ z/γφ γ z/γφ

B

B

All modes

stable

All modes

stable
All modes

stable

Unstable modes

exist

Unstable modes

exist

Unstable modes

exist

Unstable modes

exist

Suppressed

Suppressed

Suppressed

Restricted

Restricted

Restricted

Classical Classical

Classical

Classical

λ
m

/R
0

λ
m

/R
0

(a) (b)

(c) (d)

FIGURE 6. Phase diagrams for varying reference curvature. Instability threshold (grey line) and
dominant wavelength (colour code) are shown for different reference curvatures (a) H0 = 0,
(b) H0 = 1/(4R0), (c) H0 = 3/(4R0) and (d) H0 = 1/R0. With increasing reference curvature
the dominant wavelength decreases and the area of stable interface in the phase space becomes
smaller. For the largest reference curvature no stable phase exists at all, thus a larger reference
curvature facilitates the instability. Crosses refer to the dispersion relations in figure 5.

fashion and over a broader range of the anisotropy ratio. Thus, with increasing reference
curvature the unstable phase is larger. For H0 = 1/(2R0), figure 4(a) has already shown
that at anisotropy ratios γ z/γ φ ∈ [0; 1] no stable phase exists. Further increasing the
reference curvature to H0 = 3/(4R0) in 6(c), on the one hand, increases the bending
modulus of the threshold and the instability phase even further. On the other hand,
the shape of the threshold curve changes strongly: at large anisotropy a vertical line,
i.e. increasing the bending modulus for fixed anisotropy, intersects the threshold twice.
Thus, increasing the bending modulus first leads to a transition from instability to the
stable phase, but further increasing the bending modulus leads to another transition from
the stable phase to the instability. Eventually, for the reference curvature of a sphere
H0 = 1/R0 in figure 6(d) unstable modes exist for any combination of anisotropy and
bending.

The complex behaviour with respect to the reference curvature can be understood by
considering the limit of a flat and that of a spherical membrane. For a reference curvature
of zero, the preferred shape of the interface is flat. As a consequence, the curvature due to
the perturbation along the axis in addition to the azimuthal curvature is penalised more
strongly by the bending energy. Thus, the instability threshold shifts towards smaller
bending moduli. However, at very small anisotropy the destabilising γ φ contribution
strongly dominates and the instability sets in up to a larger bending modulus. If the
reference curvature takes the value of a sphere, it favours the additional curvature of the
developing fragments (after instability onset). Therefore, large reference curvature not only
renders the interface unstable for all anisotropy values, a large reference curvature can lead
to a dominant bending contribution such that bending alone can trigger an instability.
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Anisotropic Rayleigh–Plateau instability. Part 2 910 A47-19

4. Shear elasticity can render the interface stable

4.1. Dispersion relation from the Skalak Hamiltonian
Apart from the resistance to bending deformations, very often the resistance to
shear deformation and area dilatation is of great importance (Hannezo et al. 2012;
Berthoumieux et al. 2014; Freund 2014; Bächer et al. 2020). In the following, we study the
Rayleigh–Plateau instability of a membrane endowed with resistance to shear measured by
the shear modulus κS and resistance to area dilatation measured by the modulus κA = CκS,
which is expressed as a multiple of κS. In stark contrast to the bending forces above, here,
forces tangential to the interface arise. Therefore, the hydrodynamic approach used in
Part 1 and for the bending elastic interface above has to be modified. In the following,
we first derive the tangential and normal elastic forces from the constitutive law and then
present the changes required for including the tangential force. Eventually we obtain the
dispersion relation for a shear elastic interface.

As the constitutive equation for the shear elasticity including area dilatation we use the
energy functional introduced by Skalak et al. (1973),

WSK = κS

12

[(
I2

1 + 2I1 − 2I2
) + CI2

2

]
, (4.1)

with the invariants of the deformation (Green & Zerna 1954; Skalak et al. 1973;
Barthès-Biesel 2016; Daddi-Moussa-Ider et al. 2017)

I1 = Gαβgαβ − 2, (4.2)

I2 = det
(
Gαβ

)
det

(
gαβ

) − 1 (4.3)

and the additional parameter

J =
√

1 + I2. (4.4)

The Skalak Hamiltonian (4.1) represents a nonlinear constitutive law empirically proposed
for elastic cell membranes (Skalak et al. 1973). It describes a strain hardening behaviour
of the membrane (Barthès-Biesel et al. 2002). The first term of (4.1) describes the shear
elasticity of the elastic membrane. The second term proportional to C is related to area
incompressibility, where the value of C is chosen much larger than one for a completely
area incompressible membrane (Barthès-Biesel et al. 2002; Freund 2014). A typical value
used for simulations of red blood cells is C = 100 (Gekle 2016; Bächer, Schrack & Gekle
2017; Bächer et al. 2018; Guckenberger et al. 2018). The invariants (4.2), (4.3) and (4.4)
can be calculated using (2.5) and (2.7a,b). We perform a linearisation of the invariants
with respect to small perturbations ε using that the actual radius is R = R0 + ur(z)with the
deformation ur = O(ε) and in turn R′ = O(ε), R′2 = O(ε2), u2

r = O(ε2) and thus R2/R2
0 =

(1/R2
0)(R

2
0 + 2urR0 + u2

r ) ≈ 1 + 2(ur/R0). The invariants in leading order of ε therefore
are

I1 ≈ 2
ur

R0
+ 2u′

z, (4.5)

I2 ≈ 2
ur

R0
+ 2u′

z, (4.6)

J ≈ 1 + ur

R0
+ u′

z. (4.7)
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910 A47-20 C. Bächer, K. Graessel and S. Gekle

From the given strain energy functional (4.1) the in-plane components of the elastic surface
stress tαel in (2.14) are deduced as

tαβel,SK = 2
J
∂WSK

∂I1
Gαβ + 2J

∂WSK

∂I2
gαβ, (4.8)

where we obtain using (2.6), (2.7a,b), (4.1), (4.5)–(4.7)

tφφel,SK = 2κS

3R2
0

(
(1 + C)

ur

R0
+ Cu′

z

)
, (4.9)

tzz
el,SK = 2κS

3

(
C

ur

R0
+ (1 + C)u′

z

)
. (4.10)

Due to the in-plane and normal force balances (2.21) and (2.22), respectively, the elastic
interfacial forces are calculated by (Green & Zerna 1954; Barthès-Biesel 2016; Salbreux
& Jülicher 2017)

∇αtαβel,SK = f βSK, (4.11)

−cαβ tαβel,SK = f n
SK, (4.12)

with tαel,n = 0 (Daddi-Moussa-Ider, Guckenberger & Gekle 2016; Daddi-Moussa-Ider et al.
2017; Daddi-Moussa-Ider & Gekle 2018). Due to the derivatives of the metric in its
definition (2.8) the Christoffel symbols only possess terms linear or of higher order in ε.
In the covariant derivative of the in-plane surface stress a multiplication occurs with
the in-plane surface stress components and the resulting terms are of higher order, thus
negligible. Therefore, the covariant derivative (2.9) equals the partial derivative in linear
order. Calculating the derivatives and using the curvature tensor (2.11), we obtain the
elastic interfacial forces

f z
SK = 2κS

3

(
C

u′
r

R0
+ (1 + C)u′′

z

)
, (4.13)

f n
SK = − 2κS

3R0

(
(1 + C)

ur

R0
+ Cu′

z

)
, (4.14)

in the limit of small deformations. Due to axisymmetry the force in azimuthal direction
vanishes, i.e. f φ = 0.

We then perform a linear stability analysis for the elastic interface endowed with
anisotropic tension in the limit of small Reynolds numbers, i.e. for the Stokes equation
covering the dynamics of the suspending fluid. Using the perturbation ansatz for the
interface (3.12) we obtain for the radial deformation ur = εR0 cos(kz). Furthermore, the
deformation fulfils the kinematic boundary conditions (Daddi-Moussa-Ider et al. 2016,
2018)

∂ur

∂t
= vr|r=R0, (4.15)

∂uz

∂t
= vz|r=R0, (4.16)

which allow us to couple the deformation and the fluid velocity. Starting from the
kinematic boundary conditions we use ∂tε = ωε. For the velocity components we choose
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Anisotropic Rayleigh–Plateau instability. Part 2 910 A47-21

a perturbation ansatz vr(r, z) = (γ φε/η)v̄r(r) cos(kz) and vz(r, z) = (γ φε/η)v̄z(r) sin(kz)
as done in the case of bending elasticity and as in (B 5), (B 6) of Part 1. Doing so, we
obtain the growth rate and further the axial deformation

ωεR0 cos(kz) = γ φε

η
εv̄r(R0) cos(kz), (4.17)

uz = γ φε

η

1
ω
εv̄z(R0) sin(kz). (4.18)

The elastic forces from (4.13) and (4.14) become

f z
SK = −2κS

3

(
Ck + (1 + C)

γ φ

η

1
ω
v̄z(R0)k2

)
ε sin(kz), (4.19)

f n
SK = − 2κS

3R0

(
(1 + C)+ C

γ φ

η

1
ω
v̄z(R0)k

)
ε cos(kz). (4.20)

Using again the separation ansatz for the velocities, the perturbation ansatz of the interface
(3.12), the elastic forces and utilising the ring forcing concept, we obtain the fluid equations
of motion in the Hankel space

s
R0

P(s)− (
s2 + k2) Vr(s)

+

⎛
⎜⎜⎜⎝1 − γ z

γ φ
(kR0)

2 − 2κS

3γ φ

(
(1 + C)+ C

γ φ

η

1
ω
v̄z(R0)k

)
︸ ︷︷ ︸

=χ

⎞
⎟⎟⎟⎠ J1(sR0) = 0, (4.21)

k
R0

P(s)− (
s2 + k2) Vz(s)

+

⎛
⎜⎜⎜⎝− 2κS

3γ φ

(
CkR0 + (1 + C)

γ φ

η

1
ω
v̄z(R0)k2R0

)
︸ ︷︷ ︸

=ψ

⎞
⎟⎟⎟⎠ J0(sR0) = 0, (4.22)

sVr(s)+ kVz(s) = 0, (4.23)

where we introduce the abbreviations χ and ψ and with Vr(s),Vz(s),P(s) being the
Hankel transforms of the r-dependent parts of the velocity and the pressure. As in the
previous part, the anisotropy of the interfacial tension is given by the fraction γ z/γ φ . The
influence of shear elasticity is determined by the dimensionless factor S = 2κS/(3γ φ),
which appears in both χ and ψ . The influence of area dilatation compared to shear
elasticity is tuned by the factor C according to the Skalak law (4.1).
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910 A47-22 C. Bächer, K. Graessel and S. Gekle

We solve the fluid equations of motion in Hankel space (4.21)–(4.23) for the velocities

Vr = −ksψ
J0(sR0)(
s2 + k2

)2 + χ
k2J1(sR0)(
s2 + k2

)2 , (4.24)

Vz = s2ψ
J0(sR0)(
s2 + k2

)2 − χ
ksJ1(sR0)(
s2 + k2

)2 (4.25)

and we obtain in real space, evaluated at the interface

v̄z(R0) = ψ

∫ ∞

0
ds

s3J0(sR0)J0(sR0)(
s2 + k2

)2︸ ︷︷ ︸
=ξ1

−χ
∫ ∞

0
ds

s2kJ1(sR0)J0(sR0)(
s2 + k2

)2︸ ︷︷ ︸
=ξ2

, (4.26)

v̄r(R0) = −ψ
∫ ∞

0
ds

ks2J0(sR0)J1(sR0)(
s2 + k2

)2︸ ︷︷ ︸
=ξ2

+χ
∫ ∞

0
ds

k2sJ1(sR0)J1(sR0)(
s2 + k2

)2︸ ︷︷ ︸
=ξ3

, (4.27)

where ξ1–ξ3 abbreviate the corresponding integrals, which can be calculated e.g. using
Mathematica. Plugging the definitions of χ and ψ into the expression (4.26) leads to an
equation which can be solved for v̄z:

v̄z(R0) =
−ξ1SCkR0 − ξ2 + ξ2

γ z

γ φ
(kR0)

2 + ξ2S(1 + C)

1 + ξ1S(1 + C) γ
φ

η

1
ω

k2R0 − ξ2SC γ φ

η

1
ω

k
, (4.28)

which still contains the growth rate. Using furthermore the relation following from
(4.17) for the growth rate ω = (γ φ/(ηR0))v̄r(R0) = −(γ φ/(ηR0))ψξ2 + (γ φ/(ηR0))χξ3
and inserting all definitions above, leads to a final expression, which we solve with
Mathematica for the growth rate. This procedure results in the dispersion relation for the
interface endowed with shear elasticity and area dilatation

ω1,2 = ∓1
2
ωS

0S(kR0((C + 1)kξ1R0 − 2Cξ2)+ Cξ3 + ξ3)+ 1
2
ωS

0ξ3

(
γ z

γ φ
k2R2

0 − 1
)

∓ ωS
0

[
k2R2

0S
(
ξ 2

2 − ξ1ξ3
) (
(C + 1)

(
γ z

γ φ
k2R2

0 − 1
)

+ 2CS + S
)

+ 1
4

(
ξ3

(
CS + γ z

γ φ
k2R2

0 + S − 1
)

+ kR0S((C + 1)kξ1R0 − 2Cξ2)

)2
]1/2

.

(4.29)

Because the Skalak law equals the neo-Hookean constitutive law in the limit of small
deformations and C = 1 (Barthès-Biesel et al. 2002) all of the above results for C = 1
apply also to interfaces with neo-Hookean elasticity.

4.2. Shear elasticity introduces stability
Figure 7 shows the dispersion relation (blue line) for different relative shear moduli S
and different area dilatation coefficients C as given by (4.29). One of its two solutions is
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S = 0.2, γz/γφ = 2.0

C = 100

S = 0.6, γz/γφ = 1.0

C = 100

S = 0.6, γz/γφ = 2.0
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Dispersion relation

γφ contribution

γ z contribution

Shear

contribution

kR0
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kR0
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kR0 kR0 kR0

kR0 kR0 kR0

(a)

(b)

(c)

(d)

FIGURE 7. Dispersion relation for shear elasticity and anisotropic interfacial tension.
Contributions from the shear elasticity S (purple), γ φ (green) and γ z (orange) are distinguished
(dashed lines). Dispersion relations are shown for two different area dilatation moduli in the
upper two and the lower two rows, respectively, and in each case for two different shear moduli
(first and second row of each case). The anisotropy ratio is varied column-wise. The shear
contribution is always negative and thus damping. Increasing the shear modulus strongly lowers
the maximum of the dispersion relation. A similar effect is obtained for increasing area dilatation
to the extent that both together can lead to a purely negative dispersion relation and thus a stable
interface.

always negative and thus not shown in the figure. Tension anisotropy γ z/γ φ is increased
from the left to the right column using the same values 0.5, 1.0 and 2.0 as before. The
shear contribution depicted by the purple, dashed curve is purely damping. Therefore, the
initial state would be stable when interfacial tension tβaniso,α is absent. While the bending
contribution in figure 2 has a root at kR0 = 1, the shear contribution does not show any
positive root. The negative shear contribution alters the range of growing wavenumbers.

From 7(a) to (b) and from (c) to (d) the shear modulus S is increased while the resistance
to area dilatation C is held constant. From (a) to (c) and from (b) to (d) the resistance
to area dilatation increases but the shear modulus does not change. Both an increase in
the shear modulus and in the area dilatation coefficient strengthens the damping shear
contribution. In (b) the increase in shear modulus strongly dampens the dispersion relation,
but it still retains a positive maximum and thus an unstable range exists for all γ z/γ φ .
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FIGURE 8. Phase diagram for anisotropic tension and shear elasticity. We vary the resistance to
area dilatation from (a) C = 0 to (b) C = 1, (c) C = 25 and (d) C = 100. Above a critical shear
modulus S the shear elasticity renders the interface stable, where the critical value decreases
from (a) to (d), but never depends on γ z/γ φ .

In (d), due to an additional increase in C the total dispersion relation eventually becomes
negative such that the cylindrical interface remains stable.

In order to investigate the transition to a stable phase for shear elasticity in more detail,
we show the corresponding phase diagrams for several area dilatation coefficients in
figure 8. The colour in the phase diagrams encodes the dominant wavelength. We find that
above a critical shear modulus Scrit a region of stable interfaces develops in all cases. Most
remarkably, this threshold is independent of the tension anisotropy. Compared to the phase
diagrams including bending elasticity (figure 4a), the unstable corridor for γ z/γ φ ≤ 1 no
longer exists. Besides the increase in wavelength for stronger area dilatation, in figure (b)
to (d) we observe that increasing the value of C lowers the critical shear modulus.

The change of the critical shear modulus with increasing area dilatation coefficient C is
quantified in figure 9. For C = 0 the critical shear modulus Scrit is one, towards larger C
values the critical value saturates around 0.5. Thus, increasing area dilatation can render
the interface stable, just as the shear elasticity can. The curve is the same for different
values of the tension anisotropy. The predicted threshold for an axisymmetric, isotropic
active membrane without surrounding fluid by Berthoumieux et al. (2014), which has been
confirmed in simulations by Bächer & Gekle (2019), agrees very well with our findings
for C = 1 (blue triangle in figure 9).

4.3. Shear elasticity affects dominant wavelength
In figure 10 we systematically investigate the change in dominant wavelength λm due to
changes in the anisotropy ratio and the shear modulus. Figure 10(a) shows an increase
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FIGURE 9. Critical shear modulus. The critical elastic shear modulus, Scrit, above which the
interface remains stable, decreases with increasing area dilatation coefficient C and towards
larger C saturates at approximately 0.5. Findings of Berthoumieux et al. (2014) for isotropic
tension in absence of any fluid agree very well with our data (blue triangle).
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FIGURE 10. Dominant wavelength for shear elasticity. The resistance to area dilatation is
varied from (a) C = 0 to (b) C = 1, (c) C = 25 and (d) C = 100. Increasing shear modulus
S (differently coloured curves) increases the most unstable wavelength λm as does increasing
anisotropy of the interface tension γ z/γ φ as well as increasing C. Curves for large shear modulus
such as the yellow or dark blue curve in (a) vanish in (b), because the interface becomes stable
by increasing C for large shear modulus. Curves correspond to horizontal lines in the phase
diagram 8.

in wavelength with increasing anisotropy γ z/γ φ for fixed C and varying shear modulus.
A larger shear modulus for fixed tension anisotropy leads to an increase in the dominant
wavelength of the instability. Furthermore, increasing the area dilatation coefficient C
from figures 10(a) to 10(d) increases the wavelength: all curves shift towards larger
values of the wavelength, while the shape of the curves remains similar. For a large
shear modulus, the increase in C renders the dispersion relation negative, the cylinder is
stable and therefore curves for large shear elasticity gradually disappear when going from
figures 10(a) to 10(d). As seen based on the dispersion relation in figure 7, the transition
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FIGURE 11. Phase diagram combining bending and shear elasticity. We vary the shear
elasticity S for fixed (a) B = 0.1, C = 1, (b) B = 0.4, C = 1, (c) B = 0.4, C = 100 and
(d) B = 0.6, C = 1. The interplay of resistance to bending and shearing leads to a phase diagram
which combines the corresponding effects from figures 4(a) and 8. In particular, the instability
threshold shifts to smaller values of the shear modulus for fixed bending elasticity and increasing
anisotropy.

to the stable phase is independent of γ z/γ φ , which is in stark contrast to the bending
elasticity. For larger C values in figures (c) and (d), changes are less pronounced, which
reflects the saturation of the effects for strong area dilatation as observed in figure 9. As a
consequence, we do not expect any distinct effects for even larger area dilatation modulus.

5. Interplay of bending and shear elasticity

Finally, in this section we combine both bending and shear elasticity. We perform a
linear stability analysis in the same way as detailed in § 4.1, but modify the normal
component of the ring force, expression χ in (4.21): bending elasticity leads to
contributions to the normal force and thus the terms in (3.13) which are proportional to
the bending modulus are added to χ . In figure 11 we show the resulting phase diagram for
different combinations of the elastic parameters: while we vary the tension anisotropy and
the relative shear modulus S , each diagram belongs to a fixed bending elasticity and area
dilatation coefficient.

Small bending elasticity in (a) leads to results which are similar to those of a pure
shear elastic interface with C = 1 in figure 8(b): except the small increase around zero, we
have an instability threshold that is constant for varying tension anisotropy. Compared
to pure shear elasticity in figure 8(b) the threshold decreases despite the rather small
value of the bending resistance. Increasing the bending elasticity in figure 11(b) shows
an overlap of effects due to shear elasticity and due to bending elasticity: while shear
elasticity alone leads to a constant threshold for all γ z/γ φ , bending elasticity alone leads
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to a range of unstable anisotropy values and a threshold towards larger anisotropy as
shown in figure 4(a). Together these result in a peak and a decrease of the threshold
at smaller anisotropy. At larger anisotropy the threshold is at lower shear modulus due
to the finite bending elasticity and interplay of both. An additional increase in the area
dilatation coefficient in 11(c) leads to an overall shift of the threshold towards smaller
shear modulus, but the corridor extension over γ z/γ φ ≤ 0.7 remains. Further increasing
the bending modulus in 11(d) compared to (b) for C = 1 keeps the peak in the threshold at
small anisotropy but further decreases the plateau at larger anisotropy. The transition of the
threshold is therefore more pronounced. For finite shear elasticity a corridor of unstable
modes towards bending modulus to infinity does not exist. In all cases, the instability
wavelength increases in the whole parameter space compared to pure bending and pure
shear elasticity.

6. Conclusion

In this series of two papers we provided a detailed study of the Rayleigh–Plateau
instability driven by anisotropic tension. The common starting point of all studied
scenarios is the linear stability analysis of an infinitely long cylindrical interface subjected
to an azimuthal and an axial contractile tension, the ratio of the two representing our
main control parameter. We consider the full dynamics of the interior and the exterior
fluid and perform a separate analysis for the high Reynolds number (Euler) and low
Reynolds number (Stokes) regime. Physically, this includes fluid jets with a liquid–liquid
or liquid–air interface in the Euler regime as well as tubular vesicles and biological cells in
the Stokes regime. While anisotropy in the surface tension of fluid jets may be considered
a somewhat special case, anisotropic tension is a common feature in cell cortices. An
anisotropic tension can arise, e.g. due to alignment of actin stress fibres, and represents the
core motivation of our work. In Part 1 we studied the general mechanism of anisotropic
Rayleigh–Plateau instability for fluid–fluid interfaces. The present paper extends these
studies by including elastic forces due to bending, shearing and area dilatation in order to
properly account for the mechanical characteristics of membranes. Our main findings can
be summarised as follows:

(i) Increasing azimuthal with respect to axial tension leads to destabilisation of
the interface. Destabilisation expresses itself in an extension of the range of
unstable wavenumbers beyond the classical Rayleigh–Plateau threshold kR0 = 1.
It furthermore leads to a shift in the dominant, most unstable mode towards shorter
wavelengths.

(ii) Bending forces have only a small influence if the driving tension is isotropic. If axial
tension dominates, however, they exert a strongly stabilising effect up to a complete
suppression of the Rayleigh–Plateau instability.

(iii) The interplay of bending forces and anisotropy leads to the creation of a novel
regime, in which the interface is stable against both very large and very small
wavelengths. Only at intermediate wavelengths does an unstable range appear.

(iv) Increasing bending forces and/or varying tension anisotropy can completely
suppress the instability.

(v) Shear elasticity always leads to stabilisation of the interface.

An important future research direction will be to investigate the coupling of anisotropic
tensions with anisotropic elastic properties of the interface, where a modified elastic
constitutive law including anisotropy must be derived or proposed.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 IP

 a
dd

re
ss

: 7
9.

19
9.

38
.2

48
, o

n 
22

 Ja
n 

20
21

 a
t 0

9:
55

:4
5,

 s
ub

je
ct

 to
 th

e 
Ca

m
br

id
ge

 C
or

e 
te

rm
s 

of
 u

se
, a

va
ila

bl
e 

at
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e/

te
rm

s.
 h

tt
ps

://
do

i.o
rg

/1
0.

10
17

/jf
m

.2
02

0.
94

6
pub4



910 A47-28 C. Bächer, K. Graessel and S. Gekle

Acknowledgements

C.B. and K.G. thank the Studienstiftung des deutschen Volkes for financial support. C.B.
acknowledges support by the study programme ‘Biological Physics’ of the Elite Network
of Bavaria. We acknowledge funding by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – project number 326998133 – TRR 225 ‘Biofabrication’
(subproject B07). We gratefully acknowledge computing time provided by the SuperMUC
system of the Leibniz Rechenzentrum, Garching, as well as by the Bavarian Polymer
Institute, and financial support from the Volkswagen Foundation.

Declaration of interests

The authors report no conflict of interest.

Supplementary material

Supplementary material are available at https://doi.org/10.1017/jfm.2020.946.

Appendix A. Anisotropic Rayleigh–Plateau instability of an ideal fluid jet with
bending elasticity

We derive the dispersion relation of a liquid jet filled with an ideal fluid (Rayleigh 1878;
Eggers & Villermaux 2008) including the bending elasticity of a possible surfactant. We
here consider vanishing influence of an ambient fluid, but according to appendix C of
Part 1 including an ambient fluid leads to results which look similar. The interfacial force
due to bending in (3.11) together with the anisotropic interfacial tension (2.14) contributes
to the traction jump at the interface given in (3.13). If we rewrite the radius R(z) with the
perturbation ansatz R0 + ur(z) and consider a perturbation of the interface of the form

ur = ε0 exp(ωt + ikz), (A 1)

with a small amplitude ε0, growth rate ω and wavenumber k, we can calculate the linear
traction jump at the interface. For an ideal fluid the traction jump in normal direction Δf n

is identical to the pressure p0 + δp(r = R) at the interface and we thus can write

p0 + δp(r = R) = γ φ

R0

(
1 − ε0

R0
exp(ωt + ikz)

)
+ γ zε0k2 exp(ωt + ikz)

+ κB

(
1
R4

0
− 2k2

R2
0

+ k4

)
ε0 exp(ωt + ikz). (A 2)

Starting from this pressure disturbance at the interface, we derive the dispersion relation
as detailed in appendix C of Part 1: we identify p0 as the constant Laplace pressure of
the unperturbed interface as given in (3.14), solve the Laplace equation for the pressure
and the linearised Euler equation for the velocity contribution in radial direction and use
the kinematic boundary condition (Eggers & Villermaux 2008). We neglect the density
of the outer fluid and thus consider a liquid jet in air (Eggers & Villermaux 2008). This
procedure leads to the dispersion relation for an ideal fluid including bending elasticity

ω2 = ω2
0kR0

[
1 − γ z

γ φ
(kR0)

2 − B
(
1 − 2 (kR0)

2 + (kR0)
4)] I1(kR0)

I0(kR0)
, (A 3)

with the prefactor ω2
0 = γ φ/(ρR3

0). We obtain the same geometrical factor kR0(I1(kR0)/
I0(kR0)) as Rayleigh (1892) and Patrascu & Balan (2020) for isotropic tension without
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FIGURE 12. Dispersion relation for bending resistance and anisotropic interfacial tension for
the ideal fluid. From left to right the anisotropy ratio increases. From top to bottom the bending
resistance is increased, the values are given by the labels. The bending contribution is purely
damping for all wavenumbers, except at the position of its root. It alters the range of growing
modes and shifts the maximum of the dispersion relation. For the ideal the γ φ-contribution
tends to infinity.

and with bending elasticity, respectively. However, the prefactor including bending forces
deviates from the one obtained by Patrascu & Balan (2020) for isotropic tension. The latter
uses a bending tension expanded around zero curvature, which significantly differs from
the one obtained from the full Helfrich Hamiltonian (Guckenberger & Gekle 2017). In
contrast to the Stokes dispersion relation (3.15), we here obtain the square of the growth
rate. If ω2 is negative, the growth rate is imaginary and corresponding small perturbations
are oscillatory but do not grow in time. However, ω2 > 0 results in a positive ω leading
to growth of the perturbation, while the negative solution for ω will decay and is of no
interest. Thus, wavenumbers where ω2 > 0 are unstable. Analogously to the calculation
in the Stokes regime in § 3.1, the bending elasticity makes a contribution proportional to
the dimensionless prefactor B in addition to the contributions of the anisotropic tension,
already appearing in (C 15) in Part 1. The factor due to bending and anisotropy in
the dispersion relation (A 3) is identical to F in (3.16), thus the discussion of the
unstable range and the instability threshold is the same for the ideal fluid as for the Stokes
fluid in § 3.

However, the dispersion relation and its maximum, the dominant wavelength, change
strongly. The dispersion relation (A 3) of an anisotropic interface including bending
elasticity for the ideal fluid is shown in figure 12 as blue line. Analogously to figure 2 for
the Stokes limit, we also draw the bending contribution as red dashed line and the γ z- and
γ φ-contribution from the anisotropic interfacial tension in orange and green, respectively.
From the left to right columns in figure 12 the anisotropy ratio increases and from top to
bottom the bending resistance is increased from 0.5 to 1.0 and 2.0. As already observed for
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FIGURE 13. Stability of an ideal fluid jet with bending elasticity. (a) Phase diagram depending
on tension anisotropy and bending elasticity. Strong bending elasticity B ≥ 1 with γ z/γ φ > 1
can render the interface stable (suppressed regime), whereas for smaller tension anisotropy
unstable modes always exist but are restricted. (b) The instability wavelength for different
bending moduli, where each curve corresponds to a horizontal line through (a). Increasing
bending resistance (from orange to red) changes the wavelength strongly, especially at very small
and very large anisotropy ratio and can even suppress the instability (red curve). Around the
classical Rayleigh–Plateau instability, i.e. for anisotropy ratio of one, the wavelength changes
only slightly.

the dispersion relations in the Stokes limit in figure 2, the bending resistance is a damping
contribution for nearly all wavenumbers and becomes zero only at kR0 = 1, which is a
consequence of the reference curvature. Also in the case of the ideal fluid, an increase in
the anisotropy ratio (from left column to right column) as well as an increase in the bending
modulus (from top row 12(a) to bottom row (c)) strengthens the damping contributions
which eventually leads to a negative dispersion relation and therefore a stable cylindrical
interface (suppressed regime). We again observe that a large enough bending contribution
in 12(c) and moderate anisotropy ratios (first two columns) lead to another root of the
dispersion relation at finite wavenumbers and therefore stable modes at small wavenumber
(restricted regime). However, comparison with the dispersion relations in the Stokes
regime also shows that the different contributions and thus the shapes of the dispersion
relation differ visibly. In contrast to the Stokes regime the destabilising γ φ-contribution
for the ideal fluid tends to infinity, instead of bending downwards after having reached
its maximum. Thus the positive part of the dispersion relation is more asymmetric. As a
consequence the maximum shifts towards larger wavenumbers. However, the right root,
which determines the right border of the growing modes, is the same for both fluid limits.

In figure 13 we show the (a) phase diagram and (b) dominant wavelength λm for the ideal
fluid jet with bending elasticity. The threshold and the border between the classical and
restricted regime are the same as in the Stokes limit (figure 4a), because the factor F (3.16)
in the dispersion relation is the same. Each curve in 13(b) corresponds to a horizontal
line through the phase diagram in (a), where the value of the most unstable wavelength
is given by colour code. The curves without the influence of bending elasticity (orange)
recover the result shown in figure 4(b) of Part 1. Interestingly, around the anisotropy ratio
γ z/γ φ = 1 even very large bending contributions hardly affect the wavelength. However,
for strongly anisotropic interfacial tension, with a ratio close to zero or much larger
than one, the dominant wavelength changes distinctly. Strikingly, a finite wavelength for
γ z/γ φ → 0 is predicted if bending elasticity is included, whereas without bending for an
ideal fluid the wavelength approaches zero, as discussed in Part 1. This can also be seen
at the bottom left corner of the phase diagram. If the anisotropy ratio becomes larger for
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Anisotropic Rayleigh–Plateau instability. Part 2 910 A47-31

smaller bending resistance the wavelength strongly increases and tends to infinity. The red
curve for B = 2.0 shows that for larger anisotropy ratios no unstable wavelength exists,
which is reflected in figure 12(c): in the last column the dispersion relation does not
assume a positive value for any wavenumber. In the phase diagram this corresponds to
the region above the value B = 1.0 where on the right all modes are stable (white region).
As discussed above, for large enough bending (in the blue region in 13(a) and the red curve
in 13b) the wavelength, which correlates with the maximum of the bending contribution
due to reference curvature, stays nearly constant, independently of the tension anisotropy.
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Blood platelets are formed by fragmentation of long membrane
extensions from bone marrow megakaryocytes in the blood flow.
Using lattice-Boltzmann/immersed boundary simulations we pro-
pose a biological Rayleigh–Plateau instability as the biophysical
mechanism behind this fragmentation process. This instability
is akin to the surface tension-induced breakup of a liquid jet
but is driven by active cortical processes including actomyosin
contractility and microtubule sliding. Our fully three-dimensional
simulations highlight the crucial role of actomyosin contractility,
which is required to trigger the instability, and illustrate how
the wavelength of the instability determines the size of the final
platelets. The elasto-hydrodynamic origin of the fragmentation
explains the strong acceleration of platelet biogenesis in the
presence of an external flow, which we observe in agreement
with experiments. Our simulations then allow us to disentangle
the influence of specific flow conditions: While a homogeneous
flow with uniform velocity leads to the strongest acceleration, a
shear flow with a linear velocity gradient can cause fusion events
of two developing platelet-sized swellings during fragmenta-
tion. A fusion event may lead to the release of larger structures
which are observable as preplatelets in experiments. Together, our
findings strongly indicate a mainly physical origin of fragmenta-
tion and regulation of platelet size in flow-accelerated platelet
biogenesis.

biophysics | blood platelet biogenesis | actomyosin contractility |
Rayleigh–Plateau instability | blood flow

B lood platelets are the second most abundant cell type in
blood and are responsible for a quick stop of bleeding after

an injury (1). Due to their short life span of only 7 to 10 d,
platelets need to be constantly produced and global platelet num-
ber kinetics have been studied using mathematical models for
quite some time (2–6). On a single-cell level, the highly efficient
process of platelet biogenesis starts from megakaryocytes (MKs)
residing extravascularly in the bone marrow. Mature MKs first
grow long tubular extensions, termed proplatelets, which reach
into the adjacent sinusoidal blood vessels. The extended pro-
platelets then form periodic swellings and fragment into smaller
pieces that eventually mature into functional platelets (7, 8).
Recently, intensive efforts have been under way toward the in
vitro production of platelets (9–19) in various kinds of biore-
actors. In those microfluidic devices, MKs are either attached
to pillars (17) and exposed to an approximately homogeneous
flow or trapped in structures resembling the vascular endothe-
lium (15, 16) and exposed to parabolic Poiseuille flow during
the process of proplatelet growth and fragmentation. In both
cases, the flow strength to which proplatelets are subjected can
easily be tuned externally. Interestingly, a dramatic acceleration
of platelet biogenesis up to 20 times caused by fluid flow has
been consistently reported in various bioreactor geometries (7,
12, 15–17, 19). The mechanisms behind this fascinating exam-
ple of an active biological process directly interacting with its
surrounding hydrodynamic environment have so far not been
elucidated.

Here, to explain these findings, we propose an elasto-
hydrodynamic instability akin to the Rayleigh–Plateau instability
of a water jet leading to breakup into droplets as the key bio-
physical mechanism behind platelet biogenesis. To back up this
hypothesis, we use our recently developed simulation method
(20) which computes the forces created by the cortical acto-
myosin system and microtubules and the resulting dynamic
deformation of the proplatelet membrane as well as the impor-
tant two-way coupling to the flowing hydrodynamic environment
in a fully three-dimensional (3D) situation. Motivated by experi-
mental observations on the importance of actomyosin (9, 21–29),
we show how cortical actomyosin contractility creates periodic
swellings along the proplatelet in a similar, yet not identical, way
as surface tension triggers the breakup of a water jet exiting from
a faucet into a series of droplets in the classic Rayleigh–Plateau
scenario. Indeed, we find that experimentally observed platelet
sizes are in good agreement with predictions for this mecha-
nism. That such a “biological Rayleigh–Plateau instability” may
exist different from platelet biogenesis has been hypothesized
before in axisymmetric situations for active (30, 31) as well as
passive (32–34) vesicles and membranes. Here, specifically focus-
ing on cell biogenesis in fully 3D, hydrodynamic flows, we go one
step farther and fully take into account the flowing environment
present both in sinusoidal blood vessels in vivo and in microflu-
idic devices in vitro. Consistent with experimental findings, we
report a strong acceleration of the fragmentation process in the
presence of hydrodynamic flow. We then uncover the specific
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effects of different flow patterns: Shear, i.e., velocity gradients,
as present in parabolic Poiseuille flow through microchannels
or blood vessels leads to the fusion of neighboring swellings.
We hypothesize this to be the mechanism behind the forma-
tion of larger structures, called preplatelets, frequently observed
in the bloodstream (35). In contrast, homogeneous flow with
constant velocity, as approximately present in some bioreactor
systems (17), leads to a systematic and strong acceleration with-
out fusion events, which highlights its potential role for efficient
in vitro production of monodisperse platelets. We report a robust
size of the released platelets which is determined by the domi-
nant wavelength of the instability and is largely independent of
fluid flow in agreement with experimental findings. Our model
thus strongly indicates that a simple physical mechanism deter-
mines both platelet size and accelerated platelet biogenesis in
flow without the need of specific biochemical regulation. Fur-
thermore, our findings highlight in general the strong influence
of external flow on activity-driven cell deformation and thus may
be relevant for other processes such as cell division and in vitro
cell reproduction.

Computational Model for Platelet Biogenesis
In the following, we introduce our computational model for
platelet biogenesis. Platelet biogenesis can be divided into two
key steps: proplatelet extension and proplatelet fragmentation,
which itself consists of formation of platelet-like swellings and
their release as premature platelets. The first step, proplatelet
extension, has been shown to rely on sliding of microtubule
filaments driven by dynein (16). In the second step, once the
proplatelet is extended, characteristic swellings form along the
proplatelet shaft as we show in Fig. 1 A–C by experiments using
a bioreactor, which are described in Materials and Methods.
After swelling formation, the proplatelet ruptures, releasing the
swellings as separate premature platelets into the bloodstream.
In this work we focus specifically on the second step, i.e., the
fragmentation mechanism of already extended proplatelets. Key
ingredients of our model are the proplatelet’s active cell cor-
tex including actomyosin and microtubules, its elastic membrane,
and external fluid flow.

A sketch of our simulation setup is shown in Fig. 1D. We
model the extended proplatelet as a cylindrical membrane of
finite length and radius R0 =1.5 µm (17) terminated by a spher-
ical cap on the right and attached to a solid wall on the left.
Attachment is achieved by an overlap of the proplatelet end with
the wall and mimics the large and spatially fixed MK as seen in
experiments, e.g., in Fig. 1A. In our simulations we use 90 times
the radius as typical length of a proplatelet. The proplatelet is
immersed in blood plasma.

The overall picture that has emerged from a series of recent
studies (9, 21–29) highlights the key role of the cortical acto-
myosin system for swelling formation. Actin filaments have been
shown by electron micrographs to be confined mostly to the
thin cell cortex of the proplatelet (36, 37) where they form a
disordered but homogeneous network (38). Such actomyosin
networks are known to be contractile (39–47) in an isotropic
fashion (39). In addition to the actomyosin, microtubule slid-
ing has been shown to extend the proplatelet (16), which we
therefore consider as being extensile mainly along the axis. These
observations motivate us to use an active thin shell formulation;
i.e., we treat the cortex together with the plasma membrane as an
infinitely thin two-dimensional shell. The theoretical framework
for active membranes has recently been established (48) based
on active gel theory, which is a well-established tool for the con-
tinuum description of active dynamics in cytoskeletal assemblies
(49, 50) and has been successfully utilized for the investigation
of mechanisms regulating the cell shape in general (51, 52), in
cell division (53, 54), and for cell motility (55). For the compu-
tational realization, we use our recently developed method for

A

B

C

D

Fig. 1. Experiments and setup illustration. (A) MKs imaged in vitro grow
long tubular extensions (proplatelets) which after some time form periodic
swellings along their shaft as shown in B and C. MKs are trapped in the bot-
tom part of a microfluidic bioreactor by small gaps (15, 16) and remain fixed
during proplatelet extension and fragmentation. To illustrate the periodic
arrangement of MKs as shown in SI Appendix, Fig. S21, the marked area on
the right-hand side has been copied and reinserted on the left of the image.
Fluid flows with a maximum velocity of 2.2 mm/s and the complete width of
the experimental image is 137.5 µm. (D) Illustration of the computational
model for the proplatelet membrane. Plasma membrane and cortex (Inset)
are treated together as an active, elastic thin shell. The shell is endowed with
bending and shear elasticity as well as actomyosin contractility in concert
with microtubule sliding. We model the proplatelet as an initially cylin-
drical membrane with one fixed end and one free end according to the
experimental situation. The proplatelet is subject to external flow.

active membranes in 3D fluid flows (20), which is based on the
lattice-Boltzmann/immersed boundary method (56) and is fur-
ther detailed in SI Appendix, section S1. This method covers both
the influence of the cell on the surrounding fluid flow and the
forces acting on the cell due to external flow. Taken together,
we consider an anisotropic active stress which accounts for the
combination of microtubule extension and actomyosin contrac-
tility. The active part of the in-plane surface stress tensor (20)
therefore takes the form

t β
aα =

(
T z

a 0
0 Tφ

a

)
[1]

with T z
a <Tφ

a due to microtubule extension acting against acto-
myosin contractility in the axial direction. We choose a ratio
of T z

a /T
φ
a =0.75 and the value Tφ

a =2.5× 10−5 N/m, which is
close to what has been predicted as the cortical tension of human
blood platelets (36). This value is somewhat below, but in the
same range as, the contractile stress of activated platelets where
3D stresses of σ0 =150 kPa have been reported in adhered
platelets with a thickness of h=10 to 100 nm (57, 58) leading to
a membrane stress of around σ0h =1.5 · 10−3 N/m. Direct mea-
surements of the active stress in MKs or extended proplatelets
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have thus far not been carried out. We show in SI Appendix, Fig.
S11, however, that our results do not critically depend on the pre-
cise value of the active stress. Similarly, SI Appendix, section S3
shows that our results are not qualitatively altered if an isotropic
contractility (T z

a /T
φ
a =1) is assumed.

To cover the passive elasticity of the plasma membrane and
cortical cytoskeletal network, we furthermore assign shear and
bending resistance to the proplatelet membrane. Shear elasticity
stems from the continuous spectrin network in the proplatelet
(59) and is considered using the common Skalak model which
has been established for numerical simulations of red blood
cells (60). Bending elasticity stems from the properties of the
plasma membrane and is modeled using the Helfrich model
(60, 61). We use a resistance to shear of κS =5× 10−6 N/m
and a resistance to bending of κB =2× 10−19 Nm as they are
reported for red blood cells (60). Proplatelets are immersed
into a flowing liquid with the properties of blood plasma hav-
ing a density ρ=1,000 g/L and a viscosity η=1.2× 10−3 Pa·s.
The proplatelet interior is filled with a liquid of the same prop-
erties, except in SI Appendix, Fig. S13 where we increase the
viscosity contrast. The channel diameter is chosen to be about
eight times the proplatelet diameter. Our simulations in general
do not consider thermal fluctuations. Including them, however,
does not significantly affect the results as shown in SI Appendix,
Fig. S12.

Results
In the following three subsections, we investigate proplatelet
fragmentation first in a quiescent fluid such as a petri dish fol-
lowed by fragmentation in parabolic Poiseuille flow for two
different geometries. In the first geometry, the flow is loosely
confined between two parallel plates with a channel height of
23.5 µm corresponding to microchannel bioreactors as well as to
typical sinusoidal capillaries in the bone marrow (62). The sec-
ond geometry is a narrow cylinder with a diameter of 9 µm and
thus only slightly larger than the proplatelet itself correspond-
ing to small and intermediate capillaries in the bone marrow
(62). Finally, we consider a homogeneous flow with constant
velocity, which can be utilized for efficient platelet biogenesis in
micropillar bioreactors.

Proplatelet Fragmentation without Flow by a Biological Rayleigh–
Plateau Instability. We start by considering a proplatelet
immersed in a quiescent fluid subject to actomyosin contractil-
ity in concert with microtubule sliding. Fig. 2 A–C shows the
dynamic evolution of the proplatelet shape for different times.
Initially, in Fig. 2A the proplatelet is attached to a pillar on
the left-hand side. As the simulation starts, the free end of the
proplatelet on the right starts contracting and a spherical tip
forms as seen in Fig. 2B. The initially cylindrical shaft starts to
deform and a periodic, equidistant arrangement of platelet-sized
swellings develops. These swellings are connected by small mem-

brane strings, as shown in Fig. 2C. Once the membrane strings
become too thin to be properly resolved numerically, the simu-
lation is stopped and fragmentation is considered complete. The
entire process is shown in Movie S1.

The numerically obtained proplatelet dynamics in Fig. 2 A–C
can be compared to our experimental images in Fig. 1 A–C and
SI Appendix, Fig. S21. For the complete, experimental time series
we refer to SI Appendix, Fig. S20. The simulations resemble the
experimental proplatelet shapes very well: The initially cylin-
drical proplatelet (shown in Fig. 2A) first exhibits small undu-
lations (shown in Fig. 2B) which eventually grow to swellings
connected by membrane strings in Fig. 2C. This agreement
demonstrates that our computational model is able to repro-
duce well the experimentally observed proplatelet fragmentation
process.

A complete illustration of proplatelet fragmentation is given
by the kymograph in Fig. 2D. Here, the color code corresponds to
the local proplatelet radius shown with respect to position along
the proplatelet axis and time. At the beginning of the simula-
tion, contraction at the proplatelet’s free tip is visible by the dark
blue band developing at the top right. With increasing time a
periodic pattern of vertical stripes develops. These stripes cor-
respond to the swellings visible in Fig. 2 B and C. We note that
fragmentation in our simulations happens on shorter time scales
than in corresponding in vitro experiments (e.g., figure S3 of
ref. 17) which we attribute to the low viscosity that we use and
the omitted viscoelasticity for the proplatelet interior. Indeed,
simulations presented in SI Appendix, Fig. S13 indicate a strong
increase in fragmentation time with an increase in internal vis-
cosity. After the swellings are established, the periodic pattern
along the shaft remains without any movement of the individual
swellings.

The observed fragmentation in Fig. 2 is visually strikingly sim-
ilar to the fragmentation of a liquid jet, e.g., water issuing from
a tap, by the classic Rayleigh–Plateau instability (63) as shown in
figure 2 of ref. 64. To further quantify our hypothesis that indeed
a biological equivalent of the Rayleigh–Plateau instability is the
key mechanism behind proplatelet fragmentation we investigate
the wavelength of the periodic swellings along the proplatelet.
To ensure a one-to-one correspondence of the two mechanisms,
we consider first the results for isotropic actomyosin contractility
in SI Appendix, Fig. S7, where we observe a wavelength of about
λ=14.3 µm. Taken relative to the cylinder radius this leads to
2π
λ
R0 ≈ 0.66 which is very close to the classic Rayleigh–Plateau

value of 0.69 for the most unstable wavelength. The value for
anisotropic contractility of 0.74 is close to the theory, as well. Fur-
thermore, from experimentally measured proplatelet diameters
of 2 to 4 µm (8) we can estimate, based on the classic Rayleigh–
Plateau criterion, a range for the platelet-sized swelling volume
of about 28.6 to 229 µm3. This compares well with observa-
tions in refs. 65 and 66 who found volumes of matured platelets
in the range 8.377 to 50 µm3 [for volume calculation we use

A

B

C

D

Fig. 2. Proplatelet fragmentation by a biological Rayleigh–Plateau instability without flow. (A) The initially cylindrical proplatelet is subject to microtubule
sliding and actomyosin contractility. (B) The proplatelet starts contracting and periodic swellings develop. (C) Eventually the proplatelet consists of a series
of platelet-sized swellings. (D) A kymograph illustrates the dynamics of swelling formation with the color coding for the local proplatelet radius. Time steps
for the corresponding proplatelet shapes in A–C are indicated by the orange lines.
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diameter and height reported for platelets (65, 66) assuming an
oblate ellipsoid].

The Rayleigh–Plateau instability of a liquid jet is driven by the
surface tension γ of a liquid–gas interface. At the interface the
surface tension enters as an in-plane surface stress

t Jet β
α =

(
γ 0
0 γ

)
[2]

in mathematically the same way as the actomyosin/microtubule
system in terms of an active stress Ta given in Eq. 1 does in the
case of the proplatelet membrane. An important difference is
that the proplatelet membrane is subject to anisotropic stresses
due to microtubule extension along the axis. Thus, it becomes
clear that the actomyosin contractility during proplatelet frag-
mentation plays essentially the same role as surface tension in
the case of a liquid jet. The contractility triggers a biological
Rayleigh–Plateau instability with a wavelength not depending on
the absolute value of the contractility (SI Appendix, Fig. S11), in a
similar way as the dominant wavelength of the classic Rayleigh–
Plateau instability does not depend on the value of the surface
tension coefficient (63). The biological Rayleigh–Plateau insta-
bility directly sets in with tip contraction and does not depend
on thermal fluctuations (as shown in SI Appendix, Fig. S12).
Our simulations thus suggest a physical mechanism regulating
platelet size during the formation process: The dominant wave-
length of the biological Rayleigh–Plateau instability determines
platelet size.

Platelet Biogenesis In Vivo and in Microchannels: Parabolic Poiseuille
Flow. Motivated by the fact that in vivo platelet biogenesis occurs
in the flowing bloodstream and that in vitro experiments have
demonstrated a massive acceleration of platelet biogenesis due
to flow in bioreactors (7, 12, 15–17, 19), we now go one step
farther and investigate the role of various nonaxisymmetric flow
fields. We first consider a channel bounded on top and bot-
tom by a flat wall mimicking a typical bioreactor geometry or
an in vivo sinusoidal blood vessel. Below we compare this to a
narrow cylindrical channel corresponding closely to the geom-
etry of a narrow capillary. The geometry in Fig. 3 leads to the
well-known parabolic Poiseuille velocity profile far away from
the cell. The simulations include the realistic alteration of the

flow field due to the presence of the proplatelet by the two-
way coupling between fluid and membrane (20). The channel
height of 23.5 µm and the flow velocities are chosen in the
range reported by experiments (62) on sinusoidal blood vessels.
The bioreactor used in Fig. 1 A–C and used in refs. 15 and 16
with approximately twice the diameter has the same order of
magnitude. As shown in Fig. 3A, we then attach a proplatelet
to one of the walls which, corresponding to proplatelet exten-
sion into sinusoidal blood vessels in the bone marrow and in
the bioreactor as shown in SI Appendix, Fig. S21, is tilted in
the flow direction (in SI Appendix, Fig. S15 we show a minor
influence of a change in the tilting angle). Due to actomyosin
contractility the proplatelet undergoes a biological Rayleigh–
Plateau instability and platelet-sized swellings develop along its
shaft similar to that in a quiescent fluid in Proplatelet Fragmen-
tation without Flow by a Biological Rayleigh–Plateau Instability
above. Proplatelet shapes after swelling formation are shown
in Fig. 3 B and C for a flow velocity of v =3.33 mm/s. In
contrast to a quiescent fluid, the action of the flow suppresses
the contraction at the proplatelet free tip and the proplatelet
undergoes a net extension. Furthermore, the proplatelet is tilted
downward by the flow and eventually the proplatelet tip nearly
aligns in the flow direction. Again, a close similarity between
the predicted proplatelet shape in Fig. 3C and the experimental
image in Fig. 1C is observed. The complete simulation is shown
in Movie S2.

To investigate the dynamics of the fragmentation process in
Poiseuille flow in more detail, we show in Fig. 3D the temporal
evolution of the membrane shape in the corresponding kymo-
graph. At the top, i.e., at very short times, membrane dynamics
directly set in and the proplatelet swelling at the tip forms;
however, it does not contract. The fluid flow rather leads to pro-
platelet extension. After 5 ms formation of the three leftmost
platelet-sized swellings sets in. The other swellings form after 6
to 11 ms. In contrast to the quiescent fluid, the Poiseuille flow
leads to nonsimultaneous formation, which may be triggered by
locally different forces on the membrane caused by fluid flow.
The nonsimultaneous formation is in good agreement with the
experimental observations in Fig. 1A where the leftmost swelling
is visible before the others form.

In contrast to Fig. 2D, the presence of flow disturbs the
periodic arrangement of swellings with uniform distance. The

A

B

C

D

Fig. 3. Blood platelet biogenesis in Poiseuille flow. Shown is blood platelet biogenesis in a parabolic Poiseuille flow with maximum velocity of v =

3.33 mm/s. (A) A proplatelet is subject to Poiseuille flow with a parabolic velocity profile far away from the cell confined between two walls. (B) Due
to the action of the flow the proplatelet extends and swellings form. (C) The final platelet-sized swellings move at nonuniform distance along the pro-
platelet shaft. (D) The corresponding kymograph shows the dynamics of swelling formation and the motion of the final swellings. Compared to the case
without external flow in Fig. 2, swellings form at earlier times. Furthermore, swellings move along the proplatelet shaft with different velocity, resulting in
nonuniform distances between neighboring swellings. Two initially separated platelet-sized swellings fuse at around 20 ms.
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negative slope of the bands in the kymograph clearly demon-
strates the movement of the swellings with different velocities
along the extending proplatelet. The different velocity of the
individual swellings is due to the different location relative to the
curved velocity profile of the external flow: Swellings close to the
channel center are advected faster than swellings near the wall.
While the swellings move in the flow direction, the contraction
at the tip opposes the flow and leads to slower tip movement.
Most remarkably, swellings two and three from the left first form
and are clearly separate, but fuse afterward at around 20 ms.
While the two swellings at first move with nearly constant velocity
(according to the slope of the corresponding band in the kymo-
graph in Fig. 3D), swelling three slows down. As a consequence
both swellings approach each other, come into contact, and due
to contractility eventually fuse. This points to a realignment in
flow direction due to external shear through velocity gradients
as the origin of swelling fusion. As the swelling shapes in Fig. 3
B and C illustrate, the fusion of two swellings leads to larger
spherical structures, which eventually can be released into the
bloodstream.

To bring out more clearly this apparent connection between
fluid shear and swelling fusion, we consider a proplatelet
immersed in pure shear flow as shown in SI Appendix, Fig. S2A
and Movie S3. The channel geometry is the same as in Fig. 3A,
but the flow now possesses a linear shear rather than a parabolic
profile. Proplatelet fragmentation and swelling dynamics are
shown in SI Appendix, Fig. S2 A–C. Comparing the simulation
snapshots in SI Appendix, Fig. S2 B and C shows clear fusion
events: one between swellings two and three and two more events
for swellings farther to the right. These rich dynamics, swelling
movement and fusion, are also reflected in the corresponding
kymograph in SI Appendix, Fig. S2D, where a heterogeneous
movement of the individual swellings, the fusions of swellings
two and three and the neighboring ones at around 20 ms, and
another at around 27 ms are clearly visible. Such fusion events
could explain the release of larger structures called preplatelets
into the circulatory system (35), as discussed in more detail in
Discussion. In summary, we conclude that swelling fusion is trig-
gered by fluid shear via a realignment of the proplatelet during
swelling formation.

As a next step we investigate the influence of the external
flow more systematically by varying the flow velocity. For this,
we track the formation of the individual swellings over time as
described in SI Appendix, section S1. We do so for the first to
the fourth swellings, which are clearly separated in Fig. 3B. In
Fig. 4 A–D we show the local proplatelet radius following the
position of an individual swelling while forming. Starting from
the initially homogeneous proplatelet radius, the radius at the
position of a swelling increases and finally reaches a plateau,
which indicates completion of swelling formation. Color coding
of the curves indicates the systematic variation of the external
flow velocity. With increasing external flow velocity the forma-
tion process takes place at earlier times (SI Appendix, Fig. S17)
and the slope between the initial and the final plateau becomes
steeper. This clearly demonstrates an acceleration of swelling
formation with increasing velocity.

Despite the acceleration of swelling formation by flow, the
final swelling radius varies only by about 10% and swelling vol-
ume (shown in Fig. 4E) stays nearly constant over the entire
range of velocities. The small variation can be understood by the
fact that the proplatelet extends with larger velocity and thus also
the swellings and the membrane strings in between are stretched.
To quantify the acceleration, we analyze the duration of swelling
formation. We fix the time when the local proplatelet deforma-
tion reaches 2% as the beginning and the time when the plateau
is reached as the end; the time difference serves as a measure for
formation duration. Remarkably, for all swellings a significant
acceleration occurs, demonstrating that fluid flow strongly influ-

ences the dynamics of proplatelet fragmentation. SI Appendix,
Fig. S3 confirms that an acceleration of proplatelet fragmen-
tation is also present in pure shear flow, but less pronounced
compared to Poiseuille flow.

The above results correspond to the flow situation occur-
ring in typical platelet bioreactor geometries (15, 16) as well
as sinusoidal blood vessels in vivo (62). We now modify the
geometry and consider a proplatelet in cylindrical confine-
ment mimicking a narrow capillary of the bone marrow (62).
The proplatelet undergoes a biological Rayleigh–Plateau insta-
bility as illustrated in SI Appendix, Fig. S4. Importantly, we
again observe a strong acceleration of the swelling formation
in SI Appendix, Fig. S5D with increasing flow speed. No fusion
events are observed. This indicates that the biological Rayleigh–
Plateau instability is the key mechanism behind accelerated
platelet biogenesis also under narrowly confined in vivo flow
conditions.

All in all, the predictions from our model are in full agree-
ment with experimental observations where the size distribu-
tion of the produced platelets was largely independent of the
applied flow velocity, but the production rate increased dra-
matically (16, 17). Our modeling efforts allow us to trace
back this remarkable observation to the elasto-hydrodynamic
origin of platelet biogenesis by a biological Rayleigh–Plateau
instability.

Efficient Acceleration in Bioreactors with Homogeneous Flow. As a
next step we consider a homogeneous flow with uniform veloc-
ity approximating the flow pattern in microfluidic bioreactors,
where megakaryocytes are attached to pillars (17). Studying the
simple homogeneous flow geometry will further clarify the role
of pulling (as opposed to shearing) by fluid forces as the origin of
the accelerated swelling formation.

In Fig. 5A we show a proplatelet immersed in a homogeneous
flow. The complete simulation is shown in Movie S4. Under the
action of the homogeneous flow the proplatelet strongly extends
in Fig. 5B while three swellings form. Fig. 5C shows the formation
of additional swellings. In Fig. 5D, we show that homogeneous
flow leads to a strong acceleration of proplatelet fragmentation
with increasing flow velocity.

By comparing the kymograph for Poiseuille flow in Fig. 3D and
that for homogeneous flow in SI Appendix, Fig. S6A, we discover
a more pronounced successive formation of swellings in homo-
geneous flow. We further observe that, in contrast to Poiseuille
and shear flow, in homogeneous flow no swelling fusion events
occur. All swellings move with the same velocity as seen by the
same slope of the bands in the kymograph, because they all
experience the same external flow. Consequently, swellings show
a more uniform distribution. In accordance with the argument
above, fusion does not occur due to the absence of flow-induced
realignment.

In SI Appendix, Fig. S6 B–E we again trace the swelling
radius during formation. Here, for all three completely sepa-
rated swellings we observe a shift of the curves toward shorter
times and a strong change in slope when increasing the flow
velocity. The final swelling radius does not vary for the first
swelling. Swellings two and three show a certain variation in
the final radius which is due to a pronounced stretching against
proplatelet tip contraction at large velocities. In SI Appendix,
Fig. S6F we show that swelling volume hardly varies with flow
velocity despite the accelerated fragmentation in agreement with
experimental observations.

Discussion
In this work, we provide a physical computational model for
platelet biogenesis. We explicitly consider a single proplatelet
and focus on its mechanical behavior under the influence of an
external flow. Previous mathematical models (2, 3) account for
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Fig. 4. Acceleration of swelling formation in flow. (A–D) Time course of platelet-sized swelling formation in Poiseuille flow for (A) first, (B) second, (C)
third, and (D) fourth swelling at varying external flow velocity. With increasing velocity, swelling formation shifts toward earlier times and the slope in
the profile becomes steeper, which indicates acceleration of proplatelet fragmentation. At large velocity the second swelling shows a fusion event, which
manifests itself in an additional transient plateau (fusion). (E) Swelling volume stays nearly constant over the whole range of velocities. (F) With increasing
flow velocity the duration time of the biological Rayleigh–Plateau instability / of swelling formation strongly accelerates.

the regulation of global platelet counts and are based on empir-
ical differential equations describing macroscopic platelet num-
ber kinetics. Such an approach has been utilized to investigate
pathological cyclic oscillations in platelet number (4) and the

influence of chemotherapy (5, 6). In contrast to these empirical
kinetic models, our computational model provides a mechanis-
tic insight and unravels the biophysical mechanism of platelet
biogenesis in external flows on the single-cell level.

A D

B

C

Fig. 5. Blood platelet biogenesis in homogeneous flow. (A) A proplatelet is immersed in a homogeneous flow with constant velocity v = 2.0 mm/s and
attached to a wall on the left-hand side. (B and C) The proplatelet undergoes a biological Rayleigh–Plateau instability while being extended by the
homogeneous flow. (D) Systematic variation of the external flow velocity shows a strong and systematic acceleration of the duration of swelling formation.
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The key ingredient of our proposed mechanism and trigger
of the instability is actomyosin contractility. Indeed, it has been
shown that extended proplatelets lack formed swellings when
actin activity is disturbed (9, 22, 28, 29), e.g., by usage of drugs
(9) or gene knockout (22, 28, 29). Our findings propose an expla-
nation for these observations: If filamentous actin is absent (22),
no contractility can arise in the proplatelet cortex and thus in
turn no biological Rayleigh–Plateau instability occurs; i.e., the
proplatelet does not fragment. Microtubule extension along the
axis reduces the importance of the (stabilizing) axial contractil-
ity relative to the (destabilizing) actomyosin-induced azimuthal
contractility and thus further amplifies the instability. Our find-
ings suggest that the biological Rayleigh–Plateau instability may
be a generic mechanism and that a similar instability may play a
role also for other cells subject to actomyosin contractility such as
axons of neurons. We note that our model does not incorporate
biochemical effects such as the reported up-regulation of myosin
contractility by induced stresses (27). Most likely an additional
up-regulation would even enhance the acceleration in presence
of flow. Our model can be the basis to include these biochemi-
cal regulation effects in the future, which would require a refined
constitutive law for the active stress based on future experimental
insights into proplatelet mechanics. Our simulations neverthe-
less show that biochemical regulation per se is not required for
accelerated proplatelet fragmentation in flow.

In Poiseuille as well as in pure shear flow we report motion
of swellings along the proplatelet shaft. Most importantly, this
motion leads to fusion events of adjacent swellings as can be seen,
e.g., in Fig. 3D. This is in agreement with observations in the exper-
imental videos of ref. 17 (video S2 of ref. 17 at 6:44 min left above
the pillar and at 12:36 min right above the pillar). Leading to con-
siderably larger fragments, fusion events can explain the release
of preplatelets. These fragments, which typically are about twice
as large as an individual platelet, are frequently observed in the
circulatory system (35) and have been demonstrated to represent
an intermediate stage of platelet biogenesis (8). In the circulatory
system these preplatelets undergo a transition to barbell-shaped
proplatelets, which eventually fission into two platelets (35). In
line with the reported failure of preplatelet to barbell-shaped
proplatelet transition for inhibited myosin (27), an interplay of
microtubule extension and actomyosin contractility is argued to
drive the transition of preplatelets to barbell-shaped proplatelets
(23). Our findings suggest a more precise physical role of acto-
myosin similar to proplatelet fragmentation: After extension of
the spherical preplatelet by microtubules the actomyosin triggers
a biological Rayleigh–Plateau instability. This in turn leads to the
conversion to barbell-shaped proplatelets that eventually fission
into platelets (as shown in SI Appendix, Fig. S19). Based on our
simulations, we predict that preplatelets should to a much lesser
extent occur in quiescent or homogeneous flow situations. Indeed,
this prediction is supported by a reduced occurrence of pre-
platelets during platelet biogenesis in quiescent situations (16).
Thus, a homogeneous flow velocity in vitro not only should lead
to efficient, accelerated platelet production but also is expected
to show a more monodisperse distribution of platelet size. In
contrast, shear gradients in microfluidic devices would favor the
fusion of swellings and thus the release of larger structures.

The teardrop-like structure of the free end of the proplatelet
in Fig. 3C resembles the tip shape of proplatelets quite remark-
ably, as can be seen by comparing figures 3C and 4B of ref.
15. In our simulations, the proplatelet tip contracts due to acto-
myosin contractility in line with the so-called retraction phases
(16, 17). As in our simulations, tip retraction has been found to

be suppressed at higher flow velocities (16, 17). Thus, our sim-
ulations explain the transition between retraction phase (16) for
no flow and pure extension in presence of flow (16, 17) by the
hydrodynamic drag acting against actomyosin contractility.

Different from platelet biogenesis, theoretical studies pre-
dicted the existence of a Rayleigh–Plateau instability for mem-
branes by an energy argument with an incorporated surface
tension term (30) or by considering the force balance of
an axisymmetric membrane including isotropic active stresses
(31). For passive vesicle membranes, lacking the actomyosin, a
Rayleigh–Plateau instability can occur due to external stimuli, as
shown in the experiments (32) due to laser-induced tension, in a
theoretical study (33), or in simulations for vesicles in extensional
flow (34). An elastocapillary instability has also been suggested
for mitochondrial fission (67).

In summary, our simulations reproduce the experimentally
observed acceleration of platelet biogenesis in external flows.
Our work strongly indicates that flow-accelerated proplatelet
fragmentation into (pre)platelets can be understood as a mainly
physical, accelerated elasto-hydrodynamic instability which is
not triggered by biochemical sensing of external flow. We have
identified actomyosin contractility in the cortex of an extended
proplatelet as the essential ingredient required for this instabil-
ity. Going further, the 3D simulations allow us to disentangle the
different roles played by the different flow patterns. The obser-
vation that proplatelet fragmentation is strongly accelerated in
homogeneous and parabolic flows, but to a much lesser extent
in shear flows, leads us to conclude that the pulling of the flow
at the proplatelet, rather than shear forces, is chiefly responsi-
ble for the accelerated fragmentation. Shear flows, on the other
hand, are predicted to lead to more heterogeneous platelet size
distributions due to fusion of platelet-sized swellings during the
fragmentation process. These findings can serve as guidelines
for the design of future bioreactors: It may indeed be desirable
to employ geometries that produce relatively homogeneous flow
components while at the same time avoiding shear components.

Our present simulations not only strongly indicate a bio-
logical Rayleigh–Plateau instability as a mechanism of platelet
biogenesis, but also highlight in a general fashion the strong
influence of external flow. Accordingly, we speculate that inter-
action with flow may also significantly affect the dynamics of
other activity-driven processes in flowing environments.

Materials and Methods
Experimental Methodology. Fetal liver cells of embryos at days 13.5 to 14.5
were cultured in medium (Dulbecco’s Modified Eagle’s Medium, 10% fetal
calf serum, and 1% penicillin/streptomycin) containing 50 ng/mL throm-
bopoietin (68). On day 3, MKs were enriched by gradient density filtration
with 1.5 and 3% bovine serum albumin. Day 4 MKs were infused at
12.5 µL/h into a microfluidic bioreactor (15) (only bovine serum albumin
coated) and proplatelet formation was observed with a Zeiss Observer Z1
microscope.

Data Availability. All data discussed in this paper are available in the main
text and SI Appendix.
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Supporting Information Text14

S1. Methods - Details on the simulation method15

A. Combined lattice-Boltzmann/immersed boundary method for active membranes. For the numerical investigation of blood16

platelet biogenesis we use a combined lattice-Boltzmann/immersed boundary method for active elastic membranes suspended17

in a 3D Newtonian fluid. We refer to our recent publication (3) for a detailed description of the algorithm. For extensive18

validation in case of active membranes as well as passive membrane we refer to ref. (3) and refs. (4, 5), respectively.19

The dynamics of the suspending fluid is calculated on an Eulerian 3D grid by the mesoscopic lattice-Boltzmann method20

(6–8). Simulations are performed using the lattice-Boltzmann implementation in the software package ESPResSo (9–12) with21

the D3Q19 lattice-Boltzmann velocity set. A typical fluid mesh, as e.g. for the system shown in figure 3 a) of the main22

text, has dimensions of 720 × 100 × 40. The time step is about 5 × 10−9 s and a typical total simulation time is 0.04 s. We23

assign to the suspending fluid a density of 1 × 103 kg/m3 and a viscosity of 1.2 × 10−3 Pas, values resembling the properties of24

the in vivo environment of platelet formation, the blood plasma. Our LBM implementation furthermore allows for thermal25

fluctuations of the suspending fluid associated with a given temperature. In direction with no wall present, we use periodic26

boundary conditions. Walls are realized by the bounce back boundary condition. In the system shown in figure 3 a) we27

consider a channel with a height of 98 grid cells and apply a constant body force which corresponds to a pressure gradient28

driving Poiseuille flow. Velocities given in the text correspond to the maximum velocity of the corresponding flow profile. In29

figure 5 we apply a constant velocity to all fluid nodes surrounding the pillar, which leads to a homogeneous flow field. In figure30

S2 we apply a tangential velocity to the upper wall while the bottom remains steady. This leads to a pure linear shear flow.31

The proplatelet membrane is discretized by nodes, which are separated by about one lattice-Boltzmann grid cell and32

connected to triangles. The resulting membrane mesh represents a Lagrangian grid immersed into the Eulerian fluid grid.33

Coupling of the membrane nodes to the fluid consists of the transmission of elastic membrane forces to the surrounding fluid34

nodes and advection of the membrane nodes with local fluid velocity (immersed boundary method (13–15)). In both cases an35

interpolation between membrane and fluid mesh is performed using an eight point stencil. A typical proplatelet membrane36

mesh consists of 22741 nodes and 45440 triangles and has a radius of approximately 6.25 LBM grid cells. If not stated explicitly37

the viscosity contrast of the fluid inside and outside the proplatelet is one. On its left hand side the proplatelet is fixed to38

a solid wall which mimics the fixed megakaryocyte in vivo or in experiments as illustrated in figure 1 a) of the main text.39

Fixation is done by an overlap of the last ring of the mesh with the solid boundary. As a consequence no fluid can enter/leave40

the proplatelet shaft. The terminal ring of nodes thus does not experience fluid forces and remains fixed. For stability reasons,41

in the last ring of nodes the calculation of active forces as well as bending forces is omitted.42

The proplatelet membrane is attributed with different elastic properties. Shear elasticity associated with the cytoskeletal43

network underlining the plasma membrane is considered using the Skalak model (16, 17). We use the shear elasticity typical44

for red blood cell membranes κS = 5 × 10−6 N/m with C = 100 (18). Bending elasticity is modeled using Helfrich law (18–20)45

with a bending elasticity of κB = 2 × 10−19 Nm and realized by the algorithm denoted B in ref. (19). Activity of motor46

proteins walking on the cytoskeletal filaments is incorporated by actomyosin contractility as detailed in ref. (3).47
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Fig. S1. Analysis of swelling formation. a) Kymograph showing the swelling formation along the shaft of a proplatelet. We track the position of the individual swellings
indicated by the red to yellow lines in the kymograph. Out of the kymograph the local proplatelet radius over time is extracted leading to the profiles shown in figure b). Onset
and duration of swelling formation are determined by the time step at which the deformation exceeds two percent of the initial radius (light green lines) and the time step at
which the radius reaches a plateau (dark green lines).

B. Simulation analysis. Kymograph In order to visualize and analyze the temporal evolution of swelling formation we show48

kymographs of the proplatelet as e.g. in figure 2 d) or for an initial phase in figure S1 a). For the kymograph we analyze49

the local radius of the proplatelet depending on the position along the proplatelet axis. For this, we divide the nodes of the50

proplatelet mesh into bins along the proplatelet axis. In each bin, we first calculate the radial center-of-mass position and then51

determine the average radius over all nodes in the bin. With this we determine the radius depending on axial position for52
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each time step. For the kymograph we then plot the axial position on the abscissa and the time on the ordinate with time53

increasing downwards. Each point in the plot is colored according to the local radius at a given time.54

Instability analysis In order to investigate the dynamics of swelling formation further we analyze the time course of swelling55

formation based on the kymograph. As shown in figure S1 a) each developing swelling manifests itself in a broad band with56

increased radius clearly separated from neighboring developing swellings. To analyze these dynamics we follow each developing57

swelling over time. We start from the initial configuration (dots at the top of figure S1 a)) and follow each maximum developing58

at the center of each swelling (red to yellow lines). As end point (dots at the bottom of figure S1 a)) we choose the time step59

when the local radius reaches a constant plateau. Taking the local radius from the kymograph for each point along the lines60

gives the time course of the local radius as shown in figure S1 b). Figure S1 b) clearly shows that swelling formation starts61

from a constant radius for all swellings and in the end terminates with a plateau.62

From figure S1 b) we can furthermore calculate the onset time and the total duration of the instability. As onset we denote63

the time step at which the radius exceeds a deformation of two percent of the initial radius. Onsets for the different swellings64

are indicated by lines in light green in figure S1. As the end of the formation, we determine the time when the deformation65

reaches a plateau, as indicated by the dark green lines in figure S1. The time difference between these two stages gives the66

duration of the formation.67

Platelet-sized swelling volume For each simulation we first determine the time of completed swelling development, as68

described above. At this time step, we calculate the volume of each swelling. This is done by considering just the swelling,69

where we have to close the membrane by triangles perpendicular to the proplatelet shaft. For the now closed platelet-like70

particle we can calculate the volume as described in reference (21). For each simulation we then filter for larger fragments,71

preplatelets, which form by swelling fusion. Eventually, we can calculate the average volume of all formed platelet-like particles.72
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S2. Varying flow geometries73

A. Pure shear flow. p74

a)
v

b)

c)

d)

a)

b)

c)

Fig. S2. Swelling fusion in shear flow. a) A proplatelet with the same properties as in the main text is immersed in a shear flow confined between two flat walls with velocity
v = 2 mm/s. b), c) Simulation snapshots show the biological Rayleigh-Plateau instability and swelling fusion. The entire process is shown in Supplemental Video S3. d)
Kymograph showing the dynamics of swelling formation and swelling movement along the shaft followed by several fusion events.
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Fig. S3. Platelet biogenesis in shear flow. Time dependent formation process for a) first, b) second, c) third, and d) fourth swelling. The curves for different velocities are
less broadly distributed, the formation process does not shift towards earlier times as strongly as it does in homogeneous flow. Systematic variation of the external flow velocity
shows a nearly constant volume e) and a non-monotonous, less pronounced acceleration based on duration of swelling formation f).
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B. Platelet biogenesis in a narrow blood vessel. p75

a) v

b)

c)

d)

a)

b)

c)

Fig. S4. Platelet biogenesis in a narrow blood vessel. a) A proplatelet with the same properties as in the main text is confined within a cylindrical channel with a diameter
of 9 µm which corresponds to three times the proplatelet diameter. b) Under the action of the flow the proplatelet is extended and c) forms swellings via a biological
Rayleigh-Plateau instability. The entire process is shown in Supplemental Video S5. d) Kymograph showing the dynamics of swelling formation.
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Fig. S5. Acceleration of platelet biogenesis in a narrow blood vessel. Time dependent formation process for a) first, b) second, c) third, and d) fourth swelling. The
formation process shifts towards earlier times and time courses become steeper with increasing velocity. Systematic variation of the external flow velocity shows a nearly
constant volume e) and systematic acceleration based on the duration of swelling formation f).
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C. Additional data for homogeneous flow. p76
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Fig. S6. Swelling formation in homogeneous flow. a) Kymograph corresponding to figure 5 of the manuscript shows the dynamics of swelling formation and swelling
movement along the proplatelet shaft at uniform distances. b) - d) Time dependent formation process of the swellings. With increasing velocity the formation shifts towards
shorter times and the slope of the curves becomes steeper. e) The volume stays constant over the whole range of velocities.
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S3. Results for isotropic contractility77

a)

b)

c)

d)

a)

b)

c)

Fig. S7. Proplatelet fragmentation by a biological Rayleigh-Plateau instability for isotropic contractility without flow. a), b), c) the proplatelet undergoes a biological
Rayleigh-Plateau instability and develops periodic swellings with a wavelength λ approximately satisfying the classical Rayleigh-Plateau criterion 2πR0/λ ≈ 0.69. d) A
kymograph illustrates the dynamics of swelling formation with the color coding for the local proplatelet radius. Time steps for the corresponding proplatelet shapes in figures a) -
c) are indicated by the orange lines. Corresponding results for anisotropic contractility are shown in figure 2 of the manuscript.

Christian Bächer, Markus Bender and Stephan Gekle 7 of 17

pub5 SI



a) v

b)

c)

d)

a)

b)

c)

e)

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0  5  10  15  20  25

ra
di

us
 in

 µ
m

time in ms

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5

ve
lo

ci
ty

 in
 m

m
/s

f)

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0  5  10  15  20  25

ra
di

us
 in

 µ
m

time in ms

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5

ve
lo

ci
ty

 in
 m

m
/s

fusion

g)

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0  5  10  15  20  25

ra
di

us
 in

 µ
m

time in ms

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5

ve
lo

ci
ty

 in
 m

m
/s

h)

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0  5  10  15  20  25

ra
di

us
 in

 µ
m

time in ms

 0
 0.5
 1
 1.5
 2
 2.5
 3
 3.5
 4
 4.5
 5

ve
lo

ci
ty

 in
 m

m
/s

i)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  1  2  3  4  5

vo
lu

m
e 

in
 µ

m
3

velocity in mm/s

j)

 4

 6

 8

 10

 12

 14

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

tim
e 

in
 m

s

velocity in mm/s

platelet-sized swelling 1
platelet-sized swelling 2
platelet-sized swelling 3
platelet-sized swelling 4

Fig. S8. Blood platelet biogenesis for isotropic contractility in Poiseuille flow. Blood platelet biogenesis in a channel with a parabolic Poiseuille flow with maximum
velocity of v = 5 mm/s. a) A proplatelet is subject to an external Poiseuille flow confined between two walls. Due to the action of the flow the proplatelet extends b), swellings
form, and the final platelet-sized swellings move at non-uniform distance along the proplatelet shaft c). d) The corresponding kymograph shows the dynamics of swelling
formation and the motion of the final swellings. Two initially separated platelet-sized swellings fuse at around 10 ms. e), f), g), h) Time course of platelet-sized swelling formation
in Poiseuille flow for e) first, f) second, g) third, and h) fourth swelling at varying external flow velocity. i) Swelling volume stays nearly constant over the whole range of velocities.
j) With increasing flow velocity the duration time of the biological Rayleigh-Plateau instability / of swelling formation strongly accelerates. Corresponding results for anisotropic
contractility are shown in figure 3 and 4 of the manuscript.
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Fig. S9. Blood platelet biogenesis for isotropic contractility in homogeneous flow. Swelling formation in homogeneous flow with v = 2.0 mm/s. a) A proplatelet is
immersed in a homogeneous flow and attached to a wall on the left hand side. b), c) The proplatelet undergoes a biological Rayleigh-Plateau instability while being extended by
the homogeneous flow. d) Kymograph showing the dynamics of swelling formation and swelling movement along the proplatelet shaft at uniform distances. e), f), g) Time
dependent formation process for e) first, f) second, and g) third swelling. With increasing velocity the formation shifts towards shorter times and the slope of the curves becomes
steeper. No fusion events are visible. Systematic variation of the external flow velocity hardly affects the swelling volume h), but shows a strong acceleration of the duration of
swelling formation i). Corresponding results for anisotropic contractility are shown in figure 5 of the manuscript and figure S6.
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Fig. S10. Platelet biogenesis for isotropic contractility in shear flow. a) A proplatelet is immersed in a shear flow confined between two flat walls with velocity v = 9 mm/s.
b), c) Simulation snapshots show the biological Rayleigh-Plateau instability and swelling fusion. d) Kymograph showing the dynamics of swelling formation and swelling
movement along the shaft followed by fusion events at the first swelling and at the tip. e), f), g) h), Time dependent formation process for e) first, f) second, g) third, and h) fourth
swelling. The curves for different velocities are less broadly distributed, the formation process does not shift towards earlier times as strongly as it does in homogeneous flow.
Systematic variation of the external flow velocity shows a nearly constant volume e) and a non-monotonous, less pronounced acceleration based on duration of swelling
formation f). Corresponding results for anisotropic contractility are shown in figure S2 and S3.
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S4. Robustness against parameter variations78
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Fig. S11. Magnitude of actomyosin contractility. Towards smaller contractility an exponential increase in onset and duration is observed for a periodic cylindrical membrane.
The instability wavelength however does not change with varying contractility.
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Fig. S12. Fluctuations do not influence instability dynamics. a) Onset time depending on the flow velocity of a homogeneous flow without (dots) and with (triangles)
thermal fluctuations. b) For given velocity the temperature is systematically varied. c) Duration time depending on the flow velocity of a homogeneous flow without (dots) and
with (triangles) thermal fluctuations. d) For given velocity the temperature is systematically varied. In total, the instability dynamics is not influenced in presence of thermal
fluctuations. This can be explained by the initial proplatelet shape not being an unstable fix point, but proplatelet dynamics directly sets in.
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a) ηin/ηout = 1, v ≈ 0.13 mm/s

b) ηin/ηout = 5, v ≈ 0.13 mm/s

c) ηin/ηout = 1, v ≈ 0.5 mm/s

d) ηin/ηout = 5, v ≈ 0.5 mm/s
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Fig. S13. Viscosity contrast increases instability duration. We compare swelling formation for isotropic actomyosin contractility in homogeneous flow at viscosity contrast
of one at intermediate (a) and high (c) velocity to swelling formation at viscosity contrast of five in b) and d) for the same two velocities. Snapshots are shown at same time
steps and thus comparison shows that swelling formation is slower for increased viscosity contrast. e) Quantitative comparison confirms that duration increases for higher
viscosity contrast.
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Fig. S14. Influence of shear elasticity. Comparison of simulations with two values of the shear elasticity: kS = 5 · 10−6N/m (as in the main text) and kS = 2.5 · 10−6N/m.
Curves show the dynamic formation over time of platelet-sized swelling one (violet), two (green), three (blue), four (orange). Simulations are carried out for a) a small velocity
v = 0.167 mm/s and b) a larger velocity v = 1.67 mm/s. Except for a slight difference in the proplatelet height, which is due to stronger relative contraction driven by
actomyosin contractility, the formation process is not influenced.

Fig. S15. Influence of the initial proplatelet angle in Poiseuille flow. Corresponding shapes for two different initial angles (different colors) are shown at the beginning and
at one fixed time point in transparent and solid color, respectively. The less tilted proplatelet is stretched more strongly, but the overall behavior (number and size of swellings)
remains the same.

a)

b)

Fig. S16. Varying proplatelet length in simulation. a) A shorter and b) a longer proplatelet undergoing a biological Rayleigh-Plateau instability is simulated with a length 65
and 97 times the radius, respectively. The size of the swellings formed is the same in both simulations, we find a ratio 2π

λ R0 of 0.63 in a) and of 0.65 in b) together with a
value of 0.66 for figure S7, which matches the result expected from the classical Rayleigh-Plateau theory 0.69 very well (22).
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Fig. S17. Instability onset. Onset time of the instability depending on the flow velocity of a) Poiseuille flow, b) homogeneous flow, and c) shear flow. The instability onset can
shift to earlier times, which is especially pronounced in the homogeneous flow in b).
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Fig. S18. Onset criterion of 5%. Considering a deformation of 5% of the initial proplatelet radius as criterion for instability onset does not affect the results in the manuscript
for a criterion of 2%. In figure a) and b) we show the onset and duration for Poiseuille flow, as done in figure 4 of the manuscript. In figure c) and d) we show the onset and
duration for homogeneous flow, as done in figure 5 of the manuscript. In figure e) and f) we show the onset and duration for shear flow, as done in figure S3. Onset shifts to
longer times due to the larger deformation to be reached and duration reduces because of the reduced difference in time between onset and reaching a plateau. However, the
dependency on flow velocity does not change.
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S5. Fragmentation of released preplatelet79

Fig. S19. Transition of a free, extended preplatelet. An already extended preplatelet undergoes a biological Rayleigh-Plateau instability and fragments into two separate
platelets.

S6. Additional experimental data80

Fig. S20. Detailed time series of swelling formation observed in experiment. Images are taken every every five seconds, shown from left to right and from top to bottom,
and image width corresponds to 137.5 µm. The initial extended proplatelet is shown in the top left corner and the eventual proplatelet with swellings formed in the bottom right
corner.

10 µm

proplatelet
w. swellings

megakaryocyte

v

Fig. S21. Periodic arrangement of the Megakaryocytes. Megakaryocytes are trapped in the bottom part of a microfluidic bioreactor in periodically arranged gaps. The left
megakaryocyte extends a proplatelet, which forms periodic swellings. Fluid flows with a maximum velocity of 2.2 mm/s and the complete width of the experimental image is
100.81 µm.
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Movie S1. Proplatelet undergoing a biological Rayleigh-Plateau instability in a quiescent fluid. Movie81

corresponding to figure 2 of the manuscript.82

Movie S2. Proplatelet undergoing a biological Rayleigh-Plateau instability in a parabolic Poiseuille flow83

with maximum velocity of v = 3.33 mm/s. Movie corresponding to figure 3 of the manuscript.84

Movie S3. Proplatelet undergoing a biological Rayleigh-Plateau instability in a shear flow with velocity85

v = 2.0 mm/s. Movie corresponding to figure S2.86

Movie S4. Proplatelet undergoing a biological Rayleigh-Plateau instability in a homogeneous flow with87

constant velocity v = 2.0 mm/s. Movie corresponding to figure 5 of the manuscript and figure S6.88

Movie S5. Proplatelet undergoing a biological Rayleigh-Plateau instability in a narrow blood vessel with a89

maximum velocity of v = 2.0 mm/s. Movie corresponding to figure S4 and S5.90
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ABSTRACT We investigate the margination of microparticles/platelets in blood flow through complex geometries typical for
in vivo vessel networks: a vessel confluence and a bifurcation. Using three-dimensional lattice Boltzmann simulations, we
confirm that behind the confluence of two vessels, a cell-free layer devoid of red blood cells develops in the channel center.
Despite its small size of roughly 1 mm, this central cell-free layer persists for up to 100 mm after the confluence. Most importantly,
we show from simulations that this layer also contains a significant amount of microparticles/platelets and validate this result
by in vivo microscopy in mouse venules. At bifurcations, however, a similar effect does not appear, and margination is
largely unaffected by the geometry. This antimargination toward the vessel center after a confluence may explain earlier in vivo
observations, which found that platelet concentrations near the vessel wall are seen to be much higher on the arteriolar side
(containing bifurcations) than on the venular side (containing confluences) of the vascular system.

INTRODUCTION

Red blood cells fill up to 45 percent of the volume of human
blood (1–5) and thus represent by far the major cellular
blood constituent. Because of their high deformability,
red blood cells flowing through a cylindrical channel or
blood vessel prefer the low-shear-rate region in the center
of the channel. By hydrodynamic interactions with the red
blood cells, stiffer particles such as platelets, white blood
cells, or artificial drug-delivery agents are thus expelled
toward the wall. This separation of red blood cells and stiffer
particles is known as margination and is essential for the
ability of blood platelets to quickly stop bleeding or for
drug delivery agents to closely approach the endothelial
wall. One of the first observations of margination studied
white blood cells in vivo as well as an in vitro model system
containing disks and spheres already in 1980 (6). Interest-
ingly, an in vivo study by Woldhuis et al. (7) demonstrated
a striking difference between the platelet distribution in
arterioles and venules, with significantly more margination
occurring on the arteriolar side of the vascular system. Since

then, more detailed insights were gained by experimental
studies (8–19), computer simulations (20–41), and theoret-
ical modeling (42–46). These studies all deal with margin-
ation in spatially constant geometries such as shear flow,
pipes with cylindrical or rectangular cross sections, and
plane Couette systems.

In contrast, in living organisms, blood vessels form a
hierarchical structure in which large arteries branch all the
way down to microcapillaries in a series of bifurcations
followed by a reversed series of confluences leading up to
larger and larger vessels on the venular side. The typical dis-
tance between two bifurcations lies within 0.4 mm up to
1 mm in the microvascular system (2,4). Despite their
importance, studies on red blood cell distribution and
margination using spatially varying geometries are surpris-
ingly scarce. Platelets have been studied by two-dimen-
sional (2D) simulations in the vicinity of an aneurysm
(47,48) and in the recirculation zone behind a sudden expan-
sion of a channel (49). Near a vessel constriction, the locally
varying distribution of red blood cells (50–52) and rigid
microparticles in suspension with red blood cells have
been investigated (53–56). In (56), a local increase in micro-
particle concentration in front of the constriction has been
reported. On a technical side, microchannels including
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bifurcations are investigated as a possible basis for microde-
vices separating blood plasma (57,58). In asymmetric
branches, the Zweifach-Fung effect (59,60) describes an
asymmetric red blood cell distribution, i.e., a larger hemat-
ocrit in the large flow rate branch (61,62). Under certain
circumstances, even an inversion of the Zweifach-Fung
effect may occur (63). Combining experiments and simula-
tions in a rectangular channel with bifurcation (64) and for
a diverging and converging bifurcation using 2D simula-
tions (65), a cell-depleted zone right after the confluence
has been reported. Downstream a bifurcation asymmetry
of red blood cell distribution has been seen (57,64,66,67).
Reference (68) reported margination of hardened red blood
cells while flowing through branching vessels. Balogh and
Bagchi (69) investigated the transient behavior of red blood
cell motion in more complex networks (69–71). Besides the
red blood cell behavior, it is important to consider sus-
pended particles like blood platelets or synthetic particles
because possible influences of bifurcations and confluences
may play a major role in medical applications. Nevertheless,
systematic studies covering particle blood suspensions in
networks are scarce. White blood cell motion in asymmetric
bifurcations has been studied experimentally in the context
of a branched vessel geometry (72), whereas Sun et al. (73)
investigated the interaction of six red blood cells flowing
behind a white blood cell in the vicinity of vessel junctions.

In this report, we study the margination of stiff spherical
particles suspended among red blood cells in the vicinity of
vessel confluences and bifurcations. This allows us first
to confirm and investigate quantitatively the previously
observed cell-depleted layer of red blood cells after conflu-
ences. Second, we provide results on the influence of
network geometries on stiff particle margination. Our
generic stiff particles are a model for artificial drug delivery
agents but also serve as a reasonable approximation for
blood platelets. We investigate two cylindrical branches
either bifurcating from or forming a confluence into a larger
vessel by means of three-dimensional (3D) lattice Boltz-
mann simulations. To realize simulations of these systems,
we implement inflow and outflow boundary conditions to
the lattice Boltzmann/immersed boundary algorithm similar
to an approach based on dissipative particle dynamics by
Lykov et al. (74). Behind a vessel confluence, we observe
a red blood cell-free layer in the center of the channel per-
sisting for up to 100 mm after the confluence. Importantly,
this central cell-free layer is not only devoid of red blood
cells but also contains a significant amount of antimargi-
nated microparticles/platelets. Using fluorescent microparti-
cles in mouse microvessels, we consistently observe this
antimargination also in vivo. At bifurcations, no equivalent
effect occurs. Our findings may explain in vivo observations
of Woldhuis et al. (7), who found that in the vascular system,
platelet margination is strongly present at the arteriolar side
with bifurcations but less at the venular side with conflu-
ences. Similarly, recent observations show that thrombi

formed in arterioles contain significantly more platelets
than thrombi formed in venules (75), which is another indi-
cation of increased platelet margination on the arteriolar
side. By considering the axial distribution of microparticles
along the flow direction, we furthermore reveal the site of
confluence as a spot with locally increased concentration.
The article is organized as follows: we first introduce the
simulation and experimental methods and then report 2D
and one-dimensional (1D) concentration profiles first in
the system with vessel confluence, including the experi-
mental results, then in the system with a bifurcation. Finally,
we investigate the influence of larger hematocrit and micro-
particle distribution in an asymmetric bifurcation.

METHODS

Lattice Boltzmann/immersed boundary method

Fluid flow in the confluence/bifurcation geometry is modeled using the 3D

lattice Boltzmann method (LBM), which calculates fluid behavior by a

mesoscopic description (76–78). We use the implementation of LBM in

the framework of the simulation package ESPResSo (79–81). Red blood

cells and particles are modeled using the immersed boundary method

(IBM) (37,56,82,83).

To mimic realistic conditions of blood flow, we assign the blood plasma

density rplasma ¼ 1000 kg=m3 and viscosity mplasma ¼ 1:2� 10�3 Pas. Due

to the large size of the red blood cells and microparticles, we expect the

temperature to hardly affect collective flow behavior of cells and particles

and thus neglect the effect of thermal fluctuations. A typical fluid grid of

these simulations contains 170 � 110 � 58 nodes for a bifurcation and

288 � 110 � 58 nodes for a confluence. The time step is chosen as

0:09 ms, with the time of a typical simulation being about 2:5 s.

Red blood cells and microparticles are realized by an infinitely thin elastic

membrane interacting with the fluid. For the calculation of elastic forces

imposed on the fluid, the membrane is discretized by nodes that are con-

nected by triangles. A red blood cell possesses 1280 triangles and 642 nodes

and has a diameter of 7:82 mm. The averaged distance between neighboring

nodes is about one LBM grid cell. Nodes transfer forces to the fluid and are

themselves convected with the local fluid velocity. Interpolation between

membrane nodes and fluid nodes is done using an eight-point stencil. The

viscosity contrast of the cells is l ¼ hin=hout ¼ 1, i.e., the fluid inside and

outside the cells has the same viscosity. The elastic properties of a red blood

cell are achieved by applying the Skalak model (5,84,85) with a shear

modulus kS ¼ 5� 10�6 N=m and an area dilatation modulus kA ¼ 100kS.

Additional bending forces are computed on the basis of the Helfrich model

using a bending modulus kB ¼ 2� 10�19 Nm (5,86,87). For the calculation,

the algorithm denoted method A in (86) is used with the bending energy be-

ing proportional to the angle of adjacent triangles and the actual forces being

computed by analytically differentiating the energy with respect to node po-

sition. This somewhat simplistic approach is appropriate for this work, in

which we focus on collective rather than detailed single-cell behavior and

in which especially the behavior of the microparticles is of interest.

Microparticles are modeled in a similar fashion as the red blood cells

with 320 triangles and 162 nodes. The microparticles are chosen to have

half the size of red blood cells ða ¼ 3:2 mmÞ, which has been reported to

show strong margination (32). In contrast to the red blood cells, the micro-

particles contain an additional inner grid to ensure the stiffness and (approx-

imate) nondeformability of the microparticles (37). The inner grid is linked

to the membrane nodes by a harmonic potential. Elastic properties of micro-

particles are chosen 1000 times larger than for red blood cells. For the

purpose of numerical stability, we apply an empirical volume conservation

potential (38) as well as a short-ranged soft-sphere repulsion, which decays
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with the inverse fourth power of the distance and with a cutoff radius equal

to one grid cell. The latter potential acts between all particles and between

the particles and the channel wall.

The stability and accuracy of our simulation method have been exten-

sively validated in (37,86). In addition, as detailed in Supporting Materials

and Methods, the shapes of isolated red blood cells in cylindrical and rect-

angular channels have been validated to agree with methodically very

different dissipative particle dynamics (88) and boundary integral (89)

simulations. The behavior of stiff particles is validated by considering the

drag force on a sphere as well as the tumbling of a spheroid in shear flow

(90). We also demonstrate that the numerically motivated short-range repul-

sive force does not affect our results. Finally, we validate our simulation

method by comparing the asymmetric red blood cell distribution in bifurca-

tions with recent computational results by Balogh and Bagchi (70) as well

as experimental data (61,91).

Channel geometry

The systems of interest, a confluence and a bifurcation, are shown in

Fig. 1 a. Both geometries are constructed in the same way: a main cylindri-

cal channel of radius Rch branches into two symmetric daughter channels of

radius Rbr . To obtain a smooth boundary, i.e., the boundary itself and the

first derivative is continuous, the transition between main channel and the

branches is modeled by third-order polynomials: one polynomial, ycðxÞ,
describes the bifurcating centerline, whereas another, yupðxÞ, describes

the upper/lower boundary. By rotation around the centerline with radius

yupðxÞ� ycðxÞ, we obtain a circular cross section for each x forming the

bifurcation along the flow direction. Where the cross sections of the two

branches overlap, the boundary is left out.

Inflow/outflow boundary condition for IBM-LBM

To investigate a confluence and a bifurcation as displayed in Fig. 1 a, periodic

boundary conditions cannot be employed. Joining both geometries into one

very large system would be computationally far too expensive because of the

very long-range influence of bifurcations/confluences, as will be detailed in

the course of this work. At the same time, at the entrance of the branches in

Fig. 1 a (left) as well as at the entrance of the main channel in Fig. 1 a (right),

we do not want the microparticles and red blood cells to enter in a randomly

distributed fashion but instead obey a marginated configuration to match with

the well-known behavior in a long tube. The purpose behind this inflow con-

dition is to bring out clearly how the behavior of the marginated fraction of

microparticles is influenced by the confluence/bifurcation.

To meet these requirements, we implemented inflow and outflow bound-

ary conditions to our IBM-LBM algorithm similar to a recent work using

dissipative particle dynamics (74). We start by simulating straight cylinders

with periodic boundaries and a body force driving the flow, as depicted at

the top of Fig. 1 b. These feeding simulations yield a time-dependent

sequence, which then serves for particle inflow in the complex system of

interest. During the simulation of the complex system, we check a frame

of the feeding sequence for cells and particles crossing a certain (arbitrary)

plane. Particles crossing this plane are then inserted at the same radial

position with the same shape into the complex system, as illustrated also

in Fig. 1 b. For crossing of the plane, the center-of-mass serves as a criterion

similar to (74). The inflow velocity is chosen to match the flow rate pre-

scribed in the straight cylinder. To prevent overlap of cells during inflow,

we sometimes increase the flow rate slightly (�10%). As a result, we obtain

a marginated pattern at the entrance of our complex systems, as proven by

the cross-sectional concentration profiles shown in Supporting Materials

and Methods.

Because azimuthal motion of the dilute microparticles in the feeding

channels is extremely slow, even a very long feeding simulation would

lead to a biased distribution of microparticles upon entering the complex

channel. This is prevented by applying a small angular random force to

the microparticles in the feeding channel, thus guaranteeing an azimuthally

homogenous, yet well marginated distribution of microparticles. We

furthermore show in Supporting Materials and Methods that after a first

filling of the system, the cell and particle number in the system reaches a

plateau and slightly fluctuates around a constant value.

For the fluid, to prescribe a distinct flow rate, we assign a constant veloc-

ity to all fluid LBM nodes at the beginning of the simulation box. The same

is done at the end of the box, taking into account the different cross sections

of the main channel and branches, thus matching fluid inflow and outflow.

About 15 grid cells behind the inflow, the flow profile matches tube flow.

This region with evolving flow profile is skipped for particle inflow and

in data analysis.

Analysis

In our work, we employ different concentration profiles at given positions

along the channel. First, we compute cross-sectionally averaged concentra-

tions, leading to 1D concentration profiles as a function of position along

the flow direction x. Some of these profiles consider only a certain fraction

of cells or particles entering the channel in specific regions, which are

labeled as a function of their lateral (r,f) position in polar coordinates at

the entrance of the system. Corresponding concentrations are calculated,

taking into account only this particular fraction of cells or particles. The

FIGURE 1 (a) Systems of interest: a suspension

of red blood cells and microparticles flowing either

through a confluence (left) or a bifurcation (right).

Rectangles with numbers refer to figures contain-

ing corresponding 2D radial/planar projections,

whereas dashed lines refer to figures containing

cross-sectional profiles. (b) Inflow is realized using

straight cylinders as feeding systems: whenever a

cell/particle crosses the indicated plane, it is fed

into one of the branches of the confluence system.

To see this figure in color, go online.
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labeling is illustrated by the color code in Fig. 2 a and by the criteria for

r and f in Fig. 2 b.

Second, we use three types of 2D concentration profiles. For micropar-

ticle concentrations, 2D radial projections in the r; x plane are calculated,

which reflect the radial symmetry of the main and the branch channels.

Such projections, however, are not appropriate to understand nonradially

symmetric effects occurring near confluences or bifurcations. We thus

employ in addition, mainly for red blood cell concentrations, planar projec-

tions of the 3D concentrations on the y; x plane by integrating the concen-

tration over the z direction perpendicular to the plane of the paper. Finally,

to get further insight into cell and particle distributions perpendicular to the

flow direction, we calculate cross-sectional profiles within the y; z plane.

All concentration profiles are averaged over the whole simulation time,

starting from the moment at which the number of cells and particles does

not vary significantly.

Preparation of dorsal skinfold chamber and
in vivo imaging

Animals

The in vivo experiments were performed in 10–12 week old male C57BL/6

mice (n ¼ 3) with a body weight of 23–26 g. The animals were bred and

housed in open cages in the conventional animal husbandry of the Institute

for Clinical & Experimental Surgery (Saarland University, Saarbr€ucken,

Germany) in a temperature-controlled environment under a 12 h/12 h

light-dark cycle and had free access to drinking water and standard pellet

food (Altromin, Lage, Germany). The experiment was approved by the

local governmental animal care committee (approval number 06/2015)

and was conducted in accordance with the German legislation on protection

of animals and the National Institutes of Health Guidelines for the Care and

Use of Laboratory Animals (Institute of Laboratory Animal Resources,

National Research Council, Washington).

Dorsal skinfold chamber model

Microvesselswere analyzed in the dorsal skinfold chambermodel,which pro-

vides continuous microscopic access to the microcirculation of the striated

skinmuscle and the underlying subcutaneous tissue (92). For the implantation

of the chamber, the mice were anesthetized by i.p. injection of ketamine

(75 mg/kg body weight; Ursotamin; Serumwerke Bernburg, Bernburg,

Germany) and xylazine (15mg/kg bodyweight,Rompun;Bayer, Leverkusen,

Germany). Subsequently, two symmetrical titanium frames (Irola Industrie-

komponenten KG, Schonach, Germany) were implanted on the extended

dorsal skinfold of the animals, as described previously in detail (93). Within

the area of the observationwindow, one layer of skinwas completely removed

in a circular area of�15 mm in diameter. The remaining layers (striated skin

muscle, subcutaneous tissue, and skin) were finally coveredwith a removable

cover glass. To exclude alterations of the microcirculation due to the surgical

intervention, the mice were allowed to recover for 48 h.

In vivo microscopy

In vivo microscopic analysis was performed, as previously described

(94). In detail, the mice were anesthetized, and a fine polyethylene cath-

eter (PE10, 0.28 mm internal diameter) was inserted into the carotid

artery for application of the plasma marker 5% fluorescein-isothiocya-

nate-labeled dextran 150,000 (Sigma-Aldrich, Taufkirchen, Germany)

and microspheres (Fluoresbrite Plain YG 1.0 mm; Polysciences,

Warrington, PA). Then, the animals were put in lateral decubital position

on a plexiglass stage, and the dorsal skinfold chamber was attached to

the microscopic stage of an upright microscope (Axiotech; Zeiss, Jena,

Germany) equipped with an LD EC Epiplan-Neofluar 50�/0.55

long-distance objective (Zeiss) and a 100 W mercury lamp attached to

a filterset (excitation 450–490 nm, emission > 520 nm). The micro-

scopic images were recorded using a complementary metal-oxide semi-

conductor video camera (Prime 95B; Photometrics, Tucson, AZ) at an

acquisition speed of 415 images per second controlled by a personal-

computer-based acquisition software (NIS-Elements; Nikon, Tokyo,

Japan).

Trajectory analysis

The recorded video sequence was analyzed using a single-particle

tracking algorithm. Hereby, the intensity profile of each frame was

adjusted to have both the top and bottom 1% of all pixels saturated,

correcting for changes in illumination and exposure time. With the aid

of a tailored MATLAB (The MathWorks, Natick, MA) script, all spher-

ical (round) objects were detected and interconnected among all frames

by cross correlating consecutive images. To only detect microspheres

(and not red blood cells), we set a threshold of 0.9 as a lower limit in

normalized intensity values because they are fluorescent. Further, we

defined a minimal diameter for the detected particles (0.7 mm), causing

a trajectory to end if the measured value falls below this value.

Combining the coordinates of all classified microspheres in this

way over the whole video sequence, we derived the respective

trajectories.

RESULTS AND DISCUSSION

Channel confluence

We first investigate the system with two branches of radius
16 mm merging into one main channel of radius 17:5 mm,
as depicted in Fig. 1 a (left) and shown in Video S1. Re-
sults for a larger/smaller main channel are qualitatively
similar and shown in the Supporting Materials and
Methods. The centerlines of the two branches are separated
by 39 mm, and the transition zone from the end of the
branches to the beginning of the main channel is about
13 mm. We choose the mean velocity at the entrance of
our system to be about v ¼ 2:5 mm=s. Simulations are first
performed for a physiologically realistic hematocrit (red
blood cell volume fraction) of Ht ¼ 12%. Results for a
higher Ht ¼ 20% are qualitatively similar and are pre-
sented at the end of this contribution. The Reynolds

a b

FIGURE 2 (a) Color labeling and (b) labeling

criteria for red blood cells and microparticles at

the entrance of the system with respect to the

in-plane position in the cross section. Because of

symmetry, the particles at left and right can be

treated equally. To see this figure in color, go online.
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number calculated from the centerline velocity, the red
blood cell radius RRBC, and the kinematic viscosity of the

fluid nplasma is Re ¼ ðRRBC$vÞ
n

¼ Oð10�2Þ.

Cell and particle distribution

We start by considering 2D concentration profiles along the
flow direction in Fig. 3. In the two small branches and far
away from the confluence, we observe a homogeneous
distribution of red blood cells around the center and the
cell-free layer with vanishing concentration (95–97) near
the wall, as can be seen by Fig. 3 a. The microparticle con-
centration in Fig. 3 c exhibits the typical margination peak
near the wall. The state of full and azimuthally homoge-
neous margination is confirmed by the cross sections at
channel entrance shown in Supporting Materials and
Methods. This behavior is the same as in a straight channel.

Approaching the confluence, we observe an asymmetric
cell-free layer; near the inner boundary of the branch, the
cell-free layer decreases, whereas near the outer boundary,
it increases. The asymmetry becomes more pronounced
toward the end of the branches ðxz40 mmÞ stemming from
cells flowing toward the main channel. However, the
motion of red blood cells toward the main channel already
initiates at xz30 mm, i.e., about 10 mm before the end of
the branches. This also affects microparticle behavior, as
can be seen by the two separate peaks in the radially projected
concentration in Fig. 3 c. These two peaks stem from the
particles near the inner and the outer boundary, respectively;
the microparticles near the inner boundary remain close to
the wall, whereas the particles near the outer boundary
migrate away from thewall because of the flowprofile toward
the main channel and the increased cell-free layer.

Entering the main channel, we observe a decreased cell-
free layer near the upper and lower boundary in Fig. 3 b
(right) at the beginning. An interesting feature of the red

blood cell concentration is the additional cell-free layer
that develops in the channel center after the confluence.
This agrees well with the findings of (64), which showed
that a cell-depleted zone behind the apex of a confluence
develops. We confirm that finding by considering the con-
centration and also highlight the long-range stability of
the central cell-free layer.

Most remarkably, this central cell-free layer contains, just
like its classical near-wall counterpart, a significant amount
of microparticles, as can clearly be seen in the radially pro-
jected microparticle concentration of Fig. 3 d.

Before investigating further this central cell-free layer, we
consider cross-sectional concentration profiles in Fig. 4. In
Fig. 4 a, we observe how the circular pattern of red blood
cells is shifted toward the inner boundary at the end of the
branches. This corresponds to the asymmetric cell-free layer
in Fig. 3 a. Entering the main channel, the pattern of red
blood cell concentration possesses two flattened and asym-
metric spots (Fig. 4 b) clearly separated by the central cell-
free layer, which shows vanishing concentration. At the left
and right of the main channel, an additional large cell-free
spot is obtained. This central-cell-free layer stems from
the cells flowing out of the upper and lower branch
competing for the channel center.

Microparticles in the two branches remain well margin-
ated until the end of the branches, as shown in Fig. 4 e. After
the confluence, however, Fig. 4 f shows how a notable frac-
tion of microparticles is now located very near the channel
center. This can be understood by the original location of the
microparticles inside the branches; those microparticles that
are located near the inner boundary of the branch enter the
main channel in the center. This location is favorable
because of the additional central cell-free layer observed
in Fig. 4 b. In Supporting Materials and Methods, we
show the antimargination also for platelet-shaped micropar-
ticles. Thus, this geometry leads to a redistribution of

FIGURE 3 Concentration of red blood cells in a

confluence in 2D planar projection (a) along the

upper branch and (b) along the main channel.

Microparticle concentration in 2D radial projection

is shown (c) along the upper branch and (d) along

the main channel. The cell-free layer near the inner

boundary decreases at the end of the branches,

whereas it increases near the outer boundary.

Inside the main channel, an additional cell-free

layer in the center develops. To see this figure in

color, go online.
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microparticles from a near-wall marginated position before
the confluence to a near-center antimarginated position after
the confluence.

Lifetime of the central cell-free layer, antimargination, and
physiological consequences

An interesting question is the stability of the red blood cell-
depleted central cell-free layer and the corresponding anti-
marginated microparticles as the flow continues away
from the confluence location along the main channel.
Fig. 3 b shows that the central cell-free layer is surprisingly
stable, being visible all along the main channel and only
becoming slightly blurred toward the end. The same trend
can be observed in the cross-sectional concentration at three
sites along the main channel in Fig. 4, b–d. Although it starts
to become blurred after 60 mm in Fig. 4 c, the central cell-
free layer and especially the cell-free spot left and right is
visibly present until at least 100 mm behind the confluence,
as shown in Fig. 4 d. Similarly, the corresponding micropar-
ticle concentration in Fig. 4, f–h shows that microparticles
are located in the center all along the main channel. Thus,
a confluence of two channels influences microparticle
behavior over distances that are much longer than the chan-
nel diameter.

To gain a more mechanistic insight into this long-time
stability of the central cell-free layer, we calculate the
(shear-induced) diffusion coefficient (23,25,97–101) of red
blood cells in the center. For this, we compute the time-
dependent mean-square displacement, which is shown in
Supporting Materials and Methods. By modeling the in-
crease in mean-square displacement with time by the theo-
retical expectation for normal diffusion hDyðtÞ2i ¼ 2Dt, we
extract a diffusion coefficient for the red blood cells of

DRBCz28 mm2=s in the case of Ht ¼ 12%. This value is
of the same order as that of previous results in experiments
with red blood cells (98,99,101) and simulations of spheres
and platelets (23,25). By assuming a thickness of 1:5 mm
and a flow speed of 2.5 mm/s, we calculate a distance of
100 mm required to bridge the central cell-free layer. This
length scale agrees well with the observation in the concen-
tration profiles that the central cell-free layer starts to
become blurred after 100 mm. We calculate in the same
way the shear-induced diffusion coefficient of the micropar-
ticlesDmicroz25 mm2=s. Reference (98) reports for platelets
in a perfusion chamber 34 mm2/s for a shear rate of 8321/s
and unknown hematocrit. References (23,25) obtain a diffu-
sivity of a factor 2 smaller in simulations of plane Couette
flow with Ht ¼ 0:2. Considering not only the gap of the
central cell-free layer to be closed but also the larger spot
left/right (assuming a distance of 5 mm to be bridged), we
can estimate a distance of 1.1 mm for red blood cell redis-
tribution, which is comparable to the estimation of 25 times
the channel diameter by Katanov et al. (97). When we esti-
mate the length scale required for microparticles to migrate
toward the channel wall, i.e., to marginate, we get �5 mm.
Comparing this to the typical distance between successive
confluences of �0.4–1 mm (2,4), we conclude that full
margination cannot be regained. This in turn may explain
the in vivo observations that on the venular side of the
vascular system, margination is much less pronounced
than on the arterioral side (7,75).

Furthermore, we want to address the question of how
strong the effect of antimargination is. Therefore, we calcu-
late the fraction of particles that are not located directly next
to the wall, i.e., we consider particles that are more than one
particle radius away from the vessel wall. For the

FIGURE 4 2D cross-sectional concentration in a confluence for red blood cells (a–d) and microparticles (e–h) at the end of the branches (a and e), at the

beginning of the main channel (b and f), at the middle of the main channel (c and g), and at the end of the main channel (d and h). Positions are also indicated

by the dashed black lines in Fig. 1 a. In the main channel, a clear cell-free layer in the center together with microparticle antimargination is present. To see this

figure in color, go online.
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concentration profiles in Fig. 4, we obtain the fractions 0 at
x ¼ 40 mm, 0.158 at x ¼ 55 mm, 0.138 at x ¼ 118 mm, and
0.135 at x ¼ 158 mm. We find that the fraction decreases
very slowly with increasing distance from the confluence
because of marginating microparticles (most likely those
located left/right).

Axial concentration

Further insight can be gained by considering 1D axial cell
and particle concentration profiles in Fig. 5. The overall
red blood cell concentration exhibits two plateaus inside
the main channel and inside the branches, respectively.
Inside the branches, the concentration is lower than in the
main channel, which is in agreement with the Fahraeus
effect (102). Right at the confluence, we observe a zone in
which the red blood cells become slightly depleted. The
microparticle concentration along the branches first in-
creases slightly, and right at the confluence, a strong peak
develops. In the main channel, the microparticles have a
nearly constant concentration.

To elucidate red blood cell behavior further and espe-
cially to explain the peak in microparticle concentration,
we label the cells/particles while entering the branches, as
explained in Methods. The concentrations for the labeled
cells and particles are shown in Fig. 6.

The red blood cells in the center, those left/right, and
those at the bottom of the branches behave in a similar
fashion: at the end of the branches, they are accelerated
and thus have a decreased concentration. After a small
peak, they quickly reach a constant concentration in the
main channel. Only the cells arriving at the top exhibit a
slightly increasing concentration at the end of the branches
but are depleted as well at the site of the confluence. Micro-
particles arriving left/right or at the bottom show a similar
concentration profile as that of the corresponding red blood
cells and thus do not cause the peak in overall concentration
in Fig. 5. We note that these concentration profiles can be
understood by passive tracer particles similar to those in

constricted channels (56) and as detailed in Supporting
Materials and Methods. From Fig. 6 b, we are thus able to
conclude that the peak stems from the microparticles flow-
ing at the top of the branches. The concentration of these
microparticles increases more than twofold compared to
the branches and the main channel. Because of the margin-
ation, the microparticles are located right beside the wall.
Also, the concentration profile of the microparticles at the
top can be reproduced by passive tracer particles, as done
in Supporting Materials and Methods. Thus, the local in-
crease in microparticle concentration can be understood
by the underlying flow profile.

In vivo observation of microparticle antimargination

To demonstrate the relevance of the antimargination
observed in our simulations, we inject fluorescent beads
into living mice and image their behavior when flowing
through a microvessel confluence. In Fig. 7, we show a set
of trajectories obtained from the video of microscopy images
(corresponding Video S2). In agreement with the predictions
of our numerical simulations, beads that are initially margin-
ated at the outer walls (blue lines in Fig. 7) remain margin-
ated, whereas beads located initially at the inner walls (red
lines in Fig. 7) undergo antimargination and end up near
the channel center after passing through the confluence.

Channel bifurcation

Next, a bifurcation is investigated, as depicted in Fig. 1 a
(right) and shown in Video S3. The suspension of red blood
cells and microparticles flows through a straight channel of
radius 16 mm, branching into two daughter channels of radius
11:5 mm. The main channel and the combined branches have
the same cross-sectional area, and the centerlines of the two
branches are separated by 34 mm. The transition zone from
the end of the main channel to the beginning of the branches
is about 13 mm.

Cell and particle distribution

In Fig. 8, we first investigate the 2D concentration of red
blood cells and microparticles along the flow direction. At
the very beginning, around xz0, we again observe a homo-
geneous red blood cell distribution (Fig. 8 a) around the
center and the cell-free layer with vanishing red blood cell
concentration near the wall. Approaching the bifurcation,
the cell-free layer decreases. The decrease in cell-free layer
is of the same amount at both locations near the upper
boundary and near the lower boundary. It can be straightfor-
wardly explained by the bifurcating geometry, which causes
the red blood cells to flow upwards/downwards into the
daughter channels. This motion into the daughter channels
starts already �10 mm before the end of the main channel
and makes the cells migrate toward the outer wall.

An asymmetry in the cell-free layer occurs inside the
daughter channels (Fig. 8 b), as also observed in recent

FIGURE 5 1D axial profile of red blood cells and microparticles flowing

through a vessel confluence. Whereas the red blood cells are depleted at the

site of the confluence, the microparticles exhibit a concentration increase of

�50% compared to the branches and the main channel. To see this figure in

color, go online.
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work (57,67). The asymmetry is especially pronounced at
the beginning of the branches, stemming from cells flowing
in the center of the main channel, which enter either the
upper or lower branch near the inner wall. We observe a
strongly decreased cell-free layer near the inner boundary
right at the beginning of the daughter branches. The thick-
ness of the cell-free layer near the outer boundary increases
correspondingly. After�10 mm, the inner and outer cell-free
layers both reach a constant value, which is similar to the
length scale for the re-establishment of the outer cell-free
layer after the confluence. Interestingly, the inner and outer
cell-free layers do remain asymmetric and retain this asym-
metry until the very end of our channel, �50 mm behind the
bifurcation.

Although the cell-free layer decreases at the end of the
main channel, hardly an effect is observed on microparticle
behavior. Entering the branches, the microparticle concen-
tration peak only becomes more blurred because of the
microparticles located near the upper boundary entering
the larger cell-free layer inside the branch.

The asymmetries in cell and particle distribution can be
seen in more detail in the 2D cross-sectional profiles in
Fig. 9. At the end of the main channel in Fig. 9 a, the red
blood cell distribution is still circular, with only small devi-

ations corresponding to the decrease in cell-free layer seen
in Fig. 8 a. At the beginning of the branch, the circular
red blood cell concentration is strongly shifted toward the
inner boundary in Fig. 9 b, and a less pronounced but still
clearly visible asymmetry is still present at the end of the
branch in Fig. 9 c. Furthermore, a local spot with increased
red blood cell concentration is observed near the inner
boundary.

Whereas the microparticles are hardly affected at the end
of the main channel (Fig. 9 d), a notable effect is the vanish-
ing concentration of microparticles near the inner boundary
of the branches in Fig. 9, e and f. Over an angle range of
�90� at the bottom of Fig. 9, e and f, the microparticle con-
centration vanishes completely. The vanishing microparticle
concentration can be understood by the radial distribution in
the main channel because of margination: to reach positions
near the lower boundary of the branch, the microparticles
would have to be located near the center of the main chan-
nel, which is not the case because of margination. Thus, we
report a region within the branches that possesses a vanish-
ing microparticle concentration in comparison to a simple
straight channel.

Axial concentration

As for the confluence, we now investigate the behavior of
cells and particles along the varying geometry by 1D axial
concentration profiles in Fig. 10. After a constant plateau
inside the main channel, both red blood cell and micropar-
ticles show a clear peak ahead of the apex of the bifurcation.
Inside the branches, the red blood cell take the same concen-
tration as in the main channel, whereas the microparticle
concentration decreases. The latter can be explained by
the intrinsic velocity profile; flowing beside the boundary,
the stiff microparticles cover a certain ring of tube diameter
along the boundary. Because of the fixed particle size, this
ring has the same diameter in the main channel and within
the branches. Assuming a Poiseuille flow and averaging
over such a ring around the boundary leads to a higher

a b

FIGURE 6 Axial concentration of (a) red blood cells and (b) microparticles distinguished regarding their position inside the cross section of the branches,

as illustrated in Fig. 2. The microparticles entering at the top of the upper branch (or equivalently, the bottom of the lower branch) exhibit a pronounced peak.

To see this figure in color, go online.

FIGURE 7 In vivo measurement of tracked fluorescent beads in mouse

microvessels. Blue lines show trajectories of beads that remain marginated

after the bifurcation, whereas red lines show beads undergoing antimargina-

tion. Yellow dashed lines denote the vessel boundaries. To see this figure in

color, go online.
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flow rate inside the branches because they cover a larger part
of the steep velocity profile. Thus, within the branch, the mi-
croparticles experience a larger velocity, leading to lower
residence time, thereby causing a decreasing concentration.

We furthermore distinguish the cells and particles
regarding their position inside the main channel and calcu-
late the axial concentration profiles for each cell/particle
fraction in Fig. 11, a and b. All fractions of red blood cells
behave in a similar manner with a small peak at the apex.
This peak stems from cells being trapped at the apex of
the bifurcation; arriving in the center of the main channel,
red blood cells have to break symmetry and decide for
one branch. As visible in Fig. 1 a (right), some cells flow

directly onto the apex and are trapped there before flowing
in one of both branches, a phenomenon called ‘‘lingering’’
in (69). We note that also the red blood cells at the top/bot-
tom show a peak because they are still located close enough
to the center to be influenced by more central cells getting
trapped at the apex.

In full analogy, a similar peak is observed for microparti-
cles located left/right in Fig. 1 b. Also, these microparticles
flow onto the apex and become trapped for a short period of
time. In contrast, the microparticles located top/bottom are
diluted at the bifurcation. After a subsequent little dip in
concentration, microparticles from both regions quickly
reach a constant concentration inside the branches.

FIGURE 8 2D planar projection within the

bifurcation for red blood cells (a) along the main

channel and (b) along the upper branch. 2D radial

projection shows microparticle concentration (c)

along the main channel and (d) along the branches.

The cell-free layer decreases at the end of the main

channel, and we observe an asymmetric cell distri-

bution inside the branches. The margination peak

of microparticles is somewhat blurred after the

bifurcation but is otherwise unaffected. To see

this figure in color, go online.

FIGURE 9 2D cross-sectional concentration of red blood cells (a–c) and microparticles (d–f) at the end of the main channel (a and d), at the beginning of

the branches (b and e), and at the end of the branches (c and f). See Fig.1 a for indications of the respective positions along the channel. Inside the branches, an

asymmetric cell-free layer develops, and microparticles suffer a loss of concentration directly beside the inner wall. To see this figure in color, go online.

Antimargination in Branching Vessels

Biophysical Journal 115, 411–425, July 17, 2018 419

pub6



The concentration profile of both cells and particles can
be understood again by considering tracer particles (see
Supporting Materials and Methods).

Influence of hematocrit

In the following section, we present simulations that have
the same geometrical properties as the channels in Fig. 1
but with a hematocrit of Ht ¼ 20% for the inflow.

Fig. 12 shows that behind the confluence of two branches,
the red blood cell distribution behaves qualitatively simi-
larly to the lower hematocrit. Although the cell-free layer
near the vessel wall is reduced compared to Fig. 3 b, the
cell-free layer in the center of the main channel in
Fig. 12 a is of about the same size. Only at the left and right
of the cross section, the cell-free space clearly reduces
compared to the lower hematocrit (Fig. 12 b). The central
cell-free layer is very pronounced up to 40 mm behind the
confluence but becomes blurred slightly faster toward the

end of the channel when compared to the low hematocrit
case. This faster decay can be explained by the larger
shear-induced diffusion coefficient of DRBC ¼ 38 mm2/s.
This agrees with the theoretical expectation that the shear-
induced diffusion coefficient depends on the number of
cell-cell collisions and thus on the cell concentration
(101,103). The microparticles are still located in the cell-
free layer in the center all along the main channel, as can
be seen in Fig. 12, c and d. We can again calculate the
fraction of antimarginated microparticles and obtain the
fractions 0.145 at x ¼ 55 mm and 0.137 at x ¼ 158 mm.
Also, when we compare the axial concentration of labeled
red blood cells and microparticles in Fig. 13, a and b) to
the case of lower hematocrit in Fig. 6, we see similar
behavior in both cases.

When we investigate the influence of larger hematocrit on
the system with bifurcation, we find that each cell-free layer
in the system decreases with increasing hematocrit (results
shown in Supporting Materials and Methods). At the end
of the main channel, the cell-free layer still decreases, and
the pronounced asymmetry of cell-free layers within the
branches is present. The increase in concentration due to
the apex of the bifurcation remains unaffected by larger
hematocrit, as seen in Fig. 13, c and d. Because a certain
number of cells or microparticles stacks at the apex of the
bifurcation, the effect is not modified when more cells are
added to the system. Especially, the absolute number of cells
in the center region stays approximately the same for larger
hematocrit.

Asymmetric bifurcations

We finally touch briefly on the subject of asymmetric bifur-
cations. For this, we keep the main channel radius
Rch ¼ 16 mm and the upper branch Rbr ¼ 11:5 mm, as in
Fig. 1 (right), and only vary the diameter of the lower
branch. Two different simulations are done with radius
Rlow ¼ 8 and 5:5 mm. Here, we focus on the total

FIGURE 10 Axial concentration of red blood cells and microparticles

flowing through a bifurcating channel. Both red blood cells and micropar-

ticles exhibit a peak in front of the bifurcation apex. The microparticle con-

centration increases directly in front of the apex, whereas the red blood cell

concentration exhibits a second small peak because of a second cell flowing

onto a cell already being stuck at the apex. To see this figure in color, go

online.

a b

FIGURE 11 Axial concentration of (a) red blood cells and (b) microparticles distinguished regarding their initial position inside the cross section of the

main channel. The peak in red blood cell concentration stems from the cells trapped at the apex of the bifurcation. The microparticles exhibit a similar peak

when arriving left/right. However, for microparticles entering top/bottom, no peak occurs. To see this figure in color, go online.
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concentration of red blood cells and microparticles within
the two branches, as listed in Table 1.

The red blood cell concentration clearly differs between
the upper and lower branch. The upper branch, being the
one with the larger flow rate, receives clearly more cells
than the lower branch. This effect is enhanced when the
diameter and correspondingly the flow rate further decrease,
as in the case of Rlow ¼ 5:5 mm. The fraction of concentra-
tion between lower and upper branch rlow=rup changes from
0.77 to 0.67 when Rlow is changed from 8 to 5.5 mm.We note
that the total flow rate at the outflow of the system is the
same in both simulations to match the flow rate at the
entrance. As a consequence, the flow rate in the upper
branch slightly differs in both simulations (the fractions of
flow rates are 0.5 and 0.26, respectively). The asymmetric

distribution of red blood cells qualitatively matches the
Zweifach-Fung effect observed earlier (61,70,74,102) and
can be attributed to the cell-free layer (102) combined
with red blood cell deformability.

In contrast to the asymmetric red blood cell distribution,
the microparticles are nearly evenly distributed to the
daughter channels. Furthermore, the distribution is not
affected by decreasing the diameter of the lower branch,
the fraction in both cases being �1.11. Because the stiff
microparticles are located within the cell-free layer, the
different flow rate does not affect their distribution.
Although the lower branch is significantly smaller, the
apex of the bifurcation and thus the separation line be-
tween the two branches are located near the center of
the main channel by construction of the geometry. Thus,

FIGURE 12 (a) 2D planar projection within the confluence for red blood cells along the main channel behind a confluence as in Fig. 3, but with larger

hematocrit Ht ¼ 20%. (b–d) 2D cross-sectional profiles for (b) red blood cells and (c and d) microparticles in the main channel as in Fig. 4, but for larger

hematocrit Ht ¼ 20%. To see this figure in color, go online.

a b

c d

FIGURE 13 1D axial concentration of (a and c) red blood cells and (b and d) and microparticles flowing through a (a and b) confluence or (c and d) bifur-

cation with larger hematocrit Ht ¼ 20% labeled by their radial position at the entrance. The larger hematocrit hardly affects the behavior of red blood cells

and microparticles. To see this figure in color, go online.
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arriving near the wall, only the microparticles located
around the equator are drawn into the upper branch
by the flow, whereas all other microparticles may be
distributed equally into the branches. All in all, the micro-
particles exhibit a very similar concentration in both
branches.

CONCLUSIONS

We used 3D IBM-LBM simulations with inflow/outflow
boundary conditions to investigate a mixed suspension of
red blood cells and stiff particles flowing through a vessel
confluence as well as a vessel bifurcation. The stiff particles
can be regarded as models for synthetic drug delivery
agents or naturally occurring stiff cells such as platelets.
In agreement with earlier studies, we observe and quantify
the formation of a pronounced central cell-free layer behind
the confluence of two vessels. We find that the central cell-
free layer is very stable, being still observable even 100 mm
after the confluence. As a consequence, we show that stiff
particles at the confluence are strongly redistributed.
Although all stiff particles arrive on a marginated position
inside the well-known near-wall cell-free layer, while trans-
versing the confluence, a significant fraction of them un-
dergo antimargination, ending up trapped in the central
cell-free layer near the channel center. This position is re-
tained even longer than the 100 mm lifetime of the central
cell-free layer itself. Calculating the fraction of antimargi-
nated microparticles, we found that more than 13% of the
particles are located around the center 100 mm behind a
confluence. Under the assumption that at the succeeding
confluence, this fraction of microparticles is still antimargi-
nated, we estimate that after five confluences half of the
initially completely marginated particles are now evenly
distributed across the cross section of the channel. In
contrast, a bifurcating geometry is found to not significantly
influence the margination propensity of stiff particles. For
the confluence, we also conducted in vivo measurements,
which proved the relevance of antimargination of stiff mi-
croparticles in living mice.

In previous in vivo studies, platelets have been observed
to be mainly located near the wall in arterioles (7,104) but
not in venules, where the platelet concentration was rather
continuous across vessel diameters. In a similar direction,
the recent work of Casa et al. (75) found that thrombi
were platelet-rich on the arterial but not on the venous

side of the blood vessel network. Our findings may provide
an explanation for these observations. On the arterial side,
the microvascular network consists mainly of bifurcations
from larger into smaller and smaller vessels, which accord-
ing to our findings, do not significantly disturb the margin-
ation propensity of platelets. On the venous side, however,
small channels frequently merge into larger ones. At such
confluences, our results clearly demonstrated antimargina-
tion, i.e., the tendency of platelets to be forced into the
center of the vessel. In a network with a cascade of conflu-
ences being only 400–1000 mm apart (2,4) the platelet
margination near the channel wall will be further and
further disturbed, ending up finally in a rather continuous
concentration profile and thus explaining the experimental
observations of (7,75).

SUPPORTING MATERIAL

Supporting Materials and Methods, thirteen figures, and three videos

are available at http://www.biophysj.org/biophysj/supplemental/S0006-

3495(18)30689-1.
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Inflow: full margination and constant particle number
In figure S1 we show the state of complete margination at the entrance of a bifurcating channel and a confluence,
respectively. The cross-sectional concentrations show the red blood cells accumulated around the channel center
and the microparticles close to the wall.

Figure S2 shows that after a short transient time the implemented particle inflow/outflow leads to a constant
number of red blood cells and microparticles in the system.
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Figure S1: At the entrance of the confluence system a),b) and the bifurcation system c),d) we have a state of full
margination: the red blood cells a),c) are located in the channel center, the microparticles b),d) near the wall.
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Figure S2: Total number of RBCs and microparticles within the confluence system depending on the simulation
time. Both numbers fluctuate around a constant value after initial filling of the system.

Concentration profiles of tracer particles
In order to model the behavior of red blood cells and microparticles we use passive point particles as tracers flowing
with the intrinsic velocity profile (1). We first start with the confluence. Homogeneously distributed particles exhibit
a similar concentration profile as the red blood cells. As a consequence, red blood cell behavior can be explained
by the intrinsic velocity profile. Doing the same calculations for tracers in the different regions resemble the labeled
red blood cells. It also fits the concentration profiles for the microparticles.

a)

10 20 30 40 50 60 70 80

ρ
po

in
t [

a.
u.

]

x [µm]

homogeneous

b)

0 10 20 30 40 50 60 70 80 90

ρ
po

in
t [

a.
u.

]

x [µm]

center
right

bottom
top

c)

0 10 20 30 40 50 60 70 80 90

ρ
po

in
t [

a.
u.

]

x [µm]

center
right

top

Figure S3: Concentration of a) homogeneously distributed tracer particles and b) tracer particles flowing in the
distinct regions at system entrance within the confluence. c) Tracer particles flowing in the distinct regions at
system entrance within the diverging bifurcation. These figures are compared to cell and particle concentration in
figure 6, 11 and 13 in the main text.

In the diverging bifurcation starting at top the concentration profile of the point particles matches that of the
microparticles quite well. Also the point particles located right reproduce microparticle behavior. We note that
starting point particles top or bottom and left or right results in the same concentration due to symmetry. Red
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blood cell behavior is also similar to that of point particles, except the peak at the bifurcation apex. The differences
are effects due to the finite size and deformability of red blood cells.

Shear-induced diffusion
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Figure S4: Mean square displacement over time for a) red blood cells and b) microparticles located near the center
behind a confluence. By modeling the theoretical expectation we can extract a shear-induced diffusion coefficient.

Larger hematocrit

a) b)

Figure S5: 2D planar projection for red blood cells along the a) main channel and b) branches of the bifurcation
with larger hematocrit Ht = 20%. The cell-free layer decreases, but the behavior is qualitatively unchanged.

Anti-margination of platelet-shaped microparticles
In the main text we focus on spherical microparticles. Here, we show additional results for oblate spheroids – a
geometry that mimicks more closely that of real platelets. The platelets have a diameter of 3.9 µm along the two
long axes and 2.3 µm along the small axis and are illustrated in figure S6. Similar to the spherical particles of the
main text, about 14% of the spheroidal microparticles are anti-marginated directly behind the confluence.

Narrow confluence
In figure S7 we investigate the influence of the main vessel diameter. We perform simulations with radius 22.8 µm
and 14.3 µm of the main vessel, but with the same branch properties as in figure 1 a) of the main text. In figure S7 a)
the red blood cell concentration shows a more stable central cell-free layer for a wider vessel. In case of a narrow
vessel the central cell-free layer vanishes more quickly (figure S7 b). Correspondingly, the microparticles stay close
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Figure S6: (a) Simulation of microparticles with a platelet-like oblate shape flowing through a confluence. (b) Similar
to the spherical microparticles of the main text, these particles also undergo anti-margination.

to the center in the wider vessel (figure S7 c) and marginate faster within the narrow main vessel (figure S7 d). Both
observations can be explained by the shear-induced diffusion coefficient depending on the local cell concentration,
which increases with narrowing main vessel for the same inflow. Indeed, the red blood cell shear-induced diffusion
coefficient decreases in figure S7 a) to 15.5 µm2/s and increases in figure S7 b) to 45.4 µm2/s.

a) b)

c)

x = 158 µm

d)

x = 158 µm

Figure S7: a),b) Red blood cell distribuition and c),d) cross-sectional microparticle concentration 100 µm behind a
confluence with main vessel radius of a),c) 22.8 µm and b),d) 14.3 µm. While a wider vessel leads to a more stable
central cell-free layer a narrow vessel causes the cell-free layer to smear out faster. Correspondingly, in case of a
narrower main channel margination of microparticles takes place faster.

Biophysical Journal 1–9

pub6 SI



Biophysical Journal 5

Validation of the used IBM-LBM algorithm
In the following, we summarize and extend the validation for our Immersed Boundary method (IBM) and Lattice-
Boltzmann method (LBM). In ref. (2) the calculation of shear and bending forces has been validated for a capsule
in shear flow. In ref. (3) the hematocrit profile for tube flow and plane-Poiseuille flow has been shown to agree with
previous, established studies. Furthermore, the stability of the stiff spherical particles used has been demonstrated
and the flow profile past a sphere has been compared favorably to the analytical solution.

In addition, we here calculate the Stokes drag 1/(6πηa) that relates the force on a sphere of radius a to its
velocity in a suspending fluid of viscosity η for a sphere with two different particle resolutions in figure S8. We
performed simulations with the resolution used in the main text (81 nodes of the inner stiff grid) and an increased
resolution (485 nodes of the inner grid). We note that for the former the number of fluid nodes per particle does
not change compared to the main text. Both resolutions show good agreement with the theoretical prediction and
convergence to the theory for increasing grid resolution.
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Figure S8: Velocity of a spherical particle pulled through a fluid with a given force. Simulations with two different
particle resolutions are compared to the theoretical prediction given by the Stokes drag. The resolution given in
the legend denotes the node number of the stiff inner grid.

In order to provide another quantitative validation of stiff particle behavior we simulate a spheroid with aspect
ratio ε = 3 subjected to shear flow, as sketched in figure S9 a). Ref. (4) provides an analytical solution for the
spheroid inclination angle θ over time t

θ(t) = tan−1
(
ε tan

(
tγ̇

ε+ 1
ε

))
, (S1)

with γ̇ being the shear rate. In figure S9 b) we compare our numerical results (2562 nodes and 5120 triangles for
the outer membrane of the spheroid) to the theoretical prediction and find very good agreement.

In order to validate the red blood cell behavior, we present a detailed investigation of a single red blood cell
flowing through a cylindrical channel. In figure S10 we show the red blood cell shape obtained for a confinement
- effective red blood cell diameter divided by the channel diameter - of 0.55, which can directly be compared to
literature data in figure 1 of Fedosov et al. (5). From left to right we increased the dimensionless shear γ̇∗ = ¯̇γτ
with the averaged shear rate ¯̇γ defined by the averaged velocity over the channel diameter and τ the relaxation
time of a red blood cell. Since in this setup the focus is on the single cell behavior we performed our simulations
with a membrane mesh resolution of 5120 triangles. With increasing velocity we first observe a tumbling discocyte,
a tank-treading slipper, and eventually a croissant. The shapes are in very good agreement with the shapes shown
in figure 1 of ref. (5).

Furthermore, we compare the single cell behavior for different resolutions of the red blood cell mesh with sim-
ulations using the Boundary Integral method (BIM) in a rectangular channel of cross-section 10 µm x 12 µm in
figure S11. The BIM simulations are part of an extensive study on single cell behavior in rectangular channels which
demonstrated quantitative agreement with detailed experiments (6). The presently used LBM-IBM method leads
to the same shapes as the more sophisticated BIM simulations.

We further validate our method considering the red blood cell behavior in a setup strongly related to those of
the main text: we investigate the Zweifach-Fung effect and compare the results with literature data for a bifurcation
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Figure S9: a) A rigid spheroid subjected to a shear flow. b) The orientation angle of the spheroid θ(τ) over time
τ = γ̇t for simulations with different time steps compared to the analytical solution of ref. (4).

a) b) c)

Figure S10: Red blood cell shapes in a cylinder for different flow rates obtained with LBM-IBM simulations. The
confinement is 0.55.We observe a) a tumbling discocyte for a shear rate γ̇∗ = 5, b) a slipper for γ̇∗ = 22.5 and c) a
croissant for γ̇∗ = 60. These shapes are in very good agreement with the shapes shown in figure 1 of ref. (5) for a
confinement of 0.58 and γ̇∗ = 5, γ̇∗ = 24.8, and γ̇∗ = 59.6, respectively, that are obtained using Dissipative Particle
Dynamics (5).

Figure S11: Single red blood cell in a rectangular channel with cross-section 10 µm x 12 µm simulated with the
Boundary Integral method from (6), LBM-IBM with 1280 triangles and LBM-IBM 5120 triangles (from left to
right). For a centroid velocity of 0.5 mm/s (top) a tank-treading slipper shape is observed and for 1.5 mm/s
(bottom) a croissant shape.

of a vessel into two daughter vessels followed by a confluence, as sketched in figure S12 a). In contrast to the main
text, here we use periodic boundary conditions. We construct our setup in a way that the cross-sections of the
cylindrical branches match with the setup consisting of rectangular vessels of ref. (7), namely the main branch with
radius 6.84 µm, the bottom branch with 5.86 µm, and the top branch varied in the range of 3.26 µm to 5.35 µm.
We simulate a suspension of 50 red blood cells with a membrane mesh consisting of 642 nodes and 1280 triangles
being the same as in the main text. The fluid grid is chosen such that the number of fluid nodes per cell is also the
same as in the main text. With varying flow rate ratio between the bottom branch and the main branch (achieved
by varying the diameter of the top branch) a disproportional partitioning of the red blood cells takes place, known
as the Zweifach-Fung effect (7–9). In order to quantify this behavior in simulations we calculate the fraction of
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the flow rate in the bottom branch Qbot and in the main branch Qm without any cells present. This is done by
integrating the axial velocity vx over the cross-section C of the branch

Qm =
∫

C

vm
x dA, Qbot =

∫

C

vbot
x dA. (S2)

As a measure for the red blood cell flux we calculate the number of red blood cells per time Ṅ(t) passing through
the mid-plane of main branch and bottom branch, respectively, and average over all T time steps

n = 〈Ṅ(t)〉t =

T∑
i=1

Ṅ(ti)∆t

T∑
i=1

∆t
. (S3)

We compare the fraction of red blood cell flux in bottom and main branch nbot/nm to data from the literature in
figure S12 b). As done in ref. (7) we compare our results with experimental values from Pries et al. (8) and Yang
et al. (10) as well as with the numerical values from Balogh and Bagchi (7). Overall, we find very good agreement
and our simulations show the expected half-sigmoidal variation collapsing with literature data over a wide range of
flow rate fractions. We note that varying the overall velocity does not affect the results in figure S12.
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Figure S12: Red blood cells flowing through a bifurcation followed by a confluence. a) Simulation snapshot of one
setup: main branch with radius 6.84 µm, bottom branch with radius 5.86 µm, and top branch with radius 5.35 µm.
b) Fraction of cells flowing through the bottom branch nbot and the main branch nm depending on the fraction of
flow rate in bottom Qbot and main branch Qm. Despite some deviations at low flow rate fraction our simulations
lead to the expected half-sigmoidal dependency and match literature data at large fractions.

Next, in order to prove mesh insensitivity we reduced the resolution of the membrane mesh of the red blood cells
to 258 nodes and 512 triangles and the resolution of the stiff particles to 66 nodes and 128 triangles. In the same
way the fluid mesh changes from 288x110x58 to 200x82x42. The red blood cell distribution behind a confluence and
the cross-sectional microparticle concentration are compared to the results of the manuscript in figure S13 a),b) and
d),e), respectively. The results are in very good agreement. Small discrepancies may be caused by slightly different
inflow concentrations.

Finally, in figure S13 c), f) we provide evidence that the repulsion force among the cells and particles does not
affect our results. For this, we show the red blood cell distribution behind a confluence (corresponding to figure
S13 b) and the cross-sectional microparticle concentration (corresponding to figure S13 e) for a simulation without
repulsion force. We observe very similar behavior and are thus able to conclude that our main results are robust
with respect to the repulsion force.
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a) b) c)

d) e) f)

Figure S13: The main results for different mesh resolutions: The cell free-layer in a), b), c) and the micropar-
ticle anti-margination in d), e), f). a),d) resolution used in the main text (RBC: 1280, microparticle: 320, fluid:
288x110x58) and b), c), e), f) decreased resolution (RBC: 512, microparticle: 128, fluid: 200x82x42). Both reso-
lutions lead to similar results for central cell free layer stability (in a) and b)) and fraction of anti-marginated
microparticles (d) 15.8% and e) 16.2%). In figure c) and f) we provide evidence that without any repulsive force
between cells, particles, and the vessel wall our main results do not change (16.7% antimarginated microparticles
in f). Figures a) and d) are from the main text.

Taken together, our LBM-IBM method gives accurate results for stiff particles and red blood cells in simple
tube flow, but also within a more complex system such as a bifurcation followed by a confluence. We provided
evidence that neither the resolution of cell membrane mesh nor the fluid mesh nor the introduced repulsive force
for additional stability affect our main results and conclusions.
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