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 Summary 

 

I 

Summary 

Eukaryotic transcription is regulated by the Mediator kinase module, which phosphorylates 

transcription-related targets and controls the association of Mediator and RNA polymerase II. 

The activity of its catalytic heart, cyclin-dependent kinase 8 (CDK8), is regulated by Cyclin C 

and the Mediator subunit MED12, with its malfunction contributing to numerous malignancies.  

To unravel how CDK8 activation is enhanced by MED12, I established recombinant expression 

and purification schemes that resulted in monodisperse, highly pure binary CDK8/Cyclin C and 

ternary CDK8/CycC/MED12 complexes. Using these complexes, I combined in vitro 

biochemistry, cross-linking coupled to mass spectrometry, and in vivo studies to decipher how 

the N-terminal portion of MED12 binds on the CDK8/Cyclin C complex and to gain 

mechanistic insights into the MED12-dependent CDK8 activation.  

 The data presented in my thesis demonstrate that the N-terminal part of MED12 wraps 

around CDK8, whereby it places an “activation helix” in direct proximity to the CDK8 T-loop 

for its activation. Interestingly, mutations in the activation helix that are frequently found in 

cancers do not alter the affinity of MED12 for CDK8, yet likely alter the exact positioning of 

the activation helix resulting in impaired CDK8 activity. Moreover, we find the transcriptome-

wide gene-expression changes in human cells that result from a mutation in the MED12 

activation helix to correlate with deregulated genes in breast and colon cancer. Finally, 

functional assays in the presence of kinase inhibitors reveal that MED12 binding reshapes the 

active site of CDK8 and thereby precludes the inhibition of ternary CDK8 complexes by type 

II kinase inhibitors. Taken together, these data establish that a newly identified activation helix 

in MED12 functionally replaces CDK8 T-loop phosphorylation and thereby likely remodels the 

active site. These data not only allow us to propose a revised model of how CDK8 activity is 

regulated by MED12, yet they have significant implications to drug development and will pave 

the road to new and specific CDK8 inhibitors that target CDK8 in its MED12-bound form. 
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Zusammenfassung 

Das humane Mediator Kinasemodul reguliert eukaryotische Transkription durch die 

Phosphorylierung von Transkriptionsfaktoren und durch die Modulation der Interaktion des 

Mediatorkomplexes mit RNA Polymerase II. Die enzymatische Aktivität des Kinasemoduls 

basiert dabei auf der Cyclin-abhängiger Kinase 8 (CDK8), welche von Cyclin C und MED12 

kontrolliert wird. Wichtig ist, dass viele Krebserkrankungen mit der Fehlregulation von CDK8 

assoziiert sind. Um den MED12-abhängigen Mechanismus der CDK8 Aktivierung auf 

molekularer Ebene zu entschlüsseln, habe ich rekombinante Expressions- und Reinigungs-

methoden für Proteinkomplexe etabliert, welche neben CDK8 und Cyclin C zusätzlich MED12 

beinhalten. Diese gereinigten, monodispersen Proteinkomplexe wurden mittels in vitro 

Biochemie, chemischer Quervernetzung gekoppelt mit Massenspektrometrie und in vivo 

Experimenten dahingehend analysiert, um die Bindung des N-terminalen Segments von 

MED12 an den CDK8/Cyclin C Komplex zu charakterisieren und um mechanistische Details 

über die MED12-abhängige CDK8 Aktivierung zu erhalten.  

 Die Ergebnisse zeigen, dass sich MED12 um CDK8 herum windet. Dabei platziert 

MED12 eine „Aktivierungshelix“ in der Nähe des T-loops von CDK8, was eine signifikante 

Stimulation der CDK8 Kinaseaktivität nach sich zieht. Darüber hinaus untersuchten wir 

besonders häufige, mit Krebs in Verbindung stehende MED12 Mutationen in der Aktivierungs-

helix. Interessanterweise stören diese Mutationen nicht die Interaktion von MED12 mit dem 

CDK8/Cyclin C Komplex, sondern sie veränderten höchstwahrscheinlich die exakte 

Platzierung der Aktivierungshelix, was mit einer deregulierten Kinaseaktivität korreliert. 

Zudem konnte gezeigt werden, dass durch eine Mutation in der MED12 Aktivierungshelix 

krebsartige Genexpressionsprofile von Brust- und Darm-Krebs in menschlichen Zellen hervor-

gerufen werden. Abschließende funktionale Studien mit Kinaseinhibitoren zeigten ferner, dass 

die Bindung von MED12 an CDK8 dessen aktives Zentrum strukturell verändert, wodurch die 

Bindungsaffinität und somit auch die Wirkung von Typ II Kinaseinhibitoren gegenüber CDK8 

drastisch reduziert wird. Zusammengefasst wurde eine neue Aktivierungshelix in MED12 

entdeckt, die auf funktionaler Ebene die allgemein notwendige Phosphorylierung des T-loops 

in CDK8 ersetzt, wobei das aktive Zentrum der Kinase verändert wird. Diese Ergebnisse sind 

Grundlage eines neuen Models der MED12-abhängigen Regulation der Kinaseaktivität von 

CDK8. Zusätzlich legt diese Arbeit nahe alle zukünftigen CDK8 Inhibitoren gegen MED12-

gebundene CDK8 Komplexe zu entwickeln. 
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Chapter 1: Introduction 
 

1.1 Protein kinases 

 

Eukaryotic proteins are regulated by post-translational modifications and the most widespread 

type of protein modification is phosphorylation (Ubersax and Ferrell, 2007). The reversibly 

nature of protein phosphorylation makes it an ideal candidate for the regulation of transient 

processes. The post-translational phosphorylation of proteins is mediated by protein kinases, 

all which catalyze the transfer of a gamma-phosphoryl group from ATP to a hydroxyl group of 

a serine, threonine or tyrosine residue. Protein kinases regulate a plethora of cellular processes 

and comprise the largest superfamily of eukaryotic enzymes. Already in the 1980s, protein 

kinases were shown to have important roles in oncogenesis and tumor progression and since 

have received increasing attention as targets for anticancer therapies (Hartwell et al., 1974; 

Manning et al., 2002; Rzymski et al., 2015). Accordingly, protein kinases are amongst the most 

critical and widely studied cellular signaling molecules. 

 Protein kinases differ in their ability either to phosphorylate serine/threonine or tyrosine 

residues. Thus, kinases are mechanistically classified into serine/threonine- and tyrosine-

directed kinases. Cyclin-dependent kinases (CDKs) are serine/threonine kinases that were 

initially discovered as regulators of the cell cycle. The cell cycle contains several checkpoints 

to ensure the completion of the previous step, whereas cell cycle progression and regulation is 

tightly controlled by CDKs. Moreover, CDKs are engaged in fundamental processes such as 

transcription, epigenetic regulation, metabolism, neuronal differentiation, hematopoiesis, 

angiogenesis, stem cell self-renewal, and spermatogenesis (Lim and Kaldis, 2013; Malumbres, 

2014; Morgan, 1997). Considering their broad biological functions, it is not surprising that 

malfunction or dysregulation of CDKs is a common feature of many cancers (Blume-Jensen 

and Hunter, 2001; Hanahan and Weinberg, 2011) Therefore, mechanistic information about 

CDK regulation is indispensable and the route to take that lead to novel, potent anti-cancer 

drugs (Blume-Jensen and Hunter, 2001). 
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1.1.1 Cyclin-dependent kinases 

 

CDKs belong to the CMGC family, which is named for its primary constituent groups: Cyclin-

dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen synthase 

kinases (GSKs) and CDK-like kinases (CLKs). It represent the largest protein family within the 

kinome (Varjosalo et al., 2013). CDKs can be subdivided into two broad groups: Those that 

mediate the progression of the cell cycle (e.g. CDK1, CDK2, CDK4 and CDK6, together 

referred as cell cycle-related CDKs) and those that regulate transcription (e.g. CDK7, CDK8, 

CDK9, together referred as transcription-related CDKs) (Fig. 1) (Espinosa, 2019; Malumbres, 

2014). The enzymatic activity of CDKs is regulated by their partner proteins, the cyclins. Cell 

cycle-related CDKs can bind multiple cyclins, whereas transcriptional CDKs usually interact 

with one specific cyclin. Cyclin proteins vary in mass from 35 to 90 kDa and their amino acid 

sequence alters considerably, despite the fact that all of them are characterized by two 

conserved cyclin-box domains. Cell cycle-related cyclins are synthesized and destroyed at 

specific checkpoints during the cell cycle, thus regulating kinase activity in a timely manner 

(Malumbres, 2014). Tumor cells are often characterized by aberrant expression of cyclins rather 

than of the cell cycle CDKs themselves (Diehl, 2002). In contrast, cyclins that bind to 

transcription-related CDKs show a constant protein-level (Malumbres, 2014). During 

interphase, cell cycle progression is mediated by CDK4, CDK6, CDK2 and CDK3, whereas 

entry into mitosis is dependent on CDK1 (Malumbres and Barbacid, 2001). On the other hand, 

CDK7, CDK9 and CDK8 participate in promoting mRNA transcription by RNA polymerase II 

(RNA pol II), which directs the expression of protein-coding genes. Other CDKs regulate 

diverse processes including RNA splicing, transcript synthesis (CDK11, CDK12, CDK13) 

(Malumbres, 2014; Trembley et al., 2002) and neuronal function (CDK5, CDK10) (Lim and 

Kaldis, 2013). 
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Figure 1: Evolutionary relationships among the human CDK subfamilies.  

(A) Phylogenetic tree of all human CDKs. Cell cycle-related CDKs are shaded in green, transcription-related kinases are shaded 

in blue. (B) Sequence-alignment of all human CDKs. The conserved protein kinase domain is highlighted in red. The extend 

of conservation is represented by the height of the black bar beneath each residue. Coloring like in (A).The phylogenetic tree 

and the sequence-alignment was created with CLC Main Workbench 7 using canonical UniProt sequences.  

 

1.1.1 Architecture of Cyclin-dependent kinases 

 

CDKs range in size from approximately 250 amino acids, just harboring the conserved catalytic 

kinase domain, to proteins of more than 1500 residues with amino- and/or carboxy-terminal 

extensions of variable length (Fig. 1B) (Malumbres, 2014). Like all protein kinases, CDKs have 

a two-lobed structure: The N-terminal lobe is dominated by a series of ß-strands (often folded 

into an orthogonal barrel-like structure), with at least one absolutely conserved α-helix, the αC-

helix. This helix was initially termed PSTAIRE-helix based on its amino acid composition in 

CDK1 and CDK2 (Fig. 2).  
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Figure 2: Sequence alignment and domain organization of prominent human CDKs. 

Greyscale shading illustrates the extent of sequence conservation calculated from canonical UniProt sequences using Clustal 

Omega (Madeira et al., 2019). The ATP binding site is highlighted in green, the αC-helix in red, the hinge region in yellow and 

the T-loop in pink. The DFG motif is highlighted in blue within the T-loop, the activating phosphorylation site in pink. Residues 

that are part of the arginine triad are colored in yellow, residues that confine the catalytic triad are colored in blue. Please note 

that D145CDK2 belongs to both the DFG motif and the catalytic triad, and is shown as blue stick together with the Mg2+ ion 

(shown as a blue sphere). The activating phosphoresidue T160CDK2 is shown in pink within the T-loop. The alignment was 

exported into Expasy Boxshade. Structural features described are illustrated in their respective color on the fold of monomeric 

CDK2 (PDB code 1HCK). Shading of cell cycle- and transcription-related CDKs as in Fig 1. 

 

The C-terminal lobe varies in size, sequence and topology. It is larger than the N-lobe and 

consists predominantly of α-helices. A short linker (commonly referred to as hinge region) 

connects the two lobes (Fig. 2). The linker region is a key element of the ATP nucleotide 

binding site, which lies in a cleft formed at the junction of the N- and C-terminal lobes. The 

conserved catalytic core is made up of the ATP-binding pocket, the αC-helix (which represent 

the cyclin binding domain) and a T-loop motif (Fig. 2) (Endicott and Noble, 2013; Malumbres, 

2014). CDKs share additional characteristics, such as an arginine triad, a DFG motif and an 

activating phosphorylation site located in the T-loop and essential for full kinase activity. 

Collectively, all these features participate in CDK activation. In the cyclin-free monomeric 

state, critical residues within the CDK catalytic core are incorrectly positioned, preventing 

enzymatic activity. Lastly, the T-loop which binds the phospho-acceptor serine/threonine 

region of substrates is partially disordered in the inactive state (Jeffrey et al., 1995; Russo et al., 

1996). 
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1.1.2 Activation of Cyclin-dependent kinases 

 

The regulation of CDK activity is a multilayered process. It includes cyclin binding to its 

cognate CDK, inhibitory and activating phosphorylation and dephosphorylation events, and 

association of CDK-cyclin complexes with cellular cyclin-dependent kinase inhibitors or other 

cofactors that modulate the catalytic core of the CDK (Denicourt and Dowdy, 2004; Morgan, 

1995; Pavletich, 1999; Pines, 1999). Many crystal structures of the CDK/cyclin family are 

available that revealed many of the aforementioned conserved features. The best-characterized 

CDK is CDK2, whose structure could be solved in multiple regulatory states. Therefore, the 

canonical CDK activation mechanism is based on comprehensive structural information on 

different activation states of CDK2 (Fig. 3) (De Bondt et al., 1993; Jeffrey et al., 1995; Russo 

et al., 1996). 

 In general, cyclin binding controls kinase activity and substrate specificity by the 

rearrangement of the αC-helix (Fig. 3A). This rearrangement releases a steric block to the 

catalytic site, formed by the DFG motif. In CDK2, the shift of the αC-helix upon cyclin binding 

causes the reorientation of E51CDK2 into the binding cleft, where it comes close to K33CDK2 and 

D145CDK2 (the latter amino acid is the first of the DFG motif). These three residues constitute a 

catalytic triad that is conserved in all eukaryotic kinases and chelates the Mg2+-ion necessary 

for ATP hydrolysis. For full CDK-activity, the T-loop has to be positioned in its catalytically 

competent conformation (Fig 3B). This is driven by T-loop phosphorylation. There, the 

introduced negative charge serves as an ionic organizing center to arrange the arginine-triad 

and thereby positions the T-loop in its fully active conformation (Huse and Kuriyan, 2002; 

Jeffrey et al., 1995; Nolen et al., 2004). Phosphorylation within the T-loop thereby completes 

the reorganization of the substrate binding site that was initiated by cyclin binding (Fig. 3C). In 

this regards, the transcription-related CDK CDK7 is of particular interest since it was identified 

as the CDK-activating kinase that mediates the T-loop phosphorylation of CDK1, CDK2, 

CDK4 and CDK6 and itself as well (Fisher, 2005; Liu and Kipreos, 2000). 
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Figure 3: Canonical phosphorylation-dependent activation mechanism of the CDK/Cyclin family. 
(A) The left side shows different CDK2 structures in cartoon representation that correspond to the non-activated (monomeric 
CDK2, PDB code 1HCK), the partially active (binary CDK2/CycA complex, PDB code 1FIN) and the fully active 
(phosphorylated CDK2/CycA complex, PDB code 1JST) CDK2 states. Coloring as in Fig. 2. The right side shows individual 
close ups of the CDK2 T-loop to stress out structural changes upon cyclin binding (step 1) and T-loop phosphorylation (step 2). 
In the inactive, monomeric state, the ATP binding site (highlighted in green) is sterically blocked by the T-loop. The ATP 
molecule is shown in orange. Step 1: Cyclin binding releases the T-loop that leads to the formation of the activate site. However, 
the T-loop and the arginine triad are still misaligned to each other. Step 2: Phosphorylation of T160CDK2 within the CDK2 T-
loop (phosT160) reorients the arginine triad and thereby positions the T-loop in its fully active conformation. Please note that 
the figure continuous on the following page. 
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Figure 3 (continued): Canonical phosphorylation-dependent activation mechanism of the CDK/Cyclin family 

(B) Superimposition of the different T-loop conformations that were shown in (A) on monomeric CDK2. The T-loop of the 

inactive, monomeric CDK2 is colored in pink, of the binary CDK2/CycA in blue and of phosphorylated, active CDK2/CycA 

complex in green. The activating phosphoresidue T160CDK2 within each T-loop conformation is colored and illustrated in stick 

representation. (C) Schematic two-step activation mechanisms of the CDK/Cyclin family based on regulatory CDK2 states as 

shown in (A). 

 

1.1.3 Non-canonical activation of Cyclin-dependent kinases 

 

In addition to the canonical phosphorylation-dependent two-step activation mechanism, some 

mammalian CDKs have evolved deviating ways of kinase activation (Fig. 4). This is, for 

example, the case for the activation of CDK1 and CDK2 by Spy1/RINGO (Fig. 4A) (Cheng et 

al., 2005; McGrath et al., 2017). The structure of a CDK2/Spy1 complex revealed several 

interactions made by three consecutive acidic residues (E134Spy1, E135Spy1, and D136Spy1) 

which insert between the αC-helix and the T-loop of CDK2. Precisely, D136Spy1 coordinates 

the arginine triad in CDK2 (R50CDK2, R126CDK2, and R150CDK2) (Jeffrey et al., 1995; McGrath 

et al., 2017). Moreover, the murine gammaherpesvirus 68 encodes a cyclin homologue (vCyc)  
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Figure 4: Mechanisms of non-canonical, phosphorylation-independent CDK activation.  

For detailed description please see main text. PDB codes (A) CDK2/Spy1: 5UQ1, (B) CDK2/vCyc: 1F5Q, (C) Pho80/Pho85: 

2PK9, (D) CDK5/p25: 1H4L.   
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that establishes a salt-bridge between R150CDK2 (part of the arginine triad) and D11vCyc placing 

the T-loop in its active conformation (Fig. 4B) (Card et al., 2000). The mechanisms just 

described for the viral cyclin is also employed by the phosphate-dependent signaling complex 

Pho85/Pho80 that shows homology to CDK/cyclin complexes. Pho85 (the CDK) makes an 

ionic bond between R132Pho85, again part of the arginine triad, and D136Pho80 on Pho80 (the 

cyclin) which locks the activation loop of Pho85, thereby circumventing the requirement for T-

loop phosphorylation (Fig. 4C) (Huang et al., 2007). Last, p25 utilizes a non-ionic, 

phosphorylation-independent activation mechanism to activate CDK5. Specifically, p25 tethers 

the unphosphorylated T-loop of CDK5 in an active conformation. The side chain of I153CDK5, 

located at the tip of the activation loop, is buried into a hydrophobic pocket (formed by the side 

chains of A199p25, M237p25, I275p25, A277p25, P279p25 and F282p25) (Fig. 4D) (Tarricone et al., 

2001).  

 Altogether, T-loop phosphorylation in CDK2/Spy1, CDK2/vCyc and Pho80/85 

complexes is functionally replaced by a negatively charged side chain, whereas CDK5 

activation by p25 relies on specific hydrophobic interactions that position the T-loop in its 

catalytically competent conformation. An additional phosphorylation-independent activation 

mechanism was reported for CDK6 in complex with a vCyc (PDB code 1JOW) (Schulze-

Gahmen and Kim, 2002). The structure reveals that the vCyc folds around the T-loop of CDK6. 

In more detail, F172CDK6 located at the tip of the T-loop, is buried between hydrophobic residues 

from the vCyc, similar to the phosphorylation-independent activation mechanism of the 

CDK5/p25 complex (Fig. 4D). Intriguingly, CDK2/Spy1 and CDK/vCyc complexes show 

elevated kinase activity compared to natural CDK/cyclin complexes. Moreover, these 

complexes are resistant to endogenous Cyclin-dependent kinase inhibitors and thereby 

overcome cell cycle progression constrains (Cheng et al., 2005; Swanton et al., 1997).  

 
1.1.4 CDK8 and CDK19 are specialized Cyclin-dependent kinases  

 

The crystal structure of the binary CDK8/Cyclin C complex was solved almost a decade ago 

(Fig. 5) (Schneider et al., 2011). CDK8 is an atypical CDK for several reasons. First, CDK8 

possesses an atypical DFG motif - instead of a phenylalanine it has a methionine (DMG) (Figs. 

6 and 7). The CDK8 DMG motif undergoes a similar conformational change from DMG-out to 

DMG-in upon activation (Endicott and Noble, 2013). Second, CDK8 exclusively binds to 

Cyclin C. This can be seen by focusing on the αC-helix that displays a significantly altered 

amino acid composition in CDK8 (PSTAIRECDK1/CDK2 versus SMSACRECDK8/CDK19, please 

compare Figs. 2 and 7) (Xu and Ji, 2011). In addition, CDK8 possesses a unique N-terminal 
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helix, termed αB-helix, that makes extensive contacts to Cyclin C (Fig. 5) (Xu et al., 2014). A 

third specific feature of CDK8 is its extended C-terminal domain (residues 359-464) that most 

other CDKs lack and that might contribute to substrate recognition (Dixon-Clarke et al., 2015). 

The C-terminal domain could only be solved up to residue 359 by X-ray crystallography. As 

the utilized constructs comprise CDK8 residues 1-403, the CDK8 C-terminus is suggested to 

be flexible (Figs. 5 and 7). Last and most importantly, CDK8 lacks a phosphoresidue within its 

T-loop that could serve as activating organization center (Fig. 6). In aggregating all evidence, 

CDK8 must follow a currently unknown and distinct activation mechanism (Knuesel et al., 

2009a; Schneider et al., 2011).  

 
Figure 5: Crystal structure of the human CDK8/Cyclin C complex.  

The CDK8/Cyclin C complex is shown in cartoon representation. The CDK8-specific αB helix is colored in brown. Please note 

that the arginine triad of CDK8 (shown as yellow sticks) is misaligned and the T-loop is partially disordered (the unresolved 

region is depicted as pink dashed line). The close up shows how E99 of Cyclin C points towards the disordered T-loop and the 

αC-helix of CDK8. PDB code 3RGF.  
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When comparing Cyclin C to other cyclins it also contains several unique features, like an 

extended hydrophobic surface groove, which is suggested for protein-protein interactions (Fig. 

5). Notably, Cyclin C harbors two negatively charged residues (E99CycC and E98CycC) in the 

vicinity of both the T-loop and the αC-helix of CDK8. Due to their proximity to the CDK8 

active site, these residues were suggested to participate in CDK8 activation (Hoeppner et al., 

2005; Schneider et al., 2011).  

 
Figure 6: Sequence alignment of the T-loop in all human CDKs.  

(A) The alignment was created as described in Fig. 3. Please note that the structure of the T-loop of CDK8 is only partially 

resolved (unresvoled residues are framed in pink) (B) The transitive consistency score (numbers to the right of each CDK) is 

an evaluation index, which indicates that CDK8 and CDK19 diverged significantly within the CDK family. The plot was 

generated using complete UniProt sequences (accession numbers are illustrated) (Chang et al., 2014; Madeira et al., 2019). 

Currently, no structural information is available for CDK19. However, based on its high 

sequence identity to CDK8 (Fig. 7), CDK19 very likely shares most structural features of 

CDK8. The only region where both kinases differ significantly is their C-terminal domains, in 

which CDK19 carries two insertions with a length of roughly 40 residues (Fig. 7).  

 
Figure 7: Sequence alignment of human CDK8 and CDK19.  

Both Mediator kinases share CDK8 specific features. As the C-terminus of CDK8 is only resolved up to residue 359, it is 

believed that CDK8 has a flexible C-terminal domain. This also holds true for CDK19, however, CDK19 contains an even 

longer C-terminal domain due to two C-terminal CDK19-specific extensions.  
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1.2 Gene expression in eukaryotes 

 

Eukaryotic organisms store their genetic information within the nucleus in the form of DNA 

(Crick and Watson, 1953; Oswald et al., 1944). In the nucleus, DNA is bound to proteins and 

organized in chromosomes. These proteins are called histones. The four different histones H2a, 

H2b, H3 and H4 build an octamer around which DNA is wound (Kornberg and Thomas, 1974). 

This complex associated with DNA is called nucleosome, which is the basic repeating structural 

and functional unit of chromatin.  

 The major difference to prokaryotes is the organization of DNA in nucleosomes. This 

leads to the requirement of numerous factors that make the DNA accessible for transcription. 

Therefore, many transcription factors are chromatin modifying proteins. The core of the 

eukaryotic transcription machinery is made by RNA polymerase II (Pol II). Pol II mediates the 

transcription of DNA into messenger RNA, which represents the majority of actively 

transcribed genes (Knorre, 1999; Orphanides et al., 1996). The process of transcription can be 

grossly divided into the three phases initiation, elongation and termination, that follow a cyclic 

mechanism (Fuda et al., 2009). The three phases of the Pol II transcription cycle are precisely 

orchestrated by the enzymatic activity of transcriptional CDKs, all of which cooperate to guide 

the Pol II through the nucleosome.  

 

1.2.1 The Mediator complex and Pol II-dependent transcription 

 

Transcription begins with the assembly of a macromolecular complex called the pre-initiation 

complex. The pre-initiation complex is dedicated to the regulation of Pol II activity and 

comprises apart from Pol II the general transcription factors TFIIA, TFIIB, TFIID, TFIIE, 

TFIIF and TFIIH (Cramer, 2019; Schilbach et al., 2017; Thomas and Chiang, 2006).  This 

dynamic assembly is stabilized by the Mediator complex, which is globally required for 

transcription initiation (Kelleher et al., 1990; Malik and Roeder, 2005; Soutourina, 2018). When 

comparing Mediator with other components of the general transcription machinery, Mediator 

is the largest complex, in terms of its size and number of subunits (Allen and Taatjes, 2015; 

Kornberg, 2005; Malik and Roeder, 2010). Human Mediator comprises 30 protein subunits that 

are grouped into four modules: the head, the middle, the tail and the kinase module (Fig. 8). 

Whereas the first three modules form a stable complex, the kinase module reversibly associates 

with the three-module Mediator complex, building the CDK8-Mediator complex (Hengattner 

et al., 1995; Kim et al., 1994; Knuesel et al., 2009a). Although Mediator is conserved, its 
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sequences and subunit composition have diverged significantly in higher eukaryotes (Boube et 

al., 2002; Conaway et al., 2005). Nonetheless, structural and biochemical data indicate that the 

architectural framework of Mediator is conserved (Asturias et al., 1999; Tsai et al., 2014). As 

many structural models were obtained from yeast, this structural conservation allows the 

transfer of knowledge from yeast Mediator to its human counterpart.  

 The Mediator complex bridges between DNA bound transcription factors and the 

general transcription machinery at core promotors (Fig. 8). Transcription factors interact with 

the tail domain of the Mediator complex and bound regulatory information is transduced over 

the middle and head domain to Pol II (Larivière et al., 2012). Hence, Mediator can be considered 

as a universal signal processor by virtue of its ability to link activated transcription factors with 

Pol II. Moreover, Mediator is essential to connect distant regulatory elements like enhancers to 

the transcription machinery. Therefore, high transcription rates correlate with high Mediator 

densities on chromatin (Quevedo et al., 2019). 

 
Figure 8: The Mediator complex and the general transcription machinery.  

The three-module Mediator is colored in wheat, the reversibly binding kinase module is colored in red. DNA bound 

transcription factors (TF) are depicted in brown. Mediator-dependent chromatin looping brings the enhancer in proximity to 

its target gene. Adapted from Larivière et al., 2012. 

 

1.2.2 The Pol II transcription cycle and the role of transcription-related CDKs 

 

The transcriptional processivity of Pol II is finetuned by the phosphorylation status of its C-

terminal domain (CTD). The Pol II CTD orchestrates the entire transcription cycle and acts as 

a dynamic command center (Eick and Geyer, 2013). Different sources of information are 

integrated to ensure that RNA synthesis is tailored precisely to the needs of the cell. The Pol II 

CTD is composed of 26 (in yeast) or 52 (in humans) heptad repeats of the seven amino acids 
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YSPTSPS (Di Giulio and Kreitman, 2009; Stiller and Hall, 2002). In contrast to other RNA 

polymerases, only Pol II possesses a CTD (Phatnani and Greenleaf, 2006; Sims et al., 2004). 

The three-dimensional structure of the CTD is modulated by phosphorylation, which provides 

a means to recruit transcription factors and chromatin modifiers (Spain and Govind, 2011).  

The coevolutionary relationship between the Pol II CTD and transcription-related CDKs 

underscores the importance of transcriptional CDKs for Pol II regulation (Chapman et al., 2008; 

Guo and Stiller, 2004). Transcription-related CDKs regulate transcription by Pol II CTD 

phosphorylation and by phosphorylation of transcription factors (Allen and Taatjes, 2015; 

Pinhero et al., 2004; Poss et al., 2013). The phosphorylation of the three serine residues (Ser-2, 

Ser-5 and Ser-7) is linked to distinct stages of Pol II-dependent transcription and is mediated 

by CDK7, CDK9 and CDK8 (Fig. 9) (Adelman and Lis, 2012). Considering that these 

aforementioned transcription-related CDKs are part of large multiprotein complexes (TFIIH, 

p-TEFb, and Mediator, respectively), the enzymatic regulation of each respective kinase is 

apparently more complex (Lim and Kaldis, 2013; Malumbres, 2014).  

 
Figure 9: Simplified and shortened Pol II transcription cycle.  

(A) The Mediator binds to the hypophosphorylated Pol II and ensures pre-initiation complex formation. (B) Prior to initiation, 

Ser-5 (and Ser-7) get phosphorylated by CDK7, which releases Mediator. (C) Pausing factors are recruited and activated by 

CDK7 and released by CDK9-dependent phosphorylation. In addition, CDK9 phosphorylates Ser-2. (D) Upon 

hyperphosphorylation of the Pol II CTD, Pol II is now allowed to proceed to productive elongation, which is stimulated by 

recruited elongation factors. 
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For transcription initiation, transcription factors within the pre-initiation complex bridge 

between the Pol II and core promotors. A key function of the pre-initiation complex is to open 

the DNA and thus to make it accessible for Pol II (Cramer, 2019). Mediator binds to the 

hypophosphorylated Pol II CTD and recruits TFIIH (Fig. 9A). CDK7, the kinase of TFIIH, 

phosphorylates Ser-5 (and Ser-7) within the pre-initiation complex (Fig. 9B) (Akhtar et al., 

2009; Esnault et al., 2008; Glover-Cutter et al., 2009; Nair et al., 2005). This phosphorylation 

event releases Mediator from Pol II and creates a binding site for the capping enzyme that 

modifies the 5’ end of the nascent RNA. At most core promoters, pausing factors are recruited 

and activated by CDK7, which holds the early Pol II elongating complex after synthesizing 

approximately 50-150 nucleotides (Fig. 9C) (Larochelle et al., 2012).  

 The transition from transcription initiation to productive elongation is associated with 

Ser-2 phosphorylation catalyzed by p-TEFb kinase CDK9. Upon inactivation of pausing 

factors, the paused polymerase proceeds to elongation (Fig. 9D) (Fuda et al., 2009; Larochelle 

et al., 2012). Further, Ser-2 phosphorylation promotes the recruitment of the RNA splicing 

machinery to the nascent transcript.  

 The Mediator kinase CDK8 phosphorylates Ser-2 and Ser-5 in vitro, independent of 

Mediator or the formation of the pre-initiation complex (Hengartner et al., 1999; Pinhero et al., 

2004; Rickert et al., 1999; van Vuuren et al., 1995). However, as many studies have shown both 

positive and negative effects on transcriptional regulation upon CDK8 mediated CTD 

phosphorylation, the actual contribution of CDK8 kinase activity within the Pol II CTD cycle 

is not understood (Nemet et al., 2014).   
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1.3 The kinase module 

 

The kinase module (also termed CDK8-module) is named after its catalytic core, cyclin-

dependent kinase 8 (CDK8). Apart from CDK8 (56 kDa) the kinase module comprises the 

subunits Cyclin C (34 kDa) and the two large mediator subunits MED12 and MED13 (240 and 

250 kDa, respectively). In mammals, the genes coding for CDK8, MED12, and MED13 are 

duplicated, giving rise to CDK19 (formerly termed CDK8-like), MED12-like (MED12L), and 

MED13-like (MED13L) (L. Daniels, 2013; Muncke et al., 2003). As all paralogs assemble into 

the kinase module in a mutually exclusive manner, at least eight different kinase module 

constellations can be assembled that possess specialized functions (L. Daniels, 2013).  

 In contrast to the head and middle module of Mediator, the structure of the entire kinase 

module is unknown and its role during the transcription cycle is unclear (Robinson et al., 2016; 

Schilbach et al., 2017; Tsai et al., 2013). As introduced before (Fig. 5), the crystal structure of 

the CDK8/Cyclin C complex is known (Schneider et al., 2011). However, no structural 

information on human MED12 and MED13 are available to date. Three-dimensional data on 

the yeast kinase module revealed that MED12 bridges between Cyclin C and MED13 (Fig. 

10A) (Tsai et al., 2013; Wang et al., 2013b). This led to the suggestion that human MED12 

binds Cyclin C via its surface groove (Fig. 5). The yeast kinase module was shown to adopt 

multiple conformations that differ in the orientation of CDK8 (Tsai et al., 2013; Wang et al., 

2013b). One of these conformations proposes that, in addition to MED13, CDK8 forms 

extensive contacts to Mediator as well (Fig. 10B) (Taatjes et al., 2002; Tsai et al., 2013; Wang 

et al., 2013b). However, the functional implications of this binding event remain elusive 

(Elmlund et al., 2006; Tsai et al., 2013).  

 
Figure 10: Cryo electron microscopy structures of the kinase module from yeast  
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(A) Structure of the yeast kinase module at 15 Å resolution. Yeast genes are in italic (EMDB code 5588) (Tsai et al., 2013). 

(B) Kinase module bound to Mediator at 35 Å. Please note that the structure has been solved in up to four different 

conformations, underlining structural flexibility. Please further note the large surface are due to channels and cavities in the 

structure. The illustrated EM structure shows a more extensive interface that involves besides MED13 in addition CDK8, 

making extensive contacts to Mediator, that excludes Pol II binding (EMDB code 5589),(Wang et al., 2013b).  

 
The kinase module regulates Pol II-dependent transcription using two major mechanisms. First, 

binding of the kinase module to the Mediator complex induces structural changes within 

Mediator that physically disrupt the interaction between Pol II and Mediator. This disruption 

negatively affects transcription rates (Knuesel et al., 2009b; Myers et al., 1998; Taatjes et al., 

2002). Whereas the yeast kinase module and the Mediator complex possess mutually exclusive 

binding interfaces on Pol II (Fig. 10B), the human kinase module traps Mediator in a 

conformation that is incompatible in Pol II binding (Bernecky et al., 2011; Elmlund et al., 2006; 

Tsai et al., 2013). Second and seemingly more complex, CDK8 phosphorylates multiple targets 

involved in transcription regulation (Poss et al., 2016). One of the first identified substrates 

besides the Pol II CTD was Cyclin H, which results in CDK7 inactivation (CDK7/Cyclin H are 

subunits of the TFIIH complex), which negatively regulates transcription (Akoulitchev et al., 

2000),(Schneider et al., 2002). However, these early findings indicated that the kinase module 

is a global repressor of transcription and were inconsistent with later studies that implicated the 

kinase module in transcription activation (Knuesel et al., 2009a; Nemet et al., 2014).  

 

1.3.1 CDK8 regulates transcription factors 

 

Sequence-specific DNA-binding transcription factors are global drivers of cellular physiology 

and differentiation (Heinz et al., 2015; Lee and Young, 2013; Trompouki et al., 2012). The 

activity of transcription factors is regulated by phosphorylation, which affects their cellular 

localization, stability, and DNA binding (Tansey, 2001; Whitmarsh and Davis, 2000). CDK8 

phosphorylates a large number of transcription-related targets, which implies CDK8 to be part 

of an elaborate regulatory network. Accordingly, CDK8 regulates transcription, chromatin state 

and metabolic processes (Fig. 11) (Poss et al., 2016).  
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Figure 11: CDK8 kinase substrates and their associated biological processes.  

The left pie chart shows CDK8 kinase target, which were grouped in four categories according to their biological function. The 

right pie chart illustrates biological processes together with associated signal transduction pathways, that are regulated by 

CDK8 kinase target phosphorylation. Adapted from Poss et al., 2016 and Clark et al., 2015. 

 

Depending on stimulus and cell type, the kinase module regulates transcription factor function 

connected to the transcription apparatus (Bancerek et al., 2013). Several studies established 

roles for the kinase module in the NOTCH-, the TGF/ß-, and the JAK-STAT-signal 

transduction pathway (Alarcón et al., 2009; Bancerek et al., 2013; Fryer et al., 2004; Guo et al., 

2019). There, CDK8 activates key transcription factors, which results in the expression of target 

genes. Interestingly, phosphorylation of the STAT1 transactivation domain on Ser-727 is  

unique to CDK8. CDK8-dependent STAT1-phosphorylation thereby solely occurs on 

promoter-bound STAT1 and it correlates with the presence of promoter-associated Pol II 

(Bancerek et al., 2013; Pelish et al., 2015; Sadzak et al., 2008).  

 Genes that are activated by internal or external stimuli are often part of signal-

transduction pathways. These rapidly responding genes typically engage paused Pol II to 

facilitate short response times within a differentiation program or stimulus response (Adelman 

and Lis, 2012; Core and Lis, 2008; Gilmourt and Lis, 1986; Guenther et al., 2007). For these 

genes, CDK8 shows a positive influence during Pol II pause release within the serum response 

network, under hypoxia response and during p53-dependent stress response (Donner et al., 

2007; Galbraith et al., 2010, 2013). This also holds true during the innate immune response 

(Bancerek et al., 2013; Steinparzer et al., 2019). Furthermore, CDK8 interacts with p-TEFb 

(and AFF4) at super elongation complexes (Galbraith et al., 2013). There, physical loss of 
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CDK8 abolishes the recruitment of CDK7, CDK9 and BRD4, which led to diminished Pol II 

CTD marks and decreased transcription rates (Galbraith et al., 2013). 

 The kinase module co-localizes with Mediator genome-wide, which suggests that a loss 

of CDK8 could impact gene expression globally (Kagey et al., 2010; Phillips-Cremins et al., 

2013). Contrary to these assumptions, a CDK8 knockdown or the selective inhibition of CDK8 

kinase activity affects only a subset of genes that vary in context (e.g. stimuli induced) or cell 

type. This is in agreement with the fact that the selective CDK8 inhibition or the loss of the 

protein is well-tolerated in cells under normal growth conditions (Johannessen et al., 2017; 

Nitulescu et al., 2017; Pelish et al., 2015). In stark contrast, the activation of genes in response 

to stress or developmental cues shows a strong dependence on CDK8. This supports the positive 

role that CDK8 plays in directing transcriptional programs through the phosphorylation of 

gene-specific transcription factors (Donner et al., 2007; Galbraith et al., 2010, 2013; Westerling 

et al., 2007). Moreover, CDK8 functions to maintain both tumors and embryonic stem cells in 

an undifferentiated state, whereas CDK8 knockout in flies or mice is embryonically lethal 

(Adler et al., 2012; Loncle et al., 2007; Westerling et al., 2007). These seemingly incompatible 

findings could be explained by emerging evidence that implies the kinase module (including 

CDK8 kinase activity) in regulating the communication between enhancers and promoters in 

dependence of chromatin structure and lineage-specific TFs (Heinz et al., 2015). Upon 

recruitment of the transcription machinery, enhancer-promotor loops are stabilized, thereby 

allowing high transcription rates (Deng et al., 2014; Dowen et al., 2014). Altogether, CDK8 

kinase activity is an essential component to enable rapid gene expression responses based on 

its ability to modulate a large number of transcription-associated targets within signal-

transduction pathways (Kuuluvainen et al., 2018; Pelish et al., 2015; Poss et al., 2016).  

 

1.3.2 CDK8 and its implications in cancer 

 

CDK8 phosphorylates transcription-related targets that regulate Pol II processivity. As most 

CDK8 targets are engaged in fundamental biological processes (Fig. 11), it is not surprising 

that deregulated CDK8 activity is associated with tumorigenesis (Poss et al., 2016; Vogelstein 

et al., 2013).  

 Initial evidence that CDK8 is a proto-oncogene derived from work on colorectal cancer. 

There, CDK8 was found to be amplified in almost every second patient sample (Firestein et al., 

2008). Subsequent cohort studies revealed a negative correlation between CDK8 gene 

expression and the survival of colorectal cancer patients (Firestein et al., 2010; Seo et al., 2010). 
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Abnormal elevated CDK8 levels were additionally found in advanced stages of colorectal 

cancer, further supporting a role of CDK8 in promoting cancer progression (Seo et al., 2010). 

The oncogenic properties of CDK8 reside on its ability to modulate the Wnt/ß-catenin pathway 

by enhancing the transcriptional activity of ß-catenin due to its phosphorylation (Fig. 12) (Bienz 

and Clevers, 2000; Firestein et al., 2008; Kämpjärvi et al., 2012; Zhan et al., 2017). 

 
Figure 12: CDK8 regulates oncogenic Wnt/ß-catenin signaling through two different pathways.  

13q12-encoded CDK8 is overexpressed through amplification-dependent means in a colorectal cancers. CDK8 controls Wnt/ß-

catenin signaling by stimulating ß-catenin and by inhibiting the suppressive function of the ß-catenin inhibitor E2F1 in a kinase 

dependent manner. Both mechanisms promote oncogenic Wnt/ß-catenin signaling, which correlates with epithelial-

mesenchymal transition. Adapted from Clark et al., 2015 (Clark et al., 2015). 

 

Aberrant Wnt/ß-catenin signaling, in turn, stimulates epithelial-to-mesenchymal transition (Xu 

et al., 2015). Furthermore, CDK8 phosphorylates E2F1 and thereby abolishes its suppressive 

function on ß-catenin (Morris et al., 2008; Zhao et al., 2013). CDK8 knockdown in colorectal 

cancer cell lines reduces proliferation rates by cell cycle arrest (Firestein et al., 2008). In 

contrast, transient CDK8 knockdown in mouse promotes tumor development (McCleland et al., 

2015). This apparent discrepancy in CDK8 function may reflect once again cell-type-specific 

and context-dependent roles for CDK8 in transcriptional regulation. Nonetheless, these findings 

highlight the role of CDK8 in colorectal cancer and identified it as both an oncogene and tumor 

suppressor. Furthermore, transcriptome analyses demonstrated that CDK8 stimulates the 

expression of glycolytic genes (Galbraith et al., 2017),(Vincent et al., 2001) and regulates 

lipogenesis (Zhao et al., 2012). Lastly, CDK8 reinforces the proliferation of melanomas 

(Kapoor et al., 2010), it is overexpressed in prostate cancer together with CDK19 (Brägelmann 

et al., 2017), and it mediates NF-κB induced transcription of tumor-promoting cytokines (Chen 

et al., 2017; Johannessen et al., 2017; Yamamoto et al., 2017). 
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1.3.3 MED12 is a cancer driver gene 

 

The human MED12 gene is located on the X-chromosome and consists of 45 exons that encode 

for 2177 amino acids (Fig. 13). The amino acid sequence of MED12 has no similarity to other 

protein sequences (El-Gebali et al., 2019) and is divided into four domains characterized by an 

enrichment of individual amino acids: a leucine-rich L-domain (aa 1-500), a leucine-serine-rich 

LS domain (aa 501-1650), a proline-glutamine-leucin-rich PQL domain (aa 1651-2086), and a 

glutamine-rich opposite paired (OPA) domain (aa 2087-2177) (Fig. 13A) (El-Gebali et al., 

2019; Philibert et al., 1998, 1999).  

 MED12 can be considered as structural hub for the kinase module (Fig. 10A) and was 

identified as a so-called “cancer driver gene” (Lehner et al., 2006). MED12 is involved in many 

signaling pathways with an emphasis on developmental gene regulation (Keightley et al., 2017; 

Kim et al., 2016; Lawrence et al., 2014; Rocha et al., 2010; Shin et al., 2008; Vogelstein et al., 

2013; Vogl et al., 2013). Although MED12 is ubiquitously expressed, its expression levels vary 

from tissue to tissue and are age-dependent (Philibert and Madan, 2007; Philibert et al., 1999). 

Alterations in both MED12 sequence and expression have been observed in many diseases. 

MED12 participates, for example, in the Sonic Hedgehog pathway by interacting with Sox9, 

Sox10 and Gli3 (Bien-Willner et al., 2007; Kamachi and Kondoh, 2013; Vogl et al., 2013; Zhou 

et al., 2002). MED12 further stimulates Wnt/ß-Catenin signaling by interacting with ß-Catenin 

(Fig. 13A) (Carrera et al., 2008; Kim et al., 2016). Deregulated MED12 expression and TGF/ß 

dysregulation has also been linked to drug resistance of tumor cells (Huang et al., 2012; 

Massagué, 2008; Shaikhibrahim et al., 2014; Shimada et al., 2016; Wang et al., 2015a) and 

abnormal TGF/ß-signaling affects the epidermal growth factor receptor-pathway (Keightley et 

al., 2017; Lawrence et al., 2014; Philibert and Madan, 2007; Shin et al., 2008; Zhou et al., 

2002). Physical MED12 loss induces epithelial-mesenchymal transition in lung carcinoma 

(Huang et al., 2012; Shimada et al., 2016) and reduces CDK9 and Pol II occupancy at super 

elongation complexes (Bhagwat et al., 2016). 
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Figure 13: Domain architecture of MED12 and observed mutations in MED12.  

(A) Schematic domain organization of MED12 including different functional characteristics. MED12 exon 2 is highlighted in 

red, XLID associated MED12 mutations were illustrated and colored in blue, prostate cancer associated mutations were colored 

in violet. (B) Total mutation spectrum of the MED12 gene divided in 45 exons. Please note that over one third (34%) of all 

MED12 mutations were found within the exon 2. Adapted from Banaganapalli et al., 2016. (C) The upper panel shows a 

schematic presentation of MED12 exon 1 and exon 2 mutations found in one study that comprises 611 uterine leiomyomas-

derived patient samples. The numbers below (upper panel) or above (lower panel) each residue indicate the number of missense 

mutations found in each study. The bars illustrate different insertions/deletions. Adapted from Kämpjärvi et al., 2014. The 

lower shows the same, just for a study that comprises 611 chronic lymphocytic leukemia-derived patient samples. Adapted 

from Kämpjärvi et al., 2015.  

 

The distribution of cancer-associated mutations within the MED12 gene is remarkable (Fig. 

13B). Particularly evident in uterine leiomyomas and chronic lymphocytic leukemia, MED12 

mutations occur at high frequencies within the MED12 exon 2  (77% within uterine 

leiomyomas, Fig. 13C) (Kämpjärvi et al., 2014; Mäkinen et al., 2011; Pelish et al., 2015; Wu 

et al., 2017a). The majority of MED12 mutations observed in exon 2 are missense mutations 
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that affect three conserved amino acids: L36, Q43 and G44 (Fig. 13C). Other exon 2 mutations 

are frameshift mutations, that result in an N-terminally shortened MED12 protein due to an 

alternative translation start site at methionine 154  (Fig. 13A) (Heikkinen et al., 2017),(Bazykin 

and Kochetov, 2011). Taken together, these findings suggest that the first two exons of the 

MED12 gene encode for an important protein function (Turunen et al., 2014). Intriguingly, the 

N-terminal segment of MED12 encoded by these two exons was shown to be required for 

CDK8 kinase activity (Knuesel et al., 2009a; Park et al., 2018; Turunen et al., 2014). 

 Mutations outside MED12 exon 1 and 2 were found in the LS-domain. Most of these 

mutations are associated with X-linked intellectual disabilities and prostate cancer (Barbieri et 

al., 2012; Ding et al., 2008; Graham and Schwartz, 2013; Srivastava et al., 2019; Wang et al., 

2013a; Zhou et al., 2012) (Fig. 13A). As males carry one single X chromosome, these X-linked 

diseases predominantly affect males as the name indicates (Stevenson and Schwartz, 2009). 

Intriguingly, two juxtaposed mutations in the LS-domain (R961W and N1007S) showed 

impaired binding to CDK8/Cyclin C (Fig. 13A) (Zhou et al., 2012). Furthermore, MED12 

interaction with long non-coding RNAs was abolished due MED12 G958E and R961W 

mutations, which resulted in deregulated CDK8 kinase activity (Lai et al., 2013). In summary, 

these findings highlight the oncogenic vulnerability of MED12.  
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1.4 Aims of this thesis 

 

The oncogene CDK8 is of major interest to drug development. Therefore, significant efforts 

were made to develop CDK8-specific kinase inhibitors. Despite the availability of structural 

information on the binary CDK8/Cyclin C complex (Dale et al., 2015; Schneider et al., 2011), 

the development of CDK8-specific inhibitors is hindered by the currently unclear mechanism 

of CDK8 activation. In contrast to the common activation mechanism of cyclin-dependent 

kinases CDK8 does not require phosphorylation of its T-loop for full activity. Instead, MED12 

binding to CDK8/Cyclin C seems to circumvent the missing phosphorylation event, which 

results in its activation. Based on available structural and functional information, the previous 

model for CDK8 activation hypothesized that the N-terminal portion of MED12 binds to the 

Cyclin C surface groove and thereby enhances CDK8 activity (Fig. 14) (Knuesel et al., 2009a; 

Park et al., 2018; Turunen et al., 2014). However, how MED12 binding to this distant surface 

groove is connected to CDK8 activation is ambiguous and the model therefore controversial. 

Using in vitro biochemistry in combination with structural- and system-biology techniques, I 

therefore aimed to elucidate the molecular mechanisms how MED12 activates CDK8. 

 
Figure 14: Possible mechanism for CDK8 activation by MED12  

Step 1: Cyclin C binds to CDK8 and thereby positions the aC-helix of CDK8 into the “pushed-in” conformation. This binding 

event is crucial for the formation of the active site of CDK8. However, the kinase activity of the binary CDK8/Cyclin C complex 

is unknown. Step 2: MED12 binds to the CDK8/Cyclin C complex. In particular, it is suggested that the first 100 amino acids 

of MED12 bind to the Cyclin C surface groove and thereby activates the kinase. Adapted from Klatt et al., 2020. 
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Chapter 2: Results 

 

2.1 Protein production of kinase module components in insect cells 

 

To study how MED12 binding to CDK8 activates the kinase and thereby circumvents its 

necessity for T-loop phosphorylation, I established expression and purification strategies for a 

multitude of Mediator kinase module components in insect cells using MultiBacTM (Fig. 15) 

(Berger et al., 2004; Fitzgerald et al., 2006). For the expression of single proteins, individual 

genes encoded on pAceBac1 or pFL acceptor plasmids were transformed into DH10 

MultiBacTurbo cells. For multi-protein expression, desired acceptor-donor plasmids were first 

combined to obtain desired multi-gene assemblies and then transformed into DH10 

MultiBacTurbo cells.  

 
Figure 15: Schematic MultiBac workflow 

Desired constructs were cloned (and, if needed single acceptor plasmids were combined with donor plasmids) and transformed 

into DH10 MultiBacTURBO cells, which confines the baculoviral genome. After Tn7 transposition, positive clones that possesses 

the modified baculoviral genome were selected by blue/white screening. Bacmids were isolated and transfected into Sf21 insect 

cells to initiate viral proliferation.  
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2.1.1 Purification of the N-terminal segment of MED12  

 

Baculovirus-infected High Five insect cells were lysed by sonication, cell debris was removed 

by centrifugation and the supernatant collected. Following Strep-affinity chromatography, 

MED12 was immobilized on a cation-exchange resin to recover the desired protein. Last, 

MED12 was isolated by size-exclusion chromatography. When used for MST measurements, 

the Strep-tag was removed prior to size-exclusion chromatography (Fig. 16C). As demonstrated 

on Fig. 16, the N-terminal fragment of MED12 comprising its first 100 amino acids could be 

purified to homogeneity.  

 
Figure 16: Expression and purification of the N-terminal segment of MED12  

(A) Schematic MultiBacTM workflow and expression cassette for the N-terminal fragment of MED12 (1-100). (B) Schematic 

purification scheme for MED12 (1-100). Salt-concentration of individual purification steps were illustrated. MED12 (1-100) 

is shown as a cartoon. (C) SDS-PAGE analysis of MED12 (1-100) before and after TEV treatment. (D) Size-exclusion 

chromatogram and SDS-PAGE analysis of MED12 (1-100) using a Superdex 75 (GE Healthcare). Please note that MED12 (1-

100) is devoid of tryptophan and exhibits less A280 absorption as the TEV-T7-Strep-tag. MED12 (1-100) is shown as a cartoon 

above the gel and indicated next to the gel in grey, The cleaved TEV-T7-Strep-tag is in white. Please note that (D) is adapted 

from Klatt et al., 2020. 
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2.1.2 Purification of binary CDK8/Cyclin C and CDK19/Cyclin C complexes 

 

To examine the affinity of MED12 (1-100) towards binary CDK8/Cyclin complexes, we co-

expressed different binary CDK8/Cyclin C complexes and purified them to homogeneity (Fig. 

17). Binary CDK8/Cyclin constructs were utilized tag-free for in vitro kinase assays, yet were 

kept tagged for MST-measurements. 

 
Figure 17: Co-expression and purification of binary CDK8/Cyclin C complexes 

(A) Schematic fusion strategy and expression cassettes for binary CDK8/Cyclin C complexes using MultiBacTurbo. (B) 

Schematic purification scheme for binary CDK8/Cyclin C. Salt-concentrations of individual purification steps were illustrated. 

CDK8/Cyclin C is shown as a cartoon. (C) SDS-PAGE analysis of CDK8 (1-403)/Cyclin C before and after TEV treatment. 

(D) Size-exclusion chromatograms and SDS-PAGE analysis of purified binary CDK8/Cyclin C complexes using a Superdex 

200 (GE Healthcare). Protein complexes are shown as cartoons above each gel, individual proteins are indicated next to the 

gels. CDK8 variants (1-464 (full-length), 1-403 and 1-359) are shown in red, Cyclin C is in blue. Please note also that (D) is 

adopted from Klatt et al., 2020. 

 

Binary CDK19/Cyclin C complexes were constructed in analogy to binary CDK8/Cyclin C 

complexes (Figs. 17A and 18A). Binary CDK19/Cyclin C complexes were co-expressed and 

purified to homogeneity using the established purification scheme employed for binary 
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CDK8/Cyclin C complexes (Figs. 17B and 18B). Also, binary CDK19/Cyclin complexes were 

utilized tag-free for in vitro kinase assays, yet were kept tagged for MST-measurements. 

 
Figure 18: Co-expression and purification of binary CDK19/Cyclin C complexes 

(A) Schematic fusion strategy and expression cassettes for binary CDK19/Cyclin C complexes using MultiBacTurbo. (B) 

Schematic purification scheme for binary CDK8/Cyclin C. Salt-concentrations of individual purification steps were illustrated. 

CDK19/Cyclin C is shown as a cartoon. (C) SDS-PAGE analysis of CDK19 (1-439)/Cyclin C before and after TEV treatment. 

(D) Size-exclusion chromatograms and SDS-PAGE analysis of purified binary CDK19/Cyclin C complexes using a Superdex 

200 (GE Healthcare). Protein complexes are shown as cartoons above each gel, individual proteins are indicated next to the 

gels. CDK19 variants (1-502 (full-length), 1-439 and 1-359) are shown in orange, Cyclin C is in blue. Please note that the 

PAGE gel on (C) was taken by Melanie Müller.  

 

Variants of binary CDK8/Cyclin C and CDK19/Cyclin C complexes possess an N-terminal 

Strep-SUMO-tag on the kinase to increase protein yield and stability (Peroutka et al., 2008). 

These binary complexes were utilized for ITC-measurements. As shown on Fig. 19, co-

expressed SUMO-tagged binary CDK8 (1-403)/Cyclin C and CDK19 (1-439)/Cyclin C 

complexes were purified to homogeneity.  
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Figure 19: Co-expression and purification of SUMO-tagged CDK8/Cyclin C and CDK19/Cyclin C complexes 

(A) Schematic fusion strategy and expression cassettes for SUMO-tagged CDK8 (1-403)/Cyclin C and CDK19 (1-439)/Cyclin 

C complexes using MultiBacTurbo. (B) Schematic purification scheme for SUMO-tagged CDK8/Cyclin C and CDK19/Cyclin C. 

Salt-concentrations of individual purification steps were illustrated. CDK8/Cyclin C and CDK19/Cyclin C are shown as a 

cartoon. (C and D) Size-exclusion chromatograms and SDS-PAGE analysis of purified SUMO-tagged binary CDK8/Cyclin C 

and CDK19/Cyclin C complexes using a Superdex 200 (GE Healthcare). Excessive amounts of SUMO could be efficiently 

separated (Peak 2). Protein complexes are shown as cartoons above each gel, individual proteins are indicated next to the gels. 

CDK8 (1-403) is shown in red, CDK19 (1-439) is shown in orange, Cyclin C is in blue, Strep-SUMO in white. CDK8 or 

CDK19 contain the Strep-SUMO tag (indicated by black circles) and run accordingly higher in the gel. Please note the protein 

purification shown on (D) was carried out by Melanie Müller. 

 

Last, we established an additional co-expression strategy for binary CDK8 (1-403)/Cyclin C 

complexes. In contrast to our prior co-expression strategies (Fig. 17), both CDK8 and Cyclin C 

were cloned together into the pAceBac1 vector and co-expressed as a single gene expression 

cassette. This creates multi-gene expression plasmids without the necessity of acceptor-donor 

plasmid fusions (Fig. 20). The resulting bicistronic transcript encodes a polypeptide that is auto-

cleaved by utilizing the 2A linker peptide (here P2A), which guarantees stoichiometric multi-

protein expression (Liu et al., 2017; Wang et al., 2015b). Upon co-expression of CDK8 (1-403) 

and Cyclin C in insect cells, binary CDK8 (1-403)/Cyclin C complexes could be isolated and 

purified to homogeneity.  
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Figure 20: Co-expression and purification of CDK8 (1-403)/Cyclin C complexes utilized by a P2A linker 

(A) Schematic expression cassette that results in a CDK8 (1-403) and Cyclin C polypeptide, which is self-cleaved by the usage 

of the P2A linker. (B) Schematic purification scheme for binary CDK8 (1-403)/Cyclin C complexes. Salt-concentrations of 

individual purification steps were illustrated. CDK8/Cyclin C is shown as a cartoon. (C) SDS-PAGE analysis of CDK8 (1-

403)/Cyclin C before and after TEV treatment (D) Size-exclusion chromatogram and SDS-PAGE analysis of purified binary 

CDK8/Cyclin C complexes using a Superose 6 (GE Healthcare). The protein complex is shown as a cartoon above the gel, 

individual proteins are indicated next to the gels. CDK8 1-403 is shown in red, Cyclin C is in blue. Please note that protein 

purification was carried out by Silas Amarell. 

 

2.1.3 Purification of ternary CDK8/CycC/MED12 and CDK19/CycC/MED12 complexes 

 

To characterize CDK8/19 and Cyclin C in complex with the N-terminal part of MED12, three 

ternary complexes that comprises CDK8 (1-403)/Cyclin C and MED12 (1-100), (1-350) or (1-

440), respectively, were cloned, co-expressed and purified to homogeneity (Fig. 21) (Klatt et 

al., 2020). As an additional purification step, ternary complexes were subjected to an anion-

exchange column prior to cation-exchange chromatography (Fig. 21B). Whereas properly 

folded ternary complexes do not bind to the anion-exchange resin and, hence, reside in the flow-

through, misfolded complexes that contain chaperones bind to the column and thus can be 
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removed. Subsequent cation-exchange- and size-exclusion chromatography were then used to 

recover the desired, highly pure ternary protein complexes (Fig. 21D).  

 To analyze the stoichiometry of the my ternary complexes, I subjected the CDK8 (1-

403)/CycC/MED12 (1-100) complex as a representative to static light scattering. This 

technique revealed a monodisperse ternary complex with a 1:1:1 stoichiometry (Klatt et al., 

2020). 

 
Figure 21: Co-expression and purification of ternary CDK8/CycC/MED12 complexes 

(A) Schematic fusion strategy and expression cassettes for ternary CDK8/CycC/MED12 complexes using MultiBacTurbo. (B) 

Schematic purification scheme for ternary CDK8/CycC/MED12 complexes. Salt-concentrations of individual purification steps 

were illustrated. CDK8/CycC/MED12 is shown as a cartoon. (C) SDS-PAGE analysis of CDK8 (1-403)/CycC/MED12 (1-

100) before and after TEV treatment. (D) Size-exclusion chromatograms and SDS-PAGE analysis of purified ternary 

CDK8/CycC/MED12 complexes using a Superose 6 10/300 GL (GE Healthcare). Protein complexes are shown as cartoons 

above each gel, individual proteins are indicated next to the gels. CDK8 (1-403) is shown in red, Cyclin C is in blue, MED12 

is in grey. MED12 contains the Strep-tag (indicated by black circles) and runs accordingly higher in the gel as shown on (C). 

Please note that (D) is adopted from Klatt et al., 2020.  

 

CDK19 containing ternary constructs were constructed as just described for 

CDK8/CycC/MED12 complexes (Fig 22). However, due to different acceptor-donor-plasmid 

combinations, some CDK19 containing ternary constructs harbor the C-terminal Strep-tag on 

Cyclin C instead of on MED12 (Figs. 22A and B). Please note here, that identical proteins and 
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protein-complexes can be co-expressed using multiple acceptor-donor combinations. The 

presented CDK19 containing ternary complexes on Fig. 22D were co-expressed and purified to 

homogeneity using the established purification scheme applied to CDK8-containing ternary 

complexes (Fig. 21B). 

 
Figure 22: Co-expression and purification of ternary CDK19/CycC/MED12 complexes 

(A) Schematic fusion strategy and expression cassettes for ternary CDK19/CycC/MED12 complexes that contain Strep-tagged 

MED12 (1-100). (B) Schematic fusion strategy and expression cassettes for ternary CDK19/CycC/MED12 complexes that 

contain C-terminally Strep-tagged Cyclin C (C) SDS-PAGE analysis of CDK19 (1-439)/CycC/MED12 (1-100) before and 

after TEV treatment. Please note that the Strep-tag is C-terminally located on Cyclin C. (D) Size-exclusion chromatograms and 

SDS-PAGE analysis of purified ternary CDK19/CycC/MED12 complexes using a Superdex 200 10/300 GL (GE Healthcare). 

Protein complexes are shown as cartoons above each gel, individual proteins are indicated next to the gels. CDK19 variants (1-

502 (full-length), 1-439 and 1-359) are shown in orange, Cyclin C is in blue, MED12 is in grey. Please note that PAGE gels 

on (D) were partially taken by Bastian Jahreis. 

 

2.1.4 Co-purification of binary and ternary complexes  

 

In addition to the abovementioned co-expression strategies, we also established co-purification 

schemes for different binary and ternary complexes. To that end, we expressed individual 

subunits of the Mediator kinase module and co-purified them together. This co-purification 

strategy allows for enormous construct flexibility. As exemplified on Fig 23, binary CDK19 



 Results 

 

33 

(1-359)/Cyclin C complexes and ternary CDK19/CycC/MED12 (1-100) complexes (as already 

shown on Figs. 18D and 22D) could be efficiently purified using our alternative co-purification 

technique.  

 
Figure 23: Expression and co-purification of binary CDK19/Cyclin C and ternary CDK19/CycC/MED12 complexes  

(A) Co-purification scheme for binary CDK19 (1-359)/Cyclin C and ternary CDK19 (1-502)/CycC/MED12 (1-100) 

complexes. Individual proteins were expressed, their cell pellets combined and purified together. Protein complexes are shown 

as cartoons. (B) SDS-PAGE analysis of binary CDK19 (1-359)/Cyclin C before and after TEV treatment. (C) Size-exclusion 

chromatogram and SDS-PAGE analysis of co-purified binary CDK19 (1-359)/Cyclin C complexes using a Superdex 200 (GE 

Healthcare). Protein complexes are shown as cartoons above the gel, individual proteins are indicated next to the gels. CDK19 

(1-359) is shown in orange, Cyclin C is in blue. (D) Same as in (B), just for ternary CDK19 (1-502)/CycC/MED12 (1-100) 

complexes. (E) Same as in (C), just for ternary CDK19 (1-502)/CycC/MED12 (1-100) complexes. Protein complexes are 

shown as cartoons above the gel, individual proteins are indicated next to the gels. CDK19 (1-502) is shown in orange, Cyclin 

C is in blue, MED12 (1-100) is in grey. Please note that PAGE gels on (B) and (C) were taken by Melanie Müller. 
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2.1.5 Purification of the N-terminal segment of MED13 

 

To gain insights into the structure and function of MED13, I first set out to express full-length 

MED13. To enhance protein expression, I therefore introduced an N-terminal Strep-SUMO tag 

on full-length MED13. Insect cell expression revealed, that MED13 is only marginally 

expressed and tends to degrade (data not shown). Electrospray ionization mass spectrometry of 

a degraded MED13 band suggested, that the N-terminal region comprising MED13 up to 

residue 496 is structured (see chapter 6.1, Fig. 64). In addition to electrospray ionization mass 

spectrometry, secondary structure predictions suggests that the MED13 N-terminal domain up 

to amino acid 545 is structured. These results guided me to clone MED13 (1-545) and to test 

its expression in High Five insect cells. Strikingly, after applying standard purification steps 

(Fig. 24A), the N-terminal portion of MED13 (1-545) could be purified to homogeneity (Fig. 

24C). To unravel whether the N-terminal segment of MED13 is structured, we utilized circular 

dichroism (CD) spectroscopy. We expected this part of MED13 to be structured as we had 

identified this fragment as a stable degradation product of full-length MED13, which can be 

efficiently expressed. As predicted, using the aforementioned technique, we uncovered that 

MED13 (1-545) possesses α-helical properties that give rise to CD minima at 208 and 222 nm 

(Holzwarth and Doty, 1965) (Fig. 24D).  

 
Figure 24: Purification and circular dichroism spectroscopy of N-terminal MED13 
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(A) Schematic purification scheme for single N-terminal MED13. Salt-concentrations of individual purification steps were 

illustrated. MED13 is shown as a cartoon. (B) SDS-PAGE analysis of MED13 (1-545) before and after TEV treatment. (C) 

Size-exclusion chromatogram and SDS-PAGE analysis of purified N-terminal MED13 using a Superose 6 10/300 GL (GE 

Healthcare). MED13 is shown as cartoons above each gel and indicated next to the gel in purple. (D) Far-UV CD-spectrum of 

MED13 (1-545). Please note that experiments were carried out by Silas Amarell. 

 

2.1.6 Purification of quaternary CDK8/CycC/MED12/MED13 complexes 

 

After I had tested numerous different constructs, I was finally able to establish a purification 

scheme that results in a protein complex that comprises all subunits of the human Mediator 

kinase module. To do so, I combined both my co-expression and co-purification strategies, 

which I had established together with my students for other kinase module components (see 

Figs. 17 and 23). The applied purification scheme confirms, that the kinase module can be 

reconstituted in vitro (Knuesel et al., 2009a) (Fig. 25). This leads me to suggest that even more 

kinase module combinations can be generated using a combination of co-expression and co-

purification techniques. In more detail, to reconstitute the 4-subunit Mediator kinase module, I 

co-expressed CDK8 together with Cyclin C, however, MED12 and MED13 were expressed as 

proteins (Fig. 25A). In a first step, co-purification and a subsequent Strep-affinity 

chromatography captured all proteins simultaneously. However, the subsequent cation-

exchange- and size-exclusion chromatography steps enabled me to isolate the 4-subunit 

Mediator kinase module. In summary, a highly pure Mediator kinase module comprising full-

length CDK8, Cyclin C and C-terminally truncated MED12 (1-1227) and MED13 (1-947) 

could be expressed and co-purified. (Fig. 25C).  
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Figure 25: Expression and co-purification of quaternary CDK8/CycC/MED12/MED13 complexes  

(A) Schematic expression cassettes utilized to express all four subunit of the mediator kinase module. Three individual 

constructs that encode for N-terminally Strep-SUMO-tagged MED12 (1-1227), MED13 (1-947), and CDK8 together with C-

terminally Strep-tagged Cyclin C were used. Please note that the relative expression volumes for single MED12 were 3-times 

higher, for MED13 2-times higher compared to the binary CDK8/Cyclin C construct. (B) Schematic purification scheme for 

the recombinant mediator kinase module. Salt-concentrations of specific purification steps were illustrated. MED12, MED13 

and CDK8/Cyclin C are shown as a cartoon. (C) Size-exclusion chromatogram and SDS-PAGE analysis of the co-purified and 

reconstituted kinase module using a Superose 6 Increase 3.2 (GE Healthcare). 
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2.2 Purification of kinase assay substrates 

 

To test the enzymatic activity of the purified CDK complexes, I established a radioactive kinase 

assay together with Robin Weinmann (Klatt et al., 2020). Therefore, bona fide substrates of 

CDK8 (and CDK19) were cloned, (co-)expressed and purified.  

 

2.2.1 Purification of STAT1, Sirtuin-1, Pol II and BRCA1 

 

STAT1 is a known CDK8 target and phosphorylated by CDK8 at Ser-727 (Bancerek et al., 

2013). Sirtuin-1 (phosphorylated at Thr-530) and BRCA1 (phosphorylated at Ser-1613), as well 

as Pol II, are additional substrates of CDK8 (Poss et al., 2016). STAT1, Sirtuin-1 and BRCA1 

substrates were expressed in E. coli and purified to homogeneity (Fig. 26). Pol II was 

endogenously isolated from bovine thymus and purified as described (Bernecky et al., 2016). 

 
Figure 26: Purification of STAT1, Sirtuin-1, Pol II and BRCA1.  

(A) Anion-exchange chromatogram of purified STAT1 TAD using a Mono Q (GE Healthcare) column and SDS-PAGE 

analysis. The analyzed fraction is depicted above the chromatogram. (B) Size-exclusion chromatogram of purified Sirtuin-1 

using a Superose 6 10/300 GL (GE Healthcare) column and SDS-PAGE analyses. The analyzed fraction is depicted above the 

chromatogram. (C) Anion-exchange chromatogram of endogenously isolated Pol II using a Uno Q (Bio-Rad) column and SDS-

PAGE analysis. The analyzed fraction is depicted above the chromatogram. (D) Anion-exchange chromatogram of purified 

BRCA1 using a Resource Q (GE Healthcare) column and SDS-PAGE analysis. The analyzed fraction is depicted above the 

chromatogram. Please note that (A) and (B) was carried out by myself, yet data were provided for Robin Weinmann; (C) was 

done by Robin Weinmann under supervision of Lisa-Marie Schneider, University of Bayreuth. 
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2.2.2 Purification of Cyclin H and binary CDK7/Cyclin H 

 

Cyclin H is reported to be phosphorylated by CDK8 on its N- and C-terminal helices at Ser-5 

and Ser-304 (Akoulitchev et al., 2000). Interestingly, this phosphorylation event was shown to 

inhibit CDK7 kinase activity. First, to validate Cyclin H as a target for CDK8, I expressed 

Cyclin H in E. coli and purified it to homogeneity (Fig. 27).  

 
Figure 27: Purification of Cyclin H 

(A) Schematic purification scheme for N-terminally GST-tagged Cyclin H from E. coli. Salt-concentrations of individual 

purification steps were illustrated. Cyclin H is shown as a cartoon. (B) Size-exclusion chromatogram and SDS-PAGE analysis 

of purified Cyclin H using a Superose 6 (GE Healthcare). Cyclin H is shown as a cartoon above the gel and indicated next to 

it in green. 

 
In addition to purified Cyclin H from E. coli (Fig. 27), I co-expressed the binary 

CDK7/Cyclin H complex in insect cells (Fig. 28). The utilized construct was cloned and 

combined in analogy to my N-terminal Strep-SUMO tagged CDK8/Cyclin C and 

CDK19/Cyclin C complexes (Fig. 19). Baculovirus-infected High Five insect cells were lysed 

by sonication, cell debris was removed by centrifugation and the supernatant was collected. 

Following Strep-affinity chromatography, SUMO-tagged CDK7 bound to Cyclin H was 

immobilized on an anion-exchange resin to recover the desired proteins. In a final step, the 

binary CDK7/Cyclin H complex was isolated by size-exclusion chromatography resulting in 

highly pure CDK7/Cyclin H (Fig. 28C).  
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Figure 28: Expression and purification of binary CDK7/Cyclin H complexes 

(A) Schematic fusion strategy and expression cassette for SUMO-tagged CDK7/Cyclin H using MultiBacTurbo. (B) Schematic 

purification scheme for SUMO-tagged CDK7/Cyclin H. Salt-concentrations of individual purification steps were illustrated. 

CDK7/Cyclin H is shown as a cartoon. (C) Size-exclusion chromatogram and SDS-PAGE analysis of purified SUMO-tagged 

CDK7/Cyclin H complexes using a Superdex 200 (GE Healthcare). Excessive amounts of SUMO could be efficiently 

separated. The protein complex is shown as a cartoon above the gel, individual proteins are indicated next to the gel. CDK7 is 

shown in turquois, Cyclin H is in green, Strep-SUMO in white. CDK7 contains the Strep-SUMO tag (indicated by black circles) 

and runs accordingly higher in the gel. 

 

2.2.3 Purification of NELF and DSIF 

 

The negative elongation factor (NELF) is an additional target of CDK8 and was a gift of Prof. 

Dr. Patrick Cramer. In detail, the largest subunit NELF-A is phosphorylated on Ser-360 and 

Ser-363 (Poss et al., 2016). The quaternary NELF complex was co-expressed in High Five 

insect cells and purified as described (Vos et al., 2016). In brief, baculovirus-infected High Five 

insect cells were lysed by sonication, cell debris was removed by centrifugation and the 

supernatant was collected. Following Ni-NTA-affinity chromatography, NELF was 

immobilized on an anion-exchange resin to recover the desired complex. Last, NELF was 

subjected to size-exclusion chromatography (Fig. 29A).  
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Figure 29: Purification of NELF and DSIF 

(A) Size-exclusion chromatogram and SDS-PAGE analysis of His6-tagged NELF using a Superose 6 (GE Healthcare). Please 

note that NELF-B and His6-NELF-D have a similar molecular weight and run on the same height. (B) Size-exclusion 

chromatogram and SDS-PAGE analysis of Strep-tagged DSIF using a Superdex 200 (GE Healthcare). 

 

To assess how CDK8-mediated Cyclin H phosphorylation impacts CDK7 kinase activity, I 

sought to set up a kinase assay using the purified binary CDK7/Cyclin H complexes (see chapter 

2.2.2). This would allow me to investigate the putative inhibitory effect on CDK7 kinase 

activity upon Cyclin H phosphorylation. Hence, I expressed the bona fide CDK7 substrate DRB 

sensitivity inducing factor (DSIF) in insect cells. More precisely, the larger subunit of the 

heterodimer DSIF Spt5 (the smaller being Spt4) is phosphorylated by CDK7 (Larochelle et al., 

2006). Spt5 was cloned into a pAceBac1 acceptor-, Spt4 into a pIDK donor-vector. Both were 

combined to co-express the heterodimer DSIF. Human DSIF was a gift of Prof. Dr. Birgitta 

Wöhrl and was purified in analogy to NELF, yet harbored a Strep-tag instead of a hexahistidin-

tag for affinity purification (Fig. 29B). 
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2.3 Biochemical characterization of the purified Mediator kinase module 

components 

 

To study how MED12 binds and activates CDK8 and CDK19 and to characterize the highly 

pure Mediator kinase module components, that I and my supervised students had purified 

before (see chapter 2.1), we  carried out in vitro biochemistry, cross-linking coupled to mass 

spectrometry, X-ray crystallography and in vivo experiments. 

 

2.3.1 MED12 19-91 is a stable N-terminal fragment  

 

To identify proteolytic resistant fragments of MED12 (1-100) when bound to CDK8 and 

Cyclin C, I carried out limited proteolysis using the CDK8 (1-403)/CycC/MED12 (1-100) 

ternary complex (Fig. 30). Electrospray ionization mass spectrometry of a proteolyzed MED12 

fragment hints at the possibility that MED12 residues 19-91 form a stable N-terminal MED12 

domain (see chapter 6.1, Fig. 63).  

 
Figure 30: Limited proteolysis of the CDK8 (1-403)/CycC/MED12 (1-100) ternary complex 

The CDK8 (1-403)/CycC/MED12 (1-100) ternary complex was treated with trypsin (left panel) or chymotrypsin (right panel). 

Samples were taken at indicated time points. MED12 (1-100) (1.) and the first trypsin-proteolyzed band MED12 (11-91) (2.) 

were prepared for electrospray ionization mass spectrometry and are boxed.  

 

2.3.2 MED12 binds CDK8/Cyclin C and CDK19/Cyclin C complexes  

 

To investigate the activation potential of the N-terminal segment of MED12 on CDK8 activity 

(Turunen et al., 2014), we measured the affinity of MED12 (1-100) to CDK8/Cyclin C 

complexes using both microscale thermophoresis (MST) and isothermal titration calorimetry 

(ITC). Using MST, we recorded a nanomolar affinity (Kd= 44 nM) of MED12 for full-length 
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CDK8 (Fig. 31A). Shortening of the CDK8 C-terminus reduced MED12 binding affinity by a 

factor of five for the shortest CDK8 variant (CDK8 (1-359), Kd= 220 nM). This suggests that 

the disordered C-terminus of CDK8 only marginally influences MED12 binding. To cross-

validate my MST measurements I used ITC to confirm an affinity of 72 nM for MED12 (1-

100) binding to CDK8 (1-403)/Cyclin C (The Kd using MST was 71 nM) (Fig. 31A and B) 

(Klatt et al., 2020).  

 
Figure 31: MED12 binds both CDK8/Cyclin C and CDK19/Cyclin C binary complexes 

(A) Microscale thermophoresis (MST) binding experiments using of MED12 (1-100) and different binary CDK8/Cyclin C 

complexes. Kd values are indicated. Error bars reflect the standard deviation of four replicates. Please note that the Kd cannot 

be read off directly due to the experimental necessity to use high protein concentrations. (B) Same as in (A), just with binary 

CDK19/Cyclin C complexes. (C) Using isothermal titration calorimetry (ITC) with MED12 (1-100) and SUMO-tagged CDK8 

(1-403)/Cyclin C we confirmed the Kd values that resulted from MST measurements. (D) Same as in (C), just with SUMO-

tagged CDK19 (1-439)/Cyclin C. Please note that MST measurement were carried out by Franziska Langhammer, ITC 

measurements were carried out by Melanie Müller and myself, yet data were provided for Melanie Müller. Note further that 

(A) and (B) were adopted from Klatt et al., 2020. 

 

Having determined nanomolar affinity for MED12 to the CDK8/Cyclin C complex, we next 

asked whether MED12 preferentially binds to binary CDK8/Cyclin C or binary 

CDK19/Cyclin C complexes. Therefore, we measured the affinity of MED12 (1-100) for our 

CDK19/Cyclin C complexes using again both MST and ITC (Figs. 31C and D). Utilizing MST, 

we detected a nanomolar affinity (Kd= 18 nM) of MED12 towards full-length CDK19. 
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Truncating the C-terminus of CDK19 reduced MED12 binding affinity by a factor of three for 

the shortest CDK19 variant (CDK19 (1-359), Kd= 66 nM) (Fig. 31C). This suggests that the 

also the C-terminus of CDK19 also only marginally affects MED12 binding, just as we found 

for CDK8. ITC measurements revealed a nanomolar affinity of 218 nM of MED12 (1-100) for 

CDK19 (1-439)/Cyclin C (The Kd using MST was 29 nM) (Figs. 31C and D). In consequence, 

the N-terminal portion of MED12 binds with nanomolar affinity to both CDK8/Cyclin C and 

CDK19/Cyclin C complexes and does not distinguish between CDK8/Cyclin C or CDK19/ 

Cyclin C binding. Rather, MED12 seems to associate with both Mediator kinases equally well 

(Fig. 31). 

 

2.3.3 MED12 stabilizes CDK8/Cyclin C complexes  

 

To assess whether MED12 binding to different CDK8/Cyclin C complexes impacts protein 

stability, we recorded their thermal melting behavior using differential scanning fluorimetry 

(nanoDSF). We found a significantly increased melting temperature (+7°C) of ternary 

complexes, which demonstrates that MED12 has a major stabilizing effect on CDK8/Cyclin C 

complexes (Fig. 32A). Note here that the stability of CDK complexes was reported to correlate 

with their activity (Nolen et al., 2004). Moreover, our nanoDSF data uncover that the presence 

of CDK8’s likely unstructured C-terminus destabilizes both binary and ternary complexes. 

Furthermore, we find that ternary complexes comprising a MED12 fragments 1-91 or 1-100 

result in the most stable complexes. In contrast, MED12 constructs shorter than 70 residues 

significantly destabilize the ternary complex albeit still showing a stabilizing effect with respect 

to the binary complex (Fig. 32B) (Klatt et al., 2020).  

 
Figure 32: The N-terminal part of MED12 stabilizes CDK8/Cyclin C binary complexes.  

Thermal stability of binary CDK8/Cyclin C complexes and ternary CDK8/CycC/MED12 complexes determined using 

differential scanning fluorimetry (nanoDSF). TM values are indicated. The standard deviation of three experimental replicates 
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is shown as error bars. Please note that nanoDSF measurements were carried out by Franziska Langhammer at Proteros 

biostructures GmbH under supervision of Dr. Elisabeth Schneider from Proteros biostructures GmbH. I provided the protein 

complexes. Adopted from Klatt et al., 2020. 

 
2.3.4 MED12 enhances CDK8 and CDK19 kinase activity 

 

To measure CDK8 activity we utilized the tag-free binary CDK8/Cyclin C and ternary 

CDK8/CycC/MED12 complexes. In the presence of 50 pmol substrate (STAT1) and 7.5 pmol 

kinase (CDK8) we detected low kinase activity for binary CDK8/ Cyclin C complexes using 

an in vitro kinase assay system. The inclusion of MED12 in ternary CDK8 (1-

403)/CycC/MED12 (1-100) complexes resulted in a pronounced stimulation of CDK8 kinase 

activity, confirming the activation potential of MED12 (Fig. 33A). Moreover, in addition to 

STAT1 phosphorylation (the substrate) we also observed signal for CDK8 phosphorylation 

(Fig. 33B) (Klatt et al., 2020). These results establish that CDK8 serves as a second substrate 

in the reaction (CDK8 phosphorylation will be presented in more detail in chapter 2.13) (Klatt 

et al., 2020). 

 
Figure 33: The N-terminal portion of MED12 enhances CDK8 kinase activity 

In vitro kinase assays using purified binary CDK8 (1-403)/Cyclin C and ternary CDK8 (1-403)/CycC/MED12 (1-100) 

complexes. 7.5 pmol kinase complex was incubated with 50 pmol purified GST-tagged STAT1 transactivation domain (TAD) 

in presence of an excess of [g-32P]-ATP. Reactions were stopped at the indicated time points. The quantification of band 

intensities is shown below. (B) Same as in (A), yet CDK8 phosphorylation is plotted. The quantification of band intensities is 

shown below and incudes the CDK8 phosphorylation signal. Please note that kinase assays and band quantifications were 

carried out by Robin Weinmann. Kinases were purified and provided by Franziska Langhammer and myself. Adopted from 

Klatt et al., 2020. 

 

We found that MED12 (1-100) has a profound stimulatory effect on CDK8 kinase activity (Fig. 

33). Next, we asked whether the same holds true for the CDK8 paralog CDK19. Therefore, we 
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used our purified binary CDK19/Cyclin C and ternary CDK19/CycC/MED12 complexes. Due 

to the high sequence identity of both paralogs (97% conservation within their kinase domain, 

(see chapter 1.1, Figs. 1 and 7), we expected a similar MED12-dependent stimulation of CDK19 

kinase activity, as we has established for CDK8. As hypothesized, this is exactly what we 

observed. The inclusion of MED12 (1-100 ) in CDK19 (1-439)/Cyclin C complexes resulted in 

a significant activation of CDK19 kinase activity (Fig. 34A). Moreover, we observed also a 

signal for CDK19, confirming that the kinase itself can also serve as a substrate (Fig. 34B). 

 
Figure 34: The N-terminal portion of MED12 enhances CDK19 kinase activity 

In vitro kinase assays using purified binary CDK19 (1-439)/Cyclin C and ternary CDK19 (1-439)/CycC/MED12 (1-100) 

complexes. 7.5 pmol kinase complex was incubated with 50 pmol purified GST-tagged STAT1 transactivation domain (TAD) 

in presence of an excess of [g-32P]-ATP. Reactions were stopped at the indicated time points. The quantification of band 

intensities is shown below. (B) Same as in (A), yet CDK19 phosphorylation is plotted. The quantification of band intensities 

is shown below and incudes the CDK8 phosphorylation signal. Please note that kinase assays and band quantifications were 

carried out by Robin Weinmann. Kinases were provided by Melanie Müller and myself. 

 

2.3.5 CDK8 and CDK19 phosphorylate transcription-related targets 

 

To emphasize and extend these findings to more than a single substrate, we employed purified 

Sirtuin-1, BRCA1, NELF-A and Pol II as additional CDK8 targets in our in vitro assay system 

(see chapter 2.2). All of them were found to be phosphorylated by CDK8. Using these 

substrates, we observed similar MED12-dependent activation of CDK8 (Figs. 35A and B). This 

confirms earlier reports (Knuesel et al., 2009a)(Turunen et al., 2014), yet also demonstrates that 

the CDK8/Cyclin C complex possesses basal kinase activity whose extent varies with the ratio 

of kinase to substrate concentration (Figs. 33A and 35A). For CDK19, we utilized BRCA1 as 

additional substrate and observed, once again, a similar MED12-depedent activation of CDK19 
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kinase activity (Fig. 35C). Last, also the binary CDK19/Cyclin C complex shows basal kinase 

activity. 

 
Figure 35: CDK8 and CDK19 phosphorylate transcription-related targets 

(A) In vitro kinase assays using purified binary CDK8 (1-403)/Cyclin C and ternary CDK8 (1-403)/CycC/MED12 (1-100) 

complexes. Assays carried out as described in Figs. 33 and 34. A ratio of 0.25 pmol kinase complex and 75 pmol substrate was 

used for STAT1. For Sirt-1 and BRCA1, a ratio of 0.5 pmol kinase and 50 pmol Sirt-1 was used. For Pol II, 2 pmol of kinase 

complex was incubated in presence of 2 pmol Pol II. Please note that the Pol II CTD contains about 50 potential CDK8 

phosphorylation sites, which made this 1:1 ratio necessary. (B) Same as in (A), just with A ratio of  7.5 pmol kinase complex 

with 50 pmol purified NELF. (C) Same as in (B), just with purified binary CDK19 (1-439)/Cyclin C and ternary CDK19 (1-

439)/CycC/MED12 (1-100) complexes and BRCA1. Please note that BRCA1 and CDK19 (1-439) cannot be separated by SDS-

PAGE. Please note further that (A), except for the BRCA1 assay, is adopted from Klatt et al., 2020. Kinase assays on (A) and 

(B) were carried out by Robin Weinmann and by myself. 

 

2.3.6 CDK8 and CDK19 kinase activities are comparable  

 

N-terminal portion of MED12 has a profound effect on both CDK8 and CDK19 kinase activity 

(Figs. 33, 34 and 35). To detect any differential kinase activity between CDK8 and CDK19 

when stimulated by MED12, we used our established in vitro assay system with full-length 

CDK8 and CDK19 (Fig. 36). We note here, that CDK19 contains a larger C-terminal domain 

than CDK8 (see chapter 1.1, Fig. 7), that could be involved in substrate recognition (Dixon-

Clarke et al., 2015). Therefore, in addition to STAT1, we tested Sirtuin-1 and Pol II as already 

established CDK8 targets.  

However, we did not measure significant differences between MED12-stimulated CDK8 and 

CDK19 kinase activities (Fig. 36). Thus, and in conclusion, CDK8 and CDK19 show almost 

similar kinase activities without any apparent substrate preference in our in vitro system. Last, 
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we note that we cannot determine the exact phosphorylation sites within the Pol II CTD using 

our assay system (the CTD residues targeted by CDK19 are yet unknown).  

 
Figure 36: The kinase activities of CDK8 and CDK19 are highly comparable.  

In vitro kinase assays using full-length CDK8/CycC/MED12 (1-100) and full-length CDK19/CycC/MED12 (1-100) ternary 

complexes. Kinase assays were carried out with STAT1 TAD, Sirt-1 and Pol II as substrates. Kinase assays were performed as 

described in Figs. 33 and 34. Please note that kinase assays were carried out by Bastian Jahreis. 

 

2.3.7 The MED12 fragment 23-69 is both necessary and sufficient to stimulate CDK8 

 

Having confirmed the CDK8-activation potential residing within the MED12 fragment 1-100, 

we next aimed to identify the minimal MED12 fragment sufficient to activate CDK8. Therefore, 

we systematically truncated the MED12 N- and C-terminus and utilized these variants in our 

kinase assay (Fig. 37). To that end, I was able to narrow down the minimal stable fragment 

sufficient for CDK8 activation to 46 amino acids at the N-terminus of MED12 (MED12 

residues 23-69).  

 
Figure 37: MED12 23-69 is both necessary and sufficient to enhance CDK8 activity. 

(A) In vitro kinase assays using purified binary CDK8 (1-403)/Cyclin C and ternary CDK8 (1-403)/CycC/MED12 complexes 

encompassing different N- and C-terminal MED12 truncations. Kinase assays were carried out as described in Figs. 33 and 34. 



 Results 

 

48 

Please note that kinase assays were carried out by Robin Weinmann, except for the assay using CDK8 (1-403)/CycC/MED12 

(23-69). Kinases were purified and provided by Silas Amarell, Franziska Langhammer and myself. Adapted from Klatt et al. 

2020.  

 

2.3.8 MED12 harbors an activation helix that enhances CDK8 and CDK19 kinase activity 

 

Interestingly, secondary structure prediction programs hinted at the formation of an a helix for 

MED12 residues 32 through 44. Moreover, crosslinking experiments coupled to mass 

spectrometry with my CDK8-containing ternary constructs uncovered that MED12 residues 30-

42, which mostly encompass the predicted helix, are in proximity to the T-loop of CDK8 (see 

chapter 6.2, Figs. 65A and C) (Klatt et al., 2020). This suggests, that residues that are part of 

the predicted helix are crucial for CDK8 and CDK19 activation (Klatt et al., 2020).  

 To test this in silico analysis, I carried out circular dichroism spectroscopy with 

synthetic MED12 peptides that comprise the predicted α-helical sequence (Fig. 38A). I decided 

to measure peptides of two different length in presence of varying trifluoroethanol (TFE) 

concentrations to analyze their propensities to form helices (Fig. 38B) (Luo and Baldwin, 

1997). In absence of TFE the far-UV CD spectra of both MED12 peptides show characteristics 

of disordered proteins. Strikingly, upon TFE titration, I observed spectral shifts to negative 

bands at 222 nm, 208 nm and positive bands at 193 nm, all of which are typical α-helical 

characteristics (Holzwarth and Doty, 1965). The shorter MED12 (29-40) peptide shows similar 

effects, yet the TFE-induced shifts were less marked (Fig. 38B). These measurements 

underscore secondary structure predictions, that suggested an α-helical fold within the N-

terminal activation segment of MED12. Taken together, both peptides show a helical 

properties, that were especially profound for the longer MED12 (29-44) peptide. The results 

therefore confirm that MED12 residues 30-42 form an a-helix.  

 To elucidate the importance of this a-helix for CDK8 activation, I systematically 

mutated residues that are part of the helix. In particular, I was intrigued by a cluster of three 

acidic residues (E33, D34 and E35) at the predicted N-terminal tip of the helix that stabilize the 

positive helical dipole at this position (Fig. 39C) (Klatt et al., 2020). As some CDK homologs 

utilize a phosphorylation-independent activation mechanism, that relies on negatively charged 

residues (see chapter 1.1, Fig. 4), I asked whether one of the three acidic residues contributes 

to CDK8 activation. Much to our surprise, an E33Q mutation completely abolished CDK8 

activation by MED12 (Fig. 39A). This was also the case for double-mutants involving E33. In 

contrast, neither the mutation of D34, nor of E35 had an effect on kinase activation. To exclude 
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a direct involvement of other charged residues in CDK8 activation we also measured the effect 

of K30A, Q31A and K32A mutations on kinase activity. However, we found none of them to 

influence CDK8 activation by MED12 (Fig. 39B). I thus conclude that MED12 E33 is essential 

to activate CDK8, a finding that prompted us to term the helix that harbors E33 at its tip 

"activation helix". Please note here that I was able to purify all ternary, mutation-containing 

complexes to homogeneity (data not shown). This clearly demonstrates that MED12 binding to 

CDK8/Cyclin C and CDK8 activation can be experimentally uncoupled (Klatt et al., 2020).  

 
Figure 38: The N-terminal segment of MED12 possesses a helical topology 

(A) Amino acid sequence of the N-terminal segment of MED12 encompassing its first 100 residues. The 3-dimensional 

structure prediction of the MED12 activation helix comprising MED12 residues 19-50, which was modeled using PEP-FOLD3 

(Lamiable et al., 2016). Amino acids 32-44 of the secondary structure prediction are in pink. Adapted from Klatt et al., 2020. 

(B) Far-UV CD-spectra of two synthetic MED12 peptides under TFE titration. Utilized MED12 peptides and TFE 

concentrations were illustrated. Please note that MED12 peptides were a gift of Dr. Sascha Weidler, Dr. Marie Lott and 

Elisabeth Rozanski from Carlo Unverzagt’s lab, University of Bayreuth. 
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Figure 39: MED12 utilizes an activation helix with Glutamate-33 at its tip to stimulate CDK8 activity.  

(A) In vitro kinase assays using purified ternary CDK8 (1-403)/CycC/MED12 (1-100) complexes that harbor point-mutations 

within MED12. Kinase assays were carried out with the STAT1 TAD as described in Fig. 33.. (B) Same as in (A), yet different 

point mutations within MED12 (1-100) were assayed (C) 3-dimensional model of the MED12 activation helix comprising 

MED12 residues 19-50. The model was calculated using PEP-FOLD3 (Lamiable et al., 2016). The negatively charged triad of 

amino acids at the N-terminal tip of the activation helix (E33, D34 and E35) is shown as sticks in pink. (D) Electrostatic surface 

potential of the 3D-model of MED12 (19-50) (see (C) and the binary CDK8 (1-403)/Cyclin C complex (PDB code 3RGF) 

were calculated using VMD (Humphrey et al., 1996). At the interface of CDK8 and Cyclin C there is a positively charged 

patch that could interact with the negatively charged N-terminus of the activation helix (MED12 E33-D34-E35). Please note 

that kinase assays were carried out by Robin Weinmann. Mutation-containing protein complexes were purified by myself. The 

electrostatic surface potential shown on (D) was modelled by Franziska Langhammer under supervision of Prof. Dr. Ullman, 

University of Bayreuth. Adapted from Klatt et al., 2020.  

 

We next asked how the activation helix is able to bind in the interface of CDK8 and Cyclin C. 

To that end we calculated the electrostatic surface potential of the binary CDK8/Cyclin C 

complex and of a model of the MED12 activation helix (Fig. 39D). We noticed a basic patch at 

the interface of CDK8 and Cyclin C - in the same region where we had detected crosslinks of 

MED12 to CDK8. This warrants my speculation that the acidic triad E33-D34-E35 is 

responsible for positioning the MED12 activation helix properly for CDK8 activation (Klatt et 

al., 2020). 
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As the N-terminal segment of MED12 binds and activates both CDK8 and CDK19 (Figs. 31, 

33 and 34), we asked next whether an E33Q mutation eliminates the stimulatory function of 

MED12 in activating CDK19 (Fig. 40). We expected this to be the case, as the catalytic domains 

of both CDK8 and CDK19 are highly conserved (97% conservation within their kinase domain, 

see chapter 1.1, Figs. 1 and 7). Just as expected, the mutation of MED12 E33Q led to a complete 

loss of the MED12-dependent activation of CDK19 (Fig. 40). In conclusion, the N-terminal 

portion of MED12, which carries the activation helix with E33 at its tip, binds and activates 

CDK19 in an analogous manner to CDK8.  

 
Figure 40: MED12 Glutamate-33 stimulates CDK19 activity 

In vitro kinase assays using purified binary CDK19 (1-439)/Cyclin C and ternary CDK19 (1-439)/CycC/MED12 (1-100) 

complexes that harbor an E33Q mutation at the tip of the MED12 activation helix. Kinase assays were carried out with the 

STAT1 TAD as described in Fig. 34. The kinase assay was carried out by Robin Weinmann.  

 

2.3.9 The MED12 activation helix with Glutamate-33 activates CDK8 also in vivo 

 

Having discovered that a single residue within the MED12 activation helix, Glutamate-33, is 

both necessary and sufficient for MED12-dependent CDK8 activation, I next aimed to elucidate 

this finding in vivo. To that end I teamed up with Dr. Hung Ho-Xuan from Prof. Gunter 

Meister’s lab at the University of Regensburg. Together, we generated a MED12 E33Q knock-

in in HCT116 colon cancer cells by applying the CRISPR/Cas9 system (Fig. 41).   

 
Figure 41: Schematic representation of the utilized CRISPR workflow. 

(A) To generate an HCT116 cell line carrying a MED12 E33Q mutation, suited oligos were designed that target the genomic 

region of MED12 E33 for homology-directed repair (HDR). The Cas9-mediated nucleotide exchange, which results in a 

MED12 protein mutant carrying an E33Q mutation, is illustrated (B) Upon co-transfection of the two single guide RNAs 

(sgRNA) together with Cas9-2A-GFP, positive HCT116 cells were isolated by fluorescence-activated cell sorting (FACS) and 
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cultivated for RNA-Seq library preparation. Finally, RNA-Seq libraries were screened by next generation sequencing (NGS). 

Please note that the CRISPR workflow was carried out with help from Dr. Hung Ho-Xuan. Genotyping of more than 5,000 

clones was done by myself. NGS libraries were prepared together with Dr. Xuan-Hung Ho, NGS screening was done by Dr. 

Hung Ho-Xuan and Norbert Eichner both from Prof. Gunter Meister’s lab at the University of Regensburg. Adapted from Klatt 

et al., 2020. 

 
After genotyping more than 5,000 clones we successfully obtained a stable HCT116 cell line 

that carries a MED12 E33Q mutation. Unfortunately, we additionally observed a K15N 

mutation in the generated cell line besides the desired E33Q mutation (Klatt et al., 2020). 

However, this mutation neither altered MED12 expression levels (Fig. 42A) nor its subcellular 

localization or its kinase activity (Fig. 42B) (Klatt et al., 2020). In order to further sensitize cells 

for MED12-dependent CDK8 activation, I decided to stimulate our HCT116 cells with 

interferon-γ (IFN-γ). 

 
Figure 42: A MED12 K15N mutation has no profound effects on MED12 function.  

 (A) The presence of MED12 in the MED12 E33Q mutant cell line was verified by Western blotting. (B) In vitro kinase assays 

were performed using purified ternary CDK8 (1-403)/CycC/MED12 (1-100) complexes harboring individual mutations within 

MED12 (1-100). Mutations are indicated. Kinases assays were performed as described in Fig. 33 with the STAT1 TAD as a 

substrate. The results indicate the accidental K15N has no impact on CDK8 activity, in contrast to an E33Q mutation that is 

used as a control. Adapted from Klatt et al., 2020. 

 

I chose IFN-γ stimulation as its rapid impact on interferon-response genes solely relies on 

STAT1 phosphorylation by CDK8 (Castro et al., 2018; Dannappel et al., 2019; Steinparzer et 

al., 2019). In perfect agreement with our in vitro data, upon IFN-γ stimulation I measured a 

significant reduction in STAT1 phosphorylation levels in the mutant (E33Q) cell lines as 

compared to HCT116 wild-type cells (Fig. 43). This clearly demonstrates that MED12 E33 on 

the activation helix enhances CDK8/19 kinase activity also in vivo.  
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Figure 43: STAT1 phosphorylation is impaired in the CRISPRed HCT116 MED12 E33Q cells 

The phosphorylation of Ser-727 in the STAT1 transactivation domain upon IFN-γ induction was analyzed by Western blotting. 

Adapted from Klatt et al., 2020. 

 

Subsequently, I handed out the samples analyzed by Western blotting on Fig. 43 to my 

colleague Dr. Iana Kim to carry out differential gene expression analysis by RNA-seq as has 

been described (Klatt et al., 2020). 

 

2.3.10 MED12 Glutamate-33 likely contacts the arginine triad of CDK8 

 

Having discovered a helix in MED12 that is crucial for its CDK8 activation potential, I next 

asked which CDK8 residues contacts MED12 E33. As it is the case for all human CDKs, CDK8 

possesses an arginine triad (R65, R150 and R178) (see chapter 1.1, Figs. 5 and 7). As some 

CDK homologs utilize a phosphorylation-independent activation mechanism, that involves 

amino acids of the arginine triad (see chapter 1.1, Fig. 4), I asked whether one of the arginine 

residues instead contacts E33 in MED12. To that end I prepared individual arginine mutants 

(R65Q, R150Q and R178Q) of CDK8 and tested those in complex with Cyclin C and in ternary 

MED12-containing complexes (Fig. 44A). If one of the three arginine residues indeed contacts 

E33 in MED12, I expected to see no effect of this mutation on the basal kinase activity of the 

binary CDK8/Cyclin C complex. In contrast, I expected the abrogation of MED12-dependent 

CDK8 activation by such mutation. This is exactly what we detected for all three arginine 

mutants (Fig. 44A). However, we were unable to detect significant and reproducible differences 

between the three arginine mutations, despite the fact that R65 is located in the aC helix of 

CDK8 and R150 and R178 are placed in its T-loop (see chapter 1.1, Fig. 5). To exclude that the 

individual arginine mutants impair MED12 binding to CDK8/Cyclin C, we measured the 

affinity of MED12 (1-100) for binary CDK8 (1-403)/ Cyclin C complexes carrying individual 

arginine mutations (R65Q, R150Q or R178Q) by MST without detecting significant changes in 

the affinity of MED12 for CDK8/Cyclin C (Fig. 44B) (Klatt et al., 2020).  
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Figure 44: MED12-dependent CDK8 activation likely involves the arginine triad of CDK8.  

(A) In vitro kinase assays using binary CDK8 (1-403)/Cyclin C and ternary CDK8 (1-403)/CycC/MED12 (1-100) complexes. 

Each complex harbor a mutation in the CDK8 arginine triad. Kinase assays were carried out with the STAT1 TAD as a substrate 

as in Fig. 33. (B) Microscale thermophoresis (MST) binding experiments using MED12 (1-100) and different binary CDK8 

(1-403)/Cyclin C complexes that harbor individual mutations in their arginine triad (R65Q, R150Q and R178Q). Kd values are 

indicated. Error bars reflect the standard deviation of four experimental replicates. Please note that the Kd cannot be read off 

directly due to the experimental necessity to use high protein concentrations. Please note that kinase assays were carried out 

by Robin Weinmann, I purified and provided all kinases. Adopted from Klatt et al., 2020. 

 

In summary, these data establish that both the CDK8 arginine triad and E33 of MED12 are 

essential for MED12-dependent CDK8 activation. Whether the active conformation of the 

CDK8 T-loop is induced by a direct salt bridge between E33 of MED12 and one of the members 

of the CDK8 arginine triad will require high-resolution structural information on a ternary 

CDK8/CycC/MED12 complex (Klatt et al., 2020).  

 

2.3.10 MED12-dependent CDK8 activation is independent of Cyclin C 
 

Cyclin binding triggers the repositioning of the aC-helix in cyclin-dependent kinases, thereby 

allowing for the formation of their active site (see chapter 1.1, Fig. 3) (Endicott and Noble, 

2013; Lolli, 2010). This mechanism also applies to binding of Cyclin C to CDK8 (Schneider et 

al., 2011). In addition to this conserved role, residue E99 in Cyclin C and an unusually deep 

surface groove between its two cyclin boxes were also suggested to contribute to CDK8 

activation (see chapter 1.1, Fig. 5) (Hoeppner et al., 2005; Nolen et al., 2004; Schneider et al., 

2011; Turunen et al., 2014). We sought to confirm these results by using our in vitro kinase 

assay system. However, to my surprise neither a E98Q or E99Q mutation, nor the mutation of 

two surface groove residues (N181A, D182A) on Cyclin C that were suggest to bind MED12 

(Park et al., 2018; Turunen et al., 2014) had an impact on MED12-driven CDK8 activation (Fig. 

45A) (Klatt et al., 2020). Using nanoDSF measurements we could show that both Cyclin C 
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surface mutants (N181A, D182A) destabilize ternary MED12-containing complexes (Fig. 

45B). Taken together, our functional and structural data therefore suggest that the Cyclin C 

surface groove is not directly involved in the MED12-dependent activation of CDK8. Rather, 

upon mutation of residues in the surface groove, the entire complex becomes destabilized and 

thereby leads to reduced kinase activity under specific experimental conditions (Klatt et al., 

2020; Turunen et al., 2014). Alternatively, the surface groove might contribute to substrate 

recognition or serve as a protein interaction site, as is the case for CDK2/Cyclin A (Klatt et al., 

2020; Russo et al., 1996; Schulman et al., 1998). In conclusion and despite the fact, that we 

detected crosslinks for Cyclin C E98 and E99 to the MED12 activation helix (see chapter 6.2, 

Figs. 65A and C), Cyclin C seems only of minor importance for the MED12-driven activation 

of CDK8 (Klatt et al., 2020). 

 
Figure 45: Cyclin C does not contribute to MED12-dependent CDK8 activation.  

(A) In vitro kinase assays using purified ternary CDK8 (1-403)/CycC/MED12 (1-100) complexes that harbor point-mutations 

within Cyclin C. The activity of wild-type ternary CDK8 (1-403)/CycC/MED12 (1-100) is shown twice since the experiments 

were analyzed on separate gels. Kinase assays were carried out with the STAT1 TAD as a substrate as described in Fig. 33 (B) 

Thermal stability of ternary CDK8 (1-403)/CycC/MED12 (1-100) complexes that harbor point mutations within the Cyclin C 

surface groove, as determined by nanoDSF. TM values are illustrated above each bar. Error bars indicate the standard deviation 

from three experimental replicates. Please note that kinase assays were carried out by Robin Weinmann. nanoDSF measurement 

were done by Franziska Langhammer at Proteros biostructures GmbH under supervision of Dr. Elisabeth Schneider from 

Proteros biostructures GmbH. I purified and provided the protein complexes. Adopted from Klatt et al., 2020. 

 

2.3.11 Malignant MED12 mutations abrogate MED12-dependent CDK8 activation 

 

Frequent somatic MED12 mutations are associated with, amongst others, uterine leiomyomas, 

tumors of both the breast and the prostate as well as chronic lymphocytic leukemia (see chapter 

1.3, Fig. 13) (Kämpjärvi et al., 2015, 2016; Mäkinen et al., 2011; Wu et al., 2017b; Yoshida et 
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al., 2015). Despite the fact that MED12 consists of 45 exons, the overwhelming majority of 

these mutations are found in MED12 exon 2 (amino acids 34-68) and to a lesser extend in exon 

1 (amino acids 1-33) (see chapter 1.3, Fig. 13B) (Darooei et al., 2019; Kämpjärvi et al., 2016). 

Strikingly, when I mapped the mutations occurring in the aforementioned malignancies onto 

the sequence of MED12 (Fig. 38A) (Heikkinen et al., 2017; Kämpjärvi et al., 2015; Mäkinen 

et al., 2011), I found that the patient-derived mutations perfectly match the activation helix that 

we unraveled to be essential for CDK8 activation by MED12 (Figs. 39C and 46C). As my 

mutational analysis of the activation helix uncovered only a single amino acid to be critical for 

the CDK8-stimulatory function of MED12, I next examined the functional consequences of 

recurring disease mutations in MED12 (Fig. 46). First, we measured the affinity of MED12 (1-

100) fragments carrying L36R, Q43P or G44S mutations for binary CDK8 (1-403)/Cyclin C 

complexes. All three residues (L36, Q43 and G44) are mutational hotspots in uterine 

leiomyomas and were also found in chronic lymphocytic leukemia (see chapter 1.3, Fig. 13C) 

(Kämpjärvi et al., 2015; Mäkinen et al., 2011). In contrast to previously published results we 

did not detect significantly weakened binding of MED12 to binary CDK8/Cyclin C complexes 

when compared to wild type MED12 (1-100) (Fig. 46D) (Heikkinen et al., 2017; Park et al., 

2018; Turunen et al., 2014). The same holds true for MED12 carrying the E33Q mutation. We 

note here that E33 is also found mutated in human cancers (Heikkinen et al., 2017). This raised 

the possibility that MED12 mutations that occur in different cancers might not influence 

MED12 binding to CDK8/Cyclin C, yet only its activation. To test this, we purified ternary 

complexes containing mutated MED12 variants (E33A, E33K, D34Y, L36R, Q43P, G44S) and 

measured their kinase activity (Fig. 46A and B). As expected, for all complexes the kinase 

activity was abolished or at least drastically reduced (Klatt et al., 2020). Interestingly, the nature 

of the mutation has a profound impact on the activation potential of MED12. Whereas the 

mutation of Asp-34 to Tyr (D34Y), which is found in uterine leiomyomas, reduces CDK8 

kinase activity, a D34N mutation has no impact on kinase activity in our in vitro system (Figs. 

39A and 46A). In contrast, all MED12 glutamate-33 mutants (E33Q, E33A, E33K) lead to a 

loss of CDK8 activation (Figs. 39A and 46B). Taken together, we find that MED12 mutations 

frequently found in cancer patients lead to an abrogation of CDK8 kinase activity without 

affecting the affinity of MED12 for CDK8/Cyclin C (Klatt et al., 2020). 
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Figure 46: Cancer-associated MED12 mutations within its activation helix abolish CDK8 activation without altering 

MED12 affinity for CDK8/Cyclin C.  

 (A) In vitro kinase assays using ternary CDK8 (1-403)/CycC/MED12 (1-100) complexes harboring individual cancer-

associated mutations within MED12. Assays carried out as described as in Fig. 21A. (B) Same as in (A), yet two additional 

cancer-associated mutations within MED12 (E33A and E33K) and the E33Q mutation were assayed using Sirt-1 as a substrate. 

10 pmol kinase complex was incubated with 50 pmol purified Sirtuin-1 as a substrate. (C) 3-dimensional model of the MED12 

activation helix comprising MED12 residues 19-50. The model was calculated using PEP-FOLD3 (Lamiable et al., 2016). 

MED12 residues frequently mutated in cancer are shown as violet sticks (D34Y, L36R, Q43P and G44S). (D) Microscale 

thermophoresis (MST) binding experiments using MED12 (1-100) variants carrying different cancer-associated mutations and 

binary CDK8/Cyclin C complexes. MED12 (1-100) E33Q serves as activation-dead control (see Fig. 24A). Kd values are 

indicated. Error bars reflect the standard deviation of four replicates. Please note that the Kd cannot be read off directly due to 

the experimental necessity to use high protein concentrations. Please note that kinase assays on (A) were carried out by Robin 

Weinmann. Kinase assays on (B) were set out by Bastian Jahreis, I purified and provided all kinases. (A, C, and D) were 

adopted from Klatt et al., 2020. 

 

2.3.12 MED12 likely favors the CDK8 DMG-in conformation  

 

Due to its prominent oncogenic role considerable efforts were made to develop CDK8-specific 

inhibitors (Bergeron et al., 2016; Dale et al., 2015; Mäkinen et al., 2011; Pelish et al., 2015). 

As I discovered that MED12 employs an activation helix to stimulate CDK8 activity, I asked 

whether the presence of MED12 alters the efficacy of commercially available inhibitors, all of 

which were developed against the binary CDK8/Cyclin C complex (Bergeron et al., 2016). I 

hypothesized that this might be the case because crosslinking coupled to mass spectrometry and 
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preliminary structure determination by X-ray crystallography suggested MED12 contacts the 

aC-helix of CDK8 (see chapter 6.2 and 6.3, Fig. 65C and 67, respectively). Moreover, MED12 

likely positions the CDK8 T-loop in a catalytically competent conformation by contacting one 

or several members of its arginine triad (Fig. 39). In further support of a differential efficacy of 

commercial inhibitors against MED12-bound CDK8 complexes, I noticed that type II 

inhibitors, such as sorafenib, were previously reported not to translate their inhibitory efficacy 

into the cellular context (Dale et al., 2015; Klatt et al., 2020). 

 To test my hypothesis, we utilized two known type I inhibitors (CCT251545 (PDB code 

5BNJ) and Compound A (PDB code 6T41) as well as two known type II inhibitors (Sorafenib 

(PDB code 3RGF) and BIRB976 (Pargellis et al., 2002) in our in vitro kinase assay and 

determined their IC50 values against the binary CDK8 (1-403)/Cyclin C and the ternary CDK8 

(1-403)/CycC/MED12 (1-100) complex (Klatt et al., 2020). As expected, we found 

significantly higher IC50 concentrations for both type I and type II inhibitors towards MED12 

bound ternary complexes as compared to binary ones. In more detail, we measured for the type 

II inhibitor Sorafenib an IC50 of 695 nM towards the binary complex compared to an IC50 of 

2.8 µM towards MED12-bound ternary complexes, whereas the IC50 concentrations for the type 

I inhibitor CCT251545 were 155 nM and 85 nM, respectively. The same trend held true when 

assaying BIRB976 (type II) and Compound A (type I) (Fig. 47). These results indicate, that 

type II kinase inhibitors, which bind to the CDK8 hinge region and extend to the so-called deep 

pocket (Schneider et al., 2011), are hindered from binding to CDK8 when MED12 is part of 

the complex. The deep pocket is only accessible when CDK8 is in its inactive state (DMG-out 

conformation for CDK8), suggesting that MED12 binding to CDK8 induces a DMG-in-like 

conformation that renders type I kinase inhibitors more potent once CDK8 is part of the entire 

Mediator kinase module (Klatt et al., 2020). 
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Figure 47: Type II kinase inhibitors loose part of their efficiency against MED12 bound CDK8/Cyclin C complexes 

In vitro kinase assays with binary CDK8 (1-403)/Cyclin C and ternary CDK8 (1-403)/CycC/MED12 (1-100) complexes in 

presence of different concentrations of either a type II or a type I inhibitor using Sirtuin-1 as substrate. Reactions were pre-

incubated with 3-fold dilution series of aforementioned inhibitors, started by addition of ATP and stopped after 30 min. Note 

here that 7.5 pmol ternary complexes were assayed, yet 15 pmol binary complexes to obtain significant band intensities. Please 

note that kinase assays were carried out by Franziska Langhammer. 

 

To validate this conclusion, we used MST to measure the affinity of a MED12 (1-100) for 

binary CDK8 (1-403)/Cyclin C complexes in presence of saturating levels of a type I 

(CCT251545) or a type-II inhibitor (sorafenib) (Fig. 48). The affinity of MED12 (1-100) for 

CDK8 (1-403)/Cyclin C pre-bound to CCT251545 was about 21 nM, just like for the apo CDK8 

(1-403)/Cyclin C control. In contrast, a binary complex pre-bound to the type II inhibitor 

sorafenib showed a fivefold reduced affinity for MED12 with a Kd of about 130 nM (Fig. 48A) 
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(Klatt et al., 2020). In further support of these results we used ITC to, once again, find a fivefold 

reduction in the affinity of MED12 (1-100) for CDK8 (1-403)/Cyclin C pre-bound to sorafenib 

as compared to pre-binding of CCT25155, which only showed a minor reduction of MED12 

affinity for the binary CDK8 complex (Fig. 48B). We note here that a fivefold reduction in 

MED12 affinity for the binary CDK8 complex is highly significant, as we do not expect the 

inhibitors to interfere with MED12 interaction sites II+III (see chapter 6.2, Figs. 65A and C). 

Hence, we expected type II inhibitor pre-binding to only reduce MED12 affinity for CDK8 (1-

403)/Cyclin C, which is precisely what we observed (Fig. 48) (Klatt et al., 2020). 

 
Figure 48: MED12 binding to CDK8/Cyclin C is hampered in presence of the type II kinase inhibitor sorafenib 

(A) MST binding experiments using MED12 (1-100) and 2 nM binary CDK8 (1-403)/Cyclin C complexes that were either 

preloaded with 30 µM of the type I inhibitor CCT251545 or with 30 µM of the type II inhibitor sorafenib. Apo CDK8 (1-

403)/Cyclin C was used as control. Kd values are indicated. Error bars reflect the SD of two replicates. Please note that MST 

measurements were carried out by Dr. Elisabeth Schneider from Proteros biostructures GmbH. I provided the proteins. (B) 

Using ITC, the MST measurements from (A) were confirmed. Kd values are indicated. (Upper) The corrected heat rates; 

(Lower) The calculated enthalpies per infection are plotted against the molar ratio of ligand and target. Please note that 

CCT251545 addition resulted in some protein precipitate, which altered the observed molar ratio. Adopted from Klatt et al., 

2020. 

 

Taken together, these data uncovered that type II kinase inhibitors show drastically reduced 

inhibitory potential towards ternary MED12-bound CDK8 complexes. Contrary, we did not 

observe this loss of efficacy for type I inhibitors, which prompts us to speculate that binding of 

MED12 induces a DMG-in conformation in the active site of CDK8. Thereby access to the 

deep pocket is blocked, precluding type II inhibitors from binding to CDK8 (Klatt et al., 2020). 
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2.3.13 CDK8 phosphorylation acts in an inhibitory manner 

 

We established that CDK8 serves as a second substrate in our kinase assays (Fig. 33A and B), 

and took advantage of this finding when we utilized the ADP-GloTM technology (Klatt et al., 

2020; Schneider et al., 2011). These results motivated us to identify the exact CDK8 

phosphosites in order to study their potential role in kinase regulation. CDK8 phosphorylation 

is reported to activate the kinase (Knuesel et al., 2009b). First, we sought to recapitulate these 

findings by incubating CDK8 in presence of ATP, prior to the addition of any bona fide 

substrate (Fig. 49). We expected to measure CDK8 phosphorylation and thereby higher kinase 

activities for the pre-phosphorylated CDK8 variant when compared to non-pre-phosphorylated 

CDK8. To validate this suggestion, we employed our binary CDK8/Cyclin C complexes in our 

kinase assay system in a direct comparison to ternary CDK8/CycC/MED12 (1-100) complexes 

using the aforementioned strategy (Fig. 49).  

 
Figure 49: CDK8 phosphorylation acts inhibitory.  

(A) In vitro kinase assays using binary CDK8 (1-403)/Cyclin C complexes. Kinases were pre-incubated for 30 min together 

with ATP prior STAT1 addition. Kinase assays were carried out as described in Fig. 33. (B) Same as in (A), just with ternary 

CDK8 (1-403)/CycC/MED12 (1-100) complexes. Please note that kinase assays were carried out by Robin Weinmann. 
 

As proposed, the pre-incubation of CDK8 with ATP in absence of a bona fide substrate resulted 

in high CDK8 phosphorylation levels, which were especially pronounced in MED12-

containing CDK8 complexes (Fig. 49). Interestingly, yet in contrast to published data (Knuesel 

et al., 2009b), the pre-phosphorylated CDK8 variant showed reduced substrate (STAT1) 

phosphorylation (Fig. 49A). Furthermore, and much to our surprise, the pre-phosphorylated 

MED12-stimulated CDK8 kinase lost its catalytic activity to phosphorylate STAT1 (Fig. 49B). 

These data reveal, at least in our assay system, that CDK8 phosphorylation has a negative 

impact on kinase activity, which is especially profound for MED12-stimulated CDK8 

complexes.  
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2.3.14 CDK8 and CDK19 contain multiple phosphorylation sites 

 

We established CDK8 phosphorylation to inhibit CDK8 kinase activity (Fig. 49) and inhibitory 

phosphorylation events are commonly found in CDKs (Atherton-Fessler et al., 1993; Hunter, 

1995; Morgan, 1995). Despite the fact that MED12 functionally replaces CDK8/19 T-loop 

phosphorylation, CDK8 was reported to possess two T-loop distant phosphorylation sites on its 

C-terminal domain (T410 and S413) (Oppermann et al., 2009). However, whether these 

residues are phosphorylated by CDK8 itself or by a distinct kinase remains unknown. 

Moreover, we found CDK8 phosphorylation to be present in CDK8 (1-403), which indicates 

that CDK8 harbors (an) additional uncharacterized phosphorylation site(s). Alternatively, as we 

observed Cyclin C to be phosphorylated by CDK8 when it possesses a C-terminal Strep-tag 

(data not shown), we were aware of the possibility that the measured CDK8 phosphorylation 

signal might be an artifact which is caused by shortening of the CDK8 C-terminal domain up 

to residue 403. First, to validate that full-length CDK8 possesses additional unknown 

phosphorylation sites, we created CDK8 double mutants that lack the already known 

phosphorylation sites. In addition, to study a potential regulatory function, we also introduced 

aspartates as putative phosphomimetics (Chen and Cole, 2015; Hiscott et al., 1999) (Fig. 50). 

Intriguingly, both double mutants showed CDK8 phosphorylation (Fig. 50). This clearly 

demonstrates that full-length CDK8 contains unknown phosphorylation sites despite the 

previously observed T410 and S413. Moreover, these data also indicate that novel CDK8 

phosphorylation sites can be found in the C-terminally truncated CDK8 (1-403) variant.  

 
Figure 50: CDK8 possesses unknown phosphorylation sites 

In vitro kinase assays using full-length CDK8/CycC/MED12 (1-100) ternary complexes that contain double-mutations on T410 

and S413. Kinase assays were carried out with the STAT1 TAD as a substrate as described in Fig. 33. Please note that kinase 

assays were carried out by Bastian Jahreis.  

 

The C-terminal domains of CDKs commonly participate in kinase phosphorylation (Smith et 

al., 1993). Out mutational profiling within the CDK8 C-terminal domain revealed that unknown 

phosphorylation sites exist in the shortened CDK8 (1-403) variant (Fig. 50). Next, I asked 

whether CDK8 phosphorylation only involves its unresolved C-terminal domain. Therefore, we 
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set out kinase assays using both of our C-terminally shortened CDK8 variants, CDK8 (1-403) 

and CDK8 (1-359) (Fig. 51).  

 
Figure 51: CDK8 and CDK19 harbor uncharacterized phosphorylation sites within the C-terminal domain 

(A) In vitro kinase assays using wild-type full-length CDK8/CycC/MED12 (1-100) ternary complexes and both C-terminally 

shortened CDK8 (1-359) and CDK8 (1-403) variants. (B) Same as is (B) just with the two C-terminally shortened CDK8 

variants including CDK19. Kinase assays were carried out as described in Figs. 33 and 34. Please note that kinase assays were 

carried out by Robin Weinmann. 

 

Interestingly, we did not observe any CDK8 phosphorylation when we assayed the shortest 

CDK8 variant (1-359) (Fig 51A). This was also the case for CDK19 (1-359) (Fig. 51B). 

Moreover, both CDK8/19 (1-359) variants showed enhanced kinase activity (Figs. 51A and B), 

further supporting our hypothesis that CDK8/CDK19 phosphorylation acts inhibitory. The 

finding that the CDK8/CDK19 (1-359) variants lacks all phosphorylation signal strongly 

suggests that the CDK8/19 phosphorylation site(s) are located in the structurally unresolved C-

terminal domain of CDK8/19 (residues 360-403/439, see chapter 1.1, Figs. 5 and 7). This 

flexible part of the kinase contains six potential phosphorylation sites (TEEEPDDKG 

DKKNQQQQQGNNHTNGTGHPGNQDSSHTQGPPLKK, potential phosphoresidues are 

underlined), all of which we mutated and tested their impact on CDK8 phosphorylation and 

kinase activity. Unfortunately, none of the phosphosite mutants showed altered CDK8 

phosphorylation or kinase activity (Fig. 52). This suggests that CDK8 phosphorylation involves 

numerous phosphorylation sites. 
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Figure 52: CDK8 (1-403) phosphorylation includes multiple phosphorylation sites. 

In vitro kinase assay using ternary CDK8 (1-403)/CycC/MED12 (1-100) complexes. Each complex harbors mutations of serine 

and threonine residues in the C-terminal domain of CDK8, which spans from CDK8 residues 359-403. Kinase assays were 

carried out as described for Fig. 33. Please note that the kinase assay on top was carried out by Robin Weinmann, the other by 

Bastian Jahreis.  

 

2.3.15 The C-terminal domain of CDK8 contacts its active site 

 

We found that CDK8 phosphorylation has a negative effect on kinase activity (Fig. 49). The 

characteristic was especially pronounced in MED12-bound CDK8 complexes (Fig. 49). The 

systematic mutational profiling of putative CDK8 phosphorylation sites revealed unknown 

phosphorylation sites within the C-terminal domain of CDK8 (Figs. 50 and 51). As the CDK8 

C-terminal part could not be solved by X-ray crystallography, yet might contribute to kinase 

regulation (Dixon-Clarke et al., 2015), I further analyzed the intra-subunit crosslinks obtained 

for CDK8-containing ternary complexes that involves residues of the C-terminal domain (Fig. 

53). Intriguingly, all intra-subunit crosslinks that comprise residues of the unresolved C-

terminal domain of CDK8 cluster between residues 361 and 370 (Fig. 53A). In more detail, I 

identified this segment to interact with three residues that are part of the CDK8 T-loop (K153, 

K170 and D173) and with three residues that are in direct vicinity to its ATP binding site (K26, 

K37 and E55) (Figs. 53A and B). Furthermore, this stretch significantly overlaps with the 

MED12 interaction site II (K115, K118, K119), a finding that further supports our hypothesis 
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that MED12 binds adjacent to the disordered C-terminus of CDK8 (see chapter 6.2, Figs. 65A 

and C) (Klatt et al., 2020). In summary, intra-subunit crosslinks demonstrate that the unresolved 

C-terminal domain contacts the CDK8 active site. There, it is able to contact the T-loop, the 

ATP binding site and it overlaps with the MED12 interaction site II on CDK8 (Fig. 53B) (Klatt 

et al., 2020)  

 
Figure 53: The unresolved C-terminus of CDK8 contacts its active site. 

(A) The upper panel shows full-length CDK8 (1-464) with different protein domains highlighted. The lower panel shows a 

cartoon depiction of all intra-subunit crosslinks involving the unresolved C-terminus of CDK8. The intra-subunit crosslinks 

were grouped in three interaction sites (T-loop, MED12 interaction site II and ATP binding site) according to their localization 

on the surface of the binary CDK8/Cyclin C complex. (B) 3-dimensional arrangement of the three major sites of intra-subunit 

crosslinks between the C-terminal domain of CDK8 and CDK8 (1-403)/Cyclin C. Lysine and glutamate residues that were 

found crosslinked are represented as black spheres and plotted onto the structure of the CDK8 (1-403)/Cyclin C complex (PDB 

code 3RGF (Schneider et al., 2011). The ATP-molecule in the active site (colored in green) was superimposed from CDK9 

(PDB code 3BLQ) (Baumli et al., 2008). Please note that only K115 is shown instead of the structurally unresolved, cross-

linked residues K118 and K119. Please note that crosslinking experiments were carried out by Dr. Alexander Leitner. Raw 

data analysis and visualization was done by myself. 

 

CDK1 and CDK2 are negatively regulated by phosphorylation within their ATP binding site 

(Nakanishi et al., 2000; Pomerening et al., 2003). Despite the fact that crosslinking data that 

result from binary and ternary CDK8 (1-403) and CDK8 (1-464) complexes showed unchanged 

crosslinking patterns (Klatt et al., 2020), we found the C-terminal domain of CDK8 to contact 

its ATP binding site and T-loop (Fig. 53). This suggests that CDK8 can only be phosphorylated 

in its full-length form with its disordered C-terminal domain present. To substantiate this 

conclusion and to exclude phosphorylation sites within the ATP binding site and the T-loop, 

we finally mutated T31 and F32 within the CDK8 ATP binding pocket and T196 within the 

CDK8 T-loop (Fig. 54). CDK8 T31 and F32 align with the aforementioned conserved CDK1 
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and CDK2 phosphorylation sites, whereas CDK8 T196 has been hypothesized to be 

phosphorylated based on its sequence conservation to CDK7 T170 (which represents the 

activating phosphoresidue within the T-loop of CDK7, see chapter 1.1, Fig. 2) (Lolli et al., 

2004; Xu and Ji, 2011). The CDK8 T-loop mutations (T196D and T196A) showed drastically 

reduced enzymatic activity, yet CDK8 phosphorylation persisted. The reduced kinase activity 

is likely a result of the lost structural integrity of the T-loop introduced by such a mutation (Xu 

et al., 2014). However, the mutation in the CDK8 ATP binding pocket T31D, but not the T31A 

and Y32F, led to a loss of CDK8 phosphorylation and, concomitantly, to a loss in substrate 

kinase activity. The introduced aspartate therefore likely functions as a phosphomimic that 

excludes ATP binding, as has been observed for CDK1 and CDK2 (Nakanishi et al., 2000; 

Pomerening et al., 2003). Altogether, none of the substituted putative phosphorylation sites led 

to a loss of CDK8 phosphorylation and all mutations negatively affected kinase activity. 

However, I established that the CDK8 T31D mutant is a catalytically incompetent kinase. Thus, 

I denoted CDK8 (1-403) carrying an T31D mutation the “kinase-dead” mutant. 

 
Figure 54: CDK8 ATP binding site and T-loop mutations abrogate substrate kinase activity 

In vitro kinase assays using ternary CDK8 (1-403)/CycC/MED12 (1-100) complexes. Each complex harbor either a mutation 

in the ATP bind site or a mutation within the T-loop of CDK8. Kinase assays were carried out with STAT1 TAD as a substrate 

as described in Fig. 33. 

 

2.3.16 CDK8 phosphorylation occurs in cis 

 

We found that CDK8 phosphorylation has an inhibitory impact on kinase activity (Fig. 49). 

However, we did not know whether this phosphorylation event takes place in cis or in trans. 

Therefore, I replaced the bona fide substrate in our assay with the aforementioned CDK8 

“kinase-dead” mutant T31D (Fig. 54). I expected to only measure CDK8 phosphorylation of 

the “kinase-dead” mutant in case wild-type CDK8 was able to phosphorylate the 

aforementioned mutant. This, in turn, would strongly suggest that CDK8 phosphorylation 

occurs in trans, meaning that one CDK8 molecule phosphorylates another one. In contrast, no 

phosphorylation signal would indicate that CDK8 phosphorylation takes place in cis, which is 
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known as autophosphorylation (Smith et al., 1993). As shown on Fig. 55, I did not observe any 

phosphorylation of the “kinase-dead” mutant upon incubation with wild-type CDK8. This leads 

me to conclude that CDK8 phosphorylation takes place in cis, meaning that CDK8 

phosphorylates itself. 

 
Figure 55: CDK8 phosphorylation occurs in cis 

In vitro kinase assays using different CDK8-containing ternary complexes. The left shows kinase activity of natural full-length 

CDK8 towards STAT1 TAD, whereas the “kinase-dead” mutant (right next) shows no kinase activity. Both assays serve as 

controls. Kinase assays were carried out as described in Fig. 33. The right assay demonstrates, that the “kinase-dead” CDK8 

(1-403) T31D mutant is not phosphorylated by full-length and wild type CDK8 (7.5 pmol), even when utilized in high substrate 

(50 pmol) concentrations.  

 

2.3.17 CDK8 auto- and substrate-phosphorylation are coupled 

 

Having shown that CDK8 phosphorylation is a cis-regulatory event, we lastly suspected that 

CDK8 autophosphorylation and substrate phosphorylation are mechanistically coupled (Smith 

et al., 1993). To investigate a potential interdependence between CDK8 autophosphorylation 

and substrate phosphorylation, we titrated the bona fide substrate STAT1 against wild type 

CDK8 (Fig. 56). Interestingly, we find the signal intensity of CDK8 phosphorylation to 

correlate with increasing STAT1 concentrations and phosphorylation levels. This demonstrates, 

that CDK8 auto- and substrate-phosphorylation are mechanistically coupled, at least in our in 

vitro assay system.  

 
Figure 56: CDK8 and substrate phosphorylation are mechanistically coupled.  

In vitro kinase assays using wild type CDK8/CycC/MED12 (1-100) ternary complexes. 2,5 pmol kinase was utilized against 

different STAT1 TAD substrate concentrations. Individual substrate concentrations within each assay is shown on top. The 
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four choosen kinase to substrate ratios are 1:1, 1:10, 1:30 and 1:160, respectively. Please note that kinase assays were carried 

out by Bastian Jahreis. 

 

2.3.18 Does Cyclin H phosphorylation by CDK8 regulate CDK7 kinase activity? 

 

Cyclin H possesses two phosphorylation sites on its N- and C-terminal helices (Ser-5 and Ser-

304) (Akoulitchev et al., 2000). To test whether CDK8-mediated Cyclin H phosphorylation 

negatively impacts CDK7 kinase activity, I first established a kinase assay for our purified 

binary CDK7/Cyclin H complex with DSIF and Pol II as known substrates (Glover-Cutter et 

al., 2009) (Fig. 57). As demonstrated on Fig 57A, the purified binary CDK7/Cyclin H complex 

is active and phosphorylates both Spt5 and Pol II. Moreover, as it was the case for CDK8/19, 

in addition to substrate phosphorylation (here DSIF or Pol II), I observed CDK7 

autophosphorylation (Garrett et al., 2001). Having established a functional assay to measure 

CDK7 kinase activity, we finally utilized purified Cyclin H as a substrate for CDK8. We 

expected Cyclin H to be phosphorylated by CDK8, as we had been able to validate several 

CDK8 targets, such as Sirtuin-1, BRCA1 and NELF-A (Klatt et al., 2020; Poss et al., 2016). To 

my disappointment, however, we did not observe any phosphorylation of Cyclin H (data not 

shown) and therefore decided to utilize our purified and active binary CDK7/Cyclin H complex 

as a substrate of CDK8. However, yet again, we did not detect Cyclin H phosphorylation by 

CDK8 (Fig. 57B). This strongly suggests that other subunits of the TFIIH complex - like MAT1 

- are required for the CDK7/Cyclin H complex to serve as a bona fide CDK8 substrate 

(Akoulitchev et al., 2000; Greber et al., 2020). Altogether, the binary CDK7/Cyclin H complex 

is active and shows CDK7 autophosphorylation. However, Cyclin H, both as a single protein 

or bound to CDK7, is not subject to phosphorylation by CDK8 under the tested conditions.  

 
Figure 57: The binary CDK7/Cyclin H complex is highly active, yet Cyclin H does not get phosphorylated by CDK8 

(A) In vitro kinase assays with N-terminally GST-tagged CDK7/Cyclin H binary complexes. 10 pmol kinase was utilized 

against 50 pmol DSIF or 10 pmol  Pol II. Kinase assays carried out as decribed in Fig 33. (B) Same as in (A), just using 7.5 

pmol ternary CDK8 (1-403)/CycC/MED12 (1-100) complexes as kinase and 50 pmol binary CDK7/Cyclin H complex as 

potential CDK8 substrate. 
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2.4 MED12 forms an active ternary complex with CDK3 and Cyclin C 

 

The role of CDK3 is poorly understood. The reason therefore is likely due to its low expression 

levels and based on the fact that CDK3 is inactive in most strains of inbred mice (Malumbres 

and Barbacid, 2001; Ye, 2001). Hence, it is conceivable that CDK3 is dispensable for the cell 

cycle as its role can be compensated by CDK1 and CDK2 (Ye, 2001). In contrast, CDK3 from 

wild-type mice species express full-length CDK3. This is also the case in humans. CDK3 has 

originally been classified as a cell cycle-related CDK, because of its high sequence identity 

with CDK1/2 (see chapter 1.1, Fig. 1) and its ability to complement CDK2 mutations in yeast 

(Meyerson et al., 1992). Moreover, CDK3 is known to bind Cyclin C and is involved in G0-G1 

and G1-S cell cycle transitions by phosphorylating the retinoblastoma protein at Ser-807/811 

(Hofmann and Livingston, 1996; Ren and Rollins, 2004). Interestingly, high p21 levels were 

reported to inhibit the aforementioned kinase activity (Harper et al., 1995). Furthermore, the 

activity of the transcription factors E2F and ATF1 are dependent on CDK3 (Zheng et al., 2008). 

Interestingly, viruses encode a Cyclin C homologue that competes with Cyclin C in binding to 

both CDK3 and CDK8 and thereby modulates the cell cycle (Brewster et al., 2011). Last and 

probably most importantly, aberrant CDK3 expression levels were observed in human cancer 

cells and linked to abnormal Wnt-signaling, indicating a functional role for CDK3 (Zheng et 

al., 2008). Despite these studies, our understanding of human CDK3 and its biological role is 

limited. To that end, I got interested into CDK3 and started to investigate this cell-cycle related 

CDK. 

 During my protein purifications, I observed that N-terminal MED12 forms distinct 

binary complexes with Cyclin C devoid of CDK8/19 (data not shown). This finding prompted 

me to examine a potential interaction between the N-terminal part of MED12 and the binary 

CDK3/Cyclin C complex. Indeed, our results demonstrate that a ternary complex comprising 

MED12 (1-100), CDK3 and Cyclin C can be co-expressed and purified close to homogeneity 

(Fig. 58A). Next, to validate CDK3 kinase activity and to examine whether the N-terminal part 

of MED12 stimulates CDK3 kinase activity as we confirmed for CDK8/19, we carried out 

kinase assays with Pol II as a substrate. Therefore, we co-expressed the binary CDK3/Cyclin C 

complex and measured its kinase activity against the ternary CDK3/CycC/MED12 (1-100) 

complex (Fig. 58B). I note here, that the binary CDK3/Cyclin C complex was only marginally 

co-expressed (data not shown), which hindered standard protein purification. Much to my 

surprise, the inclusion of MED12 (1-100) not only enhances CDK3/Cyclin C co-expression, 

furthermore, it also shows a profound stimulatory effect on CDK3 kinase activity. The MED12-
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stimulated CDK3 phosphorylates the Pol II CTD in a comparable dynamic range as MED12-

stimulated CDK8 and we did not detect any phosphorylation of CDK3 (Fig. 58B). 

 
Figure 58: Purification of an active ternary CDK3/CycC/MED12 complex 

(A) Size-exclusion chromatogram of a purified ternary CDK3/CycC/MED12 (1-100) complex using a Superdex 200 (GE 

Healthcare). The peak shoulder shows an excess of Cyclin C and MED12, which can be separated as demonstrated by SDS-

PAGE. The protein complex is shown as a cartoon above the gel, individual proteins are indicated next to the gels. CDK3 is 

depicted in yellow, Cyclin C in blue and MED12 in grey. Cyclin C in encircled in black as it contains a C-terminal Strep-tag. 

Please note that protein purification was carried out by Amelie Lindner. (B) In vitro kinase assays with CDK3/Cyclin C binary 

and CDK3/CycC/MED12 (1-100) ternary complexes using Pol II as substrate. 5 pmol kinase was utilized against 5 pmol Pol 

II. Kinase assays were carried by Amelie Lindner as described in Fig 33. MED12-stimulated CDK8 was used as control (left 

lane). Please note that the binary CDK3/Cyclin C complex was poorly expressed and therefore only affinity-purified. 
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Chapter 3: Discussion 

 

3.1 A revised model of how MED12 activates CDK8 

 

In summarizing our in vitro and in vivo data, we propose a new model of how MED12 activates 

CDK8 (Fig. 59) (Klatt et al., 2020). In a first step, CDK8 is bound by Cyclin C, which leads to 

a “pushed-in” conformation of the αC-helix of CDK8, generating the kinase active site 

(Schneider et al., 2011). At this step CDK8 inhibitors were shown to trap the kinase in both a 

DFG-in conformation  (type I) as required for catalysis (PDB code 5BNJ) (Dale et al., 2015) or 

in a DFG-out conformation (type II) that impedes catalysis and engages the deep pocket of the 

kinase (Fig. 60) (PDB code 3RGF) (Schneider et al., 2011). Binding of ATP-competitive type 

 
Figure 59: A revised model of how MED12 activates CDK8 and remodels the active site of CDK8. 

(A) Step 1: Cyclin C binds to CDK8 and pushed the aC-helix of CDK8 into the “pushed-in” conformation. This binding event 

is crucial for the formation of the active site of CDK8 and results in basal kinase activity as demonstrated in Fig. 21. Step 2: 

MED12 binding to CDK8/Cyclin C stabilizes and activates the entire ternary complex. In particular, an activation helix in 

MED12 contacts and stabilizes the T-loop of CDK8, thereby activating the kinase. Likely, this contact is established through 

an interaction of an acidic residue at the N-terminal tip of the MED12 activation helix (E33) and the CDK8 arginine triad (R65, 

R150 and R178). Moreover, MED12 binding favors the active site of CDK8 to adopt a DMG-in conformation of the active site 

and disfavors type II kinase inhibitors from binding and inhibiting CDK8 in ternary CDK8/CycC/MED12 complexes. Please 

note that this model includes data that were not generated by myself. Adapted from Klatt et al., 2020. 
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I inhibitors is promiscuous due to the well conserved ATP binding site within the CDK family, 

increasing the potential for off-target side effects (Echalier et al., 2010; Force and Kolaja, 2011; 

Kufareva and Abagyan, 2008). CDK8 was found to be the only known CDK that provides 

access to its deep pocket, enabling selective type II inhibitor binding (Schneider et al., 2013).  

 
Figure 60: Views of the CDK8 active site in DMG-out and DMG-in conformation 

Views of the CDK8 active site in DMG-out and DMG-in conformation (PDB codes 3RGF and 5BNJ, respectively). The CDK8 

residues that are part of the arginine triad are shown as yellow sticks. The residues making up the DMG motif in CDK8 (D173-

M174-G175) are shown in blue color. K52 and E66, two residues that are part of the catalytic triad of CDK8 (together with 

D173) and form a salt bridge once type I inhibitors bind to CDK8 in a DMG-in conformation, are shown in wheat color. The 

salt bridge is depicted as a dashed line- We note here that we found E66 to be crosslinked to MED12 K32 (Fig. 65A) and that 

we measured difference (fofc) density for the αC-helix by X-ray crystallography (Fig. 67). Adapted from Klatt et al., 2020. 
 

We envision that the active site of the basal active CDK8/Cyclin C binary complex can exhibit 

both a DFG-in, as well as a DFG-out conformation. Next, the N-terminal segment of MED12 

wraps around CDK8, thereby placing its "activation helix" right next to the T-loop of CDK8 

(Klatt et al., 2020). Our mutational data indicate that the exact placement of this helix is crucial 

for activation of CDK8 by MED12. Binding alone is insufficient (Figs. 44 and 46). Moreover, 

our data indicate that the fact that MED12 wraps around CDK8 is important for its activity. A 

minimal fragment of MED12, for which we were able to isolate a stable, active ternary complex, 

comprised MED12 residues 23 to 69 (Fig. 61) (Klatt et al., 2020). This correlates well with 
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sites I and II (see chapter 6.2, Figs. 65A and C) and suggests that MED12 has to at least bind 

to these two sites for any stable association with CDK8. In more detail, our data suggest a direct 

contact between the arginine triad of CDK8 and E33 in MED12 (Figs. 39A and 44A). In support 

 
Figure 61: Purification of ternary CDK8 (1-403)/CycC/MED12 complexes comprising numerous MED12 truncations 

The minimal stable truncation  is MED12 (23-69), comprising the MED12 interaction site I and II. Shortening or eliminating 

the MED12 interaction II leads to hindered complex expression and thereby formation. Please note that ternary complexes 

were only affinity-purified and therefore MED12 still carries the Strep-tag. 

 

of this contact, we also detected a zero-length crosslink between K32 in MED12 and E66 in the 

aC-helix of CDK8 (see chapter 6.2, Figs. 65A and C). K32 is situated right next to E33, the 

residue critical for MED12 function, and E66 is close to R65, one of the three members of the 

CDK8 arginine triad. As E66 is pointing towards the interior of the CDK8 molecule in binary 

CDK8/Cyclin C complexes, a further rearrangement of the aC-helix upon MED12 binding to 

CDK8 is likely (Fig. 60). We note here that E66 is part of the CDK8 catalytic triad. In addition 

to our crosslinking data, we detected negative fofc difference density in proximity of the aC-

helix in a preliminary structure solution of a ternary CDK8/CycC/MED12 complex (see chapter 

6.3, Fig. 67), which further supports a MED12-dependent rearrangement of the CDK8 active 

site. Finally, we hypothesize that the contact between the arginine triad and the activation helix 

of MED12 leads to a stably "folded-away" conformation of the CDK8 T-loop, allowing 

unobstructed substrate binding to the active site (Klatt et al., 2020). We note here, that the CAK 

assembly factor MAT1 was recently shown to utilize an extended helix that positions the T-

loop of CDK7 in a comparable stably “folded-away” and fully active conformation (Greber et 

al., 2020).  

 The low-resolution cryo-EM map of the entire kinase module from Saccharomyces 

cerevisiae (Tsai et al., 2013) was interpreted to show that MED12 contacts Cyclin C only (see 

chapter 1.3, Fig. 10A). In contrast, our structural, functional and mutational data indicate the 

essential role of the MED12 N-terminal segment and the CDK8 αC-helix for contact formation. 
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This apparent discrepancy may be due to the limited resolution (15 Å) of the cryo-electron 

microscopy map that cannot resolve the extended shape of the MED12 N-terminal segment and 

its detailed interactions with the kinase (Klatt et al., 2020). 

 

3.2 Future CDK8 inhibitors need to be developed against MED12-bound CDK8 

complexes 

 

Whereas class I kinase inhibitors inhibit both binary CDK8/Cyclin C and ternary 

CDK8/CycC/MED12 complexes equally well, class II inhibitors lose a significant fraction of 

their inhibitory potential when utilized against the ternary CDK8/CycC/MED12 complex (Fig. 

47). This finding highlights a common problem in drug development: Whereas atomic 

resolution structures are needed for rational structure-based drug design, most drug targets are 

part of larger complexes, whose structures are unknown. Our study suggests that future drug 

development aimed at CDK8-specific drugs needs to focus on ternary, MED12-containing 

complexes. This is the case as our data suggest that MED12 induces - or at least favors - a DFG-

in conformation of the active site of CDK8 (Figs. 47 and 60), thereby essentially precluding 

efficient binding of class II inhibitors. The fact that we found CCT251545 to be equally 

effective against both binary and ternary complexes is likely due to its discovery in cell-based 

SILAC (stable isotope labeling by/with amino acids in cell culture) pulldown assays (Dale et 

al., 2015). There, CDK8 is predominantly present in complex with MED12, which enabled the 

discovery of CCT251545 as potent inhibitor of ternary CDK8 complexes. Lastly, novel drugs 

intended at reducing CDK8 activity may also be developed by using small molecules that 

disrupt the interface between the MED12 activation helix and CDK8 (Jin et al., 2014). Such 

approach would likely not impair the structural integrity of the Mediator kinase module and 

may only specifically target MED12's role in activating CDK8 (Klatt et al., 2020). 

 Furthermore, our data demonstrate that reducing CDK8 activity can have both positive 

and negative effects on target gene expression (Klatt et al., 2020). This is likely the result of the 

multitude of CDK8 targets and the differential functional outcome of target phosphorylation by 

CDK8 (Poss et al., 2016). For future drug development efforts it is therefore imperative to first 

decipher the exact role of CDK8 in the particular cancer under investigation and then to decide 

whether reducing CDK8 activity is the right route to take to impact the disease. This caution is 

warranted since MED12 was found to be involved in chemotherapy resistance without this 

finding having anything to do with its nuclear function as a CDK8 activator and part of the 

Mediator kinase module (Huang et al., 2012; Klatt et al., 2020) 
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3.3 MED12 stimulates the activity of CDK19 in analogous ways to CDK8 
 

In focusing on our in vitro data, the N-terminal portion of MED12 binds CDK8/Cyclin C and 

CDK19/Cyclin C equally well (Fig. 31), leading in both cases to their activation (Figs. 33 and 

34). However, arguing against our findings, CDK19 was recently reported to act in a kinase-

independent manner (Steinparzer et al., 2019). However, based on our results, we suggest that 

CDK19 kinase activity is relevant as we found MED12 to bind  and to activate the kinase in 

analogous ways to CDK8. Moreover, nanomolar affinities of MED12 (1-100) towards binary 

CDK8/ Cyclin C and CDK19/Cyclin C complexes reveal that the assembly of CDK8- or 

CDK19-containing kinase modules that lack MED13 is determined by the physical presence of 

individual mediator kinases and not dependent on different binding affinities between the 

mediator kinase paralogs (Fig. 31). Further, the structural and functional data for CDK19 

indicate a similar binding and activation mode as shown for CDK8. In detail, the MED12 

interaction site I (see chapter 6.2, Figs. 65A and C), which harbors the activation helix (Figs. 

38 and 39), seems to bind in an analogous manner to CDK19 as we showed for CDK8 (see 

chapter 6.2, Figs. 65A and B). Additionally, the number of intra-subunit crosslinks is reduced 

in all MED12-containing ternary complexes compared to their respective binary complexes 

(Klatt et al., 2020) and we demonstrated that MED12 (1-100) significantly stabilizes 

CDK8/Cyclin C complexes (Fig. 32). As activation correlates with complex stabilization 

(Nolen et al., 2004), we expect an increase in thermal stability for CDK19/Cyclin C complexes 

upon MED12 binding. Moreover, a MED12 E33 mutation also eliminated the stimulatory 

function of MED12 to activate CDK19 (Fig. 40). Thus, we propose that the MED12 activation 

helix similarly contacts the arginine triad in CDK19 – just as we found to be the case for CDK8. 

In consequence, cancer-associated MED12 exon 2 mutations located on the activation helix 

would also impair CDK19 kinase activity. Based on the obtained in vitro data for CDK8/19 and 

their high sequence conservation (see chapter 1.1, Fig. 7), we further propose that binding of 

type II inhibitors to MED12-bound CDK19 complexes might be drastically reduced - as we 

showed for CDK8 (Fig. 47). Last and in conclusion, our generated HCT116 MED12 E33Q 

knock-in cell line (Klatt et al., 2020) not only lacks to activate CDK8, it further is unable to 

stimulate CDK19 kinase activity, resulting in diminished STAT1 phosphorylation levels (Fig. 

43). However, despite the fact that CDK8 and CDK19 apparently harbor comparable activities 

and substrate preferences in our assay system (Fig. 36), CDK8- and CDK19-specific functions 

are likely to exist in vivo, which can explain the differential output upon individual Mediator 

kinase knockdown (Steinparzer et al., 2019; Tsutsui et al., 2011).  
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3.4 CDK8 autophosphorylation participates in a negative feedback loop 
 

We demonstrated that CDK8 autophosphorylation acts inhibitory (Fig. 49) and uncovered 

uncharacterized phosphorylation sites within CDK8 (Figs. 50 and 51). As we found our C-

terminally shortened CDK8/CDK19 (1-359) variants to lack CDK8 autophosphorylation (Fig. 

51), we propose that CDK8 autophosphorylation involves the structurally unresolved C-

terminal domain of the kinase. The elevated kinase activity for both CDK8/CDK19 (1-359) 

variants compared to CDK8 (1-403) and CDK19 (1-439) could be rationalized due to the 

missing second alternative substrate in the reaction together with the lacking inhibitory effect 

of CDK8 autophosphorylation (Fig. 51). Crosslinking data obtained for CDK8-containing 

ternary complexes showed that the C-terminal domain of CDK8 contacts the active site (Fig. 

53). Following systematic profiling of potential phosphorylation sites we concluded that CDK8 

neither carries phosphorylation sites within its ATP binding site, nor within its T-loop (Fig. 54). 

Instead, any additional regulatory phosphorylation sites in CDK8 are very likely located in its 

unresolved C-terminal domain.  

 However, as the individual knockout of all potential phosphorylation sites within the 

shortened CDK8 (1-403) C-terminal domain had no impact on CDK8 autophosphorylation 

(Fig. 52), we hypothesize that CDK8 autophosphorylation involves multiple phosphorylation 

sites (Johnson et al., 1996),(Osusky et al., 1995). In support of this hypothesis, we find the 

signal intensities of CDK8 autophosphorylation to correlate with signal intensities obtained 

from bona fide kinase substrates (Figs. 33 and 34), all of which we utilized in six-fold higher 

concentrations. Even titrating the bona fide substrate up to one hundred-fold higher against 

CDK8 resulted in comparable CDK8 and STAT1 signal intensities (Fig. 56), further 

strengthening our idea that CDK8 autophosphorylation comprises numerous phosphorylation 

sites. This could also be the reason, why the individual knockout of the six potential CDK8 

phosphorylation sites did not significantly alter CDK8 phosphorylation (Fig. 52). In summary, 

however, these data confirm, that CDK8 by itself serves as a substrate, which we measured in 

our ADP-Glo assays (Klatt et al., 2020). 

 We found CDK8 autophosphorylation significantly enhanced in MED12-stimulated 

CDK8/Cyclin C complexes, yet not in basal active CDK8/Cyclin C complexes (Fig. 49). 

Strikingly, the MED12 interaction site II, which we identified to be critical to activate the kinase 

(Klatt et al., 2020), overlaps with the localization of the unresolved C-terminus of CDK8 (please 

compare Figs. 53A and B with 65A and C). These findings allow me to speculate, that first, 

MED12 binding involves the CDK8 C-terminal domain, and second, MED12 binding to CDK8 



 Discussion 

 

77 

positions the C-terminal domain of CDK8 in a conformation favored to autophosphorylation. 

In support of a contact between N-terminal MED12 and the CDK8/19 C-terminal domain, we 

observed slightly higher affinities of MED12 for both full-length CDK8/CDK19 variants when 

compared to their C-terminally shortened variants (Figs. 31A and C). Last, CDK8 

autophosphorylation seems to be mechanistically coupled to substrate phosphorylation (Fig. 

56).  

 In aggregating all evidence, I ascribe a functional role of CDK8 autophosphorylation 

only for MED12-stimulated CDK8 complexes. In detail, I envision that negatively charged 

phosphate groups on the flexible CDK8 C-terminal domain can impede with ATP binding 

thereby negatively regulating kinase activity as shown for the transcription-related 

CDK12/Cyclin K complex (Dixon-Clarke et al., 2015). Finally, I propose a model for CDK8 

autophosphorylation that participates in a negative feedback loop (Fig. 62). In support of my 

model, the dephosphorylation of CDK8 exerted by the protein phosphatase 2 (PP2A) was 

shown to elevate CDK8 kinase activity (Rovnak et al., 2012).  

 
Figure 62: CDK8 autophosphorylation might contribute in a negative feed-back loop 
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CDK8 autophosphorylation is especially significant in MED12-stimulated CDK8 complexes (Fig. 49). Upon MED12 binding 

(Step: 2), the CDK8 C-terminus adopts a conformation that is favored to autophosphorylation. High bona fide substrate 

concentrations trigger CDK8 autophosphorylation (Fig. 56), thereby impeding with ATP binding. This finally decreases CDK8 

kinase activity in a substrate- and MED12-dependent manner. Please note that this model includes data that were not generated 

by myself. 

 

3.5 A novel and functional ternary CDK3/CycC/MED12 complex 

 

First and foremost, an interaction between MED12 and CDK3 has never been reported. My 

discovery that MED12 (1-100) associates with Cyclin C is in line with our described overall 

architecture of our CDK8/CycC/MED12 ternary complexes, in which we found MED12 

primarily to contact the CDK. In support of a direct contact between MED12 and Cyclin C, we 

detected highly significant intra-subunit crosslinks from MED12 K32 and D34 to Cyclin C E99 

and E98 (please see 6.2, Fig. 61A and C), both of which we found not to be involved in the 

MED12-dependent CDK8 activation mechanism (Fig. 45).  

 Cyclin C binding pushes the aC-helix in the so called “pushed-in conformation” (see 

chapter 1.1, Fig. 3; and Fig. 59) and we established MED12 to contact the aC-helix of CDK8 

(see chapter 6.2 and 6.3, Fig. 65 and 67, respectively). Therefore, we envision that MED12 

binding to the CDK is dependent on a “pushed-in” conformation of the aC-helix. This leads 

me to speculate, that both Cyclin C and the binary Cyclin C/MED12 complex, yet not MED12 

alone, can bind to the monomeric CDK (which comprises the aC-helix in the “pushed-out” 

conformation), resulting in a partially or fully active CDK. However, to gain more insights how 

MED12 binds to Cyclin C and to binary CDK3/Cyclin C, it will be exciting to measure the 

affinity of MED12 for Cyclin C and to compare obtained results to binary CDK3/Cyclin C 

complexes. I note here, that the cell cycle-related CDK3 binds also A- and E-type cyclins 

(Connell-Crowley et al., 1997). Whether MED12 would still bind to these resulting CDK3 

binary complexes remains elusive. However, currently, neither the in vivo cyclin partner(s) of 

CDK3 nor the in vivo substrates of this kinase are known (Braun et al., 1998).  

 Intriguingly, MED12 has a profound effect on CDK3 kinase activity (Fig. 58B). I did 

not expect such a stimulatory function of MED12 for the CDK3/Cyclin C complex as the T-

loop of CDK3 possesses the canonical activating T-loop phosphorylation site (see chapter 1.1, 

Fig. 6). However, CDK3 T-loop phosphorylation by CAK or another kinase has not been 

reported yet. Whether the MED12 activation helix, which we describe to be essential to activate 

CDK8/19, positions the T-loop of CDK3 in analogous ways as we found for CDK8/19 will 
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require more detailed biochemical data. Lastly, as the binary CDK3/Cyclin C complex is only 

poorly co-expressed, we propose that the N-terminal part of MED12 helps to fold the binary 

CDK3/Cyclin C complex, leading to its activation and therefore complex stabilization (Nolen 

et al., 2004). This matches our previous observations, in which we found the N-terminal portion 

of MED12 to enhance protein co-expression of all the CDK8/19-containing ternary complexes. 

Finally, based on these preliminary results, I propose that CDK3 might be able to assemble into 

a novel Mediator kinase module with the N-terminal segment of MED12 functioning as 

universal co-activator of all Cyclin C-associated kinases.  
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Chapter 4: Conclusions 

 
CDK8, the catalytic core of the Mediator kinase module, is activated by MED12. A prior model 

proposed that MED12 binds to a surface groove on Cyclin C and thereby activates CDK8 (see 

chapter 1.4, Fig. 14). However, how MED12 binding to the distant surface on Cyclin C is 

coupled to CDK8 activation remained elusive and the model was therefore controversial. The 

presented data within this thesis advance our understanding of how CDK8 kinase activity is 

stimulated by MED12.  

 

The main findings of this thesis, which are also based on data by other scientists, are 

summarized below (Klatt et al., 2020): 

 

§ MED12 binding to CDK8/Cyclin C stabilizes the complex and activates the kinase  

§ MED12 binding likely induces a DMG-in conformation in the active site of CDK8 

§ The N-terminal segment of MED12 wraps around CDK8 without contacting Cyclin C  

§ A newly identified MED12 activation helix functionally replaces CDK8 T-loop 

phosphorylation and likely contacts the arginine triad of CDK8 

§ A misplaced MED12 activation helix likely contributes to human oncogenesis 

  

Based on obtained structural and functional data, we propose a new model for MED12-

dependent CDK8 activation (Fig. 59). In addition, this study invigorates that future drug 

development should be aimed at ternary MED12-bound CDK8/Cyclin C complexes, as we find 

type II inhibitors to lose their efficiency when utilized against MED12-bound CDK8 complexes 

(Klatt et al., 2020). 

 



 Materials 

 

81 

Chapter 5: Materials and Methods 

5.1 Material 

5.1.1 Chemicals 

1,4-Dithiothreitol (DTT) Carl Roth GmbH + Co.KG, Karlsruhe 
Agarose GERBU Biotchnik GmbH, Heidelberg 
Dimethyl sulfoxide (DMSO) Carl Roth GmbH + Co.KG, Karlsruhe 
Desthiobiotin Sigma-Aldrich, St. Louis, MO, USA 
Ethylendiaminetetraacetic acid (EDTA) Carl Roth GmbH + Co.KG, Karlsruhe 
Ethanol (EtOH), absolute VWR International, Radnor, PA, USA 
Fetal bovine serum (FBS) PAA Laboraties, Pasching, Österreich 
Isopropanol, absolute VWR International, Radnor, PA, USA 
Isopropyl-β-D-thiogalactoside (IPTG) Carl Roth GmbH + Co.KG, Karlsruhe 
Polyacrylamide 40% (PAA), 29:1 Carl Roth GmbH + Co.KG, Karlsruhe 
Powdered milk, blotting grade Carl Roth GmbH + Co.KG, Karlsruhe 
Prestained Protein Ladder Bio-Rad Laboratories, München 
Sodium dodecyl sulfate (SDS) Carl Roth GmbH + Co.KG, Karlsruhe 
Tetramethylethylenediamine (TEMED) Carl Roth GmbH + Co.KG, Karlsruhe 
Tris(2-carboxyethyl)phosphine (TCEP) Carl Roth GmbH + Co.KG, Karlsruhe 
TRIzol (peqGOLD TriFast FL) Peqlab Biotechnologie GmbH, Erlangen 

Common chemicals not listed like antibiotics, protease inhibitors or buffering agents were 

obtained from Carl Roth GmbH + Co. KG. 

 

5.1.2 Consumables 

1 kb DNA ladder New England Biolabs, Ipswich, MA, USA 
ATP, [y-32P]-3000 Ci/mmol PerkinElmer, Waltham, MA, USA 
Benzonase®Endonuclease Selfmade 
Centrifugal Filter Units Amicon® Ultra-4/15 Merck Millipore, Burlington, MA, USA 
Cre-recombinase New England Biolabs, Ipswich, MA, USA 
ECLTM detection reagent GE Healthcare, Chicago, IL, USA 
EZ Vision DNA loading dye Amresco LLC, Solon, OH, USA 
QIAquick Gel Extraction Kit Qiagen GmbH, Hilden 
QIAprep Spin Miniprep Kit Qiagen GmbH, Hilden 
Taq DNA polymerase Selfmade 
TEV Protease Selfmade 
Phusion DNA polymerase New England Biolabs, Ipswich, MA, USA 
Strep-Tactin® Superflow IBA Lifesciences, Göttingen 
XtremeGENE™ HP Roche, Mannheim, DE 
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General and standard plastic consumables not listed were obtained from Greiner Bio-One, 

Sarstedt GmbH, or Brand GmbH. 

 

5.1.3 Technical Instruments 

-80°C freezer Thermo Fischer Scientific, Waltham, MA, USA 
ÄKTATM pure GE Healthcare, Chicago, IL, USA 
New Brunswick™ Innova 42 (throw 25 mm) Eppendorf Deutschland, Wesseling-Berzdorf 
Electrophoresis equipment (proteins) 
Electrophoresis equipment (DNA) 

Bio-Rad Laboratories, München 
Peqlab Biotechnologie GmbH, Erlangen 

Eppendorf Centrifuge 5417R Eppendorf Deutschland, Wesseling-Berzdorf 
Eppendorf Thermomixer C Eppendorf Deutschland, Wesseling-Berzdorf 
Eppendorf Biospectrometer basic Eppendorf Deutschland, Wesseling-Berzdorf 
Insect cell shaker, Multitron Pro (throw 50 mm) Infors HT, Bottmingen, CH 
Monolith NT.LabelFree TA Instruments, New Castle, DE, USA 
Nano ITC Low Volume TA Instruments, New Castle, DE, USA 
Sonifier Branson Ultrasonics, Danbury, CT, USA 
Sterile Bench, HERAsafe® KS18 1/PE AC Thermo Fischer Scientific, Waltham, MA, USA 
Thermocycler peqSTAR Peqlab Biotechnologie GmbH, Erlangen 
Ultracentrifuge Optima XPN and Ti-45 Rotor Beckman Coulter, Brea, CA, USA 

 

5.1.4 Software 

AIDA Image Analysis software  Elysia-Raytest GmbH, Straubenhardt 
Adobe Illustrator CS6 San Jose, CA, USA 
CLC workbench QIAGEN, Hilden 
CR-Reader Elysia-Raytest GmbH, Straubenhardt 
Image J NIH, Bethesda, MD, USA 
ITC run TA Instruments, New Castle, DE, USA 
Microsoft Office 2011 Microsoft Corporation, Redmond, WA, USA 
PMi-ByonicTM   Protein Metrics, Cupertino, CA, USA 
PyMOL 2.0.6 Schrodinger LLC, New York, NY, USA 
VMD University of Illinois, IL, USA 
NanoAnalyze 3.7.5 TA Instruments, New Castle, DE, USA 
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5.1.5 Buffers and Solutions 

50x TAE 
 
 

50 mM 
2 M 
1 M 

EDTA 
Tris 
Acetic acid 

6x SDS-dye 300 mM 
600 mM 
60% 
12% 
0.6% 

Tris (pH 6.8) 
DTT 
Glycerol 
SDS 
Bromophenol Blue 

Lysis-buffer A 150 mM 
50 mM 
2 mM 

NaCl 
Hepes (pH 7.4) 
DTT 

High-salt-buffer A 2 M 
50 mM 
2 mM 

NaCl 
Hepes (pH 7.4) 
DTT 

Low-salt buffer A 50 mM 
2 mM 

Hepes (pH 7.4) 
DTT 

Low-salt buffer B 50 mM 
2 mM 

Tris (pH 8.0) 
DTT 

Gelfiltration-buffer A 100 mM 
50 mM 
2/1 mM 

NaCl 
Hepes (pH 7.4) 
DTT/TCEP 

5x SDS-PAGE running buffer 250 mM 
250 mM 
5 mM 
0.5% 

Tris 
MOPS 
Na2EDTA 
SDS 

Coomassie 40% 
10% 
0.1% 

MeOH 
Acetic acid 
Comassie Brilliant Blue R250 

Destaining solution 12% 
9% 

MeOH 
Acetic acid 

5x Western-transfer buffer 
(1x contained 20% MeOH) 

120 mM 
960 mM 
0.15% 

Tris 
Glycine 
SDS 

10x TBS 
(1x contained 0.1% Tween-20) 

250 mM 
1.4 M 
20 mM 

Tris 
NaCl 
KCl 

Blocking buffer 5% 
or 3% 

Milkpowder  
BSA in 1x TBS-T 

LB-media  
(LB-agar contained 1.5% Bacto Agar) 

1% 
1% 
0.5% 

Tryptone 
NaCl 
Yeast extract 
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5.1.7 Oligos 

 

All Oligos used for Gibson cloning were designed following certain criteria. The hybridization 

temperature of all oligos was calculated in silico (Kibbe, 2007). A hybridization temperature of 

60-63°C for standard PCRs and 57-60°C for colony PCRs was chosen. Oligos for colony PCRs 

were additionally used for Sanger sequencing. The complementary overhangs for sequence and 

ligation independent cloning had a variable length between 22 and 28 nts and were always 

located on the gene-specific insert. Oligos with overhangs were designed to be in total shorter 

than 50 nt when possible. Oligos used to modify plasmids had a maximal length of 100 nt. 

Oligos for nested PCRs hybridize for about 80 - 120 nts and encompass the coding sequence 

within the 5’ and 3’ UTRs of individual mRNA sequences. Oligos used in this study are listed 

in Appendix A. 

 

5.1.8 Peptides 

 

Synthesized MED12 peptides covering residues 29-44 and 29-40, which were used for CD 

spectroscopy, were a gift of the Unverzagt lab. Peptides were received as lyophilized powder. 

 

5.1.8 Cells 
Abbreviation Species Usage Reference 

BW23474 Escherichia coli MultiBacTM; Cloning of 
donor-plasmids 

Geneva Biotech 

DH5a Escherichia coli Cloning Prof. Dr. Stemmann 
(University of 
Bayreuth) 

Top10 Escherichia coli Cloning Prof. Dr. Stemmann 
(University of 
Bayreuth) 

BL21 (DE3) CodonPlus Escherichia coli Protein expression Stratagene 

DH10B MultiBacTM Escherichia coli Bacmid generation Geneva Biotech 

Sf21 Spodoptera frugiperda MultiBacTM; Virus 
generation 

 

High Five Trichoplusia ni MultiBacTM Protein 
expression 
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5.2 Methods 

 

5.2.1 Gibson Cloning 

 

Total RNA was isolated from human A549 cells using TRIfastTM according to the 

manufacturer’s protocol. PolyA-selected RNA was used for first-strand cDNA synthesis 

mediated by Superscript II RT according manufactures protocol. The cDNA was further handed 

out to Lisa-Marie Schneider for cloning approaches. PCR products for cloning were amplified 

by nested PCR (Hill and Stewart, 1992). 

 All construct were generated using the Gibson variant of sequence and ligation 

independent cloning (SLIC) (Gibson et al., 2009). Please note that multiple fragments were 

ligated in one reaction to change affinity-tags and/or protease-cleavage sites. Positive clones 

were identified by colony PCR prior to Sanger sequencing. Point-mutations were introduced 

by primers. All affinity tags contain a TEV cleavage site prior to the coding sequence or directly 

after the coding sequence, respectively. All plasmid constructs used in this study are listed. 

Please note, that many constructs seemingly exists twice. This is the case as we also utilized 

codon-optimized sequences for expression in insect cells (to distinguish both possibilities 

codon-optimized sequences are underlined).  

Backbone Insert*1 Amino acids/ 
mutation 

5’ modification 3’ modification Internal 
ID 

pAceBac1 CDK8 1-403/wt T7-TEV  7 

pAceBac1 CDK8 1-403/wt Strep-SUMO-T7-TEV  8 

pAceBac1 CDK8 1-403/wt Strep-SUMO-T7-TEV  68 

pAceBac1 CDK19 1-439/wt Strep-SUMO-T7-TEV  96b 

pAceBac1 CDK7 1-346/wt 
 

Strep-SUMO-T7-TEV  150 

pAceBac1 Cyclin C 1-283/wt T7-TEV  10 

pIDK Cyclin C 1-283/wt T7-TEV  12 

pIDK CDK8 1-464/wt T7-TEV  13 

pIDK Cyclin C 1-283/wt   28 

pIDC Cyclin H 1-323/wt   151 

pAceBac1 MED12 1-2177/wt 
 

Strep-SUMO-T7-TEV  1 
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Backbone Insert Amino acids/ 
mutation 

5’ modification 3’ modification Internal 
ID 

pAceBac1 MED13 1-2174/wt 
 

Strep-SUMO-T7-TEV  5 
 

pAceBac1 MED13 1-2174/wt 
 

Strep-SUMO-T7-TEV  72 

pFL MED13 1-2174/wt 
 

Strep-SUMO-T7-TEV  71 

pAceBac1 MED12 1-69/wt  TEV-T7-Strep 125 

pAceBac1 MED12 1-91/wt  TEV-T7-Strep 119 

pAceBac1 MED12 6-100/wt 
 

 TEV-T7-Strep 126 

pAceBac1 MED12 11-100/wt 
 

 TEV-T7-Strep 127 

pAceBac1 MED12 23-100/wt 
 

 TEV-T7-Strep 128 

pAceBac1 MED12 29-100/wt 
 

 TEV-T7-Strep 129 

pAceBac1 MED12 19-91/wt 
 

 TEV-T7-Strep 103 

pAceBac1 MED12 11-69/wt  TEV-T7-Strep 132 

pAceBac1 MED12 11-91/wt  TEV-T7-Strep 131 

pAceBac1 MED12 23-69/wt 
 

 TEV-T7-Strep 134 
 

pFL MED12 1-100/wt  TEV-T7-Strep 92 

pAceBac1 MED12 1-100/wt 
 

 TEV-T7-Strep 41 
 

 MED12 1-100/E33Q 
 

 TEV-T7-Strep 41M1 

 MED12 1-100/E33Q/D34N 
 

 TEV-T7-Strep 41M2 

 MED12 1-100/D34N 
 

 TEV-T7-Strep 41M3 

 MED12 1-100/D34N/E35Q  TEV-T7-Strep 41M4 

 MED12 1-100/E35Q 
 

 TEV-T7-Strep 41M5 

 MED12 1-100/E33A 
 

 TEV-T7-Strep 41M6 

 MED12 1-100/E33L 
 

 TEV-T7-Strep 41M7 

 MED12 1-100/K30A  TEV-T7-Strep 41M8 

 MED12 1-100/Q31A  TEV-T7-Strep 41M9 

 MED12 1-100/K32A 
 

 TEV-T7-Strep 41M10 

 MED12 1-100/L36R 
 

 TEV-T7-Strep 41M11 

 MED12 1-100/Q43P 
 

 TEV-T7-Strep 41M12 

 MED12 1-100/G44S  TEV-T7-Strep 41M13 

 MED12 1-100/D34Y 
 

 TEV-T7-Strep 41M14 
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Backbone Insert Amino acids/ 
mutation 

5’ modification 3’ modification Internal 
ID 

pAceBac1 MED12 1-100/K15N 
 

 TEV-T7-Strep 41M15 

 MED12 1-100/K15N/E33Q  TEV-T7-Strep 41M16 

 MED12 1-100/E33K  TEV-T7-Strep 41M17 

pAceBac1 MED12 1-350/wt  TEV-T7-Strep 43 

pAceBac1 MED12 1-440/wt  TEV-T7-Strep 80 

pAceBac1 MED12 1-1227/wt Strep-SUMO-T7-TEV  3 

pAceBac1 MED12 1-1227/wt Strep-SUMO-T7-TEV  66 

pFL MED12 1-1227/wt Strep-SUMO-T7-TEV  47 

pFL MED12 1-1227/wt Strep-SUMO-T7-TEV  65 

pFL MED13 1-947/wt Strep-SUMO-T7-TEV  141 

pAceBac1 Cyclin C 1-283/wt  TEV-T7-Strep 108 

pIDC CDK8 1-359/wt 
 

  122 
 

pIDC CDK8 1-403/wt 
 

  118 
 

 CDK8 1-403/R65Q 
 

  118M2 

 CDK8 1-403/R150Q 
 

  118M3 

 CDK8 1-403/R178Q   118M4 

pIDC CDK8 1-464/wt 
 

  123 
 

pIDC CDK19 1-359/wt 
 

  116 
 

pIDC CDK19 1-439/wt 
 

  115 
 

pIDC CDK19 1-502/wt 
 

  137 
 

pIDC CDK3 1-305/wt   143 

pIDS MED12 1-100/wt   117 

pUCDM Cyclin C 
CDK8 

1-283/wt 
1-359/wt 

  79c 

pUCDM Cyclin C 
CDK8 

1-283/wt 
1-403/wt 

  79a 
 

 CDK8 1-403/R65Q 
 

  79aM7 

 CDK8 1-403/R150Q 
 

  79aM8 

 CDK8 1-403/R178Q 
 

  79aM9 

 CDK8 1-403/T196D   79aM10 

 CDK8 1-403/T196A   79aM11 
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Backbone Insert Amino acids/ 
mutation 

5’ modification 3’ modification Internal 
ID 

pUCDM Cyclin C 
CDK8 

1-283/wt 
1-403/wt 

  79a 
 

 CDK8 1-403/T31D   79aM12 

 CDK8 1-403/T31A   79aM13 

 CDK8 1-403/Y32F   79aM14 

 CDK8 1-403/T360A   79aM15 

 CDK8 1-403/T360D   79aM16 

 CDK8 1-403/M174F   79aM19 

 CDK8 1-403/S393A/S394A   79aM20 

 CDK8 1-403/S393D/S394D   79aM21 

 CDK8 1-403/T396A   79aM22 

 CDK8 1-403/T396D   79aM23 

 CDK8 1-403/T382A   79aM24 

 CDK8 1-403/T382D   79aM25 

 CDK8 1-403/T385A   79aM26 

 CDK8 1-403/T385D   79aM27 

 CDK8 1-403/D173A   79aM28 

pUCDM CDK8 
Cyclin C 

1-403/wt 
1-283/wt 

  79a 
 

 Cyclin C 1-283/E98Q 
 

  79aM4 

 Cyclin C 1-283/E99Q 
 

  79aM5 
 

 Cyclin C 1-283/E98Q/E99Q 
 

  79aM6 
 

 Cyclin C 1-283/N181A 
 

  79aM17 
 

 Cyclin C 1-283/D182A   79aM18 

pUCDM Cyclin C 
CDK8 

1-283/wt 
1-464/wt 

  79d 

 CDK8 1-464/T410D   79dM1 

 CDK8 1-464/T410A   79dM2 

 CDK8 1-464/T413D   79dM3 

 CDK8 1-464/T413A   79dM4 

 CDK8 1-464/T410D/S413D   79dM5 

 CDK8 1-464/T410A/T413A   79dM6 
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Backbone Insert Amino acids/ 
mutation 

5’ modification 3’ modification Internal 
ID 

pSPL Cyclin C 
CDK19 

1-283/wt 
1-359/wt 

T7 
T7 

 98a 

pSPL Cyclin C 
CDK19 

1-283/wt 
1-439/wt 

T7 
T7 

 96a 

pUCDM Cyclin C 
CDK19 

1-283/wt 
1-502/wt 

 
 

 98d 

pAceBac1 CDK19 1-502/wt   111 

pAceBac1 Cyclin C  
P2A 
CDK8 

1-283 
 
1-403 

 TEV-T7-Strep 130 

pGEX-4T1 STAT1 639-750/wt GST-Thrombin  EC6 

pGEX-4T1 STAT1 639-750/wt GST-TEV  EC7 

pGEX-4T1 Cyclin H 1-323/wt GST-TEV  EC8 

pGEX-4T1 BRCA1 1443-1649/wt GST-TEV  EC9 

 

5.2.2 Polymerase Chain Reaction 

 

Polymerase chain reaction (PCR) was used to linearize plasmids and to generate amplicons 

carrying desired overhangs suited for subsequent ligation. PCRs were performed using Phusion 

DNA polymerase. Amplification was carried out in a Thermocycler (peqSTAR, Peqlab) using 

the listed reaction mix. Nested PCRs were carried in presence of 5% DMSO using cDNA as 

template. 
PCR program for standard DNA amplification 

Reaction mix [µL]  Thermal profile  
ddH2O 32,5  98°C 30 s  
5x Phusion buffer 10,0  98°C 15 s  

35x dNTPs 0,5  60°C 10 s 
10 µM Primer forward 2,5  72°C 15s/kb 
10 µM Primer reverse 2,5  72°C 10 min  
Template DNA 1ng/µL 1,0  4°C ∞  
Phusion DNA polymerase (NEB) 1,0     

 

5.2.3 Agarose Gel Electrophoresis and Gel Extraction 

 

PCR products were separated on 0.5-2% agarose gels. DNA fragments were mixed 1:6 using 

EZ Vision DNA loading dye (Amresco) and run at 130V in 1x TAE-buffer (40 mM Tris pH 

8.0, 20 mM acetic acid, 1 mM EDTA). 1 kb DNA ladder (NEB) was loaded as marker. Desired 

bands were cut out under UV-light for gel extraction using QIAquick® Gel Extraction kit 

(QIAGEN) and protocol. The DNA concentration was determined via absorbance at 260 nm 

(Eppendorf Biospectrometer basic). 
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5.2.4 Gibson Assembly and Colony PCR 

 

Linearized, purified vectors and one or several inserts were ligated via the Gibson assembly 

method. For this, 0,03 - 0,20 pmol of total DNA (vector to insert ratio 1:2) was added to 7.5 µL 

Gibson Master Mix (10 µL total reaction volume) and incubated at 50°C for 30 min. The 

reaction mix was transformed in competent Top10 or BW23473 E. coli cells.  
PCR program for colony PCR 

Reaction mix [µL]  Thermal profile  
ddH2O 20,75  98°C 5 min  
10x TaqPol buffer 2,5  98°C 15 s  

25x 10 mM dNTP mix 0,5  57°C 10 s 
10 µM Primer forward 0,5  68°C 1 min/kb 
10 µM Primer reverse 0,5  68°C 10 min  
Taq DNA polymerase (selfmade) 1,0  4°C ∞  

 

5.2.5 Cre-LoxP Recombination 

 

Desired acceptor-donor-plasmid combinations for protein expression in insect cells were 

combined via Cre-LoxP-mediated recombination. Therefore, 200-400 ng acceptor-plasmid was 

incubated with 300-750 ng donor-plasmid. The reaction was mediated by Cre Recombinase 

(NEB). Upon ligation, the fused constructs were named after their acceptor-donor-plasmid 

combination giving rise to the order of ligation reactions. For example, the fusion of the 

acceptor plasmid ID 41 with the donor plasmid ID 79a results in the fused construct 41.79a. 

The first plasmid ID always represent an acceptor plasmid constructs, whereas the following 

plasmid IDs are donor plasmids. Please note that due to systematic fusion of different acceptor-

donor plasmid combinations more than a single construct can be generated that encodes for the 

same protein or protein complex. For example, the fused construct 41.79a encodes the identical 

proteins like 108.118.117. Therefore, for some, yet not for all, multiple acceptor-donor 

combinations were produced that encode for the same proteins. However, the order and 

localization of the protein tags might differ as well as the coding sequence as we ordered codon 

optimized sequences for insect cells. 

 

5.2.6 Bacterial Transformation 

 

Chemically competent E. coli cells were incubated on ice for 5 min in the presence of DNA. 

After heat shock (42°C for 42 s) and subsequent recovery (1h), cells were plated out on LB agar 

plates in presence of appropriate antibiotics. Plates were incubated at 37° overnight. 
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5.2.7 Isolation of Plasmid DNA 

 

Plasmid DNA isolation using QIAprep Spin Miniprep Kit (QIAGEN) was done according to 

manufactures protocol. Plasmid-DNA was eluted using 50 µL ddH2O. DNA-Concentration was 

determined via absorbance at 260 nm (Eppendorf Biospectrometer basic). 

 

5.2.8 Protein Expression in E. coli 

 

For all recombinant protein expression in E. coli, transformed RosettaBL21-CodonPlus (DE3) 

were inoculated and grown overnight in LB media supplemented with the appropriate 

antibiotics. To produce STAT1, 1-4 L E. coli cells were cultivated (37°C, 160 rpm) and protein 

expression induced by the addition of 1 mM IPTG (OD600 0.6). Cells were cultivated at 18°C 

overnight and harvested by centrifugation (6000g, 15 min). To produce Sirtuin-1, 1-6 L E. coli 

cells were cultivated (37°C, 160 rpm) and protein expression induced by the addition of 0.5 

mM IPTG (OD600 0.6). All used media was supplemented with 25 µM ZnOAc. Cells were 

cultivated at 18°C overnight and harvested by centrifugation (6000g, 15 min). To generate 

BRCA1, 1-2 L E. coli cells were cultivated (37°C, 160 rpm) and protein expression induced by 

the addition of 1 mM IPTG (OD600 0.8). Cells were cultivated at 37°C for 4 h and harvested by 

centrifugation (6000g, 15 min). To express Cyclin H, 1-2 L E. coli cells were cultivated (37°C, 

160 rpm) and protein expression induced by the addition of 1 mM IPTG (OD600 0.6). Cells were 

cultivated at 18°C overnight and harvested by centrifugation (6000g, 15 min). 

All cell pellets were either processed directly or stored at -80°C. 

 

5.2.9 Protein Expression in Insect Cells 

 

Insect cells derived from Spodoptera frugiperda (SF21) were used for virus generation and 

amplification, whereas cells from Trichoplusia ni were utilized for protein production. SF-4 

Baculo Express ICM ready-to-use media complemented with 200 mM L-Glutamin (Bio 

Concept AG) was used for both insect cell lines. Cells were incubated at 27°C in a rotary shaker 

(100 rpm, shaking throw 50 mm). Protein expression in insect cells was done using 

MultibacTurbo according to the manufacturer’s protocol (Berger et al., 2004; Fitzgerald et al., 

2006). As we did not determine viral titers to obtain their multiplicity of infections (MOI), we 

utilized so-called “titerless” protocols (Berger et al., 2013; Scholz and Suppmann, 2017; 

Wasilko et al., 2009). 
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Bacmid-isolation 

Desired constructs were transformed into DH10MultiBac E. coli cells (75 ng in total) and 

incubated on LB plates. Successful bacmid integration upon Tn7 transposition was controlled 

by blue-white screening. Bacmid-DNA isolation was carried out using QIAprep Spin Mini Kit 

according to the manufacturer’s instructions up to the addition of N3 and subsequent 

centrifugation. Cleared supernatants were then transferred into fresh reaction tubes and DNA 

was precipitated by adding Isopropanol 1:1 (v/v) followed by centrifugation (20,000g, 15 min, 

4°C). The pellet was washed twice with 70% EtOH and Bacmid-DNA solubilized in 50 µL 

sterile ddH2O. 

Virus-generation V0 and V1 

For production of recombinant baculovirus, the composite bacmid was transfected (200 µL 

Media, 20 µg Bacmid-DNA, 16 µL X-tremeGENE HP DNA Transfection Reagent) into freshly 

diluted SF21 cells (0.8 x 106 cells/mL, 25 mL). 3 days post transfection, SF21 cells were diluted 

to the initial density and viruses harvested after 1-3 additional days. To produce large amounts 

of viruses, needed volumes of SF21 cells (0.8 x 106 cells/mL) were infected with V0 viruses 

using a titerless protocol 1:50 - 1:100 (v/v) and harvested 3 days post infection.  

Protein-production 

1 – 5 L High Five insect cells were seeded (1.2 – 1.4 x 106 cells/mL) in Fernbach flasks and 

V0/V1 viruses added at a ratio between 1:10 – 1:50. Flasks were incubated for 2-3 days and 

cells harvested by centrifugation (700g, 10 min). The pellet was subsequently resuspended in 

lysis buffer supplemented with protease inhibitors and Benzonase® and stored at -80°C. 

 

5.2.10 Protein Purification  

 

For 1 L expression volume, insect cells were consequently resuspended in 50-70 mL lysis 

buffer. For 1 L expression volume, 1 mL slurry (GST-, Ni-NTA- or StrepTactin beads) in 

differently shaped gravity-flow columns was used. Protein tags were removed by TEV-protease 

(self-made), which was added in a ratio of 1:10 – 1:40, depending on the enzymatic activity of 

the purified TEV batch. The cleavage reaction was incubated for 16 h at 4°C. Tag-removal was 

carried out either after affinity- or prior size-exclusion chromatography in varying buffers. 

Reaction volumes varied ranging from less than 50 µL up to 50 mL. 
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5.2.10.1 Purification of MED12 1-100 

 

To generate MED12 1-100 alone, MED12 1-100 was cloned into pAceBac1 vector (plasmid 

IDs 41 and 92). A C-terminal Strep-Tag preceded by a TEV cleavage site on MED12 1-100 

allowed affinity purification and tag-removal. Single MED12 1-100 was expressed in High5 

insect cells by recombinant baculovirus infection. For one liter culture volume, cells were 

resuspended in 50-70 mL Lysis buffer A and lysed by sonication. Cell debris was removed by 

centrifugation at 35,000 rpm for 90 min in a Beckmann Ti-45 rotor. Either StrepTactin beads 

(IBA Lifesciences) in a gravity flow column (selfmade) or a StrepTrap HP column (GE 

healthcare) was equilibrated with 10-20 CV buffer A. Supernatants were collected and bound 

to the Strep resin. The resin was washed with 5-10 CV buffer A prior elution with buffer A 

supplemented with 2.5 mM desthiobiotin. Cleavage of Strep-tag fusions was performed when 

needed for MST measurements. MED12 1-100 was diluted to 30 mM NaCl (with Low-Salt 

buffer A) and loaded onto a cation-exchange column (Resource S, GE Healthcare) to recover 

the desired protein. In a final step MED12 1-100 was polished by size-exclusion 

chromatography using a Superdex 75 10/300 GL (GE Healthcare) column in gel filtration buffer 

A.  

 

5.2.10.2 Purification of binary CDK8/Cyclin C and CDK19/Cyclin C complexes 

 

To obtain binary CDK8/Cyclin C complexes, full-length Cyclin C (1-283) and different 

CDK8/CDK19 variants, e.g. full-length (1-464/1-502) and C-terminally truncated CDK8 (1-

403/1-439 and 1-359/1-359) were cloned into pAceBac1 and pIDC vectors, respectively 

(construct IDs 108.123/108.137; 108.118/108.116 and 108.122/108.115). To enable affinity 

purification Cyclin C carried a C-terminal Strep-Tag and a Tobacco Etch Virus (TEV) cleavage 

site. Binary CDK8/Cyclin C (construct IDs 8.28, 68.28, 8.22 and 68.22) and CDK19/Cyclin C 

(construct ID 96b.28 and 96b.22) complexes used for ITC measurements, harbor an N-terminal 

Strep-SUMO-tag on the kinase. Binary CDK8/Cyclin C and CDK19/Cyclin C complexes were 

co-expressed in High Five insect cells by recombinant baculovirus infection via a titerless 

protocol. Cells were lysed by sonication and cell debris was removed by centrifugation at 

35,000 rpm for 90 min in a Beckmann Ti-45 rotor. Either StrepTactin beads (IBA Lifesciences) 

or StrepTrap HP (GE healthcare) were equilibrated with 10-20 CV lysis buffer A. Supernatants 

were collected and bound to the Strep resin. The resin was washed with 10-20 CV lysis buffer 

A prior elution with lysis buffer A supplemented with 2.5 mM desthiobiotin. Cleavage of Strep-
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tag fusions was performed overnight with TEV protease when utilized for in vitro kinase assays. 

This was necessary as the C-terminal Strep-tag on Cyclin C is being phosphorylated by CDK8 

and CDK19 in our assays. After cleavage, tag-free protein complexes were diluted to 30 mM 

NaCl and loaded onto a cation-exchange column (Resource S, GE Healthcare) to recover the 

desired protein. Binary constructs that possess an N-terminal Strep-SUMO tag were kept 

uncleaved, diluted to 50 mM NaCl (with low-salt buffer A) and loaded onto an anion-exchange 

column (Resource Q, GE Healthcare). In a final step all binary CDK8/Cyclin C and 

CDK19/Cyclin C were polished by size-exclusion chromatography using a Superdex 200 

10/300 GL (GE Healthcare) column in gel filtration buffer A.  

 Binary CDK8 (1-403)/Cyclin C complexes both encoded on the pAceBac-vector with 

the P2A linker (plasmid ID 130) were co-expressed and purified in analogy to aforementioned, 

not SUMO-tagged CDK8/Cyclin C complex variants. 

 

5.2.10.3 Purification of ternary CDK8/CycC/MED12 and CDK19/CycC/MED12 

complexes 

  

Ternary complexes were constructed using several acceptor-donor plasmid combinations. 

However, the majority of our ternary constructs contained a C-terminal Strep-tag on multiple 

N- (6-100, 11-100, 19-100, 23-100, 29-100; construct IDs 126.79a, 127.79a, 128.79a, 129.79a) 

or C-terminally truncated MED12 variants (1-69, 1-91, 1-100, 1-350, 1-440; construct IDs 

125.79a, 119.79a, 41.79a, 43.79a, 80.79a). For ternary constructs that contain MED12 1-100, 

the Strep-tag can also be located C-terminally on Cyclin C. Ternary constructs, that possess the 

C-terminal Strep-tag on MED12, CDK8 and Cyclin C were both encoded on pUCDM vector, 

yet CDK19 and Cyclin C were both encoded on pSPL vector. All ternary complexes were co-

expressed in High Five insect cells by recombinant baculovirus infection. Cells were lysed by 

sonication and cell debris was removed by centrifugation at 35,000 rpm for 90 min in a 

Beckmann Ti-45 rotor. StrepTactin beads (IBA Lifesciences) or StrepTrap HP (GE healthcare) 

was equilibrated with 10-20 CV buffer A. Supernatants were collected and bound to the Strep 

resin, the resin washed with 10-20 CV lysis buffer A followed by their elution with lysis buffer 

A supplemented with 2.5 mM desthiobiotin. Cleavage of Strep-tag fusions was performed 

overnight with TEV protease when  needed. After cleavage, tag-free protein complexes were 

diluted to 75 mM NaCl (with low-salt buffer A) and subjected to an anion-exchange column 

(ResourceQ, GE Healthcare). The flow-through after anion-exchange chromatography was 

again diluted to 30 mM NaCl (with low-salt buffer A) and subsequently loaded onto a cation-
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exchange column (Resource S, HE Healthcare) to recover the desired protein complexes. In a 

final step the protein complexes were polished by size-exclusion chromatography (SEC) using 

a Superdex 200 10/300 GL (GE Healthcare) or Superose6 10/300 GL (GE Healthcare) column 

in gel filtration buffer A. Ternary constructs for kinase assays were kept uncleaved, except for 

acceptor-donor combinations that possess the Strep-tag C-terminally on Cyclin C.  

 

5.2.10.4 Co-purification of binary and ternary complexes 

 

Co-purification of binary and ternary complexes was carried out using multiple acceptor 

plasmids. Please note that acceptor plasmids used for our co-purification method were also 

utilized for acceptor-donor combinations for co-expression. Co-purified complexes were 

purified and utilized just as the co-expressed complexes, as they result in identical protein 

complexes. The binary CDK 19 (1-359)/Cyclin C complexes shown on Fig. 23B and C were 

co-purified using the plasmid IDs 108 together with plasmid 111, the ternary 

CDK19/CycC/MED12 (1-100) complex on Fig. 23D and E using the plasmid IDs 41 together 

with plasmid 108 and 112, respectively. All used (acceptor-) plasmids are listed in chapter 5.2.1.  

 

5.2.10.5 Purification of MED13 1-545 

 

MED13 (1-545) was cloned into a pAceBac1 vector (plasmid ID 88). A C-terminal Strep-Tag 

preceded by a TEV cleavage site on MED13 1-545 allowed affinity purification and tag-

removal. Single MED13 1-545 was expressed in High Five insect cells by recombinant 

baculovirus infection. Cells were resuspended in lysis buffer A and lysed by sonication. Cell 

debris was removed by centrifugation at 35,000 rpm for 90 min in a Beckmann Ti-45 rotor. 

Either StrepTactin beads in a gravity flow column (IBA Lifesciences) or a StrepTrap HP 

column (GE healthcare) was equilibrated with 10-20 CV buffer A. Supernatants were collected 

and bound to the Strep resin. The resin was washed with 5-10 CV buffer A prior elution with 

buffer A supplemented with 2.5 mM desthiobiotin. MED13 1-545 was diluted to 50 mM NaCl 

with Low-Salt buffer A and loaded onto a anion-exchange column (Resource Q, GE 

Healthcare) to recover the desired protein. In a final step MED13 1-545 was polished by size-

exclusion chromatography using a Superdex 200 10/300 GL (GE Healthcare) column in gel 

filtration buffer A.  
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5.2.10.6 Purification of a quaternary CDK8/CycC/MED12/MED13 complex 

 

For the production of a recombinant 4-subunit kinase module, N-terminally tagged MED12 (1-

1227) was cloned into the pAceBac1 and pFL vector (plasmid IDs 3, 47, 65 and 66), N-

terminally tagged MED13 (1-947) was cloned into the pFL vector (plasmid ID 141). Both, 

MED12 and MED13 contained a SUMO-tag to enhance protein yield and stability. Binary full-

length CDK8/Cyclin C (construct ID 108.123) were cloned and expressed as described before. 

Single MED12, MED13 and binary CDK8/Cyclin C complexes were separately (co-)expressed 

in High Five insect cells. Cells from 12 liter culture volume were resuspended in 600 mL lysis 

buffer A. Cells were lysed by sonication and cell debris was removed by centrifugation at 

35,000 rpm for 4 h in a Beckmann Ti-45 rotor. Supernatants were collected, filtrated (0,8 µm) 

and bound to a StrepTrap HP 5 mL column (GE Healthcare) followed by their elution with 

buffer A supplemented with 2.5 mM desthiobiotin. Note that the usage of the StrepTrap column 

instead of StrepTactin Superflow (IBA Lifesciences) resin was crucial to concentrate large 

sample volumes (approx. 550 mL supernatant loaded and all bound proteins eluted in less than 

5 mL) for in vitro complex reconstitution. The complex was diluted to 30 mM NaCl (with low 

salt buffer A). Subsequent cation-exchange chromatography (Resource S, HE Healthcare) 

recovered the desired protein complex. In a final step the recombinant kinase module was 

polished by size-exclusion chromatography (SEC) using a Superose 6 3.2 Increase (GE 

Healthcare) in gel filtration buffer A.  

 

5.2.10.8 Purification of kinase assay substrates 

 

The STAT1 transactivation domain (639-750) was cloned into a pGEX-4T1 plasmid and 

contained an N-terminal GST-tag allowing GST-affinity chromatography (plasmid IDs EC6 

and 7). The STAT1 transactivation domain was then purified as described (Pelish et al., 2015). 

In brief, E. coli cells were resuspended in lysis buffer (500 mM NaCl, 50 mM Tris/HCl, pH 

8.0, 0.5 mM EDTA, 1 mM DTT or 5 mM BME), lysed by sonication and cell debris removed 

by centrifugation at 25,000 rpm for 60 min in a SS-34 rotor. Supernatants were collected and 

bound to the GST resin, the resin washed with 10-20 CV lysis buffer followed by their elution 

with elution buffer (150 mM KCl, 50 mM Tris/HCl, pH 7.9, 2 mM DTT, 0.1 mM EDTA and 

30 mM reduced GSH). After GST affinity chromatography STAT1 elution fraction were diluted 

to 50 mM KCl with low-salt buffer B and subjected to anion-exchange chromatography 

(MonoQ, GE Healthcare). 
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 Full-length Sirtuin-1 was a gift of Prof. Dr. Steegborn, University of Bayreuth, 

Germany. Sirtuin-1 was cloned into a pET28a plasmid and bore an N-terminal hexahistidin-tag 

for purification. Cells were resuspended in lysis buffer (300 mM NaCl, 50 mM Tris/HCl, pH 

8.0, 20 mM Imidazol, 1 mM DTT or 5 mM BME, protease inhibitor cocktail) and lysed by 

sonication. Cell debris was removed by centrifugation at 25,000 rpm for 60 min in a SS-34 

rotor. Ni-NTA beads (Qiagen) or HisTrap FF (GE Healthcare) was equilibrated with 10-20 CV 

lysis buffer. Supernatants were collected and bound to the Ni-NTA resin, the resin washed with 

10-20 CV lysis buffer followed by their elution with lysis buffer supplemented with 150 mM 

Imidazol. After Ni-NTA affinity chromatography Sirt-1 elution fraction were diluted to 50 mM 

NaCl (with low salt buffer B) and subjected to anion-exchange chromatography (Resource Q, 

GE Healthcare) and finally isolated by size-exclusion chromatography in gelfiltration buffer A 

using a Superose6 10/300 GL column (GE Healthcare).  

 BRCA1 (1443-1649) was identified by limited proteolysis as a stable and soluble 

fragment (Mark et al., 2005) and cloned likewise STAT1 TAD (plasmid ID EC9). Cells were 

resuspended in lysis buffer (300 mM NaCl, 50 mM Tris/HCl, pH 8.0, 1 mM DTT or 5 mM 

BME, protease inhibitor cocktail) and lysed by sonication. Cell debris was removed by 

centrifugation at 25,000 rpm for 60 min in a SS-34 rotor. GST beads (Glutathion Sepharose® 

4B, GE Healthcare or PierceTM Glutathion Agarose) were equilibrated with 10-20 CV lysis 

buffer. Supernatants were collected and bound to the GST resin, the resin washed with 10-20 

CV lysis buffer followed by their elution with lysis buffer supplemented with 30 mM reduced 

L-Glutathion. After GST-affinity chromatography, BRCA1 elution fractions were diluted to 50 

mM NaCl with low salt buffer B and loaded on an anion-exchange column (Resource Q, GE 

Healthcare).  

 Bovine RNA Polymerase II was endogenously isolated by Robin Weinmann under 

supervision of Lisa-Marie Schneider, University of Bayreuth, Germany. Typically, 0.5 kg 

bovine thymus was used and purified as described (Bernecky et al., 2016).  

 Cyclin H was cloned as described for the STAT1 TAD (plasmid ID EC8). Cells were 

resuspended in lysis buffer (300 mM NaCl, 50 mM Tris/HCl, pH 8.0, 1 mM DTT or 5 mM 

BME, protease inhibitor cocktail) and lysed by sonication. Cell debris was removed by 

centrifugation at 25,000 rpm for 60 min in a SS-34 rotor. GST beads (Glutathion Sepharose® 

4B, GE Healthcare or PierceTM Glutathion Agarose) were equilibrated with 10-20 CV lysis 

buffer. Supernatants were collected and bound to the GST resin, the resin washed with 10-20 

CV lysis buffer followed by their elution with lysis buffer supplemented with 30 mM reduced 

L-glutathione. After GST-affinity chromatography, Cyclin H elution fractions were diluted to 



 Methods 

 

98 

50 mM NaCl with low salt buffer B and loaded on an anion-exchange column (Resource Q, GE 

Healthcare). Cleavage of GST-tag fusions was performed overnight with TEV-protease. After 

cleavage, GST-reverse chromatography resulted in tag-free protein fractions (flow-through), 

that were finally isolated by size-exclusion chromatography using a Superdex200 (GE 

Healthcare). 

 To co-express binary CDK7/Cyclin H complexes, CDK7 and Cyclin H were cloned into 

pAceBac1 vector, and pIDC vector, respectively (construct ID 150.151). An N-terminal Strep-

SUMO tag on CDK7 enabled affinity purification. The binary CDK7/Cyclin H complex was 

co-expressed in High5 insect cells by recombinant baculovirus infection. Cells were 

resuspended in lysis buffer (200 mM NaCl, 50 mM Tris/HCl, pH 8.0, 2 mM DTT), lysed by 

sonication and cell debris was removed by centrifugation at 35,000 rpm for 90 min in a 

Beckmann Ti-45 rotor. StrepTactin beads (IBA Lifesciences) or StrepTrap HP (GE healthcare) 

were equilibrated with 10-20 CV buffer A. Supernatants were collected and bound to the Strep 

resin, the resin washed with 10-20 CV buffer A followed by their elution with buffer A 

supplemented with 2.5 mM desthiobiotin. CDK7/Cyclin H elution fractions were diluted to 50 

mM NaCl with low salt buffer B and loaded onto a anion-exchange column (Resource Q, HE 

Healthcare) to recover the desired protein complexes. In a final step the protein complexes were 

isolated by size-exclusion chromatography using a Superdex 200 10/300 GL (GE Healthcare) 

in gelfiltration buffer A. 

 NELF was a gift of Dr. Seychelle Vos/ Prof. Dr. Patrick Cramer, co-expressed in High 

Five insect cells and purified as described (Vos et al., 2016). 

 The human heterodimer DSIF was a gift of Prof. Dr. Wöhrl, University of Bayreuth, 

Germany. In brief, hSpt5 was cloned into pAceBac1 acceptor vector and possess a C-terminal 

Strep-tag for affinity purification. hSpt4 was cloned into pIDK donor vector. DSIF was captured 

by Strep-affinity chromatography, subjected to an anion-exchange column (Resource Q, GE 

Healthcare) and finally recovered by size-exclusion chromatography using a Superdex 200 (GE 

Healthcare). 

 

5.2.11 SDS-PAGE 

 

Protein purification steps were analyzed by SDS-PAGE. Depending on the molecular mass of 

the protein of interest, different concentration of PAA were used (8-12%). Polymerization was 

induced by the addition of APS and TEMED. 0.75 mm thick gels and a separating gel (4% 
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PAA) were utilized. Proteins were separated in SDS-PAGE running buffer at 150V for 40-60 

minutes. 

 

5.2.12 Limited Proteolysis  

 

Purified ternary CDK8 (1-403)/CycC/MED12 (1-100) complexes (0.5 mg/mL in Gelfiltration 

buffer A) that possesses a C-terminal Strep-tag on MED12 were incubated at 37°C and 

proteolyzed with sequencing grade trypsin (Promega), which was dissolved in 1 mM HCl at 1 

mg/mL. Samples were taken after 1, 2, 5, 15, 30 and 60 minutes after the addition of trypsin. 

Reactions were subsequently stopped by the addition of 6x SDS loading dye and analyzed by 

SDS-PAGE. 

 

5.2.13 Sample Preparation for Electrospray Ionization Mass Spectrometry 

 

Coomassie stained gel bands were cut out and incubated with 50% MeOH (v/v) for 1 min. To 

destain the gel pieces, 100 µL of 50 mM NH4HCO3, pH 8.0 with 50% acetonitrile (ACN) were 

added and incubated for 15 min at 37°C. Gel pieces were dried using a SpeedVacTM at 55°C 

for 15 – 60 min. Gel pieces were rehydrated in 50 µL of 25 mM DTT (in 25 mM NH4HCO3) 

und reduced for 20 min at 56°C. To alkylate the proteins, residual liquids were discarded and 

55 mM iodoacete acid (IAA, in 25 mM NH4HCO3) added for 20 minutes in the dark. Residual 

IAA solution was taken off and the gel pieces washed 3-5 times using H2O. Gel pieces were 

dehydrated for 5 min with 200 µL 25 mM NH4HCO3/50% ACN (v/v) and once more for 5 

minutes in 100 µL 100% ACN. Gel pieces were dried in a SpeedVacTM and 10-25 µL Trypsin 

(12.5 ng/µL in 25 mM NH4HCO3) added to cover the gel pieces. In gel digestion was carried 

out over night at 37°C. Next day, the supernatant was collected and stored. 10 µL of 50% ACN 

and 0.5 % TFA were added to the gel pieces, mixed and sonicated for 20 min. The supernatant 

was once again collected and pooled with the first collected supernatant. The supernatant 

mixture was dried in a SpeecVacTM, 20 µL 0.1% formic acid added and incubated with the gel 

pieces for 10 min. Samples were stored at -20 or subsequently analyzed by mass spectrometry. 
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5.2.12 Differential Scanning Fluorimetry 

 

Thermal stabilities of kinase complexes were recorded as published in Klatt et al. (Klatt et al., 

2020). Measurements were carried out by Franziska Langhammer at Proteros biostructures 

under supervision of Dr. Elisabeth Schneider. I provided the protein complexes.  

 

5.2.13 Microscale Thermophoresis 

 

Microscale Thermophoresis (MST) measurements were recorded as published in Klatt et al. 

(Klatt et al., 2020). Please note that MED12 (1-100) was consistently used tag-free. MST-

measurements were carried by Franziska Langhammer and myself. I provided the proteins. 

 

5.2.14 Isothermal Titration Calorimetry 

 

Isothermal titration calorimetry (ITC) measurements were recorded as published in Klatt et al. 

(Klatt et al., 2020). Please note that binary CDK8 (1-403)/Cyclin C and CDK19 (1-439)/Cyclin 

C complexes were co-expressed and/or co-purified. Cyclin C can possess an N-terminal T7-

TEV-tag, depending on the used construct. ITC measurements were performed by Melanie 

Müller and myself. I provided the proteins. 

 

5.2.15 Circular Dichroism Spectroscopy 

 

Far UV Circular dichroism (CD) spectroscopy using untagged MED13 1-545 was performed 

on a Jasco J-710 spectropolarimeter using purified MED13 (10 µM) in 20 mM Tris pH 7.6 and 

20 mM NaCl in a 0.1 mL cuvette. Polarized light was measured from 195 to 250 nm.  

Far UV CD spectra of synthetic MED12 peptides were recorded on a Jasco J-1100 

spectropolarimeter (Jasco) with peptide concentrations between 300-200 µM in 10 mM 

potassium phosphate buffer, pH 7.5. Two synthetic MED12 peptides (amino acids 29-44 and 

29-40) were measured and TFE stepwise titrated (up to 40% v/v) in a 0.1 mL cuvette. Spectra 

were accumulated five times at 20°C with an increment of 0.1 nm. Polarized light was measured 

from 195 to 240 nm.  

 Measured ellipticity [theta] was normalized against the protein concentration c in mM, 

the path length d in cm and the number of amino acids N according the following equation:  
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[𝜽]𝑴𝑹𝑾 =
𝟏𝟎𝟎	 ×	 [𝜽]
(𝒄	 × 	𝒅	 × 	𝑵) 

 

5.2.16 In Vitro Kinase Assays 

 

In vitro kinase assays were carried out with purified binary or ternary complexes as published 

in Klatt et al. (Klatt et al., 2020). Kinase assays in presence of type I or type II inhibitors were 

carried out using 15 pmol binary CDK8 (1-403)/Cyclin C and 7.5 pmol ternary CDK8 (1-

403)/CycC/MED12 (1-100) complexes. The concentration of utilized binary complexes was 

doubled to obtain significant band intensities for IC50 calculations. All kinases were incubated 

with a 3-fold serial dilution of Sorafenib, CCT251545, Compound A and BIRB976, final 

starting concentrations were 270 µM, 10 µM, 180 µM abd 200 µM, respectively. IC50 was 

calculated based on the relative band intensities (including both substrate and CDK8 

phosphorylation signal) and the inhibitor concentration. Inhibitors were pre-incubated for 15 

min together with the kinase, reactions started by the addition of ATP and stopped after 30 min. 

 

5.2.17 Human Cell Culture 

 

HCT116 cells were a gift of Dr. Martin Ehrenschwender, University of Regensburg, Germany. 

A549 cells were cultured in DMEM (Gibco), HCT116 cells in McCoy’s 5A (Modified, Gibco) 

medium both supplemented with 10% FBS at 37°C, 5% CO2. Cells were trypsinated and 

passaged every 2-3 days. For human IFN-g treatment cells were seeded in 10 cm plates at a 

confluency of 70%. IFN-g was added to final concentration of 0.5 ng/mL. For RNA isolation 

cells (500.000 cells total) were harvested 24 h post IFN-g treatment in TRIfast (Peqlab). 

Samples were handed out to Dr. Iana Kim for RNA-seq library preparation. For Western-Blot 

analysis in total 1,000,000 cells were harvested in 150 µL NETN buffer supplemented with 

protease inhibitors. 

 

5.2.18 Generation of a MED12 E33Q Knockin Mutant in HCT116 Cells 

 

The MED12 E33Q knock-in in HCT116 cells was generated as published in Klatt et al. (Klatt 

et al., 2020). Please note that both guide RNAs as well as the ssODN was designed by Dr. Hung 

Ho-Xuan and myself. Dr. Hung Ho-Xuan performed co-transfections, I carried out genotyping 
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and prepared partially NGS libraries together with Dr. Hung Ho-Xuan. NGS data analysis was 

carried out Dr. Hung Ho-Xuan and Norbert Eichner.  

 

5.2.19 Western Blotting 

 

For Western blot analysis, proteins were prior separated by SDS-PAGE and then transferred to 

polyvinylidene fluoride (PVDF) membranes. The wet tank blotting apparatus was filled with 

transfer buffer and the protein transfer was performed at 100 V for 1 h. Primary antibodies were 

incubated for 1 h (room temperature) or overnight (4°C).  

 Anti-MED12 (Cell Signaling Technology) was utilized together with anti-α-tubulin 

(Sigma Aldrich) (1:1,000 and 1:50,000, respectively). Anti-phosSer-727-STAT1 (Cell 

Signaling Technology) was utilized together with anti-α-tubulin (1:1,000 and 1:8,000, 

respectively). All secondary antibodies were utilized 1:20,000 and incubated for 1 h. 
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Chapter 6: Data by other scientists 
 

Please note that this chapter contains exclusively experimental data that were not generated by 

myself or my supervised students. However, all proteins analyzed in this chapter were cloned, 

(co-)expressed and purified by myself. Received data were then also analyzed and visualized 

by myself.  

 

6.1 Peptide identification by electrospray ionization mass spectrometry 

 

Proteolyzed MED12 (please see 2.3.1, Fig 30) was analyzed by electrospray ionization mass 

spectrometry. 

 
Figure 63: MED12 (1-100) peptide identification of a proteolyzed MED12 band after SDS PAGE 

Sequence coverage that result from proteolyzed MED12 peptides. Analyzed bands (1 and 2) are shown on Fig. 30. Each green 

line represent an identified MED12 peptide, the smaller red bars within the green bars illustrate peptide modifications. MED12 

(19-91) is highlighted. Views were created using ByonicTM by myself (Bern et al., 2012). Please note that electrospray ionization 

mass spectrometry run was conducted by Dr. Matt Fuszard. 
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Figure 63 (continued): MED12 (1-100) peptide identification of a proteolyzed MED12 band after SDS PAGE 

Sequence coverage that result from proteolyzed MED12 peptides. Analyzed bands (1 and 2) are shown on Fig. 30. Each green 

line represent an identified MED12 peptide, the smaller red bars within the green bars illustrate peptide modifications. MED12 

(19-91) is highlighted. Views were created using ByonicTM by myself (Bern et al., 2012). Please note that electrospray 

ionization mass spectrometry run was conducted by Dr. Matt Fuszard. 

 

 
Figure 64: MED13 peptide identification of a degraded and stable MED13 band after SDS PAGE 

Sequence coverage of a degraded MED13 band. Each green line represent an identified MED12 peptide, the smaller red bars 

within the green bars illustrate peptide modifications. Views were created using ByonicTM by myself (Bern et al., 2012). Please 

note that the electrospray ionization mass spectrometry run was carried out by Dr. Andrea di Fonzo. 
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6.2 Crosslinking coupled to mass spectrometry of CDK8/19 ternary complexes 

 

The three CDK8-containing ternary complexes comprising MED12 of length (Fig. 21D) were 

analyzed by crosslinking coupled to mass spectrometry (Klatt et al., 2020). The same applies 

to the CDK19/CycC/MED12 (1-100) complex (Fig. 22D). Experiments were carried out by Dr. 

Alexander Leitner, ETH Zürich, Switzerland. I provided the purified protein complexes and 

performed raw data analysis. Raw data visualization was done with xiVIEW by myself 

(Graham et al., 2019). Mass spectrometry data involving CDK19 were deposited to the 

ProteomeXchange Consortium via the PRIDE partner repository by Dr. Alexander Leitner 

(dataset identifier PXD019251; Supplemental Data table S3) (Perez-Riverol et al., 2019). 

 
Figure 65: Crosslinking coupled to mass spectrometry of CDK8 and CDK19 ternary complexes 

(A) Cartoon depiction of all inter-subunit crosslinks involving MED12 that resulted from crosslinking coupled to mass 

spectrometry analysis utilizing our CDK8 ternary complexes with varying MED12 length. The inter-subunit crosslinks were 

grouped in three interaction sites (Sites I - III) according to their localization on the surface of the binary CDK8/Cyclin C 

complex. (B) Cartoon depiction of all inter-subunit crosslinks involving obtained from the CDK19/CycC/MED12 (1-100) 

ternary complex. The inter-subunit crosslinks were colored in black and grouped in three interaction sites (Sites I - III) 

according to according to their presumable localization on the surface of the binary CDK19/Cyclin C complex. DSS-mediated 

intersubunit cross-links obtained from ternary CDK8 complexes, which are covered in ternary CDK19 complexes were shown 

in black. Involved amino acids of intersubunit crosslinks obtained from CDK8-containing ternary complex with varying 

MED12-length, which cannot be resolved within CDK19-containing ternary complexes, are not encircled. Please note that only 

2 datasets for CDK19-containing ternary constructs were analyzed compared to 8 datasets for CDK8-containing ternary 

complexes. Please note that the figure continuous on the next page. 
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Figure 65 (continued): Crosslinking coupled to mass spectrometry of CDK8 and CDK19 ternary complexes 

(C) 3-dimensional arrangement of the three major crosslink sites between MED12 and CDK8 (1-403)/Cyclin C. Lysine and 

glutamate residues that were found crosslinked are represented as black spheres and plotted onto the structure of the CDK8 (1-

403)/Cyclin C complex (PDB code 3RGF) (Schneider et al., 2011). Please note that K115 is shown instead of the structurally 

unresolved, cross-linked residue K119. The figure was prepared by myself using PYMOL (Schroeding_LLC, 2015). Please 

note also that crosslinking coupled to mass spectrometry experiments were carried out by Dr. Alexander Leitner. Note further 

that (A) and (C) were adopted from Klatt et al., 2020. 

 

6.3 Crystallization and preliminary structure determination of ternary CDK8 (1-

403)/CycC/MED12 (11-91) complexes 

 

For the crystallization of the CDK8 (1-403)/CycC/MED12 (11-91) ternary complex, Meret 

Kuck and I concentrated the protein complex to 40 mg/mL and subsequently sent the protein 

complex on ice to Dr. Elisabeth Schneider from Proteros biostructures GmbH. 
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Figure 66: Crystals of the CDK8 (1-403)/CycC/MED12 (11-91) ternary complex 

Crystals obtained utilizing the CDK8 (1-403)/CycC/MED12 (11-91) ternary complex at 40 mg/mL with 0.2 M sodium format 

(left panel) or 0.2 M lithium chloride (right panel), 20% PEG 3350 and 20 mM HEPES/NaOH pH 6.9 at 20 C. Please note that 

crystallization trials were carried out by Dr. Elisabeth Schneider. Meret Kuck and I provided proteins. 

 

 
Figure 67: Preliminary structure determination of the CDK8 (1-403)/CycC/MED12 (11-91) ternary complex 

Difference density (fofc) of data recorded from crystals grown of the ternary CDK8 (1-403)/CycC/MED12 (11-91) complex, 

as shown in Fig. 66. Data were processed in space group P43212 to 8.6 Å using XDS (Kabsch, 2010). The structure was solved 

by molecular replacement using PHENIX (Adams et al., 2010) and the binary CDK8/Cyclin C complex as a reference (PDB 

code 3RGF). The limited resolution only allowed for a single round of rigid body refinement with PHENIX (see fofc density 

above). All further attepts at refinement failed due to the limited number of only 987 reflections. Please note that crystallization 

trials were carried out by Dr. Elisabeth Schneider. Crystals were measured at Swiss Light Source, Paul Scherer Institute 

(beamline X06SA) by Robin Weinmann, Franziska Langhammer and myself. Data processing and structure solution was 

carried out by Dr. Claus-D. Kuhn. The figure was  prepared by myself using PYMOL (Schroeding_LLC, 2015).
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Appendix A: Oligos 
 

cDNA synthesis was performed using poly(A)+-selected RNA from A549 cells. Novel gene 

amplifications were cloned using nested PCR. Oligos used to introduce or delete affinity-tags 

and/or protease-cleavage sites are not listed. Please note that several plasmids encode for the 

identical protein. However, these plasmids can differ in their coding sequence (codon optimized 

genes are underlined) and/or tags and backbone. Please note that the applied Strep-tag is the 

twin StrepII-tag. As eukaryotic expression systems encode endogenous deSUMOylases, the 

genetically engineered SUMOstar was used throughout this study (Liu et al., 2008).  

 Please note that MultiBacTM vectors of the second generation (pAceBac1, pIDK, pIDC 

and pIDK) and first generation (pFL, pUCDM and pSPL) contain partially identical multiple 

cloning sites and are compatible. Therefore, oligos that hybridize at conserved regions like for 

example promotor and/or terminator regions, can be used to linearize several plasmids. This 

accounts for all oligos that target conserved genetic sites, which typically encompass the 

multiple-cloning site. This fact also allows for the usage of gene-specific oligos (which carry 

the complementary overhang) for several assemblies. Please further note that donor plasmids 

from the first MultiBacTM generation (pUCDM and pSPL) possess two expression cassettes. 

Taken together, based on the usage of varying PCR templates (already cloned plasmids), 

multiple oligos can be used to clone a myriad of plasmids.  

 The plasmid pIRESneo contains an internal ribosome entry site (IRES), which forms 

strong tertiary structures (Kanamori and Nakashima, 2001) that hinders plasmid linearization 

by PCR. To remedy this issue, pIRESneo was linearized using EcoRI (NEB) according to the 

manufacturer’s protocol.  

 

ID Description Overhang Usage Sequence 5’ – 3’ 

FK001 

FK079 

pAceBac1, pFL linearization 

(targets TEV) 

-  multiple CTGGAAGTACAGGTTCTC
GC 

FK003 pAceBac1 linearization 

(targets SV40) 

-  multiple TGATAGGATCGAATCGGA
CTT 

FK011 5’ MED12 aa1 pAceBac1 
pFL 

multiple CAGCAGATGGGCGAGAAC
CTGTACTTCCAGATGGCG
GCCTTCGGGATC 

FK012 3’ MED12 aa2177 pAceBac1 
 

multiple TAGATTCGAAAGTCCGAT
TCGATCCTATCAGTAGCG
TCCAAATATGTTGGTAC 
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ID Description Overhang Usage Sequence 5’ – 3’ 

FK013 5’ MED13 aa1 pAceBac1 
 

multiple CAGCAGATGGGCGAGAAC
CTGTACTTCCAGATGAGT
GCCTCCTTCGTGC 

FK014 3’ MED13 aa2174 

 

pAceBac1 5 TAGATTCGAAAGTCCGAT
TCGATCCTATCACAGCAT
ATTCATAATAAAGTTATA
TAACT 

FK015 5’ Cyclin C aa1 pAceBac1 multiple CAGCAGATGGGCGAGAAC
CTGTACTTCCAGATGGCA
GGGAACTTTTGGCAGAG 

FK016 3’ Cyclin C aa283 pAceBac1 10 TAGATTCGAAAGTCCGAT
TCGATCCTATCAAGATTG
GCTGTAGCTAGAGTTCT 

FK017 5’ CDK8 aa1 pAceBac1 8 CAGCAGATGGGCGAGAAC
CTGTACTTCCAGATGGAC
TATGACTTTAAAGTGAAG
C 

FK018 3’ CDK8 aa464 pAceBac1 multiple TAGATTCGAAAGTCCGAT
TCGATCCTATCAGTACCG
ATGTGTCTGATGTGA 

FK019 ½ MED12 FK20 1 AGAGCTGACCGGCTATTG
C 

FK020 ½ MED12 FK19 1 CTCAGTGACTTGCAATAG
CCG 

FK021 ½ MED13 FK22 5 TGTTGCATCTGTGTTTGC
AACAT 

FK022 ½ MED13 FK21 5 TTGATGTTCATGTTGCAA
ACACAGA 

FK025 pIDK, pIDS, pUCDM pSPL 

linearization 

(targets T7) 

 multiple GCCCATCTGCTGGCCAC 
 

FK026 pIDK, pIDS, pUCDM pSPL 

linearization 

(targets polh) 

 multiple TAGGATCGAATCGGACTT
CTG 

FK027 5’ MED13 aa1 pIDS multiple CTTCCATGACCGGTGGCC
AGCAGATGGGCATGAGTG
CCTCCTTCGTGC 

FK028 3’ MED13 aa2174 pIDS multiple CAGAAGTCCGATTCGATC
CTATCACAGCATATTCAT
AATAAAGTTATATA 

FK029 5’ CDK8 aa1 pAceBac1 multiple CTTCCATGACCGGTGGCC
AGCAGATGGGCATGGACT
ATGACTTTAAAGTGAAG 

FK030 3’ CDK8 aa403 pAceBac1 multiple CAGAAGTCCGATTCGATC
CTATCAGTACCGATGTGT
CTGATG 
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ID Description Overhang Usage Sequence 5’ – 3’ 

FK034 3’ MED12 aa1227 pFL multiple GTACTTCTCGACAAGCTT
CTACTATCA 
GTAGCGTCCAAATATGTT
GGTAC 

FK036 pFL linearization 

(targets SV40) 

 multiple TGATAGTAGAAGCTTGTC
GAGAAG 

FK037 3’ MED12 aa2048 pAceBac1 2 GATTCGAAAGTCCGATTC
GATCCTATCATAGGATGG
CTGTTGAACGGAC 

FK038 5’ T7 pIDK, 
pIDS 

multiple GAAGACTTGATCACCCGG
GATCTCGAGCCATGGCTT
CCATGACCGGTG 

FK039 3’ Cyclin C aa283 pIDK, 
pIDS 

multiple CAGAAGTCCGATTCGATC
CTATTAAGATTGGCTGTA
GCTAGAGTTC 

FK040 pIDK, pIDS, pUCDM, pSPL 

linearization 

(targets p10 reverse) 

  

multiple 

GGCTCGAGATCCCGGGTG 

FK041 5’ MED12 aa1 pFL multiple ATGGCTTCCATGACCGGT
GGCCAGCAGATGGGCATG
GCGGCCTTCGGGATC 

FK043 5’ T7 pAceBac1 multiple ATTATTCATACCGTCCCA
CCATCGGGCGCGATGGCT
TCCATGACCGGTG 

FK044 3’ Cyclin C aa283 pIDC multiple GCGCGCTTCGGACCGGGA
TCCTATCAAGATTGGCTG
TAGCTAGAGTTCT 

FK045 pAceBac1, pIDC 

linearization 

(targets polh) 

 multiple GATCCGCGCCCGATGGTG 
 

FK046 pAceBac1, pIDC 

linearization 

(targets SV40) 

 multiple TGATAGGATCCCGGTCCG
AAGCGC 

FK049 5’ Strep pIDK, 
pIDS 

multiple AAGACTTGATCACCCGGG
ATCTCGAGCCTGGTCACA
CCCTCAATTCGAG 

FK052 3’ MED12 aa1227 pAceBac1 3 ATTCGAAAGTCCGATTCG
ATCCTATCACACAGCCTT
GAGAACAGCAAAC 

FK053 pAceBac1, pIDC 

linearization 

(targets polh) 

 multiple CGCGCCCGATGGTGGGAC 
 

FK057 5’ Cyclin C pIDK 28 TCAGAAGTCCGATTCGAT
CCTATCAAGATTGGCTGT
AGCTAGAGTTCTG 
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ID Description Overhang Usage Sequence 5’ – 3’ 

FK060 3’ MED12 aa1395 pAceBac1 4 ATTCGAAAGTCCGATTCG
ATCCTATCACTCTGCTGA
CTGTTGGAAAAC  

FK062 3’ CDK8 aa403 pAceBac1 multiple TAGATTCGAAAGTCCGAT
TCGATCCTATCATCATTT
CTTCAACGGGGGTCC 

FK067 3’ MED12 aa1195 pAceBac1 26 ATTCGAAAGTCCGATTCG
ATCCTATCAAGGCTTGTT
TCCATCAGACTG 

FK068 3’ MED12 aa1100 pAceBac1 27 ATTCGAAAGTCCGATTCG
ATCCTATCAGCACAAGGC
CTTAAGCACTC 

FK069 3’ Cyclin C pIDK 28 TATGCATCAGAAGTCCGA
TTCGATCCTATCATTTCT
TCAACGGGGGTCC 

FK087 5’ MED12 aa1 pAceBac1 multiple ATTATTCATACCGTCCCA
CCATCGGGCGCGATGGCG
GCCTTCGGGATC 

FK090 Plasmid linearization 

(targets TEV-T7) 

 multiple GGAAGCCATCTGGAAGTA
CAGGTTCTC 

FK091 3’ MED12 pAceBac1 41 GAAGCCATCTGGAAGTAC
AGGTTCTCATCCTTCTGG
TTCACTTGGGG 

FK093 3’ MED12 pAceBac1 43 GAAGCCATCTGGAAGTAC
AGGTTCTCAAGCAGGTCA
CTAAAGGGAG 

FK142 3’ MED12 Codon opt. aa1114 pAceBac1 76 TTCGAAAGTCCGATTCGA
TCCTATCACAGCAGGTCG
TTGAAACCGC 

FK146 3’ MED12 pAceBac1 80 GAAGCCATCTGGAAGTAC
AGGTTCTCAGACCACCTG
ACCTCCACAG 

FK095 pIDK, pIDS, pUCDM, pSPL 

linearization 

(targets HSV TK polyA) 

 multiple TGATAGCAGCTGATGCAT
AGCATG 
 

FK114 5’ MED12 Codon opt. aa1 pAceBac1 66 TATTCATACCGTCCCACC
ATCGGGCGCGATGGCAGC
ATTCGGCATTCTC 

FK115 3’ MED12 Codon opt. 

aa1227 

pAceBac1 66 GGAAGCCATCTGGAAGTA
CAGGTTCTCCACTGCTTT
CAACACTGCGAAC 

FK116 5’ MED13 Codon opt. aa1 pFL 

pAceBac1 

multiple TATTCATACCGTCCCACC
ATCGGGCGCGATGAGCGC
ATCTTTCGTGCC 

FK117 3’ MED13 Codon opt. 

aa2174 

pAceBac1, 

pFL 

multiple AGCCATCTGGAAGTACAG
GTTCTCGAGCATGTTCAT
AATGAAGTTGTAG 

FK118 5’ MED13 Codon opt. aa1 pAceBac1 

pFL 

multiple GCAGATGGGCGAGAACCT
GTACTTCCAGATGAGCGC
ATCTTTCGTGCC 
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ID Description Overhang Usage Sequence 5’ – 3’ 

FK124 5’ MED12 Codon opt. aa1 pIDS multiple AGATGGGCGAGAACCTGT
ACTTCCAGATGGCAGCAT
TCGGCATTCTC 

FK126 3’ MED12 Codon opt. 

aa1227 

pAceBac1 66 TTCGAAAGTCCGATTCGA
TCCTATCACACTGCTTTC
AACACTGCGAAC 

FK127 5’ CDK8 Codon opt. aa1 pAceBac1 68 GATGGGCGAGAACCTGTA
CTTCCAGATGGACTACGA
CTTTAAAGTGAAG 

FK129 3’ CDK8 Codon opt. aa403 pAceBac1 68 TCGAAAGTCCGATTCGAT
CCTATCACTTCTTAAGAG
GTGGGCCTTG 

FK133 3’ MED13 Codon opt. 

aa2174 

pFL 72 CGAAAGTCCGATTCGATC
CTATCAGAGCATGTTCAT
AATGAAGTTGTAG 

FK135 3’ CDK8 Codon opt. aa403 pUCDM 

pIDC 

multiple ATTCCGCGCGCTTCGGAC
CGGGATCCTACTTCTTAA
GAGGTGGGCCTTG 

FK137 3’ Cyclin C Codon opt. 

aa283 

pUCDM, 

pSPL 

multiple CCGCATGCTATGCATCAG
CTGCTATCAAGACTGCGA
ATAGGAGCTGTTC 

FK139 5’ MED12 Codon opt. aa1 pIDS 117 

117M1 

AAGACTTGATCACCCGGG
ATCTCGAGCCATGGCAGC
ATTCGGCATTCTC 

FK144 5’ CDK8 Codon opt. aa1 pUCDM 

pIDC 

multiple TCCCACCATCGGGCGCGG
ATCTAGATGGACTACGAC
TTTAAAGTGAAGC 

FK145 5’ Cyclin C Codon opt. aa1 pUCDM, 

pSPL 

multiple TGATCACCCGGGATCTCG
AGCCATGGCTGGTAACTT
CTGGCAATC 

FK153 3’ MED13 Codon opt. aa390 pAceBac1 86 GAAGCCATCTGGAAGTAC
AGGTTCTCGTTCTGGGCG
CGGTTCATG 

FK154 3’ MED13 Codon opt. aa500 pAceBac1 87 GAAGCCATCTGGAAGTAC
AGGTTCTCGCTGATGACC
AGACGCTGG 

FK155 3’ MED13 Codon opt. aa545 pAceBac1 88 GGAAGCCATCTGGAAGTA
CAGGTTCTC 

FK172 3’ CDK8 Codon opt. aa359 pUCDM 

pIDC 

multiple TCCGCGCGCTTCGGACCG
GGATCCTAGAGGAACTCC
CTCTTAGGATAAG 

FK177 5’ UTR CDK19  CDK19 

template 

GAGGCGGCTGTTGGAGAA
G 

FK178 3’ UTR1 CDK19  CDK19 

template 

AAGTGTGCTCTGGGACTG
AG 

FK167 5’ CDK19 aa1 pAceBac1 

pSPL  

multiple*1 ATGGGCGAGAACCTGTAC
TTCCAGATGGATTATGAT
TTCAAGGCGAAG 

FK168 3’ CDK19 aa439 pAceBac1 

pSPL 

multiple TTCCGCGCGCTTCGGACC
GGGATCCTACTTCTTGTT
TGGAGGCACCTG 



 Appendix 

 

126 

ID Description Overhang Usage Sequence 5’ – 3’ 

FK170 3’ CDK19 aa359 pSPL 

pIDC 

multiple TCCGCGCGCTTCGGACCG
GGATCCTAAAGGAATTCT
CGTTTGGGGTATG 

FK183 5’ CDK19 aa1 pIDC 137 TCATACCGTCCCACCATC
GGGCGCGATGGATTATGA
TTTCAAGGCGAAG 

FK188 5’ UTR MED12L  MED12L 

template 

GAGGGAGTCTGTCTGCAA
AG 

FK189 3’ UTR MED12L  MED12L  

template 

TGTCAAAGAAATGAAAAA
AAGGGAC 

FK190 5’ MED12L aa1 pAceBac1 41L  

43L 

CATACCGTCCCACCATCG
GGCGCGATGGCCGCCTTC
GGGCTTC 

FK191 3’ MED12L aa100 pAceBac1 41L AGCCATCTGGAAGTACAG
GTTCTCATCTTTAGCATT
AACTTGTGGTTTC 

FK192 3’ MED12L aa352 pAceBac1 43L AGCCATCTGGAAGTACAG
GTTCTCAAGAAAATCTGA
GAAGGCCAGC 

FK193 5’ UTR STAT1  STAT1 

template 

TGTCTAGGTTAACGTTCG
CAC 

FK194 3’ UTR STAT1  STAT1 

template 

GGCCTTTCTTTCATTTCC
CTAG 

FK195 5’ STAT1 aa639 pGEX4T1 EC6 CTGGTTCCGCGTGGATCC
CCGGAACTTTCTGCTGTT
ACTTTCCCTG 

FK196 3’ STAT1 aa750 pGEX4T1 EC6 

EC7 

GCGCGAGGCAGATCGTCA
GTCAGTCATACTGTGTTC
ATCATACTGTCGA 

FK197 3’ UTR2 CDK19  CDK19 

template 

GTTTTCCTCCCATGTGTA
TGAG 

FK200 3’ MED12 aa91 pAceBac1 multiple AAGCCATCTGGAAGTACA
GGTTCTCGCGACCAGTGT
CAGGAAGG 

FK201 5’ STAT1 aa639 pGEX4T1 EC7 CGGATGAAAACCTGTACT
TCCAATCCCTTTCTGCTG
TTACTTTCCCTG 

FK202 3’ MED12 aa295 pAceBac1 104 GAAGCCATCTGGAAGTAC
AGGTTCTCGCGGGACAGG
TATGCAGAC 

FK203 3’ MED12 aa303 pAceBac1 105 GAAGCCATCTGGAAGTAC
AGGTTCTCCCGTGTACAG
AAGTAGGCAAG 

FK207 3’ CDK8 Codon opt. aa464 pUCDM 

pIDC 

multiple TCCGCGCGCTTCGGACCG
GGATCCTATTAATAACGA
TGGGTTTGGTGTG 

FK209 5’ Cyclin C Codon opt. aa1 pAceBac1 108 TTCATACCGTCCCACCAT
CGGGCGCGATGGCTGGTA
ACTTCTGGCAATC 



 Appendix 

 

127 

ID Description Overhang Usage Sequence 5’ – 3’ 

FK212 3’ MED12 Codon opt. aa100 pIDS 117 

117M1 

TATGCATCAGAAGTCCGA
TTCGATCCTAGTCCTTCT
GGTTGACCTGTG 

FK214 MED12 linearization aa32 MED12 41M1-5 

41M11 

41M14 

CTTCTGTTTGGGGTCCTG
AG 

FK215 5’ MED12 E33Q FK214 41M1 CAGGACCCCAAACAGAAG
CAGGATGAACTGACGGCC
TTGAATGTAAAAC 

FK216 5’ MED12 D34N FK214 41M3 CAGGACCCCAAACAGAAG
GAGAACGAACTGACGGCC
TTGAATGTAAAAC 

FK217 5’ MED12 E35Q FK214 41M5 CAGGACCCCAAACAGAAG
GAGGATCAACTGACGGCC
TTGAATGTAAAAC 

FK218 5’ MED12 E33Q/D34N FK214 41M2 CAGGACCCCAAACAGAAG
CAGAACGAACTGACGGCC
TTGAATGTAAAAC 

FK219 5’ MED12 D34N/E35Q MED12 41M4 CAGGACCCCAAACAGAAG
GAGAACCAACTGACGGCC
TTGAATGTAAAAC 

FK224 Cyclin C linearization aa97 Cyclin C 79aM4-6 TACTTTGCTGGCAAGAAA
CACGC 

FK225 5’ Cyclin C E99Q FK224 79aM4 GCGTGTTTCTTGCCAGCA
AAGTAGAGCAGTTTGGCG
TAGTCTCAAATAC 

FK226 5’ Cyclin C E98Q FK224 79aM5 GCGTGTTTCTTGCCAGCA
AAGTACAGGAGTTTGGCG
TAGTCTCAAATAC 

FK227 5’ Cyclin C E99Q/E98Q FK224 79aM6 GCGTGTTTCTTGCCAGCA
AAGTACAGCAGTTTGGCG
TAGTCTCAAATAC 

FK229 3‘ MED12 aa69 pAceBac1 125 GAAGCCATCTGGAAGTAC
AGGTTCTCGATCTTGGCA
GGATTGAAGCTG 

FK230 5‘ MED12 aa6 pAceBac1 126 TCATACCGTCCCACCATC
GGGCGCGATGATCTTGAG
CTACGAACACCGG 

FK231 5‘ MED12 aa11 pAceBac1 127 TCATACCGTCCCACCATC
GGGCGCGATGCACCGGCC
CCTGAAGCG 

FK232 5‘ MED12 aa23 pAceBac1 128 TCATACCGTCCCACCATC
GGGCGCGATGGATGTTTA
CCCTCAGGACCC 

FK234 5‘ MED12 aa29 pAceBac1 129 CATACCGTCCCACCATCG
GGCGCGATGCCCAAACAG
AAGGAGGATGAAC 

FK236 5’ MED12 E33A FK214 41M6 CAGGACCCCAAACAGAAG
GCGGATGAACTGACGGCC
TTGAATGTAAAAC 
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ID Description Overhang Usage Sequence 5’ – 3’ 

FK237 5’ MED12 E33L FK214 41M7 CAGGACCCCAAACAGAAG
CTGGATGAACTGACGGCC
TTGAATGTAAAAC 

FK238 CDK8 Codon opt. 

linearization aa64 

CDK8 79aM7 ACAAGCGCTCATGGATAT
ACCCG 

FK239 CDK8 Codon opt. 

linearization aa149 

CDK8 79aM8 GTGCAGGACCCAATTCGC
G 

FK240 CDK8 Codon opt. 

linearization aa177 

CDK8 79aM9 TGCAAAGCCCATATCGGC
AATT 

FK241 5’ CDK8 Codon opt. R65Q FK238 79aM7 GGTACGGGTATATCCATG
AGCGCTTGTCAGGAGATT
GCCCTGTTGCGTG 

FK242 5’ CDK8 Codon opt. R150Q FK239 79aM8 TTACACGCGAATTGGGTC
CTGCACCAGGACTTGAAA
CCCGCTAACATAC 

FK243 5’ CDK8 Codon opt. R178Q FK240 79aM9 AAAATTGCCGATATGGGC
TTTGCACAGCTCTTCAAC
AGTCCCCTGAAAC 

FK244 MED12 linearization aa29 MED12 41M8-10 GGGGTCCTGAGGGTAAAC
ATC 

FK245 5’ MED12 K30A FK244 41M8 TGTTTACCCTCAGGACCC
CGCGCAGAAGGAGGATGA
ACTGACGGCCTTG 

FK246 5’ MED12 Q31A FK244 41M9 TGTTTACCCTCAGGACCC
CAAAGCGAAGGAGGATGA
ACTGACGGCCTTG 

FK247 5’ MED12 K32A FK244 41M10 TGTTTACCCTCAGGACCC
CAAACAGGCGGAGGATGA
ACTGACGGCCTTG 

FK220 CDK8 Codon opt. 

linearization aa195 

CDK8 79aM10-11 AGCCAAAGGTTTCAGGGG
AC 

FK248 5’ CDK8 Codon opt. T196D FK220 79aM10 CCCCTGAAACCTTTGGCT
GATCTCGATCCTGTCGTC
GTAGATTTCTGGT 

FK249 5’ CDK8 Codon opt. T196A FK220 79aM11 CCCCTGAAACCTTTGGCT
GATCTCGATCCTGTCGTC
GTAGCTTTCTGGT 

FK250 CDK8 Codon opt. 

linearization aa30 

CDK8 79aM12-14 TCCCCTACCGACTTTGCA
GC 

FK251 5’ CDK8 Codon opt. T31D FK250 79aM12 GCTGCAAAGTCGGTAGGG
GAGATTATGGTCATGTAT
ACAAGGCCAAG 

FK252 5’ CDK8 Codon opt. T31A FK250 79aM13 GCTGCAAAGTCGGTAGGG
GAGCTTATGGTCATGTAT
ACAAGGCCAAG  

FK253 5’ CDK8 Codon opt. Y32F FK250 79aM14 GCTGCAAAGTCGGTAGGG
GAACGTTCGGTCATGTAT
ACAAGGCCAAG 
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ID Description Overhang Usage Sequence 5’ – 3’ 

FK256 CDK8 Codon opt. 

linearization aa359 

CDK8 79aM15-16 GAGGAACTCCCTCTTAGG
ATAAG 

FK257 5’ CDK8 Codon opt. T360A FK256 79aM15 CTTATCCTAAGAGGGAGT
TCCTCGCTGAAGAGGAAC
CTGACGATAAG 

FK258 5’ CDK8 Codon opt. T360D FK256 79aM16 CTTATCCTAAGAGGGAGT
TCCTCGACGAAGAGGAAC
CTGACGATAAG 

FK259 Cyclin C Codon opt. 

linearization aa180 

Cyclin C 79aM17-18 GACAATACGCCAAGCTAA
TGG 

FK260 5’ Cyclin C Codon opt. 

N181A 

FK259 79aM17 CATTAGCTTGGCGTATTG
TCGCCGACACTTACCGTA
CGGATC 

FK261 5’ Cyclin C Codon opt. 

D182A 

FK259 79aM18 CATTAGCTTGGCGTATTG
TCAACGCCACTTACCGTA
CGGATC 

FK262 5’ MED12 L36R FK214 41M11 CTCAGGACCCCAAACAGA
AGGAGGATGAACGGACGG
CCTTGAATG 

FK265 MED12 Codon opt. 

linearization aa32 

MED12 117M1 CTTCTGCTTAGGGTCTTG
CGG 

FK266 5’ MED12 Codon optimized 

E33Q 

FK265 117M1 CAAGACCCTAAGCAGAAG
CAGGACGAACTGACCGCC
CTG 

FK267 MED12 linearization aa42 MED12 41M12-13 TTTTACATTCAAGGCCGT
CAGTTC 

FK268 5’ MED12 Q43P FK267 41M12 ACTGACGGCCTTGAATGT
AAAACCTGGTTTCAATAA
CCAGCCTGCTGTC 

FK269 5’ MED12 G44S FK267 41M13 ACTGACGGCCTTGAATGT
AAAACAAAGTTTCAATAA
CCAGCCTGCTGTC 

FK270 5’ MED12 D34Y FK214 41M14 CAGGACCCCAAACAGAAG
GAGTACGAACTGACGGCC
TTGAATGTAAAAC 

FK273 CDK8 Codon opt. 

linearization aa409 

CDK8 79dM1-6 TGGAGGAACCACTCTAAC
CTTC 

FK274 5’ CDK8 Codon optimized 

T410D 

FK273 79dM1 GTTAGAGTGGTTCCTCCA
GACACAACTTCTGGAGGA
CTGATC 

FK275 5’ CDK8 Codon optimized 

T410A 

FK273 79dM2 GTTAGAGTGGTTCCTCCA
GCCACAACTTCTGGAGGA
CTGATC 

FK276 5’ CDK8 Codon optimized 

S413D 

FK273 79dM3 GTTAGAGTGGTTCCTCCA
ACCACAACTGACGGAGGA
CTGATCATGACATCC 

FK277 5’ CDK8 Codon optimized 

S413A 

FK273 79dM4 GTTAGAGTGGTTCCTCCA
ACCACAACTGCCGGAGGA
CTGATCATGACATCC 
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ID Description Overhang Usage Sequence 5’ – 3’ 

FK278 5’ CDK8 Codon optimized 

T410D/S413D 

FK273 79dM5 GTTAGAGTGGTTCCTCCA
GACACAACTGACGGAGGA
CTGTCATGACATCC 

FK279 5’ CDK8 Codon optimized 

T410A/S413A 

FK273 79aM6 GTTAGAGTGGTTCCTCCA
GCCACAACTGCCGGAGGA
CTGATCATGACATCC 

FK280 3’ CDK19 aa502 pIDC 137 ATTCCGCGCGCTTCGGAC
CGGGATCCTAGTACCGGT
GGGCCTG 

pGEX 

rev 

pGEX4T1 linearization 

(please note that this oligo 

was designed by Silke 

Spudeit) 

 EC6 TTCCGGGGATCCACGCGG
AACC 

Smed3 

rev-

TEV vs. 

SiS2 

pGEX4T1 linearization 

(Please note that this oligo 

was designed by Silke 

Spudeit) 

 EC7, 8, 9, 

12 

 

GGATTGGAAGTACAGGTT
TTCATCCGATTTTGGAGG
ATGGTCG 
 

pGex 

for vs. 

IK112 

pGEX4T1 linearization 

(Please note that this oligo 

was designed by Silke 

Spudeit and Dr. Iana Kim) 

 EC6, 7, 8, 

9, 12 

TGACTGACTGACGATCTG
CCTCGC 

FK285 5’ UTR BRCA1   BRCA1 

template 

GGACGGGGGACAGGCTG 

FK286 3’ UTR BRCA1   BRCA1 

template 

GTAGAAGGACTGAAGAGT
GAG 

FK287 5’ BRCA1 pGEX4T1 EC9 CGGATGAAAACCTGTACT
TCCAATCCCGAAATCCAG
AACAAAGCACATC 

FK288 3’ BRCA1 pGEX4T1 EC9 GCGCGAGGCAGATCGTCA
GTCAGTCATCTTTTGTTG
ACCCTTTCTGTTG 

FK291 MED12 linearization aa14 MED12 41M15-16 CAGGGGCCGGTGTTCGTA
G 

FK292 5’ MED12 K15N FK291 41M15-16 TCTTGAGCTACGAACACC
GGCCCCTGAATCGGCCGC
GGCTGGGG 

FK293 5’ MED12 E33K FK214 41M17 CAGGACCCCAAACAGAAG
AAGGATGAACTGACGGCC
TTGAATGTAAAAC 

FK300 5’ MED12 aa1 pIRESneo 
(EcoRI) 

CP3, 

CP3M1 

TAGGCGCGCCATATATAG
AAAAATGGCGGCCTTCGG
GATC 

FK301 3’ MED12 aa2177 pIRESneo 

(EcoRI) 

CP3, 

CP3M1 

TTACTAGTGGATCCACTG
AACTATTAGTAGCGTCCA
AATATGTTGGTAC 
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ID Description Overhang Usage Sequence 5’ – 3’ 

FK307 3’ MED13 Codon opt. aa947 pFL 141 AGTACTTCTCGACAAGCT
TCTACTATCACTTGCCCA
CAGTCCAGGAC 

FK311 5’ UTR CDK3  CDK3 

template 

CTTCCTGGCCGCCATGTG 

FK312 3’ UTR CDK3  CDK3 

template 

TCCCCAGATGCATCCTCT
C 

FK313 5’ CDK3 aa1 pIDC 143 TCATACCGTCCCACCATC
GGGCGCGATGGATATGTT
CCAGAAGGTAGAG 

FK314 3’ CDK3 aa305 pIDC 143 CCGCGCGCTTCGGACCGG
GATCCTAATGGCGGAATC
GCTGCAGC 

FK315 CDK8 Codon opt. 

linearization aa392 

CDK8 79aM20-23 GTCCTGATTGCCCGGATG
AC 

FK316 5’ CDK8 Codon opt. 

S393A/S394A 

FK315 79aM20 ACTGGTCATCCGGGCAAT
CAGGACGCCGCTCACACA
CAAGGCCCACCTC 

FK317 5’ CDK8 Codon opt. 

S393D/S394A 

FK315 79aM21 ACTGGTCATCCGGGCAAT
CAGGACGACGATCACACA
CAAGGCCCACCTC 

FK318 5’ CDK8 Codon opt.  

T396A 

FK315 79aM22 ACTGGTCATCCGGGCAAT
CAGGACTCGTCACACGCT
CAAGGCCCACCTCTTAAG
AAG 

FK319 5’ CDK8 Codon opt. 

T396D 

FK315 79aM23 ACTGGTCATCCGGGCAAT
CAGGACTCGTCACACGAT
CAAGGCCCACCTCTTAAG
AAG 

FK320 CDK8 Codon opt. aa381 

linearization 

CDK8 79aM24-25 GTGGTTGTTGCCCTGCTG
TTG 

FK321 5’ CDK8 Codon opt. 

T382A 

FK320 79aM24 CAGCAACAGCAGGGCAAC
AACCACGCTAATGGAACT
GGTCATCCGGGC 

FK322 5’ CDK8 Codon opt.  

T382D 

FK320 79aM25 CAGCAACAGCAGGGCAAC
AACCACGACAATGGAACT
GGTCATCCGGGC 

FK333 3‘ MED12 aa60 pAceBac1 155 TGGAAGCCATCTGGAAGT
ACAGGTTCTCCTTGGCAC
TGCCATGCTCATC 

FK334 CDK8 Codon opt. 

linearization aa384 

CDK8 79aM26-27 GTCATCCGGGCAATCAGG
AC 

FK335 5’ CDK8 Codon opt.  

T385A 

FK334 79aM26 CGAGTCCTGATTGCCCGG
ATGACCAGCTCCATTAGT
GTGGTTGTTGCCC 

FK336 5’ CDK8 Codon opt. 

T385D 

FK334 79aM27 CGAGTCCTGATTGCCCGG
ATGACCGTCTCCATTAGT
GTGGTTGTTGCCC 
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ID Description Overhang Usage Sequence 5’ – 3’ 

FK337 5’ UTR CDK7  150 GCTTTAAGGTAGCTTTAA
ATTCGTG 

FK338 3’ UTR CDK7  150 CTTCTACAGCATTTACTT
AATGTTTAC 

FK343 5’ CDK7 aa1 pAceBac1 150 GATGGGCGAGAACCTGTA
CTTCCAGATGGCTCTGGA
CGTGAAGTC 

FK344 3’ CDK7 aa346 pAceBac1 150 TCGAAAGTCCGATTCGAT
CCTATTAAAAAATTAGTT
TCTTGGGCAATCC 

FK281 5’ UTR Cyclin H  Cyclin H 

template 

CGGTGGGGGTACGGGTG 

FK282 3’ UTR Cyclin H  Cyclin H 

template 

GTTTGATATGCTTCCTAC
TTCTC 

FK283 5’ Cyclin H aa1 pGEX4T1 EC8 GGATGAAAACCTGTACTT
CCAATCCATGTACCACAA
CAGTAGTCAGAAG 

FK284 3’ Cyclin H aa323 pGEX4T1 EC8 CGCGAGGCAGATCGTCAG
TCAGTCATTAGAGAGATT
CTACCAGGTCGTC 

FK345 5’ Cyclin H aa1 pIDC 151 TCATACCGTCCCACCATC
GGGCGCGATGTACCACAA
CAGTAGTCAGAAG 

FK346 3’ Cyclin H aa323 pIDC 151 CCGCGCGCTTCGGACCGG
GATCCTATTAGAGAGATT
CTACCAGGTCGTC 

FK339 5’ UTR MAT1  MAT1 

template 

CGCGTCTGAGGGGGCTTG 

FK340 3’ UTR MAT1  MAT1 

template 

CTGCACATAGCTATAATT
TTATAAGTC 

FK347 5’ MAT1 aa1 pIDS 152 ACTTGATCACCCGGGATC
TCGAGCCATGGACGATCA
GGGTTGCCC 

FK348 3’ MAT1 aa309 pIDS 152 GCATCAGAAGTCCGATTC
GATCCTATTAACTGGGCT
GCCAGAAAAGC 

FK351 3’ CDK8 Codon opt. aa424 pUCDM 79e TTCCGCGCGCTTCGGACC
GGGATCCTAGCGCTGATA
ATCGGATGTCATG 

FK352 3’ CDK8 Codon opt. aa371 pUCDM 79f ATTCCGCGCGCTTCGGAC
CGGGATCCTACTTCTTGT
CTCCCTTATCGTC 

FK353 3’ CDK19 aa460 pUCDM 98e ATTCCGCGCGCTTCGGAC
CGGGATCCTAGTGCTGAT
AATCCGAGGGC 

FK354 3’ CDK19 aa371 pUCDM 98f CCGCGCGCTTCGGACCGG
GATCCTAATTCTTGTCAC
CTTTTTCTTCAGG 
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ID Description Overhang Usage Sequence 5’ – 3’ 

FK360 3’ MED12 aa50 pAceBac1 153 TGGAAGCCATCTGGAAGT
ACAGGTTCTCAGCAGGCT
GGTTATTGAAACC 

FK361 3’ MED12 aa45 pAceBac1 154 AAGCCATCTGGAAGTACA
GGTTCTCGAAACCTTGTT
TTACATTCAAGGC 

FK371 5’ UTR p21  p21 

template 

TGTGAGCAGCTGCCGAAG
TC 

FK372 3’ UTR p21  p21 

template 

ACAAACTGAGACTAAGGC
AGAAG 

FK373 5’ p21 aa1 pAceBac1 160 ATTCATACCGTCCCACCA
TCGGGCGCGATGTCAGAA
CCGGCTGGGGATG 

FK374 3’ p21 aa164 pAceBac1 160 GGAAGCCATCTGGAAGTA
CAGGTTCTCGGGCTTCCT
CTTGGAGAAGATC 

FK375 5’ P21 aa1 pGEX4T1 EC12 TCGGATGAAAACCTGTAC
TTCCAATCCATGTCAGAA
CCGGCTGGGGATG 

FK376 3’ P21 aa164 pGEX4T1 EC12 CGCGCGAGGCAGATCGTC
AGTCAGTCATTAGGGCTT
CCTCTTGGAGAAG 

FK377 pAceBac1 linearization 

(targets TEV) 

pAceBac1 Spt5 CT1-6 GGTGCTGAAAACCTGTAC
TTCC 

FK378 Spt5 linearization Spt5 Spt5 CT1-6 CAGAAAGCCCTTCCGGCT
G 

FK379 3’ Spt5 aa978 FK377 Spt5 CT6 CTTGGAAGTACAGGTTTT
CAGCACCCTGGTCCTCAA
ACTTTTCCAGC 

FK380 5’ Spt5 FK378 Spt5 CT1-6 CCGTTACAGCCGGAAGGG
CTTTCTGTTCAAGAGCTT
CCCATGTCTG 

FK381 3’ Spt5 aa518 FK377 Spt5 CT5 CTTGGAAGTACAGGTTTT
CAGCACCCAGGTCCCGGG
GGAGCA 

FK382 3’ Spt5 aa593 FK377 Spt5 CT4 CTTGGAAGTACAGGTTTT
CAGCACCGTTGTTCTGCT
CTGAGTCCAAG 

FK383 3’ Spt5 aa754 FK377 Spt5 CT3 CTTGGAAGTACAGGTTTT
CAGCACCGCCCACCGTGG
TGAGCC 

FK384 3’ Spt5 aa837 FK377 Spt5 CT2 CTTGGAAGTACAGGTTTT
CAGCACCCTCATATTCTT
CCTCAGCCCG 

FK385 3’ Spt5 aa978 FK377 Spt5 CT1 CTTGGAAGTACAGGTTTT
CAGCACCGTCGCTGGAGT
TCTGCTCGA 
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Oligos used for colony PCRs and Sanger sequencing are listed below. 

ID Description Sequence 5’ – 3’ 

Seq01 Sumo fwd ATAACGATATTATTGAGGCTCAC 

Seq02 SV40 rev TATGGCTGATTATGATCCTCTA 

Seq09 Sumo fwd2 TACGACGGTATTGAAATTCAAG 

Seq10 SV40 rev2 GTTTCAGGTTCAGGGGGA 

Seq11 MED12 fwd1 GGAGCAGTTACAGAAGATG 

Seq12 MED12 fwd2 CAGTTGAAGTTCGCTGGTC 

Seq13 MED12 fwd3 ACATTGACCCTAGTTCCAG 

Seq14 MED12 fwd4 GTGTAGTTGAGGCTGAGC 

Seq15 MED12 fwd5 ACTTTTGTTGCCATCCTCATC 

Seq16 MED12 fwd6 GTGCTCAGCTCTCTAGAG 

Seq17 MED12 fwd7 GCTTCGATTCCATCTTCAAG 

Seq18 MED12 fwd8 ACTGGCGTCATGGGTTTAG 

Seq19 MED12 fwd9 AACAGCAACAGCAGCAGC 

Seq20 CDK8 fwd TGTTACATTCTGGTACCGAG 

Seq21 MED13 fwd1 CCTTGCTCAACAGTCTAATAG 

Seq22 MED13 fwd2 AATCTCAAGTCAAGAAATGCTG 

Seq23 MED13 fwd3 AGAGTTAATGGTGCAATGTAAG 

Seq24 MED13 fwd4 TAGTATAGGAGCGCAGTTC 

Seq25 MED13 fwd5 GCATCTGTGTTTGCAACATG 

Seq26 MED13 fwd6 CCAGAACCACTGCCAATC 

Seq27 MED13 fwd7 GCAGGATCCATGTCTACAC 

Seq28 MED13 fwd8 GGATACTGTTTATCACATGATC 

Seq29 MED13 fwd9 TTAGCTTTCAATCCCAACAATG 

Seq31 HSV TK polyA rev AACACCCGTGCGTTTTATTC 

Seq32 p10 fwd GGACCTTTAATTCAACCCAAC 

Seq33 MED13 rev1 TCTATTGGAACGGTGTTTAATG 

Seq34 MED13 rev2 CTCATTGGTCTTGTGCTTAG 

Seq35 polh fwd GGAGATAATTAAAATGATAACCATC 

Seq36 CDK8 rev TGGTTCTGACGTTAGTAGTTC 

Seq37 Cyclin C rev TTCAGAGAATACCTGGCATAG 

Seq38 T7 terminator rev GCTAGTTATTGCTCAGCGG 

Seq39 MED12 Codon opt. fwd1 CACTAAGTACCTGTGGGAAC 

Seq40 MED12 Codon opt. fwd2 CGAGATCGAACAGCAGATC 

Seq41 MED12 Codon opt. fwd3 CAGCTCTTCAAAGCTGGAAG 

Seq42 MED12 Codon opt. fwd4 CTGATGGAATACTCTCTGTC 
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ID Description Sequence 5’ – 3’ 

Seq43 MED12 Codon opt. fwd5 CTGTGCAACGTGGACGTC 

Seq44 MED13 Codon opt. fwd1 TCACCCTGGCTCAGCAG 

Seq45 MED13 Codon opt. fwd2 CTGCGTCACAAGAACCTG 

Seq46 MED13 Codon opt. fwd3 CAGTGCAAGAAGCCACTG 

Seq47 MED13 Codon opt. fwd4 CCCTCTGAGATCAAGGAC 

Seq48 MED13 Codon opt. fwd5 CTTCTCTGCTGTCATGAAC 

Seq49 MED13 Codon opt. fwd6 TGGAACCCTACGGTTCAC 

Seq50 MED13 Codon opt. fwd7 GCAAACCGCTGGTATCTC 

Seq51 MED13 Codon opt. fwd8 CAACAGAGCCAGGAGAAAG 

Seq52 MED13 Codon opt. fwd9 TCCCCAACATCCTGCAAC 

Seq53 Cyclin C Codon opt. fwd1 CTAGAGATCATTCGCGTAATC 

Seq54 CDK8 Codon opt. fwd1 AGCCTTCGTATTCGAAGAG 

Seq55 LoxP fwd CTTGGGCAGCAGCGAAG 

Seq56 eYFP rev GGACGAGCTGTACAAGTAG 

Seq57 CDK8 Codon opt. fwd2 TTCACTGGTCAGCAACTCG 

Seq58 CDK8 Codon opt. rev1 CTACTTGGTGCAAGGCAC 

Seq59 Cyclin C Codon opt. fwd2 TCCCTTACAGGATGAACCAC 

Seq60 Cyclin C Codon opt. rev1 ACGGATGGTACACGATGAG 

Seq61 BstXI fwd GTATACCCTAGGGGTTATGAT 

Seq62 Strep fwd GTCACACCCTCAATTCGAG 

Seq63 Strep rev CAGGGAACCGGTCTTTTC 

Seq64 CDK19 fwd GATACCAAAATGTCACAACTAC 

Seq65 CDK19 rev GGTGCTTCACAGAGACTTG 

Seq66 CDK8 Codon opt. rev2 CGCTTGGCCTTGTATACATG 

Seq67 Cyclin C Codon opt. rev2 CTTGACCCATATCCTGGAC 

Seq71 Spt5 fwd1 CAGCTGCTCCCAGGAGTC 

Seq72 Spt5 fwd2 GTGATCACGGAGGGTGTG 

Seq73 Spt5 rev1 CACACCCTCCGTGATCAC 

Seq74 Spt5 fwd3 GGCTGTTTGATGCTGAGAAG 

Seq75 Spt5 fwd4 GACCTTCCAGGTGCTGAAC 

Seq76 Spt5 fwd5 CCCAGACGCCCATGTATG 

Seq77 Spt5 fwd6 GGGACACCTACCTGGATAC 
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Appendix B: Additional cloned plasmids 
 

Additional MED12 and MED12L encoding plasmids, which were not included/did not appear 

in this study, yet might be useful for further studies, are listed below. 
 

Backbone Insert Amino acids/ 
mutation 

5’ 
modification 

3’ 
modification 

Internal 
ID 

pIRESneo MED12 1-2177/wt Flag-HA  CP3 

pIRESneo MED12 1-2177/E33Q Flag-HA  CP3M1 

pAceBac1 MED12 1-2177/E33Q Strep-SUMO-T7-TEV  1M1 

pFL MED12 1-2177/wt Strep-SUMO-T7-TEV  11 

pAceBac1 MED12 1-2048/wt Strep-SUMO-T7-TEV  2 

pAceBac1 MED12 1-1395/wt Strep-SUMO-T7-TEV  4 

pAceBac1 MED12 1-1227/wt  TEV-T7-Strep 38 

pAceBac1 MED12 1-1227/wt  TEV-T7-Strep 56 

pFL MED12 1-1227/wt  TEV-T7-Strep 44 

pFL MED12 1-1227/wt  TEV-T7-Strep 55 

pIDS MED12 1-1227/wt SUMO-T7-TEV  30 

pAceBac1 MED12 1-1195/wt Strep-SUMO-T7-TEV  26 

pAceBac1 MED12 1-1114/wt Strep-SUMO-T7-TEV  76 

pAceBac1 MED12 1-1100/wt Strep-SUMO-T7-TEV  27 

pAceBac1 MED12 1-1005/wt Strep-SUMO-T7-TEV  77 

pAceBac1 MED12 19-295/wt  TEV-T7-Strep 104 

pAceBac1 MED12 19-303/wt  TEV-T7-Strep 105 

pAceBac1 MED12 11-45/wt  TEV-T7-Strep 154 

pAceBac1 MED12 11-50/wt  TEV-T7-Strep 153 

pAceBac1 MED12 23-45/wt  TEV-T7-Strep 157 

pAceBac1 MED12 23-50/wt  TEV-T7-Strep 156 

pAceBac1 MED12 23-60/wt  TEV-T7-Strep 155 
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Backbone Insert Amino acids/ 
mutation 

5’ 
modification 

3’ 
modification 

Internal 
ID 

pAceBac1 MED12 1-100/wt  TEV-T7-Strep-
Flag 

41F 

pAceBac1 MED12 1-100/E33Q  TEV-T7-Strep-
Flag 

41FM1 

pAceBac1 MED12L 1-100/wt  TEV-T7-Strep 41L 

pAceBac1 MED12 1-174/wt  TEV-T7-Strep 124 

pAceBac1 MED12 1-224/wt  TEV-T7-Strep 42 

pAceBac1 MED12 1-295/wt  TEV-T7-Strep 120 

pAceBac1 MED12 1-303/wt  TEV-T7-Strep 121 

pAceBac1 MED12L 1-352/wt  TEV-T7-Strep 43L 

pAceBac1 MED12 1-540/wt  TEV-T7-Strep 81 

pAceBac1 MED12 1-593/wt  TEV-T7-Strep 113 

pAceBac1 MED12 1-621/wt  TEV-T7-Strep 82 

 
 

Additional MED13 encoding plasmids, which did not appear in this study, yet might be useful 

for further studies are listed. 
 

Backbone Insert Amino acids 
 

5’ 
modification 

3’ 
modification 

Internal 
ID 

pAceBac1 MED13 1-2174  TEV-T7-Strep 58 

pFL MED13 1-2174  TEV-T7-Strep 57 

pIDS MED13 1-2174 SUMO-T7-TEV  29 

pIDS MED13 1-2174 T7-TEV  60 

pIDS MED13 1-1366 SUMO-T7-TEV  31 

pIDS MED13 1-1366 T7-TEV  32 

pIDS MED13 1367-2174 SUMO-T7-TEV  33 

pIDS MED13 1367-2174 T7-TEV  34 

pIDS MED13 1367-2174 T7-TEV  62 

pIDS MED13 1330-2174 SUMO-T7-TEV  35 

pIDS MED13 1330-2174 T7-TEV  36 
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Backbone Insert Amino acids 
 

5’ 
modification 

3’ 
modification 

Internal 
ID 

pIDS MED13 1330-2174 T7-TEV  61 

pIDS MED13 1331-1408 T7-TEV  84 

pIDS MED13 1409-2174 T7-TEV  85 

pIDS MED13 1-390 T7-TEV  37 

pIDS MED13 1-390 T7-TEV  63 

pAceBac1 MED13 1-390  TEV-T7-Strep 86 

pAceBac1 MED13 1-500  TEV-T7-Strep 87 

pAceBac1 MED13 1-545  TEV-T7-Strep 88 

 
 
Additional donor plasmids that encode for full-length Cyclin C in combination with different 

C-terminally truncated CDK8- or CDK19 variants were listed. These constructs were primarily 

used for crystallization attempts. However, as we did not obtain diffracting crystals, these 

constructs are not included in this study.  
 

Backbone Insert Amino acid 5’ 
modification 

3’ 
modification 

Internal 
ID 

pUCDM Cyclin C 
CDK8 

1-283 
1-353 

  79b 

 Cyclin C 
CDK8 

1-283 
1-424 

  79e 

 Cyclin C 
CDK8 

1-283 
1-371 

  79f 

pUCDM Cyclin C 
CDK19 

1-283 
1-353 

  98c 

 Cyclin C 
CDK19 

1-283 
1-460 

  98e 

 Cyclin C 
CDK19 

1-283 
1-371 

  98f 

 
 
Additional cloned plasmids that could be used for protein production and additional research. 
 

Backbone Insert Amino acids 
 

5’ 
modification 

3’ 
modification 

Internal 
ID 

pIDS MAT1 1-309   152 

pAceBac1 p21 1-164  TEV-T7-Strep 160 
 

pGEX4T1 p21 1-164 GST-TEV  EC12 
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In the following, C-terminally truncated variants of Spt5 were cloned into pAceBac1 acceptor 

vector, combined with Spt4, co-expressed and purified to homogeneity. These constructs and 

resulting DSIF variants, that harbor C-terminally shortened Spt5, were handed out to 

Vladyslava Gorbovytska and Filiz Kuybu. Furthermore, wild-type NELF and the mutants 

SV210 and SV211 (Vos et al., 2016) as well as wild-type DSIF was purified and provided for 

general usage. 
 

Backbone Insert Amino acids 
 

5’ 
modification 

3’ 
modification 

Internal ID 

pAceBac1 Spt5 1-978  TEV-Strep Spt5 CT1 

pAceBac1 Spt5 1-837  TEV-Strep Spt5 CT2 

pAceBac1 Spt5 1-754  TEV-Strep Spt5 CT3 

pAceBac1 Spt5 1-593  TEV-Strep Spt5 CT4 

pAceBac1 Spt5 1-518  TEV-Strep Spt5 CT5 

pAceBac1 Spt5 1-399  TEV-Strep Spt5 CT6 
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