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1 Summary 

The rapid evolution of male and female reproductive traits has long been regarded as 

driven only by sexual selection. However, also natural selection, for instance mediated by 

parasites, can shape reproductive traits. Microbes are probably the most common parasite 

group and all animals are in constant contact with them. Besides microbes causing sexually 

transmitted diseases, opportunistic environmental bacteria seem to be sexually transmitted. 

Transmitted opportunistic microbes can eventually cause disease or death but they can also 

reduce reproductive success for example due to their spermicidal activity or indirectly by 

activating the female immune system resulting in tissue and sperm damage. In addition, 

transmitted opportunistic microbes might disturb the microbial communities inhabiting the 

reproductive organs, the genital microbiomes. Such disturbances could activate immune 

responses that are costly in terms of resources and might cause autoimmunity. Host 

populations are likely exposed to different environmental microbes or different microbe 

prevalences as well as differences in the composition of genital microbiomes. If hosts and 

environmental microbes and/or hosts and their genital microbiomes are locally adapted, host 

populations likely differ in the type of strength of immune defence. Unfortunately, to date little 

is known about the composition and mating-induced change of the genital microbiomes in 

insects and how the female immune system reacts to invading microbes. To characterise the 

genital microbiomes, I conducted two metagenomic studies based on the 16S rRNA gene of 

the bacteria present in and on the reproductive organs of the common bedbug (Cimex 

lectularius L.). By comparing the genital microbiomes of virgin and mated bedbugs of both 

sexes from four different populations, I found that genital microbiomes are organ-, sex-, and 

population-specific, indicating local adaptation. Differences in genital microbiomes might 

interfere with reproductive success if they lead to reproductive incompatibilities, and ultimately 

lead to speciation. Indeed, I found that mating-induced changes in the composition of the 

genital microbiomes are partly due to exchanges of bacterial strains during mating, indicating 

sexual transmission in both directions. Some of these sexually transmitted bacteria were 
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opportunistic bacteria, i.e. bacteria from the cuticle. This indication was supported by my third 

study that investigated the transmission rate of opportunistic microbes and the growth rate and 

effect of such bacteria on the female immune system. Bacteria applied to the copulatory organs 

of males and females were transmitted to the opposite sex during mating in at least ninety 

percent of the cases, indicating that females are regularly threatened by sexually transmitted 

opportunistic microbes. Bacteria injected into the female paragenital sperm-receiving organ 

grew slowly within the first six hours, followed by a rapid growth within the next eighteen hours. 

The injection of bacteria but also the injection of ejaculate induced lysozyme-like activity and 

the production of antimicrobial peptides that can lyse bacterial cell walls and regulate bacterial 

growth. This might be a mechanism to eliminate the residual bacteria within the sperm-

receiving organ. Against my expectation, I did not find indications of population-specific 

immune responses to mating-associated bacteria, suggesting that either the host is not locally 

adapted or that microbe presence per se is costly, leading to immunity being induced 

regardless of the pathogenicity of specific microbes. This thesis provides important results for 

understanding reproduction and how reproduction is affected by natural selection via host-

microbe interactions. My findings suggest that sexually reproducing organisms are regularly 

exposed to invading microbes and therefore, they should be under selection to defend 

themselves against infections. I have identified two possible substances used for the defence 

against mating-associated microbes, providing evidence for the interaction of mating and 

immunity in bedbugs. With this thesis, I have laid the foundations for a model system in which 

many aspects of reproduction can be manipulated and experimentally tested, including the 

genital microbiome as part of an interdependent metaorganism. Future studies should 

investigate whether genital microbiome colonisation depends on environmental microbes or 

host genotype and whether the genital microbiomes affect reproductive success. Furthermore, 

it would be interesting to investigate whether mating-induced changes are reversible and how 

the female immune response is triggered by mating.  
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2 Zusammenfassung 

Als Hauptursache für die schnelle Evolution von Reproduktionsmerkmalen bei Männchen 

und Weibchen wurde lange die sexuelle Selektion angesehen. Allerdings kann auch natürliche 

Selektion die Reproduktionsmerkmale beeinflussen. Mikroben sind vermutlich die am 

weitesten verbreitete Parasitengruppe und alle Tiere sind in kontinuierlichem Kontakt mit 

ihnen. Neben Mikroben, die sexuell übertragbare Infektionen verursachen, scheinen auch 

opportunistische Bakterien sexuell übertragen zu werden. Übertragene opportunistische 

Mikroben können auf lange Sicht Infektionen verursachen und zum Tod führen, aber sie 

können auch den Reproduktionserfolg durch ihre spermizide Aktivität vermindern oder indirekt 

durch eine Aktivierung des weiblichen Immunsystems zu Schäden an Geweben, oder 

Spermien führen. Des Weiteren könnten opportunistische Mikroben die in den 

Reproduktionsorganen lebende mikrobielle Gemeinschaft, die genitalen Mikrobiome, stören. 

Solche Störungen könnten Immunantworten auslösen, die Kosten verursachen, z.B. in 

Hinsicht auf Ressourcen, oder durch Autoimmunität. Wirtspopulationen sind vermutlich 

verschiedenen Umweltmikroben, oder verschiedenen Prävalenzen dieser Mikroben 

ausgesetzt und verschiedenen Zusammensetzungen der genitalen Mikrobiome. Falls Wirt und 

Umweltmikroben und/oder Wirt und genitale Mikrobiome lokal angepasst sind, unterscheiden 

sich Wirtspopulationen vermutlich in der Art oder Stärke ihrer Immunabwehr. Leider ist bisher 

wenig darüber bekannt, wie die genitalen Mikrobiome von Insekten zusammengesetzt sind, 

wie sich diese Zusammensetzung durch die Paarung verändert und wie das weibliche 

Immunsystem auf eindringende Mikroben reagiert. Um die genitalen Mikrobiome zu 

untersuchen, führte ich mithilfe des 16S rRNA-Gens der Bakterien in und auf den 

Reproduktionsorganen von Bettwanzen (Cimex lectularius L.) zwei metagenomische Studien 

durch. Durch einen Vergleich der genitalen Mikrobiome von virginen und verpaarten 

Bettwanzen beider Geschlechter aus vier verschiedenen Populationen, fand ich heraus, dass 

genitale Mikrobiome organ-, sex-, und populationsspezifisch sind, was für lokale Adaptation 

spricht. Unterschiedliche genitale Mikrobiome könnten den Reproduktionserfolg stören, wenn 
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sie zu reproduktiven Inkompatibilitäten führen, und könnten schließlich zur Artbildung führen. 

Tatsächlich entdeckte ich, dass Änderungen in der Zusammensetzung der genitalen 

Mikrobiome nach der Paarung teilweise auf einen Austausch von Bakterienstämmen während 

der Paarung zurückzuführen sind, was auf eine sexuelle Übertragung in beide Richtungen 

hinweist. Einige dieser sexuell übertragenen Bakterien waren opportunistische Bakterien, also 

Bakterien, die von der Cuticula stammten. Diese Hinweise wurden durch meine dritte Studie 

unterstützt, die sich mit der Übertragungsrate opportunistischer Mikroben und dem Wachstum 

und Effekt dieser Bakterien auf das weibliche Immunsystem beschäftigte. Bakterien, die auf 

die Reproduktionsorgane von Männchen und Weibchen aufgetragen wurden, wurden während 

der Paarung in mindestens 90% der Fälle auf das andere Geschlecht übertragen, sodass 

angenommen werden kann, dass Weibchen regelmäßig mit sexuell übertragenen 

opportunistischen Mikroben konfrontiert werden. Bakterien, die in das paragenitale Organ des 

Weibchens injiziert wurden, das der Spermienaufnahme dient, wuchsen in den ersten sechs 

Stunden langsam und in den folgenden achtzehn Stunden wesentlich schneller. Die Injektion 

von Bakterien, aber auch die Injektion von Ejakulat induzierte lysozymähnliche Aktivität und 

die Produktion von antimikrobiellen Peptiden, die die Zellwände von Bakterien auflösen und 

das Bakterienwachstum regulieren können. Dies könnte ein Mechanismus sein, um die 

verbliebenen Bakterien im Organ des Weibchens, das der Spermienaufnahme dient, zu 

beseitigen. Im Gegensatz zu meinen Erwartungen fand ich keine Hinweise auf 

populationsspezifische Immunantworten auf mit der Paarung assoziierte Bakterien, was 

entweder so interpretiert werden kann, dass der Wirt nicht lokal angepasst ist, oder dass die 

Anwesenheit von Mikroben an sich große Kosten verursacht und daher zu einer Aktivierung 

des Immunsystems führt, egal wie pathogen die Mikroben sind. Diese Arbeit liefert wichtige 

Ergebnisse für das Verständnis der Reproduktion und wie diese durch natürliche Selektion 

über Wirt-Mikroben-Interaktionen beeinflusst wird. Die Ergebnisse deuten an, dass 

Organismen, die sich sexuell vermehren, regelmäßig mit eindringenden Mikroben in 

Berührung kommen und daher unter Selektion stehen sollten, sich gegen Infektionen zu 
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verteidigen. Ich habe zwei Substanzen identifiziert, die potenziell für die Verteidigung gegen 

mit der Paarung verbundenen Mikroben verwendet werden. Dies weist auf eine Interaktion von 

Reproduktion und Immunität in Bettwanzen hin. Mit dieser Arbeit habe ich das Fundament für 

ein Modellsystem gelegt, in dem viele Aspekte der Reproduktion manipuliert und experimentell 

getestet werden können, einschließlich des genitalen Mikrobioms als Teil eines voneinander 

abhängigen Metaorganismus. Künftige Studien sollten untersuchen, ob die Kolonisation der 

genitalen Mikrobiome von Umweltmikroben abhängt, oder vom Wirtsgenotyp und ob die 

genitalen Mikrobiome den Reproduktionserfolg beeinflussen. Des Weiteren wäre es 

interessant zu untersuchen, ob die Änderungen des Mikrobioms, die durch die Paarung 

verursacht wurden, umkehrbar sind und wie die weibliche Immunantwort durch eine Paarung 

ausgelöst wird.  
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3 Introduction 

3.1 Conflicts drive the evolution of reproductive traits 

Sexual selection can be divided into intrasexual and intersexual selection. The former is 

characterised by members of the same sex competing for access to members of the opposite 

sex while the latter can be described by members of one sex choosing mates of the other sex 

(Darwin, 1859). Intersexual selection can give rise to conflicts if the optima of the choosing and 

the chosen sex differ. Males and females were long perceived as cooperating mating partners. 

However, even Darwin discovered that some animals are polygamous as indicated by a letter 

to Charles Lyell that described barnacle females as having “two little pockets, in each of which 

she kept a little husband” (Burkhardt, 2008). The recent growing body of evidence suggests 

that genetic monogamy is actually extremely rare (Clutton-Brock & Isvaran, 2006; Griffith et 

al., 2002). Whenever males and females are not monogamous, there is potential for sexual 

conflict because the sexes differ in their optimal mating rates: in males, the number of offspring 

increases with the number of mates whereas females do not necessarily increase their 

reproductive success when mating with more than one male (Bateman, 1948). Different mating 

strategies can give rise to differences in physiology, morphology, and behaviour between the 

sexes, ultimately leading to sexually antagonistic selection on specific traits (Arnqvist & Rowe, 

2005). 

Reproductive traits of males and females are one of the most rapidly evolving traits 

(Swanson & Vacquier, 2002). In this context, sexual selection and sexual conflict intuitively 

seem to be the drivers of divergence. The well-known “good genes” hypothesis states that 

females select males based on traits that signal genetic advantages and will hence increase 

the fitness of her offspring (Hamilton & Zuk, 1982). One such trait assessed by females might 

be resistance against parasites signalled via ornaments (Milinski & Bakker, 1990). Hamilton 

later stated that both types of selection can interact: natural selection has the ability to change 

the strength of sexual selection (Hamilton, 1990). In accordance with this hypothesis, both 

natural and sexual selection seem to play a role in the evolution of cuticular hydrocarbons in 
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two Drosophila species that are sympatric in nature and use cuticular hydrocarbons to 

recognise potential mates (Blows, 2002). When only natural selection acts on males and 

females, the CHC content decreases, potentially due to the costly production. In comparison 

to that of females, male CHC composition reacts to sexual selection and the evolution is sped 

up by the interaction of sexual and natural selection (Blows, 2002). 

Besides this example indicating the power of an interaction of natural and sexual selection, 

there is evidence for effects of natural selection on the evolution of reproductive traits without 

involving sexual selection. In addition to the external environment (Endler, 1986; Foster & 

Endler, 1999; Houde, 1997) and gamete ageing (Reinhardt, 2007; Siva-Jothy, 2000), parasites 

can affect reproductive traits directly. For instance, rat tapeworms inhibit the vitellogenesis in 

mealworm beetles, resulting in delayed egg laying and reduced egg viability (Hurd, 1998). 

Similarly, the parasitic mite Coccipolipus hippodamiae decreases egg production and egg 

viability in the two-spotted ladybird (Hurst et al., 1995). These examples clearly show the 

importance of natural selection in the context of reproductive trait evolution. They further 

suggest that natural selection shapes reproductive traits in a similar way and with a similar 

speed as sexual selection (Reinhardt, 2007; Sheldon, 1993). Unfortunately, we lack knowledge 

on whether and how other types of parasites, for instance microbes, shape reproductive traits 

via natural selection. 

 

3.2 Sexually transmitted microbes affect reproductive traits 

Parasites form a very diverse group of organisms spanning all kingdoms. Microbes, i.e. 

bacteria, viruses, fungi, and protozoans, are probably the most common group. Virtually all 

animals are surrounded by a rich community of microbes. They can be found on host surfaces 

and inside the host (Goodrich et al., 2016; Huttenhower et al., 2012; Kostic et al., 2013). 

Symbiotic associations reach from mutualistic to parasitic although for many species it is not 

clear which group they belong to because the type of association depends on the host and its 

environment (Dale & Moran, 2006). Many mutualistic microbes help the host with digestion 
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(Dale & Moran, 2006). For instance, the bacterial symbionts of aphids from the genus 

Buchnera have been shown to provide their hosts with essential amino acids (Douglas, 1998). 

Similarly, symbionts of blood-feeding insects seem to provide their host with B vitamins, for 

instance Wigglesworthia in tsetse flies (Akman et al., 2002) and Wolbachia in bedbugs 

(Hosokawa et al., 2010). In contrast, parasitic microbes, whether living on the host 

(ectoparasites) or inside the host (endoparasites) have negative effects, ranging from relatively 

mild damage of external tissue (Richardson, 1991) to multiple organ failure resulting in death 

(Matsuda & Hattori, 2006). 

Microbes are transmitted horizontally between individuals from the same species or 

vertically from parent to offspring (Bright & Bulgheresi, 2010; Cory, 2015; Ebert, 2013; 

Perlmutter & Bordenstein, 2020) and even mixed modes of transmission exist (Cory, 2015; 

Ebert, 2013). In addition to obvious ingression routes like the skin or cuticle, the digestive, or 

the respiratory tract (Boucias & Pendland, 2012), microbes can be transmitted during mating 

(Knell & Webberley, 2004; Lockhart et al., 1996). In mammals, we have a large body of 

evidence for sexually transmitted microbes (STM), spanning 56 viruses like HIV and 51 

bacteria causing infections such as gonorrhoea or chlamydia (Knell & Webberley, 2004). In 

contrast, according to Knell and Webberley (2004) 17 viruses but no bacteria are sexually 

transmitted in insects. They intentionally ignored microbes such as Wolbachia that manipulate 

reproduction because these are maternally inherited microbes that are mostly not transmitted 

during mating. 

Instead of being sexually transmitted, reproductive manipulators use four different 

mechanisms to guarantee a more successful spread via vertical transmission (Engelstädter & 

Hurst, 2009). One mechanism used by these microbes is to feminise males, i.e. change the 

developmental pathway of an individual from male to female (Hiroki et al., 2002; Negri et al., 

2006; Rigaud & Juchault, 1992; Terry et al., 1999; Weeks et al., 2001) to convert non-

transmitting individuals to transmitting individuals. The same is achieved by inducing 

parthenogenesis (Huigens & Stouthamer, 2003; Kremer et al., 2009; Pannebakker et al., 2005; 
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Pijls et al., 1996). Furthermore, reproductive manipulators kill male embryos (Dyson & Hurst, 

2004; Hurst et al., 2003; Zeh & Zeh, 2006) or larvae (Hurst et al., 2003; Nakanishi et al., 2008). 

Last but not least, cytoplasmic incompatibility (Bourtzis et al., 2003) between non-infected and 

infected mating partners causes offspring mortality and hence increases the relative fitness of 

infected females. Only in some cases, male offspring are killed in a later life stage and have 

the potential to be transmitted horizontally (Engelstädter & Hurst, 2009). 

Typical diseases due to STM have been reported for humans or species with high public 

interest, i.e. hosts that are economically important (Lockhart et al., 1996). They span the 

continuum from being of relatively little effect to being highly virulent, for instance by causing 

high mortality or sterility. In insects, sexually transmitted viruses reduce fertility, offspring 

survival, hatch rate, adult survival and longevity, or damage sperm (Knell & Webberley, 2004). 

 

3.3 Reproductive organs harbour microbiomes that are affected by mating 

Microbes have been reported to colonise the reproductive organs (Hickey et al., 2012; 

Hirsh, 1999; Hupton et al., 2003; Ravel et al., 2011; White et al., 2011) and ejaculates (Baud 

et al., 2019; González-Marín et al., 2011; Lombardo & Thorpe, 2000; Skau & Folstad, 2003; 

Virecoulon et al., 2005), even those of healthy individuals. For instance, bacterial presence 

was detected in almost three quarters of human semen samples from infertile males 

(Virecoulon et al., 2005) and in half of the semen samples from bovine (González-Marín et al., 

2011). At least a quarter of the ejaculate samples, male cloacal swabs, and female cloacal 

swabs from red-winged blackbirds (Hupton et al., 2003) and semen samples from tree 

swallows (Lombardo & Thorpe, 2000) contained bacteria. 

Such genital microbiomes seem to be the rule rather than the exception and even insects 

harbour genitalia-associated microbes (Otti, 2015; Otti et al., 2017). The few studies in insects 

reported more than 10 bacteria species from the sperm storage organ of female Formosan 

subterranean termites (Raina et al., 2007) and from the testicles of wood-boring beetles (Rizzi 

et al., 2013). Eight bacteria species were found in the sperm-receiving organ of bedbug 
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females (Otti et al., 2017) and 7 microbe species occurred on the copulatory organ of bedbug 

males (Otti et al., 2017; Reinhardt et al., 2005), often represented by several different strains 

(Otti et al., 2017).  

Microbiomes react to environmental changes, such as diet (David et al., 2014; Martínez 

et al., 2013), age (Odamaki et al., 2016), time of the day (Thaiss et al., 2014) and hormonal 

changes (Cauci et al., 2002; Nuriel-Ohayon et al., 2016). Mating is an event that is inevitable 

for sexually reproducing species and has been shown to change the genital microbiomes of 

vertebrates (Kulkarni & Heeb, 2007; Mändar et al., 2015; White et al., 2010, 2011) and 

invertebrates (Otti et al., 2017). For instance, sexual intercourse decreases the relative 

abundance of Lactobacillus crispatus, a dominant species of the vaginal microbiome (Mändar 

et al., 2015). In birds, bacterial numbers of both sexes are correlated after mating whereas 

there is no correlation when male and female are not mated (White et al., 2010). One of the 

rare studies in insects showed that mated bedbug females harbour different bacterial strains 

compared to virgin females (Otti et al., 2017). These mating-induced changes might increase 

with the number of mating partners, as suggested by an increase in species richness and 

compositional differences of genital microbiomes in polyandrous compared to monandrous 

lizard females (White et al., 2011). 

All of the microbe species found on the copulatory organ of bedbug males were 

simultaneously present in the culture vials (Reinhardt et al., 2005), indicating that microbes in 

the reproductive organs could be environmental opportunistic microbes (OM) instead of STM 

or symbionts. In addition, bacteria applied to the copulatory organs of males can be transmitted 

to females (Miest & Bloch-Qazi, 2008), suggesting that not only STM but even OM have the 

potential to be sexually transmitted. Moreover, OM might invade the reproductive organs via 

copulatory wounds that frequently occur in a variety of insect species (Lange et al., 2013) and 

even humans (Reinhardt et al., 2015). To date, little is known about the composition of the 

genital microbiomes and how they are affected by mating, especially in insects. 
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3.4 Microbes invading the reproductive tract confer costs 

Microbes entering the reproductive tract confer both direct and indirect costs (Fig.1). While 

STM usually cause disease, OM eventually become pathogenic when the immune system of 

the host is disturbed (Klainer & Beisel, 1969) and can increase mortality, for instance in bedbug 

females (Reinhardt et al., 2003). 

 

This direct cost of STM and OM might be accompanied by indirect costs. Infections 

threaten especially females because mating often compromises immunity due to the allocation 

of resources away from the immune system to reproduction (Sheldon & Verhulst, 1996; Zuk & 

Stoehr, 2002), potentially making the female more vulnerable to microbes after mating. But it 

Figure 1 Costs and benefits arising via interactions of host, genital 
microbiome, and mating-associated microbes. The colour code indicates 
which consequences are expected for which interaction partner. 
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was also hypothesised that the opposite can happen, i.e. that females allocate more resources 

to immunity instead of reproduction, thereby reducing reproductive success (Sheldon & 

Verhulst, 1996; Zuk & Stoehr, 2002). In accordance with this hypothesis, the great pond snail 

has a lower reproductive output when held in microbe-enriched water (Rigby & Jokela, 2000). 

Furthermore, female pied flycatchers have less offspring and lower fledgling quality when 

immunised with non-pathogenic antigens from a diphtheria-tetanus vaccine (Ilmonen et al., 

2000). More detail on female immune responses can be found in chapter 3.5. 

Fitness could also be reduced by microbe-induced sperm damage which occurs in several 

mammal, avian and insect species (reviewed in Rowe et al., 2020). In humans, bacteria like 

Escherichia coli (Diemer et al., 1996, 2003; Prabha et al., 2010), Pseudomonas aeruginosa 

(Huwe et al., 1998), and Staphylococcus aureus (Kaur et al., 2010) decrease sperm motility 

and cause the agglutination of sperm in vitro. The same effect has been found for 

Acinetobacter baumannii on rabbit spermatozoa (Tvrdá et al., 2018). In insects, sperm motility 

was drastically reduced when males were infected with an iridovirus (Adamo et al., 2014) and 

environmental bacteria from the culturing vials increase sperm mortality in vitro (Otti et al., 

2013). Besides sperm agglutination due to adhesion of microbes, sperm damage has been 

attributed to the release of toxic microbial lipopolysaccharides (Galdiero et al., 1988), the 

production of reactive oxygen species (Eley et al., 2005), and antibodies being active against 

both microbes and spermatozoa (Kurpisz & Alexander, 1995). Reduced sperm motility or 

survival should decrease reproductive success of both males and females. Indeed, the 

presence of E. coli in boar semen is positively correlated with the agglutination of sperm and 

both E. coli presence and sperm agglutination are positively correlated with reduced litter size 

(Maroto Martín et al., 2010). In chicken, Lactobacillus acidophilus decreases sperm motility 

and artificial insemination with ejaculates exposed to L. acidophilus results in complete 

infertility (Haines et al., 2015). 

Furthermore, non-resident bacteria might invade the genital microbiomes that threaten the 

resident microbiomes by the competition over available resources (Li & Stevens, 2012; Mallon 
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et al., 2003). In humans, the composition and structure of the vaginal microbiome has been 

shown to change to a transition state after disturbances such as sexual activity but 

homoeostatic mechanisms can restore the initial state (Gajer et al., 2012). Besides the energy 

spent on these homoeostatic mechanisms, the disturbance or loss of mutualists might impair 

reproduction directly. In humans, the endometrial microbiome is normally characterised by a 

high abundance of Lactobacillus, which decreases after sexual intercourse (Mändar et al., 

2015). Microbiomes not dominated by Lactobacillus are associated with low implantation and 

pregnancy rates and decreased live birth (Moreno et al., 2016). Therefore, a disturbance of 

the genital microbiome can have severe fitness consequences, especially if genital 

microbiomes are beneficial for reproduction. Hence, it is important to characterise the genital 

microbiomes and investigate potential interactions between sexually transmitted microbes and 

the resident microbiome. 

 

3.5 Both sexes react to mating-associated microbes 

Microbes invading a host will be attacked by immunological defence mechanisms. 

Invertebrate immune responses comprise a variety of constitutive (always active) and induced 

(elicited by an immune challenge) defences (Schmid-Hempel, 2005; Siva-Jothy et al., 2005). 

Although both sexes are threatened by mating-associated microbes, each sex might use 

different protective mechanisms or adjust the strength of an immune response depending on 

the costs conferred by microbes. 

Females have evolved several mechanisms to regulate the number of STM or OM and 

thereby prevent fitness costs due to disease or sperm mortality. As part of the constitutive 

defence in humans, the female reproductive tract contains a family of antimicrobial peptides, 

so called defensins, that are thought to disrupt the membrane of microbes (Quayle et al., 1998; 

Valore et al., 1998). In bedbugs, the female sperm-receiving organ has evolved to protect the 

female from mating-associated microbes (Reinhardt et al., 2003) and is filled with haemocytes 

(Carayon, 1966) that are able to phagocytose bacteria (Siva-Jothy et al., 2005). 
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As a special form of induced defence, Drosophila females up-regulate immune genes that 

provide protection against a sexually transmitted fungus (Zhong et al., 2013) in response to 

male courtship song (Immonen & Ritchie, 2012) and bedbug females induce the production of 

lysozyme-like activity in anticipation of mating (Siva-Jothy et al., 2019). These pre-copulatory 

induced defences allow the female to react faster in comparison with other induced responses. 

At the same time, they save energy by inducing the mechanism only when necessary, i.e. 

when females are likely to mate within the next hours. Although knowledge on anticipatory 

immunity is scarce, it was suggested to be a common strategy among insects  because mating 

should be highly predictable when females are in control over mating (Siva-Jothy et al., 2019). 

Like females, males use antimicrobial substances to assure reproductive success. The 

ejaculates of humans (Edström et al., 2008), mallard ducks (Rowe et al., 2011), and Drosophila 

melanogaster (Lung et al., 2001; Samakovlis et al., 1991) contain antimicrobial peptides and 

the ejaculate of bedbugs has lysozyme-like activity (Otti et al., 2009) that can protect sperm 

from attacking bacteria (Otti et al., 2013). These constitutively expressed substances are likely 

produced to protect sperm in the female reproductive tract after ejaculate transfer rather than 

inside the male reproductive tract. But the expression of antimicrobial peptides inside the 

genital tract of Drosophila melanogaster males in response to bacteria applied to the genital 

plate (Gendrin et al., 2009) indicates that there are protective mechanisms that target microbes 

associated with the copulatory organs of males. Although it is known that females and males 

have evolved immune defences against mating-associated bacteria, we have little knowledge 

about their effectiveness. 

In addition to immune responses, symbionts might provide their host with protection 

against STM and OM. Protection by symbionts against invading parasites has been reported 

for humans (Boris et al., 1998; Kamada et al., 2013; Reid et al., 1987), nematodes (King & 

Bonsall, 2017), and arthropods (Braquart-Varnier et al., 2015; Kaltenpoth & Engl, 2014; Koch 

& Schmid-Hempel, 2012; Mattoso et al., 2012; Oh et al., 2009). The results of these studies 

suggest that growth inhibition, competitive metabolic interactions, and immune priming are the 
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main mechanisms by which symbionts protect their hosts. Interestingly, even pathogenic 

symbionts have the potential to rapidly evolve to defend their host when parasites that are 

more virulent are present (King et al., 2016). 

 

3.6 Immune responses are population-specific 

If hosts and microbes encounter each other regularly, which is the case for sexually 

transmitted microbes and genital microbiomes, both host and microbes represent a constantly 

changing environment to which the rival has to adapt (Gandon & Michalakis, 2002). The pre-

requisite for such local adaptation is a form of genotype X environment interaction for fitness 

out of which antagonistic pleiotropy (alleles have opposite effects on fitness in different 

habitats) is the most important for local adaptation (Kawecki & Ebert, 2004). Antagonistic 

pleiotropy causes trade-offs between adaptation to different habitats, resulting in specialist 

genotypes that are only superior in specific habitats, i.e. no single superior genotype in all 

habitats exists (Kawecki & Ebert, 2004). 

The two pre-requisites for adaptation to a constantly changing environment are the 

strength of selection and the evolutionary potential which depends on mutation, migration, and 

recombination (Gandon & Michalakis, 2002). Parasites, including microbes, are often regarded 

as having the bigger evolutionary potential than their hosts because of their higher rates of 

mutation and migration, shorter generation times, and larger population sizes. In accordance 

with this view, a meta-analysis based on 22 reciprocal studies, i.e. studies of which the 

experimental design included at least one sympatric pairing and one allopatric pairing, found 

local adaptation characterised by better performances of parasites on sympatric than on 

allopatric hosts (Hoeksema & Forde, 2008). However, other studies did not find any evidence 

for parasite local adaptation (Dufva, 1996; Morand et al., 1996; Mutikainen et al., 2000) or 

reported parasite maladaptation (Imhoof & Schmid-Hempel, 1998; Kaltz et al., 1999; Oppliger 

et al., 1999), suggesting that the parasite is not always leading the arms race between parasite 

and host. 
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Since sexually reproducing animals are constantly exposed to sexually transmitted 

bacteria and their genital microbiomes, it is reasonable that local adaptation plays a role in this 

interaction. If hosts are locally adapted, they should show immune responses that are tailored 

to the microbes they frequently encounter. Factors influencing immunity might be the 

prevalence and pathogenicity of sexually transmitted bacteria or the diversity and composition 

of the genital microbiomes that might vary between host populations. Both types of microbes 

have the potential to shape their host’s immune response because even microbes like OM or 

symbionts that do not directly cause disease have the potential to become pathogenic when 

the host’s immune system is disturbed (Klainer & Beisel, 1969). It has been shown that even 

endosymbionts are prevented from uncontrolled growth by the host’s immune system (Login 

et al., 2011). If both sexually transmitted microbes and genital microbiomes are controlled by 

the immune system of their host, it is likely that an immune response that protects the host 

against one type of microbes affects the opposite type of microbes as well. Since host 

populations are often exposed to different environmental microbes and their genital 

microbiomes might differ if both host genotype and microbe genotype have adaptively 

diversified, one would expect host immune defences to differ between populations, for instance 

in strength or type of defence. 

There are several studies that support the idea of population-specific immune defences 

that might be caused by local adaptation. Freshwater shrimps exhibit strong between-

population variation in the prophenoloxidase activity of the haemolymph, an important 

component of invertebrate immunity (Cornet et al., 2009). The examined shrimp populations 

are usually infected with three different species of acanthocephalan parasites and their 

richness and prevalence varies between populations. In accordance with the predicted link 

between immunity and parasite presence, prophenoloxidase was found to be negatively 

associated with prevalence of acanthocephalan parasites (Cornet et al., 2009). Similarly, the 

expression of antimicrobial peptides in the abdomen differs between bumblebee colonies and 

even collection sites when challenged with a trypanosome gut parasite (Brunner et al., 2013). 
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The authors suggested that variation between collection sites might be related to differences 

in trypanosome gut parasite prevalence between sites that could impose different selection 

regimes. Unfortunately, we lack knowledge on the effect of local adaptation to population-

specific microbes on immunity. 

As mentioned in chapter 3.5, symbionts might also provide their host with protection 

against STM and OM, for instance by growth inhibition, competitive metabolic interactions, and 

immune priming (Boris et al., 1998; Braquart-Varnier et al., 2015; Kaltenpoth & Engl, 2014; 

Kamada et al., 2013; King & Bonsall, 2017; Koch & Schmid-Hempel, 2012; Mattoso et al., 

2012; Oh et al., 2009; Reid et al., 1987) and even pathogenic symbionts can defend their host 

when parasites that are more virulent are present (King et al., 2016). Such protective microbes 

provide a third level to the interaction between host and parasite. Antiviral protection by 

symbiotic bacteria from the genus Wolbachia is common across Drosophila species and 

depends on symbiont strain (Martinez et al., 2014, 2017) and density (Martinez et al., 2014) in 

host tissues. Protection has been shown to decrease resistance to a virus after nine 

generations of selection (Martinez et al., 2016), indicating that protective microbes can reduce 

selection for host immunity and hence be an important part of host-parasite coevolutionary 

interactions. 

 

3.7 Bedbugs are an optimal system to study male-female and host-parasite 

interactions 

The common bedbug, Cimex lectularius L., is one of the best-known pest insects, probably 

because of its close association and impacts on humans. The recent incidence of bedbugs 

returning to levels comparable to those before World War 2 have drawn the attention of the 

public towards the investigation of bedbugs as indicated by a 15-fold increase of global 

searches for the word “bedbugs” between 2004 and 2018 (Scarpino & Althouse, 2019). 

Besides the investigation of costs introduced by bedbugs and eradication methods, bedbugs 

are a great system for the investigation of sexual conflict due to different optima in the mating 
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rate of both sexes leading to antagonistic male traits (Stutt & Siva-Jothy, 2001) and for 

reproductive immunity (Siva-Jothy et al., 2019). 

Males do not inseminate females via the genital tract in any bedbug species (Carayon, 

1966). Instead, the male intromittent organ pierces the female abdomen through a groove 

covering the pleural membrane of the female abdominal wall, the ectospermalege, and injects 

sperm into the mesospermalege, a female immune organ situated underneath the groove. In 

addition to its function as a sperm-receiving organ, the mesospermalege also functions as an 

immune organ (Reinhardt et al., 2003) and is filled with haemocytes (Carayon, 1966), cells 

that can phagocytise bacteria (Siva-Jothy et al., 2005). From the mesospermalege, sperm 

migrate to the ovaries and sperm storage organs via the haemocoel (Carayon, 1966). This 

procedure of traumatic insemination involves copulatory wounding, which is costly for females 

(Stutt & Siva-Jothy, 2001) but potentially beneficial for males. 

The arms race between males and females has resulted in males having the control over 

pre-copulatory choice. Fully-fed females cannot resist mating (Reinhardt et al., 2009) and the 

actual mating rate is higher than the optimal mating rate of females, apparently without any 

direct or indirect benefit of re-mating (Stutt & Siva-Jothy, 2001) but reduced lifespan (Morrow 

& Arnqvist, 2003; Reinhardt et al., 2003). Therefore, bedbug females might use post-

copulatory mechanisms to select for high-quality males or good genes. Some invertebrate 

females eject or attack sperm via immunologically active substances (Firman et al., 2017) and 

bedbug females might possess similar post-copulatory mechanisms. Sexual selection and 

sexual conflict are therefore a potential driver for the evolution of copulatory traits in bedbugs. 

Studies indicate that opportunistic microbes are sexually transmitted in bedbugs 

(Reinhardt et al., 2005) and that such microbes increase the mortality of bedbug females 

(Reinhardt et al., 2003) and sperm mortality, at least in vitro (Otti et al., 2013). This suggests 

that in addition to male-female coevolution, bedbugs are also subject to host-parasite 

coevolution and both types of coevolution might interact in shaping reproductive traits. To date, 
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little is known about the impact of mating-associated microbes invading the reproductive 

organs on the genital microbiomes and their bedbug host. 
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4 Objectives 

I. Does mating change the genital microbiomes? 

As a first step towards an understanding of the interaction between male and female 

bedbugs and bacteria, I will focus on the bacterial communities in and on the reproductive 

organs of bedbugs, the genital microbiomes. In comparison to the gut microbiome, little is 

known about the composition of the genital microbiomes and how they are affected by mating. 

Furthermore, most studies have been conducted in humans, ignoring the effects of mating on 

other organisms. Culture-dependent studies have shown that environmental microbes exist on 

the copulatory organ of bedbug males (Reinhardt et al., 2005) and that both virgin and mated 

bedbugs harbour bacteria (Otti et al., 2017). The fact that bacteria can be found in the sperm-

receiving organ of virgin females indicates that these bacteria are part of the resident genital 

microbiome rather than originating from the environment. However, mated females also 

harboured several bacteria that are not present in virgin females (Otti et al., 2017), suggesting 

sexual transmission. None of these introduced species is a classical STM, suggesting that 

even OM are sexually transmitted in bedbugs. 

To the best of my knowledge, no studies in insects have ever addressed a compositional 

change in terms of both present species and their abundance in the genital microbiomes of 

insects. I therefore analysed metagenomic data from the genital microbiomes of bedbugs and 

how they change shortly after mating (Manuscript 1, chapter 6.1). Metagenomic approaches 

have a large advantage because they track the majority of microorganisms within a sample in 

comparison to culture-based approaches that result in a limited number of microorganisms due 

to the difficulty to cultivate several species (Degnan & Ochman, 2011). This study provided me 

with a first insight into the composition of bedbug genital microbiomes and how they are 

affected by mating. Since bedbug populations caught on different continents likely differ in their 

genetic background it is conceivable that the populations harbour distinct genital microbiomes 

given the potential for local adaptation. If the resident microbes compete with invading 

microbes, we might find differences in mating-induced changes between bedbug populations. 
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Furthermore, the bedbug populations might be adapted to the invading microbes if the 

bedbugs are constantly exposed to the same microbes. Therefore, differences in frequency or 

pathogenicity of microbes between populations could be reflected in population-specific 

mating-induced changes. I addressed this idea with a second metagenomic study (Manuscript 

2, chapter 6.2) using four different bedbug populations originating from infestations in the UK 

and Kenia and a long-term lab population. 

 

II. How do females react to invading OM? 

The first two studies (Manuscript 1, chapter 6.1; Manuscript 2, chapter 6.2) revealed that 

bedbug females are constantly confronted with mating-associated bacteria. As a defence 

against introduced pathogens, they have evolved a special immune organ that serves as the 

sperm-receiving organ (Reinhardt et al., 2003). The so-called mesospermalege is filled with 

haemocytes (Carayon, 1966), cells that can phagocytise bacteria (Siva-Jothy et al., 2005). 

Recently, bedbug females have also been shown to upregulate the production of lysozyme-

like activity in anticipation of mating (Siva-Jothy et al., 2019), indicating that they possess 

constitutive and induced defence mechanisms. 

Despite the fact that several immune defence mechanisms of bedbug females have been 

investigated, we have little knowledge about their effectiveness and whether they differ 

between populations. In the second part of my thesis, I therefore investigated how long OM 

survive in the mesospermalege of females after being introduced during mating (Manuscript 

3, chapter 6.3). This study showed that after 24 hours, OM were still present in all populations, 

even in the presence of sperm. To clarify whether OM induce mechanisms that can reduce 

bacterial abundance, I decided to measure two immune traits, lysozyme-like activity and 

growth inhibition due to antibacterial peptide presence, after the injection of OM into the female 

mesospermalege (Manuscript 3, chapter 6.3). Injection of each mating-associated component 

separately, i.e. sperm, seminal fluid, and bacteria, before measuring the two immune traits 
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allowed me to disentangle the effect induced by male components and the effect induced by 

bacteria.  
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and mated (M) bedbugs. 

 

SUPPLEMENTARY TABLES 

The separate Excel files for Table S1-S3 containing the “raw” data after the pre-processing 

steps, such as denoising and filtering, can be accessed under: 

https://onlinelibrary.wiley.com/doi/full/10.1111/een.12784 

  

https://onlinelibrary.wiley.com/doi/full/10.1111/een.12784


Manuscripts and declaration of own contribution 

40 

 

6.2 Manuscript 2 

Title: Mating changes the genital microbiome in both sexes of the common bedbug Cimex 

lectularius across populations 

 

Authors: Sara Bellinvia, Paul R. Johnston, Susan Mbedi, Oliver Otti 

 

Journal and status: Proceedings of the Royal Society B: Biological Sciences, 287(1926), 

20200302 

 

Own contribution: concept and study design: 75%, data acquisition: 90%, data analysis and 

figures: 90%, interpretation of results: 80%, manuscript writing: 90% 

 

O.O., P.R.J., and S.B. conceived the idea and designed the experiment. S.B. and S.M. carried 

out the experiment. S.B. and P.R.J. performed the bioinformatics and statistical analysis. S.B., 

P.R.J., S.M. and O.O. interpreted the results and S.B. and O.O. wrote the manuscript.



Manuscripts and declaration of own contribution 

41 

 



Manuscripts and declaration of own contribution 

42 

 



Manuscripts and declaration of own contribution 

43 

 



Manuscripts and declaration of own contribution 

44 

 



Manuscripts and declaration of own contribution 

45 

 



Manuscripts and declaration of own contribution 

46 

 



Manuscripts and declaration of own contribution 

47 

 



Manuscripts and declaration of own contribution 

48 

 



Manuscripts and declaration of own contribution 

49 

 



Manuscripts and declaration of own contribution 

50 

 



Manuscripts and declaration of own contribution 

51 

 

SUPPLEMENTARY INFORMATION FOR 

 

Mating changes the genital microbiome in both sexes of the common 

bedbug Cimex lectularius across populations 
 

Sara Bellinvia1, Paul R. Johnston2, Susan Mbedi3,4, Oliver Otti1 

 
1 Animal Population Ecology, Animal Ecology I, University of Bayreuth, Universitätsstraße 30, 95440 Bayreuth, 

Germany 

2 Institute for Biology, Free University Berlin, Königin-Luise-Straße 1-3, 14195 Berlin, Germany. 

3 Museum für Naturkunde - Leibniz-Institute for Evolution and Biodiversity Research, Invalidenstraße 43, 10115 

Berlin. 

4 Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Königin-Luise-Straße 1-3, 14195 Berlin, 

Germany. 

 

 

INDEX: 

 

SUPPLEMENTARY FIGURES 

Figure S1 Alpha diversity of virgin and mated bedbugs 

Figure S2 PCoA: comparison between cuticular and genital microbiomes 

 

SUPPLEMENTARY TABLES 

Table S1 Sample sizes before and after sequencing and quality control 

Table S2 Contaminants in controls 

Table S6 SVs potentially transmitted from males to females 

Table S7 SVs potentially transmitted from females to males 

 

Separate Excel files: 

Table S3 Sample information regarding origin, processing date, and order of amplification 

Table S4 Read counts for each sample and sequence variant 

Table S5 Taxonomic assignment for each sequence variant  



Manuscripts and declaration of own contribution 

52 

 

SUPPLEMENTARY FIGURES 

 

Figure S1 Alpha diversity of each sample in the sperm vesicle (S), the seminal fluid vesicle 
(Sf), on the paramere (P), in the mesospermalege (M), the haemolymph (H) and the ovary (O). 
Depicted are means, standard errors of the mean, and all individual data points.  
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Figure S2 PCoA of microbiomes from cuticle in comparison to the external reproductive organ 
of males) and internal reproductive organs of both sexes based on Bray-Curtis dissimilarities.  
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SUPPLEMENTARY TABLES 

Table S1 Sample sizes and number of bacterial communities that were successfully 
sequenced and endured quality filtering for each group of samples. Sampled organs were: 
cuticle (C), sperm vesicle (S), seminal fluid vesicle (Sf), paramere (P), mesospermalege (M), 
haemolymph (H) and ovary (O). 

Population Sex Organ Mating status N total N sequenced 

A Male C Virgin 10 7 

A Male C Mated 10 6 

A Male S Virgin 10 7 

A Male S Mated 11 7 

A Male Sf Virgin 10 7 

A Male Sf Mated 10 6 

A Male P Virgin 10 7 

A Male P Mated 10 6 

A Female C Virgin 11 7 

A Female C Mated 11 8 

A Female M Virgin 10 8 

A Female M Mated 10 6 

A Female H Virgin 11 8 

A Female H Mated 10 6 

A Female O Virgin 10 6 

A Female O Mated 9 7 

B Male C Virgin 10 9 

B Male C Mated 10 8 

B Male S Virgin 10 10 

B Male S Mated 10 9 

B Male Sf Virgin 10 6 

B Male Sf Mated 10 10 

B Male P Virgin 12 7 

B Male P Mated 8 6 

B Female C Virgin 10 10 

B Female C Mated 10 8 

B Female M Virgin 10 8 

B Female M Mated 10 7 

B Female H Virgin 10 6 

B Female H Mated 10 8 

B Female O Virgin 10 6 

B Female O Mated 10 8 

C Male C Virgin 10 9 

C Male C Mated 10 7 

C Male S Virgin 10 9 

C Male S Mated 10 9 

C Male Sf Virgin 10 7 

C Male Sf Mated 10 8 
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C Male P Virgin 10 7 

C Male P Mated 10 9 

C Female C Virgin 10 9 

C Female C Mated 10 8 

C Female M Virgin 10 8 

C Female M Mated 10 8 

C Female H Virgin 10 9 

C Female H Mated 10 9 

C Female O Virgin 10 8 

C Female O Mated 10 8 

D Male C Virgin 10 8 

D Male C Mated 10 8 

D Male S Virgin 10 8 

D Male S Mated 10 10 

D Male Sf Virgin 10 5 

D Male Sf Mated 10 7 

D Male P Virgin 10 5 

D Male P Mated 10 7 

D Female C Virgin 10 8 

D Female C Mated 10 10 

D Female M Virgin 10 9 

D Female M Mated 10 7 

D Female H Virgin 10 9 

D Female H Mated 10 10 

D Female O Virgin 10 9 

D Female O Mated 10 9 
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Table S2 Contaminants found with the decontam package (Davis et al. 2018) based on 
prevalences in controls. Given are the contaminants and their prevalences within each type of 
control, i.e. control for dissection, control for DNA isolation, control for target PCR, and control 
for indexing PCR. 

Contaminant Dissection 
(N=1) 

DNA 
isolation 
(N=1) 

Target 
PCR 
(N=16) 

Indexing 
PCR 
(N=13) 

Unclassified 
Enterobacteriaceae 

 
1 

 
0 0.81 0.62 

Wolbachia sp. 0 0 0.75 0.77 
Bradyrhizobium sp. 0 0 0.44 0.08 
Stenotrophomonas sp. 0 0 0.25 0.08 
Myroides sp. 0 0 0.13 0.00 
Methylobacterium sp. 0 0 0.38 0.08 
Pseudomonas sp. 0 0 0.13 0.00 
Methylobacterium sp. 0 0 0.19 0.08 
Enterococcussp. 0 0 0.13 0.00 
Sphingomonas sp. 0 0 0.25 0.00 
Unclassified Streptophyta 0 0 0.13 0.00 
Curvibacter sp. 0 0 0.25 0.08 
Rickettsia sp. 0 0 0.06 0.08 
Sphingomonas sp. 0 0 0.19 0.00 
Curvibacter sp. 0 0 0.19 0.00 
Unclassified Streptophyta 0 0 0.06 0.00 
Unclassified 
Erythrobacteraceae 

 
0 

 
0 0.13 0.08 

Janthinobacterium sp. 0 0 0.13 0.00 
Unclassified 
Erythrobacteraceae 

 
0 

 
0 0.13 0.00 

Unclassified Lactobacillales 0 0 0.06 0.00 
Janthinobacterium sp. 0 0 0.13 0.00 
Pseudomonas sp. 0 0 0.06 0.08 
Unclassified Lactobacillales 0 0 0.06 0.00 
Sphingomonas sp. 0 0 0.13 0.00 
Methylobacterium sp. 0 0 0.06 0.00 
Methylobacterium sp. 0 0 0.06 0.00 
Novosphingobium sp. 0 0 0.13 0.08 
Paracoccus sp. 0 0 0.13 0.00 
Renibacterium sp. 0 0 0.13 0.00 
Unclassified 
Pseudomonadaceae 

 
0 

 
0 0.06 0.00 

Unclassified 
Rhodospirillaceae 

 
0 

 
0 0.06 0.00 

Bacillus thermoalkalophilus 0 0 0.06 0.00 
Prevotella sp. 0 0 0.13 0.00 
Pseudoxanthomonas 
taiwanensis 

 
0 

 
0 0.13 0.00 
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Unclassified 
Rhodospirillaceae 

 
0 

 
0 0.06 0.00 

Rickettsia sp. 0 0 0.06 0.08 
Unclassified 
Pseudomonadaceae 

 
0 

 
0 0.06 0.00 

Thermomonas sp. 0 0 0.06 0.00 
Unclassified 
Erythrobacteraceae 

0 0 
0.06 0.00 

Unclassified 
Rhodospirillaceae 

 
0 

 
0 0.06 0.00 

Bacillus thermoalkalophilus 0 0 0.06 0.00 
Thermus sp. 0 0 0.06 0.00 
Rubrivivax sp. 0 0 0.06 0.00 
Bosea genosp. 0 0 0.06 0.00 
Unclassified 
Pseudomonadaceae 

 
0 

 
0 0.06 0.00 

Unclassified 
Phyllobacteriaceae 

 
0 

 
0 0.06 0.00 

Sphingobacterium sp. 0 0 0.06 0.00 
Unclassified 
Comamonadaceae 

 
0 

 
0 0.06 0.00 

Marinobacter sp. 0 0 0.06 0.00 
Bosea genosp. 0 0 0.06 0.00 
Marinobacter sp. 0 0 0.06 0.00 
Nevskia sp. 0 0 0.06 0.00 
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Table S6 SVs potentially transmitted from males to females. Given are prevalence and relative 
abundance of all SVs that were found in mated females and in virgin males but not in virgin 
females. 

ID SV Prevalence Min. relative 
abundance 

Max. relative 
abundance 

Population A  (N=19)   
SV30 Unclassified Aeromonas 6 0.0009 0.0065 
SV44 Staphylococcus sp. 2 0.0001 0.0003 
SV51 Bradyrhizobium sp. 6 0.0006 0.0091 
SV66 Caulobacter sp. 7 0.0001 0.0045 
SV68 Alcanivorax sp. 4 0.0004 0.0024 
SV69 Brevibacterium sp. 1 0.0004 0.0004 
SV73 Staphylococcus sp. 2 0.0010 0.0018 
SV77 Alcanivorax sp. 4 0.0003 0.0017 
SV83 Staphylococcus sp. 1 0.0010 0.0010 
SV86 Unclassified 

Comamonadaceae 
 
3 0.0004 0.0020 

SV94 Bradyrhizobium sp. 3 0.0003 0.0020 
SV97 Cutibacterium acnes 5 0.0001 0.0029 
SV98 Acinetobacter sp. 2 0.0003 0.0016 
SV99 Bradyrhizobium sp. 4 0.0005 0.0009 
SV100 Unclassified 

Gammaproteobacteria 
 
1 0.0002 0.0002 

SV106 Corynebacterium sp. 5 0.0002 0.0023 
SV109 Paracoccus sp. 1 0.0014 0.0014 
SV111 Pseudomonas sp. 3 0.0005 0.0008 
SV114 Cloacibacterium sp. 2 0.0000 0.0007 
SV115 Unclassified Alcaligenaceae 1 0.0003 0.0003 
SV116 Acinetobacter sp. 5 0.0001 0.0018 
SV117 Unclassified Lactobacillaceae 1 0.0004 0.0004 
SV118 Cloacibacterium sp. 2 0.0002 0.0005 
SV120 Lactobacillus sp. 1 0.0002 0.0002 
SV122 Unclassified 

Gammaproteobacteria 
 
2 0.0003 0.0018 

SV124 Pseudomonas sp. 2 0.0006 0.0006 
SV125 Acinetobacter lwoffii 4 0.0003 0.0021 
SV126 Comamonas sp. 3 0.0004 0.0015 
SV135 Unclassified 

Comamonadaceae 
 
2 0.0004 0.0047 

     
Population B  (N=22)   
SV135 Unclassified 

Comamonadaceae 
1 0.0030 0.0030 

     
Population C  (N=25)   
SV111 Pseudomonas sp. 4 0.0002 0.0063 

SV124 Pseudomonas sp. 1 0.0004 0.0004 
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SV140 
Unclassified 
Rhodobacteraceae 1 0.0001 0.0001 

     
Population D  (N=26)   
SV33 Stenotrophomonas sp. 1 0.0003 0.0003 
SV117 Unclassified Lactobacillaceae 3 0.0001 0.0023 
SV118 Cloacibacterium sp. 2 0.0001 0.0009 
SV138 Corynebacterium sp. 1 0.0003 0.0003 

 

 

Table S7 SVs potentially transmitted from females to males. Given are prevalence and 

relative abundance of all SVs that were found in mated males and in virgin females but not in 

virgin males. 

ID SV Prevalence Min. relative 
abundance 

Max. relative 
abundance 

Population A   (N=19)  

- - - - - 

     

Population B   (N=25)  

SV90 Bradyrhizobium sp. 2 0.0011 0.0033 
SV93 Halomonas sp. 2 0.0015 0.0024 
SV122 Unclassified 

Gammaproteobacteria 
 
2 0.0004 0.0008 

SV134 Unclassified 
Gammaproteobacteria 

 
2 0.0004 0.0009 

     

Population C   (N=26)  

- - - - - 

     

Population D   (N=24)  

SV44 Staphylococcus sp. 1 0.0016 0.0016 
SV108 Lactobacillus sp. 1 0.0002 0.0002 

 

 

The separate Excel files for Table S3-S5 containing the “raw” data after the pre-processing 

steps, such as denoising and filtering, can be accessed under: 
 

https://royalsocietypublishing.org/doi/suppl/10.1098/rspb.2020.0302 
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SUPPLEMENTARY METHODS 

 

Suitability of GFP-labelled bacteria 

We investigated whether green fluorescent bacteria naturally occur in the sperm-receiving 

organs of virgin females to verify the suitability of GFP-labelled bacteria for the investigation of 

sexual transmission. We therefore dissected 40 females (N=10 per bedbug population) and 

homogenised their sperm-receiving organs in 50 µl of sterile phosphate buffered saline (PBS) 

with a pestle made from a melted 200 µl pipette tip. The homogenate was plated out on glycerol 

agar (2% agar, 1% yeast extract, 2.25% glycerol) and incubated for 48 hours at 30°C. 

Fluorescence was examined with a 395nm UV LED torchlight (ePathChina Ltd, Kowloon, Hong 

Kong). We found no fluorescent bacteria in the dissected organs, suggesting that GFP-labelled 

bacteria are suitable for investigating sexual transmission in bedbugs. 

 

Concentration of bacteria solutions 

To determine the concentration of bacteria cultures for the transmission experiments, we 

inoculated glycerol agar plates (2% agar, 1% yeast extract, 2.25% glycerol) with GFP-labelled 

Asaia sp. and incubated the plates at 30°C for 48 hours. We picked an individual colony and 

inoculated 5 ml of glycerol medium (1% yeast extract, 2.25% glycerol) in a 15 ml Falcon tube. 

The tubes were incubated in a shaking incubator at 30°C and 200 rpm for 24 hours. Using 

sterile glass beads, we plated 100 µl of each bacteria culture (N=10) on glycerol agar after 

diluting them 1:1000000. 

To determine the concentration of bacteria solutions for the bacterial growth experiments, we 

cultured the bacteria as described above and diluted the bacteria culture to an OD600=0.1. We 

centrifuged the overnight culture for 5 minutes at 2350 g and replaced the supernatant with 

sterile PBS. We diluted the resulting solution 1:100 or 1:50 and with a glass capillary 

(GB1000F-10, Science Products GmbH, Hofheim, Germany) pulled to a fine point, we 

transferred 0.5 µl (N=10) or 0.25 µl (N=10) to an Eppendorf tube containing 100 µl sterile PBS. 

Using sterile glass beads, we plated 100 µl of each tube on glycerol agar. 
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To determine the concentration of bacteria solutions for the reproductive immunity 

experiments, we harvested cuticular bacteria with cuticle washes by vortexing 5 males and 5 

females from population A in 5 ml sterile PBS for 15 minutes after chilling on ice for 15 minutes. 

We plated 100 µl of each bacteria solution (N=5) on LB agar after diluting them 1:100. 

All plates were incubated for 48 hours at 30°C and photographed with a Gel iX Imager 

(software: INTAS GDS, INTAS Science Imaging Instruments GmbH, Göttingen, Germany) and 

the colony forming units were counted with OpenCFU (version 3.8-BETA). 

 

Suitability of the sperm viability protocol 

To analyse whether a decrease in sperm numbers is reflected by a decrease in fluorescence 

induced by a SYBR green stain (Live/Dead Sperm Viability Kit, L7011, Invitrogen, Carlsbad, 

USA), we dissected 12 males in two experiment blocks. Both sperm containers of all 12 males 

were pooled in an Eppendorf tube containing 960 µl Grace’s Insect Medium (G8142, Sigma 

Aldrich, Hamburg, Germany), homogenised, and serially diluted to an end concentration of 

0.0625. To measure the fluorescence, 20 µl of SYBR green (first diluted 1:50 in DMSO and 

then 1:40 in sterile Grace’s Insect Medium) were added to each sample containing 60 µl of a 

given concentration and mixed with a pipette. After incubating the samples in the dark for 10 

minutes, we transferred them to a FLUOTRAC 384 well plate (781076, Greiner, 

Frickenhausen, Germany) and measured every 5 minutes for 60 minutes in a microplate 

reader (Synergy HT, BioTek Instruments, Winooski, VT, USA) with an excitation at 485 nm, an 

emission at 528 and a gain of 75. The dilution of sperm resulted in lower fluorescence (Fig. 

S1), showing that a decrease in sperm numbers can be inferred from a decrease in 

fluorescence. 

 

Lysozyme standard curve 

We produced a standard curve for measuring the lysozyme units in each sample by serially 

diluting chicken lysozyme (from chicken egg white; A4972, PanReac AppliChem, Darmstadt, 
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Germany) in PBS to produce the following concentrations in units of lysozyme/ml: 40, 24, 16, 

8, 4, 2.4, 1.6, 0.8, 0.4, 0.24, 0.16, 0.08, 0.04. We transferred 1 µl of each concentration to a 5 

ml agar plate containing lyophilised Micrococcus lysodeikticus (ATCC No. 4698, Sigma-

Aldrich, Hamburg, Germany) and incubated the plate at 30°C for 48 hours. In total, we had 19 

replicates per concentration. We then measured the area of clear zones in ImageJ (version 

1.51k) and plotted them against lysozyme concentration (Fig. S3).
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SUPPLEMENTARY FIGURES 

 

Figure S1 Suitability of the microplate reader to detect a decrease in sperm numbers with the 
Live/Dead Sperm Viability Kit (SYBR green). Given are mean and standard error of the mean 
for the fluorescence detected after diluting both sperm containers serially from a start 
concentration of 1 to an end concentration of 0.0625.  
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Figure S2 Potential spermicidal ability of Asaia sp. in vitro indicated by a decrease in 
fluorescence of spermatozoa labelled with SYBR 14. Given are mean and standard error of 
the mean for each treatment across populations (A, B, C, D).  



Manuscripts and declaration of own contribution 

77 

 

 

 

Figure S3 Standard curve for measuring the lysozyme units in tissue samples. Given are the 
means for each concentration and area. 
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SUPPLEMENTARY TABLES 

Table S1 ANOVA results showing the effect of the given fixed effects on sperm viability 
determined by fluorescence measurements. 

Fixed effect Sum Sq Df F values Pr(>F)  

Population 
  

11.017 3 0.205 0.893 

Seminal fluid presence 
  

15.771 1 0.879 0.349 

Bacteria treatment 
  

2.306 1 0.129 0.720 

Time 
  

96.107 6 0.892 0.500 

Population x seminal fluid 
presence 
  

4.047 3 0.075 0.973 

Population x bacteria treatment 
  

19.557 3 0.363 0.780 

Seminal fluid presence 
x bacteria treatment 
  

0.438 1 0.024 0.876 

Population x time 
  

0.717 18 0.002 1.000 

Seminal fluid presence x time 
  

1.996 6 0.019 1.000 

Bacteria treatment x time 
  

0.497 6 0.005 1.000 

Population x seminal fluid 
presence x bacteria treatment 
  

5.505 3 0.102 0.959 

Population 
x seminal fluid presence x time 
  

0.976 18 0.003 1.000 

Population x bacteria treatment 
x time 
  

2.917 18 0.009 1.000 

Seminal fluid presence 
x bacteria treatment x time 
  

0.373 6 0.003 1.000 

Population x seminal fluid 
presence x bacteria treatment x 
time 
  

2.468 18 0.008 1.000 

Residuals 26133.519 1456 
  

 

 

Table S2 ANOVA results showing the effect of the given fixed effects on the maximum 
absorbance determined from the liquid growth inhibition induced by the injection of mating-
associated substances into the female sperm-receiving organ. 

Fixed effect Sum Sq Df F values Pr(>F) 
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Bacteria species 
  

0.00002 1 0.006 0.939 

Population 
  

0.00215 3 0.169 0.917 

Treatment 
  

0.00570 4 0.336 0.854 

Bacteria species x population 
  

0.00084 3 0.066 0.978 

Bacteria species x treatment 
  

0.00336 4 0.198 0.939 

Population x treatment 
  

0.02419 12 0.475 0.929 

Bacteria species 
x population x treatment 
  

0.02971 12 0.584 0.856 

Residuals 2.54507 600 
  

 

 

Table S3 ANOVA results showing the effect of the given fixed effects on the area under the 
curve determined from the liquid growth inhibition induced by the injection of mating-associated 
substances into the female sperm-receiving organ. 

Fixed effect Sum Sq Df F values Pr(>F) 

Bacteria species 
  

0.00027 1 0.283 0.595 

Population 
  

0.00095 3 0.328 0.805 

Treatment 
  

0.00270 4 0.701 0.592 

Bacteria species x population 
  

0.00045 3 0.154 0.927 

Bacteria species x treatment 
  

0.00123 4 0.320 0.865 

Population x treatment 
 
  

0.00805 12 0.696 0.756 

Bacteria species 
x population x treatment 
  

0.00547 12 0.473 0.931 

Residuals 0.57864 600 
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7 Discussion 

With this thesis I contribute to the understanding of reproduction and ecological factors 

affecting it. By conducting two metagenomic studies based on the 16S rRNA gene of the 

genital microbiomes of the common bedbug (Cimex lectularius L.), I characterised the structure 

and composition of the genital microbiomes that were organ-, sex- and population-specific. 

Mating changed the structure and composition of the genital microbiomes and these changes 

were partly due to exchanges of bacterial strains between the sexes, suggesting sexual 

transmission, and due to invading opportunistic bacteria from the cuticle. In a third study, I 

therefore investigated the transmission rate of opportunistic bacteria and their effects on the 

female immune system. In at least ninety percent of the cases, bacteria that had been applied 

to the copulatory organs of the opposite sex were transmitted during mating, indicating that 

females regularly face sexually transmitted opportunistic microbes and the related 

consequences. Bacteria injected into the female paragenital sperm-receiving organ, the 

mesospermalege, were able to survive for at least 24 hours although the growth was slower 

within the first six hours. The injection of bacteria but also the injection of ejaculate induced 

lysozyme-like activity and bacterial growth inhibition in vitro. Against my expectations, these 

immune responses were not population-specific. 

 

7.1 Genital microbiomes seem to be locally adapted 

Reproductive traits are more rapidly evolving than most other traits (Swanson & Vacquier, 

2002) and sexual selection has been discussed as the driver of the rapid evolution of 

reproductive traits. In the last decades, it has been debated that natural and sexual selection 

can interact (Hamilton, 1990) and that natural selection on its own has the ability to affect 

reproductive traits (Endler, 1986; Foster & Endler, 1999; Houde, 1997; Hurd, 1998; Hurst et 

al., 1995; Reinhardt, 2007; Siva-Jothy, 2000). 



Discussion 

81 

 

All animals are in constant contact with microbes. Even the reproductive organs (Hickey 

et al., 2012; Hirsh, 1999; Hupton et al., 2003; Ravel et al., 2011) and ejaculates (Baud et al., 

2019; González-Marín et al., 2011; Lombardo & Thorpe, 2000; Skau & Folstad, 2003; 

Virecoulon et al., 2005) of healthy individuals harbour microbes that might shape reproductive 

traits via natural selection. In arthropods, most of the bacteria associated with mating belong 

to the classes Actinobacteria, Alphaproteobacteria, Bacilli, or Gammaproteobacteria (Bellinvia 

et al., 2020b; Otti, 2015; Perlmutter & Bordenstein, 2020). However, between-individual 

variation in genital microbiomes is very high, at least in bedbugs (Bellinvia et al., 2020b, 

2020a), suggesting that genital microbiomes do not only harbour obligate mutualists. 

Genital microbiomes differ between organs even if they are in close proximity as it is the 

case for the human female reproductive system (Chen et al., 2017) and the reproductive 

organs of bedbugs (Bellinvia et al., 2020a). Reproductive organs might differ in the accessibility 

for OM that colonise the organs, for instance due to different openings and organ shapes. 

Alternatively, the function of the organ might require specific symbionts. In addition to 

differences between organs, microbiomes are sex-specific as has been shown for whole body 

homogenates (Valiente Moro et al., 2013), intestinal samples (Haro et al., 2016; Markle et al., 

2013), and organs involved in reproduction (Bellinvia et al., 2020b, 2020a; Hupton et al., 2003; 

Otti et al., 2017). Whether sex-specific microbiomes arise due to different behaviours, functions 

in the ecosystem, or roles in reproduction remains to be investigated. 

Bacterial communities associated with insects vary between collection sites (Adams et al., 

2010). This could be explained by environmental bacteria regularly colonising the microbiomes 

or by conserved differences. Symbionts living in the reproductive organs are potentially 

constantly exposed to the immune system of their host and therefore under selection to adapt 

to this special environment as even endosymbionts are prevented from uncontrolled growth by 

the host’s immune system (Login et al., 2011). Furthermore, they should have a high 

evolutionary potential because of their likely higher rates of mutation, shorter generation times, 

and larger population sizes compared to their hosts. Therefore, interactions between genital 
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microbes and their hosts should fulfil both pre-requisites of local adaptation, i.e. selection 

pressure and evolutionary potential (Gandon & Michalakis, 2002). Indeed, genital microbiomes 

seem to be locally adapted as shown by ethnicity-dependent vaginal microbiomes (Ravel et 

al., 2011) and population-specific genital microbiomes of bedbugs (Bellinvia et al., 2020a). 

Such differences between populations might be involved in speciation processes if mating 

with a partner who has a differently composed genital microbiome leads to incompatibilities or 

reduced reproductive success. Possible reasons for reduced fitness might be stronger immune 

responses due to different microbiomes (Rowe et al., 2020) or interference of non-adapted 

microbes with symbionts that help in reproduction. Furthermore, microbes have been shown 

to modify host signals, produce metabolites and odours (reviewed in Shropshire and 

Bordenstein, 2016). Furthermore, they induce cytoplasmic incompatibility (Bourtzis et al., 

2003), i.e. incompatibility between the gametes of hosts infected with different microbe strains, 

male killing (Dyson & Hurst, 2004; Hurst et al., 2003; Nakanishi et al., 2008; Zeh & Zeh, 2006), 

feminisation (Hiroki et al., 2002; Negri et al., 2006; Rigaud & Juchault, 1992; Terry et al., 1999; 

Weeks et al., 2001), and parthenogenesis (Huigens & Stouthamer, 2003; Kremer et al., 2009; 

Pannebakker et al., 2005; Pijls et al., 1996). They can also affect mate choice and assortative 

mating likely results in reproductive isolation and, ultimately, in speciation (Perlmutter & 

Bordenstein, 2020). 

Bacteria in the microbiomes of Drosophila melanogaster females interact with their hosts 

to affect attractiveness as indicated by a line-specific increase or decrease after antibiotic 

treatment (Arbuthnott et al., 2016). In laboratory mice, bacteria helping the host’s digestion 

increase the attractiveness while antibiotic treatment and the knockout of host receptors for a 

specific nutrient cause decreased attractiveness (Li et al., 2013). Both studies indicate that 

bacteria have the ability to modify mating signals. Microbes can produce signals, such as 

odours, that are used for mate choice (Shropshire & Bordenstein, 2016). For instance, a 

correlation exists between variations in human skin microbiomes and underarm odour (James 

et al., 2013), which women use to rate male attractiveness (Havlicek et al., 2005; Saxton et 
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al., 2008). Arthropods seem to use cuticular compounds to evaluate the infection status of their 

potential mating partner and choose an uninfected partner (Gilbert & Uetz, 2019). 

Additionally, microbes causing cytoplasmic incompatibility might select for avoidance of 

potential mates that are not compatible based on their microbiome (Perlmutter & Bordenstein, 

2020; Shropshire & Bordenstein, 2016). This is the case for two Drosophila species which 

occur sympatrically in a region in Canada. Over 98% of Drosophila recens are infected with 

Wolbachia whereas Drosophila subquinaria is not infected (Shoemaker et al., 1999). Hybrids 

of the uninfected D. subquinaria females and infected D. recens males are inviable but 

reciprocal crosses produce viable offspring (Shoemaker et al., 1999). Hybrid inviability is 

mirrored by sympatric D. subquinaria females showing higher discrimination against D. recens 

males compared to allopatric females and no discrimination by D. recens females (Jaenike et 

al., 2006). Moreover, spider mite females that are not infected with Wolbachia prefer to mate 

with uninfected males whereas infected females aggregate their offspring (Vala et al., 2004). 

Despite of being population-specific, genital microbiomes do not seem to cause assortative 

mating in bedbugs as indicated by similar mating behaviours between coevolved and non-

coevolved crosses (see chapter 8.1) but studies on the effect of reproductive success could 

clarify whether reproductive success depends on the genital microbiomes of both mating 

partners. 

 

7.2 Mating changes the genital microbiomes 

Microbiomes are affected by changes in the environment (Cauci et al., 2002; David et al., 

2014; Martínez et al., 2013; Nuriel-Ohayon et al., 2016; Odamaki et al., 2016; Thaiss et al., 

2014). Mating is a life-history event that affects all sexually reproducing animals and has been 

shown to alter vertebrate (Kulkarni & Heeb, 2007; Mändar et al., 2015; White et al., 2010, 

2011) and invertebrate (Bellinvia et al., 2020b, 2020a; Otti et al., 2017) genital microbiomes. 

Interestingly, mating-induced changes seem to be a general pattern across populations 

(Bellinvia et al., 2020a). Compositional changes can be caused by the invasion of new 
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microbes and/or the loss of resident microbes. New microbial strains could be found due to 

three different scenarios which are not mutually exclusive: I) the organ recruits microbes from 

other organs to fulfil a different function after mating; II) microbes are sexually transmitted or 

transferred from the cuticle; III) microbes enter genital openings and copulatory wounds. 

Resident microbes could be lost if they are targeted by an immune response actually intended 

against microbes or if invading microbes compete for resources. In both cases, the host has 

to deal with the consequences of a disturbed genital microbiome. 

Microbes are sexually transmitted in both vertebrates and invertebrates (reviewed in Knell 

& Webberley, 2004). In addition to microbes causing sexually transmitted diseases (STM), 

opportunistic microbes (OM) might be transmitted that can become pathogenic when the host 

immune system is disturbed (Klainer & Beisel, 1969). Previous studies in insects have reported 

that bacteria can be sexually transmitted (Miest & Bloch-Qazi, 2008) and that OM colonise the 

paramere of bedbug males and might be transmitted to females (Reinhardt et al., 2005). 

Indeed, bacteria are sexually transmitted in both sexes of the common bedbug (Bellinvia et al., 

2020b, 2020a, 2020c). Bellinvia et al. (2020b, 2020a) found bacteria in mated individuals that 

did not occur in the genital microbiomes of virgin individuals of the same sex or the opposite 

sex, indicating that these bacteria must have been from a different source. Indeed, these 

bacteria originated from the cuticle (Bellinvia et al., 2020b, 2020a) and should, therefore, be 

OM instead of bacteria causing sexually transmitted diseases. Furthermore, most transmitted 

strains varied between populations (Bellinvia et al., 2020a), suggesting that environmental 

microbes are population-specific. This is in accordance with previous findings that microbes 

on the filter papers in the housing containers vary between bedbug populations (Otti et al., 

2017). 

The high transmission rate of bacteria applied to the copulatory organs of males and 

females (Bellinvia et al., 2020c) suggests that OM are regularly transmitted during mating 

under natural conditions. OM eventually become pathogenic (Klainer & Beisel, 1969) and 

increase mortality (Reinhardt et al., 2003). One other major problem caused by OM is 
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decreased reproductive success. Females might allocate resources to immunity instead of 

reproduction (Sheldon & Verhulst, 1996; Zuk & Stoehr, 2002), which has been shown to be 

the case for the great pond snail (Rigby & Jokela, 2000) and the pied flycatcher (Ilmonen et 

al., 2000). Furthermore, OM decrease sperm motility (Diemer et al., 1996, 2003; Kaur et al., 

2010; Prabha et al., 2010), agglutinate sperm (Kaur et al., 2010), and increase sperm mortality 

(Otti et al., 2013) in vitro, consequently lowering reproductive success. In addition, mutualistic 

microbes in the genital microbiomes might compete with OM over available resources (Li & 

Stevens, 2012; Mallon et al., 2003). If the abundance of symbionts essential for specific 

functions of the organ decreases, this might have severe consequences for the host’s 

reproductive success. For instance, in humans, mating decreases the abundance of 

Lactobacillus in the endometrium (Mändar et al., 2015) and lower Lactobacillus abundances 

have been associated with low implantation, pregnancy, and birth rates (Moreno et al., 2016). 

These threats should impose selection pressure on females to protect themselves and the 

received sperm from OM. Some of the observed increased immunity in females either prior to 

or after mating might be a response to such a threat (Harney et al. 2019, Oku et al. 2019, 

Zhong et al. 2013). 

 

7.3 OM and ejaculate components elicit immune responses in females 

Females possess various immunological defence mechanisms, both constitutive and 

induced (Rolff & Reynolds, 2009; Schmid-Hempel, 2005; Siva-Jothy et al., 2005) that might be 

used to fight invading STM and OM. In humans, antimicrobial peptides that lyse the membrane 

of microbes have been found in the reproductive tract (Quayle et al., 1998; Valore et al., 1998). 

In Drosophila females, male courtship song induces the production of immune genes 

(Immonen & Ritchie, 2012) that protect against a sexually transmitted fungus (Zhong et al., 

2013). Even special organs have evolved to protect females from microbes invading during 

mating, for instance the mesospermalege in bedbugs (Morrow & Arnqvist, 2003; Reinhardt et 

al., 2003), a paragential immune organ that forms a barrier towards the haemolymph. 
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Additionally, it shows lysozyme-like activity in anticipation of mating (Siva-Jothy et al., 2019) 

and in response to mating-associated substances (Bellinvia et al., 2020c), suggesting that the 

selection pressure for protection from microbes can lead to the evolution of localised immunity 

and specialised organs. 

One key aspect of ecological immunology is that immunity is costly, leading to trade-offs 

with traits like reproduction or survival due to a restricted resource budget (Boots et al., 2013; 

Sheldon & Verhulst, 1996). Often, mating is associated with reduced immunity due to the 

allocation of resources to reproduction instead of immune responses (Sheldon & Verhulst, 

1996; Zuk & Stoehr, 2002). Thus, physical barriers preventing the host from a systemic 

infection might be helpful to optimise the benefits at a relatively low cost. Hence, the physical 

barrier function of the mesospermalege becomes especially important when sperm have 

started migrating through the haemolymph towards the ovaries and the resources need to be 

allocated to reproduction instead of immunity. Such a shift in resources is indicated by the slow 

growth rate of bacteria inside the mesospermalege within the first six hours, i.e. when sperm 

are still inside the mesospermalege or travelling to the ovaries and sperm storage organs, 

followed by the fast growth within the next 18 hours, i.e. when sperm have reached the ovaries 

(Bellinvia et al., 2020c). Potential mechanisms to mop up the bacteria seem to be lysozyme-

like and antimicrobial activity, which are induced by any liquid injected into the 

mesospermalege (Bellinvia et al., 2020c). 

That sexually reproducing organisms constantly face microbes, be it their genital 

microbiomes or sexually transmitted microbes, provides the basis for adaptations to evolve. If 

microbes vary between populations, local adaptation of the host to the genital microbiomes 

and sexually transmitted microbes might lead to population-specific immune responses For 

instance, immunity could be affected by the prevalence and pathogenicity of STM and OM and 

by the composition of the genital microbiome. Such population-specific immune responses 

might manifest in different levels of immunity or different immunological substances used. 
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Empirical studies have shown that immune activity indeed varies between populations, for 

instance in freshwater shrimps (Cornet et al., 2009) and bumblebees (Brunner et al., 2013) 

and might be correlated with parasite prevalence. In contrast to these studies, Bellinvia et al. 

(2020c) did not find evidence for population-specific levels of lysozyme-like activity or growth 

inhibition by antimicrobial peptides in bedbugs although the genital microbiomes differ between 

populations (Bellinvia et al., 2020a), providing the basis for local adaptation of immunity. 

Immune responses after mating are potentially not solely caused by sexually transmitted 

bacteria: in addition, they could be used by the female to exert post-copulatory selection. 

Polyandry has direct and indirect benefits for the female, the latter being higher offspring 

diversity, attractiveness, and viability (Birkhead & Pizzari, 2002). If females can choose 

gametes based on specific characteristics this benefit might be even higher. In accordance 

with the idea of post-copulatory selection, females have been shown to induce mechanisms 

that affect sperm physiology and motility (Kekäläinen & Evans, 2018; Yoshida et al., 2008). 

However, research on cryptic female choice has largely been neglected so far although it might 

be older than pre-copulatory selection (Parker, 2014). 

Bedbug females cannot exert pre-copulatory mate choice since fully-fed females cannot 

prevent mating (Reinhardt et al., 2009). Therefore, post-copulatory cryptic female choice is a 

potential mechanism that enables the female to maximise fitness by choosing the sperm from 

males of better quality over the sperm from low quality males or even to choose spermatozoa 

of better quality (Eberhard, 1996). One mechanism that could be used by the female to exert 

cryptic female choice might be immune responses that target non-desired sperm. The pre-

requisites of such choice mechanisms are that spermatozoa vary in resistance against this 

choice mechanism and that variation correlates with male quality, good genes, or compatibility 

between male and female. 

In accordance with the idea of immune responses functioning as cryptic female choice 

mechanisms, Bellinvia et al. (2020c) found a higher lysozyme-like activity when females were 

injected with a liquid, likely representing ejaculate transfer, compared to when females were 
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pricked with a sterile needle. Whether the induction of lysozyme-like activity has evolved 

because of mating-associated bacteria or cryptic female choice is difficult to distinguish. The 

higher activity when females were injected with seminal fluid from males indicates that females 

react to male components. However, further studies are required to investigate whether 

lysozyme is indeed used as a cryptic choice mechanism since we have no evidence for cryptic 

female choice in the mesospermalege of bedbugs so far. If lysozyme is used for cryptic female 

choice, Bellinvia et al. (2020c) provide another example of a potential interaction between 

sexual and natural selection. On the other hand, commercially available lysozyme has been 

shown to protect bedbug sperm from environmental microbes in vitro (Otti et al., 2013), 

indicating that lysozyme-like activity is unlikely to be part of the female’s repertoire of cryptic 

female choice mechanisms. 

 

7.4 Conclusions 

This thesis provides important new results for understanding reproduction and 

environmental factors affecting it. Apart from human studies, this is the first observation of 

genital microbiomes potentially being locally adapted and indicating the potential of these 

microbes to be involved in speciation, for instance via cytoplasmic incompatibility. 

Characterising the genital microbiomes has shown that the bacterial communities are subject 

to mating-induced changes and that opportunistic microbes seem to be transmitted during 

mating. This finding suggests that sexually reproducing organisms are regularly exposed to 

invading microbes and therefore, they should be under natural selection to defend themselves 

against infections. That is especially important given the large growth rate of opportunistic 

microbes inside the female sperm receiving organ that I found. This thesis has identified two 

possible immunologically active substances that might be the main actors in the defence 

against mating-associated microbes, providing evidence for the interaction of mating and 

immunity in bedbugs. Since these defences do not seem to be population-specific although 

OM likely differ between populations, I conclude that either the hosts are not locally adapted 
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or that the costs of an infection are more likely related to invading microbes per se than to the 

pathogenicity of specific microbes. In conclusion, this thesis gives an overview of the potential 

of host-microbe interactions to affect reproduction. I have laid the foundations for a model 

system in which many aspects of reproduction can be manipulated and experimentally tested, 

including the genital microbiome as part of an interdependent metaorganism. 

 

7.5 Future directions 

The findings of this thesis raise several interesting research questions that should be 

investigated further: 

 

I. Does the genital microbiome colonisation depend on environmental 

microbes or host genotype? 

My second metagenomic study revealed that the genital microbiomes are population-

specific (Bellinvia et al., 2020a). Abiotic factors, such as pH or temperature will likely determine 

which part of the environmental microbe community can colonise the reproductive organs. 

Furthermore, colonisation by similar microbes can be caused by monogamy (reviewed in Rowe 

et al., 2020), similarities in behaviour, ecological niches, and diets, by a shared environment, 

and, last but not least, by host-genotype effects (reviewed in Shropshire and Bordenstein, 

2016). To investigate whether genital microbiomes adapt to environmental microbiomes and 

whether the host selects for adaptations in the microbes that colonise the host, I would 

recommend conducting a study that combines experimental evolution with microbe exposure. 

Isogenic lines of different genotypes could be exposed to different communities of 

environmental microbes. After every third generation, their genital microbiomes would be 

sequenced because arthropods have the potential to adapt to symbionts within less than ten 

generations (Martinez et al., 2016). If genital microbiomes differ between isogenic lines 

exposed to different microbes, it is likely that environmental microbes shape genital 

microbiomes. If genital microbiomes exposed to the same environmental bacteria differ 
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between genotypes but not within genotypes, this would suggest that microbiomes are adapted 

to the genotype of their host. However, the resident microbiome likely determines which 

invading microbes can successfully colonise the genital microbiomes (Perlmutter & 

Bordenstein, 2020). Therefore, differences in the genital microbiomes investigated after 

experimental evolution with the same environmental bacteria do not necessarily indicate host 

genotype effects. To disentangle the effects of host genotype and microbiome, it would be 

necessary to include a group in the described experiment that is treated with antibiotics before 

the bacterial exposure. 

 

II. Do genital microbiomes affect reproductive success? 

Population-specific genital microbiomes could be a first step in the direction of speciation 

since microbes have the potential to cause cytoplasmic incompatibility and assortative mating, 

for instance by modifying or producing signals that are used for mate choice or by inducing 

cytoplasmic incompatibility (reviewed in Shropshire and Bordenstein, 2016). Although 

bedbugs do not seem to reject mates from other populations, mating partners from different 

populations might be incompatible due to differences in the genital microbiomes, or post-

copulatory choice in the form of cryptic female choice might be used by females to choose 

sperm from compatible males. As a first step, the effect of mating with coevolved vs non-

coevolved males on offspring numbers and hatching success should be investigated under 

natural conditions and after antibiotic treatment. If microbe-free bedbugs differ in reproductive 

success, this would hint at host genotype-effects. If this difference is altered in non-treated 

bedbugs, this would indicate that microbes can affect reproductive traits. With the experimental 

evolution approach described in question I., it would also be possible to compare the 

reproductive success between coevolved and non-coevolved lines to determine whether 

adaptation of the genital microbiome can affect reproductive success. 

 

III. Are mating-induced changes reversible? 
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Genital microbiomes are changed by mating (Bellinvia et al., 2020b, 2020a; Kulkarni & 

Heeb, 2007; Mändar et al., 2015; Otti et al., 2017; White et al., 2010, 2011), which might be 

critical for reproductive success. It would be interesting to investigate whether females can 

restore the original microbiome and how long this takes. To do so, another metagenomic study 

could be conducted and the genital microbiomes before mating and at different time points 

after mating compared. For this, I would suggest the following time points: I) within one hour 

after mating, II) after six hours, III) after 12 hours, IV) after 24 hours, V) after 48 hours, VI) after 

72 hours. With this sampling procedure it is possible to capture the changes I) immediately 

after mating, II) after the slow growth phase of invading bacteria inside the mesospermalege, 

III) after the sperm have reached the ovaries and invading bacteria have grown faster, IV) after 

antimicrobial substances are produced, and V) and VI) after the immune system might have 

restored the initial microbiome composition. In case that the restoration of the microbiome 

takes several days, it would be interesting to compare offspring numbers and hatching success 

between the time before and after normalisation of the genital microbiome to find out whether 

a disturbance has an effect on reproductive success. 

 

IV. How does mating trigger immune responses of the female? 

The injection of a liquid into the mesospermalege induced lysozyme-like activity (Bellinvia 

et al., 2020c). In contrast, there was no difference in lysozyme-like activity between females 

that had received a sterile prick and untreated females. To investigate whether a stretch 

receptor triggers immunity, one would have to artificially stretch the mesospermalege, for 

instance with air and compare the lysozyme-like activity induced by different volumes. A similar 

method has previously been used to mimic the feeding-induced abdomen distension (Wintle 

& Reinhardt, 2008).  
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8 Supplement 

8.1 Influence of coevolution with environmental bacteria on mating behaviour 

8.1.1 Introduction 

To determine whether population-specific genital microbiomes (Bellinvia et al., 2020a) can 

affect pre-copulatory (as reviewed in Shropshire and Bordenstein, 2016) and copulatory 

behaviour, I analysed the mating behaviour of coevolved and non-coevolved bedbugs (Cimex 

lectularius L.). Bedbug males determine the mating rate because fed females cannot resist 

mating (Reinhardt et al., 2009). Males have been reported to mount females without showing 

any courtship behaviour (Carayon, 1966). However, they do not necessarily mate immediately 

after discovering a female. I have observed many males that initiated mating after having 

touched or walked over the female several times. After mounting, the male expands its needle-

like intromittent organ and inserts it through the cuticle into the female paragenital sperm-

receiving organ, the mesospermalege, to transfer the ejaculate. Before the male inserts his 

intromittent organ, females usually shake their body vigorously, potentially to resist mating 

(Reinhardt et al., 2009). This shaking stops after the male has successfully introduced its 

intromittent organ. I therefore considered the number of contacts and the time until mounting 

as pre-copulatory behaviour of the male and the time between mounting and successful 

intromission as pre-copulatory behaviour of the female. In addition, I measured copulatory 

behaviour via copulation duration, which should be rather determined by the male. 

 

8.1.2 Methods 

8.1.2.1 Mating scheme 

Bedbugs were taken from 4 different populations, resulting in 8 mating pairs: AxA (male x 

female), CxC, AxC, CxA, DxD, BxB, DxB, BxD. Mating pairs from the same population were 

referred to as “coevolved”, pairs with male and female originating from different populations as 

“non-coevolved”. All bedbugs were kept in a climate chamber at 26±1°C, at a humidity of 70% 

and a light cycle of 12L:12D. After eclosion, all individuals were kept in sex-specific groups. 
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They were fed weekly four times with human blood before the start of the experiment. The 

fourth blood meal was given on the specific day of the experiment, because freshly-fed females 

cannot resist mating (Reinhardt et al., 2009). To start with, I placed virgin males and females 

from the given populations (N=30 for each mating combination), in a cleaned 70mm glass petri 

dish with new filter paper. To separate male and female, I isolated them with Drosophila vials. 

The bedbugs were left to acclimatise to the new environment for 2 minutes, after which I 

removed the vials.  

 

8.1.2.2 Measurements 

I measured the number of contacts before mounting (contacts), the time until mounting 

(latency) the time between mounting and insertion of the paramere (struggle), and the time 

from insertion until removal of the paramere (copulation duration). The number of contacts was 

counted as the number of times the two sexes had contact with any body part except for the 

legs until the male mounted the female. A new contact was only counted if the individuals had 

not touched each other after the previous contact. For the analysis the number of contacts was 

divided by the time until mounting. Latency was defined as the time from the release of the 

male and female from their Drosophila vials until the male mounted the female. I measured 

struggle as the time between the male mounts the female and the time when both sexes did 

not shake anymore, which served as a good proxy for the intromission of the paramere 

(Reinhardt et al., 2009). To determine copulation duration, I took the time between the insertion 

of the paramere and the time when the abdomen of the male was not attached to the female 

anymore. Times were measured to the nearest millisecond. 

 

8.1.2.3 Statistical analysis 

All statistical analyses were performed in R (version 3.4.0, R Core Team, 2017). The effect of 

coevolutionary status on the number of contacts was analysed with a generalised linear model 

with quasi-Poisson error structure and the fixed effects male population and coevolutionary 
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status and their interaction term. Three outliers were removed before fitting the model. To 

analyse the effect of coevolutionary status on the latency and copulation duration, I fitted a 

generalised linear model with gaussian error structure and the fixed effects male population 

and coevolutionary status and their interaction term. Since the residuals were not normally 

distributed, I used Box-Cox transformation. For the analysis of latency, I excluded one outlier. 

The effect of coevolutionary status on struggle was determined with a generalised linear model 

with gaussian error structure and the fixed effects female population and coevolutionary status 

and their interaction term. Since the residuals were not normally distributed, I used Box-Cox 

transformation. 
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8.1.3 Results and discussion 

The number of contacts did not differ between coevolved and non-coevolved crosses 

(F1,229=1.380, p=0.24) or between male populations (F3,229=2.560, p=0.05) but there was a 

significant interaction between male population and coevolutionary status (F3,229=2.859, 

p=0.04)(Fig. S1), suggesting that males from different populations reacted differently to the 

coevolutionary status of their mate. However, the number of contacts differed only slightly, 

indicating that this measure is probably not suitable for detecting effects on pre-copulatory 

behaviour. 

 

Figure S1 Number of contacts between male and female before the male mounted the female. 

Given are mean and standard error of the mean for both coevolutionary status and all individual 

data points.  



Supplement 

96 

 

There was no difference in the latency between coevolved and non-coevolved crosses 

(F1,231=3.324, p=0.07) or between male population (Fig. S2). However, I found a significant 

interaction between male population and coevolutionary status (F3,231=3.430, p=0.02) and male 

population significantly affected latency (F3,231=4.132, p=0.01)(Fig. S2). This result indicates 

that pre-copulatory behaviour can be affected by coevolutionary status of the mate in some 

populations, potentially via cuticular compounds altered by microbes (Gilbert & Uetz, 2019). 

 

Figure S2 Latency, i.e. time until the male mounted the female. Given are mean and standard 

error of the mean for both coevolutionary status and all individual data points. 
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Struggle, i.e. the time between mounting and insertion of the male intromittent organ, was not 

affected by coevolutionary status (F1,232=0.0002, p=0.99), female population (F3,232=0.469, 

p=0.70) and there was no interaction between female population and coevolutionary status 

(F3,232=0.305, p=0.82)(Fig. S3). Therefore, genital microbiomes do not seem to alter the pre-

copulatory behaviour of bedbug females. 

 

Figure S3 Struggle, i.e. time between the male mounted the female and the successful 

insertion of the male intromittent organ. Given are mean and standard error of the mean for 

both coevolutionary status and all individual data points. 
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Coevolutionary status did not affect mating duration (F1,232=0.001, p=0.98) and coevolutionary 

status did not interact with male population (F3,232=0.111, p=0.95)(Fig. S4). However, mating 

durations differed significantly between male populations (F3,232=14.684, p<0.001)(Fig. S4). 

Our results show that it unlikely that males adjust their reproductive investment to the 

coevolutionary status of their mating partner as copulation duration is positively correlated with 

ejaculate transfer (Siva-Jothy & Stutt, 2003). 

 

Figure S4 Copulation duration of bedbugs from coevolved or non-coevolved populations. 

Given are mean and standard error of the mean for both coevolutionary status and all individual 

data points. 

  



Supplement 

99 

 

8.2 Influence of bacteria concentration on female immunity 

8.2.1 Introduction 

Each mating is most likely associated with varying numbers of invading microbes if these are 

opportunistic and bacteria concentration can affect virulence, at least in the case of 

entomopathogenic bacteria (Pietri & Liang, 2018). Since immunity is associated with costs like 

autoimmunity (Schmid-Hempel, 2005) or reduced reproductive success due to allocation of 

resources away from reproduction (Sheldon & Verhulst, 1996; Zuk & Stoehr, 2002), it might 

be beneficial for the female to react to mating-associated microbes in a dose-dependent way. 

Furthermore, immunity to protect sperm might be related to the microbe concentration because 

Escherichia coli has been shown to reduce sperm motility only at high concentrations (Diemer 

et al., 1996). To determine whether the immune response depends on the number of bacteria 

entering the female body during mating, I measured the lysozyme-like activity in the 

mesospermalege of female bedbugs (Cimex lectularius L.) after mating and a bacteria prick 

with bacteria solutions of different concentrations. 

 

8.2.2 Methods 

8.2.2.1 Bedbugs 

All bedbugs from population A were kept in a climate chamber at 26±1°C, at a humidity of 70% 

and a light cycle of 12L:12D. After eclosion, all virgin individuals were kept in sex-specific 

groups. They were fed weekly two times with human blood before the start of the experiment. 

Females were fed another time on the day of mating, because freshly-fed females cannot resist 

mating (Reinhardt et al., 2009). 

 

8.2.2.2 Mating and bacteria prick 

To surface-sterilise the males, their last abdominal segment of males was dipped into 

Kohrsolin (20%) for 20 seconds. The males were transferred to a petri dish with filter paper 

and a female was placed in the petri dish. The bedbugs were allowed to mate for 60 seconds, 



Supplement 

100 

 

to standardise the transfer of sperm and seminal fluid. Male and female were separated with 

forceps and the female was pricked with a minutia, which had been dipped into a bacteria 

solution of a specific concentration. The female was then transferred to a single Eppendorf 

tube (1.5 ml) containing a filter paper disc. 

 

8.2.2.3 Treatments 

Arthrobacter globiformis were plated out on LB agar plates and incubated at 30°C for 24h. One 

single colony was picked with an inoculation loop and transferred to a Falcon tube filled with 

5ml LB medium. The tube was incubated at 30°C and shaken at 200 rpm for 24h. The overnight 

culture was vortexed and 1ml of the culture was transferred to an Eppendorf tube. The tubes 

were centrifuged at 2350g for 5 minutes. The supernatant was discarded, and the bacterial 

pellet was resuspended in 1000 µl. I serially diluted 100 µl of the solution with 900 µl PBS until 

a dilution of 1:1000. After mating, the prick was applied following a pseudo-random design. I 

dipped the minutia in the desired solution and pierced the ectospermalege with a slight angle. 

Only the tip of the minutia entered the mesospermalege. Each treatment was applied to 22 ± 

1 (mean ± SD) females. 

 

8.2.2.4 Sample collection and LLA measurement 

24h and 48h after the bacteria prick, respectively, the females were dissected and the 

mesospermalege was photographed with a camera (LEICA DFC 290) attached to the 

dissection microscope (LEICA M165 C). Using forceps, the mesospermalege was 

homogenised in a 1.5 mm hole on a 5 ml agar plate containing lyophilised Micrococcus 

lysodeikticus (ATCC No. 4698, Sigma-Aldrich, Hamburg, Germany). Lysozyme assay plates 

were incubated at 30° C for 48 h and photographed with a Gel iX Imager (software: INTAS 

GDS, INTAS Science Imaging Instruments GmbH, Göttingen, Germany). The clearance zone 

was measured in ImageJ (version 1.51k) and converted into units of LLA, using a calibration 
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curve (see Supplement of Bellinvia et al., 2020c). Total LLA represents the activity per sample, 

while specific LLA refers to the activity per microliter. 

 

8.2.2.5 Statistical analysis 

The statistical analysis was performed in R (version 3.4.0, R Core Team, 2017). The effect of 

the bacteria concentration used to stab the female mesospermalege on lysozyme-like activity 

was analysed with a generalised linear model with gaussian error structure and the fixed 

effects time after dissection and treatment and their interaction term. Since the residuals were 

not normally distributed, I used Box-Cox transformation.  
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8.2.3 Results and discussion 

LLA did not differ between the mesospermaleges of females stabbed with different bacteria 

concentrations (F4,209=1.342, p=0.26)(Fig. S5). However, the time between treatment and 

dissection significantly interacted with the treatment (F4,209=3.179, p=0.01). This indicates that 

females do not adjust LLA to the number of bacteria invading their mesospermalege during 

mating. The similar LLA level between sterile stab and bacteria after 24 hours suggests that 

copulatory wounding might trigger LLA instead of the invading bacteria. Since every copulatory 

wound increases the risk of females to be infected, it might be less costly and faster to induce 

an immune response upon wounding instead of assessing the number of bacteria before 

inducing a reaction. 

 

Figure S5 Lysozyme-like activity in the female mesospermalege in response to a sterile stab 

or stabs with different concentrations of bacteria (Arthrobacter globiformis) corrected for the 

volume of the mesospermalege. Given are mean and standard error of the mean (black points) 

and all individual data points (grey points).  
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