# On strongly walk regular graphs,triple sum sets and their codes 

Michael Kiermaier, Sascha Kurz, Patrick Solé $\dagger$<br>Michael Stoll*, and Alfred Wassermann*


#### Abstract

Strongly walk-regular graphs can be constructed as coset graphs of the duals of projective three-weight codes whose weights satisfy a certain equation. We provide classifications of the feasible parameters in the binary and ternary case for medium size code lengths. Additionally some theoretical insights on the properties of the feasible parameters are presented.


Keywords: strongly walk-regular graphs, three-weight codes.
MSC (2010): Primary 05E30, Secondary 94B05

## 1 Introduction

A strongly regular graph (SRG) is a regular graph such that the number of common neighbors of two distinct vertices depends only on whether these vertices are adjacent or not. They arise in a lot of applications, see e.g. 5]. As first observed in [10], there is a strong link to projective two-weight codes, see [8] for a survey. The notion of SRGs has been generalized to distance-regular graphs or association schemes. Noting that the number of common neighbors of two vertices equals the number of walks of length two between them, strongly walk-regular graphs (SWRG) were introduced in [23]. A graph is an $s$-SWRG if the number of walks of length $s$ from a vertex to another vertex depends only on whether the two vertices are the same, adjacent, or not adjacent. Note that SRGs are $s$-SWRGs for all $s>1$. In [23] is was shown that the adjacency matrix of a SWRG has at most four distinct

[^0]eigenvalues. If a $d$-regular graph $\Gamma$ has four distinct eigenvalues $k>\theta_{1}>\theta_{2}>\theta_{3}$, then $\Gamma$ is an $s$-SWRG for $s \geq 3$ if and only if
\[

$$
\begin{equation*}
\left(\theta_{2}-\theta_{3}\right) \theta_{1}^{s}+\left(\theta_{3}-\theta_{1}\right) \theta_{2}^{s}+\left(\theta_{1}-\theta_{2}\right) \theta_{3}^{s}=0 \tag{1}
\end{equation*}
$$

\]

Moreover, it is known that $s$ has to be odd. All known examples for $s$-SWRGs (with $s>3$ ) satisfy $\theta_{2}=0$ and $\theta_{3}=-\theta_{1}$, where Equation (1) is automatically satisfied for all odd $s \geq 3$.

Mimicking the mentioned link between SRGs and projective two-weight codes, a construction of SRWGs as coset graphs of the duals of projective three-weight codes was given recently in [20]. In this situation the eigenvalues are integral and depend on the weights of the three-weight code, so that Equation 1 turns into a number theory question. Another bijection to triple sums sets (TSS) is given in [20].

Several research papers consider the feasible parameters of SRGs, see e.g. https: //www.win.tue.nl/~aeb/graphs/srg/srgtab.html for a large table summarizing the state of knowledge. We remark that the smallest cases, where the existence or non-existence of a SRG is unclear, consist of 65 or 69 nodes. The corresponding parameters cannot be attained by a two-weight code since these give graphs where the number of vertices is a power of the field size. Still, the existence of projective projective two-weight codes is an important source for the construction of SRGs, see e.g. [16], where several new examples have been found. An online database of known two-weight codes can be found at http://moodle.tec.hkr.se/~chen/research/ 2-weight-codes/search.php. Due to a result of Delsarte, see [10, Corollary 2], the possible parameters of two-weight codes are quite restricted. More precisely, the weights of a projective two-weight code over a finite field with characteristic $p$ can be written as $w_{1}=u p^{t}$ and $w_{2}=(u+1) p^{t}$ for suitable integers $u \geq 1$ and $t \geq 0$.

Given the relation between the weights of a projective three-weight code and the eigenvalues of the coset graph its dual, corresponding solutions of Equation (1) can be easily enumerated. However, not all cases are feasible, i.e., attainable by a projective three-weight code. The aim of this paper is to study feasibility for the smallest cases. For binary codes we give results for lengths smaller than 72 and for ternary codes for lengths smaller or equal to 39 . Within that range only a very few cases are left as open problems. This extends first enumeration results from [20]. Similar results for some special rings instead of finite fields are obtained in [15.

The remaining part of this paper is organized as follows. The necessary preliminaries are introduced in Section 2 followed by the enumeration results in Section 3 .

In Section 4 it is shown that for $s=5$ and $s=7$ the only rational solutions of Equation (11) are given by the parametric solution $\theta_{2}=0, \theta_{3}=-\theta_{1}$. For the binary case $q=2$ we show that projective three-weight codes whose weights satisfy $w_{1}+w_{2}+w_{3}=3 n / 2$ for the length $n$ have a high divisibility of the weights and the length by powers of two, see Proposition 5 for the details. The remaining part of Section 5 studies divisibility properties of binary linear codes with few weights from a more general point of view and prepares some necessary auxiliary results. In Appendix A we collect generator matrices for the mentioned feasible parameters from Section 3 ,

## 2 Preliminaries

A linear $q$-ary code $C$ of length $n$ and dimension $k$ is called an $[n, k]_{q}$. If the non-zero codewords of $C$ only attain two different weights, we call $C$ a two-weight code and a three-weight code if three different non-zero weights are attained. By $A_{i}$ we denote the number of codewords of weight $i$ and by $B^{i}$ the number of codewords of weight $i$ of the dual code $C^{\perp}$, with respect to the standard inner product. The numbers $A_{i}$ and $B_{i}$ are related via the so-called MacWilliams identities, see e.g. [18]:

$$
\begin{equation*}
\sum_{j=0}^{n-\nu}\binom{n-j}{\nu} A_{j}=q^{k-\nu} \cdot \sum_{j=0}^{\nu}\binom{n-j}{n-\nu} B_{j} \quad \text { for } 0 \leq \nu \leq n, \tag{2}
\end{equation*}
$$

where, additionally, $A_{0}=B_{0}=1$. The fact that the $B_{i}$ are uniquely determined by the $A_{i}$ can e.g. be seen by providing explicit equations for each $B_{i}$ in dependence of the $A_{j}$. Those formulas involve the so-called Krawtchouk polynomials [17]. We call an $[n, k]_{q}$ code projective if $B_{1}=0$ and $B_{2}=0$. For a binary projective $[n, k]_{2}$ code, the first four MacWilliams identities can be rewritten to:

$$
\begin{align*}
\sum_{i>0} A_{i} & =2^{k}-1  \tag{3}\\
\sum_{i \geq 0} i A_{i} & =2^{k-1} n  \tag{4}\\
\sum_{i \geq 0} i^{2} A_{i} & =2^{k-2} \cdot n(n+1),  \tag{5}\\
\sum_{i \geq 0} i^{3} A_{i} & =2^{k-3} \cdot\left(n^{2}(n+3)-6 B_{3}\right) \tag{6}
\end{align*}
$$

In the special form of the left hand side, they are also called the first four (Pless) power moments, see [19]. Given the length $n$, the dimension $k$, and the weights $w_{1}, w_{2}, w_{3}$ of a projective three-weight code, we can compute $A_{w_{i}}$ and $B_{3}$ :

$$
\begin{align*}
A_{w_{1}}= & \frac{2^{k-2} \cdot\left(n^{2}-2 n w_{2}-2 n w_{3}+4 w_{2} w_{3}+n\right)-w_{2} w_{3}}{\left(w_{2}-w_{1}\right)\left(w_{3}-w_{1}\right)}  \tag{7}\\
A_{w_{2}}= & \frac{2^{k-2} \cdot\left(n^{2}-2 n w_{1}-2 n w_{3}+4 w_{1} w_{3}+n\right)-w_{1} w_{3}}{\left(w_{2}-w_{3}\right)\left(w_{2}-w_{1}\right)}  \tag{8}\\
A_{w_{3}}= & \frac{2^{k-2} \cdot\left(n^{2}-2 n w_{1}-2 n w_{2}+4 w_{1} w_{2}+n\right)-w_{1} w_{2}}{\left(w_{3}-w_{1}\right)\left(w_{3}-w_{2}\right)}  \tag{9}\\
3 B_{3}= & \frac{n^{2}(n+3)}{2}-\left(w_{1}+w_{2}+w_{3}\right) n(n+1) \\
& +2\left(w_{1} w_{2}+w_{1} w_{3}+w_{2} w_{3}\right) n-4 w_{1} w_{2} w_{3}+w_{1} w_{2} w_{3} \cdot 2^{2-k} \tag{10}
\end{align*}
$$

Besides $A_{0}=1$ all other $A_{i}$ are equal to zero, so that the $B_{i}$, where $i \geq i$, can be uniquely determined using the remaining MacWilliams identities, i.e., those for $\nu \geq 4$. Note that the product $w_{1} w_{2} w_{3}$ has to be divisible by $2^{k-2}$. We remark that we will obtain stronger divisibility conditions in Section 5 . Of course, similar explicit expressions can also be determined for field sizes $q>2$. However, we will mostly restrict our theoretical considerations to $q=2$ in the remaining part of the paper.

A coset of a linear code $C$ is any translate of $C$ by a constant vector. A coset leader is any coset element that minimizes the weight. The weight of a coset is the weight of any of its coset leaders. With this, the coset graph $\Gamma_{C}$ of a linear code $C$ is defined on the cosets of $C$ as vertices, where two cosets are connected iff they differ by a coset of weight one. To ease notation, we speak of the eigenvalues of a graph $\Gamma$ meaning the eigenvalues of the corresponding adjacency matrix. For a projective code $C$ the eigenvalues of the coset graph $\Gamma_{C^{\perp}}$ of its dual code are completely determined by the occurring non-zero weights $w_{i}$ of $C$, see [4, Theorem 1.11.1]:

Theorem 1. Let $C$ be a projective $[n, k]_{q}$ code with occurring non-zero weights $w_{1}, \ldots, w_{r}$. Then, the coset graph $\Gamma_{C^{\perp}}$ of its dual code $C^{\perp}$ is d-regular for some integer $d$ and the eigenvalues are given by $n(q-1)-q w_{i}$ for $1 \leq i \leq r$ and $d$.

Generalizing partial difference sets, triple sum sets (TSS) have been introduced in [9]. The set $\Omega \subseteq \mathbb{F}_{q}^{k}$ is a TSS if it is closed under scalar multiplication and there are constants $\sigma_{0}$ and $\sigma_{1}$ such that a each non-zero $h \in \mathbb{F}_{q}^{k}$ can be written as $h=x+y+z$ with $x, y, z \in \Omega$ exactly $\sigma_{0}$ times if $h \in \Omega$ and $\sigma_{1}$ times if $h \in \mathbb{F}_{q}^{k} \backslash \Omega$.

If $\Omega \subseteq \mathbb{F}_{q}^{k}$ and $0 \notin \Omega$, then we denote by $C(\Omega)$ the projective code of length $n=\# \Omega /(q-1)$ obtained as the kernel of the $k \times n$ matrix $H$ whose columns are the projectively non-equivalent elements of $\Omega$. Thus, $H$ is the check matrix of the linear code $C(\Omega)$. In order to ease the notation, we abbreviate $\Gamma_{C(\Omega)}$ as $\Gamma(\Omega)$. In [20, Theorem 2] it was shown that $\Omega$ is a TSS if and only if $\Gamma(\Omega)$ is a 3 -SWRG. (Actually, [20, Theorem 2] states the equivalence of $\Gamma(\Omega)$ being an $s$-SWRG and $\Omega$ being an $s$-sum set, where the element $h$ in the definition of a TSS is a sum of $s$ elements from $\Omega$.)

A coding-theoretic characterization of triple sum sets is given as follows, see [9, Theorem 2.1] or [20, Theorem 5].

Theorem 2. If $\Omega \subseteq \mathbb{F}_{q}^{k}$ so that $C(\Omega)^{\perp}$ has length $m$ and attains exactly three non-zero weights $w_{1}, w_{2}$, and $w_{3}$, then $\Omega$ is a TSS iff $w_{1}+w_{2}+w_{3}=\frac{3 n(q-1)}{q}$.

Using Theorem 1, Equation (1), and 3-SWRGs as intermediate steps, the link becomes obvious. To this end we remark that

$$
\begin{equation*}
\left(\theta_{2}-\theta_{3}\right) \theta_{1}^{s}+\left(\theta_{3}-\theta_{1}\right) \theta_{2}^{s}+\left(\theta_{1}-\theta_{2}\right) \theta_{3}^{s}=\left(\theta_{1}-\theta_{2}\right)\left(\theta_{1}-\theta_{3}\right)\left(\theta_{2}-\theta_{3}\right) \cdot \sum_{h+i+h=s-2} \theta_{1}^{h} \theta_{2}^{i} \theta_{3}^{j}, \tag{11}
\end{equation*}
$$

so that for $s=3$ Equation (11) is satisfied iff $\theta_{1}+\theta_{2}+\theta_{3}=0$. Plugging in the formula for the eigenvalues from Theorem 1 gives the condition $w_{1}+w_{2}+w_{3}=\frac{3 n(q-1)}{q}$.

As mentioned in the introduction, all known examples for $s$-SWRGs satisfy $\theta_{2}=0$ and $\theta_{3}=-\theta_{1}$, i.e., they are $s$-SWRGs for all odd $s \geq 3$. So, starting from projective three-weight codes to construct SWRGs it is sufficient to study those that satisfy the weight constraint $w_{1}+w_{2}+w_{3}=\frac{3 n(q-1)}{q}$. We do so in Section 3. In Section 4 we show that for $s=5$ or $s=7$ all rational solutions of Equation (1) satisfy $\theta_{2}=0$ and $\theta_{3}=-\theta_{1}$. The computational results from Section 3 for the binary case $q=2$ suggest that the length $n$ as well as the weights $w_{1}, w_{2}, w_{3}$ have to be divisible by a large power of 2 if $n$ increases. We proof a corresponding result in Section 5, see especially Proposition 5 .

## 3 Feasible parameters of projective three-weight codes satisfying $w_{1}+w_{2}+w_{3}=3 n(q-1) / q$

As outlined in Section 2 we can construct 3-SWRGs from projective $[n, k]_{q}$ three weight codes if the weights satisfy $w_{1}+w_{2}+w_{3}=\frac{3 n(q-1)}{q}$. So, here we study the
feasible sets of parameters $n, k, w_{1}, w_{2}, w_{3}$ such that a corresponding projective threeweight code exists. In Subsection 3.1 we consider the possibilities for all length $n<72$ in the binary case and in Subsection 3.2 we consider the possibilities for all lengths $n \leq 39$ in the ternary case.

In that range we can simply loop over all weight-triples $1 \leq<w_{1}<w_{2}<w_{3} \leq n$ satisfying $w_{1}+w_{2}+w_{3}=3 n(q-1) / q$. For $q=2$ Equation (10) implies that the product $w_{1} w_{2} w_{3}$ is divisible by $2^{k-2}$, which restricts the possible choices for the dimension $k$. For $q=3$ we may use the trivial bounds $1 \leq k \leq n$. Then, the MacWilliams identities uniquely determine the $A_{i}$ and $B_{i}$. As a first check we test if all of these values are non-negative integers. In [24, Theorem 1] it has been shown that if the weights of an $[n, k]_{q}$ are divisible by some integer $t>1$ that is coprime to the field size $q$, then the code is a $t$-fold repetition of an $[n / t, k]_{q}$ code, i.e., the code is not projective. Thus, we can assume $\operatorname{gcd}\left(w_{1}, w_{2}, w_{3}, q\right)=1$. Examples where we can apply this criterion to exclude the existence of codes are given by $n=36,\left(w_{1}, w_{2}, w_{3}\right)=(12,18,24)$, and $k \in\{6,7,8\}$. (The corresponding values of $\left(A_{w_{1}}, A_{w_{2}}, A_{w_{3}}\right)$ are given by $(2,56,5)$, $(10,104,13)$, and $(26,200,29)$, respectively.) Other cases where this criterion can be applied for $q=3$ are $n=24, k=4$ for weight vector $w=[14,16,18]$ and $n=36$, $k \in\{5,6\}$ for weight vector $w=[18,24,30]$. In order to find examples we have used the software package LinCode [3] to enumerate matching codes or tried to reduce the problem complexity by prescribing automorphisms and applying exact or heuristic solvers for the resulting integer linear programs.

### 3.1 Feasible parameters for projective binary three-weight codes with $\mathrm{w}_{1}+\mathrm{w}_{\mathbf{2}}+\mathrm{w}_{\mathbf{3}}=3 \mathrm{n} / \mathbf{2}$

In the subsequent tables we list the feasible parameters for projective binary threeweight codes with $w_{1}+w_{2}+w_{3}=3 n / 2$. For each length $n<72$ we list the possible dimensions $k$ and weight vectors $w=\left[w_{1}, w_{2}, w_{3}\right]$. If a certain length or dimension is not listed, then they are excluded with the criteria mentioned at the beginning of Section 3. As extra information we also state the weight distribution in the form $e=$ $\left[A_{w_{1}}, A_{w_{2}}, A_{w_{3}}\right]$. For some cases we can also state the number of isomorphism types of those codes. The 8 -divisible $[n, k]_{2}$ with length at most 48 are classified in [1] and the projective codes are extracted in [13]. If not mentioned otherwise, the remaining classification results are obtained with the software package LinCode [3]. We also list those non-existence results where more sophisticated methods are necessary. We mark
those instances with the keyword "None" in the comment column of the subsequent tables and also give a reference to the used method. One of those, that is frequently used, is:

Proposition 1. ([11, Proposition 5], cf. [21]) Let $C$ be an $[n, k, d]_{2}$-code with all weights divisible by $\Delta:=2^{a}$ and let $\left(A_{i}\right)_{i=0,1, \ldots, n}$ be the weight distribution of $C$. Put

$$
\begin{aligned}
\alpha & :=\min \{k-a-1, a+1\}, \\
\beta & :=\lfloor(k-a+1) / 2\rfloor \text {, and } \\
\delta & :=\min \left\{2 \Delta i \mid A_{2 \Delta i} \neq 0 \wedge i>0\right\} .
\end{aligned}
$$

Then the integer

$$
T:=\sum_{i=0}^{\lfloor n /(2 \Delta)\rfloor} A_{2 \Delta i}
$$

satisfies the following conditions.
(i) $T$ is divisible by $2^{\lfloor(k-1) /(a+1)\rfloor}$.
(ii) If $T<2^{k-a}$, then

$$
T=2^{k-a}-2^{k-a-t}
$$

for some integer $t$ satisfying $1 \leq t \leq \max \{\alpha, \beta\}$. Moreover, if $t>\beta$, then $C$ has an $[n, k-a-2, \delta]_{2}$-subcode and if $t \leq \beta$, it has an $[n, k-a-t, \delta]_{2}$-subcode.
(iii) If $T>2^{k}-2^{k-a}$, then

$$
T=2^{k}-2^{k-a}+2^{k-a-t}
$$

for some integer $t$ satisfying $0 \leq t \leq \max \{\alpha, \beta\}$. Moreover, if $a=1$, then $C$ has an $[n, k-t, \delta]_{2}$-subcode. If $a>1$, then $C$ has an $[n, k-1, \delta]_{2}$-subcode unless $t=a+1 \leq k-a-1$, in which case it has an $[n, k-2, \delta]_{2}$-subcode.

A special and well-known subcase is that the number of even weight codewords in a $[n, k]_{2}$ code is either $2^{k-1}$ or $2^{k}$, see Lemma 3 . For $n=32, k=10$, and weight vector $w=[8,16,24]$ we obtain $A_{w_{1}}=61, A_{w_{2}}=899$, and $A_{w_{3}}=63$. Applying Proposition 1 gives $\Delta=8, a=3, \alpha=4, \beta=4, \delta=16$, and $T=900$. As required by Part (1), $T$ is divisible by 4 . However, Part (1) gives $t$, which contradicts $0 \leq t \leq \max \{\alpha, \beta\}$, so that a code cannot exist.

Bounds for the largest possible minimum distance are well studied in the literature, see e.g. the online tables at http://www.codetables.de [12]. For length
$n=64$ and dimension $k=11$ the largest possible minimum distance is known to be either 26 or 27 , which rules out the existence of a projective code with weight vector $w=[28,32,36]$. We use the comment "Codetables" in this case. For $n=64$ and $w=[24,32,40]$ we use a classification result from [14], i.e., every 13 -dimensional 8-divisible binary linear code with non-zero weights in $\{24,32,40,56,64\}$ has to contain a codeword of weight 64. Anticipating the results from Section 5 we also apply Corollary 1, which shows that the length $n$ has to be divisible by 4 . The case $n=58$ is excluded by that criterion. For length $n=64$ and weight vector $w=[16,32,48]$ we analyze the subcodes spanned by codewords of weight 16 and show that the dimension can be at most 11, see Proposition 2. Just four cases remain undecided. The occur for length $n \in\{40,48,56,64\}$ and mark them with the keyword "Open". For each feasible case we give one corresponding generator matrix as an example in Appendix A.

$$
\begin{array}{|ll|}
\hline n=4 & \\
\hline k=3 & w=[1,2,3], e=[1,3,3] \quad 1 \text { isomorphism type } \\
\hline
\end{array}
$$

| $n=8$ |  |  |
| :--- | :--- | :--- |
| $k=4$ | $w=[2,4,6], e=[1,11,3]$ | 1 isomorphism type |
| $k=5$ | $w=[2,4,6], e=[5,19,7]$ | 1 isomorphism type |
| $k=6$ | $w=[2,4,6], e=[13,35,15]$ | 1 isomorphism type |


| $n=12$ |  |  |
| :--- | :--- | :--- |
| $k=5$ | $w=[4,6,8], e=[6,16,9]$ | 4 isomorphism types |
| $k=6$ | $w=[4,6,8], e=[18,24,21]$ | 2 isomorphism types |


| $n=16$ |  |  |
| :--- | :--- | :--- |
| $k=5$ | $w=[6,8,10], e=[6,15,10]$ | 5 isomorphism types |
| $k=6$ | $w=[6,8,10], e=[22,15,26]$ | 1 isomorphism type |
| $k=7$ | $w=[6,8,10], e=[54,15,58]$ | None Proposition 1 |
| $k=5$ | $w=[4,8,12], e=[1,27,3]$ | 1 isomorphism type |
| $k=6$ | $w=[4,8,12], e=[5,51,7]$ | 1 isomorphism type |
| $k=7$ | $w=[4,8,12], e=[13,99,15]$ | 2 isomorphism types |


| $n=20$ |  |  |
| :--- | :--- | :--- |
| $k=5$ | $w=[8,10,12], e=[5,16,10]$ | 3 isomorphism types |
| $k=6$ | $w=[8,10,12], e=[25,8,30]$ | None Proposition 1 |


| $n=24$ |  |  |
| :--- | :--- | :--- |
| $k=5$ | $w=[10,12,14], e=[3,19,9]$ | 1 isomorphism type |
| $k=6$ | $w=[10,12,14], e=[27,3,33]$ | None Proposition 1 |
| $k=6$ | $w=[8,12,16], e=[6,48,9]$ | 8 isomorphism types |
| $k=7$ | $w=[8,12,16], e=[18,88,21]$ | 52 isomorphism types |
| $k=8$ | $w=[8,12,16], e=[42,168,45]$ | 66 isomorphism types |
| $k=9$ | $w=[8,12,16], e=[90,328,93]$ | 13 isomorphism types |
| $k=10$ | $w=[8,12,16], e=[186,648,189]$ | 2 isomorphism types |
| $k=11$ | $w=[8,12,16], e=[378,1288,381]$ | 1 isomorphism type |


| $n=32$ |  |  |
| :--- | :--- | :--- |
| $k=6$ | $w=[12,16,20], e=[6,47,10]$ |  |
| $k=7$ | $w=[12,16,20], e=[22,79,26]$ |  |
| $k=8$ | $w=[12,16,20], e=[54,143,58]$ |  |
| $k=9$ | $w=[12,16,20], e=[118,271,122]$ |  |
| $k=10$ | $w=[12,16,20], e=[246,527,250]$ |  |
| $k=6$ | $w=[8,16,24], e=[1,59,3]$ | 1 isomorphism type |
| $k=7$ | $w=[8,16,24], e=[5,115,7]$ | 1 isomorphism type |
| $k=8$ | $w=[8,16,24], e=[13,227,15]$ | 2 isomorphism types |
| $k=9$ | $w=[8,16,24], e=[29,451,31]$ | 1 isomorphism type |
| $k=10$ | $w=[8,16,24], e=[61,899,63]$ | None Proposition 1 |


| $n=40$ |  |  |
| :--- | :--- | :--- |
| $k=6$ | $w=[18,20,22], e=[25,3,35]$ | None Proposition 1$]$ |
| $k=6$ | $w=[16,20,24], e=[5,48,10]$ |  |
| $k=7$ | $w=[16,20,24], e=[25,72,30]$ |  |
| $k=8$ | $w=[16,20,24], e=[65,120,70]$ |  |
| $k=9$ | $w=[16,20,24], e=[145,216,150]$ |  |
| $k=10$ | $w=[16,20,24], e=[305,408,310]$ | Open |


| $n=48$ |  |  |
| :--- | :--- | :--- |
| $k=6$ | $w=[22,24,26], e=[18,15,30]$ | 1 isomorphism type |
| $k=6$ | $w=[20,24,28], e=[3,51,9]$ | 1 isomorphism type |
| $k=7$ | $w=[20,24,28], e=[27,67,33]$ | $\geq 209586$ isomorphism types |
| $k=8$ | $w=[20,24,28], e=[75,99,81]$ | $\geq 86$ isomorphism types |
| $k=9$ | $w=[20,24,28], e=[171,163,177]$ | Open |
| $k=7$ | $w=[16,24,32], e=[6,112,9]$ | 8 isomorphism types |
| $k=8$ | $w=[16,24,32], e=[18,216,21]$ | 66 isomorphism types |
| $k=9$ | $w=[16,24,32], e=[42,424,45]$ | $\geq 7$ isomorphism types |
| $k=10$ | $w=[16,24,32], e=[90,840,93]$ | $\geq$ isomorphism types |
| $k=11$ | $w=[16,24,32], e=[186,1672,189]$ | $\geq 2$ isomorphism types |
| $k=12$ | $w=[16,24,32], e=[378,3336,381]$ |  |


| $n=52$ |  |
| :--- | :--- |
| $k=6 \quad w=[24,26,28], e=[13,24,26] \quad 1$ isomorphism type |  |


| $n=56$ |  |  |
| :--- | :--- | :--- |
| $k=6$ | $w=[26,28,30], e=[7,35,21]$ | 1 isomorphism type |
| $k=7$ | $w=[24,28,32], e=[28,64,35]$ |  |
| $k=8$ | $w=[24,28,32], e=[84,80,91]$ |  |
| $k=9$ | $w=[24,28,32], e=[196,112,203]$ |  |
| $k=10$ | $w=[24,28,32], e=[420,176,427]$ | Open |

$$
\begin{array}{|lll|}
\hline n=58 & \\
\hline k=8 \quad w=[24,31,32], e=[76,128,51] \quad \text { None Corollary } 1 \\
\hline
\end{array}
$$

| $n=64$ |  |  |
| :--- | :--- | :--- |
| $k=7$ | $w=[28,32,36], e=[28,63,36]$ |  |
| $k=8$ | $w=[28,32,36], e=[92,63,100]$ |  |
| $k=9$ | $w=[28,32,36], e=[220,63,228]$ |  |
| $k=10$ | $w=[28,32,36], e=[476,63,484]$ | Open |
| $k=11$ | $w=[28,32,36], e=[988,63,996]$ | None Codetables |
| $k=7$ | $w=[24,32,40], e=[6,111,10]$ |  |
| $k=8$ | $w=[24,32,40], e=[22,207,26]$ |  |
| $k=9$ | $w=[24,32,40], e=[54,399,58]$ |  |
| $k=10$ | $w=[24,32,40], e=[118,783,122]$ |  |
| $k=11$ | $w=[24,32,40], e=[246,1551,250]$ | 42 isomorphism types |
| $k=12$ | $w=[24,32,40], e=[502,3087,506]$ | 1 isomorphism type |
| $k=13$ | $w=[24,32,40], e=[1014,6159,1018]$ | None [14] |
| $k=7$ | $w=[16,32,48], e=[1,123,3]$ |  |
| $k=8$ | $w=[16,32,48], e=[5,243,7]$ |  |
| $k=9$ | $w=[16,32,48], e=[13,483,15]$ |  |
| $k=10$ | $w=[16,32,48], e=[29,963,31]$ |  |
| $k=11$ | $w=[16,32,48], e=[61,1923,63]$ |  |
| $k=12$ | $w=[16,32,48], e=[125,3843,127]$ | None Proposition 2 |
| $k=13$ | $w=[16,32,48], e=[253,7683,255]$ | None Proposition 2 |
| $k=14$ | $w=[16,32,48], e=[509,15363,511]$ | None Proposition |
| $k=15$ | $w=[16,32,48], e=[1021,30723,1023]$ | None Proposition 2 |
| $k$ |  |  |


| $n=68$ |  |
| :--- | :--- |
| $k=9 \quad w=[30,32,40], e=[64,299,148] \quad$ None Proposition 1 |  |

Proposition 2. If $C$ is a projective $[64, k]_{2}$ code with non-zero weights in $\{16,32,48\}$, then $k \leq 11$.

Proof. We consider the subcode $C_{16}$ of $C$ that is generated by the codewords of weight 16 in $C$. W.l.o.g. we can assume that the rows of a generator matrix of $C_{16}$ all have weight 16. If a linear code $C^{\prime}$ can be written as the direct sum of two nontrivial smaller codes, then we call $C^{\prime}$ decomposable and indecomposable otherwise. Using the software package LinCode [3] we have enumerate all indecomposable $[n, k]_{2}$ codes with non-zero weights in $\{16,32,48\}$ and $n \leq 64$. The parameters $n, k$ and the corresponding counts of the non-zero weights of the occurring cases are given by
$[16,1]_{2}: 16^{1},[24,2]_{2}: 16^{3},[28,3]_{2}: 16^{7},[30,4]_{2}: 16^{15},[31,5]_{2}: 16^{31},[32,6]_{2}: 16^{62} 32^{1}$, $[32,5]_{2}: 16^{30} 32^{1},[32,4]_{2}: 16^{14} 32^{1},[32,3]_{2}: 16^{6} 32^{1},[32,2]_{2}: 16^{2} 32^{1},[40,4]_{2}: 16^{10} 32^{5}$, and $[48,5]_{2}: 16^{15} 32^{14} 48^{1}$. We remark that the parameters are that small, that these codes can also be classified by hand, but since such an analysis is rather boring and extensive, we refrain from giving the details.

Note that if $C^{\prime}$ is an $\left[n^{\prime}, k^{\prime}\right]_{2}$ code with maximum weight $w^{\prime}$ and $C^{\prime \prime}$ is an $\left[n^{\prime \prime}, k^{\prime \prime}\right]_{2}$ code with maximum weight $w^{\prime \prime}$, than the direct sum of $C^{\prime}$ and $C^{\prime \prime}$ is an $\left[n^{\prime}+n^{\prime \prime}, k^{\prime}+k^{\prime \prime}\right]_{2}$ code with maximum weight $w^{\prime}+w^{\prime \prime}$. Thus, not many combinations are possible. So, let us write $C_{16}$ as a direct sum of subcodes $C_{1}, \ldots C_{r}$ from the above list. Due to the maximum weight of 48 we have $r \leq 3$.

First we show that $C$ satisfies $A_{16} \leq 93$. If one $C_{i}$ equals the $[32,6]_{2}$ code with weight distribution $0^{1} 16^{62} 32^{1}$, then we have $r \leq 2$ (due to the maximum weight) and the possible other component can only consist of non-zero codewords of weight 16. Thus, we have $A_{16} \leq 62+31=93$. If the $[32,6]_{2}$ code with weight distribution $0^{1} 16^{62} 32^{1}$ is not equal to one of the $C_{i}$, then we not that every other possibility for the $C_{i}$ contains at most 31 codewords of weight 16 so that we can also conclude $A_{16} \leq 93$.

From the MacWilliams identities we conclude that $A_{16} \geq 125$ for $k \geq 12$, see also the explicit cases listed above, which is a contradiction.

We remark that it is also possible to classify the unique projective $[64,11]_{2}$ code with non-zero weights in $\{16,32,48\}$ extending the approach of the proof of Proposition 2 .

Looking at the feasible cases listed above, we notice that all of them satisfy $w_{2}=$ $n / 2$, which corresponds to $\theta_{2}=0, \theta_{3}=-\theta_{1}$ for the eigenvalues of $s$-SWRGs, see Equation (11). While we conjecture that all integral solutions of Equation (1) satisfy this extra constraint for all $s \geq 5$, see Section 4, the condition $\theta_{1}+\theta_{2}+\theta_{3}=0$, i.e., $w_{1}+w_{2}+w_{3}=3 n(q-1) / q$, is sufficient for $s=3$. So, it is an interesting open question, if 3 -SWRGs obtained from the coset graph of the dual code of a projective three-weight code also have to satisfy this extra condition. To stimulate some research in this directions we propose:

Conjecture 1. Let $C$ be a projective $[n, k]_{2} 3$-weight code with weights satisfying $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$ and $w_{1}<w_{2}<w_{3}$. Then, $w_{2}=n$.

We remark that the MacWilliams identities, using the non-negativity and integrality constraints, are not sufficient to prove Conjecture 1. For the examples
$\left(n, w_{1}, w_{2}, w_{3}\right)=(58,24,31,32)$ and $(68,30,32,40)$ go in line with these conditions but are excluded with more sophisticated methods, see the details stated above. Given the results obtained so far we can state that Conjecture 1 is true for all $n<72$. The next case, where all non-negativity and integrality constraints for the $B_{i}$ are satisfied, is given by $\left(n, w_{1}, w_{2}, w_{3}\right)=(100,46,48,56)$. Here we have $k=7, A_{w_{1}}=32$, $A_{w_{2}}=145, A_{w_{3}}=78$, and $B_{3}=580$. However, we can apply Proposition 1 to conclude the non-existence of a binary linear code with these parameters. More precisely, Proposition 1.1, applied with $a=1$ and $T=224$, yields a contradiction since $T-2^{k}+2^{k-a}=96$ is not a power of two. In the following we list all tuples $\left(n, w_{1}, w_{2}, w_{3}, y=2^{k-2}, A_{1}, A_{2}, A_{3}, B_{3}\right)$ up to $n=256$, where all $B_{i}$ are integral and non-negative and also Proposition 1 does not yield a contradiction, i.e., the parameters of possible counter examples to Conjecture 1;

- (112, 50, 54, 64, 128, 48, 336, 127, 322)
- $(116,54,56,64,128,256,56,199,440)$
- $(120,54,62,64,64,72,120,63,1180)$
- $(124,56,64,66,64,72,119,64,1296)$
- ( $140,64,72,74,64,71,120,64,1840)$
- $(202,96,103,104,64,67,128,60,5396)$
- $(212,96,110,112,256,297,640,86,1860)$
- (212, 96, 110, 112, 512, 649, 896, 502, 1090)
- $(240,110,122,128,256,288,480,255,2450)$


### 3.2 Feasible parameters for projective ternary three-weight codes with $\mathrm{w}_{1}+\mathrm{w}_{2}+\mathrm{w}_{3}=2 \mathrm{n}$

In the subsequent tables we list the feasible parameters for projective ternary three-weight codes with $w_{1}+w_{2}+w_{3}=2 n$. For each length $n \leq 39$ we list the possible dimensions $k$ and weight vectors $w=\left[w_{1}, w_{2}, w_{3}\right]$. If a certain length or dimension is not listed, then they are excluded with the criteria mentioned at the beginning of Section 3. As extra information we also state the weight distribution in the form $e=\left[A_{w_{1}}, A_{w_{2}}, A_{w_{3}}\right]$. For some cases we can also state the number of isomorphism types of those codes. If not mentioned otherwise, the remaining classification results are obtained with the software package LinCode [3]. We also list those non-existence
results where more sophisticated methods are necessary. We mark those instances with the keyword "None" in the comment column of the subsequent tables and also give a reference to the used method. For $n=27, k=6$, and weight weight vector $w=[9,18,27]$ we have used an exhaustive enumeration using LinCode to exclude the existence of the corresponding code. It would be nice to also have a theoretical argument. For $n \geq 36$ four cases remain undecided, which we mark with the keyword "Open". For each feasible case we give one corresponding generator matrix as an example in Appendix A.

| $n=3$ |  |
| :--- | :--- |
| $k=3 \quad w=[1,2,3], e=[6,12,8] \quad 1$ isomorphism type |  |


| $n=6$ |  |
| :--- | :--- |
| $k=3 \quad w=[3,4,5], e=[8,6,12] \quad 1$ isomorphism type |  |


| $n=9$ |  |  |
| :--- | :--- | :--- |
| $k=3$ | $w=[5,6,7], e=[6,8,12]$ | 1 isomorphism type |
| $k=4$ | $w=[3,6,9], e=[6,66,8]$ | 1 isomorphism type |


| $n=18$ |  |  |
| :--- | :--- | :--- |
| $k=4$ | $w=[9,12,15], e=[8,60,12]$ | 4 isomorphism types |
| $k=5$ | $w=[9,12,15], e=[44,150,48]$ | 213 isomorphism types |
| $k=6$ | $w=[9,12,15], e=[152,420,156]$ | 52 isomorphism types |


| $n=27$ |  |  |
| :--- | :--- | :--- |
| $k=4$ | $w=[15,18,21], e=[6,62,12]$ | 2 isomorphism types |
| $k=5$ | $w=[15,18,21], e=[60,116,66]$ | $\geq 2695546$ isomorphism types |
| $k=6$ | $w=[15,18,21], e=[222,278,228]$ | 6 isomorphism types |
| $k=5$ | $w=[9,18,27], e=[6,228,8]$ | 1 isomorphism type |
| $k=6$ | $w=[9,18,27], e=[24,678,26]$ | None exhaustive enumeration |


| $n=36$ |  |  |
| :--- | :--- | :--- |
| $k=5$ | $w=[21,24,27], e=[72,90,80]$ |  |
| $k=6$ | $w=[21,24,27], e=[288,144,296]$ |  |
| $k=7$ | $w=[21,24,27], e=[936,306,944]$ | Open |


| $n=39$ |  |  |
| :--- | :--- | :--- |
| $k=5$ | $w=[21,27,30], e=[42,188,12]$ | Open |
| $k=6$ | $w=[21,27,30], e=[156,494,78]$ | Open |
| $k=7$ | $w=[21,27,30], e=[498,1412,276]$ | Open |

## 4 Plane curves given by the sum of all monomials of given degree

In this section, we present some results on rational (or integral) solutions of the equation

$$
\begin{equation*}
\sum_{h+i+j=s-2} \theta_{1}^{h} \theta_{2}^{i} \theta_{3}^{j}=0 \tag{12}
\end{equation*}
$$

which for pairwise distinct $\theta_{1}, \theta_{2}, \theta_{3}$ is equivalent to (11), compare (11). We restrict to the case that $s$ is odd. (When $s$ is even, then there are no nontrivial real solutions, so a fortiori no rational solutions.)

We denote by $C_{s-2}$ the plane projective curve defined by (12), and we will rename the variables $\theta_{1}, \theta_{2}, \theta_{3}$ in this section as $x, y, z$. As already mentioned, $C_{1}$ is the line $x+y+z=0$, and there are many rational points on this curve. In general, it is not hard to see that $C_{d}$ is smooth over $\mathbb{Q}$, so the curve is in particular geometrically irreducible and has genus $g\left(C_{d}\right)=(d-1)(d-2) / 2$.

For $d=3$ (corresponding to $s=5$ ), $C_{3}$ is a curve of genus 1 with some rational points, so it is an elliptic curve. A standard procedure (implemented, for example, in Magma [2]) produces an isomorphic curve in Weierstrass form. It turns out that $C_{3}$ is isomorphic to the curve with label $50 a 1$ in the Cremona database ( $50 . a 3$ in the LMFDB). In Cremona's tables or under the link above, one can check that this curve has exactly three rational points. This proves the following.

## Proposition 3.

$$
C_{3}(\mathbb{Q})=\{(1:-1: 0),(-1: 0: 1),(0: 1:-1)\} .
$$

The curve $C_{5}$ is a plane quintic of genus 6 . Note that there is an action of the symmetric group $S_{3}$ on three letters on every curve $C_{d}$ by permuting the coordinates. We can restrict this action to an action of the subgroup $A_{3}$ generated by a cyclic permutation. The quotient $C_{5}^{\prime}$ of $C_{5}$ by this action of $A_{3}$ is a curve of genus 2. We
can compute a singular plane model of $C_{5}^{\prime}$ by taking the image of $C_{5}$ under the map

$$
\mathbb{P}^{2} \rightarrow \mathbb{P}^{2}, \quad(x: y: z) \mapsto(x y z:(x y+y z+z x)(x+y+z):(x-y)(y-z)(z-y)) .
$$

A procedure implemented in Magma [2] then produces the hyperelliptic equation

$$
H_{5}: y^{2}=-3 x^{6}+8 x^{5}-28 x^{4}-30 x^{3}+40 x^{2}+16 x-15
$$

for $C_{5}^{\prime}$. A 2-descent as described in [22] (and implemented in Magma) shows that the Mordell-Weil rank of the Jacobian $J$ of $H_{5}$ is at most 1. Since one finds a point on $J$ of infinite order (with Mumford representation $\left(x^{2}-x+2,7 x+7\right)$ ), the rank is indeed 1. Using the Magma implementation of Chabauty's method combined with the Mordell-Weil sieve (see [7]), one quickly finds that the only rational point on this hyperelliptic curve is $(-1,0)$. This point must be the image of the three obvious rational points on $C_{5}$. Since any other rational point would have to map to a different point on $H_{5}$, this proves the following.

## Proposition 4.

$$
C_{5}(\mathbb{Q})=\{(1:-1: 0),(-1: 0: 1),(0: 1:-1)\} .
$$

Considering larger odd $d$, we can say the following. The quotient $C_{7}^{\prime \prime}$ of $C_{7}$ by the full $S_{3}$-action is an elliptic curve, which is isomorphic to the curve with label 10368 w 1 in the Cremona database (10368.j1 in the LMFDB). Unfortunately, this curve has rank 2 and therefore has infinitely many rational points. So we cannot use this approach to determine the set of rational points on $C_{7}$.

The quotient $C_{9}^{\prime \prime}$ of $C_{9}$ by the $S_{3}$-action is a smooth plane quartic curve, isomorphic to the curve with equation

$$
\begin{aligned}
& x^{4}+2 x^{3} y+x^{2} y^{2}-x y^{3}-y^{4}+2 x^{3} z-4 x^{2} y z-3 x y^{2} z \\
& \quad+2 y^{3} z+4 x^{2} z^{2}-3 x y z^{2}+3 y^{2} z^{2}+3 x z^{3}-4 y z^{3}+z^{4}=0 .
\end{aligned}
$$

A point search finds the two rational points ( $-5: 1: 4$ ) and ( $-1: 1: 0)$. The first is the image of the three obvious rational points on $C_{9}$, whereas the second point does not lift to a rational point on $C_{9}$. Let $J$ be the Jacobian of the curve. Then $\# J\left(\mathbb{F}_{3}\right)=3^{3}$ and $\# J\left(\mathbb{F}_{7}\right)=11 \cdot 31$, so $J(\mathbb{Q})$ has trivial torsion subgroup. Therefore, the point in $J(\mathbb{Q})$ given by the difference of the two rational points has infinite order. It might be possible to use the methods of [6] to determine the rank of $J(\mathbb{Q})$. If the
rank turns out to be $\leq 2$, then an application of Chabauty's method might show that the two known rational points are the only ones.

In any case, searching for rational points does not exhibit any other points than the obvious ones when $d \geq 3$ is odd. This leads to the following conjecture, which generalizes the results of Propositions 3 and 4 .

Conjecture 2. If $d \geq 3$ is odd, then

$$
C_{d}(\mathbb{Q})=\{(1:-1: 0),(-1: 0: 1),(0: 1:-1)\} .
$$

Equivalently, all solutions $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ in integers of (1) with $s \geq 5$ odd and $\theta_{1}>\theta_{2}>$ $\theta_{3}$ satisfy $\theta_{2}=0$ and $\theta_{3}=-\theta_{1}$.

## 5 Divisibility for binary linear codes with few weights

In this section we want to study the divisibility properties of the weights and the length of the binary linear codes with few weights. A first but very powerful tool are the MacWilliams identities. Since we do not want to assume that the codes are binary or projective, i.e., $B_{2} \neq 0$ is possible, we replace Equations (3)-(6) by

$$
\begin{align*}
\sum_{i>0} A_{i} & =q^{k}-1  \tag{13}\\
\sum_{i \geq 0} i A_{i} & =q^{k-1} n  \tag{14}\\
\sum_{i \geq 0} i^{2} A_{i} & =q^{k-1}\left(B_{2}+n(n+1) / 2\right)  \tag{15}\\
\sum_{i \geq 0} i^{3} A_{i} & =q^{k-2}\left(3\left(B_{2} n-B_{3}\right)+n^{2}(n+3) / 2\right) \tag{16}
\end{align*}
$$

for an $[n, k]_{q}$ code with $B_{1}=0$. Given a codeword $c$ of an $[n, k]_{q}$ code $C$ we denote by $\operatorname{supp}(c)$ the support of $c$, i.e., the set of coordinates $1 \leq i \leq n$ with non-zero entries $c_{i} \neq 0$.

We start with a few auxiliary results for codes with just one or two non-zero weights.

Lemma 1. (folklore)
If $C$ is an $[n, k]_{q}$ code, where all non-zero weights are equal to $w_{1}$, i.e., a 1 -weight code, then there exists an integer $u \geq 1$ such that $n=u \cdot \frac{q^{k}-1}{q-1}$ and $w_{1}=u \cdot q^{k-1}$. Moreover, $C$ is a u-fold replication of the $k$-dimensional simplex code over $\mathbb{F}_{q}$.

Proof. The first statement is a direct implication of the first two MacWilliams identities.

Lemma 2. ([10, Corollary 2])
Let $C$ be a projective 2-weight code over $\mathbb{F}_{q}$, where $q=p^{e}$ for some prime $p$. Then there exist suitable integers $u$ and $t$ with $u \geq 1, t \geq 0$ such that the weights are given by $w_{1}=u p^{t}$ and $w_{2}=(u+1) p^{t}$.

This structural result e.g. implies that not both weights of a binary projective 2 -weight code can be odd, which is also true for non-projective 2 -weight codes.

Lemma 3. (folklore)
Let $C$ be an $[n, k]_{2}$ code. By $C_{2}$ we denote the subcode of $C$ spanned be the codewords of even weight. The dimension of $C_{2}$ is either $k-1$ or $k$ and all codewords of $C_{2}$ have an even weight.

We also call $C_{2}$ the even-weight subcode of $C$.
Lemma 4. Let $C$ be an $[n, k]_{2} s$-weight code, where $s \geq 2$. Then, at most $s-1$ of the $s$ non-zero weights of $C$ can be odd.

Proof. It suffices to observe that the sum of two different codewords of odd weight is a non-zero codeword of even weight.

Lemma 5. Let $C$ be a projective $[n, k]_{2} 3$-weight code with weights $w_{1}, w_{2}$, and $w_{3}$. If $n$ is even, $w_{2}$ is odd and $w_{1}, w_{3}$ are even, then $w_{2}=n / 2$ and the even-weight subcode $C_{2}$ of $C$ has effective length $n$ and is a 2-fold replication of a projective $\left[\frac{n}{2}, k-1\right]_{2}$ 2 -weight code with weights $w_{1} / 2$ and $w_{3} / 2$.

Proof. We consider the even-weight subcode $C_{2}$ of $C$. From Lemma 3 we conclude that $C_{2}$ is an $\left[n^{\prime}, k-1\right]_{2} 2$-weight code with non-zero weights $w_{1}$ and $w_{3}$. Since $C$ is projective we have $n^{\prime} \in\{n-1, n\}$. Using the equations (13)-(14) gives

$$
\begin{align*}
A_{w_{1}}+A_{w_{3}} & =2 y-1  \tag{17}\\
w_{1} A_{w_{1}}+w_{3} A_{w_{3}} & =n^{\prime} y, \tag{18}
\end{align*}
$$

where $y=2^{k-2}$. Note that $A_{w_{1}}$ and $A_{w_{3}}$ are also the counts for codewords of weights $w_{1}$ and $w_{3}$ in $C$, respectively. Thus, we can plug in the equations (7) and (9) for $A_{w_{1}}$ and $A_{w_{3}}$, respectively. These give $w_{1} A_{w_{1}}+w_{3} A_{w_{3}}=2 y\left(n-w_{2}\right)$, so that $n^{\prime}=2\left(n-w_{2}\right)$.

If $n^{\prime}=n-1$, then $n-1=2 w_{2}$, which contradicts the assumption that $n$ is even. So, we have $n^{\prime}=n$ and $w_{2}=n / 2$. Solving Equation (15) gives $B_{2}=n / 2$ for $C_{2}$. Since $C$ is projective, $C_{2}$ has a maximum column multiplicity of 2 . So, effective length $n$ and $B_{2}=n / 2$ implies that all columns of a generator matrix of $C_{2}$ have multiplicity exactly 2 .

Corollary 1. Let $C$ be a projective $[n, k]_{2} 3$-weight code with weights $w_{1}$, $w_{2}$, and $w_{3}$ satisfying $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$. Then, $n \equiv 0(\bmod 4)$.

Proof. Since $w_{1}+w_{2}+w_{3}$ is an integer, $n$ has to be even, so that we assume $n \equiv 2$ $(\bmod 4)$. Since then $\frac{3 n}{2}=w_{1}+w_{2}+w_{3}$ is odd we can apply Lemma 4 to deduce that exactly one weight is odd. Assuming w.l.o.g. that $w_{2}$ is odd, we can apply Lemma 5 to deduce $w_{2}=n / 2$, which is odd. As an abbreviation we set $w_{1}=\frac{n}{2}-t$ and $w_{3}=\frac{n}{2}+t$ for some positive integer $t$. Since $w_{1}$ and $w_{3}$ are even $t$ has to be odd. Moreover, Lemma 5 says that $w_{3} / 2$ and $w_{1} / 2$ are the weights of a projective binary 2 -weight code. By Lemma 2 the weight difference $\frac{w_{3}}{2}-\frac{w_{1}}{2}=t$ has to be a power of 2 . Since $t$ is odd, we conclude $t=1$. With this Equation (18) reads

$$
\frac{n\left(4 y n+4-n^{2}\right)}{8}=n y .
$$

Solving for $n$ gives the three possibilities $n=0, n=2$, and $n=4 y-2$. Since each binary projective 3 -weight code has a length of at least 3 , we have $n=4 y-2$. Plugging in into Equation (7) for $A_{w_{1}}$ gives $A_{w_{1}}=0$ - a contradiction.

After Lemma 4 we have seen that a projective 3 -weight code can have two odd weights. What happens if we add the extra constraint $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$ ?

Lemma 6. Let $C$ be a projective $[n, k]_{2} 3$-weight code with weights satisfying $w_{1}+$ $w_{2}+w_{3}=\frac{3 n}{2}$. If $n>4$, then all weights are even. If $n \leq 4$, then $C$ is isomorphic to the unique $[n, 3]_{2}$ code 3 -weight code with weight enumerator $0^{1} 1^{1} 2^{3} 3^{3}$ and a generator matrix of $C$ is given by

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right) .
$$

Proof. By Lemma 4 at most two of the weights $w_{1}, w_{2}$, and $w_{3}$ are odd. If just one weight is odd, say $w_{2}$, then Lemma 5 gives $w_{2}=\frac{n}{2}$, which contradicts Corollary 1 . This leaves the case that exactly two weights, say $w_{1}$ and $w_{3}$, are odd. Let $A_{1}, A_{2}$, and $A_{3}$ denote the number of codewords in $C$ of weights $w_{1}, w_{2}$, and $w_{3}$, respectively. Let $C_{2}$ be the even-weight subcode of $C$. Since $C$ is projective, the columns of a
generator matrix of $C_{2}$ have multiplicity at most 2. Moreover, $C_{2}$ is an $\left[n^{\prime}, k-1\right]_{2}$ code, where $n^{\prime} \in\{n-1, n\}$, and the only occurring non-zero weight is $w_{2}$, i.e., $C_{2}$ is a 1-weight code. Thus, $w_{2}=2^{k-2}$ and $A_{2}=2^{k-1}-1$. From Lemma 1 we conclude $n^{\prime}=u \cdot\left(2^{k-1}-1\right)$ for some integer $1 \leq u \leq 2$. (The upper bound for $u$ follows from the maximum column multiplicity.)

Let us consider the case $u=2$ first. Here $n^{\prime}=2^{k}-2$ and the $C_{2}$ is the 2 -fold replication of the binary $(k-1)$-dimensional simplex codes, where all non-zero vectors in $\mathbb{F}_{2}^{k-1}$ occur exactly once (twice in the replication). Now consider the generator matrix extended by one extra row, which is a generator matrix of $C$. Since $C$ is projective every column occurs exactly once. Let $e_{k}$ denote the $k$-th unit vector in $\mathbb{F}_{2}^{k}$, i.e., the vector with $k-1$ zeroes and a single one on the last coordinate. Thus, the columns of a generator matrix of $C$ would consist either of all non-zero vectors of $\mathbb{F}_{2}^{k}$ or of all non-zero vectors of $\mathbb{F}_{2}^{k}$ except $e_{k}$. In both cases $C$ would be a 2 -weight code (with weights $2^{k-2}, 2^{k-1}-1$ or $2^{k-2}, 2^{k-1}$, respectively).

Since the case $u=2$ is excluded above, we have $n^{\prime}=2^{k-1}-1$ and $C_{2}$ is binary ( $k-1$ )-dimensional simplex code, which is projective. Since $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$ implies that $n$ is even we have $n^{\prime}=n-1$, i.e., $n=2^{k-1}$. Since $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$ and $w_{2}=\frac{n}{2}$, we can write $w_{1}=\frac{n}{2}-t$ and $w_{3}=\frac{n}{2}+t$ for some positive integer $t$. Using this and the abbreviation $y=2^{k-2}$ we can rewrite equations (7)-(9) to

$$
\begin{align*}
& A_{w_{1}}=\frac{y(y-t)}{2 t^{2}}  \tag{19}\\
& A_{w_{2}}=\frac{(4 y-1) t^{2}-y^{2}}{t^{2}}  \tag{20}\\
& A_{w_{3}}=\frac{y(y+t)}{2 t^{2}} \tag{21}
\end{align*}
$$

Now we use $A_{w_{2}}=2^{k-1}-1=2 y-1$ to conclude $y=2 t^{2}$ (or $y=0$, which is impossible). This gives $A_{w_{1}}=2 t^{2}-t, A_{w_{2}}=4 t^{2}-1, A_{w_{3}}=2 t^{2}+t, B_{3}=4 t^{4}-t^{2}$, $n=4 t^{2}, w_{1}=2 t^{2}-t, w_{2}=2 t^{2}$, and $w_{3}=2 t^{2}+t$. Since we have assumed $w_{1}$ and $w_{3}$ to be odd, only $t=1$ is possible, which gives $A_{w_{1}}=1, A_{w_{2}}=3, A_{w_{3}}=3, B_{3}=1$, $n=4, w_{1}=1, w_{2}=2, w_{3}=3, y=2$, and $k=3$. With respect of the classification of the corresponding codes up to isomorphism, we can choose a systematic generator matrix, i.e., the first three columns are the three unit vectors of $\mathbb{F}_{2}^{3}$ and due to $A_{w_{1}}=1$ the fourth column has to consist of two 1 s and a zero.

Proposition 5. Let $C$ be a projective $[n, k]_{2} 3$-weight code with weights satisfying $w_{1}+w_{2}+w_{3}=\frac{3 n}{2}$ and $w_{2}=\frac{n}{2}$. For each positive integer $r$ there exists an integer
$N(r)$ such that $n \geq N(r)$ implies that $2^{r}$ divides $n$ and that all three weights are divisible by $2^{r-1}$.

Proof. Let $t$ be a positive integer with $w_{1}=\frac{n}{2}-t$ and $w_{3}=\frac{n}{2}+t$. With this (and $y=2^{k-2}$ ) the equations (7)-(10) are equivalent to

$$
\begin{align*}
& A_{w_{1}}=\frac{n(4 y-n-2 t)}{8 t^{2}}  \tag{22}\\
& A_{w_{2}}=\frac{4 t^{2}(4 y-1)-n(4 y-n)}{4 t^{2}}  \tag{23}\\
& A_{w_{3}}=\frac{n(4 y-n+2 t)}{8 t^{2}} \tag{24}
\end{align*}
$$

and

$$
\begin{equation*}
3 B_{3}=\frac{n(n-2 t)(n+2 t)}{8 y} \tag{25}
\end{equation*}
$$

where we set $y=2^{k-2}$. Since $A_{w_{3}}-A_{w_{1}}=\frac{n}{2 t}$ the effective length $n$ has to be divisible by $2 t$. From $A_{2} \in \mathbb{N}$ we conclude that $t^{2}$ divides $n(4 y-n)$. So, if $p^{l}$ divides $t$ for some odd prime $p$, then $p^{2 l}$ has to divide $n$ since $y$ is a power of 2 . Now let us try to parameterize $t=2^{u} \cdot v$ and $n=2^{x} \cdot v^{2} \cdot z$ for odd positive integers $v, z$ and non-negative integers $u, x$. Plugging in and simplifying gives

$$
\begin{align*}
& A_{w_{1}}=\frac{z \cdot\left(2^{k-u-1}-2^{x-u-1} v^{2} z-v\right)}{2^{u+2-x}}  \tag{26}\\
& A_{w_{2}}=2^{2(x-u-1)} v^{2} z^{2}+2^{k}-2^{x+k-2 u-2} z-1  \tag{27}\\
& A_{w_{3}}=\frac{z \cdot\left(2^{k-u-1}-2^{x-u-1} v^{2} z+v\right)}{2^{u+2-x}}  \tag{28}\\
& 3 B_{3}=\frac{v^{4} z \cdot\left(2^{x-u-1} v z-1\right) \cdot\left(2^{x-u-1} v z+1\right)}{2^{k-x-2 u-1}} \tag{29}
\end{align*}
$$

where $u \leq x-1\left(t\right.$ divides $\left.\frac{n}{2}\right)$ and $x \leq k-1\left(n \leq 2^{k}-1\right.$ since $C$ is projective $)$.
If $k-x-2 u-1 \geq 1$ then $B_{3} \in \mathbb{N}$ and $v, z \equiv 1(\bmod 2)$ imply $u=x-1$. Since $\operatorname{gcd}(v z-1, v z+1)=2$, we have that $2^{k-3 u-3}$ either divides $v z-1$ or $v z+1$. So, we use the parameterization $v z=s \cdot\left(2^{k-3 u-3}\right)+\alpha$ for some positive integer $s$ and $\alpha \in\{-1,1\}$. With this $A_{w_{1}}>0$ gives

$$
2^{k-u-1}-v\left(s \cdot\left(2^{k-3 u-3}\right)+\alpha+1\right)>0,
$$

so that $v s<2^{2 u+2}$, i.e., $s v \leq 2^{2 u+2}-1$. Now $A_{w_{2}}>0$ gives $v^{2} z^{2}+2^{k}>2^{k-u-1} z$, which is equivalent to

$$
\begin{equation*}
s v(v z)^{2}+2^{k} s v>s 2^{k-u-1} v z=s^{2} 2^{2 k-4 u-4}+\alpha s 2^{k-u-1}>s^{2} 2^{2 k-4 u-4}-s 2^{k+2 u+2} . \tag{30}
\end{equation*}
$$

Since $s v \leq 2^{2 u+2}-1$ the left hand side is at most

$$
\begin{aligned}
& s^{2} 2^{2 k-4 u-4}-s^{2} 2^{2 k-6 u-6}+s \alpha 2^{k-u}-s \alpha 2^{k-3 u-2} \\
& +\alpha^{2} 2^{2 u+2}-\alpha^{2}+2^{k+2 u+2}-2^{k} \\
\leq & s^{2} 2^{2 k-4 u-4}-s^{2} 2^{2 k-6 u-6}+2 s 2^{k-u}+2^{2 u+2}+2^{k+2 u+2} \\
\leq & s^{2} 2^{2 k-4 u-4}-s^{2} 2^{2 k-6 u-6}+3 s 2^{k+2 u+2} .
\end{aligned}
$$

Thus

$$
\begin{equation*}
4 s \cdot 2^{k+2 u+2}>s^{2} 2^{2 k-6 u-6} \tag{31}
\end{equation*}
$$

has to be satisfied, so that $k \leq 8 u+9$ and

$$
\begin{equation*}
x \geq u \geq \frac{k-9}{8} \tag{32}
\end{equation*}
$$

Otherwise we have $k \leq x+2 u+1$. From $A_{1}>0$ we conclude $4 y-n>0$. Since $4 y-n$ is an integer and both $4 y$ and $n$ are divisible by $2^{x}$ we have $4 y-n \geq 2^{x}$. Now $A_{w_{2}}>0$ and Equation (23) imply

$$
4 v^{2} 2^{2 u} \cdot 2^{k}-2^{x} v^{2} z \cdot 2^{x}>0
$$

so that $k+2 u+2>2 x$, i.e.,

$$
\begin{equation*}
k \geq 2 x-2 u+1 \tag{33}
\end{equation*}
$$

Combined with $k \leq x+2 u+1$ we obtain $x \leq 4 u$ and $k \leq 6 u+1$, i.e.,

$$
\begin{equation*}
x \geq u \geq \frac{k-1}{6} . \tag{34}
\end{equation*}
$$

In both cases we can conclude $x \geq u \geq \frac{k-9}{8}$, so that the result follows from $n<2^{k}$.

Note that Lemma 6 and Corollary 1 show that we can take $N(2)=5$. (Trivially, we have $N(1)=1$.) $N(2)=5$. The unique $[48,6]_{2}$ code with weight distribution $0^{1} 22^{18} 24^{15} 26^{30}$ given by the generator matrix

$$
\left(\begin{array}{l}
100100010010111011001011111101000110011100111001 \\
100010001101011101100101111110000011001110111100 \\
100001010110101010110110111011100001000111011110 \\
100000101111010001011111011101110000100011001111 \\
110000010011101100101111101110011000110001100111 \\
101000001101110110010111110011001100111000110011
\end{array}\right)
$$

shows $N(3) \geq 49$.

## References

[1] K. Betsumiya and A. Munemasa, On triply even binary codes, Journal of the London Mathematical Society 86 (2012), no. 1, 1-16.
[2] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, vol. 24, 1997, Computational algebra and number theory (London, 1993), pp. 235-265. MR 1484478
[3] I. Bouyukliev, S. Bouyuklieva, and S. Kurz, Computer classification of linear codes, arXiv preprint 2002.07826 (2020).
[4] A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-regular graphs, SpringerVerlag, Berlin, 1989.
[5] A.E. Brouwer and W.H. Haemers, Spectra of graphs, Springer Science \& Business Media, 2012.
[6] N. Bruin, B. Poonen, and M. Stoll, Generalized explicit descent and its application to curves of genus 3, Forum of Mathematics. Sigma 4 (2016), e6, 80. MR 3482281
[7] N. Bruin and M. Stoll, The Mordell-Weil sieve: proving non-existence of rational points on curves, LMS Journal of Computation and Mathematics 13 (2010), 272306. MR 2685127
[8] R. Calderbank and W.M. Kantor, The geometry of two-weight codes, Bulletin of the London Mathematical Society 18 (1986), no. 2, 97-122.
[9] B. Courteau and J. Wolfmann, On triple-sum-sets and two or three weights codes, Discrete Mathematics 50 (1984), 179-191.
[10] Ph. Delsarte, Weights of linear codes and strongly regular normed spaces, Discrete Mathematics 3 (1972), no. 1-3, 47-64.
[11] S. Dodunekov, S. Guritman, and J. Simonis, Some new results on the minimum length of binary linear codes of dimension nine, IEEE Transactions on Information Theory 45 (1999), no. 7, 2543-2546.
[12] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, 2007, online available at http://www.codetables.de.
[13] D. Heinlein, T. Honold, M. Kiermaier, S. Kurz, and A. Wassermann, Projective divisible binary codes, The Tenth International Workshop on Coding and Cryptography 2017: WCC Proceedings, Saint-Petersburg, September 2017.
[14] D.B. Jaffe and D. Ruberman, A sextic surface cannot have 66 nodes, Journal of Algebraic Geometry 6 (1997), no. 1, 151-168.
[15] M. Kiermaier, S. Kurz, M. Shi, and P. Solé, Three-weight codes over rings and strongly walk regular graphs, arXiv preprint 1912.03892 (2019).
[16] A. Kohnert, Constructing two-weight codes with prescribed groups of automorphisms, Discrete Applied Mathematics 155 (2007), no. 11, 1451-1457.
[17] M. Krawtchouk, Sur une généralisation des polynomes d'Hermite, Comptes Rendus 189 (1929), no. 620-622, 5-3.
[18] F.J. MacWilliams and N.J.A. Sloane, The theory of error-correcting codes, Elsevier, 1977.
[19] V. Pless, Power moment identities on weight distributions in error correcting codes, Information and Control 6 (1963), no. 2, 147-152.
[20] M. Shi and P. Solé, Three-weight codes, triple sum sets, and strongly walk regular graphs, Designs, Codes and Cryptography 87 (2019), 2395-2404.
[21] J. Simonis, Restrictions on the weight distribution of binary linear codes imposed by the structure of Reed-Muller codes, IEEE Transactions on Information Theory 40 (1994), no. 1, 194-196.
[22] M. Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arithmetica 98 (2001), no. 3, 245-277. MR 1829626
[23] E.R. van Dam and G.R. Omidi, Strongly walk-regular graphs, Journal of Combinatorial Theory, Series A 120 (2013), no. 4, 803-810.
[24] H.N. Ward, Divisible codes, Archiv der Mathematik 36 (1981), no. 1, 485-494.

## A Generator matrix of projective three-weights codes satisfying $\mathrm{w}_{1}+\mathrm{w}_{2}+\mathrm{w}_{3}=3(\mathbf{q}-1) \mathbf{n} / \mathbf{q}$

In this appendix we list examples of generator matrices corresponding to the feasible cases listed in Section 3 .

- $q=2, n=4, k=3, w=[1,2,3]:\left(\begin{array}{l}1000 \\ 0101 \\ 0011\end{array}\right)$
- $q=2, n=8, k=4, w=[2,4,6]:\left(\begin{array}{c}01111011 \\ 0110101010 \\ 1010100 \\ 10110010\end{array}\right)$
- $q=2, n=8, k=5, w=[2,4,6]:\left(\begin{array}{l}11101110 \\ 0101000 \\ 0001000 \\ 1000000 \\ 1000011\end{array}\right)$
- $q=2, n=8, k=6, w=[2,4,6]:\left(\begin{array}{l}00110110 \\ 0001001 \\ 01010011 \\ 10010110 \\ 10100110 \\ 01111101\end{array}\right)$
- $q=2, n=12, k=5, w=[4,6,8]:\left(\begin{array}{c}100100111001 \\ 0101000111100 \\ 000000111101 \\ 000011010 \\ 000011101010\end{array}\right)$
- $q=2, n=12, k=6, w=[4,6,8]:\left(\begin{array}{l}10000000111 \\ 0100000110010 \\ 000000110100 \\ 000000111011 \\ 000000001100011 \\ 000001100011\end{array}\right)$
- $q=2, n=16, k=5, w=[6,8,10]:\left(\begin{array}{c}101111110001110000 \\ \text { 11110110101011001 } \\ 01111110101000 \\ \text { 011000101011111 } \\ 1000011111101011\end{array}\right)$

- $q=2, n=16, k=5, w=[4,8,12]:\left(\begin{array}{l}11000111010100100 \\ \text { 11001100001001011 } \\ \text { 1010101000110010 } \\ \text { 1101100001101001 } \\ 011111101100111\end{array}\right)$
- $q=2, n=16, k=6, w=[4,8,12]$ : $\qquad$
- $q=2, n=16, k=7, w=[4,8,12]$ :
- $q=2, n=20, k=5, w=[8,10,12]:\left(\begin{array}{l}1110111101001100110100 \\ 001010001010100000110 \\ \text { 1010010100011011001 } \\ 1110100010010100011 \\ 11010101010001000001\end{array}\right)$
- $q=2, n=24, k=5, w=[10,12,14]$ :
$\left(\begin{array}{l}111011100010100000010111 \\ 00101011011000011101011 \\ 000011011110001101010110 \\ 0101100111011010000001101 \\ 100000101111110110010001\end{array}\right)$


- $q=2, n=24, k=8, w=[8,12,16]$ :
- $q=2, n=24, k=9, w=[8,12,16]$ :
- $q=2, n=24, k=10, w=[8,12,16]$ :
- $q=2, n=24, k=11, w=[8,12,16]$ :
$\left(\begin{array}{l}100011011110010011111111 \\ 011100111001100010001101 \\ 001101100110110000010111 \\ 001010101101010101100101 \\ 011101110001000111010001 \\ 110111011011101100101110 \\ 010011010110010111010001 \\ 001111011111101100111001\end{array}\right)$
$\left(\begin{array}{l}011110011110001111001111 \\ 111101111000010111110101 \\ 001011101100101000011011 \\ 111110100101000000101101 \\ 001100110000101011110101 \\ 010101000001110001111011 \\ 001101010110000110101011 \\ 110000101110101110100001 \\ 001111111100001110110111\end{array}\right)$
$\left(\begin{array}{l}100000000001101010001011 \\ 010000000101001001000111 \\ 001000000001111000010101 \\ 000100000000011100111100 \\ 000010000101001100101010 \\ 000001000001001001111001 \\ 000000100001001010110110 \\ 000000010101000100110101 \\ 000000001101000111001001 \\ 000000000010000110111011\end{array}\right)$
$\left(\begin{array}{l}100000000000011011011010 \\ 010000000000010111000111 \\ 001000000000110010011101 \\ 000100000000110001110011 \\ 000010000010011001010101 \\ 000001000010011110001001 \\ 000000100000011000101111 \\ 000000010010001011100011 \\ 000000001010001010111100 \\ 000000000100001101110110 \\ 000000000001000110111011\end{array}\right)$



- $q=2, n=32, k=9, w=[12,16,20]$ : $\left(\begin{array}{l}10000000001011011001111000001010 \\ 01000000010000011101100001101110 \\ 00100000000010010101011011001101 \\ 00010000010010101011101111110110 \\ 00001000000001011011001011100011 \\ 00000100011111001101000000111000 \\ 00000010011000110000001110110011 \\ 00000001011011000010001100011110 \\ 00000000100110011110101000101001\end{array}\right)$

11111000001111110000001000000000 $\left(\begin{array}{l}00000111111111110000000100000000 \\ 00011000110000111111100010000000\end{array}\right.$ 01101000010011010011110001000000

- $q=2, n=32, k=10, w=[12,16,20]$ : 10110011011101000100100000100000 101100101110101001000110000010000 11010010110111000001010000001000 1101001011011100001010000001000 11100011011010100011000000000100 10011001000011101011010000000001
$\bullet q=2, n=32, k=6, w=[8,16,24]:\left(\begin{array}{l}01111011100101011111111101101111 \\ 010010000011110111001110001101001 \\ 010100110110000110001111010110011 \\ 10011101000100010011011010 \\ 01000110101011010100110101011010 \\ 10011000101110001110100111100010\end{array}\right)$
- $q=2, n=32, k=7, w=[8,16,24]$ :

11010100001101001100010111100101 01010011101101010011000101010110 11101110100111100010000010110100 11100110010010111100111001100000 01000011101110010000011101110110 01000011101110010000011101110110
10001000111111010101110011010000

10000001011111101000000101111110

- $q=2, n=32, k=8, w=[8,16,24]$ : 010000010100000101000000101000001 00010001000100011110111011101110 00001001000010011111011011110110 000010010000100111111101011111010 00000101000001011111101011111010 000000000111111111111111100000000
- $q=2, n=32, k=9, w=[8,16,24]$ :

- $q=2, n=40, k=6, w=[16,20,24]$ :
$\left(\begin{array}{l}0100111000101111011110010010110000010011 \\ 1010010100011111101111001001011000001001\end{array}\right.$ 1010010100011111101111001001011000001001 1101001010000111110111101100100100000101 0110100101001011110011110110010010000011 0011010010101101111001111011000001001001 1001100001011110111100110101100000100101
- $q=2, n=40, k=7, w=[16,20,24]$ :
$\left(\begin{array}{l}1000011111010101011111010011111001101010 \\ 0000100101101011101110100000011011011101\end{array}\right.$
0100000011110101110110010001001100101111
0001001001011101111101000000110100111011
1000011110101011011110101101111001110100
0010010000111011111010001001100011010111
0111100000000111011110000000000111111111
- $q=2, n=40, k=8, w=[16,20,24]$ :
$\binom{11111000000111101111000000111111010110}{01100110001010001101001111010101011000011}$ 1100010001110000101001111011110101000011 0001100110100010100101101111010111000011 0000011111000000111111000001000001011010 00001111100000111110000100001011010 0011001100100100101010011111101101000011
1111100000011111000000000001000001111001
- $q=2, n=40, k=9, w=[16,20,24]$ :
$\left(\begin{array}{l}0100010100011110100101111111111011001101 \\ 1101110000010010111011001100011011000101 \\ 0001001100100111100011111100111011111110 \\ 0000011101111101110100001100101000110110 \\ 1101001011110010001000001010000011100001 \\ 1000101000100000100110010000010010111111 \\ 1111110100101101100101001001011111010101 \\ 0010100010101001000010011111000010110100 \\ 0110010000100111001101001010010010110000\end{array}\right)$
- $q=2, n=48, k=6, w=[22,24,26]$ :
$\left(\begin{array}{l}100100010010111011001011111101000110011100111001 \\ 1000100011010111011001011111000001100111011100 \\ 1000010101101010101011010111011100001001110111110 \\ 10000010111100010111110110111000010011001111 \\ 11000001001110110010111110111001000110001100111 \\ 101000001101110110010111110011001100111000110011\end{array}\right)$
- $q=2, n=48, k=6, w=[20,24,28]$ :

11101110001110110100001010000010000110111100110
001011011110010000100111110011000100111011100100 111110001110011011000100001000001010011111001101 01011011010110000000111110111000000111111000100 111101010101110110000001010000010100110111010011 100101101011001000010111011101000010111101010010

- $q=2, n=48, k=7, w=[20,24,28]$ :
${ }^{1000101111011001010111111000000010001010100111101}$ 001010110111010101110100011001000101000111110001 000101111011001010111110001000100010100101111010 010100101111100011101000111010000010001111100110 010001111110010110101011100000001000101110011110 101000011111001111010001110100000100010111001101 0000000000001110000001111111111111111111111100
- $q=2, n=48, k=8, w=[20,24,28]$ :
$\left(\begin{array}{l}111111111000000000111111111100000000000001000000 \\ 000000000111111111111111111100000000000000100000 \\ 000011111000011111000001111111111111000000010000 \\ 001100111001100111001110001100001111111100001000 \\ 010101001010101001010000110101110011000110000100 \\ 100101010111111110010010011010010101011010000010 \\ 111101010001111011100110111000100110101000000001 \\ 101001000000010011001010111001011011011110000000\end{array}\right)$
- $q=2, n=48, k=7, w=[16,24,32]$ :
 100111000010110000001001010101111011101100001111 110101101001000111010000011011111110001100010001 111010000011011111110001100110101101001000001010 100010000111110101001100010000111110101001101101
111100111100111100111100111100111100111100011110
- $q=2, n=48, k=8, w=[16,24,32]$ :
/ 100111101111101111110001110001110111101011101100 101000110000110000010010010010001000101100110000 001010011001011001001110001110001010001011101111 001010101010010101111101000010100101111010011001 100111111010111010100100100100000111101011100000 111001010001010001110110110110001001110111010000 001010011001011001110001110001111010001011101100
00111101001110110001000010111100000110110101001
- $q=2, n=48, k=9, w=[16,24,32]$ :
$\binom{110110000011101101100000111010100001011000101111}{100111011100100110001000110110010001101111001010}$ 110000000011110011111111000001101000011011110010 100100011100101001000111001011111101001110100100 011001010101101001101010100100111101111001000001 011100011110100011000111101010100001011000101111 110011001100110011001100110010010101010101010110 101011011100011010110111000100000011101001110100
111011101011111110111010111101011100010110001011
- $q=2, n=48, k=10, w=[16,24,32]$ :
$\left(\begin{array}{l}100100110000001011001110110100110001111101101100 \\ 000110000011010001000000101110111111110011100111 \\ 110001010110011100100101011100100101011011000101 \\ 000001101100110001101010001110010101001111111001 \\ 011100100101100100111010100100111010010101110010 \\ 111110000111001100010010001100010010011111111000 \\ 11111110000110001100010010001100010000011111110 \\ 011110011011101000111001010111000110010010000110 \\ 001011000001111001011011111001011011000100101100 \\ 101010011001010111101011101000010100011001010110\end{array}\right)$

101010011001010111101011101000010100011001010110 /

- $q=2, n=48, k=11, w=[16,24,32]$ :

100110100101001011010101010101011010100110100110 000110110011001011010101010101011010011001011001 000000001111000000000000000000111111111111000000 010011100000000000000011000011001111000000110011 001111000000000110000011000000001111110011000000 000000000000100111000000000000110011110011111100 000000000000011110000000000000001111111100110011 000000000000000000110011000000111100110011110011 000000000000000000001111000000001111001111111100 000000000000000000000000110011110011001111110011
000000000000000000000000001111001111110011001111

- $q=2, n=48, k=12, w=[16,24,32]$ :
$\left(\begin{array}{l}100101000010110010101011001011001101001010110111 \\ 010011000010110010101011001101010010110010101111 \\ 001111000000000000000001100110000111100111100000 \\ 000000100001100000000110000001111000000111111001 \\ 000000010001100000000111100111100110000001100010 \\ 000000001001110000000111100110011111111111111000 \\ 000000000111100000000110000001111111111000000000 \\ 000000000000001000000110000111100111100110011100 \\ 000000000000000110000111100111111000011000011000 \\ 00000000000000000110011110000110000111111100000 \\ 000000000000000000011001100001111111100001111000 \\ 00000000000000000000000001111111110011111100000\end{array}\right)$
- $q=2, n=52, k=6, w=[24,26,28]$ :
$\binom{0110011010101010101101010010101001010101010101100000}{1110110110000110011011001001100100110011001100010000}$ 11011100011000011110001110000111100001111000011001000 0011110000011111111000000111111100000000111111000100 0000001111111111111000000000000011111111111111000010 0000000000000000000111111111111111111111111111000001
- $q=2, n=56, k=6, w=[26,28,30]$ :

01011001100101011111011100100001001101100011111010000100 10001111101110110100110100101000001001111001001111101010 01110111001001000011000111011111010001111001011111010000 10011111000011000111100111111000111100000111000100100001 11011010110001000100011000011100010110111101010010111111 00000110101101000110100101000110011111110000110000100111

- $q=2, n=56, k=7, w=[24,28,32]$ :

$$
\left(\begin{array}{l}
11001100110101111111011001000101111101000001100011011101 \\
01100111011010011111101100101010111010100010110001101110 \\
10110010101101101111100110011101011001010001011000110111 \\
11011001010110110111110011001110101000101000101101011011 \\
01101100101011111011101001101111010000010100010111101101 \\
00110111010101111101100100110111101100001010001011110110 \\
10011011101010111110110010011011110010000111000100111011
\end{array}\right)
$$

- $q=2, n=56, k=8, w=[24,28,32]$ :
( 00111011101011010100101010111101100110111001010100001111 01110110010110111001010001111011001101110010101100011110 11101100101101100010100111110110011011100101011000111100 11011001011011010101001011101101110111001010110001111000 10110011110110101010010011011011101110010101100111110000 01100111101101010100100110110111011100111011001011100001 11001110011010111001001001101111111001100110010111000011
1001110111010110001001011101110110011011100101010000111
- $q=2, n=56, k=9, w=[24,28,32]$ :
$\left(\begin{array}{l}100000000111110000001111111100000011111111000011111111111 \\ 01000010011100010000010110010100110111011110010100001010 ~\end{array}\right.$ 01000010011100010000010110010100110111011110010100001010 0010001001011001110000010100111111010101001010010001100 00001010101010000110011000100101110110111001000100110010 000010101010100011001100010010110001000100010 000011011101001011101100000011110000001110001111100 00000000000000111111111111110000000000000011111111111111
00000000000000000000000000001111111111111111111111111111
- $q=2, n=64, k=7, w=[28,32,36]$ :
( 1010111010110001100001101011011110110111100111100110101000101001 0011000011000101110101110110111111101100100010100011100111100111 0111110001001111011001100101001001100110001001100101000001110111 0001110111000100110010001000100110111101001100100000001110111000 1100000111011000010011000010101011110010000100110011100000111010 0000101101001100010001110111100010010100111011100001111010010111
1111100010001110110011011010000011001110010011001000000011101111
- $q=2, n=64, k=8, w=[28,32,36]$ :

> 1000000000111101101011011100000010010011001110100110001100100011 0100000000100011011110110010000011011010101001110101001010110010 0010000001010111010010111101000111011000000111010000110000111100 000100000010101110100101111010001110110000001110100001100001110 0000100001010011001001001011010111000011010010011110011001101010 0000010100001111111001101001110010100111101001000000010110000011 0000001101010111001100001000101001011001001110110111100011111011 0000000011110110101101110000001001001100111010011000110010001101

- $q=2, n=64, k=9, w=[28,32,36]$ :
$\binom{1000000000111101101011011100000010010011001110100110001100100011}{0100000000100011011110110010000011011010101001110101001010110010}$ 0100000000100011011110110010000011011010101001110101001010110010 001000000010110000010000010100001111110011010011100101001111011 0001000000101011101001011110100011101100000011101000011000011110 000010000010100011100110100111001010011101001000000010110000011

 0000000001111011010110111000000100100110011101001100011001000111
- $q=2, n=64, k=7, w=[24,32,40]$ :
( 0100111111000111001110101011100000010111100001010100101001011100 0010111101111100111000100110011001001110100100010010100101110010 1010010111110011100110010101110100001011110000001010110100001110 010101101111001110011001000111010001101101000000101101010100110 1001011110101110011101010011001000101111000010001001110010111000 1111100000000000111111111100000111111111100000000000100000111111 1111100000000000000000000011111000001111111111111111100000111110
- $q=2, n=64, k=8, w=[24,32,40]$ :
( 1011111101010110101001010001010100011100001111101000011000001101 0111111110101001010101100000101100011100001111100100010100001101 0011111111111111111100110001100011111110001000001101011100011101 1100011111111100000000001111100000011100001000111110100011110101 1110100110010010010000001100011101101111100011100010110010010111 1111010001001001001000000110011110110110110101100010110001010111 1101101000100100100100001010011111011011010110100010110000110111 0011100000000011111111001111111000000010001111100010001111100110
- $q=2, n=64, k=9, w=[24,32,40]$ :
$\left(\begin{array}{l}1000110111000011000011000010010100111011001011011110011010011011 \\ 0100000100001100111100111101100111110111111011010000110000110000 ~\end{array}\right.$ 0100000100001100111100111101100111110111111011010000110000110000 000001000001001111001111011011111011111011101100001000011000010 1011001011001000101000100110111001101001101101100001110101110100 101100101100100101000100110111001101001101101100110101010 0000011101110010111111011001111101010110000101001011000010011000 0001101100001001100100001001110001001010010101001010001011010000
1111101001010011010101100001011001100100001001111100000011101110 )
- $q=2, n=64, k=10, w=[24,32,40]$ :
( 100000001000011001000000110000100110010001010101101110000011011001 0010000111011100110001101000000001001110101001100000011000010010 0001000011001100111010000100100110000001010110000100110101110000 0000100010010010000011001001100001000000011100010011010011101111 0000010110000010001110011010100101001111011100110111111110000001
 0000001100000010110110011011010100010010100100000101101110000010 0000000000111010001100001010100000100001100010101001011001101111 0000000000000001111111111111110000000111111111111111100000000010
- $q=2, n=64, k=11, w=[24,32,40]$ :
/ 0000011010000001000110111110001110100101111000110010010000000000 0111001100100010000011101000001011100100101101101010001000000000 0000101110101011000110100111100101110100100101000000000100000000 0111101110001010001100101011001010000101010011010000000010000000 1001110100000110100000011010000101011011000100111001100001000000 1101010010011110010001000110111100000011001100001000100000100000 010101000111110001011000001110100001000000011000111100000010000 0011001111111110000111000000010010111000111110111111100000001000 0000111111111110000000111111110001111000000001111111100000000100 0000000000000001111111111111110000000111111111111111100000000010 0000000000000000000000000000001111111111111111111111100000000001
- $q=2, n=64, k=12, w=[24,32,40]$ :
( 0000110001101110000100100100100011011000011011011110100000000000 1011110000100110010000001100010000111101001110111000010000000000 1010110001001010110010000000101111110000001100101011001000000000 1111100000001100000010100100111101000011011011101000000100000000 0111000000001010110110001100011000000110111100110011000010000000 0000000100001001111110011010010101001101010101010101000001000000 0101011111010000010001111001110011000100100000101100000000100000 0011010011001000001111111001111111011111010011011100000000010000 0000101111000110000000000111101111000011001111000011000000001000 0000011111000001111111111111100000111111000000111111000000000100 0000000000111111111111111111100000000000111111111111000000000010 0000000000000000000000000000011111111111111111111111000000000001
- $q=2, n=64, k=7, w=[16,32,48]$ :
( 1110001110001101110111000101111010000010001011110100001100100110 0000101111010000111110100101001111100101101101100000110011100010 0010111101001001011011001011000001111100001001111100101110001001 011110100001111000011100011110010110100101000011010110001110001
 0111000111000100010001111101000010111011101010000101111010010011
111101000010001111001010111100101010110100000110101100011100010
- $q=2, n=64, k=8, w=[16,32,48]$ :
( 1000110100011000110100010111001011100101111111000110111001010000 1101100001001100110101011110000010101100110010111001000110111001 1111011000010010001100101100111011110000010010101110010001111001 0011110110000101011101110000010101100111011010110100110100001001 0011110110000101011100101011001110111100001010110100110100000011 1000010011110110111000111011110000010101101011101000101000101001 1000010011110101000111010110011101111000000010010111101000110101 0111101100001001000111100000101011001110110100010111101000110011
- $q=2, n=64, k=9, w=[16,32,48]$ :
$\binom{0101011110000011010000110100011010001101001110111011100010011101}{0110111110010000000011011011011011011011000101101000111101010000 ~}$ 0110111110010000000011011011011011011011000101101000111101010000 1010101010100100011101000110100011010001101010111100101011010101 1010101010100001101100011010001101000110101010111100101011010101 0101010011100100011101000110100011010001100011111010111001000111 1100010100110110100010110011101111000001101111010100010110000101 1111110010011100101111001011100101110010010010000110100100100100 0001110011011000110111100000101011001110111110001101011000010001 0000000110110111001101110010111001011100110110000001101101101100 )
- $q=2, n=64, k=10, w=[16,32,48]$ :
( 0010011111000000110010110100111010101001010101111111110000011000 1001000110100111000010000111101011001111000111011101101001100001 1110001110010011001001010000011111011111010001001000011011011010
 0101010010100000111011001001001110101100010011101011010111100011
 1010100110001111000111110101110001010100001100010110011100011100 1111110010110110010011110000100100100001111001001100101101001001
1111110101101001001011100001010010000011110100101101011010100100
- $q=2, n=64, k=11, w=[16,32,48]$ :

| 00001000011111110011001100110011000000000000000000000000000000000000 000001111101010101010101010101010000000000000000000000000000000000 00000000000000000000000000000000001110000111100001111111111000000000 0000000000000000000000000000000000001111111111000011110000110000 |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

- $q=3, n=3, k=3, w=[1,2,3]:\left(\begin{array}{l}001 \\ 112 \\ 210\end{array}\right)$
- $q=3, n=6, k=3, w=[3,4,5]:\left(\begin{array}{l}111101 \\ 121011 \\ 100122\end{array}\right)$
- $q=3, n=9, k=3, w=[5,6,7]:\left(\begin{array}{l}011011001 \\ 110002111 \\ 100121202\end{array}\right)$
- $q=3, n=9, k=4, w=[3,6,9]:\left(\begin{array}{l}100111110 \\ 010201211 \\ 22121111 \\ 112112221\end{array}\right)$
- $q=3, n=18, k=4, w=[9,12,15]:\left(\begin{array}{l}111111110000001000 \\ 00111222111100100 \\ 120120120112210000 \\ 002000221120110001\end{array}\right)$
- $q=3, n=18, k=5, w=[9,12,15]:\left(\begin{array}{l}111111110000010000 \\ 00001121111001000 \\ 011201010012100100 \\ 111222000122000000 \\ 012021121200000001\end{array}\right)$
- $q=3, n=18, k=6, w=[9,12,15]:\left(\begin{array}{l}110011111100100000 \\ 001111122200010000 \\ 01020120111001000 \\ 12112212202000100 \\ 220001011221000010 \\ 122011022001000001\end{array}\right)$
- $q=3, n=27, k=4, w=[15,18,21]:\left(\begin{array}{l}1111111111111110000000001000 \\ 000011111222221111111000100 \\ 11220012001200122210010 \\ 120212001120211202012120001\end{array}\right)$
- $q=3, n=27, k=5, w=[15,18,21]:\left(\begin{array}{l}011011001111111111111110101 \\ 121000110120011220111111 \\ 21010101200001010120222102222 \\ 10011010221111221112112020 \\ 002201101200222211110001221\end{array}\right)$
- $q=3, n=27, k=6, w=[15,18,21]$ :
$\left(\begin{array}{c}000111110100110011111111101 \\ 0011210101001100122112121011 \\ 012200010011001212122221101 \\ 1220001001001211021221011 \\ 220002001101121100211222101 \\ 200021011010211002111212011 \\ ]\end{array}\right)$
- $q=3, n=27, k=5, w=[9,18,27]$ :
$\left(\begin{array}{l}111111110000000000000010000 \\ 00000000111111100000000000 \\ 001112200011122211211111000100 \\ 120120121201201201122100010 \\ 121202011212020120112200001\end{array}\right)$
- $q=3, n=36, k=5, w=[21,24,27]$ :

$\bullet q=3, n=36, k=6, w=[21,24,27]:\left(\begin{array}{c}101011111100001011001101001011101101 \\ 110102021101001011001101001021021010 \\ 2110200021111100200010011010010121021 \\ 0211012002110120020100101102012202 \\ 10212010021202001010010210101120 \\ 01022121002202021001001001122010012012\end{array}\right)$


[^0]:    *Department of Mathematics, University of Bayreuth, Bayreuth, Germany
    ${ }^{\dagger}$ I2M, CNRS, Aix-Marseille Univ, Centrale Marseille, Marseille, France

