
Multi-View Reconstruction of Unknown Objects in
the Presence of Known Occlusions

Stefan KUHN and Dominik HENRICH
Lehrstuhl für Angewandte Informatik III (Robotik und Eingebettete Systeme)

Universität Bayreuth, D-95440 Bayreuth, Germany
{Stefan.Kuhn | Dominik.Henrich}@uni-bayreuth.de

Abstract—We present a general method for reconstructing
unknown objects (e.g. humans) within a known environment (e.g.
tables, racks, robots) which usually has occlusions. These
occlusions have to be considered since parts of the unknown
objects might be hidden in some or even all camera views. Besides
grayscale and color cameras also depth sensors are considered. In
order to avoid cluttered reconstructions, plausibility checks are
used to eliminate reconstruction artifacts which actually do not
contain any unknown object. One application is a
supervision/surveillance system for safe human/robot-coexistence
and –cooperation. Experiments for a voxel-based implementation
are given.

Keywords – Inferred Visual Hull; Multi-View Reconstruction;
Occlusions; Visibility; Static Environment; Dynamic Environment;
Computer Vision; Color cameras; Depth sensors; 3D Scene
Analysis

I. INTRODUCTION

The visual hull [14] of an object is defined as the maximal
silhouette-consistent volume in the limit of an infinite number
of cameras. The visual hull for a finite number of cameras is
called inferred visual hull [17]. It can be described as
intersection of the general cones obtained by the back
projection of the object’s silhouettes of all camera images in a
calibrated camera network [16]. If the object is completely
visible in each camera, the inferred visual hull always contains
the overall object. Several methods for constructing the inferred
visual hull have been published in the past. Therefore different
representations like voxels [4], [13], [18] or polyhedrons [15],
[7] have been used. The main focus has been efficiency,
accuracy and robustness.

Figure 1 Illustration of a scene with two cameras and an object (a), the

erroneous inferred visual hull construction, when only considering the object
cones (b) and the correct visual hull, using the complement of the free

space [7].

In the presence of occlusions, the silhouette might be
erroneous in some cameras, such that the inferred visual hull
does not contain the overall object. The same problem arises
when the object resides partly outside the camera frustum

(Figure 1b). Background subtraction algorithms (e.g. [5] and
[8]) will produce such erroneous silhouettes if the object is
partly or completely occluded. To overcome this problem,
occlusions must be considered. Recently, some approaches
have been published, which deal with two different kinds of
occlusion problems.

Figure 2 Illustration of the occlusions in a scene with one camera using an
occlusion map (a) and (b) and the resulting detection capabillities (d) and (e).

In Figure (c) the visibility depth of the known environment is utilized as
described in our approach. The detection capability of an object is illustrated

in (f). The region outside the camera frustum is additionaly interpreted as
occlusion. All light gray, light blue and light red regions may contain objects

and have to be interpreted as reconstruction here.

The first occlusion problem is caused by the camera
frustum. If the object resides outside this frustum in at least one
camera, the inferred visual hull will not contain the overall
object. This problem has been tackled by [7]. In principle, they
do not calculate the intersection of object cones, but the
complement of the fused free space (Figure 1).

The second occlusion problem is caused by an environment
which might occlude the objects to be reconstructed in some
camera views. In [3] and [12] dynamic known objects like
robots are considered. A masking of these in the images is
proposed. Later this method was applied to static occluding
objects [9], [13]. While [3] calculates the occlusion map online
based on the known geometry and configuration of a robot, [9]
determines a static occlusion map by a learning method.
Having static objects, this occlusion map has the disadvantage,
that a whole cone is classified as occlusion, although the

camera could see up to the occluding objects surface (Figure 2
a, b and d, e). Using several cameras, as described in [10] and
[11], this effectively results in an inferred visual hull of the
static objects (Figure 3 a). In the case of several static objects,
also pseudo objects may arise (Figure 3 b). There is neither
information about the geometry of the static objects nor about
the free space within the inferred visual hulls. Since unknown
objects which finally have to be reconstructed may reside
within these static object hulls, the inferred visual hulls have to
be added to the reconstruction. The observation of a scene
containing active objects can reveal the inferred visual hulls of
the occluding objects. [11] provides a probability of an
occlusion for a voxel in a given view, while [10] reconstructs
the occluding object. As said above – the best approximation of
a static object is its inferred visual hull, resulting in the same
issue as the pure occlusion maps.

Figure 3 Illustration of the inferred visual hull of the learned static

environment. We do not have information about the actual geometry and the
free space within the inferred visual hull. Thus, we have to assume unknown

objects which have to be reconstructed within this inferred visual hull.
Furthermore, we do not know the actual depth a camera can see at a specified

pixel (b).

Compared to the learning approach of the static occluding
objects, we consider here the occlusion problem from a slightly
different view. We already know the complete environment
containing static objects (e.g. tables, racks, etc.) and dynamic
objects (e.g. robots) except the unknown dynamic objects we
want to reconstruct (e.g. human) (Figure 2 c, f). Thus, the
question is how to obtain the best reconstruction of these
unknown objects using different kinds of sensors (color
cameras, depth sensors), different kinds of objects (known
static and dynamic) and different kinds of background
subtraction approaches. Furthermore, what limitations exist
having these different conditions and how to eliminate
reconstruction artifacts which actually do not contain any
object?

We provide an analysis of the above questions and a
general model of the occlusions and visibility. Furthermore, we
present a voxel-based algorithm and experiments regarding
computation times.

One main application are surveillance systems for safe
human/robot coexistence and cooperation. The combination of
the strength of both human and robot promises a higher
efficiency and flexibility in production. In the past, humans and
robots were strictly separated by fences and other safety
equipment. Recently, engineer standards were extended for
allowing vision systems under certain conditions. In short, the
human has to be safely detected by the vision system and the
robot speed is restricted.

The remainder of the paper is organized as follows. In
Section II, the method to cope with occlusions is described in a
general fashion. A multitude of alternatives is discussed, e.g.
the use of depth images instead of usual color images. In
Section III, a reconstruction algorithm is described and
experiments in Section IV provide results regarding
computation times. Section V closes with a conclusion and an
outlook to future investigations.

II. OCCLUSIONS AND V ISIBILITY

This section comprises a theoretical look at the problem of
occlusions and visibility in a multi-camera setup having
different pre-conditions, and the possibilities to perform a
reconstruction of the objects using plausibility checks to revise
pseudo objects, i.e. reconstruction artifacts which actually do
not contain an object. In short, the aim is to reconstruct as
accurate as possible the unknown but detectable parts (e.g.
humans) within a known environment (e.g. tables, robot),
which typically has occlusions.

Figure 4 Illustration of the differences regarding visibility and occlusions

using color or grayscale cameras with common change detection methods (a),
extended change detection methods (b), or using a depth camera, with a

suitable change detection method (c). Nomenclature: Ci: Camera i; Fi: Free in
camera i; S: Static known object; D: Dynamic known object; U: Unknown
object; Oi

K: Known occlusion in i; Oi
U: Unknown occlusion in i; Bi

F: Free
boundary in i; Bi

O: Occlusion boundary in i; Bi
U: Unknown boundary in i.

At first, the types of objects that are contained by surveyed
scenes are described in Subsection A. Two different kinds of
cameras are used to detect the introduced type of objects which
is referred as unknown (e.g. humans and objects with initial
unknown position, orientation, etc.). The camera types, its
detection capabilities and the different occlusions caused by the
different objects are detailed in Subsection B. The
simultaneous use of several cameras with different perspectives
onto the surveyed scene which results in a cluttered
reconstruction is described in Subsection C. The plausibility
checks to revise this cluttered reconstruction are discussed in
Subsection D.

A. Object Types

The surveyed scene contains static and dynamic objects.
Static objects S are racks, tables etc. The geometry, position
and the appearance of those objects are known and do not
change over the time (apart from possibly occurring shadows
and from illumination changes caused by the dynamic objects).
Dynamic objects are robots, conveyor belts, humans etc. This
group must be divided into two subgroups. The first subgroup
contains known dynamic objects D, with changing geometry,
position and the appearance but in a known manner. The robots
and conveyor belts pertain to this subgroup. The second

subgroup contains dynamic objects U with unknown changing
geometry, position and appearance, e.g. humans. In the
majority of cases approximate information about size, volume
or similar can be provided. TABLE I. summarizes the
identified object types. Note that static unknown objects do not
exist. The free space F of a surveyed scene does not contain
any known object but may contain unknown objects. Figure 4
a-c illustrate the introduced object types. In summary, the
following three equations hold true:

S ∪ D ∪ F = En, with En: Euclidian Space

S ∩ D = S ∩ F = D ∩ F = ∅ and U ⊆ F

TABLE I. OBJECT TYPES AND EXAMPLES WITH ABBREVIATION

 Static Dynamic

Known
Tables, Racks, …
(Abbr.: S)

Robots, Conveyor belts, …
(Abbr.: D)

Unknown ----
Humans, …
(Abbr.: U)

B. Camera Types and Detection Capabilities

A number of N calibrated cameras with focal points Ci ∈
En, i ∈ {1, …, N} and a frustum Li = {x ∈ En| x is projected via
Ci onto the image plane of camera i}, are used to detect and
finally reconstruct the unknown objects which reside in-
between the known objects as accurate as possible. Therefore,
two types of cameras are considered:

• Color and Grayscale cameras: The images of these
sensors contain color and intensity information for
each pixel, respectively.

• Depth cameras: The images contain depth information
for each pixel (for example stereo vision or time-of-
flight cameras).

One fundamental characteristic of these sensors is that they
can only see up to the surface of the nearest opaque object per
viewing direction (e.g. pixel center direction). Thus, occlusions
always occur at the rear side of an opaque object. Moreover,
the visibility of these sensors is limited by the frustum Li.
Outside this frustum, the sensor is not able to see anything.
Thus, these parts need to be interpreted as occlusions as well.

Now, the terms visibility and occlusions have to be
introduced and detailed (Figure 4). The visibility Vi of a camera
i is the region of the free space F where a camera is able to
detect unknown objects. The known occlusion OK

i of a camera i
is the region of the free space F where a camera can not detect
unknown objects due to occlusions caused by known objects.
Thus, it can be stated that OK

i ∩ Vi = ∅ and OK
i ∪ Vi = F for

each camera i. The unknown occlusion OU
i of a camera i is the

region of the visible space Vi where an unknown object has to
be assumed, due to the evaluation of a camera image by a
background subtraction method. The free space seen by camera
i Fi is defined by Fi = Vi\OU

i. It can be stated, that OK
i ∩ OU

i

= OK
i ∩ Fi

 = OU
i
 ∩ Fi

 = ∅ and OK
i ∪ OU

i ∪ Fi = F for
each camera i. The concrete structures of the sets Vi, OK

i, OU
i

depend directly on the used camera type with its detection
capabilities and are described later.

In order to describe our formalism, we use the concepts of
rays and segments in the Euclidean Space. A ray(S, E) and a
segm(S, E) are point sets and are defined by

},,|)({:),(ray 0
nEStSEtSES ER ∈∈−⋅+= +

}, ,10|)({:),(segm nESttSEtSES ER ∈≤≤∧∈−⋅+=

Furthermore, a distance function dist(P, Q), with P, Q ∈ En
exists, since the Euclidean Space is a metric space. Having the
visibility and the occlusions, sets containing the most distant
visible points and the nearest occluded points (per viewing
direction) can be specified by

)},(dist{max),(dist|{
),(ray

yCxCVxB i

xCVy

iii
F ii ∩∈

=∈=

)},(dist{min),(dist|{
),(ray

yCxCOxB i

xCOy

ii
K

i
O ii

K ∩∈
=∈=

)},(dist{min),(dist|{
),(ray

yCxCOxB i

xCOy

ii
U

i
U ii

U ∩∈
=∈=

Dependent on the camera type, different change detection
methods have to be used to detect the unknown objects. In the
following, the concrete visibility and occlusions of a camera i
depending on its type and a suitable change detection method
are formalized. Here, we distinguish between color/grayscale
cameras in conjunction with a conventional background
subtraction (1) and an improved background subtraction
method (2) and depth images (3).

1) Basic Color/Grayscale Images
Using color or grayscale cameras, ordinary change

detection methods can be utilized. These change detection
methods segment an image into foreground and background
based on the known appearance and a current image of the
surveyed scene. If an unknown object resides in the scene and
is not occluded by the known environment, it is marked as
foreground in the segmented image. But usually the dynamic
known objects are also – if not occluded – identified as
foreground in the segmented image. Thus, the detection of
unknown objects in front of a dynamic known object is not
possible. Since the change detection method is not able to
decide whether the cone between the camera and the dynamic
known object is free or contains unknown objects, it has to be
interpreted as a known occlusion. Thus, the visibility is
described by

)))},(dist),(dist

),(ray),(ray(

),(ray(

),(segm|{

),(ray),(ray
zCyC

SxCDxC

DxC

FxCLxV

ii

xCDzxCSy

ii

i

iii

ii
<∀∃

∧∅≠∩∧∅≠∩

∨∅=∩

∧⊆∈=

∩∈∩∈

As detailed above, the known occlusions are formulated by

ii
K VFO \=

Since depth values are not available for unknown objects
with this sensor type, unknown occlusions start at the camera:

}),(ray|{ ∅≠∩∩∈= iiii
U VUxCVxO

Figure 4 a illustrates the occlusions using a color or
grayscale camera and a conventional background subtraction
method.

2) Improved Color/Grayscale Images
In the second case, an improved change detection method is

able to detect unknown objects even in front of a dynamic
object. Two simple approaches come to mind:

First, a database which contains several appearances of
different configurations and positions of the dynamic known
objects as images can be used to project the dynamic known
objects into the current image before using it within an ordinary
change detection method [2]. The disadvantage of this method
is the vast amount of needed memory to store the images if the
dynamic object has many configurations like an industrial
robot.

Second, the configuration, position and texture of the dynamic
known object can be rendered into the current image before
using it within the ordinary change detection. Two issues can
be discovered. First, the rendered dynamic known object
probably causes a classification into foreground, since it is not
exact enough. Second, dependent on the geometry complexity
of the known dynamic objects, it might take too much time to
render the dynamic known object.

The visibility and occlusions of the extended background
subtraction method are described by:

}),(segm|{ FxCLxV iii ⊆∈=

ii
K VFO \=

The unknown occlusions OU
i are the same as in the

previous case, using a conventional background subtraction
method.

Figure 4 b illustrates the visibility and occlusions using a
color or grayscale camera and an extended change detection
method. (The known occlusion cone in front of the known
dynamic object in Section I now can be classified as visible.)

Here we consider only the consequences of using those two
different background subtraction methods. A further discussion
of these methods is outside the focus of the paper.

3) Depth Images
Background subtraction methods using depth cameras

could compare the known depth with a current depth for each
pixel to determine not-occluded unknown objects [6]. Besides
foreground/background segmentation, the result additionally
contains depth information. Thus, a free cone between the
camera and a not-occluded unknown object can be guaranteed.
Also, a free cone between the camera and a not-occluded
known dynamic object can be guaranteed (Figure 4 c). In
comparison to the improved background subtraction for
color/grayscale cameras, only the definition of the unknown
occlusions changes:

}),(segm|{ ∅≠∩∩∈= iiii
U VUxCVxO

C. Simultaneous Use of Several Cameras

Using several cameras with different perspectives onto the
surveyed scene, each camera, regardless the type that is used
provides a different occlusion and visibility situation, as
discovered in the previous section that now has to be merged.

For every camera i, a collection of sets can be provided
describing the known and unknown occlusions as well as the
surveyed free space.

},,{ ii
U

i
K

i FOOQ =

The partitioning of the free space via the reconstruction step
can be described by

})1()0(,]1,0[::,

|...{ 1

yfxfAfAyx

QqqqAR iiN

=∧=→∃∈∀
∧∈∩∩==

In words, all different labeled regions of all cameras are
intersected among each other. Furthermore, the resulting
intersections are grouped into connected components. All these
connected components are contained by R (Figure 5, upper
row). Again, it can be stated that A∈R A = F.

Figure 5 Illustration of the use of several cameras. In the first row, the

occlusion situation is simply overlaid. The second row, regions are set to free,
if at least one camera sees free. In the first column, color/grayscale cameras

and a simple change detection method are used. In the second column,
color/grayscale cameras and an extended change detection method are used. In

the last column, depth cameras are used.

Volumes in the free space of the surveyed scene which are
actually seen as free (cf. Fi) by at least one camera are not
further considered, since no unknown object can reside there.
This results in (Figure 5, second row):

}:},...,0{|{' ∅≠∧∉=∀∈= xFxNiRxR i

To each set of R’ a tuple (o, u) can be assigned, containing
the number of seen known occlusions and unknown occlusions.

The number of known and unknown occlusions is represented
by the mixture of the colors red and blue in Figure 5.

D. Plausibility Checks

In the majority of applications some information like size,
volume, etc. about the unknown objects is available. Several
sets of R’ actually cannot contain an unknown object. Thus,
plausibility checks are used to eliminate those occlusions which
do not contain unknown objects. The mentioned plausibility
checks aim for a quasi-static consideration. Another kind of
plausibility checks can utilize temporal considerations, like “an
unknown object can not suddenly appear in and surrounded by
free space”.

Note plausibility checks can apply to the whole scene or
only to a part of the scene. In the following, a couple of quasi-
static plausibility checks are discussed.

Figure 6 Illustration of the Minimum Volume plausibility check for

color/grayscale with conventional change detection. Left: Before removing
small regions; Right: After removing small regions.

Minimum Volume: If only unknown objects like humans
with a typical volume of 0.075 m³ should be detected, one
might set a maximum volume for occlusions to be eliminated to
0.05 m³. Thus, all connected sets of R’ obtained as described in
the previous section with a volume smaller than 0.05 m³ can be
safely removed. Only unknown objects with a specified
minimum volume remain (Figure 6). Note, a maximum volume
plausibility check is obviously inapplicable, since larger
occlusions may contain smaller unknown objects.

Maximum Distance to Ground: Typically, objects do not
hover but have contact with the ground. If this can be
guaranteed, all connected sets of R’ with no contact to the
ground S or D can be eliminated. More general, all objects with
a distance larger than a specified maximum distance to the
ground can be eliminated. Thus, setting the maximum distance
to 1 m also a jumping human can be detected and is not
removed by this plausibility check.

Surveillance Zones: In most cases, only certain parts of the
whole surveyed scene are actually interesting so that unknown
objects outside this part can be eliminated.

Occlusion parameter θ: If it can be guaranteed, that an
unknown object can be completely occluded by the known
environment in a maximum number of θ cameras, all regions
where more than θ cameras see a known occlusion can be
eliminated if no other region is connected to it with equal or
less than θ cameras which see a known occlusion. As shown in
Figure 7 the mixed occlusions are binarized by θ. Afterwards,
connected regions are adapted. The identified remaining

occlusions which do not contain an object can be safely
removed. For more details about θ, see [12].

Figure 7 Binarisation, adaption and cleanup for the three different thetas

III. RECONSTRUCTION ALGORITHM

In this section we provide a voxel-based reconstruction
algorithm, which works on the surfaces of the objects and is
capable to deal with occlusions. The algorithm presented here
is limited to color and grayscale cameras in combination with a
conventional background subtraction approach like [5] and [8].
Regarding the camera model, we only assume a two-
dimensional field of connected pixels, with their back projected
volumes also connected. Furthermore, the position and
geometry of the pixels and the back projected volumes have to
be known. Thus, we assume neither a pinhole camera model
nor undistorted images.

A. Surface voxel determination

Given several calibrated cameras images segmented into
free, known and unknown and a voxel space, surface voxels can
be determined by the following algorithm. Then the result is a
voxel space with voxels marked according to the occlusions of
all perspectives and a list containing all these voxels. At first,
the needed functions are explained.

The classification value (free, known or unknown) of a pixel
P is provided by the function classification (P).

Assuming that two adjacent pixels are separated by a pixel
edge E, a list of voxels that are intersected by the back

projection of this pixel edge E down to its visibility depth is
provided by the function voxelList(E). The function
neighborClassification(E) for a pixel edge E provides the value
unknown, if one of the two pixels is classified as unknown. It
provides known, if one pixel is classified as known and the
other as free. In all other cases, it provides free.

For each voxel, the pixels it projects to in all cameras are
needed. For simplification, here we only use the center of the
voxels with the consequence, that objects that are smaller than
a voxel side may be reconstructed incorrectly. Thus, it is
necessary to choose an appropriate small voxel size. (Another
voxel-like but camera centric-representation called conexels [1]
could be applied, which avoids this drawback). The pixel of the
projection of the voxel center V into a camera image C is
provided by the function projectVoxelCenter(V, C).

The distance for a voxel center V to a camera C is provided
by the function distance(V, C).

Per pixel P, the visibility depth (distance to Bi
F) and the

occlusion depth (distance to Bi
O) as described in Section II is

provided by the functions visibleDepth(P) and
occlusionDepth(P).

The function markVoxelAndAddToList(V, OK, OU) marks
the voxel V in voxel space by the two counter variables OK, OU
representing the number of known and unknown occlusions
respectively, and adds it to a list containing all surface voxels.

 foreach camera C do
 foreach silhouette pixel edge E do
 foreach voxel V in voxelList(E) do
 counter OU = 0, F = 0, OK = 0
 if neighborClassification(E) == unknown
 OU = 1
 else if neighborClassification(E) == known
 OK = 1
 endif
 foreach camera C’ != C do
 pixel P = projectVoxelCenter(V, C’)
 if classification(P) == known
 or distance(V, C’) ≥ occlusionDepth(P)
 OK++
 else if classification(P) == unknown
 and distance(V, C’) ≤ visibleDepth(P)
 OU++
 else
 F++
 endif
 done
 if F == 0
 markVoxelAndAddToList(V, OK, OU)
 endif
 done
 done
 done

As described above, after the execution, a voxel list
containing the determined surface voxels is available.
Additionally, these voxels are marked in voxel space by the
tuple (OK, OU).

Since the surface is not necessarily closed at the known
objects, one may use a constrained flood fill algorithm to close
it. Furthermore, completely occluded regions exclusively
caused by the static environment are not revealed by this
algorithm but can be determined in an initialization step by

testing each voxel for visibility against the static environment
in all cameras.

Having the surface voxels, partitions of related voxels, i.e.
voxels with the same known and unknown occlusion counter
can be built. Then, the sorted plausibility checks can be applied
according to the costs and success probability. Dependent on
the plausibility check additional information, like volume has
to be calculated.

B. Memory Consumption

Some of the used functions can be implemented as look-up
tables to enable fast calculations. In order to give a memory
consumption estimation M of these look-up tables, the
following variables are introduced: A voxel space with
dimensions X, Y and Z is used and the resolution of N cameras
is provided by W and H.

The visibility depth and occlusion depth per pixel has a
memory consumption for all images of:

M1 = 2 · N · W · H

The memory consumption for the voxel lists per pixel edges
and for all cameras can be estimated by:

M2 ≤ N · [((H + W + 2)) · E
 + ((W + 1) · (H − 1) + (W − 1) · (H + 1)) · G],
 with G = X + Y + Z and E = Z · Y + Z · X, X ≤ Y ≤ Z

Furthermore, the distances for each voxel to all cameras
results in a memory consumption of:

M3 = 2 · N · X · Y · Z

Thus, the overall memory consumption is bounded by M ≤
M1 + M2 + M3. As an example the parameters are set to N = 4,
W = 320, H = 240 and X = Y = Z = 100, with a typical camera
placement and voxel-, pixel-addresses and floating point
variables of 4 bytes, results in an upper bound of M ≤ 907 MB
and actually of 411 MB.

IV. EXPERIMENTS

In order to evaluate our methods and algorithms, we set up
two test environments. The first one is an industrial robot work
cell (Figure 8, left) with eight color cameras and four depth
sensors mounted at the ceiling. Each camera has its own
computing unit for preprocessing steps. The second
environment (Figure 8, middle) is a smaller one, with five color
cameras mounted around the scene to survey. Only one
computer is used here. The latter one is available in a virtual
simulation environment, too (Figure 8, right).

Figure 8 Two test environments: Left: Robot work cell with eight color
cameras and four depth cameras mounted at the ceiling; Middle: Small

demonstrator with five color cameras. Right: Virtual test environment: Five
calibrated cameras; Yellow wire frame: Surveillance zone; Light blue: Static

known environment; Red Sphere: Virtual unknown object.

In the following, the hardware and software configuration
of the second test environment is listed. Then the performance
results of the reconstruction step are presented having already
segmented images within the virtual environment of the second
test environment.

A. Hardware and Software Configuration

The used computer contains an Intel Core™2 Quad CPU,
with 2 GHz, 6 MB Cache and 4 GB RAM, but currently only
one core of the CPU is utilized by our implementation. The
graphics card is an NVIDIA GeForce 9600 GT with 512 MB
and it is CUDA enabled. The operating system is a SUSE 11.0,
with the gcc/g++ compiler suite version 4.3.1. The cubical
volume of the test environment is 76 cm × 76 cm × 76 cm. Five
Unibrain FireWire Fire-i™ Digital Board Cameras with 15 and
30 fps and a resolution of 640x480 Bayer Pattern are used.

The calibration results, obtained by [16] for the images with
a resolution of 640x480 have a low 3D position back projection
error (mean deviation < 1.6 pixels and standard deviation < 1
pixel).

The following performance tests for the reconstruction uses
the virtual test environment, based on the real test environment
providing a virtual object (here: sphere with a radius of 6 cm)
and its segmented camera images. Additionally, a surveillance
zone and a static object are included (Figure 8, right).

Figure 9 Images of the simulated environment of four different frames of
the recorded sequence. Here, the static object is illustrated by its wire frame.

The yellow dots represent the voxels which have been tested for being surface
voxels within a predefined surveillance zone. The surface voxels are shown

using a mixture of red and blue dependent on the visibility.

B. Performance tests

The unknown object in the virtual test environment is
moved on a circular path around and through the static known
object in the middle of the scene. The virtual object is projected

into all camera images simulating a conventional background
subtraction. The segmented images are used to reconstruct the
voxel-based unknown object within the predefined surveillance
zone and in consideration of the occlusions. Two cycles of this
movement with a total of 1200 frames have been recorded.
Figure 9 illustrates four interesting frames of the recorded
sequence. The yellow dots represent voxels which have been
tested for being surface voxels. The resulting surface voxels are
shown using a mixture of the colors red and blue, dependent on
the visibility.

Figure 10 Pairwise comparison of different settings regarding number of

cameras (a),(b), number of pixels (c),(d) and number of voxels (e),(f). Green
line: Number of voxels tested. Blue: Number of surface voxels tested. Red

area: Needed time in milliseconds (right scale).

Dependent on the position of the unknown object, different
numbers of pixels and voxels are marked and thus, different
computation times are needed.

The diagrams, depicted in Figure 10, compare the number
of potential surface voxels (green line), actual surface voxels
(blue line) and the time (red area) consumed for different
numbers of cameras (a, b), different camera resolutions (c, d)
and different voxel space resolutions (e, f). Obviously, the
calculation time corresponds to the number of potential surface
voxels which have to be tested for each camera. Furthermore,
the number of actual surface voxels must always be smaller or
equal to the number of potential surface voxels.

The calculation time is high, if the unknown object is seen
by all cameras, such that many potential voxels have to be
tested (frame# 250). Although the unknown object may be
outside the surveillance zone, potential surface voxels have to
be tested because of the absent depth information of this
unknown object. Only the number of actual surface voxels is
zero (frame# 450).

In Figure 9 b the lower part of the sphere is only seen by the
rightmost camera. Thus, the complete cone of potential surface
voxels within the surveillance zone caused by that camera
actually results in surface voxels. In this case, the ratio between
actual surface voxels and potential surface voxels is relatively
high.

TABLE II. summarizes the measured computation times by
comparing the average values of the diagram pairs. The
quintessence of this diagram is that although multiplying the
number of pixels or voxels by a factor, the average time
increases slower. This behavior is due to the consideration of
surfaces and silhouettes instead of volumes and areas,
respectively.

TABLE II. SUMMARY AND ANALYSIS OF THE RECORDED SEQUENCE

 # cameras
Avg. number of
potential surface

voxel tested

Avg. number of
actual surface
voxel tested

Avg. time
[ms]

b 5 89021 8281 15.74
a 3 52488 9168 9.88

b/a 1.667 1.696 0.903 1.593

 # pixel

d 172800 99095 11536 19.06
c 19200 51821 6166 9.01

d/c 9 1.91 1.87 2.11

 # voxel

f 10760688 134968 15717 24.43
e 398544 31175 3674 5.9

f/e 27 4.33 4.28 4.14

V. CONCLUSIONS

For the first time, a general and consistent formalism for
describing the visibility and occlusions within a camera
surveyed scene with a known environment is provided. To do
so, objects are classified as known/unknown and
static/dynamic. Furthermore, this formalism abstracts from the

camera type and the background subtraction method. Thus,
depth sensors or grayscale/color cameras can both be used or
even mixed.

A voxel-based algorithm reconstructing the unknown
objects, which works on surfaces using grayscale/color cameras
in combination with a conventional background subtraction
method, has been presented. The experimental results show that
the computation time for the reconstruction step depends
mainly on the number of tested surface voxels. Additionally,
the measurements show that the computation time increases
slower than the camera resolution and voxel space resolution,
due to the surface and silhouette consideration.

In the future, the plausibility checks especially the temporal
ones will be considered more intensively, since these promises
a valuable enhancement in the reconstruction of unknown
objects. The plausibility checks will be integrated into the
voxel-based algorithm. Furthermore, the presented algorithm
can be parallelized, such that potential surface voxels are tested
simultaneously. For this, NVIDIAs CUDA seems to be suited.
In addition, non-voxel-based approaches will be investigated.

ACKNOWLEDGMENT

This work has been supported by the German Research
Foundation (DFG) under the project name
“Sicherheitsstrategien für die Mensch/Roboter-Koexistenz und
-Kooperation” (SIMERO).

REFERENCES
[1] J. Casas and J. Salvador, “Image-Based Multi-view Scene Analysis

using ‘Conexels’”, ACM Proceedings of the HCSNet workshop on use
of vision in human-computer interaction, Vol. 56, Canberra, Australia,
2006.

[2] Daimler AG, A. Franke, L. Krüger and C. Wöhler, „Kamerabasierte
Überwachung bewegter Maschinen und/oder beweglichen
Maschinenelementen zur Kollisionsverhinderung“, published patent
application, DE 10 2006 048 163 A1 2008.02.07, Germany, 2008.

[3] D. Ebert and D. Henrich, “Safe Human-Robot-Cooperation: Image-
based Collision Detection for Industrial Robots”, In: IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, Lausanne, 2002.

[4] F. Cailette and T. Howard, “Real-Time Markerless Human Body
Tracking with Multi-View 3-D Voxel Reconstruction”, In Proc. British
Machine Vision Conference (BMVC), pp. 597-606, Oxford, 2004.

[5] A. Elgammal, D. Harwood and L. Davis, “Non-parametric Model for
Background Subtraction”, Computer Vision – ECCV, Vol. 1843, 2000.

[6] M. Fischer and D. Henrich, “3D Collision Detection for Industrial
Robots and Unknown Obstacles using Multiple Depth Images”, In:
German Workshop on Robotics (GWR), Braunschweig, Germany, 2009.

[7] J.-S. Franco and E. Boyer, “Efficient polyhedral modeling from
silhouettes”, IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol. 31, Is. 3, pp. 414-427, 2009.

[8] S. Fukui, Y. Iwahori and R.-J. Woodham, “GPU Based Extraction of
Moving Objects without Shadows under Intensity Changes”, IEEE
Congress on Evolutionary Computation. (IEEE World Congress on
Computational Intelligence), Hong Kong, 2008.

[9] L. Guan et al. “Visual Hull Construction in the Presence of Partial
Occlusions”, In Proc, of the 3rd International Symposium on 3D Data,
2006.

[10] L. Guan, J.-S. Franco and M. Pollefeys, “3D Occlusion Inference from
Silhouette Cues”, In Proc. Comp. Vis. And Pattern Rec. (CVPR), 2007.

[11] M. Keck and J.W. Davis, “3D Occlusion Recovery using Few Cameras”,
In: Conf. on Computer Vision and Pattern Recognition (CVPR), 2008.

[12] S. Kuhn, T. Gecks and D. Henrich, “Velocity control for safe robot
guidance based on fused vision and force/torque data”, In: IEEE
Conference on Multisensor Fusion and Integration for Intelligent
Systems”, Heidelberg, Germany, 2006.

[13] A. Ladikos, S. Benhimane and Nassir Navab, “Efficient Visual Hull
Computation for Real-Time 3D Reconstruction using CUDA”, IEEE
Computer Society Conference on Computer Vision and Pattern
Recognition, Anchorage, Alaska (USA), June 2008.

[14] A. Laurentini, “The Visual Hull Concept for Silhouette-Based Image
Understanding” IEEE Transactions on Pattern Analysis and Machine
Intelligence, Vol 16, pp. 150-162, 1994.

[15] S. Lazebnik, Y. Furukawa and J. Ponce, “Projective Visual Hulls”,
International Journal of Computer Vision, Vol. 74, Nr. 2, August 2007.

[16] T. Svoboda, D. Martinec and Tomas Pajdla, “A Convenient Multi-
Camera Self-Calibration for Virtual Environments”, In: Presence:
Teleoperators and Virtual Environments, Vol 14, Issue. 4, 2005.

[17] G. Slabaugh, B. Culbertson, T. Malzbender, and R. Shafer, “A survey of
methods for volumetric scene reconstruction from photographs”, In Intl.
WS on Volume Graphics, 2001.

[18] R. Szeliski, “Rapid Octree Construction from Image Sequences”,
CVGIP: Image Understanding, 58(1):23-32, 1993.

