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Abstract—We present a general method for reconstructing 
unknown objects (e.g. humans) within a known environment (e.g. 
tables, racks, robots) which usually has occlusions. These 
occlusions have to be considered since parts of the unknown 
objects might be hidden in some or even all camera views. Besides 
grayscale and color cameras also depth sensors are considered. In 
order to avoid cluttered reconstructions, plausibility checks are 
used to eliminate reconstruction artifacts which actually do not 
contain any unknown object. One application is a 
supervision/surveillance system for safe human/robot-coexistence 
and –cooperation. Experiments for a voxel-based implementation 
are given. 

Keywords – Inferred Visual Hull; Multi-View Reconstruction; 
Occlusions; Visibility; Static Environment; Dynamic Environment; 
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Analysis 

I.  INTRODUCTION 

The visual hull [14] of an object is defined as the maximal 
silhouette-consistent volume in the limit of an infinite number 
of cameras. The visual hull for a finite number of cameras is 
called inferred visual hull [17]. It can be described as 
intersection of the general cones obtained by the back 
projection of the object’s silhouettes of all camera images in a 
calibrated camera network [16]. If the object is completely 
visible in each camera, the inferred visual hull always contains 
the overall object. Several methods for constructing the inferred 
visual hull have been published in the past. Therefore different 
representations like voxels [4], [13], [18] or polyhedrons [15], 
[7] have been used. The main focus has been efficiency, 
accuracy and robustness. 

 
Figure 1 Illustration of a scene with two cameras and an object (a), the 

erroneous inferred visual hull construction, when only considering the object 
cones (b) and the correct visual hull, using the complement of the free  

space [7]. 

In the presence of occlusions, the silhouette might be 
erroneous in some cameras, such that the inferred visual hull 
does not contain the overall object. The same problem arises 
when the object resides partly outside the camera frustum 

(Figure 1b). Background subtraction algorithms (e.g. [5] and 
[8]) will produce such erroneous silhouettes if the object is 
partly or completely occluded. To overcome this problem, 
occlusions must be considered. Recently, some approaches 
have been published, which deal with two different kinds of 
occlusion problems. 

 
Figure 2 Illustration of the occlusions in a scene with one camera using an 
occlusion map (a) and (b) and the resulting detection capabillities (d) and (e). 

In Figure (c) the visibility depth of the known environment is utilized as 
described in our approach. The detection capability of an object is illustrated 

in (f). The region outside the camera frustum is additionaly interpreted as 
occlusion. All light gray, light blue and light red regions may contain objects 

and have to be interpreted as reconstruction here. 

The first occlusion problem is caused by the camera 
frustum. If the object resides outside this frustum in at least one 
camera, the inferred visual hull will not contain the overall 
object. This problem has been tackled by [7]. In principle, they 
do not calculate the intersection of object cones, but the 
complement of the fused free space (Figure 1). 

The second occlusion problem is caused by an environment 
which might occlude the objects to be reconstructed in some 
camera views. In [3] and [12] dynamic known objects like 
robots are considered. A masking of these in the images is 
proposed. Later this method was applied to static occluding 
objects [9], [13]. While [3] calculates the occlusion map online 
based on the known geometry and configuration of a robot, [9] 
determines a static occlusion map by a learning method. 
Having static objects, this occlusion map has the disadvantage, 
that a whole cone is classified as occlusion, although the 



camera could see up to the occluding objects surface (Figure 2 
a, b and d, e). Using several cameras, as described in [10] and 
[11], this effectively results in an inferred visual hull of the 
static objects (Figure 3 a). In the case of several static objects, 
also pseudo objects may arise (Figure 3 b). There is neither 
information about the geometry of the static objects nor about 
the free space within the inferred visual hulls. Since unknown 
objects which finally have to be reconstructed may reside 
within these static object hulls, the inferred visual hulls have to 
be added to the reconstruction. The observation of a scene 
containing active objects can reveal the inferred visual hulls of 
the occluding objects. [11] provides a probability of an 
occlusion for a voxel in a given view, while [10] reconstructs 
the occluding object. As said above – the best approximation of 
a static object is its inferred visual hull, resulting in the same 
issue as the pure occlusion maps. 

 
Figure 3 Illustration of the inferred visual hull of the learned static 

environment. We do not have information about the actual geometry and the 
free space within the inferred visual hull. Thus, we have to assume unknown 

objects which have to be reconstructed within this inferred visual hull. 
Furthermore, we do not know the actual depth a camera can see at a specified 

pixel (b). 

Compared to the learning approach of the static occluding 
objects, we consider here the occlusion problem from a slightly 
different view. We already know the complete environment 
containing static objects (e.g. tables, racks, etc.) and dynamic 
objects (e.g. robots) except the unknown dynamic objects we 
want to reconstruct (e.g. human) (Figure 2 c, f). Thus, the 
question is how to obtain the best reconstruction of these 
unknown objects using different kinds of sensors (color 
cameras, depth sensors), different kinds of objects (known 
static and dynamic) and different kinds of background 
subtraction approaches. Furthermore, what limitations exist 
having these different conditions and how to eliminate 
reconstruction artifacts which actually do not contain any 
object? 

We provide an analysis of the above questions and a 
general model of the occlusions and visibility. Furthermore, we 
present a voxel-based algorithm and experiments regarding 
computation times. 

One main application are surveillance systems for safe 
human/robot coexistence and cooperation. The combination of 
the strength of both human and robot promises a higher 
efficiency and flexibility in production. In the past, humans and 
robots were strictly separated by fences and other safety 
equipment. Recently, engineer standards were extended for 
allowing vision systems under certain conditions. In short, the 
human has to be safely detected by the vision system and the 
robot speed is restricted. 

The remainder of the paper is organized as follows. In 
Section II, the method to cope with occlusions is described in a 
general fashion. A multitude of alternatives is discussed, e.g. 
the use of depth images instead of usual color images. In 
Section III, a reconstruction algorithm is described and 
experiments in Section IV provide results regarding 
computation times. Section V closes with a conclusion and an 
outlook to future investigations. 

II. OCCLUSIONS AND V ISIBILITY  

This section comprises a theoretical look at the problem of 
occlusions and visibility in a multi-camera setup having 
different pre-conditions, and the possibilities to perform a 
reconstruction of the objects using plausibility checks to revise 
pseudo objects, i.e. reconstruction artifacts which actually do 
not contain an object. In short, the aim is to reconstruct as 
accurate as possible the unknown but detectable parts (e.g. 
humans) within a known environment (e.g. tables, robot), 
which typically has occlusions. 

 
Figure 4 Illustration of the differences regarding visibility and occlusions 

using color or grayscale cameras with common change detection methods (a), 
extended change detection methods (b), or using a depth camera, with a 

suitable change detection method (c). Nomenclature: Ci: Camera i; Fi: Free in 
camera i; S: Static known object; D: Dynamic known object; U: Unknown 
object; Oi

K: Known occlusion in i; Oi
U: Unknown occlusion in i; Bi

F: Free 
boundary in i; Bi

O: Occlusion boundary in i; Bi
U: Unknown boundary in i. 

At first, the types of objects that are contained by surveyed 
scenes are described in Subsection A. Two different kinds of 
cameras are used to detect the introduced type of objects which 
is referred as unknown (e.g. humans and objects with initial 
unknown position, orientation, etc.). The camera types, its 
detection capabilities and the different occlusions caused by the 
different objects are detailed in Subsection B. The 
simultaneous use of several cameras with different perspectives 
onto the surveyed scene which results in a cluttered 
reconstruction is described in Subsection C. The plausibility 
checks to revise this cluttered reconstruction are discussed in 
Subsection D. 

A. Object Types 

The surveyed scene contains static and dynamic objects. 
Static objects S are racks, tables etc. The geometry, position 
and the appearance of those objects are known and do not 
change over the time (apart from possibly occurring shadows 
and from illumination changes caused by the dynamic objects). 
Dynamic objects are robots, conveyor belts, humans etc. This 
group must be divided into two subgroups. The first subgroup 
contains known dynamic objects D, with changing geometry, 
position and the appearance but in a known manner. The robots 
and conveyor belts pertain to this subgroup. The second 



subgroup contains dynamic objects U with unknown changing 
geometry, position and appearance, e.g. humans. In the 
majority of cases approximate information about size, volume 
or similar can be provided. TABLE I. summarizes the 
identified object types. Note that static unknown objects do not 
exist. The free space F of a surveyed scene does not contain 
any known object but may contain unknown objects. Figure 4 
a-c illustrate the introduced object types. In summary, the 
following three equations hold true: 

S ∪ D ∪ F = En, with En: Euclidian Space 

S ∩ D = S ∩ F = D ∩ F = ∅ and U ⊆ F 

TABLE I.  OBJECT TYPES AND EXAMPLES WITH ABBREVIATION 

 Static Dynamic 

Known 
Tables, Racks, … 
(Abbr.: S) 

Robots, Conveyor belts, … 
(Abbr.: D) 

Unknown ---- 
Humans, … 
(Abbr.: U) 

 

B. Camera Types and Detection Capabilities 

A number of N calibrated cameras with focal points Ci ∈ 
En, i ∈ {1, …, N} and a frustum Li = {x ∈ En| x is projected via 
Ci onto the image plane of camera i}, are used to detect and 
finally reconstruct the unknown objects which reside in-
between the known objects as accurate as possible. Therefore, 
two types of cameras are considered: 

• Color and Grayscale cameras: The images of these 
sensors contain color and intensity information for 
each pixel, respectively. 

• Depth cameras: The images contain depth information 
for each pixel (for example stereo vision or time-of-
flight cameras). 

One fundamental characteristic of these sensors is that they 
can only see up to the surface of the nearest opaque object per 
viewing direction (e.g. pixel center direction). Thus, occlusions 
always occur at the rear side of an opaque object. Moreover, 
the visibility of these sensors is limited by the frustum Li. 
Outside this frustum, the sensor is not able to see anything. 
Thus, these parts need to be interpreted as occlusions as well. 

Now, the terms visibility and occlusions have to be 
introduced and detailed (Figure 4). The visibility Vi of a camera 
i is the region of the free space F where a camera is able to 
detect unknown objects. The known occlusion OK

i of a camera i 
is the region of the free space F where a camera can not detect 
unknown objects due to occlusions caused by known objects. 
Thus, it can be stated that OK

i ∩ Vi = ∅ and OK
i ∪ Vi = F for 

each camera i. The unknown occlusion OU
i of a camera i is the 

region of the visible space Vi where an unknown object has to 
be assumed, due to the evaluation of a camera image by a 
background subtraction method. The free space seen by camera 
i Fi is defined by Fi = Vi\OU

i. It can be stated, that OK
i ∩ OU

i
 

= OK
i ∩ Fi

 = OU
i
 ∩ Fi

 = ∅ and OK
i ∪ OU

i ∪ Fi = F for 
each camera i. The concrete structures of the sets Vi, OK

i, OU
i 

depend directly on the used camera type with its detection 
capabilities and are described later. 

In order to describe our formalism, we use the concepts of 
rays and segments in the Euclidean Space. A ray(S, E) and a 
segm(S, E) are point sets and are defined by 
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Furthermore, a distance function dist(P, Q), with P, Q ∈ En 
exists, since the Euclidean Space is a metric space. Having the 
visibility and the occlusions, sets containing the most distant 
visible points and the nearest occluded points (per viewing 
direction) can be specified by 
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Dependent on the camera type, different change detection 
methods have to be used to detect the unknown objects. In the 
following, the concrete visibility and occlusions of a camera i 
depending on its type and a suitable change detection method 
are formalized. Here, we distinguish between color/grayscale 
cameras in conjunction with a conventional background 
subtraction (1) and an improved background subtraction 
method (2) and depth images (3). 

1) Basic Color/Grayscale Images 
Using color or grayscale cameras, ordinary change 

detection methods can be utilized. These change detection 
methods segment an image into foreground and background 
based on the known appearance and a current image of the 
surveyed scene. If an unknown object resides in the scene and 
is not occluded by the known environment, it is marked as 
foreground in the segmented image. But usually the dynamic 
known objects are also – if not occluded – identified as 
foreground in the segmented image. Thus, the detection of 
unknown objects in front of a dynamic known object is not 
possible. Since the change detection method is not able to 
decide whether the cone between the camera and the dynamic 
known object is free or contains unknown objects, it has to be 
interpreted as a known occlusion. Thus, the visibility is 
described by 

)))},(dist),(dist

),(ray),(ray(

),(ray(

),(segm|{

),(ray),(ray
zCyC

SxCDxC

DxC

FxCLxV

ii

xCDzxCSy

ii

i

iii

ii
<∀∃

∧∅≠∩∧∅≠∩

∨∅=∩

∧⊆∈=

∩∈∩∈

 

As detailed above, the known occlusions are formulated by 

ii
K VFO \=  



Since depth values are not available for unknown objects 
with this sensor type, unknown occlusions start at the camera: 
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Figure 4 a illustrates the occlusions using a color or 
grayscale camera and a conventional background subtraction 
method. 

2) Improved Color/Grayscale Images 
In the second case, an improved change detection method is 

able to detect unknown objects even in front of a dynamic 
object. Two simple approaches come to mind: 

First, a database which contains several appearances of 
different configurations and positions of the dynamic known 
objects as images can be used to project the dynamic known 
objects into the current image before using it within an ordinary 
change detection method [2]. The disadvantage of this method 
is the vast amount of needed memory to store the images if the 
dynamic object has many configurations like an industrial 
robot. 

Second, the configuration, position and texture of the dynamic 
known object can be rendered into the current image before 
using it within the ordinary change detection. Two issues can 
be discovered. First, the rendered dynamic known object 
probably causes a classification into foreground, since it is not 
exact enough. Second, dependent on the geometry complexity 
of the known dynamic objects, it might take too much time to 
render the dynamic known object. 

The visibility and occlusions of the extended background 
subtraction method are described by: 

}),(segm|{ FxCLxV iii ⊆∈=  
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The unknown occlusions OU
i are the same as in the 

previous case, using a conventional background subtraction 
method. 

Figure 4 b illustrates the visibility and occlusions using a 
color or grayscale camera and an extended change detection 
method. (The known occlusion cone in front of the known 
dynamic object in Section I now can be classified as visible.) 

Here we consider only the consequences of using those two 
different background subtraction methods. A further discussion 
of these methods is outside the focus of the paper. 

3) Depth Images 
Background subtraction methods using depth cameras 

could compare the known depth with a current depth for each 
pixel to determine not-occluded unknown objects [6]. Besides 
foreground/background segmentation, the result additionally 
contains depth information. Thus, a free cone between the 
camera and a not-occluded unknown object can be guaranteed. 
Also, a free cone between the camera and a not-occluded 
known dynamic object can be guaranteed (Figure 4 c). In 
comparison to the improved background subtraction for 
color/grayscale cameras, only the definition of the unknown 
occlusions changes: 
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C. Simultaneous Use of Several Cameras 

Using several cameras with different perspectives onto the 
surveyed scene, each camera, regardless the type that is used 
provides a different occlusion and visibility situation, as 
discovered in the previous section that now has to be merged. 

For every camera i, a collection of sets can be provided 
describing the known and unknown occlusions as well as the 
surveyed free space. 
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The partitioning of the free space via the reconstruction step 
can be described by 
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In words, all different labeled regions of all cameras are 
intersected among each other. Furthermore, the resulting 
intersections are grouped into connected components. All these 
connected components are contained by R (Figure 5, upper 
row). Again, it can be stated that A∈R A = F. 

 
Figure 5 Illustration of the use of several cameras. In the first row, the 

occlusion situation is simply overlaid. The second row, regions are set to free, 
if at least one camera sees free. In the first column, color/grayscale cameras 

and a simple change detection method are used. In the second column, 
color/grayscale cameras and an extended change detection method are used. In 

the last column, depth cameras are used. 

Volumes in the free space of the surveyed scene which are 
actually seen as free (cf. Fi) by at least one camera are not 
further considered, since no unknown object can reside there. 
This results in (Figure 5, second row): 

}:},...,0{|{' ∅≠∧∉=∀∈= xFxNiRxR i  

To each set of R’ a tuple (o, u) can be assigned, containing 
the number of seen known occlusions and unknown occlusions. 



The number of known and unknown occlusions is represented 
by the mixture of the colors red and blue in Figure 5. 

D. Plausibility Checks 

In the majority of applications some information like size, 
volume, etc. about the unknown objects is available. Several 
sets of R’ actually cannot contain an unknown object. Thus, 
plausibility checks are used to eliminate those occlusions which 
do not contain unknown objects. The mentioned plausibility 
checks aim for a quasi-static consideration. Another kind of 
plausibility checks can utilize temporal considerations, like “an 
unknown object can not suddenly appear in and surrounded by 
free space”. 

Note plausibility checks can apply to the whole scene or 
only to a part of the scene. In the following, a couple of quasi-
static plausibility checks are discussed. 

      
Figure 6 Illustration of the Minimum Volume plausibility check for 

color/grayscale with conventional change detection. Left: Before removing 
small regions; Right: After removing small regions. 

Minimum Volume: If only unknown objects like humans 
with a typical volume of 0.075 m³ should be detected, one 
might set a maximum volume for occlusions to be eliminated to 
0.05 m³. Thus, all connected sets of R’ obtained as described in 
the previous section with a volume smaller than 0.05 m³ can be 
safely removed. Only unknown objects with a specified 
minimum volume remain (Figure 6). Note, a maximum volume 
plausibility check is obviously inapplicable, since larger 
occlusions may contain smaller unknown objects. 

Maximum Distance to Ground: Typically, objects do not 
hover but have contact with the ground. If this can be 
guaranteed, all connected sets of R’ with no contact to the 
ground S or D can be eliminated. More general, all objects with 
a distance larger than a specified maximum distance to the 
ground can be eliminated. Thus, setting the maximum distance 
to 1 m also a jumping human can be detected and is not 
removed by this plausibility check. 

Surveillance Zones: In most cases, only certain parts of the 
whole surveyed scene are actually interesting so that unknown 
objects outside this part can be eliminated. 

Occlusion parameter θ: If it can be guaranteed, that an 
unknown object can be completely occluded by the known 
environment in a maximum number of θ cameras, all regions 
where more than θ cameras see a known occlusion can be 
eliminated if no other region is connected to it with equal or 
less than θ  cameras which see a known occlusion. As shown in 
Figure 7 the mixed occlusions are binarized by θ. Afterwards, 
connected regions are adapted. The identified remaining 

occlusions which do not contain an object can be safely 
removed. For more details about θ, see [12]. 

 
Figure 7 Binarisation, adaption and cleanup for the three different thetas 

III.  RECONSTRUCTION ALGORITHM 

In this section we provide a voxel-based reconstruction 
algorithm, which works on the surfaces of the objects and is 
capable to deal with occlusions. The algorithm presented here 
is limited to color and grayscale cameras in combination with a 
conventional background subtraction approach like [5] and [8]. 
Regarding the camera model, we only assume a two-
dimensional field of connected pixels, with their back projected 
volumes also connected. Furthermore, the position and 
geometry of the pixels and the back projected volumes have to 
be known. Thus, we assume neither a pinhole camera model 
nor undistorted images. 

A. Surface voxel determination 

Given several calibrated cameras images segmented into 
free, known and unknown and a voxel space, surface voxels can 
be determined by the following algorithm. Then the result is a 
voxel space with voxels marked according to the occlusions of 
all perspectives and a list containing all these voxels. At first, 
the needed functions are explained. 

The classification value (free, known or unknown) of a pixel 
P is provided by the function classification (P). 

Assuming that two adjacent pixels are separated by a pixel 
edge E, a list of voxels that are intersected by the back 



projection of this pixel edge E down to its visibility depth is 
provided by the function voxelList(E). The function 
neighborClassification(E) for a pixel edge E provides the value 
unknown, if one of the two pixels is classified as unknown. It 
provides known, if one pixel is classified as known and the 
other as free. In all other cases, it provides free. 

For each voxel, the pixels it projects to in all cameras are 
needed. For simplification, here we only use the center of the 
voxels with the consequence, that objects that are smaller than 
a voxel side may be reconstructed incorrectly. Thus, it is 
necessary to choose an appropriate small voxel size. (Another 
voxel-like but camera centric-representation called conexels [1] 
could be applied, which avoids this drawback). The pixel of the 
projection of the voxel center V into a camera image C is 
provided by the function projectVoxelCenter(V, C). 

The distance for a voxel center V to a camera C is provided 
by the function distance(V, C). 

Per pixel P, the visibility depth (distance to Bi
F) and the 

occlusion depth (distance to Bi
O) as described in Section II is 

provided by the functions visibleDepth(P) and 
occlusionDepth(P). 

The function markVoxelAndAddToList(V, OK, OU) marks 
the voxel V in voxel space by the two counter variables OK, OU 
representing the number of known and unknown occlusions 
respectively, and adds it to a list containing all surface voxels. 

 foreach camera C do 
   foreach silhouette pixel edge E do 
     foreach voxel V in voxelList(E) do 
       counter OU = 0, F = 0, OK = 0 
       if neighborClassification(E) == unknown 
         OU = 1 
       else if neighborClassification(E) == known 
         OK = 1 
       endif 
       foreach camera C’ != C do 
         pixel P = projectVoxelCenter(V, C’) 
         if classification(P) == known 
            or distance(V, C’) ≥ occlusionDepth(P) 
           OK++ 
         else if classification(P) == unknown 
            and distance(V, C’) ≤ visibleDepth(P) 
           OU++ 
         else 
           F++ 
         endif 
       done 
       if F == 0 
         markVoxelAndAddToList(V, OK, OU) 
       endif 
     done 
   done 
 done 

As described above, after the execution, a voxel list 
containing the determined surface voxels is available. 
Additionally, these voxels are marked in voxel space by the 
tuple (OK, OU). 

Since the surface is not necessarily closed at the known 
objects, one may use a constrained flood fill algorithm to close 
it. Furthermore, completely occluded regions exclusively 
caused by the static environment are not revealed by this 
algorithm but can be determined in an initialization step by 

testing each voxel for visibility against the static environment 
in all cameras. 

Having the surface voxels, partitions of related voxels, i.e. 
voxels with the same known and unknown occlusion counter 
can be built. Then, the sorted plausibility checks can be applied 
according to the costs and success probability. Dependent on 
the plausibility check additional information, like volume has 
to be calculated. 

B. Memory Consumption 

Some of the used functions can be implemented as look-up 
tables to enable fast calculations. In order to give a memory 
consumption estimation M of these look-up tables, the 
following variables are introduced: A voxel space with 
dimensions X, Y and Z is used and the resolution of N cameras 
is provided by W and H. 

The visibility depth and occlusion depth per pixel has a 
memory consumption for all images of: 

M1 = 2 · N · W · H 
 

The memory consumption for the voxel lists per pixel edges 
and for all cameras can be estimated by: 

M2 ≤ N · [   ((H + W + 2)) · E  
     + ((W + 1) · (H − 1) + (W − 1) · (H + 1))  · G ],  
        with G = X + Y + Z and E = Z · Y + Z · X,  X ≤ Y ≤ Z 

 

Furthermore, the distances for each voxel to all cameras 
results in a memory consumption of: 

M3 = 2 · N · X · Y · Z 
 

Thus, the overall memory consumption is bounded by M ≤ 
M1 + M2 + M3. As an example the parameters are set to N = 4, 
W = 320, H = 240 and X = Y = Z = 100, with a typical camera 
placement and voxel-, pixel-addresses and floating point 
variables of 4 bytes, results in an upper bound of M ≤ 907 MB 
and actually of 411 MB. 

IV.  EXPERIMENTS 

In order to evaluate our methods and algorithms, we set up 
two test environments. The first one is an industrial robot work 
cell (Figure 8, left) with eight color cameras and four depth 
sensors mounted at the ceiling. Each camera has its own 
computing unit for preprocessing steps. The second 
environment (Figure 8, middle) is a smaller one, with five color 
cameras mounted around the scene to survey. Only one 
computer is used here. The latter one is available in a virtual 
simulation environment, too (Figure 8, right). 

 



Figure 8 Two test environments: Left: Robot work cell with eight color 
cameras and four depth cameras mounted at the ceiling; Middle: Small 

demonstrator with five color cameras. Right: Virtual test environment: Five 
calibrated cameras; Yellow wire frame: Surveillance zone; Light blue: Static 

known environment; Red Sphere: Virtual unknown object. 

In the following, the hardware and software configuration 
of the second test environment is listed. Then the performance 
results of the reconstruction step are presented having already 
segmented images within the virtual environment of the second 
test environment. 

A. Hardware and Software Configuration 

The used computer contains an Intel Core™2 Quad CPU, 
with 2 GHz, 6 MB Cache and 4 GB RAM, but currently only 
one core of the CPU is utilized by our implementation. The 
graphics card is an NVIDIA GeForce 9600 GT with 512 MB 
and it is CUDA enabled. The operating system is a SUSE 11.0, 
with the gcc/g++ compiler suite version 4.3.1. The cubical 
volume of the test environment is 76 cm × 76 cm × 76 cm. Five 
Unibrain FireWire Fire-i™ Digital Board Cameras with 15 and 
30 fps and a resolution of 640x480 Bayer Pattern are used. 

The calibration results, obtained by [16] for the images with 
a resolution of 640x480 have a low 3D position back projection 
error (mean deviation < 1.6 pixels and standard deviation < 1 
pixel). 

The following performance tests for the reconstruction uses 
the virtual test environment, based on the real test environment 
providing a virtual object (here: sphere with a radius of 6 cm) 
and its segmented camera images. Additionally, a surveillance 
zone and a static object are included (Figure 8, right).  

 
Figure 9 Images of the simulated environment of four different frames of 
the recorded sequence. Here, the static object is illustrated by its wire frame. 

The yellow dots represent the voxels which have been tested for being surface 
voxels within a predefined surveillance zone. The surface voxels are shown 

using a mixture of red and blue dependent on the visibility. 

B. Performance tests 

The unknown object in the virtual test environment is 
moved on a circular path around and through the static known 
object in the middle of the scene. The virtual object is projected 

into all camera images simulating a conventional background 
subtraction. The segmented images are used to reconstruct the 
voxel-based unknown object within the predefined surveillance 
zone and in consideration of the occlusions. Two cycles of this 
movement with a total of 1200 frames have been recorded. 
Figure 9 illustrates four interesting frames of the recorded 
sequence. The yellow dots represent voxels which have been 
tested for being surface voxels. The resulting surface voxels are 
shown using a mixture of the colors red and blue, dependent on 
the visibility.  

 
Figure 10 Pairwise comparison of different settings regarding number of 

cameras (a),(b), number of pixels (c),(d) and number of voxels (e),(f). Green 
line: Number of voxels tested. Blue: Number of surface voxels tested. Red 

area: Needed time in milliseconds (right scale). 



Dependent on the position of the unknown object, different 
numbers of pixels and voxels are marked and thus, different 
computation times are needed. 

The diagrams, depicted in Figure 10, compare the number 
of potential surface voxels (green line), actual surface voxels 
(blue line) and the time (red area) consumed for different 
numbers of cameras (a, b), different camera resolutions (c, d) 
and different voxel space resolutions (e, f). Obviously, the 
calculation time corresponds to the number of potential surface 
voxels which have to be tested for each camera. Furthermore, 
the number of actual surface voxels must always be smaller or 
equal to the number of potential surface voxels. 

The calculation time is high, if the unknown object is seen 
by all cameras, such that many potential voxels have to be 
tested (frame# 250). Although the unknown object may be 
outside the surveillance zone, potential surface voxels have to 
be tested because of the absent depth information of this 
unknown object. Only the number of actual surface voxels is 
zero (frame# 450).  

In Figure 9 b the lower part of the sphere is only seen by the 
rightmost camera. Thus, the complete cone of potential surface 
voxels within the surveillance zone caused by that camera 
actually results in surface voxels. In this case, the ratio between 
actual surface voxels and potential surface voxels is relatively 
high. 

TABLE II. summarizes the measured computation times by 
comparing the average values of the diagram pairs. The 
quintessence of this diagram is that although multiplying the 
number of pixels or voxels by a factor, the average time 
increases slower. This behavior is due to the consideration of 
surfaces and silhouettes instead of volumes and areas, 
respectively. 

TABLE II.  SUMMARY AND ANALYSIS OF THE RECORDED SEQUENCE 

 # cameras 
Avg. number of 
potential surface 

voxel tested 

Avg. number of 
actual surface 
voxel tested 

Avg. time 
[ms] 

b 5 89021 8281 15.74 
a 3 52488 9168 9.88 

b/a 1.667 1.696 0.903 1.593 
     

 # pixel    

d 172800 99095 11536 19.06 
c 19200 51821 6166 9.01 

d/c 9 1.91 1.87 2.11 
     

 # voxel    

f 10760688 134968 15717 24.43 
e 398544 31175 3674 5.9 

f/e 27 4.33 4.28 4.14 
 

V. CONCLUSIONS 

For the first time, a general and consistent formalism for 
describing the visibility and occlusions within a camera 
surveyed scene with a known environment is provided. To do 
so, objects are classified as known/unknown and 
static/dynamic. Furthermore, this formalism abstracts from the 

camera type and the background subtraction method. Thus, 
depth sensors or grayscale/color cameras can both be used or 
even mixed. 

A voxel-based algorithm reconstructing the unknown 
objects, which works on surfaces using grayscale/color cameras 
in combination with a conventional background subtraction 
method, has been presented. The experimental results show that 
the computation time for the reconstruction step depends 
mainly on the number of tested surface voxels. Additionally, 
the measurements show that the computation time increases 
slower than the camera resolution and voxel space resolution, 
due to the surface and silhouette consideration. 

In the future, the plausibility checks especially the temporal 
ones will be considered more intensively, since these promises 
a valuable enhancement in the reconstruction of unknown 
objects. The plausibility checks will be integrated into the 
voxel-based algorithm. Furthermore, the presented algorithm 
can be parallelized, such that potential surface voxels are tested 
simultaneously. For this, NVIDIAs CUDA seems to be suited. 
In addition, non-voxel-based approaches will be investigated.  
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