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Abstract—We present a general method for reconstructing
unknown objects (e.g. humans) within a known enviroment (e.g.

tables, racks, robots) which usually has occlusionsThese
occlusions have to be considered since parts of thenknown

objects might be hidden in some or even all camerdews. Besides
grayscale and color cameras also depth sensors a@nsidered. In

order to avoid cluttered reconstructions, plausibiity checks are
used to eliminate reconstruction artifacts which atally do not

contain any unknown object. One application is a
supervision/surveillance system for safe human/rolteoexistence
and —cooperation. Experiments for a voxel-based im@mentation

are given.
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I INTRODUCTION

Thevisual hull[14] of an object is defined as the maximal

silhouette-consistent volume in the limit of animite number
of cameras. The visual hull for a finite numbercameras is

called inferred visual hull [17]. It can be described as

intersection of the general cones obtained by tlekb
projection of the object’s silhouettes of all caménages in a
calibrated camera network [16]. If the object ianpdetely
visible in each camera, the inferred visual huNals contains
the overall object. Several methods for constrgctive inferred
visual hull have been published in the past. Theeedifferent
representations like voxels [4], [13], [18] or pa&drons [15],
[7] have been used. The main focus has been eftigie
accuracy and robustness.

Correct
visual hull

Figure 1 lllustration of a scene with two cameras and aedait(a), the
erroneous inferred visual hull construction, whety@onsidering the object
cones (b) and the correct visual hull, using themlement of the free
space [7].

In the presence of occlusions, the silhouette migat
erroneous in some cameras, such that the infeiigelvhull
does not contain the overall object. The same protdrises
when the object resides partly outside the camesatum

(Figure 1b). Background subtraction algorithms .(¢5§ and
[8]) will produce such erroneous silhouettes if thigject is
partly or completely occluded. To overcome this bem,
occlusions must be considered. Recently, some aphes
have been published, which deal with two differkimds of
occlusion problems.

.
.

Figure 2 lllustration of the occlusions in a scene with caenera using an
occlusion map (a) and (b) and the resulting deiaatapabillities (d) and (e).
In Figure (c) the visibility depth of the known eéronment is utilized as
described in our approach. The detection capalaifign object is illustrated
in (f). The region outside the camera frustum @it@haly interpreted as
occlusion. All light gray, light blue and light redgions may contain objects

and have to be interpreted as reconstruction here.
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The first occlusion problem is caused by the camera
frustum. If the object resides outside this frusiorat least one
camera, the inferred visual hull will not contaimetoverall
object. This problem has been tackled by [7]. imngple, they
do not calculate the intersection of object conesi the
complement of the fused free space (Figure 1).

The second occlusion problem is caused by an enwieot
which might occlude the objects to be reconstruétedome
camera views. In [3] and [12] dynamic known objelike
robots are considered. A masking of these in thages is
proposed. Later this method was applied to statiduding
objects [9], [13]. While [3] calculates the occlusimap online
based on the known geometry and configuration robat, [9]
determines a static occlusion map by a learninghaakt
Having static objects, this occlusion map has ikadvantage,
that a whole cone is classified as occlusion, algho the



camera could see up to the occluding objects suffaigure 2
a, b and d, e). Using several cameras, as desdrijéd] and

[11], this effectively results in an inferred visuaull of the

static objects (Figure 3 a). In the case of sew&Hdic objects,
also pseudo objects may arise (Figure 3 b). Theneeither
information about the geometry of the static olgjamr about
the free space within the inferred visual hullsicg&i unknown
objects which finally have to be reconstructed rmagide
within these static object hulls, the inferred wakhulls have to
be added to the reconstruction. The observatiom atene
containing active objects can reveal the inferristial hulls of
the occluding objects. [11] provides a probability an

occlusion for a voxel in a given view, while [1@oconstructs
the occluding object. As said above — the bestamation of

a static object is its inferred visual hull, resdtin the same
issue as the pure occlusion maps.

E)) b)

Figure 3 lllustration of the inferred visual hull of the leeed static
environment. We do not have information about tttea geometry and the
free space within the inferred visual hull. Thug, rave to assume unknown

objects which have to be reconstructed within itifisrred visual hull.
Furthermore, we do not know the actual depth a camwen see at a specified
pixel (b).

Compared to the learning approach of the statitudowy
objects, we consider here the occlusion problemn faoslightly
different view. We already know the complete enwvinent
containing static objects (e.g. tables, racks) etad dynamic
objects (e.g. robots) except the unknown dynamjeatde we
want to reconstruct (e.g. human) (Figure 2 ¢, fug, the
question is how to obtain the best reconstructibnthese
unknown objects using different kinds of sensorslafc
cameras, depth sensors), different kinds of objékt®wn
static and dynamic) and different kinds of backagibu
subtraction approaches. Furthermore, what limitati@xist
having these different conditions and how to elimtén
reconstruction artifacts which actually do not eamtany
object?

We provide an analysis of the above questions and
general model of the occlusions and visibility. thermore, we
present a voxel-based algorithm and experimentardat
computation times.

One main application are surveillance systems fife s
human/robot coexistence and cooperation. The catibim of
the strength of both human and robot promises dehig
efficiency and flexibility in production. In the pg humans and
robots were strictly separated by fences and ofadety
equipment. Recently, engineer standards were eaterfidr
allowing vision systems under certain conditiomsshort, the
human has to be safely detected by the vision systed the
robot speed is restricted.

The remainder of the paper is organized as follohus.
Section II, the method to cope with occlusionsdsatibed in a
general fashion. A multitude of alternatives iscdssed, e.g.
the use of depth images instead of usual color émadn
Section Ill, a reconstruction algorithm is desadiband
experiments in Section IV provide results regarding
computation times. Section V closes with a conolusind an
outlook to future investigations.

IIl.  OCCLUSIONS ANDVISIBILITY

This section comprises a theoretical look at theblem of
occlusions and visibility in a multi-camera setuvimg
different pre-conditions, and the possibilities perform a
reconstruction of the objects using plausibilityecks to revise
pseudo objects, i.e. reconstruction artifacts whactually do
not contain an object. In short, the aim is to nstaict as
accurate as possible the unknown but detectables [ferg.
humans) within a known environment (e.g. tabledoth
which typically has occlusions.

Figure 4 lllustration of the differences regarding visibjliand occlusions
using color or grayscale cameras with common chdetgrtion methods (a),
extended change detection methods (b), or usipthdamera, with a
suitable change detection method (c). Nomencla@ir€amerd; F': Free in
camerd; S Static known objecD: Dynamic known object): Unknown
object;O'k: Known occlusion in; O'y: Unknown occlusion im; B's: Free
boundary in; B'o: Occlusion boundary ii B'y: Unknown boundary in

At first, the types of objects that are containgdsbrveyed
scenes are described in Subsection A. Two diffekemds of
cameras are used to detect the introduced typbjetts which
is referred asunknown(e.g. humans and objects with initial
unknown position, orientation, etc.). The camerpety its
detection capabilities and the different occlusicassed by the
different objects are detailed in Subsection B. The
simultaneous use of several cameras with diffqperdpectives
onto the surveyed scene which results in a cldtere
i@construction is described in Subsection C. Tlaugbility
checks to revise this cluttered reconstruction diseussed in
Subsection D.

A. Object Types

The surveyed scene contains static and dynamicctsbje
Static objectsS are racks, tables etc. The geometry, position
and the appearance of those objects kam@wn and do not
change over the time (apart from possibly occurshgdows
and from illumination changes caused by the dynaohjects).
Dynamicobjects are robots, conveyor belts, humans etes Thi
group must be divided into two subgroups. The fixdbgroup
containsknown dynamic object®, with changing geometry,
position and the appearance but in a known mafiier robots
and conveyor belts pertain to this subgroup. Theors#®



subgroup contains dynamic objettswith unknownchanging depend directly on the used camera type with iteatien
geometry, position and appearance, e.g. humansthén capabilities and are described later.

majority of cases approximate information aboué simlume

or similar can be provided. TABLE |. summarizes the
identified object types. Note that static unknoviajegcts do not
exist. Thefree space- of a surveyed scene does not contain
any known object but may contain unknown objeEigure 4
a-c illustrate the introduced object types. In swanm the

following three equations hold true: segn(S,E) ={S+t(E-S)[tORD0<t<1 S ENE"

—ENn 5 n. i
SODOF=E, withE" Euclidian Space Furthermore, a distance function d&stQ), with P, Q € E"
SnD=SnF=DnF=0andUcF exists, since the Euclidean Space is a metric spéadng the
visibility and the occlusions, sets containing thest distant
visible points and the nearest occluded points {pewing

In order to describe our formalism, we use the eptx of
rays and segments in the Euclidean Space. ASray(and a
segm§, B are point sets and are defined by

ray(S,E) ={S+t{E-S)|tOR;,S EJE"}

TABLE 1. OBJECTTYPES ANDEXAMPLES WITH ABBREVIATION direction) can be SpeCified by
Static Dynamic B =(x0V' |dis(C' ) = max (disiC',y))
K Tables, Racks, ... Robots, Conveyor belts, ... yov!nray(C' x)
nown (Abbr.: ) (Abbr.: D) i e _ o
Unknown  —- Humans, ... Bo ={x0 O [dist(C',x) = immci {dist(C", y)}
(Abbr.: U) YO N PEMC )
B, ={x0Q) |dist(C',x) = min {dist(C',y)}
yo; nray(C' x)

B. Camera Types and Detection Capabilities
P P Dependent on the camera type, different changectitate

_ A number ofN calibrated cameras with focal POIMS € methods have to be used to detect the unknown tsbjecthe
E'ie{l,..,N}and a frustunl’ = {x € E'| xis projected via following, the concrete visibility and occlusiont a camera
C' onto the image plane of camejaare used to detect and depending on its type and a suitable change deteatiethod
finally reconstruct the unknown objects which resith-  are formalized. Here, we distinguish between cgtag/scale
between the known objects as accurate as posSidgefore, cameras in conjunction with a conventional backgtbu
two types of cameras are considered: subtraction (1) and an improved background submact

e Color and Grayscale cameraghe images of these method (2) and depth images (3).

sensors contain c_olor and intensity information for 1) Basic Color/Grayscale Images
each pixel, respectively. Using color or grayscale cameras, ordinary change
detection methods can be utilized. These changectitat
methods segment an image into foreground and bawkdr
based on the known appearance and a current infatee o
surveyed scene. If an unknown object resides irstie@me and

One fundamental characteristic of these sensdtaighey is not occluded by the known environment, it is kear as
can only see up to the surface of the nearest epabject per foreground in the segmented image. But usuallydyreamic
viewing direction (e.g. pixel center direction).uh occlusions  known objects are also — if not occluded — idesdifias
always occur at the rear side of an opaque objdateover, foreground in the segmented image. Thus, the detect
the visibility of these sensors is limited by theistumL'.  unknown objectsn front of a dynamic known object is not
Outside this frustum, the sensor is not able to a®ghing. possible. Since the change detection method isabtg to
Thus, these parts need to be interpreted as oookias well. decide whether the cone between the camera andlyttzamic
known object is free or contains unknown objedtsais to be
interpreted as a known occlusion. Thus, the vigbiis
described by

* Depth camerasThe images contain depth information
for each pixel (for example stereo vision or tinfe-o
flight cameras).

Now, the termsvisibility and occlusions have to be
introduced and detailed (Figure 4). Tisibility \/ of a camera
i is the region of the free spaEewhere a camera is able to
detect unknown objects. Thaown occlusio®y' of a camera : : :
is the region of the free spaBewhere a camera can not detect Vi ={x0OL [segn{C',x) U F O
unknown objects due to occlusions caused by knadwjeacts. (ray(C',X)n D =00
Thus, it can be stated th@t' N V' =0 andOy' U V' = F for : :
each camera Theunknown occlusio®y' of a camera is the (ray(C’,x) n D # 0 Oray(C',x) n S0 1

region of the visible spacé where an unknown object has to o O  dist(C',y) <dist(C',2)))}

be assumed, due to the evaluation of a camera irbgge yoSnray(C'x) ZIDnray(C',x)

background subtraction method. The free spacelseeamera As detailed above, the known occlusions are fortedlay
i F is defined byF V\Oy'. It can be stated, tha' N Oy ! _ _

=N F =0) nF = Dandodu Oj' U F =F for Ok =F\V'

each camera The concrete structures of the 9¢tsOy', Oy



Since depth values are not available for unknowjeatd
with this sensor type, unknown occlusions stathatcamera:

Q) ={xOV'|ray(C',x)nU nV' # [}

Figure 4 a illustrates the occlusions using a caor
grayscale camera and a conventional backgroundastion
method.

2) Improved Color/Grayscale Images
In the second case, an improved change detectitimoohés
able to detect unknown objects even in front ofyaasnic
object. Two simple approaches come to mind:

First, a database which contains several appeaande
different configurations and positions of the dymarknown

objects as images can be used to project the dgnkinawn

objects into the current image before using it imigmn ordinary
change detection method [2]. The disadvantageisfrtiethod
is the vast amount of needed memory to store tlagés if the
dynamic object has many configurations like an stdal

robot.

Second, the configuration, position and texture¢hef dynamic
known object can be rendered into the current imagfere
using it within the ordinary change detection. Tissues can
be discovered. First, the rendered dynamic knowijeabb
probably causes a classification into foregrouimgesit is not
exact enough. Second, dependent on the geometrglexity
of the known dynamic objects, it might take too muitne to
render the dynamic known object.

The visibility and occlusions of the extended baokad
subtraction method are described by:

V' ={xOL |segn{C',x) O F}

O, =F\V'
The unknown occlusion®,' are the same as in the

previous case, using a conventional backgroundractixin
method.

Figure 4 b illustrates the visibility and occlussonsing a
color or grayscale camera and an extended changetide
method. (The known occlusion cone in front of thsown
dynamic object in Section | now can be classifiediaible.)

Here we consider only the consequences of usirgettvweo
different background subtraction methods. A furtiiiscussion
of these methods is outside the focus of the paper.

3) Depth Images

Q) ={x0OV' |segn(C',x) nU nV'# O}

C. Simultaneous Use of Several Cameras

Using several cameras with different perspective® the
surveyed scene, each camera, regardless the tgpésthsed
provides a different occlusion and visibility sitioa, as
discovered in the previous section that now hdsetmerged.

For every camerd a collection of sets can be provided
describing the known and unknown occlusions as aglthe
surveyed free space.

Q ={04.0},.F'}
The partitioning of the free space via the recartsion step
can be described by

R={A=qg'n..nq" |d O0Q O
Ox,yOA: ¥ :[01] - Af@O)=x0f@) =y}

In words, all different labeled regions of all caae are
intersected among each other. Furthermore, theltiresu
intersections are grouped into connected componAttihese
connected components are containedRbyFigure 5, upper
row). Again, it can be stated thah.gr A=F.

ol
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Figure 5 lllustration of the use of several cameras. Infist row, the
occlusion situation is simply overlaid. The secood, regions are set to free,
if at least one camera sees free. In the firstroolucolor/grayscale cameras

and a simple change detection method are uselde Isetcond column,

Background subtraction methods using depth camera®lor/grayscale cameras and an extended changgidetmethod are used. In

could compare the known depth with a current déptleach
pixel to determine not-occluded unknown objects Egsides
foreground/background segmentation, the result tiaeaily
contains depth information. Thus, a free cone betwthe
camera and a not-occluded unknown object can beagieed.
Also, a free cone between the camera and a notded!
known dynamic object can be guaranteed (Figure .4lrT)
comparison to the improved background subtraction f
color/grayscale cameras, only the definition of tirknown
occlusions changes:

the last column, depth cameras are used.

Volumes in the free space of the surveyed scenehadmie
actually seen as free (cf') by at least one camera are not
further considered, since no unknown object caideethere.
This results in (Figure 5, second row):

R={xOR|0i ={0,...,.N} : xOF' Ox# 0}

To each set oR’ a tuple ¢, u) can be assigned, containing
the number of seen known occlusions and unknowfusions.



The number of known and unknown occlusions is gred  occlusions which do not contain an object can bfelsa
by the mixture of the colors red and blue in Figbre removed. For more details abdlitsee [12].

Binarization Adaption Cleanup

D. Plausibility Checks

In the majority of applications some informatiokelisize,
volume, etc. about the unknown objects is availaBkeveral
sets ofR’ actually cannot contain an unknown object. Thus.
plausibility checks are used to eliminate thosdustons which  ,_ 4
do not contain unknown objects. The mentioned (idlity
checks aim for ajuasi-staticconsideration. Another kind of
plausibility checks can utilizeemporalconsiderations, like “an
unknown object can not suddenly appear in and soded by
free space”.

Note plausibility checks can apply to the wholerscer
only to a part of the scene. In the following, aigle of quasi-
static plausibility checks are discussed.

%

[\
> 4

Figure 6 lllustration of theMinimum Volumeplausibility check for
color/grayscale with conventional change detecti@ft: Before removing
small regions; Right: After removing small regions.

Minimum Volume If only unknown objects like humans
with a typical volume of 0.075 m3 should be detdctene
might set a maximum volume for occlusions to bmiglated to
0.05 m3. Thus, all connected setfdfobtained as described in
the previous section with a volume smaller tharb Or8 can be [ll.  RECONSTRUCTIONALGORITHM

safely removed. Only unknown objects with a spedifi In this section we provide a voxel-based reconsirnc
minimum volume remain (Figure 6). Note, a maximuoiLme  446rithm, which works on the surfaces of the ofsjeand is

plausibility check is “obviously inapplicable, sindarger  canaple to deal with occlusions. The algorithm enésd here
occlusions may contain smaller unknown objects. is limited to color and grayscale cameras in cormtiim with a

Maximum Distance to Groundlypically, objects do not conventional background subtraction approach iBeahd [8].
hover but have contact with the ground. If this cae Regarding the camera model, we only assume a two-
guaranteed, all connected setsRif with no contact to the dimensional field of connected pixels, with theack projected
groundSor D can be eliminated. More general, all objects withvolumes also connected. Furthermore, the positionl a
a distance larger than a specified maximum distancehe ~ geometry of the pixels and the back projected vefimave to
ground can be eliminated. Thus, setting the maximdistance b€ known. Thus, we assume neither a pinhole camexel
to 1 m also a jumping human can be detected andois Nor undistorted images.
removed by this plausibility check.

Figure 7 Binarisation, adaption and cleanup for the thréfewint thetas

. . A. Surface voxel determination
Surveillance Zonedn most cases, only certain parts of the

whole surveyed scene are actually interesting abtthknown Given several calibrated cameras images segmented i
objects outside this part can be eliminated freg, knownandunknownand a voxel space, surface voxels can

be determined by the following algorithm. Then tksult is a
Occlusion parametep: If it can be guaranteed, that an voxel space with voxels marked according to thdusions of
unknown object can be completely occluded by thewkn  all perspectives and a list containing all theseelsm At first,
environment in a maximum number @fcameras, all regions the needed functions are explained.
where more tharf cameras see a known occlusion can be

eliminated if no other region is connected to ithmequal or 1 he classification valueree knownor unknown of a pixel
less thard cameras which see a known occlusion. As shown iy 1S Provided by the functiodasssification (P)
Figure 7 the mixed occlusions are binarizeddbyfterwards, Assuming that two adjacent pixels are separated pixel

connected regions are adapted. The identified mn@i edge E, a list of voxels that are intersected by the back



projection of this pixel edg& down to its visibility depth is
provided by the function voxelList(E) The function
neighborClassification(Ejor a pixel edgds provides the value
unknown if one of the two pixels is classified asknown It
providesknown if one pixel is classified aknown and the
other adree In all other cases, it providége

For each voxel, the pixels it projects to in allmeaas are
needed. For simplification, here we only use thetereof the
voxels with the consequence, that objects thasaraler than
a voxel side may be reconstructed incorrectly. THuss
necessary to choose an appropriate small voxel Gamther
voxel-like but camera centric-representation catledexels [1]
could be applied, which avoids this drawback). phe! of the
projection of the voxel cente¥ into a camera imag€ is
provided by the functioprojectVoxelCenter(V, C)

The distance for a voxel centérto a camer& is provided
by the functiordistance(V, C)

Per pixelP, the visibility depth (distance tB'r) and the
occlusion depth (distance &) as described in Section Il is
provided by the functions visibleDepth(P) and
occlusionDepth(R)

The function markVoxelAndAddToList(V, & Oy) marks
the voxelV in voxel space by the two counter variabgs Oy
representing the number of known and unknown otmhgs
respectively, and adds it to a list containingsaliface voxels.

foreach camera C do
foreach silhouette pixel edge E do
foreach voxel V in voxellList(E) do
counter Oy = 0, F=0, Ok =0

if neighborClassification(E) == unknown
oy =1

else if neighborClassification(E) == known
Ok =1

endif

foreach camera C’ != C do
pixel P = projectVoxelCenter(V, C’)

if classification(P) == known
or distance(V, C’) = occlusionDepth(P)
Ox++
else if classification(P) == unknown
and distance(V, C’) = visibleDepth(P)
Oy++
else
F++
endif
done
if F==0
markVoxelAndAddToList(V, Ok, Oy)
endif
done
done
done

As described above, after the execution, a voxsi li
containing the determined surface voxels is avkilab
Additionally, these voxels are marked in voxel spdy the

tuple O, Ov).

Since the surface is not necessarily closed atktioavn
objects, one may use a constrained flood fill @thor to close
it. Furthermore, completely occluded regions exgkly
caused by the static environment are not revealedhls
algorithm but can be determined in an initializatistep by

testing each voxel for visibility against the staginvironment
in all cameras.

Having the surface voxels, partitions of relatedals, i.e.
voxels with the same known and unknown occlusioanter
can be built. Then, the sorted plausibility chec&s be applied
according to the costs and success probability.eBeéent on
the plausibility check additional information, likelume has
to be calculated.

B. Memory Consumption

Some of the used functions can be implementedasup
tables to enable fast calculations. In order tce givmemory
consumption estimationM of these look-up tables, the
following variables are introduced: A voxel spacdthw
dimensionsX, Y andZ is used and the resolution Mfcameras
is provided byw andH.

The visibility depth and occlusion depth per pixels a
memory consumption for all images of:

Mi=2-N-W-H

The memory consumption for the voxel lists per pedges
and for all cameras can be estimated by:

My<N-[ (H+W+2)-E
+(W+1)-H-1)+W-1)-(H+1))  G]
WithG=X+Y+ZandE=Z-Y+Z-X, X<Y<Z

Furthermore, the distances for each voxel to atheras
results in a memory consumption of:

M3=2-N-X-Y-Z

Thus, the overall memory consumption is bounded/by
M; + M, + M3. As an example the parameters are sét t04,
W = 320,H = 240 andX = Y = Z = 100, with a typical camera
placement and voxel-, pixel-addresses and floaguint
variables of 4 bytes, results in an upper bounil af 907 MB
and actually of 411 MB.

V.

In order to evaluate our methods and algorithmsseteup
two test environments. The first one is an indastobot work
cell (Figure 8, left) with eight color cameras afwdir depth
sensors mounted at the ceiling. Each camera haswts
computing unit for preprocessing steps. The second

EXPERIMENTS

environment (Figure 8, middle) is a smaller onghwive color
cameras mounted around the scene to survey. Ongy on
computer is used here. The latter one is availablke virtual
simulation environment, too (Flgure 8, right).




Figure 8 Two test environments: Left: Robot work cell witigle color
cameras and four depth cameras mounted at theg;diliiddle: Small
demonstrator with five color cameras. Right: Vifttest environment: Five
calibrated cameras; Yellow wire frame: Surveillazoee; Light blue: Static
known environment; Red Sphere: Virtual unknown obje

In the following, the hardware and software confegion
of the second test environment is listed. Thenpérgormance
results of the reconstruction step are presentethdpalready
segmented images within the virtual environmerthefsecond
test environment.

A. Hardware and Software Configuration

The used computer contains an Intel Core™2 Quad,CPl

with 2 GHz, 6 MB Cache and 4 GB RAM, but currerntiyly
one core of the CPU is utilized by our implemeitati The
graphics card is an NVIDIA GeForce 9600 GT with 5B
and it is CUDA enabled. The operating system i85 11.0,
with the gcc/g++ compiler suite version 4.3.1. Tewbical
volume of the test environment is 76 cm x 76 cn6>xcin. Five
Unibrain FireWire Fire-i™ Digital Board Cameras wit5 and
30 fps and a resolution of 640x480 Bayer Pattegruaed.

The calibration results, obtained by [16] for theapes with
a resolution of 640x480 have a low 3D position bpiakection
error (mean deviation < 1.6 pixels and standardatien < 1
pixel).

The following performance tests for the reconstauctises
the virtual test environment, based on the reald@sgironment
providing a virtual object (here: sphere with aiuadof 6 cm)
and its segmented camera images. Additionally,reeglance
zone and a static object are included (FiguregBityi

Frame number: 450

Figure 9 Images of the simulated environment of four differeames of
the recorded sequence. Here, the static objettssrated by its wire frame.
The yellow dots represent the voxels which havetested for being surface
voxels within a predefined surveillance zone. Tindage voxels are shown

using a mixture of red and blue dependent on tibility.

B. Performance tests

The unknown object in the virtual test environmest
moved on a circular path around and through thicdtaown
object in the middle of the scene. The virtual obje projected

into all camera images simulating a conventionalkbeound

subtraction. The segmented images are used tosteaonthe

voxel-based unknown object within the predefined/sillance

zone and in consideration of the occlusions. Twdegyof this

movement with a total of 1200 frames have beenrdecb

Figure 9 illustrates four interesting frames of thecorded
sequence. The yellow dots represent voxels whicke Heeen
tested for being surface voxels. The resultingaagfvoxels are
shown using a mixture of the colors red and blepethdent on
the visibility.

a) Reconstruction ( 3 cameras, resolution: 320x240; voxel space: 152x152x138 )
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b) Reconstruction ( 5 cameras, resolution: 320x240; voxel space: 152x152x138 )
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c) Reconstruction ( 4 cameras, resolution: 160x120; voxel space: 152x152x138
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d) Reconstruction ( 4 cameras, resolution: 480x360; voxel space: 152x152x138 )
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e) Reconstruction ( 4 cameras, resolution: 320x240; voxel space: 76x76x69 )
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f) Reconstruction ( 4 cameras, resolution: 320x240; voxel space: 228x228x207 )
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Figure 10 Pairwise comparison of different settings regardingber of
cameras (a),(b), number of pixels (c),(d) and nurob&oxels (e),(f). Green
line: Number of voxels tested. Blue: Number of aoef voxels tested. Red

area: Needed time in milliseconds (right scale).



Dependent on the position of the unknown objedtedint
numbers of pixels and voxels are marked and thifigreht
computation times are needed.

The diagrams, depicted in Figure 10, compare thabeu
of potential surface voxels (green line), actuafaze voxels
(blue line) and the time (red area) consumed fdfemint
numbers of cameras (a, b), different camera resokit(c, d)
and different voxel space resolutions (e, f). Obsly, the
calculation time corresponds to the number of paksurface
voxels which have to be tested for each camergh&umore,
the number of actual surface voxels must alwaysrhaller or
equal to the number of potential surface voxels.

The calculation time is high, if the unknown objeciseen
by all cameras, such that many potential voxelsehev be
tested (frame# 250). Although the unknown objecty rba
outside the surveillance zone, potential surfacesighave to
be tested because of the absent depth informatfothi®
unknown object. Only the number of actual surfaogels is
zero (frame# 450).

In Figure 9 b the lower part of the sphere is adgn by the
rightmost camera. Thus, the complete cone of pialesurface
voxels within the surveillance zone caused by ttamnera
actually results in surface voxels. In this cake,ratio between
actual surface voxels and potential surface voisetglatively
high.

TABLE Il. summarizes the measured computation tilmes
comparing the average values of the diagram pdire
quintessence of this diagram is that although mplyitig the
number of pixels or voxels by a factor, the averaigee
increases slower. This behavior is due to the demnation of

surfaces and silhouettes instead of volumes andisare

respectively.
TABLE 1. SUMMARY AND ANALYSIS OF THERECORDEDSEQUENCE
Avg. number of Avg. number of 8
# cameras | potential surface actual surface Av?rhg]me
voxel tested voxel tested
b 5 89021 8281 15.74
a 3 52488 9168 9.88
b/a 1.667 1.696 0.903 1.593
# pixel
d 172800 99095 11536 19.06
c 19200 51821 6166 9.01
d/c 9 1.91 1.87 2.11
# voxel
f 10760688 134968 15717 24.43
e 398544 31175 3674 5.9
fle 27 4.33 4.28 4.14

V. CONCLUSIONS

For the first time, a general and consistent forsnalfor
describing the visibility and occlusions within aaneera
surveyed scene with a known environment is provideddo

camera type and the background subtraction metfbds,
depth sensors or grayscale/color cameras can leotséd or
even mixed.

A voxel-based algorithm reconstructing the unknown

objects, which works on surfaces using grayscal@@ameras

in combination with a conventional background sattion
method, has been presented. The experimentalsehutv that
the computation time for the reconstruction stemetels
mainly on the number of tested surface voxels. Aaidlly,
the measurements show that the computation timesases
slower than the camera resolution and voxel spaselution,
due to the surface and silhouette consideration.

In the future, the plausibility checks especialig temporal
ones will be considered more intensively, sinces¢hgromises
a valuable enhancement in the reconstruction ofnowk
objects. The plausibility checks will be integratedo the
voxel-based algorithm. Furthermore, the presentgdrithm
can be parallelized, such that potential surfacesloare tested
simultaneously. For this, NVIDIAs CUDA seems to $éted.
In addition, non-voxel-based approaches will beagtigated.
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