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Abstract 

In this work NMR crystallography was used to solve five crystal structures of four 

different compounds. These range from inorganics incorporating new type of polymeric 

anions over metal organic to new organic pharmaceuticals. All of them exhibit different 

degrees of disorder in their crystal structure, which we investigated further, focusing on 

a combination of solid state nuclear magnetic resonance (ss-NMR) and density functional 

(DFT) methods. The latter employing semi empirical dispersion corrected density 

functional theory in conjunction with the gauge including projector augmented wave 

method. Due to the large size of the unit cells of those compounds it proved impossible 

to employ established techniques for DFT calculations like the supercell approach. 

Therefore, more simplified, less computational demanding approaches had to be used 

calculating only single unit cells in varying structures. Upon these, we were able to 

predict the isotropic chemical shielding for all incorporated NMR active nuclei within 

these chemicals, for which measurements were feasible, and also investigated 

quadrupolar coupling constants computed by DFT. This enabled us to assign NMR 

signals that could not be explained by the undistorted crystal structures.  

The first two compounds, the chalcogengallates Cs4Ga6Q11 (Q=S, Se), are the first of a 

new type, incorporating polymeric anions. They crystallize isotypically in the triclinic 

space group 𝑃1̅ with one formula unit in the asymmetric unit and two formula units in 

each unit cell In both compounds condensed GaQ4 tetrahedra form complex anionic 

“Dreier double” chains [𝐺𝑎6𝑄11
4−]∞

1 . The 71Ga NMR spectra measured at 14.1 T, that 

were still not well resolved, show at least three distinct crystallographic sites, potentially 

fitting both the crystal structure and the prediction by DFT. In contrast, 133Cs shows very 

good agreement with the experiment for both used functionals, PBE and LDA, employing 

the zeroth order regular approximation. Both the experimental spectra and the DFT 

predictions show four signals for each structure, with two of them overlapping strongly 

in the case of the selenide. Using this crystal structure with altered stoichiometry for 

additional DFT calculations of the distorted structures enabled the assignment of 

additional signals in the 133Cs NMR spectrum of Cs4Ga6Se11 caused by defects. These 

take the form of an additional Selenide atom added to the polymeric anion chain forming 

a Ga-Se-Se-Ga bond sequence. 
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The third compound, Idasanutlin, is a potential drug for leukaemia treatment. The 

structure of two polymorphs, form I and III, crystallizing in space group 𝑃1 and 𝑃21, 

incorporating two and four formula units, were solved. The former using single crystal 

XRD based on synchrotron measurements, the latter using NMR crystallography. Both 

share the same dimer motif in which two single molecules are bridged by double 

hydrogen bonds via their acid groups. These dimers are stacked on top of each other in a 

chair like manner. The difference between phase I and III is an AB layering of 

modification III and ABC layering for polymorpsh I. The DFT predicted 1H shifts reflect 

the difference of the hydrogen bonding within the two polymorphs and the differences in 

the packing for the amide hydrogen atom. The 13C and 15N NNR spectra show no 

conspicuousness with the DFT predictions of the isotropic chemical shifts of phase I 

show good agreement with the experimental spectrum. The ones of form III, though, 

show slight deviations between experiment and calculations for 15N, probably caused by 

thermal motion. polymorpsh III additionally exhibits slight defects in the form of a 

benzene ring, rotated by 180° which is, in terms of NMR solely observable in the 19F 

ssNMR spectra. Using the signal integrals and 19F19F DQSQ build-up curves together 

with DFT calculations of the distorted structure we were able to assign all 19F signals and 

were able to conclude that the disorder is, in fact, distributed statistically throughout the 

crystallites.  

The fourth compound, Na3[Al(L-lactate)3]2 * 6 H2O, was crystallized from commercial 

Lohtragon® solution and is commonly used in superabsorbers and as cement adjuvant. It 

inherits the space group 𝑃32 with one formula unit in the asymmetric unit. The crystal 

structure consists of two Al(L-lactate)3 complexes interconnected by three very short 

symmetrical hydrogen bonds via their half deprotonated hydroxy groups forming a 

binuclear [Al(L-lactate)3]2 complex. These binuclear complexes are arranged in layers, 

with only vdW-interaction within those. In the interlayer space the negative charge is 

compensated by Na+ ions which are additionally surrounded by water to reach distorted 

octahedral coordination. The binuclear complex could only be identified by the 

combination of ssNMR and DFT predictions due to a signal with very high shift observed 

in 1H NMR. All other 1H predicted shifts cover a broad range, while the experiment 

shows well resolved signals. This behaviour can be attributed to mobility, which could 

not be included into the predictions due to the sheer size of the unit cell. Though, through 

averaging of the shifts of each chemical group, it was possible to reach very good 
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agreement with the experimental 1H NMR spectrum, as the high number of hydrogen 

atoms in the unit cell samples the energy hypersurface sufficiently. The 13C predictions 

fit the experiment very well, the same is the case for the quadrupolar nuclei 23Na and 27Al 

and their coupling constants. The low temperature spectrum of 23Na shows very good 

agreement with the predicted three sites. While for 27Al the coupling fits the experiment 

well the asymmetry shows slight deviations, in line with results of other studies. 

The findings in this work, mainly the investigations of the different types of disorder 

using ssNMR and DFT techniques, may help future crystal structure solutions of 

compounds exhibiting large unit cells. 
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Zusammenfassung 

In dieser Arbeit wurden mit Hilfe von NMR-Kristallographie fünf Kristallstrukturen von 

vier verschiedenen Verbindungen gelöst. Diese reichen von einer neuen Art 

anorganischer polymerer Anionen über metallorganische binukleare 

Aluminiumkomplexe bis hin zu organischen Pharmazeutika. Allen gemein ist, dass sie 

zu einem gewissen Grad Fehlordnung in ihrer Kristallstruktur aufweisen, welche durch 

eine Kombination von Festkörper nuklearer magnetischer Resonanz (FK-NMR) und 

Methoden auf Basis der Dichtefunktionaltheorie (DFT) detailliert untersucht wurde. 

Letztere Methode umfasste die semi-emprirische Korrektur von 

Dispersionswechselwirkungen und die Berechnung von NMR-Parametern auf Basis der 

gauge including projector augmented wave Methode. Aufgrund der Größe der 

Einheitszellen der Verbindungen war es unmöglich diese durch konventionelle 

Herangehensweisen, wie z.B. den Superzellen-Ansatz zu berechnen. Deshalb musste auf 

einfachere, weniger anspruchsvolle Arten für die Berechnung zurückgegriffen werden, 

bei denen die Ergebnisse nur auf Variationen einzelner Einheitszellen beruhen. Mit 

diesen konnte sowohl die isotrope chemische Verschiebung der vorhandenen 

NMR-aktiven Kerne, als auch die quadrupolare Kopplung von Spin > ½ Kernen der 

Verbindungen vorhergesagt werden. Dies ermöglichte eine Zuordnung von Signalen in 

FK-NMR-Experimenten, die durch die Strukturen ohne Fehlordnung nicht erklärt 

werden konnten. 

Die ersten beiden Verbindungen, die Chalkogengallate Cs4Ga6Q11 (Q=S, Se) sind die 

ersten einer neuen Art, die polymere Anionen enthalten. Sie kristallisieren isotypisch in 

der triklinen Raumgruppe 𝑃1̅ mit einer Formeleinheit in der asymmetrischen Einheit und 

zwei Formeleinheiten in der Einheitszelle. Beide Verbindungen bestehen aus GaQ4 

Tetraedern die durch Kondensation komplexe anionische „Dreier“ Doppelketten mit der 

Formel [𝐺𝑎6𝑄11
4−]∞

1  ausbilden. Trotz der Messung der 71Ga FK-NMR-Spektren bei 

14,1 T war es nur möglich eine Mindestanzahl an drei kristallographisch 

unterschiedlichen Ga-Positionen zu bestimmen, was prinzipiell sowohl zur 

Kristallstrukturlösung als auch zu den Vorhersagen durch DFT Berechnungen passt. 

Hingegen zeigen die experimentellen 133Cs FK-NMR-Spektren sehr gute 

Übereinstimmung mit Berechnungen sowohl auf Basis des PBE Funktionals als auch auf 

Basis der lokalen Dichtenäherung unter Verwendung der zeroth order regular 
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approximation. Sowohl Experiment als auch Vorhersage zeigen vier Signale für beide 

Verbindungen, von denen die mittleren Beiden im Fall des Selenids überlappen. Durch 

DFT Berechnungen mit unterschiedlicher Stöchiometrie der Kristallstruktur des Selenids 

konnten weitere Signale, die im 133Cs FK-NMR-Spektrum auftauchen als Defekte 

zugeordnet werden. Diese zeigen die Form von zusätzlichen Selenidatomen innerhalb 

der polymeren Anionenkette und führen zu einer Ga-Se-Se-Ga Bindungsfolge. 

Die dritte Verbindung, Idasanutlin, ist ein Arzneimittelkandidat zur Behandlung von 

Leukämie. Es wurden die Kristallstrukturen der beiden Polymorphe I und III, die in den 

Raumgruppen 𝑃1 und 𝑃21 mit zwei, respektive vier Formeleinheiten in der Einheitszelle 

kristallisieren gelöst. Während erstere Struktur durch Röntgendiffraktion gelöst wurde, 

war für Zweitere NMR-Kristallographie notwendig. Beide Polymorphe zeigen dasselbe 

Dimermotiv bei dem zwei Moleküle über ihre Säuregruppen doppelt 

wasserstoffbrückengebunden sind. Diese Dimere sind in den Kristallstrukturen 

vergleichbar mit Stühlen übereinandergestapelt. Der Unterschied zwischen Modifikation 

I und III ist eine AB-Schichtung dieser Stapel im Fall von Phase III und einer 

ABC-Schichtung bei I. Die Vorhersage der chemischen Verschiebung von 1H zeigt den 

Unterschied in den Wasserstoffbrückenbindungen und die unterschiedliche Umgebung 

des Wasserstoffs der Amidgruppe aufgrund des Packungsunterschieds. Während die 13C 

und 15N FK-NMR-Spektren und deren Vorhersage für Form I keine Auffälligkeiten 

erkennen lassen, zeigen sich leichte Abweichungen für 15N im Fall von Polymorph III. 

Außerdem zeigt Modifikation III eine Fehlordnung innerhalb der Struktur in der ein 

fluoro-chloro-Benzolring eines der Moleküle um 180° verdreht ist, was sich in den 19F 

FK-NMR-Spektren beobachten lässt. Durch die Integrale dieser Signale in Verbindung 

mit 19F19F DQSQ-Aufbaukurven und DFT Berechnungen der fehlgeordneten Struktur 

konnten alle Signale zugeordnet werden. Zusätzlich konnte herausgefunden werden, dass 

die Fehlordnung statistisch innerhalb der Kristallite verteilt ist. 

Die vierte Verbindung, Na3[Al(L-Lactate)3]2 * 6 H2O, wurde aus kommerziell 

erhältlicher Lohtragon® Lösung kristallisiert, die breite Anwendung beispielsweise in 

Superabsorbern und Betonzusatzstoff findet. Es bildet eine Struktur in der Raumgruppe 

𝑃32 mit einer Formeleinheit in der asymmetrischen Einheit. Die Grundbausteine 

bestehen aus zwei Al(L-Lactate)3 Komplexen, die über drei sehr kurze symmetrische 

Wassersstoffbrückenbindungen über ihre halb deprotonierten OH Gruppen verbunden 

sind. Diese binuklearen Komplexe bilden Schichten innerhalb derer lediglich 
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van-der-Waals-Wechselwirkungen zu beobachten sind. Im Zwischenschichtraum wird 

die negative Ladung durch Na+-Ionen ausgeglichen, die zusätzlich von Wasser 

komplexiert werden um eine verzerrt oktaedrische Koordination zu erreichen. Die 

binuklearen Komplexe konnten einzig durch die Kombination von FK-NMR und DFT 

Berechnungen identifiziert werden, da im 1H FK-NMR-Spektrum ein stark verschobenes 

Signal beobachtet wurde. Alle anderen 1H Vorhersagen zeigen eine breite Verteilung der 

Verschiebungen, während das Experiment klar aufgelöste Signale zeigt. Diese 

Diskrepanz ist auf die fehlende Mobilität in den DFT Vorhersagen zurückzuführen, die 

aufgrund der schieren Größe der Zelle der Struktur nicht in die Berechnung einbezogen 

werden konnte. Es war allerdings möglich durch Mittelung der Verschiebung der 

einzelnen chemischen Gruppen eine gute Übereinstimmung mit dem Experiment 

herzustellen, da die hohe Anzahl an Wasserstoffatomen innerhalb der Struktur die 

Energiehyperfläche der Einheitszelle bereits ausreichend abtastet. Sowohl die NMR 

Vorhersagen für 13C als auch die Berechnung der quadrupolaren Kopplungskonstanten 

für 23Na und 27Al passen zum Experiment. In der Tieftemperaturmessung von 23Na 

zeigen sich deutlich drei kristallographisch unterschiedliche Positionen. Während die 

vorhergesagte Kopplung für 27Al gut zum Experiment passt, zeigen sich für den 

Asymmetrieparameter leichte Abweichungen, die aber bereits in anderen Studien 

beobachtet wurde. 

Die Ergebnisse dieser Arbeit, besonders die Untersuchungen verschiedener Arten von 

Fehlordnung mit Hilfe von FK-NMR und DFT-Methoden könnte bei zukünftigen 

Lösungen von Kristallstrukturen helfen, die große Einheitszellen aufweisen.  
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1. Introduction 

1.1 NMR Crystallography 

Characterizing the structure of crystalline powders is one of the major challenges in 

modern chemistry. In both, new materials and pharmaceutical applications, the amount 

of such samples is growing. Information about the three-dimensional structure of these 

materials is crucial to be able to identify trends and predict and enhance physical 

properties like E-modulus, transparency, the melting point or solubility.[1] Therefore, 

recently significant progress was made in different fields of structural characterization, 

namely PXRD,[2–6] ssNMR[7–10] and quantum mechanical simulations.[11–14] The 

combination of these methods, called NMR crystallography,[15,16] enables crystal 

structure solutions that were not feasible before.[12,17,18]  

XRD is based on constructive interference of the diffracted X-ray beams on the electron 

clouds which follows the Bragg-equation:[19] 

2𝑑 sin 𝜃 = 𝑛𝜆 (1.1.1) 

where d is the interplanar distance, n is a positive integer, 𝜆 the wavelength of the incident 

wave and 𝜃 the scattering angle. As the X-ray beam penetrates the whole powder sample 

due to the relatively weak interaction of electromagnetic waves with matter, the 

diffraction pattern is an average over the whole of it. Additionally, when dealing with 

powders, reflex overlap causes a significant loss of accessible information. Therefore, 

the information from PXRD is of a long-range nature, like e.g. the size and symmetry of 

the unit cell. For samples crystallizing in higher symmetries like cubic or hexagonal 

crystal systems usually a cell can be found by indexing the reflexes. For large cells with 

low symmetry this becomes increasingly difficult, especially due to reflex overlap, but is 

sometimes still feasible.[20–22] 

To interpret the diffraction pattern, it is important to know the structure factor Fhkl as it 

determines the phase and amplitude of the x-ray beams: 

𝐹ℎ𝑘𝑙 = ∑ 𝑓𝑗𝑒[−2𝜋𝑖(ℎ𝑥𝑗+𝑘𝑦𝑗+𝑙𝑧𝑗)]

𝑁

𝑗=1

(1.1.2) 

this sums over all atoms j within the unit cell. X, y and z are the coordinates of each atom, 

hkl being the Miller indices and f is the element dependent scattering factor  
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NMR on the other hand, is sensitive to short-range environmental effects like bonding or 

packing. It is based on the fact that the energy levels of spin up and spin down split up in 

strong external magnetic fields 𝐵0 called Zeeman effect:[23,24] 

𝛥𝐸 = 𝛾ħ𝐵0 (1.1.3) 

With 𝛾 being the nucleus dependant gyromagnetic ratio and ħ the reduced Planck 

constant.  

Different effects can be used for structural determination, with the most common ones 

being chemical shift, direct dipole-dipole and quadrupolar interactions. The former 

describes the interaction of external applied magnetic fields with the local field induced 

by the electron current at the nucleus position. It is obviously dependent on the 

orientation of the molecule and therefore, the crystallite as a whole to the external field, 

which results in broad NMR spectra for powdered samples. This can be overcome using 

magic angle spinning, where the sample is rotated around an axis inclined by 54.74° with 

respect to the external magnetic field to average out all anisotropic parts of the chemical 

shielding tensor, leaving only the isotropic shielding (Figure 1). The latter can give 

insights into properties like bonding oxidation state and local environment, which are 

resembled in the chemical shift that a resonance experiences. Intensities of resonances 

can be used to identify the number of independent crystallographic sites within the 

asymmetric unit cell of a compound’s crystal structure.[15,25]  

The dipole-dipole interaction, due to it being only dependant on constants and the inverse 

of the cubic distance, can be used to measure distances, or distance distributions between 

atoms.[26] 
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Figure 1: Schematic depiction of the MAS experiment in which a polycrystalline sample is rotated about 

and axis inclined at the magic angle of 54.74° to the external field at a spinning rate ωr and the effect on 

the NMR spectrum this has. Reprinted by permission from Copyright.com, Nature, Nature reviews Drug 

Discovery, 4, pages555–568(2005) Copyright 2005 [27] 

Quadrupolar interactions are an important tool for structure solutions as most the NMR 

active nuclei available have a spin > ½. These nuclei inhibit a quadrupole moment, 

meaning that the charge distribution is non-spherical, which lets them interact with the 

electric field gradient (EFG) at their position. This makes quadrupolar nuclei very 

sensitive to their direct surrounding and bonding scenario, therefore coordination 

polyhedral and numbers are easily accessible structural information.[28] Validation of 

structure models is possible through simulations using DFT level calculations of NMR 

parameters, which are explained in the addendum (5.1). 

The combination of these methods enables high precision predictions of NMR 

parameters of all kinds of compounds for structure validation[29,30] and has even be used 

to solve structures without the need for diffraction techniques.[31]   
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1.2 Quality of predictions of NMR and EFG properties by 

DFT 

While the vast majority of chemical elements have at least one NMR active isotope[32] 

we will concentrate on the following, as these were part of the publications this thesis is 

based on: 1H, 13C, 15N, 19F, 23Na, 27Al, 69Ga and 133Cs with focus on the isotropic chemical 

shift and for the latter four quadrupolar couplings. To be able to assess the abilities and 

boundaries of NMR crystallography and especially DFT predictions of NMR parameters 

it is important to have a rough overview about the current state of results in this field for 

these nuclei which is given in the following. 

For 1H it has been shown that the prediction of the ssNMR parameter is in good 

agreement with experiment (e.g. exemplary Figure 1, left side) and that the chemical shift 

is an extremely good indicator of hydrogen bonding in all sorts of structures.[12,18,33–36] 

There is a distinct relation between length of the hydrogen bond and the isotropic 

chemical shift of the bound hydrogen atom.[37] Depending on the functional used for 

calculation, the strength of the hydrogen bonding and therefore the isotropic chemical 

shift tends to be overestimated[38] even though this can also be accounted to thermal 

effects not being included in DFT calculations. The latter can be overcome by application 

of dynamics simulations in cases with fewer atoms.[39,40] These thermal effects are in 

general the main cause of discrepancies between the ssNMR prediction and 

measurements due to the fact that light nuclei and chemical groups are easily thermally 

excitable.[41]  
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Figure 2: Experimental and DFT calculated 1H and 13C NMR spectrum of Thymol. Reprinted with 

permission from [42] Copyright 2012 American Chemical Society. 

Just like 1H, 13C NMR predictions are very well evaluated through the vast number of 

publications on the topic and are proven to be in good agreement with experiment (see 

exemplary Figure 2, right side and (Figure 3),[12,42–50] even comparing to liquid 

measurements[51–54] and many articles comparing quality of the calculations.[55–59] While 

calculations of 13C NMR parameters have become widely applicable, one main problem 

is that for complex molecules a lot of resonances in near vicinity of each other, like e.g. 

substituted benzene rings, with differences in shift that are so small that they can’t be 

reliably reproduced with DFT methods.[44]  
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Figure 3: Experimental and calculated 13C isotropic shifts for L-alanine, L-Tyrosine and α-glycine. 

Reprinted with permission from [39] Copyright 2012 American Chemical Society 

15N, in contrast to 1H and 13C, is a low abundant nucleus[32] which results in considerably 

longer measurement times. This explains why DFT predictions of 15N NMR are not as 

thoroughly investigated as they are for the latter. There are however plenty for solids,[60–

65] as well as liquid NMR[66,67] and reviews on the topic available.[68–70] It has been shown 

that the mean absolute errors of the isotropic chemical shift for 15N compared to the 

experiment is considerably higher than for 13C when using common functionals like LDA 

and PBE but can be reduced by using the KT functional.[70–72] On the other hand it is not 

common practice to use a different functional for certain nuclei. Much rather this means 

that these functionals can still be improved in terms of their accuracy for 15N predictions. 

19F, as a terminal group in organic chemistry, is very sensitive to packing and therefore 

of special interest for NMR crystallography.[73] It is therefore well investigated[12,74–84] 

and it has been shown in several studies that the linear scaling of the negative calculated 

isotropic shielding with the experimental isotropic shift deviates from the expected slope 

of -1 (Figure 4).[78,84] Additionally, the same behaviour has been observed for 

Chlorine.[85] 
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Figure 4: Plot of experimental isotropic chemical shift against calculated 19F isotropic chemical shielding 

of ThF4. Slopes deviate considerably from -1. Reprinted with permission from [76] Copyright 2018 

American Chemical Society 

In the case of 23Na the isotropic shift range of its usual oxidation state +1 is rather small 

and depends mainly on its coordination number.[28,86] On the other hand as a 3/2 nucleus 

it has a rather large quadrupolar coupling and makes it therefore interesting for studies 

of its surrounding. The DFT-employing investigations mainly focus on inorganic 

structures, showing good agreement between experiment and prediction,[76,87,88] even if 

signal overlap is significant.[89] 

27Al is a 5/2 quadrupolar nucleus[32] which in conjunction with the isotropic shift and 

DFT predictions can be used to probe the close surrounding of Al[90,91] and intramolecular 

structures.[92,93] This has been tested in several studies,[94,95] finding that while both CSA 

and EFG calculations show good agreement with the experiment in most cases,[96] the 

quadrupolar asymmetry parameter has a rather high error margin in some cases.[84,95,97,98] 

While Gallium, with 69Ga being a 3/2 quadrupolar nucleus, is not commonly investigated, 

there are some studies on the accuracy of DFT predictions of NMR parameters. Some of 

these show good agreements with the experiment,[99,100] but there are also cases in which 

the quadrupolar coupling constants deviate considerably from the experiment.[101–103] 

Data on calculations of the quadrupolar spin 7/2 nuclei 133Cs is sparse but shows good 

agreement in prediction of trends, even though the accuracy can’t be rated reliably as 

only three publications are known to the author up until today.[104–106] The quadrupolar 
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coupling for this nucleus is negligible small,[32] therefore quadrupolar predictions are not 

discussed. 

With the accuracy that is achieved with these modern DFT calculations it is possible to 

achieve investigations that are rarely feasible with other methods like e.g. XRD. In these 

cases, the local character of NMR is used to identify structural features that are rarely 

accessible with other methods, namely, disorder. 

1.3 Investigation of disorder using NMR crystallography 

There are several types of disorder in crystalline solids (Figure 5). While in inorganic 

solids vacancies (Figure 5b/c) and substitutional defects (Figure 5e) are very common, 

solids become more and more prone to dislocational disorder (Figure 5d & f) the less 

spherical their smallest building units become in both geometry and charge. The added 

complexity leads to a more intricate energy hypersurface with more local minima, giving 

rise to conformational and orientational discrepancies, that can, ultimately, lead to 

completely different crystal structures.[1,107] 

 

Figure 5: Ordered crystalline AB material (a), with A site vacancies (b), Schottky defect (c), distorted A 

site (d), ion replacement (e) and Frenkel defect (f). Each of the shown types of disorder can also occur in 

combination with each other. 

Due to the fact that NMR is very sensitive to changes in the near vicinity of the nucleus 

measured, it is possible to observe the influence defects and disorder not only on the 

position they occur but also in the first and also second coordination sphere.[108,109] While 

the most obvious impact on the measurement is the influence on the chemical shift 
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(Figure 6), there is also an effect on other NMR parameters, like anisotropy and on 

quadrupolar couplings.[23] Furthermore, for quadrupolar nuclei the coupling is dependent 

on the symmetry of the charge distribution around the observed nucleus making 

quadrupolar nuclei a very powerful tool to investigate disorder in solids.[110] 

 

Figure 6: 89Y MAS NMR spectra of three isotructural compounds without disorder (top), B-site cation 

disorder (middle) and both cation and anion disorder (bottom). Reprinted with permission from [25], 

Copyright 2017 Taylor & Francis Online 

While in the past it was common to calculate NMR properties through DFT-based local 

methods using a cluster approach (Figure 7a) advances have led to periodic boundary 

conditions being the de facto standard for calculations of solids.[79,111] While for 

calculations of non-disordered solids can be carried out just by using the crystal 

structures, the procedure to calculate properties of disordered materials became more 

complicated. Since these calculations are carried out under periodic boundary conditions 

a simple replacement of atoms within the unit cell alters the stoichiometry of the 

compound that is being calculated. Therefore it is necessary to multiply the original unit 

cell along at least one axis and then introduce disorder in the now bigger cell (Figure 

7b & c).This of course adds a lot to the cost of each calculation as each supercell contains 

a multiple of atoms the original cell and inhibits less symmetry.[25]  
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Figure 7: Representation of calculation approaches for disordered solids on the example of 

aluminiumphosphate: molecular approach using a cluster of aluminiumphosphate, saturated by OH groups 

(a) defect introduced into the unitcell and therefore altering the stoichiometry (b) and a 2x2 supercell of 

(b) with disorder (c) with lower impact on stochoimetry. Reprinted with permission from [25], Copyright 

2017 Taylor & Francis Online 

Another problem of such calculations that commonly occur are discrepancies caused by 

thermal motion. This is usually taken into account by employing molecular dynamics on 

DFT basis to the disordered supercell structures. After the equilibration of the system, 

for each step of MD simulation an additional NMR calculation is carried out. Averaging 

over the ensemble that is generated by this approach yields the thermal (Boltzmann 

weighted) average NMR parameters.[30] This obviously not only adds the molecular 

dynamics calculation itself on top of the calculations, but it makes additional calculations 

of the NMR parameters of each step of the structure in motion necessary. Therefore, this 

approach can only be used for small systems while using plenty of computational 

resources.[25]  

There are numerous studies on defects and disorder in solids using these 

techniques,[15,16,112] with topics spanning over the whole reach of solids including 

batteries[113,114], solar cells[98,115] fuel cells[116] and even investigations of water within the 

earths deep interior.[18] Another recent developed approach is ab initio random structure 

search. This is a method to screen for crystal strcutures of a given compound solely by 

computational means. It generates random unit cells and fills these with an appropriate 

number of atoms or molecules of the compound investigated and subsequently geometry 

optimizes the resulting structure. In this fashion it scans the energy hypersurface quite 

similar to molecular dynamics, but with the advantage of including variations of the unit 

cell.[117] While this is a highly generalized approach it comes at the cost of having to 

calculate thousands of structures to sufficiently sample the structural energy 
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hypersurface. Therefore, it is highly computational demanding and not a viable option 

for large molecules and unit cells.[35,111] 

As mentioned before calculations of large disordered systems using these methods is not 

feasible. Therefore, we employed different simplified versions of them within this thesis 

to solve the structure and the disorder within these for three different compounds ranging 

from organic pharmaceutics, like Idasanutlin, over metalorganic compounds, like 

Na3[Al(L-lactate)3] * 6 H2O, to inorganic compounds incorporating heavy atoms like 

Cs4Ga6Q11 (Q=S,Se). In the case of Cs4Ga6Se11 we used calculations of single unit cells 

while altering the stoichiometry since the defect structure showed an additional Selenide 

atom. For Idasanutlin we simulated single unit cells as well, but the occurring disorder 

does not alter the sum formula. For Na3[Al(L-lactate)3] * 6 H2O only a single calculation 

for the unit cell was carried out since the unit cell has a very large volume (1833Å3). We 

then used the one of the problems of calculations such big unit cells, namely the high 

number of atoms, to sample the energy hypersurface by averaging over each chemical 

group. 
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2. Synopsis 

This work consists of one manuscript and two publications (see Chapter 3 & 4) dealing 

with crystal structure solutions using an NMR crystallographic approach of four 

compounds exhibiting five crystal structures, that are all distorted in different ways. 

While the structure solution followed the known XRD and NMR approach for powdered 

or single crystal samples,[3,118] additional insights into the nature of disorder in these 

solids was gained by the combination of DFT calculations and NMR. Due to the size of 

the unit cells these compounds form, different, less computational demanding approaches 

than the ones explained in 1.3 were necessary, while retaining the periodicity.  

2.1 Cs4Ga6Q11 (Q=S, Se) 

Cs4Ga6Q11 are the first two compounds of a new class of chalcogenogallates with 

polymeric anions. These complement the quasi-binary phase diagram of Deiseroth and 

Han[119] and add a new phase diagram for the Sulfidic system. Both crystallize 

isotypically in the triclinic space group 𝑃1̅ and the unit cell comprises of two formula 

units. 

The six crystallographically independent gallium sites are surrounded by Se or S 

tetrahedrally. These tetrahedrons are connected to form characteristic anionic Ga6Q11
4- 

double strands. While within the strands the tetrahedrons are mostly connected edge-

sharing, the bond between the strands are solely corner-sharing (Figure 8). The Ga 

tetrahedrons are deformed to varying degree with the least distortion being one site that 

is connected only corner sharing . The Cs sites are coordinated ten times within a sphere 

of 5.0 Å. 
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Figure 8: Ga6Q11 substructure with the polymeric edge sharing chains that are connected corner sharing to 

a second chain to form double strands. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 

The recorded 71Ga NMR spectra show broad shapes due to the quadrupolar nature of the 

nucleus. Experimental fitting yielded at least three different crystallographic sites. In the 

case of Cs4Ga6S11 (Figure 9 left) and Cs4Ga6Se11 (Figure 9 right) the calculated NMR 

parameters for 71Ga show potentially good agreement with the experimental spectra, but 

the latter lack the resolution to make a reliable statement about the accuracy of the 

predictions. It would therefore have been necessary to record spectra at higher fields to 

reliably evaluate the quality of the DFT predictions.  
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Figure 9: 71Ga QCPMG-MAS ssNMR spectra of Cs4Ga6S11 (left) and Cs4Ga6Se11(right) measured at a field 

of 14.1 T with the DFT predicted spectrum (red dashed line) and it’s single sites. 

The 133Cs ssNMR spectra of both compounds, Cs4Ga6S11 and Cs4Ga6Se11, show four 

signals, even though in case of the latter the signal width merges two if these into a single 

signal (Figure 10). This fits the four crystallographic independent Cs sites that were found 

in the crystal structure solution. We also compared the 133Cs isotropic shift yielded by 

both LDA and PBE functionals, both while additionally employing the zeroth order 

regular approximation, with the experiment. The accuracy of both functionals is very 

good with the experiment lying in between the two.  

 

Figure 10: 133Cs ssNMR MAS spectra of Cs4Ga6S11 (bottom) and Cs4Ga6Se11 (top) with the DFT predicted 

isotropic shifts for the functionals PBE (green) and LDA (red). © 2018 Wiley-VCH Verlag GmbH & Co. 

KGaA, Weinheim 
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Due to the very good prediction yielded from both functionals we investigated the 

disorder incorporated in the Selenide compound. According to the crystal structure 

solution this disorder occurs in the form of an additional Selenide atom within the GaSe 

strands. 

Even though Cs4Ga6Qe11 is the smallest compound in terms of number of atoms and 

unit cell investigated within this thesis, it is already too large and therefore computational 

demanding, to be able to employ the super cell approach. Therefore, the calculations for 

the disordered structure were modelled using one and two of the aforementioned defects 

within a single unit cell, resulting in a stoichiometry of Cs4Ga6Se11.5 and Cs4Ga6Se12, 

respectively. Even though this is a rather simplistic approach, this enabled us to assign 

the additional signals that occurred in the experimental spectrum of the selenide 

compound (Figure 11). The simulations show a downshift in the ppm range for the Cs 

site at 240 ppm independent of the employed functional. We were therefore able to 

conclude that the small signal at ~240 ppm is caused by a single defect per unit cell while 

the additional signal at ~140 ppm might be caused by a double defect unit cell. It has to 

be noted though, that this approach does have its limits. The calculations are only able to 

give trends for the isotropic shifts and can’t be seen as a tool to pinpoint exact shift values. 

It therefore remains uncertain if the additional signal at 140ppm is actually caused by the 

defect or by something else, since none of the calculations show a downwards shift that 

strong. 

 

Figure 11: 133Cs ssNMR MAS spectra of Cs4Ga6Se11 with the DFT predicted isotropic shifts for the 

functionals PBE and LDA for different (non-)defect configurations of the structure. © 2018 Wiley-VCH 

Verlag GmbH & Co. KGaA, Weinheim   
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2.2 Idasanutlin 

Idasanutlin (Figure 12) is an active pharmaceutical agent that serves as antagonist to the 

MDM2 binding receptors. This makes it interesting as a potential drug to fight leukaemia. 

During our studies of the crystal structures besides of different co-crystals incorporating 

solvents we found two pure polymorphs, form I and III being (meta-)stable at ambient 

conditions. Due to the lack of a single crystal structure solution of modification III we 

solved the structure during this project using a combination of PXRD and NMR 

spectroscopy. In the meantime, though, a single crystal solution became available 

through a cooperation partner which proved our solution correct and to which we resort 

to in this work due to the higher quality of the solution. 

 

Figure 12: Structure of Idasanutlin 

In both crystal structures two molecules form a dimer through double hydrogen bonds 

realized over their acid groups (Figure 13a&b). These dimers are then stacked in a chair 

like manner on top of each other (Figure 13c) forming rods which are then arranged in a 

brick like manner. The difference of polymorph I & III is the arrangement of these rods. 

While in phase I these are stacked in an ABC like layering where each layer is shifted by 

1/3 towards the underlying, form III exhibits an AB like stacking where the second layer 

is shifted by 1/3 as well, but the third layer is then shifted back by -1/3 to form an AB 

like structure. Besides this the differences between the two are minor, with the main 

difference being that the hydrogen bonding between the dimers is symmetric for 

polymorph I while it is asymmetric for phase III. Additionally, the latter exhibits disorder 

in its crystal structure where a fraction of 0.23 of one of the molecules benzene rings is 

rotated by ~180°. 
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Figure 13: Packing scheme of form I and III of Idasanutlin with the scheme of a single molecule (a), the 

scheme of a dimer (b), the chair like packing of those dimers (c) and the brick like arrangement of form I 

and III (d) 

The crystal metrices of both of form I are =6.525 b=12.926 c=18.359 α =99.62° β=91.60° 

and γ=94,15°, while form III exhibits a=26.000 b=18.565 c=6.494 and β=91.86°. In 

contrast to the non-symmetric triclinic structure of polymorph I, polymorph III 

crystallizes in the monoclinic space group P21 with a unit cell double the size of the 

former. This leads to the fact that the unit cells inhibit two molecules in the case of phase 

I and four in modification III. To accommodate for the disorder in polymorph III and due 

to the sheer number of atoms in the unit cell of this compound, we again employed a 

simplistic approach of additionally DFT-calculating a unit cell incorporating the rotated 

benzene ring. This also implies that we were not able to conduct molecular dynamics and 

therefore no motional effects on the predicted NMR parameters are included.  
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The case study of Idasanutlin clearly illustrates the importance of 1H NMR spectra for 

NMR crystallography. While the packing of the two polymorphs merely differs, there 

are distinct differences observable in both the spectra and DFT predictions. For form I 

the hydrogen bonding of the dimer structure only shows a single signal, pointing towards 

symmetrical hydrogen bonding, whereas for form III two signals show up indicating an 

asymmetrical hydrogen bonding pattern. The second distinct feature that can clearly be 

assigned are the signals of the amide groups in both polymorphs, where in modification 

I two resonances and in phase III a single resonance is predicted by DFT and observed 

in the spectra. Besides the 1H ssNMR DFT predictions span over rather broad ranges for 

each chemical group, while the spectrum shows well resolved signals. This is especially 

true for highly mobile groups like CH3. While molecular dynamics simulations would 

most definitely have improved the quality of the DFT prediction as mentioned before this 

was not possible. The lack of motion in the calculation might also explain the very broad 

distribution of the signals in general. 

 

Figure 14: 1H ssNMR spectra of form I (top) and III (bottom) with DFT simulated shifts coloured by their 

corresponding chemical group. Small bars below the spectrum of form III belong to the disordered 

structure. 

As stated in chapter 1.2 the 13C ssNMR for this compound mostly serves a fingerprint 

due to the high number of carbon atoms in the asymmetric unit. The 13C ssNMR spectra 

and DFT predictions (Figure 15) show a number of 60 resonances predicted by DFT. 

Especially the lower ppm region, containing the CH3 and CH2 groups, shows broad 

regions of signals due to packing, which are averaged in the experimental spectrum due 

to the high mobility of the isopropane group. Furthermore, the regions between 60-70 

and 110-135 ppm yield significant overlap for both experimental and simulated signals. 



Synopsis 

19 

 

The C-F and C-Br signal groups both show an overestimation of the isotropic shifts. It 

has to be noted that calculations for carbon atoms bound to heavy elements like bromine 

should include relativistic effects if possible.[120] On the other hand, the amide and acid 

carbon show very accurate predictions from the DFT simulation.  

 

Figure 15: Low (left) and high (right) field regions of the 13C ssNMR spectrum of form I and III with DFT 

simulated shifts coloured corresponding to their chemical group. Small bars below the spectrum of form 

III belong to the disordered structure. 

As expected, the 15N NMR spectra of Idasanutlin show three chemical groups. In the 

spectrum of polymorph I, the amide and secondary amine group split up noticeably due 

to packing effects. For modification III this splitting is smaller for the amide, as was 

expected considering the 1H NMR, while the secondary amine group shows larger 

difference in packing. The DFT predictions for 15N of form I show good agreement, while 

phase III does show differences in the splitting of the cyano group (Figure 16). These 

differences are on the other hand well within the error margin of the method and could 

just as well be caused by dynamic effects or by the defect structure. 
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Figure 16: 15N MAS ssNMR spectrum of form I and III of Idasanutlin with DFT predicted chemical shifts 

coloured according to their chemical groups. Small bars below the spectrum of form III belong to the 

disordered structure. 

The 19F NMR spectra show three signals for form I and a non-trivial spectrum for phase 

III (Figure 17). Deconvolution of the latter yields seven signals with integrals ranging 

from 0.08 up to 1.32. This shows the disorder within the structure, that affects one of the 

fluorinated benzene rings. The shift predictions, as was stated in chapter 1.2, show 

systematic deviations from the expected values. This is also observable for the prediction 

of modification I & III of Idasanutlin (Figure 17). The splitting of all signals is larger 

than in the experiment and it is clear that a smaller scaling factor would lead to a perfect 

fit of the prediction.  

 

Figure 17: 19F MAS ssNMR measurement of form I and III of Idasanutlin with DFT predictions coloured 

according to the Fluorine position on the benzene rings and integrals of the exp. signals. Small bars below 

the spectrum of form III belong to calculation of the disordered structure. For form III the exp- signals are 

numbered from highest to lowest ppm value 
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Still, the prediction for single different 19F species is rather good, which is shown for the 

two calculations of the ordered and disordered substructures of polymorph III. In the 19F 

spectrum the disordered substructure can be directly observed, and the quality of the 

prediction is more than good enough to assign single signals to each substructure (Figure 

18 left). But the experimental spectrum shows an additional resonance when compared 

with the prediction. This signal can only be explained by the two substructures being in 

close proximity to each other, so they alter the Fluorine environment. Assuming the 

disorder is distributed statistically in each crystal it is possible to calculate the theoretical 

fraction of each of the four possible surroundings by multiplying the occupancies  of both 

substructures (from XRD) with each other. This yields fractions of: 0.77*0.77=0.593; 2x 

0.77*0.23=0.177 and 0.23*0.23 = 0.053 (Figure 18 right).  

 

Figure 18: Schematic representation of the possible different fluorine environments due to the disorder 

within the structure with their percentage of the whole sample under the assumption that the disorder is 

distributed statistically and the occupancies from XRD are exact. 

These fit the integrals in the 19F ssNMR spectrum of phase III well, especially Signal #2 

and #4. Due to the integral of signal #1 it is evident, that this one is probably caused by 

one of the ‘mixed’ structures shown on the right side in the middle of Figure 18. Since 

in the case of the upper middle structure the fluorine atoms point away from each other 

the environments they are only slightly different from the other ones. But for the lower 

middle structure the fluorine atoms point into the same direction the influence should be 

significant. Therefore, we assume that signal #1 is caused by the two fluorine atoms 

pointing towards each other. Due to the very short distance of these 19F species, this could 

be proven by a very rapid build-up in the 19F19F DQSQ build-up curve of this signal.  
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2.3 Disorder in Na3[Al(L-lactate)3] * 6 H2O 

Na3[Al(L-lactate)3] * 6 H2O was crystallized from a commercial Lohtragon ® AL 250 

solution which is used for industrial applications like superabsorbers and cement 

adjuvants. The main building unit of this compound consists of aluminium complexed 

by three L-lactate ligands in a bidental fashion via their acid and hydroxy groups (Figure 

19) forming octahedrons. Due to the unique characteristics that aluminium inhibits when 

being complexed by alpha-hydroxy carboxylic acids[121] half of the hydroxy groups 

deprotonate to form three very short symmetric hydrogen bonds between two of these 

aluminium(L-lactate)3 complexes forming a binuclear three times negatively charged 

[Al(L-lactate)3]2 unit. The negative charge in these is mainly distributed on the sides 

where the carboxy groups are facing. These complexes form layers through van der 

Waals interactions of the methyl side chains. The negative charge is compensated by 

sodium which is additionally coordinated by water in the interlayer space (Figure 20).  

 

 

Figure 19: Binculear [Al(L-Lactate)3]2
3-

 complex with the two Al(L-Lactate)3 subunits being connected by 

three very short symmetric hydrogen bonds, depicted in blue with an O-H-O distance of 2.54 Å (a). The 

electrostatic potential on the 80% van-der-Waals surface of the binuclear complex with red indicating 

negative charge and blue being slight positive charge (b). Reprinted with permission from [122]. Copyright 

2019 American Chemical Society. 
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Figure 20: Packing scheme of Na3[Al(L-lactate)3] * 6 H2O with the asymmetric unit consisting of one 

formula unit incorporating one binuclear complex (a), the arrangement in the a/b plane (b) and their 

stacking along the c-axis (c). Reprinted with permission from [122]. Reprinted with permission from [122]. 

Copyright 2019 American Chemical Society. 

In the study of Na3[Al(L-lactate)3]2 * 6 H2O the importance of 1H ssNMR spectra was 

even higher than in the previous study due to the fact that a single crystal structure 

solution was already carried out, fitting the XRD data very well. This structure proposal 

consisted of two separate Al(lactate)3 complexes with completely protonated OH groups. 

Additionally, three of the six water molecules were deprotonated, effectively forming 

NaOH in the interlayer space. While at the first glance this seems to make sense, it 

neglects the unique properties of Aluminium. When complexing Al3+ with alpha-hydroxy 

carboxylic acids not only the acid group tends to deprotonate but also the hydroxy group 

becomes acidic to a point where it deprotonated even at sub 7 pH values.[121] This effect 

leads to the very unique structure that was found during our studies on basis of the 1H 

ssNMR spectrum that was recorded of the compound. The spectrum shows typical 

signals for methyl, CHOH and a sharp signal for water (Figure 21). The latter shows 

smaller FWHM indicating high mobility of the H2O molecules. While any signs of 

CHOH and OH- signals are missing, remarkably, there is a signal at 16.4 ppm which is 

a shift range that is rather uncommon for organic solids.[41] In fact this high isotropic 

chemical shift indicates either very strong hydrogen bonding or extremely strong 
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acids.[37,41] The latter could easily be ruled out by pH measurements of the parent solution 

which showed a value 5.5. Combining all these findings we concluded that the hydroxy 

groups of the two Al(L-lactate)3 complexes are deprotonated by ½ leaving only water in 

the interlayer space. These deprotonated hydroxy groups on the other hand give rise to 

three very short symmetric hydrogen bonds that connect the two complexes to form a 

binuclear [Al(L-lactate)3]2
3- cluster.  

The DFT calculation of this structure clearly shows the low field shifted signals which is 

in very good agreement with the experiment. This also indicates that the bonding is very 

strong rendering the influence of dynamics very small for the hydrogen bonds. Due to 

the sheer size of the unit cell (c > 30 Å) it was impossible to calculate molecular dynamics 

of this compound. Therefore for 1H we averaged over all signals of each chemical group. 

Due to the relatively high amount of protons in this compound this yielded a sufficient 

probe of the hypersurface. This is clearly evident when looking at the averages of the 

calculations in comparison with the experimental signals which fit very well. 

 

Figure 21: 1H ssNMR spectrum of Na3[Al(L lactate)3]2 * 6 H2O with deconvolution and DFT predicted 

values including averages (bottom bars). Reprinted with permission from [122]. Reprinted with permission 

from [122]. Copyright 2019 American Chemical Society. 

The assignment of chemical groups for 13C NMR spectroscopy is straight forward due to 

the limited number of carbon atoms. The DFT prediction fits the experiment very well 

overall, even splittings are reproduced (Figure 22), with the CHOH group showing the 

least and the acid group the highest splitting. These splittings on the other hand are within 

the error margin of the method. Additionally, the acid groups face towards the 

dynamically disordered sodium-water interlayer which means the simulation is only a 

snapshot of probably one local minimum while the spectrum shows a superposition of 

thermally accessible structures that can be realised within the structure. 
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Figure 22: 13C MAS ssNMR spectrum of Na3[Al(L lactate)3]2 * 6 H20 measured at 12.5kHz with the DFT 

predicted chemical shifts coloured according to their chemical groups (bottom bars). Reprinted with 

permission from [122]. Reprinted with permission from [122]. Copyright 2019 American Chemical Society. 

Due to the interlayer mobility the static 23Na NMR spectrum at room temperature only 

shows a single resonance, while the prediction almost perfectly resembles the shape of 

the low temperature spectrum at 93K with its three different crystallographic sites. (Table 

1, Figure 23). The comparison of the deconvolution of the experimental spectrum with 

the DFT predictions shows very good overall agreement, proofing that the interlayer 

structure is correct in terms of sodium coordination and environment.  

 

Figure 23: Static 23Na ssNMR of Na3[Al(L-lactate)3]2 * 6 H20 measured at 293 K (solid grey line) and 93 K 

(solid black line) and the DFT predicted spectrum (purple dashed line). Reprinted with permission from 

[122]. Reprinted with permission from [122]. Copyright 2019 American Chemical Society. 
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Table 1: Comparison of experimental 23Na ssNMR parameters from deconvolution and DFT predicted 

ones including isotropic chemical anisotrpy and quadrupolar interaction for Na3[Al(L-lactate)3]2 * 6 H2O 

 Na1 exp Na1 DFT Na2 exp. Na2 DFT Na3 exp. Na3 DFT 

δiso / ppm 1.35 1.83 -2.91 -1.41 3.42 1.4 

δaniso / ppm 10.22 10.2 5.47 5.47 8.74 -8.74 

η 0.65 0.65 0.33 0.33 0.81 0.81 

CQ / MHz 2.21 -2.54 1.15 1.37 2.01 2.07 

ηQ 0.25 0.26 0.60 0.60 0.76 0.77 

 

The deconvolution of the 27Al NMR spectrum yields two crystallographic sites. The 

prediction for Na3[Al(L-lactate)3]2 * 6 H2O also results in two different Al sites (Figure 

24) which fits both the structure and the experimental spectrum, even though both of 

these are part of the binuclear complex, which in itself is centrosymmetric. This points 

towards the interlayer space as a differentiating factor for the individual Al sites. In 

general, the prediction fits the experiment very well even though the quadrupolar 

asymmetry parameters are slightly off, which is a common problem for 27Al DFT 

predictions. [84,95,97,98]  

 

Figure 24:27Al MAS ssNMR spectrum of Na3[Al(L-lactate)3]2 * 6 H20 with experimental deconvolution 

(top) and the DFT prediction (bottom) both with difference plot towards the experimental spectrum. The 

experimental isotropic shieldings and quadrupolar coupling constants are for Al1: σiso = 24.6, Cq = 

5.0 MHz, ηq = 0.75 and for Al2: σiso = 22.9, Cq = 4.6 MHz, ηq = 0.8. The DFT predicted values are: Al1: 

σiso = 22.9, Cq = 5.2 MHz, ηq = 0. 5 and Al2: σiso = 24.6, Cq = 4.6 MHz, ηq = 0.51. Reprinted with permission 

from [122]. Copyright 2019 American Chemical Society. 
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Additionally, we used pH dependant 27Al liquid NMR spectroscopy (Figure 25) and DFT 

predictions for the bi- and mononuclear Al(L-lactate)3 (Table 2) to investigate which 

species is predominant in the stem solution. This relies on the findings of earlier studies, 

that at low pH values mononuclear Al(L-lactate)3 species have been observed[123] and the 

fact that in solution the width of the Aluminium signals depends mainly on the 

quadrupolar coupling, rather than dynamic effects as ligand exchange is in the fast motion 

limit at room temperature.[124] The DFT predictions for mononuclear Al(L-Lactate)3 

species in vacuum result in a doubling of the Cq values compared to the binuclear [Al(L-

lactate)3]2
3-. This fits the observation that for low pH values of the solution, the linewidth 

of the Aluminium doubles. Therefore, it is highly likely that at medium pH values the 

binuclear [Al(L-lactate)3]2
3- complex is the predominant species. 

 

Figure 25:pH dependent 27Al liquid NMR measurement of the Na3[Al(L-lactate)3]2 stem solution and the 

linewidth of each signal in dependence of pH. Reprinted with permission from [122]. Copyright 2019 

American Chemical Society. 

Table 2: DFT predicted isotropic chemical shift, quadrupolar coupling and quadrupolar asymmetry of 

several mono- and binuclear Al(L-lactate)3 species. 

 Al(L-lactate)3 Al(L-lactate)3
1- Al(L-lactate)3

2- [Al(L-lactate)3]2
3- 

δiso / 

ppm 

31.6 41.1 48.5 24.4 / 25.0 

CQ / 

MHz 

11.3 -10.7 -9.6 3.8 / 3.8 

ηQ 0.02 0.81 0.7 0.41 / 0.44 
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4. Publications 

4.1 Synthesis and Characteriszaion of Cs4Ga6Q11 (Q = S, Se) - 

Chalcogenometalates with Exotic Polymeric Anions 

This work is the result of a cooperation between the Inorganic Chemistry of the University of 

Regensburg and the Inorganic Chemistry III of the University of Bayreuth and will be reprinted 

with permission from D. Friedrich, D.Greim, M. Schlosser, R. Siegel, Jürgen Senker and Arno 

Pfitzner, DOI: 10.1002/anie.201805239 Angew. Chemie 2018 Vol 130, 49, p. 16442-16447 

Copyright 2018 Wiley-VCH  

D. Friedrich and D. Greim contributed equally. 

My contributions are: 

• conception and main authorship of the article 

• geometry optimization and calculation of NMR parameters and band structures of the 

two compounds using relativistic DFT+D 

• modelling and calculation of defect structures of Cs4Ga6Se11 

• evaluation of both ssNMR MAS measurements and Calculations for 133Cs and 69Ga 

The other authors contributions are: 

• conception and main authorship of the article  

• synthesis of both structures 

• crystal structure solutions from Single Crystal XRD 

• UV/Vis measurements and evaluation 

• 133Cs and 69Ga ssNMR MAS measurements 
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4.2 Polymorphism in Idasanutlin 

This manuscript is the result of a cooperation between the Inorganic Chemistry III of the University of 

Bayreuth, F. Hoffmann-La-Roche Ltd. 4070 Basel Switzerland and Crystallize! AG 5234 Villigen, 

Switzerland. 

My contributions are: 

• conception and main authorship of this article 

• crystal structure solution from powder of form III 

• analysis of Multinuclear 1H, 13C, 15N, 19F ssNMR experiments 

• quantification of disorders in form III by 19F ssNMR 

The other authors contributions are: 

• conception and co-authorship of this article 

• synthesis of samples 

• single crystal structure solutions of form I and III 

• synchrotron measurement  
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4.3 The structure of Na3[Al(L-lactate3)2] * 6 H2O crystallized from 

Lohtragon® Al 250 – a commercial cement adjuvant 

This work is the result of a cooperation between the Inorganic Chemistry III and I of the University of 

Bayreuth and Procter & Gamble Germany GmbH & CO Operations OHG Sulzbacher Str. 40 65824 

Schwalbach/Taunus, Chemistry – A European Journal 2018, Copyright 2018 American Chemical 

society (submitted) 

My contributions are: 

• conception and main authorship of the article 

• DFT+D calculations, including geometry optimization and NMR parameters 

• evaluation of 1H, 13C 27Al and 23Na ssNMR measurements and calculations 

• final structure solution of the compound 

The other authors contributions are: 

• synthesis of the compound 

• structure solution of the heavy atoms from single crystal using XRD 

• 1H, 13C 27Al and 23Na ssNMR measurements 

• Additional characterization 
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5. Addendum 

5.1 Density Functional Theory (DFT) 

This section is just a short overview of the basic concepts of DFT with focus on the 

techniques employed in the scope of this thesis, for an in-depth review consider the 

literature.[30,125,126] 

DFT, as an ab-initio method, is based on the Schrödinger-equation 

�̂�𝛹 = 𝐸𝛹 (1.2.1) 

Where Ψ is the wave function, E the systems total energy, and �̂� the Hamiltonian. This 

equation correlates an atomic or molecular system with its total energy via the wave 

function, where �̂� contains the interaction between the particles. 

As the Schrödinger equation is not analytically solvable for Systems bigger than the 

hydrogen atom, as a first, step the Born-Oppenheimer approximation is applied. It states 

that the nuclei mass exceeds the one of the electrons by far, having the latter follow every 

movement instantaneously. In a first approximation this lets us divide the degrees of 

freedom of the nuclei from the degrees of freedom of the electrons: 

�̂�𝑡𝑜𝑡 = 𝑇𝑛 + 𝑇𝑒 + 𝑉𝑛𝑒 + 𝑉𝑒𝑒 + 𝑉𝑛𝑛 (1.2.2) 

with �̂�𝑡𝑜𝑡 denoting all interactions, being split up into kinetic energy 𝑇 of the nuclei 𝑛 and 

the electrons 𝑒 and the potential energy 𝑉 between all interacting particles.[127] We can 

therefore treat the electrons as if they were interacting with each other within an external 

potential 𝑉𝑒𝑥𝑡 of the (fixed) nuclei. The Hamiltonian can then be written as follows: 

�̂� = −
ħ2

2𝑚𝑒
∑ 𝛻𝑖

2

𝑖

+ ∑ 𝑉𝑒𝑥𝑡

𝑖

(𝑟𝑖) +
1

2
∑

𝑒2

|𝑟𝑖 − 𝑟𝑗|
𝑖≠𝑗

(1.2.3) 

where 𝑚𝑒 is the electrons mass, ħ Plancks constant, 𝛻 the nabla operator, meaning the 

derivative into every direction of space, r the distance between nucleus and electron and e 

the elementary electric charge. 

DFT is based on the two Hohenberg-Kohn theorems, which aim to formulate it as an exact 

theory of many body systems: 
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H-K theorem 1: For any given system of interacting particles in an external potential , this 

potential is, except for a constant, uniquely determined by the ground state particle density.  

This also means that the Hamiltonian is, except for a constant shift in energy, fully 

determined and therefore the many body wavefunctions are determined as well. Hence, all 

properties of the system are completely determined given the ground state density. 

H-K theorem 2: A universal Energy functional of the electron density 𝜌 can be defined 

which is valid for any external potential. For any potential the exact ground state energy 

is the global minimum of this functional and the corresponding density at this minimum is 

the exact ground state density.  

This means that only an exact functional is needed to find both ground state energy and 

electron density of a system. One of the main problems of modern DFT is that the exact 

functional is unknown, therefore the challenge is to get as close approximation as possible. 

It also implies that excited states can’t be determined. 

These theorems show that the wave function of the electrons is solely depending on the 

total electron density 𝜌: 

𝜌(𝑟1) = ∫ 𝛹(𝑟1𝑟2…𝑟𝑛)𝛹(𝑟1𝑟2…𝑟𝑛) 𝑑𝑟2 … 𝑑𝑟𝑛.
(1.2.4) 

  

This reduces the computational effort from 3N variables to 3 resulting in an immense speed 

advantage. The problem at this point is, that we still have to deal with a many body system 

of interacting particles.[128] 

The Kohn-Sham ansatz 

The Kohn-Sham ansatz, which resolves the necessity to deal with interacting many body 

systems is based upon two assumptions: 

(1) The exact ground state density of any many body system with interacting 

particles can be represented by an artificially chosen system of non-interacting 

particles.  
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It is important to note, that this is an ansatz which has not been proven. Even though there 

is no rigorous proof, given the broad adoption of the method and the outstanding amount 

of research being done using this theory, we assume its validity.  

(2) The Hamiltonian is constructed in a way that it contains the usual kinetic 

operator and an effective potential acting on an electron of spin sigma at point r. 

Ignoring spin-orbit interactions, we assume that the external potential is 

spin-independent but the effective potential still has to be spin-dependent in order 

to give the right density for each spin. 

After consideration of the orthonormality, similar to the Raleygh-Ritz principle this leads 

to the Kohn-Sham Schrödinger-like equations: 

(𝐻𝐾𝑆
𝜎 − 𝜀𝑖

𝜎)𝛹𝑖
𝜎(𝑟) = 0 (1.2.5) 

with 𝜀𝑖
𝜎 being the eigenvalues and 𝐻𝐾𝑆

𝜎  being the effective Hamiltonian. 

𝐻𝐾𝑆
𝜎 (𝑟) = −

1

2
𝛻2 + 𝑉𝐾𝑆

𝜎 (𝑟) (1.2.6) 

𝑉𝐾𝑆
𝜎 (𝑟) = 𝑉𝑒𝑥𝑡(𝑟) +

𝛿𝐸𝐻𝑎𝑟𝑡𝑟𝑒𝑒

𝛿𝑛(𝑟, 𝜎)
+

𝛿𝐸𝑋𝐶

𝛿𝑛(𝑟, 𝜎)
= 𝑉𝑒𝑥𝑡(𝑟) + 𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒(𝑟) + 𝑉𝑋𝐶

𝜎 (𝑟) (1.2.7) 

These are independent particle equations employing a potential that must be self-consistent 

with the resulting density. Under the presumption that the exchange and correlation 

functional 𝐸𝑋𝐶 , is known these yield the exact ground-state energy and density 

independently of any approximations to 𝐸𝑋𝐶 . As the Hohenberg and Kohn theorems state 

the ground state density uniquely determines the potential at the minimum. This also means 

that for any given system of interacting electrons there is a unique Kohn-Sham potential. 

This approach separates the independent-particle kinetic energy and the long-range Hartree 

terms from the exchange-correlation functional which can then be approximated as (nearly) 

local functional of the density. Therefore, the energy can be expressed as: 

𝐸𝑋𝐶 [𝑛] = ∫ 𝑑𝑟 𝑛(𝑟) 𝜖𝑋𝐶 ([𝑛], 𝑟) (1.2.8) 

where 𝜖𝑋𝐶  is the energy per electron at the position 𝑟 that’s dependant solely upon the 

density 𝑛(𝑟, 𝜎) in the near vicinity of r. For spin polarized systems the spin is incorporated 

in 𝜖𝑋𝐶 .  
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This approximates the exchange correlation energy 𝐸𝑋𝐶  with the one of a uniform electron 

gas with the same charge density 𝜂 in dependency of the point in space 𝑟. The exchange 

interaction is in principle nothing but considering the Pauli exclusion principle by repulsion 

of same spin electrons and therefore alters the distance between them. The correlation 

interaction is a measure of how much the movement of an electron influences all other 

surrounding electrons.[129,130]  

The most general way to define a functional is to make use of the local density 

approximation (LDA) which assumes that the exchange-correlation energy is an integral 

over the whole space with the exchange correlation density to be the same as the 

homogenous electron gas density at each point: 

𝐸𝑋𝐶
𝐿𝐷𝐴[𝑛] = ∫ 𝑑3𝑟𝑛(𝑟)[𝜖𝑋

ℎ𝑜𝑚(𝑛(𝑟)) + 𝜖𝐶
ℎ𝑜𝑚(𝑛(𝑟))] (1.2.9) 

 Due to 𝐸𝑋𝐶  being universal it is the exact same as in the homogenous electron gas. The 

exchange-correlation energy as function of the electron density is needed though. While 

the exchange energy can be calculated analytically the correlation energy is being 

approximated based on Monte-Carlo methods.[131]  

Even though the LDA functional is widely used to predict properties of materials,[112,132–

138] it is known to overestimate bond lengths due to an underestimation of bond strength.[139] 

Kohn and Sham already suggested in their original work a so called “gradient expansion 

approximation” in which a functional of the magnitude of gradient of the density |𝛻𝑛𝜎| 

and the value 𝑛 are approximated.[130] Even though this approach was investigated further, 

it didn’t lead to consistent results due to violation of the sum rule.[140] This then led to the 

generalized-gradient approximation in which the functional is defined in a generalized 

form of (1.2.9): 

𝐸𝑋𝐶
𝐺𝐺𝐴[𝑛] = ∫ 𝑑3𝑟𝑛(𝑟)𝜖𝑋

ℎ𝑜𝑚(𝑛)𝐹𝑋𝐶(𝑛, 𝛻𝑛, … ) (1.2.10) 

 

where 𝐹𝑋𝐶  is dimensionless and which lowest order terms have been solved 

analytically:[141,142] 

𝐹𝑋 = 1 +
10

81
𝑠1

2 +
146

2025
𝑠2

2 + ⋯ (1.2.11) 
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 𝜖𝑋 is the exchange energy of the unpolarized electron gas. Due to a spin scaling factor for 

the exchange only the spin-unpolarized 𝐹𝑋𝐶(𝑛, |𝛻𝑛|, ) has to be considered. This leads to 

explicit first dimensionless reduced density gadients of the form: 

𝑠1 = 𝑠 =
|𝛻𝑟𝑠|

2(2𝜋 3⁄ )1 3⁄ 𝑟𝑠

(1.2.12) 

In the case of the Perdew Burke Ernzerhof (PBE) functional, which has been extensively 

used in this work, equation (1.2.1: 6) takes the form of: 

𝐸𝑋𝐶
𝐺𝐺𝐴[𝑛] = ∫ 𝑑3𝑟𝑛(𝑟)𝜖𝑋

ℎ𝑜𝑚(𝑛)𝐹𝑋𝐶(𝑟𝑠 , 𝜉, 𝑠) (1.2.13) 

 

Where 𝑟𝑠 is the local Seitz radius (𝑛 = 3 4𝜋𝑟𝑠
3⁄ ) and 𝜉 the relative spin polarization (=

(𝑛↑−𝑛↓)

𝑛
).[143] 

 

Periodic boundary conditions and Pseudopotentials 

In crystalline systems the external potential for the electrons is periodical. This also means 

that the electron density fulfils periodicity (𝑛(𝑟) = 𝑛(𝑟 + 𝑅) with R being the lattice 

vectors. Bloch’s theorem shows that the single particle wave functions are quasi periodical 

: 

𝛹𝑘
𝑛(𝑟 + 𝑅) = 𝑒𝑖𝑘∙𝑟𝛹𝑘

𝑛(𝑟) (1.2.14) 

The physical properties are calculated as the average over all values of the wavenumber k 

which only unique ones lie within the first Brillouin zone (BZ).[144] For insulators the 

electron density varies only smoothly within the BZ giving rise to the ability to integrate 

over a grid of special points.[145] While metals are not within the scope of this thesis it 

should still be noted that they need higher precision sampling of the BZ.[146] 

For practical reasons[42] we express the wave functions using a set of plane waves: 

𝛹𝑘
𝑛(𝑟) = ∑ 𝑐𝑘

𝑛(𝐺)𝑒𝑖(𝑘+𝐺)∙𝑟

𝐺

(1.2.15) 
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When choosing 𝐺 to be a set of reciprocal lattice vectors the planewave functions 

necessarily fulfil periodic boundary conditions. The number of functions is defined using 

a cutoff radius or energy 𝐸𝑐𝑢𝑡: 

1

2
|𝑘 + 𝐺|2 ≤ 𝐸𝑐𝑢𝑡 (1.2.16) 

This limits the basis set by kinetic energy which, on the other hand means that we would 

need big basis sets to represent the core electrons. While these contribute the most to the 

total energy of a system, they have almost no effect on their chemistry. Therefore it is a 

valid approximation to treat these electrons as an effective charge reduction of the nucleus 

and just treat the valence electrons quantum mechanically. This reduces the computational 

effort drastically. A second approximation has to be made due to the fact that the valence 

electrons wave functions oscillate strongly. This leads to the frozen core approximation 

which replaces the nuclear Coulomb interaction between core and valence electrons by a 

smooth effective potential. This is called Pseudopotential (PP) and two schemes have been 

proposed for their construction, namely norm conserving[147] and “ultrasoft”[148] PPs. The 

latter is the state-of-the-art scheme, which has been employed in the work for this thesis. 

In this scheme, extremely smooth wave functions are obtained by relaxing norm 

conservation in a way that the wave functions should yield the charge density. This is then 

compensated by including atom-centred effective charges to maintain total charge within 

the system.  

The gauge including projector augmented wave method 

While PPs significantly reduce the computational effort needed to calculate a system, their 

application is only valid to calculate systems that depend on characteristics caused outside 

of the core region. This does not include NMR properties which are heavily dependent on 

all electrons surrounding the core. In order to calculate such properties within the 

PP-formalism it is necessary to map the valence pseudo wave functions on the 

corresponding all-electron wave functions as shown by Van de Walle and Blöchl using 

Projector Augmented Waves (PAW)[149]: 

𝑇 = 1 + ∑ [|𝜙
𝑅,𝑛

⟩ − |�̃�𝑅,𝑛⟩] ⟨�̃�𝑅,𝑛|

𝑅,𝑛

(1.2.17) 
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where ⟨�̃�𝑅,𝑛| denotes a set of projectors that map the pseudo wave functions [|𝜙
𝑅,𝑛

⟩ on the 

all-electron ones |�̃�𝑅,𝑛⟩, with R being an atomic site and n referring to angular momentum 

quantum numbers. Both all-electron and pseudo wave functions are derived from 

calculations of isolated atoms.  

While the ground state charge density is sufficient to calculate the electric field gradient, 

just like in the real-world application, the basis for the NMR shielding is the electronic 

current induced by an external magnetic field. As the changes in current are small, they can 

be treated by perturbation theory within the DFT formalism. This means expanding the 

wavefunctions into: 

𝛹(𝑟) = 𝛹0(𝑟) + 𝛹(1)(𝑟) + 𝑂(𝐵2) (1.2.18) 

Where 𝛹0(𝑟) is the unpertubated ground-state wave function, 𝑂 the all-electron operator 

in dependence of the magnetic field 𝐵 and 𝛹(1)(𝑟) the first order change which is can be 

described as an addition of unoccupied states e via: 

𝛹(1)(𝑟) = ∑ 𝑎𝑒𝛹𝑒
(0)

𝑒

(𝑟) (1.2.19) 

To calculate the current the corresponding operator 𝐽(𝑟′) is needed which is the sum of 

diamagnetic and paramagnetic terms: 

𝐽(𝑟′) = 𝐽𝑑(𝑟′) + 𝐽𝑝(𝑟′) (1.2.20) 

In conjunction with the symmetric gauge for the vector potential the induced orbital current 

𝑗(1)(𝑟) is given by:  

𝑗(1)(𝑟) = 4
1

2𝑐
∑ 𝑅𝑒 [〈𝛹𝑜

(0)|𝐽𝑃(𝑟′)𝒢(𝜀0
(0)

)(𝑟 − 𝑟′) × 𝑝|𝛹𝑜
(0)〉]

𝑜

(1.2.21) 

Which resembles the paramagnetic and diamagnetic current and the fact that only the sum 

of both is well defined and they can’t be treated separately.[150–152] In this case 𝜂(𝑟′) is spin 

polarized, to account for spin degeneracy. 𝒢 is a Green’s function to fulfil boundary 

conditions.  

Even though the planewave approach in principle does not suffer from the “gauge origin 

problem” this is introduced when using projector augmented waves. This is caused by the 

fact that the paramagnetic and diamagnet terms converge differently depending on the 
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distance to the gauge origin and would, for finite basis sets, lead to different electric 

currents surrounding two chemical identical nuclei due to their different distance to the 

gauge origin. To address this gauge dependence a field-dependent transformation 

parameter 𝑇𝐵 was introduced by Mauri and Pickard which leads to the Gauge Including 

Projector Augmented wave (GIPAW) method:[150] 

𝑇𝐵 = 1 + ∑ 𝑒𝑖 2𝑐𝑟∙𝑅×𝐵⁄

𝑅,𝑛

[|𝜙
𝑅,𝑛

⟩ − �̃�𝑅,𝑛⟩]⟨�̃�𝑅,𝑛|𝑒−(𝑖 2𝑐⁄ )𝑟∙𝑅×𝐵 (1.2.22) 

With this approach it is possible to calculate the complete magnetic shielding 𝜎𝑖𝑠𝑜 of the 

surrounding electrons of a nucleus. This shielding correlates with the isotropic chemical 

shielding 𝛿𝑖𝑠𝑜 through: 

𝛿𝑖𝑠𝑜 = −𝜎𝑖𝑠𝑜 + 𝜎𝑟𝑒𝑓 (1.2.23) 

Where 𝜎𝑟𝑒𝑓 is a nucleus dependant referencing constant.[78] 
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Semi-empirical dispersion correction 

When DFT started to be used to calculate real world systems, it became obvious early on 

that long-range dispersion interactions are not described correctly in common density 

functionals.[153–158] Functionals like the popular BLYP, B3LYP and PBE do not account 

for attractive long-range interactions.[159–163] Dispersion is a part of electron correlation that 

operates only on large scales, While standard functionals deal very well with short 

electron-electron distances because these are deeply related to electron density changes. 

This on the other hand means that DFT faces the challenge to merge both long and 

short-range asymptotical behaviours.  

To date there are four methods for implementation of dispersion correction in DFT: 

nonlocal vdW-DF,[164,165] parameterized versions of standard hybrid approximations,[166] 

dispersion correcting atom-centred one-electron potentials[167–169] and DFT-D methods.[170–

173] While there are reasons to use the former three (like correction of the actual 

wavefunction or electron density), DFT-D has the inevitable advantage of low numerical 

complexity and therefore is the most common one.  

 The Grimme scheme 

DFT-D treats the dispersion interactions semiclassical by introducing a corrective 

dispersion energy 𝐸𝑑𝑖𝑠𝑝
𝐷𝐹𝑇-𝐷  that acts on every pair of atoms (AB) in the system depending 

on their distance 𝑅𝐴𝐵
𝑛 : 

𝐸𝑑𝑖𝑠𝑝
𝐷𝐹𝑇-𝐷 = − ∑ ∑ 𝑠𝑛

𝐶𝑛
𝐴𝐵

𝑅𝐴𝐵
𝑛 𝑓𝑑𝑎𝑚𝑝(𝑅𝐴𝐵)

𝑛=6,8,10,..𝐴𝐵

(1.2.23) 

𝐶𝑛
𝐴𝐵 denotes the averaged (isotropic) nth-order (n = 6, 8, 10, …) dispersion coefficient. 

The global scaling factor 𝑠𝑛 is mainly dependent on the applied Density functional.[171] A 

dampening function 𝑓𝑑𝑎𝑚𝑝(𝑅𝐴𝐵) is necessary to avoid singularities for small distances and 

to avoid overestimating contributions at intermediate R. Usually this dampening has the 

form: 

𝑓𝑑𝑎𝑚𝑝(𝑅𝐴𝐵) =
1

1 + 6(𝑅𝐴𝐵 (𝑠𝑟,𝑛𝑅0
𝐴𝐵)⁄ )

−𝑦 (1.2.24) 

or: 
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𝑓𝑑𝑎𝑚𝑝(𝑅𝐴𝐵) =
1

1 + 𝑒−𝑦(𝑅𝐴𝐵 𝑠𝑟,𝑛 𝑅0
𝐴𝐵⁄ −1)

(1.2.25) 

Where 𝑅0
𝐴𝐵 is an (empirical vdW) cutoff radius for each atom pair (AB) and 𝑦 a constant 

that determines the steepness of the function for small distances.[174,175]  

DFT-D exists in different iterations, dubbed DFT-D1-D3 boasting accuracy and 

applicability with each version combined with less empirism. The latest version contains 

ab initio atom pairwise-specific dispersion coefficients and refined cutoff radii for all 

elements with 𝑍 ≤ 94.[173] In addition DFT-D3 introduced fractional coordination numbers 

(CNs) which are calculated by: 

𝐶𝑁𝐴 = ∑
1

1 + 𝑒−16(4(𝑅𝐴,𝑐𝑜𝑣+𝑅𝐵,𝑐𝑜𝑣) (3𝑅𝐴𝐵)−1⁄ )

𝑁𝑎𝑡𝑜𝑚𝑠

𝐵≠𝐴

(1.2.26) 

Where 𝑅𝐴,𝑐𝑜𝑣 + 𝑅𝐵,𝑐𝑜𝑣  are molecular single-bond covalent radii.[176] This takes into account 

the chemical fact, that atoms in different bonding or hybridization environments have 

different coordination numbers.[177]  
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The Tkatchenko-Scheffler scheme 

In contrast, the Tkatchenko-Scheffler (TS) approach is a pairwise dispersion correction 

scheme dependent on density.[178] By using the density it takes into account the molecular 

environment. The energy is given similarly to (1.2.23): 

𝐸𝑑𝑖𝑠𝑝
𝑇𝑆 = − ∑

𝐶6
𝐴𝐵

𝑅6
𝑓𝑑𝑎𝑚𝑝

𝐹𝑒𝑟𝑚𝑖 (𝑅)

𝐴𝐵

(1.2.27) 

Within the TS approach the so-called average-energy or Unsöld approximation is employed 

which results in excitation energies being replaced by averages.[179–181] The dispersion 

coefficient 𝐶6
𝐴𝐵  is approximated from the homoatomic ones with static polarizabilities 𝛼𝐴

0 

via:[182] 

𝐶6
𝐴𝐵 =

𝐶6
𝐴𝐴𝐶6

𝐵𝐵

(𝛼𝐵
0 𝛼𝐴

0⁄ )𝐶6
𝐴𝐴 + (𝛼𝐴

0 𝛼𝐵
0⁄ )𝐶6

𝐵𝐵
(1.2.28) 

Where the homoatomic coefficients are calculated using the ratio of the effective atom 

volume in a molecule and the free atom volume 𝑣𝐴 [183]and dispersion coefficients 𝐶6,𝑓𝑟𝑒𝑒
𝐴𝐴  

as calculated by Chu et. al.:[184] 

𝐶6
𝐴𝐴 = 𝑣𝐴

2𝐶6,𝑓𝑟𝑒𝑒
𝐴𝐴 (1.2.29) 

 𝛼𝐴
0 = 𝑣𝐴𝛼𝐴,𝑓𝑟𝑒𝑒

0 (1.2.30) 

where 𝑣𝐴 is obtained by Hirshfeld partitioning.[185] 

This basically means that the TS method approximates effects of the environment on the 

polarizability by a change of atomic volume.
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