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Abstract
Using Brownian dynamics simulations, we investigate the response to shear of a two-dimensional system of quasi-hard disks
that are confined in the velocity gradient direction by a smooth external potential. Shearing the confined system leads to a
homogenization of the one-body density profile. In order to rationalize this deconfinement effect, we split the internal one-
body force field into adiabatic and superadiabatic contributions. We demonstrate that the superadiabatic force field consists
of viscous and of structural contributions. We give an empirical scaling law that yields results for the superadiabatic force
profiles both in the flow and in the gradient direction, in excellent agreement with the simulation data.

Keywords Colloids · Rheology · Power functional theory

Introduction

Applying shear to a complex substance constitutes a means
to drive the system out of equilibrium in a well-controlled
way, and results in arguably one of the most fundamental
nonequilibrium setups [1, 2]. In its simplest form, shearing
is characterized by the shear rate γ̇ as the only relevant (and
scalar) nonequilibrium parameter. The physics at play, even
only in steady state, is however fundamentally different
from the equilibrium properties of the samematerial. Hence,
shearing is an excellent model situation for systematically
studying soft matter out of equilibrium.

For the important material class of colloidal dispersions,
Matthias Ballauff and collaborators have performed sterling
work, developing and exploiting ingeniously tailored parti-
cles that respond to temperature variation. Despite the quite
complex internal core-shell structure of these thermosensi-
tive colloids [3–20], the particles interact via an essentially
short-ranged steeply repulsive pair potential. Changing the
temperature facilitates systematically changing the effec-
tive particle size and hence the typical length scale of the
interparticle interactions. The underlying mechanism is the
thermoresponse of the polymeric particle shell. Controlling
the particle size allows to control accordingly the effective
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colloidal packing fraction in the system. As the response to
shear depends very sensitively on the packing fraction, ther-
mosensitive colloids give direct access to this crucial ther-
modynamic parameter. The shear rate γ̇ , often expressed as
a dimensionless Peclet number Pe [1], is an external param-
eter that controls the degree of nonequilibrium driving that
the system is exposed to.

Mode-coupling theory (MCT), as spearheaded by Fuchs
and coworkers [5, 6, 8–12, 15–17, 20], has provided a
platform for rationalizing and in many cases quantitatively
describing the results from experiments, as obtained
rheometrically. Much insightful work is based on the
“schematic model” [5, 6, 11, 15, 17] of MCT. The
impressive degree of consistency, in qualitative and in
quantitative terms, for important quantities is achieved
with a very moderate level of empirical input. This is
remarkable, as the considered quantities vary typically over
many orders of magnitude. MCT operates on the level of
two-body correlation functions. In particular, via Green-
Kubo relations, the equilibrium stress-stress autocorrelator
is set in relation to the nonequilibrium response under shear.
The full theory is hence a complex one, which justifies the
need for having the schematic model, which is regarded
as describing the essential features of the dynamics of
a generic time correlation function, in particular history-
dependence via a memory integral over previous times.
The sole equilibrium input in MCT is the static structure
factor S(q) of the fluid. The entirety of the time-dependent
nonequilibrium phenomena that occur under driving arises
from the dynamical structure of the MCT equations of
motion.
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On principal grounds, one could expect that additional
equilibrium information, besides S(q), could be required
or be at least useful. Brader, Krüger, and their coworkers
[21–25] have hence gone beyond the static limitation
by incorporating ideas from classical density functional
theory (DFT) for inhomogeneous fluids [26, 27]. DFT is
a framework that is genuinely adapted for and capable of
describing situations where the locally resolved microscopic
density distribution ρ(r) is inhomogeneous in space:
ρ(r) �= const, where r indicates position. Two important
(and useful) relationships for equilibrium systems are the
following: (i) The internal contribution to the one-body
force profile, fad(r), is solely dependent on the density
profile, but it is independent of the external forces that act
in the system (say due to the presence of walls). Hence,
fad(r) = fad(r, [ρ]), where the brackets indicate a functional
relationship of mapping the entire function ρ(r′) at all space
points r′ to the force at the given position r. The internal
force field fad(r) arises from all interparticle forces that the
remaining particles exert on a particle located at position
r in an equilibrium situation. (ii) Two-body correlation
functions are contained in the approach and are accessible,
alternatively, by the Ornstein-Zernike or the test particle
routes (see Ref. [28] for a recent account of the virtues of the
test particle approach when combined with an approximate
free-energy functional).

Krüger and Brader’s work [21–25] for systems under
shear is based on the so-called dynamical DFT [26, 29, 30]
for nonequilibrium dynamics. Nevertheless, the approach
described in Refs. [21–25] still genuinely works on the
two-body level, which a priori puts high strain both on the
physical intuition that is required to devise approximation
schemes, as well as on computational demand. Although
dynamical DFT operates on the one-body level, for a
sheared system with flow direction being orthogonal to the
density gradient, the bare DFT [26, 29, 30] gives a null
result, in contrast to Krüger and Brader’s more sophisticated
theory [21–25]. Dynamical DFT, in its bare version [26,
29, 30], is hence defunct for the description of arguably the
most basic nonequilibrium situation of a colloidal system,
or more generally, of an inhomogeneous classical liquid.
The reason for the failure is of fundamental nature: the
true nonequilibrium dynamics is described as consisting
of a sequence of “adiabatic states” that are taken to be at
equilibrium. Clearly, this assumption is not true in general,
and for the case of shear, it is in quite striking contradiction
to reality.

However, there is hope for formulating a complete
description on the one-body level, as the superadiabatic
contributions that occur above the adiabatic effects (cor-
rectly accounted for in the dynamical DFT) are both well-

defined and well-characterizable objects [31, 32] from an
extended, kinematic functional point of view. Here, the
microscopically resolved velocity profile v(r, t) is a vari-
able on par with the time-dependent density profile ρ(r, t),
where t indicates time. The full nonequilibrium dynam-
ics is hence driven both by adiabatic effects, which are
functionally dependent only on the instantaneous density
distribution, and superadiabatic effects, which possess kine-
matic dependence on both ρ(r, t ′) and v(r, t ′) for times t ′ ≤
t , where t is the time of interest. Hence, the superadiabatic
contribution is nonlocal both in space and in time, while the
adiabatic contribution is Markovian (instantaneous) in time,
but nonlocal in space.

For the (important) case of the internal one-body force
field fint(r, t), which is generated from the underlying inter-
particle interaction potential, the adiabatic-superadiabatic
splitting is

fint(r, t) = fad(r, t, [ρ]) + fsup(r, t, [ρ, v]). (1)

This formal result [31] has implications that are important,
practical, and testable. In particular, the independence of
fsup(r, t) from the external forces allows to disentangle
intrinsic from external effects and hence it offers the
potential for deep insights into the coupled nature of the
nonequilibrium many-body physics [31].

Power functional theory (PFT) not only provides the
existence of the functional map (ρ, v) → fsup. It also
establishes on a microscopic footing a rigorous minimiza-
tion principle for the velocity profile, or equivalently for
the microscopic one-body current J(r, t) = v(r, t)ρ(r, t),
implying vanishing functional derivative at the minimum,
δRt [ρ, J]/δJ(r, t) = 0. Here, Rt is the (total) free power
functional, which consists of a sum of ideal, external, adi-
abatic, and superadiabatic contributions. The latter is the
superadiabatic excess (i.e., over ideal) free power functional
P exc

t . The superadiabatic internal force profile is obtained
as a functional derivative fsup(r, t) = −δP exc

t /δJ(r, t). As
in equilibrium DFT, the adiabatic internal force profile is
obtained via fad(r, t) = −∇δFexc/δρ(r, t), where Fexc[ρ]
is the intrinsic excess Helmholtz free-energy functional, and
nabla denotes the derivative with respect to position r. PFT
has been both applied and extended over a growing range
of physical systems and situations [31–53]. We give a brief
overview in the following.

Within PFT, the two-body structure [33–37] is accessible
via the nonequilibrium Ornstein-Zernike [33, 34] and
the dynamical test particle routes [35–37]. Functional
integration methods were developed [38], and the relevance
of local particle number conservation was demonstrated [56,
57]. Expressing the superadiabatic free power functional via
the velocity gradient [39–43] has facilitated the description
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of viscous [39, 40, 42] and of structural superadiabatic force
contributions [41–43]. Superadiabatic forces are accessible
in many-body simulations [32, 44, 45]. Efficient methods
such as force sampling [54] render this a standard task.
PFT has been applied to the bulk and interfacial behavior
of active Brownian particles [46–50]. Here, the position-
and orientation-resolved one-body fields have proven to
be appropriate variables. For the case of sedimentation
of the active ideal gas, an analytical solution for these
fields could be constructed [55]. PFT was extended for
the description of inertial classical [51] and of quantum
many-body dynamics [52, 53]. The fundamental differences
between canonical and grand canonical schemes have been
addressed in equilibrium [56] and for the dynamics [57].

Here, we present the first study of superadiabatic
forces in a system under simple shear, i.e., flow that
is characterized by linear dependence of the velocity on
position, and hence spatially constant imposed shear rate
γ̇ . In order to trigger a response of the system on the
one-body level, as befits the concepts underlying the PFT
framework, we expose the sheared two-dimensional system
to an additional confining external potential. We choose the
(arguably) simplest possible geometry, where the external
potential Vext(y) varies only in the shear gradient direction
y. As a consequence, all one-body quantities become
functions of (only) the y-coordinate, and the system remains
translationally invariant in the flow direction x.

The above setup is interesting, as it allows the study of the
influence of shear on a prototypical confined situation for a
simple fluid, i.e., that of a periodically varying, oscillating
potential (along the y-direction of the shear gradient). We
can hence monitor both the structural forces that act in
the y-direction and the viscous forces that act in the flow
direction x. We present simple phenomenological scaling
laws that fit the results quantitatively. We consider moderate
fluid densities only and hence deliberately stay away from
the intricacies of the glass transition. We do, however,
consider cases of high driving, where we find the system
to exhibit interesting and apparently universal saturation
behavior. The saturation relates the external conservative
force −∇Vext and the intrinsic superadiabatic force to each
other. This is a remarkable mechanism, as external and
superadiabatic forces are very different in origin. As a result
of the shear, the density profile homogenizes, and hence,
shear acts against the confinement induced by Vext.

This paper is organized as follows: In “Description of the
system,” the physical system considered is described and the
Brownian dynamics (BD) simulation algorithm is laid out.
The results of the simulations are presented in “Results.” In
“Conclusions,” we conclude and give an outlook on possible
future work.

Description of the system

Microscopic dynamics

Our two-dimensional system consists of N (indistinguish-
able) circular particles suspended in an incompressible
implicit solvent. The particles are quasi-hard disks; their
pair interaction potential is given by

φ(r) = ε
(σ

r

)36
, (2)

where r is the center-center distance between two particles,
σ = const denotes the diameter of the particles, and ε =
const sets the energy scale.

In addition to their internal interactions, the particles are
subject to thermal fluctuations and to an external force field.
The thermal fluctuations induce a random force f rani (t) on
particle i with the following statistical properties:

(3)

where the angles denote an average over different real-
izations of the noise, t and t ′ indicate time arguments, ξ

denotes the friction coefficient, kB indicates the Boltzmann
constant, T indicates the temperature, δ(·) represents the
Dirac delta distribution, is the 2 × 2 unit matrix, and the
integers i, j = 1 . . . N label the particles.

The external force field splits according to

fext(yi) = fshear(yi) − ∇iVext(yi), (4)

where yi indicates the y-coordinate of particle i and ∇i

is the derivative with respect to the position ri of particle
i. Here, the first term is a non-conservative linear shear
field acting in the x-direction and the second term is
a conservative compression force along the y-direction,
given, respectively, by

fshear(y) = γ̇ yêx, (5)

Vext(y) = V ext
0

(
1 − 8y2

L2
+ 16y4

L4

)
, (6)

where the shear rate γ̇ is an inverse timescale that
characterizes the strength of the driving and êx is the
unit vector in the x-direction. The confining potential (6)
compresses the system symmetrically in the y-direction
towards y = L/2; the constant V ext

0 sets the depth of the
potential well. The maximum is at y = 0, and minimum of
the well is at y = ±L/2, such that Vext(0) − Vext(L/2) =
V ext
0 . Figure 1 shows an illustration of the model. We use

periodic boundary conditions in both spatial directions; L

denotes the size of the (square) simulation box.
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Fig. 1 Sketch of the geometry of the system. Shown are the external
potential Vext(y) that compresses the system towards y = 0 (dashed-
dotted red line); the resulting conservative force field −∇Vext acting
in the y-direction (red arrows indicate direction and the solid red
line indicates the magnitude); and non-conservative force field (blue
arrows) fshear due to the externally imposed shear flow. The system
is translationally invariant in the x-direction. Lees-Edwards boundary
conditions render the shear force continuous in the periodic images of
the system along the y-direction

We consider overdamped dynamics, where the inertia
of the particles can be neglected and the dynamics of the
system is described by the Langevin equation of motion
[27]:

ξ ṙi (t) = f inti (rN) + fext(yi) + f rani (t), (7)

f inti (rN) = −∇i

N∑
j=1

N∑
k=j+1

φ
(|rj − rk

∣∣), (8)

with ṙi denoting the time derivative of ri .

One-body correlation functions

In steady state, the system is invariant under translation in
the x-direction and all one-body quantities (as described
below) only depend on the y-coordinate. In our simulations,
we check that a steady state is reached before sampling any
quantities of interest.

As the one-body density,

ρ(r) =
〈

N∑
i=1

δ(r − ri )

〉
, (9)

will not vary in time in steady state, its time derivative
∂ρ(r)/∂t = 0, and the continuity equation reduces to

∇ · J = 0, (10)

implying that the particle current J(y) is also constant in
time. Here, the one-body current is defined as

J(r) =
〈

N∑
i=1

δ(r − ri )vi

〉
, (11)

where the velocity vi of particle i at time t is given by a
centered difference of its position vector [45],

vi (t) = ri (t + 
t) − ri (t − 
t)

2
t
, (12)

where 
t is the time step of the numerical integration
routine (as detailed in “Brownian dynamics simulations”
below). See Ref. [45] for the derivation of the finite differ-
ence expression (12) for the velocity in Brownian dynamics.
We split the current into three distinct contributions, corre-
sponding to the force densities due to internal interactions
(Fint), thermal diffusion (−kBT ∇ρ), and external influence
(ρfext), and hence,

ξJ = Fint − kBT ∇ρ + ρfext (13)

= ρ (fint + fran + fext) . (14)

Here, the one-body internal force density distribution is
defined as

Fint(r) =
〈

N∑
i=1

δ(r − ri )f inti

〉
, (15)

where f inti , as given by Eq. 8, is the force acting on particle i

due to the internal interactions with all other particles in
the system. The force fields are obtained by dividing
force densities by the density profile, i.e., fint = Fint/ρ

and fran = −kBT (∇ρ)/ρ ≡ −kBT ∇ ln ρ. In the results
described below, we present data for force fields rather than
for force densities. The thermal fluctuations generate an
average force caused by the thermal fluctuations,

fran(y) = −kBT ∇ ln ρ. (16)

Splitting the current and therefore the forces is useful as
it enables us to perform the splitting of the internal force
field into its adiabatic and super adiabatic contribution. The
velocity profile is then obtained as

v(y) = J(y)/ρ(y). (17)

Adiabatic construction

The adiabatic system is defined as having the same
equilibrium one-body density as the nonequilibrium system
[31]. The Mermin-Evans theorem, which is at the heart of
DFT, states that in equilibrium for a system with given
internal interaction potential, at temperature T , volume
V and chemical potential μ fixed, there is a unique
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mapping from a given one-body density distribution ρ(r)
to a corresponding external potential [26, 27]. In order
to construct the adiabatic system, we use two different
methods which we show below to give consistent results.

The adiabatic construction implies to take the non-
equilibrium density as an equilibrium density and to
calculate the corresponding external potential Vad(y) =
−μad(y), where μad denotes the intrinsic chemical potential
in the adiabatic system. We use the scaled-particle theory
(SPT) equation of state for the hard disk fluid [27], which
implies the following form of the chemical potential:

μSPT
ad

kBT
= ln

(
ρ�3

1 − η∗

)
+ (3 − 2η∗) η∗

(1 − η∗)2
. (18)

Here, η∗ = π/4σ 2
BHρ, where σBH denotes the Barker-

Henderson diameter [27], given by σBH = ∫ ∞
0 dr(1 −

e−φ(r)/(kBT )). The thermal wavelength � only adds an
irrelevant constant to the chemical potential. Using Eq. 18 is
the first way we construct the adiabatic system. The notation
V SPT
ad (y) is used to denote external potentials calculated this

way. Note that the dependence of the right hand side of
Eq. 18 on y is explicitly known, as it arises from the known
density profile ρ(y), taken as an input.

The second way of performing the adiabatic construction
also employs an approach based on a local density
approximation (LDA), but using simulation data as input.
Using the LDA is reasonable for the cases considered in
the results section below, as the density profile ρ varies
slowly on the scale of the particle size σ . For given non-
equilibrium conditions, we base the LDA on simulation data
of an equilibrium system (i.e., for γ̇ = 0) with an unchanged
value of V ext

0 as compared to the nonequilibrium system.
This yields, in an LDA approximation, the bulk chemical
potential of the system as a function of density, as both
the (imposed) external potential Vext(y) and the (sampled)
density profile ρeq(y) are known as a function of position
y. Eliminating the parameter y then yields the desired form
of the chemical potential as a function of density. In more
detail, let yeq(ρ) be the inverse function of ρeq(y). We then
obtain the (bulk) chemical potential as a function of (bulk)
density as

μLDA
ad (ρ) = −Vext(yeq(ρ)). (19)

Using the equation of state Eq. 19 and the results for the
nonequilibrium density profile ρ(y), we can now calculate
the external potential in the adiabatic system via V LDA

ad (y) =
−μLDA

ad (ρ(y)).

Brownian dynamics simulations

To simulate the system described in “Description of the
system,” Brownian dynamics simulations are used. These
are based on the integration of Eq. 7, which can be
performed with the Euler algorithm,

ri (t+
t) = ri (t)+ξ−1
(
f inti (rN) + fext(yi)

)

t+δri . (20)

Here, 
t is the time step used in the algorithm and
δri is a random displacement with Gaussian distribution
of standard deviation

√
2
tkBT /ξ . We use the Box-

Muller transformation to generate the Gaussian distribution
from random numbers generated by the Mersenne Twister
algorithm.

At the start of each simulation run, N particles are
randomly distributed in a square simulation box of size
V2D = Nπσ 2/η, while ensuring that there are no overlaps
between any pair of the particles. The side length of the
square box is L = √

V2D. We use Lees-Edwards (sliding
box) boundary conditions [58, 59].

All our simulations were performed with N = 256
particles and with a time step of 
t = 5 · 10−6 τ0 where τ0
denotes the reduced time scale τ0 = ξσ 2/ε. The constants
ε, ξ , and σ are set to unity; we only consider the case of
the reduced temperature T ∗ = kBT /ε = 1. The packing
fraction η, the shear rate γ̇ , and strength of the confinement
V ext
0 are our control parameters. When the Peclet number

Pe is defined using the particle diameter (rather than the
particle radius) as the unit of length, the value of our
dimensionless shear rate is identical to that of the Peclet
number, as Pe ≡ γ̇ σ 2/D = γ̇ τ0/T ∗, where the diffusion
constant is defined as D = kBT /ξ .

The one-body density ρ(y) and the average instantaneous
force due to interparticle interaction fint(y) are sampled.
The histograms used for the sampling of these parameters
have a resolution of σ/15 but are down sampled to a
resolution of σ/5 to reduce the noise. For each presented set
of parameters, multiple simulations were run (typically at
least 150). The results of these are then averaged to produce
the final data. Each of the simulations is at first run for
teq = 0.75 τ0, so the system can relax into the steady state.
After teq has passed, the sampling of the physical quantities
of interest is started at a rate of 2000 τ−1

0 . The simulation is
then kept running for trun = 200 τ0.

In order to test whether the steady state is reached after
teq, four sets of parameters have additionally been run with
teq = 100 τ0 and trun = 100 τ0 and were then compared to
the results of the density profiles produced by simulations
with teq and trun. The results of these runs show that the
difference between the datasets is smaller than 1% and
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shows no bias, indicating that teq = 0.75 τ0 is sufficient for
the relaxation into the steady state. For smaller values of
the shear rate than considered here, using longer relaxation
times teq might be necessary.

Results

Behavior of the density profile

We first present the effects that varying the shear rate γ̇

and the strength of the compression V ext
0 has on the density

profile ρ(y) of the system. We have considered moderate
values of packing fraction ranging from η = 0.1 to 0.35.
As a reference, the hard disk fluid transitions to a glassy
state for packing fractions larger than η = 0.699 [60].
In equilibrium, the hard disk fluid is stable for packing
fraction below 0.701 ≡ (π/4)0.892 (cf. Ref. [61]). The
presence of the confining potential leads to a local increase
in density, which potentially could increase the local density
above the transition packing fraction for higher values of

η. As different sets of the parameters only appear to lead
to quantitative changes of the density profile and not to
different physical effects, results are presented for selected
values of parameters.

In Fig. 2, results of simulations with packing fractions
of 0.2 and 0.3 are presented. Starting with η = 0.2
in panel (a), we show the effects of an increase in the
strength of the confinement on the density profile, while
the shear rate is kept constant. We observe that the density
is compressed into the trough of the conservative potential
Vext and that an increase of V ext

0 leads to a corresponding
increase in the amplitude of the peak in the density profile.
Figure 2c shows how the density profile at constant strength
of confinement is altered by the shear rate. It is apparent
that shearing the system leads to a pronounced flattening of
the density profile. Figure 2b and d are shown to evaluate
the effect that a change in packing fraction has on the
density profiles. One can observe that the magnitude of
the deviation of the local density from the bulk density
ρb = N/V2D for corresponding sets of parameters remains
similar.

Fig. 2 Density profiles ρ(y) as a function of y/σ for various sets
of parameters η, γ̇ , and V ext

0 obtained from BD simulations (lines).
In each panel, two of the parameters are kept constant while vary-
ing the third (as indicated). Panel a: η = 0.2, γ̇ τ0 = 200. Panel
b: η = 0.3, γ̇ τ0 = 100. Panel c: η = 0.2, V ext

0 /ε = 2. Panel d:

η = 0.3, V ext
0 /ε = 2. The effect of variation of a single parameter on

the density profile is indicated by an arrow. The symbols denote den-
sity profiles ρLDA

ad (y) (crosses) and ρSPT
ad (y) (circles), obtained by the

two methods of adiabatic construction described in Section “Adiabatic
construction”
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Forces in the nonequilibrium system

We next present results for the internal force field fint(y).
This is a particularly interesting quantity, as it contains
the superadiabatic part of the force in the nonequilibrium
system (cf. Eq. 1). We first investigate the y-component,
f int

y (which acts in the gradient direction). The main panels
in Fig. 3 display the results for the same control parameters
as the density profiles shown in Fig. 2. Figure 3a and b
illustrate the relationship between the degree of confinement
of the system and the behavior of the internal force
field, in steady state. As expected, Fig. 3a shows that the
magnitude of f int

y increases as the applied external potential
is increased. One can also observe that in the homogeneous
sheared system (i.e., without compression, V ext

0 = 0 and
therefore with constant density profile), f int

y vanishes. The

effects that an increase in shear rate has on f int
y are presented

in Fig. 3c and d. The data shown suggests that the shear
rate increases the magnitude of f int

y very rapidly for low

shear rates, but f int
y appears to reach a saturated state for

γ̇ τ0 → ∞. This is intuitively clear considering that f int
y is

unlikely to be larger then −f ext
y in steady state. Recall that

Vext is kept constant in Fig. 3c and d.
The insets in Fig. 3 show the y-components of the force

fields decomposed as in Eq. 14, along with the total force
field f total

y , i.e., the sum (14) divided by the local density.
We show results for four different systems. We expect
f total

y (y) to vanish because of the symmetries in the system.
As throughout, subscripts x and y denote the components
of vectors. In Fig. 3 e, f, g and h, it is apparent that f total

y

indeed vanishes identically, apart from some residual noise
in the data. The figure also demonstrates that both f int

y and
f ran

y act in the opposite direction to f ext
y (y) and their sum

exactly cancels the applied compression.
Comparing the results of the equilibrium system shown

in Fig. 3h to the sheared system in Fig. 3f reveals a
pronounced difference in the way the force, due to the
compression f ext

y , is compensated. In Fig. 3h, f int
y is not

too different in magnitude to f ran
y , while in the non-

equilibrium case presented in Fig. 3f, the entropic force
f ran

y is much smaller and f int
y almost solely compensates

f ext
y . This is in line with the results from the density

profiles, as the homogenization unavoidably leads to the

Fig. 3 Internal force field f int
y (y) as a function of y/σ for multi-

ple sets of parameters η, γ̇ , and V ext
0 . The parameters held constant

in panels a–d are the same as in Fig. 2. The insets show con-
tributions to the force balance in Eq. 14 for four examples. The
internal and the total force are sampled in simulations, while the

deterministic external force is imposed and the random force is
calculated using Eq. 16 and simulation data. Panel e: η = 0.2,
γ̇ τ0 = 200, V ext

0 /ε = 1. Panel f: η = 0.3, γ̇ τ0 = 100,
V ext
0 /ε = 2. Panel g: η = 0.2, γ̇ τ0 = 100, V ext

0 /ε = 2. Panel h:
η = 0.3, γ̇ τ0 = 0, V ext

0 /ε = 2
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entropic force becoming much smaller. Obviously, this
effect becomes more apparent as the shear rate and
therefore the homogenization is increased, as is clear from
a comparison of Fig. 3g and e.

In Fig. 4, the x-component of the internal force field,
f int

x (i.e., the component that acts in the flow direction) is
plotted for the same parameters as f int

y above. We leave out
the results for a shear rate of γ̇ τ0 = 300, as this is very
noisy. We first consider the effects of an increase of V ext

0 on
the density profile (cf. panels (a) and (b)). One can observe
that the relation between V ext

0 and f int
x is practically linear.

In Fig. 4 c and d, the effects of a variation of the shear rate
on f int

x are illustrated. The magnitude of the force increases
as the shear rate is increased. However, the force does not
increase linearly.

Adiabatic construction

We use the two methods outlined in “Adiabatic construction”
to perform the adiabatic construction. In order to assess
their performance, we have carried out simulations of
the adiabatic system, i.e., runs in equilibrium under the
influence of an external potential Vad(y), as obtained
following the two procedures (SPT and LDA) described in
“Adiabatic construction.” In the following, we compare the
respectively obtained density profiles ρSPT

ad (y) and ρLDA
ad (y)

to each other, as well as to the corresponding (target)
nonequilibrium density profile ρ(y).

The adiabatic density profiles for representative parame-
ter choices are shown as symbols in Fig. 2. The quality of the
agreement demonstrates that both versions of the adiabatic
construction reproduce the density profile of the nonequi-
librium systems very well. The relative difference in density
is smaller than ∼ 1%. Comparing the different methods of
adiabatic construction reveals good agreement between the
results, showing that our simulations are able to reproduce
the behavior of the hard disk fluid as predicted by SPT.
However, the approach using only our simulation data and
LDA to calculate the chemical potential is slightly superior.
Therefore, we use data obtained with these simulations in
the analysis to obtain the superadiabatic force field.

Superadiabatic forces

Having obtained results for both the internal force field in
the nonequilibrium system, fint, as well as in the adiabatic
system, fad, we proceed by using the force splitting (1) in
order to calculate the superadiabatic forces according to

fsup(y) = fint(y) − fad(y). (21)

As the adiabatic system is translationally invariant in x,
we expect the corresponding force component to vanish,
f ad

x ≡ 0. Our simulation data confirms this expectation.
Equation 21 accordingly implies f

sup
x (y) = f int

x (y); hence,
in the flow direction, the superadiabatic force is identical

Fig. 4 Viscous force field, scaled as f int
x (y)σ/ε, as a function of

the scaled position coordinate y/σ for multiple sets of parame-
ters η, γ̇ , and V ext

0 . The parameters held constant are the same

as in Fig. 2. In panels (c) and (d), the circles denote the supera-
diabatic force calculated using Eq. 22 and the density profiles
shown in Fig. 2
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to the full internal force field. These results were discussed
above in Section “Forces in the nonequilibrium system”.

The situation in the gradient direction is different, as the
density inhomogeneity in y leads to f ad

y �= 0. In Fig. 5, the
y-component of the superadiabatic force field is presented
in the main panels. The superadiabatic force behaves in a
similar manner as the internal force: It reaches a saturated
state as the shear rate γ̇ is increased and it is proportional to
the strength of the external confinement.

Comparing the typical magnitude of the superadiabatic
force (shown in Fig. 5) to that of the total internal
force (shown in Fig. 3) reveals that even for small shear
rates f

sup
y already makes up about one-tenth of f int

y .

The relative contribution of f
sup
y increases as the shear rate

is increased and surpasses the adiabatic contribution for the
intermediate values of shear rate considered. For the highest
values of γ̇ τ0 presented, the internal force is completely
dominated by superadiabatic contributions. We conclude
that the superadiabatic effects in sheared systems play a
significant role and that any attempt at describing the
nonequilibrium dynamics requires an understanding of the
superadiabatic contribution.

The saturated state corresponds to the state of the
system with vanishing density gradient. Comparing both
components of fsup(y) with each other reveals they have
a similar shape, but with the sign flipped and that the x-
component has a larger magnitude. This again implies a
direct link to the density gradient, which we investigate in
the following section.

Scaling of the superadiabatic force fields

The observations described in “Superadiabatic forces”
suggest that the superadiabatic force profile depends linearly
on the gradient of the density. It is furthermore apparent that
this force also depends on the applied shear rate. Assuming
a linear dependence on the shear rate, the simplest possible
representation of the superadiabatic force as a scaling law is

f
sup
y (y) = cyγ̇∇ρ(y) (22)

where the constant cy is dependent on the packing fraction η

and on V ext
0 . In order to compare this empirical rule to our data,

we need to take the gradient of the densities presented in
Fig. 2. As direct numerical differentiation produces very noisy
results, we first fit a polynomial of order 4 to the density
profiles and then carry out the differentiation analytically.

The results of this calculation (for the y-component) are
denoted by the circles in Fig. 5 a1 and b1. We find that for
low shear rates up to ≈ 100 γ̇ τ0, the y-component of the
scaling law shows very good agreement with our data for
both considered values of the packing fractions. However,
the scaling form overestimates the superadiabatic force in
case of high shear rates, which implies that the saturation
effects discussed above are not captured perfectly.

An alternative way of testing the form Eq. 22 can be
obtained by considering both the force balance in the
nonequilibrium system,

−V ′
ext(y) + f ad

y (y) + f
sup
y (y) − kBTρ′(y)/ρ(y) = 0, (23)

Fig. 5 Panels (a1) and (b1): Superadiabatic force field f
sup
y for mul-

tiple systems. Solid lines denote data obtained in simulations; also
shown are the results of the empirical scaling law (Eq. 26). Panels
(a2) and (b2): Comparison of the left hand side (solid lines) and the
right hand side (circles) of Eq. 25 for the same parameters as in the

main panels. Here, the integration constant d was chosen such that the
graphs are centered around γ̇ ρ = 0. In panels (a1) and (a2), the param-
eters η = 0.2 and V ext

0 /ε = 2.0 are held constant, while in panels (b1)
and (b2), the parameters η = 0.3 and V ext

0 /ε = 2.0 are held constant
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and the force balance in the adiabatic system,

−V ′
ad(y) + f ad

y (y) − kBTρ′(y)/ρ(y) = 0, (24)

where the prime denotes the derivative with respect to y.
Here, Eq. 23 is obtained by dividing the force density
balance (13) by the density profile and using the adiabatic-
superadiabatic splitting (1) to express the internal force
field fint as a sum of adiabatic and superadiabatic force
contributions. Observing that the y-component of the
current vanishes in the sheared steady state then yields (23).
Equation 24 is the analogue in the adiabatic system; as the
adiabatic state is in equilibrium, there are neither flow nor
superadiabatic contributions by construction.

Using Eq. 24 to eliminate f ad
y from Eq. 23, using the

scaling form Eq. 22, and integrating in y, one arrives at

γ̇ ρ(y) = Vad(y) − Vext(y) − d

cy

, (25)

where d is an integration constant and cy is the same
constant as used in Eq. 22. This balance equation only needs
the nonequilibrium density and the adiabatic potential (as
obtained in the simulations) as input to carry out a test of the
scaling law for the superadiabatic forces. The corresponding
results are depicted in panels a2 and b2 of Fig. 5. One
observes the same level of agreement as in the case of
the direct comparison of the superadiabatic forces and the
scaling law.

In case of the viscous force, we use a form with a
modified (empirical) exponent,

f
sup
x (y) = cxγ̇

0.8∇ρ(y), (26)

where cx is a fit parameter, which again depends on the
values of η and of V ext

0 . In Fig. 4c and d, the results of
this effective scaling law are compared to the simulation
data of the superadiabatic force. We find again very good
agreement with the real data. Similarly to the viscous force,
the structural force, the structural force is also overestimated
in case of high shear rates close to the saturated state.
Although we have not performed a systematic error
analysis, we are confident that our data is much more
consistent with the unusual value 0.8 of the exponent in
Eq. 26 than with an exponent of 1, or even 0.9. We
expect the power law (26) to be an empirical representation
of the data rather than a fundamental relationship. We
leave the construction of a corresponding approximation
for the superadiabatic excess power functional, which is
the generator of the nonequilibrium forces via fsup(r, t) =
−δP exc

t /δJ(r, t), to future work.

Conclusions

We have systematically investigated the effects that shearing
has on the density and force profiles of a two-dimensional
system of quasi-hard disks upon which an additional
conservative confining force field is applied in the direction
normal to the flow. Our results show that the shear
flow induces a superadiabatic structural force that acts
against the compression of the system. As a result, the
density profile approaches the homogeneous bulk density
for high shear rates. We have investigated the forces that
act in the system. There occurs a dissipative effect from
the forces acting against the flow of the particles as
well as a structural force. The adiabatic construction was
used to identify these superadiabatic force contributions.
The concept of superadiabatic forces [31, 32, 44] allows
systematic classification [42] of flow and structural effects,
including viscous [39–41] and structural [41–43] force
contributions.

Future work could be directed at the behavior at low
shear rates. Low shear rates are interesting as our current
scaling law is not invariant if the shear direction changes,
i.e., our scaling law predicts a stronger confinement for such
situations. Additionally by investigation of a wider range
of parameters, a more definite understanding of the scaling
laws could be achieved. Furthermore, considering confining
potentials that are less smooth than the one considered here
should be interesting, as would be investigating the laning
instability reported in Ref. [62], disorder–order transitions
reported for three-dimensional systems in Ref. [63] and
the general framework for viscosity of Ref. [64]. The
results that we provide could form material for an in-depth
comparison of PFT and MCT, possibly along the lines of
Ref. [33]. Dispersions of thermoresponsive colloids [3–
20] could be excellent model systems for corresponding
experimental work that is aimed at systematically studying
superadiabatic forces.
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