
Software and Systems Modeling (2020) 19:853–888
https://doi.org/10.1007/s10270-020-00791-9

SPEC IAL SECT ION PAPER

Extending single- to multi-variant model transformations by
trace-based propagation of variability annotations

Bernhard Westfechtel1 · Sandra Greiner1

Received: 19 July 2019 / Revised: 31 December 2019 / Accepted: 13 March 2020 / Published online: 25 March 2020
© The Author(s) 2020

Abstract
Model-driven engineering involves the construction of models on different levels of abstraction. Software engineers are sup-
ported by model transformations, which automate the transition from high- to low-level models. Product line engineering
denotes a systematic process that aims at developing different product variants from a set of reusable assets. When model-
driven engineering is combined with product line engineering, engineers have to deal with multi-variant models. In annotative
approaches to product line engineering, model elements are decorated with annotations, i.e., Boolean expressions that define
the product variants in which model elements are to be included. In model-driven product line engineering, domain engi-
neers require multi-variant transformations, which create multi-variant target models from multi-variant source models. We
propose a reuse-based gray-box approach to realizing multi-variant model transformations. We assume that single-variant
transformations already exist, which have been developed for model-driven engineering, without considering product lines.
Furthermore, we assume that single-variant transformations create traces, which comprise the steps executed in order to
derive target models from source models. Single-variant transformations are extended into multi-variant transformations by
trace-based propagation: after executing a single-variant transformation, the resulting single-variant target model is enriched
with annotations that are calculated with the help of the transformation’s trace. This approach may be applied to single-variant
transformations written in different languages and requires only access to the trace, not to the respective transformation
definition. We also provide a correctness criterion for trace-based propagation, and a proof that this criterion is satisfied under
the prerequisites of a formal computational model.

Keywords Model transformation · Software product line · Annotative variability

1 Introduction

This section describes the background of our research
(Sect. 1.1), the problem to be addressed (Sect. 1.2), and the
proposed solution (Sect. 1.3). Section 1.4 briefly summarizes
related work. Section 1.5 explains the contributions of this
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[47]. Section 1.6 concludes.

1.1 Background

In model-driven engineering (MDE) [37], high-level mod-
els [26] are transformed in a series of steps into executable
systems. Models are instances ofmetamodels, which are fre-
quently defined with the Meta Object Facility (MOF) [31].
On the other hand, a wide spectrum ofmodel transformation
languages has been developed and used [11], even though
the Object Management Group issued a standard for model
transformation languages [32].

Product line engineering (PLE) denotes an organized
reuse process for developing a family of product variants
[33]. In domain engineering, a variability model—e.g., a
feature model [22]—is defined, and a platform of artifacts
is developed. In application engineering, a product vari-
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Fig. 1 Commutativity

ant is derived by configuring and adapting the multi-variant
platform. Inannotative approaches [2], artifacts and their ele-
ments are decorated with variability annotations; a product
variant is obtained by filtering all artifacts/elements whose
variability annotations evaluate to false (negative variabil-
ity).

Model-driven product line engineering (MDPLE) com-
binesMDEwith PLE [30]. Thus, models are the artifacts that
are subject to variation. In domain engineering,multi-variant
models are developed that are configured into single-variant
models by applying model filters. Tool support for MDPLE
is provided by some commercial tools [5,25] and research
prototypes [8,19].

1.2 Problem

When MDE meets PLE, the following problem occurs
with respect to model transformations [39]: transformations
that have been designed for MDE only ignore variabil-
ity annotations. Thus, they perform single-variant (model)
transformations (SVMT ), i.e., they produce single-variant
target models even if they are applied to multi-variant source
models. As a consequence, the target model has to be anno-
tated manually, which is both laborious and error-prone.

Instead of variability-ignorant single-variant transforma-
tions, multi-variant (model) transformations (MVMT ) [14,
15,34] are required that create multi-variant target models
from multi-variant source models (upper part of Fig. 1). In
this way, theMDPLE user is relieved from annotating targets
of model transformations manually.

In addition to automation, multi-variant transformations
should meet further requirements. In the first place, the gen-
erated annotations should be correct, such that there is no
need for manual adjustments. A straightforward correctness
criterion is commutativity [34]: filters and transformations
should commute. Thus, a multi-variant transformation (1)

Fig. 2 Trace-based propagation

followed by a filter on the target model (2) should yield the
same result as the same filter applied to the source model (3)
followed by a single-variant transformation (4); see Fig. 1.

Furthermore, the effort to realize multi-variant transfor-
mations should be minimized. First, single-variant trans-
formations should be reused: extending the definition of
a single-variant transformation into a multi-variant trans-
formation manually is laborious and error-prone, as well.
Second, the realization approach should be generic: ideally,
it should be language independent, such that itmaybe applied
to transformation definitions written in different languages.

1.3 Solution

We propose trace-based propagation of variability annota-
tions [47] as a solution to the problem stated above. Many
model transformation tools write traces in addition to target
models [6,10,20,28,35,45]. A trace records the transforma-
tion’s execution and is composed of trace elements recording
which source model elements have been transformed into
which target model elements. Trace-based propagation is a
post-processing approach exploiting the trace to propagate
variability annotations from source to target model elements
(Fig. 2).

Trace-based propagation reuses the definitions and the
results of single-variant transformations as they stand. It is
classified as a gray-box approach since it requires access
to the trace, but not to the transformation definition itself.
Furthermore, trace-based propagation is generic because the
trace is accessed via a generic interface that is independent
of transformation languages and tools.

Filters and transformations commute if single-variant
transformations conform to a computational model that is
characterized as follows: a single-variant transformation is an
out-place transformation that operates in batchmode (i.e., the
target model is created from scratch from the source model
serving as input). A transformation is rule-based; all rules
are applied to all matches. Furthermore, rules are monotonic
(they only add, but do not modify or delete model elements),
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functional (the effect of applying a rule is unique after hav-
ing fixed the match), and local (only the match is relevant
for the rule’s application condition and its effects). Finally,
traces must be complete, i.e., they must record all relevant
elements for each rule application.

1.4 Related work

To the best of our knowledge, trace-based propagation is the
only language-independent approach to extending single- to
multi-variant transformations that has been proposed so far:
Trace-basedpropagationmaybe appliedwith anySVMTtool
creating a trace—regardless of the respective model transfor-
mation language. In contrast, lifting [34] extends an engine
for single-variant algebraic graph transformations in such a
way that it performs multi-variant transformations. In [40],
single-variant transformations written in ATL are extended
to multi-variant transformations by a higher-order transfor-
mation; the transformation engine itself is reused as it stands.
Finally, [15] exploits aspects to extend single-variant trans-
formations defined inXpand (a template-basedmodel-to-text
language). All of these approaches are language dependent.

Furthermore, apart from lifting, trace-based propagation
is the only approach for which correctness has been proved
(both in this paper and its predecessor [47]).

1.5 Contribution

This journal article is based on a MODELS 2018 conference
paper [47]. Compared to its precursor, this extended version
includes the following significant changes:

– The first change concerns the presentation. We decided
to include a comprehensive introduction to multi-variant
model transformations and trace-based propagation. Sec-
tion 2 summarizes at an informal level the main contri-
butions of our work. In this way, we intend to make the
material accessible to a wider readership. Readers are
provided with an informal overview of the main concepts
and results, without having to delve into the formal part.

– The second change concerns the formal part. In [47], the
formalization is set-based; models are considered as sets
of elements. In the current paper, the formalization is
graph-based; models are considered as graphs. The for-
malization follows roughly the same lines as in [47], but
it is almost completely new.We consider the graph-based
formalization more intuitive and natural than the previ-
ous set-based formalization. Furthermore, in contrast to
[47] we give a running example in the formal part. Alto-
gether, the new formalization should be more accessible,
and it should be easier to compare it against other work
on graph transformations.

Fig. 3 Models and model transformations in MDE

1.6 Overview

Section 2 motivates and describes trace-based propagation
at an informal level. Section 3 formalizes the computational
model and proves commutativity. Section 4 proposes exten-
sions to trace-based propagation that are applied if certain
assumptions of the computational model are not satisfied.
Section 5 discusses related work. Section 6 concludes.

Readers who are primarily interested in the concepts
underlying our approach should focus on Sects. 2 and 4,
which are written in an informal style. Readers interested in
the formalization should work through Sect. 3, but should at
least skim through Sect. 2.

2 Informal description

This section contains an informal description of trace-based
propagation of variability annotations. Section 2.1 motivates
the need for multi-variant transformations with the help of
an example (a graph product line). Section 2.2 deals with
multi-variant transformations in general, whereas Sect. 2.3
addresses trace-based propagation in particular. Section 2.4
introduces a simple running example to be used in the sub-
sequent Sect. 2.5, which explains the computational model
under which commutativity holds, and in the formalization
to be presented in Sect. 3.

2.1 Motivation

In this section, we present an MDE example that motivates
the need for multi-variant transformations. The example is
given at a conceptual level, without delving into details of
the realization.

MDE involves the construction of models on differ-
ent levels of abstraction such as requirements, design, and
implementation (boxes in Fig. 3). The creation of models
is supported by model transformations (arrows in Fig. 3).
Nonetheless, frequently targets ofmodel transformations still
have to be refined manually.

In the following,we focus on the transition from the design
model to the implementationmodel, assuming that the design
model is defined by an Ecore class diagram [41] and the
implementation is performed in Java. Since the implementa-
tion may be derived only partially from the class diagram, it
still has to be edited by the user (e.g., by supplying method
bodies).
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Fig. 4 Design model (Ecore class diagram)

Fig. 5 Generated source code for class Vertex

As a simple example, let us consider a class diagram
for graphs as shown in Fig. 4. Class Graph maintains
containment references (decorated with black diamonds)
vertices and edges, both of which are multi-valued (*).
Both references have an opposite referencegraphwithmul-
tiplicity 1. In contrast to the bidirectional references between
Graph, Vertex, and Edge, class Vertex holds a uni-
directional reference color representing the color of the
vertex. Class Edgemaintains an integer-valued attribute
weight for the edge’sweight, aswell as referencessource
and target to the edge’s end nodes (with opposite refer-
ences outgoing and incoming, respectively). Finally,
the class diagram contains two operations: transpose
returns a graph where the sources and targets of edges have
been swapped. shortestPath returns a path (a sequence
of vertices) from the current node to a target specified as
the operation’s parameter.

Let us now assume that source code (in Java) is gener-
ated from the class diagram. Figure 5 shows a simplified
version of code generated for the class Vertex, including
fields, get and set methods with generated bodies,1 and

1 As in EMF code generation [41], we assume that for multi-valued
references a get method is generated that returns a modifiable list.

Fig. 6 Feature model

a method for the shortest path with an empty body, to be
supplied by the user. A “real” code generator would generate
more sophisticated code, but the details of code generation
are not important here.

Since the graph application is well received by the cus-
tomers, we decide to lift it to a graph product line [29]
such that we may serve varying requirements with respect
to the types of graphs, graph algorithms, graph storage, etc.
In product line engineering (PLE) [33], domain engineer-
ing is distinguished from application engineering. In domain
engineering, a variability model is designed that captures
the common and discriminating features of product vari-
ants. Furthermore, multi-variant domain models have to be
developed that reference the variability model to establish
mappings between features and their realizations. In applica-
tion engineering, the product line is configured into a specific
variant, which may still need to be adapted to specific cus-
tomer requirements.

Product line engineering approachesmaybe classified into
three categories: compositional [4], transformational [36],
and annotative [23]. While compositional and transforma-
tional approaches require customized languages for domain
artifacts, annotative approaches allow to reuse existing lan-
guages for domain models. In the following, we assume
an annotative approach to PLE: model elements are deco-
rated with variability annotations, which control the sets of
product variants in which these elements are included. A
product variant is defined by selecting/deselecting features
from the variability model. Single-variant domain models
are obtained by filtering those elements whose variability
annotations evaluate to false.

Feature models [22] are frequently used to define the vari-
ability of product lines. Figure 6 displays the feature model
for our graph product line. Features are organized into a tree.
Vertices and Edges are modeled as mandatory features
because each graph has vertices and edges. Vertices may be
colored, and edges may be labeled or weighted (optional
features). Finally, edges are either directed or undirected;
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Fig. 7 Multi-variant design model (without multiplicities)

Fig. 8 Feature configuration

therefore, the corresponding features are part of an XOR
group.

Figure 7 depicts a multi-variant design model for our
graph product line. Since it constitutes the superimposition
of all variants, it is frequently called a 150%model. Variabil-
ity annotations, displayed as rounded rectangles, are given
as feature expressions. For example, the annotation attached
to the operation shortestPath states that this operation
will be included only in product variants with weighted and
directed edges.

A product variant is defined by a feature configuration,
which defines a selection state for each feature from the fea-
ture model (Fig. 8). Each feature is either selected (��) or
deselected (�). Using the displayed feature configuration,
filtering the multi-variant design model of Fig. 7 yields the
single-variant design model of Fig. 4.

Butwhat happenswhenwe apply themodel-to-code trans-
formation that was used earlier to the multi-variant design
model? Figure 9 shows the result. Since the single-variant
transformation is variability ignorant, it produces a 150%
Java class that does not carry any annotations at all. Since
each unannotated model element is assumed to be univer-
sally included, filtering does not work and merely returns
the Java class provided as input. Therefore, the source code
returned from the filter will not be consistent with the filtered
design model. For example, for the feature configuration
from Fig. 8 the source code would include elements for deal-

Fig. 9 Result of single-variant model-to-text transformation

Fig. 10 Manually annotated source code

ing with undirected edges, as well (field edges and method
getEdges, respectively).

Without any automatic tool support, the user has to enrich
the source code produced by the single-variant transfor-
mation manually with annotations (Fig. 10). For example,
elements for undirected edges are annotated with the feature
Undirected, such that they are removed when this feature
is deselected. The user has to ensure correctness of annota-
tions: for each feature configuration, the filtered source code
must be consistent with the filtered designmodel. Annotating
results of model transformations manually is both laborious
and error-prone.

From this sample scenario, we may derive the follow-
ing problem statement concerning the integration of MDE
with PLE: MDE provides single-variant transformations,
i.e., a single-variant source model is transformed into a
single-variant target model. Due to variability ignorance,
annotations of the sourcemodel are not taken into account. In
contrast, PLE requires multi-variant transformations, which
create multi-variant target models from multi-variant source
models. To this end, variability annotations have to be propa-
gated from the sourcemodel to the target model. Propagation
must be performed correctly, such that each filtered target
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model is consistent with the filtered source model (provided
that the same filter is applied in both cases).

2.2 Multi-variant model transformations

In the previous section, we motivated the problem to be
solved by an example (a graph product line). In the cur-
rent section, we abstract from this example and consider
multi-variant (model) transformations at a general level. To
this end, we define requirements to multi-variant transfor-
mations (Sect. 2.2.1), focusing specifically on correctness
(Sect. 2.2.2). After that, we classify and compare differ-
ent solution approaches (Sect. 2.2.3), including trace-based
propagation—the solution proposed in this paper.

2.2.1 Requirements

Tools for multi-variant transformations are utilized in
MDPLE environments, which provide integrated tools for
model-driven product line engineering. From the perspective
of a user of an MDPLE environment, the following require-
ments are essential.

Requirement 1 (Automation) A multi-variant transformation
should propagate annotations from the source to the target
model automatically.

As argued in Sect. 2.4, the user should not have to add
annotations manually, which is both laborious and error-
prone.

Requirement 2 (Correctness)Amulti-variant transformation
should propagate annotations correctly, ensuring that for each
filter the filtered target model is consistent with the filtered
source model.

Here, consistency is defined by the single-variant transfor-
mation: The target model is consistent with the source model
if it is equal to the result of a single-variant transformation
applied to the source model; see also the next subsection.

From the perspective of a tool builder providing an
MDPLE environment to the end user, further requirements
should be addressed. While the end user requirements stated
above seem hardly debatable and should hold in anyMDPLE
environment, the requirements of the tool builder depend to
some extent on the MDPLE environment on which (s)he is
working.

Requirement 3 (Reuse)Multi-variant transformations should
be realized by reusing single-variant transformations.

A multi-variant transformation extends a single-variant
transformation inasmuch as it essentially executes the single-
variant transformation and propagates variability annotations
in addition. Therefore, a tool builder would like to reuse

already existing single-variant transformations. Ideally, the
single-variant transformation should be reused as it stands—
without any need for manual adaptations.

Requirement 4 (Generic approach) The problem of extend-
ing single- to multi-variant transformations should be
addressed in a generic way, minimizing the effort to be
invested by the tool builder.

The importance of this requirement depends on the char-
acteristics of the MDPLE environment at hand. At one end
of the spectrum, let us consider a closed environment with a
small set of built-in model transformations, all written in the
same language. In such an environment, it may be feasible to
extend each of the single-variant transformation definitions
manually, by editing the respective transformation definition.

At the opposite end of the spectrum, however, there are
open environments in which neither model types nor model
transformations are fixed. For example, consider MDPLE
environments such as Feature Mapper [19] and Famile [8,
9]. Both environments support arbitrary EMF-based domain
models and make no assumptions on the tools operating on
thesemodels (includingmodel transformation tools and their
underlying transformation languages). In environments of
this kind, it is crucial to pursue a generic approach to realizing
multi-variant transformations.

2.2.2 Correctness

The correctness criterion is defined in terms of commutativ-
ity: a multi-variant transformation (1) followed by a filter on
the target model (2) should yield the same result as a filter
on the source model (3) followed by a single-variant trans-
formation (4); see Fig. 1. To the best of our knowledge, this
criterion was introduced first in [34].

At first glance, commutativity renders multi-variant trans-
formations obsolete: instead of steps (1) and (2), we may
execute steps (3) and (4), returning the same target model.
However, in the scenario described in Sect. 2.1, targets of
model transformations are domain artifacts that are edited by
domain engineers: neither the design model nor the imple-
mentation model may be derived completely automatically
from the respective master model. For example, the domain
engineer has to supplement the source code generated from
the design model with hand-written method bodies.

Thus, the domain engineer exploits multi-variant transfor-
mations to keep multi-variant models consistent with each
other. The transition to application engineering is performed
by filtering domain models at all levels of abstraction. Alto-
gether, this development process renders the single-variant
transformation (4) in the commuting diagram obsolete—
rather than the multi-variant transformation (1). Still, the
single-variant transformation may be needed later when
changes are performed in application engineering.
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Fig. 11 Taxonomy for multi-variant transformation approaches

Table 1 Classification of MVMT approaches

Approach Reference Scope Abstraction Realization

Propagation language [7] Transformation specific Black box Post-processing

Lifting [13,34] Language specific White box Extended transformation engine

Aspects [15] Language specific Black box Extended transformation definition

Higher-order transformation [40] Language specific White box Extended transformation definition

Trace-based propagation [47] Language independent Gray box Post-processing

Hybrid propagation [14] Language specific White box Post-processing

2.2.3 Approaches

The problem of extending single- to multi-variant transfor-
mations has been addressed in significantly different ways.
In the following, we develop a taxonomy and apply it to a
set of approaches proposed in the literature. The presentation
also includes the approach proposed and elaborated in this
paper (trace-based propagation).

Figure 11 shows a feature model for our taxonomy of
multi-variant transformation approaches.2 The featuremodel
introduces three dimensions of classification: scope, abstrac-
tion, and realization.

The scope of a solution delineates the set of trans-
formations to which the solution applies. A solution is
transformation specific if it is confined to a specific transfor-
mation definition. Thus, manually extending the definition
of a specific transformation is classified as a transformation
specific solution. A solution is language specific if it applies
to all transformations defined in a specific language. Finally,
a solution is language independent if the solution may be
applied to transformation definitions written in different lan-
guages.

The level of abstraction defines towhat extent the solution
makes use of the internals of transformation definitions. A
black box solution does not consider the transformation defi-
nition at all; rather, it assumes only knowledge of its external
behavior. A white box solution requires full access to the
transformation definition. A gray box solution is positioned

2 A legend for feature models is included in Fig. 6.

between black box and white box as it requires knowledge of
certain aspects of the transformation (to be explained later).

The realization dimension refers to the way how a multi-
variant transformation is realized. In the case of an extended
transformation engine, an engine for single-variant transfor-
mations is extended such that it performs transformations of
multi-variant models. In the case of an extended transforma-
tion definition, the transformation engine is not modified,
rather the definition of a single-variant transformation is
extended such that the resulting transformation definition
may be executed onmulti-variant models. Finally, in the case
of post-processing, at first the single-variant transformation
is executed as it stands, followed by a post-processing step for
propagating variability annotations from the source model to
the target model.

Table 1 classifies MVMT approaches according to the
taxonomy of Fig. 11. Buchmann and Greiner [7] proposes
a propagation language for specifying the propagation of
variability annotations from source to target models. Propa-
gation is performed in a post-processing step. As input to the
propagation step, only the source and the target model are
provided. This approach is classified as black box because
there is no need to access the transformation definition in
order to write the propagation rules. Furthermore, it is trans-
formation specific because a propagation definition has to be
written for each transformation definition.

Lifting [13,34] extends a transformation engine such that it
executes multi-variant transformations. Thus, single-variant
transformation definitions need not be changed. The trans-
formation engine provides built-in support for dealing with
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variability annotations. This approach is classified as white
box because it requires full access to the transformation defi-
nition (which has to be executed by themulti-variant engine).
Furthermore, it is language specific. In [34] and [13], lifting is
applied to in-place algebraic graph transformations [12] and
out-place transformations written in DSLTrans [3], respec-
tively.

Instead of modifying the transformation engine, the trans-
formation definition may be extended and then executed
by the single-variant transformation engine that is already
available. Greiner and Westfechtel [15] introduces a generic
aspect that may be used to extend any definition of a
model-to-text transformation written in the template lan-
guage XPAND. This approach is language specific, but it is
classified as black box because it does not require any knowl-
edge of the actual transformation definition to be extended.

Another approach to extending the transformation def-
inition is described in [40], which proposes a higher-
order transformation: single-variant transformations defined
in ATL are extended into multi-variant transformations
by applying a higher-order transformation that yields an
extended transformation definition. This approach is lan-
guage specific and white box because it requires processing
of the single-variant transformation definition.

Trace-based propagation [47] exploits the fact that many
model transformation tools create traces of the performed
transformation steps. In a post-processing step, traces are
used to propagate variability annotations (Fig. 2). This
approach is classified as gray box: while it does not rely
on the actual transformation definition, it does assume that
traces are createdwhen the transformation is executed.While
each transformation tool uses a specific format (metamodel)
for its traces, it turns out that the commonalities of different
traces may be abstracted into a language-independent inter-
face. Therefore, trace-based propagation may be performed
for all languages and tools that allow to implement this inter-
face.

Figure 12 illustrates trace-based propagation in a sim-
plified example from the scenario introduced in Sect. 2.1.
The rectangles placed in the middle are trace elements
recording which source elements were transformed into

Fig. 12 Example for trace-based propagation

which target elements. By using these mappings, variability
annotations are propagated from the source to the tar-
get model. For example, the annotation Directed and
Weighted is copied from the operation computing the
shortest path to the corresponding method in the Java
class.

Trace-based propagation constitutes a generalization of
our previous work referring to transformations written in
ATL/EMFTVM. Hybrid propagation [14] combines trace-
based propagation with an analysis of the byte code model
that is generated from a transformation definition and is exe-
cuted by the virtual machine for ATL/EMFTVM. By means
of this analysis, annotations may be propagated even at the
level of attributes (which is not possible by analyzing the
trace only). In contrast to the work presented in this paper,
hybrid propagation is awhite box approachwhich is language
specific.

Table 2 summarizes to what extent the approaches
described above meet the requirements of Sect. 2.2.1. A tick
(�) and a cross (×) indicate a satisfied and a violated require-
ment, respectively. Correctness is considered as satisfied only
if commutativity has been proved to hold for the respective
approach. Only lifting and trace-based propagation satisfy
correctness. Only trace-based propagation is classified as
generic: it may be applied whenever transformations create
traces—regardless of SVMT languages or tools.

Table 2 Satisfaction of requirements

Approach Reference Automation Correctness Reuse Generic approach

Propagation language [7] � × � ×
Lifting [13,34] � � � ×
Aspects [15] � × � ×
Higher-order transformation [40] � × � ×
Trace-based propagation [47] � � � �
Hybrid propagation [14] � × � ×
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2.3 Trace-based propagation

In this section, we explain the principles underlying trace-
based propagation at an informal level; an illustrating exam-
ple will be given in the next section. After an overview
of trace-based propagation (Sect. 2.3.1), we examine traces
in different model transformation tools (Sect. 2.3.2). Based
on this analysis, we classify traces (Sect. 2.3.3) and derive
an abstract trace metamodel (Sect. 2.3.4). The metamodel
serves as an interface that may be realized for different model
transformation tools. The generic propagation algorithm is
programmed based on this abstract interface (Sect. 2.3.5).

2.3.1 Overview

Many model transformation tools produce traces in addi-
tion to target models. A trace constitutes a record of the
transformation’s execution. A trace is composed of trace
elements recording which source model elements have been
transformed into which target model elements. Trace-based
propagation is a post-processing approach that exploits the
trace to propagate variability annotations from source to tar-
get model elements (Fig. 2).

2.3.2 Traces

Traces may be structured in different ways. In the following,
we examine four model transformation tools that may be
considered representative for the types of traces provided by
different tools. Subsequently, we abstract from these exam-
ples and develop a common trace metamodel as foundation
for the propagation algorithm.

medini QVT [20] is based on the OMG language QVT
Relations (QVT-R [32]) for uni- and bidirectional model
transformations. As far as syntax is concerned, medini QVT
conforms to the QVT-R standard but deviates from the
semantics definition in the standard. In particular, medini
QVT maintains traces of transformations to improve incre-
mental behavior; using traces, changes may be propagated
more precisely from source to target models. A trace consists
of a sequence of relation instances. Each relation instance
records the applied relation as well as the involved source
and target elements. The record of a relation instance includes
target elements that were created by other relations and serve
as context of the current relation application.

ATL [21] is amodel transformation language that has been
used widely. For ATL, several virtual machines are provided
that support different types of model transformations. The
standard virtual machine included in the ATL distribution
mayperformboth out-place and in-place transformations, but
it does not store traces. As far as out-place transformations
are concerned, the standard virtual machine performs batch
transformations; however, an experimental virtual machine

for incremental transformations has been developed, as well
[27].

In the context of this paper, we refer to the ATL/EMFTVM
[45] virtual machine. In contrast to the standard ATL engine,
transformations executed in ATL/EMFTVM create a trace
that may be analyzed for different purposes. A trace records
which rules have been applied to which matches. For each
rule application, the trace stores the respective source and
target elements. In contrast to medini QVT, only the gener-
ated target elements are recorded (not any context elements
that may have been required to apply the respective rule).
Please note that ATL/EMFTVM supports only a subset of
the ATL transformation language; i.e., several restrictions
apply compared to the full-fledged ATL language. Further-
more, although ATL/EMFTVM persists traces, incremental
transformations are not supported.

BXtend [6] is a framework for bidirectional incremental
transformations (written in the object-oriented programming
language Xtend) that was inspired partly by triple graph
grammars [38]. Similarly to triple graph grammars, a cor-
respondence model is placed between the source model and
the target model as an integrating data structure. In its basic
version, the correspondence model is composed of 1:1 cor-
respondences (i.e., each correspondence links exactly one
source element to exactly one target element). Likewise, con-
text elements are not recorded.

eMoflon [28] provides a language and a set of tools for
triple graph grammars. Incremental bidirectional transforma-
tions are specified declaratively by triple graph rules. Source
and target graph are connected by a correspondence graph.
Each link node stored in the correspondence graph connects
exactly one source to exactly one target node. In addition,
eMoflon maintains another data structure that is employed
internally for efficiently executing incremental transforma-
tions. This data structure is called a protocol and maintains
a partially ordered set of rule applications. For each rule
application, both the match and the created elements are
recorded (including nodes and edges of source, target, and
correspondence graph). Both the correspondence graph and
the protocol may be considered as (different types of) traces.

2.3.3 Classification of traces

Traces may be classified with respect to different criteria.
Figure 13 shows a taxonomy for classifying traces as a fea-
ture model. Table 3 applies this taxonomy to the trace data
structuresmaintained in the tools that were introduced above.
Please note that the table contains two rows for eMoflon
because eMoflon maintains two different trace data struc-
tures.

With respect to the types of trace elements, we distin-
guish between rule- and link-based traces. A rule-based trace
records the application of rules. This type of trace is recorded
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Fig. 13 Classification of traces

Table 3 Traces in different tools

Tool Trace data structure Type Completeness Granularity

ATL/EMFTVM Trace model Rule-based Generation-complete Coarse-grained

BXtend Correspondence model Link-based Incomplete Coarse-grained

eMoflon Correspondence graph Link-based Incomplete Coarse-grained

eMoflon Protocol Rule-based Complete Fine-grained

medini QVT Trace model Rule-based Complete Coarse-grained

automatically by the respective transformation engine essen-
tially in the same way as method invocations are recorded
when a program is executed. Each rule instance relates a set
of source elements to a set of target elements. The traces
maintained by ATL/EMFTVM and medini QVT, as well as
eMoflon’s protocols, belong to this category.

In contrast, a link-based trace is composed of trace links,
each of which relates a set of target elements to a set of
source elements from which the target elements were cre-
ated. In contrast to a rule-based trace, a link-based trace has
to bemanaged explicitly in the transformation definition. The
traces maintained by BXtend and the correspondence graphs
of eMoflon belong to this category. For example, eMoflon’s
TGG rules have to specify the construction of the correspon-
dence graph explicitly.

Completeness constitutes another dimension of classifica-
tion (see also Fig. 18 in Sect. 2.4). In a complete trace, each
trace element records all required and created source, target,
and context elements. Both medini QVT and the protocols
recorded by eMoflon provide complete traces. A generation-
complete trace covers only the created target elements and
the source elements from which they were generated, but
no context elements that may have been required for exe-
cuting the corresponding transformation step. The traces of
ATL/EMFTVM belong to this category since they include
all generated target elements. Finally, an incomplete trace
includes only primary target elements, from which further
target elements may be deduced (e.g., by including only the
root of some subtree). Both the correspondence graphs of
eMoflon and the links maintained by BXtend may be incom-
plete. Please note that completeness and type are orthogonal

criteria: completeness refers to the amount of information
that is recorded in the trace; type refers to the way a trace
is created (implicitly for rule-based and explicitly for link-
based traces).

Finally, we may classify traces with respect to the gran-
ularity of source and target elements. A coarse-grained
trace is maintained at the level of objects; a fine-grained
trace takes object properties (attributes and links) also into
account. eMoflon’s correspondence graphs, the correspond-
ence model of BXtend, and the traces maintained by ATL/-
EMFTVM and medini QVT are classified as coarse-grained
because they record only object-to-object relationships. The
protocols recordedby eMoflon aremorefine-grainedbecause
they include both objects and links (but no attribute values).

Trace-based propagation may be applied to all kinds of
traces. However, it works best for rule-based, complete, and
fine-grained traces inasmuch as the proof of commutativity
requires traces of this kind (see Sect. 2.5). Only complete and
fine-grained traces provide sufficient information for accu-
rate propagation of variability annotations. Furthermore, the
computational model on which the proof of commutativity
is based assumes rule-based traces.

2.3.4 Trace metamodel

From the traces realized in different tools (Sect. 2.3.2), we
abstract a generic trace metamodel that may be realized in
any of these tools (Fig. 14). We assume that both the source
and the target model are composed of model elements, leav-
ing open whether these are objects (coarse-grained traces) or
object properties (fine-grained traces). A trace model stores
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Fig. 14 Trace metamodel

an ordered set of trace elements, where each trace element
corresponds either to a rule application (rule-based trace) or
to a link (link-based trace). Each trace element holds three
references: sources returns the set of source elements,
while targets and contexts are used to determine the
sets of created target elements and required context elements,
respectively. A given element of the target model may play
the role of a target element only once (it is created only once),
while it may serve multiple times as a context element. The
reference elements is assumed to be ordered in such a way
that an element of the target model occurs as a context ele-
ment only after it has occurred as a target element. The order
is relevant only in the case of complete traces (in generation-
complete or incomplete traces, each trace element has an
empty set of context elements).

The metamodel introduced above is minimal in the sense
that it includes only the information that is required for
trace-based propagation. For this reason, the notion of con-
text element is defined only for the target model. Here, it is
crucial to distinguish between context and target elements:
the propagation algorithm takes the annotations of context
elements (and source elements) as inputs and assigns anno-
tations to target elements. For the sake of orthogonality, the
same distinction could be made on the source model: a con-
text element in the source model would be an element that
has been transformed by a preceding rule; the elements to be
transformed in the current rule would be denoted as source
elements. However, trace-based propagation does not require
this distinctionon the sourcemodel: all elements of the source
model are treated in the same way—regardless of whether
they have been transformed by a previous rule or are trans-
formed in the current rule. Therefore, the trace metamodel
handles all source elements in a uniform way.

2.3.5 Propagation algorithm

Based on the trace metamodel introduced above, a propaga-
tion algorithm transfers variability annotations from source
model elements to target model elements. A sketch of this
algorithm follows below, whereas a formal description is
given in Sect. 3.8.

Trace elements are processed sequentially according to the
order of the reference elements. For some trace element,
let SE , T E , and CE denote the sets of its source, target, and
context elements, respectively. Furthermore, let us assume

an attribute ann for storing annotations of source and target
model elements (without prescribing any physical realiza-
tion; an annotation may be stored either in the respective
model or in a separate mapping model). Finally, let te ∈ T E
denote any created target element. To each target element,
the conjunction of the annotations of all source and context
elements is assigned:

te.ann:=(
∧

se∈SE
se.ann) ∧ (

∧

ce∈CE

ce.ann). (1)

Equation 1 assumes that the presence of any target element
depends on the presence of all source and context elements.
Thus, the target element is visible (passes a filter on the target
model) if and only if all source and context elements are
visible, as well.

Below, we discuss in detail under which conditions this
algorithm ensures commutativity (Sects. 2.5, 3). For now,
we would like to mention two conditions that refer to the
properties of traces introduced in Sect. 2.3.3 above. First, the
trace should be sufficiently fine-grained: if traces are recorded
at the level of objects but annotations are assigned at the
level of object properties (e.g., attribute values), the propaga-
tion algorithm cannot take variability annotations of object
properties into account. Second, the trace should be com-
plete: Variability annotations can be determined correctly
only when the annotations of all required context elements
are taken into account. If the trace is not sufficiently fine-
grained or it is not complete, the propagation algorithm may
assign incorrect variability annotations.

2.4 Example

In this section, we introduce a running example to be used
throughout the rest of this paper. The example [46] is taken
from project management [24] and involves a transforma-
tion from Gantt diagrams to CPM networks. In contrast to
the model-to-text scenario introduced in Sect. 2.1, this trans-
formation involves only a small number of rules. For this
reason, the running example is suited better for demonstrat-
ing trace-based propagation, in particular, with respect to the
formalization of our approach (Sect. 3).

Gantt diagrams and CPM networks are widely spread
notations for project planning.AGantt diagram (Fig. 15, left)
consists of activities (time-scaled bars) and dependencies
(arrows). An activity is composed of a name and a dura-
tion (represented here as a non-negative integer value). A
dependency connects a predecessor to a successor activity
and is decorated by an offset (an integer that we assume to
be non-negative).Dependencies are classified into four types:
start–start, start–end, end–start, and end–end. For example,
an end–start dependency (as shown in Fig. 15) implies that
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Fig. 15 Gantt diagram to CPM network (concrete syntax)

the successor may start only after its predecessor has finished
and its offset has elapsed.

A CPM network (Fig. 15, right), which is based on the
Critical Path Method, is composed of events and activities.
An activity has a name and a duration (a non-negative integer)
and connects a source event to a target event. An event does
not consume time and may occur only after its incoming
activities have finished. An activity is performed only after
its source event has occurred.

In a Gantt to CPM transformation, each Gantt activity is
mapped to a CPM activity with the same name and duration,
and two events acting as source and target of the activity. Each
Gantt dependency is mapped to a CPM activity that connects
already existing events. The name of the CPM activity is
composed of the names of the predecessor and successor
activities in the Gantt diagram. The duration is copied from
the offset of the dependency. The source and target events
are determined from the dependency type. For example, in
the case of an end-start dependency the target event of the
predecessor activity is connected to the source event of the
successor activity.

So far, we have presented models in concrete syntax as
they are represented at the user interface. Now, we switch
to abstract syntax, i.e., the models’ internal representation
in terms of objects and links. In the following, we consider
models as graphs, which are composed of nodes decorated
with attributes, and binary, directed edges connecting these
nodes. Both nodes and edges are typed.

Figure 16 shows the Gantt diagram (left) and the CPM
network (right) from Fig. 15 in abstract syntax. Nodes are
represented as rectangles with an inscription of the form
n : T , where T denotes a node type and n is an arbitrary
unique node identifier. Each graph has a root node that is
connected to the element nodes contained in this graph by
els edges. Activity nodes are decorated with attributes n and
d for the name and the duration, respectively. Dependency
nodes are typed by the respective dependency type (e.g., ES
for end-start) and are attributed with an offset o. An activity
is connected to outgoing dependencies by a2d edges; edges
from dependencies to activities are labeled with d2a. Sim-
ilarly, events and activities are connected by e2a and a2e
edges in the CPM network.

In its middle, Fig. 16 shows a trace from a single-variant
transformation. Numbers inside the trace nodes indicate their
position in the trace sequence. Node typesmay be interpreted
either as link types (link-based traces) or rules (rule-based

Fig. 16 Gantt diagram to CPM network (abstract syntax)

traces). According to the trace metamodel of Fig. 14, we dis-
tinguish between edges to source nodes, target nodes, and
context nodes. To keep the figure legible, edge types are not
represented by labels; rather, edges are distinguished by ori-
entation and line style.

Here, we assume a complete trace according to the clas-
sification of Sect. 2.3.3. Trace node (1) maps the root node
of the Gantt diagram to the root node of the CPM network.
Trace nodes (2) and (3)map activity nodes onto each other. In
addition to the activity nodes, the root nodes are included as
context nodes (please recall that our trace metamodel distin-
guishes between target nodes and context nodes in the target
model; no distinction between different roles of nodes is nec-
essary in the source model). Finally, trace node (4) maps a
dependency node to an activity node (which is possible only
after the activity nodes have been mapped). To ensure com-
pleteness, the trace node is linked to the root node and the
nodes for predecessor and successor activities in the source
graph, and to the root node, the corresponding activity nodes,
and the connected event nodes in the target graph.

Figure 16 also shows variability annotations. To simplify
our running example, we assume coarse-grained annota-
tions referring to nodes, and coarse-grained traces with
node-to-node mappings. The underlying feature model (not
shown in the figure) consists of a root feature R and two
optional subfeatures F and G. Annotations are defined such
that existential dependencies are taken into account. Thus,
each element node carries an annotation that implies the
annotation of the root node; likewise, the annotation of the
dependency node implies the annotations of the nodes for
the predecessor and successor activity, respectively. By using
trace-based propagation, annotations are added to the target
graph as shown on the right-hand side of the figure.

123



Extending single- to multi-variant model transformations by trace-based propagation… 865

Fig. 17 Filtering under the feature configuration R ∧ F ∧ ¬G

Fig. 18 Completeness of traces

Figure 17 shows the result of filtering the source and the
target graph by the same feature configuration R ∧ F ∧ ¬G.
All parts that are displayed in gray have been removed from
the graphs. Note that we assume that filtering retains referen-
tial integrity at the level of graphs: if a node is removed, all
of its attributes and adjacent edges are removed, as well. In
the source graph, only root node g, activity node a, and the
edge from g to a pass the filter. Accordingly, only root node
c, activity node a, event nodes 1 and 2, and the respective
connecting edges remain in the target graph.

The reader may easily check that trace-based propagation
achieves commutativity in this example: transforming the
filtered source graph yields the same target graph as obtained
by filtering the multi-variant target graph. Effectively, the
trace has been filtered, as well: only those trace nodes are
retained for which all adjacent source, context, and target
nodes are still present.

To conclude this section, let us discuss the impact of the
completeness of traces on the quality of the resulting prop-
agation (Fig. 18). As already mentioned above, a complete
trace is required to ensure commutativity. A generation-com-

plete trace records only the created target elements and the
source elements from which they were generated. For map-
ping activities, thismeans that the root nodes are not recorded
as context of the mapping. In our example, generation-com-
plete traces result in the same variability annotations as for
complete traces.As long as the variability annotations of con-
text elements are implied by annotations of source and target
elements, commutativity is still achieved. However, with an
incomplete trace it is no longer possible to achieve commu-
tativity. For mapping activities, an incomplete trace would
record only the generated activity node in the CPM network.
The source and target events may be inferred from the activ-
ity node by navigating adjacent edges. However, trace-based
propagation propagates an annotation only to the activity
node and ignores event nodes. As a consequence, event nodes
are universally visible and are not removed under any feature
configuration.

2.5 Commutativity

After having explained the principles of trace-based propaga-
tion at an informal level, we return to the issue of correctness
raised in Sect. 2.2.2. Thus, we investigate under which con-
ditions trace-based propagation guarantees commutativity of
filters and transformations, as visualized in Fig. 1. This ques-
tion will be answered with a formal proof in Sect. 3. In the
current section, we give a brief summary of the formalization
at an informal level, with the intent to convey the main ideas
underlying the formalization.

Section 2.5.1 introduces a computational model under
which trace-based propagation guarantees commutativity.
Section 2.5.2 gives an illustrative example. A sketch of proof
follows in Sect. 2.5.3. A discussion of the computational
model (Sect. 2.5.4) concludes this section.

2.5.1 Computational model

The computational model refers to single-variant transfor-
mations and will be formalized in Sect. 3. It is defined such
that the following proposition holds (to be proved later):

If a single-variant transformation conforms to the com-
putational model, trace-based propagation guarantees
commutativity of filters and transformations.

In the following, we summarize the key properties of the
computational model.

Properties of transformations

Property 1 (Out-place transformation) A transformation is
performed out-place, i.e., it creates a target model from a
source model.
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Thus, the source model and the target model are different,
and the source model is not modified.

Property 2 (Batch transformation) A transformation is per-
formed in batch mode, i.e., the target model is created from
scratch.

The computational model deals with batch transforma-
tions, as they are assumed in the commutativity criterion.
Incremental transformations, which propagate changes from
a source model to an already existing target model, are
beyond the scope of the computational model (but are dis-
cussed briefly in Sect. 4.4).

Property 3 (Rule-based transformation) A transformation is
composed of rules. It is executed by applying all rules to all
matches exactly once.

Since a trace essentially records the application of rules,
we may assume that it is generated by a rule-based transfor-
mation. This assumption holds even if the trace is link-based
provided that there is a 1:1 correspondence between rules and
links. Furthermore, the computationalmodel assumes that all
rules are applied to all matches. In particular, explicit control
structures are not covered by the computational model (rules
are organized into a global, implicit loop).

Properties of rules

Property 4 (Functional behavior) If a rule is applied to a
given match, the result is determined uniquely.

In rule-based languages, rules usually exhibit functional
behavior. In the context of the computational model, func-
tional behavior carries over from individual rules to trans-
formations as a whole. If a single-variant transformation
exhibits non-functional behavior, filters and transformations
may not commute because a transformation may render dif-
ferent results in different executions.

Property 5 (Monotonicity) Each rule is monotonic: appli-
cation of a rule only adds elements to the target model.

Deletions or modifications are not taken into account by
the computational model. The trace metamodel (Fig. 14)
assumes that elements in the target model are either reused
as context elements or created anew.

Property 6 (Locality) Each rule is local: if a rule is applied
to a match, its effect depends only on the match.

Thus, the context of the match in the source model and
the target model having been created so far is immaterial
to the execution of the rule. Only then may we assume that
a rule is applicable to a given match in a filtered model if
and only if it is applicable to the same match in an unfil-
tered model. In the case of a positive application condition

referring to the context of the match, a rule that is appli-
cable in an unfiltered model may not be applicable in the
filtered model. Conversely, a negative application condition
may prevent a rule from being applied in an unfiltered model
even though it is applicable in a filtered model. Therefore,
we have to exclude application conditions going beyond the
match itself.

Properties of traces

Property 7 (Complete traces) The rule-based transforma-
tion must leave a complete trace behind, recording for each
step the applied rule as well as all source, context, and target
elements.

The issue of completeness has already been discussed at
the end of Sect. 2.4. If target elements are missing, they
will not receive variability annotations, rendering them uni-
versally visible. If source or context elements are missing,
propagated annotations may be too wide, violating commu-
tativity, as well.

Property 8 (Fine-grained traces) The trace of a rule-based
transformation must be recorded on a fine-grained level.

In our running example (Sect. 2.4), we assume annota-
tions and traces on object level to simplify matters. As to be
shown in the formalization (Sect. 3), coarse-grained traces
are not sufficient to guarantee commutativity. In general,
the annotations of all involved model elements—including
objects, attribute values, and links—are required to calculate
the annotations of target elements correctly.

2.5.2 Example

The computational model to be formalized in Sect. 3 sat-
isfies all properties listed above. To illustrate the computa-
tional model, we resume the running example introduced in
Sect. 2.4. Thus, we present rules for transforming Gantt dia-
grams to CPM networks. These rules are applied in a loop
until all matches are exhausted. In this way, an out-place
batch transformation is performed.

To simplify matters, we still assume object-level traces,
but we will consider fine-grained traces in the formalization
of the rules in Sect. 3. It is assumed that traces are recorded
automatically, including source, context, and target elements
(complete traces). Thus, creation of the trace is not specified
in the rules. However, traces may be accessed in the rules.
This approach, which is applied, e.g., in medini QVT and
ATL/EMFTVM, simplifies the definition of rules.

For representing rules, we use an informal graphical
notation that will be mapped to the formalism for the com-
putational model in Sect. 3. A rule is decomposed into three
regions: source (including source elements), trace (includ-
ing previously created trace elements), and target (including
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Fig. 19 Diagram root to network root

Fig. 20 Activity to activity

Fig. 21 End-start dependency to activity

both context and created elements). Created nodes and edges
are decorated with two plus signs; all other nodes and edges
are matched. Equations in matched nodes define conditions
on their attribute values, while equations in created nodes
define assignments to attribute values.

The rule for mapping the single diagram root (Fig. 19)
matches the diagram root in the source graph and creates a
network root in the target graph. The trace region is empty
because no trace element exists before applying this initial
rule.

The rule for mapping an activity (Fig. 20) requires that the
diagram root containing that activity has been mapped to the
network root. In the target graph, an activity is created along
with its source and target events and connecting edges. The
name and the duration are copied from the corresponding
activity in the diagram.

The rules for mapping dependencies vary with respect to
the dependency type. Here, we present only one example
[mapping of an end-start dependency (Fig. 21)]. The type
of the dependency node must be end-start. A corresponding
activity is created in the network, along with edges from the
network root as well source and target events being selected
based on the dependency type. For an end-start dependency,
the target event of the predecessor activity acts as source event
for the new activity, and the source event of the successor

Fig. 22 Commutativity proof

activity plays the role of a target event for the new activity.
The trace is used to ensure that the diagram root has been
mapped to the network root, and predecessor and succes-
sor of the dependency have been mapped to corresponding
activities in the CPM network. Finally, the duration of the
new activity is copied from the offset of the dependency,
and the name is obtained by concatenating (+) the names of
predecessor and successor activities.

When the rules presented above are applied to the Gantt
diagram shown on the left-hand side of Fig. 16, the CPM
network on the right-hand side is created along with the trace
displayed in the middle.

2.5.3 Sketch of proof

For the sketch of the proof, which will be elaborated in
Sect. 3, we use Fig. 22 as illustration. On the transform-
filter path, an (annotated) targetmodel target is created from
an annotated source model source, leaving the trace trace;
subsequently, target is filtered, resulting in the filtered target
model target ′′. On the filter-transform path, filtering yields
the filtered source model source′, which is subsequently
transformed into target ′, producing the trace trace′. For
proving commutativity, we have to show target ′ = target ′′.

For the computational model described in Sect. 2.5.1,
transformations are monotonic in the following sense: if
source′ is included in source, target ′ is included in target ,
and trace′ is included in trace. Let us consider a step in
the transformation of source′. If some rule has a match in
source′ and the part of target ′ that has been constructed so
far, the same rule also has a match in source and a part of
target that includes target ′. Since a rule is local, its appli-
cability depends only on the match, not on its context. Thus,
the corresponding step is executable in the transformation of
source. Since all rules are applied to all matches, every step
of the transformation of source′ may be mapped to a cor-
responding transformation step on source. Since rules are
functional, both transformation steps have the same effect.

The computational model also implies that transforma-
tions exhibit functional behavior. Since rules are monotonic
and local, two rules that are applicable simultaneously may
be executed in any order, giving the same result (confluence).
Since all rules are applied to all matches, transformations
differ only in the order in which rules are applied to their
matches, but not in the final result. Furthermore, it can be
shown that if a transformation terminates on some model
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Table 4 Satisfaction of properties of the computational model in different tools

Tool Properties of transformations Properties of rules Properties of traces

Out-place Batch Rule-based Functional Monotonic Local Complete Fine-grained

ATL/EMFTVM × � × � � × × ×
BXtend � × × � × × × ×
eMoflon � × × � � × � �
medini QVT × × × � � × � ×

source, it will terminate on any model source′ that is
included in source.

Let us assume that the transformation of source termi-
nates. Then, it delivers a unique result target , and any
transformation of a filtered source source′ terminates and
returns a unique result target ′, as well. The equality of
target ′ and the filtered target target ′′ may be proved as
follows: let us consider the first step in the transformation
of source. The respective rule may be applied to the same
match in source′ if and only if all elements of the match
pass the filter. In this case, trace-based propagation ensures
that elements that are generated by this step in target pass
the filter, as well (Eq. 1). Thus, the same elements are gen-
erated on both paths. This argument extends by induction to
all transformation steps.

2.5.4 Discussion

If a single-variant transformation conforms to the compu-
tational model introduced in Sect. 2.5.1, trace-based prop-
agation guarantees commutativity. Thus, the computational
model is useful to understand under which conditions filters
and transformations commute.

In the following, we examine to what extent model trans-
formation languages and tools satisfy the properties of the
computational model introduced in Sect. 2.5.1. Table 4 sum-
marizes the results for the languages/tools introduced earlier
in the section on traces (Sect. 2.3.2).

In the table, a tick � indicates that the respective property
is guaranteed to hold for every transformation defined and
executed in the respective tool. In contrast, a cross × means
that the respective property may be violated.

The discussion below is organized by the properties intro-
duced in Sect. 2.5.1, followed by a brief summary.

Out-place transformation (Property 1) All tools support
out-place transformations. ATL/EMFTVM and medini QVT
go beyond the computational model because they support
in-place transformations in addition. Thus, Property 1 may
be violated in ATL/EMFTVM and medini QVT, while it is
guaranteed to hold in BXtend and eMoflon.

Batch transformation (Property 2) For out-place trans-
formations, only ATL/EMFTVM is constrained to batch
transformations and thus conforms to Property 2 of the
computational model. All other tools support incremental
transformations (considering batch transformations as a spe-
cial case), which again breaks the computational model.

Rule-based transformation (Property 3) In all languages,
transformations are defined in terms of rules. Nevertheless,
Property 3 is violated in all cases: all rules need to be applied
to all matches in a global loop. ATL/EMFTVM, BXtend, and
medini QVT break this computational model because they
support explicit control structures and allow rules to be called
from other rules. Due to the absence of control structures,
eMoflon comes closest to the computational model. How-
ever, even eMoflon does not conform to Property 3: eMoflon
does not apply all rules to all matches but attempts to cover
the source model by rule applications. Thus, if two rules
compete for the same match, only one of them is applied.

Functional behavior (Property 4) In all languages, rules are
functional, i.e., they have a unique result once a match has
been fixed. However, functional behavior of individual rules
may not carry over to transformations as a whole. For exam-
ple, in eMoflon transformations may exhibit non-functional
behavior (due to different orderings of rule applications
and different resolutions of conflicts). As we have already
mentioned in Sect. 2.5.3, our computational model implies
functional transformations.

Monotonicity (Property 5) eMoflon’s TGG rules are mono-
tonic since they specify synchronous extensions of source,
correspondence, and target graphs. Similarly, inmedini QVT
rules declaratively specify relations among patterns, without
offering any language constructs for state changes (updates
or deletions). ATL/EMFTVM imposes several restrictions
concerning the use of the ATL language. Since updates
and deletions may not be specified in rules executable by
the ATL/EMFTVM virtual machine, rules are classified as
monotonic, as well. BXtend’s rules violate monotonicity;
arbitrary updates and deletions may be programmed in the
object-oriented language Xtend.
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Locality (Property 6) Locality is a crucial property of the
computational model: only then may a rule be applicable
to a given match in an unfiltered model if and only if it is
applicable to the same match in a filtered model. In all of the
considered approaches, locality is violated: BXtend permits
arbitrary BXtend code, checking non-local conditions. Like-
wise, the use of OCL in ATL/EMFTVM and medini QVT
allows to break locality. Finally, in eMoflon negative appli-
cation conditions allow to specify non-local rules (whose
applicability depends on the context of the match).

Complete traces (Property 7) By default, traces in
BXtend are incomplete because each correspondence con-
nects exactly one primary source element to exactly one
primary target element (see also Fig. 18). In ATL/EMFTVM,
traces are generation-complete and do not include con-
text elements. medini QVT’s traces are complete since
they include all objects involved in the respective rela-
tions. Finally, the rule-based protocols recorded by eMoflon
are complete, as well (while the link-based correspondence
graphs are incomplete).

Fine-grained traces (Property 8) In ATL/EMFTVM,
BXtend, and medini QVT, traces are recorded at the level of
objects; thus, they are classified as coarse-grained. Only the
protocols created by eMoflon include fine-grained elements:
all matched or created nodes and edges are recorded. Thus,
annotations attached to edges may be taken into account
by trace-based propagation. However, node attributes are
not recorded. Phrased in the terminology of object-oriented
modeling, protocols partially include structural features of
objects (links between objects); thus, they are classified as
fine-grained.

Summary The preceding discussion shows that none of the
considered tools satisfies all properties of the computational
model. This means that it is possible to define transforma-
tions that break the computational model. However, the large
number of crosses in Table 2 might be misleading: when the
languages and tools are used in restricted ways, the resulting
computations may satisfy the required properties.

For example, let us consider eMoflon: this tool may
perform batch transformations by executing an incremen-
tal transformation against an initially empty target model.
Furthermore, TGG rules that do not include negative appli-
cation conditions are local. Finally, as long as rules are
non-conflicting, all rules are applied to all matches (rule-
based transformation).

If a single-variant transformation conforms to the compu-
tational model, trace-based propagation guarantees commu-
tativity. Thus, the computational model is useful to under-
stand under which conditions filters and transformations
commute. Even if commutativity is violated, trace-based

propagation may still be applied in a heterogeneous MDPLE
environment. Then, a post-processing step may improve the
result of trace-based propagation (see also Sect. 4, which
presents extensions to trace-based propagation).

3 Formal description

This section formalizes trace-based propagation. It includes
a formal proof of commutativity that is sketched in Sect. 2.5.
While the formalization constitutes a key contribution of this
paper, itmaybe skippedby readerswhoare interested primar-
ily in concepts and applications of trace-based propagation.

After somebasic definitions (Sect. 3.1), the first part of this
section introduces a computational base model (Sects. 3.2–
3.5). Sections 3.2 and 3.3 define graphs and graphmorphisms
(type- and structure-preservingmappings), respectively. Sec-
tion 3.4 introduces rules that perform graph transformations
in-place. These rules are functional, monotonic, and local.
Furthermore, this section also defines derivations, in which
all rules are applied to all matches. Finally, several properties
of derivations that are needed for the proof of commutativity
are stated and proved in Sect. 3.5.

The computational base model relies on in-place transfor-
mations. In Sect. 3.6, we simulate out-place batch trans-
formations generating traces with the help of in-place
transformations on graphs that are composed of source, trace,
and target graphs. Altogether, the resulting source-to-target
transformations satisfy all properties stated in Sect. 2.5.

The computational model introduced so far is confined to
single-variant transformations. Section 3.7 is concerned with
variability. In particular,multi-variant graphs are introduced,
in which each graph element is decorated with an annotation
defining in which variants the respective element is included.

Section 3.8 presents an algorithm for trace-based propa-
gation that is executed after a single-variant source-to-target
transformation. The algorithm receives a graph consisting of
a source graph, a trace graph, and a target graph as well as
annotations of the source graph as inputs and returns annota-
tions of the target graph as output. Altogether, a multi-variant
transformation is executed by chaining a single-variant trans-
formation and trace-based propagation.

Finally, Sect. 3.9 presents a formal proof of commutativ-
ity: for the graph-based computational model, it is proved
that a multi-variant transformation, followed by a filter on
the target graph, returns the same result as a filter on the
source graph, followed by a single-variant transformation.

3.1 Basic definitions

This section collects definitions that are based on elementary
set theory [18] and are used throughout the rest of Sect. 3.

123



870 B. Westfechtel, S. Greiner

Let S and T be sets. We use conventional set-theoretic
notation to denote the union (S ∪ T ), disjoint union (S ∪̇ T ),
intersection (S ∩ T ), and difference (S \ T ) of S and T . The
inclusion of S in T is denoted by S ⊆ T , and ∅ denotes the
empty set. Finally, for a finite set S its cardinality (the number
of its elements) is denoted by |S|.

For sets S and T , the Cartesian product S × T is defined
as the set of all pairs (s, t)where s ∈ S and t ∈ T . A relation
over S and T is a set R ⊆ S×T . The domain of R is defined
as dom(R) = {s ∈ S | ∃t ∈ T : (s, t) ∈ R}. The range of R
is defined as ran(R) = {t ∈ T | ∃s ∈ S : (s, t) ∈ R}.

R ⊆ S × T is a (total) function if dom(R) = S and
(s, t) ∈ R and (s, t ′) ∈ R implies t = t ′ for all s ∈ S and
t, t ′ ∈ T . Using conventional functional notation, f : S →
T denotes a function f from S to T . For a finite set S, we
write f as a set of mappings {s1 �→ t1, . . . , sn �→ tn}, where
f (si ) = ti (1 ≤ i ≤ n).

f is injective if f (s) = f (s′) ⇒ s = s′ for s, s′ ∈ S.
f is surjective if ran( f ) = T , and bijective if it is injective
and surjective. For a bijective f , its inverse function f −1 :
T → S such that f −1( f (s)) = s for s ∈ S is well-defined
and bijective, as well.

Let S ⊆ T be two sets. The function id : S → T with
id(s) = s for all s ∈ S is called identity (function) (on S).
Furthermore, let S1, S2, and S3 be sets, and let f1 : S1 → S2
and f2 : S2 → S3 be functions. The composition of f1
and f2 is a function f = f1 ◦ f2 : S1 → S3 such that
f (s1) = f2( f1(s1)) for all s1 ∈ S1. Finally, let S and T be
sets, let S′ ⊆ S be a subset of S, and let f : S → T be a
function from S to T . The restriction of f to S′ is a function
f |S′ : S′ → T with f |S′(s′) = f (s′) for all s′ ∈ S′.
Let S1 and S2 be disjoint sets (S1 ∩ S2 = ∅), let T1 and

T2 be sets, and let f1 : S1 → T1 and f2 : S2 → T2 be
functions. The disjoint union of f1 and f2 is a function f1 +
f2 : (S1 ∪̇ S2) → (T1 ∪ T2) that is defined by the union of
their underlying relations.

Let R ⊆ S × S be a relation. R is reflexive if (s, s) ∈ R
for all s ∈ S, transitive if (s, s′) ∈ R ∧ (s′, s′′) ∈ R ⇒
(s, s′′) ∈ R for all s, s′, s′′ ∈ S, and symmetric if (s, s′) ∈
R ⇒ (s′, s) ∈ R for all s, s′ ∈ S. R is an equivalence
relation if R is reflexive, transitive, and symmetric.

Finally, let R ⊆ S× S be a relation. The transitive closure
over R is a relation R+ ⊆ S × S, where (s1, sn) ∈ R+ if and
only if there is a sequence s1 . . . sn such that (si , si+1) ∈ R
(1 ≤ i < n, n > 1).

3.2 Graphs

A graph consists of typed elements (nodes and edges). To
keep the formalization simple, we do not consider attributes.
Furthermore, we refrain from introducing graph schemas
(type graphs) since type consistency of graphs goes beyond
the intents and the scope of our formalization.

Each edge is directed and has a unique source and a unique
target. In addition to nodes, the definition permits edges as
ends of edges (higher-order edges).Wewill use this feature in
the representation of traces, where trace nodes are connected
to edges from the source and the target graph (see Fig. 27).

Definition 1 (Graph) Let TN and TE be finite sets of node
types and edge types, respectively. A graph over TN and TE
is a tuple G = (N , E, lN , lE , s, t), where

– N is a finite set of nodes,
– E is a finite set of edges (N ∩ E = ∅),
– lN : N → TN is a node labeling function,
– lE : E → TE is an edge labeling function,
– s : E → EL is a source function, and
– t : E → EL is a target function.

Here, EL = N ∪̇ E denotes the set of elements of G (nodes
or edges).

Definition 2 (Ordered graph) Let G = (N , E, lN , lE , s, t)
be a graph over TN and TE , and let EL = N ∪̇ E denote
the set of elements of G. G is called ordered with respect to
its edge set E if and only if there exists an ordering function
ord : EL → N that maps graph elements to natural numbers
such that the following conditions hold:

∀n ∈ N : ord(n) = 0 (2)

∀e ∈ E : ord(e) > ord(s(e)) ∧ ord(e) > ord(t(e)) (3)

In an ordered graph, self-referential edges are excluded.
An edge e ∈ E is self-referential if s(e) = e or t(e) = e. In
the following, we assume that all graphs are ordered.

Example 1 TheGantt diagram on the left-hand side of Fig. 16
is represented as a graphG = (N , E, lN , lE , s, t) as follows:

– TN = {G, A, ES}
– TE = {els, a2d, d2a}
– N = {n1, n2, n3, n4}
– E = {e1, e2, e3, e4, e5}
– lN = {n1 �→ G, n2 �→ A, n3 �→ ES, n4 �→ A}
– lE = {e1 �→ els, e2 �→ els, e3 �→ els, e4 �→
a2d, e5 �→ d2a}

– s = {e1 �→ n1, e2 �→ n1, e3 �→ n1, e4 �→ n2, e5 �→ n3}
– t = {e1 �→ n2, e2 �→ n3, e3 �→ n4, e4 �→ n3, e5 �→ n4}

G is ordered because all edges connect nodes (an ordering
function that returns 0 on nodes and 1 on edges satisfies
Definition 2).

Figure 23 displays G in a graphical notation, which will
be used throughout the rest of this section.
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Fig. 23 Graphical representation of a Gantt diagram graph

3.3 Morphisms

Morphisms are mappings between graphs that preserve ele-
ment types as well as sources and targets of edges.

Definition 3 (Morphism) Let G1 = (N1, E1, lN1 , lE1 , s1, t1)
and G2 = (N2, E2, lN2 , lE2 , s2, t2) be graphs over TN and
TE with element sets EL1 = N1 ∪̇ E1 and EL2 = N2 ∪̇ E2,
respectively.Amorphismm : G1 → G2 is a pair of functions
m = (mN ,mE ) with a node mapping function mN : N1 →
N2 und an edge mapping function mE : E1 → E2 such
that node and edge types as well as sources and targets are
preserved:

∀n1 ∈ N1 : lN2(mN (n1)) = lN1(n1) (4)

∀e1 ∈ E1 : lE2(mE (e1)) = lE1(e1) (5)

∀e1 ∈ E1 : s2(mE (e1)) = mEL(s1(e1)) (6)

∀e1 ∈ E1 : t2(mE (e1)) = mEL(t1(e1)) (7)

Here, mEL : EL1 → EL2 denotes the element mapping
function mEL = mN + mE .

A morphism id = (idN , idE ) with identities on nodes
and edges is called an identity morphism.

A morphism is a monomorphism, epimorphism, or iso-
morphism ifmN andmE are injective, surjective, or bijective,
respectively.

Proposition 1 Let G1 = (N1, E1, lN1 , lE1 , s1, t1) and G2 =
(N2, E2, lN2 , lE2 , s2, t2) be graphs over TN and TE . Fur-
thermore, let m1 : G1 → G2 and m2 : G2 → G1 be
monomorphisms. Then both m1 and m2 are isomorphisms.

Proof Sincem1 andm2 are monomorphisms, node and edge
mapping functions are injective in both directions. This
implies for the cardinalities of the node sets that |N1| ≤ |N2|
and |N2| ≤ |N1|, resulting in |N1| = |N2|; likewise for the
edge sets. Thus, additionally both m1 and m2 are surjective,
implying that both m1 and m2 are isomorphisms. ��

The following relations on graphs are defined with the
help of morphisms.

Definition 4 (Graph relations) Let G1 = (N1, E1, lN1 , lE1 ,

s1, t1) and G2 = (N2, E2, lN2 , lE2 , s2, t2) be graphs over TN
and TE .

– G1 is less or equal to G2 (G1 � G2) if there is a
monomorphism m : G1 → G2.

– G1 is a subgraph of G2 (G1 ⊆ G2) if and only if id =
(idN , idE ) is an identity morphism from G1 to G2.

– G1 is isomorphic to G2 (G1 � G2) if there is an isomor-
phism m : G1 → G2.

Thus, G1 ⊆ G2 implies G1 � G2. Furthermore, � and
⊆ are reflexive and transitive. Finally, � is an equivalence
relation. The proofs are straightforward.

Definition 5 (Morphism operators) Let Gi = (Ni , Ei , lNi ,

lEi , si , ti ) (1 ≤ i ≤ 3) be graphs over TN and TE .

– Let m1 : G1 → G2 and m2 : G2 → G3 be morphisms,
wherem1 = (mN1,mE1) andm2 = (mN2 ,mE2), respec-
tively. The composition ofm1 andm2 is a morphismm =
m1 ◦m2 : G1 → G3 withm = (mN1 ◦mN2 ,mE1 ◦mE2).

– Let m : G1 → G2 be an isomorphism m = (mN ,mE ).
The inverse of m is an isomorphism m−1 : G2 → G1

with m−1 = (mN
−1,mE

−1).
– Let m : G1 → G2 be a morphism with m = (mN ,mE ),
and let G3 ⊆ G1 be a subgraph of G1. The restriction
of m onto G3 is a morphism m|G3 : G3 → G2 such that
m|G3 = (mN |N3,mE |E3).

– Let m : G1 → G2 be a morphism with m = (mN ,mE ).
The range of m (ran(m)) is a subgraph G3 ⊆ G2 with
node set N3 and edge set E3 such that N3 = ran(mN )

and E3 = ran(mE ).

It may be checked easily that the definitions are sound
(e.g., the inverse of an isomorphism is an isomorphism).

Proposition 2 The following statements hold for morphism
operators (G1, G2, and G3 denote graphs over TN and TE):

1. Let m1 : G1 → G2 and m2 : G2 → G3 be monomor-
phisms. Then m1 ◦ m2 : G1 → G3 is a monomorphism,
as well.

2. Let m : G1 → G2 be a morphism with m = (mN ,mE ).
Then the morphism m′ : G1 → ran(m) with m′ =
(m′

N ,m
′
E ) and m′

N (n) = mN (n),m′
E (e) = mE (e) for

all n ∈ N1, e ∈ E1 (where N1 and E1 denote the node
set and the edge set of G1, respectively) is an epimor-
phism.

Proof Follows immediately from the definitions. ��

3.4 Rules and derivations

This section defines rules and derivations conforming to the
computational model that is introduced in Sect. 2.5.1.
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Fig. 24 Application of a rule

Definition 6 (Rule and rule set) A rule (production) over TN
and TE is a pair p = (L, R), where L and R are graphs over
TN and TE such that L ⊆ R. L and R are called the left-hand
side and the right-hand side, respectively. A rule set P is a
finite set of rules p ∈ P .

Definition 7 (Match) Let p = (L, R) and G be a rule and a
graph over TN and TE , respectively. A match for p in G is a
monomorphism mL : L → G.

The graph G to which the rule is applied is called host
graph.

Definition 8 (Direct derivation) LetG and H be graphs over
TN and TE . Let p = (L, R) be a rule over TN and TE and
mL : L → G be a match for p in G. H is directly derivable
from G via p if H satisfies the following properties:

– A monomorphism mR : R → H exists such that the
diagram of Fig. 24 commutes (idL : L → R and idG :
G → H denote identity morphisms): idL ◦ mR = mL ◦
idG .

– For each graph H ′ with the same properties, H � H ′.

We write G
p→ H or G

p,mL−→ H if the match mL is
important. An application of a rule to a graph is also called
a derivation step.

Finally, let P be a rule set. H is directly derivable from G

via P (G
P→ H ) if there is a rule p ∈ P such that G

p→ H
holds.

Thus, when a rule is applied to a match, the elements of
the right-hand side that are not part of the left-hand side are
added to the host graph.

Rules satisfy the properties of the computational model
introduced in Sect. 2.5.1:

Proposition 3 Let G, p, and mL be a graph, a rule, and a
match for p in G, respectively. Then, the following properties
hold with respect to the application of p:

1. p is functional (Property 4), i.e., once amatchmL for p is
fixed, the resulting graph H is unique up to isomorphism.

2. p is monotonic (Property 5), i.e., p only adds nodes or
edges.

3. p is local (Property 6), i.e., the condition under which p
may be applied as well as its effect depends only on the
match mL.

Proof The statements of the proposition are proved as fol-
lows:

1. Let H and H ′ be derivable from G via p and match mL .
Then, H � H ′ and H ′ � H . According to Proposition 1,
H � H ′.

2. Since idG is an identity morphism, all elements of G are
preserved.

3. According to Definition 7, a rule p is applicable if and
only if a match mL : L → G may be found. According
to Definition 8, the effect of applying a rule depends only
on the match (elements to be inserted are connected only
to elements from mL(L)).

��
Definition 9 (Derivation) Let G and H be graphs, and let

P be a rule set. H is derivable from G via P (G
P∗→ H or

simply G
∗→ H ) if and only if there is a natural number

n ≥ 0, a sequence of graphs G0 . . .Gn , a sequence of rules
p0 . . . pn−1 from P , and a sequence of matches m0 . . .mn−1

such that the following conditions hold:

– G = G0, H = Gn

– Gi
pi ,mi−→ Gi+1 for 0 ≤ i < n

– No rulemaybe appliedmore thanonce to the samematch:
i �= j ⇒ (pi ,mi ) �= (p j ,m j ) for 0 ≤ i, j < n

A sequence of derivation steps satisfying the conditions

stated above is called a derivation. A derivation G
∗→ H

is complete if it cannot be extended any more.

A complete derivation is a rule-based transformation in
the sense of Property 3: all rules are applied to all matches
exactly once.

3.5 Properties of derivations

Below, we prove some properties of derivations that are used
later to conduct the proof of commutativity (Sect. 3.9).

3.5.1 Monotonicity

It follows by induction from Proposition 3 that the mono-
tonicity of rules carries over to derivations:

Proposition 4 Let P be a set of rules, and let G0
P→ G1

P→
. . .Gn−1

P→ Gn denote a derivation via P (n > 0). Then
Gi ⊆ Gi+1 for each 0 ≤ i < n.
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Fig. 25 Monomorphism preservation

The following proposition establishes a monotonicity
result for derivations on graphs G and G ′ such that G � G ′:

Proposition 5 Let P be a set of rules. Let G and G ′ be graphs
such that G � G ′. Furthermore, let G P∗→ H be a derivation

and G ′ P∗→ H ′ be a complete derivation. Then H � H ′.

Proof Since G � G ′, there is a monomorphism mG : G →
G ′. We will prove that there is a monomorphismmH : H →
H ′ that completes the diagram of Fig. 25, where G

P∗→ H ,

G ′ P∗→ H ′, and mG are given.

For G
P∗→ H , let G0 . . .Gn , p0 . . . pn−1, and m0 . . .mn−1

be sequences of graphs, rules, and matches satisfying the

conditions from Definition 9 (n ≥ 0). Likewise, for G ′ P∗→
H ′ the corresponding sequences are denoted by G ′

0 . . .G
′
n′ ,

p′
0 . . . p

′
n′−1, and m′

0 . . .m
′
n′−1, respectively (n′ ≥ 0).

We construct a sequence of monomorphismsmGi : Gi →
H ′(0 ≤ i ≤ n) such that mH = mGn : H → H ′ is a
monomorphism from H to H ′. Furthermore, we construct
a sequence of injective index functions fi : [0 .. i − 1] →
[0 .. n′ −1] (0 ≤ i ≤ n), where fn maps each derivation step
(pi ,mi ) to a corresponding derivation step (p′

j ,m
′
j ) such

that both derivation steps apply the same rule p′
j = pi to

corresponding matches.
mGi and fi are constructed inductively. For i = 0 (start

of induction), we setmG0 = mG (which is a monomorphism
by assumption) and f0 = ∅ (a function that is defined on an
empty interval because no derivation step has been mapped
yet).

For the induction step i → i + 1, let assume that mGi

and fi satisfy the properties stated above (0 ≤ i < n).

Let Gi
pi ,mi−→ Gi+1 denote the next derivation step to be

processed, where pi = (Li , Ri ) and mi : Li → Gi is a
monomorphism. Since mGi : Gi → H ′ is a monomorphism
by the inductive assumption, the composition mi ◦ mGi :
Li → H ′ is a monomorphism, as well (Proposition 2), and
thus, a match for pi in H ′. Since all rules are applied to
all matches (complete derivation), there is a derivation step
(p′

j ,m
′
j ) such that p′

j = pi and m′
j = mi ◦ mGi . Note that

pi is applicable to m′
j because rules are local.

j is not a member of the range of fi : j /∈ ran( fi ). This
is proved by contradiction: Let us assume that there is an

Fig. 26 Morphisms for rule applications in G and G ′

index 0 ≤ k < i such that fi (k) = j . For the derivation step
(pk,mk), pk = pi holds. Furthermore,mk◦mGi = mi ◦mGi .
SincemGi is amonomorphismand thus injective, this implies
mk = mi . Altogether, (pk,mk) = (pi ,mi ) for k �= i . This
is a contradiction to the uniqueness of derivation steps in
derivations (each rule is applied to each match only once).

Thus, fi+1 is constructed from fi as follows:

fi+1 = fi ∪ {i �→ j} (8)

dom( fi+1) = [0 .. i]. Furthermore, fi+1 is injective.
Finally, p′

j = pi , and m′
j = mi ◦ mGi is a match for pi in

G ′
j . Altogether, the inductive invariant regarding the index

function is established.
To extend mGi into mGi+1 , the graph elements created by

the derivation step (pi ,mi ) have to be mapped to H ′. By
applying Definition 8, we obtain the diagram of monomor-
phisms shown in Fig. 26. Since miR is a monomorphism,
miR : Ri → ran(miR ) is an isomorphism (Proposition 2).
Therefore, the inverse morphism m−1

iR
: ran(miR ) → Ri

exists and is an isomorphism, as well. Furthermore, m−1
iR

◦
m′

jR : ran(miR ) → G ′
j+1 is a monomorphism that maps

elementsmatched or created by (pi ,mi ) to elementsmatched
or created by (p′

j ,m
′
j ) (where pi = p′

j ).
Let Ni and Ei denote the sets of new graph elements cre-

ated by the derivation step (pi ,mi ). Let mi = (miN ,miE ),
miR = (miRN

,miRE
). Ni and Ei are computed as follows:

Ni = ran(miRN
) \ ran(miN ) (9)

Ei = ran(miRE
) \ ran(miE ) (10)

Let mGi =(mGiN
,mGiE

) and mGi+1=(mGi+1N
,mGi+1E

).

Furthermore, letmR=m−1
iR

◦m′
jR , wheremR=(mRN ,mRE ),

denote the monomorphism mapping the right-hand sides of
the rule applications in Gi+1 and G ′

j+1 onto each other.
The new node and edge mapping functions are calculated as
follows:

mGi+1N
= mGiN

∪ {n �→ mRN (n) | n ∈ Ni } (11)
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mGi+1E
= mGiE

∪ {e �→ mRE (e) | e ∈ Ei } (12)

Since the new nodes and edges inGi+1 aremappedmono-
morphically onto new nodes and edges in G ′

j+1, mGi+1 is a
monomorphism from Gi+1 to H ′. This completes the proof
of the inductive step.

Altogether, mH = mGn is a monomorphism from H =
Gn to H ′, and fn : [0 .. n − 1] injectively maps derivation
steps on G to derivation steps on G ′. ��

It should be noted that the proof exploits the assumption

that G ′ P∗→ H ′ is a complete derivation. Otherwise, the exis-

tence of a corresponding derivation step in G ′ P∗→ H ′ cannot
be deduced.

3.5.2 Functional behavior

Complete derivations exhibit functional behavior: the result
of a derivation is determined uniquely up to isomorphism.

Proposition 6 Let P be a set of rules, and let G be a graph.

Furthermore, let G
P∗→ H1 and G

P∗→ H2 be complete deriva-
tions. Then H1 and H2 are isomorphic: H1 � H2.

Proof We apply Proposition 5 twice. The identity on G is a
monomorphism of G into itself. For H = H1 and H ′ = H2,
we obtain a monomorphism mH1 : H1 → H2; switching the
order yields a monomorphism mH2 : H2 → H1. According
to Proposition 1, bothmH1 andmH2 are isomorphisms. Thus,
H1 � H2. ��

It should be noted that both derivations are required to be
complete. Otherwise, Proposition 5 cannot be applied in both
directions.

3.5.3 Termination

In general, the computational model does not guarantee
termination: Rules may constantly generate new matches,
resulting in an infinite sequence of derivation steps. However,
if there is a complete derivation starting from some graphG ′,
any sequence of derivation steps starting on a graph G � G ′
is finite.

Proposition 7 Let P be a set of rules. Let G � G ′ be graphs.
Furthermore, let G

P∗→ H be a derivation and G ′ P∗→ H ′
be a complete derivation. Let n and n′ denote the numbers
of derivation steps in G

P∗→ H and G ′ P∗→ H ′, respectively.
Then n ≤ n′.

Proof The bounded length of derivations starting from G
follows immediately from the construction performed in the

proof of Proposition 5, where derivation steps in G
P∗→ H

are mapped injectively to derivation steps in G ′ P∗→ H ′. ��

In particular, if we select G = G ′, we find that the exis-
tence of a complete derivation starting from G implies that
any sequence of derivation steps starting from G will termi-
nate. Furthermore, as shown above, all complete derivations
yield the same result (up to isomorphism).

3.6 Source-to-target transformations

As introduced so far, rules constitute in-place transfor-
mations: a single graph is transformed by applying rules.
In the following, we simulate out-place transformations
by decomposing graphs into multiple subgraphs (a source
graph, a trace graph, and a target graph). Rules are con-
strained such that they do not modify the source graph. A
batch transformation is defined as a complete derivation that
applies trace-generating source-to-target rules, starting with
a graph whose trace and target subgraphs are initially empty.
Altogether, the definitions from this section contribute all
properties of the computational model (Sect. 2.5.1) that have
been missing so far because they do not hold for the compu-
tational base model.

Definition 10 (Source-to-target graph) A source-to-target
graph (STT graph) is a graph G that is composed of three
mutually disjoint subgraphs and edge sets connecting these
subgraphs (and no further nodes and edges):

– A source graph GS ⊆ G that is typed over node types
TNS and edge types TES .

– A target graph GT ⊆ G that is typed over node types
TNT and edge types TET .

– A trace graph GT R ⊆ G that is typed over node types
TNT R and edge types TET R . Trace nodes are typed over
rule identifiers, i.e., TNT R = I DP for some rule set
P . The edge type set TET R contains a single edge type:
TET R = {use}.

– Trace-to-source edges of type src from nodes of the trace
graph to elements of the source graph.

– Trace-to-target edges of type ctx or trg from nodes of
the trace graph to elements of the target graph.

The notation G = GS ← GT R → GT is used to indicate
that G is an STT graph with the components listed above.

To simplify notation, node and edge types are not
mentioned explicitly below. Furthermore, we refrain from
expanding graphs explicitly into components. Rather, we
follow the convention that indices denote the respective
underlying graph. For example, NGS denotes the node set
of GS .

Example 2 Figure 27, a refinement of parts of Fig. 16, shows
an example of an STT graph. The graph shows a state that
is reached after two rules have been applied: the first rule
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Fig. 27 STT graph

maps the root of the Gantt diagram to the root of the CPM
network; the second rule maps an activity in a Gantt diagram
to an activity of the CPM network. The trace-to-source and
trace-to-target edges, although connecting elements of dif-
ferent subgraphs, are considered as part of the trace and are
thus displayed in blue color. The use edge e6 from n4 to n3
indicates that the rule for mapping the activity uses the result
of the rule for mapping the diagram.

A source-to-target rule is a rule on STT graphs that is used
to extend the target graph. The rule may access the trace, but
it does not extend it:

Definition 11 (Source-to-target rule) Let p = (L, R) be a
rule, where L = LS ← LT R → LT and R = RS ←
RT R → RT are STT graphs. p is a source-to-target rule
(STT rule) if all elements that are not contained in L are
members of RT :

∀el ∈ ELR : el /∈ ELL ⇒ el ∈ ELRT (13)

Furthermore, each element in LT must have exactly one
incoming trg edge:

∀el ∈ ELLT : |{e ∈ EL |tL(e) = el ∧ lEL (e) = trg}| = 1

(14)

The existence of an incoming trg edge for elements of the
left-hand side of the target graph (Eq. 14) ensures complete-
ness of dependency information (see Proposition 8).

Example 3 Figure 28 shows an STT rule for mapping activ-
ities that corresponds to the informal rule of Fig. 20. Again,
++ markers indicate created nodes and edges.

In order to capture trace information, user-defined STT
rules are transformed automatically into trace-generating

Fig. 28 STT rule for mapping activities

STT rules, which are used for actual execution. Tools such
as ATL/EMFTVM and medini QVT are based on a similar
approach. Thus, the user may conveniently define STT rules
accessing trace information but is not required to specify the
generation of trace information. Rather, the trace is built up
automatically during execution.

Definition 12 (Trace-generating STT rule) Let p = (L, R)
be an STT rule, where L = LS ← LT R → LT and R =
RS ← RT R → RT are STT graphs. The trace-generating
STT rule p′ = (L ′, R′) with L ′ = L ′

S ← L ′
T R → L ′

T and
R′ = R′

S ← R′
T R → R′

T is constructed from p by executing
the following sequence of steps:

1. Initialize p′ with p: p′ := p. Subsequently, extend the
right-hand side R′ as described below.

2. Add a single trace node n′ to the trace graph that is typed
by the identifier idp of rule p:

l ′N (n′) = idp (15)

3. For each old trace node n from p, create a trace edge e′
of type use from the new to the old trace node:

l ′E (e′) = use ∧ s′(e′) = n′ ∧ t ′(e′) = n (16)

4. For each source element (node or edge) el from p, create
a trace edge e′ of type src from the new trace node to the
source element:

l ′E (e′) = src ∧ s′(e′) = n′ ∧ t ′(e′) = el (17)

5. For each old target element el from p, create a trace edge
e′ of type ctx from the new trace node to the old target
element:

l ′E (e′) = ctx ∧ s′(e′) = n′ ∧ t ′(e′) = el (18)
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Fig. 29 Trace-generating STT rule for mapping activities

6. For each new target element el from p, create a trace edge
e′ of type trg from the new trace node to the new target
element:

l ′E (e′) = trg ∧ s′(e′) = n′ ∧ t ′(e′) = el (19)

Example 4 Figure 29 shows the trace-generating STT rule
that is obtained from the STT rule for mapping activities
(Fig. 28).

Based on the construction of STT rules, let us classify the
traces of our computationalmodel according to the taxonomy
displayed in Fig. 13:

– Traces are rule-based; thus, each trace node is typed by
the rule whose application is represented by the trace
node.

– Traces are complete inasmuch as they capture all source,
context, and target elements (Property 7).

– Traces are fine-grained since they include not only nodes
but also edges (Property 8).

Definition 13 (STT derivation) Let G = GS ← GT R →
GT and H = HS ← HT R → HT be STT graphs. Fur-
thermore, let P be a set of trace-generating STT rules. H is

STT-derivable from G if G
P∗→ H holds.

Thus, an STT derivation is a derivation (Definition 9) with
trace-generating STT rules. The notion of completeness car-
ries over, as well. Since STT rules do not modify the source
graph, GS = HS always holds.

The proposition below collects various facts that are rel-
evant for the propagation algorithm. Note that we use the
symbol ∅ to denote an empty graph (with empty element
set). Furthermore, we identify edge types tE with binary rela-
tions; i.e., we write (el1, el2) ∈ tE if there is an edge of type

tE from el1 to el2. For (el1, el2) ∈ tE , we use arrow notation

el1
tE→ el2.

Proposition 8 Let P be a set of trace-generating STT rules.
Let G = GS ← ∅ → ∅ and H = HS ← HT R → HT be
STT graphs such that H is STT-derivable from G via P. The
following properties hold for H:

1. Each element of HT has exactly one incoming trg edge:

∀el ∈ ELHT : |{e ∈ EH |tH (e) = el∧ lEH (e) = trg}| = 1

(20)

2. HT R is acylic with respect to use edges: let use+ ⊆
NHT R × NHT R denote the transitive closure over use
edges. No trace node uses itself:

∀nHT R ∈ NHT R : ¬ (nHT R

use+−→ nHT R ) (21)

3. Each create/use dependency between rule applications
is explicit: when a trace node has an outgoing ctx edge
to a target element, it also has an outgoing use edge to
another trace node that has an outgoing trg edge to this
target element:

∀nHT R ∈ NHT R , elHT ∈ ELHT : nHT R

ctx−→ elHT ⇒
∃n′

HT R
∈ NHT R : nHT R

use−→ n′
HT R

∧ n′
HT R

trg−→ elHT

(22)

Proof For G
P∗→ H , let G0 . . .Gn and p0 . . . pn−1 be

sequences of graphs and rules such that G = G0, H = Gn ,

and Gi
pi→ Gi+1 (0 ≤ i < n). We prove by induction over i

that each Gi satisfies the properties stated in the proposition.
Start of induction (i = 0): since G0 = G, the trace graph

GT R0 and the target graphGT0 are empty. Thus, all properties
are satisfied.

Induction step (i → i + 1): let all properties hold for Gi .
Let pi = (Li , Ri ) with Li = LSi ← LT Ri → LTi and
Ri = RSi ← RT Ri → RTi denote a trace-generating STT
rule. Applying pi maintains the inductive invariant, implying
that all properties hold for Gi+1:

1. By construction of pi , all new elements receive exactly
one incoming trg edge (Eq. 19). No further trg edges are
created. Altogether, all (old and new) elements of Gi+1

have exactly one incoming trg edge.
2. By construction of pi , each created use edge emanates

from the new trace node nRT Ri
∈ (NRT Ri

\NLT Ri
) created

by pi (Eq. 16). No further use edges are created. Since
the trace node is created in the same derivation step as
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its outgoing use edges (Definition 12), the trace graph
GT Ri+1 remains acyclic.

3. By the inductive assumption, Eq. 22 holds for all ctx
edges in Gi . By applying pi , new ctx edges are created
to elements from GTi (Eq. 18). According to Definition
11, in pi each element from Li must have an incoming
trg edge (Eq. 14), which emanates from some trace node.
Furthermore, a use edge from the new trace node to the
old trace node is created by applying pi (Eq. 16). Alto-
gether, the conclusion in Eq. 22 holds for all new ctx
edges. Using the inductive assumption, Eq. 22 holds for
Gi+1.

��
Definition 14 (Single-variant derivation) Let S and T be a
source graph and a target graph, respectively. Furthermore,
let P be a set of trace-generating STT rules. T is single-

variant derivable from S (S
P∗→ T ) if there are STT graphs

G = GS ← GT R → GT and H = HS ← HT R → HT

such that the following conditions hold:

GS = S ∧ GT R = ∅ ∧ GT = ∅ (23)

G
P∗→ H (24)

HT = T (25)

G
P∗→ H is required to be a complete STT derivation.

Thus, Definition 14 defines a relation between source and
target graphs with the help of a relation between STT graphs
(Definition 13). In this way, out-place batch transformations
are formalized (Properties 1, 2, respectively).

Altogether, the computational model, defined in Sects. 3.4
and 3.6, satisfies all properties listed in Sect. 2.5.1.

Example 5 In Fig. 27, the target graph GT has been derived
from the source graph GS according to Definition 14.

3.7 Variability

In PLE, feature models [22] are frequently used to express
the variability of a product line. In this paper, we do not
assume a specific approach to variability modeling but adopt
the terminology from feature models. We assume that the
common and discriminating properties of members of a
product line are defined by Boolean features from a set
F = { f1, . . . , fk}(k ≥ 1).

Definition 15 (Feature expression) Let F be a set of features.
A feature expression over F is an expression in propositional
logic over features from F . The set of all feature expressions
over F is denoted by EF ; we write eF for a member of EF .

Feature configurations are used to define product variants.
A feature configuration defines a product variant by deter-
mining the features to be included into that variant. Feature
configurations may be defined as specific kinds of feature
expressions:

Definition 16 (Feature configuration) Let F = { f1, . . . , fk}
be a set of features. A feature configuration over F is a con-
junction of bindings cF = b1∧. . .∧bk , where bi ∈ { fi ,¬ fi }.
The set of all feature configurations is denoted by CF .

Thus, a positive binding means that the respective feature
is included, and a negative binding means that it is omitted
from the specified product variant. Feature configurations are
fully bound; each feature is bound to a truth value.

A variability model determines which feature configura-
tions are valid. In the following, we assume valid feature
configurations but we refrain from formally defining vari-
ability models (which is not needed for our purposes).

In annotative approaches, variability is expressed by
attaching feature expressions to model elements. We assume
an evaluation function that takes a feature configuration and
a feature expression and returns a Boolean result:

Definition 17 (Evaluation function) Let F be a set of fea-
tures,CF a set of feature configurations over F , and EF a set
of feature expressions over F . An evaluation function over F
is a function vF : EF ×CF → B, where B = {true, f alse}
denotes the set of Boolean values. vF returns the value true
if and only if eF may be deduced from cF :

cF � eF (26)

For example, for eF = f1∨ f2 the call vF (eF , cF ) returns
true for cF = f1 ∧ ¬ f2 and f alse for cF = ¬ f1 ∧ ¬ f2.

Amulti-variant graph is a graph whose elements are dec-
orated with feature expressions:

Definition 18 (Multi-variant graph) Let F be a set of fea-
tures. A multi-variant graph is a pair GF = (G, aF ), where
G = (N , E, lN , lE , s, t) is a graph, EL = N ∪̇ E , and
aF : EL → EF is an annotation function that decorates
each element with a feature expression. For each edge e ∈ E ,
aF must satisfy the following constraint (referential consis-
tency):

aF (e) ⇒ aF (s(e)) ∧ aF (t(e)) (27)

The constraint for the annotation function ensures that
a single-variant graph obtained by filtering a multi-variant
graph returns a valid graph, without dangling edges.

Example 6 Figure 30 shows a multi-variant diagram graph.
As in Fig. 16, we assume a mandatory root feature R and two
optional subfeatures F and G.
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Fig. 30 Example of a multi-variant diagram graph

Fig. 31 Variants of diagram graphs

A filter is a function that reduces the underlying single-
variant graph G of a multi-variant graph GF to those nodes
and edges whose feature expressions evaluate to true under
the given feature configuration.

Definition 19 (Filter) Let F be a set of features and CF be
the corresponding set of feature configurations. Let GF and G
denote the sets of all multi-variant graphs and single-variant
graphs, respectively. A (graph) filter is a function fF : GF ×
CF → G that is defined as follows: for some multi-variant
graph GF = (G1, aF1) and some feature configuration cF ,
the filter returns a graph G2 ⊆ G1 whose node and edge sets
are defined as follows:

N2 = {n1 ∈ N1 | vF (aF1(n1), cF ) = true} (28)

E2 = {e1 ∈ E1 | vF (aF1(e1), cF ) = true} (29)

Example 7 Assuming a mandatory root feature R and two
optional subfeatures F and G, the multi-variant graph from
Fig. 30 may be configured into four variants. The variant
for the feature configuration R ∧ F ∧ G was already shown
in Fig. 23. The remaining variants are displayed in a tab-
ular form in Fig. 31, where the upper and the lower row
show feature configurations and corresponding graph vari-
ants, respectively.

3.8 Propagation algorithm

Algorithm 1—written in pseudo code—propagates annota-
tions from the source to the target model by processing each

trace node in turn. For each rule application, each target ele-
ment is decorated with the conjunction of the annotations
of all source and context elements (Line 19). The gener-
ated expression is simplified (Line 21) to reduce the size of
the annotations (otherwise, it would contain repeated subex-
pressions if multiple elements are annotated with the same
expression).

The function Select called in Line 13 ensures that each
rule application is processedonly after all rule applications on
which it depends (i.e., the trace node to be selected must not
have outgoing use edges to other trace nodes in the working
set). Select implements a topological sort that guarantees
that the annotations of context elements have already been
assigned when they are used to annotate target elements.

For the sake of a uniform representation throughout the
whole formalization section, Algorithm 1 is described in
terms of the graph-based computational model introduced
earlier in this section. However, it should be noted that trace-
based propagation was actually implemented against the
abstract trace metamodel from Fig. 14. With the information
stored in STT graphs, it is straightforward to implement this
abstract interface. The sequential order of trace elements is
implemented by a topological sort; the references to source,
context, and target elements are implemented as shown in
Lines 16–18.

The following proposition states that trace-based propa-
gation produces a consistently annotated target graph:

Proposition 9 Let H = HS ← HT R → HT be an STT
graph, derived from the STT graph HS ← ∅ → ∅. Let aFHS

:
ELHS → EF be the annotation function for the source graph
HS. Finally, let aFHT

: ELHT → EF be the annotation
function produced by Algorithm 1. Then, HTF = (HT , aFHT

)

is a multi-variant target graph.

Proof The proof is composed of three parts:

1. The annotation function constructed by trace-based prop-
agation is total: all derivation steps are processed, each
target element of each derivation step is annotated, and
each element of HT has exactly one incoming trg edge
(Proposition 8, Eq. 20).

2. The annotation function is well-defined: since the trace
graph is acylic (Proposition 8, Eq. 21), a topological sort
may be performed (by theSelect function) to ensure that
each trace node is processed only after all its used trace
nodes. Furthermore, each context element of a trace node
has an incoming trg edge from some used trace node
(Proposition 8, Eq. 22). Thus, the annotation of a context
element is accessed only after it has been assigned when
the used trace node has been processed. Therefore, the
feature expression in Line 19 of Algorithm 1 is well-
defined.
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Algorithm 1 Propagation of annotations
1: procedure Propagate(H , aFHS

, aFHT
)

2: in H = HS ← HT R → HT � STT graph, derived from HS ← ∅ → ∅
3: in aFHS

: ELHS → EF � Annotation function for the source graph HS
4: out aFHT

: ELHT → EF � Annotation function for the target graph HT
5: var WHT R ⊆ NHT R � Working set of trace nodes
6: var nHT R ∈ NHT R � The current trace node to be processed
7: var SE ⊆ ELHS ,CE ⊆ ELHT , T E ⊆ ELHT � Source, context, and target elements
8: var eF ∈ EF � Feature expression to be assigned to target elements
9: var te ∈ ELHT � The target element to be annotated
10:
11: WHT R := NHT R � Initialize working set of trace nodes
12: while WHT R �= ∅ do � Working set is not empty
13: nHT R :=Select(WHT R ) � Select trace node in topological order
14: WHT R := WHT R \ {nHT R } � Remove trace node from working set
15: � Determine source, context, and target elements (defined using arrow notation for edges):

16: SE := {se ∈ ELHS | nHT R

src−→ se}
17: CE := {ce ∈ ELHT | nHT R

ctx−→ ce}
18: T E := {te ∈ ELHT | nHT R

trg−→ te}
19: eF := ∧{aFS (se) | se ∈ SE} ∧ ∧{aFT (ce) | ce ∈ CE}
20: � The feature expression is a conjunction of source and context element expressions
21: eF := Simplify(eF ) � Simplify resulting expression
22: for te ∈ T E do � Process all target elements
23: aFHT

(te) := eF � Annotate the target element
24: end for
25: end while
26: end procedure

3. Finally, the annotations are referentially consistent, i.e.,
the feature expression attached to an edge implies the
feature expressions of its ends (Definition 18):

∀eHT ∈ EHT : aFHT
(eHT ) ⇒

aFHT
(sHT (eHT )) ∧ aFHT

(tHT (eHT )) (30)

Let eHT be an edge from EHT . If an end of eHT is
created in the same derivation step as eHT , the same
feature expression is assigned to both the edge and its
end. If the end has been created in a previous step and
has been annotated with some feature expression eF ,
aFHT

(eHT ) = eF ∧ e′
F for some feature expression e′

F
according to Line 19 of Algorithm 1. In both of these
cases, the implication holds for the respective end of the
edge, and thus for the conjunction of feature expressions
of both ends.

��
Now, we are ready to define multi-variant derivations,

which relate multi-variant source graphs to multi-variant tar-
get graphs:

Definition 20 (Multi-variant derivation) Let HSF = (HS,

aFHS
) be a multi-variant source graph, let P be a set of trace-

generating STT rules, let H = HS ← HT R → HT be an
STT graph resulting from a complete STT derivation starting
on HS ← ∅ → ∅, and let aFHT

be the annotation function

produced by trace-based propagation, applied to H and aFHS
.

Then, the multi-variant target graph HTF = (HT , aFHT
) is

called multi-variant derivable from the multi-variant source

graph HSF (HSF
PF ∗−→ HTF ).

3.9 Proof of commutativity

Let us summarize what we already know about single- and
multi-variant transformations in our computational model:

– If a multi-variant transformation terminates on a multi-
variant source graph, it produces a unique result up to
isomorphism. This follows from the functional behavior
of single-variant transformations (Proposition 6) and the
functional behavior of trace-based propagation (the result
is unique if the function Select respects the partial order
on trace nodes defined by use edges).

– If a multi-variant transformation terminates on a multi-
variant source graph, a single-variant transformation,
when executed on a filtered source graph, terminates, as
well (Proposition 7), and also returns a unique result up
to isomorphism.

Since filters always terminate and deliver unique results,
we know that if the transform-filter path is executed success-
fully, it will deliver a unique result, which we may compare
to the unique result of the terminating execution of the filter-
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Fig. 32 Commutativity

Fig. 33 Application of monomorphism preservation

transform path (assuming that the same filter is applied on
both paths).

The following theorem states that the results obtained on
different paths are the same (up to isomorphism):

Theorem 1 (Commutativity) Let F be a feature set, let
GSF = (GS, aFGS

) be a multi-variant source graph, let
P be a set of trace-generating STT rules, and let HTF =
(HT , aFHT

) be a multi-variant target graph that is multi-

variant derivable from GSF (GSF
PF ∗−→ HTF ). Let fF :

GF × CF → G be a graph filter. Then for every feature
configuration cF ∈ CF the following proposition holds:

Let G ′
S = fF (GSF , cF ) and H ′′

T = fF (HTF , cF ) denote
the filtered source and target graph, respectively. Let H ′

T
be derivable from G ′

S via a single-variant derivation. Then
H ′
T � H ′′

T (Fig. 32).

Proof Let cF ∈ CF denote a feature configuration. For the

multi-variant derivation, let G
P∗→ H denote the underlying

complete STT derivation, where G = GS ← ∅ → ∅ and
H = HS ← HT R → HT . Likewise, for the single-variant

derivation letG ′ P∗→ H ′ denote the underlying complete STT
derivation, where G ′ = G ′

S ← ∅ → ∅ and H ′ = H ′
S ←

H ′
T R → H ′

T . Since source graphs are not modified in STT
derivations, GS = HS and G ′

S = H ′
S .

Since G ′ ⊆ G, the identity on G ′ is a monomorphism
mG : G ′ → G. Proposition 5 implies that there is a corre-
sponding monomorphism mH : H ′ → H . Thus, we obtain
the diagram of Fig. 33.

Let mHT : H ′
T → HT denote the restriction of mH to the

target graph H ′
T , i.e., mHT = mH |H ′

T
. We will prove that the

range ofmHT coincides exactly with the filtered target graph
H ′′
T :

ran(mHT ) = H ′′
T (31)

As a consequence, the monomorphism mHT : H ′
T → H ′′

T
is surjective. Thus, it is an isomorphism from H ′

T to H ′′
T , and

H ′
T � H ′′

T .
LetmELHT denote the element mapping function ofmHT .

To prove (31), we rephrase this statement as follows for the
elements from HT :

∀elHT ∈ ELHT : elHT ∈ ran(mELHT
) ⇔

vF (aFHT
(elHT ), cF ) = true (32)

Thus, an element belongs to the range of mELHT
if and

only if it passes the filter under the feature configuration cF .
On the source graph, we already know that an analogous

statement holds for the element mapping function mELG of
the monomorphism mG because G ′

S is obtained from GS by
filtering GS under the same feature configuration cF as the
target graph HT :

∀elGS ∈ ELGS : elGS ∈ ran(mELGS
) ⇔

vF (aFGS
(elGS ), cF ) = true (33)

For G
P∗→ H , let G0 . . .Gn , p0 . . . pn−1, and m0 . . .mn−1

be sequences of graphs, rules, andmatches satisfying the con-

ditions fromDefinition 9; likewise forG ′ P∗→ H ′,G ′
0 . . .G

′
n′ ,

p′
0 . . . p

′
n′−1, and m′

0 . . .m
′
n′−1, respectively (n, n′ ≥ 0).

Let us consider the sequence G0 . . .Gn . This sequence
is increasing monotonically (Proposition 4), and Gn = H .
Furthermore, Gi = GSi ← GT Ri → GTi (where GSi = GS

for each 0 ≤ i ≤ n). We prove the following statement by
induction over i :

∀elGTi
∈ ELGTi

: elGTi
∈ ran(mELHT

) ⇔
vF (aFHT

(elGTi
), cF ) = true (34)

Since GTn = HT , (34) is equivalent to (32) for i = n.
Proof by induction: for i = 0, GT0 = ∅ (no derivation

steps have been performed yet). Thus, (34) is trivially satis-
fied.

For the induction step i → i +1, let us assume that (34) is
valid for index i . Let (pi ,mi ) denote the next derivation step
to consider. Furthermore, let SEi , CEi , and T Ei denote its
source, context, and target elements, respectively. Finally, let
tei ∈ T Ei be some target element. According to Algorithm
1, tei is annotated with the following feature expression eFi :

eFi =
∧

{aFGSi
(sei ) | sei ∈ SEi } ∧

∧
{aFGTi

(cei ) | cei ∈ CEi }
(35)

Thus, for the feature configuration cF ∈ CF expression
eFi evaluates to true if and only if the feature expressions of
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all source and context elements evaluate to true:

vF (eFi , cF ) = true ⇔
∀sei ∈ SEi : vF (aFGSi

(sei ), cF ) = true ∧
∀cei ∈ CEi : vF (aFGTi

(cei ), cF ) = true (36)

Using (33) and the inductive assumption (34), we may
conclude:

vF (eFi , cF ) = true ⇔
∀sei ∈ SEi : sei ∈ ran(mELGS

) ∧
∀cei ∈ CEi : cei ∈ ran(mELHT

) (37)

According to Proposition 5, all source elements from SEi

and all context elements fromCEi aremembers of the ranges
of the respective mapping functions if and only if there is a

corresponding match (p′
j ,m

′
j ) occurring in G ′ P∗→ H ′ such

that the following conditions hold:

– pi = p′
j .

– mH maps the elements of the match m′
j to the elements

of the match mi .

Thus, expression eFi attached to element tei ∈ T Ei eval-
uates to true if and only if the match mi of the derivation
step (pi ,mi ) creating tei is related to the match of some
corresponding derivation step (p′

j ,m
′
j ). According to Propo-

sition 5, the matches correspond to each other if and only if
the elements created by the corresponding derivation steps
correspond to each other. Altogether, we obtain:

vF (eFi , cF ) = true ⇔ tei ∈ ran(mELHT
) (38)

This condition holds for each tei ∈ T Ei . Furthermore,
ELGTi+1

= ELGTi
∪ T Ei . Thus, the following proposition

holds:

∀elGTi+1
∈ ELGTi+1

: elGTi+1
∈ ran(mELHT

) ⇔
vF (aFHT

(elGTi+1
), cF ) = true (39)

This completes the induction step and the proof as awhole.
��

4 Extensions

In the previous sections, we presented a computationalmodel
for trace-based propagation of annotations and proved that a
multi-variant model transformation conforming to the com-
putational model commutes. The current section presents

problems which arise when the computational model is vio-
lated, and demonstrates practical solution approaches.

In Sect. 4.1, potential violations of the computational
model are enumerated, followed by introducing an illustra-
tive example in Sect. 4.2. Section 4.3 addresses incomplete
traces. Section 4.4 investigates the use of incremental trans-
formations for establishing commutativity. Section 4.5 gives
a brief summary.

4.1 Computational model violations

First of all, our solution requires to access complete traces
but this information is not always made available to the user
by transformation engines. As a consequence, two problems
may occur: either there is only incomplete information on
corresponding elements (incomplete or generation-complete
trace) or there is no trace present at all. In addition, the level
of detail of the trace may differ from the level of detail of
variability annotations. For instance, the trace may record
objects only,whereas annotationsmay decorate the structural
features of these objects, too.Below,we focus on the situation
when incomplete trace information is still available. Then,
our approach can be adapted to this situation.

In the second place, the properties of the transformation
rules are a prerequisite for the correct propagation of annota-
tions. However, transformation rules may violate properties
of the computational model, i.e., they may not be functional,
monotonic, or local. As it was discussed in Sect. 2.5.4, trans-
formation rules in the tools introduced as representatives are
functional,whereas theymaynot expose amonotonic or local
behavior. In particular, locality cannot be guaranteed for any
of these tools.

Finally, the computational model assumes batch transfor-
mations; commutativity holds for batch transformations only.
Incremental transformations have not been considered so far.

4.2 Scenario violating commutativity

In order to illustrate violations of commutativity and respec-
tive solution approaches, we use a well-known example that
deals with the transformation between a families database
and a persons database. This example was proposed origi-
nally as part of the ATL [21] transformation zoo.3 Here, we
are concerned only with the backward transformation (per-
sons to families).

On the right-hand side, Fig. 34 displays metamodels (in
Ecore) for both databases. A persons database contains a flat
set of persons with name attributes (being composed of the
first name and the family name). The abstract class Person
is refined into two subclasses for female and male persons,
respectively. A families database consists of named families.

3 http://www.eclipse.org/atl/atlTransformations/#Families2Persons.
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Fig. 34 Metamodels for the persons to families transformation (right)
and feature model (left) used in the scenario

Family members carry their first names as attributes. The
role of a member is expressed by its incoming containment
link. Each family has at most one mum and one dad, and
any number of daughters and sons. Note that we assume all
multi-valued references to be ordered.

On its left-hand side, Fig. 34 displays a feature model,
which comprises the mandatory root DB and two optional
features P and C, allowing to select a children or parents
database only.

The transformation of a persons database to a families
database is assumed to behave as follows: the first rule appli-
cation creates the family registry. Thereafter, the persons
recorded in the persons database are processed sequentially,
according to the order in which they are contained in the
prs list. For each person, a family member is created. When
a Family corresponding with the last name of the person
is not present yet, a Family element is created, and the
Member is inserted as parent, as mum or dad depending on
its gender. If the family exists but the parent role correspond-
ing with the person’s gender is not occupied, the member
will be inserted as parent; otherwise, it becomes a child.

4.3 Incomplete traces

For trace-based propagation, the most severe problem con-
sists in missing information. In the following, we assume
that the transformation is realized in a tool (e.g., BXtend)
that creates 1:1 correspondences between source and target
model elements. As a consequence, a trace may be incom-
plete if multiple target elements are created from the same
source element, but only one target element participates in
the trace. Figure 35 gives an example. As presented on the
top of the figure, the trace records only one main correspond-
ing element, i.e., in this use case the Family element is not
mapped by any trace element. Note that we assume that Tom
precedes Ben in the prs list. Thus, Tom is transformed first
as a dad; next, Ben follows as a son.

Fig. 35 Transformation of an annotated persons database to an anno-
tated families database using an incomplete trace. Commutativity is
violated due to the missing annotation on the Family element

When trace-based propagation is applied as described
above, all elements missing an annotation are globally visi-
ble by default, i.e., in this example the family Smith is part of
every filtered target model. Evaluating commutativity gives
a negative result in the case of selecting the feature DB only,
as shown at the bottom of the figure. The family remains in
the filtered target model, whereas it is not created by trans-
forming the filtered source model.

For that reason, we propose different strategies to deter-
mine missing annotations in partially annotated models in a
post-processing step [17]. These strategies are based on the
structure of the target model, which is assumed to have a
spanning containment tree. The elements missing an anno-
tation are collected and treated by either of the following
strategies:

– Container The annotation of the container element is
taken, starting to assign the annotations from the top to
the bottom.

– Contained The annotation of children elements is com-
bined in a disjunction, starting to assign the annotations
from the bottom to the top. If an elementmissing an anno-
tation does not contain any elements (leaf of the tree), the
annotation true may be assigned.

– Combined The annotation of the container and the chil-
dren is combined in a conjunction, i.e., at first the tree
is iterated from the top to the bottom and the container
expressions are assigned, followed by iterating from the
bottom to the top and combining the annotation of the
container with the one resulting from the annotations of
the children.

Despite a negligibly increased computational effort, we
propose to utilize the combined strategy: an element in a
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hierarchy is visible if and only if its parent is visible and
at least one of its children is visible. This strategy assigns
the annotation DB ∧ (P ∨ C) to the Family element.
Applying the 1:1 propagation followed by complementing
missing annotations with the post-processing strategy solves
the abovementioned problem, i.e., commutativity is achieved
in Fig. 35.

Summing it up, the problem of incomplete trace infor-
mation may be addressed by first exploiting the existing
information (e.g., propagating the annotations of 1:1 map-
pings) and then applying a post-processing strategy. Above,
we have argued that the combined strategy should deliver
the best results (with respect to commutativity). However,
any of the proposed strategies is a heuristic; it cannot guar-
antee commutativity. Therefore, the post-processing strategy
should be selectable by the user. Furthermore, annotations
created in the post-processing step should be considered as
proposals to be checked and corrected (if necessary) by the
user (e.g., by leaving markers on these annotations that may
be removed after they have been checked and corrected).

4.4 Incremental single-variant transformations

The second kind of problem arises when the transformation
rules do not conform to the computational model. In partic-
ular, in all transformation languages discussed in Sect. 2.5.4
rules are not guaranteed to be local, i.e., their application
may depend on conditions that extend beyond the respective
matches. As a consequence, a condition which is satisfied on
amulti-variant model may not hold on a single-variant model
and vice versa. In the case of non-local rules, commutativity
may be violated.

Let us assume that family Smith carries, based on the com-
bined strategy, the expression DB ∧ (P ∨C). For evaluating
commutativity all feature configurations are created. In the
case P and C are deselected, only the registry remains in the
filtered target model. The same holds for the database in the
persons database, which in turn is transformed into the family
registry. Thus, commutativity is achieved for the feature con-
figuration DB∧¬P∧¬C . The same holds truewhen parents
are selected, regardless of whether children are selected or
not (feature configurations DB∧P∧¬C and DB∧P∧C). In
contrast, when a children databasewithout parents is selected
(DB ∧¬P ∧C), in the target model derived from the multi-
variant target model Ben remains as son of the family Smith
and as male person in the filtered source model. However,
when transforming the filtered source model, a family Smith
is created and Ben is inserted as dad. Accordingly, com-
mutativity is violated since Ben is mapped to a son on the
transform-filter path and to a dad on the filter-transform path.
Altogether, the combined strategy improves commutativity
(the number of commuting cases is increased), but does not
resolve all violations.

Fig. 36 Sketch of incremental commutativity for handling deletions at
the level of application engineering

It is important to notice that this problem is fundamen-
tal: for the commutativity criterion which has been proposed
so far, the problem cannot be solved by any post-processing
approach that annotates the result of a single-variant trans-
formation. On the transform-filter path, Ben is inserted as a
son (if Ben passes the filter on the target model). On the filter-
transform path, Ben might be inserted as a parent. Filtering
a target model in which Ben occurs as a son cannot result in
a model in which Ben occurs as a parent. No matter how we
assign annotations to target model elements: commutativity
is violated in the case described above. Note that this problem
is caused by non-local rules: the rule for transforming a per-
son to a member has to check the context in the target model.
It depends on this context how the person is transformed.

In the following, we propose a solution that may fur-
ther improve commutativity under the prerequisite that
single-variant transformations and filters may be executed
incrementally. Rather than relying on batch transformations
only, commutativity is checked with the help of incremental
transformations. In this proposal, commutativity is evaluated
as follows (Fig. 36, illustrating steps 1 and 2 below):

1. In an initializing step, the multi-variant source model is
copied to the level of application engineering (stripping
the variability annotations). Subsequently, this 150%
sourcemodel is transformed (in batchmode) into a 150%
target model.

2. The filter-transform path is executed as follows: first, the
selected filter is applied incrementally to the 150%source
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model. This means that all elements not selected by the
filter are deleted. Subsequently, an incremental transfor-
mation is executed against the 150% target model. As a
consequence, deletions on the source model are propa-
gated to the target model.

3. On the transform-filter path, the multi-variant transfor-
mation is applied to the multi-variant source model in
batchmode. Subsequently, the resultingmulti-variant tar-
get model is filtered in batch mode.

4. The single-variant target models obtained on both paths
are compared to each other.

In our example, this approach solves the violating case
for the feature configuration DB ∧ ¬P ∧ C . Since the par-
ent is deselected, Tom is deleted from the source model, and
this deletion is propagated to the target model. Ben is not
affected by this change: the incremental transformation still
knows that the male Ben Smith corresponds to the son Ben
of the family Smith. Thus, it does not create a new parent
(as it would happen in a batch transformation) but keeps Ben
as son. Altogether, the proposed use of incremental transfor-
mations results in commuting transformations for all valid
feature configurations.

4.5 Summary

In this section, we have sketched extensions to trace-based
propagation that may be employed if certain properties of
the computational model are not satisfied. The first exten-
sion adds missing variability annotations in the case of
incomplete traces. The second extension exploits incremental
transformations to increase stability of transformations. Both
extensions may improve the behavior of multi-variant trans-
formations, as demonstrated by the given example. However,
these extensions are heuristics that work for certain trans-
formations, but may still fail in other cases. Altogether,
commutativity is improved, but not guaranteed.

5 Related work

We have already discussed related work performed by other
researchers at various locations in this paper (Sects. 1.4, 2.2.3,
2.3.2, 2.5.4). This section brings these discussions together
and takes further aspects into account that have not been
considered so far.

Section 5.1 addresses multi-variant transformations. Sec-
tion 5.2 is concerned with the computational model devel-
oped in Sect. 3. Section 5.3 focuses on the proof of commu-
tativity.

5.1 Multi-variant transformations

The term “multi-variantmodel transformation” is ambiguous
and may be parsed in two ways: transformation of multi-
variant models, the focus of our work, and multi-variant
transformation of models, as addressed in [42,43]. Likewise,
transformations of product lines [44], covering both feature
and domain models, goes beyond the scope of our work.

Approaches to transforming multi-variant models may
be classified according to three criteria: scope, abstraction,
and realization (Fig. 11). In Sect. 2.2.3, we have classified
approaches from the literature according to these criteria
(Table 1) and have evaluated them (Table 2) against the
requirements stated in Sect. 2.2.1. Among these approaches,
trace-based propagation is unique inasmuch as it may be
applied independently of the language in which single-
variant transformations are written—provided that transfor-
mations record persistent traces (see also Sect. 1.4). Thus,
trace-based propagation may be applied in a heterogeneous
MDPLE environment such as FeatureMapper [19] or Famile
[8,9] and meets the requirements for genericity and reuse.

Traces may be classified according to three criteria: type,
completeness, and granularity (Fig. 13). The traces created
by a set of different tools used as running examples through-
out this paper (ATL/EMFTVM [45], BXtend [6], eMoflon
[28], and medini QVT [20]) are classified with respect to
this taxonomy in Table 3; see also Sect. 2.3.2. For achieving
commutativity, complete and fine-grained traces are required
(Sect. 2.5.1).

5.2 Computational model

Acore contribution of this paper is a computationalmodel for
single-variant transformations that guarantees commutativ-
ity of multi-variant transformations realized with the help of
trace-based propagation. The properties of the computational
model have been summarized in Sect. 2.5.1: a transforma-
tion is performed out-place in batch mode by applying all
transformation rules to all matches. Each rule is functional,
monotonic, and local. Finally, traces must be complete and
fine-grained.

The computational model provides a precise character-
ization of the conditions under which commutativity is
satisfied. Commutativity holds as long as transformations
conform to the computational model. However, contempo-
rary transformation languages and tools usually allow to
write non-conforming transformations. For the tools used as
running examples, Table 4 in Sect. 2.5.4 states which prop-
erties are satisfied.

In our previous work [47], we presented a computational
model that considers models as sets of elements (rather than
graphs). The set-based model and the graph-based model
share the same properties regarding transformations, rules,
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and traces. The set-based and the graph-based formalizations
are considerably different, but result in similar proposi-
tions concerning computational behavior and commutativity.
While it is possible to considermodels as flat sets of elements,
the graph-based formalization appears to bemore natural and
structured. Furthermore, it facilitates the comparison to other
graph-based computational models.

With respect to the definition of graphs in the computa-
tional base model (Sects. 3.2–3.4), our definition is slightly
more general than the definition of graphs in algebraic graph
transformation [12] inasmuch as it allows for higher-order
edges. On the other hand, our rules are monotonic and
local. In contrast, algebraic graph transformation allows for
deletion of nodes and edges as well as application condi-
tions. As a consequence, our rules are parallel independent
on all matches. Thus, transformations are confluent and
exhibit functional behavior. Under certain conditions, these
properties hold for algebraic graph transformations, as well
(Sect. 3.4 in [12]). Furthermore, the embedding theorem that
is stated in [12] resembles Proposition 5, which states that
each rule applied in a derivation starting from some graph
G may be mapped to a corresponding rule application in a
derivation starting from a graph G ′ including G.

With respect to single-variant transformations defined on
top of the computational base model, we may relate our
work to triple graph grammars (TGGs [38]). In TGGs, out-
place graph transformations are specified with the help of
monotonic grammar rules which extend the source graph, the
correspondence graph, and the target graph simultaneously.
From these synchronous rules, directed rules for forward
and backward transformations are derived automatically.
Our source-to-target rules correspond to directed TGG rules.
However, the computational model of TGGs differs in vari-
ous aspects: while rules are both monotonic and local in the
original TGG proposal, contemporary tools such as eMoflon
support negative application conditions, which violate local-
ity. Furthermore, rather than applying each rule to each
match, the source graph is covered by rule applications. As a
consequence, rules compete formatches, and theTGGengine
has to resolve conflicts between rule applications.Altogether,
a TGG-based transformation may be non-functional, which
is not possible in our computational model.

5.3 Commutativity

The proof of commutativity for the graph-based computa-
tional model is conceptually similar to the proof presented
in our previous work [47]. To the best of our knowledge, the
first formalization of the commutativity criterion as well as
a formal proof of commutativity was given in [34], which
lifts in-place graph transformation rules to multi-variant
graphs (while our approach considers out-place batch trans-

formations). The lifting approach is more general than our
approach inasmuch as deletion of nodes and edges as well as
negative application conditions are allowed in graph transfor-
mation rules.When a rule is applied, the annotations attached
to graph elements are calculated according to a formula
which takes deletions and negative application conditions
into account. In trace-based propagation, neither deletions
nor negative application conditions can be taken into account
because the actual rules driving the transformation are not
known.

Our proof of commutativity differs from the respective
proof for the lifting approach in the following respect: in
[34], commutativity is proved for a single rule application:
application of a lifted, multi-variant rule followed by a filter
yields the same result as applying the filter first, followed by
an application of the single-variant rule. In contrast, we have
to consider complete derivations. This applies both to the
central Proposition 5, which relates derivations on graphs G
andG ′ includingG, and to the final Theorem 1, which proves
commutativity.

6 Conclusion

We conclude this paper with a summary (Sect. 6.1) and an
outlook on future work (Sect. 6.2).

6.1 Summary

Trace-based propagation of variability annotations has been
developed to serve a practical need: to extend single- to
multi-variant transformations in a heterogeneous MDPLE
environment such as Famile or Feature Mapper, where dif-
ferent languages and tools may be employed for defining and
executing model transformations. Trace-based propagation
is a generic gray-box approach: it needs only access to the
trace of a single-variant transformation via a generic inter-
face that may be implemented for different languages and
tools. In this way, trace-based propagation provides a low-
cost solution for implementingmulti-variant transformations
in a heterogeneous MDPLE environment.

The main contribution of this paper consists in the pro-
motion of trace-based propagation from a heuristic to an
approach with a proven correctness property. The notion
of correctness is defined with the help of commutativity: a
multi-variant transformation is correct if filters and transfor-
mations commute. Executing a multi-variant transformation
followed by a filter executed on the target model must yield
the same result as filtering the source model first, followed
by a single-variant transformation. Commutativity must hold
for each filter—provided that the same filter is applied to the
source and the target model.
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Toprove commutativity,we have developed a graph-based
computational model for single-variant transformations that
satisfies various properties with respect to rules, transforma-
tions, and traces.The computationalmodel assumes that rules
are functional, local, andmonotonic, that all rules are applied
to all matches, and that fine-grained and complete traces are
recorded when rules are executed. Based on this computa-
tional model, we have formalized trace-based propagation
and proved that commutativity is satisfied. In this way, we
have identified clearly under which conditions trace-based
propagation guarantees commutativity.

Trace-based propagation may still be used when the
prerequisites underlying the computational model are not
satisfied. As we have discussed in this paper, transforma-
tion languages may not conform to the computational model,
and traces may be incomplete or coarse-grained. Even then,
a large fraction of the annotations generated by trace-based
propagation may be correct, minimizing the need for manual
adjustments. Furthermore, we proposed various extensions
that further improve the results of trace-based propagation.
Altogether, we consider trace-based propagation a pragmatic
approach that may be used to provide for multi-variant trans-
formations, serving the needs of both users and developers
of heterogeneous MDPLE environments.

6.2 Future work

Future work on trace-based propagation should address the
following issues:

6.2.1 Transformation languages and tools

The proof of commutativity relies on a formal graph-based
computational model (Sect. 3). This model may serve as the
foundation for developing a new transformation language
and tool that is guaranteed to establish commutativity of fil-
ters and transformations.

As we discussed in Sect. 2.5.4, existing languages and
tools break the computationalmodel introduced inSect. 2.5.1.
The design of (single-variant) transformation languages is
driven by expressiveness as one of the most important goals:
which kinds of transformations may be specified in the
respective language? For this reason, existing transformation
languages go beyond our computational model by support-
ing incremental in addition to batch transformations, rules
that allow updates and deletions in the target model or per-
mit checking of conditions, and explicit control structures for
rule applications.

Rather than making existing languages conform to the
computational model (which would restrict their expressive-
ness), it should be investigated whether subsets of these
languages may be identified that exhibit conformance. Thus,
filters and transformations would commute as long as only

those language constructs are used that belong to the respec-
tive subset.

As far as traces are concerned, language and tool support
should still be improved. The computational model requires
traces to be both complete and fine-grained. None of the
investigated languages and tools fully meets these require-
ments. Therefore, tools should be extended such that they
produce complete and fine-grained traces. Since traces may
be employed also for other purposes (e.g., incremental trans-
formations), the effort for performing this work should pay
off.

6.2.2 Extensions of trace-based propagation

In Sect. 4, we presented still ongoing work on extensions of
trace-based propagation. This work addresses two problems:

– Incomplete traces result in variability annotations of tar-
get model elements that are not correct with respect to the
commutativity criterion. We proposed several strategies
for correcting variability annotations in a post-processing
step. These strategies need to be explored further.

– So far, we have performed only initial work on incre-
mental transformations (see Sect. 4.4). In an incremen-
tal setting, all involved transformations would operate
incrementally: multi-variant transformations in domain
engineering, filters for the derivation of products, and
single-variant transformations in application engineer-
ing. Accordingly, the commutativity criterion, the algo-
rithm for trace-based propagation, and the underlying
computational model would have to be generalized to
the incremental case.

6.2.3 Evaluation

Finally, our work on trace-based propagation needs to be
evaluated on a larger scale. So far, we have considered fairly
small synthetic sample transformations, such as the transfor-
mation from Gantt diagrams to CPM networks that served
as a running example, and the transformation from per-
sons databases to families databases. In addition, we will
apply trace-based propagation to larger, industrially rele-
vant transformations, such as model to code transformations,
transformations between UMLmodels and Ecore models, or
object-relational mappings.

For evaluatingmulti-variant transformations,wehavepro-
posed a set of metrics and a generic framework that is
described in [16] and is currently being implemented on top
of the BenchmarX framework [1].
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