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1. SUMMARY 

 

The hyporheic zone is the water-saturated streambed sediment layer characterized by 

the simultaneous occurrence of multiple physical, biological, and chemical processes. 

The hyporheic zone contributes to the self-purification capacity of streams by removing 

point and nonpoint source pollutants mainly via microbial activity. However, such 

potentials, associated microbial communities, and impacts on microbial community 

structure are largely unknown for specific widely distributed compounds of 

environmental concern.  

Thus, pollutant removal potentials in hyporheic zone sediments were investigated 

using the non-steroidal anti-inflammatory drug ibuprofen. Ibuprofen biodegradation in 

oxic sediment microcosms amended with ibuprofen, or ibuprofen and acetate was 

determined. Unsupplemented and heat-sterilized sediments served as controls. 

Ibuprofen biotransformation occurred via 1-, 2-, 3-hydroxy and carboxy-ibuprofen as 

transient primary transformation products. Quantitative PCR analysis revealed a 

significantly higher 16S rRNA abundance in ibuprofen-amended relative to un-

amended incubations. Time-resolved amplicon Illumina MiSeq sequencing targeting 

16S rRNA genes and 16S rRNA revealed a clear effect of ibuprofen on the microbial 

community structure and many new ibuprofen responsive taxa affiliating with 

Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Latescibacteria 

and Proteobacteria. This was confirmed by specific 16S rRNA gene expression 

analysis of representative taxa. Two strains utilizing ibuprofen as sole carbon and 

energy source of the genera Novosphingobium and Pseudomonas were isolated and 

will serve as model organisms for elucidating ibuprofen degradation pathways. 
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Redox gradients along the streambed depth profile impact pollutant removal. Microbial 

removal of the beta-blocker metoprolol, in the redox-delineated hyporheic zones was 

investigated using oxic and anoxic sediment microcosms. Biotransformation of 

metoprolol occurred under both incubation conditions. In the oxic microcosms, 

metoprolol was transformed mainly to metoprolol acid, while under anoxic conditions, 

metoprolol acid and hydroxy metoprolol were formed, indicating dissimilar metabolic 

pathways for metoprolol degradation under the contrasting incubation conditions. The 

transformation products were subsequently completely degraded under both 

conditions. The responsive taxa associated with metoprolol degradation were affiliated 

with the Proteobacteria and Bacteroidetes under oxic conditions, and Proteobacteria, 

Acidobacteria, Chloroflexi, Firmicutes and Gemmatimonadetes under anoxic 

conditions. 

The organic matter content influences multiple biogeochemical reactions. The effect 

of organic carbon on the fate of 13 trace organic compounds (TrOCs) was investigated 

using sediments differing in the total organic carbon content (TOC). Oxic sediment 

microcosms with low and high TOC content   differed in the biotransformation and 

sorption removal efficiencies of the TrOCs. Significantly higher biotic removal 

efficiencies of compounds such as ibuprofen, ketoprofen and acesulfame were 

observed in high relative to low TOC sediments. The removal efficiency via 

biotransformation was generally higher than by sorption for all compounds tested 

except for propranolol for which complete removal occurred via both mechanisms. 

Acesulfame removal via sorption was marginal. Quantitative PCR and 16S rRNA gene 

amplicon Illumina MiSeq sequencing suggested that higher removal efficiencies of 

most compounds correlated with high bacterial abundance, diversity, and high TOC. 

The bacterial community in high-TOC sediment samples was more stable to TrOC 
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additions compared to the community in low TOC sediments. Latter communities were 

characterized by a decline in the relative abundance of most phyla except 

Proteobacteria. Bacterial families enriched in the presence of TrOCs relative to 

unamended controls included Methylophilaceae, Caldilineaceae, Acidimicrobiaceae, 

Xanthobacteriaceae, Hydrogenophiliaceae, Rhodospirillaceae Gemmatimonadaceae 

and Rhodocyclaceae, suggesting either resistance to or stimulation by suplemental 

TrOCs. 

Bedform features such as ripples and dunes alter hyporheic exchange fluxes and 

porewater residence times. The contribution of bedform features and microbial 

diversity on the  attenuation of TrOCs was investigated by measuring the dissipation 

half-lives (DT50s) of 31 TrOCs (mainly pharmaceuticals) under different combinations 

of bacterial diversity and bedforms using 20 recirculating flumes in a central composite 

face factorial design. Using targeted and suspect screening, quantitative PCR and 

time-resolved amplicon Illumina MiSeq sequencing, a set of DT50s and microbial 

transformation products were determined. About 20 compounds responded 

significantly to bacterial diversity and four to both diversity and hyporheic flow. 

Bacterial taxa abundant in microbial communities supporting biodegradation of the test 

compounds included Acidobacteria (groups 6, 17, and 22), Actinobacteria 

(Nocardioides and Illumatobacter), Bacteroidetes (Terrimonas and Flavobacterium) 

and diverse Proteobacteria (Pseudomonadaceae, Sphingomonadaceae, and 

Xanthomonadaceae). 

The collective results indicated that the hyporheic zone sustains (i) efficient biotic 

(trace) organic pollutant degradation of diverse compounds, and (ii) hitherto unknown 

microbial communities catalyzing (trace) organic pollutant removal. Results further 

suggest  that (iii) TOC content affects removal efficiency of some TrOCs by directly 
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impacting the microbial community dynamics and associated biotransformation 

processes, (iv) microbial diversity is the primary driver of biotransformation processes 

in the hyporheic zone, and (v) the interplay of the physical, biological, and chemical 

processes contributes to improved attenuation of TrOCs in the hyporheic zone. Thus, 

the hyporheic zone is a reservoir of hitherto unknown microbial biodiversity providing 

an essential ecosystem service. 
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2. ZUSAMMENFASSUNG 

 

Die hyporheische Zone ist der wassergesättigte Bereich von Flussbett Sedimenten,  

der durch vielfältige gleichzeitig ablaufende physikalische, biologische und chemische 

Prozesse charakterisiert ist. Die hyporheische Zone trägt zur Selbstreinigungskraft 

von Fließgewässern über die effiziente Entfernung von Kontaminanten aus klar 

eingegrenzten und diffusen Quellen, hauptsächlich über mikrobielle Aktivitäten, bei. 

Jedoch sind solche Potenziale, assoziierte mikrobielle Gemeinschaften und Einflüsse 

auf die Struktur der mikrobiellen Gemeinschaft für spezifische, weit verbreiteter, 

umweltrelevanter Substanzen weitestgehend unbekannt.  

Daher wurden Schadstoffentfernungspotenziale in Sedimenten aus der 

hyporheischen Zone mit Hilfe des nicht-steroidalen, entzündungshemmenden 

Wirkstoffs Ibuprofen untersucht. Biodegradation von Ibuprofen wurde in oxischen 

Mikrokosmen mit Sediment untersucht, denen Ibuprofen oder Ibuprofen und Acetat 

zugesetzt war. Nicht-supplementiertes oder hitzesterilisiertes Sediment diente als 

Kontrolle. Ibuprofen wurde über 1-, 2- und 3-Hydroxy sowie Carboxyibuprofen als 

transiente primäre Transformationsprodukte biologisch abgebaut. Quantitative PCR 

Analysen zeigten signifikant höhere 16S rRNA-Abundanzen in Ibuprofen-versetzten 

im Vergleich zu den nicht-supplementierten Mikrokosmen. Zeitlich aufgelöste 

Amplikon-Illumina-MiSeq-Sequenzierung der 16S rRNA Gene und der 16S rRNA 

zeigten einen bedeutenden Effekt von Ibuprofen auf die mikrobielle 

Gemeinschaftsstruktur und viele neuartige Taxa innerhalb der Acidobacteria, 

Actinobacteria, Bacteroidetes, Gemmatimonadetes, Latescibacteria und 

Proteobacteria, die auf Ibuprofen angesprochen haben. Dies wurde mit Hilfe 

spezifischer 16S rRNA Genexpressionsanalysen anhand repräsentativer Taxa 
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bestätigt. Zwei Stämme, die Ibuprofen als einzige Kohlenstoff- und Energiequelle 

nutzen konnten, zwei durch Ibuprofen angereicherte Taxa der Amplikonbliotheken 

repräsentierten und zu den Genera  Novosphingobium sowie Pseudomonas gehörten, 

konnten isoliert werden und werden als Modellorganismen zur Aufklärung von 

Ibuprofenabbauwegen dienen.  

Redoxgradienten entlang des Flussbetttiefenprofiles beeinflussen die Entfernung von 

Schadstoffen. Die mikrobielle Entfernung des Betablockers Metoprolol, aus der 

redoxkompartimentierten hyporheischen Zone wurde mit Hilfe von oxischen und 

anoxischen Mikrokosmen mit Sediment untersucht. Biotransformation von Metoprolol 

fand unter beiden Bedingungen statt. In den oxischen Mikrokosmen wurde Metoprolol 

vorwiegend zu Metoprololsäure transformiert, während unter anoxischen 

Bedingungen Metoprololsäure und Hydroxymetoprolol gebildet wurden, was auf 

unterschiedliche mikrobielle Abbauwege oder Aktivitäten unter den kontrastierenden 

Inkubationsbedingungen in der hyporheischen Zone hinweist. Die 

Transformationsprodukte wurden unter oxischen und anoxischen Bedingungen 

anschließend komplett abgebaut. Reagierende Taxa, die mit Metoproloabbau in 

Verbindung gebracht wurden, gehörten unter oxischen Bedingungen zu den 

Proteobacteria und Bacteroidetes, sowie zu den Proteobacteria, Acidobacteria, 

Chloroflexi, Firmicutes und Gemmatimonadetes unter anoxischen Bedingungen.   

Der Anteil an organische Substanz beeinflusst vielfältige biogeochemische 

Reaktionen. Der Einfluss von organischem Kohlenstoff auf den Verbleib von 13 

organischen Spurenschadstoffen (TrOCs) wurde mit Hilfe von Sedimenten 

unterschiedlichen Gehaltes an gesamten organischen Kohlenstoff (TOC) untersucht. 

Oxische Mikrokosmen mit Sediment, das einen hohen oder niedrigem TOC aufwies, 

zeigten unterschiedliche Biotransformations- und Sorptions-abhängige 
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Enfernungseffizienzen der TrOCs. Signifikant höhere biotische 

Entfernungseffizienzen wurden für Verbindungen wie Ibuprofen, Ketoprofen, und 

Acesulfam in Sedimentmikrokosmen mit hohem im Vergleich zu niedrigem TOC 

gefunden. Die Entfernungseffizienz über Biotransformation war für alle Verbindungen 

generell höher als durch Sorption, mit der Ausnahme von Propanolol, an dessen 

Entfernung beide Mechanismen gleichermaßen beteiligt waren. Sorption war für die 

Entfernung von Acesulfam vernachlässigbar. Quantitative PCR und 16S rRNA Gen-

Amplikon-Illumina-MiSeq-Sequenzierung legte nahe, dass die Entfernungseffizienzen 

der meisten Verbindungen mit hohen bakteriellen Zellzahlen und bakterieller 

Diversität, sowie hohem TOC korrelierten. Die mikrobielle Gemeinschaft der 

Sedimente mit hohem TOC waren in Bezug auf die Zugabe von TrOC stabiler, als die 

mikrobielle Gemeinschaft in Sedimenten mit niedrigem TOC. Letztere waren durch 

einen Rückgang der relativen Abundanzen der meisten Phyla mit der Ausnahme von 

Proteobacteria charakterisiert. Familien der Bacteria, die in der Anwesenheit von 

TrOCs im Vergleich zu den nicht-supplementierten Kontrollen angereichert waren, 

umfassten Methylophilaceae, Caldilineaceae, Acidimicrobiaceae, 

Xanthobacteriaceae, Hydrogenophiliaceae, Rhodospirillaceae, Gemmatimonadaceae 

and Rhodocyclaceae, was durch Resistenz gegenüber den supplementierten TrOCs, 

oder durch Stimulation erklärt werden kann.  

Flussbettstrukturen wie Rippel und Dünen verändern den hyporheischen 

Austauschfluss und damit die Porenwasserverweilzeiten. Der Beitrag von 

Flußbettstrukturen und mikrobieller Diversität auf die Attenuation organischer 

Schadstoffe in der hyporheischen Zone wurde durch Messung der Halbwertszeiten 

(DT50s) von 31 TrOCs (hauptsächlich Pharmazeutika) bei verschiedenen 

Kombinationen aus bakterieller Diversität und Bettstrukturen mit Hilfe von 20 
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rezirkulierenden Gerinnen in einem multifaktoriellem Design untersucht. Durch 

Kombination aus subtanzspezifischer und nicht-zielgerichteter Analytik organischer 

Verbindungen zusammen mit quantitativer PCR und zeitlich aufgelöster 16S rRNA 

Gen-Amplikon-Illumina-MiSeq-Sequenzierung wurden DT50s und mikrobiellen 

Transformationsproduktdynamiken als Funktion der beiden Faktoren ermittelt. 

Ungefähr 20 Verbindungen reagierten deutlich auf mikrobielle Diversität und vier auf 

beide, mikrobielle Diversität und hyporheischen Fluss. Bakterielle Taxa, die in 

mikrobiellen Gemeinschaften abundant waren, die Biodegradation der 

Testverbindungen unterstützten, umfassten Acidobacteria (groups 6, 17, and 22), 

Actinobacteria (Nocardioides and Illumatobacter), Bacteroidetes (Terrimonas and 

Flavobacterium) and diverse Proteobacteria (Pseudomonadaceae, 

Sphingomonadaceae, und Xanthomonadaceae). 

Die gesammelten Ergebnisse zeigen, dass die hyporheische Zone (i) effizienten 

biotischen (Spuren-)Schadstoffabbau einer Vielzahl unterschiedlichster Verbindungen 

ermöglicht und (ii) bislang unbekannte mikrobielle Gemeinschaften, die die Entfernung 

von (Spuren-)Schadstoffen katalysieren, unterstützt. Die Ergebnisse deuten weiterhin 

daraufhin, dass (iii) der Gehalt an TOC die Entfernungseffizienz einiger TrOCs über 

direkte Effekte auf die mikrobielle Gemeinschaft und damit verbundene 

Biotransformationsprozesse beeinflusst, sowie (iv) das Zusammenspiel 

physikalischer, biologischer und chemischer Prozesse zu einer verbesserten 

Attenuation von TrOCs in der hyorheischen Zone beiträgt.  Daher stellt die 

hyporheische Zone ein Reservoir bislang unbekannter mikrobieller Diversität dar, die 

eine essenzielle Ökosystemdienstleistung zur Verfügung stellt.
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3. INTRODUCTION 

3.1. Emerging pollutants in the environment  

3.1.1. Occurrence 

The “emerging pollutants” are compounds not currently covered by the existing water-

quality regulations but considered a potential threat to the environmental ecosystems, 

human health and safety (La Farre et al. 2008). The compounds are not necessarily 

new as some have been present in the environment for decades with their “discovery” 

only attributed to improvements in analytical technics (Barbosa Junior et al. 2016). 

Such compounds include pharmaceutical and personal care products (PPCPs), 

steroids and hormones, surfactants, nanoparticles, flame retardants, perfluorinated 

compounds, industrial chemicals, pesticides, and associated transformation products 

(La Farre et al. 2008; Hai et al. 2014). Most organic compounds are associated with 

human use, and their occurrence in the environment depends on the usage and 

disposal mechanisms. Majority of the compounds are disposed of via municipal and 

industrial wastewater treatment systems. Others such as agricultural-related wastes, 

e.g. pesticides and veterinary drugs may reach the environment via terrestrial run-offs 

and leaching, atmospheric deposition or when liquid manure is sprayed on agricultural 

fields (Figure 1; La Farre et al. 2008). While some of the compounds are eliminated 

during wastewater treatment or on site in terrestrial systems in case of pesticides, 

others tend to be removed partially or bypass the treatment processes unchanged, 

ending as complex mixtures in receiving surface waters (Margot et al. 2015; Jaeger et 

al. 2019a;Posselt et al. 2020) 

 The inefficient removal of such compounds during wastewater treatment is attributed 

to the design of most conventional wastewater treatment plants (WWTPs) whose 

primary purpose is to rapidly remove nutrients (organic carbon, nitrogen and 
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phosphorus) (Atashgahi et al. 2015). As such, the WWTPs are characterized by short 

hydraulic and sludge retention times that may be inadequate for elimination of 

xenobiotics before the discharge of the effluent into receiving rivers. As by design, 

most synthetic compounds exhibit a degree of stability and persistency (Berkner and 

Thierbach 2014), the continued discharge of non-degraded parent compounds and 

active metabolites by the currently existing WWTPs seems inevitable.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sources and pathways of organic (micro-) contaminants in the water cycle. 

Figure was modified after Ellis (2006). 
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3.1.2. Importance of organic pollutants in the environment 

The continued discharge of contaminated effluents results in pseudo-persistence and 

accumulation of the organic micropollutants in surface waters (Daughton 2003; 

Lewandowski et al. 2011). Though detected within the ng – µgL-1 range and christened 

trace organic contaminants (TrOCs), the compounds remain biologically active thus 

presenting a threat to the aquatic ecosystem mainly when such receiving systems are 

used in the production of drinking water (Pal et al. 2014). Effects such as acute and 

chronic toxicity to the aquatic biota, bioaccumulation, potential loss of biodiversity and 

unforeseen adverse effects on the human health raise concern (Hai et al. 2014). 

Recent studies have reported deleterious effects of some emerging pollutants on 

different trophic levels (La Farre et al. 2008). The occurrence of the contaminants in 

some cases as complex mixtures amplifies the toxicity due to additive, synergistic or 

antagonistic effects as well as continual exposure over long periods (Daughton 2003; 

Lawrence et al. 2005).   

For example, natural and synthetic estrogens cause endocrine disruption in humans 

and animals such as aquatic species at the ngL-1 range (Clara et al. 2005; Matozzo et 

al. 2008; Combalbert and Hernandez-Raquet 2010). Ibuprofen, a non-steroidal anti-

inflammatory drug widely consumed globally for its analgesic, anti-inflammatory, and 

antipyretic properties exhibited an adverse effect on the reproduction of some aquatic 

organisms such as zebrafish, planktonic crustaceans and the Japanese rice fish (Li et 

al. 2016). Ibuprofen was also detected in the bile of wild fish caught downstream of a 

WWTP (Brozinski et al. 2012) while cytotoxic effects of ibuprofen combined with other 

pharmaceuticals on human kidney embryonic cells have also been reported (Pomati 

et al. 2006). Potential metoprolol toxicity at μgL-1 to mgL-1 levels has been reported 

against all trophic levels from autotrophs (algae) to fish (Rubirola et al. 2014). The 
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antidepressants fluoxetine and sertraline and their metabolites were detected in wild 

fish, suggesting potential bioaccumulation (Brooks et al. 2005). An ecotoxicological 

risk of acetylsalicylic acid, bezafibrate, carbamazepine, diclofenac, fenofibrate, and 

paracetamol was predicted based on estimated baseline toxicity with quantitative 

structure-activity relationships (QSAR) (Lienert et al. 2007).  

Ibuprofen and carbamazepine reduced bacterial biomass of some riverine biofilm 

communities while cyanobacteria were suppressed by a mixture of ibuprofen, 

carbamazepine, furosemide, and caffeine (Lawrence et al. 2005). Benzotriazole 

derivatives are reported as mutagenic in bacteria and cytochrome P-450 inhibitor in 

addition to demonstrated toxicity against plants (La Farre et al. 2008). 

Perfluorochemicals commonly used in the production of such stain-resistant items as 

clothing and utensils including perfluorooctanoic acid, perfluorobutanoic acid and 

perfluorohexane sulfonate have been detected in reclaimed effluents. 

Perfluorochemicals are toxic, persistent and highly water-soluble, therefore, raising 

concern over their potential to contaminate drinking water sources (Hai et al. 2014). 

The effect of antibiotics on the emergence of resistant bacterial strains and spread 

across species via horizontal gene transfer is well documented (Neu 1992; Dzidic and 

Bedeković 2003). Such findings give rise to concerns on the long-term ecological 

impact of the micropollutants on aquatic ecosystems as well as the potential effect on 

the health and safety of higher trophic levels (Posselt et al. 2020). 

3.1.3. The fate of TrOCs in the environment  

Despite the risks mentioned above, attenuation of some pollutants in constructed and 

natural environments via such removal mechanisms as biodegradation and sorption 

has been reported (Posselt et al. 2018). The removal mechanism involved is majorly 
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dependent on the interaction of the TrOC’s physicochemical status with environmental 

factors such as pH, temperature, redox conditions, microbial community, operating 

parameters such as hydraulic and sludge retention time in WWTPs, and organic 

carbon content (Schwarzenbach 1986; Hai et al. 2014; Peralta-Maraver et al. 2018b). 

For example, hydrophobicity of a TrOC may be estimated using the octanol-water 

partitioning coefficient (Kow) to determine the probability of sorption. However, potential 

ionization of functional groups depending on the pH of the surrounding media may 

influence the Kow. Therefore, to account for such an effect of pH, the effective octanol-

water partitioning coefficient (log D) ought to be considered to predict the actual 

sorption potential of the compound. Generally, log D values ≥ 3 suggest sorption is a 

vital removal mechanism for a particular TrOC (Hai et al. 2014). 

Moreover, non-hydrophobic processes such as electrostatic interactions or 

complexation with metal ions may also contribute to the sorption of TrOCs (Boxall et 

al. 2002; Schaper et al. 2019). Anionic and neutral compounds sorb onto organic 

matter (Tülp et al. 2009) and are, therefore, affected by the total organic carbon 

content (Jaeger et al. 2019a). Cationic compounds tend to sorb to negatively charged 

surfaces and highest retention via sorption of such compounds has been 

demonstrated in sediment-water matrices (Writer et al. 2013; Kodešová et al. 2015).  

Like sorption, the biodegradability of the TrOCs depends on their physicochemical 

properties. This biodegradability is based on a kinetic constant kbiol L gss.d-1 derived 

from pseudo first order kinetic models as described in the Equation 1; 

Equation 1. 

(
𝑑𝐶𝑤

𝑑𝑡
) = −𝑘𝑏𝑖𝑜𝑙 X 𝐶𝑤   X  𝑋𝑎𝑐𝑡𝑖𝑣𝑒 
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where kbiol L gss.d-1is the biodegradation constant; Cw is the concentration of compound 

in the water phase (µgL-1) and Xactive is the concentration of active biomass (Tran et 

al. 2018). 

A proposal by Joss et al. (2006), attempted to classify compounds according to a 

biodegradation constant (kbiol) and identified three TrOC groups whereby compounds 

with kbiol < 0.1L gss.d-1 are removed to < 20%, compounds with kbiol < 10L gss.d-1 are 

transformed by < 90%, while moderate removal is predicted to be in between. The 

molecular weight is also considered a determinant on the biodegradability of TrOCs 

(Tadkaew et al. 2011). The authors investigated the removal of 40 TrOCs in a 

membrane bioreactor and identified a correlation between TrOC removal efficiency 

and their molecular weight. While compounds with molecular weight > 300 gmol-1 

registered removal efficiencies > 60%, those with molecular weight < 300 gmol -1 

exhibited variable removal efficiencies ranging from near zero to more than 98%. The 

authors attributed the trend to the higher molecular weight compounds constituting 

more functional groups and branches that are a target for different microbial 

degradation pathways. 

Moreover, a correlation between the molecular structure and functional moieties of 

TrOCs and their biodegradability has been demonstrated (Reemtsma et al. 2002; 

Tadkaew et al. 2011). Esters, aromatic alcohols and nitriles contain functional groups 

enhancing higher biodegradability while compounds with halogen groups and complex 

structures such as an alkyl chain branch exhibit reduced biodegradability (Corvini et 

al. 2006; Hai et al. 2011) Compounds with electron-withdrawing functional groups, 

exhibit low removal efficiency compared to those with electron-donating groups, e.g. 

hydroxyl and primary amine groups (Tadkaew et al. 2011).This may explain the 

differences observed in removal efficiencies of compounds such as pharmaceuticals 
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within a pharmacological class. For example, antiepileptic drugs vastly differ in 

structure ranging from complex azepines to branched chain carboxylic acids (Onesios 

et al. 2009). Antibiotics such as sulfonamides and macrolides vary markedly in their 

mechanism of action and structures. For example, the sulfonamide has two rings 

connected by a sulfur atom and C-N bonds while macrolides have a ring with side 

chains or sugars. These properties render the sulfonamides more polar and 

hydrophilic compared to macrolides, subsequently affecting their removal. Variable 

susceptibility of chiral pharmaceuticals to biodegradation depending on enantiomeric 

fractionation patterns where the S enantiomers of compounds such as ibuprofen, 

ketoprofen and naproxen as well as beta-blockers (alprenolol and propranolol) were 

preferentially degraded compared to their R counterparts (Hashim et al. 2010;  Hashim 

et al. 2011), suggest that enantiomeric fractionation patterns are important factors in 

predicting biotransformation potential. Despite the apparent variable removal 

mechanisms of TrOCs depending on the physicochemical status, it is important to note 

that in the environment, the processes are not necessarily exclusionary but rather 

complementary since for instance sorption may impair or enhance the bioavailability 

of a compound (Findlay and Sobczak 2000; Hai et al. 2014).  

Biodegradation is considered the most important removal mechanism of TrOCs in the 

environment (Radke et al. 2009; Lewandowski et al. 2011; Li et al. 2016; Coll et al. 

2019; Liu et al. 2019). In the majority of the cases, however, biotransformation rather 

than complete mineralization of the parent compounds is observed via the activity of 

such microorganisms as bacteria, archaea and fungi (Lewandowski et al. 2011;Tran 

et al. 2013; Posselt et al. 2018) 

Though evidence for the capability of such microbes to respond to minute 

concentrations of organic compounds from biosensor studies suggests concentrations 
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of organic compounds down to the pg L-1 range suffice to induce transcription of 

catabolic genes and corresponding enzymes for their transformation (Haque et al. 

2013), their occurrence in low concentrations is considered insufficient to support 

growth (La Farre et al. 2008; Tran et al. 2013). Some TrOCs may also exhibit toxicity 

rendering them unfavorable to enter catabolic pathways of microbial cells (Tran et al. 

2013). Therefore, many TrOCs are degraded cometabolically in the presence of a 

primary growth substrate such as organic carbon that maintains the biomass (Tran et 

al. 2013). Studies using higher than typical in situ TrOC concentrations have revealed 

that some bacterial strains can utilize organic pollutants as sole carbon and energy 

sources (Murdoch and Hay 2013; Marchlewicz et al. 2017; Żur et al. 2018). Such a 

metabolic degradation potential is, however, possible if the target compound is non-

toxic to the degrader. A tolerance of up to 5000 mgL-1 of ibuprofen by a sludge 

community as well as increased metabolic activity after continued exposure was 

reported (Davids et al. 2017), suggesting resilience against stressor effect of pollutants 

by microbial communities. Dynamic utilization of a mix of four pharmaceutical 

compounds; ibuprofen, carbamazepine, furosemide, and caffeine at 10 µgL-1 was 

observed in a riverine biofilm community where both nutrient-like and toxic effects on 

some fractions of the microbial community were reported (Lawrence et al. 2005). Such 

findings suggest the threshold concentration for pollutants to serve as a sole carbon 

source is unclear and may vary from compound to compound. 

The predominance of biodegradation as a TrOC removal mechanism is attributed to 

the versatility of microbes whose metabolic pathways and enzyme catalogue is not 

only diverse but dynamic in responding to emerging compounds (Tran et al. 2013). A  

case in point is the degradation of acesulfame, hitherto considered persistent (Buerge 

et al. 2009) and used as a stable marker of domestic wastewater in groundwater 
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(Buerge et al. 2009; Engelhardt et al. 2013), but which has been recently shown to be 

biodegradable in constructed and natural environments (Castronovo et al. 2017; Kahl 

et al. 2018; Jaeger et al. 2019a; Schaper et al. 2019).The impact of horizontal gene 

transfer in natural environments including sediments, soil and water is reported 

(Lorenz and Wackernagel 1996), and is likely associated with such emerging potential 

to degrade the ever-dynamic array of synthetic micropollutants. Utilization of parent 

compounds by a subset of the microbial community followed by further degradation of 

the intermediates or even complete mineralization by other microbes (Tran et al. 

2013), as well as mixed substrate use among environmental microorganisms (Harder 

and Dijkhuizen 1982) further promote the efficient environmental removal of TrOCs 

via microbial activity.  Owing to the highlighted inefficient removal of TrOCs in most 

conventional WWTPs and receiving surface waters (Kunkel and Radke 2008; Peralta-

Maraver et al. 2018b), research focus has shifted onto the utility of the hyporheic zone 

to efficiently remove micropollutants bypassing the WWTPs. 

3.2. Hyporheic zone 

 

The hyporheic zone is the saturated sediment interface between surface water and 

groundwater located directly beneath and lateral to streams and river corridors 

(Wroblicky et al. 1998). The zone spatially fluctuates between the surface and 

groundwater and is characterized by multiple physical, biological and chemical 

processes simultaneously occurring at several scales (Figure 2; (Ward 2016; Schaper 

et al. 2018a; Galloway et al. 2019). Discipline-specific focus on the hyporheic zone 

processes in the context of its functional relevance within river ecosystems has 

resulted in variable definitions (Peralta-Maraver et al. 2018b). For example, ecologists 

consider the hyporheic zone as the streambed layer beneath the surface water with a 
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thickness in the range of centimeters whereas in biology, it’s described as the 

sediment volume hosting a characteristic hyporheic community (Tonina and Buffington 

2009). In hydrology, the hyporheic zone comprises the flow paths that begin and end 

at the sediment-water interface while in biogeochemistry, it constitutes the ecotone 

where the mixing of surface water and groundwater and where a certain percentage 

of the surface water is present (Gooseff, 2010; Ward, 2016; Gomez‐Velez et al. 2017). 

An integrative definition by Ward (2016) encompassing the cross-disciplinary 

definitions considers four key criteria of an hyporheic zone: (1) saturated subsurface, 

(2) flow paths originating from and returning to the surface water, (3) interactions with 

the stream occurring within a temporal scale, and (4) processes of interest occurring 

continuously from the stream–subsurface interface to the groundwater continuum. 

3.3. Removal of TrOCs in the hyporheic zone 

 

The characteristic interaction of physical (e.g. transport of water and solutes), chemical 

(e.g. sorption, chemical reactions), and biological processes (e.g. microbial activity, 

bioturbation) in the hyporheic zone renders it a significant contributor to the self-

purification capacity of lotic systems (Krause et al. 2009; Lewandowski et al. 2011). 

Considered a natural bioreactor, the turnover and degradation of nutrients (carbon, 

nitrogen, phosphorus)  and organic (micro-)pollutants are among the prominent 

ecological services the hyporheic zone provides  (Zarnetske et al. 2011a; Zarnetske 

et al. 2011b; Lewandowski et al. 2019). 

The removal of the ever dynamic array of TrOCs reaching the aquatic ecosystems by 

the hyporheic zone has gained traction since it is now considered the last line of 

defense for preventing wastewater-derived organic contaminants from reaching near-

surface aquifers that are used for drinking water production (Posselt et al. 2020). Of 
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the active TrOC attenuation processes in this ecotone including dispersion, sorption-

desorption, advection and biotransformation (Burke et al. 2014; Schaper et al. 2018a), 

microbial mediated degradation is considered the major pathway through which TrOCs 

are removed in the hyporheic zone. As a biological activity, this attenuation 

mechanism is influenced strongly by the several parameters that characterize the 

hyporheic zone. These include hyporheic exchange flows (HEF), subsurface 

residence time, temperature, redox conditions, organic carbon content and the 

microbial community structure (Burke et al. 2014; Hebig et al. 2017; Lewandowski et 

al. 2019; Munz et al. 2019). 

3.4. Drivers and processes influencing TrOC removal in the hyporheic zone  

3.4.1. Hyporheic exchange flow and subsurface residence time 

HEF is defined by hydrological processes such as downwelling (recharge) where 

surface water enters the groundwater reservoir, upwelling (discharge) where 

groundwater infiltrates the hyporheic zone into the surface water as well as underflow, 

an advective flow where surface water infiltrates into the bed, travels for some distance 

across the longitudinal gradient before returning into the stream (White et al. 1987; 

Martone et al. 2020). The complex interaction of the water and the streambed features 

influences the magnitude and intensity of the HEF and residence time of water in the 

hyporheic zone since the hyporheic exchange may occur over a wide range of spatial 

and temporal scales ranging from millimeter/second flow paths to kilometer-scale flow 

paths spanning years (Singh et al. 2019). The increased residence time of water in the 

hyporheic zone allows adequate contact time between nutrients and micropollutants 

and potential degraders (Peralta-Maraver et al. 2018b). The development of slow-

growing bacteria is favoured, in turn creating a more diverse microbial community with 

the enhanced physiological potential to effectively breakdown the more recalcitrant 
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compounds that bypass the WWTPs (Lewandowski et al. 2011; Peralta-Maraver et al. 

2018). 

The dominant drivers of HEF at the regional scale are groundwater and river stage 

levels while the local scale is impacted more by bed morphology, channel velocity and 

sediment heterogeneity (Martone et al. 2020). Considering the characteristic variability 

in rivers over short distances and time scales, differences in streambed features such 

as bedforms and pool-rifles, planform morphology, sediment hydraulic conductivity 

and porosity can induce fluctuations in physicochemical conditions that directly impact 

the resident biota and associated processes (Magliozzi et al. 2019; Singh et al. 2019). 

Generally, HEFs significantly impact the river ecology by controlling transport of 

dissolved oxygen, nutrients, dissolved and particulate organic carbon and 

micropollutants into the hyporheic zone (White et al.1987; Triska et al. 1989; Lapworth 

et al. 2011; Galloway et al. 2019).  Moreover, HEFs regulate stream water 

temperature, an essential factor in the ecological functioning of the hyporheic zone 

(Magliozzi et al. 2019; Singh et al. 2019). Transient streamflow events resulting from 

human activity such as discharge from WWTPs or natural precipitation inputs can have 

significant effects on the HEF intensity and magnitude by, for example, inducing 

enhanced surface water infiltration into the sediment. Such waters potentially rich in 

dissolved oxygen, nutrients and organic matter, in turn, impact biogeochemical 

processes such as nitrification and denitrification as well as in-stream TrOC removal 

(Gu et al. 2008; Schaper et al. 2018; Singh et al. 2019). 

3.4.2. Temperature gradients 

Temperature strongly influences biological activity, and its effect on the microbial 

removal of some TrOCs in the zone has been demonstrated (Burke et al. 2014). The 
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authors reported an order of magnitude higher removal rates under high temperature 

(19.7 °C) and oxic than cold (6.5 °C) and oxic conditions for metoprolol, acesulfame, 

diclofenac and tolytriazole. For phenazone and its associated metabolites 

acetylaminoantipyrine and formylaminoantipyrine, the removal rate constants 

decreased by a factor of 3.3, 2.5 and 4.1, respectively with decreasing temperature. 

In a comparable riverbank filtration, in situ degradation rates for diclofenac and 

sulfamethoxazole varied within an order of magnitude for temperature changes 

between 5 and 20 °C (Munz et al. 2019). These results suggest that under similar 

redox conditions, seasonal fluctuations in temperature may impact TrOC removal. 

Temperature also influences the redox conditions. An expanded oxic zone in case of 

low temperatures while warm temperatures causing a rapid transition from oxic to 

manganese reducing conditions in the hyporheic zone was reported (Burke et al. 

2014). A similar observation in an artificial recharge system revealed aerobic 

conditions prevailed under low temperatures (< 14 °C) while temperatures exceeding  

14 °C turned conditions anaerobic (Massmann et al. 2006). Such observations are 

attributed to the fact that redox processes are microbially mediated, hence a variation 

in temperature influences microbial activity and associated redox gradients. 
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Figure 2. Conceptual model of the major hyporheic zone drivers and processes and 
functional relevance of the hyporheic zone. Dashed circles indicate the interaction of 
physical, chemical and biological processes that make hyporheic zone a significant 
contributor to the self-purification capacity of lotic systems. GW-SW exchange is 
groundwater-surface water exchange. The figure was modified and used with 
permission from Lewandowski et al. (2019). 

 

3.4.3. Redox gradients 

The hyporheic zone is a highly biogeochemically active zone characterized by an 

exchange of dissolved oxygen, nutrients and organic carbon (Krause et al. 2011). A 

typical redox cascade in the hyporheic zone develops via utilization of available 

electron acceptors in the presence of non-limiting amounts of electron donor, 

essentially organic carbon (Lewandowski et al. 2019). The effect of this redox 

delimitation of the hyporheic zone directly affects the resident microbiota dynamics 
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and associated micropollutant biodegradation pathways. In downwelling zones, 

dissolved oxygen in the infiltrating surface water is consumed readily via aerobic 

microbial processes. The heterotrophic microorganisms utilizing organic carbon can 

under oxic conditions cometabolically degrade TrOCs, where the micropollutants are 

oxidized by enzymes or cofactors generated during the metabolism of the primary 

substrate (Tran et al. 2013). Moreover, processes such as nitrification carried out by 

autotrophic ammonia oxidizing microbes have been reported to have a significant 

impact on the dissolved oxygen concentration and may account for up to 50 % of the 

BOD in the aerobic hyporheic zone (Storey et al.1999). Interestingly, nitrification is 

associated with the degradation of many TrOCs such as aromatic and halogenated 

hydrocarbons, methane and steroids (Arp et al. 2001; Tran et al. 2013). The ammonia 

monooxygenase in autotrophic ammonia oxidizers exhibits a non-specific enzyme 

activity and oxidizes a broad substrate range that includes TrOCs in the presence of 

its main substrate, ammonia (Helbling et al. 2012; Tran et al. 2013) 

Upon depletion of the dissolved oxygen, microbial metabolism relies on alternative 

electron acceptors such as nitrate/nitrite, manganese, iron oxy/hydroxides, sulfate and 

organics along the thermodynamic cascade that is normally characterized by a 

progressive decline in energy yield (Ghattas et al. 2017). Essentially, the TrOCs are 

biodegraded cometabolically by the reductive activity of enzymes or cofactors 

produced during the primary substrate decomposition (Tran et al. 2013). The supply 

of nitrate in the infiltrating water, as well as the nitrification-denitrification reactions 

occurring in the anoxic microzones within oxic segments of the streambed, makes 

denitrification a major contributor to biogeochemical dynamics in the hyporheic zone 

(Lewandowski et al. 2011). Denitrification can account for up to 50 % of organic carbon 

decomposition (Christensen et al. 1990; Triska et al. 1993). However, its contribution 
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to the removal of TrOCs is difficult to determine since most denitrifiers are facultative 

aerobes that can use aerobic and anaerobic metabolism under denitrifying conditions 

(Ghattas et al. 2017). Biodegradation of TrOCs under denitrifying conditions has only 

been demonstrated in lab-scale bioreactors as the complete exclusion of oxygen in 

the environment cannot be guaranteed. Suarez et al. (2010), reported variable 

removal efficiencies of 16 PPCPs under denitrifying conditions. Fragrances 

(galaxolide, tonalide, celestolide), fluoxetine and natural estrogens were removed to 

above 70 % while ibuprofen, citalopram, trimethoprim, roxithromycin, 

sulfamethoxazole, erythromycin, diazepam, carbamazepine, diclofenac, naproxen 

exhibited less than 40% removal in bioreactors with an SRT of over 20 days. 

Manganese and iron reduction have also been associated with the removal of such 

contaminants as benzene, toluene, ethylbenzene and xylene (BTEX) and halogenated 

aromatics (Ghattas et al. 2017). Microbial-mediated reduction of iron (III) is also linked 

to the abiotic degradation by iron (II) of sulfamethoxazole, nitroaromatic compounds 

and dichlorodiphenyltrichloroethane (Tor et al. 2000; Li et al. 2010; Mohatt et al. 2011). 

Sulphate is used as an electron acceptor in the degradation of a broad spectrum of 

organic micropollutants such as BTEX, polycyclic aromatic compounds, i.e. 

naphthalene and anthracene, alkanes and chlorinated compounds (Ghattas et al. 

2017). Below the inorganic electron acceptors reducing zone, degradation of some 

organic compounds under methanogenic conditions occurs. These include aromatics 

such as phenoxyethanol and 2-sec-butyl-4, 6-dinitrophenol, benzene, toluene, 

halogenated aromatic compounds and triclosan (Frings and Schink 1994; Hammill and 

Crawford 1996; Veetil et al. 2012; Liang et al. 2013; Ghattas et al. 2017). The 

degradation of such complex compounds is postulated to occur from the syntrophic 

association between methanogens and fermentative and acetogenic bacteria that 
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supply the electron donors such as formate, acetate and H2/CO2 to the methanogens 

(Stams et al. 2005; Ghattas et al. 2017). The halorespiring bacteria use H2 or organic 

substrates e.g. acetate as electron donor while using a variety of organohalides 

including benzenes, phenols, and halogenated alkanes as electron acceptors, 

(Ghattas et al. 2017), hence contributing to their removal from the environment. While 

biodegradation of TrOCs is more widely reported in oxic compared to anoxic 

conditions, for some compounds such as halogenated aromatic compounds, better 

degradation occurs under anoxic conditions (Vogel et al.1987). Such findings signify 

the utility of environments with a variety of redox conditions such as the hyporheic 

zone in the overall removal of TrOCs. 

3.4.4. Organic carbon gradients 

The bioavailable total organic carbon (TOC) (i.e., dissolved organic carbon (DOC) + 

particulate organic carbon (POC) in the hyporheic sediments is considered a major 

factor limiting microbial metabolism (Findlay and Sobczak 2000), thereby directly or 

indirectly impacting coupled processes such as biotransformation of TrOCs. Most 

streambed sediments of receiving rivers are characterized by allochthonous-derived 

organic carbon from wastewater effluents (Gücker et al. 2006) as well as 

autochthonous-derived organic matter from decomposing leaf litter and macrophytes 

(Romani et al. 1998). The surface sediment layer as the primary contact point with 

these deposits, consequently, has higher concentration of organic carbon compared 

to subjacent layers. Subsequently, bacterial populations, turnover and metabolism are 

high in this layer, suggesting high mineralization rates that decrease exponentially with 

depth (Wellsbury et al.1996; Harvey et al. 2013; Knapp et al. 2017; Schaper et al. 

2019). As TrOC attenuation is coupled to biogeochemical reactions fuelled by the 
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organic carbon (Atashgahi et al. 2015), a decline in TOC concentration with increasing 

depth might impair the overall TrOC removal efficiency of the hyporheic zone. 

Most studies on hyporheic zone metabolism, however, focus on the DOC (Findlay et 

al. 1993; Schindler and Krabbenhoft 1998; Zarnetske et al. 2011a; Stegen et al. 2018; 

Schaper et al. 2019), while the processing of POC, a considerable constituent of the 

TOC has received less attention. This may be due to the consideration that labile DOC 

reaching the hyporheic zone is supplied as a continuous input by surface or 

groundwater in case of downwelling or upwelling conditions, while POC is embedded 

in the sediment and its bioavailability depends on turnover rates (Findlay and Sobczak 

2000). However, in comparing DOC transferred into the sediment to the POC 

degraded in the same volume and based strictly on relative mass, POC would be the 

predominant carbon source for hyporheic sediment microbial communities while 

considering controlling factors such as water velocity and POC stock (Findlay and 

Sobczak 2000). As such, POC supports baseline metabolism, especially in subsurface 

sediments, while DOC only triggers short-term fluctuations above this baseline 

(Vervier et al.1993). Additionally, DOC and POC pools are intimately connected by 

biological activity whereby secondary consumption of the DOC contributes to the POC 

pool via the heterotrophic microbial community (Fisher et al. 1998), while POC is 

transformed into DOC by the hydrolytic activity of bacterial biofilms (Sempéré et al. 

2000). Though the turnover rates and the extent to which DOC is generated from 

aggregate POC remains largely unknown, bacterial degradation of up to 87% of the 

initial amount of POC within 48 hours has been reported in marine samples (Sempéré 

et al. 2000). The interplay between the two organic carbon components makes it 

difficult to resolve the relative contribution of DOC or POC in the hyporheic sediments, 

hence the need to consider them cumulatively as TOC. 
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3.4.5. Microbial community structure 

The biodiversity and functions of the microbial community influence and are also 

influenced by the environmental factors in the hyporheic zone. For instance, most 

receiving rivers impacted by effluents from upstream WWTPs exhibit high nutrient 

loads and in extreme cases, eutrophication (Drury et al. 2013). The settling and 

accumulation of organic matter in the hyporheic zone result in rapid depletion of 

dissolved oxygen via increased chemical oxygen demand (COD) and biochemical 

oxygen demand (BOD), and a sharp redox gradient may be established creating oxic 

benthic and anoxic underlying sediment layers (Brunke and Gonser 1997). Such redox 

gradients in the sediment profile create local niches allowing inhabitation of specific 

microbial communities. Cumulatively, the redox cascade results in a diverse microbial 

community with high metabolic versatility that favour enhanced removal of TrOCs 

(Boulton et al. 1998; Peralta-Maraver et al. 2018b; Schaper et al. 2019). Moreover, the 

large surface area occupied by the sediment particles, pore spaces and organic matter 

serves as ideal retention sites for the infiltrating compounds and microbial habitats 

where complex microbial biofilms consisting of bacteria, archaea, algae, fungi, 

protozoa and metazoans interact (Battin et al. 2016). The combined metabolic activity 

of these hyporheic zone communities entailing inter and intra-trophic transfer of 

compounds and metabolites promote the ecological functioning of the hyporheic zone 

including the transformation of TrOCs (Krause et al. 2009; Peralta-Maraver et al. 

2018). Most studies on stream biofilms have focused on the bacteria and archaea due 

to rapid developments in high throughput sequencing techniques and databases while 

little is known about organisms such fungi in the stream ecosystems (Baschien et al. 

2008; Battin et al. 2016). Fungi and other microeukaryotes are part of the microbial 

community in streams, although rare relative to bacteria, and potentially contribute to 
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biodegradation processes (Baschien et al. 2008). Eukaryotic algae may form biofilms 

together with bacteria in the benthic zone; however, their occurrence in sediments is 

highly limited by the low availability of light. Archaea likewise represent only a minor 

fraction of the stream bed microbial community and are restricted to specialized niches 

in the hyporheic zone (Posselt et al. 2020). Thus, the hyporheic zone biofilms are 

majorly dominated by bacteria (Baschien et al. 2008; Buriánková et al. 2013; Battin et 

al. 2016; Lewandowski et al. 2019; Posselt et al. 2020).  

Bacterial taxa, including Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, 

Gemmatimonadetes, Verrucomicrobia, Planctomycetes and Deinococcus–Thermus 

are most commonly detected in stream biofilms (Battin et al. 2016). Within the bacterial 

phyla are thousands of taxa of lower ranks inhabiting various microhabitats in the 

hyporheic zone whose diversity and composition is influenced by the prevailing 

physicochemical conditions, allowing niche differentiation and community composition 

shifts from the local (millimeter) to reach (kilometer) scales (Battin et al. 2016). For 

example, reduced hydraulic stress allows thicker biofilm formation, less light 

penetration and a community shift toward heterotrophs (Battin et al. 2003). Streambed 

morphology-induced variation in hydraulics was, for instance, shown to account for 

almost half of the variation in microbial  beta diversity in experimental streams 

(Besemer et al. 2009). At the reach scale, the effects of such factors as catchment 

geology and altitude were shown to influence microbial diversity as they affect the 

catchments from where microbial cells reaching the rivers are recruited (Wilhelm et al. 

2013). The biodiversity dynamics in benthic biofilms may also be influenced by 

variable source catchments of stream networks (Besemer et al. 2013). Changes at the 

local and reach scales may, therefore, impact the functioning of the biofilms and by 

extension, the aquatic ecosystem.   
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The efficiency of the hyporheic zone as a significant sink for TrOCs is partially 

attributed to higher microbial diversity than WWTPs and surface water, both 

characterized by low abundance and diversity of microorganisms (Kunkel and Radke 

2008; Peralta-Maraver et al. 2018; Schaper et al. 2018a).Though it is difficult to 

establish a relationship between bacterial diversity and function in case of complex 

biofilm communities, studies in engineered environments have suggested such a 

correlation between bacterial diversity and or abundance and removal efficiency of 

TrOCs (Johnson et al. 2015; Stadler et al. 2018). Recently, an artificial river system in 

a flume study revealed a similar correlation (Jaeger et al. 2019b), suggesting that even 

in the extensively diverse stream biofilms, changes in the bacterial diversity affect the 

functioning of the hyporheic zone. While functional gene redundancy in the 

degradation of common substrates such as organic carbon, nitrate and phosphate is 

still prevalent (Battin et al. 2016), the degradation of emerging complex TrOCs may 

necessitate a broader catalogue of enzymes from different taxa to degrade due to the 

variable functional groups and intermediates reaching the hyporheic zone (Jaeger et 

al. 2019a). 
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3.5. Hypotheses and objectives 

 

Hyporheic zones as key compartments for the functioning of aquatic ecosystems 

contribute to the turnover and degradation of organic matter, nutrients and 

micropollutants. While extensive knowledge on the retardation and transformation of 

organic matter and nutrients and on the microorganisms involved exists, the 

transformation potentials for most emerging organic micropollutants are unknown, and 

microbial communities associated with their removal in the hyporheic zone are not well 

resolved. Moreover, the hyporheic zones are characterized by the simultaneous 

occurrence of multiple physical, biological, and chemical processes that directly or 

indirectly impact the microbial community dynamics and associated removal of TrOCs. 

To resolve the micropollutant transformation potential of the hyporheic zone and how 

the biogeochemical factors therein influence the microbial removal of TrOCs, the 

following hypotheses were formulated. 

1. The sedimentary matrix provides a high surface area that anchors a diverse 

microbial community with micropollutant degradation potential 

2. The microbial pollutant degradation potential is influenced by the prevailing 

biogeochemical factors in sediments e.g. redox conditions, organic matter 

content 

3. Sediment morphology influence on hyporheic exchange fluxes impacts 

microbial community dynamics e.g. diversity and coupled processes such as 

biotransformation of TrOCs. 

4. TrOCs serve as both growth substrates and toxicants to different microbial 

community fractions. 
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The objectives of this dissertation were to (i) determine organic micropollutant 

biodegradation potentials as a function of the multiple and transient gradients in the 

hyporheic zone sediment downstream from a WWTP using microcosm and mesocosm 

setups, (ii) identify degradation intermediates and hypothetical degradation pathways, 

(iii) relate microbial community changes to micropollutant exposure and hence to (iv) 

identify potential degraders. As the current knowledge on degradation-associated 

genes and metabolic pathways for most emerging micropollutants is limited, 

identification of micropollutant-responsive taxa was investigated based on analysis of 

16S rRNA gene (whole community) and 16S rRNA ("active" fraction of the total 

community).   
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4. MATERIALS AND METHODS 

4.1. Site description  

 The sampling site is a section of the River Erpe, a tributary of the Spree River in 

Brandenburg and Berlin, Germany. As part of the HypoTRAIN project, the site was 

selected to investigate the fate of TrOCs in the hyporheic zone using multidisciplinary 

approaches from the hydrology, ecology, microbiology, engineering, environmental 

physics, contaminant science and modelling disciplines. The site was selected based 

on the availability of preliminary data from a previous study (Lewandowski et al. 2011). 

The Erpe represents a typical lowland urban stream impacted by municipal 

wastewater. Located at the eastern edge of the Berlin, River Erpe receives up to 80% 

of its discharge as wastewater from the Münchehofe WWTP (42,500 m3 d1 dry weather 

capacity) and several other smaller WWTPs. Different sites, depending on the 

objectives of the various studies within the HypoTRAIN project, were selected (S1-S6) 

(Figures 3 and 4). Regarding this dissertation, the site S5 located approximately 0.7 

km downstream of the effluent discharge site at Heidemühle (Lat, 52.478647; Long, 

13.635146) was utilized as the sampling location.  
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Figure 3. The study sites at the River Erpe, Berlin Germany investigated under the 
HypoTRAIN project. The sampling site (S5) downstream of the Münchehofe WWTP 
was used as sampling location for all samples used in this dissertation. The figure was 
modified and used with permission from Peralta-Maraver et al. (2018a). 
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            Figure 4. Image of the sampling site ‘Heidemühle’ on River Erpe 

            Image was taken by Malte Posselt  

Through a sampling campaign in September 2015, using passive samplers, over 300 

TrOCs were quantified mainly downstream of the Münchehofe WWTP (Mechelke et 

al. 2019). Out of these, a total of 31 compounds were selected for further 

characterization on their fate in the hyporheic zone. The selected compounds were 

mostly pharmaceuticals and covered a wide range of physicochemical properties 

(Table 1; Figure 5). The compounds were purchased from Sigma-Aldrich (UK) or 

Toronto Research Chemicals (Canada) at purities ≥ 96%. 
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Table 1. Test compound investigated in the current study. Compound properties 

logKOW and logDOW, pH8.3 were predicted from SMILES strings using JChem for 

Excel (Vers. 19.14.0.500, ChemAxon). Table used with permission from Posselt et al. 

(2020). 

Parent compound Abbreviation    logDow    logKow Molecular formula Exact mass vendor 
Acesulfame ACS -1.49 -0.55 C4H5NO4S 162.9939 Sigma 
Amisulpride AMI -0.04 0.25 C17H27N3O4S 369.1722 TRC 
Atenolol ATE -0.95 0.43 C14H22N2O3 266.1630 Sigma 
Benproperine BENP 4.37 5.19 C21H27NO 309.2093 TRC 
Benzotriazole BNZ 1.19 1.26 C6H5N3 119.0483 Sigma 
Bezafibrate BEZ 0.50 3.99 C19H20ClNO4 361.1081 Sigma 
Carbamazepine CBZ 2.77 2.77 C15H12N2O 236.0950 Sigma 
Celiprolol CEL 0.04 1.50 C20H33N3O4 379.2471 TRC 
Citalopram CIT 2.27 3.76 C20H21FN2O 324.1638 Sigma 
Clofibric acid CFA -0.61 2.90 C10H11ClO3 214.0397 Sigma 
Diclofenac DIC 0.80 4.26 C14H11Cl2N1O2 295.0167 Sigma 
Flecainide FLEC 1.86 3.19 C17H20F6N2O3 414.1378 Sigma 
Fluoxetine FLX 2.66 4.17 C17H18F3NO 309.1340 Sigma 
Furosemide FUR -1.68 1.75 C12H11ClN2O5S 330.0077 Sigma 
Gemfibrozil GEM 1.02 4.39 C15H22O3 250.1569 Sigma 
Hydrochlorothiazide HCTZ -0.64 -0.58 C7H8ClN3O4S2 296.9645 Sigma 
Ibuprofen IBU 0.66 3.84 C13H18O2 206.1307 Sigma 
Irbesartan IRB 3.99 5.39 C25H28N6O 428.2325 TRC 
Ketoprofen KET 0.14 3.61 C16H14O3 254.0943 Sigma 
Metaxalone MTX 2.37 2.37 C12H15NO3 221.1052 TRC 
Metformin METF -3.66 -1.36 C4H11N5 129.1014 Sigma 
Metoprolol METO 0.38 1.76 C15H25NO3 267.1834 Sigma 
Naproxen NPX -0.44 2.99 C14H14O3 230.0943 TRC 
Paracetamol PAR 0.88 0.91 C8H9N1O2 151.0633 Sigma 
Propranolol PROP 1.20 2.58 C16H21NO2 259.1572 Sigma 
Sitagliptin SIT 0.65 1.26 C16H15F6N5O 407.1181 Sigma 
Sotalol SOT -1.28 -0.40 C12H20N2O3S #N/A Sigma 
Sulfamethoxazole SMX -0.13 0.79 C10H11N3O3S1 253.0521 Sigma 
Sulpiride SUL -0.02 0.22 C15H23N3O4S 341.1409 Sigma 
Valsartan VAL 0.34 5.27 C24H29N5O3 435.2270 Sigma 
Venlafaxine VEN 2.04 2.74 C17H27NO2 277.2042 Sigma 
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Figure 5. Chemical structures of the test compounds. Source: ChemSpider (Pence 
and Williams 2010).  

 

4.2. Sampling procedure 
 

Sediment and water samples were collected during four sampling campaigns 

conducted at the study site. Surface sediment samples (0 – 5 cm depth) were collected 

from several points on the streambed with a flat hand shovel and stored in sterile Whirl-

Pak sampling bags (Merck, Germany). Sediment cores were collected using 6-cm-

diameter simple gravity corers (Uwitec, Mondsee, Austria). The corers, essentially 

open-ended plastic tubings, were pushed into the sediment, sealed at the top with a 
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rubber stopper and retrieved (Figure 6). Surface water samples were obtained from 

the same site and stored in 2L-screw mouth Duran® bottles (Sigma-Aldrich, 

Germany). Freshly collected sediment and water samples were transferred to the 

laboratory in sterile, airtight containers at 4°C for further processing. 

  

Figure 6. Images of the core sampling approach at River Erpe 

Images were taken by Muhammad Raza. 

4.3. Experimental setups 

4.3.1. TrOC removal potential of hyporheic zone sediments 

The potential of the hyporheic zone in the removal of micropollutants is attributed 

mainly to the activity of the indigenous microbial community; particularly bacteria 

(Battin et al. 2016). The sedimentary matrix provides retention sites for the microbial 

communities and nutrient-rich pore water, factors that enhance the zone’s 

micropollutant-degradation potential. Such potentials were investigated using 

ibuprofen as a model organic compound. 
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Grab sediment samples and surface water were collected in September 2015 and 

transferred to the laboratory. The freshly collected sediment samples were then 

manually homogenized, and an aliquot stored in the - 80°C freezer for subsequent 

nucleic acid extraction. The remaining fresh sediment was stored at 4° C and used to 

set up microcosm experiments within two weeks.    

The microcosms were prepared in triplicates using 25 grams fresh sediment and 50 

ml natural river water in autoclaved 120 ml conical flasks. A  pre-incubation for 10 days 

to reduce dissolved endogenous carbon was performed. Subsequently, a set of 

microcosms was supplemented with ibuprofen to achieve final concentrations of 5, 40, 

200 and 400 µM, and the second set with 1 mM acetate concomitant to ibuprofen at 

the same concentrations. Unamended biotic control microcosms and two abiotic 

controls comprising of autoclave-sterilized sediment (i.e., sorption control), and 

autoclave-sterilized river water (i.e., hydrolysis control) amended with a final 

concentration of 200 µM ibuprofen were included. All flasks were sealed with sterilized 

Steristoppers® (Heinz Herenz, Hamburg, Germany). Microcosms were then incubated 

in the dark at 15°C with shaking at 100 rotations per minute. Liquid samples were 

taken under sterile conditions after the first amendment (t0) and at regular intervals 

following incubation. Ibuprofen or Ibuprofen-acetate were re-fed four times to the same 

initial concentrations upon complete substrate depletion as determined using the high 

performance liquid chromatography (HPLC)(4.4.1.2). In total, the microcosms were 

amended five times. Following the third re-feeding and at the end of the incubation 

(after the fifth re-feeding), two-gram sediment subsamples were taken from the 

treatments and biotic controls and stored at - 80°C for future nucleic acid extraction.  
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4.3.2. Effect of redox conditions on the TrOC removal potential 

Dissolved oxygen depletion along the sediment depth profile leads to the 

establishment of a redox gradient with oxic benthic and underlying anoxic sediments 

(Brunke and Gonser 1997). Little is known about the impact of such redox zonation on 

the resident microbiota dynamics and associated processes such biotransformation of 

TrOCs. This was investigated using metoprolol as a model compound. 

Sediment samples were collected from the upper 40-cm riverbed layer at nine random 

locations within a 10 m stretch of the sampling site in June 2016. Preliminary analysis 

indicated the upper 30 cm of the hyporheic zone was oxic, with the anoxic zone 

occurring after 30 cm depth as reported elsewhere (Schaper et al. 2019).  Sediment 

samples for oxic and anoxic microcosm incubations were obtained from the upper 10 

cm (0 -10 cm) and (30 – 40 cm) depths, respectively. The freshly collected sediment 

layers were pooled in triplicates corresponding to the sampling depth and manually 

homogenized.  

The microcosms were prepared in triplicate in sterilized 250-ml conical flasks sealed 

with Steristoppers® (Heinz Herenz, Germany) for the oxic incubations, and in 250-ml 

glass bottles sealed with rubber septa bound-screw caps (Sigma-Aldrich, Germany) 

for the anoxic incubations. Each microcosm contained 40 g of sediment (fresh weight) 

and 120 ml river water. The anoxic microcosms were then purged for one hour with 

pure nitrogen to remove any residual oxygen in the headspace. All microcosms were 

pre-incubated statically for 14 days at 20°C in the dark to acclimatize and degrade any 

residual metoprolol and dissolved organic matter. Following pre-incubation, 

exogenous metoprolol was added into the microcosms. The metoprolol was first 

prepared by desalting the analytical grade metoprolol tartrate (Sigma-Aldrich, 
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Germany), using a reverse phase flash column (BÜCHI Labortechnik AG, 

Switzerland). The c18 flash column was initially activated with five column volumes 

methanol followed by five column volumes of water. 1.0 g of metoprolol tartrate was 

dissolved in 10 ml water and added to the column. The tartrate salt was washed out 

with three column volumes of water, then the metoprolol was eluted with acidified pure 

methanol using sulfuric acid  in a step gradient (5% to 50% methanol). Metoprolol 

absorption characteristics were checked at 222 nm using ultraviolet–visible (UV-VIS) 

spectrophotometry (Shimadzu, Japan). Pure metoprolol was subsequently 

concentrated in vacuo via rotary evaporation of the solvent. The concentrated 

metoprolol was dissolved in water to make a 1M stock solution. 

Following pre-incubation, the exogenous metoprolol was added into the microcosms 

to initial final concentrations of 15 and 150 µM, hereafter referred to as Low and High 

metoprolol concentrations, respectively. In parallel, an incubation where no metoprolol 

was added, i.e. biotic control, as well as abiotic controls constituting of autoclaved 

sediment and river water to account for losses via sorption and hydrolysis, 

respectively, were included. The abiotic controls were amended only with the High 

metoprolol concentration. Slurry samples were drawn from the microcosms at 

specified days during the experiment duration using syringes. The samples were 

subsequently centrifuged (13,000 x g, 5 minutes) and filtered using  0.2 µm-

regenerated cellulose membrane filters (Agilent Technologies, CA, USA) to determine 

metoprolol concentration (4.4.1.3). Sediment samples were obtained from 

experimental microcosms and biotic control at days 0, 65 and 120 and stored in the -

80°C freezer for subsequent nucleic acid extraction. 
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4.3.3. TrOC removal under contrasting organic carbon conditions 

The bioavailable TOC  in hyporheic sediments is considered a major limiting factor for 

microbial metabolism (Findlay and Sobczak 2000), thereby directly or indirectly 

impacting coupled processes such as biotransformation of TrOCs. TOC content varies 

along the sediment depth profile. However, the impact of such varying TOC conditions 

on the resident microbial and TrOC removal dynamics are largely unresolved. 

Analysis of the sediment TOC content as described (4.3.3.) revealed the surface (0 –

10 cm) and the subjacent layer (10 – 20 cm) contained 8.65 % and 3.21 % TOC, 

respectively. Three sediment cores were collected in June 2016, transferred to the 

laboratory and sliced into discrete 10 cm layers (0 –10 cm) and (10 – 20 cm). The 

sediment segments were immediately manually homogenized and subsamples stored 

at - 80°C for subsequent nucleic acid extraction. About 2 g of sediment was taken from 

each layer, placed in 5 ml glass vials and approximately 2 ml of river water amended 

with a mixture of 13 test compounds added. The test compounds were nonsteroidal 

anti-inflammatory drugs (NSAIDs) (diclofenac, ibuprofen, ketoprofen and naproxen) 

beta-blockers (metoprolol, propranolol), cholesterol-lowering agents (bezafibrate, 

clofibric acid), antihypertensive drugs (furosemide, hydrochlorothiazide), 

anticonvulsant (carbamazepine), an artificial sweetener (acesulfame) and a corrosion 

inhibitor (benzotriazole) to yield an initial concentration of approximately 500 µg L-1. 

The slurry was then thoroughly mixed, and the bottles capped. In total, six replicates 

were prepared from each sediment layer. A blank control setup consisting of sediment 

and river water but unamended with the test compounds was included. To account for 

abiotic losses via sorption onto the sediment or the glass vials, two microcosm setups, 

one containing sediment and the other only river water were treated with 0.1 % sodium 

azide to reduce bacterial activity. All setups were incubated statically in the dark at 
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18°C (the prevailing temperature during sampling). After 15 days of incubation, three 

replicates from each treatment were sacrificed. The supernatant was withdrawn for 

analysis of test compounds (4.4.2.), while the sediment from the biotic setups was 

stored at - 80°C for subsequent nucleic acid extraction. This step was repeated after 

65 days of incubation. 

4.3.4. Influence of HEF and microbial diversity on  TrOC removal  

Hyporheic exchange flows (HEFs) facilitate contact between contaminants in surface 

water and potential microbial degraders. HEF as a function of hydraulic conductivity 

and sediment morphology (Hester et al. 2013) together with the resident microbial 

community structure (especially diversity)(Peralta-Maraver et al. 2019) are therefore 

potential key controls of the fate of organic contaminants in lotic aquatic environments. 

Although long hypothesized, such links were never systematically addressed. The 

influence of bacterial taxonomic diversity and HEF on the dissipation half-lives (DT50s) 

of organic contaminants detected in surface waters and the associated formation of 

transformation products was evaluated (Posselt et al. 2020). 

The experiment was based on a central composite face factorial design and used 20 

circulating flume mesocosms (2 × 0.4 m) simulating different river conditions. The 

sediment volume was 20 L per flume covered with 60 L deionized water (ReAgent 

Chemicals, Cheshire, England) and every flume was equipped with a pump (NWA 1.6 

adj 2.6 W, Newa Wave Industria, Loreggia, Italy) to establish surface water flow 

velocity of ca. 0.08 m s-1 similar to the River Erpe (0.05 to 0.3 m s-1) (Jaeger et al. 

2019a). Nutrients, such as phosphate and ammonium, and other solutes (inorganic 

ions in mg L-1 range and organic and inorganic micronutrients in µg L-1 range (Table 

2; 4.5.1) were added, resembling concentrations and composition in the natural River 
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Erpe (Jaeger et al. 2019a). The two experimental variables (i.e. HEF and bacterial 

diversity) were studied at three levels each. Natural sediment from the River Erpe was 

collected using grab samplers in May 2017, immediately homogenized and stored at 

4 °C until use within one month. The River Erpe sediment was used as inoculum in a 

dilution-to-extinction approach by mixing with sterilized commercial sand (oven-dried 

at 120 °C for 24 h). The approach was based on the principle that the least abundant 

species in a preceding community were eliminated through sequential dilution 

resulting in a less diverse community compared to the original community (Stadler et 

al. 2018). Sediment samples were collected in May 2017 at River Erpe, immediately 

homogenized and stored at 4 °C until use within one month while commercial sand 

(Wickes, Watford, United Kingdom) was washed and oven-dried at 120 °C for 24 h 

before mixing. The level of bacterial diversity was thus expected to decrease in the 

order: S1 (1:10 sediment: sand) > S3 (1:103 sediment: sand) > S6 (1:106 sediment: 

sand). Additionally, the sediment morphology in the flumes was manipulated to induce 

different intensities of HEF by varying the number of bedforms (Figure 6).The level of 

HEF was expected to decrease in the order B6 (three bedforms on each side of the 

flume) > B3 (3 bedforms on one side) > B0 (no bedforms). The HEF metrics, i.e. 

(exchange flux [L d−1], exchange volume [L] and residence time [d]) were determined 

using a salt tracer dilution test (Jaeger et al. 2019a). 50 mg NaCl was added to each 

flume and recessions of the electrical conductivity were measured as surface water 

with high salt concentration gradually mixed with porewater of lower salt concentration 

The dilution resulting from the hyporheic exchange was measured using a hand-held 

electrical conductivity meter or loggers (CTD-Diver, van Essen Instruments, Delft, the 

Netherlands) for about 7.5 days. Pore water samplers (10 cm length, 0.15 μm pores, 

RHIZON FLEX, Rhizosphere Research Products, Netherlands) were glued to plastic 
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holders and thus positioned at equal heights (1.5 cm above the flume bottom) inside 

the sediment. In B3 and B6 flumes, samplers were placed in the second bedform and 

a second sampler in the third bedform as a backup in case of clogging. In B0 flumes, 

pore water samplers were installed at the same position but inside the flat sediment. 

Due to the small extraction volumes (15 mL per sampling event) relative to the pore 

water volume exchanged per day (ca. 10 L for 3 and 6 bedforms and about 0.5 L in 

flat sediment) (Peralta-Maraver et al. 2019) and the distribution of water extraction 

over the entire channel cross-section no substantial disturbance was expected in the 

flow paths or overall residence times by the sampling regime.  

The experimental design encompassed the number of flumes per treatment-

combination (S and B) as follows: S1+B6: 2, S3+B6: 2, S6+B6: 2, S1+B3: 2, S3+B3: 

4, S6+B3: 2, S1+B0: 2, S3+B0: 2, S6+B0: 2. The flumes were pre-incubated for 12 

days to allow regrowth of the bacterial communities in the diluted sediments to similar 

abundance. 

 After the 12 days of pre-incubation, the flumes were amended with 10 µg L-1 of each 

of the 31 test compounds (Table 1). This concentration was similar for most test 

compounds as detected in the river Erpe which we aimed to simulate a; Posselt et al. 

2018) but also in other streams or WWTP effluents (Kay et al. 2017; Schaper et al. 

2018; Paíga et al. 2019). Two unamended flumes (S3+B3) were included as biotic 

controls and served as a reference for the effect of test compounds on taxa in 

amended flumes. Surface and pore water were sampled before the amendment and 

after that on days 1, 2, 3, 7, 14, 21, 28, 42, 47, 56 and 78 for analysis of the test 

compounds (4.4.2.). Sediment was collected before the amendment, and after 21 and 

56 days for subsequent extraction of DNA (4.6.1). Two previous studies provided 

experimental (Jaeger et al. 2019a) and modelled (Betterle; Personal communication) 
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evidence that a) the two variables, HEF and bacterial diversity, were successfully 

manipulated at three levels in the central composite face factorial design setup, b) 

sediment dilutions translated into different levels of bacterial diversity at similar 

bacterial biomass, and c) HEF increased in the presence of bedforms. 

 

Figure 7. Flume setup scheme showing the three levels of the bedform variable. B6, 
B3, B0 represent six, three and zero bedforms, respectively. Figure modified and used 
with permission from Jaeger et al. (2019b). 
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4.4. Analytical methods 

4.4.1. High performance liquid chromatography (HPLC) 

                   4.4.1.1. Preparation of liquid samples  

Liquid samples from the microcosm setups on ibuprofen (4.3.1) and metoprolol (4.3.2) 

were analyzed using HPLC at the University of Bayreuth, Department of Ecological 

Microbiology and the Leibniz University Hannover, Institute of Microbiology. The 

samples were prepared using a centrifugation step (13,000 x g, 5 minutes) and 

microfiltered (0.22 µm pore diameter, PTFE membrane) directly into 1 ml glass vials 

(Agilent Technologies, CA, USA).  

               4.4.1.2     Ibuprofen 
 

Ibuprofen concentration (4.3.1) was quantified using an Agilent 1260 series HPLC 

fitted with a Zorbax SB-C18 column at 30°C and a diode array detector (Agilent 1260 

series, Agilent Technologies, CA, USA) under isocratic conditions. The mobile phase 

was acetonitrile-20 mM acetate buffer (50:50 v/v), pH 3 at a flow rate of 0.5 ml min-1. 

Spectra ranging from 200 to 320 nm were used to determine peak purity. The 

absorbance signal at 225 nm was used for quantification with external standards 

prepared in deionized water. Data were obtained and processed with ‘ChemStation’ 

(Agilent Technologies, CA, USA).  

        4.4.1.3.    Metoprolol 
 

Metoprolol concentration (4.3.2) was quantified using an Agilent 1260 series HPLC 

fitted with a Zorbax SB-C18 column and a diode array detector (Agilent 1260 series, 

Agilent Technologies, CA, USA). The mobile phase consisted of 0.2 % Trifluoroacetic 

acid (TFA) in deionized water (solvent A) and 0.16 % TFA in acetonitrile (solvent B). 
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Analysis was performed under gradient conditions starting with 95 % A / 5 % B for 15 

min followed by 50 % A / 50  % B for 5 min, 100 % B for 0.1 min, and finally 15 % A / 

85 % B for 4.9 min. The flow rate was 0.5 ml min-1, and the column oven temperature 

was set at 40°C. Metoprolol eluted after 19.6 min as detected by the diode array 

detector (DAD) with an absorbance signal at 210 nm. Concentration was determined 

using external standards prepared in deionized water. Data were obtained and 

processed with ‘ChemStation’ (Agilent Technologies, CA, USA).   

4.4.2. Mass spectrometry 

                            4.4.2.1. Sample preparation 
 

Analysis of samples for parent compounds and transformation products were analyzed 

using reversed-phase ultrahigh-performance liquid chromatography electrospray 

ionization triple quadrupole tandem mass spectrometry (RP-UHPLC-ESI-QqQ) at 

Stockholm University (SU), Department of Environmental Science. The liquid 

samples, stored at - 20 degrees for not more than three months, were defrosted at 

room temperature and thoroughly vortexed before processing. Volumes of 800 μL 

were combined with 195 μL methanol and the isotope-labelled internal standard mix 

of the parent compounds (Table 1) and transformation products (Table 2) in 5 μL 

methanol. The mixture was then vortexed and filtered using syringe filters (Filtropur S 

0.45 μm, PES membrane, Sarstedt AGandCo, Germany) into 2 mL micro vials 

(Thermo Scientific, Germany) as reported in Posselt et al. (2018). 

A subset of the samples from the flume experimental setup (4.3.4) was prepared and 

analyzed using reversed-phase liquid chromatography electrospray ionization high 

resolution tandem mass spectrometry (RP-LC-ESI-HRMS/MS) at the Department of 

Environmental Chemistry of the The Swiss Federal Institute of Aquatic Science and 
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Technology (EAWAG). The frozen water samples (-20°C) were equilibrated to room 

temperature, which was followed by a centrifugation step (2 mL sample, 3,020 g for 

30 min at 20°C, Megafuge 1.0R, Heraeus) and the transfer of supernatant aliquots (1 

mL) into HPLC sample vials. Isotope-labelled internal standards of the parent 

compounds and transformation products (Tables 1 and 2) were directly added to the 

vials (20 ng mL-1).  The calibration series was prepared in  NANOpure™  water  (0,  1,  

10,  100,  500, 1000,  2500,  5000  and 10000 ng L-1). 

NANOpure water was generated with a lab water purification system (D11911, 

Barnstead/Thermo Scientific, USA), liquid chromatography–mass spectrometry 

(LC/MS) grade water was generated with a Milli-Q water purification system (Merck, 

Germany) or purchased from VWR (Germany). LC/MS grade methanol was 

purchased from Optima™, Fisher Scientific, Switzerland or Merck KGaA, Germany, 

analytical grade formic acid (≥ 98%) (Merck, Germany) and acetic acid (≥ 99.7%) 

(Sigma-Aldrich, Germany). HPLC-grade acetonitrile was purchased from Merck 

(Germany). 

          4.4.2.2. Targeted quantification of parent compounds and transformation                         
products 

 

A total of 31 selected parent compounds (Table 1) and 37 target transformation 

products were analyzed (Table 2). Samples analyzed using the RP-UHPLC-ESI-QqQ 

followed a recently developed direct-injection method (Posselt et al. 2018). The 

samples (20 μL) were injected into an Ultimate 3000 UHPLC system (Thermo 

Scientific, MA, USA) equipped with a Waters Acquity UPLC HSS T3 column (1.8 μm, 

2.1 mm × 100 mm) (Manchester, UK). The mobile phase consisted of 10 mM acetic 

acid in deionized water (solvent A) and 10 mM acetic acid in methanol (solvent B). A 

chromatographic gradient (97% A/3% B to 60% A/40% B in 2.7 min and finally to 3% 
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A/97% B in 3.3 min) was employed after which the system was returned to starting 

conditions and equilibrated for 4 min. During the run, a method blank sample and a 

quality control standard was injected every 15-20 samples. The flow rate was 500 μL 

min−1 during the gradient and 1000 μL min−1 for equilibration. The column oven 

temperature was set to 45 °C. The column was coupled to a Quantiva triple-

quadrupole mass spectrometer equipped with a heated electrospray ionization source. 

(Details on the operational conditions of the MS can be found in Posselt et al. (2018). 

MS data were processed using Thermo Scientific ‘Xcalibur 3.1.66.10’ and quantified 

using the internal standards method (Posselt et al. 2018). 

For the samples prepared at EAWAG (4.4.2.1), a volume of 50 μL of both water 

samples and calibration standards was injected) into a reversed-phase C18 liquid 

chromatography column (Atlantis T3, 3 x 150 mm, 3 μm, Waters, USA). Water and 

methanol, both acidified with 0.1% formic acid, were used as eluents for the 

chromatographic gradient (0% to 95% methanol in 18.5 min, 95% methanol for 10 min, 

95% to 0% methanol in 4 min). The analytical column was coupled to a high-resolution 

tandem mass spectrometer (QExactive or QExactive Plus, Thermo Scientific, USA) by 

an electrospray ionization interface (ESI). Mass spectra were acquired in full-scan 

mode (ESI polarity switching) at a mass resolution of 140,000 (FWHM at m/z 200) with 

subsequent data-dependent MS2 (Top5, mass resolution 17,500). For the 

quantification of target analytes (30 parents, 27 TPs), chromatographic peaks were 

automatically detected (5 ppm mass tolerance) and integrated (minimum three data 

points) using the ICIS algorithm of TraceFinder (version 4.1 EFS, Thermo Scientific, 

USA). Peak integrations were reviewed manually. To each target analyte, a matching 

internal standard (IS) was assigned (internal standard method). If the matching IS was 

not available, an IS with a similar retention time was selected. Linear 1/x-weighted 
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calibration curves were generated by fitting the analyte concentration (x) against the 

Standard-to-IS peak area response ratio (y) without forcing the fit through zero 

(Posselt et al. 2020). 
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Table 2. Transformation product properties (target analysis). logKOW and logDOW, pH 8.3 were predicted from SMILES strings using 
JChem for Excel (Vers. 19.14.0.500, ChemAxon). Table used with permission from Posselt et al. (2020). 

 

Parent Compound  Transformation product  Abbrev. logDow  logKow  mol-form  exact-mass  

Amisulpride Amisulpride N-oxide  TP.AMINO  -0.87  -0.87  C17H27N3O5S  385.1671  

Atenolol Atenolol-desisopropyl  TP.ATDP  -1.84  -0.78  C11H16N2O3  224.1161  

Bezafibrate 
 

2/4-Chlorobenzoic acid  TP.CBA24  -1.29  2.23  C7H5ClO2  155.9978  

3-[(4-chlorobenzoyl)-amino]propanoic acid  TP.BZCPA  -2.12  1.37  C10H10ClNO3  227.0349  

Benzotriazole 
 

1-Methyl-Benzotriazole  TP.BEZM  1.42  1.42  C7H7N3  133.0640  

4-Hydroxy-1H-Benzotriazole  TP.BEZ4H  0.30  1.00  C6H5N3O  135.0433  

1-Hydroxy-Benzotriazole  TP.BEZ1H  -0.75  0.63  C6H5N3O  135.0433  

4/5-Methylbenzotriazole  TP.BEZ5M  1.72  1.78  C7H7N3  133.0640  

Carbamazepine 

 

Carbamazepine epoxide  TP.CEPX  1.97  1.97  C15H12N2O2  252.0899  

Carbamazepine-10-11-dihydro-10-11-
dihydroxy  

TP.CDH  0.81  0.81  C15H14N2O3  270.1004  

Acridine  TP.CAI  3.50  3.51  C13H9N  179.0735  

Acridone  TP.CAO  4.20  4.20  C13H9NO  195.0684  

Iminostilbene  TP.CIMI  3.78  3.78  C14H11N1  193.0891  

Citalopram 
 

Citalopram carboxylic acid  TP.CITCA  0.82  0.83  C20H22FNO3  343.1584  

Citalopram didesmethyl  TP.CITDD  1.07  2.95  C18H17FN2O  296.1325  

Desmethyicitalopram  TP.CITDM  1.18  3.38  C19H19FN2O  310.1481  

Diclofenac  
 

4-Hydroxydiclofenac  TP.DIC4H  0.30  3.96  C14H11Cl2NO3  311.0116  

Diclofenac amide  TP.DAM  3.80  3.80  C14H9Cl2NO  277.0061  

Homogentisic acid  TP.DICHA  -2.52  1.00  C8H8O4  168.0423  

Fluoxetine 4-Trifluoromethylphenol  TP.FLXTM  2.51  2.55  C7H5F3O1  162.0292  

Hydrochlorothiazide 

 

Chlorothiazide  TP.CTZ  -0.49  -0.44  C7H6ClN3O4S2  294.9488  

4-Amino-6-chloro-1-3-
benzenedisulfonamide  

TP.ABS  -1.09  -1.04  C6H8ClN3O4S2  284.9645  

Ibuprofen 
 

1-Hydroxyibuprofen  TP.IBU1H  -0.64  2.69  C13H18O3  222.1256  

2/3-Hydroxyibuprofen  TP.IBU23H  -0.92  2.37  C13H18O3  222.1256  

Carboxyibuprofen  TP.IBUC  -3.95  2.78  C13H16O4  236.1049  

Metformin Guanylurea  TP.GU  -3.37  -2.03  C2H6N4O  102.0542  

Metoprolol 

 

Atenolol acid (Metoprolol acid)  TP.MEA  -1.26  -1.24  C14H21N1O4  267.1471  

alpha-Hydroxymetoprolol  TP.MEH  -0.54  0.84  C15H25NO4  283.1784  

Sulfamethoxazole 
 

Sulfamethoxazole N1-glucuronide  TP.SMXG  -4.59  -1.30  C16H19N3O9S  429.0842  

N4-Acetylsulfamethoxazole  TP.SMXA  -0.07  0.86  C12H13N3O4S  295.0627  

Sulpiride Sulpiride N-oxide  TP.SUNO  -0.79  -0.79  C15H23N3O5S  357.1358  

Valsartan Valsartan acid  TP.VAA  -1.83  3.18  C14H10N4O2  266.0804  

Venlafaxine 
 

Venlafaxine O-desmethyl  TP.VOD  1.88  2.29  C16H25N1O2  263.1885  

Venlafaxine N-oxide  TP.VNO  1.61  1.61  C17H27NO3  293.1991  

Venlafaxine N-desmethyl  TP.VND  0.87  2.36  C16H25N1O2  263.1885  

Venlafaxine N-N-didesmethyl  TP.VNND  0.77  1.92  C15H23N1O2  249.1729  

Venlafaxine N-O-didesmethyl  TP.VNOD  0.73  1.74  C15H23N1O2  249.1729  
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                        4.4.2.3. Non-target/suspect screening of transformation products 
 

From the experimental setup (3.4.1), identification of suspect transformation products 

in the absence of reference standards was carried out. The suspect biological 

transformation products were screened by submitting the raw data obtained by RP-

LC-ESI-HRMS/MS to the Compound Discoverer program (version 2.1, Thermo 

Scientific). This allowed for the automated detection (minimum intensity: 10'000, 30% 

intensity tolerance) and grouping (ESI adducts, isotope peaks) of peak features 

(characterized by m/z, retention time and intensity) with the subsequent compound 

assignment (elemental composition based on predefined maximum elemental counts 

within a mass tolerance of 5 ppm). Mass spectra acquired in positive and negative ESI 

polarity mode (contained within the same raw data due to ESI polarity switching) were 

extracted and processed in separate workflows. The underlying suspect list consisted 

of biological TPs that were either predicted from the molecular formulas of the parent 

compounds using an Excel spreadsheet (transformations: oxidation, reduction, 

cleavage, conjugation) or from the molecular structures of the parent compounds 

using the Eawag-Biocatalysis/Biodegradation Database Pathway Prediction System 

(Eawag- BBD PPS), http://eawag-bbd.ethyporheic zone.ch/predict/, settings: relative 

reasoning, no immediate rules, aerobic and anaerobic transformations allowed, 3 

generations). The output of the suspect screening were two lists of assigned 

compounds (one per ESI mode), from which compound time-series were extracted for 

every experimental treatment (1.3 M time-series in total, peak areas as 

average/median among replicate flumes). Time-series were prioritized by two 

approaches, i.e. (1) by only considering series with MS2 information (0.2 million), and 

(2) by only considering Eawag-BBD PPS predicted compounds independent of the 

MS2 information (0.6 million). In subsequent steps, target analytes and IS were 
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excluded, and time-series only further evaluated if the compound matched the suspect 

list. Another criterion was the absence/minimal presence (maximum peak area in 

unspiked flumes / minimum peak area in time-series ≤ 20%) of the suspected TP in 

unfortified flumes. In the first run, 15 unspiked flume samples were considered for this 

comparison. Because one unspiked sample appeared cross-contaminated, the 

respective sample was excluded, and the comparison repeated with 14 unspiked 

samples (approach 1). This time, the peak area ratio threshold of 20% (see above) 

was only applied, if the suspected compound was present in 7 or more unspiked 

samples. The final (prioritized) time-series were assigned to 50 hierarchical clusters 

using the hclust function in R, and clusters grouped (group 1: increase, 2: increase 

and decrease, 3: other trends). For parent compounds without tentatively identified 

suspect TP, literature was surveyed, and potential candidates were looked up in 

Compound Discoverer (Posselt et al. 2020). 

4.4.3. Quantification of TOC 

Determination of TOC in the sediment samples was performed using a liquiTOC II 

elemental analyzer (Elementar Analysensysteme GmbH, Germany) at the Technical 

University of Darmstadt, Institute of Applied Geosciences, Darmstadt, Germany. The 

sediment samples were air-dried for several days, ground to grain sizes less than 2 

mm and then homogenized using a riffle splitter. About 10 g was subjected to catalytic 

high-temperature combustion (400°C) where TOC was converted into CO2 and 

quantitatively determined using a nondispersive infrared sensor (NDIR) detector.  

4.4.4. Quantification of Nitrate 

The concentration of nitrate was determined colorimetrically by a modified method of 

(Cataldo et al. (1975). Slurry samples were centrifuged (13,000 x g, 5 minutes) and 
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filtered using 0.2 µm-regenerated cellulose membrane filters. To remove nitrite, 1 μl 

amidosulfuric acid (10%) was added to a 5 μl sample, mixed thoroughly, and incubated 

at room temperature for 5 minutes. 20 μl of 5 % salicylic sulfuric acid was added and 

further incubated for 30 minutes at room temperature, followed by the addition of 167 

μl 6 M NaOH. The samples were then cooled, and the developed colour (yellow) was 

measured at 410 nm using a plate reader (BioTek, Germany).  

4.4.5. pH 

The pH of the liquid samples was determined using a portable pH meter fitted with a 

pH electrode (InLab 422; Mettler Toledo GmbH, Gießen, Germany).   

4.4.6. Salt tracer dilution test /Electrical conductivity  

The surface water-pore water exchange flux Qin (Ld-1) and exchange volume Vs were 

calculated according to the equations 2 and 3: 

Equation 2: 

𝑉𝑠 =
𝑉𝑤  (𝐶0 − 𝐶𝑒𝑞)

𝐶𝑒𝑞
 

 

Equation 3 

𝑄𝑖𝑛 = 𝑘𝑉𝑤

 𝐶0 − 𝐶𝑒𝑞

𝐶0
 

 

Where Vs is the volume of pore water affected by hyporheic exchanges, Vw is the 

surface water volume, C0 is the electrical conductivity at the beginning of the test and 

Ceq is the electrical conductivity at equilibrium. K represents the rate constant of the 
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concentration change over time. The average residence time [d] was calculated as the 

ratio between exchange volume and exchange flux (Jaeger et al. 2019b). 
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4.5. Microbiological methods 

4.5.1. Solutions and media  

Stock solutions and media were prepared with deionized water (Seralpur Pro CN, 

Germany). The mineral salts and trace metal stock solutions were added to the 

deionized water to achieve target concentrations and then sterilized by autoclaving 

(120 °C, 20 minutes).The vitamin solution was filter-sterilized using cellulose 

membrane filters (0.2 μm pore size) and added to the autoclaved media components 

after cooling to room temperature. The pH of freshly prepared media was adjusted 

with filter-sterilized 1N HCl or NaOH. 

4.5.1.1 Defined mineral medium DM 1 (Oxic) 
 

Table 3 Mineral defined media solution DM 1 was prepared to attain mineral 
concentrations  measured in the surface water in the River Erpe (Jaeger et al. 2019a). 

 

 

Mineral salt 

 

mg L-1   

 

CaCl2 

 

254.7 

NaHCO3 25.0 

KCl 45.4 

MgSO47H2O 109.7 

Na2SO4 114.2 

KH2PO4 2.1 

NH4Cl 28.6 

C6H12O6 150.0 

MnCl2•4H20 7.9 

NaNO3 154.8 
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Trace elements   

 

mg L-1   

CuSO4 0.96 

Na2SeO3 0.38 

Na2Mo4 •H2O 1.03 

Na2WO4•2H2O 2.97 

NiCl2 2.72 

H3BO3 6 

ZnCl2 7.16 

CoCl2 5.4 

  

 
Vitamins                                      

 

µg L-1   

ribovlavin 0.5 

biotin 5 

folic acid 5 

nicotinic acid 5 

pantothenic acid 5 

pyridoxal-HCl 5 

thiamine 5 

choline chloride 5 

myoinositol 10 

vitmain B12 0.01 

lipoic acid 6.26 

p-aminobenzoic acid 6.26 
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4.5.1.2. Defined mineral medium DM 2 (Oxic) 
 

Table 4. Oxic defined mineral medium DM 2 was prepared modified from Balch et al. 
(1979) and Wüst et al. (2009). 

 

 

Mineral salts  

 

mg L-1   

NaCl 100 

(NH4)2SO4             25 

CaCl2•2H2O           10 

MgCl2•6H2O           10 

NH4Cl                     50 

KH2PO4                  50 

 

 

Trace salts  

 

mg L-1   

C6H6NNa3O6•H2O 15 

MnSO4•H2O              5 

FeSO4•7H2O            1 

CoCl2•6H2O             1 

CaCl2•2H2O             1 

ZnSO4•7H2O            1 

AlK(SO4)2•12H2O     0.2  

CuSO4•5H2O            0.1 

H3BO3   0.1 

Na2MoO4•2H2O         0.1     

 

 

Vitamins                                                      

 

µg L-1 

 

Biotin 

 

2 
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Folic acid 2 

Pyridoxine hydrochloride 10 

Thiamine hydrochloride 5 

Riboflavin 5 

Nicotinic acid 5 

DL-calcium pantothenate 5 

vitamin B12 0.1 

p-aminobenzoic acid 5 

Lipoic acid 5 

 

The pH was adjusted to the prevailing pH in the surface water during sampling (pH 

7.3). 

Solidified defined mineral medium DM 2 (Oxic) 

Oxic solidified mineral medium DM 2 was prepared as indicated in (4.5.1.2.) with the 

addition of 15 g agar L-1. 

4.5.1.3. LB agar medium  
 

Table 5.  LB agar medium was prepared according to Sambrook et al. (1989) and 
comprised of: 

 

 

Compound 

 

g L-1 

Tryptone 10 

Yeast extract 5 

NaCl 5 

Agar 15 
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4.5.1.4. LB agar with ampicillin/IPTG/X-Gal 
 

LB medium was prepared (4.5.1.3), autoclaved, and filter-sterilized solutions of 

ampicillin (100 mg L-1), isopropyl β-D-1-thiogalactopyranoside (IPTG; 120 mg L-1 ) and 

5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal; 40 mg L-1) were added 

when the media cooled to approximately 55 °C. The pH was adjusted to 7.0 before 

the media was let to solidify.  

LB agar with ampicillin 

LB medium was prepared (4.5.1.3) autoclaved, and filter-sterilized ampicillin (100 mg 

L-1) added when the media was cooled to approximately 55 °C. 

4.5.1.5. SOC medium 
 

Table 6.  The SOC medium was prepared according to Sambrook et al. (1989) and 
comprised of: 

 

Compound 

 

g L-1 

Tryptone 2 

Yeast extract 0.5 

NaCl 0.06 

KCl 0.02 

MgCl2 0.2 

MgSO4 0.25 

Glucose 0.36 

 

The medium was autoclaved prior to addition of filter-sterilized solutions of MgCl2, 

MgSO4, and glucose.The pH was adjusted to 7.0.  
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4.5.2. Enrichment and isolation procedures  

A sediment subsample from the microcosm supplemented with 400 µM ibuprofen 

(4.3.1) was subjected to a serial dilution (1:10 (w/v) in oxic defined mineral medium 

DM 2 (Table 4). The medium was supplemented with 400 µM ibuprofen as only-carbon 

and energy source. The sediment dilutions were incubated for 21 days at 15°C in the 

dark for the enrichment of potential ibuprofen degraders. The 10-6 dilution was the 

highest sediment dilution showing turbidity indicative of growth (4.5.3.), and was 

streak-plated onto the same medium DM 2 solidified with 1% agar. Isolated colonies 

were then transferred to liquid mineral medium DM 2 containing 400 µM ibuprofen and 

tested for ibuprofen degrading capabilities under oxic conditions via HPLC (4.4.1.2.). 

Ibuprofen-degradation positive colonies were purified via repeated streak-plating, 

picking of single colonies, and transfer to liquid mineral medium DM 2 supplemented 

with ibuprofen. The purity of the isolates was indicated by the homogeneous colony 

and cell morphologies as visualized with the microscopy (4.5.4.). At least 5 colonies 

from each isolate were subjected to PCR, and the 16S rRNA gene was amplified from 

genomic DNA using primer set 27F/1492R (Horn et al. 2005; Frank et al. 2008), and 

the thermocycler program (Table 9). The PCR products were subjected to Sanger-

sequencing reactions at Microsynth Seqlab (Göttingen, Germany) followed by a 

comparison of the 16S rRNA gene sequences from all respective isolates against the 

NCBI blast search tool within the GenBank database. Nearly complete 16S rRNA gene 

sequences of the isolates were aligned with closely cultured relatives as indicated by 

blastn analysis using the ARB-SILVA aligner tool and phylogenetic tree reconstruction 

performed (4.7.2.). 
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4.5.3. Growth measurments 

Growth of isolates was determined based on optical density measurements at a 

wavelength of 600 nm using a UV- VIS spectrophotometer (Shimadzu, Japan). 

4.5.4. Microscopy 

Cell morphology was examined with a Zeiss Axioskop 2 microscope fitted with an 

Axiocam MR monochrome (TV 2/3"C 0.63X 1069-414) (ZEISS, Germany) in bright 

field mode and x40 and x100 magnifications. 

4.6. Molecular techniques 

4.6.1. Extraction of nucleic acids 

Nucleic acids were extracted from sediment samples following a modified rapid 

method for coextraction of DNA and RNA from natural environments (Griffiths et al. 

2000). Approximately 0.5 g of sediment was placed in 2 ml screw-capped tubes (VWR 

International) containing 1 g of zirconia/silica beads (0.5 g of Ø 0.5 mm beads and 0.5 

g of Ø 0.1 mm beads; BioSpec, Bartlesvill, OK, USA). Extraction was performed by 

addition of 0.5 ml CTAB extraction buffer (10% (wt/vol) CTAB,  0.7 M NaCl, 240 mM 

potassium phosphate buffer, pH 8.0) and 0.5 ml of phenol-chloroform-isoamyl alcohol 

(25:24:1) (pH 8.0). Bacterial cells were lysed by bead-beating at a speed of 5.5 ms-1 

for 30 s in a FastPrep FP120 bead beater (Thermo Savant, Holbrook, NY, USA). The 

liquid phase containing nucleic acids was separated by centrifugation (16,000 × g) for 

5 min at 4°C and transferred in a new 2 ml microcentrifuge tube on ice. In cases where 

the liquid phase was considerably unclear (brownish), the samples were placed on ice 

for 10 min and re-centrifuged. 0.5 ml chloroform/isoamyl alcohol (24:1) was added to 

the liquid phase, mixed thoroughly by resuspension with a pipette and centrifuged 

(16,000 × g) for 5 min at 4°C to separate the nucleic acids from residual phenol and 
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proteins. The upper phase was transferred into a new 2 ml microcentrifuge tube on 

ice. Two volumes (about 0.8 ml) of precipitation buffer (1.6 M NaCl 30% (wt/vol) PEG 

6000) and 2 µl molecular grade glycogen (10mgml-1) were added and the components 

gently but thoroughly mixed by resuspension with a pipette. A 2-hour incubation on ice 

was then performed, followed by centrifugation (18,000 × g) for 30 min at 4°C. The 

supernatant was discarded, and the pellet washed with 0.5 ml ice-cold ethanol (70%) 

to remove salts. A centrifugation step (18,000 × g) for 5 min at 4°C to remove ethanol 

was performed, and the pellet was air-dried at room temperature for approximately 5 

min. The dry pellet was subsequently resuspended in 50 μl nuclease-free water.  

4.6.2. Separation of DNA and RNA 

The coextracted nucleic acids were separated by enzymatic digestion. To obtain RNA, 

DNA was removed by addition of 1 µL RNase free DNAse (1 U µL-1) and 3 µL 10x 

reaction buffer (100 mM Tris HCl, pH 7.5, 25 mM MgCl2; 1 mM CaCl2) to 26 µL nucleic 

acid extractions. The reaction mix was then incubated for 60 min at 37°C. DNA was 

obtained by removing RNA using 1 µL DNase free RNase (10 mg mL-1) added into 20 

µL nucleic acids, and the reaction mix incubated for 45 min at room temperature. 

4.6.3. Quantification of nucleic acids 

The concentration and purity of extracted nucleic acids were determined using a 

spectrophotometer (ND 1000; NanoDrop, NC, USA). Nucleic acids absorb at 260 nm; 

hence this wavelength is used to calculate the concentration. The ratio 260/280 is 

used to assess purity with a ratio of ~1.8 and ~2.0 considered for “pure“ DNA and 

RNA, respectively. Lower values of the ratio indicate contamination by proteins. The 

260/230 ratio considered a secondary measure of nucleic acid purity ranges between 
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2.0-2.2 for ‘“pure“ nucleic acids with lower ratio values indicating contamination by 

such compounds as phenol. 

Nucleic acids occurring in low concentration were quantified using a fluorescence-

based method. DNA and RNA concentrations were determined with Quant-iT® 

PicoGreen DNA and RiboGreen RNA assay kits (Invitrogen, Germany), respectively, 

following the manufacturer’s protocol (Invitrogen, CA, USA). Fluorescence was 

measured on a Multiskan™ FC Microplate Photometer (Thermo Fischer Scientific, 

Germany) and concentrations determined based on external DNA/RNA standards 

provided by the manufacturer. 

4.6.4. Reverse transcription of RNA 

Reverse transcription of RNA into cDNA was performed using the SuperScript® IV 

Reverse Transcriptase kit (Invitrogen, CA, USA). Up to 11µl RNA template was mixed 

with 1 µl random hexamers (50 µM) and 1 µl dNTP mix (10 mM). The components 

were briefly centrifuged and heated at 65 °C for 5 min to anneal the primers to the 

template RNA, then incubated on ice for 1 min. A reverse transcription reaction mix 

consisting of 4 µl SSIV buffer (5x), 1 µl DTT (100 mM), 1 µl RNaseOUT™Recombinant 

RNase Inhibitor and 1 µl SuperScript® IV Reverse Transcriptase (200 U/ µl) was 

prepared in a reaction tube and briefly centrifuged. The annealed RNA and reverse 

transcription reaction mix were combined, and the reaction mixture incubated at 23°C 

for 10 min, then for a further 10 min at 55 °C. The reaction was then inactivated by 

incubating it at 80 °C for 10 min.  
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4.6.5. Polymerase chain reaction (PCR) 

Amplification of DNA and cDNA templates was performed using PCR (Saiki et al. 

1988). In this dissertation, all PCR analyses targeted the 16S rRNA gene. Published 

and newly designed primers (Table 7) were employed to amplify full length or specific 

regions of the gene depending on the objective. The PCR cycles (denaturation, 

annealing, and elongation steps) were performed using the SensoQuest labcycler 

(SensoQuest GmbH, Germany). 

Table 7. The primers (and their corresponding sequences) used to amplify the 16S 
rRNA gene and 16S rRNA transcripts (cDNA). 

 

Target gene/plasmid/taxa  
 

Primer  Primer sequence (5’-3’) Reference 

 

16S rRNA gene (Bacteria and 
Archaea) 

 

U341F 

 

CCTAYGGGRBGCASCAG 

 

(Sundberg et 
al. 2013) 

16S rRNA gene (Bacteria and 
Archaea) 

U806R GGACTACNNGGGTATCTAAT  

 16S rRNA gene (Bacteria) 27F AGA GTT TGA TCM TGG 
CTC 

(Lane 1991) 

16S rRNA gene (Bacteria) 907 R CCG TCA ATT CMT TTR AGT 
TT 

(Lane  1991) 

16S rRNA gene (Bacteria) 1492R TACCTTGTTACGACTT (Weisburg et 
al. 1991) 

pGEM-T vector M13F GTA AAA CGA CGG CCA G (Messing, 
1983) 

pGEM-T vector M13R CAG GAA ACA GCT ATG 
ACC 

 

16S rRNA gene (Bacteria) Eub 341F C CTACGGGAGGCAGCAG (Muyzer et al. 

1993) 

 16S rRNA gene (Bacteria) Eub 534R ATTACCGCG GCTGCTGG  

Actinobacteria  
(OTU 28) 

HGC236F  GCG GCC TAT CAG CTT GTT (Warnecke et 
al. 2004) 

HGC664R  AGG AAT TCC AGT CTC CCC 

Sphingomonadaceae 
(OTU 1) 

SPF AAG TCA GAG GTG AAA 
GCC CG 

This study 

SPR TTG TCC AGT CAG TCG CCT 
TC 
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Acidobacteria 
Subgroup17/Unclassified 
(OTU 39) 

S17F TTG TCC AGT CAG TCG CCT 
TC 

This study 

S17R TCA AGC CTG CTA GTT TCC 
CG 

Hydrogenophaga 
(OTU 9) 

HYF GCC TTC GGG TTG TAA ACT 
GC 

This study 

HYR AAA CGC CAT TCC CAG GTT 
GA 

Fodinicola/Streptomyces 
(OTU 15) 

FDF CCT CTT TCA GCA GGG 
ACG AA 

This study 

FDR AAG TCT GCC CGT ATC 
GAG TG 

Chloroflexi/Unclassified 
(OTU 16) 

CHF TCG GGA ATT TTG CGC AAT 
GG 

This study 

CHR CCT GCC TTC GAG TCG 
ATC AG 

Gemmatimonadetes/Unclassified 
(OTU 32) 
 

GMF 

GMR 

AAA CCA CTG TCG GAA 
GGG AC 

CGA GCC TGG CAG TCT 
AGA AG 

This study 

 

4.6.5.1. ‘Control’ PCR 
 

The integrity of DNA and cDNA templates was verified using ‘control’ PCR. The first 

PCR was performed after enzymatic digestion of DNA to confirm that the RNA 

samples were DNA-free and the second to confirm efficient reverse transcription of 

RNA to cDNA. The samples were amplified using the primer pairs 27F/907R and the 

thermal profile (Table 8). 

4.6.5.2. Isolate full-length 16S rRNA PCR  
 

PCR was performed using cell suspension or individual isolate colonies as template. 

The approach used the universal primer pair 27F and 1492 R and the protocol (Table 

9) targeting the near-full length 16S rRNA gene of the isolates enriched with ibuprofen 

(4.3.1). The PCR products were used in the ligation step of cloning.  
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4.6.5.3. PCR for representative enriched OTUs (4.3.1) 

 

The 16S rRNA gene fragments of the enriched OTUs were amplified using the 

designed primers and one primer set targeting the Actinobacteria from (Warnecke et 

al. 2004) following the protocol (Table 10). 

4.6.5.4. PCR for Illumina sequencing  
 

The amplification for Illumina sequencing were performed at LGC Genomics GmbH 

(Berlin, Germany). 16S rRNA genes and 16S rRNA were amplified using the primers 

341F and 806R targeting the V3-V4 hypervariable region of the 16S rRNA genes of 

bacteria and archaea (Sundberg et al. 2013). First step PCR amplification directly 

amplified the DNA and cDNA templates using the reagents and thermal profile (Table 

11). The second step PCR used the same protocol but the template was 1μl purified 

PCR product derived from the first step, and the primers were extended with sample-

specific multiplex tags.  
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Table 8. Reagents and thermal profile of the control PCR 

PCR reaction mix Thermal profile 

 

Reagent (Stock conc.) 

 

Volume (Final 
conc.) 

 

Step 

 

Temp°C 
 

 

Time 

 

Cycles 

 

KAPA Taq Buffer B ( 10x)a 

 

3 (1x) 

 

Initial 
denaturation 

 

95 

 

3 mn 

 

1 

MgCl2 (25 mM)a 3 (1.5 mM) Denaturation 95 30 s  

35 dNTP mix (10 mM)a 0,6 (0.2 mM) Annealing 50 30 s 

27F (10 μM)b 1,5 (0.4 μM) Elongation 72 90 s 

907R (10 μM)b 1,5 (0.4 μM) Final elongation 72 5 mn 1 

KAPA Taq DNA Polymerase (5 
U∙μl-1)a 

0,15 (0.5U) Storage 4 ∞  

PCR-grade water 14,25     

Template 1     

 

a KAPA HiFi Hotstart PCR Kit (KapaBiosystems, WN, US) 

b See Table 7. 

Table 9. Reagents and thermal profile for full length 16S gene PCR 

 

PCR reaction mix 

 

Thermal profile 

 

Reagent (Stock conc.) 

 

Volume (µl) (Final 
conc.) 

 

Step 

 

Temp. 

°C 
 

 

Time 

 

Cycles 

 

5 PRIME Mastermix (2.5x)a 

 

10 (1X) 

 

Initial 
denaturation 

 

94 

 

10 
min 

 

1 

MgCl2 (25 mM) 1 (1 mM) Denaturation 94 30 s  

35 27F (10 μM)b 1 (0.4 μM) Annealing 52 40 s 

1492R (10 μM)b 1 (0.4 μM) Elongation 72 90 s 

PCR-grade water 11 Final elongation 72 7 1 

Template 1 Storage 4 ∞  

 

a5 PRIME GmbH, Hilden, Germany. b See table 7. 
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Table 10. The primer sets used in amplifying representative OTUs (note annealing 
temperatures) (A) and the thermal profile for their amplifications (B) 

A 

 
Target taxa  
(representative OTUs from amplicon 
libraries included in the groups 
targeted) 

 

Primer 
name 

 

Primer set 

 

Annealing 
temperature 

 

Reference 

     

Actinobacteria  

(OTU 28) 

HGC236F  5'-GCG GCC 

TAT CAG CTT 

GTT-3' 

55.5°C (Warnecke 

et al. 2004) 

HGC664R  5'-AGG AAT 

TCC AGT CTC 

CCC-3' 

Sphingomonadaceae 

(OTU 1) 

SPF 5'-AAG TCA 

GAG GTG 

AAA GCC CG-

3' 

58°C This study 

SPR 5'-TTG TCC 

AGT CAG 

TCG CCT TC-

3' 

Acidobacteria 

Subgroup17/Unclassified 

(OTU 39) 

S17F 5'-TTG TCC 

AGT CAG 

TCG CCT TC-

3' 

58°C This study 

S17R 5'-TCA AGC 

CTG CTA GTT 

TCC CG-3' 

Hydrogenophaga 

(OTU 9) 

HYF 5'-GCC TTC 

GGG TTG 

TAA ACT GC-

3' 

58°C This study 

HYR 5'-AAA CGC 

CAT TCC 

CAG GTT GA-

3' 

Fodinicola 

(OTU 15) 

FDF 5'-CCT CTT 

TCA GCA 

GGG ACG AA-

3' 

58°C This study 

FDR 5'-AAG TCT 

GCC CGT 

ATC GAG TG-

3' 
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Chloroflexi/Unclassified 

(OTU 16) 

CHF 5'-TCG GGA 

ATT TTG CGC 

AAT GG-3' 

58°C This study 

CHR 5'-CCT GCC 

TTC GAG 

TCG ATC AG-

3' 

Gemmatimonadetes/Unclassified 

(OTU 32) 

 

GMF 

GMR 

5'-AAA CCA 

CTG TCG 

GAA GGG AC-

3' 

5'-CGA GCC 

TGG CAG 

TCT AGA AG-

3' 

58°C This study 

 

 

 B 

    

     

 

PCR reaction mix 

 

Thermal profile 

 

Reagent (Stock conc.) 

 

Volume 
(Final 
conc.) 

 

Step 

 

Temp. 

°C 
 

 

Time 

 

Cycles 

 

KAPA Taq Buffer B ( 10x)a 

 

3 (1x) 

 

Initial 
denaturation 

 

95 

 

3 
min 

 

1 

MgCl2 (25 mM)a 3 (1.5 mM) Denaturation 94 30 s  

35 dNTP mix (10 mM)a 0,6 (0.2 
mM) 

Annealing Refer 
to A 

30 s 

OTU specific (10 μM)b 1,5 (0.4 
μM) 

Elongation 72 90 s 

OTU specific (10 μM)b 1,5 (0.4 
μM) 

Final 
elongation 

72 7 
min 

1 

KAPA Taq DNA Polymerase (5 U∙μl-
1)a 

0,15 (0.5U) Storage 4 ∞  

PCR-grade water 14,25     

Template 1     

 

a KAPA HiFi Hotstart PCR Kit (KapaBiosystems, WN, US) 

b See Table 10 A. 
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Table 11. Reagents and thermal profile of the Illumina sequencing PCR 

 

 

PCR reaction mix 

  

Thermal profile 

 

Reagent 

 

Volume 
(Final 
conc.) 

  

Step 

 

Temp. 

°C 
 

 

Time 

 

Cycles 

 

 MyTaq buffer (5x)a 

 

5 µl (1x) 

  

Initial 

denaturation 

 

96 

 

2 min 

 

MyTaq DNA polymerase 

(1.5 U)a 

0.5 µl  Denaturation 96 15 s  

 

30 
BioStabII PCR Enhancerb 2 µl  Annealing 50 30 s 

U341F (15 pmol)c 2.5 µl  Elongation 70 90 s 

U806R (15 pmol)c 2.5 µl  Final elongation    

DNA/cDNA (5 ng) 1 µl  Storage 4 ∞  

nuclease-free water 6.5 µl      

 

a 5x MyTaq™ Reaction Buffer (Bioline Meridian, TN, US) 

b BioStabII PCR Enhancer (Merck, Darmstadt, Germany) 

c see table 7. 
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4.6.6. Quantitative PCR (qPCR) 

Quantitative kinetic PCR (qPCR) was used to estimate the numerical abundance of 

16S rRNA gene and 16S rRNA sequences of the total bacterial community (Table 12) 

as well as of some representative OTUs (Table 13). Quantification was performed 

using the SensiMix™SYBR® & Fluorescein Kit (Bioline Reagents Ltd, UK) and the Bio-

Rad iQ5 optical system software version 2.0. (Bio-Rad Laboratories, Inc, CA, US).The 

quantification of the target genes is based on the intercalation of a fluorescent dye, in 

this case, SYBR Green with double-stranded DNA. The amplification of the target 

gene corresponds with an increasing fluorescence signal of the fluorescent dye.  The 

DNA and cDNA samples were diluted 100- and 50-fold, respectively, to reduce 

potential inhibition by coextracted PCR-inhibiting compounds. Negative controls 

containing no template were run alongside the samples to assess potential 

contamination, and only when no amplification was observed in these controls was the 

assay considered for further analysis. Each sample was assayed in technical 

quadruplicates to account for pipetting errors. Gene copy numbers were determined 

based on external standards. The standards were prepared via cloning of the target 

gene on the pGEM-T vector (4.6.7.) and amplified using the primer set M13F and 

M13R (Table 7). The PCR products were subsequently purified (4.6.2) and quantified 

using the Quant-iT dsDNA PicoGreen Assay (4.6.3) to serve as standards based on 

their calculated copy numbers (equation. 4). 

The copy numbers of standards against which the abundance of the target DNA was 

calculated were initially quantified based on the concentration of the purified M13 PCR 

products using the Equation 4: 

𝐶𝑇𝐺 =
𝐶𝑆𝑇  × 𝑉

𝑛𝑇𝐺 × 𝑀𝑊𝑏𝑝 
×  𝑁𝐴 



                                                                    MATERIALS AND METHODS 

74 
 

Where CTG is the copy numbers, CST; concentration of standard (ngµl-1), V; volume of 

standard used (µl), nTG; length of target gene in basepairs, MWbp; 660 gmol-

1(molecular weight of dsDNA (1basepair) and NA; the Avogadro constant: 6.23 x 1023 

molecules mol-1.                                                     

Table 12. Reagents and thermal profile for total bacterial community qPCR 

 

PCR reaction mix Thermal profile 

Reagent (Stock conc.) Volume (µl) (Final 
conc.) 

Step Temp. 

°C 
 

Time Cycles 

 

SensiMix™SYBR®& 

Fluorescein (2x)a 

 

10 (1X) 

 

Initial 

denaturation 

 

95 

 

10 

min 

 

1 

MgCl2 (25 mM)a 1 (5 mM) Denaturation 94 30 s  

35 EUB 341 F (25 μM)b 1 (250 nM) Annealing 55.7 40 s 

EUB 534 R (25 μM)b 1 (250 nM) Elongation 72 40 s 

BSAc 1 (150 ng/µl)     

PCR-grade water 10 Final elongation 72 5 1 

Template 1 Storage 4 ∞  

 

aSensiMix™ SYBR® & Fluorescein Kit (Bioline Meridian, TN, US) 

bSee Table 7. 

c Pierce ™ Bovine Serum Albumin (Thermo Fisher Scientific, Germany). 
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Table 13. Reagents and thermal profile for specific OTU qPCR 

 

PCR reaction mix Thermal profile 

Reagent (Stock conc.) Volume (µl) (Final 
conc.) 

Step Temp. 

°C 
 

Time Cycles 

 

SensiMix™SYBR®& 

Fluorescein (2x)a 

 

10 (1X) 

 

Initial 

denaturation 

 

95 

 

3 

min 

 

1 

MgCl2 (25 mM)a 1 (5 mM) Denaturation 94 30 s  

35 F. primer (25 μM)b 1 (250 nM) Annealing Variable 

(Table 11A) 

30 s 

R. primer (25 μM)b 1 (250 nM) Elongation 72 90 s 

BSAc 1 (150 ng/µl)     

PCR-grade water 10 Final 

elongation 

72 7 1 

Template 1 Storage 4 ∞  

 

 aSensiMix™ SYBR® & Fluorescein Kit (Bioline Meridian, TN, US) 

bSee Table 10 A. 

c Pierce ™ Bovine Serum Albumin (Thermo Fisher Scientific, Germany). 
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4.6.7. Cloning 

Purified PCR products for whole bacteria community and OTU-specific taxa analyses 

were inserted into pGEM®-T vector plasmid (pGEM®-T System, Promega, Germany) 

via ligation. The ligation reaction consisted of 2.5 µl Rapid ligation buffer, 0.5 µl 

pGEM®-T vector, 1 µl PCR product, 0.5 µl ligase filled up to 5 µl molecular-grade water. 

The ligation reaction was first incubated at room temperature for 1 hour and 

subsequently overnight at 4°C to allow ligation of the DNA fragments into the vector 

plasmid.  

3 µl of the ligated vector plasmids were mixed with 50 µl cultures of competent E.coli 

JM 109 cells (Promega) and incubated for 30 min on ice. The transformation was 

conducted through a heat shock at 42°C for 50 sec in a water bath. The cells were 

immediately placed back on ice following the heat shock. The cells were added to 950 

µl SOC medium (4.5.1.5.) and incubated for 1 hour at 37°C on a shaker at 150 rpm. 

The cell suspension was centrifuged for 5 min at 5000x g and approximately 800 µl 

supernatant discarded. The remaining cell suspension was resuspended and then 

streaked on LB Agar plates with Ampicillin, IPTG and XGAL (4.5.1.4.). The agar plates 

were incubated overnight at 37 °C and blue/white screening of the colonies performed. 

The ampicillin inhibited the growth of plasmid-free cells since the vector plasmids 

encode for β-lactamase, which hydrolyzes ampicillin. Additionally, cells containing 

vector plasmids lacking the inserts formed blue colonies since the lacZ-encoded β-

galactosidase that catalyzes the conversion of colourless X-Gal to a blue product was 

functional as the lacZ remained intact. In contrast, cells harbouring the insert within 

the multiple cloning site located within lacZ interrupt expression of the β-galactosidase 

by lacZ, hence such colonies remain white. 
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The white colonies were picked, resuspended in 30 µl PCR-water and used as the 

template for M13-PCR (Table 14) to assess insert length and amplification for 

subsequent Sanger sequencing.  

Table 14. Reagents and thermal profile for M13 PCR 

 

 

PCR reaction mix 

 

Thermal profile 

 

Reagent (Stock conc.) 

 

Volume (µl) (Final 

conc.) 

 

Step 

 

Temp. 

°C 

 

 

Time 

 

Cycles 

 

KAPA Taq Buffer B (10x)a 

 

2 (1X) 

 

Initial 

denaturation 

 

95 

 

5 

min 

 

1 

MgCl2 (25 mM)a 2 (2.5 mM) Denaturation 95 60 s  

35 dNTP mixa 2 (0.2 mM)    

M13 uniF (10 μM)b 0.4 (0.2 µM) Annealing 54 45 s 

M13 uniR (10 μM)b 0.4 (0.2 µM) Elongation 72 90 s 

KAPA Taq DNA Polymerase 

(5 U∙μl-1)a 

0.1 (0.025 U∙μl-1)     

PCR-grade water 10 Final elongation 72 5 1 

Template 1 Storage 4 ∞  

 

a KAPA HiFi Hotstart PCR Kit (KapaBiosystems, WN, US) 

b See Table 7. 

4.6.1. Agarose gel electrophoresis 

PCR products were visualized by agarose gel electrophoresis using 1% agarose gel 

prepared with TAE buffer (40 mM Tris, 20 mM acetate, 1 mM EDTA, pH 8.5, 

AppliChem GmbH, Darmstadt, Germany) and 10% SYBR Safe DNA Gel Stain 



                                                                    MATERIALS AND METHODS 

78 
 

(Invitrogen, Germany). Samples mixed with gel loading dye (4:1) and molecular weight 

markers (Biovendis, Germany) were loaded into the wells and subjected to an electric 

current (70 mV for 30 min) to drag them through the gel. Separated fragments were 

visualized with a UV transilluminator (Herolab, Germany). 

4.6.2. Purification of PCR products 

PCR products were purified using the MinElute PCR Purification Kit (Qiagen, 

Germany) following the manufacturer’s instructions. 5 volumes of Buffer PB was mixed 

with 1 volume of the PCR reaction, applied to the MinElute column and centrifuged for 

1 min (17,900 x g). The flow-through was discarded, the MinElute column washed with 

750 µl Buffer PE and centrifuged for 1 min (17,900 x g). DNA was subsequently eluted 

from the MinElute column after the addition of 10 µl Buffer EB (10 mM Tris.Cl, pH 8.5) 

and centrifuged for 1 min (17,900 x g). 
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4.7. Bioinformatics 

4.7.1. Primer design and specificity assessment  

Specific primers targeting the OTU sequences (Table 10) were designed using the 

Primer-Blast tool (https://www.ncbi.nlm.nih.gov/tools/primer-blast/) using default settings 

(Ye et al. 2012). The tool consists of a module (Primer3) to generate candidate primer 

pairs and another (BLAST) to check the target specificity of the designed primers 

against the target sequences in silico. Synthesis of the designed primers was 

performed at Seqlab (Microsynth, Germany) and their specificity was assessed with 

genomic DNA and cDNA from representative samples using PCR (Table 10 B) and 

gel electrophoresis. The amplified amplicons were subsequently cloned using 

standard methods (4.6.7.) followed by Sanger-sequencing to ascertain identity as well 

as specificity of amplification, and to generate the qPCR standards (4.6.6.). 

4.7.2. Isolate sequence processing and phylotype assignment 

 Isolate sequences (4.6.7.) obtained from the Sanger-sequencing reactions were 

processed with MEGA7 (Kumar et al. 2016) and SINA (Pruesse et al. 2012) softwares, 

in addition to the NCBI VecScreen and Blast functions. First, the sequences of vector 

origin were removed using the VecScreen tool 

(https://www.ncbi.nlm.nih.gov/tools/vecscreen/) followed by the editing of any sequencing 

errors in the generated chromatograms using the Trace editor function in MEGA7. The 

sequences were assigned to novel species based on a similarity threshold of 97 % 

(Yarza et al. 2008). The 16S rRNA gene sequences were aligned with closely cultured 

relatives as indicated by blastn analysis against GeneBank using the SINA web aligner 

(www.arb-silva.de/aligner). Subsequently, phylogenetic tree reconstruction was 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/vecscreen/
http://www.arb-silva.de/aligner
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performed with MEGA7 using the neighbour-joining method (Saitou and Nei 1987) and 

1000 bootstrap replications. 

4.7.3. Processing of Illumina amplicon sequence data 

Raw 16S rRNA gene and 16S rRNA sequences were pre-processed by demultiplexing 

all libraries using the Illumina bcl2fastq 1.8.4 software. The reads were then sorted by 

amplicon inline barcodes corresponding to independent samples. The barcode 

sequences were clipped from sequences after sorting, followed by clipping of 

sequencing adapter remnants from all reads. Reads with final length < 100 bases were 

discarded. Primer sequences were removed, the sequence fragments turned into 

forward-reverse orientation and merged using BBMerge 34.38. 16S pre-processing 

and Operational Taxonomic Unit (OTU) picking from amplicons was performed with 

Mothur 1.35.1 (Schloss et al. 2009). The sequences containing ambiguous bases (Ns), 

with homopolymer stretches of more than 8 bases or with an average Phred quality 

score below 33 were removed. Remaining sequences were aligned against the 16S 

Mothur-Silva SEED r119 reference alignment. Sequencing error reduction was 

achieved through preclustering, and elimination of chimera carried out with the uchime 

algorithm. This was followed by taxonomical classification of the sequences (against 

the Silva reference classification) and the removal of sequences from domains of life 

other than Bacteria and Archaea. Single replicates with less than 1000 reads were 

excluded from further analysis. OTU picking by clustering at the 97 % identity level 

(using the cluster.split method) and OTU consensus taxonomical calling integrating 

the taxonomical classification of the cluster member sequences was then performed. 

The representative sequences of each OTU (with at least 2 observed sequences) were 

queried against a filtered (unknown and unclassified sequences were removed) 

version of the ribosomal database project release 11.4 reference. A summary table 
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with taxonomy and alignment details for each OTU representative sequence was 

generated. The OTU relative abundance data filtered for low-abundance OTUs was 

subsequently generated with QIIME 1.9.0 from rarified data based on the sample with 

the minimum number of sequences or variance filtered and normalized (total sum 

scaling resulting in relative abundances) according to default settings in the 

Microbiome Analyst pipeline (Dhariwal et al. 2017). Please note that the Silva r119 

used in this dissertation classifies the “Betaproteobacteria” as “Betaproteobacteriales”, 

an order of the Gammaproteobacteria. Thus, genera and higher taxonomic ranks that 

formerly represented “Betaproteobacteria” now belong to “Gammaprotobacteria”. 
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4.7.4. Accession numbers 

Illumina and Sanger sequence data were deposited in the NCBI Sequence Read 

Archive (SRA) and GenBank nucleotide sequence databases, respectively.  

Table 15. Accession numbers of sequences obtained in this dissertation 

 

 

 

 

 

Sample/Experiment 

 

Accession number 

 

Repository 

 

Ibuprofen degradation (4.3.1) 

 

PRJNA529686 

 

SRA 

Metoprolol degradation (4.3.2) PRJNA587738 SRA 

TOC impact on TrOC degradation  (4.3.3) PRJNA633609 SRA 

Flume study (4.3.4) PRJNA531245 SRA 

Novosphingobium sp. strain CR1 MK910996 GenBank 

Pseudomonas thivervalensis strain MAH1 MN317372 GenBank 

Uncultured Gemmatimonadetes MK732967 GenBank 

Uncultured Chloroflexi MK732966 GenBank 

Uncultured Fodinicola MK732965 GenBank 

Uncultured Hydrogenophaga MK732964 GenBank 

Uncultured Acidobacterium MK732963 GenBank 

Uncultured Sphingomonadaceae MK732962 GenBank 
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4.8. Calculations and Statistical analyses 

4.8.1. Concentration of solutions 

Stock solutions were prepared to desired concentration (mol L-1) by adding a defined 

mass of the target compound (g) into a defined volume (L) of solvent i.e. water based 

on the molar mass of the compound (gmol-1): 

𝑚 = 𝑐𝑀𝑉 

Where 𝑚 is the amount of compound in g; 𝑐, concentration of the compound in 

solvent; 𝑀, molar mass of the compound; 𝑉, the volume of the solvent in Liters. 

The stock solutions were added to the microcosms and media to achieve a final 
working concentration depending on the total volume of the water or media used in 
the setups based on the Equation 5: 

𝑉𝑠𝑡 =
𝑐𝑤𝑉𝑤

𝑐𝑠𝑡
 

 

Where 𝑉𝑠𝑡 is the volume of the stock solution; 𝑐𝑤, working concentration; 𝑉𝑤 , working 

volume; 𝑐𝑠𝑡, concentration of stock solution. 

 

4.8.2. Removal efficiency 

The removal efficiency of test compounds was calculated as a percentage of the initial 
concentration amended into the microcosms using the Equation 6: 

 

𝑅𝐸 =
𝐶0 − 𝐶𝑓

𝐶0
× 100 

where 𝑅𝐸 is the removal efficiency; 𝐶0 and 𝐶𝑓 are initial and equilibrium concentrations 

(µgL-1), respectively. 
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4.8.3. Sample mean and Standard deviation 

Sample means and standard deviations were calculated from values obtained from all 

replicates in a biological sample using the equations. 

Equation 7: Mean 

 

𝑥 ̅ = (
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
) 

Where x̄ represents the mean; n, number of replicates; i, number running from 1 to n.  

xi, actual values measured in each of the replicates in the sample. 

Equation 8: Standard deviation (SD) 

𝑆𝐷 = √
∑ (𝑥𝑖 − 𝑥̅)2𝑛

𝑖=1

𝑛 − 1
 

4.8.4. Analysis of Variance (ANOVA) 

In estimating differences between means of more than two sample groups, analysis 

of variance (ANOVA) was used. The output was based on the variance between and 

within sampling groups. ANOVA was implemented in SigmaPlot and PAST 3 software 

(Hammer et al. 2001). 

4.8.5. ANalysis Of SIMilarity (ANOSIM) 

The ANOSIM test was applied to assess if there were significant differences in the 

microbial community composition among sample groups. The test is the equivalent of 

ANOVA-like hypothesis test in evaluating non-parametric multivariate data and 

compares the mean of ranked dissimilarities between groups to the mean of ranked 

dissimilarities within groups. The ANOSIM R statistic is used to assess the statistical 
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significance An R value close to "1.0" suggests dissimilarity between groups while an 

R value close to "0" suggests an even distribution within and between groups. An R 

value below "0" suggests that dissimilarities within groups are greater than between 

groups (Clarke and Gorley 2001). 

4.8.6. DESeq2 

DESeq2 (Love et al. 2014) is a package in R ( R Core Team 2013) used in differential 

gene expression analysis based on a model using the negative binomial distribution. 

In this dissertation, DESeq2 was used to evaluate significant differential abundance in 

OTUs in treated relative to untreated samples (controls) based on the log2Foldchange 

value. A log2Foldchange value greater than “0” suggested the OTUs were enriched 

while a log2Foldchange value lower than “0” suggested the OTUs were 

inhibited/eliminated by the treatment. The differential abundance was considered 

significant at adj. p < 0.01 or p < 0.05 using the Benjamin-Hochberg correction. 

4.8.7. Linear discriminant analysis effect size analysis  

Linear discriminant analysis (LDA) effect size (LEfSe) algorithm (Segata et al. 2011) 

as implemented in the Microbiome Analyst pipeline (Dhariwal et al. 2017) was used to 

identify specific taxa whose relative abundance changed significantly based on 16S 

rRNA gene and 16S rRNA sequences analysis as evaluated based on Kruskal-Wallis 

test (p ≤ 0.05). Moreover, the significant taxa were ranked according to the effect sizes. 

4.8.8. Alpha and beta diversity  

Within-sample (alpha diversity) and between sample (beta diversity) diversity analyses 

were evaluated in PAST 3 (Hammer et al. 2001). Alpha diversity was determined 

based on species richness, Shannon diversity and Shannon evenness indices using 
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rarefied sequence data based on OTUs defined at 97% similarity level and applying 

post-hoc Tukey test. Species richness accounts for the number of species in a sample 

without taking their abundances into account. The Shannon diversity index combines 

measures of richness and abundance while evenness accounts for the spread of 

individuals among species with low values indicating dominance of one or few species 

and high value indicating relatively equal distribution of individuals across all present 

species (Morris et al. 2014; Posselt et al. 2020). 

Beta diversity analysis based on the abundance of OTUs defined at 97% similarity 

level and the Bray-Curtis distance metric was visualized on a principal coordinate 

analysis plot (PCoA). Samples exhibiting smaller dissimilarity values in their microbial 

community composition clustered together compared to those with significantly 

dissimilar values, with the variation in the dissimilarity matrix observable along the 

PCoA axes. 

4.8.9. Correlation analysis 

Spearman’s rank correlation coefficient was implemented in SigmaPlot 13 to assess 

strength and direction of the relationship between different treatments and bacterial 

diversity indices in (4.3.4). The statistical significance of the coefficient Rs value was 

determined based on p value = 0.05. 
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4.9. Contribution of coworkers 

Unless otherwise stated below, sampling, experimental setups, measurements, data 

analyses and interpretation were performed by me. Most of the data in this dissertation 

forms components of published papers and manuscripts submitted or in preparation 

(9) and is presented herein similarly. 

4.9.1. Degradation of ibuprofen  

Experimental design was conceptualized by Marcus A. Horn and I. Anna Jaeger 

(Department Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland 

Fisheries and Geography Department, Humboldt University Berlin, Berlin, Germany) 

collected sediment and water samples from the sampling site, Berlin. Kirsten Knoop 

and Adrian Ho (Institute of Microbiology, Leibniz University of Hannover, Hannover, 

Germany) assisted with primer design and cloning. Frank Schaarschmidt (Institute of 

Biostatistics Leibniz University of Hannover, Hannover, Germany) performed 

preliminary Illumina sequence data analysis. Malte Posselt (Department of 

Environmental Science, Stockholm University, Stockholm, Sweden) performed HPLC-

MS data analysis.   

4.9.2. Degradation of metoprolol under oxic and anoxic conditions 

Experimental design was conceptualized by me together with Marcus A. Horn. Malte 

Posselt performed HPLC-MS data analysis. 

4.9.3. Impact of TOC on micopollutant removal 

Experimental design was conceptualized by Malte Posselt and I. Malte Posselt 

performed HPLC-MS data analysis. Muhammad Raza (Institute of Applied 
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Geosciences, Technical University of Darmstadt, Darmstadt and IWW Water Centre, 

Mülheim an der Ruhr, Germany) analyzed TOC. 

4.9.4. Effect of HEF and Bacterial diversity on micropollutant DT50s  

This experiment was conducted as part of the “Joint Experiments” within the Marie 

Skłodowska-Curie Innovative Training Network-HypoTRAIN. The experimental design 

was carried out by select members within the consortium. These were: Marcus A Horn, 

Cyrus Rutere (Department of Ecological Microbiology, University of Bayreuth, 

Bayreuth and Institute of Microbiology, Leibniz University of Hannover, Hannover, 

Germany). Jonathan P. Benskin, Anna Sobek, Claudia Coll, Malte Posselt 

(Department of Environmental Science, Stockholm University, Stockholm, Sweden). 

Anna Jaeger, Karin Meinikmann, Jorg Lewandowski (Department Ecohydrology, 

Leibniz-Institute of Freshwater Ecology and Inland Fisheries and Geography 

Department, Humboldt University Berlin, Berlin, Germany). Muhammad Raza 

(Institute of Applied Geosciences, Technical University of Darmstadt, Darmstadt and 

IWW Water Centre, Mülheim an der Ruhr, Germany). Jonas Mechelke, Juliane 

Hollender (Swiss Federal Institute of Aquatic Science and Technology, Eawag,  

Dubendorf and Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 

Zürich, Switzerland. Phillip Blaen, Stefan Krause (School of Geography, Earth and 

Environmental Sciences, University of Birmingham, Birmingham, UK). 

Experimental set up and sampling was performed by Malte Posselt, Jonas Mechelke, 

Anna Jaeger, Claudia Coll, Muhammad Raza, Karin Meinikmann and me. 

Measurements, data analyses and interpretation were performed by Malte Posselt, 

Jonas Mechelke, Anna Jaeger, Claudia Coll (physicochemical data) and me 

(Microbiological data).
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5. RESULTS 

5.1. Micropollutant removal potential in the hyporheic zone 

5.1.1. Transformation of ibuprofen in hyporheic zone sediments 

Degradation of ibuprofen in ibuprofen amended sediments occurred without significant 

delay except for the 400 µM treatment that exhibited an initial nine-day lag phase 

(Figure 8 A-D). Ibuprofen was depleted within 11 days for 5 and 40 µM treatments, and 

within 16 days for 200 and 400 µM treatments. In the presence of acetate, the 

degradation of ibuprofen tended to be delayed across most concentrations after the 

first amendment with ibuprofen and acetate (Figure 8 E-H). The initial time for the 

depletion of ibuprofen depended on the initial ibuprofen concentration as well as 

acetate supplementation and ranged from 11 – 34 days (Figure 8). After subsequent 

re-feedings, ibuprofen was degraded entirely within 1-3 days in the presence and 

absence of acetate, indicating enrichment of ibuprofen degraders. Ibuprofen 

concentrations were essentially constant in control microcosms containing autoclaved 

sediment and river water, while ibuprofen was below the detection limit in the 

unamended microcosms (Figure 9). 
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Figure 8. Apparent degradation of ibuprofen in oxic hyporheic zone sediment 
microcosms. Plots A - D correspond to sediment amended with ibuprofen 
concentrations of 5 μM, 40 μM, 200 μM and 400 μM, respectively. Plots E- H 
correspond to sediment amended with both 1 mM acetate and ibuprofen 
concentrations of 5 μM, 40 μM, 200 μM and 400 μM, respectively. Values are the 
arithmetic means of triplicate oxic incubations. Error bars indicate standard deviations. 
Some standard deviations are smaller than the symbol size and therefore not apparent. 
Arrows indicate the time of refeeding of microcosms with ibuprofen (A - D) and acetate 
and ibuprofen (E- H), respectively.  Red and blue arrows indicate sampling of the 
sediment for nucleic acid extraction after the third and fifth refeeding, respectively. 
Figure used with permission from Rutere et al. 2020. 
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Figure 9. Control microcosms for the ibuprofen degradation experiment (Figure 8). 
‘Non-supplemented’ represents the unamended sediment. The abiotic controls 
‘Sorption’ and ‘Hydrolysis’ contained autoclaved sediment and river water, 
respectively, and were amended with 200 μM ibuprofen. Value s are the arithmetic 
means of three replicate incubations. Red and blue arrows indicate sampling of the 
sediment for nucleic acids extraction after third and fifth re-spiking, respectively. Error 
bars indicating standard deviations are smaller than the size of the symbols and 
therefore not apparent. Figure used with permission from Rutere et al. 2020. 

 

 Microcosms amended with 200 µM ibuprofen were representative treatments with the 

highest initial ibuprofen concentration that showed ibuprofen degradation without 

appreciable delay as well as a quick ibuprofen degradation after the fourth re-feeding 

and were thus chosen for in-depth transformation product analysis. 1-

Hydroxyibuprofen, 2-hydroxyibuprofen, 3-hydroxyibuprofen and carboxyibuprofen 
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were transiently detected, suggesting that such compounds were transformation 

intermediates (Figure 10). 2-hydroxyibuprofen was the main transformation 

intermediate and was likewise rapidly removed.  

 

 

Figure 10. Ibuprofen transformation products in oxic hyporheic zone sediment 
microcosms amended with 200 μM of ibuprofen (4th respike; see Figure 8B). Values 
are the arithmetic mean of three replicate incu bations, and error bars indicate standard 
deviations. Some standard deviations are smaller than the symbol size and therefore 
not apparent. Figure used with permission from Rutere et al. 2020. 
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5.1.2. Effect of treatments on total bacterial abundance by qPCR 

analysis 

Total bacterial 16S rRNA gene abundance tended to be lower in ibuprofen treatments 

than in controls based on samples assessed after the third and fifth refeeding (Figure 

11). However, such a difference was not significant (ANOVA, p > 0.05). The 16S rRNA 

copy numbers were significantly higher in treatments relative to unamended controls 

after the third refeeding, but lower than the unamended controls after the fifth refeeding 

(Figure 11) (ANOVA, p < 0.05). 

 

Figure 11. Copy numbers of the 16S rRNA gene and 16S rRNA detected in total 
bacterial community. Sample code: A, amended with 1 mM acetate and ibuprofen 
perfeeding; 0, 5, 40, 200, and 400, indicate supplemental ibuprofen concentrations of 
0 μM, 5 μM, 40 μM, 200 μM and 400 μM, respectively, given per feeding; 0’, 3’, and 5’, 
correspond to samples obtained at the start of the incubation, and after the third and 
fifth refeeding, respectively (see figure 8). Sampling times for unamended controls 
were according to those of the 400 μM ibuprofen treatment. Values are the arithmetic 
average of three replicates. Error bars indicate standard deviation values. Figure used 
with permission from Rutere et al. 2020. 
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5.1.3. Effect of treatments on alpha and beta diversity 

The resultant number of 16S rRNA gene and 16S rRNA sequences per sample ranged 

from 10,767 to 19,244 and 11,616 to 19,397, respectively. The datasets were 

normalized to a uniform sequencing depth based on the sample with the lowest 

sequences for diversity analyses. Alpha diversity from samples taken after the third 

and fifth refeeding revealed significantly lower Shannon diversity (ANOVA, p ≤ 0.05) at 

the OTU level in samples amended exclusively with ibuprofen or ibuprofen-acetate 

relative to unamended controls (Figure 12). Species richness tended to follow the same 

trend; however, differences were not significant (ANOVA, p > 0.05) (Figure 12).  

 

Figure 12. Alpha diversity and richness estimators of 16S rRNA gene and 16S rRNA obtained 
from Illumina amplicon sequencing. Sample code: A, amended with 1 mM acetate and 
ibuprofen per feeding; 0, 5, 40, 200, and 400, indicate supplemental ibuprofen concentrations 
of 0 μM, 5 μM, 40 μM, 200 μM and 400 μM, respectively, given per feeding; 0’, 3’, and 5’, 
correspond to samples obtained at the start of the incubation, and after the third and fifth 
refeeding, respectively. Sampling times for unamended controls were according to those of 
the 400 μM ibuprofen treatment. Values are the arithmetic average of three replicates. Error 
bars indicate standard deviation values. Figure modified and used with permission from Rutere 
et al. 2020. 
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Beta diversity visualization using Principal Coordinate Analysis (PCoA) based on Bray-

Curtis distances indicated that microbial communities in ibuprofen and ibuprofen-

acetate treatments were distinct from the unamended controls and original sediment 

before incubation based on 16S rRNA gene and 16S rRNA sequences, respectively 

(Figure 13 A and B). Consistently, two-way ANOSIM tests indicated that in samples 

amended exclusively with ibuprofen, both ibuprofen treatment (DNA: R = 0.7, RNA: R 

= 0.63, p < 0.0001) and incubation time (DNA: R = 0.98, RNA: R = 0.98, p < 0.0001) 

contributed significantly to the differences in the microbial community composition 

among the samples. Similarly, ibuprofen-acetate treatment (DNA: R = 0.75, RNA: R = 

0.72, p < 0.0001) and incubation time (DNA: R = 1, RNA: R = 0.99, p < 0.0001) also 

contributed significantly to the differences in the microbial community composition of 

the corresponding samples. The R-values greater than 0.6 indicated a rather strong 

dissimilarity between microbial communities from different treatments and time points. 

Communities from treatments amended with low and high ibuprofen concentrations 

(i.e., 5-40 and 200-400 µM, respectively) formed clusters separated along axis 1, 

suggesting a dose-dependent effect of ibuprofen (Figure 13 A and B). 
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Figure 13. Principal coordinate analysis of the Bray Curtis dissimilarity metric showing 
the effect of ibuprofen and ibuprofen/acetate treatments on the bacterial community 
composition based on OTUs from 16S rRNA gene (panel A) and 16S rRNA (panel B). 
Sample code: A, amended with 1 mM acetate and ibuprofen per feeding; 0, 5, 40, 200, 
and 400, indicate supplemental ibuprofen concentrations of 0 μM, 5 μM, 40 μM, 200 
μM and 400 μM, respectively, given per feeding; 0’, 3’, and 5’, correspond to samples 
obtained at the start of the incubation, and after the third and fifth refeeding, 
respectively. Sampling times for unamended controls were according to those of the 
400 μM ibuprofen treatment. Figure used with permission from Rutere et al. 2020. 
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5.1.4. Effect of treatments on general phylum-level taxonomic 

composition  

The dominant phyla (>1% relative abundance) on both DNA and RNA levels were 

Proteobacteria, Chloroflexi, Acidobacteria, and Actinobacteria, followed by Firmicutes, 

Bacteroidetes, Gemmatimonadetes, Latescibacteria, and Nitrospirae (Figure 14  A and 

B). Such phyla were among the top ten based on linear discriminant analysis (LDA) 

score on DNA and RNA level, explaining differences among treatments (Figure 14 C). 

Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and 

Latescibacteria tended to be stimulated by ibuprofen or ibuprofen and acetate (Figure 

14). Actinobacteria and Chlorobi showed a variable response to the treatments when 

DNA and RNA levels were compared. Interestingly, Acidobacteria, 

Gemmatimonadetes and Latescibacteria appeared to be stimulated in treatments with 

low concentrations of ibuprofen (5-40 µM) in the absence of supplemental acetate on 

DNA and RNA level. Proteobacteria were most abundant in amplicon libraries of 

treatments with acetate and high concentrations of ibuprofen (200-400 µM). Such a 

finding was attributed primarily to the Gammaproteobacteria (data not shown). 

Bacteroidetes responded to all ibuprofen concentrations with a high relative 

abundance in amplicon libraries. Such a high relative abundance was particularly 

prominent on RNA level in treatments with high concentrations of ibuprofen (200-400 

µM). Chloroflexi, Firmicutes and Nitrospirae tended to decrease on average in relative 

abundance in response to ibuprofen. Archaeal sequences were generally less 

abundant than bacterial sequences in amplicon libraries, affiliated primarily with 

Thaumarchaeota and Euryarchaeota. Likewise, they tended to decrease in response 

to ibuprofen treatments on DNA and RNA level except for Thaumarchaeota that tended 

to be stimulated on RNA level with low ibuprofen concentrations. 
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Figure 14. Relative abundance of major bacterial (greater than 1% relative abundance) 
and archaeal phyla on DNA (A) and RNA (cDNA, B) level, as well as corresponding 
LDA scores (C). Archaea are indicated by the grey box. Values and error bars 
represent means from all time points per treatment (see Figures 8, 9) of up to 12 
samples and standard deviation, respectively. 0, unamended controls; 5-40, ‘low 
ibuprofen treatments’ with 5 and 40 μM ibuprofen; 200-400, ‘high ibuprofen treatments’ 

A 

B 

C 
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with 200 and 400 μM ibuprofen; A5-40, ‘low ibuprofen treatments’ with supplemental 1 
mM acetate; A200-400, ‘high ibuprofen treatments’ with supplemental 1 mM acetate. 
Filled and open circles, DNA and RNA (cDNA) level, respectively. Figure used with 
permission from Rutere et al. 2020. 

5.1.5. Effect of treatments on family-level taxonomic composition  

Pseudomonadaceae, Sphingomonadaceae, and Commamonadaceae were the 

families with the highest LDA scores that had on average higher relative abundances 

in ibuprofen treatments compared to non-supplemented controls on DNA and RNA 

level (Figure 15), which was likewise reflected in the OTU based analysis (Figures 16 

and 17) and following phylum level analysis. Notably, such families were consistently 

crucial in ibuprofen and ibuprofen-acetate treatments. Other families that had high LDA 

scores and higher relative abundances in amplicon libraries from ibuprofen treatments 

compared to non-supplemented controls on DNA and RNA level included 

Gemmatimonadaceae, Xanthomonadaceae, Nocardioidaceae, Flavobacteriaceae, 

Sandaracinaceae and Cytophagaceae (Figure 15 A), suggesting that members of 

these families were stimulated in ibuprofen treatments. Bdellovibrionaceae were 

likewise stimulated. In contrast, LDA scores of family-level taxa that had lower relative 

abundances in ibuprofen treatments compared to non-supplemented controls on DNA 

and RNA level suggested a negative impact of ibuprofen (Figure 15 B). Many well-

known anaerobes (e.g., Caldilineaceae, Peptostreptococcaceae, Desulfobacteraceae 

and Syntrophaceae) as well as aerobic nitrifiers of the Nitrospiraceae and uncultured 

families met such a criterion, suggesting that anaerobic processes such as primary, 

and secondary syntrophic, fermentations and nitrification might be impaired by 

ibuprofen.  
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Figure 15. Linear discriminant analysis (LDA) scores on DNA and RNA level for 
families that were more (A) or less (B) abundant in treatments with ibuprofen relative 
to non-supplemented controls and displayed a consistent response on DNA and RNA 
level. Figure used with permission from Rutere et al. 2020. 

 

5.1.6. OTU-level taxa associated with ibuprofen degradation  

Differential abundance analysis was performed to identify ibuprofen responsive OTU-

level taxa. Taxa whose abundances significantly changed in ibuprofen treatments 

relative to unamended controls (log2foldchange > 0.5; p < 0.05) were considered 

enriched and thus candidate taxa for representing ibuprofen degraders. Many OTUs 

(78 to 92) were enriched in ibuprofen treatments representative for high and low 

ibuprofen amendments (400 and 40 µM, respectively; Table A1). Consistent with 

analyses on phylum and family levels, OTUs enriched in response to ibuprofen 

affiliated primarily with Acidobacteria, Alpha-, Gamma-, and Deltaproteobacteria, 
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Bacteroidetes, Gemmatimonadetes and Latescibacteria. Cumulated log2fold change 

values in response to ibuprofen relative to unamended controls suggest a preferential 

enrichment of OTUs affiliating with Acidobacteria, Chloroflexi, Deltaproteobacteria, 

Gemmatimonadetes, Latescibacteria and Saccharibacteria with low ibuprofen 

concentrations of 40 µM on DNA level (Figure 16; Table A1). In contrast, OTUs 

affiliating with Alpha- and Gammaproteobacteria, Actinobacteria, Bacteroidetes and 

Verrucomicrobia were more enriched with high ibuprofen concentrations of 400 µM 

(Figure 16). OTUs affiliating with Alpha-, Gamma-, and Deltaproteobacteria, 

Actinobacteria and Chlorobi tended to be stimulated by supplemental acetate. 
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Figure 16. Log2fold change of ibuprofen responsive OTUs summed up for all OTUs 
affiliating with the same (sub-) phylum (based on data from Table S2). A, DNA; B, RNA 
(cDNA). OTUs significantly enriched by ibuprofen relative to unamended controls 
sampled at the same time point had a Log2-fold change > 0 at p-adj < 0.05. IBU40 and 
IBU400, ibuprofen amendment with 40 and 400 μM ibuprofen, respectively. IBA40 and 
IBA400, ibuprofen amendment with 40 and 400 μM ibuprofen, respectively, together 
with 1 mM acetate. Figure used with permission from Rutere et al. 2020. 
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Proteobacteria OTUs dominated ibuprofen responsive taxa in general. Such taxa 

included alphaproteobacterial Novosphingobium, Sphingomonas, Hyphomicrobium 

and Woodsholea affiliated OTUs, gammaproteobacterial (Betaproteobacteriales 

affiliating) OTUs related to Hydrogenophaga, Piscinibacter and Vogesella, 

gammaproteobacterial OTUs related to Pseudomonas and Arenimonas, as well as 

OTUs affiliating with Bdellovibrio and distantly related to Sandaracinus. Rhodococcus, 

Lamia/Aquihabitans, Nocardioides and Fodinicola related OTUs along with uncultured 

taxa were prominent among the Actinobacteria. Ibuprofen enriched important taxa of 

the Bacteroidetes included Chryseolinea, Ferruginibacter, Flavobacterium and 

uncultured taxa. Ibuprofen enriched OTUs of the Gemmatimonadaceae and 

Latescibacteria were distantly related to Gemmatimonas sp. and to uncultured 

organisms, respectively. OTUs affiliating with subgroups 6, 17, and 22 within the 

Acidobacteria were enriched in response to ibuprofen. Notably, some phyla that 

showed on average a generally variable or even negative response to ibuprofen 

nevertheless contained OTUs that were enriched in response to ibuprofen (Table A1), 

demonstrating the need for high taxonomic resolution on OTU level. Such phyla were 

Chloroflexi (Figure 16; Table A1), Chlorobi (e. g., OTUs 93 and 740), Nitrospirae (e. 

g., OTU 7 related to Nitrospira moscoviensis), and Verrucomicrobia (e.g., OTU 162 

related to Prosthecobacter sp.). Hitherto uncultured groups (e.g., NS9_marine_group, 

env. OPS_17, KD4-96; Table A1), enriched by ibuprofen indicate new potential 

ibuprofen degraders in hyporheic zone sediments. Most of the OTUs enriched in 

ibuprofen treatments following incubation were detected in the original community and/ 

or the unamended controls (Table A2). OTUs 1, 15, 32, 95, 39, and 93, indicative of 

Novosphingobium sp. (Alphaproteobacteria), Fodinicola sp. (Actinobacteria), 

uncultured Gemmatimonadetes, uncultured Latescibacteria, Acidobacterial subgroup 

17, and uncultured Chloroflexi of the BSV26 group, respectively, had relative 
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abundances of greater than 0.1% in the original community on the DNA level in the 

non-rarified datasets.
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Figure 17. Heat map of LEfSe identified top 50 most differentially abundant taxa based on 16S rRNA gene (A) and 16S rRNA (cDNA; B) amplicon analysis after the third and fifth 
refeeding (Fig. 1). OTUs are sorted according to the difference in their mean read counts in ibuprofen amended and unamended samples. OTUs with a linear discriminant analysis 
score of ≥ 4 and their phylogenetic affiliation are shown. The color code reflects median, as well as upper and lower quantiles of read counts normalized to the total number of reads 
per OTU from all samples. Sample code: A, amended with 1 mM acetate and ibuprofen per feeding; 0, 5, 40, 200, and 400 indicate supplemental ibuprofen concentrations in μM 
given per feeding; 0’, 3’, and 5’ correspond to samples obtained at the start of the incubation, and after the third and fifth refeeding, respectively. Sampling times for unamended 
controls were according to those of the 400 μM ibuprofen treatment. *, Samples with significant differential relative abundance compared to the start of the incubation based on 
DESeq2 (adj p < 0.1). Figure used with permission from Rutere et al. 2020.
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5.1.7. Quantification of representative ibuprofen enriched OTUs 

An increase in relative abundance in amplicon libraries does not necessarily indicate 

stimulation. Thus, qPCR was utilized to verify representative ibuprofen-stimulated taxa 

as indicated by relative abundance data using 16S rRNA (cDNA) to 16S rRNA gene 

ratios as an indicator of taxon-specific activity. Expression of 16S rRNA genes of 

representative OTUs was significantly higher (ANOVA, p ≤ 0.05) in 400 µM ibuprofen 

treatments relative to unamended controls (Figure 18), which agreed with the Deseq2 

differential abundance data analysis. This highlighted the reliability of the differential 

abundance approach to identify potential ibuprofen-responsive taxa in hyporheic zone 

sediment microcosms.  

5.1.8. Ibuprofen degrading strains CN1 and MAH1 

Growth of the isolates CN1 and MAH1 under oxic conditions as determined by optical 

density measurements (data not shown) and degradation of ibuprofen (Figure 19), 

indicated the ability of the isolates to utilize ibuprofen as carbon and energy source to 

support their growth.The two strains affiliated with ibuprofen-responsive OTUs 1 

(Novosphingobium related) and 24 (Pseudomonas related) (Figure 19; Table A1), 

respectively with  the 16S rRNA gene similarities of CN1 and MAH1 to representative 

sequences of OTUs 1 and 24, > 97%. CN1 had a 16S rRNA gene similarity of 96.8% 

and 96.3% to Novosphingobium flavum strain UCM-28 (Acc. Nr. NR_152007) and N. 

aromaticivorans strain IFO 16084 (Acc. Nr. NR_112090), respectively, and clustered 

with other organisms of the genus Novosphingobium (Figure 20 A), suggesting that 

strain CN1 represents a new ibuprofen degrader of the genus. A 16S rRNA gene 

similarity of 99.9% of MAH1 to Pseudomonas thivervalensis (Acc. Nr. KF528727) and 

clustering with P. thivervalensis (Figure 20 B) suggests MAH1 as an ibuprofen 

degrading strain of this species. 
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Consistent with the phylogenetic affiliations, the two isolates were rod-shaped similar 

to the closest cultured members of their respective genera. The closely related 

ibuprofen-responsive OTUs 1 and 24 of the isolates were also present in the original 

hyporheic zone community prior to incubation at a relative abundance of approximately 

0.01 – 0.1% (Table A2), suggesting their relevance in ibuprofen degradation in situ.  

The OTUs were further stimulated by ibuprofen on the DNA and RNA level following 

amendment of the sediment microcosms with exogenous ibuprofen (Figures 17 and 

19; Table A1).The stimulation of OTU 1 generally resulted in higher relative 

abundances than OTU 24 and tended to be most prominent in treatments with low 

ibuprofen concentrations (Figure 19). The ibuprofen degradation kinetics of 

Novosphingobium strain CN1 (approximately 400 µM of ibuprofen within 2 days; Figure 

19 A), showed a high capacity to quickly degrade ibuprofen and were in the range of 

ibuprofen degradation rates observed after the fifth refeeding of ibuprofen in hyporheic 

zone sediments (Figure 8). The high relative abundance of CN1 representing OTU 1 

in treatments with low rather than with high concentrations of ibuprofen (Figure 19), 

suggest that the Novosphingobium strain CN1 represents a copiotrophic organism 

whose growth is impaired in situ in the presence of high ibuprofen concentrations. The 

relative abundance of OTU 24 indicative of the strain MAH1 was essentially similar in 

all ibuprofen treatments, although ibuprofen degradation of MAH1 was rather slow 

(approximately 300 µM of ibuprofen within 8 days; Figure 19B). Such data suggest that 

Pseudomonas thivervalensis MAH1 represents an oligotrophic organism with a high 

ibuprofen tolerance. 
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Figure 18. 16S rRNA (cDNA) to 16S rRNA gene ratios determined by qPCR for 
selected taxa stimulated by ibuprofen in the 400 μM treatment (Figs. 1, 2, and 3) as an 
indicator of taxon specific activity. Values are the arithmetic means of triplicate 
incubations. Error bars indicate standard deviation but are smaller than the symbol size 
and therefore not apparent. Sample code: 0 and 400 indicate supplemental ibuprofen 
concentrations in μM given per feeding; 3’ and 5’ correspond to samples obtained after 
the third and fifth refeeding, respectively. Sampling times for unamended controls were 
according to those of the 400 μM ibuprofen treatment. Figure used with permission 
from Rutere et al. 2020. 
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Figure 19. Effect of ibuprofen on the relative abundance of OTUs in 16S rRNA gene 
(DNA) and 16S rRNA (RNA or cDNA) derived amplicon librararies from oxic hyporheic 
zone sediment microcosms (Figure 8) affiliating with ibuprofen degrading strains 
Novosphingobium CN1 (A) and Pseudomonas MAH1 (B), and the capacity of both 
strains to degrade ibuprofen under oxic conditions. The grey box indicates 
unsupplemented oxic control microcosms. Values represent arithmetic means of 
triplicates, and error bars indicate standard deviations. Filled and open circles, DNA 
and RNA (cDNA) level, respectively; filled squares, ibuprofen concentration. Sample 
code: A, amended with 1 mM acetate and ibuprofen per feeding; 0, 5, 40, 200, and 400 
indicate supplemental ibuprofen concentrations in μM given per feeding; 0', 3', and 5' 
correspond to samples obtained at the start of the incubation, and after the third and 
fifth refeeding, respectively. Sampling times for unamended controls were according 
to those of the 400 μM ibuprofen treatment. Figure used with permission from Rutere 
et al. 2020. 
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Figure 20. Phylogenetic tree reconstructed with the neighbour-joining method based 
on 16S rRNA gene sequences of strain CR1 and other Novosphingobium species 
(panel A) and strain MAH1 and other Pseudomonas species (panel B), showing their 
position among phylogenetic neighbours. Aquicella siphonis strain SGT-108 was used 
as an outgroup. Bootstrap values (based on 1000 replications) above 70 % are shown 
at branch nodes. Figure used with permission from Rutere et al. 2020. 
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5.2. Impact of redox gradients on the removal of micropollutants 

5.2.1. Transformation of metoprolol in the oxic and anoxic hyporheic 

zone sediments 

Complete removal of metoprolol in the 15 and 150 µM treatments occurred within 65 

and 72 days, respectively, after an initial lag phase of approximately 40 days under 

oxic conditions (Figure 21 A). Following the second and third re-feeding of metoprolol, 

however, immediate degradation resulting in complete removal within 35 days 

irrespective of initial metoprolol concentration was observed (Figure 21 A). Under 

anoxic conditions, complete degradation irrespective of spiked metoprolol 

concentration initially occurred within 72 days following a lag phase of about 55 days 

(Figure 21 B). Degradation after the second re-feeding occurred within 35 days in both 

treatments without a significant lag phase observed. However, after the third re-

feeding, complete removal was only observed in the 15 µM treatment and the 150 µM 

treatment exhibiting incomplete removal (Figure 21 B). In the abiotic control, 

approximately 21 % of the initial metoprolol concentration was removed by sorption. 

However, metoprolol concentration remained mostly unchanged in the hydrolysis 

control during the entire incubation (170 days: Figure 21 C).  
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Figure 21. Apparent degradation of metoprolol in hyporheic zone sediment 
microcosms. Panels A and B represent sediment amended with 15 µM and 150 µM 
metoprolol under oxic and anoxic conditions, respectively. Panel C represents abiotic 
controls (sorption and hydrolysis) that were amended with 150 µM metoprolol and 
consisted of autoclaved sediment and river water, respectively. Values are the 
arithmetic means of triplicate incubations. Error bars represent standard deviations. 
Some standard deviations are smaller than the symbol size and therefore not apparent. 
Arrows indicate the time of refeeding of microcosms with metoprolol.  
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Analysis of the transformation products revealed metoprolol was transformed mainly 

to MTPA under oxic conditions (Figure 22 A). Under anoxic conditions, MTPA and α-

HMTP were identified, with α-HMTP the major transformation product (Figure 22 B). 

The transformation products were subsequently completely removed under both 

incubation conditions (Figure 22 A and B).  

 

Figure 22. Metoprolol transformation products in hyporheic zone sediment microcosms 
under oxic (panel A) and anoxic conditions (panel B) subsampled from the 15µM 
metoprolol treatment (following 2nd refeeding, see Fig. 8 A and B). Values are the 
arithmetic means of triplicate incubations. Error bars represent standard deviations. 
Some standard deviations are smaller than the symbol size and therefore not apparent. 
Note different scales for the secondary axes. 
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5.2.2. Sediment properties and Redox zonation 

A relatively similar GSD characterized the sediment through the depth profile with sand 

accounting for approximately 60 – 70 %. Gravel and silt accounted for about 20 % and 

10 % in the oxic layer and 10 % and 30 % in the anoxic layer, respectively, as reported 

in (Peralta-Maraver et al. 2018a). Following incubation in oxic conditions, the 

endogenous nitrate concentration in treatments and biotic controls declined from 

approximately 0.6 - 0.8 mM to about 0.3 - 0.4 mM during the first 60 days; values 

fluctuated within 0.4 – 0.6 mM range after that (Figure 23 A). In anoxic conditions, 

nitrate concentration decreased rapidly within the first 20 days from approximately 0.4 

- 0.6 mM to about 0.37 mM and remained constant after that (Figure 23 B). A constant 

nitrate concentration characterized the sorption control for the significant part of the 

incubation (Figure 23 C). The pH in the microcosms ranged between 6.4 - 6.7 

throughout the incubation period.  
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Figure 23. Evolution of Nitrate (NO3
-) concentration during incubation. Panels A and B 

represent NO3- concentrations in metoprolol-amended (15 µM and 150 µM) and 
unamended sediment microcosms under oxic and anoxic conditions, respectively. 
Panel C represents NO3- concentration in the abiotic (sorption) control amended only 
with 150 µM metoprolol under anoxic conditions. Values are the arithmetic means of 
triplicate incubations. Error bars represent standard deviations.Some standard 
deviations are smaller than the symbol size and therefore not apparent. 
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5.2.3. Effect of metoprolol treatment on alpha and beta diversity 

16S rRNA gene and 16S rRNA sequences in samples from the oxic treatments ranged 

from 11,435 to 49,428 and 15,253 to 49,921, respectively. Samples from the anoxic 

treatments had 16S rRNA gene and 16S rRNA sequences ranging from 14,063 to 

49,943 and 30,672 to 49,963, respectively. The datasets were normalized to a uniform 

sequencing depth of  the respective group sample with the lowest sequences for 

diversity analyses. 16S rRNA gene-based species richness, Shannon diversity and 

evenness tended to decrease in both metoprolol-amended and unamended control 

incubations, but compared to the original community, this decrease was not significant 

under oxic conditions (ANOVA, p > 0.05) (Figure 24 A-C). Likewise, no significant 

differences were observed in any of the diversity indices between the treatments, 

corresponding controls, or the original community at any timepoints under anoxic 

conditions (Figure 24 D-F). In contrast, at the 16S rRNA level, diversity indices tended 

to be higher following oxic incubation than in the original community (Figure 24 A-C). 

However, the differences were not significant as was for anoxic incubations (ANOVA, 

p > 0.05) (Figure 24). The difference in the indices between the 15 µM treatment and 

respective controls at days 65 and 120 was also not significant under oxic and anoxic 

conditions (ANOVA, p > 0.05). In the 150 µM treatment, a significant decline in the 16S 

rRNA level-based indices occurred compared to the controls at day 120 (ANOVA, p < 

0.05) under oxic and anoxic conditions (Figure 24).  
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Figure 24. Alpha diversity indices based on 16S rRNA gene and 16S rRNA sequences. 
Panels A, B and C represent species richness (A), Shannon index (B) and evenness 
index (C) for microcosms incubated under oxic conditions. Panels D, E and F represent 
species richness (A), Shannon index (B) and evenness index (C) for microcosms 
incubated under anoxic conditions. Values are the arithmetic means of triplicate 
incubations. Error bars represent standard deviations. Some standard deviations are 
smaller than the symbol size and therefore not apparent. Sample code: 0, 15 and 150 
indicate metoprolol concentration (µM). 0, 65, and 120 at the last position in the code 
indicate day of sampling.  

 



                                                                                RESULTS 

118 
 

PCoA revealed no apparent clustering of the samples based on metoprolol treatment 

or incubation duration under oxic conditions based on 16S rRNA gene sequences due 

to high variability observed among replicates (Figure 25 A). Consistent with these 

observations, the two-way ANOSIM test revealed no significant dissimilarity among the 

samples due to metoprolol amendment (R = 0.04, p = 0.2) or incubation time (R = 0.08, 

p = 0.1). At the 16S rRNA level, clustering patterns concomitant to metoprolol 

amendment but not incubation time were observed under oxic conditions (Figure 25 

B). The corresponding two-way ANOSIM test revealed a stronger contribution to the 

overall dissimilarity among the samples was indeed a factor of metoprolol amendment 

(R = 0.5, p = 0.002), while incubation time had only a minimal impact (R = 0.2, p = 0.1). 

The R-values greater than 0.6 suggest a rather strong dissimilarity between microbial 

communities from different treatments and time points.  

Under anoxic conditions, samples clustered as a function of metoprolol treatment at 

the DNA and RNA levels (Figure 25 C and D) but of incubation time only at the DNA 

level (Figure 25 C). The corresponding two-way ANOSIM test indicated that metoprolol 

treatment caused a significant dissimilarity among samples (R = 0.65, p = 0.0006) 

whereas incubation time resulted in a fairly strong dissimilarity among the samples (R 

= 0.4, p = 0.02). At the RNA level, a minor effect on dissimilarity among the samples 

as a function of metoprolol treatment was detected (R = 0.3, p = 0.001) but a non-

significant effect of incubation time (R = 0.03, p = 0.4) was observed. 
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Figure 25. Principal coordinate analysis based on Bray Curtis dissimilarity metric 
showing the effect of metoprolol treatment on the bacterial community composition on 
OTU level from 16S rRNA gene and 16S rRNA level. Panel A and B correspond to 16S 
rRNA gene (A) and 16S rRNA (B) for samples incubated under oxic conditions. Panel 
C and D correspond to 16S rRNA gene (A) and 16S rRNA (B) for samples incubated 
under anoxic conditions. Sample code: 0, 15 and 150 indicate metoprolol concentration 
(µM). 0, 65, and 120 at the last position in the code indicate day of sampling.   
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5.2.4. Effect of treatments on the Phylum-level taxonomic composition  

16S rRNA gene sequence analysis revealed 12 phyla (> 1% relative abundance) in the 

original sediment bacterial community while the 16S rRNA sequences revealed 

Proteobacteria and Bacteroidetes as the key phyla accounting for up to 99% of the 

sequences under oxic conditions (Figure 26 A and B). Following incubation, a shift in 

the community composition characterized by the predominance of Proteobacteria and 

Bacteroidetes at both DNA and RNA levels was observed. Bacteroidetes and 

Actinobacteria seemed to be stimulated in the 15 and 150 µM metoprolol treatments 

at the DNA level at day 65, respectively (Figure 26 A). However, 16S rRNA sequences 

indicated a strong stimulation of Proteobacteria, Chloroflexi and Acidobacteria in the 

15 µM treatment at day 65 (Figure 26 A). Other phyla detected in the original 

community at the DNA level including Gemmatimonadetes, Nitrospirae, Chlorobi, 

Latescibacteria and Firmicutes declined in relative abundance in most control and 

treatment samples following oxic incubation (Figure 26 A).  

Under anoxic conditions, a change in the community composition relative to the original 

sediment was evident in incubated samples with phyla such Chloroflexi, Acidobacteria, 

Actinobacteria, Gemmatimonadetes, Nitrospirae, Firmicutes and Latescibacteria 

present in low relative abundance in the unincubated sediment seemingly increasing 

in abundance at the DNA level in both controls and metoprolol treatments (Figure 26 

C). Relative to controls, however, metoprolol amended samples at day 65 revealed 

higher relative abundances in the phyla Chloroflexi, Acidobacteria and Actinobacteria. 

The phylum Firmicutes was also relatively higher in abundance in the 15 µM treatment 

at day 65 compared to the unamended control or 150 µM treatment, suggesting 

preferential stimulation at low metoprolol concentration of this phylum. Overall, 

Proteobacteria was the dominant phylum at DNA and RNA levels under anoxic 
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conditions (Figure 26 C and D). However, RNA-based analysis revealed a more 

dramatic change in the microbial community composition, whereby Proteobacteria 

formed the dominant community members, particularly in the 150 µM treatment (Figure 

26 D). 

 

Figure 26. Mean relative abundance of major bacterial phyla (> 1% relative abundance) 
on 16S rRNA gene and 16S rRNA level. Panel A and B correspond to 16S rRNA gene 
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(A) and 16S rRNA (B) for samples incubated under oxic conditions. Panel C and D 
correspond to 16S rRNA gene (A) and 16S rRNA (B) for samples incubated under 
anoxic conditions. Phyla accounting for less than 1% of all sequences are grouped as 
‘'others''. Sample code: 0, 15 and 150 indicate metoprolol concentration (µM). 0, 65, 
and 120 at the last position in the code indicate day of sampling.  

 

5.2.5. Effect of treatments on family-level taxonomic composition  

As per the phylum-level taxonomic composition, the dominant families (> 3% relative 

abundance) at both DNA and RNA level under oxic conditions were affiliated to 

Proteobacteria and Bacteroidetes under oxic conditions (Figure 27 A and B). At the 

DNA level, the relative abundance of the Proteobacteria affiliated family 

Chromatiaceae increased in the unamended control compared to metoprolol 

treatments following incubation. Other families, namely Moraxellaceae, 

Pseudomonadaceae, Comamonadaceae, and Hydrogenophilaceae, increased in 

abundance in both the controls and treatments (Figure 27 A). Bacteroidetes-affiliated 

Flavobacteriaceae exhibited marginally higher relative abundance in the 15 µM 

treatment compared to controls sampled at the respective time points. At the RNA 

level, relatively similar community composition was observed across most samples 

except in the 15 µM treatment sampled at day 65 where the family Acidithiobacillaceae 

dominated the community in addition to the strong stimulation of Desulfobulbaceae 

(Figure 27 B). 

Under anoxic conditions, Proteobacteria affiliated families dominated the original 

sediment community with Enterobacteriaceae prominent at the DNA level while 

Gallionellaceae and Hydrogenophilaceae were additionally detected at the RNA level 

(Figure 27 C and D). After treatment and incubation, other families occurring in low 

relative abundance (< 3 %) in the original community at the DNA level exhibited an 

increase in their relative abundance (> 3 %). These included Hyphomicrobiaceae, 
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Ectothiorhodospiraceae, Hydrogenophilaceae, Neisseriaceae, unclassified families 

affiliated with Acidobacteria subgroups 6 and 17, Micrococcaceae and 

Lactobacillaceae (Figure 27 C). The potentially active fraction captured by RNA 

analysis revealed Enterobacteriaceae, Desulfobulbaceae and Acidithiobacillaceae as 

dominant families in the 15 µM treatments, with depletion of metoprolol in the 15 µM 

treatment at day 120 revealing a decline in the relative abundance of 

Desulfobulbaceae and Acidithiobacillaceae while Enterobacteriaceae remained 

dominant (Figure 27 D). Preferential stimulation of the Enterobacteriaceae was evident 

in the 150 µM treatment under anoxic conditions (Figure 27 D). 
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Figure 27. Mean relative abundance of major bacterial families (> 3 % relative 
abundance) on 16S rRNA gene and 16S rRNA level. Panel A and B correspond to 16S 
rRNA gene (A) and 16S rRNA (B) for samples incubated under oxic conditions. Panel 
C and D correspond to 16S rRNA gene (A) and 16S rRNA (B) for samples incubated 
under anoxic conditions. Sample code: 0, 15 and 150 indicate metoprolol concentration 
(µM). 0, 65, and 120 at the last position in the code indicate day of sampling.  
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5.2.6. Taxa associated with metoprolol degrading communities  

OTU-level taxa identified under oxic conditions using the differential abundance 

analysis and considered important in the biotransformation of metoprolol exhibited 

concentration-dependent response with higher Log2FoldChange values observed in 

the 150 compared to 15 µM treatments (Table A3). Majority of the OTUs affiliated with 

Proteobacteria including alphaproteobacteria-affiliated Phenylobacterium, 

Caulobacter, Sphingopyxis, Sphingomonas and Sphingobium, gammaproteobacterial 

OTUs such as Acinetobacter, Pseudomonas, Rheinheimera including the 

betaproteobacteriales affiliating OTUs Aquabacterium, Limnobacter, Ralstonia, 

Pelomonas, Albidiferax and Thiomonas. Others were OTUs affiliating with 

Bacteroidetes (Flavobacterium and Hydrotalea). These OTUs were also detected in 

the original sediment at variable relative abundances, suggesting their importance in 

metoprolol degradation in situ (Table A4). 

Under anoxic conditions, most metoprolol responsive OTUs were enriched in the 15 

compared to 150 µM treatment (Table A5). Such taxa included alphaproteobacteria-

affiliated Rhodomicrobium, Pedomicrobium, Rhodobium, Rhodoplanes, 

deltaproteobacteria affiliated Byssovorax, Haliangium, Desulfobacca, Sandaracinus, 

Sorangium and gammaproteobacteria-affiliated Acidiferrobacter, Pseudomonas, 

Escherichia and Enhydrobacter. An array of unclassified OTUs affiliated with 

Subgroups 6, 9 and 17 in the phylum Acidobacteria while Cellulosimicrobium 

(Actinobacteria) was stimulated in the high metoprolol treatment (Table A5). OTUs 

affiliated with Chloroflexi classes KD4-96, Anaeroliniae, Ardenticatenia, the Firmicutes- 

affiliated Bacillus, and Gemmatimonadaceae (Gemmatimonadetes) were also 

enriched in metoprolol treatments, with Chloroflexi-affiliated OTUs preferentially 

stimulated in the low metoprolol treatment (Table A5). These OTUs were also detected 
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in the original sediment at variable relative abundances, suggesting their importance 

in metoprolol degradation in situ (Table A6). 
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5.3. Impact of TOC gradients on micropollutant removal 

5.3.1. Depletion of TrOCs under varying TOC concentrations 

Depletion of TrOCs in the biotic microcosm setups with initially high (8.7%) and low 

(3.2%) TOC concentrations varied considerably within and among test compound 

classes (Figure 28 A). Among the NSAIDs, ibuprofen and ketoprofen removal 

efficiency was almost two-fold in the surface relative to subsurface samples compared 

to the marginal difference observed for diclofenac. On the other hand, naproxen was 

removed entirely under both TOC conditions. The cholesterol-lowering agents 

bezafibrate and clofibric acid removal correlated with the TOC concentration with 

higher removal efficiency observed in the surface sediment layer. Clofibric acid was, 

however, characteristically persistent with less than 50 % removed in all the tested 

sediment samples. Complete removal of acesulfame occurred in the surface layer 

compared to only 17 % in the subsurface samples. Marginally higher removal efficiency 

was also observed in the surface relative to subsurface sediment samples for 

furosemide, hydrochlorothiazide, carbamazepine and benzotriazole. Among the beta-

blockers, complete removal of propranolol was observed under both TOC conditions 

while metoprolol removal was only marginally higher in the surface relative to 

subsurface layer samples.  

In the abiotic setup, most TrOCs exhibited a correlation with the initial sediment TOC 

concentration (Figure 28 B). Removal via sorption of the NSAIDs was higher in the 

surface relative to subsurface samples. Diclofenac removal efficiency (> 55 %), was 

the highest among NSAIDs tested, followed by ibuprofen. Naproxen and ketoprofen 

exhibited < 30 % removal efficiency in the surface and only negligible removal in the 

subsurface samples. Similar to the biotic setups, the removal of the beta-blockers 

metoprolol and propranolol was relatively high under both TOC conditions. Propranolol 
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was removed entirely while metoprolol removal exceeded 80 % under both high and 

low TOC conditions. Though characterized by minimal differences, the removal 

efficiency of bezafibrate, clofibric acid, carbamazepine and benzotriazole was higher 

in the surface relative to subsurface samples. Furosemide exhibited a reversed 

removal pattern with higher removal occurring in the subsurface relative to surface 

samples. Acesulfame concentration remained unchanged in abiotic setups under both 

high and low TOC conditions indicating no sorption of the compound occurred. 

Taken together, an apparent effect on the removal efficiency of TrOCs by the TOC 

concentration was evident with a higher removal efficiency of most test compounds 

occurring in the surface relative to subsurface sediment samples (Figure 28). 

Moreover, biotransformation was the predominant removal mechanism of TrOCs in the 

hyporheic zone sediments. The interaction of the microbial community dynamics with 

TOC and TrOC removal efficiency was, therefore, further interrogated. 
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Figure 28. Relative removal efficiency of test compounds in the A) biotic and B) abiotic 
(sorption) batch microcosms containing surface and subsurface sediment samples. 
The incubation ran for 65 days with samples taken after 15 and 65 days. 
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5.3.2. Abundance of the total bacterial community  

The unincubated sediment samples (t0 samples) from the two layers reached 

approximately 109 16S rRNA gene and 16S rRNA copies per gram sediment (Figure 

29). Following incubation, the 16S rRNA gene copies in the subsurface sediment were 

significantly lower than in the surface sediment samples (ANOVA, p < 0.05). The 16S 

rRNA copies, however, varied considerably between treatments. With reference to the 

corresponding t0 samples from each layer,  the 16S rRNA gene copies declined in both 

amended and unamended surface (marginally) and subsurface samples (significantly) 

(ANOVA, p < 0.05) following incubation. A comparison between the incubated 

unamended and amended samples from each layer revealed higher 16S rRNA gene 

and 16S rRNA copies in the amended relative to unamended surface sediment 

samples obtained at days 15 and 65 (Figure 29 A). On the other hand, the 16S rRNA 

gene copies in the subsurface samples were lower in amended relative to unamended 

samples on day 15 but higher at day 65 (Figure 29 B). The 16S rRNA copies were, 

however, generally higher in the amended than unamended samples at both days 15. 
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Figure 29. Abundance (copy numbers) of bacterial 16S rRNA genes and 16S rRNA 
(cDNA) detected in oxic hyporheic zone microcosms containing A) surface and B) 
subsurface sediment samples. Sample code: 0, 500 indicate supplemental TrOC 
concentrations in μgL-1. 0, 15, 65 represent sampling days. Values are the arithmetic 
average of three replicates. Error bars indicate standard deviation values. 

 

5.3.3. Bacterial community alpha and beta diversity 

The resultant number of 16S rRNA gene and 16S rRNA sequences per sample ranged 

from 12,805 to 31,177and 12,805 to 36,649, respectively. The datasets were 

normalized to a uniform sequencing depth of 12,805 per sample for diversity analyses. 

The t0 samples revealed higher species richness in the subsurface than surface 

samples (Figure 30 A) (ANOVA; p < 0.05) but similar Shannon diversity across the two 

sample sets (Figure 30 C) (ANOVA; p > 0.05) based on 16S rRNA gene sequences. 

Following incubation, however, significantly higher species richness was observed in 

the surface compared to subsurface samples in amended and unamended samples at 

day 15. The Shannon diversity followed the same trend for samples obtained at days 
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15 and 65. Moreover, the amended samples from each layer had significantly higher 

species richness and diversity than the corresponding unamended samples on day 65. 

Based on 16S rRNA, no significant differences in species richness were observed in 

the samples as a function of depth, amendment or incubation time (Figure 30 B) 

(ANOVA; p > 0.05). However, diversity was significantly higher in the surface 

compared to subsurface samples in both amended and unamended samples at day 

15 (Figure 30 D) (ANOVA; p < 0.05). 
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Figure 30. Taxa richness (A, B) and Shannon diversity (C, D) of the total bacterial 
community in surface and subsurface sediment samples, respectively.  Sample code: 
0, 500 indicate supplemental TrOC concentrations in μgL-1. 0, 15, 65 represent 
sampling days. Values are the arithmetic average of three replicates. Error bars 
indicate standard deviation values. 

 

Beta diversity visualization on PCoA plots based on 16S rRNA gene and 16S rRNA 

sequence data revealed distinct clustering of the bacterial community in the surface 

samples according to incubation time but no apparent effect of treatment with the test 

compounds (Figure 31 A and B). Consistent with these findings, the two-way ANOSIM 
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test indicated that in the surface samples, incubation time (DNA: R = 0.7, RNA: R = 

0.7, p < 0.02) accounted significantly for the variation in the bacterial community 

composition while the effect of treatments was not apparent (DNA: R = 0.3, RNA: R = 

0.2, p < 0.22). For the subsurface samples, the clustering strongly separated along 

axis 1, depicting a stronger influence of incubation time than treatment (Figure 31 C 

and D). The ANOSIM test further revealed the stronger effect of incubation time (DNA: 

R = 0.9, RNA: R = 0.9, p < 0.02) compared to treatment (DNA: R = 0.7, RNA: R = 0.7, 

p < 0.01). Nevertheless, both factors contributed significantly to the differences in the 

bacterial community composition distribution in the subsurface sediments. The R-

values greater than 0.6 indicated a rather strong dissimilarity between microbial 

communities from different treatments and time points. 
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Figure 31. Principal coordinate analysis based on Bray Curtis dissimilarity metric 
showing the effect of TrOCs on the bacterial community composition on OTU-level 
from 16S rRNA gene and 16S rRNA data for surface (A,B) and subsurface sediment 
samples (C,D), respectively. Sample code: 0, 500 indicate supplemental TrOC 
concentrations in μgL-1. 0, 15, 65 represent sampling days. 
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5.3.4. Phylum-level taxonomic composition  

The predominant phyla in the sediment samples from the two layers on DNA and RNA 

levels were Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Bacteroidetes 

and Firmicutes (Figure 32). Other phyla identified (> 1% relative abundance) included 

Nitrospirae, Gemmatimonadetes and Chlorobi. The t0 samples indicated that only the 

relative abundance of the predominant phylum Proteobacteria was higher in the 

surface (38%) compared to the subsurface layer (32%) while other phyla were 

comparable in terms of relative abundance in the two layers.  

Following incubation, changes in the relative abundance of some phyla in amended 

relative to unamended samples were observed. In surface sediment samples, the 

phyla whose relative abundance increased concomitant to TrOC amendment included 

Proteobacteria (DNA: 37 to 41 %, RNA: 40 to 44 %), Bacteroidetes (DNA: 4.5 to 5.5 

%, RNA: 3 to 6 %) and Firmicutes (DNA: 4 to 5 %; RNA: 5 to 10 %) at day 15. In the 

subsurface samples, an increase in the relative abundance of Proteobacteria (DNA: 

41 to 62 %, RNA: 49 to 55 %) and a decline in Chloroflexi (DNA: 18 to 14 %, RNA: 15 

to 11 %) and Firmicutes (DNA: 11 to 4 %, RNA: 13 to 11 %) was observed in amended 

relative to unamended samples at day 15. 
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Figure 32. Mean relative abundance of major bacterial phyla (> 1 % relative 
abundance) on 16S rRNA gene and 16S rRNA level. Panel A and B correspond to 16S 
rRNA gene (A) and 16S rRNA (B) for surface sediment samples. Panel C and D 
correspond to 16S rRNA gene (A) and 16S rRNA (B) for subsurface sediment samples. 
Phyla accounting for less than 1% of all sequences are grouped as “others”. Sample 
code: 0, 500 indicate supplemental TrOC concentrations in μgL-1. 0, 15, 65 represent 
sampling days. 
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5.3.5. Family-level taxonomic composition of bacteria  

The t0 surface sediment samples exhibited a higher number of dominant bacterial 

families (> 3 % relative abundance) than subsurface sediment samples, though only 

at the RNA level (Figure 33). These included Proteobacteria affiliated 

Hyphomicrobiaceae, Comamonadaceae, Caldilineaceae, Chloroflexi affiliated 

unclassified families JG30-KF-CM66, KD4-96, TK10, JG30-KF-CM45, an 

Acidobacterial Subgroup 6 family and Nitrospiraceae (Nitrospirae). In contrast, the 

family Anaerolineaceae exhibited higher relative abundances in the subsurface than in 

surface sediment at the DNA and RNA levels. The relative abundance of 

Rhodobiaceae was also higher in the subsurface than surface sediment at the DNA 

level while Gemmatimonadaceae exhibited a similar pattern at the RNA level.  

In the incubated samples, the amendment with TrOCs resulted in increased relative 

abundance in the surface sediment samples of the families Methylophilaceae, 

Caldilineaceae, unclassified KD4-96 family, Acidimicrobiaceae and 

Gemmatimonadaceae at the DNA level while at the RNA level Methylophilaceae, 

Comamonadaceae, Anaerolineaceae, unclassified JG30-KF-CM45, Acidobacteria 

Subgroup 6 family and Eubacteriaceae were stimulated by the TrOCs (Figure 33 A and 

B). The amended subsurface sediment samples exhibited higher relative abundance 

in the families Xanthobacteriaceae, Hydrogenophiliaceae, Rhodospirillaceae, 

Methylophilaceae, Rhodocyclaceae, and an unclassified KD4-96 family at both DNA 

and RNA levels, Hyphomicrobiaceae, Caldilineaceae, Acidobacteria Subgroup 6 family 

only at the DNA level and Comamonadaceae, Anaerolineaceae, and Peptococcaceae 

at the RNA level, respectively (Figure 33 C and D). 
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Figure 33. Mean relative abundance of major bacterial families (> 3 % relative 
abundance) on 16S rRNA gene and 16S rRNA level. Panel A and B correspond to 16S 
rRNA gene (A) and 16S rRNA (B) for surface sediment samples. Panel C and D 
correspond to 16S rRNA gene (A) and 16S rRNA (B) for subsurface sediment samples. 
Sample code: 0, 500 indicate supplemental TrOC concentrations in μgL-1. 0, 15, 65 
represent sampling days. 
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5.3.6. Microbial communities and taxa associated with degradation of 

the test compounds  

Relative to unamended controls, some specific taxa were considered enriched by the 

test compounds based on the significant differential abundance as determined by 

Log2foldchange values (Table A7). Based on the 16S rRNA gene and 16S rRNA 

analyses, enriched taxa including known and unknown genera were only identified in 

the subsurface samples and affiliated with the phylum Proteobacteria (alpha-, delta-, 

gamma) and Bacteroidetes (Sphingobacteriia and Cytophagia) (Table A7).  
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5.4. Effects of bacterial diversity and hyporheic exchange flow on 
micropollutant removal  

5.4.1.  Effect of sediment dilution and bedforms on bacterial abundance 

and diversity 

Sediment samples collected after 12 days of pre-incubation reached approximately 1.2 

x 106 16S rRNA gene copy numbers per gram sediment dry weight (Figure 34) with no 

significant differences observed across the sediment dilution levels or bedform 

numbers (ANOVA, p > 0.05). Since bacterial abundance was similar among the 

treatments after the pre-incubation phase, any differences between treatments were 

attributed to differences in bacterial diversity rather than overall bacterial abundance 

for this period (Posselt et al. 2020). The number of 16S rRNA gene sequences per 

sample ranged from 12,512 to 37,293. The datasets were normalized to a uniform 

sequencing depth of 12,512 per sample for diversity analyses. 
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Figure 34. Copy number of 16S rRNA genes per g of dry sediment obtained from real-
time PCR at sampling days 0, 21 and 56 of the attenuation phase. S1, S3 and S6 
correspond to a sediment: sand dilution of 1:10, 1:103, and 1:106, respectively; B6, B3 
and B0 correspond to 6, 3 and 0 bedforms, respectively. 

 

The sediment dilution resulted in a significant decrease in species richness and 

diversity (Shannon) in S3 and S6 compared to S1 at days 0, 21 and 56 (ANOVA, p < 

0.05) and between S6 and S3, at day 56 (Figure 35). Furthermore, a significant 

decrease in evenness was also observed in S3 and S6 compared to S1 at day 56 

(ANOVA, p < 0.05, Figure 35). The bedform elements did not significantly affect any of 

the diversity indices measured at any of the sampling time points (ANOVA, p > 0.05, 
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Figure 35) with electrical conductivity data from the salt dilution analysis showing the 

bedform features did not significantly affect HEF (ANOVA, p > 0.05) (Jaeger et al. 

2019b). 

 

Figure 35. Boxplots of alpha diversity indices based on 16S rRNA gene sequence analysis as 
a function of bedform number and sediment dilution. B6, B3 and B0 correspond to 6, 3 and 0 
bedforms; S1, S3 and S6 correspond to a sediment: sand dilution of 1:10, 1:103, and 1:106, 
respectively, respectively. Samples were collected before fortification (day 0) and at days 21 
and 56 of the attenuation phase. The diversity indices, species richness and Shannon diversity 
as a function of sediment dilution were significantly different between the least dilute sediment 
and the subsequent dilutions at all sampling time points while evenness was only significantly 
different between the least diluted sediment and the subsequent dilutions at day 56 (p ≤ 0.05). 
Diversity indices among treatments as a function of the bedform number were similar (p > 
0.05).Figure modified and used with permission from Posselt et al. (2020). 
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5.4.2.  Dissipation half-lives of organic contaminants  

The DT50s of the 31 test compounds ranged from 0.5 (fluoxetine) to 306 days 

(carbamazepine) (Table 16). The most persistent compounds (median DT50s >20 

days across all flumes) were carbamazepine (306 days), clofibric acid (223 days), 

gemfibrozil (67 days), metaxalone (43 days), benzotriazole (39 days), 

hydrochlorothiazide (30 days), celiprolol (29 days), and naproxen (26 days). In 

contrast, diclofenac, furosemide, paracetamol and sulfamethoxazole dissipated in less 

than one day in the majority of the flumes. For these short-lived substances, DT50s 

could not be determined, and instead DT50s of 0.5 days were assumed. Parent 

compounds with noticeably short DT50s were fluoxetine (0.5 days), sitagliptin (1.0 

day), and citalopram (1.3 days). Among the spiked substances were five beta-blockers 

(atenolol, celiprolol, metoprolol, propranolol and sotalol), of which four had similar 

DT50s (2.0 to 3.2 days), while the DT50 for celiprolol was an order of magnitude higher 

(29 days).  

Table 16. Overview minimum DT50 (days) among treatments. Table used with 
permission from Posselt et al. (2020). 

 

Sed. dilution 
Dilution 

   S1 
S1 
S1 

     S3 
S3 
S3 

           S6 
 
 
S6 
S6 

Bedforms B6 B3 B0 B6 B3 B0 B6 B3 B0 
Acesulfame 2.3 2.1 2.3 11.0 13.6 12.8 12.7 12.7 21.2 
Amisulpride 3.8 4.2 5.1 4.6 7.1 10.3 7.0 5.9 4.3 

Atenolol 0.2 0.3 0.3 2.9 2.5 2.9 6.3 6.2 4.4 
Benproperine 1.8 1.5 1.7 1.8 2.3 1.2 3.4 2.2 2.4 
Bezafibrate 2.6 2.3 3.2 11.0 9.2 5.7 12.7 10.4 9.0 

Benzotriazole 32.8 29.6 32.3 44.9 64.9 76.2 21.4 34.0 24.9 
Carbamazepine 64.7 81.7 76.3 210.1 170.7 322.5 289.7 338.5 286.9 

Celiprolol 9.0 9.0 10.5 32.9 35.1 33.0 15.3 25.4 21.9 
Clofibric acid 67.2 69.9 68.5 128.1 203.8 140.7 242.1 317.5 274.0 
Citalopram 1.9 1.5 1.3 1.0 1.1 1.1 1.5 1.0 1.0 
Diclofenac 10.7 9.2 10.2 NA NA NA NA NA NA 
Flecainide 7.1 8.0 7.2 7.1 2.8 1.1 2.5 3.6 2.7 
Fluoxetine 0.5 0.5 0.5 0.4 0.4 0.3 0.4 0.4 0.5 

Furosemide 6.3 7.0 6.4 NA NA NA NA NA NA 
Gemfibrozil 17.1 18.2 24.4 54.1 37.3 65.9 71.8 131.5 53.6 

Hydrochlorothiazide 20.1 20.3 21.9 29.0 31.2 29.4 28.4 33.6 28.9 
Ibuprofen 1.4 1.3 2.0 10.4 9.4 9.5 13.9 10.9 10.3 
Irbesartan 6.6 5.6 5.6 5.3 0.5 1.5 3.1 8.4 4.8 
Ketoprofen 4.3 4.4 5.3 8.5 9.1 9.1 10.7 10.8 10.1 
Metformin 3.6 4.3 4.0 5.8 7.1 6.8 21.1 19.6 23.7 
Metoprolol 0.5 0.5 0.5 2.3 2.1 2.1 4.4 6.5 3.6 
Metaxalone 14.4 16.2 19.2 38.1 42.8 34.7 62.1 50.2 42.7 
Naproxen 7.6 6.9 7.6 26.8 21.8 33.8 36.7 30.1 38.9 

Paracetamol 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Propranolol 0.5 0.5 0.5 2.5 1.3 1.7 3.2 4.9 2.9 
Sitagliptin 2.7 2.1 1.7 0.5 0.5 0.4 0.5 0.5 0.5 
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Sulfamethoxazole 13.2 14.5 13.3 NA NA NA NA NA NA 
Sotalol 0.5 0.7 0.8 4.4 2.7 2.3 4.6 6.4 4.1 

Sulpiride 1.6 1.5 1.9 8.8 10.1 12.4 9.9 10.5 9.8 
Valsartan 3.3 3.0 2.9 8.2 6.3 7.1 10.4 11.7 8.2 

Venlafaxine 4.9 5.0 5.0 3.6 3.1 4.4 4.7 4.3 3.9 

 

5.4.3. Transformation products formation  

In total, we determined 32 TPs in at least one pore water or surface water sample using 

targeted methods (confidence level: 1) (Table 17) and an additional 25 suspected TPs 

(confidence level: 3-4) (Table 18) in surface water via the suspect screening workflow 

(4.6.5). For six parent compounds (acesulfame, flecainide, gemfibrozil, naproxen, 

paracetamol, sitagliptin) no TPs were included in our target list and suspects were not 

found. Exclusively target TPs were detected for benzotriazole, carbamazepine, 

citalopram, diclofenac, hydrochlorothiazide, ibuprofen, sulfamethoxazole, sulpiride, 

valsartan and venlafaxine, while only suspect TPs were found for benproperine, 

celiprolol, clofibric acid, furosemide, ketoprofen, metaxalone, propranolol and sotalol. 

Substances to which we could associate with both suspect and target TPs were 

amisulpride, atenolol, bezafibrate, fluoxetine, irbesartan, metformin and, metoprolol. 

Only five out of the 32 TPs on our target list could not be quantified in any sample: 4-

hydroxy-1H-benzotriazole, acridone, homogentisic acid, carboxyibuprofen and alpha-

hydroxymetoprolol. Three TPs were exclusively detected in pore water (acridine, 

diclofenac amide and 1-hydroxyibuprofen) whereas two were specific for surface water 

(1-hydroxy-benzotriazole and 3-[(4-chlorobenzoyl)-amino]propanoic acid) but all were 

infrequently detected (<7%; Figure 36). 

Among all target TPs, valsartan acid (valsartan acid 20.1 µg L-1 pore water, 16.4 µg L-

1 surface water) and metoprolol acid (15.3 µg L surface water, 14.9 µg L-1 pore water) 

occurred at the highest concentrations. The most abundant TP formed exclusively from 

a single parent compound (metformin) was guanylurea with 9 µg L-1 in surface and 7.1 
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µg L-1 in pore water. Several benzotriazole TPs occurred in high abundance (1.1-5.6 

µg L-1), including 1-hydroxybenzotriazole, 1-methylbenzotriazole and 4/5-

methylbenzotriazole but were at the same time almost exclusively formed in S1 

treatments (low dilution, high diversity) and therefore overall, not very frequently 

detected. Seven TPs were detected in more than 50% of all analyzed samples: N-

desmethylvenlafaxine (77%), 4-amino-6-chloro-1-3-benzenedisulfonamide (75%), 

metoprolol acid (metoprolol acid, 68%), chlorothiazide (66%), valsartan acid (62%), 

carbamazepine-10, 11-epoxide (56%) and venlafaxine N-oxide (54%). 

Table 17. Target transformation products (TPs): Minimum, maximum and average 
concentrations (ng L-1) in pore water (PW) and surface water samples (SW) from the 
20 spiked flumes systems. Table used with permission from Posselt et al. (2020). 

                                                 Porewater Surface water 

Transformation product  MAX  MIN  AVG  MAX  MIN  AVG  

4-Amino-6-chloro-1-3-benzenedisulfonamide 3535  0  1031  3305  0  1328  
Amisulpride N-oxide 24  0  1  110  0  15  
Atenolol-desisopropyl 3995  0  59  3045  0  93  
1-Hydroxy-Benzotriazole 1105  0  17  0  0  0  
4/5-Methylbenzotriazole 1170  0  189  555  0  136  
3-[(4-chlorobenzoyl)-amino]propanoic acid 16  0  0  0  0  0  
Iminostilbene 47  0  1  6  0  0  
Citalopram carboxylic acid 96  0  11  125  0  19  
Citalopram didesmethyl 140  0  26  125  0  27  
Desmethyicitalopram 77  0  4  84  0  4  
4-Trifluoromethylphenol 3  0  0  20  0  1  
N4-Acetylsulfamethoxazole 945  0  69  1075  0  130  
Sulpiride N-oxide 15  0  0  83  0  11  
Venlafaxine N-desmethyl 295  0  28  155  0  50  
Venlafaxine N-N-didesmethyl 20  0  0  24  0  0  
Venlafaxine N-oxide 61  0  8  160  0  31  
Venlafaxine N-O-didesmethyl 125  0  14  81  0  4  
1-Hydroxyibuprofen 0  0  0  883  0  4  
2/3-Hydroxyibuprofen 7259  0  162  3437  0  84  
2/4-Chlorobenzoic acid 1534  0  70  1878  0  126  
Acridine 0  0  0  208  0  3  
Diclofenac amide 0  0  0  219  0  2  
1-Methyl-Benzotriazole 4692  0  163  1363  0  6  
Carbamazepine-10-11-dihydro-10-11-dihydroxy 696  0  24  188  0  15  
Carbamazepine epoxide 189  0  27  142  0  47  
Chlorothiazide 778  0  205  769  0  213  
4-Hydroxydiclofenac 583  0  51  643  0  36  
Guanylurea 7060  0  580  8976  0  480  
Atenolol acid (Metoprolol acid) 14905  0  1828  15273  0  1760  
Sulfamethoxazole N1-glucuronide 673  0  3  498  0  4  
Valsartan acid 20125  0  4510  16428  0  4182  
Venlafaxine O-desmethyl 604  0  66  220  0  29  
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Table 18. Detected transformation product properties (suspects). logKOW and 
logDOW, pH 8.3 were predicted from SMILES strings using JChem for Excel (Vers. 
19.14.0.500, ChemAxon). Major species at pH 8.3 (average pH across flumes) were 
calculcated using the ChemAxon's Calculator (cxcalc) in batch mode. RT.m: measured 
retention time (RT). RT.p: RT predicted from logDOW, pH 3, i.e. at mobile phase pH, 
with the following formula: RT.p = (logDOW, pH 3+5.4)/0.42 min. Please note that 
measured and predicted RTs of amisulpride.sTP127, celiprolol.sTP381, 
metoprolol.sTP237 and metoprolol.sTP239 were relatively large (> 5 min) Table used 
with permission from Posselt et al. (2020). 

 

Parent comp. sTP(ESI) Spec logDow logKow SumF exact-mass RT.m RT.p 
Amisulpride sTP127(+) C 0.23 0.48 C7H13NO 127.0997 16.5 5.7 
Benproperine sTP325(+) C 3.23 3.66 C21H27NO2 325.2042 18.0 13.2 
Bezafibrate sTP327(+) A -0.10 3.38 C19H21NO4 327.1471 21.0 20.8 
Celiprolol sTP161(+) Z -2.62 -2.61 C7H15NO3 161.1052 4.1 5.7 
Celiprolol sTP381(+) C 0.12 1.59 C20H35N3O4 381.2628 14.0 8.9 
Celiprolol sTP210(+) A -3.01 0.55 C10H10O5 210.0528 15.3 13.5 
Celiprolol sTP248(+) N 1.32 1.32 C13H16N2O3 248.1161 11.6 15.9 
Celiprolol sTP250(+) N 1.87 1.94 C13H18N2O3 250.1317 18.4 17.5 
Clofibric acid sTP104(-) A -3.51 -0.04 C4H8O3 104.0473 8.1 12.7 
Fluoxetine sTP409(+) A 0.15 3.61 C21H22F3NO4 409.1501 21.5 21.4 
Furosemide sTP250(-) A -2.73 0.66 C7H7ClN2O4S 249.9815 11.6 14.4 
I Irbesartan sTP446(+) A 3.34 4.84 C25H30N6O2 446.2430 19.9 24.4 
Irbesartan sTP213(+) A -1.59 1.84 C11H19NO3 213.1365 18.6 17.2 
Ketoprofen sTP210(+) N 4.39 4.39 C15H14O 210.1045 22.4 23.3 
Metoprolol sTP226(-) N 0.66 0.66 C12H18O4 226.1205 17.1 14.4 
Metoprolol sTP210(-) A -2.38 1.05 C11H14O4 210.0892 16.5 15.3 
Metoprolol sTP225a(+) Z -2.27 -2.24 C11H15NO4 225.1001 10.5 6.5 
Metoprolol sTP225b(+) C -0.08 0.80 C12H19NO3 225.1365 12.6 8.2 
Metoprolol sTP237(+) C -0.06 1.31 C13H19NO3 237.1365 19.0 8.2 
Metoprolol sTP239(+) C -0.55 0.83 C13H21NO3 239.1521 18.9 7.1 
Metoprolol sTP253(+) Z -1.24 -1.22 C13H19NO4 253.1314 11.3 8.3 
Metformin sTP103(+) N -1.71 -1.71 C2H5N3O2 103.0382 5.5 8.8 

Metaxalone sTP251(-) A -1.97 1.52 C12H13NO5 251.0794 15.4 16.3 
Propranolol sTP202(-) A -1.18 2.28 C12H10O3 202.0630 19.0 18.2 
Sotalol sTP189(+) Z -2.53 -2.52 C8H15NO4 189.1001 9.2 6.1 

 

5.4.4. Association between bacterial diversity and DT50s 

Species richness, Shannon diversity and evenness as a function of sediment dilution 

significantly correlated with 21, 22 and nine out of the 31 biotransformed compounds, 

respectively, compared to 3, 6 and 6 as a function of the bedform number (Table 19, 

Spearman,  p < 0.05).
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Table 19. Correlation analysis of alpha diversity indices and individual parent compound DT50. Each value represents r (Spearman rank correlation 
coefficients) with the p value in parenthesis: * Correlations significant at p < 0.05. Table used with permission from Posselt et al. (2020). 

                                                         
Sediment dilution                                                          

Sediment dilution                                                          Bedforms                                                          

 Species richness Shannon diversity H' Shannon evenness Species richness Shannon diversity H' Shannon evenness 
Acesulfame -0.76 (0.00)* -0.73 (0.00)* -0.48 (0.03)* -0.76 (0.00)* -0.73 (0.00)* -0.48 (0.03)* 
Amisulpride -0.44 (0.05) -0.63 (0.00)* -0.60 (0.01)* -0.13 (0.59) -0.51 (0.02)* -0.66 (0.00)* 
Atenolol -0.79 (0.00)* -0.70 (0.00)* -0.41 (0.07) -0.79 (0.00)* -0.70 (0.00)* -0.41 (0.07) 
Benproperine -0.38 (0.09) -0.44 (0.05) -0.30 (0.20) 0.19 (0.41) 0.30 (0.19) 0.08 (0.72) 
Bezafibrate -0.57 (0.01)* -0.55 (0.01)* -0.43 (0.06) 0.09 (0.71) -0.03 (0.91) -0.23 (0.33) 
Benzotriazole -0.32 (0.16) -0.39 (0.09) -0.33 (0.15) 0.04 (0.86) -0.38 (0.10) -0.47 (0.04)* 
Carbamazepine -0.62 (0.00)* -0.68 (0.00)* -0.59 (0.01)* -0.62 (0.00)* -0.68 (0.00)* -0.59 (0.01)* 
Celiprolol -0.61 (0.00)* -0.65 (0.00)* -0.49 (0.03)* -0.09 (0.71) -0.40 (0.08) -0.46 (0.04)* 
Clofibric acid -0.56 (0.01)* -0.63 (0.00)* -0.36 (0.12) 0.05 (0.82) 0.17 (0.46) -0.05 (0.85) 
Citalopram 0.56 (0.01)* 0.57 (0.01)* 0.36 (0.12) 0.35 (0.13) 0.55 (0.01)* 0.32 (0.16) 
Diclofenac 0.31 (0.56) 0.31 (0.56) 0.31 (0.56) 0.37 (0.50) 0.43 (0.42) 0.54 (0.30) 
Flecainide 0.08 (0.72) 0.14 (0.56) 0.08 (0.72) -0.05 (0.82) -0.33 (0.16) -0.34 (0.14) 
Fluoxetine 0.20 (0.40)* 0.59 (0.01)* 0.61 (0.00)* -0.09 (0.70) 0.20 (0.39) 0.37 (0.10) 
Furosemide -0.09 (0.92) -0.09 (0.92) -0.09 (0.92) -0.14 (0.80) 0.03 (1.00) -0.03 (1.00) 
Gemfibrozil -0.60 (0.01)* -0.71 (0.00)* -0.39 (0.09) -0.08 (0.73) 0.07 (0.77) -0.03 (0.89) 
Hydrochlorothiazide -0.56 (0.01)* -0.64 (0.00)* -0.33 (0.15) -0.09 (0.69) -0.03 (0.91) -0.22 (0.34) 
Ibuprofen -0.65 (0.00)* -0.53 (0.02)* -0.40 (0.08) -0.04 (0.88) 0.02 (0.93) -0.22 (0.35) 
Irbesartan 0.05 (0.82) 0.10 (0.66) -0.05 (0.85) 0.00 (0.98) -0.18 (0.44) -0.35 (0.13) 
Ketoprofen -0.69 (0.00)* -0.83 (0.00)* -0.60 (0.01)* -0.28 (0.23) 0.25 (0.14) -0.36 (0.12) 
Metformin -0.68 (0.00)* -0.67 (0.00)* -0.40 (0.08) -0.27 (0.25) -0.20 (0.39) -0.25 (0.28) 
Metoprolol -0.71 (0.00)* -0.62 (0.00)* -0.38 (0.10) -0.17 (0.47) -0.18 (0.45) -0.29 (0.22) 
Metaxalone -0.50 (0.02)* -0.76 (0.00)* -0.61 (0.00)* -0.13 (0.58) -0.22 (0.35) -0.36 (0.12) 
Naproxen -0.78 (0.00)* -0.82 (0.00)* -0.34 (0.14) -0.17 (0.47) -0.03 (0.88) 0.04 (0.87) 
Paracetamol NA NA NA NA NA NA NA NA NA NA NA NA 
Propranolol -0.75 (0.00)* -0.61 (0.00)* -0.29 (0.21) -0.19 (0.41) -0.13 (0.59) -0.15 (0.53) 
Sitagliptin 0.65 (0.00)* 0.84 (0.00)* 0.71 (0.00)* 0.18 (0.44) 0.41 (0.07) 0.51 (0.02)* 
Sulfamethoxazole -0.43 (0.42) -0.43 (0.42) -0.43 (0.42) -0.54 (0.30) -0.26 (0.66) -0.26 (0.66) 
Sotalol -0.63 (0.00)* -0.50 (0.02)* -0.35 (0.12) -0.10 (0.68) -0.14 (0.55) -0.29 (0.21) 
Sulpiride -0.74 (0.00)* -0.71 (0.00)* -0.42 (0.06) -0.27 (0.25) -0.46 (0.04)* -0.45 (0.05) 
Valsartan -0.70 (0.00)* -0.64 (0.00)* -0.29 (0.21) -0.12 (0.62) -0.19 (0.42) -0.22 (0.34) 
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Venlafaxine 0.45 (0.05) 0.22 (0.37) -0.12 (0.63) 0.40 (0.08) 0.17 (0.46) -0.19 (0.41) 
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5.4.5. Transformation product dynamics at different levels of bacterial 

diversity and hyporheic exchange flow 

In total, 21 of the detected TPs (11 confidence level 1, 12 confidence level 3-4) 

displayed increasing or constant concentrations in surface water in at least one of the 

three diversity levels throughout the experiment (i.e. no signs of degradation) and were 

therefore considered potentially persistent (Figure 36). 11 target TPs showed latter 

behavior in pore water and 7 of those were accumulating or constant in both pore water 

and surface water (4-amino-6-chloro-1-3-benzenedisulfonamide, amisulpride N-oxide, 

carbamazepine-10-11-dihydro-10-11-dihydroxy,carbamazepine-epoxide, 

chlorothiazide, N4-acetylsulfamethoxazole, venlafaxine N-desmethyl). In these counts, 

we included TPs with increasing trends leveling off towards the end of the experiment 

which can be due to depletion of the parent molecules (e.g. carbamazepine epoxide). 

In several cases, increasing TP concentrations were observed in dilution levels S3 

and/or S6 only (medium and low diversity), while higher bacterial diversity in S1 

treatments seemed to enable their degradation (e.g. amisulpride N-oxide). 

Remarkably, venlafaxine N-desmethyl was the only TP with increasing or constant 

concentrations across all diversity levels in both pore water and surface water 

throughout the experiment, despite the low DT50 of its parent compound (venlafaxine). 

Accordingly, ~80% of enlafaxine was removed from the water phase in all flumes as 

early as day 21. Since venlafaxine N-desmethyl was also the most frequently detected 

TP along with another abundant venlafaxine TP (venlafaxine N-oxide), we consider 

both as environmentally relevant. For majority of the target TPs, the effect of HEF due 

to variable number of bedforms was not apparent (Table 20) while for suspect TPs the 

bedform variable was not resolved (Table 21). 
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Figure 36. The heat map shows a two-way cluster analysis using Euclidean distance 
measures with respect to detection rates (expressed as % of all analyzed samples 
within the respective class with concentrations above the limit of quantification (LOQ); 
fields were color coded with yellow = high detection rates and blue = low detection 
rates) of target transformation products (TPs). Hierarchical clusters were generated for 
TPs and average detection rates of the six sample classes (pore water (PW) or surface 
water (SW) for each of the three diversity levels as a function of sediment dilution: S1 
(low dilution, high diversity), S3 (medium dilution/diversity), S6 (high dilution, low 
diversity)). Observed TP concentration dynamics in surface water and pore water 

across the different bacterial diversities (S) are depicted as arrows: upward (↗), 
downward (↘), stable (→) concentration trends; groups of arrows indicate cases in 
which changing trends were observed during the experiment; dashes indicate cases 
where no clear trend was observed. Red circles indicate TPs that were identified as 
persistent in at least one of the classes. Five TPs were not detected in any sample and 
are therefore not shown: 4-hydroxy-1H-benzotriazole, acridone, diclofenac amide, 
carboxyibuprofen, alpha-hydroxymetoprolol. Full names of parent compounds can be 
found in table 1. Figure used with permission from  Posselt et al. (2020). 
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Table 20. Observed concentration dynamics of target transformation products(confirmed with reference standard) in surface water (SW) 
and pore water (PW) across the different levels of hyporheic exchange flow (B0 plain sediment, B3 three bedforms, B6 six bedforms) 
are depicted as arrows (upward, downward, stable); dashes indicate cases where no clear trend was observed. “n.d.” indicates that 
compounds could not be quantified or were not detected. Table used with permission from Posselt et al. (2020). 

 

Parent      Transformation product  PW   SW  

  B0 B3 B6 B0 B3 B6 

Hydrochlorothiazide 4-Amino-6-chloro-1-3-benzenedisulfonamide ↗→ ↗→ ↗ ↗↘ ↗→ ↗↘ 

Hydrochlorothiazide Chlorothiazide ↗↘ ↗↘ ↗↘ ↗↘ ↗↘ ↗↘ 

Amisulpride Amisulpride N-oxide − − ↗ ↗ ↗ ↗ 

Atenolol Atenolol-desisopropyl − n.d. − − − − 

Benzotriazole 1-Hydroxy-Benzotriazole − n.d. − n.d. n.d. n.d. 

Benzotriazole 1-Methyl-Benzotriazole ↗↘ ↗↘ ↗↘ n.d. n.d. n.d. 

Benzotriazole 4-Hydroxy-1H-Benzotriazole n.d. n.d. n.d. n.d. n.d. n.d. 

Benzotriazole 4/5-Methylbenzotriazole ↗ ↗ → → ↗ → 

Bezafibrate 2/4-Chlorobenzoic acid − − − ↗↘ ↗↘ ↗↘ 

Bezafibrate 3-[(4-chlorobenzoyl)-amino]propanoic acid − n.d. n.d. n.d. n.d. n.d. 

Carbamazepine Acridine n.d. n.d. n.d. n.d. − − 

Carbamazepine Acridone n.d. n.d. n.d. n.d. n.d. n.d. 

Carbamazepine Carbamazepine-10-11-dihydro-10-11-dihydroxy ↗ − ↗→ ↗→ ↗→ ↗↘ 

Carbamazepine Carbamazepine epoxide ↗ ↗ ↗ ↗ ↗ ↗ 

Carbamazepine Iminostilbene n.d. − − − − n.d. 

Citalopram Citalopram carboxylic acid − − − − − − 

Citalopram Citalopram didesmethyl ↘ ↘ → − ↘ ↘ 

Citalopram Desmethyicitalopram ↘ ↘ ↘ − − − 

Diclofenac Diclofenac amide n.d. n.d. n.d. − − n.d. 

Diclofenac 4-Hydroxydiclofenac ↗↘ ↗↘ ↗↘ − − − 

Diclofenac Homogentisic acid n.d. n.d. n.d. n.d. n.d. n.d. 

Fluoxetine 4-Trifluoromethylphenol n.d. n.d. − − − − 

Metformin Guanylurea ↗↘ ↗↘ ↗↘ ↗↘ ↗↘ ↗↘ 
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Ibuprofen 1-Hydroxyibuprofen n.d. n.d. n.d. n.d. − n.d. 

Ibuprofen 2/3-Hydroxyibuprofen ↗↘ ↗↘ ↗↘ − − − 

Ibuprofen Carboxyibuprofen n.d. n.d. n.d. n.d. n.d. n.d. 

Metoprolol Atenolol acid (Metoprolol acid) ↗↘ ↗↘ ↗↘ ↗↘ ↗↘ ↗↘ 

Metoprolol alpha-Hydroxymetoprolol n.d. n.d. n.d. n.d. n.d. n.d. 

Sulfamethoxazole N4-Acetylsulfamethoxazole ↗↘ ↗↘ ↗ ↗→ ↗ ↗ 

Sulfamethoxazole Sulfamethoxazole N1-glucuronide − n.d. − n.d. − n.d. 

Sulpiride Sulpiride N-oxide − − − − ↗ ↗ 

Valsartan Valsartan acid ↗→ ↗→ ↗→ ↗↘ ↗↘ ↗↘ 

Venlafaxine Venlafaxine N-desmethyl ↗ ↗ ↗ ↗→ ↗→ ↗→ 

Venlafaxine Venlafaxine N-N-didesmethyl − n.d. n.d. − − n.d. 

Venlafaxine Venlafaxine N-oxide ↗↘ ↗↘ ↗↘ ↗→ ↗ ↗→ 

Venlafaxine Venlafaxine N-O-didesmethyl ↗ ↘ ↘ ↘ ↘ ↘ 

Venlafaxine Venlafaxine O-desmethyl ↘ ↘ ↘ ↗↘↗ ↗↘↗ ↗↘↗ 
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Table 21. Concentration dynamics of suspect transformation products (TPs) across 
the different levels of bacterial diversity (S1, S3 and S6).The bedform variable is not 
resolved. Table used with permission from Posselt et al. (2020). 

 

Parent TP SumF S1 S3 S6 

Amisulpride sTP127(+) C7H13NO − ↗↘ ↗↘ 

BEN sTP325(+) C21H27NO2 ↗→(↘) ↗ (↗) 

Bezafibrate sTP327(+) C19H21NO4 ↗→ ↗ ↗ 

Celiprolol 

 

sTP161(+) C7H15NO3 − ↘ ↘ 

sTP381(+) C20H35N3O4 ↗ ↗ ↗ 

 
sTP210(+) 

 
C10H10O5 

 
↗ 

 
↗ 

 
↗ 

sTP248(+) C13H16N2O3 ↗ ↗ ↗ 

sTP250(+) C13H18N2O3 ↗↘ − − 

Clofibric acid sTP104(-) C4H8O3 ↓ ↘ ↓ 

Fluoxetine sTP409(+) C21H22F3NO4 ↕ ↕ ↕ 

Furosemide sTP250(-) C7H7ClN2O4S ↗ ↗ ↗ 

Irbesartan 

 

sTP213(+) C11H19NO3 − ↗↘ ↗↘ 

sTP446(+) C25H30N6O2 ↗↘ ↗↘ ↗↘ 

Ketoprofen sTP210(+) C15H14O ↗↘ ↗↘ ↗↘ 

 

Metformin 

 

sTP103(+) 

 

C2H5N3O2 

 

↗↘ 

 

− 

 

− 

Metoprolol 

 

sTP210(+) C11H14O4 ↗→ ↗ ↗ 

sTP226(-) C12H18O4 − ↗↘ ↗ 

sTP225a(+) C11H15NO4 ↘ ↗↘ − 

sTP225b(+) C12H19NO3 ↘ ↗↘ − 

sTP237(+) C13H19NO3 ↗→(↘) ↗ ↗ 

sTP239(+) C13H21NO3 ↗↘ ↗↘ ↗↘ 

sTP253(+) C13H19NO4 − − ↗↘ 

 
Metaxalone 

 
sTP251(-) 

 
C12H13NO5 

 
↗ 

 
↗ 

 
↗ 

Propranolol sTP202(-) C12H10O3 ↗↘ ↗→↘ ↗ 

Sotalol sTP189(+) C8H15NO4 ↗↘ ↗→↘ ↗ 
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5.4.6. Bacterial community structure and taxa associated with test 

compound biotransformation supporting communities 

The bacterial community composition across treatments was visualized at the phylum 

level using relative abundance values (n/N) (n, the number of sequences for each OTU 

and N, the total number of sequences in the sample).The unamended flumes with 

intermediate S and B levels were used as representative samples to investigate the 

effect of TrOCs on the taxa impacted by the presence of test compounds in comparable 

amended flumes. The DESeq2 multifactorial design in R was employed to determine 

genera whose abundance changed significantly between amended and unamended 

controls with incubation time as a covariate.  

17 known phyla were detected in S1 compared to 13 known phyla in the S3 and S6 

dilution levels (Figure 37). This shows that the dilution-to-extinction approach 

successfully removed some of the rare occurring phyla such as Saccharibacteria, 

Latescibacteria and Nitrospirae detected in the S1 sediment bacterial community. 

Within the remaining phyla, specific taxa impacted by the presence of test compounds 

were identified on the basis of a significant change in abundance relative to 

unamended controls using the DESeq2 function (Table A8). The taxa associated with 

the collective biotransformation of the test compounds were considered enriched in 

case of log2foldchange > 0 in comparison to unamended samples. These included 

OTUs affilated with the phylum Acidobacteria such as Holophagae and subgroups 6, 

17, and 22. Nocardioides and Illumatobacter (Actinobacteria), Terrimonas and 

Flavobacterium (Bacteroidetes) and Sphingomonas, Sphingobium and 

Novosphingobium, Arenimonas, Pseudomonas and Mesorhizobium (Proteobacteria). 
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Figure 37. Bacterial community composition at the phylum level in relative abundance 
values (%) in the respective treatments sampled at days 0, 21 and 56. “Others” 
represents all phyla whose relative abundance was below 0.5 %. Figure modified and 
used with permission from Posselt et al. (2020).
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6. DiSCUSSION 

6.1. Biodegradation of ibuprofen: Mineralization potential in the hyporheic 
zone? 

The widely consumed non-steroidal anti-inflammatory drug ibuprofen is an ideal model 

compound to study the fate of emerging micropollutants in the hyporheic zone as it is 

frequently detected in many rivers. The large surface area occupied by the sediment 

particles, pore spaces and organic matter represents an ideal habitat for the 

proliferation of a diverse microbial community with high metabolic versatility (Boulton 

et al. 1998). The potential to effectively remove ibuprofen, therefore,  provides the basis 

for highlighting that the hyporheic zone sustains efficient biotic (micro-)pollutant 

degradation, and hitherto unknown microbial diversity associated with (micro-)pollutant 

removal, a valuable ecosystem service. 

The apparent degradation of ibuprofen without appreciable delay was demonstrated in 

the hyporheic zone sediments (Figure 8). Ibuprofen concentration was observed to 

influence the rate of degradation after the first feeding. The 400 µM ibuprofen treatment 

exhibited a nine-day lag phase in contrast to lower concentrations whose 

disappearance exhibited no significant delay. This is likely attributable to an inhibitory 

effect on the microbial activity as has been reported for ibuprofen concentration 

exceeding 50 mg L-1 (242 µM) by a decline in oxygen respiration and microbial diversity 

in activated sludge (Davids et al. 2017). Subsequent rapid depletion of ibuprofen 

following re-feeding irrespective of initial concentration (Figure 8 A-D) suggests a rapid 

enrichment of microbes capable of ibuprofen degradation and thus adaption of the 

microbial community. Adaption of an activated sludge microbial community to high 

concentrations of ibuprofen (5000 mg L-1; 24 mM) after long term exposure shows a 

rather high limit for ibuprofen tolerance (Davids et al. 2017).  



                                                                                DISCUSSION 

158 
 

Microcosms containing supplemental acetate exhibited a delayed onset of ibuprofen 

degradation following initial spiking (Figure 8). This might be due to ibuprofen oxidation 

by enzymes activated during initial degradation of acetate rather than ibuprofen, a 

phenomenon associated with cometabolic degradation (Tran et al. 2013). It may also 

be due to preferential consumption of acetate by the indigenous hyporheic zone 

bacteria capable of ibuprofen consumption considering that acetate is a more easily 

degradable substrate than ibuprofen. In the latter case, ibuprofen is likely degraded 

upon acetate depletion (Rutere et al. 2020). Refeeding the microcosms with ibuprofen-

acetate, however, exhibited a rapid ibuprofen degradation similar to ibuprofen-only 

microcosms, suggesting that ibuprofen degraders were enriched in the absence and 

presence of supplemental acetate. Ibuprofen stimulated similar taxa in treatments with 

ibuprofen only and acetate/ ibuprofen (Figure 17), supporting the view that metabolic 

degradation of ibuprofen was significant in the sediments and that many taxa in the 

hyporheic zone are prone to respond to ibuprofen. Consistent with previous studies, 

abiotic losses due to sorption and hydrolysis played a marginal role in total ibuprofen 

removal, demonstrating that ibuprofen removal was indeed mainly due to 

biodegradation (Figure 9; (Winkler et al.  2001; Kunkel and Radke 2008). 

While previous studies in engineered and other natural environments reported 

biotransformation of ibuprofen (Zwiener et al. 2002; Xu et al. 2009; Radke et al. 2010; 

Tran et al. 2013; Verlicchi and Zambello 2014; Li et al. 2016), the different 

transformation intermediates 1-, 2-, 3-hydroxy- and carboxyibuprofen observed in this 

study were transiently detected, an indicator for further metabolism and potentially 

mineralization (Figures 10 and 38). Moreover, the variable intermediates detected 

suggested utilization of different metabolic pathways characteristic of a diverse 

bacterial community. As previously demonstrated in pure culture studies, unrelated 
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taxa exhibited variable biodegradation pathways for ibuprofen (Żur et al. 2018). For 

example, the ibuprofen degrader Sphingomonas Ibu-2 hydroxylates ibuprofen to 

isobutylocatechol following CoA ligation, which is then cleaved to 5-formyl-2-hydroxy-

7-methylocta-2, 4-dienoic acid, before oxidation to 2-hydroxy-5-isobutylhexa-2, 4-

dienedioic acid (Murdoch and Hay 2005; Murdoch and Hay 2013). Variovorax Ibu-1 

degrades ibuprofen via ring-hydroxylated ibuprofen (Murdoch and Hay 2015). 

However, such degradation intermediates were only detected when further metabolism 

was inhibited by 3-fluorocatechol, suggesting that such intermediates are subject to 

rapid turnover and may escape detection during routine analyses. Thus, the absence 

of detected hydroxylated ring structures in our microcosms or the environment does 

not allow for conclusions on the importance of such ibuprofen degradation pathways 

(Rutere et al. 2020). 

Bacillus thuringiensis B1 generates 2-hydroxyibuprofen through the aliphatic 

monooxygenase activity followed by a series of other enzymes leading to the eventual 

production of 3-hydroxy-cis,cis-muconic acid that enters the tricarboxylic acid cycle 

(Marchlewicz et al. 2017). Nocardia NRRL 5646 was shown to employ a carboxylic 

acid reductase enzyme system that reduces the carboxylic functional group of 

ibuprofen to the corresponding alcohol, which is then acetylated (Chen and Rosazza 

1994). In this study, 2-hydroxyibuprofen was the primary intermediate identified (Figure 

10). Thus, one of the initial reactions of ibuprofen utilization in the microcosms was the 

transformation of the aliphatic chain as observed with isolates and other environmental 

samples (Zwiener et al. 2002; Quintana et al. 2005).  

All of the biodegradation pathways named above converge in the tricarboxylic acid 

cycle, allowing for assimilation of ibuprofen carbon and mineralization of ibuprofen to 

CO2. 1,2-dihydroxyibuprofen is a probable dead-end product of fungal ibuprofen 
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metabolism, which was not detected in our microcosms (Figure 10; (Marco-Urrea et al. 

2009). Enrichment of ibuprofen degraders, lack of inhibitory effects on ibuprofen 

degradation after 5 refeedings (Figure 8), and ibuprofen degradation by hyporheic 

zone isolates with ibuprofen as the only carbon and energy source (Figure 19) along 

with growth support, and the absence of detected accumulating ibuprofen 

transformation products (Figure 10) argue in favour of mineralization and assimilation 

of ibuprofen carbon by hyporheic zone sediment microorganisms potentially via the 

hypothesized biodegradation pathways (Figure 38);(Rutere et al. 2020). 
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Figure 38. Hypothetical ibuprofen degradation pathway in oxic hyporheic zone 
sediments based on transformation products identified in this study and previous 
studies as compiled in Żur et al. (2018). Figure used with permission from Rutere et al. 
(2020). 
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6.1.1. Microbial community dynamics under ibuprofen stressor effect 

The higher 16S rRNA copy numbers in ibuprofen treatments compared to unamended 

controls following the third refeeding (Figure 11), suggest a strong stimulation of the 

microbial community in the presence of ibuprofen since rRNA abundance serves as a 

proxy for activity (Herzog et al. 2015). Moreover, the identified taxa suggested the 

hyporheic zone of river Erpe hosted a diverse microbial community (Figures 12, 14; 

Table A1). Although there was a significant decrease in the Shannon diversity 

(ANOVA, p < 0.05), the species richness was similar in the treatments and controls at 

the RNA level (ANOVA, p > 0.05). Accumulating evidence suggests a positive 

correlation between species richness and some specific microbially-mediated 

processes such as micropollutant degradation (Stadler et al. 2018; Jaeger et al. 2019b; 

Posselt et al. 2020). The decline in Shannon diversity is likely due to selective pressure 

of ibuprofen on some members of the indigenous sediment microbiota as earlier 

observed in indigenous riverine biofilms exposed to pharmaceuticals (Lawrence et al. 

2005).  

6.1.2. Generalized ecological niches of ibuprofen-responsive phyla 

OTUs affiliating with the phyla Proteobacteria, Bacteroidetes, Chloroflexi, 

Acidobacteria, Actinobacteria and Gemmatimonadetes were particularly shown to 

positively respond to ibuprofen amendment (Figures 14, 16, 17). Proteobacteria and 

Bacteroidetes were primarily observed in a study on a subsurface flow constructed 

wetland system treating ibuprofen contaminated wastewater and in oxic ibuprofen 

amended microcosms with activated sludge (Li et al. 2016; Davids et al. 2017), 

indicating the presence and response of members belonging to these key phyla in 

diverse environments to ibuprofen. Proteobacteria were most responsive to high 

ibuprofen concentrations (Figure 16 and (Davids et al. 2017). Their response may be 
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attributed to their general functional traits as aromatic compound degradation and 

capability to quickly respond to substrate availability (Seo et al. 2009; Ho et al. 2017). 

Microcosms with acetate as a primary substrate exhibited similar patterns relative to 

ibuprofen-only treatments in terms of relative phylum abundance (Figure 14). However, 

the relative abundance of Proteobacteria of the Class Gammaproteobacteria was 

significantly higher (ANOVA, p < 0.05) in ibuprofen-acetate-containing than in 

ibuprofen only microcosms. This would indicate that the Gammaproteobacteria 

stimulated here by ibuprofen are likewise capable of acetate utilization (Rutere et al. 

2020). 

The variable response to the different ibuprofen concentrations by members of the 

different phyla such as Acidobacteria, Gemmatimonadetes, and Latescibacteria that 

positively responded to lower ibuprofen concentrations (5 and 40 µM) and less to 

higher concentrations (200 and 400 µM; Figure 14), suggests that some bacteria can 

use micropollutants as a substrate within a specific range of concentration above which 

it turns toxic or inhibitory (Rutere et al. 2020). Thus, our study suggests distinct 

ecological niches for Proteobacteria that reflect lifestyles of r-strategists and 

Acidobacteria, Gemmatimonadetes as well as Latescibacteria that reflect lifestyles of 

K-strategists. 

6.1.3. Putative taxa associated with degradation of ibuprofen  

New and known bacteria enriched in ibuprofen-amended microcosms relative to 

unamended controls were associated with degradation of ibuprofen (Figures 14, 17; 

Table A1). Using the 40 and 400 µΜ ibuprofen concentrations as representative 

concentrations for low and high ibuprofen concentrations, diverse families and genera 

from many phyla were shown to be enriched. Some of these bacteria were also 
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observed in microcosms with intermediate ibuprofen concentrations and in the original 

sediment microbial community (Figure 17; Table A2). 

Stimulation of Proteobacteria by ibuprofen was most prominent (Figures 16, 17; Table 

A1). Enrichment of Alphaproteobacteria-affiliated taxa of the Sphingomonadaceae and 

Hyphomonadaceae in ibuprofen treatments was prominent and corresponded to 

previous studies in which genera belonging to these families were associated with 

degradation of xenobiotics (Dallinger and Horn 2014; Braga et al. 2015; Bryant et al. 

2016). Moreover, Hyphomicrobium, a genus from the family Hyphomicrobiaceae, has 

been previously associated with assimilation of 2,4-dichlorophenol, a soil and 

groundwater contaminant (Dallinger and Horn 2014). Genera closely related to 

Sphingopyxis, Sphingorhabdus and Novosphingobium affiliating with the ibuprofen-

enriched family Sphingomonadaceae have been isolated from a wide variety of 

environments including freshwater and marine sediments and were associated with 

the degradation of a wide variety of natural aromatic compounds and xenobiotics 

(Ghosal et al. 2016; Silva et al. 2018). The ibuprofen degrading Sphingomonas IBU-2 

(Murdoch and Hay 2013) and the isolation of the ibuprofen degrading 

Novosphingobium strain CR1 in the study (Rutere et al. 2020), extend previous 

observations to hyporheic zones, consolidate correlations, and emphasizes the 

biodegradation potential associated with Sphingomonadaceae. 

New and known members of the Betaproteobacteriales family Comamonadaceae 

exhibited a positive association with ibuprofen. Comamonadaceae is among families 

with members previously reported to aerobically degrade aromatic compounds 

(Dallinger and Horn 2014). Of the characterized ibuprofen degraders belonging to this 

family is Variovorax Ibu-1 (Murdoch and Hay 2015). In a study exploring co-occurrence 

patterns between organic micropollutants and bacterial community structure, the 
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ibuprofen-enriched genus Hydrogenophaga (Comamonadaceae) was among bacteria 

significantly correlated to micropollutants and believed to host enzymes for 

biotransformation of specific micropollutants (Gao et al. 2019). The ibuprofen-enriched 

genus Piscinibacter, whose closest cultivated relative Piscinibacter aquaticus 

(basonym: Methylibium aquaticum) was isolated from a eutrophic freshwater pond 

(Song and Cho 2007), and the family Oxalobacteraceae were hitherto unassociated 

with the degradation of aromatic compounds (Figures 16,17; Table A1). However, 

these taxa belong to the order Burkholderiales, whose other families, including 

Comamonadaceae, are associated with such potentials. It is therefore likely that 

members Burkholderiales previously not associated with biodegradation may be linked 

to ibuprofen biotransformation. Enrichment of unknown genera belonging to the family 

Nitrosomonadaceae by ibuprofen corroborates reported potential of members of this 

family such as Nitrosomonas in bioremediation. Through the activity of ammonia 

monooxygenase, most ammonia-oxidizing bacteria in this family can co-metabolize 

micropollutants, thus minimizing potential toxic effects (Tran et al. 2013). Potential 

indirect effects like enhanced ammonia release from biomass turnover due to 

ibuprofen-stimulated microbial predation (see below) and ammonification might even 

allow for enhanced growth of certain nitrifiers in the presence of ibuprofen (Rutere et 

al. 2020). 

Significant enrichment of Gammaproteobacterial families Pseudomonadaceae and 

Xanthomonadaceae in ibuprofen treatments is in congruence with previous findings, 

where Pseudomonadaceae is reported to be involved in biodegradation of 

polyaromatic compounds such as naphthalene (Ghosal et al. 2016). The genus 

Pseudomonas accommodates many isolates capable of aromatic compound 

degradation (Seo et al. 2009). Our isolate Pseudomonas thivervalensis MAH1 grew 
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with ibuprofen as sole carbon and energy source, demonstrating ibuprofen degradation 

capabilities of this genus (Figure 19)(Rutere et al. 2020). The ibuprofen-enriched 

genus Arenimonas (Xanthomonadaceae) has been previously associated with 

degradation of drugs such as penicillin and carbamazepine in activated sludge and 

contaminated soils (Cydzik-Kwiatkowska and Zielińska 2018). The genus 

Thermomonas (Xanthomonadaceae) was closely related to the aerobic Thermomonas 

carbonis, isolated from a coal mine (Wang et al. 2014), potentially indicating an 

association of these strains with the degradation of aromatic organic compounds. 

The ibuprofen-enriched Deltaproteobacteria were from the orders Myxococcales and 

Bdellovibionales (Figures 16, 17; Table A1). Myxococcales are associated with 

degrading complex organic substances, complex secondary metabolism, and a 

predatory lifestyle (Reichenbach 2001; Livingstone et al.  2017). Ibuprofen-stimulated 

Sandaracinus like taxa were related to the cultivated starch-degrading Sandaracinus 

amylolyticus (Mohr et al. 2012). Bdellovibiro sp. enriched in response to ibuprofen 

indicated the stimulation of a group recognized as predatory organisms feeding on 

gram-negative bacteria (Pasternak et al. 2014). Predation on gram-negative ibuprofen 

degraders might likewise increase microbial biomass turnover and thus represent a 

source of variation in the data set, limiting ibuprofen-dependent stimulation. Thus, we 

suggest that the enrichment of Deltaproteobacteria in ibuprofen treatments is due to 

indirect effects, i.e. stimulation of ibuprofen degrading gram negatives serving as prey, 

rather than due to direct ibuprofen degradation capabilities of this group (Rutere et al. 

2020). 

Taxa affiliated with Actinobacteria, a phylum known to accommodate many species 

involved in the degradation of complex compounds including phenol, diesel oil, n-

alkanes and polycyclic aromatic hydrocarbons (Seo et al. 2009; Zhang et al. 2012; 
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Alvarez et al. 2017), were also enriched in response to ibuprofen (Figures 15,16,17; 

Table A1). Such taxa included Rhodococcus sp. and Nocardioides related OTUs. Both 

genera are well known for their capabilities to degrade aromatic compounds (Seo et 

al. 2009). Previously, Nocardia strain NRRL 5646 of the Actinobacteria that 

transformed ibuprofen using the carboxylic acid reductase enzyme system has been 

characterized (Chen and Rosazza 1994); see the previous section). Fodinicola sp., 

closely related to the pesticide-degrading genus Streptomyces (Briceño et al. 2018), 

new Lamia related and Illumatobacter sp. were further examples for ibuprofen-

enriched taxa. Ilumatobacter sp. was among Actinobacteria affiliated taxa previously 

considered as potential indicators for exposure to organic pollutants (Rodríguez et al. 

2018), further highlighting the importance of known and hitherto undetected taxa of the 

Actinobacteria for biodegradation in the environment. 

Ibuprofen-enriched genera affiliating with the phylum Bacteroidetes include 

Terrimonas and Ferruginibacter (family Chitinophagaceae, order Sphingobacteriales; 

Figures 15, 16, 17; Table A1). Terrimonas has been shown to degrade 

benzo[a]pyrene, a polycyclic aromatic hydrocarbon (PAH) (Song et al. 2015). The 

genes encoding the PAH-ring hydroxylating dioxygenase enzymes involved in the first 

hydroxylation steps of benzo[a]pyrene and other PAHs under aerobic conditions may 

predictably be involved in ibuprofen degradation. Ferruginibacter (Chitinophagaceae) 

related taxa were found in a fluidized bed reactor fed with alkyl benzene sulfonate 

(Braga et al. 2015). Though an ibuprofen degradation potential has not been previously 

reported, and members of the family Chitinophagaceae are primarily associated with 

the degradation of complex polymers including cellulose (Chung et al. 2012), ibuprofen 

degradation potential of Ferruginibacter related taxa cannot be excluded. 

Flavobacterium, a genus in the family Flavobacteriaceae, was also stimulated in 
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ibuprofen treatments as also previously reported (Li et al. 2016). Members of this 

genus have been isolated on 2,4-dichlorophenol (Männistö et al. 1999) and also 

associated with the transformation of pharmaceuticals (Stadler et al. 2018), suggesting 

capabilities for aromatic compound degradation. Bacteroidetes affiliated genera like 

Chryseolinea and other unclassified genera in the family env. OPS_17 (order 

Sphingobacteriales) were positively associated with ibuprofen amendment extending 

the reported association of the phylum with the degradation of high molecular weight 

organic compounds including petroleum hydrocarbons (Gargouri et al. 2014) and 

supporting the view that Bacteroidetes include environmentally relevant aerobic 

pollutant degraders (Rutere et al. 2020).  

Few uncultured taxa from low abundance phyla whose ecophysiology is not well 

characterized were also enriched in ibuprofen treatments suggesting their potential 

contribution to the degradation of ibuprofen. Enrichment of hitherto unclassified 

families belonging to Subgroups 6, 17, 22 and other Acidobacterial families in the 

phylum Acidobacteria in response to ibuprofen extends previous reports on the 

association of members of this phylum with the degradation of contaminants like 

polychlorinated biphenyls (Nogales et al. 1999), petroleum compounds, metals and 

radionuclides (George et al. 2009). Taxa of the phyla Gemmatimonadetes and 

Latescibacteria responded to ibuprofen treatments. Gemmatimonas aurantiaca is 

capable of utilizing benzoate as sole carbon and energy source, and the genus 

Gemmatimonas was related to linear alkylbenzene sulfonate degradation in a 

bioreactor (Braga et al. 2015). Thus, there is some support for the hypothesis that such 

uncultured taxa are likewise involved in ibuprofen degradation (Zhang et al. 2003). 

However, even less information is available for other ibuprofen-stimulated, uncultured 

taxa of the Armatimonadetes, Chloroflexi, Chlorobi, and some Candidate divisions 
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(Table A1), demonstrating the need for further research to consolidate a role of such 

taxa for biodegradation. 
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6.2. Redox gradients favour enhanced degradation of micropollutants  

 

Effluents impact most receiving rivers from upstream WWTPs with high nutrient 

loading and in extreme cases, eutrophication (Drury et al. 2013). The settling and 

accumulation of organic matter in the hyporheic zone results in rapid depletion of 

dissolved oxygen and a sharp redox gradient may be established creating oxic benthic 

and underlying anoxic sediments (Brunke and Gonser 1997). The effect of this redox 

delimitation on the pollutant removal capacity of the hyporheic zone cannot be 

underestimated as it directly affects the resident microbiota dynamics and associated 

micropollutant biodegradation pathways. The removal of metoprolol, a top 200 drug 

prescribed in the US, Canada and Germany (Scheurer et al. 2010), and ubiquitously 

detectable in the wastewater effluents (Rubirola et al. 2014) due to incomplete removal 

WWTPs (Souchier et al. 2016), provides insights into the potential of the hyporheic 

zone to remove micropollutants under such dynamic redox conditions. 

6.2.1. Metoprolol removal under oxic and anoxic conditions: Dissimilar 

biotransformation pathways 

The removal of metoprolol in the sediment microcosms was primarily attributed to 

biodegradation and a lesser extent to sorption (Figure 21). Biodegradation was the 

dominant mechanism accounting for the total removal of metoprolol compared to about 

21 % observed in sorption (Figure 21), extending previous studies conducted in situ 

on the same river that reported both, biodegradation and sorption, as the critical 

attenuation mechanisms for metoprolol in the hyporheic zone (Posselt et al. 2018; 

Schaper et al. 2019). Our findings are likewise consistent with previous reports 

demonstrating the significant contribution of biodegradation in the removal of 

metoprolol in diverse environments including riverbank filtration systems, WWTPs, 
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subsurface flow constructed wetlands, biological activated carbon systems and surface 

water (Schmidt et al. 2007; Rubirola et al. 2014; Rühmland et al. 2015; Abromaitis et 

al. 2016; Li and McLachlan, 2019).  

The extended lag phase before metoprolol depletion occurred following initial feeding 

compared to the immediate onset of degradation in subsequent refeeding (Figure 21 

A and B) may be attributed to expression of enzymes involved in its degradation or to 

the enrichment of the metoprolol-degraders to sufficient abundances for metoprolol 

degradation to be detectable over time. Indeed, the short hydraulic retention time (6 - 

18 h) characteristic of most modern WWTPs (Maurer et al. 2007) is considered a 

contributing factor to their low efficiency in removing most emerging micropollutants 

(Peralta-Maraver et al. 2018b) Our findings, therefore, demonstrate that longer 

residence time in the sediment matrix may result in enhanced degradation of 

compounds otherwise considered less or non-biodegradable in conventional WWTPs.  

In addition to the residence time, the underlying redox conditions influence the 

ecological functioning of the hyporheic zone. In a comparable riverbank filtration 

system, redox conditions were shown to have a more pronounced effect on the 

removal of micropollutants such as metoprolol than residence times of the water 

(Schmidt et al. 2007). Overall, metoprolol removal rates were comparable under oxic 

and anoxic conditions (Figure 21 A and B). Though incomplete metoprolol removal 

under anoxic conditions was observed in the 150 µM treatment after the third 

refeeding, the complete removal in the 15 µM treatment suggests the anticipated 

environmental relevant concentrations are amenable to complete removal. Our 

findings are comparable to the reported riverbank filtration system where metoprolol 

removal of over 80% occurred under oxic, suboxic, and anoxic conditions (Schmidt et 
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al. 2007), and highlight the potential for complete metoprolol removal under the 

dynamic redox conditions characteristic of the hyporheic zone. 

The biotransformation of metoprolol via different transformation products under oxic 

and anoxic conditions (Figure 22), suggested the utilization of different metabolic 

pathways (Figure 39) by the different bacterial communities inhabiting the redox-

delineated segments of the hyporheic zone. Under oxic conditions, MTPA was 

detected only upon depletion of metoprolol (Figure 22 A) suggesting formation via the 

o-desmethylmetoprolol intermediate as previously reported in open-water wetland 

microcosms (Svan et al. 2016). Moreover, as shown in Figure 22 A, the concentration 

of MTPA was higher than the initial metoprolol concentration spiked in the third 

refeeding further suggesting additional MTPA accrued from the oxidation of o-

desmethylmetoprolol generated from the preceding (second) re-feeding regime (Figure 

21 A). Formation of MTPA directly from metoprolol through CYP450-mediated 

dealkylation during aerobic microbial biotransformation was also hypothesized in the 

current study (Figure 39), as previously reported (Kern et al. 2010; Posselt et al. 2020). 

In a previous study using batch experiments with activated sludge, MTPA, α-HMTP 

and O-DMTP were identified as metoprolol transformation products. The latter two 

transformation products, however, accounted for less than 5% of the initial metoprolol 

concentration (Rubirola et al. 2014), suggesting that α-HMTP may have been formed 

in the current setup under oxic conditions but was below the detection limit. 

Accumulation of MTPA concomitant to metoprolol degradation under anoxic conditions 

(Figure 22 B), indicated formation via anaerobic o-demethylation. O-demethylation is 

the initial step in the biodegradation of most methoxylated aromatic compounds by 

anaerobic bacteria (DeWeerd et al. 1988; Liu and Suflita 1993). Moreover, the 

formation of α-HMTP likely occurred via the oxygen-independent hydroxylase activity, 
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a universally ubiquitous mechanism for attacking recalcitrant substrates in the absence 

of oxygen, where water is the source of the hydroxyl group (Heider et al. 2016; Rabus 

et al. 2016). The disappearance of the transformation products (Figure 22) under both 

conditions points to further biotransformation via the intermediates shown (Figure 39) 

as predicted using the EAWAG-BBD Pathway Prediction System (http://eawag-

bbd.ethyporheic zone.ch/predict/aboutPPS.html) or may suggest potential 

mineralization of metoprolol by the hyporheic zone microbial communities. Taken 

together, it is evident that redox-delimitations promote variable biodegradation 

pathways probably from the different bacterial taxa occupying specific niches in the 

hyporheic zone which is eventually beneficial to the complete degradation of 

metoprolol particularly in case of downwelling conditions where metoprolol-containing 

surface water enters the deeper oxygen-depleted hyporheic zones. 

The contribution of sorption to the overall removal of metoprolol in the hyporheic zone 

cannot be underestimated though minor compared to biodegradation. Previous studies 

conducted in situ on River Erpe also reported biodegradation and sorption as the most 

relevant attenuation mechanisms for metoprolol in the hyporheic zone (Posselt et al. 

2018; Schaper et al. 2019) Sorption of metoprolol onto sediments may vary due to 

factors influencing its interaction with sediments such as pH and the organic matter 

content  (Schaper et al. 2019). In this study, the observed sorption of metoprolol to the 

sediment was likely influenced by the ambient pH 6.6 measured in the microcosms. 

Βeta-blockers occur in the cationic form at pH 6.5/6.6 as a result of the protonation of 

the amino moiety of the side chain (Ramil et al. 2010). Therefore, sorption to the 

sediment was likely due to cationic exchange processes. The concentration of 

metoprolol remained relatively constant throughout the incubation in the water serving 

http://eawag-bbd.ethz.ch/predict/aboutPPS.html
http://eawag-bbd.ethz.ch/predict/aboutPPS.html
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as hydrolysis control, suggesting hydrolysis plays no significant role in attenuation of 

metoprolol.  

 

 

Figure 39. Hypothetical metoprolol biotransformation pathways in hyporheic zone 
sediments under oxic and anoxic conditions based on transformation products 
identified in this study and predicted further intermediates.  
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6.2.2. Bacterial community structure and composition dynamics in 

metoprolol-impacted oxic hyporheic zone sediments 

Samples amended with metoprolol did not differ significantly in terms of bacterial 

diversity and richness relative to controls likely due to other prevailing edaphic factors 

cancelling out any apparent effects of metoprolol amendment or resilience of the 

resident bacterial community against stressors. The decline in the diversity indices at 

the RNA level following depletion of metoprolol at day 120 (Figure 24 A-C; 21), 

however, suggests a substantial fraction of the enriched bacterial community actively 

relied on metoprolol for energy metabolism. 

The predominance of Proteobacteria and Bacteroidetes in the sediment samples was 

as previously reported in other hyporheic zone studies (Marti et al. 2017; Kim and Lee 

2019). As broadly diverse phyla with complex substrate degradation capabilities (Seo 

et al. 2009; Thomas et al. 2011), their prevalence in metoprolol treatments suggests 

their likely involvement in its removal. Chloroflexi, Acidobacteria and Actinobacteria 

also exhibited stimulation in metoprolol treatments (Figure 26 A and B). These phyla 

have also been previously associated with degradation of xenobiotics including 

polycyclic aromatic hydrocarbons (George et al. 2009; Seo et al. 2009; Zhang et al. 

2012; Shahi et al. 2016), suggesting some members within these phyla may hold 

metoprolol degradation potential. 

6.2.3. Putative taxa associated with degradation of metoprolol in oxic 

hyporheic zone sediments 

Taxa enriched by metoprolol were identified based on the significant differential 

abundance relative to non-supplemented controls. Such potential degraders were 

classified to known or Candidatus genera and families (Figure 27 A and B; Table A3 
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and A4). Proteobacteria comprised the largest proportion of such responders to 

metoprolol treatment. Alphaproteobacteria-affiliated OTUs belonging to the family 

Caulobacteraceae included Phenylobacterium previously identified among specific 

genera in a core microbial community associated with degradation of compounds 

including metoprolol (Wolff et al. 2018). Caulobacter, linked to 4-chlorophenol 

degradation in addition to reported capability to degrade aromatic hydrocarbons (Zhao 

et al. 2016) was also enriched by metoprolol. The Sphingomonadaceae-affiliated 

Sphingopyxis, Sphingomonas and Sphingobium are widely reported xenobiotic 

degraders, in particular of aromatic compounds (Balkwill et al. 2003). Their potential 

involvement in metoprolol degradation further highlights the importance of the family 

Sphingomonadaceae in micropollutant removal in diverse environmental matrices. 

The gammaproteobacterial Acinetobacter, belonging to the family Moraxellaceae is an 

established genus with many species harbouring dynamic metabolic potentials such 

as degradation of long-chain dicarboxylic acids, aromatic and hydroxylated aromatic 

compounds (Jung and Park, 2015). Besides, the enriched Pseudomonas was closely 

related to the cultivated Pseudomonas stutzeri, a naphthalene degrader (Shimada et 

al. 2012). The two genera belong to families affiliated with the order Pseudomonadales 

indicating the potential for taxa in this order to degrade polycyclic hydrocarbons. 

Though the metoprolol enriched Rheinheimera has not previously been linked to 

metoprolol degradation, it belongs to the family Chromatiaceae whose capability to 

degrade complex aromatic compounds such as naphthalene has been reported 

(Rochman et al. 2017). This suggests a high likelihood that this genus possesses the 

metabolic capacity to degrade metoprolol. The enrichment by metoprolol of 

Limnobacter (Burkholderiaceae), Ralstonia (Ralstoniaceae), Pelomonas, Albidiferax, 

Aquabacterium, Thiomonas (Comamonadaceae) belonging to the order 
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Burkholderiales provides further evidence on the relevance of this order in the 

degradation of a wide spectrum of aromatic compounds including organic pollutants 

as highlighted through genomic analysis in (Pérez‐Pantoja et al. 2012). Metoprolol-

enriched taxa affiliated with the phylum Bacteroidetes were Flavobacterium and 

Hydrotalea. The aromatic hydrocarbon degradation potential of Flavobacterium is 

reported (Hemalatha and VeeraManikandan 2011). Their association with metoprolol 

enrichment, therefore, highlights the environmental relevance of the Bacteroidetes in 

organic micropollutant removal. 

6.2.4. Bacterial community structure and composition dynamics in 

metoprolol-impacted anoxic hyporheic zone sediments 

The microbial community alpha diversity at RNA level declined significantly following 

incubation, but the DNA-based diversity remained relatively similar to the original 

community (Figure 24 D, E, F). This suggests that while the metoprolol amendment 

may have negatively affected the activity of the community in terms of RNA gene 

expression, the basal microbial community remained resilient against the stressor 

effect of metoprolol. Moreover, a decline in richness and diversity while maintaining 

the functionality (removal of metoprolol) (Figure 21B) indicates the degradation of 

metoprolol was a function of a broad spectrum as opposed to a specific taxa range 

within the community.   

Proteobacteria dominated metoprolol amended samples at both DNA and RNA levels 

(Figure 26 C and D) suggesting a quicker response of this phylum to metoprolol 

compared to other phyla. The broad metabolic diversity and quick response to 

substrate availability are characteristics of Proteobacteria (Ho et al. 2017), which may 

explain this phenomenon. Despite a decline in relative abundance at RNA level of 

some phyla including Chloroflexi, Acidobacteria, Actinobacteria and Bacteroidetes, 
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their contribution to metoprolol degradation cannot be overlooked as previous studies 

identified them among most abundant in sediment samples contaminated with more 

than 25 different micropollutants including metoprolol (Nega et al. 2019; Posselt et al. 

2020). 

6.2.5. Putative taxa associated with degradation of metoprolol in anoxic 

hyporheic zone sediments 

In congruence with phyla relative abundances (Figure 26 C and D), most of the families 

and genera impacted by metoprolol affiliated with Proteobacteria (Figure 27 C and D; 

Table A5 and A6). The alphaproteobacterial family Hyphomicrobiaceae whose 

affiliated genera Rhodomicrobium and Pedomicrobium were enriched in metoprolol 

treatments has been associated with degradation of xenobiotics such as naphthenic 

acid found in oil sands process affected waters (Islam et al. 2016), suggesting a 

likelihood of these genera to have similar metabolic potential for metoprolol 

degradation. The genera Rhodobium (Hyphomicrobiaceae), Rhodoplanes 

(Rhodobiaceae), and an unclassified Rhizobiales OTU enriched in metoprolol 

treatments provide further evidence associated with the order Rhizobiales to degrade 

xenobiotics. Some members belonging to this order are reported degraders of toluene, 

xylene, benzene, phenol, halogenated aromatic compounds, hydroxyl benzoates and 

anthracene (Zhang et al. 2012). Metoprolol-enriched taxa belonging to the order 

Desulfobacterales including Desulfobacca (Desulfoarculaceae), phylogenetically 

related to the acetate-degrading sulfate reducer Desulfobacca acetoxidans (Elferink et 

al. 1999), have been shown to degrade benzene under similar conditions (Kleinsteuber 

et al. 2008). Moreover, Desulfobulbaceae affiliated OTUs were enriched by metoprolol 

extending previous association of these families with degradation of aromatic 

hydrocarbons (Rabus et al. 2016). 



                                                                                DISCUSSION 

179 
 

 The gammaproteobacterial facultative anaerobic iron- and sulfur-oxidizing 

Acidiferrobacter enriched in metoprolol treatments has been previously associated with 

polychlorinated biphenyls contaminated sediments (Matturro et al. 2016), and its 

capability to degrade metoprolol can, therefore, be hypothesized. The enrichment of 

the family Neisseriaceae in metoprolol treatments (Figure 26 C), primarily associated 

with human and non-human commensal and pathogenic attributes extends on 

numerous reports where free-living Neisseria species have been found in different 

environmental matrices such as soil, contaminated water and sediment, oil-polluted 

soil and biofilter packing material (Carrillo-Pérez et al. 2004; Xu et al. 2014; Liu et al. 

2015).The environmental Neisseria were reported to degrade complex TrOCs such as 

dichlorodiphenyltrichloroethane, benzene, crude oil, naphthalene, and xylene (Carrillo-

Pérez et al. 2004; Borin et al. 2006; Xu et al. 2014). 

 The metoprolol-enriched facultative anaerobe Enhydrobacter belongs to the family 

Vibrionaceae established to have functional genes for polycyclic aromatic hydrocarbon 

degradation  (Zhang et al. 2019), strong evidence of its affiliated genera potential to 

degrade metoprolol. Numerous other unclassified gammaproteobacteria affiliated 

OTUs (Table A5) enriched in metoprolol treatments highlight the association of this 

class with the degradation of metoprolol in the hyporheic zone sediments. Unclassified 

Acidobacterial taxa affiliating with Subgroups 6, 9 and 17 enriched in metoprolol 

treatments signify the role of members within this phylum in the removal of organic 

micropollutants as previously reported for pharmaceuticals (Posselt et al. 2020), 

polychlorinated biphenyls (Nogales et al. 1999) and petroleum compounds (George et 

al. 2009). Unclassified OTUs affiliated with KD4-96, S085, Anaerolineaceae and 

Ardenticatenia in the phylum Chloroflexi were also enriched in metoprolol treatments. 

Presence of KD4-96 in contaminated soils and peatlands treating mining-affected 
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waters has been reported (Kujala et al. 2018), suggesting the probability of Chloroflexi 

affiliated taxa in the removal of such contaminants as metoprolol in the environment. 

While Firmicutes-affiliated Bacillus has been previously shown to degrade complex 

compounds such as crude oil in oxic conditions (Xu et al. 2018), such activity under 

anoxic conditions has not been reported. The facultative anaerobic lifestyle exhibited 

by some Bacillus species, however, suggests probable xenobiotic catabolic pathways 

under anoxic conditions and the enrichment of this genus in the metoprolol treatments, 

therefore, offers strong evidence for such a potential. While Gemmatimonas was 

previously reported among potential degraders of pyrene in an aerobic bioslurry 

reactor (Yu et al. 2019), the enrichment by metoprolol of an unclassified 

Gemmatimonadaceae genus phylogenetically related to the facultatively aerobic 

Gemmatimonas aurantiaca (Takaichi et al. 2010) under anoxic conditions is another 

example of potential degradation of complex xenobiotics hitherto reported only under 

oxic conditions.  

Taken together, the microbial removal of metoprolol in the oxic and anoxic segments 

of the hyporheic zone highlights the potential of aerobic and anaerobic degradation 

mechanisms in the removal of contaminants in the aquatic environment. Coupled with 

increased residence time in the sediment matrix, redox zonation contributed to 

enhanced metoprolol removal by the indigenous microbiota in the hyporheic zone 

through promoting diverse bacterial taxa occupying the specialized niches and 

employing varied biodegradation pathways. 
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6.3. Influence of TOC on organic micropollutant removal in the hyporheic zone 

The bioavailable total organic carbon (TOC) (i.e., dissolved organic carbon (DOC) + 

particulate organic carbon (POC) in hyporheic sediments is considered a major limiting 

factor for microbial metabolism (Findlay and Sobczak 2000), thereby directly or 

indirectly impacting coupled processes such as biotransformation of TrOCs. Most 

streambed sediments of receiving rivers are characterised by allochthonous-derived 

organic carbon from wastewater effluents (Gücker et al. 2006) as well as 

autochthonous-derived organic matter from decomposing leaf litter and macrophytes 

(Romani et al. 1998). The surface sediment layer as the primary contact point with 

these deposits, consequently, has a higher concentration of organic carbon compared 

to subjacent layers. Subsequently, bacterial populations, turnover and metabolism are 

high in this layer, suggesting high mineralisation rates that decrease exponentially with 

depth (Wellsbury et al.1996; Harvey et al. 2013; Knapp et al. 2017; Schaper et al. 

2019). As TrOC attenuation is coupled to biogeochemical reactions fuelled by the 

organic carbon (Atashgahi et al. 2015), a decline in TOC concentration with increasing 

depth might impair the TrOC removal efficiency of the hyporheic zone. Cognizant of 

the simultaneous occurrence of numerous micropollutants in the hyporheic zone, the 

removal efficiency of a set of 13 TrOCs routinely discharged by the Muenchehofe 

WWTP was investigated using impacted hyporheic zone sediments differing in initial 

TOC content obtained from the River Erpe.  

6.3.1. The interplay between TOC, microbial community and 

micropollutant removal 

Overall, higher removal efficiency of most test compounds via biotransformation in the 

surface relative to subsurface sediment samples was observed (Figure 28 A). This was 
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likely due to high bacterial turnover and metabolism associated with the high organic 

carbon content in the surface sediments. Microbial productivity in the hyporheic 

sediments is correlated to the organic matter content (Marxsen 1996; Findlay and 

Sobczak 2000) since organic carbon in the sediment serves as a nutrient source for 

heterotrophic microorganisms and promotes bacterial colonization (Romani et al. 

1998). The decrease in bacterial abundance in the incubated samples with increasing 

depth was, therefore, a response to the organic carbon concentration gradient between 

the two sediment layers (Figure 29). Though the species richness was higher in the 

subsurface sediments at t0, the higher TOC concentration in the surface layer 

correlated with the significantly higher bacterial diversity (Figure 30) and corresponding 

TrOC removal efficiency (Figure 28). This finding extends previously reported a 

positive association between high bacterial diversity and increased biotransformation 

efficiency of some organic micropollutants (Johnson et al. 2015; Stadler et al. 2018; 

Jaeger et al. 2019b; Posselt et al. 2020). 

Up to six-fold removal efficiency for acesulfame and two-fold for ibuprofen and 

ketoprofen in the surface compared to the subsurface layer, exemplifies the 

significance of the organic matter content in the removal of some micropollutants 

reaching the hyporheic zone. The trend on a lower margin was reflected in the removal 

of other compounds such as bezafibrate, clofibric acid, carbamazepine and 

benzotriazole. The biotransformation of acesulfame occurred only in the surface 

sediment suggesting the compound is likely degraded by specific taxa that were part 

of the larger diversity supported by the high TOC content in this layer compared to the 

subjacent layer. Acesulfame, hitherto considered persistent (Buerge et al. 2009), has 

been recently reported to be amenable to biodegradation in constructed and natural 

environments (Kahl et al. 2018; Jaeger et al. 2019b; Schaper et al. 2019).The 
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environmental parameters associated with these recent findings are not yet 

established, and our current findings hint that the organic carbon content likely plays a 

significant role in its removal in the aquatic environment.  Benzotriazole, considered 

less biodegradable in WWTPs (Giger et al. 2006), was almost completely removed in 

the sediment samples. This may be attributed to the retention of high organic matter 

content in sediments that support higher bacterial diversity capable of the 

transformation of benzotriazole. Moreover, the increased residence time in the 

hyporheic zone compared to WWTPs may have promoted the slow-growing 

microorganisms to express the necessary enzymes involved in the degradation of such 

compounds otherwise considered recalcitrant (Tran et al. 2013). 

Removal of furosemide, hydrochlorothiazide and carbamazepine was only marginally 

higher in the surface relative to subsurface sediment samples. Nevertheless, the high 

removal efficiency observed for the three compounds was unexpected in the first place. 

Furosemide was only recently shown to be amenable to biotransformation in 

sediments (Liu et al. 2019) with hydrolysis and photolysis earlier considered as the 

only removal mechanisms (Yagi et al. 1991; Katsura et al. 2015). Biotransformation as 

the process responsible for the >70 % hydrochlorothiazide removal in the current study 

is only speculative as previously, only photolysis (Brigante et al. 2005) and hydrolysis 

(Li et al. 2014) have been reported as removal mechanisms. While photolysis can be 

excluded in the current study, the contribution of hydrolysis to its removal cannot be 

ruled out, and further investigations would be required. Although degradation of up to 

60 % carbamazepine in mixed bacterial culture studies has been reported (Ha et al. 

2016), removal of up to 69 - 77 % in environmental samples is unprecedented. Majority 

of previous studies reported the compound as relatively persistent (Burke et al. 2018; 

Posselt et al. 2018; Coll et al. 2019; Jaeger et al. 2019; Liu et al. 2019; Schaper et al. 
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2019). Only fungi have been reported to be more prolific degraders of the compound 

in lab-based experimental setups (Nasir et al. 2018). It is, therefore, probable that the 

degradative role was played by fungi, a component in the sediment microbial 

community (Findlay and Sobczak 2000) not considered in the current study. Clofibric 

acid removal was still low (< 40%) under both TOC conditions suggesting the 

persistence of the compound in water-sediment matrices as reported in previous 

studies (Löffler et al. 2005; Kunkel and Radke 2008). 

The complete and near-complete removal of propranolol and metoprolol, respectively, 

under both TOC concentrations, matches previously reported pattern in two sediment 

types differing in TOC content (Ramil et al. 2010). Their closely related structures may 

have influenced their similar interaction with TOC and bacterial catabolic pathways. On 

the other hand, naproxen, ibuprofen and ketoprofen (NSAIDs) exhibited variable 

interaction with TOC where the latter two were strongly impacted by TOC content while 

naproxen was not. This may be attributed to the difference in their physical-chemical 

properties. While the three compounds contain the carboxyl and alkyl functional 

groups, naproxen differs markedly from the rest by having an ether group which is a 

weak electron donating group and may account for its varied interaction with TOC or 

resident microbial communities. 

6.3.2. Taxonomic composition dynamics 

The taxonomic composition of the bacterial community at the phylum level remained 

relatively constant throughout the incubation in the surface sediment samples (Figure 

32 A and B). A stable supply of carbon and energy from the organic-rich sediment likely 

contributed to this observation. The corresponding high removal efficiency of the 

TrOCs suggests cometabolism played a significant role in their removal. The 
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prevalence of cometabolism in organic-rich matrices, such as the benthic biolayer, was 

previously demonstrated (Schaper et al. 2019). In cases where the concentration of 

the TrOCs is too low to support biomass growth or where they exhibit apparent toxicity 

rendering them unfavourable to enter catabolic pathways of microbial cells (Tran et al. 

2013), the bacteria may use the organic matter as the sole source of carbon and 

energy while transforming the TrOCs as a non-growth substrate (Arp et al. 2001). In 

some cases, however, the cometabolism initiates a reaction to transform persistent 

compounds into their more biodegradable forms before they enter the central 

metabolic pathways (Tran et al. 2013). The recorded marginal increase in the relative 

abundances of Proteobacteria, Bacteroidetes, Firmicutes, Acidobacteria, Chloroflexi 

and Gemmatimonadetes (Figure 32 A and B), in amended relative to unamended 

samples may suggest such potential utilization of some TrOCs as a carbon source by 

these phyla. Indeed, members belonging to these phyla have been associated with 

degradation of xenobiotics (Nogales et al. 1999; Seo et al. 2009; Gargouri et al. 2014; 

Braga et al. 2015; Ghosal et al. 2016; Nega et al. 2019; Posselt et al. 2020), and their 

likely involvement in the current study can be hypothesized. 

In the subsurface samples, a shift in the bacterial community composition in the 

amended samples relative to unamended controls at day 15 of incubation (Figure 32 

C and D), in which the relative abundance of Proteobacteria increased while other 

phyla including Chloroflexi, Firmicutes and Actinobacteria declined suggested a 

possible change in carbon utilization dynamics. Proteobacteria as relatively rapid 

responders to substrates (Ho et al. 2017) and a characteristic broad physiological and 

metabolic diversity (Harichová et al. 2012), may have easily adapted to utilizing the 

TrOCs as an additional carbon and energy source, hence outcompeting other taxa. 

Nevertheless, analysis at the family and genus level revealed that even within phyla 
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that declined in abundance were members potentially utilizing the TrOCs as their 

abundance seemed to increase in amended relative to unamended samples (Figure 

33 C and D; Table A4). This phenomenon has been reported in riverine samples 

exposed to micropollutants, where nutrient-like or toxic-like effects on different 

fractions of microbial communities were observed (Lawrence et al. 2005). 

Putative taxa associated with degradation of the test compounds 

Proteobacteria affiliated families responsive to TrOC amendment included 

Methylophilaceae, whose members are obligate methylotrophs but also associated 

with degradation of TrOCs such as ketoprofen, formononetin, ibuprofen, primidone, 

ametrine and naproxen (Phan et al. 2016). The enrichment of the family 

Comamonadaceae corresponds to previous reports on affiliated members associated 

with the degradation of aromatic compounds (Dallinger and Horn 2014). Though 

originally associated with anaerobic hydrocarbon degradation, Rhodocyclaceae 

affiliated members capable of aerobic hydrocarbon degradation have been recently 

reported (Táncsics et al. 2018). Rhodocyclaceae was also found central in the 

degradation of toluene under oxygen-limiting conditions (Táncsics et al. 2018), 

highlighting potential resilience in the hyporheic zone under changing oxygen 

availability regimes.This may explain its flourishing in the subsurface sediment 

samples where oxygen availability may be limited (Figure 33 C and D). The potential 

of Rhodospirillaceae and Xanthomonadaceae in the degradation of aromatic organic 

compounds is widely reported (Gibson and Harwood 1995; Wang et al. 2014; Brzeszcz 

and Kaszycki 2018), and their enrichment by TrOCs in the present study extends this 

observation. 
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Among the enriched taxa at the genus level included the toluene-degrading 

Xanthobacter (Tay et al. 1999), Hyphomicrobium previously associated with 

assimilation of 2, 4-Dichlorophenol, a soil and groundwater contaminant (Dallinger and 

Horn 2014) and Novosphingobium associated with a broad array of natural aromatic 

compounds (Ghosal et al. 2016). Other Proteobacteria affiliated genera hitherto 

unassociated with xenobiotic degradation but enriched in the amended samples 

included Phaselicystis, Leeia, Ferritrophicum, Crenothrix, Magnetospirillum, 

Reyranella, Prosthecomicrobium Geothermobacter, suggesting their involvement in 

the biotransformation of the test compounds and highlighting the hyporheic zone as a 

reservoir of higher bacterial diversity with organic micropollutant degradation potential. 

The Bacteroidetes affiliated genus Terrimonas previously associated with degradation 

of dibutyl phthalate (Jin et al. 2013) and benzo[a]pyrene (Song et al. 2015) was also 

enriched by the test compounds suggesting its contribution to the removal of the 

micropollutants. 

Increase in the relative abundance of Chloroflexi affiliated Caldilinaceae and 

Anaerolineaceae following TrOC amendment corresponds to the previous association 

of these families with TrOC removal (Phan et al. 2016; Miettinen et al. 2019). The 

Caldilinaceae affiliated genus Caldilinea was associated with TrOC removal in an 

anoxic-aerobic membrane bioreactor (Phan et al. 2016) while Anaerolineaceae 

representatives were associated with degradation of organic pollutants, aromatics and 

n-alkanes albeit under anaerobic conditions (Kümmel et al. 2015; Chen et al. 2016; 

Miettinen et al. 2019). Although considered strictly anaerobic (Zhang et al. 2018), a 

surprisingly considerable abundance of Anaerolineaceae members was detected in 

aerobic WWTP water samples (Chen et al. 2016). The authors attributed the 

observation to the presence of anoxic microzones within aerated wastewater flocs. 
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Their prevalence in the current study may also be attributed to similar anoxic 

microzones reported within the aerobic hyporheic zones (Lewandowski et al. 2019). 

The enrichment of the unclassified KD4-96 and JG30-KF-CM45 families, hitherto 

unassociated with the degradation of TrOCs suggests their participation in the removal 

of TrOCs in this study. An unclassified Acidobacteria Subgroup 6 family also enriched 

in the presence of TrOCs extends further the reported association of members within 

this phylum with the degradation of such contaminants as polychlorinated biphenyls, 

petroleum compounds, metals and radionuclides (Nogales et al. 1999)(George et al. 

2009). Though members of the family Acidimicrobiaceae were not shown to harbour 

genes involved in the degradation of aliphatic and aromatic hydrocarbons in a crude 

oil field soil metagenomic data analysis (Abbasian et al. 2016), their presence in the oil 

field soil and detection in this study may indicate such potential. Moreover, other taxa 

affiliated with the phylum Actinobacteria have been associated with degradation of 

such compounds as phenol, diesel oil, n-alkanes and polycyclic aromatic hydrocarbons 

(Seo et al. 2009; Zhang et al. 2012; Alvarez et al. 2017).The increase in the relative 

abundance of Gemmatimonadaceae in amended relative to unamended sediment 

samples suggests the potential to utilize the TrOCs. Members of this family have been 

associated with degradation of complex compounds, e.g. the benzoate-degrading 

Gemmatimonas aurantiaca and an uncultured Gemmatimonas species associated 

with alkylbenzene sulfonate (Braga et al. 2015). 

The enrichment of firmicutes affiliated Eubacteriaceae and Peptococcaceae belonging 

to Clostridia corresponds to previous studies. Eubacteriaceae was among soil 

microorganisms associated with soils historically contaminated by heavy metals and 

hydrocarbons (Vivas et al. 2008). Though Peptococcaceae were only previously 

reported in the anaerobic degradation of aromatic compounds (Kuppardt et al. 2014), 
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the transcription of genes encoding enzymes involved in oxygenase-mediated aerobic 

benzene degradation in a denitrifying continuous culture in the family Peptococcaceae 

were recently reported (Atashgahi et al. 2018). The potential oxygen production in the 

culture was hypothesized to be formed via a recently identified nitric oxide dismutase 

to enable aerobic microbes to thrive in nitrate-containing and oxygen-depleted 

environments contaminated with hydrocarbons (Atashgahi et al. 2018). 

6.3.3. Sorptive removal under variable TOC concentration 

The higher removal of the NSAIDs (diclofenac, ibuprofen, ketoprofen, and naproxen), 

cholesterol-lowering agents (bezafibrate, clofibric acid), carbamazepine and 

benzotriazole in the surface sediment relative to subsurface sediment indicates 

sorptive removal of these compounds is influenced by organic matter concentration in 

the sediments. The influence on sorption as a removal mechanism for some organic 

micropollutants in sediments by the organic matter content was reported (Jaeger et al. 

2019a; Liu et al. 2019; Schaper et al. 2019). For some other compounds such as the 

beta-blockers (metoprolol, propranolol), furosemide and hydrochlorothiazide, no 

correlation with TOC concentration was observed suggesting other factors or 

processes contributed to their removal. Indeed, processes such as hydrolysis have 

been reported as significant removal mechanisms for such compounds as furosemide 

(Yagi et al. 1991) and hydrochlorothiazide (Li et al. 2014) and their contribution to their 

removal in the current study are hypothesized. Moreover, the occurrence of TrOCs in 

neutral and ionizable forms further determine the type of interaction with the sediment 

materials due to the influence of external factors such as pH (Schwarzenbach 1986). 

At the prevailing pH in the microcosms (pH 7.5 - 8), the test compounds potentially 

exhibited different physicochemical properties and their interaction with the sediment 

was expected to be driven by different processes such as hydrophobic partitioning for 



                                                                                DISCUSSION 

190 
 

neutral TrOCs, e.g. carbamazepine and electrostatic interactions and surface 

complexation for the ionizable TrOCs, e.g. ibuprofen, naproxen, ketoprofen, and 

diclofenac (Fujioka et al. 2015; Schaper et al. 2019). In the same way, desorption of 

the TrOCs from the sediment into the aqueous phase may be driven by the same 

factors leading to a counteractive effect on the sorption as a TrOC removal mechanism.  

The notable differences in the removal of some TrOCs with increasing depth and along 

a TOC gradient may be associated with the change in bacterial community composition 

caused by the change in concentration of organic carbon. However, in some cases, 

low concentration of organic carbon can boost TrOC removal, since, in high 

concentration, the carbon may also serve as a competitive substrate that inhibits 

preferential degradation of TrOCs. Biotransformation is the most critical micropollutant 

removal mechanism in the hyporheic zone. The contribution of sorption also plays a 

significant role in influencing the fate of organic micropollutants in sediment-water 

systems. The contribution of the two processes is not exclusionary but rather 

complementary since, for example, sorption may impair or enhance the bioavailability 

of a compound. 
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6.4. Impact of bacterial diversity and hyporheic exchange flow on the 

transformation of organic micropollutants 

The microbial community structure (especially diversity) (Peralta-Maraver et al. 2019), 

and HEF are key controls of the fate of organic contaminants in lotic aquatic 

environments (Posselt et al. 2020). Despite limited information on the functional 

diversity of most bacterial pollutant degraders, the positive correlation between 

taxonomic and functional diversity (Stadler et al. 2018), allows predicting the 

biodegradation capacity of the resident bacterial community in the hyporheic zone 

(Posselt et al. 2020). Such a correlation is not universal and functional redundancy, 

whereby different bacterial species perform a similar function such as degradation of 

organic carbon is common in bacterial communities (Battin et al. 2016). However, for 

most emerging compounds, degradation is performed by consortia rather than single 

bacterial strains. The different bacteria may produce different enzymes involved in the 

different degradation reactions of the same catabolic pathway leading to 

biotransformation or mineralization of a compound (Tran et al. 2013). In other cases, 

toxic compounds may only be initially degraded cometabolically while their less toxic 

intermediates enter the catabolic pathways of other bacteria (Tran et al. 2013). In the 

current study, the alpha diversity gradient created following the sediment dilution 

(Figure 35) correlated strongly with the DT50 of most compounds suggesting that 

bacterial communities with higher species richness and diversity were more efficient at 

transforming a larger number of individual test compounds (Table 19; Posselt et al. 

2020). Our findings, therefore, extend previously reported correlations between 

bacterial diversity and organic compound biodegradation (Johnson et al. 2015; Stadler 

et al. 2018; Jaeger et al. 2019b). 
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Moreover, TPs were least often detected in pore water of the high diversity systems 

(S1) where most diverse bacterial communities and well-functioning transformation 

pathways were expected (Figure 36). The higher detection rates, concentrations and 

longevity of TPs in S6 flumes, on the other hand, may be attributed to inadequate 

catabolic transformation pathways requiring several types of bacteria found in the 

original undiluted sediment or S1 dilution level, i.e. a less diverse microbial community 

has a lower probability of hosting elements of such pathways, leading to enrichment of 

certain intermediates. Taken together, the data demonstrate the importance of 

microbial diversity and by extension, a diverse gene pool translating into a high genetic 

potential and associated organic contaminant degradation potential in hyporheic zones 

(Posselt et al. 2020).  

HEF, a function of hydraulic conductivity and sediment morphology (Hester et al. 

2013), is postulated to promote bacterial diversity and activity as it increases the supply 

of nutrients and oxygen (Triska et al. 1989), especially in downwelling conditions 

(Peralta-Maraver et al. 2018; Galloway et al. 2019). However, while bacterial diversity 

influenced biotransformation of 20 substances, only acesulfame, ibuprofen, sitagliptin 

and metaxalone were significantly influenced by HEF. This may imply that the latter 

four substances are particularly sensitive to biodegradation in hyporheic zones. 

Interestingly, ibuprofen and metaxalone degraded to a lesser extent with the increasing 

number of bedforms, which contrasts the hypothesis that hyporheic exchange 

generally increases degradation potential. A common characteristic of acesulfame, 

ibuprofen and sitagliptin is that they have all been previously reported to be influenced 

by redox conditions (Burke et al. 2018; Henning et al. 2019; Jia et al. 2020). Little 

information about the environmental fate of metaxalone is available. Hence, the 

bedforms might have provided a particular redox environment that favoured or 



                                                                                DISCUSSION 

193 
 

diminished transformation reactions of those compounds mentioned above. However, 

the fact that degradation of other redox-sensitive compounds, such as the beta-

blockers metoprolol, atenolol and sotalol (Schmidt et al. 2017), was not significantly 

influenced by the number of bedforms highlights the complexity of compound-specific 

reactions. As discussed previously for acesulfame (Jaeger et al. 2019b), the absence 

of a visible effect of HEF may also be caused by the pronounced effect of the diversity 

treatment, which ultimately masks the influence of HEF. Some compounds exhibited 

differences among bedform treatments within the lowest diversity, but this effect is not 

significant in the overall model because the differences vanish in the higher diversity 

treatments (e.g. metoprolol, atenolol, bezafibrate, gemfibrozil, valsartan). Alternatively, 

differences in HEF levels were not sufficient to observe a significant effect on DT50s. 

Although a numerical model (Betterle et al., 2020 unpublished) shows that the bedform 

treatments differ in HEF, these differences were diminished by the effects of bedforms 

on the flow velocities of the overlying water. In future studies, larger differences in HEF 

would likely result in more distinct dramatic effects of HEF on more compounds. This 

might be achieved by a numerical model that predicts the highest possible HEF 

variation for an experimental setup. Still, even if the differences are increased, HEF 

alone will likely not be a perfect predictor of degradation, as hyporheic travel time 

distributions and associated redox zonation, as well as variations in microbial 

communities along flow paths, may differ with HEF and therefore should always be 

considered (Posselt et al. 2020).   

6.4.1. Attenuation dynamics of organic micropollutants in the flumes 

The degradation of celiprolol exemplified the key role of biodegradation in the 

attenuation of the micropollutants. This beta-blocker differed markedly from others 

(atenolol, metoprolol, propranolol and sotalol) with a DT50 an order of magnitude 
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higher (Table 19), which may be associated with its disubstituted urea moiety that 

might be less prone to biological hydrolysis than for example the amide or ether side 

chain in atenolol or metoprolol, respectively. Sorption and photolysis played a minor 

role compared to biodegradation for dissipation of most TrOCs in the present 

experimental setup except for irbesartan and some cationic compounds. For anionic 

and neutral compounds, organic matter is the main potential sorbent (Schaper et al. 

2019). However, total carbon in the three sediment mixtures was < 0.08% and, thus, 

dissipation of TrOCs by sorption to organic matter was likely negligible. A sorption test 

of carbamazepine to the flume sediments further confirmed this. Carbamazepine has 

one of the highest log DOW (2.77) of the compounds investigated in this study (Only 

benproperine and irbesartan show higher log DOW). Hence, most of the compounds 

are less likely to partition into organic matter than carbamazepine. As the test showed 

no significant sorption of carbamazepine, this probably accounts for all other 

compounds with lower log DOW. Cationic compounds, in contrast, are particularly 

prone to sorption by electrostatic interactions with negatively charged binding sites. In 

sediment-water column tests, compounds of high pKa previously showed the highest 

retention by sorption (Schaper et al. 2018a). Analysis of the cation-exchange capacity 

(CEC), however, confirmed that the flume sediments were also poor sorbents for 

positively charged compounds. Median CEC was 0.6 cmol kg-1
  
(max: 3.6). The reason 

for this was probably the low content of the sediments in the fine mineral material 

(particle size < 0.063 mm was below 1%) and the low carbon content (Margot et al. 

2015). So, sorption was generally of little importance for most compounds. If 

dissipation of benproperine and irbesartan, which have higher log DOW than 

carbamazepine, was prone to sorption despite the low content in organic carbon, 

differences in dissipation between treatments were still caused by biodegradation, as 

the sediment properties of the different sediment mixtures were very similar. Moreover, 
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sorption may have affected some compounds (especially those with high log Kow), due 

to the presence of biofilms. Nevertheless, since overall bacterial abundance was 

similar between the diversity levels, potential sorption should have a similar impact on 

all levels. 

6.4.2. Microbial communities and taxa associated with the degradation 

of the test compounds  

The enrichment of several taxa in the presence of the test compounds suggests that 

they might include both some pollutant-degrading species along with pollutant-

insensitive species. Some of the enriched genera detected in the present study (Table 

A8), and previously associated with degradation of organic contaminants in diverse 

environments included OTUs affiliated with Holophagae and subgroups 6, 17, and 22 

in the phylum Acidobacteria which were associated with polychlorinated biphenyl 

(Nogales et al. 1999) and petroleum compound degradation (George et al. 2009). 

Within the phylum Actinobacteria, genera such as Nocardioides harbour known 

ibuprofen degraders (Chen and Rosazza 1994) while Illumatobacter is among genera 

enriched in the presence of organic pollutants such as anilines and phenols, polycyclic 

aromatic hydrocarbons and organochlorine pesticides (Rodríguez et al. 2018). Genera 

of the phylum Bacteroidetes such as Terrimonas and Flavobacterium that include 

benzo[a]pyrene (Song et al. 2015) and ibuprofen degrading species were also 

enriched (Li et al. 2016). The dominant phylum Proteobacteria was represented by 

several genera including Sphingomonas, Sphingobium and Novosphingobium in the 

family Sphingomonadaceae that is widely characterized as a family with many prolific 

aerobic degraders of a wide variety of aromatic compounds (Ghosal et al. 2016)  as 

well as Comamonadaceae, also an aerobic degrader of aromatic compounds 

(Dallinger and Horn 2014). Within the families Xanthomonadaceae and 
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Pseudomonadaceae, the genera Arenimonas and Pseudomonas were enriched in 

response to the 31 test compounds. These genera have previously been linked to 

biodegradation of polyaromatic compounds such as naphthalene (Ghosal et al. 2016). 

The enriched Mesorhizobium is closely related to the metformin-degrader Aminobacter 

(Poursat et al. 2019). These genera belong to the family Phyllobacteriaceae whose 

other members are known for degradation of micropollutants such as 

dichlorobenzamide (T’Syen et al. 2015). Most other enriched operational taxonomic 

units are affiliated with yet-to-be classified genera and families, which suggests a wide 

array of taxa potentially involved in the degradation of organic contaminants in the 

hyporheic sediments and highlights the hyporheic zone as a reservoir of hitherto 

undetected microbial diversity. In contrast, some genera exhibited log2 fold change < 

0 in the presence of test compounds relative to unamended controls (Table A8) 

indicating a decrease in their abundance likely due to the potential negative impact of 

the test compounds. Previous studies (Lawrence et al. 2005; Rodríguez et al. 2018) 

have reported such effects of micropollutants on a certain fraction of the indigenous 

environmental microbiota.  
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6.5. Conclusions, limitations, and future perspectives  

 

The threat posed to the aquatic environment by an ever-dynamic catalogue of synthetic 

compounds from households and industry that bypass the conventional wastewater 

treatment systems remains a matter of concern. The hyporheic zone has, therefore, 

emerged as the last line of defence against contamination of near-surface aquifers that 

are important sources of drinking water (Posselt et al. 2020). As an ecotone 

traditionally renowned for robust organic matter decomposition and degradation of 

nutrients via microbial activity, this dissertation sought to evaluate the response of the 

resident microbial community to the emerging micropollutants as well as the factors 

influencing such response. 

The potential of the hyporheic zone microbial community to degrade emerging 

pollutants was evaluated using the model compound ibuprofen that is ubiquitously 

detected in most receiving rivers due to inefficient removal in the lotic surface water 

(Kunkel and Radke 2008). The surface area occupied by the sediment particles was 

hypothesized to host a diverse microbial community capable of ibuprofen degradation. 

The sedimentary matrix and pore spaces represent ideal microbial habitats ensuring 

increased contact time with the wastewater-derived pollutants infiltrating into the 

hyporheic zone. The sediment microcosms amended with ibuprofen efficiently 

degraded the compound (Figure 8). The primary transformation products detected 

(Figure 10), were further degraded suggesting potential mineralization of the 

compound in the hyporheic zone sediments. Refeeding of the microcosms with 

ibuprofen akin to the recurrent discharge from WWTPs resulted in the enrichment of 

specific taxa whose relative abundance significantly increased relative to un-amended 

control setups (Table A1). Moreover, the removal rates of ibuprofen increased with 

each subsequent refeeding regime suggesting that the microbial community was 
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adapting to the presence of ibuprofen. The refeeding and corresponding enrichment of 

ibuprofen-degrading taxa exemplified that the continued supply of TrOCs into the 

hyporheic zone sediments may eventually result in a shift in the microbial community 

structure towards specialized degraders of such compounds. Such an evolution is 

further evidenced by the findings of this dissertation and other recent studies that have 

reported the biodegradation of acesulfame (Castronovo et al. 2017; Kahl et al. 2018; 

Jaeger et al. 2019b; Schaper et al. 2019), hitherto considered recalcitrant and used as 

a stable marker in aquatic environment studies (Buerge et al. 2009).  

The ability of the resident microbial community to degrade ibuprofen in the presence 

of an easily degradable organic carbon source such as acetate further pointed to the 

broad diversity of metabolic mechanisms present in the microbial community. While 

some taxa only degraded acetate, others were shown to degrade both compounds 

(Table A1), suggesting mixed substrate utilization potential and presence of metabolic 

and cometabolic degradation mechanisms within the diverse microbial community. 

Therefore, the results supported Hypothesis 1, on the potential of the hyporheic zone 

to degrade pollutants courtesy of the inherent potential within its diverse resident 

microbiota. 

Factors such as discharge influence supply of dissolved oxygen, nutrients, and organic 

matter to the hyporheic zone. Such factors, in turn, impact biogeochemical cycling and 

associated microbial activity by influencing parameters such as redox potential at the 

microscale. The distribution of oxygen and associated redox influxes create oxic and 

anoxic pockets in the hyporheic zone. This, in turn, creates specialized niches for the 

proliferation of aerobic and anaerobic microorganisms. The evaluation of the effect of 

redox zonation on the microbial associated degradation of TrOCs using the beta-

blocker metoprolol as a model compound revealed specialized taxa and affiliated with 
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Proteobacteria and Bacteroidetes under oxic conditions (Table A3), and 

Proteobacteria, Acidobacteria, Chloroflexi, Firmicutes and Gemmatimonadetes under 

anoxic conditions (Table A5). Moreover, metoprolol transformation in the sediments 

incubated under oxic and anoxic conditions occurred via variable biodegradation 

pathways (Figure 39) with different transformation products formed (Figure 22). The 

results thus supported Hypothesis 2 on the effect of such biogeochemical factors as 

redox zonation on the microbial community dynamics and coupled processes such as 

biotransformation of TrOCs. 

Additionally, the effect of TOC gradients on microbial community dynamics and 

coupled processes such as biotransformation of TrOCs evaluated using a set of 13 

TrOCs supported Hypothesis 2 by demonstrating that sediments with higher TOC 

content exhibit higher removal efficiency of some compounds compared to low-TOC 

sediments. This was linked to the high TOC sediments supporting a higher diverse 

microbial community relative to low-TOC sediment, which likely influenced the 

observed degradation patterns (Figure 28). The correlation between TOC content and 

removal of the micropollutants was, however, not universal and varied among 

compounds. This indicated that other factors, such as the physicochemical properties 

of the individual compounds, also played a role in the interaction dynamics with the 

TOC and microbial communities. Notably, the microbial community in high-TOC 

sediments was relatively stable against the stressor effects of the micropollutants 

compared to the low-TOC sediments whose microbial community registered a decline 

in the relative abundance of most phyla except Proteobacteria. Despite this 

observation, some lower rank taxa within these phyla still increased in relative 

abundance in sediment microcosms with compared to those without the TrOCs, 

suggesting that some taxa within the hyporheic sediment community may be adapted 
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to degrade micropollutants under oligotrophic conditions. Such taxa belonged to the 

families Methylophilaceae, Caldilineaceae, Acidimicrobiaceae, Xanthobacteriaceae, 

Hydrogenophiliaceae, Rhodospirillaceae Gemmatimonadaceae and Rhodocyclaceae. 

Sediment topography influences the supply of dissolved oxygen, nutrients, and organic 

matter to the hyporheic zone at the local scale (Galloway et al. 2019). This was 

hypothesized to promote microbial diversity and activity and the associated removal of 

organic pollutants. Formulation of bedforms on the sediment surface to influence 

hyporheic exchange flows was investigated in recirculating flumes. The results, 

however, showed an increase in HEF did not correlate with an increase in biodiversity 

or transformation of TrOCs as determined from DT50 values with only four out 31 test 

compounds correlating with HEF (Table 19). The diversity of the microbial community 

irrespective of bedform features correlated with 20 out of the 31 compounds tested, 

suggesting microbial diversity in the sediments plays a critical role in the degradation 

of TrOCs. External factors such as the formation of algal biofilms in the flumes during 

the experimental duration may have inhibited hyporheic flow paths through the 

bedforms, in turn affecting oxygen penetration and nutrient supply. This likely 

diminished the efficiency of the bedforms in influencing HEFs. Owing to the mentioned 

limitations, support for hypothesis 3 regarding the influence of HEF on TrOC removal 

was weak. However, the influence of microbial diversity on TrOC removal was evident 

as hypothesized. 

The effect of microbial diversity on TrOC removal supported the recent findings that 

have reported the microbial community structure as a significant determinant and 

potentially an essential predictor of micropollutant degradation capacity in the 

environment. The correlation between taxonomic diversity indices and degradation of 

TrOCs may be attributed to the degradation of most emerging micropollutants 



                                                                                DISCUSSION 

201 
 

seemingly being a rare function where different bacterial taxa produce different 

enzymes involved in the different steps of the metabolic pathways or targeting different 

functional groups in the TrOCs. The "collaborative" activity of these microorganisms 

eventually contributes to the overall degradation of the target compound in a classical 

"the more, the merrier" modus operandi. While this may be the case for most emerging 

TrOCs studied thus far, the degradation of other compounds may require specific 

enzymatic activity found in highly specialized taxa. In such a case, overall low diversity 

within a community may not adversely affect their degradation. Therefore, the microbial 

community interaction with specific compounds needs to be considered. Moreover, as 

bacteria continue to evolve in exposure to these pollutants, as well as through lateral 

gene transfer, functional redundancy, where different bacteria perform a certain 

degradation step through the same or different enzyme activity, may eventually arise 

rendering the correlation between diversity and TrOC degradation invalid. 

Across all experimental setups, both stimulatory and stressor effects of the tested 

compounds were observed among the microbial communities. The decline in alpha 

diversity indices as observed in the metoprolol-amended anoxic microcosms (Figure 

24) for instance suggested the resident microbial community was on the overall 

negatively impacted by the metoprolol amendment, with the degradation of the 

compound associated with only a few taxa (Table A5). While this may at first glance 

be attributed to the use of higher than environmental-relevant concentrations, a similar 

observation was made in the experimental flume setup using TrOC concentrations 

similar to those detected in the natural river Erpe sediment (Posselt et al. 2020). Many 

taxa were either enriched or declined in relative abundance in amended relative to 

unamended samples (Table A8), thus supporting hypothesis 4. Such results have also 

been previously reported in riverine biofilms exposed to TrOC mixtures and were 
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attributed to synergistic and additive effects from the interactions among the test 

compounds (Lawrence et al. 2005). With the hyporheic zone continually receiving 

TrOC cocktails, both nutritive and toxic effects on different fractions of the hyporheic 

sediment microbial communities can, therefore, be expected.  

Though usually occurring in the ng to µg L-1 range, the experiments performed in this 

dissertation used µg L-1 to mg L-1 due to the need to provide sufficient substrate to 

stimulate the growth of degraders. Nevertheless, the degradation of high compound 

concentrations by the hyporheic zone sediment bacterial community in the microcosms 

was corroborated by the detection of degradation intermediates in river Erpe of some 

of the compounds including ibuprofen and metoprolol from the in situ studies (Posselt 

et al. 2018). Moreover, evidence for the capability of microbes to respond to in situ 

relevant, minute concentrations of organic compounds has been reported from 

biosensor studies utilizing isolates obtained by enrichments with high, growth 

supportive substrate concentrations. The biosensor studies suggest that 

concentrations of organic compounds down to the pg L-1 range suffice to induce 

transcription of catabolic genes associated with the degradation of such compounds, 

demonstrating that microbes growing on high substrate concentrations also respond 

to trace quantities of their substrate by consuming it, e.g.(Haque et al. 2013). Thus, we 

predict that the microbes enriched with concentrations higher than usually occurring in 

situ have a high likelihood of being capable of degrading the micropollutants at in situ 

relevant concentrations in the hyporheic zone. However, to sustain biomass, the 

microorganisms likely rely on easily degradable organic carbon sources as primary 

substrates, making cometabolic degradation of TrOCs a more significant removal 

pathway. 
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Diverse hitherto unknown and known microbes were associated with the degradation 

of select organic compounds based on correlative data sets of relative abundance 

values from 16S rRNA gene (whole community) and 16S rRNA ("active") amplicons. 

By exploiting differential abundance data between unamended controls and amended 

samples, the taxa contributing significantly to the differences in the microbial 

community structure were associated positively (enriched) or negatively with the 

respective micropollutants based on the obtained Log2fold change values. To support 

this conclusion, a subset of specific taxa identified as enriched by ibuprofen from the 

relative abundance data was exemplarily analyzed through qPCR through the 

calculation of the ratio of 16S rRNA to 16S rRNA genes as an indicator of potential 

specific activity (Foesel et al. 2014). It was established that among the select taxa, the 

16S rRNA copy numbers were significantly higher in amended relative to unamended 

samples suggesting transcription activity indicative of protein synthesis potential 

(Blazewicz et al. 2013). The isolation of two ibuprofen degraders (Figure 19) identified 

as enriched from the relative abundance data, further provided causality for the 

ibuprofen-enrichment of the two OTUs and their ibuprofen degradation capabilities. 

Thus, by exploiting complementary data from process studies, 16S rRNA and 16S 

rRNA gene amplicon sequencing data, the ratio of 16S rRNA to 16S rRNA genes as 

an indicator of the potential activity of bacterial taxa, and characterization of isolates, 

we provide evidence for many hitherto unknown ibuprofen degraders. Similar 

outcomes could, therefore, be anticipated in the other experiments performed in this 

dissertation. Nevertheless, to capture the functional potential of the actual degraders 

for the increasingly diverse catalogue of emerging micropollutants, studies using 

metatranscriptomics and metaproteomic approaches are preferable. 
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Cumulatively, most taxa associated with the degradation of the TrOCs in this 

dissertation affiliated with Proteobacteria, Acidobacteria, Actinobacteria, 

Bacteroidetes, Chloroflexi, Firmicutes and Gemmatimonadetes suggesting the 

importance of these phyla in the removal of emerging micropollutants in the 

environment. Further analysis of specific members within these phyla enriched by the 

different analyzed compounds may provide further insights into the metabolic potential 

across these phylogenetically diverse taxa. Such candidates may be further isolated 

to serve as model organisms for elucidating TrOC degradation pathways or for 

bioaugmentation purposes in polluted environments and WWTPs. 

In a dynamic environmental matrix such as the hyporheic zone, the influence of 

numerous environmental factors makes estimation of persistence or biodegradability 

of micropollutants challenging to monitor. Using microcosms and mesocosms offers a 

degree of reliability and reproducibility as different parameters can be controlled 

accordingly. Extrapolating some findings from the laboratory to the field is, however, at 

time unreliable. Therefore, to provide a more holistic understanding of how hyporheic 

processes are linked and how they impact on each other, both lab and field studies 

cutting across study disciplines are recommended as envisioned within the 

HypoTRAIN framework.  
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Table A1. Classification of bacterial OTUs enriched by ibuprofen relative to unamended controls sampled at the same time point, and 
closest cultured relatives of OTU representative 16S rRNA gene sequences. Significant (p-adj < 0.05) Log2-fold change > 0 are 
reported as determined by Deseq2. IBU40 and IBU400, ibuprofen amendment with 40 and 400 µM ibuprofen, respectively. IBA40 and 
IBA400, ibuprofen amendment with 40 and 400 µM ibuprofen, respectively, together with 1 mM acetate.Table used with permission 
from Rutere et al. (2020). 

 

Phylum/Subphylum-

level 

Genus-level (OTU No.) Closest cultured relative  Acc. No. a [%] b Log2-fold change 

16S rRNA genes  16S RNA 

- Acetate  + Acetate  - Acetate  + Acetate 

IBU40 IBU400  IBA40 IBA400  IBU40 IBU400  IBA40 IBA400 

Acidobacteria Bryobacter (144) Bryobacter aggregatus AM 887762 

 

92 2.1 -- c  -- --  2.1 2.3  1.8 -- 

 Bryobacter (61)*d Paludibaculum 

fermentans 

NR_134120 93 -- --  -- --  1 2.0  1.8 1.4 

 Bryobacter (115) Bryobacter aggregatus AM887762 90 -- --  -- --  2.1 --  1.5 -- 

 Bryobacter (562) Bryobacter aggregatus AM887762  90 -- --  -- --  -- 2.5  -- 2.5 

 Uncultured subgroup_3 (901) Paludibaculum 

fermentans 

NR_134120 93 -- --  -- --  -- 3.3  2.7 3.8 

 Uncultured subgroup_3 (55) Paludibaculum 

fermentans 

NR_134120 94 -- --  -- --  -- 1.5  -- 3.3 

 Uncultured subgroup_3 (516) Paludibaculum 

fermentans 

NR_134120 93 -- --  -- --  -- 2.2  -- 1.5 

 Blastocatella (126) Blastocatella fastidiosa NR_118350 95 1.3 --  -- --  -- --  -- -- 

 Uncultured subgroup_6 (85) Vicinamibacter silvestris CP011998 87 3.9 --  2.6 --  -- 4.4  -- -- 

 Uncultured subgroup_6 (10) Vicinamibacter silvestris NR_151905 92 1.9 --  -- --  2.6 2.1  -- -- 

 Uncultured subgroup_6 (212) Vicinamibacter silvestris  NR_151905 90 -- --  -- --  3.6 3.7  3 2.5 

 Uncultured subgroup_6 (304) Luteitalea pratensis NR_156918 91 2.6 --  -- --  2.9 --  -- -- 
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 Uncultured subgroup_6 (401) Luteitalea pratensis NR_156918 93 -- --  -- --  2.8 2.9  -- -- 

 Uncultured subgroup_6 (581) Vicinamibacter silvestris  NR_151905 93 -- --  -- --  -- 2.9  -- 2.7 

 Uncultured subgroup_6 (412) Vicinamibacter silvestris  NR_151905 91 -- --  -- --  3.1 2.7  -- -- 

 Uncultured subgroup_6 (147)* Ralstonia solanacearum CP011998 90 1.9 2.0  -- --  -- --  -- -- 

 Uncultured subgroup_6 (85)* Ralstonia solanacearum CP011998 90 -- --  -- --  -- 4.4  -- -- 

 Uncultured subgroup_17 (39) Vicinamibacter silvestris  NR_151905 88 3.1 2.2  2.6 1.7  1.7 2  1.6 -- 

 Uncultured subgroup_22 (329) Anaeromyxobacter 

dehalogenans  

NR_074927 86 3.3 --  -- --  4.4 2.8  3.9 -- 

 Uncultured subgroup_22 (340) Thermaerobacter 

marianensis 

NR_074944 86 -- --  -- --  3.1 --  -- 2 

 Uncultured subgroup_22 (57) Vicinamibacter silvestris  NR_151905 85 1.8 2  -- --  2.2 3.2  2.6 2.2 

                

Actinobacteria Uncultured 

Sva0996_marine_group (83) 

 

Acidimicrobium 

ferrooxidans 

NR_074390 

 

92 2.1 --  -- --  2.6 --  2.2 2 

 Aeromicrobium (332) 

 

Aeromicrobium 

panaciterrae 

 

NR_041382 

 

100 4 --  -- --  -- --  -- -- 

 Marmoricola (69) 

 

Marmoricola 

pocheonensis  

NR_108597 

 

99 1.9 --  -- --  -- --  -- -- 

 Nocardioides (372) 

 

Nocardioides 

intraradicalis 

 

NR_152019 

 

97 2.6 2.9  2.5 --  -- --  -- -- 

 Nocardioides (210) Nocardioides sediminis 

 

NR_044228 

 

100 1.9 --  -- --  2.9 --  -- -- 

 Nocardioides (102) Nocardioides islandensis 

 

NR_044235 

 

96 -- 1.7  1.6 1.8  -- --  -- -- 

 Uncultured MB-A2-108 (94) 

 

Kitasatospora kazusensis 

 

NR_041539 

 

92 -- --  -- --  -- 3.7  3.3 2.9 
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      Iamia (188) Aquihabitans 

daechungensis  

NR_132289 99 -- 2.7  2.8 2.9  2.5 3.7  3 3.7 

 Iamia (362) Iamia majanohamensis 

 

NR_041634 

 

94 -- --  -- --  3.3 --  -- -- 

 Uncultured Acidimicrobiales 

(1265) 

 

Aciditerrimonas 

ferrireducens 

 

NR_112972 

 

94 -- --  -- 4.2  -- --  -- 4.8 

 Uncultured 480-2(627) 

 

Solirubrobacter 

phytolaccae 

 

NR_133858 

 

90 -- --  -- --  3.6 --  3.5 -- 

 Solirubrobacter (29) Solirubrobacter 

ginsenosidimutans 

 

NR_108192  

 

99 -- --  -- --  2.8 --  -- -- 

 Sva0996_marine_group(441) 

 

Acidimicrobium 

ferrooxidans 

 

NR_074390 

 

91 -- --  -- --  2.9 --  -- -- 

 Flavobacterium (633) Flavobacterium cheniae 

 

NR_044198 

 

97 -- 5.3  5.4 6.7  -- --  -- -- 

 Flavobacterium (2394) Flavobacterium 

cheonhonense 

 

NR_125552 

 

100 -- 4.9  -- 4.7  -- --  -- -- 

 Uncultured NS9_marine_group 

(438) 

 

Vicingus serpentipes 

 

NR_159281 

 

87 -- 3.1  -- 3.6  -- --  -- 4.1 

 Uncultured NS9_marine_group 

(277) 

 

Phaeocystidibacter 

marisrubri 

 

NR_136475 

 

86 -- 3.2  -- 3.6  -- 3.1  -- 3.5 

 Rhodococcus (459) 

 

Rhodococcus koreensis LT838098 

 

100 -- 4.4  -- 4.5  4.3 4.3  3.7 5.4 

 Fodinicola (15) Streptomyces aomiensis NR_112998 97 -- 1.4  -- 1  1.3 1.8  1.8 1.6 
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 Nocardioides (405) Nocardioides opuntiae NR_133796 97 -- 3.9  3.8 3.4  -- --  -- -- 

 Uncultured Acidimicrobiales 

(612) 

Ilumatobacter 

nonamiensis  

NR_112713 92 -- --  4.1 --  -- --  3.7 3.7 

 Uncultured Actinobacteria 

(359) 

Longivirga aurantiaca NR_159886 91 -- 2.8  -- 2.9  -- --  -- -- 

      Uncultured MB-A2-108 (137) Streptacidiphilus 

hamsterleyensis  

 

NR_133867 90 1.7 1.8  -- --  3.3 4  3.2 -- 

 CL500-29_marine_group (28) 

 

Ilumatobacter 

nonamiensis 

NR_112713 

 

92 -- --  -- 2.2  -- --  1.9 2.1 

 Uncultured Acidimicrobiales 

(569) 

 

Aciditerrimonas 

ferrireducens 

 

NR_112972 

 

94 -- --  -- --  -- --  3.2 3.5 

 Uncultured intrasporangiaceae 

(19)* 

Knoellia flava MG205530 99 -- --  1.3 1.3  -- --  -- -- 

 Gaiella (45)* Gaiella occulta NR_118138 97 -- --  -- --  1.7 --  -- -- 

                

Armatimonadetes Uncultured Armatimonadetes 

(371) 

Fimbriimonas ginsengisoli  NR_121726 88 4.7 --  -- --  -- --  -- -- 

                

Bacteroidetes Chryseolinea (165) Chryseolinea serpens NR_108511 96 4.3 4  5 4.4  -- 3.4  3.6 -- 

 Chryseolinea (483) Chryseolinea serpens NR_108511 93 3.4 4.1  4.4 --  -- --  -- -- 

 Chryseolinea (231) Chryseolinea serpens NR_108511 92 2.6 2.9  3.3 2.5  -- --  -- -- 

 Chryseolinea (1195)    3.8 --  4.1 --  -- --  -- -- 

 Uncultured Rhodothermaceae 

(363) 

 

Natronotalea proteilytica 

 

NR_158101 

 

88 4.5 --  -- --  5.1 --  -- -- 

 Ferruginibacter (499) Ferruginibacter lapsinanis  NR_044589 96 3.9 5.5  5.4 6.9  -- --  -- -- 
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 Ferruginibacter (378) Ferruginibacter 

yonginensis 

NR_133743 96 -- 3.1  -- --  -- --  -- -- 

 Flavobacterium (2394) Flavobacterium 

cheonhonense 

NR_125552 100 -- 6.5  -- --  -- --  -- -- 

 Flavobacterium (376) Flavobacterium 

inkyongense  

NR_156036 99 4.9 --  -- 5.6  -- --  -- -- 

 Uncultured Cytophagaceae 

(451) 

Chryseolinea serpens NR_108511 91 4.4 --  4.5 --  -- --  -- -- 

 Ferruginibacter (256) Ferruginibacter 

alkalilentus  

NR_044588 97 2.5 2.6  3 3.1  -- --  -- -- 

 Uncultured Saprospiraceae 

(380) 

 

Phaeodactylibacter luteus 

 

NR_136808  

 

88 -- 2.9  -- 3.2  -- 2.3  -- -- 

 Uncultured Saprospiraceae 

(383) 

 

Portibacter lacus 

 

NR_113569 

 

90 4.4 3.7  -- 3.8  -- --  -- -- 

 Uncultured Saprospiraceae 

(472) 

 

Phaeodactylibacter 

xiamenensis 

 

NR_134132 

 

88 -- 4.5  3.6 3.9  -- --  -- -- 

 Uncultured Sphingobacteriales 

(711) 

Ferruginibacter profundus NR_148259 90 -- 5.9  4.7 6.5  -- --  -- -- 

 Uncultured env.OPS_17 (726) Lentimicrobium 

saccharophilum  

NR_149795 87 -- 6.6  -- 7  -- --  -- 5.7 

 Uncultured env.OPS_17 (876) Mucilaginibacter terrae NR_158094 85 -- 5.7  5.1 --  -- --  -- -- 

 Uncultured env.OPS_17 (548) Anseongella 

ginsenosidimutans 

NR_148803 85 4.1 --  -- --  4.3 --  -- -- 

 Uncultured KD3-93 (46) Geofilum rhodophaeum  NR_158091 89 -- 7.5  -- --  -- 7.8  -- 5.4 

 Uncultured  

NS11-12_marine_group (616) 

Ekhidna lutea 

 

NR_115061 

 

89 -- 5.3  4 4.9  -- --  -- -- 

 PHOS-HE51 (1186) Owenweeksia 

hongkongensis 

 

NR_074100 

 

88 -- 5  -- 5.3  -- --  -- -- 



                                                                                APPENDIX 

241 
 

 Uncultured Sphingobacteriales 

(409) 

Ferruginibacter profundus  NR_148259 88 3.7 --  2.8 --  5.1 --  -- -- 

 Terrimonas (139) Terrimonas lutea  NR_041250 98 2.7 3.5  4.3 4.6  -- --  -- -- 

 Terrimonas (149) Terrimonas soli  NR_159891 98 -- --  4.2 4.3  -- --  -- -- 

 Terrimonas (253) Terrimonas arctica NR_134213 98 -- 2.4  2.7 2.4  -- --  -- -- 

     -- --  -- --       

Cand_div_BRC1 Uncultured 

Candidate_div_BRC1 (542) 

Desulfomonile limimaris NR_025079 81 -- --  -- --  6.4 --  -- -- 

 Uncultured 

Candidate_div_BRC1 (1346) 

Desulfosalsimonas 

propionicica 

NR_115678 80 -- --  -- --  5.5 --  -- -- 

                

Gemmatimonadetes Uncultured 

Gemmatimonadaceae (124) 

Gemmatimonas 

phototrophica  

NR_136770 91 3 3.9  3.8 3.8  4.3 4.6  4.4 3.7 

 Uncultured 

Gemmatimonadaceae (32) 

Gemmatimonas 

phototrophica 

 

NR_136770 86 2.8 1.7  1.5 1.5  3.3 3.2  2.6 2.1 

 Uncultured 

Gemmatimonadaceae (52) 

Gemmatimonas 

phototrophica 

 

NR_136770 85 2.2 --  -- --  2.9 2.7  2.2 1.8 

 Uncultured 

Gemmatimonadaceae (251) 

Gemmatimonas 

aurantiaca  

NR_074708 85 4.3 4  -- --  3.9 4.5  3.2 2.7 

 Uncultured 

Gemmatimonadaceae (269) 

Gemmatimonas 

phototrophica 

 

NR_136770 91 3 --  -- 3.3  5 5.6  5.2 4.6 

 Uncultured 

Gemmatimonadaceae (299) 

Gemmatimonas 

aurantiaca 

 

NR_074708  

 

85 2.5 --  -- --  3.5 --  2.8 2.6 

 Uncultured 

Gemmatimonadaceae (388) 

Gemmatirosa 

kalamazoonesis 

 

NR_132675 

 

89 -- --  -- --  3 2.7  2.3 -- 
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Chlorobi Uncultured BSV26 (580) Ignavibacterium album NR_074698 86 4.6 --  -- --  -- --  -- -- 

 Uncultured BSV26 (93) Ignavibacterium album NR_074698 82 -- 2.1  2.6 2  -- --  2.7 2.5 

 Uncultured BSV26 (413) Ignavibacterium album NR_074698 82 -- 4.2  3.6 3.9  -- --  -- -- 

 Uncultured OPB56 (740) Hippea maritima  NR_119289 81 -- --  -- 4.9  -- 4.9  4.5 5.2 

 Uncultured SJA-28 (284) Melioribacter roseus NR_074796 83 1.9 --  -- --  -- --  -- -- 

                

Chloroflexi Uncultured Caldilineaceae 

(110) 

Litorilinea aerophila NR_132330 88 -- --  -- --  3.5 --  -- -- 

 Uncultured KD4-96 (27) Dehalogenimonas 

alkenigignens 

NR_109657 86 1.5 --  -- --  1.6 1.8  -- -- 

 Uncultured Anaerolineaceae 

(233) 

 

Thermanaerothrix 

daxensis 

 

NR_117865 

 

88 2.7 --  -- --  3.9 --  2.8 2.5 

 Uncultured Anaerolineaceae 

(611) 

 

Thermomicrobium 

roseum 

 

NR_044678 

 

84 4.3 --  4.8 4.8  4.5 --  3.9 -- 

 Uncultured Anaerolineaceae 

(628) 

 

Bellilinea caldifistulae 

 

NR_041354 

 

84 3.4 --  -- --  3.1 --  -- -- 

 Unclassified Gitt-GS-136 (127) 

 

Hydrogenispora 

ethanolica 

 

NR_125455 

 

85 1.8 --  -- --  2.4 --  -- -- 

 Uncultured KD4-96 (96) 

 

Hydrogenispora 

ethanolica 

 

NR_125455 

 

85 1.6 --  -- --  2.3 2.1  -- -- 

 Unclassified JG30-KF-CM45 

(145) 

 

Sphaerobacter 

thermophilus 

 

NR_074379  

 

88 2.1 2  -- 2.2  2.8 --  -- -- 

 Uncultured KD4-96* (8) Dehalogenimonas 

lykanthroporepellens 

NR_074337 86 -- --  -- --  -- 1.5  -- -- 



                                                                                APPENDIX 

243 
 

 Uncultured KD4-96* (16) Dehalogenimonas 

alkenigignens 

JQ994267 86 -- --  -- --  1.2 1.3  -- 1.3 

                

Latescibacteria Uncultured Latescibacteria (95) Desulfonatronum 

thiosulfatophilum  

NR_116694 81 1.8 2.3  -- --  5 4.6  4.1 3.3 

 Uncultured Latescibacteria 

(154) 

Acidicapsa acidisoli  NR_148580 88 -- 4.6  4.8 4.3  4.8 5.4  4.8 4.3 

 Uncultured Latescibacteria 

(308) 

Syntrophorhabdus 

aromaticivorans 

NR_041306 84 2.6 --  -- --  2.6 --  -- -- 

 Uncultured Latescibacteria 

(326) 

Desulfopila inferna  NR_115066 83 -- --  -- --  4.2 4.1  3.9 3.3 

 Uncultured Latescibacteria 

(342) 

Desulfobulbus 

mediterraneus  

NR_025150 84 -- --  -- --  2.1 --  2.3 -- 

 Uncultured Latescibacteria 

(453) 

Desulfobulbus 

oligotrophicus 

NR_156089 

 

85 -- --  -- --  3 2.8  2.4 -- 

 Uncultured Latescibacteria 

(503) 

Pseudomaricurvus 

alkylphenolicus  

NR_114390 81 -- --  -- --  3.9 4.2  4 3.5 

 Uncultured Latescibacteria 

(534) 

Thermoanaerobaculum 

aquaticum 

 

NR_109681 

 

83 -- --  -- --  4.4 --  3 -- 

 Uncultured Latescibacteria 

(706) 

Desulfotalea psychrophila 

 

NR_028729 

 

83 -- --  -- --  3.1 3.8  3.6 3.3 

 Uncultured Latescibacteria 

(732) 

Syntrophus gentianae  NR_029295 82 -- --  -- --  4.3 3.9  4.5 3.9 

 Uncultured Latescibacteria 

(864) 

Desulfobulbus 

oligotrophicus 

NR_156089  

 

85 -- --  -- --  4.1 3.6  3.9  

 Uncultured Latescibacteria 

(422) 

Desulfotalea psychrophile  NR_028729 82 -- --  -- --  3.7 3.9  3.2 3.2 

 Uncultured Latescibacteria 

(1054) 

Desulfotalea psychrophila NR_028729 83 -- --  -- --  5.5 --  -- -- 

                

Nitrospirae Nitrospira (7) Nitrospira moscoviensis NR_029287 98 1.4 2.7  1.9 2.4  1.4 2  -- 1.6 
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 Nitrospira (23) Nitrospira moscoviensis NR_029287 94 -- 2.3  2.3 2.1  1.6 --  -- -- 

 Nitrospira (26) Nitrospira lenta NR_148573 100 -- --  2.4 2.4  -- --  -- -- 

                

Proteobacteria                

  Alphaproteobacteria Sphingobium (17) Sphingobium czechense NR_118306 99 3.7 --  -- --  -- --  -- 5.4 

 Hyphomicrobium (60) Hyphomicrobium facile NR_027610 98 1.6 1.8  -- 2  -- --  -- -- 

 Hyphomicrobium (347) Hyphomicrobium facile NR_027610 96 -- --  -- --  5.2 4.8  4 4.9 

 Hirschia (62) Asprobacter aquaticus  NR_159164  2.4  2.9  2.1 2.5  -- --  -- -- 

 Novosphingobium (64) Novosphingobium 

fuchskuhlense 

NR_118270 99 6.1 --  6.1 3.3  4.4 --  4.3 -- 

 Pedomicrobium (84) Pedomicrobium 

manganicum 

NR_104841 96 1.7 1.8  -- 2  -- --  -- 2.3 

 Uncultured Rhizobiales (335) Blastochloris viridis NR_117911  95 2.1 2.6  -- 2.9  -- --  -- -- 

 Defluviimonas (202) Defluviimonas aestuarii NR_118305 98 2.2 2.8  2.8 2.6  -- --  -- -- 

 Hyphomicrobium (129) Hyphomicrobium aestuarii NR_104954 96 2.1 --  -- --  2.5 --  -- 1.7 

 Uncultured AKYH478 (645) Lacibacterium aquatile NR_125556 94 -- --  -- --  -- 5  -- -- 

 Uncultured F0723 (1059) Phreatobacter stygius NR_158009 98 -- --  -- --  -- 6.2  -- -- 

 Uncultured MNG7 (35) Nordella oligomobilis  NR_114615 96  2.2  2 2.3  -- --  -- -- 

 Uncultured Phyllobacteriaceae 

(87) 

Carbophilus carboxidus  NR_104931 91 -- --  5.9 --  -- 3.4  -- -- 

 Uncultured 

Sphingomonadaceae (1) 

Novosphingobium 

chloroacetimidivorans 

 

NR_134105 99 -- --  4.6 6  -- 5.1  3.3 6.1 

 Uncultured 

Sphingomonadaceae (119) 

Sphingorhabdus 

wooponensis  

NR_109148 99 3.7 4.7  5.2 4.4  -- --  -- -- 

 Sphingopyxis (553) Sphingopyxis fribergensis  NR_137271 100 -- 4  4.2 5  -- --  -- -- 

 Woodsholea (181) Aquidulcibacter 

paucihalophilus  

NR_156862 91 5.2 5.4  5.4 6.1  2.9 --  -- 2.3 

 Woodsholea (183) Roseitalea porphyridii  NR_156092 91 3 3.2  3.3 3.6  -- --  -- -- 
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 Woodsholea (615)    -- 3.2  -- 3.1  -- --  -- -- 

 Uncultured Rhizobiaceae (100) Rhizobium azooxidifex NR_144599  99 -- 3.5  3 2.7  -- --  -- -- 

 Uncultured AKYH478 (645) 

 

Lacibacterium aquatile 

 

NR_125556 

 

94 -- 4  -- 4.2  -- 4.9  -- -- 

 Defluviimonas (202)* Defluviimonas aestuarii NR_118305 99 2.2 2.8  2.8 2.6  -- --  -- -- 

   Deltaproteobacteria Bdellovibrio (63) Bdellovibrio exovorus  NR_102876 98 4.7 --  6.9 --  5.6 7.9  6.6 -- 

 Haliangium (479) Haliangium tepidum NR_024781 91 -- --  -- --  3.9 --  4 3.3 

 Haliangium (248) Kofleria flava  NR_041981 92 5 --  -- --  6.2 --  3.3 -- 

 Haliangium (457) Kofleria flava  NR_041981 93 3.9 --  -- --  5 3.7  4.4 4.7 

 Haliangium (739) Kofleria flava  NR_041981 90 -- --  -- --  3.8 4  4.1 4.6 

 OM27-Clade (166) Rhodomicrobium vannielii 

 

NR_074186 97 -- 6.3  4.6 --  -- 4.6  -- 6.4 

 Anaeromyxobacter (220) Anaeromyxobacter 

dehalogenans 

 

NR_074927  

 

92 -- --  3.2 --  1.9 1.6  1.5 -- 

 Anaeromyxobacter (82)* Anaeromyxobacter 

dehalogenans 

FJ190057 95 -- --  -- --  1.2 1.6  -- -- 

 Sandaracinus (260) Sandaracinus 

amylolyticus  

NR_118001 94 -- --  -- --  7.8 --  7.1 -- 

 Sandaracinus (382) Sandaracinus 

amylolyticus  

NR_118001 95 -- --  -- 4.8  -- 3.4  5.6 5 

 Sorangium (709) Chondromyces 

lanuginosus  

NR_025345 95 -- --  -- --  4.9 3.6  4.5 4.9 

 Sorangium (1348) Labilithrix luteola  NR_126182 95 -- --  -- --  6.1 --  6.4 -- 

 Sorangium (352) Labilithrix luteola  NR_126182 96 -- --  3.4 --  -- 3.2  -- -- 

 Uncultured Cystobacteraceae 

(203) 

 

Vitiosangium cumulatum 

 

NR_156939  

 

94 -- --  3.9 4.6  -- 2.5  -- 2.6 

 Uncultured Sandaracinaceae 

(33) 

Sandaracinus 

amylolyticus  

NR_118001 91 6.3 5.8  6.8 6.5  8.3 6.6  8.4 7.8 
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 Uncultured Sandaracinaceae 

(404) 

Sandaracinus 

amylolyticus  

NR_118001 92 -- --  -- --  4.2 --  5.9 4.4 

 Uncultured Sandaracinaceae 

(686) 

Sandaracinus 

amylolyticus  

NR_118001 89 -- --  -- --  -- 3.7  3.9 4.8 

 Uncultured Sandaracinaceae 

(240) 

Sandaracinus 

amylolyticus  

NR_118001 90 4.3 5.5  4.3 6  5.2 4.3  4.6 4.8 

 Uncultured Sandaracinaceae 

(764) 

Sandaracinus 

amylolyticus  

NR_118001 88 -- --  -- --  6.2 --  6 -- 

 Uncultured Sh765B-TzT-29 

(414) 

Desulfonatronum 

parangueonense 

NR_159236 91 -- --  -- --  4.1 --  3.9 4.3 

 Uncultured δ-bacteria (105) Anaeromyxobacter 

dehalogenans  

NR_074927 89 -- --  5.5 --  -- 7.5  -- -- 

 Uncultured δ-bacteria (54) Phaselicystis flava NR_044523 89 -- --  -- --  5.0 5.0  -- 4.5 

 Phaselicystis (163)* Jahnella thaxteri NR_117461 95 -- --  -- --  -- --  -- 8.2 

                

Gammaproteobacteria 

(Betaproteobacterales) 

Hydrogenophaga (9) Hydrogenophaga defluvii  NR_029024 99 4.2 4.2  4.3 5.8  6 4.8  5.5 6.7 

 Leeia (513) Annwoodia aquaesulis  NR_044793 98 -- 5  -- --   --  2.1 -- 

 Piscinibacter (14) Piscinibacter aquaticus  NR_043921 99 2.5 3.5  3.1 3.5  3.7 2.3  2.4 2.8 

 Rhizobacter (123) 

 

Rhizobacter profundi  NR_149234 98 -- 5.7  -- 5.3  3 4.4  2.9 4.7 

 Uncultured Comamonadaceae 

(4) 

Kinneretia asaccharophila  NR_115151 99 1.4 2.6  2.3 3  2.2 1.8  1.8 2.7 

 Uncultured Comamonadaceae 

(36) 

Azohydromonas lata  NR_114103 98 3.1 4  3.4 4.1  4.6 4.3  3.3 4.4 

 Uncultured Comamonadaceae 

(113) 

Variovorax 

boronicumulans 

 

NR_114214 

 

98 3.1 --  4.4 5.8  -- --  -- -- 

 Uncultured Comamonadaceae 

(152) 

Azohydromonas lata 

 

NR_114103 

 

98 -- --  -- --  2.9 2.5  2.1 2.8 

 Uncultured Comamonadaceae 

(1113) 

Rhodoferax antarcticus NR_104835 97 3.8 --  -- 5.1  -- 4  -- 4.1 
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 Uncultured Comamonadaceae 

(12)* 

Aquincola tertiaricarbonis MH844953 99 -- 1.3  -- 1.6  -- 1.0  -- 1.0 

 Azohydromonas (43) 

 

Zhizhongheella caldifontis 

 

NR_134232 

 

98 -- 2.7  -- 3.1  1.8 2.1  1.9 2.8 

 Uncultured Gallionellaceae 

(320) 

Sideroxydans 

lithotrophicus 

NR_074731 95 -- 2.4  2.4 2.2  -- --  -- -- 

 Uncultured 

Nitrosomonadaceae (20) 

Collimonas fungivorans  NR_028007 93 -- 1.8  1.3 2  -- --  -- -- 

 Uncultured 

Nitrosomonadaceae (350) 

Herbaspirillum 

chlorophenolicum  

NR_114143 91 -- 3.7  2.8 3.8  -- --  -- -- 

 Uncultured 

Nitrosomonadaceae (92)* 

Nitrosospira multiformis NR_074736 92 -- --  1.1 --  -- --  -- -- 

 Uncultured Oxalobacteraceae 

(215) 

Herbaspirillum 

autotrophicum  

NR_113747 98 -- 4  5.8 6.1  -- --  5.4 5.1 

 Vogesella (44) 

 

Vogesella indigofera 

 

NR_040800 

 

100 -- --  4.7 5.7  -- --  3.5 4.3 

 Dechloromonas (138) 

 

Dechloromonas hortensis 

 

NR_042819 

 

98 -- --  3.1 3.3  -- --   1.9 

 Thauera (40) 

 

Thauera humireducens 

 

NR_109534  

 

99 -- --   5.3  -- --  2.7 4.8 

 Uncultured SC-I-84 (89) 

 

Robbsia andropogonis 

 

NR_104960  

 

91 -- --   1.4  -- 2.7  2.3 3.4 

 Uncultured SC-I-84 (354) 

 

Tepidimonas thermarum 

 

NR_042418 

 

91 -- --   2  -- --  -- 4.1 

 Uncultured β-proteobacteria 

(66) 

Derxia gummosa 

 

NR_114127 93 -- --   2  -- --  -- 2.6 

 Zoogloea (266)* Zoogloea ramigera MK138653 100 -- --  -- --  -- --  -- 3.1 

 Acidiferrobacter (67) Sulfuricaulis limicola NR_147747 93  1.8  1.4 1.4  -- --  -- -- 
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 Arenimonas (520) Arenimonas subflava  NR_135888 97 5.3 --  4.7 4.7  4.5 4.7  4.1 4.1 

 Arenimonas (357) Arenimonas subflava  NR_135888 99  5.6  4.4 --  4.8 --  3.9 4.5 

 Pseudomonas (24) Pseudomonas migulae  NR_114223 99 4.5 6.2  6.8 --  3 3.1  4.6 5.4 

 Unclutured 

Pseudomonadaceae (3)* 

Pseudomonas 

linyingensis 

MG576046 100 -- --  5.0 6.6  -- --  3.4 7.8 

 Thermomonas (58) Thermomonas carbonis  NR_134219 97 2.5 3.6  3.4 4  -- --  -- -- 

 Uncultured 

Xanthomonadaceae (70) 

Dyella marensis NR_042691 94 -- --  2.8 1.8  -- --  -- -- 

 Uncultured γ-proteobacteria 

(452) 

Permianibacter 

aggregans  

NR_134131 96 -- 4.7  4.2 4.5  4.5 4.4  5.6 3.9 

 Uncultured γ-proteobacteria 

(541) 

Permianibacter 

aggregans  

NR_134131 93 -- --  5.3 --  5.1 --  5.9 -- 

 Uncultured γ-proteobacteria 

(505) 

Steroidobacter 

denitrificans 

 

NR_044309  

 

90 -- 4.4  3.4 3.7  -- --  -- -- 

 Uncultured γ-proteobacteria 

(715) 

Pseudomonas 

reidholzensis  

NR_157777 91 6.3 --  -- 5.1   4.4  5.2 4.7 

 Uncultured γ-proteobacteria 

(1758) 

Sulfuriflexus mobilis NR_152000 90 6.3 --  -- --  -- --  -- -- 

 Acidiferrobacter (196) 

 

Acidiferrobacter 

thiooxydans 

 

NR_114629 

 

90 1.6 2  -- 1.7  -- --  -- -- 

                

Saccharibacteria Uncultured Saccharibacteria 

(980) 

Alkaliphilus 

metalliredigens 

NR_074633 81 4.1 --  4.9 --  -- --  -- -- 

     -- --  -- --  -- --  -- -- 

Verrucomicrobia Prosthecobacter (162) Prosthecobacter 

vanneervenii  

NR_026022 97 3.5 6.8  -- 6  -- 3.8  -- 2.9 

 Verrucomicrobium (903) Verrucomicrobium 

spinosum 

NR_026266 87 -- 4.3  -- --  -- 3.8  -- -- 

 Uncultured DEV007 (1517) Roseibacillus ponti NR_041622 88 -- --  5.5   -- --  -- -- 
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Unclassified Uncultured bacterium (315)* Thiomonas islandica NR_116394 80 6.5 --  5.1 --  -- --  -- -- 

 Uncultured bacterium (255)* Negadavirga shengliensis 

 

NR_136439 81 -- --  -- --  4.1 6.2  -- 3.7 

 

a Gene bank accession number. 

b Similarity of OTU representative 16S rRNA gene sequence to that of closest cultured relative.  

c Non-significant differential abundance between treatment and unamended controls. 

d Significant (p-adj < 0.1) Log2-fold change > 0 are reported as determined by Deseq2. 
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Table A2. Relative abundance of bacterial OTUs from the original microbial community enriched by 40 and 400 µM ibuprofen treatments 
at DNA and RNA levels under oxic conditions after incubation. 0, represents unamended samples and 40 and 400 correspond to samples 
amended with 40 and 400 µM ibuprofen, respectively. 0’, 3’, and 5’ correspond to samples obtained at the start of the incubation, and 
after the third and fifth refeeding, respectively. Data represents the mean of triplicate samples in % of total rarified reads (uniform 
sequencing depth of 10,767 per sample) ± standard error of mean (SEM). Table used with permission from Rutere et al. (2020). 

 

Phylum/Subphylum-level Genus-level (OTU No.)                                                                                               DNA 

  0_0‘ 0_3‘ 0_5‘ 40_3‘ 40_5‘ 400_3‘ 400_5‘ 

Acidobacteria Bryobacter (144) 0.28 ± 0.05 0.04 ± 0.00 0.12 ± 0.02 0.15 ± 0.02 0.17 ± 0.02 0.10 ± 0.02 0.09 ± 0.03 

Bryobacter (61) 0.07 ± 0.03 0.05 ± 0.00 0.11 ± 0.01 0.1 ± 0.02 0.09 ± 0.00 0.12 ± 0.01 0.17 ± 0.04 

Bryobacter (115) 0.25 ± 0.06 0.03 ± 0.01 0.23 ± 0.02 0.06 ± 0.01 0.09 ± 0.02 0.07 ± 0.00 0.09 ± 0.01 

Bryobacter (562) 0.01 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.01 ± 0.01 0.05 ± 0.02 

Uncultured subgroup_3 (901) 0.03 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.02 ± 0.01 

Uncultured subgroup_3 (55) 0.00 ± 0.00 0.11 ± 0.01 0.26 ± 0.05 0.07 ± 0.02 0.14 ± 0.03 0.08 ± 0.02 0.18 ± 0.02 

Uncultured subgroup_3 (516) 0.01 ± 0.01 0.01 ± 0.00 0.03 ± 0.01 0.01 ± 0.00 0.03 ± 0.01 0.01 ± 0.00 0.02 ± 0.00 

Blastocatella (126) 0.16 ± 0.02 0.17 ± 0.00 0.27 ± 0.01 0.16 ± 0.01 0.45 ± 0.04 0.19 ± 0.01 0.61 ± 0.12 

Uncultured subgroup_6 (85) 0.05 ± 0.01 0.02 ± 0.01 0.05 ± 0.01 0.13 ± 0.02 0.34 ± 0.12 0.09 ± 0.03 1.09 ± 0.43 

Uncultured subgroup_6 (10) 0.01 ± 0.00 0.23 ± 0.05 0.86 ± 0.12 0.48 ± 0.03 0.92 ± 0.04 0.52 ± 0.01 1.39 ± 0.22 

Uncultured subgroup_6 (212) 0.21 ± 0.03 0.03 ± 0.01 0.11 ± 0.01 0.09 ± 0.01 0.11 ± 0.02 0.06 ± 0.00 0.11 ± 0.01 

Uncultured subgroup_6 (304) 0.00 ± 0.00 0.01 ± 0.00 0.04 ± 0.00 0.08 ± 0.00 0.10 ± 0.01 0.05 ± 0.02 0.08 ± 0.01 

Uncultured subgroup_6 (401) 0.01 ± 0.01 0.04 ± 0.01 0.04 ± 0.00 0.07 ± 0.02 0.07 ± 0.02 0.09 ± 0.02 0.12 ± 0.02 

Uncultured subgroup_6 (581) 0.03 ± 0.01 0.03 ± 0.00 0.1 ± 0.02 0.02 ± 0.01 0.05 ± 0.01 0.01 ± 0.00 0.03 ± 0.00 

Uncultured subgroup_6 (412) 0.02 ± 0.00 0.04 ± 0.01 0.09 ± 0.03 0.08 ± 0.02 0.15 ± 0.02 0.08 ± 0.02 0.05 ± 0.02 

Uncultured subgroup_6 (147) 0.04 ± 0.00 0.06 ± 0.01 0.05 ± 0.01 0.11 ± 0.02 0.23 ± 0.05 0.10 ± 0.01 0.17 ± 0.02 

Uncultured subgroup_6 (85) 0.05 ± 0.01 0.02 ± 0.01 0.05 ± 0.01 0.13 ± 0.02 0.34 ± 0.12 0.09 ± 0.03 1.09 ± 0.43 

Uncultured subgroup_17 (39) 0.00 ± 0.00 0.09 ± 0.02 0.70 ± 0.06 0.54 ± 0.07 0.89 ± 0.09 0.42 ± 0.02 0.60 ± 0.17 

Uncultured subgroup_22 (329) 0.01 ± 0.01 0.01 ± 0.02 0.06 ± 0.01 0.06 ± 0.01 0.11 ± 0.01 0.04 ± 0.02 0.03 ± 0.01 

Uncultured subgroup_22 (340) 0.01 ± 0.01 0.01 ± 0.01 0.13 ± 0.01 0.03 ± 0.01 0.05 ± 0.00 0.04 ± 0.00 0.02 ± 0.01 
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Uncultured subgroup_22 (57) 0.34 ± 0.03 0.04 ± 0.00 0.35 ± 0.06 0.17 ± 0.03 0.17 ± 0.05 0.17 ± 0.01 0.25 ± 0.04 

Actinobacteria Uncultured Sva0996_marine_group (83) 0.12 ± 0.01 0.1 ± 0.00 0.20 ± 0.02 0.24 ± 0.05 0.46 ± 0.03 0.22 ± 0.05 0.38 ± 0.06 

Aeromicrobium (332) 0.04 ± 0.01 0.00 ± 0.00 0.02 ± 0.01 0.01 ± 0.00 0.11 ± 0.07 0.01 ± 0.01 0.25 ± 0.13 

Marmoricola (69) 0.31 ± 0.09 0.05 ± 0.01 0.04 ± 0.02 0.20 ± 0.02 0.22 ± 0.05 0.14 ± 0.04 0.20 ± 0.10 

Nocardioides (372) 0.00 ± 0.00 0.02 ± 0.00 0.05 ± 0.02 0.09 ± 0.01 0.13 ± 0.02 0.14 ± 0.01 0.10 ± 0.02 

Nocardioides (210) 0.07 ± 0.02 0.04 ± 0.01 0.02 ± 0.00 0.15 ± 0.02 0.15 ± 0.03 0.14 ± 0.05 0.16 ± 0.09 

Nocardioides (102) 0.07 ± 0.01 0.15 ± 0.01 0.23 ± 0.00 0.39 ± 0.02 0.21 ± 0.01 0.46 ± 0.01 0.28 ± 0.09 

Uncultured MB-A2-108 (94) 0.22 ± 0.03 0.24 ± 0.07 0.39 ± 0.03 0.36 ± 0.01 0.41 ± 0.02 0.30 ± 0.04 0.21 ± 0.00 

Iamia (188) 0.15 ± 0.03 0.03 ± 0.01 0.05 ± 0.01 0.10 ± 0.01 0.08 ± 0.01 0.18 ± 0.03 0.15 ± 0.02 

Iamia (362) 0.06 ± 0.00 0.04 ± 0.01 0.02 ± 0.00 0.06 ± 0.02 0.13 ± 0.04 0.04 ± 0.01 0.08 ± 0.01 

Uncultured Acidimicrobiales (1265) 0.05 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.00 ± 0.00 0.03 ± 0.01 0.01 ± 0.00 

Uncultured 480-2(627) 0.00 ± 0.00 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.07 ± 0.01 0.03 ± 0.00 0.05 ± 0.01 

Solirubrobacter (29) 0.05 ± 0.02 0.04 ± 0.02 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.03 ± 0.00 0.04 ± 0.00 

Sva0996_marine_group(441) 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.00 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.04 ± 0.00 

Flavobacterium (633) 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.11 ± 0.04 0.01 ± 0.00 0.18 ± 0.14 0.00 ± 0.00 

Flavobacterium (2394) 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.12 ± 0.09 0.00 ± 0.00 

Uncultured NS9_marine_group (438) 0.06 ± 0.01 0.03 ± 0.01 0.05 ± 0.01 0.06 ± 0.03 0.01 ± 0.00 0.23 ± 0.07 0.08 ± 0.04 

Uncultured NS9_marine_group (277) 0.02 ± 0.00 0.02 ± 0.01 0.04 ± 0.02 0.08 ± 0.01 0.06 ± 0.00 0.24 ± 0.09 0.13 ± 0.03 

Rhodococcus (459) 0.00 ± 0.00 0.00 ± 0.00 0.08 ± 0.01 0.01 ± 0.01 0.04 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 

Fodinicola (15) 0.06 ± 0.02 0.52 ± 0.08 1.25 ± 0.07 1.26 ± 0.17 0.97 ± 0.07 1.31 ± 0.18 0.76 ± 0.11 

Nocardioides (405) 0.00 ± 0.00 0.01 ± 0.00 0.10 ± 0.02 0.12 ± 0.04 0.06 ± 0.01 0.13 ± 0.01 0.12 ± 0.01 

Uncultured Acidimicrobiales (612) 0.00 ± 0.00 0.00 ± 0.00 0.05 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.00 0.04 ± 0.01 

Uncultured Actinobacteria (359) 0.00 ± 0.00 0.01 ± 0.01 0.07 ± 0.01 0.13 ± 0.02 0.05 ± 0.01 0.11 ± 0.01 0.08 ± 0.01 

Uncultured MB-A2-108 (137) 0.11 ± 0.02 0.09 ± 0.01 0.41 ± 0.06 0.24 ± 0.01 0.32 ± 0.02 0.31 ± 0.05 0.20 ± 0.03 

CL500-29_marine_group (28) 0.26 ± 0.04 0.04 ± 0.01 0.07 ± 0.03 0.07 ± 0.02 0.09 ± 0.01 0.09 ± 0.01 0.57 ± 0.04 

Uncultured Acidimicrobiales (569) 0.04 ± 0.00 0.05 ± 0.00 0.01 ± 0.00 0.08 ± 0.03 0.02 ± 0.00 0.02 ± 0.01 0.01 ± 0.01 

Uncultured Intrasporangiaceae (19) 0.47 ± 0.03 0.12 ± 0.01 0.18 ± 0.02 0.24 ± 0.03 0.22 ± 0.02 0.24 ± 0.03 0.22 ± 0.06 

Gaiella (45) 0.00 ± 0.00 0.45 ± 0.07 0.30 ± 0.02 0.26 ± 0.01 0.47 ± 0.02 0.22 ± 0.01 0.29 ± 0.02 

Armatimonadetes Uncultured Armatimonadetes (371) 0.17 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.07 ± 0.03 0.01 ± 0.00 0.33 ± 0.08 

Bacteroidetes Chryseolinea (165) 0.10 ± 0.02 0.01 ± 0.00 0.08 ± 0.03 0.45 ± 0.07 0.26 ± 0.04 0.18 ± 0.05 0.17 ± 0.04 
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Chryseolinea (483) 0.05 ± 0.02 0.00 ± 0.00 0.03 ± 0.01 0.15 ± 0.07 0.07 ± 0.02 0.09 ± 0.01 0.07 ± 0.03 

Chryseolinea (231) 0.21 ± 0.02 0.03 ± 0.01 0.13 ± 0.01 0.32 ± 0.06 0.19 ± 0.02 0.20 ± 0.04 0.13 ± 0.04 

Chryseolinea (1195) 0.02 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.04 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 

Uncultured Rhodothermaceae (363) 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.10 ± 0.01 0.01 ± 0.01 0.04 ± 0.03 

Ferruginibacter (499) 0.09 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.04 ± 0.00 0.04 ± 0.01 0.09 ± 0.00 0.15 ± 0.05 

Ferruginibacter (378) 0.02 ± 0.01 0.02. ± 0.01 0.05 ± 0.02 0.11 ± 0.04 0.06 ± 0.01 0.09 ± 0.01 0.16 ± 0.04 

Flavobacterium (2394) 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.09 0.00 ± 0.00 

Flavobacterium (376) 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.20 ± 0.07 0.08 ± 0.02 0.04 ± 0.01 0.00 ± 0.00 

Uncultured Cytophagaceae (451) 0.11 ± 0.02 0.00 ± 0.00 0.02 ± 0.01 0.10 ± 0.04 0.09 ± 0.04 0.03 ± 0.01 0.10 ± 0.04 

Ferruginibacter (256) 0.00 ± 0.00 0.02 ± 0.01 0.06 ± 0.01 0.19 ± 0.08 0.14 ± 0.01 0.13 ± 0.02 0.21 ± 0.07 

Uncultured Saprospiraceae (380) 0.00 ± 0.00 0.02 ± 0.01 0.04 ± 0.02 0.05 ± 0.01 0.03 ± 0.01 0.13 ± 0.05 0.16 ± 0.04 

Uncultured Saprospiraceae (383) 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.04 ± 0.01 0.18 ± 0.08 0.09 ± 0.02 0.13 ± 0.01 

Uncultured Saprospiraceae (472) 0.04 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.14 ± 0.07 0.29 ± 0.14 

Uncultured Sphingobacteriales (711) 0.02 ± 0.01 0.00 ± 0.00 0.02 ± 0.01 0.08 ± 0.02 0.02 ± 0.00 0.12 ± 0.01 0.04 ± 0.02 

Uncultured env.OPS_17 (726) 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.00 ± 0.00 0.20 ± 0.08 0.00 ± 0.00 

Uncultured env.OPS_17 (876) 0.01 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.05 ± 0.02 0.01 ± 0.00 0.11 ± 0.03 0.01 ± 0.01 

Uncultured env.OPS_17 (548) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.05 ± 0.00 0.01 ± 0.01 0.09 ± 0.09 

Uncultured KD3-93 (46) 0.33 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.17 ± 0.00 0.02 ± 0.01 0.61 ± 0.26 0.09 ± 0.06 

NS11-12_marine_group (616) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.09 ± 0.02 0.03 ± 0.01 0.14 ± 0.03 0.03 ± 0.02 

PHOS-HE51 (1186) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.01 ± 0.00 0.07 ± 0.03 0.04 ± 0.01 

Uncultured Sphingobacteriales (409) 0.23 ± 0.09 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.01 0.00 ± 0.00 0.09 ± 0.03 

Terrimonas (139) 0.02 ± 0.00 0.02 ± 0.01 0.03 ± 0.01 0.22 ± 0.05 0.14 ± 0.03 0.21 ± 0.05 0.72 ± 0.21 

Terrimonas (149) 0.04 ± 0.00 0.03 ± 0.01 0.07 ± 0.01 0.36 ± 0.27 0.06 ± 0.01 0.15 ± 0.07 0.12 ± 0.05 

Terrimonas (253) 0.03 ± 0.01 0.03 ± 0.00 0.12 ± 0.02 0.17 ± 0.02 0.10 ± 0.01 0.15 ± 0.02 0.11 ± 0.03 

Cand_div_BRC1 Uncultured Candidate_div_BRC1 (542) 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.02 ± 0.01 0.01± 0.00 0.00 ± 0.00 0.01 ± 0.01 

Uncultured Candidate_div_BRC1 (1346) 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Gemmatimonadetes Uncultured Gemmatimonadaceae (124) 0.00 ± 0.00 0.01 ± 0.01 0.08 ± 0.03 0.13 ± 0.01 0.10 ± 0.01 0.17 ± 0.01 0.13 ± 0.01 

Uncultured Gemmatimonadaceae (32) 0.51 ± 0.07 0.14 ± 0.04 0.41 ± 0.04 0.62 ± 0.08 1.06 ± 0.07 0.41 ± 0.04 0.48 ± 0.08 

Uncultured Gemmatimonadaceae (52) 0.31 ± 0.05 0.09 ± 0.02 0.28 ± 0.05 0.30 ± 0.08 0.42 ± 0.05 0.21 ± 0.05 0.26 ± 0.05 

Uncultured Gemmatimonadaceae (251) 0.00 ± 0.00 0.00 ± 0.00 0.06 ± 0.00 0.06 ± 0.03 0.09 ± 0.00 0.05 ± 0.02 0.08 ± 0.01 
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Uncultured Gemmatimonadaceae (269) 0.09 ± 0.05 0.01 ± 0.00 0.04 ± 0.01 0.10 ± 0.01 0.07 ± 0.01 0.06 ± 0.02 0.06 ± 0.01 

Uncultured Gemmatimonadaceae (299) 0.01 ± 0.01 0.03 ± 0.00 0.02 ± 0.00 0.06 ± 0.00 0.17 ± 0.01 0.07 ± 0.03 0.13 ± 0.07 

Uncultured Gemmatimonadaceae (388) 0.06 ± 0.02 0.05 ± 0.01 0.07 ± 0.02 0.08 ± 0.01 0.08 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 

Chlorobi Uncultured BSV26 (580) 0.02 ± 0.01 0.00 ± 0.00 0.02 ± 0.01 0.06 ± 0.01 0.02 ± 0.01 0.04 ± 0.00 0.01 ± 0.01 

Uncultured BSV26 (93) 0.20 ± 0.01 0.11 ± 0.04 0.33 ± 0.13 0.63 ± 0.04 0.24  ± 0.01 0.45 ± 0.09 0.18 ± 0.02 

Uncultured BSV26 (413) 0.05 ± 0.01 0.01 ± 0.00 0.06 ± 0.01 0.10 ± 0.03 0.05 ± 0.01 0.13 ± 0.03 0.05 ± 0.01 

Uncultured OPB56 (740) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.04 ± 0.03 0.01 ± 0.00 

Uncultured SJA-28 (284) 0.07 ± 0.00 0.07 ± 0.00 0.21 ± 0.02 0.26 ± 0.04 0.12 ± 0.01 0.10 ± 0.01 0.11 ± 0.01 

Chloroflexi Uncultured Caldilineaceae (110) 0.14 ± 0.02 0.09 ± 0.00 0.76 ± 0.07 0.27 ± 0.05 0.38 ± 0.09 0.21 ± 0.06 0.38 ± 0.11 

Uncultured KD4-96 (27) 0.08 ± 0.02 0.31 ± 0.10 0.56 ± 0.02 0.56 ± 0.04 0.97 ± 0.08 0.47 ± 0.06 0.93 ± 0.09 

Uncultured Anaerolineaceae (233) 0.10 ± 0.02 0.02 ± 0.01 0.15 ± 0.01 0.09 ± 0.01 0.19 ± 0.01 0.11 ± 0.03 0.12 ± 0.03 

Uncultured Anaerolineaceae (611) 0.04 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.01 0.05 ± 0.02 0.03 ± 0.02 0.13 ± 0.04 

Uncultured Anaerolineaceae (628) 0.04 ± 0.01 0.00 ± 0.00 0.03 ± 0.01 0.04 ± 0.02 0.07 ± 0.01 0.03 ± 0.02 0.04 ± 0.01 

Unclassified Gitt-GS-136 (127) 0.14 ± 0.02 0.11 ± 0.10 0.13 ± 0.02 0.17 ± 0.03 0.42 ± 0.02 0.10 ± 0.01 0.30 ± 0.05 

Uncultured KD4-96 (96) 0.12 ± 0.03 0.20 ± 0.03 0.16 ± 0.03 0.20 ± 0.03 0.66 ± 0.05 0.14 ± 0.04 0.20 ± 0.04 

Unclassified JG30-KF-CM45 (145) 0.05 ± 0.00 0.05 ± 0.01 0.13 ± 0.02 0.13 ± 0.01 0.24 ± 0.03 0.18 ± 0.03 0.43 ± 0.08 

Uncultured KD4-96 (8) 0.12 ± 0.05 1.59 ± 0.47 1.33 ± 0.04 1.18 ± 0.02 1.06 ± 0.03 1.08 ± 0.11 1.18 ± 0.06 

Uncultured KD4-96 (16) 0.38 ± 0.04 0.83 ± 0.20 0.43 ± 0.07 0.74 ± 0.05 1.09 ± 0.05 0.48 ± 0.05 1.04 ± 0.10 

Latescibacteria Uncultured Latescibacteria (95) 0.21 ± 0.01 0.04 ± 0.01 0.07 ± 0.01 0.18 ± 0.02 0.15 ± 0.02 0.18 ± 0.01 0.08 ± 0.03 

Uncultured Latescibacteria (154) 0.14 ± 0.01 0.00 ± 0.00 0.06 ± 0.03 0.12 ± 0.01 0.02 ± 0.01 0.08 ± 0.03 0.06 ± 0.02 

Uncultured Latescibacteria (308) 0.01 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.10 ± 0.02 0.01 ± 0.01 0.15 ± 0.05 

Uncultured Latescibacteria (326) 0.08 ± 0.00 0.02 ± 0.01 0.04 ± 0.02 0.08 ± 0.02 0.04 ± 0.01 0.07 ± 0.02 0.04 ± 0.01 

Uncultured Latescibacteria (342) 0.06 ± 0.00 0.02 ± 0.01 0.07 ± 0.01 0.05 ± 0.02 0.05 ± 0.01 0.03 ± 0.01 0.04 ± 0.00 

Uncultured Latescibacteria (453) 0.00 ± 0.00 0.02 ± 0.01 0.06 ± 0.01 0.03 ± 0.01 0.06 ± 0.00 0.03 ± 0.01 0.04 ± 0.00 

Uncultured Latescibacteria (503) 0.03 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.06 ± 0.01 0.02 ± 0.00 0.03 ± 0.01 0.01 ± 0.01 

Uncultured Latescibacteria (534) 0.02 ± 0.00 0.02 ± 0.00 0.04 ± 0.01 0.06 ± 0.01 0.08 ± 0.02 0.03 ± 0.00 0.03 ± 0.01 

Uncultured Latescibacteria (706) 0.01 ± 0.01 0.01 ± 0.00 0.12 ± 0.03 0.02 ± 0.00 0.03 ± 0.01 0.01 ± 0.01 0.01± 0.00 

Uncultured Latescibacteria (732) 0.01 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.02 ± 0.01 0 .00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 

Uncultured Latescibacteria (864) 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.02 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 

Uncultured Latescibacteria (422) 0.07 ± 0.01 0.05 ± 0.02 0.25 ± 0.04 0.10 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 0.04 ± 0.00 
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Uncultured Latescibacteria (1054) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 

Nitrospirae Nitrospira (7) 0.85 ± 0.14 0.1 ± 0.01 0.22 ± 0.03 0.36 ± 0.03 0.29 ± 0.04 0.62 ± 0.06 0.29 ± 0.08 

Nitrospira (23) 1.12 ± 0.20 0.09 ± 0.02 0.36 ± 0.08 0.48 ± 0.14 0.15 ± 0.02 0.41 ± 0.08 0.20 ± 0.03 

Nitrospira (26) 0.70 ± 0.09 0.04 ± 0.01 0.32 ± 0.06 0.28 ± 0.03 0.13 ± 0.01 0.19 ± 0.09 0.06 ± 0.03 

  Alphaproteobacteria Sphingobium (17) 0.61 ± 0.07 0.00 ± 0.00 0.00 ± 0.00 0.30 ± 0.28 0.08 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 

Hyphomicrobium (60) 0.35 ± 0.07 0.09 ± 0.02 0.30 ± 0.04 0.23 ± 0.02 0.29 ± 0.03 0.29 ± 0.00 0.23 ± 0.03 

Hyphomicrobium (347) 0.06 ± 0.02 0.02 ± 0.00 0.04 ± 0.04 0.00 ± 0.00 0.08 ± 0.01 0.02 ± 0.02 0.07 ± 0.01 

Hirschia (62) 0.07 ± 0.02 0.05 ± 0.01 0.27 ± 0.04 0.25 ± 0.04 0.30 ± 0.03 0.36 ± 0.04 0.45 ± 0.20 

Novosphingobium (64) 0.00 ± 0.00 0.02 ± 0.00 0.01 ± 0.01 0.05 ± 0.01 2.04 ± 0.78 0.51 ± 0.48 0.03 ± 0.02 

Pedomicrobium (84) 0.07 ± 0.01 0.08 ± 0.01 0.22 ± 0.02 0.15 ± 0.02 0.28 ± 0.03 0.26 ± 0.01 0.38 ± 0.06 

Uncultured Rhizobiales (335) 0.16 ± 0.03 0.03 ± 0.01 0.10 ± 0.04 0.04 ± 0.01 0.13 ± 0.03 0.17 ± 0.04 0.15 ± 0.06 

Defluviimonas (202) 0.00 ± 0.00 0.03 ± 0.00 0.10 ± 0.01 0.23 ± 0.03 0.15 ± 0.01 0.20 ± 0.03 0.13 ± 0.01 

Hyphomicrobium (129) 0.09 ± 0.02 0.05 ± 0.00 0.16 ± 0.03 0.12 ± 0.01 0.26 ± 0.02 0.13 ± 0.00 0.19 ± 0.03 

Uncultured AKYH478 (645) 0.01 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.03 ± 0.02 0.04 ± 0.00 0.06 ± 0.01 0.19 ± 0.06 

Uncultured F0723 (1059) 0.04 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.03 ± 0.02 0.09 ± 0.03 

Uncultured MNG7 (35) 0.00 ± 0.00 0.20 ± 0.04 0.66 ± 0.11 0.75 ± 0.03 0.43 ± 0.02 0.89 ± 0.08 0.83 ± 0.13 

Uncultured Phyllobacteriaceae (87) 0.14 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.05 ± 0.01 0.16 ± 0.05 0.39 ± 0.12 

Uncultured Sphingomonadaceae (1) 0.00 ± 0.00 0.13 ± 0.02 0.15 ± 0.03 1.30 ± 0.16 0.28 ± 0.02 6.16 ± 4.93 4.14 ± 1.16 

Uncultured Sphingomonadaceae (119) 0.00 ± 0.00 0.01 ± 0.01 0.05 ± 0.01 0.27 ± 0.02 0.18 ± 0.04 0.29 ± 0.01 0.26 ± 0.09 

Sphingopyxis (553) 0.02 ± 0.00 0.00 ± 0.00 0.09 ± 0.02 0.08 ± 0.01 0.01 ± 0.01 0.08 ± 0.00 0.01 ± 0.00 

Woodsholea (181) 0.07 ± 0.01 0.00 ± 0.00 0.11 ± 0.01 0.22 ± 0.03 0.25 ± 0.07 0.23 ± 0.04 0.09 ± 0.02 

Woodsholea (183) 0.01 ± 0.00 0.02 ± 0.00 0.16 ± 0.01 0.21 ± 0.03 0.15 ± 0.03 0.15 ± 0.02 0.10 ± 0.01 

Woodsholea (615) 0.04 ± 0.01 0.01 ± 0.00 0.05 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.10 ± 0.02 0.02 ± 0.00 

Uncultured Rhizobiaceae (100) 0.46 ± 0.10 0.02 ± 0.01 0.07 ± 0.02 0.19 ± 0.01 0.09 ± 0.02 0.21 ± 0.03 0.32 ± 0.19 

Uncultured AKYH478 (645) 0.01 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.03 ± 0.02 0.04  ± 0.00 0.06 ± 0.01 0.19 ± 0.06 

Defluviimonas (202) 0.00 ± 0.00 0.03 ± 0.00 0.10 ± 0.01 0.23 ± 0.03 0.15 ± 0.01 0.20 ± 0.03 0.13 ± 0.01 

Deltaproteobacteria Bdellovibrio (63) 0.05 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.46 ± 0.11 0.00 ± 0.01 0.08 ± 0.00 0.11 ± 0.07 

Haliangium (479) 0.01 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.04 ± 0.02 0.04 ± 0.01 0.01 ± 0.00 0.02 ± 0.00 

Haliangium (248) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.08 ± 0.04 0.00 ± 0.00 0.12 ± 0.06 

Haliangium (457) 0.10 ± 0.02 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.06 ± 0.01 0.01 ± 0.01 0.03 ± 0.02 
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Haliangium (739) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 

OM27-Clade (166) 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.11 ± 0.05 0.08 ± 0.07 

Anaeromyxobacter (220) 0.15 ± 0.02 0.01 ± 0.00 0.02 ± 0.01 0.05 ± 0.02 0.05 ± 0.00 0.06 ± 0.01 0.06 ± 0.02 

Anaeromyxobacter (82) 0.24 ± 0.02 0.16 ± 0.01 0.16 ± 0.01 0.17 ± 0.03 0.16 ± 0.01 0.14 ± 0.03 0.06 ± 0.02 

Sandaracinus (260) 0.05 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.05 ± 0.03 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.02 

Sandaracinus (382) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.04 ± 0.02 0.01 ± 0.00 0.02 ± 0.01 0.01 ± 0.00 

Sorangium (709) 0.01 ± 0.01 0.00 ± 0.00 0.03 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 

Sorangium (1348) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Sorangium (352) 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.05 ± 0.02 0.00 ± 0.00 0.04 ± 0.02 

Uncultured Cystobacteraceae (203) 0.02 ± 0.00 0.00 ± 0.00 0.05 ± 0.01 0.02 ± 0.00 0.02 ± 0.00 0.05 ± 0.01 0.06 ± 0.02 

Uncultured Sandaracinaceae (33) 0.16 ± 0.01 0.00 ± 0.00 0.11 ± 0.02 0.24 ± 0.05 0.21 ± 0.05 0.12 ± 0.04 0.04 ± 0.01 

Uncultured Sandaracinaceae (404) 0.04 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.05 ± 0.01 0.02 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 

Uncultured Sandaracinaceae (686) 0.07 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.01 0.00 ± 0.00 0.02 ± 0.01 0.00 ± 0.00 

Uncultured Sandaracinaceae (240) 0.1 ± 0.03 0.00 ± 0.00 0.02 ± 0.01 0.06 ± 0.02 0.05 ± 0.02 0.09 ± 0.00 0.04 ± 0.01 

Uncultured Sandaracinaceae (764) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 

Uncultured Sh765B-TzT-29 (414) 0.05 ± 0.02 0.02 ± 0.01 0.10 ± 0.01 0.10 ± 0.01 0.06 ± 0.01 0.07 ± 0.02 0.09 ± 0.01 

Uncultured δ-bacteria (105) 0.18 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.05 

Uncultured δ-bacteria (54) 0.37 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.03 0.00 ± 0.00 0.02 ± 0.02 

Phaselicystis (163) 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.01  

Gammaproteobacteria (Betaproteobacteriales) Hydrogenophaga (9) 1.15 ± 0.17 0.02 ± 0.00 0.11 ± 0.02 0.21 ± 0.03 0.35 ± 0.08 0.32 ± 0.13 1.29 ± 0.13 

Leeia (513) 0.05 ± 0.02 0.00 ± 0.00 0.01 ± 0.01 0.10 ± 0.03 0.03 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 

Piscinibacter (14) 0.16 ± 0.01 0.03 ± 0.00 0.13 ± 0.01 0.27 ± 0.04 0.17 ± 0.01 0.29 ± 0.02 0.76 ± 0.12 

Rhizobacter (123) 0.33 ± 0.03 0.00 ± 0.00 0.07 ± 0.01 0.04 ± 0.01 0.01 ± 0.00 0.20 ± 0.09 0.05 ± 0.02 

Uncultured Comamonadaceae (4) 0.00 ± 0.00 0.10 ± 0.02 0.28 ± 0.05 0.40 ± 0.03 0.28 ± 0.01 0.58 ± 0.14 1.29 ± 0.26 

Uncultured Comamonadaceae (36) 0.24 ± 0.04 0.02 ± 0.00 0.07 ± 0.01 0.19 ± 0.05 0.16 ± 0.03 0.26 ± 0.06 0.70 ± 0.16 

Uncultured Comamonadaceae (113) 0.05 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 0.11 ± 0.06 0.08 ± 0.05 0.45 ± 0.25 0.28 ± 0.14 

Uncultured Comamonadaceae (152) 0.02 ± 0.00 0.02 ± 0.01 0.01 ± 0.00 0.05 ± 0.01 0.03 ± 0.00 0.07 ± 0.01 0.34 ± 0.24 

Uncultured Comamonadaceae (1113) 0.04 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.04 ± 0.02 0.04 ± 0.02 0.02 ± 0.01 

Uncultured Comamonadaceae (12) 0.46 ± 0.12 0.17 ± 0.03 0.35 ± 0.04 0.32 ± 0.02 0.17 ± 0.01 0.40 ± 0.07 0.52 ± 0.08 

Azohydromonas (43) 0.53 ± 0.10 0.02 ± 0.01 0.06 ± 0.02 0.05 ± 0.02 0.05 ± 0.01 0.11 ± 0.02 0.16 ± 0.04 
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Uncultured Gallionellaceae (320) 0.10 ± 0.00 0.02 ± 0.01 0.06 ± 0.03 0.16 ± 0.02 0.05 ± 0.01 0.13 ± 0.02 0.06 ± 0.03 

Uncultured Nitrosomonadaceae (20) 0.11 ± 0.00 0.35 ± 0.04 0.65 ± 0.08 0.81 ± 0.03 0.70 ± 0.12 1.18 ± 0.04 1.33 ± 0.30 

Uncultured Nitrosomonadaceae (350) 0.05 ± 0.01 0.01 ± 0.01 0.05 ± 0.02 0.13 ± 0.02 0.03 ± 0.02 0.19 ± 0.02 0.34 ± 0.19 

Uncultured Nitrosomonadaceae (92) 0.07 ± 0.01 0.21 ± 0.04 0.24 ± 0.04 0.39 ± 0.05 0.27 ± 0.05 0.30 ± 0.02 0.23 ± 0.03 

Uncultured Oxalobacteraceae (215) 0.14 ± 0.04 0.01 ± 0.00 0.00 ± 0.00 0.15 ± 0.04 0.04 ± 0.01 0.11 ± 0.01 0.03 ± 0.01 

Vogesella (44) 0.03 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Dechloromonas (138) 0.11 ± 0.01 0.01 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 0.03 ± 0.01 0.01 ± 0.00 

Thauera (40) 0.13 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.02 ± 0.01 0.01 ± 0.00 

Uncultured SC-I-84 (89) 0.20 ± 0.04 0.21 ± 0.03 0.24 ± 0.02 0.29 ± 0.04 0.26 ± 0.03 0.44 ± 0.11 0.35 ± 0.12 

Uncultured SC-I-84 (354) 0.07 ± 0.00 0.05 ± 0.00 0.07 ± 0.01 0.08 ± 0.03 0.07 ± 0.01 0.16 ± 0.05 0.15 ± 0.03 

Uncultured β-proteobacteria (66) 0.14 ± 0.00 0.15 ± 0.01 0.10 ± 0.02 0.16 ± 0.05 0.19 ± 0.05 0.34 ± 0.03 0.83 ± 0.25 

Zoogloea (266) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Acidiferrobacter (67) 0.17 ± 0.03 0.16 ± 0.01 0.13 ± 0.05 0.48 ± 0.04 0.20 ± 0.05 0.53 ± 0.04 0.19 ± 0.06 

Arenimonas (520) 0.02 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.06 ± 0.01 0.10 ± 0.01 0.03 ± 0.00 0.02 ± 0.01 

Arenimonas (357) 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.25 ± 0.05 0.06 ± 0.01 0.25 ± 0.06 0.03 ± 0.01 

Pseudomonas (24) 0.09 ± 0.02 0.00 ± 0.00 0.08 ± 0.01 0.50 ± 0.12 0.15 ± 0.03 0.41 ± 0.06 0.08 ± 0.03 

Unclutured Pseudomonadaceae (3) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Thermomonas (58) 0.07 ± 0.01 0.05 ± 0.01 0.06 ± 0.01 0.43 ± 0.14 0.32 ± 0.08 0.59 ± 0.07 0.37 ± 0.12 

Uncultured Xanthomonadaceae (70) 0.05 ± 0.01 0.11 ± 0.04 0.41 ± 0.01 0.75 ± 0.07 0.21 ± 0.01 0.31 ± 0.02 0.47 ± 0.15 

Uncultured γ-proteobacteria (452) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.08 ± 0.02 0.02 ± 0.00 0.05 ± 0.02 0.01 ± 0.00 

Uncultured γ-proteobacteria (541) 0.02 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.05 ± 0.01 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 

Uncultured γ-proteobacteria (505) 0.04 ± 0.01 0.00 ± 0.00 0.03 ± 0.02 0.09 ± 0.03 0.01 ± 0.01 0.11 ± 0.01 0.02 ± 0.01 

Uncultured γ-proteobacteria (715) 0.01 ± 0.01 0.00 ± 0.00 0.02 ± 0.01 0.06 ± 0.02 0.02 ± 0.01 0.03 ± 0.01 0.00 ± 0.00 

Uncultured γ-proteobacteria (1758) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.08 ± 0.06 0.04 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 

Acidiferrobacter (196) 0.02 ± 0.01 0.06 ± 0.01 0.08 ± 0.02 0.21 ± 0.03 0.21 ± 0.01 0.24 ± 0.02 0.15 ± 0.02 

Saccharibacteria Uncultured Saccharibacteria (980) 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.13 ± 0.05 0.05 ± 0.01 0.05 ± 0.03 0.02 ± 0.01 

Verrucomicrobia Prosthecobacter (162) 0.20 ± 0.04 0.00 ± 0.00 0.02 ± 0.01 0.04 ± 0.02 0.05 ± 0.01 0.40 ± 0.02 0.10 ± 0.03 

Verrucomicrobium (903) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.11 ± 0.03 0.20 ± 0.05 

Uncultured DEV007 (1517) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.10 ± 0.03 

Unclassified Uncultured bacterium (315) 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.11 ± 0.04 0.42 ± 0.09 0.00 ± 0.00 0.00 ± 0.00 
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Uncultured bacterium (255) 0.19 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.05 ± 0.02 0.03 ± 0.01 0.06 ± 0.05 

                                                                                         

                                                                                                 RNA 

Phylum/Subphylum-level Genus-level (OTU No.) 0_0‘ 0_3‘ 0_5‘ 40_3‘ 40_5‘ 400_3‘ 400_5‘ 

Acidobacteria Bryobacter (144) 0.06 ± 0.02 0.04 ± 0.01 0.15 ± 0.02 0.21 ± 0.01 0.21 ± 0.06 0.26 ± 0.02 0.12 ± 0.01 

Bryobacter (61) 0.27 ± 0.05 0.14 ± 0.06 0.51 ± 0.08 0.62 ± 0.03 0.33 ± 0.03 0.63 ± 0.01 0.52 ± 0.10 

Bryobacter (115) 0.11 ± 0.03 0.06 ± 0.03 0.55 ± 0.11 0.16 ± 0.02 0.29 ± 0.09 0.15 ± 0.06 0.28 ± 0.04 

Bryobacter (562) 0.01 ± 0.00 0.01 ± 0.00 0.03 ± 0.01 0.04 ± 0.01 0.04 ± 0.00 0.08 ± 0.02 0.13 ± 0.03 

Uncultured subgroup_3 (901) 0.02 ± 0.01 0.00 ± 0.00 0.03 ± 0.00 0.04 ± 0.01 0.02 ± 0.01 0.07 ± 0.02 0.04 ± 0.01 

Uncultured subgroup_3 (55) 0.47 ± 0.04 0.20 ± 0.13 0.81 ± 0.01 0.39 ± 0.03 0.33 ± 0.08 0.66 ± 0.05 0.65 ± 0.14 

Uncultured subgroup_3 (516) 0.04 ± 0.00 0.01 ± 0.01 0.06 ± 0.01 0.09 ± 0.01 0.04 ± 0.01 0.09 ± 0.00 0.08 ± 0.01 

Blastocatella (126) 0.03 ± 0.01 0.03 ± 0.01 0.05 ± 0.01 0.03 ± 0.01 0.05 ± 0.02 0.05 ± 0.02 0.12 ± 0.02 

Uncultured subgroup_6 (85) 0.00 ± 0.01 0.02 ± 0.00 0.02 ± 0.01 0.07 ± 0.02 0.06 ± 0.01 0.06 ± 0.03 0.47 ± 0.16 

Uncultured subgroup_6 (10) 0.14 ± 0.02 0.18 ± 0.04 1.21 ± 0.27 0.79 ± 0.07 1.34 ± 0.18 0.94 ± 0.24 1.56 ± 0.44 

Uncultured subgroup_6 (212) 0.03 ± 0.01 0.01 ± 0.00 0.15 ± 0.02 0.21 ± 0.05 0.23 ± 0.01 0.25 ± 0.10 0.14 ± 0.05 

Uncultured subgroup_6 (304) 0.01 ± 0.00 0.02 ± 0.00 0.06 ± 0.00 0.15 ± 0.03 0.19 ± 0.05 0.09 ± 0.01 0.12 ± 0.04 

Uncultured subgroup_6 (401) 0.01 ± 0.00 0.01 ± 0.00 0.04 ± 0.02 0.06 ± 0.01 0.06 ± 0.01 0.07 ± 0.03 0.06 ± 0.01 

Uncultured subgroup_6 (581) 0.03 ± 0.02 0.00 ± 0.00 0.17 ± 0.05 0.08 ± 0.02 0.04 ± 0.01 0.05 ± 0.00 0.04 ± 0.01 

Uncultured subgroup_6 (412) 0.01 ± 0.00 0.01 ± 0.00 0.06 ± 0.01 0.04 ± 0.01 0.08 ± 0.00 0.06 ± 0.00 0.03 ± 0.01 

Uncultured subgroup_6 (147) 0.01 ± 0.00 0.06 ± 0.02 0.01 ± 0.00 0.06 ± 0.02 0.15 ± 0.04 0.09 ± 0.01 0.08 ± 0.02 

Uncultured subgroup_6 (85) 0.00 ± 0.00 0.02 ± 0.00 0.02 ± 0.01 0.07 ± 0.02 0.06 ± 0.01 0.06 ± 0.03 0.47 ± 0.16 

Uncultured subgroup_17 (39) 0.07 ± 0.00 0.07 ± 0.03 0.41 ± 0.03 0.39 ± 0.05 0.34 ± 0.01 0.41 ± 0.09 0.30 ± 0.11 

Uncultured subgroup_22 (329) 0.03 ± 0.00 0.01 ± 0.00 0.10 ± 0.03 0.12 ± 0.03 0.21 ± 0.01 0.06 ± 0.01 0.06 ± 0.02 

Uncultured subgroup_22 (340) 0.03 ± 0.00 0.02 ± 0.02 0.24 ± 0.07 0.13 ± 0.03 0.10 ± 0.00 0.11 ± 0.02 0.05 ± 0.02 

Uncultured subgroup_22 (57) 0.10 ± 0.05 0.07 ± 0.03 0.47 ± 0.09 0.71 ± 0.25 0.43 ± 0.05 0.89 ± 0.18 0.54 ± 0.02 

Actinobacteria Uncultured Sva0996_marine_group (83) 0.01 ± 0.00 0.01 ± 0.00 0.05 ± 0.02 0.05 ± 0.01 0.12 ± 0.03 0.07 ± 0.02 0.09 ± 0.08 

Aeromicrobium (332) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.04 ± 0.02 

Marmoricola (69) 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0.00 0.13 ± 0.02 0.13 ± 0.00 0.04 ± 0.00 0.12 ± 0.06 

Nocardioides (372) 0.01 ± 0.00 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 

Nocardioides (210) 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.05 ± 0.01 0.09 ± 0.02 0.01 ± 0.01 0.08 ± 0.04 

Nocardioides (102) 0.03 ± 0.00 0.02 ± 0.01 0.03 ± 0.01 0.06 ± 0.02 0.02 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 
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Uncultured MB-A2-108 (94) 0.02 ± 0.00 0.01 ± 0.00 0.10 ± 0.01 0.17 ± 0.02 0.10 ± 0.01 0.14 ± 0.04 0.07 ± 0.02 

Iamia (188) 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.12 ± 0.01 0.06 ± 0.01 0.14 ± 0.05 0.06 ± 0.01 

Iamia (362) 0.01 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.04 ± 0.01 0.00 ± 0.00 0.03 ± 0.01 

Uncultured Acidimicrobiales (1265) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.01 0.00 ± 0.00 0.02 ± 0.02 0.00 ± 0.00 

Uncultured 480-2(627) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.03 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 

Solirubrobacter (29) 0.02 ± 0.01 0.01 ± 0.00 0.02 ± 0.01 0.07 ± 0.02 0.08 ± 0.00 0.03 ± 0.00 0.04 ± 0.01 

Sva0996_marine_group(441) 0.01 ± 0.00 0.01 ± 0.01 0.06 ± 0.02 0.12 ± 0.02 0.09 ± 0.02 0.15 ± 0.08 0.11 ± 0.03 

Flavobacterium (633) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.04 ± 0.02 0.00 ± 0.00 

Flavobacterium (2394) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.02 0.00 ± 0.00 

Uncultured NS9_marine_group (438) 0.01 ± 0.01 0.01 ± 0.01 0.05 ± 0.02 0.03 ± 0.02 0.01 ± 0.00 0.13 ± 0.10 0.10 ± 0.06 

Uncultured NS9_marine_group (277) 0.03 ± 0.01 0.02 ± 0.01 0.04 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.21 ± 0.17 0.09 ± 0.03 

Rhodococcus (459) 0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.01 0.05 ± 0.04 0.08 ± 0.03 0.08 ± 0.02 0.10 ± 0.04 

Fodinicola (15) 0.13 ± 0.04 0.13 ± 0.06 0.28 ± 0.02 0.59 ± 0.02 0.38 ± 0.06 0.55 ± 0.01 0.19 ± 0.05 

Nocardioides (405) 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 

Uncultured Acidimicrobiales (612) 0.01 ± 0.00 0.00 ± 0.00 0.07 ± 0.02 0.07 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 

Uncultured Actinobacteria (359) 0.01 ± 0.01 0.01 ± 0.00 0.02 ± 0.01 0.07 ± 0.01 0.01 ± 0.01 0.05 ± 0.01 0.02 ± 0.02 

Uncultured MB-A2-108 (137) 0.03 ± 0.01 0.01 ± 0.01 0.12 ± 0.01 0.23 ± 0.03 0.13 ± 0.03 0.22 ± 0.03 0.06 ± 0.01 

CL500-29_marine_group (28) 0.02 ± 0.01 0.05 ± 0.01 0.04 ± 0.01 0.10 ± 0.01 0.12 ± 0.00 0.13 ± 0.01 1.34 ± 0.14 

Uncultured Acidimicrobiales (569) 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.07 ± 0.01 0.03 ± 0.01 0.04 ± 0.02 0.00 ± 0.00 

Uncultured Intrasporangiaceae (19) 0.07 ± 0.02 0.17 ± 0.03 0.06 ± 0.01 0.19 ± 0.02 0.15 ± 0.01 0.16 ± 0.01 0.10 ± 0.02 

Gaiella (45) 0.05 ± 0.01 0.11 ± 0.06 0.13 ± 0.01 0.24 ± 0.02 0.43 ± 0.02 0.16 ± 0.01 0.19 ± 0.04 

Armatimonadetes Uncultured Armatimonadetes (371) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.02 0.00 ± 0.00 0.18 ± 0.01 

Bacteroidetes Chryseolinea (165) 0.01 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.05 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.00 

Chryseolinea (483) 0.01 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.02 ± 0.00 0.02 ± 0.01 0.02 ± 0.00 0.01 ± 0.01 

Chryseolinea (231) 0.04 ± 0.01 0.02 ± 0.01 0.01 ± 0.00 0.06 ± 0.01 0.03 ± 0.01 0.05 ± 0.02 0.03 ± 0.00 

Chryseolinea (1195) 0.02 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 

Uncultured Rhodothermaceae (363) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.12 ± 0.02 0.02 ± 0.01 0.09 ± 0.07 

Ferruginibacter (499) 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.02 ± 0.01 0.01 ± 0.01 0.04 ± 0.02 0.06 ± 0.02 

Ferruginibacter (378) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.04 ± 0.02 

Flavobacterium (2394) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.02 0.00 ± 0.00 
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Flavobacterium (376) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.01 0.01 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 

Uncultured Cytophagaceae (451) 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 

Ferruginibacter (256) 0.01 ± 0.00 0.02 ± 0.01 0.01 ± 0.00 0.03 ± 0.01 0.02 ± 0.00 0.02 ± 0.00 0.06 ± 0.02 

Uncultured Saprospiraceae (380) 0.00 ± 0.00 0.01 ± 0.01 0.03 ± 0.02 0.03 ± 0.00 0.04 ± 0.02 0.09 ± 0.04 0.12 ± 0.04 

Uncultured Saprospiraceae (383) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.00 

Uncultured Saprospiraceae (472) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.03 ± 0.02 0.10 ± 0.05 

Uncultured Sphingobacteriales (711) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 

Uncultured env.OPS_17 (726) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.05 ± 0.01 0.00 ± 0.00 

Uncultured env.OPS_17 (876) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 

Uncultured env.OPS_17 (548) 0.03 ± 0.01 0.00 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.20 ± 0.00 0.00 ± 0.00 0.55 ± 0.51 

Uncultured KD3-93 (46) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.69 ± 0.15 0.05 ± 0.00 2.92 ± 1.93 0.32 ± 0.16 

NS11-12_marine_group (616) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.01 ± 0.01 

PHOS-HE51 (1186) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.02 0.05 ± 0.01 

Uncultured Sphingobacteriales (409) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.07 0.02 ± 0.01 0.41 ± 0.16 

Terrimonas (139) 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.01 ± 0.00 0.02 ± 0.01 0.06 ± 0.03 

Terrimonas (149) 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.00 ± 0.00 0.03 ± 0.01 0.02 ± 0.01 

Terrimonas (253) 0.02 ± 0.01 0.02 ± 0.00 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.01 ± 0.01 

Cand_div_BRC1 Uncultured Candidate_div_BRC1 (542) 0.01 ± 0.00 0.00 ± 0.00 0.13 ± 0.08 0.22 ± 0.10 0.03 ± 0.01 0.05 ± 0.03 0.01 ± 0.00 

Uncultured Candidate_div_BRC1 (1346) 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.02 0.09 ± 0.04 0.00 ± 0.00 0.02 ± 0.01 0.03 ± 0.02 

Gemmatimonadetes Uncultured Gemmatimonadaceae (124) 0.01 ± 0.01 0.01 ± 0.01 0.14 ± 0.03 0.32 ± 0.06 0.23 ± 0.05 0.29 ± 0.03 0.26 ± 0.05 

Uncultured Gemmatimonadaceae (32) 0.03 ± 0.01 0.06 ± 0.05 0.21 ± 0.03 0.77 ± 0.17 0.67 ± 0.12 0.64 ± 0.07 0.14 ± 0.03 

Uncultured Gemmatimonadaceae (52) 0.02 ± 0.00 0.06 ± 0.04 0.28 ± 0.03 0.57 ± 0.10 0.56 ± 0.05 0.46 ± 0.09 0.37 ± 0.04 

Uncultured Gemmatimonadaceae (251) 0.01 ± 0.01 0.01 ± 0.00 0.07 ± 0.02 0.22 ± 0.05 0.18 ± 0.04 0.28 ± 0.07 0.08 ± 0.01 

Uncultured Gemmatimonadaceae (269) 0.02 ± 0.00 0.00 ± 0.00 0.09 ± 0.02 0.15 ± 0.03 0.11 ± 0.01 0.17 ± 0.03 0.12 ± 0.03 

Uncultured Gemmatimonadaceae (299) 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.05 ± 0.01 0.15 ± 0.02 0.09 ± 0.07 0.10 ± 0.08 

Uncultured Gemmatimonadaceae (388) 0.02 ± 0.00 0.01 ± 0.01 0.06 ± 0.03 0.09 ± 0.00 0.11 ± 0.00 0.09 ± 0.02 0.05 ± 0.04 

Chlorobi Uncultured BSV26 (580) 0.05 ± 0.02 0.01 ± 0.01 0.06 ± 0.01 0.06 ± 0.02 0.04 ± 0.02 0.05 ± 0.00 0.02 ± 0.01 

Uncultured BSV26 (93) 0.02 ± 0.01 0.01 ± 0.00 0.05 ± 0.01 0.06 ± 0.01 0.04 ± 0.02 0.04 ± 0.00 0.03 ± 0.01 

Uncultured BSV26 (413) 0.03 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 0.06 ± 0.01 0.05 ± 0.00 0.08 ± 0.00 0.06 ± 0.01 

Uncultured OPB56 (740) 0.02 ± 0.01 0.00 ± 0.00 0.05 ± 0.02 0.12 ± 0.02 0.01 ± 0.00 0.13 ± 0.11 0.03 ± 0.01 
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Uncultured SJA-28 (284) 0.02 ± 0.00 0.02 ± 0.01 0.03 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 

Chloroflexi Uncultured Caldilineaceae (110) 0.01 ± 0.00 0.01 ± 0.00 0.22 ± 0.05 0.12 ± 0.01 0.03 ± 0.02 0.05 ± 0.02 0.10 ± 0.02 

Uncultured KD4-96 (27) 0.05 ± 0.01 0.07 ± 0.02 0.16 ± 0.04 0.39 ± 0.05 0.26 ± 0.02 0.30 ± 0.04 0.39 ± 0.00 

Uncultured Anaerolineaceae (233) 0.02 ± 0.01 0.01 ± 0.01 0.08 ± 0.03 0.06 ± 0.02 0.21 ± 0.00 0.05 ± 0.00 0.14 ± 0.03 

Uncultured Anaerolineaceae (611) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.06 ± 0.02 0.00 ± 0.00 0.12 ± 0.03 

Uncultured Anaerolineaceae (628) 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.02 ± 0.00 0.11 ± 0.00 0.00 ± 0.00 0.06 ± 0.03 

Unclassified Gitt-GS-136 (127) 0.01 ± 0.00 0.02 ± 0.01 0.05 ± 0.01 0.08 ± 0.02 0.14 ± 0.05 0.04 ± 0.01 0.10 ± 0.04 

Uncultured KD4-96 (96) 0.04 ± 0.00 0.02 ± 0.01 0.06 ± 0.02 0.11 ± 0.01 0.14 ± 0.02 0.12 ± 0.02 0.08 ± 0.01 

Unclassified JG30-KF-CM45 (145) 0.01 ± 0.01 0.02 ± 0.01 0.08 ± 0.02 0.10 ± 0.01 0.16 ± 0.01 0.24 ± 0.16 0.27 ± 0.11 

Uncultured KD4-96 (8) 0.26 ± 0.05 0.32 ± 0.12 0.48 ± 0.12 1.35 ± 0.08 0.45 ± 0.00 1.13 ± 0.08 0.47 ± 0.06 

Uncultured KD4-96 (16) 0.11 ± 0.03 0.16 ± 0.02 0.16 ± 0.07 0.62 ± 0.05 0.48 ± 0.08 0.49 ± 0.08 0.54 ± 0.02 

Latescibacteria Uncultured Latescibacteria (95) 0.06 ± 0.03 0.01 ± 0.00 0.51 ± 0.15 0.57 ± 0.11 0.27 ± 0.03 0.49 ± 0.06 0.25 ± 0.11 

Uncultured Latescibacteria (154) 0.01 ± 0.00 0.00 ± 0.00 0.35 ± 0.12 0.40 ± 0.05 0.23 ± 0.08 0.35 ± 0.03 0.31 ± 0.15 

Uncultured Latescibacteria (308) 0.01 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.04 ± 0.01 0.12 ± 0.05 0.03 ± 0.01 0.20 ± 0.07 

Uncultured Latescibacteria (326) 0.02 ± 0.01 0.00 ± 0.00 0.11 ± 0.03 0.18 ± 0.02 0.14 ± 0.06 0.13 ± 0.00 0.08 ± 0.03 

Uncultured Latescibacteria (342) 0.04 ± 0.02 0.02 ± 0.01 0.08 ± 0.01 0.13 ± 0.05 0.11 ± 0.01 0.04 ± 0.00 0.07 ± 0.02 

Uncultured Latescibacteria (453) 0.00 ± 0.00 0.01 ± 0.00 0.13 ± 0.01 0.09 ± 0.02 0.09 ± 0.01 0.08 ± 0.01 0.07 ± 0.02 

Uncultured Latescibacteria (503) 0.02 ± 0.01 0.00 ± 0.00 0.11 ± 0.03 0.13 ± 0.03 0.08 ± 0.00 0.10 ± 0.02 0.06 ± 0.03 

Uncultured Latescibacteria (534) 0.01 ± 0.00 0.00 ± 0.00 0.04 ± 0.01 0.05 ± 0.01 0.16 ± 0.05 0.01 ± 0.01 0.03 ± 0.02 

Uncultured Latescibacteria (706) 0.02 ± 0.01 0.00 ± 0.00 0.19 ± 0.01 0.07 ± 0.01 0.02 ± 0.00 0.04 ± 0.01 0.02 ± 0.00 

Uncultured Latescibacteria (732) 0.00 ± 0.00 0.00 ± 0.00 0.09 ± 0.02 0.10 ± 0.03 0.06 ± 0.03 0.04 ± 0.00 0.02 ± 0.01 

Uncultured Latescibacteria (864) 0.02 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.05 ± 0.01 0.09 ± 0.02 0.06 ± 0.01 0.05 ± 0.01 

Uncultured Latescibacteria (422) 0.01 ± 0.00 0.00 ± 0.00 0.28 ± 0.06 0.10 ± 0.02 0.06 ± 0.00 0.07 ± 0.01 0.04 ± 0.02 

Uncultured Latescibacteria (1054) 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.01 0.05 ± 0.01 0.04 ± 0.00 0.02 ± 0.01 0.02 ± 0.01 

Nitrospirae Nitrospira (7) 0.79 ± 0.18 0.47 ± 0.09 1.02 ± 0.09 0.89 ± 0.12 1.57 ± 0.20 2.32 ± 0.61 1.44 ± 0.22 

Nitrospira (23) 0.49 ± 0.04 0.39 ± 0.08 1.86 ± 0.58 0.77 ± 0.12 1.51 ± 0.17 0.74 ± 0.07 0.80 ± 0.20 

Nitrospira (26) 0.52 ± 0.02 0.61 ± 0.03 1.36 ± 0.13 1.16 ± 0.16 0.73 ± 0.12 0.91 ± 0.38 0.42 ± 0.21 

Alphaproteobacteria 

   

Sphingobium (17) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.12 ± 0.11 0.05 ± 0.00 0.03 ± 0.02 0.02 ± 0.01 

Hyphomicrobium (60) 0.22 ± 0.04 0.23 ± 0.02 0.44 ± 0.08 0.27 ± 0.06 0.38 ± 0.06 0.22 ± 0.02 0.59 ± 0.10 

Hyphomicrobium (347) 0.00 ± 0.00 0.00 ± 0.00 0.16 ± 0.04 0.08 ± 0.01 0.13 ± 0.06 0.09 ± 0.01 0.19 ± 0.06 
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Hirschia (62) 0.09 ± 0.01 0.16 ± 0.06 0.34 ± 0.11 0.15 ± 0.00 0.55 ± 0.01 0.14 ± 0.01 1.18 ± 0.76 

Novosphingobium (64) 0.01 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.62 ± 0.10 0.14 ± 0.01 0.03 ± 0.02 

Pedomicrobium (84) 0.09 ± 0.02 0.07 ± 0.02 0.15 ± 0.03 0.21 ± 0.03 0.08 ± 0.00 0.30 ± 0.00 0.48 ± 0.22 

Uncultured Rhizobiales (335) 0.01 ± 0.00 0.02 ± 0.01 0.03 ± 0.01 0.01 ± 0.00 0.03 ± 0.02 0.01 ± 0.01 0.04 ± 0.04 

Defluviimonas (202) 0.06 ± 0.01 0.05 ± 0.01 0.09 ± 0.02 0.07 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.11 ± 0.04 

Hyphomicrobium (129) 0.11 ± 0.01 0.06 ± 0.01 0.15 ± 0.02 0.22 ± 0.02 0.14 ± 0.01 0.23 ± 0.01 0.22 ± 0.14 

Uncultured AKYH478 (645) 0.01 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.00 0.12 ± 0.05 

Uncultured F0723 (1059) 0.03 ± 0.00 0.02 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.01 0.09 ± 0.04 

Uncultured MNG7 (35) 0.15 ± 0.01 0.17 ± 0.02 0.12 ± 0.01 0.11 ± 0.01 0.09 ± 0.02 0.13 ± 0.01 0.24 ± 0.07 

Uncultured Phyllobacteriaceae (87) 0.09 ± 0.01 0.20 ± 0.04 0.05 ± 0.00 0.02 ± 0.01 0.05 ± 0.03 0.09 ± 0.06 0.48 ± 0.13 

Uncultured Sphingomonadaceae (1) 0.09 ± 0.02 0.10 ± 0.01 0.06 ± 0.02 3.26 ± 0.56 0.28 ± 0.01 7.71 ± 4.09 4.41 ± 0.57 

Uncultured Sphingomonadaceae (119) 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.03 ± 0.01 0.08 ± 0.06 0.02 ± 0.01 0.08 ± 0.01 

Sphingopyxis (553) 0.02 ± 0.00 0.04 ± 0.01 0.02 ± 0.00 0.02 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 

Woodsholea (181) 0.03 ± 0.00 0.02 ± 0.01 0.09 ± 0.02 0.07 ± 0.00 0.22 ± 0.05 0.06 ± 0.00 0.06 ± 0.03 

Woodsholea (183) 0.02 ± 0.01 0.07 ± 0.01 0.10 ± 0.02 0.08 ± 0.02 0.11 ± 0.03 0.05 ± 0.02 0.12 ± 0.05 

Woodsholea (615) 0.02 ± 0.01 0.02 ± 0.01 0.05 ± 0.02 0.02 ± 0.00 0.02 ± 0.01 0.02 ± 0.00 0.02 ± 0.02 

Uncultured Rhizobiaceae (100) 0.04 ± 0.03 0.07 ± 0.01 0.03 ± 0.01 0.08 ± 0.02 0.10 ± 0.05 0.02 ± 0.00 0.26 ± 0.20 

Uncultured AKYH478 (645) 0.01 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.00 0.12 ± 0.05 

Defluviimonas (202) 0.06 ± 0.01 0.05 ± 0.01 0.09 ± 0.02 0.07 ± 0.01 0.04 ± 0.01 0.03 ± 0.01 0.11 ± 0.04 

Deltaproteobacteria Bdellovibrio (63) 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.98 ± 0.42 0.01 ± 0.00 0.16 ± 0.04 0.26 ± 0.19 

Haliangium (479) 0.01 ± 0.00 0.00 ± 0.00 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.02 0.02 ± 0.01 0.02 ± 0.00 

Haliangium (248) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.05 ± 0.01 0.27 ± 0.12 0.02 ± 0.01 0.39 ± 0.19 

Haliangium (457) 0.00 ± 0.00 0.00 ± 0.00 0.04 ± 0.02 0.08 ± 0.02 0.13 ± 0.00 0.05 ± 0.03 0.03 ± 0.02 

Haliangium (739) 0.01 ± 0.00 0.00 ± 0.00 0.04 ± 0.02 0.07 ± 0.01 0.04 ± 0.02 0.05 ± 0.02 0.03 ± 0.01 

OM27-Clade (166) 0.02 ± 0.00 0.02 ± 0.01 0.02 ± 0.00 0.11 ± 0.02 0.01 ± 0.01 0.61 ± 0.46 0.47 ± 0.37 

Anaeromyxobacter (220) 0.05 ± 0.01 0.05 ± 0.01 0.12 ± 0.03 0.20 ± 0.04 0.24 ± 0.07 0.18 ± 0.01 0.18 ± 0.01 

Anaeromyxobacter (82) 0.16 ± 0.00 0.15 ± 0.05 0.29 ± 0.08 0.53 ± 0.09 0.45 ± 0.06 0.59 ± 0.07 0.17 ± 0.06 

Sandaracinus (260) 0.01 ± 0.00 0.00 ± 0.00 0.07 ± 0.01 0.25 ± 0.08 0.16 ± 0.01 0.07 ± 0.06 0.18 ± 0.13 

Sandaracinus (382) 0.01 ± 0.00 0.00 ± 0.00 0.09 ± 0.01 0.26 ± 0.06 0.01 ± 0.00 0.06 ± 0.04 0.02 ± 0.02 

Sorangium (709) 0.00 ± 0.00 0.00 ± 0.00 0.17 ± 0.02 0.10 ± 0.02 0.10 ± 0.04 0.04 ± 0.01 0.01 ± 0.01 



                                                                                APPENDIX 

262 
 

Sorangium (1348) 0.00 ± 0.00 0.00 ± 0.00 0.06 ± 0.02 0.06 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Sorangium (352) 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.01 0.03 ± 0.00 0.36 ± 0.10 0.00 ± 0.00 0.26 ± 0.12 

Uncultured Cystobacteraceae (203) 0.05 ± 0.00 0.03 ± 0.00 0.21 ± 0.03 0.12 ± 0.04 0.05 ± 0.01 0.21 ± 0.04 0.27 ± 0.09 

Uncultured Sandaracinaceae (33) 0.01 ± 0.01 0.00 ± 0.00 0.73 ± 0.08 1.20 ± 0.17 1.50 ± 0.17 0.44 ± 0.14 0.21 ± 0.04 

Uncultured Sandaracinaceae (404) 0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.01 0.21 ± 0.05 0.09 ± 0.01 0.02 ± 0.00 0.01 ± 0.00 

Uncultured Sandaracinaceae (686) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.11 ± 0.03 0.00 ± 0.01 0.04 ± 0.02 0.00 ± 0.00 

Uncultured Sandaracinaceae (240) 0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.02 0.18 ± 0.04 0.28 ± 0.01 0.14 ± 0.00 0.11 ± 0.04 

Uncultured Sandaracinaceae (764) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.03 ± 0.01 0.13 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 

Uncultured Sh765B-TzT-29 (414) 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.02 ± 0.01 0.05 ± 0.01 0.02 ± 0.00 0.05 ± 0.01 

Uncultured δ-bacteria (105) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.21 ± 0.15 

Uncultured δ-bacteria (54) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.28 ± 0.21 0.00 ± 0.00 0.18 ± 0.11 

Phaselicystis (163) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.30 ± 0.28 

Gammaproteobacteria (Betaproteobacterales) Hydrogenophaga (9) 0.01 ± 0.00 0.01 ± 0.00 0.10 ± 0.01 0.24 ± 0.02 0.61 ± 0.01 0.24 ± 0.14 1.11 ± 0.14 

Leeia (513) 0.05 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.15 ± 0.06 0.05 ± 0.03 0.02 ± 0.00 0.01 ± 0.01 

Piscinibacter (14) 0.17 ± 0.02 0.07 ± 0.03 0.65 ± 0.23 0.48 ± 0.06 1.27 ± 0.19 0.46 ± 0.01 1.76 ± 0.44 

Rhizobacter (123) 0.01 ± 0.00 0.01 ± 0.00 0.20 ± 0.07 0.12 ± 0.03 0.09 ± 0.02 0.26 ± 0.11 0.17 ± 0.06 

Uncultured Comamonadaceae (4) 0.28 ± 0.06 0.23 ± 0.03 0.90 ± 0.18 0.71 ± 0.11 1.35 ± 0.21 1.03 ± 0.01 2.70 ± 0.48 

Uncultured Comamonadaceae (36) 0.03 ± 0.02 0.02 ± 0.00 0.29 ± 0.09 0.25 ± 0.05 0.64 ± 0.10 0.49 ± 0.13 1.98 ± 0.36 

Uncultured Comamonadaceae (113) 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.09 ± 0.05 0.09 ± 0.05 0.38 ± 0.31 0.30 ± 0.15 

Uncultured Comamonadaceae (152) 0.06 ± 0.02 0.02 ± 0.01 0.14 ± 0.04 0.13 ± 0.02 0.26 ± 0.01 0.18 ± 0.01 0.65 ± 0.23 

Uncultured Comamonadaceae (1113) 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.03 ± 0.03 0.13 ± 0.01 0.01 ± 0.01 

Uncultured Comamonadaceae (12) 0.6 ± 0.07 0.51 ± 0.07 0.91 ± 0.21 0.51 ± 0.03 1.01 ± 0.14 0.65 ± 0.11 1.58 ± 0.34 

Azohydromonas (43) 0.07 ± 0.02 0.03 ± 0.01 0.16 ± 0.04 0.11 ± 0.01 0.11 ± 0.03 0.14 ± 0.00 0.47 ± 0.09 

Uncultured Gallionellaceae (320) 0.06 ± 0.03 0.10 ± 0.01 0.07 ± 0.02 0.08 ± 0.01 0.03 ± 0.00 0.05 ± 0.02 0.02 ± 0.01 

Uncultured Nitrosomonadaceae (20) 0.07 ± 0.03 0.05 ± 0.02 0.06 ± 0.01 0.09 ± 0.02 0.13 ± 0.04 0.14 ± 0.01 0.21 ± 0.06 

Uncultured Nitrosomonadaceae (350) 0.01 ± 0.01 0.03 ± 0.02 0.01 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 0.04 ± 0.03 

Uncultured Nitrosomonadaceae (92) 0.04 ± 0.03 0.04 ± 0.01 0.03 ± 0.02 0.03 ± 0.01 0.04 ± 0.00 0.03 ± 0.01 0.05 ± 0.02 

Uncultured Oxalobacteraceae (215) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.05 0.03 ± 0.01 0.03 ± 0.01 0.01 ± 0.00 

Vogesella (44) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Dechloromonas (138) 0.05 ± 0.00 0.04 ± 0.01 0.04 ± 0.00 0.03 ± 0.00 0.01 ± 0.00 0.04 ± 0.00 0.02 ± 0.01 
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Thauera (40) 0.01 ± 0.00 0.01 ± 0.01 0.02 ± 0.00 0.02 ± 0.01 0.00 ± 0.00 0.04 ± 0.00 0.02 ± 0.01 

Uncultured SC-I-84 (89) 0.05 ± 0.01 0.02 ± 0.02 0.06 ± 0.01 0.09 ± 0.01 0.04 ± 0.01 0.19 ± 0.05 0.13 ± 0.03 

Uncultured SC-I-84 (354) 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.01 ± 0.00 0.03 ± 0.02 0.03 ± 0.01 

Uncultured β-proteobacteria (66) 0.13 ± 0.07 0.07 ± 0.00 0.05 ± 0.00 0.19 ± 0.05 0.15 ± 0.00 0.30 ± 0.00 0.57 ± 0.10 

Zoogloea (266) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Acidiferrobacter (67) 0.36 ± 0.12 0.41 ± 0.10 0.18 ± 0.02 0.31 ± 0.03 0.23 ± 0.05 0.26 ± 0.04 0.10 ± 0.02 

Arenimonas (520) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.08 ± 0.01 0.07 ± 0.02 0.08 ± 0.00 0.01 ± 0.00 

Arenimonas (357) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.07 ± 0.01 0.00 ± 0.00 0.09 ± 0.03 0.02 ± 0.01 

Pseudomonas (24) 0.00 ± 0.00 0.02 ± 0.01 0.08 ± 0.01 0.33 ± 0.12 0.19 ± 0.02 0.21 ± 0.04 0.06 ± 0.01 

Unclutured Pseudomonadaceae (3) 0.00 ± 0.00 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Thermomonas (58) 0.02 ± 0.01 0.06 ± 0.02 0.05 ± 0.01 0.12 ± 0.03 0.19 ± 0.09 0.15 ± 0.03 0.09 ± 0.03 

Uncultured Xanthomonadaceae (70) 0.02 ± 0.00 0.07 ± 0.03 0.07 ± 0.02 0.14 ± 0.01 0.05 ± 0.02 0.03 ± 0.00 0.11 ± 0.03 

Uncultured γ-proteobacteria (452) 0.00 ± 0.00 0.00 ± 0.00 0.07 ± 0.02 0.14 ± 0.03 0.07 ± 0.03 0.06 ± 0.02 0.02 ± 0.01 

Uncultured γ-proteobacteria (541) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.13 ± 0.01 0.10 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 

Uncultured γ-proteobacteria (505) 0.02 ± 0.02 0.04 ± 0.01 0.05 ± 0.02 0.05 ± 0.02 0.04 ± 0.01 0.07 ± 0.02 0.05 ± 0.01 

Uncultured γ-proteobacteria (715) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.05 ± 0.01 0.01 ± 0.00 0.07 ± 0.05 0.00 ± 0.00 

Uncultured γ-proteobacteria (1758) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Acidiferrobacter (196) 0.13 ± 0.06 0.13 ± 0.05 0.05 ± 0.02 0.07 ± 0.01 0.05 ± 0.00 0.06 ± 0.02 0.03 ± 0.00 

Saccharibacteria Uncultured Saccharibacteria (980) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Verrucomicrobia Prosthecobacter (162) 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.00 0.10 ± 0.02 0.07 ± 0.04 0.57 ± 0.04 0.09 ± 0.02 

Verrucomicrobium (903) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.01 0.11 ± 0.04 0.13 ± 0.02 

Uncultured DEV007 (1517) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.10 ± 0.03 

Unclassified Uncultured bacterium (315) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.02 ± 0.00 0.16 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 

Uncultured bacterium (255) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.06 ± 0.04 0.02 ± 0.02 0.24 ± 0.21 
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Table A3. Bacterial OTUs enriched by metoprolol relative to unamended controls sampled simultaneously from samples incubated 
under oxic conditions, and closest cultured relatives of OTU representative 16S rRNA gene sequences. Significant (p-adj < 0.05) 
Log2-fold changes > 0 are reported as determined by Deseq2. 15 µM and 150 µM indicate metoprolol concentration. 

 

 

Phylum/Subphylum-level 

 

Genus-level (OTU No.) 

 

Closest cultured relative 

 

Acc. Noa 

 

[%]b 

 

Log2-fold Change 

16S rRNA 

15 µM 150 µM 

Proteobacteria 
      

 
 Phenylobacterium (155) Phenylobacterium koreense NR_114055 97 6c 7 

 Caulobacter (581) Caulobacter segnis LC500798 100 --d 5 

 Sphingopyxis (913) Sphingopyxis chilensis MN684303 100 4 5 

 Sphingomonas (90) Sphingomonas panni MH930068 100 3 4 

 Sphingobium (486) Sphingobium xenophagum MK456509 100 -- 3 

  Gammaproteobacteria 
  

 

 Acinetobacter (4) Acinetobacter guillouiae MH379731 100 -- 12 

 Pseudomonas (8) Pseudomonas stutzeri MN733041 100 -- 3 

 Rheinheimera (2462) Rheinheimera tilapiae NR_117918 97 -- 5 

 Aquabacterium (6) Aquabacterium olei CP029210 97 11 12 

 Limnobacter (55) Limnobacter thiooxidans MF193773 100 8 9 

 Ralstonia (122) Ralstonia pickettii MK231010 100 7 9 

 Pelomonas (41) Pelomonas puraquae KF817703 100 6 7 

 Albidiferax (189) Rhodoferax antarcticus CP019240 99 5 -- 

 Aquabacterium (206) Aquabacterium citratiphilum MN684290 100 3 5 

 Thiomonas (246) Thiomonas intermedia CP002021 99 -- 5 

 Unc. Gammaproteobacteria (2279) Acinetobacter guillouiae MH379731 92 -- 4 

Bacteroidetes 

 

 Flavobacterium (265) Flavobacterium limicola NR_118473 98 -- 3 

 Flavobacterium (591) Flavobacterium terrigena NR_044006 99 6 6 

 Hydrotalea (406) Hydrotalea flava JN999927 97 5 7 
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Table A4. Relative abundance of bacterial OTUs from the original microbial community enriched by different metoprolol treatments 
relative to unamended controls under oxic conditions. Only genera with a relative abundance > 0.01% are shown. Data represents the 
mean of triplicate samples in % of total rarified reads (uniform sequencing depth of 11,435 per sample) ± standard error of mean (SEM). 

 

  16S rRNA gene 
Phylum/Subphylum Genus 0_0 0_65 0_120 15_65 15_120 150_65 150_120 

Alphaproteobacteria Phenylobacterium (155) 0.00 ± 0.00 0.07 ± 0.02 0.07 ± 0.06 0.06 ± 0.03 0.06 ± 0.03 0.04 ± 0.02 0.06 ± 0.02 

Caulobacter (581) 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.02 0.01 ± 0.01 0.01 ± 0.01 

Sphingopyxis (913) 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 

Sphingomonas (90) 0.06 ± 0.02 0.14 ± 0.05 0.01 ± 0.01 0.04 ± 0.02 0.06 ± 0.04 0.05 ± 0.02 0.09 ± 0.01 

Sphingobium (486) 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.03 ± 0.01 

Gammaproteobacteria Acinetobacter (4) 12.62 ± 7.76 14.28 ± 1.37 14.16 ± 10.3 15.28 ± 1.29 22.53 ± 5.71 7.85 ± 4.10 19.12 ± 2.63 

Pseudomonas (8) 2.51 ± 1.46 4.88 ± 0.53 3.21 ± 0.18 7.04 ± 2.88 4.71 ± 0.63 1.91 ± 1.03 4.26 ± 0.17 

Rheinheimera (2462) 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 

Aquabacterium (6) 2.94 ± 1.03 6.70 ± 0.72 6.31 ± 0.92 5.93 ± 0.11 9.62 ± 2.96 3.58 ± 1.97 5.50 ± 0.23 

Limnobacter (55) 0.08 ± 0.02 0.17 ± 0.02 0.07 ± 0.06 0.09 ± 0.05 0.23 ± 0.06 0.07 ± 0.04 0.18 ± 0.05 

Ralstonia (122) 0.01 ± 0.01 0.00 ± 0.00 0.09 ± 0.05 2.42 ± 2.39 0.21 ± 0.16 0.03 ± 0.02 0.05 ± 0.02 

Pelomonas (41) 0.01 ± 0.01 0.05 ± 0.02 0.19 ± 0.10 1.55 ± 1.47 0.22 ± 0.09 0.03 ± 0.01 0.09 ± 0.02 

Albidiferax (189) 0.03 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Aquabacterium (206) 0.03 ± 0.01 0.05 ± 0.02 0.04 ± 0.01 0.03 ± 0.02 0.01 ± 0.01 0.02 ± 0.01 0.06 ± 0.02 

Thiomonas (246) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Unc. Gammaprot (2279) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 

Bacteroidetes Flavobacterium (265) 0.02 ± 0.01 0.04 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.02 0.08 ± 0.04 

Flavobacterium (591) 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 

Hydrotalea (406) 0.00 ± 0.00 0.03 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 

  16S rRNA 
Alphaproteobacteria Phenylobacterium (155) 0.00 ± 0.00 0.08 ± 0.00 0.08 ± 0.06 0.01 ± 0.01 0.09± 0.02 0.08 ± 0.01 0.13 ± 0.03 

Caulobacter (581) 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.03 ± 0.02 

Sphingopyxis (913) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.03 ± 0.00 0.02 ± 0.01 0.00 ± 0.00 

Sphingomonas (90) 0.06 ± 0.03 0.13 ± 0.01 0.07 ± 0.05 0.04 ± 0.03 0.14 ± 0.06 0.14 ± 0.01 0.09 ± 0.01 

Sphingobium (486) 0.02 ± 0.02 0.01 ± 0.01 0.03 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.02 ± 0.00 0.03 ± 0.02 

Gammaproteobacteria Acinetobacter (4) 10.57 ± 6.61 15.81 ± 1.82 21.54 ± 0.66 6.42 ± 5.20 19.62 ± 1.39 16.05 ± 2.89 18.97 ± 1.52 

Pseudomonas (8) 1.82 ± 0.95 3.22 ± 0.08 2.98 ± 0.08 1.18 ± 0.96 2.83 ± 0.18 3.77 ± 0.33 2.61 ± 0.25 

Rheinheimera (2462) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 

Aquabacterium (6) 4.76 ± 1.42 9.35 ± 2.10 6.52 ± 0.06 2.51 ± 2.19 6.50 ± 0.31 6.51 ± 0.38 6.03 ± 0.55 

Limnobacter (55) 0.34 ± 0.18 0.20 ± 0.01 0.14 ± 0.08 0.10 ± 0.09 0.27 ± 0.03 0.26 ± 0.04 0.18 ± 0.04 

Ralstonia (122) 0.14 ± 0.12 0.19 ± 0.08 0.07 ± 0.01 0.02 ± 0.02 0.11 ± 0.04 0.08 ± 0.03 0.14 ± 0.03 

Pelomonas (41) 0.28 ± 0.24 0.06 ± 0.00 0.41 ± 0.16 0.10 ± 0.06 0.21 ± 0.05 0.21 ± 0.11 0.26 ± 0.04 

Albidiferax (189) 0.02 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.14 ± 0.09 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.00 

Aquabacterium (206) 0.11 ± 0.06 0.01 ± 0.01 0.08 ± 0.02 0.01 ± 0.01 0.06 ± 0.03 0.09 ± 0.02 0.04 ± 0.01 

Thiomonas (246) 0.04 ± 0.04 0.01 ± 0.01 0.00 ± 0.00 0.17 ± 0.09 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.01 
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Unc. Gammaprot (2279) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 

Bacteroidetes Flavobacterium (265) 0.02 ± 0.01 0.02 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 0.05 ± 0.02 0.03 ± 0.01 0.05 ± 0.02 

Flavobacterium (591) 0.00 ± 0.00 0.01 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.04 ± 0.02 0.01 ± 0.00 0.02 ± 0.01 

Hydrotalea (406) 0.02 ± 0.02 0.01 ± 0.01 0.05 ± 0.04 0.00 ± 0.00 0.03 ± 0.02 0.05 ± 0.02 0.02 ± 0.01 
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Table A5. Bacterial OTUs enriched by metoprolol relative to unamended controls sampled simultaneously from samples incubated 
under anoxic conditions, and closest cultured relatives of OTU representative 16S rRNA gene sequences. Significant (p-adj < 0.05) 
Log2-fold changes > 0 are reported as determined by Deseq2. 15 µM and 150 µM indicate metoprolol concentration 

 

 
Phylum/Subphylum-level 

 
Genus-level (OTU) 

 
Closest cultured relative 

 
Acc. No. 

 
[%] 

Log2FoldChange 

16S rRNA gene 

15 µM 150 µM 

Proteobacteria 
     Alphaproteobacteria 

      

Rhodomicrobium (25) Rhodomicrobium vannielii AM691111 96 10 10 

Pedomicrobium (28) Pedomicrobium americanum NR_104908 97 10 10 

Rhodobium (56) Rhodobium orientis LC110383 95 8 9 

unc. DB1-14 (78) Rhodospirillum photometricum HE663493 89 8 10 

unc. Rhodospirillaceae (105) Fodinicurvata halophila NR_134730 92 7 8 

unc. Rhizobiales (30) Pseudorhodoplanes sinuspersici CP021112 96 7 -- 

unc. A0839 (127) Azospirillum amazonense AB568112 90 7 -- 

Rhodoplanes (145) Rhodoplanes roseus D25313 96 8 8 

     Deltaproteobacteria unc. GR-WP33-30 (33) Desulfuromonas acetexigens NR_044770 87 9 9 

OM27_clade (42) Taonella mepensis MN602464 84 9 9 

Byssovorax (86) Byssovorax cruenta NR_042341 97 8 9 

unc. Myxococcales (86) Racemicystis persica NR_156102 93 8 8 

unc. Deltaproteobacteria (119) Cystobacter fuscus KM978086 89 7 8 

unc. Myxococcales (62) Racemicystis persica NR_156102 94 9 -- 

Desulfobacca (173) Desulfobacca acetoxidans NR_074955 90 6 -- 

Sandaracinus (190) Sandaracinus amylolyticus KP306728 93 7 -- 

Sorangium (295) Sorangium cellulosum CP012673 94 7 -- 

unc. Cystobacteraceae (104) Archangium violaceum NR_043943 94 9 9 

unc. Myxococcales (159) Chondromyces robustus AJ233942 93 8 8 

unc. Deltaproteobacteria (170) Anaeromyxobacter dehalogenans KF952438 90 8 8 
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       Gammaproteobacteria Acidiferrobacter (7) Acidiferrobacter thiooxydans NR_114629 89 6 7 

unc. Gammaproteobacteria (11) Thioprofundum lithotrophicum NR_112620 91 10 9 

unc. Gammaproteobacteria (15) Sulfurivermis fontis AP018724 90 11 11 

unc. Gammaproteobacteria (16) Thiosocius teredinicola MG097873 92 10 10 

unc. Gammaproteobacteria (18) Thioprofundum hispidum NR_112620 92 7 8 

unc. Gammaproteobacteria (40) Thioalbus denitrificans NR_122087 92 8 10 

unc. Gammaproteobacteria (48) Thioprofundum hispidum NR_112620 92 8 10 

unc. Gammaproteobacteria (58) Sulfuricaulis limicola NR_147747 92 8 8 

unc. Gammaproteobacteria (59) Thiohalobacter thiocyanaticus AP018052 92 7 8 

Escherichia (1) Escherichia coli CP020495 100 10 -- 

Enhydrobacter (49) Enhydrobacter aerosaccus LR215098 100 6 -- 

unc. Gammaproteobacteria (103) Sulfuricaulis limicola AP014879 89 7 -- 

unc. Gammaproteobacteria (114) Thiohalocapsa halophila NR_028863 90 7 -- 

unc. Gammaproteobacteria (255) Thioprofundum hispidum NR_112620 93 8 -- 

 Unclassified Proteobacteria 
     

 

unc. Proteobacteria (72) Thiorhodococcus minor NR_116948 89 8 8 

unc. Proteobacteria (14) Thiosocius teredinicola MG097873 96 11 -- 

unc. Proteobacteria (108) Thiohalobacter thiocyanaticus AP018052 93 8 -- 

 Acidobacteria unc. Subgroup_6 (93) Anaeromyxobacter dehalogenans EU_331409 86 8 -- 

unc. Subgroup_6 (37) Vicinamibacter silvestris NR_151905 87 10 8 

unc. Subgroup_6 (195) Vicinamibacter silvestris NR_151905 86 7 -- 

unc. Subgroup_6 (212) Vicinamibacter silvestris NR_151905 87 7 -- 

unc. Subgroup_6 (278) Luteitalea pratensis CP015136 92 8 8 

unc. Subgroup_6 (314) Vicinamibacter silvestris NR_151905 91 7 -- 

unc. Subgroup_9 (193) Luteitalea pratensis NR_156918 93 7 -- 

unc. ABS-19 (124) Luteitalea pratensis NR_156918 92 7 -- 

unc. Subgroup-17 (31) Ralstonia solanacearum CP011998 91 7 -- 

unc. Subgroup_17 (211) Vicinamibacter silvestris NR_151905 92 7 -- 

unc. Subgroup_17 (311) Luteitalea pratensis NR_156918 84 8 -- 

 Chloroflexi unc. KD4-96 (64) Dehalogenimonas alkeniggnens JQ994267 86 7 8 

unc. S085 (137) Thermomarinilinea lacunifontana NR_132293 87 7 7 



                                                                                APPENDIX 

269 
 

unc. KD4-96 (79) Dehalogenimonas alkenigignens JQ994267 87 7 -- 

unc. Anaerolineaceae (227) Thermomarinilinea lacunifontana NR_132293 84 7 -- 

unc. Ardenticatenia (238) Flexilinea flocculi NR_148566 85 7 -- 

unc. Anaerolineaceae (256) Thermanaerothrix daxensis NR_117865 84 8 -- 

 Firmicutes Bacillus (160) Bacillus longiquaesitum AM747042 100 7 8 

 Gemmatimonadetes unc. Gemmatimonadaceae (29) Gemmatimonas aurantiaca KF228166 91 7 8 
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Table A6. Relative abundance of bacterial OTUs from the original microbial community enriched by different metoprolol treatments 
relative to unamended controls under anoxic conditions. Only genera with a relative abundance > 0.01% are shown. Data represents 
the mean of triplicate samples in % of total rarified reads (uniform sequencing depth of 14,063 per sample) ± standard error of mean 
(SEM). 

 

  16S rRNA gene 
Phylum/Subphylum Genus 0_0 0_65 0_120 15_65 15_120 150_65 150_120 
Alphaproteobacteria Rhodomicrobium (25) 0.00 ± 0.00 0.36 ± 0.18 1.64 ± 0.90 1.30 ± 0.44 0.22 ± 0.05 0.43 ± 0.09 0.06 ± 0.02 

Pedomicrobium (28) 0.01 ± 0.01 0.29 ± 0.05 0.72 ± 0.17 0.85 ± 0.13 0.26 ± 0.04 0.57 ± 0.02 0.00 ± 0.00 
Rhodobium (56) 0.01 ± 0.01 0.13 ± 0.02 0.15 ± 0.02 0.17 ± 0.06 0.12 ± 0.02 0.32 ± 0.03 0.00 ± 0.00 
unc. DB1-14 (78) 0.00 ± 0.00 0.09 ± 0.01 0.19 ± 0.01 0.21 ± 0.01 0.22 ± 0.05 0.42 ± 0.08 0.00 ± 0.00 
unc. Rhodospirillaceae (105) 0.00 ± 0.00 0.09 ± 0.01 0.22 ± 0.04 0.15 ± 0.06 0.18 ± 0.03 0.18 ± 0.01 0.00 ± 0.00 
unc. Rhizobiales (30) 0.04 ± 0.04 0.29 ± 0.05 0.50 ± 0.07 0.50 ± 0.08 0.30 ± 0.02 0.59 ± 0.06 0.00 ± 0.00 
unc. A0839 (127) 0.01 ± 0.01 0.10 ± 0.03 0.10 ± 0.02 0.10 ± 0.01 0.10 ± 0.02 0.11 ± 0.01 0.00 ± 0.00 
Rhodoplanes (145) 0.00 ± 0.00 0.06 ± 0.01 0.19 ± 0.05 0.24 ± 0.05 0.02 ± 0.01 0.13 ± 0.02 0.00 ± 0.00 

Deltaproteobacteria unc. GR-WP33-30 (33) 0.03 ± 0.03 0.36 ± 0.08 0.66 ± 0.09 0.54 ± 0.08 0.56 ± 0.05 0.50 ± 0.09 0.00 ± 0.00 
OM27_clade (42) 0.00 ± 0.00 0.32 ± 0.03 0.86 ± 0.31 0.41 ± 0.12 0.33 ± 0.01 0.31 ± 0.06 0.00 ± 0.00 
Byssovorax (86) 0.00 ± 0.00 0.24 ± 0.02 0.25 ± 0.04 0.37 ± 0.07 0.06 ± 0.02 0.22 ± 0.08 0.00 ± 0.00 
unc. Deltaproteobacteria (119) 0.00 ± 0.00 0.32 ± 0.03 0.16 ± 0.07 0.17 ± 0.03 0.10 ± 0.02 0.16 ± 0.03 0.00 ± 0.00 
unc. Myxococcales (62) 0.03 ± 0.03 0.18 ± 0.09 0.55 ± 0.14 0.64 ± 0.01 0.12 ± 0.05 0.16 ± 0.05 0.00 ± 0.00 
Desulfobacca (173) 0.00 ± 0.00 0.11 ± 0.03 0.12 ± 0.03 0.09 ± 0.03 0.13 ± 0.02 0.10 ± 0.02 0.00 ± 0.00 
Sandaracinus (190) 0.00 ± 0.00 0.11 ± 0.02 0.22 ± 0.05 0.13 ± 0.01 0.04 ± 0.01 0.07 ± 0.01 0.00 ± 0.00 
Sorangium (295) 0.00 ± 0.00 0.03 ± 0.02 0.06 ± 0.01 0.08 ± 0.02 0.15 ± 0.01 0.14 ± 0.06 0.00 ± 0.00 
unc. Cystobacteraceae (104) 0.00 ± 0.00 0.24 ± 0.03 0.18 ± 0.06 0.10 ± 0.02 0.06 ± 0.03 0.31 ± 0.02 0.00 ± 0.00 
unc. Myxococcales (159) 0.00 ± 0.00 0.20 ± 0.02 0.18 ± 0.04 0.11 ± 0.03 0.05 ± 0.02 0.15 ± 0.02 0.00 ± 0.00 
unc. Deltaproteobacteria (170) 0.00 ± 0.00 0.09 ± 0.01 0.10 ± 0.08 0.07 ± 0.03 0.06 ± 0.02 0.30 ± 0.08 0.00 ± 0.00 

Gammaproteobacteria Acidiferrobacter (7) 0.11 ± 0.11 9.51 ± 0.84 8.43 ± 1.15 6.76 ± 0.53 5.75 ± 0.13 10.33 ± 0.88 0.02 ± 0.02 
unc. Gammaproteobacteria (11) 0.04 ± 0.04 5.02 ± 1.07 2.60 ± 0.61 3.37 ± 0.22 4.02 ± 0.56 2.89 ± 0.10 0.00 ± 0.00 
unc. Gammaproteobacteria (15) 0.03 ± 0.03 2.14 ± 0.33 1.85 ± 0.33 2.17 ± 0.58 3.24 ± 0.62 2.03 ± 0.19 0.00 ± 0.00 
unc. Gammaproteobacteria (16) 0.02 ± 0.01 2.31 ± 0.38 2.20 ± 0.16 1.01 ± 0.16 3.32 ± 0.58 1.50 ± 0.66 0.00 ± 0.00 
unc. Gammaproteobacteria (18) 0.01 ± 0.01 1.66 ± 0.08 1.32 ± 0.20 1.17 ± 0.32 1.51 ± 0.04 2.05 ± 0.18 0.00 ± 0.00 
unc. Gammaproteobacteria (40) 0.01 ± 0.01 0.23 ± 0.04 0.55 ± 0.19 0.34 ± 0.11 0.41 ± 0.08 0.48 ± 0.10 0.00 ± 0.00 
unc. Gammaproteobacteria (48) 0.01 ± 0.01 0.27 ± 0.02 0.38 ± 0.08 0.22 ± 0.11 0.22 ± 0.06 0.54 ± 0.08 0.00 ± 0.00 
unc. Gammaproteobacteria (58) 0.01 ± 0.01 0.31 ± 0.04 0.24 ± 0.01 0.20 ± 0.02 0.13 ± 0.01 0.24 ± 0.03 0.00 ± 0.00 
unc. Gammaproteobacteria (59) 0.00 ± 0.00 0.43 ± 0.06 0.41 ± 0.03 0.20 ± 0.02 0.65 ± 0.09 0.29 ± 0.14 0.00 ± 0.00 
Escherichia (1) 83.87 ± 14.9 0.06 ± 0.05 0.98 ± 0.42 0.89 ± 0.36 6.35 ± 0.06 0.03 ± 0.02 97.42 ± 0.74 

Enhydrobacter (49) 0.06 ± 0.05 0.01 ± 0.01 1.06 ± 0.98 0.12 ± 0.07 0.70 ± 0.24 0.00 ± 0.00 0.03 ± 0.01 
unc. Gammaproteobacteria (103) 0.00 ± 0.00 0.28 ± 0.03 0.21 ± 0.03 0.14 ± 0.03 0.10 ± 0.04 0.17 ± 0.05 0.00 ± 0.00 
unc. Gammaproteobacteria (114) 0.00 ± 0.00 0.11 ± 0.01 0.40 ± 0.03 0.15 ± 0.03 0.05 ± 0.02 0.17 ± 0.01 0.00 ± 0.00 
unc. Gammaproteobacteria (255) 0.00 ± 0.00 0.01 ± 0.01 0.04 ± 0.01 0.04 ± 0.02 1.21 ± 0.48 0.00 ± 0.00 0.00 ± 0.00 

Unclassified Proteobacteria unc. Proteobacteria (72) 0.01 ± 0.01 0.18 ± 0.02 0.31 ± 0.08 0.31 ± 0.12 0.13 ± 0.08 0.21 ± 0.02 0.00 ± 0.00 
unc. Proteobacteria (14) 0.01 ± 0.01 1.69 ± 0.12 2.05 ± 0.18 1.59 ± 0.16 2.52 ± 0.14 2.42 ± 0.24 0.01 ± 0.01 
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 unc. Proteobacteria (108) 0.00 ± 0.00 0.38 ± 0.04 0.04 ± 0.01 0.22 ± 0.09 0.14 ± 0.01 0.16 ± 0.06 0.00 ± 0.00 
Acidobacteria unc. Subgroup_6 (93) 0.01 ± 0.01 0.29 ± 0.06 0.20 ± 0.02 0.27 ± 0.05 0.13 ± 0.02 0.19 ± 0.03 0.00 ± 0.00 

unc. Subgroup_6 (37) 0.01 ± 0.01 0.08 ± 0.02 0.84 ± 0.23 0.21 ± 0.02 3.15 ± 0.59 0.06 ± 0.03 0.01 ± 0.01 
unc. Subgroup_6 (195) 0.01 ± 0.01 0.10 ± 0.01 0.11 ± 0.03 0.19 ± 0.03 0.03 ± 0.01 0.06 ± 0.01 0.00 ± 0.00 
unc. Subgroup_6 (212) 0.01 ± 0.01 0.05 ± 0.01 0.10 ± 0.03 0.16 ± 0.07 0.08 ± 0.01 0.07 ± 0.03 0.00 ± 0.00 
unc. Subgroup_6 (278) 0.00 ± 0.0 0.03 ± 0.01 0.15 ± 0.06 0.05 ± 0.02 0.37 ± 0.11 0.03 ± 0.01 0.00 ± 0.00 
unc. Subgroup_6 (314) 0.00 ± 0.00 0.05 ± 0.02 0.04 ± 0.01 0.13 ± 0.06 0.09 ± 0.03 0.07 ± 0.02 0.00 ± 0.00 
unc. Subgroup_9 (193) 0.00 ± 0.0 0.04 ± 0.01 0.09 ± 0.01 0.17 ± 0.05 0.19 ± 0.00 0.06 ± 0.01 0.00 ± 0.00 
unc. ABS-19 (124) 0.00 ± 0.00 0.04 ± 0.01 0.13 ± 0.01 0.12 ± 0.02 0.66 ± 0.22 0.15 ± 0.06 0.00 ± 0.00 
unc. Subgroup-17 (31) 0.00 ± 0.0 0.11 ± 0.03 0.90 ± 0.08 0.22 ± 0.02 3.76 ± 0.65 0.16 ± 0.05 0.00 ± 0.00 
unc. Subgroup_17 (211) 0.00 ± 0.00 0.09 ± 0.01 0.13 ± 0.01 0.06 ± 0.01 0.31 ± 0.02 0.08 ± 0.02 0.00 ± 0.00 
unc. Subgroup_17 (311) 0.00 ± 0.00 0.02 ± 0.01 0.07 ± 0.02 0.15 ± 0.03 0.06 ± 0.02 0.03 ± 0.01 0.00 ± 0.00 

Chloroflexi unc. KD4-96 (64) 0.02 ± 0.01 0.15 ± 0.05 0.16 ± 0.03 0.16 ± 0.02 0.08 ± 0.01 0.20 ± 0.05 0.00 ± 0.00 
unc. S085 (137) 0.05 ± 0.05 0.12 ± 0.05 0.13 ± 0.08 0.14 ± 0.04 0.12 ± 0.03 0.10 ± 0.02 0.00 ± 0.00 
unc. KD4-96 (79) 0.00 ± 0.00 0.11 ± 0.03 0.14 ± 0.03 0.10 ± 0.01 0.22 ± 0.01 0.14 ± 0.04 0.00 ± 0.00 
unc. Anaerolineaceae (227) 0.00 ± 0.00 0.11 ± 0.05 0.08 ± 0.04 0.14 ± 0.04 0.08 ± 0.02 0.06 ± 0.02 0.00 ± 0.00 
unc. Ardenticatenia (238) 0.00 ± 0.00 0.04 ± 0.02 0.09 ± 0.02 0.13 ± 0.03 0.08 ± 0.01 0.02 ± 0.01 0.00 ± 0.00 
unc. Anaerolineaceae (256) 0.00 ± 0.00 0.01 ± 0.01 0.06 ± 0.01 0.22 ± 0.16 0.11 ± 0.02 0.01 ± 0.01 0.00 ± 0.00 

Firmicutes Bacillus (160) 0.02 ± 0.01 0.12 ± 0.02 0.06 ± 0.02 0.11 ± 0.03 0.11 ± 0.01 0.16 ± 0.03 0.00 ± 0.00 
Gemmatimonadetes unc. Gemmatimonadaceae (29) 0.03 ± 0.01 0.37 ± 0.03 0.28 ± 0.05 0.48 ± 0.02 0.25 ± 0.01 0.73 ± 0.13 0.00 ± 0.00 
  16S rRNA 
Alphaproteobacteria Rhodomicrobium (25) 0.08 ± 0.05 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.13 ± 0.03 

Pedomicrobium (28) 0.07 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
Rhodobium (56) 0.29 ± 0.16 0.01 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. DB1-14 (78) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Rhodospirillaceae (105) 0.12 ± 0.07 0.03 ± 0.01 0.03 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Rhizobiales (30) 0.29 ± 0.08 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. A0839 (127) 0.06 ± 0.03 0.01 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
Rhodoplanes (145) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Deltaproteobacteria unc. GR-WP33-30 (33) 0.05 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
OM27_clade (42) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
Byssovorax (86) 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Deltaproteobacteria (119) 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Myxococcales (62) 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
Desulfobacca (173) 0.03 ± 0.01 0.07 ± 0.03 0.07 ± 0.03 0.01 ± 0.01 0.00 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 
Sandaracinus (190) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
Sorangium (295) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Cystobacteraceae (104) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Myxococcales (159) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Deltaproteobacteria (170) 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Gammaproteobacteria Acidiferrobacter (7) 1.92 ± 0.05 0.32 ± 0.13 0.32 ± 0.13 0.05 ± 0.03 0.01 ± 0.01 0.03 ± 0.02 0.01 ± 0.01 
unc. Gammaproteobacteria (11) 0.26 ± 0.14 0.06 ± 0.02 0.06 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.03 0.01 ± 0.00 
unc. Gammaproteobacteria (15) 0.03 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Gammaproteobacteria (16) 0.08 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Gammaproteobacteria (18) 0.23 ± 0.11 0.03 ± 0.02 0.03 ± 0.02 0.01 ± 0.01 0.00 ± 0.00 0.02 ± 0.02 0.00 ± 0.00 
unc. Gammaproteobacteria (40) 0.08 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Gammaproteobacteria (48) 0.05 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Gammaproteobacteria (58) 0.38 ± 0.04 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
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unc. Gammaproteobacteria (59) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
Escherichia (1) 25.38 ± 14.6 17.04 ± 4.82 17.04 ± 14.8 55.87 ± 28.5 94.33 ± 1.71 90.26 ± 6.36 97.91 ± 0.59 

Enhydrobacter (49) 0.00 ± 0.00 0.03 ± 0.02 0.03 ± 0.02 0.06 ± 0.03 0.03 ± 0.02 0.02 ± 0.00 0.04 ± 0.01 
unc. Gammaproteobacteria (103) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Gammaproteobacteria (114) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Gammaproteobacteria (255) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Unclassified Proteobacteria 

 
unc. Proteobacteria (72) 0.06 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Proteobacteria (14) 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Proteobacteria (108) 0.07 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Acidobacteria unc. Subgroup_6 (93) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Subgroup_6 (37) 0.05 ± 0.02 0.02 ± 0.02 0.02 ± 0.00 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Subgroup_6 (195) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Subgroup_6 (212) 0.06 ± 0.03 0.01 ± 0.01 0.01 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Subgroup_6 (278) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Subgroup_6 (314) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Subgroup_9 (193) 0.04 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. ABS-19 (124) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Subgroup-17 (31) 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Subgroup_17 (211) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Subgroup_17 (311) 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Chloroflexi unc. KD4-96 (64) 0.28 ± 0.16 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. S085 (137) 0.06 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. KD4-96 (79) 0.16 ± 0.08 0.02 ± 0.01 0.02 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Anaerolineaceae (227) 0.01 ± 0.01 0.00 ± 0.00 0.02 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Ardenticatenia (238) 0.02 ± 0.01 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
unc. Anaerolineaceae (256) 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 

Firmicutes Bacillus (160) 0.03 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
Gemmatimonadetes unc. Gemmatimonadaceae (29) 0.24 ± 0.12 0.03 ± 0.02 0.03 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 
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Table A7. Bacterial OTUs enriched in micropollutant-amended subsurface sediments relative to unamended controls sampled 
simultaneously from samples incubated under oxic conditions, and closest cultured relatives of OTU representative 16S rRNA gene 
sequences. Significant (p-adj < 0.05) Log2-fold changes > 0 are reported as determined by Deseq2. 

 

Phylum/Sub-phylum Genus-level (OTU No.) Closest cultured relative Acc.Noa [%]b Log2Fold Change 

     16S rRNA gene 16S rRNA 

 Proteobacteria 
      Alphaproteobacteria 

  
 

Xanthobacter (75) Xanthobacter agilis MK402058 99 5c 4 

Hyphomicrobium (21) Hyphomicrobium vulgare KC447318 99 2 -- 

Magnetospirillum (510) Magnetospirillum magneticum AB983194 100 --d 4 

Novosphingobium (120) Novosphingobium aromaticivorans KU924009 100 -- 4 

Reyranella (439) Reyranella aquatilis NR_158037 100 -- 3 

Rhizobium (546) Rhizobium selenitireducens MH665748 100 -- 2 

Prosthecomicrobium (388) Prosthecomicrobium hirschii NR_104906 100 -- 2 

      Deltaproteobacteria 

  
 

unc. Myxococcales (1467) Vulgatibacter incomptus CP012332 92 5 3 

Phaselicystis (462) Phaselicystis flava NR_044523 91 4 -- 

Geothermobacter (241) Geothermobacter ehrlichii NR_042754 94 -- 2 

    Gammaproteobacteria 
  

 

Neisseriaceae (1382) Annwoodia aquaesulis NR_044793 95 3 -- 

Ferritrophicum (36) Ferritrophicum radinicola DQ386273 94 2 -- 

unc. Betaproteobacteriales (56) Piscinibacter aquaticus LC430085 93 2 -- 

Nitrosomonadaceae (77) Collimonas fungivorans KM604833 93 1 -- 

Crenothrix (268) Crenothrix polyspora DQ295898 96 -- 5 

 Bacteroidetes 

   Sphingobacteriia 
  
 

unc. KD3-93 (2443) Owenweeksia hongkongensis CP003156 90 -- 6 

unc. env.OPS_17 (2106) Sphingobacterium tabacisoli NR_159136 89 -- 5 

unc. env.OPS_17 (818) Anseongella ginsenosidimutans CP042432 85 -- 4 

Terrimonas (370) Terrimonas soli NR_159891 98 2 -- 

 Cytophagia Rhodothermaceae (1646) Rhodothermus marinus Y14143 90 -- 2 
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Table A8. Bacterial OTUs enriched or inhibited by the micropollutant-amendment in the flumes relative to unamended controls. Closest 
cultured relatives of OTU representative 16S rRNA gene sequences. Significant (p-adj < 0.05) Log2-fold changes are reported as 
determined by Deseq2. Table used with permission from Posselt et al. (2020). 

 

Phylum/Sub-phylum Genus-level (OTU No.) Closest cultured relative Acc.Noa [%]b Log2Fold Change 

 Acidobacteria  Geothrix (58) Geothrix fermentans HF559181 97 -9,2 

 Actinobacteria 
  

 Candidatus_Microthrix (137) Iamia majanohamensis JQ899225 92 5,7 

 Nocardioides (144) Nocardioides sediminis NR_044228 100 -3,7 

 Bacteroidetes 
 

 Ferruginibacter (92) Ferruginibacter lapsinanis NR_044589 96 7,6 

 Haliscomenobacter (156) Haliscomenobacter hydrossis NR_074420 99 7,3 

 Flavobacterium (115) Flavobacterium cheonhonense MF592269 100 7,1 

 Lewinella (105) Lewinella cohaerens NR_115012 93 6,7 

 unclassified saprospiraceae (316) Phaeodactylibacter luteus MN867941 89 5,9 

 Runella (223) Runella slithyformis NR_074339 99 5,6 

 unclassified saprospiraceae (453) Lewinella nigricans EU371936 86 5,5 

 Leadbetterella (79) Leadbetterella byssophila NR_074303 90 5 

 Flavobacterium (143) Flavobacterium caeni NR_114264 96 4,9 

 Flavobacterium (131) Flavobacterium myungsuense NR_108537 98 4,7 

 unclassified NS11-12_marine_group (302) Phaeodactylibacter luteus NR_132329 89 3,9 

 unclassified NS9_marine_group (138) Lentimicrobium saccharophilum MG264237 87 3,2 

 Flavobacterium (4) Flavobacterium granuli MF592284 100 -3 

 unclassified Cytophagaceae (361) Chryseolinea NR_165708 93 -5,1 

 unclassified WCHB1-32 (181) Sunxiuqinia rutila NR_134207 91 -6,3 

 Paludibacter (104) Paludibacter propionicigenes AB910740 98 -8,2 

 Candidate_division_BRC1  unclassified Candidate_division_BRC1 (78) Desulfobulbus alkaliphilus NR_117882 82 2,2 

 Chloroflexi 
  
  
 

 unclassified Thermomicrobia (301) Sphaerobacter thermophilus AJ871226 88 6,7 

 unclassified Caldilineaceae (224) Litorilinea aerophila NR_132330 91 5,4 

 unclassified Caldilineaceae (232) Litorilinea aerophila NR_132330 91 4,8 

 unclassified  Thermomicrobia (305) Burkholderia tropica KM974662 90 4,7 

 unclassified  Thermomicrobia (100) Sphaerobacter thermophilus AJ871226 92 3,7 
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 unclassified Caldilineaceae (73) Litorilinea aerophila NR_132330 91 2,9 

 Cyanobacteria 
  
 

 unclassified ML635J-21 (68) Heliorestis acidaminivorans NR_132700 86 5,5 

 Nostoc (106) Nostoc calcicola MG596755 100 -6,4 

 unclassified FamilyI (397) Chroakolemma pellucida MF685894 95 -8,5 

 Firmicutes 
  
 

 Youngiibacter (135) Youngiibacter multivorans AB910755 99 -6,7 

 Erysipelothrix (120) Erysipelothrix rhusiopathiae AB055909 93 -7,7 

 Anaerovorax (195) Anaerovorax odorimutans NR_028911 97 -7,8 

 Erysipelothrix (90) Erysipelothrix rhusiopathiae AB055909 93 -9,7 

 Fusibacter (19) Fusibacter tunisiensis MG264211 99 -10,7 

 Planctomycetes  Candidatus_Nostocoida (877) Tundrisphaera lichenicola NR_158050 88 5,1 

 Proteobacteria (Alpha) 
  
 

 Defluviimonas (243) Defluviimonas pyrenivorans NR_159922 98 7,5 

 Sphingobium (129) Sphingobium scionense KM978212 99 6,3 

 Candidatus_Odyssella (506) Trajonella thessalonices AF069496 93 5,3 

 Woodsholea (435) Woodsholea maritima FM886859 96 5,2 

 unclassified Alphaproteobacteria (155) Bacterium Ellin6506 HM748654 97 5 

 Paracoccus (235) Paracoccus limosus MH915458 100 4,4 

 Hyphomicrobium (178) Hyphomicrobium fecile Y14312 97 4 

 Prosthecomicrobium (455) Prosthecomicrobium hirschii NR_104906 100 3,4 

 Woodsholea (35) Woodsholea maritima FM886859 100 3,2 

 Pedomicrobium (164) Pedomicrobium manganicum X97691 96 3 

 unclassified A0839 (101) Rhizomicrobium electricum NR_108115 89 2,7 

 unclassified A0839 (216) Azospirillum amazonese AB568112 90 2,7 

 unclassified MNG7 (116) Aestuariivirga litoralis MH371374 96 2,4 

 Brevundimonas (47) Brevundimonas alba MF101127 100 2 

 Pseudoxanthobacter (109) Pseudoxanthobacter soli KX082828 98 -2,8 

 unclassified I-10 (469) Lacibacterium aquatile KY077145 98 -4,9 

 Methylobacterium (678) Methylobacterium adhaesivum MK138652 100 -5,6 

 Azospirillum (752) Azospirillum lipoferum MK542987 99 -7,1 

 unclassified 7B-8 (944) Sphingoaurantiacus polygranulatus NR_147725 100 -7,5 

 Proteobacteria (Delta) 
  
 

 Bdellovibrio (582) Bdellovibrio bacteriovorus AF148941 94 5,6 

 Bdellovibrio (146) Bdellovibrio bacteriovorus MK779947 96 4,6 

 Desulfovibrio (540) Desulfovibrio putealis NR_029118 100 -6,2 

 unclassified BVA18 (194) Geobacter psychrophilus NR_043075 97 -7,8 
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 Proteobacteria (Gamma) 
  
  
  
 (Betaproteobacteriales) 
  
 

 Thermomonas (191) Thermomonas fusca MG897133 97 6,3 

 Arenimonas (25) Arenimonas maotaiensis MK396579 100 6,2 

 Dokdonella (161) Dokdonella immobilis NR_108377 98 6 

 Lysobacter (151) Lysobacter ginsengisoli NR_112563 100 4,5 

 Arenimonas (97) Arenimonas oryziterrae NR_116294 99 2,9 

 Arenimonas (124) Arenimonas subflava KY012256 100 2,5 

 Buttiauxella (6) Buttiauxella agrestis MN513216 100 -4,1 

 Tolumonas (11) Tolumonas auensis MN646993 100 -4,9 

 Sphaerotilus (394) Sphaerotilus hippei NR_117539 100 5,2 

 Albidiferax (55) Albidiferax ferrireducens KC855480 98 4,2 

 Methylibium (171) Methylibium petroleiphilum KP099963 100 3,7 

 Methylotenera (54) Methylotenera versatilis NR_074693 98 3,5 

 unclassified Comamonadaceae (91) Gemmobacter aquatilis MK425674 99 -2 

 Vogesella (10) Vogesella indigofera NR_040800 100 -2,2 

 Dechloromonas (71) Dechloromonas hortensis MK138646 100 -2,6 

 Methyloversatilis (66) Methyloversatilis discipulorum KY284088 99 -3,3 

 unclassified Comamonadaceae (177) Acidovorax cattleyae MH209630 100 -3,3 

 Azoarcus (668) Azoarcus evansii MN646997 100 -6 

 Verrucomicrobia 
  
 

 Verrucomicrobium (389) Verrucomicrobium spinosum NR_026266 97 6,4 

 unclassified Verrucomicrobia (444) Verrucomicrobium spinosum MN684281 92 6,3 

 Haloferula (60) Haloferula NR_041673 95 6,2 

 unclassified Verrucomicrobiae (170) Verrucomicrobium spinosum MN684281 92 5,8 

 unclassified Verrucomicrobiae (395) Luteolibacter cuticulihirudinis NR_109603 89 5,6 

 unclassified Verrucomicrobiaceae (471) Verrucomicrobium spinosum MN684281 96 4,9 

 Chthoniobacter (300) Chthoniobacter flavus NR_115225 91 3,3 

 Prosthecobacter (99) Prosthecobacter dejongeli NR_026021 99 -3,9 

 

a Gene bank accession number. 

b Similarity of OTU representative 16S rRNA gene sequence to that of closest cultured relative. 

c Significant (p-adj < 0.05) Log2-fold change > 0 and < 0 are reported as determined by Deseq2. 

d Non-significant differential abundance between treatment and unamended controls.
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