Oxygen Vacancy Substitution Linked to Ferric Iron in Bridgmanite at 27 GPa

Hongzhan Fei1, Zhaodong Liu1, Catherine McCammon1, and Tomoo Katsura1

Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany

Abstract Ferric iron can be incorporated into the crystal structure of bridgmanite by either oxygen vacancy substitution (MgFeO2.5 component) or charge-coupled substitution (FeFeO3 component) mechanisms. We investigated the concentrations of MgFeO2.5 and FeFeO3 in bridgmanite in the MgO-SiO2-Fe2O3 system at 27 GPa and 1700–2300 K using a multianvil apparatus. The FeFeO3 content increases from 1.6 to 7.6 mol.% and from 5.7 to 17.9 mol.% with and without coexistence of (Mg,Fe)O, respectively, with increasing temperature from 1700 to 2300 K. In contrast, the MgFeO2.5 content does not show clear temperature dependence, that is, ~2–3 and < 2 mol.% with and without the coexistence of (Mg,Fe)O, respectively. Therefore, the presence of (Mg,Fe)O enhances the oxygen vacancy substitution for Fe3+ in bridgmanite. It is predicted that Fe3+ is predominantly substituted following the oxygen vacancy mechanism in (Mg,Fe)O-saturated Al-free bridgmanite when Fe3+ is below ~0.025 pfu, whereas the charge-coupled mechanism occurs when Fe3+ > 0.025 pfu.

Plain Language Summary Bridgmanite, the most abundant mineral of the Earth’s lower mantle, can contain Fe3+ although the valence of iron is 2+ in general. An important question is how Fe3+ is substituted in the crystal structure of bridgmanite. It may form the MgFeO2.5 component, in which oxygen anions are partly missing. Or it may form the FeFeO3 component, which has no missing cations or anions. Since bridgmanite is present in the lower mantle together with (Mg,Fe)O, we investigated the MgFeO2.5 and FeFeO3 contents in Al-free bridgmanite that coexists with and without (Mg,Fe)O under the topmost lower mantle conditions. The results show that the presence of (Mg,Fe)O enhances the formation of MgFeO2.5. The solubility of MgFeO2.5 component is about 2.5 mol.% in bridgmanite that coexists with (Mg,Fe)O, whereas it is nearly zero when (Mg,Fe)O is absent.

1. Introduction

Bridgmanite, with typical chemical formula (Mg,Fe)SiO3, comprises around 80 vol.% of the lower mantle (e.g., Frost, 2008; Ringwood, 1991; Tschauner et al., 2014), and therefore, it dominates the physical and chemical processes of the lower mantle. Due to its variable valence, iron is the most important element that affects the properties of bridgmanite and thus mantle dynamics (e.g., Ismailova et al., 2016). Generally, iron is incorporated into the crystal structure of bridgmanite in the Mg site (A site) with the ferrous valence state. However, it is also known that a large amount of iron in bridgmanite can be in the ferric valence state even under reduced lower mantle conditions (Frost et al., 2004; Frost & McCammon, 2008; Grocholski et al., 2009; Jackson et al., 2005; Lauterbach et al., 2000; McCammon, 1997; McCammon et al., 2004). By analogy with aluminum substitutions in bridgmanite through the formation of MgAlO2.5 and AlAlO3 components (Brodholt, 2000; Kojitani et al., 2007; Liu, Ishii, & Katsura, 2017; Liu, Nishi, et al., 2017; Liu, Akaogi, & Katsura, 2019; Liu, Boffa-Ballaran, et al., 2019; Navrotsky, 1999), it is expected that the MgFeO2.5 (oxygen vacancy mechanism) and FeFeO3 (charge-coupled mechanism) components, respectively, will be formed by Fe3+ incorporation through the following reactions (e.g., Hummer & Fei, 2012; Navrotsky, 1999):

\[
\begin{align*}
\text{Si}_B^+ & \rightarrow \text{Fe}_B^+ + \frac{1}{2} \text{V}_{O}^- \\
(\text{MgSiO}_3 + \frac{1}{2} \text{Fe}_2\text{O}_3 & \rightarrow \text{MgFeO}_{2.5} + \text{SiO}_2) \tag{1} \\
\text{Mg}_A^+ + \text{Si}_B^+ & \rightarrow \text{Fe}_A^+ + \text{Fe}_B^+ \\
(\text{MgSiO}_3 + \text{Fe}_2\text{O}_3 & \rightarrow \text{FeFeO}_3 + \text{MgSiO}_3) \tag{2}
\end{align*}
\]

where the subscripts A and B denote the Mg and Si sites, respectively (we follow the Kröger and Vink, 1956 notation for point defects, i.e., V_{O}^- indicates a vacant O site with two effective positive charges, Mg_A^+ means...
Table 1

<table>
<thead>
<tr>
<th>Run Conditions, Phase, Age, and Composition of Bridgmanite in Run Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run no.</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>I567</td>
</tr>
<tr>
<td>I574</td>
</tr>
<tr>
<td>I597</td>
</tr>
<tr>
<td>I681</td>
</tr>
</tbody>
</table>

Note. All experiments were performed at 27 GPa. T: Temperature. t: Annealing duration. N: Number of analyzed points by EPMA. MgFeO₂.5: mixture of oxides with bulk composition of MgSiO₃ + MgFe₂O₄ + MgO (60:20:20 atomic ratio). FeFeO₃: mixture of oxides with bulk composition of MgSiO₃ + MgFe₂O₄ + Fe₂O₃ (60:20:20 in mole proportion, hereafter Fe₂O₃-rich). MgO-rich: mixture of oxides with bulk composition of MgSiO₃ + MgFe₂O₄ + MgO (60:20:20 atomic ratio). Fe₂O₃-rich: mixture of oxides with bulk composition of MgSiO₃ + MgFe₂O₄ + Fe₂O₃ (60:20:20 in mole proportion, hereafter Fe₂O₃-rich). MgO-rich sample) and MgSiO₃ + MgFe₂O₄ + MgO (60:20:20 in mole proportion, hereafter Fe₂O₃-rich sample) were obtained by repeatedly grinding in ethanol for homogeneity.

A question is how much Fe³⁺ in bridgmanite can be stored as MgFeO₂.₅ and/or FeFeO₃ components under lower mantle conditions. The MgAl₂O₅ component in bridgmanite can reach up to 6.4 mol.% in the MgO-SiO₂-Al₂O₃ system depending on pressure, temperature, and Mg/Si atomic ratio, which is expected to significantly affect lower mantle rheology (Liu, Ishii, and Katsura et al., 2017; Liu, Akaogi, & Katsura; Liu, Boffa-Ballaran et al., 2019). In the case of the MgO-SiO₂-Fe₂O₃ system, although previous studies show that the Fe³⁺ occupies the A and B sites nearly equally (Andrault & Bolfan-Casanova, 2001; Catalli et al., 2010), indicating a very small amount of the MgAl₂O₅ component, their experiments were performed within diamond anvil cells where determination of sample chemical compositions are difficult, prohibiting a precise determination of MgFeO₂.₅ and FeFeO₃ concentrations. Hummer and Fei (2012) investigated Fe³⁺ substitution mechanisms using multianvil experiments; however, their experiments did not reach chemical equilibrium as demonstrated by the coexistence of unreacted MgO and SiO₂ phases. Essentially, previous studies (Andrault & Bolfan-Casanova, 2001; Catalli et al., 2010; Hummer & Fei; Liu et al., 2018; Sinnmyo et al., 2019) used starting materials without saturation of MgO (atomic Mg/Si = 1.0 or lower), which may prohibit the formation of MgFeO₂.₅ based on observations that MgAl₂O₅ decreases with decreasing Mg/Si ratio in the MgO-SiO₂-Al₂O₃ system because of the reaction 2MgO + Al₂O₃ = 2MgFeO₂.₅ (Liu, Nishi, et al., 2017). In contrast, the Earth’s lower mantle contains ferropericlase, and the concentration of MgFeO₂.₅ should thus be maximized. Therefore, the phase relations of bridgmanite with MgFeO₂.₅ and FeFeO₃ components characterized by B site Fe³⁺, may depend on whether periclase (or ferropericlase) coexists or not according to the reaction 2MgO + Fe₂O₃ = 2MgFeO₂.₅. To clarify this further, we investigated the defect chemistry of bridgmanite in assemblage with a separate MgFeO₂ phase and either presence or absence of a (Mg,Fe)O phase, using a multianvil apparatus.

2. Experimental and Analytical Methods

2.1. Starting Material and High-Pressure Experiments

MgO, SiO₂, and Fe₂O₃ (purity > 99.9%, natural isotopic ratios) from Sigma-Aldrich Corporation were used as starting materials. MgO and SiO₂ were dried at 1273 K, whereas Fe₂O₃ was dried at 773 K prior to weighing. Fine-mixed powders with bulk compositions of MgSiO₃ + MgFe₂O₄ + MgO (60:20:20 in mole proportion, hereafter MgO-rich sample) and MgSiO₃ + MgFe₂O₄ + Fe₂O₃ (60:20:20 in mole proportion, hereafter Fe₂O₃-rich sample) were obtained by repeatedly grinding in ethanol for homogeneity.

After drying in a vacuum furnace at 420 K, the two mixtures (both MgO-rich and Fe₂O₃-rich separated by a piece of Pt foil) were filled into Pt tube capsules (OD = 1.0 mm, ID = 0.8 mm). Each capsule was loaded into an MgO sleeve within a LaCrO₃ heater in a 5 wt.% Cr₂O₃ doped MgO octahedron with an edge length of 7.0 mm (the standard 7/3 cell assembly at Bayerisches Geoinstitut), and compressed to 27 GPa at ambient temperature by eight pieces of Fujilloy-TF05 type tungsten carbide anvils with edge length of 26 mm and truncation edge length of 3.0 mm using the multianvil press at Bayerisches Geoinstitut, IRIS-15 (Ishii et al., 2016). After reaching the target pressure of 27 GPa, the assembly was heated to a target temperature (1700–2300 K as listed in Table 1) at a ramping rate of 100 K/min measured by a W/Re (D-type) thermocouple. The annealing durations were 9–40 hr.
Table 1, which is sufficiently long to achieve chemical equilibrium (Frost & Langenhorst, 2002) as confirmed by the run products. The samples were quenched to room temperature by switching off the heating power and decompressed to ambient conditions over a duration exceeding 15 hr. The recovered run products were mounted in epoxy resin and their cross sections were prepared by polishing with emery papers and diamond pastes.

2.2. Sample Characterization

Scanning electron microscope (SEM). SEM analysis was performed on each sample, using a backscattering detector and an acceleration voltage of 20 kV associated with an energy dispersive detector. Run products appeared as coexisting bridgmanite (gray) + MgFe₂O₄ (bright) + (Mg,Fe)O (dark) phases and bridgmanite (gray) + MgFe₂O₄ (bright) phases, respectively (Table 1), as observed in backscattering detector images (Figure 1) and SEM-EDS point analysis. No unreacted particles (SiO₂ or Fe₂O₃ grains) were found in any of the sample capsules.

Microfocus X-ray diffraction (XRD). XRD analysis was performed on the recovered samples using a microfocused X-ray diffractometer (Brucker AXS D8 Discover) equipped with a two-dimensional solid-state

Figure 1. Backscattered SEM images of run products at 27 GPa and 1700–2300 K for both (a, c, and e) MgO-rich and (b, d, and f) Fe₂O₃-rich samples, which appear as coexisting bridgmanite (gray) + MgFe₂O₄ (bright) + (Mg,Fe)O (dark) phases and bridgmanite (gray) + MgFe₂O₄ (bright) phases, respectively.
detector and a microfocus source of Co-Kα radiation operated at 40 kV and 500 μA. The exposure time is about 4 hr for each sample with beam size of ~100 μm. Bridgmanite and ferropericlase phases were clearly identified, and additional peaks were characterized as a CaMn₂O₄-structured MgFe₂O₄ phase. This is consistent with the observation by Andrault and Bolfan-Casanova (2001), although a CaTi₂O₄-type structure was proposed by a more recent study (Greenberg et al., 2017). Pt peaks from sample capsules also appeared in the sample diffraction patterns due to the limited spatial resolution of the diffractometer (Figure 2).

Mössbauer Spectroscopy. Mössbauer spectra were collected over 500 μm diameter spots on samples of 120 μm thickness at room temperature in transmission mode on a constant acceleration Mössbauer spectrometer with a nominal 370 MBq ⁵⁷Co high specific activity (point) source in a 12 μm Rh matrix. The velocity scale was calibrated relative to 25 μm thick α-Fe foil using the positions certified for standard reference material no. 1541 of the (former) National Bureau of Standards. Line widths of 0.36 mm/s for the outer lines of α-Fe were obtained at room temperature. Measurement times for each spectrum varied from 4 to 8 hr. The effective Mössbauer thickness of samples varied between 5 and 10 mg Fe/cm². Spectra were fitted by the program MossA (Prescher et al., 2012) using the full transmission integral to multiple doublets with pseudo-Voigt line shape to account for next nearest neighbor effects. There is no detectable Fe²⁺ in bridgmanite from the run products within experimental uncertainty (Figure 3), and we assume that Fe³⁺/ΣFe ≈ 100%.

Electron probe microanalysis (EPMA). Concentrations of major elements (Mg, Si, Fe) in run products were obtained using a JEOL JXA-8200 electron microprobe with a wavelength-dispersive spectrometer operated with an acceleration voltage of 15 kV, a beam current of 5 nA, and a counting time of 20 s. Focused point analysis with an excitation region of ~1 μm was applied. An enstatite single crystal was used as the standard for Mg and Si, metallic Fe was used for Fe, whereas O was calculated by stoichiometry. Since the Pt capsule may absorb Fe from the samples, grains near the capsule wall (within a few microns) with slightly lower Fe% were avoided. The compositions of bridgmanite are listed in Table 1, whereas (Mg,Fe)O and MgFe₂O₄ phases, which have Fe/Mg ratios of 0.02–0.07 and 1.94–2.38, respectively, are given in the supporting information.

Molar concentrations of MgSiO₃, MgFeO₂.₅, and FeFeO₃ components in bridgmanite were calculated from
\[\text{Mg}_{x}\text{Fe}_{y}\text{Si}_{z}\text{O}_{x+1.5y+2z} = z\text{MgSiO}_3 + (x-z)\text{MgFeO}_{2.5} + \frac{y-x+z}{2}\text{FeFeO}_3 \]

where \(x\), \(y\), and \(z\) are the atomic numbers per formula unit (pfu) from EPMA analysis. The \(\text{Fe}^{2+}\text{SiO}_3\) component was excluded since \(\text{Fe}^{3+}/\Sigma\text{Fe} \approx 100\%\) based on Mössbauer spectroscopy analysis, which is also confirmed by the low \(\text{Fe}/\text{Mg}\) ratio in ferropericlase.

3. Results and Discussion

3.1. Total \(\text{Fe}^{3+}\) Concentration in Bridgmanite

The concentration of \(\text{Fe}^{3+}\) in bridgmanite systematically increases from 0.06 to 0.17 pfu and from 0.12 to 0.37 pfu in \(\text{MgO}\)-rich and \(\text{Fe}_2\text{O}_3\)-rich samples, respectively, with increasing temperature from 1700 to 2300 K (Figure 4a). It is noted that only two phases, bridgmanite and \(\text{MgFe}_2\text{O}_4\), coexist in run products of \(\text{Fe}_2\text{O}_3\)-rich samples (Table 1). According to the phase rule, there is one more degree of freedom in addition to pressure and temperature in the \(\text{MgO-SiO}_2-\text{Fe}_2\text{O}_3\) three-component system, and as a result, the \(\text{Fe}^{3+}\) concentration in bridgmanite should be correlated with the bulk \(\text{Fe}_2\text{O}_3\) content in the starting material. In contrast, three phases, bridgmanite, \((\text{Mg,Fe})\text{O}\), and \(\text{MgFe}_2\text{O}_4\), coexist in the \(\text{MgO}\)-rich samples (Table 1). With fixed pressure and temperature, the composition of each phase should also be fixed and independent of the bulk composition of the starting material in the three-component system. Therefore, the \(\text{Fe}^{3+}\) contents in the \(\text{MgO}\)-rich samples should represent the solubility of \(\text{Fe}^{3+}\) in bridgmanite with saturation of \((\text{Mg,Fe})\text{O}\) under the given pressure and temperature conditions, that is, from 0.06 to 0.17 pfu with temperatures from 1700 to 2300 K (Figure 4a).

3.2. \(\text{MgFeO}_{2.5}\) and \(\text{FeFeO}_3\) Concentrations in Bridgmanite by EPMA

The molar fractions of the bridgmanite components, \(\text{MgSiO}_3\), \(\text{MgFeO}_{2.5}\), and \(\text{FeFeO}_3\) were calculated sequentially based on Si, remaining Mg, and remaining Fe, respectively (Table 1). Figure 4b illustrates the proportions of ferric iron components versus temperature and shows that the \(\text{FeFeO}_3\) component increases systematically for both \(\text{MgO}\)-rich and \(\text{Fe}_2\text{O}_3\)-rich samples with increasing temperature from 1700 to 2300 K. Bridgmanite in \(\text{MgO}\)-rich samples has lower proportions of the \(\text{FeFeO}_3\) component than in \(\text{Fe}_2\text{O}_3\)-rich samples. The concentration of bridgmanite component \(\text{MgFeO}_{2.5}\) is well below 2 mol.% in \(\text{Fe}_2\text{O}_3\)-rich samples although the uncertainty is relatively large. \(\text{MgO}\)-rich samples have a \(\text{MgFeO}_{2.5}\) concentration of 2 to 3 mol.% at 1700–2300 K (Figure 4(b)). Therefore, the presence of \(\text{MgO}\) enhances the formation of the \(\text{MgFeO}_{2.5}\) component in bridgmanite, but only slightly in the presence of \(\text{MgFe}_2\text{O}_4\). A similar relationship was also observed in the \(\text{Fe}\)-free and \(\text{Al}\)-bearing bridgmanite coexisting with \(\text{MgO}\) and \(\text{MgAl}_2\text{O}_4\) (Liu, Boffa-Ballaran, et al., 2019). In contrast to the temperature-induced increase in the \(\text{FeFeO}_3\) component, the concentration of the \(\text{MgFeO}_{2.5}\) component is insensitive to temperature. This could be because either the temperature dependence is hidden by the uncertainty of data points, or because the \(\text{MgFeO}_{2.5}\) reaches the maximum solubility even at 1700 K. Thus, the increase of total \(\text{Fe}^{3+}\) with temperature is dominated by increasing \(\text{FeFeO}_3\) component, rather than increasing \(\text{MgFeO}_{2.5}\) component.
3.3. Fe$^{3+}$ Substitution Mechanisms in Bridgmanite

It has been previously proposed that oxygen vacancy substitution by Fe$^{3+}$ operates in bridgmanite in addition to the charge-coupled substitution mechanism (e.g., Frost & Langenhorst, 2002; Frost & McCammon, 2008; Walter et al., 2004); however, the concentration and formation condition of the MgFeO$_2.5$ component have not been well constrained. Andrault and Bolfan-Casanova (2001) and Catalli et al. (2010) found roughly equal distribution of Fe$^{3+}$ on Mg and Si sites; nevertheless, sample compositions in these diamond anvil experiments were uncertain due to small sample size. Hummer and Fei (2012) investigated Fe$^{3+}$ substitution mechanisms based on well-constrained chemical compositions of bridgmanite samples recovered from large-volume multianvil experiments. They concluded that Fe$^{3+}$ substitutes into bridgmanite by a combination of oxygen vacancy (equation 1) and charge-coupled (equation 2) mechanisms when Fe content is low (<0.05 pfu) because Mg content is either higher or

![Figure 4](https://example.com/figure4.png)

Figure 4. Atomic concentrations of MgFeO$_{2.5}$, FeFeO$_3$, and total Fe$^{3+}$ per formula unit (oxygen = 3) in bridgmanite, assuming MgFeO$_{2.5}$ + FeFeO$_3$ + MgSiO$_3$ = 100%. (upper panel) Total Fe$^{3+}$ concentration. (lower panel) Proportions of the MgFeO$_{2.5}$ and FeFeO$_3$ components.
comparable with Si. When Fe content is higher (0.074 pfu), charge-coupled (equation 2) and Mg vacancy mechanisms (3Mg$^{2+}$ \rightarrow 2Fe$^{3+}$ + V$_{A^{\prime\prime}}$ with Fe$^{3+}$SiO$_3$ component) occur because Si > Mg. However, the relative magnitudes of Mg and Si that they obtained show no systematic variation with Fe content (Figure 5 in this study and Figure 3 in Hummer & Fei, 2012), and therefore are insufficient for interpretation of Fe$^{3+}$ substitution mechanisms.

In our MgO-rich samples, both Mg and Si contents deviate slightly from theoretical calculations of a pure charge-coupled substitution mechanism (Figure 5). The Mg content is systematically higher than Si within the investigated Fe content range from 0.06 to 0.17 pfu, indicating an oxygen vacancy substitution with formation of a MgFeO$_{2.5}$ component. On the other hand, Fe$_2$O$_3$-rich samples have Mg and Si contents that match a pure charge-coupled mechanism without detectable oxygen vacancy substitution (Figure 5). Therefore, the Fe$^{3+}$ substitution mechanism in bridgmanite is dominantly controlled by the saturation condition of MgO, rather than by Fe content. The Mg vacancy substitution mechanism proposed by Hummer and Fei (2012) is not observed in this study, although the exact reason for this discrepancy is unclear. One possible reason is that ferric iron in their iron-rich sample (Fe = 0.074 pfu) might be partially reduced, leading to the formation of a Fe$^{2+}$SiO$_3$ component.

In Figure 5, the lines of decreasing Mg and Si with increasing Fe$^{3+}$ in bridgmanite from MgO-rich samples intersect the corresponding Si- and Mg-vectors for pure MgFeO$_{2.5}$ substitution at about 0.025 pfu, suggesting that oxygen vacancy substitution is preferred relative to charge-coupled substitution for low Fe$^{3+}$. When Fe$^{3+}$ \leq 0.025 pfu, the majority of Fe$^{3+}$ should follow the oxygen vacancy substitution mechanism. With increasing Fe$^{3+}$, MgFeO$_{2.5}$ content increases in this compositional range. When the MgFeO$_{2.5}$ content reaches the solubility limit of 0.025 pfu, additional Fe$^{3+}$ will follow the charge-coupled mechanism and thus the amount of MgFeO$_{2.5}$ remains constant, which appears as nearly parallel curves of Mg or Si contents and pure charge-coupled substitution in Figure 5.
3.4. Implications for Bridgmanite Chemistry

The Earth’s lower mantle is mainly composed of bridgmanite, ferropericlase, and CaSiO₃ perovskite (Frost, 2008; Ringwood, 1991; Tschauner et al., 2014), meaning that bridgmanite is under MgO-saturated conditions. Since a significant amount of iron in bridgmanite is ferric (Frost et al., 2004; Grocholski et al., 2009; Jackson et al., 2005; Lauterbach et al., 2000; McCammon, 1997; McCammon et al., 2004), the concentration of the MgFeO₂.₅ component by oxygen vacancy substitution could be significant. On the other hand, bridgmanite in the lower mantle contains some Al (e.g., Irifune et al., 2010), which could affect the Fe³⁺ substitution mechanism via the formation of the FeAlO₃ component with Fe³⁺ and Al³⁺ occupying A and B sites, respectively (e.g., Richmond & Brodholt, 1998; Zhang & Oganov, 2006 as reviewed in Frost & McCammon, 2008). Similarly, Fe³⁺ may also affect formation of the MgAlO₂.₅ component. The Al/Fe³⁺ ratio in Al-bearing bridgmanite under lower mantle conditions is generally larger than 1.0 in both peridotitic and basaltic lithologies (e.g., Mohn & Trønnes, 2016; Nakajima et al., 2012; Prescher et al., 2014), the FeAlO₃ component may thus prohibit oxygen vacancy substitution, although some regions such as harzburgite layers that was brought into the lower mantle by subduction have Al/Fe³⁺ ratios smaller than 1.0 (Liu et al., 2018). Studies of iron spin state indicate almost no Fe³⁺ (<1%) in the B site because the spin transition for the B site Fe³⁺ is observed in Al-free bridgmanite at ~40–60 GPa, but not found in Al-bearing samples (e.g., Liu et al., 2018; Mohn & Trønnes, 2016). Nevertheless, oxygen vacancy substitution is significantly suppressed by pressure (Liu, Nishi, et al., 2017); therefore, it is still unclear how much of the oxygen vacancy component is formed in Al-bearing bridgmanite, especially near the topmost lower mantle. Further studies at ~24–40 GPa in the MgO-SiO₂-Al₂O₃-Fe₂O₃ system are required.

Acknowledgments

We appreciate the help of H. Fischer for high-pressure cell assembly machining, D. Krausle for assistance with EPMA analysis, R. Njul for sample preparation, and R. Huang for discussion. Comments from R. G. Trenn and an anonymous reviewer improved the manuscript. This work is funded by the Deutsche Forschungsgemeinschaft (DFG) (KA3434/1-1, KA3434/7-1, KA3434/8-1, KA3434/9-1, KA3434/12-1), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Proposal 787 527), and the Bayerisches Geoinstitut visiting scientist program. The data sets for this research are given in Zenodo (doi: 10.5281/zenodo.3677121).

References

Jackson et al., 2005; Lauterbach et al., 2000; McCammon, 1997; McCammon et al., 2004), the FeAlO₃ component may thus prohibit oxygen vacancy substitution, although some regions such as harzburgite layers that was brought into the lower mantle by subduction have Al/Fe³⁺ ratios smaller than 1.0 (Liu et al., 2018). Studies of iron spin state indicate almost no Fe³⁺ (<1%) in the B site because the spin transition for the B site Fe³⁺ is observed in Al-free bridgmanite at ~40–60 GPa, but not found in Al-bearing samples (e.g., Liu et al., 2018; Mohn & Trønnes, 2016). Nevertheless, oxygen vacancy substitution is significantly suppressed by pressure (Liu, Nishi, et al., 2017); therefore, it is still unclear how much of the oxygen vacancy component is formed in Al-bearing bridgmanite, especially near the topmost lower mantle. Further studies at ~24–40 GPa in the MgO-SiO₂-Al₂O₃-Fe₂O₃ system are required.

References

