
Received: 28 June 2019 Revised: 21 January 2020 Accepted: 17 March 2020

DOI: 10.1002/fld.4835

R E S E A R C H A R T I C L E

Efficient viscosity contrast calculation for blood flow
simulations using the lattice Boltzmann method

Moritz Lehmann Sebastian Johannes Müller Stephan Gekle

Biofluid Simulation and
Modeling – Theoretische Physik VI,
Universität Bayreuth, Bayreuth, Germany

Correspondence
Moritz Lehmann, Biofluid Simulation and
Modeling – Theoretische Physik VI,
Universität Bayreuth, 95448 Bayreuth,
Germany.
Email: moritz.lehmann@uni-bayreuth.de

Summary
The lattice Boltzmann method (LBM) combined with the immersed boundary
method is a common tool to simulate the movement of red blood cel ls (RBCs)
through blood vessels. With very few exceptions, such simulations neglect the
difference in viscosities between the hemoglobin solution inside the cells and
the blood plasma outside, although it is well known that this viscosity contrast
can severely affect cell deformation. While it is easy to change the local vis-
cosity in LBM, the challenge is to distinguish whether a given lattice point is
inside or outside the RBC at each time step. Here, we present a fast algorithm
to solve this issue by tracking the membrane motion and computing the scalar
product between the local surface normal and the distance vector between the
closest LBM lattice point and the surface. This approach is much faster than,
for example, the ray-casting method. With the domain tracking applied, we
investigate the shape transition of a RBC in a microchannel for different vis-
cosity contrast and validate our method by comparing with boundary-integral
simulations.

K E Y W O R D S

lattice Boltzmann Method, immersed boundary, viscosity contrast, red blood cell, microchannel

1 INTRODUCTION

Red blood cells (RBCs) flowing through small blood vessels or microchannels show a fascinating wealth of flow states
including steady shapes, dynamic states where the membrane periodically rotates around the cell interior, or tumbling
motions.1-12 Experimental techniques to visualize these flow states are still mostly limited to two-dimensional (2D) video
microscopy,13-16 although progress toward three-dimensional (3D) imaging techniques has recently been made.17 A lot of
insight into the flow behavior of RBCs is therefore gained by computer simulations.

A RBC consists of a thin elastic membrane surrounding the interior hemoglobin solution which to a good approxima-
tion can be viewed as a Newtonian liquid with a viscosity about five times larger than the surrounding blood plasma.10,18

This viscosity contrast 𝜆 is essential for the RBC dynamics.19-26 Depending on the numerical technique, it can be more or
less tedious to include the parameter 𝜆 into numerical simulations. In boundary-integral methods (BIM), the considera-
tion of a viscosity contrast is conceptually straightforward, although computationally costly.27-30 Particle methods such as
smoothed dissipative particle dynamics (SDPD) are able to include viscosity contrast,7 although this is not always done.5,31

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. International Journal for Numerical Methods in Fluids published by John Wiley & Sons, Ltd.

Int J Numer Meth Fluids. 2020;1–15. wileyonlinelibrary.com/journal/fld 1

https://orcid.org/0000-0002-4652-8383
https://orcid.org/0000-0002-6020-4991
https://orcid.org/0000-0001-5597-1160
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Ffld.4835&domain=pdf&date_stamp=2020-04-15

2 LEHMANN et al.

In finite volume methods, a viscosity contrast has recently been included using an indicator function advected with the
fluid.32 One of the most widely used techniques in blood flow simulations is the combination of the Eulerian lattice Boltz-
mann method (LBM)33 for the flow and the Lagrangian immersed boundary method (IBM)34-37 for the fluid-structure
interaction with the RBC membrane. Although it is simple to locally change the fluid viscosity in LBM, the key difficulty
is to determine whether or not a given LBM lattice point is located inside or outside a RBC in order to assign the correct
viscosity. A standard solution to such inside/outside problems consists of tracing a beam originating from the point of
interest and counting the number of RBC membrane crossings (ray-casting). Carrying out this determination for every
time step during a simulation, where cells move and deform dynamically, would clearly make the ray-casting approach
far too computationally expensive (except in 2D38). In 3D, cluster algorithms39 and volume-of-fluid like methods40 can be
expected to be relatively costly. Some recent works39,41,42 therefore raised the general idea of tracking membrane vertices
in order to determine the interior volume of a moving cell. Nevertheless, the vast majority of LBM-IBM simulations of
RBC flow still neglect viscosity contrast altogether.

Here we provide a detailed description and systematic analysis of such a tracking algorithm to include viscosity con-
trast of red blood (and other) cells into LBM-IBM simulations. Given an initial configuration in which the inside/outside
status of each LBM lattice point is known, the first step of the algorithm identifies those LB points which could poten-
tially, due to motion/deformation of the RBC membrane, switch from inside to outside or vice versa. This task is greatly
simplified in the present case since for LBM-IBM methods the typical distance between membrane vertices is kept sim-
ilar to the LBM grid distance even during large deformations of the cell, as we verified by postprocessing a large set of
our existing simulation data. It thus proves sufficient to consider only those LBM points which are in the immediate
vicinity of membrane vertices. In the second step, geometrical considerations allow us to determine for each LBM lat-
tice point whether or not the inside/outside flag needs to be switched for the next time step. Every few hundred time
steps an efficient heuristic correction step is carried out to remove spurious errors. We thus obtain a highly accurate and
highly parallelizable tool for RBC simulations with viscosity contrast using the LBM-IBM approach. We validate our tool
by studying the croissant-slipper transition for a RBC in a rectangular microchannel as a function of 𝜆 for which we find
very good agreement with highly resolved BIM simulations.11

2 METHODS

2.1 Lattice Boltzmann for the fluid

The LBM33,43 is a powerful mesoscopic fluid solver. The fluid is represented by a discrete set of particle populations fi
along fixed directions c⃗i located on a Cartesian lattice. For concurrency reasons, two copies f c

i and f s
i need to be stored

in memory for the collision and streaming steps. The so-called equilibrium populations f eq
i are only temporarily held in

register. 𝜌 and u⃗ denote the density and velocity of the fluid for every lattice point and cs = 1√
3
Δx
Δt

is the lattice speed of
sound with the grid distance being denoted as Δx and the time step as Δt . In each time step, the populations stream into
neighboring lattice points where they collide and are redistributed into the streaming directions for the next step. In a
nutshell, LBM can be written down as just five equations:

1. Streaming (pull method)

f s
i (x⃗, t) = f c

i (x⃗ − c⃗iΔt, t). (1)

2. Collision (MRT operator)

𝜌(x⃗, t) =
∑

i
f s
i (x⃗, t) u⃗(x⃗, t) = 1

𝜌

∑
i

c⃗if s
i (x⃗, t). (2)

f eq
i (x⃗, t) = wi𝜌 ⋅

(
u⃗◦c⃗i

c2
s

+ (u⃗◦c⃗i)2

2c4
s

+ 1 − u⃗◦u⃗
2c2

s

)
. (3)

f c
i (x⃗, t + Δt) = f s

i (x⃗, t) −
(

M−1S
(

Mf s(x⃗, t) − Mf eq(x⃗, t)
))

i. (4)

LEHMANN et al. 3

F I G U R E 1 Two-dimensional illustration of the immersed boundary method. Membrane
vertices can be located anywhere in between lattice points [Color figure can be viewed at
wileyonlinelibrary.com]

In Equation (4) M is a transformation matrix into moment space and S is a diagonal matrix containing all relaxation
times. The kinematic shear viscosity 𝜈 of the simulated fluid is

𝜈 = c2
s

(
𝜏 − Δt

2

)
. (5)

The relaxation time 𝜏 can be different at every lattice point, which makes it possible to change 𝜈 locally in space. The
tracking algorithm presented below uses this possibility to implement a viscosity contrast between the interior and the
exterior of a flowing cell according to a flag lattice.

Our simulations are based on the LBM implementation of the simulation package ESPResSo44-46 which uses a
multi-relaxation-time collision operator and halfway bounce-back conditions for the solid boundaries. With an additional
volume force term in the collision operator following the Guo scheme,47 a persisting flow is created.

2.2 IBM for cell membranes

The IBM34,48,49 enables the Lagrangian movement of a tesselated membrane along with the LBM velocity field and couples
back membrane forces into the fluid. The membrane vertices can move freely between lattice points (Figure 1) and their
movement is coupled to the lattice in two ways: To obtain the velocity for advecting a membrane vertex and the velocity
of the surrounding lattice points is interpolated. Then the elastic forces between membrane vertices are calculated (see
below) and the force for each vertex is spread across all nearby lattice points as an additional local volume force term in
LBM. A necessary requirement for this two-way coupling is that the distance between membrane vertices is at the same
scale as the distance between neighboring lattice points in order to prevent “holes” in the membrane for too large and
bad velocity interpolation for too small vertex spacing.

2.3 RBC model

To illustrate an application of our tracking algorithm, we will present below investigations of the behavior of a RBC with
different viscosity contrasts flowing in a microchannel. Figure 2 visualizes how we generate the RBC surface by recursively
splitting the faces of an icosahedron, following Loop's subdivision surface scheme.50 The triangle vertices are ordered
such that all surface normals point outwards, which is a requirement of our tracking algorithm.

For the RBC membrane mechanics, we employ the standard model described in more detail in References 11 and 18
and many other works. Briefly, elastic forces arising from membrane deformation are due to shear elasticity, area dilatation
and bending forces. The former two are modeled via the empirical Skalak law51 while bending forces are computed from
the Helfrich model using the method denoted “B” in References 52 and 53, originally developed by Gompper and Kroll.54

2.3.1 Strain energy

For a small element of a 2D membrane with the dimensions dx1 and dx2 along the x1 and x2 axes, the expansion ratios

𝜆1 ∶=
dy1

dx1
, 𝜆2 ∶=

dy2

dx2
, (6)

http://wileyonlinelibrary.com

4 LEHMANN et al.

F I G U R E 2 Generation of the tesselated red blood cell surface visualized. The shape starts as an icosahedron in (A), then in (B) to (E)
the triangles are split recursively to increase resolution and finally the top and bottom caps of the sphere are dented inwards to produce the
characteristic RBC shape in (F). The sphere in (E) and the RBC in (F) have 5120 triangles each [Color figure can be viewed at
wileyonlinelibrary.com]

are defined. The strain invariants I1 and I2 then are

I1 = 𝜆2
1 + 𝜆2

2 − 2, I2 = 𝜆2
1 𝜆2

2 − 1, (7)

and the strain energy E S following the Skalak model51 only depends on these invariants:18,55

ES = B
4

(1
2

I2
1 + I1 − I2

)
+ C

8
I2

2 . (8)

The constants B and C are material properties of the membrane.

2.3.2 Bending forces

The idea is to calculate the bending force F⃗ for each membrane vertex (i) at position x⃗(i)

F⃗(x⃗(i)) = − 𝜕EB

𝜕x⃗(i)
, i = {1,… ,N}, (9)

from the Helfrich bending energy EB
53,56

EB = 2 𝜅B∫S
(H(x⃗))2dS(x⃗) ≈ 𝜅B

2

N∑
i=1

(
2 H(x⃗(i))

)2A(i)
Voronoi, (10)

whereby 𝜅 B denotes the bending modulus, S denotes the instantaneous smooth surface, and N denotes the number of
membrane vertices. The local mean curvature H of the RBC surface is calculated as

H(x⃗) = 1
2

3∑
i=1

(ΔSxi) ni(x⃗), x⃗ ∈ S, (11)

with the approximation for the the Laplace-Beltrami operator ΔS of Gompper and Kroll:52,54

ΔSx(i)l ≈
∑

j(i)(cot 𝜗
(ij)
1 + cot 𝜗

(ij)
2)(x(i)l − x(j)l)

2 A(i)
Voronoi

, i = {1,… ,N}, l = {1, 2, 3}, (12)

where the superscript (j) denotes the index of membrane vertices adjacent to the membrane vertex (i) and A(i)
Voronoi is the

area of the Voronoi cell containing (i) as illustrated in figure 3:

A(i)
Voronoi ∶=

1
8
∑
j(i)

(cot 𝜗
(ij)
1 + cot 𝜗

(ij)
2)|x⃗(i) − x⃗(j)|, i = {1,… ,N}. (13)

http://wileyonlinelibrary.com

LEHMANN et al. 5

F I G U R E 3 A sketch of a membrane vertex x⃗(i) with six neighbors to illustrate the naming
conventions [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 4 A cut-open red blood cells on the Boltzmann
method lattice with all points on the inside marked blue [Color
figure can be viewed at wileyonlinelibrary.com]

3 ALGORITHM FOR TRACKING INSIDE AND OUTSIDE

The goal of the following algorithm is to calculate a flag lattice with the same dimensions as the LBM lattice which for
each lattice point contains the boolean information whether the lattice point currently is inside or outside a cell. Our
method consists of three steps: (i) an initialization step where the flag lattice is filled once depending on a prescribed initial
geometry, (ii) a highly efficient update step where only the LBM points neighboring the cell membrane are evaluated, and
(iii) a correction step employed every few hundred steps which removes spurious artifacts introduced by the update step
using a simple set of heuristic rules. Figure 4 gives an impression on how large the LBM domain for a RBC typically is.

3.1 Initialization step

If the geometry of the cell is known, the analytic condition for the surface can be applied to every lattice point. For example,
a point with the coordinates x, y, z is within a sphere of radius r if x2 + y2 + z2 ≤ r2. For a RBC with larger radius R, a
similar condition57 has been formulated based on experimental data:

r2 ∶=
x2 + y2

R2 c0 ∶= 0.207 ⋅ R c2 ∶= 2.00 ⋅ R c4 ∶= 1.12 ⋅ R. (14)

x2 + y2 + z2 ≤ R2. (0)

z2 ≤ 1
4
(

c0 + c2 ⋅ r2 − c4 ⋅ r4)2
⋅ (1 − r2). (15)

This approach exhibits the same efficient scaling of the total compute time t with the LBM lattice size N (t ∼ N3) as
the LBM itself.

It is also possible to load an initially deformed state of the RBC (no analytic condition) from a previously generated
checkpoint file. These checkpoint files are periodically generated during simulation and stored on the hard drive in case
there is a crash or power outage. If no analytic condition for the initial geometry is known, we use a ray-cast-based
algorithm (also known as crossing number algorithm58). As this method is only used once for initialization, its slow

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

6 LEHMANN et al.

F I G U R E 5 In the update step, only the lattice points next to the
surface are considered (radius of lattice points around each membrane
vertex r shell = 1). These points are located both inside and outside of the
cell surface. The image shows a cell (cut in half for visualization) with the
nearest lattice points to the surface marked as blue dots. Only for this shell
of lattice points the decision needs to be made. The state of all other points
which are far away from the cell surface has already been determined by
either the initialization or the previous update steps [Color figure can be
viewed at wileyonlinelibrary.com]

performance does not affect the overall speed of the simulation. For every lattice point, a ray from the lattice point in an
arbitrary direction* is generated. Then the number of ray-triangle intersections is calculated using the Möller-Trumbore
intersection algorithm.59 If this number is odd, the lattice point is inside the cell, otherwise it is outside. This approach
is very calculation intensive: it scales with the number of LBM lattice points (N3) times the number of triangles T. The
number of triangles is directly proportional to the total surface area of the RBC. Due to the requirement that the dis-
tance between two neighboring points on the RBC surface should be approximately the same as the distance between
two neighboring points on the LBM lattice, we have T ∼ N2. The total scaling for the ray-casting approach is thus
t ∼ N3T ∼ N5.

AC++ implementation of the initialization with ray-casting is listed in Appendix A.

3.2 Update step

Because of their bad performance and bad parallelizability, ray-casting algorithms are only suitable for initialization and
not for the regular update happening at each time step. For the update step to be more efficient, we therefore implement
a membrane tracking procedure as follows. In each time step, we only consider LBM lattice points next to the cell surface
(Figure 5). For these points, we calculate the distance vector to the RBC surface and compare it to the normal vector on
the surface via a scalar product, resulting in a negative or positive value discrimnating inside from outside.

Four arrays need to be allocated once at simulation startup. These store the normal vector for each membrane vertex
(A), a list of all lattice points which are close to the surface and whose inside/outside flag may need to be updated (update
list, (B)) as well as the index and distance of the closest membrane vertex ((C) and (D), respectively) for each lattice point.
The algorithm consists of three consecutive loops:

1. In the first loop, we compute for each membrane vertex the normal vector as the average of the normal vectors of all
adjoining triangles weighted by their area and store it in array (A).

2. The purpose of the second loop is to fill the update list (B), that is, to find a shell of lattice points located around the
membrane. Therefore, for each of the membrane vertices the eight closest lattice points (rshell = 1) are determined
via integer casting. The distance from each of these to the membrane vertex is calculated. If this distance is smaller
than the distance stored in the array (D) entry for the lattice point, the distance in array (D) is updated, the membrane
vertex index is stored in array (C) and the 3D position indices i, j, and k of the lattice point are stored in a the update
list (B). (B) may contain some lattice points more than once, which is not a problem however, because the last entry
for a given point will always be the one of the closest membrane vertex.

3. The third loop goes through the update list (B). The indices of the lattice points and their closest membrane vertices are
fetched from (B) and (C). Then, the vector from the membrane vertex to the lattice point and the previously calculated

*Mathematically, the direction of the ray is arbitrary. However, if the ray passes exactly through the edge of two adjacent triangles, the intersection
count is increased by two instead of one, which leads to the algorithm failing. The solution to the problem is statistical exclusion by pointing the ray in
a direction that cannot be represented by floating point numbers. For example, a ray in the direction (1.040.030.01)T will never intersect the edge of a
triangle, while a ray in the direction (100)T probably will. Alternatively, multiple rays in different directions can be computed.

http://wileyonlinelibrary.com

LEHMANN et al. 7

F I G U R E 6 The special case where our algorithm fails visualized in two
dimension. A point is located below the plane perpendicular to the closest vertex
normal (yellow line, 𝛾 > 90◦) and therefore activated even though it is actually
located outside of the cell volume. This can only occur if the angle between triangles
is small, otherwise the correct vertex (green line with the angle 𝜑) would be closer
[Color figure can be viewed at wileyonlinelibrary.com]

normal vector of the membrane vertex from (A) are compared via scalar product. A negative result defines the lattice
point as inside the cell.

The main advantage of our proposed method is its computational speed and parallelizability. Our method is solely
based on the knowledge of the surface geometry and also works when only parts of the surface are known in different
simulation domains, which makes it ideal for multi-CPU parallelization. The update step scales with t ∼ (2r shell)3T ∼ N2

, which is considerably faster than LBM and thus does not impose any notable performance penalty on the simulations.
In Appendix B a C++ implementation as used in ESPResSo is listed. The only prerequisite is that the maximum distance
between membrane vertices (using a r shell = 1) should be smaller than two times the lattice constant in order to prevent
holes. As pointed out above, this condition is automatically ensured for almost all membrane vertices by the LBM-IBM
algorithm. Furthermore, the vertex indices of all triangles must be ordered such that all surface normals point outwards.

In the rare case of an extremely crumpled surface, when the angle between neighboring triangles is smaller than 90◦

, our algorithm can sometimes fail (see Figure 6 for details). Moreover, points outside of the cell which have falsely been
“activated” (believed to be inside) due to this error may stay activated if the cell has moved away and the point is out of
reach of the algorithm. This can result in the cell dragging a tail of activated points behind. To remove these spurious
artifacts, an additional correction step every few hundred regular steps is required as described in Section 3.3 below.

Variants of the algorithm with a wider radius r shell > 1 of lattice points around the cell membrane have also been
tested, for example using the closest 43 points instead the closest 23 points to a membrane vertex. A wider radius of
lattice points vastly slows down the algorithm, as more points need to be processed. In addition, the lattice points are then
further away from the surface, increasing the risk of failure due to the surface curvature. A wider radius is only useful if
the cells membrane is triangulated sparsely compared to the lattice point density, in which case r shel l = 1 would result in
an excessive amount of holes. Given a sufficient membrane vertex density though, one can avoid the large computational
overhead of a wider radius.

There is another similar variant, update via face normals, which in the second loop instead of membrane vertices uses
the centers of the triangles with their direct normal vectors. This variant however is much more prone to errors when
the surface is crumpled, since there the normal vectors are used directly and are not averaged over five to six triangles.
Furthermore, although the scaling of t ∼ N2 is the same, it is only about half as fast compared to the update via vertex
normals described above, because there are only about half as many membrane vertices as triangles.

3.3 Correction step

Since the update step from Section 3.2 occasionally creates artifacts as described in Figure 6, an additional correction
step is required to run once every few hundred regular steps. The correction algorithm loops through all lattice points
of the inside/outside flag lattice and for each point counts the number of “activated” (believed to be inside) neighbors.
Any given point can have a maximum of 26 activated neighbors. Our correction algorithm (i) detects activated lattice
points with too few active neighbors and deactivates them, as well as (ii) detects deactivated points with too many active
neighbors and activates them. The reason for this is the assumption that the surface – or the boundary between activated
and deactivated lattice points—is locally smooth, so an activated lattice point on the boundary ideally has not much less
than 13 activated neighbors and a deactivated point on the boundary has not much more than 13 activated neighbors.
Figure 7 illustrates both possible corrections.

http://wileyonlinelibrary.com

8 LEHMANN et al.

F I G U R E 7 The correction step activates deactivated points with many activated
neighbors (gaps) and deactivates activated points with few neighbors (tails) [Color
figure can be viewed at wileyonlinelibrary.com]

Case Max a d

inside 26 8(30, 8%) 18(69, 2%)

side 17 5(29, 4%) 12(70, 6%)

edge 11 3(27, 3%) 8(72, 7%)

corner 7 2(28, 6%) 5(71, 4%)

T A B L E 1 Thresholds for the minimum number of activated (a) and
maximum number of deactivated neighbors (d) for different lattice point
locations (for details see main text)

F I G U R E 8 The simulation setup shown from different
perspectives. A red blood cell is placed vertically in a rectangular
channel. The boundaries in x direction are periodic. The numbers in
brackets represent the length in number of lattice points [Color figure
can be viewed at wileyonlinelibrary.com]

We impose that activated points need at least a = 8 activated neighbors to stay activated, which is approximately 30 %
of the maximum number of neighbors. Deactivated points need less than d = 18 activated neighbors to stay deactivated,
which is approximately 70 % of the maximum number of neighbors. The thresholds are chosen empirically with test runs
so that the effectiveness of the error correcting step is maximized. If the thresholds were much lower, too few corrections
would occur. If the thresholds were higher, the true cell surface would become eroded.

For lattice points on the side, edge or in the corner of the simulation box (or the local CPU domain), the maximum
number of neighbors available in local memory is lower. In these cases, the thresholds are scaled down linearly with the
maximum neighbor count, which is equivalent to extrapolating the missing neighbors. This avoids the overhead of having
to implement a halo and communication between individual CPU nodes for the flag lattice. The thresholds are shown in
Table 1.

The correction step scales with t ∼ N3, but since it is only executed every few hundred regular update steps, this is not
of concern. The correction step also counts the number of changed lattice points in order to keep track of the errors.

4 APPLICATION: A RBC IN A RECTANGULAR CHANNEL

4.1 Setup

The simulation setup consists of a single RBC with R = 4 μm in Equations (14) and (15). The RBC is placed verti-
cally in a rectangular channel with dimensions Lx = 42.7 μm, Ly = 12.0 μm and Lz = 10.0 μm (periodic in x) as in
our previous work11 and as shown in Figure 8. The initial RBC position is slightly off center in the y and z direction
(y initial = 1.50 μm, z initial = 0.833 μm). The fluid moves in x direction at an average flow velocity of v avg = 1.5 mm/s by
imposing a volume force (pressure gradient). The simulation time is 9.26 seconds (60 Million integration steps). Figure 9
shows snapshots of the first 0.2 % of the simulation for 𝜆 = 3, in which the cell crosses the periodic boundary for the
first time.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

LEHMANN et al. 9

F I G U R E 9 Eight
snapshots of the simulation with
𝜆 = 3 at a distance of 18 750
integration steps or 2.89 ms
each. The cell surface is
visualized as a gray wire frame
and the inside/outside data is
rendered volumetrically in red.
The volume tracking works very
accurately, even when the cell is
cut in half while crossing the
periodic boundaries [Color
figure can be viewed at
wileyonlinelibrary.com]

Depending on the viscosity contrast 𝜆, there is a shape preference for either the “slipper” (elongated shape, asym-
metric position in channel, rotating surface) or the “croissant” (contracted shape, symmetric position in channel center,
stationary). For low values of 𝜆, croissants are preferred while large values of 𝜆 lead to slipper states. Comparing the
transition point to a recent set of BIM simulations,11 which can naturally and exactly deal with inside/outside viscosity
contrasts, will validate our algorithm.

4.2 Results

Figure 10 depicts the different behavior of the RBC when 𝜆 is varied between 1 and the physiological value of approx-
imately 5. Besides visual inspection, there are two quantitative indicators for the cell shape: center of mass radial
displacement d and asphericity a. Both are scalar values that change over time. Figure 11A shows the radial displacement
d ∶=

√
Δy2 + Δz2 of the center of mass from the middle of the rectangular channel over time for two different values of 𝜆.

The two distinct stable cell shapes are represented by either the graph dropping to zero (croissant) or the graph oscillat-
ing around an offset (slipper). Figure 11B shows the asphericity—a scalar value indicating how nonspherical the surface
is. The asphericity is, according to Fedosov et al,5 defined as follows: First, the center of mass x⃗ is calculated from all N
membrane vertices at locations x⃗i.

x⃗ ∶= 1
N

N∑
i=0

x⃗i. (17)

Then, we define the gyration tensor S by Equation (18).

S ∶= 1
N

N∑
i=0

(x⃗i − x⃗)(x⃗i − x⃗)T . (18)

http://wileyonlinelibrary.com

10 LEHMANN et al.

F I G U R E 10 The cell geometries resulting
from different values of 𝜆 depending on the
simulated time. The cells with pink background
are marked as converged croissants while a gray
background indicates the oscillating slipper
state. In the small time frame shown here, the
cells at 𝜆 ∈ {4, 5} converge to a stable
oscillation which is caused by the cell
tank-treading in the flow [Color figure can be
viewed at wileyonlinelibrary.com]

(A) (B)

F I G U R E 11 (A) Radial displacement of the cell center of mass from the middle of the rectangular channel and (B) asphericity over
time for different values of 𝜆 . Cells with low values of 𝜆 migrate to the channel center (croissant) while at 𝜆 = 5 the cells maintain stable
tank-treading which is a characteristic pattern for the slipper state. The datasets for boundary-integral methods show good matching with our
inside/outside method, except for a small difference in phase for the slippers. Note that for the croissant shape the asphericity converges to a
nonzero value, since the cell shape is not completely spherical [Color figure can be viewed at wileyonlinelibrary.com]

Finally, with 𝜆2
x , 𝜆2

y , and 𝜆2
z being the eigenvalues of S, the asphericity a is defined by Equation (19).

a ∶=
(𝜆2

x − 𝜆2
y)2 + (𝜆2

y − 𝜆2
z)2 + (𝜆2

z − 𝜆2
x)2

2 (𝜆2
x + 𝜆2

y + 𝜆2
z)

. (19)

As can be seen, both the LBM and BIM graphs for 𝜆 = 1 quickly converge to zero for the radial displacement and
to a small constant offset for the asphericity. The LBM and BIM graphs for 𝜆 = 5 show pronounced oscillations which
are caused by the cell membrane continuously rotating around the cell interior (so-called tank-treading) and the offset
from zero indicates that the cell is located asymmetrically in the channel. LBM and BIM differ only slightly in offset and
phase of the oscillation, while the oscillation frequency and amplitude are almost the same. Possible explanations for this
difference are that the exact flow rate in LBM might mismatch by a few percent compared to BIM or that in the BIM
simulations a different cell surface tessellation algorithm with only 2048 triangles is utilized.

Figure 12 shows the averages over the last 0.2 s econds, which is approximately the period of cell rotation, of the radial
positions from Figure 11A. The resulting diagram represents the phase change of the RBC at 𝜆 ≈ 4.75, where the RBC
changes from croissant (𝜆 < 4.75) to slipper (𝜆 > 4.75) in good agreement between BIM and our LBM tracking algorithm.

Every LBM data point in Figure 12 corresponds to approximately 2 weeks of compute time on 16 cores of two Intel
Xeon E5-2680 CPUs with the fast tracking algorithm of Section 3.2. When instead using the ray-cast algorithm for every
lattice point (N5 scaling) in every simulation time step, the compute time for the same simulation would be approximately
three years. With the ray-casting algorithm only applied for the points close to the surface (N4 scaling) in every time step,
compute time would be 4 months. However due to the parallelization of the IBM in the ESPResSo simulation package,
in multi-CPU parallelization for any CPU core only part of the cell membrane is known, making the ray-cast-based algo-
rithms very difficult to parallelize. The comparison of compute times instead is done with the simulation executed on
only a single CPU core and the compute time is extrapolated to what it would be on 16 cores.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

LEHMANN et al. 11

F I G U R E 12 The center of mass radial displacement averaged
over the last 0.2 seconds for different values of 𝜆. Lattice Boltzmann
method with our inside/outside tracking and local viscosity change
reproduces the 𝜆 -phase-transition from boundary-integral simulations
quite accurately [Color figure can be viewed at wileyonlinelibrary.com]

5 CONCLUSION

We presented an efficient tracking algorithm to distinguish the interior fluid of a dynamically deforming RBC from
the outside fluid during a lattice-Boltzmann-immersed-boundary simulation. By calculating the scalar products of
area-weighted surface vertex normals with local distance vectors between the surface vertices and the LBM lattice points,
we track the enclosed cell volume. As our algorithm treats only those LBM lattice points which are in immediate vicinity
to the RBC membrane, it is capable of very accurate discrete volume tracking without significantly impacting simulation
performance.

As one particular application, we examined a RBC with viscosity contrast 𝜆 flowing through a microchannel. The
results demonstrated good agreement between the LBM-IBM approach and BIM simulations including viscosity contrast.
Finally, our method is not restricted to LBM simulations but can be employed equally well in combination with other
grid-based approaches such as finite-difference or finite-volume methods.

ACKNOWLEDGEMENTS
M.L. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - Project
number 391977956 - SFB 1357 “Microplastics” (subproject B04). S.J.M. acknowledges funding by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) - Project number 326998133 - TRR 225 “Biofabrication”
(subproject B07). S.G. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foun-
dation) - Project number 417989940 - FOR 2688 “Instabilities, Bifurcations and Migration in Pulsatile Flows” subproject
B3 “Pulsating flows in the microcirculation”. We gratefully acknowledge computing time provided by the SuperMUC
system of the Leibniz Rechenzentrum, Garching. We further acknowledge support through the computational resources
provided by the Bavarian Polymer Institute.

Conflict of interest

The authors declare no potential conflict of interests.

ORCID
Moritz Lehmann https://orcid.org/0000-0002-4652-8383
Sebastian Johannes Müller https://orcid.org/0000-0002-6020-4991
Stephan Gekle https://orcid.org/0000-0001-5597-1160

REFERENCES
1. Kaoui B, Biros G, Misbah C. Why do red blood cells have asymmetric shapes even in a symmetric flow? Phys Rev Lett. 2009;103(18):188101.
2. Shi L, Pan T-W, Glowinski R. Numerical simulation of lateral migration of red blood cells in Poiseuille flows. Int J Numer Methods Fluids.

2012;68(11):1393-1408.
3. Vlahovska PM, Barthès-Biesel D, Misbah C. Flow dynamics of red blood cells and their biomimetic counterparts. C R Physique.

2013;14(6):451-458.
4. Aouane O, Thiébaud M, Benyoussef A, Wagner C, Misbah C. Vesicle dynamics in a confined Poiseuille flow: from steady state to chaos.

Phys Rev E. 2014;90(3):033011.
5. Fedosov DA, Peltomäki M, Gompper G. Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft

Matter. 2014;10(24):4258-4267.
6. Geislinger TM, Franke T. Hydrodynamic lift of vesicles and red blood cells in flow — from Fåhræus & Lindqvist to microfluidic cell sorting.

Adv Colloid Interf Sci. 2014;208:161-176.

http://wileyonlinelibrary.com
https://orcid.org/0000-0002-4652-8383
https://orcid.org/0000-0002-4652-8383
https://orcid.org/0000-0002-6020-4991
https://orcid.org/0000-0002-6020-4991
https://orcid.org/0000-0001-5597-1160
https://orcid.org/0000-0001-5597-1160

12 LEHMANN et al.

7. Lanotte L, Mauer J, Mendez S, et al. Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions.
Proc Natl Acad Sci U S A. 2016;113(47):13289-13294.

8. Clavería V, Aouane O, Thiébaud M, et al. Clusters of red blood cells in microcapillary flow: hydrodynamic versus macromolecule induced
interaction. Soft Matter. 2016;12(39):8235-8245.

9. Cordasco D, Bagchi P. On the shape memory of red blood cells. Phys Fluids. 2017;29(4):041901.
10. Secomb TW. Blood flow in the microcirculation. Ann Rev Fluid Mech. 2017;49:443-461.
11. Guckenberger A, Kihm A, John T, Wagner C, Gekle S. Numerical-experimental observation of shape bistability of red blood cells flowing

in a microchannel. Soft Matter. 2018;14(11):2032-2043.
12. Losserand S, Coupier G, Podgorski T. Migration velocity of red blood cells in microchannels. Microvasc Res. 2019;124:30-36.
13. Tomaiuolo G, Simeone M, Martinelli V, Rotoli B, Guido S. Red blood cell deformation in microconfined flow. Soft Matter.

2009;5(19):3736-3740.
14. Cluitmans JCA, Chokkalingam V, Janssen AM, Brock R, Huck WTS, Bosman GJCGM. Alterations in red blood cell deformability during

storage: a microfluidic approach. Biomed Res Int. 2014;2014:764268.
15. Prado G, Farutin A, Misbah C, Bureau L. Viscoelastic transient of confined red blood cells. Biophys J. 2015;108(9):2126-2136.
16. Kihm A, Kaestner L, Wagner C, Quint S. Classification of red blood cell shapes in flow using outlier tolerant machine learning. PLoS

Comput Biol. 2018;14(6):e1006278.
17. Quint S, Christ AF, Guckenberger A, et al. 3D tomography of cells in micro-channels. Appl Phys Lett. 2017;111(10):103701.
18. Freund JB. Numerical simulation of flowing blood cells. Annu Rev Fluid Mech. 2014;46:67-95.
19. Danker G, Vlahovska P, Misbah C. Vesicles in Poiseuille flow. Phys Rev Lett. 2009;102(14):148102.
20. Kaoui B, Krüger T, Harting J. How does confinement affect the dynamics of viscous vesicles and red blood cells? Soft Matter.

2012;8(35):9246-9252.
21. Tahiri N, Biben T, Ez-Zahraouy H, Benyoussef A, Misbah C. On the problem of slipper shapes of red blood cells in the microvasculature.

Microvasc Res. 2013;85:40-45.
22. Farutin A, Misbah C. Symmetry breaking and cross-streamline migration of three-dimensional vesicles in an axial Poiseuille flow. Phys

Rev E. 2014;89(4):042709.
23. Ye H, Shen Z, Li Y. Interplay of deformability and adhesion on localization of elastic micro-particles in blood flow. J Fluid Mech.

2018;861:55-87.
24. Mauer J, Mendez S, Lanotte L, et al. Flow-induced transitions of red blood cell shapes under shear. Phys Rev Lett. 2018;121(11):118103.
25. Zhu Q, Asaro RJ. Response modes of erythrocytes in high-frequency oscillatory shear flows. Phys Fluids. 2019;31(5):051901.
26. Takeishi N, Rosti ME, Imai Y, Wada S, Brandt L. Haemorheology in dilute, semi-dilute and dense suspensions of red blood cells. J Fluid

Mech. 2019;872:818-848.
27. Pozrikidis C. Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng. 2003;31(10):1194-1205.
28. Peng Z, Asaro RJ, Zhu Q. Multiscale modelling of erythrocytes in Stokes flow. J Fluid Mech. 2011;686:299-337.
29. Barakat JM, Shaqfeh ESG. Stokes flow of vesicles in a circular tube. J Fluid Mech. 2018;851:606-635.
30. Guckenberger A, Gekle S. A boundary integral method with volume-changing objects for ultrasound-triggered margination of microbub-

bles. J Fluid Mech. 2018;836:952-997.
31. Ye T, Shi H, Peng L, Li Y. Numerical studies of a red blood cell in rectangular microchannels. J Appl Phys. 2017;122(8):084701.
32. Balogh P, Bagchi P. A computational approach to modeling cellular-scale blood flow in complex geometry. J Comput Phys.

2017;334:280-307.
33. Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G. Viggen erlend magnus. The Lattice Boltzmann Method. New York, NY:

SpringerInternational Publishing; 2017.
34. Peskin CS. The immersed boundary method. Anuario. 2003;11:479-517.
35. Seol Y, Hu W-F, Kim Y, Lai M-C. An immersed boundary method for simulating vesicle dynamics in three dimensions. J Comput Phys.

2016;322:125-141.
36. Závodszky G, Rooij B, Azizi V, Hoekstra A. Cellular level in-silico modeling of blood rheology with an improved material model for red

blood cells. Front Phys. 2017;8:563.
37. Tian F-B, Dai H, Luo H, Doyle JF, Rousseau B. Fluid–structure interaction involving large deformations: 3D simulations and applications

to biological systems. J Comput Phys. 2014;258:451-469.
38. Kaoui B, Harting J. Two-dimensional lattice Boltzmann simulations of vesicles with viscosity contrast. Rheol Acta. 2016;55(6):465-475.
39. Frijters S, Krüger T, Harting J. Parallelised Hoshen-Kopelman algorithm for lattice-Boltzmann simulations. Comput Phys Commun.

2015;189:92-98.
40. Takeishi N, Imai Y, Nakaaki K, Yamaguchi T, Ishikawa T. Leukocyte margination at arteriole shear rate. Phys Rep. 2014;2(6):e12037.
41. Krüger T. Effect of tube diameter and capillary number on platelet margination and near-wall dynamics. Rheol Acta. 2016;55(6):511-526.
42. Haan M, Závodszky G, Azizi V, Hoekstra A. Numerical investigation of the effects of red blood cell cytoplasmic viscosity contrasts on

single cell and bulk transport behaviour. Appl Sci. 2018;8(9):1616.
43. Aidun CK, Clausen JR. Lattice-Boltzmann method for complex flows. Annu Rev Fluid Mech. 2010;42:439-472.
44. Limbach HJ, Arnold A, Mann BA, Holm C. ESPResSo—an extensible simulation package for research on soft matter systems. Comput

Phys Commun. 2006;174(9):704-727.
45. Arnold A, Lenz O, Kesselheim S, et al. ESPResSo 3.1: Molecular Dynamics Software for Coarse-Grained Models. Berlin Heidelberg /

Germany: Springer; 2013.

LEHMANN et al. 13

46. Weik F, Weeber R, Szuttor K, et al. ESPResSo 4.0 — an extensible software package for simulating soft matter systems. Eur Phys J Spec
Top. 2019;227(14):1789-1816.

47. Guo Z, Zheng C, Shi B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys Rev E. 2002;65(4):046308.
48. Mittal R, Iaccarino G. Immersed boundary methods. Ann Rev Fluid Mech. 2005;37:239-261.
49. Krüger T, Varnik F, Raabe D. Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed

boundary lattice Boltzmann finite element method. Comput Math Appl. 2011;61(12):3485-3505.
50. Loop Charles Teorell. Smooth Subdivision Surfaces Based on Triangles (Master Thesis); University of Utah.
51. Skalak R, Tozeren A, Zarda RP, Chien S. Strain energy function of red blood cell membranes. Biophys J. 1973;13(3):245-264.
52. Guckenberger A, Schraml MP, Chen PG, Leonetti M, Gekle S. On the bending algorithms for soft objects in flows. Comput Phys Commun.

2016;207:1-23.
53. Guckenberger A, Gekle S. Theory and algorithms to compute Helfrich bending forces: a review. J Phys Condens Matter. 2017;29(20):203001.
54. Gompper G, Kroll DM. Random surface discretizations and the renormalization of the bending rigidity. Journal de Physique I.

1996;6(10):1305-1320.
55. Bächer C, Gekle S. Computational modeling of active deformable membranes embedded in three-dimensional flows. Phys Rev E.

2019;99(6):062418.
56. Helfrich W. Elastic properties of lipid bilayers, theory and possible experiments. Z Naturforsch. 1973;28(11-12):693-703.
57. Evans E, Fung YC. Improved measurements of the erythrocyte geometry. Microvasc Res. 1972;4(4):335-347.
58. Shimrat M. Algorithm 112: position of point relative to polygon. Commun ACM. 1962;1:434.
59. Möller T, Trumbore B. Fast, minimum storage ray/triangle intersection. SIGGRAPH '05. New York, NY: ACM; 2005;2(1):21-28.

AUTHOR BIOGRAPHY

Moritz Lehmann was born in 1997 in Bavaria, Germany. During school he taught himself multiple programming
languages and developed his first software project called PhysX3D, a real-time 3D n-body simulation with a custom
graphics engine for orbit plotting. After the Abitur he studied physics at the University of Bayreuth. In addition to
studying biophysics, he is currently doing his PhD in theoretical physics – specializing in high-performance GPU
programming with OpenCL – on an efficient GPU implementation of the LBM named FluidX3D, which speeds up
complex simulations with free surfaces, particles and thermal convection from days to minutes of compute time while
at the same time visualizing results in real time.

How to cite this article: Lehmann M, Müller SJ, Gekle S. Efficient viscosity contrast calculation for blood flow
simulations using the lattice Boltzmann method. Int J Numer Meth Fluids. 2020;1–15.
https://doi.org/10.1002/fld.4835

APPENDIX A: C++ IMPLEMENTATION OF THE INITIALIZATION WITH RAY- CASTING

1 void inout_initialize_raycast () { // initialize by ray-casting
2 double x, y, z;
3 for(int i=0; i<gLocalLatticeSizeX; i++) {
4 for(int j=0; j<gLocalLatticeSizeY; j++) {
5 for(int k=0; k<gLocalLatticeSizeZ; k++) {
6 x = (i+gLocalLatticeOffsetX +gGlobalLatticeOffsetX)∗gLatticeConstant;
7 y = (j+gLocalLatticeOffsetY +gGlobalLatticeOffsetY)∗gLatticeConstant;
8 z = (k+gLocalLatticeOffsetZ +gGlobalLatticeOffsetZ)∗gLatticeConstant;
9 int intersections = 0;

10 for(int n=0; n<gCurrentNumberOfTriangles; n++) {
11 if(inout_intersectRayTriangle(// geometric algorithm to detect
12 inout_Ray(// intersection between a line
13 inout_Vector (x, y, z), // segment and a triangle in 3D
14 inout_Vector (x+0.01 , y+0.03 , z+1.04)),
15 inout_Triangle(
16 inout_Vector (gPoints[gTriangles[n][0]][0] , gPoints[gTriangles[n][0]][1] , gPoints[gTriangles[n]
17 [0]][2]) ,
18 inout_Vector (gPoints[gTriangles[n][1]][0] , gPoints[gTriangles[n][1]][1] , gPoints[gTriangles[n]
19 [1]][2]) ,
20 inout_Vector (gPoints[gTriangles[n][2]][0] , gPoints[gTriangles[n][2]][1] , gPoints[gTriangles[n]
21 [2]][2])
22)
23)) intersections ++; // increment number of intersections
24 }
25 mData[i][j][k] = intersections %2!=0; // true if intersections is odd
26 }
27 }
28 }
29 }

Listing 1: C++ implementation of the initialization with ray casting.

https://doi.org/10.1002/fld.4835

14 LEHMANN et al.

APPENDIX B: C++ IMPLEMENTATION OF THE UPDATE VIA VERTEX NORMALS FOR ESPRESSO

1 // flag array that contains the boolean inside/outside information:
2 // bool mData[mLocalLatticeSizeX][mLocalLatticeSizeY][mLocalLatticeSizeZ]
3 // four additional auxiliary arrays need to be allocated in system memory at simulation startup:
4 // (A) double mNormalVectorOnPoint [mMaxNumberOfPoints][3][3]
5 // (B) int mUpdateList[mLocalLatticeSizeX∗mLocalLatticeSizeY∗mLocalLatticeSizeZ][3]
6 // (C) int mClosestPoint[mLocalLatticeSizeX][mLocalLatticeSizeY][mLocalLatticeSizeZ]
7 // (D) double mClosestDistance[mLocalLatticeSizeX][mLocalLatticeSizeY][mLocalLatticeSizeZ]
8 void InoutLatticeLocal :: update () { // update cell boundary (closest membrane vertex to lattice point preferred)
9 fetch_surface_data (); // fill mPoints and mTriangles with new data

10 const int r = 1; // radius of lattice points around membrane vertex
11 double x, y, z; // temporary variables
12 int i, j, k; // discrete lattice point indices
13 int u, v, w; // discrete lattice point indices for the 8 cube corner points
14 double px , py, pz; // vector from membrane vertex to lattice point
15 double ux , uy, uz; // span vector 1 of triangle
16 double vx , vy, vz; // span vector 2 of triangle
17 double nx , ny, nz; // normal vector on surface triangele
18 // reset mUpdateNumber and mNormalVectorOnPoint from last step
19 mUpdateNumber = 0; // reset update number
20 for(int n=0; n<mCurrentNumberOfPoints ; n++) {
21 mNormalVectorOnPoint [n][0] = 0; // reset corner normal vectors
22 mNormalVectorOnPoint [n][1] = 0;
23 mNormalVectorOnPoint [n][2] = 0;
24 }
25 // calculate mNormalVectorOnPoint for every membrane vertex as the average over the normal vectors on all adjacent triangles (corner normal
26 vectors)
27 for(int n=0; n<mCurrentNumberOfTriangles; n++) {
28 // span vectors of triangle
29 ux = mPoints[mTriangles[n][1]][0]-mPoints[mTriangles[n][0]][0];
30 uy = mPoints[mTriangles[n][1]][1]-mPoints[mTriangles[n][0]][1];
31 uz = mPoints[mTriangles[n][1]][2]-mPoints[mTriangles[n][0]][2];
32 vx = mPoints[mTriangles[n][2]][0]-mPoints[mTriangles[n][0]][0];
33 vy = mPoints[mTriangles[n][2]][1]-mPoints[mTriangles[n][0]][1];
34 vz = mPoints[mTriangles[n][2]][2]-mPoints[mTriangles[n][0]][2];
35 nx = uy∗vz-uz∗vy; // n = u x v
36 ny = uz∗vx-ux∗vz;
37 nz = ux∗vy-uy∗vx;
38 // add normal vector to all three points
39 mNormalVectorOnPoint [mTriangles[n][0]][0] += nx;
40 mNormalVectorOnPoint [mTriangles[n][0]][1] += ny;
41 mNormalVectorOnPoint [mTriangles[n][0]][2] += nz;
42 mNormalVectorOnPoint [mTriangles[n][1]][0] += nx;
43 mNormalVectorOnPoint [mTriangles[n][1]][1] += ny;
44 mNormalVectorOnPoint [mTriangles[n][1]][2] += nz;
45 mNormalVectorOnPoint [mTriangles[n][2]][0] += nx;
46 mNormalVectorOnPoint [mTriangles[n][2]][1] += ny;
47 mNormalVectorOnPoint [mTriangles[n][2]][2] += nz;
48 }
49 // determine all lattice points that need to be processed , save them in mUpdateList and the closest membrane vertex to them in mClosestPoint
50 for(int n=0; n<mCurrentNumberOfPoints ; n++) {
51 x = mPoints[n][0];
52 y = mPoints[n][1];
53 z = mPoints[n][2];
54 // discrete lattice point indices of the bottom left point
55 i = (int)(x/mLatticeConstant-mLocalLatticeOffsetX -mGlobalLatticeOffsetX);
56 j = (int)(y/mLatticeConstant-mLocalLatticeOffsetY -mGlobalLatticeOffsetY);
57 k = (int)(z/mLatticeConstant-mLocalLatticeOffsetZ -mGlobalLatticeOffsetZ);
58 for(int a=1-r; a<=r; a++) {
59 for(int b=1-r; b<=r; b++) {
60 for(int c=1-r; c<=r; c++) {
61 // discrete lattice point indices for the 8 cube corner points
62 u = i+a;
63 v = j+b;
64 w = k+c;
65 // check if lattice point is out of bounds
66 if(u<0 || u>=mLocalLatticeSizeX || v<0 || v>=mLocalLatticeSizeY || w<0 || w>=mLocalLatticeSizeZ) continue;
67 // vector from membrane vertex to lattice point
68 px = mLatticeConstant ∗(u+mLocalLatticeOffsetX +mGlobalLatticeOffsetX) - x;
69 py = mLatticeConstant ∗(v+mLocalLatticeOffsetY +mGlobalLatticeOffsetY) - y;
70 pz = mLatticeConstant ∗(w+mLocalLatticeOffsetZ +mGlobalLatticeOffsetZ) - z;
71 // mark closest triangle ID to lattice point
72 const double sqd = d_sq(px)+d_sq(py)+d_sq(pz);
73 if(sqd < mClosestDistance[u][v][w]) {
74 mClosestDistance[u][v][w] = sqd;
75 mClosestPoint[u][v][w] = n;
76 mUpdateList[mUpdateNumber][0] = u; // point needs to be updated
77 mUpdateList[mUpdateNumber][1] = v;
78 mUpdateList[mUpdateNumber][2] = w;
79 mUpdateNumber ++;
80 }
81 }
82 }
83 }
84 }
85 // finally , update all lattice points previously saved in mUpdateList
86 for(int u=0; u<mUpdateNumber; u++) {
87 // get lattice point that needs to be updated
88 i = mUpdateList[u][0];
89 j = mUpdateList[u][1];
90 k = mUpdateList[u][2];
91 // get ID of closest membrane vertex
92 const int n = mClosestPoint[i][j][k];
93 nx = mNormalVectorOnPoint [n][0];
94 ny = mNormalVectorOnPoint [n][1];
95 nz = mNormalVectorOnPoint [n][2];
96 // vector from closest membrane vertex to lattice point
97 px = mLatticeConstant ∗(i+mLocalLatticeOffsetX +mGlobalLatticeOffsetX) - mPoints[n][0];
98 py = mLatticeConstant ∗(j+mLocalLatticeOffsetY +mGlobalLatticeOffsetY) - mPoints[n][1];

LEHMANN et al. 15

99 pz = mLatticeConstant ∗(k+mLocalLatticeOffsetZ +mGlobalLatticeOffsetZ) - mPoints[n][2];
100 mData[i][j][k] = px∗nx+py∗ny+pz∗nz < 0.0; // activate if scalar product < 0
101 mClosestDistance[i][j][k] = 1E10; // reset closest distance to lattice point
102 }
103 if((mStepCounter ++)
104 }

Listing 2: C++ implementation of the algorithm in Section 3.2.

