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An operational definition of the
biome for global change research

Summary

Biomes are constructs for organising knowledge on the structure

and functioning of theworld’s ecosystems, and serve as useful units

for monitoring how the biosphere responds to anthropogenic

drivers, including climate change. The current practice of delimiting

biomes relies on expert knowledge. Recent studies have questioned

the value of such biome maps for comparative ecology and global-

change research, partly due to their subjective origin. Here we

propose a flexible method for developing biome maps objectively.

The method uses range modelling of several thousands of plant

species to reveal spatial attractors for different growth-form

assemblages that define biomes. The workflow is illustrated using

distribution data from 23 500 African plant species. In an example

application, we create a biome map for Africa and use the fitted

speciesmodels to project biome shifts. In a secondexample,wemap

gradients of growth-form suitability that canbeused to identify sites

for comparative ecology.Thismethodprovides aflexible framework

that (1) allows a range of biome types to be defined according to

user needs and (2) enables projections of biome changes that

emerge purely from the individualistic responses of plant species to

environmental changes.

Introduction

Our current use of the term biome traces back to Schimper (1903).
Although Schimper did not use the word biome, his concept that
plant growth forms are distributed across the globe in accordance
with the availability of light, water, nutrients and heat underpins
current use of the term. Schimper’s premise that climate and soils
shape vegetation at global scales has prevailed as a system for
understanding and comparing ecosystem dynamics (Mucina,
2019) and evolutionary processes (Crisp et al., 2009; Donoghue
& Edwards, 2014) in different parts of the world.

There is, however, no universal truth when it comes to biomes.
Biomes are simplifications of reality that can serve in the process of
testing hypotheses and thereby revealing ecological truths (Higgins
et al., 2016). The implication is that the ecological and evolutionary
questions that a study aims to answerwill definewhat kind of biome
concept is needed. For example, when biomes are defined as
vegetation units with contrasting phenological response to climate
parameters, they can serve as useful constructs for monitoring

changes in terrestrial ecosystems using satellite remote sensing
(Higgins et al., 2016). Other biome concepts may be appropriate
for organising our knowledge on how ecosystems function. For
example, global syntheses of ecosystemproductivity, plant function
or biodiversity patterns are organised by biomes that are defined by
the dominant plant growth form (e.g. evergreen needle leaf forest,
deciduous broadleaf forest) (Churkina & Running, 1998) or by a
combination of vegetation physiognomy and climate descriptors
(e.g. tropical rain forest, temperate grassland) (Whittaker, 1975;
Reich et al., 1997; Schultz, 2005; Echeverr�ıa-Londo~no et al., 2018).
Alternatively, if a study aims at comparing or projecting ecosystem
responses to external drivers, a functional definition of biomes may
bemore appropriate. For example, if effects of elevated atmospheric
CO2 concentrations are assessed, the photosynthetic pathways of
the dominant plant growth forms may be considered as a criterion
for defining biomes (Higgins & Scheiter, 2012). The various
demands on biome maps necessitate a flexible, transparent and
repeatable method for constructing fit-for-purpose biome maps.

Existing biome maps are constructed in different ways (for a
recent review seeMucina, 2019). The frequently usedWWFbiome
map (Olson et al., 2001) for example uses expert knowledge and
regional vegetation maps (in turn created by experts) to construct a
global biome map. Such expert-based maps are influenced by the
mappers’ conception of what, for example, a Mediterranean
shrubland, boreal forest or savanna is. As a consequence, expert-
based maps are not repeatable because different experts may group
and delimit vegetation units differently. Moreover, climatic
thresholds are often used to delineate biome boundaries. In such
cases, the analysis and prediction of biome distributions in response
to climate are confounded (Moncrieff et al., 2016). A solution may
be to use satellite-based biome maps, which are more objective in
this regard. TheMODIS land cover type map (Friedl et al., 2010),
for example, classifies pixels with different remotely sensed
reflectance patterns using a supervised classification algorithm.
The algorithm is trained with pixels assigned to biomes by experts.
The MODIS map, although trained by expert knowledge, is
repeatable as long as one agrees with the a priori biomes assigned to
pixels for training of the algorithm.

Deficiencies in the definition and mapping of biomes by experts
reduce the usefulness of biome concepts for comparing ecosystems
in different parts of theworld (Higgins et al., 2016;Moncrieff et al.,
2016). Symptoms of such deficiencies are that the same biome in
different regions often occupies dissimilar positions in environ-
mental space (Moncrieff et al., 2015), different biomes can exist in
the same environmental space (Moncrieff et al., 2014) and different
floristic instances of the same biome may behave in ecologically
divergent ways (Lehmann et al., 2014). This hampers our ability to
draw general conclusions from comparisons of ecological and
evolutionary processes in different parts of theworld, because places
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with convergent selection for plant growth forms by climate and
soils may be incorrectly identified.

A solution may be to follow a deductive approach in which
biomes emerge from the data rather than being defined a priori. A
deductive approach is deployed in dynamic global vegetation
models (DGVMs), which model the abundance of different plant
functional types (PFTs) based on physiological principles (Prentice
et al., 2007). DGVMs represent the huge functional diversity of
plants with a small number of PFTs (Lavorel et al., 1997), assuming
that all species of a PFT respond in exactly the same way to
environmental conditions. This simplifying assumption makes
DGVM-derived biomes reliant on the individual PFTs being
adequately conceptualised and parameterised. Another example of
a deductive biome map is the Functional Biome Map of Higgins
et al. (2016), which uses remotely sensed phenological information
to classify vegetation by their height andproductivity and the extent
to which a pixel’s vegetation appears to be limited by cold or
moisture. TheHiggins et al. (2016) approach is repeatable because,
although expert knowledge motivates the algorithm and selection
of vegetation attributes to discern biomes, the biomes that emerge
are not defined a priori.However, the Functional BiomeMap is not
explicitly true to Schimper’s concept of convergent selection of
plant growth forms by climate. This is because it is derived largely
from ecosystem-level attributes detectable using Earth observation
satellites. The Functional BiomeMapmisses important plant-level
attributes; for example, the map does not discern between needle
leaf vs broad leaf, evergreen vs deciduous, orC3 vsC4. Itmay thus be
of limited applicability in studies seeking to compare ecological,
evolutionary or biogeochemical dynamics of the same ecosystems
in different parts of the world. In conclusion, we still lack a
deductive biome map that represents the selection of functionally
important growth forms by climate and soils, and at the same time
overcomes the dependency of DGVMs on PFT parameterisation.

In this contribution, we propose and operationalise a deductive
biome concept that overcomes the limitations of expert-based and
existing deductive concepts. Specifically, we show how range
modelling of many thousands of plant species can reveal spatial
attractors for different growth-form combinations that represent
biomes. Recent advances in data availability and analysis methods
make this workflow realisable. A previous obstacle has been a lack of
distribution data for sufficient species, but large global databases of
plant occurrence records now exist. Together with advances in
species distribution modelling (SDM) and increases in computa-
tional capacities, we can now characterise the niches of large
numbers of plant species (Evans et al., 2016). Moreover, global
databases on plant traits have been compiled in recent years,
allowing us to combine themodelled ranges of thousands of species
with growth-form information to infer a site’s suitability for
different growth forms. The biomes that result from such a
procedure are the result of convergent response of plant growth
form to selection by climate and soils. An advantage over DGVMs
is that the biomes are based on many thousands of species-specific
range models. This greatly reduces effects of misparameterising the
environmental preferences of plant types.

Below, we first outline a general protocol for constructing
deductive and repeatable biome maps. We then demonstrate two

applications of the protocol. In the first application we construct
biome maps for Africa under ambient and future climatic
conditions to illustrate the applicability of our approach in global
change research. In the second applicationwe showhow the scheme
can be used to select study locations for comparative research and
meta-analyses.

Protocol

Fig. 1 provides an overview of the main steps involved in our
protocol. First, we fit a nichemodel to species distribution data and
project the potential ranges of each species in the study region
(Fig. 1a–c). Second, we use the potential ranges of all species
belonging to a growth form to calculate the preference of that
growth form for each grid cell (geographical location) (Fig. 1d).
Finally, we calculate a growth-form spectrum for each grid cell,
thereby generating a grid cell by growth-form preference matrix
(Fig. 1e), which in turn is used to classify the grid cells into biomes
(Fig. 1f).

Niche projections for each species

A first step is to obtain distribution data for a representative sample
of species in the study region (Fig. 1a). For instance, in the
following example we used c. 23 500 African species for which we
had growth-form data and sufficient distribution data to fit an
SDM. It is important to obtain distribution data for a sufficient
sample of species from each growth form used in a study (see next
section) and to sample species from different floristic regions (e.g.
deciduous trees from East and West African savannas). The latter
allows the effects of biogeographical differences in how species of
the same growth form respond to environmental drivers to be
included in the analysis.

A variety of potential data sources exist for obtaining distribution
data. Herbarium records provide information on spatial plant
occurrences for large sets of species, and many herbaria have
contributed their data to GBIF (www.gbif.org). Another source is
vegetation plot data, which include presence–absence or abun-
dance data for species from plot-based vegetation surveys. Several
plot databases exist, such as sPLOT (Bruelheide et al., 2019) or the
European Vegetation Archive (EVA) (Chytr�y et al., 2016). The
most comprehensive global database is BIEN (http://bien.nceas.uc
sb.edu/bien/), which combines plant observations fromherbarium,
plot and trait records. Depending on the data source, cleaning the
data is often necessary to deal with nomenclature changes, records
from subspecies, ecotypes and varieties, and potential errors in the
location information attached to the species records. Tools for
facilitating such data cleaning exist (e.g. Zizka et al., 2019).

The distribution data are then used to fit an SDM (Fig. 1b) that
projects the potential range of each species (Fig. 1c). To fit SDMs,
researchers can choose from a diversity of modelling approaches
that range from process-based to correlative (Dormann et al.,
2012). In this context, it is notable that process-based niche
modelling of many species is no longer limited by the availability of
physiological or demographic parameters, as these can now be
estimated for large numbers of species using hierarchical and
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inverse modelling techniques (Hartig et al., 2011; Evans et al.,
2016). SDMs differ in how they use environmental information to
project the ranges of species. This obviously has consequences for
the biome maps being produced. Contrasting biome maps
generated with models based on different algorithms or assump-
tions allows one to explore hypotheses about the controls over plant
species distributions and the consequences for biome assembly. It
also enables sensitivity analysis with respect to model selection and
to produce model-ensemble biome maps. Irrespective of which
SDM is used, the goal is to infer where a species could grow, that is
its potential range, not its realised range. This is because in the next
step, we stack the potential ranges of all species of a growth form to
create suitability surfaces for each growth form. These surfaces
represent spatial attractors for each growth form. Because the goal is
to delimit potential rather than realised ranges, overfitting of SDMs
is not desired because this might underestimate potential ranges
and biases inferred attractors towards the spatial density of
distribution records. It is important that methodical choices and
underlying assumptions are reported in order to make the resulting
biome maps reproducible.

Growth forms and their preferences

The next step in the protocol is to create suitability surfaces for each
growth form. This is done bymerging the species range projections
with growth-form information. Because biomes can be defined as
large-scale vegetation units characterised by their growth-form
spectra, this merge provides the link between the ranges of species
and biomes. Information on growth forms is included in floras,
although the growth-form definitions do vary with flora. Databases
such as BIENandTRY (Kattge et al., 2011) contain information on
growth forms. There are often several entries per species and some
of thesemay yield inconsistent information (e.g. ‘shrub’ vs ‘tree’). A

pragmatic approach may be required, such as using the most
frequent entry, or creating intermediate categories (e.g. ‘shrub or
tree’), depending on the objectives of the study. Broad growth-form
categories (e.g. tree, grass) can be combinedwith other traits such as
whole plant vegetative phenology or photosynthetic pathway to
obtain finer and ecologically more relevant growth-form categories
(e.g. deciduous vs evergreen trees, C3 vs C4 grasses). Phenological
information is available for many species in BIEN and TRY, and
databases on specific functional traits exist, such as the global
database of C4 photosynthesis in grasses (Osborne et al., 2014).
Missing functional trait data for individual species can be imputed
using a variety ofmethods, such as taking themost frequent value in
that genus or family, or using more sophisticated imputation
methods (for a comparison of methods see Penone et al., 2014).

Researchers have to decide which and how many growth forms
they want to use to characterise biomes. This is an important
decision, because it will affect the number of biomes and the extent
to which they can be interpreted as vegetation units with similar
functional responses to environmental forcing. The strength of our
approach is that the resulting biome maps will reflect the
researcher’s hypotheses regarding the physiognomic attributes that
discern vegetation types, and the plant growth forms that are
functionally important.

Once all species are assigned a growth form, a suitability score
for each growth form is computed for each grid cell. This
suitability score is calculated as the proportion of species of each
growth form that can grow in that grid cell. For example, if 200
out of 1000 evergreen trees and 400 out of 800 deciduous trees
can grow in a grid cell, the grid cell has suitability scores of 0.2
and 0.5 for evergreen trees and deciduous trees, respectively. We
can thus create suitability surfaces for each growth form (Fig. 1d)
and characterise each grid cell by a growth form spectrum
(Fig. 1e).

For each species: For each growth form:

For each cell:

Use growth-form
spectrum to
assign site to
biome:

D
istribution data

S
D

M
 

P
rojected range

G
row

th-form
 suitability 

G
row

th-form
 spectrum

B
iom

e assignm
ents

S
oi

l n
ut

rie
nt

s

Temperature

(a)

(b)

(c)

(d)

(e)

(f)

E-tree
D-tree

E-shrub
D-shrub

C4 grass
C3 grass

Forb
Climber

Succulent

0 1

Fig. 1 Overview of the proposed workflow to
construct biomes as described in the ‘Protocol’
section. Species distribution data (a) are used
tofit a speciesdistributionmodel (SDM;b) that
enables projecting the potential range of a
species in geographical space (c). Stacking the
potential ranges of many species of a growth
form reveals the suitability of grid cells for this
growth form (d). Each cell’s suitability for
various growth forms is calculated (e), and
cells are classified into biomes based on their
suitability for growth forms (f). In (e) the
abbreviations D- and E- indicate deciduous
and evergreen, respectively.
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Classifying growth-form spectra into biomes

In the final step, the suitability scores for each growth form are used
to create a grid cell by growth-form preference matrix. This matrix
is then classified into groups, which are interpreted as biomes
(Fig. 1f). The resulting biomes can be conceptualised as attractors
for different growth-form combinations. Researchers can choose
between a variety of clustering algorithms and distance metrics to
identify the different biomes. In addition, methods exist to
determine the optimal number of clusters/biomes (Borcard et al.,
2011). However, the final decision on the number of clusters will
also be influenced by the level of abstraction required to answer the
research question of a study.

As in any biome concept, the number of clusters/biomes is an
arbitrary decision. There is no correct number of biomes. As we
have alluded to above, biomes are simplifications of reality that help
us to organise our knowledge about the Earth’s vegetation and can
serve for hypothesis testing. It is the level of detail required by users
of a biome map that really determines what the optimal number of
biomes is. For example, a computer algorithmmay say that 2 is the
optimal number of clusters, and discriminate between vegetated
land and deserts. Few would find such a biome map useful. A
strength of our method is that the growth-form preference matrix
can be used to flexibly determine the desired number of clusters.
Therefore, we advocate that adopters of our approach should make
these matrices available. If others agree that the environmental
preferences of growth forms revealed by these matrices are useful,
they can use the matrices to make their own biome maps that are
tailored to their research.

Sensitivity analyses

The suitability surfaces are at the core of the proposedworkflow and
their robustness needs to be evaluated. They are the aggregate
output of hundreds to thousands of species-specific SDMs.
Aggregating the output of many SDMs means that only models
with high predictive accuracy should be used in the aggregation to
avoid the propagation of prediction errors (Thuiller et al., 2019).
Metrics for evaluating the predictive accuracy of SDMs exist (e.g.
Allouche et al., 2006) and should be incorporated in the workflow.
In addition, SDMs differ in how they use environmental
information to project the ranges of species. As a consequence,
there is often disagreement between model predictions (Cheaib
et al., 2012), which means that model-based uncertainties in
aggregate outputs such as the suitability surfaces can be substantial
and should be assessed (Thuiller et al., 2019).

Adopters of the approach also need to ensure that the amount,
coverage and quality of their distribution and trait data is sufficient.
For example, researchers should check that different biogeograph-
ical zones are adequately represented in their sample of distribution
records. In addition, how well the growth-form imputation works
should be assessed. Moreover, the number of species per growth
form should be sufficient to adequately estimate the growth-form
suitability surfaces. This can be tested for each growth form by
taking increasingly larger subsamples of the range models,
computing suitability scores based on each subsample, and

calculating the correlation with the suitability scores based on the
full set of species. If the correlation is already around 1when smaller
subsets are used, this would indicate that the suitability surfaces
would not change if more species than in the full set were included.
If the correlation approaches 1 only when a very large subset is used,
this would indicate that even the full set may not be enough to
accurately estimate suitability surfaces for that growth form.

Making a biome map

Here we illustrate the framework by constructing a biome map for
Africa. The biome map, the underlying grid cell by growth-form
preference matrix and R code to produce the map from the matrix
are available from https://doi.org/10.5061/dryad.4j0zpc87t.

Distribution data and growth-form information

First, we construct a biome map for ambient conditions following
the protocol outlined above. We extracted distribution data of all
African plant species available in the BIENdatabase v.4.1, using the
BIEN R package (Maitner et al., 2018). Distribution records flagged
as non-native or cultivated were also used. Only species with
records in seven or more different 1-km grid cells in Africa were
retained. This resulted in an initial sample of c. 25 700 plant
species.

We grouped the species into nine growth forms: evergreen and
deciduous trees, evergreen and deciduous shrubs, C3 and C4

grasses, forbs, succulents, and climbers.We propose that these nine
growth forms are adequate to characterise biomes at the continental
scale and expected them to have contrasting functional responses to
the environment. We classified all species belonging to the families
Poaceae, Cyperaceae, Juncaceae, Flagellariaceae and Restionaceae
as grasses, and used the database ofOsborne et al. (2014) to identify
grass species with C4 photosynthetic pathway. For all other species
we extracted information on whole plant growth form and whole
plant vegetative phenology from BIEN. If multiple entries with
contrasting information were available for a species (e.g. a species
had entries as a shrub and a tree), we used themost frequent entry. If
species-level trait information was not available, we used the most
frequent entry for the genus, and if that was also not available, we
took the most frequent entry for the family. Species classified in
BIEN as herb, geophyte or fern were assigned to the forb category,
and species classified as epiphyte, liana or vine were assigned to the
climber category. For 1000 species we could not assign a growth
form, leaving us with c. 24 700 species. References for BIEN
occurrence records and growth-form data can be found in
Supporting Information Table S1.

Range projections

For each of the 24 700 species we modelled its potential range with
two SDMs, Maxent (Phillips et al., 2006) and the TTR-SDM
(Higgins et al., 2012).Maxent is a frequently used correlative SDM
(Guillera-Arroita et al., 2015). The TTR-SDM is a physiologically
based SDM for plants that is closer to the process-end of the
correlative – process-based continuumdescribed byDormann et al.
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(2012). The TTR-SDM model is based on Thornley’s transport
resistance model (hence ‘TTR’, Thornley, 1998). The TTRmodel
is a series of dynamic equations that represent how resource
assimilation (carbon and nitrogen in this case), plant growth and
allocation between resource sinks and sources influence the biomass
accumulation of an individual plant. The TTR-SDM as described
in Higgins et al. (2012) includes a series of functions that simulate
how environmental factors (light, temperature, soil water, soil
nitrogen) influence key processes in the TTR model. In this
contribution, we used a new variant of theTTR-SDMthat includes
a Farquhar-type (Farquhar et al., 1980) photosynthesismodel. This
allows the model to formally link ecophysiological knowledge of
how photosynthesis is co-limited by light, temperature and
atmospheric CO2 concentration and how this co-limitation differs
for C3 andC4 plants. TheTTR-SDM thus explicitly considers how
C3 and C4 plants may respond to temperature and atmospheric
CO2 concentrations. Therefore, the TTR-SDM will project shifts
in ranges with elevated CO2, whereas other SDMs will not. As in
DGVMs, photosynthesis is parameterised by leaf-level observa-
tions. That is, we do not infer Farquhar photosynthesis parameters
from distribution data. A more detailed description of the TTR-
SDM is provided in Methods S1.

The environmental data (at 1-km resolution) used for fitting
both SDMs were defined by the requirements of the TTR-SDM:
minimum, mean and maximum monthly temperatures (Hij-
mans et al., 2005), solar radiation (Trabucco & Zomer, 2010),
soil nitrogen content (Shangguan et al., 2014) and monthly soil
moisture contents (Trabucco & Zomer, 2010). The soil
moisture data from Trabucco & Zomer (2010) represent soil
moisture available for evapotranspiration and are not influenced
by the biome state of a grid cell. Both SDMs used the same
presence and pseudo-absence points. The TTR-SDM further
assumed an atmospheric CO2 concentration of 338 ppm
(Meinshausen et al., 2011). Methods S1 provides more infor-
mation on model fitting. After discarding models that did not
converge or that had low predictive accuracy (True Skill Statistic
(TSS) < 0.7), we were left with c. 23 500 (TTR-SDM) and
23 200 species (Maxent).

Growth-form preferences and classification to biomes

We used the modelled potential ranges of the species to calculate
suitability scores for each growth form in each grid cell. As
described above, the suitability score is simply the proportion of
species of each growth form that can grow in a grid cell according to
the SDM used. Fig. 2 shows the suitability surfaces based on the
TTR-SDM. The Maxent SDMs showed a tendency to overfit, as
revealed by lower false positive rates (Fig. S1), and the resulting
suitability surfaces (Fig. S2) appear to be influenced by the density
of distribution records (Fig. S3). This problem could be reduced by
cross-validation procedures.

We conducted a number of sensitivity tests that confirmed the
robustness of the TTR-SDM suitability surfaces to the TSS
threshold used, to the distributions of growth forms and biogeo-
graphical regions in the occurrence records, and to the imputation
of growth-forms (see Methods S2 and Figs S3–S7).

The suitability scores for each growth form (each ranging from 0
to 1; see definition earlier) were then used to create a grid-cell by
growth-form preference matrix and this matrix was then classified
in groups (i.e. biomes) using the clara algorithm (Kaufman &
Rousseeuw, 2009). Clara is a clustering algorithm that partitions
data into k groups. Unlike k-means algorithms, where the clusters
are defined by themean value of all data points in a cluster, the clara
clusters are defined by the medoid, which is the existing data point
within the cluster with the lowest dissimilarity to other points in the
cluster. Using medoids instead of means makes the method less
sensitive to outliers.

We used average silhouette widths to determine the optimal
number of clusters (biomes). The four best clustering solutions for
the TTR-SDM suitability scores were two, five, four and three
biomes, respectively, and are shown in Fig. S8. Here we present the
fifth best clustering solution with 14 biomes because we consider
this an appropriate level of abstraction for a continental-scale map
and for discussing how our biome constructs are to be interpreted.
The same number of clusters was used for the Maxent biome map.
We refined cell assignment to the clusters using discriminant
analysis of principal components (DAPC; Jombart et al., 2010).
This method optimises the separation of cells into predefined
groups (the 14 clara clusters) based on discriminant functions of
principal components analysis (PCA) components. The PCA
components were computed from the growth-form preference
matrix. Our DAPC used nine PCA components and nine
discriminant axes.

Interpretation of the biome map

Fig. 3(a) shows the emergent biomes based on the TTR-SDM
suitability surfaces. Table 1 shows the differences between the
biomes in terms of the suitability for different growth forms. A
biome map based on the Maxent suitability surfaces is shown in
Fig. S9.

It is useful to look at Fig. 2 and Table 1 when interpreting the
modelled biomes (Fig. 3a). The dark red biome (biome 1) is
characterised by extremely low suitability for all growth forms and
corresponds to Africa’s desert areas. Light and dark grey are arid
biomes (13 and 14) adjacent to Mediterranean-type climate areas
(e.g. the Succulent and Nama Karoo in South Africa and steppe in
northern Africa) and are characterised by a higher suitability for
succulents (especially in southern Africa), a few shrubs and grasses.
These arid biomes are discerned from arid biomes closer to the
equator (e.g. in the Sahel and Horn of Africa) coloured in lighter
red shades (2 and 3), which tend to attract shrubs, grasses and
deciduous treesmore than succulents. In green and yellow (4–8) are
biomes with high suitability for grasses (especially C4) and trees.
These biomes correspond to different types of savanna and seasonal
forest. The fact that all these biomes have relatively high suitability
for trees and grasses means that there is potential for alternative
states to occur, albeit disturbance-maintained alternative states
(Bond et al., 2005) cannot be modelled with our approach. The
dark green biome (8) already has a higher suitability for evergreen
trees and occurs close to the wettest biomes (light and dark blue; 9
and 10), which are most suitable for evergreen trees and climbers,
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but have a low suitability for other growth forms. In particular, the
dark blue biome (10) is only suitable for a lower number of species
and these are mostly evergreen trees and climbers. This biome
occurs under the wettest and hottest conditions. Note that the
rather low overall suitability of this biome does not necessarily
imply that it is species-poor. This biome just has a low suitability for
most species that are not evergreen trees or climbers.

The spatial arrangement of the modelled biomes, although
differing in many ways from White (1983) or Olson et al.
(2001) (Fig. 3b,c), does capture many widely recognised
vegetation patterns in Africa. For example, the sequence from
the Sahara to the Congo basin is often shown in vegetation
maps of Africa, as is the sequence in Madagascar from wet
tropical forest on the east coast to grass-dominated savannas in
the central highlands to woody savannas and seasonal forest on
the west coast (e.g. Schultz, 2005; Pfadenhauer & Kl€otzli,
2014). Similarly, the savanna intrusions into the wet forests in
southern Togo and neighbouring countries and into the
Ethiopian highlands are also emulated.

Although it is tempting to compare our biomes with existing
biome maps of Africa, one needs to bear in mind the different
biome concepts that underlie these different maps. Most impor-
tantly, our biome constructs represent environmental attractors for
growth-form combinations. That is, they show where different
growth-form combinations are likely to assemble based on
environmental conditions. As such, they do not always show the
locally dominant growth form. For instance, disturbances such as
fire, herbivory or human land use may push realised growth-form
combinations away from the modelled attractors.

For example, althoughMediterranean shrub-dominated ecosys-
tems with winter rainfall (i.e. South Africa’s Fynbos and the
Maghreb coast) do appear on our biome map (biome 12), our
classification does not distinguish them from upland grasslands
with summer or year-round rainfall (e.g. South Africa’s Highveld).
The Highveld grasslands, for instance, are indeed climatically
suitable forwoody plants (Wakeling et al., 2012), as theTTR-SDM
correctly predicts. However, the model does not consider that the
relatively short growing season confines woody plants to fire-

Evergreen trees Deciduous trees Evergreen shrubs

Deciduous shrubs C3 Grasses C4 Grasses

Forbs Succulents Climbers

0.0
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0.6
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0.9

1.0

Fig. 2 Environmental suitability for plant
growth forms. Suitability is expressed as the
proportionof species of eachgrowth form that
can grow in a cell according to the TTR-SDM.
No predictions were made for the grey areas
because of incomplete environmental data.
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protected topographic positions such as river valleys and gorges
(Wakeling et al., 2012).

Projecting biome shifts

In this section, we illustrate how our biome protocol can be used to
project future biome changes in Africa.Warming and precipitation
change in Africa are predicted to be stronger than the global mean,
and novel climates without present-day analogues will develop in

parts of the continent (Williams et al., 2007). In addition, the
elevated atmospheric CO2 concentrations are likely to shift Africa’s
vast savannas intomore woody states becausewoody plants withC3

photosynthetic pathway benefit more from elevated CO2 concen-
trations than C4 grasses (Bond & Midgley, 2012; Higgins &
Scheiter, 2012). As stated in the Introduction, our method is
suitable for projecting biome changes because themodelled biomes
are the outcome of the individualistic response of thousands of
plant species to climate and soils. Moreover, the biome boundaries
are not defined by climatic thresholds, and the method does not
assume that biomes are units that will shift. Rather, the biome shifts
that our protocol projects are the outcome of the potential range
shifts of thousands of species. Thismakes themethod robuster than
a PFT-based DGVM that projects biome shifts on the basis of a
type-specimen for a PFT.

Model projection

We used the fitted rangemodels to project where the species will be
able to grow under future climatic conditions. The future
projections were made separately based on the TTR-SDM and
Maxent models. We used three climate scenarios for the year 2070
predicted by the MPI-ESM Global Circulation Model (GCM) of
the Max Planck Institute for Meteorology (Giorgetta et al., 2013)
under the 2.6, 4.5 and 8.5 Representative Concentration Pathways
(RCPs) (van Vuuren et al., 2011). The climate data for these
scenarios were downloaded from Hijmans et al. (2005). Total soil
nitrogen and solar radiationwere assumed to be the same in 2070 as
under ambient conditions. Future monthly soil moisture contents
were modelled using the equations in Trabucco & Zomer (2010)
and 2070 climate data from the MPI-ESM GCM from Hijmans

(a) TTR−SDM

1
2
3
4
5

6
7
8
9
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11
12
13
14

(b) White (1983)

Forest
Forest transitions & mosaics
Woodland
Woodland mosaics & transitions
Secondary wooded grassland
Bushland & thicket
Bushland & thicket mosaics
Transitional scrubland
Cape shrubland (Fynbos)

Semi−desert vegetation
Grassy shrubland
Grassland
Edaphic grassland
Altimontane vegetation
Deserts
Azonal
Anthropic

(c) Olson et al. (2001)

Tropical & subtropical moist broadleaf forests
Tropical & subtropical dry broadleaf forests
Temperate coniferous forests
Tropical & subtropical grasslands, savannas & shrublands
Flooded grasslands & savannas
Montane grasslands & shrublands
Mediterranean forests, woodlands & scrub
Deserts & xeric shrublands
Mangroves

Fig. 3 Biome concepts for Africa according to (a) environmental attractors for growth form combinations estimated using the TTR-SDM applied to c. 23 500
plant species (this study), (b) White (1983) and (c) Olson et al. (2001). Black cells have no data.

Table 1 Mean suitability scores for plant growth forms in African biomes.

Biome
Tree-
E

Tree-
D

Shr-
E

Shr-
D

C3-
G

C4-
G Forbs Succ Climb

1 0.00 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00
2 0.02 0.05 0.04 0.06 0.04 0.14 0.05 0.05 0.03
3 0.11 0.22 0.09 0.13 0.12 0.30 0.10 0.05 0.13
4 0.28 0.41 0.31 0.33 0.33 0.55 0.33 0.19 0.32
5 0.37 0.39 0.43 0.45 0.51 0.56 0.46 0.23 0.40
6 0.22 0.38 0.13 0.18 0.18 0.40 0.15 0.04 0.27
7 0.37 0.49 0.18 0.21 0.22 0.44 0.20 0.04 0.44
8 0.52 0.55 0.28 0.29 0.31 0.53 0.32 0.08 0.57
9 0.46 0.41 0.16 0.14 0.18 0.29 0.18 0.01 0.53

10 0.32 0.24 0.10 0.07 0.12 0.13 0.11 0.01 0.37
11 0.10 0.22 0.22 0.23 0.20 0.41 0.22 0.25 0.12
12 0.20 0.24 0.52 0.56 0.57 0.47 0.49 0.45 0.21
13 0.03 0.07 0.15 0.15 0.15 0.19 0.15 0.27 0.04
14 0.07 0.12 0.32 0.29 0.31 0.30 0.29 0.47 0.08

Thebiomenumbers are the sameas in Fig. 3(a). Standarderrors of themeans
were always< 0.01. Tree-E, evergreen trees; Tree-D, deciduous trees; Shr-E,
evergreen shrubs; Shr-D, deciduous shrubs; C3-G, C3 grasses; C4-G, C4

grasses; Succ, succulents; Climb, climbers.
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et al. (2005). Again, the soil moisture values represent soil moisture
available for evapotranspiration and are not influenced by land
cover or biome type. For the modelling horizon 2070 the TTR-
SDM projections assumed atmospheric CO2 concentrations of
438, 524 and 677 ppm for RCPs 2.6, 4.5 and 8.5, respectively
(Meinshausen et al., 2011).

We then calculated growth-form suitability scores for each grid
cell based on the future ranges of all 23 500 species. These future
suitability scores were then used to predict the biome membership
of each grid cell based on the discriminant functions derived from
the DAPC above. This allowed us to assess the biome state of each
cell in 2070 (Fig. 4) and to assess uncertainty in biome-shift
predictions originating from RCPs and SDM choice (Fig. 5). We
used only one GCM for the purpose of illustration, because GCM
is a minor source of uncertainty in comparison to RCP and SDM
(Thuiller et al., 2019). However, empirical applications of the
approach should also evaluate uncertainty originating from GCM
choice when making future projections.

Interpretation of projected biome shifts

The future projection based on the TTR-SDM for RCP8.5
(Fig. 4b) suggests a profound transformation of African biomes
that is in agreement with theoretical expectations, observations and
previous modelling studies. For instance, our model predicts that
savannaswith high suitability forC4 grasses (yellow and light green;
4–5) will transition to a more woody state (6–7). This is consistent
with the prediction that woody C3 plants will benefit relatively

more from elevated atmospheric CO2 concentrations than C4

grasses (Bond & Midgley, 2012; Higgins & Scheiter, 2012;
Conradi, 2018). Woody encroachment is already ongoing in
African savannas and cannot be easily explained by a lack of fire or
herbivory, suggesting that CO2 is a chronic driver of encroachment
(Buitenwerf et al., 2012). Another marked change is the expansion
of highly unsuitable biomes (1–3) north of theCongo basin that are
projected to replace the savannas of that region (6–7) despite
increasing rainfall in this region (IPCC, 2014). One reason for this
may be that gains in rainfall are going to be offset by increasing
temperatures. The red biome (1) will also appear locally in the
Congo basin andWest African rain forests. This illustrates that our
biomes should not be interpreted in terms of climate (e.g. that these
will become arid locations), but in terms of their suitability for
species from different growth forms. Here, it means that only a low
proportion of evergreen tree and climber specieswill be able to grow
in these locations in the future. A further major change is
theexpansion of the dark blue ‘rain forest’ biome (10; a biome with
low suitability for all growth forms except evergreen trees and
climbers) in the Congo basin and its disappearance inMadagascar.
This is in line with the projected increasing rainfall in the Congo
basin and decreasing rainfall in Madagascar (IPCC, 2014).

Selecting sites for comparative research

Predictive ecology is hampered by the fact that ecological dynamics
are influenced by a mixture of biophysics and evolutionary and
ecological history. These historical factors conspire to make the

(a)  Biomes today 

based on TTR−SDM

Biome
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(b)  Biomes in 2070 (RCP8.5) 

based on TTR−SDM

Fig. 4 Currentand futurebiomedistributionsbasedonbasinsof attraction forplantgrowth formsestimatedusing theTTR-SDMapplied toc. 23 500plant species.
(a) Biomes under ambient environmental conditions. (b) Projected biome distribution in 2070 under the RCP8.5 emission scenario. Black cells have no data.
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dynamics of each ecological system unique. To make progress in
interpreting the unique dynamics of ecosystems, ecologists com-
pare estimates of ecological rates measured in different ecosystems,
and in different instances of the same ecosystem at different
geographical locations, for example usingmeta-analyses or globally
distributed experiments. However, this endeavour relies on an
appropriate a priori method for assigning an ecosystem to types,
such as biome types.

Here we demonstrate how our biome map protocol can be used
to identify sites for comparison. For example, should a researcher
wish to compare their measurements made near Skukuza in the
Kruger National Park, South Africa, to other similar sites in Africa,
they could use the cell by growth-form matrix to find grid cells in
Africa that have similar growth-form spectra to Skukuza. Fig. 6
shows that we would choose different grid cells for this comparison
if our selection were based on growth-form similarity rather than
environmental similarity. We propose that for comparative
research it is more appropriate to select study locations based on

growth-form spectra, because sites with similar growth-form
spectra represent similar environmental attractors.

Alternatively, the researcher could bemore explicit and ask for all
sites with a high suitability for deciduous trees and shrubs, high
suitability forC4 grasses and low suitability for succulents. It is up to
the researcher to define what they regard as meaningful units for
comparison, and our protocol provides a flexible means to delimit
such units.

Outlook

This study proposes and demonstrates a protocol for creating
biome maps. The protocol provides a data-driven pipeline for
defining the environmental preferences of the growth forms that
define biomes, and for delimiting land surface units that have
internally similar basins of attraction for different growth form
combinations. This contrasts with previous methods that are based
on the idea of a type-specimen or benchmark-site for a biome (e.g.

RCP2.6

T
T

R
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D
M

RCP4.5 RCP8.5

M
ax

en
t

Fig. 5 Projected biome shifts in Africa in 2070 based on different rangemodels (TTR-SDMandMaxent) and different RepresentativeConcentration Pathways
(RCPs). Pixels in colour indicatebiomes thatwill shift in state,warmercolours indicatehigher certaintyof change (i.e. theywill changeunderagreaterproportion
of RCP scenarios). The TTR-SDM considers how changes in temperature, soil moisture and atmospheric CO2 concentration influence species ranges, and thus
biome distributions, whereas Maxent is not sensitive to CO2.
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Olson et al., 2001; Friedl et al., 2010). Such approaches are reliant
on the type specimens or benchmarks being appropriately defined.
In our protocol the biomes emerge as a mechanical classification of
the growth-form spectra of sites. That is, the user makes decisions
on which growth forms are to be used in the classification, but the
resulting biomes and their distributions emerge from the analysis.

The protocol uses range models for thousands of species to
characterise the environmental preferences of each growth form.
We hypothesise that this model averaging makes projections of
biome shifts more robust and avoids a problem PFT-based
DGVMshavewith biome shift projections.DGVMs are important
tools for making predictions about ecosystem change under future
climates because they use physiological sub-models to scale from
plant-level rates to ecosystem rates and to biome distributions
(Prentice et al., 2007). However, instead of modelling individual
species, PFT-based DGVMs represent the taxonomic and func-
tional diversity of plants using a small number of PFTs (Lavorel
et al., 1997). The spatial distribution and abundance of the PFTs is
then modelled, and vegetation types are delimited based on the
modelled relative dominance of different PFTs (Bonan et al.,
2002). That is, in such DGVMs the projections are reliant on the
PFTs characterising a biome being correctly conceptualised and
parameterised. For example, DGVM projections of the likelihood
of Amazon forest die-back (Cox et al., 2004; Rammig et al., 2010)
are reliant on the broad-leaf evergreen PFT being correctly
conceptualised and parameterised. Even though current-genera-
tion DGVMs include more PFTs (Sitch et al., 2008) or consider

variation in the traits that defined PFTs (Scheiter et al., 2013), this
problem that functional diversity is often under-represented in
DGVMs remains. Our approach circumvents this problem by
parameterising thousands of species separately and letting them
assemble to biomes. Of course, DGVMs include a higher level of
biophysical realism than SDMs. Both methods have strengths and
weaknesses and using both methods is advocated to better evaluate
uncertainty in biome shift projections.

Our approach mimics a Gleasonian view of an ecological
community. The Gleasonian view is that communities are mani-
festations of the environmental preferences of individual species and
not of the biotic linkages between species. Similarly, our biomes are
manifestations of the environmental preferences of individual
growth forms and contain no ecological hypothesis of why these
growth forms co-occur and how they interactwith one another. That
is, the effects of biotic interactions and disturbance (fire, herbivory,
land use) are either in the error terms of the statistical model or
included (misspecified) in the parameters which describe the
physiological preferences of species. This problem is well known
(Wisz et al., 2013), but its significance is difficult to assess.

Some features of our protocol are dependent on the SDM used.
The TTR-SDM, for example, allows physiological processes to
control the projected distribution of species. That is, the model has
a higher level of process realism than purely correlative models and
this, in principle, should reduce the potential for over-fitting
(Higgins et al., 2012). In this studywe further reduced the potential
for over-fitting by using a Farquhar-style (Farquhar et al., 1980)
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Fig. 6 Similarity of African grid cells to Skukuza in the Kruger National Park (a) in terms of their growth-form spectra and (b) environmental conditions. The
Skukuza grid cell is shown with the red dot. Similarity is expressed in Euclidean distances, calculated from (a) the growth-form spectra and (b) the (scaled)
monthly input variables of the TTR-SDM. In (b), a slight discontinuity occurs in equatorial cells. This is because for the calculation of similarity, we changed the
order of the monthly environmental variables of northern-hemisphere cells to match the seasons of the southern hemisphere. This is necessary to calculate
environmental similaritybasedon theconditions theplants inbothhemispheresperceiveduring their respectivegrowingseasons,but introduces a small artefact
at the Equator.
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model to characterise how carbon gain is co-limited by temper-
ature, light and atmosphericCO2 concentration.That is, themodel
uses data derived from studies of leaf-level gas exchange to constrain
the species distribution projections. We emphasise however that
the general principle of the protocol can be realised using other
species distribution models.

As we argued in the Introduction, different biome maps may be
appropriate for different purposes. Indeed in the section ‘Selecting
sites for comparative research’ we suggested that the distance
between the growth-form spectra of grid cells can be used to flexibly
group cells into groups for meta-analyses. The authors of such
meta-analyses of course do not wish to perform analyses as
computer-intensive as our protocol, but producers of such biome
map products could and should make the cell by growth-form
preference matrices available, which would provide a portable
method for meta-analysis authors to create their own biome
categories.

One could ask what Schimper would have done if the wealth
of today’s biodiversity data was available to him. Would he
have sought to describe continuous variation in vegetation
rather than simplifying the Earth’s vegetation into ‘like’ subsets?
Some authors find the idea of classification outdated in modern
predictive science. We would argue that there is a place for both
approaches. In fact, our suitability surfaces (Fig. 2) emphasise
that vegetation varies continuously in space in response to
environmental variation, and proponents of the ‘gradient view’
of vegetation may find these more useful products of our
protocol than a biome map. In our opinion, there remains a
place for classification into abstract constructs such as biomes
because such constructs help us to organise the diversity of the
Earth’s vegetation. As an example, it is difficult to consider all
the variation depicted in the nine panels of Fig. 2 simultane-
ously. And this is only one continent and nine growth forms.
This variation is much easier for us to visualise when we
represent it in units with internally similar structure, as in the
biome map (Fig. 3a). Such a simplification allows us to apply
knowledge gained in one instance of that biome to other
instances, and forms a language for conversations with others
working in similar systems. Biomes are also useful in ecosystem
management. For example, if one applies a conservation
treatment in localities with similar growth-form spectra, one
would (often) rightly assume that the outcome of the treatment
will be similar in all instances. The reason is that the boundaries
between biomes are not arbitrarily drawn by the clustering
algorithm (or an expert), but reflect nonlinear changes in the
suitability surfaces (or vegetation physiognomy) (Fig. 2).

In summary, the protocol outlined here provides a data-
driven method for mapping biomes and projecting biome
shifts (for both fore- and hind-casting). This paper serves to
articulate the concept and illustrate its feasibility. The next
steps would be to develop global biome maps and make global
biome-shift projections. Global analyses will require more
careful consideration of the role of dispersal limitation for
empirical species occurrence data as well as its role for
projections of species ranges. Global analyses will also require
different growth forms to those considered here. Perhaps more

fundamentally, the concept of what we call growth forms in
this paper needs to be expanded to include other sources of
information such as phylogenetic information (e.g. conifer or
nonconifer trees), life history information (e.g. annual, biennial
or perennial forbs) and ecological information (e.g. rain green
vs summer green deciduous, phenology of growth, frost
tolerance, fire tolerance). Ecologists do not lack creativity
when it comes to expanding classification schemes, but rather
data will limit the feasibility of implementing such expanded
schemes.
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