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Abstract

The expression of inducible morphological defenses in Daphnia in response to a sin-

gle predator is a well-known phenomenon. However, predator-specific modifications

of the same defensive traits as an adaption to different predator regimes is so far

only described for Daphnia barbata. It is unknown if this accounts only for this spe-

cies or if it is a more widespread, general adaptive response in the genus Daphnia. In

the present study, we therefore investigated whether a clone of the pond-dwelling

species Daphnia similis responds to different predatory invertebrates (Triops can-

criformis; Notonecta maculata) with the expression of predator-specific modifications

of the same defensive traits. We showed that Triops-exposed individuals express a

significantly longer tail-spine, while body width decreased in comparison to control

individuals. Additionally, they also expressed inconspicuous defenses, that is, signifi-

cantly longer spinules on the dorsal ridge. The Notonecta-exposed D. similis showed a

significantly longer tail-spine, longer spinules and a larger spinules bearing area on

the dorsal ridge than control individuals as well. However, a geometric morphometric

analysis of the head shape revealed significant, predator-specific changes. Triops-

exposed individuals expressed a flattened head shape with a pronounced dorsal edge,

while Notonecta-exposed individuals developed a high and strongly rounded head.

Our study describes so far unrecognized inducible defenses of D. similis against two

predators in temporary waters. Furthermore, the predator-dependent change in head

shape is in concordance with the ‘concept of modality’, which highlights the qualita-

tive aspect of natural selection caused by predators.

K E YWORD S

head shape, morphometry, phenotypic plasticity, predator–prey interactions

1 | INTRODUCTION

The structure and composition of freshwater communities is highly

dependent on interspecific interactions (Holt, 1977), with predation

as a major selective agent. In response to predation, prey species have

evolved numerous defensive strategies. These defenses can be either

constitutive or inducible: while constitutive defenses, such as the

quills of an hedgehog or shells of snails or clams, are permanently

expressed, inducible defenses are only expressed under acute preda-

tion pressure and allow the prey to save the costs associated with the

defense when the predator is absent (Harvell & Tollrian, 1999). Induc-

ible defenses are a ubiquitous phenomenon in many taxa, ranging
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from protists to vertebrates (Altwegg, Marchinko, Duquette, &

Anholt, 2004; Frost, 1999), and are especially well studied in the

model organism Daphnia (Lass & Spaak, 2003; Seda &

Petrusek, 2011). Since they are prey for many different aquatic preda-

tors, Daphnia have evolved a broad range of inducible defenses,

including changes in behaviour (Loose & Dawidowicz, 1994; Vetti

Kvam & Kleiven, 1995), shifts in life history (Stibor, 1992), physiologi-

cal responses (Weiss, Leese, Laforsch, & Tollrian, 2015) and changes

in morphology (Tollrian, 1995b).

Inducible morphological defenses in Daphnia are considered to act

as post-contact defenses, which prevent or impair handling and con-

sumption by the predator, by changing the shape and size of their body

(Dodson, 1974). Well studied examples are the expression of pointed

helmets and an elongation of the tail spine, for example, in D. cucullata

exposed to Chaoborus spp., Leptodora kindtii and Cyclops spp.

(Laforsch & Tollrian, 2004) or in D. lumholtzi exposed to fish (Engel &

Tollrian, 2009). Furthermore, the formation of specialized defensive

structures has been described, for example, the expression of neckteeth

in D. pulex as a response to Chaoborus larvae (Krueger & Dodson, 1981),

or the large crest in species of the D. carinata complex induced by

backswimmers (Anisops sp., Notonectidae; Grant & Bayly, 1981).

Although inducible defenses in Daphnia have been intensively studied

throughout the last decades, so far unrecognized defenses as well as

novel defense mechanisms and adaptions are still revealed on a regular

basis (Herzog & Laforsch, 2013; Herzog, Rabus, Wolfschoon Ribeiro, &

Laforsch, 2016; Herzog, Tittgen, & Laforsch, 2016; Maurone, Suppa, &

Rossi, 2018). Many of these recently discovered defenses have been

found in Daphnia inhabiting pools and temporary ponds. For instance,

D. magna exposed to T. cancriformis, expresses an increased bulkiness,

that is, a larger and wider body, an elongated tail spine and a fortified

exoskeleton (Rabus & Laforsch, 2011; Rabus, Söllradl, Clausen-

Schaumann, & Laforsch, 2013; Rabus, Waterkeyn, Van Pottelbergh,

Brendonck, & Laforsch, 2012; Riessen et al., 2012). Daphnia barbata not

only responds to predatory invertebrates in general but in fact modu-

lates its defensive traits, specifically adapted against the different hunt-

ing strategies of T. cancriformis or the backswimmer N. glauca (Herzog &

Laforsch, 2013; Herzog, Rabus, et al., 2016; Herzog, Tittgen, &

Laforsch, 2016).

So far, little is known about inducible morphological defenses in a

species complex globally labelled as D. similis, which is currently sepa-

rated into two species complexes (D. similis and D. exilis, respectively)

in the Old and New World (Adamowicz, Petrusek, Colbourne,

Hebert, & Witt, 2009; Popova et al., 2016). Though it has to be men-

tioned, that this is just the use of the same name and both species are

not even in a sister relationship. A recent study by Santangelo

et al. (2018) probably performed with a species from the New World

complex showed that D. similis responds to phantom midge larvae and

fish with changes in life history. Further, morphological changes, such

as an elongation of the tail spine, of hatchlings from asexually and sex-

ually produced eggs against fish kairomones, has been shown in indi-

viduals labelled as D. similis from Korea (La, Chang, Jang, Joo, &

Kim, 2014). However, the origin of the daphnids used by La et al. may

imply that not D. similis but D. sinensis (Ma et al., 2016; Popova

et al., 2016), a species related to D. similis was used for the study.

Daphnia similis sensu stricto is alike representatives of the D. atkinsoni

species complex a pond-dwelling member of the Cladocera. For

the D. atkinsoni species complex a unique morphological defense,

the so called ‘crown of thorn’, an enlargement of two spine bearing,

heart-shaped lobes in the dorsal region of the head, has been shown

in response to this predator (Laforsch et al., 2009; Petrusek, Tollrian,

Schwenk, Haas, & Laforsch, 2009). Further, both species complexes

show an overlapping distribution and therefore share the same habitat

and predators such as the tadpole shrimp T. cancriformis or

N. maculata (Alonso, 1985). Hence, we hypothesize, that D. similis

which likely encounters both invertebrate predators in its habitat,

responds with the expression of different phenotypic traits since the

hunting modes of both predators differ as well.

In the present study, we investigate therefore whether a clone of

D. similis originating from Spain expresses inducible morphological

defenses in response to two invertebrate predators, T. cancriformis

and N. maculata. Moreover, we assessed if the expression of the

defensive traits shows a predator-specific modality, comparable to the

response of D. barbata exposed to the same predators as used in the

study by Herzog and Laforsch (2013), because different populations

of D. similis sampled in the field occasionally may differ in head shapes

(Adam Petrusek, personal communication). We apply a geometric

morphometric approach, comparable to the approach applied for spe-

cies variation by Dlouhá et al. (2010), for the analysis of defensive

traits in D. similis.

2 | MATERIALS AND METHODS

2.1 | Induction experiment (exposure to predator
kairomones)

For the induction experiment, we used a laboratory-cultured clone of

Daphnia similis Claus, 1876. The animals were cultured in a climate cham-

ber with a 15 hr-day and 9 hr-night rhythm on semi-artificial medium fol-

lowing Rabus and Laforsch (2011). The clone originates from the

Doñana national park, 30 km south of Sevilla, Spain, and was provided

by Joachim Mergeay (KU Leuven). It most certainly belongs to D. similis

s.str (Popova et al., 2016). Two predators were used: the tadpole shrimp

T. cancriformis, originating from a laboratory cultured strain originally pro-

vided by Erich Eder (University of Vienna), and the backswimmer

N. maculata, which were caught in ponds at the University of Bayreuth.

The experiment was conducted in a climate chamber at 20 ± 1�C

with a constant photoperiod (15 hr light; 9 hr darkness). 2 L-glass bea-

kers, filled with 2 L semi-artificial medium based on tap water, phos-

phate buffer, and trace elements (Rabus & Laforsch, 2011), were used

as experimental vessels. A pinch of cetylalcohol (Tokyo Chemical

Industry Co., Nihonbashihonchon, Japan) was added on the water sur-

face to lower surface tension. Each beaker contained a mesh cage

made of acrylic glass and gauze (mesh width: 180 μm).

Three treatments (‘Control’, ‘Triops’, ‘Notonecta’) were established,

each replicated 10 times. At the start of the experiment, each beaker
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was stocked with 15 randomly chosen, age-synchronized neonate

D. similis. A single predator, that is, either a T. cancriformis with a body

length of 15–20 mm, or a juvenile N. maculata (2–3 instar), was placed

into each of the mesh cages. In the control treatment, no predator

was introduced into the mesh cages. The daphnids were fed

0.083 mM C L−1 of the green algae Acutodesmus obliquus, every day.

Every day, the predators were fed 10 individuals of D. similis and

5 chironomid larvae (Chironomus aprilinus) (purchased from

‘Bachflohkrebse.de’, Stuttgart, Germany). The same amount of food

organisms was also added to the mesh cages in the control treatment,

to exclude any food effects on the expression of the defensive traits.

During the experiment, the cages were cleaned every other day with

a brush, to remove algae or bacterial film from the gauze as well as to

ensure the exchange of medium, and with it kairomones, between the

cage and the surrounding medium. Every 4 days, a complete exchange

of the medium was performed. When the daphnids released their first

clutch, 20 randomly picked neonates per replicate were transferred to

fresh beakers and the experiment was continued until they reached

primiparity. Measurements at this developmental state are common

for experiments on inducible defenses in Daphnia (Repka &

Pihlajamaa, 1996; Tollrian, Duggen, Weiss, Laforsch, & Kopp, 2015).

Animals were preserved in 70% ethanol and measured using a

stereo microscope (M50, Leica Microsystems GmbH, Wetzlar, Ger-

many) equipped with a digital camera (DP26, Olympus Deutschland

GmbH, Hamburg, Germany) and a digital image-analysis system

(CellSens Dimension v.1.11, Olympus Deutschland GmbH, Hamburg,

Germany). The following traits were analysed: body length, defined as

the distance between the upper edge of the compound eye and the

ventral basis of the tail spine; body width, defined as the maximal

length between the dorsal and ventral edge of the carapace; and the

tail spine length, defined as the distance between the ventral base

and the tip of the tail spine (Figure 1a). We measured inconspicuous

inducible defensive traits: length of the ventral and dorsal spinules

bearing area (SBA), that is, the distance between the first visible

F IGURE 1 Measured body
parameters of Daphnia similis.
(a) Green: Body length, defined as
length of the upper end of the
compound eye to the basis of the tail
spine. Yellow: Body width, defined as

length from the drosal to the ventral
carapace margin. Light blue: Length of
the tail spine, defined as the length
from the basis of the tail spine to its
tip. (b) Dark blue: Length of the
ventral spinules bearing area (ventral
SBA), defined as the length from the
first ventral spinule to the basis of the
tail spine. Red: Length of the dorsal
spinules bearing area (dorsal SBA),
defined as the length from the first
dorsal spinule to the basis of the tail
spine. (c) Zoom-in on the dorsal SBA
(red bracket in a). Length of the dorsal
spinules, defined as length from the
basis of the spinule to its tip. For data
acquisition, five spinules per animal
were measured. (d) Exemplary outline
of the helmet, that was considered for
the shape analysis. The red line
indicates the manually selected
outline of the helmet shape. Data was
acquired with the help of the
Photoshop lasso tool
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cranial spinule and the last spinule, at the base of the tail spine

(Figure 1b) and spinule length, defined as the distance between the

caudal base of the spinule and its tip (spinule length was measured for

five spinules located in the middle of each SBA) (Figure 1c). We also

analysed the shape of the helmet, as an inducible defense figure

(Dlouhá et al., 2010) (Figure 1d).

We used the software package ‘SHAPE ver. 1.3’ (Iwata &

Ukai, 2002) for the morphometric analysis of head shape, following the

procedure and picture pre-processing described by Gore, Nawrocki,

Langdon, and Bouzar (2011). Briefly, the software generates a chain

code (Freeman, 1974) based on a binary picture (area of the helmet

coloured in black; background coloured in white) of a helmet. Then

Elliptic Fourier descriptors (EFDs; Kuhl & Giardina, 1982) of a defined

number of harmonics (we used five harmonics) are calculated based on

a ellipse. The coefficients of the EFDs are subsequently normalized to

be invariant with respect to the size, rotation and starting point. The

results are then summarized by a principal component analysis (PCA)

and could be further analysed with an ANOVA. It is important to men-

tion that the software SHAPE allows a step-by-step processing of the

images following the described workflow above (for detailed explana-

tion see Iwata & Ukai, 2002). This shape analysis takes the complete

shape of the head (exemplary pictures see Figures 1d and 4) into

account in contrast to the previously used approach of describing modi-

fications of the helmet by using only landmarks.

2.2 | Statistical analysis

Statistical analysis was performed using the software package IBM

SPSS v.21 (IBM SPSS Statistics Version 21, IBM Deutschland

GmbH, Ehningen, Germany). For every morphological parameter,

except body length and length of the dorsal spinules, relative

values were calculated, by dividing the respective trait length by

body length to compensate for size-dependent differences. These

relative values were then arc-sin-squareroot-transformed for analy-

sis using an ANOVA (Rohlf & Sokal, 1995). The replicate-means

were calculated for each parameter. The means were tested for

homogeneity of variances, with the Levene's test, and normality,

with the Shapiro–Wilk test. When the assumptions were met, a

one-way ANOVA, followed by a Tukey HSD post hoc test was

performed, to test for differences between the treatments. For

non-parametric data, a Welch test, followed by a Tamhane-T2 post

hoc test was performed.

For the head shape analysis, the values of the first two principal

components were further processed using a ANOVA or, if the data

was not normally distributed, a Kruskal–Wallis test was applied.

3 | RESULTS

3.1 | Conspicuous defensive traits

Body length did not differ significantly between the treatments (mean

body length of the control-group: 2226.9 ± 113.99 μm; Triops-treatment:

2314.98 ± 83.93 μm; Notonecta-treatment: 2221.78 ± 73.97 μm)

(ANOVA; F2,25 = 3.134; p = .061). Relative body width differed signifi-

cantly between the treatments (ANOVA; F2,25 = 16.187; p < .001;

Figure 2a). Thereby, Triops-exposed D. similis showed a significantly

smaller relative body width than control individuals (Tukey HSD;

p < .001) and Notonecta-exposed individuals (Tukey HSD; p = .002). Con-

trol and Notonecta-exposed individuals did not differ significantly in rela-

tive body width (Tukey HSD; p = .318). Relative tail spine length differed

significantly between the treatments (ANOVA; F2,25 = 88.491; p < .001;

Figure 2b). In both predator treatments, relative tail spine length was sig-

nificantly larger compared to the control treatment (Tamahane; p < .001).

Additionally, it was significantly larger in Triops-exposed compared to

Notonecta-exposed daphnids (Tamahane; p = .004).

F IGURE 2 Comparison of the conspicuous traits of Triops-
exposed (Triops), Notonecta-exposed (Notonecta) and control Daphnia
similis. (a) Comparison of the relative body width (%). (b) Comparison
of the relative tail spine length (%). Asterisks indicate statistical
significance: *: p < .05; **: p < .01; ***: p < .001
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3.2 | Inconspicuous defensive traits

The length of the dorsal spinules bearing area (SBA) differed signifi-

cantly between the three treatments (Welch test; F2,25 = 14.261;

p = .004; Figure 3a). The relative dorsal SBA of Triops-exposed individ-

uals was not significantly longer than that measured for individuals of

the control treatment (Tamhane; p = .087), though this might be the

result of a vastly higher variance within the Triops treatment. Between

the Notonecta-exposed Daphnia and those of the control treatment a

significant difference in relative length of the dorsal SBA was mea-

sured (Tamhane; p = .004). The Notonecta-exposed D. similis

expressed a larger dorsal SBA. The length of the dorsal SBA between

Notonecta- and Triops-exposed D. similis did not differ

(Tamhane; p = .904).

The length of the ventral SBA differed significantly between the

groups (ANOVA; F2,25 = 18.855; p < .001; Figure 3b). The relative

length of the ventral SBA of Triops-exposed Daphnia was signifi-

cantly shorter compared to the relative length of the ventral SBA of

D. similis of the control (Tukey HSD; p < .001) and the Notonecta-

exposed individuals (Tukey HSD; p < .001). Between the D. similis of

the control treatment and the Notonecta-exposed individuals, no dif-

ference in length of the ventral SBA could be detected (Tukey

HSD; p = .958).

The mean length of the dorsal spinules differed significantly

between Daphnia from the three treatments (ANOVA;

F2,25 = 4.973; p = .015; Figure 3c). The spinules in both, Triops-

exposed (Tukey HSD; p = .031) and Notonecta-exposed daphnids

(Tukey HSD; p = .027), were significantly longer than the dorsal

spinules in control individuals. Dorsal spinule length did not dif-

fer significantly between the predator-treatments (Tukey

HSD; p = .988).

3.3 | Predator-specific changes in head shape

Daphnia similis exposed to T. cancrifomis and N. maculata expressed

predator-specific changes in head shape (Figure 4). Figure 5a illus-

trates, that the head shapes resulting from the three treatments can

be separated in a morphospace, even though they overlap in a certain

proportion. All three treatments, control to Triops (Kruskal–Wallis;

H = −41.530; p = .001), control to Notonecta (Kruskal–Wallis;

H = −105.438; p < .001) and Triops to Notonecta (Kruskal–Wallis;

H = −63.908; p < .001), differed significantly from each other when

comparing PC1 (47% of variance). Thereby, PC1 describes the major

change in shape of the overall rounding of the helmet (see Figure 5a,

b). For PC2 (29% of variance) the pairwise comparison of the treat-

ments showed significant differences between the control and Triops-

Treatment (Kruskal–Wallis; H = −104.570; p < .001) and the

Notonecta- and Triops-Treatment (Kruskal–Wallis; H = 72.986;

p < .001) but not between the control and Notonecta-Treatment

(Kruskal–Wallis; H = −31.584; p = .066). PC2 described minor changes

of the rostral and dorsal part of the helmet (see Figure 5a,b).

F IGURE 3 Comparison of the inconspicuous traits in Triops-
exposed (Triops), Notonecta-exposed (Notonecta) and control
Daphnia similis. (a) Comparison of the relative dorsal SBA length
(%). (b) Comparison of the relative ventral SBA length (%).
(c) Comparison of the mean length of the dorsal spinulae.
Asterisks indicate statistical significance: *: p < .05; **: p < .01;
***: p < .001
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F IGURE 5 (a) Results of the PCA analysis of Fourier descriptors of the Daphnia similis headshape. X-axis: Principal component 1 (PC1)
(Eigenvalue: 0.0012) accounting for 47% of the overall variance in shape within the data set. Y-axis: Principal component 2 (PC2) (Eigenvalue:
0.0007) accounting for 29% of the overall variance in shape within the data set. Blue circles: D. similis from the control treatment. Red square:
D. similis from the Triops treatment. Green triangle: D. similis from the Notonecta treatment. (I) Mean head shape of the D. similis from the control

treatment; (II) Mean head shape of the D. similis of the Triops treatment; (III) Mean head shape of the D. similis of the Notonecta treatment.
(b) Shape variation in the analysed dataset. Each row represents a shape variation described by a specific principle component. Mean: The mean
head shape of the analysed shape difference in the data set, next to it are the shapes −2SD and +2SD representing the broadness of shape
variance within the data sample. All: Overlay of the three outputs on the right. The mean is highlighted in orange. Black lines indicate the
described shape variance. Black arrows: Indicate the area where the PC describes the shape variation. PC1 describes the differences of the shape
regarding the higher rounding of the helmet. PC2 covers minimal differences of shape variation of the rostral and dorsal part of the head

F IGURE 4 Exemplary shape variations between Daphnia similis of the control-, Triops- and Notonecta-treatment
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4 | DISCUSSION

The presence of different predators may require the prey to express

distinct morphological defenses, especially if the predators differ in

prey preference, hunting strategy or handling of the prey. In Daphnia,

such a predator-dependent modality, that is, a differential rather than

a gradual expression of specific defensive traits, has so far only been

shown in D. barbata (Herzog & Laforsch, 2013). In this study, we

reveal not only that D. similis expresses an array of distinct morpho-

logical defenses against predatory invertebrates, but also provide evi-

dence for a predator-specific modality in defensive traits in D. similis,

for example, distinctly different head shapes in response to

T. cancriformis and N. maculata (Figures 4 and 5a,b).

Compared to control individuals, Triops-exposed D. similis show a

slimmer body, a longer tail spine and an elongated dorsal SBA bearing

significantly longer spinules. Regarding head shape, Triops-exposed

Daphnia had a more angular head, which is relatively flattened with a

pronounced dorsal edge (Figures 4 and 5a,b). Given the way Triops is

catching and handling its prey, these morphological changes can be

assumed to act as an effective defense. After catching the prey by

encaging it with the anterior limbs, it is then taken into the midventral

food groove built by the endites of the legs (Fryer, 1988). Especially at

this point, the elongated tail spine, which is also expressed in Triops-

exposed D. magna (Rabus & Laforsch, 2011), is likely to hinder the

handling of the prey, that is, prevent the uptake into the food groove.

The SBA, spinulae length and the altered head shape might act as

defensive structures when the Daphnia has already been placed in the

food groove. Triops frequently positions Daphnia with the dorsal ridge

facing the food groove, with either the head or the tail spine directed

towards the mouth and transports the prey towards the mandibles

with movements of the gnathobases, which bear numerous spines

and bristles (Fryer, 1988). We suggest that the elongated dorsal spi-

nules, that also tend to cover a larger area of the dorsal ridge, might

interfere with these spines and bristles by getting stuck or even caus-

ing damage to these fine structures. The straightened dorsal ridge

may thereby serve to increase the contact area between the SBA and

the food groove. The angular shape of the head may further compli-

cate the transport of the prey since it may get stuck within the food

groove. In combination, the spinules and the altered head shape may

increase handling time, and ultimately the chance to escape the preda-

tor. Nevertheless, we cannot rule out that inconspicuous changes are

the result of a modification of the more prominent conspicuous traits.

For instance, the elongated dorsal ridge of Triops-exposed D. similis

might be a result of the increased body length.

However, even if some morphological alterations appear rela-

tively small, these small-scale changes, such as neckteeth in D. pulex,

are already proven to have a strong protective effect against preda-

tory invertebrates (Havel & Dodson, 1984; Pastorok, 1981;

Tollrian, 1995a) which might also be connected with an increased

rigidity of the overall carapace itself. The analysed small-scale defense

structures, for example, head shape and spinules, are not expressed

uniformly when facing different predators. Instead they tend to be

predator specific (Figures 2–4 and 5a,b). Notonecta-exposed D. similis,

on the other hand, show no change in body width and length of the

ventral SBA compared to the control individuals, but an increase in

dorsal SBA length, length of the spinules on the dorsal ridge, and tail

spine length. Additionally, Notonecta-exposed individuals express a

slightly higher and more rounded head shape (Figures 4 and 5a,b). The

potential mode of action of these defenses can again be deducted

from the predator's way of feeding: Notonecta catch their prey with

the two anterior leg pairs, which are also used to position the prey in

order to pierce it with the proboscis and inject digestive fluids

(Dahm, 1972). In this context, the elongated tail spine can be assumed

to render the Daphnia bulkier, which interferes with handling during

positioning of the prey. Additionally, longer spinulae and larger SBA's

may further impede handling as they likely interfere with the short

hair located on the inner side of the predator's legs, similar to protec-

tive effects anticipated for the small neckteeth in D. pulex. Given that

the higher and more rounded head of the Notonecta-exposed

D. similis is far less pronounced than the crest in D. longicephala

exposed to notonectid predators (Grant & Bayly, 1981) it can be

assumed that the protective effect of this trait does not increase

escape efficiency as shown for D. longicephala. However, changes in

head shape may increase the chance to evade the predator's attack

due to an increased manoeuvreability, as also shown in D. longicephala

(Barry & Bayly, 1985), D. cucullata (Laforsch & Tollrian, 2004) or

D. ambigua (Hebert & Grewe, 1985).

The comparison of Triops- and Notonecta-exposed individuals

shows that D. similis responded differentially to the two predators.

While some traits did not differ between the two predator-induced

morphotypes, for example, dorsal spinule length and size of the dorsal

SBA, other traits, for example, tail spine length and body width, dif-

fered in the magnitude of expression, indicating a gradual response.

Regarding head shape, however, a predator-specific modality, that is,

a differential expression of the same trait, could be observed

(Figures 4 and 5a,b). While gradual responses are commonly observed

in Daphnia exposed to different predators (Barry, 2000; Laforsch &

Tollrian, 2004; Riessen & Trevett-Smith, 2009) the phenomenon of a

modal expression of defensive traits has so far only been reported in

D. barbata exposed to Triops and Notonecta (Herzog &

Laforsch, 2013). Analogous to D. barbata, the evolution of such a spe-

cialized defensive trait in D. similis may have been favoured by the dif-

ferent feeding modes of both predators and maybe also by

differences in their temporal and spatial occurrence (Herzog &

Laforsch, 2013). However, it has to be mentioned, that we analysed a

single clone, that most likely co-occurs with both predators. There-

fore, another clone of D. similis from another region, where one preda-

tor is much rarer or more frequent, could possibly differ in its

reaction norm.

The functionality of rather small-scale changes of the head shape

in comparison to major changes of the helmet like, for example, the

crest in D. longicephala, remains speculative. The separation of the

head shapes in a specific direction in the morphospace (Figure 5a) ren-

ders them of value for the overall defense of D. similis against these

predators, since the reaction norm is not uniform but rather predator

specific. In predation experiments, it may be difficult to disentangle
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the protective effect of a single trait. Nevertheless, it is likely that

these predator-specific changes may play a major role in the defense

mechanisms of D. similis. For other species, like D. pulex, it has already

been shown, that even small-scale defensive traits, that is, neckteeth,

act as an effective defense against C. crystallinus (Tollrian, 1995a). Fur-

ther, the defense mechanisms should not be discussed for effective-

ness of single traits. Respectively, the interplay between a variety of

morphological changes (conspicuous and inconspicuous), where also

minor changes may have a considerable impact, may constitute the

overall defense mechanism.

5 | CONCLUSION

We showed that a Daphnia similis clone expresses an array of induc-

ible morphological defenses when exposed to the invertebrate preda-

tors T. cancriformis and N. maculata. The application of a

morphometric analysis based on Elliptic Fourier descriptors, further

allowed a quantitative evaluation and comparison of the Daphnia head

shape, which would hardly be possible using the common landmark-

based approach. Thereby, we were able to reveal a new example of

predator-specific modality in phenotypically plastic defensesby apply-

ing morphometric analysis which is to our knowledge rarely used in

plankton research (e.g. onostracodes; Kaesler).
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