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Zusammenfassung

Ein wesentlicher Schwerpunkt im Forschungsbereich der Einzugsgebietshydrologie liegt darauf, die
hydromechanischen Prozesse zu untersuchen und zu verstehen, die in natürlichen Wassereinzugsge-
bieten auftreten. Um Einblicke in die hydrologische Funktionsweise von Hängen und Einzugsgebie-
ten zu erhalten, steht eine Vielzahl verschiedener Observierungs- und Feldmethoden zur Verfügung.
Allerdings ist die Anwendbarkeit aller existierenden Messmethoden räumlich oder zeitlich einge-
schränkt. Infolgedessen ist auch das Wissen darüber begrenzt, ob und wie sich das Auftreten und
die Relevanz verschiedener hydrologischer Prozesse in Zeit und Raum verändern. Eine Möglichkeit,
die methodischen Grenzen von Feldbeobachtungen zu überwinden, liegt in der ergänzenden Verwen-
dung hydrologischer Modelle. Jedoch werden hydrologische Modelle nur selten in echter Synergie mit
Feldbeobachtungen genutzt und in den existierenden Studien werden zumeist konzeptionelle Spei-
chermodelle verwendet, welche sich nicht besonders gut dafür eignen, die raumzeitliche Variabilität
und Relevanz verschiedener Prozesse zu untersuchen.

Die vorliegende Dissertation präsentiert zwei Beispiele für die Anwendung räumlich differenzierter,
physikalisch basierter hydrologischer Modelle in Synergie mit verschiedenen herkömmlichen und in-
novativen Felddaten. Der erste Teil der Arbeit (Studie 1) richtet das Augenmerk auf die Relevanz
des häufig in kleinräumigen Feldexperimenten beobachteten präferentiellen Flusses für das Verhal-
ten von Abfluss und Bodenfeuchte auf Einzugsgebietsebene. Die Studie bewertet die Bedeutsam-
keit der kleinräumigen Feldbeobachtungen mit Hilfe der Verwendung eines räumlich differenzierten,
physikalisch basierten Modells, indem die Ergebnisse von Simulationen mit und ohne Parametri-
sierungen des präferentiellen Flusses auf kleiner räumlicher Skala und auf Einzugsgebietsebene mit
entsprechenden Felddaten verglichen werden. Der zweite Teil der Arbeit (Studie 2 - 4) behandelt die
dynamische Entstehung von Oberflächensättigung und deren räumliche Variabilität innerhalb eines
Einzugsgebietes. Er besteht aus drei aufeinanderfolgenden Beobachtungs- und Modellierungsstudien,
die auf der Idee beruhen, zunächst mit Hilfe eines umfangreichen Datensatzes aus Feldbeobachtun-
gen die internen Strukturen und Prozesse eines Modells auf ihre Widerspruchsfreiheit zur Realität
zu überprüfen, bevor das Model dazu verwendet wird, die Interpretation von Felddaten zu unter-
stützen und deren Limitierungen zu überwinden. Die erste der drei Studien (Studie 2) bewertet die
Praxistauglichkeit der Verwendung von Thermalinfrarot-Fotografie während verschiedener Jahres-
zeiten und hydrologischer Bedingungen sowie an verschiedenen Orten in einem Einzugsgebiet, um
auftretende Oberflächensättigung zu kartieren und quantifizieren. Die anschließende Studie (Stu-
die 3) wendet ein räumlich differenziertes, physikalisch basiertes Modell in Kombination mit dem in
Studie 2 erhobenen Felddatensatz an. Zum einen bewertet die Studie das Vermögen des Modells, die
Variabilität der räumlichen Muster und der zeitlichen Dynamik der Oberflächensättigung innerhalb
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Zusammenfassung

eines Einzugsgebietes zu reproduzieren. Zum anderen werden aus den identifizierten Konformitäten
und Diskrepanzen zwischen den Beobachtungsdaten und Modellergebnissen Rückschlüsse darauf
gezogen, welche Schlüsselfaktoren das raumzeitliche Auftreten der Oberflächensättigung beeinflus-
sen. Die letzte Studie (Studie 4) verwendet das umfassend validierte Modell aus Studie 3, um die
Entstehung der Oberflächensättigung in Raum und Zeit zu untersuchen, sowohl im Hinblick auf
die unmittelbare Art der Wasserzulieferung als auch im Hinblick auf verschiedene geographische
Ursprungsgebiete.

Alle Studien wurden für das 42 Hektar große Einzugsgebiet des Weierbachs durchgeführt, einem fest
etabliertem Forschungsgebiet im Westen Luxemburgs mit komplexem hydrologischem Verhalten.
Die Simulationen wurden mit dem kombinierten Oberflächen-Untergrund Modell HydroGeoSphere
ausgeführt. Studie 1 offenbarte, dass kleinräumige Beobachtungen des präferentiellen Flusses keine
aufschlussreichen Informationen über den Einfluss präferentieller Fließwege auf Einzugsgebietsebene
liefern. Obwohl vertikale präferentielle Fließwege berücksichtigt werden mussten, um die kleinräu-
migen Feldbeobachtungen zu simulieren, war es nicht zweckmäßig, die entsprechenden Parametri-
sierungen auf Einzugsgebietsebene anzuwenden. Stattdessen hat sich gezeigt, dass auf Einzugsge-
bietsebene der Einfluss schneller lateraler Fließwege gegenüber den vertikalen präferentiellen Fließ-
pfaden überwiegt. Studie 2 zeigte, dass Thermalinfrarot-Fotografie eine verlässliche Methode dafür
ist, einen umfangreichen Datensatz über Oberflächensättigungsmuster und -dynamiken zu erheben,
wenn einige Vorkehrungen während der Bildaufnahme und der nachfolgenden Bearbeitung berück-
sichtigt werden. Studie 3 zeigte auf, dass das Modell die beobachteten Muster und Dynamiken der
Oberflächensättigung weitestgehend wiedergeben kann, einschließlich lokal variierender Muster im
Vorkommen der Oberflächensättigung und verschiedener Verhältnisse zwischen der lokalen Sätti-
gungsausdehnung und dem Abfluss aus dem Einzugsgebiet. Das Modellverhalten legte nahe, dass
das Auftreten von Oberflächensättigung hauptsächlich durch Grundwasseraustritt in mikrotopogra-
phische Vertiefungen bestimmt wurde, dass es aber zusätzliche Einflussfaktoren und Prozesse geben
muss, wie etwa lokale Ungleichheiten im Untergrund, wechselnde Einflüsse von Niederschlag oder
Oberstromwasser und hysteretische Entstehungsprozesse. Studie 4 belegte, dass sich die Oberflä-
chensättigung im Einzugsgebiet des Weierbachs überwiegend aus Wasser zusammensetzt, das durch
Rückfluss aus dem Untergrund in die Uferzone und das Bachbett geliefert wird. Die raumzeitliche
Variabilität der Durchmischung von Wasser aus verschiedenen Untergrundspeichern und des Bei-
trags von Wasser anderer Herkunft, wie etwa Oberflächenabfluss oder Niederschlag, erwies sich als
kleiner als erwartet. Insgesamt zeigten die Ergebnisse der verschiedenen Studien das große Poten-
zial von Synergien zwischen räumlich differenzierter, physikalisch basierter Modellierung und Feld-
beobachtungen, um das momentane Prozessverständnis in der Einzugsgebietshydrologie erheblich
voranzubringen, sowohl für spezielle Untersuchungsgebiete als auch für allgemeine Fragestellungen
und konzeptionelle Vorstellungen.
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Abstract

A fundamental research objective in catchment hydrology is to investigate and understand the hy-
dromechanical processes occurring within natural watersheds. A wide variety of different observation
and field methods exists for providing insights into the hydrological functioning of hillslopes and
catchments. However, all existing methods are limited in their spatial or temporal application. Con-
sequently, there are limitations in the understanding on if and how the occurrence and relevance of
different hydrological processes vary in space and time. A possibility to overcome the methodological
limitations of field measurements is the complementary use of hydrological models. Yet hydrological
models are only rarely used in real synergy with field observations and the existing studies most-
ly apply conceptual, bucket-type models, which are not particularly suitable for investigating the
spatio-temporal variability and relevance of different processes.

This dissertation presents two examples of applying a spatially-distributed, physically-based hydro-
logical model in synergy with various conventional and innovative field data. The first part of the
thesis (Study 1) focuses on the relevance of preferential flow as commonly observed in plot-scale field
experiments for explaining the long-term response of catchment discharge and soil moisture. The
study assesses the importance of the plot-scale field observations by applying a spatially-distributed,
physically-based model and comparing the results of simulations with and without preferential flow
parametrisations at plot and catchment scale against appropriate field data. The second part of the
thesis (Study 2 - 4) addresses the intra-catchment variability of the dynamic development of surface
saturation. It consists of three consecutive observation and simulation studies, following the idea to
first employ a comprehensive data set of field observations to verify the consistency of the internal
structures and processes of a model with reality before using the model to support the interpretation
and overcome the limitations of field investigations. The first of the three studies (Study 2) assesses
the practicability of applying thermal infrared imagery during different seasons and hydrological
conditions and at various locations across a catchment to map and quantify surface saturation.
The following study (Study 3) applies a spatially-distributed, physically-based catchment model
in combination with the field data set collected in Study 2. On the one hand, it evaluates the
capability of the model to reproduce the intra-catchment variability of the spatial patterns and
temporal dynamics of surface saturation. On the other hand, the identified matches and mismat-
ches between observation data and simulation results are used to infer which key factors control the
spatio-temporal occurrence of surface saturation. The last study (Study 4) uses the comprehensively
validated model of Study 3 to analyse the generation of surface saturation in space and time with
regards to the immediate mechanism of water delivery and to different geographical source areas.
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Abstract

All studies were carried out for the 42 ha forested Weierbach catchment, a well-established research
catchment in western Luxembourg with complex hydrological behaviour. The simulations were
performed with the integrated surface-subsurface model HydroGeoSphere. Study 1 revealed that
small-scale observations of preferential flow are not informative to infer the influence of preferential
flow paths at catchment scale. Although vertical preferential flow paths needed to be considered to
simulate the plot-scale field observations, it was not suitable to apply the appropriate parametri-
sations at catchment scale. Instead, fast lateral flow paths showed to outweigh the role of vertical
preferential flow at the catchment scale. Study 2 showed that thermal infrared imagery is a reliable
method for collecting a comprehensive data set of surface saturation patterns and dynamics when
considering some precautions for the image acquisition and post-processing. Study 3 demonstrated
that the model can mostly reproduce the observed surface saturation patterns and dynamics, in-
cluding locally varying patterns of surface saturation occurrence and varying relations of the local
saturation extent to catchment discharge. The model performance suggested that the occurrence
of surface saturation was mainly conditioned by exfiltration of groundwater into micro-topographic
depressions, but that there must be additional influencing factors and processes, such as local hete-
rogeneities in the subsurface, varying influences of precipitation or upstream water, and hysteretic
formation processes. Study 4 proved that the surface saturation in the Weierbach catchment is lar-
gely composed of water that is delivered to the riparian zone and streambed by return flow from
the subsurface. The spatio-temporal variability of the mixing of water from different subsurface
stores and contributions from other water sources such as overland flow or precipitation showed to
be smaller than expected. Overall, the results of the different studies demonstrated the great po-
tential of synergies between spatially-distributed, physically-based modelling and field observations
to substantially advance current process understanding in catchment hydrology, both for specific
study sites and for general questions and conceptual perceptions.
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1 Introduction

1.1 Process research in catchment hydrology

Catchment hydrology developed as a distinct field of research in the middle of the last century. Ever
since, one of the fundamental objectives in catchment hydrology is to increase the knowledge about
runoff generation processes. Questions commonly asked in this context are (e.g. Hewlett and Hibbert,
1967; McDonnell, 2003): How long does precipitation reside in the catchment before reaching the
stream? What are the dominant flow paths of water through the catchment? What geographic areas
and water stores connect and contribute to streamflow? Finding answers to these questions is not
only motivated by pure scientific interest. It is also highly relevant to resources management (cf.
Beven, 2006) for enhancing current management practices (e.g. flood and drought risk assessment,
water quality management, erosion controls) and for being able to predict the influence of future
climate conditions and land use changes on a water system.

Over the last decades, a vast number of experimental studies has taken efforts to characterize the
spatial and temporal water sources, water stores, water flow paths, and transit and residence times
in catchments with different climatic, morphologic, and pedo-geologic characteristics. Traditionally,
experimental studies in catchment hydrology rely on hydrometric measurements (e.g. water table,
soil moisture, discharge) and the use of tracers (e.g. dyes, geochemical elements, isotopes) to in-
vestigate runoff generation on individual hillslopes or in headwater catchments. In addition, there
has been a continuous development of existing and new measurement techniques over the past de-
cades, enhancing the monitoring capabilities in space and time and enabling deepened insights in
the hydrologic functioning of hillslopes and catchments. For example, the application of geophysical
methods (cf. Binley et al., 2015), the use of high-frequency in-situ measurement sensors (cf. Rode
et al., 2016), and the use of remote sensing data (cf. McCabe et al., 2017) greatly improved the
knowledge about potential spatial and temporal variabilities of hydrologic states and fluxes in the
subsurface and on the surface. Moreover, it is nowadays more and more common to investigate
multiple aspects in parallel, which allows a more holistic view on the processes within a catchment
(cf. e.g. Hrachowitz et al., 2013).

In parallel to the continuous development of measurement techniques and applications, the focus of
research in catchment hydrology changed over the years as well. Many of the early studies focussed on
identifying and understanding different runoff generation mechanisms and the principal spatial and
temporal origin of discharge water (e.g. Betson, 1964; Dunne, 1983; Dunne and Black, 1970; Hewlett
and Hibbert, 1967; Mosley, 1979; Sklash and Farvolden, 1979). There is still ongoing research on
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these aspects today, especially since it remains unclear and under debate which mechanisms can
explain the often observed fast activation and release of stored pre-event water during storm events
(e.g. Barthold and Woods, 2015; Katsura et al., 2014; Kirchner, 2003). At the same time, however,
large emphasis is nowadays put on the fact that catchments are heterogeneous landscapes and thus
the water distribution and fluxes are spatially and temporally heterogeneous (cf. Hrachowitz et al.,
2013; Troch et al., 2009). This focus on the spatial and temporal variability of processes is reflected in
some newer concepts for explaining runoff generation, such as the transmissivity feedback (Bishop,
1991), the fill and spill mechanism (Tromp-van Meerveld and McDonnell, 2006), and the distinction
between active and contributing areas (Ambroise, 2004). All three concepts highlight the role of
threshold values and connectivity, implying that there are mechanisms that may activate different
spatial sources of water under different times and conditions. Despite or maybe also partly thanks
to the improved observation methods, the hydrologic community is aware that there are still many
difficulties to understand and define which processes occur and prevail during different situations and
at different locations (e.g. Beven, 2006; Hrachowitz et al., 2013; Kirchner, 2006; McDonnell et al.,
2010). Thus, the spatio-temporal heterogeneity of the relevance of different hydrologic processes
remains one of the main current research objectives in catchment hydrology.

1.2 Process-based hydrological modelling

From the moment where experimental studies have started to intensively investigate the processes
of runoff generation, there have also been efforts to include the gained process understanding into
mathematical models (cf. Clarke, 1973; Freeze and Harlan, 1969). Two main reasons did and still
do motivate the development of process-based hydrological models (cf. e.g. Loague, 2010). One
reason is the need for predictions of the hydrological response in the future. Classical application
examples for this are flood forecasting and the forecast of reactions of a hydrological system to
land use change and climate change. The second reason is that it is not possible to investigate
any hydrologic process, behaviour, or reaction in its full spatial and temporal extent with field
observations. While all measurement techniques are at some point limited, models in principle allow
investigations in any desired spatial and temporal detail.

Over the decades, computational power and capabilities constantly improved and the number of
modelling studies and models in hydrology increased exceedingly (e.g. Burt and McDonnell, 2015;
Loague, 2010). As a consequence, the variety of mathematical models that are nowadays used in
hydrology is large, including analytical and numerical models, stochastic and deterministic models,
and black-box models as opposite to process-based models. More detailed distinctions between the
different model types are often vague and a uniform classification scheme does not exist (e.g. Clarke,
1973; Hrachowitz and Clark, 2017; Kampf and Burges, 2007). Most recently, Hrachowitz and Clark
(2017) suggested a classification of process-based models according to i) the degree of complexity
or abstraction of process description (physically-based or conceptual), ii) the spatial representation
(distributed or lumped), iii) the model architecture (continuum-based or bucket-based), and iv) the
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modelling strategy (bottom-up or top-down).

A common debate in the hydrological modelling community relates to the question which strategy
of model development is more appropriate for process-based modelling. The top-down strategy is
a deductive approach and develops a model by iterative testing and adding of process descriptions
for reproducing observation data. This model development is classically done with a lumped, con-
ceptual, bucket-type model. The bottom-up strategy is an inductive approach and does the reverse,
i.e. it assumes that different processes observed at one scale can be combined to describe an aggre-
gated behaviour at larger scales. Typical models for this approach are distributed, physically- and
continuum-based models. However, Hrachowitz and Clark (2017) elaborated that many models mix
the different concepts and that there is a wide transition range between the two extremes of ‘com-
peting philosophies’ with conceptual, lumped, bucket-type, top-down models on the one side and
distributed, physically-based, continuum-based, bottom-up models on the other side. For simplicity,
models are nonetheless grouped into these binary opposites throughout the thesis.

The different model types have their own advantages and disadvantages such as complexity, cal-
culation times, parameter identification, or validity of underlying assumptions and the suitability
of a model type largely depends on the intended application and an appropriate implementation
Fatichi et al. (2016); Hrachowitz and Clark (2017). With regard to the current research interest
on the spatio-temporal heterogeneity of activation and relevance of hydrologic processes within a
catchment (cf. Section 1.1), spatially-distributed, physically-based models have some clear advanta-
ges (cf. Fatichi et al., 2016; Hrachowitz and Clark, 2017; Paniconi and Putti, 2015). First of all and
implied in the naming, they allow a spatially distributed representation of hydrologic states and
fluxes. Moreover, the parameters of spatially-distributed, continuum-based models are supposed to
represent state variables with a physical meaning, which allows the explicit consideration and assess-
ment of the influence of varying structural conditions on the spatio-temporal hydrologic functioning.
Finally, spatially-distributed, continuum-based models simulate implicitly the spatial and temporal
interplay of different processes. By this, it is pictured automatically how different water sources and
runoff generation mechanisms activate and predominate depending on the internal hydrologic state.

1.3 Need for synergy between simulations and observations

The process representation in hydrological models can obviously only be as good as is the current
process understanding (e.g. Burt and McDonnell, 2015; Kirchner, 2006). In this context, it has been
criticized that the number of experimental studies in comparison to modelling studies is decreasing
and that the focus of field observations often shifts from process understanding to the collection of
data for model setup and parametrisation (e.g. Beven, 2016; Burt and McDonnell, 2015). While it is
good and important to have knowledge from field observations for a proper model setup (e.g. Burt
and McDonnell, 2015; Cloke et al., 2003; Hrachowitz et al., 2014; Seibert and McDonnell, 2002),
more field investigations need to keep focusing on process understanding (e.g. Barthold and Woods,
2015; Beven, 2016; Burt and McDonnell, 2015). Modelling studies, in turn, should not focus on
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optimizing parametrisation and computational aspects, but rather should be used as complement
to field studies (see next paragraphs).

A synergy between field observation and simulation studies is considered as one of the best ways to
advance the hydrological process understanding and to consequently improve the realism of process-
based models (e.g. Dunne, 1983; Kirchner, 2006; Seibert and McDonnell, 2002). A basic idea is to
use models as tool for testing different hypotheses and to investigate if or which model structure
and processes can explain observations from the real world (cf. Beven, 2012; Clark et al., 2011). In
this sense, mismatches between model results and observations are not a failure, but the rejection of
a model that gives the wrong answers for the right reasons helps to identify current lacks of process
understanding and the need for further field investigations (e.g. Beven, 2007, 2016; Beven and
Binley, 2014; Hrachowitz et al., 2013; Loague, 2010). Ideally, the synergy between observations and
simulations pursues an iterative loop, where the confrontation of model results with measurements
is used to iteratively refine and improve the current process understanding, identify new observation
needs, and develop improved model formulations (cf. Clark et al., 2016, 2017).

The approach of using different model setups in conjunction with field observations for testing and
adapting different structures and processes follows the deductive top-down philosophy. Consequent-
ly, models that are traditionally used for explicit hypothesis testing against field data are conceptual,
lumped, bucket-type models (e.g. Fenicia et al., 2014; Hrachowitz et al., 2014; Kavetski et al., 2011;
Sivapalan et al., 2003). In principle, it is possible to also use physically-based, spatially-distributed
models for such a top-down analysis (cf. Hrachowitz and Clark, 2017), yet this is hardly done. If
a physically-based, spatially-distributed model is used for explicit testing of the performance of
different model setups, then this is currently mainly done with numerical experiments (e.g. Ameli
et al., 2016; Frei et al., 2012; Hopp and McDonnell, 2009; Reaney et al., 2014; Weiler and McDon-
nell, 2006). In the best case the model used for the numerical experiment is set up based on field
experience (cf. definition of virtual experiments in Weiler and McDonnell 2004), but the simulation
results obtained with different structures and parameters are not directly evaluated against field
observations.

Nonetheless, also physically-based, spatially-distributed models are recognized to have their main
value as complements to field observations for supporting field data analysis, identifying poorly
understood behaviour, or helping to design future field investigations (e.g. Fatichi et al., 2016;
Grayson et al., 1992; Loague, 2010). One of their great potentials is to support the interpretation
of field investigations by providing detailed insights into aspects that cannot be observed with the
desired spatial and temporal detail in the field (e.g. Camporese et al., 2014; Jeannot et al., 2019;
Niedda and Pirastru, 2014; Nippgen et al., 2015; Partington et al., 2013; Weill et al., 2013). In
order to obtain reliable insights into the hydrologic functioning, a detailed evaluation of the internal
process accuracy and consistency of the model should precede. This aspect has been and still
is often trifled with, although awareness clearly increased that mere measurements of integrated
catchment discharge are not sufficient for a comprehensive evaluation of model parametrisation
(cf. e.g. Hrachowitz et al., 2013; Koch et al., 2015; Schilling et al., 2019). Moreover, it has been
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often emphasized within the past years that comparing simulation results with multiple field data,
including spatially integrated and distributed data and employing new observation techniques, has
great potential to reveal where model representations are adequate and where there are limitations
in the current process understanding (e.g. Beven, 2006; Clark et al., 2017; Fatichi et al., 2016;
Hrachowitz et al., 2013; Kirchner, 2006; Paniconi and Putti, 2015). Although spatially-distributed,
physically-based simulations are very suited for such an analysis, they are currently barely used for a
comprehensive evaluation and analysis of model performance with regard to the information entailed
in matches and especially also mismatches between simulation results and field observations.

Two hydrological aspects that are often mentioned in the context of the need for more joint
observation-simulation studies are preferential flow and surface saturation (e.g. Beven, 2010; Clark
et al., 2011; Loague, 2010; McDonnell, 2003). Despite several decades of ongoing research there
are still many open questions to answer and the current process understanding might largely pro-
fit from a better synergy between observations and simulations in general and by making use of
physically-based, spatially-distributed models in particular. The following two sections elaborate on
these aspects in further detail.

1.4 Preferential flow paths

Numerous field experiments have shown that water infiltrates and moves through the subsurface
in a non-uniform way, following preferential flow paths such as macropores, fractures, or natural
soil pipes. While this non-uniformity has been largely neglected for a long time when explaining or
simulating runoff generation (cf. Beven and Germann, 2013), it is nowadays recognized as a ubiqui-
tous phenomenon and preferential flow is often presumed to have an important impact on runoff
generation (e.g. Beven and Germann, 2013; Weiler, 2017). However, most field observations demon-
strated the occurrence of preferential flow with tracer experiments and soil moisture measurements
in individual soil pits and only few took the effort to analyse the occurrence of preferential flow
across a hillslope or an entire catchment (e.g. Anderson et al., 2009; Liu and Lin, 2015; Wiekenkamp
et al., 2016). Moreover, the standard experimental techniques focus on the vertical direction of flow.
There are some recent attempts to visualize also lateral flow paths through the soil (e.g. Anderson
et al., 2009; Jackisch et al., 2017; Laine-Kaulio et al., 2014; Nyquist et al., 2018), but it remains
difficult to assess the connection of these flow paths to the stream – except if they are bared by
soil pipe collapses (Wilson et al., 2016). As a consequence, it is an open question what is the actual
relevance of the ubiquitously observed (vertical) preferential flow paths at larger scales and how and
under which conditions they affect the generation of catchment runoff (cf. Beven, 2018; Beven and
Germann, 2013; Weiler, 2017).

These questions are a paramount example for the need to benefit from complementary modelling
studies, since the observation techniques are (at least currently) clearly not sufficient to find a com-
prehensive answer. The questions relate to spatial connection and relevance of small-scale processes
at larger scales, following the bottom-up philosophy (cf. Section 1.2). Therefore it might be especially
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interesting to rely on spatially-distributed, physically-based models. In addition, these models have
the advantage that they implicitly include possible variabilities of the interplay of different processes
(cf. Section 1.2). In principle, it is straightforward to apply a spatially-distributed, physically-based
model for a hypothesis testing approach (cf. Section 1.3) and to implement a catchment model with
and without the consideration of preferential flow paths to compare the simulated discharge of the
different model setups with field measurements. Yet so far, only few simulation studies considered a
representation of preferential flow paths at catchment scale (e.g. Krzeminska et al., 2013; Kukemilks
et al., 2018; Steinbrich et al., 2016; Villamizar and Brown, 2017) and even less explicitly compared
the performance of catchment model setups with and without preferential flow paths (Beckers and
Alila, 2004; Christiansen et al., 2004; De Schepper et al., 2015; van Schaik et al., 2014; Yu et al.,
2014).

One reason for the limited application of models as hypothesis testing tool with regard to preferen-
tial flow paths is certainly that there are two difficulties involved in the simulation of preferential
flow paths that are a matter of research as well. First, there are ongoing debates on how to ade-
quately represent preferential flow paths in process-based simulations (e.g. Beven and Germann,
2013; Jarvis et al., 2016). Suggested approaches for simulating preferential flow range from accurate
descriptions of flow processes within discrete fractures or macropore networks to the abstraction
of preferential flow paths as a uniform model domain in coexistence to a soil matrix domain (dual
domain approach). Even though there are debates about the most appropriate representation, espe-
cially with regard to the physical adequacy of the equations commonly used in the prevailing dual
domain approaches, all approaches have been shown to provide useful simulation results (cf. Beven
and Germann, 2013; Jarvis et al., 2016). Their adequacy mainly depends on the intended use of
the simulation (cf. Section 1.2). For assessing the relevance of locally observed preferential flow on
catchment responses, any approach should be adequate.

Second, it is an open question how to identify adequate parameters for any chosen representation of
preferential flow (cf. Beven and Germann, 2013). A parametrisation approach that follows the idea
that locally observed preferential flow paths are relevant at catchment scale is to identify model
parameters from plot-scale observations and to use this information to parametrise the catchment
model (cf. Beven and Germann, 2013; Cadini et al., 2013; Wang et al., 2014). Such a parameter
transfer from plot to catchment scale is promising for obtaining observation-based parametrisa-
tions of a catchment model, but more research is needed to understand how useful the plot-scale
observations are for identifying reliable parametrisations and if the approach is sensitive to spatial
heterogeneity of preferential flow occurrence. Moreover, further assessing and applying the parameter
transfer approach is another way to assess how relevant locally observed preferential flow paths are
at larger scale and it will help to understand if including a preferential flow representation in a
catchment model is actually needed for runoff simulations.
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1.5 Surface saturation

Areas of surface saturation are areas where water is ponding or flowing on the ground surface. Since
the development of the partial area and variable source area concept half a century ago (e.g. Betson,
1964; Dunne and Black, 1970; Hewlett and Hibbert, 1967) it is recognized that extent and location
of surface saturated areas are limited and depend on surface and subsurface properties, precipitation
intensities, and the degree of saturation of the subsurface. In principle, surface saturation develops
when the infiltration capacity of a surface and the underlying unsaturated subsurface is exceeded
(infiltration excess) or when the underlying subsurface is saturated (saturation excess). In both cases,
ongoing water supply can activate overland flow and surface saturated areas can contribute to runoff
generation when connected to the stream. Until today, various experiment and modelling studies
have focussed on understanding the active contribution of surface saturation to runoff generation
(e.g. Ambroise, 2016; Latron and Gallart, 2007; Mengistu and Spence, 2016; Spence and Mengistu,
2019; Weill et al., 2013; Zimmermann et al., 2014). Others highlighted the relevance of surface
saturated areas for water quality (e.g. Doppler et al., 2014b; Gburek and Sharpley, 1998; Heathwaite
et al., 2005; Megahan and King, 1985), or tested which key controls allow the prediction of the spatial
and temporal occurrence of surface saturation (e.g. Ali et al., 2014; Grabs et al., 2009; Güntner
et al., 2004). Yet there are still limitations in the current understanding about the spatio-temporal
heterogeneous generation of surface saturation and the connection between surface saturated areas
and stream runoff.

One of the main problems in advancing the current understanding is that extensive data sets on the
spatial and temporal distribution of surface saturation occurrence are missing (cf. Ambroise, 2016;
Spence and Mengistu, 2019). Early work by Dunne et al. (1975) described and discussed already
numerous approaches for the mapping of surface saturated areas. Besides direct inspection by wal-
king through the area of interest, they suggested topography, soil morphology, vegetation, baseflow,
water table elevation, soil moisture, or antecedent moisture conditions as proxies for identifying
the spatial or temporal occurrence of surface saturation. Since then, numerous studies evaluated,
applied, and advanced the usage of these proxies (e.g. Ali et al., 2014; Doppler et al., 2014a; Grabs
et al., 2009; Kulasova et al., 2014). Others mapped surface saturation directly with ‘on-off’ sen-
sors (e.g. Gburek and Sharpley, 1998; Zimmermann et al., 2014) or manually by walking through
the area of interest (e.g. Ali et al., 2014; Latron and Gallart, 2007). However, all these direct or
proxy methods are limited in their application in space or time and a standard mapping method
is missing. Consequently, obtaining a comprehensive data set on the occurrence of surface satura-
tion during different hydrologic conditions (e.g. runoff events and baseflow conditions) with a high
spatial resolution (e.g. distinguishing different locations within a catchment) is difficult.

Simulation studies can partly compensate for the lack of detailed spatial field observations during
varying hydrologic conditions, particularly when applying spatially-distributed, physically-based
models (cf. Section 1.2). Nonetheless, as stated before (Section 1.3), they should be combined with
field observations in order to allow advancing the process understanding in a reliable way. Previous
simulation studies that performed an evaluation of model performance in comparison to observed
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dynamics or spatial patterns of surface saturation aimed to use the model rather as prediction than
as learning tool (e.g. Ali et al., 2014; Grabs et al., 2009; Güntner et al., 2004). Others investigated the
spatio-temporal generation of surface saturation with the help of spatially-distributed, physically-
based models but spared a detailed validation of the internal model consistency (e.g. Partington
et al., 2013; Weill et al., 2013). Studies that analyse the generation and occurrence of surface
saturation with an exhaustive synergy between observations and simulations are clearly missing.
Ideally, such an approach should include i) an extensive evaluation of the internal model consistency
and ii) a detailed analysis of matches and mismatches between observed and simulated patterns and
dynamics of surface saturation, before iii) eventually using the model to obtain deeper insights into
the processes of surface saturation generation. Two examples that applied such an approach to some
extent are the studies by Mengistu and Spence (2016) and Glaser et al. (2016). Both evaluated the
simulated surface saturation with observations from near-ground remote sensing data before using
the model to learn more about the runoff generation processes.

The usage of remote sensing data is a well-established method for the identification of flooding over
large areas and commonly relies on satellite or airborne images with multi-spectral or synthetic
aperture radar information (e.g. Chini et al., 2017; de Alwis et al., 2007; Matgen et al., 2006).
The usage of photographs for mapping surface saturation on scales of centimetres to few hundreds
of metres, however, only came more into focus within the last years. For example, Silasari et al.
(2017) and Spence and Mengistu (2016) demonstrated the application of visible light spectrum
(VIS) imagery for mapping surface saturation on an agricultural and grassland site by taking VIS
images with a camera installed on a weather station mast and a drone, respectively. Glaser et al.
(2016) and Pfister et al. (2010) demonstrated the capability of using a handheld thermal infrared
(TIR) camera for recurrent mapping of surface saturation within a small riparian area of a forested
headwater catchment. The advantage of using photographs compared to other methods is that
photographs are in principle non-invasive, spatially and temporally flexible, and a rather direct and
intuitive mapping method. This implies high potential of VIS or TIR imagery for improving the
understanding of the generation and occurrence of surface saturation during different hydrological
conditions and at different locations, both based on field mapping itself and in combination with
simulations. Nonetheless, applications of the photography methods in catchment hydrology are still
rare and further assessment of the technical possibilities and limitations of the application of VIS
and especially TIR imagery are needed before they might establish as standard mapping method.
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The overarching goal of my PhD project was to advance the hydrologic process understanding
by applying a multi-method approach that combines state of the art and innovative field observa-
tions and spatially-distributed, physically-based hydrologic modelling. Specifically, my investigations
focussed on the role of preferential flow paths for runoff generation and the generation of surface
saturation across space and time in the 42 ha forested Weierbach catchment in Luxembourg. In the
sense of a close synergy between observations and simulations, I set up a 3-dimensional, spatially-
distributed, physically-based hydrological model of the catchment and confronted it with multiple
field observation data to test and evaluate the internal process consistency and to learn more about
the current process understanding.

The different studies presented in this thesis were designed to not only provide insights into the
functioning of the Weierbach catchment, but to also have a relevance for future investigations beyond
the exemplary study site with regard to the applied approaches, developed methods, and gained
knowledge and process understanding. All studies followed the overarching goal, yet their research
focus and methodology (field observation and / or modelling study) are diverging. Study 1 focussed
on understanding the role of preferential flow paths observed at plot scale for simulating long-term
catchment responses. Study 2 dealt with mapping of surface saturated areas in space and time.
Study 3 explored the spatial and temporal occurrence of surface saturation by analysing matches
and mismatches between simulations and observations. Study 4 relied on the simulation of surface
saturation to identify how different water sources mix and vary in surface saturated areas in space
and time.

Below, I summarize the specific research objectives of the different studies and how the studies
connect to each other. In chapter 3, I introduce the study site, the field data, and the model setup.
Chapter 4 summarizes the findings and conclusions of the individual studies. Chapter 5 closes
with concluding remarks on the asset of synergies between observations and simulations and gives
an outlook on possible follow-up studies in the study site. Following this, the manuscripts of the
individual studies are presented.

Study 1: How meaningful are plot-scale observations and simulations of preferential flow for
catchment models?

Methodology: Combined field observation and modelling study.

Focus: Preferential flow. Process understanding in the Weierbach headwater and beyond.
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Study 1 investigated the importance of vertical preferential flow paths observed at plot scale (1 m2)
for explaining and simulating the long-term response of discharge and soil moisture of the Weier-
bach headwater. The first objective was to assess if it is valuable to inform the parametrisation of
preferential flow in a catchment model based on simulations of plot-scale observations of preferen-
tial flow. The second objective was to assess how such a parameter transfer from the plot scale to
the catchment scale is affected by observations that show spatially heterogeneous occurrence and
prevalence of preferential flow. The final objective was to assess the conceptual representation of
vertical and lateral preferential flow with a dual-permeability approach for simulating the long-term
integrated response of a humid-temperate catchment.

Connection to other studies: The findings of this study influenced the setup of the model used in
Study 3 and Study 4.

Study 2: Technical note: Mapping surface-saturation dynamics with thermal infrared imagery

Methodology: Mere field observation study.

Focus: Surface saturation. Method development.

The objective of Study 2 was to assess and demonstrate which conditions, precautions, and image
processing methods allow for a successful mapping and quantification of surface saturation with
thermal infrared (TIR) imagery over different seasons and hydrological conditions and at various
locations across a catchment. The study aimed for a strong methodological focus on the acquisition
and processing of TIR images for mapping surface saturation, since experience in using the approach
for long-term observations and across an entire catchment was non-existent.

Connection to other studies: The described TIR imagery method was used for providing the surface
saturation observation data used in Study 3.

Study 3: Intra-catchment variability of surface saturation – insights from long-term
observations and simulations

Methodology: Combined field observation and modelling study.

Focus: Surface saturation. Process understanding in the Weierbach catchment and beyond.

Study 3 investigated the occurrence of surface saturation in the Weierbach catchment with a com-
bined observation and simulation approach. One objective was to identify the spatial and temporal
characteristics of surface saturation across a catchment and to explore if a spatially-distributed,
physically-based model can satisfactorily reproduce variabilities of surface saturation patterns, dy-
namics, and frequencies. The second objective was to identify possible explanations and key factors
for the intra-catchment variability of the surface saturation characteristics by analysing the matches
and mismatches between observations and simulations.
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Connection to other studies: The study relied on experience from Study 2 and Study 1 for the
observation data and model setup, respectively. The results of this study provided confidence in the
internal process accuracy and consistency of the model, which was a necessary prerequisite for the
in-depth analyses with the model in Study 4.

Study 4: Sources of surface water in space and time

Methodology: Mere modelling study.

Focus: Surface saturation. Process understanding in the Weierbach catchment and beyond.

The objective of Study 4 was to identify the processes and water sources contributing to the gen-
eration of surface saturation in the riparian zone and streambed of the Weierbach catchment. The
study relied on spatially-distributed, physically-based simulations and extracted in-depth informa-
tion on the simulated sources of surface water with a hydraulic mixing cell approach to answer two
specific research questions: i) Which immediate flow mechanisms deliver water to the surface? and ii)
From which geographical sources is the surface water coming from? Both questions were addressed
regarding the relative mixing of different water sources, regarding a possible spatial variability in
the riparian areas and along the stream, and regarding a possible temporal variability for different
wetness states and phases of wetting or drying.

Connection to other studies: The study complements and assists the interpretation of the observation
data of Study 2 and Study 3. The confidence that the applied model could reflect reality originated
from the detailed comparison of the simulation results with various data annd spatial observations
in Study 3.
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3.1 Study site - Weierbach catchment

3.1.1 Physiography

TheWeierbach catchment is a 42 ha forested headwater catchment of the Attert basin. It is located at
the foothills of the Ardennes Massif in western Luxembourg. Elevation ranges from 458 to 513 m a.s.l.
with slopes < 5° at a plateau landscape unit (54 % of the catchment area) and slopes > 5° for the
hillslopes (45 % of the catchment area) (cf. Antonelli et al., 2019a; Martínez-Carreras et al., 2016).
The hillslopes form a central v-shaped stream valley, a v-shaped tributary stream valley in the east,
and a short stream branch in the west of the central stream valley. A narrow, flat, and well-defined
riparian zone borders the streambed and widens at some particular locations, especially in the source
areas of the three stream branches. Dominating tree species are European beech (Fagus sylvatica)
and Sessile oak (Quercus petraea) for large parts of the catchment. Smaller parts, especially the
south-east of the catchment, are dominated by Norway spruce (Picea abies) and Douglas spruce
(Pseudotsuga menziessii). The riparian zone is covered by ferns, mosses, and herbaceous plants (e.g.
Dryopteris carthusiana, Chrysosplenium oppositifolium).

The geology of the catchment is characterized by Devonian slate with some inclusions of phyllites
and quartzites (Gourdol et al., 2018; Juilleret et al., 2011; Moragues-Quiroga et al., 2017). Highly
fractured bedrock starts at 1.40 m depth in average and fractures mainly close down to a depth of
5 m (Gourdol et al., 2018). The subsolum above the fractured bedrock is a regolithic saprock(cf.
Juilleret et al., 2016) and is characterized by i) a paralithic layer that mainly consists of rock
fragments from decomposed bedrock (in average from 0.9 to 1.4 m below the surface) and ii) a
regolithic layer (in average from 0.5 to 0.9 m below the surface) consisting of rock debris mixed with
a sandy-loamy soil matrix that stems from periglacial loess deposits (cf. Gourdol et al., 2018). The
regolithic layer developed as basal layer from Pleistocene Periglacial Slope Deposits (cf. Moragues-
Quiroga et al., 2017). Topsoil (0 to 0.05 m) and subsoil (0.05 m to 0.5 m) developed as loamy, stony
Cambisol (classified as leptic, ruptic, humic, dystric, endoskeletic, siltic) in the upper layer of the
Pleistocene Periglacial cover bed (Juilleret et al., 2011, 2016; Moragues-Quiroga et al., 2017). In the
riparian zone, a clay-loam Leptosol (organic, stagnic) replaces the Cambisol and directly overlies
the paralithic layer and bedrock (Glaser et al., 2016).

The climate is oceanic-continental and dominated by atmospheric circulations and temperate air
masses from the Atlantic (Carrer et al., 2019; Pfister et al., 2017). Mean annual precipitation is
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around 950 mm without apparent seasonality and without substantial amounts of snow (Carrer
et al., 2019; Pfister et al., 2017). The average yearly runoff coefficient is 0.5 (Carrer et al., 2019),
but the runoff coefficient varies pronouncedly over the seasons. In winter months, when potential
evapotranspiration (PET) is low, runoff coefficients are highest (cf. Pfister et al., 2017). In summer
months, when PET is high, the runoff coefficient is commonly low (cf. Pfister et al., 2017). In
some years, the stream intermittently dries out completely. In other years, some streamflow persists
at the outlet of the catchment, but the upstream sections are intermittently dry. During the dry
months, runoff is generated as immediate response to precipitation, showing a sharp, short-lasting
hydrograph peak. During wet conditions, the hydrograph shows an additional, broad second peak
that starts to appear few hours after the first peak, reaches its maximum 20h to 40h after the first
peak and produces considerably more runoff than the first peak (e.g. Angermann et al., 2017; Glaser
et al., 2016; Martínez-Carreras et al., 2016; Wrede et al., 2015).

3.1.2 Hydrological process understanding

The Weierbach catchment has been established as experimental research catchment for more than 10
years. Several studies investigated the water sources based on hydrograph separations with natural
isotopic, chemical and biological tracers (Krein et al., 2006; Martínez-Carreras et al., 2015; Schwab
et al., 2017; Wrede et al., 2015). Others applied artificial tracers and irrigation experiments to
visualize and analyse the water flow paths through the subsurface of the catchment (Angermann
et al., 2017; Jackisch et al., 2017; Scaini et al., 2017, 2018). Recent projects also addressed the water
storage and travel time characteristics by applying several statistical and modelling approaches for
interpreting field observations (Carrer et al., 2019; Martínez-Carreras et al., 2016; Pfister et al.,
2017; Rodriguez and Klaus, 2019). Besides, the catchment has often been used as testing ground
for new concepts (e.g. Carrer et al., 2019; Schwab et al., 2016) and new measurement techniques for
tracing water and sediment sources, water flow paths and hydrological connectivity(e.g. Jackisch
et al., 2017; Klaus et al., 2015; Martínez-Carreras et al., 2015, 2010; Pfister et al., 2009, 2010; Scaini
et al., 2017). Conceptual, bucket-type models were used as hypothesis testing tool for identifying
the dominant runoff generation processes (Fenicia et al., 2014; Kavetski et al., 2011; Wrede et al.,
2015) and in combination with measurements of stable water isotopes for identifying the storage
age and travel time distribution (Rodriguez and Klaus, 2019) of the catchment. During my master
thesis, I implemented a physically-based, spatially-distributed model of the catchment in strong
consultation with field investigations to learn more about the runoff generation processes (Glaser
et al., 2016).

Despite this large amount of studies and experimental data in the catchment, the runoff generation
processes and dominating water sources, storages, and flow paths in the Weierbach catchment remain
under debate. There is a general consent that the broad discharge peaks during wet conditions –
and thus most discharge volume – are largely generated by lateral subsurface flow of pre-event water
and that this lateral subsurface flow path activates once a certain subsurface storage threshold is
exceeded (e.g. Glaser et al., 2016; Martínez-Carreras et al., 2016; Rodriguez and Klaus, 2019; Scaini
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et al., 2018; Schwab et al., 2018; Wrede et al., 2015). Yet the spatial origin and extent of this
subsurface flow path is still not clarified. Current suggestions (e.g. Glaser et al., 2016; Martínez-
Carreras et al., 2016; Rodriguez and Klaus, 2019; Schwab et al., 2017; Wrede et al., 2015) comprise
groundwater flow in fractured bedrock, (perched) groundwater flow in the regolithic saprock, or
preferential flow paths through the subsurface and the relevance of the different landscape units
(i.e. plateau vs. hillslopes vs. riparian zone) is debated, including controversy about the existence
of two separate groundwater systems. The first, sharp, short-lasting discharge peaks are known to
consist of a mixture of event and pre-event water with high amounts of young water (e.g. Martínez-
Carreras et al., 2015; Rodriguez and Klaus, 2019; Wrede et al., 2015). The peak generation is
commonly related to a direct input of precipitation and throughfall to the stream as well as to a
rainfall-driven activation of flow paths that quickly transfer water from the near-stream (riparian)
zone to the stream (e.g. Fenicia et al., 2014; Glaser et al., 2016; Klaus et al., 2015; Martínez-Carreras
et al., 2015, 2016; Rodriguez and Klaus, 2019; Scaini et al., 2018; Schwab et al., 2018; Wrede et al.,
2015). In addition to saturation excess overland flow from the riparian zone (e.g. Klaus et al.,
2015) and shallow subsurface flow through the riparian soil (e.g. Schwab et al., 2017), preferential
subsurface flow from the hillslopes to the stream (e.g. Angermann et al., 2017; Glaser et al., 2016;
Martínez-Carreras et al., 2016) has been suggested as possible activated flow contributing to the
generation of the sharp, short-lasting discharge peaks. However, all of these suggested flow paths
have so far barely been investigated in a comprehensive way regarding their effective contribution
to runoff generation.

The circumstance that the hydrologic functioning of the Weierbach catchment is still under debate
makes the catchment an ideal candidate for applying a combined simulation and observation ap-
proach. There is already a large experimental knowledge and collection of field data that can be used
for the model setup and evaluation and at the same time the simulation can help to investigate the
aspects that are still not fully understood. For example, there have been several field experiments
that showed the occurrence of preferential flow in the soils and periglacial deposits of the Weierbach
catchment (Angermann et al., 2017; Jackisch et al., 2017; Scaini et al., 2017, 2018). Consequently,
preferential flow paths have been hypothesized to contribute to runoff generation in the Weierbach
catchment (see above). However, the actual connection and contribution of preferential flow paths
to streamflow is difficult to assess with field experiments and complementing the observations with
simulations can help to clarify the effective role of preferential flow paths on runoff generation (cf.
Study 1). Similarly, saturation excess overland flow has been suggested to contribute to discharge
generation based on the observation that riparian zones in the Weierbach catchment often show
high extents of surface saturation. Yet it has never been systematically investigated how the surface
saturation develops in space and time. In order to clarify the effective contribution of the surface
saturated areas to runoff generation, it is first and foremost necessary to understand the behaviour
and generation of the surface saturation itself. This can be best achieved with a systematic mapping
of the surface saturated areas across space and time (cf. Study 2) in combination with spatially-
distributed modelling that allows for a profound analysis of the generation of surface saturation (cf.
Study 3 and Study 4).
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3.2 Field observations

3.2.1 Mapping of surface saturation

The main experimental focus of my PhD project was to map surface saturation patterns in the
Weierbach catchment with the novel thermal infrared (TIR) imagery technique. On one side, I aimed
to further test and advance the technique itself (Study 2). On the other side, I aimed to collect a
comprehensive data set of surface saturation patterns and their dynamics for investigating the nature
of surface saturation generation and its intra-catchment variability in a joint observation - simulation
approach (Study 3) and for evaluating the internal process consistency of the model (Study 3) before
using it for complementary simulation investigations (Study 4). I shared the mapping work with
another PhD student, who focussed on the analysis of observed saturation dynamics in relation to
the establishment of connectivity between hillslopes and streamflow for different stream sections (see
co-authored manuscripts (Antonelli et al., 2019a,b). We mapped the surface saturation in several
selected riparian areas of the Weierbach catchment with a handheld TIR camera with weekly to
biweekly recurrence frequency from November 2015 to January 2018. Each time, we took overlapping
TIR images or a TIR video of the selected riparian areas. During the growing season, the field work
occasionally involved cutting the herbaceous vegetation and ferns in the riparian areas in order
to maintain an uncovered view to the ground. Back in the office, we processed the the raw TIR
images and videos to panorama images of surface saturation as described in Study 2. Eventually,
we obtained a data set that showed the evolution of surface saturation patterns at various locations
across the catchment and for various hydrological conditions (Study 2, Study 3, Antonelli et al.
2019a).

Compared to previous work by Pfister et al. (2010), Frentress (2015), and the mapping work I
did for my master thesis (Glaser et al., 2016), the long-term mapping campaign largely broadened
the experience in applying TIR imagery for mapping surface saturation during diverse meteorolo-
gical and hydrological conditions and at locations with diverse characteristics (e.g. vegetated with
trees, dry areas, smooth topography). We also tested the usage of TIR imagery for high-frequency
mapping with cameras that were permanently installed in the stream source areas of the Weier-
bach catchment. These TIR cameras were programmed to automatically take a picture every 15
to 240 minutes between February 2017 and December 2017. Although the cameras did not run
continuously due to some technical difficulties in the setup and with the power supply, the high-
frequency mapping resulted in a huge data set of TIR videos showing the high-frequency evolution
of surface saturation. Since the high-frequency variation of surface saturation dynamics was far
less pronounced than expected and a quantification of the information of the videos was far from
being straightforward, the images eventually did not find their way into a manuscript. However,
the work with the permanently installed cameras also widened the experience and knowledge about
TIR mapping, which is indirectly included in Study 2.
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3.2.2 Other data used for the model setup and evaluation

Thanks to the long history of research in the Weierbach catchment, I could draw on a huge existing
collection of field data for the model setup and evaluation. Studies in the Weierbach commonly rely
on a digital elevation model (DEM) of the catchment that has been extracted from 10 m contour
lines of a topographic map. I additionally relied on a high-resolution DEM of the streambed and
adjunct riparian zones that has been specifically acquired for my work with ground-based LiDAR
(light detection and ranging) measurements. For the setup of the model mesh (Study 1, Study 3, and
Study 4), I used an adapted DEM where the height information of the high-resolution LiDAR DEM
and the coarse topographic map DEM was merged and interpolated into a 0.1 m raster (resolution
of interpolated heights: 0.1 mm).

Soil profiles, core drillings and electrical resistivity tomography profiles have been collected over the
past years to describe the pedo-lithological structure across the catchment. I used this information
in previous work (Glaser et al., 2016) to define the subsurface structure and parametrisation of
the 6 ha headwater model used in Study 1. Analogously, I adapted the subsurface structure and
parametrisation of the 42 ha catchment model used in Study 3 and Study 4 based on the existing
field data and the knowledge and experience of my colleagues. In Study 1, I additionally used data
from irrigation experiments that were performed on a hillslope south of the catchment by Jackisch
et al. (2017) for parametrising and testing the preferential flow simulations. In particular, I relied
on Br- concentrations and Brilliant Blue stains sampled in three different irrigation plots.

Meteorological data were available from measurement stations in and nearby the catchment, main-
tained by technicians from LIST and the agricultural administration of Luxembourg (ASTA). I used
the meteorological data for compiling the forcing inputs precipitation and potential evapotranspi-
ration for the simulations (Study 1, Study 3, and Study 4). In case of data gaps, I estimated
relationships between data of neighbouring stations. Moreover, I extracted the dynamic leaf area
index (LAI) for the catchment from MODIS satellite data. Due to high computational demands of
simulations with a realistic LAI during the growing season, I evaluated the effect of a realistic LAI
on discharge and saturation simulations in comparison to simulations with a LAI of 0 and eventually
used the LAI information in Study 1 only.

Continuous monitoring of groundwater level, volumetric water content and water stage has been
initiated and maintained since many years at various locations across the catchment. I solely did
some additional manual discharge measurements in turns with another PhD student in order to
establish rating curves for converting the continuously measured water stage into discharge values. I
used the hydrometric data from the existing monitoring network in addition to the mapped surface
saturation to confront and compare the simulation results with multiple data types from multiple
measurement locations (previous work in Glaser et al. (2016), Study 1, Study 3). This multi-data
evaluation of the simulations was an essential prerequisite and component of my PhD work, since
it highlights the strengths and weaknesses of a model in a differentiated and distributed way. Only
if the internal model consistency is approved to a certain degree, the model can be used as learning
tool as done in Study 1, Study 3 and Study 4.
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3.3 HydroGeoSphere Model

3.3.1 3-dimensional integrated hydrologic surface subsurface model

I used for all simulations the model code HydroGeoSphere (Aquanty Inc.). HydroGeoSphere (HGS)
is a spatially-distributed, physically-based, continuum-based model that solves the 3-dimensional
Richards equation for variably saturated, transient subsurface flow

∂S

∂t
= ∇ · (K(S)∇h) ± Q

where S = θ
n is the saturation of the subsurface medium, defined by the actual volumetric water

content θ in relation to porosity n, K(S) = kr(S)KS is the actual hydraulic conductivity, expressed
as a saturation-dependent relative proportion kr(S) of the saturated hydraulic conductivity tensor
KS , h is the hydraulic head composed of the pressure head ψ and the elevation head z, and Q

represents any exchange flux from sources or to sinks outside of the subsurface medium. For defining
a relationship between the hydraulic head h and saturation S and kr(S), I relied on the Mualem -
van Genuchten functions as provided in HGS

S = Sr +
(1− Sr)[

1 + |αψ|β
]ν for ψ < 0; S = 1 for ψ ≥ 0
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with Sr = θr
n being the residual saturation, α and β being empirical parameters that are normally

estimated with water retention experiments, and ν = 1− 1
β .

Overland flow can be simulated with the diffusion-wave approximation of the 2-dimensional Saint-
Venant equation

∂ho
∂t

= ∇ · (doKo∇ho) ± Qo

where ho is the water surface elevation, do is the water depth,Ko is the tensor of surface conductance,
and Qo represents the exchange of surface water with any external source or sink. The surface
conductance tensor Ko can be expressed by different equations, I relied on the formulation derived
from the Manning equation

Ko = d
2
3
o n

−1
o

∂ho
∂s

−0.5

with no being the tensor of empirical Manning roughness coefficients and s describing the coordinate
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along the direction of the maximum local slope.

Surface and subsurface flow are simulated simultaneously and coupled with a common node or
a dual node approach. I applied the dual node approach, which simulates exchange between the
surface and subsurface domain of the model via Darcy flow through a possibly thin coupling layer.
The simultaneous simulation of surface and subsurface flow is the key characteristic for so-called
integrated surface subsurface hydrologic models (ISSHMs), a specific type of process-based models
that has been developed and increasingly assessed and applied over the last 20 years (cf. Ebel et al.,
2009; Furman, 2008; Kollet et al., 2017; Maxwell et al., 2014; Paniconi and Putti, 2015; Sebben
et al., 2013).

The big asset of ISSHMs is their integrative consideration of different processes and components
of the water cycle, including interactions and exchanges with and across the land surface. This
implies for example that the stream network does not need to be defined as a fixed boundary
in the model, but that it can evolve naturally during the simulation. Also, it is not necessary
to explicitly specify different surface-subsurface exchange processes such as infiltration excess or
saturation excess as distinct mechanisms (cf. Paniconi and Putti, 2015). Instead, these processes
automatically develop in the simulation depending on the current conditions. Both aspects were
essential for the comprehensive analysis of surface saturation generation in Study 3 and Study 4.

A further aspect that is commonly considered in ISSHMs is evapotranspiration. The common trend
is to couple ISSHMs with land surface and atmospheric models (e.g. Noah-MP, CLM, WRF) that
simulate physical plant and atmosphere processes according to latest state-of-the-art formulations.
Development into that direction is also undertaken for HGS (Davison et al., 2015, 2018), yet the
standard approach in HGS is to simulate dynamic actual evapotranspiration internally, follow-
ing the process-based, conceptual formulation of Kristensen and Jensen (1975). In this approach,
the simulation of actual evapotranspiration comprises canopy evaporation and interception, plant
transpiration, and evaporation from soil or water surfaces. The amount and partitioning of the com-
ponents is calculated based on the potential evapotranspiration (input variable), water availability
(precipitation input and simulated soil moisture distribution), and several vegetation parameters
(e.g. rooting depth, leaf area index). Since evapotranspiration and the partitioning of its different
components was not a main focus of my work, I assumed this approach to be adequate.

In addition to surface flow, subsurface flow in a porous medium, and evapotranspiration, I implemen-
ted solute transport and preferential flow in the simulations of Study 1. Solute transport is simulated
in HGS with the advection-dispersion equation. For the consideration of vertical preferential flow,
I relied on the dual-permeability formulation, which divides the subsurface in two interacting do-
mains with differing hydraulic properties (especially differing hydraulic conductivities) that are both
described with the Richards equation. The necessary spatial and temporal discretization for the nu-
meric solution of the different equations is done in HGS with an unstructured finite element grid
and with time steps that can be automatically adapted to the arising gradients. The discretised set
of non-linear equations is implicitly linearised with the Newton-Raphson technique and the equa-
tions are solved concurrently in an iterative scheme. A special feature in HGS is that the coefficient
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matrix of the control volume finite element discretization can be manipulated to mimic a finite
difference discretization. I applied this approach for all my simulations, since it has been proven to
deliver similar results with faster simulation time.

3.3.2 Model application to the Weierbach catchment

The models used in Study 1, Study 3 and Study 4 were developed from a HGS model of a 6 ha
sub-area of the Weierbach catchment (from now on referred to as headwater) that I implemented
for my master thesis (Glaser et al., 2016). This base setup of the Weierbach headwater consisted
of several subsurface layers with differing porosities and hydraulic conductivities, representing the
different soil, subsolum and bedrock characteristics of the catchment. In the riparian zone, a different
subsurface setup accounted for the observed shallow, organic, stagnic soil that directly overlies the
fractured bedrock. A nested triangular model mesh with a spatial resolution ranging from > 10 m
at the hillslopes to < 0.25 m in the riparian zone ensured to account for micro-topography in the
riparian zone while maintaining a reasonable computational demand. I assigned the parameters
for the subsurface, surface, and evapotranspiration based on field measurements and experience,
literature values, and some manual trial and error calibration. The validation of the base headwater
model against discharge, soil moisture and surface saturation measurements provided confidence in
the model structure and parametrisation and demonstrated the performance of the base model setup
in simulating distributed and internal consistent hydrologic behaviour of the Weierbach headwater
(cf. Glaser et al., 2016).

In Study 1, I incorporated the dual-permeability approach into the setup of the 6 ha headwater model
in order to analyse the impact of vertical preferential flow on runoff generation and on the internal
process consistency of the model. The idea was to base the dual-permeability parametrisation on Br-

depth profiles that had been extracted from three different plot-scale (1 m2) irrigation experiments in
the vicinity of the catchment and that showed clear evidence for vertical preferential flow (cf. Jackisch
et al., 2017). In order to search for parameter sets that could reproduce the observed Br- profiles, I
applied a brute-force Monte Carlo (MC) algorithm to a plot-scale model that I parametrised identical
to the hillslopes of the headwater model, extended by dual-permeability and transport simulation. I
tested with the MC simulations different approaches for translating field observations of preferential
flow (e.g. Brilliant Blue patterns, type of macropores, fast hydraulic conductivities) into realistic
parameters for preferential flow simulations and searched for well-performing parameter sets for the
three different Br- plot profiles individually. Subsequently, I transferred several well-performing and
some low-performing parameter sets of the three different simulated plot profiles to the headwater
model and tested the effect of the different parametrisations on the long-term simulation of soil
moisture and discharge over 18 months. The performance of the base headwater model (cf. Glaser
et al., 2016) served as reference for simulations without vertical preferential flow.

In Study 3, I extended the setup of the 6 ha headwater model to the entire Weierbach catchment
(42 ha). Based on the knowledge gained from Study 1 and a follow-up study (Hopp et al., 2019) of a
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master student, I decided that a dual-permeability representation of preferential flow was dispensa-
ble for the catchment model. The main change in the subsurface structure and parametrisation of
the catchment model in comparison to the headwater model of Glaser et al. (2016) was an adapted
model depth and the addition of distinct vegetation parameters for the coniferous forest area of the
catchment. Except of that, I set up the model in the same way as the headwater model, including a
nested mesh with high resolution of the micro-topography in the riparian areas, including the same
different subsurface layers as in the headwater model, and including as only spatial heterogeneity
a differing subsurface structure for the riparian zone and streambed than for the hillslopes. Par-
ticularly, I did not perform any additional parameter calibration for the catchment model. I only
checked for the capability of the catchment model to simulate discharge, soil moisture, and ground-
water table as observed from October 2015 to January 2018 at various locations distributed across
the catchment before confronting the model with the distributed observations of surface saturation
dynamics in the riparian zones (cf. Study 2, Antonelli et al. 2019a) to investigate the nature of and
controls on the intra-catchment variability of surface saturation.

The model of Study 3 proved to be internally consistent and reliable in simulating the temporal
and spatial occurrence of surface saturation from October 2015 to January 2018. Thus, I relied in
Study 4 on the identical model setup as used in Study 3. I only extended the simulation with the
hydraulic mixing cell approach developed by Partington et al. (2011; 2013) to track and identify
the origin of the simulated surface water. The application of the hydraulic mixing cell approach
requires the definition of initial source areas, which I assigned according to the zonation of the
different surface and subsurface parameters. Water that is initially stored in the model domain is
then labelled according to the respective source areas, water that newly enters the model domain
throughout the simulation is labelled as precipitation. The label of the water does not change when
passing through a model cell of another source area, but when water from different source areas
enters the same cell, a mixing ratio of the different sources is calculated and further tracked and
adapted throughout the simulation. In order to prevent a possible complete replacement of initially
stored water by precipitation, I split the simulation period from October 2015 to January 2018
into 64 subsequent simulation periods and initialised and ran the sub-periods individually. Finally,
I selected several locations within the streambed and riparian zone of an upstream, midstream and
downstream section of the stream and several time periods reflecting different initial wetness states
and phases of drying or wetting to analyse the spatial and temporal variability of the mixing of
different geographical sources and mechanisms of immediate delivery of surface water.
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4.1 Preferential flow paths – How meaningful are plot-scale
observations and simulations of preferential flow for catchment
models? (Study 1)

The simulations presented in Study 1 revealed that the role of vertical preferential flow differs
depending on the scale of interest. The Br- depth profiles that were sampled from three irrigation
experiments at plot scale (1 m2 plots) could only be simulated when vertical preferential flow was
considered in the simulations. By contrast, the influence of vertical preferential flow on long-term
simulations of discharge and soil moisture response at headwater scale (6 ha) showed to be minor.
None of the preferential flow parametrisations that proved to be adequate at plot scale could improve
the discharge and soil moisture simulation at headwater scale compared with the reference simulation
without vertical preferential flow. Instead, several of the parametrisations being adequate at plot
scale decreased the performance of discharge and soil moisture simulation at headwater scale and
model parametrisations that failed at plot scale did not perform systematically worse at headwater
scale than successful plot-scale parametrisations.

Concerning runoff generation in the Weierbach catchment, Study 1 suggested that fast lateral flow
paths largely outweighed the relative importance of vertical preferential flow observed at plot scale.
This conclusion was deduced from the subsurface structure and model performance of the reference
model without vertical preferential flow in comparison with the headwater simulations that included
preferential flow. The subsurface structure of the reference model allowed spatially uniform fast
infiltration and fast lateral flow at the interface of different subsurface layers with contrasting
hydraulic conductivities. While this structure seemed to be important for the discharge simulation,
the additional inclusion of vertical preferential flow with a dual-permeability approach did not
further improve the simulation of discharge and soil moisture. A follow-up study (Hopp et al., 2019)
supported this interpretation by showing that a direct calibration of dual-permeability parameters
at the headwater scale basically removed the effect of vertical preferential flow for the Weierbach
catchment.

Beyond the site-specific conclusions, the findings of Study 1 also have implications for studies outside
of the Weierbach catchment. A minor role of vertical preferential flow on runoff generation than
suggested by plot-scale observations is likely to be found in other catchments and landscapes as
well, especially for physiographic settings with similar subsurface characteristics as for example
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landscapes characterized by glacial till. This means that it should be decided case by case if an
improved internal model consistency by including vertical preferential flow is worth concomitant
parametrisation efforts and uncertainties and additional computational demands. Moreover, the
findings of Study 1 highlighted that it is problematic to identify preferential flow parameters at plot
scale for using them in catchment models. First, it was not possible to identify unique parameters
for the plot-scale simulations and thus it turned out to not be reliable to transfer one optimized plot-
scale parameter set to the catchment scale. Second, a direct parameter transfer is conceptually not
valid in a case like the presented, where different structures and processes are relevant at different
scales. Only the spatial heterogeneity between different irrigation plots showed not to be a major
problem for a parameter transfer from plot to catchment scale. In conclusion, Study 1 suggested that
a preferential flow parametrisation for a catchment model needs to be evaluated at catchment scale
directly. The follow-up study by Hopp et al. (2019) showed the same for the reverse direction, i.e.
parameters calibrated at catchment scale could not be applied successfully for plot-scale simulations.

4.2 Dynamic generation and spatial occurrence of surface
saturation

4.2.1 Technical note: Mapping surface-saturation dynamics with thermal infrared
imagery (Study 2)

The first part of Study 2 was based on a literature review and the experience gained from the field
campaign in the Weierbach catchment and described and assessed which conditions and procedures
allow for a successful recurrent mapping of surface saturation. Main identified interferences for the
usability of TIR images were i) an insufficient temperature contrast between surface water and sur-
roundings, ii) temporary view obstructions, such as vegetation or snow covering the ground surface,
iii) partial exposure to sunlight, and iv) fog or raindrops. Consequently, a weather-dependent and
site-specific planning of image acquisition was suggested to minimise the discard of acquired images.
Furthermore, Study 2 emphasized the importance of consistent field of views for the comparison
of images from different acquisition times and proposed a workflow how to ensure this for panora-
mas taken with a handheld TIR camera. Finally, several example images demonstrated that TIR
imagery can map the temporal evolution of surface saturation over different seasons and during dif-
ferent hydrological conditions and that the TIR images can identify differences of spatial patterns
and dynamics of surface saturation between and within various locations across a catchment.

In the second part, Study 2 described and assessed different image post-processing methods for
transforming TIR images into binary saturation maps, i.e. for converting the temperature informa-
tion of a pixel into the binary information ’saturated’ or ’unsaturated’. The comparison of several
image classification techniques showed that a manual image classification is most reliable for crea-
ting binary saturation maps, but that some other, more objective and automatable approaches are
valuable options as well. Especially one approach resulted in saturation maps that matched well
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the manual classification and visual assessment of the TIR images. This approach combined an
automatic decomposition of the TIR image pixels into two pixel class distributions (i.e. saturated
vs unsaturated pixels) with a region-growing algorithm. The main difficulty for all tested automatic
image processing methods was that the characteristics of the TIR images contrasted for different
acquisition times between very wet and very dry conditions and between surface water being the
warmest or coldest material in the mapped area. Therefore, subsequent studies that employed the
TIR images collected in the Weierbach catchment (i.e. Study 3, Study 4, Antonelli et al. 2019a,
Antonelli et al. 2019b) relied on manual image classification. Nonetheless, the presented automatic
image classification approaches are considered advantageous for data sets of images that have a
fixed vantage point and that were collected during time spans with similar conditions.

4.2.2 Intra-catchment variability of surface saturation – insights from long-term
observations and simulations (Study 3)

The catchment model that I set up in Study 3 satisfactorily simulated the discharge, soil mois-
ture and groundwater dynamics observed at several locations distributed across the catchment,
especially in the riparian zone and vicinity. Thus, the internal consistency of the model was de-
clared reliable for a detailed analysis of the spatial and temporal occurrence of surface saturation
across the riparian zones of the Weierbach catchment in synergy with the mapped patterns, dy-
namics and frequencies of surface saturation (cf. Study 2, Antonelli et al. 2019a). The spatially
distributed extent of surface saturation varied between and within the investigated areas and the
simulation reproduced the observed patterns in great detail. Since the spatial setup of the model was
rather homogeneous and the main variability was micro-topography, the good model performance
suggested micro-topography to be a key control for the spatial occurrence of surface saturation.
The temporal increase and decrease of surface saturation extent was observed and simulated to be
synchronous across the different investigated riparian areas. A statistical analysis of the observed
saturation dynamics by Antonelli et al. (2019a) suggested that the temporal synchronicity reflected
a catchment-wide influence of groundwater dynamics and the model substantiated this assumption
by revealing that the simulated patterns and dynamics of surface saturation evolved in line with
the simulated patterns and dynamics of groundwater reaching the surface.

At the same time, Study 3 suggested that surface saturation in the Weierbach catchment is not
solely generated by groundwater exfiltration into local topographic depressions. The evaluation of
the simulated surface saturation patterns and dynamics highlighted some shortcomings of the mo-
del, despite the generally good agreement between observations and simulations. For example, the
simulated surface saturation was less persistent than observed and the simulated spatial occurrence
of surface saturation matched the observations better in some of the investigated areas than in
others. Moreover, the observed power law relationships between catchment discharge and extent
of surface saturation showed some variability between the different areas that was not captured
to the same extent with the model. These identified mismatches between observations and simu-
lations highlighted that only additional controlling factors that were not considered in the model
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setup, such as spatial heterogeneity of the subsurface structure or hysteretic processes, can explain
the full variability of the observed surface saturation characteristics in the Weierbach catchment.
Furthermore, the observed and appropriately simulated spatial variability of saturation frequencies
was discussed to represent varying mixtures of different water sources, including for example con-
tributions from direct precipitation and upstream areas in addition to water exfiltrating from the
subsurface. Study 4 picked up on this aspect and investigated in detail the water sources of the
simulated surface saturation.

Despite the particular focus on the Weierbach catchment, several results of Study 3 are also of inter-
est for studies outside of the Weierbach catchment. First, the confrontation of the simulation with
the comprehensive data set of surface saturation patterns and dynamics (cf. Study 2) demonstrated
that ISSHMs such as HGS are useful and reliable tools to simulate and analyse the spatially dis-
tributed and temporally variable generation of surface saturation. Moreover, the simulation results
highlighted that micro-topography is an important aspect for surface saturation generation and that
it should be in general considered when predicting areas that are prone to flooding. Finally, the
study demonstrated that the relationship between surface saturation and catchment discharge can
vary for distinct areas within a catchment to a similar extent as observed between catchments with
different morphologic and topographic features.

4.2.3 Sources of surface water in space and time (Study 4)

The hydraulic mixing cell analysis of Study 4 revealed that surface saturation in the Weierbach
catchment was in large parts composed of a mixture of water originating from the fractured bedrock,
riparian soil, and subsolum of the hillslopes. The mixture of geographical sources of surface water
was quite homogeneous within and between the three investigated stream sections and adjacent
riparian areas. Moreover, water from the subsurface stores and thus pre-event water remained the
predominant component of surface water for all analysed wetness states and phases of wetting and
drying, although the mixing ratio of water from different subsurface stores shifted with increasing
wetness towards a higher contribution of water from upstream and uphill source areas. A clear
spatial difference of water sources existed between the locations in the streambed and riparian zone
regarding the immediate delivery of the surface water. In the riparian zone, the surface water was
mainly delivered by direct exfiltration from the underlying subsurface. A predominance of overland
flow from neighbouring surface saturated areas was limited to some distinct locations or very wet
conditions. In contrast, the surface water in the streambed was largely delivered by streamflow
that was generated upstream. Some relevant contribution of direct exfiltration of water from the
underlying fractured bedrock into the streambed was observed during dry conditions, but as soon as
streamflow was considerably activated, the relative contribution of exfiltration of subsurface water
was negligible.

The identified geographical sources and immediate delivery paths of surface water indicated that
surface saturation in the riparian zone of the Weierbach catchment was homogeneously generated
and maintained by return flow. Contrary to what was hypothesized in Study 3, the model did not

30



4 Key findings and conclusions

simulate discrete locations of subsurface water exfiltration, temporary high contributions of direct
precipitation, or local influences of streamflow extending into the riparian zone. Some heterogeneity
occurred within the riparian zone regarding the relevance of overland flow and the mixing ratio
of water originating from the riparian soil versus other subsurface stores. However, this spatial
variability was small and it did not relate to the surface saturation frequency or other visually
apparent features. The generation of surface saturation in the streambed and thus streamflow was
related to return flow as well. This return flow was suggested to occur all along the stream and
to increase its extent towards uphill source areas and upper soil layers with increasing wetness.
The contribution of riparian surface water to streamflow was small relative to upstream water
contributions. Yet it can be assumed that overland flow from the riparian zone to the stream
occurred, eventually being nothing else than intermittent streamflow outside of the streambed.

The small simulated contribution of precipitation and thus event water to streamflow generation in
the Weierbach catchment is in accordance to the commonly observed dominance of pre-event water
in event runoff. The fact that the model could reproduce this behaviour suggested a pressure wave
that induces an increase and extent of return flow as the mechanism underlying a fast activation
and release of stored pre-event water with the onset of precipitation. This is probably the finding
of Study 4 with the largest relevance for studies outside the Weierbach catchment, yet all other
identified processes and water sources may be relevant at other field sites as well, especially in
humid temperate forests. Moreover, although the spatio-temporal variability of sources of surface
water was small in the riparian zone of the Weierbach catchment, the identified spatial variations
might influence microhabitats, the biogeochemical activity, or water sampling campaigns and it is
likely that the delivery and mixing of sources of surface water is more heterogeneous in riparian
zones or floodplains with different sizes, landscape characteristics or climatic conditions. Finally,
the study demonstrated the asset of using a hydraulic mixing cell approach to specify and quantify
the sources of surface water and encourages more studies to apply this or similar approaches to
complement and interpret field observations with the help of in-depth analyses of the simulated
processes.
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5.1 Asset of synergy of spatially-distributed, physically-based
simulations and observations

The objective of my thesis was to advance the understanding about the relevance of preferential
flow paths on runoff generation and the spatial and temporal generation of surface saturation with-
in a catchment by combining diverse field observations and spatially-distributed, physically-based
modelling in a multi-method approach.

Study 1 tested the information content of plot-scale observations of vertical preferential flow for a
realistic model parametrisation at the catchment scale. By evaluating various parametrisations at
plot and catchment scale against field observations, the continuum-based HGS model was basically
used as hypothesis testing tool, an approach that is typically only followed with conceptual top-
down models or in virtual experiments that lack a direct comparison with field observations. The
findings of Study 1 demonstrated that there is a clear value of also applying continuum-based
models for hypothesis testing, especially since they implicitly allow for changes in the relevance of
different processes under varying conditions and because it is possible to test the effect of identical
model structures and process parametrisations at different scales. Accordingly, the simulation tests
of Study 1 did not only help to improve the confidence in the model and the process understanding
for the specifically studied Weierbach catchment. They also revealed that observations of vertical
preferential flow at plot scale do not automatically imply that vertical preferential flow has an
important control on the long-term runoff generation. Instead, other structures and flow paths may
outweigh the role of vertical preferential flow at the catchment scale. This conclusion has relevance
way beyond the Weierbach catchment. It demonstrates that the typical investigations of preferential
flow paths at plot scale are not sufficient to assess and understand the impact of preferential flow
paths on runoff generation and more research efforts need to focus at the larger catchment scale.

In Study 2 to 4, I investigated the spatio-temporal variability of the occurrence and generation of
surface saturation within a catchment with a framework of consecutive observation and simulation
studies. The studies followed the idea of using comprehensive and new observation data for testing
the internal consistency of a model in order to i) improve the current process understanding by
identifying matches and mismatches between observation and simulation, and ii) subsequently use
the evaluated model for the investigation of aspects that cannot be analysed in such a detail in the
field.
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Study 2 focussed on the collection of observation data but the field campaign for mapping surface
saturation was not only a prerequisite for providing a comprehensive data set for evaluating the
internal model consistency. The study also highlighted the great potential of TIR imagery as a
novel and flexible approach for mapping surface saturation in general. I am convinced that the
presented technical and methodological aspects will help to further advance and promote TIR
imagery to be applied in different areas and at different spatial and temporal scales. This might
eventually help to overcome measurement limitations and to obtain comprehensive data sets on the
spatial and temporal distribution of surface saturation across various catchments and landscapes,
information that is currently largely missing and clearly limits the knowledge about the spatio-
temporal generation of surface saturation and its relation to runoff generation.

The analysis of matches and mismatches between observed and simulated surface saturation char-
acteristics presented in Study 3 was certainly of primary interest for understanding the hydrologic
processes in the specifically studied Weierbach catchment. Yet it also highlighted some aspects
that are of more general interest, such as the sound usability of ISSHMs for simulating surface
saturation, the importance of micro-topography for the spatial occurrence of surface saturation,
and the finding that the intra-catchment variability of the relationship between surface saturation
extent and discharge can be similar to the variability observed between catchments with different
topographies and morphologies. This clearly demonstrated the value of a detailed analysis of matches
and mismatches between spatially-distributed, physically-based simulations and observations to test
and challenge current process understanding.

Study 4 showed that the application of a simulation approach like the hydraulic mixing cell simula-
tions can be very useful for in-depth analyses of hydrologic processes and aspects that are difficult
to observe in the field. In principle, Study 4 could have been performed without the preceding work
and findings of Study 2 and Study 3, but the detailed assessment of the model performance and its
internal process consistency against the comprehensive field information on surface saturation was
necessary to ensure that results and conclusions of Study 4 were actually meaningful. As for the
findings of Study 3, the results of Study 4 are above all relevant for the process understanding in the
Weierbach catchment, but the study nonetheless revealed some interesting aspects for hydrological
research beyond the specific study site. For example, the simulations suggested return flow into
the streambed and precipitation-induced pressure waves as main streamflow generation processes
and it is likely that these processes also explain streamflow generation in other catchments where
a predominance of pre-event water from different subsurface stores was observed in event runoff.
Moreover, Study 4 was a first endeavour to asses the spatio-temporal variability of the generation of
surface saturation in a riparian zone and while the identified processes and sources are likely to be
similar in other humid temperate forests, more studies need to follow to investigate the variability
of sources of surface saturation in riparian zones and floodplains with larger size, other landscape
characteristics, or different climatic conditions.

In sum, the findings of the different studies of my thesis demonstrated that the different applied
approaches for using a spatially-distributed, physically-based model as complement to field observa-
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tions entail potential for substantial contribution to scientific progress. In order to exhaust the full
potential of physically-based, spatially-distributed models in synergy with observations to advance
hydrologic process understanding, I think far more studies should set up and confront their models
with multiple observation data in the sense of a real learning tool than currently done. Certainly, it
is worth considering more often to apply also physically-based, spatially-distributed models in syn-
ergy with field observations in the sense of hypothesis testing. Moreover, studies should especially
follow more often the sequence of first using multiple and distributed data for testing the internal
model consistency and for identifying current limitations of the process understanding, before sub-
sequently – if the evaluation was satisfactory – using the model for detailed analyses that go beyond
the possibilities of the field observations.

Finally, based on my experience from the studies of my thesis, I would suggest that more often
one and the same person should work as experimentalist and modeller for a real synergy between
simulations and observations. A model setup always requires some experimental knowledge and at
the same time the work with a model always implicitly includes its usage as a learning tool. The
gained knowledge from the field work and ’virtual experience’ creates a holistic understanding of the
hydrologic functioning that is very difficult to obtain with the same detail from a simple ’dialogue’
between experimentalists and modellers. This is certainly particularly useful for the investigation of
a specific study site, but - as the findings of my thesis showed - the eventually gained knowledge can
also be of interest for other study sites and landscapes. In the final section, I give further examples for
studies that could and should rely on a synergy between observations and simulations. The examples
focus on process understanding in the Weierbach catchment, but all suggested investigations could
also be applied in the same or a similar way for other study sites and they have the potential to
advance the hydrologic process understanding beyond a specific study site.

5.2 Next steps in the Weierbach catchment

Possible follow-up studies in the Weierbach catchment may use the already intensively tested model
in combination with additional field data to further improve the process understanding for that
specific catchment. Although my work advanced the process understanding with regard to the
role of preferential flow paths at different scales and the spatio-temporal generation of surface
saturation, there are several aspects that I did not address in my thesis. For example, Study 1 showed
that the non-uniformity of water flow through the subsurface has less impact on the volumetric
discharge generation in the Weierbach catchment than often assumed, but it remained unclear
if and how preferential flow paths affect the transport of solutes to the catchment outlet. This
question might be investigated by including solute transport or particle tracking in the catchment
model and comparing results of simulations with and without preferential flow to water chemistry
and isotope samples. Moreover, I did not specifically analyse the impact of preferential flow paths
on the generation of the characteristic sharp, short-lasting peaks of the Weierbach as immediate
runoff response to precipitation. Simulations analogous to Study 1 but for single events and with
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high temporal resolution of model input and validation data might help to eventually clarify the
often suggested contribution of preferential subsurface flow to these characteristic ‘first’ discharge
peaks.

At the same time, event-based simulations could also investigate the evolution of surface saturation
during single events and the contribution of surface saturation excess overland flow to ‘first’ and
‘second’ discharge peaks. Study 2 to Study 4 largely improved the understanding of the spatio-
temporal generation of surface saturation in the riparian zone of the Weierbach catchment and
especially revealed that surface saturation is predominantly generated by return flow of water that
was previously stored in the subsurface, while a contribution of direct precipitation to the generation
of surface saturation was generally small. Also, the simulation results of Study 4 suggested that
contributions of overland flow from the riparian zone to streamflow generation were small. However,
the focus of the studies of my thesis was on the long-term generation and occurrence of surface
saturation across the catchment and I did not explicitly analyse the evolution of surface saturation
during single events and the contribution of overland flow to the particular ’first’ and ’second’
discharge peaks. Therefore, a future study may further analyse these aspects with similar approaches
as followed in Study 3 and Study 4. In particular, it might be interesting to compare the simulated
occurrence of surface saturation during single events to the collected high-resolution (15 min) TIR
images, where preliminary analyses showed that surface saturation is not very reactive within single
events, thus suggesting in line with the findings from Study 4 that the contribution of surface
saturation to runoff generation is smaller than often suggested. Moreover, event runoff sources
– including saturation excess overland flow – could be easily identified and quantified with the
hydraulic mixing cell simulations (cf. Study 4) and be compared to inferences drawn from existing
geochemistry and isotope samples about runoff sources. Finally, a study similar to Study 1 might
assess how the inclusion or omission of vertical preferential flow paths influences the generation of
surface saturation within single events and for the longer term.

In order to enter an ultimate loop of alternating observations and simulations for testing and im-
proving current process understanding, a next step could be to design a sampling campaign for
analysing different water sources of surface saturation based on chemical and isotopic water sam-
ples. The simulation results of Study 4 could be used to identify sampling locations and sampling
times with particular expected similarities or differences of water sources. Once sampled and ana-
lysed, the field data could then again be used analogous to Study 3 to further test the internal
consistency of the model and to identify which processes or structural features might be neglected
in the model. Furthermore, future studies could apply the HGS model of the Weierbach catchment
to address completely different aspects than preferential flow and surface saturation. For example,
forward particle tracking could be used in order to estimate transient travel time and residence time
distributions and the results could be confronted with existing isotopic data and estimations based
on storage selection functions. Virtual experiments could investigate how runoff generation evolves
under changing climate or land use or when accounting for spatial heterogeneities of the subsurface
characteristics or for the often discussed existence of two different groundwater systems.
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How Meaningful are Plot-Scale 
Observations and Simulations of 
Preferential Flow for Catchment Models?
Barbara Glaser,* Conrad Jackisch, Luisa Hopp, 
and Julian Klaus
Despite ubiquitous field observations of nonuniform flow processes, prefer-
ential flow paths are rarely considered in hydrological models, especially at 
catchment scale. In this study, we investigated the extent to which plot-scale 
observations of preferential flow paths are informative for rainfall–runoff simula-
tions at larger scales. We used data from three plot-scale irrigation experiments 
in the Weierbach catchment (Luxembourg) to identify preferential flow param-
eterizations via a Monte Carlo simulation with HydroGeoSphere. Subsequently, 
we tested whether these parameter sets could be used directly to simulate the 
hydrological response of the Weierbach headwater with a HydroGeoSphere 
catchment model. The Monte Carlo simulations showed that the different depth 
profiles of Br− tracer observed in irrigation experiments could be reproduced 
when vertical preferential flow was simulated with a dual-permeability approach. 
However, it was not possible to identify unique parameter values for preferential 
flow. The direct transfer of a range of different dual-permeability parameter sets 
to the catchment model revealed that the variability of simulated hydrometric 
catchment responses (discharge and soil moisture over 18 mo) was indepen-
dent of the variability among the three irrigation experiments. More importantly, 
the dual-permeability approach did not improve the match between simulated 
and observed discharge and soil moisture responses compared with the single-
domain reference model, where multiple soil layers with differing hydraulic 
conductivities had already been implemented. This suggests that including struc-
tures that allow nonuniform lateral flow was more important for reproducing the 
hydrological response in the Weierbach catchment than the vertical preferential 
flow observed at plot scale.

Abbreviations: 3D, three-dimensional; MC, Monte Carlo; NSE, Nash–Sutcliffe efficiency.

It is often criticized that the majority of hydrological models neglect or poorly rep-
resent preferential flow processes and therefore miss an important feature of subsurface 
processes (e.g., Beven and Germann, 2013; Weiler, 2017). At the same time, the integrated 
effect of preferential flow paths on catchment response remains under discussion (Beven 
and Germann, 2013; Weiler, 2017). To date, many experimental studies at plot (<5 m2) 
and hillslope (5 m2–1 ha) scales have shown that vertical and lateral preferential flow have 
a crucial impact on the timing and quantity of water flow and solute transport (e.g., Vogel 
et al., 2006; Rosenbom et al., 2009; Anderson et al., 2009; van Schaik et al., 2010; Klaus 
et al., 2013, 2014; Laine-Kaulio et al., 2014; Jackisch et al., 2017; Scaini et al., 2017). Yet, 
direct observations of preferential f low pathways at catchment scale (>1 ha) are rather 
scarce. Recently, Wilson et al. (2016) observed that networks of large soil pipes can effec-
tively connect the hillslope areas with the catchment outlet via lateral preferential flow. 
Other work at catchment scale has relied on soil moisture sensor networks (Liu and Lin, 
2015; Wiekenkamp et al., 2016) to analyze the spatiotemporal occurrence of preferential 
flow across two forested catchments (7.9 ha and 38.5 ha, respectively). These two stud-
ies demonstrated that the occurrence of vertical preferential flow was highly variable in 
space across the two catchments investigated. Based on their field results, Liu and Lin 
(2015) identified a “hidden” preferential flow network in the subsurface. However, such 
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catchment scale.
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ment simulation.
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an experimental setup does not allow the relevance of small-scale 
variabilities in preferential flow patterns and in local subsurface 
flow networks to be analyzed for the rainfall–runoff response at 
the catchment outlet.

Modeling approaches can help to bridge the gap between 
observations of preferential f low at plot and hillslope scale and 
the understanding of the effect of preferential flow on integrated 
catchment responses. However, as is the case for the experimental 
investigations, there is a discrepancy between the number of simu-
lations that include preferential f low at plot and hillslope scale 
(e.g., Weiler and McDonnell, 2007; Klaus and Zehe, 2010, 2011; 
Laine-Kaulio et al., 2014; Frey et al., 2016; Kukemilks et al., 2018a; 
Reck et al., 2018) and the number of simulations that include 
preferential flow at catchment scale (e.g., Krzeminska et al., 2013; 
Steinbrich et al., 2016; Villamizar and Brown, 2017; Kukemilks 
et al., 2018b). Consequently, the number of modeling studies 
that have explicitly analyzed the effect of preferential f low on 
catchment response by comparing simulations with and without 
preferential flow is limited (Beckers and Alila, 2004; Christiansen 
et al., 2004; Zhang et al., 2006; van Schaik et al., 2014; Yu et al., 
2014; De Schepper et al., 2015). An increased number of such stud-
ies could be a valuable asset for the currently limited understanding 
of the circumstances, processes, and degree to which preferential 
flow has a relevant effect on integrated catchment response and 
thus requires explicit parameterization and simulation.

In practical terms, two main challenges hinder preferential 
f low concepts from being included more often in distributed, 
physically based catchment-scale simulations: (i) finding a proper 
mathematical process description that is adequate for the scale, and 
(ii) finding adequate model parameters for the process description 
(cf. Beven and Germann, 2013; Jarvis et al., 2016). While numerous 
plot-scale studies have focused on advancing accurate descriptions 
of flow and exchange processes within explicitly implemented mac-
ropores and fractures (e.g., Vogel et al., 2006; Scheibe et al., 2015; 
Jackisch and Zehe, 2018), explicit implementations of discrete 
macropore and fracture geometries for an entire catchment are 
(currently) not feasible from a computational and parameteriza-
tion point of view (Jarvis et al., 2016). Instead, the most common 
representations of preferential flow processes in existing catchment 
simulations are dual-domain approaches, which separate the sub-
surface into two interacting matrix and preferential flow domains 
with differing hydraulic properties (e.g., Kordilla et al., 2012; van 
Schaik et al., 2014; Wang et al., 2014; Yu et al., 2014; De Schepper 
et al., 2015; Jarvis et al., 2016; Steinbrich et al., 2016; Villamizar 
and Brown, 2017). The physical adequacy of the most commonly 
used equations within the dual-domain approach (e.g., Darcy equa-
tion, Richards equation, Green-Ampt infiltration) for catchment 
scale has been debated (cf. Beven and Germann, 2013; Jarvis et 
al., 2016). Aside from this fact, the implicit representation of the 
subsurface structure with two coexisting bulk domains is a strong 
simplification of the real preferential flow network. Yet, many of 
the studies that included preferential flow processes for simulating 
catchment responses have simplified the spatial representation of 

the catchment even more, e.g., by proportionally combining the 
outputs of several representative one-dimensional dual-perme-
ability simulations to a catchment response (Wang et al., 2014; 
Villamizar and Brown, 2017), performing a two-dimensional dual-
permeability simulation for a representative cross-section through 
the catchment (e.g., Kordilla et al., 2012), or using spatially dis-
tributed three-dimensional (3D) dual-permeability simulations 
with lumped formulations for lateral (Krzeminska et al., 2013) or 
groundwater flow (van Schaik et al., 2014). The question of which 
spatial simplifications of preferential flow are necessary and suit-
able for appropriate catchment-scale simulations with acceptable 
computational costs remains open.

Regardless of the representation chosen for preferential flow, 
the identification of an adequate parameterization to simulate 
preferential flow is challenging (Beven and Germann, 2013). Most 
existing catchment modeling approaches rely on parameter cali-
bration or a parameterization based on literature values. Only a 
few studies have parameterized preferential flow (at least partly) 
based on measurements of study site characteristics such as satu-
rated hydraulic conductivity, water retention curve, crack density, 
and fracture aperture (e.g., Kordilla et al., 2012; Steinbrich et al., 
2016; Loritz et al., 2017; Kukemilks et al., 2018b). The problem of 
parameter calibration in physically based models is that (i) the opti-
mized parameters may not capture the real physics of the system, 
(ii) parameters may not uniquely converge due to equifinality, and 
(iii) calibration may require a large number of model runs, with the 
latter being mainly restrictive for physically based, distributed, 3D 
catchment simulations with long computational times. Therefore, 
the calibration of physically based 3D catchment models including 
preferential flow barely exists today (exception, Yu et al., 2014). A 
direct parameterization based on field observations is challenging 
because measurements can only capture local characteristics of a 
catchment and it is hardly feasible to perform sufficient measure-
ments to fully assess the heterogeneity within a catchment.

A promising approach for identifying an observation-based 
parameterization of preferential f low for catchment simula-
tions is to derive parameters in simulations of detailed plot-scale 
observations and to then use these parameters for informing 
catchment-scale simulations (e.g., Vogel and Roth, 2003; Beven 
and Germann, 2013; Cadini et al., 2013). Previous studies have 
realized such an upscaling of preferential flow simulations from 
plot to hillslope or catchment scale but have lacked validation 
of the plot- and catchment-scale simulations against field data 
(Cadini et al., 2013; Wang et al., 2014). Van Schaik et al. (2010) 
used data from plot-scale irrigation experiments to parameterize 
three soil profile models. They used these parameterized models to 
simulate plot-scale water balance and eventually compared this to 
the water balance observed at catchment scale. However, later work 
by van Schaik et al. (2014) relied on a different model requiring 
different parameters for 3D simulations of their catchment. For 
all these studies, it is difficult to fully assess the value of detailed 
simulations at plot scale for parameterizing catchment simula-
tions. Moreover, the question of how spatial heterogeneity within 
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a catchment affects the simulation results at catchment scale in 
such an approach remains open: Does it matter how representa-
tive the used plot-scale observation of preferential flow is for the 
entire catchment? Or does the effect of locally different character-
istics “smooth out” with scale, as observed, for example, for initial 
saturation (Zehe and Blöschl, 2004) and saturated hydraulic con-
ductivities (Meyerhoff and Maxwell, 2011)?

We conducted a study on the transferability of plot-scale-
derived preferential f low parameterization to catchment 
rainfall–runoff simulations for the Weierbach headwater 
(Luxembourg). We parameterized the preferential flow based on 
plot-scale observations during irrigation experiments and subse-
quently transferred the parameters to catchment-scale simulations. 
We used the integrated hydrological surface–subsurface model 
HydroGeoSphere (Therrien et al., 2010), which allowed us to 
use the same preferential flow representation (dual-permeability 
approach) at plot and catchment scales. By doing this, we hypoth-
esized that model parameters and processes are scale invariant 
and that a direct extension of the model from plot to catchment 
scale is possible. We constrained the plot-scale parameters with 
observations from three irrigation experiments (dye tracer patterns, 
Br− concentration profiles). We then tested the transfer of several 
preferential flow parameter sets from plot scale to the catchment-
scale model and validated the catchment simulation results with 
discharge and soil moisture observations. The aim of this approach 
was to assess (i) the value of plot-scale irrigation experiments for 
identifying parameter sets for a realistic dual-permeability simula-
tion at catchment scale, (ii) the effect of the spatial heterogeneity of 
the occurrence and prominence of vertical preferential flow (and 
thus the importance of the representativeness of the used plot-scale 
observation) on the parameter transfer, and (iii) the spatial (verti-
cal and lateral) and conceptual representation of preferential flow 
with a dual-permeability approach for capturing the integrated 
signals of a humid-temperate catchment in long-term simulations.

Please note that, when referring to our simulations, we use 
the term preferential flow for describing the parameterization of 
nonuniform flow with a dual-permeability approach, focusing on 
the vertical preferential flow component that is introduced with 
this approach. In addition, the model setup consists of multiple 
soil layers with contrasting hydraulic conductivities, which enable 
a development of nonuniform lateral subsurface flow. This lateral 
flow can also be interpreted as preferential flow but is referred to 
here as fast or nonuniform lateral (subsurface) flow.

 6Study Site and Previous Work
The simulation of preferential f low is based on field inves-

tigations that were conducted in and near the Weierbach 
catchment, a forested 42-ha experimental catchment in the 
foothills of the Ardennes massif in the west of Luxembourg (Fig. 
1). The area is characterized by shallow soils overlying perigla-
cial deposit layers and Devonian slate bedrock (Juilleret et al., 
2011; Moragues-Quiroga et al., 2017). Catchment runoff shows 

distinct differences between dry and wet catchment states, with 
single-peak hydrographs during dry and double-peak hydrographs 
(Martínez-Carreras et al., 2016) under wet conditions. The pro-
cesses contributing to the distinct streamflow behavior have been 
under investigation for many years (Fenicia et al., 2014; Wrede et 
al., 2015; Klaus et al., 2015; Martínez-Carreras et al., 2016; Schwab 
et al., 2017). The common perception of these studies mainly 
relates the sharp, short-lasting (single-peak) hydrographs to flow 
paths on the surface and in the shallow (top)soil and the second, 
delayed peaks to the exceedance of storage thresholds, connecting 
deeper (ground)water.

Several studies around the Weierbach have investigated prefer-
ential flow. Irrigation experiments by Jackisch et al. (2017) on three 
1-m2 plots in the direct vicinity of the catchment (same vegetation 
and pedolithological structure, Fig. 1) showed fast vertical infiltra-
tion and preferential f low through a network of interaggregate 
pores. Scaini et al. (2017, 2018) observed that vertical subsurface 
flow and vertical preferential pathways dominated fluxes in the top 
2 to 3 m during two irrigation experiments on a 64-m2 hillslope 
section in the Weierbach catchment. In addition, Scaini et al. (2017, 
2018) found indications of a fast connection between hillslope and 
stream, which they related to a fast lateral flow in the fractured 
bedrock 2 to 3 m below the surface. In a nearby catchment with 
the same pedolithological structure, Angermann et al. (2017) dem-
onstrated for a hillslope that preferential flow paths developed in 
unsaturated soils shortly after the onset of intense irrigation or 
precipitation. Based on their investigations, they inferred fast lat-
eral preferential flow through distinct paths at the interface of the 
periglacial deposit layer as one of the main processes in the hill-
slope, potentially contributing to the sharp, short-lasting (single) 
hydrograph peaks. In line with the field investigations, Glaser et al. 
(2016) suggested that incorporating preferential flow formulations 
could help to improve the performance of their physically based 3D 
single-domain HydroGeoSphere model of the 6-ha headwater of 
the Weierbach (Fig. 1). As highlighted in Fig. 1, their simulations 
notably missed some specific hydrograph responses of the broad, 
delayed peaks.

In this study, we rel ied on the 6 -ha headwater 
HydroGeoSphere model of Glaser et al. (2016) and the informa-
tion derived from the three 1-m2 plot irrigation experiments of 
Jackisch et al. (2017) as the basis for the parameterization of pref-
erential flow simulations at plot and catchment scale (see below). 
In addition, soil moisture was monitored from October 2012 to 
April 2014 on a hillslope in the catchment (Fig. 1) with time-
domain reflectometers (Campbell CS650) installed horizontally 
at the 10-, 20-, 40-, and 60-cm depths. The stream level was mea-
sured at the outlet of the catchment (ISCO 4120 Flow Logger) 
and transformed into discharge via a rating curve. Additional dis-
charge measurements (ISCO 4120 Flow Logger, transformation 
via a rating curve) were performed at the outlet of the upper 6-ha 
headwater region of the catchment (Fig. 1) starting in spring 2013.

The irrigation experiments were described in detail by Jackisch 
et al. (2017). Here, we briefly summarize the information relevant for 
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this study. Three 1-m2 plots were irrigated for 1 h with 30 mm (Plot 
2) or 50 mm (Plots 1 and 3) of water mixed with Br− (5 g L−1 KBr) 
and the dye tracer Brilliant Blue (4 g L−1). At each plot, soil moisture 
was continuously measured with a time-domain reflectometry 
tube probe (IMKO IPH/T3) at 10-cm depth increments down 
to a depth of 1.2 m. Each plot was excavated 24 h after irrigation 
and analyzed for Brilliant Blue patterns (three vertical faces, five 
to seven horizontal faces) and vertical profiles of Br− recovery 
(five vertical profiles with horizontal and vertical sample spacing 
of 5 cm down to a maximum depth of 1 m). The observed soil 
moisture responses, Brilliant Blue patterns, and Br− concentrations 
consistently indicated a fast and pronounced nonuniform vertical 
transport down to the upper boundary of the periglacial deposit layer 
(starting at a depth of approximately 0.6 m, Fig. 1). Apart from that, 
the monitored soil moisture depth profiles and vertical patterns of 
dye and Br− showed a high spatial heterogeneity within and between 
the different irrigated plots (Jackisch et al., 2017).

 6Modeling Approach
HydroGeoSphere model

HydroGeoSphere (Aquanty, 2015) is a 3D integrated hydro-
logical surface—subsurface model code that can simultaneously 
solve a modified form of the Richards equation for transient flow 
in the subsurface domain and the diffusion wave approximation of 
the two-dimensional Saint-Venant equation for flow in the surface 
domain. Solute transport can be implemented with an advection–
dispersion equation. Preferential flow can be considered via flow 
in discrete fractures or via a dual-permeability approach (Therrien 
et al., 2010; Aquanty, 2015).

In this study, we incorporated preferential flow with the dual-
permeability approach. In this approach, two subsurface continua 
coexist. One continuum represents water flow and solute transport 
in the soil matrix (hereafter called the matrix domain); the other 
continuum represents flow and solute transport in the macropores 
(hereafter called the macropore domain). The two domains are 

Fig. 1. Weierbach catchment and surroundings (left), model grid and hydrographs of the 6-ha headwater model from Glaser et al. (2016) (top right), 
and example excavation plot and Br− depth profile of the irrigation experiments from Jackisch et al. (2017) (bottom right).
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volumetrically partitioned on the total subsurface volume and 
parameterized independently with different soil hydraulic param-
eters (used here: saturated hydraulic conductivity Ks, porosity n, 
residual saturation qr, van Genuchten a , and van Genuchten b). 
Exchange between the matrix and macropore domains follows a 
dual-node approach, i.e., the interface between the two domains is 
represented as a very thin layer of porous material through which 
a Darcy f lux is driven by respective hydraulic head differences 
between the two domains. Consequently, using the dual-permea-
bility approach requires the definition of soil hydraulic parameters 
for the matrix and macropore domains as well as for the exchange 
interface. Additionally, fluid and mass exchange parameters for 
the exchange interface (fex, mex) and a parameter defining the 
macropore domain percentage on the total subsurface volume 
(pct, summing up to 100% with the matrix domain percentage) 
are needed.

The plot-scale and catchment-scale simulations of this study 
build on a modified HydroGeoSphere model of the 6-ha headwater 
region of the Weierbach as described by Glaser et al. (2016). They 
used the model to simulate coupled surface and subsurface flow 
from October 2010 to August 2014 with hourly precipitation and 
potential evapotranspiration forcing. A nested model grid (area of 6 
ha, depth of 3 m) was composed of nine layers of three-sided prisms 
with vertical element heights ranging from 0.15 m (top layers) to 1 
m (bottom layer) and horizontal element lengths ranging from 10 
m (hillslope) to 0.25 m and less (riparian zone and stream bed) (Fig. 
2, left). Eleven matrix domain zones were parameterized in the 
grid with differing hydraulic characteristics, representing a humic, 
dystric, skeletic, and siltic Cambisol at the hillslopes (Ah, B1, B2), 
a stagnic soil in the riparian zone (LP), and universally underly-
ing layers of transition from subsoil to regolith (IIC), weathered 
bedrock (Cv), and solid slate (mC) (Fig. 2, middle). The matrix 
domain zones were implemented as laterally homogeneous layers 
all over the catchment with the exception of the outcropping of 
the soil layers and the overlying stagnic soil in the riparian zone.

Model parameterization relied on field observations, includ-
ing electrical resistivity tomography and measurements of soil 
hydraulic parameters from soil samples, literature values, and trial 
and error calibration of porosities, hydraulic conductivities, and 
evapotranspiration parameters. The measurements used for param-
eterization did not explicitly exclude macroporous structures. The 
highly saturated hydraulic conductivities and the porosities of the 
soil and regolith layers (Table 1, Soil Zones 1–6) suggest that a 
macropore influence was already implicitly included in the matrix 
domain parameterization. This reflection was considered in the 
following dual-permeability parameterization, where we explicitly 
implemented vertical preferential flow by distinguishing between 
soil matrix and macropores. To incorporate the dual-permeability 
approach, we adapted the previous model as described below and 
simulated the plot-scale irrigation experiments and the hydrologi-
cal catchment response for a period of 18 mo (October 2012–April 
2014). For additional information on the basic model setup (e.g., 
evapotranspiration parameters, numerical controls), see Glaser et 
al. (2016).

Plot-Scale Model Setup
We simulated the three plot-scale irrigation experiments of 

Jackisch et al. (2017) in a horizontal 1-m2 soil column of 6-m 
depth implemented in HydroGeoSphere. The grid was defined by 
0.25-m2 quadratic elements with element heights of 1 cm between 
the 0- and 4-m depths and element heights of 5 cm between the 
4- and 6-m depths. Flow and transport were simulated in the sub-
surface only (no surface domain) because this can avoid numerical 
problems, and no surface runoff was observed during the experi-
ments. We set up the matrix domain of the model column 
identically to the hillslope structure of Glaser et al. (2016), i.e., 
the soil type depth profile and parameterization of the hillslopes 
(Soil Zones 1–10; cf. Fig. 2, Table 1) was applied to the upper 4 m 
of the model column (Fig. 2). The lower 2 m of the model column 
(4–6 m) served as porous storage (Ks = 1 m d−1, n = 20%, qr = 0.02, 

Fig. 2. Schematic cross-section through the 
subsurface setup showing the soil zones (mid-
dle) as defined in the headwater model grid of 
Glaser et al. (2016) (left) and in the plot-scale 
model grid (right) used for simulating the irri-
gation experiments. The cross-section has been 
modified from Glaser et al. (2016).
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a  = 6 m−1, b  = 1.5) to prevent water from ponding at the bottom 
of the upper 4 m.

Preferential flow was incorporated in the upper 4 m by defin-
ing a macropore domain with the same soil zone layering as for the 
matrix domain. This required preferential flow parameters (Ks, n, 
qr, a , b, fex, mex, and pct) for 10 different soil type zones (cf. soil 
type zones of the matrix domain at the hillslopes, Fig. 2). These 
parameters were explored within a Monte Carlo approach (see 
below). Bromide transport was simulated with a tortuosity of 0.1, 
a diffusion coefficient of 1.6 ´ 10−4 m2 d−1, and longitudinal and 
transverse dispersivities of dl = 0.05 m and dt = 0.005 m for the 
matrix and dl = 0.1m and dt = 0.01 m for the macropore domain 
(cf. Gelhar et al., 1992; Rosenbom et al., 2009; Leistra and Boesten, 
2010; Laine-Kaulio et al., 2014).

Following Laine-Kaulio et al. (2014), we partitioned the 
input fluxes (solute and water) at the upper boundary of the model 
between the macropore and matrix domain with a ratio of 90:10. 
We assigned no-flow boundaries to the sides and the bottom of 
the model column. Initial saturation was identical for the matrix 
and macropore domains (see Supplemental Material S1 for values); 
the initial Br− concentration was set to zero (10−15 kg m−3 to avoid 
numerical instabilities) in both domains.

Plot-Scale Simulation of Preferential Flow 
with a Monte Carlo Approach

We performed 20,000 brute-force Monte Carlo (MC) simu-
lations for identifying the best-performing parameter sets for the 
three irrigation experiments. A total of 12,000 MC runs were 
simulated with an irrigation rate of 50 mm h−1 (representing Plots 
1 and 3) and 8000 simulations were performed with an irrigation 

rate of 30 mm h−1 (representing Plot 2). The MC runs differed in 
the parameterization of preferential flow (parameters of the mac-
ropore domain and parameters for defining the partitioning and 
exchange between the matrix and macropore domain, cf. Table 2). 
Transport and matrix parameter values (Table 1) were kept con-
stant with the exception of saturated hydraulic conductivity and 
porosity of the matrix domain. These two parameters were adapted 
in half of the MC simulations to account for the assumption that 
values used in the single-domain model implicitly included the 
effect of preferential flow (cf. high values in Table 1).

In total, 12 preferential f low parameters were needed for 
each of the 10 different soil type zones. Consequently, indepen-
dent value variations for each parameter and soil layer would have 
resulted in 120 values to be modified per model run. To keep a 
reasonable number of parameter variations, we varied only 8 of 
the 12 preferential f low parameters. Precisely, the values of the 
hydraulic parameters qr, a , and b of the interface between the 
macropore and matrix domain and the residual saturation qr of 
the macropore domain were not varied in the MC runs (Table 2, 
no value variation). In addition, we reduced the number of neces-
sary parameter variations by assigning a global value for all 10 soil 
layers for some parameters (fex, mex, and n) (Table 2, global values 
in depth profile).

The parameters a, b, Ks, and pct were subject to separate value 
assignment for different soil layers (Table 2, layer-specific values in 
depth profile). To avoid unrealistic hydraulic and capillary jumps 
and barriers, the value assignment was constrained to the form 
(value ratio) of several predefined nonuniform depth profiles. To 
define realistic depth profiles of parameters [hereafter labeled 
dpxxx(z)], we applied different approaches (hereafter labeled 
DPxxx) as multiple working hypotheses (Clark et al., 2011) that rely 
on field observations and their different interpretations (Table 2, 
Supplemental Table S1). Details on the different approaches DPxxx 
and the pre-defined depth profiles dpxxx(z) obtained are described 
in Supplemental Material S1.

Briefly, different van Genuchten a and b values were assigned 
to the different soil layers based on two different macropore cat-
egories: biopores (b) and fractures ( f ). The macropore categories 
b and f were assigned to the different soil layers based on the char-
acteristics observed in the excavated irrigation plots (DPcat, dpcat; 
Table 2, Supplemental Table S1). The depth profile dppct for the 
macropore percentage (pct) was parameterized with four different 
approaches DPpct A to D (Table 2). The approaches DPpct A and 
DPpct B represented two different ways of interpreting the Brilliant 
Blue patterns observed at the irrigation plots, approach DPpct C 
assigned a constant percentage with depth, and approach DPpct D 
relied on results from preliminary test simulations (Supplemental 
Material S1, Supplemental Table S1). The saturated hydraulic con-
ductivity of the macropores (Ks) was assigned separately to the 
different soil layers following two different approaches (DPKs A 
and B). The Ks value was calculated either based on macropore 
apertures (apert, which required the definition of macropore aper-
ture depth profiles dpapert, DPKs A, Table 2, Supplemental Table 

Table 1. Soil hydraulic parameters from the single-domain model of 
Glaser et al. (2016) including residual saturation (qr), van Genuchten 
parameters a and b, porosity (n), and saturated hydraulic conductiv-
ity (Ks). In this study, these values were used for the parameters of the 
matrix domain or as effective model parameters  (for Ks and n only), 
respectively. (Table modified from Glaser et al., 2016).

Soil zone qr a b  n  Ks

m−1 m d−1

1 (Ah/Ah-B1) 0.12 6.6 1.46 0.74 1.71 ´ 101

2 (B1) 0.10 22.1 1.42 0.61 1.71 ´ 101

3 (B2) 0.10 22.1 1.42 0.45 4.59 ´ 101

4 (B2-IIC) 0.10 22.1 1.42 0.30 9.30 ´ 102

5 (B2-IIC) 0.10 22.1 1.42 0.15 2.04 ´ 103

6 (B2-IIC) 0.02 6.0 1.50 0.20 8.40 ´ 102

7 (IIC-Cv) 0.02 6.0 1.50 0.15 3.00 ´ 100

8 (Cv) 0.02 6.0 1.50 0.10 1.20 ´ 10−2

9 (Cv-mC) 0.02 6.0 1.50 0.05 9.00 ´ 10−4

10 (mC) 0.02 6.0 1.50 0.01 2.40 ´ 10−5

11(LP) 0.10 22.1 1.42 0.61 7.80 ´ 100
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S1) or as a function of varied matrix conductivities Ks-matrix, main-
taining the same effective hydraulic conductivities as originally 
assigned to the matrix domain (cf. Table 1), but via a different 
contribution of the matrix and macropores to the effective hydrau-
lic conductivity. In the latter case (DPKs B, Table 2, Supplemental 
Material S1), matrix porosities were also adapted in such a way 
that effective porosities equaled the porosity values as originally 
assigned to the matrix domain (Table 1).

Ultimately, we varied eight macropore parameters in the 
MC simulation (Table 2, value variation). In half of the MC runs, 
we additionally varied matrix conductivities and porosities (see 
above and Supplemental Material S1). Some of the value variations 
were conditioned by variations of adjunct parameters (macropore 
category b or f, macropore aperture apert, matrix hydraulic con-
ductivity Ks-matrix) and different methods (DPcat, DPpct A–D, 
DPKs A–B, DPapert A–D) for defining parameter depth profiles 
dpxxx(z) (see Table 2, Supplemental Material S1). The values for 
the varied parameters n, a , and b were randomly altered based on 
a uniform distribution U(a,b) across a specific constraint range 
(a,b) as defined in Table 2. The remaining varied parameters Ks 
(of the macropore domain, matrix domain, and interface), pct, 
fex, and mex were calculated as functions of so-called parameter 
modification factors Fxxx. These modification factors Fxxx were 
introduced to allow random sampling for the parameter values 
across several orders of magnitude. The modification factors Fxxx 
were randomly chosen from a uniform distribution U(a,b) across 
a constraint range (a,b), which we individually defined for each 
parameter modification factor by following the rationale indicated 
in Table 2.

Furthermore, we used two different depth distributions of 
initial saturation in the MC simulations. Both depth distributions 
reflected the conditions at the beginning of the irrigation experi-
ment. One profile reflected the soil moisture observed at several 
locations close to the irrigation plots (DPsat A, Supplemental Table 
S1). The second profile was derived from simulated soil moisture 
from Glaser et al. (2016) (DPsat B, Supplemental Table S1). The 
two different initial saturation depth profiles were divided evenly 
among the different MC runs (Supplemental Table S2).

Evaluation of Plot-Scale Simulations
The plot-scale simulations were evaluated based on the Br− con-

centrations. We evaluated the simulated depth profiles of Br− with 
the average observed Br− profiles (i.e., the average profiles of the five 
individual vertical profiles for each irrigation plot, corrected with 
the corresponding recovery rates, assuming a uniform error with 
depth) of the different irrigation plots (i.e., comparing the 8000 
simulations with 30 mm h−1 irrigation intensity with the profile 
of Plot 2 and the 12,000 simulations with 50 mm h−1 irrigation 
intensity with the profiles of Plots 1 and 3). We used a combina-
tion of two Nash–Sutcliff efficiencies (NSEs) as the model quality 
criterion. We calculated one NSE for the concentration profile 
across the full extent of observed depths (NSEtotal). We calculated 
the second NSE (NSEBr-peak) for a specific depth section between 

0.32 and 0.82 m where Br− showed increased concentration for all 
irrigation plots. This second NSEBr-peak was specifically used for 
assessing the model performance in terms of preferential transport 
down to the periglacial deposit layer (cf. Fig. 1) without biasing the 
assessment with the influence of high Br− concentrations originat-
ing from a uniform transport front in the soil matrix in the upper 
0.3 m. The MC simulations were ranked according to each of the 
two NSEs, and the resulting two rank numbers for each model run 
were summed to a final performance rank number.

Transfer from Plot- to 
Catchment-Scale Simulations

We selected the 10 best performing parameter sets, the 
parameter set at the first quartile, the median, and the third 
quartile of performance for each of the three irrigation plots to 
be used for catchment-scale modeling. The resulting subset of 39 
parameter sets was intended to reflect the diversity of plot-scale 
preferential f low parameter sets. Based on this, we tested the 
effect of variable preferential f low parameterizations on long-
term catchment-scale simulations.

Each of the 39 selected parameter sets was used for a simula-
tion of the hydrometric catchment response (i.e., soil moisture and 
discharge, no solute transport) for the 6-ha Weierbach headwater 
from October 2012 to April 2014. We set up a single-domain refer-
ence model based on the headwater model of Glaser et al. (2016). 
Compared with their model, we reduced the temporal resolution 
(daily instead of hourly meteorological input data, see below and 
Supplemental Material S2) and the spatial resolution (coarsened 
horizontal grid in the riparian zone and vicinity) to save compu-
tational costs once the dual-permeability approach was added to 
the reference model. We added the dual-permeability approach 
by defining a macropore domain for all soil type zones except the 
stagnic soil layer of the riparian zone (because its soil structure did 
not indicate preferential flow in the field).

To check whether a daily rather than an hourly resolution of 
meteorological input data would affect the study conclusions, we com-
pared catchment simulations with hourly input and daily input data 
for six different parameter sets. To do this, we selected the parameter 
set for the single-domain reference model and five dual-permeability 
parameter sets that produced different discharge responses at catch-
ment scale. Details on the comparison are given in Supplemental 
Material S2. In summary, visual comparison and model efficiency 
(NSE) showed that the reduced input time step had no relevant effect.

The coarsening of the spatial resolution affected only the 
horizontal grid spacing in the riparian zone and its vicinity and 
still ensured a nested grid, with finer grid cells in the riparian 
zone and stream bed compared with the hillslopes. A comparison 
between the original headwater model of Glaser et al. (2016) and 
the reference model showed that this grid coarsening did not vis-
ibly affect the discharge simulation (data not shown). However, the 
adaptation of the grid required a new spin-up for defining initial 
conditions, which we performed during the period from October 
2010 to October 2012 (loop of three repetitions).
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The performance of the catchment-scale simulations was 
evaluated with discharge and soil moisture measurements (Fig. 
1) from October 2012 to April 2014. The soil moisture observed 
generally responded to incoming precipitation with fast and strong 
soil moisture increases in the topsoil and an increasingly damped 
response with depth. This behavior was consistent with other mea-
surement profiles in the Weierbach catchment (data not shown), 
yet some differences exist between absolute moisture values. Hence, 
we based the catchment model evaluation for soil moisture on the 
temporal soil moisture dynamic at different depths by calculat-
ing the Spearman correlation between moisture observations and 
moisture simulations. Discharge performance was evaluated by 
calculating the overall NSE.

 6Results
Plot-Scale Simulations
Monte Carlo Simulation of Irrigation Experiments

Simulating the three plot-scale irrigation experiments with-
out dual permeability reproduced the transport front down to 
the 0.3-m depth, but there was no Br− transport into deeper soil 
layers (Fig. 3a). The 20,000 Monte Carlo simulations with varying 
preferential flow parameters resulted in diverse depth transport 

of Br−. Approximately 5% of the simulations (8.5% for Plot 1, 
4.2% for Plot 2, 2.1% for Plot 3) modeled the Br− depth profiles 
observed with NSEtotal > 0 and NSEdepth > 0 (NSE for character-
istic Br− peaks between 0.32 and 0.82 m). Approximately 40% of 
the simulations (28% of Plot 1, 64% of Plot 2, 26% of Plot 3) did 
not reproduce any Br− peaks in deeper soil layers (no local maxima 
with concentrations ³0.05 kg m−3 in the 0.32–0.82-m depth) and 
in that regard did not perform better than a single-domain model.

The model performance of the 20,000 parameter sets was 
barely sensitive to the values of single parameters and the related 
modification factors Fxxx or depth profile predefinition methods 
DPxxx, (cf. Table 2), respectively. Mass exchange coefficient mex 
(Fmex), matrix conductivity Ks-matrix (FmatKs, DPKs), macropore 
percentage pct (DPpct, Fpct), and initial saturation sat (DPsat) 
showed some relation to model performance, but this did not 
allow the identification of unique, well-performing parameter 
values (Supplemental Fig. S2).

Characteristics of the Parameter Sets 
Transferred to Catchment Scale

The 10 best-performing preferential flow parameter sets of 
each irrigation plot (later used for the catchment-scale simula-
tions) showed some variability within the simulation results and 

Fig. 3. Observed Br− depth profiles of the three irrigation plots 1 to 3 (average profiles of five sampled vertical profiles, cf. Jackisch et al., 2017) in com-
parison to (a) simulations of the irrigation experiments without preferential flow and (b–d) simulations with a dual-permeability approach, showing 
the results of the 10 best, first quartile, median, and third quartile performing parameter sets of the Monte Carlo simulations for (b) Plot 1 (50 mm h−1 
irrigation rate), (c) Plot 2 (30 mm h−1 irrigation rate) and (d) Plot 3 (50 mm h−1 irrigation rate).
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the observations were not fully captured (Fig. 3b–3d). Nonetheless, 
the intraplot variability of the responses was low compared with 
the interplot variability, which was captured very well. The 
parameter sets with the first quartile, median, and third quartile 
of performance for each irrigation plot represented various nonfit-
ting results, with simulations of more or less uniform Br− depth 
profiles (e.g., Plot 2, third quartile, Fig. 3c), simulations with a 
transport front down to the 0.3-m depth (e.g., first quartile of Plot 
2, Fig. 3c), or simulations with Br− peaks in mismatching depths 
(e.g., Plot 3, third quartile, Fig. 3d).

The parameter values of the 39 parameter sets that were even-
tually transferred to catchment scale reflected the low parameter 
identifiability of the 20,000 parameter sets. The parameters that 
were not identifiable (n, a , b, apert, Ks-int, fex, cf. Supplemental 
Fig. S2) spread across most of the sampled parameter space for the 
39 transferred parameter sets (Fig. 4). The resulting water retention 
curves also covered a large range of the tested shapes of retention 
curves (Supplemental Fig. S3). The parameter values and water 

retention curves of the first, median, and third quartile model runs 
of each irrigation plot were not clearly separated from the values for 
the 10 best model runs (Fig. 4, Supplemental Fig. S3).

The values of the parameters that showed a relation to 
model performance (mex, Ks-matrix, pct, initial saturation sat; cf. 
Supplemental Fig. S2) extended only across a constrained part 
of the parameter space for the 10 best model runs of each irriga-
tion plot, and the parameter values of the first, median, and third 
quartile model runs were more clearly separated from the best 
performing parameter sets. The modification factor for the mass 
exchange coefficient (Fmex) was spread across <50% of the sampled 
parameter space for the 10 best runs of all three irrigation plots 
(Fig. 4). Matrix conductivity was reduced for only two out of the 
10 best runs of all three irrigation plots (FmatKs, Fig. 4, DPKs A [no 
variation of Ks-matrix], Supplemental Table S3). The definition of 
initial saturation was based on soil moisture observations for the 
vast majority of the 10 best runs of all three irrigation plots (DPsat 
A, Supplemental Table S3). For pct, the restriction to a part of the 

parameter space was less distinctive. The depth 
profile predefinition method DPpct A (Brilliant 
Blue stains correspond to macropores) showed a 
tendency to be more common in the first quar-
tile, median, and third quartile model runs than 
in the 10 best runs (Supplemental Table S3). In 
addition, the modification factor Fpct was lim-
ited to half of the sampled parameter space for 
the 10 best simulations of Plot 3 (Fig. 4).

Catchment-Scale Simulations
Discharge and Soil Moisture Responses

The reference catchment model adequately 
matched the observed discharge from October 
2012 to April 2014 (NSE of 0.63). Nevertheless, 
the model showed clear limitations in reproduc-
ing some specific hydrograph responses (Fig. 5a, 
cf. also previous modeling by Glaser et al. [2016], 
Fig. 1). Several of the dual-permeability, catch-
ment-scale simulations matched the observed 
hydrograph similarly to the reference simulation, 
with no improvement in the representation of the 
missing hydrograph features (Fig. 5b and 6, NSE 
> 0.5). All other dual-permeability simulations at 
catchment scale resulted in notably damped (Fig. 
5c and 5d), flashy (Fig. 5c and 5f), or underesti-
mated (Fig. 5e and 5f) discharge behavior and 
clearly could not reproduce the observed catch-
ment discharge (Fig. 6, NSE < 0.5).

The differing performance of the simulated 
hydrographs was not related to the model perfor-
mance of the parameter sets at plot scale. As an 
example, the top 10 performing parameter sets 
of Plot 1 showed a tendency to strongly under-
estimate catchment discharge (NSEs < −0.5, Fig. 

Fig. 4. Distribution of the parameter values and parameter modification factors of the 10 best, 
first quartile, median, and third quartile performing parameter sets of the MC simulations of 
the three irrigation plots. The values were normalized to the respective pre-constraint value 
ranges (Table 2), with 0 corresponding to the lowest and 1 to the highest constraint value.
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6). However, the different hydrographs shown in Fig. 5b, 5d, 5e, 
and 5f all resulted from a parameter set belonging to the top 10 
performing parameter sets of Plot 1. Also, the parameter set with 
the first quartile performance for Plot 1 resulted in a simulated 
catchment hydrograph with higher model efficiency than many 
simulations with parameter sets that belonged to the 10 best per-
forming parameter sets at plot scale (Fig. 5c and 6). Thus, the 
performance of a distinct parameter set at plot scale was no pre-
dictor for its performance at catchment scale.

Soil moisture simulated with the reference model was simi-
lar to soil moisture observed in respect of the characteristic fast 
responses and a reduced responsiveness with increasing depth 
(Fig. 7a). The coefficients of correlation between simulated and 
observed soil moisture were >0.6 in all depths (Supplemental Fig. 
S4). Several of the dual-permeability simulations matched the soil 
moisture depth profiles observed in a similar way to the reference 
simulation with correlation coefficients > 0.6 for most depths 
(Fig. 7b and 7d, Supplemental Fig. S4). The parameter sets that 
resulted in such a similar soil moisture behavior were—for the 
most part—the same parameter sets that showed well-simulated 
hydrographs (NSE > 0.5, cf. Fig. 6, Supplemental Fig. S4). The 
remaining parameter sets resulted in soil moisture dynamics with 

a poorer match of observed soil moisture (Fig. 7c, 7e and 7f, cor-
relation coefficients <0.6 in most depths, Supplemental Fig. S4).

Parameter Sensitivity
The analysis of the parameter variations revealed a clear relation 

between model performance (hydrograph NSE) and the modifica-
tion factor of the macropore aperture depth profiles Fapert. This 
factor modified the predefined macropore apertures that were used 
for the conductivity determination method DPKs A (cf. Table 2). 
The positive correlation identified between Fapert and hydrograph 
NSE (Fig. 8a) indicates that the model performed better with smaller 
macropore apertures and thus lower macropore conductivities at 
catchment scale, while such an effect was not observed at plot scale 
(cf. Fig. 4, Supplemental Fig. S2). The macropore conductivities 
that were determined based on method DPKs B, and thus relied on 
reduced matrix conductivities (FmatKs < 0), yielded mid-level perfor-
mance for the catchment simulations (Fig. 8b). This was consistent 
with plot-scale behavior (cf. Supplemental Fig. S2). The effective 
hydraulic conductivities were very similar to the hydraulic conduc-
tivities of the reference model in the upper seven soil zones for all 
model runs resulting in hydrograph NSEs > 0 (Fig. 8c). In the lowest 
three soil zones, the effective conductivities were more variable (Fig. 

Fig. 5. Observed and simulated discharge for six simulations at catchment scale: (a) the reference simulation, (b–f ) simulations with dual-permeability 
parameter sets from (b,d–f ) the 10 best performing and (c) the first quartile performing parameter sets for Irrigation Plot 1.
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8d), but in all soil zones (1–10) the effective conductivities were 
distinctly higher when the model run resulted in a hydrograph 
NSE < 0. None of the other varied parameters showed any relation 
between their value and the model performance at catchment scale 
(Supplemental Fig. S5). This includes the parameters that showed 
some effect on plot-scale performance (i.e., macropore percentage 
and initial saturation, cf. Supplemental Fig. S2; note that the mass 
exchange coefficient was irrelevant for the catchment-scale model 
because only hydrometric responses were simulated).

 6Discussion and Conclusions
Value of Plot-Scale Observations for Parameterizing 
Dual-Permeability Catchment Simulations
Non-uniqueness of Plot-Scale Parameter Values

One aim of this study was to test whether the plot-scale 
irrigation experiments contained valuable information for 

parameterizing a dual-permeability catchment model. The MC 
simulation allowed us to find various preferential flow parameter-
izations that matched the plot-scale observations well. However, 
different preferential flow parameter sets resulted in equally good 
simulations, and we could not identify unique well-performing 
parameter values. Moreover, none of the different, partly contrast-
ing approaches for predefining parameter depth profiles (DPpct, 
DPKs, DPapert) resulted in better simulation results than other 
approaches. This shows that it was not meaningful to identify the 
shape of the parameter depth profiles from our field observations.

The pronounced parameter non-uniqueness is consistent with 
other studies modeling preferential f low (e.g., Klaus and Zehe, 
2010; Arora et al., 2012). Search algorithms for inverse parameter 
estimation that are more sophisticated than the applied brute-
force Monte Carlo could allow a more efficient identification of 
optimal plot-scale parameterizations. However, this cannot solve 
the problem of parameter non-uniqueness and insensitivity (cf. 

Fig. 6. Heat map showing observed and simulated discharge at catchment scale. Each row corresponds to one hydrograph; the magnitude of discharge is 
indicated with a color scale. The bottom row is the observed discharge, rows a through f represent the hydrographs of Fig. 5. The hydrographs are sorted 
according to their Nash–Sutcliffe efficiency (NSE). The colors of the NSE values indicate which irrigation plot was simulated with the parameter set 
at plot scale. The symbols correspond to the performance of the parameter sets at plot scale.
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Jarvis et al., 2007; Arora et al., 2011, 2012). Additional observa-
tion data could help to better constrain the parameter values. For 
example, Larsbo and Jarvis (2005, 2006) analyzed the information 
content of solute concentrations in effluent fluxes, resident solute 
concentrations in the soil, drain flow, and soil water content to 
identify several parameters of a dual-permeability model. Their 
results showed that a combination of multiple observation data 
and measurements with high frequencies at the beginning of irriga-
tion experiments were best for conditioning the parameterization. 
Furthermore, applying not only conservative tracers (as, e.g., Br−) 
but also several reactive solutes with differing transport character-
istics, such as weak or strong vs. intermediate sorptivity, could give 
information about the partitioning of fluxes between matrix and 
macropore flow (McGrath et al., 2009, 2010) and thus could help 
to better constrain the model parameters.

Nevertheless, the aim of this study was not to perform a 
detailed parameter identification and sensitivity analysis for dual-
permeability simulations of the plot-scale irrigation experiments 

but rather to explore model performance at catchment scale for 
several parameter sets that were performing well at plot scale. In 
this context, we observed that different parameter sets with very 
similar, good fits at plot scale (i.e., the 10 best parameter sets) 
resulted in clearly different simulations of catchment discharge 
and soil moisture (cf. Fig. 6, Supplemental Fig. S4). This shows 
that a parameter set identified as optimal at plot scale does not 
necessarily perform well at catchment scale and that transferring 
one optimal parameter set from plot to catchment scale is prob-
lematic. Consequently, the robustness of the transferred parameter 
set needs to be validated against catchment-scale data or a direct 
parameter calibration at catchment scale is needed.

Effect of Spatial Heterogeneity of Vertical Preferential 
Flow on Catchment-Scale Simulations

Simulated catchment discharge and soil moisture showed 
similar variability among simulations independently of the irriga-
tion experiment that was used for identifying dual-permeability 

Fig. 7. Observed (top) and simulated (bottom) soil moisture at different depths for six simulations at catchment scale: (a) the reference simulation, 
(b–f ) simulations with dual-permeability parameter sets from (b,d–f ) the 10 best performing and (c) the first quartile performing parameter sets for 
Irrigation Plot 1 (cf. Fig. 5, Supplemental Fig. S4).
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parameter sets (cf. Fig. 6, Supplemental Fig. S4). Because the inter-
plot variability among the three irrigation plots originated from a 
different degree of vertical preferential flow, it seems that the effect 
of spatial heterogeneity of vertical preferential flow between the 
plot-scale experiments averaged out at catchment scale. Thus, it was 
possible to condense spatial heterogeneity into average, effective 
values for the catchment scale. On the one hand, this is consistent 
with earlier studies that concluded that the effect of the spatial 
heterogeneity of initial soil moisture (Zehe and Blöschl, 2004), of 
hydraulic conductivity fields (Meyerhoff and Maxwell, 2011), or 
of pipe flow networks (Weiler and McDonnell, 2007) averaged 
out for the integrated hydrological catchment response. On the 
other hand, this is different from what was expected in studies 
discussing the role of the small-scale heterogeneity of preferential 
flow within a catchment (e.g., Christiansen et al., 2004; Graham 
and Lin, 2011; Liu and Lin, 2015; Wiekenkamp et al., 2016).

One might argue that a spatially homogeneous model setup 
works well only for simulating discharge. Certainly, it is not pos-
sible to capture the observed interplot variability among the three 
irrigation plots with average, effective values that are assigned homo-
geneously for all the catchment. However, the quality of the soil 
moisture evaluated as an internal response of the catchment model 
was also independent of the irrigation plot that was used to deter-
mine the model parameters. Potentially, the soil moisture simulation 

may behave differently at various locations, which could lead to an 
improved realism at locations other than the soil moisture locations 
evaluated. Yu et al. (2014) demonstrated that simulated groundwater 
tables matched field observations well only when preferential flow 
and spatial subsurface heterogeneity were considered. Accordingly, it 
could be evaluated if and how the simulation of soil moisture would 
improve if a spatially more heterogeneous distribution of soil types 
in the model would be accounted for. Such a setup could poten-
tially also result in a better prediction of the hydrograph response. 
However, including more spatial heterogeneity also increases the 
number of parameters and thus the degrees of freedom, which in 
turn increases the risk of overfitting the model. This is especially a 
problem if spatially heterogeneous parameters cannot be related to 
obvious differences observed in the landscape, such as different soil 
types. In the Weierbach catchment, such spatial differences in soil 
types are, with the exception of the riparian zone, not observable.

Representation of Preferential Flow 
at Plot and Catchment Scales
Adequacy of the Dual-Permeability Approach

Our study is one among several that has successfully applied 
the dual-permeability approach for simulating plot-scale observa-
tions of solute transport (e.g., Roulier et al., 2006; Arora et al., 
2011; Cadini et al., 2013; Wang et al., 2014). The dual-permeability 

Fig. 8. Distribution of the parameter modification factors for (a) macropore aperture (Fapert) and (b) matrix hydraulic conductivity (FmatKs) as well as 
of the effective hydraulic conductivity in (c) soil type Zone 3 and (d) soil type Zone 8 (cf. Fig. 1) within the catchment-scale simulations. Data points 
are sorted along the y axis according to the hydrograph Nash–Sutcliffe efficiency (NSE) of the parameter set (cf. Fig. 6). Data points above the red 
line correspond to parameter sets that resulted in a hydrograph NSE < 0, data points below the red line correspond to parameter sets that resulted in a 
hydrograph NSE > 0. The colors of the data points indicate which irrigation plot was simulated with the parameter set at plot scale. The symbols cor-
respond to the performance of the parameter sets at plot scale.
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approach allowed us to simulate the Br− depth profiles for the 
three different irrigation experiments, whereas a single-domain 
approach did not reproduce the Br− peak observed in deeper soil 
layers. In contrast to the plot scale, the best performing simula-
tions with a dual-permeability approach at catchment scale, when 
transferring plot-scale parameters to the catchment-scale model, 
were very similar to the results of the reference simulation with a 
single permeability domain. This suggests that the incorporation 
of the dual-permeability approach did not improve the representa-
tion of the processes that are relevant for simulating the observed 
soil moisture and discharge response of the Weierbach catchment. 
Even more, the model performance for soil moisture and discharge 
decreased for many of our tested dual-permeability parameter sets.

Such a performance decrease when applying a dual-permeability 
model has not to our knowledge been reported in the literature so 
far, as it does not appear in cases where the parameters are calibrated 
at catchment scale. In line with our findings, Christiansen et al. 
(2004) and De Schepper et al. (2015) showed that the performance 
of their discharge and groundwater head simulations did not nota-
bly improve when including preferential flow in their models. Other 
studies could—at least partly—improve the simulation of internal, 
distributed (water tables and soil moisture) and integrated (runoff) 
responses when preferential flow was incorporated (dual permeability 
and other approaches) in their catchment models (Beckers and Alila, 
2004; Zhang et al., 2006; van Schaik et al., 2014; Yu et al., 2014).

Obviously, the choice of a modeling approach for simulating 
preferential flow processes depends on the underlying question. If 
one is interested in the spatial patterns of preferential flow or in 
detailed analyses of exchange processes between macropores and 
soil matrix, an explicit implementation of macropore or fracture 
geometries and distributions (e.g., Vogel et al., 2006; Rosenbom 
et al., 2009; Klaus and Zehe, 2011; Jackisch and Zehe, 2018) and a 
conceptually different description of the pore-scale processes (e.g., 
Beven and Germann, 2013; Scheibe et al., 2015; Jackisch and Zehe, 
2018) is necessary. In our case, we aimed to test a direct param-
eter transfer from plot to catchment scale. This requires a model 
approach that treats the processes at plot and catchment scales in 
the same way. The dual-permeability approach as implemented 
in HydroGeoSphere allows this. Because the dual-permeability 
approach was adequate for reproducing the three plot-scale irriga-
tion experiments, we assume that it was also an adequate approach 
for the catchment scale. However, we did not test whether a dif-
ferent approach for simulating vertical preferential flow processes 
would have improved our simulation results at catchment scale.

Vertical vs. Lateral Flow in the Weierbach and Beyond
The lack of improved model efficiency in this study when 

incorporating preferential flow with a dual-permeability approach 
may be explained with a different relative importance of verti-
cal and lateral flow at the different scales. At plot scale, vertical 
preferential flow (incorporated with dual permeability) was nec-
essary to simulate the Br− depth profiles observed. At catchment 
scale, model performance was highest for parameter sets where 

the influence of vertical preferential f low (i.e., macropore con-
ductivities) was low and homogeneous fast vertical infiltration 
was ensured with effective hydraulic conductivities, with values 
being similar to the conductivities of the single-domain reference 
model (cf. Fig. 8). Moreover, the model performed better when the 
matrix conductivity was not too low. This is manifested by the fact 
that the parameter sets with retained effective hydraulic conduc-
tivities but reduced matrix conductivities (cf. DPKs B) resulted in 
catchment simulations with mid-level performance. This relation 
between model performance and parameter values indicates that 
the conceptual setup of the reference model was not improved by 
the incorporation of the dual-permeability approach. The refer-
ence model was composed of multiple soil layers with contrasting 
hydraulic conductivities (highest conductivities in Soil Zones 4–6, 
the depth where Br− peaks were observed), allowing fast lateral 
subsurface flow along the interfaces between specific soil horizons. 
Thus, the modeling results indicate that uniform fast vertical flow 
in the unsaturated zone combined with connected fast lateral 
subsurface f low are the f low processes that mainly control the 
hydrometric response in the Weierbach catchment.

The role of fast lateral (preferential) flow on runoff genera-
tion has been widely observed (e.g., Weiler and McDonnell, 2007; 
Anderson et al., 2009; Yu et al., 2014; Laine-Kaulio et al., 2014; 
Wilson et al., 2016). Our results suggest that the relative impor-
tance of fast lateral flow on runoff generation largely outweighs the 
relative importance of vertical preferential flow. The likely reason 
for this not having been previously reported is that the few studies 
that explicitly compared catchment runoff simulations with and 
without preferential flow did not introduce vertical preferential 
f low and fast lateral f low through certain soil structures sepa-
rately (i.e., layers, fractures, and macropores) (Beckers and Alila, 
2004; Zhang et al., 2006; Yu et al., 2014) or were performed in a 
different climate (van Schaik et al., 2014). Only Christiansen et 
al. (2004) and De Schepper et al. (2015) compared a single-per-
meability domain model that included multiple soil layers with 
differing hydraulic conductivities (allowing for nonuniform lat-
eral subsurface flow) with an equivalent dual-permeability model 
(maintaining similar effective hydraulic conductivities but allow-
ing additional vertical preferential flow) for a climate similar to our 
study site. Consistent with our results, they also could not show a 
clear improvement of the overall runoff simulation.

The approach to derive catchment model parameters from 
detailed plot-scale simulations implies that the properties and 
processes that are relevant at small (plot) scale are also critical at 
catchment scale. According to our interpretation of our results, 
this seems not to be the case, since the results suggest that vertical 
and lateral flow play a different role at plot and catchment scales. 
Thus, a transfer of parameters for vertical preferential flow is not 
only problematic due to parameter non-uniqueness (cf. above) but 
also due to the fact that catchment response may be controlled 
by different process combinations than the plot-scale response. 
Certainly, our interpretation relies only on results derived with one 
specific modeling approach for one specific catchment. Yet, the 
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interpretation is consistent with the conceptual idea that processes 
and structures can have a different role at different scales (cf. Vogel 
and Roth, 2003), which is also supported by direct process observa-
tions (e.g., Jackisch et al., 2017). This concept suggests that details 
of structures that are important for processes at small scales can be 
integrated as averaged, effective descriptions in the representation 
of a structure that is relevant at larger scale. With respect to our 
results, this would mean that small-scale vertical preferential flow 
features can be integrated as averaged, effective descriptions for 
the modeling of the hydrometric response at larger scales. In other 
words, it would mean that the often discussed integrated effect of 
preferential flow on runoff and soil moisture at catchment scale 
(Beven and Germann, 2013; Weiler, 2017) could, in our case, be 
reflected in a combination of fast vertical infiltration and fast lat-
eral subsurface flow in certain soil layers under certain conditions.

Limitations and Needs of Further Research
Limitations of the Modeling Approach

Our findings and their interpretation result from one spe-
cific modeling approach, i.e., a dual-permeability approach that 
was applied to a spatially homogeneous model setup. This means 
that a generalization of the results is limited. We especially do not 
intend to state that vertical preferential flow does not play any role 
in the distribution of soil moisture and on runoff generation. It 
is possible that a different model setup or conceptualization (e.g., 
governing equations of preferential flow, spatial variability) could 
have improved the hydrometric catchment response. Moreover, 
the dual-permeability approach improved the internal realism of 
the catchment simulations because it was able to reproduce the 
plot-scale observations. Yet, there are indications that the relative 
importance of vertical preferential flow for simulating hydrometric 
responses at catchment scale was less pronounced than suggested 
by the plot-scale observations. Instead, it was more important to 
properly account for a general fast infiltration in combination 
with nonuniform lateral flow. Therefore, depending on the model 
application, it is important to decide whether it is necessary to 
incorporate vertical preferential f low, as it comes with an addi-
tional parameterization effort and additional computational costs.

One limitation of our approach is the number of tested param-
eter sets at catchment scale. The total number of 39 simulations 
with different parameter sets for preferential flow is high compared 
with other modeling studies (e.g., Beckers and Alila, 2004; Weiler 
and McDonnell, 2007; van Schaik et al., 2014; Yu et al., 2014) and 
allowed us to analyze the effect of the parameter values spreading 
across the whole parameter space on catchment response. However, 
the applied approach, where several plot-scale parameter sets were 
transferred directly to catchment scale, does not fully analyze the 
parameter space at catchment scale. One may argue that other 
parameter sets may improve the integrated hydrometric response 
at catchment scale while also performing well at plot scale. Thus, 
further research on an inverse calibration of a physically based 3D 
dual-permeability catchment model with a subsequent validation of 
the identified parameters at plot scale is needed.

Another limitation is that we simulated solute transport only at 
plot scale, although solute transport is often one of the main reasons 
for incorporating preferential flow. However, we think that Br− 
transport and water flow are similar enough (cf. Zehe and Blöschl, 
2004) to investigate the transferability of parameter sets from plot 
scale to catchment models. Certainly, the impact of the dual-per-
meability approach on solute transport toward the catchment outlet 
and on catchment travel times remains unclear. Using a numerical 
experiment, Christiansen et al. (2004) found that the incorporation 
of preferential flow paths had a significant effect on the transport 
of reactive solutes, while the effect on the transport of conservative 
solutes (such as Br−) was small. Relating this to the present study, it 
might be that the simulation of solute concentrations at the catch-
ment outlet is impacted by a dual-permeability approach (positively 
or negatively). An analysis of this requires appropriate field data to 
validate the correctness of simulated solute transport at catchment 
scale, which was available neither in this study nor in the study of 
Christiansen et al. (2004). Hence, future work should evaluate the 
effect of the proposed approach on solute transport at catchment 
scale, as our results are restricted to the hydrometric response.

Generalizing our Results to Other Landscapes
We performed our study for one particular catchment. The 

subsurface structure of this catchment is characterized by shal-
low soils, highly permeable periglacial layers, and fractured slate. 
Preferential f low probably occurs in a particular network of 
interaggregate pores (Jackisch et al., 2017) and along imbricated 
clasts and fractures (Scaini et al., 2017). Plot and hillslope field 
studies further suggested that there is a substantial vertical pref-
erential flow component (Jackisch et al., 2017; Scaini et al., 2017). 
Nonetheless, for the particular pedolithological structure of the 
Weierbach catchment, the performance of the simulations of 
catchment discharge and soil moisture did not improve when we 
explicitly accounted for vertical preferential flow. In line with this, 
for a catchment with a similar pedolithological structure, Loritz et 
al. (2017) showed that it was sufficient to include fast infiltration 
and connected lateral subsurface flow paths in a representative 
hillslope model for simulating the rainfall–runoff behavior.

In catchments with different physiographic settings, a more 
explicit representation of vertical preferential flow may have a stron-
ger influence on hydrometric catchment responses. In agricultural 
soils with fine matrix textures and high amounts of biopores, such as 
earthworm burrows (e.g., Klaus et al., 2013), the influence of vertical 
preferential flow, as opposed to nonuniform lateral flow, on runoff 
generation may be much higher. Glacial till soils may be more simi-
lar to the structure of the Weierbach catchment, and Jansson et al. 
(2005) made conclusions in line with our study when comparing sim-
ulations of soil moisture in a glacial till soil with a one-dimensional 
single-domain and a two-domain model. Catchments with a climate 
different to Luxembourg can be more prone to a high importance of 
vertical preferential flow on runoff generation. This was shown by 
van Schaik et al. (2014), who improved hydrometric responses for 
simulations with preferential flow under semiarid conditions. Runoff 
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generation in catchments with slow velocities and short travel dis-
tances of lateral subsurface flow (cf. Klaus and Jackson, 2018) may 
also be less dominated by lateral subsurface flow, and the role of verti-
cal preferential flow may become more important. Nonetheless, our 
findings highlight that the observation of vertical preferential flow in 
plot or hillslope experiments is not necessarily critical for improving 
catchment simulations of the hydrological response. Instead, some 
features that are easier to determine (e.g., multiple soil layers with 
contrasting hydraulic properties and effective conductivities) may be 
more important for understanding the structures and processes that 
are critical for water flow at catchment scale.

Supplemental Material
The supplemental material comprises a detailed description of the parameter 
depth profiles used in the MC simulations (Supplemental Material S1), the com-
parison of discharge simulations with hourly and daily meteorological input data 
(Supplemental Material S2) and supplemental result data (Supplemental Material 
S3) showing the distribution of all parameters compared to the performance of all 
plot-scale and catchment-scale simulations, the used water retention curves, and 
the correlations between simulated and observed soil moisture.
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Supplemental material 

S1 Definition of nonuniform depth profiles 

We constrained the value variations for the parameters with soil layer specific values (, , 

Ks, and pct) to a number of pre-defined depth profiles. For each of the parameters we defined 

several different depth profiles dpxxx(z) (Table S1) following different approaches (DPxxx A-

D) that rely on field observations and their different interpretation as described in the 

following paragraphs. The soil layer specific parameter variations in the MC simulations 

were then constrained in such a way that the characteristic shapes (value ratios) of the pre-

defined depth profiles were maintained, evenly distributing the different pre-defined depth 

profiles of one parameter to the total of MC runs (Table S2). 

DPcat for  and :  

For the definition of nonuniform profiles of van Genuchten  and  we followed the 

approach of Rosenbom et al. (2009) and differentiated two categories of macropores: 

biopores (b) and fractures (f). We defined one depth profile dpcat for the macropore category 

for each irrigation plot (DPcat, Table S1 and Table S2). Based on the characteristics 

observed within the excavated irrigation plots, biopores b were assigned to the upper three 

to five soil layers (characterized by roots in the excavated profiles) and fractures f 

(characterized by stones and periglacial deposits in the excavated profiles) to the soil zones 

below (Table S1). For each MC run, one value for  and one for  was randomly assigned 

to biopores (b, b), and one value each was randomly chosen for fractures (f, f) (Table 

2). 

DPKs for Ks: 

Nonuniform depth profiles of saturated hydraulic conductivities Ks of the macropores were 

assigned following two different approaches (DPKs A and B), both requiring additional 

adjunct parameters (Table 2, Table S2).  

The first approach (DPKs A, Table 2) was to calculate Ks from macropore apertures (apert) 

using the cubic law for fluid flow in fractures (e.g. Witherspoon et al., 1980; Wang et al., 

2015). This required the definition of macropore aperture depth profiles (dpapert). We 

predefined four different aperture depth profiles (DPapert A-D, Table S1) and randomly 

chose one for each MC run (Table S2) for varying the aperture values along the fixed depth 

profile ratios (Fapert, Table 2). Approach DPapert A was to define the aperture depth profile in 

such a way that the shape of the resulting conductivity depth profile (calculated with the 
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cubic law) followed the shape of the matrix conductivity profile (with a conductivity peak 

in the periglacial deposit layers, Soil Zone 4-6, Table S1). In approach DPapert B, we 

assigned two different apertures (Table S1) for the two different macropore categories (cf. 

dpcat, Rosenbom et al. (2009)). For the third aperture depth profile, we assigned constant 

macropore apertures (and thus conductivities) over depth (DPapert C, Table S1). The fourth 

profile (DPapert D, Table S1) was defined according to profiles that had resulted in good 

model performance in preliminary test runs (data not shown). 

The second approach for defining non-uniform depth profiles of Ks (DPKs B, Table 2) was 

to assume that the conductivity and porosity depth profiles used in the model of Glaser et 

al. (2016) (Table 1) were representative for the total soil, i.e. that their values (based on lab 

and field measurements) already combined the effect of soil matrix and macropore 

conductivities and porosities. In order to implement this approach, it was necessary to allow 

to vary the matrix conductivities and matrix porosities for the respective MC runs (note that 

all other matrix parameters remained unchanged). We reduced the matrix conductivities of 

Glaser et al. (2016) (Table1) by a factor between 10-4 and 100 (Table 2). Macropore 

conductivities were then calculated from the reduced matrix conductivities and the chosen 

macropore percentages pct (see below) in that way that the obtained effective conductivities 

equaled the conductivities from Glaser et al. (2016) (Table 1). In the same manner, we 

adapted the matrix porosities (Table 1) by calculating them from the chosen macropore 

porosities and macropore percentages pct (see below) in such a way that the obtained 

effective porosities equaled the porosities from Glaser et al. (2016). In case the 

computations resulted in matrix porosities < 0, we set them to 0. 

DPpct for pct:  

We used four predefined depth profiles dppct of macropore percentages pct for each 

irrigation plot (DPpct A-D, Table S1, Table S2). The definition approaches DPpct A and 

DPpct B were plot specific (Table S1), based on the Brilliant Blue stains observed in the 

excavated soil profiles (cf. Figure 1). In approach DPpct A, we assumed that the amount of 

Brilliant Blue stains corresponds to the amount of macropores. In approach DPpct B, we 

assumed that more Brilliant Blue adsorbed to the soil when water flow slowed down due to 

a decrease of macropores below. Approach DPpct C was to assign constant percentages over 

depth (Table S1). In approach DPpct D (Table S1), we defined values according to profiles 

that had shown good simulation results in preliminary test runs (data not shown). 
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S2 Effect of  daily vs hourly meteorological input data on discharge simulation 

In order to ensure that our findings are not a result of a mismatch between the temporal 

resolution of input data for plot and catchment scale simulations (i.e. event scale simulations 

for 24 h with hourly input data vs. response simulations over 18 mo with daily input data), we 

ran six of the catchment scale simulations twice: once with daily meteorological input data 

and once with hourly input data. The six parameter sets were chosen in such a way that they 

covered the range of different hydrographs simulated with the daily input data (cf. Fig. 5). 

More specifically, we re-ran with hourly input data the single domain parameterization and 

the 5 dual permeability parameterizations that produced the hydrographs presented in Fig. 5. 

These six additional simulations clearly showed that the input data resolution had only a 

minor impact on the behavior of catchment runoff (Fig. S1). The difference between the 

discharge modelled with daily and hourly input data was smaller than the difference between 

the observed and modelled runoff (hourly and daily input). Furthermore, the difference 

between the discharge modelled with daily and hourly input data was also smaller than the 

differences induced by the different parameter sets for the six selected runs. Thus, the choice 

of a daily input data resolution for optimizing the calculation times did not impact the results 

presented in this study. 
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Fig. S1. Comparison of the effect of  daily vs hourly meteorological input data on the simulated discharge response over 

long time (top), one month (bottom left) and five days (bottom right). Simulation a) is the reference simulation without 

preferential flow, simulations b-f) were parameterized with different dual permeability parameter sets (same as in Fig. 5). 

For all six cases, the effect of the input data resolution is small compared to the difference to measured discharge. The 

differences between the hydraographs modelled with the different parameterizations is clearly visible for both input data 

resolutions.  
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S3 Supplemental result data 

 

Fig. S2. Relations between the model performance for the irrigation plots and the preferential flow parameters, parameter 

modification factors, and predefined parameter depth profiles. The parameter values were normalized to the respective pre-

constraint value ranges (in brackets) with 0 corresponding to the lowest constraint value or depth profile definition method 

type A, respectively. The plots show the average (black lines), standard deviation (colored shades) and the minimum and 

maximum (colored lines) of a moving window with a size of 1% of the MC simulations along the MC simulations sorted by 

their performance rank number (cf. Section 3.4). Note that the total number of MC simulations is 6000 for Plot 1 and Plot 3 

and 8000 for Plot 2 
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7 

 

 

Fig. S3. Water retention curves as parameterized with the water retention parameters , , and n (cf. Table 2) for the two 

different macropore types: biopores (top) and fractures (bottom). The semitransparent grey lines depict the water retention 

curves of all 20,000 plot scale Monte Carlo parameterizations. The colored lines correspond to the 39 parameter sets selected 

for the catchment scale simulation. The colors of the lines indicate which irrigation plot was simulated with the parameter set 

at plot scale.The symbols correspond to the performance of the parameter sets at plot scale. 
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Table S3. Contingency table showing the allocation of the ten best + first quartile, median, and third quartile performing 

parameter sets of irrigation plot 1 (green), 2 (orange) and 3 (blue) to the different approaches applied for predefining depth 

profiles DPxxx A-D (cf. Table 2, Section S1). Each cell refers to one specific method and irrigation plot; the number left of 

‘+’ indicates the number of runs from the ten best performing parameter sets, the number right of ‘+’ indicates the number of 

runs from the first quartile, median, and third quartile performing parameter sets. 

 

†DP
Ks

 †DP
apert

 ‡DP
pct

 ‡‡DP
sat

 

 Plot 1 Plot 2 Plot 3 Plot 1 Plot 2 Plot 3 Plot 1 Plot 2 Plot 3 Plot 1 Plot 2 Plot 3 

A 10+1 10+1 8+1 2+0 6+0 4+0 0+3 0+1 5+1 8+3 8+1 10+2 

B 0+2 0+2 2+2 1+0 1+0 1+0 2+0 7+0 1+1 2+0 2+2 0+1 

C ---- ---- ---- 3+1 2+0 2+1 6+0 2+1 0+1 ---- ---- ---- 

D ---- ---- ---- 4+0 1+1 1+0 2+0 1+1 4+0 ---- ---- ---- 
†
DPKs: two methods for defining Ks(z): A relied on pre-defined depth profiles dpapert(z) of macropore apertures, 

                  which were defined following four different pre-definition methods DPapert A-D 

                 B relied on maintaining effective hydraulic conductivities as Ks-original(z),  

                  thus requiring adapted matrix conductivities Ks-matrix(z) 
‡
DPpct: four methods for defining a depth profile dppct(z): A and B relied on different interpretations of dye patterns,  

              C assigned a global value, D relied on preliminary test simulations 
‡‡

DPsat: two methods for defining a depth profile dpsat(z) of initial saturation: A was based on soil moisture observations,

                       B was based on soil moisture simulations  
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9 

 

 

 

Fig. S4. Heatmap showing the correlations between observed and simulated soil moistures. Each line corresponds to one 

simulation, correlation is shown on a color scale (white = high correlation, blue = no correlation). The correlation values 

indicate moisture dynamic similarities between observed and simulated moisture for different depths. Lines a-f show the 

correlations for the simulated moisture time series shown in Fig. 7. The different simulations are sorted according to their 

hydrograph NSE (cf. Fig. 6). The colors of the NSE values indicate which irrigation plot was simulated with the parameter 

set at plot scale.The symbols correspond to the performance of the parameter sets at plot scale. 
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Fig. S5. Distribution of all modified parameters, parameter modification factors and predefined depth profiles within the 

catchment scale simulations. Parameter values were normalized to the respective constraint ranges (0 corresponding to the 

lowest constraint value or depth profile type A, respectively). Data points are sorted along the y-axis according to the 

hydrograph NSE of the parameter sets (cf. Fig. 6, Fig. 8). Data points above the red line correspond to parameter sets that 

resulted in a hydrograph NSE < 0, data points below the red line correspond to parameter sets that resulted in a hydrograph 

NSE > 0. The colors of the data points indicate which irrigation plot was simulated with the parameter set at plot scale.The 

symbols correspond to the performance of the parameter sets at plot scale. 
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Abstract. Surface saturation can have a critical impact on
runoff generation and water quality. Saturation patterns are
dynamic, thus their potential control on discharge and wa-
ter quality is also variable in time. In this study, we assess
the practicability of applying thermal infrared (TIR) imagery
for mapping surface-saturation dynamics. The advantages
of TIR imagery compared to other surface-saturation map-
ping methods are its large spatial and temporal flexibility,
its non-invasive character, and the fact that it allows for a
rapid and intuitive visualization of surface-saturated areas.
Based on an 18-month field campaign, we review and discuss
the methodological principles, the conditions in which the
method works best, and the problems that may occur. These
considerations enable potential users to plan efficient TIR
imagery-mapping campaigns and benefit from the full po-
tential offered by TIR imagery, which we demonstrate with
several application examples. In addition, we elaborate on
image post-processing and test different methods for the gen-
eration of binary saturation maps from the TIR images. We
test the methods on various images with different image char-
acteristics. Results show that the best method, in addition to
a manual image classification, is a statistical approach that
combines the fitting of two pixel class distributions, adaptive
thresholding, and region growing.

1 Introduction

The patterns and dynamics of surface-saturation areas have
been on hydrological research agendas ever since the formu-
lation of the variable source area (VSA) concept by Hewlett
and Hibbert (1967). Surface saturation is relevant for runoff
generation and for water quality, due to variable active and
contributing areas (Ambroise, 2004) as well as critical source
areas (e.g. Doppler et al., 2014; Frey et al., 2009; Heath-
waite et al., 2005). Likewise, surface-saturation patterns and
their dynamics are closely linked to groundwater–surface-
water interactions (e.g. Frei et al., 2010; Latron and Gallart,
2007) and catchment storage characteristics and dynamics
(e.g. Soulsby et al., 2016; Whiting and Godsey, 2016).

Despite the prominent role of saturated areas in hydrolog-
ical processes research, mapping them remains a challenging
exercise. The most straightforward mapping method consists
of locating saturated areas by walking through the catch-
ment. However, this simple but labour-intensive “squishy-
boot” method (e.g. Blazkova et al., 2002; Creed et al., 2003;
Latron and Gallart, 2007; Rinderer et al., 2012) is neither
suitable for large areas nor for fine-scale spatial resolutions.
Dunne et al. (1975) introduced topography, soil morphology,
hydrometric measurements (soil moisture, water table level,
base flow), and vegetation as useful indicators for delineat-
ing saturated areas. Today, it is still a valid research question

Published by Copernicus Publications on behalf of the European Geosciences Union.
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of how to best make use of these catchment characteristics to
delineate saturated areas (e.g. Ali et al., 2014; Doppler et al.,
2014; Grabs et al., 2009; Kulasova et al., 2014a, b). Hydro-
metric measurements offer the potential for monitoring the
local temporal evolution (in increments ranging from min-
utes to months) of dynamic surface saturation. The analysis
of topography, soil morphology, or vegetation allows lasting
saturation patterns to be identified for large contiguous areas.

Remote sensing has proven to be well-suited for mapping
temporal dynamic patterns of surface saturation over large
areas. It is possible to extract flooded areas in the order of
metres to kilometres from data acquired with satellite and
airborne platforms, such as synthetic aperture radar (SAR)
images (e.g. Matgen et al., 2006; Verhoest et al., 1998), or
the normalized difference water index (NDWI) and the nor-
malized difference vegetation index (NDVI; de Alwis et al.,
2007; Mengistu and Spence, 2016). Observations at higher
spatial resolutions (order of centimetres) require unmanned
aerial vehicles (UAVs) or ground-based instruments. Due
to various technical constraints, to date, SAR image acqui-
sitions are rarely used for UAV-based applications or for
ground-based applications that are not restricted to a fixed lo-
cation (e.g. Li and Ling, 2015; Luzi, 2010). NDWI and NDVI
are applicable at these scales (e.g. Orillo et al., 2017; Wahab
et al., 2018), however, to the best of our knowledge, the nec-
essary simultaneous acquisition of short-wave infrared and
visible light (VIS) images has not yet been performed by
UAVs or on the ground for mapping surface saturation.

Ishaq and Huff (1974) and Dunne et al. (1975) suggested
the use of VIS or infrared photographs for mapping sur-
face saturation. However, this suggestion has rarely been
followed in the last 40 years (with Portmann, 1997, be-
ing a notable exception), despite VIS cameras having been
deployed on the ground and mounted on UAVs, airborne
platforms, or satellite platforms for a long time. Recently,
Chabot and Bird (2013) and Spence and Mengistu (2016)
successfully used VIS cameras mounted on UAVs for map-
ping surface water (a wetland of 128 ha and an intermittent
stream surveyed via three transects of 2 km each). Silasari
et al. (2017) mapped surface-saturated areas on an agricul-
tural field (100 m× 15 m) using a VIS camera mounted on a
weather station for high-frequency image acquisition.

Since the advent of affordable, handheld thermal infrared
(TIR) cameras, TIR imagery features the same temporal
and spatial flexibility as VIS imagery. In the context of
this technical advancement, TIR imagery started to be used
for analysing hydrological processes such as groundwater–
surface-water interactions (e.g. Ala-aho et al., 2015; Briggs
et al., 2016; Pfister et al., 2010; Schuetz and Weiler, 2011)
or water flow paths, velocities, and mixing (e.g. Antonelli
et al., 2017; Deitchman and Loheide, 2009; Schuetz et al.,
2012). However, applications of TIR imagery for mapping
surface saturation are rare. Two examples are from Pfister et
al. (2010) and Glaser et al. (2016), who demonstrated the po-
tential for TIR imagery to map surface saturation by carrying

out repeated TIR image acquisitions at small spatial scales
(centimetres to metres) with handheld cameras.

One reason for the scarce number of studies that use
TIR imagery for mapping surface saturation is certainly that
few descriptions of the methodological advantages and chal-
lenges exist. However, there are several general guidelines
and methodological descriptions for TIR imagery applica-
tions. These studies focus on one specific aspect of TIR im-
agery, such as co-registration (Turner et al., 2014; Weber et
al., 2015) or on how to acquire correct surface water temper-
atures, which is the most common application of TIR im-
agery in hydrology (e.g. Dugdale, 2016; Handcock et al.,
2006, 2012; Torgersen et al., 2001). Many of these recom-
mendations can be directly applied for mapping surface satu-
ration via TIR imagery (e.g. choice of sensor type). However,
some recommendations are redundant (e.g. temperature cor-
rections) or different (e.g. optimal time scheduling) for the
application of TIR imagery for surface-saturation mapping.

Here, we go beyond the mere demonstration of the poten-
tial for TIR imagery to map saturated surface areas and ad-
dress the related application-specific technical and method-
ological challenges. The novelty of this work is that we as-
similate, within one study, fundamental principles, techni-
cal aspects, and methodological possibilities and challenges
with an exclusive focus on the mapping of surface satura-
tion. This includes all steps, from image acquisition to the
generation of binary saturation maps. To do this, we (1) re-
view relevant technical and methodological aspects from ex-
isting TIR imagery literature and (2) complement them with
our expertise and results from an 18-month field campaign.
The field campaign focused on the recurrent acquisition of
panoramic images with a portable TIR camera in seven dis-
tinct riparian areas. The precautions and considerations that
we describe in this technical note are also valid for surface-
saturation mapping campaigns with permanently installed
ground-based TIR cameras and TIR cameras mounted on
UAVs and airborne or satellite platforms.

The paper is structured in two main parts. The first part
(Sect. 2) focusses on the mapping approach itself and com-
bines a literature review with examples of our own experi-
ence. The second part (Sect. 3) demonstrates the application
of different pixel classification techniques for generating bi-
nary saturation maps from TIR images by applying and com-
paring them for different example images. A discussion and
a conclusion section evaluate the key features of the paper
and outline perspectives for future research and applications
for TIR imagery in hydrological sciences.
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2 Mapping surface saturation with TIR imagery: state
of the art and examples

2.1 Fundamental principles

TIR cameras are used for measuring surface temperatures re-
motely (e.g. 100 µm penetration depth for water columns)
within an area of interest. The cameras sense the intensity
of thermal infrared radiation emitted by the objects the cam-
era is pointed at. The surface temperature T (K) of the ob-
jects is then calculated from the sensed radiant intensity W
(Wm−2), based on Stefan–Boltzmann’s law with the Stefan–
Boltzmann constant, σ = 5.67× 10−8 Wm−2 K−4. This law
can be formulated as

T = 4
√
(W/σ). (1)

Considering radiometric corrections for material-specific
emissivity ε, for reflections of radiation from the surround-
ings, and for atmospheric induced and attenuated radiation,
the radiant intensity W is split into the emissions from the
object (Wobj), from the ambient sources (Wrefl), and from the
atmosphere (Watm).

W = ετWobj+ (1− ε)τWrefl+ (1− τ)Watm, (2)

with τ being the transmittance of the atmosphere, which de-
pends on the distance between the object and the camera sen-
sor as well as on relative air humidity. Ultimately, values for
the temperature of the ambient sources and the atmosphere,
the targeted object’s emissivity, the distance between object
and camera, and the relative humidity are required for accu-
rately estimating an object’s surface temperature T .

Details on the principles of TIR imagery, TIR sensor types
(i.e. wave length, sensitivity), and considerations for choos-
ing the most appropriate camera and remote sensing plat-
form for the desired acquisition (i.e. accuracy, resolution) are
provided in the literature (cf. Dugdale, 2016; Handcock et
al., 2012). For this study, we relied on two different hand-
held TIR camera models: a FLIR B425 with a resolution of
320× 240 pixels and an angle of view of 25◦ and a FLIR
T640 with a resolution of 640× 480 pixels and an angle of
view of 45◦ (FLIR Systems, Wilsonville, USA). The wider
angle of view of the FLIR T640 clearly facilitated the im-
age acquisition in this study, while a pixel resolution lower
than the resolutions of the two cameras would still have been
sufficient for the identification of surface-saturation patterns.

We define surface saturation as water ponding or flow-
ing on the ground surface (even if only present as a very
thin layer). Mapping surface saturation with TIR imagery
requires (1) a sufficient temperature contrast between sur-
face water and the surrounding environment (e.g. dry soil,
rock, vegetation) and (2) at least one pixel of the TIR im-
age being known to correspond to surface water. When these

two requirements are met, it is possible to visually identify
the surface-saturation patterns in a TIR image. This is exem-
plified with a TIR image of a riparian-stream zone (Fig. 1).
The substantial temperature contrast (requirement 1) allows
us to differentiate between two TIR pixel groups, i.e. sur-
face water pixels and surrounding environment pixels. With
ground truth data at hand (here, VIS image – alternatives in-
clude stream-water temperature or knowing the location of
the creek) for point 1 of Fig. 1 (requirement 2), the group
of pixels with higher temperatures can be identified as sur-
face water. The group of pixels with lower temperatures can
be regarded as the non-saturated surrounding environment
(cf. Fig. 1; point 2). With this classification in mind, the
TIR image significantly amplifies the appearance of surface-
saturated areas relative to a VIS image. Moreover, the TIR
image reveals additional surface-saturated areas that are not
clearly identifiable (cf. point 3; Fig. 1) or not visible (cf. area
above point 6; Fig. 1) within a VIS image.

The example shows that the identification of surface satu-
ration relies on temperature contrasts between surface wa-
ter and the surrounding environment. Radiometric correc-
tions of TIR images for obtaining correct temperature val-
ues are thus not necessary. However, interferences that affect
temperature, such as shadow casts or reflections (cf. Dug-
dale, 2016; Handcock et al., 2012), cannot be disregarded, as
they can influence the temperature contrast (see Sect. 2.2).
In cases where the water temperature is too similar to the
surrounding materials, saturated areas might be falsely iden-
tified as dry, whereas surrounding materials might be falsely
identified as wet. In cases where non-uniform water tempera-
tures occur, different water sources may be distinguished (cf.
Fig. 1, where point 4 likely represents stream water, points
5 and 7 likely represent the exfiltration of warmer ground-
water). However, a bimodal distribution of water tempera-
tures (e.g. cold stream and warm exfiltrating groundwater or
warm ponding water) can also lead to a misinterpretation of
temperature contrasts to the surrounding environment (e.g. a
surrounding material with a temperature that is in between
the water temperatures might be identified as water).

For the above-mentioned reasons, it is important to eval-
uate the applicability of the TIR images for identifying the
surface-saturated areas with some ground truth and valida-
tion data. For the validation, we relied on immediate visual
verification during image acquisition as well as on VIS im-
ages. Another option is to install sensors that can verify the
presence or absence of water on the ground surface locally,
yet this is an experimental effort and only results in valida-
tion data for selective points. Validating the TIR images with
other saturation mapping techniques is difficult, since most
of these techniques implicitly include saturation in the up-
per soil layer, while the current use of TIR imagery excludes
the soil. For example, saturated areas inferred via the squishy
boot method account for areas where water is squeezed out
of the soil when stepping on it, whereas such areas are not
detected as saturated areas by the non-invasive TIR imagery.
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Figure 1. TIR image and VIS image of a riparian-stream zone. The temperature contrast between the water and the surrounding environment
allows us to clearly differentiate between surface-saturated and dry areas in the TIR image. The numbers indicate identical locations in the
TIR and VIS images and relate to dry areas (2), stream water (1, 4, 6), points of supposed groundwater exfiltration (5, 7: warmer water
temperatures), and locations in which surface saturation is clearly visible in the TIR image but not in the VIS image (3, area above 6).

2.2 Image acquisition interferences

Impact of weather conditions

Weather conditions can interfere with TIR image acquisi-
tion (e.g. Dugdale, 2016; Handcock et al., 2012). The main
problem stems from the similar temperatures of water and
the surrounding environment, compromising an identifica-
tion of surface saturation with TIR images (Fig. 2a). Wa-
ter has a higher thermal capacity than most environmental
materials, and the water surface temperature therefore gen-
erally aligns more slowly with the air temperature than the
surface temperatures of surrounding materials. During our
field campaign, it became clear that, particularly during day–
night–day or seasonal transitions, this difference in thermal
capacities induced a convergence of the surrounding envi-
ronment’s temperatures (which align to the air temperature)
to the water temperature. Furthermore, the direct exposure of
the study site to sunlight, combined with shadow casts, com-
monly distorted the temperature contrasts. Surrounding ma-
terials in the shade with temperatures different to the same
surrounding materials in sunlight led to reduced tempera-
ture contrasts between these materials and the surface water
(Fig. 2b). Once the direct sun exposure ceased, the different
thermal capacities of different materials heated by the sun
could still cause patches of warmer and colder temperatures.
Rain and fog may also influence image quality due to wa-
ter droplets falling between the TIR sensor and the ground,
eventually blurring the images and causing uniform temper-
ature signatures (Fig. 2c).

To avoid the acquisition of unusable TIR images, we ad-
vise to adapt the planning of field campaigns to the weather
forecasts. The ideal situation is to work during dry weather
with warm or cold air temperatures in order to ensure a clear
difference between the temperature of the surrounding ma-
terials and the more temperate surface water temperatures.

Dugdale (2016) reported the time period from mid-afternoon
to night-time as an optimal TIR image acquisition period
for monitoring water surface temperatures. Based on our 18-
month field campaign, we suggest that the optimal TIR im-
age acquisition time for identifying surface-saturation pat-
terns is early morning. At this time, there are no undesir-
able effects due to sunlight (shadows, warming-up), and there
are generally high temperature contrasts between water sur-
faces and the surrounding environment. Cloudy conditions
can also help to avoid the effect of direct sunlight. A site-
specific analysis of the sun exposure throughout the day can
help pinpoint the other times at which images can be taken
in favourable conditions for a specific study site.

Camera position

Obstructions in the TIR camera’s field of view are obviously
problematic. Yet permanent view obstructions on the ground
(e.g. tree trunks; Fig. 2d, point 6) proved to be useful ground
reference points during our field campaign. Temporary view
obstructions, such as growing vegetation (Fig. 2d), recent
litter, and snow cover are a problem for repeated imaging
campaigns. Cutting the vegetation during the growing sea-
son is an option for small study sites. Our experience is that
the coverage of grasses and herbaceous plants with small
leaves is normally low enough to permit the recording of the
ground surface temperature, while the coverage of ferns or
tree leaves is normally completely opaque. Snow cover usu-
ally hides surface saturation. Yet periods where the amount
of snow is low are commonly unproblematic, since the sat-
urated areas mainly stay uncovered due to a warmer water
temperature and thus the fast melting of the snow.

Ideally, images are taken from above and at nadir to the
study site. Oblique angles of view (>30◦ of nadir) reduce
the object’s emissivity and thus distort the detected tempera-
tures in the TIR images (Dugdale, 2016). The incorrect tem-
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Figure 2. Example images showing how unfavourable image acquisition circumstances influence the usability of TIR imagery for the
identification of surface saturation. The numbers indicate identical locations in the TIR and VIS images.

perature values are not critical as such for mapping surface-
saturation patterns, but we observed that wide ranges of an-
gles can result in distinct temperature distortions and thus
reduced temperature contrasts within the images. In a simi-
lar way, varying distances between camera and ground sur-
face for different positions within one image (e.g. top and
bottom, left and right) not only provoke pixels with varying
area equivalents but can also distort the temperature detec-
tion and thus temperature contrasts. Therefore, ground-based
cameras should be positioned at locations that minimize the
range of angles of view and the distances between camera
and ground surface. In the event of a repeated image acqui-
sition of a given area of interest, we took the pictures from
the same position each time in order to facilitate subsequent
image comparisons. For repeated image campaigns, it could
be useful to install a structure that allows several images to
be acquired by moving the camera to specific positions with
fixed heights above the ground and fixed angles of view. This
could simplify the post-processing and assemblage of the im-
ages into panoramic images (cf. Sect. 2.3).

Measurement artefacts during image acquisition

For determining surface saturation, the TIR images should
cover an area known to be surface saturated (e.g. stream, vi-
sually obvious wet spots) in order to have a reference for
water temperature (cf. Sect. 2.1). In addition, a VIS image
should be acquired simultaneously to the TIR image for com-
parison. The TIR imagery parameters necessary for correct-
ing and converting the radiation signal to temperature values
(e.g. air temperature, humidity) do not need to correspond
to the actual conditions, since only the temperature contrast,
and not the correct temperature value, is required for defining
saturated areas. Certainly, “wrong” temperatures influence
the temperature contrast between the surroundings and the
water, but this effect on the contrast can be negative or pos-
itive. If correct temperatures are targeted, radiometric cor-
rections need to be applied during the image post-processing
procedure. This allows, for example, for the consideration of
different emissivities for different surface materials by using
appropriate values for each individual image pixel (Aubry-
Wake et al., 2015). However, in our experience, setting re-
alistic parameter values during the image acquisition helped
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the auto-focus process of the camera and prevented the ob-
servation of unrealistic surface temperatures. Nonetheless, in
the event of clear skies or on cold winter days, we occasion-
ally observed negative temperatures for flowing water. The
explanations for these observations remain speculative. Po-
tentially, a particularly strong reflection of the radiation from
the surroundings and the sky in the water influenced the tem-
perature detection. However, for the identification of surface-
saturation patterns, such unrealistic negative temperatures do
not pose a problem, since the temperature range stays correct
(Antonelli et al., 2017).

Reflections of surrounding objects on the water surface
(Fig. 2e) and image vignetting can occur during image ac-
quisition and can compromise a further use of the TIR im-
ages. Vignetting is the falloff of radiation intensity towards
the edges of the image, which is mainly generated by the ge-
ometry of the sensor optics (especially wide angle lenses; cf.
Kelcey and Lucieer, 2012). As a consequence, the monitored
temperature can change towards the edges of the picture (cf.
aura effect in Antonelli et al., 2017). In this study, the image
vignetting was unproblematic, especially where a panorama
was built from several images (cf. Sect. 2.3). This is due to
the fact that the effect of image vignetting only occurs at the
edges of the pictures and it is of minor relevance in images
with high temperature contrasts. Reflections of surrounding
objects on the water surface limit the value of the images
for saturation identifications in a similar way to shadows (cf.
Fig. 2d and e). The difference with shadows is that reflec-
tions also occur with diffuse light, which makes it difficult to
predict their occurrence and thus to avoid them.

2.3 Generation of TIR panorama images

We acquired the images used for the assemblage of a
panoramic view in two different ways: (1) by taking single,
overlapping images and (2) by taking a video of the area of
interest. While both approaches deliver similar final results,
videos are recorded faster than sequences of individual im-
ages. Independently from the chosen data format, we ensured
that the saving format retained the temperature information
as radiometric data for further image processing (see below
and Fig. 3). Sun disappearance and appearance and auto-
matic noise corrections by the camera (non-uniformity cor-
rections; cf. Dugdale, 2016) can lead to considerable shifts
in recorded temperatures from one image or video frame to
another. Since correcting such temperature shifts is difficult
(cf. Dugdale, 2016), we opted to control them by fixing the
temperature–colour scale and restarting image acquisition if
the colour (and thus temperature) of overlapping image parts
changed.

We acquired the images and video frames in such a way
that the area of interest formed the central part of a panorama.
This allowed us to avoid image gaps and distortion effects
at the borders of the area of interest. When possible, we en-
sured that the single pictures and video frames included over-

lapping parts with identifiable structures, such as the stream
bank, tree stems, or stones, as natural reference points. For
videos, it was essential to move the camera slowly enough to
obtain sharp images and to use a low frame rate (e.g. 2 Hz) to
keep the number of video frames reasonable (enough frames
for obtaining area overlaps, but not too many frames showing
the same area).

The generation of a panorama from overlapping TIR im-
ages or video frames acquired with a ground-based camera
involves some challenges that specifically relate to TIR or
ground-based images. This needs to be addressed in TIR-
specific panorama generation and image processing steps, as
presented briefly by Cardenas et al. (2014). Our approach
consisted of transforming the acquired images and video
frames containing the radiometric information (see above)
into grey-scaled, standard-format images and videos (Fig. 3,
step 1) in order to allow for the use of ordinary panorama as-
semblage software. We relied on grey-colour-scale images,
linearly splitting the colour shades over the global temper-
ature range of the acquired images and video frames, since
this prevents the creation of artefacts by colour-mixing ef-
fects and allowed us to embed the temperature information
in the generated panoramas. When the extreme temperature
values of an image were not relevant for the identification
of saturated areas, we truncated the global temperature range
in favour of a better colour contrast and a finer temperature
class width retained in the grey values (e.g. the retained tem-
perature class width is 0.1 ◦C in case of a temperature range
of 25.5 ◦C and an image with 255 grey values).

We employed Microsoft’s Image Composite Editor (ICE)
and the PTGui panorama software (New House Internet Ser-
vices) to create panorama images (Fig. 3, step 2). ICE and
PTGui allow for the creation of panoramas from single im-
ages (and from video frames for ICE) with an automatic mo-
saicking function (i.e. a function that geometrically trans-
forms, aligns, and overlaps the single images). TIR images
generally show less identifiable features and lower contrasts
than VIS images (cf. Weber et al., 2015). Therefore, a (par-
tial) failure of automatic mosaicking is not uncommon, and
manual interactions with image alignment (i.e. defining con-
trol points for matching distinct points in overlapping im-
ages in PTGui) were frequently necessary for the TIR images
taken during our 18-month field campaign.

In order to compare several panorama images of the same
area, one needs to co-register the panoramas (Fig. 3; step 3).
In principle, it is possible to geo-rectify the TIR images by
allocating geographical coordinates to the images, which are
derived from ground control points (cf. Keys et al., 2016;
Silasari et al., 2017) or from a virtually projected elevation
model (cf. Cardenas et al., 2014; Corripio, 2004; Härer et
al., 2013). However, this can result in large gaps or strong
interpolations and distortions in the images, due to view ob-
structions in the picture. Instead of this, therefore, we co-
registered TIR panoramas of the same area against each other
(cf. Cardenas et al., 2014; Glaser et al., 2016). More specif-
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identifiable, permanent existing features 
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the projection and field of view of PI and RPI are similar 
before applying a co-registration algorithm (→ adjust 
projection to RPI before saving created PI, step 2)

Stream 
section
of 5.5m

Figure 3. Workflow for processing single TIR images and video frames to co-registered panoramic images.

ically, we registered and cropped them to the dimensions of
a reference TIR panorama of the area of interest (Fig. 3; step
3).

2.4 Application examples

In this section, we present three examples from our 18-month
field campaign that demonstrate the potential for TIR im-
agery to analyse surface-saturation patterns and their dy-
namics. All images were taken in the Weierbach catchment
– a forested, 42 ha headwater research catchment in west-
ern Luxembourg (Glaser et al., 2016; Klaus et al., 2015;
Martínez-Carreras et al., 2016; Schwab et al., 2018). We
avoided unfavourable environmental conditions for the im-
age acquisitions (cf. 2.2, Fig. 2) by allowing a few days

of tolerance around the targeted biweekly or weekly recur-
rence frequency. Additionally, we cut ferns that obstructed
the camera view during the summer months. The 364 ac-
quired panorama images were divided into three groups clas-
sified as usable without restrictions (32.4 %), usable with
some restrictions (small negative effects of low temperature
contrasts or covering vegetation visible, 31.1 %), and unus-
able (36.5 %).

The usable panoramas captured the temporal evolution of
surface saturation over the 18-month field campaign. This
demonstrates the robustness of TIR imagery through the
complete range of seasonal conditions (Fig. 4), including
snow and growing vegetation as well as warm and cold water.
The full extent of the added value provided by TIR imagery
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Figure 4. Time-lapse TIR and VIS panoramas, showing the variation of surface-saturation patterns with varying discharge levels under
diverse seasonal conditions.

compared to VIS imagery was documented for cases with
different seasonal conditions (Fig. 4), particularly for situ-
ations with less-pronounced differences in discharge levels
(e.g. Fig. 4a–c). For example, the comparison of the VIS im-
ages of December 2015 and June 2016 (Fig. 4a vs. Fig. 4c)
suggests wetter conditions for December 2015, while the
two TIR images show similar saturation patterns for the two
dates.

In addition to surface-saturation dynamics, the TIR im-
ages can also reveal distinct types of saturation patterns.
For example, the orientation of saturated areas may change
over a few metres from perpendicular (Fig. 5a, b) to parallel
(Fig. 5c, d) to the adjacent stream. The extension of saturated
areas along the left bank (Fig. 5c, d) appears to be created by

a parallel extension of the stream in a flat riparian zone that
becomes an extended stream bed. The surface saturation ori-
ented perpendicularly to the stream at the right bank (Fig. 5)
appears to be generated from exfiltrating groundwater that
flows downhill to the stream at the soil surface. Thus, the dif-
ferent directional extents of the saturated areas can indicate
different processes underlying the surface-saturation forma-
tion.

Finally, the images allow us to identify the spatial het-
erogeneity of temporal saturation dynamics across different
study sites. Figure 6 shows TIR images of the riparian zone
of two different source areas with different degrees and dy-
namics of surface saturation. In area 1 (Fig. 6, panels a,c, and
e), the pattern of saturation areas barely changed from Febru-
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Figure 5. Comparison of different types of surface-saturation patterns. The yellow arrows indicate the orientation of the saturated areas
towards the stream (blue arrows represent flow direction). The perpendicular direction (a, b) is likely caused by exfiltrating groundwater
connecting to the stream, and the parallel direction (c, d) is likely caused by a parallel flow of the stream expanding into the riparian zone.
The red ovals indicate where the two panorama images connect.

ary to April, while in area 2 (Fig. 6, panels b, d, and f) some
locations had dried out (red circles). In December 2016, the
riparian zones of both source areas were completely dry,
and the stream started further downstream in comparison to
the other observation dates (red arrows). This suggests that
both source areas evolve from very wet to very dry condi-
tions (during which surface saturation is mainly represented
by spots with stable groundwater exfiltration) with distinctly
different transition dynamics.

3 Quantification of saturation through pixel
classification

3.1 Methods for generating binary saturation maps

The application examples described in Sect. 2.4 demonstrate
the potential for TIR images to rapidly and intuitively visu-
alize surface-saturated areas. However, the “raw data” im-
ages need to be transformed into binary saturation maps for
further analyses based on quantitative values (e.g. saturation
percentages). A common approach to making an image bi-
nary is histogram thresholding (e.g. Rosin, 2002). This al-
lows a TIR image to be transformed into a binary satura-
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Figure 6. Transition of two source areas (a, c, e vs. b, d, f) from very wet (a, b) to very dry conditions (e, f). Surface saturation in source
area 1 (a, c, e) barely changed between February and April 2016, whereas source area 2 is clearly drier at some locations (red ovals) in
April 2016. In December 2016, both source areas were completely dry on each side of the stream (blue arrows represent flow direction), and
the stream started further downstream (red arrows).

tion map by taking the temperature range of pixels that are
known to be saturated (i.e. stream pixels) and defining all
pixels in that image that fall into that temperature range as
saturated (cf. Glaser et al., 2016; Pfister et al., 2010). Several
thresholding algorithms can be found in the literature, each
of which has its characteristic assumptions with respect to
image content (Patra et al., 2011). Unsupervised approaches
other than thresholding are also used for making an image bi-
nary, e.g. clustering (Li et al., 2015). Yet thresholding is the
most rapid technique for achieving a binary classification of
an image, even though the selection of an adequate threshold
value represents a critical step and its choice strongly influ-
ences the classification outcome.

One possibility for selecting a threshold value for classi-
fying surface saturation is to manually adapt the temperature
range until the resulting saturation map matches best the vi-
sual assessment of the original TIR and – if possible – VIS
image. A more objective and, for time-lapsed images, faster
method consists of relying on the temperature of preselected
pixels or a predefined mask for saturated and unsaturated
parts in all images. Such pixels and masks can be selected
based on a visual interpretation of the images or on informa-
tion obtained from reference sensors in the field, indicating
whether a location was wet or dry at the surface at the time
of image acquisition.

Silasari et al. (2017) applied an automatic image classifi-
cation for unimodal distributions based on a threshold pa-

rameter that needs to be calibrated to specific image con-
ditions (in this case, the brightness of VIS images).This is
only straightforward in cases where the temperature distri-
bution between water and the surrounding environment is
clearly bimodal. Chini et al. (2017) presented a parametric
adaptive thresholding algorithm especially suited for images
that do not show a clear bimodal distribution. The algorithm
makes use of an automatic selection of image subsections
with clear bimodal distributions, a hierarchical split-based
approach (HSBA), and a subsequent parameterization of the
distributions of the two pixel classes. Since the two decom-
posed distributions might still overlap to a certain extent,
Chini et al. (2017) advise complementing the decomposed
distribution information with contextual information of the
image for the final generation of a binary image, instead of
selecting a single threshold value between the two decom-
posed distributions. Several approaches are available in the
literature for including contextual information in the classifi-
cation of a single spectral image, such as mathematical mor-
phology (Chini et al., 2009) or second-order textural param-
eters (Pacifici et al., 2009). Chini et al. (2017) suggested a
region-growing algorithm where the seeds and the stopping
criteria are constrained by the identified distribution of the
class of interest (here, saturation).
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Figure 7. Example TIR images, with their cumulative saturation curves showing the percentage of pixels that have a higher (a, b) or lower (c,
d) temperature than the temperature range threshold Tth and are thus defined as saturated (marked as yellow pixels in the inset TIR images).
The green asterisks mark the temperature ranges that were manually chosen as optimum following a visual assessment of the images. Green
dashed lines define the uncertainty of the optimum temperature ranges. The red rectangles in the TIR images depict the masks used for
the identification of temperature ranges from a constantly wet (a, c) and constantly dry (b, d) area. The respective temperature ranges and
saturation percentages are marked in blue. As a reference for the spatial dimension of the images, we refer the reader to the indicated stream
section in Figs. 3 or 4.

3.2 Comparison of methods for generating binary
saturation maps for TIR images

We applied three of the approaches described above to gen-
erate the binary saturation maps of our TIR image data set.
Here, we present the results for four example images with
differing conditions during image acquisition (e.g. very wet
or dry conditions, water being the warmest or coldest mate-
rial; Fig. 7). We evaluated the results of the three different
approaches based on our observations from the field and the
corresponding VIS image as ground truth.

First, we manually chose a temperature range of satura-
tion for each image. By nature, this pixel classification ap-
proach creates results that are very close to ground truth.
However, finding an unequivocal temperature range was not
feasible, and the selection of the most plausible temperature

range (Fig. 7; dark-green asterisk) remained somewhat sub-
jective. Furthermore, artefacts (such as pixels corresponding
to vegetation covering the stream) induced some uncertainty
in the pixel classification, eventually leading to discrepan-
cies compared to visually identified saturation patterns. Con-
sequently, a pixel classification based on this manual pro-
cedure remained tarnished by some uncertainties. The def-
inition of an uncertainty range within which the tempera-
ture range can be considered plausible (Fig. 7; dark-green,
dashed lines) was also subjective. Generally, the uncertainty
range was small for images with low saturation and gradu-
ally increased with higher saturation (compare Fig. 7d–b).
Accordingly, images with a large difference in percentages
of saturated pixels (e.g. Fig. 7b vs. Fig. 7d) did not encounter
an overlap of the uncertainty ranges. For some images, the
uncertainty range was rather high (Fig. 7a), and a compar-
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ison with other images with percentages of saturated pixels
in the same range was thus problematic. In such cases, it is
preferable that only one person defines the optimal temper-
ature ranges and thus saturation patterns for all images that
are intended to be compared in order to ensure consistency
in the image interpretation.

Secondly, we performed an objective selection of the tem-
perature range of saturation based on masks with known
pixel classes. For this, we used two masks, one with
2000 pixels falling into an area that always stayed dry and
one with 2000 pixels falling into an area where the stream
was flowing all year (red rectangles; Fig. 7). Based on the
mask, we selected the threshold for the temperature range
as the 90th percentile and 10th percentile of the temperature
of the stream mask pixels and dry mask pixels, respectively
(i.e. 90 % of the pixels falling below the mask were defined
as saturated and dry, respectively). By using the two different
masks, we obtained two temperature ranges, resulting in two
different saturation percentages for each image (Fig. 7; blue
points). The identification of saturated areas based on the dry
mask was clearly not constrained enough. The identification
of saturated areas based on the stream mask sometimes ap-
proached the manual identification of saturation (Fig. 7a, c)
but, in other cases, even exceeded it (Fig. 7d). The uncer-
tainty range of saturation obtained with the two masks could
be reduced by selecting a more extreme percentile for the
temperature threshold definition. However, this increased the
risk of obtaining a clearly incorrect value (cf. Fig. 7d), since
the stream and dry mask can cover pixels of the wrong cate-
gory (due to artefacts like vegetation covering the stream or
due to distorted co-registered images, resulting in a shifted
mask). A reduced mask size prevents such wrong pixels but
also reduces the captured variability in temperature (in an
extreme case, down to one temperature value), which in turn
increases the risk of missing the warmest or coldest temper-
ature of the wet or dry areas.

Finally, we tested the usability of the approach proposed
by Chini et al. (2017), constraining a region-growing algo-
rithm to (a) a bimodal distribution derived from the HSBA
applied to the entire image, (b) a bimodal distribution derived
from the HSBA where the selection of bimodal image sub-
sections was constrained to image-specific manual predefini-
tions of temperature ranges of saturation, and (c) a bimodal
distribution derived from preselected parts of the image that
include clearly wet and dry areas. While in some cases the
fully automatic image classification (point a) worked very
well in comparison to the manual selection of a temperature
range (cf. Fig. 8; 4 December 2015, 30 August 2016), for the
other cases, saturation was mostly underestimated (cf. Fig. 8;
25 February 2016, 3 June 2016). The additional constraint
with image-specific temperature ranges (point b) improved
the matches overall with the manually defined saturation pat-
terns, but the result was strongly influenced by the match of
the given constraint range to the range that was defined as
the optimum for the image. A constraint with a roughly esti-

mated temperature for saturation worked less well than a con-
straint with the temperature range as selected in the detailed
manual assessment described earlier in the section (cf. Fig. 7;
green asterisks and lines). The classification based on pres-
elected parts of the image (c) tended to result in higher sat-
uration amounts. This improved the match for the cases that
were underestimated with the fully automatic classification
(point a – cf. Fig. 8; 25 February 2016, 3 June 2016), but this
overestimated saturation for the cases where the fully auto-
matic classification (point a) showed good results (cf. Fig. 8;
4 December 2015, 30 August 2016).

4 Discussion

4.1 Mapping surface saturation with TIR imagery

The main advantages of TIR imagery in comparison to other
surface-saturation mapping methods are its non-invasive
character and its large temporal and spatial flexibility (cen-
timetres to kilometres, minutes to months). Another advan-
tage is that TIR images allow a rapid and intuitive identi-
fication and analysis of the dynamics of surface-saturation
patterns. The raw data images can be used without any addi-
tional processing to study surface-saturated areas, their evo-
lution over time, and how and where they occur – ultimately
contributing to a better mechanistic understanding of the hy-
drological processes prevailing in the studied area. The pure
visual information provided by the images per se is also us-
able as soft data, e.g. for model validation (e.g. different
types of extent compared to stream, Fig. 5; more and less
stable saturation patterns, Fig. 6). VIS imagery offers simi-
lar advantages (Silasari et al., 2017), but commonly the satu-
rated areas are not as clearly visible as with TIR imagery (cf.
Figs. 1, 4). Moreover, VIS imagery is not usable during the
night and cannot provide additional information about water
sources and processes underlying the surface-saturation for-
mation (cf. Figs. 1 and 5, groundwater inflow vs. stream wa-
ter). Nevertheless, VIS imagery provides good complemen-
tary information to the TIR imagery and should always be
considered as a ground truth information source.

In our study, unfavourable image acquisition conditions
(cf. Sect. 2.2) caused 36.5 % of the acquired images to be un-
usable for further processing. High amounts of unusable im-
ages are a common problem in environmental imagery (e.g.
cloud cover for satellite images, night-time for VIS images;
de Alwis et al., 2007; Silasari et al., 2017). Flexibility in the
scheduling of a field campaign is thus necessary for reducing
the number of acquisitions during unfavourable conditions.
A concern for the use of TIR imagery for mapping satura-
tion patterns is that some saturated areas (e.g. warmed-up
ponding water) might not be identified as saturated due to
a temperature that is very different from the stream temper-
ature. This relates to the fact that temperature is only used
as an indicator for saturation. Compared to other saturation
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Figure 8. Comparison of saturation maps (yellow represents saturation), generated with a region-growing process whose seeds and stopping
criteria were automatically constrained to (a) bimodal distributions derived from the HBSA applied to the entire image, (b) bimodal distri-
butions derived from the HBSA where the selection of bimodal image subsections was constrained to image-specific manual predefinitions
of temperature ranges of saturation, and (c) bimodal distributions derived from preselected parts of the image (which include clearly wet
and dry areas and are shown in d). The saturation maps generated with manually selected temperature ranges based on visual assessment
(cf. Fig. 7; green asterisk) are shown for comparison (e). As a reference for the spatial dimension of the images, we refer the reader to the
indicated stream section in Fig. 3 or 4.

indicators, such as vegetation mapping or hydrometric mea-
surements (cf. Dunne et al., 1975), we consider TIR imagery
with the above-mentioned advantages as the better indirect
mapping method. However, the only way to directly map sur-
face saturation consists of walking through the area of inter-
est (e.g. squishy boot method), which remains restricted to
small areas or low mapping frequencies.

The amount of fieldwork for imagery mapping is gener-
ally reduced compared to other methods for mapping sur-
face saturation (e.g. vegetation or soil mapping), allowing
more frequent campaigns with higher spatial precision. Yet
consistent with other imagery-mapping studies (e.g. Spence
and Mengistu, 2016), the image post-processing in this study
was time-consuming. Mosaicking and the co-registering of
images is often considered particularly difficult for TIR im-
ages, since ground control points with a thermal signature
are needed (Dugdale, 2016; Weber et al., 2015). Our ex-
perience showed that the images normally offered enough
natural thermal ground control points (e.g. the stream bank)
in cases where the temperature contrast between water and
ambient materials was good enough for image usability. In
combination with the post-processing workflow presented,
the post-processing effort was reasonable. More automatized
workflows like the one proposed by Turner et al. (2014) for

mosaicking UAV-acquired TIR images could also be adapted
and applied.

The image acquisition considerations, post-processing
steps, and application examples described focused on bi-
weekly or weekly panoramic images of small areas, ac-
quired with a portable TIR camera. A transfer of the TIR
imagery technique to different temporal or spatial scales
does not change the principles and possibilities of the tech-
nique, but it will require some additional scale- and platform-
dependent considerations. For example, using permanently
installed ground-based cameras for image acquisitions with
high temporal frequencies might challenge technical aspects
such as protection of the camera against environmental in-
fluences, an automatic triggering of image acquisition, and
power supply. These aspects might also be relevant for TIR
imagery acquisition at larger spatial scales, especially when
using UAVs. Besides this, image acquisitions based on UAV
or aeroplane overflights might, for example, require consid-
erations of overflight regulations. Users of UAVs or aero-
planes should also be aware that saturation patterns within a
forest might only – if at all – be mapped during the dormant
season and that ground control points and ground truth data
might be more difficult to obtain. Such challenges are partly
addressed in existing literature (e.g. Vivoni et al., 2014; We-
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ber et al., 2015), but others will need to be figured out by
applying the TIR technique at such different scales.

4.2 Pixel classification methods

More challenging than TIR image mosaicking and co-
registering was the generation of saturation maps from the
TIR images. The different pixel classification methods tested
all yielded somewhat different results compared to pixel
classification based on manual visual assessment. Neverthe-
less, realizing an objective, automatic classification of satu-
rated areas is not more challenging than for other surface-
saturation mapping methods. Saturation maps created based
on the squishy boot method or vegetation or soil mapping
are subjective due to decisions made during the fieldwork.
The supervised and unsupervised classification methods that
are commonly used for creating saturation maps from remote
sensing data (e.g. VIS images, NDVI or NDWI) also con-
tain some uncertainty (Chabot and Bird, 2013; DeAlwis et
al., 2007; Mengistu and Spence, 2016; Spence and Mengistu,
2016).

Moreover, the main problem for all of the tested satura-
tion map generation methods (cf. Sect. 4) is that they are not
applicable without being adapted to individual image condi-
tions (very wet, very dry, water being the warmest or cold-
est material, slightly different fields of view). Other image
processing methods for deriving saturation maps also do not
fulfil this requirement; it is necessary to adapt the parameters
(e.g. Silasari et al., 2017) or to perform a new supervision
(with new classification pixels or masks) for the classification
of images with different conditions (e.g. Chabot and Bird,
2013; Keys et al., 2016). At this stage, we consider a manual
choice of temperature range for saturated pixels as the best
approach for time-lapsed images with very variable condi-
tions and slight perspective shifts, even though it is labour-
intensive and somewhat subjective. For time-lapsed images
with a fixed vantage point and for time spans with simi-
lar conditions (e.g. storm events), the automatable methods
presented represent valuable options. In particular, the com-
bination of an automatic decomposition of two pixel class
distributions with a region-growing algorithm yielded objec-
tive saturation maps close to the manual saturation classi-
fication and visual assessment of the TIR images (Fig. 8).
Small adaptations of the constraint for the decomposition
of two pixel class distributions were sufficient for obtaining
good results for the different image conditions (cf. Fig. 8a–
c), and further developments of the method might even allow
such adaptations to be performed in semi-automatic and au-
tomatic ways. More work on pixel classification might also
include the application of machine-learning techniques or,
especially for time-lapsed images, the analysis of the tem-
perature signals of individual pixels over time. Another in-
teresting option may consist of combining the TIR images
with additional data (e.g. VIS images or NIR images), which
will allow multi-spectral classification methods to be applied

(Chini et al., 2008) and contextual information to be inte-
grated at the same time (Chini et al., 2014).

5 Summary and conclusions

This technical note presents recent work carried out in the
Weierbach catchment, where we tested the potential for TIR
imagery to map surface-saturation dynamics. To the best of
our knowledge, this is the first comprehensive review and
summary of the TIR imagery-related methodological prin-
ciples and the required precautions and considerations for
a successful application of TIR imagery for mapping sur-
face saturation. We give advice for all steps, from image
acquisition to processed saturation maps. The main require-
ment is a clear temperature contrast between water and the
surrounding environments. Image acquisition during an 18-
month campaign showed that the method works best dur-
ing dry nights or dry early mornings and that images should
be taken from well-chosen positions without obstructions in
view towards the ground. The workflow presented for acquir-
ing panoramic images is particularly suitable for small areas
of interest (centimetres to metres) that are monitored with
intermediate to low mapping frequencies (days to months).
Moreover, the information contained in this technical note is
also beneficial for applications at different temporal and spa-
tial scales (fixed cameras for high-frequency images, drone
and satellite images for larger spatial scales), considering that
some adaption and further developments of the methodology
might be necessary.

We demonstrated with three examples that TIR imagery is
applicable throughout the year and can reveal spatially het-
erogeneous surface-saturation dynamics and distinct types
of saturation patterns. The saturation patterns can also be
used to identify different processes underlying the surface-
saturation formation, such as groundwater exfiltration or
stream expansion. The surface-saturation information visual-
ized in the images can be used directly as soft data for char-
acterizing field conditions, for analysing ongoing hydrologic
processes, and for model validation.

The methods presented for obtaining binary, objective sat-
uration maps from TIR images contain some uncertainties
and are not automatable for data sets containing many im-
ages with varying characteristics (e.g. very wet or dry, water
warmest or coldest material, slightly different fields of view).
In such cases, a manual choice of the temperature range for
saturated pixels is the most reliable approach. Yet for im-
age subsets with similar conditions, the pixel classifications
tested work well, and we think that the combination of an au-
tomatic decomposition of the image distribution in two pixel
classes and a region-growing algorithm is a very promising
option for obtaining objective, comparable saturation maps.
In conclusion, we consider the TIR imagery a very powerful
method for mapping surface saturation in terms of practica-
bility and spatial and temporal flexibility, and we believe it
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can provide new insights into the role of saturated areas and
subsequent spatial and temporal dynamics in rainfall–runoff
transformation.
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Abstract 

The inundation of flood-prone areas varies in space and time and can have crucial impacts on runoff generation and water 

quality when the surface saturated areas become connected to the stream. In this study, we aimed to investigate and explain 

the variability of surface saturation patterns and dynamics within a forested headwater catchment. On the one hand, we mapped 15 

surface saturation in seven distinct riparian areas of the Weierbach catchment (Luxembourg) with thermal infrared images, 

taken weekly to bi-weekly over a period of two years. On the other hand, we simulated the surface saturation generation in the 

catchment with the integrated surface subsurface hydrologic model HydroGeoSphere over the same period. Both the 

observations and simulations showed that the saturation dynamics were similar across the catchment, but that small differences 

between the dynamics at different areas occurred. Moreover, the model reproduced the observed saturation patterns well for 20 

all seasonal and hydrologic conditions and at all investigated locations. Based on the observations and simulation results and 

the matches and mismatches between them, we concluded that the generation of surface saturation in the Weierbach catchment 

was largely controlled by exfiltration of groundwater into local depressions. However, we also illustrate that the entire 

variability of the patterns, dynamics and frequencies of surface saturation within the different riparian areas of the catchment 

can only result from additional controlling factors to microtopography and groundwater exfiltration, such as differing hysteretic 25 

behaviour, differing subsurface structures, or additional water sources. 

1 Introduction 

It is critical for flood risk assessment to understand where and when water is standing or flowing on the ground surface outside 

of perennial surface water bodies. When such surface saturated areas connect to the stream via overland flow, they also become 

crucial for runoff generation and water quality. In general, surface saturated areas arise from 1) water ponding on the surface 30 

due to exceedance of the infiltration capacity of unsaturated soil, 2) water ponding on impermeable surfaces or saturated soil, 

3) water exfiltrating from the subsurface or, 4) stream water extending into the floodplain (e.g. Megahan and King, 1985). 

Over the past years and decades, various field studies mapped and analysed the spatial and temporal occurrence of surface 

saturation within different landscapes (e.g. Ambroise, 1986, 2016; Dunne et al., 1975; Gburek and Sharpley, 1998; Latron and 

Gallart, 2007; Silasari et al., 2017; Tanaka et al., 1988). From the field studies it is well recognized that surface saturation 35 

varies in space and time and that its appearance is affected by structural (e.g. topography) and dynamic factors (e.g. 

precipitation intensity, antecedent moisture). Yet there is limited understanding on how surface saturation evolves spatially 

and temporally between and within landscapes and how the interplay of different controlling factors and generation processes 

controls the spatio-temporal variability of surface saturation. 
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Spatially distributed and dynamic hydrological models are potential tools for analysing the generation and development of 

surface saturation in space and time. Such models allow a detailed investigation of surface saturation at any desired location 

and time that goes far beyond the information that can be gained by any field observation. Several simulation studies 

systematically assessed the influence of static and dynamic factors on the temporal evolution, connectivity, and spatial 

distribution of surface saturation by performing virtual experiments with hillslope models (Ogden and Watts, 2000; Reaney et 5 

al., 2014) or by testing a range of terrain indices for predicting time-integrated saturation patterns (Güntner et al., 2004). Other 

studies relied on dynamic distributed and semi-distributed simulations for analysing connectivity of surface saturation in 

relation to wetness conditions and catchment runoff (Mengistu and Spence, 2016; Qu and Duffy, 2007; Weill et al., 2013). 

Weill et al. (2013) and Partington et al. (2013) analysed the processes and water sources that generate surface saturation in a 

wetland and a pre-alpine grassland headwater, respectively. Both studies applied a model belonging to the group of integrated 10 

surface-subsurface hydrologic models (ISSHMs, Sebben et al., 2013), which can simulate the interplay of different surface 

and subsurface processes of surface saturation generation (e.g. ponding of precipitation from the surface, exfiltration from the 

subsurface). Modelling studies that focus on a comprehensive spatio-temporal analysis of surface saturation dynamics within 

a landscape by evaluating the spatially distributed model outputs rather than aggregating the outputs are scarce (e.g. Nippgen 

et al. (2015) for subsurface saturated areas) 15 

When complementing field observations with simulations to analyse the generation and development of surface saturation in 

space and time, it is important to ensure that the model yields realistic results. Glaser et al. (2016) demonstrated for a small 

riparian area that a good match between modelled and observed discharge or soil moisture does not automatically imply a 

realistic simulation of saturation patterns. They concluded that a spatial validation of the dynamic saturation patterns itself is 

crucial. However, only few of the existing modelling studies explicitly checked the realism of their simulated surface saturation 20 

with field observations before using them for further analyses. These studies focussed either on temporally integrated spatial 

patterns (Grabs et al., 2009; Güntner et al., 2004) or on temporal dynamics of overall catchment saturation (Birkel et al., 2010; 

Mengistu and Spence, 2016), but barely any study combined the observation and simulation of both surface saturation patterns 

and dynamics (Ali et al., 2014; Glaser et al., 2016). The lack of such studies is certainly explainable by the resources that are 

necessary for obtaining appropriate field data. Today, we still lack a standard method to map surface saturation and the different 25 

existing methods such as the ‘squishy boot’ method, the usage of ‘on-off’ surface saturation sensors, the mapping of soil 

morphology or vegetation as surrogates, or the usage of remote sensing techniques (e.g. Dunne et al., 1975; Gburek and 

Sharpley, 1998; Güntner et al., 2004; Latron and Gallart, 2007; Mengistu and Spence, 2016; Silasari et al., 2017) all have their 

own advantages and disadvantages. 

A relatively new and powerful method for mapping surface saturation is thermal infrared (TIR) imagery. TIR mapping relies 30 

on the difference between the surface temperature of water and other materials for identifying surface saturation. Previous 

work showed that recurrent mapping of surface saturation with high spatial resolution is possible with TIR imagery (Glaser et 

al., 2016; Pfister et al., 2010). Glaser et al. (2018) and Antonelli et al. (2019) applied TIR imagery mapping in the 42 ha 

forested Weierbach catchment in western Luxembourg and monitored the dynamics of surface saturation within several distinct 

riparian areas along the Weierbach stream with a weekly to biweekly mapping frequency over several seasons.  35 

In this study, we explore the intra-catchment variability of temporal and spatial characteristics of surface saturation (dynamics, 

frequencies, patterns) with a combination of field observation and modelling. We perform the study in the Weierbach 

catchment, where we can rely on existing TIR imagery data (Antonelli et al., 2019; cf. Glaser et al., 2018) and on previous 

modelling work for a 6 ha headwater of the catchment (Glaser et al., 2016, 2019) with the ISSHM HydroGeoSphere. Glaser 

et al. (2016, 2019) simulated the 6 ha area of the catchment by accounting for a layering of the subsurface, while spatial 40 

heterogeneity was only represented by microtopography and by a different sequence of subsurface layers in the riparian zone 

compared to the hillslopes and plateau. Here, we extend the model setup to the entire 42 ha catchment without introducing 

additional heterogeneity and without performing a re-calibration. We simulate surface saturation in the catchment and contrast 
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the results with the observed saturation patterns from the TIR imagery, focussing on the long-term saturation dynamics over 

different seasons and wetness conditions (25 months with weekly to biweekly mapping resolution) and the spatial patterns of 

surface saturation occurrence and frequency at seven different riparian areas across the catchment. The two research objectives 

that we aim to address with this approach are:  

1) How variable are surface saturation dynamics and patterns within a catchment and to what extent can we reproduce 5 

the variability of the saturation characteristics (dynamics, frequencies, patterns) with a rather homogenously set-up 

ISSHM?  

2) What do we learn about the reasons for the intra-catchment variability of surface saturation characteristics from the 

matches and mismatches between simulation results and observations? 

2 Study site and data 10 

2.1 Physiography, climate and hydrometry 

The Weierbach catchment is an intensively studied headwater catchment (42 ha) in western Luxembourg. About half of the 

catchment area is characterized by gentle slopes <5°, forming a plateau landscape unit (Martínez-Carreras et al., 2016). The 

rest of the catchment is characterized by hillslopes with slopes > 5°, forming a central V-shaped stream valley from north to 

south and a V-shaped tributary valley in the east. A third, few metres long stream branch is situated in the west of the central 15 

stream valley. Riparian zones along the stream account for 1.2 % of the catchment area (Antonelli et al., 2019). Large parts of 

the catchment are forested with deciduous trees (mainly European beech and Sessile oaks), the south-east and some other small 

parts are forested with conifers (mainly Norway spruce and Douglas spruce). The riparian zones are free of tree canopy and 

covered with ferns, moss, and herbaceous plants. Soil developed from Pleistocene Periglacial Slope Deposits as shallow and 

highly-permeable siltic, sceletic Cambisol with a depth ranging between 0.4 and 0.9 m (Gourdol et al., 2018; Juilleret et al., 20 

2011; Moragues-Quiroga et al., 2017). Beneath the solum, a 0.5 – 1 m thick basal layer with bedrock clasts oriented parallel 

to the slope overlies fractured Devonian slate and phyllites (Gourdol et al., 2018; Juilleret et al., 2011; Moragues-Quiroga et 

al., 2017; Scaini et al., 2017). In the riparian zones, soil and basal layer have been eroded and the fractured bedrock is overlain 

by shallow organic Leptosols (Glaser et al., 2016). 

The climate is oceanic-continental without apparent seasonality in precipitation and with negligible amounts of snow (Carrer 25 

et al., 2019). Mean annual precipitation during the period from October 2013 to September 2017 was 955±53 mm. Mean 

annual discharge was 546±253 mm, with exceptionally dry conditions in the hydrological year 2017. During wet periods, 

discharge is characterized by double peak hydrographs with first peaks appearing as immediate response to precipitation and 

second pronounced peaks appearing 48h to 72h later (cf. Martínez-Carreras et al., 2016). During dry periods, only first 

hydrograph peaks occur and the stream dries out intermittently starting from the source areas downstream. 30 

Hydrological and meteorological data that were used in this study were measured from October 2013 to January 2018. Data 

from the period from October 2013 to September 2015 were used for spin-up simulations, data from the period from October 

2015 to January 2018 were used to drive and validate the actual simulation (cf. Section 3). Discharge was measured with water 

pressure transducers (ISCO 4120 Flow Logger, 15 min logging intervals) at four v-notches, installed at the outlet of the 

catchment (SW1, Fig.1) and upstream of the confluences of the three branches (SW2-SW4). Groundwater levels were 35 

continuously recorded every 15 minutes with pressure sensors (OTT CTD) in five piezometers installed in different landscape 

units (riparian zone, hillslope, plateau) of the catchment (Fig. 1, GW1-3, GW5, GW7). Soil moisture was continuously 

monitored (30 min logging intervals) with water content reflectometers (CS650, Campbell Scientific) installed horizontally in 

10, 20, 40 and 60 cm depth at four different sites (Fig.1, SM3-5, SM7). At each site, two depth profiles were monitored. In 

addition, soil moisture in 10 cm depth was monitored with water content reflectometers (CS616, Campbell Scientific, 30 min 40 

logging intervals) at five locations crosscutting the riparian zone of the stream source area of the middle stream branch (Fig. 

1, SSM1-5). 
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Cumulative precipitation was recorded every 5 minutes with a tipping bucket raingauge (Young 52203, unheated, 1 m height) 

at an open area within the catchment (data gaps were filled by estimating a linear regression to data from a station 

approximately 4.5 km southward). Potential reference evapotranspiration was estimated based on measured air temperature, 

relative humidity, wind speed, and net radiation according to the FAO Penman-Monteith formulation (Allen et al., 1998). Air 

temperature and relative humidity data were recorded next to the soil moisture profile SM5 (Fig. 1, HMP45C-LC, Campbell 5 

Scientific, 15 min logging intervals, 2 m height). Wind speed and radiation data were recorded approximately 4.5 km 

southward of the study site. Wind speed (Young Wind Monitor 05103, Vector A100R Anemometer) was recorded every 15 

minutes in 3 m height and converted to wind speed in 2 m height (data gaps closed with data from a station approximately 

11.5 km north-eastward) following the FAO guidelines (Allen et al., 1998). Net radiation was recorded every 15 minutes (Kipp 

& Zonen NR Lite net radiometer) until May 2017. From June 2017 on (and for closing other data gaps), we used net radiation 10 

data recorded every 5 minutes close to Luxembourg Airport (~40 km southeast of the study site), as these measurements were 

highly correlated (linear regression with an intercept of 7.6 W m-2, a slope of 0.92, R2 = 0.81) with the measurements close to 

the study site in the years before. 

 

 15 

Figure 1: The Weierbach catchment with the locations of the installed v-notches, piezometers, soil moisture sensors and the seven 

investigated riparian areas. 
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2.2 Surface saturation 

Here, we define surfaces as saturated as soon as water is standing or flowing on the ground surface (Glaser et al., 2018). This 

involves water bodies such as lakes and streams, but excludes mere saturation in the topsoil. According to this definition, 

surface saturation in the Weierbach catchment generally only occurs in the streambed and the adjacent riparian zones. Other 

areas that were occasionally observed to be surface saturated during very wet conditions or ‘rain on snow’ events are forest 5 

roads and the prolongation of the streambed above the source regions into the hillslopes. We focus in this study on seven 

distinct riparian areas in the catchment, which can be classified into three different categories (cf. Antonelli et al., 2019): i) 

stream source areas with perennial springs (L1, M3, R3, blue areas Fig. 1), ii) areas along the stream with perennial springs 

(M2, S2, yellow areas Fig. 1), and iii) areas along the stream with non-perennial springs (M1, R2, green areas Fig.1). 

We mapped the surface saturation in these seven riparian areas weekly to biweekly from November 2015 to December 2017 10 

with thermal infrared imagery (TIR). Details on the identification of surface saturation with TIR imagery and on the collected 

surface saturation dataset are presented and discussed in Glaser et al. (2018) and Antonelli et al. (2019). In brief, we created 

panoramic TIR images of the distinct areas and identified the locations of surface saturation (including the stream) within the 

images. To do this, each pixel in an image was assigned to be saturated or unsaturated based on the temperature range of 

locations that were obvious to be saturated from field observations and visual images. In case the contrast between water 15 

temperature and temperature of surrounding materials was not sufficient for a reliable pixel classification, the images were 

excluded from the analysis. In case the pixel classification was affected by a poor temperature contrast or by pixels representing 

vegetation or snow cover in the images, the images were analysed but flagged as less reliable. Altogether, we obtained 291 

binary panoramic images showing the temporal dynamics of surface saturation patterns in the seven studied riparian areas with 

total numbers of images per site ranging between 34 (L1) and 48 (M2). 20 

Time series of saturation were created for each area by accounting for the percentage of saturated pixels within the individual 

panoramic images. We normalized the saturation percentages to the maximum observed percentage of saturation in the distinct 

areas in order to allow a comparison of the saturation dynamics between the different riparian areas. For picturing the spatial 

surface saturation dynamics within a distinct riparian area, we created maps of saturation frequency. We counted for each area 

how often the individual pixels of the panoramic TIR images were classified as saturated and normalized the resulting 25 

frequency numbers by the total number of TIR images analysed for that area. 

The resulting maps of normalized saturation frequency rarely showed pixels that were always saturated (i.e. reaching a 

normalized frequency of 1). In reality, surface saturation was more persistent than indicated by the frequency maps. The reason 

for this artefact is that the perspective of the individual TIR panoramas was not 100% identical for all mapping instances and 

that vegetation sometimes covered parts of the saturated surface, especially during near dry conditions. We co-registered the 30 

individual panoramas against a reference panorama for each area, but slight position shifts were inevitable. As a result, the 

images that were placed on top of each other did not always overlap exactly and the generated saturation frequency maps are 

blurred. Nonetheless, the maps of normalized saturation frequencies are very useful to understand at a glance where surface 

saturation occurs more and less frequent within an area and to be used for model validation. 

3 Catchment model 35 

3.1 Model setup and parameterisation 

We simulated the spatio-temporal dynamics of surface saturation across the Weierbach catchment with HydroGeoSphere 

(HGS, Aquanty Inc.). HGS is an integrated surface subsurface hydrological model and allows simultaneous simulation of 

transient surface and subsurface flow. Subsurface flow is simulated based on the 3D Richards equation. Surface flow is 

simulated based on the diffusive-wave approximation of the 2D Saint Venant equation. Evapotranspiration is simulated with 40 

a comparatively simple approach, following the mechanistic concept of Kristensen and Jensen (1975). The equations are 
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linearized implicitly using the Newton-Raphson approach and solved in an unstructured finite element grid. HGS has been 

used in the past for addressing diverse questions at various temporal and spatial scales (e.g. Ala-aho et al., 2015; Davison et 

al., 2018; Erler et al., 2019; Frei et al., 2010; Munz et al., 2017; Nasta et al., 2019; Partington et al., 2013; Schilling et al., 

2017; Tang et al., 2018). It also has already been applied for a 6 ha headwater region of the Weierbach catchment (Glaser et 

al., 2016, 2019). In this study, we applied the parameterization of Glaser et al. (2016) to the entire 42 ha catchment without 5 

performing an additional parameter calibration. 

The catchment was spatially discretized into 42,274 triangular elements, using the mesh generator AlgoMesh 

(HydroAlgorithmics Pty Ltd). Edge lengths of the mesh elements ranged from > 30 m at the plateau to < 0.4 m for the seven 

analysed riparian zones and the streambed (Fig. 2). It was crucial to use such a fine mesh resolution in the riparian zone in 

order to enable a comparable spatial detail as obtained with the TIR imagery for the surface saturation patterns. Vertically, the 10 

model grid comprised 5 m, which were divided into 14 layers with element depths ranging from 0.15 m for the top layers to 

0.5 m for the bottom layers (Fig. 2). 

 

 

Figure 2: Setup of the model mesh with a zoom on the fine horizontal resolution in the riparian areas and the streambed (inset on 15 
the right) and a vertical cross section through the stream valley and adjacent hillslopes (bottom) showing the vertical discretization 

and assignment of different soil properties (cf. Tab. 1). Ah = topsoil, B1 and B2 =subsoil, IIC = basal layer, Cv = fractured bedrock, 

Cm = fresh bedrock. 
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The subsurface was parameterized homogeneously with 10 different property layers, representing top- and subsoil (Ah, B1, 

B2), the basal layer (IIC), fractured and fresh bedrock (Cv, Cm), and layers of transition between subsoil, basal layer, and 

fractured bedrock (Fig. 2). We implemented spatial heterogeneity in the stream valleys, where soil and basal layer were eroded 

and the outcropping fractured bedrock was overlain with organic, stagnic Leptosol in the riparian zones (Fig. 2). We used the 

Mualem-van Genuchten soil hydraulic functions for describing the saturation-pressure relation. The necessary soil hydraulic 5 

parameter values for the different property layers (porosity, residual saturation, van Genuchten α, van Genuchten β, saturated 

hydraulic conductivity, Tab. 1) were assigned according to Glaser et al. (2016). We only parameterised one additional layer 

for the fractured bedrock (Cv (ii)) in order to account for the adapted depth of 5 m in the catchment model compared to the 

depth of 3 m in the headwater model. 

 10 

Table 1: Soil hydraulic parameters of the different soil property zones. Table adapted from Glaser et al. (2016) 

Soil property 

zone 

Residual 

saturation 

van Genuchten 

parameter α [m-1] 

van Genuchten 

parameter β Porosity 

Saturated hydraulic 

conductivity [m d-1] 

Ah 0.12 6.6 1.46 0.74 1.71E+01 

B1 0.10 22.1 1.42 0.61 1.71E+01 

B2 0.10 22.1 1.42 0.45 4.59E+01 

B2-IIC (i) 0.10 22.1 1.42 0.3 9.30E+02 

B2-IIC (ii) 0.10 22.1 1.42 0.15 2.04E+03 

IIC 0.02 6.0 1.50 0.20 8.40E+02 

IIC-Cv 0.02 6.0 1.50 0.15 3.00E+00 

Cv (i) 0.02 6.0 1.50 0.10 1.20E-02 

Cv (ii) 0.02 6.0 1.50 0.07 1.20E-02 

Cv-mC 0.02 6.0 1.50 0.05 9.00E-04 

mC 0.02 6.0 1.50 0.01 2.40E-05 

LP 0.10 22.1 1.42 0.61 7.80E+00 

 

Surface and subsurface flow were coupled via a Darcy flux exchange through a thin coupling layer (10-4 m). We assumed 

different Manning’s surface roughness values for the forested area (1.24*10-6 d m-1/3), the riparian zone (9.41*10-7 d m-1/3), 

and the stream bed (4.4*10-7 d m-1/3) (cf. Glaser et al., 2016). Evapotranspiration properties (Tab. S1) were assigned 15 

individually for the deciduous forest, the coniferous forest in the southeast of the catchment, and the riparian zones including 

the streambed and values were based on the calibrated values of Glaser et al. (2016). The simulation was driven with daily 

sums of precipitation and reference evapotranspiration, which were treated as being spatially uniform. The outer edge of the 

surface domain was assigned as critical depth boundary, allowing water to leave the model domain via surface flow. Side and 

bottom boundaries of the subsurface domain were no flow boundaries. A spin-up simulation drained the catchment from full 20 

saturation to steady state conditions (for 1 mm d-1 of precipitation, no evapotranspiration) and subsequently repeated the period 

from October 2013 to October 2015 three times for obtaining realistic initial conditions. The actual simulation spanned over 

the period from October 2015 to January 2018, the period where we mapped surface saturation with TIR imagery. 

3.2 Assessment of model performance 

We benchmarked the model against measured discharge, groundwater level, soil moisture, and surface saturation patterns and 25 

dynamics at various locations (Fig. 1). We calculated the Kling Gupta Efficiency (KGE) as a combined measure for correlation, 

bias, and relative variability (Gupta et al., 2009) between simulated and observed discharge. We also calculated KGEs for the 

simulated groundwater levels, but particularly evaluated the groundwater level dynamics rather than absolute values based on 
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Pearson correlation coefficients. Soil moisture was also evaluated based on its dynamics with Pearson correlation coefficients, 

while absolute values were only compared visually. Since simulated soil moisture was extracted from model nodes whose 

depths did not exactly correspond with the measurement depths, we interpolated depth-weighted average values from the 

model output for calculating the correlation with the observations in the respective depths. The interpolated model values of 

volumetric water content were then correlated with the observations of water content, averaging the measurements of the twin 5 

depth profiles at the monitoring sites. 

For comparing the simulation output with the surface saturation information obtained with the TIR images, it was necessary 

to convert the model output into a comparable format via several processing steps: First, we extracted the surface water depths 

in the surface domain of the model for noon of the days where TIR images were taken and analysed. Next, we transformed the 

surface water depths into a binary saturation map of the entire catchment by classifying the surface domain cells as saturated 10 

if water depths were >10-4 m. The depth of 10-4 m corresponds to the penetration depth of the used TIR camera for water 

columns and thus is the minimum depth that could be detected as pure water temperature signal with the camera. Finally, we 

projected the model output into jpeg images with the same perspective and extent of the TIR panoramic images by turning, 

bending, and cutting the modelled saturation maps according to each of the seven riparian areas individually. This model 

output processing allowed us to perform the same calculations for the model output as for the TIR images, i.e. to create time 15 

series of normalized saturation and maps of normalized saturation frequencies for the seven riparian areas with comparable 

perspectives and extents. Since it was not possible to project the model output identically to the perspectives of the TIR images, 

we compared the saturation dynamics and patterns of the model images with the observations qualitatively (visually) only. A 

quantitative comparison would have been biased by differences in image distortions and total area extent. 

Furthermore, we compared the simulated frequency of surface saturation with the simulated frequency of groundwater reaching 20 

the surface. To do this, we marked the surface cells below which the subsurface domain was fully saturated from the bottom 

to the surface as cells where groundwater reached the surface. This binary information was transformed into a frequency map 

analogous to the procedure for creating the surface saturation frequency maps, using the same output times. 

4 Results 

4.1 Simulation of discharge, groundwater level and soil moisture 25 

The model reproduced the seasonal dynamics of measured discharge very well (Fig. 3, Fig. S1). The best fit was obtained at 

the outlet (SW1) with a KGE of 0.74. Discharge at SW2, SW3, and SW4 was reproduced equally well with KGEs of 0.49, 

0.48, and 0.47. Groundwater levels were captured well with the model at the locations close to the riparian zone (KGE=0.57, 

r=0.78 for GW2; KGE=0.64, r=0.84 for GW3). At hillslopes and plateau, simulated groundwater levels were similar to the 

observed levels during the wet season, but during dry conditions the groundwater levels did not fall deep enough (Fig. 3, Fig. 30 

S1). This level discrepancy was reflected in low KGEs (0.30 for GW1, 0.21 for GW5, 0.02 for GW7). However, general 

dynamics of level increasing and decreasing were also captured at hillslopes and plateau (r = 0.66 for GW5, r = 0.62 for GW7, 

and r = 0.76 for GW1; note that the value for GW1 only includes data for wet periods, since the piezometer fell dry during 

summer months). 

Simulated soil moisture generally showed a transition from higher to lower responsiveness from topsoil to subsoil layers 35 

consistent with the monitored soil moisture (Fig. 3, Fig. S1) and Pearson correlation coefficients indicated overall a good 

agreement between simulated and observed soil moisture dynamics (Tab. 1). As for the groundwater levels at the hillslopes 

and plateau, soil moisture observations showed a distinct decrease in water content during dry periods, which the simulation 

could not reproduce to the same extent. The observed water content in the riparian zone was always close to saturation (TSM4, 

Fig. 3), while the simulation showed a decrease in water content during dry periods in the riparian zone. Yet the simulation 40 

also showed a spatial trend for more permanent soil saturation in the riparian zone (TSM4) and its vicinity (TSM3, Fig. S1) 
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than at the hillslopes and plateau. The simulated values of water content were similar to the observed values at some locations 

(e.g. TSM2, SM4, Fig. 3) and clearly differed at other locations (e.g. SM7, Fig. 3), but the matches and mismatches of the 

volumetric water content did not clearly depend on specific areas or landscape units. Moreover, we think that moisture 

dynamics and responsiveness are more informative for model performance than the absolute water content values, since also 

the measured values of volumetric water content differed from each other within small distances (e.g. measurements of water 5 

content in 10 cm depth at profile SM7, Fig. 3). 

 

 

Figure 3: Simulated and observed time series of discharge, groundwater level below the surface, and volumetric water content. 

Colour bands indicate the possible span of simulated volumetric water contents in the depths between two model nodes. The time 10 
series of the observation locations (cf. Figure 1) that are not shown here, are shown in the supplemental material (Figure S1).  

 

Table 2: Coefficients of Pearson correlation between simulated and observed volumetric water content of the soil for the different 

measurement locations and depths (cf. Fig. 1). 

  SM3 SM4 SM5 SM7 TSM1 TSM2 TSM3 TSM4 TSM5 

10cm 0.54 0.75 0.70 0.59 0.60 0.62 0.67 0.30 0.85 

20cm 0.67 0.82 0.76 0.62      

40cm 0.82 0.89 0.88 0.79      

60cm 0.85 0.92 0.91 0.82           
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4.2. Dynamics of surface saturation 

The observed dynamics of normalized surface saturation (Fig. 4, coloured lines) were similar for all seven investigated riparian 

areas and followed the seasonal trend of the catchment discharge. Yet some differences between the studied areas were 

discernible. For example, saturation was less persistent between February and April 2016 in the two areas without perennial 

springs (M1, R2, Fig. 4) than in the other areas. Maximum saturation was reached in December 2017 at M1, R2 and S2, but 5 

between February and April 2016 at the other locations (Fig. 4). As for the observations, the simulated dynamics of normalized 

surface saturation (Fig 4, black lines) followed the general trend of the simulated discharge dynamic. The simulation showed 

a faster decrease and increase of the normalized saturation during dry periods than it was observed in most areas. However, 

simulated discharge also seemed to decrease and increase earlier than it was observed (c.f. Section 4.3). The simulated 

saturation dynamics did not clearly differ between the different locations and thus behaved more synchronous than the 10 

observations (e.g. maximum simulated saturation in December 2017 in all areas). As a result, the match between simulated 

and observed dynamics of normalized saturation was better for some areas (e.g. M1, R2, Fig. 4) than for others (e.g. S2, L1, 

Fig. 4).  

The dynamic changes of normalized simulated saturation matched the normalized observations generally well, despite of 

under- and over-estimated amounts of minimum and maximum absolute saturation for all areas. The minimum amount of 15 

saturated pixels in the TIR panoramas ranged between 0.02 % at M3 and R3 and 3.38 % at S2, while the model did not simulate 

any surface saturation during the driest period (Fig. 4). In addition, simulated normalized saturation stayed longer close to the 

minimum than the observed saturation for several areas (L1, S2, M1). These results show that the model simulated a stronger 

dry-out than observed in the Weierbach. At the same time, the simulation overestimated maximum saturation in the riparian 

zone (Fig. 4). The overestimation was not equally strong at the seven investigated areas and as a result, the distinction between 20 

areas showing higher or lower maximum saturation was not the same for observation and simulation (e.g. R3 showing one of 

the highest maximum saturation in the observation, but one of the lowest maximum saturation in the simulation compared to 

the other areas). 

4.3 Discharge – surface saturation relationship 

The Pearson correlation between normalized saturation and discharge at the outlet SW1 was > 0.65 for both the simulation 25 

and the observation in almost all riparian areas. L1 was the only exception with robs = 0.54 (Fig. 5). The simulated relationships 

between normalized saturation and discharge resembled the observed relationships in terms of value range and shape (Fig. 5), 

although the observation data scattered distinctly more than the simulation data. A power law relationship approximated the 

observed relationship between discharge and saturation for all seven areas, when data that were taken during rainfall or rising 

discharge were excluded (cf. Antonelli et al., 2019). For some areas, the simulation matched the trend lines of the observation 30 

data closely (e.g. L1, M2). For other areas, the visual fit of the model output to the observation data was less good (e.g. S2, 

R3), but still described a similar trend.  

Despite the common shape of a power law function, the saturation – discharge relationships were slightly different between 

the different areas, both for observation and simulation data. For example, the power law functions fitted to the observations 

showed that saturation during high flow conditions (> 5 l s-1) increased most strongly with discharge in the sources areas 35 

(especially M3 and R3). During low flow conditions (< 1 l s-1), the source areas (L1, M3, R3) showed the lowest amount of 

normalized saturation and the least change relative to discharge compared to the other areas. In the simulated relationships, 

the increase in saturation for high discharge (> 5 l s-1) was strongest for M3 and S2. The simulated relationship between 

discharge and surface saturation during low flow (< 1 l s-1) was similar for all areas in terms of slope, but differed in the amount 

of normalized saturation, being highest for areas in the east stream branch (R2, R3), followed by the middle upstream branch 40 

(M1, M2, M3), and L1 and S2. 
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Figure 4: Time series of observed and simulated surface saturation in the seven investigated riparian areas. Surface saturation is 

normalized to the minimum and maximum amount of saturation that was observed and simulated in the individual areas, 

respectively. Observations that were derived from TIR images with a poor temperature contrast or with influences of vegetation 

and snow cover are deemed less reliable. Cumulative precipitation between the measurement dates (grey dashed lines) and discharge 5 
at catchment outlet SW1 are shown in the top panel for facilitating the comparison to precipitation and flow conditions. 
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Figure 5: Observed and simulated relationships and Pearson correlations between normalized surface saturation and discharge at 

the catchment outlet SW1 for the seven investigated riparian areas. Observations that were derived from TIR images with a poor 

temperature contrast or with influences of vegetation and snow cover are deemed less reliable. Solid lines are power law curves 

fitted to the observation data, excluding data taken during rainfall or rising discharge. For facilitating the comparison between the 5 
seven areas, the panel on the bottom right contains the simulated data points from all seven areas and the area affiliation is indicated 

with the respective colour and letter. 

 

4.4 Spatial patterns of surface saturation  

The realism of simulated patterns of surface saturation was evaluated for each riparian area by visually comparing the surface 10 

saturation frequency maps obtained from the simulations and observations (Fig. 6). The model captured the location of the 

stream and the locations that intermittently became surface saturated well for most of the seven investigated areas. For example, 

both observation and simulation showed that only the right side of the stream became saturated in M1, that the riparian zone 

of the right streamside in M2 became saturated only in the upstream part, and that saturation mainly developed on the left 

streamside in R3, surrounding some permanently dry areas next to the stream (Fig. 6). The only area with a clear mismatch 15 

between observed and simulated patterns of surface saturation was area L1, where surface saturation was simulated on the 

opposite streamside and at a clearly wrong position along the stream (upstream vs downstream). 
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The simulated surface saturation also reflected the observed saturation frequencies well. The simulation reproduced the general 

picture of more frequent surface saturation in the streambed than at the streamsides, but - as for the saturation patterns - 

simulated and observed frequencies corresponded better in some areas (e.g. S2, Fig. 6) than in others (e.g. R3, Fig. 6). For 

example, the observed frequency of surface saturation in the streambed was generally lower in the source areas (L1, M3, R3) 

than in the mid- and downstream areas (M2, S2, M1, R2), while the simulated frequency of surface saturation in the streambed 5 

was more similar between the areas and particularly overestimated in L1 and R3. 

 

 

Figure 6: Observed (left) and simulated (right) frequencies of surface saturation in the seven investigated riparian areas. The maps 

were created by first counting how often the individual pixels were classified as saturated in the individual panoramic images and 10 
second normalizing the resulting frequency numbers by the total number of images analysed for the respective area. 
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4.5 Simulated patterns and dynamics of surface saturation versus groundwater reaching the surface at catchment scale 

Simulated surface saturation generally occurred only in the streambed and adjacent riparian zones (Fig. 7a). During the wettest 

conditions of the study period (winter 2017/2018), surface saturation also occurred as prolongation of the eastern stream branch 

into the hillslope above the source area R3. This simulated occurrence behaviour of surface saturation across the catchment is 

in accordance with field evidence, where we observed surface saturation outside of the valley bottom only during very wet 5 

conditions or rain on snow events (cf. Section 2.2). The simulated patterns of where and how frequently groundwater reached 

the ground surface (Fig. 7b) proved to be very similar to the surface saturation frequency map of the catchment (Fig. 7a). The 

only obvious difference occurred in the area above the source area of the eastern stream branch (R3), with a smaller extent of 

groundwater reaching the surface than extent of surface saturation. 

 10 

 

Figure 7: Simulated frequency maps (a, b) and time series of percentage (c) of surface saturation and groundwater reaching the 

surface in the Weierbach catchment. Precipitation is given as cumulative amounts between the observation dates (grey dashed lines).  
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The time series of simulated percentage of catchment area with surface saturation and groundwater reaching the surface 

revealed that the area where groundwater reached the surface was always smaller in extent than the surface saturated area, 

even after dry condition (Fig. 7c). The biggest absolute difference between the areal extent of surface saturation and 

groundwater reaching the surface was simulated during winter 2017/2018 (1.66 % vs 1.1 % of catchment area), where the 

conditions were very wet with high discharge and high cumulative precipitation and where the difference in areal extent was 5 

also visible in the frequency maps (Fig. 7a and b). However, the ratio between the extent of groundwater reaching the surface 

and the extent of surface saturation was not exceptionally high during winter 2017/2018. Instead, the ratio scattered without a 

clear trend between 0.57 and 0.82 during the entire simulation period, apparently independent from the cumulative amount of 

precipitation or surface saturation. 

5 Discussion 10 

The aim of this study was to analyse the spatio-temporal variability of surface saturation within the Weierbach catchment, with 

a focus on the stream valleys and riparian zones. Even though simulated discharge, groundwater levels and soil moisture 

showed some discrepancies to observations in terms of absolute values, we would argue that the performance of the different 

time series at different locations was quite good for a model that was not calibrated and set up rather homogenously across the 

catchment. While the model had some problems to reproduce soil moisture and groundwater levels during the dry conditions 15 

at hillslopes and plateau, the simulated time series matched the observations especially well in the riparian zone and vicinity. 

This gives us confidence that the model setup was valid for evaluating and analysing the spatio-temporal dynamics of surface 

saturation and its intra-catchment variability.  

5.1 Temporal dynamics of surface saturation 

The model reproduced the observed long-term dynamics of surface saturation over different seasons and wetness conditions 20 

well. Our study goes beyond previous works that compared the simulation of surface saturation dynamics with observations 

(e.g. Ali et al., 2014; Birkel et al., 2010; Glaser et al., 2016; Mengistu and Spence, 2016) by relying on a longer study period 

and a higher number of observations in time. This allowed us to analyse and compare various hydrological conditions and the 

dynamic transition between them over all seasons with a frequent number of observations. Moreover, we accounted for spatial 

variability of saturated area dynamics within the catchment. Unlike the various quasi dynamic wetness indices presented in 25 

Ali et al. (2014), which could not satisfyingly reproduce the spatio-temporal variability of connected surface saturation 

observed in a catchment in the Scottish Highlands, our model reproduced the distributed dynamics of surface saturation well, 

without clear performance differences for different wetness conditions.  

Simulations and observations showed both that the temporal dynamics of surface saturation were mostly consistent across the 

catchment. Moreover, our simulations showed that the spatio-temporal development of surface saturation was very similar to 30 

the spatio-temporal dynamics of groundwater reaching the surface (cf. Fig. 7). This suggests that the generation of surface 

saturation in the Weierbach catchment is largely driven by the synchronous exfiltration of groundwater in topographic 

depressions. Antonelli et al. (2019) drew consistent conclusions based on a statistical analysis of the observation data. 

5.2 Relation between surface saturation and discharge  

We found that the observed and simulated relationships between surface saturation and discharge resembled power law 35 

relationships (cf. Fig. 5). This is consistent with earlier studies that showed power law relationships between contiguous 

connected surface saturated areas and discharge (Mengistu and Spence, 2016; Weill et al., 2013). In contrast to these studies, 

we did not observe hysteretic loops in the relationship between saturation and high streamflow. Nonetheless, the scatter in the 

observed discharge – surface saturation relationships might indicate that the development of surface saturation in the 
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Weierbach catchment follows hysteretic loops, but that the hysteresis was not resolved with the available temporal resolution 

of the observations. For example, it is likely that surface saturation evolved in the riparian areas during high flow conditions 

and persisted on the ground surface during decreasing streamflow due to restricted infiltration capacities of the riparian soil 

(cf. Antonelli et al., 2019).  

The lack of such a hysteretic process in the simulation could explain why the model showed the tendency for less persistent 5 

and faster contracting surface saturation. It may also explain why the simulated saturation dynamics differed less between the 

different investigated areas than the observed dynamics. It is likely that the observed saturation dynamics were not synchronous 

between the different areas due to a less persistent (and thus hysteretic) generation of surface saturation in the relatively narrow 

riparian areas without perennial springs (M1 and R2) compared to the wider riparian areas with perennial springs (cf. 

observation of less persistent saturation in M1 and R2 during February and April 2016, Fig. 4). The model, instead, simulated 10 

a non-hysteretic saturation behaviour for all investigated riparian areas, which resulted in a better fit between simulated and 

observed dynamics in the areas M1 and R2 compared to the other areas. 

At the same time, it might also be that the simulated relationship between saturation and discharge was correct in all riparian 

areas and that the scattering of the observation data did not result from hysteretic behaviour, but from uncertainties in the TIR 

methodology. A good argument for a correct simulation of the discharge – surface saturation relationship is that not only 15 

simulated saturation but also simulated discharge seemed to be less persistent and to decrease and increase earlier than it was 

observed. In reality, the scatter of the observation data is likely related to both measurement uncertainties and hysteretic aspects 

and a future study with higher temporal resolution of field observations and corresponding simulation output could further 

analyse this. 

Independently from the question on hysteretic loops, we found that the discharge – surface saturation relationships somewhat 20 

differed between the different areas. We could connect the main differences to different topographical and morphological 

features, yet we cannot decipher why the main controlling feature for the discharge – surface saturation relationship was 

different between observations (source areas vs non-source areas) and simulations (different stream branches, cf. Section 4.3). 

Nonetheless, our findings are in line with experimental studies that discussed that the relationships between baseflow discharge 

and total extent of contributing saturated areas differ between catchments with different physiographic characteristics (e.g. 25 

Dunne et al., 1975; Latron and Gallart, 2007). 

By comparing our model results to the double logarithmic plot presented by Latron and Gallart (2007) (Figure 8), we could 

identify similar shape varieties of the discharge – surface saturation relationship for the different areas studied within the 

Weierbach catchment as observed for the different catchments presented in Latron and Gallart (2007). We cannot compare our 

results directly with the results shown in Latron and Gallart (2007), since we evaluated absolute discharge and normalized 30 

saturation, while they evaluated connected saturated areas in percentage of catchment area, but discharge normalized to the 

catchment area. In order to facilitate the comparison and to connect the two plots (Fig. 8a, 8b), we show the simulated 

relationship between discharge and surface saturation of the entire Weierbach catchment in both plots, once with normalized 

discharge and absolute saturation (Fig. 8a), and once with absolute discharge and normalized saturation (Fig. 8b). The shape 

of the relationship for the entire Weierbach catchment was nearly linear, similar to the relationship observed in the Can Vila 35 

catchment investigated by Latron and Gallart (2007) (Fig. 8a). The relationships of the seven studied riparian areas differed 

from the catchment relationship and between each other (Fig. 8b). For example, area S2 and M1 showed a convex shape similar 

to the observations in the Vermont W2 catchment made by Dunne et al. (1975), area M3 showed a rather concave shape similar 

to the relationships found for a sub-catchment of the Asker basin (Myrabø, 1986) and the Strengbach catchment (Latron, 1990), 

area M2 showed a rather linear shape similar to the Can Vila catchment studied by Latron and Gallart (2007). This clearly 40 

shows that differences in the relationship between surface saturation and discharge do not only occur between different 

catchments, but that they also occur as intra-catchment variability. 
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Figure 8: Simulated relationship between discharge and surface saturation of the entire Weierbach catchment (marked with W) in 

comparison to (a) the relationships observed in other catchments (Figure modified from Latron and Gallart (2007) and (b) the 

relationships simulated for the seven investigated riparian areas within the catchment. The presented relationships of the other 

catchments were investigated by i) Dunne et al. (1975), ii) Ambroise (1986), iii) Myrabø (Myrabø, 1986), iv) Latron (Latron, 1990), 5 
v) Latron and Gallart (2007), and vi) Martinez-Fernandez et al. (2005). Area affiliation for the investigated riparian areas of the 

Weierbach catchment is indicated with the respective colour and letter (cf. Fig. 4-6). 

 

5.3 Spatial patterns of surface saturation 

The observed spatial patterns of surface saturation were reproduced with the simulations in great detail for most of the 10 

investigated areas. We attribute the successful simulation of the spatial patterns to microtopography (local topographical 

features with extents of centimetres to few metres) since i) microtopography described the main spatial variability between the 

seven investigated areas in the model setup and ii) we observed that small changes in the setup and resolution of the model 

mesh in the riparian zones changed some details of the simulated surface saturation patterns (Fig. S2, especially area M2, S2). 

Therefore, we would like to stress that not only major topographic features of the catchment (e.g. hillslope shape, slope angle, 15 

valley width) but also its microtopography needs to be considered for identifying locations where surface saturation may occur. 

This may sound trivial and several studies have already pointed out the importance of microtopography for the simulation of 

different hydrological aspects such as hydraulic heads, hyporheic surface-subsurface water exchange, bank storage and 

overbank flooding, water quality of shallow groundwater systems and runoff generation (e.g. Aleina et al., 2015; Frei et al., 

2010; Käser et al., 2014; Van der Ploeg et al., 2012; Tang et al., 2018). Still, microtopography is not often considered in the 20 

simulation of surface saturation patterns. 

When microtopography is not resolved detailed enough, it is more likely that the simulated surface water extends over a large 

area instead of accumulating in topographic depressions and thus overrates the extent of surface saturation. In this context it is 

interesting to note that there are studies that simulated maximum extents of surface saturation up to 80 % of the study area (Qu 

and Duffy, 2007; Weill et al., 2013), while field observations have only reached maximum extents up to 25 % - 50 % of 25 

catchment area (Ali et al., 2014; Birkel et al., 2010; Dunne et al., 1975; Mengistu and Spence, 2016) and often show maximum 

extents around 10 % (Ambroise, 2016; Grabs et al., 2009; Güntner et al., 2004; Latron and Gallart, 2007; Tanaka et al., 1988). 

Microtopography might partly explain this discrepancy, even though the maximum extent of surface saturation certainly also 

depends on the climatic and physiographic conditions of the catchment and on the timing of the observations (e.g. baseflow 

conditions vs storm events) and there are some studies that simulated similar or less maximum extent of surface saturation 30 
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than observed without considering the microtopography (e.g. Ali et al., 2014; Birkel et al., 2010; Grabs et al., 2009; Güntner 

et al., 2004; Mengistu and Spence, 2016). 

In our study, the simulated maximum extent of surface saturation was 1.6 % of catchment area, which is small compared to 

other simulation studies, but matches the observation that surface saturation commonly only occurs within the riparian zone 

and streambed (extent of 1.2 %). Nonetheless, also our maximum saturation within the individual areas was overestimated 5 

compared to the observations (cf. Fig. 4). Besides the effect of microtopography, there are two other possible explanations for 

this. First, the largest simulated saturation occurred during winter 2017/2018, which is the same period where the model clearly 

overestimated discharge. This mismatch could partly explain the overestimation of saturation, assuming that the relationship 

between discharge and saturation was correctly captured with the model (cf. Section 5.2). Second, the overestimation of 

absolute saturation could result from different perspectives and extensions of model output and TIR images (cf. section 3.2, 10 

Fig. 6). The TIR images included parts of the hillslopes around the riparian zones, which were not included to the same extent 

in the extracted model images. Since the hillslopes normally remained unsaturated, the maximum possible amount of saturated 

pixels in the TIR images was thus lower than in the model images, while the minimum possible amount of saturation was not 

affected. This could also explain why overestimation of total amounts of saturation was different between the different areas. 

Despite the importance of microtopography, the model results showed that microtopography alone was not sufficient to capture 15 

the spatial patterns of surface saturation correctly. The simulated patterns of surface saturation clearly did not match the 

observed patterns equally well in all seven investigated areas (cf. Fig. 6), although the topographical information source and 

mesh resolution was consistent for the simulated riparian areas. This means that there are additional factors that control the 

spatial patterns of surface saturation that were not accounted for in the simulations. Such a factor could for example be the 

structure of the subsurface, which was treated as being homogeneous between all investigated riparian areas in the simulations. 20 

In reality, the subsurface structure may locally differ to some degree, for example in the riparian area of the western stream 

branch (L1), where saturation was simulated at a clearly wrong side along the stream. 

5.4 Frequency maps of surface saturation 

The frequency maps of surface saturation combine information on when and where surface saturation occurs. We do not think 

that the exfiltration of subsurface water into local depressions (cf. Section 5.1 and 5.2) can fully explain the spatial variability 25 

of saturation frequencies that was observed and simulated satisfactorily within the different riparian areas (Fig. 6). Instead, we 

suppose that the differences in saturation frequency were controlled by additional water sources than exfiltrating groundwater, 

such as stream water or direct precipitation, and that the contribution of these additional water sources to surface saturation 

varied in space and time. For example, the lower frequencies of surface saturation observations at the streamsides compared 

to the streambed and the lower frequencies in the streambed of the source areas (L1, M3, R3) compared to the mid- and 30 

downstream areas (M2, S2, M1, R2) might reflect a lower and less frequent contribution of upstream water in these areas. The 

overestimation of simulated saturation frequencies in the streambed of R3 could thus indicate an overestimated upstream 

contribution due to simulating the stream extent too far upstream from the source area. Future work should analyse potential 

water sources and generation processes of surface saturation with a suitable model framework (cf. Partington et al., 2013; 

Weill et al., 2013) in order to complement the interpretation of the observation data and to identify the mixture of different 35 

water sources of surface saturation (e.g. stream water, exfiltrating subsurface water, ponding precipitation), how the sources 

might vary in space and time, and how this might reflect in the surface saturation frequencies. 

6 Summary and conclusions 

We explored the intra-catchment variability of surface saturation in the Weierbach catchment with joint observations and 

simulations. We showed that the model could reproduce the observed variability of the surface saturation characteristics 40 
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(dynamics, frequencies, patterns) with great detail, although the model setup was rather homogeneous and parameters were 

not calibrated at catchment scale. Our results demonstrated that a spatially distributed, physically-based, integrated 

hydrological model such as HGS is well-suited for reproducing and analysing the generation and development of surface 

saturation in space and time. 

Based on the matches and mismatches between the simulation results and observations, we could identify some key factors 5 

controlling the surface saturation generation. The temporal occurrence of surface saturation was observed and simulated to be 

similar across the catchment, which we related – based on the simulation results – to a large influence of groundwater that 

reacts synchronous across the catchment. The spatial occurrence of the surface saturation differed between and within the 

seven investigated riparian areas, which we mainly could relate to the influence of microtopography. Furthermore, we 

discussed that the full variability between the different areas and the mismatches between observations and simulation can 10 

only be explained with additional factors besides groundwater exfiltration and microtopography. 

The spatially varying frequencies of surface saturation within the riparian areas indicated that there might be additional water 

sources than subsurface water that contribute to the generation of surface saturation. Since the model could reproduce the 

observed frequencies, the model can be used in a future study to analyse such a potential mixing of different water sources and 

their variation in space and time. The observed differences between the investigated riparian areas with regard to the seasonal 15 

dynamics of saturation extension and contraction and the surface saturation – discharge relationship likely resulted from 

different morphological characteristics (width, existence of perennial springs) of the riparian areas. Although the model could 

not reproduce a varying hysteretic occurrence and persistence of surface saturation in the different investigated areas, also the 

simulation results demonstrated that the relationship between surface saturation and discharge can differ within a catchment 

in the same manner as between catchments with different topographical and morphological conditions. 20 
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Supplemental material 

Table S1: Evapotranspiration parameter used in the model setup of this study, table adapted from Glaser et al. 2016. Root depth 

and interception storage parameters for the coniferous forest were changed compared to the calibrated parameter values of Glaser 

et al. 2016. The leaf area index was set to zero for all vegetation types, since this showed to reduce the calculation time during dry 

conditions substantially without a pronounced effect on the simulated discharge and surface saturation (while the partitioning 

between transpiration and evaporation changed).  

  Deciduous tree land Coniferous tree land Riparian zone + streambed 

Root depth (m) 2 1.5 0.5 

Root distribution function Cubic  Cubic   Cubic 

Evaporation depth (m)  0.2 0.2 0.2 

Evaporation distribution function  Cubic  Cubic   Cubic 

Transpiration fitting parameter C1 0.3 0.3 0.3 

Transpiration fitting parameter C2 0.2 0.2 0.2 

Transpiration fitting parameter C3 0.7 0.7 0.1 

Canopy storage parameter (m) 5.00E-04 7.50E-04 1.00E-04 

Initial interception storage (m) 5.00E-05 7.50E-05 1.00E-05 

Wilting point saturation 0.165 0.165 0.165 

Field capacity saturation 0.51 0.51 0.51 

Oxic limit saturation 0.7 0.7 0.8 

Anoxic limit saturation 0.9 0.9 0.98 

Evaporation limiting saturation (min.) 0.1 0.1 0.1 

Evaporation limiting saturation (max.) 0.5 0.5 0.5 
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Figure S2: Comparison of simulated frequencies of surface saturation in the seven investigated riparian areas for two different 

model meshes. Left: mesh as used in this study; Right: alternative mesh with finer resolution in the riparian areas.  
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Abstract 11 

Knowing the sources of surface water is important for understanding its hydrological, 12 

biogeochemical, and ecological impacts in riparian zones or floodplains and on runoff 13 

generation. We investigated which ultimate mechanisms delivered water to the surface 14 

(immediate delivery path) and from where the surface water originated (geographical sources) 15 

for 34 different locations within the riparian zone and streambed of a humid-temperate, forested, 16 

headwater catchment. We applied a comprehensively evaluated integrated surface subsurface 17 

model (HydroGeoSphere) in combination with a hydraulic mixing cell approach to identify the 18 

general variability of the water sources in space as well as their temporal variability for different 19 

wetness states and phases of wetting or drying. We found that water was homogeneously and 20 

consistently delivered to the surface of the riparian zone by return flow and mainly consisted of a 21 

mixture of water from the fractured bedrock, riparian soil and subsolum. Some local variations 22 

of the mixing ratio of the water from the different subsurface stores occurred, which might have 23 

impacts on water sampling campaigns or ecological and biogeochemical activity. The identified 24 

sources of surface water in the streambed indicated that streamflow was generated as well by 25 

return flow occurring and accumulating all along the stream and that riparian surface water was 26 

basically nothing else than stream water outside of the streambed. Finally, the simulated 27 

fractions of precipitation in surface water were generally small, while we observed shifts in the 28 

mixing ratio of the surface water with increasing wetness towards higher contributions from 29 

more distant subsurface stores.  30 
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1 Introduction 1 

Floodplains and riparian zones are critical landscape units for a wide range of 2 

hydrological, biogeochemical, and ecological processes. A main characteristic of these 3 

ecohydrological interfaces (cf. Krause et al., 2017) is irregular flooding in space and time. The 4 

spatial and temporal variability of water availability creates specific microhabitats for flora and 5 

fauna (e.g. Mallik et al., 2001; Ramey & Richardson, 2017) and hot spots and moments of 6 

biogeochemical activity (e.g. Frei et al., 2012; Harms & Grimm, 2008; Singer et al., 2016), 7 

which in turn can influence water quantity and quality (e.g. Grabs et al., 2012; Williams & Scott, 8 

2009). Moreover, it is relevant for flood risk assessment to understand where and when water 9 

occurs at the surface of floodplains and riparian zones and potentially contributes to streamflow 10 

generation via overland flow.  11 

Several processes can induce the occurrence of standing and flowing water at the surface. 12 

Surface water can originate from exfiltration of subsurface water or from precipitation ponding 13 

due to infiltration or saturation excess and continued delivery of water from the subsurface or 14 

precipitation can cause an expansion of surface saturation via overland flow (e.g. Dunne & 15 

Black, 1970; Hewlett & Hibbert, 1967; Megahan & King, 1985). In addition, expansion of 16 

streamflow can induce the occurrence of surface saturation in riparian zones or floodplains, even 17 

though streamflow is basically return flow of subsurface water, infiltration excess, or saturation 18 

excess overland flow as well. Depending on the mechanism underlying the generation of surface 19 

saturation in riparian zones and floodplains, the origin and characteristics of surface water and 20 

thus its impact on ecology, water quality, runoff, and flood risk may differ. Therefore it is 21 

necessary to investigate and understand which processes dominate the generation of surface 22 

saturation, if and which different types of water contribute in what ratio to surface water, and 23 

how the sources of surface water vary in space and time. While it is one of the most prominent 24 

questions in catchment hydrology to ask where stream water is coming from (e.g. Hewlett & 25 

Hibbert, 1967; McDonnell, 2003), little is known on the sources of surface water beside the 26 

streambed apart from apparent inundation.  27 

The investigation of the sources of surface water can focus on three different aspects (cf. 28 

Sklash & Farvolden, 1979): i) How old is the water, i.e. what are the temporal sources? ii) Where 29 

does the water come from, i.e. what are the geographical sources? iii) Which mechanism 30 

ultimately transferred the water to the surface, i.e. what are the immediate delivery paths? Plenty 31 

of studies have investigated one or several of these three aspects for sources of the stream 32 

hydrograph based on physical measurements of water fluxes, hydrological tracers and mixing 33 

analyses (cf. literature overviews given in Barthold & Woods, 2015; Cowie et al., 2017; Klaus & 34 

McDonnell, 2013). Several experimental studies demonstrated that the mixing of water from 35 

different subsurface stores and landscape units, the ratio of event and pre-event water, and the 36 

distribution of water age in the hydrograph change within and between runoff events and for 37 

different seasons and wetness conditions (e.g. Birkel et al., 2012; Cartwright & Morgenstern, 38 

2018; Correa et al., 2017; Martínez-Carreras et al., 2015; McGlynn & Seibert, 2003). Others 39 

analyzed how the mixture of streamflow sources changes depending on the catchment size or 40 

other landscape characteristics (e.g. Correa et al., 2019; Cowie et al., 2017; Gordon et al., 2015; 41 

Kirchner, 2009; Laudon et al., 2007; McGlynn et al., 2004; Zhang et al., 2018). Yet we are not 42 

aware of any field study except of the study of Brown et al. (1999) that investigated the 43 

variability of sources of surface water along a short stream section or for inundated areas in the 44 

riparian zone or floodplains. 45 
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Comprehensive sampling of water sources in space and time is limited by its high labor 1 

and cost requirements (cf. Correa et al., 2019). Sampling of surface water in the riparian zone or 2 

floodplains is certainly further complicated by the intermittent occurrence and commonly low 3 

depth of water. A way to avoid these problems is to investigate the spatial and temporal 4 

variability of sources of surface water with hydrologic modelling, in particular with integrated 5 

surface subsurface hydrologic modelling (ISSHM), where the occurrence of water at the surface 6 

and exchange processes between the surface and subsurface are not defined a priori but develop 7 

and change depending on the current conditions in the simulation (cf. e.g. Kollet et al., 2017; 8 

Maxwell et al., 2014; Paniconi & Putti, 2015; Sebben et al., 2013). Various recent studies have 9 

developed and applied particle tracking schemes to simulate transient transit and residence time 10 

distributions, i.e. the temporal variability of the temporal sources of surface water (e.g. Engdahl 11 

& Maxwell, 2015; Maxwell et al., 2019; Remondi et al., 2018; de Rooij et al., 2013; Yang et al., 12 

2018). Others applied solute transport simulations and particle tracking to identify temporal or 13 

geographical sources of streamflow (e.g. Chow et al., 2016; Jones et al., 2006; Liggett & 14 

Werner, 2014). Moreover, methods were developed to estimate and track the mixing ratio of 15 

initial geographical and temporal water sources on a cell-by-cell basis throughout the simulation 16 

(Partington et al., 2011, 2013; Sayama & McDonnell, 2009).  17 

Nonetheless, we are only aware of two studies that made use of simulations to investigate 18 

in detail the different sources of surface water across space, including surface water generated 19 

outside of a streambed. Weill et al. (2013) analyzed the simulated exchange fluxes between the 20 

surface and subsurface to decipher the mechanisms generating surface saturation across the 21 

hillslopes and riparian zone of a small pre-alpine headwater catchment. Partington et al. (2013) 22 

applied a hydraulic mixing cell approach to a riparian wetland to investigate the in-stream and 23 

overland flow generation during a storm event. Both studies demonstrated that the dominating 24 

processes for the generation of surface saturation varied locally, but they did not evaluate 25 

comprehensively if their simulated surface water occurrence across space actually matched 26 

reality and they mainly aimed to identify the contribution of overland flow to streamflow 27 

generation and to assess the applicability and improvements of the previously developed 28 

hydraulic mixing cell approach (Partington et al. 2011), respectively.  29 

In this study, we investigate the spatial and temporal variability of sources of surface 30 

water within the streambed and riparian zone with the integrated surface subsurface hydrologic 31 

model HydroGeoSphere combined with a hydraulic mixing cell approach (Partington et al., 32 

2011, 2013). We perform the study in the 42 ha Weierbach catchment (Luxembourg), where 33 

previous work has shown that it is possible to accurately simulate the dynamics, patterns, and 34 

frequencies of surface saturation occurrence (Glaser et al., 2019) as observed with repeated 35 

thermal infrared imagery mapping (Antonelli et al., 2019a; Glaser et al., 2018). These thermal 36 

infrared imagery investigations focused on the spatio-temporal occurrence of surface saturation 37 

within several distinct riparian areas along the stream and suggested that there are distinct 38 

locations of subsurface water exfiltration that generate and maintain surface saturation in the 39 

riparian zone, while additional surface water may originate from the stream extending into the 40 

riparian zone or precipitation. In line with that, the previous simulation of the surface saturation 41 

in the catchment (Glaser et al., 2019) suggested that the surface water was mainly the result of 42 

groundwater exfiltration into microtopographic depressions, yet it remained open how additional 43 

water sources influence and reflect the spatio-temporal occurrence of surface water. Here, we 44 

complement and enhance the work of the previous studies by a detailed simulation analysis of 45 

the sources of surface water in the riparian zone and streambed for three of the previously 46 
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investigated areas located at a upstream, midstream, and downstream section of the stream. Our 1 

research questions are:  2 

1) Which mechanisms ultimately induce and maintain the occurrence of water at the 3 

surface, i.e. what are the immediate delivery paths of surface water?  4 

2) Where does the surface water come from, i.e. what are the geographical sources of 5 

surface water? 6 

In addition, each of the questions is subdivided into the two questions:  7 

a) Is there a spatial variability for the immediate delivery paths / geographical sources in the 8 

riparian zone and along the stream? 9 

b) Are the immediate delivery paths / geographical sources constant in time or do they vary 10 

with different initial wetness conditions and for phases of wetting and drying? 11 

2 Study site and previous work 12 

2.1 Weierbach catchment 13 

The Weierbach catchment is a forested catchment (42 ha) in western Luxembourg. The 14 

stream network consists of three tributaries that merge into a main stream flowing through a 15 

steep, v-shaped stream valley (Fig. 1). The streamsides are bordered by a narrow, flat riparian 16 

zone that widens at several sections along the stream and in the source areas of the three 17 

tributaries (Fig. 1). The riparian zone comprises 1.2% of the catchment area and is vegetated 18 

with ferns, mosses and herbaceous plants. Hillslopes (slopes > 5°, 45 % of catchment area) and 19 

the plateau (slopes < 5°, 54 % of catchment area) are covered by deciduous forest (mainly 20 

European beech, Sessile oak) with some patches of coniferous trees and a coniferous forest 21 

(mainly Norway spruce and Douglas spruce) in the south-east of the catchment. 22 

Catchment geology is dominated by Devonian slates and phyllites. Fractured bedrock 23 

appears at a depth of around 1.4 meter and fractures gradually close down to fresh bedrock in an 24 

average depth of 5 meter (e.g. Gourdol et al., 2018). A subsolum classified as regolithic saprock 25 

(cf. Juilleret et al., 2016) and a shallow Cambisol (average solum depth 0.5 m) overly the 26 

fractured bedrock at the plateau and hillslopes of the catchment. In the riparian zone, fractured 27 

bedrock is overlain by a shallow organic Leptosol (cf. Glaser et al., 2016). In the streambed, the 28 

fractured bedrock is directly exposed at the surface (cf. Fig. 1).  29 

The climate is oceanic-continental with an average annual precipitation around 950 mm 30 

and average annual potential evapotranspiration around 590 mm (cf. Carrer et al., 2019; Pfister et 31 

al., 2017; data based on years 2006-2014). Precipitation is distributed rather uniformly over the 32 

year, while evapotranspiration and runoff (annual average around 480 mm) show clear seasonal 33 

variation (cf. Pfister et al., 2017). During dry conditions, streamflow intermittently ceases from 34 

the source areas downstream and rainfall-runoff reaction is characterized by sharp, short-lasting 35 

discharge peaks. During wet conditions, additional response comes from a broad, long-lasting 36 

second discharge peak that starts to appear few hours after the onset of precipitation. This second 37 

peak only occurs once a certain storage threshold of subsurface water is exceeded (e.g. Martínez-38 

Carreras et al., 2016; Scaini et al., 2018), but then largely outweighs the volume of the first 39 

discharge peaks.  40 
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1 
Figure 1. Riparian areas and model setup of the 42 ha Weierbach catchment in western Luxembourg. The three 2 

photographs show the investigated riparian areas of the source area of the eastern tributary (S, 155 m
2
), the 3 

midstream section of the middle tributary (M, 169 m
2
), and a downstream section of the main stream (D, 170 m

2
). 4 

The map of the catchment shows the stream valleys, the location of the three riparian areas, and the nested model 5 

mesh with the delineation of the surface domain into forested area, riparian zone, and streambed. The profile at the 6 

bottom right shows the vertical discretization of the subsurface model domain and the assigned parameterization 7 

zones in and aside the riparian zone, corresponding to the fresh and fractured bedrock (slate and phyllites), the 8 

subsolum (regolithic saprock), the solum of the hillslopes and plateau (Cambisol), and the riparian soil (Leptosol) of 9 

the catchment. Figure freely based on Glaser et al. (2019). 10 

2.2 Weierbach model 11 

In this study we rely on the integrated surface subsurface hydrologic model 12 

HydroGeoSphere (HGS, Aquanty Inc.) as previously implemented for the Weierbach catchment 13 

(Glaser et al., 2019). The model consists of a 5 meter deep subsurface domain where transient 14 

subsurface flow is simulated based on the 3D Richards equation and a surface domain in which 15 

surface flow is simulated based on the diffusive-wave approximation of the 2D Saint-Venant 16 

equation. Surface and subsurface flow are simulated simultaneously and exchange between the 17 

two domains is simulated as Darcy flow through a very thin coupling layer. Actual 18 

evapotranspiration is simulated based on potential evapotranspiration, actual water availability, 19 

and some plant and soil characteristics (e.g. rooting depth, evaporation depth) following the 20 

conceptual approach of Kristensen and Jensen (1975).  21 

The surface domain is spatially discretized into 42,274 triangular elements with edge 22 

lengths ranging from > 30 m at the plateau to < 0.4 m in the riparian zone and streambed (Fig. 23 

1). The nested mesh was generated with the mesh generator AlgoMesh (HydroAlgorithmisc Pry 24 

Ltd) and topographic information was assigned from a 0.1 m elevation raster that interpolated 25 

and combined topographic information from 10 m contour lines of a topographic map for the 26 

plateau and hillslopes and a high-resolution ground-based LiDAR DEM for the riparian zone and 27 
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streambed. The subsurface domain is discretized with fourteen layers of triangular prisms with 1 

element depths ranging from 0.15 m for the top layers to 0.5 m for the bottom layers (cf. Fig. 1). 2 

Sides and bottom of the subsurface domain are no flow boundaries. At the sides of the surface 3 

domain, a critical depth boundary allows water to leave the model domain.  4 

The parameterization of the model subsurface distinguishes twelve different property 5 

layers representing the specific pedolithology of the catchment with solum, subsolum, fractured 6 

bedrock, and a different soil type in the riparian zone (cf. 2.1, Fig. 1). The subsurface is set up 7 

homogeneously across the hillslopes and plateau, whereas the upper property layers are removed 8 

in the riparian zone and streambed and replaced by riparian soil and lower property layers in 9 

dependency of the topography (cf. Fig. 1 and Glaser et al. (2016) for details on the 10 

implementation). Evapotranspiration parameters and Manning’s surface roughness differ 11 

between the deciduous and coniferous forest, the riparian zone, and the streambed. Exact 12 

parameter values are given in Glaser et al. (2019). Here, it should be noted that the model 13 

parameters were not calibrated at catchment scale, but were transferred from a HGS model 14 

implementation of a 6 ha headwater area of the middle tributary (Glaser et al., 2016). The 15 

parameterization of this 6 ha headwater catchment was largely based on field experience and 16 

measurements (e.g. ERT profiles, soil profiles, hydraulic conductivity measurements) and 17 

literature values. Only some evapotranspiration parameters, porosity values and hydraulic 18 

conductivity were adapted in a manual calibration procedure at headwater scale (cf. Glaser et al., 19 

2016). 20 

Glaser et al. (2019) simulated the hydraulic states and fluxes in the Weierbach catchment 21 

from October 2015 to January 2018, driven with daily input data of precipitation recorded within 22 

the catchment and potential evapotranspiration (FAO reference evapotranspiration) calculated 23 

from meteorological data from nearby weather stations. A multi-data evaluation showed that 24 

simulated discharge, groundwater level, and soil moisture matched observation data well. Kling 25 

Gupta efficiency was 0.74 for the simulated discharge at the catchment outlet and ranged from 26 

0.47 to 0.49 for the simulated discharge of the three tributaries. The seasonal dynamic of 27 

groundwater levels was captured at all five monitoring locations distributed across the catchment 28 

(Pearson correlation coefficients r ranging between   r = 0.62 and r = 0.84) and groundwater 29 

level was captured particularly well for locations in and close to the riparian zone. Simulated 30 

water content showed some deficiencies during dry conditions, but captured the overall seasonal 31 

soil moisture dynamics at different locations and in different depths (r = 0.73 +- 0.15). 32 

2.3 Previous investigations of surface saturation in the riparian zone 33 

The riparian zone of the Weierbach catchment has been suggested to play an important 34 

role in runoff generation in a range of experimental and modelling studies (Fenicia et al., 2014; 35 

Glaser et al., 2016; Klaus et al., 2015; Martínez-Carreras et al., 2015; Martínez-Carreras et al., 36 

2016; Schwab et al., 2018; Wrede et al., 2015), especially with regards to the occurrence of 37 

surface saturation and overland flow. A recent detailed characterization of the seasonal dynamics 38 

of surface saturation in seven distinct riparian areas of the catchment has revealed that the 39 

temporal development of surface saturation is largely synchronous across space, but that there is 40 

some spatial variability in the relationship between the local extent of surface saturation and 41 

catchment discharge (Antonelli et al., 2019a) and in the correlation between the local saturation 42 

extent and the contribution of the correspondent stream reach to catchment discharge (Antonelli 43 

et al., 2019b). The mapping of the surface saturation extent and dynamics for these studies has 44 
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been done with thermal infrared imagery (cf. Glaser et al., 2018; Pfister et al., 2010), which 1 

implies that surface saturation was defined as all water standing or flowing at the surface, 2 

including stream water but excluding ‘mere’ saturation in the top soil layer. Glaser et al. (2019) 3 

used the same comprehensive data set of thermal infrared images taken weekly to biweekly in 4 

the different riparian areas from October 2015 to January 2018 in comparison to the simulations 5 

with the integrated surface subsurface hydrologic HGS model of the Weierbach catchment (cf. 6 

Section 2.2.). They showed that the model could satisfactorily reproduce the observed dynamic 7 

patterns of surface saturation for the different investigated riparian areas, including the spatial 8 

patterns of surface saturation frequency (Fig. 2). 9 

10 
Figure 2. Patterns of observed (left) and simulated (right) frequency of surface saturation in the source area of the 11 

eastern tributary (S), the midstream area at the middle tributary (M), and the downstream area at the main stream 12 

(D). The observed frequencies indicate how often surface water was standing or flowing within the riparian zone 13 

and streambed over the entity of 43 (area S), 48 (area M), and 37 (area D) thermal infrared image snapshots taken 14 

and analyzed within the period from October 2015 to January 2018 (cf. Fig. 4, Glaser et al. (2019)). The simulated 15 

frequencies indicate how often water was simulated in the surface domain (water depth > 10
-4

m) during the same 16 

moments in time (cf. Glaser et al., 2019). Locations that were hypothesized to be locations of discrete subsurface 17 

water exfiltration based on the recurrent field observations of water temperature, saturation frequency and saturation 18 

stability are labelled with brown circles. Points of interest (POIs) that were selected in the simulation for a detailed 19 

analysis of the mixing of sources of surface water with the hydraulic mixing cells ( cf. section 3) are colored 20 

depending on their location in the riparian zone (green stars) or streambed (blue stars) and numbered according to 21 

decreasing saturation frequency within the different areas. Figure adapted from Glaser et al. (2019).  22 
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Based on the way of functioning and the good performance of the model, Glaser et al 1 

(2019) concluded that the generation of surface saturation in the Weierbach catchment is largely 2 

driven by groundwater exfiltration into topographic depressions, which matches evidences from 3 

the thermal infrared field observations (Antonelli et al., 2019a; Glaser et al., 2018). However, 4 

both the field observations and the simulations suggested that exfiltration from the subsurface is 5 

not the exclusive source for water at the surface. The field observations suggested that the 6 

delivery of subsurface water to the surface was maintained at discrete exfiltration locations (Fig. 7 

2). These discrete locations of subsurface water exfiltration were hypothesized based on the 8 

temperatures monitored with the thermal infrared images, the identified surface saturation 9 

frequencies, and the observed stability of the surface saturation over time. Surface saturation at 10 

other locations was not related exclusively to exfiltration of subsurface water, but to additional 11 

immediate delivery paths of surface water such as overland flow from the discrete exfiltration 12 

locations through the riparian area, streamflow extending into the riparian zone, or precipitation. 13 

Furthermore, Glaser et al. (2019) suggested that the observed and similarly simulated variability 14 

of surface saturation frequency within the investigated areas reflects a mixture of different water 15 

sources and immediate delivery paths of surface saturation. As example, they pointed out that the 16 

generally higher saturation frequencies in the streambed than in the riparian zone (cf. Fig. 2) 17 

might result from maintenance of surface water delivery in the streambed by upstream water 18 

contribution. Here, we applied the hydraulic mixing cell approach with the Weierbach catchment 19 

model as described in the following section to eventually clarify, specify, and quantify the 20 

previously assumed mixing of different geographical sources and immediate delivery paths of 21 

surface water. 22 

3 Application of hydraulic mixing cells to identify surface water sources 23 

3.1 The hydraulic mixing cell approach 24 

The hydraulic mixing cell (HMC) approach is a modified mixing cell approach 25 

developed for integrated surface subsurface hydrologic models by Partington et al. (2011, 2013). 26 

The HMC approach enables to track the mixing of predefined initial water sources at any 27 

location and at any time based on information from the hydraulic flow solution. Each model cell 28 

of the surface and subsurface domain is assigned to a source area and water that was initially 29 

stored within the cell is tracked as water from the respective source area throughout the 30 

simulation. Water newly entering the model system during the simulation via precipitation is 31 

assigned as precipitation throughout the simulation. Thus, the water keeps the initial source 32 

assignment when passing through cells of different source areas. However, water originating 33 

from different source areas mixes within a model cell and the mixing ratio is tracked and adapted 34 

throughout the simulation. 35 

The fractions of different water sources in a model cell are calculated based on the 36 

simulated hydraulic fluxes into and out of the model cell, the fluid volume in the cell, and the 37 

assumption that water mixes within the cell following the ‘modified mixing rule’, i.e. mixing 38 

follows a regime that ranges between perfect mixing and piston flow (cf. Campana & Simpson, 39 

1984). In order to avoid numerical instability and numerical dispersion while ensuring 40 

computational efficiency, the possibility to calculate mixing ratios for sub-time-steps of the flow 41 

solution and several stability criteria were introduced (cf. Partington et al., 2013). These stability 42 

criteria are checked at each time step and for each model cell individually and in case one 43 
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criterion is not met, the affected cell is excluded from the mixing calculation of the current time 1 

step. Instead, the fractions of water sources in the cell are reset and the cell is assigned a so-2 

called reset fraction of 1. This reset fraction is tracked in the further course of the simulation as 3 

well and indicates an unknown origin of water. 4 

3.2 HMC simulation in the Weierbach catchment 5 

We analyzed the sources of surface water with the HMC approach for 34 distinct points 6 

of interest (POIs) in the riparian zone and streambed of the Weierbach catchment. The POIs 7 

were distributed in three riparian areas, comprising a source area (S), midstream (M), and 8 

downstream (D) section of the stream with extents of 155 m
2
 (S), 169 m

2
 (M), and 170 m

2
 (D) 9 

(cf. Fig. 2). As POIs, we selected mesh nodes of the surface domain of the HGS model (cf. 10 

section 2.2) that covered a large range of different saturation frequencies (cf. order number of the 11 

POIs, Fig. 2) as well as nodes that were located in the streambed (blue labelled POIs, Fig. 2), in 12 

the riparian zone (yellow labelled POIs, Fig. 2), at locations that could not unambiguously be 13 

assigned as streambed or riparian zone (green labelled POIs, Fig. 2), and at locations with 14 

assumed distinct exfiltration of subsurface water (POIs within brown circles, Fig. 2).  15 

For the identification of different sources of surface water with the HMC approach, we 16 

distinguished between incoming precipitation and seven different initial source areas. The initial 17 

source areas corresponded to the zones of the model parameterization (cf. section 2.2) and 18 

separated the surface domain into forest, riparian, and streambed areas and the subsurface 19 

domain into fractured bedrock, subsolum, solum of the hillslopes and plateau, and riparian soil 20 

(cf. Fig. 1, Fig. 3). 21 

We ran the HMCs enabled HGS model from October 2015 to January 2018 with hourly 22 

meteorological forcing data. In order to avoid that the signal of initially stored water was fully 23 

replaced by new incoming precipitation and that mass balance errors and reset fractions could 24 

accumulate, we split the HMC simulation of the 28 months into 64 consecutive but individual 25 

simulation periods and re-initialized the fractions of water sources at the start of each of these 26 

individual sub-periods of simulation (cf. Fig. 3, grey lines). We chose the sub-periods according 27 

to the model output analysis of Glaser et al. (2019), who analyzed the simulated surface 28 

saturation patterns for the times where TIR images were available (cf. Fig. 2, Fig. 4). This 29 

allowed us to rely on previous simulation output to initialize the hydraulic conditions of the 30 

consecutive sub-periods and thus to considerably reduce the wall-clock time of the simulation by 31 

running the individual simulation periods in parallel. 32 

3.3 Processing of the HMC output 33 

We extracted the time series of simulated fractions of water sources for each of the 39 34 

selected POIs (cf. Fig. 2). For time periods where no discharge was simulated at a POI, the time 35 

series of water fractions naturally feature gaps (cf. Fig. 3). In case the mass balance error of the 36 

simulated water fractions was > 5 % (i.e. the sum of the individual fractions was < 0.95 or > 37 

1.05) or a water fraction was simulated with a negative contribution > 1 % of simulated 38 

discharge, we excluded the affected time step from any further investigations by artificially 39 

introducing a gap into the time series of the affected POI.  40 

In order to identify the immediate delivery paths of surface water, i.e. the mechanisms 41 

that ultimately induce and maintain the occurrence of water at the surface, we extracted the 42 
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fractions of water sources after the first time step of the simulation from each of the 64 sub-1 

period simulations (cf. Fig. 3). Since water of an initial source area is not mixed with water from  2 

3 
Figure 3. Output and processing of the HMC simulation, shown for POI 1 located in the streambed of the source 4 

area S of the eastern tributary (cf. Fig. 1 and 2). Fractions of water initially originating from the different source 5 

areas defined in the surface and subsurface model domain (cf. Fig. 1), fractions of precipitation, and reset fractions 6 

are presented as stacked time series. Above that, time series of hourly precipitation and discharge simulated at the 7 

POI are shown above. Gaps in the time series of fractions of water sources indicate either that the POI was inactive 8 

(simulated discharge is zero) or that the time points were excluded from the analysis due to high mass balance errors 9 

(no simulated discharge shown). Grey dotted lines indicate the start and end times of the 64 sub-periods of 10 

simulation where fractions of water sources were reset to their initial source areas. For the identification of the 11 

immediate delivery paths, the fractions of water sources were extracted after the first time step of the sub-period 12 

simulations (bottom left). For the identification of geographical water sources, the volume of the different water 13 

sources was summed up individually for the first four days of a sub-period of simulation and normalized with the 14 

total water volume that was discharged at the POI during the four days to volume weighted fractions of water 15 

sources (bottom right).   16 
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other initial source areas within the first time step, the fractions of water sources after the first 1 

time step depict from where water entered into a model cell. Consequently, it can be inferred 2 

after the first time step, if the immediate delivery of water to a POI happened via exfiltration 3 

from the subsurface, overland flow, or direct precipitation. Based on the assigned initial source 4 

areas (cf. above, Fig. 3), overland flow could be further distinguished between streamflow and 5 

overland flow from the forest and riparian zone and exfiltration from the subsurface could be 6 

further distinguished into exfiltration from the fractured bedrock, subsolum, solum, and riparian 7 

soil. 8 

In order to identify the geographical sources of surface water, i.e. the source areas where 9 

water was initially stored before reaching a POI, we calculated the volume weighted fractions of 10 

water sources over the first four days of each of the 64 sub-period simulations (cf. Fig. 3). We 11 

chose to analyze the first four days of a simulation period as compromise between the facts that 12 

water initially stored in adjacent source areas of a POI was displaced by precipitation or water 13 

from more distant sources areas, but that water originating from distant source areas needed 14 

some time to reach a POI after the start of the simulation. The assigned initial source areas 15 

allowed us to interpret the geographical sources of surface water regarding different 16 

pedolithological water stores as well as regarding different landscape units. We distinguished 17 

contributions of precipitation, upstream water, riparian soil and riparian surface water, water 18 

from soils and surface from the hillslopes and plateau, and water from the subsolum and 19 

fractured bedrock. Water from the subsolum and fractured bedrock could indicate contributions 20 

from deep subsurface stores from the hillslopes and plateau as well as contributions from 21 

subsurface stores directly underlying the streambed and riparian soil (fractured bedrock) and the 22 

edges of the riparian zone (subsolum), respectively (cf. Fig. 1).  23 

The analysis of the spatial variability of the immediate delivery paths and geographical 24 

sources of surface water considered the variability along the stream by separating between the 25 

source area S, midstream M, and downstream D area (cf. Fig. 1). Furthermore, the variability 26 

within one area was considered by separating between POIs in the streambed, the riparian zone, 27 

and at their interface (cf. blue, yellow and green stars in Fig. 2). In total, we identified the 28 

immediate delivery paths and geographical sources at the 39 POIs for 64 different time periods. 29 

In order to obtain a picture of the average spatial variability of the mixing of water sources, we 30 

determined for each of the 39 POIs the arithmetic mean of the 64 identified mixing ratios of the 31 

immediate delivery paths and geographical sources.  32 

The temporal variability of the mixing of the immediate delivery paths and geographical 33 

sources was analyzed for eight selected periods in time, representing different initial wetness 34 

states and phases of wetting and drying. To distinguish different initial wetness states, we 35 

grouped the 64 sub-periods of simulation into the four categories i) dry, ii) intermediate, iii) wet, 36 

and iv) very wet initial conditions. Since discharge dynamics showed to be similar at all POIs 37 

and the catchment outlet (data not shown), the classification was based on discharge Q at the 38 

catchment outlet at the start of the simulations: i) Q < 0.5 l/s, ii) 0.5 l/s < Q < 5 l/s, iii) Q > 5 l/s 39 

but not all POIs active, iv) Q > 5 l/s and all POIs active. Within each of the four categories, we 40 

visually selected one period in time where the simulated catchment discharge was rising within 41 

the first four simulation days that were analyzed to identify the geographical sources of surface 42 

water and one period in time where the simulated discharge was falling within the first four 43 

simulation days (Fig. 4, Table 1). The discharge at the catchment outlet showed to be well 44 

correlated to the extent of surface saturation (cf. Fig. 4, Table 1, and Glaser et al. (2019)), thus 45 
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we assumed that the selected time periods represented phases of wetting with increasing 1 

discharge and expanding surface saturation across the entire catchment and phases of drying with 2 

decreasing discharge and contracting surface saturation across the entire catchment. 3 

4 
Figure 4. Simulated discharge at the catchment outlet and areal percentage of surface saturation simulated in the 5 

entire catchment and in the three investigated areas comprising a source area (S), midstream (M) and downstream 6 

(D) section of the stream (cf. Fig. 1 and 2). The areal percentage of surface saturation (water depth > 10
-4

 m) was 7 

estimated by Glaser et al. (2019) for the times of thermal infrared imagery mapping (cf. Fig. 2) and corresponds to 8 

the extent of surface saturation at the beginning of the 64 sub-periods of HMC simulation (grey dotted lines, cf. Fig. 9 

3). Brown dashed and solid lines a-h mark the beginning and end of the eight time periods selected to represent 10 

phases of wetting (light brown) and drying (dark brown) starting from different initial wetness states as classified by 11 

the simulated discharge Q at the catchment outlet (cf. Table 1). 12 
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Table 1. Quantitative hydrologic characteristics for the eight selected time periods (cf. Fig. 4) representing dry (a,b), 1 

intermediate (c,d), wet (e,f), and very wet (g,h) initial wetness states and phases of wetting (a,c,e,g) and drying 2 

(b,d,f,h). Qt is the simulated discharge (l/s) at the catchment outlet at the start and end of the selected periods of four 3 

days, Pt=0 is the precipitation rate (mm/h) during the first time step of the selected simulation periods, and Pcum is the 4 

cumulative precipitation (mm) over the four day periods. Areal percentage of surface saturation was estimated for 5 

the entire catchment and the three distinct investigated areas (cf. Fig. 1 and 2) at the start of the selected periods in 6 

time only (cf. Glaser et al., 2019).  7 

Time 

 

     Surface saturation (%) at start date in 

period Start date Qt=0 Qt=4days Pt=0 Pcum  Catchment Area S Area M Area D 

a 10/11/2016 0.05 0.08 0.0 7.7  0.11 5.1 6.75 4.15 

b 23/08/2016 0.01 0 0.0 0.0  0.14 6.43 6.33 4.42 

c 01/04/2016 3.27 5.05 0.0 14.1  0.35 15.64 16.21 8.76 

d 13/04/2016 3.55 2.84 0.0 10.5  0.36 17.59 16.76 8.77 

e 03/02/2017 5.27 20.44 0.6 40.2  0.4 21.59 18.1 9.22 

f 16/03/2017 9.99 5.99 0.0 6.8  0.5 27.44 22.98 12.86 

g 07/12/2017 14.94 78.64 0.0 82.9  0.61 32.49 31.14 32.41 

h 15/12/2017 106.72 34.18 0.3 24.6  1.34 53.95 59.68 77.09 

4 Results 8 

4.1 Immediate delivery paths of surface water  9 

4.1.1 Spatial variability 10 

The immediate delivery path of surface water clearly differed for the streambed and the 11 

riparian zone, regardless where the studied area was located along the stream (Fig. 5). Surface 12 

water in the streambed was essentially delivered by overland flow, i.e. streamflow (blue POIs, 13 

Fig. 5), while surface water in the riparian zone was largely fed by water exfiltration from the 14 

riparian soil (yellow POIs, Fig. 5). In addition, fractions of riparian overland flow were found at 15 

most locations in the riparian zone, but the relevance of the fractions varied locally. In the 16 

riparian zone of the upstream area S, one location (POI 6) received surface water nearly 17 

exclusively from the riparian soil, while the other POIs showed a high (POI 9) or even dominant 18 

(POI 7) fraction of overland flow. This is consistent with the drawn assumptions from field 19 

observations that distinct locations of groundwater exfiltration exist (cf. section 2.3, Fig. 2). 20 

However, in area M and D and in the streambed of area S, POIs positioned at locations that we 21 

assumed to be predominantly fed by groundwater exfiltration (brown labelled POIs in Fig. 5) did 22 

not show distinctly different immediate delivery paths of surface water than other locations in 23 

the riparian zone and streambed, respectively. 24 

A considerable direct contribution of precipitation was only found for two locations that 25 

could not be clearly assigned to the streambed or the riparian zone based on their location and 26 

saturation frequency (Fig. 5, green POIs): POI 12 in area M and POI 7 in area D. The position of 27 

these POIs in the streambed suggests that they are ‘island POIs’ that exclusively receive water 28 

from direct precipitation when stream water level is low. Once the stream level rises, they are 29 

flooded and the contribution of precipitation becomes minor compared to the streamflow. The 30 

other POIs that could not be clearly assigned to the streambed or riparian zone showed similar 31 

immediate delivery paths as found for the locations in the riparian zone, with the exception of 32 
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POI 6 in area D, where the dominant immediate delivery path was exfiltration from the fractured 1 

bedrock. 2 

3 
Figure 5. Spatial variability of immediate delivery paths of surface water. The bars represent the mixing ratios of 4 

sources for surface water at the 34 POIs located in the streambed (blue stars), in the riparian zone (yellow stars), and 5 

at unclassifiable positions (green stars) in the three areas S, M and D along the stream (cf. Fig. 2). Brown labelled 6 

POIs indicate locations with assumed distinct exfiltration of subsurface water (cf. Fig. 2). The fractions of water 7 

sources are the arithmetic mean of the fractions of water sources extracted after the first time step of each of the 64 8 

sub-period simulations (cf. Fig. 3). The water sources that contributed to a POI during the first time step of the 9 

simulations represent the immediate delivery paths of surface water and can be distinguished between precipitation, 10 

exfiltration from different subsurface source areas, and streamflow or overland flow from the riparian zone or forest. 11 

4.1.2 Temporal variability 12 

The mixing ratio of the immediate delivery paths was at most locations similar for the 13 

eight selected times representing different initial wetness states and phases of drying and wetting 14 

(Fig. 6). The largest change in the mixing ratio of the immediate delivery paths at streambed 15 

locations occurred during periods with dry initial conditions (Fig. 6a and b, blue POIs). The 16 

fraction of groundwater exfiltration (i.e. water from the bedrock) was considerably higher during 17 

these time periods than during periods with wetter initial conditions (Fig. 6c - h), especially 18 

during the wetting phase (Fig. 6a). Nonetheless, streamflow was still the predominant immediate 19 

delivery path of surface water at all locations in the streambed except of one (POI 5 in area D). 20 

The mixing ratio of the immediate delivery paths at locations in the riparian zone and at most 21 

unclassified locations stayed stable once the delivery of water to the surface was activated (Fig.  22 
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 1 
Figure 6. Temporal variability of immediate delivery paths of surface water depending on the initial wetness state 2 

and phases of wetting or drying. The bars represent the mixing ratios of sources for surface water at the 34 POIs 3 

located in the streambed (blue stars), in the riparian zone (yellow stars), and at unclassifiable positions (green stars) 4 

in the three areas S, M and D along the stream (cf. Fig. 2). The fractions of water sources are the fractions of water 5 

sources extracted after the first time step (cf. Fig. 3) for each of the eight selected time periods (a-h, Fig. 4, Table 1). 6 

The water sources that contributed to a POI during the first time step of the simulations represent the immediate 7 

delivery paths of surface water and can be distinguished between precipitation, exfiltration from different subsurface 8 

source areas, and streamflow or overland flow from the riparian zone or forest. 9 
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6, yellow and green POIs). Only during drying after very wet initial conditions (Fig. 6h), the 1 

fraction of overland flow increased relative to the exfiltration of subsurface water. Moreover, 2 

overland flow and exfiltrating subsurface water partly originated from areas that are located 3 

further away from the stream (i.e. subsolum and forest) during that drying period. 4 

A clear change of the predominating immediate delivery path with changing wetness 5 

conditions only occurred at the three POIs that have been pointed out before to be characterized 6 

by different immediate delivery paths than in the streambed or riparian zone (section 4.1.1). At 7 

POI 6 in area D, the immediate delivery of surface water clearly shifted from exfiltration from 8 

the bedrock to exfiltration from riparian soil to overland flow from the riparian zone with 9 

increasing initial wetness. The ‘island POIs’ (POI 12 in area M, POI 7 in area D) were dry 10 

during dry and intermediate wetness conditions (Fig. 6a-d), inundated by streamflow during very 11 

wet conditions (Fig. 6g and h), and nearly exclusively watered by direct precipitation in case of 12 

the wetting phase starting from wet initial conditions (Fig. 6e).  13 

Precipitation occurred at the beginning of the simulation period in two of the eight 14 

selected time periods (time period e and h, cf .Tab. 1). Since we identified the immediate 15 

delivery path of surface water by extracting the simulated water sources after the first time step 16 

(cf. section 3.3), direct precipitation could technically only appear as immediate delivery path at 17 

these two of the eight selected times. For the wet initial conditions (Fig. 6e), direct precipitation 18 

contributed by a small fraction to the generation of surface saturation in the riparian zone. 19 

However, contributions of direct precipitation were negligible compared to the contribution from 20 

other immediate delivery paths in the streambed and during the drying phase starting from very 21 

wet conditions (Fig. 6h). 22 

4.2 Geographical sources of surface water 23 

4.2.1 Spatial variability 24 

The most apparent spatial variability for the geographical sources of surface water was 25 

that upstream water was exclusively found at streambed locations and at the ‘island POIs’ (POI 26 

12 in area M, POI 7 in area D, cf. section 4.1), with increasing fractions downstream (Fig. 7). 27 

Apart from that, the mixing of water from different geographical sources was quite 28 

homogeneous across the catchment with a large fraction of water that was initially stored in the 29 

fractured bedrock, followed by water that was initially stored in the riparian soil, and some 30 

contributions of water initially stored in the subsolum. The fraction of subsolum water was 31 

similar to the fraction of riparian soil water in area S, whereas the fraction of riparian soil water 32 

was clearly higher than the fraction of subsolum water in area M and D. Furthermore, the 33 

fraction of riparian soil water tended to be smaller in the streambed (blue POIs, Fig. 7) than in 34 

the riparian zone and at unclassified positions (yellow and green POIs, Fig. 7). Some distinct 35 

local variation of the fractions of riparian soil water and water from the fractured bedrock 36 

occurred within the riparian zone and for the unclassified locations. 37 

Water from newly incoming precipitation (cf. Section 3.3.) generally only made up a 38 

small fraction of surface water (Fig. 7). Exceptions were again the two ‘island POIs’ (POI 12 in 39 

area M, POI 7 in area D). In addition, the fraction of precipitation seemed to be slightly higher in 40 

the streambed than in the riparian zone, especially in area M. Yet the reset fraction and thus the 41 

fraction of unknown water origin (cf. section 3.1) was at many locations higher than the fraction 42 

of precipitation. This makes it uncertain to interpret the spatial distribution and the contribution 43 
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of precipitation and other geographical water sources with small or non-existing fractions in the 1 

mixing of surface water. 2 

3 
Figure 7. Spatial variability of geographical sources of surface water. The bars represent the mixing ratios of 4 

sources for surface water at the 34 POIs located in the streambed (blue stars), in the riparian zone (yellow stars), and 5 

at unclassifiable positions (green stars) in the three areas S, M and D along the stream (cf. Fig. 2). Brown labelled 6 

POIs indicate locations with assumed distinct exfiltration of subsurface water (cf. Fig. 2). The fractions of water 7 

sources are the arithmetic mean of the volume weighted fractions of the first four days (cf. Fig. 3) of each of the 64 8 

sub-period simulations. The water sources that contributed to a POI over the four days represent the geographical 9 

sources of surface water and can be distinguished between precipitation, upstream water, riparian soil and riparian 10 

surface water, water from soils and surface from the hillslopes and plateau (solum and forest), and deeper water 11 

from the subsolum and fractured bedrock (being exposed to the surface in the streambed). 12 

4.2.2 Temporal variability  13 

The most apparent difference in the mixing ratio of the geographical sources of surface 14 

water between phases of wetting and drying was a varying fraction of precipitation (Fig. 8). 15 

While the fraction of precipitation was nearly negligible during drying phases, it was small but 16 

considerable during wetting phases. Exceptions were the wetting and drying phase starting from 17 

intermediate initial wetness conditions (Fig. 8c and d), showing similar fractions of precipitation 18 

in the surface water. The cumulative amount of precipitation was similar for these two time 19 

periods as well (cf. Table 1), while it differed between the other wetting and drying phases. This 20 

suggests that the varying fractions of precipitation in surface water rather reflected the amount of 21 

precipitation in relation to discharge than the distinction between wetting and drying phases. The  22 
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 1 
Figure 8. Temporal variability of geographical sources of surface water depending on the initial wetness state and 2 

phases of wetting or drying. The bars represent the mixing ratios of sources for surface water at the 34 POIs located 3 

in the streambed (blue stars), in the riparian zone (yellow stars), and at unclassifiable positions (green stars) in the 4 

three areas S, M and D along the stream (cf. Fig. 2). The fractions of water sources are the volume weighted 5 

fractions of the first four days (cf. Fig. 3) for each of the eight selected time periods (a-h, Fig. 4, Table 1). The water 6 

sources that contributed to a POI over the four days represent the geographical sources of surface water and can be 7 

distinguished between precipitation, upstream water, riparian soil and riparian surface water, water from soils and 8 

surface from the hillslopes and plateau (solum and forest), and deeper water from the subsolum and fractured 9 

bedrock (being exposed to the surface in the streambed). 10 
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fractions of the other geographical water sources differed in some areas or for some initial 1 

wetness states between phases of wetting and drying. However - as for the immediate delivery 2 

paths (cf. section 4.1) - we did not find any indication for systematically and clearly different 3 

sources of surface water between phases of wetting and drying.  4 

A distinct variability of the mixing ratio of the geographical sources of surface water was 5 

found between the different initial wetness states at streambed locations (Fig. 8, blue POIs). For 6 

dry initial conditions (Fig. 8a and b), the water mainly originated from the riparian soil and 7 

fractured bedrock. For intermediate initial wetness conditions (Fig. 8c and d), the fraction of 8 

riparian soil water decreased and instead, considerable fractions of upstream water and water 9 

from the subsolum appeared. With further wetting of the initial conditions (Fig. 8e-h), the 10 

mixing ratio between riparian soil water and subsolum water tended to further shift towards a 11 

higher contribution of subsolum water. In addition, considerable fractions of solum water 12 

appeared, especially in area S (Fig. 8e-h). 13 

The mixing ratio of the geographical sources of surface water in the riparian zone and at 14 

unclassified positions (Fig. 8, yellow and green POIs) tended as well to shift with increasing 15 

wetness from high fractions of water from the fractured bedrock and riparian soil to smaller 16 

fractions of riparian soil water in favour of higher fractions of subsolum water. Only at the two 17 

‘island POIs’ (POI 12 in area M, POI 7 in area D), surface water was nearly exclusively 18 

precipitation during phases with dry and intermediate wetness conditions (Fig. 8a-d). For wetter 19 

conditions (Fig. 8e-h), the ‘island POIs’ did then show a similar mixture of geographical sources 20 

of surface water as found in the streambed. 21 

5 Discussions 22 

5.1 Assumptions and limitations of the hydraulic mixing cell approach 23 

Premise for a meaningful application of the hydraulic mixing cell approach is that the 24 

simulations appropriately reflect reality. The performance of our model previously has been 25 

intensively evaluated and it has been proved that the spatial and temporal occurrence of the 26 

analyzed surface saturation was consistent with field observations (cf. section 2, Glaser et al. 27 

(2019)). This model assessment goes far beyond other studies that relied on simulations for 28 

analyzing the generation of surface saturation across space and evaluated model performance 29 

only against stream discharge (Partington et al., 2013; Weill et al., 2013). In principal, the 30 

simulation results could be further evaluated by measurements of geochemistry or isotope data 31 

for an identification of the water sources. Yet a main reason for the application of the hydraulic 32 

mixing cell simulations was to complement the process investigation where field measurements 33 

are difficult to perform, which is the case for a spatial identification of water sources along and 34 

sideways the streambed (cf. section 1). 35 

The principal of the HMC approach is to delineate the mixing of water according to 36 

defined initial source areas in the surface and subsurface, thus it basically indicates if and where 37 

water was stored at the start of the simulation. Tracking the flow path of water through different 38 

source areas is currently only possible for overland flow, but not for flow through the subsurface. 39 

Nonetheless, we identified the immediate delivery paths and the geographical sources of surface 40 

water by investigating the mixing of the initial water sources i) after the first time step and ii) as 41 

volume weighted fractions over four days. It is likely that the identified mixing ratios of the 42 

sources would look different when applying different time intervals. However, since our study 43 
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focused on the comparison of the water sources between different locations and times, it was 1 

mainly important to apply the same analysis for all locations and sub-simulations. Precipitation 2 

was considered both in the analysis of the immediate delivery paths and the geographical sources 3 

of surface water. Actually, it mainly gives information about the temporal aspect of the water 4 

sources, indicating water that newly entered the system and was not already stored as ‘old’ water 5 

in the surface or subsurface at the start of the simulation. 6 

The main challenge for the application of the HMC approach to identify the sources of 7 

surface water in space and time was to deal with the reset fractions, i.e. the fractions of water 8 

with unknown origin (cf. Section 3.1). The reset fractions ensure to avoid mass balance errors in 9 

the mixing calculation due to numerical instability or numerical dispersion, yet they still 10 

introduce uncertainties in the mixing ratios. Partington et al. (2013) suggested to accept reset 11 

fractions < 1 %  and pointed out that the numerical stability of the HMC approach is particularly 12 

critical for model cells with small water storage volume relative to water flow. Accordingly, 13 

highly fluctuating water occurrence and shallow water depths in the riparian zone and streambed 14 

of the Weierbach catchment were problematic for the HMC simulations. We managed to limit 15 

the reset fractions and mass balance errors by using hourly input data, splitting the simulation 16 

periods in short sub-periods, and relaxing some numerical stability criteria, but we could not 17 

minimize the reset fractions to values < 1 % for stable simulations with reasonable calculation 18 

times. At various locations within the model domain our adaptations were not sufficient to obtain 19 

useable simulation results (data not shown) and further adaptations of the HMC code itself might 20 

help to overcome these current limitations. Nonetheless, for the locations that we investigated in 21 

this study, the times where we obtained high reset fractions or where we had to remove the 22 

simulation output from the analysis due to mass balance problems were acceptable. If water that 23 

was assigned with reset fractions was all originating from the same initial source, e.g. 24 

precipitation, the mixing ratio of the water sources might be largely distorted, especially for 25 

periods with high reset fractions (cf. Fig. 8f-h). However, it is unlikely that the reset fraction 26 

represents only one initial water source and we think that the obtained information about the 27 

mixture of the water sources is reliable for the investigation of the general relevance of different 28 

water sources and their spatial and temporal variability. 29 

A limitation of our HMC analysis is that we did not systematically investigate the 30 

contribution of precipitation to surface water. The investigated time periods did not explicitly 31 

include periods with varying precipitation amounts for similar wetness states or periods with 32 

similar precipitation amounts for varying initial wetness conditions and phases of wetting or 33 

drying. Thus, we cannot clarify with this study if the fraction of precipitation in surface water 34 

actually varies for different initial wetness states and phases of wetting and drying or if the 35 

observed variation (Fig. 8) only reflects different ratios between the amount of precipitation and 36 

discharge volume (cf. Section 4.2.2, Fig. 8). However, a comparison of the contribution of 37 

precipitation between different locations is possible and since the two ‘island POIs’ (POI 12 in 38 

area M, POI 7 in area D, cf. section 4.1) often showed dominant contributions of precipitation, it 39 

is certain that the small fraction of precipitation observed at all other locations is not only an 40 

artefact of the characteristics of the selected time periods. Moreover, it needs to be kept in mind 41 

that we analyzed the fraction of the immediate delivery paths and geographical sources of 42 

surface water. Since the discharge volume differed for different POIs and different times, it is 43 

possible that the volume of a contributing source was constant in time or space, but that the 44 

fraction of the source relative to other sources changed. For example, the clear decrease of the 45 

relative contribution of exfiltration from the fractured bedrock into the streambed with increasing 46 
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wetness (cf. Fig. 6) does not mean that the exfiltration ceased. Instead, it is likely the exfiltration 1 

persisted but that the volume and thus relevance of water delivered via streamflow increased.  2 

5.2 Sources of surface water in the Weierbach catchment in space and time 3 

5.2.1 How is surface water generated and sourced in the riparian zone? 4 

Previous studies in the Weierbach catchment suggested that the generation of surface 5 

saturation in the riparian zone is largely driven by groundwater exfiltration (Antonelli et al., 6 

2019a; Glaser et al., 2019). The hydraulic mixing cell analysis could confirm these early 7 

suggestions. The identified high contribution of water that directly exfiltrated from the 8 

subsurface (Fig.5, Fig. 6) and mainly originated from riparian soil and fractured bedrock (Fig. 7, 9 

Fig. 8) suggests that surface saturation in the riparian zone was generated in situ by return flow. 10 

Accumulation of overland flow from neighboring locations in the riparian zone only exceeded 11 

the immediate delivery of water via return flow at some locations, especially close to the stream, 12 

which implies that return flow occurred widely across the riparian zone as dominant immediate 13 

delivery path of surface water. This does not confirm suggestions of previous work in the 14 

Weierbach catchment (Antonelli et al., 2019a; Glaser et al., 2018, 2019) that the delivery of 15 

surface water to the riparian zone is maintained by discrete locations of groundwater exfiltration 16 

(cf. Fig. 2) from where the surface water is distributed across the riparian zone via overland flow.  17 

Moreover, we only found a small contribution of precipitation to the surface saturation in 18 

the riparian zone. This suggests that the mechanisms of saturation and infiltration excess as well 19 

as precipitation falling onto saturated areas generally played a minor role in inducing the 20 

occurrence of standing or flowing water at the surface of the riparian zone. This differs from 21 

what has been identified from ISSHM simulations for pre-alpine hillslopes (Weill et al., 2013) 22 

and riparian wetlands (Partington et al., 2013) and is only partly in line with the variable source 23 

area concept, where the generation of surface saturation and overland flow in the riparian zone of 24 

forested humid catchments is mainly related to a rising groundwater level and return flow, but 25 

also to continued precipitation on saturated areas (Dunne & Black, 1970; Hewlett & Hibbert, 26 

1967; Megahan & King, 1985). We cannot entirely exclude a relevant influence of precipitation 27 

on the extension of surface saturation during rain events (cf. Fig.8), but we can exclude that such 28 

an influence was long-lasting or dominant at any location except of the ‘island POIs’ (cf. 29 

discussion in Section 5.1).  30 

The observed temporal consistency of the mixing ratios of the immediate delivery paths 31 

of surface water (Fig. 6) rather suggested that surface saturation was consistently induced and 32 

maintained by the same process once the delivery of water was activated, independently if the 33 

surface saturation extent extended or contracted. The increased delivery of riparian surface water 34 

via overland flow and the shift of the mixing ratio of the geographical sources to higher fractions 35 

of subsolum and even solum water with increasing initial wetness (cf. Fig. 6, Fig. 8) is likely the 36 

result of generally more extended surface saturation across the riparian zone, which activates 37 

overland flow from the edges of the riparian zone where return flow from the underlying 38 

subsolum created surface saturation. This corresponds to the perceptual model described in 39 

previous work on the development of surface saturation in the riparian zone of the Weierbach 40 

catchment (Antonelli et al., 2019a). However, contrary to this previous work in the Weierbach 41 

catchment, our results did not support the suggestion that return flow and extension of 42 

streamflow into the riparian zone generated surface saturation during wetting phases, while the 43 
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surface saturation locally only persisted or was maintained by overland from neighboring areas 1 

during drying phases.  2 

Finally, also the spatial variability of the immediate delivery paths and geographical 3 

sources of surface water was small across the riparian zone of the Weierbach. Based on the often 4 

discussed hot spots of biogeochemical and ecological activity in riparian zones and floodplains 5 

(e.g. Frei et al., 2012; Grabs et al., 2012; Harms & Grimm, 2008; Krause et al., 2017; Singer et 6 

al., 2016), the results from studies simulating the generation of surface saturation for pre-alpine 7 

hillslopes (Weill et al., 2013) and riparian wetlands (Partington et al., 2013), and the high 8 

heterogeneity of the occurrence and frequency of surface saturation in the riparian zone of the 9 

Weierbach catchment (cf. Fig. 2, Glaser et al., 2019), we would have expected a higher 10 

variability of the water sources. Instead, it seems that microtopography, which has been 11 

previously discussed as main explanatory factor for the patchiness of surface saturation 12 

occurrence in the Weierbach catchment (Glaser et al., 2019) as well as for hot spots of 13 

biogeochemical and microbiological activity in riparian zones (Frei et al., 2012; Harms & 14 

Grimm, 2008), is indeed the key factor to induce heterogeneous groundwater fluctuations, soil 15 

saturation, and flooding frequencies and magnitudes and thus hot spots of biogeochemical and 16 

ecological activity. However, we performed for the first time a detailed analysis of the 17 

immediate delivery paths and geographical sources of surface water across a riparian zone and 18 

we expect that the spatial variability of the water sources and thus their impact on the spatial 19 

variability of biogeochemical and ecological processes might be larger for riparian areas or 20 

floodplains of larger size and in other geographical settings than humid, temperate forests.  21 

Moreover, although the spatial variability was small, we observed some spatial 22 

differences in the importance of overland flow (Fig. 5) and the contribution of riparian soil water 23 

relative to water from the fractured bedrock and subsolum (Fig. 7). This small variability might 24 

already be enough to create microhabitats due to varying water quantity and quality, thus nutrient 25 

availability and in consequence to generate hotspots of biogeochemical activity (cf. Krause et al., 26 

2017; Ramey & Richardson, 2017). Furthermore, the spatial variability of the geographical 27 

sources might be critical when sampling riparian surface water, especially since the spatial 28 

difference of the water sources was not related to any visually apparent criteria such as saturation 29 

frequency, saturation persistence, locations of obvious groundwater exfiltration, or distance to 30 

the stream. Thus, when for example sampling riparian water as end member for a mixing 31 

analysis, the result of the hydrograph separation might change depending on the chosen sampling 32 

location. This highlights that it is important to consider a possible spatial variability of the water 33 

sources in riparian zones and floodplains and HMC simulations might actually be useful to 34 

support and inform the planning of field work beforehand of starting extensive sampling 35 

campaigns.  36 

5.2.2 How is surface water generated and sourced in the streambed? 37 

In addition to the successful identification of immediate delivery paths and geographical 38 

sources of surface water in the riparian zone, our HMC analysis allowed the investigation of the 39 

processes for surface saturation generation in the streambed and thus streamflow generation. We 40 

found a generally small fraction of precipitation in streamflow (Fig. 7, Fig. 8), which is 41 

consistent with results from previous tracer studies in the Weierbach catchment (Martínez-42 

Carreras et al., 2015; Wrede et al., 2015) that showed that old water stored in the subsurface is 43 

the main contributor to streamflow. Yet the previous studies showed higher contributions of 44 
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precipitation to runoff events than what we simulated, especially for the characteristic sharp, 1 

short-lasting first discharge peaks (cf. Section 2.1), where precipitation represented up to 60% of 2 

the hydrograph (Martínez-Carreras et al., 2015). This discrepancy probably results from the fact 3 

that we did not specifically analyze the water sources for individual events and especially did not 4 

distinguish the first peak events from the second peak events. A follow-up study might use the 5 

HMC simulations to explicitly analyze the water sources of the hydrograph in the Weierbach 6 

catchment with a focus on distinct rain events (cf. discussion in Section 5.1) and the first and 7 

second discharge peaks in comparison and as complement to the field observations. Nonetheless, 8 

our analysis included periods with rain and discharge events (cf. Fig. 4) and we found that 9 

subsurface water was always dominating in the streamflow, independently from the initial 10 

wetness state or phases of wetting or drying (cf. Fig. 8). Thus, the model reproduced the 11 

phenomenon of high contributions of pre-event water in event runoff that has been observed in 12 

catchments worldwide (e.g. Cartwright & Morgenstern, 2018; Correa et al., 2019; Laudon et al., 13 

2007) and is known as the ‘old water paradox’ (cf. Kirchner, 2003). This indicates that 14 

precipitation-induced pressure waves can explain and simulate the fast release of previously 15 

stored subsurface water to the stream as immediate response to precipitation.  16 

The identified similarity of the geographical sources of surface water in the streambed 17 

and riparian zone (cf. Fig.7) furthermore suggests that streamflow was generated in the same 18 

way as the surface saturation in the riparian zone, i.e. by direct return flow of subsurface water. 19 

Based on the facts that direct exfiltration from the underlying bedrock appeared as a relevant 20 

immediate delivery path of surface water to a POI during dry conditions (Fig. 6) and that the 21 

contribution of upstream water increased downstream (Fig.8), we suppose that streamflow 22 

accumulated from return flow occurring all along the streambed. With increasing wetness, return 23 

flow increased and extended the active stream length (cf. Antonelli et al., 2019b), which in turn 24 

increased the accumulation and thus fraction of upstream water at the investigated POIs (cf. Fig. 25 

8). This matches the variable source area concept, where Hewlett and Hibbert (1967) described 26 

that streamflow in intermittent and ephemeral tributaries is likely to be generated and expanded 27 

by an expansion of subsurface saturation and consequently return flow. Here, we highlight that 28 

the same processes occur and generate streamflow in downstream areas in addition to a delivery 29 

of water via streamflow from upstream. Moreover, we suggest that an extent and increase of 30 

streamflow results from an extent and increase of the volume of return flow which is triggered 31 

by increasing subsurface saturation as well as the propagation of pressure waves induced by 32 

precipitation (cf. above). 33 

With the exception of an increase of upstream water contribution in downstream 34 

direction, the sources of stream water where rather homogeneous in space (Fig. 7). This is 35 

consistent with findings from McGlynn et al. (2004) who showed that runoff water in the 36 

Maimai catchment consistently originated from headwater riparian areas, independently from the 37 

catchment size, and was transferred downstream through the channel network. Moreover, 38 

various studies have discussed accordingly that the sources of stream water mainly vary with 39 

varying physiographic settings, landscape features, or climatic conditions (Brown et al., 1999; 40 

Cowie et al., 2017; Gordon et al., 2015; Laudon et al., 2007), whereas mere catchment size and 41 

thus the location along the stream within a catchment with consistent characteristics – such as the 42 

Weierbach catchment – has a less significant influence on the hydrograph sources. Some studies 43 

found a spatially varying contribution of young water depending on catchment size or elevation 44 

(Brown et al., 1999; James & Roulet, 2009; Zhang et al., 2018), which we cannot confirm or 45 

contradict with certainty from our simulations due to the similar size of the simulated fractions of 46 
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precipitation and reset fractions (cf. Fig. 7, discussion in Section 5.1). Correa et al. (2019) 1 

identified a more pronounced and faster connectivity of hillslope soil water to the stream for 2 

upper than lower sub-catchments, which matches our identified tendency for lower fractions of 3 

subsolum water compared to riparian soil water in downstream direction (Fig. 7).    4 

Temporally, the mixing ratio of the different subsurface water sources in the stream 5 

shifted with increasing wetness towards higher contributions from geographical sources from 6 

further uphill (i.e. riparian soil -> subsolum -> solum, cf. Fig. 8), which indicates that more 7 

distant geographical source areas got activated and connected to the stream with increasing 8 

wetness. In line with that, previous hydrograph separations in the Weierbach catchment revealed 9 

a more dominant contribution of riparian soil water during events in spring and summer than for 10 

events in autumn and winter, where the wetness state of the catchment was higher (Martínez-11 

Carreras et al., 2015). Moreover, our findings match findings from tracer studies in other 12 

catchments that analyzed the temporal variation of the sources of stream water. For example, 13 

McGlynn and McDonnell (2003) showed as well an increasing contribution of hillslope water in 14 

comparison to riparian water during events with large discharge volume and related this finding 15 

to an initiation of hillslope runoff with increasing wetness. Also Correa et al. (2017) highlighted 16 

the importance of riparian soil water in streamflow and revealed a direct connection of water 17 

flow from the hillslopes to the stream during wet periods only. Yet Correa et al. (2017) found a 18 

slightly smaller fraction of riparian soil water during the drier than the wetter season. This relates 19 

to the circumstance that they found especially high contributions of spring water from the 20 

bedrock during the drier season, whereas the spring water became less relevant compared to 21 

shallow interflow through the soil for high flow conditions. Similarly, Cartwright and 22 

Morgenstern (2018) found indications that the activation of streamflow during events was related 23 

to an activation of water flow from soils or regolith in addition to groundwater baseflow. In line 24 

with both of these studies, our simulations showed a relevant delivery of water to the stream by 25 

direct exfiltration from the underlying fractured bedrock during dry conditions (Fig. 6) and 26 

increased fractions of subsolum and solum water in streamflow with increasing wetness (cf. Fig. 27 

8), which indicates that return flow from the underlying fractured bedrock persisted throughout 28 

time but was increased and extended by water flow from upstream and uphill source areas and 29 

upper soil layers once these areas and layers were wetted up and activated.  30 

Overland flow from the riparian zone showed to be a negligible immediate delivery path 31 

for streamflow generation (Fig. 5). This, together with the absence of considerable fractions of 32 

water originating from initial riparian surface saturation (Fig. 7) and the low fractions of new 33 

precipitation water (cf. above) in stream water, suggests minor contributions of overland flow 34 

from the riparian zone to streamflow generation. This is in contrast to previous studies in the 35 

Weierbach catchment that assumed saturation excess overland flow from the riparian zone to 36 

play a relevant role in streamflow generation, especially for the first discharge peaks (Fenicia et 37 

al., 2014; Glaser et al., 2016; Klaus et al., 2015; Martínez-Carreras et al., 2015; Martínez-38 

Carreras et al., 2016; Schwab et al., 2018; Wrede et al., 2015). Yet, as discussed above, we did 39 

not explicitly analyze the generation of the first and second peaks of the hydrograph of the 40 

catchment and thus cannot fully exclude a high contribution of overland flow to parts of the 41 

hydrograph. Moreover, it is likely that water delivered to the surface of the riparian zone 42 

nonetheless passes through the riparian zone via overland flow (cf. Fig. 5) and eventually enters 43 

the stream. Since such a behavior could not be inferred from a difference between the 44 

geographical sources of the surface water in the riparian zone and streambed (Fig. 7), we suggest 45 

that this is a fast process and that overland flow in the riparian zone is basically intermittent 46 
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streamflow outside of the streambed. On one side this implies that the consideration of riparian 1 

overland flow as distinct component in streamflow generation is redundant for the Weierbach 2 

catchment. On the other side, a distinct consideration of riparian overland flow can still be 3 

justified by the visually apparent separation between the streambed and riparian zone and lower 4 

water volumes and surface saturation frequencies in the riparian zone than in the streambed. In 5 

that sense, further analyses would be needed to quantify which fraction of the water in the stream 6 

actually passed through the riparian zone as overland flow and to quantify the active contribution 7 

of the riparian surface saturation to streamflow in comparison to the actual extent of surface 8 

saturation (as e.g. done in Partington et al., 2013).  9 

6 Conclusions 10 

We investigated the sources of surface water and their variability in space and time using 11 

a hydraulic mixing cell approach in a comprehensively validated HydroGeoSphere model of the 12 

Weierbach catchment. The hydraulic mixing cell analysis allowed us to specify and quantify the 13 

different geographical sources and the flow mechanisms (i.e. immediate delivery paths) that 14 

generated surface saturation in the riparian zone and surface water in the streambed of three 15 

small study areas along a stream. Further development of the hydraulic mixing cell code might 16 

help to reduce uncertainties introduced by numerical instability of the mixing calculations when 17 

applying the code for intermittently flooded areas with small water volume. Nonetheless, we 18 

obtained useful information going far beyond the standard model output and we think that this or 19 

similar simulation approaches should be used much more often than currently done as 20 

complement to field data, either to help to interpret and understand the field data or to plan 21 

experiments beforehand. 22 

Our main findings regarding the spatial and temporal variability of the immediate 23 

delivery paths and geographical sources of surface water in the riparian zone and streambed of 24 

the Weierbach catchment are as follows: 25 

- Contribution of precipitation and thus new water to surface water was generally small 26 

- Surface water was mainly delivered by exfiltration from the subsurface in the riparian 27 

zone and by streamflow in the streambed 28 

- Once the delivery of surface water was activated, the immediate delivery path stayed 29 

rather constant, independently from the initial wetness state or phases of drying or 30 

wetting. Exception was a clear shift of the ratio of predominant sources towards 31 

streamflow and overland flow in the streambed and riparian zone during dry and very wet 32 

conditions, respectively. 33 

- The geographical sources of surface water were similar among the three studied areas and 34 

the riparian zone and streambed, representing mainly a mixture of water from different 35 

subsurface stores.  36 

- The mixing ratio of geographical sources remained similar for phases of wetting or 37 

drying, but changed depending on the initial wetness state, i.e. water from upslope source 38 

areas became more relevant with increasing wetness. 39 

Regarding the generation of surface saturation in the riparian zone of the investigated 40 

Weierbach catchment, these findings implied that surface saturation was generated and 41 

maintained by return flow across the riparian zone. Nonetheless, we identified some spatial 42 
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variations in the delivery and mixing of surface water within the three small investigated areas 1 

(155 -170 m
2
) that could have an effect on microhabitats and hotspots of biogeochemical activity 2 

or might be relevant for water sampling campaigns. In larger riparian zones or floodplains, this 3 

spatial variability of water sources and thus possible impacts on ecology, water quality, runoff, 4 

and flood risk may be larger. Therefore, we think more studies similar to ours are needed, 5 

especially for riparian zones or floodplains with different sizes or different landscape 6 

characteristics and climatic conditions. 7 

Regarding the streamflow generation in the Weierbach catchment, we concluded from 8 

the results of the hydraulic mixing cell simulations that streamflow was mainly generated by 9 

return flow into the streambed occurring all along the stream. With increasing wetness, the return 10 

flow originated from more extended source areas, reaching up to the hillslopes and its upper soil 11 

layers during very wet conditions. We suggest that precipitation plays a minor immediate 12 

contribution to streamflow generation, but that it triggers an increase and extent of return flow by 13 

inducing pressure waves. Future analyses with the hydraulic mixing cells might focus explicitly 14 

on an analysis of the streamflow sources during single events to clarify the role of precipitation 15 

in inducing hydrograph peaks. Similarly, future analyses could clarify if the identified minor 16 

contribution of riparian overland flow to streamflow generation applies throughout single events 17 

and if and how much of riparian surface saturation eventually connects to the stream. Yet we 18 

discussed that a distinction between riparian overland flow and streamflow was mainly justified 19 

by a visual spatial delineation and discharge volume. In the end, the generation mechanism and 20 

water sources proved to be the same for riparian overland flow and streamflow, meaning that 21 

overland flow was basically nothing else than intermittent streamflow outside of the streambed.  22 
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