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Abstract

Particle methods are meshless methods for solving partial differential equations. These methods are
particularly popular for fluid flow simulations. The fluid is spatially discretized into a set of particles
which move along the Lagrangian trajectories of the fluid over time. The observed quantities of
the fluid are thus transported with the flow. In contrast to classical grid-based methods, such as
the finite volume or finite element method, the time derivatives of the quantities do not contain
a convective component and are therefore easier to calculate. Due to the Lagrangian approach,
these methods are particularly suitable for problems with a high velocity or free surfaces. A
further advantage is that some conservation laws, for example mass conservation, are automatically
satisfied.
One of the best known and oldest particle methods is the Smoothed Particle Hydrodynamics
(SPH) method. This method is particularly popular because of its simple discretization technique
as it uses besides the particles only a fixed kernel function which smooths the particles. Despite
a multitude of applications and some impressive results, the mathematical understanding of this
method is still limited.
This thesis deals with the convergence of the SPH method. For this, the method is applied to the
Euler equations with a specific barotropic equation of state. The main focus lies on the convergence
of the semi-discrete problem and the development of suitable kernel functions. The goal is to give
a first step towards a general convergence theory for the SPH method.
Using specific conditions on the kernel function used by the SPH method, error bounds for an energy
error term are derived, from which the pointwise convergence of the method is then deduced. A
careful distinction is made between the smoothing parameter and the discretization parameter
in order to derive an explicit relationship between the two parameters. Based on the Wendland
functions, a class of radial kernel functions with compact support is developed, which satisfies
both theoretical and numerical requirements. The theory is then extended to include a time
discretization, demonstrating the convergence of the fully discretized system. Finally, numerical
experiments are shown to verify the theoretical results.





Zusammenfassung

Partikelmethoden sind gitterfreie Verfahren zur Lösung partieller Differentialgleichungen. Diese
Methoden sind besonders in der numerischen Strömungsmechanik beliebt. Dabei wird das Fluid
zunächst räumlich in eine Menge an Partikeln diskretisiert, welche sich mit der Zeit entlang der La-
grangeschen Trajektorien des Fluids bewegen. Die beobachteten Größen des Fluids werden somit
mit dem Fluss transportiert. Im Gegensatz zu klassischen, gitterbasierten Verfahren, wie etwa
der Finite-Volumen- oder Finite-Elemente-Methode, enthalten die Zeitableitungen der Größen
keinen konvektiven Anteil und sind daher einfacher zu berechnen. Aufgrund der Lagrangschen
Betrachtungsweise eignen sich diese Methoden im Besonderen für Problemstellungen mit hohen
Geschwindigkeiten oder freien Oberflächen. Ein weiterer Vorteil ist, dass einige Erhaltungsgle-
ichungen, wie zum Beispiel die Massenerhaltung, automatisch erfüllt sind.
Eines der bekanntesten und ältesten Partikelverfahren ist das Smoothed Particle Hydrodynamics
(SPH) Verfahren. Diese Methode ist aufgrund ihrer einfachen Diskretisierungstechnik sehr beliebt,
da sie neben den Partikeln nur eine festgelegte Kernfunktion verwendet, welche die Partikel glättet.
Trotz einer Vielzahl an Anwendungen und teilweise beeindruckenden Resultaten ist das mathema-
tische Verständnis dieser Methode jedoch noch beschränkt.
In dieser Arbeit wird die Konvergenz des SPH Verfahrens untersucht. Hierfür wird das Verfahren
auf die Eulergleichungen mit einer speziellen, barotropischen Zustandsgleichung angewendet. Es
steht vor allem die Konvergenz des semi-diskreten Problems und die Entwicklung passender Kern-
funktionen im Vordergrund. Das Ziel ist es, einen ersten Schritt in Richtung einer allgemeinen
Konvergenztheorie für das SPH Verfahren zu geben.
Unter Verwendung spezieller Bedingungen an die von dem SPH Verfahren verwendeten Kernfunk-
tion werden Fehlerschranken für einen Energiefehlerterm hergeleitet, aus dem dann die punktweise
Konvergenz des Verfahrens gefolgert wird. Dabei wird besonders zwischen dem Glättungsparame-
ter und dem Diskretisierungsparameter unterschieden, um einen expliziten Zu-sammenhang beider
Parameter herzuleiten. Aufbauend auf den Wendland Funktionen wird eine Klasse radialer Kern-
funktionen mit kompaktem Träger entwickelt, die sowohl die Bedingungen der Theorie als auch
numerische Anforderungen erfüllt. Die Theorie wird dann um eine Zeitdiskretisierung erweitert,
die die Konvergenz des vollständig diskretisierten Systems demonstrieren soll. Numerische Exper-
imente sollen schließlich die theoretischen Resultate verifizieren.





Contents

Introduction 1

Notation and Terminology 3

1 Auxiliary tools 4
1.1 Tools From Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 The Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.2 The Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.3 Positive Definite Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Basics on Sobolev Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Spaces of Time-depended Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Tools from Approximation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Approximation via Convolution . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4.2 Approximation by Quadrature . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4.3 An Approximation Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Fluid Dynamics and Smoothed Particle Hydrodynamics 21
2.1 Particle Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 The Euler Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3 The SPH-Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Existence and Uniqueness of the Solution of the SPH Equations System . . . . . . 32

3 Convergence Results 37
3.1 Euler Equations for a Specific Equation of State . . . . . . . . . . . . . . . . . . . 37
3.2 Properties of the Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Convergence of the Energy Error Term . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Pointwise Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5 Outlook: The Periodic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Kernel Construction 56
4.1 Required Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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Introduction

In the last few decades, numerical simulations in fluid dynamics have become an increasingly larger
field of research. The fact that computing capacities had significantly increased has led to sim-
ulations replacing experiments in industry and research. Hence, various numerical methods have
been established.
Many of these methods are grid-based methods, such as the finite difference, volume or element
method. These methods use an Eulerian point of view, which means that the quantities of the fluid
are calculated on fixed grid points. Those methods are all well studied and used in a wide range
of applications. However, these methods have their disadvantages if complex or varying topologies
are used.
Another approach are particle based meshfree methods which use a Lagrangian discretization for
simulating the fluid flow. In these methods, the fluid is divided into a discrete set of particles which
move along the Lagrangian trajectories. The quantities of the fluid are then transported with the
flow. Through the observation of Lagrangian particle trajectories one directly satisfies conservation
properties and has a natural treatment of free boundary conditions. In addition, these methods
are often characterized by a simple implementation.
The smoothed particle hydrodynamics (SPH) method is one of the most popular particle based
meshfree methods for fluid flow problems. The SPH method was first introduced by Lucy [Luc77]
and by Gingold and Monoghan [GM77] in 1977. This method is based on a very simple discretiza-
tion technique, employing besides the particles only a fixed kernel function. Quantities evolve over
time by simple particle to particle interactions. Hence, using a kernel function with compact sup-
port, the SPH method is, additionally, very fast in computations. Due to its simplicity, the SPH
method has many applications in multiple fields, for example in hydrodynamics, bioengineering or
astrophysics. A detailed list of applications can be found in [SOLT16].
Despite the fact that SPH was introduced quite some time ago and despite the fact that it has
shown remarkable results in practical applications, the theoretical understanding of the method is
still limited.
There exist a few papers which already deal with the convergence of the SPH method. There is
the work by Ben Moussa and Vila, see [BMV00, BM06, Vil99]. They follow the ideas of Mas-Gallic
and Raviart [MGR87] about weighted particle methods for linear conservation laws. Their papers
deal with smoothed particle approximation for conservation laws and their connection to the SPH
method. Unfortunately, they require knowledge about the exact particle trajectories, which makes
their results less interesting in applications. Then, there is the work by Di Lisio, Grenier, and
Pulvirenti [DL95, DLGP97, DLGP98]. They show that the SPH method is converging if first the
discretization parameter and after that the smoothing parameter go to zero. However, their theory
does not hold if both parameters are sent to zero at the same time. This, unfortunately, is again
only of limited use in practical applications.
Finally, there exists the work of Oelschläger [Oel91], which is widely neglected in the SPH com-
munity. As a main difference to other works, Oelschläger suggested that the kernel function has to
be a convolution kernel, a function which is the convolution of a root kernel with itself. Then, by
stating new conditions on the root kernel, in particular a condition we will call the approximation
condition, Oelschläger proves convergence of an energy-like error term for a simplified SPH approx-
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imation system of the Euler equations. Unfortunately, these new conditions are rather technical
and have, so far, only been shown to hold for kernels which are globally supported and which are
hence not particularly appealing from a computational point of view. Interestingly, supposing the
kernel to be a convolution kernel, Oelschläger automatically supposed the kernel function to be
positive definite. A property, which has recently been proven to be useful also in computations as
it avoids so-called tensile instabilities; see [DA12].
This work is partly based on the ideas of Oelschläger. In addition to the kernel conditions of
Oelschläger, we assume the kernel function to satisfy a moment condition. We are therefore able
to extend the result of Oelschläger to a convergence result of arbitrary order. Moreover, we distin-
guish carefully between the smoothing and the discretization parameters and give explicit relations
between both of them to guarantee convergence. Using the resulting higher convergence order, we
are able to extend the convergence result to a first pointwise convergence result for the SPH method.
Much of the work then consists of deriving a new class of kernel functions, which on the one hand
satisfy the new conditions, but on the other hand are also easy to evaluate and have a compact
support. First, we will set conditions for the kernel function, which ensures that it has a root
kernel, which in turn satisfies the required properties. Then, we derive the class of kernel functions
based on the radial basis Wendland functions, see [Wen95], which are already frequently used in
the SPH community. Using Wendland functions for higher spatial dimensions, we can show that
they have a root kernel which satisfies the proposed conditions.
This thesis is organized as follows. Chapter 1 introduces very basic concepts of analysis and ap-
proximation theory, which are required throughout the scope of this work. Chapter 2, the basic
concepts of fluid dynamics from a Lagrangian point of view and the Euler equations will be in-
troduced. After that, a general form of SPH approximation is derived and applied to the Euler
equations. Most of the theory of the SPH approximation is introduced more generally than we will
need it for the convergence result. However, we use this general derivation to conclude a general
existence theorem for the SPH discretization of the Euler equations. In Chapter 3, we consider
the Euler equations for a specific equation of state. We will provide conditions for the SPH kernel
function which leads to a convergence result. Then, this result will be extended to derive a first
point-wise convergence theorem for the SPH method. In Chapter 4 we will derive kernel functions
based on the Wendland functions that fit into the theory of Chapter 3 as mentioned above. Chapter
5 discusses an explicit and an implicit time discretization scheme for the SPH method. For both
time discretization schemes, a convergence result is derived. In Chapter 6, we present numerical
results for a one-dimensional test case using the kernels derived in Chapter 4. These results are
compared with the theory from Chapter 3.
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Notation and Terminology

Most part of the notation in this work is standard and chosen in a self-explanatory way. In addition,
the less frequently used notation is introduced or repeated at the respective point. Nevertheless,
we will give a small overview of the notation here, in case there should be any ambiguities at some
points.
As usual, N, Z, R and C denote the set of all natural, integer, real and complex numbers, respec-
tively. We will follow the convention 00 = 1, 0 /∈ N and denote N0 = N ∪ {0}. i is the imaginary
unit and for a complex number z ∈ C, z denotes its complex conjugate. The Cartesian product
of two (or more) sets X and Y will be denoted by X × Y , while, as usual, a superscript of a
respective set denotes the dimension of the Cartesian power, for example Rd is the d-dimensional
real space and Cd×n is the space of all complex-valued matrices with d rows and n coloums for
d, n ∈ N. Moreover, the letter d will be fixed as a natural number and denotes the spatial dimen-
sion throughout this work.
For a better readability, vectors are written in bold, while the j-th entry of the vector x ∈ Cd is
denoted by xj ∈ C for 1 ≤ j ≤ d. For two vectors x and y from Cd, ‖x‖2 denotes the Euclidean
length of x and x·y the inner product of both elements. For a multiindex α ∈ Nd0, |α| denotes the
1-norm of α, i.e. |α| =

∑d
j=1 |αj |.

For a subset Ω ⊂ Rd and a k ∈ N0, Ck(Ω) denotes the space of all k-times continuously differ-
entiable functions f : Ω → R. If k = 0, we will simply write C(Ω). Πk(Ω) denotes the space of
polynomials with order k. We will use the convention that if k is a negative integer, then Πk(Ω)
only contains the zero function. For a 1 ≤ p ≤ ∞, Lp(Ω) denotes the Lebesgue space. The
Schwartz space, the space of rapidly decreasing C∞(Rd) functions, is denoted by S(Rd).
For a function g : R → R we define the set of functions Θ(g) as all functions which grow exactly
like g. More precisely, f = Θ(g) for x→∞ if and only if there exist two constants 0 < c ≤ C <∞
and an x0 > 0 such that c|g(x)| ≤ |f(x)| ≤ C|g(x)| for all x ≥ x0.
Let f : Rd → R be continuously or weakly differentiable. The j-th partial (weak) derivative
of f is denoted by ∂jf . For a multiindex α ∈ Nd0, the α-th (weak) derivative of f is denoted
by Dαf = ∂α1

1 . . . ∂αdd f . The Laplacian is denoted by ∆f =
∑d
j=1 ∂

2
j f and the gradient by

∇f = (∂1f, . . . , ∂df)T . For two vector fields u : Rd → Rd and v : Rd → Rd the divergence is given
by div u =

∑d
j=1 ∂juj and we also encounter the non-linear operator (u · ∇) v =

∑d
j=1 uj∂jv.

We also encounter mappings where we keep a certain argument fixed. As an example, given a
function f : Rd × [0,∞[→ R depending on time and space, for some fixed x ∈ Rd, f(x, ·) is seen
as a mapping [0,∞[→ R, t 7→ f(x, t). Here, the dot symbol is the free argument.
Finally, the letter c > 0 denotes an arbitrary constant which can vary from line to line within each
calculation.
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CHAPTER 1

Auxiliary tools

In this chapter, we will introduce some basic concepts from analysis and approximation theory.
These concepts will be needed for the construction of the SPH-method and the convergence result
later on.

1.1 Tools From Analysis
In this section, we will recall some basic concepts of analysis.

1.1.1 The Fourier Transform
We begin with the very basic theory of Fourier transformation. Fourier transformation is a com-
monly used tool from analysis. It has the advantage of converting the operations of differentiation
and convolution into multiplication operations. Using these concepts, we can consider partial dif-
ferential equations as ordinary differential equations or as algebraic ones. In our context, it will
mainly be used to simplify conditions we will give for functions and will help us to construct our
kernels later on.
Let f be a function in L1(Rd). The Fourier transform of f on Rd, denoted by f̂ , is the function
given by

f̂(ω) = (2π)−d/2
∫
Rd

e−iω·xf(x)dx, ω ∈ Rd.

The inverse Fourier transform of f on Rd, denoted by f∨, is the function given by

f∨(ω) = (2π)−d/2
∫
Rd

eiω·xf(x)dx, ω ∈ Rd.

Note that besides this symmetric definition, there are other definitions of the Fourier transform,
which differ in the way of how the (2π)−d term is distributed. In this work, we will always use the
given, symmetric version.
We now want to give some basic but useful properties of the Fourier transform, which can be
deduced from the definition.
Lemma 1.1
Let f be a function in L1(Rd). Then, the following properties hold:

i) The map f 7→ f̂ is linear in f .

ii) f̂ is continuous.
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Tools From Analysis

iii) f̂ belongs to L∞(Rd), and ‖f̂‖L∞(Rd) ≤ (2π)− d2 ‖f‖L1(Rd).

Proof. The first one is a conclusion of the linearity of the integral. The second one follows from
the dominated convergence theorem. For the third one, we derive

‖f̂‖L∞(Rd) =

∥∥∥∥∥∥(2π)−d/2
∫
Rd

e−i··xf(x)dx

∥∥∥∥∥∥
L∞(Rd)

≤ (2π)−d/2
∫
Rd

|f(x)|dx = (2π)−d/2‖f‖L1(Rd),

which completes the proof.

Besides these basic properties, we also have the following useful algebraic rules.
Lemma 1.2
Let f and g be functions in L1(Rd). Then, the following algebraic properties hold:

i)
∫
Rd
f(x)ĝ(x)dx =

∫
Rd
f̂(x)g(x)dx.

ii) For γ ∈ Rd we have ̂f(· − γ)(ω) = e−iω·γ f̂(ω) for all ω ∈ Rd.

iii) For fε := 1
εd
f
( ·
ε

)
with ε > 0, we have f̂ε(ω) = f̂(εω) for all ω ∈ Rd.

iv) Let 1 ≤ j ≤ d. If, in addition, x 7→ xjf(x) is in L1(Rd), then f̂ is differentiable with respect
to ωj and

∂f̂

∂ωj
(ω) =

(
−ipejf

)∧ (ω), ω ∈ Rd,

where pej (x) := xj for x ∈ Rd.
If ∂f

∂xj
is also in L1(Rd), then

∂̂f

∂xj
(ω) = iωj f̂(ω), ω ∈ Rd.

Proof. The first one follows by changing the order of integration with Fubini. The second and third
one can be achieved by substitution. Finally, the last part follows with the dominated convergence
theorem and partial integration.

It is a well-known fact that the Fourier transform can be extended to the space of square integrable
functions L2(Rd), where it is an isometry. Since the proof can be found in i.e. [LL01] or [Wen04],
we will only present a short sketch of it.
Theorem 1.3 (Plancherel’s Theorem)
The map f 7→ f̂ has a unique extension to a continuous, linear map from L2(Rd) onto L2(Rd)
which is an isometry, i.e. ‖f̂‖L2(Rd) = ‖f‖L2(Rd) for all f ∈ L2(Rd). Moreover, for f ∈ L2(Rd),
we have (f̂)∨ = f .

Proof. First, the relation ‖f̂‖L2(Rd) = ‖f‖L2(Rd) can be proved for all f ∈ L1(Rd) ∩ L2(Rd) via
approximation by C∞-functions and the monotone convergence theorem. The proof can then be
completed using the density of L1(Rd) ∩ L2(Rd) in L2(Rd) and the completeness of the Lp(Rd)
spaces.

The identity ‖f̂‖L2(Rd) = ‖f‖L2(Rd) is also called Parseval’s identity. We extended the Fourier
transform from the L1(Rd) space to the L2(Rd) space. But even more is true. With the same
arguments, it is possible to extend the Fourier transformation to all Lp(Rd) with 1 < p < 2.
Unlike in the case of p = 2, this map is not invertible any more.
A simple conclusion of Parseval’s identity is the extension of this formula from the norm to its
inducing inner product.
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Auxiliary tools

Corollary 1.4 (Parseval’s Formula)
Let f and g be both in L2(Rd). Then, the following formula of Parseval holds∫

Rd

f(x)g(x)dx =
∫
Rd

f̂(ω)ĝ(ω)dω.

Proof. This relation follows from Theorem 1.3 using the polarization identity, i.e.∫
Rd

f(x)g(x)dx = 1
4

(
‖f + g‖2L2(Rd) − ‖f − g‖

2
L2(Rd) + i

(
‖f + ig‖2L2(Rd) − ‖f − ig‖

2
L2(Rd)

))
.

There are two important concepts we will define and translate using the Fourier transformation:
The convolution and the concept of positive definite functions.

1.1.2 The Convolution
The convolution of two functions will be one of our main tools to derive our numerical scheme.
The convolution of the two functions f and g, denoted by f ∗ g, is given by

f ∗ g(x) :=
∫
Rd

f(x− y)g(y)dy, x ∈ Rd.

One has to be careful to make sure that this definition makes sense. In the case of f ∈ Lp(Rd),
g ∈ Lq(Rd) with 1

p + 1
q = 1, Hölder’s inequality assures that the integral is well defined for all

x ∈ Rd. Moreover, Young’s inequality guarantees the integrability of the convolution.
Theorem 1.5 (Young’s inequality for Convolutions)
Let 1 ≤ p, q, r ≤ ∞ with 1

p + 1
q = 1

r + 1 and f ∈ Lp(Rd), g ∈ Lq(Rd). Then f ∗ g ∈ Lr(Rd) and we
have

‖f ∗ g‖Lr(Rd) ≤ ‖f‖Lp(Rd)‖g‖Lq(Rd).

Proof. The proof is a conclusion of Hölder’s inequality.

Even if this inequality is true for all 1 ≤ p, q ≤ 2, the cases of our interests are for p = 1 and
q ∈ {1, 2}. In this case, the theorem guarantees that the convolution of two functions is in Lq(Rd)
itself. This allows us to apply the Fourier transform to the convolution. The connection between
the convolution and the Fourier transform is a very important and valuable property. It helps us
to convert a convolution to a multiplication in Fourier space.
Theorem 1.6
Let f, g ∈ L1(Rd). Then we have

f̂ ∗ g(ω) = (2π)d/2f̂(ω)ĝ(ω), ω ∈ Rd.

Proof. From Theorem 1.5 we know that f ∗ g ∈ L1(Rd) and therefore f̂ ∗ g is continuous. Hence,

f̂ ∗ g(ω) = (2π)−d/2
∫
Rd

e−iω·x
∫
Rd

f(x− y)g(y)dydx

= (2π)−d/2
∫
Rd

∫
Rd

e−iω·(x−y)e−iω·yf(x− y)g(y)dxdy,

where we switched the order of integration using Fubini’s theorem. The substitution z = x − y
implies

f̂ ∗ g(ω) = (2π)−d/2
∫
Rd

e−iω·zf(z)dz
∫
Rd

e−iω·yg(y)dy = (2π)d/2f̂(ω)ĝ(ω),

which completes the proof.
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This result can be generalized to the extended Fourier transformation on Lr(Rd) for 1 ≤ r ≤ 2. If
f ∈ Lp(Rd) and g ∈ Lq(Rd) for 1 ≤ p, q ≤ 2 with 1

p + 1
q = 1

r + 1, this result remains true in the
Lr/(r−1)(Rd) sense. For more details, see [LL01].
Finally, we are interested in under which conditions the convolution of two functions is continuous.
To prove this result, we will need following auxiliary result.

Lemma 1.7
Let 1 ≤ p <∞ and f ∈ Lp(Rd). Then we have limx→0 ‖f − f(· − x)‖Lp(Rd) = 0.

The proof of this lemma can be found in [Wen04] and is based on the density of C0(Rd) functions
in Lp(Rd).

Lemma 1.8
Let 1 ≤ p, q ≤ ∞ with 1

p + 1
q = 1 and f ∈ Lp(Rd), g ∈ Lq(Rd). Then, f ∗ g is continuous.

Proof. Let x0 ∈ Rd and assume p ≤ q without loss of generality, which means in particular that
p <∞. For x ∈ Rd, using Hölder’s inequality, we have

|f ∗ g(x)− f ∗ g(x0)| ≤
∫
Rd

|f(x− y)− f(x0 − y)||g(y)|dy

≤ ‖f(x− ·)− f(x0 − ·)‖Lp(Rd)‖g‖Lq(Rd).

By substitution, Lemma 1.7 states that the first norm tends to zero if x tends to x0, which
completes the proof.

1.1.3 Positive Definite Functions
Another essential concept, we want to express in the Fourier space, is the class of positive definite
functions. Positive definite functions play an important role in interpolation in a multivariate
setting. In our case, we are interested in the nonnegative Fourier transformation these functions
must have. Before we show this, we give the definition of a positive definite function.

Definition 1.9
A continuous function Φ : Rd → C is called positive definite if for all N ∈ N, all sets of pairwise
distinct centers X = {x1, . . . ,xN} ⊂ Rd, and all α ∈ CN \ {0}, the quadric form

N∑
j=1

N∑
k=1

αjαkΦ(xj − xk)

is positive. Φ is called positive semi-definite if the quadric form is nonnegative.

Since the definition is unwieldy for our purpose, we will transform this condition into the Fourier
space using Bochner’s characterization of positive (semi-)definite functions.

Theorem 1.10 (Bochner)
A function f : Rd 7→ C is positive semi-definite if and only if it is the Fourier transform of a finite
nonnegative Borel measure µ on Rd, i.e.

f(x) = (2π)− d2
∫
Rd

e−iy·xdµ(y), x ∈ Rd.

f is positive definite if the carrier of the measure µ contains an open subset.

For our purpose, we suppose that µ has a non-zero Lebesgue density. In this case, the following
corollary will be useful in checking whether a function is positive definite.
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Corollary 1.11
Let Φ ∈ C(Rd) ∩ L1(Rd). If its Fourier transform Φ̂ ∈ L1(Rd) is continuous, nonnegative and
nonvanishing, then Φ is positive definite.

Finally, a kind of inversion of Corollary 1.11 also holds true.

Lemma 1.12
Let Φ ∈ C(Rd) ∩ L1(Rd) be positive definite. Then, its nonnegative Fourier transform Φ̂ is in
L1(Rd).

Proof. The proof is based on the use of Friedrich’s mollifiers, see [Wen04].

For more details regarding positive definite functions, see e.g. [Wen04].

1.2 Basics on Sobolev Spaces
Weakly differentiable functions play an important role in the theory of partial differential equations.
Like many other analytical results on numerical methods, our analysis also requires that functions
are weakly differentiable, or, to be more precise, belong to a certain Sobolev space. For this, we
will recall the definition of Sobolev spaces.

Definition 1.13
Let Ω ⊂ Rd be open, k ∈ N and 1 ≤ p ≤ ∞. The Sobolev space W k,p(Ω) is defined by

W k,p(Ω) := {f ∈ Lp(Ω) |Dαf ∈ Lp(Ω) for all 1 ≤ |α| ≤ k} .

Its norm is given by

‖f‖Wk,p(Ω) :=

 ∑
|α|≤k

‖Dαf‖pLp(Ω)

 1
p

for 1 ≤ p <∞, f ∈W k,p(Ω) and

‖f‖Wk,∞(Ω) :=
∑
|α|≤k

‖Dαf‖L∞(Ω)

for f ∈W k,∞(Ω).

Thus, the Sobolev space W k,p(Ω) contains all functions in Lp(Ω) with weak derivatives up to an
order |α| ≤ k in Lp(Ω). Beside the norm we will also define the semi-norm

|f |Wk,p(Ω) :=

∑
|α|=k

‖Dαf‖pLp(Ω)

 1
p

for 1 ≤ p <∞, f ∈W k,p(Ω) and

|f |Wk,∞(Ω) :=
∑
|α|=k

‖Dαf‖L∞(Ω)

for f ∈W k,∞(Ω).
In the following, we will concentrate on the case Ω = Rd. A very useful lemma will help us to
handle Sobolev functions as the limit of a sequence of classical differentiable functions.

Lemma 1.14
Let 1 ≤ p <∞. Then, the function space C∞(Rd) ∩W k,p(Rd) is dense in W k,p(Rd).
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Proof. The proof is based on Friedrichs mollifiers. See, for example, [Wen04].

Note that the Lemma is not true for p =∞ since this would mean that every function from L∞(Rd)
has to be continuous.
If p = 2, the Sobolev space W k,2(Rd) is also a Hilbert space. In this case, we can use the Fourier
transform to give an alternative characterization of the space W k,2(Rd), which even holds for
fractional k. For this, we will use the following definition.

Definition 1.15
Assume 0 ≤ s <∞. The space Hs(Rd) is defined by

Hs(Rd) :=
{
f ∈ L2(Rd) |ω 7→

(
1 + ‖ω‖22

)s/2 |f̂(ω)| ∈ L2(Rd)
}
.

Its norm is given by

‖f‖Hs(Rd) :=

∫
Rd

(
1 + ‖ω‖22

)s |f̂(ω)|2dω

1/2

for f ∈ Hs(Rd).

For an integer k ∈ N, it is a well known fact that Hk(Rd) = W k,2(Rd) and that the two norms are
equivalent, i.e. that there exists a constant C > 0 such that

1
C
‖f‖Hk(Rd) ≤ ‖f‖Wk,2(Rd) ≤ C‖f‖Hk(Rd), f ∈W k,2(Rd).

We will implicitly use the inequality above, and also that if a statement is true for f ∈ Hs(Rd)
with 0 < s <∞, it stays true for f ∈W k,2(Rd) with k ∈ N, k ≤ s. For more details about Sobolev
spaces, see for example [Eva10].
With this equivalence, we can switch between these two norms. Some useful lemmas can be
derived for Sobolev spaces. First of all, we can formulate a condition on f , so that its Fourier
transformation f̂ is in L1(Rd).

Lemma 1.16
Let f ∈ Hs(Rd) for s > d/2. Then, f̂ ∈ L1(Rd) and there exists a constant Cs,d > 0 only depending
on s and d, such that

‖f̂‖L1(Rd) ≤ Cs,d‖f‖Hs(Rd).

Proof. Using the Cauchy-Schwarz inequality, we can bound the L1(Rd) norm by

‖f̂‖L1(Rd) =
∫
Rd

(
1 + ‖ω‖2

)−s/2 (1 + ‖ω‖2
)s/2 |f̂(ω)|dω

≤

 ∫
Rd

(
1 + ‖ω‖2

)−s
dω

1/2 ∫
Rd

(
1 + ‖ω‖2

)s |f̂(ω)|2dω

1/2

=: Cs,d‖f‖Hs(Rd),

where the first integral in the second line is finite since s > d/2.

With this result we are able to check whether the Fourier transform of a function is integrable.
This will help us later, together with Corollary 1.11, to check if a function is positive definite. A
useful conclusion is that Hs(Rd) is closed regarding the product of two functions if s is sufficiently
large. To prove this, we will need the following lemma.
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Lemma 1.17
Let a, b ≥ 0. Then we have

(a+ b)s ≤ max(1, 2s−1)(as + bs)

for all s > 0.

Proof. First, assume that s ≥ 1. In this case, the map t 7→ ts is convex and we have

(a+ b)s = 2s
(
a+ b

2

)s
≤ 2s a

s + bs

2 = 2s−1(as + bs).

If 0 < s < 1, we have s− 1 < 0 and hence

(a+ b)s − as =
b∫

0

s(a+ t)s−1dt ≤
b∫

0

sts−1dt = bs,

which completes the proof.

Hence, we are able to prove the following theorem.

Theorem 1.18
Let s > d

2 and f, g ∈ Hs(Rd). Then, the product fg belongs also to Hs(Rd) and there exists a
constant Cd,s > 0, only depending on s and d, such that

‖fg‖Hs(Rd) ≤ Cd,s‖f‖Hs(Rd)‖g‖Hs(Rd).

Proof. Analogously to Theorem 1.6, the Fourier transform of a product is the convolution of the
single Fourier transforms

f̂g(ξ) = (2π)−d/2
∫
Rd

f̂(ξ − ω)ĝ(ω)dω, ξ ∈ Rd.

Furthermore, using the triangle inequality, we have

‖ξ‖22 = ‖ξ − ω + ω‖22 ≤ (ξ − ω‖2 + ‖ω‖2)2 ≤ 2‖ξ − ω‖22 + 2‖ω‖22

for every ξ, ω ∈ Rd. Using this inequality and Lemma 1.17, we can derive the estimate(
1 + ‖ξ‖22

)s/2 ≤ (1 + 2‖ξ − ω‖22 + 2‖ω‖22
)s/2

≤ 2s/2
((

1 + ‖ξ − ω‖22
)

+
(
1 + ‖ω‖22

))s/2
≤ 2s/2 max(2s/2−1, 1)

((
1 + ‖ξ − ω‖22

)s/2 +
(
1 + ‖ω‖22

)s/2)
.

Hence, with Cs,d := (2π)−d/22s/2 max(2s/2−1, 1) we have

(
1 + ‖ξ‖22

)s/2 |f̂g(ξ)| ≤Cs,d

∣∣∣∣∣
∫
Rd

(
1 + ‖ξ − ω‖22

)s/2
f̂(ξ − ω)ĝ(ω)dω

+
∫
Rd

(
1 + ‖ω‖22

)s/2
f̂(ξ − ω)ĝ(ω)dω

∣∣∣∣∣
=Cd,s

([(
1 + ‖ · ‖22

)s/2
f̂
]
∗ ĝ(ξ) + f̂ ∗

[(
1 + ‖ · ‖22

)s/2
ĝ
]

(ξ)
)
.
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Since this is the sum of two convolutions, Young’s inequality yields

‖fg‖Hs(Rd) =‖
(
1 + ‖ · ‖22

)s/2
f̂g‖L2(Rd)

≤C̃d,s‖
(
1 + ‖ · ‖22

)s/2
f̂‖L2(Rd)‖ĝ‖L1(Rd)

+ C̃d,s‖
(
1 + ‖ · ‖22

)s/2
ĝ‖L2(Rd)‖f̂‖L1(Rd)

≤Cd,s
(
‖f‖Hs(Rd)‖ĝ‖L1(Rd) + ‖g‖Hs(Rd)‖f̂‖L1(Rd)

)
.

Using Lemma 1.16 completes the proof.

Finally, we prove the following lemma, which we need later in this chapter. It is a generalization
of the fact that the integral over the derivative of a W 1,1(Rd) function vanishes.

Lemma 1.19
Let k ∈ N and f ∈W k,1(Rd). Then, ∫

Rd

Dαf(x)dx = 0

for all 1 ≤ |α| ≤ k.

Proof. Let k = 1, |α| = 1 and suppose that f ∈ C1
c (Rd) ∩W 1,1(Rd). Without loss of generality

we assume that α = e1. Hence, we can write∫
Rd

Dαf(x)dx =
∫

Rd−1

∫
R

∂x1f(x1, x̃)dx1dx̃,

with x̃ ∈ Rd−1. Since f has compact support, there exists an r > 0, such that supp(f) ⊂ Br(0).
Calculating the one dimensional integral gives

∫
R

∂x1f(x1, x̃)dx1 =
r∫
−r

∂x1f(x1, x̃) = f(r, x̃)− f(−r, x̃) = 0.

Since C∞c (Rd) ∩W 1,1(Rd) is dense in W 1,1(Rd), the proof is finished for k = 1.
For k > 1, we assume that |α| = k with α = β + e1 for a |β| = k − 1 without loss of generality.
Hence, we can apply the proof above to Dβf ∈W 1,1(Rd). The fact that W k,1(Rd) ⊂W l,1(Rd) for
all 0 ≤ l ≤ k finishes the proof.

1.3 Spaces of Time-depended Functions
In this section, we want to study functions from a given time interval I to a Banach space X, which
will later be identified as a Lebesgue space or a Sobolev space. More precisely, we want to briefly
recall the generalization of the concepts of continuity, strong differentiation and integrability for
Banach space valued functions. For the first two, we can simply generalize the definition from real-
valued function, this means for example that, for a given Banach space X, a function f : [a, b]→ X

is differentiable in t ∈ [a, b] if the limit f ′(t) := limh→0
f(t+h)−f(t)

h exists.

Definition 1.20
Let X be a Banach space and a, b ∈ R with a < b.

11
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i) The space C([a, b];X) of continuous Banach space valued functions is defined by

C([a, b];X) := {f : [a, b]→ X | f is continuous on [a, b]}.

Its norm is given by
‖f‖C([a,b];X) := max

t∈[a,b]
‖f(t)‖X .

ii) Let k ∈ N. The space Ck([a, b];X) of k-times continuous differentiable Banach space valued
functions is defined by

Ck([a, b];X) := {f : [a, b]→ X | f (j) ∈ C([a, b];X) for all 0 ≤ j ≤ k}.

Its norm is given by
‖f‖Ck([a,b];X) := max

0≤j≤k
‖f (j)‖C([a,b];X).

For a concept of integration for Banach space valued functions, we will follow the common idea of
using Bochner’s integral. Therefore we will require the definition of simple and strongly measurable
functions.

Definition 1.21
Let X be a Banach space and a, b ∈ R with a < b.

i) A function f : [a, b]→ X is called a simple function if it has the form

f(t) =
n∑
j=1

χBj (t)cj ,

with elements cj ∈ X and disjoint Lebesgue measurable sets Bj ⊂ [a, b], 1 ≤ j ≤ n, such that
[a, b] =

⋃n
j=1Bj. The function χB : [a, b] → {0, 1} denotes the characteristic function of a

subset B ⊂ [a, b].

ii) A function f : [a, b] → X is called strongly measurable if there exists a sequence (fk)k∈N of
simple functions fk : [a, b]→ X, k ∈ N, such that

lim
k→∞

‖f(t)− fk(t)‖X = 0

for almost every t ∈ [a, b].

The idea of simple functions will give us an easy way to define an integral for Banach space valued
functions. This definition can then be generalized to strongly measurable functions, which are the
limit of simple functions.

Definition 1.22
Let X be a Banach space and a, b ∈ R with a < b.

i) For a simple function f : [a, b]→ X, t 7→
n∑
j=1

χBj (t)cj, the Bochner integral is defined by

b∫
a

f(t)dt =
n∑
j=1
|Bj |cj ∈ X,

where |Bj | denotes the Lebesgue measure of the set Bj.
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ii) A function f : [a, b] → X is Bochner integrable if there exists a sequence (fk)k∈N of simple
functions fk : [a, b]→ X, k ∈ N, such that

lim
k→∞

b∫
a

‖fk(t)− f(t)‖Xdt = 0.

In this case, the Bochner integral is defined by

b∫
a

f(t)dt = lim
k→∞

b∫
a

fk(t)dt.

The Bochner integral is well defined since it is independent of the choice of the approximating
sequence, see [Yos95]. Hence, the integral is linear in f . Moreover, it follows from the definition
that a Bochner integrable function is strongly measurable.
The next result provides an important connection between the Bochner integral and the Lebesgue
integral.

Theorem 1.23 (Bochner)
Let X be a Banach space and a, b ∈ R with a < b. A strongly measurable function f : [a, b] → X
is Bochner integrable if and only if t 7→ ‖f(t)‖X is Lebesgue integrable. In this case, the integral is
bounded by ∥∥∥∥∥∥

b∫
a

f(t)dt

∥∥∥∥∥∥
X

≤
b∫
a

‖f(t)‖X dt.

For a proof see [Yos95]. Now we are able to generalize the concept of integrable functions to the
space of Bochner integrable functions.
Definition 1.24
Let 1 ≤ p ≤ ∞. The space Lp(a, b;X) is defined by

Lp(a, b;X) :=
{
f : [a, b]→ X | f is strongly measurable and t 7→ ‖f(t)‖X ∈ Lp(a, b)

}
.

Its norm is given by

‖f‖Lp(a,b;X) :=

 b∫
a

‖f(t)‖pXdt

1/p

for 1 ≤ p <∞ and
‖f‖L∞(a,b;X) := ess sup

0≤t≤T
‖f(t)‖X .

As a direct consequence that we will need later, we see that continuous functions on a compact
interval are always in L∞(Rd).

Lemma 1.25
The space C([a, b], X) is a subset of L∞(a, b;X).

Proof. Since the essential supremum of a set is always lower or equal the supremum, we can derive

‖f‖L∞(a,b;X) = ess sup
0≤t≤T

‖f(t)‖X ≤ sup
0≤t≤T

‖f(t)‖X = ‖f‖C([a,b],X).

The concept of weak differentiation and Sobolev spaces can also be transferred to Banach space-
valued functions. Since this is not of interest for the following theory, we refer to e.g. [Eva10].
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1.4 Tools from Approximation Theory
In this section, we want to derive an approximation scheme following the ideas of Raviart in
[Rav85]. First, we want to introduce two approximation results for convolution and discretization.
Then, we want to combine these two approximations to derive the approximation scheme.

1.4.1 Approximation via Convolution
The approximation of a function f ∈ Lp(Rd) via convolution is a frequently used tool in analysis.
The idea is to convolute f with a scaled kernel function Φε = ε−dΦ(·/ε), where Φ ∈ L1(Rd) has
some useful properties like smoothness. The convolution f ∗ Φε =

∫
Rd f(x)Φε(· − x)dx is then

converging to f in Lp(Rd) for 1 ≤ p <∞ if ε→ 0.
The advantage of this method is that the convolution f ∗ Φε will inherit the properties of the
kernel function Φ, for example differentiability, so that f ∗ Φε is more regular than f . Moreover,
according to Young’s inequality, the convolution is in Lp(Rd) itself, so the method will preserve
the integrability of f .
To guarantee that the convergence of f ∗ Φε to f is sufficiently fast, the kernel function has to
satisfy the moment condition.
Definition 1.26
A kernel Φ ∈ L1(Rd) satisfies the moment condition of order m ∈ N if it satisfies∫

Rd

Φ(x)dx = 1, (1.1)

∫
Rd

xαΦ(x)dx = 0, α ∈ Nd0 with 1 ≤ |α| < m, (1.2)

∫
Rd

‖x‖m2 |Φ(x)|dx <∞, (1.3)

where ‖ · ‖2 denotes the Euclidean norm in Rd.

A function that satisfies (1.1) is called normalized. Moreover, the integrals
∫
Rd xαΦ(x)dx are also

called the moments of the function Φ. Note that if Φ satisfies a moment condition of order m, so
does its scaled version Φε = ε−dΦ(1/ε) for any ε > 0.

Lemma 1.27
Let ε > 0 and m ∈ N. Then, Φ ∈ L1(Rd) satisfies the moment condition of order m if and only if
its scaled version Φε = ε−dΦ(1/ε) satisfies the moment condition of order m.

Proof. Let 0 ≤ |α| < m. With a simple substitution, the first and second properties (1.1), (1.2)
follow from ∫

Rd

xαΦε(x)dx = ε−d
∫
Rd

xαΦ(x/ε)dx = ε|α|
∫
Rd

xαΦ(y)dy.

The third property (1.3) follows from∫
Rd

‖x‖m2 |Φε(x)|dx = ε−d
∫
Rd

‖x‖m2 |Φ(x/ε)|dx = εm
∫
Rd

‖y‖m2 |Φ(y)|dy,

where we used the same substitution.

With the moment condition, we can now calculate the convergence rate of the approximation by
convolution.
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Theorem 1.28 (Approximation via convolution)
Assume Φ ∈ L1(Rd) satisfies the moment condition of order m ∈ N. Then, if f ∈ Wm,p(Rd) with
1 ≤ p <∞ or f ∈ Cm(Rd) ∩Wm,∞(Rd), there exists a constant C > 0 such that

‖f − f ∗ Φε‖Lp(Rd) ≤ Cεm|f |Wm,p(Rd).

Proof. For 1 ≤ p < ∞, we first assume that f ∈ C∞(Rd) ∩Wm,p(Rd). Hence, in both cases,
1 ≤ p <∞ and p =∞, we can take the Taylor expansion of f up to order m

f(x− y) = f(x) +
∑

1≤|α|<m

Dαf(x)
α! (−y)α

+m

1∫
0

∑
|α|=m

(1− s)m−1(−y)α

α! Dαf(x− sy)ds.

Because Φε has also integral 1, we achieve

f(x)− f ∗ Φε(x) =
∫
Rd

(f(x)− f(x− y))Φε(y)dy

=−
∑

1≤|α|<m

Dαf(x)
α! (−1)|α|

∫
Rd

yαΦε(y)dy

−
∫
Rd

m

1∫
0

∑
|α|=m

(1− s)m−1(−y)α

α! Dαf(x− sy)Φε(y)dsdy,

where the first part vanishes since the moments of Φε vanish. With this equation, the triangle
inequality and the fact that ‖Dαf(· − sy)‖Lp(Rd) = ‖Dαf‖Lp(Rd) for all s ∈ R and y ∈ Rd, we
conclude

‖f − f ∗ Φε‖Lp(Rd) ≤

∥∥∥∥∥∥
∫
Rd

m

1∫
0

∑
|α|=m

(1− s)m−1(−y)α

α! Dαf(· − sy)Φε(y)dsdy

∥∥∥∥∥∥
Lp(Rd)

≤
∑
|α|=m

1
α! ‖D

αf‖Lp(Rd)

1∫
0

m(1− s)m−1ds

∫
Rd

‖y‖m2 |Φε(y)|dy.

The integral over s is bounded by 1. For the integral over y, we use the moment condition of the
function Φ to find ∫

Rd

‖y‖m2 |Φε(y)|dy = εm
∫
Rd

‖y‖m2 |Φ(y)|dy ≤ cεm.

For p =∞, the proof is finished. For 1 ≤ p <∞, we can us Lemma 1.17 multiple times to bound
the remaining sum by ∑

|α|=m

‖Dαf‖Lp(Rd)

p

≤ c
∑
|α|=m

‖Dαf‖pLp(Rd) = c |Dαf |pWm,p(Rd) .

The fact that C∞(Rd) ∩Wm,p(Rd) is dense in Wm,p(Rd) for 1 ≤ p <∞ completes the proof.

The approximation by convolution will be frequently used in the numerical scheme later on. Nev-
ertheless, for a numerical scheme, we have to do another approximation step to calculate the
convolution as a discrete sum instead of the integral.
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1.4.2 Approximation by Quadrature
In the next step we will investigate the approximation of an integral by a simple quadrature
formula. In the following we consider cubes (Ωj)j∈Zd with centers hj and edge length h > 0, i.e.

Ωj =
{

x ∈ Rd|h
(
jk −

1
2

)
≤ xk < h

(
jk + 1

2

)
, k = 1, . . . , d

}
, j ∈ Zd.

The parameter h is also called the spatial discretization parameter.
The idea is to decompose Rd into the set of cubes and to approximate the integral over a single
cube by the function value at the center of the cube times the volume of the cube. To investigate
the error of this step, we will split up our integration error over Rd into a sum over the errors of
the single cubes, i.e.

∫
Rd

f(x)dx− hd
∑
j∈Zd

f(hj) =
∑
j∈Zd

∫
Ωj

f(x)dx− hdf(hj)

 =
∑
j∈Zd

Ej(f),

where we defined the local integration error Ej(f) :=
∫

Ωj
f(x)dx− hdf(hj) for the single cube Ωj.

To achieve an error bound for the quadarture formula on Rd, we will calculate a bound for the single
local integration errors. For this, we will need the well-known Lemma of Bramble and Hilbert. Its
proof can be found in [Cia78].

Lemma 1.29
Let Ω be an bounded subset of Rd with a Lipschitz continuous boundary. Let k ∈ N and 1 ≤ p ≤ ∞,
and let L : W k,p(Ω)→ R be a continuous, linear functional with the property that L(f) = 0 for all
f ∈ Πk−1(Ω).
Then, there exists a constant C > 0, depending on L and Ω, such that

|Lf | ≤ C|f |Wk,p(Ω)

for all f ∈W k,p(Ω).

We will apply the Lemma of Bramble and Hilbert to our local integration error Ej(f) to achieve
an error bound depending on the spatial discretization parameter h.
Lemma 1.30
Let k ∈ {1, 2}, 1 ≤ p ≤ ∞ and q = p

p−1 . Then, there exists a constant C > 0, independent of h,
such that

|Ej(f)| ≤ Chk+ d
q |f |Wk,p(Ωj)

for all f ∈W k,p(Ωj) ∩ C(Ωj), j ∈ Zd.

Proof. Let j ∈ Zd and let Ω̃ = [− 1
2 ,

1
2 ]d be the unit cube with edge length one. Transforming the

cube Ωj to the unit cube, we can rewrite the local integration error as

Ej(f) =
∫
Ωj

f(x)dx− hdf(hj) = hd

∫
Ω̃

f(hj + hx)dx− f(hj)


= hd

∫
Ω̃

f̃(x)dx− f̃(0)

 =: hdẼ(f̃)

with f̃ ∈W k,p(Ω̃) defined by f̃(x) = f(hj + hx).
Hence, the functional Ẽ : W k,p(Ω̃) → R is continuous and linear. Moreover, Ẽ(g) = 0 for all
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g ∈ Π1(Ω̃) since the approximation of the integral is exact for linear polynomials. Thus, Lemma
1.29 states that there exists a constant c > 0 with |Ẽ(f̃)| ≤ c|f̃ |

Wk,p(Ω̃).
Let p <∞. Then, we have

|f̃ |p
Wk,p(Ω̃)

=
∑
|α|=k

∫
Ω̃

|Dαf̃(x)|pdx =
∑
|α|=k

∫
Ω̃

|Dαf(hj + hx)|pdx

= hpk
∑
|α|=k

∫
Ω̃

|(Dαf)(hj + hx)|pdx = hpk−d
∑
|α|=k

∫
Ωj

|Dαf(x)|pdx

= hpk−d|f |p
Wk,p(Ωj).

With d − d
p = d

q , this gives the estimate above. A similar argumentation holds if p = ∞, which
completes the proof.

In the next step we want to apply the Lemma of Bramble and Hilbert to smoother functions f .
But since Ej vanishes only for linear polynomials, we have to modify it.

Lemma 1.31
Let k ∈ N with k ≥ 3, 1 ≤ p ≤ ∞ and q = p

p−1 . Then, there exist constants dα ∈ R for
2 ≤ |α| ≤ k − 1 and a constant C > 0, independent of h, such that∣∣∣∣∣∣∣Ej(f)−

∑
2≤|α|≤k−1

dαh
|α|
∫
Ωj

Dαf(x)dx

∣∣∣∣∣∣∣ ≤ Chk+ d
q |f |Wk,p(Ωj)

for all f ∈W k,p(Ωj) ∩ C(Ωj), j ∈ Zd.

Proof. We will use the same notation as in the proof of Lemma 1.30, and start with the scaled
version of this problem. Let

Lk(f̃) = Ẽ(f̃)−
∑

2≤|α|≤k−1

d̃α

∫
Ω̃

Dαf̃(x)dx,

where we have to find constants d̃α such that Lk(g̃) = 0 for all g ∈ Πk−1(Ω̃). We will show this
by induction on k. The case for k = 2 has been proven in Lemma 1.30, where the sum over α
vanishes. For the induction step, we set

Lk+1(f̃) = Lk(f̃)−
∑
|α|=k

d̃α

∫
Ω̃

Dαf̃(x)dx,

so that we only have to find the constants d̃α for |α| = k. Since Lk+1 vanishes on Πk−1(Ω̃)
by induction hypothesis and since Dαg = 0 for all |α| = k and g ∈ Πk−1(Ω̃), we only have to
investigate monomials of order k. Let |β| = k, then Dαxβ = β! if and only if α = β, otherwise
Dαxβ = 0. Hence, we have

Lk+1(xβ) = Lk(xβ)− d̃ββ! = 0

if we choose the constants d̃β = Lk(xβ)
β! . With this constants Lk+1 vanishes on Πk(Ω̃) which

completes the induction.
Hence, for a k ≥ 3, applying Lemma 1.29 states that there exists a constant c > 0 with |Lk(g̃)| ≤
c|g̃|

Wk,p(Ω̃). Analogously to the proof of Lemma 1.30, a simple scaling argument finishes the proof.

We are now in the situation to give an error bound for the quadrature error on Rd. This result
will be of central importance for our numerical approach.
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Lemma 1.32
Let k ∈ N, 1 ≤ p ≤ ∞ and q = p

p−1 . Then, there exists a C > 0, such that for all f ∈
W k,p(Rd) ∩ C(Rd) with ∑

j∈Zd
|f |Wk,p(Ωj) <∞

and f ∈ L1(Rd) if k ∈ {1, 2}, or f ∈W k−1,1(Rd) if k ≥ 3, we have∣∣∣∣∣∣
∫
Rd

f(x)dx− hd
∑
j∈Zd

f(hj)

∣∣∣∣∣∣ ≤ Chk+ d
q

∑
j∈Zd
|f |Wk,p(Ωj).

Proof. First, we note that the left hand side is equal to
∑

j∈Zd Ej(f). Lemma 1.30 completes the
proof for k ∈ {1, 2}.
For k ≥ 3 and f ∈W k−1,1(Rd) Lemma 1.19 states that∑

2≤|α|≤k−1

dαh
|α|
∫
Rd

Dαf(x)dx = 0.

Hence, by adding a zero, we have∫
Rd

f(x)dx− hd
∑
j∈Zd

f(hj) =
∑
j∈Zd

Ej(f) +
∑

2≤|α|≤k−1

dαh
|α|
∫
Rd

Dαf(x)dx

=
∑
j∈Zd

Ej(f)−
∑

2≤|α|≤k−1

dαh
|α|
∫
Ωj

Dαf(x)dx


Applying Lemma 1.31 completes the proof.

Note that according to the Sobolev embedding theorem we can dispense with the condition f ∈
C(Rd) in Lemma 1.30, Lemma 1.31 and Lemma 1.32 if we require that f ∈W k,p(Rd) for p > d/k.
The most important part of this result is for p = 1 since the norms over the cubes Ωj sum up to
the norm over the whole space Rd.
Corollary 1.33
Let k ∈ N. Then, there exists a C > 0, such that for all f ∈W k,1(Rd) ∩ C(Rd) we have∣∣∣∣∣∣

∫
Rd

f(x)dx− hd
∑
j∈Zd

f(hj)

∣∣∣∣∣∣ ≤ Chk|f |Wk,1(Rd).

In the case p 6= 1, the series over the semi-norms
∑

j∈Zd |f |Wk,p(Ωj) is not equal to the semi-norm
over the whole space Rd. In this case, the condition f ∈W k,p(Rd) would not be sufficient.

1.4.3 An Approximation Scheme
We are now in the situation to combine the last two subsections. We will apply the quadrature for-
mula to the approximation by convolution, to achieve a spatial discretized approximation scheme.
Later, this will be our starting point for the numerical scheme we will derive. We start with the
application of Corollary 1.33 to the convolution of two functions.
Lemma 1.34
Let k ∈ N, and p, q, r ∈ N such that 1 + 1

p = 1
q + 1

r . Then, there exists a constant C > 0, so that∥∥∥∥∥∥f ∗ g − hd
∑
j∈Zd

f(hj)g(· − hj)

∥∥∥∥∥∥
Lp(Rd)

≤ Chk‖f‖Wk,q(Rd)‖g‖Wk,r(Rd)
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holds for all f ∈W k,q(Rd) ∩ C(Rd) and g ∈W k,r(Rd) ∩ C(Rd).

Proof. Let x ∈ Rd. We directly apply Corollary 1.33 and conclude∣∣∣∣∣∣f ∗ g(x)− hd
∑
j∈Zd

f(hj)g(x− hj)

∣∣∣∣∣∣ ≤ chk|f(·)g(x− ·)|Wk,1(Rd).

The resulting semi-norm can then be interpreted as a convolution by

|f(·)g(x− ·)|Wk,1(Rd) =
∑
|α|=k

∫
Rd

|Dα(f(y)g(x− y))| dy

=
∑
|α|=k

∫
Rd

∣∣∣∣∣∣
∑
β≤α

(−1)βDα−βf(y)Dβg(x− y)

∣∣∣∣∣∣ dy
≤ c

∑
|α|≤k

∑
|β|≤k

∫
Rd

∣∣Dαf(y)Dβg(x− y)
∣∣ dy

= c

 ∑
|α|≤k

|Dαf | ∗
∑
|β|≤k

|Dβg|

 (x).

Young’s inequality then yields

‖f ∗ g − hd
∑
j∈Zd

f(hj)g(.− hj)‖Lp(Rd) ≤ chk
∥∥∥∥∥∥
∑
|α|≤k

|Dαf | ∗
∑
|β|≤k

|Dβg|

∥∥∥∥∥∥
Lp(Rd)

≤ chk
∥∥∥∥∥∥
∑
|α|≤k

|Dαf |

∥∥∥∥∥∥
Lq(Rd)

∥∥∥∥∥∥
∑
|β|≤k

|Dβg|

∥∥∥∥∥∥
Lr(Rd)

,

where, using the triangle inequality, the resulting norms can be estimate by∥∥∥∥∥∥
∑
|α|≤k

|Dαf |

∥∥∥∥∥∥
Lq(Rd)

≤ c(k) ‖f‖Wk,q(Rd) ,

which completes the proof.

In the next step we extend this result to the approximation by convolution.
Corollary 1.35
Let k ∈ N, and p, q, r ∈ N such that 1 + 1

p = 1
q + 1

r . Suppose Φ ∈ L1(Rd) ∩W k,q(Rd) ∩ C(Rd)
satisfies the moment condition of order m ∈ Nd. Then, there exists a C > 0 so that∥∥∥∥∥∥f − hd

∑
j∈Zd

f(hj)Φε(· − hj)

∥∥∥∥∥∥
Lp(Rd)

≤ C
(
εm|f |Wm,p(Rd) + hk

εk+d(q−1)/q ‖f‖Wk,r(Rd)

)

holds for all f ∈ Wm,p(Rd) ∩W k,r(Rd) ∩ C(Rd) if 1 ≤ p < ∞ or f ∈ Cm(Rd) ∩Wm,∞(Rd) ∩
W k,r(Rd) if p =∞.

Proof. Setting fε,h = hd
∑

j∈Zd f(hj)Φε(· − hj), we split up the error in a convolution error and
a quadrature error

‖f − fε,h‖Lp(Rd) ≤‖f − f ∗ Φε‖Lp(Rd) + ‖f ∗ Φε − fε,h‖Lp(Rd).
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The convolution error can be estimated with Theorem 1.28 as

‖f − f ∗ Φε‖Lp(Rd) ≤ cεm|f |Wm,p(Rd).

The quadrature error can be estimated with Lemma 1.34 by

‖f ∗ Φε − fhε ‖Lp(Rd) ≤ chk‖f‖Wk,r(Rd)‖Φε‖Wk,q(Rd),

where the norm of the scaled kernel can be bounded by

‖Φε‖qWk,q(Rd) =
∑
|α|≤k

∫
Rd

|DαΦε(x)|qdx

=
∑
|α|≤k

∫
Rd

|Dαε−dΦ(x/ε)|qdx

=
∑
|α|≤k

ε−q(d+|α|)
∫
Rd

|(DαΦ)(x/ε)|qdx

=
∑
|α|≤k

ε(1−q)d−q|α|
∫
Rd

|(DαΦ)(x)|qdx

≤ ε(1−q)d−qk‖Φ‖q
Wk,q(Rd).

Taking the q-th root finishes the proof.

With the result above, we obtained a discrete approximation of our function f ∈ Lp(Rd) given by
fε,h = hd

∑
j∈Zd f(hj)Φε(· − hj). This approximation can be used to reconstruct the function f

only from given values f(hj) in the Lp(Rd)-sense. It can be used directly for first order partial
differential equations of evolution type, see [RW16] and is the basis of, for example, the vortex
method [MB02], the smoothed particle hydrodynamic method [Mon89] and other methods for
solving first-order symmetric systems [MGR87].
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CHAPTER 2

Fluid Dynamics and Smoothed
Particle Hydrodynamics

In this chapter, we want to give the basic fluid dynamic theory we will need including the Euler
equations. After that, we want to derive the SPH approximation in general and the spatial dis-
cretized SPH Euler system.
From now on, we use the spatial domain Ω ⊆ Rd and a time interval [0, T ] ⊆ R for a T > 0. The
quantities of interest, which describe the fluid, are given by the velocity u(x, t) ∈ Rd, the density
ρ(x, t) ∈ R and the pressure p(x, t) ∈ R, where x ∈ Ω denotes the position and t ∈ [0, T ] the time.
To describe these quantities, there are two different frameworks. The first one is to describe the
fluid in a fixed, global coordinate system. This means, all quantities are measured at a fixed posi-
tion x and at a time t. This description is called the Eulerian form.
In this work, we will mainly concentrate on the second possible framework, the description in the
Lagrangian form. In this framework, quantities are measured in a local, time depended coordinate
system which moves along the flow of the fluid. In our particular case, we are interested in the
so-called particle trajectories, or particles, which represent a finite volume of the fluid and are
moving along the flow.
In the first part, we will formally introduce these particle trajectories, before we will derive the
Euler equations with some of their properties. Then, we will give the basic ideas of the SPH
approximation and its application to the Euler equations. Finally, we derive the existence and
uniqueness of the solution of the SPH approximation applied to the Euler equations.

2.1 Particle Trajectories

An important construction we will need to derive the SPH-method is the particle trajectory map-
ping for a given fluid velocity u.

Definition 2.1
Let u ∈ C(Ω× [0, T ])d be a given velocity. The mapping X(·, t0, ·) : Ω× [0, T ]→ Ω is called a flow,
if for the time t0 ∈ [0, T ] it satisfies

∂tX(x, t0, t) = u(X(x, t0, t), t), x ∈ Ω, t ∈ [0, T ],
X(x, t0, t0) = x, x ∈ Ω.

For a fixed x ∈ Ω, the mapping X(x, t0, ·) : I → Ω is called particle trajectory of the particle
starting at position x at starting time t0. If the starting time t0 = 0 we will write X(x, t) instead
of X(x, 0, t).
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According to this definition, X(x, t0, t) is the position of a fluid particle at the time t, initially
placed at the point x at time t0. The particle is moving with velocity u, which means that the
fluid velocity u is tangent to the particle trajectories. Note that the flow X is continuous as a
function of the starting position x since we assume the velocity u to be continuous.

Remark 2.2
With the theorem of Picard-Lindelöff, we have the existence of the particle trajectory. If uj ∈
C([0, T ];Cp(Ω)) for a p ∈ N0 and 1 ≤ j ≤ d, we have Xj ∈ C1([0, T ];Cp(Ω)).
Moreover, X(·, t) is a Cp-diffeomorphism in this case, which mean that X(·, t) is bijective and
X(·, t) as well as its inverse are p-times continuously differentiable.

The definition of the particle trajectory mapping also allows us to move the particles back in time.
A direct conclusion of this fact is following lemma.

Lemma 2.3
For t, t0 ∈ [0, T ] and all x ∈ Ω we have

X(X(x, t, t0), t0, t) = x.

For our purpose, it is very important to know the time derivative of an arbitrary function f ∈
C1([0, T ];C1(Ω)) along the particle trajectories. Since the particle position depends on the time,
using the product rule, we derive

d

dt
f(X(x, t0, t), t) = ∂tf(X(x, t0, t), t) + (∂tX(x, t0, t)·∇)f(X(x, t0, t), t)

= (∂t + u(X(x, t0, t), t)·∇)f(X(x, t0, t), t).

for x ∈ Ω, t ∈ [0, T ].

Definition 2.4
The material derivative of a function f ∈ C1([0, T ];C1(Ω)) with respect to a velocity u is given by

Df

Dt
:= ∂tf + (u·∇)f.

Note, that we will frequently use the identity

Df

Dt
(X(x, t0, t), t) = d

dt
f(X(x, t0, t), t).

Next, we want to study the transformation of a given set moving with the flow. For this, we define
the Jacobi determinant of the transformation given by the flow.

Definition 2.5
The Jacobian J : Ω× [0, T ]→ R of the particle trajectory transformation is defined by

J(x, t) := det (∂iXj(x, t))1≤i,j≤d = det (∂iXj(x, t))

for x ∈ Ω and t ∈ [0, T ].

Since X is continuous differentiable in time, so is the Jacobi determinant J . The Jacobian J itself
satisfies the following ODE.

Proposition 2.6
Let u ∈ C1([0, T ];C1(Ω))d be a smooth velocity field and let X be the corresponding particle tra-
jectory mapping. Then, the Jacobi determinant satisfies the ordinary differential equation

∂tJ(x, t)− J(x, t)∇·u(X(x, t), t) = 0, x ∈ Rd, t ∈ I, (2.1)
J(x, 0) = 1, x ∈ Rd. (2.2)
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Proof. For a matrix A = (ai,j) ∈ Rd×d the Leibniz formula for its determinant yields

det(A) =
∑
σ∈Sd

sgn(σ)
d∏
i=1

aσ(i),i,

where Sd denotes the symmetric group with d elements. Applying this formula to the Jacobi
determinant gives

J(x, t) = det (∂iXj(x, t)) =
∑
σ∈Sd

sgn(σ)
d∏
i=1

∂σ(i)Xi(x, t). (2.3)

Taking the time derivative of J we find

∂tJ(x, t) =
∑
σ∈Sd

sgn(σ)∂t

(
d∏
i=1

∂σ(i)Xi(x, t)
)

=
∑
σ∈Sd

sgn(σ)
d∑
j=1

 d∏
i=1
i 6=j

∂σ(i)Xi(x, t)

 ∂t∂σ(j)Xj(x, t).

(2.4)

The theorem of Schwarz then yields

∂t∂σ(j)Xj(x, t) = ∂σ(j) (uj(X(x, t), t)) =
d∑
k=1

∂kuj(X(x, t), t)∂σ(j)Xk(x, t),

which we can insert in (2.4) to arrive at

∂tJ(x, t) =
∑
σ∈Sd

sgn(σ)
d∑

j,k=1

 d∏
i=1
i6=j

∂σ(i)Xi(x, t)

 ∂kuj(X(x, t), t)∂σ(j)Xk(x, t)

=
d∑

j,k=1
∂kuj(X(x, t), t)

∑
σ∈Sd

sgn(σ)

 d∏
i=1
i 6=j

∂σ(i)Xi(x, t)

 ∂σ(j)Xk(x, t).

In the case j = k the second sum is equal to J according to (2.3). For j 6= k, we have the
determinant of a matrix of rank d− 1, which is zero. Thus, the second sum can be simplified to

∑
σ∈Sd

sgn(σ)

 d∏
i=1
i6=j

∂σ(i)Xi(x, t)

 ∂σ(j)Xk(x, t) =
{
J(x, t) if j = k,

0 if j 6= k.

This finally gives

∂tJ(x, t) = J(x, t)
d∑
j=1

∂juj(X(x, t), t) = J(x, t)∇·u(X(x, t), t).

The identity J(x, 0) = 1 follows directly from Definition 2.1 and Definition 2.5.

We see that the time derivative of the Jacobi determinant depends on the gradient of the velocity
field u. A simple conclusion is that the Jacobi determinant can be bounded by the derivatives of
u, assuming the velocity is sufficiently smooth.
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Lemma 2.7
Suppose that for each t ∈ [0, T ] the map X(·, t) : Ω → X(Ω, t) is a C1-diffeomorphism. Then, we
have J(x, t) > 0 for every x ∈ Ω and every t ∈ [0, T ]. Moreover, if u ∈ L∞(0, T ;W 1,∞(Rd)), then
there exists a constant C > 0 such that

e−Ct ≤ J(x, t) ≤ eCt

for all x ∈ Ω and t ∈ I.

Proof. Since the Jacobian J is the solution of the ordinary differential equation given in (2.1)-(2.2),
J can be written as

J(x, t) = exp

 t∫
0

∇·u(X(x, s), s)ds

,
which immediately implies J(x, t) > 0.
Moreover, if u ∈ L∞(0, T ;W 1,∞(Rd)), there exists a C > 0 such that

t∫
0

∇·u(X(x, s), s)ds ≤
t∫

0

‖u(·, s)‖W 1,∞(Rd)ds ≤ ‖u‖L∞(0,T ;W 1,∞(Rd))t ≤ Ct.

However, using the same arguments yields
t∫

0

∇·u(X(x, s), s)ds ≥ −
t∫

0

‖u(·, s)‖W 1,∞(Rd)ds ≥ −‖u‖L∞(0,T ;W 1,∞(Rd))t ≥ −Ct,

which completes the proof.

Now, suppose we have a set W ⊆ Ω at time t = 0. Let W (t) := {y ∈ Ω |y = X(x, t),x ∈ W} =
X(W, t) be the set W transported with the flow X up to a time t. Then, using the transformation
theorem, we can calculate the volume of the moved set by

vol(W (t)) =
∫

W (t)

dx =
∫
W

J(x, t)dx,

which means that the Jacobi determinant gives us the change of the volume of W while it moves
with the flow. Another useful property is the transport theorem.

Theorem 2.8 (Transport Theorem)
Let W ⊆ Ω be an open domain with a smooth boundary, and let 1 ≤ p, q ≤ ∞ with 1

p + 1
q = 1. Sup-

pose the velocity field u ∈ C([0, T ];W 1,p(Ω)∩C1(Ω)) and f ∈ C([0, T ];W 1,q(Ω))∩C1([0, T ];L1(Ω)).
Then

d

dt

∫
W (t)

f(x, t)dx =
∫

W (t)

∂tf(x, t) +∇·(fu)(x, t)dx,

for all t ∈ [0, T ].

Proof. Let t ∈ I. First, we notice that the given integrals exist because f(·, t) ∈ L1(Ω)∩W 1,q(Ω)
and u(·, t) ∈W 1,p(Ω). Hence the transformation theorem yields

d

dt

∫
W (t)

f(x, t)dx = d

dt

∫
W

f(X(x, t), t)J(x, t)dx

=
∫
W

(∂tf + u·∇f + f∇·u) (X(x, t), t)J(x, t)dx
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where we swaped integration and differentation due to the dominated convergence theorem and
used equality (2.1) in the last line. Using the product rule, we have

d

dt

∫
W (t)

f(x, t)dx =
∫
W

(∂tf +∇·(fu)) (X(x, t), t)J(x, t)dx

=
∫

W (t)

∂tf(x, t) +∇·(fu)(x, t)dx,

where we used the transformation theorem again.

2.2 The Euler Equations

In the following, suppose Ω = Rd. Compressible flows of homogenous, non-viscous fluids without
external forces in Rd are solutions of the system of equations

Du
Dt = −1

ρ
∇ · p, (2.5)

Dρ
Dt = −ρ∇ · u (2.6)

on Rd × I and

u|t=0 = u0, ρ|t=0 = ρ0 (2.7)

on Rd, where (2.5) describes the conservation of the momentum of the fluid and the continuity
equation (2.6) describes the conservation of mass. These equations are called the Euler equations.
To complete this system of equations, we need an additional equation for the pressure p, also called
an equation of state. In our case, we will look at a barotropic equation of state, where the pressure
p only depends on the density ρ, i.e. p = 1

γ ρ
γ for a γ ≥ 1. Note that there exists a infinite number

of such equations, including other variables like, e.g. the temperature.
Since the Euler equations are an example of non-linear hyperbolic conservation laws, it is a well-
known fact that, even with smooth starting values, the solution can develop shocks and can become
discontinuous after a finite period of time, see, for example, [GR96]. However, the theory of quasi-
linear systems states that, under appropriate initial conditions, there exists a unique local solution.

Theorem 2.9 (Local existence and uniqueness)
Let ρ(γ−1)/2

0 ∈ Hs(Rd) for a γ > 1 and u0 ∈ Hs(Rd)d for an s > d/2 + 1. Then, there exists a
T > 0, such that (2.5) - (2.7) has a unique solution (ρ,u) with

(ρ(γ−1)/2,u) ∈
[
C1 (0, T ;Hs−1(Rd)

)
∩ C

(
0, T ;Hs(Rd)

)]d+1
.

Proof. The proof of this theorem is based on a special symmetrization of Euler’s equations (2.5)
and (2.6) given in [MUK87], which can be extended to arbitrary space dimensions. The existence
of a unique local solution of quasilinear hyperbolic systems can be found in [Kat75].

Note that this result explicitly allows solutions with compact support. Similar results are possible
if we consider an initial density ρ0, such that (ρ0 − c)(γ−1)/2 ∈ Hs(Rd) for a c ∈ R, which means
that the density does not vanish at infinity but converges to some constant c.
Having this result, we will assume from now on that the solution of the Euler equations exists up
to a maximum time T > 0. For more details on the solvability of Euler’s equations, i.e. weak
solutions and non-existence of smooth solutions, see, for example, [NS04] or [CW02].
Next, we want to discuss some important properties of Euler’s equations. The first property is the
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conservation of mass, which is a simple conclusion of the continuity equation. The mass at time
t ∈ I inside a set W ⊂ Ω is defined by

M(W ) =
∫
W

ρ(x, t)dx.

A useful fact is that the mass of the set W at time t = 0 is equal to the mass of the set W (t) at
time t ∈ I, which means that the mass inside of a set does not change while moving with the flow.

Lemma 2.10
Within the system of Euler’s equations mass is conserved, i.e.

d

dt
M(W (t)) = 0.

Proof. Suppose W ⊂ Ω. Then, the transport Theorem 2.8 yields

d

dt

∫
W (t)

ρ(x, t)dx =
∫

W (t)

∂tρ(x, t) +∇·(ρu)(x, t)dx = 0

for every t ∈ [0, T ], where we used equation (2.6).

Another important property is the conservation of energy. To derive this conservation property,
we first need two auxiliary results.
The first lemma is a connection of the Jacobi determinant and the density ρ. This relation will be
a fundamental increment of our numerical scheme in Section 2.3.

Lemma 2.11
Let u and ρ be a solution of the Euler equations. Then

ρ(X(x, t), t)J(x, t) = ρ(x, 0)

for all x ∈ Ω, t ∈ I.

Proof. Let W ⊆ Ω be arbitrary. Using the conservation of mass, we have∫
W

ρ(x, 0)dx =
∫

W (t)

ρ(x, t)dx =
∫
W

ρ(X(x, t), t)J(x, t)dx

Since W is arbitrary, this implies the stated equality.

The important property of this relation is that we can calculate the density at the moved particle
position X(x, t) even without knowing this particle position. This will help us in the numerical
calculations later on. Another property is that the density remains positive and bounded if the
initial density ρ0 is positive and bounded according to Lemma 2.7. Furthermore, we can conclude
an alternative form of the transport theorem.

Theorem 2.12 (Alternative Transport Theorem)
Let W ⊆ Ω be an open domain with a smooth boundary, and let (ρ,u) be the solution of the Euler
equations from Theorem 2.9. Suppose that f ∈ C1([0, T ];C1(Ω)). Then, for each t ∈ [0, T ], we
have

d

dt

∫
W (t)

ρ(x, t)f(x, t)dx =
∫

W (t)

ρ(x, t)Df
Dt (x, t)dx.
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Proof. With the transformation theorem and Lemma 2.11, we have

d

dt

∫
W (t)

ρ(x, t)f(x, t)dx = d

dt

∫
W

ρ0(x)f(X(x, t), t)dx =
∫
W

ρ0(x) d
dt
f(X(x, t), t)dx.

Rewriting the time derivative as the material derivative yields

d

dt

∫
W (t)

ρ(x, t)f(x, t)dx =
∫
W

ρ0(x)Df
Dt (X(x, t), t)dx =

∫
W (t)

ρ(x, t)Df
Dt (x, t)dx,

which completes the proof.

To derive the conservation of energy, we have to define the internal energy e of the system. Even
if the internal energy is not a quantity we need for the Euler system itself, we will need it to
define the energy of the system. The internal energy of the Euler equations system is given by the
additional partial differential equation

De
Dt = −p

ρ
∇ · u, on Rd × I, (2.8)

e|t=0 = e0, on Rd. (2.9)

Given the internal energy, the energy of Euler’s equations is defined by

E(t) = 1
2

∫
Rd

ρ(x, t)‖u(x, t)‖22dx +
∫
Rd

ρ(x, t)e(x, t)dx

= Ekin(t) + Epot(t),

where the first integral defines the kinetic energy Ekin of the Euler equations and the second integral
the potential energy Epot.
Lemma 2.13
Within the system of Euler’s equations energy is conserved, i.e.

d

dt
E(t) = 0.

Proof. Using Theorem 2.12, the time derivative of the energy yields

d

dt
E(t) = d

dt

1
2

∫
Rd

ρ(x, t)‖u(x, t)‖22dx +
∫
Rd

ρ(x, t)e(x, t)dx


=
∫
Rd

ρ(x, t)
(

u(x, t)·Du
Dt (x, t) + De

Dt (x, t)
)
dx,

where we used that D‖u‖22
Dt = 2u· Du

Dt . Inserting equation (2.5) and (2.8), we have

d

dt
E(t) = −

∫
Rd

ρ(x, t)
(

u(x, t)· 1
ρ(x, t)∇p(x, t) + p(x, t)

ρ(x, t)∇·u(x, t)
)
dx

= −
∫
Rd

(u(x, t)·∇p(x, t) + p(x, t)∇·u(x, t)) dx

= −
∫
Rd

∇·(pu)(x, t)dx = 0,

where we used the product rule in the last line.
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Obviously, the theory given here is only a small part of the existing theory about the Euler equations
and general nonlinear hyperbolic equations. Much more details, including the theory of shocks,
can be found in, for example, [NS04] or [GR96].

2.3 The SPH-Approximation
The SPH method was first introduced by Lucy [Luc77] and by Gingold and Monoghan [GM77]
in 1977. It is a computational method used for simulating the mechanics of continuous media,
primarily for fluid flows. Basically, the idea of the method is to consider the fluid as an ensemble of
particles and to calculate the trajectories of these particles by a special, kernel-based approximation
of the underlying equations.
First, we need a kernel function Φ, which is an even and at least one-time continuously differentiable
function, and its scaled version Φε = ε−dΦ(·/ε) with a smoothing parameter ε > 0. Finally, we
need a spatial discretization parameter h > 0, with which we decompose the space Rd into cubes
with edge length h and centers hj for j ∈ Zd, as we did in Section 1.4.2.
Given a flow X with its associated Jacobian J , the SPH approximation of an arbitrary function f
can be divided into three steps: An approximation via convolution with a scaled kernel function, a
transformation of the integral using the particle trajectories and an approximation of the integral
via a quadrature step. Note that the second step is also an approximation if the particle trajectories
are unknown. Thus, for a function f , the SPH approximation can be derived by

f(x, t) ≈
∫
Rd

f(y, t)Φε(x− y)dy

=
∫
Rd

J(y, t)f(X(y, t), t)Φε(x−X(y, t))dy

≈hd
∑
j∈Zd

J(hj, t)f(X(hj, t), t)Φε(x−X(hj, t))dy

:=[f ]ε,h(x, t),

(2.10)

where the brackets [·]ε,h denotes the SPH approximation of a function depending on the param-
eters h and ε. With this approximation method, we can build an approximation on f with the
information of f along the particle trajectories.
Note that the choice of the kernel function Φ is of great importance, since it is, besides the two
parameters ε and h, the only ingredient we can choose in this approximation scheme. The choice of
the right kernel is frequently discussed, see for example [LL10],[LR14] or [DA12], and there exists
several extensions for the use of the kernels and the method itself, see i.e. [Mon89] or [GGRDC10].
Nevertheless, there exists hardly any analysis of these extensions. For this reason, we will neglect
these extensions and concentrate on the simplest form of the SPH approximation.
Finally note that this approximation scheme is very similar to the approximation scheme given
at the end of Section 1.4. In (2.10), we added an additional step by transforming the integral
using the particle trajectories. However, assuming that the velocity u of the flow is given, the
particle trajectories X as well as the Jacobian J are known and hence, the error estimates from
Corollary 1.35 can be adopted. This is the basis of several particle methods, see, for example,
[MGR87], which are partly well studied. However, if the velocity u is unknown, the analysis of
particle methods becomes much more complicated.
We will now derive an approximation scheme for the Euler equations. A consequence of the con-
tinuity equation is that ρ(X(x, t), t)J(x, t) = ρ0(x). Writing this as an equation for the Jacobi
determinant, the approximation (2.10) becomes

[f ]ε,h(x, t) = hd
∑
j∈Zd

ρ0(hj)
ρ(X(hj, t), t)f(X(hj, t), t)Φε(x−X(hj, t)), (2.11)
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which is the basic approximation rule for the SPH method approximating a system containing the
continuity equation.

Discrete Continuity Equation
One of the main ideas in our approximation lies in the approximation of the density and hence
in the approximation of the continuity equation. There are two fundamental ways to give an
approximation of the density. The first one is to approximate the density itself with equation
(2.11), where we have to check that this approximation satisfies a kind of discrete continuity
equation. The second one is to approximate the right-hand side of the continuity equation to
derive a differential equation system for the density.
The discretization scheme we want to investigate later on is based upon the first option. Setting
f = ρ in (2.11), we note that the density at the moved particle positions cancels out and we end
up with

[ρ]ε,h(x, t) = hd
∑
j∈Zd

ρ0(hj)Φε(x−X(hj, t)),

which means that we only need the information of the density at the initial particle positions.
Thus, we have an explicit formula for the approximated density instead of an additional differential
equation we would have to solve.
We have to check how well this approximation satisfies the continuity equation. Let us recall that
we already used the continuity equation to build this approximation since we used the equality
ρ(X(x, t), t)J(x, t) = ρ0(x). We check the compatibility of this approximation with the continuity
equation. The time derivative of the approximation yields

∂t[ρ]ε,h(x, t) = hd
∑
j∈Zd

ρ0(hj)u(X(hj, t), t)·∇Φε(x−X(hj, t))

= hd
∑
j∈Zd

J(hj, t)ρ(X(hj, t), t)u(X(hj, t), t)·∇Φε(x−X(hj, t))

= ∇[ρu]ε,h(x, t),

which is a form of approximated discrete continuity equation.
Note that this approximation scheme of the density has not to be more accurate than the approxi-
mation mentioned in the second option. But an explicit formula will make the error analysis easier
and is simpler in computations.

Discrete Momentum Equation
For the discretization of the momentum equation, we have to discretize the right-hand side of
(2.5). For this, we have several possibilities. In our case, for the sake of symmetry, we write the
right-hand side as

−1
ρ
∇p = −∇p

ρ
− p

ρ2∇ρ ≈ −∇
[
p

ρ

]ε,h
− p

ρ2∇[ρ]ε,h,

where the first part can be written as

∇
[
p

ρ

]ε,h
(x, t) = −hd

∑
j∈Zd

ρ0(hj) p(X(hj, t), t)
ρ2(X(hj, t), t)∇Φε(x−X(hj, t))

and the second part as

p(x, t)
ρ2(x, t)∇[ρ]ε,h(x, t) = −hd

∑
j∈Zd

ρ0(hj) p(x, t)
ρ2(x, t)∇Φε(x−X(hj, t)).
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This symmetric version of the right-hand side of (2.5) ensures that the energy of the SPH system
will be conserved. Thus, we obtain

d

dt
u(X(x, t), t) = − 1

ρ(X(x, t), t)∇p(X(x, t), t)

≈ −hd
∑
j∈Zd

ρ0(hj)
(
p(X(hj, t), t)
ρ2(X(hj, t), t) + p(X(x, t), t)

ρ2(X(x, t), t)

)
∇Φε(X(x, t)−X(hj, t)).

We also have to mention here that we can not prove that this is the best approximation of the
right-hand side of the momentum equation. Nevertheless, it will simplify the analysis later on.

Discrete Internal Energy
Even though we do not require the internal energy to set up the Euler equations system, we will
need a discrete internal energy to define the energy of the SPH system. Once more, we have several
possibilities to discretize the equation of the internal energy. First of all, we notice that

De
Dt (x, t) = −p(x, t)

ρ(x, t)∇·u(x, t) = p(x, t)
ρ2(x, t)

Dρ
Dt (x, t).

With the approximated density [ρ]h,ε, we can approximate the material derivative of ρ by

Dρ
Dt (x, t) ≈ D[ρ]ε,h

Dt (x, t)

= (u(x, t)) · ∇) [ρ]ε,h(x, t) + ∂t[ρ]ε,h(x, t)

= hd
∑
j∈Zd

ρ0(hj) (u(x, t))− u(X(hj, t), t))·∇Φε(X(x, t)−X(hj, t)).

Inserting this approximation leads us to

d

dt
e(X(x, t), t)

≈ p(X(x, t), t)
ρ2(X(x, t), t)h

d
∑
j∈Zd

ρ0(hj) (u(X(x, t), t))− u(X(hj, t), t))·∇Φε(X(x, t)−X(hj, t)).

The SPH System for the Euler Equations

For every j ∈ Zd, we will denote by xε,hj : [0,∞[→ Rd the approximated particle position and
by uε,hj : [0,∞[→ Rd the approximated particle velocity. Taking the approximations for Euler’s
equations above, the SPH system of the Euler equations is given by the following system of ordinary
differential equations:

d

dt
xε,hj (t) = uε,hj (t), (2.12)

d

dt
uε,hj (t) = −hd

∑
k∈Zd

ρ0(hk)
(
pε,hk (t)
ρε,hk (t)2

+
pε,hj (t)
ρε,hj (t)2

)
∇Φε(xε,hj (t)− xε,hk (t)) (2.13)

for all j ∈ Zd and t ∈]0,∞[ and

xε,hj (0) = hj, uε,hj (0) = u0(hj) (2.14)
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for all j ∈ Zd, where ρε,hj (t) := ρε,h(xε,hj (t), t) with

ρε,h(x, t) = hd
∑

k∈Zd
ρ0(hk)Φε(x− xε,hk (t)), (2.15)

and pε,hk can be calculated with a given equation of state. Note carefully that ρε,h 6= [ρ]ε,h, since
[ρ]ε,h is calculated with the particle positions (X(hj, ·))j∈Zd which result from the velocity field u
of the Euler equations, while ρε,h is calculated with the approximated particle positions (xε,hj )j∈Zd .
In the following, we will assume the SPH system has finite discrete mass, which means that the
initial density ρ0 is summable such that

hd
∑

k∈Zd
ρ0(hk) ≤M <∞

for all 0 < h < h0. According to Corollary 1.33, this will be the case if for example ρ0 ∈W 1,1(Rd).
It is important to know whether the SPH system given in (2.12) - (2.14) even has a solution and
if, in which sense this solution exists. Since answering this question would be too extensive at this
point, we will come back to it in Section 2.4. As we will see, there exists a unique, global solution
of the SPH system.
For our purpose, it is important to know whether the conservation properties of the Euler equations
also hold for the SPH discretization of the Euler equations. For this, we take a look at the mass
of the system which is given by the integral over the approximated density.
Lemma 2.14
The approximated total mass of the SPH system given in (2.12) - (2.14) is conserved, i.e.

d

dt

∫
Rd

ρε,h(x, t)dx = 0.

Proof. For the time derivative of the approximated density ρε,h we obtain
d

dt
ρε,h = hd

∑
k∈Zd

ρ0(hk) d
dt

Φε(x− xε,hk (t)) = −hd
∑

k∈Zd
ρ0(hk)uε,hk (t)·∇Φε(x− xε,hk (t)),

where we used the chain rule and equation (2.12). Using this for the time derivative of the integral,
we have

d

dt

∫
Rd

ρε,h(x, t)dx = −hd
∑

k∈Zd
ρ0(hk)uε,hj (t)·

∫
Rd

∇Φε(x− xε,hk (t))dx = 0,

where the integral vanishes since the kernel function is even.

The second conservation property is energy conservation. For this, we need the inner energy
eε,hj : [0,∞[→ Rd, j ∈ Zd, of the discretized Euler equations, which is given by

d

dt
eε,hj (t) = hd

∑
k∈Zd

ρ0(hk)
pε,hj (t)
ρε,hj (t)2

(
uε,hj (t)− uε,hk (t)

)
·∇Φε(xε,hj (t)− xε,hk (t)), (2.16)

eε,hj (0) = e0(hj), (2.17)

for every j ∈ Zd and t ∈]0,∞[. Given the internal energy, the energy of the Euler system is defined
by

ESPH(t) = 1
2h

d
∑
j∈Zd

ρ0(hj)‖uε,hj (t)‖22 + hd
∑
j∈Zd

ρ0(hj)eε,hj (t)

= ESPH,kin + ESPH,pot,

(2.18)

where the first sum can be identified as the kinetic energy ESPH,kin of the SPH system and the
second sum as the potential energy ESPH,pot.
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Lemma 2.15
The energy of the SPH-System given in (2.12) - (2.14) is conserved, i.e.

d

dt
ESPH(t) = 0.

Proof. Taking the time derivative of the first sum yields with (2.13)

d

dt

1
2h

d
∑
j∈Zd

ρ0(hj)‖uε,hj (t)‖22 =− h2d
∑

j,k∈Zd
ρ0(hj)ρ0(hk)

pε,hk (t)
ρε,hk (t)2

uε,hj (t)·∇Φε(xε,hj (t)− xε,hk (t))

− h2d
∑

j,k∈Zd
ρ0(hj)ρ0(hk)

pε,hj (t)
ρε,hj (t)2

uε,hj (t)·∇Φε(xε,hj (t)− xε,hk (t)),

where we splitted up the sum into two sums. The first sum can be written as

h2d
∑

j,k∈Zd
ρ0(hj)ρ0(hk)

pε,hk (t)
ρε,hk (t)2

uε,hj (t)·∇Φε(xε,hj (t)− xε,hk (t))

= −h2d
∑

j,k∈Zd
ρ0(hj)ρ0(hk)

pε,hj (t)
ρε,hj (t)2

uε,hk (t)·∇Φε(xε,hj (t)− xε,hk (t)),

where we changed the names of the indices and used that ∇Φε(x) = −∇Φε(−x) for all x ∈ Rd.
Hence, we have with (2.15)

d

dt

1
2h

d
∑
j∈Zd

ρ0(hj)‖uε,hj (t)‖22

= −h2d
∑

j,k∈Zd
ρ0(hj)ρ0(hk)

pε,hj (t)
ρε,hj (t)2

(
uε,hj (t)− uε,hk (t)

)
·∇Φε(xε,hj (t)− xε,hk (t))

= − d

dt
hd
∑
j∈Zd

ρ0(hj)eε,hj (t)

for all t ∈]0,∞[. Since the time derivation of the energy ESPH, it is constant in time.

For an overview of the SPH method and its applications, see, for example, [LL10], [Pri12] or
[Vio12].

2.4 Existence and Uniqueness of the Solution of the SPH
Equations System

In the next step we want to prove the existence of a global, unique solution of the SPH equations.
Since this system consists of an infinite number of equations, we have to use the theory of ordinary
differential equations in Banach spaces. Note that the right hand side of (2.12) - (2.13) does not
explicitly depend on the time t, so it will be sufficient to study only the theory of autonomous
equations.
Let H be a real Banach space, T > 0, f : H → H and consider the initial value problem

d

dt
z(t) = f(z(t)), (2.19)

z(0) = z0, (2.20)

for t ∈]0, T [ and a z0 ∈ H. The following theorem of Picard–Lindelöf states under what conditions
the initial value problem (2.19) - (2.20) has a unique, global solution.
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Theorem 2.16
Let H be a Banach space, and f : H → H continuous, so that f satisfies a global Lipschitz condition,
i.e. there exists an L > 0 so that for all x, y ∈ H we have

‖f(x)− f(y)‖H ≤ L‖x− y‖H.

Then, for every z0 ∈ H there exists a global solution z : [0,∞[→ H of (2.19) - (2.20).

The proof of this theorem can be found in [Dei77].
To prove the unique existence of a solution of the SPH system, we have to rewrite (2.12) - (2.14) as
an ODE of the form (2.19) - (2.20). Instead of the particle positions xj, j ∈ Zd, we will investigate
the shifting ξj of a particle, so that xj(t) = xj(0) + ξj(t) for t > 0. This will simplify the choice of
a suitable Banach space to apply Theorem 2.16. Note that we have d

dtξj = uj.
In the following, we will denote the set of shifts by Ξ = (ξj)j∈Zd and the set of corresponding
particles by X = (xj)j∈Zd . Hence, for a given initial distribution the particles X only depend on
the shifts Ξ. Moreover, we will denote the set of particle velocities by U = (uj)j∈Zd . Consider the
real Banach space

H =
{

(Ξ,U) = (ξj,uj)j∈Zd ⊂ R2d
∣∣∣ ‖(Ξ,U)‖H <∞

}
,

where the norm is given by

‖(Ξ,U)‖2H := hd
∑
j∈Zd

ρ0(hj)
(
‖ξj‖22 + ‖uj‖22

)
for (Ξ,U) ∈ H.
Let f : H → H be given by

f((Ξ,U)) =

uk, h
d
∑
j∈Zd

ρ0(hj)
(
pε,hX (xk)
ρε,hX (xk)2

+ pε,hX (xj)
ρε,hX (xj)2

)
∇Φε(xk − xj)


k∈Zd

∈ H, (2.21)

for (Ξ,U) ∈ H, where xj := hj + ξj for all j ∈ Zd and where we denoted the approximated density
over the particle distribution X by ρε,hX = hd

∑
j∈Z ρ0(hj)Φε(· − xj) and its associated pressure by

pε,hX , which is given by the underlying equation of state.
In order for f to be well-defined, i.e. f((Ξ,U)) ∈ H for every (Ξ,U) ∈ H, we have to assume that
the quotient of pε,hX and (ρε,hX )2 is bounded, i.e. that there exists a constant C1 > 0 such that∣∣∣∣∣ pε,hX (xj)

ρε,hX (xj)2

∣∣∣∣∣ ≤ C1, j ∈ Zd, (2.22)

for every particle distribution X or every set of shifts Ξ, respectively. Note that we suppose that
the pressure pε,hX is only a function of the particle distribution X and explicilty not a function in
the time t. Hence, the right hand side of (2.21) only depends on Ξ and U , so that, given the
Banach space H and f from (2.21), the initial value problem (2.19) - (2.20) is equivalent to the
SPH system (2.12) - (2.14).
In order for f to satisfy a global Lipschitz condition, we have to suppose that there exists a constant
C2 > 0, such that ∣∣∣∣∣ pε,hX (xj)

ρε,hX (xj)2
−

pε,hY (yj)
ρε,hY (yj)2

∣∣∣∣∣ ≤ C2|ρε,hX (xj)− ρε,hY (yj)|, j ∈ Zd, (2.23)

for every pair of particle distributions X and Y = (yj)j∈Zd or every pair of shifts Ξ and Θ =
(θj)j∈Zd , respectively, where yj = hj + θj for j ∈ Zd.
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Note that (2.22) as well as (2.23) can be seen as conditions on the equation of state for the
pressure p. For example, both conditions are satisfied if we have a barotropic equation of state,
i.e. if p = γ−1ργ for a γ ≥ 2. Then, we also have that pε,hX = γ−1(ρε,hX )γ . In this case, (2.22) is
satisfied with C1 =

(
ε−dM‖Φ‖L∞(Rd)

)γ−2 since we suppose ρ0 to have finite discrete mass M . For
γ = 2, (2.23) is satisfied since the left hand side vanishes. Moreover, using that ρε,hX is bounded,
the mapping ρε,hX 7→

1
γ (ρε,hX )γ−2 is Lipschitz continuous if γ ≥ 3 and thus (2.23) is satisfied. Finally,

if 2 < γ < 3, we must assume that ρε,hX is bounded from below by a positive constant so that the
mapping ρε,hX 7→

1
γ (ρε,hX )γ−2 is Lipschitz continuous.

To prove f from (2.21) satisfies a global Lipschitz condition, so that we can apply Theorem 2.16,
we will need the following auxiliary result.
Lemma 2.17
Let N ∈ N and xk ∈ R for 1 ≤ k ≤ N . Then, we have(

N∑
k=1

xk

)2

≤ N
N∑
k=1

x2
k. (2.24)

Proof. Applying the Cauchy-Schwarz inequality yields
N∑
k=1

xk ≤

(
N∑
k=1

1
)1/2( N∑

k=1
x2
k

)1/2

=
√
N

(
N∑
k=1

x2
k

)1/2

.

Squaring the inequality finishes the proof.

Considering (2.22) and (2.23), we are now able to prove the following theorem.
Theorem 2.18
Let f : H → H be defined as in (2.21) and let the equation of state be given such that (2.22) and
(2.23) are satisfied. Then, f satisfies a global Lipschitz condition.

Proof. Let (Ξ,U), (Θ,V ) ∈ H, and let xj = hj + ξj, yj = hj + θj for all j ∈ Zd. Inserting f in
the the norm of H gives

‖f((Ξ,U))− f((Θ,V ))‖2H = hd
∑
j∈Zd

ρ0(hj)‖uj − vj‖22 + S,

where

S :=hd
∑
j∈Zd

ρ0(hj)

∥∥∥∥∥hd ∑
k∈Zd

ρ0(hk)
(
pε,hX (xk)
ρε,hX (xk)2

+ pε,hX (xj)
ρε,hX (xj)2

)
∇Φε(xk − xj)

− hd
∑

k∈Zd
ρ0(hk)

(
pε,hY (yk)
ρε,hY (yk)2

+
pε,hY (yj)
ρε,hY (yj)2

)
∇Φε(yk − yj)

∥∥∥∥∥
2

2

.

By adding a zero and using Lemma 2.17 for N = 3, we have

S ≤3hd
∑
j∈Zd

ρ0(hj)

∥∥∥∥∥∥hd
∑

k∈Zd
ρ0(hk)

(
pε,hX (xk)
ρε,hX (xk)2

−
pε,hY (yk)
ρε,hY (yk)2

)
∇Φε(xk − xj)

∥∥∥∥∥∥
2

2

+ 3hd
∑
j∈Zd

ρ0(hj)

∥∥∥∥∥∥hd
∑

k∈Zd
ρ0(hk)

(
pε,hX (xj)
ρε,hX (xj)2

−
pε,hY (yj)
ρε,hY (yj)2

)
∇Φε(xk − xj)

∥∥∥∥∥∥
2

2

+ 3hd
∑
j∈Zd

ρ0(hj)

∥∥∥∥∥∥hd
∑

k∈Zd
ρ0(hk)

(
pε,hY (yj)
ρε,hY (yj)2

+
pε,hY (yk)
ρε,hY (yk)2

)
(∇Φε(xk − xj)−∇Φε(yk − yj))

∥∥∥∥∥∥
2

2

=:S1 + S2 + S3.
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To find an estimate for S1, we firstly note that, using the mean value theorem, we find an s ∈ [0, 1]
such that we have

Φε(xk − xj)− Φε(yk − yj) = (xk − xj − yk + yj)·∇Φε(yk − yj + s(xk − xj − yk + yj)).

Taking the absolute value of this difference and using the Cauchy-Schwarz inequality yields

|Φε(xk − xj)− Φε(yk − yj)| ≤ ‖xk − xj − yk + yj‖2‖∇Φε‖L∞(Rd),

where the norm over the scaled kernel can be bounded by ‖∇Φε‖L∞(Rd) ≤ ε−(d+1)‖∇Φ‖L∞(Rd).
Hence, the approximated density satisfies

|ρε,hX (xk)− ρε,hY (yk)| ≤ hd
∑
j∈Zd

ρ0(hj) |Φε(xk − xj)− Φε(yk − yj)|

≤ c

εd+1h
d
∑
j∈Zd

ρ0(hj) ‖xk − xj − yk + yj‖2

≤ c

εd+1

hd ∑
j∈Zd

ρ0(hj) ‖xj − yj‖2 + ‖xk − yk‖2 h
d
∑
j∈Zd

ρ0(hj)


≤ c

εd+1

hd ∑
j∈Zd

ρ0(hj) ‖xj − yj‖2 +M ‖xk − yk‖2

 ,

where we used the triangle inequality and the finite mass of the SPH system. Combining the stated
estimate with (2.23), we have∥∥∥∥∥hd ∑

k∈Zd
ρ0(hk)

(
pε,hX (xk)
ρε,hX (xk)2

−
pε,hY (yk)
ρε,hY (yk)2

)
∇Φε(xk − xj)

∥∥∥∥∥
2

≤ hd
∑

k∈Zd
ρ0(hk)

∣∣∣∣∣ pε,hX (xk)
ρε,hX (xk)2

−
pε,hY (yk)
ρε,hY (yk)2

∣∣∣∣∣ ‖∇Φε(xk − xj)‖2

≤ c

ε2d+2h
d
∑

k∈Zd
ρ0(hk)

hd ∑
j∈Zd

ρ0(hj)‖xj − yj‖2 +M‖xk − yk‖2


≤ 2cM
ε2d+2h

d
∑

k∈Zd
ρ0(hk)‖xk − yk‖2,

where we used the triangle inequality and the estimate for the scaled kernel again. Hence, using
the Cauchy-Schwarz inequality, the square of the norm yields∥∥∥∥∥hd ∑

k∈Zd
ρ0(hk)

(
pε,hX (xk)
ρε,hX (xk)2

−
pε,hY (yk)
ρε,hY (yk)2

)
∇Φε(xk − xj)

∥∥∥∥∥
2

2

≤ c(ε,M)h2d
∑

j,k∈Zd
ρ0(hj)ρ0(hk) ‖xj − yj‖2 ‖xk − yk‖2

≤ c(ε,M)h2d
∑

j,k∈Zd
ρ0(hj)ρ0(hk)

(
‖xj − yj‖22 + ‖xk − yk‖22

)
≤ 2c(ε,M)Mhd

∑
k∈Zd

ρ0(hk) ‖xk − yk‖22 ,

such that we have
S1 ≤ c(ε,M)hd

∑
k∈Zd

ρ0(hk) ‖xk − yk‖22 .
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Noting that ‖xk − yk‖2 = ‖ξk − ηk‖2, we finally arrive at

S1 ≤ c(ε,M)hd
∑

k∈Zd
ρ0(hk) ‖ξk − ηk‖22 .

In a similar way, we also can give the same estimate for S2. For S3 we have use (2.22) and the
arguments as above to derive an estimate also by c(ε,M)hd

∑
k∈Z ρ0(hk) ‖ξk − ηk‖22. Hence, we

have for S
S ≤ c(ε,M)hd

∑
k∈Zd

ρ0(hk) ‖ξk − ηk‖22 .

Altogether, we have

‖f((Ξ,U))− f((Θ,V ))‖2H ≤ c(ε,M)hd
∑

k∈Zd
ρ0(hk)

(
‖ξk − ηk‖22 + ‖uk − vk‖22

)
= c(ε,M)‖(Ξ,U)− (Θ,V ))‖2H

Since f satisfies a global Lipschitz condition, the initial value problem (2.19) has a unique solution
according to Theorem 2.16.

Corollary 2.19
Let the equation of state be given such that (2.22) and (2.23) are satisfied. Then, the SPH system
(2.12) - (2.14) has a unique solution t ∈ [0,∞[ 7→ (xk(t),uk(t))k∈Zd ⊂ Rd × Rd.

Hence, the solution of the SPH approximation is given globally, while, in general, the solution of
the Euler equations only exists up to a limited time T > 0. Hence, whenever we have to restrict
ourselves to time intervals where the solution of the Euler equations exists, we can conclude that
the solution of the SPH approximated system also exists.
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CHAPTER 3

Convergence Results

In this chapter, we investigate the SPH method for the Euler equations for a specific barotropic
equation of state. Our goal is to derive a pointwise convergence result for the SPH method.
In 1991, Oelschläger [Oel91] investigated an SPH-like discretization method for the Euler equations.
He stated conditions for the kernel function which lead to the convergence of an L2(Rd) energy
error term. Unfortunately, these conditions are rather technical. Moreover, the convergence result
was too weak to prove pointwise convergence of the particle trajectories.
We will generalize and improve the result of Oelschläger by adding another condition to the kernel
which will lead to a stronger convergence result of the L2(Rd) energy error term. Under appropriate
conditions, the new convergence result will be strong enough to prove a pointwise convergence
result.
We will start by giving the Euler equations for the barotropic equation of state and its associated
SPH system.

3.1 Euler Equations for a Specific Equation of State

We consider the Euler equations as mentioned in Section 2.2 on all of Rd in the specific case that
the pressure p : Rd× [0, T ]→ R and the density ρ : Rd× [0, T ]→ R are connected by the barotropic
equation p = 1

2ρ
2. For a given initial velocity u0 : Rd → Rd and a initial density ρ0 : Rd → R, we

seek the solution u : Rd × [0, T ]→ Rd and ρ : Rd × [0, T ]→ R of

∂tu + u·∇u = −∇ρ, (3.1)
∂tρ+ u·∇ρ = −ρ∇ · u, (3.2)

on Rd×]0, T ] and

u(·, 0) = u0, ρ(·, 0) = ρ0, (3.3)

on Rd.
This system is a simplification of the system given in (2.5) - (2.7) due to the specific equation of
state. As a consequence, the equation for the internal energy (2.8) simplifies to

De
Dt = −1

2ρ∇·u = 1
2

Dρ
Dt

on Rd×]0, T ], where we used (3.2). Hence, the internal energy can be described by the density, as
we have

e(X(x, t), t) = 1
2ρ(X(x, t), t) + c(x)
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for all x ∈ Rd, where c = e0 − ρ0/2. For the sake of simplicity, we choose e0 = ρ0/2 such that
c ≡ 0. Hence, using Lemma 2.11, the potential energy at a time t ∈ [0, T ] can be rewritten as

Epot(t) =
∫
Rd

ρ(x, t)e(x, t)dx =
∫
Rd

ρ0(x)e(X(x, t), t)dx

= 1
2

∫
Rd

ρ0(x)ρ(X(x, t), t)dx = 1
2

∫
Rd

ρ(x, t)2dx.

This means in particular, that we do not need the internal energy to calculate the energy of Euler’s
equations anymore.
For the associated SPH approximation, we remember the requirements from Section 2.3. Let h > 0
be the spatial discretization parameter. Let Φ : Rd → R be an at least one time differentiable even
function, and let Φε := ε−dΦ(·/ε) be its scaled version for a smoothing parameter ε > 0. The SPH
system (2.12) - (2.14) becomes in this situation

d

dt
xε,hj (t) = uε,hj (t), (3.4)

d

dt
uε,hj (t) = −∇ρε,h(xε,hj (t), t) = −hd

∑
k∈Zd

ρ0(hk)∇Φε(xε,hj (t)− xε,hk (t)), (3.5)

for all j ∈ Zd and all t ∈]0, T ], and

xε,hj (0) = hj, uε,hj (0) = u0(hj) (3.6)

for all j ∈ Zd.
On the right-hand side of (3.5), we do not have any evaluation of the approximated density but
only an evaluation of the gradient of the density. More precisely, we do not need to evaluate the
kernel Φ, but only the gradient ∇Φ of the kernel at the particle position differences, which gives
us a simplification for our numerical scheme compared to (2.13).
As in the continuous case, we can rewrite the potential energy for the SPH system from (2.18).
Since we know that the internal energy is given by e = ρ/2 on the particle trajectories, we can
choose eε,hj = ρε,hj /2 for all j ∈ Zd. This is also what we obtain if we insert the equation of state
p = ρ2/2 into (2.16) and integrate over time. Hence, we note for the potential energy of the SPH
system from (2.18)

ESPH,pot(t) = hd
∑
j∈Zd

ρ0(hj)eε,hj (t) = 1
2h

d
∑
j∈Zd

ρ0(hj)ρε,hj (t) (3.7)

for all t ∈ [0, T ].

3.2 Properties of the Kernel
In this section, we want to introduce the properties the smoothing kernel has to satisfy in order
to prove convergence. We will, in principle, have three different types of conditions. The first
property is that the kernel function is a convolution kernel, which means that it can be written as
the convolution of a root kernel Φr with itself.
Definition 3.1
A kernel function Φ : Rd → R is called a convolution kernel if there exists a function Φr : Rd → R
such that

Φ = Φr ∗ Φr =
∫
Rd

Φr(· − y)Φr(y)dy.

The function Φr is called a convolution root or a root kernel of Φ.
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A convolution root may not be unique as we will see in Chapter 4. Note that we did not define in
which sense the integral on the right-hand side exists. If the convolution root Φr is in L1(Rd), Φ
is in L1(Rd) itself according to Theorem 1.5. If, in addition, Φr is bounded, it is easy to see that
the convolution kernel Φ has to be positive definite.

Proposition 3.2
Let Φr ∈ L1(Rd)∩L∞(Rd) be even and suppose that its Fourier transformation Φ̂r is nonvanishing.
Then its associated convolution kernel Φ ∈ L1(Rd) is positive definite.

Proof. Since Φr is even and in L1(Rd), its Fourier transformation is real and continuous. Using
Theorem 1.6, we have

Φ̂(ω) = Φ̂r ∗ Φr(ω) = (2π)d/2Φ̂r(ω)2 ≥ 0.

Hence, Φ̂ is nonnegative. Moreover, Φ is continuous as a convolution of an L1(Rd) and an L∞(Rd)
function according to Lemma 1.8. Applying Corollary 1.11 finishes the proof.

Another conclusion is that the existence of a convolution root is invariant under scaling. This will
be important for our propose since we are using scaled kernel functions in the SPH method.

Lemma 3.3
Let Φ : Rd → R be a convolution kernel with associated root kernel Φr : Rd → R. For an ε > 0,
the scaled kernels are given by Φε = ε−dΦ(·/ε) and Φrε = ε−dΦr(·/ε). Then, Φrε is a convolution
root of Φε.

Proof. With a simple substitution we see this relation via

Φε(x) = ε−d
∫
Rd

Φr(x/ε− y)Φr(y)dy = ε−2d
∫
Rd

Φr((x− y)/ε)Φr(y/ε)dy = Φrε ∗ Φrε(x)

for all x ∈ Rd.

The second condition we state for our kernel function Φ is that it and its root kernel Φr satisfy
the moment condition we introduced in Definition 1.26. As the SPH approximation includes a
convolution step, this is a quite natural condition.
In applications, the kernel is often used to be positive to ensure that the density remains positive,
which is justified as a physical requirement. However, this restriction to the kernel function is
not justified from a mathematical point of view. The moment condition guarantees us better
approximations by convolution. But a function satisfying a moment condition of order m ≥ 3
cannot be positive. Nevertheless, the cost of losing the positivity is far less compared to the gain of
having significant better approximations. Moreover, a kernel function that may become negative
does not have to result in a negative density approximation.
For our purpose we want both, the convolution kernel and the root kernel, to satisfy a moment
condition. The following result ensures that if one of these functions satisfies a moment condition,
the other function satisfies the moment condition of the same order.

Proposition 3.4
Let Φr ∈ L1(Rd) and Φ = Φr ∗Φr. Then, Φ satisfies the moment condition of order m if and only
if Φr satisfies the moment condition of order m.

Proof. From the relation∫
Rd

Φ(x)dx =
∫
Rd

∫
Rd

Φr(y)Φr(x− y)dydx =
∫
Rd

Φr(x)dx
∫
Rd

Φr(y)dy
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we see that
∫

Φrdx = 1 implies
∫

Φdx = 1. We also have that
∫

Φdx = 1 implies
∫

Φrdx = ±1.
In the case of a negative sign we can simply replace Φr by −Φr.
For α ∈ Nd0 with |α| ≤ m we have by substitution∫

Rd

xαΦ(x)dx =
∫
Rd

xα
∫
Rd

Φr(y)Φr(x− y)dydx =
∫
Rd

∫
Rd

(x + y)αΦr(x)dxΦr(y)dy

=
∑
β≤α

(
α

β

)∫
Rd

xβΦr(x)dx
∫
Rd

yα−βΦr(y)dy,
(3.8)

where β ≤ α means that βk ≤ αk for all 1 ≤ k ≤ d. Hence, Φ satisfies (1.2) if Φr satisfies (1.2).
If, however, Φ satisfies (1.2) then we can use induction to show that Φr also satisfies (1.2). To see
this, we start with α = ej and find

0 =
∫
Rd

xjΦ(x)dx =
∫
Rd

xj

∫
Rd

Φr(y)Φr(x− y)dydx

=
∫
Rd

∫
Rd

(xj + yj)Φr(x)Φr(y)dydx = 2
∫
Rd

Φr(y)dy
∫
Rd

xjΦr(x)dx

= 2
∫
Rd

xjΦr(x)dx,

which means that Φr satisfies (1.2) for |α| = 1. Next, if Φr satisfies (1.2) for an α ∈ Nd0 with
|α| < m− 1, we have

0 =
∫
Rd

xα+ejΦ(x)dx =
∫
Rd

∫
Rd

(x + y)α+ejΦr(y)Φr(x)dydx

=
∫
Rd

∫
Rd

(xj + yj)
∑
β≤α

(
α

β

)
xβyα−βΦr(y)Φr(x)dydx

= 2
∑
β≤α

(
α

β

)∫
Rd

xβΦr(x)dx
∫
Rd

yα−β+ejΦr(y)dy

= 2
∫
Rd

yα+ejΦr(y)dy,

where we have again used that for all β ≤ α the first integral in the penultimate line vanishes
except for β = 0.
It remains to show that

∫
‖x‖m2 |Φ(x)|dx <∞ if and only if

∫
‖x‖m2 |Φr(x)|dx <∞. Let |α| = m.

Now assume that Φr satisfies (1.3). With Φr ∈ L1(Rd) and as it satisfies (1.2) it is easy to see that
we also have

∫
‖x‖j2|Φr(x)|dx <∞ for all 0 ≤ j ≤ m. Using the triangle inequality, this shows∫

Rd

‖x‖m2 |Φ(x)|dx ≤
∫
Rd

∫
Rd

‖x + y‖m2 |Φr(x)Φr(y)|dxdy

≤
m∑
j=0

(
m

j

)∫
Rd

‖x‖j2|Φr(x)|dx
∫
Rd

‖y‖m−j2 |Φr(y)|dy <∞,

i.e Φ satisfies (1.3). Finally, assuming that Φ satisfies (1.3) we note that ‖x‖2 ≤ ‖x‖1 = |x1| +
. . .+ |xd| implies ∫

Rd

‖x‖m2 |Φr(x)|dx ≤
∑
|α|=m

m!
α!

∫
Rd

|xα||Φr(x)|dx <∞

40



Properties of the Kernel

provided the integrals on the right-hand side exist and are finite. To see this, we note for α ∈ Nd0
with |α| = m that in the last line of equation (3.8), all terms vanish except for β = 0 and β = α.
This means ∫

Rd

xαΦ(x)dx = 2
∫
Rd

xαΦr(x)dx =: 2Cα.

Using this, we make the same calculation as in (3.8) and arrive at

∫
Rd

|xαΦ(x)| dx =
∫
Rd

∣∣∣∣∣∣
∑
β≤α

(
α

β

)
xβΦr(x)

∫
Rd

yα−βΦr(y)dy

∣∣∣∣∣∣ dx
=
∫
Rd

∣∣∣∣∣∣xαΦr(x)
∫
Rd

Φr(y)dy + Φr(x)
∫
Rd

yαΦr(y)dy

∣∣∣∣∣∣ dx
=
∫
Rd

|xαΦr(x) + CαΦr(x)| dx

If now
∫
Rd ‖x‖

m
2 |Φ(x)|dx <∞ then we easily see that∫
Rd

|xαΦr(x)| dx ≤
∫
Rd

|xαΦr(x) + CαΦr(x)| dx +
∫
Rd

|CαΦr(x)| dx

=
∫
Rd

|xαΦ(x)| dx + |Cα|‖Φr‖L1(Rd) <∞

for |α| = m.

The third and last condition that we impose on our kernel function is actually a condition on
the root kernel. In particular, we want the convolution root to satisfy a so-called approximation
condition.
Definition 3.5
For α ∈ Nd0 let pα(x) = xα = xα1

1 · · ·x
αd
d . The kernel Φr ∈ W 1,2(Rd) satisfies the approximation

condition of order L ∈ N if there exists a constant C > 0 such that

|(pα∂jΦr)∧(ω)| ≤ C|Φ̂r(ω)|, 1 ≤ |α| ≤ L, 1 ≤ j ≤ d, (3.9)

holds almost everywhere and such that

pα∂jΦr ∈ L2(Rd), |α| = L+ 1, 1 ≤ j ≤ d. (3.10)

This condition was first introduced by Oelschläger in [Oel90] and [Oel91] in a slightly different
form. While this property is a very important part in the proof of convergence, there is a lack of
understanding the meaning of this condition in a descriptive way. For the proof following in the
next section, we will need to rephrase this condition.
Proposition 3.6
Let Φr ∈ W 1,2(Rd). Then, Φr satisfies the approximation condition of order L if and only if it
satisfies (3.10) and

|Dα[ωjΦ̂r(ω)]| ≤ C|Φ̂r(ω)|, 1 ≤ |α| ≤ L, 1 ≤ j ≤ d, (3.11)

almost everywhere. For α ∈ Nd0 with |α| ≥ 1, 1 ≤ j ≤ d and ε > 0 let pα(x) = xα and

W j
ε,α(x) := (−1)|α|+1

α! pα(x)∂jΦrε(x), x ∈ Rd. (3.12)
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If Φr is in addition even, then we have W j
ε,α(−x) = (−1)|α|+1W j

ε,α(x) almost everywhere and for
1 ≤ j ≤ d conditions (3.9) and (3.10) imply

|Ŵ j
ε,α(ω)| ≤ Cε|α|−1|Φ̂rε(ω)|, 1 ≤ |α| ≤ L, 1 ≤ j ≤ d, (3.13)

‖W j
ε,α‖L2(Rd) = εL−d/2‖pα∂jΦr‖L2(Rd), |α| = L+ 1, (3.14)

where (3.13) holds almost everywhere.

Proof. With Lemma 1.2, we see that (3.11) is equivalent to (3.9) for a Φr in L1(Rd). Since
L1(Rd) ∩ L2(Rd) is dense in L2(Rd), this property carries over to L2(Rd).
Next, we see that if Φr is even, its first partial derivation is odd and we have

W j
ε,α(−x) = (−1)|α|+1

α! (−1)|α|pα(x) (−∂jΦrε(x)) = (−1)|α|+1W j
ε,α(x)

almost everywhere. Now let 1 ≤ |α| ≤ L+ 1. Then we note that

Ŵ j
ε,α(ω) = (−1)|α|+1

α!(2π)d/2

∫
Rd

e−ix·ωpα(x)∂jΦrε(x)dx

= (−1)|α|+1

α!(2π)d/2
ε−d−1

∫
Rd

e−ix·ωpα(x)∂jΦr(x/ε)dx

= (−1)|α|+1

α!(2π)d/2
ε|α|−1

∫
Rd

e−iεy·ωpα(y)∂jΦr(y)dx

= ε|α|−1 (−1)|α|+1

α!
̂pα∂jΦr(εω)

for functions W j
ε,α ∈ L1(Rd). Therefore, the identity holds in L2(Rd), too. Hence, equation (3.9)

implies (3.13) almost everywhere. Finally, for a |α| = L+ 1, Plancherel’s identity shows

‖W j
ε,α‖L2(Rd) = ‖Ŵ j

ε,α‖L2(Rd) ≤ Cε|α|−1‖ ̂pα∂jΦr(ε·)‖L2(Rd),

where we note that

‖ ̂pα∂jΦr(ε·)‖2L2(Rd) =
∫
Rd

| ̂pα∂jΦr(εω)|2dω = ε−d
∫
Rd

| ̂pα∂jΦr(ω)|2dω = ε−d‖ ̂pα∂jΦr‖2L2(Rd).

Applying Plancharel’s identity once again finishes the proof.

Note that the constant factor (−1)|α|+1/α! in the definition of W j
ε,α is not important for deriving

the result in the next section but will simplify some calculations.

3.3 Convergence of the Energy Error Term

In this section, we want to give a first convergence result for the SPH method. For this, we need
to define an error term which we will derive from the energy of the system of Euler’s equations
and the energy of the SPH system. First, we assume that we have a kernel function Φ : Rd → R
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with an even convolution root Φr. Using the definition, we note that

Φ(xε,hk (t)− xε,hj (t)) =
∫
Rd

Φr(y)Φr(xε,hk (t)− xε,hj (t)− y)dy

=
∫
Rd

Φr(x− xε,hj (t))Φr(xε,hk (t)− x)dx

=
∫
Rd

Φr(x− xε,hj (t))Φr(x− xε,hk (t))dx

for two indices j,k ∈ Zd with associated particle position xε,hk (t),xε,hj (t) ∈ Rd. With this identity
and the definition of the approximated density (2.15), we can rewrite the potential energy of the
SPH method from (3.7) as

ESPH,pot(t) = 1
2h

d
∑
j∈Zd

ρ0(hj)ρε,hj (t)

= 1
2h

d
∑
j∈Zd

ρ0(hj)hd
∑

k∈Zd
ρ0(hk)Φε(xε,hk (t)− xε,hj (t))

= 1
2h

d
∑
j∈Zd

ρ0(hj)hd
∑

k∈Zd
ρ0(hk)

∫
Rd

Φrε(x− xε,hj (t))Φrε(x− xε,hk (t))dx

= 1
2

∫
Rd

hd ∑
k∈Zd

ρ0(hk)Φrε(x− xε,hk (t))

2

dx,

(3.15)

which looks closer to the integral in the potential energy term of Euler’s equations. For the sake
of simplicity, we will write

ρε,h,r(x, t) := hd
∑

k∈Zd
ρ0(hk)Φrε(x− xε,hk (t)) (3.16)

for (x, t) ∈ Rd× [0, T ] in the following, which can be interpreted as a alternative approximation of
the density ρ. Now, we are able to define an error term for the energy.
Definition 3.7
Let (u, ρ) be the solution of the weakly compressible Euler equations (3.1) - (3.3) up to a time
T > 0, and let (xε,hk ,uε,hk )k∈Zd be a solution of the corresponding SPH equations (3.4) - (3.6). The
energy error Q : [0, T ]→ R is defined by

Q(t) :=hd
∑

k∈Zd
ρ0(hk)‖uε,hk (t)− u(xε,hk (t), t)‖22 +

∫
Rd

(
ρε,h,r(x, t)− ρ(x, t)

)2
dx.

We identify the sum as the kinetic part of the energy error and the integral as the potential part
of the energy error. Note that we omitted the constant factor 1/2 in front of both parts due to
simplicity. Our goal is to give a bound of the energy error Q with respect to both parameters
h and ε by using the lemma of Gronwall. Note that such a bound will not give us instantly the
convergence of the particle trajectories. However, it is a first step to derive such a convergence
result. Before we investigate the behavior of Q in time, we will give a bound for the initial error
Q(0).
Theorem 3.8
Assume Φr ∈ W s,1(Rd) ∩ C(Rd), satisfies the moment condition of order m ≥ 1. If ρ0 ∈
Wmax{m,s},2(Rd) ∩ C(Rd), then there exists a constant C > 0 such that the energy at time t = 0
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can be bounded by

Q(0) ≤ C
(
h2s

ε2s ‖ρ0‖2W s,2(Rd) + ε2m|ρ0|2Wm,2(Rd)

)
.

Proof. At time t = 0, we have xε,hj (0) = hj = xj(0) and uε,hj (0) = u0(jh) = uj(0), such that the
kinetic part of the error vanishes. Hence, Q(0) reduces to its potential part, i.e.

Q(0) =
∫
Rd

∣∣∣∣∣∣hd
∑
j∈Zd

ρ0(hj)Φrε(x− hj)− ρ0(x)

∣∣∣∣∣∣
2

dx =

∥∥∥∥∥∥hd
∑
j∈Zd

ρ0(hj)Φrε(· − hj)− ρ0

∥∥∥∥∥∥
2

L2(Rd)

Applying Corollary 1.35 with p = r = 2 and q = 1 we easily arrive at our bound.

We will see that, interestingly, the error bound of Q(0) is the only place, where the spatial dis-
cretisation parameter h > 0 enters the equation. Note that the initial placement of the particles
on a cartesian grid might not be optimal. It should be possible to derive similar error bounds for
other regular distributions of the initial placement of the particles, for example the densest sphere
packing or a randomized placement with a given separation distance. In this cases a different
quadrature formula has to be used.
We are now in the position to formulate and proof the main theorem of this chapter. Note that,
according to Corollary 2.19, the solution of the SPH approximated system exists globally in time.
Hence, the following convergence theorem is limited in time by the existence of the solution of the
Euler equations.

Theorem 3.9
Let Φr ∈W 1,2(Rd) be an even root kernel, which satisfies the moment condition of order m ≥ 1 and
the approximation condition of order L > d/2. Let Φ = Φr ∗ Φr be the corresponding convolution
kernel. Assume finite discrete mass and that the solution (u, ρ) of Euler’s equations (3.1) - (3.3)
satisfy

uj ∈ L∞(0, T ;W η,2(Rd)), 1 ≤ j ≤ d,
ρ ∈ L∞(0, T ;L1(Rd)) ∩ L∞(0, T ;Wσ,2(Rd)),

(3.17)

for some time T > 0 with η > max{L,m} + d
2 + 1 and σ > m + d

2 + 1. Let (xε,hk ,uε,hk )k∈Zd be
a solution of the corresponding SPH equations (3.4) - (3.6). Then, there exists a constant C > 0
such that the energy can be bounded by

Q(t) ≤ Q(0) + Cεmin{m,2L−d}, t ∈ [0, T ].

Proof. We start the proof by rewriting the energy error as

Q(t) =hd
∑

k∈Zd
ρ0(hk)‖uε,hk (t)− u(xε,hk (t), t)‖22 +

∫
Rd

(
ρε,h,r(x, t)− ρ(x, t)

)2
dx

=hd
∑

k∈Zd
ρ0(hk)‖uε,hk (t)‖22 − 2hd

∑
k∈Zd

ρ0(hk)uε,hk (t)·u(xε,hk (t), t)

+ hd
∑

k∈Zd
ρ0(hk)‖u(xε,hk (t), t)‖22 +

∫
Rd

ρε,h,r(x, t)2dx

− 2
∫
Rd

ρε,h,r(x, t)ρ(x, t)dx +
∫
Rd

ρ(x, t)2dx.

We will now differentiate Q(t) with respect to t. First, we note that combining the first and fourth
term of Q(t) and taking (3.15) and (3.16) into account results in the energy of the SPH system.
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Applying Lemma 2.15, we have

d

dt

hd ∑
k∈Zd

ρ0(hk)‖uε,hk (t)‖22 +
∫
Rd

ρε,h,r(x, t)2dx

 = 0.

The other four terms will be differentiated separately. Before doing this, using equation (3.1), we
note that

d

dt
u(xε,hk (t), t) =

((
d

dt
xε,hk (t)

)
·∇
)

u(xε,hk (t), t) + ∂tu(xε,hk (t), t)

=
(
uε,hk (t)·∇

)
u(xε,hk (t), t)

−
(
u(xε,hk (t), t)·∇

)
u(xε,hk (t), t)−∇ρ(xε,hk (t), t)

=
((

uε,hk (t)− u(xε,hk (t), t)
)
·∇
)

u(xε,hk (t), t)−∇ρ(xε,hk (t), t).

(3.18)

Hence, we have for the derivative of the second term of Q(t)

−2 d
dt
hd
∑

k∈Zd
ρ0(hk)uε,hk (t)·u(xε,hk (t), t)

= −2hd
∑

k∈Zd
ρ0(hk)

(
d

dt
uε,hk (t)

)
·u(xε,hk (t), t)

− 2hd
∑

k∈Zd
ρ0(hk)uε,hk (t)· d

dt
u(xε,hk (t), t)

= 2hd
∑

k∈Zd
ρ0(hk)∇ρε,h(xε,hk (t), t)·u(xε,hk (t), t)

− 2hd
∑

k∈Zd
ρ0(hk)uε,hk (t)·

((
uε,hk (t)− u(xε,hk (t), t)

)
·∇
)

u(xε,hk (t), t)

+ 2hd
∑

k∈Zd
ρ0(hk)uε,hk (t)·∇ρ(xε,hk (t), t)

=: S1 + S2 + S3.

Using equation (3.18) again, the third term of Q(t) has the derivative

d

dt
hd
∑

k∈Zd
ρ0(hk)‖u(xε,hk (t), t)‖2 = 2hd

∑
k∈Zd

ρ0(hk)u(xε,hk (t), t)· d
dt

u(xε,hk (t), t)

= 2hd
∑

k∈Zd
ρ0(hk)u(xε,hk (t), t)·

((
uε,hk (t)− u(xε,hk (t), t)

)
·∇
)

u(xε,hk (t), t)

− 2hd
∑

k∈Zd
ρ0(hk)u(xε,hk (t), t)·∇ρ(xε,hk (t), t)

=: S4 + S5.

For the penultimate term of Q(t), using the definition of ρε,h,r and equation (3.2), we have

−2 d
dt

∫
Rd

ρε,h,r(x, t)ρ(x, t)dx = 2hd
∑

k∈Zd
ρ0(hk)

∫
Rd

uε,hk (t)·∇Φrε(x− xε,hk (t))ρ(x, t)dx

+ 2
∫
Rd

ρε,h,r(x, t)∇·(ρu)(x, t)dx

=: S6 + S7.
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Using equation (3.2), the last term has the derivative

d

dt

∫
Rd

ρ(x, t)2dx = −2
∫
Rd

ρ(x, t)∇·(ρu) (x, t)dx =: S8.

Summarized, we can express the time derivative of Q(t) as

d

dt
Q(t) = (S1 + S5 + S7 + S8) + (S2 + S4) + (S3 + S6) =: A1 +A2 +A3, (3.19)

which we now have to bound. From now on, we will suppress the time variable due to readability,
i.e. we will, for example, write u(xε,hk ) instead of u(xε,hk (t), t).
Combining the two parts in the term A2 leads to

A2 = −2hd
∑

k∈Zd
ρ0(hk)uε,hk ·

((
uε,hk − u(xε,hk )

)
·∇
)

u(xε,hk )

+ 2hd
∑

k∈Zd
ρ0(hk)u(xε,hk )·

((
uε,hk − u(xε,hk )

)
·∇
)

u(xε,hk )

= 2hd
∑

k∈Zd
ρ0(hk)

(
u(xε,hk )− uε,hk

)
·
((

uε,hk − u(xε,hk )
)
·∇
)

u(xε,hk ).

To find an estimate for the inner dot product, we note that for a v ∈ Rd we have

∣∣∣v·((v·∇)u(xε,hk ))
∣∣∣ =

∣∣∣∣∣∣
d∑

j,k=1
vjvk∂kuj(xε,hk )

∣∣∣∣∣∣ ≤ ‖u‖L∞(W 1,∞)

d∑
j,k=1

|vjvk| ,

where Lemma 2.17 gives

d∑
j,k=1

|vjvk| =

 d∑
j=1
|vj |

2

≤ d
d∑
j=1

v2
j = d‖v‖22.

Hence, A2 can be bounded by

|A2| ≤ 2d‖u‖L∞(W 1,∞)h
d
∑

k∈Zd
ρ0(hk)‖uε,hk − u(xε,hk )‖22 ≤ C(u)Q(t).

With integration by parts and the fact that Φr is even we have for the term A3

A3 = 2hd
∑

k∈Zd
ρ0(hk)uε,hk ·∇ρ(xε,hk ) + 2hd

∑
k∈Zd

ρ0(hk)uε,hk ·
∫
Rd

∇Φrε(x− xε,hk )ρ(x)dx

= 2hd
∑

k∈Zd
ρ0(hk)uε,hk ·

∇ρ(xε,hk )−
∫
Rd

Φrε(x− xε,hk )∇ρ(x)dx


= 2hd

∑
k∈Zd

ρ0(hk)uε,hk ·
(
∇ρ(xε,hk )− (∇ρ) ∗ Φrε(x

ε,h
k )
)
,

which can be bounded by

|A3| ≤ 2hd
∑

k∈Zd
ρ0(hk)‖uε,hk ‖2‖∇ρ(xε,hk )− (∇ρ) ∗ Φrε(x

ε,h
k )‖2

≤ 2‖∇ρ− (∇ρ) ∗ Φrε‖L∞(Rd)h
d
∑

k∈Zd
ρ0(hk)‖uε,hk ‖2.
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Noting that the kernel Φr satisfies the moment condition of order m, the first norm can be bounded
with Theorem 1.28 by

‖∇ρ− (∇ρ) ∗ Φrε‖L∞(Rd) ≤ cεm|∇ρ|Wm,∞(Rd) ≤ Cεm‖ρ‖L∞(Wm+1,∞).

The remaining sum can be estimated by

hd
∑

k∈Zd
ρ0(hk)‖uε,hk ‖2 ≤ h

d
∑

k∈Zd
ρ0(hk)

(
‖uε,hk − u(xε,hk )‖2 + ‖u(xε,hk )‖2

)

≤

hd ∑
k∈Zd

ρ0(hk)

1/2hd ∑
k∈Zd

ρ0(hk)‖uε,hk − u(xε,hk )‖22

1/2

+ hd
∑

k∈Zd
ρ0(hk)‖u(xε,hk )‖2

≤ M

2 + 1
2h

d
∑

k∈Zd
ρ0(hk)‖uε,hk − u(xε,hk )‖22 +M‖u‖L∞(L∞)

≤ C(u,M)(1 +Q(t)),

where we used the finite discrete mass of the particles hd
∑

k∈Zd ρ0(hk) ≤M . Altogether, A3 can
be bounded by

|A3| ≤ C(u, ρ,M)εm(1 +Q(t)). (3.20)

For the term A1, we have to work a little harder. First of all, we rewrite A1 to arrive at

A1 = 2hd
∑

k∈Zd
ρ0(hk)∇ρε,h(xε,hk )·u(xε,hk )− 2hd

∑
k∈Zd

ρ0(hk)u(xε,hk )·∇ρ(xε,hk )

+ 2
∫
Rd

ρε,h,r(x)∇·(ρu)(x)dx− 2
∫
Rd

ρ(x)∇·(ρu) (x)dx

= 2hd
∑

k∈Zd
ρ0(hk)u(xε,hk )·

(
∇ρε,h(xε,hk )−∇ρ(xε,hk )

)
+ 2

∫
Rd

(
ρε,h,r(x)− ρ(x)

)
∇·(ρu)(x)dx

= 2hd
∑

k∈Zd
ρ0(hk)u(xε,hk )·∇

(
ρε,h − ρ

)
(xε,hk )− 2

∫
Rd

(ρu)(x)·∇
(
ρε,h,r − ρ

)
(x)dx

= 2hd
∑

k∈Zd
ρ0(hk)u(xε,hk )·∇

(
ρε,h − ρ ∗ Φε

)
(xε,hk )− 2

∫
Rd

(ρu)(x)·∇
(
ρε,h − ρ ∗ Φε

)
(x)dx +R

with the remainder R given by

R = 2hd
∑

k∈Zd
ρ0(hk)u(xε,hk )·∇ (ρ ∗ Φε − ρ) (xε,hk )− 2

∫
Rd

(ρu)(x)·∇
(
ρε,h,r − ρε,h

)
(x)dx

− 2
∫
Rd

(ρu)(x)·∇ (ρ ∗ Φε − ρ) (x)dx

= 2hd
∑

k∈Zd
ρ0(hk)u(xε,hk )·((∇ρ) ∗ Φε −∇ρ) (xε,hk ) + 2

∫
Rd

∇·(ρu)(x)
(
ρε,h,r − ρε,h

)
(x)dx

+ 2
∫
Rd

∇·(ρu)(x) (ρ ∗ Φε − ρ) (x)dx

=: R1 +R2 +R3.
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The first part of the remainder can be bounded similarly to the term A3. Using Theorem 1.28 we
have

|R1| ≤ 2M‖u‖L∞(L∞)‖(∇ρ) ∗ Φε −∇ρ‖L∞(Rd) ≤ C(u,M)εm‖ρ‖L∞(Wm+1,∞).

With the same arguments we can bound the third term of the remainder by

|R3| ≤ 2‖∇·(ρu)‖L∞(L∞)‖ρ ∗ Φε − ρ‖L1(Rd) ≤ C(ρ,u)εm‖ρ‖L∞(Wm,1).

For the second part R2 we insert the definition of ρε,h and ρε,h,r and derive

R2 = 2hd
∑

k∈Zd
ρ0(hk)

∫
Rd

∇·(ρu)(x)
(

Φrε(x− xε,hk )− Φε(x− xε,hk )
)
dx


= 2hd

∑
k∈Zd

ρ0(hk)
(

(∇·(ρu)) ∗ Φrε(x
ε,h
k )−∇·(ρu)(xε,hk ))

)
+ 2hd

∑
k∈Zd

ρ0(hk)
(
∇·(ρu)(xε,hk )− (∇·(ρu)) ∗ Φε(xε,hk ))

)
,

where we just have two convolution errors so that we have the bound

|R2| ≤ C(u, ρ,M)εm.

Altogether, the remainder R can be bounded by

|R| ≤ C(u, ρ,M)εm.

It remains to show that the first part of A1 can be bounded. First of all, we define

Ã1 := hd
∑

k∈Zd
ρ0(hk)u(xε,hk )·∇

(
ρε,h − ρ ∗ Φε

)
(xε,hk )−

∫
Rd

(ρu)(x)·∇
(
ρε,h − ρ ∗ Φε

)
(x)dx.

We will derive a bound for each component uj∂j of u·∇. Using Φε = Φrε ∗ Φrε, we can write

∂j(ρε,h − ρ ∗ Φε) = ∂j(ρε,h,r ∗ Φrε − ρ ∗ Φrε ∗ Φrε) =: (∂jΦrε) ∗ fε,h

with fε,h given by
fε,h = ρε,h,r − ρ ∗ Φrε.

With this, we can write the j-th part of Ã1 by

Ã1,j := hd
∑

k∈Zd
ρ0(hk)uj(xε,hk )(∂jΦrε) ∗ fε,h(xε,hk )−

∫
Rd

(ρuj)(x)(∂jΦrε) ∗ fε,h(x)dx,

where we have the equality Ã1 =
∑d
j=1 Ã1,j .

Since uj ∈ CL+1(Rd) for all 1 ≤ j ≤ d by the Sobolev embedding theorem and our assumption on
the smoothness of u, we may use a Taylor expansion of uj(x) about y ∈ Rd given by

uj(x) =
∑
|α|≤L

Dαuj(y)
α! (x− y)α + (L+ 1)

∑
|α|=L+1

(x− y)α

α!

1∫
0

(1− s)LDαuj(x− s(x− y))ds.

Inserting the Taylor expansion of uj(x) and using the function W j
ε,α from Proposition 3.6 gives

uj(x)(∂jΦrε) ∗ fε,h(x) =
∫
Rd

fε,h(y)uj(x)∂jΦrε(x− y)dy

=
∫
Rd

fε,h(y)
∑
|α|≤L

Dαuj(y)
α! (x− y)α∂jΦrε(x− y)dy +RL(x)

=
∑
|α|≤L

∫
Rd

fε,h(y)Dαuj(y)W j
ε,α(y− x)dy +RL(x),
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where the remainder is given by

RL(x) = (L+ 1)
∑

|α|=L+1

∫
Rd

fε,h(y)W j
ε,α(y− x)

1∫
0

(1− s)LDαuj(x− s(x− y))dsdy.

Inserting this into Ã1,j gives

Ã1,j = hd
∑

k∈Zd
ρ0(hk)

 ∑
|α|≤L

∫
Rd

fε,h(y)Dαuj(y)W j
ε,α(y− xε,hk )dy +RL(xε,hk )


−
∫
Rd

ρ(x)

 ∑
|α|≤L

∫
Rd

fε,h(y)Dαuj(y)W j
ε,α(y− x)dy +RL(x)

 dx
=
∑
|α|≤L

∫
Rd

fε,h(y)Dαuj(y)

hd ∑
k∈Zd

ρ0(hk)W j
ε,α(y− xε,hk )−

∫
Rd

ρ(x)W j
ε,α(y− x)dx

 dy
+ hd

∑
k∈Zd

ρ0(hk)RL(xε,hk )−
∫
Rd

ρ(x)RL(x)dx

=:
∑
|α|≤L

R̃α + R̃L.

We will bound these terms separately. For α = 0 we have W j
ε,0 = −∂jΦrε. With the definition of

fε,h we find

|R̃0| =

∣∣∣∣∣∣
∫
Rd

fε,h(y)uj(y)

hd ∑
k∈Zd

ρ0(hk)∂jΦrε(y− xε,hk )−
∫
Rd

ρ(x)∂jΦrε(y− x)dx

 dy
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∫
Rd

fε,h(y)uj(y)∂jfε,h(y)dy

∣∣∣∣∣∣ = 1
2

∣∣∣∣∣∣
∫
Rd

uj(y)∂j(fε,h(y))2dy

∣∣∣∣∣∣
= 1

2

∣∣∣∣∣∣
∫
Rd

∂juj(y)(fε,h(y))2dy

∣∣∣∣∣∣ ≤ 1
2‖∂juj‖L∞(Rd)‖fε,h‖2L2(Rd).

The L2-norm of fε,h will be bounded later. For 1 ≤ |α| ≤ L, R̃α can be bounded with the
Cauchy-Schwarz inequality by

|R̃α| ≤ ‖Dαuj‖L∞(Rd)

∫
Rd

|fε,h(y)|

∣∣∣∣∣∣hd
∑

k∈Zd
ρ0(hk)W j

ε,α(y− xε,hk )−
∫
Rd

ρ(x)W j
ε,α(y− x)dx

∣∣∣∣∣∣ dy
≤ ‖Dαuj‖L∞(Rd)‖fε,h‖L2(Rd)

∥∥∥∥∥∥hd
∑

k∈Zd
ρ0(hk)W j

ε,α(· − xε,hk )− ρ ∗W j
ε,α

∥∥∥∥∥∥
L2(Rd)

=: ‖Dαuj‖L∞(Rd)‖fε,h‖L2(Rd)
∥∥F jα∥∥L2(Rd) ,

where we defined, analogously to fε,h,

F jα := hd
∑

k∈Zd
ρ0(hk)W j

ε,α(· − xε,hk )− ρ ∗W j
ε,α. (3.21)
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With Plancherel’s identity, Theorem 1.3, we can bound the L2(Rd)-norm of F jα by

∥∥F jα∥∥2
L2(Rd) =

∥∥∥∥∥∥hd
∑

k∈Zd
ρ0(hk)W j

ε,α(· − xε,hk )− ρ ∗W j
ε,α

∥∥∥∥∥∥
2

L2(Rd)

=

∥∥∥∥∥∥
hd ∑

k∈Zd
ρ0(hk)e−ix

ε,h
k ··

 Ŵ j
ε,α − (2π)d/2ρ̂ Ŵ j

ε,α

∥∥∥∥∥∥
2

L2(Rd)

=
∫
Rd

|Ŵ j
ε,α(ω)|2

∣∣∣∣∣∣hd
∑

k∈Zd
ρ0(hk)e−ix

ε,h
k ·ω − (2π)d/2ρ̂(ω)

∣∣∣∣∣∣
2

dω.

Since Φrε satisfies the approximation condition of order L, we have |Ŵ j
ε,α| ≤ Cε|α|−1|Φ̂rε| by (3.13)

almost everywhere. Hence,

∥∥F jα∥∥2
L2(Rd) ≤ Cε

2|α|−2
∫
Rd

|Φ̂rε(ω)|2
∣∣∣∣∣∣hd

∑
k∈Zd

ρ0(hk)e−ix
ε,h
k ·ω − (2π)d/2ρ̂(ω)

∣∣∣∣∣∣
2

dω

= Cε2|α|−2

∥∥∥∥∥∥hd
∑

k∈Zd
ρ0(hk)Φrε(· − xε,hk )− ρ ∗ Φrε

∥∥∥∥∥∥
2

L2(Rd)

= Cε2|α|−2‖fε,h‖2L2(Rd),

(3.22)

so that we have
|R̃α| ≤ Cε|α|−1‖Dαuj‖L∞(Rd)‖fε,h‖2L2(Rd).

It remains to bound R̃L. We have

|R̃L| =

∣∣∣∣∣∣hd
∑

k∈Zd
ρ0(hk)RL(xε,hk )−

∫
Rd

ρ(x)RL(x)dx

∣∣∣∣∣∣
≤ ‖RL‖L∞(Rd)

(
M + ‖ρ‖L1(Rd)

)
.

For RL we have

|RL(x)| =

∣∣∣∣∣∣(L+ 1)
∑

|α|=L+1

∫
Rd

fε,h(y)W j
ε,α(y− x)

1∫
0

(1− s)LDαuj(x− s(x− y))dsdy

∣∣∣∣∣∣
≤ (L+ 1)

1∫
0

(1− s)Lds
∑

|α|=L+1

‖Dαuj‖L∞(Rd)

∫
Rd

|fε,h(y)W j
ε,α(y− x)|dy,

where we first note that

(L+ 1)
1∫

0

(1− s)Lds = 1.

For the remaining integral, we are using the Cauchy-Schwarz inequality and (3.14) to conclude∫
Rd

|fε,h(y)W j
ε,α(y− x)|dy ≤ ‖fε,h‖L2(Rd)‖W j

ε,α‖L2(Rd) ≤ εL−d/2‖fε,h‖L2(Rd).

50



Convergence of the Energy Error Term

Overall, we have

|R̃L| ≤ εL−d/2
(
M + ‖ρ‖L1(Rd)

)
‖u‖L∞(WL+1,∞)‖fε,h‖L2(Rd)

≤ C(u, ρ,M)
(
ε2L−d + ‖fε,h‖2L2(Rd)

)
.

In conclusion, we have for Ã1, and hence A1, the estimates

|Ã1| ≤ C(u, ρ,M)
(
ε2L−d + ‖fε,h‖2L2(Rd)

)
,

|A1| ≤ C(u, ρ,M)
(
εm + ε2L−d + ‖fε,h‖2L2(Rd)

)
.

For fε,h we derive the bound

‖fε,h‖L2(Rd) ≤ ‖ρε,h,r − ρ‖L2(Rd) + ‖ρ− ρ ∗ Φrε‖L2(Rd) ≤ Q1/2(t) + Cεm‖ρ‖L∞(Wm,2),

which gives us
|A1| ≤ C(u, ρ,M)

(
εm + ε2L−d +Q(t)

)
. (3.23)

Together with the estimates of A2 and A3, we finally arrive at

d

dt
Q(t) ≤ C

(
εmin{m,2L−d} +Q(t)

)
,

so that applying Gronwall’s inequality yields

Q(t) ≤ Q(0) + Cεmin{m,2L−d}

for all t ∈ [0, T ].

Before we combine Theorem 3.8 and Theorem 3.9, we will take a look at the conditions (3.17) we
required of the solution of Euler’s equations. The given conditions are very restrictive, Theorem
3.9 only holds for smooth solutions of the Euler equations. However, using the theory for nonlinear
hyperbolic equations, we know for which initial data u0 and ρ0 conditions (3.17) are satisfied.

Lemma 3.10
Suppose that u0 ∈ Hσ(Rd)d and ρ1/2

0 ∈ Hσ(Rd) for a σ > max{L,m}+1+d/2. Then, there exists
a time T > 0 such that the unique solution u : Rd× [0, T ]→ Rd and ρ : Rd× [0, T ]→ R of Euler’s
equations (3.1) - (3.3) satisfy the conditions (3.17).

Proof. From Theorem 2.9 we know that uj , 1 ≤ j ≤ d, and ρ1/2 are in C([0, T ],Wσ,2(Rd)).
For the density, we note that ρ1/2 ∈ C([0, T ],Wσ,2(Rd)) and Theorem 1.18 imply that ρ ∈
C([0, T ],Wσ,2(Rd)). Since uj , 1 ≤ j ≤ d, and ρ are continuous in time, Lemma 1.25 states
that uj , ρ ∈ L∞(0, T ;Wσ,2(Rd)).
Finally, knowing that the root ρ1/2 of the density ρ is in C([0, T ];L2(Rd)) implies that the density
ρ itself is in C([0, T ];L1(Rd)). Thus, Lemma 1.25 again yields ρ ∈ L∞(0, T ;L1(Rd)).

Combining the last three results will finally give us a convergence result for the SPH method,
which depends only on the kernel and the initial conditions of the Euler equations. Note that if
ρ

1/2
0 ∈ Hσ(Rd) for a σ > max{L,m} + 1 + d/2, Theorem 1.18 yields that we have ρ0 ∈ Hσ(Rd).

Hence ρ0 is continuous according to the sobolev embedding theorem.

Corollary 3.11
Let Φr ∈W s,1(Rd)∩W 1,2(Rd)∩C(Rd), be an even root kernel, which satisfies the moment condition
of order m ≥ 1 and the approximation condition of order L > d/2. Let Φ = Φr ∗ Φr be the
corresponding convolution kernel. Let ε > 0 and h > 0.
Assume initial data u0 ∈ Wσ,2(Rd)d and finite discrete mass with density ρ0 satisfying ρ

1/2
0 ∈
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Wmax{σ,s},2(Rd) for a σ > max{L,m} + 1 + d/2 and that the solution (u, ρ) of Euler’s equations
(3.1) - (3.3) exists up to a time T > 0. Let (xε,hk ,uε,hk )k∈Zd be a solution of the corresponding SPH
equations (3.4) - (3.6).
Then, there exists a constant C > 0 such that the energy error can be bounded by

Q(t) ≤ C
(
h2s

ε2s + εmin{m,2L−d}
)

for all t ∈ [0, T ].

We will finish the section with a few remarks about the given convergence result.

Remark 3.12
i) Theorem 3.9 is only valid for smooth solutions of the Euler equations. Unfortunately, it is a

well-known fact that hyperbolic equations like the Euler equations can form discontinuities
after a period of time even with smooth initial values, see, for example, [NS04] or [Sid85].
Thus, the convergence result is not applicable to shocks or other irregular solutions and is
only valid as long as the smooth solution exists.

ii) The error bound is only valid for the given equation of state. A generalization of the equation
of state to the form p = cργ for a γ ≥ 1 has a significant effect to the right-hand side of the
SPH equations, see equations (2.12) - (2.14), and also to the associated energy. This results in
a much more complex energy error Q(t) and the current proof of convergence does not hold.

iii) The given theory is only valid in the absence of boundary conditions. Boundary conditions,
especially the treatment of walls, play an important role in the application of the SPH method.
Even though there exist some ideas on how to treat boundaries, see for example [Vio12, ch.
6], there is so far no mathematical investigation of these boundary treatments.

3.4 Pointwise Convergence
In this section we want to extend the given convergence result in Corollary 3.11 to a pointwise
convergence of the particle trajectories, i.e. we want to show that xε,hj (t) converges to X(hj, t) for
every j ∈ Zd and t ∈ [0, T ], as ε and h tends to zero in a specific way. Unfortunately, the result of
Corollary 3.11 will not suffice to have a uniform error bound for all particles.
Nevertheless, we are able to extend the result to pointwise convergence on compact sets where
the initial density is sufficiently far away from zero. For particles with too small initial mass,
the error cannot be bounded. However, these particles are of minor interest since they carry less
information.
We will provide two ways of how we can achieve a form of compact convergence.

Theorem 3.13
Let the assumptions of Corollary 3.11 hold. This means in particular, that the kernel satisfies
the moment condition of order m ≥ 1, the approximation condition of order L > d/2 and has
smoothness s ≥ 1. Then, the following holds:

i) If ρ0(x) > 0 for all ‖x‖2 < 1 then, for each j ∈ Zd, there exists a constant C > 0 such that
we have for sufficiently small h,

‖xε,hj (t)−X(hj, t)‖2 + ‖uε,hj (t)− u(X(hj, t), t)‖2 ≤ C
(
hs−d/2

εs
+ εmin{m/2,L−d/2}

hd/2

)
for all t ∈ [0, T ].
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ii) Let K ⊂ Rd be compact with infx∈K ρ0(x) > 0. Then, there exists a constant CK > 0 such
that we have

‖xε,hj (t)−X(hj, t)‖2 + ‖uε,hj (t)− u(X(hj, t), t)‖2 ≤ CK
(
hs−d/2

εs
+ εmin{m/2,L−d/2}

hd/2

)
for each j ∈ Zd with hj ∈ K and all t ∈ [0, T ].

Proof. First we note that we have

d

dt
‖xε,hj (t)−X(hj, t)‖2 ≤

∥∥∥∥ ddt (xε,hj (t)−X(hj, t)
)∥∥∥∥

2
≤ ‖uε,hj (t)− u(X(hj, t), t)‖2

which, together with ‖xε,hj (0)−X(hj, 0)‖2 = 0, instantly implies that

‖xε,hj (t)−X(hj, t)‖2 ≤ T sup
τ∈[0,T ]

‖uε,hj (τ)− u(X(hj, τ), τ)‖2

for each j ∈ Zd. We also note that ρ0 is continuous since ρ
1/2
0 ∈ W s,2(Rd). Now we have to

distinguish both cases.
Let j ∈ Zd be fix with ρ0(hj) > 0. As ρ0 is positive on the closed unit ball, it attains its positive
minimum η := min{ρ0(x)

∣∣ ‖x‖2 ≤ 1}. For sufficiently small h we thus have ρ0(hj) ≥ η. Hence, we
have

‖uε,hj (t)− u(xε,hj (t), t)‖22 ≤
ρ0(hj)
η
‖uε,hj (t)− u(xε,hj (t), t)‖22

≤ η−1h−d

hd ∑
k∈Zd

ρ0(hk)‖uε,hk (t)− u(xε,hk (t), t)‖2


= η−1h−dQ(t)

≤ Ch−d
(
h2s

ε2s + εmax{m,2L−d}
)
,

for all t ∈ [0, T ], where we used Corollary 3.11. The triangle inequality then yields

‖uε,hj (t)− u(X(hj, t), t)‖2 ≤ ‖uε,hj (t)− u(xε,hj (t), t)‖2 + ‖u(xε,hj (t), t)− u(X(hj, t), t)‖2
≤ ‖uε,hj (t)− u(xε,hj (t), t)‖2 + ‖u‖L∞(W 1,∞)‖xε,hj (t)−X(hj, t)‖2
≤
(
1 + T‖u‖L∞(W 1,∞)

)
sup

τ∈[0,T ]
‖uε,hj (τ)− u(X(hj, τ), τ)‖2

≤ C(T,u)
(
hs−d/2

εs
+ εmax{m/2,L−d/2}

hd/2

)
,

which gives us the case i).
For ii), ρ0 is positive again on K, and thus attains its positive minimum ηK := min{ρ0(x)

∣∣x ∈ K}.
Hence, for all j ∈ Zd with hj ∈ K we have

‖uε,hj (t)− u(xε,hj (t), t)‖22 ≤ CKh−d
(
h2s

ε2s + εmax{m,2L−d}
)
,

from which it follows that

‖uε,hj (t)− u(X(hj, t), t)‖2 ≤ CK(T, u)
(
hs−d/2

εs
+ εmax{m/2,L−d/2}

hd/2

)
with the same calculations and arguments as in the first case.
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Both representations of the pointwise convergence in Theorem 3.13 have their advantages and
drawbacks. The first case gives us convergence for a fixed j ∈ Zd for a sufficiently small h, which
means that we trace the same j as we sent ε and h to zero. Unfortunately, tracing the same
j ∈ Zd means that the particle starting at hj represents different positions as h tends to zero,
which means that we trace different particle trajectories. As we set h sufficiently small such that
ρ0(hj) ≥ min{ρ0(x)

∣∣ ‖x‖2 ≤ 1} means in general that ‖hj‖2 < 1. Hence, this theoretically gives
us only convergence for particles starting in the closed unit ball.
The second case states convergence for an arbitrary compact set K ∈ Rd. However, if h tends to
zero, the set of indices, such that hj is in K, changes and we do not get convergence of a specific
index j. Hence, both cases do not state uniform convergence on the whole space Rd.

3.5 Outlook: The Periodic Case
At the end of this chapter we will briefly review the SPH method for the barotropic Euler’s
equations on the periodic d-dimensional Torus Td = [0, 1[d. Even if the proof of the SPH method
on the whole space Rd is interesting from a theoretical point of view, it has its limitations in
applications. Since we have an infinite number of particles, the only case where we can verify the
result is for an initial density with compact support.
However, in the case of periodic boundary conditions, we only have a finite number of particles,
which allows us an easy computation and verification of the given results. This is why, in this
section, we will give the underlying equations and the expected results. However, since a complete
proof of the convergence result in the periodic case would mean to repeat the whole, given theory
we will restrict ourselves to a short overview. Note that in [MO13], a large part of the theory we
would need can be found.
For the rest of this section, we will call a function f : Rd → R periodic, if f(x + j) = f(x) for all
x ∈ Rd, j ∈ Zd.
The underlying Euler’s equations remain as in (3.1) - (3.3), with the small modification that the
given initial velocity u0 : Rd → Rd and initial density ρ0 : Rd → R are supposed to be periodic,
and we now seek a solution (u, ρ) which is periodic in space as well. This is equivalent to solving
Euler’s equations on Td with periodic boundary conditions.
For the associated SPH system, we also have to make some modifications. Let N ∈ N and let
h = 1/N be the spatial discretization parameter, with which we will divide the Torus Td into Nd

cubes with edge length h and midpoint hj for j ∈ GdN , where the set of indices GdN is defined by

GdN := {j ∈ Nd0; jk < N for all 1 ≤ k ≤ d}.

Let Φ : Rd → R be an at least one time differentiable, even and periodic function, and let
Φε := ε−dΦ(·/ε) be its scaled version for a smoothing parameter ε > 0. The SPH system for the
barotropic Euler equations on the Torus Td is given by

d

dt
xε,hj (t) = uε,hj (t), (3.24)

d

dt
uε,hj (t) = −∇ρε,h(xε,hj (t), t) = hd

∑
k∈Gd

N

ρ0(hk)∇Φε(xε,hj (t)− xε,hk (t)), (3.25)

for all j ∈ GdN and all t ∈]0, T ] and

xε,hj (0) = hj, uε,hj (0) = u0(hj), (3.26)

for all j ∈ GdN .
To achieve similar results like those in Theorem 3.8, Theorem 3.9 and Corollary 3.11 for the periodic
case, we would need the theory, including the definitions for the moment and approximation
conditions in the periodic case. We will neglect the technical details here because it would go
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beyond the scope of this work at this point, but refer to [MO13]. Instead, we want to give a short
overview of the expected results.
The most significant difference will be that the density ρ0 does not need to vanish at infinity. Since
we are on the periodic but bounded domain Td, it suffices to assume ρ0 ∈ L∞(Td) to ensure that
ρ0 ∈ Lp(Td) for every 1 ≤ p ≤ ∞. This means that we can assume finite discrete mass even if
infx∈Td ρ0(x) > 0, which makes a simplification for the whole theory.
The convergence of the energy error term, which is now given by

Q(t) := hd
∑

k∈Gd
N

ρ0(hk)‖uε,hk (t)− u(xε,hk (t), t)‖22 +
∫
Td

(
ρε,h,r(x, t)− ρ(x, t)

)2
dx, (3.27)

remains as in Theorem 3.8 and Theorem 3.9, since the proofs of both theorems will not change.
An improvement of the convergence result can be expected in the pointwise convergence result,
Theorem 3.13. Since we investigate Euler’s equations on the bounded domain Td, we have finite
mass even if we have the case that infx∈Td ρ0(x) > 0. Hence, we expect that the pointwise
convergence result will hold uniformly on Td.
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CHAPTER 4

Kernel Construction

In this chapter we want to derive a class of kernel functions Φ for the SPH system in (3.4) -
(3.6). As we have seen, the conditions we need for the kernel are originally conditions on the root
kernel Φr. More precisely, the root kernel has to satisfy the moment and approximation conditions.
However, for the calculation of the SPH system (3.4) - (3.6) we do not need the root kernel, but
only the kernel function Φ. Hence, we have two possibilities how to construct the kernel function
Φ.
The first possibility is to derive a root kernel Φr which satisfies the conditions given in Corollary
3.11. The kernel Φ can then be calculated via Φ = Φr ∗ Φr. Some properties like radiality could
be transfered from the root kernel to Φ. Nevertheless, the actual computation of Φr is often not
explicitly possible and the numerical calculation would be very expensive.
The other possibility, which we are pursuing now, is to derive conditions on the kernel Φ such
that it possesses a root kernel Φr with the required properties, and then to verify these conditions
directly for Φ. This has the advantage that we do not have to calculate Φr explicitly, since its
existence will suffice.
This chapter will be divided in three parts. In the first part, we want to derive some important
tools which we need later on. In the second part we want to derive the conditions for Φ. After
that we will discuss a class of functions which satisfy these conditions in the third part.

4.1 Required Tools
In this section we will give some tools we require for the construction of the kernel Φ. We will
discuss a multivariate version of the theorem of Faà di Bruno and give a short introduction to
radial functions.

4.1.1 The Formula of Faà di Bruno and Applications
The formula of Faà die Bruno is a generalization of the univariate chain rule to higher derivatives.
For our purpose, we will need a generalization of this formula to a multivariate setting, i.e. to the
multivariate version of the Faà di Bruno formula. For further details, see [CS96].

Theorem 4.1 (Multivariate Formula of Faà di Bruno)
Let U ⊂ Rd and V ⊂ Rm for d,m ∈ N. Let k ∈ N, f : U → V and g : V → R with f ∈ Ck(U)m
and g ∈ Ck(V ). Then

Dα(g(f))(x) =
∑

1≤|ν|≤|α|

(Dνg)(f(x))
|α|∑
s=1

∑
(n,β)∈ps(α,ν)

α!
s∏
j=1

(Dβj f(x))nj

nj !βj !
, x ∈ U,
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for all α ∈ Nd0 with |α| ≤ k, where ν ∈ Nm0 ,

ps(α,ν) =
{

(n1, . . . ,ns,β1, . . . ,βs) ∈ (Nm0 )s × (Nd0)s, |ni| > 0,

0 ≺ β1 ≺ . . . ≺ βs,
s∑
i=1

ni = ν and
s∑
i=1
|ni|βi = α

}
and α ≺ β means, that either |α| < |β| or |α| = |β| with α1 = β1, . . . , αj−1 = βj−1 and αj < βj
for a 1 ≤ j ≤ d.

We will omit the proof and refer to [CS96]. In the following, we will need Theorem 4.1 only for a
specific case. We will start by setting the dimension of V to m = 1.
Corollary 4.2
Let the conditions be given as in Theorem 4.1 with m = 1. Then

Dα(g(f))(x) =
|α|∑
`=1

g(`)(f(x))
|α|∑
s=1

∑
(n,β)∈ps(α,`)

α!
s∏
j=1

(Dβjf(x))nj
nj !βj !

, x ∈ U,

for α ∈ Nd0 with |α| ≤ k and

ps(α, `) =
{

(n1, . . . , ns,β1, . . . ,βs) ∈ (N0)s × (Nd0)s,

0 ≺ β1 ≺ . . . ≺ βs,
s∑
i=1

ni = ` and
s∑
i=1

niβi = α
}
.

In particular, we will need Corollary 4.2 in the case that g :=
√
·. The higher derivatives of the

square root function are given by the following lemma.
Lemma 4.3
Let g :=

√
·. Then

g(k)(r) = ck
g(r)2k−1 = ckg(r)1−2k

for all r > 0, k ∈ N and s > 0 with ck = −(−2)−k
k∏
`=2

(2`− 3).

Proof. The proof is a simple induction over k. For k = 1 we just have the derivative of the root
function with c1 = 1/2. For the induction step we have

g(k+1)(r) = ck
(
g(r)1−2k)′ = (−2)−1(2k − 1)ckg(r)1−2(k+1).

The constant ck yields

(−2)−1(2k − 1)ck = (−2)−(k+1)(2k − 1)
k∏
`=2

(2`− 3) = ck+1,

which completes the proof.

In the next step we will combine Corollary 4.2 and Lemma 4.3.
Lemma 4.4
Let the conditions be given as in Theorem 4.1 with U = Rd, V = R+, g := √. and f(x) > 0 for
all x ∈ Rd. Then

Dα
√
f(x) =

|α|∑
`=1

c`√
f(x)2`−1

|α|∑
s=1

∑
(n,β)∈ps(α,`)

α!
s∏
j=1

(Dβjf(x))nj
nj !βj !

, x ∈ Rd,
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for α ∈ Nd0 with |α| ≤ k.
Furthermore, assume that there exists a constant C > 0 such that

|Dαf(x)| ≤ Cf(x) (4.1)

for all x ∈ Rd and 1 ≤ |α| ≤ k. Then, there exists a constant C̃, depending on C, such that

|Dα
√
f(x)| ≤ C̃

√
f(x)

for all x ∈ Rd and 1 ≤ |α| ≤ k.

Proof. The first part of the lemma follows from Corollary 4.2 and Lemma 4.3. For the second
part, we note that

|Dα
√
f(x)| ≤ c(α)

|α|∑
`=1

1√
f(x)2`−1

|α|∑
s=1

∑
(n,β)∈ps(α,`)

s∏
j=1
|Dβjf(x)|nj .

If (n,β) ∈ ps(α, `), we have
s∑
i=1

ni = `. Using (4.1), the product yields

s∏
j=1
|Dβjf(x)|nj ≤ C

s∏
j=1

f(x)nj = Cf(x)`.

Finally, since all occurring sums are finite, we have

|Dα
√
f(x)| ≤ c(α, C)

|α|∑
`=1

f(x)`√
f(x)2`−1 ≤ C̃(α)

√
f(x),

which completes the prove.

The first part of this lemma is the specific Formula of Faà di Bruno we wanted to derive. The
interesting part is the second part of this lemma, which is a direct conclusion of the of Faà di
Bruno formula and gives us a kind of relation of a function with its root. In the following, we will
investigate and modify this relation further.
Lemma 4.5
Let k ∈ N and f ∈ Ck(Rd) with f(0) 6= 0. If there is a C > 0 with

|Dαxjf(x)| ≤ C|f(x)|

for all x ∈ Rd, 1 ≤ j ≤ d and 1 ≤ |α| ≤ k, then there exists a C̃ > 0, such that

|Dαf(x)| ≤ C̃|f(x)|

for all x ∈ Rd and 1 ≤ |α| ≤ k.

Proof. Let 1 ≤ |α| ≤ k. Because f is continuous with f(0) 6= 0, there exists an r > 0 with
f(x) 6= 0 for all ‖x‖2 ≤ r. Set C̃ = max‖x‖2≤r |Dαf(x)|/|f(x)|. Then |Dαf(x)| ≤ C̃|f(x)| for all
‖x‖2 ≤ r.
Now consider ‖x‖2 > r and 1 ≤ j ≤ d. If αj ≥ 1, we obtain by differentiation

Dαxjf(x) = xjD
αf(x) + αjD

α−ejf(x) (4.2)

for all x ∈ Rd and 1 ≤ |α| ≤ k. With this we obtain the estimate

|Dαf(x)| ≤ r−1|xjDαf(x)| ≤ r−1|Dαxjf(x)|+ r−1|αjDα−ejf(x)|,

If αj = 0, the second term on the right hand side of (4.2) vanishes, so that we have the estimate

|Dαf(x)| ≤ r−1|xjDαf(x)| ≤ r−1|Dαxjf(x)|

in this case. The proof will be completed by induction on the length of α.
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With this result and the second part of Lemma 4.4 we have the following corollary.

Corollary 4.6
Let k ∈ N and f ∈ Ck(Rd) be nonnegative with f(0) 6= 0. If there exists a C > 0 with

|Dαxjf(x)| ≤ Cf(x)

for all x ∈ Rd, 1 ≤ j ≤ d and 1 ≤ |α| ≤ k, then there exists a C̃ > 0, such that

|Dα
√
f(x)| ≤ C̃

√
f(x)

for all x ∈ Rd and 1 ≤ |α| ≤ k.

In a last step, we will modify this result to a slightly different version with a multiplicative mono-
mial.

Theorem 4.7
Let k ∈ N and f ∈ Ck(Rd) be nonnegative with f(0) 6= 0. If there is a C > 0 with

|Dαxjf(x)| ≤ Cf(x) (4.3)

for all x ∈ Rd, 1 ≤ j ≤ d and 1 ≤ |α| ≤ k, then there exists a C̃ > 0, such that

|Dαxj
√
f(x)| ≤ C̃

√
f(x)

for all x ∈ Rd, 1 ≤ j ≤ d and 1 ≤ |α| ≤ k.

Proof. Let 1 ≤ j ≤ d. With (4.2), we have

|Dαxj
√
f(x)| ≤ |xjDα

√
f(x)|+ αj |Dα−ej

√
f(x)|,

where, with respect to Corollary 4.6, the second summand fullfills the proposed inequality.
The estimate of the first summand is clear for |xj | ≤ 1. So let |xj | > 1.
The formula of Faà di Bruno, Lemma 4.4, implies

|xjDα
√
f(x)| =

∣∣∣∣∣∣xj
|α|∑
l=1

cl√
f(x)2l−1

|α|∑
s=1

∑
ps(α,l)

α!
s∏
i=1

(Dβif(x))ki
ki!βi!

∣∣∣∣∣∣
≤
|α|∑
l=1

cl√
f(x)2l−1

|α|∑
s=1

∑
ps(α,l)

α!|xj |
s∏
i=1

∣∣∣∣ (Dβif(x))ki
ki!βi!

∣∣∣∣ .
With |xj | ≤ |xlj | for all 1 ≤ l ≤ |α| and

s∑
i=1

ki = l we have

|xjDα
√
f(x)| ≤

|α|∑
l=1

cl√
f(x)2l−1

|α|∑
s=1

∑
ps(α,l)

α!
s∏
i=1

∣∣∣∣ (xjDβif(x))ki
ki!βi!

∣∣∣∣ .
Now equation (4.2), the condition from equation (4.3) and Lemma 4.5 yield

|xjDβif(x)| =|Dβixjf(x)− (βi)jDβi−ejf(x)|
≤|Dβixjf(x)|+ |(βi)jDβi−ejf(x)|
≤c|f(x)|.
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Hence, with f(x) > 0, we have

|xjDα
√
f(x)| ≤c

|α|∑
l=1

cl√
f(x)2l−1

|α|∑
s=1

∑
ps(α,l)

α!
s∏
i=1

|f(x)|ki
ki!βi!

≤c
|α|∑
l=1

f(x)l√
f(x)2l−1

≤c
√
f(x),

which completes the proof.

4.1.2 Radial Functions
In this section we will give an outline of radial functions, i.e. functions that only depend on the
distance of its argument to the origin. For further details see, for example, [Wen04]. First of all
we will give a formal definition of radial functions.
Definition 4.8
A function f : Rd 7→ R is said to be radial if there exists a function g : [0,∞[ 7→ R such that
f(x) = g(‖x‖2) for all x ∈ Rd.

A important property of the following kernel construction theory is the positive definiteness of the
kernel functions. For that we have to define what it means for a radial function to be positive
definite.
Definition 4.9
A univariate function g : [0,∞[ 7→ R is said to be positive definite on Rd if the corresponding
multivariate function f = g(‖ · ‖2) : Rd → R is positive definite.

As we saw in Theorem 1.9, the Fourier transform can be an important tool to show if a function
is positive definite. One can show that the Fourier transform of a radial function will be radial as
well. Moreover, it is possible to derive a formula of the Fourier transform of radial functions by
their radial part. The proof of this formula can be found in [Wen04].

Theorem 4.10
Suppose that g ∈ C([0,∞[) satisfies r 7→ rd−1g(r) ∈ L1([0,∞[). Let

Fdg(s) := s−
d−2

2

∞∫
0

g(t)t d2 J d−2
2

(st)dt

for s ∈ [0,∞[, where Jk denotes the Bessel function of order k, see [GR00, 8.402]. Let f : Rd → R
be defined by x→ g(‖x‖2). Then

f̂(ω) = Fdg(‖ω‖2)

for all ω ∈ Rd.

With this specification of the Fourier transformation of radial functions by their radial part, we
can conclude the inverse Fourier transform by

F−1
d f(t) := t−

d−2
2

∞∫
0

f(s)s d2 J d−2
2

(ts)ds = Fdf(t)

for t ∈ [0,∞[. Later in this chapter we are particularly interested in the Fourier transformation of
radial functions for d = 1. In this case, the radial Fourier transformation is equal to the classical

60



Required Tools

Fourier transformation for even functions. Hence, the one dimensional radial Fourier transform is
given by

F1g(s) = (2π)−1/2
∞∫
−∞

g(t) cos(st)dt =
√

2π−1/2
∞∫

0

g(t) cos(st)dt. (4.4)

Another useful property, especially for the moment condition from Definition 1.26, are the vanishing
odd moments of radial functions.
Lemma 4.11
Let α ∈ Nd with |α| odd. Suppose that g : [0,∞[→ R satisfies r 7→ rd−1+|α|g(r) ∈ L1[0,∞[. Then∫

Rd

xαg(‖x‖2)dx = 0.

Proof. Since |α| is odd, there is at least one i ∈ {1, . . . , d} such that αi is odd. We may assume
i = 1 without loss of generality. By splitting up the integral, we have∫

Rd

xαg(‖x‖2)dx =
∫

x1≥0

xαg(‖x‖2)dx +
∫

x1≤0

xαg(‖x‖2)dx,

where
∫
x1≥0 denotes the integral over the set {x ∈ Rd; x1 ≥ 0}, and

∫
x1≤0 the integral over the

set {x ∈ Rd; x1 ≤ 0}. Now we note that we can transform the second integral to∫
x1≤0

xαg(‖x‖2)dx = (−1)α1

∫
x1≥0

xαg(‖x‖2)dx.

Since αi is odd, (−1)α1 = −1 and we conclude∫
Rd

xαg(‖x‖2)dx =
∫

x1≥0

xαg(‖x‖2)dx−
∫

x1≥0

xαg(‖x‖2)dx = 0,

which completes the proof.

The last lemma of this section will give us a formula for the derivatives of radial functions by using
the results of Section 4.1.1. The formula is not optimal in the sense that it might contain zero
coefficients. However, we are interest in the highest possible degree of the occuring monomials.

Lemma 4.12
Suppose that g ∈ Ck([0,∞[) and f : Rd 7→ R defined by f(x) = g(‖x‖2) for x ∈ Rd. Then the α-th
derivative of f is given by

Dαf(x) =
|α|∑
k=1

g(k)(‖x‖2)

2|α|−1∑
l=1

∑
|ν|=l−(|α|−k)

cνxν

‖x‖l2

 (4.5)

for all x ∈ Rd \ {0} and α ∈ Nd with |α| ≤ k, where cν ∈ N.

Proof. We will prove the formula via induction on the length of α. For |α| = 1 we start without
restriction with α = e1, where we have

De1g(‖x‖2) = g′(‖x‖2) x1

‖x‖2
,
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which is of the form (4.5). For the induction step, it suffices to consider multiindices of the form
α+ e1 with |α| < k. The induction hypothesis then yields

Dα+e1f(x) =De1

|α|∑
k=1

g(k)(‖x‖2)

2|α|−1∑
l=1

∑
|ν|=l−(|α|−k)

cνxν

‖x‖l2


=
|α|∑
k=1

x1

‖x‖2
g(k+1)(‖x‖2)

2|α|−1∑
l=1

∑
|ν|=l−(|α|−k)

cνxν

‖x‖l2


−
|α|∑
k=1

g(k)(‖x‖2)

2|α|−1∑
l=1

l

∑
|ν|=l−(|α|−k)

cνxν+e1

‖x‖l+2
2


+
|α|∑
k=1

g(k)(‖x‖2)

2|α|−1∑
l=1

∑
|ν|=l−(|α|−k)

ν1cνxν−e1

‖x‖l2

 .

It remains to show that each of these sums has the form (4.5). We will show this only for the first
sum, which we will call S1 for short. The other two sums will be transformed analogously. For S1,
we will need three shifts in the indices. First, by a shift of the summation from k to k − 1 in the
first sum, we have

S1 =
|α|∑
k=1

g(k+1)(‖x‖2)

2|α|−1∑
l=1

∑
|ν|=l−(|α|−k)

cνxν+e1

‖x‖l+1
2


=
|α+e1|∑
k=2

g(k)(‖x‖2)

2|α|−1∑
l=1

∑
|ν|=l−(|α+e1|−k)

cνxν+e1

‖x‖l+1
2

 .

where we used that |α + e1| = |α| + 1. Then, by shifting from ν to ν − e1, we will sum over all
|ν| = l + 1 − (|α| − k + 1) with ν1 ≥ 1 in the inner sum. We will write c̃ν = cν−e1 , where we set
c̃ν = 0 for all ν with ν1 = 0. Thus, we can sum over all |ν| = l + 1− (|α| − k + 1) and have∑

|ν|=l−(|α+e1|−k)

cνxν+e1 =
∑

|ν|=l+1−(|α+e1|−k)

c̃νxν

Finally, shifting from l to l − 1 yields

S1 =
|α+e1|∑
k=2

g(k)(‖x‖2)

2|α|−1∑
l=1

∑
|ν|=l+1−(|α+e1|−k)

c̃νxν

‖x‖l+1
2


=
|α+e1|∑
k=2

g(k)(‖x‖2)

2|α|∑
l=2

∑
|ν|=l−(|α+e1|−k)

c̃νxν

‖x‖l2


=
|α+e1|∑
k=2

g(k)(‖x‖2)

2|α+e1|−2∑
l=2

∑
|ν|=l−(|α+e1|−k)

c̃νxν

‖x‖l2

 .

For the form of equation (4.5), we have to increase the limit of the sum over l. But this is no
problem since we set c̃ν = 0 for all |ν| = |α+ e1|+ k − 1.

62



Construction Method

One has to be careful with the derivatives of radial functions in the point x = 0. Whether the
derivatives of f = g(‖ · ‖2) are continuous in x = 0 does not only depend on the smoothness of
the univariate function g : [0,∞[→ R, but on its even extension g(| · |) : R → R. If g(| · |) is
k-times continuously differentiable in zero, so is g. Whenever we will say that g is continuously
differentiable in 0, we mean its even extension g(| · |).

4.2 Construction Method

The main goal of this section is to establish easy-to-check conditions for the kernel Φ : Rd → R,
so that the conditions in Theorem 3.9 and Corollary 3.11 are satisfied for a convolution root Φr
of Φ. We will investigate radial functions with compact support for this purpose, but initially we
want to start as general as possible. We begin with investigating the existence and the regularity
of convolution roots.

4.2.1 Existence of Convolution Roots
To recall Definition 3.1, a convolution root of a function Φ is a function Φr with Φ = Φr ∗ Φr. At
first, it is not clear if such a function even exists, and if it exists which regularity this function has.
In the case of compactly supported functions, Boas and Kac, [BJK45], found an existence result in
one dimension. Based on this result, Ehm, Gneiting and Richards, [EGR04], published a version
of this existence theorem in arbitrary dimensions, including conditions for some characteristics like
radiality. Unfortunately, the conditions they stated are too complicated to verify.
We will begin with a first result on the convolution of an L2(Rd) function.
Lemma 4.13
Let f ∈ L2(Rd). Then

f ∗ f = (2π)d/2([f̂ ]2)∨

is in L∞(Rd).

Proof. Using Young’s inequality, it is clear that f ∗f is in L∞(Rd). Moreover, since f is in L2(Rd),
so is f̂ , which means that [f̂ ]2 is in L1(Rd). Thus, ([f̂ ]2)∨ is also in L∞(Rd).
It remains to show equality. Since both sides are only in L∞(Rd), we cannot simply use Fourier
transformation. However, for γ from the Schwartz space S(Rd), see, for example, [Wen04], we have

γ ∗ γ = ([γ ∗ γ]∧)∨ = (2π)d/2([γ̂]2)∨.

As S(Rd) is dense in L2(Rd), there exists a sequence (γn)n∈N ⊂ S which converges to f in L2(Rd).
Then,

‖f ∗ f − (2π)d/2([f̂ ]2)∨‖L∞(Rd) ≤‖f ∗ f − γn ∗ γn‖L∞(Rd)

+ ‖γn ∗ γn − (2π)d/2([f̂ ]2)∨‖L∞(Rd).
(4.6)

The first term on the right-hand side can be bounded, using again Young’s inequality, by

‖f ∗ f − γn ∗ γn‖L∞(Rd) ≤‖f ∗ (f − γn)‖L∞(Rd) + ‖(f − γn) ∗ γn‖L∞(Rd)

≤‖f‖L2(Rd)‖f − γn‖L2(Rd) + ‖f − γn‖L2(Rd)‖γn‖L2(Rd)

≤2‖f‖L2(Rd)‖f − γn‖L2(Rd) + ‖f − γn‖2L2(Rd),

which tends to zero with n → ∞, where we used ‖γn‖L2(Rd) ≤ ‖f − γn‖L2(Rd) + ‖f‖L2(Rd) in the
last step.
For the second term on the right-hand side of (4.6) we have

‖γn ∗ γn − (2π)d/2([f̂ ]2)∨‖L∞(Rd) = (2π)d/2‖([γ̂n]2)∨ − ([f̂ ]2)∨‖L∞(Rd)

≤ (2π)d/2‖[γ̂n]2 − [f̂ ]2‖L1(Rd).
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For the remaining term we can use the binomial formula and the Cauchy-Schwarz inequality to
derive

‖[γ̂n]2 − [f̂ ]2‖L1(Rd) = ‖
(
γ̂n + f̂

)(
γ̂n − f̂

)
‖L1(Rd)

≤ ‖γ̂n + f̂‖L2(Rd)‖γ̂n − f̂‖L2(Rd)

= ‖γn + f‖L2(Rd)‖γn − f‖L2(Rd)

≤
(
2‖f‖L2(Rd) + ‖γn − f‖L2(Rd)

)
‖γn − f‖L2(Rd),

which also tends to zero with n→∞.

With this result, we are now able to give a first existence result for root kernels.

Lemma 4.14
Let Φ ∈ C(Rd)∩L1(Rd) be positive definite. Then, Φr := (2π)−d/4[Φ̂1/2]∨ ∈ L2(Rd) is a real-valued
root kernel of Φ. If Φ is in addition radial, so is the root kernel Φr.

Proof. As Φ is positive definite, we have Φ̂(ω) ≥ 0 for all ω ∈ Rd and we can define the root
ω 7→ Φ̂1/2(ω). Moreover, Φ̂ is in L1(Rd) due to Lemma 1.12 since Φ ∈ C(Rd) ∩ L1(Rd) is
positive definite. Hence, Φ̂1/2 is in L2(Rd), which has therefore an inverse Fourier transform
Φr := (2π)−d/4[Φ̂1/2]∨ ∈ L2(Rd). Setting f = Φr in Lemma 4.13 finishes the proof.

Our next goal is to have more regularity for the convolution root Φr.

Lemma 4.15
Let Φ ∈ C(Rd) ∩ L1(Rd) be positive definite and in addition let Φ ∈ W 2σ,2(Rd) for a σ > d/4.
Then, the convolution root from Lemma 4.14 satisfies Φr ∈W τ,2(Rd) for all τ < σ − d/4.

Proof. With Φ̂r
2

= (2π)−d/2Φ̂ we see that Φr ∈W τ,2(Rd) if∫
Rd

(1 + ‖ω‖22)τ |Φ̂r(ω)|2dω =(2π)− d2
∫
Rd

(1 + ‖ω‖22)τ Φ̂(ω)dω

≤(2π)− d2

∫
Rd

(1 + ‖ω‖22)2σΦ̂(ω)2dω

1/2∫
Rd

(1 + ‖ω‖22)2(τ−σ)dω

1/2

≤c‖Φ‖H2σ(Rd),

where we used the Cauchy-Schwarz inequality. Note that the second integral is bounded since
τ < σ − d/4.

Next, we investigate the integrability of the convolution root from Lemma 4.14. From this result
we already know that Φr is in L2(Rd). If Φr would be continuous and would have compact support,
Φr would be in Lp(Rd) for all 1 ≤ p ≤ ∞. Unfortunately, Φ having compact support does not
imply that Φr has compact support, so it is not useful to pursue this possibility. For this reason,
we have to make a new condition on Φr, which, in a similar way, will later also appear in another
condition.
Lemma 4.16
Let Φ ∈ C(Rd)∩L1(Rd) be positive definite and assume that there exist constants C > 0 and L ∈ N
with L ≥ bd/2c+ 1 such that

|DαΦ̂r(ω)| ≤ CΦ̂r(ω), ω ∈ Rd, (4.7)

for all 1 ≤ |α| ≤ L. Then, the convolution root from Lemma 4.14 satisfies Φr ∈ L1(Rd).
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Proof. Since we already know from Lemma 4.14 that Φr is in L2(Rd), we also know that its
Fourier transform Φ̂r is in L2(Rd). Hence, using the Cauchy-Schwarz inequality, we can calculate

∫
Rd

|Φr(x)|dx ≤

∫
Rd

(1 + ‖x‖22)−Ldx

1/2∫
Rd

(1 + ‖x‖22)L|Φr(x)|2dx

1/2

,

where the first integral on the right hand side is bounded since L ≥ bd/2c + 1 > d/2. For the
second integral on the right-hand side we have to distinguish if L is an even or an odd integer. If
L is even, we have∫

Rd

(1 + ‖x‖22)L|Φr(x)|2dx =
∫
Rd

|(I −∆)L/2Φ̂r(ω)|2dω

=
∑

|α|,|β|≤L

cαcβ

∫
Rd

DαΦ̂r(ω)DβΦ̂r(ω)dω

≤ C
∫
Rd

|Φ̂r(ω)|2dω,

(4.8)

where we needed that L/2 is an integer and used inequality (4.7) in the last step. If L is an odd
integer, we have∫

Rd

(1 + ‖x‖22)L|Φr(x)|2dx =
∫
Rd

(1 + ‖x‖22)(1 + ‖x‖22)L−1|Φr(x)|2dx

=
∫
Rd

(1 + ‖x‖22)L−1|Φr(x)|2dx +
d∑
j=1

∫
Rd

(1 + ‖x‖22)L−1|xjΦr(x)|2dx.

Both integrals can be discussed as in (4.8) since L−1 is even, where we note for the second integral
that

(
pejΦr

)∧ = i∂jΦ̂r with pej (x) = xj according to Lemma 1.2.

The newly occurred condition (4.7) seems to be very restrictive, but also similar to the approxi-
mation condition. As we will see later, this condition will not limit us in the choice of our kernel
function Φ. Finally, we combine the last two lemmas.

Theorem 4.17
Let Φ ∈ C(Rd) ∩ L1(Rd) be positive definite and in addition let Φ ∈ W 2σ,2(Rd) for a σ > d/4.
Assume that there exists constants C > 0 and L ∈ N with L ≥ bd/2c+ 1 such that

|DαΦ̂r(ω)| ≤ CΦ̂r(ω), ω ∈ Rd,

for all 1 ≤ |α| ≤ L. Then, the convolution root from Lemma 4.14 satisfies Φr ∈ W τ,1(Rd) for all
integer τ < σ − d/4.

Proof. From Lemma 4.15 we already know that Φr ∈W τ,2(Rd) for all τ < σ − d/4. This yields

‖pβDαΦ̂r‖L2(Rd) ≤ C‖pβΦ̂r‖L2(Rd) = C‖DβΦr‖L2(Rd) (4.9)

for all |α| ≤ L and |β| ≤ τ , so that we have pβDαΦ̂r ∈ L2(Rd). This also means that Dα[pβΦ̂r]
is in L2(Rd) for all |α| ≤ L and |β| ≤ τ , since the latter is just a linear combination of the former.
Now we have to distinguish whether L is an even or an odd integer.
If L is even, let k = L/2. With this we can conclude that (I −∆)k[pβΦ̂r] ∈ L2(Rd) for all |β| ≤ τ ,
where I denotes the identity operator. Noting that a real-valued Φr with a nonnegative Fourier
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transform Φ̂r means (Φr)∨ = Φ̂r = Φ̂r we can conclude that (1 + ‖ · ‖22)k[DβΦr] ∈ L2(Rd) for all
|β| ≤ τ using Plancherel’s identity. Hence, we arrive at

∫
Rd

|DβΦr(x)|dx ≤

∫
Rd

(1 + ‖x‖22)2k|DβΦr(x)|2dx

1/2∫
Rd

(1 + ‖x‖22)−2kdx

1/2

≤ C‖(1 + ‖ · ‖22)kDβΦr‖L2(Rd),

where the second integral in the product in the first line is finite because of k > d/4.
If L is an odd integer, we set k = (L− 1)/2. With this we can conclude that (I −∆)k∂j [pβΦ̂r] ∈
L2(Rd) for all |β| ≤ τ and for all 1 ≤ j ≤ d. Similar to the first case, we can conclude that
(1 + ‖ · ‖22)k[pejD

βΦr] ∈ L2(Rd) for all |β| ≤ τ and for all 1 ≤ j ≤ d. Hence, we arrive at

∫
Rd

|DβΦr(x)|dx ≤

∫
Rd

(1 + ‖x‖22)2k+1|DβΦr(x)|2dx

1/2∫
Rd

(1 + ‖x‖22)−2k−1dx

1/2

,

where the second integral in the product on the first line is finite because of k+1/2 > d/4. Finally,
for the first integral have∫

Rd

(1 + ‖x‖22)2k+1|DβΦr(x)|2dx ≤
∫
Rd

(1 + ‖x‖22)2k|DβΦr(x)|2dx

+
d∑
j=1

∫
Rd

(1 + ‖x‖22)2k|xjDβΦr(x)|2dx,

where both integrals can be bounded since (1+‖·‖22)k[DβΦr] ∈ L2(Rd) and (1+‖·‖22)k[pejD
βΦr] ∈

L2(Rd).

4.2.2 Conditions on the Convolution Kernel
After we investigated the existence of a convolution root of the kernel, we want to transfer the
two conditions we have attached to the root kernel to the convolution kernel. First, for the
approximation condition of the convolution root Φr we derive the following result.
Lemma 4.18
Let Φ ∈ C(Rd)∩L1(Rd) be positive definite. Assume that Φ satisfies the approximation condition of
order L ≥ 2. Then, the convolution root Φr from Lemma 4.14 satisfies the approximation condition
of order L− 1.

Proof. From Proposition 3.6 we know that Φ satisfying the approximation condition of order L
implies that there exists a C > 0 such that

|Dα[ωjΦ̂(ω)]| ≤ CΦ̂(ω), ω ∈ Rd, 1 ≤ |α| ≤ L.

From Theorem 4.7 and Φ̂r = (2π)−d/4Φ̂1/2 it then follows that

|Dα[ωjΦ̂r(ω)]| ≤ CΦ̂r(ω), ω ∈ Rd, 1 ≤ |α| ≤ L.

which means in particular that pα∂jΦr ∈ L2(Rd) for |α| = L, so that Φr satisfies the approximation
condition of order L− 1.

For the momentum condition, we already know from Proposition 3.4 that Φr satisfies the moment
condition of order m if and only if Φ satisfies the moment condition of order m as long as Φr ∈
L1(Rd). Using Lemma 4.16, Φr is in L1(Rd) if condition (4.7) holds. Hence, using Corollary 4.6,
we can derive the following result.
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Lemma 4.19
Let Φ ∈ C(Rd) ∩ L1(Rd) be positive definite. Assume that Φ satisfies the moment condition of
order m and assume that there exists a constant C > 0 and an L ≥ bd/2c+ 1 such that

|DαωjΦ̂(ω)| ≤ CΦ̂(ω), ω ∈ Rd, (4.10)

for all |α| ≤ L and 1 ≤ j ≤ d. Then, the convolution root Φr from Lemma 4.14 is in L1(Rd) and
satisfies the moment condition of order m.

Proof. Using (4.10), Corollary 4.6 implies that there exists a constant C̃ > 0 such that

|DαΦ̂r(ω)| ≤ C̃|Φ̂r(ω)|, ω ∈ Rd

for all 1 ≤ |α| ≤ L. Since L ≥ bd/2c + 1, using Lemma 4.16 gives that Φr ∈ L1(Rd) and hence
satisfies the moment condition of order m according to Proposition 3.4.

Note that condition (4.10) is nothing else but the first part of the approximation condition. If we
combine the last two results we come to one of our main results in this section.
Theorem 4.20
Let Φ ∈ C(Rd) ∩ L1(Rd) be positive definite. Assume that Φ satisfies the moment condition of
order m and the approximation condition of order L ≥ bd/2c + 1. Then, the convolution root Φr
from Lemma 4.14 is in L1(Rd), satisfies the moment condition of order m and the approximation
condition of order L− 1.
If Φ is in addition in W 2σ,2(Rd) for a σ > d/4, then Φr ∈W τ,1(Rd) for all integer τ < σ − d/4.

Proof. It follows from Lemma 4.18 and Lemma 4.19 that the root kernel Φr satisfies the moment
condition of order m, the approximation conditions of order L− 1 and lies in L1(Rd) . Moreover,
since Φ satisfies the approximation condition of order L, (4.10) is satisfied for all 1 ≤ |α| ≤ L.
Hence, Corollary 4.6 implies that (4.7) is satisfied for all 1 ≤ |α| ≤ L and using Theorem 4.17
completes the proof.

Theorem 4.20 is a very important result to construct the kernel because we managed to formulate
conditions on the convolution kernel Φ so that the conditions of Theorem 3.9 on the root kernel
Φr are satisfied. Since Φr is only needed in the proof of the convergence but not in the numerical
SPH scheme (3.4) - (3.6), we can neglect Φr now and can focus on the construction of an easy to
implement and efficient to calculate kernel Φ that will give us automatically the existence and the
required properties of a root kernel.

4.2.3 Radial Kernels with Compact Support
From now on we can concentrate on the construction of the kernel function Φ. Due to simplicity,
we restrict our choice to radial functions with compact support. This is a good choice since those
functions are easy to implement and efficient to calculate in the SPH formalism. Moreover, radial
functions simplify the required conditions we need. Note that with the choice of a radial kernel
Φ = φ(‖ ·‖2), its Fourier transform Φ̂ = Fdφ(‖ ·‖2) as well as its convolution root Φr will be radial,
too. Unfortunately, as mentioned before, this is not true for the compact support any more.
We first have to check how the conditions look like in the radial version. To do this, we want
to rewrite the moment and approximation conditions for radial functions. We will start with the
approximation condition.
Lemma 4.21
Let φ ∈ C1([0,∞[) be positive definite on Rd with compact support and with

∫
Rd φ(‖x‖2)dx = 1.

Suppose there exists a constant C > 0 such that∣∣∣∣ dkdsk sFdφ(s)
∣∣∣∣ ≤ CFdφ(s) (4.11)

holds for all s ∈ [0,∞[ and 1 ≤ k ≤ L. Then, Φ = φ(‖ · ‖2) satisfies the approximation condition
of order L.
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Proof. We have to prove that Φ satisfies conditions (3.10) and (3.11). For the first condition,
we note that since φ ∈ C1([0,∞[) has compact support, pα∂jΦ is continuous and has compact
support for all |α| = L+ 1 and 1 ≤ j ≤ d. Thus, pα∂jΦ ∈ L2(Rd).
To show condition (3.11), we suppose 1 ≤ |α| ≤ L, and 1 ≤ j ≤ d. We have to show that there
exists a constant C > 0 such that |DαxjΦ̂(x)| ≤ CΦ̂(x) holds for all x ∈ Rd.
We will first take a look at small x ∈ Rd. Since Φ = φ(‖·‖2) has compact support, Φ̂ lies in C∞(Rd).
Moreover, Φ is normalized, i.e.

∫
Rd Φ(x)dx = 1, and thus Φ̂(0) > 0. Due to the continuity of Φ̂

there exists a radius r > 0 with Φ̂(x) > 0 for all ‖x‖2 ≤ r. Therefore, we can choose

C1 = max
‖x‖2≤r

|DαxjΦ̂(x)|
Φ̂(x)

such that |DαxjΦ̂(x)| ≤ C1Φ̂(x) for all ‖x‖2 ≤ r.
Now let ‖x‖2 > r and suppose that αj ≥ 1 in the first instance. With (4.2), we note that

|DαxjΦ̂(x)| ≤ αj |Dα−ej Φ̂(x)|+ |xjDαΦ̂(x)|. (4.12)

Applying Lemma 4.12 to the first absolute value we have

|Dα−ej Φ̂(x)| ≤
|α|−1∑
k=1

∣∣∣(Fdφ)(k)(‖x‖2)
∣∣∣ 2|α|−3∑

`=1

∑
|ν|=`−(|α|−1−k)

cν‖x‖|ν|2

‖x‖`2

≤ c
|α|−1∑
k=1
‖x‖−(|α|−1−k)

2

∣∣∣(Fdφ)(k)(‖x‖2)
∣∣∣

≤ cmax{1, r−|α|+2}
|α|−1∑
k=1

∣∣∣(Fdφ)(k)(‖x‖2)
∣∣∣ ,

(4.13)

where we used ‖x‖2 > r. Assumption (4.11) and Lemma 4.5 in the univariate case imply that
there exists a C > 0 such that

∣∣(Fdφ)(k)(‖x‖2)
∣∣ ≤ CFdφ(‖x‖2) for every 1 ≤ k ≤ |α| − 1. Hence,

|Dα−ej Φ̂(x)| ≤ cFdφ(‖x‖2) = cΦ̂(x).

For the second part we apply Lemma 4.12 as we did it in (4.13) to have

|xjDαΦ̂(x)| ≤ ‖x‖2|DαΦ̂(x)| ≤ c‖x‖2
|α|∑
k=1
‖x‖−(|α|−k)

2

∣∣∣(Fdφ)(k)(‖x‖2)
∣∣∣

= c

|α|−1∑
k=1
‖x‖−(|α|−k−1)

2

∣∣∣(Fdφ(k)(‖x‖2)
∣∣∣+ ‖x‖2

∣∣∣(Fdφ(|α|)(‖x‖2)
∣∣∣
 ,

where we split up the sum in the last line in the sum over the first |α| − 1 terms and the term for
k = |α|. The occurring sum is exactly the sum from (4.13) and can be estimated as above. For
the remaining term, we expand the absolute value to apply a reverse chain rule. With s = ‖x‖2
and using the triangle inequality, we conclude∣∣∣s (Fdφr)(|α|) (s)

∣∣∣ ≤ ∣∣∣s (Fdφr)(|α|) (s) + |α| (Fdφr)(|α|−1) (s)
∣∣∣+ |α|

∣∣∣(Fdφr)(|α|−1) (s)
∣∣∣

=
∣∣∣∣ d|α|ds|α|

(sFdφr(s))
∣∣∣∣+ |α|

∣∣∣(Fdφr)(|α|−1) (s)
∣∣∣ .

The first term can be bounded by assumption (4.11). For the second term, assumption (4.11) and
Lemma 4.5 in the univariate case imply again that

∣∣(Fdφ)(|α−1|)(s)
∣∣ ≤ CFdφ(s). Finally, we have

‖x‖2
∣∣∣(Fdφ(|α|)(‖x‖2)

∣∣∣ ≤ CFdφ(‖x‖2).
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If αj = 0, the first term on the right hand side of (4.12) vanishes, so that the proof can be
adapted.

For the moment condition we recall Lemma 4.11 which gives us that odd moments vanish if the
kernel is radial. A first result is the following one.
Lemma 4.22
A compactly supported, radial and normalized kernel Φ = φ(‖·‖2) always satisfies the moment con-
dition of an even order, in particular, Φ has at least order 2. A non-negative compactly supported
and normalized kernel satisfies the moment condition with order at most 2. Hence, a non-negative,
radial and normalized kernel always satisfies the moment condition of order 2.

Hence, we will concentrate on moment conditions of even order since odd-order conditions are
always satisfied. We can rewrite the moment conditions as follows.
Lemma 4.23
Let φ ∈ C[0,∞[ be positive definite on Rd with compact support and let m ∈ N. Suppose φ satisfies

∞∫
0

sd−1φ(s)ds =
Γ(d2 )
2πd/2

, (4.14)

∞∫
0

s2k+d−1φ(s)ds = 0, 1 ≤ k ≤ m− 1, (4.15)

∞∫
0

s2m+d−1φ(s)ds <∞, (4.16)

where Γ denotes the Gamma function, see [GR00, 8.310]. Then, Φ = φ(‖ ·‖2) satisfies the moment
condition of order 2m.

Proof. Applying the transformation theorem with spherical coordinates for an arbitrary α ∈ Nd0
gives ∫

Rd

xαΦ(x)dx = 2πd/2

Γ
(
d
2
) ∞∫

0

s|α|+d−1φ(s)ds

For |α| = 0 and |α| = 2m we can simply apply assumption (4.14) and (4.16).
For 1 ≤ |α| < 2m, we first notice that with Lemma 4.11 the integral is zero if |α| is odd since Φ
is a radial function. For an even |α| we have |α| = 2k for a 1 ≤ k ≤ m− 1. Hence,

∞∫
0

s|α|+d−1φ(s)ds = 0,

where we used assumption (4.15).

Note that condition (4.16) is automatically satisfied if our kernel φ has compact support.

4.2.4 A Kernel Construction Scheme
With Lemma 4.23 in mind, we now want to give a simple way to construct radial kernel functions
satisfying the moment condition of arbitrary order. For that, we follow the ideas of [BM85], see
also [MB02] and [RW16] by constructing a linear combination of scaled kernel functions. Suppose
that m ∈ N. Consider the kernel as a linear combination of scaled functions, i.e. consider

φ(s) =
m∑
j=1

λjψ

(
s

aj

)
, s ∈ [0,∞[, (4.17)
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with λj ∈ R for 1 ≤ j ≤ m, 0 < a1 < a2 < . . . < am ∈ R and ψ : [0,∞[→ R be a function
with compact support. With this kind of kernel, we can change the conditions on the kernel from
Lemma 4.23 to conditions on the parameters λ and a. Inserting (4.17) into condition (4.14), we
find the new condition

m∑
j=1

λja
d
j =

Γ
(
d
2
)

2πd/2

 ∞∫
0

sd−1ψ(s)ds

−1

=: c0.

Furthermore, condition (4.15) will be satisfied if
m∑
j=1

λja
2k+d
j = 0

for all 1 ≤ k ≤ m − 1 . Since we have m equations for our conditions, we receive the following
linear system 

ad1 ad2 ad3 · · · adm
a2+d

1 a2+d
2 a2+d

3 · · · a2+d
m

a4+d
1 a4+d

2 a4+d
3 · · · a4+d

m
...

...
...

. . .
...

a2m−2+d
1 a2m−2+d

2 a2m−2+d
3 · · · a2m−2+d

m




λ1
λ2
λ3
...
λm

 =


c0
0
0
...
0

 . (4.18)

To simplify this system we will transfer the adj from the matrix to the vector and denote λjadj by
λ̃j . Then, we have the system

1 1 1 · · · 1
a2

1 a2
2 a2

3 · · · a2
m

a4
1 a4

2 a4
3 · · · a4

m
...

...
...

. . .
...

a2m−2
1 a2m−2

2 a2m−2
3 · · · a2m−2

m




λ̃1
λ̃2
λ̃3
...
λ̃m

 =


c0
0
0
...
0

 . (4.19)

The matrix we received is nothing else than a transposed Vandermonde matrix for the distinct
numbers a2

1, a
2
2, . . . , a

2
m, which means that unique solvability is given.

Proposition 4.24
Let m ∈ N, aj > 0 be pairwise distinct for 1 ≤ j ≤ m and c0 ∈ R. Then, the system given in
(4.18) has exactly one solution. Furthermore, the coefficients λj are given by

λj = c0
adj

m∏
k=1
k 6=j

a2
k

a2
k − a2

j

= (−1)j−1 c0
adj

a2
1 · · · a2

j−1a
2
j+1 · · · a2

m

(a2
j − a2

1) · · · (a2
j − a2

j−1)(a2
j+1 − a2

j ) · · · (a2
m − a2

j )

for 1 ≤ j ≤ m.

Proof. Let λ̃j = adjλj and ãj = a2
j for 1 ≤ j ≤ m and denote the matrix given in equation

(4.19) by A. Since the ãj are pairwise distinct for 1 ≤ j ≤ m, the determinant of the transposed
Vandermonde-matrix A, given by det(A) =

∏
1≤j<k≤m (ãk − ãj), is different from zero and the

solution of system (4.19) can be calculated by Cramers rule via

λ̃j = det(Aj)
det(A) ,
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where the matrices Aj result from A by replacing the j-th column with the right-hand side of
equation (4.18). For the determinant of Aj we conclude

det(Aj) =

∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 c0 1 · · · 1
ã1 · · · ãj−1 0 ãj+1 · · · ãm
ã2

1 · · · ã2
j−1 0 ã2

j+1 · · · ã2
m

...
...

...
...

...
. . .

...
ãm−1

1 · · · ãm−1
j−1 0 ãm−1

j+1 · · · ãm−1
m

∣∣∣∣∣∣∣∣∣∣∣
= c0(−1)j

∣∣∣∣∣∣∣∣∣
ã1 · · · ãj−1 ãj+1 · · · ãm
ã2

1 · · · ã2
j−1 ã2

j+1 · · · ã2
m

...
...

...
...

. . .
...

ãm−1
1 · · · ãm−1

j−1 ãm−1
j+1 · · · ãm−1

m

∣∣∣∣∣∣∣∣∣
= c0(−1)j

 ∏
1≤k≤m
k 6=j

ãk


∣∣∣∣∣∣∣∣∣

1 · · · 1 1 · · · 1
ã1 · · · ãj−1 ãj+1 · · · ãm
...

...
...

...
. . .

...
ãm−2

1 · · · ãm−2
j−1 ãm−2

j+1 · · · ãm−2
m

∣∣∣∣∣∣∣∣∣
= c0(−1)j

 ∏
1≤k≤m
k 6=j

ãk


 ∏

1≤i<k≤m
i,k 6=j

(ãk − ãi)

 ,

which completes the proof.

This construction method of the kernel gives us a very simple way to satisfy the moment condition
of arbitrary order. Moreover, this construction is, except for the constant c0, independent of the
choice for the function ψ. However, a few problems arise along this construction. We have to be
very careful not to violate other properties of the kernel Φ. In particular, Φ has to remain positive
definite and has to have a convolution root.
Unfortunately, to keep these two properties, new conditions on the function ψ, the parameters
aj and m will appear. To keep Φ positive definite, the d-dimensional Fourier transform of ψ has
to be decreasing and (λ̃j)mj=1 = (λjadj )mj=1 have to be a monotonically decreasing sequence in the
absolute value, i.e. |λ̃j | > |λ̃j+1| for 1 ≤ j ≤ m− 1. This leads us to the following result.
Lemma 4.25
Let ψ ∈ C([0,∞[), so that s 7→ sd−1ψ(s) ∈ L1(Rd), be positive definite on Rd with a decreasing
d-dimensional Fourier transform. Let m ∈ N and 0 < a1 < a2 . . . < am so that (|λ̃j |)mj=1 =
(|λj |adj )mj=1 is a monotonically decreasing sequence and let λ̃j > 0 if j is odd. Then, φ, defined in
(4.17) is positive definite on Rd.
Furthermore, if Fdψ is positive in [0,∞[, then Fdφ is also positive in [0,∞[.

Proof. First of all, let m be even. The d-dimensional Fourier transformation of φ can be written
as

Fdφ(s) =
m∑
j=1

λ̃jFdψ (ajs) = c

m/2∑
j=1

(
λ̃2j−1Fdψ (a2j−1s) + λ̃2jFdψ (a2js)

)
,

where we split up the sum in terms with odd and even indices, respectively. Using that λ̃j is
positive if j is odd, we have λ̃2j−1 > |λ̃2j |. Moreover, since Fdψ is decreasing, meaning in particular
Fdψ (a2j−1s) ≥ Fdψ (a2js) for all s > 0 and 1 ≤ j ≤ m/2, we have

λ̃2j−1Fdψ (a2j−1s) > |λ̃2j |Fdψ (a2js) ,
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and hence Fdφ(s) > 0. Now, let m be odd. Then, we have

Fdφ(s) = c

m−1∑
j=1

λ̃jFdψ (ajs) + λ̃mFdψ (ams) ,

where the sum is positive according to the case where m was even. The second term is also positive,
since λm is positive if m is odd.

For the sake of simplicity, we now choose a ∈ Rm to be equidistant, more precisely aj = bj for a
fixed b > 0 and for 1 ≤ j ≤ m. Then, we can calculate λ̃j via

λ̃j = c0

m∏
k=1
k 6=j

(bk)2

(bk)2 − (bj)2 = c0

m∏
k=1
k 6=j

k2

k2 − j2 = c0

m∏
k=1
k 6=j

k

k − j
k

k + j

= c0
(m!)2

j2

(
j−1∏
k=1

1
k − j

) m∏
k=j+1

1
k − j

(2j
m∏
k=1

1
k + j

)

= (−1)j−12c0
(m!)2

j

(
j−1∏
k=1

1
k

)(
m−j∏
k=1

1
k

) m+j∏
k=1+j

1
k


= (−1)j−12c0

m!
(m+ j)!

m!
(m− j)!

= (−1)j−12c0
j∏

k=1

m+ 1− k
m+ k

.

With this representation for λ̃j , which is independent of the choice of b, we can easily verify that
λ̃j = −m+1−j

m+j λ̃j−1. Since m+1−j
m+j < 1, (|λ̃j |)mj=1 is a monotonically decreasing sequence. Moreover,

since λ̃1 is positive, λ̃1 is positive if j is odd. Hence, the sequence (|λj |)mj=1 from Proposition 4.24
can be used to construct φ.
Finally, it remains to derive a condition on ψ so that Φ, resulting from the construction in (4.17),
satisfies the approximation condition. This is the case if ψ itself satisfies a kind of approximation
condition.
Lemma 4.26
Let ψ ∈ C1([0,∞[) be positive definite on Rd with compact support and a decreasing d-dimensional
Fourier transform. Let aj = bj for a given b > 0, 1 ≤ j ≤ m and λj from Proposition 4.24.
Assume there exists a constant C > 0 such that∣∣∣∣ dkdsk sFdψ(s)

∣∣∣∣ ≤ CFdψ(s), s ∈ [0,∞[, (4.20)

for all 1 ≤ k ≤ L. Then, Φ = φ(‖·‖2) with φ defined in (4.17) satisfies the approximation condition
of order L.

Proof. First we note that φ ∈ C1([0,∞[) has compact support. Moreover, as we have shown
before Lemma 4.26, (|λ̃j |)mj=1 is a monotonically decreasing sequence and λj is positive if j is odd.
Since ψ is positive definite with decreasing d-dimensional Fourier transform, Lemma 4.25 states
that φ is positive definite.
To apply Lemma 4.21 it remains to show that∣∣∣∣ dkdsk sFdφ(s)

∣∣∣∣ ≤ CFdφ(s), s ∈ [0,∞[,
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for all 1 ≤ k ≤ L. Inserting the definition of φ, we achieve∣∣∣∣ dkdsk sFdφ(s)
∣∣∣∣ =

∣∣∣∣∣∣ d
k

dsk
s

m∑
j=1

λja
d
jFdψ(saj)

∣∣∣∣∣∣
≤

m∑
j=1
|λ̃j |

∣∣∣∣ dkdsk sFdψ(saj)
∣∣∣∣

≤
m∑
j=1
|λ̃j ||ak−1

j |
∣∣∣∣ dkdrk rFdψ(r)

∣∣∣
r=saj

∣∣∣∣
≤ C|ak−1

m |
m∑
j=1
|λ̃j |Fdψ(saj)

for all s ≥ 0 and 1 ≤ k ≤ L, where we used the assumption (4.20). To complete the proof, we have
to show that there exists a C̃ > 0 with

∑m
j=1 |λ̃j |Fdψ(saj) ≤ C̃

∑m
j=1 λ̃jFdψ(saj) = C̃Fdφ(s), or

m∑
j=1

(
C̃λ̃j − |λ̃j |

)
Fdψ(saj) ≥ 0, s ≥ 0. (4.21)

According to Lemma 4.25, inequality (4.21) holds if (|C̃λ̃j −|λ̃j ||)mj=1 is a decreasing sequence. We
recall the properties of λ̃j . As we have shown before Lemma 4.26, λ̃j = −m+1−j

m+j λ̃j−1 and λj is
positive if and only if j is odd, otherwise λj is negative. With this, assuming that C̃ ≥ 1, we have

C̃λ̃j − |λ̃j | =
{

(C̃ + 1)λ̃j , j is even,
(C̃ − 1)λ̃j , j is odd,

which shows that C̃λ̃j − |λ̃j | is positive if j is odd. Moreover, if j is odd, we have

|C̃λ̃j − |λ̃j || = (C̃ − 1)|λ̃j | = (C̃ − 1)m+ 1− j
m+ j

|λ̃j−1| < (C̃ + 1)|λ̃j−1|,

which is true for every C̃ > 1 since (m+ 1− j)/(m+ j) < 1. If, however, j is even we have

|C̃λ̃j − |λ̃j || = (C̃ + 1)|λ̃j | = (C̃ + 1)m+ 1− j
m+ j

|λ̃j−1| < (C̃ − 1)|λ̃j−1|,

which is true for every C̃ satisfying C̃ > (2m + 1)/(2j − 1) for 1 ≤ j ≤ m, so that C̃ > 2m + 1
suffices to ensure that inequality (4.21) holds. Applying Lemma 4.21 completes the proof.

We will finish this section with our final result which unites all conditions on ψ, so that our
corresponding radial kernel Φ satisfies the condition from Theorem 4.20.
Theorem 4.27
Let ψ ∈ C([0,∞[) be positive definite on Rd with compact support and a decreasing d-dimensional
Fourier transform. Let m ∈ N and L ≥ bd/2c+ 1. Assume there exists a constant C > 0 such that∣∣∣∣ dkdsk sFdψ(s)

∣∣∣∣ ≤ CFdψ(s), s ∈ [0,∞[, (4.22)

for all 1 ≤ k ≤ L. Let Φ be defined as in (4.17) with aj = bj for a given b > 0, 1 ≤ j ≤ m and
let λj be determined as in Proposition 4.24. Then, the convolution root Φr from Lemma 4.14 is
in L1(Rd), satisfies the moment condition of order 2m and the approximation condition of order
L− 1.
If ψ(‖ · ‖) is in addition in W 2σ,2(Rd) for σ > d/4, then Φr ∈W τ,1(Rd) for all τ < σ − d/4.
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Proof. With the given properties we know that Φ defined as in (4.17) is a continuous, positive
definite function with compact support that satisfies the moment condition of order 2m according
to Lemma 4.23 and the approximation condition of order L according to Lemma 4.26. Theorem
4.20 gives us the existence of Φr with the required properties.

4.3 The Wendland Radial Basis Functions

In the last section, we derived a construction scheme for the convolution kernel Φ as a function
of an univariate kernel ψ. To complete this construction, we still need a class of nonnegative,
positive definite functions ψ ∈ C([0,∞[) with compact support and decreasing Fourier transforms,
satisfying the conditions of Theorem 4.27. Moreover, these functions should be easy to implement
and efficient to calculate.
The original Wendland functions, first derived in [Wen95], will be a good starting point to find
those kernels. It is a well-known fact that these functions are nonnegative, positive definite with
compact support. Furthermore, they can be constructed having any given smoothness. However,
it is not clear whether they have a decreasing Fourier transform and whether they satisfy the
approximation condition. For both conditions, we need to know the Fourier transform of the
Wendland functions. Unfortunately, the form of the Fourier transform of the Wendland functions
differs in even and odd spatial dimensions, whereby especially the case for odd space dimension
becomes technical. Nevertheless, we will provide an extension of the original Wendland functions
such that they have a decreasing Fourier transform and satisfy the approximation condition of any
order in even and in odd space dimension.
This theory can easily be transfered to the missing Wendland functions, see [Sch11], by a simple
dimension step argument. Hence, we provide an extension for the missing Wendland functions such
they have a decreasing Fourier transform and satisfy the approximation condition of any order.
First of all, we will give a generalized theory of the Wendland functions.

4.3.1 The generalized Wendland functions
We will start with the basic construction of the generalized Wendland functions. For that, we will
need a special integral operator. For the following theory, see also [Sch11], [Che13] and [Hub12].

Definition 4.28
Let α ≥ 0 and f be given such that s 7→ sf(s)(s2 − r2)α−1 is in L1([0,∞[) for all r ≥ 0. Then, the
operator Iα is defined by

Iαf(r) =

 1
2α−1Γ(α)

∞∫
r

sf(s)(s2 − r2)α−1ds, α 6= 0,

f(r), α = 0,

for all r ≥ 0.

This operator has some important properties we will derive. To show these properties, we will
need the following two equations which can be found in [GR00, 3.196.3] and [GR00, 6.567.1].

Lemma 4.29
i) Let b > a and µ, ν ∈ C with Re(µ) > 0 and Re(ν) > 0. Then, the following equation holds

b∫
a

(s− a)µ−1(b− s)ν−1ds = Γ(µ)Γ(ν)
Γ(µ+ ν) (b− a)µ+ν−1.

74



The Wendland Radial Basis Functions

ii) Let b > 0 and µ, ν ∈ C with Re(µ) > −1 and Re(ν) > −1. Then, the following equation holds

1∫
0

tν+1Jν(bt)(1− t2)µdt = 2µΓ(µ+ 1)b−(µ+1)Jν+µ+1(b).

The first important property of the operator defined in Definition 4.28 is additivity in the parameter
α. The linearity in f is clear since the integral is a linear operator itself.

Lemma 4.30
Let α, β ≥ 0 and f such that s 7→ sf(s)(s2 − r2)γ−1 is in L1([0,∞[) for γ ∈ {α, β, α+ β}. Then

IαIβf(r) = Iα+βf(r)

for all r ≥ 0.

Proof. For α = 0 or β = 0 there is nothing to show. Hence, we suppose that α, β > 0. First of
all, we insert the definition of Iα and Iβ . Thus, we have

IαIβf(r) = 1
2α−1Γ(α)

∞∫
r

sIβf(s)(s2 − r2)α−1ds

= 1
2α+β−2Γ(α)Γ(β)

∞∫
r

s

∞∫
s

tf(t)(t2 − s2)β−1dt(s2 − r2)α−1ds.

We will use Cα,β := (2α+β−2Γ(α)Γ(β))−1 as an abbreviation. By reordering the integral, we
conclude

IαIβf(r) = Cα,β

∞∫
r

∞∫
s

s(s2 − r2)α−1(t2 − s2)β−1tf(t)dtds

= Cα,β

∞∫
r

tf(t)
t∫
r

s(s2 − r2)α−1(t2 − s2)β−1dsdt,

where we changed the order of integration using Fubini’s theorem. Note, that we had to adjust
the integration boundaries. Substituting s by

√
s implies

IαIβf(r) = Cα,β

∞∫
r

tf(t)1
2

t2∫
r2

(s− r2)α−1(t2 − s)β−1dsdt.

From Lemma 4.29 i) we know the latter integral. Inserting this gives us

IαIβf(r) = Cα,β
2

∞∫
r

tf(t)Γ(α)Γ(β)
Γ(α+ β) (t2 − r2)α+β−1dt

= 1
2α+β−1Γ(α+ β)

∞∫
r

tf(t)(t2 − r2)α+β−1dt

= Iα+βf(r),

which completes the proof.
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The operator Iα has a very useful property in combination with the Fourier transformation Fd of
radial functions given in Theorem 4.10.

Lemma 4.31
Let 0 ≤ α ≤ (d− 1)/2 and f such that s 7→ f(s)sd/2J(d−2)/2(rs) is in L1([0,∞[) for all r ≥ 0.
Then,

Fd−2αI
αf(r) = Fdf(r)

for all r ≥ 0.

Proof. For α = 0 there is nothing to show. Hence, let α > 0. We will start by inserting the
definition of the radial Fourier operator and the definition of the operator Iα. Hence,

Fd−2αI
αf(r) = r−

d−2α−2
2

∞∫
0

Iαf(t)t
d−2α

2 J d−2α−2
2

(rt)dt

= r−
d−2α−2

2

∞∫
0

1
2α−1Γ(α)

∞∫
t

sf(s)(s2 − t2)α−1ds t
d−2α

2 J d−2α−2
2

(rt)dt

= r−
d−2α−2

2

2α−1Γ(α)

∞∫
0

∞∫
t

sf(s)(s2 − t2)α−1t
d−2α

2 J d−2α−2
2

(rt)dsdt.

For the sake of simplicity, we will write ν = (d − 2α − 2)/2 and µ = α − 1. By changing the
order of integration with Fubini’s theorem, where we have to adjust the integration boundaries,
we conclude

Fd−2αI
αf(r) = r−ν

2µΓ(α)

∞∫
0

∞∫
t

sf(s)(s2 − t2)µtν+1Jν(rt)dsdt

= r−ν

2µΓ(α)

∞∫
0

sf(s)
s∫

0

tν+1Jν(rt)(s2 − t2)µdtds

= r−ν

2µΓ(α)

∞∫
0

f(s)sν+2µ+3
1∫

0

tν+1Jν(rst)(1− t2)µdtds,

where we substituted t by t/s in the last step. At this point we can use Lemma 4.29 ii) with b = rs
to arrive at

Fd−2αI
αf(r) = r−ν

2µΓ(α)

∞∫
0

f(s)sν+2µ+32µΓ(α)(rs)−(µ+1)Jν+µ+1(rs)ds

= r−ν−µ−1
∞∫

0

f(s)sν+µ+2Jν+µ+1(rs)ds

= r−
d−2

2

∞∫
0

f(s)s d2 J d−2
2

(rs)ds.

This completes the proof.

We will shortly review the last result. The operator Iα enables a form of dimension walk, which
means, for example, that we can calculate the d-dimensional Fourier transform of f by calculating
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the 1-dimensional Fourier transform of I(d−1)/2f . In particular, we will also make use of one-
dimensional steps where we have α = 1/2.
With this property in mind, we now give the definition of the generalized Wendland function. To
this end, we introduce the cutoff function (·)+, which is defined by

(x)+ =
{
x, x ≥ 0,
0, x < 0.

and recall the notation bxc, which denotes the largest integer less than or equal to x ∈ R.

Definition 4.32
Let α ≥ 0, µ > −1 and fµ defined by fµ(s) := (1 − s)µ+. The generalized Wendland functions are
given by

φµ,α(s) : .= Iα(fµ)(s) (4.23)

for s ≥ 0.

Note that : .= means that the generalized Wendland functions are defined up to a multiplicative
constant. This will be important later when we demand that φµ,α is normalized in some way. For
the greater part of the following theory, however, we will neglect this constant.
It is a well-known fact that these functions are positive definite on Rd for α ∈ N0/2 and µ ∈ N0 if
µ ≥ bd/2+αc+1, see [Sch11]. Moreover, Chernih [Che13] showed that these functions are positive
definite on Rd for α > 0 if and only if µ ≥ (d+ 1)/2 + α.
A very useful property of the generalized Wendland function is a combination of Lemma 4.30 and
Lemma 4.31, which enables the dimension walk introduced in Lemma 4.31.
Theorem 4.33
Let α ≥ 0, µ > −1 and 0 ≤ β ≤ (d− 1)/2. Then Fdφµ,α(r) = Fd−2βφµ,α+β(r) for all r ≥ 0.

Proof. By Definition 4.32, fµ has compact support, so that s 7→ sfµ(s)(s2 − r2)γ is in L1([0,∞[)
for all r > 0. Hence, using Lemma 4.30, φµ,α+β = Iβφµ,α holds. Moreover, using that φµ,α has
compact support, the map s 7→ φµ,αs

d/2J(d−2)/2(rs) is in L1([0,∞[) for all r > 0. Hence, applying
Lemma 4.31 completes the proof.

Theorem 4.33 allows to calculate the d-dimensional Fourier transform of the generalized Wendland
function φµ,α by calculating the one-dimensional Fourier transform of φµ,α+(d−1)/2. This dimension
walk is the key idea to determine the Fourier transform of the Wendland functions later on.
Another easy-to-show property is the monotonicity of the Fourier transform for specific µ. To
prove this, we will need the following lemma.
Lemma 4.34
Let f : [0,∞[→ R with r 7→ rd+af(r) ∈ L1(Rd) for a ∈ {−1, 0,+1}. Then,

−1
r

(Fdf)′(r) = Fd+2f(r)

for all r ≥ 0.

Proof. Using the dominated convergence theorem we may change the order of differentiation and
integration, to conclude

−1
r

(Fdf(r))′ = −1
r

r− d−2
2

∞∫
0

f(s)s d2 J d−2
2

(rs)ds

′

= −1
r

∞∫
0

f(s)sd
(
t−

d−2
2 J d−2

2
(t)
)′ ∣∣∣

t=rs
ds.
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With the equation (t−νJν(t))′ = −t−νJν+1(t), which can, for example, be found in [Wen04], we
arrive at

−1
r

(Fdf(r))′ = 1
r

∞∫
0

f(s)sd(rs)−
d−2

2 J d
2
(rs)ds

= r−
d
2

∞∫
0

f(s)s
d+2

2 J d
2
(rs)ds

= Fd+2f(r),

which completes the proof.

The monotonicity of the Fourier transform of Wendland’s functions was firstly showen by Chernih
in [Che13] with a more complicated proof. It can be shown that the generalized Wendland functions
are monotonically decreasing if µ is chosen large enough. This is a crucial property in the sense of
Theorem 4.27.
Theorem 4.35
Let α ≥ 0. Then, the d-dimensional Fourier transform of the generalized Wendland function φµ,α
is monotonically decreasing if µ ≥ bd/2 + αc+ 2.

Proof. We have to show that the derivative of Fdφµ,α is negative. With Lemma 4.34 we know
that (Fdφµ,α)′ (s) = −sFd+2φµ,α(s). For the (d + 2)-dimensional Fourier transform we have the
dimension step from Theorem 4.33 to go back to the d-dimensional Fourier transform. Hence, we
have Fd+2φµ,α = Fdφµ,α+1. Finally we have

(Fdφµ,α)′ (r) = −rFdφµ,α+1(r) < 0

for every r > 0, since φµ,α+1 is a positive definite function for all µ ≥ bd/2 + α+ 1c+ 1.

We defined the Wendland functions and derived some basic properties we will need. From now on,
we will consider two different cases, one in which α is assumed to be an integer and the other in
which α+ 1/2 is assumed to be an integer.
The final goal is to find functions ψ that satisfy the conditions in Theorem 4.27, that means,
among other things, that ψ is positive definite, has a decreasing d-dimensional Fourier transform
and satisfies a kind of approximation condition (4.22). While the first two conditions are satisfied
by the general Wendland functions, the approximation condition (4.22) is a little bit harder to
achieve. For this, we will calculate an explicit formula of the Fourier transform, and will show
that (4.22) holds. Moreover, we will differ between the original Wendland functions (α = k and
µ = bd/2c+k+1) and the missing Wendland functions (α = k+1/2 and µ = b(d+1)/2c+k+1).

4.3.2 The original Wendland functions
The original Wendland functions were first proposed in 1995 by Wendland in [Wen95]. These
functions are given by equation (4.23) with α = k for a k ∈ N and µ = bd/2c+ k + 1, i.e.

ψd,k := φb d2 c+k+1,k = Ikfb d2 c+k+1.

In our case, we need an extended version of the original Wendland functions. Let l ≥ 0. We define
the extended original Wendland functions by

ψd,k,l := φb d2 c+k+l+1,k = Ikfb d2 c+k+l+1.

We will write µ = bd/2c+ k+ 1 since it is a frequently used parameter in the context of Wendland
functions. If l = 0, then ψd,k,0 = ψd,k, which means that the original Wendland functions are
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a special case of the extended original Wendland functions. Note, that the new parameter l can
also be seen as an increment of the spatial dimension of the Wendland functions, since we have
ψd,k,l = ψd+2l,k for l ∈ N. Thus, all we do is considering original Wendland functions of higher
spatial dimension in lower dimensional spaces. Note, that ψd,k,l possess 2k continuous derivatives
around 0, like the original ones, but bd/2c+ 2k + l = µ+ k + l − 1 continuous derivatives around
1, l more than the original Wendland functions.
We will start with arbitrary spatial dimension. Later on, when we have to calculate the Fourier
transform of the extended original Wendland functions, we have to differ between even and odd
spatial dimension.
To calculate the Fourier transform analytically, we need a closed form representation of the Wend-
land functions. Such a closed representation was first given by Hubbert in [Hub12]. We will extend
this representation to include the new parameter l as follows.

Lemma 4.36
Let l, k ∈ N0 and µ = bd/2c+ k + 1. Then, the extended Wendland function can be written as

ψd,k,l(r) = φµ+l,k(r) = 1
2kk! (1− r)

µ+l+k
+

k∑
j=0

(
k
j

)(
µ+l+k+j
k+j

)2k−jrk−j(1− r)j

for r ≥ 0.

Proof. Hubbert proved the formula for l = 0 in [Hub12]. Since the parameter l can be interpreted
as an increase of the spatial dimension, i.e. ψd,k,l = ψd+2l,k, the formula is also valid for arbitrary
l ∈ N.

Lemma 4.36 gives us a representation of the extended Wendland kernels of the form

ψd,k,l = (1− r)bd/2c+2k+l+1
+ p(r),

where p is a polynomial of degree k. With this formula, it is obvious that the first bd/2c+ 2k + l
derivatives will vanish at r = 1.
Corollary 4.37
Let l, k ∈ N0. Then

ψ
(n)
d,k,l(1) = 0

for all 0 ≤ n ≤ bd/2c+ 2k + l.

Chernih [Che13] simplified the representation from Lemma 4.36 to the following, general result.

Theorem 4.38
Let l, k ∈ N0 and ν ∈ N with ν ≥ (d+ 2k + 1)/2. Then, the Wendland functions are given by

φν,k(r) = 2kk!ν!
(ν + 2k)!

ν+2k∑
j=0

(−1)k+j
(
ν + 2k
j

)( j−1
2
k

)
rj

for all 0 ≤ r ≤ 1, where we used the generalized binomial coefficient

(
a

k

)
:=


a(a−1)···(a−(k−1))

k! , k > 0,
1, k = 0,
0, k < 0,

for a ∈ C.

Proof. For the proof of this formula, see [Che13].

79



Kernel Construction

This formula holds in particular for the extended original Wendland functions ψd,k,l = φµ+l,k with
ν = µ+ l ≥ (d+ 2k + 1)/2 for all l ∈ N0. By combining the constants of the previous formula, we
can finally write the extended original Wendland functions as follows.

Corollary 4.39
Let l, k ∈ N0 and µ = bd/2c+ k + 1. Then, the extended Wendland functions are given by

ψd,k,l(r) = Cd,k,l

µ+2k+l∑
j=0

ad,k,l,jr
j

for all 0 ≤ r ≤ 1, with

ad,k,l,j = (−1)k+j
(
µ+ 2k + l

j

)( j−1
2
k

)
and

Cd,k,l = 2kk!(µ+ l)!
(µ+ 2k + l)! .

Note that ad,k,l,j = 0 if (j − 1)/2 − k is a negative integer because of the appearing generalized
binomial coefficient.
Furthermore, from Corollary 4.37 we know that the first bd/2c+ 2k+ l derivatives vanish at r = 1.
This gives us the following relations for the parameters ad,k,l,j .

Corollary 4.40
Let l, k ∈ N0 and µ = bd/2c+ k + 1. Then

µ+2k+l∑
j=n

ad,k,l,j
j!

(j − n)! = 0.

for all 0 ≤ n ≤ bd/2c+ 2k + l = µ+ k + l − 1.

The formula in Corollary 4.39 will serve us as a starting point for the calculation of the Fourier
transform of the extended original Wendland functions. From this point, we have to differ between
even and odd space dimensions.

The original Wendland function in odd space dimension
Next, we will restrict ourselves to odd space dimension. Note that in this case we have bd/2c =
(d− 1)/2. As we will see, we will need the following integrals.

Lemma 4.41
Let j ∈ N0. Then, the following equation holds

1∫
0

sj cos(sr)ds = sin(r)
b j2 c∑
n=0

(−1)n j!
(j − 2n)!r

−(2n+1)

+ cos(r)
b j−1

2 c∑
n=0

(−1)n j!
(j − 2n− 1)!r

−(2n+2)

+
(
j − 2

⌊
j

2

⌋)
(−1)

j+1
2 j!r−(j+1)

(4.24)

for all r > 0.
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Remark
Note that in the term j − 2

⌊
j
2
⌋

is zero if j is even, so that the last term of (4.24) vanishes in this
case. Hence, (−1)(j+1)/2 has not to be defined for even j.

Proof. We will denote the integrals with

Cj(r) :=
1∫

0

sj cos(sr)ds.

We will give the proof by induction, where we will first show that the formula above is correct for
j = 0 and j = 1, and then do an induction step from j− 2 to j. For j = 0, we can simply calculate
the integral by

C0(r) = 1
r

sin(r).

For j = 1, we use partial integration to arrive at

C1(r) = 1
r

sin(r) + 1
r2 cos(r)− 1

r2 ,

where we see that formula (4.24) is correct. Now suppose that the formula is correct for Cj−2. For
Cj , using partial integration twice, we derive

Cj(r) = 1
r

sin(r)− j

r

1∫
0

sj−1 sin(rs)ds

= 1
r

sin(r) + j

r2 cos(r)− j(j − 1)
r2 Cj−2(r).

Now, we want to use the induction hypothesis and insert Cj−2. To differ between the terms
occurring in Cj−2, we will split up the term to Cj−2(r) = Cj−2,sin(r) + Cj−2,cos(r) + Cj−2,0(r).
Hence, for the term that contains the sinus terms, we have

1
r

sin(r)− j(j − 1)
r2 Cj−2,sin(r) = 1

r
sin(r)− j(j − 1)

r2 sin(r)
b j−2

2 c∑
n=0

(−1)n (j − 2)!
(j − 2− 2n)!r

−(2n+1)

= sin(r)

1
r

+
b j2 c−1∑
n=0

(−1)n+1 j!
(j − 2− 2n)!r

−(2n+3)


= sin(r)

1
r

+
b j2 c∑
n=1

(−1)n j!
(j − 2n)!r

−(2n+1)


= sin(r)

b j2 c∑
n=0

(−1)n j!
(j − 2n)!r

−(2n+1).

In the same way we can combine the parts containing the cosinus terms. For the remaining third
term Cj−2,0, we note that (j − 2)− 2 b(j − 2)/2c = j − 2 bj/2c, which completes the proof.

With the calculated integrals we can give a closed form representation of the Fourier transform of
the extended original Wendland functions in odd space dimensions.
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Theorem 4.42
Let d ∈ N be odd, k, l ∈ N0 and µ = (d− 1)/2 +k+ 1. Then, the Fourier transform of the extended
Wendland function is given by

Fdψd,k,l(r) =
√

2
π
Cd,k+ d−1

2 ,l− d−1
2

(
sin(r)

bµ+l
2 c−b

l
2 c−1∑

n=0
b1,d,k,l,nr

−(2b l2 c+2µ+2n+1)

+ cos(r)
bµ+l−1

2 c−b l−1
2 c−1∑

n=0
b2,d,k,l,nr

−(2b l−1
2 c+2µ+2n+2)

+
bµ+l−1

2 c∑
n=0

b3,d,k,l,nr
−(2n+2µ)

)
,

where the coefficients are given by

b1,d,k,l,n = (−1)b l2 c+µ+n
3µ+l−2∑

j=2b l2 c+2µ+2n

ad,k+ d−1
2 ,l− d−1

2 ,j

j!
(j − 2b l2c − 2µ− 2n)!

,

b2,d,k,l,n = (−1)b
l−1
2 c+µ+n

3µ+l−2∑
j=2b l−1

2 c+2µ+2n+1

ad,k+ d−1
2 ,l− d−1

2 ,j

j!
(j − 2b l−1

2 c − 2µ− 2n− 1)!
,

b3,d,k,l,n = (−1)µ+nad,k+ d−1
2 ,l− d−1

2 ,2n+2µ−1(2n+ 2µ− 1)!.

Proof. Taking the d-dimensional Fourier transform of ψd,k,l, we can step through the dimension
via Theorem 4.33 and arrive at

Fdψd,k,l(r) = Fdφµ+l,k(r) = F1φµ+l,k+ d−1
2

(r) = F1ψd,k+ d−1
2 ,l− d−1

2
(r),

where we just have to calculate the one-dimensional Fourier transform of ψd,k+ d−1
2 ,l− d−1

2
. Now we

denote k′ = k+ d−1
2 and l′ = l− d−1

2 and µ′ = d−1
2 +k′+1. Recalling Corollary 4.39, the extended

Wendland functions can be written as

ψd,k′,l′(r) = φµ′+l′,k′(r) = Cd,k′,l′
2k′+µ′+l′∑

j=0
ad,k′,l′,jr

j , r ∈ [0, 1].

Note that k′ and l′ are integer since d is odd, so that using Corollary 4.39 is allowed. Using the
one dimensional radial Fourier transform (4.4) then yields

Fdψd,k,l(r) =
√

2
π
Cd,k′,l′

2k′+µ′+l′∑
j=0

ad,k′,l′,j

1∫
0

sj cos(sr)ds.

By inserting the integrals from Lemma 4.41, the sum that occurs in the Fourier transform becomes

2k′+µ′+l′∑
j=0

ad,k′,l′,j

1∫
0

sj cos(rs)ds = sin(r)A(r) + cos(r)B(r) + C(r),

where the functions A, B and C are given by

A(r) =
2k′+µ′+l′∑

j=0

b j2 c∑
n=0

(−1)nad,k′,l′,j
j!

(j − 2n)!r
−(2n+1),

B(r) =
2k′+µ′+l′∑

j=1

b j−1
2 c∑

n=0
(−1)nad,k′,l′,j

j!
(j − 2n− 1)!r

−(2n+2)
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and

C(r) =
2k′+µ′+l′∑

j=0
ad,k′,l′,j

(
j − 2

⌊
j

2

⌋)
(−1)

j+1
2 j!r−(j+1).

Note, that we start the summation over j in B at 1 since for j = 0 there are no terms. By changing
the order of summation we obtain for A

A(r) =
b 2k′+µ′+l′

2 c∑
n=0

2k′+µ′+l′∑
j=2n

(−1)nad,k′,l′,j
j!

(j − 2n)!r
−(2n+1)

=
b 2k′+µ′+l′

2 c∑
n=0

(−1)nr−(2n+1)
2k′+µ′+l′∑
j=2n

ad,k′,l′,j
j!

(j − 2n)! .

We know from Corollary 4.40 that the second sum vanishes for 0 ≤ 2n ≤ µ′ + k′ + l′ − 1. So the
first inner sum, which does not vanish is for n = (µ′ + k′ + l′)/2, if the numerator is even, and
n = (µ′ + k′ + l′ + 1)/2, if the numerator is odd. Hence, we have

A(r) =
b 2k′+µ′+l′

2 c∑
n=bµ′+k′+l′+1

2 c

(−1)nr−(2n+1)
2k′+µ′+l′∑
j=2n

ad,k′,l′,j
j!

(j − 2n)! .

Now we want to change the parameters back to k and l. Using µ′ + l′ = µ + l and k′ = µ − 1
yields b 2k′+µ′+l′

2 c = b 3µ+l−2
2 c = bµ+l

2 c+µ− 1 and bµ
′+k′+l′+1

2 c = b 2µ+l
2 c = b l2c+µ. Inserting the

change of parameters, we derive

A(r) =
bµ+l

2 c+µ−1∑
n=b l2 c+µ

(−1)nr−(2n+1)
3µ+l−2∑
j=2n

ad,k′,l′,j
j!

(j − 2n)!

=
bµ+l

2 c−b
l
2 c−1∑

n=0
b1,d,k,l,nr

−(2b l2 c+2µ+2n+1),

where we shifted the index n and used the coefficients given by

b1,d,k,l,n = (−1)b l2 c+µ+n
3µ+l−2∑

j=2b l2 c+2µ+2n

ad,k′,l′,j
j!

(j − 2b l2c − 2µ− 2n)!
.

We will apply the same procedure to B. Again, by changing the order of summation we have

B(r) =
bµ
′+2k′+l′−1

2 c∑
n=0

µ′+2k′+l′∑
j=2n+1

(−1)nad,k′,l′,j
j!

(j − 2n− 1)!r
−(2n+2)

=
bµ
′+2k′+l′−1

2 c∑
n=0

(−1)nr−(2n+2)
µ′+2k′+l′∑
j=2n+1

ad,k′,l′,j
j!

(j − 2n− 1)! .

The second sum vanishes again for 0 ≤ 2n+1 ≤ µ′+k′+ l′−1 according to Corollary 4.40. Hence,

B(r) =
bµ
′+2k′+l′−1

2 c∑
n=bµ′+k′+l′2 c

(−1)nr−(2n+2)
µ′+2k′+l′∑
j=2n+1

ad,k′,l′,j
j!

(j − 2n− 1)! .
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Now, we change back the parameters to the original ones. For the borders of the sum we have
bµ
′+2k′+l′−1

2 c = b 3µ+l−3
2 c = bµ+l−1

2 c+µ− 1 and bµ
′+k′+l′

2 c = b 2µ+l−1
2 c = b l−1

2 c+µ. We arrive at

B(r) =
bµ+l−1

2 c+µ−1∑
n=b l−1

2 c+µ

(−1)nr−(2n+2)
3µ+l−2∑
j=2n+1

ad,k′,l′,j
j!

(j − 2n− 1)!

=
bµ+l−1

2 c−b l−1
2 c−1∑

n=0
b2,d,k,l,nr

−(2b l−1
2 c+2µ+2n+2),

where we used the coefficient

b2,d,k,l,n = (−1)b
l−1
2 c+µ+n

3µ+l−2∑
j=2b l−1

2 c+2µ+2n+1

ad,k′,l′,j
j!

(j − 2b l−1
2 c − 2µ− 2n− 1)!

Finally, we have to rewrite the function C. Since j − 2
⌊
j
2
⌋

is 1 if and only if j is odd and 0 if j is
even, we conclude

C(r) =
bµ
′+2k′+l′−1

2 c∑
j=0

ad,k′,l′,2j+1(−1)j+1(2j + 1)!r−(2j+2).

We note that ad,k′,l′,2j+1 = 0 if j < µ− 1 since
(
j

µ−1
)

= 0. Hence, we arrive at

C(r) =
bµ+l−1

2 c+µ−1∑
j=µ−1

ad,k′,l′,2j+1(−1)j+1(2j + 1)!r−(2j+2)

=
bµ+l−1

2 c∑
j=0

ad,k′,l′,2j+2µ−1(−1)µ+j(2j + 2µ− 1)!r−(2j+2µ),

where we also returned to the original parameters. Setting the coefficient

b3,d,k,l,n = (−1)µ+nad,k+ d−1
2 ,l− d−1

2 ,2n+2µ−1(2n+ 2µ− 1)!

finishes the proof.

We derived a closed form representation of the extended Wendland functions in odd space dimen-
sions. Now our interest lies in the general form of the Fourier transform. As we can see from
Theorem 4.42, this form depends on whether the parameter l is odd or even.

Proposition 4.43
Let d ∈ N be odd, k, l ∈ N0 and µ = (d− 1)/2 + k + 1. Then

Fdψd,k,l(r) = r−(3µ+l−1) (p1,d,k,l(r) sin(r) + p2,d,k,l(r) cos(r) + qd,k,l(r)) , r ≥ 0,

where qd,k,l is a polynomial of degree µ+ l−1 and p1,d,k,l, p2,d,k,l are polynomials of degree at most
µ− 1.
To be more precise, either p1,d,k,l ∈ Πµ−2 and p2,d,k,l ∈ Πµ−1 if l is even or p1,d,k,l ∈ Πµ−1 and
p2,d,k,l ∈ Πµ−2 if l is odd.

Note carefully that the coefficient of the highest monomial part in q, given by b3,k,l,0, does not
vanish according to the definition of the coefficients ad,k,l,j given in Corollary 4.39. Hence, a notable
fact of Proposition 4.43 is that the polynomial qd,k,l has a degree higher by at least l than p1,d,k,l
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and p2,d,k,l. This fact will be important to prove that the extended original Wendland functions
satisfy the approximation condition.
As a direct consequence of Proposition 4.43, we know that the asymptotically behavior of Fdψd,k,l
has to be like r−2µ, in particular that Fdψd,k,l = Θ(r−2µ). Since Fdψd,k,l is positive, there exists
a C > 0 such that

Fdψd,k,l(r) ≥ Cr−2µ, r > 1. (4.25)

Using this representation, we can conclude two different properties of the extended original Wend-
land functions. The first one is about the regularity.

Lemma 4.44
Let d ∈ N be odd, k, l ∈ N0 and µ = (d− 1)/2 + k+ 1. Then, ψd,k,l(‖ · ‖2) belongs to Wσ,2(Rd) for
all σ < 2µ− d/2.

Proof. From Proposition 4.43 we know that

Fdψd,k,l = Θ(r−2µ)

for r →∞. Since Fdψd,k,l is continuous, there exists a C > 0 such that

Fdψd,k,l(r) ≤ C
1

(1 + r2)µ

for all r ≥ 0. Using this bound, we arrive at∫
Rd

(1 + ‖x‖22)σ|Fdψd,k,l(‖x‖2)|2dx ≤
∫
Rd

(1 + ‖x‖22)σ−2µdx <∞

which holds if σ − 2µ < −d/2.

The second property, which follows from inequality (4.25), is that the extended original Wendland
functions satisfy the approximation condition. Here, the previously mentioned difference in the
degree of the polynomial qd,k,l and the polynomials p1,d,k,l, p2,d,k,l becomes important.

Theorem 4.45
Let d ∈ N be odd, k ∈ N0 and l ∈ N. Then, for every L ∈ N there exists a constant CL > 0 such
that ∣∣∣∣ dndrn rFdψd,k,l(r)

∣∣∣∣ ≤ CLFdψd,k,l(r)
for all 1 ≤ n ≤ L and r ≥ 0.

Proof. In the following we will neglect the dependence of d, k and l and write e.g. p1 instead of
p1,d,k,l. We will assume L ≥ l without loss of generality.
Since Fdψd,k,l ∈ C∞([0,∞[) is positive and monotonically decreasing according to Theorem 4.35,
such a constant C can easily be found for r ≤ 1 and it suffices to show that the inequality holds
for all r > 1. According to Proposition 4.43, Fdψd,k,l has the form

Fdψd,k,l(r) = r−(3µ+l−1) (p(r) + q(r)) , r ≥ 0

with µ = (d− 1)/2 + k + 1, where we denoted p(r) = p1(r) sin(r) + p2(r) cos(r) for all r ≥ 0 with
p1, p2 ∈ Π≤µ−1 and q ∈ Πµ+l−1, where the set Π≤µ−1 denotes all polynomials with degree at least
µ− 1.
Hence, for an arbitrary derivative of order j ∈ N we have that q(j) ∈ Πµ+l−1−j and thus that there
exists a constant cq > 0 with |q(j)(r)| ≤ cqr

µ+l−1−j for all r > 1 if j ≤ µ+ l − 1 or q(j) ≡ 0 if
j > µ+ l − 1.
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The function p, however, does not change its form when we differentiate it. For the first derivative,
we have

p′(r) = (p′1(r)− p2(r)) sin(r) + (p′2(r) + p1(r)) cos(r)

where p′1 − p2, p
′
2 − p1 ∈ Π≤µ−1. Hence, for an arbitrary derivative of order j ≤ µ− 1, we have

that p(j)(r) = p̃1(r) sin(r) + p̃2(r) cos(r), where p̃1 and p̃2 have the same degree as p1 and p2, i.e.
p̃1, p̃2 ∈ Π≤µ−1. Thus, there exists a constant cp > 0 such that |p(j)(r)| ≤ cprµ−1 for all r > 1.
Hence, for an 1 ≤ n ≤ L, we can calculate the n-th derivative by

dn

drn
rFdψd,k,l(r) =

n∑
j=0

(
n

j

)
dn−j

drn−j
r−(3µ+l−2) d

j

drj
(p(r) + q(r))

=
n∑
j=0

cjr
−(3µ+l−2)−n+j

(
p(j)(r) + q(j)(r)

)
with certain nonvanishing constants cj . The considerations above show that for each 0 ≤ j ≤ n
we have |p(j)(r)| ≤ cprµ−1. Moreover, if 0 ≤ j ≤ l, then we have

|q(j)(r)| ≤ crµ+l−1−j , |p(j)(r)| ≤ crµ−1 ≤ crµ+l−1−j .

For j > l we have have on the one hand

|q(j)(r)| ≤ crµ−1,

if j ≤ µ+ l − 1 and, on the other hand, |q(j)(r)| = 0 ≤ crµ−1 if j > µ+ l − 1. Hence, we have∣∣∣∣ dndrn rFdψd,k,l(r)
∣∣∣∣ ≤ c l∑

j=0
r−(3µ+l−2)−n+jrµ+l−1−j +

n∑
j=l+1

r−(3µ+l−2)−n+jrµ−1

for all r > 1. The first sum simplifies to
∑l
j=0 r

−2µ−n+1 ≤ cr−2µ as n ≥ 1, r > 1. The second sum
becomes

n∑
j=l+1

r−2µ−n+j−l+1 =
n−l−1∑
j=0

r−2µ−n+j+2 ≤ cr−2µ−l+1 ≤ cr−2µ

since l ≥ 1. Using (4.25) finishes the proof.

Theorem 4.45 states that the extended original Wendland functions satisfy the approximation
condition of any order if the parameter l ≥ 1. Hence, it will be possible to eliminate the dependency
of the order of the approximation condition in Theorem 3.9.
Unfortunately, the proof does not hold for the original Wendland functions, where l = 0. Using
the notation from the proof of Theorem 4.45 and setting a = 3µ− 1, the derivative of rFdψd,k,0(r)
is given by

d

dr
(rFdψd,k,0(r)) = r−a

((
(−a+ 1)p1(r) + rp′1(r)− rp2(r)

)
sin(r)

+
(
(−a+ 1)p2(r) + rp1(r) + r(p′2(r)

)
cos(r) + (−a+ 1)q(r) + rq′(r)

)
.

In the case of l = 0, rp1(r) is a polynomial of degree µ− 1 and rp2(r) is a polynomial of degree µ.
Hence, d

dr (rFdψ3,1,0(r)) decays like r−a+µ=r−2µ+1, while Fdψd,k,0 itself decays like r−2µ. Hence,
a constant CL as given in Theorem 4.45 cannot be found for any L ≥ 1.

Theorem 4.46
Let d ∈ N be odd and k ∈ N0. The original Wendland functions ψd,k,0 do not satisfy condition
(4.22) of any order.
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Finally, we come to our main theorems of this chapter. The first result gives us the properties of
the extended original Wendland functions themselves without using the construction from equation
(4.17) for a higher moment condition. Nevertheless, since ψd,k,l(‖ · ‖2) is a radial and therefore
an even function, it satisfies automatically the moment condition of order 2. Note that this also
requires that ψd,k,l(‖ · ‖2) is normalized, i.e. that

∫
Rd ψd,k,l(‖x‖2)dx = 1. Since we defined the

generalized Wendland functions up to a multiplicative constant, we will choose this constant such
that the normalization is satisfied.
Theorem 4.47
Let d ∈ N be odd and k, l ∈ N. Then, the root kernel of the normalized extended original Wendland
function ψd,k,l(‖ · ‖2) exists, belongs to W k,1(Rd) ∩W k,2(Rd) and satisfies the moment condition
of order 2 and the approximation condition of any order L ∈ N.

Proof. We know that ψd,k,l has compact support and since k > 0, ψd,k,l is in C1([0,∞[). Hence,
using Theorem 4.45, Lemma 4.21 states that ψd,k,l(‖ · ‖2) satisfies the approximation condition of
any order L ∈ N.
Furthermore, from Lemma 4.44 we know that ψd,k,l(‖ · ‖2) ∈ W 2σ,2(Rd) for all σ < µ − d/4.
Lemma 4.15 then yields that the convolution root of ψd,k,l(‖ · ‖2) belongs to W τ,2(Rd) for all
τ < σ−d/4 < µ−d/2 = k+1/2, which includes τ = k. Since ψd,k,l, and hence its convolution root
satisfy an approximation condition of any order, Theorem 4.17 yields that the root kernel belongs
also to W k,1(Rd).

The next result takes advantage of the construction from equation (4.17) to satisfy the moment
condition of an arbitrary order. Here, the requirement l ≥ 1 to ensure that the Fourier trans-
form of the original extended Wendland functions is monotonically decreasing matches with the
requirement for the approximation condition.
Theorem 4.48
Let d ∈ N be odd and k, l ∈ N. Let m ∈ N and Φ = φ(‖ · ‖2) with φ be defined as in (4.17) with
ψ = ψd,k,l, aj = bj for a fixed b > 0, 1 ≤ j ≤ m and λj from Proposition 4.24.
Then, the convolution root Φr from Lemma 4.14 is in W k,1(Rd)∩W k,2(Rd), satisfies the moment
condition of order 2m and the approximation condition of any order L ∈ N.

Proof. We have to check the requirements of Theorem 4.27. First of all, ψd,k,l ∈ W 2σ,2(Rd),
with d/4 < σ < µ − d/4, has compact support, is positive definite and monotonically decreasing
according to Theorem 4.35. Moreover it satisfies inequality (4.22) for all L ∈ N. Applying Theorem
4.27 finishes the proof.

Note that if k > d/2, the Sobolev embedding theorem yields that Φr is also continuous. Hence,
using Theorem 4.48, we can finally complete the convergence result for the SPH method in odd
space dimensions. Note that we can eliminate the dependency of the order of the approximation
condition in the estimate. Hence, the convergence order of the SPH method only depends on the
smoothness of the kernel function and the order of the moment condition.
Corollary 4.49
Let d ∈ N be odd and k, l ∈ N with k > d/2. Let m ∈ N and Φ = φ(‖ · ‖2) with φ be defined as in
(4.17) with ψ = ψd,k,l, aj = bj for a fixed b > 0, 1 ≤ j ≤ m and λj from Proposition 4.24.
Assume initial data u0 ∈ Wσ,2(Rd)d and finite discrete mass with density ρ0 satisfying ρ

1/2
0 ∈

Wmax{σ,k},2(Rd) for a σ > m + 1 + d/2 and that the solution (u, ρ) of the Euler equations (3.1)
- (3.3) exists up to a time T > 0. Let (xε,hk ,uε,hk )k∈Zd be the solution of the weakly compressible
SPH equations (3.4) - (3.6).
Then, there exists a constant C > 0 such that the energy can be bounded by

Q(t) ≤ C
(
h2k

ε2k + ε2m
)
.

for all t ∈ [0, T ].

87



Kernel Construction

Of course, these results can also be transferred to pointwise convergence. Since nothing changes
at the error bound except for the omission of the parameter L, we just refer to Theorem 3.13 at
this point.
Thus, we derived a class of kernel functions that leads to convergence of the SPH method in
odd space dimensions. We would like to mention once again that these kernels consist of simple
polynomials, making them easy to implement and efficient to calculate. A few examples of such
kernel functions from Corollary 4.49, including the most useful ones, can be found in Table 4.1 for
m = 1 and Table 4.2.

k l Extended original Wendland functions ψ3,k,l
1 1 ψ3,1,1(r) .= (1− r)5

+(5r + 1)
2 ψ3,1,2(r) .= (1− r)6

+(6r + 1)
3 ψ3,1,3(r) .= (1− r)7

+(7r + 1)
2 1 ψ3,2,1(r) .= (1− r)7

+(16r2 + 7r + 1)
2 ψ3,2,2(r) .= (1− r)8

+(21r2 + 8r + 1)
3 ψ3,2,3(r) .= (1− r)9

+(80r2 + 27r + 3)
3 1 ψ3,3,1(r) .= (1− r)9

+(231r3 + 159r2 + 45r + 5)
2 ψ3,3,2(r) .= (1− r)10

+ (320r3 + 197r2 + 50r + 5)
3 ψ3,3,3(r) .= (1− r)11

+ (429r3 + 239r2 + 55r + 5)

Table 4.1: Extended original Wendland functions in d = 3 for various parameters of k and
l. These functions satisfy the moment condition of order m = 2 and the approximation
condition of any order L ∈ N. These functions can be used in the construction method
from (4.17).

m = 4 k Φ(r) .= 32ψ3,k,1(2r)− ψ3,k,1(r)
1 Φ(r) .= 32(1− 2r)5

+(10r + 1)− (1− r)5
+(5r + 1)

2 Φ(r) .= 32(1− 2r)7
+(64r2 + 14r + 1)− (1− r)7

+(16r2 + 7r + 1)
3 Φ(r) .= 32(1− 2r)9

+(1848r3 + 636r2 + 90r + 5)
−(1− r)9

+(231r3 + 159r2 + 45r + 5)
m = 6 k Φ(r) .= 1620ψ3,k,1(3r)− 81ψ3,k,1(2r) + 4ψ3,k,1(r)

1 Φ(r) .= 1620(1− 3r)5
+(15r + 1)− 81(1− 2r)5

+(10r + 1)
+4(1− r)5

+(5r + 1)
2 Φ(r) .= 1620(1− 3r)7

+(144r2 + 21r + 1)− 81(1− 2r)7
+(64r2 + 14r + 1)

+4(1− r)7
+(16r2 + 7r + 1)

3 Φ(r) .= 1620(1− 3r)9
+(6237r3 + 1431r2 + 135r + 5)

−81(1− 2r)9
+(1848r3 + 636r2 + 90r + 5)

+4(1− r)9
+(231r3 + 159r2 + 45r + 5)

Table 4.2: Extended original Wendland functions in d = 3 for l = 1 and various pa-
rameters of k. These functions satisfy the moment condition of order m = 4 or m = 6,
respectively, and the approximation condition of any order L ∈ N.

The original Wendland function in even space dimension
It this section, we want to show that the extended original Wendland functions satisfy condition
(4.22), and hence the approximation condition, also in even space dimensions. Note that we now
have bd/2c = d/2. Before we start to derive a closed form representation for the Fourier transform
in even space dimensions, we will need the following auxiliary results which can be found in [Rui96].
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Lemma 4.50
Let n ∈ N.

i) For all x ∈ R we have
n∑
j=0

(−1)j
(
n

j

)
(x− j)n = n!.

ii) For all 0 ≤ m < n we have
n∑
j=0

(−1)j
(
n

j

)
jm = 0.

Proof. Let fn(x) :=
∑n
j=0(−1)j

(
n
j

)
(x − j)n. We will proof the first equality by induction on n.

For n = 0, we easily see that
f0(x) = 1 = 0!.

Now let the assumption be true for n ∈ N. Then, by deriving fn+1 and extracting the terms for
j = 0 and j = n+ 1, we have

f ′n+1(x) = (n+ 1)
n+1∑
j=0

(−1)j
(
n+ 1
j

)
(x− j)n

= (n+ 1)

xn +
n∑
j=1

(−1)j
((

n

j

)
+
(

n

j − 1

))
(x− j)n + (−1)n+1(x− n− 1)n

 .

On the one hand, we have that

xn +
n∑
j=1

(−1)j
(
n

j

)
(x− j)n =

n∑
j=0

(−1)j
(
n

j

)
(x− j)n = fn(x).

On the other hand, shifting the summation index, we have

n∑
j=1

(−1)j
(

n

j − 1

)
(x− j)n + (−1)n+1(x− n− 1)n

= −
n−1∑
j=0

(−1)j
(
n

j

)
(x− j − 1)n + (−1)n+1(x− n− 1)n

= −
n∑
j=0

(−1)j
(
n

j

)
(x− j − 1)n

= −fn(x− 1).

Hence, we see that fn+1 is constant since its derivative vanishes. Using that
(
n+1
j

)
(n + 1 − j) =

(n+ 1)
(
n
j

)
we conclude

fn+1(x) = fn+1(n+ 1) =
n+1∑
j=0

(−1)j
(
n+ 1
j

)
(n+ 1− j)n+1

= (n+ 1)
n∑
j=0

(−1)j
(
n

j

)
(n+ 1− j)n

= (n+ 1)fn(n+ 1) = (n+ 1)!,
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which finishes the first part of the proof. For the second part of this lemma, we note that

0 = f (m)
n (x) = n!

(n−m)!

n∑
j=0

(−1)j
(
n

j

)
(x− j)n−m

for every 0 < m ≤ n. Inserting x = 0 finishes the proof.

Next we derive an extension of Corollary 4.40 regarding the coefficients ad,k,l,j of the polynomial
version of the original Wendland functions from Corollary 4.39.
Lemma 4.51
Let k, l ∈ N0 and µ = bd/2c+ k + 1. Then

µ+2k+l∑
j=0

ad,k,l,jj
n = 0.

for all 0 ≤ n ≤ µ+ k + l − 1.

Proof. From Corollary 4.40 we know that

0 =
µ+2k+l∑
j=n

ad,k,l,j
j!

(j − n)! =
µ+2k+l∑
j=n

ad,k,l,j

n−1∏
m=0

(j −m).

We note that the product is zero if 0 ≤ j ≤ n−1. Hence, we can extend the sum over j to conclude

µ+2k+l∑
j=n

ad,k,l,j

n−1∏
m=0

(j −m) =
µ+2k+l∑
j=0

ad,k,l,j

n−1∏
m=0

(j −m) = 0

for all 0 ≤ n ≤ µ+ k + l− 1. Now, the proof can be finished by induction on n. In the case n = 0
there is nothing to show since the product degenerates to one. For n− 1→ n, we can rewrite the
product as an polynomial in j of degree n+ 1 to see that

0 =
µ+2k+l∑
j=0

ad,k,l,j

n∏
m=0

(j −m) =
n∑

m=0
cm

µ+2k+l∑
j=0

ad,k,l,jj
m

The incuction hypothesis yields that the sum is zero for all 0 ≤ m ≤ n − 1. Hence, only the sum
for m = n remains, which has to vanish.

Now we want to calculate the Fourier transform of the original Wendland functions in even dimen-
sions. Therefore, we need to define the following coefficients

dj,n :=
{∏n−1

m=0(j − 2m), n ≥ 1,
1, else.

(4.26)

Note that we can interpret dj,n as a polynomial in j of degree n with simple zeros at 0, 2, . . . 2n−2.
A conclusion from this interpretation is the following auxiliary result.
Lemma 4.52
Let d ∈ N be even, k, l ∈ N0 and µ = d/2 + k + 1. Then, we have

3µ+l−4∑
j=2µ−3

ad,k+ d−2
2 ,l− d−2

2 ,jdj,µ−1j
n = 0

for all 0 ≤ n ≤ µ+ l − 2
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Proof. Let k′ = k + (d− 2)/2, l′ = l− (d− 2)/2 and µ′ = d/2 + k′ + 1, so that µ = k′ + 2. Using
that dj,k′+1 is a polynomial in j of degree k′+1 and that n+k′+1 ≤ µ′+k′+ l′−1 if n ≤ µ+ l−2,
Lemma 4.51 states that the sum can be written as

3µ+l−4∑
j=2µ−3

ad,k+ d−2
2 ,l− d−2

2 ,jdj,µ−1j
n =

2k′+µ′+l′∑
j=2k′+1

ad,k′,l′,jdj,k′+1j
n = −

2k′∑
j=0

ad,k′,l′,jdj,k′+1j
n.

On the one hand we note that dj,k′+1 = 0 if 0 ≤ j ≤ 2k′ is even. On the other hand, using the
definition of ad,k′,l′,j from Corollary 4.39, we note that ad,k′,l′,j = 0 if 1 ≤ j ≤ 2k′ − 1 is odd since
the appearing binomial coefficient vanishes. Hence, the sum is zero, which completes the proof.

Using the polynomial representation of dj,n, we can conclude the following two identities from
Lemma 4.52.
Corollary 4.53
Let d ∈ N be even, k, l ∈ N0 and µ = d/2 + k + 1. Then, we have

3µ+l−4∑
j=2µ−3

ad,k+ d−2
2 ,l− d−2

2 ,jd
2
j,µ−1j

n = 0

for all 0 ≤ n ≤ l − 1 and

3µ+l−4∑
j=2µ−3

ad,k+ d−2
2 ,l− d−2

2 ,jdj,µ−1dj,µ−2j
n = 0

for all 0 ≤ n ≤ l.

We will need a special case for l = 0 where the first sum in Corollary 4.53 does not vanish.

Lemma 4.54
Let d ∈ N be even, k ∈ N0 and µ = d/2 + k + 1. Then, we have

3µ−4∑
j=2µ−3

ad,k+ d−2
2 ,− d−2

2 ,jd
2
j,µ−1 = (3µ− 4)!

2µ−2(µ− 2)! .

Proof. Let k′ = k + (d − 2)/2, l′ = −(d − 2)/2 and µ′ = d/2 + k′ + 1, so that µ = k′ + 2. First,
we note that for 2k′ + 1 ≤ j ≤ 2k′ + µ′ + l′ we have( j−1

2
k′

)
= 1

2k′k′!

k′−1∏
m=0

(j − 1− 2m) = dj−1,k′

2k′k′! .

Inserting this and the definition of ad,k′,l′,j in the sum we conclude that

3µ−4∑
j=2µ−3

ad,k+ d−2
2 ,− d−2

2 ,jd
2
j,µ−1 = (−1)k′

2k′k′!

2k′+µ′+l′∑
j=2k′+1

(−1)j
(

2k′ + µ′ + l′

j

)
dj−1,k′d

2
j,k′+1. (4.27)

We note that for 0 ≤ j ≤ 2k′ the coefficients dj−1,k′ = 0 if j odd and dj,k′+1 = 0 is j is even, so
that we can start the summation at j = 0. Moreover we note that dj−1,k′d

2
j,k′+1 is a polynomial

in j of degree 3k′ + 2. Hence, we have the representation

dj−1,k′d
2
j,k′+1 =

3k′+2∑
n=0

ckj
k
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with coefficients ck ∈ R, where c3k′+2 = c3µ−4 = 1. Using this representation, we can write the
remaining sum from (4.27) as

2k′+µ′+l′∑
j=0

(−1)j
(

2k′ + µ′ + l′

j

)
dj−1,k′d

2
j,k′+1 =

3k′+2∑
n=0

ck

2k′+µ′+l′∑
j=0

(−1)j
(

2k′ + µ′ + l′

j

)
jn

=
3µ−4∑
n=0

ck

3µ−4∑
j=0

(−1)j
(

3µ− 4
j

)
jn,

According to Lemma 4.50 the sum over j vanishes for all 0 ≤ n < 3µ− 4, while for n = 3µ− 4 the
sum is equal to (−1)3µ−4(3µ− 4)!. Thus, we have

2k′+µ′+l′∑
j=0

(−1)j
(

2k′ + µ′ + l′

j

)
dj−1,k′d

2
j,k′+1 = c3µ−4(−1)3µ−4(3µ− 4)!.

Inserting this result into the sum from the beginning completes the proof.

Finally, to calculate the Fourier transform we will also need the following integrals.
Lemma 4.55
Let j ∈ N. Then, the following equation holds

1∫
0

sj+1J0(sr)ds =J0(r)
b j2 c−1∑
n=0

(−1)ndj,n+1dj,nr
−(2n+2)

+J1(r)
b j2 c∑
n=0

(−1)nd2
j,nr
−(2n+1)

+ (J0(r)H1(r)− J1(r)H0(r)) (−1)
j−1

2 d2
j,b j+2

2 c
π

2 r
−(j+1),

(4.28)

where Jk denotes the Bessel function of order k, see [GR00, 8.402], and Hk denotes the Struve
function of order k, see [GR00, 8.550].

Proof. We will denote the integrals by

Cj(r) :=
1∫

0

sj+1J0(sr)ds.

We will give the proof by induction, where we will first show that the formula above is correct for
j = 0 and j = 1, and then do an induction step from j − 2 to j. For j = 0, we have from [GR00,
6.561.5]

C0(r) = 1
r
J1(r),

and for j = 1, partial integration, [GR00, 8.472.3] and [GR00, 6.561.1] yield

C1(r) = 1
r
J1(r) + 1

r2
π

2 (J0(r)H1(r)− J1(r)H0(r)) ,

which shows that formula (4.28) is correct for j = 0 and j = 1. Now suppose the formula is correct
for j − 2 with j ≥ 2. For Cj , substituting t = rs and using partial integration, we derive

Cj(r) = r−(j+2)
r∫

0

J0(t)tj+1dt = r−(j+2)

J1(t)tj+1
∣∣∣r
t=0
− j

r∫
0

J1(t)tjdt


= 1
r
J1(r)− j

rj+2

r∫
0

J1(t)tjdt,
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where we used that d
dt t

νJν(t) = tνJν−1(t). For the remaining integral, we use J−1(t) = −J1(t)
and partial integration again, such that we have

r∫
0

J1(t)tjdt = −
r∫

0

J−1(t)tjdt = −J0(r)rj + j

r∫
0

J0(t)tj−1dt.

Substituting s = t/r back and yields

Cj(r) =1
r
J1(r) + j

r2 J0(r)− j2

r2Cj−2(r)

=J0(r)

 j

r2 −
j2

r2

b j−2
2 c−1∑
n=0

(−1)ndj−2,n+1dj−2,nr
−(2n+2)


+ J1(r)

1
r
− j2

r2

b j−2
2 c∑

n=0
(−1)nd2

j−2,nr
−(2n+1)


− j2

r2 (J0(r)H1(r)− J1(r)H0(r)) (−1)
j−3

2 d2
j−2,b j2 c

π

2 r
−(j−1),

where we inserted Cj−2 in the last equality. Using that jdj−2,m = dj,m+1 for every m ∈ N
and shifting the summation index in the two appearing sums from n to n + 1 gives the required
expression.

With the integrals above, we are now able to calculate the Fourier transform.
Theorem 4.56
Let d ∈ N be even, k, l ∈ N0 and µ = d/2 + k + 1. Then, the Fourier transform of the extended
original Wendland functions is given by

Fdψd,k,l(r) = Cd,k+ d−2
2 ,l− d−2

2

(
J0(r)

bµ+l
2 c−1∑
n=0

c1,d,k,l,nr
−(2µ+2n−2)

+ J1(r)
bµ+l

2 c−1∑
n=0

c2,d,k,l,nr
−(2µ+2n−1)

+ (J0(r)H1(r)− J1(r)H0(r))
bµ+l−1

2 c∑
n=0

c3,d,k,l,nr
−(2µ+2n−2)

)
,

where the coefficients are given by

c1,d,k,l,n = (−1)µ+n
3µ+l−4∑

j=2µ+2n−2
ad,k+ d−2

2 ,l− d−2
2 ,jdj,µ+n−1dj,µ+n−2,

c2,d,k,l,n = (−1)µ+n−1
3µ+l−4∑

j=2µ+2n−2
ad,k+ d−2

2 ,l− d−2
2 ,jd

2
j,µ+n−1,

c3,d,k,l,n = (−1)µ+n−2π

2 ad,k+ d−2
2 ,l− d−2

2 ,2µ+2n−3d
2
2µ+2n−3,µ+n−1

and where Cd,k,l and ad,k,l,j are from Corollary 4.39 while dj,n is defined in (4.26).

Proof. Recalling Corollary 4.39, we can write the extended Wendland functions as

ψd,k,l(r) = φµ+l,k(r) = Cd,k,l

2k+µ+l∑
j=0

ad,k,l,jr
j , r ∈ [0, 1]. (4.29)
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Calculating the Fourier transform, we can step through the dimensions via Theorem 4.33 and
arrive at

Fdψd,k,l(r) = Fdφµ+l,k(r) = F2φµ+l,k+ d−2
2

(r) = F2ψd,k+ d−2
2 ,l− d−2

2
(r).

Now we denote k′ = k + d−2
2 , l′ = l − d−2

2 and µ′ = d
2 + k′ + 1. Using the 2-dimensional radial

Fourier transformation according to Theorem 4.10, we have

Fdψd,k,l(r) = Cd,k′,l′
2k′+µ′+l′∑

j=0
ad,k′,l′,j

1∫
0

sj+1J0(rs)ds.

Note that k′ and l′ are integers since d is even, so that we are able to apply this formula. Hence,
with Lemma 4.55 we see that the Fourier transform Fdψd,k,l becomes, up to the Cd,k′,l′ factor,

2k′+µ′+l′∑
j=0

ad,k′,l′,j

1∫
0

sj+1J0(rs)ds = J0(r)A(r) + J1(r)B(r) + (J0(r)H1(r)− J1(r)H0(r))C(r),

where the functions A, B and C are given by

A(r) =
2k′+µ′+l′∑

j=0
ad,k′,l′,j

b j2 c−1∑
n=0

(−1)ndj,n+1dj,nr
−(2n+2),

B(r) =
2k′+µ′+l′∑

j=0
ad,k′,l′,j

b j2 c∑
n=0

(−1)nd2
j,nr
−(2n+1)

and

C(r) = π

2

2k′+µ′+l′∑
j=0

ad,k′,l′,j(−1)
j−1

2
π

2 d
2
j,b j+2

2 c
r−(j+1).

We will now rewrite the three functions beginning with A. We can start the summation over j in
A at 2 since for j = 0 and j = 1 there are no terms in the inner sum. By changing the order of
summation we obtain

A(r) =
2k′+µ′+l′∑

j=2
ad,k′,l′,j

b j2 c−1∑
n=0

(−1)ndj,n+1dj,nr
−(2n+2)

=
k′+bµ

′+l′
2 c−1∑

n=0
r−(2n+2)(−1)n

2k′+µ′+l′∑
j=2n+2

ad,k′,l′,jdj,n+1dj,n.

We now have to take a closer look at the sum over j. On the one hand, using the definition, we
see that dj,n+1 = 0 for all j ∈ {0, 2, . . . , 2n}. On the other hand, we have that ad,k′,l′,j = 0 for all
j ∈ {1, 3, . . . 2k′ − 1}. Thus, we know that ad,k′,l′,j = 0 for all j ∈ {1, 3, . . . 2n + 1} if n ≤ k′ − 1.
Hence,

2k′+µ′+l′∑
j=2n+2

ad,k′,l′,jdj,n+1dj,n =
2k′+µ′+l′∑

j=0
ad,k′,l′,jdn+1,jdn,j

for all n ≤ k′ − 1. Now we interpret dj,n+1dj,n as a polynomial in j of degree 2n + 1, e.g.
dn+1,jdn,j =

∑2n+1
m=0 cn,mj

m with some real-valued coefficients cn,m. Inserting this polynomial
expression, and by changing the order of summation, we have

2k′+µ′+l′∑
j=2n+2

ad,k′,l′,jdn+1,jdn,j =
2n+1∑
m=0

cn,m

2k′+µ′+l′∑
j=0

ad,k′,l′,jj
m.
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Using Lemma 4.51, the sum over j vanishes for m ∈ {0, 1, . . . , µ′+k′+l′−1}. The summation index
m goes up to 2n+1, so the two sums vanish if n ≤ (µ′+k′+l′−1)/2. Since k′−1 ≤ (µ′+k′+l′−1)/2,
this is particularly the case for n ≤ k′−1, so that we can start the sum over n in A at k′, and have

A(r) =
k′+bµ

′+l′
2 c−1∑

n=k′
r−(2n+2)(−1)n

2k′+µ′+l′∑
j=2n+2

ad,k′,l′,jdj,n+1dj,n

=
bµ+l

2 c−1∑
n=0

c1,d,k,l,nr
−(2µ+2n−2),

where we shifted the summation index n and used that µ′ + l′ = µ + l and k′ = µ − 2. The
coefficients are given by

c1,d,k,l,n = (−1)µ+n
3µ+l−4∑

j=2µ+2n−2
ad,k+ d−2

2 ,l− d−2
2 ,jdj,µ+n−1dj,µ+n−2.

We will apply the same procedure to B. Again, by changing the order of summation, we have

B(r) =
k′+bµ

′+l′
2 c∑

n=0
(−1)nr−(2n+1)

µ′+2k′+l′∑
j=2n

ad,k′,l′,jd
2
j,n.

With the same arguments as above, we can start the sum over j at 0 instead of 2n if n ≤ k′.
Moreover, d2

j,n can be written as a polynomial in j of degree 2n, i.e. d2
j,n =

∑2n
m=0 cn,mj

m with
some real valued coefficients cn,m. Hence, by changing the order of summation, we have

µ′+2k′+l′∑
j=2n

ad,k′,l′,jd
2
j,n =

2n∑
m=0

cn,m

µ′+2k′+l′∑
j=2n

ad,k′,l′,jj
m.

Using Lemma 4.51, the sum over j vanishes for m ∈ {0, 1, . . . µ′ + k′ + l′ − 1}, such that the whole
expression is zero for n ∈ {0, 1, . . . , b(µ′ + k′ + l′ − 1)/2c} if n ≤ k′. Hence, we can write

B(r) =
k′+bµ

′+l′
2 c∑

n=k′+1
(−1)nr−(2n+1)

µ′+2k′+l′∑
j=2n

ad,k′,l′,jd
2
j,n

=
bµ+l

2 c−1∑
n=0

c2,d,k,l,nr
−(2µ+2n−1),

where we shifted the summation index n and used that µ′ + l′ = µ + l and k′ = µ − 2. The
coefficients are given by

c2,d,k,l,n = (−1)µ+n−1
3µ+l−4∑

j=2µ+2n−2
ad,k+ d−2

2 ,l− d−2
2 ,jd

2
j,µ+n−1.

Finally, we have to rewrite the function C. Since dj,b j+2
2 c

is 0 if j is even, we will transform the
index by j = 2n+ 1 and arrive at

C(r) = π

2

k′+bµ
′+l′−1

2 c∑
n=0

ad,k′,l′,2n+1(−1)nd2
2n+1,n+1r

−(2n+2).
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Now we note that ad,k′,l′,2n+1 = 0 if n < k′ according to Corollary 4.39. Hence, by shifting the
summation index n, we have

C(r) = π

2

bµ
′+l′−1

2 c∑
n=0

ad,k′,l′,2k′+2n+1(−1)k
′+nd2

2k′+2n+1,k′+n+1r
−(2k′+2n+2)

=
bµ+l−1

2 c∑
n=0

c3,d,k,l,nr
−(2µ+2n−2)

where we also returned to the original parameters. Setting the coefficient

c3,d,k,l,n = (−1)µ+n−2π

2 ad,k+ d−2
2 ,l− d−2

2 ,2µ+2n−3d
2
2µ+2n−3,µ+n−1

finishes the proof.

We derived a closed form representation of the Fourier transform of the extended original Wendland
functions in even space dimensions. This representation can be summarized as follows.
Proposition 4.57
Let d ∈ N be even, k, l ∈ N0 and µ = d/2 + k + 1. Then

Fdψd,k,l(r) = r−(3µ+l−3)
(
p1,d,k,l(r)J0(r) + p2,d,k,l(r)J1(r)

+ qd,k,l(r) (J0(r)H1(r)− J1(r)H0(r))
)
, r ≥ 0,

with p1,d,k,l ∈ Πµ+l−1, p2,d,k,l ∈ Πµ+l−2 and qd,k,l ∈ Πµ+l−1 given by

p1,d,k,l(r) := Cd,k+ d−2
2 ,l− d−2

2

bµ+l
2 c−1∑
n=0

c1,d,k,l,nr
µ+l−1−2n,

p2,d,k,l(r) := Cd,k+ d−2
2 ,l− d−2

2

bµ+l
2 c−1∑
n=0

c2,d,k,l,nr
µ+l−2−2n

and

qd,k,l(r) := Cd,k+ d−2
2 ,l− d−2

2

bµ+l−1
2 c∑

n=0
c3,d,k,l,nr

µ+l−1−2n,

where Cd,k+ d−2
2 ,l− d−2

2
is given in Corollary 4.39 and c1,d,k,l,n, c2,d,k,l,n and c3,d,k,l,n are given in

Theorem 4.56.

We are interested in the asymptotic behavior of Fdψd,k,l. We will just write p1, p2 and q instead
of p1,d,k,l, p2,d,k,l and qd,k,l, respectively, for the sake of readability. From [GR00, 8.554], we have
that the asymptotic representation of the Struve functions is given by

H0(r) = Y0(r) + 2
π
r−1 + h0(r), H1(r) = Y1(r) + 2

π
+ h1(r), (4.30)

where Yn is the Bessel function of the second kind of order n ∈ Z, see [GR00, 8.403], and where
h0 = Θ(r−3) and h1 = Θ(r−2). Hence, an asymptotic representation of Fdψd,k,l is given by

Fdψd,k,l = r−(3µ+l−3)

(
J0(r)

(
p1(r) + 2

π
q(r) + q(r)h1(r)

)

+ J1(r)
(
p2(r)− 2

π

q(r)
r
− q(r)h0(r)

)
+ q(r) (J0(r)Y1(r)− J1(r)Y0(r))

)
.
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The Wendland Radial Basis Functions

According to [GR00, 8.477.1], the sum of the Bessel functions yields J0(r)Y1(r) − J1(r)Y0(r) =
−2(rπ)−1, so that we have

J0(r)H1(r)− J1(r)H0(r) = − 2
π
r−1 + J0(r)

(
2
π

+ h1(r)
)
− J1(r)

(
2
π
r−1 + h0(r)

)
, (4.31)

and hence

Fdψd,k,l = r−(3µ+l−3)

(
J0(r)

(
p1(r) + 2

π
q(r) + q(r)h1(r)

)

+ J1(r)
(
p2(r)− 2

π

q(r)
r
− q(r)h0(r)

)
− 2
π

q(r)
r

)
.

The term p2(r) − 2(πr)−1q(r) is a polynomial of degree µ + l − 2 or less. The coefficient of the
highest degree of p1 is given by c1,d,k,l,0, the coefficient of 2π−1q(r) is given by 2π−1c3,d,k,l,0. Using
that d2µ−3,µ−1 = d2µ−3,µ−2, the coefficient of the highest degree of p1 + 2π−1q is given by

−c1,d,k,l,0 − 2π−1c3,d,k,l,0 = (−1)µ+1
3µ+l−4∑
j=2µ−3

ad,k+ d−2
2 ,l− d−2

2 ,jdj,µ−1dj,µ−2 = 0, (4.32)

according to Corollary 4.53. Hence, p1(r) + 2π−1q(r) is also a polynomial of degree µ + l − 2 or
less. Using that J0, J1 = Θ(r−1/2) according to [GR00, 8.451.1], we can conclude that

r 7→ J0(r)
(
p1(r) + 2

π
q(r) + q(r)h1(r)

)
∈ Θ(rµ+l−5/2),

r 7→ J1(r)
(
p2(r)− 2

π

q(r)
r
− q(r)h0(r)

)
∈ Θ(rµ+l−5/2).

Since 2(πr)−1q(r) is a polynomial of degree µ+ l − 2, we have that

r 7→ 2(πr)−1q(r) ∈ Θ(rµ+l−2)

and we can conclude that Fdψd,k,l = Θ(r−2µ+1). In particular, this means that there exists a
constant C > 0 such that

Fdψd,k,l(r) ≥ Cr−2µ+1 (4.33)

for r ≥ 1. Using this asymptotic behaviour, we can conclude two different properties of the
extended original Wendland functions. The first one is about the regularity.

Lemma 4.58
Let d ∈ N be even, k, l ∈ N0 and µ = d/2 + k + 1. Then, ψd,k,l(‖ · ‖2) belongs to Wσ,2(Rd) for all
σ < 2µ− d/2− 1.

We will omit the proof since it is literally the same as the proof of Lemma 4.44. The second
property, which follows from inequality (4.33), is that the extended Wendland functions satisfy the
approximation condition in even space dimensions of any order. The key point for this result is
that the highest order monomial which occurs in the derivative of the Fdψd,k,l vanishes.

Theorem 4.59
Let d ∈ N be even, k ∈ N0 and l ∈ N. Then, for every L ∈ N there exists a constant CL > 0 such
that ∣∣∣∣ dndrn rFdψd,k,l(r)

∣∣∣∣ ≤ CLFdψd,k,l(r)
for all 1 ≤ n ≤ L and r ≥ 0.
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Proof. We set a = 3µ + l − 3 with µ = d/2 + k + 1. We will just write q instead of qd,k,l for the
sake of readability, such that we have

Fdψd,k,l(r) = r−a
(
p1(r)J0(r) + p2(r)J1(r)

+ q(r) (J0(r)H1(r)− J1(r)H0(r))
)
, r ≥ 0.

Since Fdψd,k,l ∈ C∞([0,∞[) is positive on [0,∞[, such a constant CL can easily be found for r ≤ 1
and it suffices to show that the inequality holds for all r > 1.
Referring to [GR00] equations 8.472.1, 8.473.4, 8.553.2 and 8.553.3, we note that J0, J1, H0 and
H1 yield the derivatives

d

dr
J0(r) = −J1(r), d

dr
J1(r) = J0(r)− 1

r
J1(r),

d

dr
H0(r) = 2

π
−H1(r), d

dr
H1(r) = H0(r)− 1

r
H1(r),

so that we conclude that
d

dr
(J0(r)H1(r)− J1(r)H0(r)) = −1

r
(J0(r)H1(r)− J1(r)H0(r))− 2

π
J1(r).

Hence, the first derivative yields

d

dr
(rFdψd,k,l(r)) = r−a

(
p̃1,1(r)J0(r) + p̃2,1(r)J1(r) + q̃1(r) (J0(r)H1(r)− J1(r)H0(r))

)
,

where the new polynomials are given by

p̃1,1(r) = rp′1(r) + rp2(r)− (a− 1)p1(r)

p̃2,1(r) = rp′2(r)− rp1(r)− 2r
π
q(r)− ap2(r)

and
q̃1(r) = rq′(r)− aq(r).

Using (4.31), we can conclude that the derivative has the asymptotic representation

d

dr
(rFdψd,k,l(r)) = r−a

(
J0(r)

(
p̃1,1(r) + 2

π
q̃1(r) + q̃1(r)h1(r)

)

+ J1(r)
(
p̃2,1(r)− 2

π

q̃1(r)
r
− q̃1(r)h0(r)

)
− 2
π

q̃1(r)
r

)
.

(4.34)

We have to show that the single polynomial terms in the brackets are at most of degree µ+ l− 2.
First, p̃1,1 and q̃1 are polynomials of order at most µ+ l− 1. The coefficient of the highest degree
of p̃1,1 is the sum of the coefficients of the highest degrees of the single polynomials, which is given
by

(µ+ l − 1)c1,d,k,l,0 + c2,d,k,l,0 − (a− 1)c1,d,k,l,0 = (2− 2µ)c1,d,k,l,0 + (c1,d,k,l,0 + c2,d,k,l,0).

Analogously, the coefficient of the highest degree of 2π−1q̃1 is given by 2π−1(2− 2µ)c3,d,k,l,0. We
firstly note that if l ≥ 1, Corollary 4.53 states that

c2,d,k,l,0 = (−1)µ−1
3µ+l−4∑
j=2µ−2

ad,k+ d−2
2 ,l− d−2

2 ,jd
2
j,µ−1

= (−1)µad,k+ d−2
2 ,l− d−2

2 ,2µ−3d
2
2µ−3,µ−1.

(4.35)
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Noting that d2µ−3,µ−1 = d2µ−3,µ−2, Corollary 4.53 yields

c1,d,k,l,0 + c2,d,k,l,0 = (−1)µ
3µ+l−4∑
j=2µ−3

ad,k+ d−2
2 ,l− d−2

2 ,jdj,µ−1dj,µ−2 = 0. (4.36)

For the remaining parts of the coefficient of the highest degree of p̃1,1(r) + 2π−1q̃1(r) we have

(2− 2µ)c1,d,k,l,0 + 2π−1(2− 2µ)c3,d,k,l,0 = (2− 2µ)
(
c1,d,k,l,0 + 2π−1c3,d,k,l,0

)
= 0

according to (4.32). Hence, p̃1,1 +2π−1q̃1 is a polynomial of degree µ+ l−2 or less. As h1 ∈ Θ(r−2)
and hence q̃1h1 = Θ(rµ+l−3), the whole coefficient function p̃1,1 + 2π−1q̃1 + q̃1h1 in front of J0
grows at most like rµ+l−2.
Next, we look at the coefficient function in front of J1. For p̃2,1, we note that the terms rp′2(r) and
ap2(r) are polynomials of degree µ+l−2, while rp1(r) and 2π−1rq(r) are both polynomials of degree
µ+l. The coefficient of the highest degree of rp1(r) is given by c1,d,k,l,0, the coefficient of 2π−1rq(r)
is given by 2π−1c3,d,k,l,0. Hence, the coefficient of the highest degree of p̃2,1 is again given by (4.32),
and hence vanishes. Since the polynomials rp1(r) and 2π−1rq(r) do not have a monomial part of
degree µ+ l− 1 as we can see in Proposition 4.57, p̃2,1 is a polynomial of order µ+ l− 2. Finally,
q̃1 is a polynomial of degree µ + l − 1, so that q̃1(r)/r behaves like rµ+l−2. As q̃1h0 ∈ Θ(rµ+l−4)
since h0 ∈ Θ(r−2), the whole coefficient function p̃2,1(r)− 2π−1q̃1(r)/r − q̃1(r)h0(r) in front of J1
grows also at most like rµ+l−2.
Altogether, using that J0, J1 ∈ Θ(r−1/2), we have

r 7→ d

dr
(rFdψd,k,l(r)) ∈ Θ(r−2µ+1)

so that there exist constants c > 0 and C > 0 such that∣∣∣∣ ddr (rFdψd,k,l(r))
∣∣∣∣ ≤ cr−2µ+1 ≤ CFdψd,k,l(r)

for all r > 1. For higher derivatives of order n ≥ 2 we have

dn

drn
(rFdψd,k,l(r)) = r−a (p̃1,n(r)J0(r) + p̃2,n(r)J1(r) + q̃n(r) (J0(r)H1(r)− J1(r)H0(r)))

where the new functions are given by

p̃1,n(r) = p̃ ′1,n−1(r) + p̃2,n−1(r)− a p̃1,n−1(r)
r

p̃2,n(r) = p̃ ′2,n−1(r)− p̃1,n−1(r)− 2
π
q̃n−1(r)− (a+ 1) p̃2,n−1(r)

r

and
q̃n(r) = q̃ ′n−1(r)− (a+ 1) q̃n−1(r)

r
.

We first note that since q̃1 is a polynomial of degree µ + l − 1, there exists a constant cq,n with
|q̃n(r)| ≤ cq,nr

µ+l−n for all n ∈ N and r ≥ 1. For p̃1,n and p̃2,n, we first note that the highest
degree occurring in p̃1,2 is µ+ l− 2 since p̃1,1 is a polynomial of degree µ+ l− 1 and p̃2,1 of degree
µ+ l−2. For p̃2,2 we note that, using (4.35) and (4.36) as above, p̃1,1(r)+2π−1q̃n−1 is a polynomial
of degree µ+ l − 2 , so that the highest degree occurring in p̃2,2 is µ+ l − 2.
Since the highest degree occurring in p̃1,2 and p̃2,2 is µ+ l − 2, the highest degree that can occur
in p̃1,n,p̃2,n for n ≥ 3 is also µ+ l − 2. Hence, for all n ≥ 2 we find a constant cp,n > 0 with

|p̃1,n(r)|+ |p̃2,n(r)| ≤ cp,nrµ+l−2
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for r ≥ 1.
According to [GR00, 8.451.1],[GR00, 8.451.2] and (4.31), there exists a constant c > 0, so that

|J0(r)|+ |J1(r)|+ |J0(r)H1(r)−H1(r)J0(r)| ≤ cr−1/2.

Hence, we can conclude that for every n ≥ 2 there exists a constant C > 0 such that∣∣∣∣ dndrn (rFdψd,k,l(r))
∣∣∣∣ ≤ cr−a−1/2(|p̃1,n(r)|+ |p̃2,n(r)|+ |q̃n(r)|

)
≤ cr−3µ−l+3−1/2+µ+l−2 = cr−2µ+1/2

≤ cr−2µ+1 ≤ CFdψd,k,l(r),

according to inequality (4.33), which completes the proof.

Hence, we can conclude that the original Wendland functions satisfy an approximation condition
of any order in even space dimension if l ≥ 1. Again, the proof does not hold if l = 0. Recalling
the asymptotic representation of d

dr (rFdψd,k,l(r)) from (4.34), we note that for p̃1,1 + 2π−1q̃1 the
coefficient for the monomial of degree µ+ l− 1 vanishes if and only if l ≥ 1, see Corollary 4.53 and
Lemma 4.54. Hence, if l = 0, p̃1,1 + 2π−1q̃1 is a polynomial of degree µ+ l−1 and d

dr (rFdψd,k,l(r))
decays like r−2µ+3/2. However ψd,k,l itself decays like r−2µ+1. Hence, a constant CL as given in
Theorem 4.59 cannot be found for any L ≥ 1.
Theorem 4.60
Let d ∈ N be even and k ∈ N0. The original Wendland functions ψd,k,0 do not satisfy condition
(4.22) of any order.

Moreover, we can conclude that the root kernel of ψd,k,l is in W k,1(Rd) according to Theorem 4.17.
Theorem 4.61
Let d ∈ N be even, k, l ∈ N. Then, the root kernel of the normalized generalized Wendland function
ψd,k,l(‖ · ‖2) exists, belongs to W k,1(Rd)∩W k,2(Rd) and satisfies the moment condition of order 2
and the approximation condition of any order L ∈ N.

The proof is exactly the proof of Theorem 4.47. The next result takes advantage of the construction
from equation (4.17) to satisfy the moment condition of an arbitrary order. In this case, the
condition l ≥ 1 also ensures that the Fourier transform of the original Wendland functions is
monotonically decreasing, see Theorem 4.35.
Theorem 4.62
Let d ∈ N be even and k, l ∈ N. Let m ∈ N and Φ = φ(‖ · ‖2) with φ be defined as in (4.17) with
ψ = ψd,k,l, aj = bj for a fixed b > 0, 1 ≤ j ≤ m and λj from Proposition 4.24.
Then, the convolution root Φr from Lemma 4.14 is in W k,1(Rd)∩W k,2(Rd), satisfies the moment
condition of order 2m and the approximation condition of any order L ∈ N.

Finally, we can derive a convergence result for the SPH method in even space dimension. As in the
case of odd space dimension, we can eliminate the dependency on the parameter L in the estimate.
Corollary 4.63
Let d ∈ N be even and let l, k ∈ N with k > d/2. Let m ∈ N and Φ = φ(‖ · ‖2) with φ be defined as
in (4.17) with ψ = ψd,k,l, aj = bj for a fixed b > 0, 1 ≤ j ≤ m and λj from Proposition 4.24.
Assume initial data u0 ∈ Wσ,2(Rd)d and finite discrete mass with density ρ0 satisfying ρ

1/2
0 ∈

Wmax{σ,k},2(Rd) for a σ > m + 1 + d/2 and that the solution (u, ρ) of the Euler equations (3.1)
- (3.3) exists up to a time T > 0. Let (xε,hk ,uε,hk )k∈Zd be the solution of the weakly compressible
SPH equations (3.4) - (3.6).
Then, there exists a constant C > 0 such that the energy can be bounded by

Q(t) ≤ C
(
h2k

ε2k + ε2m
)
.

for all t ∈ [0, T ].
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A few examples of the kernels in even space dimension, including the most useful ones, can be
found in Table 4.3 and Table 4.4.

k l Extended original Wendland function ψ2,k,l
1 1 ψ2,1,1(r) .= (1− r)5

+(5r + 1)
2 ψ2,1,2(r) .= (1− r)6

+(6r + 1)
3 ψ2,1,3(r) .= (1− r)7

+(7r + 1)
2 1 ψ2,2,1(r) .= (1− r)7

+(16r2 + 7r + 1)
2 ψ2,2,2(r) .= (1− r)8

+(21r2 + 8r + 1)
3 ψ2,2,3(r) .= (1− r)9

+(80r2 + 27r + 3)
3 1 ψ2,3,1(r) .= (1− r)9

+(231r3 + 159r2 + 45r + 5)
2 ψ2,3,2(r) .= (1− r)10

+ (320r3 + 197r2 + 50r + 5)
3 ψ2,3,3(r) .= (1− r)11

+ (429r3 + 239r2 + 55r + 5)

Table 4.3: Extended original Wendland functions in d = 2 for various parameters of k and
l. These functions satisfy the moment condition of order m = 2 and the approximation
condition of any order L ∈ N. These functions can be used for the construction method
from (4.17).

m = 4 k Kernel Construction Φ(r) .= 16ψ2,k,1(2r)− ψ2,k,1(r)
1 Φ(r) .= 16(1− 2r)5

+(10r + 1)− (1− r)5
+(5r + 1)

2 Φ(r) .= 16(1− 2r)7
+(64r2 + 14r + 1)

3 Φ(r) .= 16(1− 2r)9
+(1848r3 + 636r2 + 90r + 5)

−(1− r)9
+(231r3 + 159r2 + 45r + 5)

m = 6 k Kernel Construction Φ(r) .= 270ψ2,k,1(3r)− 27ψ2,k,1(2r) + 2ψ2,k,1(r)
1 Φ(r) .= 270(1− 3r)5

+(15r + 1)− 27(1− 2r)5
+(10r + 1)

+2(1− r)5
+(5r + 1)

2 Φ(r) .= 270(1− 3r)7
+(144r2 + 21r + 1)− 27(1− 2r)7

+(64r2 + 14r + 1)
+2(1− r)7

+(16r2 + 7r + 1)
3 Φ(r) .= 270(1− 3r)9

+(6237r3 + 1431r2 + 135r + 5)
−27(1− 2r)9

+(1848r3 + 636r2 + 90r + 5)
+2(1− r)9

+(231r3 + 159r2 + 45r + 5)

Table 4.4: Extended original Wendland functions in d = 2 for l = 1 and various pa-
rameters of k. These functions satisfy the moment condition of order m = 4 or m = 6,
respectively, and the approximation condition of any order L ∈ N.

4.3.3 The missing Wendland functions
In odd space dimensions, the original Wendland functions are reproducing kernels in Hilbert spaces
which are norm–equivalent to the Sobolev spaces Hσ(Rd) of integer order σ. The missing Wend-
land functions were proposed in 2011 by Schaback in [Sch11] to cover also Sobolev spaces of integer
order in even dimensions. Although the extended original Wendland functions already provide con-
vergence for the SPH method, we want to consider the missing Wendland functions for theoretical
purposes.
The missing Wendland functions are given by equation (4.23) with α = k + 1/2 for k ∈ N and
µ = bd/2 + αc+ 1 = b(d+ 1)/2c+ k + 1, i.e.

ψd,k+ 1
2

:= φb d+1
2 c+k+1,k+ 1

2
= Ik+ 1

2 fb d+1
2 c+k+1.
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For our purpose, we again need an extended version of the missing Wendland functions. Let l ≥ 0.
We define the extended missing Wendland functions by

ψd,k+ 1
2 ,l

:= φb d+1
2 c+k+l+1,k+ 1

2
= Ik+ 1

2 fb d+1
2 c+k+l+1.

The most considerable difference to the original Wendland functions is that the missing Wendland
functions are not purely polynomial but have a logarithmic and a square root part. This, however,
make them less interesting for applications, since they are less efficient to calculate.
A closed form representation was given by Chernih in [Che13]. We will generalize this representa-
tion to our extended kernels. For the use of simplicity, we will use

S(r) :=
√

1− r2, L(r) := ln
(

1 +
√

1− r2

r

)

for all r ∈]0, 1] throughout this section. Before we begin, we will derive some integral equations
we will need in what follows.

Lemma 4.64
Let j, k ∈ N and let gj,k(r) =

1∫
r

sj+1 (s2 − r2)k− 1
2 ds. Then,

gj,k(r) = S(r) (q1,j,k(r) + q2,j,k(r) + q3,j,k(r))

if j is even, and

gj,k(r) = S(r) (q1,j,k(r) + q2,j,k(r)) + 1
2q3,j,k(r)

(
S(r) + r2L(r)

)
if j is odd, with

q1,j,k(r) :=
k−1∑
n=0

(
k−1−n∑
i=0

(−1)i+n
(
k − 1− i

n

)
d2k−1,i

dj+2i+2,i+1

)
r2n

q2,j,k(r) := (−1)k d2k−1,k

d2k+j,k

b j2 c+k−1∑
i=0

d2k+j,i

d2k+j+1,i+1
r2i


q3,j,k(r) := (−1)k d2k−1,k

d2k+j,k

d2k+j,b j2 c+k

d2k+j+1,b j2 c+k
r2b j2 c+2k

for all 0 < r < 1, and where dj,n is given by (4.26).

Proof. We will first eliminate the second parameter k of gj,k, before we will derive a recursive
formula with respect to the parameter j. Partial integration yields

gj,k(r) =
1∫
r

sj+1 (s2 − r2)k− 1
2 ds

= sj+2

j + 2
(
s2 − r2)k− 1

2
∣∣∣1
r
− 2k − 1

j + 2

1∫
r

sj+3 (s2 − r2)k− 3
2 ds

=(1− r2)k− 1
2

j + 2 − 2k − 1
j + 2 gj+2,k−1(r).
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By induction, we can show that applying partial integration k times leads to

gj,k(r) =
√

1− r2
k−1∑
i=0

(−1)i

i−1∏
m=0

(2k − 1− 2m)

i∏
m=0

(j + 2 + 2m)
(1− r2)k−1−i

+ (−1)k
k−1∏
m=0

(
2k − 1− 2m
j + 2 + 2m

)
gj+2k,0(r)

=
√

1− r2
k−1∑
i=0

(−1)i d2k−1,i

dj+2i+2,i+1

k−1−i∑
n=0

(
k − 1− i

n

)
(−1)nr2n

+ (−1)k d2k−1.k

d2k+j,k
gj+2k,0(r),

where we also used the binomial formula. We have to change the order of summation in the first
term in order to obtain a closed polynomial form. Note that we have to adjust the indices of the
summation. Hence, we arrive at the representation

gj,k(r) =
√

1− r2
k−1∑
n=0

(
k−1−n∑
i=0

(−1)i+n
(
k − 1− i

n

)
d2k−1,i

dj+2i+2,i+1

)
r2n

+ (−1)k d2k−1,k

d2k+j,k
gj+2k,0(r).

So far, we have eliminated the second parameter. To derive a recursive formula for the first
parameter, applying partial integration once again yields

gj,0(r) =
1∫
r

sjs
(
s2 − r2)− 1

2 ds

= sj
(
s2 − r2) 1

2
∣∣∣1
r
− j

1∫
r

sj−1 (s2 − r2) 1
2 ds

=
√

1− r2 − j
1∫
r

sj−1 (s2 − r2) (s2 − r2)− 1
2 ds

=
√

1− r2 − jgj,0(r) + jr2gj−2,0(r).

Solving this equation for gj,0(r), we reach at the recursive formula

gj,0(r) =
√

1− r2

j + 1 + j

j + 1r
2gj−2,0(r).

Applying this recursive formula b j2c-times leads to

gj,0(r) =
√

1− r2

b j2 c−1∑
i=0

dj,i
dj+1,i+1

r2i

+
dj,b j2 c

dj+1,b j2 c
r2b j2 cgj−2b j2 c,0

(r).

Finally, simple calculations show that for the starting point at j = 0 we have

g0,0(r) =
√

1− r2
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and for j = 1

g1,0(r) = 1
2

(√
1− r2 + r2 ln

(
1 +
√

1− r2

r

))
,

which completes the proof.

Using this integral, we can now provide a closed form representation for the extended missing
Wendland functions.
Theorem 4.65
Let k, l ∈ N0 and µ = bd+1

2 c+ k + 1. Then,

ψd,k+ 1
2 ,l

(r) = S(r)Pd,l,k(r) + L(r)Qd,l,k(r),

for all r ∈]0, 1], where the functions Pd,l,k and Qd,l,k are given by

Pd,l,k(r) = 1
2k− 1

2 Γ(k + 1
2 )

(
µ+l∑
j=0

(−1)j
(
µ+ l

j

)(
q1,j,k(r) + q2,j,k(r) + 1

2q3,j,k(r)
)

+ 1
2

bµ+l
2 c∑
j=0

(
µ+ l

2j

)
q3,2j,k(r)

)

and

Qd,l,k(r) = − r2

2k+ 1
2 Γ(k + 1

2 )

bµ+l−1
2 c∑
j=0

(
µ+ l

2j + 1

)
q3,2j+1,k(r).

Proof. With Lemma 4.64 we have

ψd,k+ 1
2 ,l

(r) = 1
2k− 1

2 Γ(k + 1
2 )

1∫
r

s(1− s)µ+l(s2 − r2)k− 1
2 ds

= 1
2k− 1

2 Γ(k + 1
2 )

µ+l∑
j=0

(−1)j
(
µ+ l

j

) 1∫
r

sj+1(s2 − r2)k− 1
2 ds

= S(r)
2k− 1

2 Γ(k + 1
2 )

(
µ+l∑
j=0

(−1)j
(
µ+ l

j

)(
q1,j,k(r) + q2,j,k(r) + 1

2q3,j,k(r)
)

+ 1
2

bµ+l
2 c∑
j=0

(
µ+ l

2j

)
q3,2j,k(r)

)

− r2L(r)
2k+ 1

2 Γ(k + 1
2 )

bµ+l−1
2 c∑
j=0

(
µ+ l

2j + 1

)
q3,2j+1,k(r),

where we splitted up a sum in its even and its odd part.

The missing Wendland function in even space dimension
Now we consider the missing Wendland function in even space dimension. Besides the closed
form representation, we additionally require a formula for the Fourier transform of the missing
Wendland functions. Fortunately, we can achieve the formula for the Fourier transform easily
by stepping through the dimensions and use the Fourier transformation formula of the original
Wendland functions.
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Theorem 4.66
Let d ∈ N be even, k, l ∈ N0 and µ = d/2 + k + 1. Then,

Fdψd,k+ 1
2 ,l

(r) =
√

2
π
Cd+1,k+ d

2 ,l−
d
2

(
sin(r)

bµ+l
2 c−b

l
2 c−1∑

n=0
b1,d+1,k,l,nr

−(2b l2 c+2µ+2n+1)

+ cos(r)
bµ+l−1

2 c−b l−1
2 c−1∑

n=0
b2,d+1,k,l,nr

−(2b l−1
2 c+2µ+2n+2)

+
bµ+l−1

2 c∑
n=0

b3,d+1,k,l,nr
−(2n+2µ)

)
,

where the coefficients b1,d,k,l,n, b2,d,k,l,n and b3,d,k,l,n are defined in Theorem 4.42.

Proof. With Theorem 4.33 we have

Fdψd,k+ 1
2 ,l

(r) = Fdφµ+l,k+ 1
2
(r) = Fd+1φµ+l,k(r).

Setting d′ := d+ 1, and µ′ := (d′ − 1)/2 + k + 1 = µ we conclude

Fdψd,k+ 1
2 ,l

(r) = Fd+1φµ+l,k(r) = Fd′φµ′+l,k(r) = Fd′ψd′,k,l(r).

Applying Theorem 4.42 leads us to our representation.

With this reference to the Fourier transform of the original Wendland functions, we can easily
adopt the rest of the results. Firstly, we will shorten the expression from Theorem 4.66.

Corollary 4.67
Let d ∈ N be even, k, l ∈ N0 and µ = d/2 + k + 1. Then,

Fdψd,k+ 1
2 ,l

(r) = r−(3µ+l−1) (p1,d,k,l(r) sin(r) + p2,d,k,l(r) cos(r) + qd,k,l(r)) , r ≥ 0,

where qd,k,l is a polynomial of degree µ+ l−1 and p1,d,k,l, p2,d,k,l are polynomials of degree at most
µ− 1.
To be more precise, either p1,d,k,l ∈ Πµ−2 and p2,d,k,l ∈ Πµ−1 if l is even or p1,d,k,l ∈ Πµ−1 and
p2,d,k,l ∈ Πµ−2 if l is odd.

The next lemma will give us the regularity off the extended missing Wendland functions in even
dimensions.
Lemma 4.68
Let d ∈ N be even, k, l ∈ N0 and µ = d/2 + k + 1. Then, ψd,k+ 1

2 ,l
(‖ · ‖2) belongs to Wσ,2(Rd) for

all σ < 2µ− d/2.

Using Corollary 4.67, the proof is literary the same as the one of Lemma 4.44, which is why we omit
it here. With the given connection to the Fourier transform of the original Wendland functions it
is easy to verify that the missing Wendland functions also satisfy the approximation condition.

Theorem 4.69
Let d ∈ N be even, k ∈ N0 and l ∈ N. Then, for every L ∈ N, there exists a CL > 0 such that∣∣∣∣ dndrn rFdψd,k+ 1

2 ,l
(r)
∣∣∣∣ ≤ CLFdψd,k+ 1

2 ,l
(r)

for all 1 ≤ n ≤ L and all r ≥ 0.
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Proof. Since Fdψd,k+ 1
2 ,l

= Fd+1ψd+1,k,l, Theorem 4.45 yields∣∣∣∣ dndrn rFdψd,k+ 1
2 ,l

(r)
∣∣∣∣ =

∣∣∣∣ dndrn rFd+1ψd+1,k,l(r)
∣∣∣∣ ≤ CLFd+1ψd+1,k,l(r) = CLFdψd,k+ 1

2 ,l
(r)

for all 1 ≤ n ≤ L and all r ≥ 0.

Finally, we can prove our main result for the extended missing Wendland functions. Its proof is
literally the same as the proof of Theorem 4.47 and will hence be omitted

Theorem 4.70
Let d ∈ N be even and k, l ∈ N. Then, the root kernel of the extended missing Wendland function
ψd,k+ 1

2 ,l
(‖ · ‖2) exists, belongs to W k,1(Rd)∩W k,2(Rd) and satisfies the moment condition of order

2 and the approximation condition of any order L ∈ N.

The next result takes advantage of the construction from equation (4.17) to satisfy the moment
condition of arbitrary order. Again, the proof for the missing Wendland functions is the same as
the proof of Theorem 4.48 which contains the results for the original Wendland functions.

Theorem 4.71
Let d ∈ N be even and k, l ∈ N. Let m ∈ N and Φ be defined like in (4.17) with ψ = ψd,k+ 1

2 ,l
,

aj > bj for a b > 0, 1 ≤ j ≤ m and λj from Proposition 4.24.
Then, the convolution root Φr from Lemma 4.14 is in W k,1(Rd) ∩W k,2(Rd), satisfies an moment
condition of order 2m a approximation property of any order L ∈ N.

Finally, we can state the convergence result of the SPH method for the extended missing Wendland
functions in even space dimension.

Corollary 4.72
Let d ∈ N be even and k, l ∈ N with k > d/2. Let m ∈ N and Φ = φ(‖ · ‖2) with φ be defined as in
(4.17) with ψ = ψd,k+ 1

2 ,l
, aj = bj for a fixed b > 0, 1 ≤ j ≤ m and λj from Proposition 4.24.

Assume initial data u0 ∈ Wσ,2(Rd)d and finite discrete mass with density ρ0 satisfying ρ
1/2
0 ∈

Wmax{σ,k},2(Rd) for a σ > m + 1 + d/2 and that the solution (u, ρ) of the Euler equations (3.1)
- (3.3) exists up to a time T > 0. Let (xε,hk ,uε,hk )k∈Zd be the solution of the weakly compressible
SPH equations (3.4) - (3.6).
Then, there exists a constant C > 0 such that the energy can be bounded by

Q(t) ≤ C
(
h2k

ε2k + ε2m
)
.

for all t ∈ [0, T ].

A few examples of the kernel functions which fits in Corollary 4.71, including the most useful ones,
can be found in Table 4.5.

The missing Wendland function in odd space dimension

Now we finally consider the missing Wendland function in odd space dimension. As in the case of
even spatial dimensions, we can achieve the formula for the Fourier transform easily by stepping
through the dimensions and use the Fourier transformation formula of the original Wendland
functions.
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k l Extended missing Wendland function ψ2,k,l(r)
1 1 (105r6 + 210r4)L(r)

−(32r6 + 247r4 + 40r2 − 4)S(r)
2 (105r8 + 1680r6 + 1680r4)L(r)
−(919r6 + 2346r4 + 216r2 − 16)S(r)

2 1 −(945r10 + 18900r8 + 25200r6)L(r)
+(9295r8 + 31670r6 + 4704r4 − 6888r2 + 64)S(r)

2 −(10395r10 + 69300r8 + 55440r6)L(r)
+(2048r10 + 46949r8 + 79418r6 + 7504r4 − 848r2 + 64)S(r)

Table 4.5: Extended missing Wendland functions in d = 2 for various parameters of k
and l. These functions satisfy a moment condition of order m = 2 and an approximation
condition of any order L ∈ N. These functions can be used for the construction method
from (4.17).

Theorem 4.73
Let d ∈ N be odd, k, l ∈ N0 and µ = (d+ 1)/2 +k+ 1. Then, the Fourier transform of the extended
missing Wendland functions is given by

Fdψd,k+ 1
2 ,l

(r) = Cd+1,k+ d−1
2 ,l− d−1

2

(
J0(r)

bµ+l
2 c−1∑
n=0

c1,d+1,k,l,nr
−(2µ+2n−2)

+ J1(r)
bµ+l

2 c−1∑
n=0

c2,d+1,k,l,nr
−(2µ+2n−1)

+ (J0(r)H1(r)− J1(r)H0(r))
bµ+l−1

2 c∑
n=0

c3,d+1,k,l,nr
−(2µ+2n−2)

)
,

where the coefficients c1,d,k,l,n, c2,d,k,l,n and c3,d,k,l,n are defined in Theorem 4.56.

The proof is exactly like the proof of Theorem 4.66 and will be omitted here. With this reference
to the Fourier transform of the original Wendland functions, we can summarize the expression to
the following form.

Proposition 4.74
Let d ∈ N be odd, k, l ∈ N0 and µ = (d+ 1)/2 + k + 1. Then

Fdψd,k+ 1
2 ,l

(r) = r−(3µ+l−3)
(
p1,d,k,l(r)J0(r) + p2,d,k,l(r)Jr(r)

+ qd,k,l(r) (J0(r)H1(r)− J1(r)H0(r))
)
, r ≥ 0,

with qd,k,l ∈ Πµ+l−1, p1,d,k,l ∈ Πµ+l−1 and p2,d,k,l ∈ Πµ+l−2 .

Hence, we can conclude the regularity of the missing Wendland functions from the previous result.

Lemma 4.75
Let d ∈ N be odd, l, k ∈ N0 and µ = (d+ 1)/2 + k + 1. Then, ψd,k+ 1

2 ,l
(‖ · ‖2) belongs to Wσ,2(Rd)

for all σ < 2µ− d/2− 1.

Once more, the proof can be taken from Lemma 4.44. By stepping through the dimension, we can
easily show that the missing Wendland function satisfy the approximation condition of arbitrary
order in odd space dimension. Therefore we need the following result.
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k l Extended missing Wendland function ψ3,k,l(r)
1 1 (105r8 + 1680r6 + 1680r4)L(r)

−(919r6 + 2346r4 + 216r2 − 16)S(r)
2 (4725r8 + 25200r6 + 15120r4)L(r)
−(1024r8 + 18827r6 + 23874r4 + 1400r2 − 80)S(r)

3 (315r10 + 9450r8 + 25200r6 + 10080r4)L(r)
−(3781r8 + 23108r6 + 17484r4 + 704r2 − 32)S(r)

2 1 −(10395r10 + 69300r8 + 55440r6)L(r)
+(2048r10 + 46949r8 + 79418r6 + 7504r4 − 848r2 + 64)S(r)

2 −3465(r12 + 36r10 + 120r8 + 64r6)L(r)
+(45687r10 + 348086r8 + 351160r6 + 22752r4 − 2048r2 + 128)S(r)

3 −45045(r12 + 84r10 + 168r8 + 64r6)L(r)
+(49152r12 + 1945677r10 + 7392890r8 + 4946104r6 + 231840r4 − 17024r2 + 896)S(r)

Table 4.6: Extended missing Wendland functions in d = 3 for various parameters of k
and l. These functions satisfy a moment condition of order m = 2 and an approximation
condition of any order L ∈ N. These functions can be used for the construction method
from (4.17).

Theorem 4.76
Let d ∈ N be odd, k ∈ N0 and l ∈ N. Then, for every L ∈ N there exists a constant CL > 0 such
that ∣∣∣∣ dndrn rFdψd,k,l(r)

∣∣∣∣ ≤ CLFdψd,k,l(r)
for all 1 ≤ n ≤ L and r ≥ 0.

Again, the proof is nearly the same as the one of Theorem 4.69 by using the result of Theorem
4.59. Using the last results, we have the following result for the root kernel of the extended missing
Wendland function.
Theorem 4.77
Let d ∈ N be odd, k, l ∈ N. Then, the root kernel of the normalized missing Wendland function
ψd,k+ 1

2 ,l
(‖ · ‖2) exists, belongs to W k,1(Rd)∩W k,2(Rd) and satisfies the moment condition of order

2 and the approximation condition of any order L ∈ N.

The proof is exactly the proof of Theorem 4.47. The next result takes advantage of the construction
from equation (4.17) to satisfy the moment condition of an arbitrary order.

Theorem 4.78
Let d ∈ N be odd and let k, l ∈ N. Let m ∈ N and Φ = φ(‖ · ‖2) with φ be defined as in (4.17) with
ψ = ψd,k+ 1

2 ,l
, aj = bj for a fixed b > 0, 1 ≤ j ≤ m and λj from Proposition 4.24.

Then, the convolution root Φr from Lemma 4.14 is in W k,1(Rd)∩W k,2(Rd), satisfies the moment
condition of order 2m and the approximation condition of any order L ∈ N.

Finally, we can derive a convergence result for the SPH method in even space dimension for the
extended missing Wendland functions. As in the case of odd space dimension, we can eliminate
the dependency on the parameter L in the error estimate.

Corollary 4.79
Let d ∈ N be odd and let k, l ∈ N with k > d/2. Let m ∈ N and Φ = φ(‖ · ‖2) with φ be defined as
in (4.17) with ψ = ψd,k+ 1

2 ,l
, aj = bj for a fixed b > 0, 1 ≤ j ≤ m and λj from Proposition 4.24.

Assume initial data u0 ∈ Wσ,2(Rd)d and finite discrete mass with density ρ0 satisfying ρ
1/2
0 ∈

Wmax{σ,k},2(Rd) for a σ > m + 1 + d/2 and that the solution (u, ρ) of the Euler equations (3.1)
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- (3.3) exists up to a time T > 0. Let (xε,hk ,uε,hk )k∈Zd be the solution of the weakly compressible
SPH equations (3.4) - (3.6).
Then, there exists a constant C > 0 such that the energy can be bounded by

Q(t) ≤ C
(
h2k

ε2k + ε2m
)
.

for all t ∈ [0, T ].

A few examples of the kernel functions which fits in Corollary 4.79, including the most useful ones,
can be found in Table 4.6.
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CHAPTER 5

Time Discretization

In Chapter 3, we discretized the Euler equations in space by the SPH approximation and derived
a convergence result for this approximation. However, in applications, we will also need the Euler
equations to be discretized in time. Hence, the goal of this chapter is to give a convergence result
for a fully discretized SPH system for the Euler equations.
For the sake of simplicity, we will concentrate on a simple explicit and implicit Euler time dis-
cretization to demonstrate the possibility of the convergence of a fully discretized SPH system.
Unfortunately, the right-hand side of the SPH approximated Euler equations (3.5) satisfy only a
Lipschitz condition depending on ε−1, such that the classical results for numerical methods for
ordinary differential equations do not lead to a convergence result for the fully discretized system.

5.1 Auxiliary Tools
We will start this chapter by giving some auxiliary results, which we require for the subsequent
analysis. In the first lemma, we will derive an explicit and an implicit discretized version of
Gronwall’s inequality.
Lemma 5.1
Let N ∈ N, τ = 1/N and λ, µ ∈ R with λ > 0. Let (an)Nn=0 ⊂ R be a sequence of positive numbers.

i) If the sequence (an)Nn=0 satisfies

an+1 ≤ an (1 + λτ) + µτ, 0 ≤ n ≤ N − 1,

then, the following inequality holds

an ≤ (a0 + µ) eλ, 0 ≤ n ≤ N.

ii) If λτ < 1 and the sequence (an)Nn=0 satisfies

an+1 ≤ an + λτan+1 + µτ, 0 ≤ n ≤ N − 1,

then, the following inequality holds

an ≤ (a0 + µ) eλ/(1−λτ), 0 ≤ n ≤ N.

Proof. We start with the first inequality. Per induction, one can show that

an ≤ a0 (1 + λτ)n + µτ

n−1∑
k=0

(1 + λτ)k (5.1)
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for all 0 ≤ n ≤ N . Since λ > 0, (1 + λ/k)k is monotonically increasing in k and tends to exp(λ) if
k tends to infinity. Using that Nτ = 1, we have that

(1 + λτ)k ≤
(

1 + λτN

k

)k
≤ eλ

for all k with 1 ≤ k ≤ N . Inserting this inequality in (5.1) yields

an ≤ a0e
λ + µτneλ ≤ (a0 + µ)eλ, 1 ≤ n ≤ N,

which finishes the proof for the first inequality. The second inequality can be solved for an+1,
which gives

an+1 ≤ an (1− λτ)−1 + µτ (1− λτ)−1

for all 0 ≤ n ≤ N . Again, per induction, one can show that

an ≤ a0 (1− λτ)−n + µτ

n∑
k=1

(1− λτ)−k .

For the first term we have

(1− λτ)−k =
(

1 + λτ

1− λτ

)k
≤
(

1 + λτ

1− λτ
N

k

)k
≤ eλ/(1−λτ)

for all k with 1 ≤ k ≤ N , which, inserted in the last inequality, yields the required bounding.

In the upcoming analysis we will also need the following version of the Gagliardo–Nirenberg inter-
polation inequality for the derivatives of a W k,2(Rd) function.

Lemma 5.2
Let f ∈W k,2(Rd) and τ > 0. Then

‖∂jf‖2L2(Rd) ≤
l − 1
lτ
‖f‖2L2(Rd) + τ l−1

l
‖∂ljf‖2L2(Rd)

for all 1 ≤ j ≤ d and 1 ≤ l ≤ k.

Proof. Let 1 ≤ j ≤ d. Using partial integration and the inequality of Cauchy Schwarz, we first
note that

‖∂nj f‖2L2(Rd) =
∫
Rd

∂nj f(x)∂nj f(x)dx = −
∫
Rd

∂n−1
j f(x)∂n+1

j f(x)dx

≤ ‖∂n−1
j f‖L2(Rd)‖∂n+1

j f‖L2(Rd) ≤
1
2τ ‖∂

n−1
j f‖2L2(Rd) + τ

2‖∂
n+1
j f‖2L2(Rd)

for all 1 ≤ n ≤ k − 1, where we used Young’s inequality for products in the last line. We will now
set an = ‖∂nj f‖2L2(Rd) to simplify the notation, so that the inequality above becomes

an ≤
1
2τ an−1 + τ

2an+1. (5.2)

Now we will prove that
al−1 ≤

1
lτ l−1 a0 + (l − 1)τ

l
al. (5.3)

for all 1 ≤ l ≤ k per induction. The case l = 1 is obvious. For l − 1 → l, using inequality (5.2)
yields

al ≤
1
2τ al−1 + τ

2al+1 ≤
1

2lτ l a0 + l − 1
2l al + τ

2al+1.
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Solving this inequality for al and multiplying with 2l/(l + 1) leads to (5.3). Now we are able to
prove the stated lemma using induction. We have to show that

a1 ≤
l − 1
lτ

a0 + τ l−1

l
al.

The case l = 1 is obvious again. For l − 1→ l, using inequality (5.3) yields for l ≥ 2

a1 ≤
l − 2

(l − 1)τ a0 + τ l−2

l − 1al−1 ≤
l − 2

(l − 1)τ a0 + 1
l(l − 1)τ a0 + τ l−1

l
al

= l − 1
lτ

a0 + τ l−1

l
al,

which finishes the proof.

5.2 Explicit Discretization in Time
In the following, we will assume that the analytical solution of the Euler equations will hold up to
the time T > 0. The maximum number of time steps will be denoted by N ∈ N, hence the size of
a time step is given by τ = T/N . The position of the particle j ∈ Zd at the time step n is given
by xε,h,nj ∈ Rd, and its associated velocity by uε,h,nj ∈ Rd. Due to readability, we will neglect the
dependence on ε and h and write xnj for xε,h,nj and unj for uε,h,nj , even if xnj and unj still depend
on ε and h.
Using an explicit Euler time step algorithm, the fully discretized SPH system for the Euler equations
(3.1) - (3.3) is given by

xn+1
j = xnj + τunj , (5.4)

un+1
j = unj − τhd

∑
k∈Zd

ρ0(hk)∇Φε(xnj − xnk), (5.5)

for every j ∈ Zd and n ≤ N − 1 and

x0
j = hj, u0

j = u0(hj) (5.6)

for every j ∈ Zd. The approximated density is given by

ρε,h,n(x) := hd
∑

k∈Zd
ρ0(hk)Φε(x− xnk).

As in the case of the semi-discretized system in Chapter 3, we will need an error term to measure
the error between the solution of the Euler equations (3.1) - (3.3) and the solution of the fully
discretized SPH system (5.4) - (5.6). As mentioned before, the classical convergence theory for one
step methods does not hold since the Lipschitz constant of the right-hand side of the SPH equations
behaves proportionally to ε−d−2, which would lead to an estimate of the form ∼ exp

(
c ε−2−d).

Hence, this would not lead to convergence for ε→ 0.
For this reason, we will again investigate the energy error term from Definition 3.7 in a time
discretized version, which is given by

Qn := hd
∑
j∈Zd

ρ0(hj)‖unj − u(xnj , tn)‖22 +
∫
Rd

(
ρε,h,r,n(x)− ρ(x, tn)

)2
dx,

where tn = nτ and

ρε,h,r,n(x) := hd
∑

k∈Zd
ρ0(hk)Φrε(x− xnk), x ∈ Rd.
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We will now give a bound on Qn by a discrete Gronwall argument and by using the result from
Theorem 3.9. As in the semi-discretized case, the error bound will depend on the initial error Q0,
the energy error in the zeroth time step. Note that Q0 is equal to Q(0), the energy error at the
time t = 0 for the semi-discretized system. Therefore, Q0 can be bounded exactly as in Theorem
3.8.

Theorem 5.3
Let s ≥ 2 and Φr ∈W s,2(Rd) be an even root kernel, which satisfies the moment condition of order
m ≥ 1 and the approximation condition of order L > d/2. Let Φ = Φr ∗ Φr be the corresponding
convolution kernel. Assume finite discrete mass and that the solution (u, ρ) of the Euler equations
(3.1) - (3.3) satisfies

uj ∈ L∞(0, T ;W η,2(Rd)), 1 ≤ j ≤ d,
ρ ∈ L∞(0, T ;L1(Rd)) ∩ L∞(0, T ;Wσ,2(Rd)),

for some time T > 0 with η > max{L,m}+ d
2 + 1 and σ > m+ d

2 + 1 with σ ≥ s. Let τ > 0 with
τ ≤ ε2 and let (xnk,unk)k∈Zd , 1 ≤ n ≤ N , be a solution of the corresponding, fully discretized SPH
equations (5.4) - (5.6).
Then, there exist two constants C1, C2 > 0 such that the energy can be bounded by

QN ≤ C1

(
Q0 + εmin{m,2L−d} + τ2

εd+4

)
exp

(
C2

τ

εd+2

)
.

Proof. We will prove this theorem with a discrete Gronwall argument. Hence, we have to bound
the energy Qn+1 by the energy of the previous timestep Qn. We will begin by rewriting the kinetic
and the potential energy part before we will give bounds for each occurring term.
We start with the kinetic energy term. Since u is continuously differentiable in both arguments,
using (5.4) and the mean value theorem yield

u(xn+1
j , tn+1) =u(xnj + τunj , nτ + τ)

=u(xnj , nτ) + d

ds
u(xnj + sτunj , nτ + sτ)

∣∣
s=ζu

with a ζu ∈ [0, 1]. For the sake of readability, we will shortly write xn+s
j = xnj + sτunj and

tn+s = tn + sτ for s ∈ [0, 1]. Using the Euler equation (3.1), we have

d

ds
u(xn+s

j , tn+s)
∣∣
s=ζu

=− τ∇ρ(xn+ζu
j , tn+ζu) + τ

((
unj − u(xn+ζu

j , tn+ζu)
)
·∇
)

u(xn+ζu
j , tn+ζu).

Hence, using (5.4) and (5.5), the difference of the solution and the approximated velocity yields

un+1
j − u(xn+1

j , tn+1) =unj − u(xnj , tn)− τ
(
∇ρε,h,n(xnj )−∇ρ(xn+ζu

j , tn+ζu)
)

− τ
((

unj − u(xn+ζu
j , tn+ζu)

)
·∇
)

u(xn+ζu
j , tn+ζu).

Inserting this equation, the kinetic energy error term can be written as

Qn+1
kin =hd

∑
j∈Zd

ρ0(hj)‖un+1
j − u(xn+1

j , tn+1)‖22

=Qnkin + τ
(
Sn1,1 + Sn1,2

)
+ τ2 (Sn2,1 + Sn2,2 + Sn2,3

)
,
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where the single terms are given by

Sn1,1 := −2hd
∑
j∈Zd

ρ0(hj)
(
unj − u(xnj , tn)

)
·
(
∇ρε,h,n(xnj )−∇ρ(xn+ζu

j , tn+ζu)
)
,

Sn1,2 := −2hd
∑
j∈Zd

ρ0(hj)
(
unj − u(xnj , tn)

)
·
(((

unj − u(xn+ζu
j , tn+ζu)

)
·∇
)

u(xn+ζu
j , tn+ζu)

)
,

Sn2,1 := hd
∑
j∈Zd

ρ0(hj)‖∇ρε,h,n(xnj )−∇ρ(xn+ζu
j , tn+ζu)‖22,

Sn2,2 := 2hd
∑
j∈Zd

ρ0(hj)
(
∇ρε,h,n(xnj )−∇ρ(xn+ζu

j , tn+ζu)
)

·
(((

unj − u(xn+ζu
j , tn+ζu)

)
·∇
)

u(xn+ζu
j , tn+ζu)

)
and

Sn2,3 := hd
∑
j∈Zd

ρ0(hj)
∥∥∥((unj − u(xn+ζu

j , tn+ζu)
)
·∇
)

u(xn+ζu
j , tn+ζu)

∥∥∥2

2
.

For the potential energy error term, we use the same procedure by using the mean value theorem.
For the density ρ we have

ρ(x, tn+1) = ρ(x, tn + τ) = ρ(x, tn) + d

ds
ρ(x, tn + sτ)

∣∣
s=ζρ

,

with a ζρ ∈ [0, 1], where the Euler equation (3.2) yields

d

ds
ρ(x, tn + sτ)

∣∣
s=ζρ

= τ∂tρ(x, tn+ζρ) = −τ∇·(ρu)(x, tn+ζρ).

For the approximated density, (5.4) yields

ρε,h,r,n+1(x) = hd
∑
j∈Zd

ρ0(hj)Φrε(x− xn+1
j ) = hd

∑
j∈Zd

ρ0(hj)Φrε(x− xnj − τunj ).

Since the kernel Φrε is continuously differentiable, we can again use the mean value theorem to
derive

Φrε(x− xnj − τunj ) = Φrε(x− xnj )− τunj ·∇Φrε(x− xnj − ζΦτunj )
for a ζΦ ∈ [0, 1]. Inserting this equation into the approximated density, we have

ρε,h,r,n+1(x) = ρε,h,r,n(x)− τhd
∑
j∈Zd

ρ0(hj)unj ·∇Φrε(x− xn+ζΦ
j ).

Hence, the potential energy term can be written as

Qn+1
pot =

∫
Rd

(
ρε,h,r,n+1(x)− ρ(x, tn+1)

)2
dx

= Qnpot + τSn1,3 + τ2Sn2,4,

where the single terms are given by

Sn1,3 := −2
∫
Rd

(
ρε,h,r,n(x)− ρ(x, tn)

)hd ∑
j∈Zd

ρ0(hj)unj ·∇Φrε(x− xn+ζΦ
j )−∇·(ρu)(x, tn+ζρ)

 dx,

Sn2,4 :=
∫
Rd

hd ∑
j∈Zd

ρ0(hj)unj ·∇Φrε(x− xn+ζΦ
j )−∇·(ρu)(x, tn+ζρ)

2

dx.
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Combining the kinetic and the potential error term, we can write the time discretized energy error
at the (n+ 1)-th time step as

Qn+1 = Qn+1
kin +Qn+1

pot = Qn + τ
(
Sn1,1 + Sn1,2 + Sn1,3

)
+ τ2 (Sn2,1 + Sn2,2 + Sn2,3 + Sn2,4

)
.

We will now split up the occurring terms separately, starting with Sn1,1, Sn1,2 and Sn1,3. The first
one can be written as Sn1,1 = Sn1,1,1 + Sn1,1,2 with

Sn1,1,1 :=− 2hd
∑
j∈Zd

ρ0(hj)
(
unj − u(xnj , tn)

)
·
(
∇ρε,h,n(xnj , tn)−∇ρ(xnj , tn)

)
,

Sn1,1,2 :=− 2hd
∑
j∈Zd

ρ0(hj)
(
unj − u(xnj , tn)

)
·
(
∇ρ(xnj , tn)−∇ρ(xn+ζu

j , tn+ζu)
)
.

The second one can be written as Sn1,2 = Sn1,2,1 + Sn1,2,2 with

Sn1,2,1 :=− 2hd
∑
j∈Zd

ρ0(hj)
(
unj − u(xnj , tn)

)
·
(((

unj − u(xnj , tn)
)
·∇
)
u(xn+ζu

j , tn+ζu)
)
,

Sn1,2,2 :=− 2hd
∑
j∈Zd

ρ0(hj)
(
unj − u(xnj , tn)

)
·
(((

u(xnj , tn)−u(xn+ζu
j , tn+ζu)

)
·∇
)
u(xn+ζu

j , tn+ζu)
)
.

The third one can be written as Sn1,3 = Sn1,3,1 + Sn1,3,2 + Sn1,3,3 with

Sn1,3,1 :=− 2
∫
Rd

(
ρε,h,r,n(x)− ρ(x, tn)

)hd ∑
j∈Zd

ρ0(hj)unj ·∇Φrε(x− xnj )−∇·(ρu)(x, tn)

 dx,

Sn1,3,2 :=− 2
∫
Rd

(
ρε,h,r,n(x)− ρ(x, tn)

)hd ∑
j∈Zd

ρ0(hj)unj ·
(
∇Φrε(x− xn+ζΦ

j )−∇Φrε(x− xnj )
) dx

and

Sn1,3,3 := −2
∫
Rd

(
ρε,h,r,n(x)− ρ(x, tn)

) (
∇·(ρu)(x, tn)−∇·(ρu)(x, tn+ζρ)

)
dx.

Sn1,1,1, Sn1,2,1 and Sn1,3,1 can be bounded by identifying these terms with the corresponding terms
occurring in the proof of Theorem 3.8. First of all, Sn1,2,1 can be identified with A2 from equation
(3.19). Note that the arguments of the derivatives of u in Sn1,2,1 differ from the ones in A2, which
can be neglected since we bound u in the L∞(W 1,∞) norm. Hence, we have

Sn1,2,1 ≤ C(u)Qn.

Separating the terms in Sn1,1,1 and Sn1,3,1 yields

Sn1,1,1 =− 2hd
∑
j∈Zd

ρ0(hj)unj ·∇ρε,h,n(xnj , tn)

+ 2hd
∑
j∈Zd

ρ0(hj)unj ·∇ρ(xnj , tn)

+ 2hd
∑
j∈Zd

ρ0(hj)u(xnj , tn)·
(
∇ρε,h,n(xnj , tn)−∇ρ(xnj , tn)

)
=Sn1,1,1,1 + Sn1,1,1,2 + Sn1,1,1,3
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and

Sn1,3,1 =− 2
∫
Rd

ρε,h,r,n(x)hd
∑
j∈Zd

ρ0(hj)unj ·∇Φrε(x− xnj )dx

+ 2
∫
Rd

ρ(x, tn)hd
∑
j∈Zd

ρ0(hj)unj ·∇Φrε(x− xnj )dx

+ 2
∫
Rd

(
ρε,h,r,n(x)− ρ(x, tn)

)
∇·(ρu)(x, tn)dx

=Sn1,3,1,1 + Sn1,3,1,2 + Sn1,3,1,3.

Using that ∇Φrε(−x) = −∇Φrε(x) and that Φr ∗ Φr = Φ yields

Sn1,3,1,1 = 2hd
∑
j∈Zd

ρ0(hj)unj ·
∫
Rd

ρε,h,r,n(x)∇Φrε(xnj − x)dx = 2hd
∑
j∈Zd

ρ0(hj)unj ·∇ρε,h,n(x),

which cancels out with Sn1,1,1,1. Moreover, the sum Sn1,1,1,2 + Sn1,3,1,2 and the sum Sn1,1,1,3 + Sn1,3,1,3
can be identified with A3 and A1 from equation (3.19) from the proof of Theorem 3.9, respectively.
Hence, using (3.20) and (3.23) we have

Sn1,1,1 + Sn1,3,1 ≤ C(u, ρ,M)
(
εm + ε2L−d +Qn

)
.

The remaining terms have to be bounded separately. Using the Cauchy-Schwarz inequality, Sn1,1,2
yields

Sn1,1,2 ≤ hd
∑
j∈Zd

ρ0(hj)‖unj − u(xnj , tn)‖22 + hd
∑
j∈Zd

ρ0(hj)‖∇ρ(xnj , tn)−∇ρ(xn+ζu
j , tn+ζu)‖22

= Qnkin +Rn1,1,2,

where the remainder Rn1,1,2 of Sn1,1,2 is given by

Rn1,1,2 := hd
∑
j∈Zd

ρ0(hj)‖∇ρ(xnj , tn)−∇ρ(xn+ζu
j , tn+ζu)‖22.

Now, we want to apply the mean value theorem once again. This can be done since the Sobolev
embedding theorem states that u and ρ are at least m+1 times continuously differentiable. Hence,
the difference of the densities can be written as

∇ρ(xnj , tn)−∇ρ(xn+ζu
j , tn+ζu) =− ζu

d

ds
∇ρ(xnj + sτunj , tn + sτ)

∣∣
s=ζ̃u

=− ζuτ
(
unj ·∇

)
(∇ρ) (xnj + ζ̃uτunj , tn + ζ̃uτ)

+ ζuτ∇ (∇·(ρu)) (xnj + ζ̃uτunj , tn + ζ̃uτ)

for a ζ̃u ∈ [0, ζu], where we used the continuity equation (3.2) in the last line. Hence, with |ζu| ≤ 1,
the remaining sum yields

Rn1,1,2 ≤τ2hd
∑
j∈Zd

ρ0(hj)‖
(
unj ·∇

)
(∇ρ) (xnj + ζ̃uτunj , tn + ζ̃uτ)‖22

+ τ2hd
∑
j∈Zd

ρ0(hj)‖∇ (∇·(ρu)) (xnj + ζ̃uτunj , tn + ζ̃uτ)‖22

≤τ2

‖ρ‖2L∞(W 2,∞)h
d
∑
j∈Zd

ρ0(hj)‖unj ‖22 + ‖ρu‖2L∞(W 2,∞)h
d
∑
j∈Zd

ρ0(hj)

 .
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The second sum can be bound by the finite mass of the SPH system hd
∑

j∈Zd ρ0(hj) ≤ M , the
first sum can be bound by

hd
∑
j∈Zd

ρ0(hj)‖unj ‖22 ≤2hd
∑
j∈Zd

ρ0(hj)‖unj − u(xnj , tn)‖22 + 2hd
∑
j∈Zd

ρ0(hj)‖u(xnj , tn)‖22

≤
(

2Qnkin + 2M‖u‖2L∞(L∞)

) (5.7)

so that we finally have
Sn1,1,2 ≤ C(u, ρ)

(
Qnkin + τ2 (1 +Qnkin)

)
.

For Sn1,2,2, the Cauchy-Schwarz inequality and Young’s inequality yield

Sn1,2,2 ≤2‖u‖L∞(W 1,∞)h
d
∑
j∈Zd

ρ0(hj)‖unj − u(xnj , tn)‖2‖u(xnj , tn)− u(xn+ζu
j , tn+ζu)‖2

≤‖u‖L∞(W 1,∞)h
d
∑
j∈Zd

ρ0(hj)‖unj − u(xnj , tn)‖22

+ ‖u‖L∞(W 1,∞)h
d
∑
j∈Zd

ρ0(hj)‖u(xnj , tn)− u(xn+ζu
j , tn+ζu)‖22

=C(u)
(
Qnkin +Rn1,2,2(ζu)

)
where the remainder Rn1,2,2 is given by

Rn1,2,2(ζu) := hd
∑
j∈Zd

ρ0(hj)‖u(xnj , tn)− u(xn+ζu
j , tn+ζu)‖22. (5.8)

Again, we can use the mean value theorem to find a ζ̃u ∈ [0, ζu] such that

u(xnj , tn)− u(xn+ζu
j , tn+ζu) =− ζu

d

ds
u(xnj + sτunj , tn + sτ)

∣∣
s=ζ̃u

=ζuτ∇ρ(xn+ζ̃u
j , t

n+ζ̃u
)

− ζuτ

((
unj − u(xn+ζ̃u

j , t
n+ζ̃u

)
)
·∇
)

u(xn+ζ̃u
j , t

n+ζ̃u
),

where we used the Euler equation (3.1). Inserting this into the remainder yields

Rn1,2,2(ζu) ≤2τ2hd
∑
j∈Zd

ρ0(hj)‖∇ρ(xn+ζ̃u
j , t

n+ζ̃u
)‖22

+ 2τ2hd
∑
j∈Zd

ρ0(hj)
∥∥∥∥((unj − u(xn+ζ̃u

j , t
n+ζ̃u

)
)
·∇
)

u(xn+ζ̃u
j , t

n+ζ̃u
)
∥∥∥∥2

2

≤2τ2M‖ρ‖2L∞(W 1,∞) + 2τ2‖u‖2L∞(W 1,∞)h
d
∑
j∈Zd

ρ0(hj)‖unj − u(xn+ζ̃u
j , t

n+ζ̃u
))‖22.

The remaining sum can be bounded by

hd
∑
j∈Zd

ρ0(hj)‖unj − u(xn+ζ̃u
j , t

n+ζ̃u
))‖22 ≤2hd

∑
j∈Zd

ρ0(hj)‖unj − u(xnj , tn))‖22

+ 2hd
∑
j∈Zd

ρ0(hj)‖u(xnj , tn)− u(xn+ζ̃u
j , t

n+ζ̃u
))‖22

=2Qnkin + 2Rn1,2,2(ζ̃u)
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where we now use that Rn1,2,2(ζ̃u) ≤ 8M‖u‖2L∞(L∞). Altogether, Sn1,2,2 yields

Sn1,2,2 ≤ C(u, ρ)
(
Qnkin + τ2 (1 +Qnkin)

)
.

For the Term Sn1,3,2 we first note that with xn+ζΦ
j = xnj + τζΦunj , there exists a ζ̃Φ ∈ [0, ζΦ] such

that
∇Φrε(x− xn+ζΦ

j )−∇Φrε(x− xnj ) = −ζΦτ
(
unj ·∇

)
∇Φrε(x− xnj − τ ζ̃Φunj ). (5.9)

Hence,

Sn1,3,2 = 2ζΦτhd
∑
j∈Zd

ρ0(hj)
∫
Rd

(
ρε,h,r,n(x)− ρ(x, tn)

) (
unj ·

(
unj ·∇

)
∇Φrε(x− xnj − τ ζ̃Φunj )

)
dx

= 2ζΦτ
d∑

k,l=1
hd
∑
j∈Zd

ρ0(hj)(unj )k(unj )l
∫
Rd

(
ρε,h,r,n(x)− ρ(x, tn)

)
∂k∂lΦrε(x− xnj − τ ζ̃Φunj )dx.

Using the Cauchy-Schwarz inequality, we have 2(unj )k(unj )l ≤ (unj )2
k + (unj )2

l ≤ 2‖unj ‖22 so that,
using |ζΦ| < 1, we can bound Sn1,3,2 by

Sn1,3,2 ≤ 2τhd
∑
j∈Zd

ρ0(hj)‖unj ‖22Rn1,3,2,j,

where the remainder Rn1,3,2,j is given by

Rn1,3,2,j :=
∫
Rd

∣∣ρε,h,r,n(x)− ρ(x, tn)
∣∣ d∑
k,l=1

∣∣∣∂k∂lΦrε(x− xnj + τ ζ̃Φunj )
∣∣∣ dx

for every j ∈ Zd. Using inequality (5.7) for the occurring sum, we have

Sn1,3,2 ≤ 4τQnkin max
j∈Zd

Rn1,3,2,j + 4τM‖u‖2L∞(L∞) max
j∈Zd

Rn1,3,2,j.

We now have two possibilities to give a bound for the remainder Rn1,3,2,j. For the first term, we
use that |∂k∂lΦrε(x− xnj + τ ζ̃Φunj )| ≤ ε−d−2‖Φr‖W 2,∞ to bound the remainder by

Rn1,3,2,j ≤ c
1

εd+2

(
‖ρε,h,r,n‖L1(Rd) + ‖ρ‖L1(Rd))

)
for every j ∈ Zd, where ‖ρε,h,r,n‖L1 can be bounded by cM‖Φr‖L1 . For the second occurrence, we
use Young’s inequality to derive

τRn1,3,2,j ≤
∫
Rd

(
ρε,h,r,n(x)− ρ(x, tn)

)2
dx + d4τ2‖Φrε‖2W 2,2(Rd) ≤ c

(
Qnpot + τ2

εd+4

)
,

where the norm of the kernel was bounded by

‖Φrε‖W 2,2(Rd) ≤ ε−d/2−2‖Φr‖W 2,2(Rd).

Taking these estimates together, we have

Sn1,3,2 ≤ C(u, ρ,M)
(
Qnpot +Qnkin

τ

εd+2 + τ2

εd+4

)
.
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For Sn1,3,3, we easily see that

Sn1,3,3 ≤
∫
Rd

(
ρε,h,r,n(x)− ρ(x, tn)

)2
dx +

∫
Rd

(
∇·(ρu)(x, tn)−∇·(ρu)(x, tn+ζρ)

)2
dx

= Qnpot +Rn1,3,3,

where the remainder is given by

Rn1,3,3 =
∫
Rd

(
∇·(ρu)(x, tn)−∇·(ρu)(x, tn+ζρ)

)2
dx.

Using the mean value theorem for every 1 ≤ j ≤ d, we find a ζ̃ρ,j ∈ [0, ζρ], such that

∂j(ρu)(x, tn)− ∂j(ρu)(x, tn+ζρ) = −ζρτ∂t∂j(ρu)(x, tn + ζ̃ρ,jτ)

= ζρτ

d∑
k=1

∂k∂j(ρuku)(x, tn + ζ̃ρ,jτ) + ζρτ
1
2∂j∇ρ

2(x, tn + ζ̃ρ,jτ),

where we used that

∂t(ρu) = (∂tρ)u + ρ∂tu = −(ρ∇·u + u·∇ρ)u− ρ(∇ρ+ (u·∇)u) = −
d∑
k=1

∂k(ρuku)− 1
2∇ρ

2.

Inserting this equation into Rn1,3,3, using Lemma 1.17 and that |ζρ| < 1 yields

Rn1,3,3 =ζ2
ρτ

2
∫
Rd

 d∑
k,j=1

∂k∂j(ρukuj)(x, tn + ζ̃ρ,jτ) + 1
2

d∑
j=1

∂j∇ρ2(x, tn + ζ̃ρ,jτ)

2

dx

≤2ζ2
ρτ

2
∫
Rd

 d∑
k,j=1

∂k∂j(ρukuj)(x, tn + ζ̃ρ,jτ)

2

dx + ζ2
ρ2τ2

∫
Rd

1
2

d∑
j=1

∂j∇ρ2(x, tn + ζ̃ρ,jτ)

2

dx

≤cτ2
(
‖ρ‖2L∞(W 2,2)‖u‖4L∞(W 2,2) + ‖ρ‖2L∞(W 1,2)

)
,

where we also used the Cauchy-Schwarz inequality. Hence, we have

Sn1,3,3 ≤ Qnpot + C(u, ρ)τ2.

It remains to find bounds for the terms Sn2,1, Sn2,2, Sn2,3 and Sn2,4. First of all, we note that using
Young’s inequality for products, we have

Sn2,2 ≤ Sn2,1 + Sn2,3.

The remaining three terms have to be bounded separately. Sn2,1 can be estimated by

1
2S

n
2,1 ≤hd

∑
j∈Zd

ρ0(hj)‖∇ρε,h,n(xnj )−∇ρ(xnj , tn)‖22

+ hd
∑
j∈Zd

ρ0(hj)‖∇ρ(xnj , tn)−∇ρ(xn+ζu
j , tn+ζu)‖22

= : Sn2,1,1 + Sn2,1,2.

We note that Sn2,1,2 = Rn1,1,2, and so we have

Sn2,1,2 ≤ C(u,M)τ2(1 +Qnkin).
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For the term Sn2,1,1, we note that ρε,h,n(xnj ) = ρε,h,r,n(xnj )∗Φrε, so that using the triangle inequality
and Lemma 1.17 yield

Sn2,1,1 ≤2hd
∑
j∈Zd

ρ0(hj)‖
(
ρε,h,r,n − ρ(·, tn)

)
∗ ∇Φrε(xnj )‖22

+ 2hd
∑
j∈Zd

ρ0(hj)‖∇ρ(·, tn) ∗ Φrε(xnj )−∇ρ(xnj , tn)‖22,
(5.10)

where the second sum can be bounded using Theorem 1.28 by

hd
∑
j∈Zd

ρ0(hj)‖∇ρ(·, tn) ∗ Φrε(xnj )−∇ρ(xnj , tn)‖22 ≤ cMεm‖ρ‖L∞(Wm+1,∞).

In the first sum of inequality (5.10), using the L∞(Rd) norm, we can factorize the difference.
Hence, using Young’s inequality for convolutions, Theorem 1.5, this L∞(Rd) norm yields

‖
(
ρε,h,r,n − ρ(·, tn)

)
∗ ∇Φrε‖2L∞(Rd) ≤‖ρ

ε,h,r,n − ρ(·, tn)‖2L2(Rd)‖∇Φrε‖2L2(Rd) ≤ Q
n
pot‖Φrε‖2W 1,2(Rd)

with ‖Φrε‖W 1,2(Rd) ≤ ε−d/2−1‖Φr‖W 1,2(Rd). The remaining sum over the initial density can again
be estimated by M . Combining the estimates above gives

Sn2,1 ≤ Sn2,1,1 + Sn2,1,2 ≤ C(u, ρ,M)
(
εm +

Qnpot
εd+2 + τ2(1 +Qnkin)

)
.

For Sn2,3, we first note for a v ∈ Rd that we have

‖ (v·∇) u‖22 =
d∑
k=1

∣∣∣∣∣∣
d∑
j=1

vj∂juk

∣∣∣∣∣∣
2

≤ d‖u‖L∞(W 1,∞)

 d∑
j=1
|vj |

2

≤ d2‖u‖L∞(W 1,∞)‖v‖22,

where we used Lemma 2.17. Applying this inequality to the terms in the sum of Sn2,3 and using
Lemma 1.17 once again, we have

Sn2,3 =hd
∑
j∈Zd

ρ0(hj)
∥∥∥((unj − u(xn+ζu

j , tn+ζu)
)
·∇
)

u(xn+ζu
j , tn+ζu)

∥∥∥2

2

≤d2‖u‖2L∞(W 1,∞)h
d
∑
j∈Zd

ρ0(hj)‖unj − u(xn+ζu
j , tn+ζu)‖22

≤2d2‖u‖2L∞(W 1,∞)h
d
∑
j∈Zd

ρ0(hj)‖unj − u(xnj , tn)‖22

+ 2d2‖u‖2L∞(W 1,∞)h
d
∑
j∈Zd

ρ0(hj)‖u(xnj , tn)− u(xn+ζu
j , tn+ζu)‖22.

The first occurring sum is identical to Qnkin, the second one can be identified with Rn1,2,2(ζu), see
(5.8). Hence, Sn2,3 an be bound by

Sn2,3 ≤ C(u,M)
(
Qnkin + τ2(1 +Qnkin)

)
.

Finally we have to find an estimate for Sn2,4. First, using Lemma 2.17 we split Sn2,4 up into five
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parts by

Sn2,4 ≤5

∥∥∥∥∥∥hd
∑
j∈Zd

ρ0(hj)
(
unj − u(xnj , tn)

)
·∇Φrε(· − xn+ζΦ

j )

∥∥∥∥∥∥
2

L2(Rd)

+ 5

∥∥∥∥∥∥hd
∑
j∈Zd

ρ0(hj)u(xnj , tn)·∇
(

Φrε(· − xn+ζΦ
j )− Φrε(· − xnj )

)∥∥∥∥∥∥
2

L2(Rd)

+ 5

∥∥∥∥∥∥hd
∑
j∈Zd

ρ0(hj)u(xnj , tn)·∇Φrε(· − xnj )−
∫
Rd

ρ(x, tn)u(x, tn)·∇Φrε(· − x)dx

∥∥∥∥∥∥
2

L2(Rd)

+ 5 ‖(∇·ρu(·, tn)) ∗ Φrε −∇·(ρu)(·, tn)‖2L2(Rd)

+ 5
∥∥∇·(ρu)(·, tn)−∇·(ρu)(·, tn+ζρ)

∥∥2
L2(Rd)

=:5
(
Sn2,4,1 + Sn2,4,2 + Sn2,4,3 + Sn2,4,4 + Sn2,4,5

)
,

For the first norm we note that

Sn2,4,1 ≤ h2d
∑

j,k∈Zd
ρ0(hj)ρ0(hk)‖unj − u(xnj , tn)‖2‖unk − u(xnk, tn)‖2‖Φrε‖2W 1,2(Rd),

where the norm of the kernel can be estimated by ‖Φrε‖2W 1,2(Rd) ≤ ε
−d−2‖Φr‖2W 1,2(Rd). Furthermore,

using Young’s inequality, we note that

2‖unj − u(xnj , tn)‖2‖unk − u(xnk, tn)‖2 ≤ ‖unj − u(xnj , tn)‖22 + ‖unk − u(xnk, tn)‖22,

which yields, by switching the summation indices in one of the occurring double sums,

Sn2,4,1 ≤c
1

εd+2h
2d
∑

j,k∈Zd
ρ0(hk)ρ0(hj)

(
‖unj − u(xnj , tn)‖22 + ‖unk − u(xnk, tn)‖22

)
=2c 1

εd+2h
2d
∑

k∈Zd
ρ0(hk)

∑
j∈Zd

ρ0(hj)‖unj − u(xnj , tn)‖22

≤C(M)Q
n
kin

εd+2 ,

where we used the finite initial mass in the last line again. For Sn2,4,2 we use equation (5.9) to find
a ζ ∈ [0, ζΦ] such that

Sn2,4,2 =‖hd
∑
j∈Zd

ρ0(hj)u(xnj , tn)·
(
ζΦτ

(
unj ·∇

)
Φrε(· − xnj − τζunj )

)
‖2L2(Rd)

≤cτ2

hd ∑
j∈Zd

ρ0(hj)‖u(xnj , tn)‖2‖unj ‖2

2

‖Φrε‖2W 2,2(Rd).

The norm of the kernel function can be bounded by ‖Φrε‖2W 2,2(Rd) ≤ ε−d−4‖Φr‖2W 2,2(Rd). For the
remaining sum, we separate u to derivehd ∑

j∈Zd
ρ0(hj)‖u(xnj , tn)‖2‖unj ‖2

2

≤ c‖u‖2L∞(L∞)

hd ∑
j∈Zd

ρ0(hj)‖unj ‖2

2

.
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The last term yieldshd ∑
j∈Zd

ρ0(hj)‖unj ‖2

2

≤

hd ∑
j∈Zd

ρ0(hj)
(
‖unj − u(xnj , tn)‖2 + ‖u(xnj , tn)‖2

)2

≤

2

hd ∑
j∈Zd

ρ0(hj)‖unj − u(xnj , tn)‖2

2

+ C(u)2M2


≤C(u,M) (1 +Qnkin) ,

where we used the same arguments in the last line as in the case of Sn2,4,1 to get a bound for the
remaining sum. Overall, Sn2,4,2 can be bound by

Sn2,4,2 ≤ C(u,M) τ2

εd+4 (1 +Qnkin) .

For Sn2,4,4 we apply Theorem 1.28 to achieve

Sn2,4,4 ≤ ε2m‖ρu‖2L∞(Wm+1,∞).

For the fifth term we note that Sn2,4,5 = Rn1,3,3, which yields

Sn2,4,5 ≤ C(u, ρ)τ2.

Finally, for Sn2,4,3 we have to work a little harder. In the following we will omit the time dependence
for the sake of readability. Let 1 ≤ j ≤ d. We will derive a bound for the j-th part of the integral,
which we denote by

Sn2,4,3,j :=

∥∥∥∥∥∥hd
∑

k∈Zd
ρ0(hk)uj(xnk)∂jΦrε(· − xnk)−

∫
Rd

ρ(x)uj(x)∂jΦrε(· − x)dx

∥∥∥∥∥∥
2

L2(Rd)

. (5.11)

By the Sobolev embedding theorem and our assumptions on the smoothness of u, we may use a
Taylor expansion of uj about y ∈ Rd given by

uj(x) =
∑
|α|≤L

Dαuj(y)
α! (x− y)α + (L+ 1)

∑
|α|=L+1

(x− y)α

α!

1∫
0

(1− s)LDαuj(x− s(x− y))ds.

Together with the derivative of the kernel function, we can write

uj(x)∂jΦrε(y− x) =
∑
|α|≤L

Dαuj(y)
α! (x− y)α∂jΦrε(y− x)

+
∑

|α|=L+1

Rα(x,y) (x− y)α

α! ∂jΦrε(y− x)

=
∑
|α|≤L

Dαuj(y)W j
ε,α(y− x) +

∑
|α|=L+1

Rα(x,y)W j
ε,α(y− x),

(5.12)

where W j
ε,α is defined in (3.12) by

W j
ε,α(x) := (−1)|α|+1

α! pα(x)∂jΦrε(x), x ∈ Rd,
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with pα(x) = xα. For a |α| = L+ 1, the remainder Rα is given by

Rα(x,y) := (L+ 1)
1∫

0

(1− s)LDαuj(x− s(x− y))ds.

Inserting (5.12) into equation (5.11) and separating the terms of the sums, using Lemma 2.17 yields
the estimate√

Sn2,4,3,j ≤
∑
|α|≤L

∥∥∥∥∥∥Dαuj
hd ∑

k∈Zd
ρ0(hk)W j

ε,α(· − xnk)−
∫
Rd

ρ(x)W j
ε,α(· − x)dx

∥∥∥∥∥∥
L2(Rd)

+
∑

|α|=L+1

∥∥∥∥∥∥hd
∑

k∈Zd
ρ0(hk)Rα(xnk, ·)W j

ε,α(· − xnk)

∥∥∥∥∥∥
L2(Rd)

+
∑

|α|=L+1

∥∥∥∥∥∥
∫
Rd

ρ(x)Rα(x, ·)W j
ε,α(· − x)dx

∥∥∥∥∥∥
L2(Rd)

=:
∑
|α|≤L

R̃α +
∑

|α|=L+1

(
R̃α,1 + R̃α,2

)
.

We will now give a bound for R̃α. First, for a α = 0 we note

R̃0 =

∥∥∥∥∥∥uj
hd ∑

k∈Zd
ρ0(hk)∂jΦrε(· − xnk)−

∫
Rd

ρ(x)∂jΦrε(· − x)dx

∥∥∥∥∥∥
L2(Rd)

=
∥∥uj (∂jρε,h,r,n − ∂j(ρ ∗ Φrε)

)∥∥
L2(Rd)

≤‖uj‖L∞(L∞)‖∂jfε,h‖L2(Rd)

where fε,h := ρε,h,r,n − ρ ∗ Φrε. With l = s, Lemma 5.2 yields

‖∂jfε,h‖2L2(Rd) ≤
s− 1
sτ
‖fε,h‖2L2(Rd) + τs−1

s
‖∂sj fε,h‖2L2(Rd).

The s-th derivative of fε,h can then be bound by

‖∂sj fε,h‖L2(Rd) ≤ ‖∂sjρε,h,r,n‖L2(Rd) + ‖Φrε‖L1(Rd)‖∂sjρ‖L2(Rd)

≤Mε−d/2−s + c‖ρ‖L∞(W s,2),

where we used Theorem 1.5 for the convolution of Φrε and ∂sjρ. Hence, with

‖fε,h‖2L2(Rd) ≤ 2‖ρε,h,r,n − ρ ∗ Φrε‖2L2(Rd) + 2‖ρ− ρ‖2L2(Rd) ≤ 2Qnpot + cε2m‖ρ‖2L∞(Wm,2),

we achieve
R̃0 ≤ c

(
Qnpot
τ

+ ε2m

τ
+ τs−1

εd+2s

)
.

For 1 ≤ |α| ≤ L we note that

R̃α =
∫
Rd

Dαuj(y)

hd ∑
k∈Zd

ρ0(hk)W j
ε,α(y− xnk)−

∫
Rd

ρ(x)W j
ε,α(y− x)dx

2

dy

≤‖uj‖L∞(WL,∞)

∫
Rd

hd ∑
k∈Zd

ρ0(hk)W j
ε,α(y− xnk)− ρ ∗W j

ε,α(y)

2

dy

=‖uj‖L∞(WL,∞)‖F jα‖2L2(Rd),
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where we defined, as in (3.21) in the proof of Theorem 3.9,

F jα := hd
∑

k∈Zd
ρ0(hk)W j

ε,α(· − xε,hk )− ρ ∗W j
ε,α.

Hence, using (3.22) gives

‖F jα‖2L2(Rd) ≤ Cε
2|α|−2‖fε,h‖2L2(Rd) ≤ Cε

2|α|−2
(
‖ρε,h,r,n − ρ‖2L2(Rd) + ‖ρ− ρ ∗ Φrε‖2L2(Rd)

)
≤ Cε2|α|−2

(
Qnpot + ε2m‖ρ‖2L∞(Wm,2)

)
.

The terms for |α| = L+ 1 can easily be bounded by

R̃α,1 ≤M2‖Rα‖2L∞×L∞(Rd)‖W
j
ε,α‖2L2(Rd)

and
R̃α,2 ≤ ‖ρ‖2L1(Rd)‖Rα‖

2
L∞×L∞(Rd)‖W

j
ε,α‖2L2(Rd),

where ‖Rα‖2L∞×L∞(Rd) ≤ (L+ 1)‖u‖L∞(WL+1,∞) and Proposition 3.6 yields

‖W j
ε,α‖2L2(Rd) ≤ ε

2L−d‖pα∂jΦr‖2L2(Rd) ≤ cε
2L−d.

Combining these estimates, we arrive at

Sn2,4,3 ≤ C(u, ρ,M)
(
Qnpot
τ

+ ε2m

τ
+Qnpot + ε2m + ε2L−d + τs−1

εd+2s

)
,

such that we can bound Sn2,4 by

Sn2,4 ≤ (u, ρ,M)
(
Qn

τ
+ ε2m

τ
+ Qn

εd+2 + τ2
(

1 + 1 +Qn

εd+4

)
+ ε2m + ε2L−d + τs−1

εd+2s

)
.

We recall all estimates we made. For the first part, Sn1,1, Sn1,2 and Sn1,3, we have the seperate
estimates

Sn1,1,1 + Sn1,2,1 + Sn1,3,1 ≤ c
(
εm + ε2L−d +Qn

)
,

Sn1,1,2 ≤ c
(
Qn + τ2 (1 +Qn)

)
,

Sn1,2,2 ≤ c
(
Qn + τ2 (1 +Qn)

)
,

Sn1,3,2 ≤ c
(
Qn +Qn

τ

εd+2 + τ2

εd+4

)
,

Sn1,3,3 ≤ Qn + cτ2,

so that we have the complete estimate

τ
(
Sn1,1 + Sn1,2 + Sn1,3

)
≤ cτ

[
Qn
(

1 + τ2 + τ

εd+2

)
+ εm + ε2L−d + τ2 + τ2

εd+4

]
≤ C

[
Qnτ

(
1 + τ

εd+2

)
+ τ

(
εmin{m,2L−d} + τ2

εd+4

)]
,

where we used that τ < 1. For the second part, Sn2,1, Sn2,2, Sn2,3 and Sn2,4, we have the seperate
estimates

Sn2,1 ≤ c
(
εm + Qn

εd+2 + τ2(1 +Qn)
)
,

Sn2,2 ≤ Sn2,1 + Sn2,3

Sn2,3 ≤ c
(
Qn + τ2(1 +Qn)

)
,

Sn2,4 ≤ c
(
Qn

τ
+ ε2m

τ
+ Qn

εd+2 + τ2
(

1 + 1 +Qn

εd+4

)
+ ε2m + ε2L−d + τs−1

εd+2s

)
,
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so that we have the complete estimate

τ2 (Sn2,1 + Sn2,2 + Sn2,3 + Sn2,4
)
≤ cτ2

[
Qn
(

1 + τ2 + 1
τ

+ 1
εd+2 + τ2

εd+4

)
+ τ2 + εm + ε2L−d + ε2m

τ
+ τ2

εd+4 + τs−1

εd+2s

]
≤ C

[
Qnτ

(
1 + τ

εd+2

)
+ τ

(
τεmin{m,2L−d} + ε2m + τ3

εd+4 + τs

εd+2s

)]
,

where we used that τ ≤ ε ≤ 1. Combining all estimates, we find constants c1 > 0 and c2 > 0 so
that

Qn+1 =Qn + τ
(
Sn1,1 + Sn1,2 + Sn1,3

)
+ τ2 (Sn2,1 + Sn2,2 + Sn2,3 + Sn2,4

)
≤Qn

(
1 + τc2

(
1 + τ

εd+2

))
+ τc1

(
εmin{m,2L−d} + τ2

εd+4 + τs

εd+2s

)
.

Hence, using the discrete Gronwall’s inequality, Lemma 5.1, we find

Qn ≤
[
Q0 + c1

(
εmin{m,2L−d} + τ2

εd+4 + τs

εd+2s

)]
exp

(
c2

(
1 + τ

εd+2

))
≤ C1

[
Q0 +

(
εmin{m,2L−d} + τ2

εd+4

)]
exp

(
C2

τ

εd+2

)
,

where we used that τ ≤ ε2 and s ≥ 2, which finishes the proof.

As we see, we have a strong dependence on the time discretization parameter τ . In order to obtain
convergence, the parameter τ has to be at least ∼ εd+2. Concerning the numerical efficiency of
the SPH method, this would be bad. However, the error analysis above might not be optimal.
Moreover, we prefer to use time stepping methods of higher order at this point, for example a
high-order Runge Kutta method, even if the error analysis for time step algorithms of higher order
has yet to be done.
Using Theorem 3.8 for the convergence of Q0 and Lemma 3.10 to convert the conditions on the
solution of the Euler equations to conditions on the initial data (u0, ρ0), we can conclude the
following general result for the convergence of the energy error term.

Corollary 5.4
Let s ≥ 2 and Φr ∈W s,1(Rd)∩W s,2(Rd)∩C(Rd) be an even root kernel, which satisfies the moment
condition of order m ≥ 1 and the approximation condition of order L > d/2. Let Φ = Φr ∗ Φr be
the corresponding convolution kernel. Let ε > 0 and h > 0.
Assume initial data u0 ∈Wσ,2(Rd)d and finite discrete mass with ρ0 so that ρ1/2

0 ∈Wmax{σ,s},2(Rd)
for a σ > max{L,m}+1+d/2 and that the solution (u, ρ) of the Euler equations (3.1) - (3.3) exists
up to a time T > 0. Let (xε,h,nk ,uε,h,nk )k∈Zd for 0 ≤ n ≤ N be a solution of the corresponding, fully
discretized SPH equations (5.4) - (5.6).
Then, there exist constants C1, C2 > 0 such that the energy error can be bounded by

Qn ≤ C1

(
h2s

ε2s + εmin{m,2L−d} + τ2

εd+4

)
exp

(
C2

τ

εd+2

)
.

for all 0 ≤ n ≤ N .

Since we now have a result for the convergence of the energy error term, we can also conclude
pointwise convergence of the SPH method, analogously to Section 3.4.
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Theorem 5.5
Let the assumptions of Corollary 5.4 hold. This means in particular that the kernel satisfies the mo-
ment condition of order m ≥ 1, the approximation condition of order L > d/2 and has smoothness
s > d. Then, the following holds:

i) If ρ0(x) > 0 for all ‖x‖2 < 1 then, for each j ∈ Zd, there exist constants C1, C2 > 0, such that
we have for sufficiently small h,

‖xε,h,nj −X(hj, nτ)‖2 + ‖uε,h,nj (t)− u(X(hj, nτ), nτ)‖2

≤ C1

(
hs−d/2

εs
+ εmax{m/2,L−d/2}

hd/2
+ τ

εd/2+2hd/2

)
exp

(
C2

τ

εd+2

)
for all 1 ≤ n ≤ N .

ii) Let K ⊂ Rd be compact with infx∈K ρ0(x) > 0. Then, there exist constants CK , C2 > 0 and
such that

‖xε,h,nj −X(hj, nτ)‖2 + ‖uε,h,nj (t)− u(X(hj, nτ), nτ)‖2

≤ CK
(
hs−d/2

εs
+ εmax{m/2,L−d/2}

hd/2
+ τ

εd/2+2hd/2

)
exp

(
C2

τ

εd+2

)
for each j ∈ Zd with hj ∈ K and all 1 ≤ n ≤ N .

5.3 Implicit Discretization in Time
In this section, we want to show that also an implicit time discretization scheme will lead to
convergence. We will assume the same situation as in Section 5.2, including the definitions of the
approximated density and the discretized energy error. The system for the implicit discretization
in time is given by

xn+1
j = xnj + τun+1

j , (5.13)

un+1
j = unj − τhd

∑
k∈Zd

ρ0(hk)∇Φε(xn+1
j − xn+1

k ) = unj − τ∇ρε,h,n+1(xn+1
j ), (5.14)

for every j ∈ Zd and n ≤ N − 1
x0

j = hj, u0
j = u0(hj) (5.15)

for every j ∈ Zd. Analogously to Theorem 5.3, we can derive the following convergence result.
Theorem 5.6
Let s ≥ 2 and Φr ∈W s,2(Rd) be an even root kernel, which satisfies the moment condition of order
m ≥ 1 and the approximation condition of order L > d/2. Let Φ = Φr ∗ Φr be the corresponding
convolution kernel. Assume finite discrete mass and that the solution (u, ρ) of the Euler equations
(3.1) - (3.3) satisfies

uj ∈ L∞(0, T ;W η,2(Rd)), 1 ≤ j ≤ d,
ρ ∈ L∞(0, T ;L1(Rd)) ∩ L∞(0, T ;Wσ,2(Rd)),

for some time T > 0 with η > max{L,m}+ d
2 +1 and σ > m+ d

2 +1. Let τ > 0 and let (xnk,unk)k∈Zd ,
1 ≤ n ≤ N , be a solution of the corresponding, fully discretized SPH equations (5.13) - (5.15).
Then, for sufficiently small τ , there exist constants C1, C2 > 0 such that the energy can be bounded
by

QN ≤
(
Q0 + C1ε

min{m,2L−d} + τ2

εd+4

)
exp

(
C2(εd+2 + τ)

εd+2(1− τC2)− C2τ2

)
.
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Proof. Since u is continuously differentiable in both arguments, using (5.13) and the mean value
theorem yields

u(xn+1
j , tn+1) =u(xnj + τun+1

j , nτ + τ)

=u(xnj , nτ)− τ∇ρ(xn+ζu
j , tn+ζu)

+ τ
((

un+1
j − u(xn+ζu

j , tn+ζu)
)
·∇
)

u(xn+ζu
j , tn+ζu)

with a ζu ∈ [0, 1], where we shortly write xn+s
j = xnj + sτun+1

j and tn+s = tn + sτ for s ∈ [0, 1].
Note that the definition of xn+s

j differs from the one we used in the proof of Theorem 5.3. Using
(5.13) and (5.14), the difference of the solution and the approximated velocity yields

un+1
j − u(xn+1

j , tn+1) =unj − u(xnj , tn)− τ
(
∇ρε,h,n+1(xn+1

j )−∇ρ(xn+ζu
j , tn+ζu)

)
− τ

((
un+1

j − u(xn+ζu
j , tn+ζu)

)
·∇
)

u(xn+ζu
j , tn+ζu).

For the kinetic error term we have

Qn+1
kin = hd

∑
j∈Zd

ρ0(hj)‖un+1
j − u(xn+1

j , tn+1)‖22

=Sn0,1 + τ(Sn1,1 + Sn1,2),

where the single terms are given by

Sn0,1 :=hd
∑
j∈Zd

ρ0(hj)
(
un+1

j − u(xn+1
j , tn+1)

)
·
(
unj − u(xnj , tn)

)
,

Sn1,1 :=− hd
∑
j∈Zd

ρ0(hj)
(
un+1

j − u(xn+1
j , tn+1)

)
·
(
∇ρε,h,n+1(xn+1

j )−∇ρ(xn+ζu
j , tn+ζu)

)
and

Sn1,2 := −hd
∑
j∈Zd

ρ0(hj)
(
un+1

j − u(xn+1
j , tn+1)

)
·
(((

un+1
j − u(xn+ζu

j , tn+ζu)
)
·∇
)

u(xn+ζu
j , tn+ζu)

)
.

For the potential energy error term, we use the same procedure by using the mean value theorem.
For the density ρ we have

ρ(x, tn+1) = ρ(x, tn + τ) = ρ(x, tn)−∇·(ρu)(x, tn+ζρ),

with a ζρ ∈ [0, 1], where we used the Euler equation (3.1). For the approximated density, (5.13)
and the mean value theorem yield

ρε,h,r,n+1(x) = hd
∑
j∈Zd

ρ0(hj)Φrε(x− xn+1
j ) = hd

∑
j∈Zd

ρ0(hj)Φrε(x− xnj + τun+1
j )

= ρε,h,r,n(x)− τhd
∑
j∈Zd

ρ0(hj)un+1
j ·∇Φrε(x− xn+ζΦ

j )

with a ζΦ ∈ [0, 1]. Hence, the potential energy term can be written as

Qn+1
pot =

∫
Rd

(
ρε,h,r,n+1(x)− ρ(x, tn+1)

)2
dx

= Sn0,2 + τSn1,3,
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where the single terms are given by

Sn0,2 :=
∫
Rd

(
ρε,h,r,n+1(x)− ρ(x, tn+1)

) (
ρε,h,r,n(x)− ρ(x, tn)

)
dx

and

Sn1,3 := −
∫
Rd

(
ρε,h,r,n+1(x)− ρ(x, tn+1)

)
hd ∑

j∈Zd
ρ0(hj)un+1

j ·∇Φrε(x− xn+ζΦ
j )−∇·(ρu)(x, tn+ζρ)

 dx.

For the terms Sn0,1 and Sn0,2, we can apply that ab ≤ a2/2 + b2/2 for a, b ∈ R to derive

Sn0,1 ≤ hd
∑
j∈Zd

ρ0(hj)
(

1
2‖u

n+1
j − u(xn+1

j , tn+1)‖22 + 1
2‖u

n
j − u(xnj , tn)‖22

)
= 1

2
(
Qnkin +Qn+1

kin

)
and

Sn0,2 ≤
∫
Rd

(
1
2
(
ρε,h,r,n+1(x)− ρ(x, tn+1)

)2 + 1
2
(
ρε,h,r,n(x)− ρ(x, tn)

)2)
dx = 1

2
(
Qnpot +Qn+1

pot

)
.

Adding both terms then yield

Sn0,1 + Sn0,2 ≤
1
2
(
Qn +Qn+1) .

Now we have to split up the three remaining terms. The first one can be written as Sn1,1 =
Sn1,1,1 + Sn1,1,2 with

Sn1,1,1 = −hd
∑
j∈Zd

ρ0(hj)
(
un+1

j − u(xn+1
j , tn+1)

)
·
(
∇ρε,h,n+1(xn+1

j )−∇ρ(xn+1
j , tn+1)

)

and

Sn1,1,2 = −hd
∑
j∈Zd

ρ0(hj)
(
un+1

j − u(xn+1
j , tn+1)

)
·
(
∇ρ(xn+1

j , tn+1)−∇ρ(xn+ζu
j , tn+ζu)

)
.

The second one can be written as Sn1,2 = Sn1,2,1 + Sn1,2,2 with

Sn1,2,1 = −hd
∑
j∈Zd

ρ0(hj)
(
un+1

j − u(xn+1
j , tn+1)

)
·
(((

un+1
j − u(xn+1

j , tn+1)
)
·∇
)

u(xn+ζu
j , tn+ζu)

)
and

Sn1,2,2 = −hd
∑
j∈Zd

ρ0(hj)
(
un+1

j − u(xn+1
j , tn+1)

)
·
(((

u(xn+1
j , tn+1)− u(xn+ζu

j , tn+ζu)
)
·∇
)

u(xn+ζu
j , tn+ζu)

)
.
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Finally, the third one can be written as Sn1,3 = Sn1,3,1 + Sn1,3,2 + Sn1,3,3 with

Sn1,3,1 = −
∫
Rd

(
ρε,h,r,n+1(x)− ρ(x, tn+1)

)
hd ∑

j∈Zd
ρ0(hj)un+1

j ·∇Φrε(x− xn+1
j )−∇·(ρu)(x, tn+1)

 dx

Sn1,3,2 = −
∫
Rd

(
ρε,h,r,n+1(x)− ρ(x, tn+1)

)
hd ∑

j∈Zd
ρ0(hj)un+1

j ·
(
∇Φrε(x− xn+ζΦ

j )−∇Φrε(x− xn+1
j )

) dx

and

Sn1,3,3 = −
∫
Rd

(
ρε,h,r,n+1(x)− ρ(x, tn+1)

) (
∇·(ρu)(x, tn+ζρ)−∇·(ρu)(x, tn+1)

)
dx.

All these terms can be identified with terms that occurred in the proof of Theorem 5.3. To
distinguish the terms of this proof and the terms occurring in the proof of Theorem 5.3, we will
tag the terms of the proof of Theorem 5.3 with an ex for explicit euler method, for example Sn,ex

1,1,1.
First of all, we have Sn1,1,1 = Sn+1,ex

1,1,1 /2 and Sn1,3,1 = Sn+1,ex
1,3,1 /2, so that we have

Sn1,1,1 + Sn1,3,1 ≤ C(u, ρ,M)(εm + ε2L−d +Qn+1).

The five remaining terms Sn1,1,2, Sn1,2,1, Sn1,2,2, Sn1,3,2 and Sn1,3,3 can be identified with Sn+1,ex
1,1,2 ,

Sn+1,ex
1,2,1 , Sn+1,ex

1,2,2 , Sn+1,ex
1,3,2 and Sn+1,ex

1,3,3 , respectively. Note that these terms are not exactly the same,
but differ only to the point that they satisfy the same error bounds under the same argumentation.
Hence, we have

Sn1,1,2 ≤ c
(
Qn+1 + τ2(1 +Qn+1) ,

Sn1,2,1 ≤ cQn+1,

Sn1,2,2 ≤ c
(
Qn+1 + τ2(1 +Qn+1) ,

Sn1,3,2 ≤ c
(
Qn+1 +Qn+1 τ

εd+2 + τ2

εd+4

)
and

Sn1,3,3 ≤ Qn+1 + cτ2,

so that we have the complete estimate

τ
(
Sn1,1 + Sn1,2 + Sn1,3

)
≤ cτ

[
Qn+1

(
1 + τ2 + τ

εd+2

)
+ εm + ε2L−d + τ2 + τ2

εd+4

]
≤ C

[
Qn+1τ

(
1 + τ

εd+2

)
+ τ

(
εmin{m,2L−d} + τ2

εd+4

)]
,

where we used that τ ≤ 1. Hence, we have that

Qn+1 ≤1
2
(
Qn +Qn+1)+Qn+1Cτ

(
1 + τ

εd+2

)
+ τC

(
εmin{m,2L−d} + τ2

εd+4

)
,
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which gives

Qn+1 ≤ Qn +Qn+1τ2C
(

1 + τ

εd+2

)
+ 2τC

(
εmin{m,2L−d} + τ2

εd+4

)
.

Hence, using the discrete version of Gronwall’s inequality Lemma 5.1, we find constants C1 > 0
and c2 > 0 so that

Qn ≤
[
Q0 + C1

(
εmin{m,2L−d} + τ2

εd+4

)]
exp

(
c2
(
1 + τ

εd+2

)
1− τc2

(
1 + τ

εd+2

)) .
Setting C2 = 1/c2 finishes the proof.

As we did for the explicit time discretization scheme, we can derive a general convergence result
as in Corollary 5.4 and a pointwise convergence result as in Theorem 5.5 in the case of the implicit
time discretization. Since nothing changes in both results, reference is made to Corollary 5.4 and
Theorem 5.5 at this point.
Both time stepping methods, the explicit Euler method and the implicit Euler method, do not differ
in their convergence rate. It is a well known fact that implicit methods are the better choice in
terms of stability. For this reason, a fully stability analysis would have to be done. Unfortunately,
standard methods fail in the analysis due to the non-linearity of the SPH method, so the analysis
is a current part of research, see, for example, [DA12].
From a numerical point of view, however, explicit procedures are the better choice. In the implicit
methods, a nonlinear system of equations must be solved at each time step, which would be
inefficient.
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CHAPTER 6

Numerical Experiments

In this chapter, we want to verify the convergence results from Chapter 3. Therefore, we compare
the solution of the Euler equations (3.1) - (3.3) with the numerical solution of the SPH method in
two different cases.
In the first case, we will set an initial density with compact support to have a test case which is
suitable for the requirements of Corollary 3.11. For the second case, we will use periodic boundary
conditions to compare the solutions in a non compactly-supported test case. Even though periodic
boundary conditions do not satisfy the requirements of Corollary 3.11, we will expect the same
convergence results according to Section 3.5.
First of all, we will need an non-trivial, analytical solution to the Euler equations. This is only
insufficiently possible for our weakly compressible case, but in Section 6.1 we will show how to
calculate a quasi-analytical solution by solving Burger’s equation. This procedure has also been
used in [Mol08] to find solutions of the shallow water equations. In the second section, we will
then validate the results from Chapter 3 for both test cases.

6.1 Burgers’ Equation and a Quasi-Analytical Solution of
the Euler Equations

In this section, we will introduce Burgers’ equation and will show a way to calculate quasi-analytical
solutions to the one dimensional Euler equations once without boundary conditions and once with
periodic boundary conditions. For the case of periodic boundary conditions, we will use the
notation from Section 3.5. Since the following theory is the same on R and on T, we will not
distinguish both cases.
Let Ω = R or T. For given initial data u0 : Ω → R and ρ0 : Ω → R, we seek the solution
u : Ω× [0, T [→ R and ρ : Ω× [0, T [→ R of

∂tu+ u∂xu = −∂xρ (6.1)
∂tρ+ u∂xρ = −ρ∂xu (6.2)

on Ω×]0, T [ and
u(·, 0) = u0, ρ(·, 0) = ρ0 (6.3)

on Ω.
Our main goal is to find a non-trivial analytical solution to this problem to which a numerical
solution can be compared. For this, we will investigate the inviscid Burgers equation: For given
initial data f : Ω→ R we seek the solution J : Ω× [0, T [→ R of

∂tJ + J∂xJ = 0 (6.4)
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on Ω×]0,∞[ and

J(·, 0) = f (6.5)

on Ω. Before we show how to derive an analytical solution of the Euler equations from the
solution of Burgers’ equation, we have to investigate the solvability of the inviscid Burgers equation.
Therefore, we will need the following Lemma.

Lemma 6.1
Let f ∈ C1(Ω) be bounded, x ∈ Ω and 0 ≤ t < T , where T is given by

T :=
{
∞ if minx∈Ω f

′(x) ≥ 0,
−1

minx∈Ω f ′(x) if minx∈Ω f
′(x) < 0.

(6.6)

Then, the nonlinear equation x = y(x, t) + tf(y(x, t)) has a unique solution y(x, t) ∈ R. Moreover,
y : Ω× [0, T [→ R is continuously differentiable in both variables.

Proof. We will prove this lemma first for Ω = R. Let gt : R→ R, y 7→ y + tf(y) for t > 0. First,
using that f is bounded, we have that gt(y) tends to ±∞ if y tends to ±∞. Since f is continuous,
gt is continuous, too. Hence, gt is surjective.
Moreover, gt is continuously differentiable on R since f ∈ C1(R), and the derivative yields g′t =
1 + tf ′. Hence, for all y ∈ R we have g′t(y) > 0 either for all t > 0 if miny∈R f ′(y) ≥ 0 or for all
t < −(miny∈R f ′(y))−1 if miny∈R f ′(y) < 0. This means that gt is strictly monotonically increasing
for all 0 ≤ t < T and hence it is injective.
Overall, gt is bijective and there exists an inverse function g−1

t : R → R of gt. Setting y(x, t) =
g−1
t (x) for all x ∈ R and t < T finishes this part of the proof. Moreover, the implicit function

theorem states that y : R× [0, T [→ R is continuously differentiable.
For Ω = T, we choose gt : T→ [tf(0), 1+tf(1)[, y 7→ y+tf(y). Hence, gt is surjective and injective
again, and the proof can be adopted from the proof of Ω = R.

Using this result, we can prove the following local existence result for the Burgers equation.

Theorem 6.2
Let f ∈ C1(Ω) be bounded. Let J(x, t) = f(y(x, t)), where y(x, t) is the solution of the nonlinear
equation x = y(x, t) + tf(y(x, t)) for x ∈ Ω and 0 ≤ t < T . Then, J is a solution of the inviscid
Burgers equation (6.4) up to a maximum time T > 0, where T is given in (6.6).

Proof. The derivation of the solution is based on the method of characteristics. In our case we
can simply calculate the derivatives of J .
First of all, Lemma 6.1 states that the solution of the nonlinear equation exists up to the time T
from (6.6). Hence, J exists for all t < T . Moreover, for t = 0 we have that y(x, 0) = x and hence
that J(x, 0) = f(x) for all x ∈ Ω.
For 0 < t < T , we know that y is the solution of the nonlinear equation x = y(x, t) + tf(y(x, t))
for all x ∈ Ω and we can differentiate both sides with respect to x and t which yields

1 = ∂xy(x, t) + tf ′(y(x, t))∂xy(x, t) = ∂xy(x, t)(1 + tf ′(y(x, t)))

and

0 = ∂ty(x, t) + tf ′(y(x, t))∂ty(x, t) + f(y(x, t)) = ∂ty(x, t)(1 + tf ′(y(x, t))) + f(y(x, t)).

Multiplying the first equation with f(y(x, t)), subtracting f(y(x, t)) from the second equation and
adding both results yields

0 = f(y(x, t))∂xy(x, t)
(
1 + tf ′(y(x, t))

)
+ ∂ty(x, t)

(
1 + tf ′(y(x, t))

)
=
(
1 + tf ′(y(x, t))

)(
f(y(x, t))∂xy(x, t) + ∂ty(x, t)

)
,
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which means that f(y(x, t))∂xy(x, t) + ∂ty(x, t) = 0 for all 0 ≤ t < T since 1 + tf ′(y(x, t)) > 0.
Then, inserting this particular J into the left-hand side of Burgers’ equation (6.4) yields

∂tJ(x, t) + J(x, t)∂xJ(x, t) = ∂tf(y(x, t)) + f(y(x, t))∂xf(y(x, t))
= f ′(y(x, t))∂ty(x, t) + f(y(x, t))f ′(y(x, t))∂xy(x, t)
= f ′(y(x, t))

(
∂ty(x, t) + f(y(x, t))∂xy(x, t)

)
= 0,

which finishes the proof.

Theorem 6.2 gives us the existence of the solution of the inviscid Burger’s equation. Unfortunately,
it also states this solution will only be local in time if the initial value f is not monotonically
increasing, which is not the case if we choose f to be compactly supported.
Moreover, Theorem 6.2 does not offer us an analytical presentation of the solution. However, the
nonlinear equation x = y(x, t) + tf(y(x, t)) can be solved sufficiently accurately using a numerical
solver like Newton’s method.
The following result allows us to construct a solution for the Euler equations from the solution of
the inviscid Burgers equation.

Theorem 6.3
Let f ∈ C1(Ω) be bounded and let J : Ω× [0, T [→ R be a solution of the inviscid Burgers equation
(6.4) - (6.5) up to the time T > 0 from (6.6). Let u0 := 2

3f + 1 and ρ0 := (1− 1
3f)2 on Ω. Then,

u : Ω× [0,∞[→ R and ρ : Ω× [0,∞[→ R defined by

u = 2
3J + 1, ρ =

(
1− 1

3J
)2

,

are a solution of the one dimensional Euler equation (6.1) - (6.3).

Proof. For the initial time t = 0, the initial conditions for u and ρ are obviously satisfied. Now
let 0 < t ≤ T . First note that according to equation (6.4) we have ∂tJ = −J∂xJ . Hence, we have

∂tu+ u∂xu = 2
3∂tJ +

(
2
3J + 1

)
2
3∂xJ = −2

3J∂xJ +
(

2
3J + 1

)
2
3∂xJ

=
(

1− 1
3J
)

2
3∂xJ = −∂x

(
1− 1

3J
)2

= −∂xρ

such that equation (6.1) is satisfied. For the continuum equation (6.2), a simple calculation shows
that

∂tρ+ u∂xρ = ∂t

(
1− 1

3J
)2

+
(

2
3J + 1

)
∂x

(
1− 1

3J
)2

= −2
3

(
1− 1

3J
)(

∂tJ +
(

2
3J + 1

)
∂xJ

)
= −2

3

(
1− 1

3J
)(
−J∂xJ +

(
2
3J + 1

)
∂xJ

)
= −

(
1− 1

3J
)(

1− 1
3J
)

2
3∂xJ

= −
(

1− 1
3J
)2

∂x

(
2
3J + 1

)
= −ρ∂xu,

which completes the proof.
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According to Theorem 6.3, a solution of the Euler equations can be calculated from the solution of
the inviscid Burgers equation. As mentioned before, we are unable to derive an analytical solution
to Burgers’ equation but can calculate an arbitrarily accurate numerical solution by solving the
nonlinear equation x = y(x, t)+ tf(y(x, t)) with a numerical method, e.g. Newton’s method. Since
this approximated solution will be calculated with arbitrary accuracy, it will be sufficiently exact
to be compared to the numerical solution of the SPH method. We will call this arbitrarily accurate
numerical solution a quasi-analytical solution.

6.2 Results
In the following, we want to validate the theoretical results from Section 3.3 with the constructed
kernel functions of Chapter 4. To do this, we implemented a C++ code which is based on the SPH
scheme (3.4) - (3.6) coupled with a Runge-Kutta ODE solver.
As the kernel function we chose the extended original Wendland functions from Section 4.3.2. To
compare the influence of the the smoothness k of the kernel, the moment condition order 2m and
the parameter l, we took the parameters k ∈ {1, 2, 3, 4}, l ∈ {0, 1, 2, 3, 4} and m ∈ {1, 2, 3}. Note
that for l = 0, the employed kernels do not fit in the derived theory and hence, convergence is
theoretically not given. Nevertheless, it may be helpful to investigate this case as it may provide
an indication of whether the theory derived here could be further improved.
To compare the error between the SPH algorithm and the quasi-analytical solution, we have to
track the energy error term Q = Qkin +Qpot from Definition 3.7. Unfortunately, it is not possible
to calculate the potential energy error, since we neither have an explicit form of the root kernel
Φr nor can we calculate the occurring integral exactly. Hence, we have to use an estimator for the
potential energy error.
Both error terms we track are given by

Qkin(t) = hd
∑
j∈J

ρ0(hj)‖uε,hj (t)− ũ(xε,hj (t), t)‖22

and
Qpot(t) = hd

∑
j∈J

ρ0(hj)|ρε,h(xε,hj (t), t)− ρ̃(xε,hj (t), t)|,

where J = Z if Ω = R or J = GN if Ω = T, the pair (ũ, ρ̃) is the quasi-analytical solution calculated
from the Euler equations (6.1) - (6.3) by solving the inviscid Burgers equation, and (xj , uj)j∈J is
the solution of the SPH system (3.4) - (3.6) or (3.24) - (3.26), respectively.
To solve the ODE to calculate the SPH solution, an explicit fourth order Runge-Kutta time-
stepping algorithm was used. The time step width was chosen small enough so that the solution
is sufficiently accurate to neglect the error occurring in the time discretization.
In the following, we want to calculate the convergence rate of the SPH method depending on the
parameters h and ε in two different test cases. In the first test case, the Euler equations are solved
on R with a compactly supported initial density. Even if this test case does not satisfy all of the
conditions of Theorem 3.9 since u does not decay sufficiently fast, it will be sufficient to validate
the numerical results.
In the second test case, the Euler equations are solved on the periodic domain T to validate our
thoughts of Section 3.5 for extending our results to T.

6.2.1 Test Case on R
In the first case the one dimensional Euler equations (6.1) and (6.2) are solved on R with initial
data u0 := 2

3f + 1 and ρ0 := (1− 1
3f)2, where the function f is given by

f(x) :=
{

3− c0 exp(1/(4x2 − 1)), |x− 1
2 | <

1
2 ,

3, else,
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Figure 6.1: Velocity (red) and density (green) at time t = 0 (left) and t = 0.8 (right) for the
solution of the Euler equations on R. Note that the values at the x-axis differ since the initial
wave is moving in time.

for x ∈ R with the constant

c0 :=
4
√

3e
3

3−
√

3 (4−
√

3)
12 .

The function f is in C∞(R) and the constant c0 was chosen so that min f ′ = −1 on R. According
to Theorem 6.2, the solution of the Burgers equation exists up to T = 1. Hence, the analytical
solution of the Euler equations exists up to T = 1, as well. To neglect any effect of the blow-up
of the solution, the error between the quasi-analytical solution and the SPH solution was taken at
time t = 0.8.
By the choice of the function f , the initial density ρ0 has compact support, which results in a
finite number of particles in the SPH scheme. However, the initial velocity is not integrable any
more since it is constant 3 for all |x − 1/2| > 1/2. Hence, u0 does not satisfy the requirements
of Corollary 3.11 any more. However, our interest lies in a compact domain, such that we can
assume the initial velocity to decay sufficiently fast at infinity, without changing the solution in
our domain. The analytical solution of the Euler equations can be seen in Figure 6.1. In this first
experiment, we set the parameters to h = ε2. The single pairs of (h, ε) can be seen in Table 6.1.

ε 1.25e-1 1e-1 8.84e-2 6.25e-2 5e-2 2.5e-2 1e-2
h 1.5625e-2 1e-2 7.8125e-3 3.90625e-3 2.5e-3 6.25e-4 1e-4

Table 6.1: Values for ε and h with h = ε2.

spaceThis choice was made to achieve a theoretical error which depends on the minimum of the kernel
parameters k and m. According to Corollary 4.49 we expect that the energy error term Q behaves
like

Q(t) ∼ εaana ,

where the analytical constant is given by aana = aana(k,m) = min{2k, 2m}. The goal is to
determine the numerical constant anum = anum(k,m, l) depending on all three kernel parameters.
Note that we also investigate the dependency of the numerical constant on the parameter l, which
is why anum depends also on l. For this case, we set the time step to τ = 10−5 to neglect the
error of the time discretization. Then, for each pair h, ε and each kernel function, the error was
measured at time t = 0.8.
From these values, the constant anum was calculated via the linear regression method for each
kernel function, which means for each parameter constellation of k, l and m. However in some cases,
especially for high values for the moment condition m, the error reached a kind of saturation, which
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Figure 6.2: The error Qkin at the t =
0.8 in the case of R as a function of ε
with h = ε2. The error is shown for
kernel functions with k = 4, m = 3
and l ∈ {1, 2, 3, 4}. The dashed lines
represent the asymptotic behavior of
the error.

we discuss later, so that taking all (h, ε)-pair for the calculation of the constant anum would distort
the result, see Figure 6.2. For that reason, only the measured errors, for which the asymptotic
behavior was recognizable, were taken for the calculation.
The resulting convergence rates can be found in Table 6.2. Note that the lower convergence rates
of the potential error term can be explained since the potential error term is just an estimator.

k = 1 k = 2 k = 3 k = 4
l m akin

num apot
num a akin

num apot
num a akin

num apot
num a akin

num apot
num a

0 1 3.30 1.91 - 13.39 1.93 - 13.45 1.94 - 13.50 1.94 -
2 5.29 2.58 - 15.52 3.26 - 15.69 3.28 - 15.16a 3.72c -
3 5.18 2.68 - 17.32a 5.02 - 18.46b 7.12a - 13.24c 9.13c -

1 1 3.36 1.92 2 13.43 1.93 2 13.48 1.94 2 13.52 1.95 2
2 5.48 3.70 2 15.65 3.77 4 15.79 3.68 4 15.27a 4.70c 4
3 7.53 3.99 2 18.57a 5.82 4 11.39b 7.53a 4 15.73c 9.19c 6

2 1 3.42 1.92 2 13.47 1.94 2 13.51 1.95 2 13.55 1.95 2
2 5.81 3.88 2 15.81 4.38 4 15.92 4.22 4 15.50a 5.87c 4
3 7.87 3.97 2 10.10a 5.85 4 13.49b 7.53a 6 16.56c 8.78c 6

3 1 3.47 1.90 2 13.51 1.94 2 13.54 1.95 2 13.57 1.95 2
2 6.39 3.94 2 16.11 4.92 4 16.07 4.64 4 15.85a 6.76c 4
3 7.88 3.94 2 11.03a 5.80 4 14.07b 7.34a 6 15.71c 8.35c 6

4 1 3.51 1.88 2 13.54 1.94 2 13.57 1.95 2 13.59 1.96 2
2 7.06 3.94 2 16.28 5.32 4 16.37a 4.28 4 16.57a 7.76c 4
3 7.71 3.89 2 11.07a 5.72 4 13.86b 7.06a 6 14.46c 7.81c 6

Table 6.2: All values for akin
num and apot

num in Qkin ∼ εa
kin
num and Qpot ∼ εa

pot
num compared to its

analytical value aana = min{2k, 2m}, if l ≥ 0, in the case of R. Values indicated with an a are
calculated without the error for ε = 0.01. Values indicated with a b are calculated only with
the errors for ε ∈ {0.125, 0.1, 0.0884, 0.0625, 0.05}. Values indicated with a c are calculated
only with the errors for ε ∈ {0.125, 0.1, 0.0884, 0.0625}.

spaceAs we see in Table 6.2, the convergence rate depends strongly on the kernel parameters, especially
on the order 2m of the moment condition. For higher values of the moment condition parameter
m we see that the convergence rates improve remarkably.
For m = 1 and m = 2, we see that the convergence rate is only slightly increasing if we increase the
smoothness k of the kernel or the parameter l, as the changes only show up at the second digit. It
seems that the convergence rate is limited by the moment condition in those cases. Interestingly,
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we see comparable results for the cases l = 0 and l ≥ 1.
For m = 3, we note a great improvement in most of the convergence rates. In this case, the
convergence rate seems mostly to be limited by the smoothness k of the kernel, which can in
especially be seen in the case k = 1. We also see small improvements of the convergence rate when
we increase the parameter l as long as l ≤ 2, while the convergence rate does not further improve
for l ≥ 3. Interestingly, the greatest difference of the convergence rate for the parameter l for Qkin
is between l = 0 and l = 1, which fits in our theory since for l = 0 the kernel functions do not satisfy
condition (4.22). Nevertheless, the numerical convergence rates do not match the theoretical ones.
However, the theoretical convergence rates are always lower than the numerical ones, so that the
theoretical values could be seen as a lower bound to the numerical ones. Moreover, we see that
the SPH algorithm is converging, even in the case of l = 0, where convergence where theoretically
not proven. However, these observations may also be due to the fact that the chosen example is
too good in some sense.

Saturation

In the left picture of Figure 6.3, we see that the errors for approximations using kernel functions
with a higher parameter l are greater than those for a low value for l. In particular, for m = 2, the
error for the kernel functions with l ≤ 2 seem to have the same temporal progress while for l = 3
and l = 4 the error is greater up to a certain time depending on l. Especially, the initial error for
l ≥ 3 seems bigger than for l ≤ 2. However, in the course of time, the error increases less strongly.
As we see, there is a time t which depends on l, from which the error for l = 3 and l = 4 is smaller
than for l ≤ 2. From this time on both cases have the same further temporal progress.
For m = 3, we have the same effect more strongly. The error for l ≤ 1 seem to have the same
temporal progress while for l ≥ 2 the error is significantly greater. However, there exists a time t,
from which the error for the cases l ≥ 2 is smaller than for l ≤ 1.
Hence, we can separate the temporal progress of the error into two parts as shown in the right
picture of Figure 6.3. In the first part the error is dominated by the initial error, which seems
to increase if the value of the parameter l is increasing. However, in the first part the error only
increases slowly in time. In the second part the error is increasing strongly in time, which seems
that the error follows the expected temporal progress.
space
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Figure 6.3: The error Qkin as a function of time 0 ≤ t ≤ 0.8 for the case h = 0.000625 and
ε = 0.025. On the left, the error is shown for kernel functions with k = 3, l ∈ {0, 1, 2, 3, 4}
and m ∈ {2, 3}. On the right, the error is shown for the kernel with k = 3, l = 1 and m = 3,
together with the asymptotes for small times (dotted line) and the asymptotes for larger times
(dashed/dotted line).

This effect appears stronger if we use small values for ε, and can be strong enough that the time,
where the error is in the first part, is higher than the time of the experiment t = 0.8. In this case,
the error does not get smaller if we decrease ε any more and it seems that the error has reached
a saturation. However, this is not true if we would look at longer time intervals. To neglect this
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effect, it would be possible to increase the maximum time T . However, this has not been possible
since the analytical solution of the problem we solve does only exist up to T = 1.

6.2.2 Second Experiment
In the second experiment, the one dimensional periodic Euler’s equations (6.1) and (6.2) were
solved on T with initial data u0 := 2

3f + 1 and ρ0 := (1 − 1
3f)2, where the function f is given

by f(x) = sin(2πx)/(2π) for x ∈ T. The function f is in C∞(T) with min f ′ = −1 on T. Again,
the solution of Burgers’ equation, and hence of Euler’s equations exists up to T = 1. The error
was measured at t = 0.8 to avoid effects of the blow up of the solution at T = 1. The solution of
Euler’s equation can be seen in Figure 6.4.
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Figure 6.4: Velocity (red) and density (green) at the time t = 0 (left) and t = 0.8 (right) for
the solution on T.

In this second experiment, we set the parameters to h = 0.1ε2. The factor 0.1 was chosen for
stability reasons. The single pairs of (h, ε) can be seen in Table 6.3.
According to Corollary 4.49 we expect that the energy error term Q behaves like

Q(t) ∼ 0.12kε2k + εaana ,

where the analytical constant is given by aana = 2m. The goal is to determine the numerical
constant anum = anum(k, l,m) depending on the kernel parameters. For this case, we set the time
step to τ = 10−5 to neglect the error of the time discretization. space

ε 2.5e-1 2e-1 1.25e-1 1e-1 6.25e-2 5e-2 2.5e-2
h 6.25e-3 4.0e-3 1.5625e-3 1.e-3 3.90625e-4 2.5e-4 6.25e-5

Table 6.3: Size of ε and h with h = ε2/10.
As in the last case, for each pair h, ε and each kernel function, the error was measured at the time
t = 0.8. The constant anum was then calculated by the linear regression method. As in the first
experiment, we have a kind of saturation, too. That is the reason we will calculate the constant
anum only using the data points where the asymptotic behavior is recognizable as we did in the
first experiment.
As we see in Table 6.4, the convergence rates behave similar to those in the first experiment, but
without any strong dependence on the smoothness k of the kernel function. This can be explained
by the choice of h = 0.1ε2, where the constant in front of the ε2k part will be very small, so that
the influence of the smoothness does not show up in the convergence rate.
We also see that the parameter l has hardly any effect on the convergence rate, so that the
convergence rate is dominated by the order 2m of the moment condition. This fits in the theory
for l > 0, since the kernels satisfy the approximation condition of arbitrary order. Interestingly,
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the case l = 0 shows the same convergence rates, even if this case does not fit in the theory.
Again, the lower convergence rates of the potential error term can be explained since the potential
error term is just an estimator.
Nevertheless, the numerical convergence rates do not match the theoretical ones. However, the
theoretical convergence rates are always lower then the numerical ones, so that the theoretical
values can be seen as a lower bound for the numerical ones. Moreover, we see that the SPH
algorithm is converging, even in the case of l = 0, which is not covered by Corollary 3.11. However,
these observations may also be due to the fact that the chosen example is too good in some sense.

k = 1 k = 2 k = 3 k = 4
l m akin

num apot
num a akin

num apot
num a akin

num apot
num a akin

num apot
num a

0 1 2.51 1.56 - 2.61 1.60 - 2.69 1.64 - 2.75 1.66 -
2 4.21 2.45 - 4.48 2.52 - 4.68 2.55 - 4.82 2.55 -
3 5.26 2.76a - 5.24a 2.91a - 5.52a 2.96a - 5.74a 2.98b -

1 1 2.59 1.59 2 2.67 1.63 2 2.73 1.66 2 2.79 1.68 2
2 4.42 2.50 2 4.62 2.54 4 4.78 2.56 4 4.89 2.55a 4
3 5.24 2.88a 2 5.44a 2.95a 4 5.68a 2.97a 6 5.84a 2.90b 6

2 1 2.66 1.63 2 2.72 1.65 2 2.78 1.67 2 2.83 1.69 2
2 4.59 2.53 2 4.75 2.55 4 4.87 2.55 4 4.95 2.59a 4
3 5.19 2.93a 2 5.62a 2.96a 4 5.80a 2.96b 6 5.84a 2.94b 6

3 1 2.73 1.65 2 2.77 1.67 2 2.82 1.69 2 2.86 1.71 2
2 4.74 2.54 2 4.85 2.55 4 4.93 2.55 4 4.76 2.59a 4
3 5.11 2.96a 2 5.78a 2.95a 4 5.85a 2.97b 6 4.99b 2.57c 6

4 1 2.79 1.68 2 2.82 1.69 2 2.86 1.70 2 2.90 1.72 2
2 4.86 2.54 2 4.93 2.54 4 4.96 2.55a 4 4.98 2.63a 4
3 5.03 2.98a 2 5.88a 2.91a 4 5.74a 2.86b 6 4.70c 1.93c 6

Table 6.4: All values for akin
num and apot

num in Qkin ∼ εa
kin
num and Qpot ∼ εa

pot
num compared to

their analytical values aana = min{2k, 2m} in the case of T. Values indicated with an a are
calculated without the error for ε = 0.025. Values indicated with a b are calculated only with
the errors for ε ∈ {0.25, 0.2, 0.125, 0.1, 0.0625}. Values indicated with a c are calculated only
with the errors for ε ∈ {0.25, 0.2}.

6.2.3 Discussion

As we have seen in both experiments, the SPH method is converging for all the employed kernel
functions. Even with the kernel functions which do not match the requirements of Corollary 3.11,
the SPH method seems to converge.
In both cases, the convergence rate depends strongly on the order 2m of the moment condition.
However, the convergence rate can be limited by the smoothness of the kernel k, such that we need
sufficiently high values for k to take advantage of a high moment condition.
There are a few problems we will discuss shortly.
The convergence rate does not match the theoretical predictions. A reason for this can be that our
error analysis is far away from being optimal. An indication for this is the positive convergence
rate of the kernel functions which do not satisfy the requirements of Corollary 3.11. Moreover,
the constants, which we largely ignored in the error analysis, can significantly depend on the used
kernel function. This can have an impact on the numerical error. However, another reason for
this may also be due to the fact that the chosen example is too good in some sense. The initial
error is greater for higher values of l, which may be an explanation for the saturation effect. It
seems that a higher value for the parameter l may lead to greater constants in the initial error
estimate Theorem 3.8. Fortunately, since the approximation condition is satisfied for arbitrary
order if l = 1, this effect may not have a great impact in applications.
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Kernel functions with higher order in k, l and especially m can cause numerical problems. Since
these kernel functions are made of sums of high order polynomials with alternating signs, we have
cancellation effects in the evaluation of the kernel functions. This can have an effect on the error
since minor inaccuracies from the evaluation can disturb the theoretical properties of the kernel
function. Also, this can be an explanation for the effect of the saturation for small times t.
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Conclusion

We derived a convergence theory for an SPH discretization of the Euler equations for a specific
barotropic flow. Based on the work of Oelschläger [Oel91], we carefully worked out the connection
between the kernel size and the initial mesh width. Hence, we were able to derive an improved
convergence result for the energy error term in Theorem 3.9 and in Corollary 3.11. The main
result is then stated in Theorem 3.13, where we derived a first pointwise estimate for the SPH
discretization, which can be seen as a first step on the way to a general convergence theory.
Nonetheless, there are a few restrictions to our theory, where further research is needed. The
results are restricted to classical, smooth solutions on all of Rd. The simulation of shocks or other
discontinuities is not covered by the given theory. Moreover, an extension to bounded domains
will require the treatment of boundary conditions and is the topic of current research.
The theory also depends very much on the assumed equation of state p = 1

2ρ
2. A more general

equation of state p = cργ would be of greater interest for applications. We think that the gener-
alization would be possible but requires substantial changes in the proof. Also, a generalization
of the initial particle position seems to be possible. Since the initialization only contributes to the
estimates in Theorem 3.8, but not Theorem 3.9, we believe that one can derive similar estimates
with less regular initial distribution. It might even be possible to choose a better initialization
process to improve the results in Theorem 3.8.
Also the convergence of a fully discretized scheme has been proven for an explicit and an implicit
time discretization scheme in Theorem 5.3 and Theorem 5.6, respectively. These results show the
possibility of the convergence of the fully discretized scheme. However, both results do not differ
in their requirements, even if the implicit method is expected to be less restrictive. Hence, a full
stability analysis would have do be made, which is part of current research. Moreover, further
research has to be made to check which time discretization scheme would be an optimal choice for
the SPH method.
To derive the error estimates, the employed kernel has to be a convolution kernel whose convolution
root satisfies the moment condition from Definition 1.26 and the approximation condition from
Definition 3.5. In our opinion, the best way to construct such a kernel function is to derive condi-
tions on the convolution kernel such that the existence of a root kernel, that possess the required
conditions, is given. It can also be possible to construct a kernel function by convolution. However,
we see no advantage in such a construction since the root kernel is just needed in the convergence
theory and not for the calculation of the SPH system. Moreover, the analytical calculation of the
convolution may be very hard to achieve, and a numerical calculation seems to be inefficient.
The construction method derived in this work in Section 4.2 is specifically designed for radial
functions with compact supports. This class of functions is very well suited for the SPH method
since radial functions are easy to implement and the compact support ensures that the method is
efficient. Since the construction method requires that the kernel function is positive definite, the
Wendland functions seem to be the perfect choice since these functions are given by piecewise poly-
nomials of minimal degree for a given smoothness. Moreover, they are frequently used in the SPH
community. Unfortunately, the original Wendland functions do not fit in the kernel construction
scheme, which is why we used an extension ψd,k,l of the original Wendland functions ψd,k = ψd,k,0.
In this extension we take the original Wendland functions of a higher spatial dimension. In appli-
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cations, the only difference of using the extended Wendland functions instead of the original ones
is that the polynomial degree is increased by one, which is only a minor disadvantage concerning
the numerical efficiency. All other properties are conserved from the original functions.
We do not claim that the given construction method is optimal. It is possible that there exists a
simpler construction method or that there are construction methods which require fever or weaker
properties of the kernel function. Moreover, we do not claim that the Wendland function is the
optimal choice as the kernel function, even if they are both suitable for the construction method
and efficient to calculate. Other functions do also satisfy the required properties, as we showed for
the missing Wendland functions. However, these functions are less efficient in applications because
of their logarithmic and square-root part.
Finally, the conditions we are stating on the kernel function are only sufficient for deriving the
convergence result. The numerical tests in Chapter 6 indicate that the approximation condition
is not required to lead to convergence. Even the classical Wendland functions (l = 0), for which
the theory does not hold, give comparable results. The numerical tests also show that the numeri-
cally observed order is often significantly better than the one predicted in this work. Hence, more
research in this direction is required.
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