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ABSTRACT

The time evolution of a collisionless plasma is modeled by the relativistic Vlasov—-
Maxwell system which couples the Vlasov equation (the transport equation) with the
Maxwell equations of electrodynamics. We consider the case that the plasma consists
of several particle species, the particles are located in a container Q C R3, and are
subject to boundary conditions on JQ.

In the first two parts of this work, we deal with the situation that there are external
currents, typically in the exterior of the container, that may serve as a control of
the plasma if adjusted suitably. In order to allow interaction between the exterior
and the interior of the container, we do not impose perfect conductor boundary
conditions for the electromagnetic fields—in contrast to other papers dealing with a
similar setting, but without external currents—but consider the fields as functions
on whole space R* and model objects that are placed in space via given matrix-
valued functions ¢ (the permittivity) and y (the permeability). Firstly, a weak solution
concept is introduced and existence of global-in-time solutions is proved, as well as
the redundancy of the divergence part of the Maxwell equations in this weak solution
concept. Secondly, since a typical aim in fusion plasma physics is to keep the amount
of particles hitting JQ as small as possible (since they damage the reactor wall), while
the control costs should not be too exhaustive (to ensure efficiency), we consider a
suitable minimization problem with the Vlasov-Maxwell system as a constraint. This
problem is analyzed in detail. In particular, we prove existence of minimizers and
establish an approach to derive first order optimality conditions.

In the third part of this work, we consider the case that the plasma is located in
an infinitely long cylinder and is influenced by an external magnetic field. We prove
existence of stationary solutions (extending in the third space direction infinitely) and
give conditions on the external magnetic field under which the plasma is confined
inside the cylinder, that is, it stays away from the boundary of the cylinder.
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ZUSAMMENFASSUNG

Die zeitliche Entwicklung eines kollisionsfreien Plasmas wird durch das relativis-
tische Vlasov-Maxwell-System modelliert, das die Vlasov-Gleichung (die Transport-
gleichung) mit den Maxwell-Gleichungen der Elektrodynamik koppelt. Es wird der
Fall betrachtet, dass das Plasma aus mehreren Teilchenspezies besteht, die Teilchen
sich in einem Behilter QO C R? befinden und auf dQ Randbedingungen geniigen.

In den ersten beiden Teilen dieser Arbeit wird die Situation behandelt, dass externe
Strome vorhanden sind, typischerweise auflerhalb des Behiilters, die bei entsprechen-
der Justierung als Steuerung des Plasmas dienen kénnen. Um eine Interaktion zwi-
schen dem Aufleren und dem Inneren des Behilters zu erméglichen, werden keine
Randbedingungen eines perfekten Leiters fiir die elektromagnetischen Felder ver-
langt — im Gegensatz zu anderen Arbeiten, die ein dhnliches Setting, jedoch ohne
externe Stréme, behandeln —, sondern die Felder als Funktionen auf den gesamten
Raum R3 betrachtet und Objekte, die im Raum platziert sind, mittels gegebener, ma-
trixwertiger Funktionen ¢ (die Permittivitit) und p (die Permeabilitdt) modelliert.
Zuerst werden ein schwaches Losungskonzept eingefiihrt und die Existenz von glo-
balen Losungen sowie die Redundanz des Divergenzteils der Maxwell-Gleichungen
in diesem schwachen Losungskonzept nachgewiesen. Da ein typisches Ziel in der
Fusionsplasmaphysik darin besteht, die Menge der Teilchen, die JQ treffen, so klein
wie moglich zu halten (da solche die Reaktorwand beschédigen), wahrend die Kon-
trollkosten nicht allzu hoch sein sollten (um Effizienz zu gewihrleisten), wird danach
ein geeignetes Minimierungsproblem mit dem Vlasov-Maxwell-System als Nebenbe-
dingung betrachtet. Dieses Problem wird detailliert analysiert. Insbesondere werden
die Existenz von Minimierern nachgewiesen und eine Vorgehensweise zur Herleitung
von Optimalitdtsbedingungen erster Ordnung etabliert.

Im dritten Teil dieser Arbeit wird der Fall betrachtet, dass sich das Plasma in einem
unendlich langen Zylinder befindet und durch ein dufieres Magnetfeld beeinflusst
wird. Die Existenz von stationdren Losungen (die sich in die dritte Raumrichtung un-
endlich weit erstrecken) wird bewiesen und Bedingungen an das dufSere Magnetfeld
werden hergeleitet, unter denen das Plasma im Inneren des Zylinders eingeschlossen
ist, also vom Zylinderrand entfernt bleibt.
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CHAPTER

INTRODUCTION

0.1 The PDE system

The time evolution of a collisionless plasma is modeled by the relativistic Vlasov—
Maxwell system. Collisions among the plasma particles can be neglected if the plasma
is sufficiently rarefied or hot. The particles only interact through electromagnetic
fields created collectively. We consider the following setting: There are N species of
particles, all of which are located in a container ) C R3, which is a bounded domain,
for example, a fusion reactor. Thus, boundary conditions on d() have to be imposed.

In the exterior of (), there are external currents, for example, in electric coils, that
may serve as a control of the plasma if adjusted suitably. In order to model objects that
are placed somewhere in space, for example, the reactor wall, electric coils, and (almost
perfect) superconductors, we consider the permittivity ¢ and permeability p, which
are functions of the space coordinate, take values in the set of symmetric, positive
definite matrices of dimension three, and do not depend on time, as given. With this
assumption we can model linear, possibly anisotropic materials that stay fixed in time.
We should mention that in reality ¢ and p will on the one hand additionally depend
on the particle density inside () and on the other hand additionally locally on the
electromagnetic fields, typically via their frequencies (maybe even nonlocally because
of hysteresis). However, this would cause further nonlinearities which we avoid in
this work.

The unknowns are on the one hand the particle densities f* = f*(t,x,v), a =
1,...,N, which are functions of time ¢t > 0, the space coordinate x € Q, and the
momentum coordinate v € R3. Roughly speaking, f*(t,x,v) indicates how many
particles of the a-th species are at time t at position x with momentum v. On the
other hand there are the electromagnetic fields E = E(t, x), H = H(t, x), which depend
on time ¢ and space coordinate x € R3. The D- and B-fields are computed from E and
H by the linear constitutive equations D = ¢E and B = pH. We will only view E and
H as unknowns in the following.

The Vlasov part, which is to hold for each «, reads as follows:

Otf* +04 Oxf +ga(E+Ty XxH)-dpf* =0, (0.1a)
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f = Kaf + 8", (0.1b)
£40) = fo. (0.1¢)

Here, (0.1a) is the Vlasov equation equipped with the boundary condition (0.1b) on
dQ and the initial condition (0.1c) for ¢ = 0. In (0.1c), f*(0) denotes the evaluation of
f% at time t = 0, that is to say, the function f*(0, -, -). We will use this notation often,
also similarly for the electromagnetic fields and other functions.

Note that throughout this work we use modified Gaussian units such that the speed
of light (in vacuum) is normalized to unity and all rest masses m, of a particle of the
respective species are at least 1. In (0.1a), g, is the charge of the a-th particle species
and v, the velocity, which is computed from the momentum v via

—~ 0

Vg = ——
m2+ o)

according to special relativity. Clearly, |[v,| < 1, that is, the velocities are bounded
by the speed of light. Moreover, we assume that ¢ = p = Id on Q, Id denoting the
3 X 3-identity matrix. Thus, the speed of light is constant in (2 and B = H on Q.

To derive a precise statement of the boundary condition (0.1b) and a definition of £,
the operator K, and where (0.1b) has to hold, we have a look at typical examples at
first. Most commonly, the operator K, describes a specular boundary condition. For
this, we assume that Q has a (at least piecewise) C!-boundary that is a submanifold
of R3, and denote the outer unit normal of JQ at some x € JQ by n(x). Now consider
a particle moving inside Q and then hitting the surface J( at some time ¢ at x € JQ.
Its momentum v (shortly) after the reflection satisfies v - n(x) < 0 and its momentum
(shortly) before the hit is thus given by v —2(v - n(x))n(x). In other words, this means
that the components of the momentum which are tangential to n(x) stay the same,
and that the component which is normal to n(x) changes the sign. On the level of a
particle density f¢, this consideration yields the condition

fAt, x,0) = £, x, v = 2(v - n(x))n(x)) = (Kf*)(t,x,0) (0.2)

forx € dQand v - n(x) < 0.

More generally, we can consider the case that only a portion of the particles that hit
the boundary are reflected and the rest is absorbed and, additionally, more particles
are added from outside. Thus, we may demand

et x,0) = a®(t, x,0) (KF)(t, x,0) + §*(t, x,0) (0.3)

for x € JQ and v - n(x) < 0. Here, 0 < a%(f,x,v) < 11is a coefficient; that is to say,
a“%(t, x, v)-times the amount of the particles hitting the boundary at time ¢ at x € dQQ
with momentum v are reflected and the rest is absorbed. Furthermore, g%(¢,x,v) > 0
is the source term describing how many particles are added from outside.

Since the boundary condition is to hold only if v-n(x) < 0, itis natural to decompose
[0, 0o[ X dQ X R? into three parts:

y*t= {(t,x,v) €[0,00[ x IQXR? | v - n(x) > 0},
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Yy~ = {(t,x,v) €[0,00[ x IQXR? | v-n(x) < 0},
7/0 = {(t,x,v) €[0,00[ x IQXR? | v-n(x) = 0}.
Therefore, (0.3) is to hold for (¢, x,v) € y~. Moreover, K can be seen as an operator

mapping functions on y* to functions on y~. In accordance with (0.1b), we define f{
to be the restriction of f* to y*. Of course, this only makes sense if we have some

regularity of f¢, for example, continuity on [0, co[ x Q x R3. But even if a solution f®
(of a Vlasov equation) is only an LP-function, it is possible to define a trace f{* of f* on
y*; see Definition 1.2.7.(ii). Note that K, = a*K in (0.1b) yields (0.3). Since the time
variable in the sets above is somewhat unnecessary, we abbreviate

yi={(t,x,0) €[0,T[x IQXR> | v - n(x) > 0},

vy ={(t,x,0) €[0,T[x IQXR> | v - n(x) < 0},

y% = {(t,x,v) e[0,T[xIQXR3|v-n(x) = 0},

o= {(x,v) € QxR |v-n(x)> 0},

77 = {(x,v) € IQXR} | v - n(x) < 0},

70 = {(x,v) € IQXR? | v - n(x) = 0}

for 0 < T < . For ease of notation it will be convenient to introduce a surface
measure on [0, co[ X dQ X R3, namely,

dya = [6a - n(x)| dodS,dt.

Furthermore, the Vlasov part is coupled with Maxwell’s equations, which describe
the time evolution of the electromagnetic fields:

€dE — curly H = —4nj, (0.4a)
udeH + curl, E =0, (0.4b)
(E,H)(0) = (EH) (0.4¢)

Here, the current j = ji™ + u is typically the sum of the internal currents

qa/ Vo f dv
R3

and some external current u, thatis supported in some opensetI' ¢ R3. We will always
extend j™ (1) by zero outside Q (T'). Concerning set-ups with boundary conditions
on the plasma, the papers we are aware of deal with perfect conductor boundary
conditions for the electromagnetic fields; see, for example, [Guo93]. Such a set-up
can model no interaction between the interior and the exterior. However, considering
fusion reactors, there are external currents in the exterior, for example, in field coils.
These external currents induce electromagnetic fields and thus influence the behavior

Aint

=

M=

a=1
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of the internal plasma. Even more important, the main aim of fusion plasma research
is to adjust these external currents “suitably”. Thus, we impose Maxwell’s equations
globally in space.

Actually, Maxwell’s equations additionally include conditions on the divergence of
D = ¢E and B = uH, namely,

divy(¢E) = 4mp, (0.5a)
divy (uH) =0, (0.5b)

where p denotes the charge density. Usually, these equations are known to be re-
dundant if all functions are smooth enough, local conservation of charge is satisfied,
ie.,

Btp + diij =0,

and (0.5) holds initially, which we then view as a constraint on the initial data. There-
fore, in Chapters 1 and 2 we largely ignore (0.5) and discuss in Section 1.5 in what
sense (0.5) is satisfied in the context of a weak solution concept.

We thus arrive at the following Vlasov—Maxwell system, which is (0.1) and (0.4)
combined, on a time interval with given final time 0 < T, < oo:

O f* +Ty - Oxf¥ + qu(E+Ty X H) - 9y f* =0 only, x QxR3, (VM.1)
fo=KafS+g° onyg, (VM.2)

£2(0) = f2 onQxR3, (VM.3)

edE — curly H = —4nj onlr, xR3, (VM.4)

potH +curl, E =0 onlr, xR3, (VM.5)

(E, H)(0) = (é, H) onR?, (VM.6)

where (VM.1) to (VM.3) have to hold for all &« = 1,..., N and Ir, denotes the given
time interval. Here and in the following, It := [0, T] for 0 < T < oo and I := [0, oo[.

0.2 Outline

This work splits into three parts. In Chapter 1 we prove existence of weak solutions
of (VM) for given (and suitable) f , Eo, H , Ko, g, and u. To this end, we firstly define
in Section 1.1 what we call weak solutions of (VM). The strategy to construct a weak
solution follows the strategy of Guo [Guo93], who considered (VM) with ¢ = yu =1d,
u = 0,and (VM.4) and (VM.5) only imposed on Q) and equipped with perfect conductor
boundary conditions on dQ. Firstly, we consider the Vlasov partin Section 1.2 and state
some important results of Beals and Protopopescu [BP87], who dealt with transport
equations with Lipschitz continuous vector field subject to boundary conditions; here,
we also refer to the book of Greenberg, Mee, and Protopopescu [GMP87]. Going to the
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level of characteristics and exploiting that the characteristic flow is measure preserving
(which follows from the fact that the Lorentz force of electrodynamics has no sources
and sinks with respect to momentum), LP-bounds on f* and f;* are derived. After
shortly discussing the Maxwell part in Section 1.3, we proceed with the construction
of a weak solution in Section 1.4. Additionally to LP-bounds on f* and f}, we make
use of an energy consideration. For classical solutions of (VM) one can easily derive
the energy balance

N
d ) 5 1/ /
4 N @ — [ (¢E-E+uH -H)dx|<Cc- [ E-
dt(;'/g;/RS m3 + o] f dvdx+8n RS(& +u )dx)_C . udx,

if K, takes the form K, = a*K with 0 < 4% < 1, and where C is some expression in
the ¢g%; if a® = 1 for all @, equality holds above. In order to apply a quadratic Gronwall
argument and to conclude that the left bracket is bounded for each time, the map

(E,H) (/]R3(eE.E+yH.H)dx)z

should be a norm on L?(R3; R®) which is equivalent to the standard L?>-norm. Thus,
assumptions about uniform positive definiteness of ¢ and p will be made. Then, it
is natural to search for a weak solution in those spaces for whose norms the above a
priori bounds have been established. It turns out that firstly a cut-off system has to be
investigated in Section 1.4.2. Afterwards, the cut-off is removed in Section 1.4.3 and
the main result is proved in Theorem 1.4.4.

As already mentioned, in Section 1.5 we turn to the redundancy of the divergence
part of Maxwell’s equations. Guo [Guo93] proved that the divergence equations are
redundant if one imposes them on Q. However, in our set-up the Maxwell equations
are imposed on whole space. Thus, things are more complicated since we have to
“cross over” dQ. Whereas (0.5b) is easy to handle, the consideration of (0.5a) is much
more difficult and requires the property of local conservation of charge and the correct
definition of the charge density p. The idea is to show that the weak form—(1.1.2), in
particular—also holds for test functions that do not depend on v and thus to have a
weak form of conservation of internal charge at hand. Therefore, we have to perform
some technical approximations under a smoothness assumption about dQ. It turns
out that a part of p is a distribution which is supported on JQ and arises due to the
boundary conditions. The main result is stated in Theorem 1.5.6.

In Chapter 2 we analyze an optimal control problem. A typical aim in fusion plasma
physics is to keep the amount of particles hitting d() as small as possible (since they
damage the reactor wall), while the control costs should not be too exhaustive (to
ensure efficiency). This leads to a minimization problem where a certain objective
function shall be driven to a minimum over a certain set of functions satisfying (VM)
in a weak sense. More precisely, the objective function is

Z MW i * el
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Here, 1 < g < o0, w, > 0, and U = WL (]0, T.[ X I;R3) with 3 < r < co. Thus, the
objective function penalizes hits of the particles on JQ and exhaustive control costs. In
addition to (VM), it is necessary to impose two inequality constraints, namely, (2.1.1)
and (2.1.2), which are natural in the sense that they come from formal a priori bounds.
After discussing the minimization problem in detail in Section 2.1, we firstly prove
existence of a minimizer in Section 2.2; see Theorem 2.2.1. Secondly, we establish
an approach to derive first order optimality conditions for a minimizer under the
assumption g4 > 2 in Sections 2.3 and 2.4. To this end, the one main idea is to write
the weak form of (VM) equivalently as an identity

G((f*, f&),, E,H,u) =0in A",

where G is differentiable, A is a uniformly convex, reflexive test function space, and A”
is its topological dual space; see Section 2.3. The other main idea, which is motivated
by approaches of Lions [Lio85], is to introduce an approximate minimization problem
with a penalization parameter s > 0 which is driven to infinity later; see Section 2.4.
In particular, we add the differentiable term

Sla (e ), B H )l

to the original objective function and abolish the constraint that (VM) be solved. For
this approximate problem, we prove existence of a minimizer and establish first order
optimality conditions; see Theorems 2.4.3 and 2.4.11. After that, we let s — oo and
prove that, along a suitable sequence, a minimizer of the original problem is obtained
in the limit, and the convergence of the controls u is even strong; see Theorem 2.4.13.
Lastly, we briefly discuss in Section 2.5 how these results can also be verified in case
of similar set-ups or different objective functions. We should point out that the main
problem we have to deal with is that existence of global-in-time solutions to (VM)
is only known in a weak solution concept. In fact, one cannot expect C!-solutions
in general as a result of the boundary conditions for the plasma particles; this was
observed by Guo [Guo95] even in a one-dimensional setting. It is an open problem
whether or not such weak solutions are unique for given u. Thus, standard approaches
to derive first order optimality conditions via introducing a (preferably differentiable)
control-to-state operator, as is, for example, done in the books of Hinze et al. [Hin+09]
and Troltzsch [Tr610], cannot be applied.

In Chapter 3 we consider the case that only an external magnetic field influences
the internal system. The aim then is to answer the following two questions: Firstly, for
a given time-independent external magnetic field, is there a corresponding stationary
solution? Secondly, are there stationary solutions that are confined in (), i.e., the
particles stay away from the boundary of their container, if the external magnetic
field is adjusted suitably? Results are obtained in the case that Q is an infinitely long
cylinder (hence no longer bounded) and that the electromagnetic fields are subject to
perfect conductor boundary conditions on dQ. In particular, proceeding similarly to
Degond [Deg90], Batt and Fabian [BF93], Knopf [Kno19], and Skubachevskii [Skul4],
we state some basic assumptions on the symmetry of the appearing functions and
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state the corresponding invariant quantities &%, ¥ %, and G* in Section 3.2, which lead
to the natural ansatz

fl}Y — na(ga,/c-a,ga).

This ansatz, together with a basic definition and some useful preliminary lemmas
and tools, is the content of Section 3.3. In Sections 3.4 and 3.5 we answer the above-
mentioned questions. In particular, we firstly prove existence of a steady state for a
given external magnetic field in Theorem 3.4.4; see also Theorems 3.4.6 and 3.4.9 for
further properties. Here, the main idea is to formulate the problem equivalently as a
fixed point problem

(‘P/A(prAB:) = M(¢1A(prA3)

for (some components of) the electromagnetic four-potential, which is then handled by
Schaefer’s fixed point theorem. Secondly, we give conditions on the external magnetic
potential under which the steady state is confined; see Theorem 3.5.1.

0.3 Further literature

Vlasov—Maxwell systems have been studied extensively. In case of no reactor wall,
i.e., the Vlasov equation is imposed globally in space (as well as Maxwell’s equations),
global well-posedness of the Cauchy problem is a famous open problem. Global
existence and uniqueness of classical solutions has been proved in lower dimensional
settings; see Glassey and Schaeffer [GS90; GS97; GS98a; GS98b]. In the full three-
dimensional setting, a continuation criterion was given by Glassey and Strauss [GS86].
Furthermore, global existence of weak solutions was proved by Di Perna and Lions
[DL89]. Their momentum-averaging lemma is fundamental for proving existence of
weak solutions in any setting (with or without boundary, with or without perfect
conductor boundary conditions and so on), since it handles the nonlinearity in the
Vlasov equation. However, uniqueness of these weak solutions is not known. For a
more detailed overview we refer to Rein [Rei04] and to the book of Glassey [Gla96],
which also deals with other PDE systems in kinetic theory.

Controllability of the relativistic Vlasov-Maxwell system in two dimensions was
studied by Glass and Han-Kwan [GH15]. Knopf [Kno18] and later Knopf and the
author [KW18] analyzed optimal control problems for the Vlasov-Poisson system,
where Maxwell’s equations are replaced by the electrostatic Poisson equation. Here,
an external magnetic field was considered as a control. Studying control problems
with the Vlasov-Poisson system as the governing PDE system enjoys the advantage
of having existence and uniqueness of global-in-time classical solutions at hand, due
to the results of Pfaffelmoser [Pfa92] and Schaeffer [Sch91]. Also, an optimal control
problem for the two-dimensional Vlasov-Maxwell system was considered in [Web18].

Stationary solutions have already been obtained in similar set-ups; see, for example,
Poupaud [Pou92] and Rein [Rei92]. Approaches for confinement of Vlasov plasmas
can be found in a series of works of Caprino, Cavallaro, and Marchioro [CCM12;
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CCM14; CCM15; CCM16], who dealt with Vlasov—Poisson plasmas, and in Han-
Kwan [Han10] and Nguyen, Nguyen, and Strauss [NNS15] in the case of a Vlasov—
Maxwell plasma. Stability of stationary solutions was discussed in Nguyen and
Strauss [NS14], Zhang [Zha19], and (for a two-fluid model) in Zhelyazov, Han-Kwan,
and Rademacher [ZHR15].

0.4 Some notation

Throughout this work, C k—spaces (k € N U {co}) on the closure of some open set U
are defined to be the space of C¥-functions & on U such that all derivatives of h of

order less or equal k can be continuously extended to U. Moreover, the index ‘b’ in
C;}c indicates that all derivatives of order less or equal k of such functions shall be

bounded, and the index ‘c’ in Cf indicates that such functions shall be compactly
supported. As usual, Ck* (k € Ny, 0 < s < 1) denotes Holder spaces.

Furthermore, we denote by xu the characteristic function of some set M and by xr
the characteristic function of [0, T]. For 1 < p < co we define

akin

L’ (A, da):= {u € LP(A,da) | /Ug|u|p da < oo},
A

equipped with the corresponding weighted norm. Here, A ¢ R*xR3or A ¢ RxR3xR3
is some Borel set equipped with a measure a and the weight ), is given by

00 = \Jm2 + |v]*.

By m, > 1 we have vg > 1. Moreover, we write
Li(A,da) = {u: A— R | xru € LP(A, da) forall T > 0}

for1l < p < 0. If a is the Lebesgue measure we write LZ «in(A) and Lﬁ(A), respectively.

A combination LZ win 1t(A, da) is defined accordingly. Furthermore, we abbreviate

G X)={u: I > X|ueG(0,T];X)forall T € I}

where0 € [ C [0, o[ is some interval, G is some C kor P, and X is a normed, separable
vector space. Also, the somewhat sloppy notation

L®(I; L®(A)) = L®(I x A)
and
GLXNY)=GLX)NnGY)

(and likewise with index ‘It’, respectively) occur.
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Since ¢ is already used for the permittivity, the letter ¢, and not ¢, will always denote
a small positive number.

For a matrix A € R™" (n € N) and a positive number ¢ > 0, we write A > ¢ (A < 0)
if Ax - x > o|x|* (Ax - x < o|x|?) for all x € R". For a measurable A: R" — R"™" and
0>0,wewrite A > 0 (A < 0)if A(x) > 0 (A(x) < o) for almost all x € R".

For x,y € R" (n € N), [x, y] denotes the closed line segment connecting x and y;
similar notations are used for segments not including one or two of the endpoints.

Finally, for a normed space X, we write X* for the topological dual space. For
some x € X and r > 0, B,(x) denotes the open ball in X with center x and radius r.
Furthermore, we abbreviate B, := B,(0).






CHAPTER 1

EXISTENCE OF WEAK SOLUTIONS

1.1 Preliminaries

In this chapter we consider the case that some particle species, say, fora =1,..., N’
with N” € {0,...,N}, are subject to partially absorbing boundary conditions with
possibly a source term g¢, and the other particle species, for « = N’ +1,...,N, are
subject to (partially) purely reflecting boundary conditions with no source term g*.

To be more precise, fora =1, ..., N" assume a® € Lw(yi), ag = ||a“||Lm(V ) <1,and

T
g€ (L})(kin W Lft") (yi, dya). Fora = N’ +1,...,N, however, assume a® € L*® ()/i),
||a“||Lm(y_) =1, and g* = 0. For all @ we define K, = a“K.

Te

The space of test functions for (VM.1) to (VM.3) is Wr,, where

Wr = {1}1 € C°°(IT x Q x R3) | supp ¢ c [0, T[ x Q x R® compact,
dist(supp 1, 2) > 0, dist(supp 1, {0} x JQ x B?) > o} (1.1.1)

for 0 < T < oo. The restriction that supp i be away from certain sets will be important
later; see Definition 1.2.2 and Lemma 1.2.5. On the other hand, ®r,is the space of test
functions for (VM.4) to (VM.6), where

Or = {9 € C®(Ir xR*R3) | supp ® c [0, T[ X R? compact}

for0 < T < co.
We start with the definition of what we call weak solutions of (VM).

Definition 1.1.1. Let0 < T, < o0, u € L%OC(R3;R3). We call a tuple ((f¢, %), E, H,j)
a weak solution of (VM) on the time interval I1, with external current u if (for all «):

() f* € Ll (In xQxR), £ e Ll (v1, dya) B H, € L, (In, x B RO).

loc

11
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(ii) For all ¢y € Wr, it holds that

T,
0=—/ //(‘9f¢+5a“9x4’+‘7a(]5+5aXH)-avl,b)f“dvdxdt
0 Q JR3
+Aﬁ ffvdya _AT' (Waff +ga)1)b Ay —[)/}M fa(0) dodx (1.1.2)

(in particular, especially the integral of (E + 7, X H) f*- 9,1 is supposed to exist).
(iii) For all ¥ € Og, it holds that

T.
0= / / (€E- 049 — H -curly 9 —4mj - 9) dxdt +/ ¢E-9(0)dx, (1.1.3a)
0 R3 R3

T
0= / / (uH - 9y9 + E - curl, 9) dxdt +/ pH - 9(0) dx. (1.1.3b)
0 R3 R3

iv) The current j is the sum of the internal and the external currents, i.e.,
]
N
. int . o fa
= +u = v dv +u.
j=] > /R Oaf

a=1

Whereas the weak formulation of the Maxwell equations is standard, the weak
formulation of the Vlasov part will be explained in Section 1.2.1.

To obtain certain energy estimates we will need the following quadratic version of
Gronwall’s lemma, which is a slight improvement of [Dra03, Theorem 5].

Lemma 1.1.2. Leta,b €R,a <b,y, h: [a,b] — [0, [ and g: [a,b] — R be continuous,
andy: [a,b] — R. Assume that the following inequality holds for all t € [a, b]:

t
JTOF 4 5007 < 5602 + [ (o).

Then we have

t
TR+ (0P < |g(0)] + / () ds
forallt € [a,b].

Proof. Let ¢ > 0and choose G, € C!([a, b]) such that G, > 0 and |Gl - g2| <ton]|a,b].
Now consider

y.:[a,b] = 10,00, y,(t)= %(Gl(t) +1) +/ h(s)y(s)ds.
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By assumption we have y(f) < y(if)2 + y(i‘)2 < +/2y,(t). Furthermore, /2y, is differ-
entiable with

d LG(#) + h(t)y(t) Gi(t)
gy ) . = < h
at VY ® NGO = 2yGi(t) + 1 e

Integrating this estimate from a to t yields

\/y(t)Z + y(t)Z < 42y,(t) < 2y.(a) + /ut 2\/% ds + ut h(s)ds

=vG.(a)+ 1+ VG, () + 1 — G, (a) + 1 + /t h(s)ds

< \/g(t)2+2t+‘/t h(s)ds < |g(t)|+\/2_t+/th(s)ds.

Since 1 > 0 is arbitrary, the proof is finished. O

Following a general strategy, existence of weak solutions to (VM) is proved by con-
structing a sequence of solutions to approximating PDE systems and then extracting
a weakly converging subsequence whose limit is a candidate for a solution of the
original PDE system. Since (VM) as a whole is nonlinear, it is natural to decouple the
Vlasov part from the Maxwell part by taking the already known fields from the pre-
vious iteration step to construct the new particle densities out of the Vlasov equation.
Vice versa, one then proceeds with the Maxwell part to construct the new fields out
of an already known current. Thus, it is useful to dissociate the Vlasov part from the
Maxwell part and consider the force field in the Vlasov part and the current in the
Maxwell part, respectively, as given for the time being.

1.2 The Vlasov part

Throughout this section, @ € {1, ..., N} is fixed.

1.2.1 Weak formulation

LetF: I, xQxR3 — R3bean already known force field; consider this to be the Lorentz
force induced by some electromagnetic fields. In order to have local conservation of
charge, it is natural to assume that F is divergence free with respect to v, at least in
the sense of distributions. Of course, the Lorentz force in our situation satisfies this
assumption.

We want to solve the following system:

Df* +T0 - Ouf* +F-0pf*=0 on Ir, x Q x R?, (1.2.1a)
f& =Ko fd +g° onyr, (1.2.1b)
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£4(0) = fo on QX R3. (1.2.1¢)

The first step is to derive a weak formulation of (1.2.1). To this end, assume that f¢ €
ct (IT, x Q X R3) and that F is locally integrable, and continuously differentiable and

divergence free (both) with respect to v. Taking a test function ¢ € Wr,, multiplying
(1.2.1a) with ¢, and then integrating over I, x Q x R? leads to

0:/OT./Q/RS((?J“+%~8xf"‘+F~avf"‘)1pdvdxdt
:—‘/OT./Q/RS(&W+%-8x¢+F'&v¢)f“dvdxdt

- /Q /R FHO(0) dodx + /O - /& ) /R FYT - ndodSydt (12.2)

Here, the assumption that F is divergence free with respect to v enters. The only term
we have to take care about further is the third one. We decompose the domain of
integration and write f}* for the restriction of f* to y7. to get

T.

/ / /f"‘gbﬁa-ndvdsxdt

o JoaJmrs

=[/ f“¢ﬁa'ndvd5xdt+‘// f“¢5a'ndvd5xdt+‘// FYv, - ndodS,dt
3 T 7,

= // FiYv, - ndodS.dt + // FoYv, - n dodS,dt (1.2.3)
1. 1

because of 7, - n = 0 on y°. If we demand (1.2.1b) the very last term has to equal

/‘//(‘Kaff + §%) Y0, - n dodS.dt. (1.2.4)
'

For ease of notation we use the abbreviation
dya = |0a - n(x)| dodS.dt,
that was already introduced earlier. Note that
dya = 0, - n(x) dvdS,dt on y*.

Combining this and (1.2.2) to (1.2.4) we conclude that (1.2.1) is equivalent to the
property that

O:—'/OT.‘/Q/RS(&¢+5“'&x¢+F-8vgb)f“dvdxdt
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+A.ff¢dya—/_ (vcaff+ga)¢dya_/Q/RafWO)dvdx

Ve

forall ¢ € Wr,.
We explain in the following remark in what sense we can speak of traces f of f¢
in a weak solution concept.

Remark 1.2.1. If Definition 1.1.1.(ii) is satisfied, f{* is the trace of f¢ in the following
sense:

e As we have just seen, f{ is the restriction of f* to y7. if f* € C! (IT_ X Q x R3).

e There is no other f te LlloC ()/}r ) such that Definition 1.1.1.(ii) is satisfied as well,

since for such f* we have

/V (F2 7 )wdya =0

Te

forally € C* (IT, x Q) X R3) with supp ¢ C [0, To[ X QO xR3 compact that vanish
onyr U y%. Consequently, f = fa

1.2.2 Solutions of the Vlasov part

We give a brief introduction to the techniques and statements of Beals and Pro-
topopescu [BP87], who used an approach via characteristics to tackle linear transport
problems with initial-boundary conditions in a very general setting. Since we do not
need the full statements of [BP87], we formulate those results in the way we will need
them in our situation.

Throughout this subsection, let T > 0, Q) C R3 be an open, bounded set with C L.
boundary for some x > 0,and X7 = ]0, T[x QX R3. Furthermore, let Y be a first order
linear differential operator that is divergence free and whose coefficients are Lipschitz

continuous on Xt. In accordance to our situation, we choose
Y =0 +0y-0x +F-0y.

Thus, the assumptions about Y here reduce to two conditions on F, namely, that F is
Lipschitz continuous on L7 and divergence free with respect to v. We additionally

assume that F is bounded on X7. By Lipschitz continuity of F, for each (t, x,v) € L7
there is a well-defined integral curve s — (S, X, V)(s, t, x, v) satisfying

d d = d
%S - ]-/ %X - Va/ %V - F(S/X/ V)/ (S/X/ V)(t/ t/ x/v) - (t/ X, U).

This curve is defined as long as it remains in I and there is a corresponding maximal
time interval I C R for which it is defined. We define the length of this curve to be the



16 1 Existence of weak solutions

length of the maximal time interval for which the curve remains in Xr, that is to say,
the length equals s* — s~ where

st =sup{s €l|(S,X,V)s,t, x,v)€Lr},
sT=inf{s €l |(S,X,V)(s,t,x,v) € Xr}.

The next assumption is that there is a finite upper bound to all lengths of such integral
curves. This condition is trivially satisfied in our case 1 = ]0, T[ x Q x R3 since T is
an upper bound. The last assumption is that each integral curve has a left and right
limit point, i.e.,

lim (S,X,V)(s,t,x,v), lim (S5,X,V)(s,t, x,0)e€ Tr.
§—57,8>57 s—st,s<st

These limits, if they exist, have to be elements of dX.r. For their existence it is sufficient

that F is bounded by some constant C > 0 since then both X and V are bounded

because of

%] = |7

<1, |V|=IF(s,X, V) <C.

Accordingly, we define D7 (D7) to be the subset of JXr consisting of all such left
(right) limits, often referred to as incoming (outgoing) sets. These sets are Borel sets
since D7 (D7) is the image of the open set Lt under the continuous function that
maps a point in X7 to the left (right) limit point of the integral curve passing through
this point. Note that possibly D are not disjoint and/or do not exhaust JXr but
both D N D and 9%t \ (D} U D7) are negligible in the sense that the union of all
associated integral curves in X1 has Lebesgue measure zero.
We proceed with the definition of the test function space corresponding to Y.

Definition 1.2.2. Let @} be the space of all measurable functions ¢: £ — R with the
following three properties:

(i) ¢ is continuously differentiable along each integral curve.
(ii) ¢ and Y¢ are bounded functions.
(iii) The support of ¢ is bounded and there is a positive lower bound to the lengths
of the integral curves which meet the support of ¢.

Remark 1.2.3. e Here and in the following, the term Y#, where & € L}OC(ZT), is in
general to be understood as a distribution, i.e.,

(Yh)(p) = —/ (Ot +0o - dxp + F - dpp)hd(t, x,v), @ € CO(Er).
Ir
In Definition 1.2.2.(ii) or later in Definition 1.2.7.(i), this distribution is assumed to
be given by a function on 7.

e Because of Definition 1.2.2.(ii) and 1.2.2.(iii) we have ¢, Y¢ € LI(Zr) for any ¢ € (D¥
and1 < g < co.
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e Note that a function ¢ € @Y only has to be continuously differentiable along each
integral curve but may be discontinuous in other directions. Because of Defini-
tion 1.2.2.(i) and 1.2.2.(ii) every ¢ € <D¥ can be extended to be continuous at the
endpoints of each integral curve.

Since CIJ}/ depends on F, it cannot be suitable for the whole nonlinear system (VM),
where F is unknown. Thus, an important (technical) statement is that our test function
space Wr,, which is independent of F, belongs to CD% after a cut-off in the time variable
(if T < T,). This is verified in the following two lemmas, where we follow the proof of

[Guo93, Lemma 2.1.].

Lemma1.2.4. (i) Forany ¢ > 0 there is a 0 = 6(t) > 0 such that for all (x,v) € y~
satisfying dist((x, v), 7°) > t we have T, - n(x) < —0.
(ii) Forany 1 > 0 thereis ann = 1(t) > 0 such that for any x € dQ, y € R3 we have y € Q
if [y — x| <nand (y —x) - n(x) < -]y — x| < 0.

Proof. As for part 1.2.4.(i), suppose the contrary. Then we can find a ¢+ > 0 and a
sequence (x¢, vx) C 7~ with dist((xx, vk), 7°) > ¢ for k € N and 0y o - n(xx) — O for
k — co. Without loss of generality we can assume that (vi) is bounded: If |vg| > 1 let
Wy = \z_:l Then,

0> Z/U\k,oz : Tl(Xk) = |Z/0k,a| COS(K(Z’Ek,a/ n(xk))) > |5k,a| COS(K(Ek,a/ n(xk)))

= ak,a : n(xk) —0

for k — oo because of |Wx o| < |V al-

Therefore, (xx, vx) C dQ X R® converges, after extracting a suitable subsequence, to
some (x,v) € QX R3. On the one hand, we have dist((x, v), 7°) > ¢, and on the other
hand 7, - n(x) = 0 which is a contradiction.

The proof of part 1.2.4.(ii) exploits that dQ is of class C"*. Suppose that the
assertion does not hold, i.e., we can find a ¢ > 0 and sequences (x;) C 9Q, (yk) cR3
with |yk - xk| < t+and (yx — xx) - n(xg) < —L|yk - xk| < 0 but yx ¢ Q. We may assume
that both sequences converge because of (x¢) C dQ and (yx) € dQ + By. The limits of
both sequences have to be the same; we call the limit x € JQ. Since xj +1¢ (yk - xk) e Q)
for t > 0 small enough and yx ¢ ), there has to be a ¥; € ]xk, yk] N dQ. Obviously
we have |X; — x¢| < % and

| % — x|

< —t|Xx — x| < 0. (1.2.5)
[y =

(X — xx) - nxx) = (v — xx) - nlxg)

Since dQ is compact and ¥x — x, xx — x for k — oo, X, xx, and x lie in the image
of the same C*-chart ¢: R? > W — 9Q if k is large enough. Let py = ¢~ (%x),
pk = ¢ Y(xx), and p := ¢~1(x). By continuity of ¢!, both (fix) and (px) converge to

p. Thus, we may assume that p¢, px € K, = B, (p) C W for suitable » > 0 and large k.
We expand the left-hand side of (1.2.5) to get the estimate

|(&x = xx) - m(xp)|
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= |¢’( Pk - Pk) n(xi) + (@ (Fr) = @ (pe) = @' (pe) (B = pr)) - n(xx)|
= (¢ — ¢ (pi) (Pr — p)) - n(xi)|

< sup | (¢ (5) 9" () (P = i) < [l ll oy [P = P
EG[Pk Pk]

1+x

since n(xx) is perpendicular to the columns of ¢’(pi). Together with (1.2.5) and
the fact that ¢! is Lipschitz continuous on ¢(K,) with some Lipschitz constant
Ly k, > 0—see proof below—, this yields for large k

1+K

0<

I |Pk — pr| < 0Fk = 2l < |(F = x) - n(xp)| < H(PHCIK(K R3)|Pk Pl
P.Kp

But this contradicts |;5k - Pk| — 0 for k — co.
So there remains to show the Lipschitz continuity of ¢! on ¢ (Kj,). This relies on
the fact that, since @ is a chart, the function

G:K,xdB1 - R, G(p,0p) =|¢'(p)op]

is continuous and positive so that it is bounded from below by some positive constant
¢>0.For%,x € ¢(K,) with¥ # X and j := ¢~'(¥), p := ¢~ !(X) € K, we thus have

|5 -7l \P P| |5 - 7]
sup;c[p51/(#(6) = ¢’ (7)) (F - 7)) -
- |}3 B 17| ZC- H(P||CLK(I<,,;R3)|l7 - F’l .

If ¢! were not Lipschitz continuous on ¢ (K,) we would find sequences (¥x), (Xx) C
®(Kp) and (fx) = (¢7"(Xx)), (7;) = (¢~ (X)) C K, such that

| ¥ — Xkl

>
|Pk - Pk|

= H(P||C1,x(1<p;R3)|ﬁk - ﬁkr{- (1.2.6)

>\~IH

Due to compactness of ¢ (K, ) we may assume that (¥;) and (xj) converge to the same
limit (the same because of |y — x| < % diam K, where diam K, is the diameter of
Kp) and that the corresponding (fx), (p,) also converge to the same limit due to the
continuity of ¢~!. But this contradicts (1.2.6). Hence, ¢! is Lipschitz continuous on
®(Kp) and the proof is finished. O

Lemma 1.2.5. For each 1 € Wt we have ll}|):T € CD%.
Proof. Let ¢ € Wr and define

do == min{dist(supp ¢, y3), dist(supp ¢, {0} X IQ x R?)} > 0.
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Since 'HZT obviously satisfies Definition 1.2.2.(i) and 1.2.2.(ii), we only have to take
care about Definition 1.2.2.(iii). First note that, since the support of ¢ is compact in
[0,T[x QX R3, thereisa 0 < so < T such that Y(t,x,v) =0forsg <t < T, x € Q,
v € R3.

We consider an integral curve which meets supp ¢ = supp 1/)|ZT. This curve can

be written as s — (S, X, V)(s,s™, x,v) and remains in Lt for a maximal time interval
Is7,s*[ € 10, T[ so that (s7, x,v) € Dy. Obviously it holds that s~ < so. We have to
find a positive lower bound for s* — s~ that does not depend on s7, s*, x, and v. In
the following, lets € |s~, s*[.

Case 1. If

dist((s~, x,v), supp ) > %

we can find an s such that (S, X, V)(s,s™, x,v) € supp since the curve meets the
support of Y. By |X| <land ’V| < supy, |F| we have

D < dist((s, x,0), supp ) < I(5, X, V)fs, 57, %,0) ~ (57, %,0)

< 2+ IFl%(s = 57)
d

so that —02 is such a desired lower bound in this case.
2V2+||Fl%

Case 2. The more complicated case is
. _ do
dist((s™, x,v), supp ¢) < >
Since {T} X Q xR3and )/;f do not intersect Dy, we have
Dy € 77 U8 U ({0} x O XR).
Clearly, it holds that (s~, x, v) ¢ y% because of

dist((s™, x,v), supp ¢) < % < do < dist(supp ¢, 2.

If (s, x,v) € {0} x Q x R® we have
dist(x, 9Q) = dist((s~, x, v), {0} x IQ x R?)

> dist(supp ¢, {0} X IQ x R¥) — dist((s~, x,v), supp ¢) > do — % ==

Thus, X(s,s7,x,v) € Qfor0 <s < min{dz—o, T} again because of |X| < 1. Therefore, a

positive lower bound to the length of the integral curve in this case is min{ %, T}.
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Finally, suppose (s~, x,v) € y;. First note that

dist((x,v), 7°) = dist((s~, x,v), y%) > dist(supp ¢, y%) —dist((s~, x,v), supp ¢)

do _ do
>dy- 5 = 2. 1.2.7)

Let 6 = 6(‘12—0) and 1 = (%) according to Lemma 1.2.4. We claim that

m = min T—so,ﬁ,9 0
27 SNIFll o (zpma) + 1

is such a positive lower bound (to the length of the integral curve) we search for.
Indeed, we firstly have [s~,s~ + m] C [0, T] due to s~ < 5. Secondly, let

s=sup{s e]s”,s”+m]| X(5,s7,x,v) e Qforall§ € ]s7,s[}.
Because of
|X(s,s7,x,v)—x| <s—-s" <7

and

(X(s,s7,x,v)—x)-n(x) =

/s \7a(fc, s7,x,0) d’l’) -n(x)

=(5—5")0q - n(x)+ / /_T(%?a)(l,s—,x,v)dm n(x)
9

_ 1_ 5 & e
< =0 =57) + SIFlliozzs 5 G )2 < —5(E =57 < -5IXE,s7,x,0) - x|

(which also implies X(s,s7, x,v) # x since —%(E —57) < 0) by (1.2.7) and d;—;]_’i < %,
i,j =1,2,3, we have X(5,57,x,v) € Q and thus s = s~ + m. This completes the
proof. O

We should remark that the three conditionson ¢ € Wrin (1.1.1) are really necessary:
Let ¢ > 0 be small and, for simplicity, take F = 0. Firstly, if we allow a test function ¢
that does not vanish before time T and has support on y;;, we can find an integral curve
entering Zr on yr Nsupp Y at time s~ = T — 1. Secondly, if we allow a test function
Y with support on y% then for some (t,x,v) € y%—such that in a neighborhood of
x there are no common points of Q and the tangent space of Q) at x—the curves
(S,X,V)(5) = (s,x—tn(x)+ (s —t)v,,v), defined for all s € [0,T], will meet the
support of 1. Thirdly, if we allow a test function 1 with support on {0} x dQ x R3
we can find an integral curve meeting the support of 1, (its X-coordinate) starting at
time 0 near JQ) and leaving Q) at time (. In all three cases, there will be no positive
lower bound to the length of these curves.
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Conversely, these restrictions cause no problems for later considerations. Firstly, we
do not want to test a solution of (1.2.1) at time T since we are interested in an initial,
and not final, value problem. Secondly, we only want to impose a boundary condition
on y~ and not on y°. Thirdly, proper initial data of the distribution function have
to satisfy the boundary condition at time 0 a priori so that this property need not be
tested, and {0} x dQ X R3 is even a null set with respect to dy,.

We now proceed with some important results of [BP87]. There, the main idea is to
use the “identifications”

d

Y= {(s,z) |zeD;,0<s< Z(z)}, Y = e

where [(z) is the length of the integral curve corresponding to z. The first important
result is the following property which is closely related to Green’s identity; see [BP87,
Proposition 7].

Proposition 1.2.6. There are two unique Borel measures v* on D3 such that

‘/ZTY¢d(t,x,v)=‘/D%¢)dv+— D%cj)dv_

forall g € Y.

We have to define the space of functions in which we search for solutions of some
initial-boundary problem.

Definition 1.2.7. For 1 < p < oo let EP(X1;Y) be the space of functions f € LP(Xr)
with the following two properties:

() Yf € L (=n).
(ii) There is a trace of f on D, i.e., a pair of functions f* € L (D%, dv*) satisfying
the extended Green’s identity

‘/ZT((PYf+fY¢)d(t,x,v):/D;f+¢dv+_‘/D;f_¢dv_

forall ¢ € qDlT(.

Note that a trace in the sense as stated above is unique and that all terms are
well-defined according to Remark 1.2.3.

Lemma 1.28. Let 1 < p < oo, f € EP(Sr;Y) and w € C™(Sp) N C;(Z_T). Then,
wf e EP(Er;Y) and (wf)* = wf*.

Proof. Because of

(@A)(@) == [ @+ g+ F-dup)f dit, 0

Ir
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= —/ (9t (wep) + 0y - Ix(wep) + F -y (we)) f d(t, x,0)

Xr

+/(Qtw+5a-8xw+F-8vw)f(pd(t,x,v)

Ir

:/ (Yf)w(pd(t,x,v)+/ Yw)fpd(t,x,v)
Xr Ir

for any ¢ € C®(Zr), it holds that Y (wf) = wYf + fYw € LP(Z1). Now let ¢ € @Y.
We have w¢ € CD% since Definition 1.2.2.(i) and 1.2.2.(ii) are satisfied because of the

regularity of w and Definition 1.2.2.(iii) is satisfied because of supp(w¢) C supp ¢.
Thus, it holds that

/ (pY(wf) +wfY)d(t, x,v) = / (WY f + fY (we))d(t, x,v)

/qu‘)dv —/fw¢>dv,

which proves the assertion. O
In the following it is convenient to split D as follows:
DI ={(t,x,v) e Df |0<t<T},
Dy = {(t,x,v) eDr|t= O}, D% = {(t,x,v) eDf|t= T},

so that D}, = DT UDgand Di = DTy DT Note that Dy does not depend on T (in the

sense that any0<T<T ylelds the same set Dy). According to this decomposition we
write dv_ = dv~ |DT’ dvo = dv~ |D ,dve =dv? \DT’ dvr = dv* T T,f =f- |DT’fO f- iDO

fo=f" |Dz,and fr=f" |D;. We have

{0} xQxR*c Dy c {0} xQxR?, {T}xQxR>c DI c{T}xQxR?
ypeDlcyruyy, yrcDicyiun.
Therefore, we can identify LP-functions on Dy (or D% ) with LP-functions on Q x R3

since (6 X R3) \ (QxR?) has (x,v)-Lebesgue measure zero. Additionally, we may

write f(0) and f(T) instead of fy and fr pointing out that we may evaluate f at time 0
and T in some sense.
For each ¢ € Wt we have

/ET Yy d(t,x,v) = —/Q‘/Rsl,b(O)dvdx+/OT ./ag /R3 UBa - 1 dodSydt
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This shows that dvy = d(x,v) on Dg and dv. = dy, on 7/;—:. With an analog reasoning
(consider test functions 1,5(1‘, x,v) = Y(T—t,x,v), y € Yr) we conclude that dvr =
d(x,v) on D% as well.

We proceed with a definition of some properties of operators.

Definition 1.2.9. Let O be an operator between two function spaces on subsets of
some R", whose first component we call time. O is called

(i) local in time if O(uv) = uO(v) for all continuous functions u that only depend
on time and all possible v;
(ii) nonnegative if O(v) > O forallv > 0.

Now we are ready to state the following result regarding the unique solvability of
linear transport problems with initial-boundary conditions; see [BP87, Proposition 1,
Theorems 1 and 2].

Proposition 1.2.10. Let 1 < p < oo, h € L®(X7), F: Yr — Rbe Lipschitz continuous,
differentiable with respect to v, and divergence free with respect tov, and Y = 0y +0Vy -0y +F-0y.

(i) Forall f € EP(Z1;Y) we have

/D%|fT|” dvT+/DI|f+|p dv++p/ZTh|f|” d(t, x, )
= [l awos [l avvp [ sl o empae o, a29
Do DT L

(ii) Let moreover K: LF (DI, dv,) — LP(DI,dv_) be a bounded linear operator, that is
local in time and has operator norm less than 1, and gy € LP(Dy), g- € LP (DT, dv_).
Then the problem

Yf=0 on Xr, (1.2.9a)
fo=go on Dy, (1.2.9b)
fo=Rf+g- on D! (1.2.9¢)

has a unique solution f € EP(Zr;Y). Here, (1.2.9a) holds pointwise almost everywhere
(cf. Definition 1.2.7.(i) and Remark 1.2.3), and (1.2.9b) and (1.2.9¢) hold pointwise
almost everywhere (with respect to the corresponding measures) in the sense of trace
(cf. Definition 1.2.7.(ii)). Moreover, the solution is nonnegative if 8, go, and g_ are
nonnegative.

Here and in the following, for functions the property “nonnegative” usually means
“nonnegative almost everywhere”. We want to express, in some way, the theorem
above in words that fit to our problem (1.2.1), that is to say, we should somehow replace
Dy, DT (and so on) by Q x R3, v (and so on). Moreover, we search for solutions of
(1.2.1) on I, instead of solutions on some time interval [0, T]. To this end, we first
have to define what we call a strong solution of (1.2.1). From now on, the force term
F shall satisfy the following condition.
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Condition 1.2.11. F: I, x Q x R® — R? is Lipschitz continuous and bounded on I
for any T € It,, and moreover differentiable and divergence free (both) with respect
tov.

Definition 1.2.12. Assume that1 < p < oo, K: Lft(y;f.,dya) - Lﬁ()/i,dya),f €

LP(QxR3),and g € Lﬁ(yi, d)/a). We call a function f: I, x Q X R3 — R a strong
solution of (1.2.1) if:

(@) xrf €EP(Zr;Y)forall0 < T € Ig,.
(ii) For all ¢ € Wr, it holds that

/OT. /Q/R3 (O + o - Oxtp + F - 9)) f dodxdt
:Aﬁwya—/y (7<f++g)¢dya_LAS;¢(O)dde_

T.
Note that, for each 0 < T € I, at first only a trace of xr f is defined. By uniqueness,
for another It, 3 T’ > T, the traces of y7 f and xrf coincide on the common time

interval [0, T]. Thus, we may write f,, which is defined on all of Ir,, and may drop
the dependence on some T.

Proposition 1.2.13. Let 1 < p < oo, F satisfy Condition 1.2.11, and K : Lﬁ(y/;{, dya) —
Lft ()/; , d)/a) be a linear operator, that is local in time and such that there isa 0 < ko < 1
satisfying

l[Kc ”LP()/;,dya) < kOHCHLn(y;,dya)

or all ¢ € LF(v+,d «|, 0 < T € I,. Furthermore, let f e LP(QxR3) and ¢ €
i\ V1. 4V 8

Lft ()/i, dya). Then:
(i) There is exactly one strong solution of (1.2.1) in the sense of Definition 1.2.12.
(i) This solution is nonnegative if K, f, and g are nonnegative.

Proof. Let0 < T € I7, and define

T. AT T gt,x,v), (t,x,0v)€y,
:D R, (t,x,v)= .
g g-(t,x,0) { 0, otherwise;
g:Do =R, g0(0,x,0) = f(x,0).

Note that the latter definition makes sense since, as mentioned above, Dy coincides
with {0} X Q x R? up to a negligible set. We have

f

”gI”LP(DI,dv,) = HXTgHLP(y-,dya)’ ”gOHLP(DO) = 1P (QxR)
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so that g7 € LP (DI, dv*) and gy € LP(Dy). Furthermore, for h € L (DI, dv,) let

h(t,x,v), (tx,0)€yg,

h:ivi SR, h(t,x,0)=
’n. 7 (t,x,0) { 0, otherwise

and
Wz t/ ' Y) t, , -,
Krh: DZ — R, (8&th)(t,x,v)= ( )( x,v), (t,x,0)€ iz
0, otherwise.
Because of
Pkl @ra = ”Xﬂ(h D) kOHXTh V(i) Kolltll (o av.)

we conclude that &7 maps L7 (DI, dv.) to LP(DT,dv_) and has operator norm less
than 1. Moreover, Rt is local in time. Thus, by Proposition 1.2.10.(ii) there is a solution
of (1.2.9) (with Kr, go, T given). By uniqueness and DI c DI’ for T < T’, such a
solution (and its trace) does not depend on T, whence there is a function f such that
Xtf € EF(Z1;Y) is the unique solution of (1.2.9) for any given T. Now take ¢ € W7,
and 0 < T < T, such that ¢(t,x,v) = 0if t > T. By Lemma 1.2.5 we have ¢|ZT € @’T/.

Applying the definition of trace and using the properties of 1, this leads to
/ fYyd(t,x,v) = / fYpd(t,x,v)
I1, Xr

:-Lofwdvo+/ljzf+¢dv+—/DT(RTer+gI)l,de_
=_/Q/RS]?¢(o)dvdx+ y;fﬂpdya—/(RTf“rgz)‘/’dVa

)gs
—- [ [ foordoaxs [ oy~ [ oxreeguar,
QJR s ’n.
and the proof of part 1.2.13.(i) is complete.

Part 1.2.13.(ii) follows from the fact that f7, g, and gI are nonnegative if %, f ,and
g are nonnegative, and Proposition 1.2.10.(ii). O

We now turn to the special situation that K = aK, where K is the reflection operator.
According to (0.2), Kf is defined for any function f (that is defined on a subset of

R x dQ x R3) and is self inverse, i.e., K* = id. Its restriction to Lﬁ ()/; , dya) yields

P
1t

K: Lﬁ(yi,dya) — Lﬁ()/}:,dya).

an operator K: L ()/}:,dya) — Lﬁ(yi,dya) for any 1 < p < oco. Its inverse is
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Lemma 1.2.14. Forany T > 0,1 < p < co,and any a,b € L*(y;), c € LP (y},dya), and
h e LP(ys,dys) we have

/ blaKc + h|P dy, = / Kb|cKa + Kh|F dy,.
v r
If additionally ay = ||a||Lm(y%) <landa,b,c, h are nonnegative, the estimate
/ blaKc + h|P dy, < ao/ (Kb)cP dy, + (1 - ao)l_p/ bh? dy,
’r T 71

holds.

Proof. We compute
/ blaKc + h|F dy,
’T

///b(t x,0)|a(t, x,v)c(t, x,v -2 - n(x))n(x)) + h(t, x, )P |04 - n(x)| dodSdt

///b(t x,0—=2(v-nx)n(x))|alt, x,v —2(v - n(x))n(x))c(t, x,v)

T

+h(t,x,v —2(v - n(x))n(x))|P|-0, - n(x)| dodS,dt

=/ Kb|cKa + Kh|P dy,.
T

using the change of variables v +— v — 2(v - n(x))n(x). Note that the determinant of
the corresponding Jacobian equals —1 since the map is a reflection. As for the second
statement, we estimate

/b|aKc+h|pdya=/ Kb|cKa + Kh|Pdy,
v ’r

< / Kb‘aoc +(1-ap)(1 - ao)_lKh|p dya
’r
< ao/ (Kb)cPdya + (1 - ao)/ Kb.(l - ao)‘lKh‘p dYa
’r i
~a [ KOy, s @-a) [ iy,
VT 7

using the convexity of the p-th power and the first statement. O
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Proposition 1.2.15. Consider K = aK, where 0 < a € L™ (y;) with ag = ||a||Lm(y ) <1

Te
Let F satisfy Condition 1.2.11,0 < f € (L' N\ L) (Qx R?),0 < g € (Lllt n L;;) ()/i, dy,,,).
Then there is a unique, nonnegative strong solution f € Ly (Ir,; (L' N L) (Q x R?)) of

(1.2.1) with nonnegative trace fy € (Lllt NnLy ) ()/]i. , dya) in the sense that the conditions of
Definition 1.2.12 are satisfied for all 1 < p < co. Moreover, we have the estimates

POy < |7

+(1- ao)%‘lllglhn(y;,m)
(1.2.10)

1
(1 - 110)” ”f*”LP(y;,dya)’ | LP(QXRS)

and

(1—a0)/ 6f+dya+// Of(T)dvdx
yin{lo|<R} Q JBg

T
S// 6fdvdx+/ ng)/a+/ // F - fVOdvdxdt (1.2.11)
Q JR3 vr 0 Q JBr

forany0 < T €lr,, 1 < p < oo (where L =0),0 < R < co (where B, = R3), and any
nonnegative C'-function 0 = 6(v) on R3 that only depends on |v|, is monotonically increasing
in |v| (ie., B(v) = §(|v|)for some monotonically increasing 0 € CY(Rso) with 6'(0) = 0),
and has the property that VO € L1(R%R3) for some 1 < q < oo. In particular,

(1—a0)/ vgf+dya+// 00 f(T) dvdx
yiN{lo|<R} Q JBg

T
s// vgfdvdx+/ vggdya+/ // F -0, f dodxdt (1.2.12)
Q R3 ;/Tf 0 Q BR

and hence f € L (In; (LLygy 01°) QX R2)) and fo € (LLyg 0 L7) (vE dva) i addi
tionally f € L) (QxR3)and g € L! __ h()/i, dya).
Furthermore,

FT,0)dof| |
Br L3 Q)

3
47 47 1 0 i
< ( 3 L (OxE?) + 3 (1-ap) “gHLw(yF) + 1) (‘/Q ‘/BR v, f(T) dvdx) (1.2.13)
forany0 < T €Iy, and 0 < R < oo,

o

f

Proof. Let1 < p < oo and consider K = aK: Lﬁ()/;.,dya) - Lﬁ(yi,dya), which is
linear and local in time. We have

||7(C||LP(V7_~,d)/a) = ||CKa||LP(y7t,d)/a < a0||C||LP()/7t,dya)
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forallc € Lﬁ ()/;S , d)/a) and 0 < T € I, by Lemma 1.2.14. Thus, by Proposition 1.2.13
there is a unique solution for this p in the sense of Definition 1.2.12. Since p was
arbitrary, it follows that, forall1 < p < oo, f € Lﬁ(ZT.) and f; € Lﬁ ()/% , dyo,), and all

conditions of Definition 1.2.12 are satisfied.

Let 0 < T € Iy, and recall that in the proof of Proposition 1.2.13 the solution on
[0, T] was given by a solution of (1.2.9) with 87, go, ¢L. Thus, f- = K7f, + ¢L =0on
DT\ yr- Applying Proposition 1.2.10.(i) (with i = 0), dropping negligible terms in
(1.2.8), and using Lemma 1.2.14 we arrive at

ffd)/a+‘// f(T)dedXZ/ fpdvdx+/ (aKfi + g) dya
Vi QJr3 Q Jr3 -

Yt

S//fpdvdx+a0/ ffdya+(1—u0)1_P/gpdya.
Q JR3 y]f 2

This yields

(1—a0)/ ffdya+// f(T)pdvde// f”dvdx+(1—ao)l_p/ g dy,
12 Q JR3 Q JR3 VI

and therefore
1
r
Ol [ e [ o]
)/

T
<[y
by r? +sP < (r+s) forr,s > 0. Letting p — oo we deduce (1.2.10) also for p = oo.
This also shows that f € L*(Z7,) (thus f € L (Ir,; (L' N L) (Q X R3)) altogether)
and f, € Lf:’(y/]f. ,dya) (thus f, € (Lllt NLY )()/;r ,d)/a) altogether and therefore f_ €
(Lllt n Lf;) (yi , dya)).
To prove (1.2.11), let first 0 < R < oo and

1
(1= a0) |l a7

19
LP(QxR3) + (l - tlo)p ”g”LP(y{.,dya)

0(v), |v] <R,

prR R ﬁ(U):{Q(R), o] > R.

Clearly we have g — 6(R) € WY1(R?). Now let ¢ > 0 be arbitrary and choose
B. € CL(R®) N C(R®) with ||g, - ﬁ“Wl/l(Rs) < t. This B, can be chosen in a such a way
that it is nonnegative and only depends on |v| since § is nonnegative and only depends
on |v|. Proceeding similarly as before, we define f (t,x,v) == B.(v)f(t, x,v) > 0, notic-
ing that Yf =F . fVBrand KB, = ,, and apply Lemmas 1.2.8 and 1.2.14 and Proposi-
tion 1.2.10.(i) to f for p = 1:

+ﬁtf+d7/a+./Q/RSﬁ[f(T)dvdx

YT
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T

S/ ﬁlfodvdx+a0/ ﬁlf+dya+/ ﬁlgdya+/ F-fVBud(t, x,v),
QJR3 123 VT I

=./Q‘/RSﬁjdvdx+./y_ﬁ[(aKf++g)dya+/Z F- fVBuLd(t, x,0)

so that

(1—ﬂ0)£+ﬁ1f+d)/a+‘/Q‘/RSﬁLf(T)dvdx

s/Q/RsﬁjdvdHAﬁLgdya+/ZTF-fVﬁLd(t,x,v). (1.2.14)

Taking the limit 1 — 0 does not cause any problem because we have Hﬁl - ﬁ”wm ®) ™

0fort — 0, F € L°(Er;R3), f € L¥(Zy), f+ € Lw(y;,dya), f,f(T) € L(QxR3),
g€ Lw(y; , dya), and the fact that the (surface) measures of Q, JQ, and [0, T] are all
finite. Hence, (1.2.14) holds with : removed. Next we insert the definition of  and
drop the terms where |v| > R on the left-hand side to get

(1 - ag) / Of, dyq + / / O f(T) dvdx
Vi n{lol<R} Q JBr

s// 6fdvdx+6(R)/ fdvdx+/ 0g dyq
Q JBr Q J|v|=R yrN{lv|<R}

T
+ O0(R) gdya+/ // F .- fVOdvdxdt
yrN{lv|=R} 0 Q JBg

T
S//E)fdvdx+/ Hgdya+/ //F-fVdedxdt
Q JR3 VT 0 JQJBR

since 0 is monotonically increasing in |v|. Note that it is important that Vf vanishes
for [v| > R. This proves (1.2.11) for 0 < R < oco. Because of VO € L1(R%R?),
F € L®(Z1;R3), f € L7(Zr) (Where % + % = 1), and the fact that the measures of Q
and [0, T] are finite, we know that F - fVO € L!(Z1). By letting R — oo we thus obtain
(1.2.11) for R = co . In particular, we get (1.2.12) for 0(v) = v noticing that VO(v) = 7,
is a bounded function.

As for (1.2.13),let 0 < R < oo and first derive the following key estimate:

‘/BRf(T,x,U)dv < Ayf(T,x,v)dU+/S|v|<Rf(T,x,v)dU

4 1
< ?nﬁ”f(T)”Lw(QXW) + ;/ oY f(T, x,v) dvdx
Br

iy
0 || . dn
< (/BR vaf(T,x,v)dv) ( 3 ||f + 5 0= a0) sl 0y + 1| (1215)

L= (QxR3)
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1
where we setr = (fBR (T, x,v) dv) te [0, oo[ and used (1.2.10); if r = 0, the second

step makes no sense but clearly both the left-hand side and the right-hand side of
(1.2.15) are zero in this case. Note that the integral on the left-hand side exists for
almost all (T, x) € I1, X Q by Fubini’s theorem and that the first estimate above holds
trivially if » > R by f > 0 and is an equality if < R. Taking both sides of (1.2.15) to
the power 3 and then integrating over Q yields (1.2.13). O

Remark 1.2.16. The L™-spaces on y7 with respect to dy, and the standard surface
measure are the same and the respective norms coincide since null sets with respect
to dy, are null sets with respect to the standard surface measure and vice versa by
Ty - 1(x) > 0(< 0) on y# (y7). Consequently, from now on we will (mostly) not point
out the measure in the denotation of such L*-spaces and simply write L® ().

1.3 The Maxwell part

We proceed with the Maxwell part. For a given current density j, permittivity &,
permeability u, and initial data E, H we want to solve the following system:

e0tE —curly H = —4nj on Iz, X R3, (1.3.1a)
uoiH +curl, E=0 on Iz, X R?, (1.3.1b)
(E,H)(0) = (E H) on R3. (1.3.10)

This system is a linear symmetric hyperbolic system. To tackle this problem, we state
(a shortened version of) a theorem of Kato [Kat75, Theorem I].

Proposition 1.3.1. Let T > 0 and consider the problem

3
apdyw + Z a;idy,w =h on [0,T] xR?, (1.3.2a)
i=1
w(0) = on R3 (1.3.2b)
with h: [0, T XR® - R®, 4;: [0, T] xR3 - R®*¢, 0 < i < 3, and w: R> — R given.
Let s,s" € Nwiths > 3,1 < s’ < s, and let the following assumptions hold for some
M,L,o>0foral0<t,t' <T,xe€R3and0<i<3:
(i) a; € C([0, T} 1%, (R3RS)),
(i) Nlai()ll e wz00) < M,

(iii) [lao(t) — aO(t,)||H31’1(R3;R6><6) <Lt-t]

(iv) a;(t, x) is symmetric,
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(v) ap(t,x) = o,

(vi) h e LY([0,T]; H¥ (R%;R®)) nC([0, T]; H¥ 1 (R%;R®)),
(vii) & € H* (R%R9).
Then, (1.3.2) has a solution w € C([0,T]; H* (R%;R®)) n C*([0, T]; H*~1(R3;R®)) which
is unique in the larger class C ([0, T]; H'(R%;R®)) n C([0, T]; L?(R%; R9)).

Here, for m € N the space L2 (R%;R"™™) is the set of all measurable functions

z: R3 — R™M gych that

121122 ma momen) = sUP||zlr2(p, (x);rmam) < 00,
x€R3
and the so-called “uniform local Sobolev space” H 51 (R3;R™ ™), k € Ny, is the set of
allz € Lil (R3; R™ ™) such that all distribution derivatives of order less or equal k are
elements of L2, (R%;R™*™). The space HX (R%; R"™*™) is equipped with the norm

121l 3% o ) 2= |2T5(||DﬁZHL§I(R3;Rmxm)'

Due to Kato we have the continuous embedding Hﬁl (R3;R¥S) ¢ Cp(R3;R¥P), s0
that ¢ and p are bounded functions in the following theorem.

Proposition 1.3.2. Let ¢,y € H> (R R¥®) have the following properties: &(x), u(x) are
symmetric for each x € R® and there is a ¢ > 0 such that &(x), u(x) > o for all x € R3.
Moreover, let j € L1 (Ir,; H*(R%; R?)) N Cyy(Ir,; H2(R%;R?)) and E, H € H?(R%;R3). Then
there is a unique solution (E,H) € Cy(Ir,; H*(R%;R®)) N Cj(Ir,; H*(R%; R®)) of (1.3.1).
Furthermore, we have

1 1 o o o o T ,
e RS(SE-E+yH.H)(T)dx_gf]Rs(gE.E.;_yH.H)dx_/o /RSE.]dxdt
(1.3.3)

and

NI

IE, H)Dll 2@ = (IEM2gazs) + IHDIT 2055
(R3;R3) (R3;R3)

1
2
1 o o o o 11
<072 (/Rs(eE -E+uH - H) dx) +4mo ||]||L1([0,T];L2(R3;R3))
(1.3.4)

forany 0 < T € I,.
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Proof. Let0 < T € Iz, and define

~ 0
ﬂ,ﬂ,ﬂ,a:O,TxR3_>R6X6’ at,x:((’(x) ,
N, O()(O p(x)
00 0 0 0 0 0 0000 -1
00 0 0 0 1 00000 0
00 0 0 -1 0 00010 0
al(t,x)zoo 0 0 0 O,az(t,x):o 0100 o
00 -10 0 0 00000 0
01 0 0 0 0 10000 0
00 0 0 10
00 0 100
=] 0 0 0 00
abX)=1g 1 0 0 0 of
100 0 00
00 0 0 00

and

_(E _[~4mj . (E
0= (H) h._(OR3 ) . (H)

With this, it is easy to see that (1.3.2) is equivalent to (1.3.1) on [0, T]. The given

conditions on ¢, i, j,é, and H imply the conditions on ag, h, and @ needed in
Proposition 1.3.1 (with s = s’ = 3). Applying this proposition, we find a solution
(E,H) € C([0, T]; H*(R%R®)) n C([0, T]; H*(R3;R®)) of (1.3.1) on the time interval
[0, T]. Because of the uniqueness in Proposition 1.3.1 the solutions on [0, T] and [0, T’]
coincide on the common time interval [0, T] if 0 < T < T’ € I,. Hence, there is a
unique global-in-time solution (E,H) € Cy(Ir.; H*(R%R®)) n C|(Ir.; H*(R%R®)) of
(1.3.1).
To get (1.3.3), we use the following energy balance:

d 1 1
angS(SE.E.F”H.H)dx_E RS(E-gatE+H-y8tH)dx

L (E-curle—H-curle—4nE-j)dx:—/E-jdx.

4m R3 R3
Note that all integrals exist by the boundedness of ¢, u and by the known regularity
of E and H. In the first line, the symmetry of ¢ and u enters. For the last step, it
is important that (E, H)(t) € H!(R%;R®) so that the boundary term that occurs after
integrating one of the curl-terms by parts vanishes at infinity. Integrating this identity
from 0 to T yields (1.3.3). By positive definiteness of ¢ and i we can further estimate

% RS(&E-E+yH-H)(T)dx
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]. o o ° o T 5 % )

o RS(SE-E+yH ) dx+/0 (/Rlel dx) [1163]

1 o o o o (T 3
sngs(eE E+uH H)dx+a z/o (/R3 eE.de) 7] 2 g5, Bt

1

IN

-

which implies
%
(/ (¢E-E +yH-H)(T)dx)
RS

1
o o - 2 L,
< (/ (eB - B+ urt - F1) dx) TR U T ]
R? R

by the quadratic version of Gronwall’s lemma; see Lemma 1.1.2. Using the positive
definiteness of ¢, u again, we arrive at (1.3.4). O

1.4 The iteration scheme

We shall now construct weak solutions by means of an iteration scheme.

1.4.1 Regularity of the data and approximations

Throughout this section we assume the following conditions on the data, source terms,
and material parameters.

7

Condition 141. e 0< f ¢ (Ll NL®)(QxEY) foralla =1,...,N;

e 0 <at e l®(yz) af = %00 ) < 10 < 8% € (i N L) (77 for

Te

OSa“EL“’(y;),lla“H ofooy=1,8%=0fora=N"+1,...,N;
. L (VT.)

E, H e [2(R%R3);

&, € L”(R3;R3X3) such that there are 0,0’ > 0 satisfying 0 < ¢,y < ¢/, and
e=pu=Idon;

e u €L (In,;L*(I;RY)).
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Te
a? = a“ in order to be able to apply the results of Section 1.2. Conversely, for
a=N"+1,...,N we have to modify a%. The easiest way is to scale a* with a positive

number depending on k and smaller than 1 that converges to 1 for k — oo so that we

somehow get back the original a* in the limit k — co. Hence, we define a;’ := kkﬁa“

For « = 1,..., N’ we already have IIa“IILw( ) < 1 so that we can simply define

a

satisfying ||a,‘f ||L°° yi) = B <L
Since in the results of Section 1.3 all coefficients and data have to be smooth enough,

on the one hand we have to choose approximating sequences (E k), (H k) c H3(R%R3)

with By — E, Hy — HinL? (R3;R3) for k — oo. On the other hand, we have to smooth
¢ and . In the following, have in mind that for a symmetric, positive definite matrix
A € R¥3 and some C > 0 we have the equivalence

A<C o ||Algss £C
where we use the norm

|Allgaxs = sup|Ax| = max{/\ € R | A eigenvalue of A},

|x]<1

where the last equality holds for symmetric, positive definite A. Thus, for some
measurable A: R® — R¥3 such that A(x) is symmetric and positive definite for
almost all x € R3, the property A < C is equivalent to |All o m3R3x3) < C.

We want to construct sequences (¢x), (k) C Hﬁl (R%R¥S) with 0 < &, px < 0’ in
order to be able to apply Proposition 1.3.2 later such that these sequences converge to
€, 4 in a certain sense. We perform the construction of (¢x); the one for (#k) works

completely analogously. Let w € CZ(R%) with w > 0, suppw C By, fj;wdx =1bea
Friedrich’s mollifier and define w; = s2w () for s > 0. Now let

_Je(x)—old, x € By,
0, x ¢ By

for k € N. Clearly, & € L®(R%R>?) and & vanishes on R® \ By. This implies
ws * & € CZ(R3;R¥3) (the convolution understood componentwise) for any s > 0.
By & € L?(Bi; R3*®) we have ws * & — & in L2(By; R33) for s — 0. Hence, we can
choose s; > 0 such that

- - 1
[ Sklle(Bk;R3X3) <%

Finally, define &x := ws, * & + old. It holds that ¢ € Hil (R3;R¥3) since it is of class
C* and constant for |x| large. By construction ex(x) is symmetric for all x € R3 and

1
”E’ - gkllLZ(Bk;R3X3) < E (14:1)
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Furthermore, for any E, x € R3 it holds that
ex(x)E-E = ‘/R3 ws, (x = y) & (y)E - Edy + o|E?
~ [ o= el Eay=oleP [ o (xv-y)dy+ oleP
K K
> G|E|2‘/l; ws, (x = y) dy — o|E|? ; ws, (x = y) dy + o|E|* = o|E|?,
< o’lElsz ws, (x —y) dy - alElsz ws, (x — y) dy + o|E* < o’|E|~.
K K

Note that for the last line we used the fact that the integral of w; over whole R3 equals
1 for any s > 0. Altogether, ¢ and the similarly defined py satisfy all conditions
needed in Proposition 1.3.2.

1.4.2 A cut-off problem

We now follow Guo [Guo93], who considered the problem with ¢ = p =1d, u = 0, and
perfect conductor boundary conditions for the electromagnetic fields on dQ0. However,
Lemma 2.5. therein, cf. Proposition 1.3.2 here, is incorrect. In order to construct a
weak solution of (VM), we first turn to a cut-off problem where we consider bounded
time and momentum domains. Whereas the cut-off in time is no real drawback, the
cut-off in momentum space is on the one hand unpleasant but on the other hand
necessary. To understand this necessity, we should recall (1.3.4). Consider there j
to be the sum of some external current and the current j™ induced by the particle
densities. In an iteration scheme we would like to have an estimate like (1.3.4) for the
fields where the right-hand side is uniformly bounded along the iteration. Then we
could extract some weakly converging subsequence. However, for this uniformity we
would need that ji™ is uniformly bounded in L' ([0, T]; L?(R%; R3)) along the iteration.
This would require a better estimate than (1.2.13) where we only were able to put our

hands on the L3 (R3; R3)-norm of j"* (at each time). Moreover, in an energy balance
along the iteration, the crucial terms describing the energy transfer within the internal
system will not cancel out; this would only be the case if we solve (VM) simultaneously
along an iteration.

Now if we consider a cut-off problem (the cut-off referring to momentum space) we
can simply estimate the L?-norm of ji" with respect to x by a linear combination of
the L2-norms of the f® with respect to (x, v), cf. (1.4.4), and then use (1.2.10) for p = 2
so that we get the desired uniform boundedness along the iteration. Later, adding
the limit versions of (1.2.12) and (1.3.3), we observe that the problematic terms on
the right-hand side, that is to say, the terms +E - ji“t, cancel out. Thus, now (after
a Gronwall argument) having a full energy estimate with only expressions of the
given functions on the right-hand side, we find that a posteriori the cut-off does not
substantially enter this estimate so that we will be able to get a solution of the system
without a cut-off by considering a sequence of solutions corresponding to larger and
larger cut-off domains.
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To make things more precise, let 0 < R < oo, define R* := min{R, T, }, and start the
iteration with Eg, Hy: [0, R*] x R® — R3, (Eo, Ho)(t, x,v) = (flo,ﬁo)(x, v). We assume

that we already have Ei, Hy € L®([0, R*]; L?(R%;R3)) n C%([0, R*] x R%; R3) of the
k-th step. We first define £ , as the solution of the Vlasov part

Ot fiy +0a - Oufiy +Fp - Oufiy =0 on [0, R x QxR (1.4.2a)
S~ = 0 Kfil . + 8" onyg., (14.2b)
f&,(0) = fa on QxR (1.420)

with given force field F}} := g,(Ex + Vo X Hy), which satisfies Condition 1.2.11 by the
regularity of Ex and Hy. Indeed, we can solve (1.4.2) applying Proposition 1.2.15
(with final time R" instead of T,) and noticing that a} , is bounded away from 1 on

V. Therefore, we have 0 < £, € L°°<[O, R*); (Ll N L°°) (Qx R3)) and0 < f, €

akin
(L;kin N L°°) (Vg dya).
Next we want to solve the Maxwell part. Now the cut-off appears: We define the
current

N
Jr+1 = ]‘]i(rjfl +u = Z Ja / '5afk”‘+l dv+u (1.4.3)
a=1 B

R

where we integrate only over the cut-off domain Bg rather than over the whole

momentum space. Note that j}fjfl (u) is defined to be 0 outside Q (T'). By

i : 4m N 3
( /Q It dx) < \/?R3;Iqal( /Q /RJfk”ilIz dvdx) (1.4.4)

and f, € L% ([0, R*]; L*(QQ x R3)) we have jir1 € LY([0, R*]; L?(R%;R3)). Unfortu-
nately, this regularity is not enough to apply Proposition 1.3.2. Thus, we approximate
jk+1 by a smooth function, that is to say, take j,,; € C(]0, R*[ x R%;R3) such that

_ 1
4 ‘ L= _— 1.4.
TN Jk+1 — Jies1 L1([0,R*;L2(R3R3)) < k+1 (143)

With this smoothed current as the source term in the Maxwell system we solve

€k+10¢Eks1 — curly Heyq = —4mj, on [0,R*] x R3, (1.4.6a)
Uxs10¢ Hiy1 + curly Exyq = 0 on [0, R*] x R?, (1.4.6b)
(Ex+1, Hrk1)(0) = (ékﬂ,ﬁkﬂ) on R3. (1.4.6¢)

Indeed, applying Proposition 1.3.2, we see that there is a unique solution (Ex+1, Hi+1) €
C([0,R*]; H3(R%R®)) n CL([0, R*]; H?(R%;R®)). By Sobolev’s embedding theorem it
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holds that Exs1, His1 € C¥2([0, R*] x R%;R3). Altogether, the induction hypothesis is
satisfied so that we can proceed with the next iteration step.

In order to extract some weakly converging subsequence, we have to establish suit-
able estimates. To this end, consider (1.2.10) and (1.3.4) applied to (1.4.2) and (1.4.6):

1
(1 - ||“1?+1||L°°(y1;*))p fka+1(T)“LP(Q><R3)

f°a

a
fk+1,+ Lp()’-,t,d]/a)/

14
v MEaliege) I gy 047

<|

and

(Ex+1, Her1) (Dl 123 1)

1
1 ° ° ° ° 2 _
_1 —1ll5
<0 ? (/3 (5k+1Ek+l *Epy1 + prs1Hie - Hk+1) dx) + 4o H]k+1
R

L1([0,TLLA(R3R3))

(1.4.8)
for0 < T < R*, 1 < p < oco. Note that we need &x(x), ur(x) > ¢ uniformly in x and k
to get (1.4.8).
Fora=1,...,N’, (1.4.7) reduces to
1
(1 - ‘13) g | fka+1,+ U,(y;,dya)' ”fka+l(T)”LP(Q><R3)
< [ fa +(1=a2) g% (1.4.9)
- 1P (QxXR3) 0 L (y7 dya)
and to
-l ca a °
(k + 2) p‘ k+1,+ U’(V%,dﬂ/a)’ fk+1(T)HLP(Q><R3) < Hfa 1P (QxR3) (1‘4‘10)

fora = N’ +1,...,N. Thus, we conclude that any sequence ( fk“) is bounded in any
LP([0,R*]x Q% R3), 1 < p < oo, so that we may extract subsequences (also denoted
by ( flf‘)) that converge weakly in L7 ([0, R*] x Q X R?) for 1 < p < oo and weak-* in
L>([0, R*] x Q x R3) to some nonnegative f. Asin (1.4.3) we define

N
R = jg‘t+u = an/ Vo fg dv +u.
a=1 Br

As for the boundary values, we have to distinct absorbing and reflecting bound-
ary conditions. For a = 1,...,N’, (1.4.9) yields the boundedness of ( e +) in any

LP(y%.,dya), 1 < p < oo, s0 we may extract a subsequence that converges weakly
in LP (y%.,dya) for 1 < p < co and weak-* in L™ (y},.) to some nonnegative f . For
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a=N"+1,...,N, (14.10) yields a uniform estimate only for p = oo, so here we may
extract a subsequence that only converges weak-* to some nonnegative fy' , in L® (v)-

Note that we donot claim that the f;', are traces of the f' in the sense of Section 1.2—
because we cannot assume the force term in the limit Vlasov equations to be Lipschitz
continuous, as we see below, and therefore an approach via characteristics as in
Section 1.2.2 is not applicable—but f" and fy', are rather related to each other in the
sense of Remark 1.2.1; note that Definition 1.1.1.(ii) is satisfied (for fg, flg‘ .» Er, HR),
as is shown below. This clarification also applies to the f* and f{* constructed later in
Section 1.4.3.

Next we have a look at LP-estimates for fg and f' andletT € ]0, R*]. Clearly, we
have

hm 1nf||fk ||

“fI?”LW([O T]XQxR3) s Lo([0,T]xXQxR3)

_1 ’
PRI (LS o PR Y
h L=(QxR3) 0, a=N"+1,...,N
(1.4.11)
and
hmmf
L=(yf) koo L=(y7)

o
<

<|fe

. {(1 - ag)71||ga||Lw(y;), a=1,...,N’
L= (QxR3) 0,0 a=N'+1,...,N

by weak-* convergence and (1.4.9) and (1.4.10), respectively. As for the other L”-norms,
let A c [0, T] be measurable with Lebesgue measure A(A), and r > 0. For1 < p < o
it holds that

/A /Q R3|f1§|pdvdxdtsli£ninf / / R3|fk“|pdvdxdt

) +{(1—5[ ||g ”U’(yT,dya) a=1,...,N’
LP(QXR3)

0, a=N"+1,...,N
by weak convergence and (1.4.9) and (1.4.10), respectively. Therefore, we have f¢' €
L>([0, R*]; L7 (Q x R?®)) with

p
< A(A)

o
foz

”fR ||L°°( [0,TL;LP (QXR3)) Hf

(1—11 ||g ”U’(VT dyay =L N
LP(QXR3) 0, a=N"+1,...,N

forallT € ]0,R*]. Fora =1,..., N’, it additionally holds that

< liminf
LP()/;:,dy ) k—o00

L' (vFdya)
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fa

< (1-a8) n| +(1- ﬂg)_1||8“Hm(y;,dya)

LP(QXR3)

by weak convergence and (1.4.9).
Finally, we turn to p = 1. On the one hand, for any measurable A € [0, T]and r > 0
it holds that

// fg dodxdt = hm // fi dodxdt
AJaJs, B,

| + {”8 Hu(y;,dya), a=1,...,N’
LI(QxR3)

0, a=N"+1,...,N
by weak convergence (in L2, for example) and (1.4.9) and (1.4.10), respectively. This
estimate implies that f¢ € L*([0, R*]; L' (Q x R?)) with

+ {”ga“Ll(yT/dyd)l a= 1/ sy N’
LY(QxR3) 0/ CY:N’+1,,,‘/N

< A ||f

foc

”fR HL"“( [0, TILY(QXR3)) =

for all T € ]0, R*]. On the other hand, we have

/ fR4dya = lim fk”f+ dya
yin{lol<r} k—o0 yin{lo|<r}
< (1=ag)” |

fora =1,..., N’ by weak convergence and (1.4.9). Therefore, f, € L1 (yg.,dya) and

forall T € ]0, R*].
Next, we turn to an estimate on the electromagnetic fields. To examine (1.4.8)
further, we first note that

e 18

foa

< (1)

v 187500

LY(y7 dya)

- 1 )
“]k+1 L1([0,TLL2(R3 R3)) < dn(k + 1) + ”]k"'lHLl([O,R*];LZ(R3;R3))

N
[4
+ ?ﬂRg’ ;'qa|||fka+l||L1([O,R*];L2(Q><R3)) + ””||L1([O,R*];L2(F;R3))

for0 < T < R*using (1.4.4). Hence, the right-hand side of (1.4.8) is bounded uniformly
in k because we already have a uniform bound on ( fk”‘) in L= ([0, R*]; L>(Q2 x R%)) and

because of &, i < o’ and the L?-convergence of the approximating initial data.
Thus, we may assume without loss of generality that (Ex, Hx) converges weakly in
L?([0, R*] x R%;R®) to some (Eg, Hg).



40 1 Existence of weak solutions

We now show that ((flg‘,flg‘Jr) , ER,HR,]'R) satisfies Definition 1.1.1.(i) to 1.1.1.(iii)
"

with final time R*. Clearly, all functions are of class Llloc. The main task is to show that
we may pass to the limit in (1.1.2) and (1.1.3) applied to the iterates: We have for all
Y € Wg, 3 €Or,and k > 1

.
0= _/ ./ ,/ wﬂl’ +Tg - ax’yb + qa(Ek + 0y X Hy) - avlp)flﬁl dodxdt
0 Q JR3
+ / [ ¥ dya = / ) (aijK foo,+ g‘)‘)gb dyq — / / Foy(0) dodx, (1.4.12)
Vi ’ Q JR3

VR

R*
0= / / (SkEk <049 — Hy - curly, 8 — 47‘[7k . \9) dxdt + / exEg - 9(0) dx, (1'4'13)
0 R3 R3

.
0:/ /(kak~8t\9+Ek-curle) dxdt+/ upHy - 9(0) dx. (1.4.14)
0 R3 R3

We can pass to the limit in (1.4.13) and (1.4.14): Whereas the terms including the curl
are easy to handle by weak convergence of Ex, Hi, we have to take more care about

the terms including ¢, ux, and fk. For the first ones, let L € N such that 9 vanishes
for [x| > L so that we in fact only integrate over B;. For k > L we have

1
lle = exllras maa) < e = exlla@rae) < P

by (1.4.1) so that &y — ¢ in L?(Br; R3*®). This is enough for passing to the limit in the
terms including ¢ since we additionally have Ex — Eg in L?([0, R*] X R3;R?), even
strong convergence of the approximating initial data, and the boundedness of the time
interval [0, R*]. Similarly, we argue for the terms with pi. So there only remains the

term including fk. To tackle this one, we estimate
R
/ / (jk—jR) ~dedt'
0 R3

/()vR* As(jk _jR) - dxdt /()'R* A@(}}{ —jk) . 9 dxdt

< ”]k = Jk Ll([O,R*];LZ(R3;R3))“8”Lw([O'R*];LZ(RS"RS))

N R*
+ Va(fE = f5) do - O dxdt
Sl [ [ et -0

where the first term on the right-hand side converges to 0 for k — oo by construction
of j,, cf. (1.4.5), and each summand of the second term by weak convergence of the
f; note that 7y - 9 x o<k} € L*([0, R*] X R? x R3).

Passing to the limit in (1.4.12) is more complicated, especially because of the non-
linear product term including Ex, Hi, and f*. The other terms are easy to handle due
to weak convergence of f* and weak (or weak-*) convergence of f* ; for this note that

< +

7

lim a?ﬂ (kaa+1,+)lib d)/a

k—o0 7%
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. 1, a=1,...,N’
:%ﬂ([k*aa(Kfﬁ+l,+)¢dya'{kj O(ZN’+1,---,N)

1, a=1,...,N’
/y;* (Ka K dyec {ﬂ a=N+1,..., N) i [;*(K”a)f kK e

- [ ) a® (K fg[+)ljl1 Ay (1.4.15)

= lim

k—o0

using Lemma 1.2.14—the second time applied to ¢ = fg' x(p|<s) Where r > 0 is
chosen such that i vanishes for [v] > 7, as fg | is not necessarily of class L' (., dVa)-

So there only remains the crucial product term. In order to be able to pass to the
limit, we need some compactness. To this end, the key is the following momentum-
averaging lemma; see [DL89], or [Rei04] for a shortened proof.

Lemma 1.4.2. Let r > 0 and C € CZ(B,). There exists a constant C > 0 such that
for any functions h,go € L*(RXR3xB,), g1 € L2(RxR3 x B,;R3) which satisfy the
inhomogeneous transport equation

atl/l +5a . 8xh =80+ div, g1
in the sense of distributions we have
/ C()h(-,-,v)dv € Hi (R X R3)
B,
with

C()h(-,-,v)dv

By

H¥ (RxR3)

s C(llhlle(RxR3><Br) + HgOHLZ(RxR3><B,) + ||g1||L2(R><R3><B,;R3))'

0

V1o
Vg, 1.€., for m, = 1, but this slight difference plays no role for the analysis.
Let e CZ (R3 ) and v > Osuch that C vanishes for |v| > r—1. Our goal is to show that

/R3 Cf¢ dv converges strongly (and not only weakly) to fR3 Cfg dv in L2([0, R*] X Q).
To this end, let 1 € CZ(]0, R*[ X Q X B,). We have
9t (Nfis1) +0a - Ix(nfi)
= —divy (qa(Ex + 0o X HO) (1f81)) + 19 + fi&10a - 9an
+ qafka+1(Ek + Ea X Hk) : 8-1;7] (1.4.16)

=: div, g{( + g(’)‘

instead of

Note that, in the references above, this lemma was proved for v =

on R x R3 x R? in the sense of distributions. This holds if we first extend all functions
by 0 so that they are defined on R X R3 x R3, then take an arbitrary test function
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& € C2(RxR?*xR3) and notice that n£|[O,R*]XﬁxR3 € Wg- since the support of 7 is
away from dQ. Thus, né&, which vanishes on dQ and for t = 0, is a proper test function
for system (1.4.2). But testing this system with this test function is nothing else than
testing (1.4.16) with &.

Clearly, the L2-norms of g(’)‘ and g{‘ on RXR3X B, are uniformly bounded in k because
of 1 € C(]0, R*[ X Q2 X B;) and the already known uniform boundedness of f, ;| in
L2([0, R*] x Q x R3) and L ([0, R*] X Q x R3) and Ey, Hy in L?([0, R*] x R3; R®). Thus,
applying Lemma 1.4.2 yields the uniform boundedness of

H [ c@n)e oo [ e oo
B, B,

Hi (RxR3) Hi(J0,R*[xQ)

By boundedness of ]0, R*[ x Q2 we have the compact embedding H %(]O, R [xQ) c

L%(]0, R*[ X Q) so that the sequence ( fo C(v) (r] fk”‘)(-, -, 0) dv) converges, after extract-

ing a suitable subsequence, strongly to /B, C@)(nfg) (-, v)do in L*(]0, R*[ X Q).
Again by the uniform boundedness of f* in L™ ([0, R*] x Q@ x R?) it holds that

”/1&3 (1 =n)(f = K, v)do

L2([0,R*]xQ)

< Ol =1l 2o waxs,) (1417)

L2([0,R*|xQ)

) H/B CO)((1 =) (£ = £8) (- 0)do

witha constant C > 0that doesnot depend on k. Now let! € Nbe arbitrary and choose
n =1 € CX(]0, R*[ X Q X B,) such that the right-hand side of (1.4.17) is smaller than

% ; note that 1 € L2([0, R*] X Q X B,). We iteratively choose subsequences ( fl"‘k)k . of
4 €

( fk“) such that ( flilfk)keN is a subsequence ( fl['xk)keN and such that

im [ co)(nsi)e 0o = [ copmg oo

in L2(]0, R*[ x Q) for all I € N. Considering the diagonal sequence, now again denoted

by ( fk“), these considerations imply

/ CL)f2(, ) do — / L) £, v) do strongly in LX([0, R*] x Q) for k — oo
R3 R3
(1.4.18)

because of

H [ ot oo [ cosi o
R3 R3

L2([0,R*]xQ)
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<1+
Tk

/C(U)(ﬂkfka)('mv)dv—/ L) (e fi) (- v) do
B, B,

LZ([O,R*]XQ).

Finally, take ¢ € W+ and consider the limit of the crucial product term in (1.4.12).
By a density argument—in particular, the approximation theorem of Weierstraf3, cf.
[Wal02, Section 7.24]—we may assume that ¢ factorizes, i.e.,

Y(t, x,v) = Pa(t, x)h2(0).

On the one hand, we have

k—o0

R
= lim / /ankllil . (/ fk“HVv,l/z d’U) dxdt
k—oo Jo Q R3
R* R*
= / /QaERl,bl . (/ fI?VlP2 dU) dxdt = / / / qaER - (3111,0)](1? dodxdt
0 Q R3 0 Q JR3

by ¢1 € L¥([0, R*] X Q), Ex — Eg weakly in L([0, R*] x Q;R?), and (1.4.18) defining
C = (Vy2),, i =1,2,3. On the other hand, it holds that

R
lim/ // Ga(@a X Hi) - (9o) £, dvdxdt
k—eo Jo  Ja Jr3
R
= lim / /ankt,bl . (/ (Vipo X 0a) 214 dv)dxdt
k—eo Jo  Ja R3

R
= / /anRI]D1 . (/ (Vl,[)z xﬁa)fg dv)dxdt

0o Ja R3

:/OR*/Q/N 0o (o X Hy) - (90) ££ dodudt

by ¢1 € L¥([0, R*] X Q), Hy — Hg weakly in L?([0, R*] x (;R?), and (1.4.18) defining
C(v) = (Via(v) X Ty ),, i =1,2,3.

Altogether, (( fe, fIg‘+) ,Ex, Hr, jR) satisfies Definition 1.1.1.(i) to 1.1.1.(iii) with
final time R". ‘

In order to have good estimates for R — oo, the right-hand side of an energy
inequality should not depend on R. To this end, consider (1.2.12) and (1.3.3) applied
to the k-iterated functions. Note that the estimate on the term on the left-hand side
of (1.2.12) including the boundary values is only worth anything for k — oo for
a=1,...,N’. Therefore, it is convenient to introduce

(1—ﬂ3)_/ vgf,f‘+dya, a=1,...,N’
yiN{lv|<R} ’

0, a=N"+1,...,N

.
lim / / qaEr - (9u) f£ dvdxdt
0o JaJm

by (T) =
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and similarly b (T) where k is replaced by R. Now we have

bie(T) + / / 0% f3(T) dvdx
Q JBg
S// vgfoadvdx+/ vgg“dya
Q JR3 yr
T
+/ // Ja(Ex-1 + 0o X Hy_1) - Vo f dodxdt
0 JaJs

T
= / / 0 fo dodx + / 00¢%dy, + / / Eg-1- / JaUaf{ dodxdt  (1.4.19)
Q JR3 VT 0 Q Br

and

1
% ,/Rs(ngk -Ex + }lka . Hk)(T) dx

1 o o o . T -
= — (é‘kEk -Er + ‘leHk . Hk) dx — / / Ex 'jk dxdt (1.4.20)
8n R3 0 R3

forany k > 1and T € ]0, R*]. We consider the right-hand sides of (1.4.19) and (1.4.20)
further. The term including the initial data of the electromagnetic fields is bounded

uniformly in k due to
o o o o 2 k—o0
/(ekEk.Ek+kak-Hk)dx§a’/( )dx—>a’/(

R3 R3 R3

Next we show that, up to a subsequence,
T T

lim / / Ef_q - / JaVafy dvdxdt = / / Eg - / JaVafy dvdxdt.  (1.4.21)

k=eo Jo  Jo Br 0o Jo Bk
Tothisend, let! € Nand (; € C®(Bg; R?) wittha’fa - CZHLZ(BR;R?’) < % By the uniform
boundedness of Ey in L*([0, R*] x R%;R?) and f* in L®([0, R*] x Q X R?) (and by the

limit functions being elements of these spaces) and by the finiteness of the measures
of the time interval, (3, and Bg, it holds that

T T
—~ —~ C
/ /Ek_l-/ (7aDa — C1) £ dodxdt / /ER-/ (7200 — ) f§ dvdxdt| < T
0 Q Br 0 Q Br

where 0 < C < oo does not depend on k. Similarly as before, after again exploiting
the compactness result of Lemma 1.4.2, we deduce

T T
hm/ /Ek_l- Gfe dvdxdt:/ /ER~ Cifg dvdxdt,
k—eo Jo  Ja Br 0 Ja Br

2

o

E

o

ék +If1k H

2
| "

2
)dx.

7
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possibly after extracting a suitable subsequence depending on I. Via a similar diagonal
sequence argument as before, we get (1.4.21) up to a subsequence. Summing (1.4.21)

over « yields
T . T ‘
tim [ [ B jitavd = [ Bt anar
k=e Jo Ja 0o Ja

klim/ /Ek jtdxdt = / /ER jetdxdt,

lim / / Exo1 - ji — E - ji™) dxdt = 0. (1.4.22)

k—o0

Similarly,

whence we have

However, this is not enough since we in fact have to consider Ex_; - j]i(rlt —Ex }k To get
hands on this term, we choose (p}(, (pi € C2(]o, R*[ x Q) with

—_

t 1 int 2
B - 7 - (Pk“Ll(]O,R*[xQ)’ Ex-j¢' _(pk”Ll(]O,R*[XQ) <% (1.4.23)
and choose 1 € C(]0, R*[ X I; R?) such that
1
”Ll - uk”Ll([O,R*];LZ(F;]RS)) < E (1424)

Using these approximations, (1.4.3), and (1.4.5) we estimate

Ek 1 = Ex jk) dxdt‘

Ek 1= p) dxdt| + -¢7) dxdt‘
@7 — Ex - ji™) dxdt| + Ek k_]k dxdt‘
Ek (U — uy) dxdt| + Ek - Uy dxdt‘
C
/ IE OOz dt+| [ [ (o}~ o) s + €
=3/0 NEx()| L20ra m3) |k (Ol r2(rmay dt + hi(T), (1.4.25)

where C > 0 does not depend on k since we have a uniform bound on the Ex in
L*([0, R*]; L*(R3;R3)). Furthermore, i is continuous with respect to T and

hi(T) — 0 for k — oo foreach T € [0, R*] (1.4.26)
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by (1.4.22) and (1.4.23). Moreover, we have

C int int
0 < i(T) < + || B i HLl(]O,R*[xQ) +[[Ee - ”Ll(]O,R*[xQ)
C+2 B
St (”Ek—l||L°°([0,R*];L2<R3;R3>> + ||Ek||L°°([0,R*];L2<R3;R3>))||J;1<m||u( o R0 < C

(1.4.27)

where C > 0 does not depend on k (and T) by the uniform boundedness of the Ej in
L= ([0, R*];L*(R3%;R?)) and (1.4.4) (combined with (1.4.9) and (1.4.10), respectively).

Now let 0 < T < T < R*. Exploiting ¢ < ¢k, ux < o/, summing (1.4.19) over «,
adding (1.4.20), and then using (1.4.25) yields

N N
Y
ICGEDY s dos + oA HOO e
N
Z a(T) + Z/ / lek (T)dvdx + —/ exEy - Ex + urHy - Hk)(T) dx
a=1
N
o a 1 o o o o
< Z; / gfadvdx+z;/yvgg dya + g'/Rz(EkEk - Ex + urHg -Hk) dx
= a= T
+/ / Ex_q1- ]lnt Ex jk) dxdt
0

N N’ >

< 00 fa dodx + / v “d ’ Ex, H
aZ:l_/Q,[Rs af ; V5 Va ( k k) L2(R3;R6)
" /0 NE(E)l 2o 1tk () 200y + (T
N . N’ P

= Z / / . vpfe dvdHZ / 00g% dy, + |(Ek,Hk) -

a=1 4

+ Vang~? / —||<Ek,Hk><t>||Lz(Rs;Re>||uk<t)||Lz<r;Rs> dt + hi(T).

By Ex, Hi € C([0, R*]; L2(R%R?)), ux € C([0, R*]; L*(T;R?)), and by continuity of
we can apply Lemma 1.1.2 and thus obtain

N N
a a o 2
(2 IS AU E||<Ek,Hk><T)||Lz<R3;R6))
. 2 ]
[ —_—
gﬁ(; /Q / ol f dvdx+Z /y st g 7 (e i) LZ(RS;RG)mk(T))

1
2
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_1
+ VAo 2 |Juk | 1o, myr2rre)

1
2

N 2
<V2 o dod @4 —|| B H I (T
3 [ [t 5 [ s ()] o)
1 Viro~:
+ Vino §||M||L1([0,T];L2(r;R3))+ P
by (1.4.24) so that
N N o
Supm [ [ ol o+ o IE BT s
a=1 a=17Q YBr T
N 5 ) 3
(Z// ofadvdx+2/ ohg" dya + o (Ek,Hk) - hk(T))
a 3 a=1Y"Vr (RORE)
2
_1 \/2_710_%
+\/2_T(C7 2||u||L1([O,T];L2(r;R3))+T (1428)

altogether. To be able to let k — oo, we have to integrate (1.4.28) in time since the
evaluation of the limit functions flg ,Er, Hg at a certain time makes no sense here
(which is contrary to the time evaluation b;'(T) because there a full (¢, x, v)-integral
is included). Now let A C [0, T’] be measurable with Lebesgue measure A(A). As
for YN, by (T), we note that >N by (T) is the pointwise limit of >N by (T) by weak
convergence and that we have a pointwise bound uniformly in T and k in view of
(1.4.28). Additionally exploiting weak convergence and weak lower semicontinuity,
respectively, the strong convergence of the initial electromagnetic fields, (1.4.26), and
(1.4.27) we conclude

/ (Zb <T>+Z / I afR<T>dvdx+—||<ER,HR)(T)||L2(R3R6)) ar

< liminf /A (; b;j(T)+; /Q /B R o0 (T dvdx+é||(Ek,Hk)(T)||%2(R3;R6)) dT
N 2

< Jim | (;/Q/ afadvdx+2/ g dye + (Ek,Hk)

2 1 V2ro~2
+ hk(T)) + V210 2 |ull o, ryerrsy) + —— ar

L2(R3;RS)

2

k
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N

N’ ’
2y oot | e | (B

2

%
=AA
(A) L2(R3;R6))

_1
+ V2102 [ul Lo, rryr2rr3))

Therefore, we have (Eg, Hg) € L™ ([0, R*]; L?(R%;R®)) and (after taking T = T”)

N’

Y-a) [ g

a=1 yr{lvl<R}

+

N

o
> [ [ otsierdon s ER HOO oz
a=1 Q JBr n

L([0,T])

NI=

N N’
07 0 a a (e &\
< (Z//3 o0 fa dvdx+Z/_ 008" dYa + o= (EH) LZ(R3-R6))
a=1/Q YR a=1"71 ,

-1
+ V2mo 2||”||L1([0,T];L2(F;R3)) (1.4.29)

for all T € ]0,R*]. This is exactly the kind of energy estimate we wanted to derive
since R does no longer appear on the right-hand side.
Lastly, we show that, up to a subsequence,

j]icnt N ]?t in L% ([0, R*] x Q; R3) (1430)

for k — oo and derive an L ([0, R L3 (& R3))-bound for ji. To this end, applying
(1.2.13) yields

N
T, 4 s < D06l
a=1

a=1

/ FO(T, - 0) do
Br L3(Q)

-1 ’
(B0 g gy =1 N
L*(QXR3) 00 a=N"+1,...,N

-\M(/Q /BR 00 f3(T) alvdx)z

for 0 < T < R* and the right-hand side is bounded in L%([O, R*]) uniformly in k by
virtue of (1.4.28), where all terms on the right-hand side are uniformly bounded in
k. Therefore, we may assume without loss of generality that j;"* converges weakly in

f"a
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%([0 R*] X (;R®) to some jI. Indeed, jin* = ji* almost everywhere since

mt mt S dxdt = / / qa/ Vo fy do — ) - 9 dxdt
AL [0
= lim/ / a/ U f8 do — mt -Sdxdt =
o Q(Zq fi

for any 9 € C(]0, R*[ X Q;R?) by (for example, L-) weak convergence of the f{.
Altogether, we have shown (1.4.30). As for the desired bound, we proceed similarly
to (1.2.13) and (1.2.15), respectively. Let0 < T < R* and A c [0, T] measurable. For
almost all (£, x) € A X Q we have

/fl‘g(t,x,v)dvs/flg‘(t,x,v)dv+/ fR(t, x,v)do
Br By r<|o|<R

R 1 0
= EN ”fl?”L”([O,T]xQXR% + '/ Oafg (£, x,0)dv
r JBg

3
N EY
— 0
_( /B o Igz(t,x,v)dv) (?||flg||Lw([0,zjmR3)+1) (1.4.31)
R

1
where we set r = (/BR vgfg(t,x,v)dv)4 € [0,00[. Summing over ¢, taking the

L3 (Q)-norm, then integrating over A yields
fo do

4 1 N

Ant|3 d dt < . / /
/A('/Q|]R| x) ;M | A\JQ|JBr

) in < 0 fa %
= ./A;Mal(?HfR ||L°°([0,T]><Q><R3) + 1) (/Q ‘/BR VafR dvdx) dt

4mn 4 % N %
(ZW ( ” HLw(OTxQx]Ra) ) ) /(Z// 0o fa dvdx) dt  (1.4.32)
A\g=1 QI Br

by the triangle inequality in L3 and Hélder’s inequality for the sum. Inserting (1.4.11)
and (1.4.29), respectively, we conclude i € L*® ([0, R*);L3 (Q; R3)) with

TR
dx) dt

mt”

“] IS ([O,T];L% (Q;R3))

N 4 4m
< (Z|%| (?
a=1

1

4—7-[ a _ o < N’ 4\1
+1+ {307 O7) 7=
L (QxR3) 0, a>N’

f"a
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Z
[N

l

N/
0 oa
v dodx + Cdy, + —
[)A;3 Oéf ; VD( 8

2

(21)
L2(R3;R6)

>

NI

_1
+ V2o 2 ||ull o, ryrarirey)

forany 0 < T < R".
We summarize the results of this section in the following lemma.

Lemma 1.4.3. Let R > 0 and R* = min{R, T, }. There exist functions

—_
~
<
Z
~

akm

° fl‘g € L°°([0, R*]; (Ll N L°°)(Q X R3)) N L°°([O,R ;L
all nonnegative,

° fi, € (L' L®) (yg., dya) N Likm(V;{* N{lv| <R}, dy.), a = 1,...,N’, and
¢, €L®(yp), @ =N"+1,...,N,all nonnegative,

(Qx BR))

e (Er, Hg) € L*([0, R*]; L2(R%;R%))

such that ((flg‘,flg‘Jr) ,ER,HR,]'R) satisfies Definition 1.1.1.(i) to 1.1.1.(iii) with final time
4 a
R*, where

R_]R +u—2qa/ Vafg dv+u, jg‘tEL""([O,R*];(LlHL%)(Q;R3)).

Furthermore, we have the following estimates for any 1 < p < coand T € ]0, R*]:
Estimates on f¢', f¢ .

LP(QXR3) + (1 - 110 ”g HLv(y dya)’ (1.4.33)

< (1-ag)? fa

& N oo, r ey < Hf :

_ Lo\~ a
LP(yf.dya) LP(QXR) +(1-ag) ||g ”U’(V%d%) (1.4.34)

fora=1,...,N and

(1.4.35)

”fﬁx ||L°°([0,T];LP(QxR3)) < Hf ’
| &

LP(QxR3)
(1.4.36)

Lo(yf) |

L= (QxR3)

fora=N"+1,...,N.
Energy-like estimate:

N’

Y-a) [ g

a=1 V]tﬁ{|v|<R}
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—

L([0,T])
1

o
U fit () dvdx + —I(Er, Hr) ) F2ao o)
2

(Z"/‘/R3 ofadvdx+Z/ gdya + 7; (EH) Lz(Rs;Rﬁ))

+ Vv T(G_i||u||L1([0,T];L2(F;R3))' (1437)

Estimate on jpt:

1n’t||

Iy w([o,T];L%(o;R%)

1
N 4n a A4
Ao sy, a <N
<[ Dl 5 Rk g A
= 3 L (QXR3) 0, a>N’
1
N o ) 2
0 fa dodx + / dya+ o] (£, 1)
(;/Q/Rs Caf dvdx Z Pag” dyet L2(R3RS)

NI

_1
+ V2o 2 [l o, e rmsy)

(1.4.38)

1.4.3 Removing the cut-off

Finally, we obtain a weak solution of (VM) on the time Interval I, by letting R — 0. To
this end, it is crucial that the right-hand sides of the estimates (1.4.33) to (1.4.37) do not
depend on R. We choose a sequence (R,,) C ]0, co[ converging to co and denote £ =
flg‘ and so on, and m* = min{R,,, T, }. Now take L € N and define L* = min{L, T.}. By

(1.4.33) to (1.4.38) we may extract subsequences ( o L)l ( - L) ((EmyL, Huny L)),

(];ﬁ‘tL)l such that for any 1 < p < o, (fm L)l converges weakly in L7 ([0, L] x Q x R?)

and weak-* in L*([0, L] x Q x R?), ( e L)l converges weak-* in L*(yr+), for a =

1,...,N’additionally weakly in L? (yr-, dy,), and moreover ((E,,L, Hu, L)), converges

weakly in L? ([0, L*] X R3; R®) and (];;‘tL) weakly in L3 ([0, L*] x ©;R?), and such that

these subsequences are subsequences of the previous ones with index L —1 (if L > 2).
By considering the respective diagonal sequences with indices mp, L and L running
we have found subsequences (now again denoted by index m) and limit functions
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fo, f&, E,H, ™ such that

f— fa in L7 ([0, M"] x Q x R3),

fo L fe in L= ([0, M"] x Q X R?),

fire = fE in L(ym-),
foq+ — fi in LP(ym+,dya) (onlyfora=1,...,N’),

(Em,Hy) — (E,H) in L([0, M"] x R%; R®),

jint s Fint in L3 ([0, M"] x O; R?)

form — coforalll < p < oo and M > 0 (where M* = min{M, T, } as usual). We will
show later that indeed ™ = jint := N g, fR3 Vo f*dv. Clearly, all f* and f are
nonnegative.

Applying the same techniques that were used to derive (1.4.33) to (1.4.36), we con-
clude f* € L(Fr; (L' N L®) (@ x R2)), £ € (Lhn Ly (v, dya) fora =1,... N,

and f2 € L“(y;.) fora = N’+1,...,N, satisfying

(1 r— . + (1=03)7 8 iy
17l ey < (1= ) 77| 2 et 38) 18y )
fora=1,...,N’ and
”f HL""(OT] LP(QxR3)) = |fa 1P (QxR3)” ”f+”L°°(y;) fa L (QxR3)

fora = N'+1,...,N, respectively, forany 0 < T € I, and 1 < p < oo. As for the
energy estimate (1.4.37), we also consider m — co. Similarly as in the previous section,
take0 < T € I,, A C [0, T] measurable, and r > 0. We have

N
a ()
/ (Z [ [ o (T)dvdx+§||<E,H><T>||iz(R3;R6)) T
a\=Ja s,
N o

. o 2
Slﬂl‘gf‘/A(Z‘/L Ugfm(T)dde"‘g”(EmrHn1)(T)||L2(R3;Re)) daTr
< liminf [ (Z [ ebsarydoas + - ||<Em,Hm)(T>||L2(R3R6))dT

R

by weak convergence and R,;, — co. Similarly,

N’ N’

Y-a) [ oty = m Y-a) [ ol
© yin{lol<r}

a=1 yin{lvl<r} a=1
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N/
<liminf » (1-af) / 0O f8 L dya.
V%n{|v|<Rm}

m— o0
a=1

Combining these estimates with (1.4.37) and using their uniformity in r, we deduce
£ € Ly (i Ly (X B) ), (B, H) € LY (1 L (R RS)), and £ € Ll (77 dva
(only fora =1,...,N’), and we have forany 0 < T € Ir,

N’

Z(l—ﬂg)/ v fi dya

a=1 T

0 ra o 2
5 vaf () dvdx + g”(El H)(')”LZ(R%Rﬁ)

L([0,T])

1

N N’
o a, o o 2
< 09 fo dodx + /vo YAy, + — (E,H)
(;4‘43 of ; v; a8 7 8n L2(R3;R6)
_1
+ V2mo 2||”||L1([0,T];LZ(F;R3)) (1439)

by a reasoning similar to the one in the previous section.

Next we consider the internal current /™. To show that indeed j™ = 7"t we take
9 € CX(]0, To[ x Q;R3) and r > 0. Using weak convergence of jiit and £, respectively,
we deduce

Te

mf det’: lim // (7™ — i) . 9 dxdt
m-—0o0

supp 9
N
=1 “dv - Vo fdvo |- Sdxdt
m%ﬂ(;qa43vaf % ;qa‘/BRmem U) X
supp 9
< limsup // / Va(f* = £3) - 8 dodxdt
m—oo |= a9
+11msup ‘//. (/ Vo f% do —/ Vafr dv) S dxdt
m—eo |07 |v|>V r<[v|<Rp
supp 9
< 0+11msup—||\9||Loo(]0T XQRs)Z|qa| // (/ o0 £ do +/ 0 fa dv) dxdt
BR,,
- supp 9

@)

<
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where C is finite by virtue of (1.4.37) and (1.4.39), respectively, and does not depend
onr. Since r > 0 and § € CX(]0, T[ x Q; R3) was arbitrary, we conclude j™t = 7int
almost everywhere.

Clearly, jint € Li’:’(IT.;Ll (Q;R3)) by f¢ € Lf:(IT.;Ll (QXR3)). But we even have

jint e L ( Ir,; L3 (; RS)) because of

/ |]mt|3 dxdt < hmmf/ /\j;‘tﬁ dxdt
m-—0o0 Q

for any measurable A C I7, by weak lower semicontinuity and because of (1.4.38)
along the (m-)sequence. Thus, we conclude that j™" satisfies

1n’t||

i Lw([o,T];L% (Q;R3))

y 4 47
= qua' (? Lo (QxR3)
a=

N l
. 00 fa dodx + / ad
(z L[ itons =3 [ e

_1
+ V2102 |lull o, Ty 2arR3))

1

4n o ’ 4\1
o1s |l <N
0, a>N’

1

e

2 2
L2(R3;R6)

3
2

forany 0 < T € I7,.

Finally, there remains to check that (VM) also holds in the limit, now on the time
interval I7,. As for the Maxwell equations, it is even easier to pass to the limit than
before since ¢ and u remain constant along the m-sequence. For some 9 € Or,,
(1.1.3) holds in the limit by weak convergence of E,;, Hy;, and ]mt. Note that for this
only the weak convergence on a bounded time interval matters by 9 being compactly
supported with respect to time.

As for passing to the limitin (1.1.2), let y € Wr,. All terms but the nonlinear product
term are again easy to handle by the known weak convergences. Note that again only
a bounded time interval matters according to ¢ € Wr,. As for the integral over y,
we calculate

hg‘}o Kafmh dya = hm / a® (Kfyr )¢ da

" L ¥, Nsupp w

= lim (Ke)fiKpdya= [ (kat)feKydy,
M= Jyt Nsupp ¥4, Nsupp
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:/_ a® (KfO) o dy, =/_ Kafip dya
Y1, Nsupp ¢

VT

as in (1.4.15). To tackle the crucial product term, we proceed similarly to Section 1.4.2.
We again may assume that ¢ factorizes, ie., ¢(t, x,v) = 1(t, x)¢2(v). For some
C € C2(R% and r > 0 such that C vanishes for |[v| > r — 1, and for given | € N,
0 < s € I, we first choose 1; € C(]0, s[ X Q X B;) such that

H/R C@)((1=m) (f = £*) (.- 0)do

12([0,5]xQ)
1
I

<Clr-m
12([0,5]xQ)

) H/ CO)((L=m)(£3 ~ £4))C, - 0)do

||L2([o,s]><Q><B,) <

for m large, i.e., R;, > s. This is possible due to the uniform boundedness of the £ in
L2([0,5] x Q x R3). Arguing in the same way as in Section 1.4.2 only replacing R* by
s and noting that

O (Nifr) +0a - Ox(mifi)
= —divo (qa(Em + 00 X Hu)(Mifn)) + fdimi + fiu@a - dxmi
+ qafn?(Em +50c X Hm) : a11771

on R x R® x R? in the sense of distributions (if R,, > s), we conclude that, after
extracting a suitable subsequence, /R3 C) e, v)dv — fR3 C(v)f*(-,-,v) dv strongly
in L2([0, 5] X Q) for m — oco. This is enough to pass to the limit in (1.1.2) for fixed
Y € Wr, that factorizes by choosing s such that ¢ vanishes for t > s.

We summarize our results in the following theorem.

Theorem 1.4.4. Let T, € ]0,00], Q € R3 be a bounded domain such that 9Q is a C1:*-
submanifold of R3 for some 0 < x < 1, and let Condition 1.4.1 hold. Then there exist
functions

o fo e Ly (L, N I2) (@) ) and £ € (Ll 0 1) (v dya) for a =
1,...,N’, all nonnegative,

o foeLo(ln xQXEY) ML (I Ly, (QXBY) ) and £ € L™(y7,) fora = N'+1,

akin
..., N, all nonnegative,
e (E,H) € Ly (I,; L*(R%R))

such that (%, f&),,, E, H, j) is a weak solution of (VM) on the time interval It, with external
current u in the sense of Definition 1.1.1, where

R3

j:fint+u=iQa/5af“dv+u, ji“teLf;(IT,;(leL%)(Q;R3)).
a=1
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Furthermore, we have the following estimates for any 1 < p < ocoand 0 < T € I,:
Estimates on f<, f}:

||fa||L°°([O,T];LV(Q><R3)) = ||fa 1P (QxE) + (1 - 610 ||g HL,,(y Aye)’ (1.4.40)
_l o _
U2y ) < (0= 38 7y * (= 8) M8 7y (144D
fora=1,...,N and
||fa||L°°([O,T];LP(Q><R3)) = Hf“ e (1.4.42)
1l gy < |12, o) (1.4.43)

fora=N"+1,...,N.
Energy-like estimate:

N’

Z(l_”g) af+ dya

a=1 V

L=([0,T])
1

o 2
0af () dvdx + (B, )OI gosms)
2

(Z/ / oaf* dodx + Z/ 8t dyat gy (EH) LZ(R3;R6))
+ \/_7'60_i ||u I|L1([0,T];L2(F;R3))' (1444)

Estimate on j™*:

.int
7™, ([O,T];L%<Q;R3>)
4\ i
N ’
o N, a <N
Sf(gl e .
yot 3 Le(QXR3) 0, a>N’
1
N o’ o o \]2 :
o dodx + ag (E,H)
;1/0/ vaf dodx Z/ T 8n I2(R%RS)

NI

_1
+ V2ro 2 |ull o, 23

(1.4.45)
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1.5 The redundant divergence equations and the charge
balance

In this section we shall discuss in what sense the divergence equations (0.5) hold for a
weak solution of (VM) in the sense of Definition 1.1.1. The weak formulation of (0.5)
is

Te
0= / / (sE -0y + 4np(p) dxdt, (1.5.1a)
0 JRr3
Te
0= / uH - dy dxdt (1.5.1b)
0 JRr3

forall ¢ € C(]0, T.[ x R?). Obviously, this is equivalent to (0.5) on ]0, To[ X R? in the
sense of distributions.

For (0.5) should propagate in time, we have to demand that (0.5) holds initially as a
constraint on the initial data, that is to say,

div(el%) =4np, diV([.lIfI) =0
on R? in the sense of distributions, or, equivalently,
0= / (gé PR +4n55) dx, (1.5.2a)
RB
0= [ uH- 9,&dx (1.5.2b)
R3

forall & € CX(R3).
Now let ((f¢, f),,,E, H, j) be a weak solution of (VM) on the time interval I, with
external current u. It is easy to see that (1.5.1b) holds: Define

T.
9: I, xR3 > R3,  9(tx) = —/ dx (s, x)ds.
t

Clearly, 9 € ©r,. Hence, (1.1.3b) and & = fOT' @(s,-)ds € CZ®(R3) in (1.5.2b) yields

T.
0:/ / ([uH-8t9+E-cur1x8)dxdt+/ uH - 9(0) dx
0 Jr R®

T T.
:/ /(yH-Bx(p—E-/ curlxax(p(s,x)ds)dxdt—/ uH - 9. &dx
0 Jr3 t R3
T.
=/ /yH-&x(pdxdt
0 Jr3

and we are done.
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As for (1.5.1a), we have to exploit local conservation of charge and have to determine
what p is. Therefore, we have to make use of (1.1.2) in order to put the internal charge
density into play. However, the test functions there have to satisfy ¢ € Wr, but a test
function of (1.5.1a) does not depend on v. Consequently, we, on the one hand, have
to consider a cut-off in momentum space, and, on the other hand, have to show that
(1.1.2) also holds if the support of ¢ is not away from )/% or {0} x dQ x R3. To this end,
the following technical lemma is useful. There and throughout the rest of this section,
we assume that Q C R? is abounded domain such that dQ is a C' N W?*-submanifold
of R3. Here, dQ being of class C! N W2* means that it is of class C! and all local
flattenings are locally of class W2*.

Lemma 1.5.1. Let 1 < p < 2and ¢ € C (I, x R> X R3) with supp ¢ c [0, T.[ x R® x R3
compact. Then there is a sequence (Yx) C Wr, such that

“W - ‘PHWLMM (0T [xaxr3) > 0 (1.5.3)

for k — oo and there is 0 < r < oo such that { and all Yy vanish for t > r. Here,

1
T, 2 1\
[ —r ( (L mt 10081 10,01+ 10,0000 dx) @
0 O \JR

Proof. First, we extend ¢ to a C'-function on R x R® x R? such that supp ¢ € ]-T., To[ X
R3xR? is compact (which can be achieved since the hyperplane where t = 0is smooth).

By assumption about 9Q, for each x € JQ there exist open sets [, U}, ¢ R? with x €
U,andaC 1—d1ffe0morph1sm U, — Ux, that has the property F* € Wlicoo (Ux, U,’(),

such that F* <l~lx N &Q) = U, N (R? x {0}). For any x € dQ we choose an open set

U, c R3 such that x € Uy, and U, cc U, (here and in the following, A cC B is
shorthand for “A bounded and A C B”). Then, dQ C (U egq Uy, whence there are
a finite number of points, say, x; € dQ, i = 1,...m, such that JQ c |JiZ, U;, since
dQ is compact. Here and in the following, we write U; = Uy, u; = L~Ix,., and
F' = F¥. Since it holds that Q \ U, U; cC Q, there is an open set Uy ¢ R? satisfying
Q\ UL, U; cc Uy cc Q. Therefore, we have Qc UiL, U;. Finally, we choose an
open set M c R? such that Q ¢ M cc I, U;.

Now let;,i =0, ..., m,bea partition of unity on M subordinateto U;,i =0, ..., m,
ie, ;€ CP(RY),0<C <1,suppl; c Uy, and X1, C; = 1 on M (and hence on Q, in
particular). Furthermore, let n € C*(R) such that 0 <1 < 1,7(y) = 0 for |y| <1 and
n(y) =1for|y[ > 1.

Next, for i = 1,...,m define G': U; x R? — R®, G'(x,v) = (F(x), A'(x)v), where
the rows A}(x), j=1,2,3, of A(x) are given by

VFi(x) x VFé(x) ‘ VFé(x) X (VFi(x) % VFé(x)) , VFé(x)

: - , Al(x) = . - - , AL(x) = ——.
[VFi(x) x VFi(x 2(%) 5() [VEi(x)|

Aj(x) = [VFy(x) x (VFi(x) x VFy(x)
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Note that the rows are orthogonal and have length one, and that A’ is of class C N
WL on U; since F! is of class C1 N W2 on U;, det DF! # 0 on U;, and hence the

denominators in A’(x) are bounded away from zero on U; because of U; cc U;.
Therefore, G’ is of class C N WL on U; X Bg for any R > 0.

The key idea is that, for any (x,v) € U; X R3, x € dQ is equivalent to G}(x,v) = 0
and, moreover, (x,v) € 7 is equivalent to Gé(x,v) = Gé(x,v) = 0, since n(x) and
VFi(x) are parallel (and both nonzero). Thus, since the supports of the approximating
functions 1Px shall be away from )/% and {0} x dQ x R3, it is natural to consider the

following C*-function in the variables (¢, G), that cuts off a region near the two sets
where G3 = G¢ = 0 and where t = G3 = 0:

ne: RXRC >R, milt, G) =n(k*(G3 + G2))n(k*(£* + G3)).

For k € N we then define
m )
Uk RXRPXRP SR, lt, x,0) = Co(x)y(t, x,v) + Z Ci)Y(t, x, o) (¢, x, )
i=1

where
n,?i ‘RxU; xR3 >R, r],fi(t, x,v) = nx(t, G'(x,v)).

We should mention that, according to supp ¢; € U;, i =0, ..., m, the i-th summand is
(by definition) zero if x ¢ U;. Note that we can apply the chain rule for nfi since 7 is
smooth and G’ € W' (U; x Bg;R®) for any R > 0. Therefore, ¢y is of class C N W1,

First we show that (1.5.3) holds for l;k (instead of Yx). By X2, (i = 1 on Q we have

m
”&k - 17b”Wl"’tz"lv(]0,T.[><Q><R3) < ZHCZQD(UI?I — 1)‘
i=1

WLpi2x1o (10, R[xU; XBR)

IA

m
C H g 1“ , 1.5.4
;‘ i Wpe2x1o (10, R[xU,xBR) (1.5.4)

where C > 0 depends on the (finite) C;—norms of ¢ (and (;) and where R > 0 is
chosen such that i vanishes if t > R or |[v| > R. For fixed i € {1,...,m} and
(t,x,v) € R x U; X R3 the implications

1 (t,x,0) 1= K¥(Gh(x, 0" + Gi(x,0)°) < 1V (2 + Gh(x,0)°) <1
= |Fi(x)| < kA (|Gix, o) < kv I < k7Y

hold. Therefore, we have, recalling that0 <n <1,

L0

1

2 5 ?
ne -1 dv) dx) dt)
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R 2 5
S/ / / do| dx| dt
0 {xely||Fi(x)|<k-1} \ J {veBr||Gi(x,0)|<k 1}
1
, 1
k1 2 7 r
+ / / (4—nR3) dx| dt
0 {xel;||Fi(x)|<k1} 3

_. 7k | 7k
=1 +1.

NI
==

In the following, we will heavily make use of the facts that Ai(x) is orthonormal for
any x € U;, |[detDF 1| is bounded away from zero on U;, and F'(U;) is bounded. Thus,

1
R 2 5 P
3
Ilksc/ / (/ dw) dy| dt| <Ck2—>0
0 {yeFiU)l|ys| <k} \J{weBg|lws|<k-1}

for k — co. Here and in the following, C denotes a positive, finite constant that may
depend on p, R, and F?, and that may change in each step. Similarly,

k—l
F<c / / dy
2 0 ( {yeFiU)l|ys|<k-1}

for k — oco. Next we turn to the derivatives and start with the t-derivative. By

p

2

dt) <CkPF -0

8ﬂ],§i(t,x, v) = 2k2tn(k2(Gé(x, v)? + Gé(x,v)z))n’(kz(t2 + Gg(x, 0)2))
we have
|8tr],fi(t, X, v)' < Ck*t
and
o (t,x,0) # 0= k(£ + Gi(x,0)?) < 1= |t < KT AJFS )| < K7

Hence,

1

(/OR(/LZi(/BRamki’dv)zdx)gdt)p
» N
sckz( /O ‘ ( /{er;||F§(X)|Sk‘1}( /Bthv) dx) dt)
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. ’ TERY
< Ck? / / 2dy| dt| <cki / thdt| =Ck
0 {yeFiWnl|ys| <k} 0

for k — co by p < 2. As for the x-derivatives, we compute

r
2

NI—=
==
1
o

e (t, x,0)
- kzq'(kz(cg(x,v)z +Gi(x, 0)2))n(k2(t2 +Gi(x, 0)2))% (G;(x, o +Gi(x, v)z)
+ kzn(kZ(Gg(x,v)Z +Gix, v)z))r]’(kZ(tz +Gi(x, 0)2))8x/ (Gg(x, 0)2) (1.5.5)

forj=1,2,3.If kz(Gg(x, ) + Gé(x, v)z) > 1, the first summand vanishes and (1.5.5),
on the one hand, implies

ijr],?i(t,x,v)’ < CKGL(x, v)| = CK|Fi(x)|

for (t,x,v) € R x U; x By since G' is of class W' on U; x Bg, and, on the other hand,
218 (1,%,0) #.0 = k(1 + Gi(x,0)) < 1= [Fy(o] <k alt < k7

If kz(Gé(x, v)* + Gé(x, 0)2) < 1, we have, on the one hand,

|Fio)| < k8 A |Gix, 0)| < k71

and (1.5.5), on the other hand, implies

221" (1,%,0)| < CR(|Gi(x, )] + G, 0)]) = CA(|F4(0)| + |G, o).

Combing these two cases we conclude

R ) 2 g %
[ preta] o) a
0 \Jui\JBg
k! 2 5 ’
< Ck? / / ( |F;(x)|dv) dx| dt
0 {xely||Fi(x)| <k} \JBg
14
R ' 2 2
+Ck? / / ( / |P§(x)|dv) dx | dt
0\ J{xelil|Fi(x)| sk} \/ {veBr||GL(x,0)| <k}

1
r
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1
4 P

R 2 2
+Ck? / / / |Gi(x,v)|dv| dx| dt
0\ J{xetn||Fi(x)| <k} \J {oeBg||Gi(x,0)| <k 1}

1
2
<K / lyslzdy)
( {yeFiU)l|ys|<k1}
2\ 2
+Ck? / |y3|2dy(/ dw)
{yEFi(Ui)||y3|§k*1} {weBg||ws|<k~1}

1
2\ 2
+Ck? / dy(/ |w3|dw)
{yeFiU)||ys|<k-1} {weBg||w3|<k-1}

<Ckr+CkE -0
for k — oo again by p < 2. Finally, consider the v-derivatives and compute
Doy, ,0) = K2y (K2(Gh(x, 002 + Gitx, 002 Jn(k2(#2 + Gi(x, 0)7) ), ( Gi(x, )
for j =1,2,3, which implies

8vjr]kGi(t, x,v)‘ < CkzlGé(x,U)|

and
&vqufi(t, x,0) 0= kQ(Gé(x,v)2 + Gé(x, 0)2) <1

= |Fé(x)| <kA |Gé(x,v)| < k!

for (t,x,v) € R x U; X Bg. Therefore, we have
1

, 1
R v 2 2\
(ULt o
0 u; \J B
R | 2 \5 \
< Ck? / / / |Gi(x,v)|dv| dx| dt
0 {xely||Fi(x)|<k-1} \ J {veBr]|Gi(x,0)| <k}

<Ck™2 50

for k — oo as before. Altogether, we have shown that

lim ani - 1..

k—o0

Wipi2xlo (J0,R[xU;xBg)
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foranyi=1,...,m and thus
klgf}onlﬁk - ‘l’||w1,m2x1v(]o,T.[xQ><R3) =0 (1.5.6)

by (1.5.4).
The next step is to show that, for each k € N, the support of ¢ is away from

)/% and {0} x dQ x R3. As for y%, assume the contrary, i.e., dist(supp 1Z1k, y%) =0.
Then we find sequences ((f;, ¥, 7)) C )/% and ((t;, x;,71)) € R x R3 x R3 such that
lf)k(tl, x;,v;) # 0forall ] € N and

}Lr?o|(fz,fz,5l) —(t1,x1,01)| = 0.

By compactness of supp i C supp ¢, both sequences are bounded, whence we may
assume without loss of generality that both sequences converge to the same limit, say,
(t,x,v) € RxR3x R3. Since )70 is closed and #; > 0 for | € N, we have (x,?) € )70
and t > 0. By dist(x, Up) > 0 and since J!”; U; is an open cover of dQ), we may also
assume that

X € qu\ U u; (1.5.7)
ielU] i€{0,...,m}\(IV])

where I = {ie{l,...,m}|xel;}, ] = {ie{l,...,m}|xedU;} (for | large, at
least). Clearly, C;(x;) = 0 for any i € | and large /. Now take i € I. Since G'is
continuous and since G;(x,v) = G¢(x,v) = 0by (x,v) € 770, we have

llim Gg(xl,vl) = llim Gé(xl,vl) =0
and then

) . 1
k2(G§(x1,vl)2 + Gé(xz,vl)z) <5

for I large. But then n]fi(tl, x1,v;) = 0 and therefore by (1.5.7)

0 # P(ty, x1,01)
= Z et xi, oS (b, x1, 01) + Z CiCe)y(tr, x1, 000 (b1, 21, 01) = 0,

iel ie]
which is a contradiction. As for {0}xdQxR?, the proof works completely analogously:
If we assume dist(supp Ur, {0} x 9Q x R3) = 0, we find sequences ((f;, %,7))) c
{0} x dQ x R3 and ((t;, x;, 7)) € R x R® x R3 such that lljk(tl,xl,vl) #0foralll e N
and

lli_>r£10|(fl,fz,5l) — (t1,x1,01)| = 0.
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As before, we may assume that both sequences converge to the same limit, say,
(t,x,v) € RxR3xR3. Since {0} x dQ x R3 is closed, we have (t, x,v) € {0} x IQ x R3.
Again we may assume (1.5.7). Now take i € I. Since G' is continuous and since
t = Gi(x,v) = 0 by x € JQ, we have

llim t = llim Gh(x;,01) =0
and then

- 1
kz(tlz + G’B(xl,vl)z) < E

for I large. But then nlfl (t;, x1,v7) = 0 and the contradiction follows as before.

There only remains one problem: The approximating functions are only of class
C N W with compact support and not necessarily of class C* as desired (which
corresponds to the fact that dQ is only of class C! N W?* and not necessarily smooth).

To this end, take a Friedrich’s mollifier v € C(R”) withsupp w C By, /R7 wd(t,x,v) =
1, and denote ws = 6~ w(;) for 6 > 0. By Pr € HY(R7), we know that ws * k
converges to i for & — 0 in H'(R’). Moreover, since supp {x C |-T., To[ x R3 x R3,

dist(supp Uk, 7/%), dist(supp U, {0} x 9Q x R3) > 0, these properties also hold for

ws * 1;5;( instead of 1/~Jk if 0 is small enough. Choose 0 < 0 < 1 so small and such that

-~ 1
”wék * P — WHHI(N) S x
By p < 2, this implies
C

||a)6k * J’k - 'I)k“er}’tlﬂv(]0,R+1[><Q><BR+1) < k

where C > 0 depends on p, Q, and R. After combining this with (1.5.6), noting that i
and i vanish if t > R or [v] = R and wg, * ¥k if t > R + 1 (which implies the existence
of r as asserted) or |[v| > R + 1, and setting

ll)k = Weoy * I’ZkllT.XﬁxR3 € \IIT./
we are finally done. O

With this lemma, we can extend (1.1.2) to test functions ¢ whose supports do not
necessarily have to be away from yJ. and {0} x dQ x R? under a condition on the
integrability of the solution.

Lemma 152. Let a € {1,...,N}, fo € L(Ir, xQx R?), f& e Li’t"(y;f.), (E,H) €

L} (Ir,; L*(R%;RO)) for some q > 2, K Lft"(y;) - Lff(yi), gt € Lft"()/i), and fo e
L*(Q x R3) such that Definition 1.1.1.(ii) is satisfied. Moreover, let i € C!(I, X R3 x R?)
with supp 1 C [0, To[ X R3 x R3 compact. Then, (1.1.2) still holds for 1.
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Proof. Let1 < p < 2 satisfy % + % = 1. In accordance with Lemma 1.5.1, let (yx) ¢ Wr,

approximate 1 with respect to the W#t%le-norm, 0 < r < oo such that ¢ and all Y
vanish for f > r, and define R := min{r, T,}. By assumption, (1.1.2) holds for i for
all k € N. Hence, there remains to show that we can pass to the limit k — oo in (1.1.2).
First, we have

T.

/ / / (atlllk - 8t¢)f“ dvdxdt
0o JaJrs

< C(R,Q,p, f*)||wx - ll’nwLnﬂxlv(]o,R[xQxRS) —0

for k — oo, since R is finite and Q is bounded. Similarly,

T,
/ / / (Va - Ox Pk — U - Oxp) f© dvdxdt’ =0
0o JaJrs

< lyx - ¢||W1'1(]O,R[><Q><R3)Hf a||L°°([0,R]><Q><R3)

lim

k—o0

by [0,] < 1. Next,

T.
/ / (E+0q X H) - (9o — o)) £ dvdxdt‘
0o JaJrs

R
< I hmonpeascey [ [OET+ 1D [ 00 = doasas
1

< C(fY) /OR(/Q(USF + |H|2) dx)%(/g(‘/RJ&vybk - &v¢|dv)2dx)2 dt
< C(fa)||(E/H)||m([o,R];L2(R3;R6))(/OR (L(/RSI%W - 9vlp|d0)2 dX)g dt)p -0

for k — oco. Note that this was the crucial estimate, for which we essentially needed
the convergence of 1 to i in the W!#slo-norm. As for the integrals over y: , we first

have
/ vk -
0Q

forany t € I,, v € R3, since Q is bounded and dQ of class C'. Therefore, by
[n(x) - 04| < 1itholds that

(t,x,v)dS, < C(Q) _/Q(hbk - 1,[}| + |ax¢k - 8X1/;|)(t,x,v) dx

[ (k=) fdya

VT,

< CQjyx - ¢||W1f1(]O,R[><Q><R3)”ff||L°°(V£) —0

for k — oo. Similarly,

[ tw-wrs g ay,

71s
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< CQ)lyi - lpuwlrl(]O,R[xQx]W)(”Waff“Lw(y‘g) + ”gaHLw(ylg)) —0

for k — oo. Lastly, by
0=9x(R,x,0) - Y(R, x,v)

R
= Ux(0,x,0) — (0, x,0) + A (Fri(t, x,v) — Ar(t, x,v)) dt

foranyx € Q,v € R3, we have

[ [ 00 - yoon s dos

for k — oo and the proof is complete. O

o

fa

= HW - ¢||W1r1(]O,R[><Q><R3) Lo (OQxR?) -

The next step is to show that (1.1.2) still holds if ¢ does not depend on v. This is
done via a cut-off procedure in v. Note that in the following lemma it is essential that
f®is of class L' N L2, . Tlocally in time.

Lemma 153. For a € {1,...,N} let f¢ € (LlltmLz nL;;)(IT, x QxR?), f1 €

akin, It
Lft"(y]f.), (E,H) € Lﬁ(IT.;LZ(R3;R6))f0r some q > 2, Ky: Lft"(y/;:) - Lft"(yi), gt €
L;f(yi), and fo € (L' N L®)(Q x R3) such that Definition 1.1.1.(ii) is satisfied. Further-
more, let € C!(Ir, x R?) with supp ¢ C [0, To[ X R® compact.
(i) Ifsuppy C [0, To[ x (R3\ 9Q), we have

O=/OT'/(l(8t¢ASf“dv+ax¢-ABEQf“dv)dxdt+/Qt,b(0)/R3f°advdx.

(1.5.8)

(ii) If, additionally to the given assumptions, f € L}t(y;f., d)/a), g% e Lllt()/i, dya), and

Ka: (Lllt N Lft") (y]f., dya) — (Lllt N Lft") (j/i, d)/a), but  need not vanish on 9Q),
then (1.1.2) is still satisfied for ¢, i.e.,

0:—/OT'/Q(atlp/RSf“dv+ax¢~/RB’5af“dv)dxdt+/ﬁ. ) dy,

- / (Kafs + g% ) dya - /Q $(0) /R fe dodsx. (1.5.9)

V1.

Proof. The proof works similarly to the proof of [Guo93, Lemma 4.2.]. First, consider
a test function ¢ that may have support on dQ. Taken € CX(R%),0<n<1,n=1
on By, supp7 C By, and let 1, = n(=) for m € N. Then, ¢, € C! (I, x R? x R?) with
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supp ¥, C [0, To[ X R x R? compact, where 1, (t, x,v) = Y (t, x)7m(v). Therefore,
(1.1.2) holds for 1, by Lemma 1.5.2. We can pass to the limit m — oo in all terms of
(1.1.2) but the terms including integrals over y7: Let R > 0 such that i vanishes for
t > R. First,

T,
[y, dvodxdt — / / oy [ f¢ dvdxdt'
3 0o Ja R3

Q JRI

R
< “9t¢“L°°(IT,><R3)/ / /Slﬂm - 1Hfa| dodxdt — 0

for m — oo by dominated convergence since 1,, — 1 pointwise for m — oo and
Inm = 1]|f%| < |£2| € L*([0, R] x Q X R®). Similarly by [04] < 1,

lim/.// 8x¢m~5af“dvdxdt:/./8x¢~/ T f® dodxdt.
m—eo Jo Q JR3 0 Q R3

Because of

1 v
8‘1117brl1(t/ X, T)) - Zgb(t, X)VT](Z)
and
Dot x,v) #0=m < |v| < 2m

for (t,x,v) € I, x Q x R3, we get the following estimate, which is again the crucial

/ (E+0, xH)fY - dythm, dvdxdt’

H'a”“Lw(zT xQ)||V77”L°° (BoyE3) / /(|E| + |H|)/{v —|f“|dvdxdt

eR3|m<|o|<2m}

1
R 2
<c(llf,n)II(E,H)IILZ([O,R]XQ;Rﬁ)( / / ( / —|fa|dv) dxdt)
0 Ja\J{verR3|m<v|<2m} M
A2 (8m3 - 2
C(y,n,E,H) / // \f"‘| dv dxdt
{veR3|m<|v|<2m} m?
R 3
<c(¢,n,E,H)(/ // vg|f”‘|2dvdxdt) -0
0 Q J{veR3|m<|v|<2m}

for m — oo, since the last integral converges to 0 thanks to f* € L2 . ([0, R] x Q x R?).
As for the term including the initial data, we see that

Q/Rs Y (0)f@ dvdx—/uz,z)(O)/Rsfa dodx
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SO

for m — oo as well by dominated convergence and f@ € L!(Q x R3).
Now if supp ¢ € [0, To[ X (R® \ dQ), then ¢, vanishes on dQ, too, and for 1, there
vanish the integrals over )/}—: appearing in (1.1.2). Hence, (1.5.8) is satisfied.

dvudx — 0

f"a

If the additional assumptions of part 1.5.3.(ii) hold but ¢ need not vanish on JdQ,
we consider the integrals over )7 :

/+ ff¢md7a_/+ fiydya
V1. V1.

and similarly

e U [ DA
R

[_ (Kaff +8%)¢mdya - / (Kafi +8%) ¢ dya

V14 V1.
<y [ I = 1102+ [ o =0
YR
for m — coby dominated convergenceand £ € L'(y}, dya), Kaf&, g € L vz, dya).
Therefore, we obtain (1.5.9). O

In the following, we denote

N N
pint = Z Qa‘/ foc dU, jint = Z qa/ Eafoc do
a=1 R3 a=1 R3

and extend these functions by zero outside Q.
Equations (1.5.8) and (1.5.9) reflect the principle of local conservation of internal
charge and imply a global charge balance after an integration.

Corollary 1.5.4. Let the assumptions of Lemma 1.5.3 hold forall @ € {1,...,N}.
(i) We have
o, pint + div, ]~int -0
on 10, To[ X Q in the sense of distributions.

If moreover the additional assumptions of Lemma 1.5.3.(ii) are satisfied forall @ € {1,..., N},
then:

(ii) It holds that

O p™ + Ty + div, ™ =0 (1.5.10)
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on 10, To[ x R® in the sense of distributions. Here, the distribution Tyq describes the
boundary processes via

N
Toap = ), qa( fivdya - / (Kafi +8%)¢ dya)~
a=1 VT,

71,

(iii) For almost all t € I, we have

N
/ pint(t, x)dx = / p°int dx — Z qa( fldy, —/ ((](aff + g“) dya)/
Q Q a=1 Ve I3

where

N

pint = an As fa do.

a=1

Proof. As for parts 1.5.4.(i) and 1.5.4.(ii), simply multiply (1.5.8) and (1.5.9) with g,
and sum over a. As for part 1.5.4.(iii), take ¢ € CX(]0, T.[) and let n € CX(R3) with
1 =1on Q. We define

T.
Y: I, xR3 >R, (t,x) = —n(x)/ @ ds.
t

Then, € C® (I, X R3) with suppy c [0, T.[ X R® compact. Thus, Lemma 1.5.3.(ii)
yields, after summing over «,

N T.
O:an —/ /(&1{1/ f“dv+c9xl/z-/ Eaf“dv)dxdt+/ fipdy,
—~ 0o Ja R3 R3 Vi,
—/ (7<aff‘+g“)¢dya—/¢(0)/ fe dvdX)
123 Q R3
T, ' T, ‘
=—/ (p/plntdxdt+/ (p‘/ﬁmt dxds
0 0 0 0
N T. T.
+an(—/ / / ff‘(t,x,v)/ p(s)dsn(x) - v, dvdS,dt
= 0 2Q J {veR3|n(x)-v>0} t
T. Te
—/ / / (Waff+g“)(t,x,v)/ @(s)dsn(x) -0, dvdedt)
0 9Q J {veR3|n(x)v<0} t
T.
:—/ (p(/ pintdx—/ﬁintdx) dt
0 0 o}
N T. s
+an(—/ go(s)/ / / FE(t, x, 0)n(x) - Ty d0dS,dtds
) 0 0 J9Q J{veR3|n(x)v>0}
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T, s
—/ (p(s)/ / / (Kaf& + g%)(t, x, v)n(x) - Vo dodSydtds |,
0 0 J9Q J{veR3|n(x)v<0}

from which the assertion follows immediately. O

We can finally show the redundancy of the divergence equation div,(¢E) = p with
the help of Lemma 1.5.3; the redundancy of div, (uH) = 0 has already been proved.
To this end, we have to introduce an external charge density such that the external
charge is locally conserved, which is a natural assumption. Precisely, this means the
following.

Condition 1.5.5. There are p* € Llloc(IT- xT)and p" € Llloc(l") such that d;p" +div, u =

0on ]0, T.[ x R® and p*(0) = p* on T, which is to be understood in the following weak
sense:

T.
0= /o '/Rs(p”&gb +u - Oytp) dxdt + /R3 p"(0) dx

for any i € C®(Ir, x R®) with suppy [0, To[ x R® compact. Here, p* and p" are
extended by zero outside I'.

Theorem 1.5.6. Let Q C R® be a bounded domain such that its boundary dQ is a C' N
W2 -submanifold of R3. Furthermore, we assume that, for all « € {1,...,N}, f% €

(L4 N L2y VL) (1 X QX RE), £ € L (1), (B, H) € L (15 1 (% RY)) for some

akin, It
1>2 K Ly (vi) = L (vn) & € Ly (m), £ e (0L (@xR3), (E,11) €
L2(R%R®), e, p e L (RER¥™3) withe = u=1don Q,and u € L} _(Ir, x T;R®) such that

loc loc

the tuple ((f*, f&) . E, H, j™ + u) is a weak solution of (VM) on the time interval Ir, with
external current u in the sense of Definition 1.1.1. Furthermore, assume that Condition 1.5.5
holds and let initially

divx(eé) =4 (g™ + g")

on R be satisfied in the sense of distributions. Then:

(i) We have
divy(eE) = 4m(p™ + p*)
on 10, Tu[ X (R \ 9Q) in the sense of distributions, i.e.,
T.
O:/O ‘/RS(EE-ax(p+4n(pmt+p“)(p)dxdt

forall € C2(]0, To[ x (R%\ 0Q)).
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(ii) If, additionally to the given assumptions, f* € L1 ()/T , d)/a), g% e th()/T , dya), and
Koo (Lt (v dve) = (Lo Ly) (i dyo,)for alla € {1,...,N}, then
divy(eE) = 4m(p™ + p" + Soq) (1.5.11)

on 10, T,[ x R3 in the sense of distributions, i.e.,

T.
= ‘/0 /RS(SE - Ov@ + 47t (p™ + p") @) dxdt + 4nSsa ¢

for all ¢ € CX(]0, To[ X R3). Here, the distribution Syq, whose support satisfies
supp Soq C I, X dQ, is given by

Soq@ = / / o(t, x)/ n(x) - (Z qa/{ e 0}5aff(s,x,v)dv
a=1 ve nx >
+Z /

Vo (Ko fE +8%)(s, x,0) dv) dsdS.dt.
€R3|n(x)-v<0}
Proof. First take ¢ € C°(]0, To[ X R®) arbitrary and define

T.
Y: I, xR® > R, Y(t, x) = ‘/ @(s,x)ds,
t
T,
9: I, xR3 - R?, d(t, x) = —/ dx (s, x)ds,
t
T.
&R SR, E(x) = ‘/0 (s, x)ds.

Clearly, € C®(If, x R?) with suppy C [0, Ts[ X R? compact, ® € Or,, and & €
C(R3). Because of 9 € Or,, (1.1.3a) holds, i.e.,

T.
0= / / (¢E- 99 — H - curly & — 4n(j™ + u) - 9) dxdt +/ ¢E - 9(0) dx
0 R3 R3

Te Te
= / / (EE -dyp+H - / curly dv (s, x) ds — 4r (™ + u) - S) dxdt
0 R3 t
- / ¢E - 0y & dx
R3

T,
= / / (¢E - dxp — Am(j™ + u) - 8) dxdt — / ¢E - 9,& dx. (1.5.12)
0 R3 R3

By Condition 1.5.5, we have

Te
= / / (0“3 + - Op) dxdt + | 5 p(0)dx
0 R3 R3
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T.
= ‘/O /RS(p”go +u - D) dxdt — ‘/11%3 P& dx. (1.5.13)

To prove part 1.5.6.(i), assume that ¢ € CX(]0, T.[ x (R®\ 9Q)). Then we have
P € C* (I, x R®) withsuppy C [0, To[ X (R? \ dQ) compact and Lemma 1.5.3.(i) gives
us, after multiplying with g, and summing over «,

T,
0=/ /(pimattpﬂmt-axlp) dxdt+/p°inf¢(o)dx

T.
— / /(pint(P +]-int . ‘9) dxdt _/ ﬁinté dx. (1514)
0o Ja Q
Multiplying (1.5.13) and (1.5.14) with 47t and adding them to (1.5.12) yields

T.
/ / (¢E - dyep +4m(p™ + p") ) dx = / (EE -0y E +4Am(p™ + ﬁ”)é) dx =0
0 JR3 R?
by divx(eﬁ) = 4n(p™™ + p*) on R? in the sense of distributions. Hence, div,(¢E) =
4m(p™t + p*) on ]0, To[ X (R?\ dQ) in the sense of distributions.
To prove part 1.5.6.(ii), let the additional assumptions stated there hold. Now the
test function ¢ € C(]0, To[ X R®) need not vanish on dQ. We have i € C* (I, x R3)

with suppy C [0, T[ X R3 compact and Lemma 1.5.3.(ii) gives us, after multiplying
with g, and summing over «,

T' . . .
0=/O /Q(pmfatlpﬂmf-axlp) dxdt—Tagler/Qﬁmtlp(O)dx

T,
= / / (P™q + ™ - 8) dxdt — Ty — / pIME dx. (1.5.15)
0 Q Q

We rewrite Thot):
N
ooy = ), qa(/ fipdya —/ (Kafi +8%) dya)
a=1 s .
N T. T.
= > da (— [l frtx,0) [, x) dsn(a) By dodsyd
=1 0 2Q J {veR3|n(x)-v>0} t
T. Te
—/ / / (Kafl +g“)(t,x,v)/ @(s,x)ds n(x) - v, dvdsxdt)
0 2Q J{veR3|n(x)-v<0} t
N T. s
= Z Ja (— / / ¢(s, x) / / FE(E, x,0)n(x) - U,y dodtdS.ds
a1 0 2Q 0 J{veR3|n(x)-v>0}

T, s
—/ / o(s, x)/ / (Kafl + g%)(t, x, 0)n(x) - Vo dvdtdsxds)
0 2Q 0 o {veR3|n(x)-v<0}
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=-550¢.

Similarly as before, multiplying (1.5.13) and (1.5.15) with 47 and adding them to
(1.5.12) yields

T.
‘/0 /RB(EE - 9x + 4t (p™ + p") @) dx + 4TS 0 ¢
=/RS(€E Ox& + A (p™ + )é)dx=0

Hence, divy(¢E) = 4rt(p™ + p* + Syq) on |0, To[ X R? in the sense of distributions. [

Remark 1.5.7. We discuss some assumptions and give some comments regarding
Theorem 1.5.6 and Corollary 1.5.4:

e Clearly, we see by interpolation that f* € (Li(km W N Lf;’)(ln X QX R3) implies

£ € (LN L2y VLY (11, x © X B) and that (E, H) € Li? (I, L2 (R RY)) implies

akin, It

(E,H) € th (Ir,; L?>(R%;R%)) for any q > 2. Hence, Theorem 1.5.6.(i) can be applied to
solutions constructed as in Section 1.4; cf. Theorem 1.4.4. However, the boundary

values f{* constructed there only satisfy f* € L11t (7/; , dya) fora=1,...,N’,ie., the

particles are subject to partially absorbing boundary conditions, and not necessarily
fora = N'+1,...,N, ie., the particles are subject to (partially) purely reflecting
boundary conditions. Therefore, whether the statement of Theorem 1.5.6.(ii) is true
for solutions constructed as in Section 1.4, remains as an open problem, unless
N’ = N, i.e,, all particles are subject to partially absorbing boundary conditions.

e Conversely, the assumption f{ € Lllt(y;. , dya) is necessary for Theorem 1.5.6.(ii)
(and for Lemma 1.5.3.(ii)); otherwise, the integral fy . ffYdy, will not exist in
Te

general since 1 need not vanish on dQ and does not depend on v.

e The distribution Syq can be interpreted as follows: The terms

N
-out . o ofa
(t,x) = / o fE(t, x,0)do,
Joo az; e {veR3|n(x)-v>0} af+
i (t,x) = / Vo (Ko & + ¢%)(t, x,0)do,
T ;qa (0eROn(x)v<0) (Ko fE+8%)

where (t, x) € I, X dQ, can be interpreted as the outgoing and incoming boundary
current density. Hence, Sy can be rewritten as

Soap = / / p(t, x)/ n(x) - ]O‘“(s X)+ (s, x)) dsdS.dt.
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Thus, Syn makes up the balance of how many particles have left and entered Q up
to time t. On the other hand, the distribution T makes up the balance of how
many particles leave and enter Q at time ¢ via

Te )
Thop = /0 /a sz(t,x)n(x).(jgg(t,x)+ jgb(t,x)) dS.dt.

We easily see that d;55q = Tpn on 10, T,[ X R3 in the sense of distributions, which
corresponds to the fact that T, appears as “a part of d;p” in (1.5.10) and Sy, appears
as “a part of p” in (1.5.11).

The global charge balance, see Corollary 1.5.4.(iii), can similarly been written as

follows:
int °oint -out AN
(t,x)dx:/ dx—/ / n- + dS.ds
/Qp Qp 0 JoQ (]‘m ]‘90) !

for almost all t € Ig,.

As mentioned in the introduction, in a more realistic model € and p should depend
on f% E, and H (maybe even nonlocally) and hence implicitly on time. In this
situation, the weak formulation is the same as before, which is stated in Defini-
tion 1.1.1. If we assume &,y € L (I, x R%;R33) (and suitably introduce initial
values for ¢, i), viewed as explicit functions of t and x, the proofs of Theorem 1.5.6
and the lemmas before are still valid, and Theorem 1.5.6 remains true, as well as

the redundancy of div, (uH) = 0.

Lastly, we emphasize that all results of this section hold, under the respective
assumptions, for all weak solutions of (VM) in the sense of Definition 1.1.1 and not
only for the solutions constructed as in Section 1.4.



CHAPTER

OPTIMAL CONTROL PROBLEM

2.1 A prototype

In a fusion reactor, one of the main goals is to keep the particles away from the bound-
ary of their container () since particles hitting the boundary damage the material there
due to the usually very hot temperature of the plasma. Therefore, it is reasonable to
penalize these hits, which, for example, can be achieved by taking some L7-norms of
the f* as a part of the objective function that shall be minimized in an optimal control
problem. Moreover, it is natural to consider the external current density u as a tool to
reduce these hits on the reactor wall. For a prototype problem, we consider the case
that all particles are subject to partially absorbing boundary conditions, i.e., N = N’,
and assume g% = 0.

Apart from driving the amount of hits on the boundary to a minimum, one does not
want too exhaustive control costs so that the fusion reactor may have a good efficiency.
Thus, it is reasonable to add some norm of u to the objective function. Thereby, we
also gain a mathematical advantage since then the objective function is coercive in u,
which means that along a minimizing sequence this u-norm is bounded so that we
can extract a weakly convergent subsequence whose weak limit is a candidate for an
optimal control.

Conversely, as there are no terms including f¢, E, and H in the objective function, we
do not have coercivity in these state variables because of the objective function itself.
But there is still the PDE system (VM) as a constraint. Recalling (1.4.40) to (1.4.45) we
see that these estimates yield uniform boundedness of f¢, E, H (and j™) in various
norms along a minimizing sequence. Unfortunately, we can only verify these estimates
for solutions that are constructed as in Section 1.4. For general solutions of (VM) in
the sense of Definition 1.1.1 these estimates may be violated as we do not know a
way to prove these generally. Since in the classical context these estimates are easily
heuristically established by exploiting an energy balance and the measure preserving
nature of the characteristic flow of the Vlasov equation, it is reasonable to restrict
ourselves to solutions that satisfy at least part of, maybe slightly weaker versions of
(1.4.40) to (1.4.45).

75
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To put our hands on the fields, only (1.4.44) is helpful. Considering this estimate
along a minimizing, weakly converging sequence and trying to pass to the limit in this
estimate, we see that the right-hand side, including some norm of u, has to be weakly
continuous. But if we endow the control space with the norm that appears in (1.4.44),
i.e., the L'([0, T.]; L?(I; R3))-norm, this weak continuity will not hold. Consequently,
we consider a control space that is compactly embedded in L' ([0, T.]; L?(I; R?)) so that
the right-hand side of (1.4.44) converges even if the controls only converge weakly in
this new smaller control space. This will be made clear in the proof of Theorem 2.2.1.

Altogether, we arrive at the following minimization problem:

min  J(y,u),

yeY ueld
s.t. ((f* f%),, E H,j™ + u) solves (VM), (P)
(2.1.1) and (2.1.2) hold

where the objective function is

N

1
Z ||f+ Hq - d)’a) + ;“MHZL{

=1

and the additional constraints are

fe a.e
L (QxR3)

i/n//R3vgf“dvdxdt+%/T./3(|E|2+IH|2)dxdt
<2]*Z]//RS Ta ( )

= I (u).

osf“g( a=1,...,N, @.1.1)

+2nT?07 Y |u ||i2([o,T.]><F;R3)

(2.1.2)

L2(R3;R6)

Definition and Remark 2.1.1. We explain the formulation of the minimization prob-
lem in detail:

e We consider the optimal control problem on a finite time interval, i.e., T, < oo.

e We assume that the given functions foa, a®, E, H, ¢, and u satisfy the respective

properties of Condition 1.4.1 with N’ = N and that g* =0, f* 2 O for all o =
1,...,N.

e For ease of notation, we have abbreviated

= ((f* f£)o E H),
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= (Xt 2o s

a=1
where 1 < g < oo is fixed and
Yoa = {f € Logan NL7)([0, LI x QX R?) |
vn e CX(10, T[ X QX R3) : 9 (nf) +0a - dx(nf) € L*([0, To] x ; H™1(R%)),
Na(f) < oo}
Here and in the following, for a distribution & on ]0, To[ x Q X R3 the property & €

L?([0, T.] x ©; H™!(R?)) means that there exist functions go € L?(]0, T.[ x Q X R?)
and g1 € L?(]0, To[ X Q X R3; R?) such that

h = go + div, g1 on |0, T[ X Q x R? in the sense of distributions. (2.1.3)

The space L?([0, T.] x Q; H™1(R?)) consisting of all such distributions is equipped
with the norm

A1l 20, T xquH-1 (23)

1
2

= min{(||go||i2(]0,T.[><QxR3) + ”g1||i2(]O,T.[><Q><R3;R3)) | 8o, &1 satisfy (2~1-3)}-

Moreover, we denote
Na(f) = SUP”at (nf) +7a - s (Wf)||L2([0,T.]><Q;H-1(R3))
where the supremum is taken over all 1 € C(]0, T.[ x Q x R?) satisfying

||’7||H1(]0,T.[><Q><R3) + ”’7||L°°([0,T.]><Q;H1(R3)) =1 (2.1.4)

The restriction in the definition of Y, will not be important until Section 2.4 and is
motivated by Lemma 2.1.2, which is stated below.

e The numbers w, > 0 are weights. For example, if we have two sorts of particles, say,
ions and electrons, the weight corresponding to the ions should be larger than the
one corresponding to the electrons since the heavy ions will cause more damage
on the boundary of a fusion reactor if they hit it. Moreover, the weights also serve
as an indicator of which of our two aims should rather be achieved, that is to say,
no hits on the boundary and small control costs. More precisely, the w, should be
large if one rather wants no hits on the boundary, and should be small if one rather
wants small control costs.

e The control space is

U =W (10, [ xT;R?)
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where 3 < r < coisfixedand T ¢ R?is open and bounded. By Sobolev’s embedding
theorem, U is compactly embedded in L?(]0, T.[ x T;R?). For this, the boundary of
I' has to satisfy some regularity condition, for example, the cone condition. From
now on, we shall always assume that JI" is not “too bad”, that is to say, this compact
embedding holds. We endow U with the norm

r

3 T. 3
Nullq = Z/o /r(|u]-|r +x1|9uy| + K2 Z|z9x,.uj|r) dxdt | ,
j=1 i=1

which is equivalent to the standard W17 (]0, Ts[ X I'; R?)-norm. Here, 1, k, > 0 are
parameters chosen according to how much one wants to penalize u itself compared
to its t-and x-derivatives.

e Asusual,

N

Ant _ S fa
j —an/R3vaf dv.

a=1

The constraint that (VM) be solved is to be understood in the sense of Definition 1.1.1.

The pointwise constraint (2.1.1) on f“ is on the one hand natural since any classical
solution of (VM.1) with nonnegative initial datum satisfies this constraint, and, as
we have seen in Theorem 1.4.4, also the weak solutions constructed in Section 1.4
do, and on the other hand necessary for a limit process when proving existence of
a minimizer; see Section 2.2.

e The same applies mutatis mutandis for the energy constraint (2.1.2). Note that
this inequality directly follows from the stronger inequality (1.4.44) (recall that we
consider g% = 0) after an integration in time and Holder’s inequality:

N T. T.
Z/ // vgf“dvdxdt+i/ /(|E|2+|H|2)dxdt
=Jo JaJrs 8t Jo  Jro
Te
]
0 a=1

N
o
Z /Q .[R3 0 () dodx + %H(E,H)(.)”é(mm

N 4 o o
S2T.(;/Q'/Nvgf"‘dvdx+g—n (E,H)

2

Te T
+47IC7_1/ (/ ||u(t)||L2(F,R3) dt) aT
0 0
T. T 2
/ ( / ||u(t)||L2(r;Rs>dt)
0 0

L=([0,T])
2

L2(R3;R6) )

and

Te T
dT < /0 T /0 [ ()72 ) AT
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2
. 2
< 5 lullizqomxrsms)-

The main reason why we impose the weaker inequality (2.1.2) as a constraint is that
no longer L*-terms or square roots appear, which would cause some trouble with
respect to differentiability.

We proceed with the following lemma, that was already mentioned above.

Lemma 2.1.2. Let f* € L¥([0, T.]x QxR3), f& € Llloc(y;f.,dya) such that Defini-

tion 1.1.1.(ii) is satisfied with E,H € L*([0, T.] x Q;R3). Denote F := qo(E + 0n X H).
Then, for any n € C(]0, To[ X Q X R3) it holds that

A (Nf*) +0a - Ox(nf*) = fHOn + f 0y - O+ Ff* - Iy — dive (nFf%) (2.1.5)

on 10, To[ X Q x R3 in the sense of distributions and the left-hand side is an element of
L?([0, To] x ©; H™Y(R3)). Furthermore,

Na(f®) < znfa||L°°([0,T.]><QXR3)(1 + \/§|L]a|||(E,H)||L2([0,T.]><Q;R6))- (2.1.6)

Proof. It is easy to see that (2.1.5) holds. There remains to estimate the right-hand
side:

||faafn”Lz([O,T.]x()xR3)’ [0 - 3x77||L2([o,T.]xQxR3) = ”fa”L""([O,T.]xQxR?')Hn||H1(]O,T.[><Q><R3)

and

”Ffa ) ‘9077||L2([0,T.]x(2><R3)' ana||L2([0,T.]><Q><R3;R3)
= ||F||L2([0,T.]><Q;R3)||faHL"“([O,T.]XQ><R3)||nHL°°([O,T.]><Q;H1(R3))
implies 3 (nf¢) + 0, - 3x (%) € L2([0, T] x Q; H™'(R?)) and (2.1.6) because of |F|* <
2
2qaf* (IEP+ 1HP). =
The next lemma gives an L3-estimate on "t in view of the inequality constraints of

(P) and will be useful later.

Lemma 2.1.3. The constraints (2.1.1) and (2.1.2) yield j™ € L3 ([0, T.] x Q; R®) with

. N 4f4m
||jlnt||L%([o,T.]xQ;R3) < (Z;lq“| (?
o

Proof. Similarly to (1.4.31) and (1.4.32), we have

1

4\ 1 \
+1) ) I (u)s.

f°a

Lo (QxR3)

am
0 n
/}R3 f(t, x,v)do < (‘/R3 0. f*(t, x,0) d”) (?||fa”Lm([o,T.]><QxR3) + 1)
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< (/R3 vgf"‘(t,x,v)dv)z(%z|

for almost all (¢, x) € [0, T,] x Q by (2.1.1), whence

T, 4 % N T % %
[nt|3 d dt < / / d dt
(-/o Lt as ) ;\qal( s » )
= 4f4m N[N T 3
- 0
) (;M“l (3 moxm”)) (Z;./o /Q/Rs”af ’ d”dxdf) AR

which, together with the constraint (2.1.2), implies the assertion. O

fa 2.1.7)

+ 1)
Le(QXR3)

fdv
R3

f"a

2.2 Existence of minimizers

The usual strategy to obtain a minimizer of an optimization problem is to consider
a minimizing sequence. By the structure of the objective function or the constraints,
this sequence is bounded in some norm so that we can extract a weakly converging
subsequence (of course, we have to work in a reflexive space for this). To pass to
the limit in a nonlinear optimization problem, some compactness is needed. As for
passing to the limit in a nonlinear PDE (system), usually the same tools have to be
exploited that were established to be able to pass to the limit in an iteration scheme to
prove existence of solutions to the PDE (system).
This general strategy also applies to our case.

Theorem 2.2.1. There is a (not necessarily unique) minimizer of (P).

Proof. First notice that there are feasible points to (P) by Theorem 1.4.4. Thus, we

may consider a minimizing sequence (( f e ,Ek,Hk,uk) of (P). By structure
’ a

of J, the sequences ( fk“ +) are bounded in L1 ()/}r ,dya) and the sequence (uy) is

bounded in U. By reflexivity, we may thus assume that these sequences converge
weakly, after possibly extracting suitable subsequences, in the respective spaces to

some f; € L1 (y;.,dya) and u € U;recall that 1 < g < oo.
Since U is compactly embedded in L?([0, T.] x IT; R%), we have

eIl 2 g0, 7 jxrime) = kli_r};loHukHLz([O,T.]xF;W)' (2.2.1)

In combination with the constraints (2.1.1) and (2.1.2), this yields that the sequences
(fk“) are bounded in (Likin N L°°) ([0, T.] x Q x R®) and that the sequence ((Ex, Hy)) is

bounded in L?([0, T.] x R%; R®). The property of ( fk“) implies the boundedness of ( f,f‘)
in any L ([0, T.] x Qx R3), 1 < p < oo, by interpolation. Therefore, after extracting
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a further subsequence, f{* converges weakly to some f* in any L? ([0, T.] x Q x R?),
1 < p < oo (weak* if p = o0), and ((Ex, Hx)) converges weakly to some (E, H) in
L?([0, Ts] X R3; R®).

By weak-* convergence in L* ([O, T x QX R3), the constraint (2.1.1) is preserved in
the limit. As for the constraint (2.1.2), let R > 0. By weak convergence of the f*, weak
convergence of (Ex, Hy), (2.1.2) along the minimizing sequence, and (2.2.1), we have

N Ts o Ts
Z/ // vgf“dvdxdt+—/ /(|E|2+|H|2)dxdt
0 B 87t 3
a=1 R
< liminf dddt— E Hi?) dxdt
_ggg;(Z/ L b o + / (1 + ) a )
<2TZ//RS o0 fa (H)
=2T.Z// vof“dvdx+T'—g,||(l§,IfI)
P Q JR3 @ 47

which, after letting R — co, on the one hand yields f* € L! . ([0, T.] x Q x R?) and
on the other hand implies that the constraint (2.1.2) also holds in the limit. Here we
should point out that (2.2.1) was crucial since we needed

2 -1
L) +2nTfo hm ||uk ||L2([O TuJxTRY)

2

2 -1 2
L2(R3;RS6) 2l ”uHLZ(lO,T-JxF;R%’

ligi;lfﬂuk||L2([0,T.]xr;R3) < lullr2 o, xrms)-

If we had chosen a cost term with the L%([0, T.] x T; R%)-norm instead of the U/-norm
of u in the objective function, we would only have been able to extract a subsequence
(ux) that converges weakly in L?([0, To] x T; R®) rendering the above lim inf-estimate
false in general.

The next step is to pass to the limit in the Vlasov—-Maxwell system (VM). This is
done in much the same way as in Section 1.4 but we carry out the proof for the sake of
completeness. By Lemma 2.1.3 the internal currents converge weakly, after extracting
a further subsequence, in L3 ([O, T.] X Q; R3). The weak limit—call it 7i“t—has to be
the internal current j™ induced by the limit functions f* because of the following:
Take 9 € C2(]0, T.[ x Q;R?) and s > 0. Using weak convergence of ji™ and f{,
respectively, we deduce

jint dedt‘ hm // jint _ mt -9 dxdt

supp 9

N
= lim //(d a‘/R35af“dv—;qa‘/R35afk“dv)-dedt

supp 9
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N
< limsup Z a [/ /B Ua(f* = £) - O dvdxdt
a=1 s

k—o0
supp 9

N
+limsuqua // (/ Eaf”‘dv—/ Eaf,f‘dv)~\9dxdt
k—o0 |v|=s |v]>s

a=1 supp 9

N
. 1 o o
< 0+ lim sup ZJ19llqor e ;—1|%| // ( /R aftdo+ /R ki dv) dxdt

- supp 9

C

< 7

s

where C is finite by virtue of (2.1.2) and the boundedness of (1) and does not depend
ons. Since s > 0 and 9 € CX(]0, Tu[ x ;R?) was arbitrary, we conclude j"t = jint
almost everywhere. Thus, we can pass to the limit in (1.1.2) and (1.1.3) easily in
all terms but the nonlinear one. To handle this remaining term, we again apply
Lemma 1.4.2: Let C € C°(R%) and s > 0 such that C vanishes for [v| > s — 1. Our goal

is to show that fR3 Cf¢ dv converges strongly (and not only weakly) to ./R3 Cf*dvin
L%([0, T.] X Q). To this end, let n € CX(]0, To[ X Q x Bs). We have

% (nfi’) +Va - 9x(nf’)
= —div, (Qa(Ek +6a X Hk)(nfk[X))

+ fEom + £V - 0xn + qaf(Ex + Vo X Hy) - don
=: divy, gi‘ + g(’)‘

on R x R3 x R3 in the sense of distributions. Clearly, the L*(R X R X Bs)-norms of g(l)‘
and g{‘ are uniformly bounded in k due to n € C(]0, T,[ X Q X B,) and the already
known uniform boundedness of fk“ in L*® and L? and Ej, Hy in L2—the latter being a
consequence of imposing (2.1.1) and (2.1.2)! Thus, applying Lemma 1.4.2 yields the
uniform boundedness of

H/B CO)(nff) (- v) dv

H1(RxR3)

/B o) (1f2)(, - v) do

H1(0,T.[xQ)

By boundedness of |0, T.[xQ, H i (10, To[ x Q) is compactly embedded in L2(]0, Ts[ X Q)
so that the sequence ( st C(v)(n f,f‘)(, D) dv) converges, after extracting a suitable
subsequence, strongly to qu C)(nf*)(, -, v)dv in L2(]0, Ts[ X Q). Again by the uni-
form boundedness of the f" in L? we can estimate

(2.2.2)

H/R CO(1=n) (2 = f4))C,0)do

L2([0,T,]xQ)
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< C||1 - UHLZ([O,T-]XQXBS)
L2([0,T.]xQ)

/B CO((1=n) (£ = £4))C, - v)do

with a constant C > 0 that does not depend on k. Now let I € N be arbitrary and
choose 7 =1; € CZ2(]0, R*[ X Q X B) such that the right-hand side of (2.2.2) is smaller
than % ; note that [0, T,] X Q) X B, is bounded. We iteratively choose subsequences

24 [2% [24 3 24
(fl'k)keN of (fk ) such that (fl”'k)keN is a subsequence (fl'k)keN and such that

im [ e mfie)e oo = [ cormr)e o0

in L2(]0, T,[ X Q) for all € N. Considering the diagonal sequence, now again denoted

by ( f,f‘), these considerations imply

/ CO)f(, - v)do — / C(©)f*(:, -, v)dv strongly in L%([0, T.] x Q) for k — oo
R3 R3
(2.2.3)

because of

‘/ C@f (- v)do = / C()f*(-, -, 0) dv
R3 R3

Finally take i € W1, and consider the limit of the crucial product term in (1.1.2). By
a density argument (as in Section 1.4) we may assume that ¢ factorizes, i.e.,

ll}(t/ X, U) = ¢1(t/ X)E[/Z(v)-

L2([0,T.1xQ)

<1,
Tk

/C(U)(nkfk“)(wv)dv—/ C@) (e f)(, -, v) do
Bs Bs

L2([0,T.]xQ)

We have

]gijgo/OT'/(E/Rfk.(avlp)fkadvdxdt:klggofonfogwl.(/wfkavwdv) dxdt
=/OT'/QE¢1-(/RSf“V¢Zdv) dxdt=/OT'LASE-(aU¢)f“dvdxdt

by 1 € L*([0, T.] X Q), Ex — E weakly in L?([0, T.] x Q; R3), and (2.2.3) defining
C = (Vy2),, i =1,2,3. Similarly, we obtain

%EEO/OT'LA3(aaka)~(avgu)fkadvdxdt:/OT'/Q/N@xH)-(avlp)fadvdxdt.

Altogether, (VM) is satisfied in the limit.

By Lemma 2.1.2, we even have f* € Y7, and thus y = ((f*, f4), E.H) € Y
altogether.

Finally, the objective function indeed attains its minimum at (y, u) by weak lower
semicontinuity of any norm. O
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2.3 Weak formulation—revisited

For later reasons, it is convenient to revisit the weak formulation of Definition 1.1.1
and write the equations there as an identity

G((f* f&) o E/H, j) =0

in the dual space of some reflexive space. Throughout this section, we fix 1 < p <2,
2 < g,§ < oo such that

r, 1,1, 1.1 2.3.1)
P 9 q9 49 2
We will restrict ourselves to a finite time interval, i.e., T, < oo, and assume f® €
L1([0, ] x QX R?), f& e L‘f()/;:,dya), E,H € [2([0,T.JxR%R?), and j = ™ + u

where /it = YN g, [ B, fdv € L3 ([0, L] x R, u € L2([0, T.] x [;R?). Note
that for such u there is a weak solution in the sense of Definition 1.1.1 with these
properties due to Theorem 1.4.4. To work in the most general setting, the g% do
not have to vanish for a« = 1,..., N’ although they are assumed to be zero in the
formulation of (P).

Clearly, Definition 1.1.1.(ii) and 1.1.1.(iii) are equivalent to

N T.
0=>|- O™ + T - D™ + Gu(E + 0o X H) - dp1p%) f* dodoxdt
a=1 0 Q

R3(

+ ffl#"‘dya—/ ('Kaff+g”)1,b“d7/a—/Q/RSfo“gb“(O)dvdx)

Vi .

T,
+/ / (€E - 049 — H - curl, 9° — 4mj - 9°) dxdt +/ ¢E - 9¢(0) dx
0 R3 R3

T,
+/ / (yH - 99" + E - curl, Sh) dxdt +/ uH - 8"(0) dx
0 R3 R3
= G((F, £2) B H, ) (), 8¢, 9) (232)
forall (p*), € WY and 8¢, 9" € Or,.

2.3.1 Some estimates

From now on, ((f¢, &), E, H, j) does not have to be a solution of (VM). All assertions
are made under the assumptions mentioned above.

In the following we will estimate each summand, one by one, where we often need
(2.3.1). Furthermore, C denotes various positive, finite constants that only depend on
T,, Q, and I and that may change from line to line. We have

T.
/ //&w“f”‘dvdxdt
0 JaJrs
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< T/\(Q/(/ /|f"‘|qudt) (/T./ptgb“ﬁdxdt)%dv
< C”f ”m([OT ><Q><R3)(/ (/ /|at’¥’ \q dth) dv) ’

next
5 Ea-c?xl/f’f“ dvdxdt‘
< TA(Q/(/ /|f“|qudt) (/ /!r%,b |qudt) do
T. ) Y.
< c“fa||Lq([O,T.]ngR3)(/R3(/0 /Q|ax¢a|f’dxdt) dv) ;
then,

qa(E +0y X H) - ¢ dvdxdt‘

s|qa|/RB(/ /|f“|‘7dxdt) (/ /|E+vaxH| dxdt);
(/0 ./Q|8vz,b“|qudt)%dv

1

T. . % P
< \/zlqa|||fa||L”7([O,T.]><Q><R3)”(ErH)”Lz([O,T.]xQ;Rf’)(‘/R; ('/0 /Q|(9v1p“|q dth) do | .

Now have in mind that there is a bounded trace operator

W10, T.[ x Q) — L((]0, T[ x 9Q) U ({0} x Q) U ({To} x Q)).

/fub dyq| < // / |foe|[0g - n| dSydtdo

{x€dQ|v,-n(x)>0}

1
T, T N i
sC/ / / If2|"[0q - n|? dSydt (/ /|¢“|quxdt) dv
R3| JO 0 dQ

{x€9Q|v,-n(x)>0}

Thus,
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Te
sC// / If2|"[0q - n| dSydt
R3| JO

{x€dQT,-n(x)>0}
([ [+ o ) )
<C||f+||m (1) (/ (/ /|¢ 17+ g + oo )dxdt)~ 0)"

by [0, - n| < 1. Similarly,

/ g YT dyq
-

Te

< C||g”‘||Lq(VT.,dya)</R3 (/OT /Q(WW + o] + |8x¢“|ﬁ) dxdt)q dv)

Y

and

/ (KafE)Y® dya

T

[ et
V1.

1

< CHff”L" (v, v (/ (/OT /Q(W’ar? + |<9t1700‘|t7 + |8x¢a|‘7) dxdt)ﬁ dv)

since [a%| < 1and v — v —2(v - n(x))n(x) has Jacobian determinant —1. Analogously,

‘/ / Fay®(0) dodx
Q JR3
WQXRS)(/RS (/OT /Q(ll’balb7 + |&t‘Pa|’7 + |3xl,ba|ﬁ) dxdt) E dU)

making use of the boundedness of the trace operator, now regarding the slice {0} x Q
instead of |0, T,[ X Q.
As for the Maxwell part, we can easily estimate

< C||fe

¢E - 9y dxdt| < o"||Ell 20,1, 1xm3.83) 1969 120, 1 wm2 83) -

R3

0
T
/ / H - curly, 9° dxdt
0 JR3

< 1H 20,1303 llcurle 9° || 20,7, 1xr3:3),
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T.
/ / uH - 0; 9" dxdt
0 JRr3
T
/ / E - curl, 8" dxdt
0o Jr3

Concerning the terms with the initial data, we first notice that for all x € R3 we have

h
= ‘51”H||LZ([O,T.]><R3;R3)”8“9 ||L2([0,T.J><R3;R3)’

< 1Ell 2o, w9 [|curly hHLZ([O,T.]xR3;R3)'

T,

9°(0, x) = (0, x) — (T, x) = —/ T 0,9°(¢, x) dt:
0

consequently
T
|9¢(0, x)|* < T./ 19:9¢(t, x)|* dt,
0
and therefore

<o'C

)é

L2(R3;R3) 19,9 ”LZ([O,T.]xR3;R3)'

/ ¢E - 9°(0) dx
R3

Similarly, we conclude

<o'C

i

LZ(RS;Rs)”at 9 HL2([0,T.]><R3;R3)'

’/ uH - 9" (0) dx
R3

Lastly, we turn to the term with j. By Sobolev’s embedding theorem, H!(]0, Ty[ X A)
is continuously embedded in L4(]0, T.[ x A), A = Q, T, yielding

T. T p T.
/ / j - 8¢ dxdt / / 7™ 9¢ dxdt / /u - 9¢ dxdt‘
0o Jms 0o Jo 0o Jr

< [|™| 19N Lao,mixme) + 1l 20,1 xre3) 19° 2o, 1 xri3)

< +

L3 ([0,T.]xQR%)

< C(”]m ||L%([0,T.]><Q;R3) + ”u“LZ([O,T.]XF;RS)) ||19e”Hl(]0,T.[><R3;R3).

Altogether, we conclude that G((f¢, f),,,E, H,j) is a bounded linear operator on
‘I’? X @%. if we equip W1, with the norm

[¢llyins = /R ( /O - /Q (el + ol + oeu T + |auu ) dxdt)ﬁdv (2.3.3)

and Or, with the usual H'-norm on ]0, T,[ x R3.
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2.3.2 The space W!7-7 and the extended functional

The choice of the norm for the test functions i suggests having a detailed look at the
space WLP/1. This space, so to say a mixed order Sobolev space, is defined to be the
space consisting of all measurable functions on ]0, T,[ x QO X R3 with values in R such
that their derivatives of first order are locally integrable functions and additionally
the right-hand side of (2.3.3) is finite.

We first consider the corresponding LP-i-space, that is,

LP7 = {y: 10, To[ x Q x R® — R measurable |

Iollos = [ ’ i |¢|L7dxdt)gdv ol

Since we can identify LP1 with the Bochner space L? (R%; L7([0, T.] x Q)), we get the
following basic property.

Lemma 2.3.1. L7/ is a uniformly convex Banach space.

Proof. This is easy to see using the identification above. The uniform convexity follows
from a classical result of Day [Day41] since 1 < p, § < oo. O

The uniform convexity will be crucial later.
These properties of LP/1 carry over to W1/ in the same natural way as such prop-
erties carry over from standard LP-spaces to standard Sobolev spaces W'*: The space

- : VA ‘
WP can be interpreted as a closed subspace of (L7)" via the isometry

Y e (Y, 00, 00, 00y, O P, Oy Y, 0oy Y, Oos ).

Hence, one can argue in the same way as in the standard context to prove the following
lemma.

Lemma 2.3.2. W' is a uniformly convex, reflexive Banach space.

Proof. Note that uniform convexity and completeness implies reflexivity by the clas-
sical Milman-Pettis theorem; see, for example, [Pet39]. O]

Now we turn back to our weak formulation. Recall that we have proved

G((F*, £2), B H, ) € (W) x3,)

If we denote A := ‘I/_T.N X ®_T,2, where the closure is to be understood in W1#/
and H'(]0, To[ X R%;R?), respectively, we can extend G((f%, f),,E, H,j) uniquely
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to a bounded linear operator on A and still the formula in (2.3.2) applies. Since
H'(]0, T.[ x R%;R3) is also a uniformly convex, reflexive Banach space and since A is
a closed subspace, we instantly conclude the following.

Lemma 2.3.3. A, equipped with the norm

1
2

N
2
(o)., 9%)] = (znwuim 0 g s+ 19 oo |

a=1
is a uniformly convex, reflexive Banach space.

Proof. By Clarkson [Cla36], a finite Cartesian product of uniformly convex spaces is
again uniformly convex if one sums up the norms properly. Note that we have chosen
the 2-norm on RN*2 to sum up the particular norms (any other f-norm, 1 < j < oo,
would work as well). Thus, A is uniformly convex. Again by completeness of A and
the Milman-Pettis theorem, we conclude that A is additionally reflexive. O

Thus, we can regard G((f*, f{),,E, H,j) € A" as an element of the dual space of
a uniformly convex, reflexive Banach space, and we have that, under the assump-
tions made in the beginning of Section 2.3, G((f¢, f) . E, H,j) = 0 is equivalent to
((f*, f&),,E, H,j) being a weak solution of the Vlasov—Maxwell system (VM) on the
time interval [0, T,].

Notice that A is a proper subspace of (W1?1) " x (H!(]0, T x R3;R3)) since i) € Wr,
and 9 € Or, vanish for t = T,.

Later, in Section 2.4, we want to derive first order optimality conditions for a (local)
minimizer of (P). To this end, it will be helpful that G (G, to be more precise; see below)
is differentiable in ((f*, f{*),, E, H, u) with respect to a suitable norm; here and in
the following, differentiability always means differentiability in the sense of Fréchet.
As in the formulation of (P), we restrict ourselves to ((f*, f{),, E,H,u) € ¥ xU.
Note that this yields f* € L7([0, T.] x Q x R?) by interpolation and thus we can carry
through the previous considerations of this section. We equip Y x U with the norm

”(%”)ny ”((farf )o EH u ”yxﬂ

-3

v=1

e, +||fe ”m(y* /d)/a) +ICE, E)l 2o, jxmamey + Ntlla,

where

”fHLl ([0, T ]xQxR3) + ||f||L°° ([0,To ]xQxR3) + Na (f)

The latter indeed is a norm on .V;‘d since N, is a seminorm on y;d, as is easily seen.

Note that the following lemma does not need the adding of N, as above; however,
this will heavily be exploited in Section 2.4.
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Lemma 2.3.4. The map

G YxU—> N,
G((F* f2) 0 E H u) = G((f2, f) o E HL ™ + 1)

is differentiable, and we have

(Q’(yfu)(éy,6u))((x,b“)a,sf,sh)
= i(_ /OT. /Q/RS(@W + Ty - O + go(E + Ty X H) - 91h%) 5 f°

a=1
+/ 6ff¢a dya - /
7 ¥

Te Te

+qa(OE + 0y X SH)f - 0y dvdxdt
((](aéff)lpa dVa)
T. ‘
+ / / (e0E - 949° — 6H - curly 8¢ — 41t (6™ + du) - 9°) dxdt
0 Jr3

Te
+ / / (yéH-&tSh+6E-curlx\9h)dxdt, (2.3.4)
0 R3

where, in accordance with the previous notation,

N

6jint - an/

0,0 f* dv.
a=1 R

Proof. The candidate for the linearization at a point (y,u) in direction (6y, 6u) =
((6f*,6f%),, 0E,0H, du)is G'(y, u)(0y, du) as stated above. Recalling the estimates
of Section 2.3.1, we see that G’ (y, u) (6y, 6u) € A* and

6" (v, u) (0y, 5u)] .

N
< C(Z(||6fa”L'7([O,T.]><Q><R3) + ”(E'H)||L2([0,T-]XR3;R6)”‘SfaHLn([o,T.]xQxRS)

a=1

+Hfa”L‘l([0,T.]><Q><R3) IOE, SH)| 20,7, 1xr3;m6) + “(Sff”m (y;,,dya))
L3

.1 t
+ I1GE, 8E)l2qo,poizs) + 197™ 1, 4 0.1 sy * ||5”||L2(10,T.Jxr;R3))/ (2.35)

where C only depends on T,, Q, T, ¢/, and the g,.
Similarly to (2.1.7) and (2.1.8), we deduce

||6jlnt||L% ([0, T. ]xQ;R3)
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N 4(4m (N 3 :
= (Zl‘M (?”bfa”m([o,n]xoxm + 1) ) (Z“bfa”Llakm([O,T.JxoxlI%S)
a=1 a=1

This and (2.3.5) yields that G’ (v, u) (8y, 6u) — 0in A* when (6y, 6u) - 0in Y x U.
Therefore, G’ (y, u): Y x U — A" is a bounded linear map; linearity is of course easy
to see.

To show that G’(y,u) indeed is the derivative of G at (y,u), we consider the
remainder, which only contains terms that come from the nonlinearity in the Vlasov—
Maxwell system:

(G(y + 0y, u+ou) -Gy, u) -G (y,u)(dy,ou)) ((¢a)a, 36,9’1)
N T.
- ‘;%/0 /Q | (OF + 00X OH) - doyp®0f* dudxat.

Hence, again using the corresponding estimate of Section 2.3.1,

|G (y + 6y, u+6u) - Gy, u) - G (y, u) (5y, 5u)]| .

N
< C D 16 s go.1 pecwezn 1OE, SED 2o 1. ey = 0(||(5%5u)||yxu)

a=1

for (6y,d6u) — 0in Y x U, where C only depends on ¢’ and the g,. This completes
the proof. O

2.4 First order optimality conditions

A standard step when treating an optimization problem is to derive first order neces-
sary optimality conditions. Typically, one exploits differentiability of the control-to-
state operator. Unfortunately, we do not have such an operator at hand since we do
not even have uniqueness of weak solutions for a fixed control 1. Lions [Lio85] intro-
duced a way to tackle optimization problems having a PDE (system), that (possibly)
admits multiple solutions, as a constraint. The main strategy is to consider approxi-
mate optimization problems that no longer have the PDE (system) as a constraint but
merely penalize points (y, #) that do not solve this PDE (system). For such approxi-
mate problems, one can show that minimizers exist and derive first order optimality
conditions. Then the penalization parameter is driven to oo, and one hopes the PDE
(system) to be solved in the limit, that is to say, the limit of minimizers (in whatever
sense) is a solution of the PDE (system), and moreover it is a minimizer of the original
problem. Furthermore, one may show that passage to the limit in the approximate
optimality conditions, in particular in the adjoint PDE (system), is possible, too.

We fix g > 2 and p, j satisfying (2.3.1) so that the results of Section 2.3 can be
applied.
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2.4.1 An approximate optimization problem

Following the outlined strategy, we introduce a penalization parameter s > 0 (which
will be driven to oo later) and consider the approximate problem

yel;l,lllréﬂ $(y,u), } (Ps)
s.t. (2.1.1), (2.1.2), and (2.4.1) hold
where the objective function is
s 2
Js(y,u) = T (y,u) + 516 (v, v
LSl et Sl ol
q o all)+ Lq(}'ﬁ,d;/a) r U 2 ’ A*
and the additional constraint is
Na(f%) <Ly, a=1,...,N. (24.1)
Here,
o 4ga|vr
-La =2 fa L (QxEY) 1+ T
12T, i// UOJM/ dvdx + T.G’”(é I-OI) ’ +2nT20_1C2(rminj)% 7
* Jades © 4re N7 ez (rasme) * r

wheremin J = 9 (y*, u*), (y*, u*) being some minimizer of (P), and Cr is the (optimal)
constant corresponding to the continuous embedding U c L%([0, T.] x T;R%). On
the one hand, (2.4.1) is automatically satisfied for any minimizer (v.,u.) of (P)—in
particular, there are feasible points for (Ps)—which can be verified as follows: Due to
(2.1.2) it holds that

87

ICE«, Hll2(jo, 7 5m3 .16 < \/%
N

. Lo |(e s

<= 2T.Z// ohfrdods s S (£, 1)
o o1 Y/Q IR an

a3 [ [t o S0
- o .a:1 e * an ’

which yields (2.4.1) in view of (2.1.1) and (2.1.6).
On the other hand, (2.4.1) ensures a certain weak lower semicontinuity of ||G|| - by
the following lemma—and this is conversely the very reason why we impose (2.4.1).

) 2
2 1,2y, (12
+2nTfo Cr””*”(u)

L2(R3;RS)

2 2
+ 271T,20_1C%(r min j)%) ,

L2(R3;R6)
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Lemma 2.4.1. Let ((yx,ux)) € Y X U with £ > 0 and limit functions u € U, f* €
L=([0, T.] x Q x R?), f¢ € Lq(y;.,dya), (E, H) € L2([0, T.] x C; RY) such that for k —
oo it holds that uy — uin U, f* = f*in L¥([0, T.] x QX R3), f&, — f&in L1 (y;,.,dya),

(Ex, Hx) = (E,H) in L*([0, T.] x CQ; R®). Furthermore, assume that (2.1.2) and (2.4.1) are
satisfied along the sequence. Then, (y,u) € Y X U, (2.1.2) and (2.4.1) are preserved in the
limit, and

16 (v, )l < liminf|G (ye, we)]| . (2.4.2)

Proof. Note that (1) converges to u strongly in L2([0, T.] x T; R3).
Step 1. f* e y;d and (2.1.2) and (2.4.1) are preserved in the limit: Take 1 €

C (10, To[ x @ x R?) and consider
8k = ot (nfi’) +0a - A (nfy).

Inlight of (2.4.1), the sequence (gx) is bounded in L?([0, T.] x Q; H™(R?)). Therefore,
(gx) converges, after possibly extracting a suitable subsequence, to some g weak-* in
L?([0, Ts] x ©; H7}(R3)). Since for all ¢ € C(]0, To[ X Q x R?)

g(p) = lim (9: (nfi?) +0a - 9x (nf’)) ()

- khm / / / nfk at(P + Uanfk x(P) dodxdt
_/0 /Q/RS(Ufaatfp +0unf* - Oxp) dodxdt = (9:(nf*) +0a - dx(nf*)) ()
and since C°(]0, To[ X Q x R?) is dense in L?([0, T.] X Q; H' (R?)), we have

O (Nf%) + 0y - dx(nf*) = g € L*([0, T.] x Q; HT1(R?)).

Furthermore, by weak-*-convergence it holds that

H5t (f%) + 0 - s (nfa)||L2([0,T.]><Q;H‘1 (R3))
= h,fig‘fnat (nfe) +0a - Ix (nfka)||L2([O,T.]><Q;H*1(R3)) < La

if 7 satisfies (2.1.4). Thus, (2.4.1) is preserved in the limit. Moreover, as in the proof of
Theorem 2.2.1, we also see that f* € (L;km N L°°) ([0, T.] x Q x R?) and that (2.1.2) is
preserved in the limit. Altogether, (y,u) € Y xU.

Step 2. Proof of (2.4.2): To this end, we have to pass to the limit in the right-hand

sides of (1.1.2) and (1.1.3); this procedure has already been carried out a few times
in similar, yet not identical situations. As a consequence of Lemma 2.1.3, we may

assume that ( ]mt) converges weakly to ji™ in L3 ([0, T.] x ©; R®); in order to verify that
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this weak limit indeed is j™, we recall that an energy estimate like (2.1.2) is sufficient.
Hence, we can easily pass to the limit in all terms but the nonlinear one, first for
((v*),,9°,9") € WY x©7 and then for arbitrary ((y*),, 8¢, 9") € A with the help of
Section 2.3.1. Regarding the nonlinear term, we first consider i) € Wr, that factorizes,
as in Section 1.4. For some [ € N and C € CZ(R?) with supp C € Bg (for some R > 0),
we find an n; € C(]0, To[ X Q X Br), similarly to (1.4.17), such that

<
L2([0,T.]xQ)

; (2.4.3)

—_ =

[ con-mise - e o
note that the L2-norms of the f¢ are uniformly bounded. For this fixed 7; it holds that

9 (nfi") +%a - O (mflg)”Lz(RxR%H*l(R%) = [|: () + T - 9 (mfka)||L2([0,T.]><Q;H*1(R3))
< Na(f) <||m||H1(]0,T.[xQ><R3) + ”m||L°°([0,T.]><Q;H1(R3)))‘

By virtue of (2.4.1), the right-hand side is uniformly bounded in k, whence we have
for a subsequence possibly depending on /,

[ c@fnsz)eodo™= [ s oo

in L2([0, T.] X Q) due to Lemma 1.4.2. Assuming that all ¢* € Wr, factorize, i.e.,
Yt x,v) = P{(t, x)P5(v), and using (2.4.3), we may now pass to the limit in all
terms along a common subsequence, that is,

Gl ) (4,8, 8") = lim & (e, e ) ((6°),,, 9, 9"),

via the same diagonal sequence argument as in Section 1.4.2 or the proof of Theo-
rem 2.2.1. Since the limit on the left-hand side does not depend on the extraction of
this subsequence, we conclude that the equality above even holds for the full limit
k — oo by using the standard subsubsequence argument. Thus,

6(r,0)((v%),., 9, 8%)| < tim ind|6 (v, w) ] (90 978"

This inequality then also holds for general ((¢%) , 8¢, 9") € A by a density argument;
see Section 1.4 and the definition of A. Altogether, (2.4.2) is proved. O

Remark 2.4.2. It is important to understand the necessity of (2.4.1) for Lemma 2.4.1
and for later treating (Ps): In the proof of Theorem 2.2.1, we applied the momentum
averaging lemma 1.4.2 to a sequence where any f* already solves a Vlasov equation in
the sense of distributions, that is,

HfE +Ta - 0xf = —dive (Fiff),
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which gave us a direct estimate on the L([0, T.] x Q; H™! (R?))-norm of some 1£* by
the corresponding a priori LP-bounds on Fi and £*. However, the f* of some (y, u)
that is feasible for (Ps) do not necessarily solve a Vlasov equation as above. Thus,
suitable estimates on the L?([0, To] X Q; H™!(R3))-norm along some sequence cannot
be obtained without imposing them a priori, that is, imposing (2.4.1). Without this,
we would not be able to pass to the limit as in the proof above, and the important
weak lower semicontinuity of ||G|| - could not be proved.

Now we are able to prove existence of minimizers of (Ps).
Theorem 2.4.3. There is a (not necessarily unique) minimizer of (Ps).

Proof. This is proved in much the same way as Theorem 2.2.1 was proved. We no
longer have to show that (VM) has to be preserved in the limit. Instead, we apply
Lemma 2.4.1: The assumptions there are satisfied for a minimizing sequence (after
extracting a suitable subsequence) and the respective weak limits. Thus, the new
constraint (2.4.1) is also preserved in the limit, and the new objective function J;
indeed attains its minimum at the limit tuple (y, u). O

Later, we will need that Y/ X U is complete; this is proved in the following lemma.
Lemma 2.4.4. Y X U is a Banach space.

Proof. We only have to show completeness of Y Let (fc) be a Cauchy sequence
ickin_
L*-norm. For some n € C(]0, To[ X Q X R3), the sequence (9: (nfk) + Va - dx(nfk))
converges to some g in L2([0, T.] x Q; H1(R?)) since this space is complete. As in
Step 1 of the proof of Lemma 2.4.1, we see that ¢ = 9;(11f) + 0a - dx(nf). If 1 satisfies
(2.1.4), then

”at (n(f = fe)) +0a - x(n(f _fk))||L2([0,T.]xQ;H-1(R3))
< “8f ((f = fn)) +a - 9x(n(f _fm))||L2([0,T.]><Q;H-1(R3))
+ 110 (0 (fin = fi)) + D - O (n(fn = fk))||L2([0,T.J><Q;H‘1(R3))
= ||‘9f (’7(f _fm)) +Uq - O (U(f _fm))||L2([0,T.]><Q;H-1(R3)) + Na (fm _fk)

for any k,m € N. Here, the second summand of the right-hand side can be made
arbitrarily small (uniformly in 1) for large k and m because of the Cauchy property,
and the first summand is arbitrarily small if m = m(n) is large enough. Thus, (fx)
converges to f in the whole y};"d-norm altogether. O

in Mp“d. Clearly, this sequence converges to some f with respect to the L and

Next, we want to derive first order optimality conditions for a minimizer of (Ps).
To this end, we consider the differentiability of the objective function J;. Clearly, the
only difficult term is H Q(y, u) Hi To tackle this one, we state a duality result, which
links differentiability of a norm to uniform convexity of the dual space.
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Proposition 2.4.5. A Banach space X is uniformly smooth if and only if X* is uniformly
convex. In this case, for each unit vector x € X there is exactly one x* € X* with ||x*||x. =1
satisfying x*x = 1. Furthermore, this x* is the derivative of the norm at x.

Here, “uniformly smooth” means that

||x + t]/”x = [lxllx
t—0 t

exists and is uniform in x,y € {z € X | ||z||x = 1}. The original work in this subject
was done by Day [Day44]; see also [Lin04, Chapter 2] and [Brell, Section 3.7, Problem
13] for an overview of different concepts of and relations between convexity and
smoothness of normed spaces.

From Proposition 2.4.5 we easily get the following corollary, which we will need in
the following.

Corollary 2.4.6. Let X be a Banach space such that X* is uniformly convex. Then the map
z: X - R, z(x) = %Hxlli is differentiable on X with derivative z'(x) = x* where x* is the
unique element of X* satisfying ||x*||x- = ||x||x and x*x = ||x||%(. (Themap z': X — X" is
often referred to as the duality map.)

Proof. By Proposition 2.4.5, the norm is differentiable on the unit sphere of X. Since the
norm is positive homogeneous, this holds true on X exceptin x = 0, and the derivative
is x* such that ||x*||x- = 1 and x*x = ||x||x (still this x* is uniquely determined by these
two properties). Applying the chain rule we see that z is differentiable on X \ {0} and
has the asserted derivative.

That z is differentiable in x = 0 and z’(0) = 0 is clear. O

With this corollary we see that the objective function ; is differentiable.

Lemma 2.4.7. The objective function [ is differentiable, and its derivative is given by

i (y,u) 6y, du)

N 1
=Y. [ sign(r)lfeloss dy,

a=1 V1.

3 T,
+Z1:/0. /F(Sign(u]'”ujr 1(5u]- + K1 sign(atuj)|8[u]-|r 13t(5uj
=

+12 sign(&x,uj)|&x[u]-|r_18xi6uj dxdt

3
i=1

N Te
+ Z(_/)‘ '/(;.[R3((af¢a + 7, 0xY” + qa(E +Ua X H) - a”¢a)6fa

a=1

+qa(0E + T X SH) £ - ptp®) dodxdt
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+/+ Off v dya —[ (Koo f2) 0 dya)

V1. V1,

Te
+/ / (¢0F - 949° — 6H - curly 9° — 47t (6™ + 6u) - 9¢) dxdt
0 R3

T.
+ / / (y(SH - 9,9" + 6 - curl, sh) dxdt, (2.4.4)
0o Jrs
where ((Y®),, 9, ") € A is the unique element in A satisfying
l(@n)ese 9| =slotulle G w)(@),. 58" =l . @45

Proof. The only difficult term is %“ Gy, u) ||i The other terms are easy to handle in a
standard way.

— s

Denoting Z(y,u) = £||G(y, u) Hi we apply Lemma 2.3.4 and Corollary 2.4.6. The
latter is applicable since the dual of A, thatis, A™ = A, is uniformly convex due to
Lemma 2.3.3. At this point we should mention that this step is exactly the reason why
we work with a uniformly convex, reflexive test function space. Hence, additionally
using the chain rule, we see that Z is differentiable with

Z'(y,u)(0y,ou) = sA™G’ (y, u)(6y, ou) (2.4.6)

where A™ € A™ uniquely satisfies

A=l = |6, u)|| 176 (y,u) = |G (y, u)|[ (247)

Since A is reflexive, we can regard A** as a A € A via the canonical isomorphism. We
define ((¢%),, 9¢, 9") by multiplying this A with the positive number s. On the one
hand, from (2.4.6) we get the remaining part of (2.4.4), that is,

G'(y,u) oy, ou)(v),., &, 9"),
which is given by (2.3.4). On the other hand, (2.4.7) instantly yields (2.4.5). O

Remark 2.4.8. Such a ((¢%),, 8¢, 9") will later act as a Lagrangian multiplier with
respect to the Vlasov-Maxwell system, that is, a solution of the adjoint system, if
the point (y, u) is a minimizer of (Ps) or, later, of (P). In general, when one has a
differentiable control-to-state operator u +— y(u) at hand (which we do not have in
our case), computing the adjoint state as the solution of the adjoint system, which is
a part of the first order optimality conditions, is an efficient way to compute the total
derivative %j (y(u), u) when trying to find a minimizer numerically; see [Hin+09,
Section 1.6.2], for example.

Next, we derive necessary first order optimality conditions for (Ps). To tackle an
optimization problem with certain constraints and to prove existence of Lagrangian
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multipliers with respect to them, one has to verify some constraint qualification. To
this end, we state a famous result of Zowe and Kurcyusz [ZK79], which is based on a
fundamental work of Robinson [Rob76].

Proposition 2.4.9. Let X, Y be Banach spaces, S C X nonempty, closed, and convex, Q C Y
a closed convex cone (Q is a “cone” means0 € Q, x € Q =VA>0:Ax€Q), ¢: X - R
differentiable, and ¢: X — Y continuously differentiable. Denote for A C X (and similarly
forAcCY)

AT={x"eX"|VaeA:x"a>0}
and denote for x € Xandy € Y

Sy={AMc-x)|ceS,A =0}
Qy={k-1y|keQ,A>0}.

Let x. € X be a local minimizer (i.e., a local minimizer of the objective function restricted to
all feasible points) of the problem

min  ¢(x)

xeX
st. xeS§, g(x)eQ,

and let the constraint qualification

8'(9&)5;& - Qg(x*) =Y (CQ)
hold.
Then there is a Lagrange multiplier y* € Y* at x. for the problem above, i.e.,
(i) y €Q,

(i) y*g(x.) =0,
(iii) ¢’(x.) —y* o g'(x.) € SF.
We apply this result to our problem (Ps). As we have shown in Lemma 2.4.7, the
objective function is differentiable. In the following, let

S::{(y,u)eyx(LIlOSf“S‘f“

.e.,ND,(f“) <L, a= 1,...,N}

a
L2 (QXR3)
cYxU-=X,
Q=RyycR=Y.

Clearly, S is nonempty, closed, and convex, and Q is a closed convex cone. Further-
more, the constraints (2.1.1), (2.1.2), and (2.4.1) are equivalent to

(v,u) €S, gly,u) €Q,
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where

N T. T.
o 2 2
Ju)=I(u) - / // o “dvdxdt——/ / |E|” + |H|" | dxdt.
8(v,u) 20y oot s LI )

It is easy to see that g is continuously differentiable with
T. N T,
¢ (y,u)(5y, 6u) :ﬁ/ /u-éu dxdt—Z/ // 006 f* dvudxdt
0 Jr = Jo JaJdrs
s [T

“a ), /RS(E-(SE+H-6H)dxdt,

where
B = 4nT?07L.
We verify the constraint qualification (CQ).

Lemma 2.4.10. Let (ys, us) be a (global) minimizer of (Ps). Then, (CQ) is satisfied if s is
sufficiently large.

Proof. First, we exclude the possibility that some f is identically zero for s sufficiently

large (since then the term %”Q (ys, us)Hi is too large for (ys, us) to be a minimizer of
(Ps)): For each a, let ¥&: [0,T.] Xx Q x R® — R, ¢&(t,x,v) = n(t)p*(x,v), where
n € C([0, T.]) with n(0) = 1 and suppn C [0, T.[, and ¢* € C(Q x R?) with

|

Clearly, ¢ € Wr,. Now assume f,;° = 0 for some «y. We have

/ f“ogo"‘o dvdx
Q JRr?

o 1 o
a _ p% < Z||fa
f ¢ L2(QxR3) ~ 2 f

[2(QxR3)

G (vs,us)((0,...,0,4%°,0,...,0),0,0)| =

. 12 o /o 1. |12
- @o _ ao [ fo _ ,®0 —|| Fao
“f L2(QxR3) ,/Q,/R3f (f ¢ )dvdx Z2|f LZ(QXR3)'
Then,
7,
0
[2(QxR3)
GYs, us)|| . = ,
|| (]/s S)”A 2| IPfO Wiwi
and
. 14
-
2 3
T (s, us) > s - % > T (ve, 1) = T (e, 1), (2.4.8)
8| l)b* WLp.i
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where (v., 1) is a minimizer of (P) and where the strict inequality holds for s suffi-
ciently large, i.e.,

2
8|92 |y T (9o 18.)
max ;
a=1,..,N o |4
fa
L2(QXR3)

note that the right-hand side does not depend on s and ag and that no f° @ is identically
zero. Since (y.,u.) is feasible for (Ps), (2.4.8) is a contradiction to (ys, us) being a
minimizer of (Ps).

To prove the lemma, we have to show that for each d € R thereare A1,A; >0,k >0,
and (6y, 6u) € S satisfying

Mg (ys, us) (0y — ys, 0u — us) — k + Aag(ys, us) = d. (2.4.9)

We choose 6f* = f, forall a, 6E = E5, 6H = H;, 6u = us, and consider two cases;

note that in the following it always holds that A1, A, > 0, k > 0, and (6y, 6u) € S:
Case1. d < 0: Choose Ay = Ay =0,0f% = fi foralla, k = —d.
Case 2. d > 0: Choose A, =0, (5f1 =0,6f=ffora =2,k =0. Since

T.
g (ys, us) (0y — ys, 0u — ug) = / // U(l)fsl dvdxdt > 0,
0 JaJmr

we can choose A1 > 0 such that (2.4.9) is satisfied.

In all cases (2.4.9) holds; the proof is complete. O

Now, Proposition 2.4.9 gives us the following theorem.
Theorem 2.4.11. Let s be sufficiently large and (ys, us) a minimizer of (Ps). Then there exist
v > 0and 1l € (Mp”‘d) ,a=1,...,N,such that:

(i) vs =0o0r g(ys,us) =0.
(ii)

N N
ch;"fs”‘ < Z’cféfa

a=1 a=1

forall 5f¢ € Y satisfying 0 < 5f* < ||f ae. and Ny (6f%) < Lo

(iii) For all (6y,6u) € Y x U it holds that

N

. -1
0= Wa /+ SIgn(fs(f+)|fs(i[+|q off dya
=1 7T,

a

L (QxR3)

3 T.
+ Z sign(uslj)|us,j|r_16uj + K1 sign(&tus,j)|<9tus,j|r_18t6uj
=1 0 T
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+K2

1

N .
+Z(’ /OT /Q/RS((«W? + 00 O P¢ + Ga(Es + 00 X Hy) - 9oipd ) Of

a=1

3
sign(c?xius,j)|8xius,j|r_18xi6uj) dxdt
=1

+qa(0E + 0o X SH) £ - dpp) dvdxdt
o [ osrurara- [ wcase dya)
1. T,
Te )
+/ / (€O - 949¢ — 6H - curly 85 — 41t (6™ + du) - 95) dxdt
0 R3
Te
+/ / (p(SH -39 + OF - curly s’;) dxdt
0 R3

T, N T.
+vsﬁ/ /us-éudxdt—st/ // 006 f* dudxdt
0 r — 0 Q JR3
Te N

V50
4n

/ (Es - OE + H, - 6H) dxdt — Z 452 (2.4.10)
0 R3

a=1

where (), 9¢,90) € Ais, in accordance with (2.4.5), given by

()52 92)] = sl e o)l
6 (v, 1)((92).. 9%, 9%) = sl (e, w) -

In other words, (2.4.10) can be interpreted as ((¢)
adjoint system

9¢, 91) being a solution of the

a’

YL + Ty - % + qo(Es + Ty X Hy) - dpth® = 470, - 9 + 1508 + 78
on[0,T.] x QxR3, (Ads.1)
. -1
Ka®Kyg_ =g +wa 51gn(fs%+)|fsof+|q on 7/;.' (Ads.2)
V(L) =0 on QxR3, (Ads.3)

YSOp  on[0,T.] xR3, (Ads.4)

N
€09 + curl, Sf = - Z E]a/ f1du g do -
a=1 R3

Tt

Vg0

N
8% ot 85 = = 3, [ r 0w x5) do - 52

on [0, T.] xR3, (Ads.5)
(T =9M(T) =0 onR?, (Ads.6)

H;
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and the stationarity condition
> T . r=1 . r=1
0= Z ) sign (us,)|us, | ou; + 11 sign(deus ;) |[Orus ;| drdu;
j=1

3
+% Z sign (dx, us ;) |8xl. us,j|r_13xi6uj dxdt
i1

T
- / /(4718;’ — vsBus) - du dxdt forall Su € U  (SCs)
o Jr

being satisfied.

Proof. Since (CQ) holds due to Lemma 2.4.10 and Y x U is a Banach space due to
Lemma 2.4.4, by Proposition 2.4.9 there is v; € R acting as a Lagrangian multiplier
with respect to (2.1.2). Proposition 2.4.9.(i) implies vs > 0, and Proposition 2.4.9.(ii)
yields part 2.4.11.(i).

With Proposition 2.4.9.(iii) and the notation used there we see that

Ts = :Ts/(ysﬂ/is) — Vs 'gl(ySr us) € Sz—y ) c (Y xUy. (24.12)

Consequently, 7 can be decomposed into

@ = (), (22.), 78, 7l )

S T—

a=

m

Since the set S o) only limits the directions 6 f¢ and not the directions 6 f, 6E, 6H,
+

(ysus)

to vanish. Thus, 75 = (7¢), via

and 6u, the property 7; € S yields that all 7{ , and moreover ¢, 7!, and 7! have

N
T, (6y, ou) = ) T8O f°. (2.4.13)
a=1
On the one hand, by 7; € Szy ) and the identification (2.4.13) we have for all 6f¢ €
Yy satisfying 0 < 5f¢ < ‘f“ Loty and Nu (6f%) < La,

N
T (0f* — f&) =0,

a=1

which is part 2.4.11.(ii). On the other hand, (2.4.12) and (2.4.13) instantly yields (2.4.10)
recalling the formula for J; from Lemma 2.4.7.
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Setting ou and all but one of the directions 6 ¢, 6f, 0E, and 6H to zero and the
one remaining arbitrary, we conclude that the adjoint system (Ads) holds. Note that
a priori the ¢, 8¢, and 9! vanish for t = T, by definition of the test function space A.

Finally, setting all directions but du to zero yields (SCs). Thus, also the proof of part
2.4.11.(iii) is complete. O

Remark 2.4.12. If, for example, r = 2 and the boundary of I' is smooth, (SCs) can easily
be interpreted as the weak form of the second order PDE

K1071Us + Ko Axuts = =418 + (vsf + 1)ug on[0,T.] xT,
o1us(0) = drus(Te) =0 onT,
Opptts =0 on [0, T,] x dT.

Here, d,,; denotes the directional derivative in the direction of the outer unit normal
nr of JT.

2.4.2 Passing to the limit

There remains to pass to the limit s — oco. A natural approach is to try to pass to
the limit in the optimality conditions of (Ps). This would require boundedness of
the adjoint state in a certain norm. To this end, typically one needs to exploit some
compactness result for the linearized PDE (system). In many situations, such results
are available, and one can then verify that the optimality conditions also hold in the
limit, i.e., for a minimizer of the original problem. We refer to [Lio85] for an abundance
of examples of such PDEs.

However, for the Vlasov-Maxwell system no such results are available. In the
author’s opinion, the most problematic terms are the source terms on the right-
hand side of (Ads.4) and (Ads.5) which include d,¢'¢, i.e., a derivative of the adjoint
state. This is a structural problem arising because of the Vlasov-Maxwell system.
Conversely, there are artificial problems, that is, the appearance of vs and 7¢. They
only appear because it is unknown whether the artificial constraints (2.1.1) and (2.1.2)
in (P) (or then (2.1.1), (2.1.2), and (2.4.1) in (Ps)) are automatically satisfied for any weak
solution of (VM) (or for a minimizing sequence of (Ps)). Especially ¢ is very irregular
and there are no weak compactness results for the space which t{ lies in. Moreover,
to gain compactness via some momentum averaging lemma seems not possible since
the right-hand side of (Ads.1) (in particular, 477, - 9¢) is not square integrable over
[0, T.] x Q x R3.

Thus, we are not able to prove that a minimizer of (P) satisfies the desired optimality
conditions, i.e., (Ads) and (SC;) with s removed. Nevertheless, the following holds.

Theorem 2.4.13. For each s > 0, let (ys,us) € Y x U be a minimizer of (Ps). Then

G (vs,us)|,. < V2min Ts™2, (2.4.14)

and there is a minimizer (y., u.) € Y X U of the original problem (P) such that, after choosing

a suitable sequence sy — oo, f& Y fEin L*([0, W] x QxR?) for 1 <z < oo, f& , — £
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in L"(y;.,dya), (Es,, Hs,) — (E., H.) in L*([0, T.] X R%;R®), and us, — u. in U for
k — oo. Furthermore,

kh_{rolo Sk”Q(ysk, “sk)”i =0.

Proof. Let (y,u) be some minimizer of (P). Since this (y, u) is also feasible for (Ps),
G(y,u) =0, and since (ys, us) is a minimizer of (P;), it holds that

26 (ws u )l < Folys,ws) < F(y,u) = T (y,u) =min 7, (24.15)

which implies (2.4.14) and that (i;) is bounded in U and (f2,) in L7 ()/}r , d)/a). Thus,

by (2.1.1) and (2.1.2) each (f%) is bounded in any L*([0, o] x QX R3), 1 < z < oo,
and ((Es, Hs)) in L?([0, T.] X R%; R®). Therefore, the asserted convergences hold true,
at least weakly, if the sequence (si) is suitably chosen. Since (2.1.2) and (2.4.1) are
satisfied along the sequence, we can apply Lemma 2.4.1 to obtain

16 (y., u.)

A S li]?lglf”g(]/sw ”Sk)“A* =0

because of (2.4.14). Hence, (y*, u*) is feasible for (P). By weak lower semicontinuity of
any norm, we have

T (v, us) < liininfj(ysk,usk) < li;ninfjk (Vsi, ts,) < limsup Js, (s,, s,) < minJ,
—00 —00 k—sco
(2.4.16)

where the last inequality is implied by (2.4.15). Consequently, (v.,u.) is indeed a
minimizer of (P), and equality holds in (2.4.16). Thus,

N liggfj(ysk,usk) < limsup J (ys,, us,) < limsup Js, (s, ts,) = min 7,

k—o0 k—o0

and also equality holds everywhere. This yields

1< 1 |
E; Wa fg+ |Z”()';,,dya) + ;”M*”ru = j(y*, u*) = ;cll_{ri}oj(ysk’usk)
1< .
— 1 q ,
= lim Eéwal|fs”k‘,+||m(yﬁm) + =l o | (2.4.17)

Combining (2.4.16) and (2.4.17) implies

kh—rilo S?kllg(]/SkruSk)va = 1<h_1>l:>10(«7;k (]/Sk/usk) _j(ysk’usk)) = j(y*/u*) _j(]/*'u*) =0.
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There remains to show that the convergences of £ , and us, are even strong. To this
end, suppose that

i) < DA e

for some ag. By weak lower semicontinuity of the remaining norms and by (2.4.17),
this implies

_Zw“

1 & 1
A )+ 2 ) el
(X

1
||q i) I

< limsup 1 iwa“f“ ”q + 1””S “r
B k—oo q =1 e Lq(}/7t-’d),a) r e

1N
:5;%

which is a contradiction. Thus,

Lo
+ = ||ux
i) * 7

= hzfr_lglf“f ol (v 7a) = li?j£p||ﬁi’+””(?’?-'d”“) :

*,+||Lq ()’;—; ,d)’a) *'+||Lq (7’;. 'dVa) !

whence

*,+||L¢I ()/;_'. /d)’a) = kh_I)I;O”fS(i,‘F “Lq ()/]'f. ,d}/w)
for each a. Similarly,

letellqy = Jim [fug,[|,

as well. Since we already have f , — £ in L1 (7/;2 , d)/a) and u;, — u. in U, and

since L7 (y; , d)/a) and U are uniformly convex, f} , even converges strongly to f.7,

and u,, strongly to u.. O

Note that the convergences of f . and us, are strong, which is due to the fact that
the original objective function 7 is an expression in f* and u. Since the actual goal
is to adjust u suitably and u is the only function which can be really adjusted from
out51de, it is no big drawback to have to consider (Ps) instead of (P): As we have seen
(s, us) || A decays with a certain rate to zero

for s — oo, whence (VM) is “almost” satisfied for a minimizer (ys, us) and s large;
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on the other hand, first order optimality conditions for (Ps) have been established in
Theorem 2.4.11 and optimal points of (Ps) converge (at least weakly) to an optimal
point of (P) (along a suitable sequence), and the convergence of the controls is even
strong. We cannot expect to get convergence for the full limit s — oo since minimizers
of (P) and (Ps) are not known to be unique due to the lack of convexity.

2.5 Final remarks

One can consider other optimal control problems than (P), with a different objective
function, for example, a problem of tracking type:

N
~ b 2 b
Iy, u) =T (y,u)+ Z 7a||fa - fda||L2([0,T]><Q><R3) + 7E”E - Ed”iz([O,T]xR3;R3)
a=1

bH
”H Hd”LZ([O T]XR3;R3)”

where b, bg, by > 0 are parameters and f d“, E;, H; are desired states. Since this
new objective function already grants coercivity in ¢, E, and H with respect to the
L?-norm, at first sight it seems that the artificial constraint (2.1.2) can be abolished.
However, without this constraint, we cannot pass to the limit in the term of (1.1.3a)
with ji" during an analog proof of Theorem 2.2.1 since for this an Llakm—estimate on
f is necessary; cf. Lemma 2.1.3. Thus, imposing (2.1.1) and (2.1.2) is still necessary.
Analogues of Theorems 2.2.1, 2.4.3, 2.4.11, and 2.4.13 can be proved, and in Theo-
rem 2.4.13 the convergences of fJ, E,,, and Hj, are also strong in L? because of the
tracking terms in the new objective function.

We could also consider the case that we additionally try to control the system by
inserting particles from outside, that is, considering nonvanishing ¢ in the right-
hand side of (VM.2) and treating them as controls as well. Then we add some norm
of the g“ to the objective function as a penalization term. There occur two problems:
Firstly, since (2.1.1) is still necessary and since we have to include L*-norms of the
g% there on the right-hand side, the set of functions satisfying this new constraint
is no longer convex. We can bypass this problem by imposing L*-bounds on the
g“ a priori, for example, by imposing box constraints. Secondly, we have to add
the L! . -norms of the g* to the right-hand side of (2 1.2). To be then able to pass
to the 11m1t in (2.1.2), we need that the space the g* lie in is compactly embedded

1
in Lakm

instead of simply L?. That compact embedding is, for example, guaranteed by the
restriction g% € H' (7/; NA{lv| < R}) and g“ = 0 for |v| > R with R > 0 fixed. Another

(yT , d)/a)—thls is analogous to the consideration of U as the control space

possibility is to impose an a priori bound on the Likin—norms of the g%, for example, by
imposing box constraints as above and a bound on the support of the g* with respect
to v, and then adding this a priori bound to the right-hand side of (2.1.2) instead of

the Likm—norms of the g*.
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In Theorem 2.4.13, a suitable sequence of optimal points of (Ps) converges to an
optimal point of (P), at least weakly, some components even strongly. However, we
do not know if all minimizers of (P) can be “obtained” in this way. In [Lio85], usually
an approximate problem with an adaptive objective function is considered, in order
to derive first order optimality conditions for any given, fixed minimizer of (P). Here,
this means adding norms of f* — %, f* — £, E - E., H — H.,and u — u. to J. With
an analogue of Theorem 2.4.13, one can then show that (ys, us) converges strongly
to (]/*, u*) in a suitable norm, and this holds for the full limit s — co. However, this
method is not constructive since one has to know (v.,1.) a priori to consider the
approximate problem, and thus in our case not reasonable; in general it is reasonable
if one can pass to the limit in the first order optimality conditions.






CHAPTER 3

CONFINED STEADY STATES IN AN
INFINITELY LONG CYLINDER

3.1 The set-up

The previous chapter was devoted to the question how to adjust the currents (and
thus the external electromagnetic fields) in some external electric coils to confine the
plasma as best as possible. With “good confinement” we meant that the amount of
the plasma particles hitting the boundary of Q are to be kept as small as possible,
while the control costs should be not too exhaustive. However, one might ask two
questions: Firstly, as they were given and fixed through these considerations, what is
areasonable choice of the initial data for the particle densities and the electromagnetic
fields? Secondly, is there really a choice of initial data and external currents such that
the plasma is really confined during the whole time interval [0, T, ], i.e., such that there
are no hits on the boundary? This leads to another question, which we will deal with
in this chapter: Is there a configuration, that is independent of time and where the
plasma particles are away from the boundary of the fusion reactor?

Before we analyze this problem about the existence of such a configuration, which
we henceforth call a “confined steady state”, we first discuss the basic ideas for plasma
confinement—more information on fusion plasma physics can be found in the classical
book of Stacey [Stal2]. The physical basis for confinement is the fact that charged
particles spiral about magnetic field lines. The so-called gyroradius, that is, the radius
of such a spiral, is inversely proportional to the strength of the magnetic field. This
gives rise to the idea of linear confinement devices: The fusion reactor is a long
cylinder and the external magnetic field points in the direction of the symmetry axis
of this cylinder. If this external magnetic field is sufficiently strong, the gyroradii of the
plasma particles will be smaller than the radius of the cylinder, whence the plasma
is confined in the fusion device. However, this setting cannot prevent the plasma
current from having a nonvanishing component in the direction of the symmetry axis.
Thus, there will be losses at the ends of the long cylinder. In practice, one can try to
overcome this problem by one of the two following modifications: Firstly, so-called

109
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magnetic mirrors are added at these ends. Secondly, the long cylinder is bent into a
torus. This second idea is pursued typically in modern research. Toroidal geometry
has the advantage of avoiding such losses but has the disadvantage that it gives rise
to drifts of the plasma particles, which finally cause the particles to move radially
outwards and thus make confinement impossible. Therefore, the external magnetic
field needs to have a poloidal component additional to its toroidal one. This approach
then leads to Tokamak devices.

However, analyzing the problem of existence of confined steady states from a mathe-
matics point of view in toroidal geometry seems quite hard. We discuss the difficulties
in Section 3.6. As a first step towards this, we consider the set-up of a linear confine-
ment device instead. For mathematical reasons, it will be convenient to assume that
the cylinder is infinitely long (which is of course not conceivable from a practical point
of view). Thus, we fix Ry > 0 and let

Q= {xeR3|x%+x§<R%}.

In contrast to the previous chapters, Q is no longer bounded since it extends infinitely
in the x3-direction. Because of the axial symmetry of the set-up, it is natural to
work with cylindrical coordinates (r, ¢, x3). In these coordinates, we simply have
Q= {x eR}|r< Rg}. Furthermore, we now consider purely reflecting boundary
conditions for the particles and perfect conductor boundary conditions for the fields
on dQ. Due to perfect conductor boundary conditions, Maxwell’s equations are only
imposed on €}, where ¢ = u = Id by assumption. Hence, we no longer distinguish the
E- and D-, and the H- and B-field, respectively, and use E and B for denotation of the
electromagnetic fields. Moreover, we consider an external magnetic field Bt which
is supposed to be divergence free, as given and thus no longer consider an external
current density u (whence we neglect an external electric field). Therefore, the only
charge and current densities are the internal ones, i.e.,

N N
p:pintzzqa/ fad'(], j:jintzzqa/ %]\afadv.
a=1 R3 a=1 R?
In the following, there often occur cylindrical coordinates and the corresponding
local, orthonormal coordinate basis (e;, e,, e3), where
e; = (cos,sing,0), e, =(-sing,cosp,0), e3=(0,0,1).

For a vector w € R3, we denote with w,, w,, and w3 the coordinates of w in this local
coordinate system, i.e.,

Wy =wW-e, Wp=W- ey W3=TW:"e3.
Altogether, the whole Vlasov—-Maxwell system in this set-up reads

O +Taef Hqa(E+Tux (B+BN) 0uf =0 onl x QX
fE=KfE onyr,,
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£2(0) = fo on QX R3,

0E — curly B = —4nj onlr, X Q,

0B +curl, E=0 on Iy, X Q,

divy E = 4np on I, X Q,

div, B=0 on Iy, X Q,
E,=E3=B, +BX =0 on Iy, X 9Q),
(E, B)(0) = (é, é) on Q.

Note that in the following the divergence part of Maxwell’s equations will be important
and not neglected anymore. Furthermore, the perfect conductor boundary condition
reads E x n = 0 = B®! -  in the general case (where B! is the total magnetic field;
here, B = B + B®) and reduces to E, = E3 = B*" = 0 in the case of Q) being an
infinitely long cylinder since here n = e,.

It is convenient to introduce electromagnetic potentials, which will be the functions
we work with mostly, namely, the electric scalar potential ¢ and the magnetic vector
potential A" = A + A®!, which splits into the internal and external potentials A and
A%t The electromagnetic fields and potentials are related via

E=-dv¢p-dtA, B=curly A, B%'=curl, A (3.1.1)

Then, Gauss'’s law for magnetism (div, B = 0) and Faraday’s law (d; B +curl, E = 0) are
automatically satisfied. There is some freedom to demand a certain gauge condition
on the potentials. We will consider Lorenz gauge for the internal potentials

drp +divy A =0, (3.1.2)
which of course is the same as Coulomb gauge
div,A=0

if the potentials are independent of time, and similarly divy A®* = 0 for the external
potential. Using the gauge (3.1.2), the remaining Maxwell’s equations, i.e., J;E —
curly B = —4mj and divy E = 47tp, become

PP —Aep =4np, IPA-AA=4n;j, (3.1.3)

where the latter equation is to be understood componentwise (in Cartesian coordi-
nates).

Similar set-ups have already been studied earlier, for example, in [Pou92; Rei92]. The
basic strategy to obtain steady states was first mentioned in [Deg90]. Closely related
to our considerations is [BF93], where (among other set-ups) existence of steady states
in an infinitely long cylinder without external magnetic field was proved. However,
an important condition there is that there is only one particle species and thus only
a fixed sign of particle charges appears. Therefore, p has a fixed sign and ¢ is
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monotone, which is crucial for the considerations in [BF93]. As opposed to this, we
allow positively and negatively charged particles.

The question about existence of confined steady states for a Vlasov—Poisson plasma
(that is, B = 0) was considered in [Skul4] and [Kno19]. The approach of the latter
work is similar to ours but needs some smallness assumption on the ansatz functions,
which we can avoid, and is restricted to homogeneous external magnetic fields parallel
to the symmetry axis.

3.2 Symmetries and invariants

Due to the symmetry properties of (), it is natural to consider the case that the tuple
((f%), ¢, A, A®*) has some symmetry properties as well:

Firstly, as Q is invariant under translations in the e3-direction, we assume that the
tuple ((f*),, ¢, A, A% is independent of x3, that is,

th = fa(t/ X1,X2,01,02, 03)/ (P = (P(t/ X1, xZ)/ A= A(t/ xl/x2)/ AeXt = AEXt(tl X1, xZ)-

Then, of course the same property also holds for E, B, and B®. With this assumption,
the resulting system is also called the “two and one-half dimensional” relativistic
Vlasov-Maxwell system, since an f“ as above only depends on two space and three
momentum variables. Due to Glassey and Schaeffer [GS97], unique, classical solutions
of the resulting system in case of Q = R® and B®** = 0 exist globally in time under
suitable assumptions about the initial data.

Secondly, as Q) is invariant under rotations about the x3-axis, we assume that the
tuple ((f*),, ¢, A, A% has the following property:

fe(t,Rx,Rv) = f*(t,x,0), o(t, Rx) = ¢(t, x),
A(t,Rx) = RA(t, x), A™(t, Rx) = RAY(t, x)

for any rotation R € R¥3 about the x3-axis. With the use of cylindrical coordinates,
this assumption about the potentials is equivalent to the assumption that

¢ =o(t,r,x3)

and that the components of the vector potentials in the local coordinate basis (e;, e, €3)
be independent of the angle ¢, that is,
A, = A (t,r,x3), Ay =Aplt,r,x3), Az = As(t,r, x3),
AP = AP 7, x3), AGt =AYt 1, x3), At = AS(t, 7, x3).

With this symmetry, we can also reduce the number of variables in (x, v)-space from

six to five and can write f = f(r, x3,0,u,v3) where u = /v% + v% and 9 is the angle

between (x1, x2) and (v1,v2). However, we will not make use of the Vlasov equation
written in these variables.
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Additionally to these two space symmetries, we consider time symmetry, i.e., the
tuple ((f%),, ¢, A, A% is assumed to be independent of ¢, since we are interested in
the existence of (confined) steady states.

In cylindrical coordinates, (for any scalar function ¢ and any vector-valued function
A) it holds that

8X(¢) = eray(P + %eq)&q)(z) + e3aX3(¢)l

curl, A = e,(%8¢A3 - BXSA(,,) + e (Oxs Ar — 9, A3) + %63(8,(1%@) — dpAy).

Thus, assuming time symmetry and the two space symmetries, (3.1.1) becomes
E,=-d,¢, Ep,=E3=0,
1
Br = O, B(p = —&rA3, Bg = ;8r(rA(p),

1
t _ t_ t t _ t
B> =0, Be(; = —arAgx , ng =7 oy (rApr )

Hence, perfect conductor boundary conditions on JQ are always satisfied in this
case and we can let A, = 0 without loss of generality since A, does not affect the
electromagnetic fields.

Furthermore, we have (for any scalar function ¢ and any vector-valued function A)

1 1
Ax¢ = ;&r(rarqb) + ﬁ8é¢) + &i(ﬁ),

1

2 1
AA =e, |AA — r—sz - ﬁa(PA@) + ep (AXA(p -

2
r—zA(p + r—za(pA, + e3A As.

Thus, assuming time symmetry, the two space symmetries, and A, = 0, on the one
hand the gauge (3.1.2) is automatically satisfied, as

divy A = %BT(rAr) + %a(pA(p + 01 A3 (3.2.1)

in general, and on the other hand (3.1.3) becomes

1, 1 A Lo
—;(rcp) = 4mp, —(;(rA(P)) = 47j,, —;(rA?)) = 47j3. (3.2.2)

As ¢, Ay, and A3 only depend on 7, we denote the r-derivative with simply ”. Note
that the choice A, = 0 launches the constraint

jr=0/

i.e., no radial currents are allowed to appear.
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A basic physical principle is that to each symmetry there corresponds an invariant.
As for the two space symmetries, we consider the Lagrangian formalism, where the
characteristic equation

O = qa(E + 04 x B

can be recovered from the Lagrangian (without the use of any gauge)

L8= L0t x,%) = —1— |2 = ga(P(t, x) — 1 - A®Y(t, x))
via
d ay o
g(axﬁ )= 0L

if ¥ = v, is supposed. From this, for each space symmetry we can derive an invariant.
As for translation invariance, we find that

g“ = 3,533" =03+ qugOt

is the corresponding invariant. Similarly, the invariant corresponding to rotational
symmetry is

F =0y LY = r(v((, + qu;?t).

Note that in the formulae for ¢ (the “canonical angular momentum”) and G¢,
components of the so-called “canonical momentum”

Pa =0+ g, A®

appear. In the variables (x, p,), the particle energy

&% =00 + Jad = \/mi + |pa - q[,,At0f|2 + g0

is the (in general time-dependent) Hamiltonian governing the motion of the particles
of the a-th species. Assuming that the electromagnetic potentials are independent of
time, &% is also independent of time and thus another invariant, the one corresponding
to time symmetry.

3.3 Steady states—definition and ansatz

The preceding considerations about symmetry motivate the definition of what we
call a (confined) steady state in our set-up. Before that we collect our symmetry
assumptions.

Definition and Remark 3.3.1. (a) A function f: QxR?> — R / a function ¢: Q — R
/ a vector field A: Q — R3 is called
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(i) independent of x3if dy,f =0/ dr;¢p =0/ dx,A =0;

(if) axially symmetric if f(Rx, Rv) = f(x,v) for any x € Q, v € R3, and rotation
R € R¥3 about the x3-axis / ¢(Rx) = ¢(x) for any x € Q and rotation

R € R¥?® about the x3-axis / A(Rx) = RA(x) for any x € Q and rotation
R € R¥3 about the x3-axis.

(b) With these two symmetries, the functions ¢, A;, Ay, and Az only depend on r.
Accordingly, we will often view them as functions on [0, Ro].

(c) An axially symmetric vector field A automatically satisfies A1(x) = Aa(x) = 0 if
x1 = xo =0, i.e., if x lies on the x3-axis.

Remark 3.3.2. From a geometric point of view, the main idea of the setting and the
symmetry assumptions is the following: The confinement device ) is a coordinate
surface with respect to a suitable orthogonal curvilinear coordinate system (here, r =
const. in cylindrical coordinates) and in these coordinates the potentials only depend
on one variable, namely, on the coordinate which is constant on dQ. The symmetry
assumption about the magnetic potential thus implies that the magnetic field lies in
the tangent space of the submanifold dQ, and it carries over to the electromagnetic
fields, which in particular means that the magnetic field is invariant under parallel
transport around closed loops on dQ. Thus, with this approach confinement devices
whose boundaries have nontrivial curvature (such as a ball) are a priori excluded in
order to allow nontrivial magnetic fields. Conversely, an infinitely long cylinder or
(the interior of) a torus are consistent with this approach since their boundaries are
coordinate surfaces of a suitable orthogonal curvilinear coordinate system and are
flat.

We proceed with an assumption about the external potential, which is supposed to
hold henceforth.

Condition 3.3.3. The external potential A%t: Q — R is independent of x3 and axially
symmetric such that AP = 0 and A%, AS" € C!([0, Ro]) (viewed as functions of r)

with AS(0) = A$(0) = (A$)'(0) = 0.

Note that A$(0) = 0 can be assumed—for simplicity—without loss of generality

since adding a constant to A$** does not affect B! because of curl, e3 = 0 (as opposed

to this, this invariance under adding constants does not hold for Ae(P"t, as curly ey, # 0).
We first prove some technicalities.

Lemma 3.3.4. Let ¢, Ay, Az € C1([0, Ro]) with
P'(0) = Ap(0) = A3(0) =0 (3.3.1)

and assume A, = 0. Then:
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(i) The potentials ¢ = P(x) and A = A(x) are continuously differentiable on Q. Thus, the
electromagnetic fields

1
E=-0x¢p=-¢'e,, B=curlyA=-Aje,+ ;(rA(p)’eg (3.3.2)

are continuous on Q. Moreover, div,A=0o0n Q. .
(i) If ¢, Az € C%([0, Ro)), they are even twice continuously differentiable on Q with respect

to x. Accordingly, E is of class C* on Q. If moreover Ay € C2(]0, Ro]) such that

Acp(r)
r

Ap(r) - =0(r), Ay(r)=0Q) forr—0, (3.3.3)

then A € W»*(Q;R3) n C? (5 \ Re3;R3). Accordingly, B is of class WY on Q and
of class C' on Q \ Res.

Proof. We easily see that the maps x — ¢(x) and x — Az(x)es are (twice) continuously

differentiable on Q if the maps r — ¢(r) and r — Ajz(r) are (twice) continuously
differentiable on [0, Ro] since ¢’(0) = A(0) = 0. There remains to take care of
x = Agp(x)ey(x), in particular at r = 0. Indeed, this map can be continuously

extended to whole Q because of Ay(0) = 0 and is differentiable for r > 0 with
—sin ¢ cos (p(Aﬁp(r) - A“”T(r)) —sin? (p(A:’)(r) - A"’T(T)) - AWT(” 0
Ix(Apep) (1, @) = | cos? (p(A;)(r) - A“"(r)) + A(*’T(T) sin ¢ cos (p(AﬁP(r) - A'”(r)) 0
0

r r

0 0
(3.3.4)

where all entries have alimitas » — 0. Hence, also A e, is continuously differentiable

on Q. Furthermore, A is divergence free with respect to x, as was already observed
in Section 3.2 because of (3.2.1). Thus, part 3.3.4.(i) is proved. If moreover the
assumptions about A, in part 3.3.4.(ii) are satisfied, all second order derivatives (with
respect to x) of A,e, are bounded for r — 0, since we see by differentiating the entries
of (3.3.4) once more that these second order derivatives are expressions in sin ¢, cos ¢,

%(Aﬁp(r) - A‘”(r)) and A¢(r), and thus bounded by assumption. Therefore, all second

r 7
order derivatives exist on Q in the weak sense, coincide with the classical derivatives
almost everywhere, and are bounded. This proves the remaining part of 3.3.4.(ii). O

Note that this lemma yields that under Condition 3.3.3 the external potential A®X* is
continuously differentiable on Q) and divergence free, and that the external magnetic
field B = curl, A®* is continuous on Q.

Remark 3.3.5. In Lemma 3.3.4.(ii), we cannot expect that A € C? (5; R3) in general if
Ay € C%([0, Ro]) and (3.3.3) holds, as the example A (r) = r? shows since

Ax(Agey), = —Ax(r*sing) = —3sin ¢
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has no limit for » — 0.
We proceed with a basic definition.
Definition 3.3.6. Let Condition 3.3.3 hold.

(a) A tuple ((f*),, ¢, A) is called an axially symmetric steady state of the two and

one-half dimensional relativistic Vlasov-Maxwell system on Q with external
potential A" (hereafter abbreviated as steady state) if the following conditions
are satisfied:

(i) Foreacha =1,..., N, the functions f“: Q xR3 — [0, o[ are continuously
differentiable satisfying f%(x,-) € L!(R?) for each x € Q.

(ii) The potentials satisfy
peC?(Q), AecOR)nC O\ Reyi ) W= (O;R7).

(This condition is motivated in view of Lemma 3.3.4.)
(iii) Any f* and ¢, A are independent of x3 and axially symmetric.
(iv) The equations

Ty O f* + qu(E +Ty X B - 9, f* =0 on Q xR,
(3.3.5a)

fx,v—2v,e,) = f¥x,v), x€dQve R3, 0, <0,
(3.3.5b)

—Ay¢p =4np, —-AA=4nj, div,A=0 on Q,
(3.3.5¢)

are satisfied. Here, e, = ¢,(x), v, = v - e, and

E=-0:¢, B =curl(A+A%),
N

N
pzzqa43f do, ]:;qa'/ﬂ@vaf do.

(b) A steady state ((f*),, ¢, A) is said to
(i) have finite charge if
/ / f*dvd(xq, x2) < 00
B, JR?

(if) be compactly supported withrespectto v if thereis S > Osuchthat f*(x,v) =
Oforeacha=1,...,N,xe€Q,|v|>S;

foreacha=1,...,N;
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(iii) be nontrivial if f* £ 0foreacha =1,...,N;
(iv) be confined with radius at most R if 0 < R < Rg such that f*(x,v) = 0 for
eacha=1,...,N,x € Qwith |(x1,x2)] > R, and v € R3.

Note that perfect conductor boundary conditions are automatically satisfied due to
symmetry, as was already observed in Section 3.2, and are thus omitted in (3.3.5).

Remark 3.3.7. A physically reasonable steady state should have finite charge, which
usually means f* € L'(Q x R3) for each @ = 1,...,N. However, this is impossible
in our setting (unless all f¢ vanish identically) by f¢ being independent of x3. Thus,
here we have to modify this definition suitably as above.

According to [Deg90], the natural ansatz for f* is that
fO=n%EY, F,6%) (3.3.6)

is a function of the three invariants obtained in Section 3.2. We collect some basic
assumptions about the ansatz functions n“.

Condition 3.3.8. Foreacha =1, ..., N it holds that:

(i) n* € C'(R%;[0, oof).
(ii) There exists n® € L!'(R?) such that

[len@ 6@ 6 <
and

(&, F,6)| <n&,6)

forall (§,F,G) € R%.
(iii) There exists 74 : R? — R such that

VdeR:ng,|8nF € L'(]d, oo X R)
and
[Vn* (&, F,6)| < n§(E,6)

forall (§,F,G) € R%.

We first prove that the ansatz (3.3.6) already ensures (3.3.5a) and (3.3.5b). Here and
in the following, we will always write A = A + A®,

Lemma 3.3.9. Let Conditions 3.3.3 and 3.3.8.(i) hold and let ¢, A,, A3 € CY([0, Ro]) with

¢'(0) = A, (0) = A4(0) = 0.
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Then, foreacha =1,...,N,
feOXRP SR, f%x,0) = n%(E%x,v), F(x,v), G%x,0))
=n" (02 + 7a(r), r(wp + quE,?t(r)), vs + qug"*(r))
(3.3.7)

is continuously differentiable, independent of x3, axially symmetric, and satisfies (3.3.5a)
and (3.3.5b).

Proof. We first note that f is continuously differentiable because of rv, = x1v2 — x201
and ¢’(0) = (rAﬁ;,’t) (0) = (A®")'(0) = 0. Clearly, f* is independent of x3 and axially
symmetric. Furthermore, it is easy to see that (3.3.5b) holds since &¢ is even in v, and
¥4, G* do not depend on v,. To ensure (3.3.5a) for f* it suffices to prove that &%,

74, and G* themselves satisfy (3.3.5a)—this clearly holds, as they are invariants of
the motion; for the sake of completeness, we carry out the computation. Since they

are of class C! on Q x R3, this only needs to be verified for 7 > 0. In the following,
have (3.3.2) in mind. Firstly,

Uy - 0xE" + o (E + 0y X B*) - 0,E% = =q40a - E + o (E + 0o X B*') -7, = 0.
Secondly,
Vo - 0xF ¥ + qa(E + 04 X BY) - 0, F©

’
=Dy - (vq) + qu;?t)er —Ta - Vreg + GaTa - r(A;?t) er + go(E +0a X B®Y) - e,

= a0y - € (A;?t + r(A;;’t)/ —r- %(rAE;’t)/) =0.
Thirdly,
Ty - 0xG" + qa(E + Vo X B) - 0,G* = 9400 - (AY) e, + qa(E + Do X B*Y) - €3 = 0.
Thus, (3.3.5a) holds for f¢ by the chain rule. O

The ansatz (3.3.6) in turn can be inserted into the definition of p and j to derive
representations of these densities in terms of the potentials.

Lemma 3.3.10. Let ¢: [0,Ro] — R, A: [0,Ro] — R3, Condition 3.3.8.(ii) hold, and f¢

be defined as in (3.3.7) for each a = 1,...,N. Then, f*(x,-) € L'(R®) for each x € Q.
Furthermore, p and j are independent of x3 and axially symmetric, and we have

amp(r) = g1 (1, (), AL (), A1), (3.3.82)
jr(r) =0, (3.3.8b)
a7y () = ga(r, 6(1), AL (), AL, (3380
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47 (r) = ga(r, 6(r), AB'(), A5 (3384)

for r € [0, Ro], where g1, 82,83 [0, Ro] XR3 > R,

g1

82 (rla/blc)

93
N ) 2n a_qaa

=4n qa// / E—qua) - (G- acz—mgsine
; R J\m2+(G~ac) +40a JO \/( o) Q(—qaqc )

n° (a, r\/(S —4aa)’ = (G — quc)’ — m2sin 6 + rq,b, G| d6dEAG (3.3.9)
N gi"
= > |85 |tra,b,0)
a=1 géx
are continuous functions. Moreover,
(5. 85)] < lsf] (3.3.10)
on [0,Ro] xR foreacha =1,...,N.

Proof. At least formally we have

1
f Do | pa(gs, 79, 6% do
r3| Yo~ Cp
Ea - e3
[ 2 2
o o mg + u? + 03
- / / / . u ucos 0
RJO Jo m2 + u2 + 2 usin 0
v 3 s
-n® (1 [mG + u? + 05 + qap(r), rusin O + rq, AL (r), v3 + qut;’t(r)) dOdudvs

& = qa(r)
0

o 2n
- v/]R;«/\lmtzl+(§—qu§°t(r))2+qa¢(r) v/O‘ \/(8 - qa¢(r))2 - (g - QaAEOt(T’))z - mﬁ sin 0

G- qugot(r)

e (8, r\/ (8 = 7a0(1)* = (G = 1a AL (1)* = m25in 0 + rga AS(r), g) d0dEdG,
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where we introduced polar coordinates in the (v1, v2)-plane with basis (er, e(p) and

then substituted firstly & = \/m3 + u? + v + g (r) and secondly G = v3 + g AL ().
Note that the integral in the second line vanishes after substituting y = sin 6. Due to
Condition 3.3.8.(ii), the modulus of the integrand in the first line can be estimated by

(1&] + |gallp(n &, 6)

and is hence integrable. Because of |[v,| < 1 also the other integrals exist. Thus, the
above calculation is justified. Multiplying these identities with g, and summing over
«a yields the representation. The above estimate on the integrands also implies that g;
is continuous, i = 1,2, 3. Finally, (3.3.10) is also a consequence of [v,| < 1. O

Remark 3.3.11. The proof of the preceding lemma additionally shows that any steady
state obtained in the following sections has finite charge. Indeed, for this it is sufficient
that r¢ is integrable over [0, Ro], which is of course the case when ¢ is continuous.

According to Lemma 3.3.10, after integrating (3.2.2) and using the representation
(3.3.8), the problem of finding a steady state with the ansatz (3.3.6) reduces to finding
¢, Az € C*([0,Rol), Ay € C2(]0, Ro]) N C([0, Ro]) satisfying (3.3.1), (3.3.3), and

P(r) = - /0 % /O agl(o,qb(a),At,?t(a),Agot(o)) dods, (3.3.11a)
Aq)(r)=—% /0 s /O gz(o,¢(a),A§;t(o),A;°t(a)) dods, (3.3.11b)
As(r) =~ /0 % /O ags(o,qb(o),A;?f(a),Ag“(o)) dods (3.3.11¢)

for r > 0 in view of Lemmas 3.3.4 and 3.3.9; note that we could prescribe arbitrary
values for ¢ and A3z at r = 0, and we choose both of these values to be zero. Therefore,
it is convenient to introduce the map

M: C([0,Ro;R?) — C([0, RoL; R%),
- for 1 /OS og1 (o, ¢(G),A$t(a),A§°t(o)) dods
M(p, Ay, A3) =|[0,Ro] 37+ | -1 /Or s /Os gz(a, gb(a),AE;’t(o),Ag"t(a)) dods
- for L /OS agg,(o, qb(a),At(;’t(a),Ag"t(o)) dods

The following lemma shows that indeed M is well-defined (with the obvious inter-
pretation M(¢, Ay, A;)(0) = (0,0,0)) and that it suffices to search for fixed points of
M.

Lemma 3.3.12. Assume Conditions 3.3.3, 3.3.8.(i), and 3.3.8.(ii).
(i) Forany (¢, Ay, A3) € C([0, Ro]; R%) we have

(qB,Aq),fh) = M(¢, Ay, As) € C2([0, Ro;R3).
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Furthermore, (cf), A(P, 143) satisfies (3.3.1) and (3.3.3).

(i) If (¢, Ay, As) € C([0, Rol;R?) is a fixed point of M, then ((f*),, ¢,A) is a steady
state, where the f are defined via the ansatz (3.3.6).

Proof. Due to Lemma 3.3.10, the functions
g0 Rol =R, §(0) = 1[0, 6(0), ALH(0), AL (0)

are continuous, i = 1,2, 3, and hence bounded by some constant C > 0. Thus,

r s . .
sc/ lfodozgﬂ, |Aq)(r)|s£/s/do:£r2
0o SJo 4 o A 3

for r € ]0, Rg]. Hence, qE, A@/ and A~3 are continuous also in 7 = 0, and Aq’r(r) = O0(r)
for r — 0. Furthermore, the ‘tilde’-potentials are twice continuously differentiable on
10, Ro] with

@

Fr=-1 / sE)ds, §) = / sg1(s)ds — 1(r),

A p(r) = / /gz(o)dods—/ Za(s)ds,
Ay =-2 / / %a(0)dods + - / 2als)ds — Ba(1),

Aly(r) = —1/ s33(s)ds, A‘g(n:r—zfo s33(s) ds — 3(r).

~ c [ C
, 3(r)|s7‘/0 sds:Er,
- c [ s 4C
A:P(r)ysr_Z,/o S‘/o dads+Cr:?r

they are continuously differentiable on [0, Rg] with vanishing derivative at » = 0, and
moreover Aﬁp(r) = O(r) for r — 0. Furthermore, by 1'Hopital’s rule we have

Because of

lim (1) = lim i“ ) a0 =3,

) :
i 0 = -tim 2RO o) =220,
i 250) = Iy 0 =
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Therefore, ¢, Ay, A3 € C*([0,Ro]) and clearly A(r) = O(1) for r — 0. Finally,
from Lemmas 3.3.4, 3.3.9, and 3.3.10 it follows that ((f*), ¢, A) is a steady state if
(¢, Ap, A3) is a fixed point of M; note that (3.3.11) implies (3.2.2) and this yields
—Ay¢ =4mp on Qand -AA = 4mj on Q \ Rejs in the classical sense, and —A A = 4nj
on Q in the weak sense. O

3.4 Existence of steady states

3.4.1 A priori estimates

There only remains to find a fixed point of M. For this, the most important tool is
to derive a priori bounds for the potentials. Therefore, we assume for the time being
that we already have a solution (¢, Ay, As) € C([0, Ro];R?) of (3.3.11). Due to (3.3.9),

we first have the following estimate on g{' for each (r,a, b, c) € [0, Ro] X R3:

g (r,a,b,0)| < 4n|qa| - 2 /RZ(|6| +|qa]lal)n(E, G) d(E, G).

Using (3.3.10) and summing over « yields
\gi(r,a,b, c)| <ci+ceal, i=1,2,3, (3.4.1)

where we introduced the abbreviations

N
¢ =87 ) |qal /Rzlfllnf‘(&g) d(E,G) < o,
a=1

N
ex =8 Y Juaf’ [ 10(8,6)d8,6) <.
a=1 R
Therefore, in view of (3.3.11a) an integral inequality for ¢ follows, namely,

T 1 S r 1 S
lo(r)] S/O E/o a(c1 + c2|p(0)|) dods = C4—1r2+C2/0 5/0 o|p(o)|dads  (3.4.2)

for r € [0, Ro]. We could thus easily derive the inequality

()] < %RS+C2R0 /0 |6 (s)| ds (3.4.3)

and therefore

()] < %Rgeszor (3.4.4)

via Gronwall’s lemma. However, (3.4.3) is way too crude and hence (3.4.4) is not
very sharp. If we were to use this a priori estimate later to show confinement of
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a steady state, the needed assumption about the external potential would be quite
strong. Consequently, in order to allow a wider class for external potentials ensuring
confinement later, we now search for a sharper a priori estimate on ¢.

Thus, we search for a solution of the integral equation corresponding to (3.4.2), that
is,

&(r) = 7’ +C2/ / o&(o)dods. (3.4.5)

For any & € C([0, Ro]), the elementary identity

] s r rq r
/05/0 ocf(o)dods—/(; /a gaé(a)dsdo—/o(lnr—lns)sé(s)ds (3.4.6)

holds for any r € [0, Ro] (where the right-hand side is defined to be zero in r = 0).
Therefore, (3.4.5) becomes a Volterra integral equation of the second kind, namely,

r
&(r) = C4—11'2 t e / (In7 — Ins)s&(s) ds (3.4.7)
0
with nonnegative, square integrable Volterra kernel

Ins)s, 0<s <r <Ry,

c(lnr —
V:[0,R* >R, V(r,s)= {2( o el

It is well known that Volterra integral equations such as (3.4.7) have a unique square
integrable solution; see [Tri57, Section 1.5.]. To find this solution, we rather work with
(3.4.5), which suggests a series ansatz

(]

&(r) = Z ayrk

k=0

for £. With this ansatz, at least formally we demand

Z kLl r +02/ / oé(a)dads——r + 0 / / Zako dods
k=0
_a “k Skl gg = S R C20k-2
= r+c2/O ds = 41' +C22(k+2)2 4r+ 2
k= o k=2
(3.4.8)
Thus,
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Therefore, a; = 0 if k is odd, and

. C202(m-1)
2m = T
4m?
for m > 2. Hence, we have
c1cg1‘l
Aoy = ———
4m(m!)

for m € N by induction. Consequently, we define
00 k-1

ER-E, &)=y 1%

2k
k(%1 2"
— 4K (k!)

Obviously, this series is uniformly convergent on any bounded interval, whence the
calculation (3.4.8) is justified and £ indeed is the unique square integrable solution of
(3.4.7) on [0, Ro] by (3.4.6). Moreover, ¢ satisfies the corresponding integral inequality

|¢(r)| < C4—1r2 + ¢ /r(lnr —lns)s|qb(s)|ds.
0
Thus,
lo(r)| < &(r) (3.4.9)

for all r € [0, Ro] as a consequence of the positivity of Volterra operators in the case
V > 0; see [Bee69, Theorem 5]. Therefore, we have established a quite sharp a priori
bound on ¢.

In order to obtain similar estimates also for A, and A3, we insert (3.4.1) and (3.4.9)
into (3.3.11b) and (3.3.11c). On the one hand, we Conclude

C2 8
|Ap(r)] < —/ / (c1 + c2|p(0)|) dods < — 7/0 S./o &(o)daods

S - /r i —Clcz sZkJ'2 ds
3 rJo (2k + 1)4k(k!)?
k

k=1
i J2k+2 i ac’ 2= (r)
= r + =TT N T
£ 2k + 1)(2k + 3)ak(k1) = (1- g Jaren?

(3.4.10)
and on the other hand

|As(r)| < -/0 5/0 o (c1 + c2|(0)]) dads < %72 + Cz./o é‘/o o&(o)dods = &(r)
(3.4.11)

for 7 € [0, Ro]. Note that the a priori bound on A,, is slightly weaker than the bounds
on ¢ and Aj since obviously & < C.
Thus, we have proved the following important a priori estimate.
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Lemma 3.4.1. Let (¢, Ay, A3) € C([0, Rol;R®) be a fixed point of M. Then it holds that

6|, 143(1)] < &(r),  |Ap(r)| < C(r)

forr € [0, Rol.
For the sake of completeness, we remark that & can be written in terms of a Bessel
function, which corresponds to the fact that (3.4.5) implies

128"+ r& — cr?E = 12,

whence
o (o] r
z(r) = _Clé(_\/a) +1

solves the modified Bessel equation

r2z" + vz — 1?2z = 0.

Endowed with the initial condition £(0) = £’(0) = 0, this yields z = Iy, where Ij is the

modified Bessel function of the first kind (with parameter 0). Consequently,

&r) = %(IO(VEY) -1).

3.4.2 Fixed point argument

We proceed with proving that steady states really do exist via some fixed point
argument. Throughout the rest of this chapter, we assume that Condition 3.3.8 holds
and equip the space C([0, Ro]; R?) with the norm

(9, A, A3l o, ropes) = sup Jl(qb(r),A@(r),Aa(r))L (34.12)

The a priori bounds obtained in the last section are an important tool to prove existence
of solutions to (3.3.11). In view of Schaefer’s fixed point theorem—see [Eval0, Section
9.2.2.], for example—we have to prove that M is continuous and compact, and we
have to establish a priori bounds on possible fixed points of the operators AM for
0 < A < 1. The second task is easily carried out by using the results of Section 3.4.1.

Lemma 3.4.2. Let (¢, Ay, A3) € C([0, Rol; R3) such that (¢, Ay, As) = AM(¢, Ay, Az)
for some 0 < A < 1. Then it holds that

0] 1Al < (), [Ap(r)] < C(r)
for r € [0, Ro]. In particular, the set
{(¢, Ay, A3) € C([0, Rol;R?) | (¢, Ap, As) = AM(, Ay, Az) for some 0 < A < 1}

is bounded.
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Proof. By (3.4.1), we obtain

lo(r)| < )\/0 %/0 o (c1+ c2|p(0)|) dods < Z—lr2+62/0 %/0 ol¢(0)| dods

< &(r)forr € [0, Rp]. Similarly to (3.4.10) and (3.4.11),

similarly to (3.4.2). Hence,
we also have

r S r S
|Ap(r)| < %/ s/ (c1 + c2|p(0)|) dods < %r2 + Cr_z‘/ s/ E(o)dads = C(r),
o Jo o Jo
"1 s 1, "1 s
|As(r)] < A - ofc1+ cz|¢(a)|) dods < —r“+ ¢ - o&(o)daods = &(r)
0o $Jo 4 0o SJo
forr € [0, Ro]. O
Thus, there remains to prove the following lemma.
Lemma 3.4.3. The map M is (even locally Lipschitz) continuous and compact.

Proof. Let S > 0and (¢, Ay, A3), (E,Z(P,Z3) € Bs  C([0, RoJ;R®). On the one hand,

following the calculation in the proof of Lemma 3.3.10, we have for each r € [0, Ro]
for some (a, b, ¢), possibly depending on the integration variables, in the line segment

connecting (¢(r), Ay(r), As(r)) and (a(r),Z(P(T’),Z:g(T’)),

(81,2, 83) (7, 0, 450, A;°*(r)) - (31,82, 8) (1, 300, Ay (1), 25" (0)|

2n \Jma + u? + 03
= 4”2%// / u sin 0
\Jmi +u?+03 03

. Vn“( m2 +u? + U% +gaa,rusin @ +rq,b + rq[,,Az,Xt(r), V3 + gacC + qug"t(r))

o(r) = §(r)
. r(Aq,(r) —_Z(P(r)) d0duduvs
As(r) — As(r)

N 21 %)
XTI
; ¢ R JO \/m§+(§—qac—q(¥A§"t(r))2+qaa
E—qqa

\/(8 - qaa)z — (G — qac - 11041‘\_3,’“(1’))2 - m2sin0
G — dac — 4aAT(r)
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% (8, r\/(S - qaa)z —(G = gac - q,),Ag"t(r))2 —m2sin @ +rq.b + rqug,Xt(r), g)

P(r) = p(r)
: r(A(p(r)—Z(p(r)) 484046

As(r) = As(r)
N )
214+ R Ne El+ga|9)n%(E, G) dE
<k Yool [ [ (1+lanls)rie. 6) a6

(@, Ap, 45)0) (3, Ay, A3) )
(3.4.13)

= C(9)|(¢, A, As)(1) - (9,2, )

where the constant C(S) is finite due to Condition 3.3.8.(iii) (with d := —|qa|S there).
Integrating this estimate, we conclude

|M(¢,A¢,A3)(r) - M(a, Z(p,Zg)(r))

< C(S)||(¢rA<prA3) - (5’ Z‘P’Z3)"C([O,Ro];R3)

‘(/ l./ adads,lf s/ dads,/ 1/ adods)
5 rJo 0 o SJo

= C(S)- £r ||(¢ Ay, As) - (¢’ZW’Z3))'C<[0,RO];R3)’ (34.14)
whence
”M(qb’A("’A3) B M(E’Z¢,Z3)”C([O,Ro];ﬂﬁ3)
<C(S)- _RZH (¢, Ap, As) - (5 A, Zg)”C([O,RO];RB). (3.4.15)

Therefore, M is locally Lipschitz continuous.
On the other hand, by (3.4.1) we have

‘g,»(r, ¢(r),A$t(r),At3°t(r))| <cp+ cQ|qb(r)| <1408 = C(S)
fori=1,2,3and r € [0, Rg]. Furthermore,
(M(¢, Ap, A3))'(0) = (0,0,0)
by (the proof of) Lemma 3.3.12.(i), and for 0 < v < Ry we have

C(S)r - C(S)Ry
2 T2

(M6, 4, 43)) ()] = ]—1 I ssils o061, A, a3 ) as| <
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fori=1,3and

|(M2(¢/A¢/A3)),(7)|

rlz‘/o S./o gz(o,d)(o),Af;t(a),Agot(o)) dods —/0 gz(s,(p(s), A;())t(s)/Agot(s)) ds
4C(S)Rg

—s

< @ +C(S)r <

Therefore, for each (¢, Ay, A3) € Bs, we have that M(¢p, Ay, A3) is Lipschitz contin-
uous with a uniform Lipschitz constant, i.e., a Lipschitz constant only depending on
S. By the theorem of Arzela—Ascoli, M thus maps bounded sets to precompact sets,
that is, M is compact. O

Theorem 3.4.4. Let Conditions 3.3.3 and 3.3.8 hold. Then M has a unique fixed point.
Thus, there exists an axially symmetric steady state ((f*),, ¢, A) of the two and one-half

dimensional relativistic Vlasov—Maxuwell system on Q with external potential A%, where the
f® are written in terms of ¢ and A; cf. (3.3.7).

Proof. Combining Lemmas 3.4.2 and 3.4.3 and invoking Schaefer’s fixed point theorem
we conclude that M has a fixed point. Due to Lemma 3.3.12, we obtain a corresponding
steady state.

There remains to prove that a fixed point of M is unique. If we have two fixed

points (¢, Ay, As), (E,Zq),Z;;) of M, let S > 0 such that (¢, Ay, A3), (a,Z(P,Z3) €
Bs c C([0, Ro]; R%). By (3.4.13) it holds that

(6, 4¢, 45)0) = (3,3, &) )] = (M0, Ay, A9 ) = (M(3, By, ) )
(/Or é‘/os o)(¢,A¢1A3)(0) - ($,Z¢,Z3)(o)|dods,
L[5 000 Ag A0~ (5.0 ) s,

/or§/050|(¢,A¢,A3)(O-)_

< C(5)- V3R /0 (6,4, A3)(5) = (B, A, o) (5)| ds

< C(8)

—

s Z(P,Z3)(o)| dods)

for each r € [0, Rg]. Thus, the two fixed points coincide due to Gronwall’s lemma. [J

3.4.3 Direct construction

Since the above proof of existence of steady states is not constructive, in this section
we provide a method to obtain steady states which is constructive. To this end, we
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define an approximating sequence (((pk, AL, Aé‘))k . recursively via
€Np

(¢°,A°,A§) = (0,0,0), (¢k+1 Ak+1 Ak+1) (¢ Ak,Ak)

To show that this sequence indeed converges to a (and thus the) fixed point of M, we
first prove that this sequence is bounded. In fact, the a priori estimates of Section 3.4.1
carry over.

Lemma 3.4.5. Foreach k € Ngand r € [0, Ro] it holds that

Sl < &), Jabo] < 2o,

In particular,

[ 48 A5) | ey < V2EROP + RO =
Proof. We prove

(| < Zk: C1C§ |Ak (r)| k —Clcé_l r
gy (1——)4](1)

via induction, from which the assertion follows. Indeed, this obviously holds true for
k = 0, and thanks to (3.4.1) we also have

T 1 S ‘
| < - | o 01 + 0ol (0)’) dods
r k j-1
< —r +C2 / / Z 0¥ dods = S + cz/ Z #szﬁl ds
= 4 4 0 3 4(j1)7(21+2)

k k+1 j-1
_ r +Z Clc 22 2 1% o

S am((j+1)) =)
and

k

1 r s c1C
|A’(;,+l(r)’s —/ s/ C1+cz|¢ (0)|) dods < r +—/ s/ Z 2 o dods
rJo 0 o Jo i 4/()!
1o, [ : C1C21 2j42
_a @ 2 25+
=gt /0 Z ———— s ds

4 (71 (2] +1)

k ] k+1 j-1
M= i R PSTTPTIE = (1= )9 ()’
4(j+1)
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We can now prove the following result.

Theorem 3.4.6. Let Conditions 3.3.3 and 3.3.8 hold. Then, ((qi)k,A’(;,Aé‘))k o where
€Np

<¢0,A0,Ag) = (0,0,0), (¢k+1 Ak+1 Ak+1) (qbk,A(l;,Alsc)/ k € Ny,

is a Cauchy sequence in C([0,Rol;R3). The limit (¢, Ay, As) is the fixed point of M,
whence ((f*),,, ¢, A) is an axially symmetric steady state of the two and one-half dimensional

relativistic Vlasov—Maxuwell system on Q with external potential A®, where the f® are written
in terms of ¢ and A; cf. (3.3.7).

Proof. We abbreviate P := ((pk,A’(;,,Aé‘) for k € Ny. By Lemma 3.4.5 and (3.4.13) we

have

|9 Kol

< C(S)./Or ‘/OS|Pk(o)—Pk1(a)|dads
and thus
|PEL(r) — PX(r)] < V3C(S) /0 , /O S|Pk(o) — P¥(0)| dods
for r € [0, Ro], k € N. With C := V3C(S) this yields

|Pk+1(r) Pk(i’)| Ck 2k
= @l

for each r € [0, Ro], k € Ny via induction: Indeed, this estimate obviously holds true
for k = 0, and moreover we have

r s r s k-1
|P¥*1(r) - PX(r)| < C / / |P*(0) = P¥"!(0)|dods < C / / SCT__ 22 4545
o Jo o Jo (2k-2)!

) (Z:Ckl)l /rszk_l 5=
- . 0 .

for k > 1. Therefore, for each m > k and r € [0, Rp] it holds that

m=1 s
=Pl S - Pl < 35S N

j=k j=k

Since the series Z %Rél converges, it follows that (P¥) is a Cauchy sequence in
j=0 V)

C([0, Ro]; R?). Passing to the limit, we easily see that

(6, Ap, As) = lim (941, A1, A5) = lim M(6*, AL, %) = M(0, 4, 45)
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since M is continuous due to Lemma 3.4.3. Hence, (¢, Ay, A3) is a (and by Theo-
rem 3.4.4 the) fixed point of M and the corresponding tuple ((f*) , ¢, A) is a steady
state. O

Remark 3.4.7. We should mention that there is yet another way to construct a fixed
point of M, which to some extent corresponds to the fixed point iteration above:
Looking at (3.2.2) we see that this system of three ordinary differential equations has
singular coefficients at r = 0. Firstly, we solve the integrated system, i.e., (3.3.11), on
some small interval [0, 6] as follows: Choose some S > [[M(0, 0, 0)[|¢(o,r,}r3) and let
0 < 6 £ Ry such that

34 34
SC(S) . %62 + ||M(O, 0, O)HC([O,R()];R3) <S and C(S) . %62 <1

where C(S) is the constant from (3.4.13). Clearly, (3.4.13) also holds on [0, 6] for any
(¢, Ay, A3), (5, Z(p,Z;;) € C([0, 6];R3) with C([0, 6];R®)-norm (similarly defined as

in (3.4.12)) less or equal S. For such potentials, proceeding as in (3.4.14) and (3.4.15)
with Ry replaced by 6, we conclude

||Mé(¢/A<pfA3) - Mé(ar Z@,Zg)

<C(9)- g(‘iz”(cp,A(p,Ag,) - (3,4, %)

||C([O,5];R3)

||C([O,6];]R3)

where M is defined as M only Rg replaced by 6. Thus, denoting

X = {(<P,A¢,A3) € C([0, 5] R%) | ”(¢IA<P'A3)||C([0,5];R3) = S}'

the map M;s: X — X is well-defined and a contraction by choice of 6, and therefore
has a unique fixed point, which is the unique continuous solution of (3.3.11) on [0, 6].
Secondly, we consider the system (3.2.2) of three ordinary differential equations on
[0, Ro], where all appearing coefficients are now smooth. We equip this system with
the initial condition that the potentials themselves and their first derivatives at r = o
shall coincide with the values and first derivatives at » = 6 of the solution on [0, ]
obtained in the first step—note that a posteriori these potentials on [0, 8] are of class
CZ; cf. Lemma 3.3.12.(i). Since the right-hand sides of (3.2.2) written in terms of the
potentials are continuous, locally Lipschitz continuous with respect to the potentials,
and grow at most linearly in the potentials due to Lemma 3.3.10, (3.4.13), and (3.4.1), we
infer from standard ODE theory that this initial value problem has a unique solution
on [6,Rg]. Altogether, combining the obtained potentials on [0, 5] and [5, Ro], we
arrive at a solution of (3.3.11) on [0, Rg], that is, a fixed point of M.

3.4.4 Further properties

A desirable property of a steady state is that it is compactly supported with respect to
v. It is well known in similar settings that for this there should exist a cut-off energy.
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Indeed, the existence of such a cut-off energy guarantees this property also in our
setting, as is shown below. Another obvious property which should hold is that the
steady state is nontrivial—for example, we have not excluded the pointless possibility
n® = 0 yet. We first state conditions under which a steady state indeed has these two
properties and then prove the corresponding theorem.

Condition 3.4.8. Foreach a =1, ..., N it holds that:

(i) There exists & > 0 such that n*(E,F,G) = 0if & > &F.
(ii) There exist EF > my, g,“ <0,G% >0, and

(1) 7% <0, %% = Oor
2) F,* <0, F,* >0

such that
Y&, F,G) € Imy, EF[ x |FY, Fr[ x |6, 6i| :n*(E&,F,6) > 0.

Theorem 3.4.9. Let Conditions 3.3.3 and 3.3.8 hold and let (%), ¢, A) be a steady state,
where (¢, Ay, As) is the fixed point of M and the f* are given by (3.3.7). Then we have:

(i) If Condition 3.4.8.(i) is satisfied, then the steady state is compactly supported with respect
tov.
(ii) If Condition 3.4.8.(ii) is satisfied, then the steady state is nontrivial.

Proof. As for part 3.4.9.(i), we find that, if

lv| > airllaxN(Sg +|92|E(Ro)),

then foreacha =1,...,N and x € Q we have
EMx,v) = Ug + qa¢(r) > |v| - |qa|‘§(R0) 2 53

due to Lemma 3.4.1 and hence f*(x,v) = 0.
As for part 3.4.9.(ii), we follow the idea of [Kno19]. For fixed a € {1, ..., N} choose

0<rq < % small enough such that

,’mg +7y— |qa|5(2ra) > My, \’mi + 57, + |l]a|5(27’a) < 8;}/

Ta +]9a|E@ra) + |qa|0 sug) |AS(r)| < min{-G, G}
<r<2ry

and

4r§ + 2|qa|raC(2ra) + 2|q[,,|ra sup

0<r<2rq

A5%)| < -7,

1 3
—ﬁr(% + 2|qa|raC(2ra) + 2|qa|ra . sup A;Xt(r)| <0

<r<2r,
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in case 3.4.8.(ii).(1) and

4r§ + 2|qa|raC(2ra) + 2|q,,,|ra sup A‘fp"t(r)| <Fe,

0<r<2rq

1 3
—rO% —2|qa]raC2ra) = 2|ga|ra sup Afp"t(r)| >0
0

\/E <r<2r,

in case 3.4.8.(ii).(2), respectively. Indeed, this choice of r, is possible since &(r), C(r),
rASY(r) = O(r?) for r — 0, AS*(0) = 0, and 3,3 € 10,2[. Next, let 6, = ¥ in
case 3.4.8.(ii).(1) and 0, = 7 in case 3.4.8.(ii).(2), respectively, and let

Sy = {(r,u,@,vg) €[0,Ro] X [0,00[ X [0,21t] XR | 74 <7 < 2ra,VFa <u <2414,

ea—g<e<9a+g,—\/§<v3<\/§}.

In (r,u, 6, v3)-coordinates, where u = /v% + v% and 0 is the polar angle in the (v1, v2)-
plane with basis (e;, e), it holds that

E¥r,u,0,v3) = \Jm3 +u + 03 + qap(r),

Fr,u,0,v3) = r(u sin 0 + oAy (r) + qufp"t(r)),
G (r,u,0,03) = 03 + 4o As(r) + G AT (7).

For each (r,u, 0,v3) € S,, we have by Lemma 3.4.1

&E%r,u,0,v3) > \[mé +7q — |Qa|5(27’a) > Mg,
8“(r, u,o, '03) < \[Tﬂg + 57, + |Qt1|é(27a) < 83'

G*(r,u,0,03) > —\ra = |qa]EQra) = |9a| sup |AX()| > G7,

0<r<2r,4

G(r,u,0,vs3) < Vg +|qa|E@2ra) +|qa| sup |ASU(r)| < G5
0

<r<2ru

and

Fr,u,0,03) > —4r§ —2|ga|raC(2ra) — 2|qa|ra sup Ae(PXt(r)’ > F°,

0<r<2r,

3
Fr,u,0,v3) < —%r}c + 2|qa|raC(2ra) +2|qa|ra sup Af;,x‘(r)) <0< FS

0<r<2r,

in case 3.4.8.(ii).(1) and

3
Fr,u,0,03) < 43 +2|qa|raC(2ra) +2|qalra sup A$Xt(r)| <F.,
0

<r<2r,
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3
Fr,u,0,v3) > %rﬁ - 2|qa|ra(:(2ra) - 2|qa|ra sup A'f}j“(r)| >0>F*
0

<r<2r,
in case 3.4.8.(ii).(2), respectively. Therefore,
run®(&(r,u, 0,v3), F*(r,u, 0,v3), G*(r,u, 0,0v3)) > 0.

Thus, we have

Ro
/B /Rsf“ dvd(x1,xz):2n/0 T/Rs n* (&%, F,G%) dvdr
Ro

RO [eS] 271
= 271/ // / run®(&*, ¥, G*)d0duduvsdr
0o JrJo Jo

> / run® (€%, 72, G d(r,u, 6,05) > 0
Sa

since S, has positive Lebesgue measure. In particular, f¢ # 0. O

Remark 3.4.10. Intuitively, the proof of Theorem 3.4.9.(ii) shows that, for each species,
there are some particles near the symmetry axis with small momentum. Moreover,
it was proved that in case 3.4.8.(ii).(1) (or 3.4.8.(ii).(2), respectively) there are some
particles with negative (or positive, respectively) canonical angular momentum.

3.5 Confined steady states

There remains to find conditions on the external potential A" and the ansatz func-
tions n* under which a corresponding steady state is confined. We consider two
possibilities:

e A suitable A‘fp’“ (corresponding to an external magnetic field in the e3-direction)
ensures confinement. This configuration is often called “6-pinch”.

e A suitable A (corresponding to an external magnetic field in the e, -direction)
ensures confinement. This configuration is often called “z-pinch”.

A combination of these two—often called “screw-pinch”—would of course also be
possible, whence the following options are not exhaustive.

Theorem 3.5.1. Let Conditions 3.3.3, 3.3.8, and 3.4.8 hold and let ((f*) ., ¢, A) be a steady
state, where (¢, Ay, As) is the fixed point of M and the f are given by (3.3.7). We define

N={ae{l,....N}|ga<0}, P={ae{l,...,N}|qa>0}

Furthermore, let 0 < R < R and one of the following four options hold:
(i) (0-pinch)
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(a) For each a € N, case 3.4.8.(ii).(1) is satisfied and we have n*(E,F,G) = 0
whenever & > 0 (thus, necessarily ¥, = 0). For each a € P, case 3.4.8.(ii).(2)
is satisfied and we have n*(E,F,G) = 0 whenever ¥ < 0 (thus, necessarily
Tl"‘ = 0). Moreover, assume

A(c})Xt(r) < —aq)(r), R <r <Ro.

(b) For each a € N, case 3.4.8.(ii).(2) is satisfied and we have n*(E,F,G) = 0
whenever F < 0 (thus, necessarily 7-'1“ = 0). For each o € P, case 3.4.8.(ii).(1)
is satisfied and we have n*(&E,F,G) = 0 whenever ¥ > 0 (thus, necessarily
F. = 0). Moreover, assume

AQ(r) 2 ap(r), R <r<Ro.

Here,

V(& + [ae)? - m2
LN 9]

+ (7).

(ii) (z-pinch)

(a) For each a € N, there exists G§ < 0 such that n*(&,F,G) = 0 whenever
G < Gy. Foreach a € P, there exists G > 0 such that n*(E,F,G) = 0
whenever G > G Moreover, assume

AY(r) > as(r), R <r<Ro.
(b) For each a € N, there exists G§ > 0 such that n%(E,F,G) = 0 whenever

G > G§. Foreach a € P, there exists G§ < 0 such that n*(&,F,G) = 0
whenever G < G Moreover, assume

ASY(r) < —a3(r), R <71 <Ry

Here,

1G] +\(E8 + |aaler)? = m2
a=1,..,N |qa|

+ &(1).

as(r) =

Then the steady state is confined with radius at most R, compactly supported with respect to
v, and nontrivial.

Proof. First note that for each (x,v) € OxR¥anda =1,...,N we have f*(x,v)=0if

o] > (82 +|gale)? - m2
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since then

E%(x,0) 2 AJm3 + o = |qa]e(r) 2 &

by Lemma 3.4.1. Thus, foreach @ = 1, ..., N it suffices to consider v € R3 with

lo| < \/(88‘ + |qa|£(r))2 - m2.

In the following, always let r € [R, Ro], @ € N, § € P, and v as above.
If option 3.5.1.(i).(a) is satisfied, we have

Fx,0) 2 r( [0l + gaC0r) + A1) = r(=[o] + 4aC(r) =~ qaty(1)

\/(85“ +|7al&()* = m2

2 —\/(83 +|7a6)? = m3 + 4aCr) — 4o ~ Crenll=o,
FP(x,v) < r(lvl +qpC(r) + qﬁAe(PXt(r)) < r(lo] + gpC(r) — gpay(r))
2
; 2 \/(35 +lagle) = m3
<r \/(50 + |%|5(7)) - mé +qpC(r) — qp P +C(r) =0

and thus f%(x,v) = fP(x,v) = 0.
If option 3.5.1.(i).(b) is satisfied, we have

F(x,0) < r(lvl —q4C(r) + qug,Xt(r)) < (ol = gaC(r) + gaay(r))

V(68 + |aler)) —m2
o

< V(8 + [qal£0)? = 172 = a0 + g vanl|=0,

FP(x,0) > r(—lvl - qpl(r) + qﬁAfDXt(r)) > r(=lvl = qpC(r) + qpap(r))

(& o) -2

2 —\/(55 + |¢1/%|<5(7))2 —mg = qpl(r) +qp ” +(r)||=0

and thus f%(x,v) = ff(x,v) = 0.
If option 3.5.1.(ii).(a) is satisfied, we have

G"(x,0) < |v] = 4al(r) + 4a AT (r) < |0] = qa&(r) + gaas(r)
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-G& + \/(ag + |qa|£(r))2 - m?
0

< \/(88‘ + |Qa|£(1’))2 _ mi — ga&(r) + qa +&(r)

=G,
GP(x,0) 2 =[v] = qp&(r) + gpAS(r) > ~[v] = qp&(r) + qpas(r)

2
Go +\/ (&6 + lagle) = m2
qp

+E| =6,

2
2 —\/(85 + |4/3|5(r)) —mg = qp&(r) +qp

and thus f%(x,v) = fP(x,v) = 0.
If option 3.5.1.(ii).(b) is satisfied, we have

G*(x,0) > —|v| + 4o &(r) + ga AT (r) > —[v| + o &(r) = gaas(r)

G + (&8 + |a|e(r) = m2
o

2 _\/(83 + |qa|£(r))2 - mczy + Qaé(r) —Ja + 5(1’)

= goal
GP(x,0) < ol + qpe(r) + qpASH(r) < o] + qpE(r) = gpas(r)

2
64+ (&L +laplen) - 2
qs

+&(r =68

2
< \/(85 +aple))” = m2 + qpe) - g5

and thus f%(x,v) = ff(x,v) = 0.

Hence, in all four cases the steady state is confined with radius at most R. That the
steady state is compactly supported with respect to v and nontrivial has already been
proved in Theorem 3.4.9. O

We point out that £ and (—and thus a, and az—do not depend on Af;,’“ and Ag’“,

whence the above inequality conditions on A‘fpXt or A, respectively, are explicit.

Intuitively, for example, option 3.5.1.(i).(a) means that all negatively (positively)
charged particles have negative (positive) canonical angular momentum thanks to
the ansatz function and that, however, for R < r < Rg a sufficiently small nega-
tive AS* would cause a positive (negative) canonical angular momentum of nega-
tively (positively) charged particles possibly located there. Similarly, for example,
option 3.5.1.(ii).(a) says that there cannot exist negatively (positively) charged parti-
cles with too small (large) third component of the canonical momentum thanks to
the ansatz function and that, however, for R < r < Rq a sufficiently large positive
Ag"t would cause a too small (large) third component of the canonical momentum of
negatively (positively) charged particles possibly located there.



3.5 Confined steady states 139

Since A?p"t(O) = A$(0) = 0 due to Condition 3.3.3 and a,(0) # 0 # a3(0) due to
Condition 3.4.8, ‘A‘fp"t’ or \ S

to satisfy the respective condition on [R, Ro]. Moreover, a, and a3 increase when the
ansatz functions n* (and hence ¢, C) increase. Thus, a larger external magnetic field
is necessary to confine a larger amount of particles (as one would expect).

To obtain a specific example for an external magnetic field ensuring confinement, we
consider a 0-pinch configuration and a homogeneous external magnetic field parallel
to the symmetry axis, i.e, B = B$*e3 and BS' = b for some constant b € R. As

B$¥(r) = %(rAe(PXt(r)) and A$%(0) = 0, it has to holds that AS(r) = Yr. Therefore, the

steady state is confined for a sufficiently strong external magnetic field, that is to say,
if

has to increase sufficiently fast on [0, R]

ay(r
|b| =2 sup or)
TG[R,RO]
and b < 0 (if option 3.5.1.(i).(a) is satisfied) or b > 0 (if option 3.5.1.(i).(b) is satisfied),
respectively. As opposed to this, no configuration can exist where the ¢-component
of the external magnetic field is constant (and nontrivial) since in this case Ag"t would

have to be a linear function of r because of B = —(A‘;Xt)/, which contradicts the
necessary condition (A$)"(0) =
We finish this section with an important remark.

Remark 3.5.2. Another interesting setting is that there is no confinement device and
thus no boundary at r = Ry in the first place. In this case, Q = R? and no boundary
conditions at ¥ = Rg have to be imposed. Moreover, Definition 3.3.6 can be suitably
adapted to this new setting by abolishing (3.3.5b) and setting Ry = oo. If we seek a
steady state of this new setting that is confined with radius at most R > 0, we firstly
choose a (slightly) larger Rg > R, secondly consider the confinement problem as before
with boundary at r = Ry and choose A" or A suitably to ensure confinement of
the obtained steady state with radius at most R, and thirdly “glue” this steady state
defined on [0, Ro] and the vacuum solution on [Ry, oo[ together, i.e., extend each f¢
by zero and the potentials by their respective integral formula, that is,

(r) = —4n /71/5 op(o)dods
= —4n op(o)dods —4n op(o)dods
[ 2] opo [ [ opo
= —4n op(o)dods —4mn sp(s)ds - (Inr —InR),
J AL f e
A(p(r)z—T/O SV/O jo(o)dods
:_47”/ORS/Osj(P(a)dads—47”/Rrs/0qu,(a)dods
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i /ORsfosqu(o)dods—Zn/Oquu(s)ds-(r—RTZ),
As(r) = —4n /1‘1/5 oj3(0)dods
:—471/ / 0]3(0)dads—4n/ / oj3(0)dods

:—4n/ / 0]3(0)dads—4n/ sja(s)ds - (Inr —InR)
0

for r > R. Note that for this procedure it is important that the f* already vanish on
[R, Ro] so that the composite f* have nojumps at r = Ry. With the identities above we
can furthermore determine the asymptotics of the potentials for ¥ — oo. In particular,

¢(r) = —2alnr +const., Az(r)=-2blnr +const., r >R,
Ap(r)+cr=0(r") forr — oo,

where

R R R
a= 27z/ sp(s)ds, b= 27'(/ sja(s)ds, ¢ = 2n/ Jo(s)ds.
0 0 0

Here, a and b can be interpreted as the total charge and the third component of the
total current on each slice perpendicular to the symmetry axis.

3.6 Final remarks

From a fusion plasma physics point of view, a very interesting case is that () is a torus
instead of an infinitely long cylinder. In accordance with Remark 3.3.2, we choose
an orthogonal curvilinear coordinate system for which tori are coordinate surfaces.
A canonical choice are the so-called “toroidal coordinates” (&, 7, ¢) from the range
0<£<1,0<1n<2nr0< ¢ <2n Here and in the following, we adopt the notation
of [Bat97] for the coordinates (¢ or 1, respectively, are now coordinates and no longer
a function describing an a priori bound for the electric potential or an ansatz function,
respectively, as above). Note that there are also other coordinates commonly called
toroidal coordinates, for example, using 5 instead of &, where &1 = cosh 5 . These
toroidal coordinates are related to Cartesian coordinates via

apy1— &2 cos ¢ _agy1- E2sing _ ap&sing

1= 1-£&cosn 2= 1—&cosn xs_l—écosn'

Toroidal coordinates result from rotating the two-dimensional bipolar coordinate
system

agy1 — &2 _apésing

1-&cosn’ 2= 1-&cos

X1 =
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about the x3-axis. The number a9 > 0 yields the two foci (a9, 0) and (—ao, 0), which
become a focal ring after rotation. Note that the coordinate surfaces & = const. are
tori, whence it seems a natural idea for an approach that the role of r in cylindrical
coordinates should now be played by & in toroidal coordinates.

The main advantage of Q) being an infinitely long cylinder and thus assuming
corresponding symmetries was that two variables (¢ and x3) of the Lagrangian £
written in cylindrical coordinates were cyclic. Thus, r was left as the only variable
and the equations were reduced to three ordinary differential equations, which could
be integrated explicitly. In other words, it was very important that Poisson’s equation
reduces to an ODE since under those symmetry assumptions the Laplacian

9,(rdy)

1 1, o 1
A= ;87(1’37) + r_za(p + 8x3 = ;

is in fact an ordinary differential operator.

However, in toroidal coordinates the same strategy fails as the Laplace equation
A¢ = 0 is not fully separable in toroidal coordinates. Yet it is “R-separable”, i.e., it
admits a complete set of separable solutions of the form

d(&,n,¢) = R(E,1,9)E(E)H (1)0(p)

where

R(&,n,¢) =R(&,1) =1 —&cosn.

In particular,

(€71 = Smn(©)  or
E_EQW_%(E_l) = Tmn(é);

) = nto) = {070
D(p) = 0, (p) - {Z?ﬁﬁﬁﬁii, o

for parameters m, n € Ny. Here, Pﬁ: and QK are associated Legendre functions of the
first and second kind. Note that S,,, and T, are singular at the focal ring, where
& = 0. From this, a Green’s function for a torus {& = &y} can be derived, namely,

G((& @), (&1, 9))

_1 OO, o T(m=n+3) T, (min{E, &)
- 77_610\'/1_ECC)Sn\/l_(E o ZZ(_U Sngml"(m +n+ %) Tun(So)

n=0 m=0

“[Tnn(&0)Smn(max{&, 5,}) = Tyn(max{¢&, 5,})Smn(50)]
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-cos(m(n—n')) cos(n(p - ¢')); (3.6.1)

see [Bat97]. Here, ¢ =1, ¢, =2 (n > 2), and I' is the Gamma function.
Thus, a strategy to construct steady states confined in a torus based on our previous
strategy could be the following:

1. Consider two free variables (£, 1) instead of one () as before.

2. Thus, the number of invariants corresponding to space symmetry is reduced from
two (F*,G*) to only one (). Therefore, only A$X* (and no longer A$X) is impor-
tant and may ensure confinement.

3. Since the current density j now has only a ¢-component, only differential equations
for ¢ and A, have to be considered; the other components of A can be set to zero
without loss of generality.

4. Write down representations for p and j, and derive estimates in terms of the
potentials. This will be clearly different to our previous setting since we only have
two invariants instead of three as before and the same changes of variables as in
the proof of Lemma 3.3.10 are not applicable anymore.

5. Solve the differential equations for ¢ and A, formally. As for ¢, the Green’s
function G, see (3.6.1) (where only n = 0 remains due to symmetry in ¢), should
be used. For the determination of Ay, however, a “torsional” Green’s function,
which incorporates the impact of the basis vector e, in the equation for A, = A-ey,
provides a solution formula; cf. [Bat97].

6. Derive suitable a priori estimates for ¢ and A, using the above solution formulae
and prove existence of steady states via a fixed point argument or applying the
method of sub- and supersolutions as in [BF93].

7. Try to adjust AS) suitably to ensure confinement via imposing a condition on A%
in the region &, < & < & such that the plasma is confined within {& < &.} which
is a proper subset of the fusion reactor Q = {& < &p}. The external magnetic
potential inside the confinement region {& < &}, however, cannot be arbitrary and
is “influenced” by this condition since Afp"t should, for example, vanish at {£ = 0}
(the focal ring) to ensure nontriviality of the steady state.

Such a configuration with only an external magnetic potential in the ¢-direction
that is independent on ¢ is in fact a z-pinch configuration (the role played by x3
before in the case of a linear confinement device is now played by ¢ as the cylinder
is bent into a torus). Thus, the corresponding magnetic field has no ¢-component,
i.e., lies in the cross-section of the torus. However, a main concept of a Tokamak is
to supply a large toroidal magnetic field to ensure confinement. This is due to the
empirical observation that z-pinches are subject to powerful instabilities, for example,
the kink instability. To overcome (some of) these instabilities, a toroidal magnetic
field should be added. These considerations lead to very interesting questions about
the stability of steady states, which have not been addressed in this work. Firstly, in



3.6 Final remarks 143

the case of an infinitely long cylinder as confinement device, it would be desirable to
verify observations—in particular, z-pinches tend to be unstable and 0-pinches tend
to be stable—analytically. Secondly, similar questions are interesting in the practice-
oriented case of a toroidal confinement device, i.e.,, can pure z-pinches proved to
be unstable and can an additional, suitably adjusted toroidal magnetic field ensure
stability of (confined) steady states? For example, a criterion for linear stability without
the presence of external magnetic fields was given in [NS14]. Maybe a suitable external
magnetic field ensures this criterion and/or prevents (or reduces) possible drifts in the
&-direction, i.e., preventing the plasma particles from getting closer to the boundary
of their container. Here, it would also be interesting to investigate whether toroidal
coordinates (&, 1, ¢)—instead of the coordinates (s, 0, ¢), where

x1=(@+scosB)cosp, x,=(d+scosO)sing, x3=ssin0,

that were used in [NS14] but do not allow R-separation of Laplace’s equation—turn
out to be advantageous.
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