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Abstract

The time evolution of a collisionless plasma is modeled by the relativistic Vlasov–
Maxwell system which couples the Vlasov equation (the transport equation) with the
Maxwell equations of electrodynamics. We consider the case that the plasma consists
of several particle species, the particles are located in a container Ω ⊂ R3, and are
subject to boundary conditions on %Ω.
In the first two parts of this work, we deal with the situation that there are external

currents, typically in the exterior of the container, that may serve as a control of
the plasma if adjusted suitably. In order to allow interaction between the exterior
and the interior of the container, we do not impose perfect conductor boundary
conditions for the electromagnetic fields—in contrast to other papers dealing with a
similar setting, but without external currents—but consider the fields as functions
on whole space R3 and model objects that are placed in space via given matrix-
valued functions � (the permittivity) and � (the permeability). Firstly, a weak solution
concept is introduced and existence of global-in-time solutions is proved, as well as
the redundancy of the divergence part of the Maxwell equations in this weak solution
concept. Secondly, since a typical aim in fusion plasma physics is to keep the amount
of particles hitting %Ω as small as possible (since they damage the reactor wall), while
the control costs should not be too exhaustive (to ensure efficiency), we consider a
suitable minimization problemwith the Vlasov–Maxwell system as a constraint. This
problem is analyzed in detail. In particular, we prove existence of minimizers and
establish an approach to derive first order optimality conditions.
In the third part of this work, we consider the case that the plasma is located in

an infinitely long cylinder and is influenced by an external magnetic field. We prove
existence of stationary solutions (extending in the third space direction infinitely) and
give conditions on the external magnetic field under which the plasma is confined
inside the cylinder, that is, it stays away from the boundary of the cylinder.
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Zusammenfassung

Die zeitliche Entwicklung eines kollisionsfreien Plasmas wird durch das relativis-
tische Vlasov-Maxwell-System modelliert, das die Vlasov-Gleichung (die Transport-
gleichung) mit den Maxwell-Gleichungen der Elektrodynamik koppelt. Es wird der
Fall betrachtet, dass das Plasma aus mehreren Teilchenspezies besteht, die Teilchen
sich in einem Behälter Ω ⊂ R3 befinden und auf %Ω Randbedingungen genügen.

In den ersten beiden Teilen dieser Arbeit wird die Situation behandelt, dass externe
Ströme vorhanden sind, typischerweise außerhalb des Behälters, die bei entsprechen-
der Justierung als Steuerung des Plasmas dienen können. Um eine Interaktion zwi-
schen dem Äußeren und dem Inneren des Behälters zu ermöglichen, werden keine
Randbedingungen eines perfekten Leiters für die elektromagnetischen Felder ver-
langt – im Gegensatz zu anderen Arbeiten, die ein ähnliches Setting, jedoch ohne
externe Ströme, behandeln –, sondern die Felder als Funktionen auf den gesamten
Raum R3 betrachtet und Objekte, die im Raum platziert sind, mittels gegebener, ma-
trixwertiger Funktionen � (die Permittivität) und � (die Permeabilität) modelliert.
Zuerst werden ein schwaches Lösungskonzept eingeführt und die Existenz von glo-
balen Lösungen sowie die Redundanz des Divergenzteils der Maxwell-Gleichungen
in diesem schwachen Lösungskonzept nachgewiesen. Da ein typisches Ziel in der
Fusionsplasmaphysik darin besteht, die Menge der Teilchen, die %Ω treffen, so klein
wie möglich zu halten (da solche die Reaktorwand beschädigen), während die Kon-
trollkosten nicht allzu hoch sein sollten (um Effizienz zu gewährleisten), wird danach
ein geeignetes Minimierungsproblem mit dem Vlasov-Maxwell-System als Nebenbe-
dingung betrachtet. Dieses Problem wird detailliert analysiert. Insbesondere werden
die Existenz vonMinimierern nachgewiesen und eine Vorgehensweise zurHerleitung
von Optimalitätsbedingungen erster Ordnung etabliert.
Im dritten Teil dieser Arbeit wird der Fall betrachtet, dass sich das Plasma in einem

unendlich langen Zylinder befindet und durch ein äußeres Magnetfeld beeinflusst
wird. Die Existenz von stationären Lösungen (die sich in die dritte Raumrichtung un-
endlich weit erstrecken) wird bewiesen und Bedingungen an das äußere Magnetfeld
werden hergeleitet, unter denen das Plasma im Inneren des Zylinders eingeschlossen
ist, also vom Zylinderrand entfernt bleibt.
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CHAPTER0
Introduction

0.1 The PDE system
The time evolution of a collisionless plasma is modeled by the relativistic Vlasov–
Maxwell system. Collisions among the plasma particles can be neglected if the plasma
is sufficiently rarefied or hot. The particles only interact through electromagnetic
fields created collectively. We consider the following setting: There are # species of
particles, all of which are located in a container Ω ⊂ R3, which is a bounded domain,
for example, a fusion reactor. Thus, boundary conditions on %Ω have to be imposed.

In the exterior of Ω, there are external currents, for example, in electric coils, that
may serve as a control of the plasma if adjusted suitably. In order tomodel objects that
are placed somewhere in space, for example, the reactorwall, electric coils, and (almost
perfect) superconductors, we consider the permittivity � and permeability �, which
are functions of the space coordinate, take values in the set of symmetric, positive
definite matrices of dimension three, and do not depend on time, as given. With this
assumptionwe canmodel linear, possibly anisotropic materials that stay fixed in time.
We should mention that in reality � and � will on the one hand additionally depend
on the particle density inside Ω and on the other hand additionally locally on the
electromagnetic fields, typically via their frequencies (maybe even nonlocally because
of hysteresis). However, this would cause further nonlinearities which we avoid in
this work.
The unknowns are on the one hand the particle densities 5  = 5 (C , G, E),  =

1, . . . , # , which are functions of time C ≥ 0, the space coordinate G ∈ Ω, and the
momentum coordinate E ∈ R3. Roughly speaking, 5 (C , G, E) indicates how many
particles of the -th species are at time C at position G with momentum E. On the
other hand there are the electromagnetic fields � = �(C , G),� = �(C , G), which depend
on time C and space coordinate G ∈ R3. The �- and �-fields are computed from � and
� by the linear constitutive equations � = �� and � = ��. We will only view � and
� as unknowns in the following.
The Vlasov part, which is to hold for each , reads as follows:

%C 5
 + Ê · %G 5  + @(� + Ê × �) · %E 5  = 0, (0.1a)

1



2 0 Introduction

5 − = K 5

+ + 6 , (0.1b)

5 (0) = ˚5  . (0.1c)

Here, (0.1a) is the Vlasov equation equipped with the boundary condition (0.1b) on
%Ω and the initial condition (0.1c) for C = 0. In (0.1c), 5 (0) denotes the evaluation of
5  at time C = 0, that is to say, the function 5 (0, ·, ·). We will use this notation often,
also similarly for the electromagnetic fields and other functions.
Note that throughout this workwe usemodifiedGaussian units such that the speed

of light (in vacuum) is normalized to unity and all rest masses < of a particle of the
respective species are at least 1. In (0.1a), @ is the charge of the -th particle species
and Ê the velocity, which is computed from the momentum E via

Ê =
E√

<2
 + |E |2

according to special relativity. Clearly, |Ê | < 1, that is, the velocities are bounded
by the speed of light. Moreover, we assume that � = � = Id on Ω, Id denoting the
3 × 3-identity matrix. Thus, the speed of light is constant in Ω and � = � on Ω.
To derive a precise statement of the boundary condition (0.1b) and a definition of 5 ± ,

the operator K, and where (0.1b) has to hold, we have a look at typical examples at
first. Most commonly, the operator K describes a specular boundary condition. For
this, we assume that Ω has a (at least piecewise) �1-boundary that is a submanifold
of R3, and denote the outer unit normal of %Ω at some G ∈ %Ω by =(G). Now consider
a particle moving inside Ω and then hitting the surface %Ω at some time C at G ∈ %Ω.
Its momentum E (shortly) after the reflection satisfies E · =(G) < 0 and its momentum
(shortly) before the hit is thus given by E − 2(E · =(G))=(G). In other words, this means
that the components of the momentum which are tangential to =(G) stay the same,
and that the component which is normal to =(G) changes the sign. On the level of a
particle density 5 , this consideration yields the condition

5 (C , G, E) = 5 (C , G, E − 2(E · =(G))=(G)) C
(
 5 

)
(C , G, E) (0.2)

for G ∈ %Ω and E · =(G) < 0.
More generally, we can consider the case that only a portion of the particles that hit

the boundary are reflected and the rest is absorbed and, additionally, more particles
are added from outside. Thus, we may demand

5 (C , G, E) = 0(C , G, E)
(
 5 

)
(C , G, E) + 6(C , G, E) (0.3)

for G ∈ %Ω and E · =(G) < 0. Here, 0 ≤ 0(C , G, E) ≤ 1 is a coefficient; that is to say,
0(C , G, E)-times the amount of the particles hitting the boundary at time C at G ∈ %Ω
with momentum E are reflected and the rest is absorbed. Furthermore, 6(C , G, E) ≥ 0
is the source term describing how many particles are added from outside.
Since the boundary condition is to hold only if E ·=(G) < 0, it is natural to decompose
[0,∞[ × %Ω × R3 into three parts:

�+ B
{
(C , G, E) ∈ [0,∞[ × %Ω × R3 | E · =(G) > 0

}
,



0.1 The PDE system 3

�− B
{
(C , G, E) ∈ [0,∞[ × %Ω × R3 | E · =(G) < 0

}
,

�0 B
{
(C , G, E) ∈ [0,∞[ × %Ω × R3 | E · =(G) = 0

}
.

Therefore, (0.3) is to hold for (C , G, E) ∈ �−. Moreover,  can be seen as an operator
mapping functions on �+ to functions on �−. In accordance with (0.1b), we define 5 ±
to be the restriction of 5  to �±. Of course, this only makes sense if we have some
regularity of 5 , for example, continuity on [0,∞[ ×Ω × R3. But even if a solution 5 

(of a Vlasov equation) is only an !?-function, it is possible to define a trace 5 ± of 5  on
�±; see Definition 1.2.7.(ii). Note that K = 0 in (0.1b) yields (0.3). Since the time
variable in the sets above is somewhat unnecessary, we abbreviate

�+) B
{
(C , G, E) ∈ [0, )[ × %Ω × R3 | E · =(G) > 0

}
,

�−) B
{
(C , G, E) ∈ [0, )[ × %Ω × R3 | E · =(G) < 0

}
,

�0
) B

{
(C , G, E) ∈ [0, )[ × %Ω × R3 | E · =(G) = 0

}
,

�̃+ B
{
(G, E) ∈ %Ω × R3 | E · =(G) > 0

}
,

�̃− B
{
(G, E) ∈ %Ω × R3 | E · =(G) < 0

}
,

�̃0 B
{
(G, E) ∈ %Ω × R3 | E · =(G) = 0

}
for 0 < ) ≤ ∞. For ease of notation it will be convenient to introduce a surface
measure on [0,∞[ × %Ω × R3, namely,

3� = |Ê · =(G)| 3E3(G3C.

Furthermore, the Vlasov part is coupled with Maxwell’s equations, which describe
the time evolution of the electromagnetic fields:

�%C� − curlG � = −4�9 , (0.4a)
�%C� + curlG � = 0, (0.4b)

(�, �)(0) =
(
�̊, �̊

)
. (0.4c)

Here, the current 9 = 9int + D is typically the sum of the internal currents

9int B
#∑
=1

@

∫
R3
Ê 5

 3E

and someexternal current D, that is supported in someopen setΓ ⊂ R3. Wewill always
extend 9int (D) by zero outside Ω (Γ). Concerning set-ups with boundary conditions
on the plasma, the papers we are aware of deal with perfect conductor boundary
conditions for the electromagnetic fields; see, for example, [Guo93]. Such a set-up
can model no interaction between the interior and the exterior. However, considering
fusion reactors, there are external currents in the exterior, for example, in field coils.
These external currents induce electromagnetic fields and thus influence the behavior
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of the internal plasma. Even more important, the main aim of fusion plasma research
is to adjust these external currents “suitably”. Thus, we impose Maxwell’s equations
globally in space.
Actually, Maxwell’s equations additionally include conditions on the divergence of

� = �� and � = ��, namely,

divG(��) = 4��, (0.5a)
divG

(
��

)
= 0, (0.5b)

where � denotes the charge density. Usually, these equations are known to be re-
dundant if all functions are smooth enough, local conservation of charge is satisfied,
i.e.,

%C� + divG 9 = 0,

and (0.5) holds initially, which we then view as a constraint on the initial data. There-
fore, in Chapters 1 and 2 we largely ignore (0.5) and discuss in Section 1.5 in what
sense (0.5) is satisfied in the context of a weak solution concept.
We thus arrive at the following Vlasov–Maxwell system, which is (0.1) and (0.4)

combined, on a time interval with given final time 0 < )• ≤ ∞:

%C 5
 + Ê · %G 5  + @(� + Ê × �) · %E 5  = 0 on �)• ×Ω × R3 , (VM.1)

5 − = K 5

+ + 6 on �−)• , (VM.2)

5 (0) = ˚5  on Ω × R3 , (VM.3)
�%C� − curlG � = −4�9 on �)• × R3 , (VM.4)
�%C� + curlG � = 0 on �)• × R3 , (VM.5)

(�, �)(0) =
(
�̊, �̊

)
on R3 , (VM.6)

where (VM.1) to (VM.3) have to hold for all  = 1, . . . , # and �)• denotes the given
time interval. Here and in the following, �) B [0, )] for 0 ≤ ) < ∞ and �∞ B [0,∞[.

0.2 Outline
This work splits into three parts. In Chapter 1 we prove existence of weak solutions
of (VM) for given (and suitable) 5̊ , �̊, �̊, K, 6, and D. To this end, we firstly define
in Section 1.1 what we call weak solutions of (VM). The strategy to construct a weak
solution follows the strategy of Guo [Guo93], who considered (VM) with � = � = Id,
D = 0, and (VM.4) and (VM.5) only imposedonΩ andequippedwithperfect conductor
boundary conditionson %Ω. Firstly,we consider theVlasovpart in Section1.2 and state
some important results of Beals and Protopopescu [BP87], who dealt with transport
equationswith Lipschitz continuous vector field subject to boundary conditions; here,
we also refer to the book of Greenberg, Mee, and Protopopescu [GMP87]. Going to the
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level of characteristics and exploiting that the characteristic flow ismeasure preserving
(which follows from the fact that the Lorentz force of electrodynamics has no sources
and sinks with respect to momentum), !?-bounds on 5  and 5 + are derived. After
shortly discussing the Maxwell part in Section 1.3, we proceed with the construction
of a weak solution in Section 1.4. Additionally to !?-bounds on 5  and 5 + , we make
use of an energy consideration. For classical solutions of (VM) one can easily derive
the energy balance

3

3C

(
#∑
=1

∫
Ω

∫
R3

√
<2

 + |E |2 5  3E3G +
1

8�

∫
R3

(
�� · � + �� · �

)
3G

)
≤ � −

∫
R3
� · D 3G,

if K takes the form K = 0 with 0 ≤ 0 ≤ 1, and where � is some expression in
the 6; if 0 = 1 for all , equality holds above. In order to apply a quadratic Gronwall
argument and to conclude that the left bracket is bounded for each time, the map

(�, �) ↦→
(∫
R3

(
�� · � + �� · �

)
3G

) 1
2

should be a norm on !2 (R3;R6) which is equivalent to the standard !2-norm. Thus,
assumptions about uniform positive definiteness of � and � will be made. Then, it
is natural to search for a weak solution in those spaces for whose norms the above a
priori bounds have been established. It turns out that firstly a cut-off system has to be
investigated in Section 1.4.2. Afterwards, the cut-off is removed in Section 1.4.3 and
the main result is proved in Theorem 1.4.4.
As already mentioned, in Section 1.5 we turn to the redundancy of the divergence

part of Maxwell’s equations. Guo [Guo93] proved that the divergence equations are
redundant if one imposes them on Ω. However, in our set-up the Maxwell equations
are imposed on whole space. Thus, things are more complicated since we have to
“cross over” %Ω. Whereas (0.5b) is easy to handle, the consideration of (0.5a) is much
more difficult and requires the property of local conservation of charge and the correct
definition of the charge density �. The idea is to show that the weak form—(1.1.2), in
particular—also holds for test functions that do not depend on E and thus to have a
weak form of conservation of internal charge at hand. Therefore, we have to perform
some technical approximations under a smoothness assumption about %Ω. It turns
out that a part of � is a distribution which is supported on %Ω and arises due to the
boundary conditions. The main result is stated in Theorem 1.5.6.
In Chapter 2we analyze an optimal control problem. A typical aim in fusion plasma

physics is to keep the amount of particles hitting %Ω as small as possible (since they
damage the reactor wall), while the control costs should not be too exhaustive (to
ensure efficiency). This leads to a minimization problem where a certain objective
function shall be driven to a minimum over a certain set of functions satisfying (VM)
in a weak sense. More precisely, the objective function is

1
@

#∑
=1

F

 5 + @
!@

(
�+
)• ,3�

) + 1
A
‖D‖AU .
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Here, 1 < @ < ∞, F > 0, and U = ,1,A (]0, )•[ × Γ;R3) with 4
3 < A < ∞. Thus, the

objective function penalizes hits of the particles on %Ω and exhaustive control costs. In
addition to (VM), it is necessary to impose two inequality constraints, namely, (2.1.1)
and (2.1.2), which are natural in the sense that they come from formal a priori bounds.
After discussing the minimization problem in detail in Section 2.1, we firstly prove
existence of a minimizer in Section 2.2; see Theorem 2.2.1. Secondly, we establish
an approach to derive first order optimality conditions for a minimizer under the
assumption @ > 2 in Sections 2.3 and 2.4. To this end, the one main idea is to write
the weak form of (VM) equivalently as an identity

G
( (
5  , 5 +

)
 , �, �, D

)
= 0 in Λ∗ ,

whereG is differentiable,Λ is a uniformly convex, reflexive test function space, andΛ∗
is its topological dual space; see Section 2.3. The other main idea, which is motivated
by approaches of Lions [Lio85], is to introduce an approximate minimization problem
with a penalization parameter B > 0 which is driven to infinity later; see Section 2.4.
In particular, we add the differentiable term

B

2
G ( (

5  , 5 +
)
 , �, �, D

)2
Λ∗

to the original objective function and abolish the constraint that (VM) be solved. For
this approximate problem, we prove existence of a minimizer and establish first order
optimality conditions; see Theorems 2.4.3 and 2.4.11. After that, we let B → ∞ and
prove that, along a suitable sequence, a minimizer of the original problem is obtained
in the limit, and the convergence of the controls D is even strong; see Theorem 2.4.13.
Lastly, we briefly discuss in Section 2.5 how these results can also be verified in case
of similar set-ups or different objective functions. We should point out that the main
problem we have to deal with is that existence of global-in-time solutions to (VM)
is only known in a weak solution concept. In fact, one cannot expect �1-solutions
in general as a result of the boundary conditions for the plasma particles; this was
observed by Guo [Guo95] even in a one-dimensional setting. It is an open problem
whether or not suchweak solutions are unique for given D. Thus, standard approaches
to derive first order optimality conditions via introducing a (preferably differentiable)
control-to-state operator, as is, for example, done in the books of Hinze et al. [Hin+09]
and Tröltzsch [Trö10], cannot be applied.
In Chapter 3 we consider the case that only an external magnetic field influences

the internal system. The aim then is to answer the following two questions: Firstly, for
a given time-independent external magnetic field, is there a corresponding stationary
solution? Secondly, are there stationary solutions that are confined in Ω, i.e., the
particles stay away from the boundary of their container, if the external magnetic
field is adjusted suitably? Results are obtained in the case that Ω is an infinitely long
cylinder (hence no longer bounded) and that the electromagnetic fields are subject to
perfect conductor boundary conditions on %Ω. In particular, proceeding similarly to
Degond [Deg90], Batt and Fabian [BF93], Knopf [Kno19], and Skubachevskii [Sku14],
we state some basic assumptions on the symmetry of the appearing functions and
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state the corresponding invariant quantities ℰ, ℱ , and G in Section 3.2, which lead
to the natural ansatz

5  = �(ℰ , ℱ  ,G).

This ansatz, together with a basic definition and some useful preliminary lemmas
and tools, is the content of Section 3.3. In Sections 3.4 and 3.5 we answer the above-
mentioned questions. In particular, we firstly prove existence of a steady state for a
given external magnetic field in Theorem 3.4.4; see also Theorems 3.4.6 and 3.4.9 for
further properties. Here, the main idea is to formulate the problem equivalently as a
fixed point problem (

), �! , �3
)
=ℳ

(
), �! , �3

)
for (some components of) the electromagnetic four-potential, which is then handled by
Schaefer’s fixed point theorem. Secondly, we give conditions on the external magnetic
potential under which the steady state is confined; see Theorem 3.5.1.

0.3 Further literature
Vlasov–Maxwell systems have been studied extensively. In case of no reactor wall,
i.e., the Vlasov equation is imposed globally in space (as well asMaxwell’s equations),
global well-posedness of the Cauchy problem is a famous open problem. Global
existence and uniqueness of classical solutions has been proved in lower dimensional
settings; see Glassey and Schaeffer [GS90; GS97; GS98a; GS98b]. In the full three-
dimensional setting, a continuation criterionwas given byGlassey and Strauss [GS86].
Furthermore, global existence of weak solutions was proved by Di Perna and Lions
[DL89]. Their momentum-averaging lemma is fundamental for proving existence of
weak solutions in any setting (with or without boundary, with or without perfect
conductor boundary conditions and so on), since it handles the nonlinearity in the
Vlasov equation. However, uniqueness of these weak solutions is not known. For a
more detailed overview we refer to Rein [Rei04] and to the book of Glassey [Gla96],
which also deals with other PDE systems in kinetic theory.
Controllability of the relativistic Vlasov–Maxwell system in two dimensions was

studied by Glass and Han-Kwan [GH15]. Knopf [Kno18] and later Knopf and the
author [KW18] analyzed optimal control problems for the Vlasov–Poisson system,
where Maxwell’s equations are replaced by the electrostatic Poisson equation. Here,
an external magnetic field was considered as a control. Studying control problems
with the Vlasov–Poisson system as the governing PDE system enjoys the advantage
of having existence and uniqueness of global-in-time classical solutions at hand, due
to the results of Pfaffelmoser [Pfa92] and Schaeffer [Sch91]. Also, an optimal control
problem for the two-dimensional Vlasov–Maxwell systemwas considered in [Web18].
Stationary solutions have already been obtained in similar set-ups; see, for example,

Poupaud [Pou92] and Rein [Rei92]. Approaches for confinement of Vlasov plasmas
can be found in a series of works of Caprino, Cavallaro, and Marchioro [CCM12;
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CCM14; CCM15; CCM16], who dealt with Vlasov–Poisson plasmas, and in Han-
Kwan [Han10] and Nguyen, Nguyen, and Strauss [NNS15] in the case of a Vlasov–
Maxwell plasma. Stability of stationary solutions was discussed in Nguyen and
Strauss [NS14], Zhang [Zha19], and (for a two-fluid model) in Zhelyazov, Han-Kwan,
and Rademacher [ZHR15].

0.4 Some notation
Throughout this work, �:-spaces (: ∈ N ∪ {∞}) on the closure of some open set *
are defined to be the space of �:-functions ℎ on * such that all derivatives of ℎ of
order less or equal : can be continuously extended to * . Moreover, the index ‘b’ in
�:
1
indicates that all derivatives of order less or equal : of such functions shall be

bounded, and the index ‘c’ in �:2 indicates that such functions shall be compactly
supported. As usual, �:,B (: ∈ N0, 0 < B ≤ 1) denotes Hölder spaces.
Furthermore, we denote by "" the characteristic function of some set" and by ")

the characteristic function of [0, )]. For 1 ≤ ? < ∞we define

!
?

kin(�, 30) B
{
D ∈ !?(�, 30) |

∫
�

E0
 |D |? 30 < ∞

}
,

equippedwith the correspondingweightednorm. Here,� ⊂ R3×R3 or� ⊂ R×R3×R3

is some Borel set equipped with a measure 0 and the weight E0
 is given by

E0
 B

√
<2

 + |E |2.

By < ≥ 1 we have E0
 ≥ 1. Moreover, we write

!
?

lt(�, 30) B {D : �→ R | ")D ∈ !?(�, 30) for all ) > 0}

for 1 ≤ ? ≤ ∞. If 0 is the Lebesgue measure we write !?kin(�) and !
?

lt(�), respectively.
A combination !?kin,lt(�, 30) is defined accordingly. Furthermore, we abbreviate

�lt(�;-) B {D : � → - | D ∈ �([0, )];-) for all ) ∈ �}

where 0 ∈ � ⊂ [0,∞[ is some interval, � is some �: or !? , and- is a normed, separable
vector space. Also, the somewhat sloppy notation

!∞(�; !∞(�)) B !∞(� × �)

and

�(�;- ∩ .) B �(�;-) ∩ �(�;.)

(and likewise with index ‘lt’, respectively) occur.
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Since � is already used for the permittivity, the letter �, and not �, will always denote
a small positive number.
For a matrix � ∈ R=×= (= ∈ N) and a positive number � > 0, we write � ≥ � (� ≤ �)

if �G · G ≥ � |G |2 (�G · G ≤ � |G |2) for all G ∈ R= . For a measurable � : R= → R=×= and
� > 0, we write � ≥ � (� ≤ �) if �(G) ≥ � (�(G) ≤ �) for almost all G ∈ R= .
For G, H ∈ R= (= ∈ N),

[
G, H

]
denotes the closed line segment connecting G and H;

similar notations are used for segments not including one or two of the endpoints.
Finally, for a normed space -, we write -∗ for the topological dual space. For

some G ∈ - and A > 0, �A(G) denotes the open ball in - with center G and radius A.
Furthermore, we abbreviate �A B �A(0).





CHAPTER1
Existence of weak solutions

1.1 Preliminaries
In this chapter we consider the case that some particle species, say, for  = 1, . . . , #′
with #′ ∈ {0, . . . , #}, are subject to partially absorbing boundary conditions with
possibly a source term 6, and the other particle species, for  = #′ + 1, . . . , # , are
subject to (partially) purely reflecting boundary conditions with no source term 6.
To be more precise, for  = 1, . . . , #′ assume 0 ∈ !∞

(
�−
)•

)
, 00 B ‖0‖!∞

(
�−
)•

) < 1, and

6 ∈
(
!1
kin,lt ∩ !

∞
lt

) (
�−
)•
, 3�

)
. For  = #′ + 1, . . . , # , however, assume 0 ∈ !∞

(
�−
)•

)
,

‖0‖
!∞

(
�−
)•

) = 1, and 6 = 0. For all  we defineK B 0 .

The space of test functions for (VM.1) to (VM.3) isΨ)• , where

Ψ) B
{
# ∈ �∞

(
�) ×Ω × R3

)
| supp# ⊂ [0, )[ ×Ω × R3 compact,

dist
(
supp#, �0

)

)
> 0, dist

(
supp#, {0} × %Ω × R3) > 0

}
(1.1.1)

for 0 < ) ≤ ∞. The restriction that supp# be away from certain sets will be important
later; see Definition 1.2.2 and Lemma 1.2.5. On the other hand, Θ)• is the space of test
functions for (VM.4) to (VM.6), where

Θ) B
{
' ∈ �∞

(
�) × R3;R3) | supp' ⊂ [0, )[ × R3 compact

}
for 0 < ) ≤ ∞.
We start with the definition of what we call weak solutions of (VM).

Definition 1.1.1. Let 0 < )• ≤ ∞, D ∈ !1
loc

(
R3;R3) . We call a tuple

( (
5  , 5 +

)
 , �, �, 9

)
a weak solution of (VM) on the time interval �)• with external current D if (for all ):

(i) 5  ∈ !1
loc

(
�)• ×Ω × R3

)
, 5 + ∈ !1

loc

(
�+
)•
, 3�

)
, �, �, 9 ∈ !1

loc
(
�)• × R3;R3) .

11
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(ii) For all # ∈ Ψ)• it holds that

0 = −
∫ )•

0

∫
Ω

∫
R3

(
%C# + Ê · %G# + @(� + Ê × �) · %E#

)
5  3E3G3C

+
∫
�+
)•

5 + # 3� −
∫
�−
)•

(
K 5


+ + 6

)
# 3� −

∫
Ω

∫
R3

˚5 #(0) 3E3G (1.1.2)

(in particular, especially the integral of (� + Ê × �) 5  ·%E# is supposed to exist).
(iii) For all ' ∈ Θ)• it holds that

0 =
∫ )•

0

∫
R3

(
�� · %C' − � · curlG ' − 4�9 · '

)
3G3C +

∫
R3
��̊ · '(0) 3G, (1.1.3a)

0 =
∫ )•

0

∫
R3

(
�� · %C' + � · curlG '

)
3G3C +

∫
R3
��̊ · '(0) 3G. (1.1.3b)

(iv) The current 9 is the sum of the internal and the external currents, i.e.,

9 = 9int + D B
#∑
=1

@

∫
R3
Ê 5

 3E + D.

Whereas the weak formulation of the Maxwell equations is standard, the weak
formulation of the Vlasov part will be explained in Section 1.2.1.
To obtain certain energy estimates we will need the following quadratic version of

Gronwall’s lemma, which is a slight improvement of [Dra03, Theorem 5].

Lemma 1.1.2. Let 0, 1 ∈ R, 0 < 1, H, ℎ : [0, 1] → [0,∞[ and 6 : [0, 1] → R be continuous,
and H : [0, 1] → R. Assume that the following inequality holds for all C ∈ [0, 1]:

1
2 H(C)

2 + 1
2 H(C)

2 ≤ 1
2 6(C)

2 +
∫ C

0

ℎ(B)H(B) 3B.

Then we have √
H(C)2 + H(C)2 ≤

��6(C)�� + ∫ C

0

ℎ(B) 3B

for all C ∈ [0, 1].

Proof. Let � > 0 and choose �� ∈ �1([0, 1]) such that �� ≥ 0 and
���� − 62

�� < � on [0, 1].
Now consider

H� : [0, 1] → ]0,∞[, H�(C) =
1
2 (��(C) + �) +

∫ C

0

ℎ(B)H(B) 3B.
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By assumption we have H(C) ≤
√
H(C)2 + H(C)2 ≤

√
2H�(C). Furthermore,

√
2H� is differ-

entiable with

3

3C

√
2H�(C) =

1
2�
′
�(C) + ℎ(C)H(C)√

2H�(C)
≤ �′�(C)

2
√
��(C) + �

+ ℎ(C).

Integrating this estimate from 0 to C yields√
H(C)2 + H(C)2 ≤

√
2H�(C) ≤

√
2H�(0) +

∫ C

0

�′�(B)
2
√
��(B) + �

3B +
∫ C

0

ℎ(B) 3B

=
√
��(0) + � +

√
��(C) + � −

√
��(0) + � +

∫ C

0

ℎ(B) 3B

≤
√
6(C)2 + 2� +

∫ C

0

ℎ(B) 3B ≤
��6(C)�� + √2� +

∫ C

0

ℎ(B) 3B.

Since � > 0 is arbitrary, the proof is finished.

Following a general strategy, existence of weak solutions to (VM) is proved by con-
structing a sequence of solutions to approximating PDE systems and then extracting
a weakly converging subsequence whose limit is a candidate for a solution of the
original PDE system. Since (VM) as a whole is nonlinear, it is natural to decouple the
Vlasov part from the Maxwell part by taking the already known fields from the pre-
vious iteration step to construct the new particle densities out of the Vlasov equation.
Vice versa, one then proceeds with the Maxwell part to construct the new fields out
of an already known current. Thus, it is useful to dissociate the Vlasov part from the
Maxwell part and consider the force field in the Vlasov part and the current in the
Maxwell part, respectively, as given for the time being.

1.2 The Vlasov part
Throughout this section,  ∈ {1, . . . , #} is fixed.

1.2.1 Weak formulation
Let � : �)•×Ω×R3 → R3 be an already known force field; consider this to be the Lorentz
force induced by some electromagnetic fields. In order to have local conservation of
charge, it is natural to assume that � is divergence free with respect to E, at least in
the sense of distributions. Of course, the Lorentz force in our situation satisfies this
assumption.
We want to solve the following system:

%C 5
 + Ê · %G 5  + � · %E 5  = 0 on �)• ×Ω × R3 , (1.2.1a)

5 − = K 5

+ + 6 on �−)• , (1.2.1b)
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5 (0) = ˚5  on Ω × R3. (1.2.1c)

The first step is to derive a weak formulation of (1.2.1). To this end, assume that 5  ∈
�1

(
�)• ×Ω × R3

)
and that � is locally integrable, and continuously differentiable and

divergence free (both) with respect to E. Taking a test function # ∈ Ψ)• , multiplying
(1.2.1a) with #, and then integrating over �)• ×Ω × R3 leads to

0 =
∫ )•

0

∫
Ω

∫
R3

(
%C 5

 + Ê · %G 5  + � · %E 5 
)
# 3E3G3C

= −
∫ )•

0

∫
Ω

∫
R3

(
%C# + Ê · %G# + � · %E#

)
5  3E3G3C

−
∫
Ω

∫
R3
5 (0)#(0) 3E3G +

∫ )•

0

∫
%Ω

∫
R3
5 #Ê · = 3E3(G3C. (1.2.2)

Here, the assumption that � is divergence free with respect to E enters. The only term
we have to take care about further is the third one. We decompose the domain of
integration and write 5 ± for the restriction of 5  to �±

)•
to get∫ )•

0

∫
%Ω

∫
R3
5 #Ê · = 3E3(G3C

=

∭
�+
)•

5 #Ê · = 3E3(G3C +
∭
�−
)•

5 #Ê · = 3E3(G3C +
∭
�0
)•

5 #Ê · = 3E3(G3C

=

∭
�+
)•

5 + #Ê · = 3E3(G3C +
∭
�−
)•

5 − #Ê · = 3E3(G3C (1.2.3)

because of Ê · = = 0 on �0. If we demand (1.2.1b) the very last term has to equal∭
�−
)•

(
K 5


+ + 6

)
#Ê · = 3E3(G3C. (1.2.4)

For ease of notation we use the abbreviation

3� = |Ê · =(G)| 3E3(G3C,

that was already introduced earlier. Note that

3� = ±Ê · =(G) 3E3(G3C on �±.

Combining this and (1.2.2) to (1.2.4) we conclude that (1.2.1) is equivalent to the
property that

0 = −
∫ )•

0

∫
Ω

∫
R3

(
%C# + Ê · %G# + � · %E#

)
5  3E3G3C
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+
∫
�+
)•

5 + # 3� −
∫
�−
)•

(
K 5


+ + 6

)
# 3� −

∫
Ω

∫
R3

˚5 #(0) 3E3G

for all # ∈ Ψ)• .
We explain in the following remark in what sense we can speak of traces 5 + of 5 

in a weak solution concept.

Remark 1.2.1. If Definition 1.1.1.(ii) is satisfied, 5 + is the trace of 5  in the following
sense:

• As we have just seen, 5 + is the restriction of 5  to �+
)•
if 5  ∈ �1

(
�)• ×Ω × R3

)
.

• There is no other 5̃ + ∈ !1
loc

(
�+
)•

)
such that Definition 1.1.1.(ii) is satisfied as well,

since for such 5̃ + we have ∫
�+
)•

(
5 + − 5̃ +

)
# 3� = 0

for all # ∈ �∞
(
�)• ×Ω × R3

)
with supp# ⊂ [0, )•[ ×Ω×R3 compact that vanish

on �−
)•
∪ �0

)•
. Consequently, 5̃ + = 5 + .

1.2.2 Solutions of the Vlasov part
We give a brief introduction to the techniques and statements of Beals and Pro-
topopescu [BP87], who used an approach via characteristics to tackle linear transport
problems with initial-boundary conditions in a very general setting. Since we do not
need the full statements of [BP87], we formulate those results in the way we will need
them in our situation.
Throughout this subsection, let ) > 0, Ω ⊂ R3 be an open, bounded set with �1,�-

boundary for some � > 0, andΣ) B ]0, )[×Ω×R3. Furthermore, let. be a first order
linear differential operator that is divergence free and whose coefficients are Lipschitz
continuous on Σ) . In accordance to our situation, we choose

. B %C + Ê · %G + � · %E .

Thus, the assumptions about . here reduce to two conditions on �, namely, that � is
Lipschitz continuous on Σ) and divergence free with respect to E. We additionally
assume that � is bounded on Σ) . By Lipschitz continuity of �, for each (C , G, E) ∈ Σ)
there is a well-defined integral curve B ↦→ ((, -,+)(B, C , G, E) satisfying

3

3B
( = 1, 3

3B
- = +̂ ,

3

3B
+ = �(B, -,+), ((, -,+)(C , C , G, E) = (C , G, E).

This curve is defined as long as it remains inΣ) and there is a correspondingmaximal
time interval � ⊂ R for which it is defined. We define the length of this curve to be the
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length of the maximal time interval for which the curve remains in Σ) , that is to say,
the length equals B+ − B− where

B+ B sup{B ∈ � | ((, -,+)(B, C , G, E) ∈ Σ)},
B− B inf{B ∈ � | ((, -,+)(B, C , G, E) ∈ Σ)}.

The next assumption is that there is a finite upper bound to all lengths of such integral
curves. This condition is trivially satisfied in our case Σ) = ]0, )[ ×Ω × R3 since ) is
an upper bound. The last assumption is that each integral curve has a left and right
limit point, i.e.,

lim
B→B− ,B>B−

((, -,+)(B, C , G, E), lim
B→B+ ,B<B+

((, -,+)(B, C , G, E) ∈ Σ) .

These limits, if they exist, have to be elements of %Σ) . For their existence it is sufficient
that � is bounded by some constant � > 0 since then both ¤- and ¤+ are bounded
because of �� ¤-�� = ���+̂

��� ≤ 1,
�� ¤+ �� = |�(B, -,+)| ≤ �.

Accordingly, we define �−
)
(�+

)
) to be the subset of %Σ) consisting of all such left

(right) limits, often referred to as incoming (outgoing) sets. These sets are Borel sets
since �−

)
(�+

)
) is the image of the open set Σ) under the continuous function that

maps a point in Σ) to the left (right) limit point of the integral curve passing through
this point. Note that possibly �±

)
are not disjoint and/or do not exhaust %Σ) but

both �+
)
∩ �−

)
and %Σ) \

(
�+
)
∪ �−

)

)
are negligible in the sense that the union of all

associated integral curves in Σ) has Lebesgue measure zero.
We proceed with the definition of the test function space corresponding to ..

Definition 1.2.2. Let Φ.
)
be the space of all measurable functions ) : Σ) → Rwith the

following three properties:

(i) ) is continuously differentiable along each integral curve.
(ii) ) and .) are bounded functions.
(iii) The support of ) is bounded and there is a positive lower bound to the lengths

of the integral curves which meet the support of ).

Remark 1.2.3. • Here and in the following, the term .ℎ, where ℎ ∈ !1
loc(Σ)), is in

general to be understood as a distribution, i.e.,

(.ℎ)
(
!
)
= −

∫
Σ)

(
%C! + Ê · %G! + � · %E!

)
ℎ 3(C , G, E), ! ∈ �∞2 (Σ)).

In Definition 1.2.2.(ii) or later in Definition 1.2.7.(i), this distribution is assumed to
be given by a function on Σ) .

• Because of Definition 1.2.2.(ii) and 1.2.2.(iii) we have ), .) ∈ !@(Σ)) for any ) ∈ Φ.)
and 1 ≤ @ ≤ ∞.
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• Note that a function ) ∈ Φ.
)
only has to be continuously differentiable along each

integral curve but may be discontinuous in other directions. Because of Defini-
tion 1.2.2.(i) and 1.2.2.(ii) every ) ∈ Φ.

)
can be extended to be continuous at the

endpoints of each integral curve.

Since Φ.
)
depends on �, it cannot be suitable for the whole nonlinear system (VM),

where � is unknown. Thus, an important (technical) statement is that our test function
spaceΨ)• , which is independent of �, belongs toΦ.

)
after a cut-off in the time variable

(if ) ≤ )•). This is verified in the following two lemmas, where we follow the proof of
[Guo93, Lemma 2.1.].

Lemma 1.2.4. (i) For any � > 0 there is a � = �(�) > 0 such that for all (G, E) ∈ �̃−

satisfying dist
(
(G, E), �̃0) > � we have Ê · =(G) ≤ −�.

(ii) For any � > 0 there is an � = �(�) > 0 such that for any G ∈ %Ω, H ∈ R3 we have H ∈ Ω
if

��H − G�� < � and
(
H − G

)
· =(G) ≤ −�

��H − G�� < 0.

Proof. As for part 1.2.4.(i), suppose the contrary. Then we can find a � > 0 and a
sequence (G: , E:) ⊂ �̃− with dist

(
(G: , E:), �̃0) > � for : ∈ N and Ê:, · =(G:) → 0 for

: →∞. Without loss of generality we can assume that (E:) is bounded: If |E: | ≥ 1 let
F: B

E:
|E: | . Then,

0 > F̂:, · =(G:) = |F̂:, | cos(](F̂:, , =(G:))) ≥ |Ê:, | cos(](̂E:, , =(G:)))
= Ê:, · =(G:) → 0

for : →∞ because of |F̂:, | ≤ |Ê:, |.
Therefore, (G: , E:) ⊂ %Ω × R3 converges, after extracting a suitable subsequence, to

some (G, E) ∈ %Ω×R3. On the one hand, we have dist
(
(G, E), �̃0) ≥ �, and on the other

hand Ê · =(G) = 0 which is a contradiction.
The proof of part 1.2.4.(ii) exploits that %Ω is of class �1,�. Suppose that the

assertion does not hold, i.e., we can find a � > 0 and sequences (G:) ⊂ %Ω,
(
H:

)
⊂ R3

with
��H: − G: �� < 1

: and
(
H: − G:

)
· =(G:) ≤ −�

��H: − G: �� < 0 but H: ∉ Ω. We may assume
that both sequences converge because of (G:) ⊂ %Ω and

(
H:

)
⊂ %Ω + �1. The limits of

both sequences have to be the same; we call the limit G ∈ %Ω. Since G:+ C
(
H: − G:

)
∈ Ω

for C > 0 small enough and H: ∉ Ω, there has to be a G̃: ∈
]
G: , H:

]
∩ %Ω. Obviously

we have |G̃: − G: | < 1
: and

(G̃: − G:) · =(G:) =
(
H: − G:

)
· =(G:)

|G̃: − G: |��H: − G: �� ≤ −� |G̃: − G: | < 0. (1.2.5)

Since %Ω is compact and G̃: → G, G: → G for : → ∞, G̃: , G: , and G lie in the image
of the same �1,�-chart ! : R2 ⊃ , → %Ω if : is large enough. Let ?̃: B !−1(G̃:),
?: B !−1(G:), and ? B !−1(G). By continuity of !−1, both

(
?̃:

)
and

(
?:

)
converge to

?. Thus, we may assume that ?̃: , ?: ∈  ? B �A
(
?
)
⊂ , for suitable A > 0 and large :.

We expand the left-hand side of (1.2.5) to get the estimate

|(G̃: − G:) · =(G:)|
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=
��!′ (?: ) (?̃: − ?: ) · =(G:) + (

!
(
?̃:

)
− !

(
?:

)
− !′

(
?:

) (
?̃: − ?:

) )
· =(G:)

��
=

�� (! (
?̃:

)
− !

(
?:

)
− !′

(
?:

) (
?̃: − ?:

) )
· =(G:)

��
≤ sup

�∈[?: ,?̃:]

�� (!′(�) − !′ (?: ) ) (?̃: − ?: ) �� ≤ !
�1,�( ? ;R3)

��?̃: − ?: ��1+�
since =(G:) is perpendicular to the columns of !′

(
?:

)
. Together with (1.2.5) and

the fact that !−1 is Lipschitz continuous on !
(
 ?

)
with some Lipschitz constant

!!, ? > 0—see proof below—, this yields for large :

0 <
�

!!, ?

��?̃: − ?: �� ≤ � |G̃: − G: | ≤ |(G̃: − G:) · =(G:)| ≤
!

�1,�( ? ;R3)
��?̃: − ?: ��1+� .

But this contradicts
��?̃: − ?: ��→ 0 for : →∞.

So there remains to show the Lipschitz continuity of !−1 on !
(
 ?

)
. This relies on

the fact that, since ! is a chart, the function

� :  ? × %�1 → R, �
(
?̃ , �?

)
=

��!′ (?̃)�?��
is continuous and positive so that it is bounded from below by some positive constant
2 > 0. For G̃ , G ∈ !

(
 ?

)
with G̃ ≠ G and ?̃ B !−1(G̃), ? B !−1(G) ∈  ? , we thus have

|G̃ − G |��?̃ − ?�� =
�����!′ (?) ?̃ − ?��?̃ − ?�� + !

(
?̃
)
− !

(
?
)
− !′

(
?
) (
?̃ − ?

)��?̃ − ?��
�����

≥ 2 −
sup�∈[?,?̃]

�� (!′(�) − !′ (?) ) (?̃ − ?) ����?̃ − ?�� ≥ 2 −
!

�1,�( ? ;R3)
��?̃ − ?��� .

If !−1 were not Lipschitz continuous on !
(
 ?

)
we would find sequences (G̃:), (G:) ⊂

!
(
 ?

)
and

(
?̃:

)
=

(
!−1(G̃:)

)
,
(
?:

)
=

(
!−1(G:)

)
⊂  ? such that

1
:
≥ |G̃: − G: |��?̃: − ?: �� ≥ 2 − !

�1,�( ? ;R3)
��?̃: − ?: ��� . (1.2.6)

Due to compactness of !
(
 ?

)
we may assume that (G̃:) and (G:) converge to the same

limit (the same because of |G̃: − G: | ≤ 1
: diam ? , where diam ? is the diameter of

 ?) and that the corresponding
(
?̃:

)
,
(
?:

)
also converge to the same limit due to the

continuity of !−1. But this contradicts (1.2.6). Hence, !−1 is Lipschitz continuous on
!
(
 ?

)
and the proof is finished.

Lemma 1.2.5. For each # ∈ Ψ) we have #
��
Σ)
∈ Φ.

)
.

Proof. Let # ∈ Ψ) and define

30 B min
{
dist

(
supp#, �0

)

)
, dist

(
supp#, {0} × %Ω × R3)} > 0.
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Since #
��
Σ)

obviously satisfies Definition 1.2.2.(i) and 1.2.2.(ii), we only have to take
care about Definition 1.2.2.(iii). First note that, since the support of # is compact in
[0, )[ × Ω × R3, there is a 0 ≤ B0 < ) such that #(C , G, E) = 0 for B0 ≤ C < ), G ∈ Ω,
E ∈ R3.
We consider an integral curve which meets supp# = supp#

��
Σ)
. This curve can

be written as B ↦→ ((, -,+)(B, B− , G, E) and remains in Σ) for a maximal time interval
]B− , B+[ ⊂ ]0, )[ so that (B− , G, E) ∈ �−

)
. Obviously it holds that B− ≤ B0. We have to

find a positive lower bound for B+ − B− that does not depend on B−, B+, G, and E. In
the following, let B ∈ ]B− , B+[.

Case 1. If

dist
(
(B− , G, E), supp#

)
≥ 30

2

we can find an B such that ((, -,+)(B, B− , G, E) ∈ supp# since the curve meets the
support of #. By

�� ¤-�� ≤ 1 and
�� ¤+ �� ≤ sup

Σ)
|� | we have

30
2 ≤ dist

(
(B− , G, E), supp#

)
≤ |((, -,+)(B, B− , G, E) − (B− , G, E)|

≤
√

2 + ‖�‖2∞(B − B−)

so that 30

2
√

2+‖�‖2∞
is such a desired lower bound in this case.

Case 2. The more complicated case is

dist
(
(B− , G, E), supp#

)
<
30
2 .

Since {)} ×Ω × R3 and �+
)
do not intersect �−

)
, we have

�−) ⊂ �−) ∪ �
0
) ∪

(
{0} ×Ω × R3

)
.

Clearly, it holds that (B− , G, E) ∉ �0
)
because of

dist
(
(B− , G, E), supp#

)
<
30
2 < 30 ≤ dist

(
supp#, �0

)

)
.

If (B− , G, E) ∈ {0} ×Ω × R3 we have

dist(G, %Ω) = dist
(
(B− , G, E), {0} × %Ω × R3)

≥ dist
(
supp#, {0} × %Ω × R3) − dist

(
(B− , G, E), supp#

)
> 30 −

30
2 =

30
2 .

Thus, -(B, B− , G, E) ∈ Ω for 0 ≤ B < min
{
30
2 , )

}
again because of

�� ¤-�� ≤ 1. Therefore, a

positive lower bound to the length of the integral curve in this case is min
{
30
2 , )

}
.
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Finally, suppose (B− , G, E) ∈ �−
)
. First note that

dist
(
(G, E), �̃0) = dist

(
(B− , G, E), �0

)

)
≥ dist

(
supp#, �0

)

)
− dist

(
(B− , G, E), supp#

)
> 30 −

30
2 =

30
2 . (1.2.7)

Let � = �
(
30
2

)
and � = �

(
�
2
)
according to Lemma 1.2.4. We claim that

< B min

{
) − B0 ,

�

2 ,
�

9
2 ‖�‖!∞(Σ) ;R3) + 1

}
is such a positive lower bound (to the length of the integral curve) we search for.
Indeed, we firstly have [B− , B− + <] ⊂ [0, )] due to B− ≤ B0. Secondly, let

B B sup{B ∈ ]B− , B− + <] | -(B̃ , B− , G, E) ∈ Ω for all B̃ ∈ ]B− , B[}.

Because of

|-(B, B− , G, E) − G | ≤ B − B− < �

and

(-(B, B− , G, E) − G) · =(G) =
(∫ B

B−
+̂(�, B− , G, E) 3�

)
· =(G)

= (B − B−)̂E · =(G) +
∫ B

B−

∫ �

B−

(
3

3B
+̂

)
(; , B− , G, E) 3;3� · =(G)

≤ −�(B − B−) + 9
2 ‖�‖!∞(Σ) ;R3) ·

1
2 (B − B

−)2 ≤ − �2 (B − B
−) ≤ − �2 |-(B, B

− , G, E) − G |

(which also implies -(B, B− , G, E) ≠ G since − �
2 (B − B−) < 0) by (1.2.7) and

��� 3Ê,83E 9

��� ≤ 3
2 ,

8 , 9 = 1, 2, 3, we have -(B, B− , G, E) ∈ Ω and thus B = B− + <. This completes the
proof.

We should remark that the three conditions on# ∈ Ψ) in (1.1.1) are really necessary:
Let � > 0 be small and, for simplicity, take � = 0. Firstly, if we allow a test function #
that does not vanish before time) andhas support on �−

)
, we can find an integral curve

entering Σ) on �−
)
∩ supp# at time B− = ) − �. Secondly, if we allow a test function

# with support on �0
)
, then for some (C , G, E) ∈ �0

)
—such that in a neighborhood of

G there are no common points of Ω and the tangent space of %Ω at G—the curves
((, -,+)(B) = (B, G − �=(G) + (B − C )̂E , E), defined for all B ∈ [0, )], will meet the
support of #. Thirdly, if we allow a test function # with support on {0} × %Ω × R3

we can find an integral curve meeting the support of #, (its --coordinate) starting at
time 0 near %Ω and leaving Ω at time �. In all three cases, there will be no positive
lower bound to the length of these curves.
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Conversely, these restrictions cause no problems for later considerations. Firstly, we
do not want to test a solution of (1.2.1) at time ) since we are interested in an initial,
and not final, value problem. Secondly, we only want to impose a boundary condition
on �− and not on �0. Thirdly, proper initial data of the distribution function have
to satisfy the boundary condition at time 0 a priori so that this property need not be
tested, and {0} × %Ω × R3 is even a null set with respect to 3�.
We now proceed with some important results of [BP87]. There, the main idea is to

use the “identifications”

Σ) ≈
{
(B, I) | I ∈ �−) , 0 < B < ;(I)

}
, . ≈ 3

3B
,

where ;(I) is the length of the integral curve corresponding to I. The first important
result is the following property which is closely related to Green’s identity; see [BP87,
Proposition 7].

Proposition 1.2.6. There are two unique Borel measures �± on �±
)
such that∫

Σ)

.) 3(C , G, E) =
∫
�+
)

) 3�+ −
∫
�−
)

) 3�−

for all ) ∈ Φ.
)
.

We have to define the space of functions in which we search for solutions of some
initial-boundary problem.

Definition 1.2.7. For 1 ≤ ? < ∞ let �?(Σ) ;.) be the space of functions 5 ∈ !?(Σ))
with the following two properties:

(i) . 5 ∈ !?(Σ)).
(ii) There is a trace of 5 on �±

)
, i.e., a pair of functions 5 ± ∈ !?

(
�±
)
, 3�±

)
satisfying

the extended Green’s identity∫
Σ)

(
). 5 + 5 .)

)
3(C , G, E) =

∫
�+
)

5 +) 3�+ −
∫
�−
)

5 −) 3�−

for all ) ∈ Φ.
)
.

Note that a trace in the sense as stated above is unique and that all terms are
well-defined according to Remark 1.2.3.

Lemma 1.2.8. Let 1 ≤ ? < ∞, 5 ∈ �?(Σ) ;.) and F ∈ �∞(Σ)) ∩ �1
1

(
Σ)

)
. Then,

F 5 ∈ �?(Σ) ;.) and
(
F 5

)±
= F 5 ±.

Proof. Because of(
.
(
F 5

) ) (
!
)
= −

∫
Σ)

(
%C! + Ê · %G! + � · %E!

)
F 5 3(C , G, E)
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= −
∫
Σ)

(
%C

(
F!

)
+ Ê · %G

(
F!

)
+ � · %E

(
F!

) )
5 3(C , G, E)

+
∫
Σ)

(%CF + Ê · %GF + � · %EF) 5 ! 3(C , G, E)

=

∫
Σ)

(
. 5

)
F! 3(C , G, E) +

∫
Σ)

(.F) 5 ! 3(C , G, E)

for any ! ∈ �∞2 (Σ)), it holds that .
(
F 5

)
= F. 5 + 5 .F ∈ !?(Σ)). Now let ) ∈ Φ.

)
.

We have F) ∈ Φ.
)
since Definition 1.2.2.(i) and 1.2.2.(ii) are satisfied because of the

regularity of F and Definition 1.2.2.(iii) is satisfied because of supp
(
F)

)
⊂ supp).

Thus, it holds that∫
Σ)

(
).

(
F 5

)
+ F 5.)

)
3(C , G, E) =

∫
Σ)

(
F). 5 + 5 .

(
F)

) )
3(C , G, E)

=

∫
�+
)

5 +F) 3�+ −
∫
�−
)

5 −F) 3�− ,

which proves the assertion.

In the following it is convenient to split �±
)
as follows:

�)
± B

{
(C , G, E) ∈ �±) | 0 < C < )

}
,

�0 B
{
(C , G, E) ∈ �−) | C = 0

}
, �)

) B
{
(C , G, E) ∈ �+) | C = )

}
,

so that �−
)
= �)

− ∪�0 and �+) = �
)
+ ∪�)

)
. Note that �0 does not depend on ) (in the

sense that any 0 < )̃ < ) yields the same set �0). According to this decomposition we
write 3�− = 3�−

��
�)−

, 3�0 = 3�−
��
�0
, 3�+ = 3�+

��
�)
+
, 3�) = 3�+

��
�)
)

, 5− = 5 −
��
�)−

, 50 = 5 −
��
�0
,

5+ = 5 +
��
�)
+
, and 5) = 5 +

��
�)
)

. We have

{0} ×Ω × R3 ⊂ �0 ⊂ {0} ×Ω × R3 , {)} ×Ω × R3 ⊂ �)
) ⊂ {)} ×Ω × R

3 ,

�−) ⊂ �
)
− ⊂ �−) ∪ �

0
) , �+) ⊂ �

)
+ ⊂ �+) ∪ �

0
) .

Therefore, we can identify !?-functions on �0 (or �)
)
) with !?-functions on Ω × R3

since
(
Ω × R3

)
\

(
Ω × R3) has (G, E)-Lebesgue measure zero. Additionally, we may

write 5 (0) and 5 ()) instead of 50 and 5) pointing out that we may evaluate 5 at time 0
and ) in some sense.

For each # ∈ Ψ) we have∫
Σ)

.# 3(C , G, E) = −
∫
Ω

∫
R3
#(0)3E3G +

∫ )

0

∫
%Ω

∫
R3
#Ê · = 3E3(G3C

= −
∫
Ω

∫
R3
#(0)3E3G +

∫
�+
)

# 3� −
∫
�−
)

# 3� .
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This shows that 3�0 = 3(G, E) on �0 and 3�± = 3� on �±
)
. With an analog reasoning

(consider test functions #̃(C , G, E) = #() − C , G, E), # ∈ Ψ)) we conclude that 3�) =
3(G, E) on �)

)
as well.

We proceed with a definition of some properties of operators.

Definition 1.2.9. Let $ be an operator between two function spaces on subsets of
some R= , whose first component we call time. $ is called

(i) local in time if $(DE) = D$(E) for all continuous functions D that only depend
on time and all possible E;

(ii) nonnegative if $(E) ≥ 0 for all E ≥ 0.

Now we are ready to state the following result regarding the unique solvability of
linear transport problems with initial-boundary conditions; see [BP87, Proposition 1,
Theorems 1 and 2].

Proposition 1.2.10. Let 1 ≤ ? < ∞, ℎ ∈ !∞(Σ)), � : Σ) → R be Lipschitz continuous,
differentiable with respect to E, and divergence free with respect to E, and. = %C+Ê ·%G+� ·%E .

(i) For all 5 ∈ �?(Σ) ;.) we have∫
�)
)

�� 5) ��? 3�) + ∫
�)
+

�� 5+��? 3�+ + ? ∫
Σ)

ℎ
�� 5 ��? 3(C , G, E)

=

∫
�0

�� 50��? 3�0 +
∫
�)−

�� 5−��? 3�− + ? ∫
Σ)

sign
(
5
) �� 5 ��?−1(. + ℎ) 5 3(C , G, E). (1.2.8)

(ii) Let moreover K : !?
(
�)
+ , 3�+

)
→ !?

(
�)
− , 3�−

)
be a bounded linear operator, that is

local in time and has operator norm less than 1, and 60 ∈ !?(�0), 6− ∈ !?
(
�)
− , 3�−

)
.

Then the problem

. 5 = 0 on Σ) , (1.2.9a)
50 = 60 on �0 , (1.2.9b)
5− = K 5+ + 6− on �)

− (1.2.9c)

has a unique solution 5 ∈ �?(Σ) ;.). Here, (1.2.9a) holds pointwise almost everywhere
(cf. Definition 1.2.7.(i) and Remark 1.2.3), and (1.2.9b) and (1.2.9c) hold pointwise
almost everywhere (with respect to the corresponding measures) in the sense of trace
(cf. Definition 1.2.7.(ii)). Moreover, the solution is nonnegative if K, 60, and 6− are
nonnegative.

Here and in the following, for functions the property “nonnegative” usually means
“nonnegative almost everywhere”. We want to express, in some way, the theorem
above inwords that fit to our problem (1.2.1), that is to say,we should somehow replace
�0, �)

− (and so on) by Ω × R3, �−
)
(and so on). Moreover, we search for solutions of

(1.2.1) on �)• instead of solutions on some time interval [0, )]. To this end, we first
have to define what we call a strong solution of (1.2.1). From now on, the force term
� shall satisfy the following condition.
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Condition 1.2.11. � : �)• ×Ω × R3 → R3 is Lipschitz continuous and bounded on Σ)
for any ) ∈ �)• , and moreover differentiable and divergence free (both) with respect
to E.

Definition 1.2.12. Assume that 1 ≤ ? < ∞, K : !?lt
(
�+
)•
, 3�

)
→ !

?

lt

(
�−
)•
, 3�

)
, 5̊ ∈

!?
(
Ω × R3) , and 6 ∈ !?lt

(
�−
)•
, 3�

)
. We call a function 5 : �)• × Ω × R3 → R a strong

solution of (1.2.1) if:

(i) ") 5 ∈ �?(Σ) ;.) for all 0 < ) ∈ �)• .
(ii) For all # ∈ Ψ)• it holds that∫ )•

0

∫
Ω

∫
R3

(
%C# + Ê · %G# + � · %E#

)
5 3E3G3C

=

∫
�+
)•

5+# 3� −
∫
�−
)•

(
K 5+ + 6

)
# 3� −

∫
Ω

∫
R3
5̊#(0) 3E3G.

Note that, for each 0 < ) ∈ �)• , at first only a trace of ") 5 is defined. By uniqueness,
for another �)• 3 )′ ≥ ), the traces of ")′ 5 and ") 5 coincide on the common time
interval [0, )]. Thus, we may write 5±, which is defined on all of �)• , and may drop
the dependence on some ).

Proposition 1.2.13. Let 1 ≤ ? < ∞, � satisfy Condition 1.2.11, and K : !?lt
(
�+
)•
, 3�

)
→

!
?

lt

(
�−
)•
, 3�

)
be a linear operator, that is local in time and such that there is a 0 ≤ :0 < 1

satisfying

‖K 2‖!?(�−) ,3�) ≤ :0‖2‖!?(�+) ,3�)

for all 2 ∈ !
?

lt

(
�+
)•
, 3�

)
, 0 < ) ∈ �)• . Furthermore, let 5̊ ∈ !?

(
Ω × R3) and 6 ∈

!
?

lt

(
�−
)•
, 3�

)
. Then:

(i) There is exactly one strong solution of (1.2.1) in the sense of Definition 1.2.12.
(ii) This solution is nonnegative ifK , 5̊ , and 6 are nonnegative.

Proof. Let 0 < ) ∈ �)• and define

6)− : �)
− → R, 6)−(C , G, E) =

{
6(C , G, E), (C , G, E) ∈ �−

)
,

0, otherwise;

60 : �0 → R, 60(0, G, E) = 5̊ (G, E).

Note that the latter definition makes sense since, as mentioned above, �0 coincides
with {0} ×Ω × R3 up to a negligible set. We have6)−!?(�)− ,3�−) =

") 6!? (�− ,3�) , 60

!? (�0) =

 5̊ 
!? (Ω×R3)
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so that 6)− ∈ !?
(
�)
− , 3�

±) and 60 ∈ !?(�0). Furthermore, for ℎ ∈ !?
(
�)
+ , 3�+

)
let

ℎ : �+)• → R, ℎ(C , G, E) =
{
ℎ(C , G, E), (C , G, E) ∈ �+

)
,

0, otherwise

and

K) ℎ : �)
− → R, (K) ℎ)(C , G, E) =

{(
K ℎ

)
(C , G, E), (C , G, E) ∈ �−

)
,

0, otherwise.

Because of

‖K) ℎ‖!?(�)− ,3�−) =
")K ℎ

!?(�−) ,3�)
≤ :0

") ℎ
!?(�+) ,3�)

= :0‖ℎ‖!?(�)
+ ,3�+)

we conclude that K) maps !?
(
�)
+ , 3�+

)
to !?

(
�)
− , 3�−

)
and has operator norm less

than 1. Moreover,K) is local in time. Thus, by Proposition 1.2.10.(ii) there is a solution
of (1.2.9) (with K) , 60, 6)− given). By uniqueness and �)

− ⊂ �)′
− for ) ≤ )′, such a

solution (and its trace) does not depend on ), whence there is a function 5 such that
") 5 ∈ �?(Σ) ;.) is the unique solution of (1.2.9) for any given ). Now take # ∈ Ψ)•
and 0 < ) < )• such that #(C , G, E) = 0 if C ≥ ). By Lemma 1.2.5 we have #

��
Σ)
∈ Φ.

)
.

Applying the definition of trace and using the properties of #, this leads to∫
Σ)•

5 .# 3(C , G, E) =
∫
Σ)

5 .# 3(C , G, E)

= −
∫
�0

5# 3�0 +
∫
�)
+

5 +# 3�+ −
∫
�)−

(
K) 5

+ + 6)−
)
# 3�−

= −
∫
Ω

∫
R3
5̊#(0) 3E3G +

∫
�+
)

5 +# 3� −
∫
�−
)

(
K) 5

+ + 6)−
)
# 3�

= −
∫
Ω

∫
R3
5̊#(0) 3E3G +

∫
�+
)•

5 +# 3� −
∫
�−
)•

(
K 5 + + 6

)
# 3�

and the proof of part 1.2.13.(i) is complete.
Part 1.2.13.(ii) follows from the fact that K) , 60, and 6)− are nonnegative ifK , 5̊ , and

6 are nonnegative, and Proposition 1.2.10.(ii).

We now turn to the special situation thatK = 0 , where  is the reflection operator.
According to (0.2),  5 is defined for any function 5 (that is defined on a subset of
R × %Ω × R3) and is self inverse, i.e.,  2 = id. Its restriction to !?lt

(
�+
)•
, 3�

)
yields

an operator  : !?lt
(
�+
)•
, 3�

)
→ !

?

lt

(
�−
)•
, 3�

)
for any 1 ≤ ? ≤ ∞. Its inverse is

 : !?lt
(
�−
)•
, 3�

)
→ !

?

lt

(
�+
)•
, 3�

)
.
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Lemma 1.2.14. For any ) > 0, 1 ≤ ? < ∞, and any 0, 1 ∈ !∞
(
�−
)

)
, 2 ∈ !?

(
�+
)
, 3�

)
, and

ℎ ∈ !?
(
�−
)
, 3�

)
we have∫

�−
)

1 |0 2 + ℎ |? 3� =
∫
�+
)

 1 |2 0 +  ℎ |? 3� .

If additionally 00 B ‖0‖!∞(�−) ) < 1 and 0, 1, 2, ℎ are nonnegative, the estimate∫
�−
)

1 |0 2 + ℎ |? 3� ≤ 00

∫
�+
)

( 1)2? 3� + (1 − 00)1−?
∫
�−
)

1ℎ? 3�

holds.

Proof. We compute∫
�−
)

1 |0 2 + ℎ |? 3�

=

∭
�−
)

1(C , G, E)|0(C , G, E)2(C , G, E − 2(E · =(G))=(G)) + ℎ(C , G, E)|? |Ê · =(G)| 3E3(G3C

=

∭
�+
)

1(C , G, E − 2(E · =(G))=(G))|0(C , G, E − 2(E · =(G))=(G))2(C , G, E)

+ℎ(C , G, E − 2(E · =(G))=(G))|? |−Ê · =(G)| 3E3(G3C

=

∫
�+
)

 1 |2 0 +  ℎ |? 3� .

using the change of variables E ↦→ E − 2(E · =(G))=(G). Note that the determinant of
the corresponding Jacobian equals −1 since the map is a reflection. As for the second
statement, we estimate∫

�−
)

1 |0 2 + ℎ |?3� =
∫
�+
)

 1 |2 0 +  ℎ |?3�

≤
∫
�+
)

 1

���002 + (1 − 00)(1 − 00)−1 ℎ
���? 3�

≤ 00

∫
�+
)

( 1)2?3� + (1 − 00)
∫
�+
)

 1

���(1 − 00)−1 ℎ
���? 3�

= 00

∫
�+
)

( 1)2?3� + (1 − 00)1−?
∫
�−
)

1ℎ? 3�

using the convexity of the ?-th power and the first statement.
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Proposition 1.2.15. ConsiderK = 0 , where 0 ≤ 0 ∈ !∞
(
�−
)•

)
with 00 B ‖0‖

!∞
(
�−
)•

) < 1.

Let � satisfy Condition 1.2.11, 0 ≤ 5̊ ∈
(
!1 ∩ !∞

) (
Ω × R3) , 0 ≤ 6 ∈

(
!1

lt ∩ !
∞
lt

) (
�−
)•
, 3�

)
.

Then there is a unique, nonnegative strong solution 5 ∈ !∞lt
(
�)• ;

(
!1 ∩ !∞

) (
Ω × R3) ) of

(1.2.1) with nonnegative trace 5± ∈
(
!1

lt ∩ !
∞
lt

) (
�±
)•
, 3�

)
in the sense that the conditions of

Definition 1.2.12 are satisfied for all 1 ≤ ? < ∞. Moreover, we have the estimates

(1 − 00)
1
?
 5+!?(�+) ,3�) ,  5 ())!? (Ω×R3) ≤

 5̊ 
!? (Ω×R3)

+ (1 − 00)
1
? −16

!?(�−) ,3�)
(1.2.10)

and

(1 − 00)
∫
�+
)
∩{|E |<'}

� 5+ 3� +
∫
Ω

∫
�'

� 5 ()) 3E3G

≤
∫
Ω

∫
R3
� 5̊ 3E3G +

∫
�−
)

�6 3� +
∫ )

0

∫
Ω

∫
�'

� · 5∇� 3E3G3C (1.2.11)

for any 0 < ) ∈ �)• , 1 ≤ ? ≤ ∞ (where 1
∞ = 0), 0 < ' ≤ ∞ (where �∞ = R3), and any

nonnegative �1-function � = �(E) onR3 that only depends on |E |, is monotonically increasing
in |E | (i.e., �(E) = �̃(|E |) for some monotonically increasing �̃ ∈ �1(R≥0) with �̃′(0) = 0),
and has the property that ∇� ∈ !@

(
R3;R3) for some 1 ≤ @ ≤ ∞. In particular,

(1 − 00)
∫
�+
)
∩{|E |<'}

E0
 5+ 3� +

∫
Ω

∫
�'

E0
 5 ()) 3E3G

≤
∫
Ω

∫
R3
E0
 5̊ 3E3G +

∫
�−
)

E0
6 3� +

∫ )

0

∫
Ω

∫
�'

� · Ê 5 3E3G3C (1.2.12)

and hence 5 ∈ !∞lt
(
�)• ;

(
!1
kin ∩ !

∞
) (
Ω × R3) ) and 5± ∈

(
!1
kin,lt ∩ !

∞
lt

) (
�±
)•
, 3�

)
if addi-

tionally 5̊ ∈ !1
kin

(
Ω × R3) and 6 ∈ !1

kin,lt

(
�−
)•
, 3�

)
.

Furthermore,∫
�'

5 (), ·, E) 3E

!

4
3 (Ω)

≤
(
4�
3

 5̊ 
!∞(Ω×R3)

+ 4�
3 (1 − 00)−16

!∞(�−) ) + 1
) (∫

Ω

∫
�'

E0
 5 ()) 3E3G

) 3
4

(1.2.13)

for any 0 < ) ∈ �)• and 0 < ' ≤ ∞.

Proof. Let 1 ≤ ? < ∞ and consider K = 0 : !?lt
(
�+
)•
, 3�

)
→ !

?

lt

(
�−
)•
, 3�

)
, which is

linear and local in time. We have

‖K 2‖!?(�−) ,3�) = ‖2 0‖!?(�+) ,3�) ≤ 00‖2‖!?(�+) ,3�)
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for all 2 ∈ !?lt
(
�+
)•
, 3�

)
and 0 < ) ∈ �)• by Lemma 1.2.14. Thus, by Proposition 1.2.13

there is a unique solution for this ? in the sense of Definition 1.2.12. Since ? was
arbitrary, it follows that, for all 1 ≤ ? < ∞, 5 ∈ !?lt(Σ)•) and 5± ∈ !?lt

(
�±
)•
, 3�

)
, and all

conditions of Definition 1.2.12 are satisfied.
Let 0 < ) ∈ �)• and recall that in the proof of Proposition 1.2.13 the solution on
[0, )] was given by a solution of (1.2.9) with K) , 60, 6)− . Thus, 5− = K) 5+ + 6)− = 0 on
�)
− \ �−) . Applying Proposition 1.2.10.(i) (with ℎ = 0), dropping negligible terms in

(1.2.8), and using Lemma 1.2.14 we arrive at∫
�+
)

5
?
+ 3� +

∫
Ω

∫
R3
5 ())? 3E3G =

∫
Ω

∫
R3
5̊ ? 3E3G +

∫
�−
)

(
0 5+ + 6

)?
3�

≤
∫
Ω

∫
R3
5̊ ? 3E3G + 00

∫
�+
)

5
?
+ 3� + (1 − 00)1−?

∫
�−
)

6? 3� .

This yields

(1 − 00)
∫
�+
)

5
?
+ 3� +

∫
Ω

∫
R3
5 ())? 3E3G ≤

∫
Ω

∫
R3
5̊ ? 3E3G + (1 − 00)1−?

∫
�−
)

6? 3�

and therefore

(1 − 00)
1
?
 5+!?(�+) ,3�) ,  5 ())!? (Ω×R3) ≤

(∫
Ω

∫
R3
5̊ ? 3E3G + (1 − 00)1−?

∫
�−
)

6? 3�

) 1
?

≤
 5̊ 

!? (Ω×R3)
+ (1 − 00)

1
? −16

!?(�−) ,3�)

by A? + B? ≤ (A + B)? for A, B ≥ 0. Letting ? → ∞ we deduce (1.2.10) also for ? = ∞.
This also shows that 5 ∈ !∞lt (Σ)•) (thus 5 ∈ !

∞
lt
(
�)• ;

(
!1 ∩ !∞

) (
Ω × R3) ) altogether)

and 5+ ∈ !∞lt
(
�+
)•
, 3�

)
(thus 5+ ∈

(
!1

lt ∩ !
∞
lt

) (
�+
)•
, 3�

)
altogether and therefore 5− ∈(

!1
lt ∩ !

∞
lt

) (
�−
)•
, 3�

)
).

To prove (1.2.11), let first 0 < ' < ∞ and

� : R3 → R, �(E) =
{
�(E), |E | < ',

�('), |E | ≥ '.

Clearly we have � − �(') ∈ ,1,1 (R3) . Now let � > 0 be arbitrary and choose
�� ∈ �1

1

(
R3) ∩ �∞ (

R3) with
�� − �,1,1(R3) < �. This �� can be chosen in a such a way

that it is nonnegative and only depends on |E | since � is nonnegative and only depends
on |E |. Proceeding similarly as before, we define 5̃ (C , G, E) B ��(E) 5 (C , G, E) ≥ 0, notic-
ing that . 5̃ = � · 5∇�� and  �� = ��, and apply Lemmas 1.2.8 and 1.2.14 and Proposi-
tion 1.2.10.(i) to 5̃ for ? = 1:∫

�+
)

�� 5+ 3� +
∫
Ω

∫
R3
�� 5 ()) 3E3G
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=

∫
Ω

∫
R3
�� 5̊ 3E3G +

∫
�−
)

��
(
0 5+ + 6

)
3� +

∫
Σ)

� · 5∇�� 3(C , G, E)

≤
∫
Ω

∫
R3
�� 5̊ 3E3G + 00

∫
�+
)

�� 5+ 3� +
∫
�−
)

��6 3� +
∫
Σ)

� · 5∇�� 3(C , G, E),

so that

(1 − 00)
∫
�+
)

�� 5+ 3� +
∫
Ω

∫
R3
�� 5 ()) 3E3G

≤
∫
Ω

∫
R3
�� 5̊ 3E3G +

∫
�−
)

��6 3� +
∫
Σ)

� · 5∇�� 3(C , G, E). (1.2.14)

Taking the limit �→ 0 does not cause any problem because we have
�� − �,1,1(R3) →

0 for � → 0, � ∈ !∞
(
Σ) ;R3) , 5 ∈ !∞(Σ)), 5+ ∈ !∞ (

�+
)
, 3�

)
, 5̊ , 5 ()) ∈ !∞

(
Ω × R3) ,

6 ∈ !∞
(
�−
)
, 3�

)
, and the fact that the (surface) measures of Ω, %Ω, and [0, )] are all

finite. Hence, (1.2.14) holds with � removed. Next we insert the definition of � and
drop the terms where |E | ≥ ' on the left-hand side to get

(1 − 00)
∫
�+
)
∩{|E |<'}

� 5+ 3� +
∫
Ω

∫
�'

� 5 ()) 3E3G

≤
∫
Ω

∫
�'

� 5̊ 3E3G + �(')
∫
Ω

∫
|E |≥'

5̊ 3E3G +
∫
�−
)
∩{|E |<'}

�6 3�

+ �(')
∫
�−
)
∩{|E |≥'}

6 3� +
∫ )

0

∫
Ω

∫
�'

� · 5∇� 3E3G3C

≤
∫
Ω

∫
R3
� 5̊ 3E3G +

∫
�−
)

�6 3� +
∫ )

0

∫
Ω

∫
�'

� · 5∇� 3E3G3C

since � is monotonically increasing in |E |. Note that it is important that ∇� vanishes
for |E | > '. This proves (1.2.11) for 0 < ' < ∞. Because of ∇� ∈ !@

(
R3;R3) ,

� ∈ !∞
(
Σ) ;R3) , 5 ∈ !@′(Σ)) (where 1

@ + 1
@′ = 1), and the fact that the measures of Ω

and [0, )] are finite, we know that � · 5∇� ∈ !1(Σ)). By letting '→∞we thus obtain
(1.2.11) for ' = ∞ . In particular, we get (1.2.12) for �(E) = E0

 noticing that ∇�(E) = Ê
is a bounded function.
As for (1.2.13), let 0 < ' ≤ ∞ and first derive the following key estimate:∫
�'

5 (), G, E) 3E ≤
∫
�A

5 (), G, E) 3E +
∫
A≤|E |<'

5 (), G, E) 3E

≤ 4�
3 A3 5 ())

!∞(Ω×R3) +
1
A

∫
�'

E0
 5 (), G, E) 3E3G

≤
(∫

�'

E0
 5 (), G, E) 3E

) 3
4
(
4�
3

 5̊ 
!∞(Ω×R3)

+ 4�
3 (1 − 00)−16

!∞(�−) ,3�) + 1
)

(1.2.15)
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where we set A B
(∫
�'
E0
 5 (), G, E) 3E

) 1
4 ∈ [0,∞[ and used (1.2.10); if A = 0, the second

step makes no sense but clearly both the left-hand side and the right-hand side of
(1.2.15) are zero in this case. Note that the integral on the left-hand side exists for
almost all (), G) ∈ �)• ×Ω by Fubini’s theorem and that the first estimate above holds
trivially if A > ' by 5 ≥ 0 and is an equality if A ≤ '. Taking both sides of (1.2.15) to
the power 4

3 and then integrating over Ω yields (1.2.13).

Remark 1.2.16. The !∞-spaces on �±
)
with respect to 3� and the standard surface

measure are the same and the respective norms coincide since null sets with respect
to 3� are null sets with respect to the standard surface measure and vice versa by
Ê · =(G) > 0 (< 0) on �+

)
(�−
)
). Consequently, from now on we will (mostly) not point

out the measure in the denotation of such !∞-spaces and simply write !∞
(
�±
)

)
.

1.3 The Maxwell part
We proceed with the Maxwell part. For a given current density 9, permittivity �,
permeability �, and initial data �̊, �̊ we want to solve the following system:

�%C� − curlG � = −4�9 on �)• × R3 , (1.3.1a)
�%C� + curlG � = 0 on �)• × R3 , (1.3.1b)

(�, �)(0) =
(
�̊, �̊

)
on R3. (1.3.1c)

This system is a linear symmetric hyperbolic system. To tackle this problem, we state
(a shortened version of) a theorem of Kato [Kat75, Theorem I].

Proposition 1.3.1. Let ) > 0 and consider the problem

00%CF +
3∑
8=1

08%G8F = ℎ on [0, )] × R3 , (1.3.2a)

F(0) = F̊ on R3 (1.3.2b)

with ℎ : [0, )] × R3 → R6, 08 : [0, )] × R3 → R6×6, 0 ≤ 8 ≤ 3, and F̊ : R3 → R6 given.
Let B, B′ ∈ N with B ≥ 3, 1 ≤ B′ ≤ B, and let the following assumptions hold for some
", !, � > 0 for all 0 ≤ C , C′ ≤ ), G ∈ R3, and 0 ≤ 8 ≤ 3:

(i) 08 ∈ �
(
[0, )]; !2

ul
(
R3;R6×6) ) ,

(ii) ‖08(C)‖�B
ul(R3;R6×6) ≤ ",

(iii) ‖00(C) − 00(C′)‖�B−1
ul (R3;R6×6) ≤ !|C − C′ |,

(iv) 08(C , G) is symmetric,
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(v) 00(C , G) ≥ �,

(vi) ℎ ∈ !1 ([0, )];�B′
(
R3;R6) ) ∩ � (

[0, )];�B′−1 (R3;R6) ) ,
(vii) F̊ ∈ �B′

(
R3;R6) .

Then, (1.3.2) has a solution F ∈ �
(
[0, )];�B′

(
R3;R6) ) ∩ �1 ([0, )];�B′−1 (R3;R6) ) which

is unique in the larger class �
(
[0, )];�1 (R3;R6) ) ∩ �1 ([0, )]; !2 (R3;R6) ) .

Here, for < ∈ N the space !2
ul
(
R3;R<×<

)
is the set of all measurable functions

I : R3 → R<×< such that

‖I‖!2
ul(R3;R<×< ) B sup

G∈R3
‖I‖!2(�1(G);R<×< ) < ∞,

and the so-called “uniform local Sobolev space” � :
ul
(
R3;R<×<

)
, : ∈ N0, is the set of

all I ∈ !2
ul
(
R3;R<×<

)
such that all distribution derivatives of order less or equal : are

elements of !2
ul
(
R3;R<×<

)
. The space � :

ul
(
R3;R<×<

)
is equipped with the norm

‖I‖�:
ul(R3;R<×< ) B sup

|�|≤:

��I

!2

ul(R3;R<×< ).

Due to Kato we have the continuous embedding �3
ul
(
R3;R3×3) ⊂ �1 (R3;R3×3) , so

that � and � are bounded functions in the following theorem.

Proposition 1.3.2. Let �, � ∈ �3
ul
(
R3;R3×3) have the following properties: �(G), �(G) are

symmetric for each G ∈ R3 and there is a � > 0 such that �(G), �(G) ≥ � for all G ∈ R3.
Moreover, let 9 ∈ !1

lt
(
�)• ;�3 (R3;R3) ) ∩ �lt

(
�)• ;�2 (R3;R3) ) and �̊, �̊ ∈ �3 (R3;R3) . Then

there is a unique solution (�, �) ∈ �lt
(
�)• ;�3 (R3;R6) ) ∩ �1

lt
(
�)• ;�2 (R3;R6) ) of (1.3.1).

Furthermore, we have

1
8�

∫
R3

(
�� · � + �� · �

)
()) 3G = 1

8�

∫
R3

(
��̊ · �̊ + ��̊ · �̊

)
3G −

∫ )

0

∫
R3
� · 9 3G3C

(1.3.3)

and

‖(�, �)())‖!2(R3;R6) B
(
‖�())‖2!2(R3;R3) + ‖�())‖

2
!2(R3;R3)

) 1
2

≤ �−
1
2

(∫
R3

(
��̊ · �̊ + ��̊ · �̊

)
3G

) 1
2

+ 4��−19
!1([0,)];!2(R3;R3))

(1.3.4)

for any 0 < ) ∈ �)• .
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Proof. Let 0 < ) ∈ �)• and define

00 , 01 , 02 , 03 : [0, )] × R3 → R6×6 , 00(C , G) =
(
�(G) 0

0 �(G)

)
,

01(C , G) =

©«

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 −1 0 0 0
0 1 0 0 0 0

ª®®®®®®¬
, 02(C , G) =

©«

0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0

ª®®®®®®¬
,

03(C , G) =

©«

0 0 0 0 1 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

ª®®®®®®¬
,

and

F B

(
�
�

)
, ℎ B

(
−4�9
0R3

)
, F̊ B

(
�̊

�̊

)
.

With this, it is easy to see that (1.3.2) is equivalent to (1.3.1) on [0, )]. The given
conditions on �, �, 9 , �̊, and �̊ imply the conditions on 00 , ℎ, and F̊ needed in
Proposition 1.3.1 (with B = B′ = 3). Applying this proposition, we find a solution
(�, �) ∈ �

(
[0, )];�3 (R3;R6) ) ∩ �1 ([0, )];�2 (R3;R6) ) of (1.3.1) on the time interval

[0, )]. Because of the uniqueness in Proposition 1.3.1 the solutions on [0, )] and [0, )′]
coincide on the common time interval [0, )] if 0 < ) ≤ )′ ∈ �)• . Hence, there is a
unique global-in-time solution (�, �) ∈ �lt

(
�)• ;�3 (R3;R6) ) ∩ �1

lt
(
�)• ;�2 (R3;R6) ) of

(1.3.1).
To get (1.3.3), we use the following energy balance:

3

3C

1
8�

∫
R3

(
�� · � + �� · �

)
3G =

1
4�

∫
R3

(
� · �%C� + � · �%C�

)
3G

=
1

4�

∫
R3

(
� · curlG � − � · curlG � − 4�� · 9

)
3G = −

∫
R3
� · 9 3G.

Note that all integrals exist by the boundedness of �, � and by the known regularity
of � and �. In the first line, the symmetry of � and � enters. For the last step, it
is important that (�, �)(C) ∈ �1 (R3;R6) so that the boundary term that occurs after
integrating one of the curl-terms by parts vanishes at infinity. Integrating this identity
from 0 to ) yields (1.3.3). By positive definiteness of � and �we can further estimate

1
8�

∫
R3

(
�� · � + �� · �

)
()) 3G
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≤ 1
8�

∫
R3

(
��̊ · �̊ + ��̊ · �̊

)
3G +

∫ )

0

(∫
R3
|� |2 3G

) 1
2 9(C)

!2(R3;R3) 3C

≤ 1
8�

∫
R3

(
��̊ · �̊ + ��̊ · �̊

)
3G + �− 1

2

∫ )

0

(∫
R3
�� · � 3G

) 1
2 9(C)

!2(R3;R3) 3C

≤ 1
8�

∫
R3

(
��̊ · �̊ + ��̊ · �̊

)
3G

+ �− 1
2

∫ )

0

(∫
R3

(
�� · � + �� · �

)
3G

) 1
2 9(C)

!2(R3;R3) 3C,

which implies (∫
R3

(
�� · � + �� · �

)
()) 3G

) 1
2

≤
(∫
R3

(
��̊ · �̊ + ��̊ · �̊

)
3G

) 1
2

+ 4��−
1
2
9

!1([0,)];!2(R3;R3))

by the quadratic version of Gronwall’s lemma; see Lemma 1.1.2. Using the positive
definiteness of �, � again, we arrive at (1.3.4).

1.4 The iteration scheme
We shall now construct weak solutions by means of an iteration scheme.

1.4.1 Regularity of the data and approximations
Throughout this sectionwe assume the following conditions on the data, source terms,
and material parameters.

Condition 1.4.1. • 0 ≤ ˚5  ∈
(
!1
kin ∩ !

∞
) (
Ω × R3) for all  = 1, . . . , # ;

• 0 ≤ 0 ∈ !∞
(
�−
)•

)
, 00 B ‖0‖

!∞
(
�−
)•

) < 1, 0 ≤ 6 ∈
(
!1
kin,lt ∩ !

∞
lt

) (
�−
)•

)
for

 = 1, . . . , #′;

• 0 ≤ 0 ∈ !∞
(
�−
)•

)
, ‖0‖

!∞
(
�−
)•

) = 1, 6 = 0 for  = #′ + 1, . . . , # ;

• �̊, �̊ ∈ !2 (R3;R3) ;
• �, � ∈ !∞

(
R3;R3×3) such that there are �, �′ > 0 satisfying � ≤ �, � ≤ �′, and

� = � = Id on Ω;

• D ∈ !1
lt
(
�)• ; !2 (Γ;R3) ) .
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For  = 1, . . . , #′ we already have ‖0‖
!∞

(
�−
)•

) < 1 so that we can simply define

0
:
B 0 in order to be able to apply the results of Section 1.2. Conversely, for

 = #′ + 1, . . . , # we have to modify 0. The easiest way is to scale 0 with a positive
number depending on : and smaller than 1 that converges to 1 for : →∞ so that we
somehow get back the original 0 in the limit : → ∞. Hence, we define 0

:
B :

:+1 0


satisfying
0

:


!∞

(
�−
)•

) = :
:+1 < 1.

Since in the results of Section 1.3 all coefficients and data have to be smooth enough,
on the one handwe have to choose approximating sequences

(
�̊:

)
,
(
�̊:

)
⊂ �3 (R3;R3)

with �̊: → �̊, �̊: → �̊ in !2 (R3;R3) for : →∞. On the other hand, we have to smooth
� and �. In the following, have in mind that for a symmetric, positive definite matrix
� ∈ R3×3 and some � ≥ 0 we have the equivalence

� ≤ � ⇔ ‖�‖R3×3 ≤ �

where we use the norm

‖�‖R3×3 = sup
|G |≤1
|�G | = max

{
� ∈ R | � eigenvalue of �

}
,

where the last equality holds for symmetric, positive definite �. Thus, for some
measurable � : R3 → R3×3 such that �(G) is symmetric and positive definite for
almost all G ∈ R3, the property � ≤ � is equivalent to ‖�‖!∞(R3;R3×3) ≤ �.

We want to construct sequences (�:),
(
�:

)
⊂ �3

ul
(
R3;R3×3) with � ≤ �: , �: ≤ �′ in

order to be able to apply Proposition 1.3.2 later such that these sequences converge to
�, � in a certain sense. We perform the construction of (�:); the one for

(
�:

)
works

completely analogously. Let $ ∈ �∞2
(
R3) with $ ≥ 0, supp$ ⊂ �1,

∫
R3 $ 3G = 1 be a

Friedrich’s mollifier and define $B B B−3$
( ·
B

)
for B > 0. Now let

�̃:(G) B
{
�(G) − �Id, G ∈ �: ,

0, G ∉ �:

for : ∈ N. Clearly, �̃: ∈ !∞
(
R3;R3×3) and �̃: vanishes on R3 \ �: . This implies

$B ∗ �̃: ∈ �∞2
(
R3;R3×3) (the convolution understood componentwise) for any B > 0.

By �̃: ∈ !2 (�: ;R3×3) we have $B ∗ �̃: → �̃: in !2 (�: ;R3×3) for B → 0. Hence, we can
choose B: > 0 such that $B: ∗ �̃: − �̃:


!2(�: ;R3×3) <

1
:
.

Finally, define �: B $B: ∗ �̃: + �Id. It holds that �: ∈ �3
ul
(
R3;R3×3) since it is of class

�∞ and constant for |G | large. By construction �:(G) is symmetric for all G ∈ R3 and

‖� − �: ‖!2(�: ;R3×3) <
1
:
. (1.4.1)
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Furthermore, for any �, G ∈ R3 it holds that

�:(G)� · � =
∫
R3
$B:

(
G − H

)
�̃:

(
H
)
� · � 3H + � |� |2

=

∫
�:

$B:

(
G − H

)
�
(
H
)
� · � 3H − � |� |2

∫
�:

$B:

(
G − H

)
3H + � |� |2

≥ � |� |2
∫
�:

$B:

(
G − H

)
3H − � |� |2

∫
�:

$B:

(
G − H

)
3H + � |� |2 = � |� |2 ,

≤ �′ |� |2
∫
�:

$B:

(
G − H

)
3H − � |� |2

∫
�:

$B:

(
G − H

)
3H + � |� |2 ≤ �′ |� |2.

Note that for the last line we used the fact that the integral of $B over whole R3 equals
1 for any B > 0. Altogether, �: and the similarly defined �: satisfy all conditions
needed in Proposition 1.3.2.

1.4.2 A cut-off problem
Wenow followGuo [Guo93], who considered the problemwith � = � = Id, D = 0, and
perfect conductor boundary conditions for the electromagnetic fields on %Ω. However,
Lemma 2.5. therein, cf. Proposition 1.3.2 here, is incorrect. In order to construct a
weak solution of (VM), we first turn to a cut-off problem where we consider bounded
time and momentum domains. Whereas the cut-off in time is no real drawback, the
cut-off in momentum space is on the one hand unpleasant but on the other hand
necessary. To understand this necessity, we should recall (1.3.4). Consider there 9
to be the sum of some external current and the current 9int induced by the particle
densities. In an iteration scheme we would like to have an estimate like (1.3.4) for the
fields where the right-hand side is uniformly bounded along the iteration. Then we
could extract some weakly converging subsequence. However, for this uniformity we
would need that 9int is uniformly bounded in !1 ([0, )]; !2 (R3;R3) ) along the iteration.
This would require a better estimate than (1.2.13) where we only were able to put our
hands on the ! 4

3
(
R3;R3)-norm of 9int (at each time). Moreover, in an energy balance

along the iteration, the crucial terms describing the energy transfer within the internal
systemwill not cancel out; thiswould only be the case if we solve (VM) simultaneously
along an iteration.
Now if we consider a cut-off problem (the cut-off referring to momentum space) we

can simply estimate the !2-norm of 9int with respect to G by a linear combination of
the !2-norms of the 5  with respect to (G, E), cf. (1.4.4), and then use (1.2.10) for ? = 2
so that we get the desired uniform boundedness along the iteration. Later, adding
the limit versions of (1.2.12) and (1.3.3), we observe that the problematic terms on
the right-hand side, that is to say, the terms ±� · 9int, cancel out. Thus, now (after
a Gronwall argument) having a full energy estimate with only expressions of the
given functions on the right-hand side, we find that a posteriori the cut-off does not
substantially enter this estimate so that we will be able to get a solution of the system
without a cut-off by considering a sequence of solutions corresponding to larger and
larger cut-off domains.
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To make things more precise, let 0 < ' < ∞, define '∗ B min{', )•}, and start the
iteration with �0 , �0 : [0, '∗] × R3 → R3, (�0 , �0)(C , G, E) =

(
�̊0 , �̊0

)
(G, E). We assume

that we already have �: , �: ∈ !∞
(
[0, '∗]; !2 (R3;R3) ) ∩ �0,1 ([0, '∗] × R3;R3) of the

:-th step. We first define 5 
:+1 as the solution of the Vlasov part

%C 5

:+1 + Ê · %G 5


:+1 + �


:
· %E 5 :+1 = 0 on [0, '∗] ×Ω × R3 , (1.4.2a)
5 
:+1,− = 0


:+1 5


:+1,+ + 6

 on �−'∗ , (1.4.2b)

5 
:+1(0) = ˚5  on Ω × R3 (1.4.2c)

with given force field �
:
B @(�: + Ê × �:), which satisfies Condition 1.2.11 by the

regularity of �: and �: . Indeed, we can solve (1.4.2) applying Proposition 1.2.15
(with final time '∗ instead of )•) and noticing that 0

:+1 is bounded away from 1 on

�−
'∗ . Therefore, we have 0 ≤ 5 

:+1 ∈ !
∞
(
[0, '∗];

(
!1
kin ∩ !

∞
) (
Ω × R3) ) and 0 ≤ 5 

:+1,± ∈(
!1
kin ∩ !

∞
) (
�±
'∗ , 3�

)
.

Next we want to solve the Maxwell part. Now the cut-off appears: We define the
current

9:+1 B 9int
:+1 + D B

#∑
=1

@

∫
�'

Ê 5

:+1 3E + D (1.4.3)

where we integrate only over the cut-off domain �' rather than over the whole
momentum space. Note that 9int

:+1 (D) is defined to be 0 outside Ω (Γ). By(∫
Ω

��9int
:+1

��2 3G) 1
2

≤
√

4�
3 '3

#∑
=1

��@��(∫
Ω

∫
R3

�� 5 
:+1

��2 3E3G) 1
2

(1.4.4)

and 5 
:+1 ∈ !

∞ (
[0, '∗]; !2 (Ω × R3) ) we have 9:+1 ∈ !1 ([0, '∗]; !2 (R3;R3) ) . Unfortu-

nately, this regularity is not enough to apply Proposition 1.3.2. Thus, we approximate
9:+1 by a smooth function, that is to say, take 9:+1 ∈ �∞2

(
]0, '∗[ × R3;R3) such that

4�
9:+1 − 9:+1


!1([0,'∗];!2(R3;R3))

<
1

: + 1 . (1.4.5)

With this smoothed current as the source term in the Maxwell system we solve

�:+1%C�:+1 − curlG �:+1 = −4�9:+1 on [0, '∗] × R3 , (1.4.6a)
�:+1%C�:+1 + curlG �:+1 = 0 on [0, '∗] × R3 , (1.4.6b)

(�:+1 , �:+1)(0) =
(
�̊:+1 , �̊:+1

)
on R3. (1.4.6c)

Indeed, applyingProposition 1.3.2, we see that there is a unique solution (�:+1 , �:+1) ∈
�

(
[0, '∗];�3 (R3;R6) ) ∩ �1 ([0, '∗];�2 (R3;R6) ) . By Sobolev’s embedding theorem it
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holds that �:+1 , �:+1 ∈ �0,1 ([0, '∗] × R3;R3) . Altogether, the induction hypothesis is
satisfied so that we can proceed with the next iteration step.
In order to extract some weakly converging subsequence, we have to establish suit-

able estimates. To this end, consider (1.2.10) and (1.3.4) applied to (1.4.2) and (1.4.6):(
1 −

0
:+1


!∞(�−'∗)

) 1
?
 5 :+1,+


!?(�+) ,3�)

,
 5 
:+1())


!? (Ω×R3)

≤
 ˚5 

!? (Ω×R3)
+

(
1 −

0
:+1


!∞(�−'∗)

) 1
? −16

!?(�−) ,3�) (1.4.7)

and

‖(�:+1 , �:+1)())‖!2(R3;R6)

≤ �−
1
2

(∫
R3

(
�:+1�̊:+1 · �̊:+1 + �:+1�̊:+1 · �̊:+1

)
3G

) 1
2

+ 4��−1
9:+1


!1([0,)];!2(R3;R3))

(1.4.8)

for 0 < ) ≤ '∗, 1 ≤ ? ≤ ∞. Note that we need �:(G), �:(G) ≥ � uniformly in G and :
to get (1.4.8).
For  = 1, . . . , #′, (1.4.7) reduces to(

1 − 00
) 1
?

 5 :+1,+


!?(�+) ,3�)

,
 5 
:+1())


!? (Ω×R3)

≤
 ˚5 

!? (Ω×R3)
+

(
1 − 00

) 1
? −16

!?(�−) ,3�) (1.4.9)

and to

(: + 2)−
1
?

 5 :+1,+


!?(�+) ,3�)

,
 5 
:+1())


!? (Ω×R3) ≤

 ˚5 
!? (Ω×R3)

(1.4.10)

for  = #′ + 1, . . . , # . Thus, we conclude that any sequence
(
5 
:

)
is bounded in any

!?
(
[0, '∗] ×Ω × R3) , 1 ≤ ? ≤ ∞, so that we may extract subsequences (also denoted

by
(
5 
:

)
) that converge weakly in !?

(
[0, '∗] ×Ω × R3) for 1 < ? < ∞ and weak-* in

!∞
(
[0, '∗] ×Ω × R3) to some nonnegative 5 

'
. As in (1.4.3) we define

9' B 9int
' + D B

#∑
=1

@

∫
�'

Ê 5

' 3E + D.

As for the boundary values, we have to distinct absorbing and reflecting bound-
ary conditions. For  = 1, . . . , #′, (1.4.9) yields the boundedness of

(
5 
:,+

)
in any

!?
(
�+
'∗ , 3�

)
, 1 ≤ ? ≤ ∞, so we may extract a subsequence that converges weakly

in !?
(
�+
'∗ , 3�

)
for 1 < ? < ∞ and weak-* in !∞

(
�+
'∗

)
to some nonnegative 5 

',+. For
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 = #′ + 1, . . . , # , (1.4.10) yields a uniform estimate only for ? = ∞, so here we may
extract a subsequence that only convergesweak-* to some nonnegative 5 

',+ in !
∞ (

�+
'∗

)
.

Note thatwedonot claim that the 5 
',+ are traces of the 5


'
in the sense of Section 1.2—

because we cannot assume the force term in the limit Vlasov equations to be Lipschitz
continuous, as we see below, and therefore an approach via characteristics as in
Section 1.2.2 is not applicable—but 5 

'
and 5 

',+ are rather related to each other in the
sense of Remark 1.2.1; note that Definition 1.1.1.(ii) is satisfied (for 5 

'
, 5 

',+, �', �'),
as is shown below. This clarification also applies to the 5  and 5 + constructed later in
Section 1.4.3.
Next we have a look at !?-estimates for 5 

'
and 5 

',+ and let ) ∈ ]0, '∗]. Clearly, we
have 5 ' 

!∞([0,)]×Ω×R3) ≤ lim inf
:→∞

 5 
:


!∞([0,)]×Ω×R3)

≤
 ˚5 

!∞(Ω×R3)
+

{(
1 − 00

)−16
!∞(�−) ) ,  = 1, . . . , #′

0,  = #′ + 1, . . . , #
(1.4.11)

and  5 ',+
!∞(�+) )

≤ lim inf
:→∞

 5 :,+
!∞(�+) )

≤
 ˚5 

!∞(Ω×R3)
+

{(
1 − 00

)−16
!∞(�−) ) ,  = 1, . . . , #′

0,  = #′ + 1, . . . , #

byweak-* convergence and (1.4.9) and (1.4.10), respectively. As for the other !?-norms,
let � ⊂ [0, )] be measurable with Lebesgue measure �(�), and A > 0. For 1 < ? < ∞
it holds that∫

�

∫
Ω

∫
R3

�� 5 ' ��? 3E3G3C ≤ lim inf
:→∞

∫
�

∫
Ω

∫
R3

�� 5 
:

��? 3E3G3C
≤ �(�)

( ˚5 
!? (Ω×R3)

+
{(

1 − 00
) 1
? −16

!?(�−) ,3�) ,  = 1, . . . , #′

0,  = #′ + 1, . . . , #

)?
by weak convergence and (1.4.9) and (1.4.10), respectively. Therefore, we have 5 

'
∈

!∞
(
[0, '∗]; !?

(
Ω × R3) ) with

 5 ' 
!∞([0,)];!? (Ω×R3)) ≤

 ˚5 
!? (Ω×R3)

+
{(

1 − 00
) 1
? −16

!?(�−) ,3�) ,  = 1, . . . , #′

0,  = #′ + 1, . . . , #

for all ) ∈ ]0, '∗]. For  = 1, . . . , #′, it additionally holds that 5 ',+
!?(�+) ,3�)

≤ lim inf
:→∞

 5 :,+
!?(�+) ,3�)



1.4 The iteration scheme 39

≤
(
1 − 00

)− 1
?

 ˚5 
!? (Ω×R3)

+
(
1 − 00

)−16
!?(�−) ,3�)

by weak convergence and (1.4.9).
Finally, we turn to ? = 1. On the one hand, for any measurable � ⊂ [0, )] and A > 0

it holds that ∫
�

∫
Ω

∫
�A

5 ' 3E3G3C = lim
:→∞

∫
�

∫
Ω

∫
�A

5 
:
3E3G3C

≤ �(�)
( ˚5 

!1(Ω×R3)
+

{6
!1(�−) ,3�) ,  = 1, . . . , #′

0,  = #′ + 1, . . . , #

)
by weak convergence (in !2, for example) and (1.4.9) and (1.4.10), respectively. This
estimate implies that 5 

'
∈ !∞

(
[0, '∗]; !1 (Ω × R3) ) with 5 ' 

!∞([0,)];!1(Ω×R3)) ≤
 ˚5 

!1(Ω×R3)
+

{6
!1(�−) ,3�) ,  = 1, . . . , #′

0,  = #′ + 1, . . . , #

for all ) ∈ ]0, '∗]. On the other hand, we have∫
�+
)
∩{|E |<A}

5 ',+ 3� = lim
:→∞

∫
�+
)
∩{|E |<A}

5 
:,+ 3�

≤
(
1 − 00

)−1
( ˚5 

!1(Ω×R3)
+

6
!1(�−) ,3�)

)
for  = 1, . . . , #′ by weak convergence and (1.4.9). Therefore, 5 

',+ ∈ !1 (�+
'∗ , 3�

)
and 5 ',+

!1(�+) ,3�)
≤

(
1 − 00

)−1
( ˚5 

!1(Ω×R3)
+

6
!1(�−) ,3�)

)
for all ) ∈ ]0, '∗].
Next, we turn to an estimate on the electromagnetic fields. To examine (1.4.8)

further, we first note that9:+1


!1([0,)];!2(R3;R3))

≤ 1
4�(: + 1) +

9:+1

!1([0,'∗];!2(R3;R3))

≤ 1 +
√

4�
3 '3

#∑
=1

��@�� 5 :+1


!1([0,'∗];!2(Ω×R3)) + ‖D‖!1([0,'∗];!2(Γ;R3))

for 0 < ) ≤ '∗ using (1.4.4). Hence, the right-hand side of (1.4.8) is boundeduniformly
in : because we already have a uniform bound on

(
5 
:

)
in !∞

(
[0, '∗]; !2 (Ω × R3) ) and

because of �: , �: ≤ �′ and the !2-convergence of the approximating initial data.
Thus, we may assume without loss of generality that (�: , �:) converges weakly in
!2 ([0, '∗] × R3;R6) to some (�' , �').
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We now show that
((
5 
'
, 5 
',+

)

, �' , �' , 9'

)
satisfies Definition 1.1.1.(i) to 1.1.1.(iii)

with final time '∗. Clearly, all functions are of class !1
loc. The main task is to show that

we may pass to the limit in (1.1.2) and (1.1.3) applied to the iterates: We have for all
# ∈ Ψ'∗ , ' ∈ Θ'∗ , and : ≥ 1

0 = −
∫ '∗

0

∫
Ω

∫
R3

(
%C# + Ê · %G# + @(�: + Ê × �:) · %E#

)
5 
:+1 3E3G3C

+
∫
�+
'∗

5 
:+1,+# 3� −

∫
�−
'∗

(
0
:+1 5


:+1,+ + 6


)
# 3� −

∫
Ω

∫
R3

˚5 #(0) 3E3G, (1.4.12)

0 =
∫ '∗

0

∫
R3

(
�:�: · %C' − �: · curlG ' − 4�9: · '

)
3G3C +

∫
R3
�: �̊: · '(0) 3G, (1.4.13)

0 =
∫ '∗

0

∫
R3

(
�:�: · %C' + �: · curlG '

)
3G3C +

∫
R3
�:�̊: · '(0) 3G. (1.4.14)

We can pass to the limit in (1.4.13) and (1.4.14): Whereas the terms including the curl
are easy to handle by weak convergence of �: , �: , we have to take more care about
the terms including �: , �: , and 9: . For the first ones, let ! ∈ N such that ' vanishes
for |G | ≥ ! so that we in fact only integrate over �!. For : ≥ ! we have

‖� − �: ‖!2(�! ;R3×3) ≤ ‖� − �: ‖!2(�: ;R3×3) <
1
:

by (1.4.1) so that �: → � in !2 (�!;R3×3) . This is enough for passing to the limit in the
terms including �: since we additionally have �: ⇀ �' in !2 ([0, '∗] × R3;R3) , even
strong convergence of the approximating initial data, and the boundedness of the time
interval [0, '∗]. Similarly, we argue for the terms with �: . So there only remains the
term including 9: . To tackle this one, we estimate����∫ '∗

0

∫
R3

(
9: − 9'

)
· ' 3G3C

���� ≤ ����∫ '∗

0

∫
R3

(
9: − 9:

)
· ' 3G3C

���� + ����∫ '∗

0

∫
R3

(
9: − 9'

)
· ' 3G3C

����
≤

9: − 9:
!1([0,'∗];!2(R3;R3))

‖'‖!∞([0,'∗];!2(R3;R3))

+
#∑
=1

��@������∫ '∗

0

∫
R3

∫
�'

Ê
(
5 
:
− 5 '

)
3E · ' 3G3C

����,
where the first term on the right-hand side converges to 0 for : →∞ by construction
of 9: , cf. (1.4.5), and each summand of the second term by weak convergence of the
5 
:
; note that Ê · '"{|E |≤'} ∈ !2 ([0, '∗] × R3 × R3) .
Passing to the limit in (1.4.12) is more complicated, especially because of the non-

linear product term including �: , �: , and 5 
:
. The other terms are easy to handle due

to weak convergence of 5 
:
and weak (or weak-*) convergence of 5 

:,+; for this note that

lim
:→∞

∫
�−
'∗

0
:+1

(
 5 

:+1,+

)
# 3�
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= lim
:→∞

(∫
�−
'∗

0
(
 5 

:+1,+

)
# 3� ·

{
1,  = 1, . . . , #′

:+1
:+2 ,  = #′ + 1, . . . , #

)
= lim

:→∞

(∫
�+
'∗

( 0) 5 
:+1,+ # 3� ·

{
1,  = 1, . . . , #′

:+1
:+2 ,  = #′ + 1, . . . , #

)
=

∫
�+
'∗

( 0) 5 ',+ # 3�

=

∫
�−
'∗

0
(
 5 ',+

)
# 3� (1.4.15)

using Lemma 1.2.14—the second time applied to 2 B 5 
',+"{|E |≤A} where A > 0 is

chosen such that # vanishes for |E | > A, as 5 
',+ is not necessarily of class !1 (�+

'∗ , 3�
)
.

So there only remains the crucial product term. In order to be able to pass to the
limit, we need some compactness. To this end, the key is the following momentum-
averaging lemma; see [DL89], or [Rei04] for a shortened proof.

Lemma 1.4.2. Let A > 0 and � ∈ �∞2 (�A). There exists a constant � > 0 such that
for any functions ℎ, 60 ∈ !2 (R × R3 × �A

)
, 61 ∈ !2 (R × R3 × �A ;R3) which satisfy the

inhomogeneous transport equation

%C ℎ + Ê · %Gℎ = 60 + divE 61

in the sense of distributions we have∫
�A

�(E)ℎ(·, ·, E) 3E ∈ � 1
4
(
R × R3)

with ∫
�A

�(E)ℎ(·, ·, E) 3E

�

1
4 (R×R3)

≤ �
(
‖ℎ‖!2(R×R3×�A ) +

60

!2(R×R3×�A ) +

61

!2(R×R3×�A ;R3)

)
.

Note that, in the references above, this lemma was proved for Ê = E√
1+|E |2

instead of

Ê, i.e., for < = 1, but this slight difference plays no role for the analysis.
Let � ∈ �∞2

(
R3) and A > 0 such that � vanishes for |E | > A−1. Our goal is to show that∫

R3 � 5

:
3E converges strongly (and not only weakly) to

∫
R3 � 5


'
3E in !2([0, '∗] ×Ω).

To this end, let � ∈ �∞2 (]0, '∗[ ×Ω × �A). We have

%C
(
� 5 

:+1
)
+ Ê · %G

(
� 5 

:+1
)

= −divE
(
@(�: + Ê × �:)

(
� 5 

:+1
) )
+ 5 

:+1%C� + 5

:+1Ê · %G�

+ @ 5 :+1(�: + Ê × �:) · %E� (1.4.16)
C divE 6:1 + 6

:
0

on R ×R3 ×R3 in the sense of distributions. This holds if we first extend all functions
by 0 so that they are defined on R × R3 × R3, then take an arbitrary test function
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� ∈ �∞2
(
R × R3 × R3) and notice that ��

��
[0,'∗]×Ω×R3 ∈ Ψ'∗ since the support of � is

away from %Ω. Thus, ��, which vanishes on %Ω and for C = 0, is a proper test function
for system (1.4.2). But testing this system with this test function is nothing else than
testing (1.4.16) with �.

Clearly, the !2-norms of 6:0 and 6:1 onR×R3×�A are uniformly bounded in : because
of � ∈ �∞2 (]0, '∗[ ×Ω × �A) and the already known uniform boundedness of 5 

:+1 in
!2 ([0, '∗] ×Ω × R3) and !∞ (

[0, '∗] ×Ω × R3) and �: , �: in !2 ([0, '∗] × R3;R3) . Thus,
applying Lemma 1.4.2 yields the uniform boundedness of∫

�A

�(E)
(
� 5 

:

)
(·, ·, E) 3E


�

1
4 (R×R3)

=

∫
�A

�(E)
(
� 5 

:

)
(·, ·, E) 3E


�

1
4 (]0,'∗[×Ω)

.

By boundedness of ]0, '∗[ × Ω we have the compact embedding � 1
4 (]0, '∗[ ×Ω) ⊂

!2(]0, '∗[ ×Ω) so that the sequence
(∫
�A
�(E)

(
� 5 

:

)
(·, ·, E) 3E

)
converges, after extract-

ing a suitable subsequence, strongly to
∫
�A
�(E)

(
� 5 

'

)
(·, ·, E) 3E in !2(]0, '∗[ ×Ω).

Again by the uniform boundedness of 5 
:
in !∞

(
[0, '∗] ×Ω × R3) it holds that∫

R3
�(E)

( (
1 − �

) (
5 
:
− 5 '

) )
(·, ·, E) 3E


!2([0,'∗]×Ω)

=

∫
�A

�(E)
( (

1 − �
) (
5 
:
− 5 '

) )
(·, ·, E) 3E


!2([0,'∗]×Ω)

≤ �
1 − �


!2([0,'∗]×Ω×�A ) (1.4.17)

with a constant� ≥ 0 that does not dependon :. Now let ; ∈ Nbe arbitrary and choose
� = �; ∈ �∞2 (]0, '∗[ ×Ω × �A) such that the right-hand side of (1.4.17) is smaller than
1
; ; note that 1 ∈ !2([0, '∗] ×Ω × �A). We iteratively choose subsequences

(
5 
; ,:

)
:∈N

of(
5 
:

)
such that

(
5 
;+1,:

)
:∈N

is a subsequence
(
5 
; ,:

)
:∈N

and such that

lim
:→∞

∫
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�(E)
(
�; 5


; ,:

)
(·, ·, E) 3E =

∫
�A

�(E)
(
�; 5


'

)
(·, ·, E) 3E

in !2(]0, '∗[ ×Ω) for all ; ∈ N. Considering the diagonal sequence, now again denoted
by

(
5 
:

)
, these considerations imply∫

R3
�(E) 5 

:
(·, ·, E) 3E →

∫
R3
�(E) 5 ' (·, ·, E) 3E strongly in !2([0, '∗] ×Ω) for : →∞

(1.4.18)

because of∫
R3
�(E) 5 

:
(·, ·, E) 3E −

∫
R3
�(E) 5 ' (·, ·, E) 3E


!2([0,'∗]×Ω)
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≤ 1
:
+

∫
�A

�(E)
(
�: 5


:

)
(·, ·, E) 3E −

∫
�A

�(E)
(
�: 5


'

)
(·, ·, E) 3E


!2([0,'∗]×Ω)

.

Finally, take # ∈ Ψ'∗ and consider the limit of the crucial product term in (1.4.12).
By a density argument—in particular, the approximation theorem of Weierstraß, cf.
[Wal02, Section 7.24]—we may assume that # factorizes, i.e.,

#(C , G, E) = #1(C , G)#2(E).

On the one hand, we have

lim
:→∞

∫ '∗

0

∫
Ω

∫
R3
@�: ·

(
%E#

)
5 
:+1 3E3G3C

= lim
:→∞

∫ '∗
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∫
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(∫
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)
3G3C

=
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(∫
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5 ' ∇#2 3E

)
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∫ '∗

0

∫
Ω

∫
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@�' ·

(
%E#

)
5 ' 3E3G3C

by #1 ∈ !∞([0, '∗] ×Ω), �: ⇀ �' weakly in !2 ([0, '∗] ×Ω;R3) , and (1.4.18) defining
� B

(
∇#2

)
8
, 8 = 1, 2, 3. On the other hand, it holds that

lim
:→∞

∫ '∗
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∫
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@ (̂E × �:) ·

(
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:+1 3E3G3C

= lim
:→∞

∫ '∗

0

∫
Ω

@�:#1 ·
(∫
R3

(
∇#2 × Ê
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3G3C
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∫
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(
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)
5 ' 3E

)
3G3C

=

∫ '∗

0

∫
Ω

∫
R3
@ (̂E × �') ·

(
%E#

)
5 ' 3E3G3C

by #1 ∈ !∞([0, '∗] ×Ω), �: ⇀ �' weakly in !2 ([0, '∗] ×Ω;R3) , and (1.4.18) defining
�(E) B

(
∇#2(E) × Ê

)
8
, 8 = 1, 2, 3.

Altogether,
((
5 
'
, 5 
',+

)

, �' , �' , 9'

)
satisfies Definition 1.1.1.(i) to 1.1.1.(iii) with

final time '∗.
In order to have good estimates for ' → ∞, the right-hand side of an energy

inequality should not depend on '. To this end, consider (1.2.12) and (1.3.3) applied
to the :-iterated functions. Note that the estimate on the term on the left-hand side
of (1.2.12) including the boundary values is only worth anything for : → ∞ for
 = 1, . . . , #′. Therefore, it is convenient to introduce

1
:
()) B


(
1 − 00

) ∫
�+
)
∩{|E |<'}

E0
 5


:,+ 3� ,  = 1, . . . , #′

0,  = #′ + 1, . . . , #
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and similarly 1
'
())where : is replaced by '. Now we have

1
:
()) +

∫
Ω

∫
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E0
 5


:
()) 3E3G

≤
∫
Ω

∫
R3
E0

˚5  3E3G +

∫
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)
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 3�

+
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∫
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∫
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@(�:−1 + Ê × �:−1) · Ê 5 : 3E3G3C

=

∫
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∫
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∫
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)

E0
6

 3� +
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∫
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@ Ê 5
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3E3G3C (1.4.19)

and

1
8�

∫
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(
�:�: · �: + �:�: · �:

)
()) 3G

=
1

8�

∫
R3

(
�: �̊: · �̊: + �:�̊: · �̊:

)
3G −

∫ )

0

∫
R3
�: · 9: 3G3C (1.4.20)

for any : ≥ 1 and ) ∈ ]0, '∗]. We consider the right-hand sides of (1.4.19) and (1.4.20)
further. The term including the initial data of the electromagnetic fields is bounded
uniformly in : due to∫
R3

(
�: �̊: · �̊: + �:�̊: · �̊:

)
3G ≤ �′

∫
R3

(����̊: ���2 + ����̊:

���2) 3G :→∞→ �′
∫
R3

(����̊���2 + ����̊���2) 3G.
Next we show that, up to a subsequence,

lim
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3E3G3C =
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∫
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�' ·
∫
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@ Ê 5

' 3E3G3C. (1.4.21)

To this end, let ; ∈ N and �; ∈ �∞2
(
�';R3) with

@̂ · − �;!2(�' ;R3) <
1
; . By the uniform

boundedness of �: in !2 ([0, '∗] × R3;R3) and 5 
:
in !∞

(
[0, '∗] ×Ω × R3) (and by the

limit functions being elements of these spaces) and by the finiteness of the measures
of the time interval, Ω, and �', it holds that����∫ )

0

∫
Ω

�:−1 ·
∫
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(
@ Ê − �;

)
5 
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3E3G3C

����, ����∫ )

0

∫
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�' ·
∫
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(
@ Ê − �;

)
5 ' 3E3G3C

���� ≤ �

;

where 0 ≤ � < ∞ does not depend on :. Similarly as before, after again exploiting
the compactness result of Lemma 1.4.2, we deduce

lim
:→∞

∫ )

0

∫
Ω

�:−1 ·
∫
�'

�; 5

:
3E3G3C =

∫ )

0

∫
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�' ·
∫
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�; 5

' 3E3G3C,
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possibly after extracting a suitable subsequence depending on ;. Via a similar diagonal
sequence argument as before, we get (1.4.21) up to a subsequence. Summing (1.4.21)
over  yields

lim
:→∞

∫ )

0

∫
Ω

�:−1 · 9int
:
3G3C =

∫ )

0

∫
Ω

�' · 9int
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∫
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�' · 9int
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whence we have
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∫
Ω

(
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:
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:

)
3G3C = 0. (1.4.22)

However, this is not enough since we in fact have to consider �:−1 · 9int
:
−�: · 9: . To get

hands on this term, we choose !1
:
, !2

:
∈ �∞2 (]0, '∗[ ×Ω)with�:−1 · 9int

:
− !1

:


!1(]0,'∗[×Ω) ,

�: · 9int
:
− !2
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!1(]0,'∗[×Ω) <

1
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(1.4.23)

and choose D: ∈ �∞2
(
]0, '∗[ × Γ;R3) such that

‖D − D: ‖!1([0,'∗];!2(Γ;R3)) <
1
:
. (1.4.24)

Using these approximations, (1.4.3), and (1.4.5) we estimate����∫ )

0

∫
R3

(
�:−1 · 9int

:
− �: · 9:

)
3G3C

����
≤

����∫ )

0

∫
Ω

(
�:−1 · 9int

:
− !1

:

)
3G3C

���� + ����∫ )

0

∫
Ω

(
!1
:
− !2

:

)
3G3C

����
+

����∫ )

0

∫
Ω

(
!2
:
− �: · 9int

:

)
3G3C

���� + ����∫ )

0

∫
R3
�: ·

(
9: − 9:

)
3G3C

����
+

����∫ )

0

∫
Γ

�: · (D − D:) 3G3C
���� + ����∫ )

0

∫
Γ

�: · D: 3G3C
����

≤
∫ )

0
‖�:(C)‖!2(R3;R3)‖D:(C)‖!2(Γ;R3) 3C +

����∫ )

0

∫
Ω

(
!1
:
− !2

:

)
3G3C

���� + �:
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0
‖�:(C)‖!2(R3;R3)‖D:(C)‖!2(Γ;R3) 3C + ℎ:()), (1.4.25)

where � > 0 does not depend on : since we have a uniform bound on the �: in
!∞

(
[0, '∗]; !2 (R3;R3) ) . Furthermore, ℎ: is continuous with respect to ) and

ℎ:()) → 0 for : →∞ for each ) ∈ [0, '∗] (1.4.26)



46 1 Existence of weak solutions

by (1.4.22) and (1.4.23). Moreover, we have

0 ≤ ℎ:()) ≤
� + 2
:
+

�:−1 · 9int
:


!1(]0,'∗[×Ω) +

�: · 9int
:
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)9int
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!1([0,'∗];!2(Ω;R3)) ≤ �̃ ,

(1.4.27)

where �̃ > 0 does not depend on : (and )) by the uniform boundedness of the �: in
!∞

(
[0, '∗]; !2 (R3;R3) ) and (1.4.4) (combined with (1.4.9) and (1.4.10), respectively).

Now let 0 < ) ≤ )′ ≤ '∗. Exploiting � ≤ �: , �: ≤ �′, summing (1.4.19) over ,
adding (1.4.20), and then using (1.4.25) yields
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By �: , �: ∈ �
(
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[0, '∗]; !2 (Γ;R3) ) , and by continuity of ℎ:
we can apply Lemma 1.1.2 and thus obtain(
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(1.4.28)

altogether. To be able to let : → ∞, we have to integrate (1.4.28) in time since the
evaluation of the limit functions 5 

'
, �' , �' at a certain time makes no sense here

(which is contrary to the time evaluation 1
:
()) because there a full (C , G, E)-integral

is included). Now let � ⊂ [0, )′] be measurable with Lebesgue measure �(�). As
for
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convergence and that we have a pointwise bound uniformly in ) and : in view of
(1.4.28). Additionally exploiting weak convergence and weak lower semicontinuity,
respectively, the strong convergence of the initial electromagnetic fields, (1.4.26), and
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Therefore, we have (�' , �') ∈ !∞
(
[0, '∗]; !2 (R3;R6) ) and (after taking ) = )′)

©«
#′∑
=1

(
1 − 00

) ∫
�+
)
∩{|E |<'}

E0
 5


',+ 3�

+
 #∑
=1

∫
Ω

∫
�'

E0
 5


' (·) 3E3G +

�
8� ‖(�' , �')(·)‖2!2(R3;R6)


!∞([0,)])

ª®¬
1
2

≤
(
#∑
=1

∫
Ω

∫
R3
E0

˚5  3E3G +

#′∑
=1

∫
�−
)

E0
6

 3� +
�′

8�

(�̊, �̊)2

!2(R3;R6)

) 1
2

+
√

2��−
1
2 ‖D‖!1([0,)];!2(Γ;R3)) (1.4.29)

for all ) ∈ ]0, '∗]. This is exactly the kind of energy estimate we wanted to derive
since ' does no longer appear on the right-hand side.
Lastly, we show that, up to a subsequence,
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for 0 < ) ≤ '∗ and the right-hand side is bounded in ! 4
3 ([0, '∗]) uniformly in : by

virtue of (1.4.28), where all terms on the right-hand side are uniformly bounded in
:. Therefore, we may assume without loss of generality that 9int

:
converges weakly in
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!
4
3
(
[0, '∗] ×Ω;R3) to some 9̃int

'
. Indeed, 9̃int

'
= 9int

'
almost everywhere since∫ '∗

0

∫
Ω

(
9int
' − 9̃

int
'

)
· ' 3G3C =

∫ '∗

0

∫
Ω

(
#∑
=1

@

∫
�'

Ê 5

' 3E − 9̃

int
'

)
· ' 3G3C

= lim
:→∞

∫ '∗

0

∫
Ω

(
#∑
=1

@

∫
�'

Ê 5

:
3E − 9int

:

)
· ' 3G3C = 0

for any ' ∈ �∞2
(
]0, '∗[ ×Ω;R3) by (for example, !2-) weak convergence of the 5 

:
.

Altogether, we have shown (1.4.30). As for the desired bound, we proceed similarly
to (1.2.13) and (1.2.15), respectively. Let 0 < ) ≤ '∗ and � ⊂ [0, )] measurable. For
almost all (C , G) ∈ � ×Ωwe have∫

�'

5 ' (C , G, E) 3E ≤
∫
�A

5 ' (C , G, E) 3E +
∫
A≤|E |≤'

5 ' (C , G, E) 3E

≤ 4�
3 A3 5 ' 

!∞([0,)]×Ω×R3) +
1
A

∫
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E0
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' (C , G, E) 3E

=

(∫
�'

E0
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' (C , G, E) 3E

) 3
4
(
4�
3

 5 ' 
!∞([0,)]×Ω×R3) + 1

)
(1.4.31)

where we set A B
(∫
�'
E0
 5


'
(C , G, E) 3E

) 1
4 ∈ [0,∞[. Summing over , taking the

!
4
3 (Ω)-norm, then integrating over � yields∫

�

(∫
Ω

��9int
'

�� 4
3 3G

) 3
4
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#∑
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��@�� ∫
�

(∫
Ω

����∫
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5 ' 3E

���� 4
3

3G

) 3
4
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≤
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��@��(4�
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) (∫
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∫
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' 3E3G

) 3
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3C

≤
(
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)4
) 1

4 ∫
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(
#∑
=1

∫
Ω

∫
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E0
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' 3E3G

) 3
4

3C (1.4.32)

by the triangle inequality in ! 4
3 and Hölder’s inequality for the sum. Inserting (1.4.11)

and (1.4.29), respectively, we conclude 9int
'
∈ !∞

(
[0, '∗]; ! 4

3
(
Ω;R3) ) with9int

'


!∞

(
[0,)];!

4
3 (Ω;R3)

)

≤ ©«
#∑
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��@��4 (4�
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!∞(Ω×R3)
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{

4�
3(1−00 )

6
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)4ª®¬
1
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· ©«
(
#∑
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∫
Ω

∫
R3
E0

˚5  3E3G +

#′∑
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∫
�−
)

E0
6

 3� +
�′

8�

(�̊, �̊)2

!2(R3;R6)

) 1
2

+
√

2��−
1
2 ‖D‖!1([0,)];!2(Γ;R3))

ª®®¬
3
2

for any 0 < ) ≤ '∗.
We summarize the results of this section in the following lemma.

Lemma 1.4.3. Let ' > 0 and '∗ = min{', )•}. There exist functions

• 5 
'
∈ !∞

(
[0, '∗];

(
!1 ∩ !∞

) (
Ω × R3) ) ∩ !∞ (

[0, '∗]; !1
kin(Ω × �')

)
,  = 1, . . . , # ,

all nonnegative,

• 5 
',+ ∈

(
!1 ∩ !∞

) (
�+
'∗ , 3�

)
∩ !1

kin
(
�+
'∗ ∩ {|E | < '}, 3�

)
,  = 1, . . . , #′, and

5 
',+ ∈ !∞

(
�+
'∗

)
,  = #′ + 1, . . . , # , all nonnegative,

• (�' , �') ∈ !∞
(
[0, '∗]; !2 (R3;R6) )

such that
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5 
'
, 5 
',+

)

, �' , �' , 9'

)
satisfies Definition 1.1.1.(i) to 1.1.1.(iii) with final time

'∗, where

9' = 9int
' + D =

#∑
=1

@

∫
�'

Ê 5

' 3E + D, 9int

' ∈ !
∞
(
[0, '∗];

(
!1 ∩ ! 4

3

) (
Ω;R3) ) .

Furthermore, we have the following estimates for any 1 ≤ ? ≤ ∞ and ) ∈ ]0, '∗]:
Estimates on 5 

'
, 5 
',+: 5 ' 

!∞([0,)];!? (Ω×R3)) ≤
 ˚5 

!? (Ω×R3)
+

(
1 − 00

) 1
? −16

!?(�−) ,3�) , (1.4.33) 5 ',+
!?(�+) ,3�)

≤
(
1 − 00

)− 1
?

 ˚5 
!? (Ω×R3)

+
(
1 − 00

)−16
!?(�−) ,3�) (1.4.34)

for  = 1, . . . , #′ and  5 ' 
!∞([0,)];!? (Ω×R3)) ≤

 ˚5 
!? (Ω×R3)

, (1.4.35) 5 ',+
!∞(�+) )

≤
 ˚5 

!∞(Ω×R3)
(1.4.36)

for  = #′ + 1, . . . , # .
Energy-like estimate:

©«
#′∑
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(
1 − 00

) ∫
�+
)
∩{|E |<'}

E0
 5


',+ 3�
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+
 #∑
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∫
Ω

∫
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E0
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' (·) 3E3G +

�
8� ‖(�' , �')(·)‖2!2(R3;R6)
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≤
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#∑
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∫
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+
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1
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Estimate on 9int
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4
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#∑
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∫
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+
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1
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2

.

(1.4.38)

1.4.3 Removing the cut-off

Finally, we obtain aweak solution of (VM) on the time Interval �)• by letting'→∞. To
this end, it is crucial that the right-hand sides of the estimates (1.4.33) to (1.4.37) do not
depend on '. We choose a sequence ('<) ⊂ ]0,∞[ converging to∞ and denote 5 < =
5 
'<

and so on, and<∗ = min{'< , )•}. Now take ! ∈ N and define !∗ = min{!, )•}. By
(1.4.33) to (1.4.38) we may extract subsequences

(
5 
<; ,!

)
;
,
(
5 
<; ,+,!

)
;
,
( (
�<; ,! , �<; ,!

) )
;
,(

9int
<; ,!

)
;
such that for any 1 < ? < ∞,

(
5 
<; ,!

)
;
converges weakly in !?

(
[0, !∗] ×Ω × R3)

and weak-* in !∞
(
[0, !∗] ×Ω × R3) , (

5 
<; ,+,!

)
;
converges weak-* in !∞(�!∗), for  =

1, . . . , #′ additionallyweakly in !?(�!∗ , 3�), andmoreover
( (
�<; ,! , �<; ,!

) )
;
converges

weakly in !2 ([0, !∗] × R3;R6) and (
9int
<; ,!

)
;
weakly in ! 4

3
(
[0, !∗] ×Ω;R3) , and such that

these subsequences are subsequences of the previous ones with index !− 1 (if ! ≥ 2).
By considering the respective diagonal sequences with indices <! , ! and ! running
we have found subsequences (now again denoted by index <) and limit functions



52 1 Existence of weak solutions

5  , 5 + , �, �, 9̃
int such that

5 < ⇀ 5  in !?
(
[0, "∗] ×Ω × R3) ,

5 <
∗
⇀ 5  in !∞

(
[0, "∗] ×Ω × R3) ,

5 <,+
∗
⇀ 5 + in !∞(�"∗),

5 <,+ ⇀ 5 + in !?(�"∗ , 3�) (only for  = 1, . . . , #′),
(�< , �<)⇀ (�, �) in !2 ([0, "∗] × R3;R6) ,

9int
< ⇀ 9̃int in !

4
3
(
[0, "∗] ×Ω;R3)

for < →∞ for all 1 < ? < ∞ and " > 0 (where "∗ = min{",)•} as usual). We will
show later that indeed 9̃int = 9int B

∑#
=1 @

∫
R3 Ê 5

 3E. Clearly, all 5  and 5 + are
nonnegative.
Applying the same techniques that were used to derive (1.4.33) to (1.4.36), we con-

clude 5  ∈ !∞lt
(
�)• ;

(
!1 ∩ !∞

) (
Ω × R3) ) , 5 + ∈ (

!1
lt ∩ !

∞
lt

) (
�+
)•
, 3�

)
for  = 1, . . . , #′,

and 5 + ∈ !∞
(
�+
)•

)
for  = #′ + 1, . . . , # , satisfying 5 

!∞([0,)];!? (Ω×R3)) ≤
 ˚5 

!? (Ω×R3)
+

(
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) 1
? −16
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!?(�+) ,3�) ≤

(
1 − 00

)− 1
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,
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!∞(�+) ) ≤
 ˚5 

!∞(Ω×R3)

for  = #′ + 1, . . . , # , respectively, for any 0 < ) ∈ �)• and 1 ≤ ? ≤ ∞. As for the
energy estimate (1.4.37), we also consider< →∞. Similarly as in the previous section,
take 0 < ) ∈ �)• , � ⊂ [0, )]measurable, and A > 0. We have∫
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()) 3E3G + �
8� ‖(�, �)())‖

2
!2(R3;R6)

)
3)

≤ lim inf
<→∞

∫
�

(
#∑
=1

∫
Ω

∫
�A

E0
 5


< ()) 3E3G +

�
8� ‖(�< , �<)())‖2!2(R3;R6)

)
3)

≤ lim inf
<→∞

∫
�

(
#∑
=1

∫
Ω

∫
�'<

E0
 5


< ()) 3E3G +

�
8� ‖(�< , �<)())‖2!2(R3;R6)

)
3)

by weak convergence and '< →∞. Similarly,
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≤ lim inf
<→∞

#′∑
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1 − 00

) ∫
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E0
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<,+ 3� .

Combining these estimates with (1.4.37) and using their uniformity in A, we deduce
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(
�)• ; !1
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Ω × R3) ) , (�, �) ∈ !∞lt (
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(
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by a reasoning similar to the one in the previous section.
Next we consider the internal current 9int. To show that indeed 9int = 9̃int we take

' ∈ �∞2
(
]0, )•[ ×Ω;R3) and A > 0. Usingweak convergence of 9int

< and 5 < , respectively,
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where � is finite by virtue of (1.4.37) and (1.4.39), respectively, and does not depend
on A. Since A > 0 and ' ∈ �∞2

(
]0, )•[ ×Ω;R3) was arbitrary, we conclude 9int = 9̃int

almost everywhere.
Clearly, 9int ∈ !∞lt

(
�)• ; !1 (Ω;R3) ) by 5  ∈ !∞lt

(
�)• ; !1 (Ω × R3) ) . But we even have
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4
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��9int�� 4
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3 3G3C

for any measurable � ⊂ �)• by weak lower semicontinuity and because of (1.4.38)
along the (<-)sequence. Thus, we conclude that 9int satisfies9int
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for any 0 < ) ∈ �)• .
Finally, there remains to check that (VM) also holds in the limit, now on the time

interval �)• . As for the Maxwell equations, it is even easier to pass to the limit than
before since � and � remain constant along the <-sequence. For some ' ∈ Θ)• ,
(1.1.3) holds in the limit by weak convergence of �< , �< , and 9int

< . Note that for this
only the weak convergence on a bounded time interval matters by ' being compactly
supported with respect to time.
As for passing to the limit in (1.1.2), let# ∈ Ψ)• . All terms but the nonlinear product

term are again easy to handle by the known weak convergences. Note that again only
a bounded time interval matters according to # ∈ Ψ)• . As for the integral over �−

)•
,

we calculate

lim
<→∞

∫
�−
)•

K 5

<,+# 3� = lim

<→∞

∫
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)•∩supp#

0
(
 5 <,+

)
# 3�
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∫
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( 0) 5 <,+ # 3� =
∫
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)•∩supp#

( 0) 5 +  # 3�
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=

∫
�−
)•∩supp#

0
(
 5 +

)
# 3� =

∫
�−
)•

K 5

+ # 3�

as in (1.4.15). To tackle the crucial product term, we proceed similarly to Section 1.4.2.
We again may assume that # factorizes, i.e., #(C , G, E) = #1(C , G)#2(E). For some
� ∈ �∞2

(
R3) and A > 0 such that � vanishes for |E | > A − 1, and for given ; ∈ N,

0 < B ∈ �)• we first choose �; ∈ �∞2 (]0, B[ ×Ω × �A) such that∫
R3
�(E)

( (
1 − �;

) (
5 < − 5 

) )
(·, ·, E) 3E
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∫
�A

�(E)
( (

1 − �;
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5 < − 5 

) )
(·, ·, E) 3E


!2([0,B]×Ω)

≤ �
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!2([0,B]×Ω×�A ) <

1
;

for < large, i.e., '< ≥ B. This is possible due to the uniform boundedness of the 5 < in
!2 ([0, B] ×Ω × R3) . Arguing in the same way as in Section 1.4.2 only replacing '∗ by
B and noting that

%C
(
�; 5


<

)
+ Ê · %G

(
�; 5


<

)
= −divE

(
@(�< + Ê × �<)

(
�; 5


<

) )
+ 5 <%C�; + 5 < Ê · %G�;

+ @ 5 < (�< + Ê × �<) · %E�;

on R × R3 × R3 in the sense of distributions (if '< ≥ B), we conclude that, after
extracting a suitable subsequence,

∫
R3 �(E) 5 < (·, ·, E) 3E →

∫
R3 �(E) 5 (·, ·, E) 3E strongly

in !2([0, B] ×Ω) for < → ∞. This is enough to pass to the limit in (1.1.2) for fixed
# ∈ Ψ)• that factorizes by choosing B such that # vanishes for C ≥ B.
We summarize our results in the following theorem.

Theorem 1.4.4. Let )• ∈ ]0,∞], Ω ⊂ R3 be a bounded domain such that %Ω is a �1,�-
submanifold of R3 for some 0 < � ≤ 1, and let Condition 1.4.1 hold. Then there exist
functions
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such that
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)
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)
is a weak solution of (VM) on the time interval �)• with external

current D in the sense of Definition 1.1.1, where

9 = 9int + D =
#∑
=1

@

∫
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Ê 5

 3E + D, 9int ∈ !∞lt
(
�)• ;

(
!1 ∩ ! 4
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) (
Ω;R3) ) .
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Furthermore, we have the following estimates for any 1 ≤ ? ≤ ∞ and 0 < ) ∈ �)• :
Estimates on 5  , 5 + : 5 
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Energy-like estimate:
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#′∑
=1

∫
�−
)

E0
6

 3� +
�′

8�

(�̊, �̊)2

!2(R3;R6)

) 1
2

+
√

2��−
1
2 ‖D‖!1([0,)];!2(Γ;R3)). (1.4.44)

Estimate on 9int:9int
!∞

(
[0,)];!

4
3 (Ω;R3)

)

≤ ©«
#∑
=1

��@��4 (4�
3

 ˚5 
!∞(Ω×R3)

+ 1 +
{

4�
3(1−00 )

6
!∞(�−) ) ,  ≤ #′

0,  > #′

)4ª®¬
1
4

· ©«
(
#∑
=1

∫
Ω

∫
R3
E0

˚5  3E3G +

#′∑
=1

∫
�−
)

E0
6

 3� +
�′

8�

(�̊, �̊)2

!2(R3;R6)

) 1
2

+
√

2��−
1
2 ‖D‖!1([0,)];!2(Γ;R3))

ª®®¬
3
2

.

(1.4.45)
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1.5 The redundant divergence equations and the charge
balance

In this section we shall discuss in what sense the divergence equations (0.5) hold for a
weak solution of (VM) in the sense of Definition 1.1.1. The weak formulation of (0.5)
is

0 =
∫ )•

0

∫
R3

(
�� · %G! + 4��!

)
3G3C, (1.5.1a)

0 =
∫ )•

0

∫
R3
�� · %G! 3G3C (1.5.1b)

for all ! ∈ �∞2
(
]0, )•[ × R3) . Obviously, this is equivalent to (0.5) on ]0, )•[ × R3 in the

sense of distributions.
For (0.5) should propagate in time, we have to demand that (0.5) holds initially as a

constraint on the initial data, that is to say,

div
(
��̊

)
= 4��̊, div

(
��̊

)
= 0

on R3 in the sense of distributions, or, equivalently,

0 =
∫
R3

(
��̊ · %G� + 4��̊�

)
3G, (1.5.2a)

0 =
∫
R3
��̊ · %G� 3G (1.5.2b)

for all � ∈ �∞2
(
R3) .

Now let
( (
5  , 5 +

)
 , �, �, 9

)
be a weak solution of (VM) on the time interval �)• with

external current D. It is easy to see that (1.5.1b) holds: Define

' : �)• × R3 → R3 , '(C , G) = −
∫ )•

C

%G!(B, G) 3B.

Clearly, ' ∈ Θ)• . Hence, (1.1.3b) and � =
∫ )•

0 !(B, ·) 3B ∈ �∞2
(
R3) in (1.5.2b) yields

0 =
∫ )•

0

∫
R3

(
�� · %C' + � · curlG '

)
3G3C +

∫
R3
��̊ · '(0) 3G

=

∫ )•

0

∫
R3

(
�� · %G! − � ·

∫ )•

C

curlG %G!(B, G) 3B
)
3G3C −

∫
R3
��̊ · %G� 3G

=

∫ )•

0

∫
R3
�� · %G! 3G3C

and we are done.
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As for (1.5.1a), we have to exploit local conservation of charge and have to determine
what � is. Therefore, we have to make use of (1.1.2) in order to put the internal charge
density into play. However, the test functions there have to satisfy # ∈ Ψ)• but a test
function of (1.5.1a) does not depend on E. Consequently, we, on the one hand, have
to consider a cut-off in momentum space, and, on the other hand, have to show that
(1.1.2) also holds if the support of # is not away from �0

)•
or {0}×%Ω×R3. To this end,

the following technical lemma is useful. There and throughout the rest of this section,
we assume thatΩ ⊂ R3 is a bounded domain such that %Ω is a �1∩,2,∞-submanifold
of R3. Here, %Ω being of class �1 ∩,2,∞ means that it is of class �1 and all local
flattenings are locally of class,2,∞.

Lemma 1.5.1. Let 1 ≤ ? < 2 and # ∈ �1 (�)• × R3 × R3) with supp# ⊂ [0, )•[ × R3 × R3

compact. Then there is a sequence
(
#:

)
⊂ Ψ)• such that#: − #


,1,?C 2G1E (]0,)•[×Ω×R3) → 0 (1.5.3)

for : →∞ and there is 0 < A < ∞ such that # and all #: vanish for C ≥ A. Here,

‖ℎ‖,1,?C 2G1E (]0,)•[×Ω×R3) B
©«
∫ )•

0

(∫
Ω

(∫
R3
(|ℎ | + |%C ℎ | + |%Gℎ | + |%Eℎ |) 3E

)2

3G

) ?

2

3C
ª®¬

1
?

.

Proof. First, we extend# to a �1-function onR×R3×R3 such that supp# ⊂ ]−)• , )•[×
R3×R3 is compact (which can be achieved since the hyperplanewhere C = 0 is smooth).

By assumption about %Ω, for each G ∈ %Ω there exist open sets *̃G , *̃
′
G ⊂ R3 with G ∈

*̃G and a �1-diffeomorphism �G : *̃G → *̃′G , that has the property �G ∈,2,∞
loc

(
*̃G ; *̃′G

)
,

such that �G
(
*̃G ∩ %Ω

)
= *̃′G ∩

(
R2 × {0}

)
. For any G ∈ %Ω we choose an open set

*G ⊂ R3 such that G ∈ *G and *G ⊂⊂ *̃G (here and in the following, � ⊂⊂ � is
shorthand for “� bounded and � ⊂ �”). Then, %Ω ⊂ ⋃

G∈%Ω*G , whence there are
a finite number of points, say, G8 ∈ %Ω, 8 = 1, . . . <, such that %Ω ⊂ ⋃<

8=1*8 , since
%Ω is compact. Here and in the following, we write *8 B *G8 , *̃8 B *̃G8 , and
� 8 B �G8 . Since it holds thatΩ \⋃<

8=1*8 ⊂⊂ Ω, there is an open set*0 ⊂ R3 satisfying
Ω \⋃<

8=1*8 ⊂⊂ *0 ⊂⊂ Ω. Therefore, we have Ω ⊂ ⋃<
8=0*8 . Finally, we choose an

open set " ⊂ R3 such that Ω ⊂ " ⊂⊂ ⋃<
8=0*8 .

Now let �8 , 8 = 0, . . . , <, be a partition of unity on" subordinate to*8 , 8 = 0, . . . , <,
i.e., �8 ∈ �∞2

(
R3) , 0 ≤ �8 ≤ 1, supp �8 ⊂ *8 , and

∑<
8=0 �8 = 1 on " (and hence on Ω, in

particular). Furthermore, let � ∈ �∞(R) such that 0 ≤ � ≤ 1, �
(
H
)
= 0 for

��H�� ≤ 1
2 , and

�
(
H
)
= 1 for

��H�� ≥ 1.
Next, for 8 = 1, . . . , < define �8 : *8 × R3 → R6, �8(G, E) =

(
� 8(G), �8(G)E

)
, where

the rows �8
9
(G), 9 = 1, 2, 3, of �8(G) are given by

�81(G) =
∇� 81(G) × ∇�

8
3(G)��∇� 81(G) × ∇� 83(G)�� , �82(G) = ∇�

8
3(G) ×

(
∇� 81(G) × ∇�

8
3(G)

)��∇� 83(G) × (
∇� 81(G) × ∇�

8
3(G)

) �� , �83(G) = ∇� 83(G)��∇� 83(G)�� .
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Note that the rows are orthogonal and have length one, and that �8 is of class � ∩
,1,∞ on *8 since � 8 is of class �1 ∩,2,∞ on *8 , det�� 8 ≠ 0 on *̃8 , and hence the
denominators in �8(G) are bounded away from zero on *8 because of *8 ⊂⊂ *̃8 .
Therefore, �8 is of class � ∩,1,∞ on*8 × �' for any ' > 0.

The key idea is that, for any (G, E) ∈ *8 × R3, G ∈ %Ω is equivalent to �83(G, E) = 0
and, moreover, (G, E) ∈ �̃0 is equivalent to �83(G, E) = �86(G, E) = 0, since =(G) and
∇� 83(G) are parallel (and both nonzero). Thus, since the supports of the approximating
functions #: shall be away from �0

)•
and {0} × %Ω × R3, it is natural to consider the

following �∞-function in the variables (C , �), that cuts off a region near the two sets
where �3 = �6 = 0 and where C = �3 = 0:

�: : R × R6 → R, �:(C , �) = �
(
:2 (�2

3 + �2
6
) )
�
(
:2 (C2 + �2

3
) )
.

For : ∈ Nwe then define

#̃: : R × R3 × R3 → R, #̃:(C , G, E) = �0(G)#(C , G, E) +
<∑
8=1

�8(G)#(C , G, E)��
8

:
(C , G, E)

where

��
8

:
: R ×*8 × R3 → R, ��

8

:
(C , G, E) = �:

(
C , �8(G, E)

)
.

We should mention that, according to supp �8 ⊂ *8 , 8 = 0, . . . , <, the 8-th summand is
(by definition) zero if G ∉ *8 . Note that we can apply the chain rule for ��8

:
since �: is

smooth and �8 ∈,1,1 (*8 × �';R6) for any ' > 0. Therefore, #̃: is of class � ∩,1,∞.
First we show that (1.5.3) holds for #̃: (instead of #:). By

∑<
8=0 �8 = 1 onΩwe have#̃: − #


,1,?C 2G1E (]0,)•[×Ω×R3) ≤

<∑
8=1

�8# (
��

8

:
− 1

)
,1,?C 2G1E (]0,'[×*8×�')

≤ �
<∑
8=1

��8: − 1

,1,?C 2G1E (]0,'[×*8×�')

, (1.5.4)

where � > 0 depends on the (finite) �1
1
-norms of # (and �8) and where ' > 0 is

chosen such that # vanishes if C ≥ ' or |E | ≥ '. For fixed 8 ∈ {1, . . . , <} and
(C , G, E) ∈ R ×*8 × R3 the implications

��
8

:
(C , G, E) ≠ 1⇒ :2

(
�83(G, E)

2 + �86(G, E)
2
)
≤ 1 ∨ :2

(
C2 + �83(G, E)

2
)
≤ 1

⇒
��� 83(G)�� ≤ :−1 ∧

(���86(G, E)�� ≤ :−1 ∨ |C | ≤ :−1)
hold. Therefore, we have, recalling that 0 ≤ � ≤ 1,

©«
∫ '

0

(∫
*8

(∫
�'

�����8: − 1
��� 3E)2

3G

) ?

2

3C
ª®¬

1
?
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≤
©«
∫ '

0

©«
∫
{G∈*8 | |�83(G)|≤:−1}

(∫
{E∈�' | |�86(G,E)|≤:−1}

3E

)2

3G
ª®¬
?

2

3C
ª®®¬

1
?

+ ©«
∫ :−1

0

(∫
{G∈*8 | |�83(G)|≤:−1}

(
4�
3 '3

)2

3G

) ?

2

3C
ª®¬

1
?

C � :1 + �
:
2 .

In the following, we will heavily make use of the facts that �8(G) is orthonormal for
any G ∈ *8 ,

��det�� 8
�� is bounded away from zero on*8 , and � 8(*8) is bounded. Thus,

� :1 ≤ �
©«
∫ '

0

(∫
{H∈�8 (*8 )| |H3 |≤:−1}

(∫
{F∈�' | |F3 |≤:−1}

3F

)2

3H

) ?

2

3C
ª®¬

1
?

≤ �:− 3
2 → 0

for : → ∞. Here and in the following, � denotes a positive, finite constant that may
depend on ?, ', and � 8 , and that may change in each step. Similarly,

� :2 ≤ �
©«
∫ :−1

0

(∫
{H∈�8 (*8 )| |H3 |≤:−1}

3H

) ?

2

3C
ª®¬

1
?

≤ �:−
1
2− 1

? → 0

for : →∞. Next we turn to the derivatives and start with the C-derivative. By

%C�
�8

:
(C , G, E) = 2:2C�

(
:2

(
�83(G, E)

2 + �86(G, E)
2
))
�′

(
:2

(
C2 + �83(G, E)

2
))

we have ���%C��8: (C , G, E)��� ≤ �:2C

and

%C�
�8

:
(C , G, E) ≠ 0⇒ :2

(
C2 + �83(G, E)

2
)
≤ 1⇒ |C | ≤ :−1 ∧

��� 83(G)�� ≤ :−1.

Hence,

©«
∫ '

0

(∫
*8

(∫
�'

���%C��8: ��� 3E)2

3G

) ?

2

3C
ª®¬

1
?

≤ �:2©«
∫ :−1

0

(∫
{G∈*8 | |�83(G)|≤:−1}

(∫
�'

C 3E

)2

3G

) ?

2

3C
ª®¬

1
?
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≤ �:2©«
∫ :−1

0

(∫
{H∈�8 (*8 )| |H3 |≤:−1}

C2 3H

) ?

2

3C
ª®¬

1
?

≤ �: 3
2

(∫ :−1

0
C? 3C

) 1
?

= �:
1
2− 1

? → 0

for : →∞ by ? < 2. As for the G-derivatives, we compute

%G 9�
�8

:
(C , G, E)

= :2�′
(
:2

(
�83(G, E)

2 + �86(G, E)
2
))
�
(
:2

(
C2 + �83(G, E)

2
))
%G 9

(
�83(G, E)

2 + �86(G, E)
2
)

+ :2�
(
:2

(
�83(G, E)

2 + �86(G, E)
2
))
�′

(
:2

(
C2 + �83(G, E)

2
))
%G 9

(
�83(G, E)

2
)

(1.5.5)

for 9 = 1, 2, 3. If :2
(
�83(G, E)

2 + �86(G, E)
2
)
≥ 1, the first summand vanishes and (1.5.5),

on the one hand, implies���%G 9��8: (C , G, E)��� ≤ �:2���83(G, E)�� = �:2��� 83(G)��
for (C , G, E) ∈ R×*8 × �' since �8 is of class,1,∞ on*8 × �', and, on the other hand,

%G 9�
�8

:
(C , G, E) ≠ 0⇒ :2

(
C2 + �83(G, E)

2
)
≤ 1⇒

��� 83(G)�� ≤ :−1 ∧ |C | ≤ :−1.

If :2
(
�83(G, E)

2 + �86(G, E)
2
)
< 1, we have, on the one hand,��� 83(G)�� ≤ :−1 ∧

���86(G, E)�� ≤ :−1

and (1.5.5), on the other hand, implies���%G 9��8: (C , G, E)��� ≤ �:2 (���83(G, E)�� + ���86(G, E)��) = �:2 (��� 83(G)�� + ���86(G, E)��) .
Combing these two cases we conclude

©«
∫ '

0

(∫
*8

(∫
�'

���%G 9��8: ��� 3E)2

3G

) ?

2

3C
ª®¬

1
?

≤ �:2©«
∫ :−1

0

(∫
{G∈*8 | |�83(G)|≤:−1}

(∫
�'

��� 83(G)�� 3E)2

3G

) ?

2

3C
ª®¬

1
?

+ �:2
©«
∫ '

0

©«
∫
{G∈*8 | |�83(G)|≤:−1}

(∫
{E∈�' | |�86(G,E)|≤:−1}

��� 83(G)�� 3E)2

3G
ª®¬
?

2

3C
ª®®¬

1
?



62 1 Existence of weak solutions

+ �:2
©«
∫ '

0

©«
∫
{G∈*8 | |�83(G)|≤:−1}

(∫
{E∈�' | |�86(G,E)|≤:−1}

���86(G, E)�� 3E)2

3G
ª®¬
?

2

3C
ª®®¬

1
?

≤ �:2− 1
?

(∫
{H∈�8 (*8 )| |H3 |≤:−1}

��H3
��2 3H) 1

2

+ �:2

(∫
{H∈�8 (*8 )| |H3 |≤:−1}

��H3
��2 3H (∫

{F∈�' | |F3 |≤:−1}
3F

)2
) 1

2

+ �:2

(∫
{H∈�8 (*8 )| |H3 |≤:−1}

3H

(∫
{F∈�' | |F3 |≤:−1}

|F3 | 3F
)2

) 1
2

≤ �:
1
2− 1

? + �:− 1
2 → 0

for : →∞ again by ? < 2. Finally, consider the E-derivatives and compute

%E 9�
�8

:
(C , G, E) = :2�′

(
:2

(
�83(G, E)

2 + �86(G, E)
2
))
�
(
:2

(
C2 + �83(G, E)

2
))
%E 9

(
�86(G, E)

2
)

for 9 = 1, 2, 3, which implies���%E 9��8: (C , G, E)��� ≤ �:2���86(G, E)��
and

%E 9�
�8

:
(C , G, E) ≠ 0⇒ :2

(
�83(G, E)

2 + �86(G, E)
2
)
≤ 1

⇒
��� 83(G)�� ≤ :−1 ∧

���86(G, E)�� ≤ :−1

for (C , G, E) ∈ R ×*8 × �'. Therefore, we have

©«
∫ '

0

(∫
*8

(∫
�'

���%E 9��8: ��� 3E)2

3G

) ?

2

3C
ª®¬

1
?

≤ �:2
©«
∫ '

0

©«
∫
{G∈*8 | |�83(G)|≤:−1}

(∫
{E∈�' | |�86(G,E)|≤:−1}

���86(G, E)�� 3E)2

3G
ª®¬
?

2

3C
ª®®¬

1
?

≤ �:− 1
2 → 0

for : →∞ as before. Altogether, we have shown that

lim
:→∞

��8: − 1

,1,?C 2G1E (]0,'[×*8×�')

= 0
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for any 8 = 1, . . . , < and thus

lim
:→∞

#̃: − #

,1,?C 2G1E (]0,)•[×Ω×R3) = 0 (1.5.6)

by (1.5.4).
The next step is to show that, for each : ∈ N, the support of #̃: is away from

�0
)•

and {0} × %Ω × R3. As for �0
)•
, assume the contrary, i.e., dist

(
supp #̃: , �0

)•

)
= 0.

Then we find sequences
( (
C̃; , G̃; , Ẽ;

) )
⊂ �0

)•
and ((C; , G; , E;)) ⊂ R × R3 × R3 such that

#̃:(C; , G; , E;) ≠ 0 for all ; ∈ N and

lim
;→∞

�� (C̃; , G̃; , Ẽ; ) − (C; , G; , E;)�� = 0.

By compactness of supp #̃: ⊂ supp#, both sequences are bounded, whence we may
assume without loss of generality that both sequences converge to the same limit, say,
(C , G, E) ∈ R × R3 × R3. Since �̃0 is closed and C̃; ≥ 0 for ; ∈ N, we have (G, E) ∈ �̃0

and C ≥ 0. By dist(G,*0) > 0 and since
⋃<
8=1*8 is an open cover of %Ω, we may also

assume that

G; ∈
⋃
8∈�∪�

*8 \
⋃

8∈{0,...,<}\(�∪�)
*8 (1.5.7)

where � B {8 ∈ {1, . . . , <} | G ∈ *8}, � B {8 ∈ {1, . . . , <} | G ∈ %*8} (for ; large, at
least). Clearly, �8(G;) = 0 for any 8 ∈ � and large ;. Now take 8 ∈ �. Since �8 is
continuous and since �83(G, E) = �

8
6(G, E) = 0 by (G, E) ∈ �̃0, we have

lim
;→∞

�83(G; , E;) = lim
;→∞

�86(G; , E;) = 0

and then

:2
(
�83(G; , E;)

2 + �86(G; , E;)
2
)
≤ 1

2

for ; large. But then ��
8

:
(C; , G; , E;) = 0 and therefore by (1.5.7)

0 ≠ #̃:(C; , G; , E;)
=

∑
8∈�

�8(G;)#(C; , G; , E;)��
8

:
(C; , G; , E;) +

∑
8∈�

�8(G;)#(C; , G; , E;)��
8

:
(C; , G; , E;) = 0,

which is a contradiction. As for {0}×%Ω×R3, the proofworks completely analogously:
If we assume dist

(
supp #̃: , {0} × %Ω × R3

)
= 0, we find sequences

( (
C̃; , G̃; , Ẽ;

) )
⊂

{0} × %Ω × R3 and ((C; , G; , E;)) ⊂ R × R3 × R3 such that #̃:(C; , G; , E;) ≠ 0 for all ; ∈ N
and

lim
;→∞

�� (C̃; , G̃; , Ẽ; ) − (C; , G; , E;)�� = 0.
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As before, we may assume that both sequences converge to the same limit, say,
(C , G, E) ∈ R×R3 ×R3. Since {0} × %Ω×R3 is closed, we have (C , G, E) ∈ {0} × %Ω×R3.
Again we may assume (1.5.7). Now take 8 ∈ �. Since �8 is continuous and since
C = �83(G, E) = 0 by G ∈ %Ω, we have

lim
;→∞

C; = lim
;→∞

�83(G; , E;) = 0

and then

:2
(
C2
;
+ �83(G; , E;)

2
)
≤ 1

2

for ; large. But then ��
8

:
(C; , G; , E;) = 0 and the contradiction follows as before.

There only remains one problem: The approximating functions are only of class
� ∩,1,∞ with compact support and not necessarily of class �∞ as desired (which
corresponds to the fact that %Ω is only of class �1∩,2,∞ and not necessarily smooth).
To this end, take a Friedrich’smollifier$ ∈ �∞2

(
R7) with supp$ ⊂ �1,

∫
R7 $ 3(C , G, E) =

1, and denote $� B �−7$
( ·
�

)
for � > 0. By #̃: ∈ �1 (R7) , we know that $� ∗ #̃:

converges to #̃: for � → 0 in �1 (R7) . Moreover, since supp #̃: ⊂ ]−)• , )•[ × R3 × R3,
dist

(
supp #̃: , �0

)•

)
, dist

(
supp #̃: , {0} × %Ω × R3

)
> 0, these properties also hold for

$� ∗ #̃: instead of #̃: if � is small enough. Choose 0 < �: ≤ 1 so small and such that$�: ∗ #̃: − #̃:


�1(R7) ≤

1
:
.

By ? < 2, this implies$�: ∗ #̃: − #̃:


,1,?C 2G1E (]0,'+1[×Ω×�'+1) ≤

�

:

where � > 0 depends on ?,Ω, and '. After combining this with (1.5.6), noting that #̃:

and # vanish if C ≥ ' or |E | ≥ ' and $�: ∗ #̃: if C ≥ ' + 1 (which implies the existence
of A as asserted) or |E | ≥ ' + 1, and setting

#: B $�: ∗ #̃:

��
�)•×Ω×R3 ∈ Ψ)• ,

we are finally done.

With this lemma, we can extend (1.1.2) to test functions # whose supports do not
necessarily have to be away from �0

)•
and {0} × %Ω × R3 under a condition on the

integrability of the solution.

Lemma 1.5.2. Let  ∈ {1, . . . , #}, 5  ∈ !∞lt
(
�)• ×Ω × R3) , 5 + ∈ !∞lt (

�+
)•

)
, (�, �) ∈

!
@

lt
(
�)• ; !2 (R3;R6) ) for some @ > 2, K : !∞lt

(
�+
)•

)
→ !∞lt

(
�−
)•

)
, 6 ∈ !∞lt

(
�−
)•

)
, and ˚5  ∈

!∞
(
Ω × R3) such that Definition 1.1.1.(ii) is satisfied. Moreover, let # ∈ �1 (�)• × R3 × R3)

with supp# ⊂ [0, )•[ × R3 × R3 compact. Then, (1.1.2) still holds for #.
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Proof. Let 1 ≤ ? < 2 satisfy 1
? + 1

@ = 1. In accordance with Lemma 1.5.1, let
(
#:

)
⊂ Ψ)•

approximate # with respect to the,1,?C2G1E -norm, 0 < A < ∞ such that # and all #:

vanish for C ≥ A, and define ' B min{A, )•}. By assumption, (1.1.2) holds for #: for
all : ∈ N. Hence, there remains to show that we can pass to the limit : →∞ in (1.1.2).
First, we have����∫ )•

0

∫
Ω

∫
R3

(
%C#: − %C#

)
5  3E3G3C

���� ≤ #: − #

,1,1(]0,'[×Ω×R3)

 5 
!∞([0,']×Ω×R3)

≤ �
(
',Ω, ?, 5 

)#: − #

,1,?C 2G1E (]0,'[×Ω×R3) → 0

for : →∞, since ' is finite and Ω is bounded. Similarly,

lim
:→∞

����∫ )•

0

∫
Ω

∫
R3

(̂
E · %G#: − Ê · %G#

)
5  3E3G3C

���� = 0

by |Ê | ≤ 1. Next,����∫ )•

0

∫
Ω

∫
R3
(� + Ê × �) ·

(
%E#: − %E#

)
5  3E3G3C

����
≤

 5 
!∞([0,']×Ω×R3)

∫ '

0

∫
Ω

(|� | + |� |)
∫
R3

��%E#: − %E#
�� 3E3G3C

≤ �
(
5 

) ∫ '

0

(∫
Ω

(
|� |2 + |� |2

)
3G

) 1
2
(∫

Ω

(∫
R3

��%E#: − %E#
�� 3E)2

3G

) 1
2

3C

≤ �
(
5 

)
‖(�, �)‖!@ ([0,'];!2(R3;R6))

©«
∫ '

0

(∫
Ω

(∫
R3

��%E#: − %E#
�� 3E)2

3G

) ?

2

3C
ª®¬

1
?

→ 0

for : → ∞. Note that this was the crucial estimate, for which we essentially needed
the convergence of #: to # in the,1,?C2G1E -norm. As for the integrals over �±

)•
, we first

have ∫
%Ω

��#: − #
��(C , G, E) 3(G ≤ �(Ω)∫

Ω

(��#: − #
�� + ��%G#: − %G#

��)(C , G, E) 3G
for any C ∈ �)• , E ∈ R3, since Ω is bounded and %Ω of class �1. Therefore, by
|=(G) · Ê | ≤ 1 it holds that�����∫�+

)•

(
#: − #

)
5 + 3�

����� ≤ �(Ω)#: − #

,1,1(]0,'[×Ω×R3)

 5 + 
!∞(�+') → 0

for : →∞. Similarly,�����∫�−
)•

(
#: − #

) (
K 5


+ + 6

)
3�

�����
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≤ �(Ω)
#: − #


,1,1(]0,'[×Ω×R3)

(K 5

+

!∞(�−') +

6
!∞(�−')

)
→ 0

for : →∞. Lastly, by

0 = #:(', G, E) − #(', G, E)

= #:(0, G, E) − #(0, G, E) +
∫ '

0

(
%C#:(C , G, E) − %C#(C , G, E)

)
3C

for any G ∈ Ω, E ∈ R3, we have����∫
Ω

∫
R3

(
#:(0) − #(0)

) ˚5  3E3G���� ≤ #: − #

,1,1(]0,'[×Ω×R3)

 ˚5 
!∞(Ω×R3)

→ 0

for : →∞ and the proof is complete.

The next step is to show that (1.1.2) still holds if # does not depend on E. This is
done via a cut-off procedure in E. Note that in the following lemma it is essential that
5  is of class !1 ∩ !2

kin locally in time.

Lemma 1.5.3. For  ∈ {1, . . . , #} let 5  ∈
(
!1

lt ∩ !
2
kin,lt ∩ !

∞
lt

) (
�)• ×Ω × R3) , 5 + ∈

!∞lt

(
�+
)•

)
, (�, �) ∈ !@lt

(
�)• ; !2 (R3;R6) ) for some @ > 2, K : !∞lt

(
�+
)•

)
→ !∞lt

(
�−
)•

)
, 6 ∈

!∞lt

(
�−
)•

)
, and ˚5  ∈

(
!1 ∩ !∞

) (
Ω × R3) such that Definition 1.1.1.(ii) is satisfied. Further-

more, let # ∈ �1 (�)• × R3) with supp# ⊂ [0, )•[ × R3 compact.

(i) If supp# ⊂ [0, )•[ ×
(
R3 \ %Ω

)
, we have

0 =
∫ )•

0

∫
Ω

(
%C#

∫
R3
5  3E + %G# ·

∫
R3
Ê 5

 3E

)
3G3C +

∫
Ω

#(0)
∫
R3

˚5  3E3G.

(1.5.8)

(ii) If, additionally to the given assumptions, 5 + ∈ !1
lt

(
�+
)•
, 3�

)
, 6 ∈ !1

lt

(
�−
)•
, 3�

)
, and

K :
(
!1

lt ∩ !
∞
lt

) (
�+
)•
, 3�

)
→

(
!1

lt ∩ !
∞
lt

) (
�−
)•
, 3�

)
, but # need not vanish on %Ω,

then (1.1.2) is still satisfied for #, i.e.,

0 = −
∫ )•

0

∫
Ω

(
%C#

∫
R3
5  3E + %G# ·

∫
R3
Ê 5

 3E

)
3G3C +

∫
�+
)•

5 + # 3�

−
∫
�−
)•

(
K 5


+ + 6

)
# 3� −

∫
Ω

#(0)
∫
R3

˚5  3E3G. (1.5.9)

Proof. The proof works similarly to the proof of [Guo93, Lemma 4.2.]. First, consider
a test function # that may have support on %Ω. Take � ∈ �∞2

(
R3) , 0 ≤ � ≤ 1, � = 1

on �1, supp� ⊂ �2, and let �< B �
( ·
<

)
for < ∈ N. Then, #< ∈ �1 (�)• × R3 × R3) with
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supp#< ⊂ [0, )•[ × R3 × R3 compact, where #<(C , G, E) B #(C , G)�<(E). Therefore,
(1.1.2) holds for #< by Lemma 1.5.2. We can pass to the limit < → ∞ in all terms of
(1.1.2) but the terms including integrals over �±

)•
: Let ' > 0 such that # vanishes for

C ≥ '. First, ����∫ )•

0

∫
Ω

∫
R3
5 %C#< 3E3G3C −

∫ )•

0

∫
Ω

%C#

∫
R3
5  3E3G3C

����
≤

%C#
!∞(�)•×R3)

∫ '

0

∫
Ω

∫
R3

���< − 1
���� 5 �� 3E3G3C → 0

for < → ∞ by dominated convergence since �< → 1 pointwise for < → ∞ and���< − 1
���� 5 �� ≤ �� 5 �� ∈ !1 ([0, '] ×Ω × R3) . Similarly by |Ê | ≤ 1,

lim
<→∞

∫ )•

0

∫
Ω

∫
R3
%G#< · Ê 5  3E3G3C =

∫ )•

0

∫
Ω

%G# ·
∫
R3
Ê 5

 3E3G3C.

Because of

%E#<(C , G, E) =
1
<
#(C , G)∇�

(
E

<

)
and

%E#<(C , G, E) ≠ 0⇒ < ≤ |E | ≤ 2<

for (C , G, E) ∈ �)• × Ω × R3, we get the following estimate, which is again the crucial
one: ����∫ )•

0

∫
Ω

∫
R3
(� + Ê × �) 5  · %E#< 3E3G3C

����
≤

#
!∞(�)•×Ω)

∇�
!∞(�2;R3)

∫ '

0

∫
Ω

(|� | + |� |)
∫
{E∈R3 |<≤|E |≤2<}

1
<

�� 5 �� 3E3G3C
≤ �

(
#, �

)
‖(�, �)‖!2([0,']×Ω;R6)

(∫ '

0

∫
Ω

(∫
{E∈R3 |<≤|E |≤2<}

1
<

�� 5 �� 3E)2

3G3C

) 1
2

≤ �
(
#, �, �, �

) (∫ '

0

∫
Ω

∫
{E∈R3 |<≤|E |≤2<}

4�
3

(
8<3 − <3)
<2

�� 5 ��2 3E 3G3C) 1
2

≤ �
(
#, �, �, �

) (∫ '

0

∫
Ω

∫
{E∈R3 |<≤|E |≤2<}

E0


�� 5 ��2 3E 3G3C) 1
2

→ 0

for< →∞, since the last integral converges to 0 thanks to 5  ∈ !2
kin

(
[0, '] ×Ω × R3) .

As for the term including the initial data, we see that����∫
Ω

∫
R3
#<(0) ˚5  3E3G −

∫
Ω

#(0)
∫
R3

˚5  3E3G
����
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≤
#(0)

!∞(Ω)

∫
Ω

∫
R3

���< − 1
����� ˚5 ��� 3E3G → 0

for < →∞ as well by dominated convergence and ˚5  ∈ !1 (Ω × R3) .
Now if supp# ⊂ [0, )•[ ×

(
R3 \ %Ω

)
, then #< vanishes on %Ω, too, and for #< there

vanish the integrals over �±
)•
appearing in (1.1.2). Hence, (1.5.8) is satisfied.

If the additional assumptions of part 1.5.3.(ii) hold but # need not vanish on %Ω,
we consider the integrals over �±

)•
:�����∫�+

)•

5 + #< 3� −
∫
�+
)•

5 + # 3�

����� ≤ #
!∞(�)•×R3)

∫
�+
'

���< − 1
���� 5 + �� 3� → 0

and similarly �����∫�−
)•

(
K 5


+ + 6

)
#< 3� −

∫
�−
)•

(
K 5


+ + 6

)
# 3�

�����
≤

#
!∞(�)•×R3)

∫
�−
'

���< − 1
�� (��K 5


+
�� + ��6��) 3� → 0

for< →∞ by dominated convergence and 5 + ∈ !1 (�+
'
, 3�

)
,K 5


+ , 6

 ∈ !1 (�−
'
, 3�

)
.

Therefore, we obtain (1.5.9).

In the following, we denote

�int B
#∑
=1

@

∫
R3
5  3E, 9int B

#∑
=1

@

∫
R3
Ê 5

 3E

and extend these functions by zero outside Ω.
Equations (1.5.8) and (1.5.9) reflect the principle of local conservation of internal

charge and imply a global charge balance after an integration.

Corollary 1.5.4. Let the assumptions of Lemma 1.5.3 hold for all  ∈ {1, . . . , #}.

(i) We have

%C�
int + divG 9int = 0

on ]0, )•[ ×Ω in the sense of distributions.

If moreover the additional assumptions of Lemma 1.5.3.(ii) are satisfied for all  ∈ {1, . . . , #},
then:

(ii) It holds that

%C�
int + )%Ω + divG 9int = 0 (1.5.10)
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on ]0, )•[ × R3 in the sense of distributions. Here, the distribution )%Ω describes the
boundary processes via

)%Ω# =
#∑
=1

@

(∫
�+
)•

5 + # 3� −
∫
�−
)•

(
K 5


+ + 6

)
# 3�

)
.

(iii) For almost all C ∈ �)• we have∫
Ω

�int(C , G) 3G =
∫
Ω

�̊int 3G −
#∑
=1

@

(∫
�+C

5 + 3� −
∫
�−C

(
K 5


+ + 6

)
3�

)
,

where

�̊int B
#∑
=1

@

∫
R3

˚5  3E.

Proof. As for parts 1.5.4.(i) and 1.5.4.(ii), simply multiply (1.5.8) and (1.5.9) with @
and sum over . As for part 1.5.4.(iii), take ! ∈ �∞2 (]0, )•[) and let � ∈ �∞2

(
R3) with

� = 1 on Ω. We define

# : �)• × R3 → R, #(C , G) = −�(G)
∫ )•

C

! 3B.

Then, # ∈ �∞
(
�)• × R3) with supp# ⊂ [0, )•[ × R3 compact. Thus, Lemma 1.5.3.(ii)

yields, after summing over ,

0 =
#∑
=1

@

(
−

∫ )•

0

∫
Ω

(
%C#

∫
R3
5  3E + %G# ·

∫
R3
Ê 5

 3E

)
3G3C +

∫
�+
)•

5 + # 3�

−
∫
�−
)•

(
K 5


+ + 6

)
# 3� −

∫
Ω

#(0)
∫
R3

˚5  3E3G
)

= −
∫ )•

0
!

∫
Ω

�int 3G3C +
∫ )•

0
!

∫
Ω

�̊int 3G3B

+
#∑
=1

@

(
−

∫ )•

0

∫
%Ω

∫
{E∈R3 |=(G)·E>0}

5 + (C , G, E)
∫ )•

C

!(B) 3B =(G) · Ê 3E3(G3C

−
∫ )•

0

∫
%Ω

∫
{E∈R3 |=(G)·E<0}

(
K 5


+ + 6

)
(C , G, E)

∫ )•

C

!(B) 3B =(G) · Ê 3E3(G3C
)

= −
∫ )•

0
!

(∫
Ω

�int 3G −
∫
Ω

�̊int 3G

)
3C

+
#∑
=1

@

(
−

∫ )•

0
!(B)

∫ B

0

∫
%Ω

∫
{E∈R3 |=(G)·E>0}

5 + (C , G, E)=(G) · Ê 3E3(G3C3B
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−
∫ )•

0
!(B)

∫ B

0

∫
%Ω

∫
{E∈R3 |=(G)·E<0}

(
K 5


+ + 6

)
(C , G, E)=(G) · Ê 3E3(G3C3B

)
,

from which the assertion follows immediately.

We can finally show the redundancy of the divergence equation divG(��) = � with
the help of Lemma 1.5.3; the redundancy of divG

(
��

)
= 0 has already been proved.

To this end, we have to introduce an external charge density such that the external
charge is locally conserved, which is a natural assumption. Precisely, this means the
following.

Condition 1.5.5. There are �D ∈ !1
loc(�)• × Γ) and �̊D ∈ !1

loc(Γ) such that %C�D +divG D =
0 on ]0, )•[ ×R3 and �D(0) = �̊D on Γ, which is to be understood in the following weak
sense:

0 =
∫ )•

0

∫
R3

(
�D%C# + D · %G#

)
3G3C +

∫
R3
�̊D#(0) 3G

for any # ∈ �∞
(
�)• × R3) with supp# ⊂ [0, )•[ × R3 compact. Here, �D and �̊D are

extended by zero outside Γ.

Theorem 1.5.6. Let Ω ⊂ R3 be a bounded domain such that its boundary %Ω is a �1 ∩
,2,∞-submanifold of R3. Furthermore, we assume that, for all  ∈ {1, . . . , #}, 5  ∈(
!1

lt ∩ !
2
kin,lt ∩ !

∞
lt

) (
�)• ×Ω × R3) , 5 + ∈ !∞lt (

�+
)•

)
, (�, �) ∈ !@lt

(
�)• ; !2 (R3;R6) ) for some

@ > 2, K : !∞lt
(
�+
)•

)
→ !∞lt

(
�−
)•

)
, 6 ∈ !∞lt

(
�−
)•

)
, ˚5  ∈

(
!1 ∩ !∞

) (
Ω × R3) , (

�̊, �̊
)
∈

!2 (R3;R6) , �, � ∈ !∞loc
(
R3;R3×3) with � = � = Id onΩ, and D ∈ !1

loc
(
�)• × Γ;R3) such that

the tuple
( (
5  , 5 +

)
 , �, �, 9

int + D
)
is a weak solution of (VM) on the time interval �)• with

external current D in the sense of Definition 1.1.1. Furthermore, assume that Condition 1.5.5
holds and let initially

divG
(
��̊

)
= 4�

(
�̊int + �̊D

)
on R3 be satisfied in the sense of distributions. Then:

(i) We have

divG(��) = 4�
(
�int + �D

)
on ]0, )•[ ×

(
R3 \ %Ω

)
in the sense of distributions, i.e.,

0 =
∫ )•

0

∫
R3

(
�� · %G! + 4�

(
�int + �D

)
!
)
3G3C

for all ! ∈ �∞2
(
]0, )•[ ×

(
R3 \ %Ω

) )
.
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(ii) If, additionally to the given assumptions, 5 + ∈ !1
lt

(
�+
)•
, 3�

)
, 6 ∈ !1

lt

(
�−
)•
, 3�

)
, and

K :
(
!1

lt ∩ !
∞
lt

) (
�+
)•
, 3�

)
→

(
!1

lt ∩ !
∞
lt

) (
�−
)•
, 3�

)
for all  ∈ {1, . . . , #}, then

divG(��) = 4�
(
�int + �D + (%Ω

)
(1.5.11)

on ]0, )•[ × R3 in the sense of distributions, i.e.,

0 =
∫ )•

0

∫
R3

(
�� · %G! + 4�

(
�int + �D

)
!
)
3G3C + 4�(%Ω!

for all ! ∈ �∞2
(
]0, )•[ × R3) . Here, the distribution (%Ω, whose support satisfies

supp (%Ω ⊂ �)• × %Ω, is given by

(%Ω! =

∫ )•

0

∫
%Ω

!(C , G)
∫ C

0
=(G) ·

(
#∑
=1

@

∫
{E∈R3 |=(G)·E>0}

Ê 5

+ (B, G, E) 3E

+
#∑
=1

@

∫
{E∈R3 |=(G)·E<0}

Ê
(
K 5


+ + 6

)
(B, G, E) 3E

)
3B3(G3C.

Proof. First take ! ∈ �∞2
(
]0, )•[ × R3) arbitrary and define

# : �)• × R3 → R, #(C , G) = −
∫ )•

C

!(B, G) 3B,

' : �)• × R3 → R3 , '(C , G) = −
∫ )•

C

%G!(B, G) 3B,

� : R3 → R, �(G) =
∫ )•

0
!(B, G) 3B.

Clearly, # ∈ �∞
(
�)• × R3) with supp# ⊂ [0, )•[ × R3 compact, ' ∈ Θ)• , and � ∈

�∞2
(
R3) . Because of ' ∈ Θ)• , (1.1.3a) holds, i.e.,
0 =

∫ )•

0

∫
R3

(
�� · %C' − � · curlG ' − 4�

(
9int + D

)
· '

)
3G3C +

∫
R3
��̊ · '(0) 3G

=

∫ )•

0

∫
R3

(
�� · %G! + � ·

∫ )•

C

curlG %G!(B, G) 3B − 4�
(
9int + D

)
· '

)
3G3C

−
∫
R3
��̊ · %G� 3G

=

∫ )•

0

∫
R3

(
�� · %G! − 4�

(
9int + D

)
· '

)
3G3C −

∫
R3
��̊ · %G� 3G. (1.5.12)

By Condition 1.5.5, we have

0 =
∫ )•

0

∫
R3

(
�D%C# + D · %G#

)
3G3C +

∫
R3
�̊D#(0) 3G
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=

∫ )•

0

∫
R3

(
�D! + D · '

)
3G3C −

∫
R3
�̊D� 3G. (1.5.13)

To prove part 1.5.6.(i), assume that ! ∈ �∞2
(
]0, )•[ ×

(
R3 \ %Ω

) )
. Then we have

# ∈ �∞
(
�)• × R3) with supp# ⊂ [0, )•[×

(
R3 \ %Ω

)
compact and Lemma 1.5.3.(i) gives

us, after multiplying with @ and summing over ,

0 =
∫ )•

0

∫
Ω

(
�int%C# + 9int · %G#

)
3G3C +

∫
Ω

�̊int#(0) 3G

=

∫ )•

0

∫
Ω

(
�int! + 9int · '

)
3G3C −

∫
Ω

�̊int� 3G. (1.5.14)

Multiplying (1.5.13) and (1.5.14) with 4� and adding them to (1.5.12) yields∫ )•

0

∫
R3

(
�� · %G! + 4�

(
�int + �D

)
!
)
3G =

∫
R3

(
��̊ · %G� + 4�

(
�̊int + �̊D

)
�
)
3G = 0

by divG
(
��̊

)
= 4�

(
�̊int + �̊D

)
on R3 in the sense of distributions. Hence, divG(��) =

4�
(
�int + �D

)
on ]0, )•[ ×

(
R3 \ %Ω

)
in the sense of distributions.

To prove part 1.5.6.(ii), let the additional assumptions stated there hold. Now the
test function ! ∈ �∞2

(
]0, )•[ × R3) need not vanish on %Ω. We have # ∈ �∞

(
�)• × R3)

with supp# ⊂ [0, )•[ × R3 compact and Lemma 1.5.3.(ii) gives us, after multiplying
with @ and summing over ,

0 =
∫ )•

0

∫
Ω

(
�int%C# + 9int · %G#

)
3G3C − )%Ω# +

∫
Ω

�̊int#(0) 3G

=

∫ )•

0

∫
Ω

(
�int! + 9int · '

)
3G3C − )%Ω# −

∫
Ω

�̊int� 3G. (1.5.15)

We rewrite )%Ω#:

)%Ω# =
#∑
=1

@

(∫
�+
)•

5 + # 3� −
∫
�−
)•

(
K 5


+ + 6

)
# 3�

)
=

#∑
=1

@

(
−

∫ )•

0

∫
%Ω

∫
{E∈R3 |=(G)·E>0}

5 + (C , G, E)
∫ )•

C

!(B, G) 3B =(G) · Ê 3E3(G3C

−
∫ )•

0

∫
%Ω

∫
{E∈R3 |=(G)·E<0}

(
K 5


+ + 6

)
(C , G, E)

∫ )•

C

!(B, G) 3B =(G) · Ê 3E3(G3C
)

=

#∑
=1

@

(
−

∫ )•

0

∫
%Ω

!(B, G)
∫ B

0

∫
{E∈R3 |=(G)·E>0}

5 + (C , G, E)=(G) · Ê 3E3C3(G3B

−
∫ )•

0

∫
%Ω

!(B, G)
∫ B

0

∫
{E∈R3 |=(G)·E<0}

(
K 5


+ + 6

)
(C , G, E)=(G) · Ê 3E3C3(G3B

)
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= −(%Ω!.

Similarly as before, multiplying (1.5.13) and (1.5.15) with 4� and adding them to
(1.5.12) yields ∫ )•

0

∫
R3

(
�� · %G! + 4�

(
�int + �D

)
!
)
3G + 4�(%Ω!

=

∫
R3

(
��̊ · %G� + 4�

(
�̊int + �̊D

)
�
)
3G = 0.

Hence, divG(��) = 4�
(
�int + �D + (%Ω

)
on ]0, )•[ ×R3 in the sense of distributions.

Remark 1.5.7. We discuss some assumptions and give some comments regarding
Theorem 1.5.6 and Corollary 1.5.4:

• Clearly, we see by interpolation that 5  ∈
(
!1
kin,lt ∩ !

∞
lt

) (
�)• ×Ω × R3) implies

5  ∈
(
!1

lt ∩ !
2
kin,lt ∩ !

∞
lt

) (
�)• ×Ω × R3) and that (�, �) ∈ !∞lt

(
�)• ; !2 (R3;R6) ) implies

(�, �) ∈ !@lt
(
�)• ; !2 (R3;R6) ) for any @ > 2. Hence, Theorem 1.5.6.(i) can be applied to

solutions constructed as in Section 1.4; cf. Theorem 1.4.4. However, the boundary
values 5 + constructed there only satisfy 5 + ∈ !1

lt

(
�+
)•
, 3�

)
for  = 1, . . . , #′, i.e., the

particles are subject to partially absorbing boundary conditions, and not necessarily
for  = #′ + 1, . . . , # , i.e., the particles are subject to (partially) purely reflecting
boundary conditions. Therefore, whether the statement of Theorem 1.5.6.(ii) is true
for solutions constructed as in Section 1.4, remains as an open problem, unless
#′ = # , i.e., all particles are subject to partially absorbing boundary conditions.

• Conversely, the assumption 5 + ∈ !1
lt

(
�+
)•
, 3�

)
is necessary for Theorem 1.5.6.(ii)

(and for Lemma 1.5.3.(ii)); otherwise, the integral
∫
�+
)•
5 + # 3� will not exist in

general since # need not vanish on %Ω and does not depend on E.

• The distribution (%Ω can be interpreted as follows: The terms

9out
%Ω (C , G) B

#∑
=1

@

∫
{E∈R3 |=(G)·E>0}

Ê 5

+ (C , G, E) 3E,

9in%Ω(C , G) B
#∑
=1

@

∫
{E∈R3 |=(G)·E<0}

Ê
(
K 5


+ + 6

)
(C , G, E) 3E,

where (C , G) ∈ �)• × %Ω, can be interpreted as the outgoing and incoming boundary
current density. Hence, (%Ω can be rewritten as

(%Ω! =

∫ )•

0

∫
%Ω

!(C , G)
∫ C

0
=(G) ·

(
9out
%Ω (B, G) + 9

in
%Ω(B, G)

)
3B3(G3C.
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Thus, (%Ω makes up the balance of how many particles have left and entered Ω up
to time C. On the other hand, the distribution )%Ω makes up the balance of how
many particles leave and enter Ω at time C via

)%Ω# =

∫ )•

0

∫
%Ω

#(C , G)=(G) ·
(
9out
%Ω (C , G) + 9

in
%Ω(C , G)

)
3(G3C.

We easily see that %C(%Ω = )%Ω on ]0, )•[ × R3 in the sense of distributions, which
corresponds to the fact that)%Ω appears as “a part of %C�” in (1.5.10) and (%Ω appears
as “a part of �” in (1.5.11).

• The global charge balance, see Corollary 1.5.4.(iii), can similarly been written as
follows: ∫

Ω

�int(C , G) 3G =
∫
Ω

�̊int 3G −
∫ C

0

∫
%Ω
= ·

(
9out
%Ω + 9

in
%Ω

)
3(G3B

for almost all C ∈ �)• .

• Asmentioned in the introduction, in a more realistic model � and � should depend
on 5 , �, and � (maybe even nonlocally) and hence implicitly on time. In this
situation, the weak formulation is the same as before, which is stated in Defini-
tion 1.1.1. If we assume �, � ∈ !∞loc

(
�)• × R3;R3×3) (and suitably introduce initial

values for �, �), viewed as explicit functions of C and G, the proofs of Theorem 1.5.6
and the lemmas before are still valid, and Theorem 1.5.6 remains true, as well as
the redundancy of divG

(
��

)
= 0.

• Lastly, we emphasize that all results of this section hold, under the respective
assumptions, for all weak solutions of (VM) in the sense of Definition 1.1.1 and not
only for the solutions constructed as in Section 1.4.



CHAPTER2
Optimal control problem

2.1 A prototype

In a fusion reactor, one of the main goals is to keep the particles away from the bound-
ary of their containerΩ since particles hitting the boundary damage thematerial there
due to the usually very hot temperature of the plasma. Therefore, it is reasonable to
penalize these hits, which, for example, can be achieved by taking some !@-norms of
the 5 + as a part of the objective function that shall be minimized in an optimal control
problem. Moreover, it is natural to consider the external current density D as a tool to
reduce these hits on the reactor wall. For a prototype problem, we consider the case
that all particles are subject to partially absorbing boundary conditions, i.e., # = #′,
and assume 6 = 0.

Apart from driving the amount of hits on the boundary to aminimum, one does not
want too exhaustive control costs so that the fusion reactormay have a good efficiency.
Thus, it is reasonable to add some norm of D to the objective function. Thereby, we
also gain a mathematical advantage since then the objective function is coercive in D,
which means that along a minimizing sequence this D-norm is bounded so that we
can extract a weakly convergent subsequence whose weak limit is a candidate for an
optimal control.
Conversely, as there are no terms including 5 , �, and� in the objective function, we

do not have coercivity in these state variables because of the objective function itself.
But there is still the PDE system (VM) as a constraint. Recalling (1.4.40) to (1.4.45) we
see that these estimates yield uniform boundedness of 5 , �, � (and 9int) in various
norms along aminimizing sequence. Unfortunately, we canonly verify these estimates
for solutions that are constructed as in Section 1.4. For general solutions of (VM) in
the sense of Definition 1.1.1 these estimates may be violated as we do not know a
way to prove these generally. Since in the classical context these estimates are easily
heuristically established by exploiting an energy balance and the measure preserving
nature of the characteristic flow of the Vlasov equation, it is reasonable to restrict
ourselves to solutions that satisfy at least part of, maybe slightly weaker versions of
(1.4.40) to (1.4.45).

75
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To put our hands on the fields, only (1.4.44) is helpful. Considering this estimate
along aminimizing, weakly converging sequence and trying to pass to the limit in this
estimate, we see that the right-hand side, including some norm of D, has to be weakly
continuous. But if we endow the control space with the norm that appears in (1.4.44),
i.e., the !1 ([0, )•]; !2 (Γ;R3) )-norm, this weak continuity will not hold. Consequently,
we consider a control space that is compactly embedded in !1 ([0, )•]; !2 (Γ;R3) ) so that
the right-hand side of (1.4.44) converges even if the controls only converge weakly in
this new smaller control space. This will be made clear in the proof of Theorem 2.2.1.
Altogether, we arrive at the following minimization problem:

min
H∈Y ,D∈U

J
(
H, D

)
,

s.t.
( (
5  , 5 +

)
 , �, �, 9

int + D
)

solves (VM),
(2.1.1) and (2.1.2) hold

 (P)

where the objective function is

J
(
H, D

)
=

1
@

#∑
=1

F

 5 + @
!@

(
�+
)• ,3�

) + 1
A
‖D‖AU

and the additional constraints are

0 ≤ 5  ≤
 ˚5 

!∞(Ω×R3)
a.e.,  = 1, . . . , # , (2.1.1)

#∑
=1

∫ )•

0

∫
Ω

∫
R3
E0
 5

 3E3G3C + �
8�

∫ )•

0

∫
R3

(
|� |2 + |� |2

)
3G3C

≤ 2)•
#∑
=1

∫
Ω

∫
R3
E0

˚5  3E3G + )•�

′

4�

(�̊, �̊)2

!2(R3;R6)
+ 2�)2

• �
−1‖D‖2!2([0,)•]×Γ;R3)

(2.1.2)
C ℐ(D).

Definition and Remark 2.1.1. We explain the formulation of the minimization prob-
lem in detail:

• We consider the optimal control problem on a finite time interval, i.e., )• < ∞.

• We assume that the given functions ˚5 , 0, �̊, �̊, �, and � satisfy the respective
properties of Condition 1.4.1 with #′ = # and that 6 = 0, ˚5  . 0 for all  =

1, . . . , # .

• For ease of notation, we have abbreviated

H =
( (
5  , 5 +

)
 , �, �

)
,
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Y =

(
#?
=1

(
Y

pd × !
@
(
�+)• , 3�

)))
× !2 ([0, )•] × R3;R3)2

,

where 1 < @ < ∞ is fixed and

Y
pd B

{
5 ∈

(
!1
kin ∩ !

∞) (
[0, )•] ×Ω × R3) |

∀� ∈ �∞2
(
]0, )•[ ×Ω × R3) : %C

(
� 5

)
+ Ê · %G

(
� 5

)
∈ !2 ([0, )•] ×Ω;�−1 (R3) ) ,

N
(
5
)
< ∞

}
.

Here and in the following, for a distribution ℎ on ]0, )•[ ×Ω × R3 the property ℎ ∈
!2 ([0, )•] ×Ω;�−1 (R3) ) means that there exist functions 60 ∈ !2 (]0, )•[ ×Ω × R3)
and 61 ∈ !2 (]0, )•[ ×Ω × R3;R3) such that

ℎ = 60 + divE 61 on ]0, )•[ ×Ω × R3 in the sense of distributions. (2.1.3)

The space !2 ([0, )•] ×Ω;�−1 (R3) ) consisting of all such distributions is equipped
with the norm

‖ℎ‖!2([0,)•]×Ω;�−1(R3))

= min
{(60

2
!2(]0,)•[×Ω×R3) +

61
2
!2(]0,)•[×Ω×R3;R3)

) 1
2 | 60 , 61 satisfy (2.1.3)

}
.

Moreover, we denote

N
(
5
)
B sup

%C (� 5 ) + Ê · %G (� 5 )!2([0,)•]×Ω;�−1(R3))

where the supremum is taken over all � ∈ �∞2
(
]0, )•[ ×Ω × R3) satisfying�

�1(]0,)•[×Ω×R3) +
�

!∞([0,)•]×Ω;�1(R3)) = 1. (2.1.4)

The restriction in the definition ofY
pd will not be important until Section 2.4 and is

motivated by Lemma 2.1.2, which is stated below.

• The numbersF > 0 are weights. For example, if we have two sorts of particles, say,
ions and electrons, the weight corresponding to the ions should be larger than the
one corresponding to the electrons since the heavy ions will cause more damage
on the boundary of a fusion reactor if they hit it. Moreover, the weights also serve
as an indicator of which of our two aims should rather be achieved, that is to say,
no hits on the boundary and small control costs. More precisely, the F should be
large if one rather wants no hits on the boundary, and should be small if one rather
wants small control costs.

• The control space is

U =,1,A (]0, )•[ × Γ;R3)
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where 4
3 < A < ∞ is fixed and Γ ⊂ R3 is open and bounded. By Sobolev’s embedding

theorem,U is compactly embedded in !2 (]0, )•[ × Γ;R3) . For this, the boundary of
Γ has to satisfy some regularity condition, for example, the cone condition. From
now on, we shall always assume that %Γ is not “too bad”, that is to say, this compact
embedding holds. We endowU with the norm

‖D‖U B
©«

3∑
9=1

∫ )•

0

∫
Γ

(��D9 ��A + �1
��%CD9 ��A + �2

3∑
8=1

��%G8D9 ��A) 3G3Cª®¬
1
A

,

which is equivalent to the standard,1,A (]0, )•[ × Γ;R3)-norm. Here, �1 , �2 > 0 are
parameters chosen according to howmuch one wants to penalize D itself compared
to its C-and G-derivatives.

• As usual,

9int =

#∑
=1

@

∫
R3
Ê 5

 3E.

• The constraint that (VM)be solved is to beunderstood in the senseofDefinition 1.1.1.

• The pointwise constraint (2.1.1) on 5  is on the one hand natural since any classical
solution of (VM.1) with nonnegative initial datum satisfies this constraint, and, as
we have seen in Theorem 1.4.4, also the weak solutions constructed in Section 1.4
do, and on the other hand necessary for a limit process when proving existence of
a minimizer; see Section 2.2.

• The same applies mutatis mutandis for the energy constraint (2.1.2). Note that
this inequality directly follows from the stronger inequality (1.4.44) (recall that we
consider 6 = 0) after an integration in time and Hölder’s inequality:

#∑
=1

∫ )•

0

∫
Ω

∫
R3
E0
 5

 3E3G3C + �
8�

∫ )•

0

∫
R3

(
|� |2 + |� |2

)
3G3C

≤
∫ )•

0

 #∑
=1

∫
Ω

∫
R3
E0
 5

(·) 3E3G + �
8� ‖(�, �)(·)‖

2
!2(R3;R6)


!∞([0,)])

3)

≤ 2)•

(
#∑
=1

∫
Ω

∫
R3
E0

˚5  3E3G + �′

8�

(�̊, �̊)2

!2(R3;R6)

)
+ 4��−1

∫ )•

0

(∫ )

0
‖D(C)‖!2(Γ;R3) 3C

)2

3)

and ∫ )•

0

(∫ )

0
‖D(C)‖!2(Γ;R3) 3C

)2

3) ≤
∫ )•

0
)

∫ )

0
‖D(C)‖2!2(Γ;R3) 3C3)
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≤ )
2
•
2 ‖D‖

2
!2([0,)•]×Γ;R3).

The main reason whywe impose the weaker inequality (2.1.2) as a constraint is that
no longer !∞-terms or square roots appear, which would cause some trouble with
respect to differentiability.

We proceed with the following lemma, that was already mentioned above.

Lemma 2.1.2. Let 5  ∈ !∞
(
[0, )•] ×Ω × R3) , 5 + ∈ !1

loc

(
�+
)•
, 3�

)
such that Defini-

tion 1.1.1.(ii) is satisfied with �, � ∈ !2 ([0, )•] ×Ω;R3) . Denote � B @(� + Ê × �).
Then, for any � ∈ �∞2

(
]0, )•[ ×Ω × R3) it holds that

%C
(
� 5 

)
+ Ê · %G

(
� 5 

)
= 5 %C� + 5  Ê · %G� + � 5  · %E� − divE

(
�� 5 

)
(2.1.5)

on ]0, )•[ × Ω × R3 in the sense of distributions and the left-hand side is an element of
!2 ([0, )•] ×Ω;�−1 (R3) ) . Furthermore,

N
(
5 

)
≤ 2

 5 
!∞([0,)•]×Ω×R3)

(
1 +
√

2
��@��‖(�, �)‖!2([0,)•]×Ω;R6)

)
. (2.1.6)

Proof. It is easy to see that (2.1.5) holds. There remains to estimate the right-hand
side: 5 %C�!2([0,)•]×Ω×R3) ,

 5  Ê · %G�!2([0,)•]×Ω×R3) ≤
 5 

!∞([0,)•]×Ω×R3)
�

�1(]0,)•[×Ω×R3)

and � 5  · %E�!2([0,)•]×Ω×R3) ,
�� 5 

!2([0,)•]×Ω×R3;R3)

≤ ‖�‖!2([0,)•]×Ω;R3)
 5 

!∞([0,)•]×Ω×R3)
�

!∞([0,)•]×Ω;�1(R3))

implies %C
(
� 5 

)
+ Ê · %G

(
� 5 

)
∈ !2 ([0, )•] ×Ω;�−1 (R3) ) and (2.1.6) because of |� |2 ≤

2
��@��2 (|� |2 + |� |2) .
The next lemma gives an ! 4

3 -estimate on 9int in view of the inequality constraints of
(P) and will be useful later.

Lemma 2.1.3. The constraints (2.1.1) and (2.1.2) yield 9int ∈ ! 4
3
(
[0, )•] ×Ω;R3) with

9int
!

4
3 ([0,)•]×Ω;R3)

≤
(
#∑
=1

��@��4 (4�
3

 ˚5 
!∞(Ω×R3)

+ 1
)4

) 1
4

ℐ(D)
3
4 .

Proof. Similarly to (1.4.31) and (1.4.32), we have∫
R3
5 (C , G, E) 3E ≤

(∫
R3
E0
 5

(C , G, E) 3E
) 3

4
(
4�
3

 5 
!∞([0,)•]×Ω×R3) + 1

)
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≤
(∫
R3
E0
 5

(C , G, E) 3E
) 3

4
(
4�
3

 ˚5 
!∞(Ω×R3)

+ 1
)

(2.1.7)

for almost all (C , G) ∈ [0, )•] ×Ω by (2.1.1), whence(∫ )•

0

∫
Ω

��9int�� 4
3 3G3C

) 3
4

≤
#∑
=1

��@��(∫ )•

0

∫
Ω

����∫
R3
5  3E

���� 4
3

3G3C

) 3
4

≤
(
#∑
=1

��@��4 (4�
3

 ˚5 
!∞(Ω×R3)

+ 1
)4

) 1
4
(
#∑
=1

∫ )•

0

∫
Ω

∫
R3
E0
 5

 3E3G3C

) 3
4

, (2.1.8)

which, together with the constraint (2.1.2), implies the assertion.

2.2 Existence of minimizers
The usual strategy to obtain a minimizer of an optimization problem is to consider
a minimizing sequence. By the structure of the objective function or the constraints,
this sequence is bounded in some norm so that we can extract a weakly converging
subsequence (of course, we have to work in a reflexive space for this). To pass to
the limit in a nonlinear optimization problem, some compactness is needed. As for
passing to the limit in a nonlinear PDE (system), usually the same tools have to be
exploited that were established to be able to pass to the limit in an iteration scheme to
prove existence of solutions to the PDE (system).
This general strategy also applies to our case.

Theorem 2.2.1. There is a (not necessarily unique) minimizer of (P).

Proof. First notice that there are feasible points to (P) by Theorem 1.4.4. Thus, we
may consider a minimizing sequence

((
5 
:
, 5 
:,+

)

, �: , �: , D:

)
of (P). By structure

of J , the sequences
(
5 
:,+

)
are bounded in !@

(
�+
)•
, 3�

)
and the sequence (D:) is

bounded in U . By reflexivity, we may thus assume that these sequences converge
weakly, after possibly extracting suitable subsequences, in the respective spaces to
some 5 + ∈ !@

(
�+
)•
, 3�

)
and D ∈ U ; recall that 1 < @ < ∞.

SinceU is compactly embedded in !2 ([0, )•] × Γ;R3) , we have

‖D‖!2([0,)•]×Γ;R3) = lim
:→∞
‖D: ‖!2([0,)•]×Γ;R3). (2.2.1)

In combination with the constraints (2.1.1) and (2.1.2), this yields that the sequences(
5 
:

)
are bounded in

(
!1
kin ∩ !

∞
) (
[0, )•] ×Ω × R3) and that the sequence ((�: , �:)) is

bounded in !2 ([0, )•] × R3;R6) . The property of ( 5 
:

)
implies the boundedness of

(
5 
:

)
in any !?

(
[0, )•] ×Ω × R3) , 1 ≤ ? ≤ ∞, by interpolation. Therefore, after extracting
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a further subsequence, 5 
:
converges weakly to some 5  in any !?

(
[0, )•] ×Ω × R3) ,

1 < ? ≤ ∞ (weak-* if ? = ∞), and ((�: , �:)) converges weakly to some (�, �) in
!2 ([0, )•] × R3;R6) .
By weak-* convergence in !∞

(
[0, )•] ×Ω × R3) , the constraint (2.1.1) is preserved in

the limit. As for the constraint (2.1.2), let ' > 0. By weak convergence of the 5 
:
, weak

convergence of (�: , �:), (2.1.2) along the minimizing sequence, and (2.2.1), we have

#∑
=1

∫ )•

0

∫
Ω

∫
�'

E0
 5

 3E3G3C + �
8�

∫ )•

0

∫
R3

(
|� |2 + |� |2

)
3G3C

≤ lim inf
:→∞

(
#∑
=1

∫ )•

0

∫
Ω

∫
�'

E0
 5


:
3E3G3C + �

8�

∫ )•

0

∫
R3

(
|�: |2 + |�: |2

)
3G3C

)
≤ 2)•

#∑
=1

∫
Ω

∫
R3
E0

˚5  3E3G + )•�

′

4�

(�̊, �̊)2

!2(R3;R6)
+ 2�)2

• �
−1 lim

:→∞
‖D: ‖2!2([0,)•]×Γ;R3)

= 2)•
#∑
=1

∫
Ω

∫
R3
E0

˚5  3E3G + )•�

′

4�

(�̊, �̊)2

!2(R3;R6)
+ 2�)2

• �
−1‖D‖2!2([0,)•]×Γ;R3) ,

which, after letting ' → ∞, on the one hand yields 5  ∈ !1
kin

(
[0, )•] ×Ω × R3) and

on the other hand implies that the constraint (2.1.2) also holds in the limit. Here we
should point out that (2.2.1) was crucial since we needed

lim inf
:→∞

‖D: ‖!2([0,)•]×Γ;R3) ≤ ‖D‖!2([0,)•]×Γ;R3).

If we had chosen a cost term with the !2 ([0, )•] × Γ;R3)-norm instead of theU-norm
of D in the objective function, we would only have been able to extract a subsequence
(D:) that converges weakly in !2 ([0, )•] × Γ;R3) rendering the above lim inf-estimate
false in general.
The next step is to pass to the limit in the Vlasov–Maxwell system (VM). This is

done in much the same way as in Section 1.4 but we carry out the proof for the sake of
completeness. By Lemma 2.1.3 the internal currents converge weakly, after extracting
a further subsequence, in ! 4

3
(
[0, )•] ×Ω;R3) . The weak limit—call it 9̃int—has to be

the internal current 9int induced by the limit functions 5  because of the following:
Take ' ∈ �∞2

(
]0, )•[ ×Ω;R3) and B > 0. Using weak convergence of 9int

:
and 5 

:
,

respectively, we deduce����∫ )•

0

∫
Ω

(
9int − 9̃int

)
· ' 3G3C

���� =
������� lim:→∞

∬
supp'

(
9int − 9int

:

)
· ' 3G3C

�������
=

������� lim:→∞

∬
supp'

(
#∑
=1

@

∫
R3
Ê 5

 3E −
#∑
=1

@

∫
R3
Ê 5


:
3E

)
· ' 3G3C

�������
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≤ lim sup
:→∞

�������
#∑
=1

@

∬
supp'

∫
�B

Ê
(
5  − 5 

:

)
· ' 3E3G3C

�������
+ lim sup

:→∞

�������
#∑
=1

@

∬
supp'

(∫
|E |≥B

Ê 5
 3E −

∫
|E |≥B

Ê 5

:
3E

)
· ' 3G3C

�������
≤ 0 + lim sup

:→∞

1
B
‖'‖!∞(]0,)•[×Ω;R3)

#∑
=1

��@�� ∬
supp'

(∫
R3
E0
 5

 3E +
∫
R3
E0
 5


:
3E

)
3G3C

≤ �

B
,

where � is finite by virtue of (2.1.2) and the boundedness of (D:) and does not depend
on B. Since B > 0 and ' ∈ �∞2

(
]0, )•[ ×Ω;R3) was arbitrary, we conclude 9int = 9̃int

almost everywhere. Thus, we can pass to the limit in (1.1.2) and (1.1.3) easily in
all terms but the nonlinear one. To handle this remaining term, we again apply
Lemma 1.4.2: Let � ∈ �∞2

(
R3) and B > 0 such that � vanishes for |E | > B − 1. Our goal

is to show that
∫
R3 � 5


:
3E converges strongly (and not only weakly) to

∫
R3 � 5

 3E in
!2([0, )•] ×Ω). To this end, let � ∈ �∞2 (]0, )•[ ×Ω × �B). We have

%C
(
� 5 

:

)
+ Ê · %G

(
� 5 

:

)
= −divE

(
@(�: + Ê × �:)

(
� 5 

:

) )
+ 5 

:
%C� + 5 : Ê · %G� + @ 5


:
(�: + Ê × �:) · %E�

C divE 6:1 + 6
:
0

on R × R3 × R3 in the sense of distributions. Clearly, the !2(R × R × �B)-norms of 6:0
and 6:1 are uniformly bounded in : due to � ∈ �∞2 (]0, )•[ ×Ω × �B) and the already
known uniform boundedness of 5 

:
in !∞ and !2 and �: , �: in !2—the latter being a

consequence of imposing (2.1.1) and (2.1.2)! Thus, applying Lemma 1.4.2 yields the
uniform boundedness of∫

�B

�(E)
(
� 5 

:

)
(·, ·, E) 3E


�

1
4 (R×R3)

=

∫
�B

�(E)
(
� 5 

:

)
(·, ·, E) 3E


�

1
4 (]0,)•[×Ω)

.

Byboundedness of ]0, )•[×Ω,� 1
4 (]0, )•[ ×Ω) is compactly embedded in !2(]0, )•[ ×Ω)

so that the sequence
(∫
�B
�(E)

(
� 5 

:

)
(·, ·, E) 3E

)
converges, after extracting a suitable

subsequence, strongly to
∫
�B
�(E)

(
� 5 

)
(·, ·, E) 3E in !2(]0, )•[ ×Ω). Again by the uni-

form boundedness of the 5 
:
in !2 we can estimate∫

R3
�(E)

( (
1 − �

) (
5 
:
− 5 

) )
(·, ·, E) 3E


!2([0,)•]×Ω)

(2.2.2)
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=

∫
�B

�(E)
( (

1 − �
) (
5 
:
− 5 

) )
(·, ·, E) 3E


!2([0,)•]×Ω)

≤ �
1 − �


!2([0,)•]×Ω×�B )

with a constant � ≥ 0 that does not depend on :. Now let ; ∈ N be arbitrary and
choose � = �; ∈ �∞2 (]0, '∗[ ×Ω × �B) such that the right-hand side of (2.2.2) is smaller
than 1

; ; note that [0, )•] × Ω × �B is bounded. We iteratively choose subsequences(
5 
; ,:

)
:∈N

of
(
5 
:

)
such that

(
5 
;+1,:

)
:∈N

is a subsequence
(
5 
; ,:

)
:∈N

and such that

lim
:→∞

∫
�B

�(E)
(
�; 5


; ,:

)
(·, ·, E) 3E =

∫
�B

�(E)
(
�; 5

 )(·, ·, E) 3E
in !2(]0, )•[ ×Ω) for all ; ∈ N. Considering the diagonal sequence, now again denoted
by

(
5 
:

)
, these considerations imply∫

R3
�(E) 5 

:
(·, ·, E) 3E →

∫
R3
�(E) 5 (·, ·, E) 3E strongly in !2([0, )•] ×Ω) for : →∞

(2.2.3)

because of∫
R3
�(E) 5 

:
(·, ·, E) 3E −

∫
R3
�(E) 5 (·, ·, E) 3E


!2([0,)•]×Ω)

≤ 1
:
+

∫
�B

�(E)
(
�: 5


:

)
(·, ·, E) 3E −

∫
�B

�(E)
(
�: 5

 )(·, ·, E) 3E
!2([0,)•]×Ω)

.

Finally take # ∈ Ψ)• and consider the limit of the crucial product term in (1.1.2). By
a density argument (as in Section 1.4) we may assume that # factorizes, i.e.,

#(C , G, E) = #1(C , G)#2(E).
We have

lim
:→∞

∫ )•

0

∫
Ω

∫
R3
�: ·

(
%E#

)
5 
:
3E3G3C = lim

:→∞

∫ )•

0

∫
Ω

�:#1 ·
(∫
R3
5 
:
∇#2 3E

)
3G3C

=

∫ )•

0

∫
Ω

�#1 ·
(∫
R3
5 ∇#2 3E

)
3G3C =

∫ )•

0

∫
Ω

∫
R3
� ·

(
%E#

)
5  3E3G3C

by #1 ∈ !∞([0, )•] ×Ω), �: ⇀ � weakly in !2 ([0, )•] ×Ω;R3) , and (2.2.3) defining
� B

(
∇#2

)
8
, 8 = 1, 2, 3. Similarly, we obtain

lim
:→∞

∫ )•

0

∫
Ω

∫
R3
(̂E × �:) ·

(
%E#

)
5 
:
3E3G3C =

∫ )•

0

∫
Ω

∫
R3
(̂E × �) ·

(
%E#

)
5  3E3G3C.

Altogether, (VM) is satisfied in the limit.
By Lemma 2.1.2, we even have 5  ∈ Y

pd and thus H =
( (
5  , 5 +

)
 , �, �

)
∈ Y

altogether.
Finally, the objective function indeed attains its minimum at

(
H, D

)
by weak lower

semicontinuity of any norm.
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2.3 Weak formulation—revisited
For later reasons, it is convenient to revisit the weak formulation of Definition 1.1.1
and write the equations there as an identity

�
( (
5  , 5 +

)
 , �, �, 9

)
= 0

in the dual space of some reflexive space. Throughout this section, we fix 1 < ? < 2,
2 < @, @̃ < ∞ such that

1
?
+ 1
@
= 1 = 1

@
+ 1
@̃
+ 1

2 . (2.3.1)

We will restrict ourselves to a finite time interval, i.e., )• < ∞, and assume 5  ∈
!@

(
[0, )•] ×Ω × R3) , 5 + ∈ !@ (�+)• , 3�) , �, � ∈ !2 ([0, )•] × R3;R3) , and 9 = 9int + D

where 9int =
∑#

=1 @
∫
R3 Ê 5

 3E ∈ ! 4
3
(
[0, )•] ×Ω;R3) , D ∈ !2 ([0, )•] × Γ;R3) . Note

that for such D there is a weak solution in the sense of Definition 1.1.1 with these
properties due to Theorem 1.4.4. To work in the most general setting, the 6 do
not have to vanish for  = 1, . . . , #′ although they are assumed to be zero in the
formulation of (P).
Clearly, Definition 1.1.1.(ii) and 1.1.1.(iii) are equivalent to

0 =
#∑
=1

(
−

∫ )•

0

∫
Ω

∫
R3

(
%C#

 + Ê · %G# + @(� + Ê × �) · %E# ) 5  3E3G3C
+

∫
�+
)•

5 + #
 3� −

∫
�−
)•

(
K 5


+ + 6

)
# 3� −

∫
Ω

∫
R3

˚5 #(0) 3E3G
)

+
∫ )•

0

∫
R3

(
�� · %C'4 − � · curlG '4 − 4�9 · '4

)
3G3C +

∫
R3
��̊ · '4(0) 3G

+
∫ )•

0

∫
R3

(
�� · %C'ℎ + � · curlG 'ℎ

)
3G3C +

∫
R3
��̊ · 'ℎ(0) 3G

C �
( (
5  , 5 +

)
 , �, �, 9

) ( (
# )

 , '
4 , 'ℎ

)
(2.3.2)

for all
(
#

)
 ∈ Ψ#

)•
and '4 , 'ℎ ∈ Θ)• .

2.3.1 Some estimates
Fromnowon,

( (
5  , 5 +

)
 , �, �, 9

)
does not have to be a solution of (VM). All assertions

are made under the assumptions mentioned above.
In the following we will estimate each summand, one by one, where we often need

(2.3.1). Furthermore, � denotes various positive, finite constants that only depend on
)•, Ω, and Γ and that may change from line to line. We have����∫ )•

0

∫
Ω

∫
R3
%C#

 5  3E3G3C

����
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≤
√
)•�(Ω)

∫
R3

(∫ )•

0

∫
Ω

�� 5 ��@ 3G3C) 1
@
(∫ )•

0

∫
Ω

��%C#
��@̃ 3G3C) 1

@̃

3E

≤ �
 5 

!@ ([0,)•]×Ω×R3)
©«
∫
R3

(∫ )•

0

∫
Ω

��%C#
��@̃ 3G3C) ?

@̃

3E
ª®¬

1
?

;

next ����∫ )•

0

∫
Ω

∫
R3
Ê · %G# 5  3E3G3C

����
≤

√
)•�(Ω)

∫
R3

(∫ )•

0

∫
Ω

�� 5 ��@ 3G3C) 1
@
(∫ )•

0

∫
Ω

��%G#
��@̃ 3G3C) 1

@̃

3E

≤ �
 5 

!@ ([0,)•]×Ω×R3)
©«
∫
R3

(∫ )•

0

∫
Ω

��%G#
��@̃ 3G3C) ?

@̃

3E
ª®¬

1
?

;

then,����∫ )•

0

∫
Ω

∫
R3
@(� + Ê × �) · %E# 5  3E3G3C

����
≤

��@�� ∫
R3

(∫ )•

0

∫
Ω

�� 5 ��@ 3G3C) 1
@
(∫ )•

0

∫
Ω

|� + Ê × � |2 3G3C
) 1

2

·
(∫ )•

0

∫
Ω

��%E#
��@̃ 3G3C) 1

@̃

3E

≤
√

2
��@�� 5 !@ ([0,)•]×Ω×R3)‖(�, �)‖!2([0,)•]×Ω;R6)

©«
∫
R3

(∫ )•

0

∫
Ω

��%E#
��@̃ 3G3C) ?

@̃

3E
ª®¬

1
?

.

Now have in mind that there is a bounded trace operator

,1,@̃(]0, )•[ ×Ω) → !@̃((]0, )•[ × %Ω) ∪ ({0} ×Ω) ∪ ({)•} ×Ω)).

Thus,�����∫�+
)•

5 + #
 3�

����� ≤ ∫
R3

∫ )•

0

∫
{G∈%Ω|Ê ·=(G)>0}

�� 5 + #
��|Ê · = | 3(G3C3E

≤ �
∫
R3

©«
∫ )•

0

∫
{G∈%Ω|Ê ·=(G)>0}

�� 5 + ��@ |Ê · = |@ 3(G3Cª®®¬
1
@ (∫ )•

0

∫
%Ω

��#
��@̃ 3(G3C) 1

@̃

3E



86 2 Optimal control problem

≤ �
∫
R3

©«
∫ )•

0

∫
{G∈%Ω|Ê ·=(G)>0}

�� 5 + ��@ |Ê · = | 3(G3Cª®®¬
1
@

·
(∫ )•

0

∫
Ω

(��#
��@̃ + ��%C#

��@̃ + ��%G#
��@̃) 3G3C) 1

@̃

3E

≤ �
 5 + 

!@
(
�+
)• ,3�

)©«
∫
R3

(∫ )•

0

∫
Ω

(��#
��@̃ + ��%C#

��@̃ + ��%G#
��@̃) 3G3C) ?

@̃

3E
ª®¬

1
?

by |Ê · = | ≤ 1. Similarly,�����∫�−
)•

6# 3�

�����
≤ �

6
!@

(
�−
)• ,3�

)©«
∫
R3

(∫ )•

0

∫
Ω

(��#
��@̃ + ��%C#

��@̃ + ��%G#
��@̃) 3G3C) ?

@̃

3E
ª®¬

1
?

and �����∫�−
)•

(
K 5


+
)
# 3�

����� =
�����∫�−

)•

0
(
 5 +

)
# 3�

�����
≤ �

 5 + 
!@

(
�+
)• ,3�

)©«
∫
R3

(∫ )•

0

∫
Ω

(��#
��@̃ + ��%C#

��@̃ + ��%G#
��@̃) 3G3C) ?

@̃

3E
ª®¬

1
?

since |0 | ≤ 1 and E ↦→ E − 2(E · =(G))=(G) has Jacobian determinant −1. Analogously,����∫
Ω

∫
R3

˚5 #(0) 3E3G
����

≤ �
 ˚5 

!@ (Ω×R3)
©«
∫
R3

(∫ )•

0

∫
Ω

(��#
��@̃ + ��%C#

��@̃ + ��%G#
��@̃) 3G3C) ?

@̃

3E
ª®¬

1
?

making use of the boundedness of the trace operator, now regarding the slice {0} ×Ω
instead of ]0, )•[ × %Ω.
As for the Maxwell part, we can easily estimate����∫ )•

0

∫
R3
�� · %C'4 3G3C

���� ≤ �′‖�‖!2([0,)•]×R3;R3)‖%C'4 ‖!2([0,)•]×R3;R3) ,����∫ )•

0

∫
R3
� · curlG '4 3G3C

���� ≤ ‖�‖!2([0,)•]×R3;R3)‖curlG '4 ‖!2([0,)•]×R3;R3) ,
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����∫ )•

0

∫
R3
�� · %C'ℎ 3G3C

���� ≤ �′‖�‖!2([0,)•]×R3;R3)
%C'ℎ!2([0,)•]×R3;R3) ,����∫ )•

0

∫
R3
� · curlG 'ℎ 3G3C

���� ≤ ‖�‖!2([0,)•]×R3;R3)
curlG 'ℎ


!2([0,)•]×R3;R3).

Concerning the terms with the initial data, we first notice that for all G ∈ R3 we have

'4(0, G) = '4(0, G) − '4()• , G) = −
∫ )•

0
%C'

4(C , G) 3C;

consequently

|'4(0, G)|2 ≤ )•
∫ )•

0
|%C'4(C , G)|2 3C,

and therefore ����∫
R3
��̊ · '4(0) 3G

���� ≤ �′�
�̊

!2(R3;R3)
‖%C'4 ‖!2([0,)•]×R3;R3).

Similarly, we conclude����∫
R3
��̊ · 'ℎ(0) 3G

���� ≤ �′�
�̊

!2(R3;R3)

%C'ℎ!2([0,)•]×R3;R3).

Lastly, we turn to the term with 9. By Sobolev’s embedding theorem, �1(]0, )•[ × �)
is continuously embedded in !4(]0, )•[ × �), � = Ω, Γ, yielding����∫ )•

0

∫
R3
9 · '4 3G3C

���� ≤ ����∫ )•

0

∫
Ω

9int · '4 3G3C
���� + ����∫ )•

0

∫
Γ

D · '4 3G3C
����

≤
9int

!
4
3 ([0,)•]×Ω;R3)

‖'4 ‖!4([0,)•]×Ω;R3) + ‖D‖!2([0,)•]×Γ;R3)‖'4 ‖!2([0,)•]×Γ;R3)

≤ �
(9int

!
4
3 ([0,)•]×Ω;R3)

+ ‖D‖!2([0,)•]×Γ;R3)

)
‖'4 ‖�1(]0,)•[×R3;R3).

Altogether, we conclude that �
( (
5  , 5 +

)
 , �, �, 9

)
is a bounded linear operator on

Ψ#
)•
× Θ2

)•
if we equipΨ)• with the norm

#
,1,?,@̃ B

©«
∫
R3

(∫ )•

0

∫
Ω

(��#��@̃ + ��%C#��@̃ + ��%G#��@̃ + ��%E#��@̃) 3G3C) ?

@̃

3E
ª®¬

1
?

(2.3.3)

and Θ)• with the usual �1-norm on ]0, )•[ × R3.
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2.3.2 The space,1,?,@̃ and the extended functional
The choice of the norm for the test functions # suggests having a detailed look at the
space,1,?,@̃ . This space, so to say a mixed order Sobolev space, is defined to be the
space consisting of all measurable functions on ]0, )•[ ×Ω ×R3 with values in R such
that their derivatives of first order are locally integrable functions and additionally
the right-hand side of (2.3.3) is finite.
We first consider the corresponding !?,@̃-space, that is,

!?,@̃ B

# : ]0, )•[ ×Ω × R3 → Rmeasurable |

#
!?,@̃

B
©«
∫
R3

(∫ )•

0

∫
Ω

��#��@̃ 3G3C) ?

@̃

3E
ª®¬

1
?

< ∞

.
Since we can identify !?,@̃ with the Bochner space !?

(
R3; !@̃([0, )•] ×Ω)

)
, we get the

following basic property.

Lemma 2.3.1. !?,@̃ is a uniformly convex Banach space.

Proof. This is easy to see using the identification above. The uniform convexity follows
from a classical result of Day [Day41] since 1 < ?, @̃ < ∞.

The uniform convexity will be crucial later.
These properties of !?,@̃ carry over to,1,?,@̃ in the same natural way as such prop-

erties carry over from standard !?-spaces to standard Sobolev spaces,1,? : The space
,1,?,@̃ can be interpreted as a closed subspace of

(
!?,@̃

)7 via the isometry

# ↦→
(
#, %C#, %G1#, %G2#, %G3#, %E1#, %E2#, %E3#

)
.

Hence, one can argue in the sameway as in the standard context to prove the following
lemma.

Lemma 2.3.2. ,1,?,@̃ is a uniformly convex, reflexive Banach space.

Proof. Note that uniform convexity and completeness implies reflexivity by the clas-
sical Milman–Pettis theorem; see, for example, [Pet39].

Now we turn back to our weak formulation. Recall that we have proved

�
( (
5  , 5 +

)
 , �, �, 9

)
∈

(
Ψ#
)•
× Θ2

)•

)∗
.

If we denote Λ B Ψ)•
# × Θ)•

2
, where the closure is to be understood in ,1,?,@̃

and �1 (]0, )•[ × R3;R3) , respectively, we can extend �
( (
5  , 5 +

)
 , �, �, 9

)
uniquely
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to a bounded linear operator on Λ and still the formula in (2.3.2) applies. Since
�1 (]0, )•[ × R3;R3) is also a uniformly convex, reflexive Banach space and since Λ is
a closed subspace, we instantly conclude the following.

Lemma 2.3.3. Λ, equipped with the norm

((# )
 , '

4 , 'ℎ
)
Λ
B

(
#∑
=1

#
2
,1,?,@̃ + ‖'4 ‖2�1(]0,)•[×R3;R3) +

'ℎ2
�1(]0,)•[×R3;R3)

) 1
2

,

is a uniformly convex, reflexive Banach space.

Proof. By Clarkson [Cla36], a finite Cartesian product of uniformly convex spaces is
again uniformly convex if one sums up the norms properly. Note that we have chosen
the 2-norm on R#+2 to sum up the particular norms (any other ?̃-norm, 1 < ?̃ < ∞,
would work as well). Thus, Λ is uniformly convex. Again by completeness of Λ and
the Milman–Pettis theorem, we conclude that Λ is additionally reflexive.

Thus, we can regard �
( (
5  , 5 +

)
 , �, �, 9

)
∈ Λ∗ as an element of the dual space of

a uniformly convex, reflexive Banach space, and we have that, under the assump-
tions made in the beginning of Section 2.3, �

( (
5  , 5 +

)
 , �, �, 9

)
= 0 is equivalent to( (

5  , 5 +
)
 , �, �, 9

)
being a weak solution of the Vlasov–Maxwell system (VM) on the

time interval [0, )•].
Notice thatΛ is aproper subspace of

(
,1,?,@̃ )#×(�1 (]0, )•[ × R3;R3) )2 since# ∈ Ψ)•

and ' ∈ Θ)• vanish for C = )•.
Later, in Section 2.4, we want to derive first order optimality conditions for a (local)

minimizer of (P). To this end, it will be helpful that� (G, to bemore precise; see below)
is differentiable in

( (
5  , 5 +

)
 , �, �, D

)
with respect to a suitable norm; here and in

the following, differentiability always means differentiability in the sense of Fréchet.
As in the formulation of (P), we restrict ourselves to

( (
5  , 5 +

)
 , �, �, D

)
∈ Y × U .

Note that this yields 5  ∈ !@
(
[0, )•] ×Ω × R3) by interpolation and thus we can carry

through the previous considerations of this section. We equipY ×U with the norm(H, D)Y×U =
( ( 5  , 5 + )

 , �, �, D
)
Y×U

B
#∑
=1

( 5 Y
pd
+

 5 + 
!@

(
�+
)• ,3�

) ) + ‖(�, �)‖!2([0,)•]×R3;R6) + ‖D‖U ,

where  5 Y
pd
B

 5 
!1
kin([0,)•]×Ω×R3) +

 5 
!∞([0,)•]×Ω×R3) +N

(
5
)
.

The latter indeed is a norm on Y
pd since N is a seminorm on Y

pd, as is easily seen.
Note that the following lemma does not need the adding of N as above; however,
this will heavily be exploited in Section 2.4.
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Lemma 2.3.4. The map

G : Y ×U → Λ∗ ,

G
( (
5  , 5 +

)
 , �, �, D

)
= �

( (
5  , 5 +

)
 , �, �, 9

int + D
)

is differentiable, and we have(
G′

(
H, D

) (
�H, �D

) ) ( (
# )

 , '
4 , 'ℎ

)
=

#∑
=1

(
−

∫ )•

0

∫
Ω

∫
R3

( (
%C#

 + Ê · %G# + @(� + Ê × �) · %E# )� 5 
+@(�� + Ê × ��) 5  · %E# ) 3E3G3C

+
∫
�+
)•

� 5 + #
 3� −

∫
�−
)•

(
K� 5


+
)
# 3�

)
+

∫ )•

0

∫
R3

(
��� · %C'4 − �� · curlG '4 − 4�

(
� 9int + �D

)
· '4

)
3G3C

+
∫ )•

0

∫
R3

(
��� · %C'ℎ + �� · curlG 'ℎ

)
3G3C, (2.3.4)

where, in accordance with the previous notation,

� 9int =

#∑
=1

@

∫
R3
Ê� 5

 3E.

Proof. The candidate for the linearization at a point
(
H, D

)
in direction

(
�H, �D

)
=( (

� 5  , � 5 +
)
 , ��, ��, �D

)
is G′

(
H, D

) (
�H, �D

)
as stated above. Recalling the estimates

of Section 2.3.1, we see that G′
(
H, D

) (
�H, �D

)
∈ Λ∗ andG′ (H, D) (�H, �D)

Λ∗

≤ �
(
#∑
=1

(� 5 
!@ ([0,)•]×Ω×R3) + ‖(�, �)‖!2([0,)•]×R3;R6)

� 5 
!@ ([0,)•]×Ω×R3)

+
 5 

!@ ([0,)•]×Ω×R3)‖(��, ��)‖!2([0,)•]×R3;R6) +
� 5 + 

!@
(
�+
)• ,3�

) )
+ ‖(��, ��)‖!2([0,)•]×R3;R6) +

� 9int
!

4
3 ([0,)•]×Ω;R3)

+ ‖�D‖!2([0,)•]×Γ;R3)

)
, (2.3.5)

where � only depends on )•, Ω, Γ, �′, and the @.
Similarly to (2.1.7) and (2.1.8), we deduce� 9int

!
4
3 ([0,)•]×Ω;R3)
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≤
(
#∑
=1

��@��4 (4�
3

� 5 
!∞([0,)•]×Ω×R3) + 1

)4
) 1

4
(
#∑
=1

� 5 
!1
kin([0,)•]×Ω×R3)

) 3
4

.

This and (2.3.5) yields that G′
(
H, D

) (
�H, �D

)
→ 0 in Λ∗ when

(
�H, �D

)
→ 0 in Y ×U .

Therefore, G′
(
H, D

)
: Y ×U → Λ∗ is a bounded linear map; linearity is of course easy

to see.
To show that G′

(
H, D

)
indeed is the derivative of G at

(
H, D

)
, we consider the

remainder, which only contains terms that come from the nonlinearity in the Vlasov–
Maxwell system:(

G
(
H + �H, D + �D

)
− G

(
H, D

)
− G′

(
H, D

) (
�H, �D

) ) ( (
# )

 , '
4 , 'ℎ

)
= −

#∑
=1

@

∫ )•

0

∫
Ω

∫
R3
(�� + Ê × ��) · %E#� 5  3E3G3C.

Hence, again using the corresponding estimate of Section 2.3.1,G (
H + �H, D + �D

)
− G

(
H, D

)
− G′

(
H, D

) (
�H, �D

)
Λ∗

≤ �
#∑
=1

� 5 
!@ ([0,)•]×Ω×R3)‖(��, ��)‖!2([0,)•]×Ω;R6) = >

((�H, �D)Y×U )
for

(
�H, �D

)
→ 0 in Y ×U , where � only depends on �′ and the @. This completes

the proof.

2.4 First order optimality conditions
A standard step when treating an optimization problem is to derive first order neces-
sary optimality conditions. Typically, one exploits differentiability of the control-to-
state operator. Unfortunately, we do not have such an operator at hand since we do
not even have uniqueness of weak solutions for a fixed control D. Lions [Lio85] intro-
duced a way to tackle optimization problems having a PDE (system), that (possibly)
admits multiple solutions, as a constraint. The main strategy is to consider approxi-
mate optimization problems that no longer have the PDE (system) as a constraint but
merely penalize points

(
H, D

)
that do not solve this PDE (system). For such approxi-

mate problems, one can show that minimizers exist and derive first order optimality
conditions. Then the penalization parameter is driven to ∞, and one hopes the PDE
(system) to be solved in the limit, that is to say, the limit of minimizers (in whatever
sense) is a solution of the PDE (system), andmoreover it is a minimizer of the original
problem. Furthermore, one may show that passage to the limit in the approximate
optimality conditions, in particular in the adjoint PDE (system), is possible, too.
We fix @ > 2 and ?, @̃ satisfying (2.3.1) so that the results of Section 2.3 can be

applied.
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2.4.1 An approximate optimization problem
Following the outlined strategy, we introduce a penalization parameter B > 0 (which
will be driven to∞ later) and consider the approximate problem

min
H∈Y ,D∈U

JB
(
H, D

)
,

s.t. (2.1.1), (2.1.2), and (2.4.1) hold

}
(Ps)

where the objective function is

JB
(
H, D

)
= J

(
H, D

)
+ B2

G (
H, D

)2
Λ∗

=
1
@

#∑
=1

F

 5 + @
!@

(
�+
)• ,3�

) + 1
A
‖D‖AU +

B

2
G (

H, D
)2
Λ∗

and the additional constraint is

N
(
5 

)
≤ ℒ ,  = 1, . . . , #. (2.4.1)

Here,

ℒ B 2
 ˚5 

!∞(Ω×R3)
©«1 +

4
��@��√�√

�

·
(
2)•

#∑
′=1

∫
Ω

∫
R3
E0
 5̊

′ 3E3G + )•�
′

4�

(�̊, �̊)2

!2(R3;R6)
+ 2�)2

• �
−1�2

Γ
(AminJ)

2
A

) 1
2 ª®¬

whereminJ B J
(
H∗ , D∗

)
,
(
H∗ , D∗

)
being someminimizer of (P), and�Γ is the (optimal)

constant corresponding to the continuous embedding U ⊂ !2 ([0, )•] × Γ;R3) . On
the one hand, (2.4.1) is automatically satisfied for any minimizer

(
H∗ , D∗

)
of (P)—in

particular, there are feasible points for (Ps)—which can be verified as follows: Due to
(2.1.2) it holds that

‖(�∗ , �∗)‖!2([0,)•]×R3;R6) ≤
√

8�
�
ℐ(D∗)

≤
√

8�
�

(
2)•

#∑
=1

∫
Ω

∫
R3
E0

˚5  3E3G + )•�

′

4�

(�̊, �̊)2

!2(R3;R6)
+ 2�)2

• �
−1�2

Γ
‖D∗‖2U

) 1
2

≤
√

8�
�

(
2)•

#∑
=1

∫
Ω

∫
R3
E0

˚5  3E3G + )•�

′

4�

(�̊, �̊)2

!2(R3;R6)
+ 2�)2

• �
−1�2

Γ
(AminJ)

2
A

) 1
2

,

which yields (2.4.1) in view of (2.1.1) and (2.1.6).
On the other hand, (2.4.1) ensures a certain weak lower semicontinuity of ‖G‖Λ∗ by

the following lemma—and this is conversely the very reason why we impose (2.4.1).
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Lemma 2.4.1. Let
( (
H: , D:

) )
⊂ Y × U with 5 

:
≥ 0 and limit functions D ∈ U , 5  ∈

!∞
(
[0, )•] ×Ω × R3) , 5 + ∈ !@ (�+)• , 3�) , (�, �) ∈ !2 ([0, )•] ×Ω;R6) such that for : →

∞ it holds that D: ⇀ D inU , 5 
:

∗
⇀ 5  in !∞

(
[0, )•] ×Ω × R3) , 5 

:,+ ⇀ 5 + in !@
(
�+
)•
, 3�

)
,

(�: , �:) ⇀ (�, �) in !2 ([0, )•] ×Ω;R6) . Furthermore, assume that (2.1.2) and (2.4.1) are
satisfied along the sequence. Then,

(
H, D

)
∈ Y ×U , (2.1.2) and (2.4.1) are preserved in the

limit, and G (
H, D

)
Λ∗ ≤ lim inf

:→∞

G (
H: , D:

)
Λ∗ . (2.4.2)

Proof. Note that (D:) converges to D strongly in !2 ([0, )•] × Γ;R3) .
Step 1. 5  ∈ Y

pd and (2.1.2) and (2.4.1) are preserved in the limit: Take � ∈
�∞2

(
]0, )•[ ×Ω × R3) and consider

6: B %C
(
� 5 

:

)
+ Ê · %G

(
� 5 

:

)
.

In light of (2.4.1), the sequence
(
6:

)
is bounded in !2 ([0, )•] ×Ω;�−1 (R3) ) . Therefore,(

6:
)
converges, after possibly extracting a suitable subsequence, to some 6 weak-* in

!2 ([0, )•] ×Ω;�−1 (R3) ) . Since for all ! ∈ �∞2 (
]0, )•[ ×Ω × R3)

6
(
!
)
= lim

:→∞

(
%C

(
� 5 

:

)
+ Ê · %G

(
� 5 

:

) ) (
!
)

= lim
:→∞
−

∫ )•

0

∫
Ω

∫
R3

(
� 5 

:
%C! + Ê� 5 : · %G!

)
3E3G3C

= −
∫ )•

0

∫
Ω

∫
R3

(
� 5 %C! + Ê� 5  · %G!

)
3E3G3C =

(
%C

(
� 5 

)
+ Ê · %G

(
� 5 

) ) (
!
)

and since �∞2
(
]0, )•[ ×Ω × R3) is dense in !2 ([0, )•] ×Ω;�1 (R3) ) , we have

%C
(
� 5 

)
+ Ê · %G

(
� 5 

)
= 6 ∈ !2 ([0, )•] ×Ω;�−1 (R3) ) .

Furthermore, by weak-*-convergence it holds that%C (� 5  ) + Ê · %G (� 5  )!2([0,)•]×Ω;�−1(R3))

≤ lim inf
:→∞

%C (� 5 : )
+ Ê · %G

(
� 5 

:

)
!2([0,)•]×Ω;�−1(R3)) ≤ ℒ

if � satisfies (2.1.4). Thus, (2.4.1) is preserved in the limit. Moreover, as in the proof of
Theorem 2.2.1, we also see that 5  ∈

(
!1
kin ∩ !

∞
) (
[0, )•] ×Ω × R3) and that (2.1.2) is

preserved in the limit. Altogether,
(
H, D

)
∈ Y ×U .

Step 2. Proof of (2.4.2): To this end, we have to pass to the limit in the right-hand
sides of (1.1.2) and (1.1.3); this procedure has already been carried out a few times
in similar, yet not identical situations. As a consequence of Lemma 2.1.3, we may
assume that

(
9int
:

)
converges weakly to 9int in ! 4

3
(
[0, )•] ×Ω;R3) ; in order to verify that
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this weak limit indeed is 9int, we recall that an energy estimate like (2.1.2) is sufficient.
Hence, we can easily pass to the limit in all terms but the nonlinear one, first for( (
#

)
 , '

4 , 'ℎ
)
∈ Ψ#

)•
×Θ2

)•
and then for arbitrary

( (
#

)
 , '

4 , 'ℎ
)
∈ Λwith the help of

Section 2.3.1. Regarding the nonlinear term, we first consider# ∈ Ψ)• that factorizes,
as in Section 1.4. For some ; ∈ N and � ∈ �∞2

(
R3) with supp � ⊂ �' (for some ' > 0),

we find an �; ∈ �∞2 (]0, )•[ ×Ω × �'), similarly to (1.4.17), such that∫
R3
�(E)

( (
1 − �;

) (
5 
:
− 5 

) )
(·, ·, E) 3E


!2([0,)•]×Ω)

<
1
;
; (2.4.3)

note that the !2-norms of the 5 
:
are uniformly bounded. For this fixed �; it holds that%C (�; 5 : )

+ Ê · %G
(
�; 5


:

)
!2(R×R3;�−1(R3)) =

%C (�; 5 : )
+ Ê · %G

(
�; 5


:

)
!2([0,)•]×Ω;�−1(R3))

≤ N
(
5 
:

) (�;�1(]0,)•[×Ω×R3) +
�;!∞([0,)•]×Ω;�1(R3))

)
.

By virtue of (2.4.1), the right-hand side is uniformly bounded in :, whence we have
for a subsequence possibly depending on ;,∫

R3
�(E)

(
�; 5


: 9

)
(·, ·, E) 3E

9→∞
−→

∫
R3
�(E)

(
�; 5

 )(·, ·, E) 3E
in !2([0, )•] ×Ω) due to Lemma 1.4.2. Assuming that all # ∈ Ψ)• factorize, i.e.,
#(C , G, E) = #

1 (C , G)#

2 (E), and using (2.4.3), we may now pass to the limit in all

terms along a common subsequence, that is,

G
(
H, D

) ( (
# )

 , '
4 , 'ℎ

)
= lim

9→∞
G

(
H: 9 , D: 9

) ( (
# )

 , '
4 , 'ℎ

)
,

via the same diagonal sequence argument as in Section 1.4.2 or the proof of Theo-
rem 2.2.1. Since the limit on the left-hand side does not depend on the extraction of
this subsequence, we conclude that the equality above even holds for the full limit
: →∞ by using the standard subsubsequence argument. Thus,���G (

H, D
) ( (

# )
 , '

4 , 'ℎ
)��� ≤ lim inf

:→∞

G (
H: , D:

)
Λ∗

((# )
 , '

4 , 'ℎ
)
Λ
.

This inequality then also holds for general
( (
#

)
 , '

4 , 'ℎ
)
∈ Λ by a density argument;

see Section 1.4 and the definition of Λ. Altogether, (2.4.2) is proved.

Remark 2.4.2. It is important to understand the necessity of (2.4.1) for Lemma 2.4.1
and for later treating (Ps): In the proof of Theorem 2.2.1, we applied the momentum
averaging lemma 1.4.2 to a sequence where any 5 

:
already solves a Vlasov equation in

the sense of distributions, that is,

%C 5

:
+ Ê · %G 5 : = −divE

(
�: 5


:

)
,
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which gave us a direct estimate on the !2 ([0, )•] ×Ω;�−1 (R3) )-norm of some � 5 
:
by

the corresponding a priori !?-bounds on �: and 5 
:
. However, the 5  of some

(
H, D

)
that is feasible for (Ps) do not necessarily solve a Vlasov equation as above. Thus,
suitable estimates on the !2 ([0, )•] ×Ω;�−1 (R3) )-norm along some sequence cannot
be obtained without imposing them a priori, that is, imposing (2.4.1). Without this,
we would not be able to pass to the limit as in the proof above, and the important
weak lower semicontinuity of ‖G‖Λ∗ could not be proved.

Now we are able to prove existence of minimizers of (Ps).

Theorem 2.4.3. There is a (not necessarily unique) minimizer of (Ps).

Proof. This is proved in much the same way as Theorem 2.2.1 was proved. We no
longer have to show that (VM) has to be preserved in the limit. Instead, we apply
Lemma 2.4.1: The assumptions there are satisfied for a minimizing sequence (after
extracting a suitable subsequence) and the respective weak limits. Thus, the new
constraint (2.4.1) is also preserved in the limit, and the new objective function JB
indeed attains its minimum at the limit tuple

(
H, D

)
.

Later, we will need thatY ×U is complete; this is proved in the following lemma.

Lemma 2.4.4. Y ×U is a Banach space.

Proof. We only have to show completeness of Y
pd: Let

(
5:
)
be a Cauchy sequence

in Y
pd. Clearly, this sequence converges to some 5 with respect to the !1

kin- and
!∞-norm. For some � ∈ �∞2

(
]0, )•[ ×Ω × R3) , the sequence

(
%C

(
� 5:

)
+ Ê · %G

(
� 5:

) )
converges to some 6 in !2 ([0, )•] ×Ω;�−1 (R3) ) since this space is complete. As in
Step 1 of the proof of Lemma 2.4.1, we see that 6 = %C

(
� 5

)
+ Ê · %G

(
� 5

)
. If � satisfies

(2.1.4), then%C (� ( 5 − 5: ) ) + Ê · %G (� ( 5 − 5: ) )!2([0,)•]×Ω;�−1(R3))

≤
%C (� ( 5 − 5< ) )

+ Ê · %G
(
�
(
5 − 5<

) )
!2([0,)•]×Ω;�−1(R3))

+
%C (� ( 5< − 5: ) ) + Ê · %G (� ( 5< − 5: ) )!2([0,)•]×Ω;�−1(R3))

≤
%C (� ( 5 − 5< ) )

+ Ê · %G
(
�
(
5 − 5<

) )
!2([0,)•]×Ω;�−1(R3)) +N

(
5< − 5:

)
for any :, < ∈ N. Here, the second summand of the right-hand side can be made
arbitrarily small (uniformly in �) for large : and < because of the Cauchy property,
and the first summand is arbitrarily small if < = <

(
�
)
is large enough. Thus,

(
5:
)

converges to 5 in the wholeY
pd-norm altogether.

Next, we want to derive first order optimality conditions for a minimizer of (Ps).
To this end, we consider the differentiability of the objective function JB . Clearly, the
only difficult term is

G (
H, D

)2
Λ∗ . To tackle this one, we state a duality result, which

links differentiability of a norm to uniform convexity of the dual space.



96 2 Optimal control problem

Proposition 2.4.5. A Banach space - is uniformly smooth if and only if -∗ is uniformly
convex. In this case, for each unit vector G ∈ - there is exactly one G∗ ∈ -∗ with ‖G∗‖-∗ = 1
satisfying G∗G = 1. Furthermore, this G∗ is the derivative of the norm at G.

Here, “uniformly smooth” means that

lim
C→0

G + CH
-
− ‖G‖-

C

exists and is uniform in G, H ∈ {I ∈ - | ‖I‖- = 1}. The original work in this subject
was done by Day [Day44]; see also [Lin04, Chapter 2] and [Bre11, Section 3.7, Problem
13] for an overview of different concepts of and relations between convexity and
smoothness of normed spaces.
From Proposition 2.4.5 we easily get the following corollary, which we will need in

the following.

Corollary 2.4.6. Let - be a Banach space such that -∗ is uniformly convex. Then the map
I : - → R, I(G) = 1

2 ‖G‖
2
- is differentiable on - with derivative I′(G) = G∗ where G∗ is the

unique element of -∗ satisfying ‖G∗‖-∗ = ‖G‖- and G∗G = ‖G‖2- . (The map I′ : - → -∗ is
often referred to as the duality map.)

Proof. ByProposition 2.4.5, the norm is differentiable on the unit sphere of-. Since the
norm is positive homogeneous, this holds true on- except in G = 0, and the derivative
is G∗ such that ‖G∗‖-∗ = 1 and G∗G = ‖G‖- (still this G∗ is uniquely determined by these
two properties). Applying the chain rule we see that I is differentiable on - \ {0} and
has the asserted derivative.
That I is differentiable in G = 0 and I′(0) = 0 is clear.

With this corollary we see that the objective function JB is differentiable.

Lemma 2.4.7. The objective function JB is differentiable, and its derivative is given by

J ′B
(
H, D

) (
�H, �D

)
=

#∑
=1

F

∫
�+
)•

sign
(
5 +

) �� 5 + ��@−1
� 5 + 3�

+
3∑
9=1

∫ )•

0

∫
Γ

(
sign

(
D9

) ��D9 ��A−1
�D9 + �1 sign

(
%CD9

) ��%CD9 ��A−1
%C�D9

+�2

3∑
8=1

sign
(
%G8D9

) ��%G8D9 ��A−1
%G8 �D9

)
3G3C

+
#∑
=1

(
−

∫ )•

0

∫
Ω

∫
R3

( (
%C#

 + Ê · %G# + @(� + Ê × �) · %E# )� 5 
+@(�� + Ê × ��) 5  · %E# ) 3E3G3C
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+
∫
�+
)•

� 5 + #
 3� −

∫
�−
)•

(
K� 5


+
)
# 3�

)
+

∫ )•

0

∫
R3

(
��� · %C'4 − �� · curlG '4 − 4�

(
� 9int + �D

)
· '4

)
3G3C

+
∫ )•

0

∫
R3

(
��� · %C'ℎ + �� · curlG 'ℎ

)
3G3C, (2.4.4)

where
( (
#

)
 , '

4 , 'ℎ
)
∈ Λ is the unique element in Λ satisfying((# )

 , '
4 , 'ℎ

)
Λ
= B

G (
H, D

)
Λ∗ , G

(
H, D

) ( (
# )

 , '
4 , 'ℎ

)
= B

G (
H, D

)2
Λ∗ . (2.4.5)

Proof. The only difficult term is B
2
G (

H, D
)2
Λ∗ . The other terms are easy to handle in a

standard way.
Denoting /

(
H, D

)
= B

2
G (

H, D
)2
Λ∗ we apply Lemma 2.3.4 and Corollary 2.4.6. The

latter is applicable since the dual of Λ∗, that is, Λ∗∗ � Λ, is uniformly convex due to
Lemma 2.3.3. At this point we should mention that this step is exactly the reason why
we work with a uniformly convex, reflexive test function space. Hence, additionally
using the chain rule, we see that / is differentiable with

/′
(
H, D

) (
�H, �D

)
= B�∗∗G′

(
H, D

) (
�H, �D

)
(2.4.6)

where �∗∗ ∈ Λ∗∗ uniquely satisfies

‖�∗∗‖Λ∗∗ =
G (

H, D
)
Λ∗ , �∗∗G

(
H, D

)
=

G (
H, D

)2
Λ∗ . (2.4.7)

Since Λ is reflexive, we can regard �∗∗ as a � ∈ Λ via the canonical isomorphism. We
define

( (
#

)
 , '

4 , 'ℎ
)
by multiplying this � with the positive number B. On the one

hand, from (2.4.6) we get the remaining part of (2.4.4), that is,

G′
(
H, D

) (
�H, �D

) ( (
# )

 , '
4 , 'ℎ

)
,

which is given by (2.3.4). On the other hand, (2.4.7) instantly yields (2.4.5).

Remark 2.4.8. Such a
( (
#

)
 , '

4 , 'ℎ
)
will later act as a Lagrangian multiplier with

respect to the Vlasov–Maxwell system, that is, a solution of the adjoint system, if
the point

(
H, D

)
is a minimizer of (Ps) or, later, of (P). In general, when one has a

differentiable control-to-state operator D ↦→ H(D) at hand (which we do not have in
our case), computing the adjoint state as the solution of the adjoint system, which is
a part of the first order optimality conditions, is an efficient way to compute the total
derivative 3

3DJ
(
H(D), D

)
when trying to find a minimizer numerically; see [Hin+09,

Section 1.6.2], for example.

Next, we derive necessary first order optimality conditions for (Ps). To tackle an
optimization problem with certain constraints and to prove existence of Lagrangian
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multipliers with respect to them, one has to verify some constraint qualification. To
this end, we state a famous result of Zowe and Kurcyusz [ZK79], which is based on a
fundamental work of Robinson [Rob76].

Proposition 2.4.9. Let -, . be Banach spaces, ( ⊂ - nonempty, closed, and convex, & ⊂ .
a closed convex cone (& is a “cone” means 0 ∈ &, G ∈ & ⇒ ∀� > 0 : �G ∈ &), ) : - → R
differentiable, and 6 : - → . continuously differentiable. Denote for � ⊂ - (and similarly
for � ⊂ .)

�+ = {G∗ ∈ -∗ | ∀0 ∈ � : G∗0 ≥ 0}

and denote for G ∈ - and H ∈ .

(G = {�(2 − G) | 2 ∈ (,� ≥ 0},
&H =

{
: − �H | : ∈ &,� ≥ 0

}
.

Let G∗ ∈ - be a local minimizer (i.e., a local minimizer of the objective function restricted to
all feasible points) of the problem

min
G∈-

)(G)

s.t. G ∈ (, 6(G) ∈ &,

and let the constraint qualification

6′(G∗)(G∗ −&6(G∗) = . (CQ)

hold.
Then there is a Lagrange multiplier H∗ ∈ .∗ at G∗ for the problem above, i.e.,

(i) H∗ ∈ &+,
(ii) H∗6(G∗) = 0,
(iii) )′(G∗) − H∗ ◦ 6′(G∗) ∈ (+G∗ .

We apply this result to our problem (Ps). As we have shown in Lemma 2.4.7, the
objective function is differentiable. In the following, let

( B

{(
H, D

)
∈ Y ×U | 0 ≤ 5  ≤

 ˚5 
!∞(Ω×R3)

a.e.,N
(
5 

)
≤ ℒ ,  = 1, . . . , #

}
⊂ Y ×U C -,

& B R≥0 ⊂ R C ..

Clearly, ( is nonempty, closed, and convex, and & is a closed convex cone. Further-
more, the constraints (2.1.1), (2.1.2), and (2.4.1) are equivalent to(

H, D
)
∈ (, 6

(
H, D

)
∈ &,
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where

6
(
H, D

)
= ℐ(D) −

#∑
=1

∫ )•

0

∫
Ω

∫
R3
E0
 5

 3E3G3C − �
8�

∫ )•

0

∫
R3

(
|� |2 + |� |2

)
3G3C.

It is easy to see that 6 is continuously differentiable with

6′
(
H, D

) (
�H, �D

)
= �

∫ )•

0

∫
Γ

D · �D 3G3C −
#∑
=1

∫ )•

0

∫
Ω

∫
R3
E0
� 5

 3E3G3C

− �
4�

∫ )•

0

∫
R3
(� · �� + � · ��) 3G3C,

where

� B 4�)2
• �
−1.

We verify the constraint qualification (CQ).

Lemma 2.4.10. Let
(
HB , DB

)
be a (global) minimizer of (Ps). Then, (CQ) is satisfied if B is

sufficiently large.

Proof. First, we exclude the possibility that some 5 B is identically zero for B sufficiently
large (since then the term B

2
G (

HB , DB
)2
Λ∗ is too large for

(
HB , DB

)
to be a minimizer of

(Ps)): For each , let #
∗ : [0, )•] × Ω × R3 → R, #

∗ (C , G, E) = �(C)!(G, E), where
� ∈ �∞([0, )•])with �(0) = 1 and supp� ⊂ [0, )•[, and ! ∈ �∞2

(
Ω × R3) with ˚5  − !


!2(Ω×R3)

≤ 1
2

 ˚5 
!2(Ω×R3)

.

Clearly, #
∗ ∈ Ψ)• . Now assume 5 0

B = 0 for some 0. We have��G (
HB , DB

) ( (
0, . . . , 0,#0

∗ , 0, . . . , 0
)
, 0, 0

) �� = ����∫
Ω

∫
R3
5̊ 0!0 3E3G

����
=

���� 5̊ 0
2

!2(Ω×R3)
−

∫
Ω

∫
R3
5̊ 0

(
5̊ 0 − !0

)
3E3G

���� ≥ 1
2

 5̊ 0
2

!2(Ω×R3)
.

Then,

G (
HB , DB

)
Λ∗ ≥

 5̊ 0

2

!2(Ω×R3)

2
#0
∗


,1,?,@̃

,

and

JB
(
HB , DB

)
≥ B ·

 5̊ 0

4

!2(Ω×R3)

8
#0
∗

2
,1,?,@̃

> J
(
H∗ , D∗

)
= JB

(
H∗ , D∗

)
, (2.4.8)
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where
(
H∗ , D∗

)
is a minimizer of (P) and where the strict inequality holds for B suffi-

ciently large, i.e.,

B > max
=1,...,#

8
#
∗
2
,1,?,@̃J

(
H∗ , D∗

) ˚5 4

!2(Ω×R3)

;

note that the right-hand side does not depend on B and 0 and that no ˚5  is identically
zero. Since

(
H∗ , D∗

)
is feasible for (Ps), (2.4.8) is a contradiction to

(
HB , DB

)
being a

minimizer of (Ps).
To prove the lemma, we have to show that for each 3 ∈ R there are �1 ,�2 ≥ 0, : ≥ 0,

and
(
�H, �D

)
∈ ( satisfying

�16
′ (HB , DB ) (�H − HB , �D − DB ) − : + �26

(
HB , DB

)
= 3. (2.4.9)

We choose � 5 + = 5 B,+ for all , �� = �B , �� = �B , �D = DB , and consider two cases;
note that in the following it always holds that �1 ,�2 ≥ 0, : ≥ 0, and

(
�H, �D

)
∈ (:

Case 1. 3 ≤ 0: Choose �1 = �2 = 0, � 5  = 5 B for all , : = −3.
Case 2. 3 > 0: Choose �2 = 0, � 5 1 = 0, � 5  = 5 B for  ≥ 2, : = 0. Since

6′
(
HB , DB

) (
�H − HB , �D − DB

)
=

∫ )•

0

∫
Ω

∫
R3
E0

1 5
1
B 3E3G3C > 0,

we can choose �1 > 0 such that (2.4.9) is satisfied.
In all cases (2.4.9) holds; the proof is complete.

Now, Proposition 2.4.9 gives us the following theorem.

Theorem 2.4.11. Let B be sufficiently large and
(
HB , DB

)
a minimizer of (Ps). Then there exist

�B ≥ 0 and �B ∈
(
Y

pd

)∗
,  = 1, . . . , # , such that:

(i) �B = 0 or 6
(
HB , DB

)
= 0.

(ii)
#∑
=1

�B 5

B ≤

#∑
=1

�B � 5


for all � 5  ∈ Y
pd satisfying 0 ≤ � 5  ≤

 ˚5 
!∞(Ω×R3)

a.e. andN
(
� 5 

)
≤ ℒ.

(iii) For all
(
�H, �D

)
∈ Y ×U it holds that

0 =
#∑
=1

F

∫
�+
)•

sign
(
5 B,+

) �� 5 B,+��@−1
� 5 + 3�

+
3∑
9=1

∫ )•

0

∫
Γ

(
sign

(
DB, 9

) ��DB, 9 ��A−1
�D9 + �1 sign

(
%CDB, 9

) ��%CDB, 9 ��A−1
%C�D9
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+�2

3∑
8=1

sign
(
%G8DB, 9

) ��%G8DB, 9 ��A−1
%G8 �D9

)
3G3C

+
#∑
=1

(
−

∫ )•

0

∫
Ω

∫
R3

( (
%C#


B + Ê · %G#

B + @(�B + Ê × �B) · %E#
B

)
� 5 

+@(�� + Ê × ��) 5 B · %E#
B

)
3E3G3C

+
∫
�+
)•

� 5 + #

B 3� −

∫
�−
)•

(
K� 5


+
)
#
B 3�

)
+

∫ )•

0

∫
R3

(
��� · %C'4B − �� · curlG '4B − 4�

(
� 9int + �D

)
· '4B

)
3G3C

+
∫ )•

0

∫
R3

(
��� · %C'ℎB + �� · curlG 'ℎB

)
3G3C

+ �B�
∫ )•

0

∫
Γ

DB · �D 3G3C − �B
#∑
=1

∫ )•

0

∫
Ω

∫
R3
E0
� 5

 3E3G3C

− �B�
4�

∫ )•

0

∫
R3
(�B · �� + �B · ��) 3G3C −

#∑
=1

�B � 5
 (2.4.10)

where
( (
#
B

)
 , '

4
B , '

ℎ
B

)
∈ Λ is, in accordance with (2.4.5), given by((#

B

)
 , '

4
B , '

ℎ
B

)
Λ
= B

G (
HB , DB

)
Λ∗ ,

G
(
HB , DB

) ( (
#
B

)
 , '

4
B , '

ℎ
B

)
= B

G (
HB , DB

)2
Λ∗ .

In other words, (2.4.10) can be interpreted as
( (
#
B

)
 , '

4
B , '

ℎ
B

)
being a solution of the

adjoint system

%C#

B + Ê · %G#

B + @(�B + Ê × �B) · %E#
B = 4�Ê · '4B + �BE0

 + �B
on [0, )•] ×Ω × R3 , (Ads.1)

 0 #
B,− = #

B,+ + F sign
(
5 B,+

) �� 5 B,+��@−1 on �+)• , (Ads.2)

#
B ()•) = 0 on Ω × R3 , (Ads.3)

�%C'
4
B + curlG 'ℎB = −

#∑
=1

@

∫
R3
5 B %E#


B 3E −

�B�
4� �B on [0, )•] × R3 , (Ads.4)

�%C'
ℎ
B − curlG '4B = −

#∑
=1

@

∫
R3
5 B

(
%E#


B × Ê

)
3E − �B�

4� �B

on [0, )•] × R3 , (Ads.5)
'4B()•) = 'ℎB ()•) = 0 on R3 , (Ads.6)



102 2 Optimal control problem

and the stationarity condition

0 =
3∑
9=1

∫ )•

0

∫
Γ

(
sign

(
DB, 9

) ��DB, 9 ��A−1
�D9 + �1 sign

(
%CDB, 9

) ��%CDB, 9 ��A−1
%C�D9

+�2

3∑
8=1

sign
(
%G8DB, 9

) ��%G8DB, 9 ��A−1
%G8 �D9

)
3G3C

−
∫ )•

0

∫
Γ

(
4�'4B − �B�DB

)
· �D 3G3C for all �D ∈ U (SCs)

being satisfied.

Proof. Since (CQ) holds due to Lemma 2.4.10 and Y × U is a Banach space due to
Lemma 2.4.4, by Proposition 2.4.9 there is �B ∈ R acting as a Lagrangian multiplier
with respect to (2.1.2). Proposition 2.4.9.(i) implies �B ≥ 0, and Proposition 2.4.9.(ii)
yields part 2.4.11.(i).
With Proposition 2.4.9.(iii) and the notation used there we see that

�B B J ′B
(
HB , DB

)
− �B · 6′

(
HB , DB

)
∈ (+(HB ,DB) ⊂ (Y ×U)

∗. (2.4.12)

Consequently, �B can be decomposed into

�B ≡
(
(�B ) ,

(
�B,+

)
 , �

4
B , �

ℎ
B , �

D
B

)
∈

(
#?
=1

(
Y

pd

)∗
× !@

(
�+)• , 3�

)∗)
×

(
!2 ([0, )•] × R3;R3)∗)2

×U ∗.

Since the set ((HB ,DB) only limits the directions � 5  and not the directions � 5 + , ��, ��,
and �D, the property �B ∈ (+(HB ,DB) yields that all �


B,+ and moreover �4B , �ℎB , and �DB have

to vanish. Thus, �B ≡ (�B ) via

�B
(
�H, �D

)
=

#∑
=1

�B � 5
 . (2.4.13)

On the one hand, by �B ∈ (+(HB ,DB) and the identification (2.4.13) we have for all � 5  ∈

Y
pd satisfying 0 ≤ � 5  ≤

 ˚5 
!∞(Ω×R3)

a.e. andN
(
� 5 

)
≤ ℒ,

#∑
=1

�B
(
� 5  − 5 B

)
≥ 0,

which is part 2.4.11.(ii). On the other hand, (2.4.12) and (2.4.13) instantly yields (2.4.10)
recalling the formula for J ′B from Lemma 2.4.7.
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Setting �D and all but one of the directions � 5 , � 5 + , ��, and �� to zero and the
one remaining arbitrary, we conclude that the adjoint system (Ads) holds. Note that
a priori the #

B , '4B , and 'ℎB vanish for C = )• by definition of the test function space Λ.
Finally, setting all directions but �D to zero yields (SCs). Thus, also the proof of part

2.4.11.(iii) is complete.

Remark 2.4.12. If, for example, A = 2 and the boundary of Γ is smooth, (SCs) can easily
be interpreted as the weak form of the second order PDE

�1%
2
C DB + �2ΔGDB = −4�'4B +

(
�B� + 1

)
DB on [0, )•] × Γ,

%CDB(0) = %CDB()•) = 0 on Γ,
%=ΓDB = 0 on [0, )•] × %Γ.

Here, %=Γ denotes the directional derivative in the direction of the outer unit normal
=Γ of %Γ.

2.4.2 Passing to the limit
There remains to pass to the limit B → ∞. A natural approach is to try to pass to
the limit in the optimality conditions of (Ps). This would require boundedness of
the adjoint state in a certain norm. To this end, typically one needs to exploit some
compactness result for the linearized PDE (system). In many situations, such results
are available, and one can then verify that the optimality conditions also hold in the
limit, i.e., for aminimizer of the original problem. We refer to [Lio85] for an abundance
of examples of such PDEs.
However, for the Vlasov–Maxwell system no such results are available. In the

author’s opinion, the most problematic terms are the source terms on the right-
hand side of (Ads.4) and (Ads.5) which include %E#

B , i.e., a derivative of the adjoint
state. This is a structural problem arising because of the Vlasov–Maxwell system.
Conversely, there are artificial problems, that is, the appearance of �B and �B . They
only appear because it is unknown whether the artificial constraints (2.1.1) and (2.1.2)
in (P) (or then (2.1.1), (2.1.2), and (2.4.1) in (Ps)) are automatically satisfied for anyweak
solution of (VM) (or for a minimizing sequence of (Ps)). Especially �B is very irregular
and there are no weak compactness results for the space which �B lies in. Moreover,
to gain compactness via some momentum averaging lemma seems not possible since
the right-hand side of (Ads.1) (in particular, 4�Ê · '4B ) is not square integrable over
[0, )•] ×Ω × R3.

Thus, we are not able to prove that aminimizer of (P) satisfies the desired optimality
conditions, i.e., (Ads) and (SCs) with B removed. Nevertheless, the following holds.

Theorem 2.4.13. For each B > 0, let
(
HB , DB

)
∈ Y ×U be a minimizer of (Ps). ThenG (

HB , DB
)
Λ∗ ≤

√
2 minJ B− 1

2 , (2.4.14)

and there is a minimizer
(
H∗ , D∗

)
∈ Y×U of the original problem (P) such that, after choosing

a suitable sequence B: →∞, 5 B:
(∗)
⇀ 5 ∗ in !I

(
[0, )•] ×Ω × R3) for 1 < I ≤ ∞, 5 B: ,+ → 5 ∗,+
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in !@
(
�+
)•
, 3�

)
,
(
�B: , �B:

)
⇀ (�∗ , �∗) in !2 ([0, )•] × R3;R6) , and DB: → D∗ in U for

: →∞. Furthermore,

lim
:→∞

B:
G (

HB: , DB:
)2
Λ∗ = 0.

Proof. Let
(
H, D

)
be some minimizer of (P). Since this

(
H, D

)
is also feasible for (Ps),

G
(
H, D

)
= 0, and since

(
HB , DB

)
is a minimizer of (Ps), it holds that

B

2
G (

HB , DB
)2
Λ∗ ≤ JB

(
HB , DB

)
≤ JB

(
H, D

)
= J

(
H, D

)
= minJ , (2.4.15)

which implies (2.4.14) and that (DB) is bounded inU and
(
5 B,+

)
in !@

(
�+
)•
, 3�

)
. Thus,

by (2.1.1) and (2.1.2) each
(
5 B

)
is bounded in any !I

(
[0, )•] ×Ω × R3) , 1 ≤ I ≤ ∞,

and ((�B , �B)) in !2 ([0, )•] × R3;R6) . Therefore, the asserted convergences hold true,
at least weakly, if the sequence (B:) is suitably chosen. Since (2.1.2) and (2.4.1) are
satisfied along the sequence, we can apply Lemma 2.4.1 to obtainG (

H∗ , D∗
)
Λ∗ ≤ lim inf

:→∞

G (
HB: , DB:

)
Λ∗ = 0

because of (2.4.14). Hence,
(
H∗ , D∗

)
is feasible for (P). By weak lower semicontinuity of

any norm, we have

J
(
H∗ , D∗

)
≤ lim inf

:→∞
J

(
HB: , DB:

)
≤ lim inf

:→∞
JB:

(
HB: , DB:

)
≤ lim sup

:→∞
JB:

(
HB: , DB:

)
≤ minJ ,

(2.4.16)

where the last inequality is implied by (2.4.15). Consequently,
(
H∗ , D∗

)
is indeed a

minimizer of (P), and equality holds in (2.4.16). Thus,

J
(
H∗ , D∗

)
= lim inf

:→∞
J

(
HB: , DB:

)
≤ lim sup

:→∞
J

(
HB: , DB:

)
≤ lim sup

:→∞
JB:

(
HB: , DB:

)
= minJ ,

and also equality holds everywhere. This yields

1
@

#∑
=1

F

 5 ∗,+@
!@

(
�+
)• ,3�

) + 1
A
‖D∗‖AU = J

(
H∗ , D∗

)
= lim

:→∞
J

(
HB: , DB:

)
= lim

:→∞

(
1
@

#∑
=1

F

 5 B: ,+@!@ (�+
)• ,3�

) + 1
A

DB:AU )
. (2.4.17)

Combining (2.4.16) and (2.4.17) implies

lim
:→∞

B:
2

G (
HB: , DB:

)2
Λ∗ = lim

:→∞

(
JB:

(
HB: , DB:

)
− J

(
HB: , DB:

) )
= J

(
H∗ , D∗

)
− J

(
H∗ , D∗

)
= 0.
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There remains to show that the convergences of 5 B: ,+ and DB: are even strong. To this
end, suppose that  5 0

∗,+

!@

(
�+
)• ,3�

) < lim sup
:→∞

 5 0
B: ,+


!@

(
�+
)• ,3�

)
for some 0. By weak lower semicontinuity of the remaining norms and by (2.4.17),
this implies

1
@

#∑
=1

F

 5 ∗,+@
!@

(
�+
)• ,3�

) + 1
A
‖D∗‖AU

< lim sup
:→∞

 5 0
B: ,+

@
!@

(
�+
)• ,3�

) + 1
@

#∑
=1
≠0

F lim inf
:→∞

 5 B: ,+@!@ (�+
)• ,3�

) + lim inf
:→∞

1
A

DB:AU
≤ lim sup

:→∞

(
1
@

#∑
=1

F

 5 B: ,+@!@ (�+
)• ,3�

) + 1
A

DB:AU )
=

1
@

#∑
=1

F

 5 ∗,+@
!@

(
�+
)• ,3�

) + 1
A
‖D∗‖AU ,

which is a contradiction. Thus, 5 ∗,+!@ (�+
)• ,3�

) ≤ lim inf
:→∞

 5 B: ,+!@ (�+
)• ,3�

) ≤ lim sup
:→∞

 5 B: ,+!@ (�+
)• ,3�

) ≤  5 ∗,+!@ (�+
)• ,3�

) ,
whence  5 ∗,+!@ (�+

)• ,3�
) = lim

:→∞

 5 B: ,+!@ (�+
)• ,3�

)
for each . Similarly,

‖D∗‖U = lim
:→∞

DB:U
as well. Since we already have 5 B: ,+ ⇀ 5 ∗,+ in !@

(
�+
)•
, 3�

)
and DB: ⇀ D∗ in U , and

since !@
(
�+
)•
, 3�

)
and U are uniformly convex, 5 B: ,+ even converges strongly to 5 ∗,+

and DB: strongly to D∗.

Note that the convergences of 5 B: ,+ and DB: are strong, which is due to the fact that
the original objective function J is an expression in 5 + and D. Since the actual goal
is to adjust D suitably and D is the only function which can be really adjusted from
outside, it is no big drawback to have to consider (Ps) instead of (P): As we have seen
in Theorem 2.4.13, on the one hand

G (
HB , DB

)
Λ∗ decays with a certain rate to zero

for B → ∞, whence (VM) is “almost” satisfied for a minimizer
(
HB , DB

)
and B large;
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on the other hand, first order optimality conditions for (Ps) have been established in
Theorem 2.4.11 and optimal points of (Ps) converge (at least weakly) to an optimal
point of (P) (along a suitable sequence), and the convergence of the controls is even
strong. We cannot expect to get convergence for the full limit B →∞ since minimizers
of (P) and (Ps) are not known to be unique due to the lack of convexity.

2.5 Final remarks
One can consider other optimal control problems than (P), with a different objective
function, for example, a problem of tracking type:

J̃
(
H, D

)
= J

(
H, D

)
+

#∑
=1

1

2
 5  − 5 

3

2
!2([0,)]×Ω×R3) +

1�

2 ‖� − �3‖
2
!2([0,)]×R3;R3)

+ 1�2 ‖� − �3‖2!2([0,)]×R3;R3) ,

where 1 , 1� , 1� > 0 are parameters and 5 
3
, �3, �3 are desired states. Since this

new objective function already grants coercivity in 5 , �, and � with respect to the
!2-norm, at first sight it seems that the artificial constraint (2.1.2) can be abolished.
However, without this constraint, we cannot pass to the limit in the term of (1.1.3a)
with 9int during an analog proof of Theorem 2.2.1 since for this an !1

kin-estimate on
5  is necessary; cf. Lemma 2.1.3. Thus, imposing (2.1.1) and (2.1.2) is still necessary.
Analogues of Theorems 2.2.1, 2.4.3, 2.4.11, and 2.4.13 can be proved, and in Theo-
rem 2.4.13 the convergences of 5 B: , �B: , and �B: are also strong in !2 because of the
tracking terms in the new objective function.
We could also consider the case that we additionally try to control the system by

inserting particles from outside, that is, considering nonvanishing 6 in the right-
hand side of (VM.2) and treating them as controls as well. Then we add some norm
of the 6 to the objective function as a penalization term. There occur two problems:
Firstly, since (2.1.1) is still necessary and since we have to include !∞-norms of the
6 there on the right-hand side, the set of functions satisfying this new constraint
is no longer convex. We can bypass this problem by imposing !∞-bounds on the
6 a priori, for example, by imposing box constraints. Secondly, we have to add
the !1

kin-norms of the 6 to the right-hand side of (2.1.2). To be then able to pass
to the limit in (2.1.2), we need that the space the 6 lie in is compactly embedded
in !1

kin

(
�−
)•
, 3�

)
—this is analogous to the consideration of U as the control space

instead of simply !2. That compact embedding is, for example, guaranteed by the
restriction 6 ∈ �1

(
�−
)•
∩ {|E | < '}

)
and 6 = 0 for |E | > ' with ' > 0 fixed. Another

possibility is to impose an a priori bound on the !1
kin-norms of the 6, for example, by

imposing box constraints as above and a bound on the support of the 6 with respect
to E, and then adding this a priori bound to the right-hand side of (2.1.2) instead of
the !1

kin-norms of the 6.
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In Theorem 2.4.13, a suitable sequence of optimal points of (Ps) converges to an
optimal point of (P), at least weakly, some components even strongly. However, we
do not know if allminimizers of (P) can be “obtained” in this way. In [Lio85], usually
an approximate problem with an adaptive objective function is considered, in order
to derive first order optimality conditions for any given, fixed minimizer of (P). Here,
this means adding norms of 5  − 5 ∗ , 5 + − 5 ∗,+, � − �∗, � − �∗, and D − D∗ to J . With
an analogue of Theorem 2.4.13, one can then show that

(
HB , DB

)
converges strongly

to
(
H∗ , D∗

)
in a suitable norm, and this holds for the full limit B → ∞. However, this

method is not constructive since one has to know
(
H∗ , D∗

)
a priori to consider the

approximate problem, and thus in our case not reasonable; in general it is reasonable
if one can pass to the limit in the first order optimality conditions.





CHAPTER3
Confined steady states in an

infinitely long cylinder

3.1 The set-up
The previous chapter was devoted to the question how to adjust the currents (and
thus the external electromagnetic fields) in some external electric coils to confine the
plasma as best as possible. With “good confinement” we meant that the amount of
the plasma particles hitting the boundary of Ω are to be kept as small as possible,
while the control costs should be not too exhaustive. However, one might ask two
questions: Firstly, as they were given and fixed through these considerations, what is
a reasonable choice of the initial data for the particle densities and the electromagnetic
fields? Secondly, is there really a choice of initial data and external currents such that
the plasma is really confined during thewhole time interval [0, )•], i.e., such that there
are no hits on the boundary? This leads to another question, which we will deal with
in this chapter: Is there a configuration, that is independent of time and where the
plasma particles are away from the boundary of the fusion reactor?
Before we analyze this problem about the existence of such a configuration, which

we henceforth call a “confined steady state”, we first discuss the basic ideas for plasma
confinement—more information on fusionplasmaphysics canbe found in the classical
book of Stacey [Sta12]. The physical basis for confinement is the fact that charged
particles spiral about magnetic field lines. The so-called gyroradius, that is, the radius
of such a spiral, is inversely proportional to the strength of the magnetic field. This
gives rise to the idea of linear confinement devices: The fusion reactor is a long
cylinder and the external magnetic field points in the direction of the symmetry axis
of this cylinder. If this externalmagnetic field is sufficiently strong, the gyroradii of the
plasma particles will be smaller than the radius of the cylinder, whence the plasma
is confined in the fusion device. However, this setting cannot prevent the plasma
current from having a nonvanishing component in the direction of the symmetry axis.
Thus, there will be losses at the ends of the long cylinder. In practice, one can try to
overcome this problem by one of the two following modifications: Firstly, so-called

109
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magnetic mirrors are added at these ends. Secondly, the long cylinder is bent into a
torus. This second idea is pursued typically in modern research. Toroidal geometry
has the advantage of avoiding such losses but has the disadvantage that it gives rise
to drifts of the plasma particles, which finally cause the particles to move radially
outwards and thus make confinement impossible. Therefore, the external magnetic
field needs to have a poloidal component additional to its toroidal one. This approach
then leads to Tokamak devices.
However, analyzing theproblemof existence of confined steady states fromamathe-

matics point of view in toroidal geometry seems quite hard. We discuss the difficulties
in Section 3.6. As a first step towards this, we consider the set-up of a linear confine-
ment device instead. For mathematical reasons, it will be convenient to assume that
the cylinder is infinitely long (which is of course not conceivable from a practical point
of view). Thus, we fix '0 > 0 and let

Ω B
{
G ∈ R3 | G2

1 + G2
2 < '2

0
}
.

In contrast to the previous chapters,Ω is no longer bounded since it extends infinitely
in the G3-direction. Because of the axial symmetry of the set-up, it is natural to
work with cylindrical coordinates

(
A, !, G3

)
. In these coordinates, we simply have

Ω =
{
G ∈ R3 | A < '0

}
. Furthermore, we now consider purely reflecting boundary

conditions for the particles and perfect conductor boundary conditions for the fields
on %Ω. Due to perfect conductor boundary conditions, Maxwell’s equations are only
imposed onΩ, where � = � = Id by assumption. Hence, we no longer distinguish the
�- and �-, and the �- and �-field, respectively, and use � and � for denotation of the
electromagnetic fields. Moreover, we consider an external magnetic field �ext, which
is supposed to be divergence free, as given and thus no longer consider an external
current density D (whence we neglect an external electric field). Therefore, the only
charge and current densities are the internal ones, i.e.,

� = �int =

#∑
=1

@

∫
R3
5  3E, 9 = 9int =

#∑
=1

@

∫
R3
Ê 5

 3E.

In the following, there often occur cylindrical coordinates and the corresponding
local, orthonormal coordinate basis

(
4A , 4! , 43

)
, where

4A =
(
cos!, sin!, 0

)
, 4! =

(
− sin!, cos!, 0

)
, 43 = (0, 0, 1).

For a vector F ∈ R3, we denote with FA , F!, and F3 the coordinates of F in this local
coordinate system, i.e.,

FA = F · 4A , F! = F · 4! , F3 = F · 43.

Altogether, the whole Vlasov–Maxwell system in this set-up reads

%C 5
 + Ê · %G 5  + @

(
� + Ê ×

(
� + �ext) ) · %E 5  = 0 on �)• ×Ω × R3 ,

5 − =  5

+ on �−)• ,
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5 (0) = ˚5  on Ω × R3 ,

%C� − curlG � = −4�9 on �)• ×Ω,
%C� + curlG � = 0 on �)• ×Ω,

divG � = 4�� on �)• ×Ω,
divG � = 0 on �)• ×Ω,

�! = �3 = �A + �ext
A = 0 on �)• × %Ω,

(�, �)(0) =
(
�̊, �̊

)
on Ω.

Note that in the following thedivergencepart ofMaxwell’s equationswill be important
and not neglected anymore. Furthermore, the perfect conductor boundary condition
reads � × = = 0 = �tot · = in the general case (where �tot is the total magnetic field;
here, �tot = � + �ext) and reduces to �! = �3 = �tot

A = 0 in the case of Ω being an
infinitely long cylinder since here = = 4A .
It is convenient to introduce electromagnetic potentials, which will be the functions

we work with mostly, namely, the electric scalar potential ) and the magnetic vector
potential �tot = � + �ext, which splits into the internal and external potentials � and
�ext. The electromagnetic fields and potentials are related via

� = −%G) − %C�, � = curlG �, �ext = curlG �ext. (3.1.1)

Then, Gauss’s law formagnetism (divG � = 0) and Faraday’s law (%C�+curlG � = 0) are
automatically satisfied. There is some freedom to demand a certain gauge condition
on the potentials. We will consider Lorenz gauge for the internal potentials

%C) + divG � = 0, (3.1.2)

which of course is the same as Coulomb gauge

divG � = 0

if the potentials are independent of time, and similarly divG �ext = 0 for the external
potential. Using the gauge (3.1.2), the remaining Maxwell’s equations, i.e., %C� −
curlG � = −4�9 and divG � = 4��, become

%2
C ) − ΔG) = 4��, %2

C� − ΔG� = 4�9 , (3.1.3)

where the latter equation is to be understood componentwise (in Cartesian coordi-
nates).
Similar set-upshave alreadybeen studied earlier, for example, in [Pou92; Rei92]. The

basic strategy to obtain steady states was first mentioned in [Deg90]. Closely related
to our considerations is [BF93], where (among other set-ups) existence of steady states
in an infinitely long cylinder without external magnetic field was proved. However,
an important condition there is that there is only one particle species and thus only
a fixed sign of particle charges appears. Therefore, � has a fixed sign and ) is
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monotone, which is crucial for the considerations in [BF93]. As opposed to this, we
allow positively and negatively charged particles.
The question about existence of confined steady states for a Vlasov–Poisson plasma

(that is, � = 0) was considered in [Sku14] and [Kno19]. The approach of the latter
work is similar to ours but needs some smallness assumption on the ansatz functions,
whichwe can avoid, and is restricted to homogeneous externalmagnetic fields parallel
to the symmetry axis.

3.2 Symmetries and invariants
Due to the symmetry properties of Ω, it is natural to consider the case that the tuple( (
5 

)
 , ), �, �

ext) has some symmetry properties as well:
Firstly, as Ω is invariant under translations in the 43-direction, we assume that the

tuple
( (
5 

)
 , ), �, �

ext) is independent of G3, that is,

5  = 5 (C , G1 , G2 , E1 , E2 , E3), ) = )(C , G1 , G2), � = �(C , G1 , G2), �ext = �ext(C , G1 , G2).

Then, of course the same property also holds for �, �, and �ext. With this assumption,
the resulting system is also called the “two and one-half dimensional” relativistic
Vlasov–Maxwell system, since an 5  as above only depends on two space and three
momentumvariables. Due toGlassey and Schaeffer [GS97], unique, classical solutions
of the resulting system in case of Ω = R3 and �ext = 0 exist globally in time under
suitable assumptions about the initial data.
Secondly, as Ω is invariant under rotations about the G3-axis, we assume that the

tuple
( (
5 

)
 , ), �, �

ext) has the following property:

5 (C , 'G, 'E) = 5 (C , G, E), )(C , 'G) = )(C , G),
�(C , 'G) = '�(C , G), �ext(C , 'G) = '�ext(C , G)

for any rotation ' ∈ R3×3 about the G3-axis. With the use of cylindrical coordinates,
this assumption about the potentials is equivalent to the assumption that

) = )(C , A , G3)

and that the components of the vector potentials in the local coordinate basis
(
4A , 4! , 43

)
be independent of the angle !, that is,

�A = �A(C , A , G3), �! = �!(C , A , G3), �3 = �3(C , A , G3),
�ext
A = �ext

A (C , A , G3), �ext
! = �ext

! (C , A , G3), �ext
3 = �ext

3 (C , A , G3).

With this symmetry, we can also reduce the number of variables in (G, E)-space from
six to five and can write 5 = 5 (A, G3 , �, D, E3) where D =

√
E2

1 + E2
2 and � is the angle

between (G1 , G2) and (E1 , E2). However, we will not make use of the Vlasov equation
written in these variables.
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Additionally to these two space symmetries, we consider time symmetry, i.e., the
tuple

( (
5 

)
 , ), �, �

ext) is assumed to be independent of C, since we are interested in
the existence of (confined) steady states.
In cylindrical coordinates, (for any scalar function ) and any vector-valued function

�) it holds that

%G) = 4A%A) +
1
A
4!%!) + 43%G3),

curlG � = 4A
(
1
A
%!�3 − %G3�!

)
+ 4!

(
%G3�A − %A�3

)
+ 1
A
43

(
%A

(
A�!

)
− %!�A

)
.

Thus, assuming time symmetry and the two space symmetries, (3.1.1) becomes

�A = −%A), �! = �3 = 0,

�A = 0, �! = −%A�3 , �3 =
1
A
%A

(
A�!

)
,

�ext
A = 0, �ext

! = −%A�ext
3 , �ext

3 =
1
A
%A

(
A�ext

!

)
.

Hence, perfect conductor boundary conditions on %Ω are always satisfied in this
case and we can let �A = 0 without loss of generality since �A does not affect the
electromagnetic fields.
Furthermore, we have (for any scalar function ) and any vector-valued function �)

ΔG) =
1
A
%A

(
A%A)

)
+ 1
A2 %

2
!) + %2

G3),

ΔG� = 4A

(
ΔG�A −

1
A2�A −

2
A2 %!�!

)
+ 4!

(
ΔG�! −

1
A2�! +

2
A2 %!�A

)
+ 43ΔG�3.

Thus, assuming time symmetry, the two space symmetries, and �A = 0, on the one
hand the gauge (3.1.2) is automatically satisfied, as

divG � =
1
A
%A(A�A) +

1
A
%!�! + %G3�3 (3.2.1)

in general, and on the other hand (3.1.3) becomes

−1
A

(
A)′

)′
= 4��, −

(
1
A

(
A�!

)′)′
= 4�9! , −

1
A

(
A�′3

)′
= 4�93. (3.2.2)

As ), �!, and �3 only depend on A, we denote the A-derivative with simply ′. Note
that the choice �A = 0 launches the constraint

9A = 0,

i.e., no radial currents are allowed to appear.
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A basic physical principle is that to each symmetry there corresponds an invariant.
As for the two space symmetries, we consider the Lagrangian formalism, where the
characteristic equation

¤E = @
(
� + Ê × �tot)

can be recovered from the Lagrangian (without the use of any gauge)

ℒ = ℒ(C , G, ¤G) = −
√

1 − | ¤G |2 − @
(
)(C , G) − ¤G · �tot(C , G)

)
via

3

3C
(% ¤Gℒ) = %Gℒ

if ¤G = Ê is supposed. From this, for each space symmetry we can derive an invariant.
As for translation invariance, we find that

G B % ¤G3ℒ = E3 + @�tot
3

is the corresponding invariant. Similarly, the invariant corresponding to rotational
symmetry is

ℱ  B % ¤!ℒ = A
(
E! + @�tot

!

)
.

Note that in the formulae for ℱ  (the “canonical angular momentum”) and G,
components of the so-called “canonical momentum”

? = E + @�tot

appear. In the variables
(
G, ?

)
, the particle energy

ℰ B E0
 + @) =

√
<2

 +
��? − @�tot

��2 + @)
is the (in general time-dependent) Hamiltonian governing the motion of the particles
of the -th species. Assuming that the electromagnetic potentials are independent of
time, ℰ is also independent of time and thus another invariant, the one corresponding
to time symmetry.

3.3 Steady states—definition and ansatz
The preceding considerations about symmetry motivate the definition of what we
call a (confined) steady state in our set-up. Before that we collect our symmetry
assumptions.

Definition and Remark 3.3.1. (a) A function 5 : Ω×R3 → R / a function ) : Ω→ R
/ a vector field � : Ω→ R3 is called
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(i) independent of G3 if %G3 5 = 0 / %G3) = 0 / %G3� = 0;

(ii) axially symmetric if 5 ('G, 'E) = 5 (G, E) for any G ∈ Ω, E ∈ R3, and rotation
' ∈ R3×3 about the G3-axis / )('G) = )(G) for any G ∈ Ω and rotation
' ∈ R3×3 about the G3-axis / �('G) = '�(G) for any G ∈ Ω and rotation
' ∈ R3×3 about the G3-axis.

(b) With these two symmetries, the functions ), �A , �!, and �3 only depend on A.
Accordingly, we will often view them as functions on [0, '0].

(c) An axially symmetric vector field � automatically satisfies �1(G) = �2(G) = 0 if
G1 = G2 = 0, i.e., if G lies on the G3-axis.

Remark 3.3.2. From a geometric point of view, the main idea of the setting and the
symmetry assumptions is the following: The confinement device Ω is a coordinate
surface with respect to a suitable orthogonal curvilinear coordinate system (here, A =
const. in cylindrical coordinates) and in these coordinates the potentials only depend
on one variable, namely, on the coordinate which is constant on %Ω. The symmetry
assumption about the magnetic potential thus implies that the magnetic field lies in
the tangent space of the submanifold %Ω, and it carries over to the electromagnetic
fields, which in particular means that the magnetic field is invariant under parallel
transport around closed loops on %Ω. Thus, with this approach confinement devices
whose boundaries have nontrivial curvature (such as a ball) are a priori excluded in
order to allow nontrivial magnetic fields. Conversely, an infinitely long cylinder or
(the interior of) a torus are consistent with this approach since their boundaries are
coordinate surfaces of a suitable orthogonal curvilinear coordinate system and are
flat.

We proceed with an assumption about the external potential, which is supposed to
hold henceforth.

Condition 3.3.3. The external potential �ext : Ω→ R is independent of G3 and axially
symmetric such that �ext

A = 0 and �ext
! , �ext

3 ∈ �1([0, '0]) (viewed as functions of A)
with �ext

! (0) = �ext
3 (0) =

(
�ext

3
)′(0) = 0.

Note that �ext
3 (0) = 0 can be assumed—for simplicity—without loss of generality

since adding a constant to �ext
3 does not affect �ext because of curlG 43 = 0 (as opposed

to this, this invariance under adding constants does not hold for �ext
! , as curlG 4! ≠ 0).

We first prove some technicalities.

Lemma 3.3.4. Let ), �! , �3 ∈ �1([0, '0]) with

)′(0) = �!(0) = �′3(0) = 0 (3.3.1)

and assume �A = 0. Then:
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(i) The potentials ) = )(G) and � = �(G) are continuously differentiable onΩ. Thus, the
electromagnetic fields

� = −%G) = −)′4A , � = curlG � = −�′34! +
1
A

(
A�!

)′
43 (3.3.2)

are continuous on Ω. Moreover, divG � = 0 on Ω.
(ii) If ), �3 ∈ �2([0, '0]), they are even twice continuously differentiable onΩwith respect

to G. Accordingly, � is of class �1 on Ω. If moreover �! ∈ �2(]0, '0]) such that

�′!(A) −
�!(A)
A

= O(A), �′′!(A) = O(1) for A → 0, (3.3.3)

then � ∈ ,2,∞ (
Ω;R3) ∩ �2

(
Ω \ R43;R3

)
. Accordingly, � is of class,1,∞ on Ω and

of class �1 on Ω \ R43.
Proof. Weeasily see that themaps G ↦→ )(G) and G ↦→ �3(G)43 are (twice) continuously
differentiable on Ω if the maps A ↦→ )(A) and A ↦→ �3(A) are (twice) continuously
differentiable on [0, '0] since )′(0) = �′3(0) = 0. There remains to take care of
G ↦→ �!(G)4!(G), in particular at A = 0. Indeed, this map can be continuously
extended to whole Ω because of �!(0) = 0 and is differentiable for A > 0 with

%G
(
�!4!

) (
A, !

)
=

©«
− sin! cos!

(
�′!(A) −

�!(A)
A

)
− sin2 !

(
�′!(A) −

�!(A)
A

)
− �!(A)

A 0

cos2 !
(
�′!(A) −

�!(A)
A

)
+ �!(A)

A sin! cos!
(
�′!(A) −

�!(A)
A

)
0

0 0 0

ª®®®¬
(3.3.4)

where all entries have a limit as A → 0. Hence, also�!4! is continuously differentiable
on Ω. Furthermore, � is divergence free with respect to G, as was already observed
in Section 3.2 because of (3.2.1). Thus, part 3.3.4.(i) is proved. If moreover the
assumptions about �! in part 3.3.4.(ii) are satisfied, all second order derivatives (with
respect to G) of �!4! are bounded for A → 0, since we see by differentiating the entries
of (3.3.4) oncemore that these second order derivatives are expressions in sin!, cos!,
1
A

(
�′!(A) −

�!(A)
A

)
, and �′′!(A), and thus bounded by assumption. Therefore, all second

order derivatives exist on Ω in the weak sense, coincide with the classical derivatives
almost everywhere, and are bounded. This proves the remaining part of 3.3.4.(ii).

Note that this lemma yields that under Condition 3.3.3 the external potential �ext is
continuously differentiable on Ω and divergence free, and that the external magnetic
field �ext = curlG �ext is continuous on Ω.

Remark 3.3.5. In Lemma 3.3.4.(ii), we cannot expect that � ∈ �2
(
Ω;R3

)
in general if

�! ∈ �2([0, '0]) and (3.3.3) holds, as the example �!(A) = A2 shows since

ΔG
(
�!4!

)
1 = −ΔG

(
A2 sin!

)
= −3 sin!
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has no limit for A → 0.

We proceed with a basic definition.

Definition 3.3.6. Let Condition 3.3.3 hold.

(a) A tuple
( (
5 

)
 , ), �

)
is called an axially symmetric steady state of the two and

one-half dimensional relativistic Vlasov–Maxwell system on Ω with external
potential �ext (hereafter abbreviated as steady state) if the following conditions
are satisfied:
(i) For each  = 1, . . . , # , the functions 5  : Ω × R3 → [0,∞[ are continuously

differentiable satisfying 5 (G, ·) ∈ !1 (R3) for each G ∈ Ω.
(ii) The potentials satisfy

) ∈ �2
(
Ω

)
, � ∈ �1

(
Ω;R3

)
∩ �2

(
Ω \ R43;R3

)
∩,2,∞ (

Ω;R3) .
(This condition is motivated in view of Lemma 3.3.4.)

(iii) Any 5  and ), � are independent of G3 and axially symmetric.
(iv) The equations

Ê · %G 5  + @
(
� + Ê × �tot) · %E 5  = 0 on Ω × R3 ,

(3.3.5a)
5 (G, E − 2EA 4A) = 5 (G, E), G ∈ %Ω, E ∈ R3 , EA < 0,

(3.3.5b)

−ΔG) = 4��, −ΔG� = 4�9 , divG � = 0 on Ω,
(3.3.5c)

are satisfied. Here, 4A = 4A(G), EA = E · 4A , and

� = −%G), �tot = curlG
(
� + �ext) ,

� =
#∑
=1

@

∫
R3
5  3E, 9 =

#∑
=1

@

∫
R3
Ê 5

 3E.

(b) A steady state
( (
5 

)
 , ), �

)
is said to

(i) have finite charge if ∫
�'0

∫
R3
5  3E3(G1 , G2) < ∞

for each  = 1, . . . , # ;
(ii) be compactly supportedwith respect to E if there is ( > 0 such that 5 (G, E) =

0 for each  = 1, . . . , # , G ∈ Ω, |E | ≥ (;
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(iii) be nontrivial if 5  . 0 for each  = 1, . . . , # ;
(iv) be confined with radius at most ' if 0 < ' < '0 such that 5 (G, E) = 0 for

each  = 1, . . . , # , G ∈ Ωwith |(G1 , G2)| ≥ ', and E ∈ R3.

Note that perfect conductor boundary conditions are automatically satisfied due to
symmetry, as was already observed in Section 3.2, and are thus omitted in (3.3.5).

Remark 3.3.7. A physically reasonable steady state should have finite charge, which
usually means 5  ∈ !1 (Ω × R3) for each  = 1, . . . , # . However, this is impossible
in our setting (unless all 5  vanish identically) by 5  being independent of G3. Thus,
here we have to modify this definition suitably as above.

According to [Deg90], the natural ansatz for 5  is that

5  = �(ℰ , ℱ  ,G) (3.3.6)

is a function of the three invariants obtained in Section 3.2. We collect some basic
assumptions about the ansatz functions �.

Condition 3.3.8. For each  = 1, . . . , # it holds that:

(i) � ∈ �1 (R3; [0,∞[
)
.

(ii) There exists �∗ ∈ !1 (R2) such that∫
R2

��ℰ�∗ (ℰ ,G)�� 3(ℰ ,G) < ∞
and ���(ℰ , ℱ ,G)�� ≤ �∗ (ℰ ,G)

for all (ℰ , ℱ ,G) ∈ R3.
(iii) There exists �# : R2 → R such that

∀ 3 ∈ R : �# , |ℰ |�

# ∈ !

1(]3,∞[ × R)

and ��∇�(ℰ , ℱ ,G)�� ≤ �# (ℰ ,G)

for all (ℰ , ℱ ,G) ∈ R3.

We first prove that the ansatz (3.3.6) already ensures (3.3.5a) and (3.3.5b). Here and
in the following, we will always write �tot = � + �ext.

Lemma 3.3.9. Let Conditions 3.3.3 and 3.3.8.(i) hold and let ), �! , �3 ∈ �1([0, '0]) with

)′(0) = �!(0) = �′3(0) = 0.
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Then, for each  = 1, . . . , # ,

5  : Ω × R3 → R, 5 (G, E) = �(ℰ(G, E), ℱ (G, E),G(G, E))

= �
(
E0
 + @)(A), A

(
E! + @�tot

! (A)
)
, E3 + @�tot

3 (A)
)

(3.3.7)

is continuously differentiable, independent of G3, axially symmetric, and satisfies (3.3.5a)
and (3.3.5b).

Proof. We first note that 5  is continuously differentiable because of AE! = G1E2− G2E1

and )′(0) =
(
A�tot

!

)′
(0) =

(
�tot

3
)′(0) = 0. Clearly, 5  is independent of G3 and axially

symmetric. Furthermore, it is easy to see that (3.3.5b) holds since ℰ is even in EA and
ℱ , G do not depend on EA . To ensure (3.3.5a) for 5  it suffices to prove that ℰ,
ℱ , and G themselves satisfy (3.3.5a)—this clearly holds, as they are invariants of
the motion; for the sake of completeness, we carry out the computation. Since they
are of class �1 on Ω × R3, this only needs to be verified for A > 0. In the following,
have (3.3.2) in mind. Firstly,

Ê · %Gℰ + @
(
� + Ê × �tot) · %Eℰ = −@ Ê · � + @ (� + Ê × �tot) · Ê = 0.

Secondly,

Ê · %Gℱ  + @
(
� + Ê × �tot) · %Eℱ 

= Ê ·
(
E! + @�tot

!

)
4A − Ê · EA 4! + @ Ê · A

(
�tot
!

)′
4A + @

(
� + Ê × �tot) · A4!

= @ Ê · 4A
(
�tot
! + A

(
�tot
!

)′
− A · 1

A

(
A�tot

!

)′)
= 0.

Thirdly,

Ê · %GG + @
(
� + Ê × �tot) · %EG = @ Ê ·

(
�tot

3
)′
4A + @

(
� + Ê × �tot) · 43 = 0.

Thus, (3.3.5a) holds for 5  by the chain rule.

The ansatz (3.3.6) in turn can be inserted into the definition of � and 9 to derive
representations of these densities in terms of the potentials.

Lemma 3.3.10. Let ) : [0, '0] → R, � : [0, '0] → R3, Condition 3.3.8.(ii) hold, and 5 

be defined as in (3.3.7) for each  = 1, . . . , # . Then, 5 (G, ·) ∈ !1 (R3) for each G ∈ Ω.
Furthermore, � and 9 are independent of G3 and axially symmetric, and we have

4��(A) = 61

(
A, )(A), �tot

! (A), �tot
3 (A)

)
, (3.3.8a)

9A(A) = 0, (3.3.8b)

4�9!(A) = 62

(
A, )(A), �tot

! (A), �tot
3 (A)

)
, (3.3.8c)
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4�93(A) = 63

(
A, )(A), �tot

! (A), �tot
3 (A)

)
(3.3.8d)

for A ∈ [0, '0], where 61 , 62 , 63 : [0, '0] × R3 → R,

©«
61
62
63

ª®¬(A, 0, 1, 2)
= 4�

#∑
=1

@

∫
R

∫ ∞√
<2
+(G−@2)2+@0

∫ 2�

0

©«
ℰ − @0√(

ℰ − @0
)2 −

(
G − @2

)2 − <2
 sin�

G − @2

ª®®¬
·�

(
ℰ , A

√(
ℰ − @0

)2 −
(
G − @2

)2 − <2
 sin� + A@1,G

)
3�3ℰ3G (3.3.9)

C
#∑
=1

©«
61
62
63

ª®¬(A, 0, 1, 2)
are continuous functions. Moreover, �� (62 , 63 ) �� ≤ ��61 �� (3.3.10)

on [0, '0] × R3 for each  = 1, . . . , # .

Proof. At least formally we have

∫
R3

©«
1

Ê · 4A
Ê · 4!
Ê · 43

ª®®®¬�
(ℰ , ℱ  ,G) 3E

=

∫
R

∫ ∞

0

∫ 2�

0

D√
<2

 + D2 + E2
3

©«
√
<2

 + D2 + E2
3

D cos�
D sin�
E3

ª®®®®¬
· �

(√
<2

 + D2 + E2
3 + @)(A), AD sin� + A@�tot

! (A), E3 + @�tot
3 (A)

)
3�3D3E3

=

∫
R

∫ ∞√
<2
+(G−@�tot

3 (A))
2+@)(A)

∫ 2�

0

©«
ℰ − @)(A)

0√(
ℰ − @)(A)

)2 −
(
G − @�tot

3 (A)
)2 − <2

 sin�

G − @�tot
3 (A)

ª®®®®¬
·�

(
ℰ , A

√(
ℰ − @)(A)

)2 −
(
G − @�tot

3 (A)
)2 − <2

 sin� + A@�tot
! (A),G

)
3�3ℰ3G ,



3.3 Steady states—definition and ansatz 121

where we introduced polar coordinates in the (E1 , E2)-plane with basis
(
4A , 4!

)
and

then substituted firstly ℰ =
√
<2

 + D2 + E2
3 + @)(A) and secondly G = E3 + @�tot

3 (A).
Note that the integral in the second line vanishes after substituting H = sin�. Due to
Condition 3.3.8.(ii), the modulus of the integrand in the first line can be estimated by(

|ℰ | +
��@����)(A)��)�∗ (ℰ ,G)

and is hence integrable. Because of |Ê | < 1 also the other integrals exist. Thus, the
above calculation is justified. Multiplying these identities with @ and summing over
 yields the representation. The above estimate on the integrands also implies that 68
is continuous, 8 = 1, 2, 3. Finally, (3.3.10) is also a consequence of |Ê | < 1.

Remark 3.3.11. The proof of the preceding lemma additionally shows that any steady
state obtained in the following sections has finite charge. Indeed, for this it is sufficient
that A) is integrable over [0, '0], which is of course the case when ) is continuous.

According to Lemma 3.3.10, after integrating (3.2.2) and using the representation
(3.3.8), the problem of finding a steady state with the ansatz (3.3.6) reduces to finding
), �3 ∈ �2([0, '0]), �! ∈ �2(]0, '0]) ∩ �1([0, '0]) satisfying (3.3.1), (3.3.3), and

)(A) = −
∫ A

0

1
B

∫ B

0
�61

(
�, )(�), �tot

! (�), �tot
3 (�)

)
3�3B, (3.3.11a)

�!(A) = −
1
A

∫ A

0
B

∫ B

0
62

(
�, )(�), �tot

! (�), �tot
3 (�)

)
3�3B, (3.3.11b)

�3(A) = −
∫ A

0

1
B

∫ B

0
�63

(
�, )(�), �tot

! (�), �tot
3 (�)

)
3�3B (3.3.11c)

for A > 0 in view of Lemmas 3.3.4 and 3.3.9; note that we could prescribe arbitrary
values for ) and �3 at A = 0, and we choose both of these values to be zero. Therefore,
it is convenient to introduce the map

ℳ : �
(
[0, '0];R3) → �

(
[0, '0];R3) ,

ℳ
(
), �! , �3

)
=

©«
[0, '0] 3 A ↦→

©«
−

∫ A

0
1
B

∫ B

0 �61

(
�, )(�), �tot

! (�), �tot
3 (�)

)
3�3B

− 1
A

∫ A

0 B
∫ B

0 62

(
�, )(�), �tot

! (�), �tot
3 (�)

)
3�3B

−
∫ A

0
1
B

∫ B

0 �63

(
�, )(�), �tot

! (�), �tot
3 (�)

)
3�3B

ª®®®®¬
ª®®®®¬
.

The following lemma shows that indeedℳ is well-defined (with the obvious inter-
pretationℳ

(
), �! , �A

)
(0) = (0, 0, 0)) and that it suffices to search for fixed points of

ℳ.

Lemma 3.3.12. Assume Conditions 3.3.3, 3.3.8.(i), and 3.3.8.(ii).

(i) For any
(
), �! , �3

)
∈ �

(
[0, '0];R3) we have(

)̃, �̃! , �̃3

)
Bℳ

(
), �! , �3

)
∈ �2 ([0, '0];R3) .
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Furthermore,
(
)̃, �̃! , �̃3

)
satisfies (3.3.1) and (3.3.3).

(ii) If
(
), �! , �3

)
∈ �

(
[0, '0];R3) is a fixed point ofℳ, then

( (
5 

)
 , ), �

)
is a steady

state, where the 5  are defined via the ansatz (3.3.6).

Proof. Due to Lemma 3.3.10, the functions

6̃8 : [0, '0] → R, 6̃8(�) = 68

(
�, )(�), �tot

! (�), �tot
3 (�)

)
are continuous, 8 = 1, 2, 3, and hence bounded by some constant � > 0. Thus,��)̃(A)��, ���̃3(A)

�� ≤ � ∫ A

0

1
B

∫ B

0
�3� =

�

4 A
2 ,

���̃!(A)
�� ≤ �

A

∫ A

0
B

∫ B

0
3� =

�

3 A
2

for A ∈ ]0, '0]. Hence, )̃, �̃!, and �̃3 are continuous also in A = 0, and �̃!(A)
A = O(A)

for A → 0. Furthermore, the ‘tilde’-potentials are twice continuously differentiable on
]0, '0]with

)̃′(A) = −1
A

∫ A

0
B 6̃1(B) 3B, )̃′′(A) = 1

A2

∫ A

0
B 6̃1(B) 3B − 6̃1(A),

�̃′!(A) =
1
A2

∫ A

0
B

∫ B

0
6̃2(�) 3�3B −

∫ A

0
6̃2(B) 3B,

�̃′′!(A) = −
2
A3

∫ A

0
B

∫ B

0
6̃2(�) 3�3B +

1
A

∫ A

0
6̃2(B) 3B − 6̃2(A),

�̃′3(A) = −
1
A

∫ A

0
B 6̃3(B) 3B, �̃′′3 (A) =

1
A2

∫ A

0
B 6̃3(B) 3B − 6̃3(A).

Because of ��)̃′(A)��, ���̃′3(A)�� ≤ �

A

∫ A

0
B 3B =

�

2 A,����̃′!(A)��� ≤ �

A2

∫ A

0
B

∫ B

0
3�3B + �A = 4�

3 A

they are continuously differentiable on [0, '0]with vanishing derivative at A = 0, and
moreover �̃′!(A) = O(A) for A → 0. Furthermore, by l’Hôpital’s rule we have

lim
A→0

)̃′′(A) = lim
A→0

A 6̃1(A)
2A − 6̃1(0) = −

6̃1(0)
2 ,

lim
A→0

�̃′′!(A) = − lim
A→0

2A
∫ A

0 6̃2(B) 3B
3A2 + 6̃2(0) − 6̃2(0) = −

26̃2(0)
3 ,

lim
A→0

�̃′′3 (A) = lim
A→0

A 6̃3(A)
2A − 6̃3(0) = −

6̃3(0)
2 .
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Therefore, )̃, �̃! , �̃3 ∈ �2([0, '0]) and clearly �̃′′!(A) = O(1) for A → 0. Finally,
from Lemmas 3.3.4, 3.3.9, and 3.3.10 it follows that

( (
5 

)
 , ), �

)
is a steady state if(

), �! , �3
)
is a fixed point of ℳ; note that (3.3.11) implies (3.2.2) and this yields

−ΔG) = 4�� onΩ and −ΔG� = 4�9 onΩ \R43 in the classical sense, and −ΔG� = 4�9
on Ω in the weak sense.

3.4 Existence of steady states

3.4.1 A priori estimates
There only remains to find a fixed point ofℳ. For this, the most important tool is
to derive a priori bounds for the potentials. Therefore, we assume for the time being
that we already have a solution

(
), �! , �3

)
∈ �

(
[0, '0];R3) of (3.3.11). Due to (3.3.9),

we first have the following estimate on 61 for each (A, 0, 1, 2) ∈ [0, '0] × R3:��61 (A, 0, 1, 2)�� ≤ 4�
��@�� · 2�∫

R2

(
|ℰ | +

��@��|0 |)�∗ (ℰ ,G) 3(ℰ ,G).
Using (3.3.10) and summing over  yields��68(A, 0, 1, 2)�� ≤ 21 + 22 |0 |, 8 = 1, 2, 3, (3.4.1)

where we introduced the abbreviations

21 B 8�2
#∑
=1

��@�� ∫
R2
|ℰ |�∗ (ℰ ,G) 3(ℰ ,G) < ∞,

22 B 8�2
#∑
=1

��@��2 ∫
R2
�∗ (ℰ ,G) 3(ℰ ,G) < ∞.

Therefore, in view of (3.3.11a) an integral inequality for ) follows, namely,��)(A)�� ≤ ∫ A

0

1
B

∫ B

0
�
(
21 + 22

��)(�)��) 3�3B = 21
4 A

2 + 22

∫ A

0

1
B

∫ B

0
�
��)(�)�� 3�3B (3.4.2)

for A ∈ [0, '0]. We could thus easily derive the inequality��)(A)�� ≤ 21
4 '

2
0 + 22'0

∫ A

0

��)(B)�� 3B (3.4.3)

and therefore ��)(A)�� ≤ 21
4 '

2
04
22'0A (3.4.4)

via Gronwall’s lemma. However, (3.4.3) is way too crude and hence (3.4.4) is not
very sharp. If we were to use this a priori estimate later to show confinement of
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a steady state, the needed assumption about the external potential would be quite
strong. Consequently, in order to allow a wider class for external potentials ensuring
confinement later, we now search for a sharper a priori estimate on ).
Thus, we search for a solution of the integral equation corresponding to (3.4.2), that

is,

�(A) = 21
4 A

2 + 22

∫ A

0

1
B

∫ B

0
��(�) 3�3B. (3.4.5)

For any � ∈ �([0, '0]), the elementary identity∫ A

0

1
B

∫ B

0
��(�) 3�3B =

∫ A

0

∫ A

�

1
B
��(�) 3B3� =

∫ A

0
(ln A − ln B)B�(B) 3B (3.4.6)

holds for any A ∈ [0, '0] (where the right-hand side is defined to be zero in A = 0).
Therefore, (3.4.5) becomes a Volterra integral equation of the second kind, namely,

�(A) = 21
4 A

2 + 22

∫ A

0
(ln A − ln B)B�(B) 3B (3.4.7)

with nonnegative, square integrable Volterra kernel

+ : [0, '0]2 → R, +(A, B) =
{
22(ln A − ln B)B, 0 < B ≤ A ≤ '0 ,

0, else.

It is well known that Volterra integral equations such as (3.4.7) have a unique square
integrable solution; see [Tri57, Section 1.5.]. To find this solution, we rather work with
(3.4.5), which suggests a series ansatz

�(A) =
∞∑
:=0

0:A
:

for �. With this ansatz, at least formally we demand

∞∑
:=0

0:A
: !
=
21
4 A

2 + 22

∫ A

0

1
B

∫ B

0
��(�) 3�3B = 21

4 A
2 + 22

∫ A

0

1
B

∫ B

0
�
∞∑
:=0

0:�
: 3�3B

=
21
4 A

2 + 22

∫ A

0

∞∑
:=0

0:
: + 2 B

:+1 3B =
21
4 A

2 + 22

∞∑
:=0

0:

(: + 2)2 A
:+2 =

21
4 A

2 +
∞∑
:=2

220:−2
:2 A: .

(3.4.8)

Thus,

00 = 01 = 0, 02 =
21
4 +

2200
22 =

21
4 .
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Therefore, 0: = 0 if : is odd, and

02< =
2202(<−1)

4<2

for < ≥ 2. Hence, we have

02< =
212

<−1
2

4<(<!)2

for < ∈ N by induction. Consequently, we define

� : R→ R, �(A) =
∞∑
:=1

212
:−1
2

4:(:!)2
A2: .

Obviously, this series is uniformly convergent on any bounded interval, whence the
calculation (3.4.8) is justified and � indeed is the unique square integrable solution of
(3.4.7) on [0, '0] by (3.4.6). Moreover, ) satisfies the corresponding integral inequality��)(A)�� ≤ 21

4 A
2 + 22

∫ A

0
(ln A − ln B)B

��)(B)�� 3B.
Thus, ��)(A)�� ≤ �(A) (3.4.9)

for all A ∈ [0, '0] as a consequence of the positivity of Volterra operators in the case
+ ≥ 0; see [Bee69, Theorem 5]. Therefore, we have established a quite sharp a priori
bound on ).

In order to obtain similar estimates also for �! and �3, we insert (3.4.1) and (3.4.9)
into (3.3.11b) and (3.3.11c). On the one hand, we conclude���!(A)

�� ≤ 1
A

∫ A

0
B

∫ B

0

(
21 + 22

��)(�)��) 3�3B ≤ 21
3 A

2 + 22
A

∫ A

0
B

∫ B

0
�(�) 3�3B

=
21
3 A

2 + 22
A

∫ A

0

∞∑
:=1

212
:−1
2

(2: + 1)4:(:!)2
B2:+2 3B

=
21
3 A

2 +
∞∑
:=1

212
:
2

(2: + 1)(2: + 3)4:(:!)2
A2:+2 =

∞∑
:=1

212
:−1
2(

1 − 1
4:2

)
4:(:!)2

A2: C �(A)

(3.4.10)

and on the other hand

|�3(A)| ≤
∫ A

0

1
B

∫ B

0
�
(
21 + 22

��)(�)��) 3�3B ≤ 21
4 A

2 + 22

∫ A

0

1
B

∫ B

0
��(�) 3�3B = �(A)

(3.4.11)

for A ∈ [0, '0]. Note that the a priori bound on �! is slightly weaker than the bounds
on ) and �3 since obviously � ≤ �.
Thus, we have proved the following important a priori estimate.
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Lemma 3.4.1. Let
(
), �! , �3

)
∈ �

(
[0, '0];R3) be a fixed point ofℳ. Then it holds that��)(A)��, |�3(A)| ≤ �(A),

���!(A)
�� ≤ �(A)

for A ∈ [0, '0].

For the sake of completeness, we remark that � can be written in terms of a Bessel
function, which corresponds to the fact that (3.4.5) implies

A2�′′ + A�′ − 22A
2� = 21A

2 ,

whence

I(A) B 22
21
�

(
A√
22

)
+ 1

solves the modified Bessel equation

A2I′′ + AI′ − A2I = 0.

Endowed with the initial condition �(0) = �′(0) = 0, this yields I = �0, where �0 is the
modified Bessel function of the first kind (with parameter 0). Consequently,

�(A) = 21
22

(
�0

(√
22A

)
− 1

)
.

3.4.2 Fixed point argument
We proceed with proving that steady states really do exist via some fixed point
argument. Throughout the rest of this chapter, we assume that Condition 3.3.8 holds
and equip the space �

(
[0, '0];R3) with the norm(), �! , �3

)
�([0,'0];R3) = sup

A∈[0,'0]

�� ()(A), �!(A), �3(A)
) ��. (3.4.12)

The a priori bounds obtained in the last section are an important tool to prove existence
of solutions to (3.3.11). In view of Schaefer’s fixed point theorem—see [Eva10, Section
9.2.2.], for example—we have to prove that ℳ is continuous and compact, and we
have to establish a priori bounds on possible fixed points of the operators �ℳ for
0 ≤ � ≤ 1. The second task is easily carried out by using the results of Section 3.4.1.

Lemma 3.4.2. Let
(
), �! , �3

)
∈ �

(
[0, '0];R3) such that

(
), �! , �3

)
= �ℳ

(
), �! , �3

)
for some 0 ≤ � ≤ 1. Then it holds that��)(A)��, |�3(A)| ≤ �(A),

���!(A)
�� ≤ �(A)

for A ∈ [0, '0]. In particular, the set{(
), �! , �3

)
∈ �

(
[0, '0];R3) | (), �! , �3

)
= �ℳ

(
), �! , �3

)
for some 0 ≤ � ≤ 1

}
is bounded.
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Proof. By (3.4.1), we obtain��)(A)�� ≤ �

∫ A

0

1
B

∫ B

0
�
(
21 + 22

��)(�)��) 3�3B ≤ 21
4 A

2 + 22

∫ A

0

1
B

∫ B

0
�
��)(�)�� 3�3B

similarly to (3.4.2). Hence,
��)(A)�� ≤ �(A) for A ∈ [0, '0]. Similarly to (3.4.10) and (3.4.11),

we also have���!(A)
�� ≤ �

A

∫ A

0
B

∫ B

0

(
21 + 22

��)(�)��) 3�3B ≤ 21
3 A

2 + 22
A

∫ A

0
B

∫ B

0
�(�) 3�3B = �(A),

|�3(A)| ≤ �

∫ A

0

1
B

∫ B

0
�
(
21 + 22

��)(�)��) 3�3B ≤ 21
4 A

2 + 22

∫ A

0

1
B

∫ B

0
��(�) 3�3B = �(A)

for A ∈ [0, '0].

Thus, there remains to prove the following lemma.

Lemma 3.4.3. The mapℳ is (even locally Lipschitz) continuous and compact.

Proof. Let ( > 0 and
(
), �! , �3

)
,
(
), �! , �3

)
∈ �( ⊂ �

(
[0, '0];R3) . On the one hand,

following the calculation in the proof of Lemma 3.3.10, we have for each A ∈ [0, '0]
for some (0, 1, 2), possibly depending on the integration variables, in the line segment
connecting

(
)(A), �!(A), �3(A)

)
and

(
)(A), �!(A), �3(A)

)
,��� (61 , 62 , 63

) (
A, )(A), �tot

! (A), �tot
3 (A)

)
−

(
61 , 62 , 63

) (
A, )(A), �tot

! (A), �
tot
3 (A)

)���
=

�������4�
#∑
=1

@2


∫
R

∫ ∞

0

∫ 2�

0

D√
<2

 + D2 + E2
3

©«
√
<2

 + D2 + E2
3

D sin�
E3

ª®®¬
·
∇�



(√
<2

 + D2 + E2
3 + @0, AD sin� + A@1 + A@�ext

! (A), E3 + @2 + @�ext
3 (A)

)

·
©«

)(A) − )(A)
A
(
�!(A) − �!(A)

)
�3(A) − �3(A)

ª®®¬
 3�3D3E3

�������
=

�������4�
#∑
=1

@2


∫
R

∫ 2�

0

∫ ∞√
<2
+(G−@2−@�ext

3 (A))
2+@0

©«
ℰ − @0√(

ℰ − @0
)2 −

(
G − @2 − @�ext

3 (A)
)2 − <2

 sin�

G − @2 − @�ext
3 (A)

ª®®¬
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·
∇�



(
ℰ , A

√(
ℰ − @0

)2 −
(
G − @2 − @�ext

3 (A)
)2 − <2

 sin� + A@1 + A@�ext
! (A),G

)

·
©«

)(A) − )(A)
A
(
�!(A) − �!(A)

)
�3(A) − �3(A)

ª®®¬
 3ℰ3�3G

�������
≤ 8
√

3�2(1 + '0)
#∑
=1

��@��2 ∫
R

∫ ∞

−|@ |(
(
|ℰ | +

��@��()�# (ℰ ,G) 3ℰ3G
·
��� (), �! , �3

)
(A) −

(
), �! , �3

)
(A)

���
= �(()

��� (), �! , �3
)
(A) −

(
), �! , �3

)
(A)

���, (3.4.13)

where the constant �(() is finite due to Condition 3.3.8.(iii) (with 3 B −
��@��( there).

Integrating this estimate, we conclude���ℳ (
), �! , �3

)
(A) −ℳ

(
), �! , �3

)
(A)

���
≤ �(()

(), �! , �3
)
−

(
), �! , �3

)
�([0,'0];R3)

·
����(∫ A

0

1
B

∫ B

0
� 3�3B,

1
A

∫ A

0
B

∫ B

0
3�3B,

∫ A

0

1
B

∫ B

0
� 3�3B

)����
= �(() ·

√
34

12 A2
(), �! , �3

)
−

(
), �! , �3

)
�([0,'0];R3)

, (3.4.14)

whence ℳ (
), �! , �3

)
−ℳ

(
), �! , �3

)
�([0,'0];R3)

≤ �(() ·
√

34
12 '2

0

(), �! , �3
)
−

(
), �! , �3

)
�([0,'0];R3)

. (3.4.15)

Therefore,ℳ is locally Lipschitz continuous.
On the other hand, by (3.4.1) we have���68 (A, )(A), �tot

! (A), �tot
3 (A)

)��� ≤ 21 + 22
��)(A)�� ≤ 21 + 22( C �̃(()

for 8 = 1, 2, 3 and A ∈ [0, '0]. Furthermore,(
ℳ

(
), �! , �3

) )′(0) = (0, 0, 0)
by (the proof of) Lemma 3.3.12.(i), and for 0 < A ≤ '0 we have�� (ℳ8

(
), �! , �3

) )′(A)�� = ����−1
A

∫ A

0
B68

(
B, )(B), �tot

! (B), �tot
3 (B)

)
3B

���� ≤ �̃(()A
2 ≤ �̃(()'0

2
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for 8 = 1, 3 and�� (ℳ2
(
), �! , �3

) )′(A)��
=

���� 1
A2

∫ A

0
B

∫ B

0
62

(
�, )(�), �tot

! (�), �tot
3 (�)

)
3�3B −

∫ A

0
62

(
B, )(B), �tot

! (B), �tot
3 (B)

)
3B

����
≤ �̃(()A

3 + �̃(()A ≤ 4�̃(()'0
3 .

Therefore, for each
(
), �! , �3

)
∈ �(, we have thatℳ

(
), �! , �3

)
is Lipschitz contin-

uous with a uniform Lipschitz constant, i.e., a Lipschitz constant only depending on
(. By the theorem of Arzelà–Ascoli,ℳ thus maps bounded sets to precompact sets,
that is,ℳ is compact.

Theorem 3.4.4. Let Conditions 3.3.3 and 3.3.8 hold. Then ℳ has a unique fixed point.
Thus, there exists an axially symmetric steady state

( (
5 

)
 , ), �

)
of the two and one-half

dimensional relativistic Vlasov–Maxwell system onΩ with external potential �ext, where the
5  are written in terms of ) and �; cf. (3.3.7).

Proof. Combining Lemmas 3.4.2 and 3.4.3 and invoking Schaefer’s fixed point theorem
weconclude thatℳ has afixedpoint. Due toLemma3.3.12,weobtain a corresponding
steady state.
There remains to prove that a fixed point of ℳ is unique. If we have two fixed

points
(
), �! , �3

)
,
(
), �! , �3

)
ofℳ, let ( > 0 such that

(
), �! , �3

)
,
(
), �! , �3

)
∈

�( ⊂ �
(
[0, '0];R3) . By (3.4.13) it holds that��� (), �! , �3

)
(A) −

(
), �! , �3

)
(A)

��� = ��� (ℳ (
), �! , �3

) )
(A) −

(
ℳ

(
), �! , �3

))
(A)

���
≤ �(()

����(∫ A

0

1
B

∫ B

0
�
��� (), �! , �3

)
(�) −

(
), �! , �3

)
(�)

��� 3�3B,
1
A

∫ A

0
B

∫ B

0

��� (), �! , �3
)
(�) −

(
), �! , �3

)
(�)

��� 3�3B,∫ A

0

1
B

∫ B

0
�
��� (), �! , �3

)
(�) −

(
), �! , �3

)
(�)

��� 3�3B)����
≤ �(() ·

√
3'0

∫ A

0

��� (), �! , �3
)
(B) −

(
), �! , �3

)
(B)

��� 3B
for each A ∈ [0, '0]. Thus, the two fixed points coincide due to Gronwall’s lemma.

3.4.3 Direct construction
Since the above proof of existence of steady states is not constructive, in this section
we provide a method to obtain steady states which is constructive. To this end, we
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define an approximating sequence
((
): , �:! , �

:
3

))
:∈N0

recursively via(
)0 , �0

! , �
0
3

)
= (0, 0, 0),

(
):+1 , �:+1

! , �:+1
3

)
=ℳ

(
): , �:! , �

:
3

)
.

To show that this sequence indeed converges to a (and thus the) fixed point ofℳ, we
first prove that this sequence is bounded. In fact, the a priori estimates of Section 3.4.1
carry over.
Lemma 3.4.5. For each : ∈ N0 and A ∈ [0, '0] it holds that��):(A)��, ���:3(A)�� ≤ �(A),

����:!(A)��� ≤ �(A).

In particular, (): , �:! , �:3)
�([0,'0];R3)

≤
√

2�('0)2 + �('0)2 C (.

Proof. We prove��):(A)��, ���:3(A)�� ≤ :∑
9=1

212
9−1
2

49
(
9!
)2 A

29 ,
����:!(A)��� ≤ :∑

9=1

212
9−1
2(

1 − 1
492

)
49

(
9!
)2
A29

via induction, from which the assertion follows. Indeed, this obviously holds true for
: = 0, and thanks to (3.4.1) we also have��):+1(A)

��, ���:+1
3 (A)

�� ≤ ∫ A

0

1
B

∫ B

0
�
(
21 + 22

��):(�)��) 3�3B
≤ 21

4 A
2 + 22

∫ A

0

1
B

∫ B

0
�

:∑
9=1

212
9−1
2

49
(
9!
)2 �

29 3�3B =
21
4 A

2 + 22

∫ A

0

:∑
9=1

212
9−1
2

49
(
9!
)2 (29 + 2

) B29+1 3B

=
21
4 A

2 +
:∑
9=1

212
9

2

49+1 ( ( 9 + 1
)
!
)2 A

29+2 =

:+1∑
9=1

212
9−1
2

49
(
9!
)2 A

29

and����:+1
! (A)

��� ≤ 1
A

∫ A

0
B

∫ B

0

(
21 + 22

��):(�)��) 3�3B ≤ 21
3 A

2 + 22
A

∫ A

0
B

∫ B

0

:∑
9=1

212
9−1
2

49
(
9!
)2 �

29 3�3B

=
21
3 A

2 + 22
A

∫ A

0

:∑
9=1

212
9−1
2

49
(
9!
)2 (29 + 1

) B29+2 3B

=
21
3 A

2 +
:∑
9=1

212
9

2(
1 − 1

4(9+1)2
)
49+1 ( ( 9 + 1

)
!
)2
A29+2 =

:+1∑
9=1

212
9−1
2(

1 − 1
492

)
49

(
9!
)2
A29 .
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We can now prove the following result.

Theorem 3.4.6. Let Conditions 3.3.3 and 3.3.8 hold. Then,
((
): , �:! , �

:
3

))
:∈N0

, where(
)0 , �0

! , �
0
3

)
= (0, 0, 0),

(
):+1 , �:+1

! , �:+1
3

)
=ℳ

(
): , �:! , �

:
3

)
, : ∈ N0 ,

is a Cauchy sequence in �
(
[0, '0];R3) . The limit

(
), �! , �3

)
is the fixed point of ℳ,

whence
( (
5 

)
 , ), �

)
is an axially symmetric steady state of the two and one-half dimensional

relativistic Vlasov–Maxwell system onΩwith external potential�ext, where the 5  are written
in terms of ) and �; cf. (3.3.7).

Proof. We abbreviate %: B
(
): , �:! , �

:
3

)
for : ∈ N0. By Lemma 3.4.5 and (3.4.13) we

have ��):+1(A) − ):(A)
��, ����:+1

! (A) − �:!(A)
���, ���:+1

3 (A) − �
:
3(A)

��
≤ �(()

∫ A

0

∫ B

0

��%:(�) − %:−1(�)
�� 3�3B

and thus ��%:+1(A) − %:(A)
�� ≤ √3�(()

∫ A

0

∫ B

0

��%:(�) − %:−1(�)
�� 3�3B

for A ∈ [0, '0], : ∈ N. With � B
√

3�(() this yields��%:+1(A) − %:(A)
�� ≤ (�:

(2:)! A
2:

for each A ∈ [0, '0], : ∈ N0 via induction: Indeed, this estimate obviously holds true
for : = 0, and moreover we have��%:+1(A) − %:(A)

�� ≤ � ∫ A

0

∫ B

0

��%:(�) − %:−1(�)
�� 3�3B ≤ � ∫ A

0

∫ B

0

(�:−1

(2: − 2)!�
2:−2 3�3B

=
(�:

(2: − 1)!

∫ A

0
B2:−1 3B =

(�:

(2:)! A
2:

for : ≥ 1. Therefore, for each < ≥ : and A ∈ [0, '0] it holds that��%<(A) − %:(A)�� ≤ <−1∑
9=:

��% 9+1(A) − % 9(A)
�� ≤ <−1∑

9=:

(� 9(
29

)
!
A29 ≤

∞∑
9=:

(� 9(
29

)
!
'

29
0 .

Since the series
∞∑
9=0

(� 9(
29

)
!
'

29
0 converges, it follows that

(
%:

)
is a Cauchy sequence in

�
(
[0, '0];R3) . Passing to the limit, we easily see that(

), �! , �3
)
= lim

:→∞

(
):+1 , �:+1

! , �:+1
3

)
= lim

:→∞
ℳ

(
): , �:! , �

:
3

)
=ℳ

(
), �! , �3

)
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since ℳ is continuous due to Lemma 3.4.3. Hence,
(
), �! , �3

)
is a (and by Theo-

rem 3.4.4 the) fixed point ofℳ and the corresponding tuple
( (
5 

)
 , ), �

)
is a steady

state.

Remark 3.4.7. We should mention that there is yet another way to construct a fixed
point of ℳ, which to some extent corresponds to the fixed point iteration above:
Looking at (3.2.2) we see that this system of three ordinary differential equations has
singular coefficients at A = 0. Firstly, we solve the integrated system, i.e., (3.3.11), on
some small interval [0, �] as follows: Choose some ( > ‖ℳ(0, 0, 0)‖�([0,'0];R3) and let
0 < � ≤ '0 such that

(�(() ·
√

34
12 �2 + ‖ℳ(0, 0, 0)‖�([0,'0];R3) ≤ ( and �(() ·

√
34

12 �2 < 1

where �(() is the constant from (3.4.13). Clearly, (3.4.13) also holds on [0, �] for any(
), �! , �3

)
,
(
), �! , �3

)
∈ �

(
[0, �];R3) with �

(
[0, �];R3)-norm (similarly defined as

in (3.4.12)) less or equal (. For such potentials, proceeding as in (3.4.14) and (3.4.15)
with '0 replaced by �, we concludeℳ�

(
), �! , �3

)
−ℳ�

(
), �! , �3

)
�([0,�];R3)

≤ �(() ·
√

34
12 �2

(), �! , �3
)
−

(
), �! , �3

)
�([0,�];R3)

whereℳ� is defined asℳ only '0 replaced by �. Thus, denoting

- B
{(
), �! , �3

)
∈ �

(
[0, �];R3) | (), �! , �3

)
�([0,�];R3) ≤ (

}
,

the mapℳ� : - → - is well-defined and a contraction by choice of �, and therefore
has a unique fixed point, which is the unique continuous solution of (3.3.11) on [0, �].
Secondly, we consider the system (3.2.2) of three ordinary differential equations on
[�, '0], where all appearing coefficients are now smooth. We equip this system with
the initial condition that the potentials themselves and their first derivatives at A = �
shall coincide with the values and first derivatives at A = � of the solution on [0, �]
obtained in the first step—note that a posteriori these potentials on [0, �] are of class
�2; cf. Lemma 3.3.12.(i). Since the right-hand sides of (3.2.2) written in terms of the
potentials are continuous, locally Lipschitz continuous with respect to the potentials,
andgrowatmost linearly in thepotentials due toLemma3.3.10, (3.4.13), and (3.4.1), we
infer from standard ODE theory that this initial value problem has a unique solution
on [�, '0]. Altogether, combining the obtained potentials on [0, �] and [�, '0], we
arrive at a solution of (3.3.11) on [0, '0], that is, a fixed point ofℳ.

3.4.4 Further properties
A desirable property of a steady state is that it is compactly supported with respect to
E. It is well known in similar settings that for this there should exist a cut-off energy.
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Indeed, the existence of such a cut-off energy guarantees this property also in our
setting, as is shown below. Another obvious property which should hold is that the
steady state is nontrivial—for example, we have not excluded the pointless possibility
� = 0 yet. We first state conditions under which a steady state indeed has these two
properties and then prove the corresponding theorem.

Condition 3.4.8. For each  = 1, . . . , # it holds that:

(i) There exists ℰ0 ≥ 0 such that �(ℰ , ℱ ,G) = 0 if ℰ ≥ ℰ0 .
(ii) There exist ℰD > <, G

;
< 0, G

D > 0, and
(1) ℱ 

;
< 0, ℱ 

D ≥ 0 or
(2) ℱ 

;
≤ 0, ℱ 

D > 0
such that

∀ (ℰ , ℱ ,G) ∈ ]< , ℰD [ ×
]
ℱ 
;
, ℱ 

D

[
×

]
G
;
,G

D

[
: �(ℰ , ℱ ,G) > 0.

Theorem 3.4.9. Let Conditions 3.3.3 and 3.3.8 hold and let
( (
5 

)
 , ), �

)
be a steady state,

where
(
), �! , �3

)
is the fixed point ofℳ and the 5  are given by (3.3.7). Then we have:

(i) If Condition 3.4.8.(i) is satisfied, then the steady state is compactly supportedwith respect
to E.

(ii) If Condition 3.4.8.(ii) is satisfied, then the steady state is nontrivial.

Proof. As for part 3.4.9.(i), we find that, if

|E | ≥ max
=1,...,#

(
ℰ0 +

��@���('0)
)
,

then for each  = 1, . . . , # and G ∈ Ωwe have

ℰ(G, E) = E0
 + @)(A) ≥ |E | −

��@���('0) ≥ ℰ0
due to Lemma 3.4.1 and hence 5 (G, E) = 0.

As for part 3.4.9.(ii), we follow the idea of [Kno19]. For fixed  ∈ {1, . . . , #} choose
0 < A ≤ '0

2 small enough such that√
<2

 + A −
��@���(2A) > < ,

√
<2

 + 5A +
��@���(2A) < ℰD ,

√
A +

��@���(2A) + ��@�� sup
0≤A≤2A

���ext
3 (A)

�� < min
{
−G

;
,G

D

}
and

4A
3
2
 + 2

��@��A�(2A) + 2
��@��A sup

0≤A≤2A

����ext
! (A)

��� < −ℱ 
;
,

− 1√
2
A

3
2
 + 2

��@��A�(2A) + 2
��@��A sup

0≤A≤2A

����ext
! (A)

��� < 0
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in case 3.4.8.(ii).(1) and

4A
3
2
 + 2

��@��A�(2A) + 2
��@��A sup

0≤A≤2A

����ext
! (A)

��� < ℱ 
D ,

1√
2
A

3
2
 − 2

��@��A�(2A) − 2
��@��A sup

0≤A≤2A

����ext
! (A)

��� > 0

in case 3.4.8.(ii).(2), respectively. Indeed, this choice of A is possible since �(A), �(A),
A�ext

! (A) = O
(
A2) for A → 0, �ext

3 (0) = 0, and 1
2 ,

3
2 ∈ ]0, 2[. Next, let � B 3�

2 in
case 3.4.8.(ii).(1) and � B �

2 in case 3.4.8.(ii).(2), respectively, and let

( B
{
(A, D, �, E3) ∈ [0, '0] × [0,∞[ × [0, 2�] × R | A < A < 2A ,

√
A < D < 2

√
A ,

� −
�
4 < � < � +

�
4 ,−
√
A < E3 <

√
A

}
.

In (A, D, �, E3)-coordinates, where D =
√
E2

1 + E2
2 and � is the polar angle in the (E1 , E2)-

plane with basis
(
4A , 4!

)
, it holds that

ℰ(A, D, �, E3) =
√
<2

 + D2 + E2
3 + @)(A),

ℱ (A, D, �, E3) = A
(
D sin� + @�!(A) + @�ext

! (A)
)
,

G(A, D, �, E3) = E3 + @�3(A) + @�ext
3 (A).

For each (A, D, �, E3) ∈ (, we have by Lemma 3.4.1

ℰ(A, D, �, E3) ≥
√
<2

 + A −
��@���(2A) > < ,

ℰ(A, D, �, E3) ≤
√
<2

 + 5A +
��@���(2A) < ℰD ,

G(A, D, �, E3) ≥ −
√
A −

��@���(2A) − ��@�� sup
0≤A≤2A

���ext
3 (A)

�� > G
;
,

G(A, D, �, E3) ≤
√
A +

��@���(2A) + ��@�� sup
0≤A≤2A

���ext
3 (A)

�� < G
D

and

ℱ (A, D, �, E3) ≥ −4A
3
2
 − 2

��@��A�(2A) − 2
��@��A sup

0≤A≤2A

����ext
! (A)

��� > ℱ 
;
,

ℱ (A, D, �, E3) ≤ −
1√
2
A

3
2
 + 2

��@��A�(2A) + 2
��@��A sup

0≤A≤2A

����ext
! (A)

��� < 0 ≤ ℱ 
D

in case 3.4.8.(ii).(1) and

ℱ (A, D, �, E3) ≤ 4A
3
2
 + 2

��@��A�(2A) + 2
��@��A sup

0≤A≤2A

����ext
! (A)

��� < ℱ 
D ,
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ℱ (A, D, �, E3) ≥
1√
2
A

3
2
 − 2

��@��A�(2A) − 2
��@��A sup

0≤A≤2A

����ext
! (A)

��� > 0 ≥ ℱ 
;

in case 3.4.8.(ii).(2), respectively. Therefore,

AD�(ℰ(A, D, �, E3), ℱ (A, D, �, E3),G(A, D, �, E3)) > 0.

Thus, we have∫
�'0

∫
R3
5  3E3(G1 , G2) = 2�

∫ '0

0
A

∫
R3
�(ℰ , ℱ  ,G) 3E3A

= 2�
∫ '0

0

∫
R

∫ ∞

0

∫ 2�

0
AD�(ℰ , ℱ  ,G) 3�3D3E33A

≥
∫
(

AD�(ℰ , ℱ  ,G) 3(A, D, �, E3) > 0

since ( has positive Lebesgue measure. In particular, 5  . 0.

Remark 3.4.10. Intuitively, the proof of Theorem 3.4.9.(ii) shows that, for each species,
there are some particles near the symmetry axis with small momentum. Moreover,
it was proved that in case 3.4.8.(ii).(1) (or 3.4.8.(ii).(2), respectively) there are some
particles with negative (or positive, respectively) canonical angular momentum.

3.5 Confined steady states
There remains to find conditions on the external potential �ext and the ansatz func-
tions � under which a corresponding steady state is confined. We consider two
possibilities:

• A suitable �ext
! (corresponding to an external magnetic field in the 43-direction)

ensures confinement. This configuration is often called “�-pinch”.

• A suitable �ext
3 (corresponding to an external magnetic field in the 4!-direction)

ensures confinement. This configuration is often called “I-pinch”.

A combination of these two—often called “screw-pinch”—would of course also be
possible, whence the following options are not exhaustive.

Theorem 3.5.1. Let Conditions 3.3.3, 3.3.8, and 3.4.8 hold and let
( (
5 

)
 , ), �

)
be a steady

state, where
(
), �! , �3

)
is the fixed point ofℳ and the 5  are given by (3.3.7). We define

N B
{
 ∈ {1, . . . , #} | @ < 0

}
, P B

{
 ∈ {1, . . . , #} | @ > 0

}
.

Furthermore, let 0 < ' < '0 and one of the following four options hold:

(i) (�-pinch)
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(a) For each  ∈ N , case 3.4.8.(ii).(1) is satisfied and we have �(ℰ , ℱ ,G) = 0
whenever ℱ ≥ 0 (thus, necessarily ℱ 

D = 0). For each  ∈ P, case 3.4.8.(ii).(2)
is satisfied and we have �(ℰ , ℱ ,G) = 0 whenever ℱ ≤ 0 (thus, necessarily
ℱ 
;
= 0). Moreover, assume

�ext
! (A) ≤ −0!(A), ' ≤ A ≤ '0.

(b) For each  ∈ N , case 3.4.8.(ii).(2) is satisfied and we have �(ℰ , ℱ ,G) = 0
whenever ℱ ≤ 0 (thus, necessarily ℱ 

;
= 0). For each  ∈ P, case 3.4.8.(ii).(1)

is satisfied and we have �(ℰ , ℱ ,G) = 0 whenever ℱ ≥ 0 (thus, necessarily
ℱ 
D = 0). Moreover, assume

�ext
! (A) ≥ 0!(A), ' ≤ A ≤ '0.

Here,

0!(A) B max
=1,...,#

√(
ℰ0 +

��@���(A))2 − <2
��@�� + �(A).

(ii) (I-pinch)
(a) For each  ∈ N , there exists G

0 < 0 such that �(ℰ , ℱ ,G) = 0 whenever
G ≤ G

0 . For each  ∈ P, there exists G
0 > 0 such that �(ℰ , ℱ ,G) = 0

whenever G ≥ G
0 . Moreover, assume

�ext
3 (A) ≥ 03(A), ' ≤ A ≤ '0.

(b) For each  ∈ N , there exists G
0 > 0 such that �(ℰ , ℱ ,G) = 0 whenever

G ≥ G
0 . For each  ∈ P, there exists G

0 < 0 such that �(ℰ , ℱ ,G) = 0
whenever G ≤ G

0 . Moreover, assume

�ext
3 (A) ≤ −03(A), ' ≤ A ≤ '0.

Here,

03(A) B max
=1,...,#

��G
0

�� +√(
ℰ0 +

��@���(A))2 − <2
��@�� + �(A).

Then the steady state is confined with radius at most ', compactly supported with respect to
E, and nontrivial.

Proof. First note that for each (G, E) ∈ Ω × R3 and  = 1, . . . , # we have 5 (G, E) = 0 if

|E | ≥
√(
ℰ0 +

��@���(A))2 − <2
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since then

ℰ(G, E) ≥
√
<2

 + |E |2 −
��@���(A) ≥ ℰ0

by Lemma 3.4.1. Thus, for each  = 1, . . . , # it suffices to consider E ∈ R3 with

|E | <
√(
ℰ0 +

��@���(A))2 − <2
 .

In the following, always let A ∈ [', '0],  ∈ N , � ∈ P, and E as above.
If option 3.5.1.(i).(a) is satisfied, we have

ℱ (G, E) ≥ A
(
−|E | + @�(A) + @�ext

! (A)
)
≥ A

(
−|E | + @�(A) − @0!(A)

)
≥ A

©«−
√(
ℰ0 +

��@���(A))2 − <2
 + @�(A) − @

©«
√(
ℰ0 +

��@���(A))2 − <2


−@
+ �(A)

ª®®¬
ª®®¬ = 0,

ℱ �(G, E) ≤ A
(
|E | + @��(A) + @��ext

! (A)
)
≤ A

(
|E | + @��(A) − @�0!(A)

)
≤ A

©«
√(
ℰ�0 +

��@����(A))2
− <2

� + @��(A) − @�
©«
√(
ℰ�0 +

��@����(A))2
− <2

�

@�
+ �(A)

ª®®®®¬
ª®®®®¬
= 0

and thus 5 (G, E) = 5 �(G, E) = 0.
If option 3.5.1.(i).(b) is satisfied, we have

ℱ (G, E) ≤ A
(
|E | − @�(A) + @�ext

! (A)
)
≤ A

(
|E | − @�(A) + @0!(A)

)
≤ A

©«
√(
ℰ0 +

��@���(A))2 − <2
 − @�(A) + @

©«
√(
ℰ0 +

��@���(A))2 − <2


−@
+ �(A)

ª®®¬
ª®®¬ = 0,

ℱ �(G, E) ≥ A
(
−|E | − @��(A) + @��ext

! (A)
)
≥ A

(
−|E | − @��(A) + @�0!(A)

)
≥ A

©«
−
√(
ℰ�0 +

��@����(A))2
− <2

� − @��(A) + @�
©«
√(
ℰ�0 +

��@����(A))2
− <2

�

@�
+ �(A)

ª®®®®¬
ª®®®®¬
= 0

and thus 5 (G, E) = 5 �(G, E) = 0.
If option 3.5.1.(ii).(a) is satisfied, we have

G(G, E) ≤ |E | − @�(A) + @�ext
3 (A) ≤ |E | − @�(A) + @03(A)
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≤
√(
ℰ0 +

��@���(A))2 − <2
 − @�(A) + @

©«
−G

0 +
√(
ℰ0 +

��@���(A))2 − <2


−@
+ �(A)

ª®®¬
= G

0 ,

G�(G, E) ≥ −|E | − @��(A) + @��ext
3 (A) ≥ −|E | − @��(A) + @�03(A)

≥ −
√(
ℰ�0 +

��@����(A))2
− <2

� − @��(A) + @�
©«
G�

0 +
√(
ℰ�0 +

��@����(A))2
− <2

�

@�
+ �(A)

ª®®®®¬
= G�

0

and thus 5 (G, E) = 5 �(G, E) = 0.
If option 3.5.1.(ii).(b) is satisfied, we have

G(G, E) ≥ −|E | + @�(A) + @�ext
3 (A) ≥ −|E | + @�(A) − @03(A)

≥ −
√(
ℰ0 +

��@���(A))2 − <2
 + @�(A) − @

©«
G

0 +
√(
ℰ0 +

��@���(A))2 − <2


−@
+ �(A)

ª®®¬
= G

0 ,

G�(G, E) ≤ |E | + @��(A) + @��ext
3 (A) ≤ |E | + @��(A) − @�03(A)

≤
√(
ℰ�0 +

��@����(A))2
− <2

� + @��(A) − @�
©«
−G�

0 +
√(
ℰ�0 +

��@����(A))2
− <2

�

@�
+ �(A)

ª®®®®¬
= G�

0

and thus 5 (G, E) = 5 �(G, E) = 0.
Hence, in all four cases the steady state is confined with radius at most '. That the

steady state is compactly supported with respect to E and nontrivial has already been
proved in Theorem 3.4.9.

We point out that � and �—and thus 0! and 03—do not depend on �ext
! and �ext

3 ,
whence the above inequality conditions on �ext

! or �ext
3 , respectively, are explicit.

Intuitively, for example, option 3.5.1.(i).(a) means that all negatively (positively)
charged particles have negative (positive) canonical angular momentum thanks to
the ansatz function and that, however, for ' ≤ A ≤ '0 a sufficiently small nega-
tive �ext

! would cause a positive (negative) canonical angular momentum of nega-
tively (positively) charged particles possibly located there. Similarly, for example,
option 3.5.1.(ii).(a) says that there cannot exist negatively (positively) charged parti-
cles with too small (large) third component of the canonical momentum thanks to
the ansatz function and that, however, for ' ≤ A ≤ '0 a sufficiently large positive
�ext

3 would cause a too small (large) third component of the canonical momentum of
negatively (positively) charged particles possibly located there.
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Since �ext
! (0) = �ext

3 (0) = 0 due to Condition 3.3.3 and 0!(0) ≠ 0 ≠ 03(0) due to

Condition 3.4.8,
����ext

!

��� or ���ext
3

��, respectively, has to increase sufficiently fast on [0, ']
to satisfy the respective condition on [', '0]. Moreover, 0! and 03 increase when the
ansatz functions � (and hence �, �) increase. Thus, a larger external magnetic field
is necessary to confine a larger amount of particles (as one would expect).
To obtain a specific example for an externalmagnetic field ensuring confinement, we

consider a �-pinch configuration and a homogeneous external magnetic field parallel
to the symmetry axis, i.e., �ext = �ext

3 43 and �ext
3 ≡ 1 for some constant 1 ∈ R. As

�ext
3 (A) =

1
A

(
A�ext

! (A)
)′
and �ext

! (0) = 0, it has to holds that �ext
! (A) = 1

2 A. Therefore, the
steady state is confined for a sufficiently strong external magnetic field, that is to say,
if

|1 | ≥ 2 sup
A∈[','0]

0!(A)
A

and 1 < 0 (if option 3.5.1.(i).(a) is satisfied) or 1 > 0 (if option 3.5.1.(i).(b) is satisfied),
respectively. As opposed to this, no configuration can exist where the !-component
of the external magnetic field is constant (and nontrivial) since in this case �ext

3 would
have to be a linear function of A because of �ext

! = −
(
�ext

3
)′, which contradicts the

necessary condition
(
�ext

3
)′(0) = 0.

We finish this section with an important remark.

Remark 3.5.2. Another interesting setting is that there is no confinement device and
thus no boundary at A = '0 in the first place. In this case, Ω = R3 and no boundary
conditions at A = '0 have to be imposed. Moreover, Definition 3.3.6 can be suitably
adapted to this new setting by abolishing (3.3.5b) and setting '0 = ∞. If we seek a
steady state of this new setting that is confined with radius at most ' > 0, we firstly
choose a (slightly) larger'0 > ', secondly consider the confinement problemas before
with boundary at A = '0 and choose �ext

! or �ext
3 suitably to ensure confinement of

the obtained steady state with radius at most ', and thirdly “glue” this steady state
defined on [0, '0] and the vacuum solution on ['0 ,∞[ together, i.e., extend each 5 

by zero and the potentials by their respective integral formula, that is,

)(A) = −4�
∫ A

0

1
B

∫ B

0
��(�) 3�3B

= −4�
∫ '

0

1
B

∫ B

0
��(�) 3�3B − 4�

∫ A

'

1
B

∫ '

0
��(�) 3�3B

= −4�
∫ '

0

1
B

∫ B

0
��(�) 3�3B − 4�

∫ '

0
B�(B) 3B · (ln A − ln'),

�!(A) = −
4�
A

∫ A

0
B

∫ B

0
9!(�) 3�3B

= −4�
A

∫ '

0
B

∫ B

0
9!(�) 3�3B −

4�
A

∫ A

'

B

∫ '

0
9!(�) 3�3B
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= −4�
A

∫ '

0
B

∫ B

0
9!(�) 3�3B − 2�

∫ '

0
9!(B) 3B ·

(
A − '

2

A

)
,

�3(A) = −4�
∫ A

0

1
B

∫ B

0
� 93(�) 3�3B

= −4�
∫ '

0

1
B

∫ B

0
� 93(�) 3�3B − 4�

∫ A

'

1
B

∫ '

0
� 93(�) 3�3B

= −4�
∫ '

0

1
B

∫ B

0
� 93(�) 3�3B − 4�

∫ '

0
B 93(B) 3B · (ln A − ln')

for A ≥ '. Note that for this procedure it is important that the 5  already vanish on
[', '0] so that the composite 5  have no jumps at A = '0. With the identities above we
can furthermore determine the asymptotics of the potentials for A →∞. In particular,

)(A) = −20 ln A + const., �3(A) = −21 ln A + const., A ≥ ',
�!(A) + 2A = O

(
A−1) for A →∞,

where

0 = 2�
∫ '

0
B�(B) 3B, 1 = 2�

∫ '

0
B 93(B) 3B, 2 = 2�

∫ '

0
9!(B) 3B.

Here, 0 and 1 can be interpreted as the total charge and the third component of the
total current on each slice perpendicular to the symmetry axis.

3.6 Final remarks
From a fusion plasma physics point of view, a very interesting case is thatΩ is a torus
instead of an infinitely long cylinder. In accordance with Remark 3.3.2, we choose
an orthogonal curvilinear coordinate system for which tori are coordinate surfaces.
A canonical choice are the so-called “toroidal coordinates”

(
�, �, !

)
from the range

0 ≤ � ≤ 1, 0 ≤ � < 2�, 0 ≤ ! < 2�. Here and in the following, we adopt the notation
of [Bat97] for the coordinates (� or �, respectively, are now coordinates and no longer
a function describing an a priori bound for the electric potential or an ansatz function,
respectively, as above). Note that there are also other coordinates commonly called
toroidal coordinates, for example, using �̃ instead of �, where �−1 = cosh �̃. These
toroidal coordinates are related to Cartesian coordinates via

G1 =
00

√
1 − �2 cos!

1 − � cos� , G2 =
00

√
1 − �2 sin!

1 − � cos� , G3 =
00� sin�

1 − � cos� .

Toroidal coordinates result from rotating the two-dimensional bipolar coordinate
system

G1 =
00

√
1 − �2

1 − � cos� , G2 =
00� sin�

1 − � cos�
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about the G3-axis. The number 00 > 0 yields the two foci (00 , 0) and (−00 , 0), which
become a focal ring after rotation. Note that the coordinate surfaces � = const. are
tori, whence it seems a natural idea for an approach that the role of A in cylindrical
coordinates should now be played by � in toroidal coordinates.
The main advantage of Ω being an infinitely long cylinder and thus assuming

corresponding symmetries was that two variables (! and G3) of the Lagrangian ℒ

written in cylindrical coordinates were cyclic. Thus, A was left as the only variable
and the equations were reduced to three ordinary differential equations, which could
be integrated explicitly. In other words, it was very important that Poisson’s equation
reduces to an ODE since under those symmetry assumptions the Laplacian

Δ =
1
A
%A(A%A) +

1
A2 %

2
! + %2

G3 ≡
1
A
%A(A%A)

is in fact an ordinary differential operator.
However, in toroidal coordinates the same strategy fails as the Laplace equation

Δ) = 0 is not fully separable in toroidal coordinates. Yet it is “'-separable”, i.e., it
admits a complete set of separable solutions of the form

)
(
�, �, !

)
= '

(
�, �, !

)
Ξ(�)�

(
�
)
Φ

(
!
)

where

'
(
�, �, !

)
≡ '

(
�, �

)
=

√
1 − � cos�.

In particular,

Ξ(�) ≡ Ξ<=(�) =

�−

1
2%=

<− 1
2

(
�−1) C (<=(�) or

�−
1
2&=

<− 1
2

(
�−1) C )<=(�),

�
(
�
)
≡ �<

(
�
)
=

{
cos

(
<�

)
or

sin
(
<�

)
,

Φ
(
!
)
≡ Φ=

(
!
)
=

{
cos

(
=!

)
or

sin
(
=!

)
,

for parameters <, = ∈ N0. Here, %�� and &�
� are associated Legendre functions of the

first and second kind. Note that (<= and )<= are singular at the focal ring, where
� = 0. From this, a Green’s function for a torus {� = �0} can be derived, namely,

�
( (
�, �, !

)
,
(
�′, �′, !′

) )
=

1
�00

√
1 − � cos�

√
1 − �′ cos�′

∞∑
==0

∞∑
<=0
(−1)=�=�<

Γ
(
< − = + 1

2
)

Γ
(
< + = + 1

2
) )<=(min{�, �′})

)<=(�0)

· [)<=(�0)(<=(max{�, �′}) − )<=(max{�, �′})(<=(�0)]
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· cos
(
<

(
� − �′

) )
cos

(
=
(
! − !′

) )
; (3.6.1)

see [Bat97]. Here, �0 = 1, �= = 2 (= ≥ 2), and Γ is the Gamma function.
Thus, a strategy to construct steady states confined in a torus based on our previous

strategy could be the following:

1. Consider two free variables (�, �) instead of one (A) as before.

2. Thus, the number of invariants corresponding to space symmetry is reduced from
two (ℱ  ,G) to only one (ℱ ). Therefore, only �ext

! (and no longer �ext
3 ) is impor-

tant and may ensure confinement.

3. Since the current density 9 nowhas only a !-component, only differential equations
for ) and �! have to be considered; the other components of � can be set to zero
without loss of generality.

4. Write down representations for � and 9! and derive estimates in terms of the
potentials. This will be clearly different to our previous setting since we only have
two invariants instead of three as before and the same changes of variables as in
the proof of Lemma 3.3.10 are not applicable anymore.

5. Solve the differential equations for ) and �! formally. As for ), the Green’s
function �, see (3.6.1) (where only = = 0 remains due to symmetry in !), should
be used. For the determination of �!, however, a “torsional” Green’s function,
which incorporates the impact of the basis vector 4! in the equation for �! = � · 4!,
provides a solution formula; cf. [Bat97].

6. Derive suitable a priori estimates for ) and �! using the above solution formulae
and prove existence of steady states via a fixed point argument or applying the
method of sub- and supersolutions as in [BF93].

7. Try to adjust �ext
! suitably to ensure confinement via imposing a condition on �ext

!

in the region �2 ≤ � ≤ �0 such that the plasma is confined within {� ≤ �2} which
is a proper subset of the fusion reactor Ω = {� < �0}. The external magnetic
potential inside the confinement region {� ≤ �2}, however, cannot be arbitrary and
is “influenced” by this condition since �ext

! should, for example, vanish at {� = 0}
(the focal ring) to ensure nontriviality of the steady state.

Such a configuration with only an external magnetic potential in the !-direction
that is independent on ! is in fact a I-pinch configuration (the role played by G3
before in the case of a linear confinement device is now played by ! as the cylinder
is bent into a torus). Thus, the corresponding magnetic field has no !-component,
i.e., lies in the cross-section of the torus. However, a main concept of a Tokamak is
to supply a large toroidal magnetic field to ensure confinement. This is due to the
empirical observation that I-pinches are subject to powerful instabilities, for example,
the kink instability. To overcome (some of) these instabilities, a toroidal magnetic
field should be added. These considerations lead to very interesting questions about
the stability of steady states, which have not been addressed in this work. Firstly, in
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the case of an infinitely long cylinder as confinement device, it would be desirable to
verify observations—in particular, I-pinches tend to be unstable and �-pinches tend
to be stable—analytically. Secondly, similar questions are interesting in the practice-
oriented case of a toroidal confinement device, i.e., can pure I-pinches proved to
be unstable and can an additional, suitably adjusted toroidal magnetic field ensure
stability of (confined) steady states? For example, a criterion for linear stabilitywithout
thepresence of externalmagnetic fieldswas given in [NS14]. Maybe a suitable external
magnetic field ensures this criterion and/or prevents (or reduces) possible drifts in the
�-direction, i.e., preventing the plasma particles from getting closer to the boundary
of their container. Here, it would also be interesting to investigate whether toroidal
coordinates

(
�, �, !

)
—instead of the coordinates

(
B, �, !

)
, where

G1 = (0̃ + B cos�) cos!, G2 = (0̃ + B cos�) sin!, G3 = B sin�,

that were used in [NS14] but do not allow '-separation of Laplace’s equation—turn
out to be advantageous.
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