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Abstract

The occurrence of preferential flow in the subsurface has often been shown in field

experiments. However, preferential flow is rarely included in models simulating the

hydrological response at the catchment scale. If it is considered, preferential flow

parameters are typically determined at the plot scale and then transferred to larger-

scale simulations. Here, we successfully used the optimization algorithm DiffeRential

Evolution Adaptive Metropolis (DREAM) to calibrate a 3D physics-based dual-

permeability model directly at the catchment scale. In order to keep computational

costs of the optimization routine at a reasonable level, we limited the number of

parameters to be calibrated to the ones that had been shown before to be most influ-

ential for the simulation of discharge. We also calibrated parameters of the matrix

domain and the macropore domain with a fixed parameter ratio between soil layers

instead of calibrating every layer separately. These ratios reflected observed depth pro-

files of soil hydraulic properties at our study site. The dual-permeability parameter sets

identified during calibration were able to simulate observed discharge time series satis-

factorily but did not outperform a calibrated single-domain reference model scenario.

Saturated hydraulic conductivities of the macropore domain were calibrated such that

they became very similar to matrix saturated hydraulic conductivities, thereby effec-

tively removing the effect of macropores. This suggests that the incorporation of verti-

cal preferential flow as represented by the dual-permeability approach was not

relevant for reproducing the hydrometric response reasonably well in the studied

catchment. We also tested the scale-invariance of the calibrated dual-permeability

parameter sets by using the parameter sets performing best at catchment scale to sim-

ulate plot-scale bromide depth profiles obtained from tracer irrigation experiments.

This parameter transfer proved to be not successful, indicating that soil hydraulic

parameters are scale-variant, independent of the direction of parameter transfer.
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1 | INTRODUCTION

Numerous studies have shown that water flow and solute transport

(e.g., of nutrients, pesticides and pollutants) in soils can be much faster

than would be expected from Darcy–Richards type subsurface flow

(Flury, 1996; Gächter, Ngatiah, & Stamm, 1998; Germann, Smith, &

Thomas, 1987; Kung et al., 2000; Stamm, Flühler, Gächter,

Leuenberger, & Wunderli, 1998). Preferential flow through

macropores has been recognized as one of the main reasons for this

phenomenon. Soil macropores may originate from desiccation and

freezing, growth and decay of roots and mycelia, bioturbation by soil

fauna and further sculpting by water may lead to large macropores

called ‘soil pipes’ (Bachmair & Weiler, 2011; Beven & Germann, 1982;

Beven & Germann, 2013; Coppola, Kutílek, & Frind, 2009; Jones,

2010). Macropores can be vertical or lateral, depending on their origin,

and enhance water flow in these directions at different scales

(e.g., earthworm burrows at the plot scale in vertical direction; soil

pipes in lateral downslope direction at the hillslope scale). Another

form of lateral preferential flow that is more relevant beyond the plot

scale can occur if the soil profile is characterized by several soil layers

with contrasting hydraulic conductivities, where a highly permeable

layer underlain by a much less permeable layer experiences transient

saturation as response to an event and provides a fast pathway for

downslope movement of water (e.g., Klaus & Jackson, 2018; Tromp-

van Meerveld & McDonnell, 2006).

In situ detection of macropores by destructive sampling after dye

tracing (e.g., Anderson, Weiler, Alila, & Hudson, 2009; Graham,

Woods, & McDonnell, 2010; Laine-Kaulio, Backnäs, Koivusalo, &

Lauren, 2015; Weiler & Naef, 2003) or non-invasive techniques, such

as ground-penetrating radar (Gormally, McIntosh, & Mucciardi, 2011;

Gormally, McIntosh, Mucciardi, & McCarty, 2011; Nyquist, Toran, Pit-

man, Guo, & Lin, 2018), have shown a ubiquitous presence of

macropores in different landscapes. Due to this widespread evidence

of preferential flow in the subsurface, it seems necessary to represent

macropores in hydrological models in order to advance the under-

standing of subsurface flow behaviour and hydrological threshold pro-

cesses, catchment runoff generation, leaching of nutrients and

contaminants and slope stability mechanisms with related landslide

risks (e.g., Klaus & Zehe, 2011; Roulier et al., 2006; Shao, Bogaard, &

Bakker, 2014; Shao, Bogaard, Bakker, & Greco, 2015; Weiler &

McDonnell, 2007; Zehe, Becker, Bárdossy, & Plate, 2005).

Macropores are characterized by their ability to allow non-

equilibrium flow under certain conditions (Beven & Germann, 1982;

Jarvis, 2007). Experimental evidence has shown that water flow in

macropores often occurs as laminar free-surface film flow that does

not require saturation neither of the surrounding matrix nor of the

macropore itself (Nimmo, 2012, and references therein). Capillarity-

based approaches are not suitable to describe this non-diffusive film

flow, and alternative mathematical descriptions have been developed

and applied to experimental data with some success (e.g., Di Pietro,

Ruy, & Capowiez, 2003; Germann & Di Pietro, 1999; Nimmo, 2010;

Peters & Durner, 2008). However, although the concept of diffusive

capillarity-driven Darcy–Richards type flow does theoretically not

apply to water flow in macropores in many instances, models based

on the Darcy–Richards equation for variably saturated flow still pre-

vail in the hydrological modelling community and have been success-

fully used to simulate hydrological response (Beven & Germann,

2013). Since a derivation of the geometry and the connectivity of

preferential flow pathways and also of the associated hydraulic prop-

erties remains challenging, modifications of Darcy-type flow models

with approaches such as dual continuum, dual porosity, or dual per-

meability implement the concept of preferential flow without explic-

itly describing the geometry of the macropore network (Beven &

Germann, 2013; Gerke & van Genuchten, 1993; Köhne, Köhne, &

Šimůnek, 2009; Šimůnek, Jarvis, van Genuchten, & Gärdenäs, 2003).

All three approaches divide the total pore space into two domains

with differing hydraulic properties and an exchange term between the

domains. Flow in the macropore domain may be described using also

the Darcy–Richards equation or some other equation, such as, for

example, a gravity-driven kinematic wave formulation (e.g., the

MACRO model, Jarvis & Larsbo, 2012). Such preferential flow models

have been implemented successfully to simulate water flow and/or

solute transport at the plot scale (Arora, Mohanty, & McGuire, 2012;

Köhne et al., 2009; Köhne & Mohanty, 2005; Larsbo, Roulier,

Stenemo, Kasteel, & Jarvis, 2005; Roulier et al., 2006) and at the hill-

slope and catchment scale (Christiansen, Thorsen, Clausen, Hansen, &

Refsgaard, 2004; Laine-Kaulio, Backnäs, Karvonen, Koivusalo, &

McDonnell, 2014; Laine-Kaulio & Koivusalo, 2018; Roulier et al.,

2006; Schaik et al., 2014; Shao et al., 2014; Shao et al., 2015; Yu,

Duffy, Baldwin, & Lin, 2014;Zehe et al., 2005). Working with bi- or

multimodal soil hydraulic functions in a single-domain setup is another

possibility to represent flow in heterogeneous pore systems

(e.g., Durner, 1994; Othmer, Diekkrüger, & Kutilek, 1991; Ross &

Smettem, 2000).

Hydrological models based on the Darcy–Richards equation

require information on hydraulic properties of the pore system as

input. There is typically a discrepancy between the scale of the mea-

surements of physical soil characteristics and the scale of hydrological

models that study flow and transport at the hillslope or catchment

scale. Although there has been progress in using geophysical tech-

niques to derive subsurface hydraulic properties at larger scale (Binley

et al., 2015), there remains a large uncertainty in the estimated values.

This makes it challenging to identify soil hydraulic parameters for

hydrological models in a representative way. These points are even

more true for the parameterization of preferential flow in hydrological

models (Arora et al., 2012; Arora, Mohanty, & McGuire, 2011;

Pechlivanidis, Jackson, McIntyre, & Wheater, 2011; Šimůnek et al.,

2003). There are two options to deal with the limits of available mea-

surement techniques to identify model parameters at hillslope and

catchment scales. One is to transfer parameters derived from small-

scale field or laboratory observations (measurements or calibrated

parameters) to a larger scale (Vereecken, Kasteel, Vanderborght, &

Harter, 2007). A direct transfer of parameters implicitly assumes

that physical processes and properties are scale-independent

(Pechlivanidis et al., 2011). However, studies have shown a depen-

dency of, for example, measured saturated hydraulic conductivity on
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the scale of measurement method (Brace, 1980; Brooks, Boll, &

McDaniel, 2004; Rovey & Cherkauer, 1995; Schulze-Makuch, Carlson,

Cherkauer, & Malik, 1999). Therefore, the transfer of small-scale

parameters to a larger scale might be done by scaling the parameters

(Cadini, De Sanctis, Bertoli, & Zio, 2013; Nasta, Boaga, Deiana,

Cassiani, & Romano, 2019), although the scaling relationship is subject

to estimation and uncertainty, and may also depend on properties of

the porous media (Schulze-Makuch et al., 1999). The second option is

to calibrate the model parameters directly at the catchment scale.

Typically, only discharge is available as long time series at catchment

scale for calibration and validation. However, studies have shown that

discharge data alone is usually not sufficient to constrain the parame-

ter space (Köhne et al., 2009) and should be complemented with dis-

tributed observations of internal hydrologic state variables (e.g., Ebel

et al., 2007). In addition to the problem of obtaining suitable calibra-

tion and validation data, calibration of physically based models at hill-

slope and catchment scale is computationally expensive (e.g., Ala-aho,

Soulsby, Wang, & Tetzlaff, 2017; Wildemeersch, Goderniaux, Orban,

Brouyère, & Dassargues, 2014).

The two different options for identifying model parameters at

hillslope and catchment scale have been used in different complex-

ity for preferential flow simulations. Often, soil hydraulic parame-

ters in dual-permeability models have been inversely fitted in 1D

and subsequently transferred to a larger scale by upscaling

approaches (e.g., Cadini et al., 2013; Wang, Bradford, & Šimůnek,

2014). Roulier et al. (2006) calibrated the parameters for preferen-

tial flow in a dual-permeability model at plot scale with tracer data

and then used these parameter sets for the simulation of pesticide

transport in a 1D catchment model. Christiansen et al. (2004)

derived preferential flow parameters from small scale measure-

ments and implemented them in a 3D dual-permeability catchment

model. Klaus and Zehe (2010, 2011) used some field measure-

ments of the conductance of preferential flow paths and literature

data to parameterize a 2D hillslope model with explicit representa-

tion of preferential flow structures, but eventually used a Monte

Carlo simulation to calibrate these parameters. Laine-Kaulio et al.

(2014) defined some parameters based on soil core measurements

and literature values and some parameters based on calibration for

their 3D physically based dual-permeability model of a forested

hillslope. The only study known to us where a physically based 3D

preferential flow model was inversely calibrated at catchment scale

is from Yu et al. (2014).

We carried out this study in a headwater section (6 ha) of the

Weierbach catchment, located in western Luxembourg, where Glaser,

Jackisch, Hopp, and Klaus (2019) and Glaser et al. (2016) recently

modelled the hydrological response using the 3D physically based

model HydroGeoSphere (Therrien, McLaren, Sudicky, & Panday,

2010). The model reproduced the observed hydrograph well, but mis-

sed some specific features of the hydrograph, for example, peaks

directly after dry conditions and the rise and recession of second, del-

ayed peaks that are typical for the hydrological response at this site

during wet conditions (Martínez-Carreras et al., 2016). Glaser et al.

(2016) suggested that accounting for preferential flow could improve

the model simulations, which was supported by the findings of Jack-

isch et al. (2017) who – by the use of plot-scale tracer irrigation exper-

iments – suggested a fine-scale network of inter-aggregate voids that

enabled a fast vertical movement of water from surface to subsoil

layers. In a subsequent study, Glaser et al. (2019) included preferential

flow in the model following the approach to directly transfer parame-

ters derived from small-scale field observations to catchment scale.

They calibrated dual-permeability parameters with the tracer experi-

ments by Jackisch et al. (2017) in a plot scale Monte Carlo simulation

and subsequently transferred some parameter sets to the 3D repre-

sentation of the catchment. This incorporation of a dual-permeability

approach improved solute transport at plot scale, yet the transferred

parameter sets did not improve discharge simulations at catchment

scale.

In this study, we built upon the work and setup of Glaser

et al. (2019) but calibrated preferential flow parameters against

catchment discharge, analogous to Yu et al. (2014). In order to

account for vertical preferential flow through the fine-scale inter-

aggregate pores, we implemented a dual-permeability approach. In

addition, we compared the calibrated model scenarios to distrib-

uted data, namely in situ soil moisture and spatial patterns of sur-

face saturation. Subsequently, we tested the scale invariance of

hydraulic parameters in reverse direction (i.e., from catchment scale

to plot scale) by transferring the calibrated parameter sets to the

plot scale model of Glaser et al. (2019), and we evaluated the

parameter performance for simulating bromide depth profiles from

plot scale tracer experiments (Jackisch et al., 2017). Instead of

using a nonlinear optimization algorithm like Yu et al. (2014), we

applied the Markov chain Monte Carlo (MCMC) DiffeRential Evolu-

tion Adaptive Metropolis (DREAM) algorithm (Guillaume &

Andrews, 2012; Vrugt, 2016) to calibrate parameters and estimate

their uncertainties. Nonlinear optimization algorithms and MCMC

algorithms are both widely used in environmental modelling for the

estimation of parametric uncertainties. However, MCMC algorithms

tend to provide a more robust assessment of parameter uncer-

tainty through parameter distributions and confidence intervals

(Hartig, Calabrese, Reineking, Wiegand, & Huth, 2011; Lu, Ye, &

Hill, 2012). They have been frequently and successfully used in

hydrological modelling (Arora et al., 2012; Gallagher & Doherty,

2007; Joseph & Guillaume, 2013; Shi, Ye, Finsterle, & Wu, 2012;

Vrugt, 2016; Vrugt, ter Braak, Gupta, & Robinson, 2009), yet we

are not aware of any study that applied an MCMC algorithm for a

3D physically based catchment model with dual permeability.

The hypothesis that guided our study was: The dual permeability

model, calibrated on catchment discharge, will perform better than a

single permeability model when simulating the hydrological response

of the Weierbach headwater catchment. Our specific research ques-

tions were: (a) Is it feasible to use the DREAM algorithm for a calibra-

tion of a 3D physics-based hydrological model at catchment scale?,

(b) Does the calibrated preferential flow model improve the simulation

of the hydrological response, compared to a single permeability setup?

and (c) Are the fitted preferential flow parameters suitable to repro-

duce observed plot-scale tracer profiles?
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2 | MATERIALS AND METHODS

2.1 | Study site description

The Weierbach catchment (Figure 1) is a 42 ha sub-catchment of the

Attert catchment located in the northwest of Luxembourg (49,490 N,

5470 E). Its geology is dominated by slate, phyllites, schist and quartz-

ite, and its shallow soils are mainly cambisol, ranker and lithosol

(Juilleret, Iffly, Pfister, & Hissler, 2011). The climate is temperate and

rainfall is mainly driven by eastward moving Atlantic depressions

(Pfister, Kwadijk, Musy, Bronstert, & Hoffmann, 2004). Mean annual

precipitation is about 900 mm, of which approximately half becomes

streamflow (Kavetski, Fenicia, & Clark, 2011; Pfister, McDonnell, His-

sler, & Hoffmann, 2010). The catchment is dominated by European

beech (Fagus sylvatica), sessile oak (Quercus petraea) and Norway

spruce (Picea abies). Model simulations presented in this study were

carried out in a 6 ha headwater of the catchment (Figure 1).

Data used in this study include time series of discharge and of soil

moisture as well as surface saturation observations. Water stage was

measured at a stream gauge (December 2011–April 2014) with a

water pressure transducer (ISCO 4120 Flow Logger, 5 min logging

interval). Stage was converted to discharge using a power-type rating

curve (Glaser et al., 2016). Soil moisture time series (December 2012–

April 2013) were provided from five volumetric water content sensors

(M1-M5; CS616, Campbell Scientific, 30 min logging intervals; manu-

facturer's calibration) that were installed horizontally in 10 cm depth

each across the riparian zone of the Weierbach headwater (Figure 1).

A high-resolution map of surface saturation in the riparian zone in

February 2013 obtained with a portable thermal infrared (TIR) camera

(Glaser et al., 2016) was used to evaluate the simulated surface satu-

ration. More details about the Weierbach catchment are described

elsewhere (e.g., Glaser et al., 2016; Schwab, Klaus, Pfister, & Weiler,

2016; Wrede et al., 2015).

2.2 | The catchment model

We used the fully integrated, spatially distributed surface-subsurface

model HydroGeoSphere (HGS). HGS simultaneously simulates surface

flow and variably saturated subsurface flow. It relies on a modified

Richards equation coupled with soil water retention parameters to

describe three-dimensional variably saturated flow in porous media

(Therrien et al., 2010), and it uses the two-dimensional diffusive wave

approximation of the shallow water equations for surface flow. Sur-

face and subsurface flow can be coupled via a dual-node approach,

that is, the interface between the surface and the subsurface is repre-

sented as a very thin layer of porous material through which a Darcy

flux is driven by hydraulic head differences. Preferential flow can be

implemented in HGS via the dual permeability approach by Gerke and

van Genuchten (1993). In this approach, the pore system is conceptu-

ally separated into two overlaying domains, a macropore domain and

a less conductive matrix domain. Water flow in both domains is

described by the Richards equation, and the domains are coupled by a

first order bidirectional exchange term:

Cdp
δhdp
δt

=
δ

δz
Ksdp

δhdp
δz

−Ksdp

� �
−
Γ

dp
−Sdp ð1Þ

C
δh
δt

=
δ

δz
Ks

δh
δz

−Ks

� �
−

Γ

1−dp
−S ð2Þ

Equation (1) describes the flow through macropores (preferential

flow), Equation (2) through the soil matrix (matrix flow). Note that, for

clarity, the flow equations are shown in their one-dimensional form

although HGS simulates three-dimensional water flow in the matrix

and in the macropore domain. Ks and Ksdp are the saturated hydraulic

conductivities of the matrix and the macropores, respectively, Γ is the

exchange term between matrix and macropores where exchange is

driven by pressure head gradients between the two domains, dp the

volumetric fraction of the macropore domain, S and Sdp are sink terms

and C and Cdp describe the specific soil water capacities in the two

domains.

We based the model of the 6 ha headwater of the Weierbach

catchment (Figures 1 and 2) on the model setup by Glaser et al. (2016,

2019). Here, we briefly present the most important aspects of the

setup. Climate data (precipitation, air temperature at 2 m, wind speed,

relative humidity and net radiation) from two meteorological stations

approx. 4 km south of the study site were used for input of precipita-

tion and potential evapotranspiration in daily resolution as boundary

conditions at the surface domain. Interception and actual evapotrans-

piration were calculated with HGS via the model of Kristensen and

Jensen (1975). LAI values followed a seasonal relationship based on

8 days MODIS MOD15 data for the years 2012–2014 (see Figure 3

top in Glaser et al., 2016). Since the calibration and the validation

F IGURE 1 The Weierbach catchment in
Luxembourg (left) with the modelled 6 ha
headwater region (green) and a close-up of the
riparian zone (red/right), showing the positions
of the weir, the thermal infrared camera (TIR)
and the five volumetric water content (VWC)
sensors (M1–M5), installed in 10 cm depth
each. Elevations in the riparian zone map are
given in metres above sea level
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period comprised the winter months, LAI values ranged from 0.6 to

1.1 (see Table S1 in the Supporting Information for other transpira-

tion, evaporation and surface parameters). Eleven different soil zones

were parameterized in the model, representing topsoil and subsoils at

the hillslopes (Ah, B1, B2), a stagnic soil in the riparian zone (LP) and

universally underlying transitional layers from subsoil to regolith (IIC),

weathered bedrock (Cv) and solid slate (mC) (Figure 2). We

implemented the dual-permeability approach with the primary intent

to enable vertical preferential flow, in addition to horizontal non-

uniform flow pathways as defined by the different soil layers. How-

ever, the flow equations are formulated in 3D and also allow other

directions of flow, depending on developing gradients.

We defined ‘default’ soil hydraulic parameters (as starting values

for the calibration) for the matrix domain based on field evidence and

modelling work described in Glaser et al. (2016) (Table 1 for the

hydraulic parameters being subject to calibration; Tables S2 and S3

for the parameters that were not calibrated). Glaser et al. (2016)

derived soil hydraulic characteristics for the matrix domain from field

and laboratory measurements as well as from electrical resistivity

tomography (ERT) data for the different soil layers in the model and

refined them in a manual calibration. Hydraulic conductivities were

estimated to be highest in middle soil layers (0.45–1.0 m depth) with a

minimum at the deepest soil layers (1.75–4 m depth), whereas porosi-

ties were highest in topsoil layers, decreasing with depth (Table 1).

We chose default parameters for the macropore domain (Table 1;

Table S1) from a range of preliminary test simulations with an HGS

plot scale model (Glaser et al., 2019) that could reproduce the general

preferential flow characteristics of the bromide depth profiles

observed in plot scale tracer experiments (Jackisch et al., 2017) (see

also section Plot scale simulation below). The stagnic soil in the ripar-

ian zone (LP, soil zone 11) was implemented without macropores

(Table S3).

As the original dual-permeability model (Glaser et al., 2019) was

computationally expensive, for this study we decreased the spatial

and temporal resolution of the simulation to adapt it to the calibration

approach. By reducing the number of nodes in the grid and modifying

the adaptive time-stepping options in HGS, we were able to reduce

the runtime by approx. 80%. The adapted nested model grid was com-

posed of nine layers of three-sided prisms with vertical element

heights ranging from 0.15 m (top layers) to 1 m (bottom layer) and

horizontal element lengths ranging from about 20 m (hillslope) to 1 m

and less (riparian zone and stream bed). The resulting coarsened

model consisted of 920 nodes for each of the 10 soil layers (compared

to 3460 nodes in the original setup) with the highest density of nodes

in the riparian zone (Figure 2). By comparing hydrographs simulated

with the original grid and with the coarsened grid, we verified that the

coarsened resolution of the model was suitable for calibration pur-

poses. We assigned a critical depth boundary to the perimeter of the

surface domain, allowing water to exit the system everywhere at the

lateral surface edges. All side edges and the bottom of the subsurface

domain were no-flow boundaries (cf. Glaser et al., 2016).

2.3 | Selection of parameters for calibration

Five parameters were selected for calibration based on a principal

component analysis (PCA) that we carried out using differently

F IGURE 2 Model domain of the 6 ha headwater catchment with
finite element grid (top) and vertical cross-section through the

subsurface setup of the hillslope-riparian-stream zone (bottom).
Letters and colours indicate the soil horizons in accordance to soil
profile and ERT profile information (Ah: topsoil, B1 and B2: subsoil
horizons, LP: stagnic soil in the riparian zone, IIC: regolith, Cv:
weathered bedrock, mC: solid slate). The numbers indicate the
respective soil zone (cf. Table 1). The light brown lines indicate top
and bottom sides of the model elements (adapted from Glaser
et al., 2016)

F IGURE 3 The fixed soil layer ratio of the matrix saturated
hydraulic conductivity Ks with the upper and lower limits for
calibration. See Figure S2 in the Supporting Information for soil layer
ratios used for the other soil hydraulic parameters in the calibration
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performing macropore parameterizations that had been tested in pre-

vious catchment scale simulations (Glaser et al., 2019): saturated

hydraulic conductivities of matrix and macropores (Ks and Ksdp),

porosity of matrix and macropores (n and ndp) and the volumetric pro-

portion of the macropore domain (dp). Three different combinations

of parameter calibration were compared, selecting for calibration:

(a) all five parameters (MacroMat), (b) only macropore parameters

(Macro) and (c) only the matrix hydraulic parameters (NoMacro) in a

single domain model as the reference scenario (Table 2). The number

of soil layers (10; for soil zone 11, i.e., stagnic soil in riparian zone,

macropores were not implemented and soil hydraulic parameters

were not varied; cf. Table S3) multiplied by the number of parameters

for calibration (five, three or two) would lead to vary many degrees of

freedom for the DREAM algorithm and possibly to unrealistic depth

profiles of the parameters. Therefore, we calibrated parameter values

of the different soil layers jointly as one hyperparameter instead of

separately by fixing the parameter ratio between the different soil

layers for each parameter. This was done to preserve (a) observed

depth profiles of the parameters, thus avoiding unrealistic changes

between soil layers, and (b) to keep the degrees of freedom for the

DREAM algorithm at a feasible number. The fixed parameter ratios

were defined by the default parameter set (Table 1) and the upper

and lower limits of the parameters for the calibration were chosen to

stay in the parameter range of the preliminary test runs being success-

ful at plot scale (Figure 3, Figure S2; see the Supporting Information

for a more detailed description on deriving the depth profiles of the

default parameter values). Since hydraulic conductivities are known to

vary over several orders of magnitude, their calibration was carried

out on the common logarithm of Ks- and Ksdp-hyperparameters. After

calibration, the calibrated hyperparameters were multiplied with the

parameter values of the default parameter set (cf. Table 1) to obtain

the actual parameter values.

The calibration against catchment discharge was performed for

the period from December 2013 to April 2014, building up to a total

of 100 days. The validation period for catchment discharge and soil

moisture was from December 2012 to April 2013 (100 days as well).

Surface saturation validation was carried out visually against surface

saturation derived from a panorama TIR image from Glaser et al.

(2016) in February 2013 (see Glaser et al., 2019 for details on the

method). As there were no surface saturation data available for

the validation period, surface saturation patterns were evaluated for

the calibration period only.

In order to define initial conditions for both the calibration and

the validation periods, a spin-up period of 1 year was run from

December 2012 to November 2013 for the calibration period and

from December 2011 to November 2012 for the validation period.

For comparison, we also simulated discharge with the default

parameter set in a dual-permeability approach for the calibration as

well as validation period.

2.4 | DREAM setup

We coupled HGS with the MCMC algorithm DREAM via the R

DREAM package (Guillaume & Andrews, 2012), running it on an HPC

cluster with 16 CPUs (see Supporting Information). DREAM produces

a chain of simulations with parameter draws from a parameter

TABLE 1 Default parameter values
of the five parameters being subject to
calibration

Soil zone Layer (m) Ks (m d−1) n (m3 m−3) Ksdp (m d−1) ndp (m
3 m−3) dp (−)

1 0–0.15 1.71E+01 0.74 6.795E+01 0.89 0.18

2 0.15–0.3 1.71E+01 0.61 1.044E+02 0.89 0.08

3 0.3–0.45 4.59E+01 0.44 2.800E+02 0.89 0.06

4 0.45–0.6 9.30E+02 0.30 4.115E+03 0.89 0.07

5 0.6–0.75 2.04E+03 0.14 9.905E+03 0.89 0.08

6 0.75–1.0 8.40E+02 0.20 3.575E+03 0.89 0.06

7 1.0–1.5 3.00E+00 0.15 3.160E+01 0.89 0.05

8 1.5–2.0 1.20E−02 0.10 1.620E−01 0.89 0.05

9 2.0–3.0 9.00E−04 0.04 1.415E−02 0.89 0.05

10 3.0–4.0 2.4E−05 0.01 6.220E−04 0.89 0.05

Notes: Soil hydraulic parameters that were not subject to calibration are listed in Table S2 in the

Supporting Information. Please refer also to the Supporting Information for a more detailed description

on deriving the default parameter values and their depth profiles.

Abbreviations: dp, percentage macropore domain of total domain; Ks, matrix saturated hydraulic

conductivity; Ksdp, macropore saturated hydraulic conductivity; n, porosity of matrix domain; ndp, porosity

of macropore domain.

TABLE 2 Number and type of hyperparameters calibrated for the
three calibration scenarios and abbreviation for scenarios to be used
in the following text

Number of
hyperparameters
to be fitted

Hyperparameters
for calibration

Name of
scenario

5 Ks, n, Ksdp, ndp, dp MacroMat

3 Ksdp, ndp, dp Macro

2 (single domain) Ks, n NoMacro
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posterior distribution, where one random draw (model run) depends

on the previous draw of the algorithm (Markov property) (Vrugt,

2016). In this study, the performance of the different parameteriza-

tions is evaluated with a maximum likelihood function, that is, a loga-

rithmic Gaussian likelihood (log L) calculated on mean daily discharge

values. As the parameterizations of subsequent model runs depend on

likelihood values of current parameterizations, MCMC algorithms tend

to stay in regions of the parameter space with better fit of modelled

to measured values (with higher log L values). The DREAM-algorithm

is a multi-chain method, so a number of Markov chains are simulta-

neously exploring the parameter space (this study: 15 chains in paral-

lel). This has the advantages that (a) the global optimum is more likely

to be reached, (b) the algorithm can be easily parallelized and (c) the

distance between the chains in parameter space can be used to

autotune jumping parameters, so that convergence can be reached

faster (Vrugt, 2016). The algorithm is supplemented with subspace

sampling and outlier chain correction to further improve the efficient

exploration of the parameter space.

When the parameter distribution does not change over a lon-

ger span of the calibration, convergence is reached and the param-

eter distribution of the Markov chains is assumed to represent the

actual parameter distribution. Convergence is commonly evaluated

using the Gelman–Rubin convergence criterion R (Gelman & Rubin,

1992), which compares the variance between the chains to the

variance within the chains. A plot of R against iteration number is

called Gelman-plot and allows the evaluation of the convergence

(see an example of a Gelman plot in the Supporting Information,

Figure S1). R theoretically converges to 1, and a value much

greater than 1 suggests that the simulation should be continued

(Brooks & Gelman, 1998). Recommendations on R-thresholds are

1.1, 1.2 or even higher (Guillaume & Andrews, 2012). Here, we

used a threshold of 1.3 for the multivariate R-value, which can be

calculated for a multivariate optimization problem (Brooks &

Gelman, 1998). When the multivariate R stayed above the thresh-

old for a longer period, we alternatively checked R-values of indi-

vidual parameters for convergence, since the multivariate R is

considered an approximate maximum of the univariate R over all

variables (Brooks & Gelman, 1998). Prior to estimating the actual

parameter distribution, we carried out a burn-in where the first

10% of the chain were discarded and not used for analysis, so that

the parameter distribution obtained from the respective MCMC

algorithm was independent of the starting point.

2.5 | Plot scale simulation

After the MCMC calibration of the catchment model we used the best

performing parameter set (highest log L) from each of the three calibra-

tion scenarios ‘MacroMat’, ‘Macro’ and ‘NoMacro’ to simulate bromide

transport at the plot scale, in order to test the reverse transfer of cali-

brated parameters to plot scale. This test built upon data derived from

plot scale irrigation experiments (Jackisch et al., 2017) and previous

plot scale simulations with a dual-permeability HGS model (Glaser

et al., 2019). For comparison, we also simulated the irrigation experi-

ments using the default parameter set with dual-permeability (not cali-

brated). During the tracer (brilliant blue and bromide) irrigation

experiment two 1 m2 plots were irrigated for 1 hr with 50 mm (plots

X and XII in Jackisch et al., 2017) and one 1 m2 plot was irrigated for

1 hr with 30 mm (plot XI in Jackisch et al., 2017). After the end of the

irrigation the soil profiles were sampled in 5 cm increments down to a

depth of 1 m, and bromide concentrations were determined (for

details on the irrigation experiments refer to Jackisch et al., 2017). We

used these bromide profiles to validate the concentration profiles sim-

ulated with the calibrated parameter sets.

Solute transport in HGS is simulated with the advection–dispersion

equation. We simulated bromide transport using a 6 m deep soil column

with a horizontal area of 1 m2. The grid was defined by 0.25 m2 quadratic

elements with element heights of 1 cm between 0 and 4 m depth and

element heights of 5 cm between 4 and 6 m depth. The definition of soil

layers (depths and soil hydraulic properties) was identical to the catch-

ment scale simulations described above for the upper 4 m. The lower

2 m of the model domain (4–6 m) served as porous storage (Ks = 1 m d−1,

n = 20%, Θr = 0.02, α = 6 m−1, β = 1.5) in order to prevent ponding of

water at the bottom of the upper 4 m. Flow and transport were simulated

in the subsurface only (no surface domain), since this can avoid numerical

problems, and no surface runoff was observed during the experiments.

Bromide transport parameters were set as follows: tortuosity = 0.1, diffu-

sion coefficient = 1.6 × 10−4 m2 d−1, longitudinal and transverse

dispersivities of dl = 0.05 m and dt = 0.005 m for the matrix and dl = 0.1 m

and dt = 0.01 m for the macropore domain and mass exchange coefficient

ωex = 0.41 for all soil layers. We partitioned the input fluxes (solute and

water) at the upper boundary of the model between the macropore

and matrix domain with a ratio of 90:10 (cf. Laine-Kaulio et al., 2014) and

assigned no flow boundaries to the sides and the bottom of the model

column. Initial saturation was identical for the matrix and macropore

domain (corresponding to measurements before the start of the experi-

ment), and the initial bromide concentration was set to zero (10−15 kg m−3

in order to avoid numerical instabilities) in both domains. Please refer to

Glaser et al. (2019) for more details on the HGS plot scale model setup.

3 | RESULTS

3.1 | Calibration

3.1.1 | Convergence and parameters

The three calibration scenarios differed considerably in maximum log L

and iterations necessary for convergence (Table 3). The maximum log L

was highest for the ‘NoMacro’ scenario. While scenario ‘Macro’

needed the smallest number of iterations and converged in roughly

2 weeks, scenario ‘NoMacro’ and ‘MacroMat’ took 42 and 73 days,

respectively, to reach a more relaxed Gelman–Rubin convergence cri-

terion R threshold.

By using the optimization algorithm DREAM, we were able

to explore the whole defined parameter space. Confidence

HOPP ET AL. 1243



intervals narrowed down considerably after burn-in for some hyper-

parameters and stayed broad and non-informative for others

(Figure 4). Ks and n, that is, the matrix hydraulic hyperparameters,

formed narrow confidence intervals in every calibration scenario

with saturated hydraulic conductivities tending to high values and

porosity values tending to low values within the analysed parameter

space. Hyperparameter dp converged close to the lower limit and

did not exceed 0.3 for the two scenarios ‘Macro’ and ‘MacroMat’.

This means that as a result of calibration the proportion of the

macropore domain to the total domain decreased considerably com-

pared to the initial default parameter set (cf. Table 1). The

hyperparameter porosity of the macropores ndp varied indepen-

dently of log L within the whole analysed parameter space for both

scenarios ‘Macro’ and ‘MacroMat’. Confidence intervals of hyper-

parameter Ksdp had an intermediate width, covering the lower half

of the analysed parameter space.

After conversion from hyperparameters to parameters, we calcu-

lated the effective hydraulic conductivities (Kseff), that is, the dp-

weighted average of matrix and macropore conductivities. All three

scenarios showed conductivities in the same order of magnitude for

the respective soil layers (Figure 5). The 95%-confidence intervals of

Kseff were in general narrow.

TABLE 3 Maximum log likelihood L,
multivariate Gelman–Rubin convergence
criterion R, number of DREAM iterations
and DREAM runtime for each scenario

Scenario
Max
log L R

Number
of
iterations

Runtime
(days)

MacroMat −75 1.33 1780 73

Macro −138 1.07 420 16

NoMacro −54 1.26 1220 42

Notes: Since 15 chains were run in parallel, iterations have to be multiplied by 15 to get the number of

total model evaluations, and runtime has to be multiplied by 16 for summed-up CPU-time for each

scenario.

F IGURE 4 Scatterplots of log L versus
hyperparameter values (dimensionless) with
95%-confidence intervals (red dashed lines)
after burn-in for the respective
hyperparameters. One point in the scatterplots
represents a single HydroGeoSphere model run.
The dimensionless values on the x-axis signify
the multiple of the respective default parameter
as listed in Table 1 (dimensionless value = 1
means default parameter value). For the
parameters Ks and Ksdp the log of the values
was varied (dimensionless value = 0 means
default parameter value). The scaling of the x-
axis reflects the upper and lower limits of the
parameter space allowed for calibration. The
range of the parameter space for the ‘NoMacro’
scenario was set wider to allow for a similar
range of effective hydraulic conductivities and
porosities as compared to the two other
scenarios
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Although upper and lower limits for the calibration of Ksdp

were approximately two orders of magnitude higher than the

limits for Ks, both conductivities converged to similar values, gen-

erally in the same order of magnitude, in the respective soil layers

after calibration (Figure 6). For scenario “MacroMat”, matrix con-

ductivities of the best performing model run (highest log L) were

higher than macropore conductivities in soil layers above 1.5 m

depth and lower than macropore conductivities in soil layers

below 1.5 m depth. The scenario “Macro” did not show these

reverse conductivities. Instead, Ks and Ksdp were very similar in

layers above 1 m and diverged more below this depth. The maxi-

mum difference between Ks and Ksdp occurred in the scenario

‘Macro’ in the deepest layer and was less than one order of mag-

nitude (Figure 6).

F IGURE 5 Matrix hydraulic conductivities
and macropore hydraulic conductivities for each
soil layer for the three different calibration
scenarios (best performing model run with
highest log L)

F IGURE 6 Median effective saturated
hydraulic conductivities (i.e., the dp-weighted
average of matrix and macropore conductivities)
in the different soil layers for each calibration
scenario. Horizontal bars indicate the 95%-
confidence intervals
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3.1.2 | Performance of best parameter sets

The calibrated parameter values for the model run with maximum log L

for each scenario are listed in Table S4. Nash–Sutcliffe efficiency

values (NSE) for the discharge simulation using the parameter set with

the maximum log L of each scenario (Table 3 and Table S4) showed

that ‘MacroMat’ (NSE 0.86) and ‘NoMacro’ (NSE 0.92) performed

quite similar to each other and better than ‘Macro’ (NSE 0.72). This

means that the scenario only calibrated on preferential flow parame-

ters did not describe streamflow as well as the scenarios including

matrix hydraulic parameters in the calibration procedure, particularly

during peak flow (Figure 7, top). All three calibration scenarios clearly

improved the discharge simulation compared to the uncalibrated

default parameter set (NSE 0.09).

3.2 | Validation

Minor performance differences between the calibration scenarios

that occurred during discharge calibration became more pronounced

during the validation period (Figure7, bottom). The scenario ‘Macro’

was not able to model the discharge during the validation period in

a satisfactory way (NSE 0.01) and underestimated discharge consid-

erably, particularly at the beginning of the validation period. This

behaviour was most likely related to the high matrix porosity values

of the three uppermost soil layers, which were not calibrated in this

scenario (Table 1). The other two scenarios again did not differ sub-

stantially from each other and simulated discharge well for the vali-

dation period (with NSE 0.76 and 0.85, respectively), except for the

first discharge peak in December 2012, which was reproduced in

terms of dynamics but not in terms of absolute discharge value. This

was also the case for the discharge peak in December 2013 during

the calibration period. Again, the scenario ‘NoMacro’ had the

highest NSE.

The visual validation comparing observed with simulated soil

moisture responses at the five monitoring sites remained inconclusive

(Figure 8). Since the soil moisture sensors were not calibrated to the

Weierbach soils, the comparison between observed and simulated soil

moisture focussed on the dynamics and amplitude, not on absolute

values. In some cases, simulated soil moisture showed a higher

F IGURE 7 Hydrographs of measured
(black) and modelled streamflow during the
calibration (top) and the validation period
(bottom) with corresponding NSE values in the
legend. From each scenario the parameter set
with the highest log L was chosen for validation.
Additionally, the hydrographs simulated with
the default parameter set are shown. Note that
snowmelt processes were not included in the
model, so the discharge peak in March/April
2013 was not represented by any of the
scenarios
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amplitude than observations (M1, M2 and M3), although dynamics

were similar between simulations and observations. Soil moisture in

the riparian zone, represented by M4, was characterized by an

absence of dynamics, indicating saturated conditions. Soil moisture

response of M4 was captured well by the simulations with respect to

the missing dynamics, remaining at saturation at the respective poros-

ity values (cf. Table S4 in Supporting Information). In contrast, for M5,

simulations did not reflect the observed dynamics but showed flat soil

moisture time series. M5 in the field was located at the transition

between riparian zone and hillslope, whereas in the model M5 was

placed still in the riparian zone (soil zone 11, Figure 2), therefore

showing the typical absence of dynamics. Overall, the scenario

‘NoMacro’ agreed best with observations with respect to dynamics

and amplitude.

Simulated surface saturation patterns of the three calibration

scenarios did not show meaningful differences in performance

when compared to a panorama TIR image taken during a wet

period in February 2013 in the riparian zone (Figure 9). Evalu-

ated at a larger scale, ‘MacroMat’ and ‘NoMacro’ showed a sur-

face saturated area above the stream, which the scenario ‘Macro’

did not show. This area is known to be saturated during very

wet periods and thus provides additional qualitative validation

information.

3.3 | Plot scale model

Despite showing differences in simulated catchment discharge, soil

moisture and surface saturation, the two dual-permeability scenarios

‘Macro’ and ‘MacroMat’ simulated similar bromide depth profiles at

plot scale (Figure 10). The fit to observed data was better for the

30 mm irrigation than for the 50 mm irrigation. Although the dual-

permeability scenarios simulated bromide depth profiles that showed

slightly elevated concentrations at depth, both parameter sets were

not able to capture the observed bromide depth profiles with their

distinct bromide concentration peaks around a depth of 0.6 m satis-

factorily. The single-domain scenario (‘NoMacro’) simulated a steadily

decreasing bromide depth profile for both irrigation rates and thus

failed completely to reproduce concentration peaks deeper in the pro-

file. The default parameter set captured the main characteristics of

F IGURE 8 Soil moisture time series (10 cm
depth) during the validation period for M1 to
M5 (see Figure 1 for locations). From each
calibration scenario the parameter set with the
highest log L was chosen for validation
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the bromide depth profiles, simulating elevated bromide concentra-

tions at a depth of 0.6 m, which fitted well the observations.

4 | DISCUSSION

4.1 | Applicability and limitations of the calibration
approach

We successfully applied the automatic MCMC calibration algorithm

DREAM for calibrating a 3D physically based catchment scale dual-

permeability model with 10 soil layers against discharge data. Conver-

gence was reached in all three scenarios, although DREAM runtime

and number of iterations necessary for convergence differed substan-

tially between the tested scenarios. The scenario calibrated on all five

hyperparameters had the longest runtime with 73 days.

The long runtimes clearly limited the number of parameters to be

calibrated and the number of scenarios that could be investigated

within a reasonable timeframe. Nonetheless, DREAM proved to be

very suitable for our calibration study at the catchment scale. We

applied two constraints to balance computational costs and degrees

of freedom, and thus, to realize a parameter calibration for a 3D

catchment model with multiple soil layers. By doing a PCA on a set of

40 parameter sets that had been assembled during preparatory work

for Glaser et al. (2019), we identified the five parameters with the

highest influence on discharge simulation and chose those for

calibration in this study. We certainly cannot exclude that the calibra-

tion of more or other soil hydraulic parameters, such as the van Gen-

uchten parameters α and β, could have resulted in a better performing

parameter set. However, based on the PCA results, we were confident

that we calibrated only those parameters that seemed to be most

influential for simulating the hydrometric response at catchment

scale.

The second approach that facilitated a successful convergence of

the optimization routine and reasonable runtimes was to work with

hyperparameters, that is, establish fixed ratios of parameter values

between soil layers. However, the primary reason for applying the

hyperparameter approach was to preserve observed depth profiles of

soil hydraulic parameters and to prevent parameter sets with sharp

changes in hydraulic properties between layers, which would be phys-

ically unrealistic and not consistent with field evidence. As a second-

ary effect, this approach also reduced the number of parameters to be

fitted. The depth profiles (i.e., ratios) for Ks and n of the matrix domain

were based on field measurements, and the depth profiles of Ksdp and

ndp were defined based on previous detailed modelling work (Glaser

et al., 2016; 2019) that reproduced in plot scale models the general

characteristics of bromide depth profiles obtained in sprinkling experi-

ments (cf. Jackisch et al., 2017). It is possible that discharge simula-

tions could have been improved by not using these fixed ratios.

However, to us it was more important to only allow those parameter

combinations that reflected realistic depth profiles of hydraulic prop-

erties, typical for this site.

F IGURE 9 Surface saturation patterns for the three calibration scenarios (using the parameter set of the simulation with highest log L per
scenario) compared to the surface saturation in the panorama TIR image of February 11, 2013 (left). The observed panorama (top left) is
composed of processed, linear grey-scaled (black −5 �C, white +20 �C) TIR images, and surface saturated pixels estimated based on the water
temperature are shown in yellow. In the modelled panoramas, surface saturated pixels are depicted with different shades of grey for different
surface water depths (minimum depth 10–7.5 m, logarithmic scale). Red circles (right) indicate surface saturation spots, which are known to appear
in the field during very wet periods. Green rectangle signifies location of the saturation patterns shown in more detail on the left
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There are not many examples of automated calibration of a

coupled surface-subsurface physics-based model in 3D at the catch-

ment scale (e.g., Ala-aho et al., 2017; Hwang et al., 2018; Yu et al.,

2014) due to the high computational costs that are particularly associ-

ated with combining these models with automated parameter estima-

tion and uncertainty analysis procedures. All studies have limited the

number of parameters to be calibrated by performing a priori sensitiv-

ity studies and/or simplifying the description of the model domain.

The studies mentioned above calibrated 9–12 soil hydraulic parame-

ters simultaneously, and none of them considered multiple soil layers

in the subsurface, as we did in this study. Other calibration strategies

such as using grid coarsening to identify the hydrological variables

most suitable for calibration have also been suggested to make the

calibration of physics-based models more efficient (von Gunten et al.,

2014; Wildemeersch et al., 2014).

In combination with physically based hydrological models, the

PEST suite of algorithms (Doherty, 2009) has often been used for

automated parameter estimation and uncertainty analysis (e.g., Ala-

aho et al., 2017; Wildemeersch et al., 2014). For instance, the null-

space Monte Carlo (NSMC) analysis within PEST is efficient with

respect to its model run requirements and may have provided faster

runtimes. However, parameter sets identified with this method may

not necessarily be a sample of the posterior probability density func-

tion in a formal Bayesian sense (Keating, Doherty, Vrugt, & Kang,

2010). We chose to use DREAM (Vrugt, 2016) as it is theoretically

more rigorous and comprises a formal Bayesian methodology, using a

formal convergence criterion (Gelman–Rubin criterion R,

cf. section ‘Dream setup’ above). We assume that the gain with

respect to faster runtimes by using PEST (or a different optimization

algorithm) would not have been sufficient to permit adopting a differ-

ent calibration strategy with, for example, more parameters to be

calibrated.

The goal of our study was not to compare different calibration

strategies. As is commonly done in model calibration studies, we

decided on one particular model domain setup, chose a particular cali-

bration approach and applied it. Yet, there is a gap in knowledge about

adequate calibration strategies for coupled surface-subsurface

physics-based models at the catchment scale. Thus, subsequent

F IGURE 10 Observed (in red, green and
blue; Jackisch et al., 2017) and modelled
bromide concentrations (using the parameter
set of the simulation with highest log L per
scenario and the default parameter set,
respectively) for the three irrigation plots, that
is, X, XI and XII. Plots X and XII received 30 mm
of irrigation, plot XI received 50 mm. NSE values
show the goodness of fit between measured

values and the respective model run
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studies could implement different calibration strategies for the same

problem to evaluate how our a priori decisions influence calibration

results and the conclusions we draw from them. Such systematic tests

of calibration strategies could, for example, vary the number of param-

eters to be calibrated, apply fixed or variable parameter ratios

between layers, use different macropore representations or vary the

number of soil layers to be considered.

4.2 | The effect of macropores is calibrated away

Neither of the two dual-permeability model scenarios (‘MacroMat’,

‘Macro’) was superior to the performance of the single domain model

scenario (‘NoMacro’). This is in contrast to the findings of Yu et al.

(2014) who could improve the performance of their hydrological

model by including a macropore parameterization. During calibration

as well as during validation the ‘NoMacro’ scenario achieved the

highest agreement with observed discharge, and evaluating soil mois-

ture time series did not show any meaningful differences between the

dual-permeability scenarios and the single permeability setup. All

three scenarios simulated similar saturation patterns that agreed rea-

sonably well with TIR observations considering the model grid resolu-

tion. However, only the scenarios ‘MacroMat’ and ‘NoMacro’ also

simulated a saturated area above the stream, which is known to

appear during very wet periods. This, together with the fact that the

scenario ‘Macro’ did not perform well during validation, suggested

that the calibration of only the macropore parameters, without cali-

brating also the matrix domain parameters at the same time, was not

a successful strategy.

In the best performing calibrated parameter sets, the proportion

of the macropore domain to the total domain, dp, became very small

(never above 0.03; cf. Table S3) and Ks of the macropore domain

became very similar to matrix Ks (Figure 5) so that the effect of a

macropore domain with faster flow became insignificant. The fact that

the effect of macropores was essentially calibrated out by the optimi-

zation algorithm suggested that the implementation of a dual-

permeability approach, which we performed in order to represent the

fine-scale network of inter-aggregate voids as identified by Jackisch

et al. (2017) at the Weierbach site, was not advantageous as com-

pared to a single domain model setup (considering only matrix flow) at

the catchment scale. This implies that in this case the Ks parameter in

the single-domain setup could be adjusted to be just as effective as

the dual-permeability model to account for the impact of preferential

flow in catchment-scale simulations. An effective parameterization of

a single-permeability model may not be possible anymore if larger

macropores such as slope-parallel soil pipes are to be considered. Also

the dual-permeability approach would likely not be appropriate for

such cases. Representing the effect of larger macropore features or

soil pipes on water flow would call for a different mathematical

description altogether, accounting for non-diffusive or even turbulent

flow behaviour in a possibly explicit way.

Implementing the hyperparameter approach was part of our cali-

bration strategy. The fixed ratios limited the variability of macropore

characteristics over depth, yet the macropores were connected

throughout the profile and the fixed ratios ensured a smooth, physi-

cally realistic change of hydraulic properties in general with depth.

We do not have an indication or evidence that the fact that the satu-

rated hydraulic conductivities of matrix and macropore domain con-

verged to very similar values was a result of using the hyperparameter

approach. The matrix and the macropore parameters were still cali-

brated independently from each other and could vary within the given

limits of several orders of magnitude. Thus, we assume that the cali-

bration of the hyperparameters did not cause the conductivities of

the matrix and macropore domain to converge, and it is likely that a

similar outcome would be obtained if the macropore and matrix

parameters would not only be calibrated independently from each

other but also variably over depth. If a different preferential flow

approach would have yielded a similar result, remains an open

question.

The results of our study corroborate the findings of Glaser et al.

(2019). They showed that the transfer of dual-permeability parame-

ters from plot to catchment scale simulations did not improve dis-

charge simulations and reasoned that vertical preferential flow does

not seem to be of major relevance for catchment scale runoff genera-

tion in the Weierbach catchment. The heterogeneity of soil hydraulic

properties and lateral preferential flow implemented already by having

soil layers with contrasting saturated hydraulic conductivities seemed

to be sufficient to capture the general streamflow generation behav-

iour and reproduce discharge reasonably well in this catchment. We

would expect that this would be the case at all catchments that are

characterized by soil layers with strong contrasts in saturated hydrau-

lic conductivities and where shallow subsurface storm flow dominates

streamflow generation (e.g., Mirus, 2015). This applies to water flow

simulations only and may be different when considering solute trans-

port (cf. Christiansen et al., 2004).

4.3 | Suitability of catchment scale parameter sets
to describe plot-scale observations

Glaser et al. (2019) demonstrated that dual-permeability parameter

sets calibrated at plot scale did not result in a satisfactory simulation

of catchment-scale hydrometric response. Here, we applied the

reverse procedure and tested if the parameter sets calibrated at

catchment scale were also appropriate to simulate the plot scale

observations. The starting values of the hydraulic parameters for cali-

bration (‘default parameter set’) had been assembled based on field

evidence and previous modelling work such that a simulation of the

plot-scale irrigation experiments reproduced the elevated bromide

concentrations at depth (Figure 10). This default parameter set was

obviously not able to simulate discharge satisfactorily (Figure 7), and

the calibration clearly improved the simulation of the hydrometric

response at catchment scale. However, the dual-permeability parame-

ter sets (‘Macro’ and ‘MacroMat’ scenarios) performing best at catch-

ment scale performed even worse than the default parameter set

when simulating the bromide depth profiles at plot scale. This
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suggests that calibrated soil hydraulic parameters are not scale-invari-

ant, independent of the direction of the parameter transfer. Instead

they can be seen as effective parameters at the scale of calibration.

The scale-variance of soil hydraulic parameters has been shown

before for the transfer from the smaller scale to the larger scale

(e.g., Brooks et al., 2004; Grayson, Moore, & McMahon, 1992), but to

our knowledge not tested in the reverse direction.

5 | CONCLUSIONS

We successfully used the optimization algorithm DREAM to calibrate

a 3D physics-based dual-permeability model at the catchment scale.

In order to keep computational costs of the optimization routine

within a reasonable timeframe and, at the same time, to obtain physi-

cally realistic depth profiles of soil hydraulic parameters, we limited

the number of parameters to be calibrated by doing a PCA prior to

the calibration to identify the most influential soil hydraulic parame-

ters and by fixing the parameter ratios between the 10 simulated soil

layers, thus calibrating one hyperparameter instead of calibrating

parameters for the 10 soil layers independently. The dual-permeability

parameter sets identified during calibration were able to simulate

observed discharge time series satisfactorily but did not outperform a

single-domain reference model scenario. The effect of macropores

was calibrated away, which suggests that the incorporation of vertical

preferential flow as incorporated by the dual-permeability approach

was not relevant for catchment scale runoff generation. The heteroge-

neity of soil hydraulic properties and lateral preferential flow already

implemented by having soil layers with contrasting saturated hydraulic

conductivities seemed to be sufficient to reproduce the hydrometric

response reasonably well in the studied catchment. We also tested if

the dual-permeability parameter sets performing best at catchment

scale could be transferred to the plot-scale to describe bromide depth

profiles obtained from tracer irrigation experiments. This parameter

transfer proved to be not successful, suggesting that soil hydraulic

parameters are not scale-independent in both directions. Future work

could test the relative importance of vertical preferential flow versus

laterally highly conductive subsurface layers also for solute transport.
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