
Economic Model Predictive
Control and Time-Varying Systems

Von der Universität Bayreuth

zur Erlangung des Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigte Abhandlung

von

Simon Pirkelmann

aus Bayreuth

1. Gutachter: Prof. Dr. L. Grüne
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Abstract

This thesis contributes to a better understanding of the method of model predictive control

(MPC) for time-varying systems. Time-varying systems are used to describe physical

phenomena in numerous technical applications. The interior temperature of a building

can, for example, be described by such a time-varying system because it is influenced by

the daily and nightly fluctuations of the outside temperature and the weather. MPC can

be used to compute efficient operating strategies of buildings (i.e. when to heat or to

cool) and thereby reduce overall energy consumption. With regard to the urgently needed

reduction of CO2 emissions in the building sector, a deeper understanding of this method

is indispensable to develop more powerful algorithms.

In time-varying systems, optimal system behavior can generally be very complex and, in

particular, does not have to occur at an equilibrium or periodic trajectory. This makes

it necessary to adequately characterize optimal trajectories in the time-varying setting,

which is achieved by considering a modified notion of optimality. Based on this, conditions

are derived under which the cost of the MPC closed-loop are approximately optimal, i.e.

almost equal to the costs of an optimal solution trajectory on infinite time horizon. For

a sufficiently large MPC horizon length, the optimal system behavior can in principle

be approximated arbitrarily well. In this context, the so-called turnpike property and a

continuity property of the optimal value function are of particular importance. In addition,

it is shown that under the additional assumption of strict dissipativity the MPC trajectory

tends towards the vicinity of an optimal operating trajectory.

Furthermore, it is examined whether the assumptions made are reasonable and can be

explicitly proven or observed in simulations for systems in practice. For this purpose,

central results of the work are illustrated by the example of a convection-diffusion equation.

Moreover, two methods for optimal control of variations of this equation are presented.

Finally, a performance estimator for time-invariant MPC is presented, which serves to

monitor the controller performance at run-time.
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Zusammenfassung

Die vorliegende Arbeit leistet einen Beitrag dazu, die Methode der Modellprädiktiven

Regelung (MPC) für zeitvariante Systeme besser zu verstehen. Zeitvariante Systeme die-

nen zur Beschreibung von physikalischen Phänomenen in zahlreichen technischen Anwen-

dungen. Die Innentemperatur eines Gebäudes kann z.B. durch ein solches zeitverän-

derliches System beschrieben werden, da sie durch die tageszeitlichen Schwankungen der

Außentemperatur und durch das Wetter beeinflusst wird. Mit MPC können effiziente Be-

triebsstrategien von Gebäuden (d.h. wann geheizt bzw. gekühlt werden soll) berechnet

und dadurch der Energieverbrauch insgesamt gesenkt werden. Im Hinblick auf die drin-

gend nötigen Reduktion von CO2 Emissionen im Gebäudesektor ist ein tieferes Verständnis

dieser Methode unabdingbar, etwa um leistungsfähigere Algorithmen zu entwickeln.

Bei zeitvarianten System kann optimales Systemverhalten im Allgemeinen sehr komplex

ausfallen und muss insbesondere nicht an einem Gleichgewicht oder einer periodischen Tra-

jektorie auftreten. Dies erfordert eine geeignete Charakterisierung optimaler Trajektorien

im zeitvarianten Fall, was durch die Einführung eines modifizierten Optimalitätsbegriffs

erreicht wird. Darauf aufbauend werden in der Arbeit Bedingungen hergeleitet, unter

denen die Kosten der Trajektorien des geschlossenen MPC Regelkreises annährend opti-

mal sind, d.h. nahezu den Kosten einer Lösungstrajektorie auf unendlichem Zeithorizont

entsprechen. Für hinreichend große MPC Horizontlänge kann das optimale Systemverhal-

ten im Prinzip beliebig gut approximiert werden. In diesem Zusammenhang kommen der

sogenannten Turnpike Eigenschaft und einer Stetigkeitseigenschaft der optimalen Werte-

funktion besondere Bedeutung zu. Zusätzlich wird gezeigt, dass unter der zusätzlichen

Annahme von strikter Dissipativität die MPC Trajektorie in eine Umgebung der opti-

malen Systemtrajektorie strebt.

Weiterhin wird untersucht, ob bei Systemen in der Praxis die getroffenen Annahmen sinn-

voll sind und explizit nachgewiesen bzw. mit Hilfe von Simulationen beobachtet werden

können. Zu diesem Zweck werden zentrale Ergebnisse der Arbeit anhand des Beispiels

einer Konvektions-Diffusions-Gleichung illustriert. Auch werden dazu zwei Verfahren zur

optimalen Steuerung von Varianten dieser Gleichung vorgestellt.

Abschließend wird in der Arbeit ein Güteschätzer für zeitinvariante MPC vorgestellt, der

dazu dient die Regelgüte zur Laufzeit zu überwachen.
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1 | Introduction

1.1 Motivation and scope of the thesis

When it comes to bringing a room to a comfortable temperature, the average person

chooses a rather intuitive strategy: If it’s too cold, you turn up the heat, and if it’s

too hot, you open a window or switch on the air conditioning. Generally, this decision is

made spontaneously, based on the momentarily perceived discomfort, and without thinking

about how the outside temperature will change in the future.

It is easy to imagine that this is not the most energy-efficient method, as heating or cooling

might run unnecessarily long, or could sometimes even have been avoided entirely if only

one would have thought about the changing demand a little earlier. Even though this

waste of energy may be small on an individual level, it constitutes a considerable savings

potential when aggregated. In times of climate change, the obvious question is how to

harness this potential, especially since the building sector is a significant contributor to

carbon emissions [2].

Apart from structural changes, such as better insulation or the installation of more eco-

nomical heating, ventilation and air conditioning (HVAC) systems, there is great potential

for savings by more efficient and demand-driven operation of existing systems [1]. With

the increasing spread of the Internet of Things and the ensuing proliferation of networked

sensors and actuators, smart energy management of buildings can make a serious, prag-

matic, and viable contribution to reducing the carbon footprint and also lower energy costs.

A promising approach to achieving improvements in the operation of buildings is model-

based control. It relies on a mathematical model describing, for example, how the inside

temperature behaves when the outside temperature changes, or how different types of

heaters or insulation affect energy consumption. Nowadays, building models exist on

various scales from the simplest energy balance models to complex fluid dynamic models

based on physical principles [22, 38, 105,111]. With the help of such models, model-based

control can make predictions about the evolution of the temperature from which optimal

heating or cooling strategies can be identified. This can also take into account the weather

forecast for the coming days as well as variable energy prices and building occupancy. The

goal is to find an optimal operation strategy on an arbitrarily long (essentially infinite)

time horizon.
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2 Chapter 1. Introduction

A well-established model-based control method is Model Predictive Control (MPC) [31,

50,96], sometimes also termed Receding Horizon Control. MPC breaks the problem on the

infinite horizon down to finite sub-problems by optimizing predictions only on relatively

short time horizons (say, several hours in advance in the context of HVAC). After solving

the first sub-problem, one starts to implement the optimal control strategy, but at regu-

lar intervals (e.g., after one hour) the optimization procedure is carried out again on an

appropriately shifted horizon. This approach offers great flexibility to incorporate newly

acquired data (updated demands, temperature measurements, weather or price forecasts)

to which the controller adjusts automatically. Another advantage of MPC is that it al-

lows explicit consideration of state constraints such as allowed minimum and maximum

temperatures.

In the industry, MPC was initially mainly used to control processes that can be described

by linear systems or have relatively slow dynamics [40, 93, 94], but today the method is

successfully applied to systems of ever-increasing size and complexity due to the availability

of more powerful computers [19,26,27,32,64,103].

In many cases, the successes in the industrial application of MPC have been enabled by a

deepened mathematical understanding of the method. For many system classes, conditions

could be derived allowing to determine whether MPC works for a given system or not (see

e.g. the survey articles [30, 35] for recent advances in the context of economic MPC).

Nevertheless, there are still a number of open questions, especially for the case of time-

varying systems. This is relevant for the problem of energy-efficient building operation

since a building can be regarded as such a time-varying system. To fully exploit the

vast potential MPC offers for such applications, it is necessary to better understand the

method also for time-varying systems. This thesis contributes to answering some of the

open questions.

1.2 Outline and contribution

Chapter 2 - Fundamentals of Model Predictive Control

In the next chapter, we give a short introduction to the basics of control theory and

introduce the MPC method. In addition, we present well-known MPC results both in

the context of classical MPC as well as economic MPC. These include guarantees for the

stability of MPC closed-loop trajectories and (sub-)optimality estimates for performance

of the MPC solutions. We also summarize the central assumptions which are required for

obtaining these results. Of these, two assumptions will play a particularly important role

throughout the thesis: the turnpike property and a certain continuity assumption of the

optimal value function.



1.2 Outline and contribution 3

Chapter 3 - Optimal control of the convection-diffusion equation

Theoretical results obtained in this thesis will be illustrated by means of numerical sim-

ulations of heat-convection systems. The physics of such systems can be modeled by a

convection-diffusion partial differential equation (PDE). In this chapter, we introduce two

variants of this PDE.

In the first variant, we consider a boundary controlled convection-diffusion equation. This

setting could be interpreted as a room where the room temperature is subject to chang-

ing outside temperatures and can additionally be influenced by a controllable heating or

cooling system. The goal is to keep the temperature inside the room within certain limits

by adjusting the heating and cooling accordingly. To achieve this, we introduce a PDE

constrained optimal control problem.

For the second setting, we assume that, additionally, controllable ventilation (e.g. a fan)

is available. This also leads to an optimal control problem, but, in contrast to the first

one, it is bilinear which complicates the theoretical analysis.

For both approaches, we present numerical methods for solving the corresponding optimal

control problems. In the case of the bilinear optimal control problem, we describe how

the problem is discretized and formulate a finite-dimensional optimization problem that

can be solved by standard nonlinear optimization tools. For the other case, we apply

a primal-dual active set method constituting a function space optimization approach to

solve the problem.

Chapter 4 - MPC Results for time-varying systems

In this chapter, we extend results from Chapter 2 to MPC for time-varying systems. We

will see that the time-variance raises new fundamental questions about the optimality of

solutions. As a result, existing performance and stability results for time-invariant control

systems do not directly apply.

We introduce overtaking optimality which is necessary for a well-defined optimality notion

in the time-varying setting. It allows to generalize the concept of an optimal equilibrium,

referred to as optimal trajectory in the time-varying context. These optimal trajectories

represent particular trajectories on which a time-varying system should operate in order

to achieve the best performance in the long run.

In contrast to Chapter 2, we consider modified turnpike and continuity assumptions which

enable us to recover performance estimates of the MPC solutions in the time-varying case.

The second part of the chapter aims to prove stability of the MPC trajectories, more

specifically, to show that they converge to an optimal trajectory. By employing a time-

varying strict dissipativity assumption, we show that it becomes possible to construct a

Lyapunov function for the MPC controlled system by augmenting the optimal value func-

tion of the MPC optimization problem. This implies P-practical asymptotic stability of

the optimal trajectory, meaning that the MPC trajectory will converge to a neighborhood

of the optimal trajectory.



4 Chapter 1. Introduction

The results in the chapter are accompanied by several examples.

Chapter 5 - Analytical and numerical approaches for checking turnpike
and continuity assumptions

The purpose of this chapter is to examine whether the assumptions made in Chapter 4,

in particular, the turnpike property, continuity of the optimal value function, and strict

dissipativity, are realistic and can be observed in practical systems.

First, it is shown that both the turnpike property and the continuity of the optimal value

function can be derived from strict dissipativity provided that an additional controllability

assumption is satisfied. This allows to explicitly verify the assumptions for the case of a

simple example.

In the second part of the chapter, a convection-diffusion system inspired by a more realistic

scenario is considered. For this setting, numerical simulations are used to demonstrate that

optimal open-loop trajectories of the system show typical turnpike behavior. Furthermore,

we present numerical evidence for the continuity of the optimal value function in the

vicinity of the optimal trajectory.

Chapter 6 - Online MPC performance estimates

Another contribution of this thesis is a new performance estimate for time-invariant eco-

nomic MPC. At the beginning of the chapter, it is shown that existing MPC performance

estimates based on a relaxed dynamic programming inequality do not provide a satisfac-

tory estimate for economic cost functions. Instead, an alternative approach is proposed

which examines the improvement of the MPC cost between consecutive MPC steps and

derives from this a quantitative estimate for the deviation of the optimal performance.

This makes it possible to monitor the performance of the MPC trajectory at run-time for

economic MPC. At the end of the chapter, the practical application of the estimator is

illustrated using a numerical example.



2 | Fundamentals of Model Predictive

Control

In this chapter, we give a brief introduction to the fundamentals of control theory and

repeat key results of classical and economic model predictive control which we will expand

on in the course of the thesis. We will also establish the notation that will be employed

throughout the thesis.

2.1 Background of control theory

We consider the discrete-time control system

x(k + 1) = f(x(k), u(k)) for k ∈ N0 (2.1)

with state x(k) ∈ X and control u(k) ∈ U .

Starting from an initial state x(0) = x0, an iterative application of the map f with controls

u = (u(0), u(1), . . .) yields a sequence of states (x(0), x(1), x(2), . . .). This sequence is

called state trajectory and is denoted by xu(·;x0).

Control theory in general addresses the question of how to select the controls u so that

the state x (or an output of the system) exhibits a desired behavior. This behavior can

be very versatile. For instance, one could demand that the state approaches a certain

predefined state and stays there. This is referred to as stability. Another example would

be to prevent the state from entering a certain region in order to guarantee safe operation.

The concrete formulation depends on the respective application.

Often the desired behavior can be described by an optimal control problem. For this we

consider a so-called stage cost function ` : X ×U → R, which assigns a value to each pair

of state and control. The stage costs are summed up along a trajectory of the system:

J∞(x0, u) :=

∞∑

k=0

`(xu(k;x0), u(k)) (2.2)

We call this function infinite horizon cost functional. By selecting ` in such a way that every

deviation from a desired state xe is penalized, the goal of stability of the state trajectory

can be formulated as an optimal control problem. The cost functional thus quantifies the

5



6 Chapter 2. Fundamentals of Model Predictive Control

difference of the trajectory of the system from the desired state for all times. The goal is

to find a control sequence u ∈ U∞ that minimizes this difference:

minimize
u∈U∞

J∞(x0, u)

s.t. x(k + 1) = f(x(k), u(k)), x(0) = x0.
(2.3)

Likewise, it is possible to allow only certain states or controls. This is done in the form of

constraints of the optimal control problem. Let X and U denote the sets of allowed states

and controls, respectively. Furthermore,

U∞(x0) := {u ∈ U∞|xu(k;x0) ∈ X for all k ∈ N0} (2.4)

is the set of all admissible controls for which the state trajectory remains admissible.

The optimal control problem with constraints then reads:

minimize
u∈U∞(x0)

J∞(x0, u)

s.t. x(k + 1) = f(x(k), u(k)), x(0) = x0 for all k ∈ N.
(2.5)

In any case, an optimization problem must be solved on an infinite horizon, which in

general is challenging. Model Predictive Control is a method for solving such problems by

reducing the complexity of the problem in time.

2.2 Model Predictive Control

The basic idea of Model Predictive Control (MPC) is to truncate the optimization horizon

after a finite number of time steps N ∈ N. This means that only the cost functional

JN (x0, u) :=
N−1∑

k=0

`(xu(k;x0), u(k)) (2.6)

is optimized on a finite horizon over the set of admissible control sequences

UN (x0) := {u ∈ UN |xu(k;x0) ∈ X for all k ∈ {0, . . . , N − 1}}. (2.7)

The resulting optimal control sequence is denoted by u∗N,x0
. Only the first part of this

control sequence is then used as a control in the system. Afterwards the horizon is shifted

one step ahead and the optimization is carried out again at the next time on the shifted

horizon. Since this can be continued indefinitely, in this way a trajectory on an infinite

horizon is obtained.

In Algorithm 2.1 the procedure is summarized and in Figure 2.1 the idea is visualized.
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Past Future

k k +N

reference
trajectory

closed-loop
trajectory xµN

open-loop
predictions xu∗

N

k k +N

feedback µN

open-loop
control u∗N

Figure 2.1: The figure illustrates the MPC principle. The upper part of the figure shows

the evolution of the state trajectory, while the lower part shows the controls. At each

time instant k predictions of state and control are computed by solving an optimal control

problem up to time k+N (yielding open-loop predictions of the state (depicted in red) and

the control (depicted in blue)). Through successive implementation of the first part of the

optimal control sequence the feedback µN and the corresponding closed-loop trajectory

xµN are obtained.

Algorithm 2.1 (MPC algorithm)
For each time instant k = 0, 1, . . . :

(1) Measure the current state x = x(k) of the system.

(2) Solve the optimal control problem

min
u∈UN (x)

JN (x, u)

x(k + 1) = f(x(k), u(k)) for all k ∈ {0, . . . , N − 1},
x(0) = x,

(2.8)

in order to obtain the optimal control sequence u∗N,x.

(3) Apply the first element of u∗N,x as a control to the system during the next sampling period,

i.e. use the feedback law µN (x) := u∗N,x(0).

(4) Set k := k + 1 and go to (1).
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The trajectory xu∗N associated with the solution of the MPC optimization problem (2.8)

is referred to as the MPC open-loop trajectory.

Since the state of the system is measured in each MPC step and a control is computed

depending on the current initial state, MPC is a feedback control method. The MPC

feedback is called µN . The resulting trajectory is called MPC closed-loop trajectory and

denoted by xµN (·;x0).

Remark 2.2 (Terminal conditions)

The literature often distinguishes between MPC with and without terminal conditions. In

MPC with terminal conditions, the optimization problem in the MPC algorithm is modified

such that an additional terminal cost term is added to the cost functional, or it is required

that the final state of each MPC open-loop solution ends up in some terminal region.

The inclusion of such terminal ingredients facilitates the convergence proofs and can even

benefit the numerical solution of the MPC problems if terminal conditions are chosen in a

way that adds more information to the problem [50, Section 7.4], [74].

In contrast, without terminal conditions no terminal costs or terminal regions are consid-

ered. From a theoretical point of view, this complicates the convergence proofs compared

the case with terminal conditions, where approximate optimality and stability of the MPC

closed-loop trajectory are relatively easy to derive. However, the design of suitable terminal

ingredients (especially a Lyapunov function as terminal cost) is generally difficult. Thus,

avoiding them simplifies the implementation of the MPC algorithm, at the cost of a more

intricate convergence analysis.

Since in the course of the thesis we will only study MPC schemes without terminal condi-

tions, the subsequent results focus on the case of MPC without terminal conditions. For

further details on MPC with terminal conditions we refer to [8, 10, 25, 50, 96, 110]. 3

2.3 Essential MPC stability and performance results

In this section, we will present well-known results both for stabilizing and economic MPC.

Of particular interest is the question which properties the closed-loop trajectory has and

especially how it behaves compared to the solution of the optimal control problem (2.5)

on the infinite horizon. To answer this, we consider the nominal MPC closed-loop system

which is obtained by substituting the MPC feedback µN into (2.1):

xµN (k + 1, x0) = f(xµN (k, x0), µN (xµN (k, x0))) (2.9)

In order to evaluate the performance of the MPC closed-loop trajectory, the closed-loop

costs are an important indicator. These are defined by

Jcl∞(x0, µN ) :=

∞∑

k=0

`(xµN (k, x0), µN (xµN (k, x0))). (2.10)
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We want to compare these costs with the best possible cost of the problem on the infinite

horizon. To this end, we define the optimal value function of the problem (2.5):

V∞(x) := inf
u∈U∞(x)

J∞(x, u) (2.11)

To analyze stability and performance, the optimal value function for the MPC optimal

control problem (2.8) on finite horizon is also useful. It is given by:

VN (x) := inf
u∈UN (x)

JN (x, u). (2.12)

2.3.1 Stabilizing MPC

Historically, MPC was first applied to stabilization or tracking problems where an a priori

given trajectory should be followed. In the most basic case, this trajectory is simply an

equilibrium of the system.

Definition 2.3 (Equilibrium)

An equilibrium of the system (2.1) is a pair (xe, ue) which satisfies

xe = f(xe, ue). (2.13)

To achieve tracking, the cost functional is chosen such that it penalizes the distance to the

desired equilibrium. From a mathematical point of view, this means that the stage cost

is positive definite with regard to the equilibrium, i.e. that the following applies

`(xe, ue) = 0 and `(x, u) > 0 for all (x, u) ∈ X × U with x 6= xe. (2.14)

In classical MPC applications, stability of the MPC closed-loop trajectory is particularly

important. For the characterization of stability we introduce the following comparison

functions.

Definition 2.4 (Comparison functions)

We define the following classes of functions:

K := {α : R+
0 → R+

0 | α is continuous and strictly increasing with α(0) = 0}
K∞ := {α : R+

0 → R+
0 | α ∈K unbounded }

L := {δ : R+
0 → R+

0 | δ is continuous and strictly decreasing with lim
t→∞

δ(t) = 0}

KL := {β : R+
0 × R+

0 → R+
0 | β is continuous, β(·, t) ∈K, β(r, ·) ∈L}

Loosely speaking, stability means that the distance between the MPC trajectory and the

equilibrium tends to zero as time progresses. Throughout the thesis, we will use the

shorthand notation

|x|y := ‖x− y‖
to measure the distance of two states x and y in some appropriate norm ‖ · ‖. Stability of

the closed-loop trajectory is characterized by the following property.
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Definition 2.5 (Asymptotic stability)

Let xe be an equilibrium for the nominal closed-loop system (2.9). Then xe is called locally

asymptotically stable if there exist η > 0 and a function β ∈KL such that the inequality

|xµN (k, x0)|xe ≤ β(|x0|xe , k) (2.15)

holds for all x0 ∈Bη(xe) and all k ∈ N0, where Bη(xe) is a ball with radius η around the

equilibrium xe.

Conditions for stability of tracking type MPC controllers are well understood by now (see

the monographs [50,96] for a comprehensive overview). For stabilizing MPC, establishing

convergence of the closed-loop trajectory to the equilibrium relies on the fact that the

optimal value function VN of the MPC problem is a Lyapunov function. It has long been

known that the existence of a Lyapunov function implies stability. We refer to [67,99] for

an introduction to Lyapunov theory from the perspective of continuous-time systems.

In classical MPC, perhaps the most well-known result is that stability of the MPC closed-

loop trajectories can be expected provided the optimization horizon is sufficiently large

and the stage cost satisfies suitable assumptions.

For our purposes, we will only mention one particular result in detail. It was developed

in [58] and establishes suboptimality estimates along MPC closed-loop trajectories.

Theorem 2.6 (cf. [58, Proposition 3])

Consider a feedback law µN : X → U and its associated trajectory xµN (·, x0) with initial

value x(0) = x0 ∈ X. If there exists a function VN : X → R+
0 satisfying

VN (x(k)) ≥ α`(x(k), µN (x(k))) + VN (f(x(k), µN (x(k)))) (2.16)

for some α ∈ (0, 1] and all k ∈ N0 then the relation

V∞(x(k)) ≤ Jcl∞(x(k), µN ) ≤ 1

α
VN (x(k)) ≤ 1

α
V∞(x(k)) (2.17)

holds for all k ∈ N0.

This result allows to compare MPC controllers with different horizon lengths to an optimal

controller on infinite horizon based on their degree of suboptimality, described by the

quantity α. We will come back to it later in Chapter 6 where it forms the basis for online

performance estimates for the MPC closed-loop trajectory.

2.3.2 Economic MPC

In contrast to stabilizing MPC, in economic MPC the performance (i.e. the cost of the

MPC closed-loop) is often of greater importance than stability of the trajectories. This

does not mean that stability becomes irrelevant, but that we do not a priori decide on a

reference trajectory. Instead, we let the controller figure out the optimal behavior on its

own. This presents the main advantage economic MPC offers over stabilizing MPC.
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In classical MPC, the equilibrium (or reference trajectory) to be stabilized must be known

in advance. Usually, it stems from additional knowledge about the system and higher-level

design criteria, or it is determined by preceding optimization problems. However, optimal

behavior of the trajectories in the sense that they yield good performance can be quite

complex. This can complicate the design of stabilizing MPC controllers when there is no

knowledge of optimal system behavior, most notably in the time-variant case which we will

investigate in Chapter 4. Consequently, unlike in classical MPC, no reference trajectory

is prescribed in economic MPC. Instead, it will emerge implicitly from the solution of

the MPC algorithm. The stage cost is now regarded as given data originating from the

underlying (usually economic) problem. Thus, one works directly with the economic stage

cost.

From a mathematical point of view, the main difference lies in the fact that the economic

stage cost is not necessarily positive definite with respect to a particular equilibrium. As

a consequence, the results for stabilizing MPC can no longer be applied.

The survey articles [30, 35] give a comprehensive overview of the recent advances and

future challenges of economic MPC. For the purpose of this thesis we will primarily focus

on stability, optimality and transient optimality of the MPC closed-loop solutions. The

key concepts for doing so are presented in the following, along the lines of [43, 44, 57].

Later on, in Chapter 4, we seek to obtain comparable results for MPC for time-varying

systems. To simplify the presentation, we will only outline the central results and omit

preparatory lemmas. For further details, we refer to the original publications.

In what follows, we will restrict our analysis to optimal equilibria as defined below.

Definition 2.7 (Optimal Equilibrium)

An equilibrium (x∗e, u
∗
e) is called optimal equilibrium if it holds that

`(x∗e, u
∗
e) ≤ `(xe, ue) for all equilibria (xe, ue) ∈ X× U. (2.18)

It should be noted that the existence of an optimal equilibrium does not necessarily imply

that it is the best way to control the process. Instead, it is merely required that the optimal

equilibrium has the lowest cost among all equilibria. In case the optimal way of controlling

the process occurs in fact at an equilibrium, we speak of optimal operation at steady

state. The case of optimal steady-state operation has been studied extensively, cf. the

works [10, 83, 85], resulting in the characterization of necessary and sufficient conditions

for optimal steady-state operation involving dissipativity (which we will introduce below).

There also exists a number of extensions for more general types of optimal operation. We

will mention some of these at the end of the chapter.

The following assumptions form the basis for establishing performance and convergence

of economic MPC trajectories. In the first assumption we use the notation #S in order

to indicate the cardinality of the set S.

Assumption 2.8 (Turnpike property)

Consider system (2.1) with an optimal equilibrium according to Definition 2.7. We assume

the following holds:
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(a) There exists a function σ ∈ L such that for each optimal trajectory xu∗N,x
(k, x),

x ∈ X and all N,P ∈ N, P ≤ N , there is a set Q(x, P,N) ⊆ {0, . . . , N} with

#Q(x, P,N) ≤ P elements such that

|xu∗N,x
(k, x)|x∗e ≤ σ(P ) (2.19)

for all k 6∈ Q(x, P,N).

(b) There exists a function ρ ∈ L such that each optimal trajectory xu∗∞,x
(k, x), x ∈ X

and all P ∈ N, there is a set Q(x, P,∞) ⊆ N0 with #Q(x, P,N) ≤ P elements such

that

|xu∗∞,x
(k, x)|x∗e ≤ ρ(P ) (2.20)

for all k 6∈ Q(x, P,∞).

This assumption is referred to as the turnpike property. Part (a) describes the behavior

of open-loop solutions of the MPC optimal control problems (2.8), requiring that they

are most of the time close to the optimal equilibrium x∗e. Part (b) demands the same for

infinite horizon optimal trajectories associated with (2.5), which essentially corresponds

to a convergence assumption for the trajectories on the infinite horizon.

A second assumption is a continuity property of the optimal value functions VN .

Assumption 2.9 (Continuity property of VN )

Assume there exists an open ball Bε(x
∗
e), ε > 0, around the equilibrium and functions

η ∈K∞, ω ∈L such that for all x ∈Bε(x
∗
e) ∩ X and all N ∈ N ∪ {∞} the optimal value

functions VN satisfy

|VN (x)− VN (x∗e)| ≤ γV (|x|x∗e ) + ω(N). (2.21)

Using these assumptions it can be shown that MPC approximates the cost of an infinite

horizon optimal trajectory.

Theorem 2.10 (cf. [44, Theorem 4.4])

If Assumptions 2.8 and 2.9 hold and V∞ is bounded on X, then the inequality

JclM (x, µN ) + V∞(xµN (M)) ≤ V∞(x) +Mδ(N) (2.22)

holds for all M ∈ N and all sufficiently large N ∈ N with a function δ ∈L.

An interpretation of this theorem is that the MPC trajectory is the initial piece of an ap-

proximately optimal infinite horizon trajectory. To see this, realize that inequality (2.22)

states that the cost of the MPC closed-loop trajectory up to time M together with the

infinite horizon optimal cost from the final state xµN (M) (i.e. the left-hand side of (2.22))

is lower than the infinite horizon optimal cost V∞(x), at least up to the error term Mδ(N).

A direct consequence of the above result is that an extension of the horizon leads to better

approximation properties of the MPC controller, since the error term δ ∈ L decreases



2.3 Essential MPC stability and performance results 13

with increasing N . Note that the error term also depends on M . While in principle

this means that for M → ∞ the performance measure JclM (x, µN ) may not be finite, we

can still guarantee an upper bound on the long term average performance 1
M J

cl
M (x, µN ),

cf. [44, Remark 4.5].

Unfortunately, the approach from classical MPC, where the optimal value function VN
can be used as a Lyapunov function, does not directly transfer to economic MPC, due to

the lack of sign definiteness of VN in the economic case. However, stability can also be

established for economic MPC, at least for strictly dissipative systems.

Assumption 2.11 (Strict dissipativity)

The optimal control problem (2.8) is strictly dissipative, i.e. there exists a function α` ∈
K∞ and a storage function λ : X → R such that

`(x, u) + λ(x)− λ(f(x, u))− `(x∗e, u∗e) ≥ α`(‖x− x∗e‖) (2.23)

holds for all x ∈ X.

If strict dissipativity holds, the storage function λ can be used to define a modified stage

cost function
˜̀(x, u) = `(x, u) + λ(x)− λ(f(x, u))− `(x∗e, u∗e). (2.24)

The stability proof relies on the fact that even though ` is not necessarily positive definite

with respect to the equilibrium x∗e, the modified cost ˜̀ is, which then also transfers over

to the optimal value function of the problem with the modified cost. Thus, in this way it

is possible to recover a Lyapunov function. However, it comes at a price as the stability

notion is slightly weakened compared to Definition 2.5.

Definition 2.12 (Practical asymptotic stability)

An equilibrium xe of the closed-loop system (2.9) is called practically asymptotically stable

w.r.t. ε > 0 on a set S ⊆ X with xe ∈ S if there exists β ∈KL such that

‖xµN (k, x)− xe‖ ≤ max{β(‖x− xe‖, k), ε} (2.25)

holds for all x ∈ S and all k ∈ N.

In addition to strict dissipativity we assume the following.

Assumption 2.13 (Continuity and compactness)

The state and control constraint set X and U are compact, the functions f , ` and λ

are continuous, λ is Lipschitz continuous on a ball Bδ(x
∗
e) around x∗e and ˜̀ satisfies the

inequality
˜̀(x, u) ≤ α(‖x− x∗e‖) + α(‖u− u∗e‖) (2.26)

for all x ∈ X, u ∈ U and a suitable α ∈K∞.
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Assumption 2.14 (Local controllability)

There is ε > 0, M ∈ N and C > 0 such that for all x ∈ Bε(x
∗
e) there exists u1 ∈ UM (x),

u2 ∈ UM (x∗e) with

xu1(M,x) = x∗e, xu2(M,x∗e) = x (2.27)

and

max{‖xu1(k, x)− x∗e‖, ‖xu2(k, x∗e)− x∗e‖, ‖u1(k)− u∗e‖, ‖u2(k)− u∗e‖} ≤ C‖x− x∗e‖ (2.28)

for k = 0, 1, . . . ,M − 1.

Assumption 2.15 (Finite time controllability)

For ε > 0 from Assumption 2.14 there is K ∈ N such that for each x ∈ X there is k ≤ K

and u ∈ Uk(x) with

xu(k, x) ∈Bε(x
∗
e). (2.29)

With these assumptions, one can prove convergence of the MPC closed-loop trajectory

towards the optimal equilibrium x∗e in the sense of Definition 2.12.

Theorem 2.16 (Practical asymptotic stability of the MPC closed-loop, cf. [57, Theorem

3.7])

Consider a strictly dissipative economic MPC problem satisfying Assumptions 2.13 - 2.15.

Then the equilibrium (x∗e, u
∗
e) is practically asymptotically stable for the MPC closed-loop

system (2.9) w.r.t. ε→ 0 as the horizon N →∞.

As a final result, we mention that it is also possible to prove transient optimality, meaning

that among all trajectories converging to a neighborhood of the optimal equilibrium x∗e,
the ones generated by MPC are the ones with the lowest cost, at least up to certain error

terms.

Theorem 2.17 (Transient optimality, cf. [57, Theorem 4.1])

Assume that x∗e is practically asymptotically stable on a set S ⊆ X w.r.t. ε = ε(N) for

the economic MPC closed-loop system. Assume further that there exists αλ ∈ K∞ with

|λ(x)| ≤ αλ(‖x − x∗e‖) for all x ∈ X. Let εK,N := ‖xµN (K,x) − x∗e‖ ≤ max{β(‖x −
x∗e‖,K), ε(N)} and let UKεK,N

:= {u ∈ UK(x)|xu(K,x) ∈BεK,N (x)}. Then the inequality

JclK(x, µN ) ≤ inf
u∈UK

εK,N

JK(x, u) + αV (εK,N ) + 2αλ(εK,N ) +Kδ(N) (2.30)

holds for all K,N ∈ N and all x ∈ S.

It should be noted that the first two error terms vanish as K and N tend towards infinity.

However, this is not clear for the last error term Kδ(N).

To summarize, the key concepts used in the analysis for economic MPC are the turnpike

property and continuity of the optimal value functions. Together with strict dissipativity,

these properties allow to prove the existence of a Lyapunov function and thus to con-

clude asymptotic stability of the MPC closed-loop trajectories and certain performance

estimates. In Chapter 4 we will generalize and extend the central Theorems 2.10 and 2.16

to the time-varying case.
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2.3.3 Extensions

There exists a number of extensions related to the results presented before, some of which

we briefly mention here.

Periodic optimal operation:

The first extension addresses the fact that the optimal operation does not have to occur

at an equilibrium. Indeed, the optimal behavior can also be, e.g., periodic and even more

general types like complex chaotic regimes are conceivable, even though we are not aware

of any examples of this in the literature.

The case of periodic optimal operation has been investigated in [84]. The most noteworthy

result in this work is the observation that the default MPC scheme from Algorithm 2.1 does

not necessarily result in optimal closed-loop performance. Whether this happens rather

depends on the period length P of the optimal periodic trajectory (called orbit). In order

to guarantee convergence of the MPC closed-loop to the optimal periodic orbit, one can

apply a multi-step MPC scheme. In this scheme, not only the very first control of the open-

loop control sequence is implemented in the system but the open-loop control sequence

is applied for a total of M steps before the horizon gets shifted and the optimization is

carried out anew. It was shown in [84] that if the step length of the MPC method is chosen

such that it matches the period length of the optimal periodic orbit, i.e. M = P , then the

MPC closed-loop will converge to this orbit yielding near-optimal performance.

Other works investigating optimal periodic systems include [109,110] as well as [10]. Out

of these, the last one is particularly interesting since it contains a practical example of a

chemical reactor which is optimally operated at a periodic trajectory.

Application of turnpike properties:

Assumption 2.8 (the turnpike property) is increasingly recognized as a valuable tool, both

in the structural analysis of optimal control problems as well as for the improvement of

numerical methods.

An example of the latter is a new adaptive discretization scheme for MPC open-loop so-

lutions developed in [56]. It exploits the fact that open-loop trajectories hardly change

when close to the turnpike and that an accurate estimation of only the initial piece of the

open-loop solution suffices when applying MPC. The adaptive discretization reduces com-

putation time and memory load of the MPC optimal control problems while maintaining

high accuracy for the relevant parts of the open-loop.

Other recent results [34, 37] extend the concept of turnpike behavior from equilibria to

general non-stationary trajectories. For mechanical systems, this allows to identify ele-

mentary pieces of optimal control trajectories called motion primitives or trims, connecting

different configurations of the system. These trims can be assembled into a library of solu-

tions for intermediate optimal control problems which, in turn, can be efficiently searched

for an optimal path between two arbitrary configurations.
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Connection between turnpike property and dissipativity:

While numerical observations suggest that turnpike phenomena are prevalent in applica-

tions, their rigorous verification is still challenging. In this context, strict dissipativity (see

Assumption 2.11) plays an important role, since there exists a strong connection between

strict dissipativity and the turnpike property as first observed in [43], identifying strict

dissipativity as a sufficient condition for the turnpike property.

This connection was further explored in [48], where it was shown that strict dissipativity

is not only a sufficient but, in certain cases, also a necessary condition for the turnpike

property, i.e., under appropriate assumptions the turnpike property implies strict dissipa-

tivity.

For particular classes of systems, the connection between dissipativity and the turnpike

property allows to explicitly verify the presence of the turnpike property. In [23] the

case of linear systems with convex stage costs is considered, in which case an exponential

turnpike result can be deduced. These results were extended in [45] to also allow for state

and control constraints and more recently to non-convex (indefinite) stage cost functions

in [15].

In Chapter 5, we will explore the link between dissipativity and the turnpike property

further in the context of time-varying systems.



3 | Optimal control of the convection-

diffusion equation

We will supplement the theoretical results developed in the course of this thesis by nu-

merical examples. Several of these examples involve different variations of the convection-

diffusion equation, a particular parabolic partial differential equation (PDE). This chapter

aims to introduce this PDE and to present the numerical methods for its optimal control.

We consider two different scenarios of the convection-diffusion equation. In the first sce-

nario we consider a 1D domain with boundary control and a controlled convection term.

This results in a bilinear optimal control problem, which is solved via a first-discretize-

then-optimize approach.

Secondly, we consider the equation on a 2D domain without controlled convection. Instead,

we assume the velocity field is given, e.g. by a solution of the Navier-Stokes equations.

For this setting, we apply a function space optimization method implemented in [76].

3.1 The convection-diffusion equation

The convection-diffusion equation models the transport of particles, energy or other phys-

ical quantities within a system by convective and diffusive processes. The equation plays

an important role in the explanation of physical phenomena in many fields like hydrol-

ogy [12], climate modeling [42] or magnetohydrodynamics [24]1. For our purposes, the

equation serves as a simplified model of the dispersion of heat in a room by conductive

heat transfer (i.e. radiation) on the one hand and convective transfer induced by a velocity

field (i.e. air flow) on the other hand.

Let Ω ⊂ Rd, d ∈ {1, 2}, be a domain, T > 0 and define Q := (0, T ) × Ω. We denote

H := L2(Ω), V := H1(Ω), and consider the space

L2(0, T ;V ) := {v : [0, T ]→ V |
∫ T

0
‖v(t)‖2V dt <∞} (3.1)

1In some of these fields, the equation appears under different names such as advection-diffusion equation

or drift-diffusion equation.

17
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of square integrable functions from [0, T ] to V . Let

W (0, T ) := {ϕ ∈ L2(0, T ;V )| ϕt ∈ L2(0, T ;V ′)}, (3.2)

where V ′ is the dual space of V and ϕt is the (distributional) time derivative of ϕ.

The convection-diffusion equation reads

yt(t, x)− α∆y(t, x) + v(t, x)∇y(t, x) = 0 almost everywhere (a.e.) on Q (3.3a)

y(0, x) = y0(x) a.e. in Ω (3.3b)

where y : Q → R is the temperature, α ∈ R is the diffusion coefficient, v : [0, T ] → Ω

is a velocity field and y0 : Ω → R is the initial temperature distribution. According to

equation (3.3a), the change of heat yt depends on diffusive parts α∆y(t, x) and convective

parts v(t, x)∇y(t, x) subject to a given velocity field v(t, x).

3.1.1 Boundary conditions

The temperature within the room Ω is subject to variations of the temperature on the

outside. This is modeled by the following boundary conditions:

α
∂y

∂n
(t, s) + γouty(t, s) = δoutyout(t) a.e. on Σout := (0, T )× Γout (3.4a)

α
∂y

∂n
(t, s) + γcy(t, s) = δcui(t) a.e. on Σci := (0, T )× Γci , i ∈ {1, . . . ,m} (3.4b)

The boundary is partitioned into a part Γout where some outside temperature is pre-

scribed and control boundaries Γci , i ∈ {1, . . . ,m}, where we can influence the tem-

perature by heating and cooling. The functions ui : [0, T ] → R, i ∈ {1, . . . ,m}, and

yout : [0, T ] → R specify the temperature on the respective parts of the boundary. The

coefficients γout, γc, δout, δc ≥ 0 can be used to model different types of heat transfer across

the boundary. For example, by choosing γc = δc � α we can approximate a Dirichlet

boundary condition for the state which means that we can set the temperature at the

boundary directly. Conversely, choosing γc = 0 corresponds to a Neumann boundary

condition which would imply that the control defines the flux of heat across the boundary.

An illustration of a 2D domain on a unit square with a single control boundary at x2 = 0

can be found in Figure 3.1.

3.1.2 Problem statement

We want to control the system governed by the convection-diffusion equation such that

the temperature y(t, x) remains within certain lower and upper bounds y(t, x) and y(t, x).

At the same time, the control effort (corresponding to the amount of energy supplied to

the system) should be minimized. From a control perspective, we will consider two fun-

damentally different versions of the problem.
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x1

x2

0

1

1

Ω

Γc

Γout

Figure 3.1: Example illustration of the domain and boundaries. A single control boundary

Γc is shown in red and the other boundary Γout is shown in blue.

Boundary heating

In the first version, the only control action happens at the boundary through the control

u ∈ U := L2(0, T ;Rm), m ∈ N . In this case, our goal can be expressed by the following

PDE optimal control problem:

min
y,u

J(y, u) =
σT
2

∫

Ω
(y(T, x)− yT (x))2 dx+

σQ
2

∫ T

0

∫

Ω
(y(t, x)− yQ(t, x))2 dx dt

+
σu
2

m∑

i=1

∫ T

0
(ui(t))

2 dt

subject to (s.t.) (3.3), (3.4)

u(t) ≤ ui(t) ≤ u(t), i ∈ {1, . . . ,m} a.e. on (0, T )

y(t, x) ≤ y(t, x) ≤ y(t, x) a.e. on (0, T )× Ωy

(3.5)

where yQ ∈ L2(0, T ;H), yT ∈ H, parameters σQ, σT ≥ 0, σ1, . . . , σm > 0 and Ωy ⊂ Ω is a

subdomain where the temperature bounds y, y ∈ C(Q) should be enforced. This setting

has been studied in [76], where a numerical solution based on a primal-dual-active-set

method was implemented. We will discuss this setting later on in this chapter.

Controlled convection term

Alternatively, we can additionally permit control of the velocity field v(t, x) which could

be interpreted as, e.g., an adjustable ventilating fan inside the room. This is expressed by

adding a second control variable w ∈W := L2(0, T ;R) that determines the magnitude of

the velocity field. Formally, we introduce a mapping v : W → L∞(0, T ;L∞(Ω,Rd)) which

maps each control value w(t) to a velocity field v(w)(t) ∈ L∞(Ω,Rd).
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In this case, the optimal control problem is augmented to:

min
y,u,w

J(y, u, w) =
σT
2

∫

Ω
(y(T, x)− yT (x))2 dx+

σQ
2

∫ T

0

∫

Ω
(y(t, x)− yQ(t, x))2 dx dt

+
σu
2

m∑

i=1

∫ T

0
(ui(t))

2 dt+
σw
2

∫ T

0
(w(t))2 dt

s.t. (3.3), (3.4)

u(t) ≤ ui(t) ≤ u(t), i ∈ {1, . . . ,m} a.e. on (0, T )

w(t) ≤ w(t) ≤ w(t), a.e. on (0, T )

y(t, x) ≤ y(t, x) ≤ y(t, x) a.e. on (0, T )× Ωy

(3.6)

with σw > 0. Naturally, this gives the controller more leeway but at the same time it

renders the problem bilinear which complicates the analytical treatment. In particular, it

can no longer be solved directly by the method from [76] because of the different optimality

conditions due to the bilinear structure. For this reason, a different path was chosen for the

solution of the bilinear optimal control problem based on a first-discretize-then-optimize

approach.

It should be remarked that optimality conditions for bilinear control of convection-diffusion

equations have been developed in [13], albeit without boundary control and in absence of

state constraints. Presumably, it should be possible to extend these ideas to our setting

which would allow to solve the first scenario with the method from [76] as well.

3.1.3 Derivation of the weak form

Before we come to the numerical methods for solving the above problems, we derive the

weak form of the PDE (3.3). This weak (or variational) formulation of the equation will

serve as the basis for the numerical discretization by the Finite Element method.

In the derivation, we will only consider the case with the controlled velocity field v(w)(t, x)

and remark that the derivation for uncontrolled convection term v(t, x) works analogously.

To enhance readability, below we will omit the arguments t and x of the functions. The

weak form is obtained by the following steps. First, we formally multiply equation (3.3)

with a test function ϕ ∈ V and integrate over the domain Ω:
∫

Ω

d

dt
yϕ dx− α

∫

Ω
∆yϕ dx+

∫

Ω
(v(w) · ∇y)ϕ dx = 0. (3.7)

Using integration by parts in space and substituting the boundary conditions (3.4) we

obtain∫

Ω

d

dt
yϕ dx+ α

∫

Ω
∇y · ∇ϕ dx+

∫

Ω
(v(w) · ∇y)ϕ dx

+ γout

∫

Γout

yϕ ds− δoutyout
∫

Γout

ϕ ds+

m∑

i=1

γc

∫

Γci

yϕ ds− δcui
∫

Γci

ϕ ds = 0.

(3.8)
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Reordering by terms dependent and independent of y yields
∫

Ω

d

dt
yϕ dx+ α

∫

Ω
∇y · ∇ϕ dx+

∫

Ω
(vw · ∇y)ϕ dx+ γout

∫

Γout

yϕ ds+
m∑

i=1

γc

∫

Γci

yϕ ds

= δoutyout

∫

Γout

ϕ ds+
m∑

i=1

δcui

∫

Γci

ϕ ds.

In order to shorten the notation, for ϕ,ψ ∈ V let

〈ϕ,ψ〉L2(Ω) :=

∫

Ω
ϕψ dx (3.9)

and introduce the functionals F(t) : V → V ′, B : Rm → V ′

〈F(t), ϕ〉V ′,V := δoutyout(t)

∫

Γout

ϕ ds

〈Bu(t), ϕ〉V ′,V :=

m∑

i=1

δcui(t)

∫

Γci

ϕ ds

as well as A : W → L∞(0, T ;L(V, V ′))

〈A(w)(t)ϕ,ψ〉V ′,V := α

∫

Ω
∇ϕ · ∇ψ dx+

∫

Ω
(v(w)(t) · ∇ϕ)ψ dx

+γout

∫

Γout

ϕψ ds+
m∑

i=1

γc

∫

Γci

ϕψ ds
(3.10)

resulting in the variational equation

d

dt
〈y(t), ϕ〉L2(Ω) + 〈A(w)(t)y(t), ϕ〉V ′,V = 〈Bu(t), ϕ〉V ′,V + 〈F(t), ϕ〉V ′,V . (3.11)

We now call y ∈W (0, T ) weak solution of the PDE (3.3) if it satisfies

d

dt
〈y(t), ϕ〉L2(Ω) + 〈A(w)(t)y(t), ϕ〉V ′,V = 〈Bu(t), ϕ〉V ′,V + 〈F(t), ϕ〉V ′,V ,

∀ϕ ∈ V a.e. on (0, T )

y(0) = y0 in L2(Ω).

(3.12)

3.2 Solution with controlled convection term

We first consider the case where both the boundary heating u and the convection term

v can be controlled. For simplicity, we restrict ourselves to a 1-dimensional domain Ω =

[0, 1] ⊂ R with a single control boundary Γc on the right and an uncontrollable outside

temperature at the left boundary Γout. We want to constrain the temperature on the

subinterval Ωy := [1
4 ,

3
4 ]. An illustration of this setting can be found in Figure 3.2. Another

simplification that is made is the assumption that the convection term acts uniformly on

the domain, i.e., v(w)(t, x) = v(w)(t) =: vw(t) ∈ R is independent of the position x.
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Ωy

Ω

ΓcΓout

Figure 3.2: Illustration of the domain and control boundaries as well as the subdomain

Ωy where the temperature constraints should be satisfied.

3.2.1 Galerkin spatial discretization

As the first step, we discretize equation (3.12) by a Galerkin method [7, 18, 41]. To this

end, we consider a finite dimensional subspace Vh ⊂ V and a basis of this space consisting

of trial functions {ψi}Li=1, i.e., Vh := span{ψ1, . . . , ψL}. The idea is to approximate the

functions y(t) and the initial condition y0 via

yh(t, x) =

L∑

j=1

yj(t)ψj(x), (3.13)

y0,h(x) =

L∑

j=1

y0,jψj(x), (3.14)

with coefficients yj(t), y0,j , j ∈ {1, . . . , L}. These coefficients will be determined by solving

a system of equations which is derived as follows. Inserting the approximations in the weak

form (3.11) and considering only test functions ψ1, . . . , ψL we obtain

d

dt
〈yh(t), ψi〉L2(Ω) + 〈A(w)(t)yh(t), ψi〉V ′,V = 〈Bu(t), ψi〉V ′,V + 〈F(t), ψi〉V ′,V ,

∀i ∈ {1, . . . , L} a.e. on (0, T ).
(3.15)

This yields a total of L equations, one for each test function ψi. We now consider the

individual components in the above equation to obtain the mass and stiffness matrices as

well as the right-hand side of the system of equations. Starting with the first term, we

insert the definition of yh to get

d

dt
〈yh(t), ψi〉L2(Ω) =

d

dt
〈
L∑

j=1

yj(t)ψj , ψi〉L2(Ω) =

L∑

j=1

d

dt
yj(t)

∫

Ω
ψj(x)ψi(x) dx

︸ ︷︷ ︸
=:Mji

(3.16)
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for all i ∈ {1, . . . , L}. Next, from the second term we get

〈A(w)(t)yh(t), ψi〉V ′,V = 〈A(w)(t)
L∑

j=1

yj(t)ψj , ψi〉V ′,V

=
L∑

j=1

yj(t)

(
α

∫

Ω
∇ψj(x) · ∇ψi(x) dx+ γout

∫

Γout

ψj(s)ψi(s) ds+ γc

∫

Γc

ψj(s)ψi(s) ds

)

︸ ︷︷ ︸
=:Aji

+ yj(t)vw(t)

∫

Ω
∇ψj(x)ψi(x) dx

︸ ︷︷ ︸
=:Bw

ji

(3.17)

for i ∈ {1, . . . , L}. Finally, the right-hand side of (3.15) yields

〈Bu(t), ψi〉V ′,V +〈F(t), ψi〉V ′,V = u(t) δc

∫

Γc

ψi ds

︸ ︷︷ ︸
=:bu

i

+yout(t) δout

∫

Γout

ψi ds

︸ ︷︷ ︸
=:fout

i

, i ∈ {1, . . . , L}.

(3.18)

In addition, we get L equations from the projection of the initial condition y0(x) to the

space Vh:

y0,i =

∫

Ω
y0(x)ψi(x) dx, i ∈ {1, . . . , L}. (3.19)

Let us define the coefficient vectors

yh(t) := (y1(t), . . . , yL(t))> (3.20)

y0 := (y0,1, . . . , y0,L)>. (3.21)

Then, for given data yout, y0 and given controls u, w, we can compute an approximate

solution of the PDE by solving the (nonlinear) ODE initial value problem

Mẏh(t) + Ayh(t) + vw(t)Bwyh(t) = buu(t) + foutyout(t)

yh(0) = y0.
(3.22)

So far we did not specify the choice of the basis of trial functions which span the finite

dimensional subspace Vh ⊂ V . A popular way to choose them is using Finite Elements.

An in-depth introduction to the Finite Element method can be found in [41, 71]. Briefly,

for the method we subdivide the domain Ω into subsets Ki, e.g. by triangulation (which

simplifies to subdivision by finite intervals in the 1D case). We then consider piecewise

polynomial trial functions on each subset. This approach offers the advantage that the

resulting mass and stiffness matrices are sparse which facilitates the numerical solution of

the system.
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3.2.2 Time discretization by implicit Euler method

To solve the ODE system (3.22) numerically, the system has to be discretized in time.

We will apply the implicit Euler method for this purpose. Let N ∈ N and define the step

size h := T
N > 0. We want to obtain a solution at the discrete time instances tk = kh,

k ∈ {0, . . . , N}. For a general control system

ẏ(t) = f(t, y(t), u(t))

y(0) = y0,
(3.23)

the implicit Euler discretization computes approximations yk+1 of the state y(tk+1) at the

time points tk+1 by solving the (nonlinear) system

yk+1 = yk + hf(tk+1, yk+1, uk+1) (3.24)

for each k ∈ {0, . . . , N − 1}, starting at time k = 0 with the initial state y0. We assume

that the controls u are piecewise constant, i.e., they are kept constant during the time

interval [tk, tk+1), and identify uk with the value of the function u(tk). The same holds

for the controls wk = vw(tk) and the outside temperature yout,k = yout(tk).

Applying this discretization scheme to the system (3.22) and replacing the time derivative

ẏh by the difference quotient
yk+1−yk

h we obtain

(M + hA)yk+1 + hwk+1B
wyk+1 = Myk + h(buuk+1 + foutyout,k+1). (3.25)

Iteratively solving this system for each time step k ∈ {0, . . . , N − 1} yields an approxi-

mation yk+1 of yh(tk+1), which, in turn, corresponds to the spatial approximation of the

PDE state y(tk+1).

Remark 3.1 (Alternative discretization approaches)

The method presented above of first discretizing in space by Finite Elements followed by

subsequent time discretization is also known as method of lines. There exist alternative

approaches where essentially both time and space discretization are based on Galerkin

methods [33]. This offers the advantage that optimality conditions translate directly from

the continuous to the discrete level [14]. Moreover, a rigorous convergence analysis is

available, as well as error estimates measuring the discrepancy between discrete and con-

tinuous solutions [80]. The approach is also suitable for efficient implementation with

adaptive time and space grids [79].

3.2.3 Finite dimensional optimal control problem

Recall that we aim to solve the optimal control problem (3.6) numerically. In the previous

sections, we have already described how the state equation is discretized using Finite



3.2 Solution with controlled convection term 25

Elements and the Implicit Euler Method. What is left to discretize is the cost functional

J(y, u, w) =
σT
2

∫

Ω
(y(T, x)− yT (x))2 dx+

σQ
2

∫ T

0

∫

Ω
(y(t, x)− yQ(t, x))2 dx dt

+
σu
2

∫ T

0
(u(t))2 dt+

σw
2

∫ T

0
(w(t))2 dt.

(3.26)

For this, we replace the integrals over the domain Ω and over the time interval [0, T ] by

discrete approximations. For functions z ∈ L2(Ω) this can be achieved by approximating

‖z‖2L2(Ω) =

∫

Ω
(z(x))2 dx ≈ zh

>Mzh, (3.27)

where zh = (z0, . . . , zL)> is the coefficient vector of the Finite Element discretization of

z and M is the mass matrix (see equation (3.16)). In addition, the time integral on the

interval [0, T ] of a function f(t) can be approximated using the (right) Riemann sum

∫ T

0
f(t) dt ≈ h

N−1∑

k=0

f(tk+1). (3.28)

By applying these discretizations to (3.26), we obtain the discretized cost functional

Jd(y,u,w) =
σT
2

(yN − yT)>M(yN − yT)

+ h

N−1∑

k=0

(σQ
2

(yk − yQ,k)>M(yk − yQ,k) +
σu
2
u2
k +

σw
2
w2
k

) (3.29)

with y = (y0, . . . ,yN)>, u = (u0, . . . , uN−1)> and w = (w0, . . . , wN−1)>.

The last issue to address is how the state constraints on y can be enforced. For this

we make the assumption that we use linear Lagrange Finite Elements. In this case, the

coefficients (yk,1, . . . , yk,L) = yk directly correspond to the value of the Finite Element

approximation of y(tk) at the Finite Element nodes. Thus, we can constrain the state by

demanding

y
k,i
≤ yk,i ≤ yk,i (3.30)

for each k ∈ {0, . . . , N} and i ∈ IΩy , where y
k

and yk are the coefficient vectors of

appropriate Finite Element representations of y and y and IΩy is the index set of Finite

Element nodes in the subdomain Ωy.

With all of the above, we can finally write down the fully discretized finite dimensional
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optimization problem of (3.6):

min
y,u,w

Jd(y,u,w) =
σT

2
(yN − yT)>M(yN − yT)

+ h

N−1∑
k=0

(σQ

2
(yk − yQ,k)>M(yk − yQ,k) +

σu

2
u2
k +

σw

2
w2

k

)
s.t. (M + hA)yk+1 + hwk+1B

wyk+1 = Myk + h(buuk+1 + foutyout,k+1), k ∈ {0, . . . , N − 1},
y
k,i
≤ yk,i ≤ yk,i, k ∈ {0, . . . , N}, i ∈ IΩy ,

uk ≤ uk ≤ uk, k ∈ {0, . . . , N − 1},
y0 = y0.

(3.31)

Observe that the equality constraints of the finite dimensional optimization problem are

nonlinear due to the mixed terms wk+1B
wyk+1. For the numerical solution, we thus need

a method capable of handling nonlinear equality constraints, as well as (in our case linear)

inequality constraints. One option is to apply an interior point method (see [88]) such as

the one implemented in the library Ipopt [104].

3.3 Solution without controlled convection term

We now return to the setting presented in problem (3.5) where the only control happens

at the boundary and the velocity field v(t, x) is regarded as given data. This exact setting

has been studied in detail in [76]. Therein, the problem is solved using a Primal Dual

Active Set Strategy (PDASS) [16,63]. In this section, we will give a short overview of the

method without delving into details. For these, we refer to [76,77].

Recall that we have already derived the weak formulation of the PDE in Section 3.1.3,

although for the more general case with a controlled convection term. In the present

setting, we consider the bilinear form, which for t ∈ (0, T ) is defined by

a(t;ϕ,ψ) := α

∫

Ω
∇ϕ(x) · ∇ψ(x) dx+

∫

Ω
(vt, x · ∇ϕ(x))ψ(x) dx+ γout

∫

Γout

ϕ(s)ψ(s) ds

+

m∑

i=1

γc

∫

Γci

ϕ(s)ψ(s) ds.

(3.32)

This leads to the weak form of the state equation:

d

dt
〈y(t), ϕ〉L2(Ω) + a(t; y(t), ϕ) = 〈Bu(t), ϕ〉V ′,V + 〈F(t), ϕ〉V ′,V , ∀ϕ ∈ V a.e. on (0, T )

y(0) = y0 in L2(Ω).

(3.33)
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Let us write down the optimal control problem (3.5) once more:

min
y,u

J(y, u) =
σT
2
‖y(T )− yT ‖2L2(Ω) +

σQ
2

∫ T

0
‖y(t)− yQ(t)‖2L2(Ω) dt (3.34a)

+
σu
2

m∑

i=1

‖ui‖2L2(0,T ) (3.34b)

subject to (3.33),

u(t) ≤ ui(t) ≤ u(t), i ∈ {1, . . . ,m} a.e. on (0, T ) (3.34c)

y(t, x) ≤ y(t, x) ≤ y(t, x) a.e. on (0, T )× Ωy (3.34d)

The state constraints (3.34d) pose the largest difficulty to solving the optimal control prob-

lem since they lead to measure-valued Lagrange multipliers in the optimality conditions

(cf. [76, Theorem 1.18]). One way to handle them is to apply a regularization, e.g., using a

virtual control approach [69]. In this approach, the state constraints are replaced by mixed

state-control constraints. In a slight abuse of notation, we introduce an additional control

variable w ∈W := L2(0, T ;H), noting that this new variable and the corresponding space

should not be confused with their counterparts from the previous section. The task of

the virtual control variable is to capture violations of the state constraints which are then

penalized in an augmented cost functional. We choose a regularization parameter ε > 0

and replace the state constraint in problem (3.34) by the auxiliary control constraint

y(t, x) ≤ y(t, x) + εw(t, x) ≤ y(t, x) a.e. in Ω× (0, T ).2 (3.35)

It can be written equivalently as

1

ε
(y(t, x)− y(t, x))
︸ ︷︷ ︸

=:w(t,x)

≤ w(t, x) ≤ 1

ε
(y(t, x)− y(t, x))
︸ ︷︷ ︸

=:w(t,x)

a.e. in Ω× (0, T ). (3.36)

The cost functional is modified to

Jε(y, u, w) =
σT
2
‖y(T )− yT ‖2L2(Ω) +

σQ
2

∫ T

0
‖y(t)− yQ(t)‖2L2(Ω) dt

+
σu
2

m∑

i=1

‖ui‖2L2(0,T ) +
σw
2
‖w‖2W

with the regularization parameter σw > 0. As stated in [76, Theorem 1.39], the solution of

problem (3.34) can be approximated by the solution of the following regularized optimal

2For ease of presentation, we omit the embedding operator E : W (0, T )→W to map from state space

to the space of the virtual control w. The full details can be found in [77].
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control problem:

min
y,u,w

Jε(y, u, w)

subject to (3.3), (3.4)

u(t) ≤ ui(t) ≤ u(t), i ∈ {1, . . . ,m} a.e. on (0, T )

w(t, x) ≤ w(t, x) ≤ w(t, x) a.e. in Ω× (0, T )

(3.37)

The above problem can be written in control-reduced form, i.e., the optimization is carried
out only with respect to the control variables u and w. In this formulation, the state y
is derived from the state ŷ resulting from the uncontrolled dynamics and the (additive)
influence of the control described by the control-to-state operator S, i.e., y = ŷ+Su. The
resulting control-reduced problem reads

min
u,w

Ĵε(u,w) =
σT
2
‖(Su)(T )− (yT − ŷ(T ))‖2L2(Ω) +

σQ
2

∫ T

0

‖(Su)(t)− (yQ(t)− ŷ(t))‖2L2(Ω)dt

+
σu
2

m∑

i=1

‖ui‖2L2(0,T ;R) +
σw
2
‖w‖2W

u(t) ≤ ui(t) ≤ u(t), i ∈ {1, . . . ,m} a.e. on (0, T )

w(t, x) ≤ w(t, x) ≤ w(t, x) a.e. in Ω× (0, T ).

(3.38)

Necessary optimality conditions for the relaxed problem (3.38) have been derived in [77].

We state them in the following theorem.

Theorem 3.2 (First-order optimality conditions, cf. [77, Theorem 2.2])

Suppose the feasible set

Zε
ad = {z = (u,w) ∈ U ×W| u ≤ ui ≤ u, i ∈ {1, . . . ,m}, w ≤ w ≤ w} (3.39)

is nonempty and that z∗ = (u∗, w∗) is the solution of problem (3.38) with associated

optimal state y∗ = ŷ + Su∗. Then there exist unique Lagrange multipliers p∗ ∈ W (0, T )

and β∗ ∈W, µ∗ = (µ∗i )1≤i≤m ∈ U satisfying the dual equations

− d

dt
〈p∗(t), ϕ〉L2(Ω) + a(t;ϕ, p∗(t)) = σQ〈(yQ − y∗)(t), ϕ〉L2(Ω) − 〈β∗(t), ϕ〉L2(Ω)

for all ϕ ∈ H1(Ω),

p∗(T ) = σT (yT − y∗(T )) in L2(Ω)

(3.40)

a.e. in [0, T ] and the optimality system

σuu
∗ − δc

∫

Γc

p∗ ds+ µ∗ = 0 in L2(0, T )

σww
∗ + εβ∗ = 0 in L2(0, T ;L2(Ω)).

(3.41)
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Moreover,

β∗ = max{0, β∗ + η(y∗ + εw∗ − y)}+ min{0, β∗ + η(y∗ + εw∗ − y)},
µ∗ = max{0, µ∗ + ηi(u

∗
i − u)}+ min{0, µ∗ + ηi(u

∗
i − u)}

(3.42)

for i = 1, . . . ,m and arbitrarily chosen η, η1, . . . , ηm > 0, where the max- and min-

operations are interpreted componentwise in the pointwise everywhere sense.

The goal of the PDASS method is to compute a solution of the optimality system in the

above theorem. For given z = (u,w) consider the forward and backward solutions3 of the

state and adjoint equations

y(z) = ŷ + Su, p(z) = p̂+ A1u−
σw
ε
A2w (3.43)

and let

µi(z) = δc

∫

Γc

p(z)ds− σuui, i = 1, . . . ,m and β(z) = −σw
ε
w. (3.44)

Define active and inactive sets as follows:

AU
i (z) := {t ∈ [0, T ]| µi(z) + σu(ui − u) < 0 a.e.}, i = 1, . . . ,m,

A
U
i (z) := {t ∈ [0, T ]| µi(z) + σu(ui − u) > 0 a.e.}, i = 1, . . . ,m,

AW(z) := {(t, x) ∈ Q| β(z) +
σw
ε2

(y(z) + εw − y) < 0 a.e.},

A
W

(z) := {(t, x) ∈ Q| β(z) +
σw
ε2

(y(z) + εw − y) > 0 a.e.},

IU
i (z) := [0, T ] \ (AU

i (z) ∪A
U
i (z)), i = 1, . . . ,m,

IW(z) := Q \ (AW(z) ∪A
W

(z)).

(3.45)

The name of the PDASS method derives from the fact that the primal system (3.33)

(i.e. the state equation) and the dual system (3.40) are solved simultaneously, while the

active and inactive sets are keeping track of points where the constraints are violated. The

solutions of the primal and dual systems are successively updated in order to eliminate

these violations.

New control iterates zk+1 = (uk+1, wk+1) are computed by the solution of the following

system

δc

∫

Γc

bip
k+1ds− σuuk+1

i = 0 in IU
i (zk), i = 1, . . . ,m,

uk+1
i = u in AU

i (zk), i = 1, . . . ,m,

uk+1
i = u in A

U
i (zk), i = 1, . . . ,m,

wk+1 = 0 in IW(zk),

yk+1 + εwk+1 = y in AW(zk),

yk+1 + εwk+1 = y in A
W

(zk).

(3.46)

3For brevity, we avoid giving the full definitions of the solution operators S,A1 and A2. These can be

found in [77, Section 2.2 + 2.3]
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To solve this system, we first need to compute new iterates yk+1 and pk+1 of the state and
of the adjoint, respectively. These are obtained by combining (3.44) and (3.46) to get

uk+1 =





δc
σu

∫
Γc
pk+1ds in IU

i (zk),

u in AU
i (zk),

u in A
U

i (zk),

βk+1 = −σw
ε
wk+1 =





0 in IW(zk),
σw

ε2 (yk+1 − y) in AW(zk),
σw

ε2 (yk+1 − y) in A
W

(zk),

(3.47)

for i = 1, . . . ,m, and substituting these into the primal and dual equations (3.33), (3.40).

This leads to the (coupled) primal-dual system

d

dt
〈yk+1(t), ϕ〉L2(Ω) + a(t; yk+1(t), ϕ)− δc

m∑
i=1

χIU
i (zk)(t)

δc
σu

∫
Γc

pk+1ds̃

∫
Γc

ϕds

= 〈F(t), ϕ〉V ′,V + δc

m∑
i=1

(
χAU(zk)(t)u(t) + χ

A
U

(zk)
(t)u(t)

)∫
Γc

ϕds, ∀ϕ ∈ V a.e. on (0, T ),

(3.48a)

yk+1(0) = y0, (3.48b)

− d

dt
〈pk+1(t), ϕ〉L2(Ω) + a(t;ϕ, pk+1(t)) + σQ〈yk+1(t), ϕ〉L2(Ω) +

σw

ε2
〈
(
χAW(zk)(t) + χ

A
W

(zk)
(t)
)
yk+1(t), ϕ〉L2(Ω)

= σQ〈yQ(t), ϕ〉L2(Ω) +
σw

ε2
〈χAW(zk)(t)y(t) + χ

A
W

(zk)
(t)y(t), ϕ〉L2(Ω) ∀ϕ ∈ V a.e. on (0, T ),

(3.48c)

pk+1(T ) = σT (yT − yk+1(T )), (3.48d)

where χM denotes the characteristic function on the set M.

Starting from an initial guess z0 = (u0, w0) ∈ U×W of the solution, the PDASS method

repeatedly solves the primal-dual system (3.48) and determines new active and inactive

sets for each iterate. The method terminates, if at some point the sets no longer change

from one iteration to the next. The PDASS method corresponds to a semi-smooth Newton

method and thus features local super-linear convergence [65,102].

The procedure is summarized in Algorithm 3.3.

Algorithm 3.3 (PDASS Algorithm)

1: Choose starting values z0 = (u0, w0) and determine the corresponding state y0 and

adjoint p0;

2: Set k = 0 and flag = false;

3: Compute the initial active and inactive sets AU
i (z0), A

U
i (z0), IU

i (z0) for i = 1, . . . ,m,

and AW(z0), A
W

(z0), IW(z0) according to (3.45);

4: while flag == false do

5: Compute the solutions (yk+1, pk+1) of the primal-dual system (3.48);
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6: Compute the new iterate zk+1 = (uk+1, wk+1) according to (3.46);

7: Compute the new active and inactive sets AU
i (zk+1), A

U
i (zk+1), IU

i (zk+1)

for i = 1, . . . ,m, and AW(zk+1), A
W

(zk+1), IW(zk+1) according to (3.45);

8: if AU
i (zk) == AU

i (zk+1) and A
U
i (zk) == A

U
i (zk+1) for all i = 1, . . . ,m,

and AW(zk) == AW(zk+1) and A
W

(zk) == A
W

(zk+1)

then
9: flag = true

10: end if

11: Set k = k + 1;

12: end while

The method can be implemented using Finite Element and Implicit Euler methods for the

discretization of the primal-dual system (3.48) as described in Sections 3.2.1 and 3.2.2.

3.4 Efficient implementation and extensions

In the following, we give some explanation on how the previously presented methods have

been implemented, as well as ideas for possible improvements.

Software for Finite Element discretization

The triangulation and the assembly of the Finite Element matrices for the PDE examples

later on in the thesis was performed by the libraries FEniCS [6] and Firedrake [95]4. These

libraries handle the translation of the variational formulation of the PDE to a system of

equations which can be passed on to the backend linear algebra library or the optimization

routine. They also provide interfaces to a number of linear algebra libraries, which enables

us to choose between different solvers for the solution of the Finite Element systems.

Iterative solvers and preconditioning

Both (3.31) and the primal-dual system (3.48) in the PDASS algorithm rely on the solution

of linear systems of equations. Although the system matrices are sparse (due to the

compact support of the Finite Element basis functions), for a high number of Finite

Element degrees of freedom this cannot be done efficiently using direct solvers. Instead,

we employ iterative solvers. In practice, we opted for the Generalized minimal residual

method (GMRES) implemented in the PETSc library5.

Furthermore, for improving the speed of convergence, the method needs to be combined

with a matrix preconditioner. The incomplete LU factorization (ILU) turned out to be a

good choice.

4For the numerical computations in this thesis both libraries were used. FEniCS was used for the 1D

setting in Example 4.42. Firedrake was used for the 2D convection-diffusion example in at the end of

Chapter 6.
5See: https://www.mcs.anl.gov/petsc/

https://www.mcs.anl.gov/petsc/
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Proper Orthogonal Decomposition (POD)

Considerable speed-ups of the solution of the optimal control problem can be obtained by

applying POD [59, 70]. In contrast to the Finite Element method, POD uses a different

choice of basis functions for the approximation of the space V . The reduced order POD

basis is generated from so-called snapshots of the system dynamics, which are obtained

initially from a single solution of the optimal control problem using the full order Finite

Element model.

While the resulting system matrices in the POD basis are no longer sparse, it generally

suffices to use a significantly smaller number `� L of POD basis functions, compared to

the number of finite element nodes L, for obtaining the desired accuracy. Thus, instead

of solving a high-dimensional sparse system, in POD we solve a low-dimensional dense

system capturing the essential dynamics.

In the context of MPC, the initial control used for the generation of the snapshots may

differ from controls at later time steps. Consequently, after some time the reduced order

model may no longer be an appropriate approximation of the true dynamics. This makes

it necessary to update the POD basis. For an in-depth introduction to the POD method,

as well as strategies for handling the POD basis update we refer to [59,70,76,78].
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In Chapter 2, we revisited existing results of classical and economic MPC for time-invariant

systems. Now, we will turn to the more general case of control systems depending on time.

This means that the system is affected by variables that change over time. Mathemat-

ically this implies that the transition function f of the control system now additionally

depends on the time t (or the time index k) besides state x and control u. Additionally,

time-varying behavior of a system can also be induced by a time-dependent stage cost

function ` or a time-dependent constraint set (both for control and/or state).

Time-varying systems appear in many practical applications. Examples include both

industrial applications like vehicles navigating dynamic environments [62], as well as ap-

plications with an economic background such as residential building control subject to

time-varying electricity pricing [21, 86, 89]. We will particularly consider the latter exam-

ple since it can exhibit all three of the factors mentioned above: time-varying dynamics

(due to changing outside temperature), time-varying stage cost (dynamically priced elec-

tricity) and time-varying constraints (bounds for the temperature profile).

By adding the time-variance, new fundamental questions regarding the optimality of solu-

tions arise. In the time-invariant setting, optimal equilibria were of particular importance

because they represent points to operate the system at minimal costs. When consider-

ing time-varying systems the regime of optimal operation will generally no longer be an

equilibrium but some non-stationary distinguished trajectory of the system. Such general-

ized regimes of optimal operation have already been studied in the time-invariant context,

specifically for the case of optimal periodic operation [84], (possibly) non-periodic trajecto-

ries with an averaged performance criterion [28], and so-called optimal set operation where

a system is optimally operated when the states of the system remain in a certain subset

of the state space [73]. To classify non-stationary regimes of optimal operation in the

time-varying context, we will introduce a modified notion of optimality, called overtaking

optimality.

In the literature, it is often distinguished between MPC schemes with and without terminal

conditions. When including terminal conditions like terminal constraint sets or a terminal

cost in the formulation of the MPC problem, the proofs of convergence and stability

of the MPC closed-loop trajectories are very elegant. For examples of this approach

see, e.g., [8, 10, 25, 110]. However, the design of appropriate terminal ingredients is not

straightforward already in the time-invariant setting, because usually knowledge of the

33
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optimal regime of operation enters in their formulation. This is even more so in the time-

varying case, where the optimal steering behavior can be arbitrarily complex and is in

general not known a priori.

MPC schemes without terminal conditions, on the other hand, entirely avoid the use of

terminal costs or terminal constraints. Thus, no prior knowledge of the optimal system

behavior is required. For time-invariant systems, performance and stability of the MPC

closed-loop trajectory have been shown for the case of optimal equilibria [43, 44, 57], and

more generally for optimal periodic behavior [84]. Unfortunately, these results cannot

be applied in the time-varying case directly. We will transfer the relevant assumptions

from the time-invariant setting and modify them if necessary to recover performance and

convergence of MPC solutions. In the next chapter, we will justify this by checking the

plausibility of the new assumptions.

There exist some results considering time-varying economic MPC in continuous time [3,4],

particularly with time-varying stage cost as in the first reference. However, these rely on

the design of terminal constraints which, as mentioned above, is challenging and can be

avoided with our approach.

The results presented in this chapter comprise the outcomes of the papers [51] and [53].

4.1 Time-varying setting

Moving to time-varying systems leads to a number of notational changes compared to

Chapter 2. Firstly, we get an additional parameter k for the time index in the control

system

x(k + 1) = f(k, x(k), u(k)), x(0) = x, (4.1)

now with f : N0×X ×U → X. In this setting k ∈ N0 represents a time instant, x(k) ∈ X
is the state of the system at that time and u(k) ∈ U is the control applied to the system

during the next sampling interval.

In the notation of the state trajectory we now explicitly indicate the dependence on the

initial time. Given a control sequence u ∈ UN we denote the state trajectory which results

from iteratively applying (4.1) starting at initial time k0 from an initial state x0 ∈ X by

xu(·; k0, x0). Only when it is clear from the context we may omit the initial time and

instead write xu(·, x0) to abbreviate.

In addition, we allow the constraint sets to be time-varying as well and define X(k) ⊆ X

to be the sets of admissible states at time k and U(k, x) ⊆ U as the sets of admissible

control values for x ∈ X(k) for k ∈ N0. Accordingly, for N ∈ N the sets UN (k, x) denote

the admissible control sequences for initial state x ∈ X(k) up to time k + N , i.e. control

sequences u ∈ UN satisfying

u(j) ∈ U(k + j, xu(j; k, x)) and xu(j + 1; k, x) ∈ X(k + j + 1)

for all j = 0, . . . , N − 1.
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Finally, the stage cost ` : N0 × X × U → R may also be time-varying, which leads to a

time dependent cost functional

JN (k, x, u) =
N−1∑

j=0

`(k + j, xu(j; k, x), u(j)).

and optimal value function

VN (k, x) := inf
u∈UN (k,x)

JN (k, x, u).

Our goal is to apply MPC to find a solution to an optimal control problem on the infinite

horizon. More specifically, we want to compute a feasible control sequence u ∈ U∞(k, x)

that minimizes the cost functional

J∞(k, x, u) =

∞∑

j=0

`(k + j, xu(j; k, x), u(j)) (4.2)

At this point it is not clear that this is a well-defined problem (we will address this issue

in the next section). Assuming a control sequence that minimizes (4.2) does exist we will

denote it by u∗∞. Moreover, we define the the infinite horizon optimal value function as

follows:

V∞(k, x) := inf
u∈U∞(k,x)

J∞(k, x, u).

In order to find an approximate solution to the problem on the infinite horizon we apply

the following time-varying model predictive control algorithm:

Algorithm 4.1 For each time instant k = k0, k0 + 1, . . .:

1. Measure the current state x = x(k) of the system.

2. Solve the optimal control problem

minimize
u∈UN (k,x)

JN (k, x, u). (4.3)

in order to obtain the optimal control sequence u∗N,x.

3. Apply the first element of u∗N,x as a control to the system during the next sampling

period, i.e. use the feedback law µN (k, x) := u∗N,x(0).

4. Set k := k + 1 and go to 1.

In the sequel, we assume that a minimizer to the (finite horizon) MPC optimal control

problem (4.3) always exists. We will denote it by u∗N , or by u∗N,x in case we want to

emphasize the dependence on the initial state x. Note that for this optimal control it

holds that VN (k, x) = JN (k, x, u∗N,x).
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By iteratively applying the feedback in each step, that is by setting

x(k + 1) = f(k, x(k), µN (k, x(k))), (4.4)

we obtain the closed-loop trajectory of the system, which we will denote by xµN (·; k0, x0)

for the initial value x0 = x(k0) ∈ X(k0) at time k0 ∈ N0. The cost of this closed-loop

trajectory for L time steps is defined by

JclL (k0, x0, µN ) :=

L−1∑

j=0

`(k0 + j, xµN (j; k0, x0), µN (k0 + j, xµN (j; k0, x0))). (4.5)

The optimality proofs of the MPC closed-loop trajectory rely on the dynamic programming

principle. In the course of this chapter we will apply the two versions of the finite and

infinite dynamic programming principle which are stated below.

Theorem 4.2 (Finite horizon dynamic programming principle (cf. [50, Theorem 3.15])

Consider the optimal control problem (4.3) with x0 ∈ X and k ∈ N0, N ∈ N. Let u∗N (·) ∈
UN (k, x0) be an optimal control sequence. Then for all N ∈ N and all K = 1, . . . , N the

equation

VN (k, x0) =
K−1∑

j=0

`(k + j, xu∗N (j, x0), u∗N (j)) + VN−K(k +K,xu∗N (K,x0)) (4.6)

holds.

Theorem 4.3 (Infinite horizon dynamic programming principle (cf. [50, Theorem 4.4])

Consider the optimal control problem (4.9) with x0 ∈ X and k ∈ N0. Let u∗∞(·) ∈ U∞(k, x0)

be an optimal control sequence. Then for all K ∈ N the equation

V∞(k, x0) =
K−1∑

j=0

`(k + j, xu∗∞(j, x0), u∗∞(j)) + V∞(k +K,xu∗∞(K,x0)) (4.7)

holds.

4.2 Overtaking optimality and optimal operation

The problem of minimizing the infinite horizon cost function (4.2) is not necessarily well-

defined because for infinite optimal control sequences it is not at all clear for J∞(k, x, u)

to attain a finite minimum. In fact, with general stage cost the value of J∞(k, x, u)

may be infinite for all control sequences, so it is not directly possible to compare two

control sequences based on their costs. An optimality criterion in the usual sense of

J∞(k, x, u∗) ≤ J∞(k, x, u) for all u is not meaningful, since we have an infinite value on

both sides of the inequality.
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Figure 4.1: Graphical illustration of overtaking optimality.

For this reason, in the following we will clarify what we mean by ”minimizing” in the

context of infinite horizon optimal control. A remedy to the issues mentioned above is

provided by considering an alternative optimality notion going back to Gale [39] in the

context of mathematical economics. The key idea is to look at the difference of the cost

of two control sequences instead of considering their total cost separately. Although both

control sequences in themselves generate infinite costs, the difference between the two can

still be finite. A control sequence is considered optimal if its cost is overtaken by the cost

of any other control sequence at some point.

Definition 4.4 (Overtaking optimality)

Let x ∈ X(k) and consider a control sequence u∗ ∈ U∞(k, x) with corresponding state

trajectory xu∗(·; k, x). The pair (xu∗ , u
∗) is called overtaking optimal if

lim inf
K→∞

(
K−1∑

j=0

`(k + j, xu(j, x), u(j))− `(k + j, xu∗(j, x), u∗(j))

)
≥ 0 (4.8)

for all u ∈ U∞(k, x).

A graphical illustration of this definition can be found in Figure 4.1. The upper part of

the figure shows in green the cost of an overtaking optimal trajectory pair (xu∗ , u
∗) and
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in black the cost of a second (suboptimal) trajectory pair (xu, u). Initially, the trajectory

(xu, u) produces smaller cost than (xu∗ , u
∗). As the horizon increases the cost of the two

trajectories alternates back and forth several times, until finally the overtaking optimal

trajectory pair (xu∗ , u
∗) prevails, yielding a lower cost than (xu, u). Still, the individual

cost of both trajectory grows unboundedly as K → ∞, which makes them difficult to

compare.

The lower part of the figure depicts in blue the difference of the cost of the two trajectories

corresponding to the quantity considered in inequality (4.8). This quantity allows us to

differentiate the two trajectories by checking if it ultimately becomes positive and stays

that way as we take the lim infK→∞.

Definition 4.4 provides us with the ability to decide which of two infinite control sequences

is better when both are starting from the same initial value x. The minimization in the

following problem is to be understood in this overtaking optimal sense:

minimize
u∈U∞(k,x)

J∞(k, x, u) (4.9)

In the next definition, the initial state is no longer fixed. Instead, we now look at all

possible feasible trajectories of the system and choose from those the one that is optimal

in the sense of Definition 4.4.

Definition 4.5 (Optimal operation)

Let x ∈ X(k) and consider a control sequence u∗ ∈ U∞(k, x) with corresponding state

trajectory x∗ = xu∗(·; k, x). We say the system (4.1) is optimally operated at (x∗, u∗) if

lim inf
K→∞

(
K−1∑

j=0

`(k + j, xu(j, x′), u(j))− `(k + j, x∗(j), u∗(j))

)
≥ 0 (4.10)

for all x′ ∈ X(k) and u ∈ U∞(k, x′).

We will refer to the trajectory pair (x∗, u∗) as optimal trajectory. In the following, we will

assume that an optimal trajectory of the system always exists. Similarly, we assume a

solution of problem (4.9) exists, which will be denoted by u∗∞.

It should be noted that there is no reason to assume that the optimal trajectory is unique.

In fact, it is easy to devise examples where multiple optimal trajectories exist which all

satisfy Definition 4.5. For our purposes, we will select one distinct optimal trajectory from

the set of all optimal trajectories. The question of how this set can be classified remains

open for now.

Remark 4.6

The idea of an optimal trajectory can be regarded as a generalization of an optimal equi-

librium or an optimal periodic orbit that may occur in the case of time-invariant systems

as has been observed e.g. in [84]. In the classical time-invariant setting, there may, for
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example, exist an optimal equilibrium at which the system can be operated at minimal cost

for an infinite horizon. Then, for any given initial condition, we want to find a control

sequence that brings the state to the optimal equilibrium.

In the same way in our setting an optimal trajectory exhibits the best performance in the

long run. The question is how this trajectory is connected to the solution of problem (4.9),

i.e. the problem on the infinite horizon.

As we will see shortly, using appropriate assumptions we can prove that the solution of

problem (4.9) converges to an optimal trajectory. This means we can reach the optimal

operating behavior of a system by solving an infinite horizon optimal control problem.

Still, solving problems on an infinite horizon is difficult, which is why MPC is used to

compute an approximate solution. 3

Remark 4.7 (Alternatives to overtaking optimality)

Alternative approaches establish a well-defined optimality notion for problems on an in-

finite horizon either by considering only stage cost functions which are positive definite

w.r.t. some a priori defined reference trajectory or by using discounting of the stage cost.

The first approach is usually applied for tracking type problems where a reachable time-

varying reference trajectory is known a priori. This is also the reason why it does not fit

our setting since we cannot expect a priori knowledge of the optimal trajectory (x∗, u∗).
Instead, this trajectory is implicitly defined by the interplay of dynamics, stage cost and

constraints.

The idea of the second approach is to include a discount factor βk, 0 < β < 1 for the stage

cost in the cost functional, i.e. by defining

Jdisc∞ (k, x, u) =
∞∑

j=0

βk`(k + j, xu(j; k, x), u(j)). (4.11)

Assuming boundedness of the stage cost function ` this then guarantees that the cost func-

tionals Jdisc∞ (k, x, u) are finite. It offers the advantage that the usual notion of optimality

suffices and avoids the need for using overtaking optimality. The approach has its merits

and is widely used, e.g. in [20, 49, 72], but the downside is that it changes the original

problem causing the stage cost values in the near future to have more impact while distant

costs hardly matter. As a consequence, effects of the control in the distant future are con-

sidered less important. In many real-world problems (e.g. involving sustainability issues)

this behavior is undesirable since it trades short-term gains for long-term adverse effects.

Conversely, in some problems, it may even pay off to put up with bigger cost in the near

future in order to save in the long run. Thus it becomes hard to justify discounting, even

if it simplifies the problem.

While one could argue that in the context of MPC a sort of discounting also happens

implicitly via the truncation of the horizon, we still use the non-discounted cost functional

together with overtaking optimality in order to characterize the optimal operating behavior

in our setting. 3
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Using the overtaking optimality concept does of course not change the fact that the infinite

horizon cost functional may be unbounded. However, we can introduce a shifted cost

function for which we can then at least guarantee boundedness of the infinite horizon

optimal value function.

Definition 4.8 (Shifted cost)

Let (x∗, u∗) be an optimal trajectory. We define the shifted stage cost as

ˆ̀(k, x(k), u(k)) := `(k, x(k), u(k))− `(k, x∗(k), u∗(k)).

Correspondingly, the shifted cost functional is defined as

ĴN (k, x, u) :=
N−1∑

j=0

ˆ̀(k + j, xu(j; k, x), u(j)),

and shifted optimal value function is given by

V̂N (k, x) := inf
u∈UN (k,x)

ĴN (k, x, u).

In the same way for the infinite horizon we define

Ĵ∞(k, x, u) :=
∞∑

j=0

ˆ̀(k + j, xu(j; k, x), u(j))

and

V̂∞(k, x) := inf
u∈U∞(k,x)

Ĵ∞(k, x, u).

It is easy to verify that for V̂∞ the identity

V̂∞(k, x∗(k)) = 0

holds for all k ∈ N0. Moreover, from the Definition 4.5 it follows that the inequality

V̂∞(k, x) ≥ 0 (4.12)

holds for all k ∈ N and x ∈ X(k) (although V̂N (k, x) < 0 is possible).

Note that the optimal control trajectory of the shifted problem coincides with the optimal

control trajectory of the original MPC problem (4.3). From an application point of view,

this is important because we cannot assume knowledge of the optimal trajectory (x∗, u∗)
for the solution of the MPC problems.

Without additional assumptions V̂∞(k, x) does not necessarily attain a finite value for all

x ∈ X(k). This is only clear for the special choice of x = x∗(k), i.e. for an initial value

which is located on the optimal trajectory x∗.
In the next section, we will introduce two key assumptions that ensure finiteness of

V̂∞(k, x) for all x ∈ X(k).
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Figure 4.2: Finite horizon turnpike property for time-varying systems.

4.3 Time-varying turnpike and continuity assumptions

The first crucial assumption we make is the occurrence of the turnpike property. The

version used here is a straightforward extension of the classical turnpike property for

time-invariant systems which we introduced in Assumption 2.8 in Chapter 2. The main

difference in our time-varying setting consists of working with a (now time-varying) optimal

trajectory instead of an equilibrium.

The time-varying turnpike property demands that open-loop optimal trajectories spend

most of their time in a neighborhood of the optimal pair (x∗, u∗) from Definition 4.5. To

get an intuition of the turnpike property it is helpful to visualize it graphically. This is

done in Figure 4.2 for the version on a finite time horizon. We invite the reader to refer

to this illustration while studying the rather notation-heavy definition which follows.

Definition 4.9 (Turnpike property)

Consider a trajectory pair (x∗, u∗) at which the system (4.1) is optimally operated.

(a) We say that an optimal control problem has the finite horizon turnpike property at

(x∗, u∗) if the following holds:

There exists σ ∈L such that for each k ∈ N0, each optimal trajectory xu∗N (·, x), x ∈
X(k) and all N,P ∈ N there is a set Q(k, x, P,N) ⊆ {0, . . . , N} with #Q(k, x, P,N) ≤
P elements and

|(xu∗N (M,x), u∗N (M))|(x∗(k+M),u∗(k+M)) ≤ σ(P )

for all M ∈ {0, . . . , N} \Q(k, x, P,N).

(b) Similarly, an optimal control problem on the infinite horizon has the turnpike prop-

erty, if there exists ρ ∈ L such that for each k ∈ N0, each optimal trajectory
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xu∗∞(·, x), x ∈ X(k) and all P ∈ N there is a set Q(k, x, P,∞) ⊆ N0 satisfying

#Q(k, x, P,∞) ≤ P elements and

|(xu∗∞(M,x), u∗∞(M))|(x∗(k+M),u∗(k+M)) ≤ ρ(P )

for all M ∈ N0 \Q(k, x, P,∞).

Assumption 4.10 (Turnpike property for MPC problem)

We assume that the MPC problem from (4.3) has the finite horizon turnpike property.

Assumption 4.11 (Turnpike property for problem on infinite horizon)

We assume that the optimal control problem (4.9) has the infinite horizon turnpike prop-

erty.

The turnpike property guarantees that the open-loop solutions on infinite and finite hori-

zons are close to the optimal trajectory of the system, at least most of the time. While

the turnpike property is a very convenient assumption it is at the same time not unrea-

sonable. In the time-invariant framework turnpike properties of optimal control problems

are abundant in practical problems, see e.g. [34, 36,101].

In Chapter 5 we will investigate different ways to verify our extension of the turnpike

property for a given system, both by numerical and analytic means.

Note that the infinite horizon turnpike property can also be regarded as a convergence

assumption of the solution of the infinite horizon problem (4.9) to the optimal trajectory.

This is evident because the turnpike property requires that the distance between the

optimal trajectory and the trajectory generated by u∗∞ can only be large for a finite

number of points that can only hold for a convergent trajectory.

The second important property for proving performance estimates for the MPC closed-loop

is the continuity of the optimal value function.

Assumption 4.12 (Continuity property of the optimal value function)

We assume that the optimal value function V̂N is approximately continuous at x∗ in the

following uniform way:

there exists a function γV : R+
0 ×R+

0 → R+
0 with γV (N, r)→ 0 if N →∞ and r → 0, and

γV (·, r), γV (N, ·) monotonous for fixed r and N such that for each k ∈ N0 and ε > 0 there

is an open ball Bε(x
∗(k)) around x∗(k) and for all x ∈ Bε(x

∗(k)) ∩ X(k) and all N ∈ N
the inequality

|V̂N (k, x)− V̂N (k, x∗(k))| ≤ γV (N, |x|x∗(k)) (4.13)

holds.

In addition, we also assume approximate continuity of the optimal value function on the

infinite horizon:

there exists a function ωV ∈K∞ such that for each k ∈ N0 and ε > 0 there is an open ball

Bε(x
∗(k)) around x∗(k) and for all x ∈Bε(x

∗(k)) ∩ X(k) it holds

|V̂∞(k, x)− V̂∞(k, x∗(k))| ≤ ωV (|x|x∗(k)). (4.14)
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N0

γV (N, ‖x− x∗(k)‖)

|V̂N (k, x)− V̂N (k, x∗(k))|

(a) First component of γV as a function in N for fixed x ∈ Bε(x
∗(k)). Since

γV (·, ‖x − x∗(k)‖) is monotonously decreasing in N this means the value

|V̂N (k, x)− V̂N (k, x∗(k))| must be bounded.

xx∗(k)

γV (N, ‖x− x∗(k)‖)

|V̂N (k, x)− V̂N (k, x∗(k))|

(b) The second component of γV as a function in x for fixed horizon length N .

γV (N, ·) increases monotonically with growing distance ‖x− x∗(k)‖.

Figure 4.3: Graphical illustration of the continuity property for V̂N from Assumption 4.12.

The assumption demands that the shifted optimal value function is approximately contin-

uous in a neighborhood of the optimal trajectory. This means we assume that the optimal

value function changes only by a small amount if we consider points x that are sufficiently

close to x∗(k). The term ”approximately” in the above definition reflects the fact that for

points away from the optimal trajectory small discontinuities of the optimal value function

are permitted. Moreover, for any finite N bounded discontinuities of V̂N are allowed even

for points on the optimal trajectory. Figure 4.3b illustrates this idea. In addition, it is

required that for fixed states x and x∗(k) the gap in the optimal value functions can be

bounded monotonically as we consider longer horizons N . This is shown in Figure 4.3a.



44 Chapter 4. MPC results for time-varying systems

The following lemma shows that V̂∞ assumes finite values for each x ∈ X(k) if the turnpike

property and the continuity property of the optimal value functions hold.

Lemma 4.13 (Finiteness of the shifted optimal value function)

Assume that the infinite horizon turnpike property from Assumption 4.11 and the conti-

nuity property from Assumption 4.12 hold. Then for each k ∈ N0 and for each x ∈ X(k)

the value V̂∞(k, x) is finite.

Proof. We note that because of (4.12) it is sufficient to show V̂∞(k, x) < ∞. Let k ∈ N0

and x ∈ X(k). Consider the infinite horizon optimal control sequence u∗∞. Pick P ∈ N
such that ρ(P ) < ε with ε from Assumption 4.12.

Because the infinite horizon turnpike property holds we know that

|(xu∗∞(j, x), u∗∞(j))|(x∗(k+j),u∗(k+j)) ≤ ρ(P ) < ε

for some j ∈ N0, in particular xu∗∞(j, x) ∈Bε(x
∗(k+j)). Thus we can apply the continuity

property from Assumption 4.12 which yields

|V̂∞(k + j, xu∗∞(j, x))− V̂∞(k + j, x∗(k + j))|
≤ ωV (‖xu∗∞(j, x)− x∗(k + j)‖) < ωV (ε),

where we used the monotonicity of ωV in the last inequality. Because V̂∞(k+j, x∗(k+j)) =

0 (cf. the discussion after Definition 4.8) it follows that

|V̂∞(k + j, xu∗∞(j, x))| < ωV (ε).

From the optimality of V̂∞(k, x) it follows that

V̂∞(k, x) ≤ Ĵj(k, x, u∗∞) + V̂∞(k + j, xu∗∞(j, x)).

The term Ĵj(k, x, u
∗
∞) is finite and thus we have a finite bound

|V̂∞(k, x)| < |Ĵj(k, x, u∗∞)|+ |ωV (ε)|
which shows the assertion.

4.4 Performance estimates

In this section, we will address the question of how the cost of the MPC closed-loop

compares to the cost of the optimal solution on an infinite horizon, i.e. the solution to

problem (4.9). For problems in an economic setting, this is of particular interest, whereas

the behavior of the state trajectory is of secondary importance. The main aim is to

compute a solution that generates the lowest possible costs.

The literature often considers averaged costs of the MPC closed-loop. This has the down-

side that only a statement about the long term performance is possible, while the transient

performance could be arbitrarily poor. For this reason, we will first consider the closed-

loop cost directly without averaging. Afterwards, we can still extract a statement about

the average cost from our result.
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Figure 4.4: Graphical illustration of the proof of Lemma 4.14 (a).

4.4.1 Non-averaged performance

Before we can present our main result we will prove two preparatory lemmas. The first

one states that the cost of the optimal trajectory evaluated along the complete horizon

is approximately the same as the cost evaluated only up to some appropriately chosen

time index K. The result applies to both the infinite and finite horizon optimal control

trajectories, although for the latter an additional term appears.

Lemma 4.14 (a) If the system has the infinite horizon turnpike property from Assump-

tion 4.11 and the continuity property from Assumption 4.12 is satisfied, then the

equation

V̂∞(k, x) = ĴK(k, x, u∗∞) +R1(k, x,K) (4.15)

holds with |R1(k, x,K)| ≤ ωV (ρ(P )) for all k ∈ N0, for all x ∈ X(k), all N ∈ N, all

sufficiently large P ∈ N and all K 6∈ Q(k, x, P,∞).

(b) If the system has the finite horizon turnpike property from Assumption 4.10 and the

continuity property from Assumption 4.12 is satisfied, then the equation

V̂N (k, x) = ĴK(k, x, u∗N ) + V̂N−K(k +K,x∗(k +K))

+R2(k, x,K,N)
(4.16)

holds with |R2(k, x,K,N)| ≤ γV (N −K,σ(P )) for all k ∈ N0, for all x ∈ X(k), all

N ∈ N, all sufficiently large P ∈ N and all K 6∈ Q(k, x, P,N).

Proof. (a) Let k ∈ N0 and x ∈ X(k). We begin with the proof of the infinite horizon

case. A visual representation of this proof can be found in Figure 4.4.

The infinite horizon dynamic programming principle from Theorem 4.3 yields

V̂∞(k, x) = ĴK(k, x, u∗∞) + V̂∞(k +K,xu∗∞(K,x))

for each K ∈ N0. This means equation (4.15) holds with R1(k, x,K) = V̂∞(k +

K,xu∗∞(K,x)). Chose P ∈ N sufficiently large such that ρ(P ) < ε with ρ from
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Assumption 4.11 and ε from Assumption 4.12. Because we have V̂∞(k + K,x∗(k +

K)) = 0 and because of the continuity of V̂∞ we get that

|R1(k, x,K)| = |V̂∞(k +K,xu∗∞(K,x))− V̂∞(k +K,x∗(k +K))|
≤ ωV (‖xu∗∞(K,x)− x∗(k +K)‖)
≤ ωV (|(xu∗∞(K,x), u∗∞(K))|(x∗(k+K),u∗(k+K)))

≤ ωV (ρ(P )),

which holds for all K ∈ N with K 6∈ Q(k, x, P,∞) and where we used the mono-

tonicity of ωV . This shows the assertion.

(b) In the finite horizon case the proof is similar. The dynamic programming principle

(Theorem 4.2) yields

V̂N (k, x) = ĴK(k, x, u∗N ) + V̂N−K(k +K,xu∗N (K,x))

for K ∈ {0, . . . , N}. Hence, (4.16) holds with

R2(k, x,K,N) = V̂N−K(k +K,xu∗N (K,x))− V̂N−K(k +K,x∗(k +K)).

Chose P ∈ N sufficiently large such that σ(P ) < ε holds for σ from Assumption 4.10

and ε from Assumption 4.12. Then we have

|R2(k, x,K,N)| = |V̂N−K(k +K,xu∗N (K,x))− V̂N−K(k +K,x∗(k +K))|
≤ γV (N −K, ‖xu∗N (K,x)− x∗(k +K)‖)
≤ γV (N −K, |(xu∗N (K,x), u∗N (K))|(x∗(K+k),u∗(K+k)))

using again the monotonicity of γV (N −K, ·). For K 6∈ Q(k, x, P,N) it follows that

|R2(k, x,K,N)| ≤ γV (N −K,σ(P )) and thus the assertion.

Next, we present a lemma showing that we can exchange finite and infinite horizon optimal

control sequences in the shifted cost functional at the cost of a bounded error term,

provided we choose the summation index K appropriately.

Lemma 4.15

If the system has the infinite and finite horizon turnpike properties from Assumptions 4.10

and 4.11 and the continuity property from Assumption 4.12 is satisfied, then the equation

ĴK(k, x, u∗∞) = ĴK(k, x, u∗N ) +R3(k, x,K,N)

holds with |R3(k, x,K,N)| ≤ γV (N −K, ρ(P ))+γV (N −K,σ(P ))+ωV (σ(P ))+ωV (ρ(P ))

for all k ∈ N0, all N ∈ N, all sufficiently large P ∈ N, all x ∈ X(k) and all K ∈
{0, . . . , N} \ (Q(k, x, P,N) ∪Q(k, x, P,∞)).
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Figure 4.5: Illustration of Lemma 4.15.

Proof. Figure 4.5 contains an illustration of the key idea of the proof. It consists of the

observation that under the turnpike assumption both the solution of infinite (depicted in

red) and finite open-loop trajectories (depicted in blue) are close to the turnpike at some

time instant k + K. At this point, we will exploit the continuity of the optimal value

function at x∗(k + K). Then, using the dynamic programming principle together with

Lemma 4.14 it can be concluded that the cost of the initial pieces of the finite and infinite

horizon optimal control sequences are approximately the same:

Consider R2(k, x,K,N) = V̂N−K(k+K,xu∗N (K,x))−V̂N−K(k+K,x∗(k+K)) from Lemma

4.14 (b)) and define

R̃1(k, x,K,N) := V̂N−K(k +K,xu∗∞(K,x))− V̂N−K(k +K,x∗(k +K)).

Those expressions satisfy |R2(k, x,K,N)| ≤ γV (N − K,σ(P )) for K ∈ {0, . . . , N} \
Q(k, x, P,N) and |R̃1(k, x,K,N)| ≤ γV (N − K, ρ(P )) for K ∈ N0 \ Q(k, x, P,∞) as one

sees similarly to the proof of Lemma 4.14 (b)).

The finite horizon dynamic programming principle from Theorem 4.2 implies that u = u∗N
minimizes the expression ĴK(k, x, u) + V̂N−K(k+K,xu(K,x)), in particular it holds that

ĴK(k, x, u∗N ) + V̂N−K(k +K,xu∗N (K,x)) ≤ ĴK(k, x, u∗∞) + V̂N−K(k +K,xu∗∞(K,x)).

This, together with the definition of R2 and R̃1 implies that

ĴK(k, x, u∗N ) + V̂N−K(k +K,x∗(k +K))

= ĴK(k, x, u∗N ) + V̂N−K(k +K,xu∗N (K,x))−R2(k, x,K,N)

≤ ĴK(k, x, u∗∞) + V̂N−K(k +K,xu∗∞(K,x))−R2(k, x,K,N)

= ĴK(k, x, u∗∞) + V̂N−K(k +K,x∗(k +K)) + R̃1(k, x,K,N)−R2(k, x,K,N),

i.e. we have

ĴK(k, x, u∗N ) ≤ ĴK(k, x, u∗∞) + R̃1(k, x,K,N)−R2(k, x,K,N) (4.17)
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for all K ∈ {0, . . . , N} \ (Q(k, x, P,N) ∪Q(k, x, P,∞)).

To show the converse inequality consider R1(k, x,K) = V̂∞(k+K,xu∗∞(K,x)) from Lemma

4.14 (a) for which we obtained the bound |R1(k, x,K)| ≤ ωV (ρ(P )) forK ∈ N0\Q(k, x, P,∞),

and define R̃2(k, x,K,N) := V̂∞(k +K,xu∗N (K,x)) for which the bound R̃2(k, x,K,N) ≤
ωV (σ(P )) holds, given that K ∈ {0, . . . , N} \Q(k, x, P,N).

The infinite horizon dynamic programming principle (Theorem 4.3) implies

ĴK(k, x, u∗∞) + V̂∞(k +K,xu∗∞(K,x)) ≤ ĴK(k, x, u∗N ) + V̂∞(k +K,xu∗N (K,x))

from which we get that

ĴK(k, x, u∗∞) = ĴK(k, x, u∗∞) + V̂∞(k +K,xu∗∞(K,x))−R1(k, x,K)

≤ ĴK(k, x, u∗N ) + V̂∞(k +K,xu∗N (K,x))−R1(k, x,K)

= ĴK(k, x, u∗N ) + R̃2(k, x,K,N)−R1(k, x,K).

In summary, we have

ĴK(k, x, u∗∞) ≤ ĴK(k, x, u∗N ) + R̃2(k, x,K,N)−R1(k, x,K) (4.18)

for all K ∈ {0, . . . , N} \ (Q(k, x, P,N) ∪Q(k, x, P,∞)).

Combining the two inequalities (4.17) and (4.18) we obtain

|R3(k, x,K,N)| = |ĴK(k, x, u∗N )− ĴK(k, x, u∗∞)|
≤ max{|R̃1(k, x,K,N)|+ |R2(k, x,K,N)|, |R̃2(k, x,K,N)|+ |R1(k, x,K)|}
= max{γV (N −K, ρ(P )) + γV (N −K,σ(P )), ωV (σ(P )) + ωV (ρ(P ))}
≤ γV (N −K, ρ(P )) + γV (N −K,σ(P )) + ωV (σ(P )) + ωV (ρ(P ))

which concludes the proof.

The following theorem gives an estimate of how the closed-loop cost of the MPC trajectory

compares to the best possible cost of a solution to the problem on an infinite horizon.

Theorem 4.16

Let Assumptions 4.10, 4.11 and 4.12 hold. Then for each k ∈ N0, and each sufficiently

large N , the closed-loop cost satisfies

ĴclL (k, x, µN ) ≤ V̂∞(k, x)− V̂∞(k + L, xµN (L, x)) + Lδ(N) (4.19)

with a function δ ∈L.

Proof. Let k ∈ N0. For i ≥ k pick x ∈ X(i) and abbreviate x+ := f(i, x, µN (i, x)). By the

dynamic programming principle (cf. Theorem 4.2), and the definition of µN we know that

ˆ̀(i, x, µN (i, x)) = V̂N (i, x)− V̂N−1(i+ 1, x+). (4.20)
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ĴK(k, x, u∗N,x)

x

Figure 4.6: Graphical illustration of equations (4.20) and (4.21) from the proof of Theorem

4.16.

Using the definition of the optimal value function and the fact that u∗N,x(· + 1) and

u∗N−1,x+(·) coincide we obtain

V̂N (i, x)− V̂N−1(i+ 1, x+) = ĴN (i, x, u∗N,x)− ĴN−1(i+ 1, x+, u∗N−1,x+)

= ĴK(i, x, u∗N,x)− ĴK−1(i+ 1, x+, u∗N−1,x+),
(4.21)

which holds for each K = {1, . . . , N} (see also Figure 4.6 for a graphical illustration of

this relation).

Now let K ∈ {1, . . . , N} such that K 6∈ Q(i, x, P,N) ∪ Q(i, x, P,∞) and K − 1 6∈ Q(i +

1, x+, P,N − 1)∪Q(i+ 1, x+, P,∞). In each of the four sets there are at most P elements,

thus for N > 8P there is at least one such K with K ≤ N
2 , i.e. we set P = bN−1

8 c and

choose N sufficiently large.

This means we can apply Lemma 4.15 twice with K = K, N = N and K = K − 1,

N = N − 1, respectively, to conclude that

ĴK(i, x, u∗N,x)− ĴK−1(i+ 1, x+, u∗N−1,x+)

= ĴK(i, x, u∗∞,x)− ĴK−1(i+ 1, x+, u∗∞,x+)−R3(i, x,K,N) +R3(i+ 1, x+,K − 1, N − 1).

Proceeding further, by applying Lemma 4.14 (a) for K = K and K = K − 1 we conclude

that

ĴK(i, x, u∗∞,x)− ĴK−1(i+ 1, x+, u∗∞,x+)

= V̂∞(i, x)− V̂∞(i+ 1, x+)−R1(i, x,K) +R1(i+ 1, x+,K − 1).

In summary, we have

ˆ̀(i, x, µN (i, x)) = V̂∞(i, x)− V̂∞(i+ 1, x+) +R4(i, x,K,N), (4.22)
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with

R4(i, x,K,N) = −R3(i, x,K,N) +R3(i+ 1, x+,K − 1, N − 1)−R1(i, x,K)

+R1(i+ 1, x+,K − 1).

In addition, from Lemma 4.15 and Lemma 4.14 (a) together with the monotonicity of γV
we obtain the bound

|R4(i, x,K,N)| ≤ 2γV (N −K, ρ(P )) + 4ωV (ρ(P )) + 2γV (N −K,σ(P )) + 2ωV (σ(P )).

(4.23)

Recall that for P = bN−1
8 c we have K ≤ N

2 and thus N − K ≥ N
2 . Because of the

monotonicity of γV in its first argument, we can bound the right hand side of (4.23) by

|R4(i, x,K,N, S)| ≤ 2γV (bN
2
c, ρ(bN−1

8 c)) + 2γV (bN
2
c, σ(bN−1

8 c)) + 2ωV (σ(bN−1
8 c))

+ 4ωV (ρ(bN−1
8 c))

=: δ(N).
(4.24)

Finally, note that equation (4.22) was shown for all i ≥ k, which means we can apply it

to ĴclL (k, x, µN ) with i = k + j, x = xµN (j, x), and in each summand the estimate (4.24)

holds. This yields

ĴclL (k, x, µN ) =

L−1∑

j=0

ˆ̀(k + j, xµN (j, x), µN (k + j, xµN (j, x)))

=
L−1∑

j=0

V̂∞(k + j, xµN (j, x))− V̂∞(k + j + 1, xµN (j + 1, x)) +R4(k + j, xµN (j, x),K,N)︸ ︷︷ ︸
≤ δ(N)

≤ V̂∞(k, x)− V̂∞(k + L, xµN (L, x)) + Lδ(N)

and thus the assertion.

The result from this theorem states that on finite horizons L the MPC closed-loop trajec-

tory approximates an infinite horizon overtaking optimal trajectory. We will clarify this

in the following by giving two different interpretations of the result.

The first interpretation considers a composite trajectory and shows that it is approximately

an overtaking optimal trajectory. For an initial state x0 at time k consider the control

sequence ū consisting for the first L steps of the MPC feedback solution and after that of

the solution of the infinite horizon problem starting in x̃ = xµN (L, x0) at time k + L:

ū(j) :=

{
µN (k + j, xµN (j, x0)), j = 0, . . . , L− 1

u∗∞,x̃(j), j ≥ L.

An illustration of the resulting trajectories resulting from this control sequence is depicted

in Figure 4.7, together with an infinite horizon optimal state trajectory. The cost of the
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Figure 4.7: Illustration of trajectory resulting form constructed control sequence ū (com-

posed of the red and green trajectories) together with an infinite horizon optimal trajectory

(shown in blue).

trajectory corresponding to ū is given by

Ĵ∞(k, x0, ū) =
∞∑

j=0

ˆ̀(k + j, xū(j, x0), ū(j))

= ĴclL (k, x0, µN )︸ ︷︷ ︸
≤V̂∞(k,x0)−V̂∞(k+L,x̃)+Lδ(N)

+ V̂∞(k + L, x̃)

≤ V̂∞(k, x0) + Lδ(N).

Because V̂∞(k, x0) = Ĵ∞(k, x0, u
∗
∞,x0

) this is equivalent to

Lδ(N) ≥
∞∑

j=0

ˆ̀(k + j, xū(j, x0), ū(j))−
∞∑

j=0

ˆ̀(k + j, xu∗∞,x0
(j, x0), u∗∞,x0

(j))

⇔
∞∑

j=0

ˆ̀(k + j, xu∗∞,x0
(j, x0), u∗∞,x0

(j))−
∞∑

j=0

ˆ̀(k + j, xū(j, x0), ū(j)) ≥ − Lδ(N).

From this inequality and the definition of ˆ̀ it follows that

lim inf
K→∞

(
K−1∑

j=0

`(k + j, xu∗∞,x0
(j, x0), u∗∞,x0

(j))− `(k + j, xū(j, x0), ū(j))

)
≥ −Lδ(N).

This means that in terms of the overtaking optimality criterion the initial piece of the MPC

closed-loop trajectory approximates the initial piece of the optimal trajectory xu∗∞,x0
(·, x0).

An alternative interpretation of Theorem 4.16 is provided in the following corollary.

Corollary 4.17
Let k ∈ N0 and x ∈ X(k) and let the assumptions of Theorem 4.16 hold. Then for each
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N ∈ N the MPC closed-loop trajectory is an approximately overtaking optimal trajectory
in the sense that the inequality

lim inf
L→∞



L−1∑

j=0

(`(k + j, xu(j, x), u(j))− `(k + j, xµN
(j, x0), µN (k + j, xµN

(j, x0)))) + Lδ(N)


 ≥ 0

(4.25)

holds for all u ∈ U∞(k, x).

Proof. From closed-loop cost estimate (4.19) of Theorem 4.16 and the fact that V̂∞(k +

L, xµN (L, x)) ≥ 0 (cf. (4.12)) it follows that

ĴclL (k, x, µN ) ≤ V̂∞(k, x) + Lδ(N). (4.26)

By inserting the definition of the closed-loop cost and replacing the infinite horizon optimal
value function V̂∞(k, x) by limM→∞

∑M−1
j=0

ˆ̀(k + j, xu∗∞(j, x), u∗∞(j)) we obtain:

lim
M→∞



M−1∑

j=0

ˆ̀(k + j, xu∗∞(j, x), u∗∞(j))


−

L−1∑

j=0

ˆ̀(k+j, xµN
(j, x0), µN (k+j, xµN

(j, x0)))+Lδ(N) ≥ 0.

(4.27)

Since this inequality holds for all L it remains true if we take the lim infL→∞ (note that

the first term in the above inequality is independent of L):

lim
M→∞



M−1∑

j=0

ˆ̀(k + j, xu∗∞(j, x), u∗∞(j))




+ lim inf
L→∞


−

L−1∑

j=0

ˆ̀(k + j, xµN (j, x0), µN (k + j, xµN (j, x0))) + Lδ(N)


 ≥ 0.

(4.28)

Applying the computation rules for the lim inf from Lemma A.1 in the appendix it follows
that

lim inf
L→∞

(
L−1∑

j=0

(
ˆ̀(k + j, xu∗∞(j, x), u∗∞(j))− ˆ̀(k + j, xµN

(j, x0), µN (k + j, xµN
(j, x0)))

)
+Lδ(N)

)
≥ 0.

(4.29)

By the definition of the shifted stage cost function (Definition 4.8) this is equivalent to:

lim inf
L→∞

(
L−1∑

j=0

(
`(k + j, xu∗∞(j, x), u∗∞(j))− `(k + j, xµN

(j, x0), µN (k + j, xµN
(j, x0)))

)
+Lδ(N)

)
≥ 0.

(4.30)

Let u ∈ U∞(k, x) denote an arbitrary infinite horizon control sequence. Because u∗∞ is

an overtaking optimal trajectory, the inequality

lim inf
L→∞

(
L−1∑

j=0

`(k + j, xu(j, x0), u(j))− `(k + j, xu∗∞(j, x), u∗∞(j))

)
≥ 0 (4.31)
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holds. Finally, applying Lemma A.2 to the two inequalities (4.30) and (4.31) yields the

inequality

lim inf
L→∞

(
L−1∑

j=0

(
`(k + j, xu(j, x0), u(j))− `(k + j, xu∗∞(j, x), u∗∞(j)) + `(k + j, xu∗∞(j, x), u∗∞(j))

−`(k + j, xµN (j, x0), µN (k + j, xµN (j, x0)))) + Lδ(N)

)
≥ 0

(4.32)

which simplifies to

lim inf
L→∞

(
L−1∑

j=0

(`(k + j, xu(j, x0), u(j))− `(k + j, xµN
(j, x0), µN (k + j, xµN

(j, x0)))) + Lδ(N)

)
≥ 0.

(4.33)

This concludes the proof.

Ideally, we would have a result that states that the MPC closed loop trajectory is an

overtaking optimal trajectory, i.e. that

lim inf
L→∞

(
L−1∑

j=0

(`(k + j, xu(j, x0), u(j))− `(k + j, xµN (j, x0), µN (k + j, xµN (j, x0))))

)
≥ 0.

(4.34)

holds. Although it is not exactly (4.34), the corollary at least shows that the MPC closed

loop trajectory satisfies the overtaking optimality criterion if we include the additional

term Lδ(N).

4.4.2 Averaged performance

At first glance, it may appear that the error term Lδ(N) from the performance estimate

in Theorem 4.16 causes the performance to deteriorate if the MPC algorithm is run for

large times L. However, if we analyze the averaged closed-loop cost functionals

J̄clL (k, x, u) :=
1

L
JclL (k, x, u) (4.35)

along the closed-loop it becomes obvious that the situation is not quite as bad: from (4.19)

and the fact that V̂∞(k + L, xµN (L, x)) ≥ 0 we get

ĴclL (k, x, µN ) ≤ V̂∞(k, x) + Lδ(N)

or equivalently
1

L
ĴclL (k, x, µN ) ≤ 1

L
V̂∞(k, x) + δ(N). (4.36)
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Consider the average performance of the optimal trajectory starting at time k

J̄∗L(k) :=
1

L

L−1∑

j=0

`(k + j, x∗(k + j), u∗(k + j)). (4.37)

Then from the definition of the shifted stage cost together with (4.35) and (4.37) for the

left-hand side of inequality (4.36) we obtain

1

L
ĴclL (k, x, µN ) =

1

L

L−1∑

j=0

`(k, xµN (j, x), µN (k + j, xµN (j, x))− `(k + j, x∗(k + j), u∗(k + j))

= J̄clL (k, x, µN )− J̄∗L(k)

Thus, inequality (4.36) is equivalent to

J̄clL (k, x, µN ) ≤ J̄∗L(k) +
1

L
V̂∞(k, x) + δ(N).

Taking the lim supL→∞ yields

lim sup
L→∞

J̄clL (k, x, µN ) ≤ lim sup
L→∞

J̄∗L(k) + δ(N).

Thus, for sufficiently long horizons the average cost of the MPC closed-loop is approxi-

mately the same as the average cost of the trajectory of optimal operation. This demon-

strates that in this averaged sense the closed-loop performs well on arbitrarily long time

horizons.

The following example illustrates the results presented so far.

Example 4.18 (Cost convergence for scalar example)

Consider the system

x(k + 1) = x(k) + u(k) + w(k)

where w(k) = −2 sin(kπ12 ) + ak and (ak)k∈N0 ⊂ [−1
4 ,

1
4 ] is a sequence of random numbers.

Let

X(k) =

{
[−2, 2], for k ∈ [24j, 24j + 12),

[−1
2 ,

1
2 ], for k ∈ [24j + 12, 24(j + 1)),

j ∈ N0, (4.38)

and let U(k) = [−3, 3], k ∈ N0. The goal in this example is to keep the state x within the

set X(k) with minimal control effort. We thus use the stage cost `(k, x, u) = u2.

The setting could be interpreted as keeping the temperature of a room within a certain

range while spending as little energy as possible. In this setting, the sequence w(k) would

correspond to influence of the time-varying outside temperature, which can be predicted.
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Figure 4.8: MPC solution starting from the initial state x(0) = 0 for a horizon length of

N = 10.

Figure 4.8 shows in red the closed-loop solution of the economic MPC algorithm, as well

as the corresponding control sequence in blue and the time-varying sequence w in green.

Obviously, the state remains within the constraints.

Next, Figure 4.9 illustrates how the closed-loop cost evolves as the simulation time L is

increased. The different colors represent the cumulative cost for different MPC horizons

N . First of all, it is noticeable that the closed-loop costs grow indefinitely as L increases.

Although initially, the cost can be lower for short horizons, ultimately longer horizons

will lead to a lower overall cost. One could say that the long horizons overtake the short

horizons at some point, which in a way indicates the connection to overtaking optimality.

In addition, looking at the gap between the different lines the figure confirms that the error

term Lδ(N) evolves linearly in L and decreases as the horizon N is increased (cf. Theorem

4.16).

In Figure 4.10 the final value at k = 96 of the closed-loop cost from Figure 4.9 for the dif-

ferent MPC horizons N is shown. For increasing horizon the closed-loop cost J96(0, 0, µN )

converges to some value, according to our theory to the (unknown) value of the initial piece

of the infinite horizon optimal trajectory, i.e. J96(0, 0, u∗∞).

Thus, the numerical simulations from the example confirm our theoretical results from the
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Figure 4.9: Cumulative closed-loop cost for increasing simulation horizon L and different

MPC horizon lengths N .

first part of this chapter.

4.5 Trajectory convergence

So far we only derived estimates for the cost of the MPC closed-loop trajectory. Now

we turn our attention to the trajectories themselves. We want to investigate under what

conditions they will converge to the optimal trajectory (x∗, u∗).
The way to formalize this is by using the notion of P-practical asymptotic stability which

we will introduce below. For proving convergence we will then show the existence of

a Lyapunov function using a construction relying on modified costs and a dissipation

inequality. In this regard, the approach bears resemblance to the stability proofs for time-

invariant MPC in Chapter 8 of [50]. However, the arguments needed to be modified to

account for the time-variance in the problem.

4.5.1 Stability notion

For the definition of stability, we substitute the feedback for the control in system (4.1),

i.e. we consider the feedback-controlled system

x+ = f(k, x, µN (k, x)) =: g(k, x). (4.39)
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Figure 4.10: Closed-loop cost for Example 4.18 for different MPC horizon lengths N .

The following definitions and the theorem are taken from [50].

Definition 4.19 (Forward invariance)

We say a family of sets Y (k) ⊆ X, k ∈ N0 is forward invariant if g(k, x) ∈ Y (k + 1) for

all k ∈ N0 and all x ∈ Y (k).

Definition 4.20 (Uniform P-practical asymptotic stability, [50, Definition 2.17])

Let Y (k) be a forward invariant family of sets and let P(k) ⊂ Y (k) be subsets of Y (k). Then

we say that a trajectory x∗ with x∗(k) ∈ Y (k) is P-practically uniformly asymptotically

stable on Y (k) if there exists β ∈KL such that

|x(k; k0, x0)|x∗(k) ≤ β(|x0|x∗(k0), k − k0) (4.40)

holds for all x0 ∈ Y (k0) and all k0, k ∈ N0 with k ≥ k0 and x(k; k0, x0) /∈ P(k).

A graphical illustration of Definition 4.20 can be found in Figure 4.11. The definition

demands that it is possible to put a bound on the distance between the state trajectory

x(·; k0, x0) and the optimal trajectory x∗. The bound depends on the initial distance of

the two trajectories |x0|x∗(k0) as well as the elapsed time k−k0. Since β is a KL function

the bound on the distance continually decreases for increasing time k, at least until the

trajectory enters the sets P(k) where it then remains.

A way to prove uniform asymptotic stability is to ensure the existence of a Lyapunov

function defined as follows.
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k0

β(|x0|x∗(k0), k − k0)
x0

x(k; k0, x0)

x∗(k) P(k) k

Figure 4.11: Schematic illustration of P-practical asymptotic stability.

Definition 4.21 (Uniform time-varying Lyapunov function, [50, Definition 2.21])

Let subsets S(k) ⊆ X and define S := {(k, x)|k ∈ N0, x ∈ S(k)}. A function V : S→ R+
0

is called uniform time-varying Lyapunov function on S(k) if the following conditions are

satisfied:

1. There exist functions α1, α2 ∈K∞ such that

α1(|x|x∗(k)) ≤ V (k, x) ≤ α2(|x|x∗(k)) (4.41)

holds for all k ∈ N0 and all x ∈ S(k).

2. There exists a function αV ∈K such that

V (k + 1, g(k, x)) ≤ V (k, x)− αV (|x|x∗(k)) (4.42)

holds for all k ∈ N0 and all x ∈ S(k) with g(k, x) ∈ S(n+ 1).

Inequality (4.42) from the previous definition essentially states that a Lyapunov function

decays along the solution trajectory of the system. This can be combined with the first two

inequalities in (4.41) to conclude that also the solution trajectory itself converges to the

trajectory x∗. In other words, the existence of a Lyapunov function guarantees asymptotic

stability as stated in the following theorem.

Theorem 4.22 (Lyapunov function implies P-practical asymptotic stability, [50, Theorem

2.23])

Consider forward invariant families of sets Y (k) and P(k) ⊂ Y (k), k ∈ N0, and x∗(k) ∈
P(k). If there exists a uniform time-varying Lyapunov function V on S(k) = Y (k) \ P(k)

then x∗ is uniformly P-practically asymptotically stable on Y (k).
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4.5.2 Construction of a Lyapunov function based on modified costs

In this section, we will show that a modified optimal value function related to the optimal

value function of the original MPC problem is a Lyapunov function for the feedback-

controlled system. This will then allow us to conclude convergence of the MPC closed-loop

trajectory to an optimal trajectory.

An essential assumption we impose is strict dissipativity of the system as introduced in

the following.

Assumption 4.23 (Strict dissipativity)

The system (4.1) is strictly dissipative with respect to the supply rate s(k, x, u) = ˆ̀(k, x, u)

and the optimal trajectory (x∗, u∗), i.e. there exists a storage function λ : N0 × X → R
bounded from below on X and α ∈K∞ such that the inequality

λ(k + 1, f(k, x, u))− λ(k, x) ≤ s(k, x, u)− α(|(x, u)|(x∗(k),u∗(k))) (4.43)

holds for all k ∈ N0 and all (x, u) ∈ X(k)× U(k, x).

Remark 4.24 (Relevance of dissipativity theory)

Dissipativity was first introduced by Willems in the two pioneering works [106] and [107].

The classical definition considers dissipativity with respect to equilibria. In our setting we

replace the equilibrium by an optimal trajectory in Assumption 4.23.

For our purposes, dissipativity is applied mainly as a tool for the construction of a Lya-

punov function in order to prove asymptotic stability of the MPC closed-loop trajectory.

Beyond that, dissipativity is a widely used concept in many areas of control theory. Appli-

cations of dissipativity include controller synthesis and feedback design [29] or classification

of a system’s regime of optimal operation [28]. Moreover, there exists a strong connection

between dissipativity and the turnpike property [45, 48]. We will explore this connection

for time-varying systems in more detail in the next chapter.

Finally, for many systems, the storage function and the supply rate carry a physical inter-

pretation because they describe the amount of ”energy” currently stored in the system and

the amount that is fed to the system from the outside. 3

Remark 4.25 (Alternative versions of dissipativity)

Other notions of dissipativity than the one introduced in Assumption 4.23 have been pro-

posed by Müller [81]. It is argued that in the time-varying setting there may not exist a

single distinct optimal trajectory but a whole set of optimal trajectories. The dissipativity

notion should account for this by defining the dissipativity margin α in such a way that it

treats all the possible optimal trajectories equally. For periodic orbits (where orbits with

shifted phase can be regarded equivalent) this was explored in [84] by considering the dis-

tance of all points (x̃, ũ) of a P -step trajectory to the optimal orbit Π.

In the more general non-periodic case comparable results do not yet exist. However, it is

conjectured (see [82]) that a promising extension of the dissipation inequality (4.43) could
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take the shape

λ(k + 1, f(k, x, u))− λ(k, x) ≤ s(k, x, u)− α(|(x, u)|Ω(k)) (4.44)

in which

Ω(k) := {(x, u) ∈ X(k)× U(k) : ∃ an optimal trajectory (x∗(·), u∗(·))
s.t. x∗(k) = x and u∗(k) = u}

(4.45)

is the set of all points located on an optimal trajectory at time k.

In this work, we will use the version introduced above, which presents a more straight-

forward extension to the classical dissipativity notion of Willems [106]. However, there

certainly is potential for generalizing our results in this regard. 3

Using the storage function λ from Assumption 4.23 we introduce a modified MPC stage

cost and cost functional.

Definition 4.26 (Modified MPC cost functional)

Consider the modified stage cost ˜̀ given by

˜̀(k, x, u) := ˆ̀(k, x, u) + λ(k, x)− λ(k + 1, f(k, x, u)). (4.46)

The modified MPC cost functional is defined as

J̃N (k, x, u) :=
N−1∑

j=0

˜̀(k + j, xu(j; k, x), u(j)). (4.47)

Correspondingly, we define a modified MPC problem and the modified optimal value

function.

Definition 4.27 (Modified MPC optimal control problem)

We consider the modified MPC problem

min
u∈UN (k,x)

J̃N (k, x, u) (4.48)

and the corresponding modified optimal value function

ṼN (k, x) := inf
u∈UN (k,x)

J̃N (k, x, u). (4.49)

We denote the optimal control sequence corresponding to the solution of (4.48) by ũ∗N .

Below we will make several assumptions for this modified problem in order to facilitate

the proofs. In addition to the turnpike property for the original MPC problem from

Assumption 4.10, we demand that the modified problem also has the turnpike property.
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Assumption 4.28 (Turnpike property for the modified MPC problem)

The modified optimal control problem from Definition 4.27 has the turnpike property. For

the modified problem we will denote the set Q by Q̃ and the bound σ by σ̃.

Moreover, we make two assumptions for the modified stage cost and the modified optimal

value function.

Assumption 4.29 (Modified cost bounded from above)

We assume there exists αu ∈K∞ such that the modified stage cost satisfies

˜̀(k, x, u) ≤ αu(|(x, u)|(x∗(k),u∗(k))) (4.50)

for all k ∈ N0 and all (x, u) ∈ X(k)× U(k, x).

Assumption 4.30 (Continuity of ṼN at x∗)
We assume there exists γṼ such that for each k ∈ N0, N ∈ N and x ∈ X the following

holds

|ṼN (k, x)− ṼN (k, x∗(k))| ≤ γṼ (|x|x∗(k)) (4.51)

In the next chapter, we will discuss in more detail why the above assumptions are mean-

ingful and when they can be fulfilled.

Remark 4.31 (Modified cost along optimal trajectory)

From Assumptions 4.23 and 4.29 it follows that the modified cost along the optimal tra-

jectory pair (x∗, u∗) satisfies
˜̀(k, x∗(k), u∗(k)) = 0 (4.52)

for all k ∈ N0. Note that this implies that

ṼN (k, x∗(k)) = 0 (4.53)

for all k ∈ N0 and for every N ∈ N. 3

Remark 4.32 (Difference between different continuity assumptions)

Note the difference between the two continuity assumptions from Assumption 4.12 and

Assumption 4.30. The continuity assumption for the modified problem is independent of

the horizon N . 3

The following preparatory lemma shows that the initial cost (up to some time instant M)

of two optimal trajectories with different horizon length of the modified problem is nearly

identical.

Lemma 4.33

Let Assumptions 4.28 and 4.30 hold. Then

J̃M (k, x, ũ∗N ) = J̃M (k, x, ũ∗N+1) +R5(k, x,M,N)

where the error term satisfies |R5(k, x,M,N)| ≤ 2γṼ (σ̃(P )) for all k ∈ N0, all N ∈ N,

all P ∈ N sufficiently large, all x ∈ X(k) and all M ∈ {0, . . . , N} \ (Q̃(k, x, P,N) ∪
Q̃(k, x, P,N + 1)).
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M ∈ {0, ..., N} \
(
Q̃(k, x, P,N) ∪ Q̃(k, x, P,N + 1)

)
k

x∗

σ̃(P )
σ̃(P )

N N + 1M
x

J̃M (k, x, xũ∗
N+1

)

J̃M (k, x, xũ∗
N
)

Figure 4.12: Illustration of Lemma 4.33

Proof. The intuition behind this proof is as follows. We consider two optimal control

trajectories of different horizon length starting at the same initial state. Because of the

turnpike assumption we know that both trajectories will at some point be close to the

optimal trajectory as illustrated in Figure 4.12. At that point, we exploit the continuity

property of ṼN to switch from one trajectory to the other without changing the overall

cost too much.

More formally, let ũ∗N and ũ∗N+1 denote the optimal solutions of problem (4.48) with

horizon N and N+1, respectively. From the finite horizon dynamic programming principle

(cf. Theorem 4.2) we obtain that u = ũ∗N is a minimizer of J̃M (k, x, u) + ṼN−M (k +

M,xu(M,x)). In particular it holds that

J̃M (k, x, ũ∗N ) + ṼN−M (k+M,xũ∗N (M,x)) ≤ J̃M (k, x, ũ∗N+1) + ṼN−M (k+M,xũ∗N+1
(M,x)).

(4.54)

Now consider

R1(k, x,M,N) := ṼN−M (k +M,xũ∗N (M,x))− ṼN−M (k +M,x∗(k +M))

and

R2(k, x,M,N) := ṼN−M (k +M,xũ∗N+1
(M,x))− ṼN−M (k +M,x∗(k +M)).

Inserting the definition of R1 and R2 into (4.54) we obtain

J̃M (k, x, ũ∗N ) + ṼN−M (k +M,x∗(k +M)) +R1(k, x,M,N)

≤ J̃M (k, x, ũ∗N+1) + ṼN−M (k +M,x∗(k +M)) +R2(k, x,M,N)

which is equivalent to

J̃M (k, x, ũ∗N ) ≤ J̃M (k, x, ũ∗N+1)−R1(k, x,M,N) +R2(k, x,M,N). (4.55)
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The above equations are true for everyM ∈ {0, . . . , N}. ForM ∈ {0, . . . , N}\(Q̃(k, x, P,N)∪
Q̃(k, x, P,N+1)) we know from Assumption 4.28 that |(xũ∗N (M,x), ũ∗N (M))|(x∗(k+M),u∗(k+M)) ≤
σ̃(P ), and in particular |xũ∗N (M,x)|x∗(k+M) ≤ σ̃(P ), i.e. we have a bound on the distance

of xũ∗N (M,x) to the optimal trajectory x∗. Using Assumption 4.30 we obtain

|R1(k, x,M,N)| ≤ γṼ (σ̃(P )).

The same holds when considering the optimal trajectory ũ∗N+1 yielding the estimate

|R2(k, x,M,N)| ≤ γṼ (σ̃(P )).

For the converse inequality we use the dynamic programming principle from Theorem 4.2

once more together with the fact that u = ũ∗N+1 minimizes the expression J̃M (k, x, u) +

ṼN+1−M (k +M,xu(M,x)) which implies that

J̃M (k, x, ũ∗N+1)+ṼN+1−M (k+M,xũ∗N+1
(M,x)) ≤ J̃M (k, x, ũ∗N )+ṼN+1−M (k+M,xũ∗N (M,x)).

Defining

R3(k, x,M,N) := ṼN+1−M (k +M,xũ∗N+1
(M,x))− ṼN+1−M (k +M,x∗(k +M))

and

R4(k, x,M,N) := ṼN+1−M (k +M,xũ∗N (M,x))− ṼN+1−M (k +M,x∗(k +M))

we can estimate

J̃M (k, x, ũ∗N+1) + ṼN+1−M (k +M,x∗(k +M)) +R3(k, x,M,N)

≤ J̃M (k, x, ũ∗N ) + ṼN+1−M (k +M,x∗(k +M)) +R4(k, x,M,N)

⇔ J̃M (k, x, ũ∗N+1) ≤ J̃M (k, x, ũ∗N )−R3(k, x,M,N) +R4(k, x,M,N). (4.56)

Analogously to the above discussion we obtain the bounds

|R3(k, x,M,N)| ≤ γṼ (σ̃(P ))

and

|R4(k, x,M,N)| ≤ γṼ (σ̃(P ))

for every M ∈ {0, . . . , N} \ (Q̃(k, x, P,N) ∪ Q̃(k, x, P,N + 1)). Finally, combining the

inequalities (4.55) and (4.56) leads to

|R5(k, x,M,N)| = |J̃M (k, x, ũ∗N )− J̃M (k, x, ũ∗N+1)|
≤ max{| −R1(k, x,M,N) +R2(k, x,M,N)|, | −R3(k, x,M,N) +R4(k, x,M,N)|}
≤ max{|R1(k, x,M,N)|+ |R2(k, x,M,N)|, |R3(k, x,M,N)|+ |R4(k, x,M,N)|}
≤ max{2γṼ (σ̃(P )), 2γṼ (σ̃(P ))}
= 2γṼ (σ̃(P )).

This concludes the proof.
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Using this result we can prove the following lemma, which states that the optimal value

functions for the modified problem yield almost the same value for different horizons N

and N + 1.

Lemma 4.34

Let Assumption 4.29 and those of Lemma 4.33 hold. Then the equation

ṼN+1(k, x) = ṼN (k, x) +R6(k, x,M,N)

holds with |R6(k, x,M,N)| ≤ 4γṼ (σ̃(P )) for all k ∈ N0, all N ∈ N, all P ∈ N sufficiently

large, all x ∈ X(k) and all M ∈ {0, . . . , N} \ (Q̃(k, x, P,N) ∪ Q̃(k, x, P,N + 1)).

Proof. The proof exploits the special construction of the rotated optimal value function

ṼN . As explained in Remark 4.31, for any point on the optimal trajectory the rotated

optimal value function vanishes. Combining this with the turnpike and continuity prop-

erties, we can conclude that the cost of the whole trajectory is approximately the cost of

the initial piece of the trajectory. The same reasoning applies if the horizon is one step

longer. Consequently, by applying Lemma 4.33, we can conclude that the initial pieces for

horizon N and N + 1 also have approximately the same cost and thus the assertion fol-

lows. To make these arguments precise, let k ∈ N0 and let x ∈ X(k). We first consider the

optimal value function with horizon length N . From the dynamic programming principle

(Theorem 4.2) it follows for every M ∈ {0, . . . , N} that

ṼN (k, x) = J̃M (k, x, ũ∗N ) + ṼN−M (k +M,xũ∗N (M,x)). (4.57)

We define

R1(k, x,M,N) := ṼN−M (k +M,xũ∗N (M,x))− ṼN−M (k +M,x∗(k +M))

which can be bounded by

|R1(k, x,M,N)| ≤ γṼ (σ̃(P ))

for M ∈ {0, . . . , N} \ Q̃(k, x, P,N) as seen in the proof of Lemma 4.33.

Using the definition of R1 we rewrite (4.57) to

ṼN (k, x) = J̃M (k, x, ũ∗N ) + ṼN−M (k +M,x∗(k +M)) +R1(k, x,M,N)

= J̃M (k, x, ũ∗N ) +R1(k, x,M,N)
(4.58)

where we used Remark 4.31 in the last equality.

Now consider the optimal value function for horizon length N + 1. Again, we apply the

dynamic programming principle from Theorem 4.2 which yields

ṼN+1(k, x) = J̃M (k, x, ũ∗N+1) + ṼN+1−M (k +M,xũ∗N+1
(M,x)) (4.59)

for every M ∈ {0, . . . , N + 1}. We define

R3(k, x,M,N) := ṼN+1−M (k +M,xũ∗N+1
(M,x))− ṼN+1−M (k +M,x∗(k +M))
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with the bound

|R3(k, x,M,N)| ≤ γṼ (σ̃(P ))

for M ∈ {0, . . . , N} \ Q̃(k, x, P,N + 1) (cf. Lemma 4.33).

Inserting the definition of R3 into (4.59) and using Remark 4.31, we obtain

ṼN+1(k, x) = J̃M (k, x, ũ∗N+1) + ṼN+1−M (k +M,x∗(k +M)) +R3(k, x,M,N)

= J̃M (k, x, ũ∗N+1) +R3(k, x,M,N).

For M ∈ {0, . . . , N} \ (Q̃(k, x, P,N) ∪ Q̃(k, x, P,N + 1)) we apply Lemma 4.33 to get

ṼN+1(k, x) = J̃M (k, x, ũ∗N+1) +R3(k, x,M,N)

= J̃M (k, x, ũ∗N ) +R3(k, x,M,N)−R5(k, x,M,N)

= ṼN (k, x)−R1(k, x,M,N) +R3(k, x,M,N)−R5(k, x,M,N)

where the last equation follows with equation (4.58).

Finally, we define

R6(k, x,M,N) := −R1(k, x,M,N) +R3(k, x,M,N)−R5(k, x,M,N)

and from the bounds on R1, R3 and R5 we get the bound

|R6(k, x,M,N)| = | −R1(k, x,M,N) +R3(k, x,M,N)−R5(k, x,M,N)|
≤ |R1(k, x,M,N)|+ |R3(k, x,M,N)|+ |R5(k, x,M,N)|
≤ γṼ (σ̃(P )) + γṼ (σ̃(P )) + 2γṼ (σ̃(P ))

= 4γṼ (σ̃(P )).

This shows the assertion.

Remark 4.35

In the next theorem, we will use both the turnpike property for the modified and the unmod-

ified MPC problem. Note however, that Assumption 4.10 and Assumption 4.28 express

two different turnpike properties with different bounds σ and σ̃ and associated sets Q and

Q̃. To prove the next lemma, we will need a common bound and a single set for both

problems. This can be achieved by defining

σ̄ := max{σ, σ̃}
and

Q̄(k, x, P,N) := Q(k, x, P,N) ∪ Q̃(k, x, P,N).

Then the optimal trajectories of both problems (4.3) and (4.48) satisfy

|(xu∗N,x
(M,x), u∗N,x(M))|(x∗(k+M),u∗(k+M)) ≤ σ̄(P )

and

|(xũ∗N,x
(M,x, ũ∗N,x(M))|(x∗(k+M),u∗(k+M)) ≤ σ̄(P )

for all M ∈ {0, . . . , N} \ Q̄(k, x, P,N) and #Q̄(k, x, P,N) ≤ 2P . 3
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Figure 4.13: Illustration of Theorem 4.36 depicting the optimal control sequence u∗N,x (in

blue) and a suboptimal control u (in green).

The next theorem shows that the initial piece of an optimal control trajectory which

ends in a neighborhood of the optimal trajectory of the unmodified MPC problem yields

approximately lower cost than all other trajectories ending in that neighborhood.

Theorem 4.36 (Initial piece of optimal trajectory ending near turnpike is approximately

optimal)

Let u∗N,x denote the optimal trajectory of problem (4.3) and let Assumptions 4.10, 4.12

and 4.28 hold. Then for all k ∈ N0, all x ∈ X(k), all N ∈ N, all P ∈ N, all M ∈
{0, . . . , N}\Q̄(k, x, P,N) and all u ∈ UM (k, x) with |xu(M,x)|x∗(k+M) ≤ σ̄(P ) the estimate

ĴM (k, x, u∗N,x) ≤ ĴM (k, x, u) +R7(k, x,M,N) (4.60)

holds with |R7(k, x,M,N)| ≤ 2γV (N −M, σ̄(P )).

Proof. We prove the theorem by contradiction. Let u∗N,x denote the optimal solution of

problem (4.3) and let x̄u∗ := xu∗N,x
(M,x) for M ∈ {0, . . . , N} \ Q̄(k, x, P,N). Then from

Remark 4.35 we know that |x̄u∗ |x∗(k+M) ≤ σ̄(P ).

Now assume there exists a control sequence u ∈ UM (k, x) with x̄u := xu(M,x) satisfying

|x̄u|x∗(k+M) ≤ σ̄(P ) and

ĴM (k, x, u) +R1(k, x,M,N) +R2(k, x,M,N) < ĴM (k, x, u∗N,x). (4.61)

with

R1(k, x,M,N) := V̂N−M (k +M, x̄u)− V̂N−M (k +M,x∗(k +M))

and

R2(k, x,M,N) := V̂N−M (k +M,x∗(k +M))− V̂N−M (k +M, x̄u∗).

Using Assumption 4.12 R1 and R2 can be bounded by

|R1(k, x,M,N)| ≤ γV (N −M, σ̄(P ))

|R2(k, x,M,N)| ≤ γV (N −M, σ̄(P )).
(4.62)
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Consider

ĴM (k, x, u) + V̂N−M (k +M, x̄u) = ĴM (k, x, u) + V̂N−M (k +M,x∗(k +M)) +R1(k, x,M,N)

= ĴM (k, x, u) + V̂N−M (k +M, x̄u∗)

+R1(k, x,M,N) +R2(k, x,M,N)

(4.61)
< ĴM (k, x, u∗N,x) + V̂N−M (k +M, x̄u∗)

= V̂N (k, x)

where we used the dynamic programming principle from Theorem 4.2 for the last equation.

But this contradicts the optimality of u∗N,x and thus the inequality

ĴM (k, x, u∗N,x) ≤ ĴM (k, x, u) +R1(k, x,M,N) +R2(k, x,M,N)

follows. Finally, define

R7(k, x,M,N) := R1(k, x,M,N) +R2(k, x,M,N)

which can be bounded by

|R7(k, x,M,N)| ≤ |R1(k, x,M,N)|+ |R2(k, x,M,N)|
(4.62)

≤ 2γV (N −M, σ̄(P )).

This concludes the proof.

So far we did not impose any assumptions on the storage function λ from the strict dissi-

pativity of the system. For the next lemma, we will need that this function is continuous

at the optimal trajectory.

Assumption 4.37 (Continuity of storage function λ at x∗)
Assume that the storage function λ is continuous in the following sense: There exists

γλ ∈K∞ such that for all k ∈ N and all x ∈ X it holds that

|λ(k, x)− λ(k, x∗(k))| ≤ γλ(|x|x∗(k)). (4.63)

In our final preparatory lemma, we consider a control sequence û that for the first part

consists of the optimal control sequence u∗N,x of the unmodified problem until it is close

to the optimal trajectory x∗. Then we control from the final point using the optimal

control sequence of the modified problem. The lemma states that the resulting composite

control sequence has almost the same cost as if we had controlled using the optimal control

sequence of the modified problem for the whole horizon.
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Figure 4.14: Illustration of the proof of Lemma 4.38.

Lemma 4.38

Let Assumptions 4.10, 4.12, 4.28, 4.30 and 4.37 hold and let u∗N,x and ũ∗N,x denote the

optimal control sequences corresponding to problems (4.3) and (4.48). Let N,P ∈ N be

arbitrary and for M ∈ {0, . . . , N} \ Q̄(k, x, P,N) define x̄u∗ := xu∗N,x
(M,x) and denote by

ū the solution of the optimal control problem

min
u∈UN−M (k+M,x̄u∗ )

J̃N−M (k +M, x̄u∗ , u). (4.64)

Then the composite control sequence û ∈ UN (k, x) defined by û(k) = u∗N,x(k) for k =

{0, . . . ,M − 1} and û(k +M) = ū(k) for k = {0, . . . , N −M} satisfies

J̃N (k, x, û) = ṼN (k, x) +R8(k, x,M,N)

with

|R8(k, x,M,N)| ≤ γṼ (σ(P )) + γλ(σ(P )) + γṼ (σ̃(P )) + γλ(σ̃(P )) + 2γV (N −M, σ̄(P ))

for all k ∈ N0 and for all x ∈ X(k).

Proof. We start with a brief outline of the proof. Refer to Figure 4.14 for an illustration of

the construction of the composite control sequence û (depicted in blue) which consists of

the concatenation of two trajectories (orange and red). The first part of the proof shows

that the cost of û is upper bounded by the cost of the optimal solution of the modified

MPC problem (depicted in green) up to some error term. The central assumption in this

step is that there exists a time point M at which both the solution of the modified and the

unmodified MPC problem are close to the turnpike. Using continuity of the optimal value

function and the storage function it then becomes possible to conclude that the values of
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the final pieces of the modified trajectory ũ∗N,x and of the composite trajectory û cannot

differ by much. Adding to this the statement from Theorem 4.36, that also the initial

piece of the unmodified trajectory has approximately lower cost than the initial piece of

the modified trajectory, we get that the cost of the composite trajectory is bounded by

the cost of the modified trajectory, up to error terms. On the other hand, the modified

trajectory is optimal thus the reverse inequality also holds and we can construct an error

term such that the assertion holds.

We first prove ”J̃N (k, x, û) ≤ ṼN (k, x) + ε(N)”: Using the definition of û, noting that ū is

an optimal solution and inserting the definition of J̃M we obtain

J̃N (k, x, û) = J̃M (k, x, u∗N,x) + J̃N−M (k +M, x̄u∗ , ū)

= J̃M (k, x, u∗N,x) + ṼN−M (k +M, x̄u∗)

= ĴM (k, x, u∗N,x) + λ(k, x)− λ(k +M, x̄u∗) + ṼN−M (k +M, x̄u∗)

(4.65)

Define

R1(k, x,M,N) := ṼN−M (k +M, x̄u∗)− ṼN−M (k +M,x∗(k +M))

and

R2(k, x,M,N) := λ(k +M,x∗(k +M))− λ(k +M, x̄u∗).

Because of Assumption 4.10 we know the bound |x̄u∗ |x∗(k+M) ≤ σ(P ) for M ∈ {0, . . . , N}\
Q(k, x, P,N). Thus we can use the continuity of ṼN−M from Assumption 4.30 and the

continuity of λ from Assumption 4.37 to obtain the bounds

|R1(k, x,M,N)| ≤ γṼ (σ(P ))

and

|R2(k, x,M,N)| ≤ γλ(σ(P )).

Inserting R1 and R2 into (4.65) leads to

ĴM (k, x, u∗N,x) + λ(k, x)− λ(k +M, x̄u∗) + ṼN−M (k +M, x̄u∗)

= ĴM (k, x, u∗N,x) + λ(k, x)− λ(k +M,x∗(k +M)) + ṼN−M (k +M,x∗(k +M))

+R1(k, x,M,N) +R2(k, x,M,N)

(4.66)

Now consider the optimal solution ũ∗N,x of problem (4.27), denote x̃ := xũ∗N,x
(M,x) and

define

R3(k, x,M,N) := ṼN−M (k +M,x∗(k +M))− ṼN−M (k +M, x̃)

and

R4(k, x,M,N) := λ(k +M, x̃)− λ(k +M,x∗(k +M)).

For M ∈ {0, . . . , N} \ Q̃(k, x, P,N) we have the bound |x̃| ≤ σ̃(P ) from Assumption 4.28.

Using again the continuity of ṼN−M and λ from Assumptions 4.30 and 4.37, we can bound

R3 and R4 by

|R3(k, x,M,N)| ≤ γṼ (σ̃(P ))
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and

|R4(k, x,M,N)| ≤ γλ(σ̃(P )).

Continuing from (4.66) by inserting R3 and R4 yields

ĴM (k, x, u∗N,x) + λ(k, x)− λ(k +M,x∗(k +M)) + ṼN−M (k +M,x∗(k +M))

+R1(k, x,M,N) +R2(k, x,M,N)

= ĴM (k, x, u∗N,x) + λ(k, x)− λ(k +M, x̃) + ṼN−M (k +M, x̃)

+R1(k, x,M,N) +R2(k, x,M,N) +R3(k, x,M,N) +R4(k, x,M,N)

Finally, using Theorem 4.36 for the control sequence u = ũ∗N,x, we obtain for M ∈
{0, . . . , N} \ Q̄(k, x, P,N) (with the set Q̄(k, x, P,N) from Remark 4.35)

ĴM (k, x, u∗N,x) + λ(k, x)− λ(k +M, x̃) + ṼN−M (k +M, x̃)

+R1(k, x,M,N) +R2(k, x,M,N) +R3(k, x,M,N) +R4(k, x,M,N)

≤ ĴM (k, x, ũ∗N,x) + λ(k, x)− λ(k +M, x̃) + ṼN−M (k +M, x̃)

+R1(k, x,M,N) +R2(k, x,M,N) +R3(k, x,M,N) +R4(k, x,M,N) +R7(k, x,M,N)︸ ︷︷ ︸
=:R̃8(k,x,M,N)

= J̃M (k, x, ũ∗N,x) + ṼN−M (k +M, x̃) + R̃8(k, x,M,N)

= ṼN (k, x) + R̃8(k, x,M,N)

To summarize, we have shown that

J̃N (k, x, û) ≤ ṼN (k, x) + R̃8(k, x,M,N) (4.67)

with

|R̃8(k, x,M,N)| ≤ |R1(k, x,M,N)|+ |R2(k, x,M,N)|+ |R3(k, x,M,N)|+ |R4(k, x,M,N)|
+ |R7(k, x,M,N)|

≤ γṼ (σ(P )) + γλ(σ(P )) + γṼ (σ̃(P )) + γλ(σ̃(P )) + 2γV (N −M, σ̄(P ))

which holds for all M ∈ {0, . . . , N} \ Q̄(k, x, P,N).

To prove the reverse inequality, note that from the definition of the optimal value function

we know that

ṼN (k, x) ≤ J̃N (k, x, u)

for all u ∈ UN (k, x) and in particular, for u = û. Combining this inequality with inequality

(4.67) from above, it follows that

J̃N (k, x, û) ≤ ṼN (k, x) + R̃8(k, x,M,N) ≤ J̃N (k, x, û) + R̃8(k, x,M,N)

and thus R̃8(k, x,M,N) ≥ 0. In addition, we know that

ṼN (k, x) ≤ J̃N (k, x, û) ≤ ṼN (k, x) + R̃8(k, x,M,N).
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With this, we can conclude the existence of R8 with |R8(k, x,M,N)| ≤ R̃8(k, x,M,N)

such that

J̃N (k, x, û) = ṼN (k, x) +R8(k, x,M,N). (4.68)

This finishes the proof.

Using the results from Lemmas 4.33 - 4.38, we can now prove that the modified optimal

value function ṼN is a Lyapunov function for the system controlled by the MPC feedback

µN obtained by solving the original (unmodified) MPC problem.

Theorem 4.39 (ṼN Lyapunov function for MPC with unmodified cost)

Let Assumptions 4.10, 4.12, 4.23, 4.28, 4.29, 4.30 and 4.37 hold. Then for each Θ > 0

there exists δ1 ∈ L such that the optimal value function ṼN is a Lyapunov function for

the closed-loop system g(k, x) = f(k, x, µN (k, x)) on S(k) = Y (k) \ P(k) for the families

of forward invariant sets Y (k) = Ṽ −1
N (k, [0,Θ]) and P(k) = Ṽ −1

N (k, [0, δ1(N)]).

Proof. 1 Let Θ > 0, k ∈ N0 and x ∈ X(k). We first prove the existence of lower and

upper bounds for ṼN (k, x) in inequality (4.41). To obtain a lower bound, observe that

from Assumption 4.23 it follows that

˜̀(k, x, u) ≥ α(|x|x∗(k)) (4.69)

for all (x, u) ∈ X(k)× U(k, x). With this, we can estimate

ṼN (k, x) = inf
u∈UN (k,x)

N−1∑

j=0

˜̀(k + j, xu(j;x), u(j)) ≥ inf
u∈UN (k,x)

N−1∑

j=0

α(|xu(j;x)|x∗(k+j))

≥ α(|x|x∗(k))

This yields the lower bound α1 = α. The upper bound follows from Assumption 4.30 since

ṼN (k, x∗(k)) = 0 with α2 = γṼ .

Now we turn to the inequality (4.42). Consider the control sequence û ∈ UN (k, x) defined

in Lemma 4.38 and let x+ := xû(1, x). From the definition of the cost functional we have

J̃N (k, x, û) = ˜̀(k, x, û) + J̃N−1(k + 1, x+, û(·+ 1)).

We can apply Lemma 4.38 to J̃N (k, x, û) because û exactly corresponds to the control

sequence from the lemma. Furthermore, we can apply the lemma to J̃N−1(k+ 1, x+, û(·+
1)). The reason for this is that the control sequence û(· + 1) coincides with the control

sequence u∗N−1,x+ up to time M−1. This follows from the dynamic programming principle

and the fact that tails of optimal control sequences are again optimal control sequences,

cf. [50, Corollary 4.5]. From this we obtain

ṼN (k, x) +R8(k, x,M,N) = ˜̀(k, x, û) + ṼN−1(k + 1, x+) +R8(k + 1, x+,M − 1, N − 1)

1Parts of the proof are analogous to the proof of Proposition 8.32 in [50]
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Using Lemma 4.34 on the right-hand side of the equation for k = k+1, x = x+, M = M−1

and N = N − 1, we get

ṼN (k, x) +R8(k, x,M,N) = ˜̀(k, x, û) + ṼN (k + 1, x+) +R6(k + 1, x+,M − 1, N − 1)

+R8(k + 1, x+,M − 1, N − 1)

or equivalently

ṼN (k + 1, x+) = ṼN (k, x)− ˜̀(k, x, û)−R6(k + 1, x+,M − 1, N − 1)

−R8(k + 1, x+,M − 1, N − 1) +R8(k, x,M,N).

From Lemma 4.34 and Lemma 4.38 we obtain a bound for the residuals

−R6(k + 1, x+,M − 1, N − 1)−R8(k + 1, x+,M − 1, N − 1) +R8(k, x,M,N)

≤ |R6(k + 1, x+,M − 1, N − 1)|+ |R8(k + 1, x+,M − 1, N − 1)|+ |R8(k, x,M,N)|
≤ 2γṼ (σ(P )) + 2γλ(σ(P )) + 6γṼ (σ̃(P )) + 2γλ(σ̃(P )) + 4γV (N −M, σ̄(P ))

(4.70)

which holds for all M ∈ {0, . . . , N}\{Q̄(k, x, P,N)∪Q̄(k+1, x+, P,N −1)}. Because each

of the sets Q̄ contains at most 2P elements we can choose P = bN8 c to guarantee that

there is at least one such M satisfying M ≤ N
2 which implies N −M ≥ N

2 . With this, we

can find an upper bound ν(N) of (4.70) only depending on N that is given by

ν(N) := 8γṼ (σ(bN
8
c)) + 2γλ(σ(bN

8
c)) + 2γλ(σ̃(bN

8
c)) + 4γV (

N

2
, σ̄(bN

8
c))

using the properties of comparison functions. Thus we arrive at the inequality

ṼN (k + 1, x+) ≤ ṼN (k, x)− ˜̀(k, x, û) + ν(N)

= ṼN (k, x)− ˜̀(k, x, µN (k, x)) + ν(N).
(4.71)

In addition, from Assumption 4.23 it follows that

−˜̀(k, x, u) ≤ −α(|x|x∗(k))

for all (x, u) ∈ X(k)×U(k, x), in particular for u = µN (k, x). This leads to the inequality

ṼN (k + 1, x+) ≤ ṼN (k, x)− α(|x|x∗(k)) + ν(N).

Since we have the upper bound ṼN (k, x) ≤ α2(|x|x∗(k)), we can further estimate

ṼN (k + 1, x+) ≤ ṼN (k, x)− α(|x|x∗(k)) + ν(N)

≤ ṼN (k, x)− α(α−1
2 (ṼN (k, x))) + ν(N)

= ṼN (k, x)− χ(ṼN (k, x))) + ν(N)

(4.72)
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with χ := α ◦α−1
2 . Define δ1(N) := max{χ−1(2ν(N)), χ−1(ν(N)) + ν(N)} and let P(k) :=

Ṽ −1
N (k, [0, δ1(N)]). Then for x ∈ Y (k) \ P(k) it holds that

ṼN (k, x) ≥ δ1(N) ≥ χ−1(2ν(N)).

This implies

ν(N) ≤ χ(ṼN (k, x))

2

and it follows that

ṼN (k + 1, x+) ≤ ṼN (k, x)− χ(ṼN (k, x))) + ν(N)

≤ ṼN (k, x)− χ(ṼN (k, x)))

2

and using the lower bound α1(|x|x∗(k)) ≤ ṼN (k, x) we get

ṼN (k + 1, x+) ≤ ṼN (k, x)− χ(ṼN (k, x)))

2
≤ ṼN (k, x)− χ(α1(|x|x∗))

2
.

Thus, we have shown the inequality (4.42) with αV (r) = χ(α1(r))
2 . What remains to be

shown is the forward invariance of the sets Y (k) and P(k). For x ∈ Y (k) it holds that

ṼN (k, x) ≤ Θ. Now consider x+ for which it holds

ṼN (k, x) ≤ ṼN (k, x)− αV (|x|x∗) < ṼN (k, x) ≤ Θ

and thus x+ ∈ Ṽ −1
N (k + 1, [0,Θ]) = Y (k + 1). This shows the forward invariance of Y (k).

To prove forward invariance of P(k) let x ∈ P(k) which implies that ṼN (k, x) ≤ δ1(N).

Distinguish two cases:

1. case: χ(ṼN (k, x)) ≥ ν(N)

Here it follows from (4.72) that

ṼN (k + 1, x+) ≤ ṼN (k, x)− χ(ṼN (k, x)) + ν(N) ≤ ṼN (k, x) ≤ δ1(N).

2. case: χ(ṼN (k, x)) ≤ ν(N)

In this case, it follows

ṼN (k + 1, x+) ≤ ṼN (k, x)− χ(ṼN (k, x)) + ν(N)

≤ ṼN (k, x) + ν(N) < χ−1(ν(N)) + ν(N) ≤ δ1(N).

So in both cases x+ ∈ P(k + 1) and thus the forward invariance holds.

Remark 4.40

The proof of Theorem 4.39 uses the same basic idea as the proof of Proposition 8.32 in [50].

However, due to the time-variance a different route for establishing a relation between
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ṼN (k + 1, x+) and ṼN (k, x) in inequality (4.71) had to be taken. The reason for this is

that in the time-invariant case the cost of the optimal equilbrium `(xe, ue) is constant

in time whereas in the time-varying case the cost of the optimal trajectory at two time

instances k1 and k2 may differ, i.e. in general `(k1, x
∗(k1), u∗(k1)) 6= `(k2, x

∗(k2), u∗(k2)).

Because of this, a straightforward generalization of Lemma 8.26, which was used in the

original proof of Proposition 8.32, is not possible. The problem was circumvented by the

preliminary Lemmas 4.33 - 4.38. 3

Together with Theorem 4.22, Theorem 4.39 shows that the MPC closed-loop is practi-

cally asymptotically stable at the optimal trajectory. In particular, this means that the

closed-loop trajectory will converge to a neighborhood P(k) of the optimal trajectory.

Furthermore, since the bounds α1, α2 as well as the function αV are independent of N ,

the size of this neighborhood tends to zero as the optimization horizon N tends to in-

finity. In addition, Theorem 4.16 ensures that the closed-loop trajectory approaches this

neighborhood in an approximately optimal way.

4.6 Illustrative examples

To conclude this chapter, we illustrate the essential results by a number of examples. Even

though they are simple they point out the possible behavior of the MPC solutions in the

time-varying context.

We first give two examples that show by means of numerical simulations that both the

MPC closed-loop cost and the MPC closed-loop trajectories converge to the optimal cost

and the optimal trajectory (x∗, u∗), respectively. In a third example, we consider a case

where MPC fails to converge to the optimal trajectory.

Here we restrict ourselves to presenting the simulation results without investigating why

MPC works as expected (or does not). This will be done in the next chapter where

we will revisit these examples and explain their behavior in more detail by checking the

assumptions we used in our convergence results.

Example 4.41 (Trajectory convergence for scalar example)

Consider again the system from Example 4.18. There, we already saw that the cost of

the MPC closed-loop trajectories converges to the cost of an overtaking optimal trajectory

as the horizon is increased. Now we want to investigate what happens to the trajectories

themselves.

To the best of our knowledge, it is not possible to compute the optimal trajectory (x∗, u∗)
analytically for this example. Instead, an approximation to the optimal trajectory was

computed by solving an optimal control problem on a long finite horizon with free initial

value.

Figure 4.15 shows the MPC closed-loops for different initial values. We see that all solu-

tions converge towards a single unique trajectory, which is the approximation of the optimal

trajectory (x∗, u∗), at which the system is optimally operated. Thus, this example demon-
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Figure 4.15: MPC closed-loop trajectories for different initial values of the system using

a fixed horizon of N = 10.

strates that MPC works in the time-varying setting and produces a closed-loop solution

which approximates the optimal trajectory (x∗, u∗).

As a second example, we investigate a problem involving a partial differential equation

(PDE). The example demonstrates that MPC not only works for finite but also infinite

dimensional systems.

Example 4.42 (PDE example)

Consider the convection diffusion equation

∂y

∂t
− α∇2y + w∇y = 0 on Q := Ω× [0, T ],

y(0) = y0 on Ω,
(4.73)

where y : Q→ R is the temperature, α > 0 is the diffusion coefficient, w : Ω× [0, T ]→ R
is a velocity field and y0 : Ω → R is the initial condition at time zero. Let the boundary

of the domain be separated in two parts Γout and Γc and consider boundary conditions of

Robin type:

∂y

∂n
+ γouty = δoutyout on Σout := Γout × [0, T ],

∂y

∂n
+ γcy = δcu on Σc := Γc × [0, T ].

(4.74)
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In the above equations ∂y
∂n is the derivative of y in normal direction, yout : Σout → R

is the outside temperature, u : Σc → R is a control function, and γc, δc : Σc → R,

γout, δout : Σout → R are coefficient functions.

The optimal control problem is given by:

min
y,u,w

J(y, u, w) =
1

2
‖u‖2L2(Σc) +

1

2
‖w‖2L2(Q) (4.75)

subject to equations (4.73), (4.74) and the constraints

u ≤ u ≤ u on Σc, (4.76)

y ≤ y ≤ y on Ωy × [0, T ], (4.77)

with lower and upper bounds for state and control where Ωy ⊆ Ω is a subdomain.

The physical interpretation of this setting is similar to Example 4.18 but now with an un-

derlying PDE. The example is motivated by the application of HVAC (heating, ventilation,

air conditioning). The state y models the spatial distribution of the temperature within a

room. The temperature is subject to time-dependent variations at the boundary Γout due

to changing outside temperature yout. On the controlled part of the boundary Γc, the tem-

perature can be influenced by the control u representing heating and cooling. In addition,

a second control w can be used to affect the convection, similar to controllable airflow

(ventilation) inside the room. The goal is to keep the temperature of the room within lower

and upper bounds y and y on the subdomain Ωy, using as little energy as possible.

For simplicity, we consider the unit interval as domain Ω. Similar results can be obtained

also in higher dimensions, see also [78]. The boundary Γ is partitioned into an uncon-

trolled boundary Γout at x = 0 and a controlled boundary Γc at x = 1, see Figure 4.16.

Furthermore, we assume the controlled convection w is constant in space. The numerical

Ωy

Ω ΓcΓout

10

Figure 4.16: Illustration of domain Ω and subdomain Ωy, as well as controlled (Γc) and

uncontrolled (Γout) parts of the boundary.

implementation of the example was described in more detail in Chapter 3.

Like in Example 4.41 the optimal trajectory (y∗, u∗) has been computed from an optimiza-

tion with a free initial value on a long horizon.

We apply the MPC algorithm (Algorithm 4.1) to the problem. Figure 4.17 shows an

exemplary MPC closed-loop with a horizon of N = 50. The state on the subdomain Ωy

is kept between the lower and upper bounds. The control u alternates between cooling

and heating in order to counteract the rising and falling temperature at the uncontrolled

boundary. As seen in Figure 4.18, we can observe the convergence of the closed-loop
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Parameter Value Description

Ωy [0.25, 0.75] subdomain

h 0.01 sampling rate

ny 100 dof for FEM discretization

−y, y 0.15 state constraints

−u, u 0.25 control constraints

y0 −0.1 initial value of the state

α 1 diffusion coefficient

γout, δout 106 parameters at outside boundary

γc 0 parameter at control boundary

δc 10 parameter at control boundary

yout(t) 0.3 sin(10t) time-varying outside temperature

Table 4.1: Overview of parameters used in the simulations.

cost of the MPC solutions for increasing horizon length, as well as the convergence of

the MPC closed-loop trajectories to the optimal trajectory in Figure 4.19. An interesting

observation is that in this example the cost converges much quicker than the state. While

there is hardly any change in the value of the closed-loop cost for N = 20 the closed loop

trajectories themselves only come close to the optimal trajectory around relatively long

horizons of N = 70.
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Figure 4.17: Temporal and spatial evolution of an MPC closed-loop trajectory for horizon

length N = 50. The state constraints on the subdomain Ωy = [0.25, 0.75] are plotted in

red.
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Figure 4.18: Evolution of the closed-loop cost Jcl200(0, y0, µN ) for L = 200 time steps with

different horizon lengths N .
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Figure 4.19: Norm difference ‖yµN (k, x)− y∗(k)‖L2(Ω) between MPC closed-loop trajecto-

ries and the optimal trajectory at each time point for different horizon lengths N .
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As a final example, we investigate a case where MPC fails to converge to the optimal

trajectory.

Example 4.43

Consider the system

x(k + 1) =

{
u(k), if k = 0,

x(k), if k ≥ 1,

with discrete state and control spaces X = U = N0 starting at the initial state x(0) = 0

together with the stage cost

`(k, x, u) =





1, if k ≥ 0, x = 0, u = 0,

0, if k = 0, x = 0, u 6= 0,

0, if 1 ≤ k < x,

2, if k ≥ x.

An illustration of this system and the possible state transitions is depicted in Figure 4.20.
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=
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=

0

ℓ = 0
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u
=
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0

ℓ = 0

ℓ = 0
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Figure 4.20: Possible state transitions for Example 4.43 together with the corresponding

cost ` = `(k, x, u).

The only control action happens at the initial state x(0). Here the control u(0) determines

which branch of the state space the solution will follow. The system has been constructed in

such a way that the optimal trajectory is the sequence (x∗, u∗) = {(0, 0), (0, 0), . . .} which

produces a cost of `(k, x∗(k), u∗(k)) = 1 for each k ≥ 0.

However, for each finite horizon N ∈ N a control sequence with lower cost can be found,
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namely by choosing the initial control such that u(0) > N . This means that the MPC will

never converge to the optimal trajectory independently of the horizon length N and the

closed-loop cost ĴclL (k, 0, µN ) will exceed that of the optimal trajectory for all L > 2u(0).

As will be shown in the next chapter, the reason for the failure of MPC is that both the

turnpike and strict dissipativity assumptions are violated.
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5 | Analytical and numerical approaches

for checking turnpike and continuity

assumptions

In the previous Chapter 4 we analyzed the performance and convergence for time-varying

economic MPC schemes. To arrive at our results, we posed a number of assumptions to the

underlying problem statement, first and foremost the turnpike property and continuity of

the optimal value functions. While these assumptions are convenient for the construction

of approximately optimal trajectories, it was not addressed if they are reasonable and can

be expected to hold for practical systems. Likewise, it was not explained how to verify

them in practice. This is what this chapter will be about.

Generally speaking, the turnpike property is a rather qualitative statement, expressing that

open-loop trajectories are most of the time close to what we called the optimal trajectory

in the previous chapter. In Definition 4.9 this was formalized by putting bounds on

the distance to the turnpike and counting the number of time-instances when the open-

loop trajectory violates these bounds. Still, it is difficult to quantify and thus check the

definition directly, as we will also see in the second part of this chapter.

In contrast to this, dissipativity (cf. Assumption 4.23) is a more tractable condition from a

computational point of view, since it is expressed by a set of inequalities that need to hold

for each pair of state and control. While still challenging, in principle it is possible to verify

dissipativity algorithmically. Examples of how the dissipation inequality can be checked

for time-invariant systems can be found in [75, 98], relying on Linear Matrix Inequality

techniques, or [29, 92] with approaches based on Sum-of-Squares. Unfortunately, so far

these methods have not been extended to time-varying systems. Nevertheless, in the

first part of this chapter we will derive alternative sufficient conditions for the turnpike

property based on dissipativity, expecting that these conditions will become easier to verify

in the future. Similarly, we will show that also the continuity property is implied by strict

dissipativity when imposing additional controllability assumptions.

In contrast to the analytical approach of the first part, the second part of this chapter

deals with numerical ways to verify the turnpike and continuity assumptions. Here we will

look at ways to check if a given system exhibits turnpike and continuity properties. The

system we consider is related to a practical application. The fact that it is possible to find

83
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numerical evidence of our central assumptions for this system demonstrates that they are

not unreasonably restrictive.

The results presented here encompass the contents of the publications [52] and [54].

5.1 Sufficient conditions for turnpike and continuity prop-

erties

In this first part we will show that both the turnpike and the continuity property hold

for strictly dissipative systems if we impose additional reachability and controllability

assumptions. In addition, we will see that strict dissipativity, in turn, can be concluded

if appropriate optimality conditions of the infinite horizon problem hold. We will then

revisit one of the examples of the previous chapter and go through all the necessary steps

for verification of our assumptions.

5.1.1 Alternative conditions for the turnpike property

We begin by deriving alternative sufficient conditions for the turnpike property from Def-

inition 4.9, given that the system is strictly dissipative, i.e. Assumption 4.23 holds, and

the optimal trajectory from Definition 4.5 satisfies the following reachability condition.

Assumption 5.1 (Cheap reachability)

We assume that the trajectory pair (x∗, u∗) is cheaply reachable, i.e. there exists E ∈ R
such that for each k ∈ N0 and for all x ∈ X(k), N ∈ N ∪ {∞} the inequality

V̂N (k, x) ≤ E (5.1)

holds.

This assumption essentially demands that the optimal trajectory x∗ can be reached from

any initial state with bounded cost. Since the shifted cost along x∗ is zero, this can be

expressed via a bound on the shifted optimal value functions. This allows us to prove the

following theorem.

Theorem 5.2 (Strict dissipativity and cheap reachability imply turnpike)

Let (x∗, u∗) be an optimal trajectory. If the optimal control problem is strictly dissipative

with respect to the supply rate s(k, x, u) = ˆ̀(k, x, u) = `(k, x, u) − `(k, x∗(k), u∗(k)) with

bounded storage function λ for the trajectory pair (x∗, u∗) and (x∗, u∗) is cheaply reachable,

then the turnpike property from Definition 4.9 holds.

Proof. We first prove the finite-horizon turnpike property from Definition 4.9 (a). Let

k ∈ N0, x ∈ X(k) and consider a control sequence u ∈ U(k, x) with corresponding state

trajectory xu(·; k, x). From strict dissipativity we have

ˆ̀(k + j, xu(j; k, x), u(j)) ≥ λ(k + j + 1, f(k + j, xu(j; k, x), u(j)))− λ(k + j, xu(j))

+ α(|(xu(j; k, x), u(j))|(x∗(j),u∗(j)))
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for all j ∈ N0. This yields

ĴN (k, x, u) =

N−1∑

j=0

ˆ̀(k + j, xu(j; k, x), u(j))

≥ λ(k +N, f(k +N − 1, xu(N − 1; k, x), u(N − 1)))− λ(k, xu(k; k, x))

+

N−1∑

j=0

α(|(xu(j; k, x), u(j))|(x∗(j),u∗(j))). (5.2)

We prove the finite-horizon turnpike property by contradiction. Suppose the turnpike

property does not hold for

σ(P ) := α−1

(
2Mλ + E

P

)
,

in which Mλ > 0 is a bound on |λ| and with E from Assumption 5.1. This means that

there are N ∈ N, x ∈ X(k) and P ∈ N such that the number of elements j ∈ Q(k, x, P,N),

i.e. those elements for which |(xu∗N (j; k, x), u∗N (j))|(x∗(j),u∗(j)) > σ(P ) is larger than P .

Using (5.2) with the optimal control sequence u = u∗N and taking only those elements in

the sum into account for which |(xu∗N (j; k, x), u∗N (j))|(x∗(j),u∗(j)) > σ(P ) holds (the other

summands are lower-bounded by zero), this implies

V̂N (k, x) = ĴN (k, x, u∗N ) > −2Mλ + Pα(σ(P )) = −2Mλ + 2Mλ + E = E.

However, this contradicts Assumption 5.1.

The proof for the infinite horizon follows analogously with

ρ(P ) := α−1

(
2Mλ + E

P

)
.

5.1.2 Conditions for the continuity property

Next, we show that not only the turnpike property but also continuity of the optimal

value function can be deduced from strict dissipativity. For this we need some additional

assumptions, first of all local controllability near the optimal trajectory of the system.

Assumption 5.3 (Local controllability)

The system is locally controllable along the trajectory pair (x∗, u∗), i.e. there exists a time

d ∈ N, δc > 0, and functions γx, γu, γc ∈ K∞ such that for each k ∈ N0 and for any

two points x ∈ Bδc(x
∗(k)), y ∈ Bδc(x

∗(k + d)) there exists a control sequence u ∈ Ud(x)

satisfying xu(d, x) = y and for all j = 0, . . . , d− 1 the estimates

‖xu(j; k, x)− x∗(k + j)‖ ≤ γx(δ),

‖u(j)− u∗(k + j)‖ ≤ γu(δ)
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and

|ˆ̀(j + k, xu(j; k, x), u(j))| ≤ γc(δ)

hold, where δ := max{‖x− x∗(k)‖, ‖y − x∗(k + d)‖}.

Clearly, local controllability means that any two points within a tube along the optimal

trajectory can be connected in forward time by a trajectory close to (x∗, u∗) as illustrated

in Figure 5.1.

k k + d

x

y
x∗

xu

Bδc (x
∗(k))

Bδc (x
∗(k + d))

Figure 5.1: Local controllability along the optimal trajectory.

For the subsequent results we will make use once more of the modified stage cost function,

which we have introduced in Definition 4.26 of the previous chapter. In inequality (4.69)

in the proof of Theorem 4.39 we already saw that the modified stage cost is bounded from

below by a function αl := α (where α is the dissipativity margin from Definition 4.23), i.e.

˜̀(k, x, u) ≥ αl(|(x, u)|(x∗(k),u∗(k))) (5.3)

with αl ∈ K∞ holds for all (x, u) ∈ X(k) × U(k, x). If, in addition, Assumption 4.29 is

satisfied we also have an upper bound αu ∈K∞

˜̀(k, x, u) ≤ αu(|(x, u)|(x∗(k),u∗(k))) (5.4)

with for all k ∈ N0 and all (x, u) ∈ X(k)× U(k, x).

One easily sees that for the modified cost functional the following identity holds:

J̃N (k, x, u) = ĴN (k, x, u) + λ(k, x)− λ(k +N, xu(N ; k, x)). (5.5)

The following preliminary result shows that an optimal trajectory starting in a neighbor-

hood of the optimal pair (x∗, u∗) will stay near the optimal pair for some time.
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Lemma 5.4

Suppose that the system (4.1) is strictly dissipative and that Assumptions 4.29, 5.1 and

5.3 hold. Then there exist N1 > 0, R ≥ N/2 and η : N × R+
0 → R+

0 with η(N, r) → 0

if N → ∞ and r → 0, such that for each k > 0 the open-loop optimal trajectories with

horizon N ≥ N1 starting in x1 ∈Bδc(x
∗(k)) satisfy

|(xu∗N,x1
(j; k, x1), u∗N,x1

(j))|(x∗(k+j),u∗(k+j)) ≤ η(N, ‖x1 − x∗(k)‖)

for all j ∈ {0, . . . , R} and δc from Assumption 5.3.

Proof. 1 Let k ∈ N0. We choose an arbitrary x1 ∈ Bδc(x
∗(k)), i.e. a point close to the

optimal trajectory. By Theorem 5.2 we know that for the optimal open-loop trajectory

xu∗N,x1
(·; k, x1) the finite horizon turnpike property holds. Consider d ∈ N and δc > 0

from Assumption 5.3, i.e. the number for which local controllability of x∗(k) to x∗(k + d)

holds, and the size of the balls around x∗(k) and x∗(k+d). Then, because of the turnpike

property we can choose ε satisfying 0 < ε ≤ δc and N , P with P ≤ N − 2d, such that

there are at least N − P ≥ 2d time instants j ∈ {0, . . . , N} at which

|(xu∗N,x1
(j; k, x1), u∗N,x1

(j))|(x∗(k+j),u∗(k+j)) ≤ σ(P ) ≤ ε

holds. In particular, for those time instants we also have

‖xu∗N,x1
(j; k, x1)− x∗(k + j)‖ ≤ ε ≤ δc.

Let R denote the largest such time index and note that R ≥ N − P ≥ 2d. We now

construct a control sequence ū ∈ UN as follows: By applying Assumption 5.3 with x =

x1, y = y1 := x∗(k + d) we know that there exists a control sequence u1 ∈ Ud with

xu1(d; k, x1) = x∗(k + d). We define ū(j) = u1(j) for j ∈ {0, . . . , d − 1}. For j ∈
{d, . . . , R − d − 1} we choose ū(j) = u∗(k + j), and thus get xū(R − d) = x∗(k + R − d).

Using Assumption 5.3 again, this time with x = x2 := x∗(k+R− d) ∈Bδc(x
∗(k+R− d))

and y = y2 := xu∗N,x1
(R, x1) ∈ Bδc(x

∗(k + R)), we obtain the control sequence u2 ∈ Ud.
We finish by defining ū(j) = u2(j −R+ d) for j ∈ {R− d, . . . , R− 1} and ū(j) = u∗N,x1

(j)

for j ∈ {R, . . . , N − 1}. To summarize, we constructed the following control sequence

ū(j) =





u1(j), for 0 ≤ j ≤ d− 1

u∗(k + j), for d ≤ j ≤ R− d− 1

u2(j), for R− d ≤ j ≤ R− 1

u∗N,x1
(j), for R ≤ j ≤ N − 1

(5.6)

The corresponding state trajectory is sketched in Figure 5.2.

Next, we show that the modified cost of the initial R steps for the control ū cannot

be smaller than the cost of the optimal control u∗N,x1
. Observe that by construction

1The proof uses a construction similar to the one of Lemma 6.3 in [43].
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k

x∗

d R− d R N

xū

xu∗
N,x1

y1 = x∗(k + d) x2 = x∗(k + R − d)

y2 = xu∗
N,x1

(R, x1)

u1 u∗ u2 u∗N,x1

x1

Figure 5.2: Illustration of the state trajectory resulting from the control sequence ū (dashed

blue).

the trajectories xū(j; k, x1) and xu∗N,x1
(j; k, x1) coincide for j ∈ {R, . . . , N}. Due to the

optimality principle, and because xu∗N,x1
(j; k, x1) is the tail of an optimal trajectory for

j ∈ {R, . . . , N}, the initial pieces of the control sequences u∗N,x1
and ū up to time R − 1

satisfy

JR(k, x1, u
∗
N,x1

) ≤ JR(k, x1, ū)

as well as

ĴR(k, x1, u
∗
N,x1

) ≤ ĴR(k, x1, ū). (5.7)

Now consider the modified cost functionals J̃R. From (5.5) with N = R and the fact that

xū(R, x1) = xu∗N,x1
(R, x1) it follows that

J̃R(k, x1, u
∗
N,x1

) = ĴR(k, x1, u
∗
N,x1

) + λ(k, x1)− λ(k +R, xu∗N,x1
(R; k, x1))

(5.7)

≤ ĴR(k, x1, ū) + λ(k, x1)− λ(k +R, xu∗N,x1
(R; k, x1)) (5.8)

= ĴR(k, x1, ū) + λ(k, x1)− λ(k +R, xū(R; k, x1)) = J̃R(k, x1, ū).

This observation will be used in the following in order to prove by contradiction that the

optimal open-loop trajectory must stay close to the optimal trajectory for at least R time

steps. Otherwise with ū we would have constructed a better control sequence than u∗N,x1
,

violating the optimality of u∗N,x1
. We abbreviate r := ‖x1−x∗(k)‖. From the construction

of ū we know that

‖xū(j; k, x1)− x∗(k + j)‖ ≤ γx(r) and ‖ū(j)− u∗(k + j)‖ ≤ γu(r)

for j = {0, . . . , d− 1}, and similarly ‖xū(j; k, x1)− x∗(k + j)‖ ≤ γx(ε) as well as ‖ū(j)−
u∗(k+j)‖ ≤ γu(ε) for j ∈ {R−d, . . . , R−1}. Additionally, we have xū(j; k, x1) = x∗(k+j)
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and ū(j) = u∗(k + j) for j ∈ {d, . . . , R − d − 1}. Recalling that the modified stage cost

satisfies ˜̀(k, x∗(k), u∗(k)) = 0 (cf. Remark 4.31) and using Assumption 4.29, we thus get

the following estimate for the modified cost functional with the control sequence ū:

J̃R(k, x1, ū) =
R−1∑

j=0

˜̀(k + j, xū(j; k, x1), ū(j))

=
d−1∑

j=0

˜̀(k + j, xū(j; k, x1), ū(j))︸ ︷︷ ︸
≤αu(|(xū(j;k,x1),ū(j))|(x∗(k+j),u∗(k+j)))

+
R−d−1∑

j=d

˜̀(k + j, xū(j; k, x1), ū(j))

︸ ︷︷ ︸
= 0

+

R−1∑

j=R−d

˜̀(k + j, xū(j; k, x1), ū(j))︸ ︷︷ ︸
≤ αu(|(xū(j;k,x1),ū(j))|(x∗(k+j),u∗(k+j)))

(5.9)

≤
d−1∑

j=0

αu(|(xū(j; k, x1), ū(j))|(x∗(k+j),u∗(k+j))︸ ︷︷ ︸
≤ γx(r)+γu(r)

)

+

R−1∑

j=R−d
αu(|(xū(j; k, x1), ū(j))|(x∗(k+j),u∗(k+j))︸ ︷︷ ︸

≤ γx(ε)+γu(ε)

)

≤ dαu(γx(r) + γu(r)) + dαu(γx(ε) + γu(ε))

Now assume that |(xu∗N,x1
(j̃; k, x1), u∗N,x1

(j̃))|(x∗(k+j̃),u∗(k+j̃)) ≥ ∆ holds for some j̃ ∈
{0, . . . , R − 1} and ∆ > α−1

l (dαu(γx(r) + γu(r)) + dαu(γx(ε) + γu(ε))). By adding up

the modified stage cost of the control sequence u∗N,x1
for R steps and using (4.69) and

(5.9) we get the estimate

J̃R(k, x1, u
∗
N,x1

) =

R−1∑

j=0

˜̀(k + j, xu∗N,x1
(j; k, x1), u∗N,x1

(j))

(4.69)

≥
R−1∑

j=0

αl(|(xu∗N,x1
(j; k, x1), u∗N,x1

(j))|(x∗(k+j),u∗(k+j)))

≥ αl(|(xu∗N,x1
(j̃; k, x1), u∗N,x1

(j̃))|(x∗(k+j̃),u∗(k+j̃))︸ ︷︷ ︸
>∆

)

> dαu(γx(r) + γu(r)) + dαu(γx(ε) + γu(ε))
(5.9)

≥ J̃R(k, x1, ū).

But this contradicts (5.8) and thus we get ∆ ≤ α−1
l (dαu(γx(r) + γu(r)) + dαu(γx(ε) +

γu(ε))). Finally, choose ε = σ(N2 ), which satisfies ε→ 0 for N →∞, and define η(N, r) :=

α−1
l (dαu(γx(r) + γu(r)) + dαu(γx(ε) + γu(ε))). By choice of R we know that R ≥ N − P ,

which for P = N
2 yields the assertion, i.e. R ≥ N

2 . It remains to ensure that N −P = N
2 ≥

2d as well as ε ≤ δc, which can be achieved by setting N1 ≥ max{4d, 2σ−1(δc)}.
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As a final assumption in order to prove continuity of the optimal value function we require

the stage cost to be continuous.

Assumption 5.5 (Continuity of the stage cost)

We assume that the stage cost function ` is continuous at the optimal trajectory (x∗, u∗)
in the sense that there exists η` ∈ K∞ such that for each k ∈ N0 and each compact set

Y ⊆ X(k)× U(k) the inequality

|`(k, x, u)− `(k, x∗(k), u∗(k))| ≤ η`(|(x, u)|(x∗(k),u∗(k))) (5.10)

holds for all (x, u) ∈ Y.

The next theorem gives alternative conditions for the continuity property of the optimal

value function V̂N from Assumption 4.12.

Theorem 5.6 (Continuity property of the optimal value function)

Assume the optimal control problem (4.9) is strictly dissipative and Assumptions 4.29,

5.1, 5.3 and 5.5 are satisfied. Then for sufficiently large N ∈ N the finite horizon optimal

value function V̂N is continuous in the sense of Assumption 4.12.

Proof. 2 We start with a brief outline of the proof. We need to show that the value of

V̂N changes only slightly if we consider states close to the optimal trajectory x∗. For this

we pick a point x1 on the optimal trajectory and another point x2 in a neighborhood of

x1. Then, we construct a control sequence that steers the state from x2 to a state x3 on

the optimal open-loop trajectory starting at x1 (cf. Figure 5.3). We can show that the

cost of this specially constructed control sequence can be (approximately) bounded by

the optimal value function at x1. This also transfers to the optimal value function at x2.

Let k ≥ 0 and pick δ ∈ (0, δc] with δc from Assumption 5.3. To shorten the notation we

write x1 = x∗(k) and choose x2 ∈ Bδ(x1) ∩ X(k). Let N ∈ N and denote the optimal

control sequence for N steps starting in x1 by u∗N,x1
, and the one starting in x2 by u∗N,x2

.

According to Lemma 5.4 we can choose N ≥ N1 sufficiently large and δ ∈ (0, δc] such that

both

|(xu∗N,x1
(j; k, x1), u∗N,x1

(j))|(x∗(k+j),u∗(k+j)) ≤ η(N, ‖x1 − x∗(k)‖) ≤ η(N, δ) ≤ δc

and

|(xu∗N,x2
(j; k, x2), u∗N,x2

(j))|(x∗(k+j),u∗(k+j)) ≤ η(N, ‖x2 − x∗(k)‖) ≤ η(N, δ) ≤ δc

hold for all j ∈ {0, . . . , R}. This means both trajectories xu∗N,x1
and xu∗N,x2

will initially

be close to the optimal trajectory (for at least R steps). From the proof of Lemma 5.4 we

also know that R ≥ 2d > d.

Next, we show that the cost of the initial piece (for d steps) of the optimal trajectory

starting in x1 is approximately the same as the cost along the optimal trajectory (x∗, u∗).

2The idea is similar to the proof of Theorem 16 in [84].
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k

x∗

Bδc (x1)

d R N

x1

x2

x3

u1 u∗N,x1

Figure 5.3: Illustration for the proof of the continuity property of Theorem 5.6.

Define ε := η(N, δ), δ̂ := max{δ, ε} and let x3 := xu∗N,x1
(d; k, x1). Because of Assump-

tion 5.5 we know that

|`(k + j, xu∗N,x1
(j; k, x1), u∗N,x1

(j))− `(k + j, x∗(k + j), u∗(k + j))|
≤ η`(|(xu∗N,x1

(j; k, x1), u∗N,x1
(j))|(x∗(k+j),u∗(k+j))) ≤ η`(ε).

This leads to the estimate

d−1∑

j=0

`(k + j, xu∗N,x1
(j; k, x1), u∗N,x1

(j))
︸ ︷︷ ︸
≥ `(k+j,x∗(k+j),u∗(k+j))−η`(ε)

≥ J∗d (k)− dη`(ε). (5.11)

A similar relation holds for a control sequence that steers the state from x2 to the optimal

open-loop trajectory starting in x1: We can apply Assumption 5.3 with x = x2, y = x3 to

conclude that there exists a control sequence u1 ∈ Ud such that xu1(d, x2) = x3 and the

estimate

|`(k + j, xu1(j, x2), u1(j))− `(k + j, x∗(k + j), u∗(k + j))|
≤ γc(max{‖x2 − x∗(k)‖, ‖x3 − x∗(k + d)‖}) ≤ γc(δ̂)

holds for all j ∈ {0, . . . , d− 1}. This yields

d−1∑

j=0

`(k + j, xu1(j; k, x2), u1(j))︸ ︷︷ ︸
≤ `(k+j,x∗(k+j),u∗(k+j))+γc(δ̂)

≤ J∗d (k) + dγc(δ̂). (5.12)

Now we construct a control sequence ū ∈ UN as follows:

ū(j) =

{
u1(j), for j ∈ {0, . . . , d− 1},
u∗N,x1

(j), for j ∈ {d, . . . , N − 1}. (5.13)
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Note that by construction of ū the trajectories xū(j; k, x2) and xu∗N,x1
(j; k, x1) coincide for

j ∈ {d, . . . , N}. For the cost of this composite control sequence we obtain

VN (k, x2) ≤ JN (k, x1, ū)

=
d−1∑

j=0

`(k + j, xū(j; k, x2), ū(j)) +
N−1∑

j=d

`(k + j, xū(j; k, x2), ū(j))

=

d−1∑

j=0

`(k + j, xu1(j; k, x2), u1(j))

︸ ︷︷ ︸
(5.12)

≤ J∗d (k)+dγc(δ̂)

−
d−1∑

j=0

`(k + j, xu∗N,x1
(j; k, x1), u∗N,x1

(j))

︸ ︷︷ ︸
(5.11)

≥ J∗d (k)−dη`(ε)

+

N−1∑

j=0

`(k + j, xu∗N,x1
(j; k, x1), u∗N,x1

(j))

≤ VN (k, x1) + d(γc(δ̂) + η`(ε)),

where the last and the first inequality follow from the optimality of u∗N,x1
and suboptimality

of ū, respectively. Setting γ̃V (N, δ) = d(γc(δ̂)+η`(ε))) and using the definition of V̂N then

yields

V̂N (k, x2) ≤ V̂N (k, x1) + γ̃V (N, δ). (5.14)

Observe that γ̃V → 0 if both N →∞ and δ → 0. Finally, to get the required monotonicity

we define

γV (N, r) := sup
Ñ≥N,δ̃≤r

γ̃V (Ñ , δ̃),

for which (5.14) remains true. The converse inequality follows by exchanging the roles of

x1 and x2 which concludes the proof.

5.1.3 From optimality conditions to dissipativity

The previous section used strict dissipativity as a key ingredient to establish both the

turnpike property and continuity of the optimal value function. In this section we show

how strict dissipativity, in turn, can be established from optimality conditions for the

infinite horizon optimal control problem (4.9).

The proof extends those for discounted and non-discounted time-invariant optimal control

problems, see [46] and [23]. The optimality conditions in the literature which most easily

lead to the desired result are those derived in [17, Theorem 2.2], which we will hence use in

the sequel. However, we believe that using other optimality conditions strict dissipativity

can be proved, too. We will elaborate more on this with respect to the results stated

in [11] at the end of the section.

To be consistent with [17, Theorem 2.2], let us assume that X = Rn and U = Rm and

that no constraints are imposed on the state and control variables. We first define the

Hamiltonian which is essential for deriving optimality conditions.
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Definition 5.7 (Hamiltonian)

For all times k ∈ N0 the Hamiltonian Hk : X × U × Rn × R → R of problem (4.9) is

defined by

Hk(x, u, p, η) := −η`(k, x, u) + pT f(k, x, u).

Below, we state [17, Theorem 2.2] in our notation. Note that the sign of ` has been

changed in the definition above and theorem below because we are considering minimiza-

tion problems here.

Theorem 5.8 (Optimality conditions, cf. [17, Theorem 2.2])

Let (x∗, u∗) be an overtaking optimal pair for (4.9). If it holds:

1. For all k ∈ N0 the functions `(k, ·, ·) and f(k, ·, ·) are continuous on a neighborhood

of (x∗, u∗) and differentiable at (x∗, u∗).

2. For all k ∈ N0 the partial differential ∂f
∂x (k, x∗(k), u∗(k)) ∈ Rn×n is invertible.

Then, there are η0 ∈ R, and pk+1 ∈ Rn for all k ∈ N0 satisfying the following conditions:

1. (η0, p1) 6= (0, 0).

2. η0 ≥ 0.

3. For all k ∈ N0 it holds

pk = pTk+1

∂f

∂x
(k, x∗(k), u∗(k))− η0

∂`

∂x
(k, x∗(k), u∗(k)).

4. For all k ∈ N0 it holds
∂Hk

∂u
(x∗(k), u∗(k), pk+1, η0) = 0.

In what follows, structural assumptions on the optimal control problems are imposed.

Assumption 5.9 (Uniform strict convexity)

We assume that the dynamics f(k, ·, ·) are affine for each k ∈ N0. We also assume that

there is κ ∈ R>0 and F ∈K∞ such that for all k ∈ N0 it holds

`(k, t(x1, u1) + (1− t)(x2, u2)) ≤ t`(k, x1, u1) + (1− t)`(k, x2, u2)

− κ

2
t(1− t)F (‖(x1, u1)− (x2, u2)‖) (5.15)

for all (x1, u1), (x2, u2) ∈ X × U and t ∈ [0, 1].

Remark 5.10

It follows from the definitions, that strong convexity (see e.g. [87] for a definition) implies

(5.15) and this property itself implies strict convexity. 3
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Theorem 5.11 (Optimality conditions imply strict dissipativity)

Let Assumption 5.9 and those of Theorem 5.8 hold. If η0 6= 0 and supk∈N0
‖pk‖ < ∞,

then the optimal control problem (4.9) is strictly dissipative on every bounded set3 X0 with

respect to the supply rate s(k, x, u) = ˆ̀(k, x, u) and the optimal pair (x∗, u∗).

Proof. In order to prove strict dissipativity we have to verify that there exists α ∈ K∞
and a storage function λ such that (4.43) holds. We claim that the candidate λ(k, x) =
1
η0
pTk (x− x∗(k)) yields the desired property. Note that the restriction to bounded sets X0

is needed here in order to ensure that λ is bounded from below as required in Assumption

4.23.

Let X0 be an arbitrary bounded set in Rn. This yields boundedness of λ. Conditions (3.)

and (4.) in Theorem 5.8 read

(3.) ∀k ∈ N0 : pk = −η0
∂`
∂x(k, x∗(k), u∗(k)) + pTk+1

∂f
∂x (k, x∗(k), u∗(k)) and

(4.) ∀k ∈ N0 : −η0
∂`
∂u(k, x∗(k), u∗(k)) + pTk+1

∂f
∂u(k, x∗(k), u∗(k)) = 0.

Let us consider the modified stage cost ˜̀ (cf. Definition 4.26) using our ansatz for the

storage function:

˜̀(k, x, u) = ˆ̀(k, x, u) +
1

η0
pTk (x− x∗(k))− 1

η0
pTk+1(f(k, x, u)− x∗(k + 1))

= `(k, x, u)− `(k, x∗(k), u∗(k))

+
1

η0
pTk (x− x∗(k))− 1

η0
pTk+1(f(k, x, u)− x∗(k + 1))

Since ` is uniformly strictly convex with respect to κ and F , pk linear and f affine for

each k, the modified cost ˜̀ is uniformly strictly convex with respect to κ and F (and in

particular strictly convex for all k ∈ N0). This means that a point (x̄(k), ū(k)) satisfying
∂ ˜̀

∂x(k, x̄(k), ū(k)) = ∂ ˜̀

∂u(k, x̄(k), ū(k)) = 0 is a unique strict minimizer of ˜̀(k, ·, ·). Let us

therefore consider the partial derivatives of ˜̀. For all k ∈ N0 we have

∂ ˜̀

∂x
(k, x, u) =

∂`

∂x
(k, x, u) +

1

η0
pk −

1

η0
pTk+1

∂f

∂x
(k, x, u) and

∂ ˜̀

∂u
(k, x, u) =

∂`

∂u
(k, x, u)− 1

η0
pTk+1

∂f

∂u
(k, x, u).

Now plugging in (x∗(k), u∗(k)) and conditions (3.) and (4.) for the first and second equa-

tion, respectively, we obtain

∂ ˜̀

∂x
(k, x∗(k), u∗(k)) = 0 and

∂ ˜̀

∂u
(k, x∗(k), u∗(k)) = 0.

3This means that dissipativity holds for all x ∈ X0.
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For each k ∈ N0 the point (x∗(k), u∗(k)) is thus the unique strict minimizer of ˜̀ at time

k. By definition of the modified stage cost ˜̀ we have

˜̀(k, x∗(k), u∗(k)) = ˆ̀(k, x∗(k), u∗(k)) + λ(k, x∗(k))− λ(k + 1, f(k, x∗(k), u∗(k)))

=
1

η0
pTk (x∗(k)− x∗(k))− 1

η0
pTk+1(f(k, x∗(k), u∗(k))− x∗(k + 1))

= 0.

Fix an arbitrary t ∈ (0, 1). For k ∈ N0 consider an arbitrary point (x, u) ∈ X × U . We

define (x̄, ū) := t(x, u) + (1− t)(x∗(k), u∗(k)) ∈ X × U . Assumption 5.9 implies

˜̀(k, x̄, ū)+
κ

2
t(1− t)F (‖(x, u)− (x∗(k), u∗(k))‖)

≤ t˜̀(k, x, u) + (1− t)˜̀(k, x∗(k), u∗(k)) = t˜̀(k, x, u)

⇒ ˜̀(k, x, u) >
1

t
˜̀(k, x∗(k), u∗(k)) +

κ

2
(1− t)F (‖(x, u)− (x∗(k), u∗(k))‖)

=
κ

2
(1− t)F (‖(x, u)− (x∗(k), u∗(k))‖).

This implies (4.43) if we set α(r) := κ
2 (1− t)F (r), which is of class K∞ because F ∈K∞

and κ
2 (1− t) ∈ R>0.

Remark 5.12

The assumption of ` being uniformly strictly convex is needed in order to establish that

α ∈K∞ in (4.43) does not depend on the time k. 3

Discussion

As indicated at the beginning of the section the optimality conditions of the reference

[17, Theorem 2.2] fit our purpose very well but are just exemplary and we conjecture

that alternative conditions can also be taken to establish strict dissipativity and thus

the turnpike property. We will point out similarities and differences of the conditions

above with those in [11]. Firstly, let us mention that an important part of [11] is that the

authors are able to establish a transversality condition. Such conditions are a valuable tool

to restrict the set of candidates of optimal solutions to the infinite-horizon optimal control

problem and, moreover, can be used in order to ensure supk∈N0
‖pk‖ < ∞ in Theorem

5.11. A comparable result does not exist in [17, Section 2.2] (but in other results in that

reference).

The assumptions that are imposed in [11,17] are in general difficult to compare. However,

the main assumption (Assumption A) in [11] can be simplified if Condition 2 in Theo-

rem 5.8 holds. Moreover, reference [11] assumes weakly overtaking optimality whereas the

theorem we used from [17] assumes overtaking optimality. The statements in the theo-

rems are strongly related: Condition (3.) in Theorem 5.8 is the same as [11, Corollary 2.3],
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and Condition (4.) is similar to the maximum condition in [11, Theorem 2.2], that reads

(adapted to our notation)

∀ k ∈ N0 :

(
− ∂`
∂u

(k, x∗(k), u∗(k)) + pTk+1

∂f

∂u
(k, x∗(k), u∗(k))

)
v ≤ 0 (5.16)

∀v ∈ TUk
(u∗(k)). The set TUk

(u∗(k)) denotes the Bouligand tangent cone of Uk (the con-

straint set for u at time k in [11]) at point u∗(k). Certainly, (5.16) is obtained under

weaker assumptions than [17, Theorem 2.2], yet it also yields a weaker statement and it

is currently an open question whether it is still sufficient to prove strict dissipativity.

To summarize, in the previous sections we have established alternative conditions for our

essential assumptions, namely the turnpike and the continuity property. Admittedly, the

question might arise what we have gained by seemingly replacing those conditions by

others. To demonstrate that the alternative conditions can be verified rigorously we will

consider two examples in the following section.

5.1.4 Examples

We revisit Example 4.18 which was already considered in Chapter 4. Before, we only

showed that the MPC closed-loop cost and the trajectories converge using numerical sim-

ulations. This time we verify that the example meets the assumptions needed for strict

dissipativity as well as the continuity and turnpike properties. The latter will also be

illustrated by numerical simulations.

Example 5.13 (Turnpike for scalar example)

Consider again the system from Example 4.18, i.e.

x(k + 1) = f(k, x(k), u(k)) = x(k) + u(k) + w(k)

with w(k) = −2 sin
(
kπ
12

)
+ ak and in which the ak are random numbers on the interval

[−1
4 ,

1
4 ]. We consider a regularized stage cost

`(k, x, u) = u2 + εx2,

for 0 < ε� 1. The regularization term εx2 renders the original cost u2, that was used in

Example 4.18, strictly convex with respect to x and u. However, numerical experiments

show, that the optimal trajectories for both the original version of ` from Example 4.18

and the regularized stage cost do not differ perceptibly for sufficiently small ε.

Recall that the system has to be operated subject to the control constraints U(k) = [−3, 3]

and the state constraints X(k) = [−1/2, 1/2] if k ∈ [24j + 12, 24(j + 1), j ∈ N0 and

X(k) = [−2, 2] if k ∈ [24j, 24j + 12). We assume that we have a perfect prediction of the

external influence w(k), which means that its values are known beforehand whenever we

optimize. Since a correct weather forecast is hardly possible for a few days, let alone on an
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infinite horizon, this may not be realistic. However, a verification of the turnpike property

allows us to apply the MPC algorithm, and so only finite horizon problems of moderate

horizon length have to be solved.

Strict dissipativity:

We will first show that the system is strictly dissipative. For this we show that Assumption

5.9 is satisfied and optimality conditions of Theorem 5.8 hold, from which we then conclude

strict dissipativity by Theorem 5.11.

Since the results were stated for unconstrained problems, we first rewrite the example above

using penalty functions b1 : N0×R→ R≥0 and b2 : N0×R→ R≥0. Then, the reformulated

stage cost is given as follows (the dynamics remain unchanged):

L(k, x, u) := `(k, x, u) + b1(k, x) + b2(k, u), (5.17)

b1(k, x) =

{
cx(|x| − 2)4 , x /∈ [−2, 2]

0 , x ∈ [−2, 2]
, k ∈ [24j, 24j + 12), j ∈ N0,

b1(k, x) =

{
cx(|x| − 1/2)4 , x /∈ [−1/2, 1/2]

0 , x ∈ [−1/2, 1/2]
, k ∈ [24j + 12, 24(j + 1)), j ∈ N0,

b2(k, u) =

{
cu(|u| − 3)4 , u /∈ [−3, 3]

0 , u ∈ [−3, 3]
, k ∈ N0,

with cx and cu ∈ R>0.

We claim, that the reformulated optimal control problem satisfies Assumption 5.9, i.e. uni-

form strict convexity. It is clear that for predictable ak the dynamics are affine for each

k ∈ N0. The Hessian of the stage cost reads

H(x,u)L(k, x, u) =

(
2ε+ d2b1

dx2 (k, x) 0

0 2 + d2b2
du2 (k, u)

)
.

It is easily seen, that d2b1
dx2 (k, x) ≥ 0 and d2b2

du2 (k, u) ≥ 0 for all k ∈ N0, x ∈ R and u ∈ R
such that we can conclude positive semidefiniteness of the matrix H(x,u)L(k, x, u) − 2εI,

in which I is the identity matrix of dimension 2. For twice continuously differentiable

functions this property is equivalent to L being strongly convex with respect to 2ε (see

e.g. [87]) for all k ∈ N0 and this implies uniform strict convexity of L with respect to

κ = 2ε and F (r) = r2.

Let us now check the assumptions of Theorem 5.8. Clearly, the continuity and differen-

tiability requirements are met. The second condition also holds because ∂f
∂x (k, x, u) = 1.

For this example it moreover holds that η0 6= 0: If η0 = 0 then Theorem 5.8 yields that

p1 6= 0. From condition (3.) applied to this example we get pk = pk+1 for all k ∈ N0. This

contradicts (4.), which in case η0 = 0 implies pk+1 = 0. It is left to show that the adjoints

pk are bounded. A formal proof appears technically involved, however, we can give evi-

dence why it is reasonable to expect bounded pk. The adjoint pk is a measure of how much
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the value of the trajectory differs from the optimal value if the trajectory value at time k

differs (slightly) from x∗(k). In our example the absence of constraints allows to steer the

trajectory to x∗(k + 1) in one step after having been disturbed at time k. Thus, the value

of the disturbed trajectory and the optimal trajectory only differ in the first term and this

difference can be estimated on bounded sets by a bound which is independent of k. This

implies boundedness of the pk and thus by Theorem 5.8 strict dissipativity for our example.

Turnpike property:

Next, we will investigate Assumption 5.1, i.e. cheap reachability, to conclude by Theorem

5.2 that the example exhibits the turnpike property on any compact set X0 ⊂ Rn. We first

show that the optimal pair (x∗, u∗) satisfies the (uniform) estimates

|x∗(k)| ≤ 4

√
81− 4ε

16cx
+ 2 (5.18)

and

|u∗(k)| ≤ 4

√
81− 4ε

16cu
+ 3. (5.19)

The idea of the proof is as follows: We compare the cost of an admissible trajectory that

is constructed such that it is constantly zero after the first time step, to the cost of the

optimal pair. If the estimates above are violated this contradicts the fact that (x∗, u∗) is

overtaking optimal. For cheap reachability we need to show that there exists E ∈ R such

that for all k ∈ N0, x ∈ X0 and N ∈ N ∪ {∞} it holds V̂N (k, x) ≤ E. To see this we

consider a control sequence ũ(·) of length N given by ũ(0) = −x + x∗(k + 1) − w(k),

ũ(j) = u∗N−1,x∗(k+1)(j − 1), j ∈ {1, . . . , N − 1}. This yields

V̂N (k, x) ≤ ˆ̀(k, x, ũ(0)) + V̂N−1(k + 1, x∗(k + 1))︸ ︷︷ ︸
≤0

≤ `(k, x, ũ(0))− `(k, x∗(k), u∗(k))︸ ︷︷ ︸
≥0

≤ εx2 + (−x+ x∗(k + 1)− w(k))2 + b1(k, x) + b2(k,−x+ x∗(k + 1)− w(k)).

Using compactness of X0, boundedness of (w(k))k∈N0, (x∗(k))k∈N0 and (u∗(k))k∈N0, the

fact that the bi can be bounded uniformly in k using (5.18), (5.19) we obtain a bound E

that does not depend on k, x and N and conclude the assertion. To summarize, this means

by Theorem 5.2 the turnpike property holds for this problem.

Continuity of the optimal value function:

Finally, we check if the continuity property is also satisfied by checking the assumptions

of Theorem 5.6. We claim, that Assumption 5.3 holds with d = 1 and arbitrary but fixed

δc > 0. Let x ∈Bδc(x
∗(k)) and y ∈Bδc(x

∗(k+ 1)) and consider δ := max{|x−x∗(k), |y−
x∗(k + 1)|}. Since no constraints are imposed in the example (after the reformulation in

(5.17)), any two points x and y in a δc-ball around the optimal trajectory at time k and

k + 1, respectively, can be connected in one step applying the control u = y − x − w(k).
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For γx(r) := r the estimate

|xu(0; k, x)− x∗(k)| = |x− x∗(k)| ≤ δ = γx(δ) (5.20)

is obviously satisfied. In addition, it holds

|u− u∗(k)| = |y − x− w(k)− u∗(k)|
≤ |y − x∗(k + 1)|+ |x∗(k)− x|+ |x∗(k + 1)− x∗(k)− w(k)− u∗(k)︸ ︷︷ ︸

=0

|

≤ 2δ,

which means that we can choose γu(r) := 2r. The stage cost L is locally Lipschitz with

constant Lc > 0 and hence

|ˆ̀(k, x, u)| = |L(k, x, u)− L(k, x∗(k), u∗(k))| ≤ Lc‖(x, u)− (x∗(k), u∗(k))‖
≤ Lcδ

√
5.

Choosing γc(r) := Lc
√

5r now yields that all requirements of Assumption 5.3 are met.

Assumption 4.29 holds on compact sets under the assumption that the pk are bounded.

This assumption is justified as explained above in the proof of strict dissipativity. In con-

junction with the previous considerations, we have thus verified all the assumptions of

Theorem 5.6 from which continuity of the optimal value function V̂N follows.

Alternatively, the continuity assumption of the optimal value functions can also be proved

directly as follows: Consider x1 := x∗(k) and the corresponding optimal control sequence

u∗N,x1
. Let x ∈Bε(x1) ∩ X(k) and construct a control sequence ũ ∈ UN by

ũ(j) :=

{
x1 − x+ u∗N,x1

(0), j = 0

u∗N,x1
(j), j = 1, . . . , N − 1.

By construction, the trajectories xũ and xu∗N,x1
coincide for all except the first time instant.

Thus, we have

V̂N (k, x)− V̂N (k, x1) ≤ JN (k, x, ũ)− JN (k, x1, u
∗
N,x1

)

= (x1 − x︸ ︷︷ ︸
=:r

+u∗N,x1
(0))2 − u∗N,x1

(0)2 = r2 + 2ru∗N,x1
(0)

≤ r2 + (6 + 2 4

√
81− 4ε

16cu
)|r| := γV (N, r),

using that u∗N,x1
(0) is uniformly bounded for all N ∈ N and fixed cu > 0, 0 < ε < 1.

Observing that γV (N, r) → 0 for r → 0 yields the desired continuity. The continuity of

V̂∞ follows similarly.
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Consequently, since both the turnpike and the continuity properties are satisfied, from

Theorem 4.16 we can conclude that the MPC closed loop cost approximates the cost of an

infinite horizon optimal trajectory.

Numerical simulations:

On top of the numerical results from Examples 4.18 and 4.41 here we present several

simulations illustrating that the system in the example has the turnpike property. For

the purpose of the simulations the trajectory of optimal operation on an infinite horizon

has been approximated by computing an optimal trajectory on a large finite horizon of

N = 100 and leaving the initial value free. In the figures this trajectory is depicted in

black. The regularization factor was chosen as ε = 10−10 and the penalty parameters as

cx = cu = 1010. Figure 5.4 depicts open-loop trajectories of the state for different horizon

lengths. As one can see the trajectories are close to the trajectory of optimal operation

most of the time. It is also visible that the finite horizon trajectories will at some point

turn away from the optimal trajectory and hit the constraints. This is due to the fact that

it is cheaper to deviate from the infinite horizon optimal trajectory than it would be to stay

close to it. Such a behavior is characteristic for the turnpike property.

In Figure 5.5 open-loop trajectories for different initial values and fixed horizon length

of N = 48 are shown. One observes that the open-loop solutions quickly converge to the

trajectory of optimal operation.

With our additional insight gained from this chapter we can also take another look at

Example 4.43 in order to investigate in more detail, why MPC does not work there.

Example 5.14 (Example 4.43 revisited)

Consider again the system from Example 4.43. It is obvious that the turnpike assumption

is violated since all finite optimal open-loop trajectories immediately leave the optimal tra-

jectory (x∗, u∗) and can never return. Thus, from Theorem 5.2 we know that dissipativity

or cheap reachability are violated. In fact, in this example neither assumption holds:

Strict dissipativity:

To see that strict dissipativity does not hold let N > 0 be arbitrary and consider the

dissipation inequality (4.43) at the initial state x = x(0) = 0 and a control u(0) 6= 0 such

that u(0) > N . The dissipation inequality then reads

λ(1, f(0, x, u)︸ ︷︷ ︸
=:x(1)

)− λ(0, x) ≤ `(0, x, u)− `(0, x∗(0), u∗(0))− α(|(x, u)|(x∗(0),u∗(0))).

Without loss of generality we can assume that λ(0, 0) = 0, otherwise λ can just be shifted

such that this holds. Substituting the values for the stage cost function yields

λ(1, x(1)) ≤ 0− 1− α(|(x, u)|(x∗(0),u∗(0)))︸ ︷︷ ︸
≥0

≤ −1.
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Figure 5.4: Numerical simulations of the trajectory of optimal operation (black line) and

open-loop trajectories of the state (dashed red lines) with different fixed initial value x0 = 0

and different horizon lengths of N .

At the next time step from the dissipation inequality we have

λ(2, f(1, x(1), u(1))︸ ︷︷ ︸
=:x(2)

)−λ(1, x(1)) ≤ `(1, x(1), u(1))−`(1, x∗(1), u∗(1))−α(|(x(1), u(1))|(x∗(1),u∗(1)))

for some arbitrary control u(1) or equivalently

λ(2, x(2)) ≤ λ(1, x(1)) + `(1, x(1), u(1))− `(1, x∗(1), u∗(1))− α(|(x(1), u(1))|(x∗(1),u∗(1))).

Because of the choice of u(0) in the initial step we have `(1, x(1), u(1)) = 0. This means
we can estimate

λ(2, x(2)) ≤ λ(1, x(1))︸ ︷︷ ︸
≤−1

+ `(1, x(1), u(1))︸ ︷︷ ︸
=0

− `(1, x∗(1), u∗(1))︸ ︷︷ ︸
=1

−α(|(x(1), u(1))|(x∗(1),u∗(1)))︸ ︷︷ ︸
≥0

≤ −2.

Proceeding in this fashion up to the time point N we obtain the bound

λ(N, x(N)) ≤ −N.

Since N was chosen as an arbitrary number this contradicts our assumption that the stor-

age function is bounded from below and thus strict dissipativity does not hold.
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Figure 5.5: Numerical simulations of the trajectory of optimal operation (black line) and

open-loop trajectories of the state (dashed red lines) with different initial values x0 and

fixed horizon length of N = 48.

Cheap reachability:

The violation of cheap reachability is also proved by contradiction: Assume cheap reacha-

bility holds, i.e. there exists E ≥ 0 such that

V̂N (k, x) ≤ E (5.21)

for all k ∈ N and x ∈ X(k). Consider N ∈ N with N > E. Then by construction the cost

of the N -step trajectory starting in the state x = N at time k = N is given by

JN (k, x, u) =
N−1∑

j=0

`(k + j, xu(j;x), u)︸ ︷︷ ︸
=2

= 2N (5.22)

which is equal to the optimal value function , i.e. it holds JN (k, x, u) = VN (k, x), since

there is only one possible control sequence. Thus, by the definition of the shifted optimal

value function it follows that

V̂N (k, x) = VN (k, x)−
N−1∑

j=0

`(k + j, x∗(k + j), u∗(k + j))︸ ︷︷ ︸
=1

= 2N −N = N > E. (5.23)

But this contradicts (5.21) and thus cheap reachability cannot hold.
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5.2 Numerical approaches

In this section, we will present numerical evidence that for the convection diffusion equa-

tion from Example 4.42 the turnpike and continuity properties are satisfied. Unfortunately,

this system which is governed by a partial differential equation (PDE) eludes an analytical

examination.

While there is a growing literature on turnpike properties of PDEs [55,56,60,61,100], none

of these results directly applies to Example 4.42. The proofs of turnpike properties are

based on a combination of optimality conditions of the static (for the equilibrium) and

dynamic (for the open-loop trajectories) optimal control problems. Most of the results

are limited to linear dynamics and time-invariant problems, with the exception of [56]

where time-varying operators are possible. The two main reasons why the approaches are

unsuitable for the problem at hand are that they only treat steady-state turnpikes (except

for [100] where also periodic turnpikes are possible) and that state constraints are not

considered.

Still, in order to illustrate that turnpike and continuity properties are meaningful assump-

tions that can be expected to hold for practical systems we want to find numerical evidence

of these properties. This will be the aim of the second part of this chapter and helps ex-

plaining why MPC works for the system from Example 4.42.

For convenience, we write down the system once more:

∂y

∂t
− α∇2y + w∇y = 0 on Q := Ω× [0,∞),

y(0) = y0 on Ω,
(5.24)

with boundary conditions

∂y

∂n
+ γouty = δoutyout on Σout := Γout × [0,∞),

∂y

∂n
+ γcy = δcu on Σc := Γc × [0,∞).

(5.25)

Recall that we want to compute an approximate solution to the infinite horizon optimal

control problem

min
y,u,w

J(y, u, w) =
1

2
‖u‖2L2(Σc) +

1

2
‖w‖2L2(Q) (5.26)

subject to equations (5.24), (5.25) and the constraints

u ≤ u ≤ u on Σc, (5.27)

y ≤ y ≤ y on Ω× [0,∞), (5.28)

with lower and upper bounds for state and control where Ωy ⊆ Ω is a subdomain.

As domain we consider again the unit interval, i.e. Ω = [0, 1], and as subdomain Ωy = [1
4 ,

3
4 ].
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Control and state constraints are chosen as u = −u = 1
4 ,

y(x, t) = −y(x, t) =

{
3
20 , for x ∈ Ωy,

10, for x ∈ Ω \ Ωy.

Further parameters are α = 1, γout = δout = 106, γc = 0 and δc = 10. For yout we choose

the periodic function yout(t) = 3
10 sin(10t).

The problem is discretized and the resulting finite dimensional optimization problems are

solved as described in Chapter 3.

5.2.1 Approximate computation of an optimal operation trajectory

To check Assumptions 4.10 and 4.12, it is first necessary to compute an optimal operation

trajectory pair (x∗, u∗) from Definition 4.5, called (y∗, u∗) in the notation of this section.

To the best of our knowledge this cannot be done analytically. Computing it numerically

is also impossible since this would involve solving an optimal control problem on an infinite

horizon. Instead we compute a surrogate by choosing a large (but finite) L and solve a

single open-loop problem where the initial value y0 is left as a free variable. We denote

this approximation by (ỹ∗L, ũ
∗
L).

Numerical evidence suggests that for decreasing sampling rate h→ 0 the initial state of the

optimal operation trajectory y∗ is not a regular function in space but rather a distribution

(see Figure 5.6). This implies that the initial value of the computed approximation ỹ∗L(0)

may not be close to the initial value of the optimal operation trajectory y∗(0). In practice

this is not an issue because the smoothing property of the convection diffusion equation

causes solutions to be sufficiently regular for each t > 0. In fact it can be observed

in simulations that for decreasing sampling rate h the approximate optimal operation

trajectories quickly converge to what we presume is the true optimal operation trajectory

if the time horizon is sufficiently large (see Figure 5.7). Moreover, for fixed sampling rate

h and varying L the initial pieces of open-loop solutions ỹ∗L are close which also suggests

convergence to the optimal operation trajectory y∗ (see Figure 5.8).

For these reasons it seems justified to choose the sampling rate h = 10−2 and the horizon

of L = 500 to obtain an approximation of the optimal operation trajectory (y∗, u∗) for the

purpose of the following simulations.

5.2.2 Verifying the turnpike property

In order to demonstrate that the turnpike property from Assumption 4.10 holds we check

if solutions yu∗N of the open-loop problem

minimize
u∈UN (k,y0)

JN (k, y0, u) (5.29)

starting from some initial state y0 ∈ L2(Ω) are most of the time in a neighborhood of the

optimal operation trajectory y∗. For our purposes the optimal trajectory is replaced by ỹ∗L.
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Figure 5.6: Initial state ỹ∗L(0) of the numerically computed optimal operation trajectories

for decreasing sampling rate h. The results indicate a lack of regularity of the initial state

of the optimal operation trajectory as a function in space.

The assumption also demands that as the horizon increases the size of the neighborhood

shrinks, i.e. the open-loop solutions get closer to the optimal operation trajectory. It

should be noted that numerically we can only verify the finite horizon turnpike property

in this way since for the infinite horizon turnpike we would need access to solutions of the

problem on the infinite horizon.

In order to avoid the issue of the lacking regularity of the initial state y∗(0) (cf. Section

5.2.1) we pick as initial time t0 = 0.4 for the computation of open-loop trajectories yu∗N .

We set the initial state y0 ≡ 0 and vary the horizon length N . Figure 5.9a shows that the

open-loop trajectories yu∗N approach the optimal operation trajectory ỹ∗L. The trajectories

exhibit an approaching and a leaving arc, which is typical for the turnpike property. It

can also be observed that for longer horizons the distance to the turnpike is smaller.

Next, we fix a horizon of N = 100 and investigate how the open-loop trajectories for

different initial values look like. Figure 5.9b shows the distance between the turnpike

yu∗N and open-loop trajectories starting from constant (in space) initial states y(x, t0) ≡
−0.15+0.05i, i = {0, . . . , 6}. The results presented are exemplary and similar behavior also

occurs at other initial values and initial times. The plots demonstrate that all trajectories

approach the same optimal operation trajectory.

Finally, Figure 5.10 shows the intermediate open-loop trajectories for an MPC closed-loop
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Figure 5.7: L2 norms of the approximate optimal operation trajectories ỹ∗L for different

sampling rates h over a fixed time horizon of T = 1.0.
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Figure 5.8: L2 norms of the approximate optimal operation trajectories ỹ∗L with fixed

sampling rate h = 10−2 and different horizon lengths L.
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simulation up to time k = 50 for two different MPC horizons. Again, it can be seen that

the open-loop trajectories approach the turnpike and after a while turn away. Since the

MPC closed-loop implements only the very first control of each open-loop it is not affected

by the ”leaving arc” (at least for sufficiently large horizon).
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(a) L2 distance between the optimal operation trajectory ỹ∗L and open-loop trajectories yu∗N of the

MPC algorithm starting at time t0 = 0.4 and initial state y0 ≡ 0 for different horizon lengths N .
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ỹ
∗ L(
t)
‖ L

2
(Ω

)

y0 = 0.05

y0 = 0.10

y0 = 0.15

y0 = 0.00

y0 = −0.05

y0 = −0.10

y0 = −0.15

(b) L2 distance between the optimal operation trajectory ỹ∗L and open-loop trajectories yu∗N of the
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Figure 5.9: Simulations showing that the turnpike property holds.
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Figure 5.10: Successive open-loop predictions exhibiting turnpike convergence (dashed

black lines) together with closed-loop (solid red line).
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5.2.3 Verifying the continuity property

In order to verify the continuity property from Assumption 4.12 we need to check that the

optimal value function for an initial state on the optimal operation trajectory does not

change too much when we disturb this initial state. We note that state constraints are

active in the solutions, thus we cannot conclude continuity of the optimal value function

simply from the continuity of the stage cost and dynamics. As in the previous section, we

can only check the continuity assumption of the finite horizon problem numerically.

Formally, for each time point k and optimal state y∗(k) we consider the quantity

δk(N, ε) := |V̂N (k, y∗(k))− V̂N (k, yε)| (5.30)

for different horizon lengths N and disturbed states yε ∈ Bε(y
∗(k)). Since the shifted

optimal value function for finite horizons satisfies

V̂N (k, y) = VN (k, y)−
N−1∑

j=0

`(k + j, y∗(k + j), u∗(k + j)) (5.31)

it holds that

δk(N, ε) = |V̂N (k, y∗(k))− V̂N (k, yε)|
= |VN (k, y∗(k))− VN (k, yε)|.

(5.32)

where VN is the optimal value function of problem (5.29) given by

VN (k, y) := inf
u∈UN (k,y)

JN (k, y, u). (5.33)

As it turns out, in this example an alternative stronger continuity condition for the condi-

tion from Assumption 4.12 is valid, at least numerically: inequality (4.13) can be replaced

by

|V̂N (k, y)− V̂N (k, y∗(k))| ≤ ϕV (|y|y∗(k)) (5.34)

with a function ϕV ∈ K∞. This means the function δk from (5.30) can be bounded by

a K∞ function that is independent of N . To check this numerically we fix a time point

t = kh and consider the state ỹ∗L(t) on the optimal operation trajectory at that time

point. Then, for decreasing εi := ε0
1
2i

, i ∈ {0, · · · , n}, we generate a number of random

disturbances yjεi , j ∈ {1, . . . ,m} of the optimal state such that εi = ‖yjεi− ỹ∗L(t)‖L2(Ω). For

each of the initial conditions yjεi generated in this way we solve the optimal control problem

(5.29) for different horizon lengths N ∈ {N1, . . . , Nl}. Thus we obtain samples of optimal

value functions VN for varying N in a neighborhood of the optimal operation trajectory.

Out of all samples we choose the ones with maximum deviation from the optimal value

function at the optimal operation trajectory, i.e.

δ̃k(N, ε) := max
j
|VN (k, ỹ∗L(t))− VN (k, yjεi)|. (5.35)
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For a sufficiently large number of samples this gives a good approximation of δk in a

neighborhood of the optimal operation trajectory. Finally, we remark that of course we

would have to check the conditions on δk for all time instances k. Because the optimal

operation trajectory of the example exhibits periodic behavior (cf. Figure 5.8) we could

restrict ourselves to checking one period.

In the following we show exemplary results for a single time point k = 50 corresponding

to the time t = 0.5. The chosen results are representative for all time points. The

parameters from the above discussion were chosen as ε0 = 10−2, n = 5, m = 10, Ni = 10i,

i ∈ {1, . . . , 10}.
Figure 5.11 shows the computed function δ̃k as a function in its first and second component.

The top figure 5.11a shows that δ̃k(N, ε) is indeed bounded in N and thus it is possible

to find a modulus of continuity ϕV that satisfies the required assumptions. Similarly, the

bottom figure 5.11b demonstrates that the required upper bound for δ̃k(N, ·) exists and

satisfies the monotonicity assumptions. Thus we can conclude that, at least according to

our numerical evidence, the continuity property holds for this example.

5.2.4 Discussion of the numerical approach

The numerical approach presented in this section is not restricted to the specific PDE we

considered but can in principle be extended to other types of systems. It offers a possibility

to directly verify the occurrence of turnpike and continuity properties, especially when

alternative conditions like dissipativity are out of reach.

The only requirement is that the solution of open-loop optimal control problems can

be computed. At the same time, this is probably the biggest disadvantage: Checking

the assumptions numerically involves solving optimal control problems for a variety of

parameters (horizon length, initial values and initial time). Although these problems are

independent and the process can be (and has been) carried out in parallel it is still a

computationally intensive task.

Moreover, we are limited to investigate problems for which the open-loop solutions can be

solved within a reasonable amount of time. In practice, we can only verify the assumptions

for small horizons (up to N ≈ 200) because the solution of the optimal control problems

for larger horizons takes prohibitively long. However, if we are only interested in checking

the presence of the assumptions in order to justify the application of MPC, the method is

still helpful since MPC typically only uses relatively small horizons anyway.

Finally, it should be remarked that this does not constitute a formal proof and in particular,

we can neither explicitly identify the set Q(k, x, P,N) and the bound σ ∈ L for the

distance to the turnpike from Definition 4.9 nor the modulus of continuity ϕV from the

continuity property. Nonetheless, the numerical results strongly indicate that the turnpike

and continuity properties are satisfied for the example. This gives us confidence that they

are the ’right’ type of assumptions, which we presume to hold for a large class of systems.
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operation trajectory ỹ∗L and the optimal value function at the disturbed states yε as a function in

the horizon length N and for different magnitude of the disturbance ε. It can be observed that for

each ε the function is bounded by a constant for increasing N .

0.000 0.002 0.004 0.006 0.008 0.010

ε

0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

δ̃ 5
0(
N
,ε

)

N = 10

N = 30

N = 50

N = 70

N = 90

(b) Difference between the optimal value function VN at an initial value on the optimal operation

trajectory ỹ∗L and the optimal value function at the disturbed states yε as a function in the magni-

tude of the disturbance ε for a selection different horizon lengths N . Obviously, the function can

be upper bounded by a K∞ function.

Figure 5.11: Simulation results that show that the continuity property holds.
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In this chapter, we will develop error estimates which allow to monitor the quality of

the resulting MPC closed-loop solution at run time. We base our investigations on online

performance estimation of tracking type MPC controllers, which have been studied in [58].

In order to verify that the tracking works as expected, one can consider the MPC closed-

loop cost because for tracking type cost functionals it corresponds to the tracking error.

Using suboptimality estimates along the MPC trajectory, an a posteriori error estimator

for the MPC performance can be derived. This estimator relates the MPC performance

to the cost of an optimal trajectory on an infinite horizon which indicates how the MPC

for a given horizon performs compared to the longest possible (i.e. infinite) horizon.

Performance estimates can be exploited in various algorithmic ways, for example, to reduce

the length of the MPC horizon as in [91]. Moreover, as shown in other research [5], not only

can these estimates be used as a measure for the error resulting from the truncation of the

optimization horizon, but also to quantify the errors caused by numerical approximation

and model reduction.

So far, this theory is available only for stabilizing MPC but not for economic MPC or MPC

with tracking type functionals for which perfect tracking is not possible, either because

the system is not controllable to the desired reference or because exact tracking causes

persistent nonzero control costs. In these situations, the error estimator from [58] does

not work. The reason for this is the lack of sign definiteness of the stage cost in economic

MPC, rendering the relative suboptimality indices α used in stabilizing MPC unsuitable.

Still, a performance estimate that also works for economic MPC is highly desirable, for

example in order to tune its parameters or to gain some insight into what the controller

is doing. We will see that an appropriate absolute definition of such indices provides a

remedy. The estimates compare the cost of the solution produced by the MPC to the

cost of a partially optimal trajectory. This gives a criterion that shows if the controller is

performing as desired. As in the stabilizing case, the estimate can also be used to decide if

adjustments to the parameters used in the MPC implementations have to be made, e.g. by

changing the length of the MPC horizon or other discretization parameters.

This chapter is based on the publication [47].

113
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6.1 Setting

Unlike in the previous chapters, we limit our investigations to time-invariant systems as

introduced in Chapter 2, i.e. we consider systems

x(k + 1) = f(x(k), u(k)),

x(0) = x0

(6.1)

with stage cost function ` : X × U → R.

The optimal operating cost of the system will enter as a key ingredient in the formulation

of the proposed absolute error indices. As seen in the previous chapters, for time-variant

systems the optimal operating behavior can be quite complex and, in particular, the cost

of the optimal trajectory is generally unknown. While in principle it would be possible to

extend our approach to more general regimes of optimal operation, for ease of presentation

we will assume that the optimal operation happens at an equilibrium whose cost is readily

computed.

Assumption 6.1

The system (6.1) with stage cost function ` exhibits an optimal equilibrium (x∗e, u
∗
e) as

introduced in Definition 2.7.

Recall that we use the notation

ˆ̀(x, u) = `(x, u)− `(x∗e, u∗e) (6.2)

for the shifted stage cost.

6.2 Relative performance index

We will first revisit a relative performance index initially proposed in [58] and explain why

it does not deliver a meaningful estimate of the MPC performance for cases other than

stabilizing MPC. This performance index has been derived for nonnegative stage cost,

i.e. it is assumed that `(x, u) ≥ 0 for all (x, u) ∈ X × U . The performance index is based

on the Theorem 2.6. The central result of this theorem is that we can obtain a bound of

the infinite horizon closed-loop performance from the inequality

Jcl∞(x, µN ) ≤ 1

α
VN (x). (6.3)

In order to use this for evaluating the performance of the MPC closed-loop we have to

check if α ∈ (0, 1] can be found such that

VN (x(k)) ≥ α`(x(k), µN (x(k))) + VN (f(x(k), µN (x(k)))) (6.4)
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holds for each k ∈ N0. The closer α is to 1 the better the performance of the MPC

controller will be. In practice, we compute the performance index by

α(k) :=
VN (x(k))− VN (f(x(k), µN (x(k)))

`(x(k), µN (x(k)))
(6.5)

for all times k ∈ N0. This can be accomplished online, however, the performance index

for time step k becomes available only after the open-loop problem at time step k+ 1 has

been solved. In that sense, we obtain an a posteriori estimator.

The relative performance index was originally designed with stabilizing MPC controllers

in mind, where the stage cost is positive definite w.r.t. the stabilized equilibrium, i.e. it

holds that

`(xe, ue) = 0 and `(x, u) > 0 for all x ∈ X,u ∈ U with x 6= xe. (6.6)

In a more general setting where this assumption is violated, we have `(xe, ue) 6= 0. As

a consequence, for any MPC trajectory that converges to the optimal equilibrium the

performance index satisfies α(k) → 0 as k → ∞ since the numerator in (6.5) approaches

zero while the denominator approaches some positive number. This means the relative

performance estimate does not give a meaningful value of the true performance.

A remedy could be to work with the shifted stage cost ˆ̀ instead, i.e., to consider the

modified relaxed dynamic programming inequality

αˆ̀(x(k), µN (x(k))) ≤ V̂N (x(k))− V̂N (f(x(k), µN (x(k))))

= VN (x(k))− VN (f(x(k), µN (x(k)))).
(6.7)

Then by summing up, we can estimate

α
K−1∑

j=0

ˆ̀(x(j), µN (x(j)))

︸ ︷︷ ︸
=:Ĵcl

K(x,µN )

≤
K−1∑

j=0

VN (x(j))− VN (x(j + 1))

=VN (x(0))− VN (x(K)).

(6.8)

Since ` is nonnegative, we can further estimate

VN (x(0))− VN (x(K)) ≤ VN (x(0)) (6.9)

which implies that

ĴclK(x, µN ) ≤ 1

α
VN (x(0)). (6.10)

Alternatively, it also holds that

VN (x(0)) ≤ VK(x(0)) (6.11)
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for K ≥ N , yielding the estimate

ĴclK(x, µN ) ≤ 1

α
VK(x(0)). (6.12)

This upper bound for the closed-loop cost is useful only if `(x∗e, u
∗
e) is close to zero (and

thus ĴclK(x, µN ) ≈ JclK(x, µN )). In the general case the estimate will be too conservative.

6.3 Absolute performance index

Since the relative performance index is of limited use if the stage cost is not positive

definite, we propose an absolute performance index that overcomes these limitations.

Theorem 6.2 (Absolute performance index)

Consider the dynamical system (6.1) with general stage cost ` : X ×U → R. Let Assump-

tion 6.1 hold and consider the MPC feedback µN . For P in {0, . . . , N − 1} and K ≥ N

define the quantities

ε1
N (k) := VN (x(k))− VN (x(k + 1))− ˆ̀(x(k), µN (x(k))), (6.13a)

ε2
N,P (K) := VN−P (xu∗N,x

(P, x))− VN−P (xu∗
N,x(K)

(P, x(K))), (6.13b)

ε3
N,P (K) := P`(x∗e, u

∗
e)− JP (x(K), u∗N,x(K)) (6.13c)

and let

EN,P (K) :=
K−1∑

k=0

ε1
N (k)− ε3

N,P (K)− ε2
N,P (K). (6.14)

Then the equation

EN,P (K) = JP (x, u∗N,x) + (K − P )`(x∗e, u
∗
e)− JclK(x, µN ) (6.15)

holds.

Proof. Summing up (6.13a) along the MPC closed-loop trajectory yields

K−1∑

k=0

ε1
N (k) =

K−1∑

k=0

[VN (x(k))− VN (x(k + 1)) + `(x∗e, u
∗
e)− `(x(k), µN (x(k)))]

= VN (x)− VN (x(K)) +K`(x∗e, u
∗
e)−

K−1∑

k=0

`(x(k), µN (x(k)))

︸ ︷︷ ︸
=Jcl

K(x,µN )

(6.16)

or equivalently

VN (x)− VN (x(K)) = JclK(x, µN )−K`(x∗e, u∗e) +

K−1∑

k=0

ε1
N (k). (6.17)
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By the dynamic programming principle, for any P ∈ {0, . . . , N − 1} we can rewrite the

terms on the left-hand side as

VN (x) = JP (x, u∗N,x) + VN−P (xu∗N,x
(P, x)) (6.18)

and

VN (x(K)) = JP (x(K), u∗N,x(K)) + VN−P (xu∗
N,x(K)

(P, x(K))). (6.19)

Now consider

VN (x)− VN (x(K)) = JP (x, u∗N,x)− JP (x(K), u∗N,x(K)) + VN−P (xu∗N,x
(P, x))

− VN−P (xu∗
N,x(K)

(P, x(K)))

= JP (x, u∗N,x)− P`(x∗e, u∗e)
+ VN−P (xu∗N,x

(P, x))− VN−P (xu∗
N,x(K)

(P, x(K)))
︸ ︷︷ ︸

=ε2N,P (K)

+ P`(x∗e, u
∗
e)− JP (x(K), u∗N,x(K))︸ ︷︷ ︸

=ε3N,P (K)

.

(6.20)

Combining (6.17) and (6.20) yields

JP (x, u∗N,x)− P`(x∗e, u∗e) + ε3
N,P (K) + ε2

N,P (K) = JclK(x, µN )−K`(x∗e, u∗e) +
K−1∑

k=0

ε1
N (k)

and by reordering we obtain

JP (x, u∗N,x) + (K − P )`(x∗e, u
∗
e)− JclK(x, µN ) =

K−1∑

k=0

ε1
N (k)− ε3

N,P (K)− ε2
N,P (K)

= EN,P (K).

This concludes the proof.

Theorem 6.2 states that the quantity EN,P (K) measures the difference between the MPC

closed-loop cost for K steps and the cost of a trajectory that consists for the first P steps

of a finite horizon open-loop and after that of the cost of the optimal equilibrium. The

quantities ε1
N , ε2

N,P and ε3
N,P that compose the error estimate can all be computed online

(assuming that the cost of the optimal equilibrium `(x∗e, u
∗
e) is known).

Remark 6.3

It should be noted that EN,P (K) could also be determined by just computing the right-

hand side of equation (6.15) directly. However, the error estimate EN,P (K) offers the

advantages that the step-by-step data provides more detailed information about the error.

It could be that the individual error estimates are large, but partially cancel out each other

and then deliver a small error after P steps. This would mean, however, that MPC only

provides a good solution ”by chance”, which one would not recognize without the error

estimator. 3
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6.3.1 Interpretation of the absolute performance index

In this section, we give a more in-depth insight into what the individual terms of perfor-

mance index from Theorem 6.2 tell us about the quality of the MPC closed-loop solution.

The following analysis is based on Assumption 2.8 (turnpike property) and Assumption 2.9

(continuity property), which we already introduced in Chapter 2. Under these assumptions

the following lemma can be proved.

Lemma 6.4 (cf. Lemma 8.26 in [50])

Let Assumption 2.8 and Assumption 2.9 hold. Then the equation

VN (x) = VN−1(x) + `(x∗e, u
∗
e) +R2(x,N) (6.21)

holds with |R2(x,N)| ≤ ν2(‖x−x∗e‖, N) = 2γV (σδ(bN/2c)) + 2ω(bN/2c− 1) for all x ∈ X,

all N ∈ N with γV , ω from Assumption 2.9 and σδ from [50, Proposition 8.15] with

δ = γV (‖x− x∗e‖) + ω(N − 1).

The above lemma explains the first error term ε1
N in equation (6.13): consider the fol-

lowing relation for the MPC closed-loop cost, which directly follows from the dynamic

programming principle.

VN (x(k)) = `(x(k), µN (x(k))) + VN−1(x(k + 1)). (6.22)

Applying Lemma 6.4 to this equation yields

VN (x(k)) = `(x(k), µN (x(k))) + VN (x(k + 1))− `(x∗e, u∗e)−R2(x(k), N). (6.23)

By rearranging the previous equation to

−R2(x(k), N) = VN (x(k))−VN (x(k+1))+`(x∗e, u
∗
e)−`(x(k), µN (x(k))) = ε1

N (k), (6.24)

we immediately see that ε1
N corresponds exactly to the error term from Lemma 6.4. This

means we can interpret ε1
N as a measure for the improvement that an optimal trajectory

with horizon length N offers compared to a shorter trajectory with length N − 1 that is

augmented with the cost of one step on the optimal equilibrium. Moreover, the bound

|ε1
N (k)| = |R2(x(k), N)| ≤ 2γV (σδ(bN/2c)) + 2ω(bN/2c − 1) tells us that the magnitude

of the error will decrease as the horizon is increased.

The other error terms can be interpreted as follows: ε2
N,P (K) measures the difference be-

tween the final piece of optimal trajectories starting in x and x(K), respectively, cf. Figure

6.1. If Assumption 2.8 is satisfied and we choose P such that the final pieces of the optimal

trajectories start near the turnpike, this means the performance index ε2
N,P measures the

difference of the so-called leaving arcs. This can be used as an indicator of how much the

leaving cost has improved between the first and current step of the MPC algorithm. In

other words, it is a measure of how much progress towards the optimal equilibrium the

closed-loop has made until now.
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Figure 6.1: Illustration of the quantities used for the computation of the performance

indices ε2
N,P (K) (in blue) and ε3

N,P (K) (in red).

In contrast, the error term ε3
N,P (K) measures the difference between the initial piece of the

optimal trajectory starting in x(K) and the cost of the optimal equilibrium for P steps.

This is motivated by an observation from Lemma 6.3 in [43], which states that an optimal

trajectory originating near the optimal equilibrium will stay near the optimal equilibrium

for some time because this is the cheapest option. A ”good” MPC controller will drive

the state x(K) to a neighborhood of the optimal equilibrium. If this is not the case it can

be detected by performance index ε3
N,P which will yield a larger error.

We now investigate the influence of P on the performance estimate. Figure 6.2 shows

different choices of P for an MPC horizon N that has been chosen sufficiently large such

that the open-loop trajectory is very close to the optimal equilibrium x∗e. If we chose P

too small, e.g. P = P1 in the topmost figure, then we will compare the MPC closed-loop

(shown in green) trajectory to a trajectory (shown in blue) that first follows the open-loop

for P steps and then suddenly jumps to the optimal equilibrium, thus making it an unfair

comparison. The quantity EN,P (K) will reflect this by attaining a large negative value.

Similarly, if P is too large, e.g. P = P3 in the bottom figure, the trajectory we compare

against will include part of the leaving arc of the open-loop, which also results in a large

negative value. Ideally, P is chosen such that the open-loop state at time P is very close

to the turnpike, so somewhere near P2 which is shown in the middle figure. This choice

would lead to a small absolute value of |EN,P (K)| ≈ 0 which is desirable since it implies

”good” closed-loop performance according to (6.15).

We conjecture that a safe choice for P is in the middle of the horizon. In fact, for continuous

time systems there exist estimates for the distance of open-loop solutions to the turnpike

which are of the form

||xu∗T,x
(t, x)− x∗e|| ≤ C1(e−C2t + e−C2(T−t)) (6.25)



120 Chapter 6. Online MPC performance estimates

k0

x

K

Jcl
K(x, µN )

P1 N

JP1(x, u
∗
N,x)

(K − P1)`(x
∗
e, u

∗
e)

xu∗
N,x

k0

x

K

Jcl
K(x, µN )

P2 N

JP2
(x, u∗N,x)

(K − P2)`(x
∗
e, u

∗
e)

xu∗
N,x

k0

x

K

Jcl
K(x, µN )

P3 N

JP3
(x, u∗N,x)

(K − P3)`(x
∗
e, u

∗
e)

xu∗
N,x

Figure 6.2: Illustration of how the choice of P influences the quantity EN,P .

with constants C1, C2, cf. [101, Theorem 1]. Consequently, the tightest bound from these

estimates is obtained for t = T
2 . Although this does not exclude that there are time

instances where the trajectory is closer to the turnpike, choosing P ≈ N
2 should yield

enough information to capture the improvement of both the leaving arcs described by

ε2
N,P and the proximity to the optimal equilibrium from ε3

N,P .



6.4 Numerical example 121

6.3.2 Possible improvements of the performance index

While in the setting of economic MPC the absolute performance index is more useful than

the relative one, there is still room for improvement. Ideally, we would have an estimate

that relates the MPC closed-loop cost to the cost of an infinite horizon optimal trajectory

as it was for the relative performance estimate (cf. Theorem 2.6).

For this the following two options could be considered:

1. The first idea is to apply the following lemma from [44], which states that values of

initial pieces of finite and infinite horizon trajectories are approximately the same.

Lemma 6.5 (cf. [44, Lemma 4.3])

Let Assumption 2.8 and Assumption 2.9 hold. Then the equation

JK(x, u∗∞) = JK(x, u∗N ) +R3(x,K,N) (6.26)

holds with |R3(x,K,N)| ≤ η(ρ(P )) + η(σ(P )) + 2ω(N −K) for all sufficiently large

P ∈ N, all x ∈ X and all K ∈ {0, . . . , N} \ (Q(x, P,N) ∪Q(x, P,∞)).

This lemma allows us to replace the finite horizon optimal control sequence u∗N,x by

the infinite horizon control sequence u∗∞,x. Consequently, (6.15) becomes

JP (x, u∗∞,x) + (K − P )`(x∗e, u
∗
e)− JclK(x, µN ) = EN,P (K) +R3(x, P,N). (6.27)

The transition from u∗N to u∗∞ introduces an additional unknown error R3(x, P,N),

i.e. now EN,P (K) does not exactly describe the difference but is only an approx-

imation. The quality of the approximation depends on both the choice of P and

N which is inconvenient if the estimate should be used for tuning the horizon. For

large P the error estimate EN,P (K) also contains the cost of the leaving arc while

JP (x, u∗∞,x) does not.

2. Alternatively, one could directly consider the difference

JK(x, u∗∞,x)− JclK(x, µN ) (6.28)

and try to derive an error estimate for this quantity. This would be the most powerful

tool for rating the MPC performance. Unfortunately, a direct extension of the ideas

in the previous section seems out of reach.

6.4 Numerical example

In this section, we will present a numerical example to demonstrate the capabilities of the

online performance estimators. To this end, we consider a convection-diffusion equation

with boundary control. Note that in the following the state variable will be indicated by
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(a) Domain Ω and boundaries the Γ =

Γout∪Γc as well as inlets (green) and out-

lets (blue) used in the computation of the

velocity field.

(b) Velocity field v(x) used in equation (6.29) which

is computed by the solution of Navier-stokes equations

(6.30).

Figure 6.3: Illustration of the domain and velocity field.

the letter y, due to the fact that the letter x is used to represent the spatial coordinates

in R2.

We consider the state equation

yt(t,x)−∆y(t,x) + v(x) · ∇y(t,x) = 0, a.e. in [0,+∞)× Ω,

∂y

∂n
(t, s) + y(t, s) =

4∑
i=1
ui(t)bi(s), a.e. on [0,+∞)× Γc,

∂y

∂n
(t, s) + 5000y(t, s) = 5000yout, a.e. on [0,+∞)× Γout,

y(0,x) = y◦(x), a.e. in Ω,

(6.29)

where Ω := [0, 5] × [0, 5] ⊂ R2 is a bounded set with Lipschitz-continuous boundary

Γ = Γc ∪ Γout, with Γc ∩ Γout = ∅. This setting represents a squared room Ω, where

four controls ui, i = {1, . . . , 4}, are placed on the boundary Γc with the following shape

functions

b1(x) =

{
1 if x ∈ {0} × [0.0, 1.0],

0 otherwise,
b2(x) =

{
1 if x ∈ [1.0, 2.0]× {1},
0 otherwise,

b3(x) =

{
1 if x ∈ {1} × [3.0, 4.0],

0 otherwise,
b4(x) =

{
1 if x ∈ [2.0, 3.0]× {0},
0 otherwise.

as shown in Figure 6.3a. On the boundary Γout the exchange of heat between the outside

and the inside of the room is parametrized through Robin boundary conditions for a

constant outside temperature of yout = 18.0. The initial state is chosen as y◦(x) :=

15 + sin(2πx1) cos(2πx2).
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The (time-invariant) convection field v(x) shown in Figure 6.3a is a stationary velocity

field. It is generated by a forward solution of the incompressible Navier-Stokes equation

vt + (v · ∇)v − ν∆v = −∇p in [0, 6)× Ω,

∇ · v = 0 in [0, 6)× Ω,

p = 0 in [0, 6)× Γoutlet = {x1 = 5.0, x2 ∈ [4, 5]}
v = ṽ in [0, 6)× Γinlet = {x1 = 0.0, x2 ∈ [0, 1]}
v = 0 in Γ \ (Γoutlet ∪ Γinlet)

v(0) = 0 in Ω

(6.30)

up to the time t = 6.0 and setting v(x) := v(5.0,x). In (6.30), p is the pressure of the air

in the room, ν = 0.01 is the kinematic viscosity and

ṽ(t,x) = (4.5(4.0x2(1− x2)), 0.0).

In this scenario, we have an inflow ṽ(t,x) on the bottom left side of Ω, which is constant

in time and has maximum magnitude of 4.5, and an outflow on the top right part of

the domain. The numerical solution of the Navier-Stokes equation is described in detail

in [9, Chapter 3].

After discretization of the state equation (6.29), we define the stage cost

`(yu(k; y◦), u(k)) :=
1

2

4∑

i=1

∆t |ui(k)|2 +
100

2
∆t‖yu(k; y◦)− yQ(k)‖2H1(Ω)

with yQ(k) = 18.0 for all k ∈ N, where ∆t = 0.05 is the time discretization step. The

setting can be described as reaching a constant temperature distribution (i.e. tracking the

target state yQ) while spending as little energy (i.e. control effort u) as possible. The

discretization and the subsequent numerical solution of the optimal control problems is

carried out as described in Chapter 3. The desired temperature distribution yQ can only

be maintained if the control is constantly kept at a non-zero value, which implies positive

cost even in the optimal equilibrium of the system. As discussed in Section 6.2, this indi-

cates that the relative performance index will not work correctly. In the following, we will

confirm this by numerical simulations and also demonstrate that the absolute performance

estimate achieves superior results.

Results
We present simulations of the MPC algorithm applied to the optimal control problem

above. Figure 6.4 shows the closed-loop cost of the MPC (top) and the relative error

estimate α (bottom) that was discussed in Section 6.2. It can be observed that the closed-

loop cost at time k = 400 in Figure 6.4a still improves if we increase the MPC horizon

N but this is not reflected by the performance index depicted in Figure 6.4b, which for
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all horizon lengths quickly decays to zero. These observations confirm our claim that the

relative performance index is not helpful in this setting.

The absolute performance indices shown in Figures 6.5 and 6.6, on the other hand, clearly

demonstrate that the performance improves when the MPC horizon is increased. Figure

6.5a shows the sum of the performance indices ε1
N up to time K. Recall that the individual

values ε1
N (k) correspond to the improvement a larger horizon offers over a smaller horizon.

Accordingly, the sum measures the accumulated improvement of the performance that

would be gained by increasing the horizon.

In Figure 6.5b the quantity ε2
N,P (k) for a fixed P = 30 is depicted. As stated in Section

6.3.1 this can be interpreted as the improvement of the leaving arc of the MPC open-

loop trajectories compared to the very first leaving arc. Up to a horizon of N = 120 a

huge improvement is visible, while for even longer horizon it seems to saturate. This is in

accordance with the observations in Figure 6.4a.

Next, in Figure 6.6a we show the performance index ε3
N,P (k), again for P = 30, whose

absolute value can be interpreted as a measure of the proximity of the initial part of

the MPC open-loop to the optimal equilibrium. Again, we see that for sufficiently long

horizons (N ≥ 120) we arrive in close proximity to the optimal equilibrium. Moreover, as

the simulation time continues to increase, Figure 6.7a shows that the error estimate can

still effectively distinguish the convergence for different horizon lengths.

Finally, the last plot in Figure 6.6 shows the quantity EN,P (K) which is composed of the

other error estimates in Figure 6.5a, 6.5b and 6.6a. According to Theorem 6.2, this tells

us how the MPC closed-loop performance compares to the performance of a composite

trajectory consisting by parts of the very first open-loop and of the optimal equilibrium.

We can see from the plot that for sufficiently long simulation time EN,P settles at some

value and as the MPC horizon N increases we also observe convergence. Ideally, we

would see a convergence to zero, but this can in general not be expected if the P has not

been chosen in the right way (cf. the discussion to Figure 6.2). In fact the value of the

performance index EN,P is heavily influenced by the choice of P as seen in Figure 6.7b.

The figure also shows that for every horizon N choosing a P that is somewhere in the

middle of the horizon seems to offer the best results, because then the absolute value of

EN,P nicely captures the turnpike behavior of the initial open-loop we compare against.

This observation is subject to further investigation.
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Figure 6.4: MPC closed-loop cost and relative performance index
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Figure 6.5: Plots of the individual components of the absolute performance index.
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To conclude the thesis, we outline some possibilities for future research.

Transient optimality

In Chapter 4, we have seen that the results for the performance and stability of the closed-

loop for time-invariant economic MPC can be extended to time-varying systems. This tells

us two things: first, the infinite horizon performance of the controller is near-optimal, and

second, the MPC closed-loop will converge to a neighborhood of the optimal trajectory.

However, there is no definite statement about how the controller behaves in the transient

phase, i.e., what will happen as the controller approaches the optimal trajectory.

In the time-invariant case, it is known that the MPC control approaches the optimal

equilibrium in an optimal way (cf. Theorem 2.17). This means that it is also nearly optimal

in the transient phase in the sense that of all trajectories ending in a neighborhood of the

optimal equilibrium the MPC closed-loop has the lowest cost.

We expect that it is possible to obtain a similar result in the time-varying case as well.

In this context, Theorem 4.36 already provides a related result, although for open-loop

trajectories instead of the MPC closed-loop.

Generalized sets of optimal operation

As mentioned in Remark 4.25, it may happen that there is not a single optimal trajectory

of the system but a whole set of trajectories that are all optimal in the sense of overtaking

optimality. In this case, we may no longer consider stability at a particular optimal

trajectory but rather w.r.t. the set of optimal trajectories. So far, it is unclear how this

extended stability concept can be adequately formalized and under what conditions we can

recover convergence of the MPC closed-loop trajectory to the set of optimal trajectories.

As also outlined in Remark 4.25, one idea is to consider a modified dissipativity notion

that takes into account the set of optimal trajectories [81]. While it seems likely that the

arguments in the stability proofs of Chapter 4 could be extended, the question remains

how the modified dissipativity concept could be verified.

Improved simulation models for energy-efficient buildings

We have illustrated the analytical results in the thesis using simulations of the convection-

diffusion equation. Although this equation already provides a good model for describing

129
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the heat transfer within a building, it does not include the simulation of the airflow.

Instead, the airflow was given either by prior simulations of the Navier-Stokes equations,

or (in the 1D examples) it was assumed to be fully controllable. This means the airflow

influences heat propagation, but not vice versa.

A more realistic building model should include the mutual coupling between heat and

airflow. To this end, one could consider the fully coupled Navier-Stokes equations, but the

need to solve optimal control problems online would pose considerable challenges as soon

as complex 2D or even 3D geometries are involved. As a middle ground, one could use

the so-called Boussinesq approximation of the Navier-Stokes equations, which simplifies

the equations by only including buoyancy-driven density variations of the fluid [9]. We

expect that this simplified model will present a realistic and at the same time affordable

optimization model, especially in combination with POD.

State estimation for the convection-diffusion equation

The first step of the MPC Algorithm 2.1 is to measure the current state of the system,

which is required as the initial state for the open-loop optimal control problem. So far, it

was not addressed how this step can be realized in practical applications. In the case of

convection-diffusion systems, the state of the system consists of the temperature at each

point in the domain. Besides, the velocity field describing the airflow also needs to be

known.

From a practical point of view, this presents some challenges since both temperature and

airflow cannot be measured at every point but only at a few discrete locations throughout

or at the boundary of the domain. Thus, for the implementation of an MPC controller in

a real system, we also need to design an observer that can approximate the full state of

the system based on discrete measurements of the airflow and temperatures.

The literature already offers several approaches for the design of PDE observers (see

e.g. [68,97,108]) which will have to be assessed and then implemented for the convection-

diffusion equation.

Prospective applications for the absolute performance estimate

Finally, the absolute MPC performance estimate proposed in Chapter 6 presents a ver-

satile tool to evaluate the performance of MPC controllers online. We expect that this

can be exploited in various algorithmic ways. Applications could include the automatic

adjustment of the MPC horizon length whenever the performance deteriorates. This idea

has already been successfully applied with the relative performance index α (see [66,90]),

and thus an extension to the absolute performance index seems within reach. In addition,

we surmise that it is possible to use the method as an error estimator for POD, which

in turn can be used to determine the appropriate number of POD basis functions. This

means we apply the performance index as a measure of model inaccuracies which can be

reduced by adding more POD basis functions. First results in this direction have been

presented in [47].



A | Computation rules for the lim inf

Lemma A.1

Consider sequences (an)n∈N, (bn)n∈N with an converging to a, i.e. limn→∞(an) = a. If the

inequality

a+ lim inf
n→∞

(bn) ≥ 0 (A.1)

is satisfied, then

lim inf
n→∞

(an + bn) ≥ 0 (A.2)

holds.

Proof. Let ε > 0. From the definition of the lim inf it follows that there exists N0 ∈ N
such that

a+ bn ≥ −ε (A.3)

for all n ≥ N0. Moreover, since a is the limit of the sequence (an)n∈N it holds that there

exists N1 ∈ N such that

an ≥ a− ε (A.4)

for all n ≥ N1. Summing up the two inequalities (A.3) and (A.4) gives

a+ bn + an ≥ a− 2ε

⇔ bn + an ≥ −2ε
(A.5)

which holds for all n ≥ max(N0, N1). Since ε was arbitrary it follows that

lim inf
n→∞

(an + bn) ≥ 0. (A.6)

This concludes the proof.

Lemma A.2

Consider sequences (an)n∈N and (bn)n∈N satisfying

lim inf
n→∞

(an) ≥ 0 (A.7)

and

lim inf
n→∞

(bn) ≥ 0. (A.8)
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Then the inequality

lim inf
n→∞

(an + bn) ≥ 0 (A.9)

holds.

Proof. We prove that

lim inf
n→∞

(an) + lim inf
n→∞

(bn) ≤ lim inf
n→∞

(an + bn). (A.10)

From this it immediately follows that

lim inf
n→∞

(an + bn) ≥ lim inf
n→∞

(an)
︸ ︷︷ ︸

≥0

+ lim inf
n→∞

(bn)
︸ ︷︷ ︸

≥0

≥ 0. (A.11)

Define a := lim infn→(an), b := lim infn→∞(bn) and let ε > 0. Then there exist N1, N2 ∈ N
such that

an > a− ε (A.12)

for all n ≥ N1 and

bn > b− ε (A.13)

for all n ≥ N2. Then for N = max{N1, N2} it holds that

an + bn > a− ε+ b− ε = a+ b− 2ε. (A.14)

Thus, taking the limit n→∞, it follows that lim infn→∞(an + bn) ≥ a+ b− 2ε. Because

ε was arbitrary, we obtain

lim inf
n→∞

(an + bn) ≥ a+ b

= lim inf
n→

(an) + lim inf
n→∞

(bn)
(A.15)

This concludes the proof.



List of Figures

2.1 Illustration of the MPC principle . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Example illustration of the domain and boundaries in a 2D setting . . . . . 19

3.2 Domain and boundaries for 1D example . . . . . . . . . . . . . . . . . . . . 22

4.1 Graphical illustration of overtaking optimality. . . . . . . . . . . . . . . . . 37

4.2 Finite horizon turnpike property for time-varying systems. . . . . . . . . . . 41

4.3 Graphical illustration of the continuity property . . . . . . . . . . . . . . . . 43

4.4 Graphical illustration of the proof of Lemma 4.14 (a). . . . . . . . . . . . . 45

4.5 Illustration of Lemma 4.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Graphical illustration of equations (4.20) and (4.21) from the proof of The-

orem 4.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Graphical interpretation of the result from Theorem 4.16 . . . . . . . . . . 51

4.8 MPC solution trajectories of Example 4.18 . . . . . . . . . . . . . . . . . . 55

4.9 Cumulative closed-loop cost of Example 4.18 . . . . . . . . . . . . . . . . . 56

4.10 Closed-loop cost for Example 4.18 for different MPC horizon lengths N . . . 57

4.11 Schematic illustration of P-practical asymptotic stability. . . . . . . . . . . . 58

4.12 Illustration of Lemma 4.33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.13 Illustration of Theorem 4.36 . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.14 Illustration of the proof of Lemma 4.38. . . . . . . . . . . . . . . . . . . . . 68

4.15 Convergence of MPC closed-loop trajectories in Example 4.41 . . . . . . . . 75

4.16 Illustration of domain and boundaries of Example 4.42 . . . . . . . . . . . . 76

4.17 Evolution of MPC closed-loop trajectory in Example 4.42 . . . . . . . . . . 78

4.18 MPC closed-loop cost for Example 4.42 . . . . . . . . . . . . . . . . . . . . 79

4.19 Closed-loop trajectory convergence in Example 4.42 . . . . . . . . . . . . . 79

4.20 State transition graph of Example 4.43 . . . . . . . . . . . . . . . . . . . . . 80

5.1 Local controllability along the optimal trajectory. . . . . . . . . . . . . . . . 86

5.2 Construction of the control sequence ū in the proof of Lemma 5.4 . . . . . 88
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[15] J. Berberich, J. Köhler, F. Allgöwer, and M. A. Müller. Indefinite linear quadratic

optimal control: Strict dissipativity and turnpike properties. IEEE Control Systems

Letters, 2(3):399–404, July 2018.

[16] M. Bergounioux, K. Ito, and K. Kunisch. Primal-dual strategy for constrained

optimal control problems. SIAM Journal on Control and Optimization, 37(4):1176–

1194, 1999.

[17] J. Blot and N. Hayek. Infinite-horizon optimal control in the discrete-time frame-

work. Springer, 2014.

[18] S. Brenner and R. Scott. The mathematical theory of finite element methods, vol-

ume 15. Springer Science & Business Media, third edition, 2008.

[19] A. Britzelmeier and M. Gerdts. Non-linear model predictive control of connected, au-

tomatic cars in a road network using optimal control methods. IFAC-PapersOnLine,

51(2):168 – 173, 2018. 9th Vienna International Conference on Mathematical Mod-

elling.

[20] W. A. Brock and L. J. Mirman. Optimal economic growth and uncertainty: The

discounted case. Journal of Economic Theory, 4(3):479 – 513, 1972.

[21] C. Chen, J. Wang, Y. Heo, and S. Kishore. MPC-based appliance scheduling for

residential building energy management controller. IEEE Transactions on Smart

Grid, 4(3):1401–1410, 2013.

[22] D. B. Crawley, C. O. Pedersen, L. K. Lawrie, and F. C. Winkelmann. Energyplus:

Energy simulation program. ASHRAE Journal, 42:49–56, 2000.



Bibliography 139
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editors, Numerical Methods for Optimal Control Problems, pages 63–87. Springer

International Publishing, 2018.

[78] L. Mechelli and S. Volkwein. POD-based economic model predictive control for heat-

convection phenomena. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, and

I. S. Pop, editors, Numerical Mathematics and Advanced Applications ENUMATH

2017, pages 663–671. Springer International Publishing, 2019.

[79] D. Meidner and B. Vexler. Adaptive space-time finite element methods for parabolic

optimization problems. SIAM Journal on Control and Optimization, 46(1):116–142,

2007.

[80] D. Meidner and B. Vexler. A priori error estimates for space-time finite element

discretization of parabolic optimal control problems part i: Problems without control

constraints. SIAM Journal on Control and Optimization, 47(3):1150–1177, 2008.

[81] M. A. Müller. Dissipativity in economic model predictive control: beyond steady-

state optimality. arXiv:1911.09908, 2019.

[82] M. A. Müller. Dissipativity in economic MPC: time-varying case. Personal commu-

nication, 2019.
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[94] S. Qin and T. Badgwell. A survey of industrial model predictive control technology.

Control Engineering Practice, 11(7):733 – 764, 2003.

[95] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae,

G.-T. Bercea, G. R. Markall, and P. H. J. Kelly. Firedrake. ACM Transactions on

Mathematical Software, 43(3):1–27, Dec 2016.

[96] J. Rawlings, D. Mayne, and M. Diehl. Model Predictive Control: Theory and Design.

Nob Hill Pub., second edition, 2017.

[97] A. Schaum, T. Meurer, and J. A. Moreno. Dissipative observers for coupled diffu-

sion–convection–reaction systems. Automatica, 94:307 – 314, 2018.

[98] C. Scherer and S. Weiland. Linear matrix inequalities in control. Lecture Notes,

Dutch Institute for Systems and Control, Delft, The Netherlands, 2015.

[99] E. D. Sontag. Mathematical control theory: deterministic finite dimensional systems,

volume 6. Springer Science & Business Media, 2013.



Bibliography 145
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