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V. Summary 

Transformation of low molecular weight organic substances (LMWOS) is one of the 

most important steps in biogeochemical cycles since all high molecular substances pass this 

stage during their decomposition. Microbial utilization is the most relevant sink for LMWOS in 

soils and thus knowledge about microbial transformations of LMWOS is crucial for under-

standing the soil organic carbon (SOC) cycle and predicting its reaction to changes in con-

trolling environmental parameters. Previous studies focused on determining fluxes through 

the LMWOS pool, but they rarely identified transformation steps. This thesis aims to establish 

position-specific isotope labeling as a tool in soil science to trace the pathways of LMWOS 

transformations.  

In a medium-term field experiment six position-specific 13C-labeled LMWOS from the 

three main LMWOS classes were applied: two amino acids (alanine and glutamate), two 

monosaccharides (glucose and ribose) and two organic acids (acetate and palmitate). 13C 

remaining in soil and that incorporated into microbial biomass and specific microbial cellular 

compounds (phospholipid fatty acids (PLFA) and amino sugars) was determined by bulk and 

compound-specific 13C analyses. Therefore, a new instrument coupling, an ion chromato-

graph with an isotope ratio mass spectrometer (IC-O-IRMS), and the respective methods for 

amino sugar analysis were established. The effect of altered environmental conditions and 

the relevance of further LMWOS sinks (sorption or plant uptake) were evaluated in several 

additional laboratory experiments based on position-specific 14C-labeling. The divergence 

index (DI) was established to compare the position-specific fate of individual substances in 

various studies independent of the isotopic approach or experimental design used or the pool 

investigated. 

Microbial utilization was the fastest process in the removal of LMWOS from soil solu-

tion and neither plant uptake nor sorption could out-compete microorganisms. The incorpora-

tion of individual molecule positions in soils, microbial biomass and distinct compound 

classes was clearly defined by the microbial metabolism: Glycolysis, oxidation by pyruvate 

dehydrogenase and the citric acid cycle were identified as the main metabolic processes. 

However, in addition to these oxidizing catabolic pathways, the anabolic pathways, i.e. build-

ing-up new cellular compounds, occurred in soils simultaneously. This involved an intensive 

C recycling and turnover within the microorganisms that was observed not only for cytosolic 

compounds but also for cell wall polymers. Intensive modifications and transformation within 

metabolic side branches, like the fatty acid formation and transformation pathways, were 

identified. These results for fatty acid transformations are crucial for their application as plant 

biomarkers in studies on palaeoenvironmental reconstruction.  

The combination of position-specific 13C-labeling with compound-specific isotope 

analysis of microbial biomarkers allowed the further identification of specific pathways of in-
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dividual functional microbial groups in soils. Fungal metabolism was shown to be slower than 

bacterial intracellular C recycling and turnover, which provides the metabolic reason for the 

slow-cycling fungal-based and fast-cycling bacteria-based branch of the soil food web. Shifts 

in C allocation through various metabolic pathways were dependent on environmental fac-

tors: a gradient of C metabolism from starvation pathways via maintenance metabolism to 

metabolic pathways characteristic for microbial growth was observed with increasing sub-

strate concentration. Sorption, also limiting the bioavailability of a substrate, caused similar 

shifts in metabolic pathways: the lower the bioavailability (e.g. due to sorption), the more C 

was allocated towards anabolic biosynthesis, i.e. into microbial products. Thus, these studies 

revealed that position-specific labeling is not only a valuable tool in biochemistry for meta-

bolic flux analysis, but also enables the reconstruction of metabolic pathways of LMWOS 

within diverse microbial communities in complex media such as soil. Processes occurring 

simultaneously in soil i.e. 1) within individual, reversible metabolic pathways, 2) in various 

microbial groups or 3) in specific microhabitats (like on mineral surfaces, at the soil-plant in-

terface or at hot-spots versus bulk soil) could be traced by position-specific labeling in soils in 

situ. 

The main metabolic pathways of microbial LMWOS transformation by cata- and anabolism 

were traced by position-specific labeling. These pathways and their regulating factors are 

crucial for assessing C flows towards mineralization versus the formation of microbial bio-

mass, the prerequisite for the formation of microbially-derived SOC. This molecular knowl-

edge of transformation steps and their regulating factors is crucial to predict (i.e. by new 

process-based modelling approaches) and manipulate C allocation and stabilization in soils. 
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VI. Zusammenfassung 

 

Die Transformation niedermolekularer organischer Substanzen (LMWOS) ist der zent-

rale Schritt in biogeochemischen Kreisläufen, da alle hochmolekularen Substanzen während 

ihres Abbaus den LMWOS Pool passieren. Mikroorganismen stellen die bedeutendste Senke 

für LMWOS dar, weshalb mikrobielle Transformationen von LMWOS essentiell für den Koh-

lenstoffkreislauf im Boden sind. Bisherige Studien quantifizierten meist Flüsse durch den 

LMWOS Pool, arbeiteten aber kaum an der Aufklärung der Transformationsprozesse. Im 

Rahmen dieser Dissertation soll die positionsspezifische Isotopenmarkierung als neue bo-

denkundliche Methode zur Aufklärung von LMWOS-Transformationswegen etabliert werden.   

In einem Feldexperiment wurden sechs positionsspezifisch 13C markierte LMWOS der 

drei wichtigsten Substanzklassen appliziert: zwei Aminosäuren (Alanin und Glutamat), zwei 

Monosaccharide (Glucose und Ribose) und zwei organische Säuren (Acetat und Palmitat). 

Die Analyse von verbleibendem 13C im Boden, 13C in der mikrobiellen Biomasse und in spe-

zifischen Zellbausteinen (Phospholipidfettsäuren (PLFA) und Aminozucker) erfolgte durch 

gesamt- und komponentenspezifische 13C Methoden. Hierfür wurde eine neue Instrumenten-

kopplung – ein Ionenchromatograph mit einem Isotopenmassenspektrometer (IC-O-IRMS) – 

etabliert und die darauf abgestimmte Aminozucker-Aufreiningungsmethode eingearbeitet. 

Der Effekt sich ändernder Umweltfaktoren sowie die Relevanz weiterer LMWOS-Senken 

(Sorption und Pflanzenaufnahme) wurden anhand mehrerer zusätzlicher Laborexperimente 

mit positionsspezifischer 14C Markierung evaluiert. Die Einführung des Divergenz Index (DI) 

ermöglichte es den positionsspezifischen Einbau in verschiedenen Studien unabhängig vom 

applizierten Isotop, dem experimentellen Design und dem untersuchten Pool zu vergleichen.  

Mikroorganismen waren die dominante Senke für LMWOS und weder Pflanzenauf-

nahme noch Sorption konnten in Rate und Kinetik mit mikrobiellen Aufnahmesystemen kon-

kurrieren. Der Einbau einzelner Molekülpositionen in Boden, mikrobielle Biomasse und be-

stimmte Substanzklassen war durch den mikrobiellen Metabolismus bestimmt, v.a. durch 

Glykolyse, Oxidation durch Pyruvat-Dehydrogenase und Citratzyklus. Allerdings liefen paral-

lel zu diesen oxidierenden, katabolen Stoffwechselwegen auch anabole Reaktionen, d. h. der 

Aufbau neuer Zellkomponenten, ab. Dies führte zu einem starken C-Umsatz und Recycling, 

nicht nur im Cytosol sondern z.B. auch von Zellwandpolymeren. Intensive Umsätze innerhalb 

metaboler Seitenäste, wie der Fettsäurebiosynthese, wurden identifiziert. Diese Ergebnisse 

zur Fettsäuretransformation sind wesentlich für die Anwendung von Fettsäuren als pflanzli-

che Biomarker in Paläoumweltstudien.  

Die Kombination positionsspezifischer 13C Markierung mit komponentenspezifischer 

Isotopenanalytik mikrobieller Biomarker erlaubte des Weiteren die Identifikation spezifischer 

Stoffwechselwege einzelner mikrobieller Gruppen. Pilze zeigten einen langsameren intrazel-
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lulären C-Umsatz als Bakterien, was die metabole Grundlage für den langsam-zyklierenden, 

pilzbasierten und den schnell-zyklierenden, bakterienbasierten Zweig des Bodennahrungs-

netzes liefert. Die Verschiebungen der Kohlenstoffflüsse durch verschiedene Stoffwechsel-

wege wurden in Abhängigkeit von Umweltfaktoren identifiziert: Mit Zunahme der Substrat-

konzentration konnte ein Gradient von C-Mangel-Stoffwechselwegen über den Erhaltungs-

metabolismus hin zu charakteristischen Wachstums-Stoffwechselwegen beobachtet werden. 

Eine Verringerung der Substratverfügbarkeit durch Sorption verursachte eine ähnliche Ver-

schiebung der metabolen C-Flüsse: Je niedriger die Verfügbarkeit, desto mehr C wird in Bio-

synthesewege also mikrobielle Produkte, verlagert. 

Diese Studien konnten zeigen, dass positionsspezifische Markierung nicht nur eine 

wertvolle Methode in der Biochemie darstellt, sondern auch die Aufklärung der Verstoff-

wechslung von LMWOS durch diverse mikrobielle Gemeinschaften in komplexen Medien wie 

dem Boden ermöglicht. Parallel ablaufende Prozesse in Böden wie z. B. 1) der Rückfluss 

durch reversible Stoffwechselwege, 2) Umsätze in verschiedenen mikrobiellen Gruppen oder 

3) Umsätze in spezifischen Mikrohabitaten (an Mineraloberflächen, am Boden-Pflanze-

Interface oder an Hot-spots versus dem Gesamtboden) können mittels positionspezifischer 

Markierung im Boden in situ verfolgt werden.  

Der Umsatz von LMWOS in Kata- und Anabolismus wurde im Rahmen dieser Disserta-

tion rekonstruiert. Das Verständnis für diese Stoffwechselwege und ihre Regulationsfaktoren 

ist entscheidend für die Beurteilung von C-Flüssen zwischen Mineralisation und dem Aufbau 

mikrobieller Biomasse – der Voraussetzung zur Bildung mikrobieller, organischer Bodensub-

stanz. Das Wissen über Transformationsschritte und ihre regulierenden Faktoren ist essen-

tiell für die Vorhersage (z. B. mittels prozessbasierter Modellierung), aber auch für die Mani-

pulation der C-Sequestrierung und Stabilisierung in Böden.  
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1 Extended Summary 

1.1 Introduction 

1.1.1 Low molecular weight organic substances in soils 

1.1.1.1 Role and relevance of low molecular weight organic substances in soil 

Soil organic carbon (SOC) is the largest terrestrial carbon (C) pool, with C stocks of 

around 1500 Pg (Batjes, 1996). On average 30-120 kg C m-2 is stored up to 1 m soil 

depth and 0.5 to 1% of this stock is annually respired (van Hees et al., 2005a) but the 

largest portion is stable or inactive. Traditionally, SOC has been divided operationally by 

chemical fractionation into structurally diverse fulvic and humic acids (van Hees et al., 

2005a). More recent results revealed that a limited range of defined substance classes 

and their polymers build up the soil organic matter (SOM) (Schmidt et al., 2011; von 

Luetzow et al., 2006).  

A minor portion of SOC constitutes dissolved organic matter (DOC), in most cases 

less than 2 mol C m-2 (van Hees et al., 2005a). Only up to 10% of DOC consists of identi-

fiable compounds of low molecular weight. These low molecular weight organic sub-

stances (LMWOS) are defined as soluble substances with a molecular weight lower than 

250 Da (Boddy et al., 2007) and mainly consist of aliphatic and aromatic carboxylic acids, 

amino acids and peptides, mono-, di- and small oligosaccharides, amino sugars, phenolic 

substances and siderophores (McKeague et al., 1986). 

Although the portion of LMWOS in SOC is extremely low, they play a major role in 

ecosystem functions. Regarding the C cycle, the importance of LMWOS is not deter-

mined by their pool size (Fischer et al., 2007), but by their huge fluxes (>20 mol C m-2 y-1) 

that pass through this pool. During decomposition of plant-derived organic matter the 

high molecular weight organic substances are degraded by exoenzymes into low molecu-

lar monomers and pass the pool of LMWOS. They can then be oxidized to CO2 by micro-

bial respiration. Van Hees et al (2005a) summarized for forest soils that although 

LMWOS comprise less than 0.05% of the C pool, they contribute to more than 10-20% to 

the soil respiratory fluxes, thus demonstrating the high relevance of this active, fast cy-

cling C pool for the SOC turnover.  

In addition to their function as energy and C source for microorganisms, they fulfill 

several important functions in soils: 1) Contribution to weathering and solubilization of 

nutrients for plants; 2) formation of soil structures like aggregates; 3) acceleration of re-
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duction/oxidation processes; 4) contribution to translocation of Si, Fe, Al, Mn and some 

other elements within and from the soil profile; 5) contribution to metal ion detoxification; 

and many more (Kaiser and Kalbitz, 2012, Kuzyakov, 1996, van Hees et al., 2005). 

Hence, there is no doubt about the relevance of LMWOS for soil processes and within 

the last decades an increasing interest in their sources, sinks and their function in cou-

pling plant-derived and microbial-derived SOC pools has arisen. 

 

1.1.1.2 Sources and sinks of LMWOS 

The pool of LMWOS has several sources and sinks which are subject to strong 

spatial and temporal variations and are controlled by several environmental factors (Fig-

ure S1). Plant residues and rhizodeposits are the main primary sources of organic matter 

and consequently LMWOS in soils (Rasse et al., 2005). While root exudates consist 

mainly of LMWOS (Farrar et al., 2003; Fischer et al., 2010a; Kuzyakov and Domanski, 

2000), root and plant litter is built up by high molecular weight, insoluble polymers like 

cellulose and hemicellulose, suberin and cutin, proteins and lignin (Koegel-Knabner, 

2002). During their decomposition, these macromolecules are split to their monomers by 

exoenzymes (Cadisch and Giller, 1996) and thus enter the pool of LMWOS. Microbial 

biomass grown on plant residues can be considered a secondary source for LMWOS and 

identical decomposition processes take place within the microbial necromass: it contains 

a small proportion of cytosolic LMWOS and many high molecular weight macromolecules 

(Kindler et al., 2006; Miltner et al., 2007) which are degraded exoenzymatically to 

LMWOS (Miltner et al., 2009).  

Sorption to clay minerals and sesquioxides can act as a sink for LMWOS but the 

relevance of this process strongly depends on the LMWOS class: Uncharged molecules, 

like monosaccharides, show nearly no sorption (Jones and Edwards, 1998), whereas 

charged molecules like organic acids or amino acids reflect strong interactions with min-

eral phases (Jones and Brassington, 1998; Jones and Edwards, 1998). This, however, 

strongly depends on the structure and net charge of the individual carboxylic or amino 

acid (Jones and Brassington, 1998; Jones and Hodge, 1999). However, sorption is not an 

irreversible process and desorption can transfer sorbed LMWOS back to the pool of 

LMWOS. Recent concepts of interactions of DOC with the soil matrix reveal that sorp-

tion/desorption, microbial utilization and leaching cannot be regarded as separate proc-

esses but that aging of DOC and LMWOS pools with soil depth is visible (Kaiser and Kal-

bitz, 2012). Aging results from the retention of LMWOS either adsorbed or incorporated 

into microbial biomass. In both cases, desorption or degradation of the microbial necro-

mass transfers this C back to the DOC and LMWOS pool.  



Extended Summary 

 3 

The concept of direct interactions between LMWOS and SOM has changed within 

the last years. Traditional humification theories of spontaneous heteropolycondensation 

(Martin and Haider, 1971; Schnitzer and Kahn, 1972; Stevenson, 1994) were found to be 

less relevant than originally assumed (Sollins et al., 1996; von Luetzow et al., 2006). Di-

rect interaction between LMWOS and the stable SOM pool was assumed to occur mainly 

by hydrophobic interactions (Lichtfouse et al., 1998a; Lichtfouse et al., 1998b), being 

summarized by the so-called pseudo-macromolecularity theory (Piccolo, 2002). Despite 

these being non-covalent interactions, entrapping of LMWOS can act as a LMWOS sink 

as they cannot be gained by simple extraction methods. Besides SOM being an LMWOS 

sink, it can also act as a source for LMWOS, e.g. if complex SOM compounds are de-

graded by exoenzymes to LMWOS. 

In general, within the last decades, the view on the sources of SOM has changed: 

untransformed incorporation of plant material is assumed to be quantitatively less rele-

vant than the incorporation and stabilization of microbial biomass compounds (Duemig et 

al., 2012; Miltner et al., 2011; Simpson et al., 2007). This new view enhances the rele-

vance of LMWOS for soil C cycling as they are the preferred C and energy source for the 

soil microbial community as well as a product of microbial transformations.   

 

 

Fig. S1 Sources and sinks of low molecular weight organic substances (LMWOS) in 
soil. Blue arrows mark sinks and purple arrows sources of LMWOS 
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Figure S1 demonstrates an overview of the sources and sinks of LMWOS. Rather limited 

knowledge is available concerning the fluxes and underlying processes between LMWOS 

and microorganisms. However, this is the quantitatively most important sink, being re-

sponsible for the low concentration of LMWOS in soils (Hobbie and Hobbie, 2012). As the 

flux towards microorganisms is the most important, it affects all further processes like 

interactions with sorbents or stable SOM, leaching or the availability of LMWOS as a 

plant nutrient source. Therefore, a more detailed understanding of microbial uptake rates 

and C fluxes through the microbial metabolism as well as their controlling factors is re-

quired to understand and predict the fate of LMWOS – a key process in the SOC cycle.  

 

1.1.2 Microbial utilization of low molecular weight organic 

substances 

1.1.2.1 Microbial uptake of LMWOS: the most competitive process determin-

ing the fate of LMWOS-C in soil 

Uptake kinetics of LMWOS by microorganisms (Anraku, 1980) and the competition 

of this process with further sinks of LMWOS are quite well understood: Utilization of many 

LMWOS is ubiquitous throughout the soil microbial community (Macura and Kubatova, 

1973) and possible in a wide concentration range. Kinetic constants of uptake systems 

reveal that soil microorganisms are adapted to an extremely broad concentration range 

covering concentrations at hot spots (e.g. next to bursting cells) as well as concentrations 

in bare soil. Despite the ubiquitous ability for LMWOS utilization, specific microbial groups 

have higher competitiveness for LMWOS, show specific preferences for individual 

LMWOS or differ in their turnover of LMWOS-C (Moore et al., 2005). By combining iso-

tope labeling approaches of LMWOS with the compound-specific isotope analysis of mi-

crobial biomarkers, this thesis aims to gain some further insights into LMWOS-C partition-

ing within the soil microbial community. 

Sorption is another fast process that strongly reduces LMWOS concentration in soil 

solution and consequently reduces leaching of LMWOS from upper soil horizons to sub-

soil. However, if LMWOS are sorbed, this has an effect on the further microbial utilization 

(Jones and Edwards, 1998). In addition, there is clear evidence that microbial utilization 

outcompetes sorption in soils (Fischer et al., 2010b). However, little is known about the 

competition between sorption and microbial utilization, their interactions and their effects 

on each other. Plant uptake as an additional sink is known to be quantitatively less rele-

vant for the LMWOS pool in soil due to the strong competition of microorganisms for 

LMWOS (Jones et al., 2005). However, a more process-orientated understanding of 
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competition between microbial uptake and utilization of LMWOS by various microbial 

groups on the one hand, and sorption and plant uptake on the other hand is needed to 

understand and predict the fate of LMWOS-C in soil. This thesis contributes to increase 

the mechanistic understanding of competing LMWOS sinks. 

Microbial uptake is the main driver of LMWOS degradation leading to the short half-

life time of most LMWOS in soils. Jones et al. (2004) used 14C-labeled amino acids and 

determined the half-life time of amino acids in soil solution to be less than 4.0-7.5 min-

utes. Fischer et al. (2010b), working with soil suspensions, reported even lower values of 

around 2 minutes with sugars < amino acids < carboxylic acids. Consequently the 

LMWOS pool has an extremely high turnover which can reach up to 4000 cycles per year 

for individual compounds (Boddy et al., 2007). To summarize, although several sinks for 

LMWOS exist in soil, microbial utilization is the fastest and quantitatively most important 

process removing LMWOS. Therefore, the aim of this thesis was to gain a profound un-

derstanding not only on turnover rates and kinetics but also on the underlying processes.  

 

1.1.2.2 Mineralization versus incorporation of LMWOS-C into microorganisms 

Microbial metabolism is a crucial step for the fate of LMWOS-C in soils as it deter-

mines whether C is mineralized to CO2 (catabolism) or incorporated into cellular com-

pounds (anabolism). Total uptake as well as the ratio of mineralized LMWOS to total up-

take (= sum of mineralized + incorporated) can vary for individual LMWOS. Hence, mi-

crobial incorporation as well as mineralization to CO2 (i.e. cata- and anabolism) have to 

be regarded together to evaluate the fate of LMWOS-C (Jones, 1999; Kemmitt et al., 

2008). For amino acids, the portion of mineralized LMWOS-C ranges from 20-40% of the 

uptake whereas 60-80% is incorporated into microbial biomass (Jones, 1999; Kemmitt et 

al., 2008). In contrast, carboxylic acids are predominantly decomposed to CO2 and less C 

is spent on microbial biomass C (Jones et al., 1996). However, the pathways which 

cause these specifics of individual LMWOS are not understood in soils. Therefore, the 

aim of this thesis was not only to determine the fate of LMWOS but also the underlying 

mechanisms and pathways.  

Half-life of LMWOS range from days to months receiving strongly different values in 

individual studies (reviewed by van Hees et al. 2005). In addition to abiotic factors such 

as temperature (Dijkstra et al., 2011c; Vinolas et al., 2001) or soil properties (Gonod et 

al., 2006; Kemmitt et al., 2008), the concentration of a substrate is a key driver of intracel-

lular metabolism (Dijkstra et al., 2011a; Fischer and Kuzyakov, 2010b; Schneckenberger 

et al., 2008) and consenquently also affects the long-term fate of LMWOS-C in soils. 

However, as long as pathways and regulating factors of microbial metabolism are not 
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fully understood, a prediction of the effect of an environmental factor is hardly possible. 

Therefore, during this thesis, not only should pathways be reconstructed, but also 

regulating factors of C metabolism should be identified and their effects on C allocation 

into various microbial pathways and products evaluated. 

Previous studies have mainly focused on the catabolic product of LMWOS metabo-

lism: CO2. However, tracing of anabolism is analytically much more challenging: it re-

quires not only measurement of microbial biomass 13C or 14C incorporation, but also in-

corporation into specific cellular compounds e.g. by compound-specific isotope analysis. 

Within first studies, incorporation of LMWOS-C in membrane lipids (Garcia-Pausas and 

Paterson, 2011; Waldrop and Firestone, 2004), cell wall polymers (Bode et al., 2013; 

Indorf et al., 2012) and amino acids (Knowles et al., 2010) was determined. Knowles et 

al. (2010) even used dual-isotope-labeled amino acids, thus providing the first approach 

to trace not only the product of LMWOS metabolism but also to draw conclusions about 

the metabolic pathways used. However, knowledge about the formation pathways of the 

majority of microbial substance classes is rare and, consequently, the formation of some 

main SOM classes is still not understood. Hence, in addition to basic C cata- and anabo-

lism, specific pathways for the formation of microbial biomass compounds should also be 

investigated within the scope of this thesis. This will gain a deeper understanding of SOM 

formation and the long-term fate of LMWOS-C in soils.  

 

1.1.3 Metabolic tracing by position-specific labeling 

The majority of the present studies on LMWOS transformations quantified uptake 

and turnover rates of a broad spectra of substances but rarely focused on the underlying 

pathways, mechanisms and regulating factors which control these fluxes. This was 

mainly attributed to the fact, that current techniques, based on determination of concen-

trations of LMWOS, their natural abundance isotope signature or even application of uni-

formly labeled LMWOS do not allow the reconstruction of transformation pathways. 

Therefore, position-specific labeling is a unique tool as it allows identifying the cleavage 

of applied LMWOS. 

The first studies based on position-specific labeling started in the seventies with 

works of Haider and Martin (1975) and Martin and Haider (1976) and in the nineties with 

Kuzyakov and Galitsa (1993) and Fokin et al. (1993). They mainly aimed at tracing the 

fate of single functional groups and determined e.g. rates of decarboxylation of phenolic 

acids (Martin and Haider, 1976).  

In parallel, position-specific labeling developed as a basic tool in biochemistry and 

enabled the quantitative modeling of C fluxes through metabolic networks (Zamboni et 
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al., 2005). Starting with biochemical pathways of microorganisms, this tool entered plant 

biochemistry (Ratcliffe and Shachar-Hill, 2006; Roscher et al., 2000) and also plant eco-

physiology (Nasholm et al., 2001; Wegener et al., 2010). However, the first systematic 

approaches of position-specific labeling to trace C fluxes through the metabolic network 

in soils started only a few years ago (Dijkstra et al., 2011a; Dijkstra et al., 2011b; Dijkstra 

et al., 2011c; Fischer and Kuzyakov, 2010b) with 14C and 13C position-specific labeling of 

pyruvate and acetate, respectively.  

In this thesis, 14C as well as 13C position-specific labeling was applied as the main 

methodological approach with various experimental designs under field and laboratory 

conditions. For the main classes of LMWOS (amino acids, monosaccharides and organic 

acids), all (purchasable) position-specific labeled isotopomers as well as the uniformly 

labeled substances were applied in separate treatments. In contrast to previous studies, 

transformation pathways of main LMWOS classes could be elucidated by this approach 

and are presented in this thesis. The combination with compound-specific isotope analy-

sis allows the formation pathways of distinct microbial biomass compounds and of distinct 

microbial groups to be traced. In addition, changes in LMWOS-C fluxes due to changing 

environmental conditions could be explained by their regulation in microbial metabolism. 

In addition to uniform labeling, position-specific labeling not only allows the determination 

of fluxes and turnover rates of LMWOS-C, but also the identification of the underlying 

transformation pathways. It is a unique tool to gain detailed insights into submolecular 

transformation pathways and their regulation factors in soils. A first application of this tool 

was performed within the scope of this thesis and the results as well as perspectives are 

summarized in the following chapters. 
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1.1.4 Objectives  

The main objective of this thesis was to establish position-specific 13C- and 14C-

labeling and metabolic tracing as a tool in soil science, which enables a process-

orientated view on the LMWOS cycle and can be applied for field and laboratory experi-

ments. More specifically, the following objectives were aimed towards:  

1) Determination of metabolic pathways of two representatives of the three main 

substance classes of LMWOS (amino acids, monosaccharides and organic 

acids) by position-specific labeling 

2) Coupling of position-specific labeling with compound-specific isotope analysis 

of microbial biomarkers  

a. to follow the C incorporation into various cellular compound classes 

b. to identify specific metabolic pathways of individual members of the 

soil microbial community 

3) Identification of specific metabolic pathways depending on certain environ-

mental conditions: 

a. pathways of LMWOS sorbed on various soil components 

b. pathways under various concentrations of LMWOS 

c. extra- versus intracellular transformation pathways 

4) Assessment of kinetics and ecological relevance of competing sinks for 

LMWOS: 

a. sorption versus microbial utilization  

b. plant uptake versus microbial utilization 

 

1.2 Experiments and Methods 

1.2.1 Field experiment 

The field experiment was carried out on an agricultural field site close to Hohen-

poelz (49°54' Northern latitude; 11°08' Eastern longitude, 500 m a.s.l.) in northern Bava-

ria. Mean annual temperature is +7 °C, mean precipitation is 870 mm and soil type is a 

haplic Luvisol (IUSS Working group WRB, 2007). 784 columns (Figure S2) were installed 

according to a randomized block design, where the four blocks represent the four replica-

tions of each treatment.  
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Fig. S2 Schematic (left) and photo (middle) of a labeling column of the field experi-
ment. Right photo shows one of the four blocks, each with 196 columns. 

In total, six individual LMWOS were applied: two amino acids (alanine and gluta-

mate), two monosaccharides (glucose and ribose) and two organic acids (applied as acid 

anion: acetate and palmitate). Each of their purchasable isotopomers as well as their 

uniformly 13C-labeled form was applied in separate columns (see Table S1). In addition, 
15N-labeled glutamate and alanine were added as well as labeled mineral nitrogen 

(15NO3- and 15NH4
+). Consequently, this is the first experiment which allows metabolic 

tracing by two parallel approaches: 1) metabolic tracing based on individual C positions 

(Dijkstra et al., 2011a) and 2) metabolic tracing based on multiple isotope labeling 

(Knowles et al., 2010) (results of the second approach were not included in this thesis).  

Each of the six substances had one background treatment where the same amount 

of non 13C-enriched substance was applied. In each of the 22 labeled and 6 background 

treatments, the amount of C and N applied was as low as possible and identical for all 

columns to avoid potential disturbance of the microbial community. Each treatment was 

designed for seven sampling dates and in four replications (resulting in 784 soil columns).  

To prevent rainfall and thus leaching, a roof was installed above the field site during 

labeling and for the first 10 days. Excluding additional rainfall water due to the roof and 

assuming no preferential flow in the freshly tilled soil, leaching can be regarded as negli-

gible and mineralization is the only process removing 13C from the soil. Only data from 

the first two sampling dates, reflecting the short-term dynamics of LMWOS, are pre-

sented in this thesis. 

Sampling was performed by removing the entire column from the field. Length (i.e. 

volume) of soil column, fresh weight of soil and water content were determined. After 

homogenization, each sample was split and the subsamples were prepared and stored 

according to the different analyses.  

 

 

 

 

 

 

10 cm

13 cm 10 cm

10 cm
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Table S1 Treatments of position-specific 13C and 15N labeling. Applied amount of 13C and 
15N, their isotopic enrichment, as well as the respective compound and labeled 
position are presented. Nat. abund. means application of non-enriched sub-
stances, x means“no application of 15N in this treatment. 

 

Position-specific 13C labeling 15N labeling 
substance 

class substance position(s) 

applied amount 
of 13C (µmol 
per column) substance 

applied amount 
of 15N (µmol 
per column) 

C-1 94.2 x 
C-2 93.0 x 
C-3 94.7 

alanine  
(nat. abund.) 

x alanine 

uniformly 96.3 
15N alanine  

(98 at%) 28.7 

C-1 93.0 x 
C-2 56.3 

glutamate  
(nat. abund.) x 

amino 
acids 

glutamate 
uniformly 91.6 

15N glutamate 
(98 at%) 28.0 

C-1 91.5 x 
C-2 93.4 x 
C-4 93.5 x 
C-6 91.8 

(NH4)2SO4  
(nat. abund.) 

x 
glucose 

uniformly 93.4 
15N (NH4)2SO4 

(98 at%) 27.8 

C-1 93.3 x 
C-5 93.0 x 

mono-
sacharides 

ribose 
uniformly 91.8 

(NH4)2SO4  
(nat. abund.) 

x 
C-1 94.6 x 
C-2 94.1 x acetate 
uniformly 95.8 

KNO3 
(nat. abund.) 

x 
C-1 47.5 x 
C-2 47.1 x 
C-16 44.3 

KNO3 
(nat. abund.) 

x 

organic 
acids 

palmitate 
uniformly 49.5 

15N KNO3  
(98 at%) 28.6 

 

1.2.2 Laboratory experiments 

Besides the field experiment, several laboratory experiments with modifications of 

environmental conditions were performed. In general, in laboratory experiments position-

specific 14C-labeled tracers were applied.  

1.2.2.1 Experiment 1: Transformations of free alanine 

The first experiment aimed at identifying the transformation pathways of amino 

acids depending on two factors: 1) the concentration of alanine (0.5, 5, 50, 500 and 

5000 µM), and 2) the extra- and intracellular as well as abiotic processes (i.e. sorption) of 

alanine removal from soil solution, separated by selective inhibition. Alanine 

transformation products were operationally separated by sequential extraction into ion-

exchangeable and ligand-exchangeable transformation products, whereas irreversible-

bound transformation products remained in the soil.  
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1.2.2.2 Experiment 2: Transformations of sorbed alanine 

In the sorption experiment, availability and microbial utilization pathways of ab-

sorbed alanine were investigated in two steps:  

1) Labeled alanine was adsorbed to five sterilized sorbents commonly present in 

soils: two iron oxides with different crystalline structure: goethite and hematite; two clay 

minerals with 2:1 layers – smectite, and 1:1 layers – kaolinite; and active coal.  

2) Thereafter, the sorbed alanine was mixed with the soil and incubated for 3 days. 

The effect of sorption on microbial utilization, especially their metabolic pathways, was 

elucidated.  

 

1.2.2.3 Experiment 3: Plant uptake of intact alanine  

Plant uptake was carried out with dual-isotope, position-specific labeled alanine in 

rhizotubes (Biernath et al., 2008; Rasmussen et al., 2010). Uptake of C and N from indi-

vidual positions by Zea mays, Lupinus albus and Cichorium intybus was traced. As a 

control, 14C acetate and mineral 15NH4
+ and 15NO3

- were applied. Thus, passive uptake of 

LMWOS as well as the relevance of N-LMWOS uptake compared to mineral nitrogen was 

assessed. Position-specific labeling enabled the differentiation of intact alanine uptake 

versus the uptake of its transformation fragments.  

 

 

1.2.3 Methods to trace 13C and 14C in transformation prod-

ucts of LMWOS 

An overview over the methods, applied in this thesis, to trace 13C, 15N and 14C in 

specific transformation products and more unspecific SOC fractions is presented in Table 

S2. Methods are briefly described in the following chapters and in detail in the Material 

and Methods section of the respective studies. 
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Table S2 Applied 13C- and 14C-labeling approaches as well as analytical methods for the 
individual studies; First line shows whether samples were derived from field or 
laboratory experiments; PS indicates position-specific labeling.  

 Field experiment Laboratory experiment 
Study Study 1 Study 2 Study 3 Study 6 + 7 Study 8 Study 4 Study 5 Study 9 

Topic 
LMWOS 

com-
parison 

method  
develop-

ment 

amino 
acid 

mono-
saccha-

rides 

organic 
acids 

free 
amino 
acids 

sorbed 
amino 
acids 

plant up-
take of 
amino 
acids 

Labeling Uniformly 13C PS 13C PS 13C PS 13C PS 14C  PS 14C PS 14C  
& 15N 

13C in  
bulk soil X  X X X    
15N in 
bulk soil         X 
15N in plant 
biomass         X 
microbial 
biomass 13C X  X X X    
13C in  
PLFA X  X X  X    
13C in amino 
sugars  X   X     
14C in soil 
solution       X X  
14C in  
bulk soil       X X X 
14C in soil 
extracts       X   
14C in  
CO2 

       X  
 

1.2.3.1 Bulk-isotope measurements by EA-IRMS  

13C and 15N remaining in soil was quantified by determination of δ13C and δ15N val-

ues of bulk soil samples. Incorporation of 13C in microbial biomass was calculated from 

the δ13C value of fumigated and unfumigated soil extracts, gained by the chloroform-

fumigation-extraction method (Brookes et al., 1985; Wu et al., 1990). For all δ13C meas-

urements, the samples were freeze-dried and measured by Elemental Analyzer-Isotope 

Ratio Mass Spectrometer (EA-IRMS). 13C incorporation was calculated according to the 

mixing model referenced on the respective δ13C values of the background treatment. 

 

1.2.3.2 Compound-specific isotope analysis of microbial biomarkers   

13C incorporation into microbial membrane lipids, the phospholipids fatty acids 

(PLFA), was determined by compound-specific isotope analysis. For this, the Bligh-and-

Dyer extract of intact polar lipids was performed. PLFA were purified by liquid-liquid ex-

traction and column chromatography and derivatized to their fatty acid methyl esters 

(FAMEs). δ13C value of FAMEs was determined by gas chromatography-combustion-
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isotope ratio mass spectrometry (GC-C-IRMS) and 13C incorporation was calculated by 

mixing models with the respective background treatments as a reference.  

In addition, 13C incorporation into microbial cell wall monomers, the amino sugars, 

was measured in this thesis. However, GC-C-IRMS methods are not sufficiently reliable 

and existing liquid chromatography-oxidation-isotope ratio mass spectrometry methods 

were not able to determine the δ13C value of bacterial muramic acid. Therefore, a new 

instrument coupling, using an ion chromatograph (IC) instead of a classical liquid chro-

matograph for IC-O-IRMS measurements and amino sugar δ13C determination was es-

tablished in study 2 (see Figure S3). Thus, previous purification methods (Bode et al., 

2009; Glaser and Gross, 2005; Indorf et al., in press) had to be optimized and an IC-O-

IRMS measurement had to be elaborated (see study 2). Briefly, after acid hydrolysis, iron 

and salts were removed by precipitation (Zhang and Amelung, 1996) and neutral com-

pounds were separated from amino sugars by a cation exchange resin (Indorf et al., 

2013). Liquid chromatography was optimized (Bode et al., 2009) and 13C incorporation 

into microbial cell walls was calculated using the analogy of incorporation into PLFA.  

 

 

Fig. S3 Overview of the instrument coupling: Ion Chromatograph is shown on the left 
side with the pump, autosampler and detector-chromatography compartment. 
Connection to isolink occurs via a PEEK capillary with interposed colloid filter. 
Scheme of LC Isolink is adapted from Krummen et al. (2004). 

 

1.2.3.3 Radiochemical analyses 

Incorporation of 14C into the transformation products was performed after various 

sampling and extraction methods based on scintillation counting. For this purpose, solid 

samples were combusted and 14CO2 was trapped in NaOH. Bound 14C was determined 

by scintillation counting. 14C in soil extracts or suspensions could be directly measured 
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after mixing a subsample with a scintillation cocktail. Direct measurement of decomposed 
14CO2 was performed on experiments in well plates. Therefore, a CO2 trap based on 24-

segment filter paper was constructed above the 24-well plate. Construction of this trap 

was optimized and efficiency evaluated in study 5.  

 

1.2.4 The Divergence Index 

It remains challenging to compare the position-specific fate of individual LMWOS, 

especially if C is transformed into strongly differing C pools. To enable the comparison of 

the individual studies independent of the isotopic approach (13C or 14C) or experimental 

design used or the pool investigated, the Divergence Index DIi was introduced in this the-

sis (equation 1).  
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This index shows the fate of individual C atoms from the position i within a trans-

formation process relative to the mean transformation of the n total number of C atoms in 

the substance. Thus, a DIi of 1 means that the transformation of this C atom in the inves-

tigated pool corresponds to that of uniformly labeled substance (average of all C atoms of 

the substance). The DIi ranges from 0 to n, and values between 0 and 1 reflect reduced 

incorporation of the C into the investigated pool, whereas values between 1 and n show 

increased incorporation of the C atom into this pool as compared to the average. This 

index is not dependent on absolute amounts or proportions of the substance used in indi-

vidual processes. Therefore, it enables comparison of the distribution of individual C at-

oms over the whole range of investigated concentrations, the size of C pools, the process 

rates, etc. 
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1.3 Results and Discussion 

1.3.1 Overview: main results of the studies 

An overview over the objectives and the main results and conclusions of the indi-

vidual studies is presented in Table S3.  

 

 

Table S3 Title of the individual studies as well as their objectives and main conclusions. 
 

Study Objectives  Main Conclusions 

Study 1: 
Fate of low molecu-
lar weight organic 
substances in soil: 
from microbial up-
take to utilization 
and stabilisation 

• Overview of microbial metabolism 
 and C allocation within the microbial 
 metabolism 

• Identification of specifics in the 
LMWOS utilization of various mi-
crobial groups in soil 

• The entry steps of an 
LMWOS to the basic C me-
tabolism accounts for the 
fate of the 3 classes of 
LMOWS in soil 

Study 2: 
Improved δ13C 
analysis of amino 
sugars in soil by Ion 
Chromatography - 
Oxidation - Isotope 
Ratio Mass Spec-
trometry 

• Establishment of a new instrument 
coupling of ion chromatograph with 
isotope ratio mass spectrometers 
for routine measurements of water- 
dissolvable metabolites by IRMS 

• Development of an IC-O-IRMS 
method for parallel amino sugar 
quantification and δ13C determina-
tion 

• IC-O-IRMS enables reliable 
and routine measurements 
of amino sugars 

• Parallel quantification and 
δ

13C determination of basic 
and acidic amino sugars is 
possible in soils 

• IC-O-IRMS has great advan-
tages compared to classical 
LC-O-IRMS 

Study 3: 
Biochemical path-
ways of amino acids 
in soil: Assessment 
by position-specific 
labeling and 13C-
PLFA analysis 

• Identification of transformation 
pathways of two representative 
amino acids (alanine and gluta-
mate) 

• Assessment of specifics in amino 
acid metabolism of individual mi-
crobial groups in soils 

• Basic C metabolism ac-
counts for the majority of the 
observed alanine transfor-
mations 

• Incorporation of glutamate 
C-2 reflects specific micro-
bial pathways  

Study 4: 
Biogeochemical 
transformations of 
amino acids in soil 
assessed by posi-
tion-specific labeling 

• Effect of concentration (i.e. C avail-
ability) on alanine transformations 

• Kinetics of sorption, extracellular 
transformation and microbial uptake 
and utilization of alanine 

 

• Biotic processes outcompete 
sorption in soils 

• Extracellular LMWOS trans-
formations are only relevant 
at low concentrations or in 
special microhabitats 

• Concentration strongly af-
fects the metabolic pathway 
and fate of alanine C in soils 

Study 5: 
Sorption affects 
amino acid pathways 
in soils: Implication 
from position-
specific labeling of 
alanine 

• Microbial availability of LMWOS 
sorbed to various sorbents 

• Effect of sorption on microbial utili-
zation and transformation pathway 
of LMWOS 

 

• Transformation of sorbed 
LMWOS follows classical 
biochemical pathways: no 
abiotic transformations occur 

• C allocation through specific 
pathways in microbial me-
tabolism is strongly affect by 
the sorption mechanism and 
bioavailability of LMWOS 
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Study 6: 
Biochemistry of hex-
ose and pentose 
transformation in soil 
analyzed by posi-
tion-specific labeling 
and 13C-PLFA 

 

• Tracing metabolism pathways for 
hexoses and pentoses in soils 

• Identification of specifics in bacterial 
and fungal metabolism in the use of 
monosaccharide C for PLFA forma-
tion 

 

• Glycolysis and pentose 
phosphate pathway as well 
as backflux could be traced 
in soils in situ 

• Glucose – as a ubiquitous 
substrate – is spread over 
entire metabolism, inten-
sively recycled and a large 
portion is used for microbial 
biomass formation 

Study 7: 
Metabolic pathways 
of fungal and bacte-
rial amino sugar 
formation in soil 
assessed by posi-
tion-specific 13C-
labeling 

• Reconstruction of the main path-
ways for amino sugar biosynthesis 
in soils 

• Identification of specifics in bacterial 
and fungal metabolism during cell 
wall formation 

 

• Formation of amino sugars 
follows several pathways: 1) 
direct intact glucose utilia-
tion, 2) glycolysis and back-
flux and 3) pentose phos-
phate pathway and backflux  

• Fungi showed a lower meta-
bolic activity than bacteria in 
maintenance metabolism 

Study 8: 
Formation and trans-
formation of fatty 
acids in soils as-
sessed by position-
specific labeling of 
precursors 

• Reconstruction of the main path-
ways for fatty acid formation and 
transformation in soils 

• Identification of microbial group 
specific fatty acid metabolism 

• Assessment of microbial transfor-
mation of the free fatty acid pool in 
soils 

 

• Acetate 13C was rarely used 
for building of fatty acid 
backbones but mainly for 
elongations or introductions 
of functional groups 

• Fatty acids were intensively 
modified in soils according to 
the demand of the microbial 
community which has to be 
considered for paleoenvi-
ronmental applications 

Study 9: 
Organic N uptake by 
plants - Reevalu-
ation by position-
specific labeling of 
amino acids 

• Determination of the overestimation 
of uniformly labeling approaches 

• Evaluation of the relevance of intact 
amino acid uptake for the N nutri-
tion of agricultural plants 

 

• Quantification of intact 
amino acid uptake based on 
uniform labeling causes an 
1.2-3fold overestimation 

• Microbial utilization strongly 
dominated the fate of or-
ganic substances in soils  

• The majority of amino acid 
uptake by plants was ex-
plained by passive uptake of 
microbial transformation 
products 

 

1.3.2  Determination of metabolic pathways of amino acids, 

monosaccharides and organic acids  

1.3.2.1 Similarities and differences of individual LMWOS  

Study 1 aimed at investigating the similarities and differences of the fate of the ap-

plied LMWOS, to gain insights in their microbial utilization and decomposition. The per-

centage of 13C-LMWOS remaining in the SOM and incorporated into the microbial bio-

mass pool after 3 days was similar for the substances investigated (Figure S4). However, 

after 10 days, significant differences between the incorporation of individual substances 
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arose. The initial rapid uptake was quite similar for all investigated LMWOS as they are 

ubiquitous substrates for many members of the microbial community. However, intracel-

lular metabolism may have accounted for the observed differences in the fate of 

LMWOS-C in soil and this effect became evident after 10 days of continued transforma-

tion of the LMWOS (Figure S4). 

 

 

Fig. S4 13C recovery (in % of applied 13C) from six LMWOS in soil, microbial biomass 
and PLFA, 3 and 10 days after addition. Letters indicate significant differences 
in 13C incorporation of the individual substances if occuring.  

 

LMWOS specifics of incorporation into the microbial biomass depend on their entry 

point into the basic C metabolism of microorganisms (Figure S5): Microbial uptake of 

both amino acids was similar on day 3, but much less glutamate C than alanine C re-

mained in microbial biomass on day 10 (Figure S4). This reflects the fact that substrates 

with direct incorporation into the oxidizing citric acid cycle (Figure S5), such as glutamate, 

are preferentially oxidized for energy production compared to LMWOS, like alanine, 

which enter glycolysis. The high and rapid glucose uptake is connected to the fact that 

glucose is the most abundant sugar in soils (Derrien et al., 2006; Derrien et al., 2004; 

Fischer et al., 2010a). In comparison to amino acids and carboxylic acids, glucose was 

preferentially incorporated into microbial biomass. This reflects the preference of glycoly-

sis substrates for anabolic utilization compared to catabolism. For carboxylic acids, the 
13C incorporated in microbial biomass declined by a factor of two from day 3 to day 10, 

which also reflects the preferred catabolic oxidation of substances entering the citric acid 

cycle (Figure S5).  

Incorporation of LMWOS 13C into microbial membrane lipids, the PLFA, enables the 

identification of preferences of individual functional microbial groups for certain substrates 
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(Waldrop and Firestone, 2004). The incorporated 13C portion ranged between 0.8 and 2% 

of the initial applied tracer and no differences were detected between amino acids, 

monosaccharides and acetate. However, up to 8% of the applied palmitate was incorpo-

rated in PLFA. This shows that, due to economic reasons in the construction of complex 

cellular compounds, microorganisms prefer the most-direct precursor for the formation of 

cellular compounds (Lengeler et al., 1999). 

 

Fig. S5 Primary metabolic pathways of the six representatives of three LMWOS classes 
(amino acids (blue), sugars (green) and carboxylic acids (red)). Thick arrows re-
flect the entry points of LMWOS in the metabolic pathways; black fine arrows 
show the basic C metabolism and shaded arrows reflect anabolic pathways for 
the formation of cellular compounds. 

 

Study 1 revealed that the fate of individual LMWOS in soil was clearly affected by 

the C partitioning between catabolism and anabolism within microbial cells. Study 1 al-

lowed the conclusion that the entry steps of a LMWOS to the basic C metabolism and 

consequently the main transformation pathway of this LMWOS accounts for the fate of 

LMWOS C in soil. Substrates entering at glycolysis were preferentially incorporated into 

microbial biomass, whereas LMWOS entering the citric acid cycle were preferentially 

mineralized. However, based on the transformation of uniformly labeled substances the C 

allocation through the metabolic pathways shown in Figure S5 could not finally be proven 

but only supposed. Therefore, this basic investigation was followed by several studies 
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based on position-specific labeling, which enabled the identification of specific transfor-

mation steps and the reconstruction of underlying metabolic pathways. 

 

1.3.2.2 The main pathways for LMWOS metabolization by soil microorganisms  

General pathways for LMWOS metabolization could be identified by the incorpora-

tion of individual C positions of the six applied LMWOS into the microbial biomass – an 

approach commonly called metabolic tracing (Dijkstra et al., 2011a). Recent studies fo-

cused on glucose (Scandellari et al., 2009) and pyruvate (Dijkstra et al., 2011a) to trace 

the metabolism. In this thesis, a broader spectra of metabolic tracers were used, which 

entered at various steps of basic C metabolism (see Figure S5) to enable a more detailed 

look at specific steps of the microbial metabolic network. 

Study 3 revealed that the carboxyl C of both amino acids is oxidized rapidly in soils 

(90% within 3 days), whereas methyl C from residual alanine and glutamate molecules 

showed lower mineralization (<70% within 3 days), but within the C remaining in soil a 

preferential incorporation into microbial biomass compounds (>40% within 3 days) was 

observed. This allows the general conclusion that highly oxidized, functional groups are 

more prone to mineralization in soils, whereas more reduced C groups like methyl groups 

are more likely to be stabilized in soils.  

The underlying reason for these results can be found in microbial metabolism: In 

accordance with previous studies based on pyruvate (Dijkstra et al., 2011a; Wegener et 

al., 2010), alanine C-1 was decarboxylated by pyruvate dehydrogenase. Therefore, 

alanine (in analogy to pyruvate) is an appropriate tracer in soil for pyruvate dehydro-

genase activity: This central step in C metabolism leads to a loss of alanine C-1 position 

and transfers C from the glycolysis to the citric acid cycle precursor acetyl-CoA – and 

consequently to an oxidizing, catabolic pathway (Figure S6, middle). Within the citric acid 

cycle, alanine C-2 and C-3 could be fully oxidized. However, a complete oxidation of the 

remaining C-2–C-3 - backbone does not necessarily occur. C-2 would be oxidized by an 

immediate step, whereas C-3 can cycle several times through the citric acid cycle. If C is 

allocated from the citric acid cycle to anabolic pathways, the C-3 could be transferred to 

various microbial biomass compounds (Keseler et al., 2009, Caspi et al., 2008). This fur-

ther use of citric acid cycle metabolites (containing only C-3) in anabolism was observed 

in study 4: Preferential C-3 incorporation (compared to C-2) in various microbial metabo-

lites, e.g. the ligand-exchangeable metabolite fraction (see study 4, Figure 5), was traced. 

Results of alanine were confirmed by the position-specific fate of glutamate (Study 

3) – an amino acid which (after deamination to oxoglutarate) directly enters the citric acid 

cycle. The immediate oxidation step in the first cycle causes glutamate C-1 oxidation, 
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whereas C-2 could be allocated to various microbial metabolites. Besides glutamate, ace-

tate (see study 8) also enters the citric acid cycle and shows a similar pattern. The first 

oxidation step causes loss of C-1 and, as a result, the preferential incorporation of C-2 

into microbial products. These results show that the citric acid cycle affected the trans-

formation of several LMWOS. Consequently, various LMWOS can be used to follow the 

allocation of C from the citric acid cycle towards anabolism. These analogies in the fate of 

molecule positions from individual LMWOS due to pyruvate dehydrogenase oxidation and 

citric acid cycle are summarized in Table S3. 

 

Fig. S6 Basic C metabolism of heterotrophic organisms: colored arrows show the fate of 
C from individual molecule positions of four LMWOS (glucose, alanine, acetate 
and glutamate). Main oxidizing steps causing the preferential oxidation of spe-
cific C positions and consequently a minor incorporation in microbial biomass 
are (from up to down): 1) oxidizing branch of the pentose phosphate pathway, 
2) the pyruvate dehydrogenase reaction and 3) oxidation within the citric acid 
cycle.  

 

Study 6 revealed that glucose transformations also allowed the reaction of pyruvate 

dehydrogenase to be observed, but hardly those of the citric acid cycle. Glycolysis splits 
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hexoses between C-3 and C-4 and results in two symmetric trioses: C-1 to C-3 and C-6 

to C-4. If glycolysis and pyruvate dehydrogenase oxidation were the only pathway to use 

glucose (Table S4), this would result in a symmetry in the position-specific fate of individ-

ual glucose C positions with C-6 = C-1 ~ C-5 = C-2 > C-4 = C-3 = 0 (Scandellari et al., 

2009) (Figure 5 in study 6). Preferential incorporation of C-6 (corresponding to C-3 of 

alanine, see Table S3) compared to preferential oxidation of C-4 (corresponding to C-1 of 

alanine, see Table S3) was observed in study 6 and confirms the transformation of glu-

cose by glycolysis and pyruvate dehydrogenase.  

Table S4 Analogies in the behavior of individual C positions of LMWOS entering the main 
branch of the basic C metabolism (glycolysis, pyruvate dehydrogenase and cit-
ric acid cycle). Analogies were concluded from the basic metabolic pathways 
shown in Figure S6. Positions within one column are equivalent within these 
pathways. 

LMWOS Individual C positions 

glucose C-1 = C-6 C-2 = C-5 C-3 = C-4 

alanine C-3 C-2 C-1 

acetate C-2 C-1  

glutamate C-2 C-1  

 

Two conclusions of study 6 – using monosaccharides as metabolic tracers – have 

to be considered for the further application of metabolic tracing in soils: 

1) Glucose transformation did not reflect the classical fingerprint of citric acid cycle me-

tabolism (i.e. a preferential incorporation of C-6 and C-1 compared to C-5 and C-2). As 

too many other pathways branch off from glycolysis to citric acid cycle, these side 

branches overprint the citric acid cycle transformations (Scandellari et al., 2009). 

Therefore, tracers which directly enter a pathway are advantageous, if specific path-

ways should be traced, especially in media as complex as soils.  

2) Classical fingerprints (e.g. preferential oxidation of glucose C-4) of specific pathways 

were lost from day 3 to day 10, especially in the case of monosaccharides (study 6). 

This showed the parallel existence of anabolic and catabolic pathways in soils (Derrien 

et al., 2007). Sampling times after tracer application therefore have to be considered: 

Short intervals have to be chosen to trace one-directional pathways (≤ 3 days). In con-

trast, longer time intervals allow an integrated view on C allocation into cata- and 

anabolism. 

In general, the basic biochemical pathways led to a specific fate of C from individual 

molecule positions. Further, specific pathways imply a position-specific fate which devi-

ates from the pattern expected from the transformations of basic C metabolism (Figure 

S6 and Table S4). This was, for example, shown by a preferential C-1 oxidation com-
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pared to C-6 of glucose (study 6 and study 7), which reflects glucose transformation by 

the pentose phosphate pathway (see Figure S6). 

To summarize, the basic C metabolism as well as some side branches could be 

traced by the chosen spectra of LMWOS within this thesis and fundamentals for a sys-

tematic application of position-specific labeling in soil science were investigated. Glucose 

and ribose transformations were characterized by glycolysis and pentose phosphate 

pathway. Alanine transformation was dominated by pyruvate dehydrogenase oxidation. 

Acetate, palmitate and glutamate directly entered the citric acid cycle and hence could be 

used to trace catabolic reactions as well as anabolic pathways starting from citric acid 

cycle intermediates. Consequently, the basic C metabolism (and its oxidation steps) de-

termined the fate of all investigated LMWOS in soils. Although further abiotic or biotic 

sinks and transformations of LMWOS are described in the literature (sorption, abiotic 

condensation reactions, etc.), the microbial metabolism dominated the results of these 

studies overall: Transformations of LMWOS occurred mainly by microbial metabolism 

and position-specific 13C-labeling allowed the individual transformation steps to be traced. 

 

1.3.2.3 Metabolic pathways for the formation of specific cellular compounds  

Incorporation of individual LMWOS positions into microbial biomass enabled spe-

cific oxidation steps to be traced as individual positions get lost e.g. by pyruvate dehydro-

genase oxidation or citric acid cycle oxidation (Figure S6). Moreover, if specific anabolic 

pathways, i.e. the formation of new cellular compounds from applied LMWOS, should be 

traced, the direct incorporation of individual molecule positions into these compounds has 

to be determined (Scandellari et al., 2009, Knowles et al., 2010). This requires the com-

bination of position-specific labeling of the LMWOS with compound-specific isotope 

analysis (CSIA) of the newly formed cellular products. Within this thesis, this combination 

was performed for the first time in soil science. 

Firstly, phospholipid fatty acid formation was traced by CSIA of microbial PLFA in 

studies 3, 6 and 8 for each of the applied LMWOS. Fatty acid formation branches off from 

acetyl-CoA (Figure S6). Therefore, all LMWOS that enter glycolysis pass the pyruvate 

dehydrogenase oxidation before entering the fatty acid formation pathway (Scandellari et 

al., 2009). This was proven by various studies within this thesis, for example: 

1) Study 3: no allocation of alanine C-1 into the PLFA 

2) Study 6: no allocation of glucose C-4 into the PLFA  

In study 3, fatty acid formation from glutamate a more oxidized, citric acid cycle metabo-

lite was determined. Allocation of C from the citric acid cycle to anabolic pathways like 

gluconeogenesis and fatty acid formation required special pathways, which are only used 
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under special conditions, e.g. C deficiency (Knowles et al., 2010). The glyoxolate bypass 

may serve as an example (Caspi et al., 2008). The allocation of glutamate C-2 into PLFA 

revealed such special, anabolic pathways which are indicative for certain ecophysiologi-

cal conditions.  

Further insights into an anabolic pathway can be gained if its direct precursors are 

labeled. Intact incorporation of that precursor (which leads to an identical incorporation of 

all positions) can be distinguished from the incorporation of various metabolites of C me-

tabolism (Sauheitl et al. 2009). The latter leads to the preferential incorporation of non-

oxidized positions into newly formed compounds. This was performed for two compound 

classes within this thesis: glucose was used as a direct precursor of amino sugars in 

study 7 and acetate and palmitate were applied as direct precursors of fatty acids in 

study 8. 

Study 7 revealed that although glucose is a direct precursor for amino sugar syn-

thesis, it is only partially used directly for amino sugar formation. Up to 55% of the 13C 

that is incorporated into amino sugars is derived from glucose metabolites; e.g. glucose 

was transformed via glycolysis and thereafter glucose C was transferred back via glu-

coneogenesis to the amino sugar formation pathway (Figure S6). This showed that oxi-

dizing catabolic pathways occur in parallel with anabolic pathways in soils, which was 

similarly observed by Derrien et al. (2007).  

In study 8, acetate and palmitate were used as precursors for PLFA formation. 

Palmitate incorporation into PLFA was significantly higher than acetate incorporation 

(study 8, Figure 1). Consequently, an already existing fatty acid was a preferred precur-

sor for direct PLFA formation to avoid additional costs for the formation of new monomers 

(Lengeler et al., 1999). However, the incorporated palmitate is successively modified ac-

cording to the fatty acid demand of the microbial community (Figure S7). During 10 days, 

65% of the incorporated palmitate was transformed to various fatty acids. Within these 

transformations, desaturation was performed faster than elongation or branching. In con-

trast, acetate was rarely used to form completely new fatty acids but was mainly a pre-

cursor for the transformation of existing fatty acids. For instance, acetate C was intro-

duced by elongation or branching into the PLFA. 

Palmitate as well as acetate labeling revealed a high internal turnover of fatty acids 

in soil (Lichtfouse et al., 1995). Therefore, C might be recycled several times within a 

metabolic side branch but by undergoing continued transformations. These transforma-

tions of bound and free fatty acids cause consequences for the utilization of fatty acids as 

plant and microbial biomarkers. If the uptake and transformation of long-chain, plant-

derived fatty acids occur in a similar range in soils as for palmitate, then the interpretation 
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of plant-derived fatty acid fingerprints and their isotope signature for paleoenvironmental 

studies is hampered. 

 

 

Fig. S7 Metabolic pathways of fatty acid formation from acetate and fatty acid transfor-
mations of palmitate in soil. 

 

1.3.3 Identification of specific metabolic pathways  

1.3.3.1 Specific pathways of individual members of the microbial community 

in soils 

The investigated compound classes of microbial products are on the one hand spe-

cific for a certain biosynthetic pathway within microbial cells. On the other hand, PLFA 

and the amino sugars are also biomarkers for individual microbial groups in soils. This 

enables the identification of specific pathways of individual members of the soil microbial 

community.  

Amino sugars enable fungi and bacteria to be distinguished between (Engelking et 

al., 2007, Glaser et al., 2004): In study 7, bacterial muramic acid showed the higher dy-

namics of 13C replacement of the cell walls (study 7, Figure 3). In addition the DI of indi-

vidual C positions changed strongly from day 3 to day 10 for bacterial muramic acid but 

remained constant for fungal galactosamine (study 7, Figure 2). This reflects a more ac-

tive maintenance metabolism in bacteria, which caused an increasing incorporation of 

glucose metabolization fragments within a period of 10 days. Therefore, this study proved 

for the first time that differences in the C turnover in the slow- and fast-cycling branch of 

soil food webs can be attributed to metabolic processes (Moore et al., 2005).  

A more detailed fingerprint of the microbial community, especially for the prokary-

otic groups, can be gained by individual PLFA (MooreKucera and Dick, 2008). Combining 

statistical grouping of the fatty acids with known fatty acid fingerprints enables functional 
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microbial groups to be distinguished in soil (studies 3, 6 and 8). The DI revealed for glu-

tamate incorporation into PLFA that two functional microbial groups – gram-positive II 

and fungi – showed a specific C allocation: Glutamate C-2 was transferred from the citric 

acid cycle towards fatty acid synthesis. Special reactions (e.g. the glyoxylate bypass) are 

necessary to avoid the oxidation of glutamate C-2 (Caspi et al., 2012). None of the other 

microbial groups showed C-2 incorporation into PLFA (see study 3, Figure 4). Conse-

quently, this was the first time that specific pathways of individual members of the soil 

microbial community could be traced in soils in parallel.  

 

1.3.3.2 Pathways under various concentrations of LMWOS 

C allocation within metabolic pathways is strongly affected by environmental condi-

tions. The bioavailability of C sources, especially LMWOS, is one of the main factors con-

trolling the state of the microbial community - from maintenance to growth 

(Blagodatskaya et al., 2007, Fischer et al., 2010b; Schneckenberger et al., 2008). In 

study 4, alanine transformations were investigated within an alanine concentration gradi-

ent representing the full range of concentrations in soil: from bare soil (0.5 µM) to hot 

spots (5 mM).  

At low alanine concentration, uptake was described by Michaelis-Menten kinetics, 

whereas with increasing concentration, linear kinetics dominated microbial uptake (Jones 

and Hodge, 1999). This shift in uptake kinetics revealed that two mechanisms were re-

sponsible for the microbial uptake: An unsaturable, unspecific uptake of intact alanine at 

hot-spot concentrations and specific, active uptake mechanisms at low alanine concen-

trations. The DI of the non-extractable pool of microbial transformation products (contain-

ing macromolecules as well as lipids) reflected additional shifts in the intensity of the 

alanine metabolism pathways (Figure S8).  

A significantly increased incorporation of C-1 under lowest C availability may indi-

cate C starvation pathways e.g. anapleurotic pathways. A convergence of the DI of C-2 

and C-3 for highest alanine concentration is characteristic of many anabolic pathways for 

biomass formation under growth conditions (e.g. lipid biosynthesis from alanine for the 

formation of new cell membranes: see figures S5 and S7). 
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Fig. S8 Concentration-dependent position-specific transformation index DIi (N=6, ± 
SEM) of alanine C position incorporated into the not-extractable pool of micro-
bial biomass compounds. 

These and further results from study 4 indicate an altered C allocation into individ-

ual pathways that is dependent on substrate availability: from anabolic pathways charac-

teristic for C deficiency via maintenance metabolism towards pathways common for 

growing cells (Figure S9).  

 

 

 

Fig. S9 General biochemical pathways of amino acids metabolization in soil as depend-
ing on alanine availability. Line width represents the qualitatively estimated rela-
tive shifts of alanine C between certain pathways dependent on the alanine 
concentration. 
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1.3.3.3 Pathways of sorbed LMWOS 

Sorption is one of the most likely processes causing the long-term stabilization of C 

in soils (Gonod et al., 2006, Duemig et al., 2012). Nevertheless, a part of the sorbed 

LMWOS remains bioavailable: Study 5 showed for alanine that at least 20-50% of the 

mineral-sorbed alanine was microbially metabolized. However, sorption reduced the 

availability and consequently affected transformation pathways (Jones and Edwards, 

1998). In study 5, transformations of position-specifically labeled alanine, sorbed to five 

sorbents (two iron oxides with different crystalline structure: goethite and hematite; two 

clay minerals with 2:1 layers – smectite, and 1:1 layers – kaolinite; and active coal) were 

investigated. Goethite and active coal showed the highest amount of sorbed alanine 

(~45% of added alanine), and the lowest portion of the sorbed alanine C was microbially 

utilized (26 and 22%, respectively), whereas clay minerals showed lower sorption (10-

26% of added alanine) and a higher portion that was microbially available (30-35%). 

The stronger the sorption by the individual sorbent, the lower the microbial utiliza-

tion was (Jones and Hodge, 1999). The fate of individual molecule positions reflected 

that, at least for the four mineral phases, alanine was processed by the classical bio-

chemical pathways: deamination, decarboxylation of C-1 by pyruvate dehydrogenase and 

further oxidation of C-2 and C-3 in the citric acid cycle (Djikstra et al., 2011). However, 

the intensity of microbial pathways depended on the bioavailability of the sorbed sub-

strate: the less alanine was accessible, the less was oxidized by catabolism and the more 

alanine C was used for anabolism, i.e. the formation of microbial biomass.  
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Fig. S10 Ratio of C-1 to (C-2+C-3)/2 respiration of alanine C for the 5 applied sorbents 
calculated from the fitted, position-specific oxidation rate. 
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The ratio of C-1 oxidation by pyruvate dehydrogenase versus oxidation of C-2 and 

C-3 in the citric-acid cycle (Figure S10) depended on the microbial availability of alanine: 

High availability due to fast desorption of cation-exchangeable bound alanine caused an 

initial peak in C-1 oxidation by glycolysis for the two clay minerals and an abrupt shift to 

oxidation via the citric acid cycle. However, low microbial availability of alanine sorbed to 

iron minerals led to a parallel oxidation of all three positions by glycolysis and citric acid 

cycle (represented by the C-1/C-2,3 ratio in Figure S10). This slower oxidation rate was 

associated with an increase in C allocation towards anabolism (Djikstra et al., 2001) (Fig-

ure S11). 

 

Fig. S11 Metabolic pathways of alanine sorbed on clay minerals (smectite and kaolinite), 
iron oxides (hamatite and goethite) and active coal. Detailed explanations in 
text. Various colors show the pathways of C from individual positions of alanine. 
Line width represents the qualitatively estimated relative shifts in the fate of 
alanine C positions between certain pathways dependent on the sorbent class. 
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Alanine sorbed to active coal showed a deviating behavior with preferential stabili-

zation of C-3 and oxidation of C-1 and C-2 (study 5, Figure 3 and 4). This indicates that in 

addition to basic microbial mechanism, further stabilization and modified transformations 

of sorbed alanine occured, e.g. by exoenzymatic degradation (Lehmann et al., 2011). 

Potential desorption processes and pathways are shown in Figure S11. In general, posi-

tion-specific labeling revealed that the fate of amino acid C in soil is strongly affected by 

sorption: The stronger the sorption, the more metabolized LMWOS C is allocated into 

microbial biomass compounds (Figure S11). 
 

1.3.3.4 Extra- versus intracellular transformation pathways 

Besides intracellular microbial pathways, extracellular transformations may also 

play an important role in LMWOS transformations in soils, especially in microhabitats 

where intact cells have no access (von Luetzow et al., 2006). To distinguish extra- and 

intracellular transformation pathways, selective inhibition of cellular, energy-dependent 

pathways was performed in study 4 (Figure S12).  
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Fig. S12 Removal of alanine from soil solution by extra- and intracellular processes with-
out inhibition (filled symbols, dashed line) and by extracellular transformation in 
respiration-inhibited treatments (open symbols, dotted line); Experimental points 
(means ± SEM, N=6) and fitted curves based on an exponential utilization 
model are presented. 

 

This approach could prove the existence of extracellular transformation of LMWOS 

in soils: Alanine was decomposed by a stepwise extracellular oxidation starting from the 
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carboxylic group, presumably by rather unspecific exoenzymes (Hofrichter et al., 1998). 

However, comparing the kinetics of extra- versus intracellular processes (Figure S12) 

revealed that cellular uptake of LMWOS always out-competed extracellular transforma-

tions, which are quantitatively relevant only at very low alanine concentrations or in spe-

cific microhabitats. 

 

1.3.4 Kinetics and ecological relevance of competing sinks 

for LMWOS 

1.3.4.1 Sorption versus microbial utilization 

As position-specific labeling enables transformation pathways in soils to be distin-

guished, it can be used to assess the relevance of individual pathways and their fluxes. 

Sorption, as an LMWOS sink in soils, can interact and compete with microbial utilization 

(Fischer et al., 2010b; Kaiser and Kalbitz, 2012).  

Study 4 assessed the sorption of alanine in sterilized soil and found that sorption 

occured as intact molecules and no abiotic cleavage of alanine was detected (in contrast 

to results of Wang and Huang (2005)). In study 5, the microbial utilization of sorbed 

alanine was assessed: Desorption, at least from mineral phases, occurred mainly as in-

tact molecules, too. The observed position-specific transformations in both studies were 

mainly characterized by the microbial metabolism. Therefore, sorption and desorption do 

not directly contribute to the transformation of LMWOS, but only prevent translocation 

(Kaiser and Kalbitz, 2012) or microbial transformation. If kinetics of sorption and microbial 

uptake were compared (study 4), microbial utilization outcompeted sorption in soils. 

 

1.3.4.2 Plant uptake versus microbial utilization 

Besides microorganisms, plants are also known to have the ability for LMWOS up-

take by their roots (Fischer et al., 1998). The relevance of this process is still in question 

for many ecosystems due to the effective competition of microorganisms for LMWOS 

(Hodge et al., 2000; Jones et al., 2005a). The main problem of evaluating the uptake of 

intact amino acids is methodological constraints: The commonly used dual-isotope label-

ing approaches coupled with bulk isotope measurements cause an overestimation of the 

calculated intact amino acid uptake (Sauheitl et al., 2009). Study 9 evaluated the intact 

uptake of the amino acid alanine by plants using position-specific labeling. Consequently, 

intact uptake could be distinguished from the uptake of transformation fragments. Posi-

tion-specific 14C-labeling revealed that a minor portion (less than 1.5% of the applied 
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amino acids) was taken up intact, whereas the majority of alanine (~98.5%) was used by 

soil microorganisms (Figure S13). Uptake calculated from uniform labeling reflected an 

overestimation for the factor 1.2-3 of the quantified intact uptake. 

Preferential uptake of C-3 by all three plant species indicated that the uptake of mi-

crobial transformation fragments occurred. Previous studies in this thesis revealed that 

microbial biomass compounds are also characterized by a dominance of alanine C-3 

(see study 3 and 4). Consequently, microbial uptake and transformation can produce 

mineralized N as well as fragments of the C skeleton, which were partially available in the 

soil solution for root uptake (Jones et al., 2005). Labeling with the N-free LMWOS acetate 

showed a similar uptake of N-containing and N-free LMWOS (< 2% of the applied 14C). 

This indicated that plant uptake of LMWOS mainly occurred via passive uptake mecha-

nisms. These passive mechanisms can also account for the unspecific uptake of micro-

bial transformation products. In summary, study 9 suggests that N uptake from organic 

sources is of minor importance for N nutrition of agricultural plants and even more for the 

fate of LMWOS in soils (Jones et al., 2005, Hodge et al., 2000).  

 

 

Fig. S13 Illustration of the fate of alanine (numbers represent % of applied tracer: this 
can either be taken up intact or degraded/mineralized to fragments and subse-
quently incorporated into microorganisms or plant biomass).  
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1.4 Conclusions  

The high flux of C through the pool of LMWOS clearly defines them as a crucial C 

pools in the SOC cycle. Many previous studies have analyzed the rates and turnover of 

LMWOS in soil, but the underlying mechanisms and pathways of C transformation of 

LMWOS remains unknown. Therefore, these studies were focused on biogeochemical 

pathways of three main groups of LMWOS in soil: amino acids, monosaccharides and 

organic acids. Tracing their transformations was achieved by combining for the first time 

position-specific 13C-labeling with compound-specific isotope analysis (CSIA). 

The application of individual LMWOS revealed that entry steps into basic C me-

tabolism account for specifics in the C partitioning between microbial cata- and anabo-

lism: substrates entering citric acid cycle were preferentially mineralized (>80% in 10 

days) whereas e.g. monosaccharides entering glycolysis were preferentially allocated to 

anabolic pathways and incorporated into microbial biomass (less than 70% mineralized in 

10 days).  

Position-specific 13C- and 14C-labeling provided a unique submolecular approach to 

reconstruct the main pathways of C transformation in soil and their specifics in individual 

microhabitats (e.g. at mineral surfaces or at the plant-root interface). The divergence in-

dex (DI) was developed and proven to be a valuable tool to compare the position-specific 

fate of individual substances independent of the used isotopic approach or experimental 

design used or the pool investigated. 13C incorporation in various microbial compound 

classes was traced by compound-specific isotope analysis: fatty acids by GC-C-IRMS 

and amino sugars by IC-O-IRMS. Therefore, a new instrument coupling was applied and 

purification and measurement methods for soil amino sugar δ13C analysis were estab-

lished and evaluated. 

Basic microbial C metabolism with glycolysis, pyruvate dehydrogenase oxidation 

and citric acid cycle could be traced in soil under field and laboratory conditions. Oxidi- 

zing, catabolic pathways are ongoing in soils in parallel to constructing, anabolic path-

ways (like gluconeogenesis): for example, up to 55% of the glucose allocated to amino 

sugar synthesis was not intact glucose but derived from glucose metabolites allocated by 

gluconeogenesis backflux towards amino sugar formation. Consequently, substrates en-

tering glycolysis are intensively recycled within the cellular C pool, which was shown by a 

continued decrease of their divergence index. 

Specific tracers for individual biosynthetic pathways were identified, which allowed 

transformations to be followed within these side branches of the basic C metabolism: 1) 

the pentose phosphate pathway was detected by a combination of hexose and pentose 
13C labeling; and 2) turnover within the cellular lipid pool was proven by 13C labeling of 



Extended Summary 

 33 

short- (acetate) and long-chain (palmitate) precursors of PLFA. Within 10 days, 65% of 

the incorporated palmitate was transformed (e.g. by desaturation, elongation or branch-

ing) to other fatty acids and the fingerprint of the palmitate 13C-derived fatty acids ap-

proached the PLFA pattern of the present microbial community. Knowledge of these fast 

fatty acid transformations is crucial for the application of fatty acid fingerprints and their 

isotopic values for palaeoenvironmental reconstructions. 

An intensive turnover was not only shown for lipids but also for cell wall polymers. 

Metabolic recycling activity and turnover was much higher for bacteria than for fungi, 

which was proven by both biomarker groups – PLFA and amino sugars. Therefore, this 

thesis experimentally revealed one underlying, mechanistic reason for the previously ob-

served specifics in C turnover of the slow (fungi-based) and the fast (bacteria-based) 

cycling branch of the soil food web. For the first time, position-specific labeling was cou-

pled with compound-specific isotope analysis of microbial biomarkers. This combination 

provides a novel opportunity to trace simultaneous, biosynthetic pathways of individual 

microbial groups in diverse microbial communities of soils.  

Furthermore, variations of environmental factors, like substrate concentration, were 

identified as the main regulatory factors for C allocation within microbial metabolism: 

Concentration gradients characteristic for soils from C-poor bulk soils to hotspots in-

volved a shift of C allocation within metabolic pathways from C starvation pathways via 

maintenance pathways towards pathways that are characteristic for cells under growth 

conditions. Sorption, as a soil-specific process reducing the bioavailability of a substrate, 

affected microbial metabolism: the stronger a substrate is sorbed, the more of its C is 

allocated towards anabolism, e.g. is found in the microbial products. Understanding these 

shifts in metabolic pathways is crucial for the SOC cycle, as C allocation towards anabo-

lism is the prerequisite for the formation and stabilization of microbially-derived SOM. 

Three soil-specific processes were traced in parallel with microbial utilization: sorp-

tion, exoenzymatic LMWOS utilization and plant uptake. Sorption, as well as desorption, 

occurred as intact molecules and did not account for LMWOS transformations. Exoen-

zymes caused a stepwise oxidation of the LMWOS C backbone. However, their kinetics 

could not compete with microbial uptake systems. Consequently, extracellular transfor-

mations can only be relevant in specific soil microhabitats, which are inaccessible for 

microorganisms. Intact uptake of amino acids by plants was assessed by dual-isotope 

position-specific 13C- and 15N-labeling. This new approach revealed the overestimation of 

intact amino acid uptake due to methodological constraints of previous studies and 

showed that less than 1.5% of the applied amino acids were taken up intact by plants. 

Consequently, none of the investigated abiotic or biotic processes could compete with 
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microorganisms for LMWOS utilization and the microbial metabolism determines the fate 

of LMWOS C in soils.  

This thesis established position-specific 13C- and 14C-labeling as a unique tool to 

trace LMWOS transformation processes in soils. Using this novel approach, the base for 

detailed mechanistic understandings of microbial LMWOS transformations and subse-

quent SOM formations were created. Combination of position-specific labeling with dual-

isotope labeling and the improvement of CSIA towards the position-specific detection of 

the isotope label within the newly formed transformation products will be a future task. 

These techniques will further deepen the understanding of microbial C transformations 

and their controlling factors and improve prediction as well as manipulation of C alloca-

tion and stabilization in soils. 
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Abstract 

Microbial uptake and utilization are the main transformation pathways of low mo-

lecular weight organic substances (LMWOS) in soil, but detailed of transformations is 

strongly limited. As various LMWOS classes enter biochemical cycles at different steps, 

we hypothesize that the percentage of their carbon (C) used by microbial biomass and 

consequently stabilization in soil is different.  

Representatives of the three main groups of LMWOS: amino acids (alanine, gluta-

mate), sugars (glucose, ribose) and carboxylic acids (acetate, palmitate) – were applied 

at naturally-occurring concentrations into a loamy arable Luvisol in a field experiment. 

Incorporation of 13C from these LMWOS into microbial biomass (MB) and into phosphol-

ipid fatty acids (PLFAs) was investigated 3 d and 10 d after application. The microbial 

utilization of LMWOS for cell membrane construction was estimated by replacement of 

PLFA-C with 13C.   

Mineralization of LMWOS to CO2 comprised 20–65% of the initially applied 13C, 

whereas 13C incorporation into MB amounted to 10–24% at day 3 and was reduced to 1–

15% on day 10. Maximal incorporation of 13C into MB was observed from sugars and 

minimal from amino acids. Strong differences in microbial utilization between LMWOS 

were observed mainly at day 10. Thus, despite similar initial rapid uptake by microorgan-

isms, further metabolism within microbial cells accounts for the specific fate of C from 

various LMWOS in soils.  
13C from each LMWOS was incorporated into each PLFA. This reflects the ubiqui-

tous utilization of all LMWOS by all functional microbial groups. The preferential incorpo-

ration of palmitate into PLFAs reflects its role as a direct precursor for fatty acids. Higher 
13C incorporation from alanine and glucose into PLFAs compared to glutamate, ribose 

and acetate reflects the preferential use of glycolysis-derived substances in the fatty ac-

ids synthesis.  

Gram-negative bacteria (16:1ω7c and 18:1ω7c) were the most abundant and active 

in LMWOS utilization. Their high activity corresponds to a high demand for anabolic 

products, e.g. to dominance of pentose-phosphate pathway, i.e. incorporation of ribose-C 

into PLFAs. The 13C incorporation from sugars and amino acids in filamentous microor-

ganisms was lower than in all procaryotic groups. However, for carboxylic acids, the in-

corporation was in the same range (0.1 – 0.2% of the applied carboxylic acid C) as that of 

gram-positive bacteria. This may reflect the dominance of fungi and other filamentous 

microorganisms for utilization of acidic and complex organics.  

Thus, we showed the divergence of C pathways from LMWOS over the 10 days, 

despite their similar initial uptake by microorganisms. Consequently, stabilization of C in 
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soil is mainly connected not with its initial microbial uptake, but with its incorporation into 

microbial compounds of various stability. 
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2.1.1 Introduction  

Low molecular weight organic substances (LMWOS) comprise 5–10% of dissolved 

organic carbon (DOC) in soils (Ryan et al., 2001) and are products of rhizodeposition, 

above and belowground litter and microbial residue degradation.  

Microbial removal of LMWOS from solution in the upper soil horizons appears 

within minutes (Jones et al., 2004), whereas the half-life of C from LMWOS is much 

longer, from several hours to months or even decades (van Hees et al., 2005). This oc-

curs due to rapid microbial uptake und further utilisation of LMWOS within the microbial 

biomass, which out-compete processes of physicochemical sorption of LMWOS at min-

eral surfaces and their leaching from the soil profile, probably by orders of magnitude 

(Fischer et al., 2010). Due to the strong link LMWOS dynamics with microbial utilization, 

the fate of LMWOS should be investigated at natural applied amounts, to avoid any 

changes in microbial response strategy. 

The main compound classes within the LMWOS are amino acids, sugars (mainly 

monosaccharides) and carboxylic acids (Fischer et al., 2010). Amino acids represent the 

largest pool of N in soils, mainly bound in proteins. About 30% of N obtained after acid 

hydrolysis from the protein pool (Stevenson, 1982) and a large portion of N released from 

soil organic matter (SOM) by enzymes are amino acids (Barraclough, 1997). Amino acid-

C half-lives are between 3–45 days and do not strongly differ between field and labora-

tory conditions (Glanville et al., 2012). The great variability in amino acid utilisation re-

ported in the literature is a consequence of the diversity of metabolic pathways within 

microbial cells (Apostel et al., 2013) and also can be depend on activity of microorgan-

isms (Jones et al., 2005). 

Numerous studies have reported that carbohydrates are the most abundant sub-

stance class, amounting for 5–25% of soil organic matter (SOM) (Benzingpurdie, 1980; 

Cheshire, 1979). Glucose is the most abundant carbohydrate derived either from the de-

composition of plant residues (Derrien et al., 2006) or from root exudates (Derrien et al., 

2004; Fischer and Kuzyakov, 2010). Half-life of glucose-derived C comprises around 15 

days in field conditions (Glanville et al., 2012). On average, 60% of the added glucose is 

incorporated into cellular compounds (Fischer et al., 2010) Despite glucose supposed to 

be a ubiquitous substrate, which can be used by nearly all microorganisms (Macura and 

Kubatova, 1973), specifics of its utilisation in soil is still a topic of discussion (Reischke et 

al., 2014).   

The third most abundant class of LMWOS in soils is carboxylic acids. 80–90% of C 

from the applied carboxylic acids were decomposed during the first 7 days and only 10–

20% of C were incorporated into microbial biomass (MB) (Unteregelsbacher et al., 2012; 
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van Hees et al., 2002). The utilisation of carboxylic acids is substrate-dependent: acetate 

has a lower mineralization capacity than citrate and oxalate (van Hees et al., 2002) and 

citrate can be degraded faster than malate and oxalate (Strom et al., 2001). At the in-

tramolecular level, –COOH groups can be oxidized to CO2 very rapidly, whereas CH3- 

groups are preferentially used for biosynthesis (Dippold and Kuzyakov, 2013; Fischer and 

Kuzyakov, 2010). Thus, differences in carboxylic acid utilisation can be attributed to their 

various roles in cell metabolism as well as to their differences in chemical structure.  

Studies that simultaneously compare the fate of amino acids, sugars and carboxylic 

acids are not numerously reported in literature. In most cases studies either consider the 

microbial utilisation of LMWOS by the entire MB (Glanville et al., 2012; Rousk and Baath, 

2011) or focus on contribution of various microbial groups to LMWOS utilization (Apostel 

et al., 2013; Rinnan and Bååth, 2009; Rinnan et al., 2013).  

Information concerning the evaluation of the contribution of functional microbial 

groups to LMWOS utilization can be obtained by coupling of 13C or 14C labeling with 

analysis of microbial biomarkers such as amino sugars (Amelung et al., 2001; Engelking 

et al., 2007; Glaser et al., 2004), phospholipids-derived fatty acids (Frostegard et al., 

2011; Zelles, 1997) or DNA-based methods (Ibekwe et al., 2002, Radejewski et al. 2003). 

Coupling PLFA analysis with 13C-labelling has shown that gram-negative (G-) bacteria 

are more active in the utilisation of plant C (low or high molecular weight) than gram-

positive (G+) bacteria, even if the latter group has a higher PLFA content in soil (Garcia-

Pausas and Paterson, 2011; Waldrop and Firestone, 2004). Fungi contribute less to the 

utilisation of plant-derived C than bacteria (Waldrop and Firestone, 2004). In contrast, the 

use of 13C pulse-labelling of plants to trace 13C in PLFAs has shown that either fungi 

(Butler et al., 2003) or G- bacteria (Tian et al., 2013) are the most active in rhizodeposits 

consumer. Incorporation of 13C from labelled straw into PLFAs has shown that fatty acids 

such as 16:0; 18:1w9, 18:2w6,9 were more 13C-enriched, whereas other 16:1w5 or 

10Me17:0 fatty acids contained negligible amounts of 13C (Williams et al., 2006). Conse-

quently, members of the microbial community are differentially involved in the assimila-

tion of litter- or root-derived C (Williams et al., 2006) and the activity of individual micro-

bial groups appears to depend on the quality of substrate and on environmental condi-

tions such as soil type, season and climatic conditions (Bray et al., 2012). Thus, general 

principles of LMWOS utilisation by individual groups of bacteria and fungi still remain 

open. 

The second factor controlling LMWOS fate is microbial metabolism: various classes 

of LMWOS enter different pathways and consequently are utilised differently. Sugars are 

mainly used directly by the basic glycolysis pathway (Caspi et al., 2008; Keseler et al., 

2009), carboxylic acids enter from side branches of the citric acid cycle (Caspi et al., 
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2008; Keseler et al., 2009), and amino acids enter glycolysis or the citric acid cycle from 

individual side branches at different steps (Apostel et al., 2013; Knowles et al., 2010). 

Thus, we assume that universal substances such as sugars, entering glycolysis directly, 

will be metabolised very rapidly in comparison to carboxylic acids and amino acids enter-

ing the citric acid cycle. However, glycolysis also enables entry into many anabolic path-

ways, i.e., we hypothesise that sugars are used more for anabolism than carboxylic ac-

ids, which enter the oxidising citric acid cycle and can be directly metabolised for energy 

production. The highest diversity in pathways can be expected for amino acids, because 

they enter basic metabolism at various steps (Apostel et al., 2013). Since carboxylic acid 

utilisation is substrate-controlled, we expect divergence in the utilisation of short- and 

long-chain acids. Because three classes of LMWOS enter metabolic cycles at various 

points, we hypothesise that their role in the synthesis of cell components such as PLFAs 

should be different.  

Thus, the overall aim of this study was to estimate the short-term transformation of 

representatives of three main classes of LMWOS: monosaccharides (glucose and ri-

bose), carboxylic acids (acetate and palmitate) and amino acids (alanine and glutamate) 

under field conditions, coupling 13C substrate labelling with the analysis of specific cell 

PLFA biomarkers. 

 

2.1.2 Material and Methods 

2.1.2.1 Experimental design 

The field experiment was carried out at an agricultural field trial in Hohenpölz 

(49°54' N, 11°08'E, at 500 m a.s.l.). The mean annual temperature was +7oC and mean 

annual precipitation was 870 mm. The site is cultivated by a rotation of triticale, wheat 

and barley. The soil is an arable loamy haplic Luvisol (IUSS Working group WRB, 2007) 

and had the following characteristics: pH 6.6, total C content 1.5%, C/N 10.7, CEC 13 

cmolC kg-1, clay content 22%.  

In August 2010, following harvest of the triticale and spudding of the soil, columns 

were inserted to a depth of 10 cm and six, 13C uniformly-labelled substances: alanine, 

glutamate, glucose, ribose, sodium acetate and palmitate were injected into separate 

columns. The amounts of applied tracer were: alanine 96.3, glutamate 91.6, glucose 

93.4, ribose 91.8, acetate 95.8 and palmitate 49.5 µmol 13C column-1. The amount of 

added C was kept as low as possible and constant for all columns, including the controls, 

where similar amounts of non-labelled C was applied (0.40–0.77 µg C g soil-1). Each col-

umn contained 1.5 kg soil. The field experiment had a randomised block design with four 
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blocks, which represented four field replicates. Preventing rainfall by using a protective 

roof excluded leaching through the columns for the 10 d of the experiment. Due to the 

absence of leaching losses and negligible uptake by plants, we assumed that all losses 

of 13C from soil are connected to LMWOS mineralisation to CO2. After day three and day 

10, separate soil columns were destructively sampled. The soil was removed from the 

column, weighed and the water content was determined in a subsample. Each soil sam-

ple was sieved to 2 mm and divided into two portions. One was cooled (+5 C) for MB 

analysis and another was stored frozen (-20ºC) until PLFA analysis. 

 

2.1.2.2 Bulk soil δ13C analysis 

The soil for the δ13C analysis was freeze-dried, milled and δ13C values of bulk SOM 

were determined using a Euro EA Elemental Analyser (Eurovector, Milan, Italy) unit cou-

pled via a ConFlo III interface (Thermo-Fischer, Bremen, Germany) to a Delta V Advan-

tage IRMS (Thermo Fischer, Bremen, Germany). The amount of incorporated 13C [C]soil in 

the soil from applied [C]AS was calculated based on the mixing model (Equations 1 and 

2), where the C content of the background [C]BG in Equation 1 was substituted according 

to Equation 2. 

 

ASASBGCBGsoilsoil rCrCrC ⋅+⋅=⋅ − ][][][       (1) 

ASBGsoil CCC ][][][ +=         (2) 

with:   

[C]soil/BG/AS  C content of sample / background / applied substances (mol · gsoil
-1) 

r soil/BG/AS 13C atom% of sample / background / applied substances      (at%) 

 

2.1.2.3 Microbial biomass 

Extractable microbial biomass carbon (EMBC) was determined by the fumigation-

extraction technique in fresh soil shortly after sampling. Briefly, 15 g fresh soil was placed 

into glass vials, which were exposed to chloroform for 120 h. After complete removal of 

chloroform, the EMBC was extracted from the soil with 45 mL 0.05 M K2SO4. Organic C 

was measured with a high-temperature combustion TOC-analyser (Analyser multi N/C 

2100, Analytik Jena, Germany) and the EMBC was calculated as the difference between 

organic C in fumigated and unfumigated samples without further correction factors. After 

analysis of the organic C concentration, the liquid samples were freeze-dried and δ13C 

values of 40 µg subsamples were determined using EA-IRMS (described above). The 

amount of 13C in fumigated and unfumigated samples was calculated by the mixing 
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model (Equations 1 and 2). Enrichment of 13C in the EMBC was calculated from the dif-

ference of these values. 

 

2.1.2.4 Phospholipid fatty acid analysis 

PLFAs extraction and purification 

Analysis of PLFAs was performed using the liquid-liquid extraction method of 

Frostegard et al. (1991) with some modifications. Firstly, 25 µg 19:0-phospholipid (dinon-

adecanoylglycerol-phosphatidylcholine) was added to each sample as an initial internal 

standard to calculate the recovery of the phospholipid extraction and purification 

(Frostegård et al., 1991). Extraction of 6 g soil was performed twice, firstly with 18 mL 

and secondly with 6 mL of a one-phase mixture of chloroform, methanol and 0.15 M citric 

acid (1:2:0.8 v/v/v). Six mL chloroform and 6 mL 0.15 M citric acid were added to the ex-

tract to generate a two-phase solution and the sample was shaken. The lower phase was 

then separated and an additional liquid-liquid extraction was performed with 12 mL chlo-

roform. The combined chloroform phase was reduced to 0.5 mL and the phospholipids 

were separated from the neutral and glycolipids using a solid phase extraction method 

with activated Silica gel (Silica gel Merck, particle size 0.063–0.200 mm). After transfer to 

the column, the first fraction (neutral lipids) was eluted with 5 mL chloroform and the sec-

ond fraction (glycolipids) with 20 mL acetone and the PLFAs were obtained by a four-fold 

elution with 5 mL methanol. The methanol phase was reduced to 0.5 mL and dried under 

nitrogen flow.  

For the alkaline saponification, 0.5 mL 0.5 M NaOH in dried MeOH (Sigma-Aldrich, 

assay ≥99.9%) was added and samples were heated to 100oC for 10 min. The free fatty 

acids were methylated with 0.75 mL BF3 in methanol (10%, 1.3 M, Fluka) for 15 min at 

80oC. For hydrolysing the excess BF3, 0.5 mL saturated NaCl solution was added. Fatty 

acid methyl esters (FAMEs) were extracted three times with 1 mL hexane by liquid-liquid 

extraction. Combined hexane aliquots were dried under N2, and re-dissolved in 185 µL 

toluene with the addition of 15 µL of a second internal standard (IS2) (13:0 FAME at 

1 mg/mL) (Knapp, 1979). 

 

PLFAs quantification on GC-MS 

All PLFA samples were analysed using a Hewlett Packard 5890 gas chromato-

graph coupled to a mass-selective detector 5971A. A 25 m HP-1 methylpolysiloxane col-

umn (internal diameter 0.25 mm, film thickness 0.25 µm) was used. A single 1 µL injec-

tion was analysed with an initial temperature of 80ºC, which was then ramped to 164ºC at 

10ºC min-1, then to 230ºC at 0.7ºC min-1 and finally to 300ºC at 10ºC min-1 at a constant 
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flow rate of 2.4 mL min-1. Peaks were integrated and the ratio to IS2 was calculated for 

each peak per chromatogram. Substances were quantified using a calibration curve, 

which was constructed using 29 standard substances as external standards at six differ-

ent concentrations (see Table 1, supplementary material). All peaks per sample were 

corrected for the recovery of the first internal standard. 

 

Analysis of δ13C on GC-C-IRMS 

The 13C/12C isotope ratios of the single fatty acids were determined by IRMS Delta 

PlusTM (Thermo Finnigan, Bremen, Germany) coupled to a gas chromatograph (GC; 

Trace GC 2000, Thermo Finnigan) via a GC-II/III-combustion interface. A 15 m HP-1 

methylpolysiloxane column coupled with a 30 m HP-5 (5% Phenyl)-methylpolysiloxane 

column (both had an internal diameter of 0.25 mm and a film thickness of 0.25 µm) were 

used. A single 1.5 µL injection was analysed with an initial temperature of 80ºC, which 

was then ramped to 180ºC at 7ºC min-1, then to 185ºC at 0.3ºC/min followed by holding 

for 3 min, then to 204ºC at 0.5ºC min-1 and holding for 1.5 min, then to 300ºC at 15ºC 

min-1 and holding for 10 min and finally to 80ºC at 50ºC min-1 at a constant flow rate of 2 

mL min-1. Detailed information about the instrumental set-up is described in (Sauheitl et 

al., 2005). Online referencing of δ13C values was performed by the injection of several 

reference gas pulses directly into the IRMS during measurement (Glaser and Amelung, 

2002). Measured δ13C values of the PLFAs were corrected for the effect of derivative C in 

analogy to Glaser and Amelung (2002) and referenced on Pee Dee Belemnite by exter-

nal standards. The enrichment of 13C in single PLFAs was calculated in analogy to bulk 

soil and MB according to Equations 1 and 2, following a two-pool dilution model (Gearing 

et al., 1991).  

 

2.1.2.5 Calculations and statistical analysis 

All soil, EMB and PLFAs data were tested with nested, mixed effect ANOVA with 

block as a random factor. Significant differences between individual data points were 

tested with the HSD post-hoc test for unequal N at a 95% significance level. For the re-

petitive measurements of δ13C values, a Nalimov outlier test with significance levels of 

95% (when four replicates were available) or 99% (when three replicates were available) 

was performed. PLFAs were classified into corresponding microbial groups by a factor 

analysis with a principal component extraction method (for factor loadings of the PLFA 

fingerprint, see Supplementary material, Table 2.). We excluded ubiquitous fatty acids 

(i.e. unsaturated, straight-chain fatty acids) from the factor analysis and those which were 

at the detection limit. The classified data were compared with the literature for single fatty 
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acids, to ascertain functional groups of the microorganism (Zelles, 1997). Incorporation of 
13C into individual fatty acids was summed to create incorporation of individual microbial 

groups. Mixed effect ANOVA with block as a random factor was performed to test for 

significant differences in 13C incorporation depending on the factors time point and indi-

vidual substance for each microbial group. Significant differences for individual data 

points were assessed using the HSD post-hoc test for unequal N. 

 

2.1.3 Results 

2.1.3.1 Microbial community structure  

Grouping of PLFAs occurred by combining the factor analysis of the PLFA contents 

with results from the literature for PLFA fingerprints of taxonomical microbial groups 

(Zelles, 1997). Characteristic G+ bacteria fatty acids (i:15:0, , i16:0, i17:0, a17:0, i14:0, 

a14:0) and G- bacterial fatty acids (16:1w9c, 18:1w7c, 18:1w9c, a15:0) were loaded on 

different factors and thus, various groups of G+ and G- PLFAs were defined; a15:0 was 

used to characterise G- bacteria, because it was loaded in one factor with 18:1w9 and 

also found to be G- by Zelles (1997). 18:1w9c was characterized as G- fatty acid, 1) be-

cause it loaded together with bacterial fatty acid and 2) because of it was also used as 

bacterial biomarker in many other soils where the low content of fungal biomass is ex-

pected (Frostegard et al., 2011).  

Actinomycetes were characterised by 10Me16:0 and 10Me18:0 (Drenovsky et al., 

2004; Fierer et al., 2003; McMahon et al., 2005) , fungi by 18:2w6,9 (Drenovsky et al., 

2004; Fierer et al., 2003; McMahon et al., 2005); 16:1w5c cannot be interpreted specifi-

cally as it was used for Vesicular Arbuscular Mycorrhiza (VAM) (Frostegard and Baath, 

1996; Frostegard et al., 1993; Nordby et al., 1981) but for characterizing G- bacteria 

(Olsson, 1999). 20:4w6c was used for protozoa (Fierer et al., 2003). 

Absolute PLFAs contents (Table 1) showed that the PLFAs fingerprint was domi-

nated by bacterial fatty acids, with a dominance of G- bacteria; G+ bacteria and actino-

mycete fatty acids were a minor proportion of the total bacterial PLFAs content.  

As the community structure was not affected by substrate addition (Table 1), the 

LMWOS were used by the same microbial community in each treatment. Thus, the differ-

ences in LMWOS use can be attributed solely to individual pathways of the substrates or 

to specific use by individual microbial groups. 
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Table 1 Absolute and relative abundance (absolute in µg per g and relative in % of total 
FAs) of the fatty acids of the microbial groups, classified by factor analysis (fac-
tor loadings see Supplementary Table 2). 

 Fas content (µg g soil-
1
) 

Relative abundance 
FAs (%) Microbial 

groups 
Abbr. Fatty acids (FAs) 

day3 day10 day3 day10 

Gram negative 1 G- 16:1w7c+ 18:1w7c 9.06±0.77 9.14±0.75 20.08±0.53 20.46±0.89 
Gram negative 2 G- 18:1w9c+a15:0 5.96±0.54 6.12±0.43 13.25±0.44 14.07±0.63 
Gram positive 1 G+ i16:0+ i17:0+ a17:0 3.26±0.23 2.35±0.2 7.58±0.53 5.21±0.31 
Gram positive 2 G+ i15:0 3.38±0.35 3.24±0.3 7.46±0.41 7.06±0.26 
Gram positive 3 G+ i14:0+a14:0 0.49±0.11 0.62±0.15 1.04±0.15 1.19±0.23 
Actinomycetes Ac 10Me16:0+10Me18:0 3.72±0.31 3.6±0.26 8.34±0.34 7.96±0.3 

VAM VAM 16:1w5c 1.85±0.16 2.06±0.18 4.11±0.15 4.62±0.19 
Fungi F 18:2w6,9 1.3±0.09 1.31±0.1 3.32±0.12 3.14±0.23 

Protozoa prot 20:4w6c 0.6±0.09 0.53±0.05 1.65±0.19 1.51±0.17 
Stress1 Str1 cy17:0 5.01±0.66 5.39±0.52 11.05±1.11 11.71±0.86 
Stress2 Str2 cy19:0 1.2±0.08 1.29±0.08 2.81±0.1 2.92±0.11 
 

2.1.3.2 Microbial utilisation of LMWOS 

The three classes of LMWOS were utilised differently (Fig. 1); between 55–65% of 
13C from both amino acids alanine and glutamate were mineralised. The proportion of 13C 

from alanine incorporated into EMB decreased from day three to day 10, but this de-

crease was not significant. In contrast, 13C from glutamate contained in the MB de-

creased during one week by about eight-fold (p < 0.05). 

Mineralization of monosaccharides was lower than that of amino acids: 65–80% of 

the applied tracer was still present in the soil after 10 days. Incorporation of 13C from glu-

cose into EMB was slightly higher than that of 13C-ribose on day three (Fig. 1). 

Mineralization of carboxylic acids was about 50% at day 10 and thus, was compa-

rable to that of amino acids. Incorporation of 13C into EMB was higher for acetate than for 

palmitate, whereas incorporation into PLFAs was highest for palmitate (Fig. 1). 

The proportion of 13C from all substances in EMB on day three was in the range 

from 10–24% of applied 13C and was similar for all substances except glucose and palmi-

tate. In contrast, more 13C from monosaccharides remained in EMB on day 10 compared 

to amino acids and carboxylic acids. This reflects the universal role of sugars as a C 

source for microorganisms.  

Only 1–3% of the applied 13C from the five LMWOS (except palmitate) was used for 

the synthesis of cell membrane components, evaluated by 13C in total PLFA. Palmitate-C 

was the only exception: more than half of its incorporation into EMB was recovered in the 

PLFAs after 3 days and half on day 10 (Fig. 1). Although PLFAs comprised only about 

5% of the EMBC, they incorporated a comparatively high percentage of LMWOS-C, 

namely, 10% of the microbially used C. 
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Fig. 1 13C recovery (in % of applied 13C) from six LMWOS in soil, microbial biomass 
and PLFAs, 3 and 10 days after application. Significant differences (p < 0.05) 
for 13C in soil were observed only on day 10 and are shown by letters above er-
ror bars. 

 

2.1.3.3 Utilisation of LMWOS by functional microbial groups 

Bacterial groups played a greater role than eukaryotes in the utilisation of amino ac-

ids (Fig. 2, top). On day three, G- and G+ bacteria were the most active groups in incor-

porating 13C from alanine and glutamate. Among the potentially eukaryotic PLFA, 16:1w5 

had highest amino acid 13C incorporation. Actinomycetes, G-1 group bacteria and 16:1w5 

PLFA showed an absolute increase in 13C incorporation from day 3 to day 10 for alanine 

and glutamate 13C incorporation. Furthermore, none of these PLFAs showed a higher 

abundance at day 10 compared to day three, i.e. the increase was not reasoned in an 

increase of this microbial group.  

In general, alanine-C was preferred over glutamate-C for PLFAs synthesis, but for 

the majority of microbial groups, this difference was not significant. The G- group 2 and 

G+ group 1 bacteria and fungi showed similar 13C incorporation on day three for both 

amino acids. In contrast, alanine 13C replacement at day 10 was significantly higher than 

glutamate for each of these groups (Fig. 2, bottom).   
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Fig. 2 13C incorporation from both amino acids (in % of applied 13C) into PLFAs (top) 
and percent of 13C replacement (in % of PLFA-C) (bottom) of microbial groups 3 
and 10 days after alanine and glutamate application. Letters reflect significant 
differences between alanine and glutamate uptake into microbial groups. 

 

Utilisation of 13C from sugars for PLFAs formation showed different trends in bacte-

rial and fungal groups and much higher absolute 13C incorporation compared to amino 

acids (Fig. 3, top). Between 0.01 and 0.70% of initially applied sugars 13C was found in 

various taxonomic groups after three days, whereas only 0.001–0.25% was recovered 
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from amino acids. The incorporation of 13C from sugars into all microbial groups in-

creased or remained constant between days three and 10. All bacterial species used 

glucose-C more efficiently than ribose-C except G- group 1, which preferred ribose. 

Among the filamentous microorganisms, fungi did not differ from 16:1w5 in glucose-13C 

incorporation into PLFAs, but fungi used more 13C from ribose than 16:1w5. In general, 

the microbial specialisation for individual monosaccharides as building blocks for PLFAs 

was visible within bacterial but not within eukaryotic groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 13C incorporation from both monosaccharides (in % of applied 13C) into PLFAs 
(top) and percent of 13C replacement (in % of PLFA-C) (bottom) of microbial 
groups 3 and 10 days after glucose and ribose application. Letters reflect sig-
nificant differences between glucose and ribose uptake into microbial groups 
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Incorporation of 13C from both carboxylic acids into PLFAs of G- bacteria group 1 

was higher than from other LMWOS (Fig. 4, top). Other bacterial groups used 13C from 

carboxylic acids less efficiently than 13C from sugars and amino acids for PLFAs synthe-

sis. Filamentous microorganisms (actinomycetes and fungi, but also 16:1w5) exceeded 

the prokaryotic groups of G+ bacteria in incorporation of 13C from the most complex sub-

strate, palmitate, into PLFAs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 13C incorporation from both carboxylic acids (in % of applied 13C) into PLFAs 
(top) and percent of 13C replacement (in % of PLFA-C) (bottom) of microbial 
groups 3 and 10 days after acetate and palmitate application. Letters reflect 
significant differences between acetate and palmitate uptake into microbial 
groups. 
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In general, incorporation of LMWOS-C in bacterial species was higher than that in 

eukaryotes.  

 

2.1.4 Discussion  

2.1.4.1 Incorporation of LMWOS into SOM and microbial biomass  

Amino acids 

The mineralization of alanine and glutamate in our experiment was similar to litera-

ture data (Jones et al., 2005) and less than 50% of applied 13С remained in the soil after 

10 days. The half-life of alanine and glutamate-derived C reported for field conditions was 

18 and 3 days, respectively (Glanville et al., 2012). This is much longer than in our ex-

periment and we observed a similar mineralization of glutamate and alanine C within 10 

days. These contrasting results might be attributable to differences in total microbial ac-

tivity or community structure (Jones et al., 2005) in the studied soils as well as due to 

methodological differences. Similar 13C amounts from glutamate and alanine remaining in 

the soil on day 10 reflected a similar mineralization of these amino acids and corresponds 

to similar microbial decomposition of differently charged amino acids (Jones and Hodge, 

1999). 

The high amount of 13C incorporated into the EMB pool at day three (Fig. 1) corre-

sponded with the rapid and efficient uptake of free amino acids as intact molecules 

(Dippold and Kuzyakov, 2013; Geisseler et al., 2010; Jones and Hodge, 1999). After up-

take, amino acids can either be oxidised for energy production, directly incorporated into 

proteins (Geisseler et al., 2010) or used in other metabolic pathways (Fig. 5) (Dippold 

and Kuzyakov, 2013; Knowles et al., 2010). The incorporation of alanine into EMB was 

higher than for glutamate on day 10, showing the more rapid mineralisation of glutamate 

C. Similarly, glutamate was utilised more rapidly than glycine and lysine over a broad 

concentration range (Jones and Hodge, 1999). This corresponds to the different entry 

point of these amino acids into metabolism (Knowles et al., 2010). Alanine enters the 

basic cellular metabolism at the connecting step between glycolysis and the citric acid 

cycle (Apostel et al., 2013; Caspi et al., 2008). Thus, it is easily distributed throughout all 

anabolic pathways for the synthesis of cell components, e.g., glyconeogenesis, protein 

synthesis, fatty acid synthesis and ribonucleotide synthesis (Fig. 5). In contrast, gluta-

mate directly enters the citric acid cycle as oxoglutarate (Knowles et al., 2010). This de-

mands energy for glyconeogenesis and therefore, fatty acid synthesis pathways will not 

be used if other more appropriate substrates are available. Thus, alanine C is preferen-

tially incorporated into the more stable components of microbial cells – the cell walls and 
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the membranes – compared to glutamate. In contrast, glutamate plays a central role in 

the amino acid cycle, and oxoglutarate produced from glutamate by transamination will 

be rapidly decompose to CO2 (Vinolas et al., 2001).  

 

Fig. 5 Primary metabolic pathways of the six representatives of three LMWOS classes 
(amino acids (blue), sugars (green) and carboxylic acids (red)). Thick arrows re-
flect the entering points of LMWOS in the metabolic pathways; black fine arrows 
show the basic C metabolism and shaded arrows reflect anabolic pathways for 
formation of cellular compounds.   

 

Sugars 

The half-life of glucose-C in our experiment (25% mineralized within 10 days) is 

within the range of previous studies: Glanville et al. (2012) reported a decomposition of 

50% of glucose-C after 20 days, Saggar et al. (1999) measured a glucose-C decomposi-

tion of 51–66% within 35 days and Schneckenberger et al. (2008) observed a mineralisa-

tion of 26–44% of 14C from glucose within 22 days. The incorporation of a significant pro-

portion of applied 13C from sugars into EMB in our experiment is in agreement with the 

model of short-term glucose utilisation (Nguyen and Guckert, 2001). In this model, glu-

cose taken up from solution is initially allocated to an intermediate pool and thereafter 

can be respired or used as a structural component. Thus, due to the demand for cellular 

products, glucose C will preferentially be transferred to anabolic pathways rather than be 

oxidised for energy production. 
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The lower mineralisation and incorporation of pentose compared to hexose on day 

three corresponds with its slower uptake rate, as it is a less common soil monosaccha-

ride than glucose. The metabolisation of pentoses occurs mainly via the pentose-

phosphate-pathway, leading to incorporation into various cell components such as DNA 

or other ribonucleotides (Fig. 5). Both phenomena explain the lower utilisation of ribose 

compared to glucose. Preferential incorporation of ribose into biosynthetic ribonucleotide 

products has yet to be proven by substance-specific analysis, e.g., by stable isotope 

probing of DNA (Radajewski et al., 2000). Indeed, ribose mineralisation and incorporation 

into the EMB on day 10 were nearly the same as for glucose. This confirms that the hex-

ose and pentose pathways are closely linked and that C from both monosaccarides is 

transferred within these pathways towards biosynthetic pathways according to the C de-

mand of cells.  

 

Carboxylic acids 

Similar to amino acids and monosaccharides, the rapid uptake of acetate outcom-

petes its physicochemical sorption in soils (Fischer et al., 2010). Within the microbial 

biomass, acetate C can be subjected to “arrest metabolism” and stored in cells before 

use (Fischer and Kuzyakov, 2010). Acetate can also be transformed into carbohydrates, 

amino acids (Sorensen and Paul, 1971) and other cell components and thus is fixed in 

diverse microbial products. Incorporation of acetate into EMB was less than that of sug-

ars, which confirms that acetate was used for respiration (ca. 80–90%) rather than for 

new cell biomass production (Jones and Edwards, 1998; van Hees et al., 2002). This 

occurs due to the oxidation of a high proportion of acetate C into the citric acid cycle. Fur-

thermore, acetate must be activated prior to incorporation into the key metabolic path-

ways (van Hees et al., 2002). The transformation of acetate to anabolic products is thus 

unfavorable, as long as microorganisms have access to more freely available substrates. 

An exception to this pathway, however, is fatty acid synthesis, where acetate is a direct 

precursor.  

Palmitate is an anion of a short-chain fatty acid, the most dominant fatty acid in 

bacteria and fungi (Lawlor et al., 2000) and is a precursor for the synthesis of more com-

plex fatty acids. Due to its high molecular weight and long aliphatic chain, we hypothe-

sised that its decomposition is much slower than the decomposition of short chain car-

boxylic acids such as acetate. However, this hypothesis was not confirmed in our ex-

periments. Previous studies showed that the degradation of palmitate was more rapid 

than that of similar or longer fatty acids (Moucawi et al., 1981). It was estimated that 41% 

of oleic and 31% of stearic acids were decomposed within four weeks (Moucawi et al., 

1981), whereas 50% of palmitate decomposed within 10 days (Fig. 1).  
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In contrast to net mineralization, the incorporation of 13C from palmitate into EMB 

was the lowest (Fig. 1). This might be due to hydrophobic interactions of palmitate with 

SOM that led to the lower uptake into microbial biomass compared to other LMWOS. 

However, if taken up, it was preferentially incorporated in PLFAs, but not used for the 

synthesis of other microbial compounds. Incorporation into PLFAs was higher than for 

any other LMWOS, which is in accordance with their direct precursor role for PLFA for-

mation.  

In general, our results reflect that the uptake and utilisation of six LMWOS within 3 

days was quite similar and comparable with the literature (Glanville et al., 2012). As far 

as substance-specific differences in incorporation into EMB were the most visible only at 

day 10 (Supplementary Table 3.), when the total amount of incorporated C decreased, 

the long-term fate of LMWOS-C in soils are caused by the metabolic pathways of 

LMWOS classes within microbial cells and not by rapid LMWOS uptake during the first 

few days. Therefore, we can consider the medium-term divergence of C depending on its 

initial form that entered the soil.  

 

2.1.4.2 Microbial community composition 

The constant composition of PLFAs (Table 1) after the addition of very low amount 

of LMWOS-C shows that microbial community structure was under steady-state condi-

tions (Blagodatskaya et al., 2007, , 2009). This corresponds to other studies with similar 

amounts of applied C (Brant et al., 2006) and leads to 13C incorporation into microbial 

biomass and individual microbial groups reflected the typical utilization of these sub-

stances under natural soil conditions – i.e. a microorganisms under maintenance metabo-

lism. 

The main classes of decomposers for the six substances were G- and G+ bacteria. 

G- bacteria are very common in the rhizosphere, which reflects their preference for 

LMWOS common in rhizosphere hotspots. In contrast, G+ bacteria are abundant in bulk 

soil (Soderberg et al., 2004). 

The soil environment of this study, with aerobic conditions, a neutral soil pH as well 

as the above- and belowground litter remaining after the harvest, provide optimum condi-

tions for the development of actinomycetes, which is assumed to be important for the 

primary degradation of recalcitrant SOM (McCarthy and Williams, 1992). In contrast, pre-

sent environmental conditions and loadings of small amounts of complex substrates did 

not supported fungal growth (Reischke et al., 2014), which explains their low abundance 

as well as their low activity in LMWOS utilization in our experiment.  
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We detected relevant amounts of 16:1w5 fatty acid, which can be used to charac-

terized the VAM fungi or gram-negative bacteria (Olsson, 1999; Zelles, 1997). Results of 

the factor analysis do not attribute the 16:1w5 to the group 1 or group 2 of G- bacteria, 

moreover they were loaded up similarly with fungi. Second the VAM are usually abundant 

in soils, because they form a symbiotic relationship with up to 80% of land plants (Madan 

et al., 2002). Third 16:1w5 behaved similarly with fungi in utilization of investigated 

LMWOS (especially for carboxylic acids). All these factors support the interpretation that 

16:1w5 reflect VAM in this soil. For ensuring the interpretation of 16:1w5 as VAM fatty 

acid, the simultaneous analysis of 16:1w5 in PLFAs and neutral lipids should be done. As 

far as we didn’t measure this in our experiment, the interpretation of 16:1w5 as VAM is 

not assured. 

 

2.1.4.3 Incorporation of LMWOS into PLFAs 

Amino acids 

The observed dominant role of bacteria in amino acid utilisation is in agreement 

with previous studies, which found that the relative incorporation of 13C from glutamate 

(the added amount was 50 µg C g-1 soil) into bacteria was high, whereas incorporation 

into fungi was significantly lower (Brant et al., 2006; Rinnan and Bååth, 2009). Actinomy-

cetes utilised amino acids in a forest soil, similar to G+ bacteria (Brant et al., 2006). Our 

results with agricultural soil support those of Brant et al. (2006) and confirm the theory 

that amino acid turnover is mainly controlled by microbial activity and not by microbial 

community structure (Jones et al., 2005).  

We demonstrated a preferred incorporation of alanine than glutamate into PLFAs 

and a higher replacement of PLFA-C by alanine 13C than glutamate 13C (Fig. 2, bottom). 

Despite a similar uptake of alanine and glutamate into EMB, their contrasting incorpora-

tion into PLFAs shows differences in intracellular metabolisation: alanine C is directly 

converted to acetyl-CoA, the direct precursor of fatty acids, whereas complex energy-

consuming pathways are needed to transform glutamate C into acetyl-CoA (Fig. 5). In 

addition, the formation of acetyl-CoA from alanine causes a loss of one-third of its C 

backbone compared to a three-fifths loss of C from glutamate if converted to acetyl-CoA 

(Apostel et al., 2013). This also contributes to the lower incorporation of glutamate-C into 

PLFAs. Thus, our results confirm those of previous studies on metabolic tracing, showing 

that intracellular metabolisation is the master process that determines the fate of amino 

acid C in soils (Apostel et al., 2013; Dippold and Kuzyakov, 2013; Knowles et al., 2010).  
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Sugars 

The preference of bacteria for glucose utilization compared to fungi, corresponds 

with the dominance of bacteria within the soil microbial community, but can also be at-

tributed to the more efficient uptake of LMWOS by bacteria (Moore et al., 2005) espe-

cially if low concentrations of LMWOS are applied (Reischke et al., 2014). This was re-

vealed previously by a higher relative glucose incorporation into bacteria (Brant et al., 

2006). The preferential incorporation of sucrose into bacterial fatty acids (16:1ω7 and 

18:1ω7) was also reported by Nottingham et al. (2009), who noted the importance of the 

16:1w7 biomarker in the control of priming effects. Thus, G- bacteria (corresponding to 

our G-1 group) represent a group whose growth is based on easily available substrates 

and which are the most competitive for LMWOS in many ecosystems (Treonis et al., 

2004). Hence, the majority of studies show that bacteria are the most relevant group for 

the uptake and degradation of easily available substrates e.g., following the initial stage 

of litter decomposition, whereas fungi decompose more complex substrates that remain 

at later stages (Moore-Kucera and Dick, 2008). However, studies based on nuclear mag-

netic resonance showed the significant utilization of 13C from glucose for the formation of 

unsaturated triacylglycerols, typical storage metabolites of eukaryotes (Lundberg et al., 

2001). Based on these results, it has been suggested that fungi are the most active or-

ganisms in glucose degradation. Interpretations in our study are based on membrane 

lipids – a substance class whose structure, function and biosynthetic pathways are simi-

lar between many prokaryotes and eukaryotes. Thus, a comparison of the utilization pat-

tern is probably more reliable if functional and biosynthetically comparable compounds 

are included (Rinnan and Bååth, 2009).  

The uptake pattern of ribose was relatively similar to that of glucose (Fig. 3, top), 

with predominant utilization by G- bacteria. This primary incorporation of pentose by G- 

bacteria was also characterised by 13C-xylose utilization (Waldrop and Firestone, 2004) 

a similar structure and thus presumably a similar uptake and metabolism. The high per-

centage incorporation of ribose 13C into EMB compared to the relatively small amount of 
13C detected in PLFAs can be explained by the use of ribose for the synthesis of other 

cell polymers. After modification in the pentose-phosphate pathway and phosphorylation, 

ribose is likely to become a subunit for ribonucleotides and less used for fatty acid bio-

synthesis (Fig. 5). Ribonucleotides are extracted after chloroform fumigation and this can 

explain high 13C incorporation in the microbial pool. Only G-1, the most active group in 

LMWOS utilization, incorporated high amounts of ribose into PLFAs, i.e. pentose-

phosphate intermediates. This accounts for high intracellular turnover of this most active 

microbial group. 
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Carboxylic acids 

Acetate is a ubiquitous substrate in soil: it is the main product of lipid degradation, 

the main substance of plant litter anaerobic decomposition (Reith et al., 2002), present at 

high concentrations in slurry (Laughlin et al., 2009) and is known as direct precursor role 

for the formation of fatty acids. 

The amount of acetate incorporated into membranes of G- bacteria 1 (16:1w7c and 

18:1w7c) was 5-fold higher than for most of the other PLFAs (Fig. 4, top). Similar to the 

other LMWOS, this might be a result of their higher abundance within the microbial com-

munity and their rapid uptake of LMWOS. A similar high recovery of 13C from acetate in 

16:1w7c and 18:1w7c PLFAs was reported in experiments with anoxic brackish sediment 

(Boschker et al., 2001). Our experiment with well-aerated agricultural soil showed that the 

high competitiveness of these G- bacteria for acetate does not depend on the oxygen 

supply. In addition, experiments with sediment and groundwater samples showed that 

only few genera were involved in acetate degradation (Pombo et al., 2005). The 16:1w7c 

PLFA has been suggested as a biomarker for acetate-oxidising sulphate-reducing bacte-

ria. This anaerobic degradation can only occur in O2-deficient microhabitats such as ag-

gregate cores and is very unlikely to play a relevant role in freshly tilled soil.  

Fatty acids that characterise G+ bacteria (such as i15:0, i16:0, i17:0, a17:0) were 

also enriched, but to a much lower degree than G- bacterial fatty acids (Fig. 4, top). Simi-

lar results were obtained with anoxic brackish sediments, where 10Me16:0, cy17:0, i15:0 

and a15:0 PLFAs were enriched in 13C from acetate and were related to sulphate-

reducing bacteria (Boschker et al., 2001). Carboxylic acids were the only substrate class 

where fungal uptake and incorporation could compete with those of prokaryotic, G+ 

groups. Thus, although fungi are less competitive for the most LMWOS, they prefer acidic 

substrates within the LMWOS (Rinnan and Bååth, 2009). This correlates with their pref-

erence for acid soil conditions, where acidic (non-neutralised), more complex substrates, 

dominate (Haider, 1996).  

A comparison of palmitate and acetate utilization in soils is important because ace-

tate is a direct microbial precursor for palmitate synthesis. There are three pathways for 

the incorporation of palmitate into phospholipids: 1) partial step-by-step degradation of 

C2-units without total breakdown of palmitate can occur and subsequently, only parts of 

the molecule are used for further biosynthesis (Rhead et al., 1971); 2) the resynthesis 

pathway includes the complete degradation of the molecule to acetyl-CoA and the follow-

ing synthesis of new fatty acids by a series of enzymatic reactions (Rhead et al., 1971); 

3) the alternative is the utilization of palmitate directly without further transformation, be-

cause it is the most abundant fatty acids in microorganisms and might be slightly modi-

fied by elongation or desaturation. According to the first pathway, palmitate should have a 
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similar behaviour to acetate at least concerning the relative fate of 13C-PLFA/13C-EMB 

ratios. Indeed, the 13C-PLFA/13C-EMB ratio was the highest for palmitate than for any 

other investigated LMWOS. This indicates at least partial use of palmitate without break-

down for PLFA synthesis (the third pathway), whereas complete or partial breakdown 

pathways have a lower importance.  

Comparable to the other LMWOS, there was a higher incorporation of 13C from 

palmitate in bacteria than in fungi (Fig. 4, top) and the most enriched were G- bacterial 

PLFAs (Fig. 4, top). This shows the high activity and cellular turnover of this bacterial 

group (Fig. 4, bottom). Notably, palmitate 13C incorporation into actinomycetes 

(10Me16:0, 10Me18:0) was higher than acetate 13C. Comparison of single cell G+ bacte-

ria with their corresponding filamentous microorganisms, the actinomycetes, shows the 

preference of osmotrophic groups for highly water-soluble, simple substrates. In contrast, 

filamentous organisms respond slower, but with a similar incorporation of less water-

soluble, more complex carboxylic acids, such as palmitate. Thus, a lack of mobility and 

defined filamentous organisation of microorganisms leads to a lowered competitiveness 

for simple LMWOS and a slow turnover within microbial biomass (Rousk and Baath, 

2007). In contrast, if the focus is set on long-term C uptake, filamentous organisms show 

a higher incorporation of C from complex, less-available substrates (Brant et al., 2006). 

 

2.1.5 Conclusion 

This study compared and revealed the role of three classes of LMWOS – amino ac-

ids, sugars and carboxylic acids in short-term microbial utilisation in soil. The similar 

LMWOS uptake at day 3 but differences in microbial incorporation at day 10 reflect that 

instead of initial uptake, the intracellular metabolization accounted for the observed dif-

ferences in LMWOS fate in soils.  

Amino acids were taken up by soil microorganisms in similar amounts on day 3, but 

much less glutamate than alanine remained in EMB on day 10. This reflects that sub-

strates with direct incorporation into the oxidising citric acid cycle, such as glutamate, are 

preferentially oxidised for energy production compared to alanine, which enters glycoly-

sis. The high and rapid glucose uptake by microbial biomass is connected with the fact 

that glucose is the most abundant sugar in the soils and ribose is taken up more slowly. 

More sugar 13C was incorporated into MB than from amino acids and carboxylic acids, 

which reflects the preference of glycolysis substrates for anabolic utilization compared to 

catabolism. Higher amounts of 13C from acetate were incorporated into EMB than palmi-

tate. For carboxylic acids, the 13C in EMB declined by a factor of two from day 3 to day 
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10, also reflecting the preferred catabolic oxidation of substances entering the citric acid 

cycle.  

0.8 - 2% of the initial applied 13C were used for the formation of cell membranes 

i.e., for total PLFAs with no differences between amino acids, sugars and acetate. 8% of 
13C from palmitate detected in PLFAs was a result of its direct use as a precursor for 

PLFA formation.  

The PLFAs of individual microbial groups showed bacteria (especially G-) were 

highly competitive for LMWOS uptake. The contribution of fungi to LMWOS-C utilization 

was less than that of bacteria, due to the low amount of fungi as well as their low com-

petitiveness for water-soluble, easily available and easily degradable substances. Only in 

utilization of acidic substrates like acetate or palmitate fungi can compete with some bac-

terial groups. In general, more complex substrates such as palmitate are preferred by 

filamentous microorganisms. Thus, metabolisation and C partitioning within microbial 

cells between catabolism and anabolism affect the fate of individual LMWOS in soil. This 

can be attributed to their entering steps of basic C metabolism and consequently, to their 

individual metabolic pathways.  

Further studies on the metabolic pathways of LMWOS, based on tools such as po-

sition-specific (Dijkstra et al., 2011; Dippold and Kuzyakov, 2013; Apostel et al., 2013), 

and multiple-isotope labeling (Fokin et al., 1994, (Knowles et al., 2010) are necessary. 

Studies on the long-term fate of LMWOS-C in soil should focus on microbial metabolism 

and products formed from this highly available C source in soil. 
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Supplementary Data 

Supplementary Table A1: Fatty acids in the external standard 

 

 

Supplementary Table A1: Results of factor analysis: Factor loadings and grouping of fatty 

acids derived from factor loadings and PLFAs literature. 
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Supplementary Table A3: Nested ANOVA between classes of LMWOS and single sub-
stances nested in class of LMWOS for soil, microbial biomass and PLFAs. Degrees of 
freedom (df), values (F) and significance level (p) are shown for the two time points. 
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Abstract 

Rationale: Amino sugars build up microbial cell walls and are important com-

pounds of soil organic matter. To evaluate their sources and turnover, δ13C analysis of 

soil-derived amino sugars by liquid chromatography was recently suggested. However, 

amino sugar δ13C determination remains challenging due to 1) a strong matrix effect, 2) 

CO2-binding by alkaline eluents, and 3) strongly different chromatographic behavior and 

concentrations of basic and acidic amino sugars. To overcome these difficulties we es-

tablished an ion chromatography-oxidation-isotope ratio mass spectrometry method to 

improve and facilitate soil amino sugar analysis. 

Method: After acid hydrolysis of soil samples, the extract was purified from salts 

and additional components impeding chromatographic resolution. Amino sugar concen-

trations and δ13C values were analyzed by coupling an ion chromatograph to an isotope 

ratio mass spectrometer. The accuracy and precision of quantification and δ13C determi-

nation were assessed. 

Results: Internal standards enabled correction for losses during analysis, with a 

relative standard deviation < 6%. The higher magnitude peaks of basic compared to 

acidic amino sugars required an amount-dependent correction of δ13C values. This cor-

rection allowed to decrease the accuracy of δ13C determination of < 1.5‰ and their preci-

sion of < 0.5‰ for basic and acidic amino sugars in a single run. 

Conclusion: This method enables parallel quantification and δ13C determination of 

basic and acidic amino sugars in a single chromatogram due to the advantages of cou-

pling an ion chromatograph to the isotope ratio mass spectrometer. Small adjustments of 

sample amount and injection volume are necessary to optimize precision and accuracy 

for individual soils. 

 

 

 

 

 

 

 

 

Keywords: compound-specific isotope ratio mass spectrometry, amino sugars, soil or-

ganic matter, microbial biomarker analysis, ion chromatography, IC-O-IRMS coupling. 
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2.2.1 Introduction 

The great relevance of microbial compounds within soil organic matter (SOM) be-

came evident within the last decade. Microbial cell wall compounds seem to be the most 

relevant microbial-derived compound class within slow cycling SOM, as they 1) are highly 

polymeric substances (Amelung, 2003) and 2) stabilized by interaction with soil surfaces 

(Amelung et al., 2001; Miltner et al., 2011). Thus, an increasing interest arose to investi-

gate their turnover and accumulation in soils (Miltner et al., 2011). Beside its contribution 

to the soil organic C (SOC) pool, amino sugars are - together with proteins – the com-

pound classes linking the C and N cycles in soil and contribute significantly to the soil 

organic N (Amelung, 2003). In addition, amino sugars provide information about the mi-

crobial community structure. Bacterial cell walls consist of peptidoglycan – a polymer of 

N-acetylmuramic acid and N-acetylglucosamine whereas fungal cell walls consist of chi-

tin, a N-acetylglucosamine polymer (Engelking et al., 2007; Glaser et al., 2004). The ori-

gin of mannosamine and galactosamine, additional amino sugars found in hydrolysis ex-

tracts of soils, are still debated.  

In contrast to cell membrane compounds like phospholipids, which turn over rapidly 

in soils (Rethemeyer et al., 2004), amino sugars are more stable. Contribution of living 

biomass versus necromass in soils (Glaser et al., 2004) or fungal and bacterial biomass 

(Joergensen and Wichern, 2008) as well as reliable and generally accepted results on 

their turnover time in soils are still rare (Amelung et al., 2008; Glaser, 2005) as no meth-

ods for 14C measurements of amino sugars, neither in their natural abundance nor 14C-

labeled, have been reported in the literature to our knowledge. Recent approaches have 

focused on determinations of δ13C or δ15N values of amino sugars. These studies started 

from the quantification of amino sugars by gas chromatography (Guerrant and Moss, 

1984; He et al., 2006; Zhang and Amelung, 1996) and continued with gas chromatogra-

phy-combustion-isotope ratio mass spectrometry (GC-C-IRMS) (Glaser and Gross, 

2005). However, δ13C-determination by GC-C-IRMS has aggravating shortcomings 

(Decock et al., 2009): 13C fractionation occurs during measurement; the resulting offset 

and amount dependence of the isotope signal can in part be corrected by the use of ex-

ternal standard (Glaser and Amelung, 2002; Schmitt et al., 2003). However, the greater 

the amount of introduced derivative C compared to C atoms of interest, the larger the 

error in the 13C determination that still remains after applying correction functions 

(Decock et al., 2009; Gross and Glaser, 2004).  

As amino sugars are water-soluble low molecular weight organic substances, they 

can also be quantified by high performance liquid chromatography (HPLC) (Appuhn et 

al., 2004; Indorf et al., 2011). Therefore, current methodological developments have fo-
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cused on the establishment of liquid chromatography-oxidation-isotope ratio mass spec-

trometry (LC-O-IRMS) methods (Krummen et al., 2004) for δ13C measurement of amino 

sugars (Bode et al., 2009), which have already revealed its high potential for application 

in soil science (Bai et al., 2013; Bode et al., 2013; Indorf et al., 2012).  

Many LC-O-IRMS methods and in particular the amino sugar method are not rou-

tinely used. Conventional liquid chromatographs are constructed for organic eluents and 

problems occur if continuously used with strong acids or bases. However, performing LC-

O-IRMS analysis for δ13C determination does not allow any organic eluents i.e. organic C. 

Hence, liquid chromatography is restricted to ion exchange columns which implies the 

use of salt solutions or acids and bases as eluents (Basler and Dyckmans, in press; Bode 

et al., 2009). Thus, metallic ions can be dissolved from stainless steel pumps or capillar-

ies and salt crystallization occurs within the system (Bode et al., 2009; Rinne et al., 

2012). This causes a loss in the performance of the columns as well as blockages of the 

system. To prevent such problems, time and money consuming purging steps have to be 

implemented between sample measurements (Bode et al., 2009; Rinne et al., 2012). In 

addition, any contamination by HCO3
- has to be avoided for δ13C determination as HCO3

- 

increases C background (i.e. baseline) and it will influence the δ13C value of the analytes. 

However, liquid chromatographs are per se not constructed to avoid gas diffusion into the 

system. Thus, pre-degassing of eluents have to be performed to enable carbonate-free 

chromatography – especially if bases are used as eluents. In addition, basic amino sug-

ars (glucosamine, galactosamine and mannosamine) show greatly different chroma-

tographic behavior than the acidic muramic acid. Thus, a high gradient with the eluents 

has to be driven, leading to strong elution of the matrix, especially for soils (Bode et al., 

2009). In addition, concentrations of muramic acid are ten to hundred times lower than 

those of basic amino sugars. This hampers quantification due to the limited linear range 

of the detectors as well as δ13C determination due to a limited range of peak area with 

reproducible results. Therefore, current methods use a double measurement with differ-

ent chromatographies to first measure muramic acid and afterwards basic amino sugars 

(Bode et al., 2009). This double measurement as well as the additional effort required for 

solvent-free HPLC methods renders routine measurement of δ13C values of amino sugars 

nearly impossible. 

The aim of this study was to establish an ion chromatography–oxidation–isotope ra-

tio mass spectrometry (IC-O-IRMS) method for quantification and δ13C determination of 

soil-derived amino sugars. We hypothesized that using an ion chromatograph would 

strongly facilitate IRMS measurement of many biomarkers, as some basic requirements 

like carbonate-free measurement or metal-free systems are already fulfilled by the in-

strument. In addition, we intended to optimize amino sugar purification to reduce cationic 
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contamination and matrix peaks originating from soil. The aim was to provide a method 

enabling a routine application of δ13C amino sugar measurements, which are crucial re-

garding the increasing interest in microbial contributions to stable SOM. 

 

2.2.2 Material and Methods 

2.2.2.1 Soil 

Topsoil (0-10 cm) from the Ap horizon of a silt loamy haplic Luvisol (WRB, 2006) 

was collected from a long-term cultivated field in Bavaria (49.907 N, 11.152 E, 

501 m. a. s. l, mean annual temperature 6-7 °C, mean annual precipitation 874 mm). The 

soil had a pHKCl of 4.88 and pHH2O of 6.49, TOC and TN content were 1.77% and 0.19%, 

respectively, and potential cation exchange capacity was 13.6 cmolc kg-1. Field fresh soil 

was sieved to 2 mm and all roots were removed with tweezers. Soil was then freeze 

dried, ball milled and 500 mg of the resulting powder were used for each hydrolysis. 

 

2.2.2.2 Chemicals, reagents and external and internal standards  

All chemicals for hydrolysis and purification were obtained from Sigma-Aldrich (St. 

Louis, MO, USA) with a minimum grade of “pro analysis” (>99.0% purity). For ion chro-

matography, a 50-52%, ultra-pure NaOH solution was purchased from Sigma Aldrich (St. 

Louis, MO, USA). NaNO3-solution (0.01 M) was produced from metal-free sodium nitrate, 

puratronic (99.999% purity, Alfa Aesar, Karlsruhe, Germany). For oxidation, a 0.26 M 

sodium persulfate solution and 10% phosphoric acid solutions were used (Sigma Aldrich, 

St. Louis, MO, USA).  

Methylglucamine p. a. (5 mg mL-1) and fructose p.a. (1 mg mL-1) (Sigma Aldrich, 

Louis, MO, USA) were used as the first and second internal standards (IS1 and IS2), 

respectively. Stock solutions for external standards contained methylglucamine, gluco-

samine, mannosamine and galactosamine at concentrations of 5, 14, 1.5 and 20 mg l-1 

(Sigma Aldrich, Louis, MO, USA) and muramic acid (Toronto Research Chemicals Inc., 

Toronto, Canada) at 7.5 mg l-1. The IAEA-calibrated δ13C value of each external standard 

was determined by repeated Elemental Analyzer-Isotope Ratio Mass Spectrometry 

(Flash 2000 HT Plus Elemental Analyzer and Delta V Advantage Isotope Ratio Mass 

Spectrometer, both from Thermo-Fisher, Bremen, Germany) measurement of these sub-

stances and calibrated against certified standards of the International Atomic Energy 

Agency IAEA (IAEA-CH6: -10.4‰, IAEA-CH7 -31.8‰ and USGS41 37.8‰) versus Pee 

Dee Belemnite (PDB).  
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2.2.2.3 Soil hydrolysis and ion removal 

Soil hydrolysis and ion removal were performed according to Zhang and Amelung 

(1996), which was optimized for δ13C determination by Glaser and Gross (2005). Briefly, 

hydrolysis was performed with 10 mL of 6 M HCl at 105 °C for 8 h. The filtrate extract 

was dried completely and redissolved in 20 mL H2O. One hundred microliters of the IS1 

methylglucamine (i.e. 50 µg) were then added. The pH was adjusted to 6.6-6.8 with 0.6 M 

KOH and precipitated iron was removed by centrifugation (4000 rpm for 15 min). After 

freeze-drying the residue was redissolved in 5 mL of dry methanol and salt precipitates 

were removed by centrifugation (4000 rpm for 10 min). The supernatant was dried under 

a gentle stream of N2 and stored frozen until column purification. 

 

2.2.2.4 Purification by cation exchange column  

Liquid chromatography requires a column purification to remove hydrolysable non-

cationic compounds like monosaccharides and carboxylic acids from the extract. A cation 

exchange column (AG 50W-X8 Resin, H+ form, mesh size 100-200, Biorad, Munich, 

Germany) was used as suggested by Indorf et al. (2013): a thin layer of clean glass wool 

was installed under 4 cm of cation exchange resin in the glass column (inner diameter: 

0.8 cm). Resin was filled in by rinsing with ~10 mL of 0.1 M HCl solution to ensure the H+ 

form of the sorbent, covered with a thin layer of glass wool and preconditioned with 5 mL 

of water. Dried extracts were redissolved in ~1 mL of water with one drop of 0.1 M HCl to 

ensure the cationic form of muramic acid. After transferring the sample onto the column, 

neutral and anionic compounds were eluted with 8 mL water. The cationic fraction con-

taining the amino sugars was eluted by 15 mL 0.5 M HCl, freeze-dried and transferred 

with 5 mL of dry methanol. After evaporation of the methanol by a gentle stream of dried 

N2, the sample can be stored frozen (-20 °C) for at least one month. For subsequent 

measurement, the samples were re-dissolved in 200 µL water with the addition of 50 µL 

of IS2 solution and measured within 24 hours after re-dissolving.  

 

2.2.2.5 Development of the measurement by IC-O-IRMS  

All measurements were performed by a Dionex ICS-5000 SP ion chromatography 

system coupled by an LC IsoLink to a Delta V Advantage Isotope Ratio Mass Spectrome-

ter (Supplementary Figure 1) (all components from Thermo-Fisher, Bremen, Germany). 

Chromatographic conditions were modified and optimized with the aim of reaching base-

line separation and a resolution factor Rs greater than 1. 
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t1 and t2 are the retention times of two neighboring peaks and w represents their re-

spective peak width at the tangents baseline (Figure 1). 

Nine microliters of the water-dissolved sample or external standard were injected 

via a 25 µL injection loop and the injection time was defined as 0 sec. Chromatography 

was performed by a CarboPacTM PA 20 analytical anion exchange column (3 x 150 mm, 

6.5 µm) which was preceded by a PA 20 guard column (Bode et al., 2009) (both from 

Dionex, Amsterdam, The Netherlands). The elution sequence contained a precondition-

ing before injection (15 min with 200 mM NaOH and 10 min with 8 mM NaOH). Elution 

sequence lasted for 35 min in total and was performed at constant temperature of 30 °C 

and a flow rate of 0.4 ml min-1. 8 mM NaOH was increased after 11 min to 8 mM NaOH 

with a pulse of 2.5 mM NaNO3 until 15th minute. Then NaNO3 was decreased and NaOH 

concentration increased for final 20 min of chromatogram (details in Supplementary Ta-

ble 1).  

We measured external standards at four concentrations (e.g. 50, 100, 175 and 

250 µL of the stock solution) at least once before and once after a sample batch. A sam-

ple batch consisted of 4–6 samples, each measured 4 times. A sample batch was always 

measured once in its entirety and then repeated three times. 

Integration was performed by Isodat 3.0 (Thermo Fisher Scientific, Bremen, Ger-

many) with the following parameters: start slope 1 mV/s, end slope 2 mV/s, peak min 

50 mV, peak resolution 50% and an individual background. 
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Fig. 1 Chromatogram of external standard (top) and un-spiked sample (down). First 
and second internal standards as well as basic amino sugars (galactosamine, 
mannosamine and glucosamine) and acidic muramic acid are marked. Peak 
resolution Rs is included for the triplett of basic amino sugars in the upper 
chromatogram of the external standard and Rs for muramic acid and its pre-
ceeding matrix peak is shown in the chromatogram of the sample. 

 

2.2.2.6 Evaluation of amino sugar quantification via IC-O-IRMS  

To validate the method by standard addition, the standard mixture serving as exter-

nal standards was added to the hydrolysis extracts. The amounts of substance added 

were in the range of 0, 1.3, 1.7, 2.1 and 3 times of the expected concentrations.  

The data from the standard addition experiment were statistically evaluated accord-

ing to Birk et al. (2012): For each substance (including IS1) a linear regression was fitted 

by the method of least squares to the measured amounts as a function of the added 

amounts per sample (Supplementary Figure 2). The y-intercept represented the fitted 

amount of substance in soil and the slope gave the mean recovery of a substance. The 

significance of regression was tested and Steven’s Runs Test was performed to identify 

deviations from linearity. Significant differences between recoveries were detected by 

covariance analysis (ANCOVA) of the slopes. All regression parameters were calculated 
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with GraphPad Prism 4 (GraphPad Software Inc., San Diego, CA, USA). Relative Stan-

dard Deviation (RSD) was calculated from the standard addition experiment according to 

Birk et al. (2012)  
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whereas Xi represents the difference between the quantified amount of a substance 

(corrected for recovery) and the spiked amount of the standard added to each of the n 

samples and X  is the mean of these differences.  

Limit of Detection (LoD) and Limit of Quantification (LoQ) were calculated based on 

the signal-to-noise ratio: for LoD the signal-to-noise has to exceed 3:1 and for LoQ a 

value of 10:1 is necessary. 

 

2.2.2.7 Evaluation of δ13C determination via IC-O-IRMS 

First, measured δ13C values were drift corrected based on the reference gas drift 

according to GC-C-IRMS methods (Apostel et al., 2013). Thereafter, correction for offset 

and amount dependence were performed (2002): We tested for linear, exponential and 

partial linear amount dependence by fitting the following functions to the measured data 

at%corrected:  

a) Linear:       bAa)(Aat% iicorrected +⋅=    

b) Exponential:      d)exp(Ac)(Aat% iicorrected +⋅=  equation 3 

c) No amount dependence:     b)(Aat% icorrected =  

In these correction functions a, b, c and d are parameters fitted to the plot of meas-

ured at% values against peak area Ai (Figure 2). The function with the best fit was used 

to correct the measured at%measured values of the sample dependent on the peak area. 

The difference between the amount-dependent correction value at%corrected(Ai) and the 

measured and calibrated value of the substance at%EA was subtracted from the meas-

ured value to gain the PDB-calibrated 13C enrichment (at%sample): 

))(Aat%-at%(at%at% icorrectedEAmeasuredsample −=    equation 4 

We corrected each substance and sample batch individually by the correction func-

tion that described best the behavior of the external standards. All corrections and calcu-

lations were done in at% to avoid errors due to the nonlinearity of δ13C values.  
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The accuracy of IC-O-IRMS determination of δ13C values was assessed from the 

standard addition experiment by using the mixing model to calculate back to the original 

values of the spiked substances (Bode et al., 2009):  

Stdsoil

fitted

13

Stdfitted

13

soil

Sample

13

NN

C(Std)NC(soil)N
C

+

⋅−⋅
=

δδ
δ   equation 5 

δ13CSample reflects the PDB-calibrated, measured δ13C value (derived from at%sample 

in equation 4), Nsoil is the quantified amount of amino sugar in the soil and NStd is the 

amount of standard added (% of total amino sugar per vial). Using a nonlinear fit based 

on least square regression algorithm δ13C(soil)fitted and δ13C(Std)fitted were calculated by 

Statistica 6.0 (StatSoft Inc, Tulsa USA). 

Precision was determined 1) as the measured standard error of the four measure-

ment replications of un-spiked soil and 2) as an area-dependent function for the standard 

error of δ13C(soil)sample gained by Gaussian error propagation of the standard errors of 

each term contributing to equation 4 (2009) (see Supplementary Equation 1),  

Isotopic LoQ was defined as the milligrams of amino sugar per vial needed to reach 

a standard error σfinal(Ai) less than 0.5‰ according to this equation. 

 

2.2.3 Results and Discussion 

2.2.3.1 Chromatography 

Measurement of both basic and acidic amino sugars was possible in a single run 

(Figure 1). Methylglucamine showed only low retention by the column and was followed 

by the triplet of the basic amino sugars. Peak resolution Rs within the triplet is shown in 

Figure 1 for an external standard. If a soil contains a large amount of mannosamine, peak 

separation between mannosamine and glucosamine might not be complete at baseline. 

Whether the δ13C value of mannosamine is influenced by glucosamine in this case has to 

be evaluated for soils with a higher mannosamine content. Mannosamine was not de-

tected in this soil (Figure 1), even when GC-MS was applied to achieve a lower detection 

limit (data not presented). Mannosamine values reported in the literature are also very 

low (Amelung, 2003; Glaser and Gross, 2005; Glaser et al., 2004; Zhang and Amelung, 

1996).  

We tested several substances from a broad spectrum of monosaccharides and 

uronic acids, both substance classes that didn’t elute in the amino sugar fraction. We 

chose fructose as IS2 as it is in the middle of our chromatogram and no matrix peak is 

close to it. However, the second internal standard can be exchanged if soils with other 
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matrix peaks will be investigated. Muramic acid was the last peak eluting from the PA 20 

column and needed a nitrate pulse as a pusher to become mobile on the column (Bode 

et al., 2009). Muramic acid occurred in samples directly after a large matrix peak. Al-

though the matrix peak was much higher than muramic acid, it did not tail into the mu-

ramic acid peak and the resolution between the peaks was sufficient (Figure 1).  

Column performance was maintained only by pre-purging (Supplementary Table 1) 

and no further purging steps in between samples were needed. Carryover from sample to 

sample, as described previously for LC-O-IRMS (Bode et al., 2009), could not be de-

tected in any blank. Thus, sample run time and purging time is strongly reduced com-

pared to previous methods (Bode et al., 2009). This can be attributed to the smaller 

amounts of metal ions and carbonates accumulating on the column due to the advan-

tages of IC compared to liquid chromatography. 

 

2.2.3.2 Recovery, linearity, precision and detection and quantification limits  

Evaluation of the quantification by standard addition revealed linearity over a wide 

range of concentrations (Supplementary Figure 2): R2 was higher than 0.99, the slope 

was, significantly, not zero and Steven’s Runs Test revealed no deviation from linearity 

(Table 1). As we exceeded soil concentrations by a factor of 3, we conclude that the lin-

ear range for quantification by IRMS is sufficient to cover the range of naturally occurring 

amino sugar concentrations in soil (even for soils having much higher SOC contents like 

chernozems), especially if the used amount of soil is adapted to the SOC content. In par-

ticular, quantification of muramic acid and glucosamine, which occur in soils in wildly dif-

ferent concentrations, is possible in one run irrespective of the soil type. 

Calculated recoveries ranged from 57 to 68%. ANCOVA revealed that recoveries of 

the first internal standard and basic amino sugars as well as muramic acid did not differ 

significantly. Thus, correcting the dataset with the recoveries gained by IS1 sufficiently 

corrects for the loss of the other analytes during analysis. Recoveries were slightly less 

than those observed by Bode et al. (2009), which can mainly be attributed to the addi-

tional column purification step included here. However, this column purification improved 

peak shape and decreased chromatographic noise and thus enhanced LoD and LoQ. 

Correcting the amounts of analytes by the IS1 recovery will compensate for these losses. 

However, if strongly different soil types are compared in one study, recovery of amino 

sugars should be checked for these particular soils before analysis to ensure similar re-

coveries irrespective of matrix type.  

The precision of quantification was calculated by the RSD. Whereas basic amino 

sugars revealed precisions <2.3%, the precision for muramic acid was less, at 6.7% (Ta-
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ble 1). This can be attributed to the small amount of muramic acid, which is close to the 

limit of quantification. However, all RSDs were in an acceptable range and precise quan-

tification of amino sugars was possible by IC-O-IRMS. 

LoD ranged from 0.001 to 0.02 and LoQ from 0.02 to 0.07 mg per vial depending 

on the noise surrounding the peaks. Thus, detection is possible even at low concentra-

tions. However, for accurate detection (especially of low concentrated muramic acid) the 

injection volume or amount of hydrolyzed soil used should be adapted to the respective 

soil. 

To conclude, quantification of basic and acidic amino sugars is possible in a single 

run. However, depending on the ratio of glucosamine to muramic acid, an adjustment in 

sample amount or injection volume may be needed to reach optimum precision. Dilution 

of the final sample or adaptation of the injection volume may be necessary to obtain mu-

ramic acid concentrations above LoQ and at the same time glucosamine concentrations 

that are still in the linear range of quantification. 

 

Table 1 Recovery (%), relative standard deviation (RSD) and parameters of regression 
analysis as well as detection (LoD) and quantification limits (LoQ) for the quanti-
fication of amino sugars assessed from the standard addition experiment. 

Substance Recovery (%) RSD (%) R2 pslope≠0 pRunsTest LOD LOQ 

methylglucamine 67.88 ± 2.41 n.d. 0.996 < 0.001 ≥ 0.05 0.006 0.019 
galactosamine 56.89 ± 1.99 3.23 0.996 < 0.001 ≥ 0.05 0.005 0.066 

glucosamine 58.37 ± 4.84 2.92 0.986 < 0.001 ≥ 0.05 0.001 0.021 

muramic acid 65.49 ± 1.92 5.94 0.997 < 0.001 ≥ 0.05 0.018 0.057 
 

2.2.3.3 3.3 Amount dependence and correction factors of δ13C values 

The external standards measured parallel to each batch of samples were used to 

adapt the amount dependence and offset correction. For each compound a decrease in 

at%13C with increasing area following a linear equation was observed (Figure 2). How-

ever, the function with the best fit (equation 3) changed between individual measurement 

batches and between days. Therefore, 1) measurement of external standards in the con-

centration range of the samples and 2) individual correction functions derived from these 

external standards per sample batch are obligatory in order to achieve reliable determina-

tion of δ13C values. This has also been observed in other compound-specific isotope 

studies (Glaser and Amelung, 2002; Gross and Glaser, 2004; Schmitt et al., 2003; Zech 

and Glaser, 2009). 
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Fig. 2 Linear functions adapted to the 13C values of the external standard line to cor-
rect for amount dependency of 13C values.  

 

2.2.3.4 3.4 Accuracy, precision and isotopic LoQ of δ13C determination 

Accuracy was assessed by comparing the fitted δ13C values (from equation 5, illus-

traded in Supplementary Figure 3) to the measured δ13C values (Table 2). Deviations in 

the corrected δ13C (Std)fitted of the added standard from those measured by EA-IRMS 

were less than 1‰ for the basic amino sugars but higher for muramic acid (~1.5‰). 

These deviations from the true δ13C value were slightly higher than those observed by 

Bode et al (2009), who also had the greatest deviation for muramic acid. This can be at-

tributed to the small amount of muramic acid present and the fact that the δ13C(Std) value 

of the standard spiked to the sample was quite close to the δ13C value of soil muramic 

acid , which leads to a high uncertainty in the estimation of the fitted parameters. Choos-

ing a soil with higher δ13C(soil) (e.g. by input of C4 plants) would presumably reveal 

higher and more realistic accuracies for muramic acid. However, fitted values for 

δ13C(soil) deviated by less than 0.5‰ from those of direct measurement of non-spiked 

soil, reflecting that the determination of amino sugar δ13C under non-spiked conditions is 

reliable.  
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Table 2 Comparison of δ13C(Std)EA-IRMS (EA-IRMS PeeDeeBe calibrated δ13C value of 
standard substances spiked to the sample) and δ13C(Std)IC-O-IRMS (fitted δ13C 
value of the spiked standards from the mixing model of the standard addition 
method) reflecting the accuracy of IC-O-IRMS measurement. Fitted δ13C values 
for soil from mixing model (δ13C(soil)calculated) and real measurement of un-spiked 
soil δ13C(soil)IC-O-IRMS are also presented. Precision is shown 1) by the standard 
deviation of the measurement repetitions and 2) by calculating the area de-
pendent standard deviation according to equation 6 for the measured peak 
area. Isotopic LoQ reflects the minimum amount per vial needed to receive a 
standard error of the measurement repetitions lower than 0.5‰. 
Gal=galactosamin, Glc=glucosamine and MurA=muramic acid 

Subs- 
tance 

δ
13C(Std) 
EA-IRMS 

δ
13C(Std)fitted δ

13C(soil)fitted 
δ

13C(soil) 
IC-O-IRMS 

σ(δ13C 
(soil)measured) 

σ(δ13C 
(soil)final) 

isotopic LoQ  
(mg/vial) 

Gal -28.42‰ -27.60 ± 0.14‰ -24.58 ± 0.12‰ -25.02‰ 0.26‰ 0.64‰ 0.237 
Glc -22.58‰ -21.65 ± 0.25‰ -26.64 ± 0.10‰ -26.87‰ 0.20‰ 0.87‰ 0.250 

MurA -20.54‰ -19.04 ± 0.06‰ -19.51 ± 0.09‰ -19.65‰ 0.08‰ 0.51‰ 0.048 
 

The standard error of the four measurement replications was calculated for all 

samples of the standard addition line (σIC-O-IRMS(Ai)) (Table 2). The area dependence of 

this standard error σIC-O-IRMS(Ai) followed a parabolic function for the basic amino sugars 

(Supplementary Figure 4), which resulted from the broad range of areas covered by the 

standard addition approach: With decreasing peak area a loss in precision occurs due to 

approaching the isotopic detection limit, i.e. the error σIC-O-IRMS(Ai) increases. Increasing 

peak area can lead to an overload of the system with subsequent imprecise isotope de-

termination. In contrast, muramic acid showed a linear decrease in the standard error 

with increasing areas reflecting that even in highest spiked samples were far from over-

load conditions. The error of the amount dependence (derived from the external stan-

dards) σcorrection(Ai) showed a similar dependency on area than the sample-derived error: 

σcorrection(Ai) of basic amino sugars had a parabolic area dependence whereas σcorrection(Ai) 

of muramic acid showed linear behaviour by the same reasons as in the samples (Sup-

plementary Figure 4). These functions were used to sum up the amount-dependent stan-

dard error σfinal(Ai) (Figure 3). For the basic amino sugars, the standard error followed a 

function close to a parabolic function and there was a broad range of areas enabling reli-

able determination of the δ13C. For muramic acid, showing this function showed a sharp 

increase in standard deviation if areas became too small. Sample preparation should be 

optimized to reach the isotopic LoQ, i.e. to have >0.048 mg muramic acid in the final ly-

ophilized sample. If the amount is less, either the volume the sample is finally dissolved 

in has to be decreased or the injection volume has to be increased to achieve a sufficient 

peak area of muramic acid. The agricultural soil used for this method evaluation had a 

relative high portion of bacteria compared to fungi. In soils with strong preference of fun-

gal growth e.g. podzols the amount of muramic acid may be too low, to reach the needed 
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LoQ without having an overload in the glucosamine peak. Under such special conditions 

a double measurement with high concentrated sample for determination of muramic acid 

δ13C values and diluted concentration for determination of glucosamine δ13C values might 

be necessary. 

Average amino sugar δ13C values differ for ~0.1 to 1.1‰ within the basic (Bode et 

al., 2009; Bode et al., 2013) and for more than 3-5‰ between the basic and acidic amino 

sugars (Bode et al., 2009; Bode et al., 2013; Glaser, 1999) and differ for around 7‰ from 

bulk SOC (Glaser and Gross, 2005). The achieved accuracies of individual amino sugars 

enable to distinguish amino sugar from their C sources even under natural abundance 

conditions. Resulting precisions (0.5‰) are lower than differences between basic and 

acidic amino sugars and consequently enables to identify microbial group specifics in 

amino sugar formation (e.g. specifics in the used substrates or the fractionations in bio-

chemical formation pathways). Especially in experiments leading to a higher δ13C differ-

ences in amino sugars like C3 to C4 C source changes (Indorf et al., 2012), FACE ex-

periments (Glaser and Gross, 2005) or application of labeled substrates (Bode et al., 

2013) this method can fully distinguish C sources and individualities in cell wall formation 

of fungi and bacteria. 

In summary, this method enables a combined determination of δ13C values of 

amino sugars for the majority of soils. However, adjustments to new sample types are 

necessary to identify the optimum amount of sample to hydrolyze or the final volume to 

inject so that the optimum range for accuracy and precision of the δ13C values are met. 

 

Fig. 3 Amount-dependent function for estimation of standard error of δ13C (δfinal(Ai) 
determination calculated according to equation 6.   
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2.2.3.5 Advantages of IC-O-IRMS 

Many previous studies reported severe problems with LC-O-IRMS, e.g. the impos-

sibility of measuring muramic acid in non-spiked samples due to very low peak areas or 

the requirement for time-consuming purging steps to maintain performance of the PA 20 

column (Bode et al., 2009). The absence of these issues in the currently proposed 

method can mainly be attributed to the advantages of IC over HPLC. Ion chromatographs 

are free of metals: all elements that are in contact with sample or eluents are made from 

polyether ether keton (peek). Thus, metal contamination can originate only from the sam-

ple. However, our method contains iron and salt precipitation steps, removing all (poten-

tially column destroying) cations. This not only reduces measurement time but also re-

duces costs as, e.g., in-line high pressure filters protecting the column from colloids and 

metal ions are not needed. Even after 600 injections, no decrease in performance of the 

PA 20 column was detected and the pre-column did not need to be exchanged.  

In addition, the CO2-tight construction of Ion Chromatographs is a great advantage 

of δ13C determination as no shifts in the δ13C value due to increasing carbonate back-

ground occurred. Therefore, even CO2-binding eluents, like NaOH, do not cause prob-

lems for chromatography and isotope ratio mass spectrometry. In addition, Ion Chro-

matographs are routinely equipped with a degasser, which keeps the eluents and oxidiz-

ing reagents of the Isolink CO2-free. Thus, although acquisition costs may be higher, the 

improved performance, higher sample throughput and lower follow-up costs reflect the 

clear advantages of ion chromatographs for improving LC-O-IRMS. 

 

2.2.4 Conclusions 

Amino sugars are important biomarkers for research on bacterial and fungal contri-

bution to SOM. This new method enables parallel quantification and δ13C determination 

of the most frequent amino sugars in soils and thus sets the preconditions for wider adop-

tion of δ13C amino sugar determination in soil science.  

The combination of iron and salt removal from gas chromatography protocols with 

purification via cation exchange resins adapted from liquid chromatography methods 

proved to be an optimal sample preparation for ion chromatography including chroma-

tographic separation, system stability and longevity of system components. In addition, 

using ion chromatograph sets clear advantages over HPLCs as metal and carbonate 

exclusion from the system avoids column contamination as well as disturbance of δ13C 

determination by a carbonate background. 
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These improvements over previous methods enabled parallel quantification and 

δ13C determination of high-concentrated basic amino sugars and low-concentrated mu-

ramic acid. Recoveries ranged from 57 to 66% and could be corrected by using methyl-

glucamine as the first internal standard. The quantification limit of muramic acid, the 

compound with the lowest concentration, was around 0.05 mg per vial for quantification 

and for isotope measurement. When muramic acid exceeded these values, glucosamine, 

the most concentrated compound, was still in a linear range for quantification and δ13C 

measurement. The accuracy of IC-O-IRMS was better than 1‰ for basic amino sugars 

and better than 1.5‰ for muramic acid compared to calibrated EA-IRMS values. Preci-

sion was amount-dependent and less than 0.5‰ over a comparatively broad range of 

areas. However, the dependence on the matrix and the ratio of muramic acid to gluco-

samine in individual samples necessitates adjustment in soil amount or injection volume 

to achieve the optimal accuracy and precision of δ13C.  

The quality of the quantification and δ13C determination as well as sample through-

put of this method should enable this method to be used routinly in soil science. The ad-

vantages of IC-O-IRMS compared to HPLC-O-IRMS are evident and might also bring 

advantages for analysis of other biomarkers. 
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Supplementary Data 

Figure Supplementary A1: Scheme of the instrument coupling: Ion Chromatograph is 
shown on the left side with pump, autosampler and detector-chromatography compart-
ment. Connection to isolink occurs via a peek capillary with interposed colloid filter. 
Scheme of LC Isolink is adapted from Krummen et al. (2004). 

 

 
Figure Supplementary A2: Standard addition line of the quantified amino sugars: quanti-
fied amount per g soil is plotted against the amount of spiked amino sugar. Slope repre-
sents recovery of the individual analytes and y-axis gap represents soil content without 
recovery correction. Regression parameters are shown in Table 2. 
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Supplementary Figure A3: measured δ13C values of spiked samples are plotted against 
the percent of peak area, which is derived from the added standard: y-intercept of the 
fitted linear regression reflects the fitted value of soil whereas δ13C-value at 100% stan-
dard reflects the δ13C value of the added standard substance 

 

 

Figure Supplementary A4: area-dependant error terms of equation 6: left side shows the 
standard error of the measurement repetition of soil samples and right side shows the 
area-dependant error of the calibration/correction function from the external standard line 
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Supplementary Table A1: Solvent gradient and flow conditions of the IC-O-IRMS system 

time 20 mM NaOH 200 mM Na-
OH H2O 0.01 M  

NaNO3 
flow  

(ml min-1) 
-25 min 0% 100% 0% 0% 0.400 

-10 min 8% 0% 92% 0% 0.325 

11 min 40% 0% 35% 25% 0.400 

15 min 45% 0% 45% 10% 0.400 

18 min 25% 25% 50% 0% 0.380 

35 min standby 
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Abstract 

Microbial utilization is a key transformation process of soil organic matter (SOM). 

For the first time, position-specific 13C labeling was combined with compound-specific 
13C-PLFA analysis to trace metabolites of two amino acids in microbial groups and to 

reconstruct detailed biochemical pathways. Short-term transformation was assessed by 

applying position-specifically 13C labeled alanine and glutamate to soil in a field experi-

ment. Microbial utilization of the amino acids’ functional groups was quantified by 13C 

incorporation in total microbial biomass and in distinct microbial groups classified by 13C-

PLFA. 

Loss from PLFAs was fastest for the highly oxidized carboxyl group of both amino 

acids, whereas the reduced C positions, e.g. C3-5, were preferentially incorporated into 

microorganisms and their PLFAs. The incorporation of C from alanines’ C2 position into 

the cell membrane of gram negative bacteria was higher by more than one order of mag-

nitude than into all other microbial groups. Whereas C2 of alanine was still bound to C3 at 

day 3, the C2 and C3 positions were partially split at day 10. In contrast, the C2 of gluta-

mate was lost faster from PLFAs of all microbial groups. The divergence index, which 

reflects relative incorporation of one position to the incorporation of C from all positions in 

a molecule, revealed that discrimination between positions is highest in the initial reac-

tions and decreases with time. 

Reconstruction of microbial transformation pathways showed that the C2 position of 

alanine is lost faster than its C3 position regardless of whether the molecule is used ana- 

or catabolically. Glutamate C2 is incorporated into PLFAs only by two out of eight micro-

bial groups (fungi and part of gram positive prokaryotes). Its incorporation in PLFA can 

only be explained by either the utilization of the glyoxolate bypass or the transformation 

of glutamate into aspartate prior to being fed into the citric acid cycle. During these path-

ways, no C is lost as CO2 but neither is energy produced, making them typical C defi-

ciency pathways. Glutamate is therefore a promising metabolic tracer in regard to eco-

physiology of cells and therefore changing environmental conditions.  

Analyzing the fate of individual C atoms by position-specific labeling allows insight 

into the mechanisms and kinetics of microbial utilization by various microbial groups. This 

approach will strongly improve our understanding of soil C fluxes. 

 

 

Key words: metabolite tracing, transformation pathways, stable isotope applica-

tions, microbial community structure and functions, compound-specific isotope analysis 
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2.3.1 Introduction 

Soil organic carbon (SOC) plays a major role in the global carbon (C) cycle. The es-

timated soil organic C stocks of 1462 - 1548 Pg (Batjes, 1996) are about twice as high as 

in the atmosphere and three times as high as in the vegetation (IPCC, 2000). Soils can 

function both as a sink and a source for C, depending on climate, vegetation and man-

agement (Van Miegroet and Jandl, 2007; Vesterdal et al., 2012). Therefore it is important 

to understand processes that lead to C release from or sequestration in soil. 

The main input of C into soils is via plant litter or rhizodeposition (Rasse et al., 

2005). Litter is composed of macromolecules such as cellulose, hemicellulose, lignin or 

proteins (Crawford et al., 1977; Sorensen, 1975); rhizodeposition also contains those 

macromolecules as well as low molecular weight organic substances (LMWOS) (Farrar et 

al.,  2001). Traditionally, the chemical properties of some of these macromolecules were 

thought to prevent soil biota from digesting them. This so-called “recalcitrance” should 

lead to an enrichment of those molecules in soil. Newer studies, however, have shown 

contrary results (Crawford et al., 1977; Grandy and Neff, 2008; Jones and Darrah, 1994; 

Marschner et al., 2008). In their review, Schmidt et al. (2011) combined data from 20 field 

experiments with durations of up to 23 years. In such experiments, presumably stable 

macromolecules have shown turnover rates well below that of bulk soil. In contrast, the 

supposedly labile products of their decomposition, such as amino acids, sugars and other 

LMWOS, can persist in soil for years or even decades. As the initial quality of the OM 

seems to have a minor effect on its persistence in soil, future research is called upon to 

identify the mechanisms that stabilize SOC, especially from LMWOS.  

Growing evidence points to microbial incorporation and transformation as key fac-

tors in stabilizing soil organic carbon (SOC) (Koegel-Knabner, 2002). This could explain 

the lower-than-expected stability of macromolecules: prior to being incorporated into mi-

crobial biomass, they are split by exoenzymes and only then are the emerging LMWOS 

further processed (Cadisch and Giller, 1996; Kuzyakov et al., 2009). After being taken up 

by microorganisms, LMWOS are partly degraded and transformed to CO2 and are thus 

lost from the soil C pool; the other part is transformed into microbial biomass, which is 

more stable to decomposition even after cell death (Six et al., 2006). Nonetheless, re-

source utilization by microbial groups differs with respect to uptake preferences and 

speed (Treonis et al., 2004) and, more importantly, stability of microbial products. Resi-

dues from gram positive bacteria can have twice the mean residence time of that from 

gram negative bacteria (Schmidt et al., 2011). Learning more about the means of SOC 

degradation and sequestration therefore requires techniques that yield information on: i) 

microbial groups present in the soil and ii)  their metabolic processes.  
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To achieve the first goal, phospholipid fatty acid (PLFA) analysis has been estab-

lished. It is based on the production of different PLFAs for cellular membranes by differ-

ent morphological groups of microorganisms (Zelles, 1999; Zelles et al., 1995). To gain a 

better understanding of microbial transformations of organic matter by those microorgan-

isms, 13C- or 14C-labeled substances have been applied to soil and traced in various 

pools (SOM, microbial biomass) and, if possible, in the released CO2 (Evershed et al., 

2006; Kuzyakov, 1997; Treonis et al., 2004). The shortcoming of uniformly labeled sub-

stances is that they do not allow distinction of individual positions of a molecule: e.g. if 

one third of uniformly labeled alanine is incorporated into a pool, one does not know 

whether the molecule has been split and all of one position was incorporated, while the 

other two have been mineralized or whether one third of all molecules was incorporated 

without having been split. By use of uniformly labeled substances only total incorporation 

respectively degradation of the molecule can be assumed. Nonetheless, in regard to the 

different oxidation states of C in organic molecules, a preferential incorporation of some 

positions and degradation of others is conceivable (Dijkstra et al., 2011a; Fischer and 

Kuzyakov, 2010b). This hypothesis cannot be investigated with uniformly labeled sub-

stances. Instead, position-specific labeling (13C or 14C) should be applied. 

We used two model substances in our study: the amino acids alanine and glutamic 

acid. Amino acids are a source for both C and N and, as such, represent an important 

link between C and N cycles. The two LMWOS are also very abundant in soil; alanine 

accounts for about 15% and glutamic acid 10% of the amino acids recovered in DOC 

(Fischer et al., 2007). They are also important components of root exudates (Fischer et 

al., 2010a). 

We tested the following hypotheses: 

I. Functional groups in the amino acids are utilized differently:  

a. carboxyl C is  lost fastest from soil, 

b. C with lower oxidation states is preferably incorporated in microorganisms. 

II. Individual microbial groups incorporate different amounts of amino acid C in their 

PLFA: 

a. uptake and incorporation is highest for single cell groups, 

b. filamentous groups incorporate more C from lower oxidized positions than 

prokaryotic, single-cell organisms. 

III. The fate of individual C positions can be used for metabolic tracing, i.e. to identify 

different metabolic pathways among microbial groups: 

a. the ratio of 13C in PLFAs and in total microbial biomass will differ among 

the microbial groups, reflecting C transfer to fatty acid syntheses path-

ways, 
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b. the preference for the incorporation of C from individual amino acid posi-

tions will differ between the microbial groups, reflecting their  metabolic 

pathways. 

 

2.3.2 Material and Methods 

2.3.2.1 Field experiment 

Preliminary to this study, a number of short laboratory experiments with position-

specifically 14C-labeled LMWOS were conducted (Fischer & Kuzyakov 2010, Dippold & 

Kuzyakov (in press)). With a field experiment, we tested whether 13C enrichment in vari-

ous microbial and soil pools would allow metabolic tracing.   

 

Sampling site 

The experimental site is located on an agriculturally used loamy Luvisol in northern 

Bavaria (49°54' northern latitude; 11°08' eastern longitude, 500 a.s.l.). The last crop was 

Triticale; before application of the tracers, all above-ground biomass was removed. The 

mean annual temperature in the region is 7 °C, mean annual precipitation 874 mm. The 

soil had a pHKCl of 4.88, a pHH2O of 6.49, TOC content of 1.77% and TN content of 0.19%. 

CEC was 13 cmolC kg-1. 

 

Experiment design 

The 12 × 12 m field was divided into four quadrants to allow four replications. PVC-

tubes with a diameter of 10 cm and height of 13 cm were installed 10 cm deep in the soil, 

resulting in a soil sample weight of about 1 kg for each tube. To ease application, the soil 

inside each column was pierced with five wooden rods 5 days prior to applying the amino 

acid. A multipette (Eppendorf, Hamburg, Germany) was used to apply 10 ml tracer-

solution per column with concentrations of 13C labeled amino acids according to Table 1. 

A 7-cm-long needle with lateral holes enabled homogeneous lateral distribution. Leaching 

was avoided by only injecting solution in the upper 2/3 of the column and blocking rainfall 

by installing a roof above the plot. In each of the quadrants and per each of both sam-

pling times, alanine and glutamic acid were applied once as 1) non-labeled background 

(not shown in Table 1), 2) uniformly 13C-labeled and 3) as two and three position-

specifically 13C-labeled isotopomeres of alanine and glutamic acid, respectively (see Ta-

ble 1). The distribution of substances in each block was chosen randomly. The 13C-

content and excess 13C atom-% of the residual glutamic acid molecules were calculated 
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by subtracting measured values for the first two positions from results for the whole 

molecule.  

Table 1 Concentrations of amino acid solutions for soil labeling 

 

 

Sampling and sample preparation 

Soil was sampled 3 and 10 days after labeling. After 3 days, we expected total 

uptake of the amino acids (3 days corresponds to approximately 10 mean residence 

times for the amino acids). After 10 days, we expected incorporation of 13C into PLFAs 

but yet no degradation of the enriched PLFAs. Both times, complete columns from one 

set (background, uniformly and position-specifically labeled) of four replications were dug 

out and the height of the soil inside the column was noted to calculate its volume. 

Afterward, the soil was transferred into a plastic bag and weighed; a subset was sieved to 

2 mm for further analysis and stored at -20 °C for PLFA-extraction and at 5 °C for 

chloroform-fumigation extraction.  

 

2.3.2.2 Analytical methods 

Bulk soil measurements 

For the analysis of bulk soil C content and δ13C-values, the samples were freeze 

dried, ground in a ball mill and 5 - 6 mg per sample were filled into 5 x 12 mm tin cap-

sules (IVA, Meerbusch, Germany). The samples were measured on the Euro EA Elemen-

tal Analyser (Eurovector, Milan, Italy) unit with a ConFlo III interface (Thermo-Fischer, 

Bremen, Germany) and the Delta V Advantage IRMS (Thermo Fischer, Bremen, Ger-

many). Uptake of 13C from the applied amino acids into the soil was calculated according 

to the mixing model (Eq. 1 and 2), where the C content of the background in Eq. 1 was 

substituted according to Eq. 2. 

 

appAAappAABGCBGsoilsoil rCrCrC ⋅+⋅=⋅ − ][][][     (3) 

 

appAABGsoil CCC ][][][ +=        (4) 

with:   
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[C]soil/BG/appAA  C content of sample / background / applied amino acid  

    (mol · gsoil
-1) 

r soil/BG/appAA  13C atom%-excess of sample / background / applied amino acid 

           (at%) 

 

Chloroform fumigation extraction 

To determine microbial C and its δ13C values, two subsets of 15 g of soil were 

taken from each sample. One sample was directly extracted as described below; the 

other was first fumigated with chloroform for 5 days in an exsiccator to lyse microbial 

cells. 

The samples were extracted twice with 22.5 ml of 0.05 M K2SO4. They were shaken 

on a horizontal shaker, 1 h on the first, 0.5 h on the second extraction. After shaking, the 

samples were centrifuged (10 min, 2000 rpm) and the supernatant was filtered (Rotilab® 

round filters, type 15A, cellulose, membrane 70 mm). 

The carbon content of the K2SO4 extracts was measured on the TOC analyser multi 

C/N® 2000 (Analytik Jena, Jena, Germany). For δ13C measurements, all of the remaining 

extracts (approx. 43 ml) were freeze-dried. A subsample of the freeze-dried crystals was 

transferred to 5 x 12 mm tin vessels (IVA, Meerbusch, Germany) and then measured on 

the Euro EA Elemental Analyser (Eurovector, Milan, Italy) unit with a ConFlo III interface 

(Thermo-Fischer, Bremen, Germany) and the Delta V Advantage IRMS (Thermo Fischer, 

Bremen, Germany). 13C uptake into the microbial biomass was calculated according to 

the mixing model (Eq. 1 and 2). 

 

PLFA-Analysis 

Phospholipids were extracted and purified by a modified method of Frostegard et 

al. (1991). Modifications included using 6 g of soil for extraction and eluting polar lipids 

four times instead of once with 5 ml of water-free methanol. Before extraction, 25 µl of a 

1 M solution of the internal standard 1 (IS 1) phosphatidylcholin-dinonadecanoic acid 

were added. For measurements on a GC, the fatty acids were saponified to free fatty 

acids and derivatized into fatty acid methyl esters (FAME) following the description by 

Knapp (1979). Before transferring the samples to autosampler vials, 15 µl of the internal 

standard 2 (IS 2) tridecanoic acid methyl ester were added. External standards consisting 

of the 27 fatty acids given in Supplementary Table 1 and internal standard 1 were pre-

pared with total fatty acid contents of 1, 4.5, 9, 18, 24 and 30 µg, respectively, and deri-

vatized and measured together with the samples. 

FAME-contents were measured on a GC-MS (GC 5890 with MS 5971A, Agilent, 

Waldbronn, Germany) with a 30 m DB1-MS column, in the selected ion mode. The rela-
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tion between the area of each FAME and the area of the IS 2 was calculated and quanti-

fied by a linear regression calculated from the six external standards. The recovery rate 

for every sample was determined based on the area of the initially added 25 µg of IS 1, 

and applied against the quantified masses of the FAMEs. 

δ13C-values were analyzed on a GC-C-IRMS; consisting of the autosampler unit AS 

2000, the Trace GC 2000 by ThermoQuest, the combustion unit Combustion Interface III 

and the isotope-ratio mass spectrometer DeltaPlus (Thermo Finnigan, Bremen, Ger-

many). Volumes of 1.5 µl were injected into a liner (Type TQ(CE) 3 mm ID TAPER) at a 

liner temperature of 250 °C, with a splitless time of 1 min. Gas chromatography was ac-

complished with a combination of two capillary columns: a 30 m DB5-MS and a 15 m 

DB1-MS (both: internal diameter 0.25 mm, film thickness 0.25 µm; Agilent); a constant 

He-flux (99.996% pure) of 2 ml · min-1 and the temperature program presented in Sup-

plementary Table 2. CO2 reference gas (99.995 % pure) was injected for 20 s into the 

detector four times throughout the measurement to identify any detection drift. The δ13C 

of the second reference gas peak was defined as -40‰ and all other δ13C values were 

calculated by comparison. δ13C of all PLFA samples was measured four times. 

The chromatograms were evaluated with ISODAT NT 2.0. The δ13C- value in ‰ 

was computed from the output in the isotopic ratio 13C/12C. 

To correct for any drift during measurements, linear regressions were calculated 

from reference gas peaks two and three, and three and four. Eq. 3 was applied to the 

δ13C value of FAMEs that were detected before reference gas peak three; Eq. 4 was ap-

plied to those that were detected after reference gas peak three. 

 

))((%)(%)( 0 RGFAMERGFAMEDKFAME ttmatCatC −⋅−= −−      (3) 

%)())((%)(%)( 0 atCttmatCatC RGRGFAMERGFAMEDKFAME ∆−−⋅−= −−    (4) 

with: CFAME-DK(at%) drift-corrected 13C amount of the FAME  (at%) 

  CFAME-0(at%)  measured 13C amount of the FAME  (at%) 

mRG slope of regression between the reference gas  

peaks enveloping the FAME    (s-1) 

  tFAME  retention time of FAME    (s)  

   tRG  retention time of reference gas peak prior  

to FAME      (s) 

  ∆CRG(at%) difference between reference gas peaks   (at%) 

    three and two      
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To correct for amount-dependent 13C isotopic fractionation during measurements 

(Schmitt et al., 2003) and for the addition of C during derivatization, linear and logarithmic 

regressions of the external standards δ13C-values to their area were calculated. If both 

regressions were significant, that with the higher significance was applied. As the δ13C-

value for the derivatizating agents was unknown, the correction was performed according 

to Glaser and Amelung (2002a) (Eq. 5).  

 

%)())(%)((
)(

)(
%)( ln/ln/ atCtAmatC

CN

CN
atC FSEAlinFAMElinDKFAME

FS

FAME
FS −− ++⋅−⋅=   (5) 

with: CFS(at%) corrected 13C amount of the fatty acid   [at%]  

  CFAME(at%) drift-corrected 13C amount of the FAME  [at%] 

  mlin/ln  slope of linear/logarithmic regression         [at% · Vs-1] 

  tlin/ln  y-intercept of linear/logarithmic regression   [at%] 

  AFAME  area of FAME      [Vs] 

  N(C)FAME number of C atoms in FAME  

  N(C)FS  number of C atoms in fatty acid 

  CEA-FS(at%) measured 13C-value of fatty acid   [at%] 

 

2.3.2.3  Divergence Index 

Discrimination of C from individual positions in one molecule during uptake and/or 

utilization was assessed. The extent of discrimination between pools, microbial groups 

and at two sampling times was compared as well. For both of these tasks, the differences 

in absolute uptake into C pools or microbial groups had to be relativized. Therefore, the 

divergence index (DI) was defined:  

∑

⋅
=

n

i

i
i

C

Cn
DI

1

        (6) 

with: n  number of C atoms in molecule 

  Ci  relative incorporation of tracer C  [mol · mol-1] 

 

As required, the DI can be calculated with relative incorporation of tracer per bulk 

soil, microbial biomass, single PLFA or ΣPLFA of microbial groups. The DI compares the 

calculated actual incorporation of C from each position with the mean C incorporation 

from all positions. This can be understood as the result the experiments would have had 

if uniformly labeled tracers had been used. A DI of 1 would indicate no discrimination 
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between the positions; values above 1 indicate preferential incorporation, values below 1 

show preferential degradation.  

 

2.3.2.4  Statistical analysis 

For the repetitive measurements of d13C-values, a Nalomov outlier test with signifi-

cance levels of 95% (when four repetitions were available) or 99% (when three repeti-

tions were available) was performed. PLFAs were classified into corresponding microbial 

groups by a factor analysis of C contents of the entire dataset. Fatty acids with a loading 

of more than 0.5 (absolute value) on the same factor were categorized with regard to 

previous studies (Zelles, 1999; Zelles et al., 1995). All the data presented in this study 

were tested with a one-way analysis of variance (ANOVA); significances were deter-

mined with the Tukey Honest Significance Difference (Tukey HSD) post-hoc test with a 

significance level of 99.5%. All positions were tested for significant differences between 

recoveries in soil, microbial biomass and PLFAs. For every microbial group and soil pool, 

the difference in DI for the six position-specifically labeled positions was also tested for 

significance. All statistical tests were accomplished with R version 2.9.0 (17.04.2009). 

 

2.3.3 Results 

2.3.3.1 Incorporation of uniformly labeled amino acids 

The C content in the soil was 1230 µmol · g-1 (Table 2), which corresponds to 

15.0 mg C · g-1 soil. Of this C, 3.5% is contained in microbial biomass, and 0.01% in the 

sum of PLFA (Σ-PLFA). The incorporation of uniformly 13C-labeled alanine and glutamic 

acid into soil and microbial biomass decreased between days 3 and 10. The recovery in 

Σ-PLFA remained stable or even increased. Recovery of applied alanine and glutamic 

acid C in soil decreased by about half between days 3 and 10. Recovery from applied 

glutamic acid in microbial biomass decreased by nearly 90% between days 3 and 10 

(Table 2). 

Table 2 Total C content and 13C incorporation of uniformly labeled amino acids into soil, 
microbial biomass and sum of PLFA (Σ-PLFA). 
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2.3.3.2 Incorporation of position-specifically labeled amino acids  

With the tool of position-specific labeling, we were able to trace C from individual 

positions of alanine and glutamic acid into different soil C pools. On day 3 (Fig. 1, top), a 

clear discrimination against the carboxyl C of both amino acids and glutamic acids amino-

bound position in soil, microbial biomass and Σ-PLFA is evident. On day 10 (Fig. 1, bot-

tom), the recovery of the carboxyl C in soil remained stable, while the recovery of all 

other positions in soil decreased by up to 60% of applied 13C. This results in an equal 

recovery of all positions in soil on day 10. In microbial biomass and Σ-PLFA the recovery 

of 13C from both carboxyl groups and glutamic acids amino bound position  on day 10 

was still lower than the 13C recovery from other positions of both amino acids. In microbial 

biomass, the 13C recovery of glutamic acids amino-bound position decreased by 35%. 

The same amount of 13C from glutamic acid’s positions was recovered in Σ-PLFA on both 

days. Fig. 1 shows that on day 10, all C from the C2 and C3 positions of alanine in soil 

was located in the microbial biomass. The carboxyl C from alanine and glutamic acid, 

however, was stabilized in soil by other mechanisms. 

 

Fig. 1 Recovery of position-specifically 13C labeled Ala and Glu in soil, microbial bio-
mass and Σ-PLFA, 3 (top) and 10 days (bottom) after application. Letters indi-
cate significant differences (p < 0.05) between recovery bulk soil (a), microbial 
biomass (a’) and Σ-PLFA (a’’) 
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To identify microbial groups, a PCA was performed on the PLFAs C-content from 

both sampling times. By comparing classification in the literature (ZELLES 1999; ZELLES et 

al. 1995), the fatty acid groups were matched to microbial groups and through factor load-

ings they were further subdivided (Supplementary Table 3). Recovery of applied position-

specifically labeled C from the two amino acids in most microbial groups (Fig. 2) shows 

the same pattern as recovery of applied C in Σ-PLFA: The 13C recovery from the carboxyl 

groups is less than 0.1% of 13C input of both amino acids on both days. On day 3, the 

recoveries of the amino-bound and the methyl C from alanine were similar. This pattern 

was different on day 10, when the recovery of alanines amino-bound C was lower than 

that of its methyl group. In the first days after being taken up by microorganisms and util-

ized in the cell membrane, only the C1 position was split from the alanine molecule, while 

the C2 and C3 positions were utilized together.  

 

Fig. 2 Recovery of applied 13C from positions of alanine (top) and glutamic acid (bot-
tom) in microbial groups after 3 and 10 days. Letters indicate significant differ-
ences (p < 0.05) between carboxyl C (a), amino-bound C (a’) and methyl C of 
alanine or the residual molecule of glutamic acid (a’’). 
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The 13C recovery of glutamic acid’s positions reveals that it is transformed differ-

ently than alanine. From both the amino-bound and the carboxyl C, less than 0.4% were 

recovered in Σ-PLFA on both days. In contrast, nearly 4% of the residual amino acid C 

were recovered in Σ-PLFA. In the microbial pathways both C1 and the C2 from glutamic 

acid were split from the residual molecule, which was then incorporated into PLFAs. 

The maximum incorporation of C into PLFAs from all positions of both amino acids 

was achieved by the group of gram negative I (18:1ω7c, 18:1ω9c) (Fig. 2). This group of 

gram negative prokaryotes took up 4.5 - 5.5% of the methyl C from alanine and also of 

the residual molecules C from glutamic acid. No other microbial group took up more than 

2% from any position. Most prokaryotic groups incorporated more C from C2 and C3 posi-

tions of alanine than the anaerobic bacteria (cy17:0) and the two eukaryotic groups 

(Fungi (20:1ω9c, 18:2ω6,9) and VA-Mycorrhiza (16:1ω5c)).  

 

2.3.3.3 Divergence Index 

The divergence index (DI) was used to compare the extent of incorporational dis-

crimination of C from different positions between the pools (Fig. 3) and microbial groups 

(Fig. 4).The DI relativizes differences in absolute uptake. Regarding the DI in soil, micro-

bial biomass and Σ-PLFA (Fig. 3), differences between days 3 and 10 after tracer appli-

cation can be observed (Fig. 3). The relative incorporation in soil on day 3 shows a clear 

discrimination against the carboxyl positions; on day 10, there is no significant difference 

in DI between any position of alanine or glutamic acid. Although only the declined dis-

crimination against alanines carboxyl C between day 3 and 10 is significant (p < 0.05),  

the reduced discrimination between all positions in soil between day 3 and day 10 shows 

that during the initial reactions, the pathways of C from different positions of the two 

amino acids differ greatly. However, ten days after application, the source position in the 

molecules is not determining for fixation in soil. In microbial biomass, a reduction of dis-

crimination between positions may be taking place – the discrimination between positions 

is not significant anymore – but high standard errors prevent any certain conclusions. In 

Σ-PLFA, alanine’s amino-bound position had a DI equal to that of its methyl position on 

day 3 but a lower DI on day 10. The incorporation pattern of glutamic acids positions into 

Σ-PLFA did not change between day 3 and day 10.  
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Fig. 3 Divergence index (DI) reflecting incorporational discrimination between C posi-
tions into soil, microbial biomass and Σ-PLFA, 3 (left) and 10 (right) days after 
applying 13C-labeled alanine (Ala) and glutamic acid (Glu). Letters indicate sig-
nificant differences (p < 0.05) in the relative incorporation of the C positions into 
soil (a), microbial biomass (a’), Σ-PLFA (a’’) on day 3, and into Σ-PLFA (a**) on 
day 10 after tracer application. 

Despite the differences in absolute 13C recovery in PLFAs between the microbial 

groups (Fig. 2), the DI (relative 13C recovery) of most microbial groups PLFAs (Fig. 4) 

shows a similar pattern, which also generally reflects the pattern described by Σ-PLFA 

(Fig. 3). In most PLFAs, there was an average to above-average relative incorporation of 

the amino-bound group of alanine on day 3, which is prominent on day 10 (Fig. 4). The DI 

for the methyl position of alanine and the residual molecule of glutamic acid was above-

average in all microbial groups and on both days. The amino-bound C of glutamic acid 

was incorporated less than average in all microbial groups and on both days. Exceptions 

to this pattern were the groups of gram positive II (i15:0, i17:0) and fungi (20:1ω9c, 

18:2ω6,9), which both showed no significant discrimination against any position on either 

days.  
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Fig. 4 Divergence Index (DI), reflecting discrimination between C positions of alanine 
(Ala) and glutamic acid (Glu), 3 (top) and 10 (bottom) days after application. Let-
ters indicate significant differences (p < 0.05) between the relative incorporation 
of the C positions into the microbial group a: gram negative I, a’: gram negative 
II, a’’: gram positive I, a*: actinomycetes, a°: VA-mycorrhiza. 

 

2.3.4 Discussion  

2.3.4.1 Incorporation of carbon from amino acids in soil and microbial bio-

mass  

On day 3, the 13C recovery from alanine and glutamic acid in soil, microbial bio-

mass and Σ-PLFA shows the same pattern (Fig. 3). C from the carboxyl group is recov-

ered less than that from the amino-bound and methyl positions and the residual molecule 

of glutamic acid in all pools. This was expected as the carboxyl C has the highest oxida-

tion state and is therefore most prone to being removed from the molecules. This is 

achieved by decarboxylation. Enzymes necessary for decarboxylation of amino acids 

have been found in soil (Braun et al., 1992; Tena et al., 1986) as well as in prokaryotic 
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and eukaryotic microorganisms (Caspi et al., 2008). On day 10, the amount of carboxyl C 

from both amino acids in soil remained stable, while the recovery of all other positions 

decreased. Although it seems contradictory this can also be explained by the high reac-

tivity of the carboxyl C: not only can it be oxidized to CO2 easily, but it can also react with 

other soil components and be thus stabilized. This possible stabilization mechanism is 

supported by results of Kuzyakov (1997), who found position-specifically labeled 14C from 

the carboxyl position of alanine in humic and fulvic acids. As complex macromolecules, 

humic and fulvic acids contain a variety of functional groups such as hydroxyl groups, 

methylenes, ethers and esters in aliphatic chains (Simpson et al., 2002). It is possible for 

carboxyl C from microbial sources to react with humic macromolecules, e.g. by forming 

ester-linkages with hydroxy groups. Esters are highly inert, therefore the former carboxyl 

C will be stabilized from further degradation.  

In contrast to carboxyl C, the 13C recovery from the amino-bound and methyl group 

of alanine in soil decreased by up to 60% between days 3 and 10. Compared to the de-

crease in recovery of these positions in soil, the amount incorporated into microbial bio-

mass is still high on day 10. In microorganisms, alanine can be used catabolically, in the 

citric acid cycle and anabolically, e.g. to produce sugars or fatty acids (Fig. 5) (Caspi et 

al., 2008). The first reactions for both pathways are the same. Alanine is first deaminated 

and then decarboxylated, thereafter the resulting acetyl reacts with coenzyme A to form 

acetyl-CoA. The acetyl-CoA, which consists of the former amino-bound and methyl C 

from alanine, is then fed into the citric acid cycle or used for biosynthesis. This explains 

why C from those two positions is recovered in PLFAs, but C from the carboxyl group is 

not. After incorporation into PLFAs, C from the former amino-bound position is on the 

terminal position and thus most prone to being oxidized and decarboxylated (Caspi et al., 

2008).This process is hinted at by the slight decrease in relative incorporation of alanines 

amino-bound position between day 3 and 10. The incorporation of the C from the methyl 

position of alanine and from the residual molecule of glutamic acid in Σ-PLFAs is still high 

on day 10. 

 

2.3.4.2 Incorporation of tracer into the microbial groups 

The 13C incorporation into PLFAs of microbial groups differed by more than one or-

der of magnitude (Fig. 2). As hypothesized, the highest incorporation, with more than 5% 
13C uptake, was recorded for a group of gram negative prokaryotes (gram negative I). 

This fits well with the observations by Griffiths et al. (1999) that gram negatives react 

fastest to addition of LMWOS, which gives them a competitive advantage.  
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Fig. 5 Microbial transformation pathways of alanine (a) and glutamic acid (b, c, d). As 
there are different transformation pathways for glutamic acid, it is presented in 3 
subfigures. The entrance of alanine (a) occurs from the bottom (in contrast to 
glutamic acid, b, c, d,) of the citric acid cycle because of its initial transformation 
to acetyl-CoA.   

Three other prokaryotic groups (gram negatives II, actinomycetes and gram posi-

tive II), also achieved moderate 13C incorporation. The two eukaryotic groups – fungi and 

VA-mycorrhiza – were unable to take up as much of the applied amino acid C as the pro-

karyotic group. This is unsurprising because the turnover of the larger, more complex 

eukaryotes’ biomass is slower than that of prokaryotes’ (Bååth 1998, Rousk & Bååth 

2007). Accordingly, enrichment of eukaryotic cell components takes longer (Moore et al., 
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2005). Apart from a slower turnover, the larger size of eukaryotic cells results in a smaller 

ratio of surface to volume. As PLFAs are utilized as cell membranes on the surface of the 

organism and the difference in the ratios of 13C in PLFA to 13C in microbial biomass for 

various microbial groups is unknown, there is no full comparability between cells of differ-

ent size. It is also well known that fungi are specialized on more complex substrate than 

LMWOS. 

As in the eukaryotes, the anaerobic bacteria also incorporate only a maximum of 

0.7% of the applied C. As the roof we installed prevented excess wetting, the soil was 

well aerated, so the anaerobic microorganisms could only persist inside anaerobic micro-

habitats such as microaggregates. Thus, only 13C that permeated into those anaerobic 

microhabitats could be taken up by anaerobic microorganisms. 

 

2.3.4.3 Discrimination of individual carbon positions by microbial utilization 

differs depending on oxidation state, amino acid and time 

As in soil and microbial biomass, discrimination of the individual C positions of both 

amino acids also took place in the microbial PLFA. As the percent of 13C recovery (Fig. 2) 

between the microbial groups’ PLFA differs greatly, the discrimination between the posi-

tions of alanine and glutamic acid is best evaluated with the DI (Fig. 4). 

On day 3, there was no difference in relative incorporation of 13C from the methyl 

and amino-bound C of alanine for most microbial groups. Nearly no 13C from alanine’s 

carboxyl group was recovered in the PLFAs and the incorporation of alanine’s 13C into 

microbial biomass is much lower than that of its amino-bound and methyl position. Ac-

cordingly, we can conclude that during the three days after applying the amino acid, the 

C1 atom in alanine is split from the molecule quickly, whereas C2 and C3 remain bonded. 

Presumably, the alanine molecule is taken up and then metabolized in the main alanine 

utilization pathway: deamination to pyruvate and after decarboxylation by pyruvate dehy-

drogenase, transformation to acetyl-CoA (Fig. 5a). This molecule then either enters the 

citric acid cycle (de Kok et al., 1998) or fatty acid synthesis (Caspi et al., 2008). On day 

10, the DI of the amino-bound C is slightly lower than that of alanine’s methyl C in most 

microbial groups, which can be explained by the further reactions in microorganisms: If 

the molecule is used catabolically in the citric acid cycle, then the acetyl-CoA conden-

sates with oxalate to citric acid. After this reaction, the former amino-bound C of alanine 

is one of citric acid’s carboxyl groups. Thus, the chance for the amino-bound position to 

be degraded into CO2 during the next step – the formation of 2-oxoglutarate (Camacho et 

al., 1995) – is about 1:3, whereas the methyl position is still incorporated in the non-

reactive chain. After every circuit of the citric acid cycle, C from the alanine molecule can 
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either be transferred to a biosynthesis pathway or continue partaking in this cycle (Caspi 

et al., 2008). We detected 13C in the extracted PLFAs. Thus, the alanine molecules were 

fed either into the fatty acid biosynthesis pathway or the fatty acid elongation pathway. 

The initial substance for both these pathways is also acetyl-CoA. As in the citric acid cy-

cle, the former amino-bound C will be the terminal C on the fatty acid molecule and is 

thus more prone to being degraded than the former methyl C (Caspi et al., 2008). In 

summary, regardless of whether alanine is used anabolically or catabolically, the former 

amino-bound C will be degraded before the former methyl C (Fig. 5a).  

The DI of glutamic acid shows that it is transformed in different pathways than 

alanine (Fig. 5 b, c and d). We find a discrimination against C from both the carboxyl and 

the amino-bound position, which means that either C1 and C2 were split from the residual 

molecule together or in short succession. Glutamic acid most commonly enters the citric 

acid cycle after being transformed into oxoglutarate (Caspi et al., 2008). Oxoglutarate has 

the original five atoms in its chain and loses the carboxyl group immediately after entering 

the citric acid cycle. This transformation does not yet explain why the amino-bound C has 

a DI as low as the carboxyl group. One possible explanation is that the metabolization of 

the former glutamic acid molecule is so fast that, after three days, the citric acid cycle has 

already removed most of the formerly amino-bound C. However, the DI of microbial bio-

mass (Fig. 3) does not shows a discrimination against glutamic acid’s amino-bound C. If 

glutamic acids amino-bound positions would be solely lost by repetitive oxidation in the 

citric acid cycle, we would not only see a discrimination in PLFA but also in overall micro-

bial biomass. Therefore, the explanation for the less than average incorporation of glu-

tamic acids amino-bound position might be found by tracing the anabolic pathway that 

leads to fatty acid formation in microbial cells. As opposed to alanine, glutamic acid is not 

transformed into acetyl-CoA (the starting substance for fatty acid synthesis) before it is 

fed into the citric acid cycle. But in that cycle, glutamate is transformed into malate, which 

can be fed into the gluconeogenesis pathway, producing sugars and other anabolic prod-

ucts from non-sugar substrates (Caspi et al., 2008; Katz and Tayek, 1999). One of the 

intermediaries in this pathway is pyruvate, which can be transformed into acetyl-CoA. 

Following these transformations, the acetyl-CoA molecule will consist of two of glutamic 

acid residual Cs (Fig 5b).  

In contrast to alanine, the DI for glutamic acid’s amino-bound C is not convergent 

for all microorganisms: the groups gram positives II and fungi show specific incorporation 

patterns.  The difference between glutamic acid’s amino-bound position and its methyl 

position is not significant. Following from the aforementioned transformation pathways of 

glutamic acid, it is impossible for the amino-bound C to be incorporated into microbial 

PLFAs, so there should be a significant difference between the amino-bound and methyl 
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C. Detection of this position in the PLFAs can be only be explained by the use of alterna-

tive pathways.  Two pathways for glutamic acid utilization exist: aspartate production from 

glutamic acid prior to  the citric acid cycle (Fig. 5c) and the glyoxylate bypass (Fig. 5d). 

Glutamic acid is transformed into aspartate by removing the C5 position; thereafter, the 

aspartate is deaminated and fed into the citric acid cycle. The glyoxylate bypass avoids 

the exhaustion of CO2. This yields two instead of one malate molecules, but will produce 

no energy. The glyoxylate bypass in the citric acid cycle is used by bacteria, and its en-

zymes have also been found in fungi (Maxwell et al., 1977; Munir et al., 2001). Again, for 

fatty acid production, pyruvate has to be produced by the gluconeogensis pathway. In 

contrast to the “common” pathway mentioned above, glutamic acid’s former amino-bound 

position will remain in the molecule. Therefore, both the production of aspartate and the 

utilization of the glyoxylate bypass can explain why we find no significant difference be-

tween the amino-bound and methyl C in the PLFAs of gram positives II and fungi (Fig. 5c 

and d) (Caspi et al., 2008).  

As mentioned above, the bypass produces no energy and is thus only relevant at C 

deficiency conditions. This indicates that the gram positives II and fungi might be suffer-

ing from C deficiency and need to utilize specific pathways to meet their anabolic de-

mands. Such groups might be of special interest when environmental conditions change, 

especially an altered C input. 

 

2.3.5 Conclusions 

This study has shown that position-specific 13C labeling and compound-specific 13C-

PLFA analysis are a valuable combination to gain new insights into microbiological trans-

formations of amino acids in soil. As hypothesized, the carboxyl C of both amino acids is 

oxidized rapidly by microorganisms. Methyl C from alanine and glutamic acid residual 

molecules showed high recoveries in all microbial groups 10 days after the application. 

While functional group and oxidation state help to predict the incorporational behavior for 

carboxyl, methyl and residual positions, the amino-bound C from two amino acids is 

transformed differently. C2 from alanine is incorporated like its methyl C on day 3, but its 

recovery decreased slightly on day 10. The DI revealed that, although C2 from glutamic 

acid is lost from most microbial groups, gram positives II and fungi incorporate it into their 

PLFA. This was explained by special microbiological pathways - the glyoxolate bypass 

and the transformation of glutamic acid into aspartate prior to being fed into the citric acid 

cycle - used under C deficiency. As glutamic acid has proven to be a sensitive tracer for 

environmental conditions, it could be applied to observe metabolic changes under envi-

ronmental gradients. 
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None of these findings could have been achieved without using position-specifically 

labeled substances. The method of coupled position-specific 13C labeling and compound-

specific isotope analysis can in the future be further expanded to investigate pathways of 

other microbial or soil constituents, including other amino acids and amino sugars, car-

boxyl acids, sugars, humic and fulvic acids. This would help to identify further transforma-

tion and stabilization processes and improve our knowledge about soil C fluxes. 
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Supplementary Table A2: Results of factor analysis 
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Abstract 

BACKGROUND AND AIMS: Amino acid turnover in soil is an important element of 

terrestrial carbon and nitrogen cycles. This study accounts for their driver - the microbial 

metabolism - by tracing them via the unique isotopic approach of position-specific label-

ing.  

METHODS: Three 14C isotopomers of alanine at five concentration levels combined 

with selective sterilization were used to distinguish sorption mechanisms, exoenzymatic 

and microbial utilization of amino acids in soil.  

RESULTS: Sorption and microbial uptake occurred immediately. Unspecific micro-

bial uptake followed a linear kinetic, whereas energy-dependent uptake followed Micha-

elis-Menten. Less than 6% of the initially added alanine was sorbed to soil, but after mi-

crobial transformation products were bound to the soil matrix at higher proportions (5-

25%). The carboxyl group (C-1) was rapidly oxidized by microorganisms, whereas C-2 

and C-3 positions were preferentially incorporated into microbial biomass. Dependency of 

C metabolization on amino acid concentration reflected individual alanine transformation 

pathways for starvation, maintenance and growth conditions. 

CONCLUSIONS: This study demonstrates that position-specific labeling deter-

mines the mechanisms and rates of C cycling from individual functional groups. This ap-

proach reflected underlying metabolic pathways and revealed the formation of new or-

ganic matter. We therefore conclude that position-specific labeling is a unique tool for 

detailed insights into submolecular transformation pathways and their regulation factors. 

 

 

 

 

 

 

 

 

 

 

 

Keywords: Position-specific tracers, Amino acids stabilization, Sorption, Exoenzyme and 

uptake kinetics, Metabolic tracing, Soil organic matter formation, Sterilization and inhibi-
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2.4.1 Introduction 

Studies on transformation of organic substances in soils are important for under-

standing of C and N cycles in terrestrial ecosystems. Plant residues and rhizodeposits 

are the main sources of organic matter in soils (Rasse et al., 2005). Therefore, many 

studies have focused on decomposition, microbial utilization and stabilization of C from 

these sources (von Luetzow et al., 2006). 

During decomposition of litter, macromolecular compounds are depolymerized by 

enzymes into low molecular weight organic substances (LMWOS) (Cadisch and Giller, 

1996). LMWOS are the lightest  (<250 Da) components of DOC (Boddy et al., 2007) from 

substance classes such as organic acids, amino acids, mono- and disaccarides, amino 

sugars, phenols and many more (van Hees et al., 2005a). In addition to litter, rhizode-

position is a source of LMWOS in soil. Microorganisms determine the fate of LMWOS in 

soil because they either produce them, decompose them to CO2 and NH4
+ (catabolism) 

or incorporate them in cellular compounds (anabolism). The importance of LMWOS is not 

connected with their pool size (Fischer et al., 2007), but with the huge fluxes that pass 

through this pool. Therefore, the transformation pathways of LMWOS represent a crucial 

step of soil C and N fluxes, and a molecular-level knowledge of these processes is 

needed (van Hees et al., 2005a).  

Within the LMWOS, amino acids play an important role because they are the quan-

titatively most important compounds coupling the C and N cycle. In topsoil, amino bound 

N constitutes 7-50% of the total organic N (Gardenas et al., 2011; Stevenson, 1982a). 

Thus, many recent studies focused on the fate of N-containing LMWOS (Hobbie and 

Hobbie, 2010; Jones et al., 2004b; Knowles et al., 2010; Kuzyakov, 1996; Lipson et al., 

2001; Vinolas et al., 2001a) and investigated the three major pathways of amino acid 

utilization in soil: 1) sorption (Jones, 1999), 2) extracellular transformation, and 3) intra-

cellular metabolization (Vinolas et al., 2001a; Vinolas et al., 2001b) which can be sepa-

rated by selective inhibition of biotic processes.  

Sorption strongly depends on the functional group of the amino acid (Jones and 

Hodge, 1999): it can occur by ion exchange of positively charged amino groups, by ligand 

exchange of carboxyl groups and by hydrophobic interactions with alkyl groups. To date, 

nearly all studies assumed sorption of the entire molecule by soil sorbents. Only a few 

studies on glycine sorption indicated abiotic degradation of the sorbed amino acid (Wang 

and Huang, 2003, , 2005).  

Amino acids can be transformed extracellularly, mainly by exoenzymes attached to 

cell surfaces (Geisseler et al., 2010). Deamininating (Killham, 1986) and oxidizing 

(Bohmer et al., 1989; Braun et al., 1992) extracellular systems are described in the litera-
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ture, but neither their relevance nor the differences between extra- and intracellular path-

ways have been investigated (Burns, 1982).  

Intracellular amino acid metabolization follows the uptake by transport systems 

(Anraku, 1980; Hediger, 1994; Hosie and Poole, 2001). Uptake kinetics of some amino 

acids has already been elucidated (Vinolas et al., 2001a; Vinolas et al., 2001b). Barra-

clough (1997) showed that the majority of N mineralization of amino acids occurred inside 

the cells. Knowles et al. (2010) described for the first time the decoupling of N and C me-

tabolization in soil, discovering a preferential retention of amino acid N with respect to C. 

Nonetheless, as they used uniformly labeled tracers, they could not determine the fate of 

the C skeleton. We hypothesize that the fate of amino acid C and N in soil is mainly de-

termined by the dominating intracellular metabolization pathways. Therefore, identifica-

tion of microbial metabolization is a crucial step for understanding and predicting C and N 

fluxes. 

In addition to abiotic factors such as temperature (Dijkstra et al., 2011c; Vinolas et 

al., 2001b) or soil properties (Gonod et al., 2006; Kemmitt et al., 2008), the concentration 

of a substrate is a key driver of the intracellular metabolization (Dijkstra et al., 2011a; 

Fischer and Kuzyakov, 2010b; Schneckenberger et al., 2008). Soil amino acid concentra-

tions range from 0.5 µM in root-free bulk soil to 5 mM directly next to bursting cells 

(Fischer et al., 2007; Jones and Hodge, 1999). We expect cellular uptake and metabo-

lism always dominate the amino acid removal from soil solution and that sorption only 

plays a relevant role at low substrate concentrations. For our study, we chose alanine as 

a representative amino acid for the neutral amino acids as it is one of the most dominant 

amino acids in soil solution (Fischer et al., 2007). In addition, alanine was chosen be-

cause it is very close to the basic C metabolism of the cell: by oxidative deamination 

alanine can be transferred to pyruvate, which is a suitable substrate for metabolic tracing 

experiments in plants and soils (Dijkstra et al., 2011a; Tcherkez et al., 2005).  

To elucidate intra- and extracellular alanine transformation pathways, we used the 

approach of position-specific labeling. This tool is commonly used in biochemistry to in-

vestigate metabolization pathways, but has rarely been applied in soil science (Dijkstra et 

al., 2011a; Dijkstra et al., 2011b; Dijkstra et al., 2011c; Fischer and Kuzyakov, 2010b; 

Fokin et al., 1993, , 1994; Haider and Martin, 1975; Kuzyakov, 1997; Nasholm et al., 

2001). It overcomes the limitations of uniform labeling because it allows differentiating 

between incorporation of fragments vs. incorporation of entire molecules.  

Coupling of position-specific labeling with soil sterilization enables us to separate 

abiotic splitting of alanine from extracellular and from cellular metabolism. We assume 

that extra– and intracellular transformation differ from each other as they are based on 

different enzymes. By comparison of the kinetics of alanine removal from soil solution in 
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the non-inhibited and respiration-inhibited treatments, the relevance of extra- versus in-

tracellular transformations of alanine was compared. We hypothesize that under soil con-

ditions microbial uptake systems and intracellular metabolization dominate the fate of 

alanine in soil. Comparing our results with known microbial metabolization pathways en-

ables the identification of metabolic changes depending on substrate concentration. 

 

2.4.2 Material and Methods 

2.4.2.1 Soil 

Topsoil (0-10 cm) from the Ap horizon of a silt loam haplic Luvisol (WRB, 2006) 

was collected from a field in Bavaria with a crop sequencing of barley, wheat and triticale 

(49.907 N, 11.152 E, 501 m asl, mean annual temperature 6-7 °C, mean annual precipi-

tation 874 mm). The soil had a pHKCl of 4.88 and pHH2O of 6.49, total organic C and total 

N content were 1.77% and 0.19%, respectively, and potential CEC was 13.6 cmolc kg-1. 

Soil was sieved to 2 mm, and all roots were removed with tweezers. Soil was stored at 

field moisture at 5 °C not longer than one week until the experiment started.  

 

2.4.2.2 Chemicals and radiochemicals  

Stock solutions with 1, 10, 100, 1000, and 10000 µM alanine and an equal activity 

of 104 DPM ml-1 (Disintegrations Per Minute and ml) were prepared from U-14C-labeled 

alanine and the position-specifically labeled isotopomers 1-14C-, 2-14C- and 3-14C-labeled 

alanine (American Radiolabeled Chemicals Inc, St. Louis, USA) as well as non-labeled 

alanine (Sigma-Aldrich, Taufkirchen, Germany).  

Sterilization solutions were produced with 1 mM NaN3 to inactivate aerobic micro-

bial respiration or with 1 mM NaN3 and 1 mM HgCl2 to denaturate all proteins and reach 

full inhibition of biotic processes. Effectiveness of the chosen azide inhibitor was evalu-

ated by a qualitative 2,3,5-triphenyltetrazoliumchloride incubation (TCC, Sigma-Aldrich, 

Taufkirchen, Germany). Therefore 0.63 µg of the yellow dye TCC were added to the 1 ml 

of soil suspension in this preexperiment.  

 

2.4.2.3 Experimental setup  

The effects of two factors on alanine transformations in soil were investigated: 1) 

the concentration of alanine, and 2) the extra- and intracellular as well as abiotic proc-

esses of alanine removal from soil solution, separated by sterilization. Therefore, three 
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sterilization treatments were used (Fig. 1): 1) treatments without any inhibition, where 

three groups of processes occured: intracellular metabolism, extracellular transformation 

and physicochemical sorption, 2) treatments with inhibition of aerobic respiratory chains 

by azides (Burns, 1982), where only extracellular processes are active and sorption could 

occur, and 3) treatments with full inhibition, where microbial metabolism as well as 

exoenzymes were inhibited by HgCl2 (Stevenson and Verburg, 2006; Wolf et al., 1989) 

and only sorption could remove alanine from the soil solution (Fig. 1). We define here as 

extracellular transformations all processes (decomposition, decarboxylation, condensa-

tion, etc.) localized in the soil solution or periplasm (Glenn, 1976) which don’t depend on 

intracellular energy metabolism (i.e. proton gradient or ATP) and can not be inhibited by 

NaN3. Biotic transformations sums up extra- as well as intracellular processes. 

 

Fig. 1 Scheme of the experimental design for one of the five concentrations: in part 1 
on the left side (incubation experiment) yellow-shaded plates shows fully-
inhibited treatment to investigate sorption whereas green-shaded plates reflect 
biotic utilization (upper line with only extracellular activity and lower line with ex-
tra- and intracellular activity). Yellow-shaded graphs demonstrate the calculation 
of the sorbed proportion of alanine by the sorption isotherm, which is derived 
from the fully inhibited treatment. Green-shaded graphs reveal the calculation of 
the biotic utilization by substracting the sorption from the percentage of alanine 
removal from supernatant. In part 2 on the right side (extraction experiment) 
purple-shaded plates reflect the fully-inhibited treatment and thus extraction of 
untransformed alanine by the sequential procedure. Blue-shaded plates show 
desorption of biotic alanine transformation products (upper plate with only ex-
tracellular activity and lower plate with extra- and intracellular activity).  
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The experiment consisted of two parts (Fig. 1): In the first part – the incubation ex-

periment- the processes removing alanine from the supernatant were investigated. The 

incubation was performed in 24-deep-well plates (6 ml volume per well) on a rotational 

shaker at 200 rpm with 200 mg field fresh soil per replication. Before adding the alanine, 

the soil was pre-incubated for 1 h with 0.5 ml of 1 mM sterilization solutions or distilled 

water, respectively. Pre-incubation was performed under intensive shaking to enable a 

homogenous sterilization of the entire soil volume under high oxygen supply. Thus, dur-

ing pre-incubation anaerobic processes were prevented, the stored energy could be con-

sumed and no new energy reserves were produced. 

In the treatment with extracellular processes, the intracellular respiration was inhib-

ited with 0.5 ml 1 mM NaN3. Although chosen NaN3-concentrations are far above those 

described for respiratory chain inhibition (Kita et al., 1984) some activity may remain in 

the soil suspension. This was evaluated by a triphenyl-tetrazolium chloride assay. This 

dye is intracellularly reduced by various dehydrogenases (Kvasnikov et al., 1974; 

Mohammadzadeh et al., 2006). An active intracellular metabolism leads to the formation 

of insoluble red formazan crystals within living cells. In the treatment with full inhibition, 

denaturation of proteins was achieved by adding 0.5 ml of 1 mM HgCl2 and 1 mM NaN3.  

After pre-incubation, 0.5 ml of the alanine-solution was added. All experiments were 

performed with uniformly labeled alanine and the three isotopomers. The soil suspension 

was shaken for 30 seconds, centrifuged at 2000 rpm and an aliquot of 50 µl was removed 

for 14C measurement. After remixing, incubation was continued, and further 50 µl were 

sampled 5, 15, 30 and 60 min and 6 h, 12 h and 36 h after addition of 14C labeled 

alanine. After incubation, the remaining supernatant was removed and soil was washed 

three times – first with distilled water, then with full inhibition solution and finally with dis-

tilled water. 

In the second part of the study - the desorption experiment - we evaluated the bind-

ing mechanisms of alanine C in soil (Fig. 1). In treatments with full inhibition, the ex-

tracted C reflects alanine C itself, as no biotic transformation occurred. In treatments with 

biotic activity, the microbial or extracellular transformation products were extracted. The 

washing step with HgCl2 led to denaturation of membrane proteins and thus a loss of 

membrane integrity. This allowed the joint extraction of water soluble cytoplasm com-

pounds and extracellular transformation products. Macromolecular compounds like pro-

teins, polysaccharides or peptidoglycan as well as hydrophobic compounds like the 

membrane lipids could not be extracted by a salt solution.  

For the desorption experiment, 0.5 ml of 0.5 M CaCl2 solution was added to the soil 

and shaken for 2 h. The solution was centrifuged, and supernatant was removed and 

stored for 14C analysis. Desorption was repeated three times, and the supernatants were 
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combined to one solution, in which 14C was analyzed. This desorption treatment with 

CaCl2 enabled evaluating the amount of alanine being weakly bound, mainly by ion ex-

change. After extraction with CaCl2 the same procedure was done three times with 0.5 M 

NaH2PO4 solution to extract the alanine bound by ligand-exchange. To estimate irre-

versibly bound alanine C, the soil was freeze-dried and combusted at 600 °C for 10 min 

under a constant O2 stream with a HT 1300 solid combustion module of the multi N/C 

2100 analyzer (Analytik Jena, Jena Germany). 14CO2 released by combustion was 

trapped in 10 ml of 1 M NaOH. The irreversibly bound pool contains untransformed, irre-

versibly bound alanine C as well as macromolecular, hydrophobic or irreversibly bound 

microbial transformation products.  

 

2.4.2.4 Radiochemical analyses 

14C activity of the supernatants was determined using a scintillation counter (Wal-

lac 1450, MicroBeta® TriLux, PerkinElmer, Walham MA; USA) by adding 50 µl of the su-

pernatant directly to 0.6 ml scintillation cocktail (EcoPlus, Roth Company, Germany) in 

transparent 24-well plates. Remaining supernatant, washing solution and desorption so-

lution were measured in glass scintillation vials with the LS 6500 scintillation counter 

(LS 6500, Beckman-Coulter, Krefeld, Germany) with a 1:2 ratio of solution to scintillation 

cocktail and a 1:8 ratio for the CaCl2 and NaH2PO4 solutions. 14C activity in the NaOH 

solution was measured with a 1:2 ratio of sample to scintillation cocktail after 24 h of dark 

storage after disappearance of chemoluminescence. All measurements with the LS 6500 

were also performed with blanks of the respective solutions (CaCl2, NaH2PO4 or NaOH) 

and background corrected by subtracting this value from each measurement result. 

 

2.4.2.5 Calculation of the kinetics of alanine utilization  

To calculate the biotic utilization the amount of sorbed alanine C has to be sub-

tracted from the total removal from soil suspension. Therefore, the decrease in 14C activ-

ity in the supernatant of the fully inhibited treatment (A%(t) in percent of added activity) 

was fitted to an exponential equation (Fig. 1) where B (% of added activity) and c (1/h) 

are the fitted parameters and Dequ is the remaining percentage of activity in the super-

natant at equilibrium. The remaining activity Dequ was converted into the amounts of 

sorbed alanine per g soil (Sequ in µmol g-1) and the dissolved alanine concentration cequ 

(µM) were calculated and all five concentration treatments were fitted by a linearized 

Freundlich sorption isotherm with the sorption affinity constants k and n (Fig. 1). Based 

on Fischer and Kuzyakov (2010b), the fitted sorption isotherm was used to calculate the 
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sorbed amount of alanine (Sequ in µmol g-1) at different concentration (cequ) in the super-

natant . 

The biotic alanine C utilization Ubio(t) (µmol) per well was calculated by subtracting 

the sorbed amount of alanine Sequ (µmol) from the amount of alanine Aused(t) (µmol) re-

moved from the supernatant (Fig. 1). For those concentration treatments in which nearly 

all of the added alanine was biologically used after 36 h (0.5 µM to 500 µM), biotic utiliza-

tion Ubio(t) was fitted by an exponential model (Fig. 1) which is approaching the total 

amount of added alanine Gadd (µmol) after 36 h. The fitted parameters F (µmol) and q (h-

1) are the amount of initial utilization (µmol) and the rate of biotic utilization (h-1), respec-

tively. This equation was used to linearize the measured data for statistical tests.  

For the whole concentration range, curves for the reaction kinetics v at a distinct 

substrate concentration (S0 + Sadd: alanine concentration derived from soil solution + 

alanine concentration from the addition of labeling solution) were fitted to the initial rate of 

biotic utilization q (e.g. the slope of the function Ubio(t) at an initial time point). The ex-

tracellular processes showed saturation kinetics according to Michaelis-Menten. Thus, 

the Michaelis-Menten constant Km, the maxima rate Vmax and the alanine concentration S0 

(µM) of the soil was calculated from the results of curve fitting (equation 1).  
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The curves for cellular uptake showed no saturation. Thus, their equation (2) con-

tains an additional linear component expressed by the linear utilization rate constant L, as 

observed by Jones and Hodge (1999). Equations were linearized as proposed by Hobbie 

and Hobbie (2010). 
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2.4.2.6 Calculation of the distribution of alanine-C in transformation products  

For the second part of the experiment, the desorption experiment, the distribution of 

the remaining alanine C in the soil suspension after 36 h was determined. Alanine C in 

the various bound fractions (CaCl2-extractable, NaH2PO4-extractable, irreversibly bound) 

and dissolved as well as decomposed alanine C was calculated as relative percentage of 

the added 14C activity.  

For a presentation of transformation specifics of C from individual molecule posi-

tions, the Divergence Index DIi was defined: 
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This index shows the fate of individual C atoms from the position i within a trans-

formation process relative to the mean transformation of the n total number of C atoms in 

the substance. Thus, a DIi of 1 means that the transformation of this C atom, e.g. Ala1 

position, in the investigated pool corresponds to that of uniformly labeled substance (av-

erage of all C atoms e.g. Ala1+Ala2+Ala3). The DIi ranges from 0 to n, and values be-

tween 0 and 1 reflect reduced incorporation of the C into the investigated pool, whereas 

values between 1 and n show increased incorporation of the C atom into this pool as 

compared to the average. This index is not dependent on absolute amounts or propor-

tions of the substance used in individual processes. Therefore, it enables comparing the 

distribution of individual alanine C atoms over the whole range of investigated concentra-

tions. 

 

2.4.2.7 Statistics 

All experiments were done with six replications, and the values on figures and in 

tables present a mean ± standard error of mean (± SEM). SEM of divergence index was 

calculated by Gaussian error propagation (Gottwald, 2000). Measured variables were 

screened for outliers using the Nalimov test (Gottwald, 2000) and tested for normal distri-

bution using the Kolmogorov Smirnoff test. Less than 1% of the values were excluded as 

outliers. Nested ANOVA, with the factor C position nested within the factor inhibition 

treatment, and non-linear curve fitting were done using Statistica (version 7.0, Statsoft 

GmbH, Hamburg, Germany). ANOVA of the divergence index was calculated by a proce-

dure proposed by Cohen (2002) from means and standard deviations. Nonlinear curve 

fitting of the Michaelis Menten equations was done minimizing least-squares with the 

nonlinear estimation tool of Statistica based on a Levenberg-Marquardt algorithm. Tests 

of regressions for linearity and significant differences of linear regression parameters 

were performed by GraphPad Prism (version 4.01, GraphPad Software Inc, San Diego 

CA, USA). Linear regressions were tested for deviation from linearity by Steven’s Runs 

Test and significant differences between regression lines were identified by covariance 

analyses (ANCOVA) according to Zar (1984). 
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2.4.3 Results 

2.4.3.1 Evaluation of results quality 

We evaluated four quality aspects of the experimental data. The first approach 

tested for 14C losses by calculating the tracer budget of the full inhibition treatments. For 

the five concentrations the sum of irreversibly bound, extractable and dissolved 14C activ-

ity was between 90 and 97% of the added 14C activity. This high tracer recovery enables 

the calculation of respired alanine C in the treatments with biotic activity based on the 

difference between the added and recovered 14C activity.  

The second approach checked for sterilization efficiency of the HgCl2 + NaN3 – so-

lution based on the sorption kinetics in the soil with full inhibition: Sorption occurred com-

pletely within the first hour. Within the further 35 h the amount of alanine C in the soil 

suspension remained constant without any position-specific differences (Supplementary, 

Fig. A1 shows the example of 50 µM treatment). Thus, no respiration of alanine occurred 

in the fully inhibited soil. 

In a third approach sterilization efficiency of the respiration-inhibited treatment with 

NaN3 was tested by the dehydrogenase substrate tetrazoliumchlorid (Kvasnikov et al., 

1974; Mohammadzadeh et al., 2006): after 36 h under identical incubation conditions 

only the non-inhibited treatment showed a clear red precipitation at the bottom of the well. 

Much longer incubation time was needed (> 3-5 days) until first precipitates could be ob-

served in the respiration-inhibited soil.  

The fourth approach evaluated the quality of position-specific data and was based 

on comparing the mean of the 14C activity in three positions with the 14C activity in uni-

formly labeled alanine. For the fitted curves of sorption and of biotic utilization (Fig. 2), no 

significant differences between uniformly labeled alanine and the mean of the three iso-

topomers could be detected.  
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Fig. 2 Removal of alanine from soil solution by extra- and intracellular processes with-
out inhibition (filled symbols) and by extracellular transformation in respiration-
inhibited treatments (open symbols) depending on alanine concentration. Ex-
perimental points (means ± SEM, N=6) and fitted curves based on the exponen-
tial utilization model (see Fig. 1) are presented. Removal of alanine from soil so-
lution is identical for treatments with low concentrations (lines for C-1, C-2 and 
C-3 overlap) and starts to differentiate for concentrations higher 50 µM. 

 

2.4.3.2 Sorption of alanine to the soil matrix 

For the treatment with full inhibition the amount of bound alanine at each concentra-

tion was calculated and an exponential curve was fitted to these data. Equilibrium of 

sorption (95% of fitted line of sorption at equilibrium) was reached within 1 h. The lin-

earized Freundlich Isotherms (Supplementary, Fig A2) showed no significant deviation 

from linearity based on Stevens Runs Test. ANCOVA of the fitted regression parameters 

of the linearized Freundlich data showed no differences between the individual C posi-

tions and uniformly labeled alanine for the slopes (p=0.9991) and the intercepts 

(p=0.9997). Thus, data of isotopomers and U-alanine were pooled and the affinity con-

stants were determined by curve fitting on the entire dataset: k=0.002 and n=0.965.  

The second part of the experiment revealed the extractability of the bound alanine. 

The sorbed portion ranged from 3 to 6% of the added alanine (Fig. 3). Less than 7.3% of 

the totally sorbed alanine was adsorbed irreversibly to the soil matrix (<0.4% of the added 

alanine), and only a portion of <11.70% could be extracted with NaH2PO4 (<0.7% of the 
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totally sorbed alanine). 83-90% of the totally sorbed alanine were extracted with CaCl2 

(2.5 to 5.4% of the added alanine) (Fig. 3).  

 

Fig. 3 Amounts of alanine C in differently bound, dissolved or degraded forms in 
treatments with full inhibition (left), treatments with respiration inhibition (middle) 
and treatments without inhibition (right). Values show means ± SEM (N=6) de-
pending on alanine concentration. 

 

2.4.3.3 Kinetics of biotic alanine utilization 

An exponential curve was fitted to the data of biotic alanine utilization (Fig. 2) for 

the concentration range from 0.5 to 500 µM. Curve fitting was impossible for the 5 mM 

treatment because the equilibrium was not reached after 36 h. The rate of biotic utiliza-
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tion p (equation see Fig. 1) ranged from low to high concentrations from -11.3 to -0.05 s-1 

for the exoenzymatic and from -41.7 to -0.13 s-1 for the non-inhibited treatment. For low-

est alanine concentration extracellular and biotic removal of alanine from the soil suspen-

sion were similiarly fast: more than 95% of the added alanine was used within the first 

5 min. In contrast, biotic alanine utilization is significantly faster than extracellular removal 

(p<0.001) at medium and high alanine concentrations (5-500 µM). In the 5 and 50 µM 

treatments, microbial uptake removed 95% of the added alanine in less than 15 and 

30 min, respectively, whereas extracellular systems needed about 1 day.  

The effect of C position on alanine removal from the soil solution was tested using 

the linearized function of Ubio(t). No significant difference in the removal of alanine C from 

the three positions by extracellular processes or total biotic utilization was detected over 

the 36 h of experiment duration.  

The extracellular alanine transformation rate (Fig. 4) followed Michaelis-Menten ki-

netics for all alanine C positions (p<0.001, R2>0.95) (Table 1). Significant differences in 

the kinetics of extracellular transformations of C from individual positions were identified 

(F=44.4, p<0.0001). The initial alanine concentration S0 in the soil was 0.39 µM and thus 

in the range of the lowest amino acid concentration added.  

 

Fig. 4 Initial rate of alanine removal from soil suspension in treatment without inhibition 
(filled symbols) and treatments with respiration-inhibition (open symbols); Ex-
perimental points (means ± SEM calculated by Gaussian error propagation, 
N=6) and fitted kinetic curves (parameters see Tab. 2) are presented. 
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The rate of alanine removal from soil suspension in the non-inhibited treatment fol-

lowed a mixed linear and Michaelis-Menten model (p<0.001, R2>0.99) i.e. had no satura-

tion level within the range of amino acids concentration investigated (Fig. 4). The linear 

uptake rate constant L did not differ significantly between the positions (slope: F=2.45, 

p>0.05; intercept: F=2.76, p>0.05). In contrast at low alanine concentrations (<50 µM) the 

Km values were always lowest for the carboxyl group (Km = 16.4 µM) and highest for 

methyl groups (384 µM), and Vmax behaved opposite (p<0.001) (Table 1). ANCOVA re-

vealed significantly different uptake behaviour of the individual alanine C positions (F = 

314; p < 0.0001).  

 

Table 1 Parameters of the Michaelis-Menten kinetics for treatments with inhibition of 
respiration (eq. 2) and treatments without inhibition (eq. 6). R2 is the coefficient 
of determination and stars show significance of the respective non-linear fitting 
result (respectives curves are plotted in Figure 4). 

 

2.4.3.4 Biotic transformation products of alanine 

Sequential desorption by CaCl2 and NaH2PO4 gives first information about physico-

chemical properties of alanine transformation products (Fig. 1). The extractability of 

alanine C significantly changed due to biotic transformation. Comparing full-inhibited 

treatments with those with extracellular activity revealed that - with the exception of the 

highest alanine concentration - extracellular transformation always caused an increase in 

the irreversibly bound and a decrease in the CaCl2-extractable alanine C. In treatments 

with intracellular metabolization of alanine the increase of NaH2PO4-extractable alanine C 

is even higher. In summary, the portion of C associated with the soil matrix (in the irre-

versibly bound or NaH2PO4-extractable fraction) strongly increased after biotic transfor-

mations (Fig. 3). Note, however, that  the irreversibly bound pool would contain many 

cellular components being pelleted out during centrifugation.  

At very low concentrations (0.5-5 µM), nearly no alanine C remained in the soil so-

lution; at medium and high concentrations, however, exoenzymes were saturated and 

were unable to use the whole added alanine C within 36 h (Fig. 2). Thus, significantly 

more alanine C remained in the supernatant if only extracellular processes used the 



Publications and Manuscripts 

 137 

alanine. Incomplete removal of the added alanine (>50 µM) always caused significant 

position-specific differences in the dissolved alanine C (Supplementary Table A1), irre-

spective of the utilization mechanism. If only trace amounts of alanine remained in the 

soil solution (<50 µM), no significant position-specific differences were observed (Sup-

plementary Table A1). 

 

2.4.3.5 Position-specific differences of the alanine transformation pathways 

Biotic transformations discriminated between the three C positions (Fig. 3). At all 

concentrations in treatments with biotic activity, the carboxyl group was preferentially 

decomposed to CO2 (p < 0.001), whereas the C-2 and C-3 positions of alanine were in-

corporated into various transformation products after 36 h (Fig. 3). Only in the absence of 

microbial uptake and metabolization the NaH2PO4-extractable products at 5 µM and the 

irreversibly bound forms at 50 µM exhibited a significantly higher portion of the C-3 ver-

sus C-2 alanine C. The methyl group was preferentially incorporated in transformation 

products at the 5 µM concentration in the CaCl2-extractable products at 0.5 µM and in the 

NaH2PO4-extractable pool at medium alanine concentrations (50-500 µM) (Supplemen-

tary Table A1). Comparing absolute values of alanine C incorporation depending on con-

centration is hardly possible, because the very broad concentration range leads to a dif-

ferent utilization of alanine C (e.g. alanine as a growth substrate is incorporated in differ-

ent absolute and relative amounts than under maintenance conditions). Thus, completely 

different portions of C are incorporated in the various pools (see Fig. 3: from 0.5 µM to 5 

mM the dissolved alanine C pool changed from 1.2 to 8.0%) and direct comparison of C 

positions is complicated. Less pronounced differences in the position-specific behavior 

will be lost, if percentages of alanine C allocation are compared. Instead a relative index 

ignoring these absolute differences is needed to enable comparison of transformation 

over the investigated concentration range. The Divergence Index DIi was calculated for 

degraded alanine C, CaCl2-extractable, NaH2PO4-extractable and irreversibly bound 

transformation products (Fig. 5). The DIi shows that C-1 was preferentially degraded by 

intracellular metabolism at all concentrations, whereas the C-2 and C-3 positions were 

preferentially incorporated into cellular compounds. A significant effect of concentration 

was observed for intracellular alanine C transformation to NaH2PO4-extractable and irre-

versibly bound products (Supplementary, Table A2): with increasing alanine concentra-

tion less splitting between the C-2 and C-3 position occurred, and with decreasing con-

centration the preferential C-1 decarboxylation by intracellular metabolism tended to be 

reduced.  
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Fig. 5 Concentration-dependent position-specific transformation index DIi (N=6, ± 
SEM) of alanine C positions for treatments without inhibition (filled symbols) and 
treatments with respiration inhibition (open symbols) for four pools. The SEMs 
were calculated by Gaussian error propagation. 

 

In contrast, extracellular degradation showed a lower preferential decarboxylation. 

At the highest concentration the C-3 oxidation even exceeded the C-1 oxidation (Fig. 5). 

With increasing concentration a highly significant decrease in the discrimination between 

alanine positions for the extractable transformation products was observed. In addition a 

change in the preferential incorporation from C-2 to C-3 occurred with increasing concen-

trations (Fig. 5).  

 

2.4.4 Discussion 

2.4.4.1 Sorption of alanine occurs as a whole molecule 

The goodness of fit of the Freundlich isotherms shows that the sorption capacity of 

a loamy soil for alanine has no limit within naturally occurring concentrations. Sorption of 

the dipolar ion alanine can occur by ion exchange via the amino group, ligand exchange 

via the carboxyl group and hydrophobic interactions via the methyl group and may ex-

plain the observed non-saturable Freundlich isotherm. Sequential desorption is an at-

tempt to differentiate these mechanisms. As CaCl2 is a very potent cation exchange re-

agent, it is likely that the majority of the alanine molecules were bound by ion exchange 

(83-90%), i.e. via the positively charged amino group. 
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Wang and Huang (2003) observed abiotic degradation of amino acids by the inter-

action with mineral phases. In their experiment, the abiotic oxidations of glycine showed 

highly significant position-specific differences with a preferential decarboxylation of the 

carboxyl group (Wang and Huang, 2003, , 2005). We did not observe this in our treat-

ments with full inhibition, neither for the sorption isotherms nor for the desorbed transfor-

mation products. Thus, we conclude that sorption of the intact alanine C skeleton oc-

curred. Theoretically, the used 14C labeling did not enable to observe deamination of 

amino acids. However, deamination is very unlikely as the majority of the sorbed alanine 

is CaCl2-extractable and thus, is mainly bound by cation exchange via the amino group. 

Thus, we conclude that abiotic cleavage of amino acids is of minor relevance. We explain 

this lack of abiotic molecule splitting by the short incubation time of our experiment and 

the physico-chemical differences of the investigated soils compared to the subsoils used 

by Wang and Huang (2003).  

 

2.4.4.2 Kinetics of extracellular transformation and microbial uptake  

In general, differentiation between extra- and intracellular metabolization in soil can 

either be performed by using selective inhibition of the exoenzymes (Martens and 

Frankenberger, 1993) or by using selective sterilization that inhibits intracellular metabo-

lism (Gibson and Burns, 1977; Hope and Burns, 1987). As a broad set of enzymes is 

available to transform alanine (a very common substrate), we used the inhibition of the 

active microbial cells. We tried to reduce artifacts of the inhibition (e.g. remaining activity 

in dead cells or continuing fermentation processes) by a pre-incubation with double con-

centrated NaN3 and high oxygen supply (Burns, 1982). The lack of visible red crystals 

after 36 h confirms that the inhibition of intracellular processes was successful. Thus, we 

conclude that extracellular enzymes which were stabilized for more than the 1 h of prein-

cubation in the soil dominated the alanine removal from soil suspension. Extracellular 

kinetics as well as transformation products differed significantly from those formed by 

intracellular metabolism (Fig. 3). This confirms that remaining intracellular activity is of 

minor importance after NaN3 inhibition. The observed Michaelis-Menten constants are in 

a similar range than values observed for other exoenzymes (Braun et al., 1992). 

Under medium and high concentrations, microbial uptake systems were much 

faster than extracellular enzymes (Fig. 2 and 4). Rate of alanine utilization resembled 

removal of an amino acid mixture observed by Rousk and Jones (2010): they observed a 

loss of 90% of 14C activity within the first hour of incubation. At low concentrations this 

microbial alanine uptake also follows a Michaelis-Menten kinetics (Vinolas et al., 2001a). 

The linear kinetic term of microbial uptake at higher concentrations is similar to the kinet-
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ics observed by Vinolas (2001a). These combined kinetics reflect different types of mi-

crobial uptake and enzyme systems involved in alanine utilization (Anraku, 1980; Piperno 

and Oxender, 1968): 1) high-affinity, energy-dependent active uptake systems at low 

concentrations and 2) additional uptake mechanisms with linear non-saturable kinetics at 

high substrate concentrations. The non-saturable kinetics showed identical behavior of all 

C positions. This experimentally confirmed the assumption of Jones and Hodge (1999) 

that the non-saturable kinetics is based on uptake by permeases or ion channels which 

do not split the molecule. In contrast, the processes that follow Michaelis-Menten kinetics 

revealed individual position-specific kinetics (Fig. 4). For extracellular enzymes this is a 

result of alanine splitting processes like decarboxylation. However, alanine uptake into 

cells also revealed molecule splitting. This can either be uptake of fragments or the up-

taken alanine was split and fragments were secreted. Both possible processes can not 

be distinguished by our approach.  

To summarize, C-1 decarboxylation by extracellular enzymes as well as C-1 re-

moval by cellular uptake are the fastest biotic processes under low alanine concentra-

tions. At medium and high alanine concentration microbial cells take up alanine without 

splitting by unsaturated enzyme systems. Thus, the position-specific transformations re-

vealed that multiphase kinetics of LMWOS uptake by microbial cells reflect a change of 

the underlying biochemical processes and thus the fate of LMWOS depending on their 

concentration in soil.  

 

2.4.4.3 Exoenzymatic transformation products 

We know little about the exoenzymatic transformation of amino acids because the 

tacit assumption is that LMWOS are completely taken up into microbial cells. It was 

shown that some organisms such as Cellulomonas cellulans, Corynebacterium or Pro-

teus rettgeri produce extracellular amino acid oxidase with broad substrate specificity 

(Braun et al., 1992). These enzymes catalyze the oxidative deamination of alanine, form-

ing pyruvate, which could be decarboxylated in further steps. This might e.g. be done by 

unspecific decarboxylation by manganese peroxidase (Hofrichter et al., 1998). Exact 

mechanisms cannot be identified without analysis of the enzymatic products, but it can be 

shown that the discrimination between C-2 and C-3 of the exchangeable products is 

higher compared to microbial metabolites (Fig. 5). This might indicate a stepwise oxida-

tion reaction from C-1 to C-3, at least at low alanine concentrations.  

At the two highest concentrations, alanine was not completely removed from the 

solution (Fig. 2) and thus, discrimination between C positions decreased due to an in-

creasing portion of untransformed alanine (Fig. 5). This saturation of exoenzymes at high 
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concentrations supports the hypothesis that mainly unspecific oxidizing enzymes are in-

volved. The desorption experiment showed that a significant part of the not-extractable 

products are formed after exoenzymatic transformation. This is probably a first step of 

extracellular amino acid C stabilization in soil. Further metabolite tracing of the transfor-

mation products is needed to understand LMWOS stabilization mechanisms in soil.  

Extracellular pathways were less important because active microorganisms take up 

LMWOS much faster (Fig. 4 and Table 1). Nonetheless, these pathways may explain 

transformation in aggregate cores or micropores, where microbial cells are size-excluded 

(von Luetzow et al., 2006). Thus, these transformation pathways are expected to take 

place parallel to microbial uptake and metabolization. However, if a potential overestima-

tion of extracellular activity due to insufficient microbial inhibition by NaN3 is considered, 

the extracellular transformation of alanine is of minor importance for microbially active 

soil.  

 

2.4.4.4 Metabolic pathways and their intracellular transformation products  

Intracellular metabolism products showed a strong increase of irreversibly bound 

and ligand exchangeable substances (Fig. 3). Non-extractable products were expected to 

be either macromolecular or hydrophobic e.g. proteins, peptidoglycan or lipids: they are 

not extractable in polar reagents with low salt molarity. Ligand-exchangeable transforma-

tion products are characterized by either hydroxyl or more probably carboxyl groups (Gu 

et al., 1994) like alcohols and mono- or poly-carboxylic acids.  

Direct decarboxylation of alanine, producing amine, has been described only for 

cucumber and tea plants (Takeo, 1978), and no evidence for this reaction within microor-

ganisms is available. In contrast, the oxidation of the C-1 group was most likely caused 

by the fundamental alanine degradation pathway of prokaryotes under aerobic condi-

tions: the oxidative deamination to pyruvate by alanine dehydrogenase (Caspi et al., 

2008; Gottschalk, 1986; Keseler et al., 2009). This reaction, shown in Fig. 6 (first arrow 

down from alanine), decouples the C and N fate in the microbial metabolism (Knowles et 

al., 2010). Additional pathways of alanine utilization like transamination or oxidoreduction 

also lead to the formation of pyruvate (Caspi et al., 2008; Gottschalk, 1986; Keseler et al., 

2009). Pyruvate as the main alanine transformation product allows a qualitative metabolic 

tracing approach (Dijkstra et al., 2011a). Citric acid cycle leading to the oxidation of the 

C-1 position by pyruvate dehydrogenase can be distinguished from alternative C utiliza-

tion pathways like protein biosynthesis or gluconeogenesis (Fig. 6, arrows branching left 

from the main pathway), which commonly use the entire C skeleton of alanine (Caspi et 

al., 2008; Keseler et al., 2009).  



Publications and Manuscripts 

 142 

 

Fig. 6 General biochemical pathways of extra- and intracellular amino acids transfor-
mation in soil in dependence on alanine availability. Line width represents the 
qualitatively estimated relative shifts of alanine C between certain pathways de-
pendent on the alanine concentration. 
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In general for all concentrations, only a minor part of the C-1 group is incorporated 

into newly formed cellular compounds (Fig. 3 and Fig. 5). This reveals citric acid cycle as 

the major pathway of alanine i.e. pyruvate C metabolization (Fig. 6). Further cycling of the 

C skeleton through the citric acid cycle led to a partial oxidation of the C-2 position, which 

is maximized under medium alanine concentrations (Fig. 5).  

At lowest alanine concentration the incorporation of C-1 slightly increased in the ex-

tractable transformation products (Fig. 5) and significantly increased in irreversibly bound 

microbial products (Supplementary, Table A2). This might reflect the slight increase of 

anapleurotic carboxylation pathways, protein biosynthesis or gluconeogenesis with in-

creasing C deficiency (Dijkstra et al., 2011a). For these pathways the C skeleton of 

alanine needn’t be split (Fig. 6, left). Which of these pathways is driven by microbial 

anabolism can be clarified only if transformation products (e.g. amino sugars or acids) 

are investigated compound-specifically. 

At high alanine concentrations we experimentally simulated growth conditions like 

representative for soil hot-spots: the microbial community was not energy deficient be-

cause oxidative deamination of alanine along with decarboxylation of pyruvate to Acetyl-

CoA are energy-supplying reactions producing ATP (Caspi et al., 2008; Keseler et al., 

2009). Thus, C and energy were available in excess and allowed microbial growth, at 

least for a part of the microbial community, presumably bacterial groups (Rousk and 

Baath, 2011). A high portion of C-2 and C-3 positions was found in irreversibly bound, 

cellular products under these conditions (Fig. 5). Biosyntheses pathways common for 

microbial growth like fatty acid synthesis start with Acetyl-CoA (Fig. 6, arrow to left) and 

do not split this C-2-C-3-fragment (Caspi et al., 2008; Keseler et al., 2009). Thus, such 

growth pathways produce not-extractable, macromolecular or hydrophobic compounds 

containing the C-2 and C-3 positions (Fig. 6, right). Hence, an increased incorporation by 

biosynthesis would explain the changes of alanine transformation under high C supply 

(Fig. 6).  

To summarize, position-specific labeling enables to trace changes in microbial sub-

strate metabolization due to changes in C availability: from starvation over maintenance 

and growth concentrations a shift in the microbial pathways (Fig. 6) leading to formation 

of different cellular compounds from alanine C could be observed in this study.  

 

2.4.5 Conclusions and Outlook 

Next to multiple isotope labeling (Knowles et al., 2010) the position-specific labeling 

is a preeminent tool to identify and trace the major pathways of LMWOS transformation in 

soil (Dijkstra et al., 2011a; Dijkstra et al., 2011b). This study demonstrates that position-
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specific labeling provides a new insight into amino acid transformation on a submolecular 

level. Cellular uptake always outcompetes sorption and extracellular transformations, 

which are quantitatively relevant only at very low alanine concentrations or in specific 

microhabitats and occurs as a stepwise extracellular oxidation. In general, however, cel-

lular uptake and metabolization dominate the fate of alanine C in soil. Two mechanisms 

underlying the microbial uptake kinetic were identified: an unsaturable unspecific uptake 

of intact alanine at hot-spot concentrations and specific uptake mechanisms at low 

alanine concentrations. In addition, this tool also enabled us to detect minor changes of 

the intracellular alanine metabolization, which were a result of the switch from anabolic 

pathways characteristic for C deficiency to those common for growing cells. However, 

without a quantitative detection of the metabolic products this assay remains qualitative. 

Coupling this sensitive, submolecularly operating technique with compound-specific iso-

tope analysis of the transformation products is the next step to shed light on the black 

box of C transformations in soil. As opposed to closer examination of transformation 

pathways, generalization (by further compounds, compound classes and environmental 

conditions) and upscaling are the future demands: Once, general principles controlling 

LMWOS metabolization and the effects of environmental conditions are identified, the 

fate of C entering the soil can be determined based on its chemical structure. A detailed 

understanding of the general principles of LMWOS transformation, the used pathways 

and the regulating factors is crucial to understand and predict the SOC dynamics under 

changing environmental conditions. 
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Supplementary Data 

Supplementary Table A1: Nested ANOVA between single alanine positions nested in 
sterilization treatment of decomposed, dissolved, CaCl2- and NaH2PO4-extractable and 
irreversibly bound alanine C. Degrees of freedom (df), F-values and significance level (p) 
are shown for the five concentration treatments. 

 

 

Supplemetary Table A2: ANOVA, calculated according to Cohen (2002), for the diver-
gence index DI between the five concentration treatments. Degrees of freedom (df), F-
values and significance level (p) are shown for the three alanine positions and the two 
inhibition treatments with biotic activity. 
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Supplemetary Figure A1: Alanine 14C-removal from soil suspension in % of the added 14C 
activity for the alanine C positions C-1, C-2 and C-3 in the full inhibited treatment; Added 
concentration was 50 µM alanine. 
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Supplemetary Figure A2: Linearized Freundlich Isotherm as schematized in Figure 1: ln 
of the amount of sorbed alanine at equilibrium is plotted against ln of the alanine concen-
tration (µM); No significant differences between the fitted linear regressions could be de-
tected. 
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Supplementary Figure A3: Rate h of biotic removal of alanine C (h-1) fitted according to 
Figure 1 to the data of alanine removal from soil suspension (Figure 2) for concentration 
treatments from 0.5 to 500 µM 

 

 

 

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.1 1 10 100 1000
alanine concentration (µM)

ra
te

 o
f 

b
io

ti
c

 r
e

m
o

v
a
l 
o

f 
a

la
n

in
e

 C
 (
h

-1
) U-Ala C-1 C-2 C-3

U-Ala C-1 C-2 C-3

respiration inhibited:

not inhibited:

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

0.1 1 10 100 1000
alanine concentration (µM)

ra
te

 o
f 

b
io

ti
c

 r
e

m
o

v
a
l 
o

f 
a

la
n

in
e

 C
 (
h

-1
) U-Ala C-1 C-2 C-3

U-Ala C-1 C-2 C-3

respiration inhibited:

not inhibited:



Publications and Manuscripts 

 151 

2.5 Study 5: Sorption affects amino acid pathways in 

soil: Implication from position-specific labeling 

of alanine 

 

Michaela Dippold1,2, Mikhail Biryukov1,3, Yakov Kuzyakov2,4 
1 Department of Agroecosystem Research, University of Bayreuth  
2 Department of Agricultural Soil Science, Georg-August-University of Göttingen 
3 Faculty of Biology, Lomonosov Moscow State University 
4 Department of Soil Science of Temperate Ecosystems, Georg-August-University of  

  Göttingen  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corresponding Author: 

Michaela Dippold 

Department of Agricultural Soil Science 

Georg-August University Goettingen 

Buesgenweg 2 

37077 Goettingen 

 

email: midipp@gmx.de 

Tel.: 0551/3933546 

Fax.: 0551/393310 



Publications and Manuscripts 

 152 

Abstract 

Organo-mineral interactions are the most important mechanisms of long-term C 

stabilization in soils. Nevertheless, a part of the sorbed low molecular weight organic 

substances (LMWOS) remains bioavailable. Uniformly labeling of substances by 14C or 
13C reflects only the average fate of C atoms of an LMWOS molecule. The submolecular 

tool of position-specific labeling allows to analyze metabolic pathways of individual func-

tional groups and thus reveals deeper insight into mechanisms of sorption and microbial 

utilization. 

Alanine labeled with 14C in the 1st, 2nd or 3rd position was adsorbed to five sorbents: 

two iron oxides with different crystalline structure: goethite and haematite; two clay min-

erals with 2:1 layers – smectite, and 1:1 layers – kaolinite; and activated charcoal. After 

subsequent addition of these sorbents to a loamy haplic Luvisol, we analyzed 14C release 

into the soil solution, its microbial utilization and 14CO2 efflux from individual C positions of 

alanine.  

All sorbents bound alanine as an intact molecule (identical sorption of 1st, 2nd or 3rd 

positions). The bioavailability of sorbed alanine and its microbial transformation pathways 

depended strongly on the sorbent. Goethite and activated charcoal sorbed the highest 

amount of alanine (~45% of the input), and the lowest portion of the sorbed alanine C 

was microbially utilized (26 and 22%, respectively). Mineralization of the desorbed 

alanine peaked within the first 5 h and was most pronounced for alanine bound to clay 

minerals. The initial mineralization to CO2 of bound alanine was always highest for the C-

1 position (-COOH group). Mineralization rates of C-2 and C-3 exceeded the C-1 oxida-

tion after 10-50 h, reflecting the classical biochemical pathways: 1) deamination, 2) de-

carboxylation of C-1 within glycolysis, and further 3) oxidation of C-2 and C-3 in the citric 

acid cycle. The ratio between two metabolic pathways – glycolysis (C-1 oxidation) versus 

citric-acid cycle (oxidation of C-2 and C-3) – was dependent on the microbial availability 

of sorbed alanine. High availability causes a peak in glycolysis C-1 oxidation followed by 

an abrupt shift to oxidation via the citric acid cycle. Low microbial availability of sorbed 

alanine, in turn, leads to a less pronounced, parallel oxidation of all three positions and to 

a higher relative incorporation of alanine C into microbial compounds. Modeling of C 

fluxes revealed that  a significant portion of the sorbed alanine was incorporated in mi-

crobial biomass after 78 h and was further stabilized at the sorbents’ surfaces. 

Position-specific labeling enabled determination of pathways and rates of C utiliza-

tion from individual molecule positions and its dependence on various sorption mecha-

nisms. We conclude that position-specific labeling is a unique tool for detailed insights 
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into the submolecular transformation processes, mechanisms and rates of C stabilization 

in soil. 
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2.5.1 Introduction 

Soil organic carbon (SOC) represents a major terrestrial carbon (C) sink. This 

makes studies on the transformation of organic substances in soils important for under-

standing the C cycle in terrestrial ecosystems. Plant residues, rhizodeposits and pyro-

genic organic matter are the main sources of organic matter in soils (Knicker, 2011a; 

Kuzyakov and Domanski, 2000; Rasse et al., 2005). Accordingly, many studies have fo-

cused on decomposition, microbial utilization and stabilization of C from these sources in 

soils (Dungait et al., 2012; Rasse et al., 2005; von Luetzow et al., 2006).  

During litter decomposition, all macromolecular compounds are split by enzymes 

into low molecular weight organic substances (Cadisch and Giller, 1996). Thus, transfor-

mation of LMWOS is a key step in biogeochemical processes in soils: all high molecular 

substances pass this stage during their degradation. Microorganisms determine the fate 

of LMWOS in soil because they either decompose them to CO2 (catabolism) or incorpo-

rate them into cellular compounds (anabolism). Both main branches of metabolism occur 

in parallel and C partitioning between them depends on environmental conditions. 

Within the LMWOS, amino acids play an important role because they are the quan-

titatively most important compound class coupling the C and N cycles. In topsoils, amino 

acid N - mainly bound in proteins - constitutes 7-50% of the total organic N (Knicker, 

2011b; Stevenson, 1982), and concentrations of free amino acids range from 0.5 µM in 

root-free bulk soil up to 5 mM directly next to bursting cells (Fischer et al., 2007; Jones 

and Hodge, 1999). Thus, many recent studies focused on the fate of N-containing 

LMWOS (Kuzyakov, 1996, 1997; Lipson et al., 2001) and investigated the three major 

pathways of amino acid in soil: 1) sorption (Jones, 1999), 2) microbial utilization (Vinolas 

et al., 2001a; Vinolas et al., 2001b), and 3) plant uptake (Lipson and Nasholm, 2001; 

Nasholm et al., 1998). Whereas the importance of plant uptake strongly depends on the 

type of ecosystem (especially its N limitation) (Jones et al., 2005; Lipson and Nasholm, 

2001; Sauheitl et al., 2009), sorption and microbial utilization are significant in all ecosys-

tems and are competing processes. They lead either to a stabilization of amino acid C 

and N in soils or to their decomposition.  

Many studies on the microbial utilization of free amino acids showed that their me-

tabolization occurs mainly intracellularly after uptake by transport systems (Anraku, 1980; 

Dippold and Kuzyakov, 2013; Hediger, 1994; Hosie and Poole, 2001). Based on the up-

take kinetics of some single amino acids, microbial uptake outcompetes sorption in soils 

(Fischer et al., 2010; Jones and Hodge, 1999; Vinolas et al., 2001a). Nevertheless, sorp-

tion is thought to be the most relevant long-term stabilization mechanism for amino acids 

in soils. This is even more relevant for their amino acid polymers – the proteins – which 
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accumulate at mineral surfaces (Duemig et al., 2012; Spence and Kelleher, 2012). How-

ever, neither the exact processes nor the relevance of amino acid sorption compared to 

stabilization by inaccessibility in micropores or aggregates has been analyzed (Sollins et 

al., 1996; von Luetzow et al., 2006).  

The lack of accumulation of strongly sorbed amino acids in ecosystems 

(Stevenson, 1982) supports the idea that sorption does not completely protect amino 

acids from biodegradation. They do, however, remain at least partially bioavailable 

(Gonod et al., 2006). Jones and Hodge (1999) demonstrated that sorption strength of 

three amino acids (lysine>glycine>glutamic acid) behaves contrary to microbial utilization 

(glutamic acid>glycine>lysine). These results support the idea that the presence of sub-

strate in solution and consequently sorption is key driver regulating the fate of amino ac-

ids. Furthermore, both the quantity of microbial uptake and the metabolization pathways 

of LMWOS are affected by sorption (Dijkstra et al., 2011a; Fischer and Kuzyakov, 2010; 

Schneckenberger et al., 2008).  

Broadly, amino acids can be adsorbed by three types of functional groups (Jones 

and Hodge, 1999): 1) ion exchange by the positively charged amino groups, 2) ligand 

exchange by the carboxyl groups and 3) hydrophobic interactions by the alkyl groups. In 

addition, weak electrostatic interactions (H-bondings, dipole-dipole-interactions, van-der-

Waals bondings) are possible by the C skeleton (Brigatti et al., 1999) and intercalation 

into the clay mineral interlayer has also been discussed (Wattel-Koekkoek et al., 2003). 

There is strong evidence that soil properties (Kemmitt et al., 2008) such as soil mineral-

ogy (Strahm and Harrison, 2008) influence the microbial utilization of LMWOS, but de-

tailed studies comparing sorption on various mineral phases and their effect on microbial 

utilization of amino acids are rare (Dashman and Stotzky, 1982). 

Here, we use the approach of position-specific labeling to elucidate the shifts in mi-

crobial amino acid transformation pathways caused by sorption. This tool, commonly 

used in biochemistry to reconstruct metabolic pathways, has increasingly been applied in 

soil science in recent years (Dijkstra et al., 2011a; Dijkstra et al., 2011b; Dijkstra et al., 

2011c; Fischer and Kuzyakov, 2010). It overcomes the limitations of uniform labeling be-

cause it helps differentiate between cleavage of a molecule vs. utilization of the entire 

molecules.  

Our model amino acid – alanine (one of the most abundant amino acids in soil) – 

occurs under soil conditions as a dipolar ion: it has a positive charge, a negative charge 

and a hydrophobic methyl group – enabling different sorption mechanisms. As a repre-

sentative subset of sorbents common in soils and representative for three basic sorption 

mechanisms, we chose a three- and a two-layer clay mineral (smectite and kaolinite), two 

iron oxides (goethite and haematite) and activated charcoal. Thus, we present here a 
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submolecular approach to elucidate LMWOS stabilization on sorbents and effects of 

sorption on amino acid transformations in soil. We assume that alanine interacts differ-

ently with various mineral phases and that interaction strength and mechanism strongly 

affects its subsequent microbial utilization, e.g. we assume a preferred allocation of 

LMWOS-C into the anabolic pathways of maintenance metabolism, the lower the avail-

ability of a substrate is. We hypothesize that various sorption mechanisms affect the sta-

bilization of amino acid C on mineral surfaces not only by direct interaction of LMWOS-C 

with the mineral but also by changing C allocation: The stronger a substrate is sorbed, 

the more its C is transformed to products, which are prone to be stabilized on the sor-

bents. In the case of polymeric microbial products (proteins, cell walls,…), this process 

could be identified by an equal incorporation of all three alanine C positions. 

2.5.2 Material and Methods 

2.5.2.1 Soil 

Soil samples were taken from an Ap horizon of a loamy silt, haplic Luvisol (WRB 

2006) from a long-term cultivated field in Bavaria near Hohenpölz (49.907 N, 11.152 E, 

501 m asl, mean annual temperature 6.7 °C, mean annual precipitation 874 mm), where 

a continuous rotation of corn, barley, wheat and triticale was established. The soil had the 

following characteristics: pHKCl 4.9 and pHH2O 6.5, TOC and TN content were 1.77% and 

0.19%, respectively, and potential CEC was 174 mmolc kg-1. The soil was stored field-

moist at 5 °C for less than 1 month, sieved to 2 mm, and all roots were removed manually 

before adding to the minerals. 800 mg of field-moist soil were used per replicate. 

 

2.5.2.2 Sorbents  

Minerals were ordered from Kremer pigments (Aichstetten/Allgäu, Germany): smec-

tite-dominated Bentonite (58900), kaolinite-dominated Kaolin (58250), heamatite-

dominated “Eisenoxid rot” (48600) and goethite-dominated “Eisenoxidocker” (40301). 

Activated charcoal was ordered from Sigma-Aldrich (Taufkirchen, Germany) and ball-

milled until the texture was comparable to the mineral phases. Specific surface area 

(SSA) was determined with a Quantachrome Nova 4000 surface analyzer (Quanta-

chrome GmbH, Odelzhausen, Germany) by N2 adsorption using the BET method (Mikhail 

and Brunauer, 1975). Effective cation exchange capacity (CECeff) was determined for all 

sorbents and the soil by exchange of the cations with Ba2+ according to NF ISO 11260 

1994 (Rhoades, 1982) (Table 1). SSA and CECeff were determined with sterilized, heated 

minerals (300 °C over night) to have identical conditions than with the minerals used for 
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the main experiment. Whereas loss of smectite crystal water is a reversible process, 300 

°C heating might have caused some transformations in goethite structure lowering its 

adsorption capacity. However, values of SSA and CECeff shown in Table 1 characterize 

the sorbent properties of the main experiment. 

Table 1 Effective cation exchange capacity and specific surface area of the five sorbents 
and the soil used for this experiment 

 

2.5.2.3 Chemicals and radiochemicals  

Sterile stock solutions with 50 µM alanine and an equal 14C activity of 830 kBq ml-1 

were prepared from U-14C-labelled alanine and the position-specifically labeled iso-

topomeres 1-14C-, 2-14C- and 3-14C-labeled alanine (American Radiolabeled Chemicals 

Inc, St. Louis, USA) as well as non-labeled alanine (Sigma-Aldrich, Taufkirchen, Ger-

many).  

The incubation of the sorbed alanine with soil was conducted in 24 well microtiter 

plates. The CO2 efflux from the wells was trapped in 2.0 M NaOH-solution placed on a 

filter mat on top of the microtiter plates. The filter mat segments were separated by a thin 

line of silicone oil added on the well boarders which diffused into the mat. In addition 1 M 

NaOH solution was prepared to trap the CO2 after combustion (Sigma-Aldrich, 

Taufkirchen, Germany).  

 

2.5.2.4 Pre-experiments  

Two preliminary experiments were performed to evaluate parameters and optimize 

the experiment design: First, the time needed for the sorption experiment was determined 

by adding U-14C-labeled alanine to the five sterile sorbents (five replications). 200 mg of 

each sorbent were added per well of a 24 deep-well plate, and 1.0 ml of the U-14C-

labeled alanine solution was added to each well. The plate was closed and shaken on a 

horizontal shaker with 120 rpm. An aliquot of 50 µl was taken after 0.5, 1, 1.5, 4, 10 and 

24 h and the 14C activity in the supernatant was determined.  

Second, the efficiency of the CO2-trap was tested. A glassfiber-filtermat was in-

stalled on top of the 24 well plate. The preprinted well borders on the filtermat were re-

drawn with silicon-oil to avoid diffusion of the NaOH-drops between the filter segments 
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above each well. 70 µl of 2 M NaOH were added onto the segments above each well to 

capture the evolved CO2. To test the capacity and efficiency of this trap, 500 µl of a 

0.08 M 14C-Na2CO3 solution with an activity of 0.083 kBq were transferred into the wells. 

The amount of CO2 derived from the carbonate reflects the maximum of soil respiration 

expected during the 78 h of the experiment (approx. 3% of TC). The CO2-trap was in-

stalled above these wells and the CO2 volatilized completely by adding several drops of 

2 M HCl by a syringe directly into the well. The 14C activity trapped on the filter mat during 

incubation was compared with the added 14C activity. Efficiency of the trap was around 

90% and CO2 efflux from the wells was corrected for this efficiency.  

 

2.5.2.5 Experimental Setup  

The availability of absorbed alanine was analyzed in two steps: 1) Alanine was ab-

sorbed on sterilized sorbents (heated for 300 °C for 12 h) and the not absorbed alanine 

was removed by washing with distilled water. This step reflected the affinity of the sorbent 

to alanine. 2) Thereafter, the sorbed alanine was mixed with the soil and incubated for 3 

days. This step showed the effect of sorption on microbial utilization and decomposition. 

For the main experiment the sorbents were sterilized by heating overnight at 300 °C 

and afterward cooled down and stored in a dry air desiccator. 200 mg of sorbent were 

added in each of 20 wells of the 24 well plate. Four wells (one per line: A5, B5, C5 and 

D5) without mineral and 14C addition were used as controls e.g. to check for diffusion 

from one filter segment to another through the silicon oil and to check for contamination 

by suspension drops into the wells. Solution in the well and on the filter segment was 

never contaminated by neighboring wells and was used to correct for the background 14C 

activity. To the five remaining wells per row, 1 ml of a 50 µM alanine solution with a 14C 

activity of 0.83 kBq was added. The four rows represented one treatment of U-14C-

labeled alanine (row A) and the three position-specifically labeled isotopomers 1-14C- 

(row B), 2-14C- (row C) and 3-14C-labeled alanine (row D). After adding the sorbent the 

plate was shaken for 24 h on the horizontal shaker (120 rpm). The plate was then centri-

fuged at 4000 rpm for 10 min and all the supernatant was removed. The sorbent was 

washed 3 additional times with millipore water to remove all unbound alanine. Until the 

experiment start the prepared plates were stored frozen (-20 °C) to prevent microbial 

degradation of the sorbed alanine. 

After defrosting the plate, the sorbent was resuspended in 3 ml millipore water and 

800 mg of fresh soil were added. The plate was covered by the CO2-trap (with filter seg-

ments separated by silicon oil as described above), which was fixed by a complete cover 

with parafilm. This was fixed under slight pressure on a metal construction and shaken at 
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120 rpm (shaking intensity was optimized that no cross-contamination between the wells 

occurred). Sampling took place after 1, 3, 6, 12, 24, 36, 52 and 78 h. The filtermat was 

removed and cut into segments. Simultaneously the plate was centrifuged for 5 min at 

4000 rpm and a 70 µl aliquot of the supernatant was removed to measure the 14C activity. 

Afterward, soil and sorbent were resuspended, a new CO2-trap was installed and incuba-

tion continued as before. After the last sampling, the supernatant was removed, the 

plates were frozen, freeze-dried and the soil was combusted at 600 °C for 10 min under a 

constant O2 stream with an HT 1300 solid combustion module of the multi N/C 2100 ana-

lyzer (Analytik Jena, Jena, Germany). 14CO2 released by combustion was trapped in 

10 ml of 1 M NaOH in a vigreux column. 

 

2.5.2.6 Chemical and radiochemical analyses 

14C activity of the supernatants was determined on a scintillation counter (Wal-

lac 1450, MicroBeta® TriLux, PerkinElmer, Walham MA; USA) by adding the 70 µl aliquot 

to 0.6 ml scintillation cocktail in 24 well plates. Filter segments and NaOH-solution after 

combustion were measured in glass scintillation vials on the LS 6500 scintillation counter 

(LS 6500, Beckman-Coulter, Krefeld, Germany). 3 ml of the NaOH-solution was mixed 

with 6 ml of scintillation cocktail (EcoPlus, Roth Company, Germany). Filter segements 

were also added to 6 ml of scintillation cocktail, preconditioned with 0.5 ml of 2 M NaOH.. 

Each scintillation vial was stored for 24 h in dark until disappearance of chemolumines-

cence. 

 

2.5.2.7 Calculations and modeling 

The initially sorbed 14C activity per well was calculated by the sum of 1) the cap-

tured CO2 over 72 h, 2) the dissolved activity in the supernatant and 3) the activity of the 

combusted soil-sorbent mixture. All graphs and calculations were done in percent of the 

initially sorbed 14C activity. 

Microbial decomposition of alanine was expressed in % of sorbed alanine 14C per h 

and as cumulative respiration of all sampling times. A four pool model, based on first-

order kinetics according to Kuzyakov and Demin (1998) – considering sorbed alanine C, 

microbially uptaken C, respired CO2 and alanine C incorporated in microbial biomass 

(Fig. 1) – was adapted to these data. Curve fitting by simplex algorithm was done by 

Model Maker (Model Maker, Version 3.1 MMAN 1, CHEM Research GmbH, Hamburg) 

and delivered the following parameters: microbially available alanine C, the uptake con-

stant kupt, the incorporation constant kinc and the respiration constant kresp. The three con-
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stants reflect the kinetic constant of alanine transfer between the pools (see Figure 1). 

The decrease in sorbed alanine 
dt

)d(sorbAlaC
 by time occurs by microbial uptake (-

Uptake) (first equation). The incorporation rate into stable microbial biomass (Inc = 

dt

)d(stableMB
) as well as the respiration rate (Resp = CO2 (

dt

d(CO2)
)) originates from C 

incorporated the pool of microbial metabolites (micMetab) (second and third equation). 

Consequently uptake is a source for microbial metabolites whereas respiration to CO2 

and stabilization in stable microbial biomass are C sinks for microbial metabolites (fourth 

equation).  

 

 

 

 

 

 

 

with 

=
dt

d(sorbAla)
-Uptake = - kupt · sorbAla 

=
dt

)d(stableMB
 Inc = kinc · micMetab 

=
dt

)d(CO2  Resp = kresp · micMetab 

=
dt

)d(micMetab
Uptake - Resp - Stab =  

kupt · sorbAlaC - (kstab + kresp) · micMetab 

 

Fig. 1 Scheme of the adapted four-pool model to the measured 14CO2 efflux. 

In this model we disregard the other fluxes (from stableMB to micMetabol and sta-

bleMB to sorbAlaC) because of their minor importance within the few days of the experi-

ment. 

 

2.5.2.8 Calculation of the C-1/C-2,3-ratio and the Divergence Index DIi  

According to Djikstra et al. (2011a; 2011c) the C-1/C-2,3-ratio was calculated for 

78 h of incubation from the fitted CO2-release (equation 1). Ala-C-j represents the percent 

of Ala-C incorporation from the position j of the molecule into that pool. The ratio reflects 

the relative activity of glycolysis (leading to C-1 respiration) compared to the citric acid 

cycle (causing C-2 and C-3 respiration): 
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After 78 hours of incubation the alanine C remaining in the soil and that decom-

posed to CO2 was determined as a relative percentage of the sum of total 14C activity. 

According to Dippold and Kuzyakov (2013) the transformation of C from individual mole-

cule positions was presented by the Divergence Index DIi, which was calculated for each 

of the three labeled C positions of alanine, whereas Ala-C-i is accordingly the percentage 

of incorporation of the position i into the respective pool: 
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This index reflects the fate of individual C atoms from the position i relative to the 

mean transformation of the total number of C atoms n within a transformation process. 

Thus, a DIi of 1 means that the transformation of this position in the investigated pool 

corresponds to the transformation of uniformly labeled substance (average of all C at-

oms). DIi ranges from 0 to n, and values between 0 and 1 reflect reduced incorporation of 

the C into the investigated pool, whereas values between 1 and n show increased incor-

poration of the C atom into this pool as compared to the average. As this index is inde-

pendent of absolute amounts of the substance, it enables comparing the alanine C distri-

bution in various pools. 

 

2.5.2.9 Statistics 

All experiments were done with five replications, and the values on figures present 

mean ± standard error of mean (± SEM). SEM of the divergence index was gained by 

Gaussian error propagation. Measured variables were screened for outliners using the 

Nalimov test (Gottwald, 2000), tested for normal distribution using the Kolmogorov Smir-

noff test and for homogeneous variances using Levene’s test. Nested ANOVA, with the 

factor C position being nested in the factor sorbent treatment, were done using Statistica 

(version 7.0, Statsoft GmbH, Hamburg, Germany). If assumptions such as normal distri-

bution or homogeneous variances were not met, the result of the nested ANOVA was 

confirmed by non-parametric Kruskal-Wallis ANOVA before performing a Tukey HSD 

post-hoc test for unequal sample size. 
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2.5.3 Results 

2.5.3.1  Sorption and microbial utilization of uniformly labeled alanine  

In the first part of the experiment, sorption of alanine to various sorbents was com-

pared. There were no differences in the sorption of the three alanine positions and uni-

formly labeled alanine onto the sterile sorbents. Thus, sorption affinity is represented by 

the results of the uniformly labeled treatment (Table 2): activated charcoal and goethite 

showed highest sorption of the added alanine (45%), with lower values in kaolinite, 

haematite and smectite (26, 19 and 12%, respectively). This sorbed amount of alanine 

was set to 100% for all further calculations of microbial utilization in soil.  

In the second part of the experiment the minerals with sorbed alanine were added 

to soil to prove the effects of an active microbial community. This experiment demon-

strated that the sorption strength varied strongly between the minerals: Within the iron 

minerals, goethite sorbed most alanine, and the lowest portion – only 26% – of this U-14C 

alanine was available to microorganisms. In contrast, haematite sorbed only 19% of the 

added alanine and 44% of this U-14C alanine was microbially available. Within the clay 

minerals a quite similar percentage of 30 to 35% of the sorbed U-14C alanine was usable 

by microorganisms (Table 2). Activated charcoal was the most efficient sorbent for 

alanine: it did not only adsorb the most of the added alanine (45%), but also the smallest 

portion (22%) was accessible.  

 

Table 2 Initially sorbed alanine C and fitted parameters to the four-pool model for micro-
bial utilization of sorbed alanine (Fig. 1) fitted to the data of uniform alanine la-
beling 

 

 

The decomposition to CO2 of the U-14C labeled alanine bound to clay minerals 

peaked within the first 5 h, with subsequent fast decrease (Fig 2). In contrast, the peak of 

decomposed alanine bound to iron minerals and to activated charcoal was ca. 5 times 

lower, with a subsequent slow decrease. It has to be considered that the continued low 

mineralization of clay mineral bound alanine is not represented well by the model, which 

approaches an equilibrium state for the last hours of the experiment. However, the faster 

initial decomposition of clay mineral bound alanine is also reflected by the fitted microbial 

uptake rate for bound alanine kupt, which was highest for the clay minerals (~0.6% h-1) 

and at least 5 times lower for the iron minerals and activated charcoal (0.08 to 0.16% h-1).  
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Fig. 2 Respiration rate (in % of sorbed alanine C per h) and cumulative 14CO2 efflux 
from alanine adsorbed to various sorbents; Experimental points (means ± SEM, 
N=6) and fitted curves based on the microbial utilization model (Fig. 1) are pre-
sented. 

 

This microbial availability and the respective uptake rate of sorbed alanine affected 

the metabolic utilization: the faster the desorption and uptake took place, the higher the 

portion of microbial mineralization versus incorporation. The mineralization rate of alanine 

sorbed on clay minerals was 3-4 higher than the incorporation rate, whereas for iron min-

erals this ratio lies between 2 and 3, with activated charcoal having the lowest value 

(1.2). Thus, the availability of alanine C and desorption kinetics of individual minerals had 

a distinct effect on C allocation between cata- and anabolism in microorganisms. 
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2.5.3.2 Kinetics of position-specific utilization of sorbed alanine C 

In the first part of the experiment the sorption of individual alanine molecule posi-

tions was identical. However, microbial transformation of sorbed alanine in the second 

part of the experiment was strongly different for individual molecule positions. Therefore, 

a more detailed insight into the mechanisms of catabolic to anabolic alanine utilization 

can be gained by comparing the kinetics of the utilization of individual positions of alanine 

C: For each of the sorbents, the mineralization to CO2 followed the order C-1 > C-2 > C-3 

(Fig. 3 and Table 3). This is also reflected in the fitted amount of available C and uptake 

constants kupt (Table 3). Thus, irrespective of the sorbent, the carboxyl group was less 

stabilized and the highest amount was respired. Consequently, the alanine was either 1) 

bound to all sorbents not by the carboxyl group, but by the methyl or alkyl-amino group 

and extracellularly cleaved or 2) the desorption of alanine occurs as the whole molecule, 

and microbial metabolism accounts for the preferential decarboxylation of C-1. 

 

Fig. 3 Cumulative 14CO2 efflux (in % of initially sorbed alanine C) from individual mole-
cule positions of alanine; Experimental points (means ± SEM, N=6) and fitted 
curves on the microbial utilization model (Fig. 1) are presented.  
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The initial mineralization peak was most pronounced for the alanine sorbed on clay 

minerals. During this peak, the mineralization rate was highest for C-1 and differences 

between C-1 and both other positions (C-2 + C-3) were most pronounced within the first 

hours (Fig. 4). Later, the C-1 mineralization rate was even lower than that of C-2- and C-3 

mineralization (Fig. 4). This C-1 oxidation peak was less pronounced for alanine sorbed 

to iron minerals and did not occur for activated charcoal sorbed alanine (Fig. 4). For this 

most efficient sorbent the general behavior of the positions changed. C-1 and C-2 be-

haved more similarly, whereas C-3 was best stabilized by activated charcoal (Fig. 3 and 

Fig. 4). This trend was also visible in the fitted microbially available C and the uptake 

constant kupt: for all minerals, kupt of C-1 was higher than the respective values for C-2 

and C-3, whereas in the case of activated charcoal the C-3 and C-2 exceeded C-1 (Table 

3). In addition, the C-1/C-2,3 ratio shown in Figure 4 reflects a constant ratio of positon-

specific respiration for the whole experiment. This is in contrast to the other four treat-

ments with mineral-associated alanine, where always an initial peak of C-1 respiration 

was followed by a peak in C-2,3 oxidation for the late period of the experiments. These 

divergences in the curve shape (Figure 4) as well as position-specific individualities (Fig-

ure 4) suggest of special transformation pathways observed for alanine bound to acti-

vated charcoal.  

Table 3 Fitted parameters of the four-pool model for microbial utilization of sorbed 
alanine (Fig. 1) for the individual alanine C positions 

 

 

The sorbent affected not only microbial uptake but also the intracellular metaboliza-

tion of C from individual amino acid positions. Whereas mineralization and the incorpora-

tion constants of alanine bound on clay minerals and activated charcoal followed the or-

der C-3 > C-2 > C-1, the alanine bound on iron oxides showed also the lowest incorpora-

tion rate for C-1, but similar mineralization rates for C-1, C-2 and C-3. Intracellular me-

tabolization is also reflected by the C-1/C-2,3-ratio, which provides information about the 

relative intensity of glycolysis to citric acid cycle (Fig. 4). A clear peak in glycolysis inten-

sity was observed for the mineralization of clay-mineral-bound alanine, but after an initial 

phase of C-1 oxidation the alanine metabolization changed to an increasing proportion of 
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citric acid cycle activity. In contrast, this initial glycolysis activity was much less expressed 

for iron-oxide-bound alanine, and no change in the metabolization pathway over time was 

observed for the microbial utilization of active-coal-bound alanine. 

 

 

Fig. 4 Respiration rate (in % of initially sorbed alanine C per h) of individual molecule 
positions of alanine and ratio of C-1 to (C-2+C-3)/2 respiration of alanine C for 
the used sorbents calculated from the fitted position-specific oxidation rate; Ex-
perimental points (means ± SEM, N=6) and fitted curves on the microbial utiliza-
tion model (Fig. 1) are presented.  

 

Thus, the sorbed amount as well as sorption strength of the sorbents affected not 

only the availability and uptake rate of alanine, but apparently influenced the uptake 

processes. Subsequent splitting of the molecule, as well as intracellular utilization by 

cata- and anabolism of the microorganisms, are controlled by the way alanine is sorbed 

in soils. 
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2.5.3.3 Incorporation of C from alanine positions in stabilized pools and de-

composition to CO2 

During the incubation of sorbed alanine with soil, the portion of dissolved and re-

spired alanine C was measured. Whereas cumulative CO2 efflux for each position and 

each sorbent showed a saturation curve (Fig. 4), the amount of dissolved alanine C was 

always very low, never exceeding 1% of the total alanine C in the system (Fig. 5). Thus, 

desorbed alanine or alanine fragments persisted only extremely briefly in the dissolved 

state or were even directly exchanged from the sorbed form. As there was no significant 

difference in the alanine C positions in solution (Suppl. Table 1), the measured 14C in the 

supernatant is intact alanine or the deaminated product pyruvate.  

 

Fig. 5 Percentage of alanine C in bound fraction, dissolved fraction or respired to CO2 
after 78 h. Values show means ± SEM (N=5) depending on the sorbents for the 
individual alanine C positions. 

After 72 h, between 8 and 48% of alanine C were decomposed to CO2 and 52–92% 

were still bound to the sorbents or incorporated into microbial biomass (Fig. 5). The abso-

lute portion of 14C incorporation per pool (Fig. 5, Suppl. Table 1) as well as the diver-

gence index (Fig. 6, Suppl. Table 2) revealed that the general trend is similar irrespective 

of the sorbents: C-1 is preferentially mineralized to CO2, whereas C-3 either remains 

bound or is incorporated into microbial biomass.  

Considering the relative C allocation by the DI, released CO2 – the product of mi-

crobial catabolism – had much higher discrimination between the positions than bound 

alanine C (Fig. 6). Hence, the DI of respired alanine C has to reflect a value inverse to 
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the incorporation into microbial biomass – the anabolic branch. Fig. 6, however, shows 

that DI of respired CO2 and sorbed C are not inverse and highest DI was observed for 

smectite, kaolinite and haematite (Fig. 6). These were the minerals with the highest per-

centage of microbially available alanine. In contrast, activated charcoal and goethite 

showed the lowest range in DI for the sorbed alanine C (Fig. 6). 

 

Fig. 6 Divergence Index (DI) of sorbed alanine and alanine incorporated into microbial 
biomass (sorbed & incMB) and respired alanine C for the five sorbents after 
78 h; Values show means ± SEM (N=5) calculated by Gaussian error propaga-
tion. 

The DI of CO2, which represents a pool passed to 100% through microbial catabo-

lism, reflected differences in metabolic utilization of C from the three positions of alanine. 

Alanine sorbed to clay minerals and haematite showed a clear preferential degradation of 

C-1 compared to C-2 and C-3. In goethite-sorbed alanine, the C-2 was not preferentially 

degraded or incorporated, but showed a DI of 1. In contrast, alanine bound on charcoal 

reflected a preferential degradation of C-1 and C-2, and only C-3 was preferentially pro-

tected from decomposition. Thus, sorption mechanisms as well as microbial availability 

affected alanine transformation (Suppl. Table 2), at least over the first 78 h. 
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2.5.4 Discussion  

2.5.4.1 Sorption mechanisms of amino acids  

Preliminary studies to this experiment with mineral phases (results not shown) as 

well as sorption studies with soil (Dippold and Kuzyakov, 2013) confirmed the hypothesis 

that sorption of alanine occurs as a whole molecule. Abiotic splitting as described for gly-

cine by Wang and Huang (2003) seemed to be of minor importance for alanine sorption. 

The high range of microbial uptake rates of alanine bound to various sorbents – dif-

fering by a factor of 6 – suggests various sorption strengths and presumably also sorption 

mechanisms. For a eutric Cambisol, Jones and Hodge (1999) found the highest sorption 

for positively charged lysine compared to the dipolar glycine and lowest sorption for the 

negatively charged glutamic acid. Similarly, the mineralization of cationic lysine was 

higher compared to the dipolar ion leucine in an eutric Cambisol (Gonod et al., 2006). 

These results clearly support the concept of cation exchange by positively charged amino 

groups as the main sorption mechanism for amino acids in soil especially for amino acids 

with a net positive charge.  

Investigations of negatively charged LMWOS focused mainly on organic acids. 

Many studies have demonstrated the ability of LMWOS to sorb by their carboxyl group 

(Jones, 1998; Jones and Brassington, 1998; Strahm and Harrison, 2008) either by direct 

ligand-exchange or via cation bridges. Iron oxides are known to effectively bind and stabi-

lize them (Jones and Edwards, 1998; Kaiser and Zech, 2000a). Nagarajah (1970), how-

ever, showed that the ability of alanine as a dipolar ion for ligand-exchange mechanism is 

much lower than for most of the investigated organic acids, which were confirmed by 

Rothstein (2010). Accordingly, neutral amino acids such as alanine have no clear prefer-

ence for a charge-dependant sorption mechanism and are either able to interact 1) by 

ligand exchange via their carboxyl group (Strahm and Harrison, 2008), 2) by cation- or 

anion exchange with the charged group (Rothstein, 2010) or 3) show non-specific weak 

interactions such as dipole-dipole and H-bondings, van-der-Waals or entropy-driven hy-

drophobic interactions (Brigatti et al., 1999).  

Our results support diverse but specific sorption mechanisms for alanine: Amount 

of sorbed alanine is clearly related to the specific surface area of the sorbents, especially 

in the case of activated charcoal. Specific sorption mechanisms of the investigated sor-

bents can be concluded from differences in the sorbed amount as well as from differ-

ences in the percentage of microbially available alanine. Fast desorption and microbial 

uptake of alanine sorbed by clay minerals shows its weak bonding, which can either be 

cation exchange or non-specific weak interactions (Fig. 7). Both mechanisms show ex-

change reactions with competing molecules. Thus, when sorbent with alanine was added 
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to the soil, cations as well as DOC compounds caused immediate exchange reactions, 

releasing bound alanine (Fig. 7). This mechanism explains the immediate and pro-

nounced peak in respiration (Fig. 2). This initial 14CO2 peak, however, was only a small 

portion of the totally sorbed alanine (33%). This indicates an additional binding mecha-

nism causing the portion of non-bioavailable alanine in this study. Intercalation into clays 

is unlikely because this mechanism preferentially stabilizes hydrophobic, aromatic com-

pounds and typically occurs with smectites rather than kaolinites (Wattel-Koekkoek et al., 

2001). As the total amount of sorbed alanine is higher for kaolinite than for smectite, an-

other mechanism has to dominate. Boudot (1992) observed that mainly surface Al(OH)3-

groups stabilize organic C, probably by interactions with the carboxyl groups of LMWOS. 

Only kaolinite (not smectite) possesses free Al(OH)3 groups, explaining the higher sorp-

tion capacity of kaolinite in this experiment (Fig. 7).  

A comparable initial 14CO2 peak cannot be observed with alanine sorbed to iron ox-

ides (Fig. 2) indicating other, stronger binding mechanisms. Many studies showed that 

iron oxides are very strong and efficient sorbents in soil exceeding the capacity of clay 

minerals (Jones and Edwards, 1998; Kaiser and Zech, 2000a, 2000b). These studies 

suggested a sorption mechanism based on the carboxyl group of the LMWOS – pre-

sumably ligand exchange (Jones and Edwards, 1998; Kaiser and Zech, 2000b; Strahm 

and Harrison, 2008). This helps explain the strong sorption and slow desorption and mi-

crobial utilization of iron-oxide-bound alanine (Fig. 7). Our result that goethite sorbed 

more alanine, along with the lower bioavailability of the sorbed alanine, supports the 

mechanistic view of ligand exchange: Goethite is known to have a higher portion of OH-

groups than haematite, which is the relevant functional group for ligand bonding. Never-

theless, a combination of binding mechanisms as well as multi-side coordinative bonds 

should be considered for interpretation (Kaiser and Zech, 1999).  

Activated charcoal is a relevant sorbent in hydrophobic interactions (Choi et al., 

2008), and sorption studies with organic molecules of various properties show that aro-

matic rings are not necessary for interaction with coal structures (Cornelissen et al., 

2005b). Hydrophobic interactions by the methyl group of alanine as well as polar-π-

interactions with COO-, -NH2 or NH3
+ groups are possible (Keiluweit and Kleber, 2009) – 

all reflecting very strong binding mechanisms. Thus, theoretically each functional group of 

amino acids can interact with the activated charcoal (Fig. 7). In combination with the large 

surface of the activated charcoal, this explains its high amount of sorbed alanine. The 

strong binding is shown by the missing initial mineralization peak and activated charcoal 

showed the slowest respiration kinetics as well as the lowest proportion of bioavailable 

alanine (Fig. 2 and Table 2). This confirms the view of Keiluweit and Kleber (2009) and 
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Cornellissen et al. (2005a) on coal’s high sorption capacity for a broad range of LMWOS, 

which is presumably even higher for activated charcoal. 

 

 

Fig. 7 Metabolic pathways of alanine sorbed on clay minerals (smectite and kaolinite), 
iron oxides (haematite and goethite) and active coal. Detailed explanations in 
text. Various colors show the pathways of C from individual positions of alanine. 
Line width represents the qualitatively estimated relative shifts in the fate of 
alanine C positions between certain pathways dependent on the sorbent class. 

Caution should be exercised in transferring these results and supposed mecha-

nisms directly to natural soil conditions, because we used systems showing no initial 

covering of the sorbents’ surface at the experiment start. Under soil conditions, however, 

a high proportion of sorbent positions are likely to be occupied by a diverse spectrum of 

ions and organic compounds. In addition, the adsorption properties of sorbents may 

strongly change if multilayer sorption (as described by the zonal model of Sollins et al. 

(2007)) takes place in soils. Assuming this sorption model, the mechanisms investigated 
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here reflect only contact zone sorption, and the situation under soil conditions becomes 

more complex. At the same time, only a small percentage of the sorbent’s surface may 

be covered by organic films according to the multilayer model (Heister et al., 2012). 

Therefore, the relevance of complex multilayer sorption versus direct interaction with the 

mineral surfaces is not yet quantified.   

 

2.5.4.2 Bioavailability of sorbed alanine  

The available C in the soil as well as the bioavailable portion of the sorbed alanine 

are potential microbial C sources. The results showed that for each of the sorbents a dis-

tinct portion of the sorbed alanine is bioavailable and can be mineralized by microorgan-

isms (Table 2). Dashman and Stotzky (1982) showed, for clay minerals, that permeases 

have a higher affinity for amino acids than their sorbents. Hence, from a kinetic and ener-

getic point of view, microorganisms located close to a sorbent can take up at least parts 

of the sorbed amino acids. Thus, two mechanisms can explain the partial bioavailabilty of 

sorbed amino acids: 1) passive desorbing due to exchange with DOC and ions from the 

soil and 2) active desorbing by microorganisms that is followed by active uptake through 

their membranes (Fig. 7).  

Protein expression of the respective transport proteins is a fast process (Jones et 

al., 1996). The respective amino acid transporters as well as degradation pathways are 

ubiquitous, enzymes and transporters constitutively expressed (Anraku, 1980; Gonod et 

al., 2006) and consequently it can be expected that they are already present in the mi-

crobial community living based on the available soil C sources when the experiment 

started. The establishment of microbial communities that live near or on the sorbents’ 

surface is a more time consuming process (Chenu and Stotzky, 2002) and probably ex-

plains the observed delay in microbial utilization of sorbed amino acids (Gonod et al., 

2006; Jones and Hodge, 1999). An additional explanation might be that alanine is slowly 

desorbed from inaccessible domains of the sorbents and time for desorption as well as 

diffusion delays the uptake of alanine by microorganisms. Nonetheless, after establish-

ment of such a sorbent-associated microbial community, e.g. in biofilms, a positive feed-

back reaction can be expected: The sorbent might provide a co-location of various growth 

resources (sorbed DOC + nutrients from the soil), and biofilms themselves are able to 

establish synthrophies (Schink, 1997; Schink and Friedrich, 1994). This is consistent with 

our results, especially for the activated charcoal: The decomposition of alanine to CO2 is 

still ongoing at 78 h. Accordingly, even after 78 h, microorganisms may still not have 

reached all parts of the high specific surface area of activated charcoal (Table 1). Contin-

ued mineralization of alanine in each of the treatments (but most pronounced for acti-
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vated charcoal) can be explained by microorganisms gaining access and colonizing new 

surfaces. This process was also observed but less expressed for each of the mineral 

phases.   

Conversely, inaccessibility of parts of the sorbent surfaces for microorganisms ex-

plains the portion of irreversible sorption and thus stabilization of LMWOS observed in 

this and other studies (Table 2 and Fig. 7). This inaccessibility is likely to occur in acti-

vated charcoal, where large DOC molecules can fill pores and block accessibility and 

exchange of LMWOS from these pores (Nguyen et al., 2007). Together with the strong 

sorption mechanism of activated charcoal, this explains the high portion of non-

bioavailable amino acids (Table 2). In addition to inaccessibility of the LMWOS, microbial 

cells or exoenzymes can be immobilized by sorbents and reduce mineralization (Jin, 

2010; Novick and Rozell, 2005; von Luetzow et al., 2006). The immobilization of microbial 

cells and exoenzymes by charcoal can strongly affect the subsequent transformation 

pathways of alanine.  

Sorption occurs as a whole molecule, i.e. all three positions are sorbed together. 

Accordingly, an increase in inaccessible, not bioavailable alanine at the sorbent would 

cause an approximation of the DI of all three positions to 1.0. On contrast alanine incor-

porated into microbial biomass should have a DI complimentary to respired CO2. This 

study showed that sorbents with a low portion of accessible alanine and thus a high por-

tion of untransformed alanine bound to the sorbent (such as activated charcoal or goe-

thite) have DIs closest to one (Fig. 6). On contrast, haematite and the clay minerals re-

veal significant differences between the DI of the individual positions. Hence, a DI close 

to one reflects a high proportion of untransformed alanine C bound to the sorbent 

whereas a DI close to the complimentary value of respired CO2 reflects a dominance of 

microbial biomass C associated to the mineral surface (Fig. 6). The DI of alanine C, how-

ever, was never exactly 1.0 for any of the sorbents after 78 h (Fig. 6). This shows that at 

least some of the surface-associated alanine C was transformed to metabolites. This part 

shows the classical pattern of alanine-C utilization of microbial cells (Dippold and Kuzya-

kov, 2013): preferential incorporation of C-2 and C-3 in microbial biomass due to a pref-

erential mineralization of the carboxyl group (C-1). This result supports the idea that cells 

that approach the sorbents or even establish as biofilms on their surfaces are mainly re-

sponsible for the utilization of sorbed LMWOS.  

 

2.5.4.3 Pathways of microbial metabolization of sorbed alanine  

The DI enables a better comparison between the sorbents. This is because DI is 

not overprinted by absolute differences in the uptake and utilization rates and amounts. 
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The DIs of incorporation of single C positions into the decomposed and sorbed pool were 

calculated and revealed significant differences (Suppl. Table 1): DI of the respired CO2 

showed, for each sorbent, a preferential respiration of the C-1 group and a preferential 

stabilization of the C-3 group (Fig. 3). Thus, the metabolization of bound alanine gener-

ally follows the same pathways as demonstrated for free alanine (Dippold and Kuzyakov, 

2013): 1) deamination to pyruvate, 2) entering glycolysis and decarboxylation to acetyl-

CoA and 3) successive oxidation in the citric acid cycle. This enables applying the C-1/C-

2,3-ratio – used by Djikstra et al. (2011a) for pyruvate metabolization in soil – to alanine 

metabolization to determine the ratio of glycolysis to citric-acid cycle oxidation. Both this 

ratio (Fig. 4) and the fitted kinetic constants for C metabolization via ana- and catabolism 

(kinc and kresp in Tab. 2) showed a clear effect of the sorbent, i.e. the sorption mechanism, 

on the metabolization of alanine. The uptake rate kupt showed that, in contrast to sorption, 

desorption and microbial uptake do not necessarily occur as an intact molecule. This 

means that the alanine molecule will be split just before, during or immediately after mi-

crobial uptake. The exoenzymes using alanine exist in soil but play a minor role for the 

utilization of free alanine (Dippold and Kuzyakov, 2013). For strongly sorbed molecules 

the uptake of intact alanine by microbial cells may no longer be possible. Indeed, some 

functional groups of alanine (e.g. COOH groups or amino-bound C) might still be acces-

sible for exoenzymes and consequently will be split before transformation products enter 

microbial cells (Fig. 7). This was already described for charcoal surfaces by the co-

location model of Lehmann et al. (2011), which explains the accumulation of microbial 

cells as well as their enzymes on the sorbent surface. Thus, parts of the molecules might 

be taken up as split fragments after exoenzymatic cleavage. However, the kinetic con-

stants kinc and kresp differed more strongly between the positions than the uptake constant 

kupt. This indicates that the main splitting of the C skeleton of alanine occurred within the 

microbial cells (Fig. 7) and that further specific pathways of cells and enzymes located at 

charcoal surfaces occur. This cannot be resolved within the present study.  

The C-1/C-2,3-ratio reveals that C-1-oxidation by glycolysis occurred faster and 

with higher intensity than the C-2 and C-3 oxidation by the citric acid cycle. The initially 

exchanged alanine is immediately taken up by the microorganisms (Dippold and Kuzya-

kov, 2013; Fischer et al., 2010) and the C-1 is metabolized very fast via glycolysis (Fig. 

7). With a temporal delay the oxidation via the citric acid cycle starts. The glycolysis 

peaks much less for the alanine sorbed to iron minerals and does not occur for that 

sorbed on activated charcoal (Fig. 4 and Fig. 5). Thus, highly available free alanine is 

metabolized by a different intensity of metabolic pathways than sorbed alanine. Kinetics 

of desorption versus kinetics of microbial uptake determines the relative availability of 

alanine in soil solution, which determines the C allocation in microbial metabolism 
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(Dippold and Kuzyakov, 2013). If alanine has to be removed from sorbents by microor-

ganisms this occurs by time- and energy-consuming mechanisms. Two possible reasons 

might explain the shifts in alanine metabolization if it requires microbial induced desorp-

tion: Dashman and Strotzky (1982) already discussed that the more intensive a substrate 

is bound to a sorbent, the less attractive it is for catabolism because the energy efficiency 

of that substrate decreases. If, however, C- or N-demand for the anabolism exists, then 

these substrates are nevertheless desorbed and used, but mainly by anabolic pathways. 

It has to be considered that in addition to sorbed alanine further C sources were available 

from the added soil – which might be preferentially used the more inaccessible the 

alanine is. If we compare the ratio of the kinetic constants for mineralization and incorpo-

ration kresp/kinc of the five sorbents investigated in this study, clay minerals (3.4 < kresp/kinc 

< 3.8) exceed iron minerals (2.3 < kresp/kinc < 2.8), with the lowest value shown by acti-

vated charcoal (1.2). This is consistent with the concept of Dashman and Strotzky (1982) 

and reflects the increasing portion of anabolic C utilization with increasing sorption 

strength. 

In contrast, Jones and Edwards (1998) argued that cell metabolism might change if 

cells are attached to surfaces: They have an increasing demand in structural cellular 

components needed to attach to the surface or for the formation of biofilms like extracel-

lular polysaccharides (Chenu and Stotzky, 2002). This would cause a high demand for 

gluconeogenesis products and, in turn, dampen the opposite process – glycolysis (Fig. 

4). This phenomenon was observed for charcoal for the entire 78 h; it was less expressed 

with the iron oxides and was not visible for microorganisms using alanine bound on clays. 

Our approach cannot definitively distinguish between the potential explanations 

given by Dashman and Strotzky (1982) or Jones and Edwards (1998). Answering this 

question would require a metabolite tracing, i.e. characterization of the newly formed mi-

crobial products from alanine C. It has to be considered that data based on the modeling 

approach e.g. the kinetic constants kinc and kresp have to be considered carefully: the 

model strongly simplifies reality e.g. not considering backflux from stable microbial prod-

ucts towards fast cycling microbial metabolites. This simplification can cause a worse fit 

of the model especially for the last time points where slower processes, not considered 

here, become more relevant. Thus, slow processes (e.g. the further mineralization ob-

served at late time points) might be underestimated by this approach. Nevertheless, DI 

and modeling revealed that with decreasing bioavailability of a substrate due to sorption, 

an increasing relative portion of this substrate is incorporated into microbial C and this 

microbial C remains partially associated with the sorbents’ surface. 
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2.5.4.4 Stabilization of amino acid C by sorption 

Clearly, interactions with sorbents stabilize DOC and also LMWOS compounds in 

soils (Kaiser and Kalbitz, 2012). In a similar experiment with lysine, 3.6% of the lysine 

sorbed on soil was respired (Gonod et al., 2006). This rate was 10 times lower than the 

decomposition of free lysine, and also 6.6 times lower than the average alanine minerali-

zation observed in this experiment (23.7% of added U-alanine). This can be explained by 

the two-times-higher sorption of positively charged lysine (two NH2
+groups) compared to 

dipolar ions such as glycine or alanine (Jones and Hodge, 1999). Indeed, Jones and 

Hodge (1999) observed a maximally 3 times higher sorption of positively charged com-

pared to dipolar ion amino acids. Thus, an additional mechanism preventing microbial 

utilization must have occurred in Gonod’s experiment (2006), e.g. spatial inaccessibility 

within the intact aggregates or enhanced sorption due to a multilayer sorption with addi-

tional sorption sites and mechanisms present within soils. The pure minerals used in this 

study do not allow clear conclusion about sorption mechanisms on partially saturated soil 

surfaces. In addition, spatial inaccessibility in aggregates and micropores is of minor 

relevance for this experiment, as we used fine powdered minerals in a shaken soil sus-

pension. However, binding of microbial cells or exoenzyms to strong sorbents may con-

tribute to a reduced utilization of alanine in treatments with strong sorbents. Stabilization 

by sorption might even be more pronounced in natural soils than in individual clean sor-

bents because additional stabilization mechanisms like spatial inaccessibility might have 

synergistic effects there. 

Our study shows that a remarkable percentage of sorbed alanine is still microbially 

available and that direct interactions are not the only mechanisms explaining how 

LMWOS-C can be stabilized by sorbents. The DI of the bound alanine after 78 h clearly 

demonstrates some of the sorbed alanine C is already microbially transformed (Fig. 6). 

Presumably, anabolic cellular as well as extracellular components accumulate on the 

sorbents’ surface and sorption sites (Dashman and Stotzky, 1982; Jones and Edwards, 

1998; Miltner et al., 2011). This corresponds to an increase in microbial polysaccharides 

and proteins associated on the mineral surfaces with increasing soil development 

(Duemig et al., 2012). Similar results were observed for aging charcoal (Lehmann et al., 

2011). Thus, the direct stabilization of LMWOS-C by sorbents is potentially less relevant 

for the stabilization of C by mineral interactions: Interestingly, the microbially desorbable 

LMWOS may contribute even more to C stabilization than the irreversibly bound ones if 

initiating the accumulation of microbial products on the mineral surfaces (Miltner et al., 

2007). These products are probably more recalcitrant than the initial LMWOS because 

they are polymeric polysaccharides, proteins or larger lipids. Nonetheless, they exhibit 

multiple sorption sites which allow a more intensive binding to the mineral surfaces. They 
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may also initiate a more diverse sorption surface (Sollins et al., 1996) that may have a 

self-enhancing effect on further stabilization by sorption. 

 

2.5.5 Conclusions and Outlook 

This study demonstrates that stabilization of LMWOS-C by sorption is a complex 

process: amino acids will be sorbed as whole molecules, but by various sorption mecha-

nisms to the individual sorbents. Clay minerals show a combination of exchangeable, 

weak binding of alanine as well as stronger interaction with Al-OH-groups, protecting 

alanine from microbial degradation. Iron oxides sorbed a higher amount of alanine pre-

sumably by ligand exchange with the carboxyl group. Especially for goethite, a low por-

tion of sorbed alanine was available for microorganisms. Highest sorption capacity as 

well as sorption strength was measured for activated charcoal. Modeling reflected that 

between 22% (activated charcoal) and 44% of sorbed alanine C can be microbially used, 

but microbial transformation products can be further stabilized by the sorbents.  

We conclude that the stronger the sorption by the individual sorbent, the lower the 

microbial utilization. The fate of individual molecule positions showed that, at least for the 

four mineral phases, the alanine is used by the classical biochemical pathways: deamina-

tion, decarboxylation of C-1 and further oxidation of C-2 and C-3 in the citric acid cycle. 

The ratio of C-1 oxidation in glycolysis versus oxidation of C-2 and C-3 in the citric acid 

cycle depends on the microbial availability of alanine: high availability of sorbed DOC and 

alanine due to fast cation exchange causes an initial peak in C-1 oxidation by glycolysis 

and an abrupt shift to oxidation via the citric acid cycle – i.e. high amount of energy pro-

duction by catabolism. Low microbial availability of sorbed alanine, in contrast, leads to a 

slow, parallel oxidation of all three positions by glycolysis and the citric acid cycle and a 

large transfer of C toward maintenance anabolism. The DI of the alanine C remaining in 

soil after three days reflects a mixture of untransformed sorbed alanine (DI1,2,3 = 1) and 

microbial transformation products (DI1 < 1 and DI2,3 > 1): The higher the microbial avail-

ability, the higher the portion of bound alanine C present as microbial transformation 

products (Apostel et al., 2013).  

Activated charcoal shows a deviating behavior, with preferential stabilization of C-3 

and oxidation of C-1 and C-2. This indicates that the hydrophobic C-3 is preferentially 

stabilized by charcoal and that, in addition to basic microbial mechanisms, further path-

ways of alanine transformation occur (e.g. by exoenzyms). 

Details on the pathways and the newly formed microbial products can be further 

deepend combining position-specific labeling with compound-specific isotope analysis of 

microbial products. In addition, studies with a broader range of LMWOS with deviating 
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sorption properties as well as sorption under natural soil conditions are needed. This will 

yield a more mechanistic understanding of the processes leading to a stabilization of C 

by sorption. 
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Supplementary Data 

Supplementary Table A1: Nested ANOVA between single Ala positions nested in sorbent 
treatment for sorbed, dissolved and respired alanine C. Degrees of freedom (df), F-
values and significance level (p) are shown for the five concentration treatments. 

 

 

 

Supplementary Table A2: ANOVA, calculated according to Cohen (2002), for the diver-
gence index DI for respired and sorbed alanine C. Degrees of freedom (df), F-values and 
significance level (p) are shown for the three alanine positions and the two sterilization 
treatments. 
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Abstract 

Microbial transformations are key processes of soil organic matter (SOM) forma-

tion, stabilization and degradation. Combining position-specific 13C labeling with com-

pound-specific 13C-PLFA analysis is a novel tool to reconstruct metabolic pathways. This 

combination was used to determine short-term transformations (3 and 10 days after 

tracer application) of two monosaccharides – glucose and ribose – in soil under field con-

ditions. Transformations of sugars were quantified by the incorporation of 13C from indi-

vidual molecule positions in bulk soil, extractable microbial biomass (by CFE) and in cell 

membranes of distinct microbial groups classified by 13C-PLFA. 

As the incorporation of 13C was higher by one order of magnitude in the Gram 

negative bacteria compared to all other microbial groups, this group was considered to 

have a great influence on sugar utilization and transformation in soil. All of the 13C recov-

ered in bulk soil on day 3 was allocated in microbial biomass. On day 10 however, a part 

of the 13C was recovered in soil, revealing either incorporation into non-extractable mi-

crobial cell components or the excretion of microbial products. As sugars cannot interact 

with soil particles due to a lack of functional groups, their quick mineralization is generally 

expected. However, our results showed that microorganisms transformed sugars into 

metabolites with a slower turnover. In bulk soil and extractable microbial biomass, the 

tracer 13C incorporation from the individual glucose positions showed that the two main 

glucose utilizing pathways in organisms –glycolysis and the pentose phosphate pathway 

– exist in soils in parallel. However, the pattern of tracer incorporation from individual glu-

cose positions into PLFAs showed additionally and intensive recycling of the added 13C 

via gluconeogenesis and an intermingling of both glucose utilizing pathways. This shows 

that glucose – as a ubiquitous substrate - is used by various metabolic pathways and 

glucose C is intensively recycled in microbial biomass. Nevertheless, glucose can be 

used as a metabolic tracer in short-term experiments, especially for tracing carbohydrate 

metabolism (i.e. glycolysis and pentose phosphate pathway and their side branches).  

Analyzing the fate of individual C atoms by position-specific labeling allows strong 

improvement of our understanding of the mechanisms and kinetics of microbial utilization 

of hexoses and pentoses by various microbial groups and so, of soil C fluxes. 
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2.6.1 Introduction 

Soil organic carbon (SOC) plays a major role within the global C cycle as soils can 

function as a source or sink of atmospheric C. Plant residues and rhizodeposits are the 

main sources of organic matter in soils (Rasse et al., 2005). Therefore, many studies 

have focused on decomposition, microbial utilization and stabilization processes of C 

from these sources in soils.  

The low molecular weight organic substances (LMWOS) play a crucial role within 

the C cycle in soil. Although their portion of SOC is quite low, they represent the SOC 

pool with the highest turnover and a huge gross flux of C passes through this pool 

(Fischer et al., 2007). LMWOS are defined as the lightest components of dissolved or-

ganic carbon (DOC) with a molecular weight lower than 250 Da (Boddy et al., 2007). 

Their main sources are exoenzymatic depolymerization of above- and belowground litter 

as well as rhizodeposition. Microorganisms determine the fate of LMWOS in soil because 

they are able to either produce them, decompose them to CO2 (catabolism) or incorpo-

rate them in cellular compounds (anabolism). Microbial incorporation and transformation 

of LMWOS are key processes in stabilizing soil organic carbon (SOC) (Miltner et al., 

2011; Simpson et al., 2007). Therefore, microbial transformation pathways of LMWOS 

represent a crucial step of soil C and N fluxes, and a molecular-level knowledge of these 

processes is needed (van Hees et al., 2005). 

Besides amino acids and carboxylic acids, sugars are a main component of 

LMWOS (van Hees et al., 2005). Sorption and other interactions with soil organic matter 

(SOM) are nearly irrelevant for sugars, as they have neither charged functional groups 

nor hydrophobic molecule parts. Thus, their fate is mainly determined by microbial utiliza-

tion. They can occur as monosaccharides with a five C backbone (pentoses) or a six C 

backbone (hexoses) or as di- or oligosaccharides within the LMWOS. Individual mono-

saccharide concentrations in soil solutions typically range from 1-10 µM (Fischer et al., 

2007). Within this class, glucose is most abundant monomer, deriving from the decompo-

sition of plant residues as well as rhizodeposition (Kuzyakov, 2010), and is known to be a 

ubiquitous substrate for microorganisms (Macura and Kubatova, 1973). The main 

sources of pentoses in soil are plant hemicelluloses (Cheshire et al., 1971; Koegel-

Knabner, 2002), but ribose in particular is actively formed in soils (Murayama, 1988), e.g. 

for the biosynthesis of ribonucleotides and their polymers (DNA and RNA). 

Sugar monomers are the building blocks of different polysaccharides (e.g. cellu-

lose, starch), and are also precursors of the ribonucleotide backbone and cell wall poly-

mers. Microorganisms can degrade all of these polymers to monosaccharides or vice 

versa, build them up from monosaccharides. However, sugars are not only anabolic sub-
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strates but also a preferred source for energy production in catabolism. For glucose, it 

was known that an average of 60% is incorporated in cellular compounds and 40% is 

oxidized to gain energy (Fischer et al., 2010), but there is no information whether this 

ratio is similar for other monosaccharides. This ratio can be influenced by many factors 

like the nutritional state of microorganisms or the supply by further LMWOS. In addition, 

individual functional groups of the microbial community are expected to use LMWOS-C in 

different pathways and produce various metabolites from them. To date, neither the 

metabolic pathways of monosaccharides nor the specifics of individual functional groups 

of the soil microbial community are investigated in soils. The combination of position-

specific labeling with compound-specific isotope analysis is a unique approach, which 

enables tracing the transformations of LMWOS within the microbial community of soils 

(Apostel et al., 2013). Position-specific labeling – a tool that is commonly used in bio-

chemistry to investigate metabolism pathways - has recently reached an increasing con-

sideration in soil science (Apostel et al., 2013; Dijkstra et al., 2011a; Dippold and Kuzya-

kov, in press; Fischer and Kuzyakov, 2010). It overcomes the limitations of uniform label-

ing because it allows differentiation between the incorporation of molecule fragments vs. 

the incorporation of entire intact molecules and thus enables the reconstruction of meta-

bolic pathways. PLFA analysis not only allows a reconstruction of the microbial commu-

nity composition (Zelles, 1999; Zelles et al., 1995), but in combination with 13C labeling – 

i.e. 13C-PLFA analysis - also enables tracing of substrate incorporation and reconstruc-

tion of sugar metabolism of individual microbial groups (Glaser, 2005).  

This study aimed to trace C transformations of monosaccharides in soil. The hex-

ose glucose and the pentose ribose were applied position-specific 13C labeled to undis-

turbed soil cores and the 13C incorporation in microbial biomass and PLFA was traced 

over 10 days. As sugars possess no functional groups with which they could interact with 

the soil matrix, we hypothesize complete uptake into the microbial biomass. In addition, 

we state the hypothesis that the incorporation of glucose into microbial biomass and bulk 

soil reflects the oxidation pattern of glycolysis i.e. preferential oxidation of C-3 and C-4 

positions to CO2. In contrast, the pentose phosphate pathway may dominantly affect ri-

bose utilization and lead to a preferential loss of ribose C-3, C-1 and C-2 as CO2. If glu-

cose is utilized in this pentose phosphate pathway, we will detect a loss of the glucose C-

1 and C-4 positions. Furthermore, we hypothesize that pathways of eukaryotes and pro-

karyotes differ, which will be reflected in the different incorporation of glucose and ribose 

C positions into the specific PLFAs of these microbial groups.  
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2.6.2 Material and Methods 

2.6.2.1 Sampling Site 

Sampling site 

The field experiment is located on an agriculturally used loamy Luvisol in northern 

Bavaria (49°54' northern latitude; 11°08' eastern longitude, 500 a.s.l.) with a mean annual 

temperature of 7°C, and a mean annual precipitation of 874 mm. The last crop was Triti-

cale. The soil had a pHKCl of 4.88, a pHH2O of 6.49, a TOC and TN content of 1.77% and 

0.19%, respectively. CEC was 13 cmolC kg-1. 

 

Experiment design 

Field experiment is in detail described in Apostel et al (2013). Briefly, the 12 × 12 m 

field was divided into four quadrants, representing the four replications. PVC-tubes (di-

ameter: 10 cm, height: 13 cm) were installed 10 cm deep in the soil. Application dots 

were marked with five wooden rods 5 days prior to applying the sugars. 10 ml tracer-

solution per column were applied with a multipette (Eppendorf, Hamburg, Germany) with 

concentrations of 13C-labeled sugars according to Table 1. A 7 cm long needle with lat-

eral holes enabled homogeneous distribution of the tracer solution within the column. The 

solution was only injected in the upper 2/3 of the column to avoid leaching and rainfall 

was blocked by a roof. In each of the quadrants and for both sampling times, glucose and 

ribose were applied once as 1) non-labeled background, 2) uniformly 13C-labeled, and 3) 

as four and two position-specific 13C-labeled isotopomeres of glucose and ribose, respec-

tively (see Table 1) with a random distribution of the isotopomere within the block.   

Table 1 Locations of 13C in position specifically labeled glucose and ribose and their 
amounts added to soil in the field experiment. 

 Glucose Ribose 
 13C-1 13C-2 13C-4 13C-6 U-13C 13C-1 13C-5 U-13C 

C concentration 
(µmol ml-1) 23.83 24.29 24.16 23.95 23.22 62.65 62.43 26.25 

C amount (µmol g 
soil-1) 0.38 0.39 0.38 0.38 0.63 0.45 0.45 0.66 

Atom% 13C 38.17 38.21 38.54 38.08 43.04 14.84 14.84 37.22 
 

Sampling and sample preparation 

Sampling occured 3 and 10 days after labeling and the complete columns from one 

set (background, uniformly and position-specifically labeled) of four replications were dug 

out. Height of the soil inside the column was determined to calculate soil volume. 

Afterwards, the soil was weighted; a subset was sieved to 2 mm for further analysis and 
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stored at 5°C for not longer than one week until chloroform-fumigation extraction and at -

20°C for PLFA-extraction.  

 

2.6.2.2 Analytical methods 

Bulk soil measurements 

For bulk soil C content and δ13C-analysis, the samples were freeze dried, ground in 

a ball mill and 5-6 mg per sample was filled into tin capsules. Measurement was per-

formed with an Euro EA Elemental Analyzer (Eurovector, Milan, Italy) coupled by a Con-

Flo III interface (Thermo-Fischer, Bremen, Germany) to a Delta V Advantage IRMS 

(Thermo Fischer, Bremen, Germany). Incorporation of 13C from the applied sugars into 

the soil was calculated by a mixing model (Eq. 1 and 2), where the C content of the 

background in Eq. 1 was substituted according to Eq. 2. 

 

appMSappMSBGCBGsoilsoil rCrCrC ⋅+⋅=⋅ − ][][][      (5) 

 

appMSBGsoil CCC ][][][ +=        (6) 

with:   

[C]soil/BG/appMS   C content of sample/background/applied monosaccharide 

    (mol · gsoil
-1) 

r soil/BG/appMS   13C atom%-excess of sample/background/applied 
monosaccharide          (at%) 
 

Chloroform fumigation extraction 

Microbial biomass and its δ13C values was determined by Chloroform fumigation 

extraction according to Apostel et. al (2013): Briefly, two subsets of 15 g of soil were 

taken per sample and one subset was directly extracted as described below; the other 

was first fumigated with chloroform for 5 days in an exsiccator to lyse microbial cells and 

afterwards extracted. 

The samples were extracted twice with 22.5 ml of 0.05 M K2SO4. They were shaken 

on a horizontal shaker, 1 h on the first, 0.5 h on the second extraction. After shaking, the 

samples were centrifuged (10 min, 2000 rpm) and the supernatant was filtered (Rotilab® 

round filters, type 15A, cellulose, membrane 70 mm). 

The C content of the K2SO4 extracts was measured on the TOC analyzer multi 

C/N® 2000 (Analytik Jena, Jena, Germany). For δ13C measurements, the samples were 

freeze-dried and then measured on the Euro EA Elemental Analyzer (Eurovector, Milan, 

Italy) unit with a ConFlo III interface (Thermo-Fischer, Bremen, Germany) and the Delta V 

Advantage IRMS (Thermo Fischer, Bremen, Germany). 13C uptake into fumigated and 
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unfumigated extracts was calculated according to the mixing model (Eq. 1 and 2) and 

microbial biomass C and 13C incorporation was determined with an extraction factor of 

0.45 according to Wu et al. (1990). 

 

PLFA-Analysis 

Phospholipid analysis was performed analogue to Apostel et al (2013): Extraction 

and purification is a modified method by Frostegard et al. (1991). Modifications included 

using 6 g of soil for extraction and elution of polar lipids from the silica column occurred 

four times with 5 ml of water-free methanol. 25 µl of the internal standard 1 (IS 1), phos-

phatidylcholine dinonadecanoic acid, was added before extraction. For gas chromatogra-

phy (GC) measurements, the fatty acids were saponified to free fatty acids and derivat-

ized into fatty acid methyl esters (FAME) according to Knapp (1979). 15 µl of the internal 

standard 2 (IS 2), tridecanoic acid methyl ester, was added before transferring the sam-

ples to sampler vials. External standards consisting of the 27 fatty acids given in Supple-

mentary Table 1 and internal standard 1 were prepared with total fatty acid contents of 1, 

4.5, 9, 18, 24 and 30 µg, respectively, and derivatized and measured together with the 

samples. 

FAME-contents were measured on a GC-MS (GC 5890 with MS 5971A, Agilent, 

Waldbronn, Germany) with a 30 m DB1-MS column, in the selected ion mode. The rela-

tion between the area of each FAME and the area of the IS 2 was calculated and quanti-

fication occurred via a linear regression calculated from the six external standards. The 

recovery rate for every sample was determined from the area of the initially added 25 µg 

of IS 1, and applied against the quantified masses of the FAMEs. 

δ13C-values were measured by a GC-C-IRMS, consisting of the autosampler unit 

AS 2000, the Trace GC 2000 by ThermoQuest, the combustion unit Combustion Inter-

face III and the isotope-ratio mass spectrometer DeltaPlus (all units from Thermo Fisher, 

Bremen, Germany). Volumes of 1.5 µl were injected into a liner (Type TQ(CE) 3 mm ID 

TAPER) at a injector block temperature of 250°C in splitless mode (splitless time: 1 min). 

Gas chromatography was performed with a combination of two capillary columns: a 30 m 

DB5-MS and a 15 m DB1-MS (both: internal diameter 0.25 mm, film thickness 0.25 µm; 

Agilent), a constant He-flux (99.996% pure) of 2 ml · min-1 and the temperature program 

presented in Supplementary Table 2. CO2 reference gas (99.995% pure) was injected for 

20 s into the detector several times throughout the measurement to identify any drift of 

the δ13C-values. The δ13C of the second reference gas peak was defined as -40‰ and all 

other δ13C values were calculated by comparison. δ13C of all PLFA samples was meas-

ured four times. 
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The chromatograms were evaluated with ISODAT NT 2.0 and δ13C value in ‰ was 

computed from the isotopic ratio 13C/12C. 

Linear regressions were calculated from reference gas peaks two and three, and 

three and four to correct for any drift during measurements: Eq. 3 was applied to the δ13C 

value of FAMEs that were detected before reference gas peak three; Eq. 4 was applied 

to those that were detected after reference gas peak three.  

))((%)(%)( 0 RGFAMERGFAMEDKFAME ttmatCatC −⋅−= −−      (3) 

%)())((%)(%)( 0 atCttmatCatC RGRGFAMERGFAMEDKFAME ∆−−⋅−= −−    (4) 

with: CFAME-DK(at%) drift-corrected 13C amount of the FAME   (at%) 

 CFAME-0(at%)  measured 13C amount of the FAME   (at%) 

mRG slope of regression between the reference gas  

peaks enveloping the FAME    (s-1) 

 tFAME   retention time of FAME    (s)  

 tRG   retention time of reference gas peak prior to FAME (s) 

 ∆CRG(at%)  difference between reference gas peaks    

    three and two      (at%) 

To correct for amount-dependent 13C isotopic fractionation during measurements 

(Schmitt et al., 2003), and for the addition of C during derivatization, linear and logarith-

mic regressions of the external standards δ13C-values to their area were calculated. If 

both regressions were significant, that with the higher significance was applied. As the 

δ13C-value for the derivatizing agents was unknown, the correction was performed ac-

cording to Glaser and Amelung (2002) (Eq. 5).  

%)())(%)((
)(

)(
%)( ln/ln/ atCtAmatC

CN

CN
atC FSEAlinFAMElinDKFAME

FS

FAME
FS −− ++⋅−⋅=   

           (5) 

with: CFS(at%)  corrected 13C amount of the fatty acid   [at%]  

 CFAME(at%)  drift-corrected 13C amount of the FAME  [at%] 

 mlin/ln   slope of linear/logarithmic regression          [at% · Vs-1] 

 tlin/ln   y-intercept of linear/logarithmic regression   [at%] 

 AFAME   area of FAME      [Vs] 

 N(C)FAME  number of C atoms in FAME  

 N(C)FS   number of C atoms in fatty acid 

 CEA-FS(at%)  measured 13C-value of fatty acid   [at%] 
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2.6.2.3 Divergence Index 

Discrimination of C from individual positions of a molecule during uptake and incor-

poration was assessed. In addition, the extent of discrimination between pools, microbial 

groups and sampling times was also compared. Therefore, the differences in absolute 

uptake into C pools or microbial groups had to be relativized which was done by the di-

vergence index (DI) according to Dippold and Kuzyakov (2013):  

 

u
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C
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C

Cn
DI

⋅
=

⋅
=

∑
1

        (6) 

with: n  number of C atoms in molecule 

 Ci  relative incorporation of tracer C      [mol · mol-1] 

 Cu  relative incorporation of uniformly labeled tracer C    [mol · mol-1] 

 

The DI can be calculated from the relative incorporation of tracer per bulk soil, mi-

crobial biomass, single PLFA or Σ−PLFA, which are specific for a microbial groups. It 

compares the incorporation of C from each position with the mean C incorporation from 

all positions of a molecule. As not all positions of glucose or ribose were applied in this 

study, the mean uniformly labeled tracer C incorporations were entered in the calculation 

instead. The DI reflects the result which the experiments would have generated if uni-

formly labeled tracers had been used. A DI of 1 indicates no discrimination between posi-

tions, values above 1 indicate preferential incorporation, and values below 1 show pref-

erential degradation.  

 

2.6.2.4  Statistical analysis 

A Nalimov outlier test with significance levels of 95% (when four repetitions were 

available) or 99% (when three repetitions were available) was performed for the replica-

tion analyses of δ13C-values. According to a factor analysis of PLFA amounts of the en-

tire dataset, the PLFA were classified into corresponding microbial. Fatty acids with a 

loading of more than 0.5 (absolute value) on the same factor were categorized taking 

additionally previous studies with pure cultures into account (Zelles, 1999; Zelles et al., 

1995). All data were tested with a one-way analysis of variance (ANOVA); significance 

was determined with the Tukey Honest Significance Difference (Tukey HSD) post-hoc 

test with a significance level of 99.9%. All positions were tested for significant differences 

between 13C incorporation in soil, microbial biomass and PLFAs. For every microbial 

group and soil pool, the difference in DI for the seven specific 13C-labeled positions was 
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also tested for significance. All statistical tests were performed with R version 3.0.0 

(17.04.2009). 

 

2.6.3 Results 

2.6.3.1 Incorporation of uniformly labeled monosaccharides 

Extractable microbial biomass C accounted for 3.4% of the soil C stock and 0.29% 

was PLFA C (Table 2). The incorporation of 13C from uniformly labeled glucose and ri-

bose remained stable in soil between days 3 and 10. 13C from uniformly labeled glucose 

in extractable microbial biomass decreased by 50% between days 3 and 10, but the 13C 

from ribose remained nearly constant. This suggests that ribose was incorporated into 

different cell constituents to glucose. 

Table 2 Total C content and 13C incorporation of uniformly labeled monosaccharides into 
soil, microbial biomass and sum of PLFA (Σ-PLFA). 

     
  TOC Cmic Σ PLFA 

day 3 14.533 ± 2.616 0.493 ± 0.052 0.042 ± 0.003 Pool Size  
(mg C g-1 soil) day 10 16.332 ± 1.695 0.455 ± 0.111 0.050 ± 5.95 

day 3 1113.53 ± 34.73 576. 96 ± 36.19 16.81 ± 0.54 Glucose 13C recovery 
(ng glucose-13C g-1 soil) day 10 1198.14 ± 120.61 312.48 ± 75.29 17.33 ± 0.66 

day 3 546.34 ± 23.42 335. 24 ± 47.14 11.02 ± 0.16 Ribose 13C recovery 
(ng glucose-13C g-1 soil) day 10 649.71 ± 58.18 307. 04 ± 22.52 13.61  ± 0.10 

 

2.6.3.2 Incorporation of position-specifically labeled monosaccharides  

The application of position-specific 13C-labeled sugars enabled tracing of individual 

positions in the three soil C pools: total soil, microbial biomass C and PLFA (Fig. 1). On 

day 3, there were no significant differences in the incorporation of any glucose or ribose 

position in soil. However, a trend for lower recovery of glucose 13C-1 and 13C-4 and ribose 
13C-1 in soil could be perceived on day 3. This trend became significant on day 10: 1) 

glucose 13C-1 was recovered significantly less in soil than glucose 13C-6 and 2) ribose 
13C-1 was incorporated significantly less than the 13C-5 tracer. However, there was no 

significant difference in tracer-C recovery in soil of the sugar positions between day 3 and 

10. All of the tracer-C that was stabilized in soil at day 3 was still remaining at day 10. In 

microbial biomass, we observed an equal recovery of glucose 13C-1 and 13C-4, which was 

lower than the equally high recovery of glucose 13C-2 and 13C-6 tracer on day 3. There 

was also more than twice as much ribose 13C-5 recovered than 13C-1 on day 10. In con-

trast to bulk soil, in microbial biomass, we saw a significant decrease of tracer C recovery 
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from glucose C-2, C-4 and C-6 and also ribose C-5 between day 3 and 10. Additionally, 

not only did the overall recovery decrease, but also the pattern of incorporation of individ-

ual positions changed, as not all positions’ C recovery in microbial biomass decreased 

equally. We observed an especially high decrease in tracer C recovery from glucose C-2 

(-90%) and ribose C-5 (-70%). As there was no corresponding decrease in the soil, these 

positions were considered to not have been degraded to CO2 and lost into the atmos-

phere, but instead stabilized in the soil as microbial residues.   

 

Fig. 1 Recovery of position-specific13C labeled glucose and ribose in soil, microbial 
biomass and Σ-PLFA, three (top) and ten days (bottom) after application. Let-
ters indicate significant differences (p < 0.05) between recovery in bulk soil (glu-
cose: a, ribose α), microbial biomass (glucose: a’, ribose α’) and Σ-PLFA (glu-
cose: a’’, ribose: α’’). * reflects significant differences between day 3 and day 
10. Error bars show standard error of the mean from the four field repetitions. 

As absolute incorporation of tracer 13C into ∑-PLFA was much lower than into the 

other two pools, the DI aids in the observation of the sugar positions’ incorporation pat-

tern into ∑-PLFA (see Supplementary, Figure A1). Interestingly, on day 3, the incorpora-

tion pattern of glucose positions into ∑-PLFA was different to that of microbial biomass: 

we found a preferential incorporation of glucose 13C-2 and the highest discrimination 

against glucose 13C-4. On day 10, the difference in the relative incorporation of individual 
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positions was no longer significant, although the pattern observed on day 3 was still im-

plied. 

2.6.3.3 Tracer uptake of functional microbial groups 

By performing PCA on the PLFAs C-contents from both sampling times and com-

parison of the statistical grouping with literature (Zelles 1999, Zelles et al. 1995), the 

PLFAs were classified into 7 microbial groups (Supplementary Table A1). The recovery 

of applied 13C in the microbial groups’ PLFAs was calculated based on the mixing model. 

Recovery of 13C from both sugars was highest in the Gram negative PLFA on both days, 

with a maximum of 0.8%. Two of the Gram positive groups - Gram positive I and actino-

mycetes – also showed elevated maximum incorporations of 0.2–0.4%. For most micro-

bial groups, significant differences between the recovery of 13C from individual sugar po-

sitions were observed on both days. Glucose 13C-2 and ribose 13C-5 tracer had the high-

est recovery in most microorganism groups. There was little to no incorporation of the 

glucose 13C-4 tracer and ribose 13C-1 in all microorganisms. However, due to differences 

in absolute tracer uptake, comparison of position-specific 13C behavior between the mi-

crobial groups is difficult. Therefore, the relative tracer 13C incorporation (divergence in-

dex (DI)) is better suited for detailed comparison. 

 

Fig. 2 Recovery of applied 13C from molecule positions of glucose (top) and ribose 
(bottom) in microbial groups after three and ten days. Letters indicate significant 
differences (p < 0.05) between the individual C positions of glucose and ribose. 
Error bars show standard error of the mean from the four field repetitions. 
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2.6.3.4 Divergence Index 

The divergence index calculates the deviation of incorporation of one position from 

the mean of all positions, which corresponds to the 13C incorporation from the uniformly 

labeled molecule. As DI is a relative value, the pattern of 13C incorporation into individual 

soil pools (e.g. PLFAs of microbial groups) can be directly compared.  

On day 3, the pattern of 13C incorporation from the glucose and ribose positions into 

PLFAs was very similar for all microbial groups. Glucose 13C-4 was always the most dis-

criminated against and the DI of glucose 13C-2 was nearly always significantly higher. 

Glucose 13C-1 and 13C-6 showed a slight preferential degradation; their DI lay mostly 

around 0.5. The only exceptions to this pattern of glucose incorporation were the fungal 

PLFAs – there was no significant difference between discrimination against the four posi-

tions. For ribose, we observed a clear pattern on day 3: preferential incorporation of ri-

bose 13C-5, with a significantly lower DI for 13C-1. For both glucose and ribose, the overall 

divergence in all groups was lower on day 10 than on day 3.   

 

 

Fig. 3 Divergence Index (DI), reflecting discrimination between the C positions of glu-
cose and ribose, three (top) and ten (bottom) days after application. Letters in-
dicate significant differences (p < 0.001) between the relative incorporation of 
the C positions into the individual microbial groups. Error bars show standard 
error of the mean from the four field repetitions. 

 

2.6.4 Discussion 

2.6.4.1 Glucose and Ribose incorporation into soil and microbial biomass  

The majority of the decomposition of glucose and ribose occurred during the first 3 

days (~50%). Thereafter, the amount incorporated in microbial biomass further de-
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creased, but the total residue in soil only slightly decreased (Figure 1). This can be attrib-

uted to three potential processes: 1) microbial turnover may lead to a release of microbial 

products into the soil, where it may be stabilized, 2) C may be excreted by microbial cells 

e.g. for the formation of exoenzymes or extracellular polysaccharides, and 3) C may be 

continuously transferred from the well extractable, water soluble metabolite pool within 

the microbial biomass to more complex, e.g. polymeric substances, like proteins or cell 

walls, which are presumably worse extractable by the CFE method. Turnover of these 

high-molecular weight pools is significantly lower than of low-molecular weight microbial 

compounds (Malik et al., 2013). Therefore, incorporation into these pools would be 

slower and a continued transfer from the water dissolvable to the polymeric, non-

dissolvable pool may explain the decrease in extractable microbial biomass 13C on day 

10. Transformation of the applied 13C towards polymeric, non-dissolvable compounds will 

increase the potential for stabilization in soils (Miltner et al., 2007; Miltner et al., 2009).  

 The average amount of mineralized glucose and ribose was in a similar range, in-

dicating that both substances may have been equal concerning their quality as a sub-

strate for catabolism. A strong coupling of hexose and pentose uptake by microorgan-

isms was proven in several studies (Baumann and Baumann, 1975; Nobre et al., 1999). 

The similar percentage of mineralized ribose and glucose in this study confirms this simi-

lar microbial uptake and the utilization of both substances. Whereas the majority of glu-

cose 13C was in extractable microbial biomass compounds at day 3, a significantly lower 

portion of ribose 13C could be extracted. This indicates that ribose C is transferred much 

faster into non-extractable pools of the microbial biomass C. Direct biochemical utilization 

of ribose C would be the formation of the ribonucleotide backbone of DNA and RNA 

(Caspi et al., 2008; Keseler et al., 2009). Both ribonucleotide substance classes need 

optimized extraction procedures with buffers and competitors to yield high extraction effi-

ciencies (Paulin et al., 2013), and a quantitative extraction of ribonucleotides by the po-

tassium sulfate extraction of the CFE method is unlikely. Therefore, the ratio of extract-

able, microbial 13C to total soil 13C already indicates that glucose C and ribose C are 

transferred to different compound classes synthesized by their specific pathways. 

 Incorporation into PLFA was less than 1% for glucose and ribose and even de-

creased from day 3 to day 10. Malik et al. (2013) stated after studies based on 13C natu-

ral abundance of microbial biomass compounds that the turnover of CFE extractable 

compounds is higher than the turnover of phospholipids. However, we observed a de-

crease of 13C incorporation for both microbial pools. This confirms the results from labling 

with acetate (data not presented), which showed that the incorporation of 13C from 

LMWOS into PLFA after pulse labeling was not homogenous (Blagodatskaya and Kuzya-



Publications and Manuscripts 

 198 

kov, in press), but mainly occurred in terminal or specific functional groups of the PLFA, 

which have a higher turnover then the entire fatty acid molecules. 

 

2.6.4.2 Microbial utilization of individual positions of glucose and ribose 

molecules  

Specific incorporation of 13C from individual positions of the molecules can be used 

to assess the glucose and ribose metabolism pathways. Glycolysis, the direct hexose 

metabolism pathway, would lead to the formation of two trioses, where C-3 and C-4 are 

the terminal C atoms with the highest oxidation number (Caspi et al., 2008). After their 

transformation from pyruvate to acetyl-CoA, C-3 and C-4 are removed e.g. by the pyru-

vate dehydrogenase. This is similar to results from Apostel et al. (2013) and Dippold and 

Kuzyaov (in press) for the highest oxidized position of alanine (which becomes deami-

nated to pyruvate) and results from Djikstra et al (2011a) after position-specific pyruvate 

labeling. As a consequence, the labeled C-4 position would show a lower incorporation 

into microbial products and no incorporation into PLFAs as the product of pyruvate dehy-

drogenase – acetyl-CoA – is the precursor of fatty acid synthesis (Caspi et al., 2008). 

Both phenomena can be observed in this study (see figure 1), e.g. by a significantly lower 

incorporation of C-4 at day 3 compared to C-2 and C-6.  

Glycolysis splits hexoses between C-3 and C-4 and results in two symmetric trio-

ses: C-1 to C-3 and C-6 to C-4. If glycolysis is the only pathway to use glucose, this 

would result in a symmetry of the positions recovery: C-6 ~ C-1 > C-5 ~ C-2 > C-4 ~ C-3 

~ 0 (Scandellari et al., 2009) (Figure 5). However, we also observed a significantly lower 

incorporation of C-1 than C-6 into extractable microbial biomass products after 3 days. 

This shows that, in addition to glycolysis, a portion of glucose molecules was transformed 

by the pentose phosphate pathway. This pathway leads in a first oxidation step to the 

loss of the C-1 position, whereas the other positions are transferred back to the triose 

pool (Scandellari et al., 2009) (Fig. 4) The parallel existence of glycolysis and the pentose 

phosphate pathway for glucose utilization in soil reflects the parallel existence of cata-

bolic, oxidizing and anabolic cellular maintenance pathways. This existence of parallel 

metabolic pathways is characteristic for soils because of the high microbial diversity and 

various habitat properties, causing a wide spectrum of various metabolic states. 

The loss of pathway-specific, classical fingerprint from day 3 to day 10 is in accor-

dance with glucose uptake studies from Dungait et al. (2011), which suggest fast uptake 

and incorporation of 13C from glucose and other LMWOS and continued metabolization of 

the incorporated 13C latest 120 h after labeling. This suggests that basic C metabolism, 

with the parallel existence of decomposing and constructing pathways, leads to a mixing 
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of C positions in microbial metabolism within several days (Scandellari et al., 2009). This 

convergence may even be pronounced, if universal substrates like glucose (Macura and 

Kubatova, 1973), which can be spread over each metabolic pathway in cells, are used for 

labeling compared to less-preferred substrates like glycine (Dungait et al., 2011, 2013).  

 A similar behavior was observed for the microbial products formed from ribose: a 

clear preference for C-5 incorporation at day 3 is until day 10 in the extractable microbial 

products. This reflects the fast mixing of monosaccharide C positions within the pool of 

fast cycling cytosolic compounds. The preference of C-5 incorporation at day 3 reflects 

the classical pentose metabolizing pathway – the pentose phosphate pathway. Pentoses, 

like ribose, enter this pathway after the oxidation step (in which hexoses are oxidized to 

pentoses by the loss of C-1) and the upper half of the molecule gets mixed up. Conver-

sion of C-1 and C-2 of ribose leads to a preferential oxidation of C-1 if this C is allocated 

to glycolysis afterwards by the pyruvate dehydrogenase oxidation step (Caspi et al., 

2008; Keseler et al., 2009).  

The observation that C that passes downwards from glucose towards the catabolic 

citric acid cycle and afterwards gets located upwards into anabolic pathways (i.e. the so 

called backflux: Scandellari et al. (2009)), is in accordance with bulk soil 13C data: the 

backflux via gluconeogenesis can lead to various anabolic pathways like carbohydrate 

synthesis (e.g. for extracellular polysaccharides), protein synthesis (e.g. for exoenzymes) 

or amino sugar formation (for cell walls). All of those pathways result in non-extractable 

compounds of the microbial biomass, which are later likely to be stabilized in soils 

(Kindler et al., 2006; Miltner et al., 2007; Miltner et al., 2009) and would explain why 13C 

recovery from glucose in soil did not further decrease from day 3 to day 10.  

 To summarize, both classical monosaccharide metabolizing pathways – glycolysis 

and the pentose phosphate pathway – could be proven to exist in soils in parallel. How-

ever, their position-specific fingerprint – at least in mixed pools of metabolites, like the 

extractable microbial biomass – gets lost within several days of continued metabolism 

due to C recycling and backflux in the metabolism. This causes a decrease of DI with 

continued microbial turnover. 

 

2.6.4.3 Specific pathways of glucose and ribose utilization by individual mi-

crobial groups 

Several reviews aimed to discuss the potential of coupling stable isotope labeling with 

compound specific isotope analysis of microbial biomarkers (Boschker and Middelburg, 

2002; Frostegard et al., 2011). Coupling 13C biomarker analysis with uniform 13C labeling 

enables tracing of utilization and C partitioning within microbial cells and microbial com-
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munities. However, only position-specific labeling allows the identification of the transfor-

mation steps of the added substrate and the reconstruction of pathways for their metabo-

lism (Dijkstra et al., 2011a; Dippold and Kuzyakov, in press).  

 Uptake and incorporation of 13C (Figure 2) clearly reflect the highest competition 

of Gram negatives for the utilization of monosaccharides for formation of PLFA. This is in 

accordance with previous studies using further LMWOS (Apostel et al., 2013); Gunina et 

al., submitted) and DNA studies on glucose 13C uptake (Padmanabhan et al. 2003). In 

addition, Gram negatives are known to dominate in the rhizosphere and the uptake of low 

molecular weight rhizodeposits (Tian et al., 2013; Treonis et al., 2004). Considering the 

whole microbial community in soil, Gram negatives are can be considered r strategists. In 

contrast, Gram positives are known to mainly live from old SOM (Kramer and Gleixner, 

2006) and have properties of K strategists. Consequently, they are less competitive for 

LMWOS, like easily available monosaccharides, which is confirmed in this study.  

In general, C flux from both added monosaccharides to the PLFAs was in a similar 

range for each of the microbial groups (Figure 2). This observation suggests that uptake 

and also C allocation into the fatty acid formation pathway were equivalent for hexoses 

and pentoses. However, position-specific 13C labeling, especially DI (Figure 3), reveal a 

deviating picture: utilization of ribose C for PLFA formation is clearly affected by the pen-

tose phosphate pathway, which leads to a preferential incorporation of C-5 and a loss of 

C-1 (as this C-1 is in parts transformed into the C-3 position during the formation of hex-

oses from pentoses) (Figure 5). This general pathway (Caspi et al., 2008; Keseler et al., 

2009) dominated the position-specific incorporation of ribose in each of the microbial 

groups, whereas the intensity seemed to be different for the individual microbial groups. 

In general, a decrease of divergence (the DI) between ribose C-1 and C-5 from day 3 to 

day 10 reflects that further transformations of the 13C incorporated in PLFA occurs and 

thus the original pattern of the basic C metabolic pathway is less visible with increasing 

metabolization time.  

 The situation gets more complex if glucose metabolism to fatty acids is recon-

structed. A detailed picture of the possible pathways transforming glucose C to PLFA and 

consequences for the position-specific incorporation was given in Scandellari et al. 

(2009) and is presented in figure 4. The lack of C-4 incorporation in PLFA clearly indi-

cates the effect of glycolysis with the oxidation of C-3 (could not be proven in this study) 

and C-4 by pyruvate dehydrogenase (Figure 4). However, simple straightforward glycoly-

sis would lead to a similar incorporation of C-1 and C-6 (Scandellari et al., 2009)) and a 

similar or lower incorporation of C-2 (Apostel et al., 2013), which was only observed for 

fungi. Higher incorporation of C-2 than C-1 and C-6 – as observed for any of the prokary-

otic groups on day 3 – can only be explained by a complex network of glycolysis, the 
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pentose phosphate pathway and the triose triangle (Scandellari et al., 2009) (Figure 4), 

which leads to a re-ordering of the hexose C backbone. Therefore, a significant part has 

to flow through these reversible pathways more than once in the prokaryotic groups (Fig-

ure 5). This is in accordance with the observations of Dippold et al. (data not shown) for 

amino sugar synthesis from position-specific labeled glucose: 1) catabolic, oxidizing 

pathways occur simultaneously to anabolic, constructing pathways in soils (Derrien et al., 

2007) and 2) bacteria have a higher C turnover due to more intensive backflux proc-

esses. Consequently, after the addition of position-specific labeled glucose, the intensive 

intracellular C recycling could be seen in the bacterial PLFA as well as the amino sugar 

pool, which supports the concept of slow-cycling, fungi-based and fast-cycling, bacteria-

based branch of the food web (Moore et al., 2005).  

 

Fig. 4 Theoretical fate of individual glucose and ribose C positions of single pathways. 
Left: glycolysis; middle pentose-phophate-pathway and right mixing of glycoly-
sis, backflux via triose-triangle and pentose-phophate-pathway: results for the 
right branch are experimental data (for fungi) taken from Scandellari et al 
(2009). 
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2.6.4.4 Metabolic tracing by position-specific labeling of monosaccharides 

Monosaccharides, especially the basic ubiquitous substrate glucose (Macura and 

Kubatova, 1973), are classical substrates for metabolic tracing analysis (Hobbie et al., 

2004; Scandellari et al., 2009), as they are spread throughout all metabolic pathways and 

can be found in each product. However, recent studies tracing citric acid cycle activity 

mainly chose pyruvate or the pyruvate-precursor alanine as a metabolic tracer (Apostel et 

al., 2013; Dijkstra et al., 2011b; Dijkstra et al., 2011c; Dippold and Kuzyakov, in press; 

Wegener et al., 2010). Fatty acid synthesis pathways branch off from basic C metabolism 

after the pyruvate dehydrogenase step forming acetyl-CoA (Figure 5). Therefore, pyru-

vate is a more direct precursor for metabolic tracing in lipids, which causes some advan-

tages for pathway reconstruction: Less reversible, C mixing steps are located between 

educt and product and, consequently, a mixing of the C backbone just by reversible 

processes does not occur. This enables more specific metabolic tracing: in the case of 

alanine and glutamate incorporation into PLFAs, specific pathways of distinct microbial 

groups could be identified (Apostel et al., 2013).  

 

Fig. 5 Microbial transformation pathways of glucose and ribose. Black arrows indicate 
catabolic pathways, transferring C towards the oxidizing steps of pyruvate de-
hydrogenase reaction and citric acid cycle. Red arrows indicate anabolic path-
ways transferring C “up” for the construction of new microbial biomass com-
pounds. 
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However, if glucose is used as a tracer, as in this study, the reversibility of glycoly-

sis and interaction of the pentose phosphate pathway and glycolysis causes an intensive 

mixing of the C backbone. This averaging of positions is overprinting microbial group-

specific pathways, which are located in the citric acid cycle or fatty acid formation 

(Apostel et al., 2013). However, glucose may be a good metabolic tracer for the formation 

of amino sugars, as intact incorporation could be distinguished from C allocation through 

glycolysis or the pentose phosphate pathway. In general, these applications of position-

specific labeling reveal that - to fully trace the range of microbial products - a combination 

of metabolic tracers is needed: 1) Products of citric acid cycle and fatty acid synthesis, 

(can be traced by substances entering the citric acid cycle or the pyruvate pool), 2) direct 

products of sugars like amino sugars or polysaccharides (can be traced by pentoses and 

hexoses), 3) products of the pentose phosphate pathway, like ribonucleotides (traced by 

pentoses), and 4) products of processes branching off glycolysis like some amino acid 

formation. Products of various pathways as well as biosynthetic intermediates (i.e. in the 

case of PLFA the fatty acid precursor acetyl-CoA) need to be measured compound-

specifically to fully identify the C allocation through metabolic pathways. In combination, 

the tool of position-specific labeling has the unique ability to reconstruct the microbial 

metabolism in soils and predict C allocation within microbial biomass compounds.  

 

2.6.5 Conclusions and Outlook 

This study has shown that position-specific 13C labeling and compound-specific 13C-

PLFA analysis are a valuable combination to gain new insights into microbial transforma-

tions of sugars in soil. Three days after labeling we found nearly all 13C remaining in soil 

was taken up by microorganisms for both glucose and ribose. This can be explained by 

the fact that sugars have no functional group to interact with the soil matrix and thus are 

taken up very efficiently. On day 10, however, we observed a decrease in 13C recovery in 

the extractable microbial biomass but not in bulk soil. We explained this either by a) the 

incorporation of 13C into less extractable microbial cell components between day 3 and 

10, b) the excretion of sugar metabolites into the soil, or c) incorporation into SOM after 

cell death.  

The two most common glucose utilizing pathways, glycolysis and the pentose 

phosphate pathway, could be detected by a lower incorporation of glucoses C-4 and C-1 

in both soil and microbial biomass. Consequently, C decomposing and C reconstructing 

pathways can be traced in parallel in soils. This is likely to arise from cells in different 

physiological states existing in parallel in soil (Blagodatskaya and Kuzyakov, in press). 
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Preferential incorporation of ribose C-5 and preferential degradation of ribose C-1 shows 

that pentoses are preferentially used by the pentose phosphate pathway.  

The incorporation of glucose into PLFA revealed the highest recovery of C-2 and 

the equal recovery of C-1 and C-6. This indicates the parallel pathways of 1) glycolysis, 

2) mixing of the trioses and 3) gluconeogenesis, followed by a repetition of these proc-

esses with the newly formed glucose molecules. This shows that not only do the anabolic 

and catabolic pathways exist in parallel in soil microbial communities, but they are also 

used in short steps by the same organisms. This overprinting of single pathway patterns 

complicates the reconstruction of individual pathways, especially if time intervals after 

tracer application become too long. Thus for monosaccharide metabolite tracing, time 

intervals have to be shortened and “metabolic distance” between educt and product de-

creased.  

None of these findings could have been achieved without using position-specific la-

beled substances. The method of coupled position-specific 13C labeling and compound-

specific isotope analysis helps to identify the transformation steps of LMWOS, and de-

termine C allocation within microbial biomass and the consequent stabilization processes 

of microbial compounds in soil. This will greatly improve our knowledge about soil C 

fluxes. 
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Supplementary Table A2: Results of factor analysis 

 

 

 

Supplementary Fig. A 1: Divergence index (DI) reflecting incorporational discrimination 
between C-positions into soil, microbial biomass and Σ-PLFA, 3 (left) and 10 (right) days 
after applying 13C-labeled glucose and ribose. Letters indicate significant differences (p < 

0.05) in the relative incorporation of the C positions into soil (a), microbial biomass (a’), Ʃ-
PLFA (a’’). * indicates significant difference (p<0.05) between day 3 and day 10. 
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Abstract 

Amino sugars are the major constituent of microbial cell walls and are an important 

biomarker for microbially-derived soil organic matter (SOM). Amino sugar formation from 

low molecular weight organic substances (LMWOS) transforms C from labile to more 

stable SOM pools. In this study, we investigated the formation steps of fungal and bacte-

rial amino sugars from glucose by coupling position-specific 13C labeling with compound-

specific δ13C analysis.  

The 1-13C-, 2-13C-, 4-13C-, 6-13C- and uniformly-13C-labelled isotopomers of glucose 

were applied to an agricultural soil and their incorporation into microbial biomass was 

analyzed. Fungal and bacterial metabolic pathways of amino sugars formation were 

traced by determining the 13C incorporation from individual C positions of glucose into the 

individual amino sugars by ion chromatography – oxidation – isotope ratio mass spec-

trometry (IC-O-IRMS). 

Only 0.75% of the glucose 13C was incorporated into amino sugars within 10 days. 
13C incorporation was highest in glucosamine (the most abundant amino sugar), was 

slightly lower into galactosamine and much lower into muramic acid (amino sugar with 

the lowest content). However, considering the amino sugar concentrations, the replace-

ment of muramic acid (a biomarker for bacteria) was highest and the replacement of ga-

lactosamine (biomarker for fungi) was lowest. This reflects the higher turnover of bacterial 

cell walls compared to the turnover of fungal chitin.  

Less than 55% of the incorporated 13C in amino sugars was derived from intact, un-

transformed glucose. The lowest incorporation was observed for C-1 and C-4. C-1 incor-

poration even decreased from day 3 to day 10, reflecting the production and incorpora-

tion of metabolites from the pentose-phosphate pathway. The formation of amino sugars 

by direct pathways (e.g. intact incorporation of the glucose precursor), oxidation via ca-

tabolism and constructing pathways with amino sugar formation from metabolites of basic 

C metabolism occurred in parallel in this study.  

Bacterial muramic acid showed the higher dynamics of 13C replacement and a 

stronger variation in the incorporation of individual C positions over a period of 10 days 

e.g. by more intensive glycolysis, pentose-phosphate pathway and gluconeogenesis. 

This reflects the lower metabolic activity of fungi versus bacteria, at maintenance metabo-

lism, which is in accordance with the differences in C turnover observed for the slow and 

fast cycling branches of soil food webs.  

Analyzing the formation of microbial compounds by position-specific labeling and 

compound specific 13C analysis allowed conclusions to be drawn about the biochemical 

mechanisms and pathways driven in soil by two microbial groups: bacteria and fungi. 
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This combined approach will strongly improve our understanding of soil C fluxes and the 

formation and stabilization of microbially-derived SOM compounds. 
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2.7.1 Introduction 

Soil organic carbon (SOC) represents a major terrestrial carbon (C) sink. Thus, 

studies on the transformation of organic substances in soils are important for understand-

ing terrestrial C and N cycles. Plant residues and rhizodeposits are the main sources of 

organic matter in soils (Kuzyakov and Domanski, 2000; Rasse et al., 2005). Accordingly, 

many studies have focused on decomposition, microbial utilization and stabilization of C 

from these sources in soils (Dungait et al., 2012; Rasse et al., 2005; von Luetzow et al., 

2006). Within the last decade it has become evident that microbial compounds were an 

underestimated contributor to soil organic matter (SOM) (Miltner et al., 2011; Simpson et 

al., 2007).  

Within the spectra of microbial compounds, the cell walls are the most relevant for 

slow cycling SOM. Cell walls are highly polymeric substances (Amelung, 2003), which 

may accumulate in soil compared to living soil microbial biomass (Glaser et al., 2004; 

Veuger et al., 2006) because they interact with the surfaces of clay minerals and sesqui-

oxides (Amelung et al., 2001; Miltner et al., 2011). Thus, an increasing interest in the 

turnover and accumulation of microbial cell wall compounds – e.g. amino sugars (Miltner 

et al., 2011) in soils has led to their investigation. Beside its contribution to SOM, amino 

sugars – together with proteins – are the compound class linking C and N cycles in the 

soil and contribute significantly to the stable soil organic N pool (Amelung, 2003).  

Due to the specific amino sugar composition of cell walls of various microbial 

groups, amino sugars provide information about the microbial community structure. Bac-

terial cell walls consist of peptidoglycan, a polymer of N-acetylmuramic acid and N-

acetylglucosamine with amino acids, whereas fungal cell walls consist of chitin, an N-

acetlyglucosamine polymer (Engelking et al., 2007; Glaser et al., 2004). Acid hydrolysis 

induces the elimination of the acetyl group and the splitting of the polymers and releases 

monomeric amino sugars. Consequently, bacterial cell walls deliver a glucosamine to 

muramic acid ratio of 1:1, whereas fungal chitin consists only of glucosamine. Based on 

this theoretical knowledge of concentrations of amino sugars per dry weight of a microbial 

biomass, the theoretical biomass of fungi versus bacteria can be calculated (Engelking et 

al., 2007). While muramic acid is unique for bacteria, galactosamine can occur in trace 

amounts in some bacterial cell walls but seems to be quantitatively relevant only for fun-

gal cell walls (Engelking et al., 2007; Glaser et al., 2004). The origin of mannosamine, 

another amino sugar found in hydrolysis extracts of soils, is still being discussed (Glaser 

et al., 2004). Glucosamine pool in soils seem to be mainly of fungal origin; however, it is 

unknown whether the active amino sugar pool, which we define here as the amino sugars 

of living cells, has a completely different fingerprint than the amino sugar necromass. For 
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many ecosystems, the total glucosamine pool is dominated by fungal chitin. However, the 

active glucosamine pool, representing the present microbial community, may originate to 

a higher degree from bacterial peptidoglycan.  

In contrast to cell membrane compounds like phospholipids, which have half-life 

times of less than one week (Kindler et al., 2009; Ranneklev and Baath, 2003; Rethe-

meyer et al., 2004) amino sugars have a much slower turnover (Lauer et al., 2011) and 

many acid-hydrolysable amino sugars are derived from necromass. Consequently, the 

amino sugar fingerprint reflects only the average, long-term microbial input remaining in 

soil. Amino sugars can only be used for tracing the current state of a microbial community 

and their activity if the pool of active amino sugars is taken into account.  

A promising approach for tracing the fate of C sources in active amino sugars is 

coupling isotope labeling with 13C or 15N determination of amino sugars (Bode et al., 

2013; Glaser and Gross, 2005; Indorf et al., 2012; Said-Pullicino et al., in press). This 

enables the quantification of C transformation from plant biomass to stable microbial C in 

soils (Bode et al., 2013; Glaser and Gross, 2005; Indorf et al., 2012). However, mecha-

nisms of the formation and individual role of distinct members of the microbial community 

can only be reconstructed if labelling of a distinct substrate pool is performed. The most 

appropriate substances, therefore, are low molecular weight organic substances 

(LMWOS). They play a crucial role within the SOC cycle as all macromolecular com-

pounds are split by enzymes into LMWOS during litter decomposition (Cadisch and 

Giller, 1996). Within the microbial biomass, they are precursor of the biosynthetic path-

ways for any cellular compound. Within the LMWOS, sugars (mainly glucose) are some 

of the most abundant monomers. Glucose builds up cellulose, but is also an important 

constituent of many lipopolysaccharides, glycoproteins and many other compounds 

(Derrien et al., 2006). In addition, glucose is also directly released in soils via rhizode-

position (Derrien et al., 2004; Fischer et al., 2010). Due to the ubiquitous properties of 

this substance (Macura and Kubatova, 1973) it is taken up and utilized by microbial bio-

mass very rapidly and, therefore, its concentration in soil solution is extremely low, rang-

ing from 0.7 to 2.5 µmol l-1 (Meyer et al., 2008). Glucose is one of the most efficient en-

ergy sources for catabolism, but is also a direct precursor of many anabolic pathways, 

like the formation of cell wall polymers. Therefore, glucose C is a key substrate in micro-

bial metabolism, reflecting C partitioning in the microbial biomass. 

To elucidate glucose metabolism pathways, we used the approach of position-

specific labeling. This tool, derived from biochemistry to investigate metabolism path-

ways, has rarely been applied in soil science (Fokin et al., 1993, , 1994; Haider and Mar-

tin, 1975; Kuzyakov, 1997; Nasholm et al., 2001). However, using position-specific label-

ing to assess metabolism pathways in soil has arisen within the last few years (Apostel et 
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al., in press; Dijkstra et al., 2011a; Dijkstra et al., 2011b; Dippold and Kuzyakov, in press; 

Fischer and Kuzyakov, 2010). This technique enables the fate of individual C positions to 

be traced through various pools or metabolites, consequently allowing the reconstruction 

of pathways leading to oxidation or splitting of individual C positions.  

To our knowledge, there are no studies investigating the in-situ formation of micro-

bial amino sugars in soils. We used position-specific 13C-labeled glucose to trace micro-

bial utilization of amino sugars for formation of cell walls. We hypothesized that glucose is 

preferentially used intact, as it is a direct precursor for amino sugar synthesis. However, 

differences in the positions incorporated will enable transformation via glycolysis to be 

distinguished from transformation via pentose-phosphate pathway or further sugar me-

tabolizing pathways. We hypothesized that metabolic pathways transforming glucose 

from fungal and bacterial cells differ significantly and that these individual pathways can 

be identified by the incorporation of individual glucose C positions in the respective amino 

sugars.  

 

2.7.2 Material and Methods 

2.7.2.1 Experimental Site 

The experimental site is located in Bavaria near Hohenpölz (49.907 N, 11.152 E, 

501 m asl, mean annual temperature 6.7 °C, mean annual precipitation 874 mm). The 

agriculturally used loamy Luvisol is managed by a rotation of corn, barley, wheat and 

triticale. The soil had a pHKCl of 4.88, a pHH2O of 6.49, TOC content of 1.77%, TN content 

of 0.19% and CEC was 13 cmolC kg-1. Triticale was the last crop before the experiment 

started and all above-ground biomass was removed.  

 

2.7.2.2 Experiment Design  

The 12 × 12 m field was divided into four quadrants. PVC-tubes with a diameter of 

10 cm and height of 13 cm were installed 10 cm deep into the soil, resulting in a soil 

sample weight of about 1.5 kg for each column. Column location followed a randomized 

block design with the four blocks containing the four replications of each treatment. Con-

sequently, the block could be included as a random variable in statistical evaluation to 

account for the spatial heterogeneity within the field side.  

10 ml of tracer-solution were applied per column with a multipette (Eppendorf, 

Hamburg, Germany). Uniformly 13C-labeled glucose as well as four position-specific la-

beled isotopomers (1-13C glucose, 2-13C glucose, 4-13C glucose and 6-13C glucose) was 
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applied. In addition, the identical amount of non-labeled glucose C was applied on back-

ground columns. Concentrations of 13C were 100 µmol per column and a total of 0.60 µg 

glucose C was applied per gram of soil.  

A 7-cm-long needle with closed tip and peripheral holes enabled the homogeneous 

lateral distribution of the tracer solution. Leaching was avoided by injecting the solution 

only into the upper 2/3 of the column and blocking rainfall by a roof installed above the 

experimental site.  

 

2.7.2.3 Sampling and Sample Preparation  

Sampling was performed 3 and 10 days after labeling by removing the entire col-

umn from the field site. At both times, complete columns from one set (background, uni-

formly and position-specifically labeled) with four replications were dug out and the height 

of the soil inside the column was measured to determine the labeled soil volume. Then, 

soil was taken from the column completely, fresh weight was determined and the entire 

soil sample was homogenized manually. Afterwards, a subsample was taken to estimate 

water content. Then, the sample was split: one subsample was freeze-dried and ball 

milled for bulk isotope analysis and amino sugar analysis, while another subsample was 

2 mm sieved and stored at <5 °C for chloroform-fumigation-extraction (CFE). 

 

2.7.2.4 Bulk Soil and Microbial Biomass Analysis 

For the analysis of C content and δ13C values, the soil samples were freeze-dried, 

ground in a ball mill and 5-6 mg per sample was filled into tin capsules. The samples 

were measured on the Euro EA Elemental Analyzer (Eurovector, Milan, Italy) unit with a 

ConFlo III interface (Thermo-Fischer, Bremen, Germany) and the Delta V Advantage 

IRMS (Thermo Fischer, Bremen, Germany). Incorporation of 13C from the applied glucose 

into the soil C pool was calculated according to the mixing model (Eq. 1 and 2), where 

the C content of the background in Eq. 1 was substituted according to Eq. 2 (Gearing et 

al., 1991). 

 

appGlcappAGlcBGCBGsoilsoil rCrCrC ⋅+⋅=⋅ − ][][][      (7) 

appGlcBGsoil CCC ][][][ +=        (8) 
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with:  [C]soil/BG/appGlc C content of sample / background / applied glucose 

          (mol · gsoil
-1) 

r soil/BG/appGlc  13C atom%-excess of sample / background / applied 

     glucose         (at%) 

 

To determine microbial C and its δ13C values, two subsets of 15 g of soil were 

taken from each sample. One sample was directly extracted as described below; the 

other was first fumigated with chloroform for 5 days in a desiccator to lyse microbial cells. 

The samples were extracted with 45 ml of 0.05 M K2SO4. They were shaken on a hori-

zontal shaker for 1.5 h. After shaking, the samples were centrifuged (10 min, 2000 rpm) 

and the supernatant was filtered (Rotilab® round filters, type 15A, cellulose, membrane 

70 mm). 

The C content of the K2SO4 extracts was measured on the TOC Analyzer multi 

C/N® 2000 (Analytik Jena, Jena, Germany). For δ13C measurements, the remaining ex-

tracts were freeze-dried. A subsample of the freeze-dried residue was transferred to tin 

capsules and measured on the Euro EA Elemental Analyzer (Eurovector, Milan, Italy) unit 

coupled via a ConFlo III interface (Thermo-Fischer, Bremen, Germany) to a Delta V Ad-

vantage IRMS (Thermo Fischer, Bremen, Germany). 13C incorporation into fumigated and 

non-fumigated sample was calculated according to the mixing model (Eq. 1 and 2), and 

microbial biomass as well as incorporated glucose 13C in the microbial biomass was cal-

culated according to Wu et al. (1990). 

 

2.7.2.5 Amino sugar δ13C analysis  

Chemicals, Reagents and Standard Substances 

Amino sugar δ13C analysis was performed according to Dippold et al. (2014). All 

chemicals were obtained from Sigma-Aldrich (St. Louis, MO, USA) with at least the grade 

pro analysis (>99.0% purity). Ultra-pure, 50-52% NaOH solution for ion chromatography 

was purchased from Sigma Aldrich (St. Louis, MO, USA). 0.01 M NaNO3-solution was 

produced from metal-free sodium nitrate, puratronic (99.999% purity, Alfa Aesar, 

Karlsruhe, Germany). For oxidation, 0.26 M sodium persulfate and 10% phosphoric acid 

solutions were produced (St. Louis, MO, USA).  

External standards were combined from methylglucamine, glucosamine, manno-

samine and galactosamine at concentrations of 5, 14, 1.5 and 20 mg l-1 (Sigma Aldrich, 

Louis, MO, USA) and muramic acid (Toronto Research Chemicals, North York, Canada) 

at a concentration of 7.5 mg l-1 in the stock solution. Five mg ml-1 methylglucamine p.a. 

and 1 mg ml-1 fructose p.a. (Sigma Aldrich, Louis, MO, USA) were used as first and sec-
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ond internal standards (IS1 and IS2), respectively. IAEA-calibrated δ13C values of exter-

nal standards was determined by repeated Elemental analyzer-Isotope Ratio Mass Spec-

trometer measurement (Flash 2000 HT Plus coupled to a Delta V Advantage Isotope 

Ratio Mass Spectrometer, Thermo-Fischer, Bremen, Germany) of these substances and 

calibrated against certified standards (IAEA-CH6: -10.4‰, IAEA-CH7 -31.8‰ and 

USGS41 37.8‰) versus Pee Dee Belemnite (PDB).  

 

Soil hydrolysis and ion removal 

The method of Zhang and Amelung (1996), modified by Glaser and Gross (2005), 

was used for soil hydrolysis and ion removal were performed. Briefly, hydrolysis was per-

formed with 10 ml of 6 M HCl at 105°C for 8 h. After filtration via a glass fiber filter, the 

dried filtrate was re-dissolved in water. 50 µg of the IS1 methylglucamine were added. 

With 0.6 M KOH, the pH was adjusted to 6.6-6.8, and precipitated iron was removed by 

centrifugation. Freeze-dried supernatant was redissolved in 5 ml dry methanol and salt 

precipitations were removed by centrifugation. Dried supernatant was stored frozen until 

column purification.  

 

Purification by cation exchange column  

Cation exchange column (AG 50W-X8 Resin, H+ form, mesh size 100-200, Biorad, 

Munich, Germany) was adapted from Indorf et al. (2013): a glass wool layer was installed 

at the bottom of the glass columns (inner diameter: 0.8 cm). Then, 4 cm of cation ex-

change resin was placed into the column and preconditioned with ~10 ml of 0.1 M HCl 

solution to ensure the H+-form of the sorbent. Afterwards, 5 ml of water was added to 

reach the neutral pH of the mobile phase. Dried extracts were re-dissolved in ~1 ml of 

water with one drop of 0.1 M HCl to convert muramic acid to the cationic form. Neutral 

and anionic compounds were eluted with 8 ml water. The cationic fraction, containing the 

amino sugars, was eluted using 15 ml 0.5 M HCl, thereafter freeze-dried and transferred 

with 5 ml of dried methanol into 5 ml glass vials. After drying, samples were stored frozen 

(-20 °C) until analysis. For subsequent measurements, the samples were re-dissolved in 

200 µl water with the addition of 50 µl of IS2 solution and measured within 24 hours after 

re-dissolving. 

  

Measurement by IC-O-IRMS  

All measurements were performed by a Dionex ICS-5000 SP ion chromatography 

system coupled by an LC IsoLink to a Delta V Advantage Isotope Ratio Mass Spectrome-

ter (Thermo-Fischer, Bremen, Germany). 9 µl sample was injected via a 25 µl injection 

loop. Chromatography was performed by a CarboPacTM PA 20 analytical anion ex-
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change column (3 x 150 mm, 6.5 µm), which was preceded by a PA 20 guard column 

(Bode et al., 2009), both from Dionex (Amsterdam, The Netherlands). The elution se-

quence included 25 min preconditioning time before injection, and a total chromatogram 

duration of 35 min, which  was performed at a constant temperature of 30 °C. Flow rate, 

gradients and eluents are described in detail in Supplementary Table 1 and Dippold et al. 

(2014).  

We measured external standards in four concentrations (e.g. 50, 100, 175 and 

250 µl of the stock solution) at least once before and once after each sample batch. A 

sample batch consisted of 4-6 samples and each sample was at least measured in 4 rep-

lications.   

 

Quantification and δ13C determination of amino sugars 

The relation between the area of each amino sugar and the area of the IS2 was 

calculated and a calibration line was adapted by linear regression to the area ratio of the 

four external standards. The recovery for each sample was determined based on the 

result of the initially added IS1 and each peak in the chromatogram was corrected for that 

recovery. 

Measured δ13C values were drift-corrected based on the reference gas drift accord-

ing to GC-C-IRMS methods (Apostel et al., in press). Thereafter, correction for off-set and 

amount dependence were performed according to Glaser and Amelung (2002). Linear, 

exponential and partial linear amount dependence functions, as well as a constant func-

tion correcting for the offset (Dippold et al, 2014), were fitted to the plot of measured at% 

value against peak area. The function with the best fit was used to correct the measured 

at%measured values of the sample dependent on the area of this peak. Therefore, the dif-

ference of amount-dependent correction value at%corrected (Ai) and the measured and cali-

brated value of the substance at%EA was subtracted from the measured value to gain the 

IAEA-calibrated 13C enrichment (at%sample): 

))(Aat%-at%(at%at% icorrectedEAmeasuredsample −=    (3) 

Each substance and sample batch was corrected by its individual correction func-

tion which best described the behavior of the external standards. Incorporation of 13C into 

each amino sugar was performed according to the mixing model (equations 1 and 2). 

 

2.7.2.6 Divergence Index  

According to Dippold and Kuzyakov (2014), the transformation of C from individual 

intramolecular positions can be expressed by the Divergence Index, DIi: 
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This index reflects the fate of individual C atoms from the position i relative to the 

mean transformation of the n total number of C atoms within a transformation process. 

Thus, a DIi of 1 means that the transformation of this position in the investigated pool 

corresponds to the transformation of uniformly labeled substance (average of all C at-

oms). DIi ranges from 0 to n, and values between 0 and 1 reflect reduced incorporation of 

the C into the investigated pool, whereas values between 1 and n show increased incor-

poration of the C atom into this pool as compared to the average. 

2.7.2.7 Statistics 

All experiments were done with four replications, and the values present mean ± 

standard error of mean (± SEM). SEM of the divergence index was gained by Gaussian 

error propagation. Measured variables were screened for outliers using the Nalimov test 

(Gottwald, 2000), normal distribution was tested using the Kolmogorov Smirnoff test and 

homogeneous variances were assessed using Levene’s test. ANOVA with the factors C 

position and amino sugar were performed using Statistica (version 7.0, Statsoft GmbH, 

Hamburg, Germany). If assumptions such as normal distribution or homogeneous vari-

ances were not met, the result of the ANOVA was confirmed by non-parametric Kruskal-

Wallis ANOVA before performing a Tukey HSD post-hoc test for unequal sample size. 

 

2.7.3 Results 

2.7.3.1 Glucose 13C incorporation into soil and microbial C pools  

 Amino sugars amounted for 3.7% of the TOC pool and thus contributed signifi-

cantly to the stored C in this soil. None of the investigated microbially-derived C pools 

changed significantly from day 3 to day 10 (Table 1). Not only microbial C but also the 

sum of microbial-derived phospholipids fatty acids (PLFA) did not change from day 3 to 

day 10 (day 3: 0.96 ± 0.21 ng g-1 soil, day 10: 0.76 ± 0.17 ng g-1 soil: data provided by 

Apostel C. (submitted)). Consequently, both active microbial pools reflect microbial com-

munities under steady state conditions without active growth for at least 10 days.  

Tracing 13C shows that similar amount of glucose-C remained in soil between 3 and 

10 days; e.g. that loss of glucose mainly occurred during the first 3 days. Glucose miner-

alization was similar to rates observed by Nguyen and Guckert (2001) for bare soil. From 

the glucose 13C bound in the soil at day 3, around 57% was in the microbial biomass C, 
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which decreased significantly from day 3 to day 10. Less than 0.75% of the 13C remaining 

in the soil was incorporated into the amino sugar pool. Within the amino sugars, gluco-

samine was the most abundant monomer and had the highest glucose 13C incorporation 

(Table 1). Abundance of galactosamine was lower by a factor of 5-10 and 13C incorpora-

tion was also lower by a factor of 10 compared to glucosamine. Muramic acid had the 

lowest abundance: it was found to be 10-fold lower than galactosamine in this soil. How-

ever, glucose 13C incorporation was only 2-3-fold lower reflecting the higher formation or 

metabolism rate of this acidic amino sugar compared to basic amino sugars.  

 

Table 1 Amount and glucose 13C recovery in total organic C (TOC), microbial biomass C 
(Cmic) and the total amino sugars (ΣAminoSugars) as well as the three individual 
amino sugars 

                

    
TOC Cmic ΣAminoSugars 

Galactos-
amine 

Glucos-
amine 

Muramic  
acid 

day 3 14.53 ± 2.62 0.49 ± 0.05 0.61 ± 0.08 0.08 ± 0.01 0.53 ± 0.08 0.009 ± 0.001 Pool Size 
(mg C g-1 

soil) day 10 16.33 ± 1.70   0.46 ± 0.11 0.54 ± 0.05 0.09 ± 0.01 0.43 ± 0.06 0.009 ± 0.001 

day 3 1134.9 ± 77.0 653.0 ±  40.9 8.52 ± 6.19 0.83 ± 0.35 8.00 ± 0.31 0.36 ± 0.14 
Glucose 13C 
recovery (ng 
glc-13C g-1 

soil) day 10 1225.9 ± 812.7 336.9 ±  12.9 6.19 ± 0.31 0.65 ± 0.34 6.25 ± 0.24 0.28 ± 0.19 
        
 

2.7.3.2 Incorporation of C from various positions of glucose molecule into in-

dividual amino sugars 

Carbon from individual positions of the glucose molecule was incorporated differ-

ently into each of the three identified amino sugars (Figure 1). Thus, glucose was not fully 

incorporated as an intact molecule, but at least in parts split into fragments i.e. metabo-

lites, which were incorporated. Some trends are similar for each of the amino sugars: 1) 

glucose C-4 was incorporated by day 3 at least from all glucose molecule positions, and 

2) the majority of the C-positions remained constant between days 3 and 10. However, 

the incorporation of glucose C-1 strongly decreased for each of the amino sugars from 

day 3 to day 10. The expected symmetry of the fingerprint e.g. C-1 ~ C-6, C-2 ~ C-5 and 

C-3 ~ C-4 may exist for day 3 but cannot be clearly seen for day 10 (Figure 1). This re-

veals that there are pathways other than glycolysis and gluconeogenesis which are re-

sponsible for the glucose transformation for cell wall formation.   
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Fig. 1 Incorporation of 13C from individual glucose into the three amino sugars in % of  
applied 13C. Values represent means (± SEM, N=4). Yellow bars show incorpo-
ration 3 days after labelling, green bars show 10 days after labeling. 

Intact glucose incorporation would lead to the identical incorporation of all glucose 

C positions. Consequently, the position with the lowest incorporation reflects the maxi-

mum intact glucose C incorporation. Calculating the ratio of the minimum position to av-

erage glucose C incorporation shows that for galactosamine and glucosamine, a maxi-

mum of 55% and 39% of glucose-C, respectively, were incorporated directly. This calcu-

lation is no longer possible for muramic acid, as an additional pyruvate is condensed to 

the hexose ring in this amino sugar monomer (Richmond and Perkins, 1962). However, 

the basic amino sugars already show that a large percentage of cell walls were not built 

up from untransformed glucose taken up from soil solution.  

A better comparison of the specifics of individual positions in the formation of amino 

sugars can be gained by the divergence index (Figure 2), as this index does not consider 
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the absolute pool size, which is strongly different for the individual amino sugars. Figure 2 

shows that the relative incorporation is highest for C-6 and lowest for C-4. Transforma-

tions from day 3 to day 10 show clear similarities between glucosamine and muramic 

acid: both amino sugars show a decrease in C-1 incorporation and an increase in C-2 

and C-4 incorporation, whereas the relative portion of C-6 remained constant (Figure 2). 

In contrast, galactosamine showed only a slight decrease in C-1 from day 3 to 10, while 

all other positions remained nearly constant. 

 

Fig. 2 Divergence Index (DI), reflecting discrimination between C positions of glucose 
three (left) and ten (right) days after 13C application for galactosamine, gluco-
samine and muramic acid.  

 

2.7.3.3 Replacement of cell wall pool by glucose 13C 

In contrast to the absolute incorporation of glucose 13C, which shows the activity of 

the newly formed cell walls, the replacement of amino sugar C by 13C (Figure 3) reflects 

the turnover of an existing soil pool. Whereas glucosamine has the highest absolute 13C 

incorporation (Figure 1), its replacement is intermediate between galactosamine and mu-

ramic acid. Galactosamine showed the lowest values, whereas muramic acid showed the 

highest replacement with 0.006% of the muramic acid pool 3 days after labeling. Re-

placement slightly decreased for the basic amino sugars and significantly for muramic 

acid from day 3 to day 10. 

However, as position-specific 13C incorporation was not equal for all glucose mole-

cule positions (Figure 1), the replacement was also strongly dependent on the labeled 

position (Figure 3). Turnover varied by a factor of six depending on the C positions in the 

molecule and the highest range between maximum and minimum incorporation was ob-

served for muramic acid. 
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Fig. 3 Replacement of amino sugar pool by newly formed amino sugars from glucose 
13C. Experimental points (means ± SEM, N=4) are presented. Filled symbols 
represent means and open symbols show the position with lowest (minimum) 
and highest (maximum) replacement. Letters indicate significant differences of 
means according to ANOVA with Tukey HSD for unequal N Post-Hoc Test and 
always refer to the points below the letter. 

 

2.7.4 Discussion 

2.7.4.1 Fungal versus bacterial contribution to the amino sugar fingerprint 

and glucose utilization 

Glucosamine is the quantitatively most relevant amino sugar in soils. The review 

from Engelking et al. (2007) showed that glucosamine from mixed microbial communities, 

as in soils, is mainly derived from fungal cell walls. This can be attributed to the fact that, 

in the case of fungi, the cell wall comprises a higher percentage of the cellular dry weight 

compared to bacteria, and that fungal chitin consists of a higher proportion of glucosa-

mine than bacterial peptidoglycan. Consequently, glucosamine was frequently used to 

calculate the fungal biomass in soils. However, peptidoglycan – the bacterial cell wall 

polymer – also consists of up to 50% glucosamine and an interpretation of glucosamine 

as a fungal biomarker only has to be considered critical. In contrast to glucosamine, ga-

lactosamine is found only in trace amounts in bacterial cell walls (Engelking et al., 2007; 

Glaser et al., 2004) and thus seems to be the better biomarker for fungal cell walls 

(Engelking et al., 2007). Also, the ratio of galactosamine to muramic acid was signifi-

cantly higher for fungal (59) than bacterial (3) biomass (Glaser et al., 2004).  

The first results on amino sugar formation from 13C-labeled plant litter reflected that 

glucosamine and galactosamine in soils had different dynamics and formation kinetics 
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and were likely produced from different microorganisms (Bode et al., 2013). It was as-

sumed that galactosamine is a better fungal biomarker than glucosamine. However, they 

could not prove this assumption and the bacterial contribution to newly formed glucosa-

mine pool as they were not able to detect newly formed 13C-enriched muramic acid (Bode 

et al., 2013). Our results (Figure 3) clearly reflect that the turnover of glucosamine is in-

termediate to that of galactosamine and muramic acid. This confirms the theory that the 

active glucosamine pool in soils, which is part of living cells and consequently incorpo-

rates added 13C, is a mixture of fungal and bacterial cell walls; e.g. chitin and peptidogly-

can. It was considered that the main contributor to the glucosamine pool of entire SOM 

might be fungal cell walls, i.e. chitin, due to the high recalcitrance of this crystalline poly-

mer (Beckham et al., 2011). However, this is not feasible if the active pool of amino sug-

ars, e.g. the cell walls of living, active microbial biomass in soils is considered, because 

the bacterial contribution to the active glucosamine pool gets relevant or even dominates 

the fungal contribution, which is in contrast to the necromass. This was observed for the 

formation of new amino sugars under microbial growth (Bode et al., 2013) or for the in-

corporation of substrates under maintenance conditions into cell walls (Figure 1 and 3) in 

this study. Our data confirm this as the behaviors of the divergence index changes from 

day 3 to day 10 are similar between glucosamine and muramic acid but not between glu-

cosamine and galactosamine. This can be interpreted as similar pathways for amino 

sugar formation or transformation between muramic acid and glucosamine, in contrast to 

galactosamine. Consequently, similar source organisms for muramic acid and glucosa-

mine are likely. This result confirms the data of PLFAs analyses of Apostel et al. (2013) of 

the same field site, which showed by 13C-PLFA analysis that bacteria are the most active 

group in the utilization of LMWOS-13C.  

Consequently, although the soil glucosamine pool might be mainly fungal-derived, 

the newly formed 13C glucosamine was mainly from bacterial sources. Thus, the amino 

sugar fingerprint alone is unlikely to reflect the current microbial community structure and 

cannot be used to draw conclusions about the activity of fungi and bacteria, as already 

stated by Glaser et al. (2004). However, the newly formed 13C amino sugars or the re-

placement by 13C reflect the activity of fungi versus bacteria in substrate utilization enable 

a quantitative and specific conclusion about the activity of microbial community members. 

 

2.7.4.2 Pathways of amino sugar formation  

According to biological principles, microbial cells produce their biomass by the most 

economic pathways, e.g. they tend to use pre-formed building blocks as substrates for 

macromolecular synthesis, if these direct precursors are available (Lengeler et al., 1999). 
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Acetylated amino sugars, used for cell wall formation, are directly produced from the gly-

colysis intermediate fructose-6-phosphate by transamination, isomerization and acetyla-

tion, and afterwards become activated (Kotnik et al., 2007; Milewski et al., 2006). In the 

case of muramic acid, an additional condensation with activated pyruvate (Richmond and 

Perkins, 1962) occurs in the periplasm (Figure 4). Consequently, amino sugars should be 

built-up mainly by direct glucose precursors, especially if glucose is available and cells 

are only in maintenance metabolism and do not need huge amounts of newly synthe-

sized cell walls. Constant levels of microbial biomass C reflect the steady state of the 

microbial community in this experiment (Table 1). The lack of easily available C sources 

in this bare soil experiment (without plants, rhizodeposits and litter inputs) supports the 

suggestion that the microbial community is in a non-growing state.  

 

Fig. 4 Metabolic pathways of amino sugar formation from glucose precursor. Colours 
represent the opposite positions of glucose: green = C-1 and C-6, blue = C-2 
and C-5 and purple = C-3 and C-4. 

 

Nevertheless, a maximum of 40 to 55% of untransformed, intact glucose was used 

as a direct building block for cell wall (re)synthesis. This reflects that: 1) glucose is a per-

fect substrate for many pathways and is distributed over catabolism and anabolism, and 

2) metabolic pathways cannot be considered as one-way; there is always the parallel 
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existence of catabolic, oxidizing pathways and anabolic, constructing pathways. This is in 

accordance with previous results for microbial carbohydrate synthesis (Derrien et al., 

2007): they showed that the formation of microbial sugars from glycine occurred in paral-

lel to direct formation from glucose and in parallel to glucose oxidation.  

The direct pathways for glucose oxidation and new formation would be glycolysis 

and gluconeogenesis (Caspi et al., 2008; Keseler et al., 2009). The lowest incorporation 

of C-4 into amino sugars corresponds with the parallel existence of these pathways, as 

glycolysis with subsequent pyruvate-dehydrogenase oxidation would lead to a preferen-

tial oxidation of C-3 and C-4 to CO2 (Scandellari et al., 2009) (Table 2). If C-1-C-2 or C-5-

C-6 acetyl-CoA or metabolites of citric acid cycle are redistributed via gluconeogenesis 

into the glucose pool, the observed lack of C-4 incorporation could be explained. How-

ever, if these were the only pathways, symmetry in the incorporation of glucose C posi-

tions would be observed: C-1 ~ C-6, C-2 ~ C-5 and C-3 ~ C-4 (Scandellari et al., 2009) 

(Table2). We can only directly compare C-1 and C-6, as C-3- and C-5-labeled iso-

topomers were not commercially available. As the incorporation of C-1 and C-6 is not 

equal, this directly shows that further pathways are involved in the formation of glucose 

precursors for cell wall synthesis. There are two further main monosaccharide metaboliz-

ing pathways, which have been described for microorganisms that are common in soils, 

and can explain this result: the pentose-phosphate pathway and oxidative glucose deg-

radation (with Entner-Douderoff pathway) (Caspi et al., 2008; Keseler et al., 2009). The 

first leads to a loss of C-1 position in the first, immediate step transferring the hexose 

glucose into the pentose ribulose (Scandellari et al., 2009). The remaining C backbone, if 

transformed back to pyruvate, would show the preferential oxidation of C-4 and lower 

oxidation of C-2 and C-3. In contrast, the oxidative pathway, occurring extracellularly in 

gram-negative bacteria, has no direct decarboxylation, and leads to metabolites which 

preferentially miss C-1 and C-4 (Caspi et al., 2008; Keseler et al., 2009). The decrease in 

C-1 for each of the amino sugars from day 3 to day 10 strongly supports the interpreta-

tion of a high incorporation of pentose-phosphate pathway products. This is characteristic 

for maintenance conditions as the pentose-phosphate pathway provides precursors for 

many anabolic pathways, like ribonucleotide or amino acid synthesis. Therefore, a high 

flux of glucose C into this pathway is in accordance with the expected metabolic state of 

the microbial community.  

To summarize, even if simple direct pathways are considered, and labeling occurs 

with direct precursors of these pathways, the intact incorporation of this precursor mole-

cule cannot be postulated. In contrast, the new formation of amino sugars via direct 

pathways, oxidation via catabolism and formation from metabolites of basic C metabolism 
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occur in parallel. Consequently, if uniform labeling is used to assess the turnover of a 

pool, non-equal incorporation of the glucose C positions has to be considered.  

 

Table 2 Theoretic C pattern of newly formed amino sugars after simple pathway combi-
nations of basic C metabolism 

Glucose utilizing  
pathway Intermediate Glucose forming 

pathway 

Relative incorporation 
of glucose positions 

 C-1    C-2    C-4    C-6 
intact utilization for 

amino sugar formation - - 1        1        1        1 

glycolysis acetyl-CoA gluconeogenesis 1        1        0        1 
pentose-phosphate-

pathway 
glycerine-alde-
hyd-3-phosphat gluconeogenesis 0        1        1        1 

 

2.7.4.3 Specific pathways of fungi and bacteria  

Incorporation of C from individual molecule positions in galactosamine and gluco-

samine reflected a higher portion of intact glucose in the fungal biomarker galactosamine 

compared to the more bacteria-dominated newly formed glucosamine (figure 1). This 

indicates that the glucose splitting pathways like glycolysis as well re-synthesizing path-

ways like gluconeogenesis (i.e. catabolic and anabolic pathways, respectively) are more 

intensive in bacteria than in fungi. If the replacement of existing amino sugar pools is 

compared (figure 3), the higher turnover of the peptidoglycan, e.g. of bacterial cell walls 

compared to fungal cell walls, also becomes obvious. This can be a result of the shorter 

generation time (bacteria 20 min versus fungi 4-8 h to complete a life cycle under optimal 

conditions) and consequently higher cellular turnover of bacterial cells in soil (bacteria 2-3 

times and fungi 0.75 times biomass turnover per year) (Moore et al., 2005; Rousk and 

Baath, 2007; Waring et al., 2013). It is known that bacteria recycle up to 60% of their pep-

tidoglycans during cellular life (Park and Uehara, 2008; Uehara and Park, 2008). These 

observations in pure cultures are in accordance with the high turnover of bacterial mu-

ramic acid observed in this experiment. To our knowledge there are no similar studies 

about intracellular chitin turnover of fungal cells. However, it is known that a wide spectra 

of taxa possess the enzymes needed for chitin degradation (Caspi et al., 2008; Merzen-

dorfer, 2011) and that chitin has a rapid turnover in soils (Fernandez and Koide, 2012; 

Keiluweit et al., 2013). Our results suggest that the turnover of bacterial peptidoglycan is 

significantly faster than of fungal chitin in soils, but nevertheless a certain monomer ex-

change and turnover takes place during the short-term dynamics of chitin. 

The position-specific labeling enables a more detailed look at the metabolic path-

way of precursor formation used for cell wall turnover: whereas fungal galactosamine 

shows only slight changes in the relative incorporation of positions from day 3 to day 10, 
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the bacterial muramic acid and glucosamine showed an increase in C-2 and C-4 and a 

significant decrease in C-1 incorporation. This shows 1) that the bacterial peptidoglycan 

is more dynamic than fungal chitin and that renewing of that pool is higher, and 2) that 

the pentose-phosphate pathway, which shows active maintenance metabolism, seems to 

be more active in bacteria than in fungi. In addition, further C-1 oxidizing pathways, like 

the gram-negative, periplasmatic oxidative glucose oxidation may enhance the observed 

low C-1 oxidation in bacterial amino sugars. The contribution of this pathway can only be 

confirmed by investigating specific, anabolic products of gram-negative bacteria like 

PLFAs. However, this study took place under microbial maintenance conditions, and 

clearly reflected that individual members of the microbial community use specific path-

ways even in anabolic maintenance metabolism. At least for highly polymeric cell walls, 

the turnover of bacterial biomass seems to be higher and maintenance metabolism more 

active for bacteria.  

 

2.7.5 Conclusions and Outlook 

This is the first study which has coupled position-specific labeling with compound-

specific 13C analysis of amino sugars in soils and thus could observe the in-situ formation 

of amino sugars from its precursor glucose. Comparison of galactosamine with glucosa-

mine and muramic acid confirmed former conclusions that galactosamine is the better 

fungal biomarker than glucosamine. Glucosamine, at least the active, newly formed pool, 

is derived from both fungal chitin and bacterial peptidoglycan. If bacteria are dominating 

in microbial turnover, as in agricultural soil with neutral pH which was investigated here, 

the main contributor to newly formed glucosamine appears to be bacterial cell wall forma-

tion.  

Although glucose is a direct precursor for amino sugar synthesis, it is not directly 

used for amino sugar formation; however, up to 55% of the incorporated 13C is derived 

from glucose metabolites. This reflects that glucose, as the preferred substrate for many 

catabolic and anabolic pathways, is spread over microbial metabolism and that oxidizing, 

catabolic pathways occur in parallel to constructing, anabolic pathways. Consequently, if 

uniform labelling is used to assess the turnover of a pool, a non-equal incorporation of 

the glucose-C positions has to be considered. However, this intensive metabolism and 

re-incorporation of metabolites enables metabolic tracing based on glucose for almost 

every biosynthetic pathway. 

In addition, this study proved the lower metabolic activity of fungi versus bacteria in 

maintenance metabolism. This is not only proven by the higher dynamics of 13C replace-

ment of the cell walls, but also by the strong variation in the incorporation of individual C 
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positions over a period of 10 days. This reflects a more active maintenance metabolism 

based on glycolysis, pentose-phosphate pathway and gluconeogenesis in bacteria, which 

leads to an increasing incorporation of glucose metabolism fragments within 10 days. 

Therefore, this study proved for the first time that not only the C turnover in the slow and 

fast cycling branches of soil food webs differ, but also that the processes transforming C 

within these branches are strongly different and lead to specific C partitioning over vari-

ous SOC pools.  

Therefore, a more detailed understanding of fluxes of LMWOS C through the mi-

crobial network is needed. Systematic studies based on position-specific labeling and 

compound-specific isotope measurements of various microbial metabolites are needed to 

reveal which pathways are driven under which soil conditions. This knowledge will enable 

us to obtain a mechanistic understanding of SOC fluxes. 
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Supplementary Data 

Supplementary Table A1: Solvent gradients and flow conditions of the IC-O-IRMS 
measurment 

time 20 mM NaOH 200 mM Na-
OH H2O 0.01 M  

NaNO3 
flow  

(ml min-1) 
-25 min 0% 100% 0% 0% 0.400 

-10 min 8% 0% 92% 0% 0.325 

11 min 40% 0% 35% 25% 0.400 

15 min 45% 0% 45% 10% 0.400 

18 min 25% 25% 50% 0% 0.380 

35 min standby 
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Abstract 

Fatty acids are frequently used as plant and microbial biomarkers to trace the 

pathways of C stabilization and soil organic matter (SOM) formation. Whereas microbial 

and plant fatty acid fingerprints are well investigated, their transformations in soils remain 

unclear. However, knowledge of the transformation pathways in soils is crucial for the 

interpretation of fatty acid fingerprints, especially because the formation and decomposi-

tion processes are simultaneously ongoing. Therefore, we analyzed the formation of mi-

crobial fatty acids from their precursor acetate and the transformation of palmitate in soil 

by coupling position-specific 13C labeling with compound-specific 13C analysis.  

Position-specifically and uniformly 13C-labeled acetate and palmitate were applied 

in an agricultural Luvisol. Pathways of fatty acids were traced by analyzing microbial utili-

zation of C from individual molecule positions of acetate and palmitate and their incorpo-

ration into phospholipid fatty acids (PLFAs).  

Acetate 13C incorporation into microorganisms and that remaining in the soil were 

characterized by basic microbial metabolism: C-1 is preferentially oxidized to CO2 in the 

citric acid cycle, whereas C-2 is preferentially incorporated into microbial compounds. If 

palmitate was used in basic C metabolism, it was split into C2-units (acetyl-CoA), and 

odd and even positions of palmitate were transformed in a manner similar to acetate. 

However, as palmitate is the preferred precursor for PLFA formation, more than 6% of 

the added palmitate was incorporated into microbial cell membranes. Newly formed fatty 

acids were first, on day 3, dominated by basic, straight chain fatty acids. With increasing 

time, the pattern of newly formed PLFA approached the fingerprint of the microbial com-

munity. Therefore, the C backbone of palmitate was not split, but modified (e.g. desatu-

rated, elongated or branched) according to the fatty acid demand of the soil microbial 

community. If acetate 13C was used for PLFA formation, the construction of new C back-

bones of fatty acids rarely occurred. However, acetate 13C was incorporated into micro-

bial PLFAs by elongations or branchings of already existing fatty acids. Therefore, the 

previous assumption, that fatty acids are generally newly formed from the added sub-

strates has to be discarded and future PLFA studies have to consider the reuse of exist-

ing plant and microbial-derived fatty acids. 

Discrimination of acetate positions by PLFA formation was lowest in the microbial 

groups with the highest competitiveness for acetate uptake. In contrast, palmitate uptake 

and transformations were highly specific for the individual microbial groups in soil. For 

both substrates, it could be concluded that more direct, less complex metabolic pathways 

are characteristic of fast-growing microbial groups with high turnover. 
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This study proves the fast microbial turnover of the free fatty acid pool in soils, as 

well as the high turnover and transformation of cellular PLFAs. Knowledge about these 

microbial transformations of fatty acids in soils is crucial for the interpretations of micro-

bial as well as plant-derived fatty acid fingerprints. Furthermore, tracing the formation and 

transformation of lipids in soils improves our understanding of C fluxes and the stabiliza-

tion of microbial as well as plant-derived lipids in soils.  
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2.8.1 Introduction 

Soil organic matter (SOM) is the largest active carbon (C) pool (1462-1548 Pg, 

(Batjes, 1996)) within the global carbon (C) cycle, but the genesis and transformation 

processes are poorly understood. The main input of C into soils occurs via plant litter or 

rhizodeposition (Rasse et al., 2005). Litter is composed of macromolecules such as cellu-

lose, hemicellulose, lignin or proteins (Crawford et al., 1977; Sorensen, 1975); in addition, 

rhizodeposits contain low molecular weight organic substances (LMWOS) (Farrar et al., 

2003). Along with water soluble low molecular weight organic compounds and their poly-

mers, lipids are important constituents of plant biomass. They comprise around 3-10% of 

aboveground and 0.5-5% of belowground plant biomass and are thus an essential com-

pound of plant C input into soils (Bliss, 1962; Ohlrogge and Browse, 1995; Wiesenberg et 

al., 2004). In addition, microbial biomass contains around 10% of lipids, mainly in their 

cell membranes and cell walls (Lengeler et al., 1999; Zelles et al., 1995) and significantly 

contribute to the lipidic SOM pool. 

Lipids comprise a higher percentage of SOM (Almendros et al., 1991; Rumpel et 

al., 2004) than their source material i.e. plant and microbial biomass. This accumulation 

of lipids already indicates their selective preservation in soils (Lichtfouse et al., 1998a). 

Moreover, lipids are assumed to play an even more important role in SOM formation and 

stabilization: lipids are stabilized by hydrophobic interactions with SOM and with each 

other, leading to a decreased wettability and subsequent hampering microbial decompo-

sition (Lichtfouse et al., 1998a; von Luetzow et al., 2006). In addition, functional groups of 

lipids can covalently bind further molecules (Allard, 2006; Berthier et al., 2000) or encap-

sulate smaller molecules, leading to their preservation (Lichtfouse et al., 1998b; Piccolo, 

2002; Sutton and Sposito, 2005).  

The long-term preservation of some lipid classes qualifies them as important bio-

markers (Otto et al., 2005; White et al., 1997). N-alkanes are commonly assumed to be 

plant-derived (Kuhn et al., 2010; Lichtfouse, 1998) and are used as plant biomarkers to 

differentiate vegetation types (Bush and McInerney, accepted 2013; Schwark et al., 2002; 

Zech et al., 2012); long-chain fatty acids are used in a similar way (Wiesenberg and 

Schwark, 2006). More complex cutin-suberin-derived hydroxylated or poly-carboxylic 

acids enable aboveground litter input to be differentiated from belowground litter input 

(Mendez-Millan et al., 2011; Spielvogel et al., 2010). Sterols and other isoprenoid lipids, 

like terpenoids, are indicative for animal or plant-derived SOM (Otto and Wilde, 2001).  

Application of all these biomarkers tacitly assumes that they remain unmodified in 

soils over long periods. However, microorganisms are able to use lipids as substrates 

and decompose them to metabolites as well as build up their own lipids, therefore signifi-
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cantly contributing to the lipid pool of SOM and the modification of initial lipidic com-

pounds (Lichtfouse et al., 1995; Otto et al., 2005). This indicates already that the concept 

of generally untransformed lipid biomarkers is likely to be too simplified. Recent studies 

indicate that plant-derived biomarkers can be modified and overprinted by rhizomicrobial 

activity (Gocke et al., in press). For some biomarker classes like sterols microbial modifi-

cations of plant or animal-derived lipids are specifically used to trace the microbial com-

munity impact (Arima et al., 1969; Bull et al., 2002; Bull et al., 1999). For others, like al-

kanes, approaches used to correct for microbial overprint of plant-derived signals have 

been developed (Buggle et al., 2010; Zech et al., 2013). However, current knowledge on 

the microbial transformation of lipids in soils is rare and new experimental studies are 

needed.  
14C age of microbial lipid biomarkers revealed that they are not indicative for the 

age of this substance class, as microorganisms obviously use old lipidic substrates to 

build up their new lipids, e.g. phospholipid fatty acids (PLFA) (Rethemeyer et al., 2004). 

However, it is not yet clear whether microorganisms prefer the new synthesis of their lip-

ids from low molecular weight precursors like acetate or whether they prefer to use avail-

able lipidic compounds, e.g. fatty acids, and simply modify them. According to the bio-

chemical principle of the most economic pathways, cells tend to use preformed building 

blocks for biomass synthesis (Lengeler et al., 1999). Consequently, we hypothesize that 

lipids released by the decomposition of plant or microbial biomass should be the pre-

ferred substrates for further lipid synthesis by microorganisms. However, it is known that 

microbial polar lipids, like PLFA, are degraded to fatty acids after cell death (Lichtfouse et 

al., 1995) and, consequently, re-contribute to the free lipid pool in soils. The knowledge 

gap concerning the soil lipid cycle has caused an intensive discussion concerning the 

contribution of plant versus microbial lipids (Lichtfouse, 1998; Lichtfouse et al., 1995; Otto 

et al., 2005). Therefore, microbial modification of lipid biomarkers in soil, as well the 

transformation processes, are crucial for the application of biomarker fingerprints as well 

as isotope data from lipid biomarkers.  

Therefore, we traced the microbial formation of membrane lipids, PLFA, from their 

low molecular weight organic precursor – the acetate (Caspi et al., 2008; Keseler et al., 

2009; Rock et al., 1981). In addition, we traced the utilization of the most abundant fatty 

acid – palmitic acid – as a microbial substrate for PLFA. Palmitic acid is a key compound 

for plant and microbial fatty acid metabolism. Investigating its microbial utilization and 

transformation pathways reveals a general view of the microbial modification of soil lipids.  

To elucidate the metabolic pathways of microbial fatty acids, we used the approach 

of position-specific labeling. This tool was originally derived from biochemistry to investi-

gate metabolism pathways and has rarely been applied in soil science (Fokin et al., 1993, 
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, 1994; Haider and Martin, 1975; Kuzyakov, 1997; Nasholm et al., 2001). However, within 

the last years, increasing interest in the use of position-specific labeling to assess meta-

bolic pathways in soil has arisen (Apostel et al., 2013; Dijkstra et al., 2011a; Dijkstra et 

al., 2011b; Dippold and Kuzyakov, 2013; Fischer and Kuzyakov, 2010b). This is because 

this approach is the only one which enables the fate of individual C positions to be traced 

through various pools or metabolites and consequently allows the reconstruction of indi-

vidual transformation steps.  

Knowledge about fatty acid synthesis by microorganisms is mainly derived from ex-

periments with pure cultures (Lennarz, 1970; Rock et al., 1981; Zelles et al., 1995). They 

can be newly synthesized from precursors like acetate or available lipid precursors can 

be modified by them (Lennarz, 1970; Rethemeyer et al., 2004; Rhead et al., 1971). If 

palmitate is given as a substrate, there are three possible mechanisms by which palmi-

tate C can be used for PLFA synthesis: 1) the resynthesis pathway i.e. the complete deg-

radation of the molecule to acetyl-CoA units and the following reconstruction of new fatty 

acids from C2-mojieties (Rhead et al., 1971); 2) Partial step-by-step degradation of the 

C2-units without total breakdown of palmitate: subsequently, only parts of the molecule 

are incorporated into newly formed fatty acids (Rhead et al., 1971); and 3) the untrans-

formed utilization of palmitate as it is the most abundant fatty acid in microorganisms 

(Rhead et al., 1971; Zelles et al., 1995). Position-specific 13C labeling enables these three 

pathways to be distinguished and to evaluate the transformation of the straight chain, 

unsaturated palmitate. This approach will deepen the understanding of the transformation 

of fatty acids and other lipidic biomarkers and improve the interpretation of fatty acid fin-

gerprints in soils. 

 

2.8.2 Material and Methods 

2.8.2.1 Experimental Site 

The field experiment is located in Bavaria, close to Hohenpölz (49.907 N, 11.152 E) 

with 501 m.a.s.l, mean annual temperature 6.7 °C and mean annual precipitation of 

874 mm. The agriculturally used field site is managed by a rotation of corn, barley, wheat 

and triticale. Soil type is a loamy Luvisol which has a pHKCl of 4.88, a pHH2O of 6.49, a 

TOC content of 1.77%, a TN content of 0.19% and a CEC of 13 cmolC kg-1. Before the 

experiment started in August 2010 triticale, the last crop, was harvested, and the field site 

was grubbed for soil homogenization.  
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2.8.2.2 Experiment Design  

The 12 × 12 m field was subdivided into four quadrants. PVC-tubes (diameter: 

10 cm; height: 13 cm) were installed 10 cm deep in the soil, resulting in a soil sample 

weight between 1 and 1.5 kg for each column. Column location was randomized within 

the blocks and each of the four blocks represented one of the four repetitions of each 

treatment. Consequently, the block could be included as a random variable in statistical 

evaluation to account for the spatial heterogeneity within the field site.  

Tracer-solution was applied with a multipette (Eppendorf, Hamburg, Germany) at 5 

injection points per column, each of 2 ml. Uniformly 13C-labeled acetate and palmitate as 

well as position-specific labeled isotopomers (1-13C acetate, 2-13C acetate, 1-13C palmi-

tate, 2-13C palmitate and 16-13C palmitate) were applied. In addition, on non-labeled 

background columns, an identical amount of acetate and palmitate-C was applied. Con-

centrations of 13C were 100 µmol acetate and 50 µmol palmitate per column. The amount 

of C applied was constant for each treatment and the backgrounds.  

A 7-cm-long needle with closed tip and peripheral holes allowed homogeneous lat-

eral distribution of the tracer solution. Leaching was avoided by injecting the solution only 

into the upper 2/3 of the column and excluding rainfall by installing a roof above the plots 

of the experiment.  

 

2.8.2.3 Sampling and Sample Preparation  

The sampling occurred by harvesting the entire soil column three and ten days after 

labeling. At both times, height of the soil inside the column was measured to determine 

the labeled soil volume. Then, soil was pressed out from the column, fresh weight was 

determined and the entire soil sample was homogenized manually. Afterwards, a sub-

sample was taken to determine water content and the sample was split: one subsample 

was freeze-dried and ball milled for bulk isotope analysis, and another subsample was 

2 mm sieved and stored at <5 °C for chloroform-fumigation-extraction (CFE). The remain-

ing soil was sieved to 2 mm and stored frozen for analysis of microbial phospholipid fatty 

acids. 

 

2.8.2.4 Bulk Soil and Microbial Biomass Analysis 

For the analysis of bulk soil C content and δ13C-values, the samples were freeze-

dried, ground in a ball mill and 5-6 mg per sample were filled into tin capsules. The sam-

ples were measured on the Euro EA Elemental Analyzer (Eurovector, Milan, Italy) cou-

pled with a ConFlo III interface (Thermo Fisher, Bremen, Germany) and the Delta V Ad-



Publications and Manuscripts 

 243 

vantage IRMS (Thermo Fisher, Bremen, Germany). Incorporation of 13C from the applied 

carboxylic acids into soil was calculated according to the mixing model (Eq. 1 and 2), 

where the C content of the background in Eq. 1 was substituted according to Eq. 2 

(Gearing et al., 1991). 

appCAappCABGCBGsoilsoil rCrCrC ⋅+⋅=⋅ − ][][][      (9) 

appCABGsoil CCC ][][][ +=        (10) 

with:   [C]soil/BG/appCA C content of sample / background / applied carboxylic acids

                 (mol · gsoil
-1) 

         r soil/BG/appCA 13C atom%-excess of sample / background / applied  

 carboxylic acid     (at%) 

Two subsets of 15 g of soil were taken to determine microbial C and its δ13C val-

ues. One subsample was directly extracted, whereas the other was first fumigated with 

chloroform for 5 days in an exsiccator to lyse microbial cells. The samples were extracted 

with 45 ml of 0.05 M K2SO4 by shaking on a horizontal shaker for 1.5 h: after shaking, the 

samples were centrifuged (10 min, 2000 rpm) and the supernatant was filtered (Rotilab® 

round filters, type 15A, cellulose, membrane 70 mm). 

The C content of the extracts was determined on a TOC analyser multi C/N® 2000 

(Analytik Jena, Jena, Germany). After that, the remaining extracts were freeze-dried for 

δ13C measurements. 30-35 µg of the freeze-dried salt were transferred to tin vessels and 

measured on the same instrument where bulk soil δ13C-value was determined. 13C incor-

poration into fumigated and unfumigated samples was calculated according to the mixing 

model (Eq. 1 and 2). Microbial biomass and carboxylic acid 13C incorporated into micro-

bial biomass was calculated according to Wu et al (1990) with an extraction factor of 

0.45. 

 

2.8.2.5 PLFA δ13C analysis  

Phospholipids were extracted and purified by a modified method of Frostegard et 

al. (1991) which are described in detail in Gunina et al. (submitted). Modifications in-

cluded the use of 6 g of soil for extraction, a doubled liquid-liquid extraction and a very 

slow elution of polar lipids from the activated silica column with four times 5 ml methanol. 

Before extraction, 25 µl of a 1 M solution of phosphatidylcholine-dinonadecanoic acid was 

added as internal standard 1 (IS 1). For measurements on a GC, the fatty acids were 

saponified to free fatty acids and derivatized into fatty acid methyl esters (FAME) follow-

ing the description by Knapp (1979). Before transferring the samples to autosampler vi-

als, 15 µl of tridecanoic acid methyl ester (1 µg µl-1 in toluene) was added as internal 
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standard 2 (IS 2). External standards consisting of the 27 fatty acids listed in Supplemen-

tary Table 1 together with the phospholipid IS 1 were prepared with fatty acid contents of 

1, 4.5, 9, 18, 24 and 30 µg, respectively, and derivatized and measured together with 

each sample batch. 

FAME-contents were measured on a GC-MS (GC 5890 with MS 5971A, Agilent, 

Waldbronn, Germany) with a 30 m DB1-MS column, in the selected ion mode. The rela-

tion between the area of each FAMEs and the area of the IS 2 was calculated and a lin-

ear regression based on the six external standards was used for quantification. The re-

covery of each sample was determined based on the area of the initially added 25 µg of 

IS 1, and the amount of each fatty acid was corrected by the recovery. 

δ13C-values were analyzed on a GC-C-IRMS; consisting of the autosampler unit AS 

2000, the Trace GC 2000 by ThermoQuest, the Combustion Interface III combustion unit 

and the isotope-ratio mass spectrometer DeltaPlus (Thermo Fisher, Bremen, Germany). 

Volumes of 1.5 µl were injected in splitless mode (splitless time: 1 min) into a liner (Type 

TQ(CE) 3 mm ID TAPER) at a temperature of 250 °C. Gas chromatography was accom-

plished with a combination of two capillary columns: a 30 m DB5-MS and a 15 m DB1-

MS (both: internal diameter 0.25 mm, film thickness 0.25 µm; Agilent); a constant He-flux 

(99.996% pure) of 2 ml · min-1 and the temperature program presented in Supplementary 

Table 2. CO2 reference gas (99.995% pure) was injected for 20 s into the detector four 

times throughout the measurement to identify any detection drift. The δ13C-value of the 

second reference gas peak was defined as -40‰ and all other δ13C-values were calcu-

lated by comparison. δ13C-values of all PLFA samples was measured four times. 

The chromatograms were integrated and δ13C-value was generated by the software 

ISODAT NT 2.0.  

Linear regressions were calculated from reference gas peaks surrounding the fatty 

acid peaks For drift correction within the chromatogram (Apostel et al., 2013) and chro-

matographic drift was corrected according to the slope of this regression.  

To correct for amount-dependent 13C isotopic fractionation during measurements 

(Schmitt et al., 2003) and for the addition of C during derivatization, linear and logarithmic 

regressions of the external standard δ13C-values to their area were calculated. If both 

regressions were significant, that with the higher significance was applied. As the δ13C-

value for the derivatizating agents was unknown, the correction was performed according 

to Glaser and Amelung (2002a) (Eq. 5).  
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with: CFS(at%) corrected 13C amount of the fatty acid   [at%]  

 CFAME(at%)  drift-corrected 13C amount of the FAME  [at%] 

 mlin/ln   slope of linear/logarithmic regression          [at% · Vs-1] 

 tlin/ln   y-intercept of linear/logarithmic regression   [at%] 

 AFAME   area of FAME      [Vs] 

 N(C)FAME  number of C atoms in FAME  

 N(C)FS   number of C atoms in fatty acid 

 CEA-FS(at%)  measured 13C-value of fatty acid   [at%] 

 

2.8.2.6 Fatty acid grouping 

For the evaluation of biochemical transformations, fatty acids were grouped into 

biochemical classes. The 16 carbon chain palmitic acid was taken as a border case as 

this is the key fatty acid in bacterial metabolism. 16 carbon fatty acids, shorter fatty acids 

(14 and 15 carbon) and longer fatty acids (17 to 20 carbons) were grouped into straight 

chain even, straight chain odd, desaturated and branched fatty acids. 

For the evaluating of the microbial groups, the fatty acids fingerprint of all samples 

was grouped by a principal component analysis with varimax standard rotation. Fatty 

acids with a loading of more than 0.5 (absolute value) on the same factor were catego-

rized in one group if in accordance with previous studies on pure cultures (Zelles, 1999; 

Zelles et al., 1995).  

 

2.8.2.7 The Divergence Index DIi  

According to Dippold and Kuzyakov (2013) the transformation of C from individual 

molecule positions was presented by the Divergence Index DIi: 
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     equation 4 

This index reflects the fate of individual C atoms from the position i relative to the 

mean transformation of the n total number of C atoms within a transformation process. 

Hence, a DIi of 1 means that the transformation of this C position in the investigated pool 

corresponds to the transformation of uniformly labeled substance (average of all C at-

oms). DIi ranges from 0 to n, and values between 0 and 1 reflect lower incorporation of 
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the C into the investigated pool, whereas values between 1 and n show higher incorpora-

tion of the C atom into this pool as compared to the average.  

 

2.8.2.8 Statistics 

The values presented show mean ± standard error of mean (± SEM) of the four 

field repetitions of each sample. The SEM of the divergence index was calculated by 

gaussian error propatation. Measured values were tested for normal distribution using the 

Kolmogorov Smirnoff test, for homogeneous variances using Levene’s test and screened 

for outliers using the Nalimov test (Gottwald, 2000). Factorial ANOVA was calculated 

using Statistica (version 6.0, Statsoft GmbH, Hamburg, Germany). If assumptions such 

as normal distribution or homogeneous variances were not met, the result of the ANOVA 

was confirmed by non-parametric Kruskal-Wallis ANOVA before performing a Tukey HSD 

post-hoc test for unequal sample size. 

 

2.8.3 Results 

2.8.3.1 Incorporation of 13C in soil and microbial biomass  

Decomposition of acetate and palmitate until day 3 was similar: 60-70% of the 

added 13C remained in soil (Figure 1, pools see Table 1). However, at day 10, palmitate 

and acetate behaved very different: around 80% of 13C acetate was decomposed to CO2, 

but this was true for only 50% of the palmitate. Position-specific pattern reflects that the 

C-1 position of both carboxylic acids is preferentially oxidized. However, the preferential 

C-1 oxidation was the most pronounced for acetate at day 3 and for palmitate at day 10. 

Whereas both acetate positions were continuously decomposed from day 3 to day 10, 

the 13C loss from palmitate between day 3 and day 10 could mainly be attributed to an 

oxidation of the one terminal position of palmitate only.  

Table 1 Total organic C (TOC), microbial biomass C (Cmic) and the sum of all measured 
PLFAs (list of fatty acids see Supplementary, Table A1) in mg C per g soil (dry 
weight) 

          
  TOC Cmic ΣPLFA 

day 3 15.60 ± 0.60 0.521 ± 0.022 0.064 ± 0.005 Pool Size (mg C g-1 soil) 
day 10 16.39 ± 0.30 0.463 ± 0.038 0.051 ± 0.003 

     
Incorporation of 13C into microbial biomass reflected a similar fate of acetate and 

palmitate positions and the preferential oxidation of the terminal carboxylic groups. In 

general, 13C incorporation of acetate and palmitate into microbial biomass was similar. 
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However, a clear preference for the 13C incorporation from palmitate compared to acetate 

was found for the PLFAs, i.e. the pool of polar microbial membrane lipids. The strong 

decrease of 13C content from acetate and palmitate from day 3 to day 10 (Figure 1 and 

Figure 2) reflects the short half-life time of PLFAs in soils.  

 

Fig. 1 Recovery of position-specifically 13C-labeled acetate and palmitate in soil, mi-
crobial biomass and the sum of PLFA (Σ-PLFA) 3 (top) and 10 days (bottom) af-
ter substance application. Bars represent means ± SEM (N=4) for the individual 
positions and lines represent the mean of the uniformly labeled substances. Let-
ters indicate significant differences (p < 0.05) between recovery in bulk soil (a), 
microbial biomass (a’) and in Σ-PLFA (a’’). 

 

2.8.3.2 Incorporation of C from various positions of acetate and palmitate 

into individual PLFAs 

Acetate and palmitate were used for the formation of microbial PLFAs. This reveals 

the existence of both pathways: the new formation of fatty acids from acetate precursors 

as well as modification of existing fatty acids. In each case, the newly formed fatty acids 

were first, at day 3, dominated by basic, straight chain fatty acids (Figure 2). With in-

creasing time, the newly formed fatty acids approached the fingerprint of the microbial 

community (Figure 2). Not only new synthesis but also the modification of existing PLFAs 

occurred according to the demand of the present microbial community (Figure 2). 



Publications and Manuscripts 

 248 

 

Fig. 2 Classes of phospholipid-derived fatty acids (top left) extracted from soil and 
recovery of position-specifically 13C-labeled acetate (top right) and palmitate 
(bottom) in the different fatty acid classes 3 and 10 days after 13C application. 
Experimental points (means ± SEM, N=4) are presented. 

 

Figure 2 shows that acetate was an appropriate precursor for the new formation of 

fatty acids: e.g. at day 3, the pattern of newly formed fatty acids from acetate C-2 was 

already quite similar to the PLFA profile in soils (Figure 2). Only branched fatty acids 

smaller than 16 C atoms were not formed from acetate, not even from acetate C-2. In 

general, acetate C-1 incorporation into each fatty acid was lower than C-2, reflecting that 

not only intact acetate was used as a precursor in fatty acid synthesis. Especially in 

branched fatty acids, a preferential incorporation of C-2 was observed (Figure 2). The C-

1 from acetate was not incorporated in any of the odd-numbered fatty acids (Figure 2). 

Palmitate 13C incorporation into phospholipid-bound palmitate is higher than acetate 
13C incorporation (Figure 2). C-1 of palmitate is incorporated only in negligible amounts 

into fatty acids which were shorter than 16 carbons (Figure 2 and Figure 3). In addition, 

the terminal C-1 position of palmitate was not incorporated into odd-numbered PLFAs. 

This indicates the preference to use palmitate as a direct precursor for microbial phos-

pholipid synthesis.  
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Fig. 3 Fingerprint of phospholipids-derived fatty acids in soil (top left) and relative re-
covery of individual positions from palmitate 13C in fatty acid classes. Experi-
mental points (means ± SEM, N=4) are presented. 

Figure 3 presents the transformations of incorporated palmitate by microbial PLFA 

formation. The portion of desaturated fatty acids was already high at day 3 and did not 

increase significantly from day 3 to day 10 (Figure 3). This shows a fast desaturation of 

the palmitate precursor. However, incorporation of palmitate 13C into elongated and even 

more into branched fatty acids significantly increased from day 3 to day 10 for each of the 

C positions, reflecting slower kinetics of these processes.  

In general, a modification of palmitate according to the demand of the microbial 

community could be observed in this study. After 10 days the fingerprint of newly formed 

fatty acids already closely approached the PLFA distribution of the present microbial 

community. However, individual transformation steps occurred with different kinetics.  

 

2.8.3.3 Incorporation of acetate and palmitate 13C into PLFAs of individual 

microbial groups 

Preference for acetate and palmitate strongly differed for individual microbial 

groups. The PCA, based on the amounts of fatty acids, revealed two groups of gram 

negatives: whereas gram-negative 1 (18:1w9c, 18:1w7c, 14:1w5c) showed the highest 

incorporation of acetate, gram-negatives 2 (16:1w7c, cy19:0) reflected the highest uptake 

of palmitate (Figure 4). In general, the low molecular weight acetate was a better sub-

strate for prokaryotic groups than for eukaryotic fungi or protozoa. A similar pattern was 

not observed for palmitate, which was preferentially used by prokaryotic gram-negatives 

and eukaryotic fungi and protozoa (Figure 4). The amount of incorporated 13C decreased 

from day 3 to day 10 for each of the microbial groups and both carboxylic acids (Figure 4, 

the only exception is incorporation of palmitate into actinomycetes). 
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Fig. 4 Recovery of applied 13C from positions of acetate (top) and palmitate (bottom) in 
microbial groups after 3 and 10 days. Experimental points (means ± SEM, N=4) 
are presented. Significant differences of incorporation of individual positions and 
incorporation between the days, calculated by nested ANOVA, are presented in 
Supplementary, Table A4 

Specifics in the acetate and palmitate transformations are more visible if the diver-

gence index (DI) is considered rather than the absolute 13C incorporation (Figure 5). For 

acetate, each of the microbial groups showed the preferential incorporation of C-2. How-

ever, the discrimination between C-1 and C-2 was lowest for gram-negative groups (who 

had the highest absolute incorporation) and highest for eukaryotic groups (who had the 

lowest acetate 13C incorporation) (Figure 5). The DI of palmitate did not show similar 

trends: each microbial group had individual preferences for incorporation of palmitate 
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positions into their PLFAs. Similar to acetate, the discrimination between positions was 

lowest for the two gram negative groups. For many microbial groups, the position-specific 

preferences and discrimination between positions strongly changed from day 3 to 10. 

This reflects an intensive turnover of palmitate 13C, even if incorporated into PLFA. 

 

Fig. 5 Divergence index (DI) reflecting discrimination between C positions by incorpo-
ration into individual microbial groups 3 (left) and 10 (right) days after applica-
tion of 13C-labeled acetate (top) and palmitate (bottom). Experimental points 
(means ± SEM, N=4) are presented. Significant effects of C position and day on 
DI, calculated by nested ANOVA, are presented in Supplementary Table A5. 
Letters indicate significant differences (p < 0.05 derived from HSD post-hoc 
test) in the relative incorporation of the C positions into one group. 
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2.8.4 Discussion 

2.8.4.1 Utilization and turnover of acetate and palmitate by soil microbial 

community 

The short-chain low molecular weight organic acids are a well-used microbial sub-

strate (Jones et al., 2003). Our study shows that long chain carboxylic acids like palmitate 

are also good substrate in soils and are used in similar proportions by the microbial 

community (Figure 1). In specific pathways, such long chain carboxylic acids can function 

as direct precursors for lipid formation, e.g. that of PLFA. Then, their incorporation into 

microorganisms can even exceed those of low molecular weight substances (Figure 1).  

The preferential oxidation of C-1 of acetate is in accordance with previous studies 

and can clearly be linked to microbial metabolism, i.e. the oxidation of acetate in the citric 

acid cycle (Dippold and Kuzyakov, 2013; Fischer and Kuzyakov, 2010b) (Figure 6). A 

similar preferential oxidation of C-1 was observed for palmitate, especially after 10 days. 

This reflects that if palmitate is used in basic C metabolism, e.g. as an energy source, it is 

successively oxidized by fatty acid β-oxidation to acetyl-CoA (2 C atoms) units (Caspi et 

al., 2008; Keseler et al., 2009). Consequently, terminal C-1 and C-2 from palmitate form 

an acetate unit, and are transformed similarly to acetate in basic C metabolism.  

 

Fig. 6 Metabolic pathways of fatty acid formation from acetate and fatty acid transfor-
mations of palmitate in soil. 

At day 10, a higher portion of the 13C remaining in soil is found in microbial biomass 

for acetate than for palmiate (p<0.05). A higher portion of the 13C in microbial biomass for 

acetate than for palmiate (p<0.05) clearly shows the lower microbial availability of palmi-

tate. Consequently, a higher relative proportion of the added 13C remained extracellular, 

e.g. as SOM-associated palmitate. Nevertheless, a high discrimination between C-1 and 

C-2 was observed, which was even higher for palmitate than for acetate at day 10. This 

indicates that in addition to the microbial transformed palmitate also palmitate stabilized 

in soil gets transformed by terminal oxidation. This terminal oxidation of carboxylic acids 
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to odd and even alkanes has been previously described for plants and microorganisms 

(Dennis and Kolattukudy, 1992; Ladygina et al., 2006; Park, 2005), and specific as well 

as unspecific decarboxylases contribute to the decarboxylation of carboxylic acids in soils 

(Hofrichter et al., 1998). Extracellular transformations are known to be less relevant for 

well available, low molecular weight organic substances (Dippold and Kuzyakov, 2013). 

However, their quantitative relevance for hydrophobic substances, such as palmitate, 

which could be stabilized by hydrophobic interactions in soils and are consequently less 

available for microbial uptake, still remains open. To finally identify extracellular, terminal 

oxidation, selective inhibition of microbial, intracellular processes coupled with position-

specific lipid 13C labeling has to be performed (Dippold and Kuzyakov, 2013). 

 

2.8.4.2 Pathways of fatty acid formation from acetate in soil  

Whereas in microorganisms the C-2 from acetate is preferentially incorporated 

compared to C-1, this clear pattern is less expressed if acetate C is used for PLFA syn-

thesis (Figure 1). This shows that many of the microbial compounds in cytosol (released 

by the chloroform-fumigation-extraction) are small water soluble products like carboxylic 

acids or nucleotides derived from citric acid cycle metabolites. During the citric acid cycle 

the C-1 of acetate gets oxidized in an early step, whereas several cycles are needed until 

acetate C-2 gets oxidized (Figure 6). However, acetate is a direct precursor for fatty acid 

synthesis, which is built up from the C2-unit acetyl CoA (Caspi et al., 2008; Keseler et al., 

2009; Lengeler et al., 1999). Therefore, the direct formation of fatty acids from acetate 

would lead to an identical incorporation of both positions (Figure 5). This identical incor-

poration was not observed in this study. Instead, there are clear specifics for C-1 and C-2 

incorporation into individual PLFAs (Figure 2b): The lower incorporation of C-1 into basic, 

straight chain fatty acids like palmitate can be explained by the utilization of already par-

tially oxidized fragments of acetyl CoA for fatty acid synthesis. This is similar to the me-

tabolism of glucose (Dippold et al., submitted). Although glucose is a direct precursor for 

amino sugar synthesis, glucose molecules were transferred into basic glucose C metabo-

lism and only fragments of the partially oxidized and split molecule were subsequently 

used for amino sugar synthesis. Similar bidirectional pathways were observed for carbo-

hydrate synthesis: formation of microbial sugars from glycine occurred parallel to direct 

formation from glucose and in parallel to glucose oxidation (Derrien et al., 2007). Such 

bidirectional pathways can also explain the C positions used for fatty acid formation in 

this study: acetate was partially oxidized by the citric acid cycle and fragments, only con-

taining C-2, were transferred back from citric acid cycle metabolites towards acetyl-CoA 

for new fatty acid synthesis.  
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An alternative explanation would be that the majority of fatty acids are not newly 

formed from acetyl-CoA (equal incorporation of C-1 and C-2). Instead, acetate 13C was 

only used to perform transformation and modifications at already existing fatty acids, e.g. 

elongations of partially degraded fatty acids or the introduction of branching points into 

molecules. Figure 2b shows that no acetate C-1 is incorporated in any odd fatty acid: this 

is rather unlikely, if fatty acids with 15, 17 or 19 C are newly formed from acetyl-CoA (us-

ing 7, 8 or 9 units of acetyl-CoA). However, if only a terminal acetyl-CoA is added and 

afterwards the terminal carboxylic group is split to reach an odd fatty acid, this would 

cause a low incorporation of C-2 and the absence of C-1 incorporation into odd fatty ac-

ids (Figure 2b). For non-growing microbial communities under maintenance conditions, 

like in this study (see Table 1), internal recycling of fatty acids is likely to occur: the utili-

zation of direct precursors contributes to save energy and C (Lengeler et al., 1999). 

However, this can only finally be proven, if not only position-specific labeling but also po-

sition-specific detection of the isotopic label in PLFAs is performed. 

 

2.8.4.3 Pathways of fatty acid transformations in soils   

The higher absolute incorporation of palmitate C compared to acetate C for the 

formation of PLFA showed that the more complex and direct precursor palmitate is pre-

ferred for synthesis and acetate is preferred for catabolism. This suggests already that 

palmitate was not fully degraded to acetyl-CoA and new fatty acids were built up from 

acetyl-CoA according to the resynthesis pathway (Rhead et al., 1971). Instead it is likely 

that modification of intact palmitate occurred. Figure 4 shows that the initially added 13C 

palmitate is successively transformed to more diverse spectra of fatty acids. Comparing 

those transformed fatty acids with the PLFA fingerprint of the soil (Figure 3) shows that 

over a period of 10 days the newly transformed fatty acids are approaching the composi-

tion and consequently the demand of the microbial community. However, different kinet-

ics of transformations are clearly shown by figure 3: Simple desaturation of palmitate oc-

curred rapidly during the first 3 days after labeling. Thereafter, the proportion of desatu-

rated fatty acids only marginally increased. More complex, biochemical processes, like 

elongations or even more branchings, occurred more slowly and therefore the proportion 

of these fatty acids strongly increased after day 3 . 

However, the use of intact palmitate and the following modifications are in accor-

dance with high recycling of existing fatty acids in soil microorganisms observed by ace-

tate 13C (Figure 2). This is confirmed by the fate of individual palmitate positions: 1) there 

is almost no C-1 and C-2 incorporated in even numbered fatty acids smaller than palmi-

tate, e.g. C14 fatty acid (tetradecanoic acid). This suggests that the terminal acetate (C-1 
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and C-2) of palmitate is just split off to form the C14 fatty acid, whereas the basic C 

skeleton containing C-16 remained intact. 2) There is no palmitate C-1 in odd numbered 

fatty acids, suggesting that the terminal C-1 is only oxidized during the formation of odd 

numbered fatty acids from even numbered palmitate. 3) C-1, C-2 and C-16 are incorpo-

rated in similar amounts in desaturated fatty acids (Figure 2c). This suggests that the 

unsaturated, straight chain palmitic acid is just desaturated – or elongated and desatu-

rated – for the formation of desaturated C16 and C18 fatty acids.  

Position-specific 13C labeling cannot distinguish whether these modifications occur 

as free fatty acids or bound to the PLFA. Whereas elongations and shortenings need to 

occur with a free, non-esterified terminal carboxylic group (Caspi et al., 2008), modifica-

tions like 10-methyl branching, cyclization or desaturation are known to be possible if 

fatty acids are bound to a PLFA (Aguilar et al., 1998; Lennarz, 1970). To distinguish 

transformations of free fatty acids from those occurring bound in PLFAs within the mem-

brane, the measurement of isotopic label in intact phospholipids and free fatty acids has 

to be performed with much shorter time intervals than those chosen for this study. How-

ever, irrespective of the detailed biochemical mechanism, this study proved: 1) an inten-

sive modification and use of intact fatty acids taken up from soil, and 2) an intensive re-

cycling of the microbial fatty acid pool (which can occur intracellular or intercellular after 

cell death). Therefore, the previous assumption that fatty acids are generally newly 

formed from the added substrates have to be discarded and future PLFA studies, be-

cause they have to consider the reuse of existing plant and microbial-derived fatty acids 

(see section 4.5).  

 

2.8.4.4 Pathways of specific microbial groups in soils  

For the example of acetate, Figure 3 reflects the classical use of LMWOS by indi-

vidual microbial groups in soils: gram-negatives are known to be the dominating group in 

the rhizosphere (Soderberg et al., 2004; Tian et al., 2013) and are most competitive for 

LMWOS (Apostel et al, 2013, Gunina et al, submitted). In contrast, gram-positives prefer 

old SOM (Kramer and Gleixner, 2006) and are less competitive for LMWOS. In general, 

the more complex organisms are structured, the lower their turnover and their competi-

tiveness for fast uptake of LMWOS is: Bacteria have a shorter generation time (bacteria 

20 min versus fungi 4-8 h to complete a life cycle under optimal conditions) and conse-

quently higher cellular turnover (bacteria 2-3 times and fungi 0.75 times biomass turnover 

per year under soil conditions) (Moore et al., 2005; Rousk and Baath, 2007; Waring et al., 

2013). The turnover is even slower for higher levels of the nutritional net, e.g. the proto-

zoa. Consequently, the results for acetate utilization in this study confirm that fast growth 
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is based on the utilization of readily available substrates and is closely associated with a 

fast turnover of the respective microbial groups in the soil. Microbial groups with a faster 

turnover are commonly more competitive for LMWOS, like acetate, even if the microbial 

community in general is under maintenance conditions (Gunina et al., submitted).  

However, such a general rule is not valid for more complex, not ubiquitous sub-

strates like palmitate: Figure 3 shows that, even within the gram-negatives, there is a 

clear preference of palmitate utilization by the gram-negatives 2. Separation of the two 

groups of gram-negatives was based on different groupings of the respective gram-

negative fatty acids by explorative statistical tools (here: loadings of fatty acid contents on 

different factors in a principle component analysis). This tool, commonly used to charac-

terize fatty acid fingerprints, supported here the separation and identification of two eco-

physiologically different groups of gram-negatives: gram-negative 1 with a preference for 

LMWOS and gram-negative 2 with a preference for more complex, hydrophobic carbox-

ylic acids (Figure 4). 

Not only the absolute uptake but also the metabolism was specific for the investi-

gated microbial groups. The Divergence Index revealed the preference for acetate C-2 

incorporation for each of the microbial groups. However, discrimination between C-1 and 

C-2 increased significantly for those groups with high LMWOS, i.e. acetate, uptake. (Fig-

ure 4 and Figure 5). This can have two possible reasons: 1) Fast growing microbial 

groups with rapid turnover are characterized by a more direct metabolismn using precur-

sors without further transformation, and 2) The fast growing gram-negatives are mainly 

characterized by straight chain, monounsaturated C16 and C18 fatty acids (Zelles, 1999), 

which are formed by simple desaturation without complex metabolic processes like me-

thylations or branchings (Lennarz, 1970) leading to discriminations between C-1 and C-2. 

In both cases, it can be concluded – at least for the PLFA formation pathway - that more 

direct, less complex metabolic pathways are characteristic for fast growing microbial 

groups with high turnover. This is also confirmed for palmitate incorporation into PLFA, 

where the gram-negatives showed a comparatively low discrimination between the palmi-

tate positions (Figure 5). However, to prove these general or microbial group-specific 

transformation steps, a combination of position-specific labeling with position-specific 

analysis of the microbial transformation products is needed. Nevertheless, the strong 

difference in DI from day 3 to day 10 for palmitate confirms that a high, internal turnover 

e.g. by recycling and transformation of the fatty acids, took place after 13C incorporation. 
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2.8.4.5 Consequences for the application of fatty acids as biomarkers 

The observed transformation of free fatty acids in soil by microorganisms causes 

consequences for the application of fatty acids as microbial and plant biomarkers. Al-

kanes can more easily be distinguished between plant- and microbial-derived n-alkanes. 

This enables the alkane fingerprint to be corrected for microbial contribution (Buggle et 

al., 2010; Zech et al., 2013). In contrast, the differentiation between microbial and plant-

derived fatty acids is not as sharp: Vegetation type as well as microbial community affect 

the fatty acid sources in soils (Otto et al., 2005) and, in many cases, a reconstruction of 

the original source is not possible (Gocke et al., 2014). Furthermore, it is not clear, 

whether microbial enzymatic systems modifying n-alkanoic acids like palmitate are highly 

specific enzymes, which work only intracellularly or whether unspecific modification of 

plant-derived free fatty acids can occur. This would strongly limit the application of fatty 

acid fingerprints (Zhou et al., 2005) as well as their isotope signatures (Li et al., 2011) for 

paleo-environmental reconstructions. Therefore, further investigations, e.g. position-

specific labeling of long-chain plant-derived fatty acids and investigation of their microbial 

transformations, is needed. 

The transformation and internal recycling of fatty acids within microbial cells has 

important consequences for its application as microbial biomarkers. Changes within the 

fatty acid fingerprint in soils are commonly assumed to be related to changes in the mi-

crobial community structure (Zelles, 1999). However, acetate as well as palmitate label-

ing showed in this study that fatty acids are transformed and modified very fast in soils. 

Pure culture studies confirm that these modifications of fatty acids occur within living 

cells, if environmental conditions surrounding a living organism are changing, e.g. by 

temperature changes (Aguilar et al., 1998). These modifications of existing fatty acids 

can even occur in intact PLFA within the membranes (Aguilar et al., 1998; Lennarz, 

1970). Therefore, further knowledge about the impact of internal fatty acid turnover for 

the interpretation of the PLFA fingerprint is needed (Frostegard et al., 2011). However, 

the high internal turnover of fatty acids within living microbial cells explains the discrep-

ancy between the turnover of PLFA and of that of microbial biomass. PLFAs are as-

sumed to have a half-life between one day and one week (Kindler et al., 2009; Ranneklev 

and Baath, 2003; Rethemeyer et al., 2004). In contrast, the turnover of the bacterial mi-

crobial community is assumed to occur 2-3 times per year (Moore et al., 2005; Rousk and 

Baath, 2007; Waring et al., 2013). An intensive intracellular turnover of PLFA explains the 

much faster turnover of PLFA. This is similar to observations for the turnover of microbial 

cell walls (Dippold et. al, submitted): for E. coli it was even shown that they recycle 60% 

of their peptidoglycan during cellular life (Park and Uehara, 2008; Uehara and Park, 

2008). Malik et al. (2013) showed that the turnover of microbial biomass compounds de-
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creased with increasing molecular size. In contrast to cell wall amino sugars, PLFA do 

not need to be depolymerized to get modified and, therefore, a higher turnover of this 

microbial compound class is likely. This has consequences for the interpretation of iso-

tope label incorporation into PLFAs: The PLFA will not be labelled homogeneously after 

the pulse addition of 13C (or 14C) compounds. The 13C label is mainly located in newly 

introduced branchings, functional groups or terminal elongations of the fatty acids. There-

fore, turnover times gained from this approach are not representative for the entire PLFA 

pool as these terminal endings and functional groups are subjected to a higher turnover 

than the basic skeleton of fatty acids.  

 

2.8.5 Conclusions and Outlook 

This is the first study investigating the formation and transformation of fatty acids by 

the microbial groups in soil. Both substances – acetate and palmitate – were used in di-

verse metabolic pathways: They were fully and partially oxidized in the citric acid cycle, 

but were also used for the formation of microbial biomass or PLFAs. The transformations 

of the basic microbial C metabolism dominated the position-specific pattern in soil: Ace-

tate C-2 was preferentially incorporated into microbial biomass whereas acetate C-1 was 

preferentially oxidized.  

Both carboxylic acids were used as precursors for PLFA formation. However, ace-

tate was rarely used to form completely new fatty acids, but was mainly utilized as a pre-

cursor for the transformations of existing fatty acids, e.g. was introduced by elongations 

or branchings into the PLFAs. 

Palmitate incorporation into PLFA was higher than that of acetate. This supports 

the preferential use of the existing fatty acid pool for PLFAs formation. Position-specific 

transformations reflect that palmitate was mainly used as an intact precursor for PLFAs. 

After the uptake it is successively modified according to the fatty acid demand of the mi-

crobial community, whereas desaturations are performed faster than elongations or 

branchings. Uptake and transformations of fatty acids are specific for individual microbial 

community members. In summary, 13C labeling of palmitate and acetate reveals a high 

internal turnover of fatty acids, presumably even within living cells.  

This causes consequences for the utilization of fatty acids as plant and microbial 

biomarkers: if the uptake and transformation of long-chain plant-derived fatty acids occur 

in a similar range as for palmitate, then the interpretation of plant-derived fatty acid fin-

gerprints is hardly possible. Also, the interpretation of PLFA fingerprints has to consider 

that not only microbial community restructuring, but also modifications of fatty acids (e.g. 

due to changing environmental conditions) can occur within living cells. If isotope pulse 
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labeling is used to calculate PLFA or microbial turnover times, it has to be considered 

that 13C from LMWOS is not incorporated homogenously into the PLFAs but mainly 

bound in functional or terminal groups of fatty acids.  

This new view on PLFA formation and fatty acid transformations enables an im-

proved interpretation of labeling experiments and microbial lipid transformations in soils. 

The final identification of the incorporation and transformations of fatty acids needs a 

combination of position-specific 13C labeling with position-specific analysis in the metabo-

lites.   
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Supplementary Data 

Supplementary Table A1: Fatty acids in the external standard 
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Supplementary Table A3: Result of factor analysis 

 

 

Supplementary Table A4: Nested ANOVA for acetate and palmitate positions nested in 
the variable day, block as random variable and day. Degrees of freedom (df), F-values 
and significance level (p) are shown for the acetate and palmitate. If requirements for 
parametric tests (normal distribution + homogeneity of variances was not given, a 
Kruskal-Wallis ANOVA for the individual treatments was calculated (in this case H-Value 
is given instead of F value) 
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Supplementary Table A5: Nested ANOVA for acetate and palmitate DI, with the inde-
pendent variables position (being nested in the variable day), block (as random variable) 
and day. Degrees of freedom (df), F-values and significance level (p) are shown for the 
acetate and palmitate 
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Abstract 

Current studies suggested that besides inorganic nitrogen (N), many plants are 

able to take up organic N in form of amino acids. However, reliable methods to quantify 

the uptake of intact amino acids are still missing and the relevance of organic N uptake is 

doubted. We used position-specific 14C labeling to investigate the uptake of intact amino 

acids and their role in the N nutrition of plants. 

Position specifically 14C and 15N labeled alanine, injected into the rhizosphere soil, 

enabled to trace the uptake of C from individual molecule positions by Zea maize, Lu-

pinus albus and Cichorium intybus. As a control, uniformly 14C labeled alanine, acetate 

and inorganic 15NH4
+ and 15NO3

- were applied.  

The same uptake of uniformly 14C labeled alanine and acetate showed that low mo-

lecular weight organic substances are taken up by roots may occur by passive mecha-

nisms, without differences for N containing and N free organics. Differences in plant up-

take of 14C from individual positions in alanine molecule confirmed that soil microorgan-

isms split alanine within 6 h into transformation fragments (including mineral NH4
+), which 

were then taken up by plants. Only 0.04 to 0.25% of the alanine added directly into the 

rhizosphere were taken up as intact molecule with the highest uptake observed for lupine 

– the plant adapted to organic N transport from Rhizobia.  

Microbial utilization strongly dominated the fate of low molecular weight organic 

substances in soils and the majority of amino acid 14C uptake by plants was explained by 

passive uptake of microbial transformation products. Position-specific labeling is an inno-

vative tool that enables to separate easily the intact uptake from uptake of molecule 

fragments. Thus, it improves the quantification of intact uptake by avoiding the up to 3-

fold overestimation of uniform labeling approaches. 

 

 

 

 

 

 

 

 

 

Keywords: Alanine; Position-specific, dual isotope labelling; Organic N uptake; Chicory; 

Lupine; Maize; Isotopic approaches; Nitrogen cycle 
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2.9.1 Introduction 

Over the past century, many studies have emphasized the role of dissolved inor-

ganic nitrogen (DIN) in ecosystems (Matson et al., 1997; Vitousek et al., 1997; Vitousek 

et al., 1979). Ammonium (NH4
+) and nitrate (NO3

-) are the main representatives of min-

eral nitrogen. Ammonium is a reduced form of DIN and can be directly utilized by plants 

after uptake whereas nitrate needs to be reduced first. Nitrate reduction demands energy 

from plants (Doubnerova and Ryslava, 2011; Liu et al., 2011; Tischner, 2000) leading to 

additional CO2 fluxes through the plant-soil system (Gavrichkova and Kuzyakov, 2008, , 

2010). Both DIN species can be lost from ecosystems: nitrate by leaching into the ground 

water, denitrification to N2O and N2, or reduction to ammonium and ammonium can be 

lost by volatilization or irreversible fixation by soil minerals.  

In ecosystems with low availability of DIN due to slow mineralization, like boreal or 

arctic ecosystems (Nasholm et al., 1998; Vitousek et al., 1979), plants may also rely on 

other N forms such as dissolved organic nitrogen (DON). This is not only a short-circuit in 

the traditionally assumed N nutrition pathways (the mineralization to NH4
+ and NO3

- is 

omitted), but also reduces potential N losses from ecosystems, e.g. by leaching. 

In the past twenty years, there has been remarkable interest in DON as a plant N 

source (Chapin et al., 1993; Jones et al., 2005a; Nasholm et al., 1998; Paungfoo-

Lonhienne et al., 2012; Schimel and Chapin, 1996). Organic N can be found in many 

compounds in soil from macromolecules like proteins (Jones et al., 2005d) or humic sub-

stances (Szajdak et al., 2003) to low molecular weight organic substances (LMWOS) like 

amino acids (Doerr et al., 2012; Jones et al., 2005c; Lipson et al., 1999; Streeter et al., 

2000), amino sugars (Roberts et al., 2007; Roberts and Jones, 2012) and nucleic acids 

(Kuzyakov, 1996).  

Many amino acids have very fast cycling rates and the half-life of amino acid C in 

soils is in the range of few hours (Jones et al., 2009; Kuzyakov, 1996). This fast cycling is 

connected with fast and almost complete uptake by microorganisms (Fischer et al., 

2007). Another study demonstrated that LMWOS at average soil concentrations in soil 

solution (below 10 µmol l-1) were taken up by microorganisms at a rate of 82% after 3 min 

(Fischer et al., 2010b), and the half-life of amino acids in soil solution ranges between 4-

8 min (Jones et al., 2004). Due to this fast utilization, soil microorganisms are stronger 

competitors for amino acids than plants (Biernath et al., 2008; Hodge et al., 2000; Jones 

et al., 2005a; Kuzyakov and Xu, 2013b), whereas in the long-term this N is released by 

the microorganisms and is available for plants. In contrast, Chapin et al. (1993) showed 

in the early 90ies the preferential use of organic N by an arctic sedge which started the 

discussion about the relevance of amino acids as plant N source.  
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Further studies showed that boreal forest vegetation actively take up amino acids, 

probably due to a lack of other N sources (Delgado-Baquerizo et al., 2011; Nasholm et 

al., 1998). The parallel uptake of DIN and DON is dependent on their availability 

(Kranabetter et al., 2007). Therefore DON is discussed to be less relevant for agricultural 

crops (Jones et al., 2005a). In order to evaluate the relevance of DON, a comparison 

between LMWOS with inorganic N uptake was recommended (Glass et al., 2002; Jones 

et al., 2005a; Streeter et al., 2000) especially for agroecosystems, where the role of DON 

is still controversial. 

Isotope labeling of LMWOS with 15N coupled with 13C or 14C is a common tool to in-

vestigate uptake and allocation in plants as well as mineralization or microbial incorpora-

tion (Thede, 2010; van Hees et al., 2005). The uptake of amino acids by plants was 

mainly investigated by dual-labeling with 15N and 13C (Nasholm et al., 1998; Streeter et 

al., 2000). It is tacitly assumed in this approach that the uptake of 13C corresponds to the 

uptake of the intact amino acid. However, dual isotope labeling has a methodological 

shortcoming leading to an overestimation of intact uptake: microorganisms produce la-

beled fragments from the added amino acids, and these fragments and mineralized N 

can be taken up in parallel (Rasmussen et al., 2010). This would contribute to the quanti-

fied intact uptake by the dual isotope labeling approach (Sauheitl et al., 2009a). The first 

evaluation of this overestimation was performed by the application of dual uniformly la-

beled amino acids and compound-specific 13C and 15N analysis during their root uptake. It 

was shown that due to uptake of labeled metabolites, bulk measurements caused an up 

to six-fold overestimation of the intact uptake (Sauheitl et al., 2009a). However, com-

pound-specific 13C and 15N analysis has the disadvantage of being a time-consuming and 

expensive technique (Sauheitl et al., 2009a).  

To prove the uncertainties of the original 13C/15N approach, Rasmussen et al. 

(2010) proposed position-specific labeling as a potential tool to overcome the problem of 

molecule splitting. Thus, uptake as a whole molecule could be distinguished from uptake 

as partially degraded amino acid fragments i.e. decarboxylated fragments (Dippold and 

Kuzyakov, 2013). Some recent studies (Dijkstra et al., 2011a; Fischer and Kuzyakov, 

2010) clearly showed that position-specific 13C and 14C labeling enables tracing the fate 

of individual functional groups in various soil pools. If the uptake of amino acid C occurs 

as a broad spectra of various transformation products (and not as intact amino acids), 

this would strongly reduce the importance of N nutrition by amino acid – from a quantita-

tive as well as a regulative view concerning N deficiency.  

Here, we used the same technique of position-specific 14C labeling to quantify the 

intact uptake of amino acid. We hypothesized that 1) the original 13C/15N approach over-
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estimates the intact uptake of amino acids, and 2) organic N uptake is traceable in tem-

perate ecosystems but is of minor relevance for the N nutrition of agricultural plants.  

In order to consider the physiological differences of plant functional types (Weigelt 

et al., 2005), we performed our experiment with three species: maize, chicory and lupine. 

These species differ in their N uptake and transformation, their physiology and morphol-

ogy, especially in the root system: 1) the grass maize (Zea mays L.) has a fibrous root 

system and reduces NO3
- in roots and shoots (He et al., 2011), 2) the herb chicory 

(Cichorium intybus L.) reduces NO3
- in roots (Goupil et al., 1998) and has a taproot sys-

tem, where it can store N-containing compounds for the next year (Ameziane et al., 1997) 

and 3) the legume lupine (Lupinus albus L.) reduces NO3
- in roots (Gavrichkova and 

Kuzyakov, 2008) and has the ability to reduce atmospheric N2 in root nodules through 

symbiosis with Rhizobia.  

As organic N source, we used alanine as one of the most abundant amino acids 

(Fischer et al., 2010a) and ammonia and nitrate as inorganic N sources. To evaluate the 

preference of amino acid uptake compared to N-free LMWOS, we included additional 

treatments with acetate, which has a structural resemblance to alanine. If uptake of N-

LMWOS (alanine) occurs mainly by unselective mechanisms, it should be in a similar 

range to N-free LMWOS (acetate).  

The aims of this study were: 1) to determine the fate of amino acids in soil with a 

special focus on the plant uptake of an initial substance versus the uptake of its transfor-

mation products, 2) to assess the ecological and physiological role of intact uptake of 

amino acids by different plant species and 3) to evaluate the relevance of three N 

sources (alanine, ammonium and nitrate) for N nutrition of agricultural plants. 

 

2.9.2 Material and Methods 

2.9.2.1 Experiment preparation 

Soil sampling 

Soil samples were collected from an agricultural field site close to Hohenpölz (Ba-

varia, Germany at 49.907 N, 11.152 E, 501 m.a.s.l.) that had been long-term cultivated 

with cereals (barley, wheat, triticale). The soil is a loamy haplic Luvisol (FAO, 2006). Soil 

was collected from 0-10 cm, sieved to 2 mm and roots were removed. The physico-

chemical characteristics of the soil are described in Table 1. 
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Plant and material preparation 

After sieving, soil was immediately filled into transfer pipettes made of low density 

polyethylene 30 cm in length and 1 cm diameter, which were used as rhizotubes 

(Biernath et al., 2008; Kuzyakov and Jones, 2006).  

We used maize (Zea mays L), lupine (Lupinus albus L) and chicory (Cichorium in-

tybus L). Plant seeds were pre-germinated at constant temperature (30 ºC) and watered 

for 36 hours (Gavrichkova and Kuzyakov, 2008). Then, one sprout of each plant was in-

serted into the rhizotubes. The rhizotubes were submerged in a plastic container half-

filled with cold water to maintain the soil temperature around 12ºC. Thus, microbial activ-

ity e.g. mineralization rates should resemble field conditions (Jones, 1999). The pipette 

was connected with an air inlet (tube) at the bottom and directly under the soil surface 

(Biernath et al., 2008) to avoid water saturation of the soil and provide the soil and roots 

with air. 

 

Table 1 The physicochemical properties of the Ap-horizon of the haplic Luvisol. 

Soil parameters  Values  

pH KCl 4.88 ± 0.12 

pH H2O 6.49 ± 0.11 

Total Organic Carbon 1.77 ± 0.07%  

Total Nitrogen  0.19 ± 0.01% 

Cation-Exchange Capacity 13.6 cmolc kg-1 soil 

Microbial biomass C  42.5 ± 1.1 µmol C g-1 soil 

Microbial C/N ratio 9.9 ± 0.3 

 

Chemicals and radiochemicals  

The radiochemical stock solution had concentrations of 50 µM for alanine and ace-

tate, both with 106 DPM ml-1 14C activity. Position-specific labeled alanine ([1-14C], [2-14C], 

[3-14C]alanine, American Radiolabeled Chemical Inc., St Louis, USA), as well as uni-

formly labeled [U-14C]acetate (Biotrend Köln, Germany) and [U-14C]alanine (American 

Radiolabeled Chemical Inc., St Louis, USA) were used. 

Nitrogen labeling was performed with a 99 atom-% 15N enriched tracer of either 

alanine CH3CH(15NH2)COOH as the organic N-source or ammonium sulfate (15NH4)2SO4 

or potassium nitrate K15NO3 as inorganic N forms (Biotrend Köln, Germany). Amount of 

applied C and N was identical in each treatment and lower than average concentrations 

of alanine, acetate, NH4
+ or NO3

-  in agricultural soils.  
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2.9.2.2 Experimental setup 

Treatment and labeling 

Each plant (chicory, lupine, maize) grew until their root system reached the rhizo-

tube bottom at 25 cm (chicory 5 weeks, lupine 4 weeks and maize 3 weeks after germi-

nation). Each treatment (the three plants, the four 14C-LMWOS-treatments (acetate, 

alanine C-1, alanine C-2, alanine C-3 and alanine uniformly labeled) and the three 15N 

nitrogen sources (alanine, ammonium and nitrate)) were performed in four replicates. For 

each plant the respective backgrounds with addition of the same amount but unlabeled 

substances were performed in four replicates.  

Each tube was sealed with silicon (NG 3170 Thauer & Co., Dresden) on the top to 

avoid C fixation of microbially respired 14CO2 by the plants. The seals were applied 24 h 

before tracer application in order to avoid air leakage (Tian et al., 2013). Pipes were in-

stalled at the bottom of the top of the rhizotube, which were connected to a gas volume 

separated from the aboveground biomass, to enable a gas exchange between soil and 

atmosphere.  

Finally, 100 µl of tracer solutions were injected at three locations along the tube (at 

5, 10 and 15 cm depth) to spread the tracer over the entire rhizosphere.  

 

Harvesting plant biomass 

To identify the uptake of intact amino acids, we harvested 6 h after labeling be-

cause the half-life of amino acids C in soil ranges from 1 to 12 h (Jones et al., 2005b). 

Aboveground biomass was cut at the top surface of the soil and immediately submerged 

in liquid nitrogen for 30 sec. The entire rhizotube was also frozen in liquid N2. Afterwards, 

all samples were stored at -20 °C and before further analysis, roots and soil were sepa-

rated manually and roots were washed according to Sauheitl et al. (2009b) to remove 

sorbed LMWOS and ions.  

 

2.9.2.3 Laboratory analysis 

Chemical and radiochemical analysis 

Soil and plant samples were freeze-dried and ball-milled for 14C and 15N analysis. 

To quantify 14C incorporation, we combusted 500 mg of soil and 20 mg of roots/shoots at 

600 ºC for 10 min under a constant O2 stream using an HT 1300 solid combustion mod-

ule of a N/C analyzer 2100 (Analytik Jena AG, Jena Germany). The 14CO2 was trapped in 

10 ml of 1 M NaOH (two times 5 ml). For scintillation analysis, 3 ml of this NaOH with 

soil-, root- and shoot-derived 14CO2 and 6 ml of scintillation cocktail (Ecoplus, Roth Com-

pany, Germany) were mixed and measured on an LS 6500 scintillation counter (LS 6500, 
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Beckman-Coulter, Krefeld, Germany). All samples were measured after 24 hours of dark 

storage in order to remove chemiluminescence. 

In parallel, 15N was measured in 5-6 mg of soil and 0.25 mg of root/shoot samples 

using a Euro EA Elemental Analyser (Eurovector, Milan, Italy) which was coupled via a 

ConFlo III interface (Thermo-Fischer, Bremen, Germany) to a Delta V Advantage isotope 

ratio mass spectrometry (IRMS) (Thermo Fischer, Bremen, Germany) (Glaser, 2005). 

 

Calculations of 14C and 15N uptake 

The percentage of incorporated 14C from the applied 14C in the pools (Cinc_pools) was 

calculated by the ratio of the 14C activity in each pool (soil, root, shoots or total biomass) 

divided by the applied 14C activity per rhizotube. Decomposition of alanine and acetate to 

CO2 was calculated as the difference between 14C added and 14C recovered in soil and 

plant biomass. Please note that additional unconsidered losses in 14C would lead to an 

overestimation of the calculated, mineralized CO2. 

All δ15N values were converted into 15N atom% (rpool), considering the isotope com-

position of international reference standards (Fry, 2006). The content of N (%) and the 

dry weight of the pools (DWp) were used to calculate the total N ([N]pool) content per sam-

ple. Thereafter, 15N uptake (alanine, nitrate and ammonium) applied to the different pools 

was calculated following a mixing model in equation (1) (Amelung et al., 1999): 
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Npool represents the amount of N of an enriched pool and [N]inc-N, is the amount of 

newly incorporated tracer-N. The variables rpool and rpool-BG are the measured at% 15N val-

ues of the labeled pool, its background (BG), and rapp-N is the enrichment of the pur-

chased tracer, respectively.  

The calculation of the percentage of relative N incorporation per pool [Ninc pool (%)] is 

described in equation 2: 
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with [ ]∑ −

pools

NapplN  being the sum of applied nitrogen measured in all of the pools.  

 

2.9.2.4 Calculation of intact uptake of labeled substances 

The calculation of intact uptake of alanine from the 14C to 15N ratio of the plant bio-

mass (Rc/n) in equation 3 is based on the assumption of dual-isotope labeling that intact 
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uptake is characterized by the parallel uptake of 15N and 14C. This parallel uptake can 

either be calculated by a linear regression between C excess and N excess (Nasholm et 

al., 1998) or by the ratio of C to N incorporation: 

biomassinc

biomassinc

nc

N

C
R

_
15

_
14

/ =         (3) 

RC/N was multiplied by 100 to obtain percentage values Rc/n (%). The standard error 

of the mean of this ratio was calculated by Gaussian error propagation. Based on posi-

tion-specific 14C labeling, this ratio can be calculated for each C position of alanine. The 

label signal of all three positions must be equal in the case of intact uptake. However, 

fragment uptake would cause position-specific differences in this ratio. Thus, only the 

lowest value of the three C positions represents the real intact uptake of added alanine; 

all higher values represent uptake of fragments. 

There are still factors which may cause over- or underestimation of this approach: 

First plant metabolism can cause an underestimation because of preferential respiration 

of specific positions similarly to microorganisms. Second, overestimation of intact uptake 

can occur if all three C atoms are transferred to the plant in different fragments.  

In order to have a better understanding of the quantitative relevance of organic N 

uptake compared to DIN, the percentage of intact uptake of alanine from the total N taken 

up (ammonia, nitrate and alanine) was calculated. In addition, we calculated N uptake 

from mineralized alanine with equation 4:  

(%)R(%) N(ala) c/nsinc_biomas_ −=biomassincDIN      (4) 

Where DINinc_biomass (%) is the percentage of alanine-N being mineralized and after-

wards taken up by the plant as DIN; N(ala)inc_biomass is the total 15N incorporation from 15N-

alanine into the plant biomass (in % of applied 15N) and Rc/n (%) is the alanine-15N taken 

up as intact alanine into each plant.  

In the same way, the C incorporated from alanine fragments was calculated: 

( ) c/n

14 R(%) −= biomassfrag CC (%)      (5) 

Where Cfrag is the percentage of an individual C position taken up as a fragment 

and 14Cbiomass is the total percentage of 14C incorporation from each position into the plant 

biomass.  

Assuming fragment uptake as main uncertainty of uniform-labeling approached, 

overestimation of intact uptake compared to position-specific labeling was calculated: the 

mean of the fragmented uptake of the three position summed up with the percentage of 

intact alanine uptake (this resembles the result of uniformly labeling) was divided by the 

percentage of intact uptake. 
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2.9.2.5 Statistical analysis  

Data were checked for normal distribution with Kolmogorov-Smirnov Test and 

checked for outliers with Nalimov Test. Factorial ANOVA (with factors plant compartment 

and substance or position) with the HSD post-hoc test for unequal N treatments were 

used for the data analysis. Calculations were performed by STATISTICA 8.0 (StatSoft 

Inc, Tulsa USA). Figures and tables were plotted using mean ± standard error of mean 

(SEM).  

 

2.9.3 Results 

2.9.3.1 15N uptake in plants from organic and inorganic N sources 

Total N uptake was higher for maize than for chicory and lupine. Nitrate was the 

preferred N source for all plant species. After 6 hours, 34% of the 15N-NO3
- injected into 

the rhizosphere was incorporated into shoots and up to 15% in roots. On the other hand, 

less than 7% of the ammonium was taken up at the same time and alanine N uptake 

reached a maximum of 7% in roots and 4% in shoots.  

Significantly higher uptake of nitrate was found in maize than in lupine and chicory 

(p<0.001), while alanine and ammonia were taken up in similar amounts by all three plant 

species (Fig. 1). Maize fed its high N demand mainly by uptake of nitrate in comparison 

with reduced N sources. 

 

Fig. 1 Percentage of 15N incorporation in roots and shoots as alanine-N, ammonia and 
nitrate in chicory, lupine and maize. Letters indicate significant differences 
(p<0.001) between alanine, ammonia and nitrate within the plants 



Publications and Manuscripts 

 278 

Compared with inorganic N sources, alanine-derived N was preferentially incorporated 

into roots and to a lower amount allocated to the shoots. There was no species effect on 

the root/shoot 15N ratio (Table 2) with the exception of preferential nitrate transport into 

the shoots of maize (p<0.001). 

 

Table 2 Shoot/root ratio of 15N from individual N sources 

Shoot/root  
15N ratio 

Chicory Lupine Maize 

Alanine-15N   0.71 ± 0.24 0.61 ± 0.23 0.13 ± 0.06 

Ammonium-15N 14.65 ± 11.81 0.59 ± 0.16 0.64 ± 0.12 

Nitrate-15N   1.35 ± 0.37 0.76 ± 0.15 2.43 ± 0.35 

 

2.9.3.2 Plant uptake of uniformly 14C labeled alanine and acetate  

After six hours, 0.02 to 0.63% of the added 14C activity were recovered in the 

shoots and 0.06 to 1.51% in roots with significant differences among the three plant spe-

cies (p<0.001) (Fig. 2).  

 

Fig. 2 Percentage of 14C incorporation in roots and shoots after uniform 14C labeling 
with acetate and alanine. Letters indicate the significant differences (p<0.001) of 
acetate and alanine C between plants 

 

Maize took up more acetate than alanine. There was no clear preference of acetate 

uptake for lupine or chicory. Higher uptake of uniformly labeled acetate was found in 
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roots than shoots, reflecting its poor transport to the aboveground plant compartments. 

Plant uptake of uniformly labeled alanine was higher in lupine and lower in chicory with 

similar incorporation in roots and shoots by maize (Fig. 2). The LMWOS-C remaining in 

soil ranged from 42 to 65%, and potential mineralization to CO2 (calculated as difference 

between applied and recovered 14C) occurred in 35 to 57% of the applied tracer without 

significant differences between plants (Figure Supplementary). 

 

2.9.3.3 14C plant uptake of position-specific labeled alanine 

We compared the mean uptake of position-specific labeled isotopomers (mean of 

positions in Fig.3) with the results of uniform 14C labeling (Fig. 2) to evaluate result quality 

and found no significant differences of the mean of the three positions to uniformly la-

beled alanine for any of the investigated pools.  

Alanine C-3 was preferentially incorporated in maize and lupine shoots, whereas 

lupine roots preferred uptake of C-1 (Fig. 3). There was very low 14C incorporation in 

chicory. In general, we observed higher incorporation of C-3 (p<0.001) than of the other 

positions, but with significant differences among the plant species (p<0.001) (Fig. 3).  

  

 

Fig. 3 Percentage of 14C incorporation in roots and shoots after position-specific label-
ing with alanine. The alanine positions were C-1 (carboxyl group), C-2 (amino-
bound group) and C-3 (methyl group). Letters indicate significant differences 
(p<0.001) between alanine C positions. 

 



Publications and Manuscripts 

 280 

Plant species had no significant effect on the amount of mineralized 14C (Figure. 

supplementary). Alanine showed significantly higher mineralization of C-1 (76%) than C-2 

(45%) and C-3 (52%).  

In general, we observed that after 6 h, the individual molecule positions of alanine 

had strongly differing fates concerning plant uptake as well as the proportions remaining 

in the soil.  

 

2.9.3.4 Intact uptake of alanine assessed by position-specific labeling  

The 14C/15N ratio in the plant biomass (shoots and roots) reflects the proportion of 
14C of each individual position, which was taken up together with 15N. Based on position-

specific 14C labeling, this calculation can be performed for each C position of alanine (Fig. 

4). This ratio showed the pattern C-3>C-2>C-1 for each plant. We considered that a 

molecule of alanine could only be taken up intact if all three positions were incorporated 

into the plant. Thus, the minimum of the 14C/15N ratio reflects the maximum intact uptake 

of alanine in plants, which was the case for the 14C/15N ratio of C-1 position. These values 

were in a similar range for the three investigated plant species: 7 to 14% of the alanine-N 

was taken up as intact alanine in the order maize<chicory<lupine (Table 3).  

  

 

Fig. 4 Ratio of 14C/15N for individual alanine C positions incorporated in plant biomass. 
The alanine positions were C-1 (carboxyl group), C-2 (amino-bound group) and 
C-3 (methyl group). Letters indicate significant differences (p<0.001) between 
alanine C positions. 
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In order to compare the contribution of the three applied N sources, we estimated 

the tracer N nutrition budget. Comparing the role of alanine within the three investigated 

N sources, intact alanine uptake reached a maximum level of 0.25% of N. Lupine showed 

the highest N uptake in the form of intact alanine followed by chicory and maize (Table 

3). The range of plant-specific relevance of intact alanine uptake (0.04-0.25%) reflected 

the plant-specific ability for N nutrition by organic sources.  

Table 3 Intact uptake of alanine by chicory, lupine and maize and estimated contribution 
of intact alanine uptake to total N nutrition of these plants with respect to the 
other N sources. 

 Chicory Lupine Maize 

% 15N uptake as intact alanine of 
total alanine-derived 15N uptake  

10.21 ± 3.48 13.70 ± 5.19 7.20 ± 4.70 

% intact alanine of the three in-
vestigates N sources (alanine+ 
ammonium+ nitrate) 

  0.07 ± 0.04   0.25 ± 0.12 0.04 ± 0.02 

Factor of overestimation of intact 
uptake based on uniform labeling 

1.47 ± 0.25 1.14 ± 0.08 2.81 ± 1.89 

 

The uptake of intact alanine reached a maximum of 13.7% of the total 15N uptake 

from alanine (Table 3). The majority of the alanine molecules were metabolized within 

6 h, when the initially organic-bound N was taken up as mineralized ammonium or even 

already oxidized to nitrate. This degradation of alanine as a percentage of the applied 

alanine is illustrated in Fig. 5. Intact alanine as well as mineralized alanine-derived N up-

take was highest for lupine. Once fragmented, the uptake of C-1 was only half of that of 

C-3. This corresponds to the highest decomposition of C-1. This different fate of individ-

ual molecule positions demonstrates splitting of LMWOS which may have occurred in 

plant or soil.   

However, less than 1% of the alanine C was recovered in plants at all, and the ma-

jority of the alanine (~99%) remains in soil or microbial biomass. From the alanine frag-

ments, 1.1% to 9.2% of the mineralized N was taken up by plants, whereas C incorpora-

tion in plants ranged only from 0.01 to 1.58% (Fig. 5). Consequently, only a small portion 

of the applied 14C but a relatively higher portion of the applied 15N was taken up by plants 

and incorporated into their biomass after 6 h.  
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Fig. 5 Illustration of the fate of alanine tracer molecules, which are either taken up in-
tact or degraded/mineralized to fragments and subsequently incorporated into 
plant biomass or microorganisms. Microbial metabolism of alanine by microor-
ganisms is adapted from Dippold & Kuzyakov (in press)  

 

2.9.4 Discussion 

2.9.4.1 Plant uptake of N-containing and N-free organic substances 

Our results showed no preferential uptake of 14C from N-LMWOS alanine compared 

to 14C from acetate – either taken up intact or as fragments - for any of the investigated 

plants. Biernath et al. (2008) found that maize had even higher uptake of acetate than 

alanine. This high uptake of acetate could mainly be attributed to passive uptake mecha-

nisms (Rasmussen et al., 2010). As shown by Jones et al. (2005c) and Ge et al. (2009), 

a higher concentration of LMWOS and well-developed root systems increases plant 

competitiveness for LMWOS compared to microorganisms (Kuzyakov and Xu, 2013a; Xu 

et al., 2011). Stating a passive uptake means in this case the passive, unspecific trans-

port of all LMWOS with the water flux towards the root surface, without any direct root-
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specific regulation of amino acid transport. Specific conclusions about the contribution of 

various uptake systems at the plant surface cannot be stated from this study. If uptake is 

dominated by this passive flow of LMWOS towards the root surface, the bioavailability of 

alanine and acetate for plants would be the main driver for their uptake. Alanine can 

strongly interact with the soil matrix by its amino group, whereas acetate is less retained 

and consequently better available in the soil solution. In addition, microorganisms prefer 

alanine to acetate as a substrate (Fischer et al., 2010b; van Hees et al., 2002). We did 

not observe faster decomposition of acetate than alanine, but did not quantify incorpora-

tion into microbial biomass in this study. Alanine may have been preferentially incorpo-

rated by microorganisms, as previously observed by Fischer et al. (2010b), if the concen-

tration of free alanine in the soil solution was lower than that of acetate.  

The combination of high root development and higher availability of acetate ex-

plains the higher uptake of acetate by maize under the dominance of passive flux of 

LMWOS towards the roots. Thus, a potential explanation from these results is that 

LMWOS are taken up by plants passively, irrespective whether they contain N or not.  

 

2.9.4.2 Fate of functional groups of alanine in soil  

The loss of the carboxyl group by mineralization is higher than that of the methyl 

group in soil. Similar results were shown by Fischer & Kuzyakov (2010) for acetate, 

Nasholm et al. (2001) for glycine, Dijkstra et al. (2011a) for pyruvate, and Dippold & 

Kuzyakov (in press) for alanine. In all of these studies based on position-specific labeling, 

the mineralization of the carboxyl group was fastest compared to all other functional 

groups.  

Comparing remaining alanine-14C in soil after 6 h revealed the highest mineraliza-

tion of C-1 with 68-70% followed by 30-45% and 34-52% for C-2 and C-3, respectively. 

This decomposition was even higher than that observed for 3 days in a field experiment 

being 89%, 49% and 29% for C-1, C-2 and C-3, respectively (Apostel et al., 2013). This 

higher mineralization reflects higher microbial activity under rhizosphere conditions com-

pared to root-free soil (Blagodatskaya et al., 2009). 

The C-1 position is rapidly oxidized by decarboxylation of the C-1 group of pyru-

vate, the most abundant microbial transformation product of alanine, within the microbial 

metabolism. This is an extremely fast process in soil (Dippold and Kuzyakov, in press) 

and kinetics of microbial uptake and metabolization are known to be faster than plant 

uptake (Jones et al., 2005a). In contrast, methyl groups represent reduced C and do not 

need to be further reduced for many anabolic pathways (Apostel et al., 2013; Dijkstra et 

al., 2011b). Therefore, C-3 was less mineralized, preferentially incorporated into microbial 
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metabolites, also into those metabolites released by microorganisms into soil solution.. In 

addition, Dippold and Kuzyakov (2013) found a partial extracellular oxidation of alanine 

following the order C-1>C-2>C-3, which may also contribute to a higher amount of C-3-

fragments in soil. These fragments, if taken up by plants through passive mechanisms, 

cause the preferential incorporation of the C-3 position (Fig. 3 and Fig. 4). This preferen-

tial C-3 uptake as microbial metabolites seems to predominate the dark-fixation in the 

roots of microbially respired CO2 (which would consequently have a C-1 enrichment).  

In summary, microbial uptake and utilization were the main processes affecting the 

fate of individual C positions of LMWOS in soil. Preferential oxidation of C-1 and prefer-

ential incorporation of C-3 by microorganisms are likely to explain the preferential loss of 

C-1 and accumulation of C-3 in the entire plant-soil system.  

 

2.9.4.3 Allocation and transformation of C and N within plants  

The preference of crop plants for NO3
- uptake has been reported in many studies 

(Ge et al., 2008; Hermans et al., 2006; Jones et al., 2005a) and was also confirmed in 

this experiment. When nitrate was used as the N source, maize reduced NO3
- in shoots 

and in roots (Gavrichkova and Kuzyakov, 2008); lupine as well as chicory reduced NO3
- 

mainly in roots (Gavrichkova and Kuzyakov, 2008; Goupil et al., 1998; Pate et al., 1981). 

Our results corroborate these findings, as the highest NO3
- transport into shoots could be 

found in maize with a 15N shoot/root ratio of 2.42 and lower ratios in chicory (1.35) and 

lupine (0.57) (Table 2). Low N allocation into shoots for chicory was also found by 

Ameziane et al. (1997): 8 days after labeling, chicory kept the majority of 15N in its roots 

(shoot/root ratio 0.3). Reduced N sources like NH4
+ or alanine showed no clear prefer-

ence for allocation from root to shoot.  

Svennerstam et al. (2007) found that incorporation of amino acids after intact up-

take occurred as intact molecules, but could not prove this assumption as they neither 

labeled position-specific nor used compound-specific isotope analysis (CSIA) to measure 

plant amino acids. If intensive metabolization of amino acids in plants occurred, this 

would lead to a preferential decarboxylation and loss of C-1 and preferential incorporation 

of C-3, as observed in our study. Consequently, this approach would lead to an underes-

timation of intact uptake.  

There are not many studies investigating the transformation of amino acids taken 

up by plants by means of CSIA. The intact incorporation without further transformation 

was first shown by Persson and Nasholm (2001) by GC-MS. Sauheitl et al. (2009a), who 

performed similar experiments with GC-C-IRMS, also found no indication for oxidation of 

incorporated amino acids within the plant metabolism. Both studies excluded transforma-
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tion of the C backbone of amino acids into other amino acids, but not into other metabolic 

products. Total 14C and 15N uptake reflected that only minor portion of the amino acids is 

taken up and consequently could be metabolized by plants. However, there is a remain-

ing uncertainty of the effect of plant metabolism, which may contribute to an underestima-

tion of the calculated intact uptake if preferential C-1 oxidation occurred in plants. 

Position-specific labeling in this experiment provided the first information about 

plant transformation of alanine by comparing the fate of individual molecule positions 

within the plant compartments. In lupine (Fig. 2), position C-1 was preferentially kept in 

the root and from position C-1 to C-3, an increasing allocation from root to shoot could be 

observed. Hence, either different fragments of alanine were allocated differently within 

the plant or intact alanine was partially split during 6 h by the plant metabolism. Ge et al. 

(2008) and Warren et al. (2012) found that amino acids can be transformed to other 

compounds to be transported to shoots. However, Warren et al (2012) and Sauheitl et al. 

(2009a) also indicate that transaminations are the most likely metabolic transformation 

within plants and that oxidation of the C skeleton is less likely.  

The 14C uptake by chicory was too low compared to variations between repetitions 

to detect a comparable position-specific trend. Maize showed increasing amounts of 14C 

from alanine from C-1 to C-3 for shoots and roots. This could either result from a prefer-

ential oxidation of C-1 and C-2 after intact uptake or from a preferred uptake of C-3 frag-

ments and their allocation into the shoots without transformation.  

In summary, our results show that even if intact uptake occurs, plants tend to trans-

form LMWOS rather quickly in their metabolism (Wegener et al., 2010) but mainly by 

transamination (Sauheitl et al., 2009a). The molecular nature of the newly formed me-

tabolites can only be clarified by CSIA of the transformation products.  

 

2.9.4.4 Intact uptake of alanine in plants  

Physiological ability of intact alanine uptake by plants was shown by Svennerstam 

et al. (2007) who identified lysine histidine transporter 1 (LHT1) as a facilitator for amino 

acid uptake (lysine, glycine and alanine) by the roots of Arabidopsis thaliana. Many stud-

ies evaluated the relevance of N nutrition by intact amino acid uptake under natural soil 

conditions by using dual-isotope but uniformly labeled 13C- and 15N-tracers (Bardgett et 

al., 2003; Nasholm and Persson, 2001; Weigelt et al., 2003). Calculating the 14C/15N ratio 

of plant uptake (Fig. 4) is based on this approach (Nasholm et al., 1998) and reflects the 

intact alanine uptake. If we would average our alanine C positions, which correspond to 

the uniform labeling approach, we would detect intact uptake of around 15-18% of 

alanine-derived N without species-specific differences (Fig. 4). Calculating the uptake of 
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intact alanine based on the C-1 position, i.e. the position with the lowest uptake, gives 

values of intact uptake of 7-14% of alanine-derived N. This demonstrates a 1.2 to 3-fold 

overestimation, if the calculation is based on uniform labeling results compared to posi-

tion-specific labeling. 

In general, data for the highest intact uptake were found in boreal forests. This was 

partly explained by their nutrition via ecto-mycorrhization. However, many studies with 

grassland species and annual herbs also showed higher intact amino acid uptake than 

those observed in this study. This is a result of the methodological shortcomings of the 

uniform 13C or 14C labeling approaches. The use of position-specific labeling enables us 

to distinguish fragment uptake from whole molecule uptake and consequently demon-

strates much lower uptake.  

Rasmussen et al. (2010) expected the highest plant uptake of the C-1 position. 

They postulated that the high mineralization of C-1 leads to an increase in HCO3
- from C-

1 in the soil solution, which can be passively taken up by plants (Demidchik and 

Maathuis, 2007). Our results contradict this concept as we observed the highest incorpo-

ration rate with C-3. Thus, irrespective of the soil pH, a fast exchange of mineralized 

H14CO3
- with atmospheric CO2 leads to fast 14C losses from mineralized molecule posi-

tions. The highest uptake of C-3 supports the idea of plant uptake of molecule fragments, 

i.e. microbial transformation products, by passive uptake mechanisms.  

In contrast, position-specific C-2-labeling revealed that ~20% of the glycine-derived 

N was taken up as the intact amino acid by Triticum aestivum (Nasholm et al., 2001). 

However, C-2 of glycine as a methyl group resembles C-3 of alanine which had the high-

est uptake. This suggests that labeling of reduced C positions (Nasholm et al., 2001) is 

likely to cause an overestimation of the real intact amino acid uptake. In addition, intact 

uptake of glycine may be facilitated compared to alanine due to decreased competitive-

ness of soil microorganisms for glycine (Hocking and Jeffery, 2004). In addition, its 

smaller molecular weight facilitates passive uptake. The applied amino acid concentration 

can be another aspect to explain the higher range of intact uptake observed in many pre-

vious studies. For example, Nasholm et al. (2001) applied a 1 mM tracer solution, 

whereas we used a much lower concentration of 50 µM. An increased amino acid con-

centration improves plant competitiveness due to early saturation of microbial amino acid 

transporters (Kuzyakov and Xu, 2013a). Thus, amino acid uptake quantified at high con-

centrations may not resemble natural conditions as free amino acid concentrations rarely 

exceed 100 µM in soils (Jones and Willett, 2006) and bioavailable amino acid concentra-

tions are even lower (Hobbie and Hobbie, 2012). 

After glycine application to Plantago lanceolata, Sauheitl et al. (2009a) quantified 

intact uptake around 16.5% of glycine-derived N using 13C- and 15N-CSIA of amino acids. 
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This percentage is slightly above the values quantified here by position-specific 14C label-

ing but up to 6fold lower than values gained by bulk isotope analysis. This confirms the 

overestimation of intact uptake gained by uniformly-labeling with bulk isotope analysis 

approaches. 

We also found significant species-specific differences in the proportion of intact 

alanine-15N to mineralized alanine-15N uptake (Table 3). Lupine had the highest uptake of 

intact alanine followed by chicory and maize (Table 3). Maize is known to take up either 

amino acids or their degradation fragments (Adamczyk et al., 2012; Godlewski and 

Adamczyk, 2007). The highest position-specific differences measured in our study re-

veals that mainly microbially transformed C-3 fragments of alanine were taken up. 

In contrast, lupine had a high total incorporation of alanine-derived N as well as 

high uptake of intact alanine. This can be attributed to its cluster roots (Hawkins et al., 

2005) and to the very efficient amino acid transport systems, characteristic for legumes to 

facilitate transfer from the nodules of rhizobia (Day et al., 2001). Thus, plant ecophysi-

ological characteristics can increase their chances to gain organic N.  

In summary, the use of position-specific 13C or 14C labeling improved the quantifica-

tion of intact uptake of amino acids by plants by revealing the contribution of fragment 

uptake. The highly efficient microbial competition for alanine decreases the intact uptake 

by plant roots. 

 

2.9.4.5 Relevance of amino acids as a N source for agricultural plants  

Within the three applied N sources, nitrate was preferred by the three plants irre-

spective of their ecophysiology. This preference of crops for nitrate has been shown in 

previous studies (Gavrichkova and Kuzyakov, 2008; Ge et al., 2009; Glass et al., 2002; 

Jamtgard et al., 2008) and is consistent with the soil properties in this study: The Luvisol, 

developed from loess, contains clay minerals (mainly illites) which can fix NH4
+ and cause 

lower plant availability of cationic nutrients. Species specific preferences for N sources 

are in accordance with previous studies in grasslands (Weigelt et al., 2005): fast growing 

species – in our study maize – showed the highest uptake of nitrate. 

The uptake of alanine-15N was in the same range as ammonium-15N. This indicates 

that presumably the majority of alanine-15N was very fast mineralized to and taken up as 

ammonium which is confirmed by results of a previous study with tundra species 

(Schimel and Chapin, 1996).. Thus, 15N uptake confirms the position-specific 14C results 

(Fig. 3) that mainly partially metabolized or mineralized fragments are taken up. Also, 

other studies have demonstrated fast transformation of N-containing LMWOS: Jones et 

al. (2004) determined amino acid half-lives of 4 to 8 min in soil solution. Thus, within one 
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hour, applied amino acids are completely removed from soil solution and either incorpo-

rated into soil microorganisms, mineralized to ammonia or irreversibly fixed by the soil 

matrix.  

Table 1 shows a small C:N-ratio of the microbial biomass (~9.9) and thus a low N 

demand of the microbial community. Hence, the main fate of microorganisms using N-

LMWOS is the C skeleton. A similar strategy of microorganisms was observed for P-

containing LMWOS in P-rich soils (Spohn and Kuzyakov, 2013). Thus, the majority of 

alanine-15N will be mineralized, released as 15NH4
+ and then be available for plant uptake. 

Therefore, the N mineralization activity of the soil microbial community is a crucial factor 

deciding whether the incorporation of amino acids N occurs intact or mineralized.  

In summary, the majority of alanine-derived N was taken up by plants after miner-

alization and less than 1.5% of applied alanine as intact alanine. Thus, intact uptake of 

amino acids was the least relevant N source, contributing to less than 0.25% to the total 

N nutrition of the plant. The maximal relevance of amino acid-based N nutrition can be 

calculated assuming that all 20 proteinogenous amino acids have an uptake similar to 

alanine (although some of them have much lower concentrations in the soil than alanine). 

Thus, multiplying the alanine uptake with 20 gives an estimate of the total amino acid 

uptake. Comparing this with the ammonium and nitrate uptake measured in this study 

revealed that a maximum of 5% of plant N nutrition can be expected from all amino acids.  

 

2.9.5 Conclusions and Outlook 

This study emphasizes that position-specific labeling is a novel and unique tech-

nique to gain detailed insight into the importance of organic N sources and the uptake of 

LMWOS by roots from soil. The precision of previous estimates of intact uptake can be 

strongly enhanced using this new labeling approach without performing time- and cost-

consuming measurements like compound-specific isotope 13C/15N analyses. 

The comparison of N-LMWOS versus N-free LMWOS uptake revealed no signifi-

cant differences in the 14C incorporation from these sources. This supported the concept 

of passive uptake as one of the main uptake mechanisms for LMWOS by plants. 

Position-specific 14C labeling revealed that a minor portion of amino acids was 

taken up intact, whereas the majority of alanine was degraded by soil microorganisms. 

Some uncertainties remain as plant metabolization like root dark fixation (leading to an 

overestimation of intact uptake) and plant respiration (leading to an underestimation of 

intact uptake) cannot be quantified by this approach, too.  

Mineralized N as well as fragments of the C skeleton was partially available in the 

soil solution for root uptake. Lupine, as the representative of the legumes in this study, 
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confirmed the general trend for a greater preference of legumes for organic N sources 

compared to non-legumes which might be attributed to their ecophysiological capability 

for amino acid transfer between nodules and roots. Maize, a plant species with fast 

growth, high N demand and water uptake showed a higher contribution of passive uptake 

and thus uptake of microbial transformation products (14C-fragment and DIN). 

In summary, comparing the relevance of DIN and amino acids for each of the inves-

tigated plants, irrespective of their ecophysiological specifics, the role of intact amino acid 

uptake within N nutrition was rather low. Our study suggests N uptake from organic 

sources is of minor importance for N nutrition of agricultural plants. Nevertheless, the 

ecophysiological role cannot be fully understood as long as the uptake and allocation 

mechanisms (passive/active transport, metabolization within the plant) as well as their 

regulating factors are not identified. Therefore, investigations with a broad spectrum of 

position-specific labeled LMWOS coupled with CSIA of plant and microbial transformation 

products are needed. 
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Supplementary Data 

Supplementary Table: Mean of above- and belowground biomass (dry weight in g) ± 

standard error of the three plant species determined after biomass harvesting. 

 

Supplementary Figure: Percentage of 14C incorporation in soil and CO2 efflux after posi-

tion-specific labeling with alanine. The alanine positions were C-1 (carboxyl group), C-2 

(amino-bound group) and C-3 (methyl group). Letters indicate significant differences 

(p<0.001) between alanine C positions. 
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