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Deutsche Zusammenfassung

Einführung

Stabilisierung eines vorgegebenen Gleichgewichts oder die Verfolgung einer Referenzbahn
ist eine der häufigsten Zielsetzungen in der Regelungstheorie. Bei vielen der dabei betrach-
teten Prozesse kommt hierzu noch die Einhaltung verschiedenartigster Beschränkungen
sowie die Forderung, das gegebene Ziel möglichst gut zu erreichen und mit Hilfe von digita-
ler Technik umzusetzen. Eine Methode, die diese Vorgaben erfüllen kann und mittlerweile
auch weit verbreitet ist, siehe z.B. [16], ist die sogenannte modellprädiktive Regelung, die
im Englischen auch model predictive control (MPC) oder receding horizon control (RHC)
genannt wird.

Der Grundgedanke dieser Regelungsmethode ist auch im menschlichen Handeln wiederzu-
finden, beispielsweise bei der Lebensplanung oder einer Autofahrt zum Supermarkt. Bei-
de Probleme sollen dabei bezüglich einer individuellen Beurteilung, etwa möglichst sicher
oder möglichst schnell, geplant und umgesetzt werden. Zudem sollen aktuelle Umstände
und auftretende Hindernisse beachtet werden. Die Umsetzung der ursprünglichen Ziele
erfolgt aber in der Regel nicht oder zumindest nicht genau so, wie es geplant war. Grund
hierfür ist, dass jeder Mensch einen individuellen Planungshorizont beachtet, frühere Pla-
nungen von Zeit zu Zeit überdenkt und die verfolgte Strategie anpasst. So kann es z.B. vor-
kommen, dass man bei der Neuplanung feststellt, dass auf Grund der aktuellen Umstände
die alte Planung nicht mehr umsetzbar oder auch nicht mehr optimal ist, in den betrach-
teten Beispielen etwa durch sich ändernde Lebensumstände oder eine Baustelle, die man
zuvor nicht bedacht hat. Dieser Prozess der Ausführung der zum Planungszeitpunkt opti-
malen Strategie und die Anpassung dieser Strategie wiederholt sich während der gesamten
Dauer des Problems.

Abstrahiert man dies von den angegebenen Beispielen, so ergibt sich die Grundstruktur
eines derartigen Reglers, die aus den drei folgenden Schritten besteht:

Zustand

Eingang

prädizierte Trajektorie

optimale Steuerung

Prädiktionshorizont

A
bt

as
tp

er
io

de

Schritt 1: Auf Basis eines Modells des zu
kontrollierenden Prozesses wird über einen
endlichen Zeithorizont eine Vorhersage der
Entwicklung des Zustandes dieses Systems
getroffen. Mit Hilfe eines sogenannten Ziel-
oder auch Kostenfunktionals wird dieser Ent-
wicklung, auch Trajektorie genannt, sowie
der verwendeten Steuerung ein bestimmter
Kostenwert zugeordnet. Nun wird für die-
ses Funktional unter Einhaltung problemin-
härenter Beschränkungen eine Steuerung bestimmt, die auf dem betrachteten Zeithorizont
minimale Kosten verursacht.

V
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verworfene
Steuervektoren

Prädiktionshorizont

im
pl

em
en

tie
rt

er
S

te
ue

rv
ek

to
r

Schritt 2: Die resultierende Steuerfunktion liegt be-
reits in digitaler Form vor, das heißt es handelt sich
um eine stückweise konstante Funktion, die zu den
vorgegebenen digitalen Schaltpunkten Sprünge auf-
weisen kann. Diese Funktion ist allerdings nur für den
betrachteten Optimierungshorizont definiert, somit al-
so für eine Implementierung auf unendlichem Hori-
zont ungeeignet. Nun wird lediglich das erste Steuer-
element dieser Funktion, die sich auch als Folge von
Steuervektoren darstellen lässt, am zu kontrollieren-

den Prozess implementiert. Alle weiteren Steuervektoren werden verworfen.

Zustand

Eingang

im
pl

em
en

tie
rt

er
S

te
ue

rv
ek

to
r

Prädiktionshorizont
Schritt 3: Anschließend wird der sich
durch die Systemdynamik und des im-
plementierten Steuerelements ergeben-
de Zustand des Prozesses zum darauffol-
genden Abtastzeitpunkt gemessen und
an den Regler übergeben. Durch Ver-
schiebung des internen Prädiktionshori-
zonts um ein Abtastintervall kann so-
mit der beschriebene Prozess wiederholt
werden. Eine iterative Anwendung die-
ser Schritte ergibt eine sogenannte geschlossene Regelkette.

Damit gehört die modellprädiktive Regelung zur Klasse der modell–basierten Regelungs-
verfahren, die im Gegensatz zu herkömmlichen Verfahren wie etwa PID [147,148,222,223]
oder adaptiven Reglern [72, 129, 132] das Regelgesetz nicht ausschließlich auf Basis des
aktuellen oder vergangener Zustände entwirft.

In der Literatur unterscheidet man lineare und nichtlineare modellprädiktive Regelung. Im
linearen Fall wird dabei versucht, die Lösung des linearen Modells der Systemdynamik so
zu manipulieren, dass zum einen die linearen Beschränkungen erfüllt werden, zum anderen
aber auch ein gewähltes quadratisches Kostenfunktional minimiert wird. Die theoretischen
Grundlagen solcher Regler gelten als weitestgehend erschlossen [160,167] und auch in der
industriellen Anwendung sind Implementierungen mittlerweile weit verbreitet [16, 54].

Im Gegensatz zum linearen Fall sind viele der theoretischen Grundlagen nichtlinearer
modellprädiktiver Regler noch nicht ausreichend erforscht. Hierzu zählen unter anderem
die Robustheitsanalyse derartiger Verfahren gegenüber Störungen sowie die Entwicklung
ausgangsbasierter modellprädiktiver Regler. Ein Überblick zu bisherigen Ergebnissen in
diesem Bereich findet sich in [5, 39, 49, 160, 167]. Da das Hauptaugenmerk dieser Arbeit
jedoch auf den Stabilitäts– und Suboptimalitätsaspekt sowie einer effizienten Implemen-
tierung liegt, sei insbesondere auf die Arbeiten [4, 39, 87,102, 126] und [53, 58] verwiesen.

Betrachtete Systeme

In dieser Arbeit werden unterschiedliche Arten von Kontrollsystemen betrachtet. In der
theoretischen Analyse des modellprädiktiven Regelungsverfahrens werden zeitdiskrete Sy-
steme der Form

x(n + 1) = f(x(n), u(n))
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verwendet, wobei der Zustand x und die Steuerung u Elemente aus beliebigen metri-
schen Räumen X bzw. U sind. Jedoch sind die betrachteten Beispiele – wie auch reale
Anwendungen des Reglers – in Form von zeitkontinuierlichen Modellen

ẋ(t) = f(x(t), u(t))

gegeben. Da die Aufgabenstellung eine digitale Umsetzung der Steuerung verlangt, d.h.
dass eine Umsetzung eines Steuerwertes lediglich zu fest vorgegebenen äquidistanten Zeit-
punkten möglich ist, sind lediglich stückweise konstante Steuerfunktionen implementier-
bar. Durch die äquidistanten Umschaltpunkte wird das sogenannte Abtastgitter T defi-
niert.

zeitkontinuierlicher
Prozess

numerische
Approximation

Lösung des digitalen
Optimalsteuerungs-

problems

Um auch zeitkontinuierliche Systeme mit
Hilfe des für zeitdiskrete Systeme ent-
worfenen Reglers stabilisieren zu können,
wird die Lösung des zeitkontinuierlichen
Systems auf das Abtastgitter T restrin-
giert. Dadurch erhält man ein sogenann-
tes digitales Kontroll- oder Abtastsystem
der Form

xT (n + 1) = f(xT (n), u(n)).

In diesem Zusammenhang stellt f(·, ·) die
Lösung eines zeitkontinuierlichen Modells
zum (n + 1)sten Abtastzeitpunkt dar.
Mit xT (n) und u(n) sind sowohl Anfangs-

werte für den nten Abtastzeitpunkt als auch die stückweise konstante Steuerung gegeben,
wodurch, solange die Bedingungen des Satzes von Caratheodory erfüllt sind, eine Lösung
des zeitkontinuierlichen Systems definiert ist, siehe z.B. [210]. Diese Umwandlung eines
zeitkontinuierlichen in einen zeitdiskreten Prozess erlaubt es, die benötigte Steuerung oh-
ne Stabilitätsverlust für das zeitdiskrete System zu berechnen [170], es aber in einem
zeitkontinuierlichen Prozess zu implementieren [171].

Beitrag der Arbeit

Die Herleitung hinreichender a posteriori und a priori Kriterien für die Stabilität der
resultierenden geschlossenen Regelkette stellt das Kernelement dieser Arbeit dar. Hier-
bei werden die aus der Literatur bekannten Modifikationen des Ursprungsproblems wie
zusätzliche Endpunktbeschränkungen [126] oder Erweiterungen des Kostenfunktionals um
lokale Endgewichtsfunktionen [38,39,160] explizit nicht verwendet, sondern direkt die in-
dustriell genutzte Klasse modellprädiktiver Regler betrachtet, vgl. [16].
Diese Kriterien erlauben zudem eine Abschätzung der Regelgüte im Vergleich zum best-
möglichen (aber praktisch kaum berechenbaren) Regler mit unendlichem Zeithorizont.
Die zugehörige Kenngröße wird als Suboptimalitätsgrad bezeichnet. Zwar sind Subopti-
malitätsabschätzungen aus der Literatur bekannt, siehe etwa [22, 150, 160, 173], jedoch
erlaubt die hergeleitete Abschätzung eine quantifizierende Aussage über den Verlust der
Regelgüte, die durch die Endlichkeit des betrachteten Zeithorizonts entsteht.
Zur Berechnung des Suboptimalitätsgrades werden zudem Algorithmen vorgestellt, die
zur Laufzeit des modellprädiktiven Regelungsalgorithmus auswertbar sind und keinen oder
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vergleichsweise geringen Mehraufwand aufweisen. Die dargestellten Resultate wurden in
den bereits veröffentlichten Artikeln [97,98] beschrieben. In der vorliegenden Arbeit wer-
den diese jedoch detailliert bewiesen und um entsprechende algorithmische Umsetzungen
sowie das Konzept verschiedener Suboptimalitätsgrade erweitert. Zudem wird die An-
wendbarkeit der vorgestellten Algorithmen in numerischen Beispielen nachgewiesen.

Im Weiteren werden diese Abschätzungen verwendet, um adaptive modellprädiktive Rege-
lungsverfahren zu entwickeln. Hierzu werden die zur Rechenzeit auswertbaren Suboptima-
litätsabschätzungen herangezogen, um iterativ eine Horizontlänge zu bestimmen, die eine
untere Schranke für die Regelgüte garantiert. Ziel der hierzu entwickelten Algorithmen ist
dabei sowohl eine schnelle, aber auch mit möglichst geringem Mehraufwand behaftete An-
passung des gewöhnlichen modellprädiktiven Regelungsverfahrens. Bei der numerischen
Untersuchung dieser Algorithmen zeigt sich, dass dieser Ansatz deutliche Verbesserungen
der Rechenzeit mit sich bringt.

Der praktische Teil dieser Arbeit umfasst das Softwarepaket PCC2 1 (Predictive Com-
puted Control 2), das sowohl eine numerisch effizient gestaltete Implementierung eines
gewöhnlichen wie auch eines adaptiven modellprädiktiven Regler enthält. Hierzu wird das
modulare Konzept dieser Implementierung vorgestellt sowie Interaktion und Probleman-
passungen der Teilalgorithmen von theoretischer und praktischer Seite her analysiert. Die
präsentierte Implementierung wurde in den bereits veröffentlichten Artikeln [93–96,99] zur
Lösung von numerischen Beispielen verwendet, wird im Rahmen dieser Arbeit allerdings
zum ersten Mal mit allen Erweiterungen vorgestellt.

Gliederung der Arbeit

Entsprechend der Dreiteilung der Beiträge dieser Arbeit gliedert sich auch deren Darstel-
lung in drei Abschnitte. Hierbei beinhalten die Kapitel 1 – 4 Grundlagen und Konzept
der modellprädiktiven Regelung sowie die theoretischen Resultate. In den Kapiteln 5
und 6 werden genutzte numerische Algorithmen vorgestellt und die entwickelte Software
detailliert beschrieben. Der letzte Teil der Arbeit, zusammengefasst in Kapitel 8, bein-
haltet zum einen die numerischen Untersuchungen der Implementierung selbst, aber auch
des Zusammenspiels der verschiedenen Teilkomponenten sowie numerische Ergebnisse der
vorgestellten theoretischen Resultate. Hierzu werden die in Kapitel 7 angegebenen Bei-
spiele verwendet, die den Anforderungen der numerischen Untersuchungen entsprechend
gewählt sind.

Im Einzelnen beinhalten die Kapitel dabei Folgendes:

➥ In Kapitel 1 werden Grundbegriffe der Systemtheorie eingeführt und die betrachte-
ten zeitdiskreten und zeitkontinuierlichen Systeme formal definiert. Da der theoreti-
sche Teil der Arbeit auf der Verwendung zeitdiskreter Kontrollsysteme basiert, wird
zudem die Verbindung der zeitkontinuierlichen Systeme mit der digitalen Imple-
mentierung der zu berechnenden Regelung zu dem Begriff eines digitalen Kontroll-
systems verschmolzen. Im weiteren Verlauf wird der Begriffe der Stabilität eines
dynamischen Systems auf Stabilisierbarkeit und semiglobal praktische Stabilisier-
barkeit von Kontroll- und digitalen Kontrollsystemen erweitert. Hierfür wird die

1http://www.nonlinearmpc.com

http://www.nonlinearmpc.com
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Äquivalenz der drei gebräuchlichen Charakterisierungen, d.h. der ε-δ Definition so-
wie der Darstellung mittels Vergleichsfunktionen und Kontroll–Lyapunov Funktio-
nen, gezeigt. Abschließend wird zudem nachgewiesen, dass unter entsprechenden
Voraussetzungen ein für ein approximiertes zeitdiskretes Kontrollsystem berechne-
tes Rückkopplungsgesetz im zugrunde liegenden kontinuierlichen Prozess umgesetzt
und dennoch die Stabilität des geschlossenen Regelkreises garantiert werden kann.

➥ Im folgenden Kapitel 2 wird einleitend ein kurzer Überblick über die Entwicklung
der Steuerungs- und Regelungstheorie gegeben. Dies wird genutzt, um ausgehend
von einem kontinuierlichen optimalen Steuerungsproblem auf unendlichem Zeithori-
zont zunächst das digitale Gegenstück mit unendlichem Zeithorizont zu definieren.
Dieses Problem ist zugleich der Maßstab, an dem wir in Kapitel 3 die Güte des
modellprädiktiven Regler messen. Zunächst wird jedoch die Problemstellung eines
modellprädiktiven Reglers sowie die Lösungsbegriffe der offenen und geschlossenen
Regelkette formal definiert. Am Ende dieses Kapitels wird zudem ein Vergleich zwi-
schen dem modellprädiktiven Regler und den Alternativen des PID Reglers, des
Lyapunov basierten Reglers sowie des adaptiven Reglers gezogen.

➥ In Kapitel 3 werden diverse a posteriori und a priori Suboptimalitätsabschätzungen
für modellprädiktive Regler entwickelt und entsprechende Berechnungsalgorithmen
vorgestellt. In diesem Zusammenhang wird außerdem das Konzept verschiedener
Suboptimalitätsgrade eingeführt. Die Hauptvorteile dieser gegenüber aus der Lite-
ratur bekannter Abschätzungen sind, dass sie zur Laufzeit des Algorithmus aus-
gewertet werden können und zudem eine quantifizierende Abschätzung des ma-
ximalen Verlusts gegenüber dem Regler mit unendlichem Zeithorizont, also dem
bestmöglichen Regler, erlauben. Zudem wird gezeigt, dass diese Abschätzungen auf
den Fall der praktischen Stabilität erweiterbar sind. Weiterhin ermöglichen diese
Abschätzungen eine Stabilitätanalyse industriell gebräuchlicher modellprädiktiver
Regler, da sie ohne die aus der Literatur bekannten Modifikationen der Problem-
stellung auskommen. Ein entsprechender Vergleich mit älteren Stabilitäts- und Sub-
optimalitätsresultaten bildet dabei den Abschluss dieses Kapitels.

➥ Kapitel 4 widmet sich der Nutzung der Suboptimalitätsabschätzungen aus Kapitel 3,
um die starre Problemformulierung des modellprädiktiven Reglers anzupassen. Hier-
bei werden zwei komplementäre Ziele verfolgt, die aus praktischer Sicht jedoch eine
eindeutige Reihenfolge aufweisen: Stabilität und Laufzeit. Der freie Parameter ist
dabei die Horizontlänge, die als Vielfaches der Abtastzeit des digitalen Systems auf
beide Ziele maßgeblichen Einfluss hat. Mit Hilfe der Suboptimalitätsabschätzungen
werden Algorithmen entwickelt und bewiesen, die die Stabilität des geschlossenen
Regelkreises garantieren und gleichzeitig den benötigten Rechenaufwand möglichst
minimal halten. Zudem wird in diesem Zusammenhang das Konzept der Suboptima-
litätsgrade auf den adaptiven modellprädiktiven Regler erweitert und entsprechende
Abschätzungen für Stabilität und praktische Stabilität bewiesen.

➥ Kapitel 5 widmet sich der Theorie der Diskretisierungs- und Optimierungstechni-
ken, die in der Implementierung eines im Verlauf dieser Arbeit entstandenen modell-
prädiktiven Reglers Verwendung finden. Hierzu werden die vollständige und rekur-
sive Diskretisierung sowie die rekursive Diskretisierung mit Mehrzielknoten formal
definiert und die Konsequenzen dieser Methoden für den modellprädiktiven Reg-
ler analysiert. Desweiteren werden Grundlagen der nichtlineare Optimierung vorge-
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stellt, sowie Modifikationen und Unterschiede der verwendeten Routinen diskutiert
und Auswirkungen auf den modellprädiktiven Regelalgorithmus aufgezeigt.

➥ In Kapitel 6 wird die Implementierung des entwickelten modellprädiktiven Reglers
beschrieben und untersucht. Das Kapitel kann als grundlegende Einführung in das
Programmpaket verstanden werden. Dabei bietet es nicht nur eine Übersicht über
die wichtigsten enthaltenen Funktionen, sondern zeigt auch das Zusammenspiel der
verschiedenen Algorithmen. Hierbei wird insbesondere auf die Optimierungsalgo-
rithmen, die Methoden zur Lösung der zugrunde liegenden Systemdynamik und die
notwendigen Verbindungskomponenten in dem hierarchisch und modular gestaltete
Implementierungskonzept des Programmpakets eingegangen.

➥ Die abschließenden Kapitel 7 und Kapitel 8 beinhalten Untersuchungsbeispiele und
Ergebnisse des implementierten Regelungsverfahrens. Dabei sind die Beispiele in
Kapitel 7 so gewählt, dass hiermit drei grundlegende Fragen analysiert werden
können. Das erste Beispiel, eine eindimensionale Wärmeleitungsgleichung, dient
dazu, den Einfluss von Systemeigenschaften wie Größe und Steifheit auf die Lei-
stungsfähigkeit einzelner Komponenten des Regelalgorithmus zu testen. Weiter wird
das bekannte invertierte Pendel betrachtet, das es erlaubt die Parameter des mo-
dellprädiktiven Reglers und deren Wechselwirkungen zu veranschaulichen. Diese Un-
tersuchung des Regelungsproblems, die aufgrund der Komplexität des Algorithmus
nicht vollständig darstellbar sein kann, versteht sich als Anleitung zur Anpassung
eines modellprädiktiven Reglers für andere Probleme. Zuletzt wird ein Folgeproblem
verwendet, um Standardsituationen eines modellprädiktiven Reglers zu generieren.
Dies erlaubt eine genaue Untersuchung der theoretischen Ergebnisse aus den Ka-
piteln 3 und 4. Hierbei wird die Anwendbarkeit der Suboptimalitätsabschätzungen
gezeigt sowie ein Vergleich zwischen einem gewöhnlichen modellprädiktiven Regler
und einem adaptiven modellprädiktiven Regler gezogen, wobei die Vorteile der vor-
gestellten Algorithmen deutlich werden. Abschließend werden die Ergebnisse dieser
Arbeit kurz zusammengefasst und ein Ausblick auf mögliche weitere Forschungen
gegeben.



Summary

Within the proposed work we consider analytical, conceptional and implementational
issues of so called receding horizon controllers in a sampled–data setting. The principle of
such a controller is simple: Given the current state of a system we compute an open–loop
control which is optimal for a given costfunctional over a fixed prediction horizon. Then,
the control is implemented on the first sampling interval and the basic open–loop optimal
control problem is shifted forward in time which allows for a repeated evaluation.
The contribution of this thesis is threefold: First, we prove estimates for the performance
of a receding horizon control, a concept which we call suboptimality degree. These estimate
are online computable and can be applied for stabilizing as well as practically stabilizing
receding horizon control laws. Moreover, they not only allow for guaranteeing stability of
the closed–loop but also for quantifying the loss of performance of the receding horizon
control law compared to the infinite horizon control law. Based on these estimates, we
introduce adaptation strategies to modify the underlying receding horizon controller in
order to guarantee a certain lower bound on the suboptimality degree while reducing the
computing cost/time necessary to solve this problem. Within this analysis, the length
of the optimization horizon is the parameter we wish to adapt. To this end, we develop
and proof several shortening and prolongation strategies which also allow for an effective
implementation. Moreover, extensions of our suboptimality estimates to receding horizon
controllers with varying optimization horizon are shown. Last, we present details on our
implementation of a receding horizon controller PCC2 2 (Predictive Computed Control 2)
which is on the one hand computationally efficient but also allows for easily incorporating
our theoretical results. Since a full analysis of such a controller would exceed the scope
of this work, we focus on the main aspects of this algorithm using different examples. In
particular, we concentrate on the impact of certain choices of parameters on the computing
time. We also consider interactions between these parameters to give a guideline to
effectively implement and solve further examples. Moreover, we show applicability and
effectiveness of our theoretical results using simulations of standard problems for receding
horizon controllers.

2http://www.nonlinearmpc.com
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Chapter 1

Mathematical Control Theory

Mathematical control theory is an application–oriented area of mathematics which deals
with the basic principles underlying the analysis and design of control systems. In this
context the term control system is used in a very general way:

A system is a functional unity which processes and assigns signals. It describes
the temporal cause–and–effect chain of the input parameter and the output
parameter.

The term control is used for the influence a certain external action — the input to a
system — has on the behavior of a system in order to achieve a certain goal. The state
of a system which can be sensed in any way from outside is called the output of a system.
Coming back to the input, the information obtained from the output can be used to check
whether the objective is accomplished.
Commonly such a system is visualized using a block diagram. Within such a diagram
processing units are represented by boxes while assignments are shown as arrows indicating
the direction of the signal.

➠ Flow of Information ➠

Input
System

Output

Figure 1.1: Schematic representation of a con-
trol system with input and output parameter

A standard example in control theory is the inverted pendulum, i.e. a pendulum which one
seeks to stabilize in the (unstable) upright position, see also Figures 1.2a–1.2c. Since it is
simple enough to intuitively understand its behaviour, we refer to this example throughout
this thesis. Additionally, we can check subjectively/heuristically whether a control law
is reasonable and accurate for this example using our physical intuition. Unlike Figures
1.2a–1.2c may indicate, we aim at developing a control law which stabilizes the underlying
example not only locally, but for a large set of initial values. That is, for the inverted
pendulum, we consider initial positions far away from the upright position, e.g. the stable
downward position.
For general systems, however, we focus on the following aspects:

• Developing a notation describing the long–term behavior and properties of a system

• Designing methods to calculate control laws depending on this analysis

• Giving insight to the acchievable goals using these methods

1
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(a) Inverted Pendulum in the
upright position which shall be
stabilized

(b) Inverted Pendulum deviat-
ing away from the upright posi-
tion

(c) Counteraction to bring the
Pendulum back into the upright
position

In particular, we focus on (sub–)optimal digital control by studying the so called receding
horizon control approach and its interaction with the system under control. By now,
theory of receding horizon control has grown rather mature at least for the linear case,
see e.g. [69, 140, 160, 167]. As shown in [15, 16], methods to compute such a control are
widely used. However, this field is still very active as it is not always clear why these
methods actually work out fine. Moreover, the problem of finding a (sub–)optimal digital
control is not artificial but application–oriented and therefore has to be solved according
to fixed technological bounds. Using E.D. Sontags words [210]:

While on the one hand we want to understand the fundamental limitations
that mathematics imposes on what is achievable, irrespective of the precise
technology being used, it is also true that technology may well influence the
type of question to be asked and the choice of mathematical model.

In control theory the questions to be asked are clear. However, this does not hold for
the mathematical model which shall be used in the context of digital control, that is
whether to use differential or difference equations. In the literature, both models are
used at present, see e.g. [4, 39, 50, 59, 68, 117] and [49, 87, 91, 102, 160, 167] for receding
horizon control settings using differential and difference equations respectively. Here, we
consider so called sampled–data systems — a mixture of both concepts. In particular,
our examples are given as differential equations, that is in continuous–time, whereas the
numerical implementation as well as the analysis of our controller design relies on discrete–
time systems, i.e. using difference equations. The aim of this chapter is to rigorously define
these two models.

To this end, we introduce fundamental concepts and terminology which both discrete and
continuous–time systems have in common in Section 1.1. In particular we give a general
definition of a control system, its inputs and its outputs. In Section 1.2 these terms are
specified for the control systems in both continuous and discrete–time. Moreover we show
their relation in terms of digital control. Last, in Section 1.3 we characterize the stability
concept which we consider to be the desireable property of the system under control. The
development of such a control law will be outlined in the following Chapter 2.
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1.1 Basic Definitions

The fundamental difference between discrete–time and continuous–times systems is char-
acterized by the treatment of time. To handle both within one concept we first introduce
the notion of a time set.

Definition 1.1 (Time set)
A time set T is a subgroup of (R, +).

Later we shall either consider T = Z or T = R for discrete and continuous–time systems
respectively. Using this time concept we think of a state of a system at a certain time in
the time set T as an element of some set which may change to another element according
to some internal scheme and external force. To state this formally we require some more
definitions:

Definition 1.2 (State and Control Value Space)
The set of all maps from an interval I ⊂ T to a set U is denoted by UI = {u | u : I → U}
and called the set of control functions. We refer to U as the control value or input value
space.
Moreover, the set X denotes the state space.

For our later purposes we think of X being a subset of some metric space.

Definition 1.3 (Transition map)
A transition map is a map ϕ : Dϕ → X where

Dϕ ⊂
{
(τ, σ, x, u) | σ, τ ∈ T, σ ≤ τ, x ∈ X, u ∈ U

[σ,τ)
}

satisfying ϕ(σ, σ, x, •) = x. Here, • ∈ U[σ,σ) denotes the empty sequence.

Definition 1.4 (Admissability)
Given time instances τ, σ ∈ T, σ < τ , a control u ∈ U

[σ,τ) is called admissible for a state
x ∈ X if (τ, σ, x, u) ∈ Dϕ.

Using these definitions we introduce a system we aim to analyze.

Definition 1.5 (System)
A tupel Σ = (T, X, U, ϕ) is called system if the following conditions hold:

• For each state x ∈ X there exists at least two elements σ, τ ∈ T, σ < τ , and some
u ∈ U[σ,τ) such that u is admissible for x. (Nontriviality)

• If u ∈ U[σ,µ) is admissible for x then for each τ ∈ [σ, µ) the restriction u1 := u|[σ,τ)

of u to the subinterval [σ, τ) is also admissible for x and the restriction u2 := u|[τ,µ)

is admissible for ϕ(τ, σ, x, u1). (Restriction)

• Consider σ, τ, µ ∈ T, σ < τ < µ. If u1 ∈ U[σ,τ) and u2 ∈ U[τ,µ) are admissible and x
is a state such that ϕ(τ, σ, x, u1) = x1, ϕ(µ, τ, x1, u2) = x2, then the concatenation

u =

{
u1, t ∈ [σ, τ)
u2, t ∈ [τ, µ)

is also admissible for x and we have ϕ(µ, σ, x, u) = x2. (Semigroup)
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Definition 1.6 (System with Outputs)
If Σ is a system and additionally there exist a set Y called measurement–value or output–
value space and a map h : X → Y called measurement or output map, then Σ =
(T, X, U, ϕ, Y, h) is called a system with outputs.

Comparing this definition of a system to the reality of a plant, we identify x ∈ X as the
state of the plant, e.g. the angle of the inverted pendulum and its velocity. Note that the
state is only a snapshot. The transition map allows us to predict future states x(t) ∈ X

for all t ∈ T telling us how the system evolves. The control or input values u ∈ U are
exogenous variables and can be used to manipulate the future development of the plant.
Last, y ∈ Y represent measurement or output values. Throughout this thesis, we deal
with the case of all states being measurable, that is Y = X and h is bijective.
Definition 1.6 also allows for undefined transitions, i.e. when the input u is not admissible
for the given state. While for differential/difference equations this phenomenon is called
a finite escape time, it might correspond to a blowup of the plant in reality. Hence,
we only consider those tupel (τ, σ, x, u) such that u is admissible for x. Whenever the
time instances τ and σ are clear from the context we also refer to the pair (x, u) as the
admissible pair.
Given an initial state x(σ) = x0 and a control function u(·) ∈ U[σ,τ) we can fully describe
the development of the state in time and call the resulting solution a trajectory.

Definition 1.7 (Trajectory)
Given a system Σ, an interval I ⊆ T and a control u(·) ∈ UI we call x ∈ XI a trajectory
on the interval I if it satisfies

x(τ) = ϕ(τ, σ, x(σ), u|[σ,τ)) ∀σ, τ ∈ I, σ < τ.

In order to analyze the long–time behaviour of a system, we need to consider time tending
to infinity.

Definition 1.8 (Infinite Admissability)
Given a system Σ and a state x ∈ X, an element of U[σ,∞) is called admissible for x if
every restriction u|[σ,τ) is admissible for x and each τ > σ.

Based on these general definitions we now specify the systems we are going to deal with.

1.2 Control Systems

The following section deals with continuous–time and discrete–time systems. Throughout
this thesis we use different time sets, in particular we consider T = N0 for analytical
purposes while all our examples are continuous in time, that is T = R. Since there
exist fundamental differences between these two settings, we introduce continuous–time
and discrete–time systems separately. Moreover, we define the notion of a sampled–data
system. For the receding horizon control scheme stated in Chapter 2, the sampled–data
concept allows us to treat continuous–time examples in a discrete–time setting.

Remark 1.9
In the following, the set U := {u : T → U} denotes the set of all controls. Moreover, we
consider X and U to be subsets of Rn and Rm, m, n ∈ N, respectively.
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Definition 1.10 (Discrete–time Control System)
Consider a function f : X × U → X. A system of n difference equations

xu(i + 1) := f(xu(i), u(i)), i ∈ N0 (1.1)

is called a discrete–time control system. Moreover xu(i) ∈ X is called state vector and
u(i) ∈ U control vector.

Existence and uniqueness of a solution of (1.1) is shown fairly easily. Using an induction,
we obtain a unique solution in positive time direction for a certain maximal existence
interval I if (x0, u) with x0 ∈ X and u ∈ UI is an admissible pair.
If the system (1.1) is independent of the control u then it is called dynamical system:

Definition 1.11 (Discrete–time Dynamical System)
Consider a function f : X → X. The system of n difference equations

x(i + 1) := f(x(i)), i ∈ N0 (1.2)

is called discrete–time dynamical system.

Despite of the lack of a control, we are interested in discrete–time dynamical systems and
its properties. In particular, the control law u resulting from the receding horizon control
setting of Chapter 2 is a function of the state x, a so called (state) feedback. Applying
this control to (1.1) we obtain a system of type (1.2). The aim of the receding horizon
control law (or any other control law) is to induce certain properties like stability for the
resulting dynamical system.
Before discussing properties of solutions of (1.1) or (1.2) we explain the context in which
the continuous–time examples need to be seen. To this end, we define a control system
in continuous–time and the corresponding dynamical system.

Definition 1.12 (Continuous–time Control System)
Consider a function f : X × U → X. A system of n first order ordinary differential
equations

ẋu(t) :=
d

dt
xu(t) = f(xu(t), u(t)), t ∈ R (1.3)

is called a continuous–time control system or dynamic of the continuous–time control
system.

Definition 1.13 (Continuous–time Dynamical System)
Consider a function f : X → X. A system of n first order ordinary differential equations

ẋ(t) :=
d

dt
x(t) = f(x(t)), t ∈ R (1.4)

is called a continuous–time dynamical system.

Example 1.14
The mentioned pendulum example is given by

ẋ(t) = y(t)

ẏ(t) = −
g

l
· sin(x(t)) − d · y(t)2 · atan(1000.0 · y(t))

−

(
4.0 · y(t)

1.0 + 4.0 · y(t)2.0
+

2.0 · atan(2.0 · y(t))

π

)
· m

with gravitational constant g = 9.81, length l = 1.25, drag d = 0.007 and moment
m = 0.197.
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In order to be able to talk about a trajectory of (1.1), (1.2), (1.3) and (1.4) according to
Definition 1.7, the additional information on the starting point is needed:

Definition 1.15 (Initial Value Condition)
Consider a point x0 ∈ X. Then the equation

x(0) = x0 (1.5)

is called the initial value condition.
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If in the case of (1.4) f(·) satisfies the so called Lipschitz condition

‖f(x) − f(y)‖ ≤ L‖x − y‖ (1.6)

for some constant L ∈ R
+ for all x and y in some neighborhood of x0, then we can

guarantee existence and uniqueness of a solution on some interval, see e.g. Chapter 10
of [228] or Chapter 3 in [129].

Theorem 1.16 (Local Existence and Uniqueness)
Let f(·) satisfy the Lipschitz condition (1.6) for all x, y ∈ Br(x0) := {x ∈ Rn | ‖x−x0‖ <
r}. Then there exists some δ > 0 such that the equation (1.4) together with (1.5) has a
unique solution on [0, δ].

In the context of continuous–time control problems, one can show that even for rather
simple problems the optimal control function is discontinuous. Hence, considering only
the set of continuous control functions appears to be too strict for our purposes, see
Chapter 10 in [210]. In the case of the previously mentioned inverted pendulum such a
control is obtained if one considers the pendulum to point downwards with angular speed
zero and wants to start the swing–up. If the control is bounded, then one starts with
maximal acceleration and at some point one has to change the sign of the acceleration to
avoid overshooting the upright position.
Moreover, the semigroup property stated in Definition 1.5 is violated by a concatenation
of two continuous functions if U is restricted to the class of continuous functions. The
class of measureable function, however, meets the described requirements.

Definition 1.17 (Measureable Functions)
Consider a closed interval I = [a, b] ⊂ R.

(i) A function g : I → Rm is called piecewise constant if there exists a finite partition of
subintervals Ij , j = 1, . . . , n, such that g(·) is constant on Ij for all j = 1, . . . , n.
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(ii) A function g : I → Rm is called (Lebesque-)measureable if there exists a sequence
of piecewise constant functions gi : I → Rm, i ∈ N, such that lim

i→∞
gi(x) = g(x) for

almost all x ∈ I.

(iii) A function g : R → Rm is called (Lebesque-)measureable if for every closed subinter-
val I = [a, b] ⊂ R the restricted function g|I is (Lebesque-)measureable.

(iv) A function g : R → Rm is called locally essentially bounded if for every compact
interval I ⊂ R there exists a constant C ∈ R, C > 0, such that ‖u(t)‖ ≤ C for
almost all x ∈ I.

According to the changes within the right hand side of a control system we have to adapt
our theory concerning the existence and uniqueness of solutions. To this end we refer to
the theorem of Caratheodory, see [210] for details.

Theorem 1.18 (Caratheodory)
Consider the setting of Definition 1.12 and a control system satisfying (1.5) and the
following conditions:

(i) U := {u : R → U|u is measureable and locally essentially bounded}

(ii) f : X × U → X is continuous.

(iii) For all R ∈ R, R > 0 there exists a constant MR ∈ R, MR > 0 such that ‖f(x, u)‖ ≤
MR holds for all x ∈ Rn and all u ∈ U satisfying ‖x‖ ≤ R and ‖u‖ ≤ R.

(iv) For all R ∈ R, R > 0 there exists a constant LR ∈ R, LR > 0 such that

‖f(x1, u) − f(x2, u)‖ ≤ LR‖x1 − x2‖

holds for all x1, x2 ∈ R
n and all u ∈ U satisfying ‖x1‖ ≤ R, ‖x2‖ ≤ R, ‖u‖ ≤ R.

Then, there exists a maximal interval J = (τmin, τmax) ⊂ R, 0 ∈ J , for all x0 ∈ X and
all u ∈ U such that there exists a unique and absolutely continuous function xu(t, x0)
satisfying

xu(t, x0) = x0 +

∫ t

0

f(xu(τ, x0), u(τ))dτ (1.7)

for all t ∈ J .

So far we have shown the existence and uniqueness of solutions for all four types of
systems. Here, we use the following notation for solutions of these systems:

Definition 1.19 (Solution)
The unique function xu(t, x0) of (1.1) (or (1.3)) emanating from initial value x0 ∈ X is
called solution of (1.1) (or (1.3)) for t ∈ T.
If f(·) is independent of the control u then the unique solution of (1.2) (or (1.4)) with
initial value x0 ∈ X is denoted by x(t, x0) for t ∈ T.

In this thesis, we consider discrete–time control systems to compute a control strategy
while the underlying examples are continuous in time. The interconnection between these
two settings is called sampling.
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Definition 1.20 (Sampling)
Consider a control system (1.3) and a fixed time grid T = {t0, t1, . . .} with t0 = 0 and ti <
ti+1 ∀i ∈ N0. Moreover, we assume that the conditions of Caratheodory’s Theorem 1.18
hold and u is a concatenation of control functions ui ∈ U with u(t) = ui(t) ∀t ∈ [ti, ti+1).
Then we define the sampling solution of (1.3), (1.5) inductively via

xT (t, x0, u) := xui
(t − ti, xT (ti, x0, u)) ∀t ∈ [ti, ti+1). (1.8)

using (1.7). The time distance ∆i := ti+1 − ti is called sampling period and its reciprocal
∆−1

i is called sampling rate.

Note that considering (1.8) instead of the class of control problems (1.3), (1.5) is not a
restriction since the concatenation of control functions ui ∈ U can be any element of U .
Upon implementation of controllers, digital computers are nowadays used to compute
and implement a control action. Since these computers work at a finite sampling rate and
cannot change the control signal during the corresponding sampling period, technology
influences the mathematical modelling of the problem. Considering digital controllers, it
appears natural to use piecewise constant control functions. This gives us the following:

Definition 1.21 (Sampling with zero–order hold)
Consider the situation of Definition 1.20 with constant control functions ui(t) ≡ ci ∀t ∈
[ti, ti+1). Then xT (t, x0, u) is called sampling solution with zero–order hold.

Remark 1.22
Note that other implementations are possible and have also been discussed in the receding
horizon control literature, see e.g. [59]. Throughout this thesis, however, we consider our
continuous–time examples to be treated in a sampling with zero–order hold fashion, see
also Section 2.4.

Now we can derive a discrete–time system (1.1) from a continuous–time system (1.3).

Definition 1.23 (Sampled–data System)
Consider the sampling solution with zero–order hold xT as given by Definition 1.21. Then
we call the discrete–time system

xu(i, x0) := xT (ti, x0, u) (1.9)

with u(i) := ui and f(xu(i, x0), u(i)) := xu(i)(∆i, xu(i, x0)) sampled–data system or digital
control system and xu(i, x0) is called sampled–data solution for all i ∈ N0.

Note that by now we have defined six kinds of systems, i.e.

discrete–time continuous–time
Control system Definition 1.10 Definition 1.12
Dynamical system Definition 1.11 Definition 1.13
Sampled–data system Definition 1.23 Definition 1.21

Table 1.1: Schematic presentation of the systems under consideration

By definition, every dynamical system can be considered as sampled–data system and
also every sampled–data system can be seen as a continuous–time control system. Hence,
if a dynamical system shows certain properties, then there exists a sampled–data system
and a continuous–time control system with u ≡ 0 having identical properties.
Here, we are looking for the converse, i.e. we seek control laws inducing certain properties.
In control theory, so called open–loop and closed–loop control laws are considered.
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Definition 1.24 (Open–loop Control Law)
Consider the setting of Definition 1.10, 1.12, 1.21 or 1.23. A function u : T → U based
on some initial condition x0 is called an open–loop or feedforward control law.

Definition 1.25 (Closed–loop or Feedback Control Law)
Consider the setting of Definition 1.10, 1.12, 1.21 or 1.23. A function F : X → U is called
a closed–loop or feedback control law and is applied by setting u(·) := F (x(·)).

Definitions 1.24 and 1.25 also show the two main lines of work in control theory which
sometimes have seemed to proceed in different directions but which are in fact comple-
mentary.
The open–loop control is based on the assumption that a good model of the object to be
controlled is available and we wish to modify/optimize its behaviour. The corresponding
techniques have emerged from the classical calculus of variations and from other areas of
optimization theory. This approach typically leads to a control law u(·) which has been
computed offline before the start of the system like a preprogrammed flight plan.

➠ Flow of Information ➠

Reference
Control Plant

Figure 1.3: Schematic representation of an open–loop
control system

In particular, one computes the function u(·) based on the initial conditions x0 and the
vector field f(·, ·) and applies it blindly without taking available measurements into ac-
count. The result is the so called open–loop solution. Considering the discrete–time case
exemplarily, the resulting trajectory

x(n + 1) = f (x(n), u(n)) (1.10)

emanating from the initial value x(0) = x0 with open–loop control u(·) is called open–loop
solution, see also Figure 1.3 showing the block diagramm for the open–loop setting.
In reality, unknown perturbations and uncertainties may occur which are not accounted
for in the mathematical model used in the open–loop approach. If this is the case, then ap-
plying an open–loop control law u(·) over a long time horizon may lead to large deviations
of the state trajectory.
The second line of work is the attempt to integrate these aspects about the model or
about the operating environment of the system into the control law. The central tool is
the use of feedback correcting deviations from the desired behavior, i.e. we implement a
control u(·) depending on the actual state of the system, i.e.

x(n + 1) = f (x(n), u(x(n))) . (1.11)

Using the closed–loop control u(·), we call the trajectory (1.11) emanating from the initial
value x(0) = x0 closed–loop solution. The closed–loop situation is visualized as shown in
Figure 1.4. Note that implementing the feedback controller requires the states of the
system to be continuously monitored and the control law to be evaluated online.
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➠ Flow of Information ➠

Reference m Control Plant u

Figure 1.4: Schematic representation of an closed–loop control system

Today, it is widely recognized that these two broad lines deal with different aspects of the
same problem. In particular, the open–loop methods may be used to a priori compute a
“guiding path” to the desired target whereas closed–loop methods are applied online to
prevent deviations from a path.
Considering a closed–loop control law, mathematically the underlying control system
turns into a dynamical systems since the feedback law F (·) is a function of the state
x. Hence, we start by defining properties of dynamical systems (1.2), (1.4) and giving
necessary and sufficient criteria for these properties. Next, we extend these properties
and criteria to control systems (1.1), (1.3). In the last step, we consider sampled–data
systems according to Definitions 1.21 and 1.23. At the same time, we relax the considered
properties by allowing for a small deviation. This is necessary since due to the technical
lower bound on the sampling rate we cannot expect a piecewise constant control to exist
such that the system under control exhibits the standard stability property. Since small
deviations need to be acceptable in reality as well, this extension is also reasonable.
In the following, we focus on certain properties of solutions of such systems, that is stability
and controllability.

1.3 Stability and Controllability

When treating control problems it is our central task to steer a system into a certain state
and keep it there. Hence, we are interested in the long term behaviour of solutions.
As mentioned before we start by introducing the so called stability property. There exist
a lot of references on this property, most of them in the classical dynamical systems
literature, see e.g. [30, 107] for a bibliographical survey. Usually, one treats equilibrium
points and characterizes their stability properties in the sense of Lyapunov.
Roughly speaking an equilibrium point is considered to be stable if all solutions starting
at nearby points stay close to this point, otherwise it is called unstable. Moreover, it is
called asymptotically stable if all solutions starting at nearby points not only stay nearby
but also tend to the equilibrium point as time tends to infinity.
These notions are defined properly in Section 1.3.1. Additionally, the concept of compar-
ison functions is introduced and it is shown how stability can be expressed using these
functions. Moreover, Lyapunov’s method is presented to test whether stability or asymp-
totic stability can be guaranteed for a given system.
In Section 1.3.2, we extend the stability property by the controllability property which
essentially says that there exists at least one control for which stability of an equilibrium
can be guaranteed. Again, this is shown in the context of comparison and Lyapunov
functions.
Finally, we modify the stability and controllability property by some ε-ball in Section 1.3.3.
This is necessary for our analysis of the receding horizon controller in Chapter 3 since the
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stability property may hold or be established for an equilibrium of the continuous–time
control system but may be lost by digitalization.

1.3.1 Stability of Dynamical Systems

Within this section, we first define and characterize stability properties of a given system.
Motivated by our aim to examine digital control systems, that is sampled–data systems
of the form (1.9), where we are interested in control sequences which can be applied as
piecewise constant function in the sampled–data setup, we consider the discrete–time case
(1.2) only. For stability results concerning the continuous–time problem (1.3) we refer,
among others, to [127, 154,214].
We start off by defining stability of an equilibrium for discrete–time dynamical systems
(1.2) which naturally arise if we consider closed–loop systems.

Definition 1.26 (Equilibrium)
A point x⋆ ∈ Rn is called an equilibrium of a dynamical system (1.2) if x(i, x⋆) ≡ x⋆ holds
for all i ∈ N0.

For reasons of simplicity we assume x⋆ = 0 in the following. This is no loss of generality
since for x⋆ 6= 0 one can use the transformed system f(x) := f(x + x⋆) which is a shift of
the solution but does not affect its long term behaviour.

Definition 1.27 (Stability)
The equilibrium point x⋆ = 0 of a dynamical system (1.2) is called

• stable if, for each ε > 0, there exists a real number δ = δ(ε) > 0 such that

‖x0‖ ≤ δ =⇒ ‖x(i, x0)‖ ≤ ε ∀i ∈ N0

• asymptotically stable if it is stable and there exists a positive real constant r such
that

lim
i→∞

x(i, x0) = 0

for all initial values x0 satisfying ‖x0‖ ≤ r. If additionally r can be chosen arbitrary
large, then x⋆ is called globally asymptotically stable.

• unstable if it is not stable.

E.D. Sontag (re)introduced a different but intuitive approach to characterize stability
properties in [208] which is by now a standard formalism in control theory, see also
[106, 107] for earlier references. To this end we define so called comparison functions:

Definition 1.28 (Comparison Functions) • A continuous non-decreasing function γ :
R

+
0 → R

+
0 satisfying γ(0) = 0 is called class G function.

• A function γ : R≥0 → R≥0 is of class K if it is continuous, zero at zero and strictly
increasing.

• A function is of class K∞ if it is of class K and also unbounded.

• A function is of class L if it is strictly positive and it is strictly decreasing to zero
as its argument tends to infinity.
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x

γ(x)
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γ(x)

x

γ(x)

Figure 1.5: Comparison functions of class G, K and L

• A function β : R≥0 ×R≥0 → R≥0 is of class KL if for every fixed t ≥ 0 the function
β(·, t) is of class K and for each fixed s > 0 the function β(s, ·) is of class L.

Using comparison functions we can characterize our previous stability concepts in a dif-
ferent way. In particular, these functions allows us a geometrical inclusion of the solution
emanating from a given initial value (1.5) by terms of an upper bound for the worst case.
For a proof of the following theorem stating this property we refer to [129].

Theorem 1.29 (Stability)
Consider x(i, x0) to be the solution of (1.2) and to exist for all i ∈ N0.

(i) An equilibrium x⋆ = 0 is stable if and only if there exists a neighborhood N (x⋆) and
a function α ∈ K∞ such that

‖x(i, x0)‖ ≤ α(‖x0‖)

holds for all x0 ∈ N (x⋆) and all i ∈ N0.

(ii) An equilibrium x⋆ = 0 is asymptotically stable if and only if there exists a neighbor-
hood N (x⋆) and a function β ∈ KL such that

‖x(i, x0)‖ ≤ β(‖x0‖, i)

holds for all x0 ∈ N (x⋆) and all i ∈ N0. Moreover x⋆ is called globally asymptotically
stable if and only if N (x⋆) = Rn.

If a dynamical system possesses more than one equilibrium, then we are also interested
in sets of initial values such that the solution emanating from any point in this set tends
to a unique equilibrium.

Definition 1.30 (Basin of Attraction)
We define the set

D(x⋆) := {x0 ∈ R
n | x(i, x0) → x⋆ as i → ∞}

to be the basin of attraction of an equilibrium of a dynamical system.

Remark 1.31
The concept of the basin of attraction is of particular interest for the inverted pendulum.
Due to its 2π–periodicity there exist infinitely many equilibria and, as we will see in
Section 8.3.2 considering the resulting closed–loop solution (1.11) of the receding horizon
controller, the equilibrium to be stabilized depends massively on the initial value and other
parameter of the controller.
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In order to analyze the stability of an equilibrium of a dynamical system (1.2) A.M.
Lyapunov published the idea to examine an auxilliary function in 1892. In particular, this
function allows us to analyze the development of a dynamical system along the vector
field defining the differential equation instead of solving the differential equation itself,
see [149].
According to the discrete–time case under consideration, we define the so called Lyapunov
function for dynamical systems of type (1.2):

Definition 1.32 (Lyapunov Function)
Let x⋆ = 0 be an equilibrium point for (1.2) and N ⊂ Rn be a neighborhood of x⋆.
Let V : N → R be continuous. If there exist functions α1, α2 ∈ K∞ and a function
W : N → R which is locally Lipschitz satisfying W (x) > 0 for all x > 0, W (x) = 0 for
x ≤ 0 and

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (1.12)

V (f(x)) ≤ V (x) − W (V (x)) (1.13)

for all x ∈ N . Then V (·) is called a local Lyapunov function. Moreover, if N = Rn, then
V (·) is called global Lyapunov function.

Using a physical interpretation, one can think of this auxilliary function as a positive mea-
sure of the energy in the system with a minimum at the equilibrium point x⋆. Mathemat-
ically this function replaces the Euclidean distance used in Definition 1.27 and Theorem
1.29 by a nonlinear distance. Hence, one can demonstrate stability of the equilibrium if
this distance is strictly decreasing along the trajectories of the system.

Theorem 1.33 (Asymptotic Stability)
An equilibrium x⋆ = 0 is asymptotically stable if and only if there exists a function V (·)
satisfying the conditions of Definition 1.32.

For a proof of this theorem we refer to Chapter 2 of [20] or Chapter 1 in [214] in the
discrete–time case, for the continuous–time case a proof is given in Chapter 4 of [129]
respectively.
In the literature, one often assumes V (·) to be differentiable, see e.g. [43, 105, 129, 155].
Differentiability, however, is too strigent if we consider the dynamical system to be the
outcome of a control system with discontinuous feedback. In this case, we cannot expect
the Lyapunov function to be smooth, cf. [41, 207].

1.3.2 Stability of Control Systems

Until now we have only considered dynamical systems. Now we extend the stability con-
cepts stated in Definition 1.27 and Theorems 1.29, 1.33 to discrete–time control systems
(1.1) assuming the control function to exist for any initial value. Moreover, we assume
the solution of a control system (1.1) to exist for all time. Note that the control is not
expected to be unique, and hence the solution xu(t, x0) may not be uniquely defined as
well. Thus, we have to consider the case of more than one solution emanating from an
initial value x0.
Again, we are interested in the long time behaviour of (1.1), i.e. equilibrium points and
stability properties, cf. Definitions 1.26 and 1.27. Since an additional parameter can be
set arbitrarily, we distinguish between independent and induced properties. Similar to
the previous Section 1.3.1, we present all definitions and results in the discrete–time form
of system (1.1). Therefore, we consider the set of controls U = UN.
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Definition 1.34 (Stability Concepts for Equilibrium Points)
Consider a control system (1.1).

(i) A point x⋆ ∈ Rn is called strong or robust equilibrium if xu(i, x
⋆) = x⋆ holds for all

u ∈ U and all i ∈ N0.

(ii) A point x⋆ ∈ Rn is called weak or controlled equilibrium if there exists a control law
u ∈ U such that xu(i, x

⋆) = x⋆ holds for all i ∈ N0.

This definition naturally induces two concepts of stability and asymptotical stability,
robustness and controllability. Both concepts depend on the interpretation of u within the
difference equation (1.1), i.e. to be an influencable external control or some disturbance
within the system.

Definition 1.35
The equilibrium point x⋆ = 0 of a control system (1.1) is

• strongly or robustly stable if, for each ε > 0, there exists a real number δ = δ(ε) > 0
such that for all u ∈ U we have

‖x0‖ ≤ δ =⇒ ‖xu(i, x0)‖ ≤ ε ∀i ∈ N0 (1.14)

• strongly or robustly asymptotically stable if it is stable and there exists a positive
real constant r such that for all u ∈ U

lim
i→∞

xu(i, x0) = 0 (1.15)

holds for all x0 satisfying ‖x0‖ ≤ r. If additionally r can be chosen arbitrary large,
then x⋆ is called globally strongly or robustly asymptotically stable.

• weakly stable or controllable if, for each ε > 0, there exists a real number δ = δ(ε) > 0
such that for each x0 there exists a control u ∈ U guaranteeing

‖x0‖ ≤ δ =⇒ ‖xu(i, x0)‖ ≤ ε ∀i ∈ N0. (1.16)

• weakly asymptotically stable or asymptotically controllable if there exists a control
u ∈ U depending on x0 such that (1.16) holds and there exists a positive constant
r such that

lim
i→∞

xu(i, x0) = 0 ∀‖x0‖ ≤ r. (1.17)

If additionally r can be chosen arbitrary large, then x⋆ is called globally asymptoti-
cally stable.

Remark 1.36
In the case of strong asymptotic stability, the implemented control does not affect the
stability of the system. Still, one in general obtains better results imposing a control
method such as, e.g., receding horzizon control. From the computational point of view,
strong asymptotic stability is interesting if one has to consider significant measurement
or discretization errors. In the context of our receding horizon control scheme, such a
property allows for using rather large tolerances in the optimization as well as in the
solution of the differential equation system which may significantly reduce the required
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computing time, see also Section 8.3.
The concept of weak stability or weak asymptotical stability, on the other hand, is more
general. It naturally leads to the question how to compute a control law such that x⋆ is
weakly stable, and, in particular, how to characterize the quality of a control law which is
our main goal in Chapters 2 and 3.
Within our implementation of the receding horizon controller we consider a compromise
which is problem dependent, i.e. we allow for errors during the computation but limit the
range of these errors to obtain stability of the closed–loop, see Section 8.3 for details.

Here, we consider u in the control context and focus on the question how to find con-
trols such that stability can be guaranteed. In order to develop sufficient conditions for
stability we first forward the equivalent concepts from the previous section, that is the
characterization via comparison functions and the use of Lyapunov functions.

Theorem 1.37 (Stability Concepts)
Consider a control system (1.1).

(i) An equilibrium x⋆ = 0 is strongly asymptotically stable or robustly asymptotically
stable if there exists an open neighborhood N of x⋆ and a function β ∈ KL such that

‖xu(i, x0)‖ ≤ β(‖x0‖, i)

holds for all x0 ∈ N , u ∈ U and all i ∈ N0.

(ii) An equilibrium x⋆ = 0 is weakly asymptotically stable or asymptotically controllable
if there exists an open neighborhood N of x⋆ and a function β ∈ KL such that for
every x0 ∈ N there exists a control law u ∈ U such that

‖xu(i, x0)‖ ≤ β(‖x0‖, i)

holds for all i ∈ N0.

In the continuous–time case a proof can be found, e.g., in Chapter 4 of [129]. Since the
proof is similar in the discrete–time setting we omit it here. Moreover, this characteriza-
tion can be extended if one takes disturbances into account. This leads to the ISS and
ISDS concept, see, e.g., [208] and [89, 118] respectively.
Similar to the extension of the concept of stability towards controllability in Definition
1.35, Lyapunov functions can be defined for control systems. The main difference lies in
considering a minimizing control in the neighborhood of the considered state.

Definition 1.38 (Control–Lyapunov–Function)
Consider an equilibrium x⋆ = 0, a control system (1.1) with f(0, 0) = 0 and N ⊂ Rn to
be a neighborhood of x⋆. Then a continuous function V : N → R is called a control–
Lyapunov function if there exist functions α, α1, α2 ∈ K∞ such that for all x ∈ N there
exists a control function u ∈ U such that the inequalities

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖) (1.18)

inf
u∈U

V (xu(1, x0)) − V (x0) ≤ −α(x0) (1.19)

hold for all x ∈ N \ {x⋆}.
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Using Definition 1.38 the characterization of the stability concepts is similar to dynamical
systems, see Proposition 1.33. For a proof of the following stability theorem we refer to
Chapter 7 in [127] in the discrete–time case, for the continuous–time case see Chapter 5
of [210].

Theorem 1.39 (Asymptotic Stability)
Consider a control system (1.10) where f(0, 0) = 0, N ⊂ Rn to be a neighborhood of x⋆

and a continuous function V : N → R.

(i) An equilibrium x⋆ = 0 is strongly asymptotically stable or robustly asymptotically
stable if (1.18) and

sup
u∈U

V (xu(1, x0)) − V (x0) ≤ −α(x0)

hold for all x0 ∈ N .

(ii) An equilibrium x⋆ = 0 is weakly asymptotically stable or asymptotically controllable
if for all x0 ∈ N there exists a control u ∈ U such that (1.18), (1.19) hold.

The converse of this theorem as shown in [118] is more delicate and related to the existence
of stabilizing feedbacks, see [11,41,209]. In the continuous–time case, (1.19) is sometimes
replaced by DV (x)f(x, u) < 0 for some u ∈ U where DV (·) denotes the derivative of
V (·), see, e.g., [42,127,132,207,210]. Here, however, we do not want to assume that V (·)
is differentiable. Apart from this difference, on can also treat disturbances in the context
of control–Lyapunov functions, see, e.g., Chapter 3 in [72] or Chapter 3 in [89].
In any case, all converse Lyapunov results are computationally difficult. A systematic way
to build a control–Lyapunov function is called backstepping and pursued, among others,
in Chapter 3 of [132] and Chapter 5 of [72]. Yet, there exists no generally applicable
method which can be used as a guideline in the search for a control–Lyapunov function
or even a Lyapunov–function. For many systems, physical insight plus a good amount
of trial and error is typically the only way to handle this matter. Still, there are many
heuristics that help in this context, see, for instance, [198].

Remark 1.40
The stability property is referred to as Feedback–stabilization when the reference signal
is constant. Here, we suppose the equilibrium x⋆ = 0 to be this reference signal. How-
ever, one can also consider time–varying signals xref(·) ∈ Rn evolving with respect to a law
g : R → Rn which is then called tracking. As a result, the corresponding Lyapunov function
is time–varying as well. For further details on tracking we refer to [72,132,135,136,233]
and references therein.
In the following, we only consider the case of constant reference functions. Results, how-
ever, are expected to be generalizable to the time–varying case.

1.3.3 Stability of Digital Control Systems

Now, we focus on digital control, i.e. sampling with zero–order hold as stated in Definition
1.21. We already mentioned that this setup naturally occurs if one wishes to implement
a control law using a digital computer, see the end of Section 1.2.
Nowadays, the use of a digital computers has become standard in control applications.
Reasons for that are the flexibility in programming, in particular compared to analogous
circuits, but also the availability of preimplemented controllers and cost reasons. Yet, we
are forced to consider the following setup:
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Figure 1.6: Schematic representation of an open–loop digital control system
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Figure 1.7: Schematic representation of an closed–loop digital control system

As shown in Figures 1.6 and 1.7, the control u is updated by some law only at the sampling
instants tn, n ∈ N0. The output of this law, the vector u(tn), is then fed into the system
as a control and held constant on the interval [tn, tn+1). In the following chapters, our aim
is to develop such a law inducing certain properties of the resulting closed–loop system.
Here, we focus on defining properties which suit our control task of stabilizing a given
point x⋆.
Note that according to Definitions 1.21 and 1.23 the control u can be described as a
piecewise constant function or as a sequence of control values.

Remark 1.41
(i) As usual, we assume the premises of Caratheodory’s Theorem 1.18 to be fulfilled which
hence guarantees a unique solution xu to exist on each sampling interval [tn, tn+1).
(ii) If u is in feedback form, we assume that the computation of u can be done quickly
relative to the length of the sampling intervals. Otherwise, the model must be modified to
account for the extra delay.

The easiest way to construct a digital controller is to first design a continuous–time con-
troller for the continuous–time plant ignoring sampling, and then discretize the obtained
controller for digital implementation [8, 40, 70, 134].
The brute force approach to do this is called Emulation where one implements the con-
troller

uT (t) = u(tn), ∀t ∈ [tn, tn+1), tn = n · T, n ∈ N0 (1.20)

in (1.3) and then samples as fast as possible, i.e. taking T to be as small as possible.
Resulting controls may look as shown in Figures 1.8(a)–(c).

Remark 1.42
Designs such as the mentioned Emulation, the Tustin or matched pole-zero discretizations
[134] are fairly simple which is the reason why this concept has also been extended to other
areas of interest, e.g. networked control systems, see [168,169].
Yet, emulated controllers are required to have appropriate robustness with respect to the
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Figure 1.8: Continuous–time control and corresponding emulation

sample and zero order hold implementation in order to preserve stability [117]. Typically,
stability is obtained by sufficiently reducing the sampling period. However, due to hardware
limitations on the minimum achievable T this approach is often not feasible even in the
linear case [7, 125]. Therefore, the sampling error needs to be considered in the design of
the controller.

Remark 1.43
There also exist advanced controller discretization concepts which ease the fixed discretiza-
tion by an optimized one. Here, one computes “the best discretization” of the continuous–
time controller in some sense, see e.g. [7, 40].

In this work, however, we focus on equidistant time grids T = TN0, i.e. ∆i = T for all
i ∈ N0 in Definition 1.23.
Due to this restriction to piecewise constant functions uT on an equidistant time grid T,
we cannot assume that there exists a control revealing the stability property stated in
Definition 1.35, see also Remark 1.42. Hence, we ease the considered stability concept
to allow for a stabilized set instead of a stabilized point. Moreover, we consider weak
stability exclusively, see Definition 1.34.

Definition 1.44 (Semi–global practically asymptotic Stability)
Consider a digital control system (1.9) where f(0, 0) = 0. Assume that for given pair of
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real–valued numbers (σ, ρ), 0 < ρ < σ < ∞, there exists a constant ε⋆ > 0 and a family
of piecewise constant functions uT : R → U for T ∈ (0, T ⋆(σ, ρ)] depending on the initial
state x0 such that for all ε ∈ (0, ε⋆) the following conditions hold:

(1) Stability:
For all ε > ρ there exists a δ(ε) > 0 such that

‖x0‖ ≤ δ(ε) ⇒ ‖xu(i, x0)‖ ≤ ε ∀i ∈ N0. (1.21)

(2) Boundedness:
For all r ∈ (0, σ) there exists a finite real number ν(r) > 0 such that

‖x0‖ ≤ r ⇒ ‖xu(i, x0)‖ ≤ ν(r) ∀i ∈ N0. (1.22)

(3) Convergence:
For all r ∈ (0, σ) and ε > ρ there exists a finite time T (r, ε) ∈ N such that

‖x0‖ ≤ r ⇒ ‖xu(i, x0)‖ ≤ ε ∀i ≥ T (r, ε) (1.23)

Then an equilibrium x⋆ = 0 is called (σ, ρ) semi–globally practically asymptotically stable.

ν(σ)

σ

r

ε

ρ

x0

j(r, ε)

Figure 1.9: Semiglobal practically asymptotic stability in the sense of Definition 1.44

Next we forward the characterization concepts from the previous sections to the semi–
global practically asymptotic case.

Proposition 1.45 (Stability Characterization using Comparison Functions)
Consider a control system (1.9) where f(0, 0) = 0 and a pair (∆1, ∆2) of real–valued
numbers such that 0 < ∆1 < ∆2 < ∞ holds. An equilibrium x⋆ = 0 is (σ, ρ) semi–globally
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practically asymptotically stable with σ := ∆1 and ρ := ∆2 for a family of piecewise
constant functions uT : R → U for T ∈ (0, T ⋆] depending on the initial value x0 if there
exists a function β ∈ KL such that the inequality

‖xu(i, x0)‖ ≤ max {β(‖x0‖, i), ∆2} (1.24)

holds for all initial values x0 in the open ball B0
∆1

(x⋆) and for all i ∈ N0.

Proof. The proof is similar to the one given in Section 3 of [142] for disturbed dynamical
systems. Suppose there exists a function β ∈ KL such that (1.24) holds. Hence, by (1.24),
there exists a lower bound ∆2 for ε and an upper bound ∆1 for δ(ε). This allows us to
choose a K∞–function δ1(·) satisfying

δ1(ε) ≤ β
−1

1 (ε) := β −1(ε, 0)

for all ∆2 ≤ ε ≤ c1 := sup β(·, 0) (≤ ∞). Consequently, we define σ =: ∆1, ρ =: ∆2 < ε
and δ(ε) := max (δ2(ε), ∆1). Using these definitions we now show that the conditions of
Definition 1.44 hold.
Stability condition (1) is satisfied since β(‖x0‖, ·) ∈ L for fixed initial values (x0, 0) and
hence for all i ∈ N0 we have

lim
i→∞

β(‖x0‖, i) = 0.

Moreover, the continuity of β and the boundedness of r ∈ (0, σ) = (0, ∆1) implies

max {β(‖r‖, i), ∆2} ∀i ∈ N0.

to be bounded. Hence, we can conclude that a solution of (1.3) is also bounded giving
condition (2).
Condition (3) follows from conditions (1) and (2). To show this suppose that there exists
no finite time instant T (r, ε) for r ∈ (0, σ) = (0, ∆1), ε > ρ := ∆2. Since r is bounded
and therefore max {β(‖r‖, i), ∆2} is bounded as well, it follows that

lim
t→∞

β(‖r‖, i) > ε > ∆2 = ρ ≥ 0 ∀i ∈ N0,

holds which contradicts the KL–property of β.

Similarly, the semi–globally practically asymptotic stability can be described using Lyapu-
nov–functions. In the considered context, however, Definition 1.38 for control–Lyapunov–
functions is not appropriate. While in (1.19) strict monotonicity along a solution is
assumed, the convergence condition (3) in Definition 1.44 may be violated in the target
area. This leads to the following relaxation of Definition 1.38:

Definition 1.46 (Semi–global practical Lyapunov–function)
Consider a digital control system (1.8) where f(0, 0) = 0. A family of continuous functions
VT : R

n → R
+
0 for T ∈ (0, T ⋆] is called semi–global practical family of sampling Lyapunov–

functions if there exist functions α, α1, α2 ∈ K∞ such that

α1(‖x‖) ≤ VT (x) ≤ α2(‖x‖) (1.25)

holds for all T ∈ (0, T ⋆] and all x ∈ Rn \ {0}. Moreover, for a given pair of real–valueed
constants (δ1, δ2), δ1 > δ2 > 0, there exists a constant T0(δ1, δ2) > 0 such that

inf
u∈U

VT (xT (T, x0, u)) − VT (x0) ≤ −Tα(x0) + δ2 (1.26)

holds for all T ∈ (0, T0] and all x0 ∈ B0
δ1

(0).
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Within this definition the left hand side of (1.26) is depending on the sampling parameter
T . For this reason, we consider representation (1.8) instead of (1.9) of the digital control
system.

Proposition 1.47 (Stability Characterization using Lyapunov functions)
Consider a control system (1.8) where f(0, 0) = 0. An equilibrium x⋆ = 0 is semi–globally
practically asymptotically stable for a family of piecewise constant functions uT : R → U

for T ∈ (0, T ⋆] depending on the initial value x0 if there exists a family of semi–global
practical Lyapunov–functions VT : R

n → R
+
0 for all T ∈ (0, T ⋆] for the point x⋆.

Proof. Consider x(·) to be the trajectory of (1.8) with initial value x0 ∈ R. Therefore by
Definition 1.46

inf
u∈U

VT (xT (T, x0, u)) − VT (x0) ≤ −Tα(x0) + δ2

holds for all x(t0) ∈ B0
δ1

(0) with δ1, δ2 > 0. Moreover, we have

inf
u∈U

VT (xT ((i + 1)T, xT (iT, x0, uT ), u)) − V (xT (iT, x0, uT )) ≤ −Tα (xT (iT, x0, uT )) + δ2

where xT (iT, x0, uT ) is given recursively by the initial value x(t0) = x0 and the minimizer
sequence uT (i) = arginf

u∈U

V (xT ((i + 1)T, xT (iT, x0, uT ), u)). Then, using (1.25), we obtain

inf
u∈U

VT (xT (T, x0, u)) ≤ VT (x0) − Tα
(
α−1

2 (VT (x0))
)

+ δ2

inf
u∈U

VT (xT (T, xT (T, x0, uT ), u)) ≤ VT (xT (T, x0, uT )) − Tα
(
α−1

2 (VT (xT (T, x0, uT )))
)

+ δ2

≤ VT (x0) − Tα
(
α−1

2 (VT (x0))
)

+ δ2

−Tα
(
α−1

2 (VT (x0) − Tα
(
α−1

2 (VT (x0))
)

+ δ2)
)

+ δ2

Hence, we can recursively define

v0 := VT (x0) , vi := −T α̃ (vi−1) + vi−1 + δ2

⇒ VT (xT (iT, x0, uT )) ≤ vi+1

with α̃(·) := α(α−1
2 (·)) and T ∈ (0, 1].

Now, our aim is to prove the existence of a mapping g : R × R × R → R such that

VT (xT (iT, x0, uT )) ≤ g (VT (x0), iT, δ2)

and moreover that

g (VT (x0), iT, δ2) = max
{
β(VT (x0), iT ), δ2

}

holds with some function β ∈ KL.
To show the existence of g, we identify

g (V (x0), iT, δ2) = vi+1 = −T α̃ (vi) + vi + δ2.

Since α̃(·) is a K∞ function, i.e. continuous, zero at zero and strictly increasing, and vi

can be written as self–concatenation of α̃(·) which is applied to a fixed value V (x0) and
modified by linear additive terms, g is a continuous function. Additionally, we know that,
due to the positive semidefinitness of V (·), zero is a lower bound of the sequence (vi)i∈N0 .
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From the K property of α̃(·) we can also conclude that the sequence (vi)i∈N0 is bounded
from above, i.e.

lim
i→∞

vi ≤ M < ∞,

and obtain the sequence to be well–defined and to exist for all i ∈ N0.
Due to the K–property of α̃(·) there exists a T > 0 such that vi − T α̃(vi) ∈ K for all
0 < T < T and all i ∈ N0. Now we define

β(VT (x0), iT ) :=

{
vi+1 − δ2, ‖VT (xT (iT, x0, uT ))‖ ≥ α̃−1

(
δ2
T

)

0, else

Hence, by the previous argumentation, we obtain β(·, t) ∈ K.
Moreover, if ‖VT (xT (iT, x0, uT ))‖ > α̃−1

(
δ2
T

)
, we get

β(VT (x0), (i + 1)T ) − β(VT (x0), iT ) = vi+1 − vi = vi − T α̃ (vi) + δ2 − vi

= δ2 − T α̃ (vi) < 0

using (1.26). This shows that β(r, ·) is strictly monotonely decreasing. This property is
not lost if we choose

β(VT (x0), iT ) :=

{
sup
j≥i

vj+1 − δ2, ‖VT (xT (iT, x0, uT ))‖ ≥ α̃−1
(

δ2
T

)

0, else

Additionally, using the definition, we have β(0, iT ) ≡ 0. Adding a KL–function β̃, i.e.
β̂ := β + β̃, the previously stated properties are preserved and we get limt→∞ β̂(·, t) = 0
and β̂ ∈ KL.
In the context of Proposition 1.45, we set ∆1 := δ1 and ∆2 := α−1

(
δ2
T

)
. For this choice

we get
{

x0 ∈ R
n
∣∣∣ inf

u∈U

VT (xT (T, x0, u)) − VT (x0) ≥ 0

}
⊂ B∆2(0)

and forward invariance of the set B∆2(0). The corresponding KL–function β for the state
is given by β := α−1

1 ◦ β̂ and hence Proposition 1.45 shows the assertion.

Having proved these conditions for semiglobally practically asymptotic stability we now
embed our examples into this setting. To this end, we present results from [170, 171]
showing that the stability property of Definition 1.44 (and Propositions 1.45, 1.47) can
be extended from T = N0T , T > 0 fixed, to the full time axis T = R, see Theorems
1.50 and 1.51 below. As a result, we obtain that the system does not exhibit unbounded
oscillations in between two sampling points ti, ti+1 ∈ T.

Considering an example one may face the problem of using approximations of the digital
control system (1.9) instead of the exact system. To cover this issue, we have to show that
properties which are derived for such an approximation also hold for the exact system.
Such errors can be caused by the discretization of the system, modelling uncertainties,
delays, inaccurate implementation of the control or many other factors. Since we con-
sider examples given as continuous–time control systems and solve these problems using
numerical solution methods for integration and optimization, we inevitably induce such
an approximation error.
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Here, we denote the approximation of the digital control system by

x(a)
u (i + 1, x0) = f (a)(xu(i, x0), u(i)) (1.27)

according to Definition 1.23 and show that if the approximated system exhibits the de-
sired semiglobally practically asymptotic stability property and satisfies certain consis-
tency conditions, then the exact digital control system is also semiglobally practically
asymptotically stable. This has been shown in [170] using the following consistency defi-
nitions.

Definition 1.48 (One–step Consistency)
The family (uT , f (a)) is said to be one–step consistent with (uT , f) if, for each compact
set A ⊂ Rn, there exists a class K∞–function ρ and a real–valued constant T ⋆ > 0 such
that

‖f(xu(i, x0), u(i)) − f (a)(xu(i, x0), u(i))‖ ≤ Tρ(T ) (1.28)

holds for all x ∈ A and all T ∈ (0, T ⋆).

Definition 1.49 (Multi–step Consistency)
The family (uT , f (a)) is said to be multi–step consistent with (uT , f) if, for each real–
valued constants δ, L, η > 0 and each compact set A ⊂ R

n, there exists a function α :
R

+
0 × R+

0 → R
+
0 ∪ {∞} and a real–valued constant T ⋆ > 0 such that

‖f(xu(i, x0), u(i)) − f (a)(xu(i, z0), u(i))‖ ≤ α(δ, T ) (1.29)

holds for all x0, z0 ∈ A satisfying ‖x0 − z0‖ ≤ δ and

αk(0, T ) ≤ η

holds for all k ≤ K
T

and all T ∈ (0, T ⋆).

Then, according to [170], the following holds:

Theorem 1.50 (Stability of the Exact Digital Control System)
Consider β ∈ KL and (∆1, ∆2) to be the bound and constants stated in Proposition 1.45
for an approximation (1.27) of a digital control system (1.9) and a family of piecewise
constant functions uT : R → U for T ∈ (0, T ⋆] depending on the initial value x0 and
N ⊂ Rn to be a neighborhood of the origin.

(1) Then the exact digital control system (1.9) is semiglobally practically asymptotically
stable for the family (uT , f (a)) if the following holds:

(a) The family (uT , f (a)) is multi–step consistent with (uT , f).

(b) There exists a real–valued constant T̂ > 0 such that the approximated digital
control system (1.27) is semiglobally practically asymptotically stable for the
family (uT , f (a)).

(2) Suppose the following conditions hold:

(a) The family (uT , f (a)) is multi–step consistent with (uT , f).
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(b) There exists a semiglobal practical family of Lyapunov functions VT according
to Definition 1.46 for the family (uT , f (a)) and for all compact sets A ⊂ Rn\{0}
there exist real–valued constants M, T̂ > 0 such that the Lipschitz condition

|VT (x) − VT (y)| ≤ M‖x − y‖

holds for all x, y ∈ A and all T ∈ (0, T̂ ).

Then the exact digital control system (1.9) is semiglobally practically asymptotically
stable for the family (uT , f (a)).

In order to show semiglobal practically asymptotic stability of the sampling solution with
zero order hold, see Definition 1.21, we can utilize results of [171] showing equivalence
of the mentioned stability property of the exact sampled–data system and the sampling
solution with zero order hold. Although this is not shown for the semiglobal practical
case, the stated proof in [171] can be extended to cover this issue.

Theorem 1.51 (Stability of the Sampling Solution with Zero Order Hold)
Consider a sampling system with zero order hold according to Definition 1.21 and the
corresponding exact sampled–data system (1.9). The sampling system with zero order
hold is (σ, ρ) semiglobally practically asymptotically stable for all t ≥ 0 if and only if the
following holds:

(1) The exact sampled–data system is semiglobally practically asymptotically stable.

(2) The sampling solution is bounded over T , that is, there exists a function γ ∈ K∞
such that

‖xT (t, x0, u)‖ ≤ γ(‖xT (ti, x0, u)‖) (1.30)

holds for all t ∈ [ti, ti + T ) and all x0 ∈ B0
σ(0).

Now we have shown how our numerical examples are embedded within the theoretical
background of digital control systems in Theorem 1.50. Together with Theorem 1.51 we
have seen that, given stated conditions, if the stability property can be generated for the
approximated digital control system, then the exact system (1.9) and the sampling system
in continuous–time (1.8) inherit this property. Our aim in the following chapters is to
derive a method to compute a control law which introduces the desired stability property.
Moreover, we develop and discuss conditions for this method guaranteeing semiglobal
practically asymptotic stability.



Chapter 2

Model Predictive Control

In this chapter we focus on design methods of control laws for given nonlinear control sys-
tems. Again, we distinguish between open–loop and closed–loop controls, see Definitions
1.24 and 1.25 and the explanations thereafter. The design method we aim to describe lies
somewhere in the middle of these two concepts, i.e. it is based on an open–loop control
computation but implements it in a closed–loop fashion. Our approach to introduce this
technique is close to the conceptual ideas which led to its development.
We start with a historical review on control in Section 2.1. Thereafter, we introduce
the concept of optimal control for continuous–time control problems and the definitions
of constraints and cost functionals in Section 2.2. In particular, we discuss how the
stability property of the underlying system is replaced by the implicit construction of the
cost functional. In the following Section 2.3 we use these terms in the context of digital
control. For the considered setup we derive an initial characterization of a control which
exhibits desired properties, that is to minimize a user defined cost and to satisfy given
restrictions. Since the calculation of the mentioned control is computationally expensive or
even unsolvable, we focus on the so called receding horizon control approach in Section 2.4.
The resulting control problem, its properties and an implementation of a solution method
are the main issue of this thesis. We conclude this chapter with a short classification
of other important control design techniques in Section 2.5 and discuss advantages and
disadvantages of the receding horizon control method.

2.1 Historical Background

First of all, we have to mention that the stability concept cannot only be found in control
theory and its applications, but it also occurs in nature. To give an example, we refer
to predator–prey–relationships between two or more species [71, 221] which occasionally
exhibit convergent development towards an equilibrium such that birth and death rate
are equal. In this thesis, we focus on controller design concepts for artificial applications
which aim at establishing such a property.

The evolution of control theory can be divided into four major periods:
The first period dates back to 6000 BC when irrigation was used for the probably first time
in Mesopotamia and Egypt. At that time, barley was grown in areas where the natural
rainfall was insufficient to support such a crop [1] and the control mechanism was handled
by humans. In contrast to that, one can find automatic closed–loop controls in roman
aqueducts where water levels are kept constant through the use of various combinations
of valves [166] where no human action is necessary during the operation process.

25
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Back then, control was more try–and–error than actually understood. This was still
the case in modern control theory which started during the 17th century when Chris-
tiaan Huygens (1629–1695) and Robert Hooke (1635–1703) designed pendulum clocks.
Huygens’ contributions arose out of his interest in developing accurate clocks for use in
navigation. Huygens idea and main contribution was to avoid the jumps in the motion
caused by the escapement mechanism of a clock. To this end, he developed a conical
pendulum (1673). The resulting speed control design was (probably) the first published
design of a control which was intended to eliminate the offset. Since he was working prior
to the invention of the calculus, he did not exactly understand the way it worked at least
in a mathematical sense.
Hooke also invented a conical pendulum (1666–1667), but he had not published much
detail before Huygens’ book on clocks appeared in 1673; he also worked on applications
of this pendulum to govern the speed of an astronomical telescope (1674) and on spring–
restored flyballs (1677). During the 18th century, these were used for speed control of
windmills. The idea is to synchronize the flyball with the windmill. Then the centrifugal
force due to the angular velocity causes the attached balls to rise. These balls are linked
to the sails such that an upward movement affects the positions of the sails.
Yet, Huygens’ and Hooke’s idea of speed control did not become popular until James
Watt (1736–1819) adapted it to flyball governors of steam engines. Here, the speed of the
engine is to be regulated despite of a variable load. In particular, a steady–state error
can appear which leads to variations of the integral feedback idea in order to deal with
this problem.
The first attempt to systematically analyze the governor was made by George Biddell Airy
(1801–1892) in his works on dynamical control theory [2, 3] in which he gave a “good”
governor for an astronomical telescope. The first complete mathematical analysis of a
governor and its properties was published by James Clerk Maxwell (1831–1879) in 1868,
see [157]. Because of this work which deals with erratic behaviour as well as the effects
of integral control, he is called the founder of control theory. Additionally, it gave rise to
the first wave of theoretical research in control.
For more details about this period we refer to [74, 75, 161].

The second period began in the early 1900s and was characterized by a strict mathematical
treatment of control processes and properties in many applications. In particular, one has
to mention the work of Aurel Boreslav Stodola (1859–1942) and Max Tolle (1846–1945)
about controlling turbines and piston force machines [211, 212, 217]. Tolle’s book can
be seen as the first systematic textbook in control theory. Also at the same time Adolf
Hurwitz (1859–1919) and Edward John Routh (1831–1907) developed characterizations
of stability of linear systems, see [199].
In the upcoming 1930s Karl Küpfmüller (1897–1977), Harry Nyquist (1889–1976) and
Hendrik Wade Bode (1905-1982) (among others) analyzed electrical circuits and raised
the theory of feedback amplifiers to guarantee stability and appropriate responses of
their devices [25, 26, 133, 176]. Their work is up till now the basis of frequency design.
Moreover, analog computers appeared almost at the same time and were immediately
used for controlling purposes.

Around the year 1940 the third period started. At that time, Adolf Leonhard (1899–
1995) and Winfried Oppelt (1912–1999) published their work which made control theory
a uniform, autonomous and systematic engineering science [141]. Additionally, Rudolf
Oldenbourg (*1911) and Hans Sartorius (*1913) as well as Hendrik Wade Bode gave the
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first complete mathematical analysis of the dynamics of automatic controls in [27, 177].
These so-called classical approaches were limited for the most part by their restriction
to linear time–invariant systems with scalar inputs and outputs. Only during the 1950s,
control theory began to develop powerful general techniques that allowed treating multi-
variable time–varying systems, as well as many nonlinear problems. At the end of World
War II, Norbert Wiener (1894–1964) introduced the term “cybernetics” for control the-
ory and related areas [230]. These years were dominated by statistical control treated
by Norbert Wiener [229,231], digital control [219] by John Groff Truxal (1923–2007) and
nonlinear control by Robert Lien Cosgriff [46]. Moreover, the techniques of control units
were widely unified and the concepts for pneumatic and electronic PID controller were
developed [23].

The last period began by 1960 when “modern” control theory started to evolve. It is
characterized by the use of electronic calculating machines to solve complex problems.
The use of machines made it possible to introduce optimal control methods such as the
maximum principle by Lew Semjonowitsch Pontryagin (1908–1988) et al. [181] in the
Soviet Union as well as the dynamic programming principle by Richard Bellman (1920–
1984) [17] in the United States. The concept of these modern optimal control methods
required a new notation, the so called state space notation, which was (re)introduced
by Rudolf Kalman (*1930) in [122] and particularly useful in his work on filtering [123].
Moreover, the state space notation allows for handling multivariable systems. These, in
turn, caused mathematically rather complex problems to be considered which resulted in
high computational and numerical costs.
Also in the 1960s, digital computers were used in digital control systems [137,138]. These
so called process computers allowed the handling of large measurement data and were
able to take over the optimal guidance of the whole process. Soon, they were standard in
monitoring, logging and controlling processes. However, centralizing attempts to integrate
all these functions in just one unit stayed unsatisfactory and risky.
From 1960 onwards, also mathematical control theory evolved massively entering many
different fields such as control of partial differential equations, see e.g. the works of Hector
Fattorini (*1938), Jacques–Louis Lions (1928–2001) [145] and Fredi Tröltzsch (*1951)
[57, 218], which is computationally extremely demanding and many analytical questions
are still unanswered. Also distributed systems as well as delayed systems are considered
using tools from functional analysis, see e.g. the works of Lions [146] or Jack Hale (*1928)
[110] respectively.
In [31, 115, 119], Roger Brockett (*1939), Alberto Isidori (*1942) and Héctor Sussmann
(*1946), among others, treated nonlinear control systems geometrically using Lie groups
and identified control problems in both the Lagrangian and Hamiltonian framework.
Moreover, passivity methods for stabilization as well as the controllability problem were
considered by Brockett. Starting in the 1990s, a more concentrated interest in developing
the theory of mechanical control systems occured which was coming from two directions.
On the one hand, the interest in understanding the role of external forces and constraints
arose in the theoretical research community, see e.g. [24,174]. And secondly, coming from
the application side, a focus was put on stabilization and passivity techniques for mechan-
ical systems [9, 178]. For further details on the historical development of mathematical
control theory see also [32, 153].
Mathematical control theory also influenced engineering sciences, for example the al-
gebraization of frequency–domain analysis [122] is by now standard. The frequency–
domain approach was and is still extensively used in powerful decentralized processes
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which are controlled by microprocessors. This was possible from 1975 onwards due to
their cheap availability. Yet, for security reasons, these systems were closed so no user
could implement controllers which are different from the installed classical PID con-
troller [147, 148, 222–224]. This was overcome around 1998 and since then many ex-
tensions have been implemented. Among these are Fuzzy controllers, see e.g. [124, 236],
which were first introduced 1965 by Lotfi Zadeh (*1921) in his work [235], neuronal
networks as seen in [55, 113, 120,197], Lyapunov function based and adaptive controllers,
cf. [12,72,129,132,165,220], and model predictive controllers, see e.g. [4,16,76,140,160,167].

In the following, we focus on the last mentioned controllers, so called model predictive or
receding horizon controllers. Since this design technique is derived from optimal control,
we start by defining necessary terms in the context of continuous–time control. Then, we
show the equivalent for our considered setting of digital control systems before we state
the main idea and mathematical description of the receding horizon control approach.
Concluding, we compare the presented receding horizon control idea to its main com-
petitors, the PID controller as well as the Lyapunov function based controller and the
adaptive controller.

2.2 Continuous–time Optimal Control

From the historical development in control theory we can see that, prior to the last period,
the goal for designing control laws is to obtain desired properties of the system, e.g.
stability. For these laws, the effectiveness is a matter of the experience of the developer
and one does not know whether the chosen implementation is actually the best one.

To overcome this issue, we introduce the so called cost functional and (possibly nonlinear)
constraints. Note that the constraints are additional conditions which may depend on
any of the parameters of the system. Yet, they implicitly exist within the prior controller
designs where the controller is constructed to avoid violating the now explicitly considered
boundaries which allows to neglect them during the process run.

Using the cost functional instead of the experience of a developer, we are not longer in
the position to choose tuning parameters of the control law. As a result, we cannot avoid
considering the mentioned bounds within the control law.

The cost functional, on the other hand, allows us to abstractly implement the task we want
to achieve, e.g. stabilizing a given point or a trajectory or minimizing energy consumption.
In particular, we do not model the control itself as for example in the PID approach, but
implicitly define it via our goal. The cost functional itself corresponds to introducing a
new, higher layer within the control system which governs the problem and simultaneously
eases the mathematical formulation of our objective.

Hence, we traded the ease of designing the control law for considering constraints. Since
these constraints already existed before the change of the problem formulation and re-
quired a good knowledge of the systems in order to design an appropriate control law, the
incurred trade–off appears to be fair.

Here, we define constraints via the set of admissible states.

Definition 2.1 (Admissible set)
We refer to the nonempty set X ⊂ Rn as the set of admissible states. Moreover, we call a
solution to be admissible if xu(t, x0) ∈ X holds for all t ∈ T.
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Note that similarly U ⊂ Rm implies the control to be constrained. For numerical purposes,
we always think of the set X as a set being bounded by some functions which may depend
on the actual state and/or the control.

Definition 2.2 (Vector of Constraints)
Consider s ∈ N with s ≥ 1.

(1) Given a set of mappings ck : Rn × Rm → R, k ∈ {1, . . . , s}, we call the inequalities

ck(xu(t, x0), u(t)) ≥ 0, ∀t ∈ T (2.1)

mixed constraints.

(2) For a set of mappings ck : Rn → R, k ∈ {1, . . . , s}, the inequalities

ck(xu(t, x0)) ≥ 0, ∀t ∈ T (2.2)

are called pure state constraints.

(3) Given sm, sz, s ∈ N, s := sm + sz and c : Rn × Rm → Rs with

ck(xu(t, x0), u(t)) :=

{
ck(xu(t, x0), u(t)), k = 1, . . . , sm,

ck(xu(t, x0)), k = sm + 1, . . . , s,

we call

c(xu(t, x0), u(t)) ≥ 0 ∀t ∈ T (2.3)

the vector of constraints.

Here, T can be any set, hence the admissible set and the constrained vector are defined
for discrete–time systems

xu(n + 1) := f(xu(n), u(n)), n ∈ N, xu(0) = x0

as well as for continuous–time systems

ẋu(t) :=
d

dt
xu(t) = f(xu(t), u(t)), t ∈ R, xu(0) = x0

We now focus on the continuous–time case T = R.
The first aspect, the cost functional, allows us to incorporate the desired property of the
system directly into the problem. Typical goals are to stabilize a given setpoint x⋆ which
is also called regulation, or track a provided reference trajectory xref(·).
This functional points out solutions, i.e. control functions u ∈ U , which fulfill this task
at best in the sense of the cost functional. Hence, it can be seen as a measure of the
quality or performance of a solution. Since we utilize regulating as well as tracking type
examples, we define the cost functional in the more general tracking form.

Definition 2.3 (Costfunctional)
Consider L : Rn × U → R

+
0 to be a continuous nonnegative function and u ∈ U to



30 Chapter 2: Model Predictive Control

be a given control function which uniquely defines a solution xu(·, ·) of (1.3), (1.5) and
xref : R → Rn to be a given function. The functional J : Rn × U → R given by

J∞(x0, u) :=

∞∫

0

L (xu(t, x0) − xref(t), u(t)) dt (2.4)

is called infinite horizon cost functional. In this context, the function L(·, ·) is called
running cost and xref(·) denotes the reference function. If there exist constraints and the
solution xu(·, x0) violates one of these at some point in time, then we set J∞(x0, u) := ∞.

Remark 2.4
By setting xref(·) ≡ x⋆ we obtain the setpoint form of the functional. In the following
Chapters 3 and 4, the setpoint form with x⋆ = 0 will be the basis of our analysis, see also
Remark 1.40.

Given this functional we seek a minimizing function u and obtain the following problem:

Find u(x0, ·) := argmin
u∈U

J∞(x0, u)

ST. J∞(x0, u) =

∞∫

0

L (xu(t, x0) − xref(t), u(t)) dt

ẋu(t) = f(xu(t, x0), u(t)), ∀t ∈ R

xu(0, x0) = x0

xu(t, x0) ∈ X ∀t ∈ R

u(t) ∈ U ∀t ∈ R

(OCP∞)

Since our main focus lies on digital control, we do not go into more detail on solving such
a problem. Results concerning this topic can, among others, be found in [77,181,190,191].

2.3 Digital Optimal Control

We now turn our focus on so called sampled–data systems

xu(n, x0) := xT (tn, x0, u)

according to Definition 1.23. In contrast to the continuous–time setting of the previous
section, we are going to deal with discrete–time control systems and hence we have to
adapt the problem description.
Since the general structure of the control is known in advance, i.e. the points of disconti-
nuity are fixed, we can derive the digital optimal control problem directly from problem
OCP∞. In particular, we are looking for a piecewise constant control which minimizes a
given cost functional. This control law can be fully characterized by a control sequence, i.e.
by an element of UN0, instead of a control function. Considering the case of sampled–data
systems, this allows for incorporating the sampling aspect into the control design.
Since we can describe a piecewise constant control function using an element of the set
UN0, we can minimize the cost functional over this set. Moreover, we can make use
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of Definition 1.23 to rewrite the solution of the control system as an element in XN0 .
This allows us to map the state trajectory and control function on the discrete–time grid
T = (ti)i∈N0 representing all sampling instants.
Now, we modify the considered cost functional from Definition 2.3 and restate it using
only the discrete–time representation of the control system.

Definition 2.5 (Costfunctional)
Given a continuous nonnegative function l : Rn × U → R

+
0 , a reference function xref :

N0 → Rn and a given control sequence u ∈ UN0 which uniquely defines a solution xu(·, ·)
of (1.10), the functional J : Rn × UN0 → R given by

J∞(x0, u) :=
∞∑

i=0

l(xu(i, x0) − xref(i), u(i)) (2.5)

is called the infinite horizon cost functional. Moreover, the function l(·, ·) is called stage
cost.

Remark 2.6
The cost functional (2.4) is a special case of (2.5) since we can choose

l(xu(i, x0) − xref(i), u(i)) =

∫ ti+1

ti

L(xT (t, x0, u) − xref(t), u(ti))dt.

where xref(·) represents a continuous–time version of the reference signal.

Given the cost functional (2.5), we seek a sequence u ∈ UN0 which minimizes J∞(x0, ·)
given an initial value x0. This defines a nonlinear distance which is also called the optimal
value function.

Definition 2.7 (Optimal Value Function)
We define the optimal value function via

V∞(x0) := inf
u∈UN0

J∞(x0, u). (2.6)

Remark 2.8
For reasons of simplicity, we assume that the minimum with respect to u ∈ UN0 is attained
in (2.6). Moreover, we consider the initial time to be fixed which allows us to consider
the optimal value function (2.6) to be autonomous, see also Remark 1.40.

The function (2.6) can be used to formulate the so called Optimality Principle which was
first stated by Bellman in 1957, see [17]. Geometrically it says that one can split up
the distance along an optimal state trajectory. Additionally, we have that endpieces of
optimal trajectories are again optimal.

Theorem 2.9 (Bellman’s Optimality Principle)
Suppose u⋆ minimizes the cost functional (2.5) for a given initial value x0 ∈ X and a
reference xref(·) such that all constraints are satisfied. Then, for all m ∈ N0 we have

V∞(x0) =
m∑

i=0

l(xu⋆(i, x0) − xref(i), u
⋆(i)) + V∞(xu⋆(m, x0)). (2.7)
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Using this principle we can characterize an optimal control. Note that this control depends
on the choice of the cost functional and hence we can only guarantee optimality for this
particular choice.

Theorem 2.10 (Optimal Feedback Law)
Given an initial value x0 ∈ X and a reference xref(·), the mapping µ defined via

u⋆(n) := µ(xu(n, x0)) := argmin
v∈U

{V∞(xv(1, xu(n, x0))) + l(xu(n, x0) − xref(n), v)} (2.8)

minimizes (2.5) and is called optimal feedback or infinite horizon control law.

Proofs of Theorems 2.9 and 2.10 can be found in Chapter 8.1 of [210] using a discrete–time
setting which is equivalent to the sampled–data setting considered here.
Similar to the continuous–time optimal control problem OCP∞, we can summarize the
digital or sampled–data optimal control problem SDOCP∞.

Find u(x0, ·) := argmin
u∈UN0

J∞(x0, u)

ST. J∞(x0, u) =
∞∑

i=0

l(xu(i, x0) − xref(i), u(i))

xu(i + 1, x0) = f(xu(i, x0), u(i)) ∀i ∈ N0

xu(0, x0) = x0

xu(i, x0) ∈ X ∀i ∈ N0

u(i) ∈ U ∀i ∈ N0

(SDOCP∞)

Note that Theorem 2.10 offers a possible solution method for the digital stabilization
problem. However, we do not follow this path since it is often hard, if not impossible, to
compute the value function V∞(·) which is necessary to compute the feedback. To avoid
the burden of solving this problem, we circumvent the computation of a closed solution
and consider the so called receding horizon control approach instead.

2.4 Receding Horizon Control

The concept of receding horizon control (RHC), also called model predictive control
(MPC) or moving horizon control (MHC), is not a very new one. In 1963 Anatoli Propŏı
described such a controller for the linear case [189] and in 1967 Ernest Lee and Lawrence
Markus stated the RHC procedure as it widely used today, see [139].
The fundamental idea of RHC is to solve the optimal control problem SDOCP∞ for the
current system state only on a finite horizon of N sampling instants. Such a control can be
computed using e.g. methods from nonlinear optimization, see Chapter 5, but the solution
is unfeasible for the infinite horizon control problem since it is not an infinite sequence.
For this reason it needs to be prolongated, e.g. by using a default value u(n) ∈ U for all
sampling instances n > N . Within our implementation of the receding horizon controller
we use the default value

u(n) := 0 ∀n > N. (2.9)
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The resulting infinite control sequence, however, does not minimize the infinite cost func-
tional (2.5) and, in particular if the system under control is unstable, it may not even be
stabilizing.
To solve this problem, only the first part of the resulting input signal is applied open–
loop to the system until the next recalculation instant. For this point in time the optimal
control problem is solved for the new state of the system. Hence, an often intractable
problem is replaced by a series of tractable ones.
In [139], this method is described as follows:

One technique for obtaining a feedback controller synthesis from knowledge
of open-loop controllers is to measure the current control process state and
then compute very rapidly for the open-loop control function. The first portion
of this function is then used during a short time interval, after which a new
measurement of the process state is made and a new open-loop control function
is computed for this new measurement. The procedure is then repeated.

Within the literature, one usually distinguishes between linear and nonlinear receding
horizon control. Linear RHC refers to control schemes based on linear dynamics of the
system, a linear or quadratic cost functional and linear constraints of the state and control
variables. In contrast to that nonlinear model dynamics, nonlinear contraints on process
variables and a non–quadratic cost functional are characteristics of nonlinear RHC. Linear
receding horizon control is by now widely used in industrial applications, see [15,16,54,73,
76,167]. Moreover, much is known about theoretical and implementation issues as shown
in the survey articles [140, 160,167] and references therein.

For nonlinear receding horizon control, the situation is fundamentally different. Similar
to linear RHC its development was driven by industry, not by academia. Reasons for
the great need in industry are in particular tighter environmental regulations, quality
specifications and higher productivity demands which are in general nonlinear. Since op-
erating points close to those constraints offer the highest output in terms of the chosen
cost functional, linear models cannot be used instead. Still, there exists a large amount
of software and applications of this method, see e.g. [15, 16, 54], although its theoreti-
cal background is not completely understood. Especially the compensation of naturally
occuring delays and the design of robust nonlinear RHC are great open questions. On
the other hand, there exists quite a range of results for certain setups, for more de-
tails we refer to [5, 6, 59, 60, 62, 68, 69] for the continuous–time case, [49, 91, 160, 193] for
the discrete–time case. Stability and robustness issues of both cases are also discussed
in [4, 39, 50, 61, 87, 95, 102, 126].

This thesis extends results for nonlinear receding horizon control by introducing a per-
formance index for the quality of the closed–loop solution. For this performance index,
several online evaluatable methods are derived and their effectiveness has been shown
using numerical experiments. In a second step, the standard receding horizon control
concept itself is extended via adaptation algorithms which aim at guaranteeing a certain
performance index. These procedures have also been implemented and numerical sim-
ulations have shown that a significant decrease in the required computing time can be
expected by using these methods.

Now, we introduce the concept of receding horizon control more formally and thereafter
we schematically compare the general implementation of such a controller and other con-
ventional ones. The intention of this section is to provide an intuitively understandable
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basis for the stability and suboptimality analysis in Chapter 3 and its extension towards
adaptive receding horizon control in Chapter 4. For overviews on RHC results we refer
to [5, 39, 49, 160, 167].
As stated before we now modify the digital control problem SDOCP∞ by “cutting off”
the end of the infinite horizon. In particular, we consider the cost functional (2.5) but
truncate it after a certain point N in time. In order to define this functional properly,
we first need to define the state trajectories and possible control sequences which we are
going to consider. Since both are computed in an open–loop manner, see Definition 1.24,
we refer to them as open–loop trajectories and open–loop controls.

Definition 2.11 (Finite Open–loop Control)
Consider the time set Iu := {0, . . . , N −1}. A function uN : Iu → U based on some initial
condition x0 is called a finite open–loop control law.

For notational purposes, we use uN(x0, i) to represent the i-th control value within the
open–loop control sequence corresponding to the initial value x0 when it is necessary to
distinguish between two or more different open–loop controls.

Definition 2.12 (Finite Open–loop State Trajectory)
Consider the time set Ix := {0, . . . , N}. A solution of (1.9)

xuN
(i + 1, x0) = f (xuN

(i, x0), uN(x0, i)) (2.10)

emanating from the initial condition xuN
(0, x0) = x0 using a finite open–loop control law

uN according to Definion 2.11, is called an finite open–loop state trajectory or open–loop
solution.

The interval of interest is given by Ix = {0, . . . , N} ⊂ N0 for the state trajectory. Note
that the sequence of control values cannot be defined as a mapping from Ix to U since it
only contains N and not N + 1 elements. To this end, we introduced the set Iu.

Definition 2.13 (Finite Costfunctional)
Given a continuous nonnegative stage cost function l : Rn × U → R

+
0 and a given control

sequence uN ∈ UIu which uniquely defines a solution xu of (1.10), the functional J :
Rn × UIu → R given by

JN(x0, uN) =

N−1∑

i=0

l(xuN
(i, x0) − xref(i), uN(i)). (2.11)

is called the reduced or finite horizon cost functional.

Remark 2.14
The form of the cost functional in (2.11) is also termed Lagrangian form. Within the
receding horizon control scheme it is also possible to use the so called Mayer term, i.e.
JN(x0, uN) = F (xuN

(N, x0)), which represents a function of the end point of the trajectory
xuN

on the finite horizon. This term is often considered for stability reasons, see [39,117,
160] and the discussion in Section 3.4. Moreover, a mixture of these two forms can be
used which is then called a cost functional of Bolza–type. In the following, we focus on
the Lagrangian form only.

Similar to the infinite horizon problem SDOCP∞, the cost functional defines a nonlinear
distance. In Chapter 3, we use this distance to analyze stability and suboptimality.
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Definition 2.15 (Finite Optimal Value Function)
The function

VN(x0) := inf
uN∈UN

JN(x0, uN). (2.12)

is called finite optimal value function.

Again, we assume that the minimum with respect to uN ∈ UIu is attained and the initial
time is fixed, see Remark 2.8. Moreover, we obtain Bellman’s Optimality Principle to
hold in the finite case, cf. [18].

Theorem 2.16 (Bellman’s Optimality Principle)
Consider u⋆ to minimize (2.11) for a given initial value x0 ∈ X satisfying all constraints.
Then

VN(x0) =

m∑

i=0

l(xu⋆(i, x0) − xref(i), u
⋆(i)) + VN−m(xu⋆(m, x0)) (2.13)

holds for all m ∈ Iu.

The finite optimal value function also points out minimizing controls which we are going
to use in the receding horizon control setting.

Definition 2.17 (Minimizing open–loop Control)
The function uN : Iu → U satisfying

uN(x0, ·) = argmin
uN∈UN

JN(x0, uN) (2.14)

is called minimizing open–loop control.

The computation of (2.14) requires us to solve the following problem:

Find uN(x0, ·) = argmin
uN∈UN

JN(x0, uN)

ST. JN(x0, uN) =

N−1∑

i=0

l (xuN
(i, x0) − xref(i), uN(x0, i))

xuN
(i + 1, x0) = f (xuN

(i, x0), uN(x0, i)) ∀i ∈ Iu

xuN
(0, x0) = x0

xuN
(i, x0) ∈ X ∀i ∈ Ix

uN(x0, i) ∈ U ∀i ∈ Iu

(SDOCPN)

Schematically this can be described as shown in Figure 2.1.
The underlying digital control system is simulated over a finite horizon using a model of the
system under control. The resulting trajectory is used to generate an open–loop control
which minimizes the given cost functional. At the same time all constraints of the process
have to be satisfied on the simulated finite horizon. Since this internal computation is
usually done iteratively, we represent it as an internal feedback loop in Figure 2.1 which
illustrates this setup graphically.
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Figure 2.1: Schematic representation a receding horizon controller

In order to obtain an infinite control sequence from this setting we use the following
iterative procedure:

Step 1: First, we solve the
problem SDOCPN for a given
initial value xn

0 for the n-th it-
erate of the procedure. As a
result, we obtain a prediction
of the trajectory on the consid-
ered time horizon and the out-
put of the RHC block in Figure
2.1, the minimizing control se-
quence uN ∈ UNu .

x

x(·)

µN(·)
xuN

(·)
uN

t

Horizon of length N · T

n n + 1 n + N

T

Figure 2.2: Step 1 of the RHC algorithm

u

uN

t

Horizon of length N · T

n n + 1 n + 2 n + N

T

u0

Figure 2.3: Step 2 of the RHC algorithm

Step 2: Now, the first element of the
RHC output sequence u(x0, ·) is trans-
mitted to and implemented by the ac-
tuator, see also Figure 2.5. The re-
mainder of this control sequence can be
dropped or reused as an initial guess for
the control in the case that an iterative
solver is employed to calculate the so-
lution of SDOCPN .
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Step 3: In the last step, we ob-
tain a new measurement or es-
timate of the current state x at
the end of the sampling period.
At this point, a new control value
has to be computed and applied.
Hence, the state x is transmit-
ted to the receding horizon con-
troller, again see Figure 2.5, and
we can define a new problem
of type SDOCPN with a shifted
optimization horizon and initial
value xn+1

0 = x.

x

x(·)

µN(·) xuN
(·)

uN

t

Horizon of length N · T

n n + 1 n + 2 n + N + 1

T

Figure 2.4: Step 3 of the RHC algorithm

Hence, we obtain an infinite control sequence from this setting by defining a feedback
law µN as the recurrent implemention of the first element of the optimal control sequence
uN . Using Bellman’s principle of optimality for the optimal value function VN(·), we can
formally define the following:

Definition 2.18 (Closed–loop Control)
Given an initial value x0 ∈ X and a reference xref(·), the function µN : X → U satisfying

µN(x0) :=

[
argmin

uN∈U

{VN−1(x0) + l(x0 − xref(0), uN(0))}

]

[0]

(2.15)

is called closed–loop or receding horizon feedback control where we use the short notation
u[0] := uN(x0, 0).

The computation of such a closed–loop control on the infinite time interval can be done
by solving the following infinite sequence of finite optimal control problems, the so called
receding horizon control problem:

Find µN(x(n)) := u[0]

ST. u(x(n), ·) = argmin
uN∈UN

JN(x(n), uN)

JN(x(n), uN) =

N−1∑

i=0

l (xuN
(i, x(n)), uN(x(n), i))

xuN
(i + 1, x(n)) = f (xuN

(i, x(n)), uN(x(n), i)) ∀i ∈ Iu

xuN
(0, x(n)) = x(n)

xuN
(i, x(n)) ∈ X ∀i ∈ Ix

uN(x(n), i) ∈ U ∀i ∈ Iu

(RHCN)

Remark 2.19
Within the problem (RHCN) the initial values x(n) represent external data/measurements
which have to be provided to the algorithm, see also Figure 2.1.
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Using the control law (2.15), we obtain the following solution:

Definition 2.20 (Closed–loop Solution)
The trajectory

xµN
(n + 1, x0) = f (xµN

(n, x0), µN(xµN
(n, x0))) (2.16)

emanating from the initial value xµN
(0, x0) = x0 with closed–loop control µN according

to (2.15) is called closed–loop solution of the problem RHCN.

Remark 2.21
Using the closed–loop control we can rewrite the optimal value function on a finite horizon
by

VN(x0) =

N−1∑

i=0

l(x(i), µN−i(x(i))) (2.17)

where x(0) = x0 and x(i+1) = f (x(i), µN−i(x(i))). Note that different to the closed–loop
solution (2.16) we now use the recomputed optimal control µN−i in a receding horizon fash-
ion. In this case, the closed–loop solution is identical to the open–loop solution xuN

(·, x0)
since by principle of optimality endpieces of optimal solutions are again optimal.

Note that the optimal control problem SDOCPN cannot be solved instanteously in prac-
tice. Hence, the initial value used as basis point of the optimization is in general a
prediction of the current state or an estimate calculated from available measurements.
Due to the time delay caused by the computation, it may be necessary to postpone clos-
ing the control loop and to implement more than the first element of the control sequence.
Considering Bellman’s principle of optimality (2.13), we can also characterize the first m
elements of the control sequence uN for m ∈ Iu.

Definition 2.22 (m–step closed–loop Control)
The function µN : N0 → UIm

u satisfying

µN,m(x0) :=

[
argmin

uN∈U

{
VN−m−1(xµN,m

(m, x0)) +
m−1∑

j=0

l(xµN,m
(j, x0), uN(j))

}]

[0,m−1]

(2.18)
is called m–step closed–loop or m–step receding horizon feedback control. The parameter
m is called the control horizon.

Remark 2.23
Such a feedback can be useful for several situations:

(1) The computing time necessary to solve the optimization problem SDOCPN is larger
than the sampling time and parallel computations are not realizable.

(2) If the system is exponentially controllable or finite time controllable, then the perfor-
mance of the control may be improved using longer control horizons, i.e. m > 1. In
some cases, one can also obtain stability if the control horizon is enlarged, cf. [99].

(3) In the context of networked control systems, delays or package dropouts naturally
lead to situations which force us to utilize larger control horizons. In this case,
the implemented control horizon is unknown prior to computation and one has to
consider this parameter to be variable along the closed–loop, see e.g. [101].
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However, one has to keep in mind that the robustness of the algorithm concerning distur-
bances may be lost due to update delays within the control law.

Within the continuous–time setup of the plant, we can implement the defined receding
horizon controller in the following fashion:

➠ Flow of Information ➠

m u
u

Actuator Plant Sensor u

RHC
Reference

Figure 2.5: Schematic representation of the usage of a receding horizon controller

Using the technical terms we just introduced, we can now state the contribution of this
thesis more precisely: First, we prove estimates for the performance of the control in the
following Chapter 3, a concept which we call suboptimality degree. Within this analysis,
we focus on the case m = 1, however, we also expect these results to hold for increased
control horizon lengths. Secondly, based on these estimates, we introduce strategies to
adapt the optimization problem SDOCPN in order to guarantee a certain lower bound on
the suboptimality degree while reducing the computing cost/time, see Chapter 4. Last,
the chosen implementation of the receding horizon controller in the PCC2 1 (Predictive
Computed Control 2) package is described in Chapters 5 and 6. The dependency of the
required computing time on certain parameters within the numerical implementation is
discussed in Chapter 8 using the examples from Chapter 7 and may also be used as a
guideline to effectively implement and solve further examples.

Remark 2.24
To simplify our notation in the following chapters, we use no subscript for the used con-
troller and no second argument corresponding to the initial state to denote the state by
x(·) := xµN

(·, x0) if these components are clear from the context or if x(·) is used as a
basis of our calculations only.

2.5 Comparing Control Structures

Having introduced the fundamental terms and the strategy of receding horizon control,
we now discuss advantages and disadvantages of this method compared to other standard
control schemes.

1http://http://www.nonlinearmpc.com

http://http://www.nonlinearmpc.com
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2.5.1 PID Controller

In contrast to the state space or time domain setting which we considered until now,
the proportional–integral–derivative (PID) controller is designed in the frequency domain
using the Laplace transform (see e.g. [67])

F (s) =

∞∫

0

f(t)e−stdt =: L[f(t)]

and retranslated to the time domain using the inverse transform

f(t) =
1

2πj

c+i∞∫

c−i∞

F (s)estds =: L−1[F (s)]

where s ∈ C denotes the state of the system in the frequency domain. Here, we adapt
the standard notation used to design controllers in the frequency domain. The function
f(·) denotes the development of the deviation of the state of the system for the refer-
ence trajectory. Moreover, we only give a short glance at the fundamental setup of PID
controllers. For further details we refer to [147, 148,222–224].

Definition 2.25 (PID Controller)
The function GC : C → C satisfying

GC(s) = KR

(
1 +

1

TIs
+ TDs

)

is called PID transfer function in the frequency domain. The corresponding time domain
control is given by

u(t) = KRe(t) +
KR

TI

t∫

0

e(τ)dτ + KRTd
∂

∂t
e(t)

where e(t) := x(t) − xref(t) denotes the deviation of the state from the desired reference.

The parameter KR, TI and TD represent the amplification factor, the integral and deriva-
tive time respectively and can be used to set the resulting behavior of the system. Hence,
an appropriate choice of these parameters causes the closed–loop system to be stable.

Remark 2.26
Due to device–related restrictions, the D–element cannot be implemented exactly. Instead,
a retarded DT1–element is used giving

GC(s) = KR

(
1 +

1

TIs
+ TD

s

1 + Ts

)

with T ≪ 1.

In order to obtain the digital control problem a sample–and–hold element is used. Math-
ematically, we first apply an impulse function δ to the continuous–time signal where the
impulse instants are located at the sampling instants. The resulting signal

fsample(t) = f(t)

∞∑

k=0

δ(t − kT ) =

∞∑

k=0

f(kT )δ(t− kT ).
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is called sampling signal. Next, we apply a holding element which is a square impulse of
width T and height one, i.e. we apply the Emulation design (1.20), that is

fhold(t) = σ(t) − σ(t − T ).

Applying the Laplace transformation to both parts we obtain

Fsample(s) = L[fsample(t)] =
∞∑

k=0

f(kT )e−kTs,

Fhold(s) = L[fhold(t)] =
1 − e−Ts

s
.

Combined, we obtain the Laplace transform of step function, that is

FT (s) = Fhold(s)Fsample(s) =
1 − e−Ts

s

∞∑

k=0

f(kT )e−kTs

and can apply the PID method to this input.

A typical implementation of PID controllers in applications is done in a very hierarchical
setup as shown in Figure 2.6, see also [16]. It also shows how a receding horizon controller
fits into this hierarchy and it intuitively explains the advantages of RHC in comparison to
PID controllers. This structure is not a new one, in fact is was described in the 1970s/80s,
see e.g. [188, 194].

One can see that both concepts reveal the same high level optimization concerning the
whole plant as well as plant units, but also an identical local foundation at each ma-
chine is used. The latter represents a decentralized control system controlled by local
PID controllers. For large plants, this is necessary on the one hand to compensate for
disturbances, and one the other hand because the higher level computations still show
too long computation latencies. On top of the hierarchy, there is always a plant–wide
optimizer which determines the optimal steady–state settings for the single plant units.
Note that such a controller could, again, be a receding horizon controller supervising all
other controllers. However, this as well as the local optimization is in general done by
humans.

In between these layer the designs differ. The main task of the dynamic constraint control
part is to compute paths from one constrained steady–state to another one. Such a
path should fulfill certain requirements like energy efficiency or other economical criteria.
However, during this transition one has to minimize possible violations of constraints. In
the classical setting, Figure 2.6 shows the interaction of PID algorithms, lead–lag (L/L)
blocks and high/low select logic units to accomplish this task. It is particularly difficult to
design an appropriate control structure to satisfy all control requirements. This is exactly
the setup RHC has been designed for, so the entire dynamic constraint control part can be
done using this algorithm. The possible sampling times of the RHC algorithm, however,
are large and the method is computationally demanding compared to the PID controller.
Still, its ability to explicitly consider nonlinear dynamics, constraints and the possibility
to design ones interests, i.e. the goals of the local optimizer, in a cost functional makes
RHC the algorithm of choice.
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Plant-Wide Optimization

Local Optimizer

High/Low Select Logic

PID PIDL/L

SUM SUM

DCS – PID Controls

mFC mPC mTC mLC

Local Optimizer

Receding Horizon
Control

DCS – PID Controls

mFC mPC mTC mLC

Global Exonomic Optimization
(every day)

Local Exonomic Optimization
(every hour)

Dynamic Constraint Control
(every minute)

Basic Dynamic Control
(every second)

Figure 2.6: Hierarchy of control system functions in a typical processing plant. Conven-
tional structure is shown at the left; RHC structure is shown at the right

2.5.2 Lyapunov Function Based and Adaptive Controllers

Another class are so called Lyapunov function based controllers. In contrast to a PID
controller, these controllers are designed in the state space by an appropriate choice of
a Lyapunov function for the system. For simplicity of exposition, we only consider the
continuous–time control–affine case

ẋ(t) = f0(x(t)) +
m∑

i=1

fi(x(t))ui(t). (2.19)

Note that we can use for example the Emulation technique discussed in Section 1.3.3 to
apply a resulting continuous–time controller in the considered digital setting as well.
The controller is defined as follows:

Theorem 2.27 (Lyapunov Function based controller / Sontag’s formula)
Consider V : Rn → R

+
0 ∈ C1(R) to be a control Lyapunov function according to Definition

1.38 satisfying

inf
u∈U,‖u‖≤γ(‖x‖)

∂V (x)

∂t
f(x, u) ≤ −α(x) (2.20)

for a function γ ∈ K and x⋆ = 0 to be the target equilibrium. Moreover, we suppose the
derivative ∂V (x)

∂t
to be Lipschitz continuous if x 6= 0. Then, the i-th component of the
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asymptotically stabilizing control function u : Rn × Rn → Rm is given by

ui(x(t)) = Ki(x(t)) := κ
(
a(x), ‖B(x)‖2

)
B(x)⊤ (2.21)

where

κ(a, b) :=

{
− a+

√
a2+b2

b(1+
√

1+b)
, if b > 0

0, if b = 0
(2.22)

and a(x) := ∂V (x)
∂x

f0(x), B(x) := ∂V (x)
∂x

[f1(x), . . . , fm(x)]. The control function u is called
Lyapunov function based feedback or minimum norm feedback.

Implementing this controller, the resulting time derivative ∂V (·)
∂t

is strictly negative along
the closed–loop trajectory, hence the stabilizing property of controller (2.21) follows di-
rectly according to Lyapunov arguments, see e.g. [143] for a proof.

The class of adaptive controllers is closely related to the class of Lyapunov function based
controllers. The concept of an adaptive controller is quite simple: It uses identification
and parameter estimation algorithms to obtain a process or signal model, i.e. an adaptive
controller is able to adapt itself if external signals occur or properties of the process under
control change. In a second step, a preprogrammed controller design algorithm is used to
recompute the parameter of the controller itself.
The development of this class of controllers began around 1960, the same time as receding
horizon control was introduced, see e.g. [12,163,165,220] for some early reviews regarding
mainly the continuous–time case without digitalization. Since 1970 adaptive controllers
for digital control systems have become popular. This led to a change in the description
technique, that is the discrete–time setting was considered almost exclusively. For more
details we refer to [13, 232].
Similar to Chapter 1, we distinguish between two main concepts, an externally influenced
(direct) adaptive controller and an (indirect) adaptive controller with feedback, see Figures
2.7 and 2.8 respectively.

Reference m Control u
tn

Plant u

SignaluAdaptation

Law

Figure 2.7: Schematic representation of an externally influenced adaptive controller

An adaptive controller is called externally influencable if internal changes of properties
can be detected using measurable external signals, the relationship between these signals
and the control law is known and this adaptation can be implemented as a control.
The missing backlink between the process output and the adaptation law is the main
difference to an adaptive controller with feedback. This setup is particularly useful if the
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Reference
m Control u

tn

Plant u

Adaptation

Law

uu

Figure 2.8: Schematic representation of an adaptive controller with feedback

internal changes can indeed not be detected directly and have to be recognized indirectly
using the output of the plant. Here, one can utilize process identification algorithms to
obtain the changing properties. The distinguishing mark of an adaptive controller with
feedback is the second loop which superimposes the closed–loop control.

Since the receding horizon controller is representing a static state feedback law, we focus
on the adaptive controller with feedback here. For these, another distinction is made by
the Lyapunov–based and estimation–based designs which is more fundamental.
Within the Lyapunov–based approach, a reference model xref in continuous– or discrete–
time is used to derive a Lyapunov function for the deviation of the state

e(t) = x(t) − xref(t)

and for the deviation of the system parameters. For reasons of simplicity, we restrict
ourselves to the linear and continuous–time case. For a larger class of systems, this is
done e.g. in [132].

Definition 2.28 (Adaptive Controller)
Consider the reference model

ẋref(t) = AMxref(t) + BMu(t)

of the time–depending plant

ẋ(t) = A(t)x(t) + B(t)u(t)

and the Lyapunov function

V (e(t)) = e(t)⊤Pe(t)+[(AM − A(t))⊤FA(AM − A(t))]+[(BM − B(t))⊤FB(BM − B(t))]

for this plant where P is the solution of A⊤
MP + PAM = −Q. Then, the plant model is

adapted by the adaptation law

Ȧ(t) = F−1
A Pe(t)x(t)⊤

Ḃ(t) = F−1
B Pe(t)u(t)⊤

and the adaptive controller is computed according to (2.21).
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In this case, stability follows by the same Lyapunov arguments as for the Lyapunov based
controller since the resulting time derivative ∂V (·)

∂t
is strictly negative along the closed–loop

for the adapted linear control system, see [132]. Again, applicability to digital control
systems can be obtained using the Emulation technique of Section 1.3.3. For purely
discrete–time settings, we again refer to [13, 232].
These design techniques are known for quite some time but stayed mainly unapplicable.
This changed during the 1990s when the backstepping technique to design the required
Lyapunov function was developed, see [72, 132] for an overview.
The estimation–based design leads to so called modular designs, cf. [132, 180,187]. Here,
the estimation of the parameter of the plant and the calculation of the parameter within
the controller via optimization routines are separated. For further details, we again refer
to [132].

Upon implementation, Lyapunov function based controllers as well as adaptive controllers
are used on the same level as PID controllers, see Figure 2.6. Compared to a PID, an
adaptive controller exhibits better results since it utilizes past information to fit the new
situation.
Considering the receding horizon controller, both Lyapunov function based controllers
as well as adaptive controllers offer a cheaper computation of the control vector and
hence allow for smaller sampling periods T . Moreover, the adaptive controller can be
implemented without knowledge of a good model of the system as it is required for the
RHC approach. However, to compensate for unexact parameter values, the optimization
within the RHC can be extended to cover this issue, see e.g. [62] for output feedbacks
using RHC or [204] for general numerical data fitting methods.
Lyapunov function based controllers as well as adaptive controllers also show an applica-
bility disadvantage: Both the adaptation formula and the estimation of the parameter of
the plant require significant analytical effort to design the control Lyapunov function or
the estimator respectively. Until now, is not clear how to construct these auxiliary func-
tions for general nonlinear systems. Moreover, we expect the receding horizon controller
to be superior to the adaptive controller designs if an estimation method of the systems
parameters is added to it due to their ability to incorporate past and future information
within the control law without requiring a control Lyapunov function.
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Chapter 3

Stability and Optimality

The presented receding horizon control scheme is based on a sequence of finite time optimal
control problems, the stability property defined in Section 1.3.3, however, is stated for an
infinite horizon. The central question we are going to consider in this chapter is whether
the proposed method is able to establish the stability property stated in Definition 1.44.
This manner has been treated before in a number of papers, see e.g. [52,126,205], and some
sufficient conditions have been derived to guarantee stability. For most of the commercial
RHC settings used in industry, however, these conditions do not apply, see [16]. Moreover,
it is not possible to quantify the maximal trade–off between the infinite horizon control
(2.8) and the receding horizon control (2.15) in terms of the cost functional (2.5), a
parameter which we call degree of suboptimality.
Here, we develop techniques to overcome these lacks. In Section 3.1 we derive sufficient
conditions for stability conditions for asymptotically stabilizable systems which can be
checked a posteriori. Additionally, we give an estimate on the degree of suboptimality
in this case. In the following Section 3.2 we show how stability can be guaranteed and
the degree of suboptimality can be computed a priori, that is at runtime of the pro-
cess. These methods are generalized to practically asymptotically stabilizable systems
in Section 3.3. The parameter of interest in this context is the horizon length N of the
sequence of subproblems. On the one hand, we expect better results, i.e. a higher degree
of suboptimality, if the parameter N is enlarged. On the other hand, since the resulting
computing cost rises significantly, we want to choose it as small as possible. Techniques
to appropriately adapt this parameter will be the aim of the following Chapter 4.
In the remaining Section 3.4 of this Chapter we present the mentioned previous works on
this topic and classify all results.

3.1 A posteriori Suboptimality Estimation

According to our definition of the receding horizon control problem RHCN in Section 2.4,
we deal with discrete–time nonlinear systems

xu(n + 1) = f(xu(n), u(n)), xu(0) = x0

on arbitrary metric spaces X and use finite horizon optimal control problems without
terminal costs or terminal constraints in our RHC setup, that is we consider only cost
functionals of the form

JN (x0, u) =
N−1∑

i=0

l(xu(i, x0), u(i)) (3.1)

47
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which is commonly used in industrial receding horizon controllers.
For these schemes, we present techniques for estimating the degree of suboptimality online
and along the closed–loop trajectory. Like in [92, 102], our approach is based on relaxed
dynamic programming but relies on the computation of a “characteristic value” α at each
time instant n along the closed–loop trajectory x(n) and the actual estimate can then be
computed from the collection of all these α-values.

Remark 3.1
Since we deal with NMPC schemes without terminal costs, we can use the observation

VM(x) ≤ VN(x) ≤ V∞(x) (3.2)

for all M , N ∈ N with M ≤ N .

The motivation for this work is twofold: on the one hand, we expect the trajectory based
estimates to be less conservative than the global estimates derived, e.g., in [92, 102, 205],
because in these references the worst case over the whole state space is estimated. Here,
however, we only use those points of the state space which are actually visited by the
closed–loop trajectory. On the other hand, these trajectory based estimates can be used
as a building block for RHC schemes in which the optimization horizon is tuned adaptively,
similar to adaptive step size control in numerical schemes for differential equations, see
Chapter 4 for details.
The main idea of our task is to reduce the computing time necessary to obtain

uN(x0, ·) := argmin
uN∈UN

JN(x0, uN)

in every step of this RHC setup. At the same time, we want to be able to guarantee a
certain degree of suboptimality — and implicitly stability — of the closed–loop solution

x(n + 1) = f (x(n), µN (x(n))) , x(0) = x0, n ∈ N0 (3.3)

µN(x(n)) := argmin
uN∈U

{VN−1(x(n + 1)) + l(x(n), uN )} (3.4)

compared to the infinite horizon solution (1.1), (2.8) with u(n) = µ(x(n)). Within this
work, the parameter of choice is the horizon length N since computational costs grow
more than linear in this variable and, as known from many applications, large N induce
better performance and stability.

In order to develop such an adaption strategy, the most important ingredient we require
is an estimate on the suboptimality of the feedback µN(·) for the infinite horizon problem
which can be evaluated without significant additional computational costs. More precisely,
if we define the infinite horizon cost corresponding to µN(·) by

V µN
∞ (x0) :=

∞∑

n=0

l (x(n), µN(x(n))) , (3.5)

then we are interested in upper bounds for this infinite horizon value, either in terms of
the finite horizon optimal value function VN(·) or in terms of the infinite horizon optimal
value function V∞(·). In particular, the latter gives us estimates about the degree of
suboptimality of the controller µN(·) in the actual step of the RHC process.
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The main tool we are going to use for this purpose is a rather straightforward and easily
proved “relaxed” version of the dynamic programming principle. This fact has been used
implicitly in many papers on dynamic programming techniques during the last decades.
Recently, it has been studied by Lincoln and Rantzer in [144,192].
Here, we use the estimate given in Proposition 2.2 of [102]:

Proposition 3.2 (Global a posteriori Estimate)
Consider a feedback law µN : X → U and a function VN : X → R

+
0 satisfying the inequality

VN(x) ≥ VN(f(x, µN(x))) + αl(x, µN(x)) (3.6)

for some α ∈ [0, 1] and all x ∈ X. Then for all x ∈ X the estimate

αV∞(x) ≤ αV µN
∞ (x) ≤ V∞(x) (3.7)

holds.

The drawback of this Proposition is the fact that we require (3.6) to hold for all x ∈ X. To
avoid this computational burden, we consider only those points in the state space X which
are visited by a trajectory (2.15), (2.16). As a result, we obtain the following adaption of
Proposition 3.2:

Proposition 3.3 (Trajectory based a posteriori Estimate)
Consider a feedback law µN : X → U and its associated trajectory x(·) according to (2.16)
with initial value x(0) = x0 ∈ X. If there exists a function VN : X → R

+
0 satisfying

VN(x(n)) ≥ VN(x(n + 1)) + αl(x(n), µN(x(n))) (3.8)

for some α ∈ [0, 1] and all n ∈ N0 then

αV∞(x(n)) ≤ αV µN
∞ (x(n)) ≤ V∞(x(n)) (3.9)

holds for all n ∈ N0.

Proof. The proof is similar to that of [192, Proposition 3] and [102, Proposition 2.2].
Rearranging (3.8) and summing over n we obtain the upper bound

α

K−1∑

j=n

l(x(j), µN(x(j)) ≤ VN (x(n)) − VN(x(K)) ≤ VN(x(n)).

Hence, taking K → ∞ gives us our assertion since the final inequality VN (x(n)) ≤
V∞(x(n)) follows by (3.2).

Remark 3.4
In the formulation of Proposition 3.3 we have that α depends on the points x(n) only,
while in Proposition 3.2 it depends on all x ∈ X. Hence, we expect α to be a less conser-
vative approximation of the degree of suboptimality.
Yet, the degree of suboptimality α is valid only along the closed–loop trajectory, i.e. we
cannot guarantee this estimate to hold in a neighborhood of the closed–loop trajectory.
We like to mention that the degree of suboptimality is directly evaluated along a closed–
loop solution. Therefore, we can compute the degree of suboptimality even along disturbed
closed–loop solutions using identical methods. In this work, however, we focus on systems
without disturbances like modelling errors, external forces, communication or measure-
ment errors.



50 Chapter 3: Stability and Optimality

Remark 3.5
If Proposition 3.3 holds with α > 0 for a given trajectory, we can conclude asymptotic
stability of this trajectory if the stage cost l(·, ·) is positive definite and proper since by
(3.8) VN(·) is a Lyapunov function for the closed–loop system, see also [92]. The positive
definiteness of l(·, ·) can be replaced by a detectability condition, see [87].

To distinguish between α values from Propositions 3.2 and 3.3, we introduce the following
notation:

Definition 3.6 (Global/Local/Closed–loop Suboptimality Degree)
(1) The value α := max{α | (3.6) holds for all x ∈ X} is called global suboptimality degree.
(2) If x(n) ∈ X is fixed, then the maximal value of α satisfying (3.8) is called local
suboptimality degree.
(3) The value α := max{α | (3.8) holds for all n ∈ N0} is called closed–loop suboptimality
degree for the considered trajectory.

According to Definition 4.29 we always have

αglobal ≤ αclosed–loop ≤ αlocal.

Since all values in (3.8) are available at runtime, α can be computed online along the
closed–loop trajectory and thus (3.8) yields a computationally feasible and numerically
cheap way to estimate the degree of suboptimality of the trajectory. Moreover, using
suitable controllability assumptions, one can show that α → 1 as N → ∞, cf. [92, 102].

Remark 3.7
The knowledge of α can in principle be used to adapt the optimization horizon N online
by increasing N if the computed α–value is too small, see also Algorithms 4.14, 4.21, 4.23
and 4.29 which are designed for this purpose.

For our programming, we consider the following algorithm to compute α, see also Section
6.2.2.1 for the actual implementation and Section 8.4.1 for numerical results.

Algorithm 3.8 (Computing a posteriori Suboptimality Bound)
Input: αmin — Closed–loop suboptimality estimate

VN(x(n)) — Value function in the previous step
VN(x(n + 1)) — Value function in the actual step
l(x(n), µN (x(n))) — Initial stage cost in the previous step

(1) If VN(x(n)) ≤ VN(x(n + 1)): Print warning “Solution may be unstable”

(2) Set α := VN (x(n))−VN (x(n+1))
l(x(n),µN (x(n)))

(3) Set αmin := min{αmin, α} and terminate

Output: αmin — Closed–loop suboptimality estimate
α — Local suboptimality estimate for the past step

In order to use Algorithm 3.8, we require VN(x(n + 1)) for the computation of α for the
state x(n).
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Remark 3.9
At time n, the value of VN(x(n + 1)) can in principle be obtained by solving an addi-
tional optimal control problem, see also Section 6.2.2.1 for the actual implementation and
Section 8.4.1 for numerical results. Proceeding this way, however, essentially doubles the
computational effort and may thus not be feasible in real–time applications. Yet, our
numerical results indicate that this effort pays off during the closed–loop runtime of the
adaption algorithm, see Section 8.5. Additionally, one cannot expect that the value of
x(n + 1) is known exactly in advance, e.g. due to disturbances as well as measurement or
modelling errors.

If we wanted to use only those numerical information which is readily available at time
n, then we would have to wait until time n + 1 before the quality of the MPC feedback
value µN(x(n)) can be evaluated. In other words, (3.8) yields an a posteriori estimator,
which is an obvious disadvantage if α is to be used for an online adaptation of N at time
n. In the next section we present an alternative way in order to estimate α.

3.2 A priori Suboptimality Estimation

This section aims at reducing the amount of information necessary to give an estimate of
the degree of suboptimality of the trajectory (3.3), (3.4) under consideration. In partic-
ular, we are interested in ignoring all future information, i.e. we try to avoid the use of
VN(x(n + 1)) in our calculations. Of course, this yields a more conservative estimate in
general.
The following estimates are similar to certain results in [102], where, however, they were
defined and used globally for all x ∈ X. In order to make those results computable without
using a discretization of the state space X or analytical a priori information, we formulate
and prove alternative versions of these results which can be used along trajectories.

Lemma 3.10
Consider N ∈ N, a receding horizon feedback law µN(·) and its associated closed–loop
solution x(·) according to (2.16) with initial value x(0) = x0. If

VN(x(n + 1)) − VN−1(x(n + 1)) ≤ (1 − α)l(x(n), µN(x(n))) (3.10)

holds for some α ∈ [0, 1] and all n ∈ N0, then VN(·) satisfies (3.8) and

αV∞(x(n)) ≤ αV µN
∞ (x(n)) ≤ VN(x(n)) ≤ V∞(x(n)) (3.11)

holds for all n ∈ N0.

Proof. Using the principle of optimality, i.e. Theorem 2.9 for m = 1, we obtain

VN(x(n)) = l(x(n), µN(x(n))) + VN−1(x(n + 1))
(3.10)

≥ l(x(n), µN(x(n))) + VN(x(n + 1)) − (1 − α)l(x(n), µN(x(n)))

= VN(x(n + 1)) + αl(x(n), µN(x(n)))

Hence, (3.8) holds and Proposition 3.3 guarantees (3.11).

In order to shorten notation, the following assumption contains the main ingredients for
our results.
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Assumption 3.11
For given N ∈ N, N ≥ 2, there exists a constant γ > 0 such that the inequalities

V2(xuN
(N − 2, x(n))) ≤ (γ + 1)V1(xuN

(N − 2, x(n))) (3.12)

Vk(xuN
(N − k, x(n))) ≤ (γ + 1)l(xuN

(N − k, x(n)), µk(xuN
(N − k, x(n)))) (3.13)

hold for all k ∈ {3, . . . , N} and all n ∈ N0 where the open–loop solution xuN
(j, x(n)) is

given by (2.10).

Remark 3.12
We would like to point out that x(·) in Assumption 3.11 is the closed–loop trajectory which
is the outcome of the RHC algorithm, i.e. equations (2.15), (2.16). In contrast to that,
xuN

(·, x(·)) represents the open–loop solutions coming from (2.10), (2.14) which are also
known in every single step of this algorithm. Note that those two values are not identical
in general, see Figure 3.1 for a schematic interpretation.

b

b

b

b

b

b

b

bb

b

b

b

bx(0)

x(1) = xuN
(1, x(0))

xuN
(2, x(0))

b

b b

b

b

b

x(2) = xuN
(1, x(1))

b

bb

b

b

x(3) = xuN
(1, x(2))

b

bb b

x(4) = xuN
(1, x(3))

b

b

x(5) = xuN
(1, x(4))

Figure 3.1: Difference between open–loop and closed–loop trajectory

Remark 3.13
Note that in order to obtain V1(xuN

(N − 2, x(n))) in (3.12), one has to solve another
optimal control problem, in this case a so called one–step problem, see e.g. [96]. Compared
to the computation of VN(x(n+1)) the computing time of a one–step problem is negligible.

Proposition 3.14
Consider N ≥ 2 and assume that Assumption 3.11 holds for this N . Then

(γ + 1)N−2

(γ + 1)N−2 + γN−1
VN(x(n)) ≤ VN−1(x(n))

holds for all n ∈ N0.

Proof. In the following, we use the abbreviation xuN
(j) := xuN

(j, x(n)), j = 0, . . . , N ,
since all our calculations using the open–loop trajectory defined by (2.14), (2.10) refer to
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the fixed initial value x(n).
Set ñ := N − k. First, we prove

Vk−1(f(xuN
(ñ), µk(xuN

(ñ)))) ≤ γl(xuN
(ñ), µk(xuN

(ñ))) (3.14)

for all k ∈ {3, . . . , N} and all n ∈ N. Using the principle of optimality and Assumption
3.11, we obtain

Vk−1(f(xuN
(ñ), µk(xuN

(ñ)))) = Vk(xuN
(ñ)) − l(xuN

(ñ), µk(xuN
(ñ)))

(3.13)

≤ (γ + 1)l(xuN
(ñ), µk(xuN

(ñ))) − l(xuN
(ñ), µk(xuN

(ñ)))

= γl(xuN
(ñ), µk(xuN

(ñ)))

We show the main assertion by induction over k = 2, . . . , N . For notational reason, we
use the abbreviation

ηk =
(γ + 1)k−2

(γ + 1)k−2 + γk−1
. (3.15)

and prove

ηkVk(xuN
(ñ)) ≤ Vk−1(xuN

(ñ)). (3.16)

Now we choose the initial value of the open–loop trajectory xuN
(0) = x(n) with n being

arbitrary but fixed.
For k = 2 we obtain (3.16) via

V2(xuN
(N − 2))

(3.12)

≤ (γ + 1)V1(xuN
(N − 2))

(3.15)
=

1

η2
V1(xuN

(N − 2)).

For the induction step k → k + 1, the following holds:

Vk(xuN
(ñ)) = Vk−1(f(xuN

(ñ), µk(xuN
(ñ)))) + l(xuN

(ñ), µk(xuN
(ñ)))

(3.14)

≥

(
1 +

1 − ηk

γ + ηk

)
Vk−1(f(xuN

(ñ), µk(xuN
(ñ))))

+

(
1 − γ

1 − ηk

γ + ηk

)
l(xuN

(ñ), µk(xuN
(ñ)))

(3.16)

≥ ηk

(
1 +

1 − ηk

γ + ηk

)
Vk(f(xuN

(ñ), µk(xuN
(ñ))))

+

(
1 − γ

1 − ηk

γ + ηk

)
l(xuN

(ñ), µk(xuN
(ñ)))

= ηk
γ + 1

γ + ηk

{Vk(f(xuN
(ñ), µk(xuN

(ñ)))) + l(xuN
(ñ), µk(xuN

(ñ)))}

= ηk
γ + 1

γ + ηk
Vk+1(xuN

(ñ))

with

ηk
γ + 1

γ + ηk

(3.15)
=

(γ + 1)k−2

(γ + 1)k−2 + γk−1

γ + 1

γ + (γ+1)k−2

(γ+1)k−2+γk−1

=
(γ + 1)k−1

(γ + 1)k−1 + γk

(3.15)
= ηk+1.
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Hence, (3.16) holds true. If we choose k = N then we get ñ = 0. Inserting this in (3.16)
we can use xuN

(0) = xuN
(0, x(n)) = x(n). Since n was chosen arbitrarily we obtain the

assertion

ηNVN (x(n)) = ηNVN(xuN
(0)) ≤ VN−1(xuN

(0)) = VN−1(x(n)) ∀n ∈ N.

Using this technical construction, we are now prepared to prove our first main result:

Theorem 3.15
Consider γ > 0 and N ∈ N, N ≥ 2 such that (γ + 1)N−2 > γN holds. If Assumption 3.11
is fulfilled for these γ and N , then the estimate

αV µN
∞ (x(n)) ≤ VN (x(n)) ≤ V∞(x(n)) with α =

(γ + 1)N−2 − γN

(γ + 1)N−2
(3.17)

holds for all n ∈ N.
In particular, the inequality

V µN
∞ (x(n)) − V∞(x(n))

V∞(x(n))
≤

γN

(γ + 1)N−2 − γN

holds for the relative difference between V µN
∞ (x(n)) and V∞(x(n)).

Proof. From Proposition 3.14 we get

VN(x(n)) − VN−1(x(n)) ≤

(
(γ + 1)N−2 + γN−1

(γ + 1)N−2
− 1

)
VN−1(x(n)) =

γN−1

(γ + 1)N−2
VN−1(x(n))

Considering j = n − 1 we obtain

VN(x(j + 1)) − VN−1(x(j + 1)) ≤
γN−1

(γ + 1)N−2
VN−1(x(j + 1))

=
γN−1VN−1(f(x(j), µN(x(j))))

(γ + 1)N−2
=

γN−1VN−1(f(xuN
(0, x(j)), µN(xuN

(0, x(j)))))

(γ + 1)N−2

where we used the definition of the open–loop solution from (2.10) with x0 = x(j) similar
to the proof of Proposition 3.14. Hence, we can use (3.14) with k = N and get

VN(x(j + 1)) − VN−1(x(j + 1)) ≤
γN

(γ + 1)N−2
l(xuN

(0, x(j)), µN(xuN
(0, x(j))))

=
γN

(γ + 1)N−2
l(x(j), µN(x(j))).

Consequently, the assumptions of Lemma 3.10 are fulfilled with

α = 1 −
γN

(γ + 1)N−2
=

(γ + 1)N−2 − γN

(γ + 1)N−2
(3.18)

and the assertion holds.

Theorem 3.15 immediately leads to our second suboptimality estimation algorithm:

Algorithm 3.16 (Computing a priori Suboptimality Bound)
Input: αmin — Closed–loop suboptimality estimate

VN(x(n)) — Value function in the actual step
N — Length of the horizon
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(1) Compute V1(xuN
(N − 2, x(n)))

(2) Set γ :=
V2(xuN

(N−2,x(n)))

V1(xuN
(N−2,x(n)))

− 1

(3) For k from 3 to N do

(3a) Set γ̃ :=
Vk(xuN

(N−k,x(n)))

l(xuN
(N−k,x(n)),µk(xuN

(N−k,x(n))))
− 1

(3b) Set γ := max{γ, γ̃}

(4) Set α := 1 − γN

(γ+1)N−2 = (γ+1)N−2−γN

(γ+1)N−2

(5) If α < 0: Print warning “Solution may be unstable”

(6) Set αmin := min{αmin, α} and terminate

Output: αmin — Closed–loop suboptimality estimate
α — Local suboptimality estimate for the actual step
γ — Characteristic of the problem

Hence, Algorithm 3.16 allows us to compute γ from the inequalities (3.12), (3.13) and the
assumption in Theorem 3.15 at each time instant n and to evaluate α according to (3.17).

Figure 3.2: Development of the function f(·)
defined to check applicability of Theorem 3.15

Remark 3.17
Note that the condition (γ+1)N−2 ≤ γN

stated in Theorem 3.15 is automatically
checked in step (5). Analyzing the func-
tion

f(γ) := (γ + 1)N−2 − γN

on R+ \ {0} reveals the existence and
uniqueness of a root of f(·). Moreover,
f(·) is strictly monotonely decreasing for
γ–values larger than this root, see also
Figure 3.2. Hence, if α < 0 holds true,
then there exists no γ̃ > γ satisfying
(γ̃ + 1)N−2 ≤ γ̃N and we are unable to
apply Theorem 3.15.

In contrast to computing α directly from (3.8), we obtain a criterion for the quality of
µN(x(n)) depending on the data available at time n (cf. Remark 3.26) and the solution
of the optimal control problem of length N = 1 with initial value xuN

(N − 2, x(n)).
Furthermore, if l(·, ·) is independent of u, the control value is not needed at all and thus
γ can be computed only from the data available at time n. In either case, we obtain an
a priori estimate which is available before the current step is actually carried out.

Remark 3.18
Intuitively, this result states that if the instantaneous running cost contains sufficient
information about the optimal value function, then the resulting controller is suboptimal.
Here, we can say that VN (·) and l(·, ·) contain “sufficient” information if we obtain α > 0
from Proposition 3.3 by using (3.18) and there exists some γ > 0 such that the inequalities
(3.12) and (3.13) hold.
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Now, our aim is to weaken the previous relation (3.18) between α and γ. To this end,
we ease condition (3.12) which is required to establish the induction anker in proof of
Proposition 3.14 only. This leads to the following relaxation of Assumption 3.11:

Assumption 3.19
For given N , N0 ∈ N, N ≥ N0 ≥ 2, there exists a constant γ > 0 such that the inequalities

VN0(xuN
(N − N0, x(n)))

γ + 1
≤ max

j=2,...,N0

l(xuN
(N − j, x(n)), µj−1(xuN

(N − j, x(n)))) (3.19)

Vk(xuN
(N − k, x(n)))

γ + 1
≤ l(xuN

(N − k, x(n)), µk(xuN
(N − k, x(n)))) (3.20)

hold for all k ∈ {N0 +1, . . . , N} and all n ∈ N0 where the open–loop solution xuN
(j, x(n))

is given by (2.10).

Remark 3.20
Assumption 3.19 generalizes Assumption 3.11 as well as [102, Assumption 4.6] in which
N0 = 2 was used. In the numerical example shown in Section 8.4, we will see that
a judicious choice of N0 can considerably improve our suboptimality estimates. Since
Assumptions 3.11 and 3.19 are fairly close, the corresponding Algorithms 3.16 and 3.23
are implemented in just one routine, see Section 6.2.2.2 for details.

Using these relaxed conditions, we can reformulate Proposition 3.14 in the following way:

Proposition 3.21
Consider N ≥ N0 ≥ 2 and assume that Assummption 3.19 holds for these constants.
Then the inequality

(γ + 1)N−N0

(γ + 1)N−N0 + γN−N0+1
VN(x(n)) ≤ VN−1(x(n)) (3.21)

holds for all n ∈ N0.

Proof. Using the notation of the proof of Proposition 3.14, we again define xuN
(j) :=

xuN
(j, x(n)), j ∈ {0, . . . , N} and

ηk =
(γ + 1)k−N0

(γ + 1)k−N0 + γk−N0+1
(3.22)

to prove (3.16) for k = N0, . . . , N .
According to the changes in our assumptions, we have to show is that (3.16) holds true
for the induction anker only, i.e. k = N0:

VN0(xuN
(N − N0))

(3.19)

≤ (γ + 1) max
j=2,...,N0

l(xuN
(N − j), µj−1(xuN

(N − j)))

≤ (γ + 1)

N0∑

j=2

l(xuN
(N − j), µj−1(xuN

(N − j)))

(3.22)
=

1

ηN0

VN0−1(xuN
(N − N0)).

For the induction step, we have to prove (3.14) to hold for k ∈ {N0 + 1, . . . , N}. This is
exactly the index set of assumption (3.20). Hence, we can use the same induction step as
in the proof of Proposition 3.14 showing the assertion.
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Using this proposition, we adapt Theorem 3.15:

Theorem 3.22
Consider γ > 0 and N , N0 ∈ N, N ≥ N0 such that (γ + 1)N−N0 > γN−N0+2 holds. If
Assumption 3.19 is fulfilled for these γ, N and N0, then the estimate

αV µN
∞ (x(n)) ≤ VN(x(n)) ≤ V∞(x(n)) with α =

(γ + 1)N−N0 − γN−N0+2

(γ + 1)N−N0
(3.23)

holds for all n ∈ N.
In particular, the inequality

V µN
∞ (x(n)) − V∞(x(n))

V∞(x(n))
≤

γN−N0+2

(γ + 1)N−N0 − γN−N0+2
(3.24)

holds for the relative difference between V µN
∞ (x(n)) and V∞(x(n)).

Proof. Using the same steps as in the proof of Theorem 3.15 we get

VN(x(n)) − VN−1(x(n)) ≤
γN−N0+1

(γ + 1)N−N0
VN−1(x(n))

from Proposition 3.21. Considering j = n − 1, we obtain

VN(x(j + 1)) − VN−1(x(j + 1)) ≤
γN−N0+1

(γ + 1)N−N0
VN−1(f(xuN

(0, x(j)), µN(xuN
(0, x(j)))))

using our standard definition of the open–loop solution. Now, we can use (3.14) which
holds true for k ∈ {N0 +1, . . . , N} according to the proof of Proposition 3.14 with k = N
and get

VN(x(j + 1)) − VN−1(x(j + 1)) ≤
γN−N0+2

(γ + 1)N−N0
l(x(j), µN (x(j))).

Hence, the assumptions of Lemma 3.10 are fulfilled with

α = 1 −
γN−N0+2

(γ + 1)N−N0
=

(γ + 1)N−N0 − γN−N0+2

(γ + 1)N−N0
(3.25)

and the assertion follows.

Similar to Theorem 3.15, we obtain a third algorithm to compute a suboptimality esti-
mate:

Algorithm 3.23 (Computing a priori Suboptimality Bound)
Input: αmin — Closed–loop suboptimality estimate

VN(x(n)) — Value function in the actual step
N — Length of the horizon
N0 — Length of the comparison horizon

(1) Set lmax = 0.

(2) For j from 2 to N0 do
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(2a) Compute l(xuN
(N − j, x(n)), µj−1(xuN

(N − j, x(n))))

(2b) Set lmax = max{lmax, l(xuN
(N − j, x(n)), µj−1(xuN

(N − j, x(n))))}

(3) Set γ :=
VN0

(xuN
(N−N0,x(n)))

lmax
− 1

(4) For k from N0 + 1 to N do

(4a) Set γ̃ :=
Vk(xuN

(N−k,x(n)))

l(xuN
(N−k,x(n)),µk(xuN

(N−k,x(n))))
− 1

(4b) Set γ := max{γ, γ̃}

(5) Set α := 1 − γN−N0+2

(γ+1)N−N0
= (γ+1)N−N0−γN−N0+2

(γ+1)N−N0

(6) If α < 0: Print warning “Solution may be unstable”

(7) Set αmin := min{αmin, α} and terminate

Output: αmin — Closed–loop suboptimality estimate
α — Local suboptimality estimate for the actual step
γ — Characteristic of the problem

For the actual implementation and results of this algorithm, we refer to the Sections
6.2.2.2 and 8.4.2 respectively.
Using the relationship between α and the tupel (γ, N) from Theorem 3.22 for fixed N0,
we can see from Figure 3.3 which combinations of N and γ values actually guarantee
stability and a certain degree of suboptimality. Moreover, one observes that in order to
obtain stability of the closed–loop, i.e. α ≥ 0, we require

N ≥ N0 +
2 ln(γ)

ln(γ + 1) − ln(γ)
=: h(γ, N0) (3.26)

to hold.

Remark 3.24
The relationship (3.26) is analyzed in detail in Section 4.3.1 and allows us to derive a
suitable prolongation strategy, see also Remark 3.7.

Remark 3.25
Note that

∂

∂γ
h(γ, N0) =

2γ ln(γ + 1) − 2γ ln(γ) + 2 ln(γ + 1)

(γ + 1)γ(− ln(γ + 1) + ln(γ))2

is independent of N0. Hence, since for all γ ≥ γ ≈ 0.01 we obtain h′(γ, N0) > 1 for
fixed N0 ∈ [2, N ], we can use the positive definiteness and strict monotonicity of h′(·, N0)
to conclude that h(·, N0) grows unboundedly and stronger than linear. Additionally, we
obtain that N grows less than quadratic since for γ ≈ 5.7 we have h′(γ) < γ for all γ ≥ γ.
More precisely, we can show that h(γ, N0) approximates f(γ) := 2γ ln(γ) as γ tends to
infinity since

lim
γ→∞

h(γ, N0)

2γ ln(γ)
= lim

γ→∞

N0

2γ ln(γ)
+ lim

γ→∞

2 ln(γ)

2γ ln(γ)(ln(γ + 1) − ln(γ))

= lim
γ→∞

γ−1

ln(γ + 1) − ln(γ)
= lim

γ→∞

−γ−2

1
γ+1

− 1
γ

= lim
γ→∞

γ2 + γ

γ2
= 1.
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Figure 3.3: Relationship between α and (γ, N) for N0 = 2

This, however, turns out to be twice the rate stated in [92] and up till now the origin of
this multiplicative constant is unclear.

Remark 3.26
Assumption 3.19 involves both the state of the closed–loop trajectory x(·) from (3.3) at
time n and the open–loop trajectory xuN

(·, x(n)) from (2.10) starting in x(n). Both are
available in the receding horizon control scheme at time n once the finite horizon opti-
mization problem with initial value x(n) is solved. From these, the optimal value functions
on the left hand sides of the inequalities (3.19) and (3.20) can be derived using Bellman’s
optimality principle by summing up the running cost along the “tails” of the optimal tra-
jectory xuN

(·, x(n)). The only values which are not immediately available are the controls
µj−1(xuN

(N − j, x(n))) in (3.19) which need to be determined by solving an additional op-
timal control problem with horizon j ≤ N0 − 1. Since typically N0 is considerably smaller
than N , this can be done with much less effort than computing VN(x(n+1)). Furthermore,
these control values are not needed at all if l(·, ·) is independent of u.

Remark 3.27
Another way of numerically computing suboptimality estimates is presented in [205] for
linear finite dimensional system. The main difference to our approach is that the condition
in [205] is verified by computing numerical approximations to the optimal value functions,
which is feasible only for low dimensional linear systems but infeasible in our nonlinear
setting on arbitrary metric spaces.
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3.3 Practical Suboptimality

In general, one cannot expect that the conditions presented in Sections 3.1 and 3.2 hold
in practice. This is due to the fact that in many cases the discrete–time system (3.3)
is obtained from a discretization of a continuous–time system, e.g. sampling with zero
order hold, cf. Section 1.2 for the theoretical and Section 5.1 for an implementational
background. Hence, even if the continuous–time system is controllable to a fixed point x∗,
it is likely that the corresponding sampled–data system is only practically stabilizable at
x∗. In addition, numerical errors in the optimization algorithm may become predominant
in a small neighborhood of x∗.

Here, we extend results from [102] which treat this problem globally by combining them
with results from the previous Section 3.2 for the non–practical case to relax the necessary
conditions.

If a system is only practically asymptotically stabilizable and one uses a positive definite
stage cost l(·, ·) with respect to the desired equilibrium x∗ in the first component such that
l(x, u) = 0 if and only if x = x∗, then it is impossible to calculate a control sequence which
stears l(·, ·) to zero. Moreover, Assumptions 3.11 and 3.19 do not hold since Vk(·) grows
unboundedly for k → ∞ and Proposition 3.3 cannot be applied in general for practically
stable systems. This is due to the possibility that VN(·) may not be monotonely decreasing
close to x∗. Hence, this result has to be adapted to be applicable in this situation.

One way to do this is to modify the stage cost l(·, ·) to be positive definite with respect
to a forward invariant stabilizable neighborhood N of x∗. However, the computation of
N and hence the design of l(·, ·) may be difficult if not impossible.

Still, even with the original l(·, ·) and in the presence of sampling and numerical errors,
one can expect a typical receding horizon controller to drive the system towards a neigh-
borhood of x∗ and practically stabilize the closed–loop system, i.e., to drive the system
towards a small neighborhood of x∗, see also [103]. Hence, an intuitive idea is to “vir-
tually” cut off and shift the value function vertically as shown in Figures 3.4 and 3.5.
This allows us to solve the original optimal control problem but interpret the resulting
trajectory and control values in the context of a modified cost functional.

Here, we shift the stage cost l(·, ·) and hence V (·) using a constant ε which enables us to
obtain estimates for the original problem similar to our previous results, cf. Proposition
3.3 and Theorems 3.15 and 3.22. More importantly, we want to choose the constant ε
such that the relaxed Lyapunov inequality (3.8) holds outside the “zero region” of the
shifted stage cost and value function. Hence, our estimates can be directly applied to
points in this region which are visited by the trajectory.

Proposition 3.28
Consider a feedback law µN : X → U and its associated closed–loop trajectory x(·) accord-
ing to (3.3). Assume there exists a function VN : X → R

+
0 satisfying the inequality

VN (x(n)) ≥ VN (x(n + 1)) + min {α (l(x(n), µN (x(n))) − ε) , l(x(n), µN (x(n))) − ε} (3.27)

for some α ∈ [0, 1], some ε > 0 and all n ∈ N0. Consider a discrete–time interval
I := {n1, . . . , n2}. Let n1, n2 ∈ N, n1 < n2, for which the inequality l(x(n), µN(x(n))) ≥ ε
holds for all n ∈ I and set σ := VN(x(n2 + 1)). Then, for the modified stage cost

l(x(n), µN(x(n))) := max {l(x(n), µN(x(n))) − ε, 0} , (3.28)
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Figure 3.4: Example of a value function
where the origin is asymptotically stable

Figure 3.5: Example of a value function
which is cut off and shifted vertically to zero

and the corresponding value function

V
µN

I (x(n)) :=

n2∑

j=n

l(x(j), µN(x(j))) (3.29)

using the controller µN(·), the estimate

αV
µN

I (x(n)) ≤ VN(x(n)) − σ ≤ V∞(x(n)) − σ (3.30)

holds for all n ∈ I.

Proof. From the definition of l(·, ·) and I we obtain

αl(x(n), µN(x(n))) = max {α (l(x(n), µN(x(n))) − ε) , 0}
(3.27)

≤ VN(x(n)) − VN(x(n + 1)),

for n ∈ I. Thus, summing over n gives us

αV
µN

I (x(n)) = α

n2∑

j=n

l(x(j), µN(x(j))) ≤ VN(x(n)) − σ,

which implies the assertion since VN(x(n)) ≤ V∞(x(n)) follows by (3.2).

Figure 3.6 illustrates a possible situation of Proposition 3.28.
If (3.27) is satisfied, then inequality (3.30) is true for all subintervals I = {n1, . . . , n2} of
N0 on which l(x(n), µN(x(n))) ≥ ε holds, implying that on I the corresponding trajectory
behaves “almost” like an infinite horizon optimal one. In particular, x(n) approaches
x∗ and thus the sequence of l(·, ·)-values repeatedly (possibly infinitely often) enters and
leaves the set [0, ε]. In Figure 3.6 the arrows at the bottom indicate the intervals on which
the trajectory is approximately optimal.
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Figure 3.6: Illustration of Proposition 3.28

When leaving [0, ε] the possible growth of VN(·) is bounded by ε due to (3.27). Thus,
once l(x(n), µN(x(n))) has entered [0, ε] for the first time, the state of the system remains
in a neighborhood of x∗ defined by a sublevel set of VN(·) whose precise shape, however,
cannot be easily determined a priori, see also [102, Remark 5.2 and Example 5.10].
Similar to Definition 3.6, Proposition 3.28 induces the following declarations:

Definition 3.29 (Global/Local/Closed–loop Practical Suboptimality Degree)
(1) The value α := max{α | (3.27) holds for all x(n) ∈ X} is called (semi–)global practical
suboptimality degree.
(2) If x(n) ∈ X is fixed, then the maximal value of α satisfying (3.27) is called local
practical suboptimality degree.
(3) The value α := max{α | (3.27) holds for all n ∈ N0} is called closed–loop practical
suboptimality degree.

Implementing Proposition 3.28, we see that VN(x(n+1)) is needed to compute the charac-
teristic α. Hence, it can only be applied a posteriori or at a high additional computational
cost, see Remark 3.9.
Within our implementation, see Section 6.2.2.3, we consider the following algorithm:

Algorithm 3.30 (Computing a posteriori practical Suboptimality Bound)
Input: αmin — Closed–loop practical suboptimality estimate

VN(x(n)) — Value function in the previous step
VN(x(n+1)) — Value function in the actual step
ε — Truncation constant

(1) If l(x(n), µN(x(n))) < ε:
Print “Practical stability region reached”, set α = 1 and terminate

(2) Else

(2a) If VN(x(n)) ≤ VN(x(n + 1)): Print warning “Solution may be unstable”

(2b) Set α := VN (x(n))−VN (x(n+1))
l(x(n),µN (x(n)))−ε

(2c) Set αmin := min{αmin, α} and terminate

Output: αmin — Closed–loop practical suboptimality estimate
α — Local practical suboptimality estimate for the past step
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For results of Algorithm 3.30 and a comparison to the outcome of Algorithm 3.8, we refer
to Section 8.4.3.

Similar to Lemma 3.10, we can use the following observation:

Lemma 3.31
Consider N ∈ N, a receding horizon feedback law µN(·) and its associated closed–loop
solution x(·) according to (3.3) with initial value x(0) = x0. If

VN(x(n + 1)) − VN−1(x(n + 1)) ≤ max {(1 − α)l(x(n), µN(x(n))) + αε, ε} (3.31)

holds for some α ∈ [0, 1], some ε > 0 and all n ∈ [0, n0] ⊂ N0, then

αV
µN

I (x(n)) ≤ VN(x(n)) − σ

holds for all n ∈ [0, n0] with V
µN

I (·) according to (3.29).

Proof. Using the principle of optimality we obtain

VN(x(n)) = l(x(n), µN (x(n))) + VN−1(x(n + 1))
(3.31)

≥ l(x(n), µN (x(n))) + VN(x(n + 1))

−max {(1 − α)l(x(n), µN(x(n))) − αε, ε}

= min{α (l(x(n), µN(x(n))) − ε) , l(x(n), µN(x(n))) − ε} + VN(x(n + 1)).

Hence, (3.27) holds and Proposition 3.28 guarantees the assertion.

Similar to the non–practical case, we can state sufficient conditions to establish our prac-
tical suboptimality estimate.

Assumption 3.32
For a given N ∈ N, N ≥ 2 there exist constants γ, ε > 0 such that the inequalities

V2(xuN
(N − 2)) ≤ max{(γ + 1)V1(xuN

(N − 2)) + (1 − γ)ε,

V1(xuN
(N − 2)) + ε} (3.32)

Vk(xuN
(N − k)) ≤ max{l(xuN

(N − k), µk(xuN
(N − k))) + (k − 1)ε,

(γ + 1)l(xuN
(N − k), µk(xuN

(N − k))) + (k − γ − 1)ε} (3.33)

hold for all k ∈ {3, . . . , N} and all n ∈ [0, n0] ⊂ N0 using the abbreviation xuN
(j) :=

xuN
(j, x(n)) for the open–loop solution given by (2.10).

By choosing ε = 0 we obtain that this assumption is a direct relaxation of Assumption
3.11. From a geometrical point of view, this relaxation is a vertical shift of the running
cost and simultaneously of the optimal value function, see (3.32) and (3.33) respectively.
As a result, this allows us to avoid violations of the relaxed Lyapunov inequality (3.8) if
the parameter ε is chosen appropriately. Hence, we persue a similar approach as in the
previous section.

Proposition 3.33
Consider N ∈ N and assume that Assumption 3.32 holds for this N . Then

min

{
(γ + 1)N−2

(γ + 1)N−2 + γN−1
(VN(x(n)) − Nε) , VN(x(n)) − Nε

}

≤ VN−1(x(n)) − (N − 1)ε

holds for all n ∈ [0, n0] ⊂ N0.
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Proof. In order to prove the assertion, we show that given Assumption 3.32 for Vk(·),

k = 2, . . . , N , Assumption 3.11 holds for a modified optimal value function Ṽk(·) and
Proposition 3.14 guarantees our assertion.
Again, we use the abbreviation xuN

(j) := xuN
(j, x(n)), j = 0, . . . , N , since all our calcu-

lations using the open–loop trajectory defined by (2.14), (2.10) refer to the fixed initial
value x(n) with n ∈ [0, n0] ⊂ N0.
Now, we consider the stage cost

l̃(x, u) = l(x, u) − ε (3.34)

which gives us the following dependency

Ṽk(x) = Vk(x) − kε (3.35)

for arbitrary x and u. Using (3.33), we obtain

Ṽk(xuN
(N − k))

(3.33)

≤ max{(γ + 1)l(xuN
(N − k), µk(xuN

(N − k))) + (k − γ − 1)ε,

l(xuN
(N − k), µk(xuN

(N − k))) + (k − 1)ε} − kε

= max{(γ + 1) (l(xuN
(N − k), µk(xuN

(N − k))) − ε) ,

l(xuN
(N − k), µk(xuN

(N − k))) − ε}
(3.34)
= max{(γ + 1)l̃(xuN

(N − k), µk(xuN
(N − k))),

l̃(xuN
(N − k), µk(xuN

(N − k)))}

for Ṽk(·) where k ∈ [N0, N ] is arbitrary. Hence, we can see that Assumption (3.13) holds
using either γ = 0 or γ from Assumption 3.32. Thus, the induction step in the proof of
Proposition 3.14 can be utilized here as well.
The induction anker can be shown using (3.32)

Ṽ2(xuN
(N − 2))

(3.32)

≤ max{V1(xuN
(N − 2)) + ε, (γ + 1)V1(xuN

(N − 2)) + (1 − γ)ε} − 2ε

= max{V1(xuN
(N − 2)) − ε, (γ + 1)V1(xuN

(N − 2)) − (γ + 1)ε}
(3.35)
= max{Ṽ1(xuN

(N − 2)), (γ + 1)Ṽ1(xuN
(N − 2))}.

Hence, we proved that (3.12) holds for either γ = 0 or γ from Assumption 3.32 for Ṽk(·)
and l̃(·, ·). Therefore, according to Proposition 3.14, we can conclude

min{ηkṼk(xuN
(N − k)), Ṽk(xuN

(N − k))}
(3.16)

≤ Ṽk−1(xuN
(N − k)).

Last, inserting (3.35) and choosing k = N proves the assertion.

Theorem 3.34
Consider γ and N ∈ N such that (γ + 1)N−2 > γN holds. If Assumption 3.32 is fulfilled
for these γ, N and some ε > 0, then the estimate

αV
µN

I (x(n)) ≤ V∞(x(n)) − σ with α =
(γ + 1)N−2 − γN

(γ + 1)N−2
(3.36)

holds for all n ∈ [0, n0] ⊂ N0 with V
µN

I (·) according to (3.29).
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Proof. Using Proposition 3.33 we obtain

VN(x(n)) − VN−1(x(n)) − ε ≤ max

{
γN−1

(γ + 1)N−2
(VN−1(x(n)) − (N − 1)ε) , 0

}
. (3.37)

Now we use a construction similar to the proof of Theorem 3.15. Again, the abbreviation
xuN

(j) := xuN
(j, x(n)), j = 0, . . . , N denotes the open–loop trajectory defined by (2.14),

(2.10).
First we obtain the inequality

Vk−1(f(xuN
(ñ), µk(xuN

(ñ)))) − (k − 1)ε ≤ max {γ (l(xuN
(ñ), µk(xuN

(ñ))) − ε) , 0}
(3.38)

for ñ := N − k and k ∈ {3, . . . , N}. This is can be shown using Assumption 3.32 and the
principle of optimality

Vk−1(f(xuN
(ñ), µk(xuN

(ñ)))) = Vk(xuN
(ñ)) − l(xuN

(ñ), µk(xuN
(ñ)))

(3.33)

≤ max{(γ + 1)l(xuN
(ñ), µk(xuN

(ñ))) + (k − γ − 1)ε,

l(xuN
(ñ), µk(xuN

(ñ))) + (k − 1)ε} − l(xuN
(ñ), µk(xuN

(ñ)))

= max{γ(l(xuN
(ñ), µk(xuN

(ñ))) − ε, 0} + (k − 1)ε}

Coming back to our construction, we consider j = n − 1 in (3.37) with x0 = x(j):

VN(x(j + 1)) − VN−1(x(j + 1)) − ε

≤ max

{
γN−1

(γ + 1)N−2
(VN−1(x(j + 1)) − (N − 1)ε) , 0

}

= max

{
γN−1

(γ + 1)N−2
(VN−1(f(xuN

(0), µN(xuN
(0)))) − (N − 1)ε) , 0

}

Inserting (3.38) with k = N reveals

VN(x(j + 1)) − VN−1(x(j + 1)) − ε ≤
γN

(γ + 1)N−2
max {(l(x(j), µk(xuN

(j))) − ε) , 0} .

Now we can identify this inequality with (3.31) where

α = 1 −
γN

(γ + 1)N−2
=

(γ + 1)N−2 − γN

(γ + 1)N−2
(3.39)

and hence Lemma 3.31 provides the assertion.

According to Theorem 3.34, the following algorithm computes a practical suboptimality
bound α:

Algorithm 3.35 (Computing a priori practical Suboptimality Bound)
Input: αmin — Closed–loop practical suboptimality estimate

VN(x(n)) — Value function in the actual step
N — Length of the horizon
ε — Truncation constant
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(1) Set γ = 0

(2) Compute V1(xuN
(N − 2, x(n)))

(3) If V2(xuN
(N − 2, x(n))) > V1(xuN

(N − 2, x(n))) + ε or V1(xuN
(N − 2, x(n))) > ε:

Set γ :=
V2(xuN

(N−2,x(n)))−V1(xuN
(N−2,x(n)))−ε

V1(xuN
(N−2,x(n)))−ε

(4) For k from 3 to N do

(4a) If Vk(xuN
(N −k, x(n)))− l(xuN

(N −k, x(n)), µk(xuN
(N −k, x(n)))) > (k−1)ε

or l(xuN
(N − k, x(n)), µk(xuN

(N − k, x(n)))) > ε:

• Set γ̃ :=
Vk(xuN

(N−k,x(n)))−l(xuN
(N−k,x(n)),µk(xuN

(N−k,x(n))))−(k−1)ε

l(xuN
(N−k,x(n)),µk(xuN

(N−k,x(n))))−ε

• Set γ := max{γ, γ̃}

(5) If γ = 0: Print “Practical stability region reached”, set α = 1 and terminate

(6) Set α := (γ+1)N−2−γN

(γ+1)N−2

(7) If α < 0: Print warning “Solution may be unstable”

(8) Set αmin := min{αmin, α} and terminate

Output: αmin — Closed–loop practical suboptimality estimate
α — Local practical suboptimality estimate for the actual step
γ — Characteristic of the problem

Remark 3.36
In Step (3) γ can only be computed if the maximum occurs in the first argument of the
right hand side of (3.32). Similarly, in Step (4) γ is set only if the maximum is attained
in the second argument of (3.33). This allows us to determine whether the practical region
has been reached by checking for the parameter γ to be zero. In case of Algorithm 3.30, we
are able to use the characterization of the region directly, see Figure 3.6. Here, however,
the condition relates the optimal value function of subproblems and running costs to the
cutting parameter ε.

Since in our numerical examples results using Assumption 3.19 instead of Assumption
3.11 are significantly better, cf. Section 8.4.2, we want to adapt this more general case
to cover practical stability as well. Note that one cannot use the same argumentation to
relax the previous result due to the necessary positive definiteness of the modified stage
cost l̃(·, ·) in the proof of Proposition 3.21.

Assumption 3.37
For a given N , N0 ∈ N, N ≥ N0 ≥ 2 there exist constants γ, ε > 0 such that the
inequalities

VN0(xuN
(N − N0)) ≤ max

j=2,...,N0

{
l(xuN

(N − j), µj−1(xuN
(N − j))) + ε,

(γ + 1)l(xuN
(N − j), µj−1(xuN

(N − j))) + (γ + 1 − N0γ)ε
}

(3.40)

Vk(xuN
(N − k)) ≤ max{l(xuN

(N − k), µk(xuN
(N − k))) + (k − 1)ε,

(γ + 1)l(xuN
(N − k), µk(xuN

(N − k))) + (k − γ − 1)ε} (3.41)
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hold for all k ∈ {N0 + 1, . . . , N} and all n ∈ [0, n0] ⊂ N0 where the open–loop solution
xuN

(j) := xuN
(j, x(n)) is given by (2.10).

Again, one can see that Assumption 3.32 is a special case of Assumption 3.32 by setting
N0 = 2.

Proposition 3.38
Consider N, N0 ∈ N, N ≥ N0 ≥ 2, and assume that Assumption 3.37 holds for these
constants. Then

min

{
(γ + 1)N−N0

(γ + 1)N−N0 + γN−N0+1
(VN(x(n)) − Nε) , VN(x(n)) − Nε

}

≤ VN−1(x(n)) − (N − 1)ε

holds for all n ∈ [0, n0] ⊂ N0.

Proof. Note that l̃(·, ·) and Ṽk(·) may become negative. Hence, in the proof of Proposi-
tion 3.14, the construction showing the induction anker to hold cannot be applied here.
However, the induction step itself holds for k = N0 + 1, . . . , N since we do not have to
assume those terms to be nonnegative.
According to the changes in our assumptions, we only need to prove the induction anker.
Using (3.35) and (3.40) we obtain

ṼN0(xuN
(N − N0)) ≤ max

j=2,...,N0

{
l(xuN

(N − j), µj−1(xuN
(N − j))) + ε,

(γ + 1)l(xuN
(N − j), µj−1(xuN

(N − j))) + (γ + 1 − N0γ)ε

}
− N0ε

≤ max

{
N0∑

j=2

[(γ + 1)l(xuN
(N − j), µj−1(xuN

(N − j)))] + (γ + 1 − N0γ)ε,

N0∑

j=2

[l(xuN
(N − j), µj−1(xuN

(N − j)))] + ε

}
− N0ε

which can be reformulated given the definition of the optimal value function as

ṼN0(xuN
(N − N0)) ≤ max

{
(γ + 1)VN0−1(xuN

(N − N0)) + (γ + 1 − N0γ)ε,

VN0−1(xuN
(N − N0)) + ε

}
− N0ε

= max
{

(γ + 1)ṼN0−1(xuN
(N − N0)) + (γ + 1 − N0γ)ε + (N0 − 1)(γ + 1)ε,

ṼN0−1(xuN
(N − N0)) + ε + (N0 − 1)ε

}
− N0ε

(3.35)
= max

{
(γ + 1)ṼN0−1(xuN

(N − N0)), ṼN0−1(xuN
(N − N0))

}

Now, we can conclude our assertion analogously to the proof of Proposition 3.33.

Theorem 3.39
Consider γ > 0 and N , N0 ∈ N, N ≥ N0 such that (γ + 1)N−N0 > γN−N0+2 holds. If
Assumption 3.37 is fulfilled for these γ, N , N0 and some ε > 0, then the estimate

αV
µN

I (x(n)) ≤ V∞(x(n)) − σ with α =
(γ + 1)N−N0 − γN−N0+2

(γ + 1)N−N0
(3.42)

holds for all n ∈ [0, n0] ⊂ N0 with V
µN

I (·) according to (3.29).
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Proof. Using Proposition 3.38 we obtain

VN(x(n)) − VN−1(x(n)) − ε ≤ max

{
γN−N0+1

(γ + 1)N−N0
(VN−1(x(n)) − (N − 1)ε) , 0

}
. (3.43)

Now, we use the same construction as in the proof of Theorem 3.15. Similarly, we use the
abbreviation xuN

(j) := xuN
(j, x(n)), j = 0, . . . , N , since again all our calculations using

the open–loop trajektory defined by (2.14), (2.10) refer to the fixed initial value x(n) with
n ∈ [0, n0] ⊂ N0.
We consider j = n − 1 in (3.43)

VN(x(j + 1)) − VN−1(x(j + 1)) − ε

≤ max

{
γN−N0+2

(γ + 1)N−N0
(VN−1(x(j + 1)) − (N − 1)ε) , 0

}

= max

{
γN−N0+2

(γ + 1)N−N0
(VN−1(f(xuN

(0), µN(xuN
(0)))) − (N − 1)ε) , 0

}

with x0 = x(j). Inserting (3.38) with k = N gives us

VN(x(j + 1)) − VN−1(x(j + 1)) − ε

≤ max

{
γN−N0+2

(γ + 1)N−N0
max {(l(xuN

(0), µk(xuN
(0))) − ε) , 0} , 0

}

=
γN−N0+2

(γ + 1)N−N0
max {(l(x(j), µk(xuN

(j))) − ε) , 0} .

Hence, we obtain our assertion using Lemma 3.31 with

α = 1 −
γN−N0+2

(γ + 1)N−N0
=

(γ + 1)N−N0 − γN−N0+2

(γ + 1)N−N0
. (3.44)

To compute the practical suboptimality estimate given by Theorem 3.39, we use the
following algorithm, see also Section 6.2.2.4 for the implementation and Section 8.4.4 for
numerical results.

Algorithm 3.40 (Computing a priori practical Suboptimality Bound)
Input: αmin — Closed–loop practical suboptimality estimate

VN(x(n)) — Value function in the actual step
N — Length of the horizon
N0 — Length of the comparison horizon
ε — Truncation constant

(1) Set lmax = 0, γ = 0

(2) For j from 2 to N0 do

(2a) Compute l(xuN
(N − j, x(n)), µj−1(xuN

(N − j, x(n))))

(2b) Set lmax = max{lmax, l(xuN
(N − j, x(n)), µj−1(xuN

(N − j, x(n))))}

(3) If VN0(xuN
(N − N0)) > lmax + ε and lmax > (N0 − 1)ε:
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Set γ :=
VN0

(xuN
(N−N0))−lmax−ε

lmax−(N0−1)ε

(4) For k from N0 + 1 to N do

(4a) If Vk(xuN
(N −k, x(n)))− l(xuN

(N −k, x(n)), µk(xuN
(N −k, x(n)))) > (k−1)ε

and l(xuN
(N − k, x(n)), µk(xuN

(N − k, x(n)))) > ε:

• Set γ̃ :=
Vk(xuN

(N−k,x(n)))−l(xuN
(N−k,x(n)),µk(xuN

(N−k,x(n))))−(k−1)ε

l(xuN
(N−k,x(n)),µk(xuN

(N−k,x(n))))−ε

• Set γ := max{γ, γ̃}

(5) If γ = 0: Print “Practical stability region reached”, set α = 1 and terminate

(6) Set α := (γ+1)N−N0−γN−N0+2

(γ+1)N−N0

(7) If α < 0: Print warning “Solution may be unstable”

(8) Set αmin := min{αmin, α} and terminate

Output: αmin — Closed–loop practical suboptimality estimate
α — Local practical suboptimality estimate for the actual step
γ — Characteristic of the problem

Assumption 3.19 represents sufficient conditions separately for each N0. This allows us to
choose the best resulting suboptimality estimate. Algorithmically, we can call Algorithm
3.40 for various N0, see also Section 6.2.2.4. The computational costs, however, rise
dramatically if the parameter N0 is increased since a larger number of long optimal control
problems have to be solved.

Remark 3.41
In some references, an inequality of the form

Vk(x) ≤ Φ(x)

for some function Φ : X → R
+
0 , all k ∈ N and all x ∈ X is imposed in order to conclude

stability or practical stability of the RHC closed loop, cf. e.g. Assumption 4 in [87]. Note
that Assumption 3.19 fits into this framework while Assumption 3.37 is more general.

3.4 Other Stability and Suboptimality Results

In the past 20 years different possibilities to guarantee stability of the closed–loop system
have been proposed which can be divided in three classes.
The first class is characterized by an additional terminal point constraint connecting
every initial value to the desired equilibrium point by a feasible trajectory over the open–
loop horizon, see e.g. [37, 126, 158, 159, 162]. Additionally, we obtain a first estimate for
suboptimality of the receding horizon controller.
A relaxation of this approach is the so called quasi–infinite horizon method. Here, the
terminal constraint regards a closed connected set. To compensate this, the cost func-
tional is modified by adding a Mayer term F (·), see also Remark 2.14, which in principle
overestimates the remaining infinite time cost corresponding to the terminal state, see
e.g. [38, 39, 68, 117, 164]. In this setting, the concept of inverse optimality as described
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in [22,150,160,173] can be utilized to qualify a resulting controller to be optimal in some
sense.

Last, a suboptimality estimation approach using observability and controllability condi-
tions has been proposed in [87,92,100,102] which turns out to be checkable using a small
linear program.
Here, we first describe the two endpoint–based stability approaches as well as the term
of inverse optimality shortly. Thereafter, we state the controllability–based result and
conclude by discussing conceptual advantages and disadvantages as well as correctness of
these methods compared to our proposed stability results of Propositions 3.3, 3.33 and
Theorems 3.22, 3.39.

3.4.1 Terminal Point Constraint

In 1988, a first stability result for nonlinear receding horizon control was established
in [126] using the idea of a moving terminal set Xf . For linear system, this has been
shown earlier in [215, 216]. For simplicity of exposition, we consider the origin to be the
desired equilibrium. The key idea is to add a terminal point constraint

xuN
(N, x) = 0 (3.45)

to the problems RHCN and SDOCPN respectively. Basically, if a trajectory is feasible
for the underlying open–loop problem SDOCPN , then the equilibrium x⋆ = 0 is reached
within the considered time horizon.
To show stability we assume the following:

Assumption 3.42 (1) The constraint set X is closed.

(2) The dynamic of the system f : Rn × U → Rn is continuous and f(0, 0) = 0.

(3) The stage cost l : Rn × U → R
+
0 is lower semi–continuous and l(0, 0) = 0.

(4) There exists a class K∞–function L1 such that

l(x, u) ≥ L1(‖(x, u)‖)

holds for all (x, u) ∈ Rn × U.

Theorem 3.43 (Stability using a Terminal Point Constraint)
Consider the problems RHCN and SDOCPN with additional terminal point constraint
(3.45) respectively. Suppose Assumption 3.42 to hold. If x0 is chosen such that problem
SDOCPN exhibits a feasible solution, then V∞(x0), V µN∞ (x0) and VN(x0) are finite and
satisfy

V∞(x0) ≤ V µN
∞ (x0) ≤ VN(x0). (3.46)

Within this context, another remarkable property of the problem SDOCPN can be ob-
served — that is, the value of the finite horizon cost functional converges to the value of
the infinite horizon cost functional. To show this we require the following:

Assumption 3.44 (1) The origin is contained in X × U.
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(2) There exists a class K∞–function L2 such that

l(x, u) ≤ L2(‖(x, u)‖)

holds for all (x, u) ∈ Rn × U.

Theorem 3.45 (Convergence of the Costfunctional using a Terminal Point Constraint)
Consider Assumptions 3.42 and 3.44 to be satisfied and δ > 0 to be a given real constant.
Moreover, we assume x0 to be chosen such that problem SDOCPN together with (3.45)
possesses a feasible solution. Then, there exists a horizon length N = N(δ, x0) such that
for all N ≥ N the problem SDOCPN together with (3.45) exhibits a feasible solution and
the estimate

VN(x0) ≤ V∞(x0) + δ (3.47)

holds. Moreover, there exists a radius r > 0 and a horizon length N = N(δ) such that
(3.47) holds for all N ≥ N and all x0 ∈ Br(0).

For proofs of Theorems 3.43 and 3.45 we refer to [126].

Remark 3.46
In 1982 — even earlier than [126] — the method of using the value function of a finite hori-
zon optimal control problem as a Lyapunov function to establish stability of continuous–
time systems employing a terminal equality contraint has been presented in [37]. Unfor-
tunately, it stayed unnoticed and unextended until 1989 in [158,159].

3.4.2 Regional Terminal Constraint and Terminal Cost

In 1998 a second idea was proposed in [39] relaxing the terminal point constraint (3.45)
to a regional terminal constraint

xuN
(N, x) ∈ Ω (3.48)

respectively for problems RHCN and SDOCPN . Additionally, the cost functional in both
problems is modified by adding a Mayer term F (·) defined on this terminal set, that is

JN(x, uN) =

N−1∑

i=0

l (xuN
(i, x), uN(xuN

(0, x), i)) + F (xuN
(N, x)). (3.49)

This approach is also termed quasi–infinite horizon NMPC. In [39], this approach was
formulated for continuous–time systems. Here, we give a discrete–time equivalent, see
also [160].
More precisely, the following condition are assumed to apply:

Assumption 3.47 (1) Ω ⊂ X is closed and contains the origin.

(2) For a given local feedback uf(·) we have uf(x) ∈ U for all x ∈ Ω.

(3) The set Ω is forward invariant for f(·, ·) under uf(·), i.e. f(x, uf(x)) ∈ Ω for all
x ∈ Ω.
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(4) The Mayer term F (·) is a local Lyapunov function, i.e.

F (f(x, uf(x))) − F (x) + l(x, uf(x)) ≤ 0.

holds for each x ∈ Ω.

Then stability of the resulting closed–loop system can be shown.

Theorem 3.48 (Stability using Terminal Costs)
Consider the problem RHCN with modified cost functional (3.49) and additional constraint
(3.48). Suppose that Assumption 3.47 holds and the stated problem exhibits a feasible
solution for a set XN of initial values x0. Then the resulting closed–loop solution (2.16)
is asymptotically stable for all initial values x0 ∈ XN .

For corresponding assumptions and a proof in the continuous–time case, we refer to [38,39].
For the discrete–time setting, a proof can be found in [160].

3.4.3 Inverse Optimality

In the previous Sections 3.4.1 and 3.4.2, we dealed with the stability aspect of the closed–
loop solution (2.16) only. Now, we aim at finding a feedback control u(x(n)) which
stabilizes the system

x(n + 1) = f (x(n), u(x(n))) , x(0) = x0

while minimizing the cost

J∞(x0, u) =

∞∑

i=0

l (x(i), u(x(i))) . (3.50)

This issue has been considered earlier, see e.g. [22].
Within our analysis of the receding horizon controller in Sections 3.1 – 3.3, we obtained
a parameter α characterizing the degree of suboptimality of the closed–loop solution
regarding the infinite horizon optimal solution. In the inverse control problem, see e.g.
[22, 150, 160, 173], a Lyapunov function is given. Then, the aim is to determine whether
a control law u(·) is optimal for a cost of the form (3.50). This leads to the so called
LgV –control for control–affine systems studied, among others, in [116, 131].
In order to apply this idea to the receding horizon controller, we need the following
assumptions:

Assumption 3.49
Suppose F (·) to be modeled implying the existence of a closed set XN ⊂ R

n and a control
law uN such that the following conditions hold:

(1) For all x0 ∈ XN there exists a feasible control uN(x0) ∈ U.

(2) If the initial value x0 is contained in XN , then the subsequent state along the
trajectory stays in this set, i.e. f(x0, µN(x0)) ∈ XN .

(3) For all x0 ∈ XN the Mayer term F (·) is decreasing in one step at least by the size
of the stage cost, that is

F (xuN
(N, uN(x(1))) − F (xuN

(N, uN(x0))) ≤ −l (x0, uN(x0)) .
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In particular, condition (3) reveals F (·) to be decreasing along the closed–loop trajectory.
Note that F (·) is not necessarily a local control Lyapunov function as in Section 3.4.2 to
exhibit such a characteristic, see also [117]. This property can be used to establish the
following result shown e.g. in [150, 173].

Theorem 3.50 (Inverse Optimality)
Consider a problem RHCN with cost functional (3.49) such that Assumption 3.49 holds.
Then there exists a set of initial values X0 ⊂ Rn and a function L : Rn × U → R

+
0 with

L(x, uN(x)) ≥ l(x, uN(x)) ∀x ∈ X0 (3.51)

such that for all x0 ∈ X0 the resulting closed–loop controller µN(·) minimizes the modified
cost functional

J∞(x0, µN) =

∞∑

i=0

L (xµN
(i, x0), µN(x(i))) . (3.52)

3.4.4 Controllability–based Suboptimality Estimates

In [92], a controllability assumption based on the running cost l(·, ·) instead of the tra-
jectory is imposed to obtain an estimate for the trade–off between the infinite horizon
optimal control (2.8) and the receding horizon control law (2.15):

Assumption 3.51
There exists a function W : X → R

+
0 and constants ϑ, C > 0 and 0 ≤ σ < 1 such that for

all x ∈ X we have:

(1) l(x, u) ≥ ϑW (x) holds for all u ∈ U.

(2) There exists a control sequence u⋆ ∈ U such that

l(x(n), u⋆(n)) ≤ CσnW (x) (3.53)

holds along the solution x(n) defined by (2.10) with u(·) := u⋆(·) emanating from
the initial value x(0) = x0.

Using this assumption, we retrieve a connection to our results from Theorem 3.15, see [92]
for a proof:

Theorem 3.52
Suppose Assumption 3.51 to hold. Then Assumption 3.11 holds with

γ :=
C

ϑ(1 − σ)
− 1 (3.54)

and the suboptimality degree α can be computed for all x ∈ X according to (3.17).

Using a different controllability assumption, one can define a linear program to compute
the degree of suboptimality. In [99, 100, 102], the following setting was analyzed:

Assumption 3.53
Given a function β ∈ KL0, for each initial value x0 ∈ X there exists a control function
uN(x0, ·) ∈ U satisfying

l(xuN
(x0, n), uN(x0, n)) ≤ β(l⋆(x0), n) (3.55)

for all n ∈ N0.
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Here, a continuous function β : R≥0 × R≥0 → R≥0 is of class KL0 if for each r > 0 we
have limt→∞ β(r, t) = 0 and for each t ≥ 0 we either have β(·, t) ∈ K∞ or β(·, t) ≡ 0.

Using Assumption 3.53, for any r ≥ 0 and any N ≥ 1 one defines the values

BN (r) :=

N−1∑

n=0

β(r, n) (3.56)

as well as

λn := l(xuN
(n), uN(xuN

(0), n))

ν := VN(xuN
(0))

with uN(·, ·) defined by (2.14). This allows to show the following, see [92] for a proof:

Proposition 3.54
Suppose Assumption 3.53 holds and consider a horizon N ≥ 1 within problem RHCN

using a m–step feedback (2.18) with m ∈ {1, . . . , N − 1}. Assume uN(x0, ·) ∈ U to
be a minimizing control of problem SDOCPN with initial value x0 ∈ X. If λn > 0,
n = 0, . . . , N − 1, holds, then we have

N−1∑

n=k

λn ≤ BN−k(λk), k = 0, . . . , N − 2 (3.57)

and if furthermore ν > 0 we obtain

ν ≤

j−1∑

n=0

λn+m + BN−j(λj+m), j = 0, . . . , N − m − 1. (3.58)

Proposition 3.54 can be seen as necessary condition for suboptimality of the m–step MPC
feedback law µN,m. In order to obtain sufficient conditions as shown in [92], we require
the following:

Theorem 3.55
Consider β ∈ KL0, a horizon N ≥ 1 within problem RHCN using a m–step feedback
(2.18) with m ∈ {1, . . . , N − 1} and assume that all sequences λn > 0, n = 0, . . . , N − 1
and values ν > 0 fulfilling (3.57), (3.58) satisfy the inequality

N−1∑

n=0

λn − ν ≥ α
m−1∑

n=0

λn (3.59)

for some α ∈ (0, 1]. Then, for each optimal control problem SDOCPN satisfying Assump-
tion 3.53, the inequality

αV∞(x) ≤ αV µN,m
∞ (x) ≤ VN(x)

holds for all x ∈ X.

Combining Proposition 3.54 and Theorem 3.55 allow us to formulate the linear program
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Minimize α := inf
λ0,...,λN−1,ν

N−1∑
n=0

λn − ν

m−1∑
n=0

λn

ST. ν ≤

j−1∑

n=0

λn+m + BN−j(λj+m), j = 0, . . . , N − m − 1

N−1∑

n=k

λn ≤ BN−k(λk), k = 0, . . . , N − 2

to compute the suboptimality estimate α.

3.4.5 Subsumption of the presented Approaches

Considering Theorem 3.43, the stated Assumptions 3.42 are motivated by establishing
stability only, in particular there is no direct connection between the physical plant and
the introduced terminal point condition (3.45). This results in a modification of the prob-
lem which does not represent the original one in general, hence the resulting controls
and the closed–loop trajectories of these two problems most likely deviate. Additionally,
the necessary computing effort is high since the required horizon length N must be cho-
sen large such that existence of a feasible solution of the optimization problem can be
guaranteed.
The approach used in Theorem 3.48 relaxes this issue by enlarging the terminal constraint
region. Hence, feasible trajectories are obtained for significantly shorter horizon lengths
N . Moreover, the additive terminal cost can be justified as an (over-)approximation of
the anticipated costs on the infinite horizon. Still, the strictly monotone decrease in F (·),
see Assumption 3.47(5), needs to be established. Moreover, the resulting closed–loop
trajectory again deviates from the original one since by adding the additional constraint
and modifying the cost functional the optimization problem exhibits a different solution
in general.
The setting considered within Proposition 3.3 — and related statements thereafter —
represents the majority of industrially implemented receding horizon controllers, see e.g.
[16, 54]. In order to establish these results, no further assumptions changing the optimal
control problem have to be made. Therefore, the resulting controls can be regarded as
correctly computed. Moreover, no additional (analytical or numerical) effort is necessary
to obtain a suitable endcost term and no terminal set is required. According to these
arguments, our results can be regarded as superior compared to these settings.
The estimates from Section 3.4.4, however, are based on the setvalued relaxed Lyapunov
inequality (3.6). They correspond to a RHCN problem formulation which is identical to
our setting from Sections 3.1 – 3.3 and hence have to be regarded as correctly computed
as well. Yet, it appears to be difficult to obtain the required parameters and functions
of Assumptions 3.51 or 3.53 for general nonlinear problems. Hence, this methodology is,
at least until now, restricted to a smaller class of problems compared to our approach.
Moreover, we expect our results to be less conservative since the estimates are not required
to hold for the whole state space X but only those points which are visited by the closed–
loop trajectory (2.16).

As mentioned before, the primary assertion of Theorem 3.43 is the stability property of
the closed–loop. Still, it also offers an estimate for suboptimality via V µN

∞ (x0) ≤ VN(x0)
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but the optimal control problems corresponding to VN(·) and V∞(·) differ due to the
introduction of the terminal point constraint in the finite horizon problem. As a result,
we can not establish the inequality VN(x) ≤ V∞(x) to obtain an upper bound in terms
of V∞(·). Such a bound can be set up using Theorem 3.45 but until now there exists no
common formula to compute the required horizon length N . Hence, the method proposed
in Section 3.4.1 is suitable to obtain some bound on the cost of the closed–loop, but it
cannot be employed to develop an quantitative suboptimality property.
Using the inverse optimality concept stated in Theorem 3.50 allows us to show optimality
of the closed–loop regarding the cost functional L(·, ·). Additionally, the robustness prop-
erty of the infinite horizon controller carries over to receding horizon controller. However,
the function L(·, ·) is in general unknown or computationally costy since it requires the
solution of two optimization problems, see e.g. [160,173]. Moreover, since the closed–loop
controller is optimal for a different cost functional, we can e.g. utilize [92, Theorem 6.4]
to obtain an upper bound on V µN

∞ (·). However, this result reveals no quantitative esti-
mate with respect to V∞(·) which makes it unapplicable for our adaption strategies in the
following Chapter 4.
The methods proposed in Sections 3.1, 3.2 and 3.3 allow for a computation of the in-
troduced suboptimality degree α relating the costs of the closed–loop to the costs of
the infinite horizon control. Since the corresponding algorithms can be applied along
the closed–loop trajectory without significant additional effort, they are well suited to
develop algorithms to locally guarantee a lower bound on this parameter. As a result,
we additionally obtain stability of the closed–loop. Moreover, the basic Proposition 3.3
gives rise to further theoretical insight of the receding horizon control problem, that is,
among others, to compute stability and performance bounds [90] or to show improved
performance of the closed–loop considering longer control horizons [99].



Chapter 4

Adaptive Receding Horizon Control

Using the suboptimality estimates from the previous Chapter 3, our aim is to develop an
automatic adaptation strategy in order to reduce the computing time necessary to solve
the receding horizon control problem.

The main idea is to accelerate the calculation of the open–loop control uN given by (2.14)
in every step of the receding horizon controller setup. At the same time, however, we
want to guarantee a certain degree of suboptimality α ∈ [0, 1) of the solution (3.3), (3.4)
compared to the infinite horizon solution (1.1), (2.8) with u(n) = µ(x(n)). This aim
renders our desired algorithm to be close to step size control methods of ODE solvers
like Runge–Kutta–Fehlberg, Dormand–Prince or Radau. Yet, the parameter of choice is
different: From the literature we know that longer optimization horizons N (apart from
numerical difficulties) lead to improved closed–loop solutions. The parameter N also has
a major impact on the computing time of each open–loop control law uN . Therefore,
designing strategies to adapt the horizon length N according to the problem and the
state of the system is a natural choice.

In order to develop such an adaptation strategy, we utilize the a priori and a posteriori
estimates given in the previous Chapter 3. These estimates allow us to quantify the degree
of suboptimality which is the comparison criterion we intend to use to develop shortening
and prolongation strategies for the optimization horizon N .

So far, we have seen that the existence of α ≥ α is a sufficient condition for this pur-
pose if the horizon length N is not changed. Yet, the resulting lower bound α does not
hold true for the whole trajectory if we vary N along the closed–loop solution. There-
fore, we extend the result of Proposition 3.3 and 3.28 to our actual setting in Section
4.1. In the following Section 4.2, we develop a basic adaptation algorithm from the a
posteriori result of Propositions 3.3. This scheme is extended in Section 4.3 using the a
priori suboptimality estimate of Theorem 3.22. In the final Section 4.4, we consider the
practical suboptimality estimates of Proposition 3.28 and Theorem 3.39 to cover the case
of practically asymptotically stabilizable systems.

4.1 Suboptimality Estimates for varying Horizon

In the previous Chapter 3 we assumed the optimization horizon N to be fixed for all
iterates of the receding horizon controller and developed a local suboptimality estimate
α for this controller. Now, our aim is to vary the optimization horizon of the receding
horizon controller along the closed–loop solution 2.16. Note that Algorithms 3.8, 3.23,
3.30 and 3.40 can still be applied for every point along the closed–loop if the optimization

77
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horizon is known. The stability proofs of Propositions 3.3 and 3.28, however, do not hold
since the terms in the telescope sum argument do not cancel out each other in general.

Here, we generalize the results for fixed optimization horizon N from Propositions 3.3
and 3.28. To this end, we assume that if there exists a horizon length parameter N such
that α(N) ≥ α holds, then the controller shows a bounded guaranteed performance if the
horizon length is increased, i.e.

Assumption 4.1
Given an initial value x ∈ X and a horizon length N < ∞ such that µN(·) guarantees

local suboptimality degree α(N) ≥ α, α ∈ (0, 1), we assume that for Ñ ≥ N , Ñ < ∞,
there exist constants Cl, Cα > 0 such that the inequalities

l(x, µN(x)) ≤ Cll(x, µ eN(x)) (4.1)

α(N) ≤
1

Cα
α(Ñ) (4.2)

hold where α(Ñ) is the local suboptimality degree of the controller µ eN(·) corresponding

to the horizon length Ñ .

Remark 4.2
In order to fit the context of varying optimization horizons, we intuitively extend our
notation from Chapters 2 and 3 by adding the used optimization horizon as an argument,
i.e. α(N) denotes the variable α from Chapter 3 with horizon N . Moreover, since the
resulting closed–loop control now depends on a sequence (Ni)i∈N we denote such a control
law by µ(Ni).

The aim of Assumption
4.1 is to allow for non–
monotone developments of
the suboptimality degree
α(·) if the horizon length
is increased. Still, we want
to guarantee that if a cer-
tain suboptimality degree
α ∈ (0, 1) holds for a hori-
zon length N , then the es-
timate does not drop below
zero if the horizon length is
increased.

N

α
1

α

+
+

+

+
+

+ +
+

+

+
+

Figure 4.1: Possible development of the suboptimality de-
gree α(·) depending on the horizon length N

Remark 4.3
Since l(x, µ eN(x)) may tend to zero if Ñ is increased, we obtain that Cl is in general
unbounded. The special case l(x, µ eN(x)) = 0, however, states that the equilibrium of our
problem has been reached and can be neglected in this context.

Given Assumption 4.1, we obtain stability and a performance estimate of the closed–loop
in the context of changing horizon lengths similar to Proposition 3.3.
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Theorem 4.4 (Stability of Adaptive RHC)
Consider α ∈ [0, 1) and a sequence (Ni)i∈N0, Ni ∈ N, where N⋆ = max{Ni | i ∈ N},
such that the receding horizon feedback law µ(Ni) defining the closed–loop solution (2.16)
guarantees

VNi
(x(i)) ≥ VNi

(x(i + 1)) + αl(x(i), µNi
(x(i))) (4.3)

for all i ∈ N0. If additionally Assumption 4.1 is satisfied for all pairs of initial values and
horizons (x(i), Ni), i ∈ N0, then we obtain

αCV∞(x(n)) ≤ αCV
µ(Ni)∞ (x(n)) ≤ VN⋆(x(n)) ≤ V∞(x(n)) (4.4)

to hold for all n ∈ N0 where αC := min
j∈N≥n

C
(j)
α

C
(j)
l

α.

Proof. Given a pair (x(i), Ni), Assumption 4.1 guarantees α(Ni) ≤
1

C
(i)
α

α(Ñ) for Ñ ≥ Ni.

Now we choose Ñ = N⋆ within this local suboptimality estimation. Hence, we obtain

α
(4.3)

≤ α(Ni) ≤
α(N⋆)

C
(i)
α

.

using the relaxed Lyapunov inequality (4.3). Multiplying by the stage cost l(x(i), µNi
(x(i))),

we can conclude

αl(x(i), µNi
(x(i))) ≤

α(N⋆)

C
(i)
α

l(x(i), µNi
(x(i)))

=
VN⋆(x(i)) − VN⋆(x(i + 1))

C
(i)
α l(x(i), µN⋆(x(i)))

l(x(i), µNi
(x(i)))

≤
C

(i)
l

C
(i)
α

(VN⋆(x(i)) − VN⋆(x(i + 1)))

using (4.3) and (4.1). Summing the running costs along the closed–loop trajectory reveals

αC

K∑

j=i

l(x(j), µNj
(x(j))) ≤ VN⋆(x(i)) − VN⋆(x(K + 1))

where we defined αC := min
n∈[i,...,K]

C
(n)
α

C
(n)
l

α. Since VN⋆(x(K + 1)) ≥ 0 holds, we can neglect it

in the inequality. Taking K to infinity reveals

αCV
µ(Ni)∞ (x(i)) = αC lim

K→∞

K∑

j=i

l(x(j), µNj
(x(j))) ≤ VN⋆(x(i)).

Since the first and the last inequality of (4.4) hold by the principle of optimality, the
assertion follows.

Remark 4.5
Comparing Proposition 3.3 and Theorem 4.4, we see that (4.3) is only a sufficient condi-
tion for guaranteeing the suboptimality degree α if the horizon length is fixed. Here, the
bound αC may become very small depending on Cα and Cl from Assumption 4.1 but in our
numerical experiments no such case occured, see also Section 8.5.4 for numerical results.



80 Chapter 4: Adaptive Receding Horizon Control

Similar to Proposition 3.28, we can extend Theorem 4.4 to the practical case:

Theorem 4.6 (Practical Stability of Adaptive RHC)
Suppose α ∈ [0, 1) and ε > 0 are fixed. Consider a sequence (Ni)i∈N0, Ni ∈ N, where
N⋆ = max{Ni | i ∈ N}, such that the receding horizon feedback law µ(Ni) defining the
closed–loop solution (2.16) guarantees

VNi
(x(i)) ≥ VNi

(x(i + 1)) + min {α (l(x(i), µNi
(x(i))) − ε) , l(x(i), µNi

(x(i))) − ε} (4.5)

for all i ∈ N0. Consider a discrete–time interval I := {n1, . . . , n2}. Let n1, n2 ∈ N,
n1 < n2, for which the inequality l(x(i), µNi

(x(i))) ≥ ε holds for all i ∈ I and set σ :=
VN⋆(x(n2 + 1)). If additionally Assumption 4.1 is satisfied for all pairs of initial values
and horizons (x(i), Ni), i ∈ I, then we obtain

αCV
µ(Ni)

I (x(n)) ≤ VN⋆(x(n)) − σ ≤ V∞(x(n)) − σ (4.6)

to hold for all n ∈ I where αC := min
j∈I≥n

C
(j)
α

C
(j)
l

α and l(x(i), µNi
(x(i)), V

µ(Ni)

I (x(n)) are defined

in (3.28) and (3.29) respectively and I≥n := {i ∈ I | i ≥ n}.

Proof. The proof combines Proposition 3.3 and Theorem 4.4. From the definition of l(·, ·)
and I we obtain

αl(x(i), µNi
(x(i))) = max {α (l(x(i), µNi

(x(i))) − ε) , 0}

for i ∈ I. Similar to the proof of Theorem 4.4, we obtain α ≤ α(Ni) ≤ α(N⋆)

C
(i)
α

from

Assumption 4.1. Hence, we have

αl(x(i), µNi
(x(i))) ≤ max

{
α(N⋆)

Cα

(l(x(i), µNi
(x(i))) − ε) , 0

}

≤
C

(i)
l

C
(i)
α

(VN⋆(x(i)) − VN⋆(x(i + 1)))

using (4.5) and (4.1). Thus, summing over i and defining αC := min
j∈I≥n

C
(j)
α

C
(j)
l

α gives us

αCV
µ(Ni)

I (x(n)) = αC

n2∑

j=n

l(x(j), µNj
(x(j))) ≤ VN⋆(x(n)) − σ,

which implies the assertion since VN⋆(x(n)) ≤ V∞(x(n)) follows by (3.2).

Now, we are ready to design adaptive algorithms based on our local suboptimality esti-
mates from the previous Chapter 3.

4.2 Basic Adaptive RHC

A basic version of an adaptive receding horizon controller (ARHC) can be implemented
using Proposition 3.3. Note that this proposition represents an a posteriori estimate.
However, the necessary data can be obtained by solving two consecutive optimal control
problems using a forward prediction of the state trajectory.
A basic assumption we require is the existence of a finite horizon length parameter N
guaranteeing stability with suboptimality degree greater than α, i.e.
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Assumption 4.7
Given α ∈ [0, 1), for all x0 ∈ X there exists a finite horizon length N = N(x0) ∈ N such
that the relaxed Lyapunov inequality (3.6) holds with α(N) ≥ α for all horizon lengths
N ≥ N .

Regarding Theorem 4.4, we first fix the lowest tolerable suboptimality degree α ∈ [0, 1),
then we compute a suitable horizon length parameter N such that α ≥ α holds for α
from (3.8) and last implement the resulting control value uN . More formally, we use the
following algorithm:

Algorithm 4.8 (A posteriori Adaptive Receding Horizon Control (ARHC))
Input: α — Fixed suboptimality bound

N — Length of the horizon
x(n) — Initial value of the plant

(1) Compute VN(x(n)), VN(x(n + 1))

(2) Compute α(N) by calling Algorithm 3.8

(3) If α(N) > α:

• Shortening Strategy

(4) Else:

• Prolongation Strategy

(5) Goto (1)

Output: α(N) — Local suboptimality estimate
x(·) — Closed–loop trajectory

In order to shorten the actual horizon length, we present two quite similar strategies which
are based on the following conclusion.

Lemma 4.9 (Shortening Strategy)
Consider an optimal control problem (2.10), (2.14) with initial value x0 = x(n), N ∈ N

and α ∈ [0, 1) to be fixed. Suppose there exists an integer i ∈ N0, 0 ≤ i < N such that

VN−i(xuN
(i + 1, x0)) + αl(xuN

(i, x0), µN−i(xuN
(i, x0))) ≤ VN−i(xuN

(i, x0)) (4.7)

holds true for all 0 ≤ i ≤ i where xuN
(i, x0) is defined by (2.10). Then the first (i + 1)

elements of (2.14) can be implemented with local suboptimality degree α.

Proof. Consider the optimal control problem with fixed horizon length parameter N em-
anating from the given initial value. Using i ≥ 0, i ≤ i, the open–loop trajectory (2.10)
and (4.7) we conclude that (3.9) holds true for any optimal control problem with horizon
length N − i and initial value xuN

(i, x0). Hence, the assertion follows.

The idea of Lemma 4.9 is not only to allow for a shortening of the current optimization
horizon and to guarantee Assumption (3.8) to hold. It also reveals an computationally
cheap algorithm which implements i ∈ {0, . . . i} elements of the open–loop control se-
quence uN(·, x0) and checks (3.8) to hold iteratively for the corresponding horizon length
N − i along the resulting solution.
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Reformulating Lemma 4.9 we obtain the following two slightly different algorithms:

Algorithm 4.10 (A posteriori Simple Shortening Strategy)
Closed-loop strategy:
Input: α — Fixed suboptimality bound

N — Length of the horizon
uN(x(n), ·) — Open–loop control
VN(x(n)) — Value function
VN(x(n+1)) — Predicted value function

(1) Implement uN(x(n), 0), obtain x(n + 1) and set n := n + 1

(2) Set uN(x(n), k) := uN(x(n − 1), k + 1) for all k ∈ {0, . . . , N − 2}

(3) If N ≥ 2:

(3a) Set N := N − 1

(3b) Compute VN(x(n + 1))

(3c) Compute α(N) by calling Algorithm 3.8

(3d) If α(N) < α:

• Set N := N + 1

• Set uN(x(n), N − 1) to default value according to (2.9)

Else

• Set uN(x(n), k) := uN+1(x(n), k) for all k ∈ {0, . . . , N − 1}

Output: α(N) — Local suboptimality estimate
N — New length of the horizon
x(n) — New initial value
uN(x(n), ·) — Shifted open–loop control on new horizon

Algorithm 4.11 (A posteriori Simple Shortening Strategy 2)
Mixed closed–loop open-loop strategy:
Input: α — Fixed suboptimality bound

N — Length of the horizon
α(N) — Local suboptimality estimate
uN(x(n), ·) — Open–loop control
VN(x(n)) — Value function
VN(x(n+1)) — Predicted value function

(1) While α(N) > α do

• Compute N and α(N) by calling Algorithm 4.10

Output: α(N) — Local suboptimality estimate
N — New length of the horizon
x(n) — New initial value
uN(x(n), ·) — Open–loop control on new horizon

Note that in both algorithms we suppose xuN
(x(n), j) to be the outcome of (2.10) with

x0 = x(n). The second strategy opens up the closed–loop for (i+1) steps while using the
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first strategy the general problem structure remains the same. Hence, the first strategy is
in general more robust with respect to perturbations. The second strategy, on the other
hand, allows for an increased computing time to solve e.g. the successive optimal control
problem if i ≥ 1.

Remark 4.12
If we consider an m–step feedback as in Definition 2.22, these two strategies can be adapted
quite easily by shifting the horizon m times in Step (1) of Algorithm 4.10 and adapting
the new horizon length to N − m.

Note that we have to solve one additional optimal control problem in every step of Algo-
rithm 4.10. This can not be avoided since the initial point x(n + 1) is already shifted in
time and hence is not identical to the basis of the predicted value function in general.

Remark 4.13
In order to speed up the algorithm, we can reuse the endpiece of the control of the first
optimal control problem as initial guess for the second optimal control problem, see also
Section 8.3.3 for impact of the initial guess. Additionally, we can use synergy effects in
two consecutive receding horizon control steps since in the adaptation algorithm the second
optimal control problem of the old step is (apart from deviations of the initial value of the
state) identical to the first problem in the actual RHC step.

The prolongation of the optimization horizon is a quite difficult task. One strategy for
this is straight forward but computationally expensive. Yet, it can be applied to any
optimal control problem satisfying Assumption 4.7.

Algorithm 4.14 (A posteriori Simple Prolongation Strategy)
Suboptimality guaranteeing approach:
Input: α — Fixed suboptimality bound

α(N) — Local suboptimality estimate
N — Length of the horizon

(1) Set i := 0

(2) While α(N) < α do

(2a) Set i := i + 1

(2b) Compute VN+i(x(n)) and VN+i(x(n + 1))

(2c) Compute α(N) by calling Algorithm 3.8

(3) Set N := N + i

(4) Implement uN(x(n), 0)

(5) Obtain x(n + 1) and set n := n + 1

Output: α(N) — Local suboptimality estimate
N — New length of the horizon
x(n) — New initial value

Lemma 4.15 (Prolongation Strategy)
Consider an optimal control problem (2.10), (2.14) with initial value x0 = x(n) and N ∈
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N. Moreover, α ∈ [0, 1) is supposed to be fixed and Assumption 4.7 to be satisfied. Then,
Algorithm 4.14 terminates in finite time and computes a horizon length N such that the
first element of the open–loop control (2.14) can be implemented with local suboptimality
degree α.

Proof. According to Assumption 4.7, there exists a finite horizon length N such that
uN(x(n), 0), N ≥ N , can be implemented with local suboptimality degree α. Hence, the
while–loop in Algorithm 4.14 will terminate at latest after i = N −N steps satisfying the
stopping criterion and the assertion follows.

4.3 Modifications of the ARHC Algorithm

This section aims at reducing the computing time necessary to obtain a horizon length
which guarantees a certain degree of suboptimality α. Similar to Section 3.2, we want to
ignore all future information, i.e. to avoid the use of VN (x(n + 1)) in our calculations. To
this end, we use the a priori estimate which we derived in Section 3.2 using Assumption
3.19 and Theorem 3.22. While this estimate is slightly more conservative than the estimate
from Proposition 3.3 it is also computationally less demanding if the value N0 is small.

Since no knowledge of VN(x(n + 1)) is required, we can reformulate Algorithm 4.8 in the
following way:

Algorithm 4.16 (A priori Adaptive Receding Horizon Control)
Input: α — Fixed suboptimality bound

N — Length of the horizon
N0 — Fixed internal length of subproblems
x(n) — Initial value of the plant

(1) Compute VN(x(n))

(2) Compute α(N) by calling Algorithm 3.23

(3) If α(N) > α:

• Shortening Strategy

(4) Else:

• Prolongation Strategy

(5) Goto (1)

Output: α(N) — Local suboptimality estimate
x(·) — Closed–loop trajectory

Remark 4.17
Here, we only use the more general result of Theorem 3.22 based on Assumption 3.19 and
do not discuss the special case N0 = 2 of Theorem 3.15 and Assumption 3.11.

Similar to the changes made in Algorithm 4.8, we can modify Lemma 4.9 to match to the
conditions of Assumption 3.19.
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Lemma 4.18 (Shortening Strategy)
Consider an optimal control problem (2.10), (2.14) with initial value x0 = x(n) and
N, N0 ∈ N, N ≥ N0 ≥ 2. Moreover α ∈ [0, 1) is supposed to be fixed inducing some
γ(·) via (3.23). If there exists an integer i ∈ N0, 0 < i < N −N0 − 1 such that there exist
γi < γ(N − i) satisfying

VN0(xuN
(N − N0, x0)) ≤ (γi + 1) max

j=2,...,N0

l(xuN
(N − j, x0), µj−1(xuN

(N − j, x0))) (4.8)

Vki
(xuN

(N − ki, x0)) ≤ (γi + 1)l(xuN
(N − ki, x0), µki

(xuN
(N − ki, x0))) (4.9)

for all ki ∈ {N0 + 1, . . . , N − i} and all 0 ≤ i ≤ i where xuN
(i, x0) is given by (2.10) with

x0 = x(n), then the first (i + 1) elements of the open–loop control uN(x0, ·) defined by
(2.14) can be implemented with local suboptimality degree α.

Proof. Since (4.8), (4.9) hold for i = 0, Theorem 3.22 guarantees that the local subopti-
mality degree is at least as large as α. If i > 0 holds, we can make use of the open–loop
trajectory (2.10) and arbitrarily choose i ∈ {0, . . . , i} to compute xuN

(i, x0). By (4.8),
(4.9), we obtain our assertion for the optimal control problem with initial value xuN

(i, x0)
and horizon length N − i via Theorem 3.22. Hence, since i was arbitrary, this holds for
all i ≤ i and concludes the proof.

Now we use Lemma 4.18 to adapt our shortening strategies:

Algorithm 4.19 (A priori Simple Shortening Strategy)
Closed-loop strategy:
Input: α — Fixed suboptimality bound

N — Length of the horizon
uN(x(n), ·) — Open–loop control
VN(x(n)) — Value function

(1) Implement uN(x(n), 0), obtain x(n + 1) and set n := n + 1

(2) Set uN(x(n), k) := uN(x(n − 1), k + 1) for all k ∈ {0, . . . , N − 2}

(3) If N ≥ N0:

(3a) Set N := N − 1

(3b) Compute α(N) by calling Algorithm 3.23

(3c) If α(N) < α:

• Set N := N + 1

• Set uN(x(n), N − 1) to default value according to (2.9)

Else

• Set uN(x(n), k) := uN+1(x(n), k) for all k ∈ {0, . . . , N − 1}

Output: α(N) — Local suboptimality estimate
N — New length of the horizon
x(n) — New initial value
uN(x(n), ·) — Open–loop control on new horizon

Again, we can implement Lemma 4.18 in a mixed closed–loop open–loop fashion as shown
in Algorithm 4.11.
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Algorithm 4.20 (A priori Simple Shortening Strategy 2)
Mixed closed–loop open-loop strategy:
Input: α — Fixed suboptimality bound

α(N) — Local suboptimality estimate
N — Length of the horizon
uN(x(n), ·) — Open–loop control
VN(x(n)) — Value function

(1) While α(N) > α and N ≥ N0 do

• Compute N and α(N) by calling Algorithm 4.19

Output: α(N) — Local suboptimality estimate
N — New length of the horizon
x(n) — New initial value
uN(x(n), ·) — Open–loop control on new horizon

To prolongate the horizon, we can use an approach which is similar to Algorithm 4.14 but
based on the estimates from Theorem 3.22 and Assumption 4.7.

Algorithm 4.21 (A priori Simple Prolongation Strategy)
Suboptimality guaranteeing approach:
Input: α — Fixed suboptimality bound

N — Length of the horizon
α(N) — Local suboptimality estimate

(1) Set i := 0

(2) While α(N) < α

(2a) Set i := i + 1

(2b) Compute VN+i(x(n))

(2c) Compute α(N) by calling Algorithm 3.23

(3) Set N := N + i

(4) Implement uN(x(n), 0) given by (2.14)

(5) Obtain x(n + 1) and set n := n + 1

Output: α(N) — Local suboptimality estimate
N — New length of the horizon
x(n) — New initial value

Note that finite termination and the guaranteed local suboptimality degree α can be
concluded by Lemma 4.15 directly.

4.3.1 Fixed Point Iteration based Strategy

Since the shortening strategies based on both the a posteriori and the a priori estimates
can be implemented without any additional computational effort, we do not have to refine
them. In contrast to that, the prolongation strategies, cf. Algorithms 4.14 and 4.21, may
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result in solving a finite but unknown number of optimal control problems. To reduce
the number of optimal control problems to be solved to guarantee a local suboptimality
degree of at least α, we analyze equation (3.23) more closely.
If we consider α ∈ [0, 1), we obtain a lower bound for N from (3.23) by

N ≥ N0 +
2 ln(γ(N)) − ln(1 − α)

ln(γ(N) + 1) − ln(γ(N))
. (4.10)

Since x(n), N0 and α are fixed, the right hand side of (4.10) is in fact a function of N .
Moreover, we want the horizon length N ∈ N to guarantee local suboptimality degree
α but also to be as small as possible due to the computing time necessary to solve the
corresponding optimal control problem. Hence, we seek a horizon length N satisfying

N = Φ(N) :=

⌈
N0 +

2 ln(γ(N)) − ln(1 − α)

ln(γ(N) + 1) − ln(γ(N))

⌉
, (4.11)

i.e. a fixed point of the function Φ(·). During our numerical experiments we experienced
that the mapping Φ(·) overestimates the required adaptation of the horizon length in
most cases. In particular, if the actual horizon length N needs to be enlarged, then Φ(N)
is typically larger than the required minimal horizon length to guarantee suboptimality
degree α. Similar, if N can be shortened, then Φ(N) is too short in general. Yet, we
experienced that if the mapping is applied iteratively, then the distance between two
iterates is shrinking in many cases, i.e.

|Φ(Φ(N)) − Φ(N)| ≤ θ|Φ(N) − N | θ ∈ [0, 1) ∀N ≥ N0. (4.12)

In the following Theorem 4.22 we show that we can use the mapping Φ(·) to iteratively
compute a sequence (Ni)i∈N0 which converges to such a fixed point if it satisfies (4.12):

Theorem 4.22. Consider N, N0 ∈ N, N ≥ N0 ≥ 2, and α ∈ [0, 1) to be fixed and
γ(N) to minimally satisfy Assumption 3.19. If for a given n ∈ N0 there exists a constant
θ ∈ [0, 1) such that the function Φ(·) defined in (4.11) satisfies (4.12) and Φk(N) ≥ N0

for all k ∈ N, then there exists a solution N⋆ ∈ N with N⋆ = Φ(N⋆) and Φk(N) → N⋆,
k → ∞. If additionally Assumption 4.1 holds and N⋆ is used as horizon length for the
actual step of the RHC problem, then the resulting solution exhibits local suboptimality
degree α(N⋆) ≥ α.

Proof. Since γ(N) satisfies all requirements of Theorem 3.22, we can estimate α via (3.23).
In order to guarantee a certain degree of suboptimality α we have to show

α ≤ α(N) =
(γ + 1)N−N0 − γN−N0+2

(γ + 1)N−N0
.

This can be solved for N giving

N ≥

⌈
N0 +

2 ln(γ(N)) − ln(1 − α)

ln(γ(N) + 1) − ln(γ(N))

⌉
=: Φ(N).

Due to (4.12) we have

|Φk(N) − Φk−1(N)| ≤ θk−1|Φ(N) − N |. (4.13)
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Since θ ∈ [0, 1) the right hand side of (4.13) tends to zero. Hence, there exists an index

k ∈ N such that θk−1|Φ(N) − N | < 1. Defining the sequence of optimization horizons
via (N (i))i∈N0 := (Φi(N))i∈N0 we obtain N (j) = N (k) ≥ N0 for all j, k ≥ k. Hence, the

sequence (N (i))i∈N0 is converging and N⋆ = Φ(N⋆) holds for N⋆ = N (k).
Choosing N = N⋆, the local suboptimality degree satisfies α(N) ≥ α by construction
of Φ(·). Hence, a new initial value can be obtained by implementing this controller
in a receding horizon fashion. Since this procedure can be applied along the resulting
trajectory, i.e. for all n ∈ N, asymptotic stability of the closed–loop follows by Assumption
4.1 and Theorem 4.4.
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N = Φ(N)N1 N2 N3

Figure 4.2: Possible outcome of the iteration defined
in Theorem 4.22

If the assumptions of Theorem 4.22
hold true then an implementation
of the fixed point iteration provides
a reasonable prolongation strategy.
Note that, in general, we cannot a
priori check whether Φ(·) satisfies
(4.12). Moreover, an algorithm de-
rived from Theorem 4.22 may show
bad performance as shown in Fig-
ure 4.2, i.e. the resulting horizon
length N may be chosen too large.
To this end — and to avoid over-
shoots — we bound the change in the horizon length from above and below.
Due to the integer property of the horizon length, this maximal change is implemented
dynamically using an additional variable σ ∈ N, σ > 1. From our numerical experience,
σ = 5 seems to be a suitable choice, yet, this variable should be chosen depending on the
considered problem, see also Section 8.5.

Algorithm 4.23 (A priori Fixed Point Prolongation Strategy)
Suboptimality guaranteeing approach:
Input: α — Fixed suboptimality bound

γ(N) — Characteristic of the problem
α(N) — Local suboptimality estimate
N — Length of the horizon
σ — Maximal allowable change in horizon length

(1) Set δactual := ∞

(2) While α(N) < α do

(2a) Compute Φ(N) according to (4.11)

(2b) Set δprevious := δactual and Nprevious := N

(2c) Set N := max{min{N + σ, Φ(N)}, N − σ, N0} and δactual := N − Nprevious

(2d) If δactual > δprevious: Print warning “Iteration may diverge”

(2e) Compute VN(x(n))

(2f) Compute γ(N) and α(N) by calling Algorithm 3.23

(3) Implement uN(x(n), 0) given by (2.14)

(4) Obtain x(n + 1) and set n := n + 1
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Output: α(N) — Local suboptimality estimate
N — New length of the horizon
x(n) — New initial value

Remark 4.24
Within our implementation, the choice of σ is fixed. Yet, numerical simulations indicate
that the “best” choice of σ depends on the occuring horizon lengths Ni, i.e. larger horizons
allow for larger choices of σ.

Remark 4.25
Theorem 4.22 can also be utilized to shorten the horizon. However, the computation
of N⋆ requires nonnegligible effort. Hence, this strategy should only be considered when
α(N) < α. Yet, the result of step (2c) of Algorithm 4.23 may be a suitable choice for the
optimization horizon in the subsequent optimal control problem.

4.3.2 Monotone Iteration

As indicated by the discussion of Theorem 4.22, no check whether the function Φ(·)
satisfies (4.12) could be derived yet. The aim of this section is to provide a reasonable
alternative to the prolongation strategy of Algorithm 4.23. Similar to the previous Section
4.3.1, we want to develop an iteration procedure which guarantees local suboptimality
estimate α(·) ≥ α for a given suboptimality bound α after a finite number of iteration
steps. Here, we design this procedure by guaranteeing α(·) to be monotonely increasing
during the iteration process.
More formally, our aim is to develop an iteration operator Ψ(·) which generates a sequence
of optimization horizons (N (i)) via

N (i+1) := Ψ(N (i))

such that the suboptimality estimate

α(N (i)) :=
(γ(N (i)) + 1)N(i)−N0 − γ(N (i))N(i)−N0+2

(γ(N (i)) + 1)N(i)−N0
= 1 − γ(N (i))2

(
γ(N (i))

γ(N (i)) + 1

)N(i)−N0

(4.14)

is monotonely increasing along this sequence where γ(N (i)) satisfies Assumption 3.19.
Moreover, we want to compute a horizon length N⋆ such that α(N⋆) ≥ α holds.
Since we require the given lower bound α to be satisfied by an element of this sequence,
we want to generate an increase of at least α − α(N (i)) in α(·) to obtain N⋆ during the
iteration process.

Lemma 4.26 (Monotonicity of the Suboptimality Estimate)
Suppose N, N0 ∈ N, N ≥ N0 ≥ 2, α ∈ [0, 1) and 0 ≤ δ < 1 − α(N) are given and
Assumption 3.19 holds. Suppose there exists a constant ϑ > 0 such that γ(Ñ) ≤ ϑγ(N)
holds for

Ñ ≥




N0 +




ln

((
γ(N)

γ(N)+1

)N−N0

− δ
γ(N)2

)
− 2 ln(ϑ)

ln (ϑγ(N)) − ln (ϑγ(N) + 1)







, (4.15)
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then α(Ñ) as defined in (4.14) satisfies

α(Ñ) ≥ α(N) + δ (4.16)

Proof. In order to show α(Ñ) ≥ α(N) + δ we use (4.14) on both sides of (4.16) which
gives us

1 − γ(Ñ)2

(
γ(Ñ)

γ(Ñ) + 1

)Ñ−N0

≥ 1 − γ(N)2

(
γ(N)

γ(N) + 1

)N−N0

+ δ

and is equivalent to

γ(Ñ)2

(
γ(Ñ)

γ(Ñ) + 1

)Ñ−N0

≤ γ(N)2

(
γ(N)

γ(N) + 1

)N−N0

− δ.

If we have γ(Ñ) ≤ ϑγ(N), then we can overestimate the left hand side and obtain

γ(Ñ)2

(
γ(Ñ)

γ(Ñ) + 1

)Ñ−N0

≤ ϑ2γ(N)2

(
ϑγ(N)

ϑγ(N) + 1

)Ñ−N0

.

Hence, it suffices to show

ϑ2γ(N)2

(
ϑγ(N)

ϑγ(N) + 1

)Ñ−N0

≤ γ(N)2

(
γ(N)

γ(N) + 1

)N−N0

− δ

to guarantee (4.16). This inequality is equivalent to

(
Ñ − N0

) [
ln

(
ϑγ(N)

ϑγ(N) + 1

)]
≤ ln

((
γ(N)

γ(N) + 1

)N−N0

−
δ

γ(N)2

)
− 2 ln(ϑ)

since ϑ > 0. By negative definiteness of ln
(

ϑγ(N)
ϑγ(N)+1

)
, the latter is equivalent to

Ñ ≥ N0 +




ln

((
γ(N)

γ(N)+1

)N−N0

− δ
γ(N)2

)
− 2 ln(ϑ)

ln (ϑγ(N)) − ln (ϑγ(N) + 1)


 .

Since the last inequality holds by assumption (4.15), the assertion follows.

As a result of Lemma 4.26, we obtain the iteration operator

Ψ(N) :=



N0 +




ln

((
γ(N)

γ(N)+1

)N−N0

− δ
γ(N)2

)
− 2 ln(ϑ)

ln (ϑγ(N)) − ln (ϑγ(N) + 1)







(4.17)

Remark 4.27
In the special case δ = 0, we can simplify the expression (4.17) to

Ψ(N) :=

⌈
N0 +

(N − N0) (ln (γ(N) + 1) − ln (γ(N))) + 2 ln (ϑ)

ln (ϑγ(N) + 1) − ln (ϑγ(N))

⌉
. (4.18)

Since ln(x+1)−ln(x)
ln(ϑ(x+1))−ln(ϑ(x))

> 1 holds, we obtain Ψ(N) > N if we assume ϑ ≥ 1. Moreover,

increasing δ results in an enlarged value Ψ(·) and hence we obtain Ψ(N) > N for (4.17)
as well if ϑ ≥ 1 holds.
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Remark 4.28
In Lemma 4.26, we only assume ϑ > 0. Hence, we can see from (4.17) that a decrease in
the horizon length is possible during the iteration. Within our implementation, however,
we exclude this possibility by allowing for ϑ ≥ 1 only.
Obtaining a suitable approximation of ϑ is probably the most tricky part of this prolonga-
tion method. One possibility to overcome this issue is to solve the problem SDOCPN

for all initial values x ∈ X and all N ≥ N0 and compute the corresponding values
γ(·). Such a method, however, is computationally very demanding. For our implemen-
tation as shown in Algorithm 4.29 below, we iteratively update the value of ϑ by setting

ϑ := max
{
ϑ, γ(N(i+1))

γ(N(i))

}
separately for each step in the receding horizon control procedure,

cf. Steps (2f) and (1) in Algorithm 4.29 respectively. This method is not only computa-
tionally cheap and gives us a lower bound for ϑ, it also moderates a possible overshoot of
the iteration operator Ψ(·) defined in (4.17).
The used lower approximation, however, also leads to a conservativeness of the algorithm
since the fundamental idea of this strategy is based on a priori knowledge of this value.
Yet, from our numerical experience this approximation works well and the values of ϑ stay
fairly small, i.e. upon termination of one call of Algorithm 4.29 we usually have ϑ ∈ [2, 3].
Still, this small change may obstruct the prolongation.

Considering Assumptions 3.19 and 4.7, we construct the following algorithm from Lemma
4.26. Similar to Algorithm 4.23 we add a security parameter σ ∈ N, σ > 1, to avoid
overshoots which may be caused by the conservativeness of the suboptimality estimates,
see also Figure 4.2.

Algorithm 4.29 (A priori Monotone Prolongation Strategy)
Suboptimality guaranteeing approach:
Input: α — Fixed suboptimality bound

N — Length of the horizon
α(N) — Local suboptimality estimate
γ(N) — Characteristic of the problem
σ — Maximal allowable increase in horizon length

(1) Set ϑ := 1

(2) While α(N) < α do

(2a) If α(N) ≥ α − δ holds true

Set δ := α − α(N)

(2b) Compute Ψ(N) according to (4.17)

(2c) Set Nprevious := N and N := min{N + σ, Ψ(N)}

(2d) Compute VN(x(n))

(2e) Compute γ(N) and α(N) by calling Algorithm 3.23

(2f) Set ϑ := max
{
ϑ, γ(N)

γ(Nprevious)

}

(3) Implement uN(x(n), 0) given by (2.14)

(4) Obtain x(n + 1) and set n := n + 1
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Output: α(N) — Local Suboptimality Estimate
N — New length of the horizon
x(n) — New initial value

Last, we show that Algorithm 4.29 terminates in finite time revealing a horizon length N
which guarantees the local suboptimality bound α.

Theorem 4.30 (Monotone Iteration)
Suppose Assumptions 3.19 and 4.7 hold. Then Algorithm 4.29 computes a horizon length
N which guarantees local suboptimality degree α(N) ≥ α.

Proof. Due to the stopping criterion of the while–loop, we always have δ > 0. Hence, by
Remark 4.27, we can conclude that the horizon length N is increasing in every step of
the while–loop due to ϑ ≥ 1. Since Assumption 4.7 guarantees the existence of a finite
horizon length N ∈ N, N < ∞, such that α(N) ≥ α holds for all N ≥ N , Algorithm 4.29
terminates in finite time. Last, α(N) ≥ α is guaranteed by the stopping criterion of the
while–loop.

Note that we do not assume γ(·) in (4.10) to be computed in a specific way but only to
satisfy Assumption 3.19. Hence, our iteration procedure also fulfills our aim of deriving a
horizon length N such that α(N) ≥ α holds if it is based on any characteristic γ̃(·) ≥ γ(·).
In particular, this allows us to use our a priori practical estimates from Theorems 3.34
and 3.39.

4.3.3 Integrating the a posteriori Estimate

The prolongation strategies presented in Algorithms 4.23 and 4.29 are based on the char-
acteristic γ(·). Hence, they are not readily applicable if we want to base them on the a
posteriori estimate of Proposition 3.3 since the value of γ(·) is unknown from the utilized
Lyapunov inequality (3.8).
Yet, given a fixed horizon length N , we know the connecting formula (3.23) relating the
known suboptimality estimate α(N) and the desired characteristic γ(N), that is

α(N) =
(γ(N) + 1)N−N0 − γ(N)N−N0+2

(γ(N) + 1)N−N0
= 1 −

γ(N)N−N0+2

(γ(N) + 1)N−N0
. (4.19)

Now, our first aim is to show that this relation is a bijective mapping:

Lemma 4.31 (Bijectivity)
Given N, N0 ∈ N, N, N0 ≥ 2, the mapping Γ : [0,∞) → (−∞, 1] defined by

Γ(x) := 1 −
xN−N0+2

(x + 1)N−N0
(4.20)

is bijective.

Proof. In order to show bijectivity, we use continuity of Γ(·) on [0,∞) and Γ(0) = 1 and
limx→∞ Γ(x) = −∞ to show surjectivity. In order to obtain injectivity, we show that Γ(·)
is strictly monotone on [0,∞), i.e. for all x ∈ [0,∞) and ε > 0 we have Γ(x) > Γ(x + ε).
Using (4.20) in this last inequality, we have to show

1 −
xN−N0+2

(x + 1)N−N0
> 1 −

(x + ε)N−N0+2

(x + ε + 1)N−N0
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to hold true. This is equivalent to

(x + ε + 1)N−N0

(x + 1)N−N0
<

(x + ε)N−N0+2

xN−N0+2

and reformulating this expression gives us

(
1 +

ε

x + 1

)N−N0

<
(
1 +

ε

x

)N−N0+2

which holds true for x > 0 since N − N0 ≥ 0. Last, considering x = 0, we see that
Γ(ε) < 1 for all ε > 0 and hence the assertion follows.

As a conclusion from Lemma 4.31, we can invert the mapping Γ(·). Back in our subop-
timality estimate context, Lemma 4.31 shows that if a computed suboptimality degree
α(N) is available, then there exists a unique characteristic γ(N). Since the function Γ(·)
is twice continuously differentiable on [0,∞), the nonlinear equation (4.19) can be solved
using Newton’s method, see e.g. [51]. The resulting iteration is given by

γ(k+1)(N) := γ(k)(N) +
1 − α − γ(k)(N)N−N0+2

(γ(k)(N)+1)N−N0

(
γ(k)(N)

γ(k)(N)+1

)N−N0+1

(N − N0 + 2 + 2γ(k)(N))
(4.21)

Remark 4.32
Here, we do not follow the approach to evaluate γ(N) via Algorithm 3.23 since the ad-
ditional computational effort of using Newton’s method is low compared to solving an
optimal control problem required to check Assumption 3.19. Moreover, computing γ(N)
using Algorithm 3.23 gives us a more conservative estimate which renders this approach
impractical.

Remark 4.33
Note that in the context of the a posteriori estimate, we are free to choose N0 ∈ {2, . . . , N}.
However, it is not clear which value should be chosen. On the one hand, we might want
to approximate the smallest possible characteristic γ(N) > 0 by setting N0 := 2 within the
Newton iteration (4.21). On the other hand, formulas (4.11) and (4.17) which are used to
compute the new horizon length logarithmically depend on γ(N). Here, we face the problem
that the logarithmic part of nominator of (4.17) which depends on γ(N) also depends on
−δ/γ(N)2 < 0 which generates a vertical asymptote for N := Ψ(γ(N)). Hence, small
values of γ(N) might lead to drastically overestimate the minimal required horizon length
which guarantees the local suboptimality bound α. Within our implementation we always
consider N0 = 2 and handle the overshoot by setting σ appropriately. Note that using
formula (4.11) we do not face this problem since the logarithmic parts depend on γ(N)
only.

Upon initialization of the Newton method (4.21), we can define γ(0)(N) := 1 or, if we use
it during the run of the receding horizon control algorithm, we can also set γ(0)(N) of the
current iteration to the computed approximation of γ(N) for the last step of the receding
horizon controller.

Remark 4.34
Since we do not expect the characteristic γ(N) to vary massively along the closed–loop,
the reuse of information from previous steps of the receding horizon control algorithm is
convenient. For numerical results concerning the values of γ(·), we refer to Section 8.4.
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In order to use the a posteriori estimate of Proposition 3.3 within Algorithms 4.23 and
4.29, we have to additionally compute VN(x(n+1)), estimate α(N) according to Algorithm
3.8 and approximate γ(N) via the Newton iteration (4.21). This gives us the following:

Algorithm 4.35 (A posteriori Fixed Point Prolongation Strategy)
Suboptimality guaranteeing approach:
Input: α — Fixed suboptimality bound

γ(N) — Characteristic of the problem
α(N) — Local suboptimality estimate
N — Length of the horizon
σ — Maximal allowable change in horizon length

(1) Set δactual := ∞

(2) While α(N) < α do

(2a) Compute γ(N) via the Newton iteration defined in (4.21)

(2b) Compute Φ(N) according to (4.11)

(2c) Set δprevious := δactual and Nprevious := N

(2d) Set N := max{min{N + σ, Φ(N)}, N − σ, N0} and δactual := N − Nprevious

(2e) If δactual > δprevious: Print warning “Iteration may diverge”

(2f) Compute VN(x(n)) and VN (x(n + 1))

(2g) Compute α(N) by calling Algorithm 3.8

(3) Implement uN(x(n), 0) given by (2.14)

(4) Obtain x(n + 1) and set n := n + 1

Output: α(N) — Local suboptimality estimate
N — New length of the horizon
x(n) — New initial value

Algorithm 4.36 (A posteriori Monotone Prolongation Strategy)
Suboptimality guaranteeing approach:
Input: α — Fixed suboptimality bound

N — Length of the horizon
α(N) — Local suboptimality estimate
γ(N) — Characteristic of the problem
σ — Maximal allowable increase in horizon length

(1) Set ϑ := 1

(2) While α(N) < α do

(2a) Compute γ(N) via the Newton iteration defined in (4.21)

(2b) If α(N) ≥ α − δ holds true

Set δ := α − α(N)

(2c) Compute Ψ(N) according to (4.17)

(2d) Set Nprevious := N and N := min{N + σ, Ψ(N)}
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(2e) Compute VN(x(n)) and VN (x(n + 1))

(2f) Compute α(N) by calling Algorithm 3.8

(2g) Set ϑ := max
{
ϑ, γ(N)

γ(Nprevious)

}

(3) Implement uN(x(n), 0) given by (2.14)

(4) Obtain x(n + 1) and set n := n + 1

Output: α(N) — Local Suboptimality Estimate
N — New length of the horizon
x(n) — New initial value

For a comparison of the presented methods we refer to Section 8.5. Yet, we may expect
these methods to show poor performance in the context of sampled–data systems, see
also the discussion at the beginning of Section 3.3. To cover practical stability we next
incorporate our practical suboptimality estimates from Proposition 3.28 and Theorem
3.39 into our adaptation algorithms.

4.4 Extension towards Practical Suboptimality

In this section, we extend Algorithms 4.8 and 4.16 to the practical stability case described
in Section 3.3.

Comparing Propositions 3.3 and 3.28, we see that Algorithm 4.8 can be adapted by
replacing the computation of α(N) via Algorithm 3.8 by a call of Algorithm 3.30. In
particular, this requires us to define a tolerance level ε in (3.27) for the deviation of the
stage cost characterizing the violation area of the relaxed Lyapunov inequality.

Algorithm 4.37 (Adaptive practical horizon length control)
Input: α — Fixed suboptimality bound

ε — Tolerance level
N — Length of the horizon
x(n) — Initial value of the plant

(1) Compute VN(x(n)), VN(x(n + 1))

(2) Compute α(N) by calling Algorithm 3.30

(3) If α(N) > α or l(x(n), µN(x(n))) < ε:

• Shortening Strategy

(4) Else:

• Prolongation Strategy

(5) Goto (1)

Output: α(N) — Local suboptimality estimate
x(·) — Closed–loop trajectory
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Moreover, we can still use the same ideas for shortening and prolongation strategies as in
Section 4.2. From the discussion of Proposition 3.28 we know that on subintervals I the
trajectory behaves “almost” like an infinite horizon optimal one. This allows us to obtain
extensions of Lemma 4.9 and 4.15 for the practical case:

Lemma 4.38
Consider an optimal control problem (2.10), (2.14) with initial value x0 = x(n) and N ∈
N. Moreover, α ∈ [0, 1) is fixed. Consider ε > 0 to be chosen such that there exists an
index i ∈ N0, 0 ≤ i < N such that

min {α (l(xuN
(i, x0), µN−i(xuN

(i, x0))) − ε) , l(xuN
(i, x0), µN−i(xuN

(i, x0))) − ε} ≤

≤ VN−i(xuN
(i, x0)) − VN−i(xuN

(i + 1, x0)) (4.22)

holds true for all 0 ≤ i ≤ i where xuN
(i, x0) is defined by (2.10). Then the first (i + 1)

elements of (2.14) can be implemented with local practical suboptimality degree α.

Lemma 4.39
Consider an optimal control problem (2.10), (2.14) with initial value x0 = x(n) and N ∈
N. Moreover, α ∈ [0, 1) and ε > 0 are supposed to be fixed and Assumption 4.7 to be
satisfied. Then, Algorithm 4.14 with Step (2c) replaced by

(2c’) Compute α(N) by calling Algorithm 3.30
terminates in finite time and computes a horizon length N such that the first element of
the open–loop control (2.14) can be implemented with local practical suboptimality degree
α.

Proof of Lemma 4.38 and 4.39: If l(·, ·) > ε, the result follows directly from Lemma 4.9.
In the other case, there is nothing to show since α(N − i) can be chosen independently
of VN−i(·) and l(·, ·).

Hence, the modification of Algorithms 4.10, 4.11 and 4.14 yield suitable shortening and
prolongation strategies for the practical case if we replace the calls of Algorithm 3.8 by
calls of Algorithm 3.30.

The extension of the modified ARHC algorithm 4.16 which is based on the a priori sub-
optimality estimate from Theorem 3.22 to the practical case can be obtained similarly.
Here, we substitute Algorithm 3.23 by Algorithm 3.40.

Algorithm 4.40 (Adaptive practical horizon length control)
Input: α — Fixed suboptimality bound

ε — Tolerance level
N — Length of the horizon
N0 — Fixed internal length of subproblems
x(n) — Initial value of the plant

(1) Compute VN(x(n))

(2) Compute α(N) by calling Algorithm 3.40

(3) If α(N) > α or l(x(n), µN(x(n))) < ε:

• Shortening Strategy
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(4) Else:

• Prolongation Strategy

(5) Goto (1)

Output: α(N) — Local suboptimality estimate
x(·) — Closed–loop trajectory

In order to shorten or prolongate the optimization horizon, we use the following results:

Lemma 4.41
Consider an optimal control problem (2.10), (2.14) with initial value x0 = x(n) and
N, N0 ∈ N, N ≥ N0 ≥ 2. Moreover, α ∈ [0, 1) is supposed to be fixed inducing γ(·) via
(3.23). If there exists an i ∈ N0, 0 < i < N − N0 − 1 such that there exist γi < γ(N − i)
satisfying

VN0(xuN
(N − N0, x0)) ≤ max

j=2,...,N0

{
l(xuN

(N − j, x0), µj−1(xuN
(N − j, x0))) + ε,

(γi + 1)l(xuN
(N − j, x0), µj−1(xuN

(N − j, x0))) + (γi + 1 − N0γ)ε
}

(4.23)

Vki
(xuN

(N − ki, x0)) ≤ max{l(xuN
(N − ki, x0), µki

(xuN
(N − ki, x0))) + (ki − 1)ε,

(γi + 1)l(xuN
(N − ki, x0), µk(xuN

(N − ki, x0))) + (ki − γi − 1)ε} (4.24)

for all ki ∈ {N0 + 1, . . . , N − i} and all 0 ≤ i ≤ i where xuN
(i, x0) is given by (2.10) with

x0 = x(n), then the first (i+1) elements of (2.14) can be implemented with local practical
suboptimality degree α.

Lemma 4.42
Consider an optimal control problem (2.10), (2.14) with initial value x0 = x(n) and N ∈
N. Moreover, α ∈ [0, 1) and ε > 0 are supposed to be fixed and Assumption 4.7 to be
satisfied. Then, Algorithm 4.21 with Step (2c) replaced by

(2c’) Compute α(N) by calling Algorithm 3.40
terminates in finite time and computes a horizon length N such that the first element of
the open–loop control (2.14) can be implemented with local practical suboptimality degree
α.

Proof of Lemma 4.41 and 4.42. Similar to the proof of Lemma 4.38 and 4.42, we distin-
guish the cases l(·, ·) > ε and l(·, ·) ≤ ε. For the latter one, γi can be chosen freely, hence
the corresponding suboptimality estimate α(N) is equal to one. In the first case, the
result follows directly from Lemma 4.18 which concludes the proof.

Hence, the algorithmical extension to the practical case using the a priori estimate from
Theorem 3.22 reduces to replacing the calls of Algorithm 3.23 by calls of Algorithm 3.40
in Algorithms 4.19, 4.20 and 4.21.
The more sophisticated prolongation strategy presented in Theorem 4.22 relies on inequal-
ity (3.26). In particular, the horizon length is obtained by utilizing inequalities (3.19) and
(3.20) for γ(·) within the iteration procedure. Since in Assumption 3.37 these inequalities
are extended to the practical case leaving the relation (3.26) untouched, we can replace
Step (2f) in Algorithm 4.23 by

(2f’) Compute γ(N) and α(N) by calling Algorithm 3.40
Then the following holds:
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Theorem 4.43. Consider N, N0 ∈ N, N ≥ N0 ≥ 2, and α ∈ [0, 1) to be fixed and γ(N) to
minimally satisfy Assumption 3.37. If for a given n ∈ N0 there exists a constant θ ∈ [0, 1)
such that the function Φ(·) defined in (4.11) satisfies (4.12) and Φk(N) ≥ N0 for all
k ∈ N, then there exists a solution N⋆ ∈ N with N⋆ = Φ(N⋆) and Φk(N) → N⋆, k → ∞.
If additionally Assumption 4.1 holds and N⋆ is used as horizon length for the actual step
of the RHC problem, then the resulting solution exhibits local practical suboptimality degree
α(N⋆) ≥ α.

Proof. Similar to the proof of Theorem 4.22, we obtain Φ(·) from the definition of α(·) in
Theorem 3.22 and the requirement

α ≤ α(N) =
(γ + 1)N−N0 − γN−N0+2

(γ + 1)N−N0
.

Moreover, we obtain existence of the fixed point N⋆ = Φ(N⋆) by arguments of the proof
of Theorem 4.22. Choosing N = N⋆, the local practical suboptimality degree satisfies
α(N) ≥ α by construction of Φ(·). Applying this procedure along the resulting closed–
loop, practical asymptotic stability follows by Assumption 4.1 and Theorem 4.6.

Considering the strategies of Theorem 4.30 in the practical case, there is nothing to show
since this strategy is based on an arbitrary estimate γ(·) satisfying Assumption 3.37.
Hence, we may use Algorithm 3.40 instead of Algorithm 3.23 within the implementation
of Theorem 4.30 in Algorithm 4.29.

Concluding, we have obtained algorithms which reasonably compute a horizon length N
such that the suboptimality bound α holds for the given initial value x(n). Moreover,
checkable sufficient conditions have been derived which are computable online. Still,
minimality of the resulting horizon length N cannot be guaranteed. Within this thesis,
however, we will not perform any further investigation of this issue.



Chapter 5

Numerical Algorithms

In the previous Chapters 2 – 4, we stated the receding horizon controller, analyzed its
stability and suboptimality properties and derived adaptation methods for this type of
controller. In all parts, we assumed that the minimizing open–loop control (2.14) is at
hand. The aim of this chapter is to link the theoretical part of the receding horizon
controller from Chapters 2 – 4 to our implementation and the obtained results presented
in Chapters 6 and 8 respectively.
To this end, we now define the mathematical terms which we require in the implemen-
tation of the receding horizon controller and outline several algorithms. We first state
a discretization technique in Section 5.1 which is not only suitable to convert a possibly
continuous–time optimal control problem into a optimization problem in standard form,
but also fits the needs of a fast receding horizon controller. The fundamental idea of the
discretization technique, however, is closely related to the optimization methods which
we use in our implementation. To show these connections, we present required basics of
nonlinear optimization theory in Section 5.2. In both sections, we establish links to theory
and practice of the receding horizon controller to illustrate interactions of both parts.

5.1 Discretization Technique for RHC

In Section 2.4, we stated the discrete–time receding horizon control problem RHCN to
be of Lagrangian form which suited our analytical purposes in Chapters 3 and 4. Since
within the literature also Bolza type cost functionals are considered, cf. Section 3.4 and
references therein, our implementation also covers this aspect. In particular, we consider
the generalized problem

Find µN(x(k)) := u[0]

ST. u[0,N−1] = argmin
uN∈UN

JN(x(k), uN)

JN(x(k), uN) =
N−1∑

i=0

l (xuN
(i, x(k)), uN(x(k), i))

+F (xuN
(N, x(k)))

xuN
(i + 1, x(k)) = f (xuN

(i, x(k)), uN(x(k), i)) ∀i ∈ Iu

xuN
(0, x(k)) = x(k)

xuN
(i, x(k)) ∈ X ∀i ∈ Ix

uN(xuN
(0, x(k)), i) ∈ U ∀i ∈ Iu

(RHCB
N)
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Note that all our examples stated in Chapter 7 are continuous–time models and therefore
do not meet the discrete–time form of problem RHCB

N. The aim of this section is to state
and motivate the discretization technique used within our implementation PCC2 1 of a
receding horizon controller. Moreover, we show how to transform every problem in the
sequence RHCB

N to meet the standard form of nonlinear optimization

Minimize F (x) over all x ∈ R
n

ST. Gi(x) = 0, i ∈ E

Hi(x) ≥ 0, i ∈ I
(NLP)

which is required by the minimization procedures used within our implementation. The
theoretical issues of nonlinear optimization are treated in the following Section 5.2 whereas
realizations are addressed in Sections 6.2.4 and 6.3 considering discretization and opti-
mization respectively.

Within the receding horizon control setting, we make use of the predefined sampling grid
given by the sampled–data system, see Definition 1.23.

Definition 5.1 (Sampling Grid)
Consider a problem RHCN . Given a sampling instant k in discrete–time and correspond-
ing instant tk in continuous–time, we denote the sampling grid of all sampling instances
of the problem SDOCPN with initial time tk by

Tk := {t0k, t
1
k, . . . , t

N
k } = {tk, tk + T, . . . , tk + NT} (5.1)

with t0k := tk where tk is identified with the k–th closed–loop sampling instant.

Similar to Section 2.4, we define the sets I = {0, . . . , N} and Iu = {0, . . . , N − 1} to be
the superindex sets of the open–loop sampling instants tik from Definition 5.1. Thus, we
can define

xuN
(i + 1, x(k)) := Φ (xuN

(i, x(k)), uN(xuN
(x(k), i)) (5.2)

for all i ∈ Iu where Φ : Rn × Rm → Rn is an operator representing a solution method for
the underlying differential equation (1.3).

The approximation issue, that is the mismatch between the exact discrete–time system
and the numerical approximation, and its effect on stability of the resulting closed–loop
are treated in Section 1.3.3. This allows us to apply the computed control to the con-
sidered plant. In particular, if we can guarantee stability and suboptimality as described
in Chapter 3, then the plant inherits these properties if the requirements on the approx-
imation are satisfied. For details on the solvers which we use to implement the operator
Φ(·, ·) in (5.2), we refer to Section 6.4 and references therein.

For the rest of this chapter, we assume the differential equation to be solved exactly.

1Webpage: http://http://www.nonlinearmpc.com

http://http://www.nonlinearmpc.com
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5.1.1 Full Discretization

Now our aim is to obtain an optimization problem in standard form NLP. The dynamic
(5.2) itself does not meet the standard form for constraints. However, it can be rewritten
as

xuN
(i + 1, x(k)) − Φ (xuN

(i, x(k)), uN(xuN
(x(k), i))) = 0 ∀i ∈ Iu (5.3)

xuN
(0, x(k)) − x(k) = 0 (5.4)

and we obtain a set of equality constraints. Moreover, equation (5.2) allows us to evaluate
the constraints

xuN
(i, x(k)) ∈ X ∀i ∈ Ix

uN(x(k), i) ∈ U ∀i ∈ Iu.

Here, we assume X and U to be characterized by a set of functions gi : Rn × Rm → R,
i ∈ Eg = {0, . . . , rg}, and hi : Rn × Rm → R, i ∈ Ih = {0, . . . , rh} such that

gi(x, u) = 0 ∀i ∈ Eg

hi(x, u) ≥ 0 ∀i ∈ Ih

holds for all feasible points. Evaluating these function at each sampling point, we obtain
the sets of equality and inequality constraints G(·) and H(·),

Gi·(N+1)+j(x) := gi (xuN
(j, x(k)), uN(x(k), j)) ∀i ∈ Eg, j ∈ Ix (5.5)

H i·(N+1)+j(x) := hi (xuN
(j, x(k)), uN(x(k), j)) ∀i ∈ Ih, j ∈ Ix (5.6)

with uN(x(k), N) := 0 ∈ Rm and optimization variable

x :=
(
xuN

(0, x(k))⊤, . . . , xuN
(N, x(k))⊤, uN(x(k), 0)⊤, . . . , uN(x(k), N − 1)⊤

)⊤
(5.7)

The constraint functions G(·) and H(·) are already given in standard form. Now, we can
combine the equality constraints defined in (5.3), (5.4) and (5.5) to obtain

G(x) =




[gi (xuN
(j, x(k)), uN(x(k), j))]i∈Eg ,j∈Ix

[xuN
(i + 1, x(k)) − Φ (xuN

(i, x(k)), uN(xuN
(x(k), i)))]i∈Iu

xuN
(0, x(k)) − x(k)




H(x) =
(

[hi (xuN
(j, x(k)), uN(x(k), j))]i∈Ih,j∈Ix

)

and the corresponding sets E and I, i.e.

E = {0, . . . , (rg + n) · (N + 1)} and I = {0, . . . , rh · (N + 1)}.

Using the optimization variable (5.7) allows us to rewrite the cost function

F (x) := JN (x(k), uN). (5.8)

Hence, we can combine the cost function (5.8) and the constraints (5.3), (5.4), (5.5), (5.6)
to obtain a discretized optimal control problem in standard form NLP.

Definition 5.2 (Fully discretized Optimal Control Problem)
Consider a single optimal control problem of the sequence RHCB

N. The corresponding
nonlinear optimization problem in standard form NLP given by
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Minimize F (x) over all x ∈ R
n·(N+1)+m·N

ST. Gi(x) = 0, i ∈ E

Hi(x) ≥ 0, i ∈ I

where

x =
(
xuN

(0, x(k))⊤, . . . , xuN
(N, x(k))⊤, uN(x(k), 0)⊤, . . . , uN(x(k), N − 1)⊤

)⊤

F (x) = JN(x(k), uN)

G(x) =




[gi (xuN
(j, x(k)), uN(x(k), j))]i∈Eg,j∈Ix

[xuN
(i + 1, x(k)) − Φ (xuN

(i, x(k)), uN(xuN
(x(k), i)))]i∈Iu

xuN
(0, x(k)) − x(k)




H(x) =
(

[hi (xuN
(j, x(k)), uN(x(k), j))]i∈Ih,j∈Ix

)

E = {0, . . . , (rg + n) · (N + 1)}

I = {0, . . . , rh · (N + 1)}

is called fully discretized optimal control problem.

Note that there are (n · (N +1)+m ·N) optimization variables and ((rg +rh +n) · (N +1))
constraint functions which renders the optimization problem to be quite large. Hence,
every step of our receding horizon problem is difficult to solve in real–time, that is starting
the optimization at time instant tk, the result must be computed latest at time instant of
implementation tk+j for a fixed j ≥ 1.

5.1.2 Recursive Discretization

As we will see in the following Section 5.2, the main computational cost within every step
of the receding horizon control problem is caused by the calculation of the Jacobian of
the constraints. Here, the combined vectors G(·) and H(·) have to be differentiated with
respect to the optimization variable. Since the constraints gi(·, ·) and hi(·, ·) are given by
the plant model, we cannot influence their quantity. Hence, we focus on analyzing the
optimization variable and the dynamic of the system to reduce the arising computational
effort.

Remark 5.3
Not all constraints within the combined vectors G(·) and H(·) have to be considered for the
optimization since in most cases only a few of them are “active”, cf. Definitions 5.14 and
5.22. This allows us to circumvent recomputing all derivatives in every step, see Section
5.2.3. In particular, the implemented optimization routines use the so called BFGS update
formula to reduce the computational effort even further, see Section 5.2.4.4 for details.

Here, we exploit the fact that — due to implementation reasons of the sampled–data
setting, cf. Definition 1.23 — equations (5.3), (5.4) are always satisfied. Hence, the set of
equality constraints can be reduced to

G(x) =
(

[gi (xuN
(j, x(k)), uN(x(k), j))]i∈Eg,j∈Ix

)
(5.9)

and E = {0, . . . , rg · (N + 1)}. Moreover, in every iterate of the receding horizon control
scheme, the state trajectory (5.2) only depends on the given initial value x(k) and the
control sequence uN(x(k), ·) ∈ UIu only. In particular, the values xuN

(·, x(k)) can only be



5.1 Discretization Technique for RHC 103

changed by modifying the control sequence uN(x(k), ·). This allows us to outsource the
dynamic of the system from the optimization and solve the underlying continuous–time
control system (1.3) in a parallel manner. As a result, the optimization variable is reduced
to

x :=
(
uN(x(k), 0)⊤, . . . , uN(x(k), N − 1)⊤

)⊤
(5.10)

Hence, we obtain the following smaller optimization problem:

Definition 5.4 (Recursively discretized Optimal Control Problem)
Consider a single optimal control problem of the sequence RHCB

N. The corresponding
nonlinear optimization problem in standard form NLP given by

Minimize F (x) over all x ∈ R
m·N

ST. Gi(x) = 0, i ∈ E

Hi(x) ≥ 0, i ∈ I

where

x =
(
uN(x(k), 0)⊤, . . . , uN(x(k), N − 1)⊤

)⊤

F (x) = JN(x(k), uN)

G(x) =
(

[gi (xuN
(j, x(k)), uN(x(k), j))]i∈Eg,j∈Ix

)

H(x) =
(

[hi (xuN
(j, x(k)), uN(x(k), j))]i∈Ih,j∈Ix

)

E = {0, . . . , rg · (N + 1)}

I = {0, . . . , rh · (N + 1)}

is called recursively discretized optimal control problem.

As a result, the dimension of the optimization variable is reduced from (n ·(N +1)+m ·N)
to (m ·N) and the number of constraints from ((rg +rh+n) ·(N +1)) to ((rg +rh) ·(N +1).
Hence, we expect this problem to be solved faster than the fully discretized optimal control
problem from Definition 5.2.

5.1.3 Multiple Shooting Method for RHC

Another aspect of a discretization of a receding horizon control problem is the availability
of a target information, i.e. the equilibrium x⋆ or the tracking signal xref(·) which shall
be stabilized is known in advance. This information can be utilized to speed up the opti-
mization routine and even shorten the optimization horizon by adding multiple shooting
nodes to the problem, see Section 8.3.4 for numerical results.
Here, a multiple shooting node is a state value at a fixed sampling instant which can be
set arbitrarily and acts as an additional control value.

Definition 5.5 (Multiple Shooting Node)
Consider the optimal control problem of the sequence RHCB

N corresponding to the initial
sampling instant k. We call the i-th element of the state vector xuN

(j, x(k)) at a fixed
sampling instant j a multiple shooting node if this part of the state vector is added as
an optimization variable. The vector of multiple shooting nodes is denoted by sx :=
(x1, . . . , xs) where xi corresponds to the i-th multiple shooting node. Moreover, the
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functions ς : {1, . . . , s} → {1, . . . , N} and ι : {1, . . . , s} → {1, . . . , n} which identify the
indices of the multiple shooting nodes and the vector of shooting nodes via

xuN
(ς(i), x(k))ι(i) = xi (5.11)

are refered to as shooting index functions.

Remark 5.6
In our implementation, the notation for positions in the time grid ti and the number of the
shooting horizon index σ(·) differ by one. This is due to an efficient memory allocation
and the fact that the first position in the time grid corresponds to the initial value which
is fixed by definition of the receding horizon control problem. Hence, no shooting node can
be set for this time instant and the shooting horizon index zero corresponds to t1 in the
time grid.
Moreover, it does not make sense to define the last state vector to be a shooting node since
no further control will be applied to this vector. Hence, setting a shooting node to this
time instant would only increase the required computing times and is therefore not allowed
in our implementation.

Using multiple shooting nodes we may improve the initial guess of the optimization vector,
i.e. by presetting this value to the target value x⋆ or xref(j), see Figure 5.1 for a schematic
representation and Section 8.3.4 for numerical results.

xref(·)

Optimization Horizon

x0

Figure 5.1: Resulting trajectories for initial guess u using no multiple shooting nodes
(black), one shooting node (red) and three shooting nodes (blue)

Clearly, the initial guess reveals a trajectory which is closer to the optimum. This, in
turn, eases the optimization.
Yet, if we introduce such a multiple shooting node into the recursively discretized optimal
control problem from Definition 5.4, we cannot guarantee equations (5.3) to hold auto-
matically. Hence, we have to add those equations which are affected by adding multiple
shooting nodes, that is

[
xi − Φ (xuN

(ς(i) − 1, x(k)), uN(xuN
(x(k), ς(i) − 1)))ι(i) = 0

]

i∈{1,...,s}
(5.12)

to the equality constraint function G(·). Moreover, we have to extend our optimization
variable (5.10) by the vector of multiple shooting nodes sx to enable the optimization
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routine to deal with the additional constraints (5.12). As a result, we obtain the following
optimization problem:

Definition 5.7 (Recursively discretized Optimal Control Problem with Shooting Nodes)
Consider a single optimal control problem of the sequence RHCB

N. The corresponding
nonlinear optimization problem in standard form NLP given by

Minimize F (x) over all x ∈ R
m·N+s

ST. Gi(x) = 0, i ∈ E

Hi(x) ≥ 0, i ∈ I

where

x =
(
uN(x(k), 0)⊤, . . . , uN(x(k), N − 1)⊤, s⊤x

)⊤

F (x) = JN(x(k), uN)

G(x) =




[gi (xuN
(j, x(k)), uN(x(k), j))]i∈Eg ,j∈Ix[

xi − Φ (xuN
(ς(i) − 1, x(k)), uN(xuN

(x(k), ς(i) − 1)))ι(i)

]

i∈{1,...,s}




H(x) =
(

[hi (xuN
(j, x(k)), uN(x(k), j))]i∈Ih,j∈Ix

)

E = {0, . . . , rg · (N + 1) + s}

I = {0, . . . , rh · (N + 1)}

is called recursively discretized optimal control problem with multiple shooting nodes.

The possible improvement of the initial guess of the optimization vector induces addi-
tional s optimization variables and constraints compared to the optimization problem of
Definition 5.4. Thus, a decrease in the computing time cannot be guaranteed but the
numerical problem may become easier.

Remark 5.8
Note that the technique of using multiple shooting nodes within a recursively discretized
optimal control problem represents a mixture of both full and recursive discretization.
In particular, the full discretization can be obtained if the state values for all sampling
instants and all state dimensions are considered as multiple shooting nodes.

Remark 5.9
As mentioned before, the use of multiple shooting nodes may allow us to shorten the
optimization horizon N , see also Section 8.3.4, which may compensate for the additional
control variables and constraints. Still, a balance between improving the initial guess of
the control and the number of multiple shooting points needs to be found.

Remark 5.10
Within the receding horizon control setting, we usually consider the positions of the mul-
tiple shooting nodes to be fixed in a single optimal control problem of the sequence RHCB

N.
Yet, the number of nodes as well as the index function ς(·) and ι(·) may vary, see Sections
6.1.1.2 and 6.2.4 for the function definition and the discretization respectively.
Background for such an adaptation may be that information about the previous optimal
control can be used to improve the first initial guess of the actual optimization problem,
see Remark 5.9 and Section 8.3.3 which may be unnecessary for consecutive problems.
Hence, the number of shooting points should be reconsidered in every step of the receding
horizon control problem.
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5.2 Optimization Technique for RHC

In Section 2.4 we saw that in every single step of the RHC algorithm a finite optimal
control problem has to be solved to obtain the minimizing control sequence. Using one
of the disretization techniques stated in the previous Section 5.1, we obtain a nonlinear
optimization problem. Within this section, we treat the general problem of minimizing a
nonlinear objective function F (·) subject to nonlinear equality and inequality constraints
G(·) and H(·), that is we consider the problem

Minimize F (x) over all x ∈ R
n

ST. Gi(x) = 0, i ∈ E

Hi(x) ≥ 0, i ∈ I

(NLP)

where x is an n–dimensional parameter vector. Similar to Section 5.1 we denote the index
sets of G(·) and H(·) by E and I respectively.

One of the most effective methods for solving nonlinearly constrained optimization prob-
lems is the so called sequential quadratic programming approach (SQP) which iteratively
solves the problem by generating quadratic subproblems.
This approach is mainly used in two different frameworks, the trust–region or the line
search variant, and is appropriate for small and large problems. In particular, SQP
methods show their strength if one wants to solve problems with significant nonlinearities
in the constraints.

Remark 5.11
Another well known approach to solve the problem NLP are so called interior point meth-
ods. Although our implementation contains a wrapper of the interior point method IpOpt2,
we do not present any details here since this part of the implementation has not been tested
extensively yet and first results showed poor performance in terms of the computing time.
For these reasons, we focus on the implemented SQP methods NLPQLP3 and e04wdc4, see
also Section 6.2 for details on the integration of these methods in our receding horizon
controller.

In this chapter we show how SQP methods work in general whereas details on the used
implementations and their differences are described in Section 6.3.
There are two types of SQP methods. In the IQP approach, a general inequality–
constrained quadratic program is solved at each iteration, with the twin goals of comput-
ing a step and generating an estimate of the optimal active set. EQP methods, however,
decouple these computations. They first compute an estimate of the optimal active set
and then solve an equality–constrained quadratic program to find the step.

The idea behind the SQP approach is to solve the problem NLP iteratively by

(1) approximating the problem at the current iterate x(k) using a quadratic program-
ming subproblem and then

(2) use the minimizer of this subproblem to define a new iterate x(k+1).

2Webpage: https://projects.coin-or.org/Ipopt
3Webpage: http://www.math.uni-bayreuth.de/~kschittkowski/nlpqlp.htm
4Webpage: http://www.nag.co.uk

https://projects.coin-or.org/Ipopt
http://www.math.uni-bayreuth.de/~kschittkowski/nlpqlp.htm
http://www.nag.co.uk
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The first challenge here is to design a quadratic subproblem

Minimize f1(x
(k)) + f2(x

(k))⊤d(k) +
1

2
d(k)⊤f3(x

(k))d(k) over all d(k) ∈ R
n

ST. f4(x
(k))⊤d(k) + f5(x

(k)) ≥ 0
(QP)

which offers a good search direction d(k) ∈ R
n for the nonlinear optimization problem. In

particular, we have to suitably define the functions f1 : Rn → R, f2 : Rn → Rn and f3 :
Rn → Rn×n characterizing the cost criterion and the constraint functions f4 : Rn → Rp×n

and f5 : Rn → Rp where p is the number of equality and inequality constraints.

5.2.1 Analytical Background

We derive the subproblem QP using the first order necessary conditions for NLP, the
so called Karush–Kuhn–Tucker (KKT) conditions. To this end, we require some basic
definitions from optimization theory. In particular, we only worry about points satisfying
all constraints, the so called feasible points.

Definition 5.12 (Feasible Points)
We call a point x ∈ Rn feasible if Gi(x) = 0 holds for all i ∈ E and Hi(x) ≥ 0 for all i ∈ I.
The set X = {x ∈ Rn | x is feasible} is called feasible set.

These feasible points form a subset in Rn and we are interested in minimizers of the
function F (·) over this set.

Definition 5.13 (Minimizer)
Consider a feasible point x⋆ ∈ Rn. Then we call x⋆

(1) local minimizer if there exists a neighborhood N (x⋆) ⊂ Rn such that F (x⋆) ≤ F (x)
holds for all x ∈ X ∩ N .

(2) strong local minimizer if there exists a neighborhood N (x⋆) ⊂ Rn such that F (x⋆) <
F (x) holds for all x ∈ X ∩N , x 6= x⋆.

(3) global minimizer if F (x⋆) ≤ F (x) holds for all x ∈ X .

(4) strong global minimizer if F (x⋆) < F (x) holds for all x ∈ X , x 6= x⋆.

Moreover, we need to distinguish between inequality constraints which are satisfied with
equality, i.e. which are tight or active, and those allowing for further relaxation.

Definition 5.14 (Active Set)
The active set A(x) at any feasible point x consists of the equality constraint indices from
E together with the indices of the inequality constraints i ∈ I where Hi(x) = 0 holds,
that is

A(x) := E ∪ {i ∈ I | Hi(x) = 0} . (5.13)
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Remark 5.15
For simplicity of exposition, we assume that indices within the active set A(x) represent
exactly one constraint. For example, this can be acchieved by sorting the indices: If p1

and p2 are the number of constraints of the sets E(x) and I(x) respectively, then the first
p1 indices within the set A(x) can be identified with the p1 indices of set E . Thereafter,
the indices p1 + i with i ∈ {j ∈ I(x) | Hj(x) = 0} are contained in the set A(x). Note
that this is also the numbering of constraints within the used SQP implementations, see
also Section 6.3.

Before stating the KKT conditions we introduce a constraint qualification. Conditions
like this are often used in the design of algorithms to guarantee that the linearized ap-
proximation to the feasible set captures the essential shape of X .

Definition 5.16 (Constraint Qualifications)
Consider a feasible point x and the active set A(x). If F (·), G(·) and H(·) are continuously
differentiable and

(1) the elements of the gradient set

[∇xGi(x)]i∈A(x) (5.14)

are linearly independent and there exists a v ∈ Rp \ {0} such that

∇xGi(x)v = 0 (5.15)

∇xHi(x)v > 0 (5.16)

holds for all i ∈ A(x), then we call x regular.

(2) the elements of the gradient set

[∇xGi(x)]i∈A(x) ∪ [∇xHi(x)]i∈A(x) (5.17)

are linearly independent we call x normal or strongly regular.

Condition (1) of Definition 5.16 is also called Mangasarian–Fromowitz condition (MFCQ),
see [151], while (2) is referred to as linear independence constraint qualification (LICQ),
cf. [175]. There also exist other constraint qualifications such as the Slater condition, see,
e.g., [77,196]. The proposed conditions, however, can be more easily checked analytically
and numerically. In the following we assume the stated LICQ condition to hold.
Moreover, we introduce the Lagrangian of the problem NLP which represents the energy
of the system regarding the present constraints.

Definition 5.17 (Lagrangian)
Consider x ∈ Rn and λ ∈ Rp. The function L : Rn × Rp → R,

L(x, λ) := F (x) − λ⊤

( [
Gi(x)

]
i∈E(x)[

Hi(x)
]
i∈I(x)

)
. (5.18)

is called Lagrangian of the nonlinear optimization problem NLP. The components of λ
are called the Lagrange multipliers.

Now we are ready to state the first order necessary conditions for a local minimum of
the problem NLP shown, e.g., in [64, 80, 175]. These conditions are also the basis of the
algorithm which we present to solve the problem NLP.
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Theorem 5.18 (KKT — 1st Order Necessary Conditions)
Consider x⋆ ∈ Rn to be a local minimizer of NLP. If x⋆ is regular, then there exists a
Lagrange multiplier vector λ⋆ with components λ⋆

i , i ∈ E ∪ I, such that the conditions

∇xL(x⋆, λ⋆) = 0, (5.19)

Gi(x
⋆) = 0, ∀i ∈ E , (5.20)

Hi(x
⋆) ≥ 0, ∀i ∈ I, (5.21)

λ⋆
i ≥ 0, ∀i ∈ I, (5.22)

λ⋆
i Hi(x

⋆) = 0, ∀i ∈ I. (5.23)

are satisfied at (x⋆, λ⋆). Moreover, the multiplier vector λ⋆ is unique if x⋆ is normal.

Geometrically speaking, if for x⋆ the set of active contraints A(x⋆) is the empty set, then
the standard results for unconstrained problems can be applied. If, however, there exists
at least one active constraint, then for any point satisfying the equality and inequality
constraints any small deviation such that the point is still feasible causes a raise in the
cost function, i.e. the gradient of the Lagrangian is a negative linear combination of the
outward normal vectors of the active constraints.
Yet, the KKT conditions are not sufficient to check whether a candidate x⋆ is a local
minimizer.

Definition 5.19 (Critical Points)
Points x⋆ satisfying the KKT conditions for a Lagrange multiplier λ are called critical or
KKT point.

In order to see if a critical point actually is a local minimizer, sufficient conditions have to
be checked. Within numerical optimization second order conditions have become standard
but require the function to be at least twice differentiable. Here, we concentrate on this
standard case which is shown, e.g., in [64, 80, 175]. First order sufficient conditions, see
e.g. [114, 156], are not considered in the following.

Theorem 5.20 (2nd Order Conditions)
Consider a feasible, normal point x⋆ ∈ Rn. Moreover, F (·), G(·) and H(·) are twice
continuously differentiable in a neighborhood N (x⋆). We define the cone

C(x⋆) :=





∇xHi(x
⋆)v ≤ 0, i ∈ A(x⋆), if λi = 0

v ∈ Rn ∇xHi(x
⋆)v = 0, i ∈ A(x⋆), if λi > 0

∇xGi(x
⋆)v = 0, i ∈ A(x⋆)



 . (5.24)

(1) Consider a local minimizer x⋆ of problem NLP. Then there exists a unique Lagrange
multiplier vector λ ∈ R

p satisfying

λi ≥ 0, ∀i ∈ A(x⋆) ∩ I and λi = 0, ∀i 6∈ A(x⋆) (5.25)

∇xL(x⋆, λ) = 0, (5.26)

vT∇2
xxL(x⋆, λ)v ≥ 0, ∀v ∈ C(x⋆)\{0}. (5.27)

(2) Consider a Lagrange multiplier vector λ ∈ Rp such that the conditions

λi ≥ 0, ∀i ∈ A(x⋆) ∩ I and λi = 0, ∀i 6∈ A(x⋆) (5.28)

∇xL(x⋆, λ) = 0, (5.29)

vT∇2
xL(x⋆, λ)v > 0, ∀v ∈ C(x⋆)\{0} (5.30)
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hold. Then there exist constants c, ǫ ∈ R, c > 0 and ǫ > 0 such that the inequality

F (x) ≥ F (x⋆) + c‖x − x⋆‖2 (5.31)

holds for x ∈ C(x⋆) where ‖x − x⋆‖ ≤ ǫ.

(3) Consider a Lagrange multiplier vector λ ∈ Rp such that (5.28) — (5.30) and the
strict complementarity condition hold, i.e.

λi > 0 ∀i ∈ A(x⋆) ∩ I. (5.32)

Then the assertion of (2) holds true and the representation of C(x⋆) reduces to

C(x⋆) = Ker ({∇xGi(x
⋆) | i ∈ A(x⋆)} ∪ {∇xHi(x

⋆) | i ∈ A(x⋆)}) .

Remark 5.21
The second order sufficient conditions may be used to analyze the sensitivity of optimal
solutions regarding disturbances. Yet, for the RHC setting this requires a large amount of
data which has to be saved and would result in an improvement of the already closed–loop
nature of the RHC feedback only if the time instant of computation and implementation
are not identical and if measurement errors occured in the meantime.

Geometrically, we obtain a quadratically increasing lower bound in the Lagrangian and the
cost function from Theorem 5.20(2) for all neighbouring points of a candidate x⋆ within
the cone C(x⋆) which is sufficient for a local minimizer. Theorem 5.20(3) additionally
states that a relaxation of any active inequality constraint leads to a further decrease
of the cost function. The reduction is characterized by the Lagrange multiplier vector
λ which can be interpreted as the shadow price of the corresponding constraints. Since
the Lagrange multipliers of all inactive constraints are zero, it also motivates local search
algorithms which consider active constraints only.

Definition 5.22 (Active Constraints)
Consider x⋆ to be feasible and A(x⋆) to be the active set. Then we call

A(x⋆) :=

(
(Gi)i∈A(x⋆)

(Hi)i∈A(x⋆)

)
(5.33)

the set or vector of active constraints and nA = ♯A(x⋆) the number or dimension of active
constraints. Moreover, we denote the corresponding Lagrange multiplier vector by λA.

The active set allows us to simplify the feasible cone.

Lemma 5.23
If x⋆ is a normal optimal solution, then the cone C(x⋆) is given by

C(x⋆) = Ker (∇xA(x⋆)) . (5.34)

Proof. The assertion follows directly from the normality property and the definition of
C(·) in (5.24).

Due to the constraint of the positive definiteness of the Hessian of the Lagrangian on the
cone C(x⋆) and due to the usually high dimension of the nonlinear optimization problem,
the sufficient conditions stated in Theorem 5.20 cannot be checked without further ado.
Here, we show how these conditions can be verified numerically. To this end, we need
some technical results:
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Definition 5.24 (Kernel of the Jacobian)
Consider a matrix H ∈ Rn×n−nA such that its columns are an orthogonal basis of
Ker (∇xA(x⋆)), i.e.

∇xA(x⋆)H = 0. (5.35)

Then we call H the kernel of the Jacobian of the active constraints.

Lemma 5.25
If x⋆ is normal then we have

rank(∇xA(x⋆)) = nA. (5.36)

Proof. The assertion is a direct conclusion of the normality of x⋆.

Lemma 5.26
If H is the kernel of the Jacobian of the active constraints and x⋆ is normal, then H has
full column rank, that is

rank(H) = n − nA. (5.37)

Proof. Since x⋆ is normal we have rank(∇xA(x⋆)) = nA and the assertion follows by the
definition of H .

Lemma 5.27
If H is the kernel of the Jacobian of the active constraints and v ∈ Ker(∇xA(x⋆)) where
x⋆ is normal, then there exists a vector w ∈ Rn−nA such that

v = Hw. (5.38)

Proof. Follows directly from Definition 5.24 and Lemma 5.26.

Definition 5.28 (Projected Hessian)
Consider H to be the kernel of the Jacobian of the active constraints, x⋆ to be normal
and let ∇2

xxL(x⋆, λ⋆) denote the Hessian of the Lagrangian. Then we define the projected
Hessian or reduced Hessian of the Lagrangian as

∇2
xxL

p(x⋆, λ⋆) := H⊤∇2
xxL(x⋆, λ⋆)H. (5.39)

Now we can reformulate the sufficient condition (5.30) of Theorem 5.20.

Theorem 5.29 (2nd Order Sufficient Conditions)
Consider ∇2

xxL
p(x⋆, λ⋆) to be the projected Hessian of the Lagrangian and x⋆ to be normal.

Then condition (5.30) is equivalent to

w⊤∇2
xxL

p(x⋆, λ⋆)w > 0 (5.40)

to hold for all w ∈ Rn−nA \ {0}.

Proof. The equivalence is clear from Lemma 5.23 and the definition of the projected
Hessian.
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Using Theorem 5.29, the verification of (5.30) is reduced to a check on positivity of the
smallest eigenvalue of ∇2

xxL(x⋆, λ⋆) provided H is known. To compute the missing matrix
H , we need another technical lemma.

Lemma 5.30
If x⋆ is normal then there exists a RQ decomposition where R ∈ RnA×n is triangular and
has full row rank and Q ∈ R

n×n is orthogonal, that is

∇xA(x⋆) = RQ. (5.41)

Proof. Clear since rank(∇xA(x⋆)) = nA.

Lemma 5.31
Consider x⋆ to be normal and R, Q as in Lemma 5.30. Then R and Q can be partitioned
such that

R = [R1 | 0], Q =

[
Q1

Q2

]
. (5.42)

Moreover, we can define

H := Q⊤
2 (5.43)

as the kernel of the Jacobian of the active constraints.

Proof. The existence of the partition matrices is clear by dimension arguments and Lemma
5.30. Moreover, we have

∇xA(x⋆)H = RQQ⊤
2 = R

[
Q1

Q2

]
Q⊤

2 = [R1 | 0]

[
0
Id

]
= 0

which shows the assertion.

Note that the matrices Q1 and R1 are uniquely defined which is not true for Q2. However,
due to similarity of the projected Hessian to various bases of the kernel of the Jacobian of
the constraints ker(∇xA(x⋆)) the eigenvalues of ∇xxL

p(x⋆, λ) stay unchanged in (5.39).

5.2.2 Basic SQP Algorithm for Equality Constrained Problems

In order to derive an algorithm to solve the problem NLP, we first consider the simpler
equality constrained problem

Minimize F (x) over all x ∈ R
n

ST. Ai(x) = 0, i ∈ A(x)
(ECNLP)

of NLP where A(·) and A(·) denote the active set and vector of active constraints according
to Definitions 5.14 and 5.22 respectively. Moreover, we assume F (·), G(·) and H(·) to be
twice continuously differentiable.
The KKT conditions for this problem are

M(x, λA) :=

(
∇xL(x, λA)

A(x)

)
= 0. (5.44)
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This is a standard problem for nonlinear equation system solver. If we apply Newton’s
method to this problem, see e.g. [51], then the resulting iteration is given by

(
x(k+1)

λA(k+1)

)
=

(
x(k)

λA(k)

)
−
(
∇x,λAM(x(k), λA(k)

)
)−1

(
∇xL(x(k), λA(k)

)
A(x(k))

)
. (5.45)

Hence, if sufficient conditions for locally quadratic convergence of the resulting sequence
are fulfilled, we are able to numerically compute a solution of the problem ECNLP,
see [51, 213] for a convergence analysis. Since we assumed F (·), G(·) and H(·) to be
twice continuously differentiable, we only have to check whether the Jacobian of (5.44) is
invertible.

Theorem 5.32 (Regularity)
Consider x⋆ to be normal and a minimizer of F (·). Moreover, assume x⋆ to satisfy the
sufficient conditions from Theorem 5.20. Then the matrix

A0 :=

[
∇2

xxL(x⋆, λ⋆) ∇xA(x⋆)⊤

∇xA(x⋆) 0

]
(5.46)

is regular.

Proof. Consider (v, w) ∈ Rn+nA such that A0(v
⊤, w⊤)⊤ = 0. Then, we obtain

(v⊤, 0)A0

(
v
w

)
= (v⊤∇2

xxL(x⋆, λ⋆), v⊤∇xA(x⋆)⊤)

(
v
w

)
= v⊤∇2

xxL(x⋆, λ⋆)v = 0

since v⊤∇xA(x⋆)⊤ = 0. Due to the positive definiteness of ∇2
xxL(x⋆, λ⋆) on the kernel

of the Jacobian of the active constraints in Theorem 5.20, see Theorem 5.29, we have
v = 0. Hence, we see that A0(v

⊤, w⊤)⊤ = 0 and ∇xA(x⋆)⊤w = 0 are equivalent and
obtain w = 0 since ∇xA(x⋆) has rank nA due to the normality of x⋆. Concluding, we have
A0(v

⊤, w⊤)⊤ = 0 if and only if (v, w) = (0, 0) and the assertion follows.

Instead of Newton’s iteration we can derive an iterative method for solving the problem
NLP differently. To this end, we replace the cost function in problem ECNLP by its
Lagrangian and approximate it by an equality constraint quadratic program (ECQP). In
particular, we use a quadratic approximation of the cost function F (·) and linearize the
active constraints A(·).

Minimize F (x(k)) + ∇xF (x(k))⊤d(k) +
1

2
d(k)⊤∇2

xxL(x(k), λA(k)

)d(k) over all d(k) ∈ R
n

ST. Ai(x
(k)) + ∇xAi(x

(k))⊤d(k) = 0, i ∈ A(x(k)) (ECQP)

Note that we can replace ∇xF (x(k))⊤d(k) by ∇xL
p(x(k), λA(k)

)⊤d(k) since the linearization
of the equality constraints makes these two choices equivalent.
Now we can utilize the necessary and sufficient conditions from Theorems 5.18 and 5.20
respectively to obtain a basic SQP algorithm.

Lemma 5.33
If λ(k) denotes the Lagrange multipliers corresponding to the optimal solution d(k) of
ECQP, then we have

∇2
xxL(x(k), λ(k))d(k) + ∇xF (x(k)) = −

(
λA(k)

)⊤
∇xA(x(k)). (5.47)
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Proof. Direct conclusion of Theorem 5.18.

Lemma 5.34
Consider x⋆ to be a normal optimal solution of problem ECNLP. Moreover, assume the
actual iterate x(k) to be close to the optimum x⋆ and λA(k)

, d(k) as in Lemma 5.33. Then

x(k) ≈ x⋆ − d(k) (5.48)

λA(k)

≈ λ⋆ (5.49)

can be used as approximations of (x⋆, λ⋆).

Proof. The assertion follows directly from the construction of ECQP as a local Taylor
expansion in a neighborhood of the optimal solution.

Lemma 5.35
Given an iterate x(k), then the corresponding Lagrange multiplier λA(k)

and the search
direction d(k) fulfill the linear equation system

[
∇2

xxL(x(k), λA(k)
)
(
∇xA(x(k))

)⊤

∇xA(x(k)) 0

](
d(k)

λA(k)

)
+

(
∇xF (x(k))
A(x(k))

)
= 0. (5.50)

Proof. The resulting linear equation system is a combination of the linearized constraints
of problem ECQP and (5.47).

Lemma 5.36
Consider x⋆ to be normal and a minimizer of F (·). Moreover, assume x⋆ to satisfy the
sufficient conditions from Theorem 5.20. Then there exists a neighborhood N of x⋆ such
that there exists a unique solution of (5.50).

Proof. Given x⋆ to be a normal minimizer of F (·), the matrix A0 is invertible as shown
in Theorem 5.32 and the assertion follows.

The resulting iterate (d(k), λA(k)
) can therefore be calculated either as solution of problem

ECQP or as iterate generated by Newton’s method applied to the optimality conditions
of problem ECNLP. The sequence of solution iterates of the problem ECQP defines the
socalled SQP framework. While Newton’s method is useful for the convergence analysis,
practical algorithms and extensions to the inequality constrained case NLP can be de-
rived using SQP. In particular, SQP methods avoid computing the Hessian of the cost
function and utilize update techniques instead, see Section 5.2.4.4, which makes them
computationally advantageous.
The simplest form of an SQP algorithm, the so called EQP algorithm, is motivated by
Lemma 5.35.

Algorithm 5.37 (Basic local EQP Algorithm)
Input: (x(0), λ(0)) — Pair of initial values

(1) Set k := 0

(2) While convergence test is not satisfied

(2a) Compute F (x(k)), ∇xF (x(k)), ∇2
xxL(x(k), λ(k)), ∇xA(x(k)) and A(x(k))

(2b) Solve ECQP via (5.50) to obtain d(k) and λA(k)

(2c) Set x(k+1) := x(k) + d(k)

(2d) Set k := k + 1
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Output: (x(k), λ(k)) — Locally optimal pair

The quadratic problems ECQP are by now well known and there exists a wide variety of
algorithms to solve these problems. Among them are direct approaches such as Gaussian
elimination as shown e.g. in [51, 213] or symmetric indefinite factorization, cf. [34, 84],
the Schur complement method and the null–space method as stated e.g. [79] and [10,
82] respectively as well as iterative methods, i.e. preconditioned conjugate gradient or
projected conjugate gradient algorithms, see e.g. [14, 86,201].
Since the optimization problem resulting from the discretization of optimal control prob-
lem within the receding horizon control problem possibly contains inequality constraints
as well, our next aim is to incorporate this aspect in the SQP framework.

5.2.3 Extension to Inequality Constrained Problems

If we consider inequality constraints in Algorithm 5.37, this leads to the so called IQP
algorithms. These methods differ only in treating quadratic subproblems instead of the
entire problem which is why we generalize the problem ECQP to QP

Minimize F (x(k)) + ∇xF (x(k))⊤d(k) +
1

2
d(k)⊤∇2

xxL(x(k), λ(k))d(k) over all d(k) ∈ R
n

ST. Gi(x
(k)) + ∇xGi(x

(k))⊤d(k) = 0, i ∈ E

Hi(x
(k)) + ∇xHi(x

(k))⊤d(k) ≥ 0, i ∈ I

(QP)

The SQP algorithm can then be rewritten by exchanging the call for solving the ECQP
problem by computing the solution of the problem QP:

Algorithm 5.38 (Basic Local IQP Algorithm)
Input: (x(0), λ(0)) — Pair of initial values

(1) Set k := 0

(2) While convergence test is not satisfied

(2a) Compute F (x(k)), ∇xF (x(k)), ∇2
xxL(x(k), λ(k)), ∇xG(x(k)), G(x(k)), ∇xH(x(k))

and H(x(k))

(2b) Solve QP to obtain d(k) and λ(k)

(2c) Set x(k+1) := x(k) + d(k)

(2d) Set k := k + 1

Output: (x(k), λ(k)) — Locally optimal pair

Note that until now we have not specified how the problem QP can be solved. Similar to
the equality constrained case, there exists a wide variety of algorithms designed for this
purpose. These algorithm can be assigned to two classes, interior point and active set
methods.
All such algorithms are based on the KKT conditions which are sufficient if ∇2

xxL(x(k), λ(k))
is positive semidefinite. Hence, we face two sources of difficulties of Theorem 5.20: If the
Hessian is not positive definite then there may exist more than one solution which in par-
ticular does not have to be a minimum. Secondly, there may exist degenerate Lagrange
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multipliers λ⋆
i = 0 where i ∈ A(x⋆) or the active constraint gradients may be linearly

dependent. In this case, a factorization may not be possible or the algorithm is unable to
decide whether the constraint is active and repeatedly switches this assignment.

Remark 5.39
Since we focus on SQP algorithms in our implementation, see Remark 5.11, we do not
present any analytical background for interior point methods here. For further details on
this class of solvers, we refer to [175,227].

Note that, given the described setup, if the SQP method can identify and does not change
the optimal active set, then it acts like a Newton method for problem ECQP and converges
(locally) quadratically. Sufficient conditions for this behaviour are proved in [195]:

Theorem 5.40 (Robinson)
Consider x⋆ to be a KKT point and λ⋆ to be a corresponding Lagrange multiplier. More-
over, we suppose the conditions of Theorem 5.20(3) to hold and (x(k), λ(k)) to be sufficiently
close to (x⋆, λ⋆). Then there exists a local solution of problem QP whose active set A(x(k))
is the same as the active set A(x⋆) of problem NLP.

Remark 5.41
For the real–time applicability of the receding horizon control problem this corresponds to
finding a good initial guess of the control to speed up the optimization process, see also
Section 8.3.3 for numerical results.

For reasons of simplicity, we only consider the convex case of problem QP here, for the
nonconvex case we refer to [85]. Moreover, we consider the case given by Algorithm 5.38,
in particular this means that the derivatives of the problem NLP are not recomputed.
The main challenge considering QP problems is the proper identification of the set of
active constraints. If these were known in advance, we could apply Algorithm 5.37 for the
equality constrained problem.
The fundamental idea used in active–set methods is similar to the simplex method, see
e.g. [172]. First, we consider a so called working set W(k) which contains some of the
inequality and all equality constraints. All constraints within the working set are then
treated as equality constraints and the resulting quadratic problem is solved. Here, we
require that the gradients of the constraints contained in the working set are linearly
independent, even if the full set of active constraints at that point has linearly dependent
gradients.
Solving the described problem may lead to two cases: Either the actual iterate x(k) is a
local minimizer, or we compute a step d(k). We first consider the second case and have
to face the problem that we neglected the inactive inequality constraints. Hence, the
new iterate x(k+1) := x(k) + d(k) may not be feasible and the step length may have to be
shortened. To this end, we introduce a step length parameter α(k) ∈ [0, 1]. Note that for
the constraints contained in the working set W(k), this problem does not occur along the
search direction since the equality constraints are linear in d(k).
Our next task is to derive a suitable step length α(k) such that

x(k+1) := x(k) + α(k)d(k) (5.51)

is feasible and α(k) is as large as possible. To this end, we consider all constraints which
are not contained in the working set W(k). If ∇xHi(x

(k))d(k) ≥ 0 holds for i 6∈ W(k), then
we have

Hi(x
(k)) + ∇xHi(x

(k))⊤ · (x(k) + α(k)d(k)) ≥ Hi(x
(k)) + ∇xHi(x

(k))⊤x(k) ≥ 0
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by the feasibility assumption of x(k), and hence α(k) ≥ 0 can be chosen freely. In the case
∇xHi(x

(k))⊤d(k) < 0, we obtain Hi(x
(k)) + ∇xHi(x

(k))⊤ · (x(k) + α(k)d(k)) ≥ 0 only if

α(k) ≤
−Hi(x

(k)) −∇xHi(x
(k))⊤x(k)

∇xHi(x(k))⊤d(k)

holds true. In order to maximize the decrease in the cost function we define

α(k) := min

(
1, min

i6∈W(k),∇xHi(x(k))⊤d(k)<0

−Hi(x
(k)) −∇xHi(x

(k))⊤x(k)

∇xHi(x(k))⊤d(k)

)
(5.52)

Note that α(k) = 0 is possible since there might exist an active constraint which is not an
element of the working set W(k) and exhibits ∇xHi(x

(k))⊤d(k) < 0. Moreover, we call the
constraints Hi(x

(k)) for which the minimum is achieved blocking constraints and denote
the set of blocking constraints by

C(k) :=

{
j ∈ W(k)

∣∣∣∣∣ α
(k) =

−Hj(x
(k)) −∇xHj(x

(k))⊤x(k)

∇xHj(x(k))⊤d(k)

}
. (5.53)

If α(k) can be chosen to 1, we can continue to the next iterate. If α(k) < 1, however,
we know that at least one constraint is active for x(k+1) which is not contained in W(k).
Hence, we construct a new working set W(k+1) by adding one of the blocking constraints.
This can be done in an iterative manner until we reach a point x⋆ which minimizes the
quadratic objective function over its current working set W⋆. Note that for such a point
x⋆, we have d⋆ = 0 and the optimality conditions are satisfied by construction of the
working set. Hence, we obtain the Lagrange multiplier λ⋆

i for all i ∈ W⋆ such that

∑

i∈W⋆

∇xHi(x
⋆)⊤λ⋆

i = −∇2
xxL(x⋆, λ⋆)x⋆ −∇xF (x⋆) (5.54)

holds according to Lemma 5.33. This multiplier can be extended to a complete one by
defining the multipliers corresponding to those constraints not contained in W⋆ to be
zero. In particular, we obtain a search direction if d(k) is nonzero and the value of the
cost function is descending if the second–order sufficient conditions hold, i.e.

Theorem 5.42 (Decrease along Search Direction)
If d(k) is nonzero and conditions (5.28)–(5.30) hold, then F (·) is strictly decreasing along
the direction d(k).

Proof. From conditions (5.28)–(5.30) and Lemma 5.36 we know that d(k) is the unique
solution of the actual problem ECQP. Since d(k) = 0 is feasible by definition but must
exhibit a larger cost function value, we compare these two solutions and obtain

1

2
d(k)⊤∇2

xxL(x(k), λ(k))d(k) + ∇xF (x(k))d(k) < 0.

Due to convexity the quadratic term is positive and hence ∇xF (x(k))d(k) < 0 holds. Last,
testing the search direction shows the assertion since

F (x(k) + α(k)d(k)) = F (x(k)) + α(k)∇xF (x(k))d(k) +
α(k)2

2
d(k)⊤∇2

xxL(x(k), λ(k))d(k) < F (x(k))

holds if α(k) is chosen sufficiently small.
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Next, we analyze the multipliers corresponding to the inequality constraints contained
in the working set. If these multipliers show nonnegative sign, then all KKT conditions
are satisfied. If moreover ∇2

xxL(x(k), λ(k)) is positive semidefinite, we know from Theorem
5.20 and our convexity assumption that x⋆ is actually a global minimizer.
The more interesting case comes up if one or more of the multipliers λ⋆ are negative.
Hence, a further decrease in the cost function can be obtained if these constraints are
removed from the working set. Note that until now we have only used knowledge from
the equality constrained context shown in Section 5.2.2. Here, we drop one of the active
constraints and we have to show that the solution at the next iterate is feasible.

Theorem 5.43 (Feasibility)
Consider x(k) to be normal for the equality constrained problem with working set W(k)

and assume λ
(k)
j < 0 for some j ∈ W(k). If d(k) is the solution of the equality constrained

problem with working set W(k)\{j}, then d(k) is a feasible direction for the j-th constraint,
i.e. ∇xHj(x

(k))⊤d(k) ≥ 0 holds. If d(k) additionally satisfies the second–order sufficient
conditions, then ∇xHj(x

(k))⊤d(k) > 0 is true and F (·) is decreasing along the search
direction d(k).

Proof. Since d(k) solves problem ECQP, the linearity property of the considered (lin-

earized) constraints guarantee that there exists multiplier λ̃
(k)
i for all i ∈ W(k), i 6= j such

that
∑

i∈W(k),i6=j

∇xHi(x
(k))⊤λ̃

(k)
i = −∇2

xxL(x(k), λ(k)) · (x(k) + d(k)) −∇xF (x(k))

holds. Since x(k) is normal, we can use (5.54) to obtain

∑

i∈W(k),i6=j

∇xHi(x
(k))⊤ · (λ̃(k)

i − λ
(k)
i ) −∇xHi(x

(k))⊤λ
(k)
j − = −∇2

xxL(x(k), λ(k))d(k). (5.55)

Taking the inner products with d(k) we have

−d(k)⊤∇xHi(x
(k))⊤λj = d(k)⊤∇2

xxL(x(k), λ(k))d(k)

and the assertion follows.
If the second–order sufficient conditions hold, then ∇2

xxL(x(k), λ(k)) is positive definite.
Moreover, the last inequality reveals a strikt descrease if d(k) 6= 0. If this was the case,
then we would obtain λj = 0 from (5.55) which contradicts our choice of j and completes
the proof.

Remark 5.44
In practice, not just any index is chosen but the one corresponding to the most negative
Lagrange multiplier λj which is motivated by sensitivity aspects.

Now we combine all these steps to the active–set algorithm for convex QP:

Algorithm 5.45 (Active–Set Algorithm for Convex QP)
Input: x(0) — Feasible optimization vector

(1) Set W(0) ⊂ A(x(0))

(2) While not terminated
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(2a) Solve ECQP with constraint set W(k)

(2b) If d(k) = 0

• Compute Lagrange multipliers λ⋆ satisfying (5.54) with W⋆ = W(k)

• If λ⋆
j ≥ 0 for all i ∈ W(k) ∩ I: Set x⋆ := x(k) and terminate

Else: Set j := argmin
j∈W(k)∩I

λ⋆
j , x(k+1) := x(k), W(k+1) := W(k) \ {j}

Else

• Compute α(k) from (5.52) and C(k) from (5.53)

• Set x(k+1) := x(k) + α(k)d(k)

• If C(k) 6= ∅: Set W(k+1) := W(k) ∪ {j}, j ∈ C(k)

Else: Set W(k+1) := W(k)

Output: x⋆ — Optimal solution

This algorithm allows us to maintain the linear independence property of constraints
which are contained in W(k). In particular, if the gradients of the active constraints of the
initial value are linearly dependent, then we can consider a subset of linear independent
constraints. During the iteration we may encounter blocking constraints. The normals of
these constraints, however, cannot be represented by a linear combination of the normals
of the constraints contained in the working set W(k), i.e. linear independence is preserved
if one constraint is added. Last, the deletion of a constraint from the working set W(k)

does not lead to linear dependency of the remaining constraint normals.

Remark 5.46
The details of Algorithm 5.45 show the importance of a good initial guess for the optimizer
and hence also for our receding horizon control problem. For a bad guess, repeated updates
on the working set are required which causes the step length to be shortened. In turn, this
leads to an increase of the number of SQP steps.

Remark 5.47
The receding horizon control problem offers us additional structure which allows us to
speed up the optimization process. In particular, considering the n–th problem in the
sequence of optimal control problems, the result of the (n − 1)–th problem reveals a good
initial guess for the n–th problem. Hence, reinitialization of one the routines NLPQLP or
e04wdc with default values should not be considered, see also Section 8.3.3.
Additionally, we can supply knowlegde of the target to the optimizer by utilizing multiple
shooting nodes, see Section 5.1.3, which may also help to identify the correct working set
W⋆ faster. In this case, we hope to at least cancel out the additional effort of computing a
larger gradient of the cost function and a larger Jacobian of the constraints if the number
of required SQP steps is reduced, see also Section 8.3.4 for numerical results.

Theorem 5.48 (Finite Termination)
If the problem QP is strictly convex then Algorithm 5.45 terminates in a finite number of
steps.

Proof. If we have d(k) = 0, then the current point x(k) is the unique global minimizer of
the cost function F (·) for the working set W(k), see discussion after Theorem 5.42. If x(k)

is no solution of problem NLP, then there exists at least one negative Lagrange multiplier.
Hence, Theorems 5.42 and 5.43 show existence of a feasible step into a search direction
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such that the cost function decreases once the corresponding constraint is dropped. Since
the step length satisfies α(k) > 0, we obtain a strict decrease and hence the previous
working set W(k) is never regarded again since x(k) already was the global minimizer for
this set.
Moreover, the algorithm visits a point such that d(k) = 0 at least every n–th iteration. To
show this, we first consider an iterate j such that d(j) 6= 0. Hence, we either have α(j) = 1
and reach the minimizer of the cost function on the current working set W(j) such that
d(j+1) = 0 holds, or a constraint is added to the working set W(j). The second case may
occur repeatedly but after at most n added constraints the working set contains n linearly
independent vectors. Hence, the only possible solution is the zero solution.
Concluding, we have that the algorithm at least periodically finds the global minimum
of the cost function on the current working set and thereafter never vists this set again.
Since the number of working sets is finite, the algorithm locates a minimizer for a current
working set such that the optimality conditions from Theorem 5.20 for problem NLP are
satisfied and terminates in finite time.

The algorithms NLPQLP and e04wdc which we use in our implementation of the receding
horizon controller are two different types of such active–set methods, i.e. a line search
method and a trust–region variant. The general procedures of these two methods are dis-
cussed in Sections 5.2.5 and 5.2.6 respectively. In the following Section 5.2.4, we describe
four implementation aspects which are by now standard for most solvers including NLPQLP

and e04wdc. Details of the algorithms NLPQLP and e04wdc are discussed in Sections 6.3.2
and 6.3.3 which also deal with their integration in our package PCC2.

5.2.4 Implementation Issues

Until now we focused on the basic ideas of SQP algorithms and how the iteratively gen-
erated subproblems are solved. For these subproblems, however, we can in general not
guarantee that conditions like feasibility, LICQ or convexity hold. Here, we introduce
techniques to work these issues. Later, we use the obtained knowledge in the two main
categories of practically implemented SQP methods, i.e. line search and trust–region
methods, see Sections 5.2.5 and 5.2.6.

5.2.4.1 Merit Function

As we have seen in Section 5.2.3 for the active–set methods, accepting the new iterate
x(k+1) := x(k) + d(k) as proposed in step (2c) of Algorithm 5.38 may cause the consecutive
problem to be infeasible. A merit function incorporates the violation aspect within a new
objective which shall be decreasing along the iterates of the optimization process. To this
end, it uses a measure of the constraint violation to decide whether a trial step should
be accepted. Here, the main implementations of line search and trust–region differ: For
the latter one the merit function determines if the step is accepted or rejected and if the
trust–region radius needs to be adapted. In contrast to that, the merit function controls
the steplength itself within the line search setting.

Remark 5.49
For the receding horizon controller, this may result in different points in the control se-
quence space U

N to be visited by the optimization routine. Hence, if stopping criteria such
as computing time termination or maximal iteration numbers are considered — which we
use within our implementation — then results for the methods NLPQLP and e04wdc most
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likely deviate. Note that no method is preferable in general since the steps of the optimizer
depend on the initial guess of the control.
Moreover, the optimization methods NLPQLP and e04wdc may end up in different local
optima since they only converge locally. But even if the same optimum is identified within
every step of the receding horizon control algorithm described in Section 2.4, the closed–
loop solutions are most likely not identical since the allowed optimization tolerance leads
to errors in the control. Still, if the system is stabilized by the controller, the difference
between the solutions stays bounded due to the feedback nature of the control.

In the literature, several merit functions are considered, e.g. the non–differentiable func-
tion

L̃(x, µ) := F (x) + µ‖A(x)‖1 (5.56)

is used in [112, 184] while

L̃(x, µ) := F (x) +
µ‖A(x)‖2

2

2
. (5.57)

is chosen in [200, 201]. Typically only active constraints are considered. This leads to
the introduction of a vector of slack variables s ≥ 0 such that inequality constraints are
converted to equality constraints via

H̃(x, s) := H(x) − s = 0

and are hence also contained in the active set. Here, we are going to consider the merit
function (5.56). In particular, we have to show that the search direction d(k) of Algorithm
5.37 is also a direction of decrease for the merit function.

Theorem 5.50
Consider d(k) and λ(k) calculated according to Algorithm 5.37. Then the directional deriva-
tive of L̃(x(k), µ(k)) in direction d(k) is given by

D
(
L̃(x(k), µ(k)); d(k)

)
= ∇xF (x(k))⊤d(k) − µ(k)‖A(x(k))‖1 (5.58)

and

D
(
L̃(x(k), µ(k)); d(k)

)
≤ −d(k)⊤∇2

xxL(x(k), λ(k))d(k) − (µ(k) − ‖λ(k+1)‖∞)‖A(x(k))‖1

(5.59)

holds.

Proof. Using the Taylor expansion we obtain

L̃(x(k) + αd(k), µ(k)) − L̃(x(k), µ(k)) ≤ α∇xF (x(k))⊤d(k) + γα2‖d(k)‖2

+ µ(k)‖A(x(k)) + α∇xA(x(k))d(k)‖1 − µ(k)‖A(x(k))‖1.

Since by (5.50) we have ∇xA(x(k))d(k) = −∇xF (x(k)) the two inequalities

L̃(x(k) + αd(k), µ(k)) − L̃(x(k), µ(k)) ≤ α
[
∇xF (x(k))⊤d(k) − µ(k)‖A(x(k))‖1

]
+ γα2‖d(k)‖2

L̃(x(k) + αd(k), µ(k)) − L̃(x(k), µ(k)) ≥ α
[
∇xF (x(k))⊤d(k) − µ(k)‖A(x(k))‖1

]
− γα2‖d(k)‖2
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hold. Hence, we can take α → 0 and the assertion (5.58) follows. Hence, we obtain

D(L̃(x(k), µ(k)); d(k)) =

= −d(k)⊤∇2
xxL(x(k), λ(k))d(k) + d(k)⊤∇xA(x(k))⊤λ(k+1) − µ(k)‖A(x(k))‖1.

where λ(k) is the Lagrangian multiplier vector corresponding to the iterate x(k). Now we
can replace

d(k)⊤∇xA(x(k))⊤λ(k+1) = −∇xF (x(k))λ(k+1) ≤ ‖∇xF (x(k))‖1‖λ
(k+1)‖∞

in the last equality which shows (5.59) and concludes the proof.

As we can see from (5.59), this decrease condition holds if the parameter µ(k) is chosen

sufficiently large. For the choice of µ(k), we define a piecewise quadratic model of L̃(·, ·)
by

Qµ(k)(d(k)) := F (x(k)) + ∇xF (x(k))⊤d(k) +
σ

2
d(k)⊤∇2

xxL(x(k), λ(k))d(k) + µ(k)M(d(k))

where M(d(k)) = ‖A(x(k)) + ∇xA(x(k))d(k)‖1 and

σ =

{
1 if d(k)⊤∇2

xxL(x(k), λ(k))d(k) > 0
0 else

This choice of σ allows us to consider non positive definite matrices ∇2
xxL(x(k), λ(k)) as

well. The parameter µ(k) is chosen sufficiently large such that

Qµ(k)(0) − Qµ(k)(d(k)) ≥ ρµ(k)
[
M(0) − M(d(k))

]
(5.60)

holds for some ρ ∈ (0, 1). From the definition of the model of L̃(·, ·) and the linearized
constraints of the problem NLP with slack variables vector s we obtain that

µ(k) ≥
∇xF (x(k))⊤d(k) + σ

2
d(k)⊤∇2

xxL(x(k), λ(k))d(k)

(1 − ρ)‖A(x(k))‖1

(5.61)

is sufficient for (5.60) to hold.

5.2.4.2 Maratos Effect

Imposing a merit function may also obstruct the optimization algorithm. This phe-
nomenon is called the Maratos effect, see [152, 186]. If no measures are taken, it slows
down the considered method by rejecting steps which else make good progress towards a
solution and by preventing superlinear convergence. Here, we mention two strategies for
avoiding the Maratos effect:

(1) a second–order correction of the search direction

(2) a nonmonotone strategy which allows for an increase in the merit function

These two approach differ significantly: The second–order correction aims at improving
the merit function and hence the satisfaction of the constraints of the original problem.
The nonmonotone strategy tries to enhance feasibility and optimality at the same time
by allowing for temporary increases in the merit function.
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The second–order correction term d̂(k) of the search direction can be obtained as the
minimum–norm solution of the equation

∇xA(x(k))d̂(k) + A(x(k) + d(k)) = 0,

that is

d̂(k) = −∇xA(x(k))⊤
(
∇xA(x(k))∇xA(x(k))⊤

)−1
A(x(k) + d(k)). (5.62)

A correction algorithm can then be implemented straight forward:

Algorithm 5.51 (Second–order Correction Algorithm)
Input: x(k) — Current optimization vector

d(k) — Search direction
η ∈ (0, 0.5) — Decrease parameter
τ1, τ2 ∈ (0, 1), τ1 < τ2 — Search parameter
α(k) = 1 — Step length parameter

While not terminated

If L̃
(
x(k) + α(k)d(k), µ(k)

)
≤ L̃

(
x(k), µ(k)

)
+ ηα(k)D

(
L̃
(
x(k), µ(k)

)
; d(k)

)
:

• Set x(k+1) := x(k) + α(k)d(k) and terminate.

Else if α(k) = 1:

• Compute d̂(k) according to (5.62)

• If L̃
(
x(k) + d(k) + d̂(k), µ(k)

)
≤ L̃

(
x(k), µ(k)

)
+ηα(k)D

(
L̃
(
x(k), µ(k)

)
; d(k)

)
:

Set x(k+1) := x(k) + d(k) + d̂(k) and terminate.

Else: Choose new α(k) ∈ [τ1α
(k), τ2α

(k)]

Else: Choose new α(k) ∈ [τ1α
(k), τ2α

(k)]

Output: x(k+1) — Enhanced solution

Within this algorithm, the second–order correction term is neglected if no reduction in
the merit function is achieved. In particular, no intermediate solutions along d(k) + d̂(k)

are searched since there is no guarantee for a decrease in the merit function along this
direction.
In practice, this strategy turns out to be very effective and the additional computing costs
are compensated by the improved efficiency and robustness.

In many cases, the decrease along the merit function is unstable, i.e. due to round–
off errors, calculation errors in the gradient approximations or other error sources. To
compensate these effects, a nonmonotone strategy can be used. In contrast to the second–
order correction, these algorithms allow for an increase of the merit function for a certain
amount of steps, typically 5 or 8. For reasons of simplicity, we allow for one increase only
before a sufficient decrease must be attained. The hope is for the subsequent steps to
more than compensate the temporary increase in the merit function.
Similar to the second–order correction algorithm, the so called watchdog algorithm is
straight forward:
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Algorithm 5.52 (Nonmonotone Strategy – Watchdog Algorithm)
Input: x(k) — Current optimization vector

d(k) — Search direction
η ∈ (0, 0.5) — Decrease parameter
α(k) — Step length parameter

While not terminated

If L̃
(
x(k) + d(k), µ(k)

)
≤ L̃

(
x(k), µ(k)

)
+ ηD

(
L̃
(
x(k), µ(k)

)
; d(k)

)
:

• Set x(k+1) := x(k) + α(k)d(k) and terminate

Else:

• Compute search direction d(k+1) from x(k+1)

• Find α(k+1) such that

L̃
(
x(k+1) + α(k+1)d(k+1), µ(k)

)
≤L̃

(
x(k+1), µ(k)

)

+ ηα(k+1)D
(
L̃
(
x(k+1), µ(k)

)
; d(k+1)

)

and set x(k+2) := x(k+1) + α(k+1)d(k+1)

• If L̃
(
x(k+1), µ(k)

)
≤ L̃

(
x(k), µ(k)

)

or L̃
(
x(k+2), µ(k)

)
≤ L̃

(
x(k), µ(k)

)
+ ηD

(
L̃
(
x(k), µ(k)

)
; d(k)

)
:

Set k := k + 1 and terminate

Else if L̃
(
x(k+2), µ(k)

)
> L̃

(
x(k), µ(k)

)
:

Find α(k) such that

L̃
(
x(k) + α(k)d(k), µ(k)

)
≤ L̃

(
x(k), µ(k)

)
+ ηα(k)D

(
L̃
(
x(k), µ(k)

)
; d(k)

)

holds, set x(k+3) := x(k) + α(k)d(k), k := k + 2 and terminate

Else

Find α(k+2) such that L̃
(
x(k+2) + α(k+2)d(k+2), µ(k)

)
≤ L̃

(
x(k+2), µ(k)

)
+

ηα(k+2)D
(
L̃
(
x(k+2), µ(k)

)
; d(k+2)

)
holds,

set x(k+3) := x(k+2) + α(k+2)d(k+2), k := k + 2 and terminate

Output: x(k+1) — Enhanced solution

Note that both algorithms compute the step length α(k) without solving the one–dimen-
sional optimization problem along the search direction as in penalty methods and hence
their computing costs are significantly lower. For further details on the mentioned penalty
methods we refer to [19, 64, 83].

5.2.4.3 Inconsistent Linearization

Since we are using a first order Taylor approximation of the Jacobian of the constraints,
deviations from the manifold defined by those constraints may occur and need to be
treated, e.g. by projecting the resulting solution such that the constraints are satisfied.
One possibility to circumvent this difficulty is to state the problem NLP as a so called
l1–penalty problem
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Minimize F (x) + µ(k)
∑

i∈E
(vi + wi) + µ(k)

∑

i∈I
ti over all (x, v, w, t) ∈ R

n+2rg+rh

ST. Gi(x) = vi − wi, i ∈ E

Hi(x) ≥ −ti, i ∈ I

v, w, t ≥ 0

Note that there always exists a solution to this problem which allows us to simultaneously
keep track of the feasibility and the optimality issue, see also [64] for details. However,
as shown in [175], the solution corresponds to the solution of our basic problem only if
certain additional conditions are fulfilled:

Theorem 5.53
Suppose that x⋆ is a solution of the l1–penalty problem for all µ ≥ µ > 0. If x⋆ is feasible
for the problem NLP then it satisfies the KKT conditions of Theorem 5.18 for the problem
NLP.

5.2.4.4 Hessian Quasi–Newton Approximation

Within the proposed SQP algorithms the calculation of the Hessian of the cost function
causes large computing costs. The fundamental idea to reduce this cost is to replace the
computation of ∇2

xxL(x(k), λ(k)) by an approximation B(k) and was first proposed in [48].
To this end, we define

Q(k)(d(k)) := F (x(k)) + ∇xL(x(k), λ(k))⊤d(k) +
1

2
d(k)⊤B(k)d(k)

and match the gradients of Q(·) at step k + 1 to the last two iterates x(k) and x(k−1), i.e.

∇dQ
(k)(−α(k−1)d(k−1)) = ∇xL(x(k), λ(k)) − B(k)α(k−1)d(k−1) = ∇xL(x(k−1), λ(k−1)).

Setting s(k−1) := x(k) − x(k−1) and y(k−1) := ∇xL(x(k), λ(k)) −∇xL(x(k−1), λ(k−1)) this can
be rearranged to the so called secant equation

B(k)s(k−1) = y(k−1). (5.63)

Note that this gives us a positive definite matrix B(k) if and only if the curvature condition

s(k−1)⊤y(k−1) > 0 (5.64)

holds. Again, we start with the convex case of the optimization problem and try to
render B(k) to be positive definite and symmetric. Hence, we obtain n(n+1)/2 degrees of
freedom within this matrix while the curvature condition (5.64) states only n conditions.

The same holds true if we consider the matrix H(k) := B(k)−1
and hence we are looking

for the matrix H which is closest to the matrix H(k−1). This reveals the optimization
problem

Minimize
∥∥H − H(k−1)

∥∥ over all H ∈ R
n×n

ST. H = H⊤

Hy(k−1) = s(k−1)
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If we consider B and B(k−1) in this problem, we obtain the DFP (Davidon–Fletcher–
Powell) updating formula, see [48, 66]. Here, we present the BFGS (Broydon–Fletcher–
Goldfarb–Shanno) formula [33, 63, 81, 206] since it shows better performance.
Within the stated minimization problem we choose the weighted Frobenius norm ‖A‖W ≡

‖W 1/2AW 1/2‖F where ‖ · ‖F is defined as ‖A‖2
F =

n∑
i=1

n∑
j=1

a2
ij. This allows for an easy and

scale–invariant optimization. The weighting matrix W is set via

W :=




1∫

0

∇2
dxL(x(k−1) + τα(k−1)d(k−1), λ(k−1))dτ




−1

, (5.65)

that is the average Hessian. Hence, the weighted Frobenius norm is non–dimensional and
the unique solution of the optimization problem

H(k) :=

(
Id −

s(k−1)y(k−1)⊤

y(k−1)⊤s(k−1)

)
H(k−1)

(
Id −

y(k−1)s(k−1)⊤

y(k−1)⊤s(k−1)

)
+

s(k−1)s(k−1)⊤

y(k−1)⊤s(k−1)
(5.66)

is independent of the units of the problem. Note that any norm and any matrix W
satisfying Wy(k−1) = s(k−1) can be chosen instead of the stated ones. The resulting BFGS
formula (5.66), however, has shown to be computationally efficient and effectively self–
correcting with respect to bad estimates of the Hessian. To start the iteration, the initial
guess H(0) is usually taken as a multiple of the identity matrix. Moreover, a scaling can
be used before the first update of the approximation is done, i.e. by defining

H(1) :=
y(0)⊤s(0)

y(0)⊤y(0)
Id (5.67)

which aims at an eigenvalue approximation of ∇2
xxF (x(0)).

The BFGS update can then be summarized as follows:

Algorithm 5.54 (BFGS Update)
Input: x(k) — Current optimization vector

x(k−1) — Preceding optimization vector
∇xF (x(k)) — Current gradient of the cost function
∇xF (x(k−1)) — Preceding gradientof the cost function
H(k−1) — Preceding inverse of the Hessian

If k = 0:

• Set H(0) := Id

Else:

• Set s(k−1) := x(k) − x(k−1) and y(k−1) := ∇xL(x(k), λ(k)) −∇xL(x(k−1), λ(k−1))

• If k = 1:

Compute H(1) according to (5.67)

• Compute H(k) according to (5.66)

Output: H(k) — Updated inverse of the Hessian
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Remark 5.55
There also exists a version of the BFGS formula which uses the approximation of the
Hessian B(k) instead of H(k) via

B(k) = B(k−1) −
B(k−1)d(k−1)d(k−1)⊤B(k−1)

d(k−1)⊤B(k−1)d(k−1)
+

y(k−1)y(k−1)⊤

y(k−1)⊤d(k−1)
(5.68)

If this formula is used within Algorithm 5.54, then the computation of the search direction
via B(k)d(k) = −∇xF (x(k), λ(k)) can be accelerated by using updates on the Cholesky factors
of B(k).

If we replace the correct Hessian by the BFGS approximation in our SQP algorithms 5.37
and 5.38, we can still guarantee convergence. For a proof we refer to [35, 182].

Theorem 5.56 (Convergence)
Consider H(k) to be positive definite and symmetric for all k ∈ N0. Moreover, we consider
x(0) ∈ Rn such that the level set

L := {x ∈ R
n | F (x) ≤ F (x(0))}

is convex and there exists positive constants c1, c2 such that

c1‖x‖
2 ≤ x⊤∇2

xxL(x̂, λ̂)x ≤ c2‖x‖
2

holds for all x ∈ Rn and x̂ ∈ L with corresponding Lagrange multiplier λ̂. If the Hessian
in Algorithms 5.37 and 5.38 is replaced by the BFGS update according to Algorithm 5.54
then the resulting sequences (x(k))k∈N0 converge to a minimizer x⋆ of F (·).
If additionally the Hessian is Lipschitz–continuous in a neighborhood of this minimizer
x⋆, then the convergence rate is superlinear.

In order to guarantee

H(k)−1
= B(k) = B(k−1) −

B(k−1)s(k−1)s(k−1)⊤B(k−1)

s(k−1)⊤B(k−1)s(k−1)
+

y(k−1)y(k−1)⊤

s(k−1)⊤y(k−1)

to stay positive definite during the iteration we use an interpolation of the two latest
matrices B(k−1) and B(k). To this end, we define

r(k−1) = θ(k−1)y(k−1) + (1 − θ(k−1))B(k−1)s(k−1)

with safeguarded scalar

θ(k−1) =

{
1, if s(k−1)⊤y(k−1)

s(k−1)⊤B(k−1)s(k−1) ≥ 0.2
0.8s(k−1)⊤B(k−1)s(k−1)

s(k−1)⊤B(k−1)s(k−1)−s(k−1)⊤y(k−1) , else
(5.69)

Within the BFGS formula (5.66) this results in replacing the gradient difference y(k−1) by
the interpolant r(k−1), i.e.

B(k) = B(k−1) −
B(k−1)s(k−1)s(k−1)⊤B(k−1)

s(k−1)⊤B(k−1)s(k−1)
+

r(k−1)r(k−1)⊤

s(k−1)⊤r(k−1)
. (5.70)

Moreover, we obtain B(k) and hence H(k) to be positive definite since s(k−1)⊤y(k−1) =
0.2s(k−1)⊤B(k−1)s(k−1) > 0 holds due to the definition of θ(k−1) in (5.69), see also [184].
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Still, if the Hessian of the Lagrangian is not positive definite, the damped BFGS update
ultimately fails. If no update can be found which is positive definite, then the update
should be skipped. To obtain a skipping criterion, the curvature condition (5.64) is consid-
ered and whenever S(k−1)⊤y(k−1) < σ with σ = α(k−1)(1−ν)d(k−1)⊤B(k−1)d(k−1) holds for a
preassigned constant ν ∈ (0, 1), then the curvature is considered to be not sufficiently pos-
itive and the update is skipped. Not updating the approximation of the Hessian, however,
leads to poor performance since B(k) cannot capture important curvature information.

Remark 5.57
Another possiblity to deal with an indefinite Hessian is the so called SR1 method, see
e.g. [44] for its use in line search and [128] for a trust–region implementation. Since
both NLPQLP and e04wdc use the BFGS update, we do not present any details on the SR1
method here.

Remark 5.58
The computational effort can be reduced even further by applying reduced Hessian Quasi–
Newton approximations. These methods only consider the orthogonal subspace of the range
space of A(k) since d(k) is influenced by ∇2

xxL(x(k), λ(k)) on this space only, see e.g. [21]
for further details.

5.2.5 Line Search SQP

The implementation issues shown in Section 5.2.4 indicate that there exists a large number
of possible implementations of SQP algorithms. Here, we first consider the so called line
search SQP algorithm which, in a basic version, contains the following characteristic steps:

Algorithm 5.59 (Line Search SQP Algorithm)
Input: (x(0), λ(0)) — Initial pair

η ∈ (0, 0.5) — Decrease parameter

Set k = 0

While convergence test is not satisfied

(1) Evaluate F (x(k)) and A(x(k))

(2) Compute Hessian

(3) Evalutate ∇xF (x(k)) and ∇xA(x(k))

(4) Compute d(k) by solving the problem QP with corresponding multiplier λ̂(k)

(5) Set dλ := λ̂ − λ(k)

(6) Choose µ(k) such that (5.61) holds for σ = 1

(7) Find α(k) satisfying

L̃
(
x(k) + α(k)d(k), µ(k)

)
≤ L̃

(
x(k), µ(k)

)
+ ηα(k)D

(
L̃
(
x(k), µ(k)

)
; d(k)

)

(8) Set x(k+1) := x(k) + α(k)d(k), λ(k+1) := λ(k) + α(k)dλ

Output: x⋆ — Optimal solution
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A theoretical overview for line search SQP can be found e.g. in [64,175] whereas ideas of
the algorithm and convergence results are, among others, described in [111, 183].
Within this basic version, we can utilize the algorithms of Section 5.2.4 to speed up the
optimization process. In particular, we can implement Step (2) as an update formula,
see Section 5.2.4.4. Steps (7) and (8) can be replaced by either the Watchdog Algorithm
5.52 or the Second–order Correction Algorithm 5.51. Moreover, if the linearization of the
constraints in Step (3) causes an inconsistency we can switch to a l1–penalty problem
formulation, see Section 5.2.4.3.

Remark 5.60
Due to the Quasi–Newton nature of the SQP methods, the gradients are not computed
completely in every iteration of the while loop, see also Section 6.3. Hence, the computa-
tional effort is reduced further. Note that both implementations NLPQLP and e04wdc offer
this possibility.

5.2.6 Trust–Region SQP

In contrast to line search algorithms, the class of trust–region methods does not require
the Hessian or its approximation to be positive definite. In particular, they show good
progress even in presence of Hessian and Jacobian singularities. Trust–region variants are
studied, e.g., in [36,225], see also [28,85] for literature surveys and [234] for a convergence
analysis.
The trust–region problem considers the standard QP problem including an additional
regional constraint ∆(k):

Minimize F (x(k)) + ∇xF (x(k))⊤d(k) +
1

2
d(k)⊤∇2

xxL(x(k), λ(k))d(k) over all d(k) ∈ R
n

ST. Gi(x
(k)) + ∇xGi(x

(k))⊤d(k) = 0, i ∈ E

Hi(x
(k)) + ∇xHi(x

(k))⊤d(k) ≥ 0, i ∈ I

‖d(k)‖ ≤ ∆(k)

This additional constraint may cause the problem to be infeasible even if there exists a
solution satisfying all other constraints. Yet, we have to keep in mind that we are only
dealing with linearizations of the constraints and these can only be trusted in a certain
neighborhood of the linearization point. Hence, there is no reason to satisfy the linearized
constraints exactly except the trusted region permits it. Instead, our aim has to be the
improvement of the feasibility and at the same time the improvement of the solution of
the problem NLP. Here, we give a short glance at relaxation and l1–penalty methods.
Since none of our used SQP solver uses filter methods, we skip this topic here and refer
to [65] and references therein.
The relaxation approach considers the problem ECQP and modifies the constraints by a
relaxation vector r(k), that is

Ai(x
(k)) + ∇xAi(x

(k))⊤d(k) = r
(k)
i ,

and by adding the trust–region constraint. The vector r(k) is chosen to allow for a consis-
tent solution even for a reduced radius of the trusted region. A radius r(k) guaranteeing
these properties can be obtained by setting

r(k) := ∇xA(x(k))v(k) + A(x(k)) (5.71)
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where v(k) is the minimizing solution of

Minimize ‖∇xA(x(k))v(k) + A(x(k))‖ ∀v(k) ∈ R
n (5.72)

ST. ‖v(k)‖2 ≤ 0.8∆(k)

The safeguard factor 0.8 guarantees existence of a consistent solution of the relaxed prob-
lem. Hence, the resulting problem exhibits consistent constraints and can be solved by
any of the algorithms mentioned in Section 5.2.2. The merit function is chosen according
to the Euclidean setting of the additional trust–region constrained,

L̃(x(k), µ(k)) := F (x(k)) + µ(k)‖∇xA(x)d(k) + A(x(k))‖2

Furthermore, the ratio

ρ(k) :=
L̃(x(k), µ(k) − L̃(x(k) + d(k), µ(k)

Qµ(k)(0) − Qµ(k)

(5.73)

concerning the difference in the merit function (characterizing the decrease) and the aug-
mented quadratic model problem Qµ(k)(d(k)) as defined in Section 5.2.4.1 considering the
Euklidean norm (characterizing the feasibility) is used to decide whether a step is ac-
cepted.
Different to the relaxation approach, the l1–penalty methods consider and modify the
problem QP. As shown in Section 5.2.4.3, two additional terms are added to the cost func-
tional such that the optimization similarly keeps track of the feasibility aspect. Moreover,
a trust–region constraint is taken into account. Hence, the l1–penalty problem is written
as follows:

Minimize F (x(k)) + ∇xF (x(k))⊤d(k) +
1

2
d(k)⊤∇2

xxL(x(k), λ(k))d(k)

+ µ
∑

i∈E
(vi + wi) + µ

∑

i∈I
ti over all (d(k), v, w, t) ∈ R

n+2rg+rh

ST. Gi(x
(k)) + ∇xGi(x

(k))⊤d(k) = vi − wi, i ∈ E

Hi(x
(k)) + ∇xHi(x

(k))⊤d(k) ≥ −ti, i ∈ I

v, w, t ≥ 0

‖d(k)‖ ≤ ∆(k)

Similar to the relaxation approach we use the ratio ρ(k) from (5.73) to determine whether a
step is accepted or the trusted region needs to be adapted. Here, however, the l1 function

L̃(x(k), µ(k)) := F (x(k)) + µ
∑

i∈E
|Gi(x

(k))| + µ
∑

i∈I
max{0,−Hi(x

(k))}

is used as merit function within this setting.
Summing up, a trust–region algorithm takes the following general form:

Algorithm 5.61 (Trust–Region SQP Algorithm)
Input: (x(0), λ(0)) — Initial pair

∆(0) — Initial trust region radius
ε > 0 — Optimality parameter
η ∈ (0, 1) — Acceptance parameter
γ ∈ (0, 1) — Contraction parameter
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Set k = 0

While convergence test is not satisfied

(1) Evaluate A(x(k)) and ∇xA(x(k))

(2) Solve problem (5.72) for v(k)

(3) Compute r(k) from (5.71)

(4) Compute Hessian

(5) Compute d(k) by solving the problem QP with additional constraint ‖d(k)‖ ≤
∆(k) with corresponding multiplier λ̂(k)

(6) Evalutate F (x(k)) and ∇xF (x(k))

(7) If ‖∇xF (x(k)) −∇xA(x(k))⊤λ̂(k)‖ < ε and ‖A(x(k))‖∞ < ε:

Set x⋆ := x(k) and terminate

(8) Choose µ(k) such that (5.61) holds

(9) Compute ρ(k) according to (5.73)

(10) If ρ(k) > η

Set x(k+1) := x(k) + d(k) and ∆(k+1) such that ∆(k+1) ≥ ∆(k) holds

Else

Set x(k+1) := x(k) and ∆(k+1) such that ∆(k+1) ≤ γ‖d(k)‖ holds

Output: x⋆ — Optimal solution

Remark 5.62
Accoring to numerical comparisons, trust–region SQP variant and line search methods are
equally efficient in terms of the number of function and gradient evaluations, see e.g. [56].

Remark 5.63
For our receding horizon controller setting, the line search variant of Algorithm 5.59, i.e.
NLPQLP, is in most cases superior concerning computing times. The reason for this is
simple but can be easily overlooked: While in Algorithm 5.59 the computation of F (x(k))
and A(x(k)) as well as ∇xF (x(k)) and ∇xA(x(k)) are performed in Steps (1) and (3), in
Algorithm 5.61 we compute A(x(k)) and ∇xA(x(k)) in Step (1) and F (x(k)) and ∇xF (x(k))
in Step (6). In standard nonlinear optimization, this is irrelevant. However, the structure
of the receding horizon control problem offers synergy effects in evaluating the underlying
dynamic of the system in the first case since variations in the control vector can be used
in the difference quotient to compute both ∇xF (x(k)) and ∇xA(x(k)).

5.2.7 Classical Convergence Results

Here, we are not going to state the whole convergence theory which has been derived for
SQP methods over the last 25 years. For a rather general convergence result we refer to
the survey [45]. Instead, we present a selection of classical convergence result. To this
end, we now state a condition under which a standard SQP method in any case identifies
a KKT point of the nonlinear program.
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Assumption 5.64
Consider an SQP algorithm to satisfy the following assumptions:

(1) The SQP method computes the search direction by solving the problem QP.

(2) Within the cost function of problem QP the Hessian ∇2
xxL(x(k), λ(k)) is replaced by

some symmetric, positive definite and bounded approximation B(k).

(3) The iterate x(k+1) := x(k) + α(k)d(k) is defined according to Algorithm 5.51.

(4) The problem QP is feasible in each step and exhibits a bounded solution d(k).

(5) The penalty parameter µ(k) is fixed for all k and sufficiently large.

(6) F (·), G(·) and H(·) are continuously differentiable.

(7) The multipliers λ(k) are bounded.

Then the following convergence result proved in [185] applies:

Theorem 5.65 (Global Convergence)
Consider Assumptions 5.64 to hold and the sequences

(
x(k)
)

k∈N0
and

(
x(k) + d(k)

)
k∈N0

to
remain in a closed, bounded and convex subset of R

n. Then all limits points of the sequence(
x(k)
)

k∈N0
are KKT points of the nonlinear problem NLP.

Next, instead of establishing global results, we aim at obtaining local convergence of the
SQP methods. To this end, we consider the following situation for the standard SQP
Algorithm 5.37, i.e. without inequality constraints:

Assumption 5.66
Consider x⋆ to be a local solution of problem NLP such that the following conditions hold:

(1) F (·) and G(·) are twice differentiable in a neighborhood of x⋆ and their second
derivative is Lipschitz continuous.

(2) At x⋆ the LICQ holds, see Definition 5.16.

(3) The second–order sufficient conditions hold at (x⋆, λ⋆), see Theorem 5.20.

Theorem 5.67 (Quadratic Convergence using Newton Methods)
If Assumptions 5.66 hold and (x(0), λ(0)) is sufficiently close to (x⋆, λ⋆), then the sequence
of pairs (x(k), λ(k)) given by Algorithm 5.37 converges quadratically to (x⋆, λ⋆).

Proof. Since given the stated assumption Algorithm 5.37 is identical to the Newton iter-
ation the assertion follows directly.

Remark 5.68
This convergence result also holds true for the inequality constrained problem if the working
set W⋆ of the optimal value x⋆ has been reached (and remains unchanged) and H(·) is
twice differentiable.

The following result from [29] allows us to substitute the Hessian of the Lagrangian by
an approximation as shown in Section 5.2.4.4 and obtain superlinear convergence.
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Theorem 5.69 (Superlinear Convergence using Quasi–Newton Methods)
Suppose Assumptions 5.66 to hold and that the sequence (x(k))k∈N0 generated by Algo-
rithm 5.37 converges using quasi–Newton approximated Hessians B(k). Then we obtain
superlinear convergence of (x(k))k∈N0 to x⋆ if and only if

lim
k→∞

∥∥P (k)
(
B(k) −∇2

xxL(x⋆, λ⋆)
)
(x(k+1) − x(k))

∥∥
‖x(k+1) − x(k)‖

= 0 (5.74)

holds for the Hessian approximation B(k) where

P (k) :=
[
Id −∇xA(x(k))⊤

[
∇xA(x(k))∇xA(x(k))⊤

]−1
∇xA(x(k))

]
. (5.75)

Hence, we can substitute the quasi–Newton approximation of the Hessian of the cost
function F (·) by the BFGS update formula. Due to the results from Section 5.2.4.4 we still
obtain a good approximation and convergence of the iterates computed by our scheme.
This follows immediately by the positive definiteness of the iterates B(k) according to
the damped BFGS update. More formally, we obtain the following result directly from
Theorem 5.69 and the properties of the BFGS formula shown in Section 5.2.4.4:

Theorem 5.70 (Superlinear Convergence using BFGS)
Suppose Assumptions 5.66 to hold and ∇2

xxL(x⋆, λ⋆) and B(0) are symmetric and positive
definite. If additionally the norm differences ‖x⋆ − x(0)‖ and ‖∇2

xxL(x⋆, λ⋆) − B(0)‖ are
sufficiently small and (5.74), (5.75) hold for the BFGS Hessian approximations (5.70),
then the sequence (x(k))k∈N0 converges superlinearly to x⋆.
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Chapter 6

Numerical Implementation

In order to make the description of the receding horizon control implementation PCC2 1

(Predictive Computed Control 2) intuitively understandable we will consider our standard
example, the inverted pendulum, and explain the software package in detail, that is we
relate

• analytical background shown in Chapters 1 – 4,

• numerical algorithms described in Chapters 3 – 5

and show reasons for the chosen way of implementing these methods.
Here, we focus on the implementation of the PCC2 software, the conceptual background
for the chosen class definitions and explain their functionality. Using the examples from
Chapter 7, a detailed comparison of the selectable methods is presented in Chapter 8.

In the following Section 6.1 we motivate the structure of our implementation of a receding
horizon controller in the PCC2 package which is divided in three major parts. This
corresponds to the topics considered within the subsequent Sections 6.2, 6.3 and 6.4.
The setup of the receding horizon controller itself is discussed in Section 6.2. Since
the controller automatically discretizes continuous–time problems, this issue is reviewed
within this section as well. Moreover, we show three different implementations connecting
the optimization routine shown in Section 6.3 and the differential equation solvers as
presented in Section 6.4 to this discretization.
Last, within Section 6.5, we give an overview on the PCC2 package in a tutorial way. To
this end, we illustrate the general setup by implementing the inverted pendulum example
from Section 7.2 and a receding horizon controller for this example.

6.1 Programming Scheme of PCC2

The numerical implementation of the receding horizon control algorithm is organized hier-
archically. The package is separated in three major parts: the receding horizon controller
itself, minimization algorithms and methods to solve the underlying dynamic of the system,
see Figure 6.1.

1Webpage: http://www.nonlinearmpc.com
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RHC

Minimization Routine

Differential equation solver

Figure 6.1: Hierarchy of the implemented
control algorithm

To this end, several C++ classes and libraries have been implemented. Within this
programming structure, the receding horizon controller implementation is designed inde-
pendently of the minimizer and the differential equation solver. This allows for modular
and exchangable subcomponents rendering the program flexible and extendable.
The definition of a control problem is handled outside this hierarchy. To this end, a pro-
totype model has been introduced which forces the user to implement necessary functions
like the dynamic of the system or the cost functional in a fixed but intuitive way, see e.g.
Listings A.1 and A.2. Hence, controller and model are independent classes which allows
for reuse of models in different controller setups and vice versa.

RHC

Discretization

Minimization Routine

Differential equation manager

Differential equation solver
Differential equation configurator

Main
Program

Example

Figure 6.2: Structure of an implemented program

Note that here, motivated by model inherent properties such as the time set, dimension-
ality or stiffness, the model defines the type of differential equation solver to be used and
the configuration of this solver. Hence, a suitable choice of solver and parameters needs
to be obtained only once and can be reused for other controller settings. Still, the class
structure allows the main program to change the configuration of the solver if necessary.
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An appropriate choice of the minimization routine and its parameters, however, is depend-
ing on the size of the discretization, i.e. the dimension of the model and its restrictions,
but also the horizon length chosen in the controller design. Hence, it seems reasonable to
define this component within the main program.
The discretization of the optimal control problem is done automatically by the receding
horizon controller once the sampling instants are fixed. Hence, no further work has to be
done by the user. The connecting link between the discretized problem, the minimization
routine and the differential equation solver is established by a so called differential equation
manager. Since our three implementations differ in terms of speed, accuracy, practicability
and reliability, the choice is left to the user.

6.1.1 Class Model

According to the hierarchy of the program as shown in Figure 6.2, an example has to be
defined before setting up the receding horizon control problem. To this end, an example
class has to be derived from the class Model and the user has to provide functions with a
strict function header which are given by virtual functions within the class Model. For ease
of notation and to make our software intuitively understandable, we choose the standard
control systems nomenclature in our implementation as well.

6.1.1.1 Constructor / Destructor

The constructor method of an example does not only allocate the internal variables of
the class itself, but it also specifies and constructs the OdeSolve and OdeConfig objects
— that is the differential equation solver object and its configuration object — to be
used for this particular example. This is convenient since one main program may be
used for several examples without having to worry about a suitable choice of the ODE
solver routine. In particular, the size and stiffness properties of every single example
are different and the ODE solver should be selected carefully. For further details on the
correlation between size, stiffness and computing times of the implemented routines we
refer to Sections 8.1.1 and 8.1.2.
The OdeConfig object enables the user to specify all internal variables of the differential
equation solver object OdeSolve, see also Section 6.4.2. Most importantly, absolute and
relative tolerance can (and should) be set here. For their impact on computing times see
Section 8.1.3.
Last, parameters of the control system can be set within the constructor. This enables us
to defined parametrized example classes, e.g. to analyze sensitivity or robustness aspects.
For an illustrative example and the usage of the constructor, see Section 6.5.1.
Within the destructor, the OdeSolve and OdeConfig objects as well as all internally
allocated variables have to be deleted.

6.1.1.2 Defining the Control Problem

In order to use an example to setup a receding horizon control using the package PCC2,
it has to meet the standard form defined by the class Model. In particular, the cost func-
tional, the dynamic of the system, the box constraints as well as the constraint function
need to be defined:

Function Description
dglfunction Dynamic of the system
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Function Description
objectiveFunction Integral part of the cost functional
pointcostFunction Discrete part of the cost functional
getObjectiveWeight Weighting between both parts of the cost func-

tional
restrictionFunction Constraint functions
getControlBounds Box constraints of the control u
getModelBounds Box constraints of the state x
getDefaultState Default initial value
getDefaultControl Default value of the control
getMaxShootingDataLength Maximal number of multiple shooting points
getShootingDataLength Number of used multiple shooting points
getShootingDataInfo Specifying multiple shooting point positions
eventBeforeMPC Update possibility before next RHC iterate

Table 6.1: Required functions within a class Model object

The cost functional can exhibit both integral and discrete parts

JN(x, uN) =

N−1∑

i=0

ti+1∫

ti

L (xuN
(τ, x), uN(x), τ)) dτ

+
N−1∑

i=0

l (xuN
(ti, x), uN(x), ti)) + F (xuN

(tN , x))

which have to be implemented in the corresponding functions objectiveFunction and
pointcostFunction. The discrete part of the cost functional implementation can be used
to simulate a Mayer–term, but it is also possible to introduce a weighting of some or all
points within the time grid t. The first part implements an integral form, i.e. a Lagrangian
cost functional, if the underlying dynamic of the system is given by a differential equation.
In the discrete–time case, i.e. if the system is given by a difference equation, this term is
a sum of equally weighted costs caused by the state of the system at the grid points.
These two parts of the cost functional can be used at the same time. To this end, a weight-
ing between both functions has to be defined within the method getObjectiveWeight,
see also Figure 6.3.

t

T

continuous–time

+

+

+ + +
+ +

discrete–time

arbitrary weighting

Figure 6.3: Weighting of the cost functionals

The non–constant restrictions are defined using restrictionFunction where restrictions
at every grid point can be implemented. These restrictions have to meet the standard
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form in nonlinear optimization f(t, x, u) ≥ 0, see also Definition 2.2, and may consist
of pure state constraints as well as mixed state and control constraints and can also be
time–dependent.

Remark 6.1
Note that without adapting the time grid itself violations of these restrictions cannot be
recognized and avoided in between two gridpoints ti and ti+1.

The methods getControlBounds and getModelBounds are implemented to supply the
box constraints for state and control variables by defining two vectors in each method.
In order to initialize the optimal control problem in the main program, the user is required
to set initial conditions for the state. Again, this has to be done in the main program,
either manually or by utilizing the default state implementation getDefaultState.

Remark 6.2
There exists no method within the class Model to set initial conditions automatically. Rep-
resenting a model, that is a mathematical description of the behaviour of an application,
it is independent of the actual state. Hence, measurement data concerning the current
state of the system must be provided to the controller by the external program, i.e. the
main program.

Similarly, a default vector of the control can be provided to the controller. To this
end, the method getDefaultControl of the class Model may be used. Last, multiple
shooting nodes can be specified using the three methods GetMaxShootingDataLength,
GetShootingDataLength and getShootingDataInfo. The first two get–routines are nec-
essary to distinguish between the number of actually used shooting nodes and the maximal
number of shooting nodes. The second one is required by the receding horizon control
algorithm to allocate the maximal necessary memory. The last routine reveals for which
state of the system and time instant (as multiples of the sampling time) a shooting node
is set.
Setting the values of each multiple shooting node may be repeated before restarting the
optimization within the RHC algorithm. For this purpose, the method eventBeforeMPC

can be used and has to be modified to fit this task. Note that eventBeforeMPC also allows
for other changes within the model, e.g. switching the right hand side of the differential
equation or the cost functional.

6.1.2 Setup of the Libraries

As mentioned before, the software package is structured in several C++ libraries. This
allows us to update parts of the software without having to recompile the whole package.
Each package is equipped with a version checking mechanism, i.e. compilation and in-
stallation of parts of the package can be carried out only if all requirements of the update
are satisfied. Currently, the following libraries are used:

Name Content
libbtipopt Wraparound for the minimizer IpOpt1

libbtmbutils Collection of useful tools like automated storing of data, time
measurements and exception debugging manager

libminprog Parenting library for all minimization routines
libmpc2 Main library containing all routines necessary within the re-

ceding horizon control algorithm, but also all differential equa-
tion manager classes and the discretization class
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Name Content
libodesol2 Wraparound of all implemented ODE solvers2

libsqpf Wraparound for the minimizer NLPQLP3

libsqpnagc Wraparound for the minimizer e04wdc from the NAGC li-
brary4

Table 6.2: Libraries contained within the PCC2 package

Table 6.3 displays the classes of the different libraries.

Library Class Library Class
libbtmbutils BitField libbtipopt BtIpopt

Code NLPProblem
DataItem libminprog GaussNewton
DataQueue MinProg
DebugMaster libodesol2 DoPri
DebugMasterFile DoPri5
DebugMasterFileTextStream DoPri853
DebugClient DoPriConfig
OptimalDiff Euler
RTClock OdeConfig
SaveData OdeFunction
Uuid OdeSolEx

libmpc2 CacheOdeManager OdeSolveFirst
ControlClipboard OdeSolve
ControlSequence Radau
Cycle Radau5
Discretization Radau5913
IOController Radauconfig
IOdeManager Radau5913Config
IOInterface RecurseSequence
Model libsqpf SqpFortran
MPC libsqpnagc SqpNagC
SimpleOdeManager
SuboptimalityMPC
SyncOdeManager

Table 6.3: Classes within the PCC2 libraries

Within these libraries several external sources are used. For further details of the corre-
sponding codes, we refer to stated webpages.

Remark 6.3
Moreover, various exception classes are included in each of these libraries which can be
used to either automatically handle different error situations or to provide a full error
report to the user.

1Webpage: https://projects.coin-or.org/Ipopt
2Webpage: http://www.unige.ch/~hairer/software.html
3Webpage: http://www.math.uni-bayreuth.de/~kschittkowski/nlpqlp.htm
4Webpage: http://www.nag.co.uk

https://projects.coin-or.org/Ipopt
http://www.unige.ch/~hairer/software.html
http://www.math.uni-bayreuth.de/~kschittkowski/nlpqlp.htm
http://www.nag.co.uk
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The following sections deal with the implementation and interaction of the major classes
within the package. The class BtIpOpt has not been optimized and tested extensively
yet. Hence, no description of its implementation is given here.

6.2 Receding Horizon Controller

The receding horizon controller is contained in the library libmpc2 and implements
Figure 6.2. It allows for a user defined choice of algorithms, i.e. minimization routine
and differential equation solver, and configuration of the corresponding objects. The
implementation itself handles the interaction required to solve the problem RHCN quietly
and allows the routine to be used as a black box in a larger setting. In this section, we
explain the “ingredients” of this controller and the connection of its classes.

6.2.1 Class MPC

The class MPC offers the possibility to construct and solve the sequence of optimal control
problems with sampling and zero order hold

Find µN(x(tk)) := u[0]

ST. u[0,N−1] = argmin
uN∈UN

JN(x(tk), uN)

JN(x(tk), uN) =

N−1∑

i=0

tki+1∫

tki

L (xuN
(τ, x(tk)), uN(x(tk), τ)) dτ

+

N−1∑

i=0

l
(
xuN

(tki , x(tk)), uN(x(tk), t
k
i )
)

+ F (xuN
(tkN , x(tk)))

ẋuN
(t) = f(xuN

(t, x(tk)), uN(x(tk), t)) ∀t ∈ [tk0, t
k
N ]

xuN
(0, x(tk)) = x(tk)

xuN
(t, x(tk)) ∈ X ∀t ∈ [tk0, t

k
N ]

uN(x(tk), t) = ci ∈ U ∀t ∈ [tki , t
k
i+1)

To this end, the user has to implement the example in a class Model object, to specify a
choice of algorithms from all lower levels of the hierarchy and to setup a main program,
see Section 6.1.1 for further details and Section 6.5 for an illustrative example.
Note that within the class MPC, this problem is still in its original form, i.e. if the user
supplies a continuous–time model with piecewise constant control on some given time grid
(t0i )i=1,...,N , there is no discretization done within this class. At this point we focus on the
mathematically and numerically more challenging part of continuous–time systems but
we like to mention that it is also possible to implement discrete–time systems.
To generate and solve the receding horizon control problem, several procedures are re-
quired for

• Initializing a class Discretization object

• Solving the discretized version of the optimal control problem using a supplied
optimization routine and a differential equation solver
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• Shifting the problem forward in time

Moreover the class contains procedures

• to set parameters within the optimal control problem itself, e.g. the dynamic of the
system or the cost functional, and

• to adapt the number of switching points within the control function, i.e. to change
the length of the horizon.

6.2.1.1 Constructor

Within the constructor method the receding horizon problem is defined. This requires
the user to create a class Model object

33 Model * object_model = new InvertedPendulum();

Listing 6.1: Constructing call of a class Model object

which in turn implicitly defines a suitable differential equation solver and its configuration,
cf. Listing 6.37. Moreover, the calls

34 IOdeManager * object_odemanager = new SimpleOdeManager();

Listing 6.2: Constructing call of a class IOdeManager object

35 btmb::MinProg :: MinProg * object_minimizer = new SqpFortran();

Listing 6.3: Constructing call of a class MinProg object

38 btmb::MPC2::MPC * mpc_problem = new MPC ( INF );

39 mpc_problem ->reset ( object_odemanager , object_minimizer ,

object_model , HORIZON );

Listing 6.4: Constructing call of a class MPC object

are used to construct objects from lower level classes of the hierarchy, i.e.

• a model of the example object_model, see Section 6.1.1,

• a minimization routine object_minimizer, see Section 6.3.1, and

• a differential equation manager object_odemanager, see Section 6.2.5,

have to be handed over to the class MPC object. Additionally, the size of the problem, i.e.
the length of the horizon HORIZON must be known by the controller.
Note that all other problem specifications, that is

• the dynamic,

• the cost functional,

• the restriction functions and

• shooting nodes and values

as well as the dimension of the state vector and the control vector are given by the class
Model object object_model.
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Remark 6.4
Multiple shooting nodes and values are treated as optimization variables within this setting.
Internally, these variables are combined to one optimization variable of the discretized
problem, see Section 6.2.4 for further details and Section 8.3.4 for the computational
impact of multiple shooting nodes.

Finally, some value INF can be supplied which internally sets the value of ±∞ for the
optimization routine. If this is not stated explicitly, the default value ±1019 will be used.
Coming back to the mathematical setting, the constructor method generates an optimal
control problem of the form

Find ûN = argmin
uN∈UN

JN(x0, uN)

ST. JN(x(t), uN) =
N−1∑

i=0

ti+1∫

ti

L (xuN
(τ, x(t)), uN(x(t), τ)) dτ

+

N−1∑

i=0

l (xuN
(ti, x(t)), uN(x(t), ti)) + F (xuN

(tN , x(t)))

ẋuN
(t) = f(xuN

(t, x(t)), uN(x(t), t)) ∀t ∈ [t0, tN ]

xuN
(0, x(t)) = x(t)

xuN
(t, x(t)) ∈ X ∀t ∈ [t0, tN ]

uN(x(t), t) = ci ∈ U ∀t ∈ [ti, ti+1)

where the functions can be identified as follows:

Function Program
Control function ûN u

sdatavalues

Stage cost l (xuN
, uN) pointcostFunction

Terminal cost F (xuN
) getObjectiveWeight

Running cost L (xuN
, uN) objectiveFunction

Dynamic f(xuN
, uN) dglFunction

Restrictions X, U restrictionFunction

getControlBounds

getModelBounds

Table 6.4: Notation used for implementation of a RHC problem

From Table 6.4 one can see that the state trajectory xuN
(·, ·) is not used during the

construction of the class MPC object. The class MPC object only depends on the initial
state and the switching structure. As we will see in Section 6.2.1.2, this allows for using
this object as a black box in a user–defined control setup.

Moreover, one can see that the problem defined in a class MPC object is not yet discretized.
Hence, at this point we consider the control function ûN to be piecewise constant on some
time grid T. Additionally, this time grid is not fixed since the memory allocation only
depends on the number of switching points, i.e. HORIZON−1, and does not specify the
values of these points.
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6.2.1.2 Initialization

As seen in the construction of a class MPC object, the time grid is not yet fixed, i.e. the
switching structure of the piecewise constant control function is unknown by now. Calling

53 mpc_problem ->allocateMemory ( t, u );

54 mpc_problem ->initCalc ( t, u );

Listing 6.5: Initializing a class MPC object

allocates and initializes a predefined class MPC object with a time grid t supplied by
the user. Moreover, an initial guess of the control sequence u has to be supplied. Note
that using this procedure, these two arrays can be changed at any time during the RHC
iteration process.
The standard setup in the literature for the time discretization is to use an equidistant
grid, see e.g. [16, 95, 134].

u

ûi

t

Horizon of length N

1 2 N N + 1

Figure 6.4: Setting up the time grid and initial guess of the control

However, since in some applications this is not a desireable feature, the time grid can be
defined as an arbitrary strict ascending sequence

t = [t0, t1, . . . , tN ], t0 < t1 < . . . < tN ,

The switching structure of the receding horizon control problem can be modified after
every step of the RHC algorithm. Moreover, one does not have to care about numerical
errors by choosing this structure since the underlying differential equations are solved
using an adaptive step sizing algorithm which is independent of the chosen step length
and not some kind of Runge–Kutta scheme such that the choice of ∆i = ti+1 − ti may
become critical. This offers the possibility to test several switching structures before
implementing one control value.
We like to mention that sampling points within the overlapping time intervals in two
consecutive receding horizon control steps do not have to coincide at all. However, from
a numerical and, in particular, from an optimization procedure point of view, consecutive
time grids with coinciding sampling points are a very desireable feature. In this case, the
outcome of the previous optimal control problem — in general — represents a good initial
guess for the control in the following optimal control problem. Hence, this turns out to be
a possible implementation for supplying a new initial guess after shifting the time grid,
see also Section 6.2.1.5.
Of course any initial guess can be used by changing u. Finding such an initial guess for the
control, however, is a hard task and massively influences the computing time necessary to
solve the discretized optimal control problem, cf. Section 8.3.3. Moreover, if the supplied
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guess is not close to the optimal solution, the optimization routine may converge to some
local optimum since we use local minimization methods to solve this problem only.
However, one may use external information, if available, to improve or ease the search
for an optimal solution. This can be done for any control values within the discretized
optimal control problem. Here, it is particularly useful to subsequently reset the values
of the multiple–shooting nodes which are also controls in the discretized problem and
included in u. A more sophisticated analysis of this topic can be found in Sections 8.3.3
and 8.3.4.

Remark 6.5
Since equidistant time grids with fixed sampling period T are standard in model predictive
control we consider this setup exclusively. In particular, we use the term horizon length
H = N · T instead of the switching structure of the control. However, all routines can
also be applied for an arbitrary discretization.

6.2.1.3 Resizing the Horizon

Since the possiblity to adapt the length of the optimization horizon is required by the
adaptation algorithms presented in Chapter 4, i.e. to shorten or prolongate the horizon,
a method to deal with this matter is implemented within the class MPC. This procedure
can be used either manually in the main program or in an automated manner within an
adaptive receding horizon control algorithm by calling

70 mpc_problem ->resizeHorizon ( 17, H_NEW );

Listing 6.6: Resetting the length of the optimization horizon

where the first variable is used as new quantity of grid points. In the case of an pro-
longation of the horizon, additional grid points are added equidistantly at the end with
grid diameter H_NEW. Internally, this leads to a destruction of the discretized problem
which is due to memory requirements and a new object of this type with correct values
is constructed.

Remark 6.6
Note that memory allocation at this point is not strictly dynamic. A class MPC object is
initialized with a maximal size of the horizon length which cannot be extended further.
This is due to the optimization of the code towards speed which requires a certain setup of
the used memory.
To extend the horizon even further, the class MPC object must be destructed and a new one
with extended maximal horizon length must be created.

The equidistant setting of grid points in the prolongation case can be adapted by set-
ting the array t. Alternatively, a different array can be supplied to a class MPC object
mpc_problem using the initialization routine described in Section 6.2.1.2.

Remark 6.7
Concerning the impact of the horizon length on the computing time necessary to solve the
discretized optimal control problem, this feature is particularly useful if one can somehow
calculate the minimal stabilizing horizon length, especially if this lower bound varies during
the iteration process. For an analysis of this issue we refer to Section 8.3.2 for numerical
results concerning the horizon length and to Section 8.5 which deals with our adaptation
strategies.
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6.2.1.4 Starting the Calculation

Since it is likely that the initial value of the actual optimal control problem has to be
redefined, e.g. in the case when an external observer is used for state estimation as shown
in Figures 6.5, 6.6, this value can be set to an externally computed one before starting
the optimization routine.

➠ Flow of Information ➠
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u
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Figure 6.5: Schematic representation of the usage of a receding horizon controller
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Figure 6.6: Evaluation of the optimal control problem and setting initial value

In order to solve the optimal control problem the procedure

77 mpc_problem ->calc ( x );

Listing 6.7: Solving the underlying optimal control problem of the RHC problem

has to be called where external resets of the state vector x can be handed over directly to
the class MPC object. On exit, this call causes the results, i.e. the control sequence ûN , to
be stored in the array u. Additionally, as long as the class MPC object is not destructed,
the values of the internally predicted trajectory as well as the cost functional values can
be extracted if necessary.
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6.2.1.5 Shift of the Horizon

The time shift of the optimization horizon, that is the receding horizon step of the RHC
method, see Step 3 in Section 2.4, is carried out via

86 mpc_problem ->shiftHorizon ( x, next_u , H_NEW , mstep );

Listing 6.8: Executing the shift within the RHC scheme

Here, the user can choose between three different variants of this shift. The call

mpc_problem ->setConfigShiftHorizon( H_NEW , method ,

reltolerance , abstolerance , tolerancevector );

Listing 6.9: Configurating the shift within the RHC scheme

can be used to change the configuration of the class MPC object where the different variables
have the following:

Variable Description
H_NEW Step length of the added sampling intervals at

the end of the actual optimization horizon
method Decision variable

= 0: Shift of the control sequence by mstep

sampling intervals and copying the last
mstep entries for the new sampling inter-
vals (default)

= 1: Shift of the control sequence by mstep

sampling intervals and optimization of the
last mstep entries for the new sampling in-
tervals

= 2: Successive (for i from 1 to mstep - 1)
shift of the control sequence by one sam-
pling interval and re–optimization of the
last HORIZON - mstep + i entries for the
new influencable sampling intervals

reltolerance Value or vector of relative tolerances of the dif-
ferential equation solver used for implementing
the shift

abstolerance Value or vector of relative tolerances of the dif-
ferential equation solver used for implementing
the shift

tolerancevector Decision variable allowing to supply tolerance
values (tolerancevector= 0, default) or vec-
tors (tolerancevector= 1)

Table 6.5: Configuration parameters of RHC scheme shift

Remark 6.8
Supplying the parameter reltolerance, abstolerance and tolerancevector allows the
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user to distinguish between accuracy of the differential equation solver used for optimiza-
tion and the one used for simulation. Note that, if these values are not identical, the
outcome of the simulated implementation of the control is in general not identical to the
predicted trajectory within the optimization.

The parameter H_NEW is used to add a total of mstep new sampling instants at the end
of the optimization horizon with sampling distance H_NEW, i.e. the subsequent control
problem possesses the time grid

ti := ti+mstep, i ∈ {0, . . . , N − mstep},

tN−mstep+i := tN−mstep + i · H_NEW, i ∈ {1, . . . , mstep}.

In order to change this equidistant setting, a redefinition of the variable t in the main
program can be used.
Calling the method shiftHorizon causes the internally predicted state value at time
instant tmstep to be stored in x. In case of external disturbances, model uncertainties or
if an observer is used to estimate the state vector, this prediction should be reset by a
corrected vector before starting the next optimization, see Section 6.2.1.4. Additionally,
the control vectors û[0,mstep] which are to be applied at time instants t0, . . . , tmstep are
copied to next_u.
Here, we like to point out that shifting the horizon does not only affect the internal time
grid. Within this implementation, the control sequence is shifted as well. Depending on
the parameter optimize, different control vectors are the result of such a shift:

• If method is set to zero (default), the last control vector of the unshifted problem is
copied such that in the shifted problem the last mstep control vectors are identical.
This method is computationally efficient and still offers a good initial guess for the
subsequent optimization problem, at least if the trajectory at the end of the horizon
is close to the optimum.

• For the second choice, i.e. method= 1, the initial guess of the option method= 0
is used and an additional optimization problem considering the last mstep control
vectors is generated and solved. Even for mstep being small, the additional compu-
tational effort is not negligible. Yet, significant reduction of the computing times for
solving the subsequent optimization problem can be experienced, see Section 8.3.3.

• The third implementation is computationally demanding since a whole series of large
optimization problems have to be solved. Yet, it has shown to be of good use if large
control horizons mstep are considered. In this case, the option method= 2 allows us
to subsequentually keep track of a good initial guess for the following optimization
problem.

6.2.1.6 Destructor

A class MPC object can be destroyed by using the destructor

93 delete mpc_problem;

Listing 6.10: Destructing call of a class MPC object

which deletes the internally allocated minimization problem but leaves all supplied data
untouched. Hence, the last open–loop control sequence u as well as the initial state vector
x can still be accessed and used for other purposes.
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6.2.2 Class SuboptimalityMPC

The class SuboptimalityMPC is derived from the class MPC and contains the methods
described in Chapter 3 to obtain stability and suboptimality results. In particular, all
methods from class MPC are inherited such that a RHC controller utilizing the additional
estimation methods can be implemented identically. Hence, only the class name within
the construction/destruction of the object needs to be replaced:

btmb::MPC2:: SuboptimalityMPC * mpc_problem = new

SuboptimalityMPC ( INF );

delete mpc_problem;

Listing 6.11: Constructing/Destructing call of a class SuboptimalityMPC object

Moreover, internal variables are set to default values. The meaning and usage of these
variables are explained within the description of the estimation procedures.

6.2.2.1 A posteriori Suboptimality Estimate

Calling the method

mpc_problem ->aposterioriEstimate ( x, alpha );

Listing 6.12: Calculating α according to Proposition 3.3

leads to an evaluation of Proposition 3.3 using Algorithm 3.8 to compute the suboptimality
degree α = alpha.
To this end, the values of V (x(n)) and V (x(n + 1)) as well as l(x(n), µN(x(n))) must be
known. In this implementation, these values will not be computed by the procedure within
every step. Instead, the previous optimal value function V (x(n−1)) and the corresponding
first stage cost l(x(n−1), µN(x(n−1))) are stored within a class SuboptimalityMPC object
mpc_problem and V (x(n)) is computed by the procedure by a postoptimal evaluation of
the cost function, i.e. no additional optimization is required. To this end, the variable x

can be used to incorporate measurement or prediction errors. Hence, this setting is purely
a posteriori. Internally calculating the optimal finite horizon cost V (x(n)) gives us, as a
byproduct, the stage cost l(x(n), µN (x(n))) and both are used to replace the stored values
of the last step, see also Section 6.2.3.3 below for further details.

Remark 6.9
This setup can be extended to analyze the suboptimality of a so called m–step feedback, see
e.g. [99,100], by storing a sum of the stage costs. This is implemented within the method
mstepAposterioriEstimate, see Listing 6.13.

mpc_problem ->mstepAposterioriEstimate ( x, alpha , m );

Listing 6.13: Calculating α similar to Proposition 3.3 for an m–step feedback

The internal boolean variable single can be used to obtain local or closed–loop subopti-
mality results. If α is to be computed for every single point of the trajectory, the variable
single is set to the default value true. If single is set to false by calling

mpc_problem ->setSingle ( false );

Listing 6.14: Setting the internal variable single
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the minimal α along the points under consideration is the result of this method. Note
that the variable alpha must not be changed within the calling program.

Remark 6.10
The underlying problem has to meet the form which is the basis of Proposition 3.3. Hence,
the user must check the implemented cost functional objectiveFunction and the additive
discrete–time cost functional pointcostFunction defined within the class Model object
used by a class SuboptimalityMPC object.

6.2.2.2 A priori Suboptimality Estimate

In contrast to Section 6.2.2.1 using Algorithm 3.8, we now compute an estimate α = alpha

a priori based on Algorithm 3.16. In particular, it is not necessary for this procedure
to store any past data of the class SuboptimalityMPC problem since all values can be
computed based on the actual initial value x and the calculated optimal control sequence
u which is available within a class SuboptimalityMPC object mpc_problem.
In order to obtain Vk(xuN

(N − k, x(n))) and l(xuN
(N − k, x(n)), µk(xuN

(N − k, x(n))))
for all k ∈ {N0, . . . , N}, it suffices to solve the dynamic of the problem using the pre-
computed optimal control sequence u. However, to retrieve the value of l(xuN

(N −
j, x(n)), µj−1(xuN

(N − j, x(n)))) for all j ∈ {2, . . . , N0} we have to solve a whole series of
optimal control problems. This requires the user to call the routine

mpc_problem ->aprioriEstimate ( x, alpha , gamma , N0 );

Listing 6.15: Calculating α according to Theorem 3.22

where x is a possibly updated estimate of the current state. Internally a series of new,
smaller optimal control problems and their discretizations are generated. To solve the
resulting minimization problems, another instance of the supplied optimization routine
object_minimizer and of the differential equation manager object_odemanager need to
be generated.
Again, the internal boolean variable single can be used to obtain the local suboptimality
estimates α by setting it to true and the closed–loop suboptimality estimate if single is
set to false.
Last, the variable N0 which specifies the shortened optimal tail to be considered in the
analysis needs to be set by the user.
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Figure 6.7: Schematic representation of solution “tails” used within the a priori subopti-
mality estimation of Theorem 3.22 for N = 5
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Remark 6.11
For large values of N0 = N0 ∈ {2, . . . , N−1} the additional optimal control problem causes
this procedure to be not negligible considering the computing time. Hence, in the context
of time–critical applications, only small values of N0 should be used, see also Section 8.4
for numerical tests of this routine and the impact of the parameter N0 and Section 8.5 for
results in the adaptive receding horizon control setting.

6.2.2.3 A posteriori Practical Suboptimality Estimate

Similar to the routine for the non–practical case, the call

mpc_problem ->aposterioriPracticalEstimate ( x, alpha );

Listing 6.16: Calculating α according to Proposition 3.28

computes the suboptimality degree α = alpha according to Proposition 3.28, i.e. Al-
gorithm 3.30. Here, we use the same setup as in Section 6.2.2.1 for storing past data,
supplying the actual state vector x and influencing the output to be a local or closed–loop
estimate via the internal boolean variable single.
Different to the non–practical case, the internal variable epsilon is utilized for cutting
the stage costs. This variable is set to epsilon = ε = 10−6 and can be reset using

mpc_problem ->setEpsilon ( 1E-10 );

Listing 6.17: Setting the internal variable epsilon

In general, its magnitude should be of the size of the optimality tolerance of the under-
lying class MinProg object object_minimizer. However, this rule of thumb only holds
if the tolerances of the class OdeSolve object used by the class IOdeManager object
object_odemanager are lower than the optimality tolerance of the minimizer.
The underlying problem has to meet the form used within Proposition 3.28. To this end,
the implemented cost functional objectiveFunction and the additive discrete–time cost
functional pointcostFunction defined within a class Model object object_model used
by a SuboptimalityMPC object must be reviewed.

Remark 6.12
Similar to the non–practical case, an extension to m–step feedbacks is implemented within
the method mstepAposterioriPracticalEstimate, cf. Listing 6.13.

6.2.2.4 A priori Practical Suboptimality Estimate

The a priori practical estimate uses the same extension as the a posteriori estimate from
the previous Section 6.2.2.3. Hence, the call

mpc_problem ->aprioriPracticalEstimate ( x, alpha , gamma , N0 )

;

Listing 6.18: Calculating α according to Proposition 3.39

from Listing 6.15 uses the internal variable epsilon to cut the stage cost. Here, Algorithm
3.40 is implemented to compute the estimate α = alpha. Similar to Section 6.2.2.2, the
values of l(xuN

(N − j, x(n)), µj−1(xuN
(N − j, x(n)))) have to be obtained via a series of

new smaller optimal control problems. These problems are generated, discretized and
solved by instances of the objects created within the class SuboptimalityMPC object.
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Similar to Section 6.2.2.2, the variable N0 specifies the shortened optimal tail and the
boolean single is utilized to distinguish between local and closed–loop suboptimality
results.

6.2.3 Class AdaptiveMPC

The class AdaptiveMPC implements the optimization horizon adaptation strategies de-
scribed in Chapter 4. Since the corresponding Algorithms 4.8, 4.10, 4.14, 4.16, 4.19, 4.21,
4.23, 4.29, 4.37 and 4.40 are based on the suboptimality estimates from Chapter 3 it is
derived from the class SuboptimalityMPC implementing these estimates.
In particular, all methods from the class MPC are inherited such that a receding horizon
controller utilizing the additional estimation methods can be implemented identically. The
methods calc and shiftHorizon, however, are replaced to suit the adaptivity algorithms
from Chapter 4. Similar to the constructor of a class SuboptimalityMPC object, all
headers are identical such that only the class name within the construction/destruction
of the object needs to be replaced:

btmb::MPC2:: AdaptiveMPC * mpc_problem = new AdaptiveMPC ( INF

);

delete mpc_problem;

Listing 6.19: Constructing/Destructing call of a class AdaptiveMPC object

6.2.3.1 Starting the Calculation

In order to obtain an open–loop optimal control satisfying a predefined suboptimality
bound α, by calling

mpc_problem ->setConfigAdaptiveMPC ( alphabound , estimate ,

implementation , N0, sigma );

Listing 6.20: Calculation call for a class AdaptiveMPC object

the used suboptimality bound alphabound= α is set and the user chooses the subopti-
malty estimation method and the implementation of the adaptation algorithm by defining
the parameter estimate and implementation. Optionally, the configuration parameter
N0 = N0 of the a priori estimation method and the maximal steps sigma = σ can be set.

Variable Description
alphabound Lower suboptimality bound α to be satisfied
estimate Suboptimality estimation method

0: No estimation, standard MPC calc and shiftHorizon

methods are applied

1: A posteriori estimate according to Proposition 3.3

2: A posteriori practical estimate according to Proposi-
tion 3.28

3: A priori estimate according to Theorem 3.22

4: A priori practical estimate according to Theorem 3.39
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Variable Description
implementation Adaptation strategy

0: No adaptation applied

1: Simple shortening strategies 4.10, 4.19 and prolonga-
tion strategies 4.14, 4.21 depending on the choice of
the suboptimality estimation method

2: Simple shortening strategies 4.10, 4.19 and fixed
point strategy 4.23 for prolongation

3: Simple shortening strategies 4.10, 4.19 and monotone
strategy 4.29 for prolongation

N0 Auxilliary parameter N0 required by suboptimality esti-
mates according to Theorems 3.22 and 3.39

sigma Auxilliary parameter σ required by Algorithms 4.23 and
4.29

Table 6.6: Configuration parameters of a class AdaptiveMPC object

Once a class AdaptiveMPC object is configured, the method

mpc_problem ->calc( x );

Listing 6.21: Calculation call for a class AdaptiveMPC object

can be called to start the optimization and adaptation process. Due to the general struc-
ture of the receding horizon controller implemented in the PCC2 package, this call is
not identical to the algorithms described in Chapter 4 since the computation and im-
plementation of control sequences are separated. For the implementation, the method
shiftHorizon can be applied, see also Section 6.2.3.4.

6.2.3.2 Implemented Strategies

The different strategies of Algorithms 4.8, 4.16, 4.37 and 4.40 using the simple shortening
and prolongation strategies of Algorithms 4.10, 4.14, 4.19 and 4.21 are implemented in the
private method calcSimple, simpleShortening and simpleProlongation respectively.
Here, the configuration parameter implementation is used to choose a particular method.

Remark 6.13
Algorithms 4.11 and 4.20 which represent a mixed closed–open–loop strategy, are not im-
plemented separately. To obtain results for these algorithms, a repeated call of calc and
shiftHorizon can be used due to the principle of optimality. In this case, the endpiece
of the previous optimal control problem is identical to the actual (shifted) optimal control
problem. Hence, if the original solution was optimal, calling calc does not change the
solution and a call of shiftHorizon implements the actual first component of the control
vector.

The more sophisticated prolongation strategies of Algorithms 4.23 and 4.29 are imple-
mented in the private methods calcSimpleFixpoint and calcSimpleMonotone. Note
that these implementations are designed to allow for shortening the horizon only by the



154 Chapter 6: Numerical Implementation

shortening strategies 4.10 and 4.19. Again, the parameter implementation is used to
start the chosen methods.

Remark 6.14
The adaptation algorithms of Chapter 4 in methods calcSimple, calcSimpleFixpoint

and calcSimpleMonotone are separated from the required calls to the suboptimality esti-
mates of Chapter 3 since they are designed independently. The latter ones are implemented
in method calcAlpha described in the following Section 6.2.3.3.

6.2.3.3 Using Suboptimality Estimates

The parameter estimate defines the estimation method to be used by a call of the private
method calcAlpha, i.e. a posteriori, a priori or the corresponding practical variants, see
also Propositions 3.3 and 3.28 and Theorems 3.22 and 3.39.
In order to use the a priori methods from class SuboptimalityMPC, no additional com-
putations to call these methods are required since these methods rely on the actual state
vector x only, see Sections 6.2.2.2 and 6.2.2.4. The required calls are implemented in the
private method aprioriCalculatedEstimate.
The a posteriori methods on the other hand have to be based on a future state vector
which holds true at the first sampling instant in the actual time grid. The private method
predictedAposterioriEstimate computes this value and solves the required additional
shifted optimal control problem. Moreover, the call to the a posteriori estimation method
aposterioriEstimate or aposterioriPracticalEstimate is executed in this method
and the computed suboptimality estimate alpha = α is set.

6.2.3.4 Shift of the Horizon

Within our implementation of an adaptive receding horizon controller, we replace the
shift strategy shiftHorizon described in Section 6.2.1.5 if an a posteriori estimate is
used, i.e. if estimate ∈ {1, 2}. Here, we use the already acquired information of solving
the predicted shifted optimal control problem, see also Section 6.2.3.3. This allows us —
if no errors and state estimation errors occur — to reduce the additional effort for the
adaptation strategy to zero since the predicted shifted optimal control problem is identical
to the now actual one and no reoptimization is necessary.
In any other case, calling

mpc_problem ->shiftHorizon( x, H_NEW );

Listing 6.22: Shifting call for a class AdaptiveMPC object

calls the routine previously described in Section 6.2.1.5. Note that, in either case, the
calls are identical.

6.2.4 Class Discretization

The class Discretization can be used to create a class Discretization object which
transforms a possibly continuous–time optimal control problem into a discrete–time one.
Although this class can also be used outside a class MPC object, the underlying problem
still has to meet the specifications mentioned in Section 6.2.1.
Since we focus on solving a receding horizon control problem, we restate the discretization
in this context, i.e. we transform the optimal control problem from Section 6.2.1 to a
discrete problem of the following form:



6.2 Receding Horizon Controller 155

Find u[0,N−1] = argmin
uN∈UN

JN(x0, uN)

ST. JN(x0, uN) =
N−1∑

i=0

li (xuN
(i, x0), uN(x0, i))

+F (xuN
(N, x0))

xuN
(i + 1, x0) = f (xuN

(i, x0), uN(x0, i)) ∀i ∈ {0, . . . , N − 1}

xuN
(0, x0) = x0

xuN
(i, x0) ∈ X ∀i ∈ {0, . . . , N}

uN(x0, i) ∈ U ∀i ∈ {0, . . . , N − 1}

Here, the functions li(·, ·) correspond to the integrated Lagrangian term L(·, ·) plus the
summation term l(·, ·) which is to be evaluated at the sampling instants, i.e.

li(x, u) :=

ti+1∫

ti

L(x(τ), u(τ))dτ + l(x(ti), u(ti)). (6.1)

The classes MPC and Discretization are handled separately since one class MPC object
may use discretizations of several optimal control problems or several discretizations of
one optimal control problem.
Within the class Discretization we use the recursive discretization technique with mul-
tiple shooting nodes, see Sections 5.1.2 and 5.1.3. Hence, we obtain a discretized optimal
control problem stated in Definition 5.7 which is given in standard form for nonlinear
optimization

Minimize F (x) ∀x ∈ R
n

ST. Gi(x) = 0, i ∈ E

Hi(x) ≥ 0, i ∈ I

with optimization variable

x :=
(
u⊤

[0], . . . , u
⊤
[N−1], s

⊤
x

)⊤

Remark 6.15
Even if the underlying dynamic within a class MPC object is already given in discrete–time,
the discretization step is still necessary for memory allocation purposes.

6.2.4.1 Constructor / Destructor

Similar to a class MPC object, a class Discretization object is set up by calling

btmb::MPC2:: Discretization * problem = new btmb::MPC2::

Discretization ( object_odemanager , object_minimizer ,

object_model , length_horizon , infinity );

Listing 6.23: Constructing call of a class Discretization object

Due to the separation of the discretization from the receding horizon control problem
itself, the memory allocation necessary to handle variables and constraints is done within
this object. Background for this is the consideration of a possibly continuous–time optimal
control problem in a class MPC object and a discrete–time transformation within a class
Discretization object. The resulting optimization problem is of the general form
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Minimize F (x) ∀x ∈ R
n

ST. Gi(x) = 0, i ∈ E

Hi(x) ≥ 0, i ∈ I

Moreover, no computation of any kind is performed during this construction. In partic-
ular, it does not make sense to calculate any trajectory within a class Discretization

object itself since it cannot compute an optimal control sequence. This is the job of the
supplied class MinProg object. Hence, a class Discretization object makes use of an
class SqpFortran, SqpNagC or BtIpOpt object from one of the subclasses of class MinProg,
see Section 6.3.1, to solve this task. To this end, it manages the necessary memory and
provides procedures for the class MinProg object to compute the cost functional, its gra-
dient and the restriction function as well as the Jacobian of the restriction function.

6.2.4.2 Initialization

The initialization method of the class Discretization object is implemented identically
to a class MPC object and supplied for external use of this class only.

6.2.4.3 Calculation

After creating and initializing a class Discretization object, the underlying minimiza-
tion method from class MinProg can be called to solve the minimization problem. De-
pending on the choice of the minimizer the procedure

problem ->calc ( x );

Listing 6.24: Calculation call for a class Discretization object

executes this calculation. Here, a class Discretization object supplies the mentioned
private methods for computing the cost functional, its gradient and the restriction function
as well as the Jacobian of the restriction function at the discretization instances to the
class MinProg object. This defines the abstract minimization problem stated in Section
6.2.4.1.
For solving the abstact optimization problem, this results in the following:
A class Discretization object defines the abstract optimization problem by setting func-
tion pointers for the cost function, restrictions and the dynamic of the control problem.
Then, the method calc triggers the minimization routine to start the optimization. In
turn, the corresponding method of a class MinProg object calls a class IOdeManager ob-
ject to evalutate all required functions. Then, the class IOdeManager object passes the
function pointers and required evaluation data over to the differential equation solver
which is a class OdeSolve object.
Once all evaluations are done, the minimization routine computes a new set of optimiza-
tion variables. Since the implemented minimization methods are iterative solvers, the
predescribed process is repeated within every step until the minimization is terminated.

Remark 6.16
The advantage of this setting is not only the modularity of the considered components of
the algorithm, but also the separation of the allocated memory. In particular, once all
required objects are initialized, no further allocation or deletion of memory is triggered
— except for user modifications. This allows for an effective allocation of the memory
regarding the subproblems and increases the performance of the computation.
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Figure 6.8: Definition of the abstract optimization problem

Here, the vector x represents the initial value for the state trajectory to be controlled.
This allows us to implement the receding horizon controller independently from the actual
state and time of the plant. This is necessary since we cannot expect the optimal control
to be computed instantaneously, i.e. we have to use some kind of external prediction to
a future state when the computed control will be applied.
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T Optimization horizon
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Computational time τC

τmax

C

Sending new control sequence

Implementing new control sequence

Figure 6.9: Timescale of the closed–loop system

Remark 6.17
The timescale in Figure 6.9 indicates that the calculating procedure calc can/should be
initialized with a prediction of the state vector x at the implementation time instant. In
order to be applicable, this time instant should correspond to one of the sampling instants
after the new control sequence has arrived at the actuator.

Remark 6.18
Since the receding horizon control algorithm relies on an input initial state, the usage
of estimation procedures, sensor data or other input methods is possible and allows the
software to be used as a black box within a control setting.
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6.2.4.4 Other functions

The functions to compute the cost functional, its gradient and the restriction function as
well as the Jacobian of the restriction function are for internal use of minimization object
object_minimizer of class MinProg only. Calling these functions results in solving a
series of differential equation problems using a class OdeSolve object. The sequencing
of this series of calls is organized by class IOdeManager objects which we treat in the
following Section 6.2.5. For further details of the interaction of the classes, see Section
6.2.4.3.

6.2.5 Class IOdeManager

The purpose of the class IOdeManager is to cover three implementations for calculating
the values of the cost function, the constraints and their derivatives required by a class
MinProg object. The derivatives need to be computed with respect to every component of
the optimization variable (5.7). This allows for a simple definition and approximation of
the derivative of some function f(·) with respect to all components of x via the difference
quotient

Dvf(x) = lim
t→0

f(x + t · v) − f(x)

t
≈

f(x + t · v) − f(x)

t
(6.2)

where v ∈ RNm+s, ‖v‖ = 1 and t ∈ R.

Remark 6.19
In the receding horizon control context, we think of f(·) being either the cost functional
or one of the restriction functions. Moreover, the steplength t should be chosen depending
on the used computer, i.e. its floating point ability. Note that given an optimal control
problem, the computation of the difference quotient (6.2) may be sensitive if different
discretizations are used to compute f(x + t · v) and f(x). To circumvent this problem, we
additionally implemented a synchronized computation, see Section 6.2.5.3 below.

Within the context of optimizing a discretized optimal control problem, the function
values to be computed are depending on the state of the system and the control. Since
the state of the system is not contained in the optimization variable (5.7), neither the
cost function and the restrictions nor their derivatives can be evaluated.
Now, we use the additional information on the initial state of the system x0. This infor-
mation is provided by the user to the class MPC object by calling the calc method. By
this method, the information is passed over to the class Discretization object defining
the abstract optimization problem and hence the class MinProg object. Within the class
IOdeManager object called by the minimization routine of class MinProg, this allows us
to call a differential equation solver of class OdeSolve to solve the dynamic of the system
using this initial value x0 and the optimization variable x.
Hence, a class IOdemanager object provides a link between the classes MinProg and
OdeSolve to solve an optimal control problem.
Using the predescribed methodology, we can evaluate all required functions f(·) and,
using the difference quotient (6.2), all derivatives.
For the implementation of such a differential equation manager derived from the class
IOdeManager, we have to keep the following in mind:

(1) Memory requirements: A naive implementation is to compute and store all necessary
values, i.e. the trajectories for nominal and varied parameter sets. Such a strategy,
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however, requires a rather large storage capacity even for small systems. Considering
large differential equation systems like a discretization of a PDE, this may exceed
hardware limitations.

(2) Speed: Every evaluation of a function f(·) possibly triggers a call of the differential
equation solver. Hence, if the number of function evaluations is not reduced on
implementation, many calculations have to be performed which makes this part
computationally expensive.

(3) Correctness: The Lagrangian part of the cost function has to be evaluated along the
trajectory. To this end, an identical discretization has to be used for the evaluation
of this integral and the dynamic of the problem, see also [104] for a detailed analysis.
The same holds for the derivative of a function f(·), that is for the two required
evaluations of f(·) the same discretization grid should be considered.

Remark 6.20
The Lagrangian part of the cost function is appended to the dynamic of the system within
the class Discretization object. Since this new dynamic is handed over to the class
IOdeManager, the first part of the correctness requirement is fulfilled for all deduced classes
of class IOdeManager. Appending the cost function is convenient since in the minimiza-
tion routines of class MinProg, every evaluation of the cost function at the current iterate
is accompanied by an evaluation of the restriction functions.
Moreover, the class Discretization object combines the optimization variable according
to (5.7).

Within the receding horizon control setting, the Jacobian of the constraints has the fol-
lowing general structure:
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Figure 6.10: Structure of the Jacobian of the constraints

The number of function evaluations is growing quadratically in the horizon length N .
Moreover, a recomputation of these values has to be performed within a large number
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of the iteration steps of the minimization routine. Hence, an efficient implementation
is required for the receding horizon controller. For computing time comparisons of the
different IOdeManager subclasses see Section 8.2.

Remark 6.21
Note that the dimension of the constraints r may also depend on the optimization procedure
since not all methods treat box constraints as nonlinear constraints.

6.2.5.1 Class SimpleOdeManager

The class SimpleOdeManager is a straight forward implementation of a interface described
in the previous Section 6.2.5 which calculates all function values by solving the differential
equation on the whole optimization horizon for the given optimization variable. To utilize
an object of this type within the receding horizon controller, it can be constructed/de-
structed by calling

IOdeManager * object_odemanager = new SimpleOdeManager ;

delete object_odemanager;

Listing 6.25: Constructing/destructing call of a class SimpleOdeManager object

For memory purposes, this method is effective since no intermediate results are stored.
However, it is not computationally efficient since many identical calculation steps are re-
peated, see also Table 6.7. Moreover, the correctness aspect concerning the discretization
used to compute the derivatives is not satisfied.

Method Description
comdgl Attaches the Lagrangian part of the cost func-

tion to the differential equation system
calcObjectiveFunction Calculates the value of the cost function for a

fixed set of optimization variables considering
the appended differential equation of the dy-
namic, the summation term and the terminal
cost term, see Section 6.2.4

calcObjectiveFunctionGrad Computes the gradient of the cost function with
respect to all optimization variables

calcRestrFunction Calculates the values of all restrictions for all
sampling instances and a fixed set of optimiza-
tion variables

calcRestrFunctionGrad Computes the Jacobian update
Table 6.7: Calculation methods within class SimpleOdeManager

Remark 6.22
Since all derivatives are computed within the Jacobian of the constraints, the QP iteration
of the optimization routine is actually a Newton method with complete BFGS–update.

6.2.5.2 Class CacheOdeManager

To utilize the advantages of the quasi–Newton approach based on a reduced Hessian
approximation in the QP iterations, a class CacheOdeManager object calculates only the
required function values. An object of this class is constructed/destructed via
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IOdeManager * object_odemanager = new CacheOdeManager ;

delete object_odemanager;

Listing 6.26: Constructing/destructing call of a class CacheOdeManager object

In particular, it considers two aspects:

(1) The array needc of the optimization method is used to identify the columns in the
Jacobian of the constraints which have to be recomputed.

(2) Repeated function evaluations for identical optimization variables are avoided.

The implementation of the second aspect is a simple but very effective reordering of
calculations. Considering the control vectors and the multiple shooting nodes separately,
we note that changing the j-th value in this part of the optimization vector does not affect
the state trajectory values x(i) for i ∈ [0, . . . , j]. Therefore, we first compute the nominal
trajectory and store it. Then, the gradient of the cost functional and the required columns
of the Jacobian of the constraints are calculated starting from the end of the vectors of
control vectors. This is repeated for the vector of shooting nodes. In Figure 6.11, we
indicated the proposed method by thick black arrows.
Using the illustration of Figure 6.10, the algorithm computes the Jacobian update by
solving the dynamic of the control system in the top to bottom order of the arrows within
Figure 6.11. Here, the aspect (1) is integrated, i.e. only the required updates within
the Jacobian are actually computed. Within Figure 6.11, these are indicated in blue.
Since we have stored the nominal trajectory, one solution of the differential equation is
sufficient to compute one column of the Jacobian which yields the implementation to be
computationally efficient.
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Figure 6.11: Sequence of calculations within a class CacheOdeManager object

The methodology of the CacheOdeManager is split up in several methods:
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Method Description
comdgl Attaches the Lagrangian part of the cost func-

tion to the differential equation system
compareCache Compares actual set of time set, initial values

and control values to previous calls of the class
OdeSolve object

calcCache Calculates the value of the cost function when-
ever a combination of time set, initial values and
control values has not been handled yet

calcCacheDerived Calculates the value of the cost function when-
ever a combination of time set, initial values and
optimization variables has not been handled yet

calcObjectiveFunction Utilizes the compareCache and calcCache

methods to compute the value of the cost func-
tion

calcObjectiveFunctionGrad Utilizes the compareCache, calcCache and
calcCacheDerived methods to compute the
gradient of the cost function with respect to all
optimization variables

calcRestrFunction Utilizes the compareCache and calcCache

methods to compute the value of the restriction
function at one sampling instant

calcRestrFunctionGrad Computes the Jacobian update for columns in-
dicated by the array needc of the optimiza-
tion routine using the methods compareCache,
calcCache and calcCacheDerived

Table 6.8: Calculation methods within class CacheOdeManager

Remark 6.23
Class CacheOdeManager objects are not as robust as class SimpleOdeManager objects
regarding the correctness issue. We experienced problems with this class if the derivatives
of the Jacobian are small and changes in the optimization parameter sets result in changes
of the function value which are lower than the tolerance level of the differential equation
solver.

6.2.5.3 Class SyncOdeManager

Within the class SimpleOdeManager and the class CacheOdeManager, derivatives are com-
puted by separately solving two differential equations based on the nominal and an ap-
propriately changed set of parameters. This may lead to two different discretization grids.
Moreover, if the change between the resulting two trajectories is smaller than the tolerance
of the step–size controller, then the approximation of the derivative might be useless.

The class SyncOdeManager is designed to cope with this problem. The fundamental
principle is to combine several (one plus the number of optimization variables) copies of
the differential equation system and solve it by one call of the class OdeSolve object.
The resulting discretization grid is identical by definition such that the correctness issue
is satisfied. Similar to the class SimpleOdeManager and CacheOdeManager objects, the
calls
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IOdeManager * object_odemanager = new SyncOdeManager ;

delete object_odemanager;

Listing 6.27: Constructing/destructing call of a class SimpleOdeManager object

construct and destruct such a manager.
Within this class, the cacheing principle of class CacheOdeManager is applied to avoid
repeated calls of the differential equation solver for identical optimization parameter sets.
However, since the differential equation system is enlarged, the computational advantage
is reduced.

Method Description
comdgl Combines differential equation systems and the

Lagrangian part of the cost function to compute
the gradient of the cost function

diffcomdgl Combines differential equation systems and the
Lagrangian part of the cost function to compute
the Jacobian of the constraints

compareCache Compares actual set of time set, initial values
and control values to previous calls of the class
OdeSolve object

calcCache Calculates the value of the cost function when-
ever a combination of time set, initial values and
control values has not been handled yet

calcCacheDerived Calculates the value of the cost function when-
ever a combination of time set, initial values and
optimization variables has not been handled yet

calcObjectiveFunction Utilizes the compareCache and calcCache

methods to compute the value of the cost func-
tion

calcObjectiveFunctionGrad Utilizes the compareCache and
calcCacheDerived methods to compute
the gradient of the cost function with respect
to all optimization variables

calcRestrFunction Utilizes the compareCache and calcCache

methods to compute the value of the restriction
function at one sampling instant

calcRestrFunctionGrad Computes the Jacobian update for columns in-
dicated by the array needc of the optimization
routine using the methods compareCache and
calcCacheDerived

Table 6.9: Calculation methods within class SyncOdeManager

Concluding, the usage of the different implementations depends on the considered exam-
ple:

• A class SimpleOdeManager object is efficient in terms of the internal usage of mem-
ory. However, due to unnecessary differential equation solver calls, it is computa-
tionally costy and may exhibit correctness problems.



164 Chapter 6: Numerical Implementation

• A class SyncOdeManager object is designed to treat the correctness aspect. The
internal combination of the differential equation systems and the resulting effort to
compute the update of the Jacobian are treated efficiently but the inherent repeated
calculation of the nominal trajectory cannot be avoided. Moreover, combining the
dynamics results in longer solution times of the differential equation, hence it is in
general slower than a class SimpleOdeManager object.

• Implemented for speed, a class CacheOdeManager object outruns the other imple-
mentations concerning the calls of the differential equation solver and shows only
small memory allocations. However, robustness problems may occur and have to be
kept in mind.

6.3 Optimization

Within every step of the receding horizon control method, an optimal control problem
has to be solved, see Section 2.4. Using the PCC2 package this is done by calling
a class MinProg object to solve the abstract minimization problem defined by a class
Discretization object, see Section 6.2.4 for details.
In the following, we describe the purpose, implementation and setup of the optimization
routines implemented within the PCC2 package.

6.3.1 Class MinProg

Within the implementation of PCC2 we used two different methods for nonlinear pro-
gramming, so called active–set sequential quadratic programming (SQP) methods and
interior point (IP) methods. The class MinProg is contained in the library libminprog
and parents these solvers which are contained in the classes SqpFortran, SqpNagC and
BtIpOpt, i.e. the libraries libsqpf, libsqpnagc and libbtipopt. It presents a general
interface between the discretized version of the optimal control problem given by the class
Discretization and the requested form of an optimization problem within the classes
SqpFortran, SqpNagC and BtIpOpt, i.e. it represents an abstract optimization problem,
see also Figure 6.8 for the interconnection of the classes defining this problem.

Remark 6.24
The class BtIpOpt containing a wraparound for the interior point method IpOpt has been
implemented but is not yet optimized. For this reason, this class is not presented here.

6.3.1.1 Constructor / Destructor

Due to its parenting nature, a MinProg object is usually constructed by creating a class
SqpFortran, SqpNagC or BtIpOpt object. This automatically initializes the compatible
parts of these solvers. Any of the calls

btmb::MinProg :: MinProg * object_minimizer = new SqpFortran ;

btmb::MinProg :: MinProg * object_minimizer = new SqpNagC ;

btmb::MinProg :: MinProg * object_minimizer = new BtIpOpt ;

Listing 6.28: Constructors of a class SqpFortran/SqpNagC/BtIpOpt object

can be used for this purpose. Similarly, the destruction of such an object also removes
the class MinProg object.
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6.3.1.2 Initialization / Calculation

The memory allocation for the internal minimization routine structures is handled upon
initialization of a class MinProg object. In particular, the cost function and restriction
function structures are created and initialized with the correct function pointers of the
class Model provided by the calling class Discretization object.

Additionally, the parenting class MinProg offers the user the possibility to add a third
stopping criterion to the optimizers. The first two criteria are standard in all implemented
minimization routines and check whether a point satisfies the KKT conditions of Theorem
5.18 or if a maximal number of iterations has been reached, see also Sections 6.3.2 and
6.3.3 below. Here, a timing criterion is introduced which allows the user to stop the
optimization process at real–time instant t0 + CT where t0 is the real–time instant of
the start of the optimization, C > 0 is a scaling factor and T represents the sampling
time of the receding horizon controller. Hence, if a control shall be implemented at the
time instant T0 + T , the user may set the factor C < 1 to guarantee termination of the
optimization before the real–time instant t0 + T .

6.3.2 Class SqpFortran

The class SqpFortran contains the C++ wraparound of the FORTRAN77 SQP solver
NLPQLP of K. Schittkowski, see also [47, 202]. It is included in the library libsqpf and
the code is linked as external source in the C++ class.

The abstract optimization problem for this method is given by

Minimize F (x) ∀x ∈ R
n

ST. Gi(x) = 0, i ∈ E

Hi(x) ≥ 0, i ∈ I

and the method uses the merit function

L̃ξ(x, µ) :=F (x) −
∑

i∈J

(
µi −

ξj

2
Ai(x)

)
Ai(x) −

1

2

∑

i∈K

µ2
i

ξj
(6.3)

with J := E∪{i : i ∈ I, Hi(x) ≤ µj

ξj
}, K := (E∪I)\J and penalty parameter ξ controlling

the degree of constraint violation. These parameters are chosen to guarantee a decrease
in the merit function.

The optimization routine itself implements a modification of an active–set line search
method, see Section 5.2.5, allowing for l parallel function calls. The stability and con-
vergence issues of this algorithm have been treated in [47]. Moreover, it contains a non–
monotone line search, i.e. an increase within the merit function is allowed. For further
details, see Section 5.2.4.2. The update of the Jacobian of the constraints is computed
using a reduced Hessian approximation, see Section 5.2.4.4.

Implementations of active–set line search methods are known to show good performance
even for large–scale optimization problems with many optimization variables, cf. [203].
Within our receding horizon controller setting, this method shows outstanding perfor-
mance for small optimization problems. For a detailed computing time analysis we refer
to [88].
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6.3.2.1 Constructors

There exist two constructors for a class SqpFortran object, that is

btmb::MinProg :: MinProg * object_minimizer = new SqpFortran ;

btmb::MinProg :: MinProg * object_minimizer = new SqpFortran (

dimension_x , f, g, dimension_G , dimension_H , df, dg);

Listing 6.29: Constructors of a class SqpFortran object

The first one is the standard constructor which we use within the main programm of
PCC2. The second one, however, is optional and can be used for third party codes to
utilize this class. This constructor automatically calls the initialization routine which
needs to be done manually in the first case.
The header of the second constructor already indicates that within this class the standard
nomenclature of nonlinear optimization is used, see also the definition of the abstract
optimization problem in Section 6.3.1 which is inherited by the class SqpFortran.
In particular, the function pointer f denotes the cost function and g the equality and
inequality constraints. Note that for the usage of NLPQLP, g requires an internal ordering
of the constraints, i.e. the first dimension_G elements are the equality constraints which
are followed by the dimension_H inequality constraints. Moreover, the function pointer df
represents the gradient of the cost function and dg the Jacobian of the (active) constraints.

6.3.2.2 Initialization

The SQP routine NLPQLP is configured using default values for all user setable options.
Similar to the second constructor of this class, the initialization method is executed by
calling

object_minimizer ->init ( dimension_x , f, g, dimension_G ,

dimension_H , df, dg);

Listing 6.30: Initializing call of a class SqpFortran object

where the standard notation of nonlinear optimization applies as explained at the end of
the previous section.
The problem specifications are handled by the initialization routine of class MinProg, see
Section 6.3.1.2. Hence, we do not have to worry about handling the discretization and
the function pointers anymore within this class.

Remark 6.25
The initialization of class MinProg is written for any kind of optimization problem. Hence,
if a standard optimization problem shall be solved outside our standard receding horizon
control setting using an object of class MinProg object, the user can simply supply the size
of the problem as well as cost function, restrictions and their derivatives respectively.

Additionally, the routine allocates the memory used by the SQP algorithm NLPQLP. To
this end several constants need to be set, that is

Variable Default Description
dimension_x Number of optimization vari-

ables
dimension_G Number of constraints
dimension_H Number of equality constraints
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Variable Default Description
nmax dimension_x + 1 Row dimension of the Hessian

of the cost functional
mmax nrest + 1 Row dimension of the Jacobian

of constraints
mnn2 nrest + 2dimension_x + 2 Number of Lagrangian multi-

pliers
lwa 9nrest+⌈3

2
nmax2⌉+33nmax+200 Size of working double array

lkwa nmax + 10 Size of working integer array
lactive 2nrest + 10 Size of logical array of active

constraints
Table 6.10: Constants within the class SqpFortran

Note that in our implementation the readily setable constant l which characterizes the
number of parallel line searches is taken to be one.

Variable Description
x Initially, the first column of x has to contain starting values for the

optimal solution. On return, x is replaced by the current iterate.
In the driving program the row dimension of x has to be equal to
nmax.

f On return, f contains the cost function values at the final iterate
x.

g On return, g contains the constraint function values at the final
iterate x. In the driving program the row dimension of g has to be
equal to mmax.

gvalue1 gvalue1 is used to store the undisturbed values of the constraints
to compute the Jacobian.

gvalue2 Similarly, gvalue2 is used to store the disturbed values of the con-
straints.

df df contains intermediate gradients of the objective function.
dg dg is used to store gradients of the active constraints at a current

iterate x. The remaining rows are filled with previously computed
gradients. In the driving program the row dimension of dg has to
be equal to mmax.

u u contains the multipliers with respect to the actual iterate stored in
the first column of x. The first nrest locations contain the multipli-
ers of the nonlinear constraints, the subsequent dimension_x loca-
tions the multipliers of the lower bounds, and the final dimension_x
locations the multipliers of the upper bounds. At an optimal so-
lution, all multipliers with respect to inequality constraints should
be nonnegative.

d The elements of the diagonal matrix of the LDL decomposition of
the quasi–ewton matrix are stored in the one-dimensional array d.
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Variable Description
c On return, c contains the last computed approximation of the Hes-

sian matrix of the Lagrangian function stored in form of an LDL
decomposition. c contains the lower triangular factor of an LDL
factorization of the final quasi-Newton matrix (without diagonal
elements, which are always one). In the driving program, the row
dimension of c has to be equal to nmax.

wa Working double array
kwa Working integer array
active Logical array of active constraints

Table 6.11: Memory allocation within class SqpFortran

Last, some variables for the optimization routine QPSOLVE need to be set. Note that
these values massively influence the configuration and hence the result of the optimization.

Variable Default Description
l 1 Number of parallel systems, i.e. function calls during line

search at predetermined iterates
accuracy 10−6 Final accuracy of the optimizer, its value should not be

smaller than the accuracy by which gradients are com-
puted.

accql 10−8 This constant is used by the QP solver to perform e.g.
testing optimality conditions or whether a number is con-
sidered as zero. If qccql is less or equal to zero, then the
machine precision is computed and subsequently multi-
plied by 104.

stepmin accuracy Steplength reduction factor, recommended is any value
in the order of the accuracy by which functions are com-
puted.

maxfun 20 This variable defines an upper bound for the number of
function calls during the line search (e.g. 20). maxfun

must not be greater than 50.
maxit 100 Maximum number of outer iterations, where one itera-

tion corresponds to one formulation and solution of the
quadratic programming subproblem, or, alternatively, one
evaluation of gradients.

max_nm 0 Stack size for storing merit function values at previous
iterations for non-monotone line search (e.g. 10). In case
of max_nm = 0, monotone line search is performed. max_nm
should not be greater than 50.

tol_nm 10−1 Relative bound for increase of merit function value, if line
search is not successful during the very first step. Must
be nonnegative.

lql true If lql = true, the quadratic programming subproblem is
to be solved with a full positive definite quasi-Newton ma-
trix. Otherwise, a Cholesky decomposition is performed
and updated, so that the subproblem matrix contains only
an upper triangular factor.
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Variable Default Description
iprint 0 Specification of the desired output level.

iprint = 0: No output of the program.

iprint = 1: Only a final convergence analysis is
given.

iprint = 2: One line of intermediate results is
printed in each iteration.

iprint = 3: More detailed information is printed
in each iteration step, e.g. variable, constraint and
multiplier values.

iprint = 4: In addition to ’IPRINT=3’, merit
function and steplength values are displayed during
the line search.

iout 6 Integer indicating the desired output unit number
mode 0 The parameter specifies the desired version of NLPQLP.

mode = 0: Normal execution (reverse communica-
tion!).

mode = 1: The user wants to provide an initial guess
for the multipliers in u and for the Hessian of the
Lagrangian function in c and d in form of an LDL
decomposition.

Table 6.12: Input parameter of the class SqpFortran

6.3.2.3 Calculation

After creating and initializing a class SqpFortran object, the abstract optimization prob-
lem defined by the class Discretization within the class MinProg can now be solved by
calling

object_minimizer ->calcMin( x, fx, lb, ub);

Listing 6.31: Calculation call to a class SqpFortran object

Within the receding horizon control procedure this call is triggered by the function calc

of a class Discretization object.
This command causes the routine NLPQLP to be executed solving the abstract opti-
mization problem iteratively. In turn, this routine repeatedly demands calculations of
the values of all functions, that is cost function and restrictions, and all derivatives, i.e.
gradient of the cost function and Jacobian of the restrictions. These values are supplied
by a class IOdeManager object, see Section 6.2.5 for details.
Upon termination, the flag IFAIL is set automatically. Here, the following outcome may
occur:
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Value Description
IFAIL = −2 Compute gradient values with respect to the variables stored

in x, and store them in df and dg. Only derivatives for active
constraints active[j] = true need to be computed. Then
call NLPQLP again.

IFAIL = −1 Compute objective function and all constraint values subject
the variable x and store them in f and g. Then call NLPQLP
again.

IFAIL = 0 The optimality conditions are satisfied.
IFAIL = 1 The algorithm has been stopped after maxit iterations.
IFAIL = 2 The algorithm computed an uphill search direction.
IFAIL = 3 Underflow occurred when determining a new approximation

matrix for the Hessian of the Lagrangian.
IFAIL = 4 The line search could not be terminated successfully.
IFAIL = 5 Length of a working array is too short. More detailed error

information is obtained with iprint > 0.
IFAIL = 6 There are false dimensions.
IFAIL = 7 The search direction is close to zero, but the current iterate

is still infeasible.
IFAIL = 8 The starting point violates a lower or upper bound.
IFAIL = 9 Wrong input parameter.
IFAIL = 10 Internal inconsistency of the quadratic subproblem, division

by zero.
IFAIL > 100 The solution of the quadratic programming subproblem has

been terminated with an error message and IFAIL is set to
IFQL+ 100, where IFQL denotes the index of an inconsistent
constraint.

Table 6.13: Error flags of NLPQLP

Remark 6.26
As mentioned at the end of Section 5.2.6, the sequence of evaluations is important for
the speed of the minimizer. The implementation of NLPQLP demands a recomputation of
parts of the variables df and dg if IFAIL= −2. This allows us to use information in the
differential equation managers of class IOdeManager to simultaneously compute df and
dg.

6.3.3 Class SqpNagC

The class SqpNagC is, similar to the class SqpFortran, a wraparound of the procedure
nag_opt_nlp_solve (e04wdc) of the Numerical Algorithms Group2.

This method implements a modification of a trust–region SQP algorithm, see Section 5.2.6
for the general setting and [78] for details. The algorithm is designed to cope efficiently
with large–scale optimization problems and few optimization variables. In [88], it has been
shown that given such a situation, a class SqpNagC object outruns a class SqpFortran

object in terms of speed. The algorithm itself distinguishes between certain types of
constraints, that is box constraints, linear constraints and nonlinear constraints. This has

2Webpage: http://www.nag.co.uk

http://www.nag.co.uk


6.3 Optimization 171

been introduced for reasons of computing efficiency. Moreover, upper and lower bounds
have to be assigned for every constraint. Hence, the abstract optimization problem for
this method is given by

Minimize F (x) ∀x ∈ R
n

ST. l ≤




x
Ax

C(x)


 ≤ u

where A ∈ R
nl×nl is a constant matrix and C : R

n → R
p represents the nonlinear

constraints. The constraints are internally transformed to G(x) ≥ 0. The merit function
used by this algorithm is given by

L̃ξ(x, µ) := F (x) + µ⊤ (G(x) − s) +
1

2

r∑

i=1

ξi (Gi(x) − si)
2 (6.4)

where ξ is a penalty vector and s the vector of slackness variables. The penalty vector ξ
is updated using the linearly constrained least–squares problem

Minimize ‖ξ‖2
2 ∀ξ ∈ R

r

ST. ∇L̃ξ(x, µ) ≤ −
1

2
d(k)B(k)d(k)

defining a penalty vector ξ⋆ such that ∇L̃ξ(x, µ) ≤ −1
2
d(k)B(k)d(k) for any ξ ≥ ξ⋆, i.e. the

directional derivative is sufficiently negative to ensure a decrease in the merit function
(6.4). The required decrease in the penalty vector to ensure convergence is implemented
by setting

ξi = max{ξ⋆
i , ξ̂i} where ξ̂i =

{
ξi if ξi < 4(ξ⋆

i + ∆ξ)√
ξi(ξ⋆

i + ∆ξ) else

∆ξ is set to one at start and is doubled whenever strict monotonicity of ‖ξi‖2, either
decreasing or increasing, after at least two consecutive steps is violated which prohibits
oscillation in the penalty vector and ensures ξ → ξ.
The minimization itself is implemented as a trust–region SQP, see Algorithm 5.61, using
a reduced Hessian BFGS update and a watchdog algorithm, see Sections 5.2.4.4 and 5.2.4.2
respectively. Moreover, it contains an elastic mode to deal with inconsistent linearizations,
see Section 5.2.4.3.

6.3.3.1 Constructors

In order to be easily exchangable within the PCC2 program, the constructors

btmb::MinProg :: MinProg * object_minimizer = new SqpNagC ;

btmb::MinProg :: MinProg * object_minimizer = new SqpNagC (

dimension_x , f, g, dimension_G , dimension_H , df, dg);

Listing 6.32: Constructors of a class SqpNagC object

and the initialization routine
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object_minimizer ->init ( dimension_x , f, g, dimension_G ,

dimension_H , df, dg);

Listing 6.33: Initializing call of a class SqpNagC object

of class SqpNagC and class SqpFortran objects are identical, see Sections 6.3.2.1 and
6.3.2.2 for details.

6.3.3.2 Initialization

Again, pointers to the problem details such as cost functional and its gradient, constraints
and the corresponding Jacobian as well as their parameter are set by the class MinProg,
see Section 6.3.1.2.
The optimization routine of a class SqpNagC object, however, requires a different memory
setup than a class SqpFortran object which has to be provided according to the discretized
problem. Hence, the following variables are declared and allocated within the initialization
routine:

Variable Description
nctotl Number of optimization variables
x Initially, x contains an initial guess for the optimal solution. On

return, x is replaced by the current iterate.
f On return, f contains the cost function values at the final iterate

x.
g On return, g contains the nonlinear constraint function values at

the final iterate x.
lb, ub lb must contain the lower bounds, ub the upper bounds for all

the constraints. Here, the first n elements of each array must con-
tain the bounds on the variables, the next nl elements the bounds
for the general linear constraints (if any) and the next p elements
the bounds for the general nonlinear constraints (if any). To spec-
ify a non-existent upper/lower bound, set lb[j-1] ≤ ±bigbnd

where bigbnd is the optional argument Infinite Bound Size of
the procedure. To specify the j–th constraint as an equality, set
lb[j-1] = ub[j-1] = a where |a| < bigbnd.

ccon If there exist nonlinear constraints then ccon[i-1] contains the
value of the i–th constraint function Ci(x).

cjac This array contains the Jacobian matrix of the nonlinear constraint
functions at the final iterate, i.e. cjac[i][j] represents the partial
derivative of the i–th constraint function with respect to the j–th
variable.

clambda The values of the QP multipliers from the last QP subproblem are
stored within this variable.

grad Represents the gradient of the cost function at the last iterate.
hess This array contains the Hessian of the Lagrangian at the final esti-

mate.
gvalue1 gvalue1 is used to store the undisturbed values of the constraints

to compute the Jacobian.
gvalue2 Similarly, gvalue2 is used to store the disturbed values of the con-

straints.



6.3 Optimization 173

Variable Description
state Must not be modified in any way by the user since it contains

internal information required for functions in this algorithm.
comm This variable is a communication structure with a generic pointer.

It can be used to communicate double and integer pointers with no
casting.

fail The structure fail is an NAG internal error structure which can
be used to identify errorcodes delivered by a routine. It contains
the 5 members:

code refers to a fixed error or warning code.

print needs to be set before calling a routine refering to fail.
If it is set to Nag_True the error message message is printed,
Nag_False otherwise.

message contains the error text.

errnum may deliver additional information about the warning
or error.

(*handler)(char*,int,char*) handles errors.

Table 6.14: Variables and arrays within the class SqpNagC

Moreover, the integer array istate needs not to be set if a cold start of the routine
is performed. In case of a warm start, it needs to contain expectations whether the
constraints are active as shown in Table 6.15. Note that the variable istate contains all
restrictions in the same sequence as in lb and ub.

istate Description
0 Constraint is not expected to be active.
1 Constraint is expected to be active on lower bound.
2 Constraint is expected to be active on upper bound.
3 Constraint is an equality constraint.

Table 6.15: Setting expectation of active constraints in class SqpNagC

On exit of the procedure, this variable contains all information about whether a constraint
is active or not. This can be read out using the identification shown in Table 6.16.

istate Description
-2 Lower bound is violated by more than δ.
-1 Upper bound is violated by more than δ.
0 Both bounds are satisfied with more than δ.
1 Lower bound is active (to within δ).
2 Upper bound is active (to within δ).
3 Both bounds are equal and are satisfied (to within δ).

Table 6.16: Obtaining information about active constraints in class SqpNagC
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where δ is an internal value.

6.3.3.3 Calculation

Similar to class SqpFortran the optimization problem is solved using a class SqpNagC

object by calling

object_minimizer ->calcMin ( x, fx, lb, ub, rpar , ipar);

Listing 6.34: Calculation call to a class SqpNagC object

Within our receding horizon control procedure, this function is called by the method calc

of a class Discretization object.
Similar to class SqpFortran, this method causes the SQP algorithm to be executed, see
Section 6.3.2.3 for details. On exit, the variable fail contains either the code for successful
termination of the algorithm or the resulting error code, that is

Code Description
NW_TOO_MANY_ITER Maximal number of iterations reached
NE_ALLOC_FAIL Internal error: memory allocation failed
NE_ALLOC_INSUFFICIENT Internal memory allocation was insufficient
NE_BAD_PARAM Basis file dimensions do not match this problem
NE_BASIS_FAILURE Error in basis package
NE_DERIV_ERRORS User-supplied function computes incorrect con-

straint or objective derivatives
NE_E04WCC_NOT_INIT Initialization function nag_opt_nlp_init has not

been called
NE_INT Error in problem setup
NE_INT_2 Error in problem setup
NE_INT_3 Error in problem setup
NE_INTERNAL_ERROR Internal Error occurred, set option Print File and

examine output
NE_REAL_2 Error in problem setup
NE_UNBOUNDED Problem seems to be unbounded
NE_USER_STOP User-supplied function requested termination
NE_USRFUN_UNDEFINED User-supplied function not defined
NW_NOT_FEASIBLE Problem appears to be infeasible

Table 6.17: Error codes of e04wdc

Internally, the algorithm repeatedly calls functions confun and objfun which in our
receding horizon controller setting are linked back to a class IOdeManager object, a class
Model object and a class OdeSolve object, compare Figure 6.8.

Function Description
confun User-supplied function to evaluate the constraints

and the Jacobian of the constraints of the problem
objfun User-supplied function to evaluate the cost func-

tion and its gradient
Table 6.18: Functions of e04wdc
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As mentioned at the end of Section 5.2.6, these computations are in a bad order in
the receding horizon context since the gradient of the cost function and the Jacobian of
the constraints are computed separately. Note, however, that a class CacheOdeManager

or SyncOdeManager object may compensate for this since previous evaluations of the
dynamic of the system are stored.

6.4 Differential Equation Solver

Since the receding horizon controller is designed to solve a sequence of shifted optimal con-
trol problems resulting from a discretization of the dynamic of the system, its restrictions
and the corresponding cost functional, the values of the state of the system at the dis-
cretization points must be known. To compute these values, differential equation solvers
can be used. The solver, in turn, require initial states of the states and all parameters of
the dynamic. In our receding horizon controller context, these values correspond to the
optimization variable (5.10) and the initial values (5.4).
The implemented differential equation solvers are contained in the library libodesol2.
For ease of implementation, the configuration of a solver should be stored separately which
induces the classes OdeSolve and OdeConfig.

6.4.1 Class OdeSolve

The differential equation solvers are parented by the class OdeSolve. In the current
version, the following methods are implemented:

Shortcut Name and Order of Convergence
DoPri5 explicit Runge-Kutta method of order 5(4)
DoPri853 explicit Runge-Kutta method of order 8(5,3)
Radau5 implicit Runge-Kutta method of order 5
Radau5913 implicit Runge-Kutta method of variable order (switches

automatically between orders 5, 9, and 13)
RecurseSequence Implements discrete–time systems
Euler explicit Euler method

Table 6.19: Classes derived from class OdeSolve

Within the PCC2 package, objects of this class are constructed by class Model objects.
Yet, they can also be constructed using one of the calls

OdeSolve * object_solver = new btmb:: OdeSol2 ::DoPri5 ;

OdeSolve * object_solver = new btmb:: OdeSol2 ::DoPri853 ;

OdeSolve * object_solver = new btmb:: OdeSol2 ::Radau5 ;

OdeSolve * object_solver = new btmb:: OdeSol2 :: Radau5913 ;

OdeSolve * object_solver = new btmb:: OdeSol2 :: RecurseSequence ;

OdeSolve * object_solver = new btmb:: OdeSol2 ::Euler ;

Listing 6.35: Constructing call of a class OdeSolve object

and destructed by calling the corresponding destructor of the chosen class

delete object_solver;

Listing 6.36: Destructing call of a class OdeSolve object
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Internally, the class OdeSolve manages the common functions of all subclasses, i.e.

Function Description
reset( func, config ) Sets dynamic and configuration of the

object
resize( dimension ) Changes the dimension of the dynamic
refreshConfig Adopts all changes within the

OdeConfig object
calc( t, rpar, ipar ) Solves the dynamic with terminal time

t and parameter sets rpar and ipar

assertMemory Allocates the required memory
assertConfig Submits changes of configuration
assertValidDGL( dgl ) Allows subclasses to check whether a

newly added differential equation system
can be solved

abstractCalc( t, rpar, ipar ) Abstract method which is modified by
the subclasses and called by the calc

method
Table 6.20: Functions managed within class OdeSolve

which are inherited or replace by the subclasses. Additionally, all shared parameters

Variable Description
dimension Dimension of the dynamic
func Function structure of type OdeFunction representing

the right hand side
config Configuration object of class OdeConfig
t Current time instant
y Current state vector
paramdata Structure of type ODEPARAMS to save the parameter of

the differential equation system
did Return value of the called method:

did = 1: Successful computation

did = 2: Successful computation interrupted by
output

did = −1: Inconsistent input

did = −2: Maximal number of steps too small

did = −3: Minimal step size too small

did = −4: Problem appears to be stiff
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Variable Description
iout Outputparameter:

iout ≥ 1: Output of the state vector for every
accepted step

iout = 0: No output but dummy function re-
quired

rtol Relative tolerance
atol Absolute tolerance
rtol_vec Vector of relative tolerances
atol_vec Vector of absolute tolerances
itol Distinguishing parameter for tolerances:

itol = 0: rtol, atol are scalar

itol ≥ 0: rtol, atol are vectors

solout Function pointer for continuous output
initial_value_set Boolean to check for supplied initial value
work Working array of double values
lwork Size of the working array work

iwork Working array of integer values
liwork Size of the working array iwork

Table 6.21: Parameters managed within class OdeSolve

are contained inside this parenting class. Within our receding horizon controller setting,
these values are set by the class Model object which initialized such an OdeSolve object,
either directly or indirectly using an class OdeConfig object.

6.4.2 Class OdeConfig

The class OdeConfig can be used to construct an object to set up a given differential
equation solver from class OdeSolve. It is purely for configuration purposes and no
calculations of any kind are done by the methods of such an object.
Since not all differential equation solver derived from class OdeSolve reveal the same
parameters, the class OdeConfig is parenting the classes DopriConfig, RadauConfig and
Radau5913Config and manages the following shared parameters:

Variable Default Description
rtol 10−6 Relative tolerance
atol 10−6 Absolute tolerance
rtol_vec Vector of relative tolerances
atol_vec Vector of absolute tolerances
max_steps 107 Maximal number of integra-

tion steps
ss_fac1 0.2 Security factor representing

the lower bound in the relative
change of the step size
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Variable Default Description
ss_fac2 10 Security factor representing

the upper bound in the relative
change of the step size

max_stepsize Length of interval Largest allowable step size
initial_stepsize Calculated numerically Initial step size
safety_factor 0.9 Security factor

Table 6.22: Parameters of class OdeConfig

Note that the class RecurseSequence does not contain any parameters since it deals with
discrete–time systems. Within the subclasses, the remaining parameters are stored.

Variable Default Description
DoPri5 and DoPri853 (requires DoPriConfig)
stiff_teststeps 1000 Allowed number of steps to test for stiff-

ness of the dynamic
beta 0.04 Stability parameter of the step size control
Radau5 and Radau5913 (requires RadauConfig)
enable_hessenberg 0 Uses Hessenberg transformation if set to 1
newton_steps 7 Maximal number of Newton steps
jac_step 0.001 Step size bound for the Jacobian to be re-

computed
strat Gustaffson Step size control strategy (Gustaffson or

Classic)
sf_fac1 1.0 Lower bound for the relative change in the

step size sf_fac1 ≤ hnew

hold

sf_fac2 1.2 Upper bound for the relative change in the
step size hnew

hold
≤ sf_fac2

Radau5913 (requires Radau5913Config)
isValidStage true Validity check variable
os_inc 0.002 Lower bound for contraction to increase

the order of the solver
os_dec 0.8 Upper bound for contraction to decrease

the order of the solver
os_fac1 0.8 Order is only decreased if os_fac1 ≤ hnew

hold

os_fac2 1.2 Order is only decreased if hnew

hold
≤ os_fac2

s_min 3 Minimal number of stages
s_max 7 Maximal number of stages
s_first 3 Choice of stages on initialization

Table 6.23: Parameters of class OdeConfig

All these parameters can be changed to adapt the solver using the set– and get– methods
of the class. For numerical results regarding those parameters which exhibit a major
impact on the computing time, see Section 8.1.
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6.5 Getting started

After explaining the setup and interaction of the main classes in the PCC2 package, we
now show how to implement an example. Here, we focus on explaining the essential parts
required in the main program and the example class. A complete program is contained
in Appendix A. Note that the program requires the libraries

• libmpc2 (containing the RHC procedures, the discretization and odemanager),

• libodesol2 (providing ODE solvers),

• libbtmbutils (for basic functions like timing or saving data) and

• libsqpf (chosen minimization routine)

to be compiled appropriately such that the classes can be used.

6.5.1 An Example Class

Since the class Model defines an abstract example, see Section 6.1.1, we have to define a
class derived from the class Model to define our example. Here, the constructor has the
form

InvertedPendulum:: InvertedPendulum()

: btmb:: MPC2:: Model ( new btmb::OdeSol2 :: DoPri853 (),

new btmb::OdeSol2 :: DoPriConfig(),

4,

1,

1,

4 )

{

setDoubleParameter ( 0, 0.007 );

setDoubleParameter ( 1, 1.25 );

setDoubleParameter ( 2, 9.81 );

setDoubleParameter ( 3, 0.197 );

getOdeConfig()->setTolerance ( 1E-10, 1E-10 );

}

Listing 6.37: Constructor of an example of a class Model object

defining the OdeSolve and OdeConfig objects and setting the size of the problem, in order
of appearance, dimension of the state, dimension of the control, number of restrictions
and number of model parameters.
The destructor is given by

InvertedPendulum::~ InvertedPendulum()

{

delete getOdeSolver();

delete getOdeConfig();

}

Listing 6.38: Destructor of an example of a class Model object
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Next, we have to define all functions stated in Table 6.1. The dynamics of the control
system as described in (7.8) – (7.11) within our example class is implemented via

void InvertedPendulum:: dglFunction ( double t, double * x, double

* u, double * dx )

{

dx[0] = x[1];

dx[1] = - params[2] * sin ( x[0] ) / params [1] - u[0] * cos (

x[0] ) - params[0] * atan ( 1.0e3 * x[1] ) * x[1] * x[1] -

( 4.0 * x[1] / ( 1.0 + 4.0 * x[1] * x[1] ) + 2.0 * atan (

2.0 * x[1] ) / PI ) * params [3];

dx[2] = x[3];

dx[3] = u[0];

}

Listing 6.39: Implementation of the dynamic of the system

The cost functional (7.12) needs to be separated into two functions,

double InvertedPendulum:: objectiveFunction ( double t, double * x

, double * u )

{

double sinxpi = sin ( x[0] - PI );

double cosy = cos ( x[1] );

double temp = ( 1.0 - cos ( x[0] - PI ) ) * ( 1.0 + cosy *

cosy );

return 1.0e-1 * pow ( 3.51 * sinxpi * sinxpi + ( 4.82 *

sinxpi + 2.31 * x[1] ) * x[1] + 2.0 * temp * temp + 1.0 * x

[2] * x[2] + 1.0 * x[3] * x[3], 2.0 );

}

Listing 6.40: Implementation of the Lagrangian part of the cost functional

and

double InvertedPendulum:: pointcostFunction ( int length , int

horizon , double * t, double * x, double * u )

{

if ( length < horizon )

{

return 0.0;

}

else

{

double * lastx = &x[ ( horizon - 1 ) * 4];

double sinxpi = sin ( lastx[0] - PI );

double cosy = cos ( lastx[1] );

double temp = ( 1.0 - cos ( lastx[0] - PI ) ) * ( 1.0 +

cosy * cosy );

return pow ( 3.51 * sinxpi * sinxpi + ( 4.82 * sinxpi +

2.31 * lastx[1] ) * lastx[1] + 2.0 * temp * temp + 1.0

* pow ( lastx[2], 2.0 ) + 1.0 * lastx[3] * lastx[3],

2.0 );
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}

}

Listing 6.41: Implementation of the Mayer part of the cost functional

Here, the discrete part of the cost functional implementation simulates a Mayer–term.
These two parts are weigthed equally using the weighting method

void InvertedPendulum:: getObjectiveWeight ( double & obj_weight ,

double & pointcost_weight )

{

obj_weight = 1.0;

pointcost_weight = 1.0;

}

Listing 6.42: Weighting of the two cost functional parts

Even if there are no non–constant restrictions, we have to define the corresponding func-
tion

void InvertedPendulum:: restrictionFunction ( double t, double * x

, double * u, double * fx )

{

}

Listing 6.43: Implementation of the non–constant restrictions

The box constraints (7.15) and (7.16) are set within the methods

void InvertedPendulum:: getControlBounds ( double * lb, double *

ub )

{

lb[0] = -5.0;

ub[0] = 5.0;

}

Listing 6.44: Implementation of the constant control restrictions

and

void InvertedPendulum:: getModelBounds ( double * lb, double * ub

)

{

lb[0] = -INF;

lb[1] = -INF;

lb[2] = -5.0;

lb[3] = -10.0;

ub[0] = INF;

ub[1] = INF;

ub[2] = 5.0;

ub[3] = 10.0;

}

Listing 6.45: Implementation of the constant state restrictions

The default initial value for the inverted pendulum is defined in
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void InvertedPendulum:: getDefaultState ( double * x )

{

x[0] = 0.0;

x[1] = 0.0;

x[2] = 0.0;

x[3] = 0.0;

}

Listing 6.46: Setting default initial values of the state

and similarly the default control vector is given in

void InvertedPendulum:: getDefaultControl ( double * u )

{

u[0] = 0.0;

}

Listing 6.47: Memory allocation and definition of the initial guess for the control

Here, we use two multiple shooting points which are situated on the first dimension of
the state at sampling instants 13 and 15. The corresponding function are given by

int InvertedPendulum:: getShootingDataLength ( int horizon )

{

return 2;

}

int InvertedPendulum:: getMaxShootingDataLength ( int maxhorizon )

{

return 2;

}

void InvertedPendulum:: getShootingDataInfo ( int horizon , btmb::

MPC2:: STARTDATA * sdata )

{

sdata[0].horizontindex = 13;

sdata[0].varindex = 0;

sdata[1].horizontindex = 15;

sdata[1].varindex = 0;

}

Listing 6.48: Definition and setting of the multiple shooting nodes

To set the values of these points, we use the function

void InvertedPendulum:: eventBeforeMPC ( int horizon , double * t,

double * x, double * sdatavalues )

{

sdatavalues[0] = 3.1415;

sdatavalues[1] = 3.1415;

}

Listing 6.49: Automated resets before each step in the RHC algorithm
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6.5.2 A Main Program

The control problem itself is defined within the main program, cf. Figure 6.2. According
to the mentioned hierarchy, a minimization routine derived from the class MinProg and
a linking differential equation manager method from class IOdeManager are required to
construct an object of class MPC.

Remark 6.27
The differential equation solver object and its configuration are predefined by the con-
structor of the example derived from the class Model, see Listing 6.37. Hence, only the
optimizer, the manager and the example must be known at this stage.

Model * object_model = new InvertedPendulum();

IOdeManager * object_odemanager = new SimpleOdeManager();

btmb::MinProg :: MinProg * object_minimizer = new SqpFortran();

InvertedPendulum * object_modelspecify = ( ( InvertedPendulum

* ) object_model );

btmb::MPC2::MPC * mpc_problem = new MPC ( INF );

mpc_problem ->reset ( object_odemanager , object_minimizer ,

object_model , HORIZON );

Listing 6.50: Definition and Initialization of a class MPC object

The construction of the controller object from class MPC configures the minimizer object
implicitly using standard values, e.g. for optimality tolerance and iteration bounds. These
settings may be specified within the main program via

SqpFortran * object_minimizerSpecify = ( ( SqpFortran * )

object_minimizer );

object_minimizerSpecify ->setAccuracy ( 1E-8 );

object_minimizerSpecify ->setMaxFun ( 20 );

object_minimizerSpecify ->setMaxIterations ( 1000 );

object_minimizerSpecify ->setLineSearchTol ( 0.1 );

Listing 6.51: Configuration of a class MinProg object

Since the example does neither provide initial values for the state, nor a time grid for the
discretization nor an initial guess of the optimal control, these arrays have to be defined
within the main program. Here, the user can utilize methods predefined in the class MPC
and the class Model objects to avoid segmentation faults.

double * u, * next_u , * t, * x;

next_u = ( double * ) malloc ( sizeof ( double ) *

object_model ->getDimensionControl() );

x = ( double * ) malloc ( sizeof ( double ) * object_model ->

getDimension() );

object_modelspecify ->getDefaultState ( x );

mpc_problem ->allocateMemory ( t, u );

mpc_problem ->initCalc ( t, u );

Listing 6.52: Memory allocation of the state, control and time variable

Setting appropriate values may now be performed using external sources. For simulation
purposes, as in our example, the default methods of the example class can be used.
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for ( int i = 0; i < HORIZON; i++ )

{

object_model ->getDefaultControl ( & u[i * object_model ->

getDimensionControl() ] );

}

Listing 6.53: Setting initial state and control values

Moreover, the initial time grid needs to be set

for ( int i = 0; i < HORIZON + 1; i++ )

{

t[i] = i * H_NEW;

}

Listing 6.54: Implementation of the time grid

Now, the computation of an optimal control given the time grid and the initial values
reduces to the command

try

{

mpc_problem ->calc ( x );

}

catch ( btmb:: MinProg:: sqpException e )

{

cout << e.what() << endl;

}

Listing 6.55: Solving the optimal control problem

where the try-and-catch block reveals possible errors or warnings produced by the under-
lying instances. The time shift is done via

mpc_problem ->shiftHorizon ( x, next_u , H_NEW , mstep );

Listing 6.56: Calling the receding horizon step

and resulting values can be stored using an additional class SaveData object from the
library libbtmbutils or transmitted to the actuator implementing the control signal at
the plant.

SaveData * save = new SaveData ( object_model ->getDimension()

, object_model ->getDimensionControl() );

save ->save2Files ( t, x, u );

Listing 6.57: Saving results using internal routines of a class SaveData object

Finally, the allocated memory should be freed and all objects should be destructed.
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Examples

Within our analysis of the receding horizon controller and its performance, we consider
three types of problems. First, shown in Section 7.1, a one–dimensional heat equation is
presented. In Chapter 8, we use this problem to demonstrate the influence of the chosen
differential equation solver on the computing time. In particular, computing tolerance,
stiffness of the dynamic and of the number of dimensions are considered, see Section 8.1.
Moreover, using this benchmark problem, the different linking methods of the minimiza-
tion and the differential equation solver are tested in Section 8.2.

Our second model is the inverted pendulum on a cart problem which we describe in Section
7.2. Using this particular example, we show that our implementation of the receding
horizon controller PCC2 is real–time applicable in Section 8.3. Moreover, the effects of
the chosen optimality tolerance, the number of steps within the optimization routine and
the length of the optimization horizon are discussed. Additionally, the influence of the
initial guess of the control and of the multiple shooting knots is depicted.

Our last model is a sampled–data redesign problem. Here, we derive a continuous–time
feedback for an arm–rotor–platform model, see Section 7.3. The resulting trajectory is
then used as a reference for the receding horizon control problem to design a sampled–data
control law. These tracking type problems allow for a wide variety of optimization horizons
N since close to the reference very small horizons are sufficient for tracking. However,
if the trajectory under control is far from the reference, then usually large horizons are
required. Hence, this type of problem is well suited for analyzing the suboptimality
degree of the resulting closed–loop control. Additionally, it allows us to effectively test
adaptation strategies for the horizon length. These issues are treated in Sections 8.4 and
8.5 respectively.

7.1 Benchmark Problem — 1D Heat Equation

In order to analyze how the speed of elements of the package PCC2 depend on the size
of a problem, we consider the one–dimensional heat equation

λ△y(x, t) − yt(x, t) = u, y(x, t) ∈ Ω = [0, 1]

with distributed control, Dirichlet boundary conditions

y(x, t) = 0, x ∈ Γ = {0, 1}

and variable stiffness parameter λ.

185
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Remark 7.1
During the development of PCC2 more difficult partial differential equations have been
treated as well, see e.g. [88]. Here, we choose this simple example since all effects of size
and stiffness on the computing time can be experienced.

For our implementation we use the initial values

y(x, 0) = −(x − 0.5)2 + 0.25. (7.1)

We solve this partial differential equation by applying the method of lines, see e.g. [130].
For this purpose, we discretize the state space Ω using the grid

GM :=

{
i

M − 1

∣∣∣ i = {0, . . . , M − 1}

}
(7.2)

with gridwidth w = 1/(M − 1) and M ≥ 3. The resulting system of ordinary differential
equations is given by:

i = 1 : ẏ(xi, t) = λ
y(xi+1, t) − 2y(xi, t)

h2
+ ui(t) (7.3)

i = 2, . . . , M − 1 : ẏ(xi, t) = λ
y(xi+1, t) − 2y(xi, t) + y(xi−1, t)

h2
+ ui(t) (7.4)

i = M : ẏ(xi, t) = λ
−2y(xi, t) + y(xi−1, t)

h2
+ ui(t) (7.5)

In order to analyze the implemented optimization routines, we use the cost functional

JN (x0, u) :=
N−1∑

i=0

l(x(i), u(i)) + F (x(N)) (7.6)

with stage cost l(x(i), u(i)) :=
ti+1∫
ti

‖x(t)‖2
2dt and terminal cost F (x(N)) := ‖x(tN )‖2

2.

Additionally, the set of restrictions

Rp := {xi(·) ≥ 0 ‖ i ∈ {1, · · · , p}} with R0 = ∅ (7.7)

is considered where the number of restrictions p ∈ N0 is variable.
Results using this example can be found in Section 8.1 and 8.2.

7.2 Real–time Problem — Inverted Pendulum on a

Cart

Our second example is the standard “inverted pendulum on a cart” problem shown in
Figure 7.1. This problem has two categories of equilibria, the stable downright position
and the unstable upright position. Here, the task is to stabilize one of the unstable upright
equilibria.
Our aim using this problem, however, is not only to stabilize an upright position but
also to compute the control online. Therefore, the calculation of a control, which shall
be applied at a sampling instant ti = t0 + iT , has to be finished before the real–time
treal equals ti. In Section 8.3, we analyze the impact of all modifiable parameters of the
receding horizon controller and illustrate how these parameters can be adjusted to speed
up the solution process.
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Figure 7.1: Inverted Pendulum on a Cart

The dynamic of the inverted pendulum on a cart can be expressed via the system of
ordinary differential equations

ẋ1(t) = x2(t)

ẋ2(t) = −
g

l
sin(x1(t)) −

kL

l
x2(t)|x2(t)| − u(t) cos(x1(t)) − kRsgn(x2(t))

ẋ3(t) = x4(t)

ẋ4(t) = u(t)

with parameters g = 9.81, l = 1.25, kL = 0.007 and kR = 0.197. Here, x1(·) denotes
the angle of the pendulum, x2(·) the angular velocity of the pendulum, x3(·) the position
and x4(·) the velocity of the cart. Within this system the second equation is numerically
problematic for an adaptive differential equation solver:

ẋ2(t) = −
g

l
sin(x1(t)) −

kL

l
x2(t)|x2(t)|

︸ ︷︷ ︸
non diff’able

−u(t) cos(x1(t))︸ ︷︷ ︸
measurable

− kRsgn(x2(t))︸ ︷︷ ︸
discontinuous

.

Hence, this differential equation causes a reduction of the order of consistence of the
differential equation solver to O(n) at points where the right hand side is not differentiable.
Moreover, stability of the solver is lost at the discontinuity points.
Since we are going to use a receding horizon controller, i.e. a sample–and–hold strategy
for the contol u(·), we do not have to modify the term concerning the control since within
the receding horizon controller setting the points of discontinuity are known in advance
and can be added to the discretization grid. Hence, the order of consistence is preserved
although u(·) is discontinuous.
For both other terms we use smooth approximations which allow us to mimic the be-
haviour of the original equation but retain the oder of consistence of the differential
equation solver:

ẋ1(t) = x2(t) (7.8)

ẋ2(t) = −
g

l
sin(x1(t)) −

kL

l
arctan(1000x2(t))x

2
2(t) − u(t) cos(x1(t))

− kR

(
4ax2(t)

1 + 4(ax2(t))2
+

2 arctan(bx2(t))

π

)
(7.9)
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ẋ3(t) = x4(t) (7.10)

ẋ4(t) = u(t). (7.11)

For this system the upright unstable equilibria are given by the set S = {((k+1)π, 0, 0, 0)⊤ | k ∈
2Z}. To develop a cost functional we make use of the geometry of the dynamic of the
system. To stabilize an arbitrary point of this set, we consider the cost functional

JN(x0, u) :=0.1

N−1∑

i=0

l(x(i), u(i)) + F (x(N)) (7.12)

where the stage costs are given by

l(x(i), u(i)) := 0.1

ti+1∫

ti

(
3.51 sin(x1(t) − π)2 + 4.82 sin(x1(t) − π)x2(t) + 2.31x2(t)

2

+ 2
(
(1 − cos(x1(t) − π)) · (1 + cos(x2(t))

2)
)2

+ x3(t)
2 + x4(t)

2
)2

dt (7.13)

and the terminal cost is defined via

F (x(N)) :=
(
3.51 sin(x1(tN ) − π)2 + 4.82 sin(x1(tN ) − π)x2(tN ) + 2.31x2(tN)2 (7.14)

+ 2
(
(1 − cos(x1(tN) − π)) · (1 + cos(x2(tN))2)

)2
+ x3(tN )2 + x4(tN )2

)2

.

Moreover, we impose constraints on the state and the control vectors by defining

X := R × R × [−5, 5] × [−10, 10] (7.15)

U := [−5, 5]. (7.16)

Figure 7.2: Contourplot of the cost func-
tional (7.12) considering only x1 and
x2. The minima of this function are
((k+1)π, 0, 0, 0)⊤, k ∈ 2Z whereas points
(kπ, 0, 0, 0)⊤, k ∈ 2Z are local maxima
located at the downward stable equilib-
ria.

Remark 7.2
Note that every point in the set S is treated equally by this cost functional. Hence, the
outcome of the receding horizon control problem is depending on the initial value x0 of
the system, but also on the optimization horizon N . While the first dependency is due to
the periodicity of the cost functional, the latter one follows from possible changes of the
optimum if different horizon lengths are considered.
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7.3 Tracking Problem — Arm-Rotor-Platform Model

In contrast to the inverted pendulum example, we construct the control problem for the
arm–rotor–platform model as illustrated in Figure 7.3 as a digital redesign problem. The
redesign approach consists of the two separate steps of constructing a continuous–time
feedback for the continuous–time plant without consideration of sampling effects and
modifying the resulting control law to be applicable in the digital setting.

Within this work, we described the so called emulation design previously in Section 1.3.3,
see also [8,40,70,134]. For the present example, we follow the optimization based approach
proposed in [173, 179]. To this end, we require the following:

(i) A continuous–time control law u = u(x) can be designed which (globally) asymp-
totically stabilizes the continuous–time closed-loop system ẋ(t) = f(x(t), u(x(t)))

(ii) The control law is implemented in a sample–and–hold fashion, i.e. u(t) = u(tk) =
const for all t ∈ [tk, tk+1), k ∈ N where tk = kT are the sampling instances.

Now, our aim is to use the continuous–time control law to redesign it in a digital way.
For the receding horizon control setting described in Chapter 2, this can be done straight
forward by incorporating the continuous–time closed–loop system as a reference trajectory
for the state of the system within our receding horizon controller setup. To this end, we
use the tracking cost functional (2.4)

J∞(x0, u) :=

∞∫

0

L (xu(t, x0) − xref(t), u(t)) dt.

Minimizing this function causes our algorithm to compute a sampled–data feedback law
which keeps the solution of the digitally controlled system xu(·, x0) as close as possible
to the reference system xref(·). In particular, we do not consider the continuous–time
control law to be re–evaluated for the predicted digitally controlled state trajectories at
the sampling instances on the optimization horizon during the optimization. Instead, we
compute the continuous–time closed–loop trajectory xref(·) on the entire horizon once and
try to compensate for the sampling effects using an optimization of the digital control.

Remark 7.3
The emulation approach requires some robustness with respect to the sampling error caused
by the discretization. Since this error depends on the length of the sampling interval, the
typical way to treat this issue is to sufficiently reduce the sampling period, see also Remark
1.42. Since the receding horizon controller takes the sampling effects directly into account
and minimizes the resulting deviation, we expect not only better results but also larger
sampling periods than using the Emulation approach.

Remark 7.4
For our implementation the redesign idea results in doubling the differential equation sys-
tem if no closed formula for the reference trajectory can be computed. Hence, this may
cause increased computing times for our differential equation solver. Upon implementa-
tion, however, this approach turned out to be very effective since the given reference tra-
jectory allowed for a significant reduction of the optimization horizon, see e.g. [121, 226]
for tracking results and [88] for standard implementation.
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The following theorem is proved in [173] and shows that this redesign approach recovers
the asymptotic stability property of the continuously controlled system up to a practical
region, compare also Definitions 1.35 and 1.44. Moreover, this property is obtained in a
sub–optimal way in the sense of Theorem 3.50.

Theorem 7.5
Suppose that the following conditions hold:

• The running cost l(·, ·) (and the terminal cost F (·)) are continuous;

• U is bounded;

• The continuous–time system ẋ(t) = f(x(t), u(x(t))) is globally asymptotically stable;

• There exists r0 > 0 and γ ∈ K∞ with

l(y, u) ≥ max

{
max

‖x‖≤2‖y‖
‖f(x, u)‖, γ(‖y‖)

}
∀‖y‖ ≥ r0;

• f(·, ·) and u(·) are locally Lipschitz in their arguments;

• The value function is such that for some α ∈ K∞ we have that V (y) ≤ α(‖y‖) for
all y = (x⊤, x⊤

ref)
⊤ ∈ R2n.

Then, there exists a function β ∈ KL such that for each pair of strictly positive real
numbers (∆, δ) there exists N1 ∈ Z≥1 such that for all y = (x⊤, x⊤

ref)
⊤ ∈ B∆(0) and

N ≥ N1 the solutions (2.16) satisfies

‖y(t)‖ ≤ max{β(‖y(0)‖, t), δ} ∀t ≥ 0.

Remark 7.6
Different to the emulation design, the optimization based approach is designed to incor-
porate and automatically compensate the intersampling error. Hence, also long sampling
periods may be considered without loosing stability if the requirements for the system and
the receding horizon controller stated in Theorem 7.5 hold.

Here, we start by defining the system under control, and then derive a continuous–time
control law which allows us to track a given function. Hence, the arm–rotor–platform
model in the receding horizon control implementation is a double tracking example since
first the continuous–time control law tracks some given external signal. Secondly, the
redesigned digital control law tries to keep the state trajectories close to the continuously
controlled ones.

Within this example, we consider a robot arm (A) which is driven by a motor (R) via a
flexible joint. This motor is mounted on a platform (P) which is again flexibly connected
to a fixed base (B). Moreover, we assume that there is no vertical force. This system
has five degrees of freedom. Three of those degrees are for the platform, translational
positions x and y as well as rotational position β. The fourth degree is the rotational
position α of the motor and last the rotational position θ of the arm itself. As shown in
Figure 7.3 all coordinates are defined relative to the fixed base and all angles are measured
with respect to the x–axis of the base B.
In order to design a continuous–time static state feedback we follow the approach shown
in Chapter 7 of [72]. Our design goal is to stear the system such that the position of the
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Figure 7.3: Graphical illustration of the ARP problem

arm relative to the platform, i.e. the angle ζ = θ − β, tracks a given reference signal.
Note that this task is not simple since both connections of the rotor are flexible. Here,
we assume that the reference signal and its derivatives are known and available to the
controller. Moreover, we assume that the relative positions and velocities (θ−β), (θ̇− β̇),
(α − β) and (α̇ − β̇) are supplied to the controller.
Using the Lagrange formulation we obtain the model

Mẍ − mr
[
θ̈ sin(θ) + θ̇2 cos(θ)

]
+ b1ẋ + k1x = 0 (7.17)

Mÿ − mr
[
θ̈ cos(θ) + θ̇2 sin(θ)

]
+ b1ẏ + k1y = 0 (7.18)

Iθ̈ + mr [−ẍ sin(θ) + ÿ cos(θ)] + b3(θ̇ − α̇ + k3(θ − α) = 0 (7.19)

Jα̈ − b3(θ̇ − α̇ + k3(θ − α) + b4(α̇ − β̇) = u (7.20)

Dβ̈ + b2β̇ + k2β − b4(α̇ − β̇) = −u. (7.21)

To compute the stabilizing control law we assume that the rotational motion of the plat-
form is not present. This simplification is justified since the rotational spring constant
k2 of the platform/base connection is large and the viscous friction coefficient b4 of the
rotor/platform connection is small in comparison to k2.
Due to this assumption we can neglect (7.21). We use the change of coordinates




η1

η2

η3

η4


 =




sin(θ) 0 − cos(θ) 0
0 sin(θ) 0 − cos(θ)

cos(θ) 0 sin(θ) 0
0 cos(θ) 0 sin(θ)







x
ẋ
y
ẏ


 +

mr

M




0

−θ̇
1
0


 (7.22)

with inverse transformation



x
ẋ
y
ẏ


 =




sin(θ) 0 cos(θ) 0
0 sin(θ) 0 − cos(θ)

− cos(θ) 0 sin(θ) 0
0 − cos(θ) 0 sin(θ)







η1

η2 + mr
M

θ̇
η3 −

mr
M

η4


 .
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Now, we can differentiate (7.22) using (7.17), (7.18). Hence, we obtain the following first
set of differential equations:




η̇1

η̇2

η̇3

η̇4


 =




0 1 θ̇ 0

− k1

M
− b1

M
0 θ̇

−θ̇ 0 0 1

0 −θ̇ − k1

M
− b1

M







η1

η2

η3

η4


+

mr

M




0

−b1θ̇
0
k1




Moreover, we get

[
I −

(mr)2

M

]
θ̈ +

[
b3 + b1(

(mr)2

M

]
θ̇ +

mr

M
(k1ηi + b1η2) = k3α + b3α̇ (7.23)

by reformulating (7.19) using the changed coordinates. Hence, by (7.20), (7.23) we obtain
the second set of differential equations:




θ̇

θ̈
α̇
α̈


 =




0 1 θ̇ 0
−a1 −a2 a1 a3

0 0 0 1
a4 a5 −a4 −a5 − a6







θ

θ̇
α
α̇


−




0 0
p1 p2

0 0
0 0



(

η1

η2

)
+




0
0
0
1
J


 u

Renaming the coordinates (η1, η2, η3, η4, θ, θ̇, α, α̇) =: (x1, . . . , x8), the model can be de-
scribed by the differential equation system

ẋ1(t) = x2(t) + x6(t)x3(t) (7.24)

ẋ2(t) = −
k1

M
x1(t) −

b1

M
x2(t) + x6(t)x4(t) −

mr

M2
b1x6(t) (7.25)

ẋ3(t) = −x6(t)x1(t) + x4(t) (7.26)

ẋ4(t) = −x6(t)x2(t) −
k1

M
x3(t) −

b1

M
x4(t) +

mr

M2
k1 (7.27)

ẋ5(t) = x6(t) (7.28)

ẋ6(t) = −a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − p1x1(t) − p2x2(t) (7.29)

ẋ7(t) = x8(t) (7.30)

ẋ8(t) = a4x5(t) + a5x6(t) − a4x7(t) − (a5 + a6)x8(t) +
1

J
u(t). (7.31)

In order to design the feedback law, we shorten notation by defining the vectors and
matrices

[η(t)] :=
(

x1(t) x2(t) x3(t) x4(t)
)T

, [χ(t)] :=
(

x5(t) x6(t) x7(t) x8(t)
)T

,

[F (x6(t))] :=




0 1 x6(t) 0
− k1

M
− b1

M
0 x6(t)

−x6(t) 0 0 1
0 −x6(t) − k1

M
− b1

M


 , [G(x6(t))] :=




0
−mrb1

M2 x6(t)
0

mrk1

M2


 ,

[A] :=




0 1 0 0
−a1 −a2 a1 a3

0 0 0 1
a4 a5 −a4 −(a5 + a6)


 , [E] :=




0 0
−p1 −p2

0 0
0 0


 , [B] :=




0
0
0
1
J
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Hence, equations (7.24)-(7.31) can be rewritten as

[η̇(t)] = [F (x6(t))] · [η(t)] + [G(x6(t))] (7.32)

[χ̇(t)] = [A] · [χ(t)] + [E] · [η(t)] + [B] · [u]. (7.33)

Moreover, we introduce the row vector [p] :=
(

p1 p2 0 0
)
. Within the vectors and

matrices the following shortcuts are used:

a1 =
k3M

MI − (mr)2
a4 =

k3

J
p1 =

mr

MI − (mr)2
k1

a2 =
b3M

2 − b1(mr)2

M [MI − (mr)2]
a5 =

b3

J
p2 =

mr

MI − (mr)2
b1

a3 =
b3M

MI − (mr)2
a6 =

b4

J

For this particular example, we use the parameter data shown in Table 7.1:

M 5.0 Total mass of arm, rotor and platform
m 0.5 Mass of arm
r 0.3 Distance from the A/R joint to arm cener of mass
I 0.06 Moment of inertia of arm about A/R joint
J 0.005 Moment of inertia of rotor
D 0.5 Moment of inertia of platform
k1 64.0 Translational spring constant of P/B connection
k2 3600 Rotational spring constant of P/B connection
k3 8.0 Rotational spring constant of A/R joint
b1 1.6 Translational friction coefficient of P/B connection
b2 12.0 Rotational friction coefficient of P/B connection
b3 0.04 Rotational friction coefficient of A/R connection
b4 0.007 Rotational friction coefficient of R/P connection

Table 7.1: Parameters of the arm–rotor–platform model

Here, we follow the approach shown in Chapter 7 of [72] and choose not to track ζ(t) =
x5(t) but the modified output

ζ(t) = x5(t) −
a3

a1 − a2a3

[x6(t) − a3x7(t)] . (7.34)

Remark 7.7
The chosen output ζ(t) is close to x5(t) since we have a1 ≈ 140, a2 ≈ a3 ≈ 0.7.

This output has relative degree 4, that is the control u(t) appears explicitly within the
fourth derivative of ζ(t):

ζ̇(t) = x6(t) −
a3

a1 − a2a3

(
− a1x5(t) − a2x6(t) + a1x7(t) − [p] · [η(t)]

)

=
a1

a1 − a2a3
x6(t) −

a3

a1 − a2a3

(
− a1x5(t) + a1x7(t) − [p] · [η(t)]

)
(7.35)

ζ̈(t) =
a1

a1 − a2a3

(
− a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − [p] · [η(t)]

)
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−
a3

a1 − a2a3

(
− a1x6(t) + a1x8(t) − [p] · [[F (x6(t))] · [η(t)] + [G(x6(t))]]

)

=
a1

a1 − a2a3

(
− a1x5(t) − a2x6(t) + a1x7(t) − [p] · [η(t)]

)

−
a3

a1 − a2a3

(
− a1x6(t) − [p] · [[F (x6(t))] · [η(t)] + [G(x6(t))]]

)
(7.36)

ζ (3)(t) =
a1

a1 − a2a3

(
− a1x6(t) − a2

(
− a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t)

− [p] · [η(t)]
)

+ a1x8(t) − [p] · [[F (x6(t))] · [η(t)] + [G(x6(t))]]
)

−
a3

a1 − a2a3

(
− a1

(
− a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − [p] · [η(t)]

)

− [p] ·

([[
∂F (x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]]

(
− a1x5(t) − a2x6(t) + a1x7(t) + a3a8(t) − [p] · [η(t)]

)

+ [F (x6(t))] · [[F (x6(t))] · [η(t)] + [G(x6(t))]]

))

=
1

a1 − a2a3

(
− a2

1

(
x6(t) − x8(t)

)

+
(
− a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − [p] · [η(t)]

)

(
− a1(a2 − a3) + a3[p] ·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]])

+
(
− a1[p] + a3[p] · [F (x6(t))]

)
· [[F (x6(t))] · [η(t)] + [G(x6(t))]]

)
(7.37)

ζ (4)(t) =
1

a1 − a2a3

(
− a2

1

(
− a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − [p] · [η(t)]

− a4x5(t) − a5x6(t) + a4x7(t) + (a5 + a6)x8(t) +
1

J
u(t)

)

+
(
− a1x6(t) − a2

(
− a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − [p] · [η(t)]

)

+ a1x8(t) + a3

(
a4x5(t) + a5x6(t) − a4x7(t) − (a5 + a6)x8(t) +

1

J
u(t)

)

− [p] · [[F (x6(t))] · [η(t)] + [G(x6(t))]]
)

(
− a1(a2 − a3) + a3[p] ·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]])

+ 2
(
− a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − [p] · [η(t)]

)

(
a3[p] ·

[
∂F (x6(t))

∂x6(t)

]
· [[F (x6(t))] · [η(t)] + [G(x6(t))]]

)
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+
(
− a1[p] + a3[p] · [F (x6(t))]

)
·

([[
∂F (x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]]

(
− a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − [p] · [η(t)]

)

+ [F (x6(t))] · [[F (x6(t))] · [η(t)] + [G(x6(t))]]

))

=
1

a1 − a2a3

((
− a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − [p] · [η(t)]

)

(
− a2

1 + a1a2(a2 − a3) +
(
− (a1 + a2a3)[p] + a3[p] · [F (x6(t))]

)

·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]]

+ 2a3[p]

[
∂F (x6(t))

∂x6(t)

]
· [[F (x6(t))] · [η(t)] + [G(x6(t))]]

)

+
(
a4x5(t) + a5x6(t) − a4x7(t) − (a5 + a6)x8(t) +

1

J
u(t)

)

(
a2

1 + a3

(
− a1(a2 − a3) + a3[p] ·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]]))

+
(
− a1[p] + a3[p] · [F (x6(t))]

)
· [F (x6(t))] · [[F (x6(t))] · [η(t)] + [G(x6(t))]]

+
(
− a1(x6(t) − x8(t)) − [p] · [[F (x6(t))] · [η(t)] + [G(x6(t))]]

)

(
− a1(a2 − a3) + a3[p] ·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]]))
. (7.38)

Note that the coefficient of u(·) is affine in η(·) and vanishes only for large values of η(·).
Therefore, the model has relative output degree four with respect to the output variable
ζ(·) over the expected operating range of η(·). Hence, we can solve (7.38) for u(·) and
obtain the control law

u(t) =
J

a2
1 + a3[p] ·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]]

(
−
(
− a1x5(t) − a2x6(t) + a1x7(t) + a3x8(t) − [p] · [η(t)]

)

(
− a2

1 + a1a2(a2 − a3) +
(
− (a1 + a2a3)[p] + a3[p] · [F (x6(t))]

)

·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]]

+ 2a3[p]

[
∂F (x6(t))

∂x6(t)

]
· [[F (x6(t))] · [η(t)] + [G(x6(t))]]

)

−
(
a4x5(t) + a5x6(t) − a4x7(t) − (a5 + a6)x8(t)

)
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(
a2

1 + a3

(
− a1(a2 − a3) + a3[p] ·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]]))

−
(
− a1[p] + a3[p] · [F (x6(t))]

)
· [F (x6(t))] · [[F (x6(t))] · [η(t)] + [G(x6(t))]]

−
(
− a1(x6(t) − x8(t)) − [p] · [[F (x6(t))] · [η(t)] + [G(x6(t))]]

)

(
− a1(a2 − a3) + a3[p] ·

[[
∂F (x6(t))

∂x6(t)

]
· [η(t)] +

[
∂G(x6(t))

∂x6(t)

]])

+ (a1 − a2a3)v(t)

)
(7.39)

where v(t) is the external command signal. Here, we think of this command signal as a
reference for the modified output (7.34) for the continuously controlled system. To obtain
the required continuous–time control law, we combine (7.39) and (7.38) and obtain the
chain integrator ζ (4)(t) = v(t). This allows us to design v(t) such that ζ(·) asymptotically
tracks any given reference signal ζref(·) by defining

v(t) := ζ (4)
r (t) − c3(ζ

(3)(t) − ζ
(3)
ref (t)) − c2(ζ̈(t) − ζ̈ref(t))

− c1(ζ̇(t) − ζ̇ref(t)) − c0(ζ(t) − ζref(t)) (7.40)

with design parameters ci ∈ R, ci ≥ 0. Here, we set (c0, c1, c2, c3) = (10000, 3500, 500, 35)
to obtain short transient times.

In order to obtain the sampled–data control law, we double the dynamic of the system
and use the derived continuous–time control law (7.39) together with (7.40) to obtain
the reference trajectory xref(·). In Section 8.4, we analyze the suboptimality estimates
described in Chapter 3. Within this analysis, we consider two cost functionals for the
computation of the sampled–data control, that is

J(x0, u) =

N∑

j=0

∫ tj+1

tj

|x5,u(t, x0) − x5,ref(t)|dt. (7.41)

and

J(x0, u) =

N∑

j=0

∫ tj+1

tj

‖xu(t, x0) − xref(t)‖
2
2dt (7.42)

The latter one is the standard functional to minimize the deviation between the digitally
controlled system x(·) and the continuously controlled system xref(·). The first cost func-
tional inherits the design task of the continuous–time feedback, that is to stear the system
such that the position of the arm relative to the platform tracks a given command signal.
Within the receding horizon controller setting we define the sampling time T = 0.2 and
fix the initial value to

x(t0) = (0, 0, 0, 0, 10, 0, 0, 0) (7.43)

for both the continously and sampled–data controlled systems to make our results com-
parable.



Chapter 8

Numerical Results and Effects

Having described the mathematical and implementational background of our receding
horizon controller in the previous chapters, we now state and discuss numerical results of
both the elements of the controller and their interaction.

In particular, we analyze the impact of the computing tolerances, stiffness of the dynamic
and of the number of dimensions on the computing time of a differential equation solver of
class OdeSolve in Section 8.1 using the modifiable one dimensional heat equation example
from Section 7.1. In the following Section 8.2 we present results concerning the different
class IOdeManager objects and show their influence as link between the minimization and
differential equation solver on the computing time.

Thereafter, we change our goal from a complete analysis to a guideline for developing a
stabilizing and yet fast receding horizon controller. To this end, we consider the real–
time inverted pendulum example stated in Section 7.2 and present effects of the main
parameters of the receding horizon controller in Section 8.3, that is the chosen optimality
tolerance, the number of steps within the optimization routine, the length of the opti-
mization horizon and the influence of the initial guess of the control and of the multiple
shooting nodes.

Having shown how a setup of a standard receding horizon controller should look like, we
use our suboptimality estimates from Chapter 3 to analyze the stability and the degree of
suboptimality of such a controller in Section 8.4. Here, we utilize our third example, the
arm–rotor–platform model presented in Section 7.3, since its redesign nature allows us to
create different standard situations which a receding horizon controller usually faces. In
the last Section 8.5 we make use of this possibility and define a constant setpoint tracking
and a switching setpoint tracking scenario. For both settings, we compare the different
adaptation strategies stated in Chapter 4 where we consider the standard receding horizon
controller as our benchmark. Moreover, we state results for the parameter required in the
closed–loop suboptimality estimate of Theorems 4.4 and 4.6 and draw some conclusions.

Throughout this chapter, all the shown data has been computed on a machine with 2
Dual Core AMD Opteron 265 processors with 1800MHz each using the fortran compiler
G77.

Remark 8.1
We also examined different compilers, that is GFortran and F77, and experienced de-
viations from the computing times using the G77 compiler. However, our experiments
indicate that non of the mentioned compilers is preferable in general since the deviations
in the computing times seem to appear randomly.
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8.1 Comparison of the Differential Equation Solvers

The chosen ordinary differential equation solver (short ODE solver) of class OdeSolve is
the subroutine within the RHC algorithm which is called the most, i.e. to compute the
value of the cost function, the values of the restrictions and their derivatives respectively
which are required by the optimization routine of class MinProg, see Chapter 6 for details
on the interaction of the classes. Hence, it is probably the most crucial part of the RHC
algorithm and needs to be chosen carefully.
We consider the explicit ODE solver DoPri5 and DoPri853 as well as the implicit methods
Radau5 and Radau5913, see [108, 109], which are implemented in the derived subclasses
DoPri5, DoPri853, Radau5 and Radau5913 of class OdeSolve.
There are three aspects which have a major impact on the computing time necessary to
solve a given ODE over a fixed interval and therefore have to be kept in mind:

• stiffness of the considered ODE

• dimension of the problem

• chosen tolerances (absolute and relative) of the solver

In this section, we consider the one dimensional heat equation stated in Section 7.1 and
compare the implemented solver with respect to these issues on the interval I = [0, 1]
where the control is set to zero. Since computing times are often very small and may
be influenced by background processes, the presented data is computed as the mean over
2000 iterations.

8.1.1 Effect of Stiffness

First, we analyze the impact of stiffness on the computation time by varying the stiffness
parameter λ ∈ [0.01, 100] within the line discretization (7.3) – (7.5) of the one dimensional
heat equation. To make results comparable, we consider M = 25 lines.
Figures 8.1 and 8.2 show calculation times for λ ∈ [0.01, 100] in milliseconds. We first
analyze the nonstiff case.

λ

t

0.25ms

0.5ms

0.05 0.06 0.07 0.08 0.09 0.1 0.5 1.0

Figure 8.1: Graph of the computing times of the ODE solver routines DoPri5 (red),
DoPri853 (green), Radau5 (blue) and Radau5913 (black) for small stiffness parameter λ
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From the numerical experience and the data it is clear that one of the explicit methods
should be chosen if the system is nonstiff. However, we cannot conclude which of the
explicit solvers is preferable. DoPri853 is the more sophisticated one but its advantage of
adapting the order of accuracy might be lost if the integration interval is small. Hence, if
an application appears to be nonstiff, both methods should be tested.

λ
1

t

5ms

10ms

5 10 50

Figure 8.2: Graph of the computing times of the ODE solver routines DoPri5 (red),
DoPri853 (green), Radau5 (blue) and Radau5913 (black) for large stiffness parameter λ

Similarly, an implicit solver should be chosen if the problem is stiff. For DoPri5 and
DoPri853 the computational cost grows rapidly, cf. Figure 8.2. In contrast to the nonstiff
case, we can explicitly recommend the usage of Radau5913 since computation times are
significantly smaller compared to Radau5. This was also confirmed by our numerical
experiments using the implemented receding horizon controller.

8.1.2 Curse of Dimensionality

We now fix the stiffness parameter λ = 1 and analyze the computing times necessary to
solve the problem (7.3) – (7.5) for different space discretizations. Here, we consider the
ODE systems for M ∈ {3, . . . , 150} and, again, solve the resulting problems on the time
interval I = [0, 0.1]. Since the computing times vary massively we present the data in two
figures.

Analyzing Figure 8.3, we observe that for lower dimensions explicit solvers should be
preferred. Furthermore, Figures 8.3 and 8.4 also indicate that there exists a M such that
the implicit solvers Radau5 and Radau5913 show a better performance if M ≥ M .

Moreover, we can compare the computing times for M = 25 concerning the stiffness of
a problem presented in the previous Section 8.1.1 to those computing times for varied
number of dimensions of the problem. We observe the following: If we increase/decrease
in the stiffness parameter λ then the separating bound M decreases/increases. Hence, an
implicit solver should be chosen if the dimension of a system is large and the problem
appears to be stiff. Conversely, explicit methods are preferable if the dimension of a
system is small and the problem not considered to be stiff. In any other case, one should
test the methods against each other.
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M

t

0.05ms

0.1ms

0.15ms

3 5 10

Figure 8.3: Graph of the computing times of the ODE solver routines DoPri5 (red),
DoPri853 (green), Radau5 (blue) and Radau5913 (black) for lower dimensions
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Figure 8.4: Graph of the computing times of the ODE solver routines DoPri5 (red),
DoPri853 (green), Radau5 (blue) and Radau5913 (black) for higher dimensions

System nonstiff System stiff

Dimension small Explicit Solver Test

Dimension large Test Implicit Solver

Remark 8.2
For every newly derived class Model problem various tests should be run using the opti-
mization routines as well. In particular, one has to keep in mind that using the control
parameter u within our problem RHCN , the optimization may cause a uncontrolled nons-
tiff system, that is a system which is nonstiff for u ≡ 0, to become stiff for certain choices
of the control. Here, the internal exceptions can be used to circumvent this problem by
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exchanging or adapting the differential equation solver.

8.1.3 Effects of absolute and relative Tolerances

From the previous Section 8.1.2, we know that if the number of dimensions is large and
the tolerances are fixed, then the implicit solvers Radau5 and Radau5913 show better
performance than the explicit methods DoPri5 and DoPri853. Here, we focus on the
question which solver or type of solver should be preferred if we vary tolerance values.

Remark 8.3
Increasing numerical tolerances is non standard in optimal control since the structure of
the resulting control function massively depends on the state trajectory. In particular if
we consider constraints, switching points of the control may vary since we may incorrectly
compute those time instances when a trajectory hits a boundary.

Since the switching structure of the control is known a priori for our problem RHCN ,
we can neglect the structural issue of the resulting control function. Moreover, we focus
on satisfying possibly existent constraints at the sampling instances only. Hence, if we
consider slightly tighter bounds, we may ease the need of highly accurate solutions of the
differential equation system.

Remark 8.4
Even if we choose to solve the differential equation system using a class OdeSol object with
extremely small tolerances, the calling class MinProg object will in almost no case satisfy
all constraints exactly, see e.g. Sections 6.3.2.2 and 6.3.3.2 for details on the methods
SqpFortran and SqpNagC respectively.

Within the RHC setting, our aim is to speed up the solution of differential equation system
and hence the solution of every single optimization problem in the receding horizon control
process by enlarging the tolerance levels of the differential equation solvers. Yet, as a side
effect, the search direction of the SQP routine may deviate, compare Algorithms 5.59 and
5.61, and we have to keep in mind that this possibly leaves the output to be far from
optimal.

Remark 8.5
From our numerical experience, the inherited error in the search direction becomes domi-
nant if the solution is already close to the optimum. Hence, the tolerance of the differential
equation solver should match the tolerance of the optimization routine to obtain acceptable
results.
If one primarily aims at stabilizing a system, it often suffices to choose quite large opti-
mization tolerances which allows us to speed up the computation significantly by increasing
the tolerances of the differential equation solver. For exemplary results of this connection,
see Section 8.3.1.

In the following, we analyze the impact of variations in the tolerances of the ODE solvers
on the computing times. Again, we use the example of a discretized one dimensional heat
equation, cf. (7.3) – (7.5). Moreover, the dependency of the resulting computing times
on stiffness and dimension of the system are considered.
From Figure 8.5 we can see that for large tolerances the implicit solvers are faster than
the explicit ones. For very small tolerances we observe that the computing time nec-
essary to solve the problem increases dramatically for Radau5 and Radau5913. For the
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Figure 8.5: Influence of number of dimensions and tolerance on the necessary computing
time of the ODE solver routines DoPri5 (red), DoPri853 (green), Radau5 (blue) and
Radau5913 (black)

explicit DoPri methods, however, the effort stays almost the same. Yet, considering higher
dimensions leads to a change in favor of the implicit solvers within the ranking.
Similar effects can be observed if we vary stiffness instead of the size of the problem, see
Figure 8.6 . Here, we again fix M = 25.
In particular, the explicit solvers show almost constant computing times if the tolerance
level is enlarged. However, the effort for implicit solvers decreases significantly. Moreover,
we make the same observation as in Section 8.1.1, that is for very small λ explicit and for
large λ implicit solvers are preferable.
Since implicit methods are designed for treating stiff differential equations, this is what
we expected to happen. Surprisingly, we also see that even in the nonstiff case, implicit
solvers may outrun explicit ones if the tolerance levels are chosen large.
However, in our examples we cannot say in advance which ODE solver is the best. Since
we deal with control systems the control u influences the stiffness property. Hence, solving
the optimal control problem (RHCN) defined in Section 2.4 might change a nonstiff system
associated to the initial guess into a stiff one for the outcome of the optimization. This
phenomenon is not a problem in simulations but for real–time applications it has to be
avoided since it may render the available computing time to be insufficient. Moreover, u
depends on the current state and we may face regions in the state space which are stiff.
This can be explicitly tricky if the equilibrium one tries to stabilize is contained in such a
region. Possible solutions are an automated change of the solver or of the tolerance levels.
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(a) Influence of Stiffness vs. Tolerance for large λ
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(b) Influence of Stiffness vs. Tolerance for small λ

Figure 8.6: Influence of stiffness and tolerance on the necessary computing time of the
ODE solver routines DoPri5 (red), DoPri853 (green), Radau5 (blue) and Radau5913
(black)
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8.2 Comparison of Differential Equation Manager

The aim of the following section is to show the impact of the different implemented links
between optimization routines and differential equation solver, the so called differential
equation manager, on the computing time. To this end, we consider the setting of a single
SQP step and ten consecutive steps and discuss the results as well as the implementational
background.
Here, we again utilize the discretized one dimensional heat equation (7.3) – (7.5) stated
in Section 7.1 with λ = 1. To make the differential equation managers from class
IOdeManager comparable, we use the differential equation solver Radau5913 exclusively
and fix the absolute and relative tolerances to 10−10.

8.2.1 Effects for a single SQP Step

In the following Figure 8.7, we consider computing times for one SQP step using a class
SqpFortran object, i.e. we stop the minimizer after computing the gradient of the cost
function and the Jacobian of the constraints once.
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Figure 8.7: Influence of number of dimensions and horizon length on the necessary com-
puting time of the IOdeManager classes SimpleOdeManager (blue), CacheOdeManager

(red) and SyncOdeManager (green) for an initial SQP step

The optimization horizon is given by H = N ·T where T = 0.1 is fixed for this comparison
while the parameter N and M characterizing the optimization length and the dimension
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of the system are varied. Here, we start by analyzing the unconstrained case, i.e. we set
p = 0 in (7.7).
For the initial step of the SQP routine we can see that the class CacheOdeManager object
outruns both the SimpleOdeManager and the SyncOdeManager object. Moreover, com-
putations using the SyncOdeManager object are clearly the slowest ones. In Table 8.1, we
display the absolute and relative computing times of all three IOdeManager objects where
N = 10 is fixed.

M Simple Cache Sync Simple
Cache

Sync
Simple

Sync
Cache

3 2.9588 1.6732 18.9482 1.76 6.40 11.32
4 4.9362 2.7603 63.3587 1.79 12.84 22.95
5 10.2527 5.0513 224.0629 2.03 21.85 44.35
6 16.1331 7.5556 520.8210 2.14 32.28 68.93
7 22.8421 10.6945 958.7065 2.14 41.97 89.64
8 31.9308 14.3154 1777.4462 2.23 55.67 124.16
9 37.6704 19.9755 2929.4702 1.88 77.76 146.65

10 47.9160 25.4729 4354.8941 1.88 90.88 170.96
11 60.5290 32.0525 6253.1095 1.88 103.31 195.09
12 74.4925 39.1798 8946.3031 1.90 120.10 228.34
13 89.6633 46.7690 12225.0225 1.92 136.34 261.39
14 105.7580 55.2267 16360.8011 1.91 154.70 296.25
15 123.1933 64.8654 20925.7137 1.90 169.86 322.60
16 165.9090 77.7999 31561.0758 2.13 190.23 405.67
17 194.5727 90.6133 — 2.15 — —
18 225.3715 106.7261 — 2.11 — —
19 260.4182 120.3044 — 2.16 — —
20 299.1995 136.9109 — 2.19 — —

Table 8.1: Comparison of calculation times for one SQP step

Here, one can see the advantage of a class CacheOdeManager objects which in principle
halves the computing time required by a class SimpleOdeManager object. This is due to
the reuse of precomputed trajectory values which results in a triangular structure of the
computations shown in Figure 8.8. Within this figure, we display those state values which
are recomputed with a modified control to evaluate the difference quotient (6.2) of the
cost function.

A class CachOdeManager object uses the fact that only endpieces of the control are varied
and hence the frontpieces of the trajectories are not computed again.

Note that here the unconstrained case is considered and hence no Jacobian of the con-
straints has to be computed. Once this matrix is required as well, we expect a class
CacheOdeManager object to outrun a class SimpleOdeManager object by more than a
factor of two since apart from evaluating the fraction of the difference quotient (6.2) no
recalculation of the trajectory has to be performed. Within a class SimpleOdeManager

object, however, the evaluation of a single column of the Jacobian requires a complete
recalculation of the trajectory of the system.

Moreover, we observe that the performance of the class SyncOdeManager object is poor
in the unconstrained case. The additional effort is caused by the coupling of the systems
dynamics which results in a significant increase of the computing time necessary to solve
the resulting differential equation, cf. Section 8.1.2.
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Figure 8.8: Computing structures of a class CacheOdeManager (left) and a class
SimpleOdeManager object (right)

Now, we add costraints to the problem and re–evaluate all data. Here, we choose the set
of constraints (7.7) with p = M while leaving the rest of the problem unchanged. The
following Table 8.2 shows calculation times for M = 10:

N Simple Cache Sync Simple
Cache

3 11.2973 4.0352 81.4827 2.43
4 36.3457 7.6900 415.5835 4.72
5 54.6212 10.6218 765.1625 5.14
6 76.7315 13.8552 1312.8389 5.53
7 102.5981 18.4680 2114.3480 5.55
8 132.1269 23.8587 3116.4190 5.53
9 166.1137 30.8212 4330.0736 5.39

10 202.7110 37.3903 5985.3090 5.42
11 243.7564 46.0038 7839.1500 5.30
12 289.4485 55.3483 10110.5106 5.23
13 337.3657 64.6308 12529.8389 5.22
14 388.8956 75.0318 15596.5177 5.18
15 445.1079 86.3597 19276.9178 5.15
16 511.7867 96.5668 23837.6270 5.30
17 570.9604 109.4915 27727.1883 5.21
18 638.9876 124.1468 33215.7455 5.15
19 713.0454 139.2447 39145.8085 5.12
20 789.6375 155.5406 46003.3345 5.08

Table 8.2: Comparison of calculation times for one SQP step of a constrained problem

We observe that the CacheOdeManager object shows outstanding performance compared
to both the SimpleOdeManager and the SyncOdeManager object which is what we ex-
pected. Moreover, the acceleration factor of the CacheOdeManager object relative to
the SimpleOdeManager object seems to be stay between 5 and 5.5 which has also been
observed in other examples as well.
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Remark 8.6
If the horizon length N and the dimension of the system M are small, then a class
SyncOdeManager object may exhibit smaller computing times than a class SimpleOdeManager
object. However, this link between minimizer and differential equation solver is originally
designed for analytical purposes only, see Section 6.2.5.3 for details.

8.2.2 Effects for multiple SQP Steps

Until now we analyzed one step of the SQP method only. Since SQP routines use several
steps based on the same dynamic but for changing control variables, already computed
state values may reoccur. Hence, since a class CacheOdeManager object exploits this
property of the problem, we expect this method to show an even better performance if
consecutive steps are considered.
In the unconstrained case the updated control is usually changed in every component
after each SQP step since no bounds have to be satisfied. Hence, the computing times
are a multiple of the computing times required for a single step for the selected class
IOdeManager object. This is illustrated in Figure 8.9 where we display results for the
setting we used in Figure 8.7 but execute ten steps of the SQP method SqpFortran.
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Figure 8.9: Influence of number of dimensions and horizon length on the necessary com-
puting time of the IOdeManager classes SimpleOdeManager (blue), CacheOdeManager

(red) and SyncOdeManager (green) for ten SQP steps

Again, we obtain the same tendency as from Figure 8.7, i.e. the class CacheOdeManager
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object outruns both other objects and a SimpleOdeManager object shows better perfor-
mance than a class SyncOdeManager object.

However, if we impose constraints similar to Section 8.2.1, i.e. using the set of constraints
(7.7) with p = M , we expect the class CacheOdeManager and SyncOdeManager objects
to exhibit computing times which are much lower than the multiple computing time of
a single step of the SQP algorithm. Still, we have to keep in mind that a consecutive
execution of several SQP steps generates problems which are not identical and hence
the computing times for each single step vary in general. For this setting, the results
are contained in the following Table 8.3. Moreover, we compare the resulting computing
times for the constrained and unconstrained case.
We first observe that the computing times in the constrained case are lower than in the
unconstrained case although we additionally have to compute the Jacobian of the con-
straints. Taking a closer look at the outcome of the optimization in each step, we see that
large control values are considered in the unconstrained case which results in a reduction
of the costs for the first sampling points but leads to large deviations from the desired
equilibrium for the state at the last sampling points. Moreover, the differential equation
becomes stiff in this region. Since the class SyncOdeManager object combines all sampling
intervals, this slowdown affects all parts of the horizon which explains the observed bad
performance. For the class SimpleOdeManager and CacheOdeManager objects, comparing
the unconstrained and the constrained case we obtain that the reduced computing times
caused by the nonstiffness of the system compensate for the additional cost for calculation
the Jacobian of the constraints only for small horizons. Still, one has to keep in mind that
the Jacobian of the constraints grows quadratically in the horizon length N . Hence, for all
class IOdeManager objects, there exists some horizon length N such that the computing
times for the constrained problems are larger than in the unconstrained case. For a class
SimpleOdeManager object, this can be observed in Table 8.3.
If we compare the displayed measurement for one and ten SQP steps, we observe the in-
crease in the computing times of the class SimpleOdeManager is quite small. As mentioned
in Section 6.2.5.1, the SimpleOdeManager class transforms the active–set Quasi–Newton
approximation of the optimization method to a Newton method with full BFGS–update.
For this particular example, this results in just two evaluations of the Jacobian matrix
while for both CacheOdeManager and SyncOdeManager eight evaluations of the reduced
Hessian and one of the complete Jacobian are performed. Moreover, we observe that
the increase in the computing time for the class CacheOdeManager and SyncOdeManager

objects is growing in N but smaller than eight. This is due to two sources: for one,
the computational effort for obtaining the Jacobian is reduced by recomputing required
updates of parts of the matrix only, see also Section 6.2.5.2, and secondly, the reuse of
known information on the state trajectory speeds up the computation.

From this analysis, we see that the class CacheOdeManager significantly improves the
speed of the computing process and is therefore preferable. Here, we again remind
that class CacheOdeManager objects are not as robust as class SimpleOdeManager or
SyncOdeManager objects regarding the correctness issue, see also Section 6.2.5.2.

Remark 8.7
For higher dimensions or longer horizons, the method used by the class SyncOdeManager
requires too much memory such that swaping memory becomes unavoidable. Once this
happens, the computing times explode.
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unconstrained case, 10 SQP steps constrained case, 10 SQP steps constrained case, 1 SQP step
N Simple Cache Sync Simple Cache Sync Simple Cache Sync
3 13.1505 4.7632 1099.1316 18.3812 4.4733 84.9232 11.2973 4.0352 81.4827
4 70.4794 42.1296 2663.7205 50.6497 14.9453 501.6929 36.3457 7.6900 415.5835
5 97.3493 76.7835 5058.5770 87.5432 22.2208 1170.0020 54.6212 10.6218 765.1625
6 102.1465 105.3355 8687.7953 131.0241 34.1699 2301.1349 76.7315 13.8552 1312.8389
7 266.2635 140.0757 14140.9442 224.0904 67.8548 4902.5388 102.5981 18.4680 2114.3480
8 344.7292 178.4512 21212.2974 315.7195 69.3653 9892.6243 132.1269 23.8587 3116.4190
9 433.9290 222.1279 29828.8681 427.1371 113.8952 10684.1498 166.1137 30.8212 4330.0736

10 533.4967 270.0599 41553.8968 582.0995 160.4895 19638.1373 202.7110 37.3903 5985.3090
11 637.8299 319.2618 55705.3349 664.8787 195.3231 25244.7710 243.7564 46.0038 7839.1500
12 610.8299 379.4902 72414.2295 701.0420 246.7882 31704.9278 289.4485 55.3483 10110.5106
13 881.6595 381.5603 91061.1325 1084.7242 296.2977 45384.2946 337.3657 64.6308 12529.8389
14 757.3996 502.1227 112645.7515 1127.8375 366.6607 49624.3013 388.8956 75.0318 15596.5177
15 1025.8416 523.1227 140511.9187 1279.1668 427.6893 58659.8644 445.1079 86.3597 19276.9178
16 1314.0926 644.8333 171741.8670 1382.2241 476.2329 82156.4235 511.7867 96.5668 23837.6270
17 1479.4552 717.2727 200889.4977 1542.8805 541.2652 81396.7569 570.9604 109.4915 27727.1883
18 1652.7445 797.0910 239424.4523 1680.0273 659.3980 91415.9953 638.9876 124.1468 33215.7455
19 1835.9452 885.4684 283490.5182 2311.3047 822.9271 146763.2249 713.0454 139.2447 39145.8085
20 2028.6359 978.0781 332925.6442 2633.1941 909.0864 184021.5298 789.6375 155.5406 46003.3345

Table 8.3: Comparison of calculation times for ten SQP steps of the unconstrained and constrained problem and for one SQP step of the
constrained problem
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8.3 Tuning of the Receding Horizon Controller

In this section, we characterize the impact of the main parameter of the controller on the
computing time, that is the tolerance of the optimization routine as well as the tolerances
of the differential equation solver, the length of the horizon, the stopping criteria of the
optimization method, the initial guess of the control and the choice of the multiple shooting
nodes as depicted in Figure 8.10. Our aim in this section is not to give a complete analysis
which might be impossible due to the complexity of the problem. Instead, we consider
the real–time problem of the inverted pendulum on a cart described in Section 7.2 and
show how the receding horizon control algorithm can be tuned.

The following sections are governed by one issue each and are not sorted deliberately but
can be seen as a guideline for the tuning. Moreover, these parameters are not (or at least
not only) sorted by their impact on the computing time. Note that the parameter also
depend on each other as shown in Figure 8.10. Hence, some parameters may have to be
considered repeatedly.

Tolerances

Horizon length Shooting nodes

Stopping criterion

Initial guessMinimal computing time

Figure 8.10: Effects and interaction of im-
plementation parameters on the computing
time

We start by considering the tolerances of
the minimizer and the differential equa-
tion solver in Section 8.3.1. Since these
algorithms cause the major computational
cost, we aim at choosing large tolerances.
However, this may lead to difficulties, even
instability, since the allowed errors inter-
act in the receding horizon controller set-
ting. For the parameters, a good compro-
mise between speed and accuracy cannot
be rigorously described in a mathematical
way, hence we can only describe how such
a compromise should look like.

In Section 8.3.2, we consider the horizon
length as the parameter of choice. We investigate the differences of closed–loop solutions
and closed–loop costs for different horizon lengths. Since the size of the discretized optimal
control problem depends massively on this parameter, we want to choose the horizon
length as small as possible.

The following Sections 8.3.3 and 8.3.4 deal with different aspects of the initial guess prob-
lem of the control. Since there exist no methods for computing a good initial guess of
the optimization variable, we shortly describe various heuristics in Section 8.3.3. There-
after, we change the discretization of the optimal control problem by introducing multiple
shooting points in Section 8.3.4, see also Section 5.1.3. These additional optimization
variables may allow us to improve the initial guess and even reduce the minimal length
of the optimization horizon. Yet, difficulties such as instability of the closed–loop may
occur if one uses this approach which we discuss as well.

Last, since we aim at real–time applicability of the controller, we also consider the effects
of stopping criteria of the optimization method. This issue is treated in Section 8.3.5 where
we analyze the impact of a low number of maximal iterations of the optimization method
on the resulting closed–loop behaviour on the one hand, and of a time dependent break
of the optimization. Both methods are motivated by the goal of real–time applicability
of the controller but may cause unwanted effects.
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8.3.1 Effects of Optimality and Computing Tolerances

Within this section, we analyze the impact of the user dependent choices of tolerance
values for the optimization routine and for the differential equation solver on the stability
of the closed–loop system on the one hand, and on the resulting computing time on the
other hand. To this end, we use the grid of parameter

(tolSQP, tolODE) ∈ {10−8, 10−7, . . . , 10−1}2

and generate a sequence of receding horizon controllers. Then, we compute the closed–
loop solution (2.16) on the interval [0, 50] with sampling length T = 0.1, initial value
x0 = (2, 2, 0, 0) and tolODE = 10−10.

Remark 8.8
In this section, we use the following strategy to obtain a real–time implementable reced-
ing horizon controller: We combine suitable cost functionals, one for the swing–up which
induces enough potential and kinetic energy in the system, and one for stabilization pur-
poses. Here, we only consider the second and more interesting part and use the initial
value x0 = (2, 2, 0, 0) for our receding horizon controller. Note that if we started in the
downward position (0, 0, 0, 0), then the horizon would have to be chosen larger than N = 65
given a good initial guess to obtain a stabilizing control. Such a long horizon, however, is
not real–time solvable by now.

Remark 8.9
Since we analyze the impact of stopping criteria in Section 8.3.5 separately, we display
and discuss summarized computing times only.
Note that stability of the resulting closed–loop trajectory depends massively on the horizon
length N . Hence, we consider different horizon lengths in this section as well. For a more
detailed discussion of the effects of the horizon length, we refer to Section 8.3.2.

Here, we consider the simple criterion of the closed–loop costs to distinguish between
stable and unstable closed–loop trajectories. In order to be easily comparable, the follow-
ing figures are generated using identical colorbars for both the closed–loop costs and the
computing times. In Figure 8.11, we start with the limit cases N = 15 and N = 16 for
the optimization horizon.
Comparing the costs for N = 15 and N = 16 in Figures 8.11(a) and (c), we can estimate
that all combinations (tolSQP, tolODE) ∈ {10−8, 10−7, . . . , 10−1}2 exhibit unstable closed–
loop trajectories for N = 15. Yet, the corresponding computing times for N = 15 shown
in 8.11(b) are higher than the required times for N = 16 displayed in 8.11(d). This
difference is due to the instability of the closed–loop for N = 15.

Remark 8.10
Here, we do not display the corresponding solutions for all receding horizon controller
settings. For a particular choice of the pair (tolSQP, tolODE), however, the x1(·) trajectories
are shown in Figures 8.16, 8.17, 8.18 and 8.19.

Figures 8.11(c) and (d) allow us to conclude that tolerance levels may be eased without
changing the closed–loop behaviour or closed–loop cost significantly while the computing
times are lowered. A standard initial setting for (tolSQP, tolODE) is the pair (10−6, 10−8)
which here results in a total computing time of 9.943s. For (tolSQP, tolODE) = (10−3, 10−4),
this is reduced to 7.479s saving approximately 25% of the computing time.
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(a) Closed–loop costs for N = 15 (b) Computing times for N = 15

(c) Closed–loop costs for N = 16 (d) Computing times for N = 16

Figure 8.11: Comparison of closed–loop costs and computing times for the limit cases of
optimization horizons N and various optimization and differential equation solver toler-
ances

Remark 8.11
The tolerance level of the differential equation solver should not be chosen larger than the
tolerance level of the optimization routine. In any other case, the search direction may
be heavily corrupted by errors in the numerical difference quotients used to compute this
vector and the optimization iteration may be unable to discover a point satisfying the KKT
conditions of Theorem 5.18 with accuracy less than tolSQP. For this reason, we consider
only tolerance pairs satisfying tolSQP ≥ tolODE for our analysis.

In Figures 8.12 and 8.13, the optimization horizon N is increased further. Similar to
our previous analysis of the impact of the horizon length, see Section 8.2, this results in
enlarged computing times.
We also experience an improvement in the closed–loop cost for tolODE = 10−2 in Figure
8.12(a) and additionally for tolODE = 10−1 in Figure 8.13(a). This corresponds to receding
horizon controllers which now stabilizes the system in an upright equilibrium. Hence,
enlarging the horizon, i.e. increasing the complexity of each optimal control problem in
the receding horizon control process, may enable us to ease up the tolerance parameter.
For the setting here, the effects on the computing time almost cancel out. For N = 17,
we obtain a total computing time 10.243s for our standard choice (tolSQP, tolODE) =
(10−6, 10−8) which can be improved by ≈ 18% to 8.353s for (tolSQP, tolODE) = (10−2, 10−2).



8.3 Tuning of the Receding Horizon Controller 213

(a) Closed–loop costs (b) Computing times

Figure 8.12: Comparison of closed–loop costs and computing times for optimization hori-
zon N = 17 and various optimization and differential equation solver tolerances

(a) Closed–loop costs (b) Computing times

Figure 8.13: Comparison of closed–loop costs and computing times for optimization hori-
zon N = 20 and various optimization and differential equation solver tolerances

For N = 20, the corresponding times are 18.669s in the standard case and 8.612s for
(tolSQP, tolODE) = (10−2, 10−2), i.e. a decrease of ≈ 53%. Yet, the computing time for
N = 16 is the smallest one. This tendency can also be experienced for other example
which leads to the general guideline to choose the lowest optimization horizon possible
which still guarantees stability of the closed–loop. Note that this is exactly the idea of
the adaptation strategies presented in Chapter 4.

Last, the two examples shown in Figures 8.14 and 8.15 illustrate that the parameter
(tolSQP, tolODE) should be chosen carefully due to their effects on the closed–loop.

Here, Figure 8.14(a) shows that for some pairs (tolSQP, tolODE) the closed–loop costs are
significantly higher. If we analyze the corresponding closed–loop trajectories, the system
is driven to the downward position (0, 0, 0, 0) for tolSQP = 10−1, tolSQP = 10−2 and all
considered values for tolODE. All other pairs, however, do “mainly” stabilize the pendulum
in an upright position. However, these positions vary in two ways. For one, the x1(·)
trajectory does not converge to the same upright position. And more importantly, once
an upright position is reached, it may be switched to another upright position. Here, the
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(a) Closed–loop cost (b) x1(·) trajectories

Figure 8.14: Exceptional closed–loop costs for N = 25 and various optimization and
differential equation solver tolerances

(a) Closed–loop costs (b) x1(·) trajectories

Figure 8.15: Exceptional closed–loop costs for N = 30 and various optimization and
differential equation solver tolerances

observed closed–loop costs arise due to the repeated transitions upright positions. For
the controller shown in Figure 8.15(a) the situation is even worse since such a random
behaviour of the closed–loop solution is obtained for all considered pairs (tolSQP, tolODE).
The reason for this unpredictable behaviour can be found in our implementation: Since the
closed–loop trajectory is always computed with accuracy tolODE = 10−10 and the open–
loop trajectories are computed with different tolerance levels of the differential equation
solver, the solutions deviate slightly. If the pendulum is close in the upright position, then
this deviation may shift the closed–loop state vector to the other side of this position.
Now, the initial guess of the control points in the wrong direction and the optimization
routine identifies a different upright position as the local optimum since it can be reached
by one swing–over before the end of the optimization horizon is reached.

Remark 8.12
There are different ways to cope with this problem. For example, additional constraints
can be added once a trajectory is close to one target in order to exclude other target points.
Alternatively, the initial guess of the control may be changed on start of the optimization.
A third and very sophisticated possibility is to add shooting points and set their values to
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the desired target. This is less restrictive than adding constraints and incorporates the
aspect of modifying the initial guess at the same time.

Hence, as a general guideline, the tolerance levels of both the optimization routine and
the differential equation solver should be chosen as large as possible without compromis-
ing stability of the closed–loop. For analytical reasons, the accuracy of the differential
equation solver tolODE should not be chosen larger than tolSQP, cf. Remark 8.11. For the
considered inverted pendulum example, the choice (tolSQP, tolODE) = (10−4, 10−4) appears
to be appropriate since the additional accuracy does not cause a significant increase in
the computing times.

8.3.2 Effects of the Horizon Length

As we have seen from the previous Sections 8.2 and 8.3.1, the horizon length must be
chosen as short as possible to reduce the required computing time. However, the problem
may become unstable if the horizon length is too short. Here, we consider the inverted
pendulum example from Section 7.2 and, as in Section 8.3.1, we compute the closed–
loop solution (2.16) on the interval [0, 50] with sampling length T = 0.1 and initial value
x0 = (2, 2, 0, 0) but fix the tolerance levels to tolODE = 10−4 and tolSQP = 10−4.
As expected, the desired upright equilibrium is not stabilized for small horizon length N
as shown in Figure 8.16.
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Figure 8.16: Comparison of closed–loop trajectories x1(·) for optimization horizons N
which are too small

For larger optimization horizons, the controller suddenly stabilizes the upright equilibrium
(−π, 0, 0, 0) as shown in Figure 8.17.
As shown in Section 8.3.1, there exists a range of optimization horizons N such that
the corresponding receding horizon controller almost randomly switches the point to be
stabilized, see also the discussion after Figure 8.15 for the reason of this behaviour and
Remark 8.12 for methods to avoid this effect. In Figure 8.18, we display the corresponding
x1(·) trajectories.
The phenomenon of repeatingly switched target point is not restricted to the small range
of optimization horizons N considered in Figure 8.18, but can also be experienced for
some larger optimization horizons N as shown in Figure 8.19.
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Figure 8.17: Comparison of closed–loop trajectories x1(·) for various small optimization
horizons N
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Figure 8.18: Exceptional “almost” stable closed–loop trajectories x1(·) for various opti-
mization horizons N

Within this figure, green represents the current state to be close to an upright position
whereas red corresponds to the downward position. Here, we present these results for
reasons of completeness, for our task of real–time applicability of the receding horizon
controller, we stick to short horizons.

As a guideline, we obtain the set of interest S for the optimization horizon N . This set
is bounded from below by the minimal optimization horizon which stabilizes the closed–
loop system and from above by those horizons which exhibit unwanted estimation effects.
Unfortunately, it is a priori not clear if S is nonempty and in many cases we have to
deal with the mentioned estimation effects. Moreover, obtaining this set is heuristic and
until now it is based on trial–and–error. For our inverted pendulum example, we obtain
S := {16, . . . , 24}.
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Figure 8.19: Comparison of closed–loop trajectories x1(·) for various optimization horizons

8.3.3 Effects of Initial Guess

The problem of obtaining a good initial guess of the optimization variable appears twice
in the receding horizon control setup and needs to be addressed in two ways:
First, as known from standard optimization theory, the optimization routine requires an
initial guess which is sufficiently close to the optimum of the discretized first optimal
control problem. Unfortunately, there does not exist a general recipe to develop such a
control guess which is why we leave it to the user to supply the first initial guess.

Remark 8.13
An initial guess can be obtained heuristically, e.g. by knowledge and intuition of the
considered problem. Different to that, in the case that a stabilizing continuous–time control
law u(·) is known, then the emulated version of the control uT (·) according to (1.20) can
be used as an initial guess. Another way of improving this first initial guess is by using
multiple shooting nodes which we consider in the following Section 8.3.4.
We also like to mention that combining the solutions of consecutive but shorter optimal
control problems does not only not provide a good initial guess but also destabilizes the
system in most cases. This can be seen directly from Figure 8.16: If the first optimization
horizon is chosen too small, then the trajectory of the first optimal control problem does not
converge to the desired equilibrium. Hence, the initial value for the consecutive optimal
control problem is even further away from this equilibrium and the resulting control is
highly unlikely to suit the stabilization task.

The second issue arises during the shift of the optimal control problem. Similar to the first
point, an initial guess is required for the new (shifted) discretized problem. But now, we
can exploit the structure of the receding horizon control problem and reuse the computed
optimal solution of the previous problem as an initial guess of the actual problem by using
its endpiece and append a suitable control vector to its end.
Considering the structure of the problem, our implementation contains three different
strategies to obtain the required new control vector, see Section 6.2.1.5 for details. Here,
we exclusively consider the cases optimize= 0 and optimize= 1. The option optimize=
2 is designed for m–step feedback laws and only of academic use since it causes a large
additional computational effort.
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To compare these two strategies, we consider the inverted pendulum problem with horizon
lengths N ∈ S = {16, . . . , 24} and compute the closed–loop solution on the interval [0, 50].
In Table 8.4, the summarized results from this experiment are displayed where the closed–
loop solution has been computed 200 times each to obtain reliable computing times.

N optimize= 0 optimize= 1
taverage tmax tmin V µN

500 taverage tmax tmin V µN

500

16 5.7127 44.4997 2.9918 9.4096 4.5451 76.1882 2.8862 11.6181
17 7.0676 345.6728 3.2172 9.1515 3.9272 46.0116 3.1527 9.2273
18 6.6571 46.9765 3.4768 11.0712 5.0737 42.4183 3.5139 14.9645
19 8.1253 200.7184 3.7279 9.1481 6.6153 307.3953 3.6240 13.8994
20 8.1175 84.6425 4.0064 9.5446 6.6531 55.9213 3.8609 17.6396
21 9.1212 80.4660 4.2891 9.2145 8.1731 59.8523 4.1438 18.5700
22 9.3382 88.1437 4.6020 10.2978 9.3808 53.1171 4.5159 23.5261
23 9.6738 67.6229 4.9009 10.9821 8.3203 56.2793 4.7123 24.9199
24 10.2203 68.8702 5.2126 13.7050 6.2717 68.5017 5.0568 14.9428

Table 8.4: Comparison of shift routines

From Table 8.4 we obtain that the procedure using an optimization (optimize= 1) instead
of a simple copy of the last control vector (optimize= 0) reduces the average computing
time in every step of the RHC scheme by approximately 15%. Note that the resulting
closed–loop costs are significantly higher. Here, this does not correspond to a repeated
change of the point to be stabilized but is due to solutions shaking around the optimum
which is induced by the overshoot of the added optimization.

8.3.4 Effects of Multiple Shooting Nodes

In the case of long optimization horizons N , solving the discretized optimal control prob-
lem SDOCPN becomes hard since the initial guess is difficult to obtain in general and
usually renders the state trajectory to be far from optimal. Additionally, the endpieces
of the state trajectories are sensitive to changes of the control at the beginning of the
optimization horizon.
However, if we consider a setpoint regulation problem, see Remark 1.40, we have not
used the information on the target point within the optimization process yet. In partic-
ular, defining multiple shooting points, see Definition 5.5, within endpieces of the state
trajectories allows us to reduce the sensitivity of the solution trajectory on initial con-
trols. Moreover, we can improve the initial guess of the control by setting these multiple
shooting nodes to the value of the target setpoint.

Remark 8.14
Setting multiple shooting nodes to the target value allows us to utilize local knowledge of
the system, i.e. a local feedback. Hence, the trajectory emanating from this shooting node
remains close to the target and the optimization is eased.

For the inverted pendulum example, the most critical trajectory component is the angle of
the pendulum x1(·). In the following, we illustrate the efficient use and effect of multiple
shooting nodes for this variable for several reasons:
First of all, defining every sampling point in every dimension of the problem to be a
sampling point slows down the optimization process significantly due to the enlarged
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dimension of the optimization variable, see also Section 5.1. Hence, this number should
be chosen as small as possible.
Secondly, for slow parts of the system, that is state trajectories which do not change
their values quickly, the use of shooting points may obstruct the optimization since it is
possible that there does not exist a control which links two consecutive shooting nodes. In
this case, the optimization routine wastes iteration steps trying to adapt the value of the
shooting nodes and is often unable to find a solution. However, setting sampling points
to be multiple shooting points may result in significantly improving the initial guess of
the control. Still, one has to keep in mind that this causes the optimization variable to be
enlarged. Hence, computation of the gradient of the cost function as well as the Jacobian
of the constraints require additional effort. Therefore, a balance between improving the
initial guess of the control and the number of multiple shooting points must be found.
And finally, the use of multiple shooting nodes may also lead to unstable solutions even
if the problem without shooting nodes is stable.

Remark 8.15
For our inverted pendulum example, the full discretization leads to unstable solutions while
Figure 8.17 shows that we can stabilize the system for N ≥ 16 using no shooting nodes.

In the following, we consider the horizons N = 15, 16 and 17 and solve the resulting
receding horizon control problems on the interval [0, 50] while setting one shooting node
to a variable position ς(1) on the sampling grid of the first state dimension x1(·), that is
ς(1) ∈ {0, . . . , N −2}, and the corresponding initial value to x1 = π. Here, the computing
times are obtained by repeatedly solving each problem 200 times.

(a) x1(·) trajectories (b) Closed–loop costs and computing times

Figure 8.20: Results for a varying single shooting node for horizon length N = 15

As we can see from Figure 8.20(a), the state trajectory is stabilized if we add a shooting
node for the first differential equation at position ς(1) ∈ {t9, . . . , t14} in the time grid.
Hence, using a single shooting node, we are now able to stabilize the problem for a reduced
optimization horizon N .

Remark 8.16
Note that the notation for positions in the time grid and the number of the shooting horizon
index differ by one, see Remark 5.6 for details on this issue.

In Figure 8.20(b) the caused closed–loop costs and the required computing times of the
different problems are displayed. Here, we can identify the stable solutions via the sig-
nificantly reduced closed–loop costs which again serves as our indicator for stability in
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the case of two varying shooting nodes. Additionally, we see that the computing costs
are falling if the shooting horizon index of the shooting node is close to the end of the
optimization horizon.
As mentioned earlier, adding shooting nodes may also lead to instability of the closed–
loop. Such a situation is shown in Figure 8.21.

(a) x1(·) trajectories (b) Closed–loop costs and computing times

Figure 8.21: Results for a varying single shooting node for horizon length N = 16

Here, choosing shooting horizon index ς(1) ∈ {3, . . . , 6} results in instability of the closed–
loop. Moreover, ς(1) ∈ {0, 2} causes the controller to stabilize the upright position
(−π, 0, 0, 0) while for ς(1) ∈ {1, 7, 8, . . . , 14} this changes to (π, 0, 0, 0). Hence, by our
numerical experience, the effect of stabilizing a chosen equilibrium by adding a shooting
node can only be confirmed if ς(1) is set to a time instant in the last third of the time
grid. This also holds true for Figure 8.22 which illustrates the results for N = 17.
Note that although the optimization variable has been enlarged by using a single shooting
node, the computing times stay almost unchanged.

(a) x1(·) trajectories (b) Closed–loop costs and computing times

Figure 8.22: Results for a varying single shooting node for horizon length N = 17

Remark 8.17
Note that adding shooting nodes to a problem may cause the optimization routine to sta-
bilize a different equilibrium. For our inverted pendulum example the choice of setting
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x1 = π highlights the upright position (π, 0, 0, 0) in the set of equilibrium points. Hence,
this power has to used carefully since other choices may results in lower closed–loop costs
and computing times.

Next, we add a second shooting node to our receding horizon control problem. Since
our implementation expects the time indices of these points to be in ascending order, see
Section 5.1.3, the following Figures 8.23 and 8.24 show closed–loop costs and computing
times only for feasible combinations (ς(1), ς(2)) ∈ {0, . . . , N − 2}2.
Similar to the case with just one shooting node, the problem can be stabilized for a
reduced horizon N = 15 as shown in Figure 8.23. Again, we see that — apart from a few
exceptions — the time indices of the shooting nodes should be contained in the last third
of the time grid.
For this example every added shooting node increases the computing times by around
10− 15%. From our numerical experience and the definition of the optimization variable
in Problem 5.7 we know that this percentage evolves indirectly proportional to the actual
size of the optimization vector.
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(a) Closed–loop costs

0 2 4 6 8 10 12
0

2

4

6

8

10

12

 

2nd Shooting Horizon Index

 

1s
t S

ho
ot

in
g 

H
or

iz
on

 In
de

x

5000

5500

6000

6500

7000

7500

8000

(b) Computing times

Figure 8.23: Results for two varying single shooting node for horizon length N = 15

From Figures 8.24 (and 8.21, 8.22 respectively) to we see that this proportion is reduced
as the horizon length N is increased. The smaller increase corresponds to the reduced
percentage of shooting node variables in the total number of optimization variables and
the constant number of equality constraints.
Moreover, we see that the closed–loop is stable for most combinations (ς(1), ς(2)). How-
ever, there are some exceptions which give us another nice heuristical insight: As Figures
8.24(a) and (c) show we obtain unstable closed–loops only for ς(1) ≥ ς(2) − 2, i.e. if the
two consecutive shooting nodes are close to each other in time.
All mentioned points strengthen the following heuristic:

• Keep the number of shooting nodes as small as possible

• Place the shooting node in the last third of the time grid

• Choose the time distance between two shooting nodes sufficiently large

If these three issues are considered in the presented order, then it allows us to reduce the
computing time by
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(a) Closed–loop costs for N = 16
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(b) Computing times for N = 16

(c) Closed–loop costs for N = 17 (d) Computing times for N = 17

Figure 8.24: Results for two varying single shooting node for horizon length N = 16, 17

• improving the initial guess which results in a lower number of required optimization
steps and by

• reducing the optimization horizon.

Remark 8.18
If the horizon length N is reduced further, there exists no setting of multiple shooting
nodes which allows us to stabilize the closed–loop for this particular example.

Remark 8.19
Within the receding horizon control context, we also have to consider that information
about the previous optimal control can be used to improve the initial guess of the actual
optimization problem. Hence, the number of shooting points should be reconsidered in every
step of the receding horizon control problem. To this end, the function eventBeforeMPC()

can be used, see Section 6.1.1.2. Here, however, we neither change the number nor the
positions of the implemented shooting nodes.

8.3.5 Effects of Stopping Criteria

Our last setscrew to be analyzed is the stopping criterion of the optimization routine. At
present, there exist three different criteria in our implementation of the receding horizon
control algorithm which can be used for this purpose. These are the already discussed
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tolerance level of the optimizer, a maximal number of iterations and a time dependent
method. Since we discussed the tolerance level before in Section 8.3.1, we do not consider
this method again here. Note that the tolerance level and maximal iteration stopping
mechanism are incorporated within the optimization routines itself and therefore always
present while the latter method is supplementary imposed in the receding horizon control
setting.
Here, we focus on the breaking method via fixing a maximal number of iterations of the
optimization routine. There are several reasons for this choice: Most importantly, if we
use the time dependent method to stop the optimization, the algorithm is no longer deter-
ministic since random events in the background of the CPU interfere with the calculation
and the closed–loop trajectories may vary drastically. Secondly, all effects can be noticed
in the fixed case as well. Note that in both cases, the optimization can be terminated by
the tolerance level criterion as well.
The following Figure 8.25 shows results for our setting of the inverted pendulum example.
In particular, we consider the set of interesting horizon lengths N ∈ S = {16, . . . , 24}
for the set of maximal numbers of iterations maxiter ∈ {2, . . . , 100}. Here, maxiter

= 1 is excluded since it corresponds to evaluating the gradient of the cost function and
the Jacobian of the constraints only, i.e. no actual computation of a search direction is
performed.

(a) Closed–loop costs (b) Computing times

Figure 8.25: Closed–loop costs and computing times for various maximal numbers of SQP
iterations and horizon lengths N

From Figure 8.25 we obtain that if maxiter is chosen to be small, here maxiter ∈ {2, 3},
then the closed–loop system does not converge towards an upright position which corre-
sponds to the large closed–loop costs displayed in Figure 8.25(a). Moreover, if the horizon
N is chosen large, the maximal number of iteration is required to be larger than for small
horizons. For our example and N = 16 the receding horizon controller using maxiter = 4
stabilizes the closed–loop in an upright position. For N = 24, however, maxiter= 7 is
required.
Hence, the parameter N should be chosen as small as possible to accelerate the receding
horizon control algorithm: For one, small horizon lengths require less SQP steps in the op-
timization and therefore the computing time is reduced, see Figure 8.25(b). Additionally,
the dynamic of the system can be solved faster as shown in Section 8.3.2.

Remark 8.20
The time dependent breaking criterion may be critical upon implementation since a priori
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it is not clear how many iterations can be executed by the optimization routine. Moreover,
the optimization routines allow for increases in the cost function to compensate for the
Maratos effect, see Section 5.2.4.2. Hence, even if a number of iterations is performed,
the actually best computed solution may still be the initial solution.
This also holds for the maximal number criterion. Here, however, we can choose the max-
imal number of iterations to be larger than the allowed number of trial steps. Hence, the
outcome of the optimization is either an enhanced solution or the optimization algorithm
is unable to improve the initial guess even if no additional breaking criterion is imposed.

Remark 8.21
Note that in this work we do not compare the different implemented optimization routines
NLPQLP, e04wdc and IpOpt. For the first two methods, a comparison can be found in
[88]. These results confirm that in case of a large–scale optimization problem with only
few optimization variables the method e04wdc, i.e. a class SqpNagC object, shows better
performance than the routine NLPQLP. For real–time applications, however, mainly small
optimization problem are considered. For these problems, a class SqpFortran object shows
outstanding performance, see also Remark 5.63 for details.

8.4 Suboptimality Results

From the previous Section 8.3 we know how a receding horizon controller can be configured
to stabilize the system under control and at the same time to show low computational
costs. Yet, at runtime we do not know if the resulting closed–loop is controlled to the
desired equilibrium and if yes, how large the additional cost for using the truncated
optimization horizon N is compared to the infinite one. Our aim in this section is to show
and check the applicability of the suboptimality estimates of Propositions 3.3, 3.28 as
well as Theorems 3.15, 3.22, 3.34 and 3.39 which are designed for this purpose. In order
to illustrate our results from Chapter 3, we consider the digital redesign problem of the
arm/rotor/platform (ARP) model as shown in Section 7.3.
Note that, in contrast to the previous Section 8.3 which aims for speed of the receding
horizon control algorithm, we now want to compute a suboptimality estimate α which
characterizes the decrease of the function VN(·) along the closed–loop trajectory in the
nonlinear distance defined by the stage cost l(·, ·).
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Figure 8.26: Reference function of the arm–
rotor–platform model

Here, we use the best numerically possible
solutions and we fix the absolute and rela-
tive tolerances for the solver of the differ-
ential equation to 10−10 and set the opti-
mality tolerance of the SQP solver to 10−8.
Additionally, we define the length of the
open–loop horizon within the receding hori-
zon control algorithm to N = 10 and con-
sider the reference function v(t) = sin(t).
Last, if not stated differently, we consider
the cost functional (7.41)

J(x0, u) =

N∑

j=0

tj+1∫

tj

|x5,u(t, x0) − x5,ref(t)|dt.
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The corresponding x5–component of the trajectory is shown in Figure 8.26. We like to
point out that the basic assumptions

VN(x) ≥ VN(f(x, µN(x))) + αl(x, µN(x))

or

VN(x(n)) ≥ VN(x(n + 1)) + min {α (l(x(n), µN(x(n))) − ε) , l(x(n), µN(x(n))) − ε}

of Propositions 3.2 and 3.28 respectively do not rely on the definition VN(·) as in Definition
2.15, that is

VN (x(n)) := inf
uN∈UN

JN(x(n), uN).

Within this section, we implicitly make use of this freedom of choice. In particular, we
compute VN(x(·)) and l(x(·), µN(x(·))) numerically along the trajectory and use these
approximations in the suboptimality estimates.
In the following Section 8.5, we relax the tolerance levels of both the optimizer and the
differential equation solver and show applicability of the suboptimality estimates within
the adaptation strategies presented in Chapter 4.

8.4.1 A posteriori Suboptimatity Estimate

Starting with our a posteriori estimate from Proposition 3.3 we obtain the data shown in
Table 8.5 for the arm–rotor–platform example using stated setting of the receding horizon
controller:

n α VN(x(n)) l(x(n), µN (x(n))) Violation
0 0.99999631 0.55917846 0.47991166
1 0.99998840 0.07926857 0.06836975
2 0.99991231 0.01089961 0.00890766
3 1.00000000 0.00199273 0.00169242 (KKT)
4 0.99739334 0.00030002 0.00023833
5 0.99630676 0.00006231 0.00005041
6 0.80184613 0.00001209 0.00000816
7 -0.1941001 0.00000555 0.00000077 (3.8)
8 1.00000000 0.00000569 0.00000047 (3.8), (KKT)
9 0.76238278 0.00000450 0.00000206
10 0.56527463 0.00000293 0.00000042

Table 8.5: α values from Proposition 3.3

Note that the values of VN(x(n+1)) which are needed to calculate α from Proposition 3.3
are obtained at no cost in the (n+1)th step of the receding horizon controller. According
to this, α can be computed after the second step of the controller for the first time.
Moreover, violations of the relaxed Lyapunov inequality (3.8) as well as errors coming
from our optimization routine which are indicated by (KKT) are displayed in Table 8.5.
In our simulation, the exact α-values from Proposition 3.3 are close to one for the first
iteration steps indicating that the feedback is almost infinite horizon optimal. However,
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from iteration step six onwards the values become smaller and even negative which shows
that optimality is lost here. One possible reason for this is that here the values of VN (·)
are close to the accuracy of the optimization routine and the tolerances of the solver
of the differential equations, hence numerical errors become dominant. Nevertheless,
the measured values of α in conjunction with the values of VN (·) show that the closed–
loop system behaves “almost optimal” until a very small neighborhood of the reference
trajectory is reached which is exactly what we expected to happen, see the introduction
of Section 3.3.

Remark 8.22
One has to keep in mind that the minimal α is giving an estimate for the degree of
suboptimality along the trajectory. Here, we mentioned all α values to show the progress
within the calculation.

Remark 8.23
Although it is not our primary interest one can observe the influence of the choice of the
cost function using the calculated α values. To show this we test the second cost functional
(7.42)

J(x0, u) =

N∑

j=0

∫ tj+1

tj

‖xu(t, x0) − xref(t)‖
2
2dt

which gives us the estimates for α2 stated in Table 8.6.
This difference can also be illustrated by plotting the trajectories of the state x5(·) and its
tracking reference xref(·). Note that the estimate α is the degree of suboptimality for a fixed
cost functional and hence it has got no meaning for different ones. This is due to the fact
that we cannot qualify one resulting receding horizon control law to be superior since the
usage of different stage costs l(·, ·) results in uncomparable closed–loop costs V∞(·). Still,
one can see that the closed–loop trajectory using the first running cost converges faster to-
wards the tracking signal and we also obtain larger α values and particularly small values
of the optimal value function VN(·).
Although the observed differences between the suboptimality estimate α and the value func-
tion VN(x(0)) may give us an intuition of how to construct cost functionals which are
appropriate for our control task, a design method is not at hand.

n α α2 VN(x(n)) l(x(n), µN(x(n)))
0 0.99999631 0.99985713 5044.50874629 4389.32095396
1 0.99998840 0.99940034 655.81491586 626.11058543
2 0.99991231 0.99181745 30.07978235 27.39755105
3 1.00000000 0.89245119 2.90641322 1.28994349
4 0.99630676 0.87663185 1.75520163 0.78653864
5 0.96778356 0.86449625 1.06569680 0.46395693
6 0.80184613 0.88072356 0.66460777 0.28546064
7 -0.1941001 0.87676324 0.41319585 0.17505245
8 1.00000000 0.81896807 0.25971630 0.09739556
9 0.76238278 0.82787192 0.17995245 0.07273550
10 0.56527463 0.84014543 0.11973677 0.05141013

Table 8.6: Comparison of α values from Proposition 3.3 for different cost functionals



8.4 Suboptimality Results 227

0 0.5 1 1.5 2 2.5 3 3.5 4
−6

−4

−2

0

2

4

6

8

10

t

x 9−
va

lu
es

 

 

Reference

Costfunctional (7.41)

Costfunctional (7.42)

Figure 8.27: Comparison of trajectories for cost functionals (7.41) and (7.42)

8.4.2 A priori Suboptimality Estimate

Now we compare our results from Proposition 3.3 and Theorem 3.15 to see how conserva-
tive the a priori estimate actually is. Again, we display errors of the optimization routine
by (KKT) and additionally indicate violations of Assumption 3.11 in this table.

n α (Prop. 3.3) α (Theorem 3.15) γ (Ass. 3.11) Violations
0 0.99999631 0.99997706 0.46683396
1 0.99998840 -264.92387 19.8500131
2 0.99991231 -2182.4879 50.5375020
3 1.00000000 -1214.4208 38.6167593 (KKT)
4 0.99739334 -1068.8198 36.4481006
5 0.99630676 -139.27856 15.2657865
6 0.80184613 -571.23289 27.5835655
7 -0.1941001 -565.22399 27.4561781 (3.12)
8 2.53347027 -300.29165 20.9219290
9 0.76238278 -19.854158 7.52312945
10 0.56527463 -132.33098 14.9583235

Table 8.7: Comparing results from Proposition 3.3 and Theorem 3.15

As shown in Table 8.7, almost none of the computed local suboptimality values α is posi-
tive. Hence, for this example, the a priori estimate from Theorem 3.15 is too conservative
and we are unable to guarantee stability of the closed–loop system if we consider the
inequalities from Assumption 3.11 required for Theorem 3.15.
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Remark 8.24
If one prolongates the optimization horizon one may expect better results. However, nu-
merical experiments have shown that γ is growing significantly if N is enlarged since the
trajectory is much closer to the steady state and computational errors come into play.
Unfortunately, (3.18) cannot be used to directly recognize this interaction.
Conversely, if the horizon length is too short, there may not be enough extractable infor-
mation about stability and suboptimality within the open–loop solution.

If we apply Theorem 3.22 for various N0 we expect better results due to the theoretical
background stated in Section 3.2. This can be confirmed by numerical experiments. Here,
we compare our results from Proposition 3.3 and Theorems 3.15 and 3.22 in Table 8.8.

N0 = 2 N0 = 5 N0 = 9
n α γ α γ α γ
0 0.99997706 0.46683395 0.99998313 0.24294141 0.99644951 0.16030633
1 -264.92387 19.8500134 0.99452510 0.69188060 0.99118052 0.22081641
2 -2182.4879 50.5375029 0.99960136 0.41987289 0.99453994 0.18641408
3 -1214.4208 38.6167594 0.40089028 2.07184767 0.98784725 0.24749807
4 -1068.8198 36.4481006 -1159.3136 36.4481004 0.98790473 0.24707919
5 -139.27856 15.2657861 -168.69106 15.2657865 0.89210579 0.55107453

Table 8.8: Comparing results from Theorem 3.22 for various N0

From Table 8.8 one can clearly see that the enhanced a priori estimate given by Theorem
3.22 is by far not as conservative as the a priori estimate given by Theorem 3.15 which
does not even guarantee stability. Compared to results for Proposition 3.3 we obtain very
good estimates. Table 8.7 also shows that one cannot specify a “best” N0. However,
since all necessary values are computable or can be estimated easily, one can use a simple
maximization to obtain the “best” possible estimate α.

Remark 8.25
Using a maximization over all possible values of N0 is applicable for academic use since we
do not have to care about computing times. If, however, we aim at reducing the computing
time for the receding horizon controller by applying our adaptation strategies presented in
Chapter 4, this time issue becomes critical if the a priori estimates are used, see Section
8.5 below.

8.4.3 A posteriori practical Suboptimality Estimate

In Table 8.5 we observed that our estimates deteriorate when the values of VN(x(n)) or
l(x(n), µn(x(n))) are very small, implying that optimality of the trajectories is lost in a
small neighborhood of the reference solution. Note that this is also true for Tables 8.7
and 8.8 which we truncated for reasons of clarity. One can only speculate whether this is
due to sampling or due to numerical optimization errors, most likely the effect is caused
by a combination of both. In either case, one would expect to obtain better estimates
when considering practical optimality.
In this section, we apply Proposition 3.28 to our setting of the receding horizon controller
for the arm–rotor–platform model and obtain the following values for α for horizon length
N = 10 and ε = 10−6.
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n α VN(x(n)) l(x(n), µN (x(n)))
0 0.99999840 0.55917846 0.47991166
1 1.00000000 0.07926857 0.06836975
2 1.00000000 0.01089961 0.00890766
3 1.00000000 0.00199273 0.00169242
4 1.00000000 0.00030002 0.00023833
5 1.00000000 0.00006231 0.00005041
6 0.91383624 0.00001209 0.00000816
7 1.00000000 0.00000555 0.00000077
8 1.00000000 0.00000569 0.00000047
9 1.00000000 0.00000450 0.00000206
10 1.00000000 0.00000293 0.00000042

Table 8.9: α values from Proposition 3.28

Here, we do not compare results for suboptimality and practical suboptimality since it
is clear from the inequalities that the estimates for practical suboptimality always yield
better α values.
We also like to point out that for n = 7 and 8 we have l(x(n), µN(x(n))) < ε. Since this
corresponds to the chosen ε-region we have α = 1 by definition. For n = 9, however,
we leave the ε-region but the optimization routine takes us back there in only one step.
Hence, using the notation from Proposition 3.28, we obtain two intervals I1 = {0, 6} and
I2 = {9} for this example.

Remark 8.26
If one wants to obtain a feasible and in some sense optimal ε, a nonlinear optimization
problem can be generated where the constraints are given by (3.27) and the cost function
can be chosen freely. Note that this optimization problem is growing during the receding
horizon control process since starting from the second iteration for every single iteration
one nonlinear constraint has to be added.
We like to point out that the choice of the cost function is critical for the optimization
itself since in general α is forced to be 1 whereas ε is almost 0. Hence, since numerical
errors occur within the receding horizon control algorithm, it is sometimes rather tricky
to obtain any result different from 1 and 0 respectively.

Remark 8.27
Again, note that the values of α are computed separately for each point. To obtain the
closed–loop suboptimality estimate, the minimum of the computed local suboptimality es-
timates has to be considered.

8.4.4 A priori practical Suboptimality Estimate

Last, we compare the results from Theorem 3.39 and all the previously mentioned results.

n α (Prop. 3.3) α (Theorem 3.22) α (Prop. 3.28) α (Theorem 3.39)
0 0.99999631 0.99998316 0.99999840 0.99999994
1 0.99998840 0.99982736 1.00000000 0.99999822
2 0.99991231 0.99899284 1.00000000 0.99894664
3 1.00000000 0.99775792 1.00000000 0.99995965
4 0.99739334 0.98790477 1.00000000 0.99999651
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n α (Prop. 3.3) α (Theorem 3.22) α (Prop. 3.28) α (Theorem 3.39)
5 0.99630676 0.96963602 1.00000000 0.99999264
6 0.80184613 0.97978377 0.91383624 0.99999198
7 -0.1941000 -0.6194016 1.00000000 1.00000000
8 1.00000000 -300.29165 1.00000000 1.00000000
9 0.76238278 0.97854192 1.00000000 0.99967378
10 0.56527463 0.91644361 1.00000000 1.00000000
Table 8.10: Comparing results from Propositions 3.3, 3.28 and Theorems 3.22, 3.39

In Table 8.9 we used the same setting as in Section 8.4.3. To compute the results for
Theorem 3.39 we solved all possible N0–subproblems and took the maximal value of α.
We may have stated the results for each N0 separately but this will give us no more insight
information than we already obtained in the non-practical case.

Remark 8.28
If exact solutions are at hand then the a priori estimate is always more conservative than
the a posteriori estimate. In Table 8.9, however, this is not the case for the practical a
posteriori and a priori suboptimality estimates for n = 6 due to numerical errors. Since
we deal with numerical approximations such deviations cannot be prevented.

We observe that using the practical a posteriori or a priori estimates from Proposition 3.3
or Theorem 3.39, we can guarantee stability of the closed–loop by combining our local
suboptimality estimates to a closed–loop suboptimality estimate. For the a posteriori and
a priori estimates of Proposition 3.28 and Theorem 3.22, however, this is not possible since
negative α values occur. These may be due to numerical errors which occur at runtime
but it is also not clear whether the system is asymptotically stabilizable using a class of
piecewise constant control functions. For an adaptation algorithm as proposed in Chapter
4, this is critical since negative values of α cause a prolongation of the optimization
horizon.

Remark 8.29
If conditions (3.6) or (3.27) can be satisfied in every step of the receding horizon control
algorithm, then they may also be used as a stopping criterion for the optimization routine.
Unfortunately, we observed that the applicability assumption does not hold in general. One
possibility to circumvent this problem is to apply our adaptation strategies from Chapter
4 which are designed guarantee (3.6) or (3.27) to hold. Advantages and disadvantages of
this stopping criterion in comparison to other criteria have not been tested by now.

8.5 Adaptivity

Knowing the properties and weaknesses of our suboptimality estimate from Chapter 3
and the previous Section 8.4, we again consider the arm–rotor–platform model described
in Section 7.3 in numerical experiments to analyze our adaptation strategies of Chapter
4 within this last section. This example is appropriate for this test since, using tracking
examples, one requires long optimization horizons to handle the transient behaviour while
close to the desired equilibrium short horizons are sufficient to stabilize the system.
To this end, we design simulation settings of the ARP model in Section 8.5.1 which are
typical for a RHC application. For these situations, we state results and computing times
for a standard receding horizon controller with minimal but fixed optimization horizon
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which still guarantees a fixed suboptimality degree α. These results serve us as benchmark
for our adaptation strategies. Starting with our simple implementation in Section 8.5.2
and the more sophisticated fixed point and monotone prolongation strategies in Section
8.5.3, we present trajectories and computing times for our competitive adaptive reced-
ing horizon controller implementation. Last, in Section 8.5.4, we use Theorems 4.4 and
4.6 to interpret the local suboptimality estimates along the closed–loop solution. More-
over, we draw some conclusions concerning the practicability of the considered adaptation
strategies.

8.5.1 Setup of the Simulations

For our simulation, we create two different reference functions v(·) of the form (7.40) for
the continuous–time controller. The resulting two simulations are typical for a receding
horizon controller setting.

(1) Constant setpoint tracking: The problem is initialized far from the desired equilib-
rium. Hence, the continuous–time controller causes a typical transient behaviour
of the reference state trajectory xref(·). Here, we consider the reference function
v1(t) ≡ 0, compare Figure 8.28(a).

(2) Switching setpoint tracking: Upon initialization, the problem is operating at the
desired setpoint. During the runtime, this setpoint is changed several times. The
recovery times are not equidistant and the switching times are not required to be
sampling instances. For our simulation, we consider the reference function

v2(t) =

{
10, t ∈ [0, 5) ∪ [9, 10)
0, t ∈ [5, 9) ∪ [10, 15)

,

see also Figure 8.28(b).

t

x5

0 5

+

(a) Reference function v1(t)

t

x5

0 5 9 10 15
(b) Reference function v2(t)

Figure 8.28: Typical tracking functions for a receding horizon controller

For these two situations, we now develop reference values using a standard receding hori-
zon controller without adaptation of the optimization horizon.
Considering the first situation, we use the horizon length N = 6 which guarantees a local
suboptimality degree α = 0.5 and is minimal, i.e. choosing N < 6 results in a closed–
loop suboptimality degree α < α. Here, we measure the local suboptimality degree
by using the practical a posteriori estimate of Proposition 3.28. Moreover, we set the
tolerance levels of both the minimizer and the differential equation solver to 10−6 and
the truncation constant of the running costs to ε = 10−5. For this setup of the receding
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horizon controller, we obtain the results and computing times displayed in Table 8.11
for our first simulation setting which serve us as a benchmark for the different adaptive
receding horizon controller implementations.

t [s] x5,ref(t) x5(t) α Time [10−3s]
0.00 10.00000 10.00000 1.00000 124.97
0.20 -3.31615 -0.61539 0.99984 85.67
0.40 -5.82954 -7.14547 1.00000 32.77
0.60 -1.82597 -1.52865 1.00000 47.82
0.80 -0.24045 -0.26322 1.00000 25.24
1.00 0.03912 0.05703 1.00000 24.48
1.20 0.01567 -0.00547 1.00000 20.50
1.40 -0.01729 -0.01245 1.00000 10.26
1.60 -0.01926 -0.02112 1.00000 23.01
1.80 -0.00666 -0.00550 1.00000 23.50
2.00 0.00678 0.01020 1.00000 20.38
2.20 0.01538 0.01804 1.00000 4.94
2.40 0.01660 0.01688 1.00000 18.81
2.60 0.01023 0.00800 1.00000 20.14
2.80 -0.00077 -0.00356 1.00000 17.74
3.00 -0.01088 -0.01316 1.00000 9.17
3.20 -0.01504 -0.01501 1.00000 4.71
3.40 -0.01178 -0.00954 1.00000 18.86
3.60 -0.00363 -0.00157 1.00000 19.26
3.80 0.00515 0.00664 1.00000 17.30
4.00 0.01087 0.01206 1.00000 4.92
4.20 0.01137 0.01069 1.00000 8.55
4.40 0.00664 0.00524 1.00000 18.67
4.60 -0.00099 -0.00173 1.00000 9.18
4.80 -0.00771 -0.00792 1.00000 18.60
5.00 -0.01026 -0.00984 1.00000 8.61

628.52
Table 8.11: Results for a standard RHC in a steady state situation

Remark 8.30
Within this and the following tables, we only show results for the state x5(·) since the aim
of the receding horizon control law is to keep the distance x5(·) and x5,ref(·) as small as
possible.

From the computing times (and the suboptimality estimate α) we can see that the tran-
sient phase of the state trajectory is computationally demanding. Here, computing times
are usually larger than 30ms. Once the state trajectory is close to the steady state given
by v1(·), the computing times shrink drastically. This indicates that only small adjust-
ments have to be made during the optimization process which may allow us to reduce the
length of the optimization horizon in this time phase of the control process.

Remark 8.31
Here, we only display the first 26 steps of the receding horizon control process. The aim
of the considered exemplary setting, however, is to analyze the impact of using adaptation
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algorithms on computing times for long–term applications. Hence, we do not consider the
time interval [0, 5] for our comparison of the standard receding horizon controller and the
various adaptive implementations but the larger interval [0, 50].

For our second standard situation, we consider a similar setting for the receding horizon
controller. Again, we set ε = 10−5 and both optimality and differential equation solver tol-
erances to 10−6. Given the reference function v2(·), we can guarantee local suboptimality
degree α = 0.5 for a horizon length N = 6 using the standard receding horizon con-
troller without adaptation of the horizon length. For this setting, we obtain the following
benchmark results:

t [s] x5,ref(t) x5(t) α Time [10−3s]
0.00 10.00000 10.00000 1.00000 117.60
0.20 -1.58301 1.36121 0.99978 86.50
0.40 0.86187 -0.67806 1.00000 56.09
0.60 7.53857 7.92565 1.00000 27.86
0.80 9.72219 9.69652 1.00000 26.71
1.00 9.99944 10.01864 1.00000 24.26
1.20 9.97356 9.95028 1.00000 21.36
1.40 9.94905 9.95711 1.00000 5.41
1.60 9.94825 9.94541 1.00000 6.94
1.80 9.95790 9.95897 1.00000 16.66
2.00 9.96823 9.96937 1.00000 16.62
2.20 9.97513 9.97506 1.00000 6.63
2.40 9.97666 9.97625 1.00000 8.00
2.60 9.97242 9.97088 1.00000 7.97
2.80 9.96432 9.96343 1.00000 15.79
3.00 9.95634 9.95693 1.00000 8.48
3.20 9.95256 9.95304 1.00000 8.58
3.40 9.95453 9.95589 1.00000 4.38
3.60 9.96052 9.96216 1.00000 9.11
3.80 9.96726 9.96654 1.00000 9.60
4.00 9.97188 9.96909 1.00000 7.89
4.20 9.97270 9.96988 1.00000 7.78
4.40 9.96951 9.96747 1.00000 4.19
4.60 9.96384 9.96317 1.00000 7.45
4.80 9.95851 9.95952 1.00000 7.87
5.00 9.95617 9.95820 1.00000 83.69
5.20 8.23689 8.07522 1.00000 51.24
5.40 3.63383 3.74642 1.00000 43.14
5.60 0.70561 0.67299 0.98167 21.23
5.80 -0.01646 -0.02819 1.00000 41.15
6.00 -0.06209 -0.05688 1.00000 23.70
6.20 0.01084 0.00917 1.00000 12.86
6.40 0.02821 0.03045 1.00000 22.75
6.60 0.00426 0.00231 1.00000 23.38
6.80 -0.01988 -0.02589 1.00000 24.05
7.00 -0.03267 -0.03846 1.00000 21.37
7.20 -0.03075 -0.03546 1.00000 9.43
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t [s] x5,ref(t) x5(t) α Time [10−3s]
7.40 -0.01394 -0.01482 1.00000 20.34
7.60 0.01013 0.01285 1.00000 21.60
7.80 0.02806 0.03249 1.00000 20.46
8.00 0.03036 0.03430 1.00000 17.94
8.20 0.01864 0.02039 1.00000 11.11
8.40 0.00116 0.00078 1.00000 22.41
8.60 -0.01458 -0.01669 1.00000 22.99
8.80 -0.02307 -0.02697 1.00000 21.15
9.00 -0.02087 -0.02422 1.00000 81.88
9.20 1.73013 1.93590 1.00000 54.71
9.40 6.50679 6.37147 1.00000 27.32
9.60 9.38915 9.41591 1.00000 3.23
9.80 9.92415 9.95285 1.00000 11.44
10.00 9.93538 9.92177 1.00000 10.68
10.20 9.93837 9.93994 1.00000 83.06
10.40 8.24106 8.16091 0.99142 74.01
10.60 3.95424 3.95015 1.00000 20.75
10.80 0.82267 0.83935 1.00000 42.20
11.00 0.07257 0.03354 1.00000 44.22
11.20 -0.08727 -0.07722 1.00000 42.61
11.40 0.00089 -0.00799 1.00000 13.15
11.60 0.05221 0.05321 1.00000 5.50
11.80 0.02750 0.02721 1.00000 40.26
12.00 -0.01136 -0.01213 1.00000 40.19
12.20 -0.04392 -0.04059 1.00000 22.05
12.40 -0.05830 -0.05940 1.00000 10.06
12.60 -0.04345 -0.04732 1.00000 35.16
12.80 -0.00432 -0.00537 1.00000 24.83
13.00 0.03525 0.03666 1.00000 38.96
13.20 0.05172 0.05341 1.00000 12.77
13.40 0.04277 0.04109 1.00000 5.34
13.60 0.01957 0.01880 1.00000 37.44
13.80 -0.00830 -0.00772 1.00000 23.60
14.00 -0.03170 -0.03311 1.00000 21.28
14.20 -0.04034 -0.04609 1.00000 5.33
14.40 -0.02832 -0.03037 1.00000 20.29
14.60 -0.00138 0.00257 1.00000 22.54
14.80 0.02426 0.02836 1.00000 22.64
15.00 0.03476 0.03936 1.00000 21.10

0.98167 1946.72
Table 8.12: Results for a standard RHC in a switching steady state situation

For this example, we can clearly identify the switching instances of the reference function
v2(·) from the values of x5,ref(·) and x5(·). Additionally, we observe drastical increases
in the computing times once a switch in the reference function occurs. Similar to the
first example, calculation times during the transient phases are significantly larger than
during the recovery phases. Moreover, we only experience suboptimality estimates α
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which are smaller than one during these phases. These two facts indicate that during
the transient phase an adaptation algorithm will in general have to increase the length
of the optimization horizon. For the recovery phases, we expect the horizon length to be
shortened since by the low computing times we can conclude that only minor changes of
the open–loop control are made by the optimization routine.

Remark 8.32
In contrast to the first situation which deals with long–term aspects of the comparison
of standard and adaptive receding horizon controllers, this second one is designed to ex-
hibit advantages and disadvantages of the presented adaptation strategies given a specific
switching of steady states. In particular, we want to clarify whether the additional effort
for enlarging the optimization horizon pays off during shortening phases.

8.5.2 Simple Shortening and Prolongation

Having the benchmark results using the standard receding horizon controller for both
situations stated in the previous Section 8.5.1, we now present results for receding horizon
controllers which are based on

• the simple shortening and prolongation strategies 4.10, 4.14 using the a posteriori
estimates of Propositions 3.3 or 3.28 or on

• the simple shortening and prolongation strategies 4.19, 4.21 using the a poriori
estimates of Theorems 3.22 or 3.39.

In either case, we use a setup of the receding horizon controller which is — apart from the
adaptation of the optimization horizon — identical to the benchmark standard receding
horizon controller, i.e. we set both the optimizer and differential equation solver tolerances
to 10−6 and the truncation constant of the running costs to ε = 10−5. Moreover, we
initialize the controller with a horizon length N = 6 and set α = 0.5.

Reference Proposition 3.3 Proposition 3.28
t x5,ref(t) x5(t) α Time N x5(t) α Time N

[s] [10−3s] [10−3s]
0.00 10.00000 10.00000 0.99996 498.72 6 10.00000 0.99997 489.29 6
0.20 -3.31615 -0.61541 1.00000 161.96 5 -0.61541 1.00000 163.14 5
0.40 -5.82954 -7.14043 1.00000 90.85 4 -7.14043 1.00000 91.81 4
0.60 -1.82597 -1.52993 1.00000 48.48 3 -1.52993 1.00000 48.55 3
0.80 -0.24045 -0.26170 0.93143 20.66 2 -0.26170 0.93871 20.23 2
1.00 0.03912 0.04677 0.70421 5.94 2 0.04677 0.73161 6.01 2
1.20 0.01567 -0.00454 0.73270 6.40 2 -0.00454 0.81033 6.07 2
1.40 -0.01729 -0.00049 1.00000 15.14 3 -0.00049 1.00000 15.45 3
1.60 -0.01926 -0.03437 0.72729 10.35 2 -0.03437 1.00000 10.29 2
1.80 -0.00666 -0.00367 1.00000 10.03 3 -0.00367 1.00000 2.54 2
2.00 0.00678 0.00804 1.00000 164.93 8 0.00698 1.00000 2.38 2
2.20 0.01538 0.01636 1.00000 383.49 12 0.01695 1.00000 2.28 2
2.40 0.01660 0.01607 1.00000 658.44 16 0.02079 1.00000 2.35 2
2.60 0.01023 0.00996 1.00000 261.27 16 0.01574 1.00000 2.37 2
2.80 -0.00077 -0.00012 1.00000 375.33 17 0.00424 1.00000 2.30 2
3.00 -0.01088 -0.00983 1.00000 344.48 18 -0.00807 1.00000 1.44 2
3.20 -0.01504 -0.01444 1.00000 316.03 17 -0.01508 1.00000 2.19 2
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Reference Proposition 3.3 Proposition 3.28
t x5,ref(t) x5(t) α Time N x5(t) α Time N

[s] [10−3s] [10−3s]
3.40 -0.01178 -0.01174 1.00000 347.72 18 -0.01276 1.00000 2.27 2
3.60 -0.00363 -0.00497 1.00000 440.56 19 -0.00483 1.00000 2.13 2
3.80 0.00515 0.00330 0.99327 322.08 18 0.00370 1.00000 2.19 2
4.00 0.01087 0.00931 1.00000 258.22 18 0.01108 1.00000 2.15 2
4.20 0.01137 0.00987 1.00000 423.02 19 0.01331 1.00000 2.31 2
4.40 0.00664 0.00609 1.00000 1878.04 24 0.00940 1.00000 2.28 2
4.60 -0.00099 -0.00059 0.77468 2106.05 28 0.00133 1.00000 2.22 2
4.80 -0.00771 -0.00638 0.97135 1327.45 30 -0.00684 1.00000 2.07 2
5.00 -0.01026 -0.00805 0.51607 2780.64 34 -0.01109 1.00000 2.18 2

13215.00 872.38
Table 8.13: Results for the ARP model using Algorithms 4.8, 4.10, 4.14 based on estimates
of Propositions 3.3 or 3.28 given a steady state situation

Considering the results based on the practical estimate of Proposition 3.28, we observe
exactly those results we expected: During the transient phase the required computing
times are large and due to the additional optimal control problem to be solved to obtain
the required suboptimality estimate α(N), these computing times exceed those of caused
by the standard receding horizon controller. Yet, we also obtain that the optimization
horizon N is shrinking during this phase such that for t ≥ 0.8 the required computing
times of the adaptive receding horizon controller in each step are smaller than those of
our benchmark, cf. Table 8.11.
The results which are computed using the estimate of Proposition 3.3, on the other hand,
show not only large horizons but also large computing times. Moreover, this implemen-
tation of the adaptive receding horizon controller fails to guarantee a local suboptimality
degree α = 0.5 on the complete considered interval [0, 50]. Since it is not clear whether
the sampled–data problem is asymptotically stabilizable and since we use numerical ap-
proximations to solve the optimal control problem, we cannot expect this approximation
to reveal good results.

Remark 8.33
Note that the optimization horizon is not shrinking to N = 1 which we explicitly excluded
for our controller. From an analytical point of view this should not be a problem, cf.
Propositions 3.3 and 3.28. During our numerical tests, however, N = 1 in almost every
case leads to instability of the closed–loop. Unfortunately, this instability does not appear
in our suboptimality degree α(N) for several iterations and stays therefore uncompensated.
If we exclude the case N = 1, however, this problem never occured during our tests of the
algorithm.

Coming to our a priori estimates of Theorems 3.22 and 3.39, we again use an identical
setup of the controller as in the benchmark case. Here, we always consider N0 = N − 1
which has shown to be an effective choice during our test runs.

Reference Theorem 3.22 Theorem 3.39
t x5,ref(t) x5(t) α Time N x5(t) α Time N
[s] [10−3s] [10−3s]

0.00 10.00000 10.00000 0.98802 462.29 6 10.00000 0.98803 443.22 6
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Reference Theorem 3.22 Theorem 3.39
t x5,ref(t) x5(t) α Time N x5(t) α Time N
[s] [10−3s] [10−3s]

0.20 -3.31615 -0.61789 0.99760 223.42 5 -0.61789 0.99760 222.94 5
0.40 -5.82954 -7.14123 0.99663 75.28 4 -7.14123 0.99670 76.17 4
0.60 -1.82597 -1.52114 0.99002 22.15 3 -1.52114 0.99116 22.27 3
0.80 -0.24045 -0.27003 0.94674 9.85 3 -0.27003 0.95112 9.87 3
1.00 0.03912 0.05914 0.83568 10.23 3 0.05914 1.00000 10.36 3
1.20 0.01567 0.00837 1.00000 23.92 4 0.00837 1.00000 8.83 3
1.40 -0.01729 -0.01208 0.98841 18.83 4 -0.00713 1.00000 9.18 3
1.60 -0.01926 -0.01468 1.00000 17.91 3 -0.01796 1.00000 7.19 3
1.80 -0.00666 0.00158 1.00000 10.77 4 -0.00530 1.00000 3.61 3
2.00 0.00678 0.00267 1.00000 7.01 3 0.00391 1.00000 3.50 3
2.20 0.01538 0.01609 0.53451 2.66 3 0.01178 1.00000 3.10 3
2.40 0.01660 0.01823 0.56256 3.51 3 0.02103 1.00000 5.40 3
2.60 0.01023 0.01043 0.69038 3.23 3 0.01329 1.00000 3.68 3
2.80 -0.00077 0.00131 0.77679 3.13 3 -0.00119 1.00000 3.41 3
3.00 -0.01088 -0.01106 0.75806 7.03 3 -0.00834 1.00000 3.21 3
3.20 -0.01504 -0.01547 1.00000 79.67 6 -0.01799 1.00000 6.97 3
3.40 -0.01178 -0.01009 1.00000 59.27 5 -0.01399 1.00000 3.58 3
3.60 -0.00363 -0.00596 1.00000 16.63 4 -0.00425 1.00000 3.43 3
3.80 0.00515 0.00487 1.00000 7.87 3 0.00037 1.00000 2.45 3
4.00 0.01087 0.01307 0.58641 3.50 3 0.00973 1.00000 2.89 3
4.20 0.01137 0.00945 0.91588 2.47 3 0.01680 1.00000 5.31 3
4.40 0.00664 0.00613 1.00000 41.79 6 0.00958 1.00000 2.75 3
4.60 -0.00099 -0.00094 1.00000 20.30 5 -0.00233 1.00000 2.68 3
4.80 -0.00771 -0.00840 1.00000 9.88 4 -0.00761 1.00000 3.10 3
5.00 -0.01026 -0.00960 1.00000 5.61 3 -0.01396 1.00000 5.19 3

1138.29 864.83
Table 8.14: Results for the ARP model using Algorithms 4.16, 4.19, 4.21 based on esti-
mates of Theorems 3.22 or 3.39 given a steady state situation

Compared to the a posteriori estimates, the a priori estimate designed for the non–
practical case shows better performance. However, it is also unable to compute a closed–
loop solution with guaranteed local suboptimality estimate α = 0.5 on the complete
considered interval [0, 50].

Using the practical estimate of Theorem 3.39, we observe that the computing times during
the transient phase are larger than in Table 8.11 for standard RHC but smaller than using
the a posteriori estimate, cf. Table 8.13. Since the additional computational cost for the
a posteriori estimate originate from solving twice as many optimal control problems as in
the standard case and the a priori estimate is designed to reduce this effort, this reduction
is not surprising. More surprisingly, the smallest optimization horizon for this problem
is N = 3. One reason for this choice may be that the estimate for N0 = 2 is very
conservative, see also Tables 8.7 and 8.8. Due to this (internal) choice of the algorithm,
the computing times once the state trajectory is close to the desired steady state are larger
than using the a posteriori estimate. Still, the total computing time for this exemplary
setting as displayed at the bottom of Tables 8.13 and 8.14 show that the a priori estimate
reveals an effective adaptation strategy.
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Since our second situation, the switching setpoint tracking, is based on the same model,
we can expect that the non–practical estimates exhibit an adaptation algorithm with
poor performance. Hence, we only consider the practical estimate of Proposition 3.28
and Theorem 3.39. In order to be comparable to the benchmark results of the standard
receding horizon controller, we use an identical setup, i.e. we set the tolerances levels to
10−6 and ε = 10−5. Moreover, we initialize the controller with a horizon length N = 6
and set α = 0.5.

Reference Proposition 3.28 Theorem 3.39
t x5,ref(t) x5(t) α Time N x5(t) α Time N

[s] [10−3s] [10−3s]
0.00 10.00000 10.00000 0.99996 479.44 6 10.00000 0.98611 461.94 6
0.20 -1.58301 1.36119 1.00000 183.19 5 1.36494 0.99721 226.10 5
0.40 0.86187 -0.67151 1.00000 93.82 4 -0.66782 0.99585 111.68 4
0.60 7.53857 7.92313 1.00000 50.43 3 7.92586 0.97686 51.73 3
0.80 9.72219 9.69712 0.92963 20.93 2 9.69940 0.96025 21.43 3
1.00 9.99944 10.00726 0.71314 6.66 2 10.02277 1.00000 64.88 5
1.20 9.97356 9.94931 0.77431 6.11 2 9.94895 1.00000 24.25 4
1.40 9.94905 9.96907 1.00000 12.08 3 9.96158 1.00000 9.50 3
1.60 9.94825 9.92436 1.00000 9.53 2 9.94130 1.00000 3.06 3
1.80 9.95790 9.95685 1.00000 1.68 2 9.95880 1.00000 3.56 3
2.00 9.96823 9.96938 1.00000 2.46 2 9.97193 1.00000 3.36 3
2.20 9.97513 9.97495 1.00000 2.21 2 9.98037 1.00000 6.17 3
2.40 9.97666 9.97737 1.00000 2.17 2 9.97848 1.00000 3.50 3
2.60 9.97242 9.97457 1.00000 2.25 2 9.97291 1.00000 3.51 3
2.80 9.96432 9.96671 1.00000 2.22 2 9.97117 1.00000 2.30 3
3.00 9.95634 9.95817 1.00000 2.13 2 9.96476 1.00000 2.33 3
3.20 9.95256 9.95322 1.00000 2.07 2 9.95871 1.00000 2.27 3
3.40 9.95453 9.95402 1.00000 2.05 2 9.95675 1.00000 2.15 3
3.60 9.96052 9.95945 1.00000 2.09 2 9.95946 1.00000 2.82 3
3.80 9.96726 9.96635 1.00000 1.30 2 9.96503 1.00000 2.83 3
4.00 9.97188 9.97156 1.00000 1.31 2 9.97066 1.00000 2.74 3
4.20 9.97270 9.97339 1.00000 1.96 2 9.97382 1.00000 2.12 3
4.40 9.96951 9.96956 1.00000 2.25 2 9.97315 1.00000 2.25 3
4.60 9.96384 9.96349 1.00000 2.08 2 9.96904 1.00000 2.26 3
4.80 9.95851 9.95928 1.00000 7.09 2 9.96354 1.00000 9.39 3
5.00 9.95617 9.95638 0.93036 41.44 3 9.95937 0.96739 69.25 4
5.20 8.23689 8.08290 0.98630 27.94 2 8.07478 0.96229 44.74 3
5.40 3.63383 3.72689 0.97849 8.94 2 3.74030 0.85671 21.44 3
5.60 0.70561 0.65233 0.98991 7.41 2 0.66903 0.53104 15.28 3
5.80 -0.01646 -0.02347 0.91672 2.68 2 -0.01702 1.00000 29.51 4
6.00 -0.06209 -0.06160 1.00000 3.02 2 -0.05325 1.00000 20.65 3
6.20 0.01084 0.01625 1.00000 16.65 3 0.00363 1.00000 4.50 3
6.40 0.02821 0.03695 1.00000 10.69 2 0.03232 1.00000 7.02 3
6.60 0.00426 0.01318 1.00000 2.69 2 0.00506 1.00000 3.69 3
6.80 -0.01988 -0.01674 1.00000 1.52 2 -0.01771 1.00000 3.53 3
7.00 -0.03267 -0.03111 1.00000 2.20 2 -0.02647 0.84307 3.27 3
7.20 -0.03075 -0.03365 1.00000 2.77 2 -0.03341 1.00000 6.35 3
7.40 -0.01394 -0.02124 1.00000 16.65 3 -0.01641 1.00000 8.42 3
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Reference Proposition 3.28 Theorem 3.39
t x5,ref(t) x5(t) α Time N x5(t) α Time N

[s] [10−3s] [10−3s]
7.60 0.01013 0.01130 1.00000 9.58 2 0.01331 1.00000 4.08 3
7.80 0.02806 0.03258 1.00000 2.46 2 0.02421 1.00000 3.39 3
8.00 0.03036 0.02818 1.00000 2.33 2 0.02748 1.00000 6.39 3
8.20 0.01864 0.02064 1.00000 2.31 2 0.01860 1.00000 6.83 3
8.40 0.00116 0.00695 1.00000 2.44 2 -0.00075 1.00000 3.50 3
8.60 -0.01458 -0.00871 1.00000 2.34 2 -0.01093 1.00000 3.38 3
8.80 -0.02307 -0.01903 1.00000 5.98 2 -0.01590 1.00000 7.70 3
9.00 -0.02087 -0.02000 0.93499 43.98 3 -0.02035 0.97887 72.43 4
9.20 1.73013 1.92919 0.97768 35.27 2 1.93631 0.97696 46.92 3
9.40 6.50679 6.38804 0.95393 9.36 2 6.37470 0.89778 28.79 3
9.60 9.38915 9.43669 0.99774 3.11 2 9.41498 0.98502 13.70 3
9.80 9.92415 9.94472 1.00000 3.55 2 9.95211 1.00000 10.46 3

10.00 9.93538 9.92173 1.00000 9.31 2 9.92691 1.00000 17.32 3
10.20 9.93837 9.93531 0.56752 8.81 2 9.94172 0.70144 24.46 3
10.40 8.24106 8.18114 0.94721 8.90 2 8.15265 0.61188 19.71 3
10.60 3.95424 3.98536 1.00000 27.96 3 3.95759 0.97954 46.89 4
10.80 0.82267 0.84555 1.00000 25.45 2 0.84762 0.87465 51.46 5
11.00 0.07257 0.03571 0.81082 15.52 3 0.02282 0.99208 34.82 4
11.20 -0.08727 -0.07157 1.00000 109.04 6 -0.06908 1.00000 10.67 3
11.40 0.00089 -0.01035 1.00000 45.99 5 -0.00059 1.00000 4.42 3
11.60 0.05221 0.04969 1.00000 21.89 4 0.04750 1.00000 7.99 3
11.80 0.02750 0.03031 1.00000 16.03 3 0.02493 1.00000 8.63 3
12.00 -0.01136 -0.01327 1.00000 5.55 2 -0.01433 1.00000 3.62 3
12.20 -0.04392 -0.04314 1.00000 2.23 2 -0.03997 1.00000 3.52 3
12.40 -0.05830 -0.05803 1.00000 2.86 2 -0.05222 1.00000 7.44 3
12.60 -0.04345 -0.04973 1.00000 16.71 3 -0.04089 1.00000 8.72 3
12.80 -0.00432 -0.00509 1.00000 6.58 2 -0.00053 1.00000 8.91 3
13.00 0.03525 0.03709 1.00000 2.50 2 0.03616 1.00000 3.97 3
13.20 0.05172 0.04796 1.00000 2.22 2 0.05222 1.00000 6.61 3
13.40 0.04277 0.04587 1.00000 2.45 2 0.04176 1.00000 7.65 3
13.60 0.01957 0.02729 1.00000 13.59 3 0.01631 1.00000 8.06 3
13.80 -0.00830 -0.00651 1.00000 5.03 2 -0.01018 1.00000 3.53 3
14.00 -0.03170 -0.03354 1.00000 2.37 2 -0.02858 1.00000 3.52 3
14.20 -0.04034 -0.03894 1.00000 3.09 2 -0.03610 1.00000 7.26 3
14.40 -0.02832 -0.03178 1.00000 2.97 2 -0.02684 1.00000 8.48 3
14.60 -0.00138 -0.00984 1.00000 2.92 2 0.00110 1.00000 7.79 3
14.80 0.02426 0.01445 1.00000 2.36 2 0.02440 1.00000 3.87 3
15.00 0.03476 0.02829 1.00000 1.62 2 0.03471 1.00000 6.48 3

0.56752 1484.05 0.53104 1771.40
Table 8.15: Results for the ARP model using Algorithms 4.16, 4.19, 4.21 based on esti-
mates of Theorems 3.22 or 3.39 given a switching steady state situation

From Table 8.15 we obtain that almost all observations made from Tables 8.13 and 8.14
carry over to the second situation. The remarkable difference here is that the total time
required by the a posteriori based adaptation algorithm is significantly lower than for the
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one based on the a priori estimate.
Apart from this difference we see that both implementations react quickly to the changed
circumstances and enlarge the optimization horizon once a switch in the function v2(·)
occurs. Moreover, these prolongations are small for either of the estimates and the op-
timization horizon is reduced just as in the case of the first exemplary setting. Still, we
have to keep in mind that a prolongation from N = 3 to N = 6 requires in total four
calls of computing the underlying suboptimality estimate α(N), N ∈ {3, 4, 5, 6}. Hence, a
large number of optimal control problems need to be solved. To reduce the corresponding
computational effort, we now analyze more sophisticated prolongation strategies.

8.5.3 Fixed Point and Monotone Iteration

In the previous Section 8.5.2 we observed that prolongating the optimization horizon is
computationally costy. To deal with this issue, we introduced prolongation strategies
which compute a horizon length N which guarantees a given lower suboptimality bound
α ∈ (0, 1) in Sections 4.3.1, 4.3.2 and 4.3.3. Here, our hope is that using these strategies
not only reduces the number of optimal control problems to be solved during the iteration
process of the prolongation strategies, but also that these strategies do not significantly
overestimate the required horizon length. If such an overestimates occurs, then the com-
puting times necessary to obtain the suboptimality degree α(N) explode which is the
reason for introducing upper bounds σ on the increase of the optimization horizon.
For the given two typical situations described in Section 8.5.1, we now use the prolon-
gation strategies of Algorithms 4.23 or 4.29 instead of the simple prolongation strategy
of Algorithm 4.21 in our adaptive receding horizon controller to compute a closed–loop
solution.

Remark 8.34
Since in the constant setpoint tracking setting no prolongations occur, we skip the close
analysis of results for this situation here. Yet, we state summarized results for this example
in Table 8.18 at the end of this section.

We analyze results for our second standard situation using the a priori estimate of Propo-
sition 3.28. Similar to the previous Section 8.5.2, we set tolerances levels to 10−6 and
ε = 10−5. Moreover, we initialize the controller with σ = 5, horizon length N = 6 and set
α = 0.5 which renders our results comparable to the benchmark results from Table 8.11
and the results of the simple adaptation strategy from Tables 8.13 and 8.14.

Reference Fixed Point Strategy Monotone Iteration Strategy
t x5,ref(t) x5(t) α Time N x5(t) α Time N

[s] [10−3s] [10−3s]
0.00 10.00000 10.00000 0.98716 444.39 6 10.00000 0.98716 448.09 6
0.20 -1.58301 1.36494 0.99791 219.32 5 1.36494 0.99791 219.44 5
0.40 0.86187 -0.66782 0.99940 109.17 4 -0.66782 0.99940 108.75 4
0.60 7.53857 7.92586 1.00000 50.86 3 7.92586 1.00000 50.69 3
0.80 9.72219 9.69940 1.00000 20.90 3 9.69940 1.00000 20.69 3
1.00 9.99944 10.02277 1.00000 13.05 3 10.02277 1.00000 12.97 3
1.20 9.97356 9.94058 1.00000 10.06 3 9.94058 1.00000 9.95 3
1.40 9.94905 9.95398 1.00000 8.47 3 9.95398 1.00000 8.38 3
1.60 9.94825 9.94354 1.00000 6.86 3 9.94354 1.00000 6.81 3
1.80 9.95790 9.95718 1.00000 3.35 3 9.95718 1.00000 3.33 3
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Reference Fixed Point Strategy Monotone Iteration Strategy
t x5,ref(t) x5(t) α Time N x5(t) α Time N

[s] [10−3s] [10−3s]
2.00 9.96823 9.97071 1.00000 6.06 3 9.97071 1.00000 6.00 3
2.20 9.97513 9.97672 1.00000 2.56 3 9.97672 1.00000 2.56 3
2.40 9.97666 9.97765 1.00000 6.06 3 9.97765 1.00000 6.00 3
2.60 9.97242 9.97410 1.00000 3.40 3 9.97410 1.00000 3.38 3
2.80 9.96432 9.96488 1.00000 2.43 3 9.96488 1.00000 2.39 3
3.00 9.95634 9.96113 1.00000 2.21 3 9.96113 1.00000 2.20 3
3.20 9.95256 9.95633 1.00000 1.47 3 9.95633 1.00000 1.45 3
3.40 9.95453 9.95461 1.00000 2.11 3 9.95461 1.00000 2.09 3
3.60 9.96052 9.95736 1.00000 2.20 3 9.95736 1.00000 2.18 3
3.80 9.96726 9.96304 1.00000 2.22 3 9.96304 1.00000 2.20 3
4.00 9.97188 9.96871 1.00000 1.54 3 9.96871 1.00000 1.51 3
4.20 9.97270 9.97212 1.00000 2.00 3 9.97212 1.00000 1.99 3
4.40 9.96951 9.97174 1.00000 2.09 3 9.97174 1.00000 2.06 3
4.60 9.96384 9.96763 1.00000 2.14 3 9.96763 1.00000 2.13 3
4.80 9.95851 9.96221 1.00000 9.30 3 9.96221 1.00000 9.28 3
5.00 9.95617 9.95820 1.00000 93.09 5 9.95820 1.00000 93.59 5
5.20 8.23689 8.07627 1.00000 80.09 4 8.07627 1.00000 79.78 4
5.40 3.63383 3.74506 1.00000 26.89 3 3.74506 1.00000 27.37 3
5.60 0.70561 0.66530 1.00000 8.90 3 0.66530 1.00000 8.88 3
5.80 -0.01646 -0.02483 1.00000 11.84 3 -0.02483 1.00000 11.74 3
6.00 -0.06209 -0.04484 1.00000 10.56 3 -0.04484 1.00000 10.47 3
6.20 0.01084 0.01071 1.00000 4.23 3 0.01071 1.00000 4.22 3
6.40 0.02821 0.02928 1.00000 6.64 3 0.02928 1.00000 6.58 3
6.60 0.00426 0.00533 1.00000 3.63 3 0.00533 1.00000 3.61 3
6.80 -0.01988 -0.01728 1.00000 3.57 3 -0.01728 1.00000 3.53 3
7.00 -0.03267 -0.02483 1.00000 3.28 3 -0.02483 1.00000 3.25 3
7.20 -0.03075 -0.03130 1.00000 6.27 3 -0.03130 1.00000 6.19 3
7.40 -0.01394 -0.01565 1.00000 8.11 3 -0.01565 1.00000 8.15 3
7.60 0.01013 0.01293 1.00000 3.96 3 0.01293 1.00000 4.02 3
7.80 0.02806 0.02449 1.00000 2.62 3 0.02449 1.00000 2.62 3
8.00 0.03036 0.02815 1.00000 6.25 3 0.02815 1.00000 6.21 3
8.20 0.01864 0.01894 1.00000 6.69 3 0.01894 1.00000 6.65 3
8.40 0.00116 -0.00088 1.00000 3.45 3 -0.00088 1.00000 3.41 3
8.60 -0.01458 -0.01086 1.00000 3.29 3 -0.01086 1.00000 3.28 3
8.80 -0.02307 -0.01584 1.00000 7.47 3 -0.01584 1.00000 7.48 3
9.00 -0.02087 -0.02021 0.99994 175.81 6 -0.02021 0.99957 61.21 4
9.20 1.73013 1.93424 1.00000 134.34 5 1.93630 1.00000 46.25 3
9.40 6.50679 6.38096 1.00000 55.31 4 6.37466 1.00000 28.19 3
9.60 9.38915 9.41895 1.00000 21.66 3 9.41499 1.00000 13.49 3
9.80 9.92415 9.94756 1.00000 10.96 3 9.95210 1.00000 10.24 3

10.00 9.93538 9.92633 0.84837 19.56 3 9.92690 1.00000 17.09 3
10.20 8.20383 8.09010 1.00000 26.37 3 9.94172 1.00000 23.99 3
10.40 3.87739 3.87063 1.00000 20.53 3 8.15263 1.00000 19.34 3
10.60 0.78059 0.83502 1.00000 25.91 3 3.95760 1.00000 24.84 3
10.80 0.22849 0.16371 1.00000 27.73 3 0.84434 1.00000 15.61 3
11.00 0.01671 0.05055 1.00000 15.39 3 0.03000 1.00000 11.52 3
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Reference Fixed Point Strategy Monotone Iteration Strategy
t x5,ref(t) x5(t) α Time N x5(t) α Time N

[s] [10−3s] [10−3s]
11.20 -0.01193 -0.02744 1.00000 10.06 3 -0.05878 1.00000 11.27 3
11.40 0.03573 0.03096 1.00000 7.23 3 -0.00103 1.00000 4.45 3
11.60 0.03929 0.03435 1.00000 9.85 3 0.05418 1.00000 8.91 3
11.80 0.01125 0.00754 1.00000 8.38 3 0.02844 1.00000 8.79 3
12.00 -0.01994 -0.02310 1.00000 3.56 3 -0.01625 1.00000 8.07 3
12.20 -0.04373 -0.04052 1.00000 3.53 3 -0.04474 1.00000 3.42 3
12.40 -0.04791 -0.04467 1.00000 8.08 3 -0.06046 1.00000 7.28 3
12.60 -0.02611 -0.02528 1.00000 9.07 3 -0.04282 1.00000 9.10 3
12.80 0.01051 0.01362 1.00000 4.01 3 0.00036 1.00000 8.51 3
13.00 0.03800 0.03371 1.00000 3.56 3 0.03599 1.00000 3.87 3
13.20 0.04255 0.03903 1.00000 6.43 3 0.05213 1.00000 6.53 3
13.40 0.02953 0.02928 1.00000 8.36 3 0.04164 1.00000 7.51 3
13.60 0.00818 0.00533 1.00000 7.89 3 0.01638 1.00000 8.03 3
13.80 -0.01481 -0.01612 1.00000 3.41 3 -0.01021 1.00000 3.46 3
14.00 -0.03119 -0.03015 1.00000 3.39 3 -0.02850 1.00000 3.46 3
14.20 -0.03246 -0.03444 1.00000 8.09 3 -0.03582 1.00000 7.15 3
14.40 -0.01634 -0.01765 1.00000 9.01 3 -0.02671 1.00000 8.31 3
14.60 0.00803 0.01090 1.00000 3.94 3 0.00105 1.00000 7.63 3
14.80 0.02559 0.02233 1.00000 3.35 3 0.02443 1.00000 3.84 3
15.00 0.02861 0.02585 1.00000 7.90 3 0.03462 1.00000 6.33 3

0.84837 1866.56 0.98716 1617.99
Table 8.16: Results for the ARP model using Algorithms 4.16, 4.19 and Algorithms 4.23
or 4.29 based on estimates of Theorem 3.39 given a switching steady state situation

Before we state a complete comparison of all adaptation methods, we use our practical
a posteriori estimate of Proposition 3.28 within these more sophisticated prolongation
strategies by utilizing Newton’s method as described in Section 4.3.3. This gives us the
following data:

Reference Fixed Point Strategy Monotone Iteration Strategy
t x5,ref(t) x5(t) α Time N x5(t) α Time N

[s] [10−3s] [10−3s]
0.00 10.00000 10.00000 1.00000 482.50 6 10.00000 1.00000 471.51 6
0.20 -1.58301 1.36119 1.00000 184.79 5 1.36119 1.00000 183.16 5
0.40 0.86187 -0.67151 1.00000 94.85 4 -0.67151 1.00000 94.40 4
0.60 7.53857 7.92313 1.00000 50.93 3 7.92313 1.00000 50.39 3
0.80 9.72219 9.69712 1.00000 20.80 2 9.69712 0.97629 20.56 2
1.00 9.99944 10.00726 1.00000 6.68 2 10.00726 0.93421 6.61 2
1.20 9.97356 9.94931 1.00000 6.18 2 9.94931 1.00000 6.15 2
1.40 9.94905 9.96907 1.00000 3.43 2 9.96907 1.00000 3.42 2
1.60 9.94825 9.93649 1.00000 3.16 2 9.93649 1.00000 3.15 2
1.80 9.95790 9.97901 1.00000 3.01 2 9.97901 1.00000 2.99 2
2.00 9.96823 9.98603 1.00000 3.03 2 9.98603 1.00000 3.01 2
2.20 9.97513 9.98900 1.00000 2.92 2 9.98900 1.00000 2.91 2
2.40 9.97666 9.98903 1.00000 3.03 2 9.98903 1.00000 2.97 2
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Reference Fixed Point Strategy Monotone Iteration Strategy
t x5,ref(t) x5(t) α Time N x5(t) α Time N

[s] [10−3s] [10−3s]
2.60 9.97242 9.98366 1.00000 2.89 2 9.98366 1.00000 2.88 2
2.80 9.96432 9.97427 1.00000 2.80 2 9.97427 1.00000 2.77 2
3.00 9.95634 9.96454 1.00000 2.26 2 9.96454 1.00000 2.25 2
3.20 9.95256 9.95845 1.00000 2.30 2 9.95845 1.00000 2.25 2
3.40 9.95453 9.95750 1.00000 2.25 2 9.95750 1.00000 2.24 2
3.60 9.96052 9.96141 1.00000 2.10 2 9.96141 1.00000 2.08 2
3.80 9.96726 9.96793 1.00000 2.04 2 9.96793 1.00000 2.04 2
4.00 9.97188 9.97293 1.00000 2.14 2 9.97293 1.00000 2.12 2
4.20 9.97270 9.97424 1.00000 2.16 2 9.97424 1.00000 2.15 2
4.40 9.96951 9.97142 1.00000 2.22 2 9.97142 1.00000 2.21 2
4.60 9.96384 9.96577 1.00000 2.13 2 9.96577 1.00000 2.12 2
4.80 9.95851 9.95996 1.00000 7.05 2 9.95996 1.00000 7.04 2
5.00 9.95617 9.95680 1.00000 75.09 4 9.95680 1.00000 75.21 4
5.20 8.23689 8.07466 1.00000 41.92 3 8.07466 1.00000 41.56 3
5.40 3.63383 3.74436 1.00000 22.30 2 3.74436 0.97020 22.27 2
5.60 0.70561 0.66432 1.00000 3.67 2 0.66432 0.93042 3.64 2
5.80 -0.01646 -0.03230 1.00000 5.97 2 -0.03230 1.00000 6.01 2
6.00 -0.06209 -0.07331 1.00000 5.90 2 -0.07331 1.00000 5.92 2
6.20 0.01084 0.00027 1.00000 3.27 2 0.00027 1.00000 3.29 2
6.40 0.02821 0.03661 1.00000 2.66 2 0.03661 1.00000 2.68 2
6.60 0.00426 -0.00639 1.00000 2.44 2 -0.00639 1.00000 2.44 2
6.80 -0.01988 -0.02585 1.00000 2.40 2 -0.02585 1.00000 2.38 2
7.00 -0.03267 -0.03726 1.00000 2.83 2 -0.03726 1.00000 2.85 2
7.20 -0.03075 -0.03794 1.00000 2.91 2 -0.03794 1.00000 2.93 2
7.40 -0.01394 -0.02486 1.00000 2.98 2 -0.02486 1.00000 2.99 2
7.60 0.01013 -0.00327 1.00000 2.90 2 -0.00327 1.00000 2.91 2
7.80 0.02806 0.01609 1.00000 2.40 2 0.01609 1.00000 2.41 2
8.00 0.03036 0.02337 1.00000 1.49 2 0.02337 1.00000 1.50 2
8.20 0.01864 0.01789 1.00000 2.20 2 0.01789 1.00000 2.18 2
8.40 0.00116 0.00339 1.00000 2.34 2 0.00339 1.00000 2.41 2
8.60 -0.01458 -0.01215 1.00000 2.22 2 -0.01215 1.00000 2.22 2
8.80 -0.02307 -0.02117 1.00000 5.88 2 -0.02117 1.00000 6.25 2
9.00 -0.02087 -0.02169 1.00000 100.98 5 -0.02169 1.00000 102.64 5
9.20 1.73013 1.93557 1.00000 60.63 4 1.93557 1.00000 61.24 4
9.40 6.50679 6.37381 1.00000 21.52 3 6.37381 1.00000 21.73 3
9.60 9.38915 9.40940 1.00000 14.62 2 9.40940 1.00000 14.74 2
9.80 9.92415 9.95993 1.00000 8.60 2 9.95993 1.00000 79.39 5

10.00 9.93538 9.95569 0.64306 8.77 2 9.94343 0.96083 98.39 4
10.20 8.20383 8.13191 1.00000 8.80 2 8.10270 0.75029 50.73 4
10.40 3.87739 3.90372 1.00000 8.26 2 3.87779 1.00000 61.33 3
10.60 0.78059 0.80230 1.00000 6.24 2 0.83116 1.00000 31.53 2
10.80 0.22849 0.16078 1.00000 6.51 2 0.17868 1.00000 6.59 2
11.00 0.01671 0.06359 1.00000 6.52 2 0.05029 1.00000 54.75 5
11.20 -0.01193 -0.03681 1.00000 3.42 2 -0.04120 1.00000 16.53 4
11.40 0.03573 0.04643 1.00000 3.26 2 0.03899 1.00000 9.40 3
11.60 0.03929 0.01836 1.00000 2.40 2 0.04169 1.00000 10.23 2
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Reference Fixed Point Strategy Monotone Iteration Strategy
t x5,ref(t) x5(t) α Time N x5(t) α Time N

[s] [10−3s] [10−3s]
11.80 0.01125 0.00254 1.00000 2.30 2 0.01018 1.00000 1.48 2
12.00 -0.01994 -0.02183 1.00000 2.18 2 -0.02085 1.00000 2.11 2
12.20 -0.04373 -0.04439 1.00000 2.62 2 -0.04287 1.00000 2.65 2
12.40 -0.04791 -0.05163 1.00000 2.84 2 -0.05014 1.00000 2.86 2
12.60 -0.02611 -0.03587 1.00000 2.97 2 -0.03539 1.00000 3.01 2
12.80 0.01051 -0.00444 1.00000 2.94 2 -0.00395 1.00000 3.02 2
13.00 0.03800 0.02382 1.00000 2.41 2 0.02432 1.00000 2.45 2
13.20 0.04255 0.03471 1.00000 2.34 2 0.03515 1.00000 2.32 2
13.40 0.02953 0.02887 1.00000 2.32 2 0.02918 1.00000 2.38 2
13.60 0.00818 0.01206 1.00000 2.33 2 0.01222 1.00000 2.37 2
13.80 -0.01481 -0.00948 1.00000 2.27 2 -0.00941 1.00000 2.32 2
14.00 -0.03119 -0.02685 1.00000 2.25 2 -0.02685 1.00000 2.25 2
14.20 -0.03246 -0.03176 1.00000 2.77 2 -0.03177 1.00000 2.80 2
14.40 -0.01634 -0.02027 1.00000 2.90 2 -0.02023 1.00000 2.87 2
14.60 0.00803 0.00081 1.00000 2.43 2 0.00091 1.00000 2.40 2
14.80 0.02559 0.01866 1.00000 2.27 2 0.01880 1.00000 2.28 2
15.00 0.02861 0.02602 1.00000 2.25 2 0.02614 1.00000 2.24 2

0.64306 1348.87 0.75029 1692.62
Table 8.17: Results for the ARP model using Algorithms 4.16, 4.19 and Algorithms 4.23
or 4.29 based on estimates of Proposition 3.28 given a switching steady state situation

Summarizing our results for both situations we obtain the following Tables 8.18 and
8.19. Note that in case of Table 8.18, we consider the interval [0, 50] to obtain long–term
conclusions.

Adaptive RHC Computing times in [10−3s]
Implementation Estimate max min ∅ ∅[0,1) ∅[1,50)

Standard RHC — 85.67 4.71 4.66 63.29 3.95
Simple Prolongation Prop. 3.28 163.14 1.12 2.54 80.93 1.26
Simple Prolongation Thm. 3.39 222.94 1.14 2.67 82.81 1.37

Fixed Point Prop. 3.28 164.56 1.35 2.80 81.59 1.52
Fixed Point Thm. 3.39 225.58 1.23 2.82 83.40 1.50
Monotone Prop. 3.28 162.18 1.33 2.82 80.70 1.55
Monotone Thm. 3.39 221.39 1.17 2.79 82.28 1.50

Table 8.18: Comparison of RHC results in a steady state situation

For our first situation, the constant setpoint tracking, we observe that all six adaptive
receding horizon controllers show an improved performance compared to the standard
receding horizon controller. Upon intialization, the first RHC iterate is compromised by
the startup of the minimizer which is why we exclude this step from our considerations.
Still, the first few iterations are computationally more expensive if we use the adaptation
strategies. For this example, the cost for the first RHC step rise by about 250% if we use
the a posteriori estimate and by about 200% if the adaptation is based on the a priori
estimate. During the transient phase [0, 1) of this example, this reduces to approximately
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130% for all strategies, i.e. the shortening of the optimization horizon slowly starts to
pay off. Once the solution is close to the steady state, the average computing times of
the adaptive receding horizon controller are 60–70% lower than in the standard case.
Comparing the different implementations, we see that the implementations using the
simple prolongation strategies of Algorithms 4.14 and 4.21 exhibit lower computing times
once the trajectory is close to the steady state. Considering the underlying estimations,
the a priori estimate of Theorem 3.39 shows better performance than the a posteriori
estimate of Proposition 3.28 for the fixed point and monotone strategy. However, this
does not hold for the simple strategy.
Hence, at least for this example, the simple strategy combined with the a posteriori
estimate from Proposition 3.28 shows best performance. For a general example, the
”best“ adaptation strategy (among the presented ones) is not clear. This is due to two
different and model inherent properties:

• If, for example, the minimal optimization horizon which guarantees at least local
suboptimality degree α ∈ (0, 1) is large, then the a posteriori estimates becomes
more efficient since only one additional optimal control problem needs to be solved.
If, however, some knowledge on N0 can be used, then the a priori estimate may be
the better choice.

• Secondly, if large jumps within the minimal length of the optimization horizons
occur, then the fixed point and monotone strategies start to pay off.

For the first issue, it is currently unknown how a good parameter N0 can be characterized.
The second issue, however, corresponds to the appropriate choice of the parameter σ. In
particular, σ bounds the increase of the optimization horizon for both the fixed point and
the monotone strategy. From numerical results, we know that this parameter is required
since the prolongation formulae typically overestimate the required optimization horizon
if the current suboptimality estimate α is much smaller than α.

For our second standard situation, the switching setpoint tracking problem, we choose
σ = 5 since according to the outcome of the simple strategies no bigger jumps occur
during the simulation. For a detailed comparison of the corresponding experiments, the
data is contained in the following Table 8.19.

Adaptive RHC Time in [10−3s] Horizon length
Implementation Estimate max min ∅ max min ∅

Standard RHC — 86.50 3.23 23.14 6 6 6
Simple Prolongation Prop. 3.28 183.19 1.30 13.37 6 2 2.39
Simple Prolongation Thm. 3.39 226.10 2.12 17.46 6 3 3.21

Fixed Point Prop. 3.28 184.79 1.49 11.55 6 2 2.25
Fixed Point Thm. 3.39 219.32 1.45 18.96 6 3 3.19
Monotone Prop. 3.28 183.16 1.48 16.28 6 2 2.43
Monotone Thm. 3.39 219.44 1.47 15.60 6 3 3.13

Table 8.19: Comparison of RHC results in a switching steady state situation

We obtain that, similar to the first experiment, the adaptive receding horizon controllers
require much larger computing times on initialization of the problem. Again, we exclude
the first RHC step from our considerations since it is compromised by the startup of the



246 Chapter 8: Numerical Results and Effects

minimizer. From the average horizon length, however, all six implementations operate
with much smaller optimization horizons in general. The payoff can be seen from the
average computing times required by these methods. For this setting, we again obtain
that all six adaptive receding horizon controllers outrun the standard implementation.
Conclusions about effectiveness of the suboptimality estimate and the implementation
methods, however, are problematic.
Here, we obtain the best result if we consider the fixed point prolongation strategy of
Algorithm 4.23 combined with our a posteriori estimate from Proposition 3.28. Yet, the
worst outcome uses the same implementation but our a priori estimate from Theorem
3.39. This mismatch is most probably related to the contraction requirement (4.12) of
the fixed point strategy and we experienced this problem for other examples and settings
as well. The monotone strategy of Algorithm 4.29 uses more iteration steps than the fixed
point iteration which is confirmed by other numerical experiments. Yet, using the a priori
estimate, the average computing time of the simple implementation is improved for this
setting.

In general, the ability of these more sophisticated strategies to outrun the simple method is
directly proportional to the minimal horizon length N at those closed–loop points where
enlarging jumps of the horizon length are required to sustain the local suboptimality
degree α, and to the size of these jumps. Hence, these two parameter have to be used
to define the bound σ. Moreover, two effects need to be waged to optimally set this
bound: For one, an increase of the optimization horizon by one leaves the optimal solution
relatively untouched, hence the computing time is fairly small. If the optimization horizon
is increased by a large number (relative to the current length of the horizon), then the
solution of the new optimal control problem is costy. For this reason, the choice of the
prolongation method is problem dependent.

8.5.4 Computing the Closed–loop Suboptimality Degree

Using the computed values for both the constant setpoint and the switching setpoint
tracking example from the last sections, we now want to draw conclusion on the closed–
loop. To this end, we compute the closed–loop suboptimality degree α from the local data
according to Theorem 4.6. Note that we can restrict ourselves to those time instances
where l(·, ·) > ε holds, i.e. when the state trajectory is outside the practical area around
the target.
The following Tables 8.20 and 8.21 show the corresponding values αC for both situations
and all previously discussed adaptive receding horizon controller implementations, see
Sections 8.5.2 and 8.5.3.

Remark 8.35
Here, we set N⋆ = 6 and recompute each open–loop solution for identical base points
along the closed–loop trajectory. This allows us to consider local information as described
in Theorem 4.6 and we do not have to compute Cl and Cα for all x ∈ X.

Adaptive RHC Cl Cα αC

Implementation Estimate min max min max
All strategies Prop. 3.28 0.97029 0.99981 0.99406 1.05840 0.50017
All strategies Thm. 3.39 0.99710 1.04115 1.00043 1.05140 0.50360

Table 8.20: Values of Cl, Cα and αC of Theorem 4.6 for the setpoint stabilization example
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Remark 8.36
For the constant setpoint tracking situation, we combined the results for the different
adaptation algorithms apart from the suboptimality estimation since we obtained identical
results down to the state trajectory level.

Adaptive RHC Cl Cα αC

Implementation Estimate min max min max
Simple Prolongation Prop. 3.28 0.99595 1.12821 1.00000 1.05063 0.44318
Simple Prolongation Thm. 3.39 0.88244 1.14606 1.00102 1.83214 0.47516

Fixed Point Prop. 3.28 1.10786 1.10786 1.00000 1.00000 0.45132
Fixed Point Thm. 3.39 0.94800 1.53346 0.98164 1.64574 0.33668
Monotone Prop. 3.28 0.96389 1.17606 1.00000 1.10885 0.42918
Monotone Thm. 3.39 0.88354 2.03629 0.98564 1.83608 0.25354

Table 8.21: Values of Cl, Cα and αC of Theorem 4.6 for the tracking example

Note that according to Theorem 4.6, αC is given by combinations of C
(i)
l and C

(i)
α for

i ∈ I, while Tables 8.21 and 8.21 show minimal and maximal values of Cl and Cα.
For both situations, we observe that using the a priori estimate from Theorem 3.39 exhibits
satisfactory closed–loop suboptimality estimates while results based on the a posteriori
estimate from Proposition 3.28 show very good performance. Indeed, the minimal local
suboptimality degree α = 0.5 is almost completely carried over to the closed–loop sub-
optimality degree. In either case, the presented adaptation strategies guarantee stability
of the closed–loop, show a good local and closed–loop suboptimality degree and still offer
lower computing times than the standard receding horizon controller implementation.

Concluding, in Chapters 5 and 6 we presented an implementation of a receding horizon
controller described in the earlier Chapter 2. In Sections 8.1 and 8.2 we showed that
this implementation is efficient and illustrated the interaction of various components of
the method in Section 8.3 using a real–time example. In Section 8.4 we observed that
our practical suboptimality estimates from Chapter 3 are applicable in the context of
adaptation strategies for the optimization horizon. Moreover, we saw in Section 8.5 that
these methods interact nicely with our presented adaptation strategies from Chapter 4.
In total, we presented an efficient and stability guaranteeing receding horizon algorithm.
Future work concerns many parts of this method. Probably the most important point is
to improve the a priori estimate presented in Theorem 3.39 by a more detailed analysis
of the parameter N0 and to develop other efficiently computable suboptimality estimates.
By this, we hope to reduce the required computing time significantly. Moreover, develop-
ment and investigation of alternatives to prolongate or shorten the optimization horizon
will be an issue. In particular, combinations of iterates may allow for further insight of
the process under control. Upon implementation, the integration of the suboptimality
estimate into the optimization routine, e.g. as a breaking criterion, will be a field of
interest. Furthermore, extensions to cover partial differential equations are planned.
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Appendix A

An Implementation Example

The following program code represents an implementation of the inverted pendulum on
a cart problem, see Section 7.2, within PCC2.

#include "InvertedPendulum.h"

#include <odesol2/dopri853.h>

#include <iostream >

#include <cmath >

using namespace std;

#define PI 3.141592654

#define INF 1.0E19

InvertedPendulum:: InvertedPendulum()

: btmb:: MPC2:: Model ( new btmb::OdeSol2 :: DoPri853 (),

new btmb::OdeSol2 :: DoPriConfig(),

4,

1,

1,

4 )

{

setDoubleParameter ( 0, 0.007 );

setDoubleParameter ( 1, 1.25 );

setDoubleParameter ( 2, 9.81 );

setDoubleParameter ( 3, 0.197 );

getOdeConfig()->setTolerance ( 1E-10, 1E-10 );

}

InvertedPendulum::~ InvertedPendulum()

{

delete getOdeSolver();

delete getOdeConfig();

}

void InvertedPendulum:: dglFunction ( double t, double * x, double

* u, double * dx )

249



250 An Implementation Example

{

dx[0] = x[1];

dx[1] = - params[2] * sin ( x[0] ) / params [1] - u[0] * cos (

x[0] ) - params[0] * atan ( 1.0e3 * x[1] ) * x[1] * x[1] -

( 4.0 * x[1] / ( 1.0 + 4.0 * x[1] * x[1] ) + 2.0 * atan (

2.0 * x[1] ) / PI ) * params [3];

dx[2] = x[3];

dx[3] = u[0];

}

double InvertedPendulum:: objectiveFunction ( double t, double * x

, double * u )

{

double sinxpi = sin ( x[0] - PI );

double cosy = cos ( x[1] );

double temp = ( 1.0 - cos ( x[0] - PI ) ) * ( 1.0 + cosy *

cosy );

return 1.0e-1 * pow ( 3.51 * sinxpi * sinxpi + ( 4.82 *

sinxpi + 2.31 * x[1] ) * x[1] + 2.0 * temp * temp + 1.0 * x

[2] * x[2] + 1.0 * x[3] * x[3], 2.0 );

}

double InvertedPendulum:: pointcostFunction ( int length , int

horizon , double * t, double * x, double * u )

{

if ( length < horizon )

{

return 0.0;

}

else

{

double * lastx = &x[ ( horizon - 1 ) * 4];

double sinxpi = sin ( lastx[0] - PI );

double cosy = cos ( lastx[1] );

double temp = ( 1.0 - cos ( lastx[0] - PI ) ) * ( 1.0 +

cosy * cosy );

return pow ( 3.51 * sinxpi * sinxpi + ( 4.82 * sinxpi +

2.31 * lastx[1] ) * lastx[1] + 2.0 * temp * temp + 1.0

* pow ( lastx[2], 2.0 ) + 1.0 * lastx[3] * lastx[3],

2.0 );

}

}

void InvertedPendulum:: getObjectiveWeight ( double & obj_weight ,

double & pointcost_weight )

{

obj_weight = 1.0;

pointcost_weight = 1.0;

}
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void InvertedPendulum:: restrictionFunction ( double t, double * x

, double * u, double * fx )

{

}

void InvertedPendulum:: getControlBounds ( double * lb, double *

ub )

{

lb[0] = -5.0;

ub[0] = 5.0;

}

void InvertedPendulum:: getModelBounds ( double * lb, double * ub

)

{

lb[0] = -INF;

lb[1] = -INF;

lb[2] = -5.0;

lb[3] = -10.0;

ub[0] = INF;

ub[1] = INF;

ub[2] = 5.0;

ub[3] = 10.0;

}

void InvertedPendulum:: getDefaultState ( double * x )

{

x[0] = 0.0;

x[1] = 0.0;

x[2] = 0.0;

x[3] = 0.0;

}

void InvertedPendulum:: getDefaultControl ( double * u )

{

u[0] = 0.0;

}

int InvertedPendulum:: getShootingDataLength ( int horizon )

{

return 2;

}

int InvertedPendulum:: getMaxShootingDataLength ( int maxhorizon )

{

return 2;

}

void InvertedPendulum:: getShootingDataInfo ( int horizon , btmb::
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MPC2:: STARTDATA * sdata )

{

sdata[0].horizontindex = 13;

sdata[0].varindex = 0;

sdata[1].horizontindex = 15;

sdata[1].varindex = 0;

}

void InvertedPendulum:: eventBeforeMPC ( int horizon , double * t,

double * x, double * sdatavalues )

{

sdatavalues[0] = 3.1415;

sdatavalues[1] = 3.1415;

}

Listing A.1: Header file of the Inverted Pendulum example using PCC2

#include "InvertedPendulum.h"

#include <odesol2/dopri853.h>

#include <iostream >

#include <cmath >

using namespace std;

#define PI 3.141592654

#define INF 1.0E19

InvertedPendulum:: InvertedPendulum()

: btmb:: MPC2:: Model ( new btmb::OdeSol2 :: DoPri853 (),

new btmb::OdeSol2 :: DoPriConfig(),

4,

1,

1,

4 )

{

setDoubleParameter ( 0, 0.007 );

setDoubleParameter ( 1, 1.25 );

setDoubleParameter ( 2, 9.81 );

setDoubleParameter ( 3, 0.197 );

getOdeConfig()->setTolerance ( 1E-10, 1E-10 );

}

InvertedPendulum::~ InvertedPendulum()

{

delete getOdeSolver();

delete getOdeConfig();

}
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void InvertedPendulum:: dglFunction ( double t, double * x, double

* u, double * dx )

{

dx[0] = x[1];

dx[1] = - params[2] * sin ( x[0] ) / params [1] - u[0] * cos (

x[0] ) - params[0] * atan ( 1.0e3 * x[1] ) * x[1] * x[1] -

( 4.0 * x[1] / ( 1.0 + 4.0 * x[1] * x[1] ) + 2.0 * atan (

2.0 * x[1] ) / PI ) * params [3];

dx[2] = x[3];

dx[3] = u[0];

}

double InvertedPendulum:: objectiveFunction ( double t, double * x

, double * u )

{

double sinxpi = sin ( x[0] - PI );

double cosy = cos ( x[1] );

double temp = ( 1.0 - cos ( x[0] - PI ) ) * ( 1.0 + cosy *

cosy );

return 1.0e-1 * pow ( 3.51 * sinxpi * sinxpi + ( 4.82 *

sinxpi + 2.31 * x[1] ) * x[1] + 2.0 * temp * temp + 1.0 * x

[2] * x[2] + 1.0 * x[3] * x[3], 2.0 );

}

double InvertedPendulum:: pointcostFunction ( int length , int

horizon , double * t, double * x, double * u )

{

if ( length < horizon )

{

return 0.0;

}

else

{

double * lastx = &x[ ( horizon - 1 ) * 4];

double sinxpi = sin ( lastx[0] - PI );

double cosy = cos ( lastx[1] );

double temp = ( 1.0 - cos ( lastx[0] - PI ) ) * ( 1.0 +

cosy * cosy );

return pow ( 3.51 * sinxpi * sinxpi + ( 4.82 * sinxpi +

2.31 * lastx[1] ) * lastx[1] + 2.0 * temp * temp + 1.0

* pow ( lastx[2], 2.0 ) + 1.0 * lastx[3] * lastx[3],

2.0 );

}

}

void InvertedPendulum:: getObjectiveWeight ( double & obj_weight ,

double & pointcost_weight )

{

obj_weight = 1.0;
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pointcost_weight = 1.0;

}

void InvertedPendulum:: restrictionFunction ( double t, double * x

, double * u, double * fx )

{

}

void InvertedPendulum:: getControlBounds ( double * lb, double *

ub )

{

lb[0] = -5.0;

ub[0] = 5.0;

}

void InvertedPendulum:: getModelBounds ( double * lb, double * ub

)

{

lb[0] = -INF;

lb[1] = -INF;

lb[2] = -5.0;

lb[3] = -10.0;

ub[0] = INF;

ub[1] = INF;

ub[2] = 5.0;

ub[3] = 10.0;

}

void InvertedPendulum:: getDefaultState ( double * x )

{

x[0] = 0.0;

x[1] = 0.0;

x[2] = 0.0;

x[3] = 0.0;

}

void InvertedPendulum:: getDefaultControl ( double * u )

{

u[0] = 0.0;

}

int InvertedPendulum:: getShootingDataLength ( int horizon )

{

return 2;

}

int InvertedPendulum:: getMaxShootingDataLength ( int maxhorizon )

{

return 2;

}
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void InvertedPendulum:: getShootingDataInfo ( int horizon , btmb::

MPC2:: STARTDATA * sdata )

{

sdata[0].horizontindex = 13;

sdata[0].varindex = 0;

sdata[1].horizontindex = 15;

sdata[1].varindex = 0;

}

void InvertedPendulum:: eventBeforeMPC ( int horizon , double * t,

double * x, double * sdatavalues )

{

sdatavalues[0] = 3.1415;

sdatavalues[1] = 3.1415;

}

Listing A.2: Implementation file of the Inverted Pendulum using PCC2

#include <iostream >

#include <cmath >

#include <iomanip >

#include <cstdio >

#include <unistd.h>

#include <cstdlib >

#include "InvertedPendulum.h"

#include <mpc2/mpc.h>

#include <mpc2/simpleodemanager.h>

#include <sqpf/sqpfortran.h>

#include <btmbutils/exception.h>

#include <btmbutils/rtclock.h>

#include <btmbutils/optimaldiff.h>

#include <btmbutils/savedata .h>

#define HORIZON 50

#define ITERATIONS 1000

#define H_NEW 0.1

#define INF 1.0E19

using namespace btmb:: MPC2;

using namespace btmb:: SqpFortran;

using namespace btmb:: Utils;

using namespace std;

int main()

{

OptimalDiff::calc();

Exception:: enableDebugMessage ( true );

// --- Setting up MPC ---

Model * object_model = new InvertedPendulum();
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IOdeManager * object_odemanager = new SimpleOdeManager();

btmb::MinProg :: MinProg * object_minimizer = new SqpFortran();

InvertedPendulum * object_modelspecify = ( ( InvertedPendulum

* ) object_model );

btmb::MPC2::MPC * mpc_problem = new MPC ( INF );

mpc_problem ->reset ( object_odemanager , object_minimizer ,

object_model , HORIZON );

// --- Setting up optimizer ---

SqpFortran * object_minimizerSpecify = ( ( SqpFortran * )

object_minimizer );

object_minimizerSpecify ->setAccuracy ( 1E-8 );

object_minimizerSpecify ->setMaxFun ( 20 );

object_minimizerSpecify ->setMaxIterations ( 1000 );

object_minimizerSpecify ->setLineSearchTol ( 0.1 );

// --- Memory Allocation ---

double * u, * next_u , * t, * x;

next_u = ( double * ) malloc ( sizeof ( double ) *

object_model ->getDimensionControl() );

x = ( double * ) malloc ( sizeof ( double ) * object_model ->

getDimension() );

object_modelspecify ->getDefaultState ( x );

mpc_problem ->allocateMemory ( t, u );

mpc_problem ->initCalc ( t, u );

// --- Initial Values ---

for ( int i = 0; i < HORIZON; i++ )

{

object_model ->getDefaultControl ( & u[i * object_model ->

getDimensionControl() ] );

}

for ( int i = 0; i < HORIZON + 1; i++ )

{

t[i] = i * H_NEW;

}

// --- Setting up output ---

SaveData * save = new SaveData ( object_model ->getDimension()

, object_model ->getDimensionControl() );

// --- MPC Iteration ---

mpc_problem ->resizeHorizon ( 17, H_NEW );

int mstep = 1;

for ( int j = 0; j < ITERATIONS; j++ )

{

RTClock timer;

try

{

mpc_problem ->calc ( x );

}
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catch ( btmb:: MinProg:: sqpException e )

{

cout << e.what() << endl;

}

save ->save2Files ( t, x, u );

mpc_problem ->shiftHorizon ( x, next_u , H_NEW , mstep );

}

// --- Free variables ---

delete object_odemanager;

delete object_minimizer;

delete object_model;

delete mpc_problem;

free ( t );

free ( u );

return 0;

}

Listing A.3: Main function using the Inverted Pendulum example using PCC2

Note that the program requires the libraries

• libmpc2 (containing the RHC procedures, the discretization and odemanager),

• libodesol2 (providing ODE solvers),

• libbtmbutils (for basic functions like timing or saving data) and

• libsqpf (chosen minimization routine)

to be compiled appropriately such that the classes can be used.
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Glossary

RHC

α Degree of suboptimality
α(N) Degree of suboptimality for horizon N
γ Auxilliary characteristic for degree of suboptimality
γ(N) Auxilliary characteristic for degree of suboptimality for horizon N
Iu Index set for open–loop control in RHC optimization
Ix Index set for open–loop states in RHC optimization
µN(·, ·) RHC closed–loop control law
µN,m(·, ·) m–step RHC closed–loop control
U Control value space
X State space
c(·, ·) Vector of constraints
ck(·) State constraint
ck(·, ·) Mixed constraint
F (·) Terminal cost function
f(·, ·) Dynamic of the system
J∞(·, ·) Infinite horizon cost functional
JN(·, ·) Finite horizon cost functional
L(·, ·) Continuous–time running cost function
l(·, ·) Discrete–time running cost function
T Sampling time
u(·) Open–loop control law
u(x0, ·) Closed–loop control law for initial value x0

u⋆(·) Optimal feedback control law
uN(x0, ·) RHC open–loop control law
uT (·) Sample and hold control law
V (·) Lyapunov function
V∞(·) Infinite horizon optimal value function
VN(·) Finite horizon optimal value function
VT (·) Sampling Lyapunov function
x(·) State trajectory
x⋆ Equilibrium or target values
x0 Initial value x0 ∈ X

xT (·, x0, u) Continuous–time sampling solution with sampling time T , initial
value x0 and control function u

xu(·) Trajectory for control sequence u(·)
xu(·, x0) Trajectory for control sequence u(·) and initial value x0
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x
(a)
u (·, x0) Approximated open–loop trajectory for control sequence u(·) and

initial value x0

xµN
(·, x0) RHC closed–loop solution with control function µN(·, ·) and initial

value x0

xref(·) Reference trajectory
xuN

(·, x0) RHC open–loop trajectory

NLP

α(k) Step length in search direction d(k)

∆(k) Radius for trust–region algorithm
η Decrease parameter for optimization routine
γ Contraction parameter for trust–region
ι Index mapping of dimension for a shooting node
λ Langrange multiplier
A(x) Index set of active constraints at x
E Index set of equality constraints
Eg Set of discretized equality constraints
I Index set of inequality constraints
Ih Set of discretized inequality constraints
X Feasible set of optimization variables
∇2

xxL
p(·, ·) Projected Hessian of the Lagrangian of NLP

Φ(·, ·) Solution operator of a ODE solver
Tk Sampling grid
ε Optimality threshold for optimization
ς Index mapping of time step for a shooting node
L̃(·, ·) Merit function
A(x) Set of active constraints at x
B(k) BFGS approximation of the Hessian of the constraints
d(k) Search direction of optimization algorithm
F (·) Cost function
G(·) Set of equality constraints
H(·) Set of inequality constraints
L(·, ·) Lagrangian of the NLP
sx Vector of multiple shooting nodes
x Optimization variable

Problems

ECQP Equality constrained QP
QP Quadratic Program
ECNLP Equality constrained NLP
NLP Nonlinear optimization problem
OCP∞ Continuous–time infinite horizon optimal control problem
QP Quadratic subproblem
RHCN RHC optimal control problem
RHCB

N RHC optimal control problem with Bolza type cost functional
SDOCP∞ Sampled–data infinite horizon optimal control problem
SDOCPN Sampled–data finite horizon optimal control problem
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SQP Sequential quadratic program

System Theory

α(·) Class K∞ comparison function
β(·, ·) Class KL comparison function
G Set of all class G functions
KL Set of all class KL functions
K Set of all class K functions
K∞ Set of all class K∞ functions
L Set of all class L functions
R Set of real numbers
T Time set
U Control value space
UI Set of all control functions u : I → U

U Set of all control functions u : T → U

X State space
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[179] J. Pannek, Modellprädiktive Regelung nichtlinearer sampled–data Systeme, Diploma
Thesis in Mathematics, University of Bayreuth, Germany, 2005.

[180] J.-B. Pomet and L. Praly, Adaptive nonlinear regulation: estimation from the Lya-
punov equation, IEEE Trans. Automat. Control 37 (1992), no. 6, 729–740 (English).

[181] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko, The
mathematical theory of optimal processes, Translated by D. E. Brown, A Pergamon
Press Book, The Macmillan Co., New York, 1964 (English).

[182] M.J.D. Powell, Some global convergence properties of a variable metric algorithm for
minimization without exact line searches, Nonlinear programming (Proc. Sympos.,
New York, 1975), Amer. Math. Soc., Providence, R. I., 1976, pp. 53–72. SIAM–AMS
Proc., Vol. IX (English).

[183] , Algorithms for nonlinear constraints that use Lagrangian functions, Math.
Programming 14 (1978), no. 2, 224–248 (English).

[184] , A fast algorithm for nonlinearly constrained optimization calculations, Nu-
merical analysis (Proc. 7th Biennial Conf., Univ. Dundee, Dundee, 1977), Springer,
Berlin, 1978, pp. 144–157. Lecture Notes in Math., Vol. 630 (English).



Bibliography 275

[185] , Variable metric methods for constrained optimization, Mathematical pro-
gramming: the state of the art (Bonn, 1982), Springer, Berlin, 1983, pp. 288–311
(English).

[186] , Convergence properties of algorithms for nonlinear optimization, SIAM
Rev. 28 (1986), no. 4, 487–500 (English).

[187] L. Praly, G. Bastin, J.-B. Pomet, and Z.-P. Jiang, Adaptive stabilization of nonlin-
ear systems, Foundations of adaptive control (Urbana, IL, 1990), Lecture Notes in
Control and Inform. Sci., vol. 160, Springer, Berlin, 1991, pp. 347–433 (English).

[188] D.M. Prett and C.E. Garcia, Fundamental process control, Butterworths series in
chemical engineering, Boston, 1988 (English).
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