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Measuring a diffusion coefficient by single-particle
tracking: statistical analysis of experimental mean
squared displacement curvest
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We provide experimental results on the accuracy of diffusion coefficients obtained by a mean squared
displacement (MSD) analysis of single-particle trajectories. We have recorded very long trajectories
comprising more than 1.5 x 10° data points and decomposed these long trajectories into shorter
segments providing us with ensembles of trajectories of variable lengths. This enabled a statistical
analysis of the resulting MSD curves as a function of the lengths of the segments. We find that the
relative error of the diffusion coefficient can be minimized by taking an optimum number of points into
account for fitting the MSD curves, and that this optimum does not depend on the segment length.
Yet, the magnitude of the relative error for the diffusion coefficient does, and achieving an accuracy in
the order of 10% requires the recording of trajectories with about 1000 data points. Finally, we
compare our results with theoretical predictions and find very good qualitative and quantitative
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1 Introduction

Diffusion is often exploited to examine interactions and move-
ments of individual nanoscopic objects in soft matter and/or
biological environments on a molecular length scale."'° Early
experimental work was carried out using fluorescence recovery
after photobleaching (FRAP)'" which yields the ensemble average
of the diffusing particles and which is, dictated by the diffraction
of light, restricted in spatial resolution to length scales of about
200-300 nm. Alternatively, researchers employed fluorescence
correlation spectroscopy (FCS),'>'* which provides the average
over a number of individual objects that are registered sequen-
tially and from which it is assumed that they behave uniformly.
Since about two decades single-particle tracking (SPT) became a
valuable tool to map out the movement of an individual particle
with high spatial and temporal resolution."*"*! The developed
methodology covers techniques where the movement of an
individual particle can be followed by recording its diffraction-
limited image on a sequence of CCD frames," sophisticated
approaches that compensate the Brownian motion using
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agreement between experiment and theory.

electrokinetic forces,' techniques that use structured illumina-
tion by actively designing the point-spread function of the
microscope,”** as well as methods that rely on a spatial modula-
tion of the light that travels to or comes from the particle."®
Fascinating results have been obtained, for example in biophysics
the movement of molecules, viruses, or motor proteins could be
made visible,"® and in the materials science transport processes
through nanoporous structures”® or the manifestation of diffusion
anomalies in liquid crystals and mesoporous structures could be
followed.*>*>*

Typically the fluorescence of a particle is monitored as a
function of time and the position of the particle is extracted
from the data with sub-diffraction limited accuracy. This provides
the trajectory r(t) of the particle that is commonly analysed in
terms of the mean squared displacement (MSD). For a 2-dimen-
sional diffusion process the MSD generally scales with a power law
according to MSD(t) = 4Dt*, where D is the generalized diffusion
coefficient, and « the anomaly parameter. For o = 1 the underlying
process corresponds to normal diffusion (Brownian motion)* and
D reduces to the diffusion coefficient D known from Einstein.*®
Otherwise the process is called subdiffusive (x < 1) or super-
diffusive (« > 1).

For obvious reasons an experimental trajectory can only be
recorded with a distinct temporal resolution, it suffers from
localisation errors due to the movement of the particle during
data acquisition,> it is affected by unavoidable signal-to-noise
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limitations®® and last but not least it is inherently of finite
length. Hence, it is of crucial importance to understand how
accurate the diffusion coefficient can be extracted from a real
experimental MSD curve.?>?%3% Although the mathematical
framework for the MSD analysis is known for many years, the
implications of the experimental limitations on the accuracy of
the measured parameters have been considered in detail only
recently.”>*! These studies address the achievable precision for
the diffusion coefficient that can be obtained from a given MSD
curve as a function of the experimental parameters mentioned
above. In order to test their theoretical results the authors had
to rely on fictitious tracking experiments based on simulations
rather than on experimental data. The reason is that a sophis-
ticated statistical analysis of the tracking data requires a very
large data set which is difficult to obtain, because the particle
might get lost for tracking due to diffusion out of the focal
volume or due to photobleaching. Often it is already a great
challenge to register trajectories consisting of some hundred
data points. Naively speaking, a trajectory of arbitrary length
could be acquired by repeating a tracking experiment under
exactly the same experimental conditions on several nano-
particles. However, since even nominally identical nanoparticles
are slightly different in shape and size, the statistics of the
(unknown) size distribution of the nanoparticles will be super-
imposed on the statistics of the diffusion coefficient. Moreover,
the precision with which the diffusion coefficient can be deter-
mined from a MSD curve depends on the accuracy of the MSD
data points and on the number of fitting points that are taken
into account.”*?° Therefore, the numerous theoretical and
numerical developments that allow assessment of the experi-
mental shortcomings still await experimental verification.

In this work we use single-particle orbit tracking, which allows
us to obtain single-particle trajectories that consist of more than
1.5 x 10° data points with a temporal resolution of 4 ms and a
spatial accuracy of better than 10 nm.** Such a long trajectory can
be divided into a sequence of segments, where each segment can
be considered as an individual trajectory that, by definition, has
been recorded on exactly the same particle under identical experi-
mental conditions. This enables us to evaluate the statistics of the
diffusion coefficient extracted from the segments as a function of
the length of the segments and to compare the results with the
theoretical predictions made in the literature.>>>’

2 Experimental section
2.1 Sample preparation

For the single-particle tracking experiments we use fluorescent
beads with a diameter of 20 nm that are loaded with nile red
(Molecular Probes, 20 mg ml " dissolved in water). This
solution is further diluted in water to a concentration of 0.1 nM
and subsequently mixed with pure glycerol (Sigma) resulting in a
concentration of 2 pM for the tracers. From that solution a drop of
about 25 pl is sandwiched between two microscope coverslips that
are cleaned with acetone. In order to prevent evaporation of the
solvent (and the resulting flow field in the sample) the edges of the
coverslips are sealed with grease (High-Vacuum Grease, Wacker).
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This construct is mounted on top of a 3-axis piezo stage (Tritor
102, piezosystem Jena) providing a scan range of 100 um for
each axis. All experiments are performed at room temperature,
ie (21 + 0.5) °C.

2.2 Experimental setup

The home-built setup for single-particle orbit tracking has been
described in great detail in a separate paper.’” Briefly, the
output from an Ar/Kr-ion laser (Innova 70C Spectrum, Coherent)
operated at 514 nm is guided through a deflection unit consisting
of two mutually perpendicular arranged acousto optical deflectors
(AOD, DTSX-400-532, Pegasus) that generate a rotating light orbit.
This orbit is projected via a dichroic beam splitter (z532RDC, AHF)
towards an infinity-corrected water-immersion  objective
(UPLSAPO, 60x, NA = 1.2, Olympus). This results in a focussed
laser beam with a waist of w = 270 nm that rotates on an orbit with
a radius of R = 190 nm in the focal plane of the objective. The
frequency of the rotation can be adjusted by the AODs and is set
to 1 kHz.

The emission of the fluorescent nanoparticles is collected
with the same objective, passes the dichroic and is focussed
either onto the chip of a CCD (sensicam ge, PCO) or an
avalanche photo diode (SPCM-AQR-14, Perkin Elmer). Residual
laser light that passes the dichroic is suppressed by a dielectric
optical filter (HQ545LP, OD = 6 at 514 nm, AHF). To spot the
location of the tracers we operate the setup in widefield mode.
Therefore the deflection unit is switched off and an additional
lens in the excitation path defocusses the laser light to an area
of 80 x 80 um?®. With the aid of the piezo stage an appropriate
particle is moved close to the position where the light orbit will
appear (centre of the field of view). Subsequently, the optics are
switched to confocal mode, the light orbit is generated and the
algorithm for automated tracking is started.

We record the emission intensity of the fluorescent particle
which is modulated by the frequency of the rotating laser focus.
By demodulating this emission signal we are able to calculate
the x-, y-position of the particle with respect to the centre of the
orbit. The position provides a feedback signal for the piezo and
the particle is moved (together with the sample) back to the
centre of the orbit. These steps (collect emission - calculate
position — move piezo) are repeated continuously, which allows
us to reconstruct the movement of a fluorescent tracer particle
for more than 10 minutes with a spatial resolution of better
than 10 nm. The temporal resolution of the experiments is
At = 4 ms which results in trajectories of N = 1.5 x 10° x-,
y-position pairs.

3 Results and discussion

An example for a typical trajectory measured with our setup is
displayed in Fig. 1. It represents 1.52 x 10° data points and
corresponds to an elapsed time of 608 s which is indicated by
the colour code, where blue corresponds to the start of the
trajectory and red to its end. In order to mimic to have only
shorter trajectories with less data points we cut the long
trajectory into segments that were treated as independent
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Fig. 1 Example of a trajectory of a 20 nm sized bead in pure glycerol. The colour
code refers to the elapsed time of 608 s (N = 1.52 x 10° data points; blue
corresponds to the start and red corresponds to the end).

trajectories of shorter length. In the following we denote the
length of the full trajectory as Ny (here Ny = 1.52 x 10°) and the
length of a segment as Nyo. For our study we choose Nye, = 10,
20, 40, 60, 80, 100, 200, 400, 600, 800, and 1000, which yields
ensembles of Np/Ny., short trajectories of equal length. The
idea is now to determine the diffusion coefficient D from the
slope of the time-averaged MSDs of each segment and to
examine the statistical variation of D within each ensemble of
trajectories. Yet, according to ref. 29 there exists an optimum
number of data points of the MSD that should be considered to
obtain the best result for the diffusion coefficient. This can be
understood as follows. For increasing lag times the accuracy of
the data points in the MSD decreases due to the progressively
decreasing averaging of the available data. For example, the
first data point of the MSD represents an average over (Ngeg — 1)
positions of the particle whereas the last data point has not
been averaged at all. Hence, fitting the slope of the MSD curve
by taking too many data points into account leads to a
deterioration rather than an improvement of the result. On
the other hand, the very first points of the MSD are stronger
subjected to localisation errors, either due to noise (static error)
or due to blurring of the position of the particle during data
acquisition (dynamic error). Both effects average out for MSD
points at longer lag times.

As a consequence of this, we first have to find out the
optimum number of data points that should be considered
for fitting the slope of the MSD. In the following, the protocol
for doing so will be explained on the example of Ny, = 1000
which yields an ensemble of 152 trajectories of equal length
and the same number of MSD curves. For this ensemble we
fitted the slope, D*, of each MSD curve by an unweighted linear
fit to the first n data points. More precisely, we have skipped the
very first data point of the MSDs, because it turned out that it is
strongly affected by residual oscillations of the piezo. These
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Fig. 2 Relative error of the slope D* obtained from unweighted linear fits to the
MSD curve as a function of the number of fitting points n for the segment length
Nseg = 100 (open symbols) and Nseg = 1000 (full symbols). The inset top left
displays schematically a MSD curve as a function of the lag time t and the data
points that are considered for the linear fit (red) to obtain D*. For all fits the first
data point of the MSD (brackets) is ignored (for details see text). The inset top
right shows as an example for the distribution of the slopes within the ensemble
of Nt/Nseq trajectories for n = 4 and Ngeg = 100, from which D* (first moment;
empirical mean value) and sp» (second moment; empirical standard deviation)
can be calculated.

oscillations affect the position determination and reduce the
accuracy of the first point of the MSD curve, whereas the
influence of these oscillations on the accuracy of the succeeding
MSD points level off (for details see Experimental section and
ref. 32). Therefore the fit was applied to the data points from 2 to
(n + 1) and the slope D* of the MSD curves was determined as a
function of n. In order to be compatible with the existing
literature we prefer the slope D* of the MSD curves rather than
the diffusion coefficient D = D*/4.>° An example for the distribu-
tion of D* is shown in the top right inset of Fig. 2 for n =4, i.e.
taking only the data points 2-5 for fitting the MSDs into account
as indicated schematically in the top left inset of Fig. 2. Sub-
sequently, we determined from each histogram the first and the
second moment providing the empirical mean D* and the
empirical standard deviation sp- for this parameter, and plotted
the ratio sp- /D* as a function of the number of fitting points n.
The result of this procedure is shown in Fig. 2 for the examples
of Ngeg =100 and Ny, = 1000. For both samples, the relative error
sp-/D* first decreases for growing n and then rapidly increases if
more fitting points are taken into account. Here we find an
optimum for the accuracy of the slope of the MSDs for n = 4.
While the relative accuracy that can be achieved for D* (about 8%
for Nyeg = 1000, and about 25% for Ny, = 100) clearly depends on
the lengths of the segments, it is interesting to note that the
number of fitting points n that yield the optimum result
does not.

In order to facilitate a quantitative comparison of the
data shown in Fig. 2 with the theoretical predictions in the
literature®® we have to resort to the reduced localisation error
x = ¢*/DAt, where ¢ is the localisation error, D the diffusion
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coefficient, and At the temporal resolution. A good estimate for
the diffusion coefficient is obtained from a linear fit to the data
points 2-5 of the time-averaged MSD from the total trajectory of
1.52 x 10’ data points, which yields Dy = 17.45 x 10~ % um?* s~ .
Using ¢ = 7.5 nm>®* and At = 4 ms we obtain x ~ 0.8 and find a
good agreement between experiment and theory (see Fig. 6 for
x =1 in ref. 29).

Next we investigated the influence of the length of the
segments on the outcome of the experimentally determined
diffusion coefficient. Therefore we analysed the MSDs from
15200 segments with a length of N, = 10, from 7600 segments
with a length of Ny, = 20 and so on until 152 segments with a
length of Ny, = 1000, by applying a linear fit to the data points
2-5 of the respective MSD curves. The resulting distributions
for the diffusion coefficients D = D*/4 are shown in Fig. 3 as a
function of Nge. For better comparison the histograms were
scaled with the number of sub-trajectories in each ensemble,
N1/Nseq. For the short segments the distributions were asymmetric
and extremely broad with a long tail toward larger values of the
diffusion coefficient testifying that diffusion coefficients obtained
from trajectories consisting only of a few data points are not very
meaningful. As N, increases the distributions narrow down and
become more symmetric. The shape and profile of the experimental
distributions presented here are consistent with theory.*

The distributions presented in Fig. 3 can be interpreted as
the empirical probability density functions (PDFs) to measure a
distinct range of values for the diffusion coefficient for a given
length Ny, of the trajectory. This tells us that for trajectories
with a length in the order of 100 data points (black bold line in
Fig. 3), which would be very reasonable for experiments in
biological environments, the actual outcome of an experiment
for the diffusion coefficient can vary by more than a factor of 2.
For each of these empirical probability densities, the best

occurrence (scaled)

D/10° um%s

Fig. 3 Distributions of diffusion coefficients as a function of the segment length
Nseg. For comparison, the distributions were scaled with the number of
trajectories Nt/ Nseq Within the corresponding ensemble. The diffusion coefficients
were obtained from linear fits to the MSD curves using n = 4 fitting points. The
arrow on top of the distributions indicates the diffusion coefficient Dy
determined from the time-averaged MSD of the full trajectory with a length of
Ny = 1.52 x 10° data points. The distributions for Nseg = 100, 1000 are
highlighted by the bold lines.
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estimate for the actual diffusion coefficient corresponds to
the mean value D (first moment) which is displayed in Fig. 4
(open squares) together with the corresponding empirical
standard deviations (second moment, black error bars) as a
function of Ng,. Interestingly the mean values show only little
variation as a function of Ny, which is shown in the inset of
Fig. 4 on an expanded scale.

In addition to the distribution of the diffusion coefficients as
a function of the length of segments Qian et al.”® derived an
analytical expression for the standard deviation of these
distributions which is given by ¢ = £D[21/3(Nseg — n)l/z] and
which allows for comparison with the empirical standard
deviation obtained experimentally. The calculated standard
deviation is displayed in Fig. 4 by the red error bars. For better
visualization both the experimental (black) and calculated (red)
error bars are connected by the dashed and dotted lines,
respectively. The systematically larger widths of the experimental
error bars can be explained to result from errors in the position
determination that were not considered in the theoretical calcu-
lation by Qian et al. Besides this minor discrepancy both
characteristics are in good agreement. For Ny, > 200 the mean
values of the distributions, D, show only very little variation and
are close to the value Dy obtained from the time-averaged MSD
of the full trajectory (inset in Fig. 4, grey line).

However, it should be kept in mind that D can only be
determined if the distribution of D for the respective length of
the trajectory is known. A single tracking experiment, for example
with N, = 100, provides the diffusion coefficient only with an
accuracy of about £25%. Achieving an accuracy of better than
+10% requires trajectories of Nyee = 1000 as testified in Fig. 2 and 3.
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Fig. 4 Means of the diffusion coefficient, D (open squares), and empirical
standard deviations, sp (black error bars), taken from the distributions shown in
Fig. 3 as a function of the segment length N4 Theoretical values for the
standard deviations (red error bars) have been calculated according to Qian

et al?> using o = £D[2n/3(Nwg — n)]'? and n = 4. As a guide for the eye the error
bars are connected by the dashed (experimental data) and dotted (calculated
data) lines. The inset displays the means of the diffusion coefficients on an
enlarged scale. The grey line corresponds to the diffusion coefficient that is
determined from the full time-averaged MSD curve of the full trajectory of
1.52 x 10° data points.
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4 Conclusions

We analysed how the accuracy of the diffusion coefficient that
is determined by fitting MSD curves depends on experimental
parameters such as the length of the underlying trajectory and
the number of fitting points of the MSD. This became possible
by recording extremely long trajectories that could be cut into a
large number of segments of variable lengths, thereby providing
sufficiently large ensembles of (sub)trajectories that served for a
statistical analysis. Our results were compared with theoretical
predictions and we found good quantitative and qualitative
agreement between experiment and theory.

The analysis presented was based on data from a single very
long trajectory. In total we measured 7 very long trajectories
from different tracers and found similar results. These are
summarized in the ESL{
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