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Chapter 1

Introduction

Symmetry is a property of one or several objects by which the geometrical shape

of the object or the geometrical interrelation between the objects is described. In

the case of a crystal structure the symmetry interrelates equal kinds of atoms to be

located at certain positions in space. One uses the term pseudo symmetry to refer

to a crystal structure which does not differ much from a structure with a higher

symmetry. The existence of a pseudo symmetry can be revealed by the finding that

the examined lattice parameters of the unit cell are in conflict with the demands of

the underlying symmetry or by the indication that some atoms of the structure are

displaced contradictory to the supposed symmetry.

Often the atoms of a particular chemical compound can be arranged to different

crystal structures giving rise to the formation of different stable phases. A phase is

a volume of matter which is physically and chemically homogeneous and which can

be assigned to one of the three states (gaseous, liquid, solid). Changes of system

parameters like pressure and temperature can cause a transformation of one state

of matter into another termed phase transition. In contrast to the gaseous state in

which any combination of gases forms a homogeneous mixture, i.e. a single phase,

different phases can coexist in liquids as well as in the solid state. The gaseous and

liquid phases are states of highest symmetry, while the crystalline state can have

different symmetries according to one of the 230 space groups. Additional possibil-

ities occur for the so-called aperiodic crystals. Phase transitions between different

solid states can be continuous or discontinuous (Chapter 2). At the transition point

of a discontinuous phase transitions different phases coexist.

In this thesis the term domain is used to indicate a small block in a large piece of

matter, which is in one of several states or which possesses one of several orientations

1



2 CHAPTER 1. INTRODUCTION

of the lattice of a particular phase.

This thesis deals with the analysis of crystal structures of selected compounds,

their temperature-dependent changes and the interpretation of these changes with

respect to the occurrence of solid state phase transitions. The investigated crystal

structures were studied by means of single-crystal X-ray diffraction experiments

carried out on several inorganic compounds of the first row transition elements and

on one organometallic compound. Crystal structures at different temperatures define

the structural changes caused by the phase transitions and provide information

about the transition mechanisms.

The multitude of crystallite orientations in X-ray powder diffraction (XRPD)

experiments allow a measurement of the reflection intensities just through a varia-

tion of the detector position along the scattering angle 2θ. In single-crystal X-ray

diffraction (SXRD) experiments, however, a reflection can only be measured if the

position of the detector and the crystal orientation simultaneously fulfill the reflec-

tion condition. The additional degrees of freedom in SXRD experiments arising

from the ability to orient the single-crystal in the three dimensions of space allow to

determine reflection intensities of different reflections separately even if they occur

at the same scattering angle and would, thus, coincide in XRPD diagrams. The

comparison of reflection intensities of hypothetical symmetry equivalent reflections

measured by SXRD can help to recognize the occurrence of a pseudo symmetry.

Often pseudo symmetry forms, however, simultaneously with the generation of

twin domains at the phase transition from a high- into a low-temperature phase by

symmetry reduction. The twin domains are then interrelated by twinning operators

equal to some symmetry operators of the space group of the high-temperature phase

that are not symmetry of the low-temperature phase. Dependent on the twinning

rule, certain reflections split into several peaks arising from the different domains

while other reflections appear as single maxima, because of a coincidence of the

single domain contributions. Due to the overlap of the single domain contributions

the intensities of reflections generated by just one domain can not be measured in-

dependently. Additionally, if the effect of peak splitting is small it is obscured by

the spread of the wavelength spectra of conventional X-ray radiation and its diver-

gence. To prove for the existence of a reflection splitting, diffraction experiments

have to be carried out using almost perfect monochromatic radiation, e.g. highly

monochromatized synchrotron radiation.

The experimental work for this thesis which was carried out by using synchrotron
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radiation was performed at the beamline D3 of the HASYLAB facility of DESY

(Hamburg). Other SXRD experiments were measured on a Nonius Mach3 four-circle

diffractometer and a Mar345 image plate diffractometer installed at the laboratory

of Crystallography of the university Bayreuth.

In chapter 2 a short description is given of the theory of phase transitions, and

the phenomenological occurrence of spin-Peierls transitions is outlined.

Chapter 3 is dedicated to the methodological concepts with which the single-

crystal experiments were carried out. The properties of conventional and syn-

chrotron radiation as well as the experimental setup of the diffractometers used

for the experiments are described. For the adjustment of the crystal temperatures

during SXRD measurements different types of cooling systems were applied. Their

conception and the sample preparation suitable for their successful performance are

also discussed.

In chapter 4 a crystal-chemical description of the structural properties of the

families of transition-metal trihalides and transition-metal oxyhalides is given. Al-

though in this thesis only the influence of the phase transition in chain-structured

trihalide TiI3 was examined, a comparison to the layer-structured trihalides is un-

dertaken to draw conclusions about the orientation of the magnetic spin moments

in both compounds.

Initially, the research on the organometallic compound with the chemical com-

position Eu(SC36H49)2 was carried out to examine the chemical bonding and the

reactivity between the metal atoms and the ligand molecules by the application of

charge density calculations. This purpose was hindered by the occurrence of a phase

transition found at a temperature of Tc = 119 K. The study on the low-temperature

and the high-temperature structures, however, also provided information about the

chemical bonding. Chapter 5 reports about the structural analysis carried out for

the two structures, which also includes a comparison of selected calculated atomic

valences.

TiOCl and TiOBr belong to a family of isostructural transition-metal compounds

MOX with M = Ti, V, Cr, ... and X = Cl, Br. For a comparison of their already

well known structural and magnetic properties with another homologous compound

fruitless attempts have been undertaken to crystalize TiOI. The product of the

failed synthesis, however, contained crystals of TiI3 which were studied by SXRD

(Chapter 6). Indications of a phase transition found at a transition temperature

of Tc = 323 K and the low- and high-temperature crystal structures of TiI3 are
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presented. The crystal structures at three different temperatures were compared to

unravel the origin of the phase transition. It is shown that the phase transition from

the high- to the low-temperature phase is accompanied by a dimerization on chains

of titanium atoms. The magnitude of dimerization of different halide compounds is

compared to outline the influence of the matrix effect resulting from the different

halogen atoms.

Investigations on the compound CrOCl were carried out to determine the influ-

ence of a cation exchange in the MOX structure type on the magnetic behavior and

the distortion of the crystal structure in the low-temperature phase. In chapter 7

it is shown that the orthorhombic high-temperature phase of CrOCl transforms at

a transition temperature of Tc = 13.5 K into a monoclinic low-temperature phase.

The phase transition is set into relation with results of magnetic susceptibility mea-

surements. The anisotropic thermal expansion of CrOCl is discussed in chapter 8

by a comparison of lattice parameters and structural characteristics determined for

four different temperatures.



Chapter 2

Theoretical background

2.1 Theory of structural phase transitions in crys-

tals

Phase transitions can be classified into continuous and discontinuous transitions

characterizing the change of structural parameters and the inner energy at the tran-

sition temperature. At a discontinuous phase transition at least two phases coexist

in an equilibrated state. The first derivative of the inner energy, the entropy, changes

at the transition abruptly. In a continuous phase transition just one phase is engaged

changing its thermodynamic quantities continuously in dependence on the system

parameters. Because for the latter type of phase transition a discontinuity of the

heat capacity is observed and this thermodynamic quantity constitutes the second

derivative of the inner energy the transition is also termed as second-order phase

transition and the discontinuous transition is called consequently a first-order phase

transition.

In the following a description of the theory of phase transitions is given starting

with a derivation of the fundamental relations of a second-order phase transition

using Landau theory. The information gained will be used to explain the process

of a first-order transition. The description follows the argumentation in Interna-

tional Tables of Crystallography, Volume D: Physical Properties of Crystals (2006).

Because all the experiments carried out for this thesis were performed at ambi-

ent pressure the following only refers to phase transitions due to variations of the

temperature.

5



6 CHAPTER 2. THEORETICAL BACKGROUND

2.1.1 Continuous phase transitions

The continuous character of a second-order phase transition results from a tempera-

ture-dependent atomic displacement u of one or more atoms in the unit cell of the

low-temperature phase away from atomic positions which are special positions in

the unit cell of the high-temperature phase. The displacements can be expressed

in terms of the three components ux , uy and uz representing the atomic displace-

ments parallel to the lattice directions. Nonzero displacement components define

the order parameter η of the transition. The atomic displacements in the low-

temperature phase are realized through the reduction of the space group symmetry

at the phase transition to a subgroup symmetry of the high-temperature phase. The

temperature-dependent atomic displacements in the low-temperature structure con-

stitute equilibrated states in which the free energy F adopts minimal values resulting

in the free energy to be left invariant by the phase transition. The free energy can

be expressed as a function F(T,η) presuming that the free energy is a continuous

and derivable function and that also the displacement u is changing continuously.

For temperatures close to the transition temperature the free energy can be ap-

proximated by a Taylor series. For a second-order phase transition the symmetry

demand of the free energy requires the disappearance of terms with odd degrees. By

a truncation of the Taylor series of F at the term of fourth degree, and assuming a

linear dependence of the term of second degree the free energy can be expressed as:

F = F0(T ) +
α(Tc − T )

2
η2 +

β

4
η4. (2.1)

In this equation α is an odd function of (T-Tc) and changes its sign at the transition

temperature and β represents a positive constant. The condition for the occurrence

of a minimal free energy is:

∂F

∂η
= 0;

∂2F

∂η2
> 0. (2.2)

For T > Tc the solution is η = 0 and for T < Tc it is

η0 = ±
√
α

β
(T − Tc). (2.3)

The two solutions of η0 obtained by (2.3) correspond to the two possible displace-

ments along the z-axis differing from each other only by the displacement direction

(Fig. 2.1 a).

Examples for a second-order phase transition are ferromagnetic-paramagnetic

and order-disorder transitions.
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(a) (b)

Figure 2.1: Changes of the free energy at different temperatures effected by a variation
of the order parameter η of a continuous phase transition (a) and a discontinuous phase
transition (b). The temperature T0 in (b) represents the observed phase transition tem-
perature (Tab. 2.1). Minimal values of the free energy correspond to the equilibrium
values. Graphics were taken from International Tables of Crystallography, Volume D:
Physical Properties of Crystals (2006).

2.1.2 Discontinuous phase transitions

A coexistence of two phases implies from the thermodynamical standpoint of view

an equilibration of their chemical potentials μ. The temperature dependence of the

chemical potential and the free energy are related to the change of the entropy S,

because the pressure p is constant and the volume changes dV associated with solid

state transitions are generally small,

dμ = −s · dT + V · dp
dF = −s · dT − p · dV. (2.4)

In analogy to expression (2.1) the free energy can be approximated by a Taylor

series in which, however, the symmetry condition of F allows the occurrence of third

degree terms. The equation can be written as:

F = F0 +
α(T − T0)

2
η2 +

δ

3
η3 +

β

4
η4 (2.5)

with T0 standing for the observed phase transition temperature, α standing for

an odd function of (T-T0) whose sign changes at the phase transition and δ and β

representing some positive constants. The minimum of the free energy is determined

by:
∂F

∂η
= η

[
α (T − T0) + δη + βη2

]
= 0. (2.6)
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Table 2.1: Number, specification and location of extremal points of the free energy as
a function of the temperature. The labeling of the temperatures are equivalent to the
labeling in Fig. 2.1 b.

Temperature No. Specification η

T > T1 1 minimum 0

Tc < T < T1 2 minimum 0
local minimum 1/2β[−δ ±√δ2 + 4αβ(T0 − T )]

T0 < T < Tc 2 local minimum 0
minimum 1/2β[−δ ±

√
δ2 + 4αβ(T0 − T )]

T < T0 3 maximum 0
minimum 1/2β[−δ +

√
δ2 + 4αβ(T0 − T )]

minimum 1/2β[−δ −√δ2 + 4αβ(T0 − T )]

The solutions of the equation are η = 0 and

η =
1

2β

[
−δ ±

√
δ2 + 4αβ (T0 − T )

]
. (2.7)

The shape of the free energy curve changes with temperature and exhibits one, two

or three extremal points. The curvature of the graph can be classified into four

temperature ranges which are confined by the three characteristic temperatures T1,

Tc and T0 (Tab. 2.1 and Fig. 2.1 b). For a temperature above T1 only one

solution for the state of equilibrium of the free energy exists while at temperatures

between the temperature T1 and T0 two solutions exist of which one represents a

metastable state and the other a stable state. Due to this metastability the high-

temperature structure can be preserved down to the temperature T0 where the

metastability is revoked. This implies that the phase transition from the high- into

the low-temperature phase is in virtue often not observed at Tc but at the lower

temperature T0.

The order parameter η is a measure for the propagation of the phase transition.

Its temperature dependency is given by:

η= A ·
(
T − Tc

Tc

)γ

(2.8)

with γ standing for a critical exponent, Tc for the transition temperature and A for

a constant.
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2.2 The spin-Peierls transition

A Peierls transition is a metal-insulator transition which is associated with the

dimerization of an atom chain causing gaps in the band structure.

Also for a spin-Peierls pairing of magnetic moments a dimerization of atoms is

observed in the low-temperature phase. But in contrast to the Peierls transition the

dimerization in the spin-Peierls transition is the consequence of an antiferromagnetic

coupling of the spins of electrons on neighboring atoms. Spin-Peierls pairing and

the antiferromagnetic order can be differentiated by the distance over which the

coupling of the magnetic moments is established and by the effect the coupling has

on the nuclear structure. While the spin-Peierls pairing is formed by a coupling

of electron singlets of neighboring atoms the antiferromagnetic interaction results

from a long-range order interaction of the magnetic moments and does not affect the

crystal structures. The spin-Peierls pairing, however, is associated with a structural

change originating from the atomic displacements of the coupling atoms to atom

pairs resulting in a phase transition. The transition can be a first- or a second-order

phase transition (Penson et al. (1976)).

If the paired spin moments are forming one dimensional antiferromagnetic spin

chains then the interaction can be described by the quantum mechanical exchange

integral based on the Heisenberg model (Chesnut (1966)). Using the exchange in-

teraction J and the spin vectors 
S1 and 
S2 the exchange energy E of two coupling

spin moments is determined through:

E = −2J 
S1 · 
S2. (2.9)

The existence of a spin-Peierls transition was theoretically predicted by (Chesnut

(1966)) and experimentally proven by the discovery of spin chain instabilities in both

organic and metal-organic compounds (Bray et al. (1975); Jacobs et al. (1976)).

Later it was found that also the inorganic compounds CuGeO3 (Hase et al. (1993))

and TiOCl (Seidel et al. (2003); Shaz et al. (2005)) undergo spin-Peierls transitions.
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Chapter 3

Experimental techniques

3.1 Generation of X-ray radiation

3.1.1 Conventional X-ray radiation

Conventional X-ray radiation used for laboratory experiments is generated either

in X-ray tubes or by rotating anodes through fast electrons impinging on a metal

target in vacuum. The emitted X-ray radiation consists of a continuous spectrum

of Bremsstrahlung, and, if the energy of the electron beam is high enough, charac-

teristic radiation with a discrete energy distribution. The characteristic radiation

is generated through intra atomic electron transitions within the metal atoms in-

duced by a removal of core electrons after collisions with irradiating electrons. The

photon energies of the characteristic radiation correspond to energy differences be-

tween electron levels whose locations in an energy level diagram are specific for the

element used as target. The most intense characteristic radiation is the Kα1-line

(in IUPAC-notation: K-L3-line) which results from the transition of electrons from

the L3-level into the K-level. Its intensity is two times higher than the intensity of

the Kα2-line (K-L2-line) resulting from the transition L2 → K. Prior to its exper-

imental application the radiation is monochromatized to the Kα-lines employing a

monochromator. The average wavelength of the Mo-Kα radiation is 0.7107 Å.

In rotating anode devices the electron beam is focused on a rotating, water cooled

cylinder. Due to the dissipation of the thermal energy of the beam over the lateral

area rotating anodes can produce higher X-ray intensities than sealed X-ray tubes.

11
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3.1.2 Synchrotron radiation

Another source for X-ray radiation is provided by particle accelerators in which

electrons or positrons are forced to travel on a closed path emitting synchrotron

radiation of a continuous spectra by crossing magnetic fields. To compensate the

loss of their kinetic energy resulting from the radiation emission, the particles are

accelerated in electric fields of radio-frequency. The storage system is divided into

straight sections in which so called insertion devices are implemented and sections in

which the beam is redirected by bending magnets. In the insertion devices periodic

magnetic fields are generated by which an oscillation of the particles about their

traveling direction is induced resulting in an increase of the emitted synchrotron

radiation and an optimization of the wavelength spectra.

The main advantages of the synchrotron radiation over conventional X-ray ra-

diation for single-crystal X-ray diffraction experiments arise from its properties to

be tuneable in a wide spectral range and to possess a low beam divergence, a high

intensity and a high spectral brilliance. The magnitude of the X-ray absorption by

a crystal is dependent on the crystal size and the absorption coefficient of the com-

pound forming the crystal. The absorption coefficient is dependent on the energy of

the radiation. The ability to tune the wavelength at synchrotron facilities permits

minimization of the absorption by the crystal (Fig. 3.1). Likewise, the tunability

allows to perform X-ray experiments using wavelengths which are not attainable

by conventional X-ray sources. The low beam divergence of the synchrotron radia-

tion results from a distortion of the angular distribution of the relativistic traveling

charged particles (Aslanov et al. (1998)). By lowering the beam divergence the

width of reflections in X-ray diffraction is reduced.

The photon fluxes provided by synchrotron facilities are about 104 - 105 times

higher than in rotating anodes and reach 1013-1023 photons s−1 mm−2 mrad−2 for

0.1% bandwidth (Giacovazzo et al. (2002)). In the storage system of the synchrotron

facility Hasylab (DESY, Hamburg) positrons divided into five bunches are employed

to generate synchrotron radiation. The critical wavelength of this synchrotron is

0.773 Å (� 16.04 keV). Due to the drastic decrease of intensities towards the lower

wavelengths, the useful limit for X-ray experiments is 0.41 - 0.35 Å (� 30 -35 keV)

at Hasylab.
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Figure 3.1: Energy dependence of the absorption coefficient of CrOCl calculated by
using the software XOP (Del Rio and Dejeus (1998)). Wavelengths corresponding to the
radiation energies are set in parentheses. The inset represents a magnified section of the
high-energy region.

3.1.3 Monochromatization

For the monochromatization of conventional X-ray radiation single-crystal monochro-

mators are often employed. The monochromatization is carried out by the diffrac-

tion of X-ray radiation on a monochromator crystal causing a wavelength dependent

occurrence of reflection maxima at different scattering angles. For the monochroma-

tization of Mo-Kα radiation frequently a monochromator crystal of graphite is used.

The monochromator crystal is oriented in that way that a strong reflection at low

scattering angle provides monochromatized radiation. To focus the beam on the

sample bent monochromators can be used. To reduce the aberration which results

from the crystal bending the crystal surface has to be ground so that the curvature
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of the surface possess a certain radius which is different from the curvature of the

diffracting planes.

The wavelength of synchrotron radiation can be tuned to a small bandwidth

(Δλ/λ ∼ 10−4 - 10−5) of the continuous radiation spectrum by employing a double

crystal monochromator. The wavelength is tunable by tilting one of two, almost

parallel monochromator crystals, but this requires that the radiation possesses a

low beam divergence making the double crystal monochromator not applicable for

the monochromatization of conventional X-ray radiation.

Because of their low expansion coefficient at low temperatures the monochro-

mator crystals are often manufactured of silicon or germanium. Thus, the effect of

beam misalignment induced through the thermal expansion of the crystals resulting

from changes of the radiation fluxes can be diminished. At the beamline D3 at the

Hasylab (DESY, Hamburg) the crystals are, however, calibrated for enduring use

and are not cooled. It is expected that the temperature of the crystals changes only

at the beginning of every new exposure by the beam and that the crystals adopt

after some seconds a stable equilibration temperature.

X-rays are reflected by mirrors if the angle of incidence is smaller then a critical

angle. The critical angle is wavelength dependent and the radiation of a wavelength

essentially smaller then the wavelength corresponding to the critical angle is ab-

sorbed by the mirror material. Mirrors are therefore used to preselect an energy

range of a radiation spectrum. Toroid mirrors are furthermore employed to focus

the beam.

3.2 Single-crystal X-ray Diffractometers

Single-crystal X-ray diffractometers are instruments which are used to orient the

crystal in an X-ray beam and to detect the radiation scattered from it. The crystal

orientation is accomplished by the goniometer of the diffractometer. Depending on

the number of rotation axes present in the goniometer, diffractometers are named

one-, two-, three-, etc. circle diffractometers. In a one-circle diffractometer the crys-

tal is rotated about one predefined axis and the detector stays during measurement

fixed. The goniometers of two-, three- and four-circle diffractometers generally allow

a rotation of the detector and the additional rotation axis are used to increase the

degrees of freedom of orienting the crystal.

Two kinds of four-circle goniometer geometries can be distinguished namely the
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Figure 3.2: Arrangement of the crystal rotating axes in goniometers possessing κ-geometry
(a) and Euler-geometry (b). The crystal orientation in sketch (a) and (b) are the same.

Euler-geometry and the κ-geometry (Fig. 3.2). Diffractometers of both designs were

used for the performance of the experimental work for this thesis. The diffractome-

ter Mach3 by Nonius is built in κ-geometry. It was employed for testing of crystals

as well as for measuring of reflection profiles used for a determination of the crystal

shape. The Huber diffractometer installed at the beamline D3 of Hasylab is con-

structed in the Euler geometry. The shift of the φ-axis from the equatorial plane

of the Euler-cradle enables to mount a closed-cycle cryostat (Fig. 3.3). Profiles on

selected reflections were measured by means of a point detector. In both the κ- and

the Euler geometry one axis, the ω-axis, is oriented parallel to the 2θ-axis which is

the axis for rotation of the detector. On the ω-block the other two axes are mounted

(Fig. 3.2). In the Euler-geometry the two axes are the χ- and the φ-axis. The χ-axis

is oriented perpendicular to the ω-axis and by its rotation the φ-axis is tilted from

the ω-axis.

In the κ-geometry the tilting of the φ-axis is accomplished by a rotation about

the κ-axis. The κ- and ω-axis enclose a specific angle which is set for the diffrac-

tometer Mach3 exactly to 50 deg. Apart different values for κ and χ same crystal

orientations in the κ- and Euler-geometry are distinguished by different values of

ω. The angles of the two geometries are, however, trigonometrically related and

most diffractometer software allow a transformation between them. Goniometers

designed in κ-geometry can be successfully used in combination with an open flow
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Figure 3.3: Experimental setup at beamline D3 (DESY, Hamburg) used for measurements
of peak profiles. Primary beam collimator (a), outer beryllium cylinder (b), detector
collimator (c), cryostat (d), ω-axis (e), Euler-cradle (f).

cooling systems since the access to the crystal along the opened side of the omega

axis is not hindered through the bulky Euler-cradle (Fig. 3.2).

Point detectors are measuring the amount of photons irradiated at one position.

The Huber and Mach3 diffractometer used for the experiments were equipped with

NaI(Tl)-scintillation counters. The NaI(Tl)-scintillation detector possesses a low

energy selectivity and can detect photons of a broad wavelength spectrum. In this

kind of detector incident X-ray photons are converted to electrical signals using

a scintillation crystal which absorbs the X-ray photons under generation of excited

atom states. The excited states have a short life time (∼ 2.5 × 10−7 s (Aslanov et al.

(1998))) and emit by their decay visible light of a defined wavelength that is amplified
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by a photomultiplier to generate a photoelectron current. The measurement of

reflection profiles can be accomplished by rotating the crystal (e.g. to perform ω-

scans), by rotating the detector (2θ-scans) or both the detector and the crystal (ω-2θ-

scans). The inspection of reflection profiles allow an assessment of the crystal quality

and can reveal the occurrence of a twinning indicated by a splitting or a broadening

of reflection peaks. The background intensity of measurements carried out by using

a point detector can be reduced through the application of adjustable detector slits

and a collimator. Point detectors can, furthermore, be used to accomplish ψ-scans

which allow a semi-empirical approximation of the crystal shape used for absorption

correction of measured reflection intensities.

The one-circle goniometers are often combined with either an image plate or

a CCD (charge coupled device) detector. Both kinds of detectors are area detec-

tors. The measurement with these instruments is performed by rotating the crystal

during exposure by a constant velocity. The diffraction patterns measured during

each incremental rotation are stored as electronic images, so called frames, by the

computer system controlling the measuring process.

The photoactive layers in the image plate contain fine-grained particles of Eu-

doped barium halides. The diffraction information is stored within these layers by a

photoinduced transfer of electrons from the europium ions to the halide vacancies.

The energetically unfavored charge distribution in the layers can be readout by a

laser causing a luminescence detectable by a scanner. Unlike photographic films,

where the recorded information is stored permanently, image plates are reusable by

deleting their information content by white light. Because image plate detectors

possess a low noise level and a high dynamic range they are especially suitable for

the measurement of weak reflections beside strong ones (Giacovazzo et al. (2002)).

CCD-cameras are constructed of independent semiconductor elements combined

to arrays detecting the X-ray photons. Because their signals result from a generation

of electron-hole pairs which have a low energy level CCD-detectors have a high dark

current. Due to higher flux rates their use is more convenient for measurements

with synchrotron or neutron radiation.

During the measurement using an area detector several reflections are measured

simultaneously on each frame, thus, the experiment time is much shorter than the

measurements carried out by employing a point detector. Reflection intensities

determined by point detectors are, however, more precise then the ones measured

by area detectors, because the counting statistics of point detectors lead to smaller

standard uncertainties (Giacovazzo et al. (2002); Aslanov et al. (1998)).
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Figure 3.4: Setup of a Mach3 diffractometer using the κ-geometry (installed at the labora-
tory of crystallography, university of Bayreuth). (a) rotating anode, (b) beam collimator,
(c) detector collimator, (d) beam stop, (e) detector, (f) ω-block of the goniometer on which
the κ-block (g) and a microscope (h) are mounted.

3.2.1 Experiments on a Mach3 diffractometer

The Nonius Mach3 diffractometer is a four-circle diffractometer designed in κ-

geometry (Fig. 3.4). The X-ray radiation used for the experiments was generated

by a rotating anode using a beam current of 75 mA and an acceleration voltage of

55 kV. The diffracted radiation was detected by a photomultiplier whose signal was

corrected to a deadtime loss smaller 1% of the counting rate.

The quality of crystals were checked by performing ω-scans on strong reflections

distributed over the three lattice directions of the crystal. Beside an occurrence

of peak splitting the peak width was the main criteria by which crystals were se-
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Figure 3.5: Crystal rotation about the ψ-axis in direct space (a) and in reciprocal space
using the Ewald construction (b).

lected or discarded. Crystals which gave rise to strong reflections with peak widths

(FWHM) substantially larger than the lowest experimentally reachable value of ∼
0.08 deg were not used for synchrotron experiments. The ω-scans were measured in

a continuous rotation mode rotating over angles of 1 or 2 deg. For a higher accuracy

the peak widths were determined by a curve fitting applying gaussian or pseudovoigt

fit functions.

To correct the measured reflection intensities for the effects of absorption a knowl-

edge of the crystal shape is necessary. The crystal shape can be determined by the

measurement of ψ-scans on selected reflections. ψ-scans are performed by measuring

each single reflection in orientations which are equivalent to orientations resulting

from rotations about the scattering vector (Fig. 3.5). The ψ-scans were performed

by measuring the intensities of reflections by ω-2θ-scans and rotating the crystal

about the ψ-angle in increments of 10 deg.

The principle of the semi-empirical crystal shape optimization can be understood

by regarding first the X-ray absorption occurring by the transmission of photons

through an ideal crystal polished to a perfect sphere. The percentage of absorbed

photons depends on the absorption length of the crystal and on the lengths of the

beam path through the crystal. A rotation of the spherical crystal about the ψ-axis

has no influence on the reflection intensities since the lengths of the beam paths

remain constant. For a rotation of a non-spherical crystal, however, the reflection

intensities depend on the ψ-angle since different ψ-angles involve different lengths

of beam paths through the crystal.

The ψ dependence of measured reflection intensities are used in the computer

program HABITUS (Herrendorf and Bärnighausen (1997)) to refine a model for
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the crystal shape. The refinement is performed by the optimization of a starting

model consisting of a high symmetric form possessing many faces e.g. by using an

icosahedron. The program optimizes the crystal shape by changing the distances of

the faces to the center and by changing the tilting of the faces. The optimization

process is controlled by an improvement of a figure of merit calculated from the

maximal and minimal values of the absorption corrected intensities of reflections.

The absorption correction of the intensities of the reflections was performed by using

the integration software Crysalis (Software CrysAlis RED (2005)) or the program

SADABS (Sheldrick (1998)).

3.2.2 Experiments on a MAR345 dtb diffractometer

The goniometer of the Mar345 dtb diffractometer possesses just one axis for rotation

of the crystal, the φ-axis, which is oriented perpendicular to the primary beam (Fig.

3.6). The detector can be tilted in the 2θ-position.

The diameter of the Mar345 image plate is 345 mm and corresponds to 2300 ×
2300 pixels in a digitized image with one pixel corresponding to 150 × 150 μm2 in

size. The dynamic range of the detector is 17 bit (from 0 to 217=131071). The Laser

and the scanner system are integrated in the Mar345 image plate detector allowing

an automatic and fast readout and erasion of the image plates.

In the data reduction process reflection positions are determined to calculate

the orientation matrix which expresses three non-coplanar crystal lattice directions

by the diffractometer coordinate system. This process is performed by integration

software programs (Software CrysAlis RED (2005); Duisenberg et al. (2003)) which

are also applied for the subsequent processing steps including the integration of

intensities of reflections mostly segmented over several frames.

3.3 Control of the crystal temperature

Low-temperature diffraction studies require a stable sample cooling combined with

the diffractometer.

On the Mar345 dtb diffractometer the crystal temperatures were established

using an Oxford cryostream cooling device. In this cryostat the crystal temperature

is controlled by a cold nitrogen gas stream steadily blowing over the crystal. The

nitrogen gas is produced by vaporization of liquid nitrogen pumped-off from an

storage vessel. Crystal temperatures ranging from 80 to 400 K are attainable through
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Figure 3.6: Setup of a mar345 dtb imageplate diffractometer (installed at the laboratory
of crystallography, university of Bayreuth). (a) rotating anode, (b) cooling system, (c)
detector, (d) φ-axis, (e) crystal.

the electrical heating of the gas. The lower temperature limit of the cooling device

is determined by the boiling point of nitrogen which corresponds to a temperature

of 77.35 K at ambient pressure.

Lower crystal temperatures can be achieved through the application of an open

flow Helijet or a closed-cycle cryostat using helium as cryogen gas. The working

principe of the Helijet is similar to the one of the cryostream. The lowest attainable

temperature of the open flow cooling method is ∼ 10 K.

A closed-cycle cryostat was employed for cooling of CrOCl single-crystals, towards

temperatures below the phase transition temperature of Tc = 14 K. The crystal

temperatures adjustable by a closed-cycle cryostat are ranging from the boiling

temperature of helium corresponding for ambient pressure to a temperature of 4.22

K to room temperature. The cooling effect in a closed-cycle cryostat results from

the cycled process of compressing helium gas and releasing it into an evacuated
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chamber which is subsequently evacuated anew. The crystal is cooled through the

thermal contact to a cold finger consisting of a copper rod of 200 mm in length.

Crystal temperatures are adjusted via an electrical heating at the end of the cold

finger. To allow a good thermal conductivity from the crystal to the cold finger the

crystal is mounted on a bundle of carbon fibres (Section 3.4). Temperature increase

and icing of the cooled crystal through the contact to air was prevented by the use

of two evacuated beryllium cylinders (Fig. 3.3). The inner cylinder was cooled to

reduce the thermal radiation at the crystal. The beryllium shielding gives rise to

X-ray absorption whose magnitude is dependent on the beampath of the radiation

and to diffraction rings.

Unfortunately, variations of the temperature cause a shrinking or expansion of

the cold finger and thus shift the crystal outside the center of the X-ray beam.

Readjusting the hight of the crystal is optically precluded by the beryllium shielding

and has therefore to be performed through the optimization of the intensities of

reflections and can be calculated for T ∼ 20 K.

3.4 Crystal preparation

Data collections carried out on the laboratory diffractometers (Mar345 dtb and

Nonius Mach3) were performed on crystals ranging from 150 to 300 μm in their

maximum edge lengths. The investigated crystals were diffracting Mo-Kα X-ray

radiation to 2θ-angles larger 60 deg.

The size of the surveyed crystals was limited by the diameter of ∼ 400 μm of the

beam because an incomplete irradiation of the crystal results in too low intensities

of some reflections.

Lamellae-shaped crystals of CrOCl up to 200 μm in length were attached with the

aid of a small amount of a two-component glue to the top of boron glass fibres (Fig.

3.7 (a)). ω-Scans performed on reflections of bigger crystals exhibited often broad

peak widths which was interpreted by imperfect crystallization of larger individuals.

The crystals were prepared on boron glass fibres because of the low X-ray absorption

of boron glass. For the low-temperature experiments using a closed-cycle cryostat

the CrOCl crystals had to be prepared on thermal conducting needles. The needles

were produced by cementing of carbon fibres using a two-component glue. They

were fixed into copper pins by aid of thermal conducting silver lacquer and the

outstanding ends were cut with a razor blade to lengths of about 2 mm. The
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Figure 3.7: Single-crystal of CrOCl glued on the top of a boron glass fibre (a) and on the
top of carbon fibres (b).

crystals were attached using a tip of two-component glue to the top of the needles

(Fig. 3.7 (b)).

Air-sensitive crystals of the organometallic compound Eu(SC36H49)2 were cut

in the cryoprotectant oil Paraton-N to lengths of ∼ 300 μm. The crystals were

set to the top of boron glass fibres and their positions on the fibres were fixed by

cooling the crystal beneath the hardening temperature of the oil. Single-crystals

prepared in Paraton-N were destroyed at temperatures close to the phase transition

temperature. Thus, crystals used for a data collection on the low-temperature phase

were prepared without oil under a nitrogen gas stream. In contrast to the crystal

cutting in oil where crystal splinters were easily removed from the surface by moving

the crystals the cutting of crystals under nitrogen atmosphere had to be carried out

with more care avoiding a generation of splinters. The cut crystals were attached

to the boron fibres using a two-component glue.

Because of their high hygroscopicity crystals of TiI3 were inspected and prepared

in the glove box under argon atmosphere. Thin needles of TiI3 which were ∼ 300 μm

long were placed on micro meshes of polyimide sample mounts (Fig. 3.8 (b); Thorne

et al. (2003)) whose surfaces were made adhesive by covering them with a thin film of

vacuum grease. The adhesion of the crystals to the flat surface of the micro mounts

led to a tension free fixing of the crystals, thus, a splitting of the crystals observed

in initial attempts by mounting crystals on boron glass fibres could be avoided. Air

contact during the transfer of the prepared TiI3-crystals to the nitrogen gas stream
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Figure 3.8: Hygroscopic crystal sealed in a capsule containing inert gas (a). Crystal
attached to the surface of a micro mount (b).

of the diffractometer was prevented by a sealing in a small capsule filled with inert

gas (Fig. 3.8 (a)). After opening of the container the plug holding the crystal could

be set to the diffractometer. The prepared crystals could maintain several days

within the closed capsule without any signs of deterioration but got hydrolyzed by

the exposition to the humidity of air within two to five minutes.



Chapter 4

Crystal chemistry of selected

transition-metal compounds

4.1 The transition-metal trihalides

The transition-metal trihalides (MX3) form layered crystal structures of the BiI3
and AlCl3 structure types and quasi-one-dimensional structures of the TiI3 structure

type (Lin and Miller (1993)). The symmetry of the BiI3 structure type is R3̄ while

it is P63/mcm for the TiI3 structure type. The average structures of the BiI3 and

the TiI3 structure types consist of a hexagonal closest packing of halogen atoms in

which one third of the octahedral interstices are occupied by metal atoms while the

remaining two thirds are empty.

The different structure types arise from different distributions of the metal atoms

over the octahedral sites.

In the BiI3 structure type each MX6-octahedron is edge sharing with three adjacent

octahedra forming hexagonal nets of metal atoms oriented perpendicular to the

lattice direction c (Fig. 4.1a) and the honeycomb-like layers of the metal atoms are

screwed trigonally along the c direction.

In the TiI3 structure type MX6-octahedra are face sharing and the metal atoms form

chains running parallel to the lattice direction c (Fig. 4.1b).

The AlCl3 structure type consists also of layers of edge sharing MX6-octahedra in

analogy to the BiI3 structure type but the halogen atoms are cubic closest packed.

Several MX3-compounds are polymorph and can form two or more structure

types depending on the crystallization conditions. The compounds TiCl3 and TiBr3

for example crystalize at low temperatures in the BiI3-structure type (α-modification)

25
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Figure 4.1: Section of crystal structures of the BiI3 structure type (a) and the TiI3 struc-
ture type (b) projected along the lattice direction c. Atoms belonging to the same layers of
the BiI3 structure type are colorized in equally grey saturations. Metal atoms are depicted
as small spheres and halogen atoms are represented by big spheres. Chemical bonds be-
tween metal and halogen atoms are represented by lines. (c) one possible arrangement of
the dx2−y2 orbitals in the α-modifications of TiX3. The lobes of the orbitals are depicted
as ellipsoids and overlap in one direction of the (a, b) plane. The resulting dimerization
of the metal distances is symbolized by arrows.

but adopt at high temperatures preferably the TiI3-structure type (β-modification)

(Newland and Shelton (1970)). TiI3, however, crystalizes only in the TiI3 structure

type. Some MX3 compounds form crystal structures in which the stacking sequences

of the metal atom layers are disordered and can neither be assigned to the hexagonal

nor to the cubic stacking sequence (Brodersen, Thiele, Ohnsorge, Recke and Moers

(1968)).

Because of the d1 configuration of the Ti3+ ions the TiX3 compounds tend to

establish direct magnetic spin interactions between neighboring metal atoms at low

temperatures. As consequence the TiX3 compounds undergo by cooling a phase

transition from a paramagnetic room-temperature phase into a low-temperature

phase in which antiferromagnetic spin coupling of the d1 valence electrons is observed

(Pollini (1983), Drent et al. (1975)). In the α-modifications the dimerization occurs

in the plane of the honeycomb-like layers of metal atoms and in the β-modifications

along the metal chains.

The fivefold degenerate d orbitals of the titanium atoms split under the influence
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of the octahedral ligand field of the halogen atoms into a group of two states at higher

and a group of three states at lower energy. The single d electron of Ti3+ occupies

one of the three low-energy states. The low-energy states are dxy, dxz and dyz and

the high-energy states are dx2−y2 and dz2.

In the crystal structure of α-TiX3 the dimerization direction of the titanium

atoms is coplanar with the equatorial plane of the honeycomb-like layers. The

equatorial plane constitutes the xy-plane of the d orbitals in which the axes of the

dxy and the dx2−y2 orbitals are located. One of the lobes of the dx2−y2 or the dxy

orbital is pointing into the direction of the dimerization suggesting a substantial

contribution of this orbital to the magnetic spin interaction. The geometry of these

orbitals is furthermore possibly the reason why each titanium atom can establish a

spin-interaction to just one of the three neighboring titanium atoms. The axes of

the orbital include an angle of 90 deg which is incompatible with the angles of the

atomic arrangement in the honeycomb-like metal layers (Fig. 4.1c).

In the structures of the β-TiX3 modifications the dxy and dx2−y2 orbitals are

also oriented perpendicular to the c-direction and their energies are lowered by an

elongation of the coordination polyhedra along the chain axis (Drent et al. (1975)).

In the β-TiX3 modifications the distances between neighboring titanium atoms on

the metal chains are substantially smaller than the metal-metal distances established

in the honeycomb-like layers of metal atoms in the α-TiX3 modifications (Tab. 4.1).

The close contact of the titanium atoms in the β-modification allows a strong orbital

overlap of neighboring dz2 orbitals which is regarded responsible for the formation

of an antiferromagnetic spin pairing by which the transition to the low-temperature

phase is promoted (Drent et al. (1975); Pollini (1983)).

Due to the dimerization of the metal atoms associated with the transformation

into the low-temperature phase the origin of the transitions of the α- and the β-

modification of the TiX3 compounds can not be sought in pure antiferromagnetic

spin interactions (Section 2.2) and is more probably driven by a spin-Peierls pairing

of the metal atoms.

4.1.1 Phase transitions of α-TiX3 (X = Cl, Br)

The room-temperature phase of the α-modification of TiCl3 (TiBr3) undergoes at a

temperature of Tc = 217 K (180 K) a phase transition to a low-temperature phase

whose crystal structure possesses triclinic symmetry (Maule et al. (1988)). The

reduction of symmetry is caused by the dimerization of the titanium atoms in the
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Table 4.1: Average metal-metal distances in selected transition-metal trihalides at room-
temperature.

compound distance (Å) Reference
α–TiCl3 3.55 Troyanov and Snigireva

(2000)
β–TiCl3 2.91a Natta et al. (1961)
α–TiBr3 3.74 Troyanov et al. (1994)
β–TiBr3 3.0475a Newland and Shelton (1970)
TiI3 3.255(2) Angelkort et al. (2009)
adetermined from lattice parameter c

honeycomb layers of the structure. The dimerization is caused by a displacement

of the titanium atoms in one of the three symmetry equivalent lattice directions

of the hexagonal unit cell of the high-temperature phases (Troyanov et al. (1994);

Troyanov and Snigireva (2000)). The phase transition is accompanied by changes

of the lattice parameters in the vicinity of the transition temperatures Tc resulting

for decreasing temperatures first in a decrease of the lattice parameter a and for

gently lower temperatures in an increase of the lattice parameter c (Ogawa (1960))

underlining the importance of the dimerization along a for the phase transition.

At temperatures below Tc the magnetic susceptibilities of TiCl3 and TiBr3 decrease

abruptly (Klemm and Krose (1947); Ogawa (1960)) indicating that the dimerization

of the titanium atoms is related to the occurrence of an antiferromagnetic coupling

of the magnetic moments of the atoms (Fig. 4.2).

4.1.2 Phase transition of β-TiX3 (X = Cl, Br, I)

The symmetry of the β-modifications of TiX3 reduces at the transition into the low-

temperature phase to the subgroup symmetry Pmmn. Frequently the orthorhombic

symmetry of the low-temperature structure is hidden by a pseudo-hexagonal sym-

metry originating in twinning. The twinning rule corresponds to the rotation about

a threefold axis oriented parallel to the lattice direction c1.

In comparison to the α-modifications of TiX3, which exhibit pronounced changes

of the magnetic susceptibility in the vicinity of the transition temperature, the

absolute value of the magnetic susceptibilities of the β-modifications as well as their

1The effect of twinning in the β-TiX3 structures is highlighted in the appendix C.
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Figure 4.2: Temperature dependence of the magnetic susceptibility of (a) α-TiCl3, and
(b) TiI3. Reprinted from Klemm and Krose (1947). Broken lines mark the transition
temperatures of α-TiCl3 (Ogawa (1960)) and TiI3 (Angelkort et al. (2009)).

changes resulting from the phase transitions are rather small (Fig. 4.2)(Klemm

and Krose (1947); Lewis et al. (1962)). The anomalously low susceptibilities of

the β-MX3 phases is attributed to a competition between an antiferromagnetic and

a ferromagnetic coupling of the magnetic moments of the metal atoms in these

structures (Baker and Janus (1964)). Thus, the susceptibility change resulting from

the transition into the low-temperature phase can be interpreted with an increase

of the antiferromagnetic interaction with respect to the ferromagnetic coupling.

4.2 The transition-metal oxyhalides

4.2.1 Crystal structures and magnetic behavior

The transition-metal oxyhalides (MOX) form layered crystal structures of the FeOCl

structure type possessing the symmetry Pmmn at room-temperature. In the struc-

ture chains of metal atoms, chains of oxygen atoms and chains of chlorine atoms

run parallel to the lattice direction b. The stacking direction of the MOX layers

are parallel to c (Fig. 4.3). The metal and oxygen chains form corrugated double

layers which are sandwiched by two layers of halogen atoms. The metal atoms are

accommodated at centers of distorted octahedra defined by two halogen and four

oxygen atoms.

The d orbitals of the transition-metal atoms give rise to interactions of magnetic
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Figure 4.3: MOX crystal structure depicted via parallel projection. The labels M , O and
X are referring to metal, oxygen and halogen atoms respectively.

spin moments by which MOX compounds undergo antiferromagnetic phase transi-

tions. Depending on the number of electrons of the metal atoms, spins of electrons

on neighboring atoms can interact by direct exchange along the metal chains, by

direct exchange involving neighbors on neighboring chains and by a M–O–M su-

perexchange oriented almost parallel to the lattice direction a. Due to the effect

of these interactions MOX compounds exhibit phase transitions to low-temperature

phases which possess different magnetic structures and can also differ in their nuclear

structures. For the MOX compounds with titanium two phase transitions and the

formation of an incommensurately modulated intermediate phase has been observed

(Seidel et al. (2003); Schönleber et al. (2006); van Smaalen et al. (2005)).

The other MOX compounds undergo only one phase transition (Adam and Buis-

son (1975); Christensen et al. (1975); Wiedenmann et al. (1983)), which is associated

with a lowering of the symmetry from orthorhombic to monoclinic on lowering the

temperature. Often the transition is accompanied by twinning resulting from the

two possible orientations of the monoclinic lattices on the orthorhombic lattice2.

2In Appendix D a formula is derived used to calculate the monoclinic angle of CrOCl from a
peak splitting caused by crystal twinning.
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4.2.2 Phase transitions of TiOCl and TiOBr

TiOCl and TiOBr each undergo two phase transitions at which the crystal structures

and the space group symmetry change (van Smaalen et al. (2005)). By decreasing

the temperature below the upper transition temperature Tc2 (TiOCl: Tc2 = 90 K,

TiOBr: Tc2 = 48 K) the room-temperature phase transforms into an intermediate

phase whose structure is incommensurately modulated. Simultaneously the mag-

netic behavior of the compounds change from paramagnetic to antiferromagnetic

(Seidel et al. (2003)). A further temperature decrease below Tc1 (TiOCl: Tc1 =

67 K, TiOBr: Tc1 = 28 K) transforms the incommensurately modulated structure

into a twofold superstructure of the high-temperature structure corresponding to a

doubling of the lattice vector b.

At the phase transition from the room-temperature phase into the intermediate

phase the space group symmetry is reduced to the monoclinic c-unique superspace

group P2/n (σ1,σ2,0)00. The monoclinic angle γ adopts a value of 90.023 deg in

the incommensurately modulated phase of TiOCl and is temperature independent

(Schönleber et al. (2006)). The modulation wave vector is q = (σ1, 1/2 + δ, 0) with

σ1 and δ constituting irrational components of the wave vector. The value of σ1 de-

creases from 0.08 to zero and the value of δ from 0.013 to 0.005 for decreasing crystal

temperatures (Schönleber et al. (2006)). The space group of the low-temperature

structures of TiOCl and TiOBr is P21/m with the angle α being the monoclinic

unique angle (Fausti et al. (2007)).

The distorted octahedral coordination of the Ti3+-atoms by two halogen and

four oxygen atoms with mm2 point group symmetry completely lifts the degeneracy

of the d orbitals. The dx2−y2 orbital has the lowest energy and constitutes the only

occupied orbital of Ti3+. The orbitals whose energy corresponds to the higher energy

levels are unoccupied and are not involved in the interactions of the magnetic spin

moments because the excitation energies required to transfer electrons onto them

are too high (Macovez et al. (2007)). In the TiOX-structure the dx2−y2 orbital

is oriented along the b- and c-directions resulting in a direct orbital-overlap of

neighboring titanium atoms along the chains of metal atoms.

Due to the large overlap, the direct exchange along b is the dominating magnetic

interaction in TiOX compounds and results in a spin-Peierls pairing of the magnetic

moments at low-temperatures. The spin-Peierls transition, associated with the for-

mation of spin-singlet pairs below Tc1, is regarded to be unconventional due to its

first-order character. Superexchange interactions are generated by a hybridization



32 CHAPTER 4. CRYSTAL CHEMISTRY

of the dx2−y2 orbitals with the 2p orbitals of oxygen. The magnitude of the su-

perexchange interaction was calculated to be 12 % of the spin-Peierls interaction in

TiOCl and 20 % of the spin-Peierls interaction in TiOBr (Macovez et al. (2007)).

Antiferromagnetic coupling is also established between the magnetic spin moments

of titanium atoms on neighboring chains within one double layer.

The spin-Peierls pairing of the intermediate phase is frustrated by the effect of

the Ti-O-Ti superexchange coupling and the long-range ordered antiferromagnetic

interaction. As a result of the frustration the atomic displacements of the titanium

atoms can deviate from the b-direction (Schönleber et al. (2006); Krimmel et al.

(2006)). The atomic displacements of the oxygen and chlorine atoms are almost

parallel to the atomic displacements of the titanium atoms and reduce the varia-

tion of the interatomic distances in the intermediate phase. The frustration of the

spin-Peierls pairing is also present in the low-temperature phase and the result-

ing structures represent commensurate analogues of the incommensurate structures

(Schönleber et al. (2006)).

A temperature decrease of the incommensurately modulated phase effects an in-

crease of the amount of spin-Peierls dimers resulting in parallel in a decrease of the

amount of electron-singlets by which the antiferromagnetic coupling is established.

In this context the transition at Tc1 can be regarded as a collapse of the antiferro-

magnetic state induced by the advanced detracting of electrons (Schönleber et al.

(2008)).

4.2.3 Magnetic structures of FeOCl, CrOCl and VOCl

FeOCl, CrOCl and VOCl undergo by cooling only one phase transition resulting

in the formation of antiferromagnetic low-temperature phases (Adam and Buisson

(1975); Christensen et al. (1975); Wiedenmann et al. (1983)). The low-temperature

phase of FeOCl possesses an incommensurately modulated magnetic structure with

a propagation vector of 1/2 1/2 0.275 at 4.2 K (Adam and Buisson (1975)). The

modulation along the c-direction results from a rotation of the magnetic moments of

the Fe-atoms about angles of 99 deg in the (b, c) plane for every translation period

along b.

For CrOCl the occurrence of an antiferromagnetic transition with an associated

Néel-temperature of 13.5 K was revealed by a temperature-dependent measurement

of the magnetic susceptibility. At the corresponding structural transition with the

transition temperature Tc = 13.5 K the room-temperature phase transforms into a
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monoclinic low-temperature phase (Chapter 7). The magnetic structure of the low-

temperature phase is a fourfold superstructure of the high-temperature structure

established by a quadrupling of the lattice vector b (Christensen et al. (1975)).

The room-temperature phase of VOCl transforms at TN = 80.3 K into a mon-

oclinic low-temperature phase in which the monoclinic angle γ is 90.211 deg at T

= 3.2 K (Schönleber et al. (2009)). The space group of the nuclear structure below

TN is P112/n. The magnetic structure of the low-temperature phase is a 2×2×2

superstructure of the high-temperature structure and results from the magnetic su-

perexchange interactions Ja along a, the direct exchange interaction Jb along b and

a weak antiferromagnetic interaction along c (Komarek et al. (2009)).
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Chapter 5

Phase transition and crystal

structure of the monomeric

Europium(II) thiolate

Eu(SC36H49)2

5.1 Introduction

Organometallic complexes of rare-earth metals have been reported with different

types of chemical bonding, including interactions with σ-donor ligands (Edelmann

et al. (2002)), charged π-donor ligands, like cyclopentanide (Schumann et al. (1995);

Arndt and Okuda (2002)), and neutral π-arene donors (Bochkarev (2002); Gies-

brecht et al. (2004)). σ- and π-bonded Organolanthanoid compounds have found

applications in catalysis (Hou et al. (2003); Hultzsch et al. (2006); Marks and Hong

(2004)). Understanding chemical stability and reactivity is often based on the knowl-

edge of the crystal structures. The experimental determination of the stable crystal

structure thus is important for the proper understanding of the chemical interactions

in these compounds. Recently a series of organolanthanoid compounds were synthe-

sised that contain σ-bonded interactions as well as η6-π-arene interactions between

the lanthanoid atom and the ligands (Niemeyer (2001); Cofone and Niemeyer (2006);

Hauber and Niemeyer (2007)). One of these compounds is Eu(SAr∗)2 containing the

ligand SAr∗ with Ar∗=2,6-Trip2-C6H3 and Trip= 2,4,6-(isopropyl)3C6H2 (Fig. 5.1).

The earlier work reported the synthesis and the crystal structure at 173 K of solvent

35



36 CHAPTER 5. PHASE TRANSITION OF Eu(SC36H49)2

Figure 5.1: Asymmetric unit of the high-temperature structure, displayed in parallel pro-
jection. Hydrogen atoms were omitted for clarity. Medium grey atoms are disordered.

containing Eu(SAr∗)2·0.5 THF. Here we report the results of temperature-dependent

X-ray diffraction on solvent-free Eu(SAr∗)2. A structural phase transition has been

discovered at Tc= 119 ± 1 K, and crystal structures of the low-temperature and

high-temperature phases are presented. Analysis of the crystal structures shows

that an optimised crystal packing at low temperatures is the driving force for the

phase transition. The Bond-Valence method is used to show that bonding between

divalent europium occurs in equal amounts to the two sulphur atoms and the two

phenyl rings of the ligands.

5.2 Results and Discussion

Solvent-free Eu(SAr∗)2 has been crystallised as described earlier (Niemeyer (2001)).

Temperature-dependent X-ray diffraction has indicated a phase transition at Tc=

119 ± 1 K, through the appearance of additional reflections in the diffraction pattern

at low temperatures (Fig. 5.2). Bragg reflections appear split below Tc, pointing to

the coexistence of high-temperature and low-temperature phases for at least several

degrees. Together with a reduction of the volume by 1% at Tc (Table 5.1), this
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Figure 5.2: Section of the diffration pattern at different temperatures.

suggests a first-order character of the phase transition.

The low-temperature crystal structure is found to be a twofold superstructure

of the high-temperature modification. The relation between the basis vectors of the

two lattices is:

aLT = aHT + bHT

bLT = −cHT

cLT = −aHT + bHT

(5.1)

The high-temperature structure contains one Eu(SAr∗)2 complex in the asym-

metric unit. Because both modifications crystallise in centrosymmetric triclinic

space groups, the low-temperature crystal structure contains two crystallographi-

cally independent complexes. They are denoted as ”molecule a” and ”molecule b”

in this paper. With reference to Eq. 5.1, Fig. 5.3 and the supplementary material

(in this thesis provided as appendix A), atoms of molecules a and b are given the



38 CHAPTER 5. PHASE TRANSITION OF Eu(SC36H49)2

Figure 5.3: Asymmetric unit of the low-temperature structure, displayed in parallel pro-
jection. Hydrogen atoms are not shown.

same numbers as the corresponding atoms of the single independent molecule in the

high-temperature phase, supplemented with ”a” and ”b”, respectively.

Solvent-free Eu(SAr∗)2 and Eu(SAr∗)2·0.5 THF crystallise in similar unit cells,

while the volume of the unit cell of the latter compound is larger by ∼ 90 Å3, in order

to accommodate one THF molecule. Small differences of geometrical parameters are

observed, that will be discussed below. The crystal structures at high temperatures

are characterised by disorder of four isopropyl groups over two orientations each

(Fig. 5.1).

In the low-temperature structure, molecule a inherits one orientation of each

disordered group while molecule b inherits the other orientation (Fig. 5.2). For

example, atomic sites C53a, C54a, C53b and C54b of the high-temperature structure

are occupied with a probability of ∼ 0.5 (Fig. 5.1). In the low-temperature structure

sites C53a and C54a are fully occupied in molecule a and sites C53b and C54b
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are fully occupied in molecule b (Fig. 5.3). Initially, the phase transition can be

described as an order-disorder transition pertaining to the isopropyl groups attached

to phenyl rings B and F (Fig. 5.1).

The driving force for the phase transition is, however, the higher packing density

of the low-temperature phase by 1% (Table 5.1). This is achieved not only by the

ordering of the isopropyl groups but also by further conformational changes of the

complexes. Most dramatically this pertains to a reorientation of isopropyl groups

X and Y attached to phenyl rings C and G, respectively (Fig. 5.1). In molecule

a they remain in staggered conformation with respect to the phenyl rings (angles

X/C and Y/G of approximately 90 deg; see Table 5.2), but in molecule b they

are rotated towards a less favourable orientation, with angles X/C and Y/G of

∼ 67 deg. The higher packing density is expressed by distances between europium

atoms in neighbouring complexes along the direction of bLT being shorter in the low-

temperature than in the high-temperature structure (Table 5.2). The conformational

differences pertaining to the isopropyl groups in molecules a and b and in the high-

temperature structure seem to be responsible for the structural differences in other

parts of the complexes. The environment of Eu in molecule a is similar to the

environment in the high-temperature structure, but molecule b is different (Table

5.2).

Compared to the other structures, molecule b has slightly longer Eu–S distances

and a larger angle S–Eu–S. Angles between the nearly coplanar phenyl rings B and

F (defining the η6-π-arene bonds) and the plane I of the S–Eu–S group are slightly

different for the different complexes but do not show a systematic variation.

The interplanar angles I/B and B/F are larger in Eu(SAr∗)2·0.5 THF than in

all other structures (Table 5.2), the contribution to the valence of europium is,

however, higher in the THF-containing compound, suggesting an slightly higher η6-

π-arene interaction between Eu and both phenyl rings. A quantitative description of

chemical bonding is provided by the Bond-Valence method (Brown (2002a)). The

bond strength, νij , of each pair of atoms is related to the distance, dij, between

them, by the simple formula,

νij =
∑

j

exp

(
R0 − dij

b

)
(5.2)

where b = 0.37 Å is a universal constant. Each pair of chemical elements is charac-

terised by the value of the semi-empirical constant R0. The valence, Vi, of atom i is

obtained as the sum of νij over all neighbours j of i.
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Table 5.1: Crystal parameters and refinement results for the high and the low-temperature
phase.

Temperature 122K 100K
Empirical formula C72H98EuS2 C72H98EuS2

Formula weight (g/mol) 1179.7 1179.7
Crystal diameter (mm) 0.3 0.3
Crystal system triclinic triclinic
Space group P1̄ P1̄
a (Å) 13.303(2)a 17.955(2)
b (Å) 14.337(2)a 18.040(2)
c (Å) 18.397(2)a 21.177(2)
α (deg) 104.0(1)a 82.7(1)
β (deg) 93.9(1)a 85.8(1)
γ (deg) 98.8(1)a 76.9(1)
Volume (Å3) 3344.8(9) 6620.0(8)
Volume/molecule (Å3) 1672.4(5) 1655.0(3)
Z 2 4
Wavelength (Å) 0.7107 0.7107
Absorption coeffficient (mm−1) 1.04 1.04
θmax (deg) 30 30
Number of reflections (total) 34143 64022
Reflections (unique) 17246 33068
Reflections (observed) 16762 30082
Goodness of fit (all) 2.71 4.46
Rint 5.1 4.9
RF 5.78 6.57
RF (h+ k = even) - 6.05
RF (h+ k = odd) - 7.37
Δρmax (e/Å3) 2.0 1.7
Δρmin (e/Å3) -3.6 -2.4

aTransformation of the high-temperature unit cell towards a twofold superstructure

results in lattice parameters: a = 18.014 Å, b = 18.397 Å, c = 20.989 Å, α = 83.0

deg, β = 85.7 deg, and γ = 76.0 deg; unit-cell volume: 6689.6 Å3.
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Table 5.2: Selected bond lengths (Å), bond angles (deg), interplanar angles (deg) and
intramolecular distances (Å). Molecule a and molecule b of the low-temperature structure
are related through pseudo translational symmetry.

100 K 122 K 173 Ka 173 Kb

molecule a molecule b Eu(SAr∗)2·THF0.5

Bond lengths and bond anglesc

Eu–S1 2.810 2.830 2.809 2.808 2.816
Eu–S2 2.803 2.818 2.804 2.813 2.818
S1–Eu–S2 139.0 143.8 137.4 138.7 141.9
〈Eu–C(B)〉d 3.117 3.094 3.081 3.087 3.070
〈Eu–C(F)〉d 3.078 3.094 3.067 3.076 3.059

Interplanar anglese

B/F 12.5 13.6 12.9 13.6 16.0
Ba/Bb 2.6 - - -
Fa/Fb 3.6 - - -
Ia/Ib 1.64 - - -
I/B 8.6 7.6 8.2 8.4 11.5
I/F 6.4 8.3 6.4 6.8 6.3
I/B + I/F 15.0 15.9 14.6 15.2 17.8
I/B - I/F 1.9 0.7 1.8 1.6 5.2
A/E 144.2 145.2 140.2 140.9 143.4
I/C 118.7 122.4 119.7 119.9 122.4
I/G 117.6 118.8 119.6 119.7 122.4
X/C 92.2 68.70 93.30 93.6 93.6
Y/G 87.6 66.4 82.7 82.0 80.4

Distances
C32–C68 18.78 17.91 18.77 18.73 19.14
Eu–Eu (along bLT ) 18.04 18.04 18.40 18.54 18.31

aM. Niemeyer, unpublished.
bFrom M. Niemeyer, Eur. J. Inorg. Chem. 2001, 1969-1981.
cStandard uncertainties for the bond lengths are smaller than 0.002 Å, whereas the

standard uncertainties for the bond angles are smaller than 0.1 deg.
d 〈Eu–C〉 is the average of six bond lengths.
e abbreviations refer to the labeling defined in Fig. 5.1 and Fig. 5.3, and follow

assignments introduced in Niemeyer (2001).
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Table 5.3: Valences of europium and sulphur in the high -and the low-temperature struc-
tures.

100 K 122 K 173 K 173 K

molecule a molecule b Eu(SAr∗)2·THF0.5

Valence of europium

Contribution of B 0.437 0.416 0.472 0.461 0.484
Contribution of F 0.478 0.456 0.490 0.477 0.500

Contribution of S1 0.541 0.513 0.543 0.546 0.533

Contribution of S2 0.552 0.530 0.550 0.539 0.530
total Eu 2.008 1.915 2.055 2.023 2.047

Valence of sulphurb

S1 -1.969 -1.893 -1.981 -1.962 -1.986

S2 -1.927 -1.854 -1.983 -1.974 -1.966

aValences have been calculated with Bond-valence parameters R0(CIV –S) = 1.800

Å, R0(EuII–S) = 2.583 Å and R0(EuII–C(π-bonded)) = 2.135 Å.
bContributions of C-atoms with distances greater 4 Å and contributions of H-atoms

were neglected.

The Bond-Valence method is a standard method in Inorganic Chemistry, and

bond-valence parameters R0 have been tabulated for all pairs of elements (O’Keeffe

and Brese (1991b)). However, inorganic and organometallic compounds require

different sets of parametersR0 (Palenik (1997; 2003)). Furthermore, different valence

states may require different bond-valence parameters. Here, we have used values

of R0 derived by Trzesowska et al. (Trzesowska (2006); Trzesowska et al. (2004))

for EuII–S and EuII–C,1 and by Brown (Brown (2006)) for CIV –S. Application to

the low- and the high-temperature structures shows that a valence of two is well

reproduced for Eu and for S in all structures (Table 5.3). More precisely, computed

valences of Eu and both S atoms in molecule b are smaller by approximately 0.1

valence units than valences in molecule a and in the high-temperature structure.

1The bond-valence parameters R0 as reported in Trzesowska (2006) for Eu–O and Eu–N are
0.065 Å longer for EuII than for EuIII . For Eu–S only the value R0 = 2.517 Å for EuIII has been
reported. By analogy we have used R0(EuII–S) = 2.517 Å + 0.066 Å = 2.583 Å.
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This again supports the interpretation of a less favourable conformation of molecule

b as compared to the other structures. Consideration of individual contributions to

the valence of Eu shows that bonding of equal magnitude is present towards both S

atoms as well as both phenyl rings. Sulphur, on the other hand, derives a substantial

part of its valence from incidental S-C interactions other than the apparent single

S-C σ-bond (Table 5.2, Fig. 5.1).

The assignment of a coordination number for the europium atom in both phases

is not straightforward. Taking into account the additional π-contacts, a formal co-

ordination number of eight is calculated. However, the observed Eu–S distances are

surprisingly short. In fact, they are approx. 0.08-0.13 Å shorter than the correspond-

ing values reported for other EuII thiolates that contain six- or eight-coordinate

europium atoms (Hargittai (2000); Kaupp (2001)).

From these data a lower effective coordination number of approximately 4 may

be estimated for the europium atom in Eu(SAr*)2, assuming that every η6- bonded

arene ring occupies only one coordination site. This view is supported by the above-

mentioned analysis of the bonding valences which shows roughly equal contributions

by the two sulphur atoms and the two pending arene rings, respectively.

The occurrence of bent equilibrium geometries for lanthanide MX2 species in the

gas phase is now well established (Hargittai (2000); Kaupp (2001)). The bending

can be explained by contributions of metal d orbitals to the σ-bonding and by the

polarization of the metal cation by the ligands (Kaupp (2001)). According to Kaupp

et al.( Kaupp (2001)) the MX2 compounds can be divided into molecules with gen-

uinely bent structures, for example the gas phase structure of EuF2, and molecules

with quasi-linear equilibrium geometries, for example SmCp2 or CaF2. The latter

show almost no energy change (less than 1–2 kJ mol−1) when the equilibrium an-

gle is increased to 180 deg, whereas the former exhibit considerable linearization

energies of up to 33 kJ mol−1.

With a linearization energy of only 1.1 kJ mol−1, calculated at MP2/6-31+G**

level of theory, the model compound Yb(SH)2 can be classified as a quasi-linear

molecule (Niemeyer (2001)). According to further quantum-chemical calculations

and low-temperature NMR experiments, metal-π-arene interactions to flanking arene

rings in some EuII or YbII compounds are in the range 40-55 kJ mol−1 (Niemeyer

(2001); Hauber and Niemeyer (2005)). Therefore, the bent S–Eu–S angle in the

different phases of Eu(SAr*)2 clearly originates from the additional Eu· · ·π-arene

interactions and not from other intrinsic electronic factors.
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5.3 Conclusions

A low-temperature structural phase transition has been discovered in crystals of

solvent-free Eu(SAr∗)2 at Tc =119 ± 1 K. The volume per molecule reduces by 1% at

the phase transition. Accordingly, an optimised packing is identified as driving force

for the phase transition. A denser packing of complexes Eu(SAr∗)2 is achieved at

the expense of a less favourable conformation of one of the two crystallographically-

independent complexes in the low-temperature phase. This interpretation is sup-

ported by the Bond-Valence method, that indicates a slightly under-bonded char-

acter of Eu in the strained complex.

5.4 Experimental Section

Synthesis and crystallisation of Eu(SC36H49)2 as a 0.5 THF hemisolvent was de-

scribed in (Niemeyer (2001)). Crystals of the solvent-free compound were obtained

by crystallisation from n-heptane at −15 ◦C. The crystals were handled in inert

atmospheres (argon and nitrogen). For the first diffraction experiment a crystal was

selected and mounted under the cryoprotectant oil Paratone-N. X-ray diffracton

was measured on a MARRESEARCH DTB MAR345 image plate diffractometer,

equipped with a rotating anode X-ray generator (50 kV, 100 mA) and a graphite

monochromator selecting Mo-Kα radiation. The crystal was cooled by a OXFORD

nitrogen gas flow cooling. A datacollection was performed at T=122 K by a series

of 360 phi scans with 0.5 deg rotation per image. Lattice parameters and integrated

intensities of Bragg reflections were extracted with the software package XDS (Kab-

sch (1993)) (Table 5.1). Data were merged according to Laue symmetry 1̄ in the

computer program JANA2000, which was also used for refinement (Petricek et al.

(2000)).

Starting with the non-hydrogen atom positions from Niemeyer (2001), structure

refinements converged smoothly to a fit to the data of R = 0.067. Hydrogen atoms

were inserted at distances of 0.95 Å from carbon at calculated positions, finally

resulting in R = 0.058. The 172 K structure of Niemeyer (2001) was confirmed,

including disorder over two orientations for each of the methyl groups defined by

carbon atoms C17, C18, C50, C51, C53, C54, C65, C66 (Fig. 5.1). Three crystals

were cooled to temperatures below 119 K. At these temperatures the diffraction im-

ages contained many more maxima than those measured at 122 K, while reflections

had a split appearance. It was concluded that the crystals had suffered damage due
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to a phase transition around 119 K. Indexing of these images failed. Therefore an-

other crystal was mounted for diffraction, now glued to a glass hair and handled in

nitrogen gas flow. Diffraction of this crystal was measured at different temperatures

between 125 K and 115 K in steps of 0.5 K, in order to determine the transition

temperature more accurately.

A data collection was performed at a temperature of 100 K. Reflections had a

split appearance, but the damage to the crystal was much less than for the crys-

tal mounted in Paratone-N. Indexing of the data showed that the low-temperature

phase has a twofold supercell of the high-temperature phase. Lattice parameters and

integrated intensities were determined by the software CRYSALIS RED (171.27p23)

(Software CrysAlis RED (2005)), because split reflections are much better handled

by CRYSALIS RED than by XDS. Intensity data were merged by JANA2000 ac-

cording to Laue symmetry 1̄. The crystal structure was solved by Direct Methods

employing SIR2002 (Burla et al. (2001)), and subsequently refined by JANA2000.

The relatively high R-values can be explained by the less than optimal data qual-

ity due to the damage of the crystal. Atoms were named according to the inde-

pendent atoms of the high-temperature structure. All atoms of molecule a of the

low-temperature structure are indicated by ”a”, while those of the molecule b are

indicated by the ending ”b”. Absorption correction was not made, because the crys-

tal shape could not be determined and the absorption coefficent was small (μ= 1.04

mm−1).
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Chapter 6

Low- and high-temperature crystal

structures of TiI3

6.1 Introduction

The crystal structures of transition metal halides can be characterized by a closest

packed arrangement of halogen atoms with the metal atoms occupying one-third of

the octahedral intersticial sites. In fluorides the metal atoms are homogeneously

distributed in space, while in the other halides they are concentrated in layers or

chains that are separated from each other by regions containing the empty octahedral

sites (Lin and Miller (1993)).

The TiI3 structure type comprises chains of equidistant metal atoms that are

arranged parallel to the unique axis of a hexagonal closest packing (hcp) of iodine

atoms (Figs. 6.1 and 6.2) Dahl et al. (1964). This ordered arrangement of occupied

and vacant octahedral sites possesses translational symmetry according to a three-

fold supercell of the hcp structure, with lattice parameters ah =
√

3 ahcp and ch =

chcp, and with the space group P63/mcm.

RuBr3 crystallizes in a twofold superstructure of the TiI3 structure type, which is

characterized by the presence of dimers within the chains of metal atoms (Brodersen,

Breitbach and Thiele (1968)). The stability of the RuBr3 structure type as opposed

to the TiI3 structure type has been attributed to the presence of metal-metal bonds

in the former structure (Lachgar et al. (1990); Dorhout and Corbett (1991)). Alter-

natively, the origin of the dimerization has been ascribed to the Peierls mechanism,

involving quasi-one-dimensional (1D) electron bands on the chains of metal atoms

(Lin and Miller (1993)).

47
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Figure 6.1: Projection of the crystal structure of TiI3 along c. The orthorhombic unit
cell of the low-temperature structure (solid lines) is related to the hexagonal unit cell of
the high-temperature structure (dotted lines) by the relations: ao = 2ah + bh, bo = bh

and co = ch. Small spheres represent titanium atoms and big spheres iodine atoms. The
z-coordinate of the dark iodine atoms is shifted by 0.5 from the z-coordinate of the light
iodine atoms. Unoccupied octahedral sites are marked by crosses.

RuBr3 is orthorhombic with space group Pmnm and lattice parameters ao =√
3 ah, bo = bh and co = ch that define the orthohexagonal unit cell of the TiI3

lattice (Fig. 6.1) (Brodersen, Breitbach and Thiele (1968)). The orthorhombic dis-

tortion of the hexagonal lattice is expressed in the diffraction by the presence of

weak superlattice reflections at (h+ 1
2
, k, l)h (the subscript h indicates an indexing

with respect to the hexagonal lattice). Most crystals, however, are twinned with

the orthorhombic structure occurring in three orientations on the hexagonal lattice

(Babel (1972)). While main reflections (h, k, l)h are common to the three domains,

each twin domain gives rise to its own set of superlattice reflections, at (h+ 1
2
, k, l)h,

(h, k + 1
2
, l)h and (h− 1

2
, k + 1

2
, l)h, respectively.

The superlattice reflections are weak and they have been overlooked in initial
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Figure 6.2: Chains of face sharing TiI3-octahedra are oriented parallel to lattice direction
c. Atoms are labeled according to Table 6.6.

studies on materials belonging to this class of compounds. It could thus be presup-

posed that all compounds for which the hexagonal structure has been found would

actually crystallize in the RuBr3 structure type. However, the question about the

”true” crystal structures of transition metal halides was resolved by the notion of a

phase transition between the RuBr3 and TiI3 structure types (Lachgar et al. (1990)).

Accordingly, high-temperature (TiI3 type) and low-temperature (RuBr3 type) struc-

tures have now been reported for RuBr3, RuCl3 and MoBr3 (Hillebrecht et al. (2004);

Merlino et al. (2004)). Depending on the compound, transition temperatures have

been found to be higher or lower than room temperature (Table 6.1).

The compound TiI3 exhibits superlattice reflections in its diffraction pattern

at room temperature, reflecting the RuBr3 structure type (von Schnering (1966)).

The only published structure of TiI3 is a refinement of the hexagonal substructure

against the main reflections (von Schnering (1966)). Here we report the discovery

of a phase transition between the TiI3 and RuBr3 structure types at Tc = 323 ± 2

K and we present accurate crystal structures of both the high-temperature and low-

temperature forms. These results are analyzed in view of the mechanism of the

phase transitions in transition metal halides.
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6.2 Experimental section

TiI3 was obtained as the result of an unsuccessful attempt to synthesize TiOI.

Stoichiometric amounts of TiO2 (Strem, 99.99%), Ti (Alfa, 99.99%) and I2 (Alfa,

99.99%) were sealed in an evacuated quartz glass tube. This tube was placed in

a temperature gradient of 923 K at the educt side and 823 K at the product side;

reaction time was five days. The product consisted of pinkish-red plates, dark violet

grains and black needles of several millimeters in length. The crystals were identified

as TiI2, Ti2O3 and TiI3, respectively. Because TiI3 reacts with air, the material was

handled under argon and nitrogen inert atmospheres.

Two single-crystals of TiI3 were selected for X-ray diffraction experiments on

a MAR345 image plate diffractometer. Crystals were mounted with the aid of

vacuum grease (Krytox, DuPont) on polyamide mounts (MiTeGen, Thorne et al.

(2003)). The crystal temperature was regulated with a cryostream nitrogen-gas-

flow cryostat, which also provided the inert atmosphere for the sample during the

diffraction experiment. Diffraction data were measured by φ-scans of 0.5 deg wide.

Data sets on the low-temperature phase were thus collected at temperatures of 100

K and 273 K. Two runs appeared necessary for each data collection: one with an

exposure time of 480 s per frame and a second one with 60 s per frame. The latter

run provided the intensities of reflections that were overexposed in the first run.

The software CrysAlis was used for data processing, including absorption cor-

rection (Software CrysAlis RED (2005)). Strong reflections in the data collected

at both temperatures could be indexed on the basis of the hexagonal unit cell pro-

posed by von Schnering (von Schnering (1966)) with ah = bh = 7.0857 (5) Å and ch
= 6.4817 (4) Å at T = 100 K. Much weaker reflections correspond to an apparent

hexagonal 2ah × 2bh × ch superlattice.

In a second experiment short runs of 10 frames each were measured temperature

dependent up to 325 K (Fig. 6.3). Superlattice reflections were found to be present

on the images up to 321 K. Some weak scattering might be present at these positions

at T = 323 K, while the superlattice reflections were definitely absent at 325 K

(Fig. 6.3). A complete data set was then measured at a temperature of 326 K. Data

processing with CrysAlis indicated that all Bragg reflections could be indexed by

the ah × bh × ch unit cell. These results are in accordance with the occurrence of a

first-order phase transition in TiI3 at a temperature of Tc =323 ± 2 K. Details on

the experiments and data are given in Table 6.2.
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Table 6.2: Experimental data of the TiI3 structure for different temperatures.

Temperature (K) 100 273 326
Formula weight (g/mol) 428.59 428.59 428.59
Crystal shape (mm3) 0.05 × 0.05 × 0.3 0.03 × 0.07 × 0.35
Crystal system orthorhombic orthorhombic hexagonal
Space group Pmnm Pmnm P63/mcm

a (Å) 12.2728(7) 12.3609(7) 7.1416(5)
b (Å) 7.0857(5) 7.1365(5) 7.1416(5)
c (Å) 6.4817(4) 6.5083(4) 6.5102(4)
Volume (Å3) 563.7 574.1 287.6
Z 4 4 2
Calculated density (g/cm3) 5.05 4.96 4.95
Detector distance (mm) 80 80 80
Wavelength (Å) 0.71069 0.71069 0.71069
Absorption coeffficient (mm−1) 17.78 17.45 17.43
θmax (deg) 32.2 32.2 32.2
φ-range (deg) 180 180 150
Number of measured reflections 18025 13915 2636
main 4896 3428 2636
superlattice 13129 10487 –
Number of unique reflections (all) 6800 6893 201
main 1742 1738 201
superlattice 5058 5155 –
Number of unique reflections (obs.) 5478 4890 199
main 1621 1585 199
superlattice 3857 3305 –
Rint 0.0273 0.0258 0.0249
wRF

2 (observed) 0.0988 0.1150 0.0312
main 0.0729 0.1116 0.0312
superlattice 0.1223 0.1195 –
RF (observed) 0.0585 0.0690 0.0137
main 0.0361 0.0530 0.0137
superlattice 0.1171 0.1122 –
GoF (observed) 3.33 3.90 1.52
relative twin volumes 0.19/0.23/0.58 0.45/0.23/0.32 –
Δρmax (e/Å3) 2.22 2.20 0.45
Δρmin (e/Å3) -2.47 -1.47 -0.49

The reflection intensities of the low-temperature measurements were averaged ac-

cording to Laue symmetry 1̄.

R-values were calculated through the expressions RF = (
∑ ||Fobs|−|Fcal||/

∑ |Fobs|)
and wRF

2 = (
∑

w (|Fobs| − |Fcal|)2/
∑

w |Fobs|2)1/2 with w = 1/((σFobs
)2 +

(p |Fobs|)2), in which p is the instability factor.
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Figure 6.3: Sections of MAR345-image plate frames exposed over a φ-range of 1.5 deg.
The pictures show reflection spots of the same region obtained for different crystal tem-
peratures. The indices refer to the hexagonal unit cell {ah, ch}.

6.3 Structure refinements

The high-temperature crystal structure of TiI3 was refined against the data measured

at T = 326 K. The data were averaged in Laue symmetry 6/mmm. An excellent

fit to these data was obtained in the space group P63/mcm, with the model of

von Schnering (von Schnering (1966)) as start parameters. All refinements were

performed with Jana2000 (Petricek et al. (2000)).

The low-temperature phase appeared to be orthorhombic with a primitive, or-

thohexagonal unit cell (Table 6.2). All superlattice reflections could be explained

on the assumption of a threefold twinned crystal. With respect to the orthorhombic

unit cell of the first domain, the superlattice reflections of the second and third do-

mains have half-integer indices (Section 6.1), preventing their use in the refinement
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Table 6.3: Relative atomic coordinates and equivalent isotropic atomic displacement pa-
rameters (Å2) for the high-temperature structure at T = 326 K.

x y z Ueq

Ti 0 0 0 0.0243(3)
I 0.31705(4) 0 0.25 0.0246(2)

with Jana2000. Integer indices for all reflections are obtained with the hexagonal

2ah × 2bh × ch superlattice (Section 6.2). Orthorhombic symmetry is then recov-

ered by the non-standard centering translation (0, 1/2, 0). The latter setting was

thus used for the refinement of the orthorhombic superstructure against the com-

plete data set, taking into account the twinning. It appeared necessary to reduce

the Laue symmetry of the data to 1̄, in order to allow for unequal volumes of the

domains—as it proved to be the case. The shifts of the atoms towards the su-

perstructure positions were found by the refinement using starting values of the

high-temperature structure. A reasonable fit to the diffraction data was found in

space group Pmnm (Table 6.2), but R-values were substantially higher than for the

refinement of the hexagonal structure against the high-temperature data. Atomic

coordinates of the high-temperature structure are given in Table 6.3; Table 6.4 pro-

vides the atomic coordinates of the low-temperature structures with respect to the

orthorhombic lattices defined in Table 6.2.

Motivated by the discrepancy—especially for the superlattice reflections—between

calculated and observed structure factors, structure solution was tried in several

orthorhombic and monoclinic space groups (Table 6.5). Other centrosymmetric or-

thorhombic space groups lead to a worse fit to the data, while an improvement of

the fit could not be obtained in subgroups of Pmnm. We therefore conclude that

the low-temperature form of TiI3 has Pmnm symmetry.

It is noticed the space groups P63/mcm and Pmnm have previously been re-

ported for RuBr3 and RuCl3 and MoBr3 (Brodersen, Breitbach and Thiele (1968);

Hillebrecht et al. (2004); Merlino et al. (2004)), and that a similar problem of high

R-values was reported for these compounds as well as for the Pmnm structure of

ZrI3 (Lachgar et al. (1990); Hillebrecht et al. (2004); Merlino et al. (2004)). A pos-

sible origin for the relatively high R-values might be sought in the contribution of

twin boundaries—including elastic distortions of the bulk near these boundaries—to

the diffracted intensities.
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Table 6.4: Relative atomic coordinates and equivalent isotropic atomic displacement pa-
rameters (Å2) for the low-temperature structures at T = 100 K and at T = 273 K. Coor-
dinates are given with respect to the orthorhombic lattice (Table 6.2), with the origin of
Pmnm at m2/nm.

x y z Ueq
100 K
Ti 0 -0.24646(9) -0.22847(10) 0.0081(3)
I1 0.16325(3) -0.40850(7) 0 0.0088(2)
I2 0.65710(4) 0.09157(8) 0 0.0088(2)
I3 0 0.07923(7) 0 0.0099(2)
I4 0.5 0.56006(8) 0 0.0093(2)
273 K
Ti 0 -0.24678(10) -0.22867(12) 0.0197(5)
I1 0.16255(4) -0.40649(10) 0 0.0239(3)
I2 0.65674(5) 0.09330(10) 0 0.0241(3)
I3 0 0.07632(8) 0 0.0246(4)
I4 0.5 0.55894(10) 0 0.0230(3)

Table 6.5: R-values of refinements of the low-temperature structure at 100 K in different
space groups. The value of RF is given for all reflections, for the main reflections and for
the superlattice reflections.

Space group Reflection group
All Main Superlattice

P63/mcm - 0.0391 -
Pmnm 0.0585 0.0361 0.1172
P21221 0.0562 0.0341 0.1133
Pmn21 0.0549 0.0350 0.1066
P21nm 0.0552 0.0347 0.1085
P12/n1 0.0582 0.0357 0.1171
P1n1 0.0536 0.0347 0.1031
P121 0.0535 0.0337 0.1050
P 1̄ 0.0550 0.0336 0.1104
Pmnn 0.1736 0.1174 0.3355
Pmcn 0.1760 0.0653 0.5086
Pmcm 0.2099 0.0848 0.5484
Pbnn 0.1676 0.0558 0.5034
Pbnm 0.1698 0.0625 0.4614
Pbcn 0.1978 0.0898 0.5369
Pbcm 0.1593 0.0542 0.4565

RF is defined as RF =
∑ ||Fobs| − |Fcal||/

∑ |Fobs|.
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6.4 Discussion

6.4.1 TiI3 and RuBr3 structure types

A phase transition in TiI3 has been found to occur at Tc = 323 ± 2 K. Structure

refinements establish that TiI3 crystalizes in the TiI3 structure type at high temper-

atures. Below Tc, i.e. at room temperature, TiI3 crystalizes in the RuBr3 structure

type. The orthorhombic distortion follows the same pattern as it has been previ-

ously described for ZrI3, RuBr3, RuCl3 and MoBr3 (Brodersen, Breitbach and Thiele

(1968); Lachgar et al. (1990); Hillebrecht et al. (2004); Merlino et al. (2004)). Major

effect is the formation of dimers along the chains of metal atoms (Figs. 6.2, 6.4).

Halogen atoms are displaced such as to keep the metal–halogen distances as equal

as possible (Table 6.6 and Lachgar et al. (1990)).

b

c

Figure 6.4: Pairing of Ti-atoms in the low-temperature structure of TiI3. The low-
temperature structure (100 K) is projected along ao. Dotted lines indicate positions with
z = 0 and z = 1/2. Dimerization of Ti atoms is indicated by arrows.
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Table 6.6: Selected interatomic distances (Å) and bond angles (deg) at different tempera-
tures. Standard uncertainties are smaller than 0.002 Å in the distances and smaller than
0.05 deg in the angles. The atom labeling is the same as in Fig. 6.2.

100 K 273 K 326 K
Intrachain distances
Ti-Ti 3.520 3.532 3.255

2.962 2.977 3.255
Ti-I1 (2×) 2.743 2.748 2.789
Ti-I2 (2×) 2.832 2.841 2.789
Ti-I3 2.742 2.744 2.789
Ti-I4 2.835 2.843 2.789
I1-I1 4.007 4.019 3.922
I1-I2 (2×) 3.944 3.949 3.965
I1-I3 (2×) 3.995 3.989 3.922
I1-I4 (2×) 3.959 3.976 3.965
I2-I2 3.856 3.875 3.922
I2-I3 (2×) 3.960 3.976 3.965
I2-I4 (2×) 3.839 3.847 3.922
Interchain distances
I1-I1 4.089 4.129 4.174
I1-I2 4.173 4.209 4.228
I1-I2 4.173 4.211 4.228
I1-I3 (2×) 4.146 4.202 4.228
I1-I4 (2×) 4.139 4.179 4.228
I2-I2 4.170 4.205 4.174
I2-I3 (2×) 4.209 4.245 4.228
I2-I4 (2×) 4.231 4.277 4.228
I3-I4 (2×) 4.127 4.167 4.174
Bond angles
I1-Ti-I1 93.83 93.97 89.37
I1-Ti-I2 (2×) 90.03 89.88 90.63
I1-Ti-I3 (2×) 93.48 93.14 89.37
I1-Ti-I4 (2×) 90.41 90.65 90.63
I2-Ti-I2 85.82 85.99 89.37
I2-Ti-I3 (2×) 90.54 90.75 90.63
I2-Ti-I4 (2×) 85.29 85.18 89.37
Ti-I1-Ti (2×) 65.34 65.58 71.42
Ti-I2-Ti (2×) 76.85 76.86 71.42
Ti-I3-Ti 65.38 65.68 71.42
Ti-I4-Ti 76.76 76.81 71.42
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The driving force for the formation of the twofold superstructure of the TiI3
structure type has been identified as metal–metal bonding along the chains of metal

atoms (Lachgar et al. (1990)). At the same time the role of direct metal–metal

bonding was questioned, because the transition metal triiodides have been found to

crystallize more likely in the RuBr3 structure type than the chlorides do, although

chlorides possess shorter metal–metal distances and concomitantly stronger metal–

metal bonds than the corresponding iodides. Instead, the importance was stressed

of metal–metal interactions via the metal–halogen bonds (Lin and Miller (1993);

Lachgar et al. (1990)).

Insight into this issue can be obtained from atomic valences as they can be

computed from the structure models by the bond-valence method (Brown (2002b);

Brese and O’Keeffe (1991)). We have calculated bond valences for the three struc-

tures of TiI3 reported here as well as for the high-temperature and low-temperature

structures of RuBr3 and RuCl3 (Hillebrecht et al. (2004)). If only cation–anion inter-

actions are taken into account the bond-valence model should lead to valence three

for the metal atoms and valence one for the halogen atom. This is found to be the

case for the high-temperature forms of TiI3 and RuBr3 (Table 6.7). For the atom

pair Ru–Cl a bond-valence parameter R0 is only available for four-valent Ru, with

value R0(RuIV –ClI) = 2.21 Å (Brese and O’Keeffe (1991)). With this value a valence

of 4.2 was obtained for Ru, which cannot be correct as is also indicated by the va-

lence of 1.39 for Cl. We have therefore employed a value of R0(RuIII–ClI) = 2.10 Å,

which was chosen to lead to a valence of three for Ru in the high-temperature crystal

structure of RuCl3 (Table 6.7). A difference of 0.11 Å between the bond-valence pa-

rameters of the three-valent and four-valent states of an element is untypical for the

bond-valence method (Brown (2002b)), and one could suppose that the published

value (Brese and O’Keeffe (1991)) for R0(RuIV –ClI) is actually in error.

Computed atomic valences in the RuBr3 type structure are also close to three

for the metal atoms in the low-temperature crystal structures of TiI3, RuBr3 and

RuCl3. Half of the halogen atoms appear slightly underbonded and half of them

slightly overbonded, with an average valence of one (Table 6.7).

Cation–cation and anion–anion interactions can also be described by the bond-

valence method, and bond-valence parameters for these interactions have been de-

rived by O’Keeffe et al. (O’Keeffe and Brese (1991a; 1992)). They constitute an

additional contribution to the bonding of each atom. The meaning of the anion–

anion bond-valences is not clear to us, because they suggest that the valence of the

halogen atoms would be larger than 1. For the metal atoms, however, the additional
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Table 6.7: Atomic valences of MX3 compounds (M = Ti, Ru; X = Cl, Br, I) as computed
by the bond-valence method Brown (2002b); Brese and O’Keeffe (1991).

TiI3 RuBr3
a RuCl3

a

100 K 273 K 326 K LT HT LT HT

Valence of M 3.464 3.399 3.346 3.720 3.623 3.826 3.794

Contribution of M 0.370 0.356 0.274 0.548 0.486 0.768 0.684

Contribution of X 3.094 3.043 3.072 3.170 3.132 3.058 3.090

Valence of X1 (2×) -1.434 -1.411 -1.274 -1.400 -1.316 -1.286 -1.255

Contribution of M -1.156 -1.140 -1.024 -1.124 -1.044 -1.070 -1.031

Contribution of X -0.278 -0.271 -0.250 -0.274 -0.272 -0.214 -0.224

Valence of X2 (2×) -1.207 -1.170 -1.274 -1.280 -1.316 -1.192 -1.255

Contribution of M -0.908 -0.886 -1.024 -0.990 -1.044 -0.960 -1.031

Contribution of X -0.299 -0.284 -0.250 -0.290 -0.272 -0.232 -0.224

Valence of X3 -1.437 -1.416 -1.274 -1.402 -1.316 -1.314 -1.255

Contribution of M -1.159 -1.152 -1.024 -1.128 -1.044 -1.104 -1.031

Contribution of X -0.278 -0.264 -0.250 -0.272 -0.272 -0.210 -0.224

Valence of X4 -1.206 -1.172 -1.274 -1.276 -1.316 -1.186 -1.255

Contribution of M -0.902 -0.882 -1.024 -0.982 -1.044 -0.952 -1.031

Contribution of X -0.304 -0.290 -0.250 -0.292 -0.272 -0.234 -0.224

Mean valence of X -1.320 -1.292 -1.274 -1.340 -1.316 -1.596 -1.255

a values were taken from Hillebrecht et al. (2004)

Bond-valences have been calculated with b = 0.37 Å and bond-valence parameters

from Brese and O’Keeffe (1991)): R0(TiIII–I) = 2.54 Å, R0(RuIII–Br) = 2.26 Å,

R0(TiIII–TiIII) = 2.52 Å, R0(RuIII–RuIII) = 2.42 Å, R0(I–I) = 2.66 Å, R0(Cl–Cl)

= 1.99 Å and R0(Br–Br) = 2.28 Å. And R0(RuIII–Cl) = 2.10 Å (see text).
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contributions to the valence can be interpreted as metal–metal bonding that brings

the total valence of the metal atoms closer to the more stable valence of four of

these elements (Table 6.7). It is thus found that the metal–metal bonding along the

chains is larger in RuCl3 than in RuBr3 and again larger than in TiI3, in accordance

with the previous suggestion of stronger metal–metal interactions for lighter halogen

atoms (Lachgar et al. (1990)). However, the distortion of the TiI3 structure type

towards the RuBr3 structure type has a larger effect on the metal-metal bonding

in the iodide than in the bromide and chloride, as it is suggested by the difference

between metal atom valences in the high-temperature and low-temperature crystal

structures (Table 6.7). The atomic distances in the RuBr3 structure type indicate

a stronger or at least equal dimerization in the iodides than in the bromides and

chlorides (Table 6.8). This feature can be explained by the more flexible structures

formed by the larger iodine atoms than by the smaller bromine and chlorine atoms.

Table 6.8: Metal–metal distances in transition metal trihalides with the RuBr3 type crystal
structure. Indicated are the average (〈M–M〉), short (M–M) and long (M–M’) distances
(Å) along the metal chains, as well as the difference (Δd) between the short and long
distances.

〈M–M〉 M–M M–M’ Δd
TiI3 (273 K) [*] 3.255 2.978 3.532 0.554
RuCl3 (170 K) Hillebrecht et al. (2004) 2.817 2.633 3.001 0.368
RuBr3 (293 K) Hillebrecht et al. (2004) 2.937 2.765 3.108 0.343
ZrI3 (RT) Lachgar et al. (1990) 3.340 3.172 3.507 0.335
MoBr3 (RT) Merlino et al. (2004) 3.039 2.874 3.203 0.329

[*] this work.

6.4.2 The phase transition

The structural phase transitions in RuBr3 and MoBr3 have been characterized by

temperature-dependent X-ray diffraction (Hillebrecht et al. (2004); Merlino et al.

(2004)). Both publications arrive at the conclusion that the phase transitions are of

second order, as it is allowed by Landau theory (Franzen (1990)). While Hillebrecht

et al. (Hillebrecht et al. (2004)) state that ”the metal distances change continuously

in a temperature range of about 100 K around the transition temperature,” Merlino

et al. (Merlino et al. (2004)) provide a quantitative analysis of the temperature-

dependent intensities of selected Bragg reflections. They have determined critical
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exponents (β) for the order parameter (η) in the distorted phase,

η =

(
1 − T

Tc

)β

(6.1)

of β ≈ 1/8. This value is only 40% of the value of ∼ 1/3 that is expected for the

critical exponent of the order parameter of a second-order phase transition (Chaikin

and Lubensky (2000)), and the second-order nature should be questioned.

Employing β = 1/8 and Tc = 323 K in Eq. 6.1, the value of the order parameter

in TiI3 at T = 273 K is 74% of the value at 100 K. The difference in short and long

metal distances, which is a measure for the magnitude of the order parameter, is

nearly equal at these two temperatures and clearly at variance with a continuous

change with temperature (Table 6.6). The other way around, the comparison of

distortions at these two temperatures leads to an estimate of 0.008 for the value of

the critical exponent in TiI3. This indicates that the transition in TiI3 is more likely

to be a first-order than a second-order phase transition.

Consideration of the temperature dependence of the diffracted intensity in MoBr3

(Fig. 9 in Ref. (Merlino et al. (2004))) shows that a better fit to most of the data

would be possible with a value of β considerably smaller than 1/8. The value β ≈
1/8 seems to have been determined by one or two data points close to the transition

temperature. These data could, however, also be explained as diffuse scattering due

to critical fluctuations near the transition, and they should not have been included

in the analysis of the critical exponent. We therefore propose that the transition

in MoBr3 is a first-order rather than a second-order phase transition. The data on

RuBr3 (Merlino et al. (2004)) encompass a much smaller range of temperatures than

those on MoBr3 and they seem to be less conclusive.

It is noticed that a first-order phase transition does not preclude the existence

of an order parameter. The first-order character requires a discontinuity of the

order parameter at Tc, while the order parameter still may continuously increase on

further reduction of the temperature. Such a scenario, with different temperature

dependencies below Tc, seems to explain the behaviors as observed for TiI3, MoBr3

and RuBr3.

6.5 Conclusions

TiI3 crystallizes in the TiI3 structure type at high temperatures. At Tc = 323± 2 K

a structural distortion develops, resulting in the RuBr3 structure type to be stable
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at room temperature. Similar phase transitions have been reported for MoBr3,

RuBr3 and RuCl3, whereby transition temperatures may be below or above room-

temperature (Hillebrecht et al. (2004); Merlino et al. (2004)). These results suggest

that other transition metal halides—for which either the TiI3 or the RuBr3 structure

type has been reported (Table 6.1)—will possess such a transition too.

The high-temperature crystal structure of TiI3 contains chains of equidistant

titanium atoms. Driving force for the phase transition is metal–metal bonding

through the formation of dimers along these chains, whereby the order parameter

is provided by the difference between the short and long metal-metal distances. A

comparison of the crystal structures of TiI3 close to and far below Tc (Table 6.6),

together with the analysis of scant information on this transition in other compounds

(Table 6.1), has shown that the phase transition is most probable a first-order phase

transition.



Chapter 7

Magnetoelastic coupling in CrOCl

7.1 Introduction

TiOCl has recently attracted attention because of the presence of quasi-one-dimen-

sional (1D) S = 1/2 magnetic chains of Ti atoms, which are responsible for the

development of a spin-Peierls state below Tc1 = 67 K (Seidel et al. (2003); Shaz

et al. (2005)). The low-dimensional character of the magnetic interactions in TiOCl

is the result of the presence of the single d electron of Ti3+ in the 3dx2−y2 orbital,

which then gives rise to a large direct exchange along the chains of metal atoms,

but allows only weak magnetic exchange between the chains (Saha-Dasgupta et al.

(2004)). Several compounds MOCl (where M is a 3d transition metal) are known

to be isostructural to TiOCl at room temperature (Schäfer and Wartenpfuhl (1961);

Ehrlich and Seifert (1959); Haase and Brauer (1975); Lind (1970)). They differ from

each other in the number of d electrons on the M3+ atom. Different phase diagrams

may be expected and have indeed been observed (Christensen et al. (1975); Adam

and Buisson (1975); Wiedenmann et al. (1983)). Compounds MOCl are thus of

interest, because variation of the element M allows the magnetic interactions to be

varied on otherwise equal lattices.

Isostructural compounds MOX (M = Ti, V, Cr, Fe; X = Cl, Br) crystallize

in the FeOCl structure type with space group Pmmn and lattice parameters a =

3.8638 (2), b = 3.1793 (1) and c = 7.7157 (3) Å for CrOCl at room temperature

(Schäfer and Wartenpfuhl (1961)). The crystal structures consist of MO double

layers sandwiched between layers of halogen atoms which stack along the lattice

direction c (Fig. 7.1). Another view of the structure is that of ribbons MOX

perpendicular to a. Within each ribbon a chain of metal atoms runs along b.

63
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Figure 7.1: Crystal structure of CrOCl.

The short M–M distances (d = 3.179 Å) along these chains allow direct exchange

interactions between electrons on neighboring atoms (Saha-Dasgupta et al. (2004)).

Direct exchange between Ti atoms has been discussed as the reason for the unusual

phase diagrams of TiOCl and TiOBr. However, the shortest M–M bond (d =

3.006 Å) is between ribbons, i.e. between Cr1 and Cr3 in Fig. 7.1. Depending on

the symmetry of the filled d orbitals, direct exchange between ribbons as well as

superexchange between ribbons and superexchange along a must be considered.

In TiOCl and TiOBr a spin-Peierls transition has been observed inducing a

lowering of the orthorhombic to monoclinic symmetry. The low-temperature spin-

Peierls phases in TiOCl and TiOBr have a-axis unique monoclinic symmetry (Shaz

et al. (2005)). In addition both compounds exhibit an intermediate phase between

Tc1 and Tc2—with Tc2 = 90 K for TiOCl— which is incommensurately modulated

with c-axis unique monoclinic symmetry (van Smaalen et al. (2005); Krimmel et al.

(2006); Schönleber et al. (2006)). Recently it was found that VOCl displays an

c-axis unique monoclinic lattice distortion below TN = 80.3 K, which supports

antiferromagnetic (AFM) order with a twofold magnetic superstructure (Komarek

et al. (2009); Schönleber et al. (2009)). The formation of this phase can be explained

by the filling of two 3d orbitals by the two d electrons of V3+.

CrOCl was reported to develop AFM order at low temperatures with a fourfold

magnetic superstructure (Christensen et al. (1975)). Here we report the temper-
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ature dependence of the anisotropic magnetic susceptibility, which indicates that

ordered magnetic moments are parallel to c. X-ray diffraction experiments reveal

that the magnetic transition to the AFM state is accompanied by an a-axis unique

monoclinic lattice distortion. The transition to the magnetically ordered state is

a first-order transition, and it is accompanied by a structural distortion towards a

twofold superstructure. By combining temperature and field dependent magneti-

sation and specific heat measurements we arrive at a proposal of the (H, T ) phase

diagram of CrOCl. The differences in phase diagrams of different compounds MOCl

are discussed in view of the different numbers of d electrons of the metal atoms.

7.2 Experimental

Single crystals of CrOCl were grown in evacuated quartz-glass ampoules by gas

transport according to published procedures (Schäfer and Wartenpfuhl (1961); Nocker

and Gruehn (1993)). Stoichiometric amounts of Cr2O3 (Alpha, 99.997% purity) and

CrCl3 (Alpha, 99.9%) were mixed with HgCl2 as transport agent and placed in a

sealed and evacuated quartz-glass ampoule. The ampoule was heated for five days

in a temperature gradient of 1223 K (educt side) to 1123 K (product side). CrOCl

formed at the product side of the ampoule as greenish plate-like crystals of up to

several millimeter in length. The sample also contained smaller amounts of a dark

green powder (Cr2O3) on the educt side and CrCl3 on the product side.

Magnetic susceptibilities at constant field and varying temperature and magneti-

zations at constant temperature and varying field of a single crystal of 0.45 mg were

measured in a Quantum Design MPMS squid magnetometer with the magnetic field

oriented either parallel or perpendicular to c. Heat capacities of the same crystal

were determined with the magnetic field oriented parallel to c in a Quantum Design

PPMS system employing the relaxation method.

A crystal of dimensions 0.15×0.05×0.005 mm3 was selected for x-ray diffraction

experiments using synchrotron radiation of wavelength 0.71000 Å. The crystal was

glued to a carbon fiber that was attached to the cold finger of a closed-cycle helium

cryostat mounted on the Huber four-circle diffractometer at beamline D3 of Hasylab

at DESY, Hamburg, Germany, equipped with a scintillation detector. Diffraction

was measured at selected temperatures between 8 K and room temperature.



66 CHAPTER 7. MAGNETOELASTIC COUPLING IN CrOCl

Figure 7.2: (Color online): Magnetic susceptibility of CrOCl measured in a magnetic field
of 0.1 T parallel and perpendicular to c. The (blue) solid line represents a fit of the
Curie-Weiss law [eq. (7.1)] to the data at temperatures T > 175 K (see text).

7.3 Results

7.3.1 Magnetic Susceptibility and magnetization

Above ∼ 175 K the magnetic susceptibilities follow a Curie Weiss law according to

(Fig. 7.2)

χmol =
C

T − Θ
+ χdia (7.1)

with a Curie constant C = 1.825 (9) cm3K/mol, equivalent to an effective magnetic

moment μeff = 3.82 (1)μB, in good agreement with previous measurements (Schäfer

and Wartenpfuhl (1961)). When fitting eq. (1) to the data, we fixed the diamagnetic

contribution to χdia = −49 × 10−6 cm3/mol, corresponding to the sum of the dia-

magnetic increments of the constituting elements in their respective oxidation states

according to Selwood: Selwood (1956) Cr3+: 11 × 10−6 cm3/mol; O2− : 12 × 10−6

cm3/mol; Cl− : 26 × 10−6 cm3/mol. The effective moment is in good agreement

with the value expected for a 3d3 electronic configuration with spin-only S = 3/2
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Figure 7.3: Temperature dependence of the specific heat Cp of CrOCl. Anomalies are
clearly revealed at 13.9 (1) K and at 26.7 and 27.8 K.

state of the Cr3+ ion and a g-factor of g ≈ 1.97 somewhat reduced from the free-

electron g-factor due to spin-orbit coupling effects (Abragam and Bleaney (1970)).

The Curie-Weiss temperature is positive and amounts to Θ = 19.2 (5) K, indicating

predominant ferromagnetic exchange interaction.

Below about 80 K the susceptibilities measured with fields parallel and per-

pendicular to the c axis increasingly deviate from each other. A broad maximum

appears at ∼ 30 K for both directions of the field. Below ∼ 14 K χ‖ drops almost to

zero while χ⊥ levels off at a value of 3.88×10−2 cm3/mol indicating long-range AFM

ordering in agreement with previous findings (Christensen et al. (1975)). The split-

ting of parallel and perpendicular susceptibilities is consistent with the notion of an

easy-axis antiferromagnet with the easy axis along or close to the crystallographic

c-axis.

Onset of AFM long-range ordering below ∼ 14 K is marked by an anomaly at

13.9(1) K in the specific heat (Cp) measured on the same crystal as used for the

determination of the magnetic susceptibilities. An additional, split anomaly of about

the same magnitude is observed at 26.7 and 27.8 K (Fig. 7.3).

Magnetization experiments with the magnetic field applied along the easy axis

revealed a spin-flop transition at a flop field HSF = 3.2 (1) Tesla (Fig. 7.4).
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Figure 7.4: (Color online): Magnetization M and its derivative with respect to the mag-
netic field, dM/dH, measured on CrOCl at T = 2 K with the magnetic field applied along
the c axis. The hysteresis in the magnetization branches with data collected by increasing
and decreasing field (as indicated by the arrows) is clearly visible and symmetric if the field
is reversed. (a) solid (red) lines and symbols � mark values obtained on increasing the
external field, while (blue) solid lines and symbols ◦ mark values obtained with decreasing
external field.
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Figure 7.5: Phase diagram of CrOCl with the magnetic field applied along the crystallo-
graphic c axis. The arrows indicate the spin flop phase. The shaded area indicates the
hysteresis of the spin-flop transition.

A hysteresis is observed between the magnetization measured with increasing

and decreasing fields. The derivative dM/dH clearly reveals the splitting of the

transition measured with increasing and decreasing fields to be of the order of 1.3

Tesla [Fig. 7.4(a)]. Combining the information obtained from magnetization and

specific heat experiments enables us to construct the (H, T ) phase diagram for the

magnetic phases of CrOCl as shown in Fig. 7.5.

7.3.2 X-ray diffraction

Preliminary x-ray diffraction experiments confirmed the FeOCl structure type of

CrOCl. The first series of synchrotron experiments was carried out at selected

temperatures in a cooling cycle from 270 K to 9 K. At each temperature so-called

ω–2θ maps were measured for the reflections (0 2̄ 5), (2 0 4) and (2 2̄ 0). To this end,

detector slits of 6× 0.02 mm2 were set, which correspond to an acceptance angle in

the direction of 2θ of 0.0031◦. ω-Scans (rotation of the crystal) were carried out for

a series of 2θ values, with step sizes of 0.002◦ in both ω and 2θ. The resulting plot

shows the diffracted intensity as a function of the orientation of the crystal and as a
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function of the scattering angle. Within the orthorhombic lattice all reflections are

expected as single peaks, as is indeed observed down to T = 15 K (Fig. 7.6). Some

scans show a slight broadening of the peaks in the direction of ω, which indicates

a less than optimal crystal quality, most likely resulting from anisotropic stress

induced by different thermal contractions of the sample and the glue used to attach

the sample.

At T = 9 K the reflection (0 2̄ 5) is split in both ω and θ, while the reflection

(2 2̄ 0) remains sharp and (2 0 4) is split in ω only. These splittings imply a twinned

monoclinic crystal with a monoclinic angle α different from 90◦. Furthermore, they

imply that the monoclinic distortion has occurred through a rotation of the b-axis

while the direction of the c-axis is the same in both domains.

The experiment was continued by measuring ω–2θ maps of the (0 2̄ 5) reflection

by increasing the temperature in steps of 1 K. The splitting remained visible up

to T = 13.5 K and disappeared above T = 15 K. At 14 K scattering centered at

three different 2θ values was observed, which indicates the simultaneous presence

of both the monoclinic low-temperature and the orthorhombic high-temperature

phases. These observations prove that the transition at TN is a first-order phase

transition. At 13.5 K both maxima appear broadened in the direction of ω, thus

suggesting that the transition might already have started. The transition tempera-

ture thus is estimated from the x-ray diffraction experiment as T xray
N = 13.5 ± 0.5

K, in good agreement with the magnetization and heat capacity results.

Diffracted intensity as a function of scattering angle was obtained by summing

the measured intensities of the ω–2θ maps in the direction of ω. By this we obtained

pseudo-powder-diffraction diagrams, which differ from real powder diffraction by the

property that they do not contain diffraction by reflections other than (0 2̄ 5) that

might have similar scattering angles. Up to T = 13.5 K these plots contain two

maxima that can be well fitted with two Lorentzian functions (Fig. 7.7). The differ-

ence in the center positions of the two Lorentzians provide an accurate estimate for

the splitting in 2θ from which the monoclinic angle α can be calculated (Schönle-

ber et al. (2008)). The monoclinic distortion is weakly temperature dependent and

corroborates the first-order character of the phase transition (Fig. 7.8).

At 9 K q-scans were measured along b for six reflection pairs (h k l) → (h k+1 l).

These indicated the presence of superlattice reflections at half-integer k indices with

the two highest intensities at (0 −0.5 3) and (2 −1.5 1). ω-Scans at these positions

versus temperature showed the presence of superlattice reflections up to 13 K which

disappeared above 15 K (Fig. 7.9).
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Figure 7.6: Diffracted intensity as a function of the scattering angle 2θ and the crystal
orientation ω for several reflections at selected temperatures. Δ2θ and Δω indicate the
deviation from the center of the scan in units of 0.01◦.
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Figure 7.9: ω-Scans centered at the superstructure reflection (2 −1.5 1) at selected tem-
peratures. Given is the number of counts measured for 16 s in each step of 0.005◦ wide.
Scans at consecutive temperatures have been given an incremental off-set of 25 counts.

7.4 Discussion

Preceding work has indicated a phase transition to occur in CrOCl at low tempera-

tures towards a state with AFM order on a fourfold magnetic supercell (Christensen

et al. (1975)). Here we find that the AFM phase transition is accompanied by a lat-

tice distortion towards monoclinic symmetry and by a structural distortion towards

a twofold, 2b, nuclear superstructure. The transition occurs at TN = 13.5 K, which

is significantly lower than the magnetic transition at ∼ 80 K in VOCl. The magni-

tude of the lattice distortion (α = 90.06◦) is three times smaller than that found in

VOCl (γ = 90.2◦) (Komarek et al. (2009); Schönleber et al. (2009)). Both features

indicate a sizeable magnetoelastic coupling in CrOCl which is, however, consider-

ably weaker than in VOCl, despite the higher magnetic moment of Cr3+ compared

to that of V3+. An explanation for the different behaviors of CrOCl (S = 3
2
), VOCl

(S = 1) and TiOCl (S = 1
2
) can be found in the different symmetries of the filled
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3d orbitals in these compounds.

The compounds MOCl (M = Ti, V, Cr) have a common topology and a common

symmetry at the metal site. As a working hypothesis we therefore assume an equal

hierarchy of 3d orbital energies. For TiOCl, calculated electronic band structures

have been reported at various levels of theory (Saha-Dasgupta et al. (2004); Fausti

et al. (2007); Zhang et al. (2008)). It has been found that the single valence electron

of Ti3+ occupies the 3dx2−y2 orbital—for x along b, y along c and z along a—that

is responsible for AFM coupling by direct exchange between neighboring Ti atoms

along b. The orbitals next higher in energy are 3dxz and 3dyz (Saha-Dasgupta et al.

(2004); Fausti et al. (2007); Zhang et al. (2008)). These orbitals are empty in TiOCl.

Here we assume that the two valence electrons of V3+ in VOCl occupy the 3dx2−y2

and 3dxz orbitals (Schönleber et al. (2009)) and that the three valence electrons of

Cr3+ in CrOCl occupy the the 3dx2−y2 , 3dxz and 3dyz orbitals. This arrangement ex-

plains AFM coupling along b and strong exchange interactions between neighboring

chains of metal atoms through the electrons in the 3dxz and 3dyz orbitals.

VOCl has been found to develop an c-axis unique monoclinic lattice distortion

(Komarek et al. (2009); Schönleber et al. (2009)). A closer inspection of the crystal

structure suggests that this will be the most efficient lattice distortion in order to

lift the degeneracy of exchange interactions on the MO bilayers involving the 3dxz

orbitals of V. This results in stripes of short M–M contacts in the diagonal direction
1
2
a + 1

2
b and stripes of long M–M contacts in the direction 1

2
a − 1

2
b (Fig. 7.10).

AFM order along 1
2
a + 1

2
b stripes then combines well with AFM order along b as

imposed by direct exchange via the 3dx2−y2 orbitals. The result is AFM order along

a. The same distortion also lifts the degeneracy of exchange interactions involving

3dyz orbitals. However, AFM exchange between these orbitals is probably enhanced

along the direction 1
2
a − 1

2
b of elongated bonds, because σ-type overlap between

3dyz orbitals on neighboring atoms is increased in this direction. It thus appears

that an c-axis unique monoclinic distortion leads to frustration between exchange

interactions via the 3dxz and 3dyz orbitals of the metal atom. As both orbitals are

occupied in CrOCl, the c-axis unique monoclinic distortion is unfavorable for this

compound.

Experimentally, we have found an a-axis unique monoclinic lattice distortion for

CrOCl, in agreement with the above interpretation. Structurally the easiest way to

realize a distortion of this kind requires a relative shift of neighboring layers MOCl.

However, this would hardly affect the frustrated exchange interactions within each

layer. Instead, we have found that the monoclinic lattice distortion represents a
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Figure 7.10: Schematic representation of the MO double layers projected onto the a, b
-plane. Large circles denote oxygen atoms, small circles represent M atoms. The unit cell
of room-temperature structure is indicated. +c and −c denote atoms located at different
coordinates along c. A monoclinic distortion with γ 
= 90◦ leads to exchange parameters
Ja = Jd 
= Jb = Jc; a monoclinic distortion with α 
= 90◦ leads to Ja = Jc 
= Jb = Jd.

shearing of individual layers, which then is responsible for the lifting of the degen-

eracy of exchange interactions on the MO double layers. Rotation of b in the (b, c)

plane results in shorter M–M contacts that form a zigzag pattern on the average

parallel to a. Direct exchange (AFM coupling) is increased along the shorter M–M

contacts for both the 3dxz and the 3dyz orbitals. The result is a ferromagnetic ar-

rangement along a, which might explain the predominant FM exchange as derived

from Curie-Weiss temperature. This order can be combined by AFM coupling be-

tween neighboring M atoms along b. The role of the structural distortion (doubling

of the b-axis) could be to increase the exchange interactions between the zigzag

stripes, however a more detailed description requires a complete structure model of

the low-temperature phase.

The specific heat data indicate additional transitions at a temperature of ∼ 27.2

K (Fig. 7.3). A signature of this magnetic transition has not been found in our
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x-ray diffraction data, while a weak anomaly is present in χM(T ) (Fig. 7.2). This

suggest a purely magnetic character of this transition, for example the formation of

incommensurate magnetic order.

While an c-axis monoclinic distortion appears to provide a maximum effect on

lifting the degeneracy of the coupling between 3dxz orbitals of metal atoms on neigh-

boring ribbons, it does not do so for the 3dyz orbitals. Instead, an a-axis monoclinic

distortion through a change of direction of the b-axis—i.e. representing a distortion

of the layers rather than a relative shift between layers—accompanied by a struc-

tural distortion representing a doubling of the b-axis leads to the required lifting of

degeneracy of exchange interactions through the 3dyz orbitals. The different lattice

distortions of VOCl and CrOCl are thus explained by the different symmetries of

the filled 3d orbitals.

7.5 Conclusions

The phase transition of CrOCl towards a state of AFM order has been identified

as a first-order phase transition at TN = 13.5 K, which is accompanied by a lattice

and a structural distortion towards a twofold, 2b superstructure with a-axis unique

monoclinic symmetry. The ordered magnetic moment is parallel to c. A second

transition is discovered that is presumably of purely magnetic origin and might

indicate the formation of an incommensurate magnetic superstructure.

The different behaviors of TiOCl, VOCl and CrOCl result from different sym-

metries of the occupied 3d orbitals, which lead to different exchange interactions on

the MO double layers of these isostructural series of compounds.



Chapter 8

Inhomogeneous thermal expansion

of layered CrOCl

8.1 Introduction

Thermal expansion provides valuable information about solids, including anhar-

monicity, anisotropy and the nature of phase transitions (Barron (1998)). The

fundamental mechanisms determining thermal expansion are well understood, but

an ab initio calculation of thermal expansion is not possible except for materials

with very simple structures. Primarily, thermal expansion is determined by the an-

harmonic character of the interatomic potential. However, rearrangements of the

atoms within the unit cell may be important too. This internal expansion or inho-

mogeneous expansion can be the cause of negative expansion and the invar effect

(Barrera et al. (2005)).

Thermal expansion of crystalline compounds can accurately be measured by

interferometry, dilatometry and X-ray diffraction (Ho and Taylor (1998)). Only

X-ray diffraction offers the possibility to determine the internal expansion, then re-

quiring complete structure determinations at several temperatures. Especially the

temperature-dependent structural rearrangements provide clues for the understand-

ing of physical properties and for the mechanisms of phase transitions. Examples

of such approaches can be found in Refs. Dabrowski et al. (1999); Maniwa et al.

(2001); Redhammer et al. (2007). The accuracy of the relative atomic coordinates is

much lower than the accuracy with which the lattice parameters can be determined.

Layered materials usually exhibit linear thermal expansions of magnitudes much

larger into the direction perpendicular to the layers than into directions parallel to
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Figure 8.1: Section of the crystal structure of CrOCl.

the layers (Givens and Fredericks (1977); Murray and Evans (1979)). This property

is attributed to the strong chemical bonds between atoms within one layer, while

neighboring layers interact via much weaker Van-der-Waals-type interactions. With

the exception of graphite, this property has not been quantified.

CrOCl is a layered compound that crystallizes in the FeOCl structure type with

space group Pmmn and lattice parameters a = 3.8635 (2), b = 3.1787 (1) and

c = 7.7046 (3) Å at T = 250 K (Schäfer and Wartenpfuhl (1961)). CrOCl and

other, isostructural compounds MOCl (M = Ti, V, Cr, Fe) have been studied for

their magnetic behavior at low temperatures (Christensen et al. (1975); Adam and

Buisson (1975); Wiedenmann et al. (1983); Seidel et al. (2003)). CrOCl develops a

fourfold magnetic superstructure below TN = 13.5 K, but it does not exhibit other

phase transitions (Christensen et al. (1975); Angelkort et al. (2009)). MOCl are

layered materials comprising of bi-atomic layers MO sandwiched between chlorine

atoms. The layers are defined through a network of strong chemical bonds M–O and

M–Cl, and they are stacked perpendicular to the c axis, separated by Van der Waals

gaps (Fig. 8.1). Each layer is bounded by chlorine atoms on both sides. Because

of the symmetry of the crystal structure, the chlorine atoms are in single planes at

z ≈ ±0.327, and they thus uniquely define the boundary between the layers and
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the Van-der-Waals-gap region. Furthermore, by virtue of the orthorhombic symme-

try principal axes of thermal expansion are along the lattice directions a, b and c.

Compounds MOCl are thus ideally suited to disentangle the thermal expansion into

variations of the thickness of the layers and the width of the Van-der-Waals gap, by

studying the thermal variation of both c and the coordinate z of the chlorine atoms.

Here we report the average thermal expansion of CrOCl as obtained from its

crystal structures at four temperatures in the range 100–340 K. The thermal expan-

sion of the layers is found to be nearly isotropic, despite the fact that the layers are

free to expand into the Van der Waals gaps, while in the directions parallel to the

layers an infinite network of strong chemical bonds exists. The high anisotropy of the

thermal expansion is due to the expansion of the Van-der-Waals gap on increasing

temperature.

8.2 Experimental

Single crystals of CrOCl were grown in evacuated quartz-glass ampoules by gas

transport according to published procedures (Schäfer and Wartenpfuhl (1961); An-

gelkort et al. (2009)). One crystal of approximate dimensions of 0.2×0.2×0.01 mm3

was selected for single-crystal X-ray diffraction experiments. It was mounted on a

boron glass fiber by aid of a two-component glue. X-ray diffraction was measured

on a MAR345 image plate diffractometer equipped with a rotating anode X-ray gen-

erator (50 kV, 100 mA) and a graphite monochromator selecting Mo-Kα radiation.

The crystal temperature was regulated with an Oxford Cryostream nitrogen-gas-

flow cryostat. Diffraction was measured at temperatures of 100, 250, 310 and 340

K, employing the rotating-crystal method with 0.5◦ of rotation per frame. Detector

positions were chosen with zero and 15◦ off-sets.

Lattice parameters and integrated intensities of Bragg reflections were deter-

mined from the measured diffraction images by the software EVAL14 (Duisenberg

et al. (2003)). Absorption correction was performed with SADABS (Sheldrick

(1998)). The integrated data were used for refinements of the crystal structures,

employing the computer program JANA2006 (Petricek et al. (2006)). Starting val-

ues of the parameters were taken from Christensen et al. (Christensen et al. (1975)).

The structure model involved the atomic coordinates and anisotropic temperature

parameters of all three crystallographically independent atoms (one atom each of

Cr, O and Cl) (Table 8.1).
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Table 8.1: Experimental details and structural data of CrOCl at four temperatures. Cr is
at special position (0, 0.5, z); O and Cl are at (0, 0, z).

Temperature (K) 100 250 310 340

Formula weight
(g/mol)

103.45

a (Å) 3.8614 (2) 3.8635 (2) 3.8635 (2) 3.8642 (2)

b (Å) 3.1768 (1) 3.1787 (1) 3.1793 (1) 3.1796 (1)

c (Å) 7.6840 (3) 7.7065 (3) 7.7151 (3) 7.7207 (3)

Volume (Å3) 94.2588 94.6443 94.7663 94.8612

Z 2

Data collection

Absorption
coefficient
(mm−1)

6.982 6.954 6.944 6.938

θmax (◦) 32.2 37.2 32.2 37.2

No. reflections
(observed)

1931 5409 3037 2531

No. unique
reflections

277 371 296 352

Rint 0.0336 0.0303 0.0328 0.0315

Structure refinement

wRF
2 (obs.) 0.0369 0.0380 0.0358 0.0415

RF (observed) 0.0237 0.0225 0.0198 0.0263

GoF (observed) 2.64 2.89 2.59 2.63

Δρmax (e/Å3) 0.57 0.71 0.44 0.55

Δρmin (e/Å3) -0.63 -0.84 -0.55 -0.76

z[Cr] 0.108269(55) 0.107956(44) 0.107852(50) 0.107799(44)

Uiso[Cr] 0.00341(16) 0.00458(14) 0.00513(16) 0.00660(17)

z[O] 0.94464(23) 0.94479(22) 0.94453(25) 0.94502(23)

Uiso[O] 0.00364(54) 0.00494(41) 0.00544(48) 0.00736(45)

z[Cl] 0.327531(84) 0.326780(74) 0.326543(87) 0.326300(78)

Uiso[Cl] 0.00594(20) 0.01012(18) 0.01221(21) 0.01417(22)
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8.3 Discussion

The relative changes of the lattice parameters on heating above T = 100 K provide

values for the average linear expansion coefficients, which are defined by

βl =
l(T ) − l(100)

l(100)(T − 100 K)
(8.1)

where l(T ) is the length at temperature T in the direction of the expansion. For the

three lattice directions, the average linear expansions over the temperature range

100–250 K thus are found as (Table 8.1)

βa = 0.311 · 10−5; βb = 0.384 · 10−5; βc = 1.956 · 10−5 K−1

Because of the orthorhombic symmetry this are the principal components and they

completely define the thermal expansion tensor. In accordance with the expectations

these values indicate a highly anisotropic expansion with the largest value in the

direction perpendicular to the layers.

The thickness of a single layer CrOCl is defined by dL = 2z[Cl]c, while the width

of the Van der Waals gap then is dVdW = (1−2z[Cl])c = c−dL. Taking into account

the temperature dependencies of both c and the coordinate z[Cl], different average

linear expansions of the layers and the Van der Waals gaps are obtained as (Eq. 8.1;

Table 8.1)

βL = 0.222 · 10−5; βV dW = 2.646 · 10−5 K−1

It is thus found that nearly all expansion in the direction perpendicular to the

layers is due to an expansion of the Van der Waals gap (Fig. 8.2). The linear

expansion coefficient of the layers in this direction is even smaller than in the lateral

directions, despite the fact that the layers are almost ”free” to expand into the Van

der Waals gap. It appears that the expansion of single layers is determined by the

strong chemical bonds within the layers rather than the ”free” space around them.

Several of the transition metal dichalcogenides exhibit phase transitions in a wide

range of temperatures, that are responsible for anomalies in the thermal expansion.

Corrected for these anomalies, they might show a similar nearly isotropic expansion

of single layers as presently found for CrOCl (Givens and Fredericks (1977); Murray

and Evans (1979)). Graphite is a special layered compound, since its layers of one

plane of carbon atoms have thickness zero in the present definition. Accordingly, the

linear expansion of the layers in the stacking direction is zero and the expansion of

the Van der Waals gap is equal to the linear expansion along c, with average value
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Figure 8.2: Temperature dependence of the relative variations of the lattice parameters,
the thickness of the layers and the width of the Van der Waals gap (Eq. 8.1 and Table
8.1).

over 100–250 K of βc = βVdW = 2.2 10−5 K−1 Bailey and Yates (1970). The linear

expansion parallel to the layers is negative with average value βa = −1.2 · 10−5 K−1

(Bailey and Yates (1970)).

Within the present approach we cannot provide a model for the expansion of

graphite. However, it is noticed that the transition metal dichalcogenides andMOCl

are unique in the sense that they comprise of layers interacting via Van der Waals

forces, while many other so-called ’layered compounds’—including graphite—involve

covalent or ionic contributions to the bonding between layers.
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Summary

In this thesis results of the investigations of the mechanisms of solid-solid phase tran-

sitions are reported on basis of the exemplary characterization of the phase transition

of the metalorganic compound Eu(SC36H49)2 and of the inorganic transition-metal

compounds TiI3 and CrOCl.

The phase transitions were surveyed temperature dependently by the perfor-

mance of single-crystal X-ray diffraction experiments and measurements of the mag-

netic susceptibility. The X-ray diffraction experiments were carried out as data col-

lections of integrated intensities of reflections and as measurements of profiles on

selected reflections in so-called ω-2θ maps. The data sets of the integrated intensi-

ties were used to determine the crystal structures at different temperatures. By the

comparison of the high- and the low-temperature crystal structures the mechanisms

of the phase transitions of the compounds Eu(SC36H49)2 and TiI3 were determined.

Furthermore the transition temperatures of all three compounds were determined

by temperature-dependent measurements of intensities of superstructure reflections.

From the ω-2θ maps the monoclinic lattice distortion of the low-temperature phase

of CrOCl was calculated.

For the metalorganic compound Eu(SC36H49)2 a phase transition with a tran-

sition temperature of Tc = 119 K was found and the high- as well as the low-

temperature structures were determined. The transition into the low-temperature

phase was attributed to the ordering of isopropyl-groups which are disordered in the

high-temperature structure. The asymmetric unit of the high-temperature phase

is composed of one molecule Eu(SC36H49)2 in which the isopropyl-groups are dis-

ordered with almost equal occupancy probabilities over two positions. In the low-

temperature structure two symmetry independent molecules with different confor-
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mations are forming the asymmetric unit. The complementary atomic positions

of the disordered atoms in the high-temperature phase are distributed in the low-

temperature phase in such a way that each molecule possesses one of the two pos-

sible atomic positions. Thus, the low-temperature structure contains only ordered

and completely occupied atomic positions. The transition into the low-temperature

structure is accompanied by a loss of symmetry by which the number of symmetri-

cally independent molecules is increased to two. The more compact conformation

of one of the two molecules causes a decrease of the average volume per molecule by

the transition into the low-temperature phase. The formation of a denser packing

of atoms is the driving force of the phase transition.

For TiI3 a phase transition with a transition temperature of Tc = 323 K was

discovered and the crystal structures of the high- and low-temperature phases close

to the transition temperature as well as the low-temperature structure at a temper-

ature of 100 K were determined. In the high- and low-temperature structures of TiI3
face-sharing of TiI6 octahedra along the lattice direction c results in the formation

of chains of titanium atoms running along c. In the high-temperature structures

the titanium atoms are equally spaced along the chain axes. The symmetry of the

high-temperature structure was found to be P63/mcm, and the symmetry of the

low-temperature structure was determined as Pmnm. The transition into the low-

temperature phase was associated with the formation of crystal domains which were

twinned by a threefold rotation axis oriented parallel to c. For temperatures below

Tc an atomic displacement of the titanium atoms along the chains was observed

indicating a grouping of titanium atoms to dimers. The dimerization of the tita-

nium atoms promots the phase transition. Also for other isostructural transition-

metal compounds phase transitions caused by a dimerization of metal atoms are

known (H. Hillebrecht, T. Ludwig and G. Thiele (2004), Z . Anorg . Allg . Chem.

630: 2199-2204) and probably all the transition-metal trihalide compounds form

low-temperature phases in which the metal atoms are dimerized.

The dimerization of titanium atoms in the low-temperature structure of TiI3
can be used to calculate the order parameter of the phase transition as a function

of the temperature. An abrupt change of the order parameter at temperatures close

below the phase transition temperature exhibits the first order character of the phase

transition.

From the low-temperature structures of the transition-metal trihalides the one

of TiI3 possesses the largest difference of the atomic distances between neighboring

metal atoms on the metal chains. Although the metal-metal interactions are stronger
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for the chlorides and bromides a higher flexibility in the structures cause iodides to

possess higher values of dimerisation.

CrOCl crystalizes in a layer-type crystal structure possessing the symmetry

Pmmn. The layers of CrOCl are stacked along the lattice direction c and neigh-

boring layers of CrOCl are separated by van-der-Waals gaps. Measurements of the

magnetic susceptibility revealed that CrOCl undergoes a phase transition from a

paramagnetic room-temperature phase into an antiferromagnetic low-temperature

phase at TN = 13.5 K.

The profiles on selected reflections of the reciprocal lattice planes 0kl, h0l and

hk0 were measured in ω-2θ maps for the temperature range 8 – 270 K. A splitting of

reflections along certain directions indicated the occurrence of twin-domains result-

ing from a lowering of the symmetry at the transition to monoclinic. The splitting

of reflections was observed for temperatures below the transition temperature Tc

= 13.5 K but could not be found at higher temperatures. The coincidence of the

transition temperatures of the structural and the magnetic phase transition gives

evidence for the direct structural implication of the magnetic phase transition.

Through the direction dependent splitting of the reflections of the three reciprocal

lattice planes the monoclinic angle was identified as angle α and the twinning-plane

of the crystal was found to occur perpendicular to c.

The magnitude of the splitting of the reflections was determined for different

temperatures below Tc and was used to calculate the value of α . It was found, that

the angle α changes at the transition into the low-temperature phase discontinuously

to a value of ∼ 90.05 deg. The sudden increase exhibits that the phase transition is

a first order phase transition.

Measured non-zero intensities of superstructure reflections with k indices of 0.5

and 1.5 evidence that the low-temperature structure constitutes a 2b superstructure

of the high-temperature structure. At the transition into the low-temperature phase

the orientation of the 
b-axis was found to change by a rotation within the (b, c)

plane causing a shearing of the individual layers of CrOCl.

The crystal structure of CrOCl was determined for four different crystal temper-

atures in the temperature range between 100 and 340 K. An increase of the crystal

temperature effects an anisotropic expansion of the lattice directions a, b and c.

Along the lattice direction c the highest thermal expansion was found. It is caused

by the temperature-dependent expansion of the van-der-Waals gaps. The linear

thermal expansion along c was determined to be approximately five times larger as

the linear thermal expansion along a or b.
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All the investigated phase transitions were found to be first order phase transi-

tions. The discontinuous structural change of TiI3 at the transition into the low-

temperature phase opposes the gradual change of the magnetic susceptibility in the

vicinity of the transition temperature (W. Klemm and E. Krose (1947), Z . Anorg .

Allg . Chem. 253: 209-217). The mechanism of the structural phase transition cor-

responds to the pairing of metal atoms as it is found for the spin-Peierls phase

transitions of the transition-metal oxyhalides.

It was shown that the room-temperature phase of CrOCl transforms analogous

to other transition-metal oxyhalides in an antiferromagnetic phase transition into a

monoclinic low-temperature phase.

The different electron configurations of the metal atoms in TiOCl, VOCl and

CrOCl result in a different transition behavior of these compounds and in the for-

mation of different magnetic low-temperature structures. TiOCl undergoes two

phase transitions and forms an intermediate phase whose structure is incommensu-

rately modulated. VOCl and CrOCl exhibit only one phase transition. In contrast

to VOCl which transforms at Tc = 80.3 K into a monoclinic phase with γ as the

monoclinic angle, the interactions of the metal atoms in the low-temperature phase

of CrOCl cause the angle α to be the monoclinic angle.
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Zusammenfassung

Thema der vorliegenden Dissertation ist die Untersuchung von Mechanismen von

fest-fest Phasenübergängen, welche anhand des Phasenübergangs der Organome-

tallverbindung Eu(SC36H49)2 und der anorganischen Übergangsmetallverbindungen

TiI3 und CrOCl dargelegt werden.

Die Phasenübergänge wurden in Abhängigkeit von der Temperatur mittels Ein-

kristallröntgenbeugung sowie Messungen der magnetischen Suszeptibilität unter-

sucht. Bei den Röntgenbeugungsexperimenten handelte es sich um Messungen von

integrierten Reflexintensitäten und Messungen von Reflexprofilen in so genannten

ω-2θ-Maps. Die Datensätze der integrierten Reflexintensitäten wurden dazu ver-

wendet, Kristallstrukturen bei unterschiedlichen Kristalltemperaturen zu bestim-

men. Durch das Vergleichen der Hoch- und Tieftemperaturstrukturen wurden die

Mechanismen der Phasenübergänge der Verbindungen Eu(SC36H49)2 und TiI3 be-

stimmt. Darüberhinaus wurden durch temperaturabhängige Intensitätsmessungen

an Überstrukturreflexen die Übergangstemperaturen der fest-fest-Übergänge aller

drei untersuchten Verbindungen ermittelt. Aus den ω-2θ-Maps wurde die monokline

Verzerrung des Gitters in der Tieftemperaturphase von CrOCl bestimmt.

Für die Organometallverbindung Eu(SC36H49)2 wurde ein Phasenübergang mit

einer Umwandlungstemperatur von Tc = 119 K gefunden. Die Hoch- sowie die Tief-

temperaturstruktur wurden bestimmt. Die Phasenumwandlung in die Tieftempe-

raturphase wurde auf das Ordnen von in der Hochtemperaturstruktur fehlgeord-

net vorliegenden Isopropyl-Gruppen zurückgeführt. Die asymmetrische Einheit der

Hochtemperaturphase besteht aus einem Molekül Eu(SC36H49)2, in welchem die

Isopropyl-Gruppen über zwei Positionen mit etwa gleicher Besetzungswahrschein-

lichkeit fehlgeordnet auftreten. In der Tieftemperaturstruktur bilden zwei symme-
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trieunabhängige Moleküle mit unterschiedlichen Molekülkonformationen die asym-

metrische Einheit. Die komplementären Atompositionen der fehlgeordneten Atome

in der Hochtemperaturphase werden beim Übergang in die Tieftemperaturstruk-

tur auf die beiden Moleküle so verteilt, dass auf jedes Molekül je eine der beiden

möglichen Atompositionen entfällt. In der Tieftemperaturstruktur liegen somit ge-

ordnete, voll besetzte Atompositionen vor. Die Umwandlung in die Tieftemperatur-

struktur wird von einem Verlust an Symmetry begleitet wodurch die Anzahl der

symmetrieunabhängigen Moleküle auf zwei erhöht wird. Die kompaktere Konfor-

mation eines der symmetrieunabhängigen Moleküle bewirkt eine Verringerung des

mittleren Molekülvolumens beim Übergang in die Tieftemperaturphase. Die beim

Übergang auftretende Bildung einer dichteren Packung der Atome ist die treibende

Kraft der Phasenumwandlung.

Für TiI3 wurde eine Phasenumwandlung mit einer Phasenübergangstemperatur

von Tc = 323 K entdeckt und die Kristallstrukturen der Hoch- und der Tieftempe-

raturphase nahe der Umwandlungstemperatur und die Tieftemperaturstruktur bei

einer Temperatur von 100 K bestimmt. In der Hoch- und Tieftemperaturstruktur von

TiI3 liegen TiI6-Oktaeder vor, welche entlang der Gitterrichtung c flächenverknüpft

sind und zur Bildung von längs c verlaufenden Titanatom-Ketten führen. In der

Hochtemperaturstruktur sind die Titanatome equidistant entlang der Kettenachsen

verteilt. Die Symmetrie der Hochtemperaturstruktur erwies sich als P63/mcm, und

die Symmetrie der Tieftemperaturstruktur wurde als Pmnm bestimmt. Die Um-

wandlung in die Tieftemperaturphase vollzog sich unter gleichzeitiger Ausbildung

von Kristalldomänen, welche über eine parallel zu c orientierte dreizählige Rotati-

onsachse verzwillingt waren. Für Temperaturen unterhalb von Tc wurde eine Ver-

schiebung der Titanatome längs der Kettenachsen beobachtet, aufgrund welcher sich

Metallatom-Dimere bildeten. Die Paarbildung der Titanatome verursacht das Auf-

treten der Phasenumwandlung. Für isostrukturelle Übergangsmetallverbindungen

anderer Zusammensetzung sind ebenfalls Phasenübergänge infolge der Bildung von

Metall-Dimeren bekannt (H. Hillebrecht, T. Ludwig und G. Thiele (2004), Z . Anorg .

Allg . Chem. 630: 2199-2204) und es ist wahrscheinlich, dass alle Trihalogenid-

Verbindungen eine Tieftemperaturphase besitzen, in welcher die Metallatome Di-

mere bilden.

Die mit abnehmender Temperatur fortschreitende Dimerisierung der Ti-Ti-Ab-

stände in der Tieftemperaturstruktur von TiI3 wurde benutzt, um den Ordnungs-

parameter des Phasenübergangs zu berechnen. Seine plötzliche Änderung nahe der

Umwandlungstemperatur weist auf das Vorliegen eines Phasenübergangs erster Ord-
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nung hin.

Von den Tieftemperaturstrukturen der Trihalogenide weist jene von TiI3 die

größten Längenunterschiede der Atomabstände benachbarter Metallatome in den

Metallatomketten auf. Obwohl die Wechselwirkungen der Metallatome in Chloriden

und Bromiden größer sind besitzen die Jodide aufgrund einer größeren Flexibilität

ihrer Struktur größere Beträge der Dimerisierung.

CrOCl kristallisiert in einer Schichtstruktur, welche die Symmetrie Pmmn be-

sitzt und in welcher CrOCl-Lagen längs der Gitterrichtung c gestapelt sind. Zwischen

den aufeinander folgenden CrOCl-Lagen bestehen van-der-Waals-Lücken. Mittels

Messungen der magnetischen Suszeptibilität konnte gezeigt werden, dass CrOCl bei

TN = 13.5 K eine Umwandlung der paramagnetischen Raumtemperaturphase in

eine antiferromagnetische Tieftemperaturphase vollzieht.

Die Reflexprofile von ausgesuchten Reflexen der reziproken Gitterebenen 0kl, h0l

und hk0 wurden als ω-2θ-Maps in einem Temperaturbereich von 8 - 270 K gemessen.

Reflexaufspaltungen entlang bestimmter Richtungen zeigen das Auftreten von Zwil-

lingsdomänen an, welche als Folge einer Symmetrieerniedrigung beim Übergang in

die monokline Tieftemperaturphase gebildet wurden. Die durch die Reflexaufspal-

tungen angezeigte monokline Verzerrungen des Kristallgitters setzte unterhalb der

Übergangstemperatur Tc = 13.5 K ein. Das Zusammenfallen der strukturellen und

magnetischen Umwandlungstemepraturen belegt das Auftreten einer unmittelbaren

strukturellen Änderung als Folge des magnetischen Phasenübergangs.

Durch die richtungsabhängige Aufspaltung der Reflexe der drei reziproken Git-

terebenen konnte der monokline Winkel als Winkel α identifiziert werden. Für die

Zwillingsebene wurde eine Orientierung senkrecht zur c-Richtung gefunden.

Aus dem Betrag der Reflexaufspaltungen wurde der Winkel α für verschiedene

Temperaturen unterhalb Tc bestimmt. Sein Wert ändert sich beim Übergang in die

Tieftemperaturphase diskontinuierlich auf einen Wert von ≈ 90.05◦ und kennzeich-

net mit seinem sprunghaften Anstieg das Vorliegen eines Phasenübergangs erster

Ordnung.

Gemessene Überstrukturreflexe mit den k-Indizes 0.5 und 1.5 weisen darauf hin,

dass die Tieftemperaturstruktur eine 2b-Überstruktur der Hochtemperaturstruktur

darstellt. Beim Phasenübergang in die Tieftemperaturstruktur wurde ein Verdrehen

der 
b-Achse in der (b, c)-Ebene beobachtet, welches eine Scherung der einzelnen

CrOCl-Lagen verursacht.

Die Kristallstruktur von CrOCl wurde für vier verschiedene Kristalltemperatu-

ren in einem Temperaturbereich von 100 bis 340 K bestimmt. Mit einer Erhöhung
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der Kristalltemperatur erfolgte eine anisotrope Ausdehnung entlang den Gitter-

richtungen a, b und c. Entlang der Gitterrichtung c wurde die größte thermische

Äusdehnung gefunden. Sie wird durch das temperaturabhängige Weiten der van-

der-Waals-Lücken verursacht. Für den linearen thermischen Ausdehnungskoeffizient

entlang c wurde ein etwa fünfmal größer Wert als entlang a und b ermittelt.

Die untersuchten Phasenumwandlungen erwiesen sich als Phasenübergänge ers-

ter Ordnung. Die sprunghafte Strukturänderung von TiI3 steht im Gegensatz zu der

allmählichen Änderung der magnetischen Suszeptibilität in der Nähe der Umwand-

lungstemperatur (W. Klemm und E. Krose (1947), Z . Anorg . Allg . Chem. 253: 209-

217). Der für TiI3 gefundene Mechanismus des strukturellen Übergangs entspricht

der Paarbildung von Metallatomen wie sie bei den Spin-Peierls Phasenübergängen

der Übergangsmetalloxyhalogenid-Verbindungen auftreten.

Es wurde gezeigt, dass CrOCl wie andere Übergangsmetalloxyhalogenid-Verbin-

dungen einen antiferromagnetischen Phasenübergang zu einer monoklinen Tieftem-

peraturphase durchläuft. Aufgrund unterschiedlicher Elektronenkonfigurationen der

Metallatome werden unterschiedliches Übergangsverhalten und unterschiedliche ma-

gnetische Tieftemperaturstrukturen für TiOCl, VOCl und CrOCl beobachtet. TiOCl

zeigt zwei Phasenübergänge und bildet eine inkommensurabel modulierte interme-

diäre Phase. VOCl und CrOCl durchlaufen hingegen nur eine Phasenumwandlung.

Im Gegensatz zu VOCl, welches unterhalb der Umwandlungstemperatur von Tc =

80.3 K eine monokline Phase mit γ als monoklinen Winkel bildet, bewirken die

Wechselwirkungen der Metallatome in CrOCl, dass α der monokline Winkel der

Tieftemperaturphase ist.
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Table A.1: Relative atomic coordinates and equivalent isotropic atomic displacement pa-
rameters (Å2) for the high-temperature structure at T = 122 K.

atom x y z Ueq

Eu 0.703793(10) 0.868444(10) 0.701787(8) 0.01753(6)

S1 0.81819(6) 0.05788(6) 0.75295(6) 0.0305(3)

S2 0.56574(6) 0.74264(7) 0.75826(6) 0.0314(3)

C1 0.7679(2) 0.1486(2) 0.72070(17) 0.0207(9)

C2 0.6720(2) 0.1296(2) 0.67833(17) 0.0210(9)

C3 0.6324(3) 0.2051(2) 0.6572(2) 0.0304(11)

C4 0.6874(3) 0.3002(2) 0.6783(2) 0.0354(12)

C5 0.7830(3) 0.3181(2) 0.7183(2) 0.0294(11)

C6 0.8256(2) 0.2441(2) 0.73816(18) 0.0222(9)

C7 0.6102(2) 0.0291(2) 0.65601(17) 0.0189(9)

C8 0.5393(2) 0.0010(2) 0.70362(17) 0.0204(9)

C9 0.4793(2) 0.9083(2) 0.68104(17) 0.0216(9)

C10 0.4850(2) 0.8420(2) 0.61282(17) 0.0220(9)

C11 0.5582(2) 0.8705(2) 0.56765(17) 0.0219(9)

C12 0.6206(2) 0.9628(2) 0.58766(17) 0.0209(9)

C13 0.5261(3) 0.0714(2) 0.77723(18) 0.0280(10)

C14 0.4370(5) 0.1230(5) 0.7660(3) 0.076(2)

C15 0.5151(5) 0.0242(4) 0.8415(2) 0.069(2)

C16 0.4102(3) 0.7471(2) 0.58876(19) 0.0315(11)

C17 0.3719(13) 0.7201(11) 0.5074(8) 0.110(8)

C18 0.3369(9) 0.7196(9) 0.6387(7) 0.063(5)

C17a 0.4318(5) 0.6763(4) 0.5222(3) 0.0243(18)

C18a 0.2998(4) 0.7743(5) 0.5726(5) 0.039(2)

C19 0.6988(2) 0.9881(2) 0.53610(18) 0.0248(10)

C20 0.6512(3) 0.9699(3) 0.4551(2) 0.0405(14)

C21 0.7855(3) 0.9316(5) 0.5377(3) 0.065(2)

C22 0.9337(2) 0.2632(2) 0.7746(2) 0.0247(10)

C23 0.0134(3) 0.2541(2) 0.7274(2) 0.0310(11)

C24 0.1129(3) 0.2668(3) 0.7609(2) 0.0342(12)

C25 0.1364(2) 0.2887(3) 0.8378(2) 0.0326(12)

C26 0.0568(2) 0.2998(3) 0.8833(2) 0.0327(12)

C27 0.9552(2) 0.2865(2) 0.8526(2) 0.0278(11)
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C28 0.9908(3) 0.2283(3) 0.6427(2) 0.0383(13)

C29 0.0228(7) 0.3110(5) 0.6115(4) 0.117(4)

C30 0.0351(9) 0.1423(5) 0.6049(3) 0.126(5)

C31 0.2471(3) 0.3013(3) 0.8715(2) 0.0369(13)

C32 0.2885(3) 0.4046(3) 0.9142(3) 0.0477(16)

C33 0.2613(3) 0.2305(4) 0.9191(3) 0.0508(18)

C34 0.8706(2) 0.2991(3) 0.90425(20) 0.0321(11)

C35 0.8874(3) 0.4027(3) 0.9550(3) 0.0422(14)

C36 0.8615(4) 0.2245(4) 0.9501(3) 0.0557(19)

C37 0.6187(2) 0.6575(2) 0.79606(18) 0.0217(9)

C38 0.7240(2) 0.6567(2) 0.80169(18) 0.0229(10)

C39 0.7636(2) 0.5893(3) 0.8342(2) 0.0313(12)

C40 0.6999(3) 0.5230(3) 0.8612(2) 0.0342(13)

C41 0.5954(2) 0.5221(3) 0.85436(20) 0.0284(11)

C42 0.5536(2) 0.5882(2) 0.82207(18) 0.0218(9)

C43 0.7950(2) 0.7258(2) 0.77197(18) 0.0219(9)

C44 0.8453(2) 0.8156(2) 0.82008(18) 0.0233(10)

C45 0.9139(2) 0.8766(2) 0.79102(19) 0.0263(10)

C46 0.9378(2) 0.8527(2) 0.7168(2) 0.0260(10)

C47 0.8848(2) 0.7644(2) 0.6700(2) 0.0255(10)

C48 0.8143(2) 0.7011(2) 0.69584(18) 0.0224(9)

C49 0.8283(3) 0.8449(3) 0.90265(19) 0.0312(11)

C50 0.9270(8) 0.9022(10) 0.9530(5) 0.052(4)

C51 0.7445(9) 0.9086(9) 0.9150(6) 0.054(5)

C50a 0.9249(6) 0.8303(7) 0.9480(4) 0.047(3)

C51a 0.8047(8) 0.9440(6) 0.9300(5) 0.046(3)

C52 0.0192(2) 0.9194(3) 0.6903(2) 0.0352(13)

C53 0.071(2) 0.8568(16) 0.6241(16) 0.123(13)

C54 0.0873(10) 0.9882(14) 0.7477(10) 0.072(7)

C53a 0.0455(7) 0.8819(7) 0.6157(7) 0.040(3)

C54a 0.1211(6) 0.9445(7) 0.7458(6) 0.051(3)

C55 0.7618(3) 0.6051(2) 0.64167(19) 0.0296(11)

C56 0.8383(4) 0.5359(3) 0.6230(3) 0.0516(17)

C57 0.7107(4) 0.6208(3) 0.5709(3) 0.0571(18)

C58 0.4402(2) 0.5823(2) 0.81210(18) 0.0221(9)

C59 0.3821(2) 0.5168(2) 0.74846(19) 0.0259(10)
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C60 0.2781(2) 0.5172(3) 0.7370(2) 0.0301(11)

C61 0.2295(2) 0.5801(3) 0.7865(2) 0.0312(12)

C62 0.2871(2) 0.6422(3) 0.8506(2) 0.0310(11)

C63 0.3925(2) 0.6452(2) 0.8643(2) 0.0277(11)

C64 0.4332(3) 0.4498(3) 0.6906(2) 0.0326(12)

C65 0.384(2) 0.3480(17) 0.6783(15) 0.098(12)

C66 0.431(2) 0.4834(18) 0.6135(12) 0.134(16)

C65a 0.3724(13) 0.3441(11) 0.6591(8) 0.038(3)

C66a 0.4585(9) 0.4952(9) 0.6282(6) 0.038(3)

C67 0.1153(3) 0.5797(3) 0.7707(2) 0.0387(14)

C68 0.0546(3) 0.5317(4) 0.8211(3) 0.0472(17)

C69 0.0923(4) 0.6781(4) 0.7712(5) 0.090(3)

C70 0.4522(3) 0.7148(3) 0.9343(2) 0.0375(12)

C71 0.4284(3) 0.6809(3) 0.0045(2) 0.0447(15)

C72 0.4336(4) 0.8186(3) 0.9416(3) 0.0581(18)

H3 0.5676 0.1916 0.6283 0.0365

H4 0.6600 0.3523 0.6656 0.0424

H5 0.8204 0.3828 0.7326 0.0352

H9 0.4322 0.8896 0.7137 0.0259

H11 0.5658 0.8258 0.5218 0.0263

H13 0.5875 0.1180 0.7917 0.0336

H14a 0.4377 0.1757 0.8089 0.0911

H14b 0.4429 0.1473 0.7225 0.0911

H14c 0.3746 0.0783 0.7596 0.0911

H15a 0.5285 0.0731 0.8879 0.0832

H15b 0.4474 0.9892 0.8372 0.0832

H15c 0.5624 0.9806 0.8402 0.0832

H16 0.4517 0.7015 0.5971 0.0377

H17a 0.4263 0.7051 0.4782 0.1321

H17b 0.3189 0.6647 0.4968 0.1321

H17c 0.3460 0.7732 0.4950 0.1321

H18a 0.2874 0.7613 0.6436 0.0759

H18b 0.3039 0.6539 0.6181 0.0759

H18c 0.3718 0.7257 0.6868 0.0759

H17d 0.4352 0.7053 0.4809 0.0292

H17e 0.4954 0.6570 0.5326 0.0292
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H17f 0.3789 0.6207 0.5099 0.0292

H18d 0.2968 0.7949 0.5272 0.0467

H18e 0.2485 0.7186 0.5677 0.0467

H18f 0.2887 0.8256 0.6132 0.0467

H19 0.7254 0.0558 0.5549 0.0298

H20a 0.6998 0.9959 0.4265 0.0486

H20b 0.6310 0.9017 0.4338 0.0486

H20c 0.5930 0.0009 0.4546 0.0486

H21a 0.8341 0.9499 0.5060 0.0779

H21b 0.8174 0.9457 0.5878 0.0779

H21c 0.7594 0.8637 0.5203 0.0779

H24 0.1671 0.2602 0.7300 0.0411

H26 0.0721 0.3169 0.9365 0.0392

H28 0.9186 0.2120 0.6311 0.0460

H29a 0.9945 0.2962 0.5604 0.1400

H29b 0.9993 0.3669 0.6395 0.1400

H29c 0.0953 0.3239 0.6142 0.1400

H30a 0.0851 0.1303 0.6393 0.1506

H30b 0.9823 0.0867 0.5889 0.1506

H30c 0.0661 0.1549 0.5625 0.1506

H31 0.2869 0.2871 0.8305 0.0442

H32a 0.2802 0.4469 0.8825 0.0572

H32b 0.2524 0.4218 0.9569 0.0572

H32c 0.3591 0.4106 0.9303 0.0572

H33a 0.2568 0.1667 0.8871 0.0609

H33b 0.3265 0.2500 0.9478 0.0609

H33c 0.2094 0.2303 0.9521 0.0609

H34 0.8074 0.2878 0.8735 0.0385

H35a 0.8322 0.4099 0.9849 0.0507

H35b 0.9496 0.4147 0.9869 0.0507

H35c 0.8907 0.4480 0.9247 0.0507

H36a 0.8027 0.2286 0.9765 0.0669

H36b 0.8552 0.1610 0.9175 0.0669

H36c 0.9208 0.2370 0.9852 0.0669

H39 0.8350 0.5886 0.8381 0.0375

H40 0.7276 0.4785 0.8841 0.0410
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H41 0.5517 0.4756 0.8721 0.0340

H45 0.9460 0.9376 0.8234 0.0315

H47 0.8973 0.7468 0.6186 0.0306

H49 0.8076 0.7852 0.9156 0.0375

H50a 0.9844 0.8757 0.9345 0.0627

H50b 0.9350 0.9689 0.9522 0.0627

H50c 0.9223 0.8970 0.0032 0.0627

H51a 0.6869 0.8795 0.8789 0.0654

H51b 0.7246 0.9139 0.9643 0.0654

H51c 0.7703 0.9718 0.9095 0.0654

H50d 0.9468 0.7724 0.9221 0.0562

H50e 0.9780 0.8846 0.9531 0.0562

H50f 0.9089 0.8250 0.9965 0.0562

H51d 0.8017 0.9579 0.9830 0.0553

H51e 0.8567 0.9903 0.9191 0.0553

H51f 0.7406 0.9475 0.9057 0.0553

H52 0.9880 0.9686 0.6759 0.0423

H53a 0.0693 0.7929 0.6307 0.1480

H53b 0.0344 0.8531 0.5770 0.1480

H53c 0.1398 0.8870 0.6252 0.1480

H54a 0.0594 0.0462 0.7628 0.0863

H54b 0.0971 0.9617 0.7897 0.0863

H54c 0.1512 0.0029 0.7292 0.0863

H53d 0.9851 0.8621 0.5812 0.0480

H53e 0.0902 0.9313 0.6017 0.0480

H53f 0.0786 0.8274 0.6148 0.0480

H54d 0.1459 0.8861 0.7468 0.0613

H54e 0.1710 0.9869 0.7290 0.0613

H54f 0.1077 0.9757 0.7950 0.0613

H55 0.7089 0.5763 0.6656 0.0355

H56a 0.8640 0.5217 0.6678 0.0619

H56b 0.8051 0.4771 0.5882 0.0619

H56c 0.8932 0.5658 0.6013 0.0619

H57a 0.6744 0.5602 0.5405 0.0686

H57b 0.6644 0.6649 0.5840 0.0686

H57c 0.7611 0.6472 0.5438 0.0686
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H62 0.2536 0.6835 0.8858 0.0372

H60 0.2389 0.4731 0.6939 0.0361

H64 0.5007 0.4505 0.7114 0.0391

H65a 0.3826 0.3318 0.7254 0.1175

H65b 0.3167 0.3391 0.6548 0.1175

H65c 0.4224 0.3069 0.6469 0.1175

H65d 0.3149 0.3449 0.6259 0.0458

H65e 0.4155 0.3038 0.6326 0.0458

H65f 0.3499 0.3191 0.6997 0.0458

H67 0.0924 0.5418 0.7208 0.0464

H68a 0.0731 0.4698 0.8192 0.0567

H68b 0.0684 0.5713 0.8714 0.0567

H68c -0.0162 0.5234 0.8049 0.0567

H69a 0.1100 0.6942 0.7260 0.1082

H69b 0.0214 0.6781 0.7748 0.1082

H69c 0.1309 0.7250 0.8133 0.1082

H70 0.5228 0.7145 0.9293 0.0451

H71a 0.4674 0.7255 0.0475 0.0537

H71b 0.3576 0.6782 0.0098 0.0537

H71c 0.4455 0.6179 0.9999 0.0537

H72a 0.4812 0.8624 0.9802 0.0697

H72b 0.4419 0.8352 0.8951 0.0697

H72c 0.3660 0.8230 0.9539 0.0697

H66a 0.4726 0.5460 0.6218 0.1602

H66b 0.4572 0.4377 0.5761 0.1602

H66c 0.3629 0.4865 0.5968 0.1602

H66d 0.5039 0.5555 0.6479 0.0456

H66e 0.4904 0.4528 0.5926 0.0456

H66f 0.3976 0.5064 0.6043 0.0456
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Table A.2: Anisotropic displacement parameter (Å2) of non-hydrogen atoms in the high-
temperature structure at T = 122 K.

atom U11 U22 U33 U12 U13 U23

Eu 0.01237(9) 0.01828(10) 0.02124(10) 0.00149(5) -0.00121(5) 0.00528(5)

S1 0.0192(4) 0.0210(4) 0.0477(5) 0.0001(3) -0.0141(3) 0.0092(3)

S2 0.0151(3) 0.0365(5) 0.0529(6) 0.0070(3) 0.0064(3) 0.0285(4)

C1 0.0147(13) 0.0197(14) 0.0257(15) 0.0028(10) -0.0013(11) 0.0031(11)

C2 0.0152(13) 0.0195(14) 0.0259(15) 0.0019(10) -0.0006(11) 0.0029(11)

C3 0.0233(16) 0.0246(16) 0.0388(19) 0.0051(12) -0.0109(14) 0.0032(13)

C4 0.0321(18) 0.0213(17) 0.051(2) 0.0070(13) -0.0103(16) 0.0079(14)

C5 0.0277(16) 0.0155(15) 0.041(2) 0.0010(11) -0.0037(14) 0.0044(12)

C6 0.0155(13) 0.0193(14) 0.0296(16) 0.0013(10) -0.0003(11) 0.0037(11)

C7 0.0125(12) 0.0197(14) 0.0219(14) 0.0021(10) -0.0039(10) 0.0023(10)

C8 0.0161(13) 0.0244(15) 0.0202(14) 0.0060(10) 0.0001(11) 0.0040(11)

C9 0.0155(13) 0.0279(16) 0.0217(14) 0.0029(11) 0.0013(11) 0.0077(11)

C10 0.0148(13) 0.0249(15) 0.0231(15) -0.0016(10) -0.0052(11) 0.0051(11)

C11 0.0188(14) 0.0243(15) 0.0180(14) 0.0012(10) -0.0012(11) -0.0008(11)

C12 0.0134(13) 0.0281(15) 0.0190(14) 0.0011(10) -0.0011(10) 0.0039(11)

C13 0.0267(16) 0.0310(17) 0.0235(16) 0.0083(12) 0.0032(12) -0.0006(12)

C14 0.075(4) 0.106(5) 0.047(3) 0.063(4) 0.006(3) -0.011(3)

C15 0.132(6) 0.051(3) 0.024(2) 0.025(3) 0.012(3) 0.0025(18)

C16 0.0294(17) 0.0263(17) 0.0336(18) -0.0095(12) -0.0053(14) 0.0091(13)

C17 0.143(15) 0.086(12) 0.062(8) -0.095(12) -0.037(9) 0.028(8)

C18 0.049(6) 0.063(8) 0.069(8) -0.023(5) -0.012(5) 0.027(6)

C17a 0.028(3) 0.023(3) 0.017(3) 0.001(2) -0.004(2) -0.001(2)

C18a 0.012(3) 0.027(3) 0.067(5) -0.002(2) -0.007(3) -0.001(3)

C19 0.0190(14) 0.0294(16) 0.0249(15) 0.0007(11) 0.0041(12) 0.0065(12)

C20 0.0278(18) 0.065(3) 0.035(2) -0.0001(16) 0.0014(15) 0.0295(18)

C21 0.034(2) 0.129(5) 0.063(3) 0.043(3) 0.026(2) 0.061(3)

C22 0.0160(14) 0.0195(15) 0.0365(18) 0.0004(10) -0.0005(12) 0.0056(12)

C23 0.0209(15) 0.0263(17) 0.041(2) 0.0009(12) 0.0040(14) 0.0009(13)

C24 0.0191(15) 0.0340(19) 0.047(2) 0.0016(12) 0.0053(14) 0.0062(15)

C25 0.0153(14) 0.0324(18) 0.050(2) 0.0010(12) 0.0013(14) 0.0133(15)

C26 0.0200(16) 0.037(2) 0.039(2) -0.0039(13) -0.0054(14) 0.0137(15)

C27 0.0179(14) 0.0270(17) 0.0360(18) -0.0017(11) -0.0018(13) 0.0080(13)
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C28 0.0275(18) 0.039(2) 0.040(2) 0.0009(14) 0.0062(15) -0.0022(16)

C29 0.219(10) 0.053(4) 0.055(4) -0.032(4) -0.051(5) 0.023(3)

C30 0.291(12) 0.080(5) 0.036(3) 0.107(6) 0.050(5) 0.017(3)

C31 0.0175(15) 0.052(2) 0.043(2) 0.0042(14) 0.0033(14) 0.0178(17)

C32 0.029(2) 0.049(2) 0.060(3) -0.0065(16) -0.0164(18) 0.017(2)

C33 0.0251(19) 0.063(3) 0.073(3) 0.0084(18) -0.0029(19) 0.037(2)

C34 0.0163(15) 0.043(2) 0.0301(17) -0.0046(13) -0.0007(13) 0.0024(14)

C35 0.0255(18) 0.036(2) 0.058(3) 0.0024(14) -0.0034(17) 0.0012(17)

C36 0.065(3) 0.048(3) 0.063(3) 0.012(2) 0.035(3) 0.021(2)

C37 0.0137(13) 0.0266(15) 0.0256(15) 0.0029(10) -0.0003(11) 0.0093(11)

C38 0.0144(13) 0.0287(16) 0.0277(16) 0.0032(11) 0.0012(11) 0.0118(12)

C39 0.0165(14) 0.043(2) 0.041(2) 0.0088(13) 0.0013(13) 0.0213(15)

C40 0.0256(17) 0.040(2) 0.046(2) 0.0084(14) 0.0016(15) 0.0268(16)

C41 0.0237(15) 0.0306(18) 0.0358(18) 0.0027(12) 0.0031(13) 0.0195(13)

C42 0.0157(13) 0.0257(15) 0.0250(15) 0.0016(10) 0.0007(11) 0.0101(11)

C43 0.0115(12) 0.0265(16) 0.0287(16) 0.0034(10) -0.0004(11) 0.0100(12)

C44 0.0166(13) 0.0273(16) 0.0272(16) 0.0048(11) -0.0027(11) 0.0102(12)

C45 0.0152(14) 0.0272(16) 0.0355(18) 0.0010(11) -0.0047(12) 0.0101(13)

C46 0.0136(13) 0.0298(17) 0.0386(18) 0.0041(11) 0.0005(12) 0.0166(13)

C47 0.0175(14) 0.0306(17) 0.0320(17) 0.0061(11) 0.0055(12) 0.0129(13)

C48 0.0171(13) 0.0221(15) 0.0295(16) 0.0055(10) 0.0028(11) 0.0081(11)

C49 0.0294(17) 0.039(2) 0.0243(16) 0.0005(13) -0.0027(13) 0.0107(13)

C50 0.047(6) 0.069(7) 0.030(5) 0.000(5) -0.013(4) 0.003(5)

C51 0.056(7) 0.081(9) 0.030(5) 0.025(6) 0.015(5) 0.012(5)

C50a 0.040(4) 0.067(6) 0.035(4) 0.000(4) -0.008(3) 0.025(4)

C51a 0.055(5) 0.052(5) 0.031(4) 0.016(4) 0.008(4) 0.007(3)

C52 0.0207(16) 0.036(2) 0.057(2) 0.0043(13) 0.0080(15) 0.0255(17)

C53 0.14(2) 0.073(15) 0.16(3) -0.005(14) 0.14(2) 0.007(14)

C54 0.026(7) 0.092(13) 0.074(10) -0.028(7) 0.025(7) -0.008(10)

C53a 0.026(3) 0.036(5) 0.061(5) 0.002(3) 0.023(3) 0.017(4)

C54a 0.017(4) 0.066(6) 0.065(6) -0.014(3) 0.005(4) 0.020(5)

C55 0.0288(17) 0.0259(17) 0.0321(18) -0.0020(12) 0.0047(13) 0.0074(13)

C56 0.048(3) 0.027(2) 0.073(3) 0.0084(17) 0.005(2) -0.0009(19)

C57 0.073(3) 0.040(2) 0.048(3) 0.000(2) -0.027(2) 0.0056(19)

C58 0.0164(13) 0.0237(15) 0.0280(16) 0.0000(10) 0.0019(11) 0.0121(11)

C59 0.0208(15) 0.0306(17) 0.0273(16) 0.0001(12) 0.0006(12) 0.0124(12)
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C60 0.0217(15) 0.0352(18) 0.0319(18) -0.0035(12) -0.0044(13) 0.0127(14)

C61 0.0183(15) 0.0365(19) 0.042(2) 0.0021(12) 0.0002(13) 0.0194(15)

C62 0.0201(15) 0.0331(18) 0.041(2) 0.0053(12) 0.0076(14) 0.0111(14)

C63 0.0192(15) 0.0285(17) 0.0332(18) -0.0020(11) 0.0042(12) 0.0071(13)

C64 0.0304(18) 0.0346(19) 0.0292(18) -0.0011(13) 0.0042(14) 0.0051(14)

C65 0.090(18) 0.056(12) 0.16(3) 0.035(11) 0.083(19) 0.017(14)

C66 0.30(4) 0.099(17) 0.029(9) 0.10(2) 0.026(15) 0.024(10)

C65a 0.046(6) 0.021(4) 0.040(4) -0.007(4) 0.012(4) -0.001(3)

C66a 0.049(5) 0.036(4) 0.025(5) -0.004(3) 0.016(4) 0.004(3)

C67 0.0195(16) 0.048(2) 0.050(2) 0.0049(14) -0.0052(15) 0.0186(18)

C68 0.0153(16) 0.062(3) 0.070(3) 0.0044(16) 0.0099(17) 0.028(2)

C69 0.034(3) 0.071(4) 0.184(8) 0.008(2) -0.015(4) 0.075(4)

C70 0.0223(17) 0.045(2) 0.0342(19) -0.0081(14) 0.0071(14) -0.0030(15)

C71 0.036(2) 0.056(3) 0.038(2) -0.0022(17) -0.0050(17) 0.0106(18)

C72 0.085(4) 0.037(2) 0.040(2) -0.016(2) 0.018(2) -0.0025(18)
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Supplementary material: TiI3
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Table B.1: Anisotropic atomic displacement parameters at different temperatures (Å2)

U11 U22 U33 U12

100 K
Ti 0.0072(5) 0.0083(3) 0.0083(3) 0.0036(2)
I1 0.0066(2) 0.0117(2) 0.0082(2) 0.00475(17)
I2 0.0074(2) 0.0125(2) 0.0081(2) 0.00605(17)
I3 0.0124(3) 0.00797(18) 0.0108(3) 0.00619(16)
I4 0.0096(3) 0.00810(18) 0.0107(3) 0.00479(15)
273 K
Ti 0.0237(8) 0.0180(4) 0.0192(4) 0.0119(4)
I1 0.0231(4) 0.0332(3) 0.0189(3) 0.0166(3)
I2 0.0247(4) 0.0339(3) 0.0186(3) 0.0184(3)
I3 0.0342(6) 0.0201(2) 0.0242(3) 0.0171(3)
I4 0.0298(6) 0.0194(2) 0.0232(3) 0.0149(3)
326 K
Ti 0.0186(4) 0.0186(4) 0.0358(5) 0.00930(19)
I 0.0227(2) 0.0360(3) 0.0196(3) 0.01801(13)



Appendix C

Crystal twinning of TiI3

At temperatures below the transition temperature diffraction experiments on single-

crystals of TiI3 evidenced the occurrence of superstructure reflections whose inten-

sities were many times weaker than the average main reflection intensities. To allow

for an indexing of also the superstructure reflections the reciprocal cell of a 2×2-

supercell of the hexagonal pseudocell can be used. Alternatively the reflections can

be indexed by three C-centred orthorhombic unit cells employing the orthohexagonal

relation. The indexing can be carried out by rotating the cells from each another

about the lattice direction c using angles of 120 deg. The indexing relies on the

assumption that the low-temperature phase is formed by three orientations of twin

domains of orthorhombic symmetry. Indeed, for RuBr3 and ZrI3 also untwinned

single-crystals were found from whose examination unmasked orthorhombic crys-

tal structures were determined (Brodersen, Breitbach and Thiele (1968); Lachgar

et al. (1990)). The diffraction pattern of the low-temperature phase of TiI3 exhibits

reflection intensities which are adequately be described by a superposition of the

reflection intensities from three single domains. The superposition of the three sub-

lattices of the domains causes a coincidence of the three domain contributions at the

positions of the main reflections and an occurrence of single domain contributions

at the centers of the orthorhombic reciprocal unit cells (Fig. C.1).

Because of the different orientations of the three domain sublattices in general a

different indexing for the three domain contributions occurs (i.e one reflection hkl is

indexed as h1,k1l, h2,k2l or h3,k3l dependent on which domain one refers the indexing

to). In the following the indexation will refer to an indexing carried out using the

unit cell of domain one and suffixes are used to discriminate different reflections.

Main reflections are indexed according to the reflection condition h+k=2n. The
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Figure C.1: Reconstructed reciprocal lattice plane hk0 of the low-temperature phase of
TiI3. The graphic was overlain by grids to allow an easy assignment of reflections contri-
butions belonging to the same sublattice.

superstructure reflections resulting from the contribution of domain one are indexed

by h+k=2n+1. The superstructure reflections belonging to the other two domains

occur at the center of the reciprocal unit cell of domain one and thus possess non

integer values for their indices h and k. The superstructure reflections belonging to

the second domain should possess the indices h2 = 2n2+ 1
2

and k2 = 2m2+ 1
2

forming

the reflection condition h2 + k2 = 2(n2 +m2) + 1. The superstructure reflections of

the third domain can then be indexed by h3 = 2n3 + 1
2

and k3 = 2m3 − 1
2

and the

reflection condition is h3+k3 = 2(n3+m3). As indicated by the reflection conditions

the sum of the indices h and k has to be even for the superstructure reflections of

the second domain while it has to be odd for the superstructure reflection of the

third domain.



Appendix D

Monoclinic angle in the unit cell of

CrOCl

The value of the monoclinic angle α was calculated from the 2θ splitting of the

reflection (0 -2 5). The expression relating the angle α with the scattering angle 2θ

was derived from the squared Bragg equation:(
1

d

)2

= 4 · sin2(θ)

λ2
, (D.1)

in which λ stands for the wavelength and (1
d
) represents the length of the scattering

vector. Employing the reciprocal lattice vectors 
b∗ and 
c∗ the scattering vectors of

the reflections (0 k l) can be calculated as

(
1

d

)2

= k2|
b∗|2 + l2|
c∗|2 + 2kl|
b∗||
c∗| · cos(α∗). (D.2)

The difference of the squared scattering vectors resulting for the twinned reflections

(0 k l) and (0 -k l) is equal to:

(
1

d2

)2

−
(

1

d1

)2

=
(
k2|
b∗|2 + l2|
c∗|2 + 2kl|
b∗||
c∗| · cos(α∗

2)
)
−

(
k2|
b∗|2 + l2|
c∗|2 + 2kl|
b∗||
c∗| · cos(α∗

1)
)

= 2kl|
b∗||
c∗| · (cos(α∗
2) − cos(α∗

1)) . (D.3)
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Considering that cos(α∗
1) = − cos(α∗

2) the expression can be rewritten as

(
1

d2

)2

−
(

1

d1

)2

= 4kl|
b∗||
c∗| · cosα∗
2. (D.4)

According to equation D.1 the difference of the squared scattering vectors can be

expressed in dependence of a splitting in θ by:

(
1

d2

)2

−
(

1

d1

)2

= 4 · sin2(θ2) − sin2(θ1)

λ2
. (D.5)

Combining equation D.4 with equation D.5 allows the calculation of the reciprocal

monoclinic angle α∗ as:

α∗ = arccos

(
sin2(θ2) − sin2(θ1)

kl|
b∗||
c∗| · λ2

)
(D.6)

and the monoclinic angle α through:

α = 180◦ − α∗ = 180◦ − arccos

(
sin2(θ2) − sin2(θ1)

kl|
b∗||
c∗| · λ2

)
. (D.7)



Appendix E

Measured reflection profiles of

CrOCl

In the following reflection profiles are presented which were measured by X-ray

diffraction experiments on single-crystals of CrOCl employing a point detector. The

experiments were carried out by using synchrotron radiation taking advantage of

its high monochromaticity by which a peak splitting caused by twinning was deter-

mined.
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E.1 Profiles of 2θ-dependent ω-scans

ω–2θ maps performed by rotating the crystal in angle increments of 0.002 deg about

ω and the repetition of the ω-scans for a variation of the detector position by angle

increments of 0.002 deg in 2θ. The measuring time for the ω-scans was chosen to

be 1 s per step.

E.1.1 Profiles measured on reflection (0 -2 5)
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Figure E.1: ω–2θ maps of (0 -2 5). The scattering angles were 2θ = 2θc + (Δ2θ/100) deg
and the crystal orientations were ω = ωc + (Δω/100) deg. The reflections were centered
at 2θc, ωc (deg): 37.527, 18.677 30 K; 37.507, 18.778 90 K; 37.495, 18.754 120 K; 37.452,
18.775 240 K; 37.428, 18.403 270 K. Crystal temperatures are indicated.
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Figure E.2: ω–2θ maps of (0 -2 5). The reflections were centered at 2θc, ωc (deg): 37.543,
18.78 8 K; 37.539, 18.78 9 K; 37.544, 18.74 11 K; 37.545, 18.71 13 K; 37.538, 18.75 13.5
K; 37.520, 18.72 14 K; 37.543, 18.76 15 K; 37.539, 18.78 19 K. Crystal temperatures are
indicated.
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E.1.2 Profiles measured on reflection (2 0 4)
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Figure E.3: ω–2θ maps of (2 0 4). The scattering angles were 2θ = 2θc+(Δ2θ/100) deg and
the crystal orientations were ω = ωc +(Δω/100) deg. The reflections were centered at 2θc,
ωc (deg): 30.230, 15.212 60 K; 30.218, 15.259 90 K; 30.207, 15.263 120 K; 30.194, 15.274
210 K; 30.178, 15.436 240 K; 30.149, 15.331 270 K. Crystal temperatures are indicated.
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Figure E.4: ω–2θ maps of (2 0 4). Reflections were centered at 2θc, ωc (deg): 30.247,
15.148 9 K; 30.241, 15.150 14 K; 30.255, 15.171 19 K. Crystal temperatures are indicated.
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E.1.3 Profiles measured on reflection (2 -2 0)
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Figure E.5: ω–2θ maps of (2 -2 0). The scattering angles were 2θ = 2θc + (Δ2θ/100) deg
and the crystal orientations were ω = ωc +(Δω/100) deg. The reflections were centered at
2θc, ωc (deg): 33.640, 16.847 9 K; 33.640, 16.852 19 K. Crystal temperatures are indicated.
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Figure E.6: ω–2θ maps of (2 -2 0). The scattering angles were 2θ = 2θc + (Δ2θ/100)
deg and the crystal orientations were ω = ωc + (Δω/100) deg. Reflections were centered
at 2θc, ωc (deg): 33.638, 16.842 30 K; 33.645, 16.878 60 K; 33.642, 16.884 90 K; 33.639,
16.883 120 K; 33.641, 16.872 150 K; 33.630, 16.828 180 K; 33.645, 16.884 210 K; 33.633,
16.475 270 K. Crystal temperatures are indicated.
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E.2 Scans on superstructure reflections of CrOCl

The superstructure reflections were measured in q-scans using an exposal time of 16

s per step and in ω-scans using an exposal time of 15 s per step.
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Figure E.7: q-scans measured along b∗ with step increments of 0.0055 in k. The scan
center are positioned at 1 -0.5 2 (a), 1 -0.5 3 (b), 1 -0.5 4 (c), 2 -1.5 1 (d), 2 -1.5 2 (e) and
2 -1.5 4 (f) respectively.
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Figure E.8: ω-scans on the superstructure reflection (2 -1.5 1) for different temperatures.
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Figure E.9: ω-scans on the superstructure reflection (0 -0.5 3) for different temperatures.
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E.3 Profile fitting for determination of the peak

positions of CrOCl

To determine the reflection splitting the measured reflection intensities of the 2θ-

dependent ω-scans were summed for equal 2θ-values. The resulting intensities plot-

ted against the 2θ values yields a pseudo powder diagram whose profile was fitted

using Lorentz functions.
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Figure E.10: Reflection profiles of reflection (0 -2 5) were derived from 2θ dependent ω-
scans by summing of the reflection intensities for same 2θ values. The solid curve represent
the superposed curves of Lorentz-type functions.



Appendix F

Additional structural parameters

of CrOCl at different

temperatures
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Table F.1: Thickness of the layers (dL) and width of the Van-der-Waals gap (dVdW), as
obtained from the crystal structures (Table 8.1).

T (K) dL (Å) dVdW (Å)

100 5.0335(13) 2.6505(13)

250 5.0367(11) 2.6698(11)

310 5.0386(13) 2.6765(13)

340 5.0385(12) 2.6822(12)

Table F.2: Selected interatomic distances (Å) and bond angles (deg) at different temper-
atures. Labeling of the atoms refer to the labeling used in Fig. F.1

100 K 250 K 310 K 340 K

Cr1-Cr2 (×2) 3.1768 3.1787 3.1793 3.1796

Cr2-Cr3 (×4) 3.0032(16) 3.0044(3) 3.0047(16) 3.0052(3)

Cr1-O3 (×2) 1.973(2) 1.9741(4) 1.974(2) 1.9747(4)

Cr1-O1 (×2) 2.0258(16) 2.0266(11) 2.0285(16) 2.0266(11)

Cr1-Cl1 (×2) 2.3155(13) 2.3173(5) 2.3181(13) 2.3181(5)

Cl1-Cl3′′(×4) 3.644(2) 3.6587(6) 3.664(2) 3.6680(7)

Cl1-Cl3′ (×4) 5.620(4) 5.6237(8) 5.626(4) 5.6256(8)

O3-Cr1-O3′ 156.22(9) 156.23(7) 156.37(8) 156.16(7)

Cl1-Cr2-Cl2 86.63(4) 86.607(18) 86.59(4) 86.603(19)

Cr1-O1-Cr2 103.27(10) 103.30(8) 103.20(9) 103.35(8)

O1-Cr1-Cl1 85.05(5) 85.05(4) 85.11(5) 85.03(4)

O2-Cr2-Cl1 171.68(5) 171.65(4) 171.70(5) 171.63(4)
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