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Using '3C double quantum solid-state NMR spectroscopy, we were able
to observe nuclei of a supramolecular BTA based additive on the
nanoscale in a matrix of j-PP at a concentration of only 0.09 wt%. These
nuclei exhibit the analogous structural features as the crystalline phase
of the neat additive.

As 1,3,5-benzenetrisamides (BTAs) are well known to form supra-
molecular structures via self-assembly," BTAs become more and
more important in many research fields.” Their accessibility together
with their supramolecular behaviour renders BTAs into a versatile
class of advanced materials with potential to be used as hydrogela-
tors® and organogelators.* Besides, several research groups demon-
strated the benefits of BTAs as nucleating agents in semi-crystalline
polymers such as isotactic polypropylene (i-PP),>°® poly(ethylene-
co-propylene),” polybutylene terephthalate,® polylactides,” and poly-
vinylidene fluoride.'® In addition, some derivatives of this class are
highly efficient as electret additives™* or as clarifying agents for i-PP.>
In contrast to other nucleating agents such as inorganic salts, clays
and organic pigments,'> supramolecular polymer additives are
soluble in the polymer melt and self-assemble upon cooling into
supramolecular nano-objects, which act as heterogeneous nuclei
initiating the crystallisation of the polymer.

In particular, 1,3,5-tris(2,2-dimethylpropionylamino)benzene has
been proven to feature outstanding clarifying properties for i-PP.’
The crystal structure of this BTA has been recently determined by
NMR-crystallographic strategies revealing a hydrogen-bond mediated
pseudo-hexagonal columnar rod-packing where every molecule pos-
sesses a high intrinsic dipole moment."® This dipole moment gains
rapidly within one rod leading to a markedly increased potential
energy which can be stabilised in strong electric fields."* In the
crystalline phase the potential energy due to the macroscopic dipoles,
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however, is balanced by neighboring rods which are aligned anti
parallel. The possibility to compensate dipole moments due to the
rod-packing is supposed to play a crucial role in the nucleating
process of the polymer since it allows an extremely fast one dimen-
sional crystal growth process.”> However, there is practically no
experimental evidence of the nucleation mechanism within the
polymer melt since standardised techniques like X-ray diffraction,
for example, fail due to the small size of the nuclei and the low
additive concentrations.

Here, we communicate the first experimental data on the struc-
tural properties of this special BTA in a matrix of i-PP by means of
13C double quantum (DQ) solid-state NMR. For this purpose we first
synthesised and characterised 1,3,5-tris(2,2-dimethylpropionyl-
amino)benzene '*C labelled at all three carbon atoms of the
amide linkage (1).'* Subsequently, 0.09 wt% of the additive was
incorporated into i-PP using a twin screw mini compounder at
280 °C. The extrudate of the binary mixture was finally crushed
in a cryogenic laboratory mill at low temperature to generate
powder for the solid-state NMR experiments.

From a 'H-">C CP-MAS spectrum of the binary additive—i-PP
mixture all signals corresponding to i-PP and one of the "*C enriched
carbonyl groups of the additive molecules (6 ~ 177 ppm) can be
observed (Fig. S1, see ESIf). The *C—=O0 chemical shift in the solid
state does not show any difference compared to the chemical shift in
the liquid state. As a consequence, the occurrence of the resonance
in the MAS spectrum cannot give sustainable evidence whether it
belongs to single molecules being randomly distributed in the
polymer matrix or to the supramolecular columns that are known
from the crystal structure of the bulk material."®

For this reason *C DQ experiments were performed. These
experiments are based on the dipolar coupling between two spins
which is proportional to 1/r* where r represents the spin-spin
distance. To identify the closest connectivities between the additive
molecules and the polymer matrix, if existent, we recorded several
2D DQ spectra with different excitation times. Here, every correlation
signal can clearly be assigned to its distinct chemical shift in the
indirect dimension.

Since the **C resonance frequencies of the polymer matrix and the
additive (**C=0) are spread over roughly 12.5 kHz, the transmitter
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Fig. 1 Experimental 2D DQ-SQ 3¢ spectrum of the additive—i-PP mixture
using the SR264" sequence at By = 7.04 T, vor = 6.25 kHz and texc = 15.36 ms.
The F2 projection is the sum of all signals in the SQ domain - signal
assignment included. Additional information is given in the ESI.t

frequency offset was placed in the middle of these resonances. This
leads to an off-resonant excitation of about 6 kHz which does have
only a minor influence on the spectrum due to the robustness of the
pulse sequence against offset effects."® A rotation frequency of 6.25
kHz was used with the non-y-encoded SR26;" sequence’® (see ESIY)
since previous results showed that faster spinning does not lead to an
efficient DQ build-up, especially for large distances of ~5 A which we
expect from the structure model of the neat additive. In addition, to
obtain pure absorptive 2D spectra without any rotational sidebands
in the DQ-domain, ¢ must be an integer multiple of the rotor
period and, moreover, possess equal values in the direct and
indirect dimension (in our case two times t,,). As a consequence
the spectral width in the indirect domain is just 41.5 ppm
(19.5-61 ppm) causing a refolding of the DQ signals in the
indirect dimension which were theoretically placed outside the
Nyquist frequencies (Nyquist theorem"’).

Fig. 1 displays the DQ-SQ **C spectrum of the i-PP-additive
material at By = 7.04 T, 1o = 6.25 kHz and ey = 15.36 ms. The
spectrum exhibits DQ correlations between all resonances
corresponding to the -PP and the auto-correlation signal of
the ">C=0 group of the additive. The auto-correlation peak of
the CH-group served as internal shift calibration.

The chemical shift of the CH;-group in the direct domain of
dsq ~ 22.5 ppm leads at the same time to a signal at opq ~ 45 ppm
in the indirect dimension. This can also be observed for the
CH-group where the peak in the DQ domain at 6pq & 53 ppm
corresponds to the signal at dsq ~ 26.5 ppm in the SQ domain.
The signal at dpq ~ 49 ppm can be identified as the one-
bond correlation between the methyl and the methine group.
The auto-correlation signal of the CH,-group with a chemical shift
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dsq & 44 ppm (dpqexp X 88 Ppm) occurs at dpgobs X 46.5 ppm
after being refolded once into the spectrum. However, the intensity
of this signal at 7. = 15.36 ms is very weak, in comparison,
for instance, with the auto-correlation peak of the CH-group.
We additionally observe refolded correlation peaks between
the CH,-group of the polymer and the CH- and CH;-group at
Opq X~ 25 ppm and dpg X 29 ppm. At dsq & 177 ppm, a signal
corresponding to the carbonyl group of the additive occurs. After an
eightfold refolding of the signal into the spectrum, the peak at
Opq ~ 22 ppm can clearly be identified as the auto-correlation signal
of the *C—=0 group (dpqexp & 354 ppm), while other correlations
that include the carbonyl groups, ie. interaction with the polymer
matrix, are not observed. This fact can also be seen in 2D DQ-SQ
spectra with lower and even higher excitation times, respectively (see
Fig. S2 in the ESIf). In Table S2 (see ESIT) the expected and observed
chemical shifts after refolding of all correlation signals in the
indirect domain are summarized.

The existence of the *C=0 auto-correlation indicates a spatial
connectivity of the additive carbonyl groups but, still, is no unequi-
vocal evidence. To get a more detailed picture of the structural
features of the additive clusters in the polymer matrix, we recorded a
symmetric DQ build-up curve. The absence of correlations between
the additive and the polymer matrix allows treating the signal of the
carbonyl group independently. Thus, the intensities being extracted
from the build-up curve of the i-PP-BTA material can be directly
compared to one of the neat **C labelled additive 1.

Fig. 2 displays the experimental symmetric ">C DQ build-up
curves of the labelled carbonyl groups of the bulk material (red
circles) and the additive within the polymer (blue squares with
error bars according to equation S3 in the ESIf). Both build-up
curves are normalised according to equation S1 (see ESIY}).

Within the experimental error, the progression of both
curves matches perfectly. In this respect, the slight shift of
the maximum of the DQ build-up curve for the i-PP-additive
mixture is negligible. As a consequence, the *C"*C DQ data
provide solid evidence that the structural motifs for the additive
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Fig. 2 Experimental symmetric '>C DQ build-up curves of the labelled carbonyl
groups within neat 1,3,5-tris(2,2-dimethylpropionylamino)benzene (red circles,
Vrot = 5.5 kHz) and the j-PP-additive binary mixture (blue squares with error bars,
Vot = 6.25 kHz). Both measurements were performed using the SR264" pulse
sequence (Bo = 7.04 T) with a maximum excitation time ey of 21.76 (bulk) and
20.48 ms (mixture), respectively. Further information is given in the ESI.t
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Fig. 3 Bottom: experimental (black circles) and simulated (black line) 3CDQ
filtered spectra of the neat BTA with deconvolution into three distinct resonances
(blue, green and red lines). Their fine structure is caused by a second order

"N quadrupolar interaction on a dipolar coupled "*C'*N spin pair (compare
ESIt). Top: experimental '>C DQ filtered spectrum of the binary mixture

(as sum over all 1D spectra extracted from the build-up curve).

clusters in the polymer matrix and in the bulk material are similar.
As demonstrated in ref. 13 the applied DQ filtered *C NMR
experiment is able to probe the columnar arrangement of the
molecules but not the alignment of neighbouring rods. This could
also be successfully demonstrated by evaluating the root-sum-square
dipolar coupling d. for different scenarios (see ESIt)."® For diluted
molecules, d.ss accounts to roughly 37 Hz and thus a slower DQ
build-up would be observed, while a single molecular strand
and the rod packing in the crystal lead to nearly identical values
of 127 Hz and 128 Hz.

The DQ-SQ spectra (Fig. 1 and Fig. S2, ESIf) display intensive
peaks for all correlations with the exception of the signal between
the BTA carbonyl group and the polymer units. Although a quanti-
tative analysis is demanding due to the influence of the DQ intensity
on the nuclear distances," the geometry of the aggregates, the low
additive concentration and possible motional processes its absence
hints at the formation of larger clusters consisting of several rods.
Nevertheless, the significant broadening of the DQ signal of the
carbonyl groups in the BTA--PP mixture where the fine structure is
masked - compared to the neat BTA (Fig. 3) — suggests a less well
defined long-range order and crystallite sizes in the lower nanometre
regime within the polymer matrix.

Our experiments demonstrate that the additive molecules form
columns within the polymer matrix which are similar to the ones
observed for the neat material. The compensation of the
macrodipole arising in one rod requires a pseudo-hexagonal
rod packing accounting also for the fast 1D growth behaviour.
Thus, even at low concentrations the BTAs can form long and
thin needle-like objects which provide enough surface area to
initiate heteronuclear nucleation of the polymer. Interestingly,
the spacing of the additive molecules within one rod leads to
a surface modulation with similar characteristic distances
(6.8 A)** as compared to neat i-PP (6.5 A) indicating that the
growth mechanism of the i-PP is indeed epitactic in nature.

In conclusion, we have presented a powerful approach to visualise
nuclei on a nanoscale of an efficient BTA-based nucleating and
clarifying agent for i-PP at a concentration below 0.1 wt% within
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the polymer matrix. We successfully used ">C DQ solid-state
NMR to clearly demonstrate the structural analogy of the supra-
molecular aggregates of the additive within the binary
i-PP-additive material compared to the neat bulk material.

With this approach it will be possible to study nucleation
processes from solutions and melts in an early stage for a wide
range of molecular compounds including pharmaceuticals in
the future. This is important especially for systems with poly-
morphism where probably small structural changes of the
nuclei may lead to a different polymorph.
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