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Abstract We consider a standard heterogeneous agent model that is widely used to

analyze price developments in financial markets. The model is linear in log-prices

and, in its basic setting, populated by fundamentalists and chartists. These funda-

mentalists are typically believed to stabilize markets by bringing asset prices back

to their fundamental values. However, we illustrate that in this type of model, this

does not necessarily hold as—unintended and so far over-looked—instabilities might

occur. As the number of fundamentalists increases and exceeds a specific threshold,

oscillations occur whose amplitude might even grow exponentially over time.

We show that this instability phenomenon is due to a “hidden” explicit discretization

of a stiff ordinary differential equation contained in the model. Replacing this explicit

discretization by an implicit one removes this artifact, bringing the model’s prediction

in line with standard theory. We extend our analysis and simulate markets with

evolutionary rules, i.e., replicator dynamics, for the explicit as well as the implicit

model. Overall, we find that our analytical results carry over to the extended model.

Models based on explicit discretization are likely to overrate price instabilities and, in

particular, bubbles and crashes and imply biased results in the empirical application

of heterogeneous agent models.
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1 Introduction

In the last three decades, heterogeneous agent models (HAMs) have proven to be a very pro-

ductive approach to analyze financial markets. Models of heterogeneous agents augmented by

simple heuristic trading strategies are particularly suited to capture important financial market

features such as technical trading, herding, overshooting prices, and bubbles. They are also well

apt to replicate important stylized facts such as fat tales in return distributions, volatility clus-

tering, and long-term memory. LeBaron (2006), Lux (2008), Chiarella et al. (2009), Dieci and

He (2018), and Iori and Porter (2018), among others, survey this burgeoning field of research.

Despite their considerable heterogeneity, HAMs typically share several basic features that

have already been present in the seminal papers by Day and Huang (1990) and Huang and

Day (1993). Chief among them are (i) markets are cleared by a market maker who sets the

next period’s asset price with respect to the current excess demand of the different traders. (ii)

Fundamentalists bet on a reduction in the current mispricing of assets, i.e., they buy when assets

are undervalued and sell when they are overvalued relative to their fundamental value. (iii) There

may be other types of (heterogeneous) agents, for example, those who trade on simple heuristic

strategies that attempt to extract buying and selling signals from past price movements, e.g.,

momentum trading by chartists who buy when prices rise and sell when they fall. More generally,

it is also characteristic for this approach to focus on the aggregate behavior of markets rather

than to analyze specific transmission mechanisms.

Applying these three features to a market with fundamentalists and chartists, an asset’s price
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movement can in general be described by an explicit difference equation of the type

p(t+ 1) = p(t) + wF (f − p(t)) + wC(p(t)− p(t− 1)) (1)

with the asset’s log-price p, fundamentalists’ weight in the market wF , chartists’ weight wC , and

log-fundamental-value f .

A closer inspection of this pricing equation reveals two important interrelated implications.

Firstly, quite counterintuitive price developments might occur in such markets. For example,

even in a market in which only fundamentalists trade, prices might oscillate with an exploding

amplitude (see Figure 1). Technically, such an instability can occur if fundamentalists react very

strongly to mispricing while at the same time, the market maker adjusts prices aggressively to

the resulting excess demand. Please note that fundamentalists in this situation still buy at prices

below and sell at prices above the fundamental value, as prices overshoot only in the subsequent

period. Anyhow, such a pricing behavior is at odds with today’s financial markets in which limit

orders are an omnipresent feature. In a market in which only fundamentalists trade and limit

orders are available, all the buy orders’ limits are equal or below the fundamental value. In

contrast, all sell orders’ limits are at or above the fundamental value. As the orders are executed

successively, we would expect prices to converge to their fundamental value, i.e., fundamentalists

to stabilize the market.

Secondly, this behavior is akin to the effects that occur when a stiff differential equation

is discretized using an explicit numerical scheme. Such effects appear, for instance, in reaction

kinetics, see the work of Shampine and Gear (1979) and the references therein. Just as for HAMs,

the models used in reaction kinetics describe the aggregate behavior of species—in this case in

a chemical reaction—rather than the underlying molecular mechanisms. As in our simulations,

spurious oscillations and instability artifacts can occur when specific parameters become large,

and the underlying differential equation becomes stiff. This similarity is not a coincidence: as

we will explain subsequently in greater detail, the term describing the price influence of the

fundamentalists in the HAM is precisely in the form of an explicit Euler discretization. Since in

chemical reaction kinetics (as well as in many other branches of science and engineering) using

implicit discretizations is a well-known remedy to avoid these artifacts in case the underlying
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Figure 1: Oscillating and exploding prices in the explicit model with fundamentalists only
(wF > 2, wC = 0).

equation is stiff, it seems straightforward to explore the same technique for HAMs.

When observing and interpreting overshooting prices and market instabilities in conventional

HAMs, it is therefore not clear whether they are due to dynamic interactions of traders, which

give rise to nonlinearities, or whether they are mere artifacts due to the specific form of modeling.

The issue of unintended instability features due to the explicit discretization is omnipresent in

the HAM literature and has so far not been addressed adequately.

In the following we analyze a class of HAMs that has been used as a very productive tool in

the study of financial markets. Ultimately, this research builds on the basic model of Day and

Huang (1990, in particular Equations (2), (5), (6), and (7)), which can in principle be subsumed

under Equation (1) (see also Huang and Day, 1993; Tramontana et al., 2013). Three main fields

of research have emerged over time, namely the analysis of the (in)stability of market equilibria,

the interactions between different heterogeneous traders, and the calibration of market models

using real-world data to replicate stylized facts.

Firstly, Day and Huang (1990) as well as Huang and Day (1993) use their market model of

excess demand and price adjustment to study the (in)stability of equilibria. Dieci and Westerhoff
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(2010), Tramontana et al. (2009, 2010), and Schmitt and Westerhoff (2014) focus on two stock

markets (of two different countries), which are linked through a foreign exchange market. Among

others, the authors analyze spill-over effects and their effect on market equilibria. Schmitt and

Westerhoff (2017) analyze a similar set-up and additionally allow for the occurrence of sunspots.

Secondly, the interaction of heterogeneous agents is at the center of Brock and Hommes

(1998) and Hommes and Wagener (2009) who analyze how different traders, e.g., trend chasers,

contrarians, or fundamentalists, mutually influence each other when the model allows for evo-

lutionary dynamics. They study the effects on the asset price dynamics and conclude that

particularly when the intensity for switching the strategy is high, chaotic price movements may

appear (Brock and Hommes, 1998) and that trend following can have destabilizing effects possi-

bly leading to price bubbles (Hommes and Wagener, 2009). Lux (1995) and Kirman (1993) focus

on trader interactions where the dynamics follow a probabilistic approach. Beja and Goldman

(1980) analyze how the behavior of brokers and designated specialists affects the speed of price

adjustments to changing conditions and find, e.g., that the existence of limit orders gives rise to

price discrepancies affecting stock price dynamics.

Thirdly, researchers have increasingly analyzed to what degree HAMs are able to replicate

important stylized facts of financial markets. Schmitt and Westerhoff (2019) consider a market

with a market maker and several trader types whereby the calibration of the model is conducted

via trial-and-error. Franke and Westerhoff (2016) use a herding model related to Lux (1995)

to represent the switching between fundamentalist and chartist trading strategies and estimate

the model parameters by a method of simulated moments. For evaluation they conduct a boot-

strap procedure. Platt (2020) conduct an extensive comparison of different model calibration

techniques.

As all of these important contributions to the analysis of (financial) markets make use of an

explicit discretization, especially when modeling fundamentalists’ strategies, they might contain

so-called artifacts. The derived results are therefore not as general as they would be under

an implicit discretization. Interestingly, Kukacka and Kristoufek (2020) make an analogous

observation by building on a different approach, namely the analysis of the multifractal properties

of agent-based models.

We contribute to the literature by showing how the standard approach in HAMs can give
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rise to counterintuitive asset price behavior. Based on both simulations and calculations, we show

that in a standard HAM—even in financial markets that are solely populated by fundamentalists—

explosive price developments can occur. We relate some market instabilities to the observation

that the price equation in a standard HAM should be interpreted as the explicit discretization

of a stiff ordinary differential equation. We propose an implicit discretization as a way to im-

prove the performance of HAMs. In a complementary simulation, we generalize our analysis and

compare the effects of the explicit and implicit discretization in a more complex financial market

setup.

The remainder of the paper is organized as follows. Section 2 describes a standard HAM, while

Section 3 provides evidence for instabilities in a financial market in which only fundamentalists

trade. This ostensibly destabilizing role of fundamentalists is related to the explicit discretization

of a stiff ordinary differential equation subsequently. Section 4 proposes the implict discretization

as a remedy for the oscillatory instabilities, while Section 5 gives an economic interpretation to

this seemingly technical procedure. Inspired by the cited literature, the simulation studies in

Sections 6 and 7 augment the standard model to include the evolutionary development of the

different trader types and compare the consequences of the two ways of discretization in a more

general framework. Section 8 concludes.

2 Standard Market Model

A well-established approach to analyze important features of financial markets like bubbles and

crashes is to build on market maker models with heterogeneous agents, typically fundamentalists

F and chartists C. In such a framework asset prices depend on the aggregated excess demand

of fundamentalists and chartists. Fundamentalists buy when assets are undervalued and sell

when they are overvalued, while chartists buy when prices rise and sell when they fall. More

specifically and following the basic approach going back to Day and Huang (1990) and Huang

and Day (1993), the log-price of an asset p(t) is assumed to be linear in the excess demand of

the agents, i.e.,

p(t+ 1) = p(t) + (NF (t)DF (t) +NC(t)DC(t)) ·M−1 (2)

6
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(withM > 0) where DF resp. DC is the excess demand of a typical fundamentalist resp. chartist

and NF resp. NC denotes the respective number of traders. The (excess) demand function of the

fundamentalists is assumed to be linear in the deviation of the log-price from the log-fundamental

f(t), i.e.,

DF (t) = F (f(t)− p(t)) (3)

(with F > 0), while the (excess) demand function of the chartists is assumed to be linear in the

trend of the log-price, i.e.,

DC(t) = C(p(t)− p(t− 1)) (4)

(with C > 0). Since fundamentalists and chartists are the two types of traders who drive most

stylized facts in financial markets, they are at the focus of most of the literature. We follow

this approach in the analytical part of the paper. Subsequently, we generalize our analysis in

Section 6 and introduce additional types of traders in our simulation study.

3 Discretization Artifact

While the basic model of Equations (2), (3), and (4) is able to replicate a number of stylized

facts such as excess volatility, mean reversion, and high trading volume, it also exhibits important

deficiencies. Notably, it implies a counterintuitive instability behavior. Since fundamentalists

buy when assets are undervalued and sell when they are overvalued, these traders are associated

with a market stabilizing behavior. Yet, as we show, the standard model becomes unstable when

there are too many fundamentalists. One might argue that different fundamentalists do not

coordinate their actions and therefore, prices might overshoot. However, in the basic model—

even with only fundamentalists present—prices may not only overshoot but oscillate with an

exploding amplitude.

Such price dynamics seem to be at odds with today’s financial markets. Modern exchanges

typically allow for limit orders. In contrast to market orders, which are of the “whatever it takes”

style, limit orders allow to set a maximum/minimum price in advance. As fundamentalists base
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their trading strategy on the (expected) fundamental value φ(t) = exp(f(t)), they have no reason

to place a market order. Instead, they set, e.g., a buy limit order with fundamental value φ(t)

as the maximum price if φ(t) > ρ(t), with asset price ρ(t) = exp(p(t)), and a sell limit order

with φ(t) as the minimum price if φ(t) < ρ(t). It follows that with only fundamentalists trading,

asset prices should not overshoot. Such overshootings are only caused by chartists or by the

interaction of chartists and fundamentalists. As we show subsequently, models such as (2), (3),

(4) do not adequately account for such stabilizing effects by fundamentalists.

To concentrate on the key issues, we consider a simple example of the standard model class

in this section, noting that our approach easily carries over to more complex models (as we show

subsequently in Section 6). We assume log-fundamentals and the number of traders, namely

fundamentalists and chartists, to be constant and introduce weights of the respective types of

traders, i.e., wF = NFF/M and wC = NCC/M . This leads to the following recurrence relation

or difference equation for log-prices

p(t+ 1) = p(t) + wF (f − p(t)) + wC(p(t)− p(t− 1)). (5)

Obviously, p∗ = f is an equilibrium of the model. Figure 2 depicts the vast spectrum of

price dynamics that are generated by this so-called explicit model under the parameters f = 10,

p(0) = 1 and varying weights (wF , wC) = (0.2, 0), (1, 0), (1.8, 0), (2, 0), (2.05, 0), and (1.8, 0.8).

It is evident from the fifth graph (bottom left) of Figure 2 that even when there are no

chartists, i.e., wC = 0, p∗ = f is unstable if wF > 2. If there are “too many” fundamentalists,

the price crosses the fundamental in each time step with exponentially increasing jump size.

Of course, in real markets, it cannot be excluded per se that asset prices jump beyond their

fundamental value during the short-term adjustment to a shock. However, if only fundamentalists

are present, such a price behavior would seem to be counterintuitive, in the short as well as the

long run, not the least due to limit orders. Instead, prices should end up in a neighborhood of

their fundamental values. We, therefore, conclude that most likely, the model exhibits instability

artifacts.

To complement our simulations with analytical results, it is convenient to rewrite the second-

order equation (5) as a first-order equation in two dimensions:

8
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Figure 2: Price dynamics for the explicit model with fundamentalists only (first five graphs,
wC = 0 and wF ∈ {0.2, 1, 1.8, 2, 2.05}) and weights (wC , wF ) = (0.8, 1.8) (sixth graph).

 p1(t+ 1)

p2(t+ 1)

 =

 1− wF + wC −wC

1 0


 p1(t)

p2(t)

+

 wF f

0


The eigenvalues of the transition matrix are

λ1,2 =
1

2

(
1− wF + wC ±

√
w2

C − 2wCwF + w2
F − 2wC − 2wF + 1

)
.

This allows us to calculate the values of (wF , wC) ∈ R+ × R for which p∗ = f is stable.

Figure 3 shows the region where the model is stable (actually, the figure shows the maximum of

|λ1,2| depending on wC and wF ; the model is stable when this maximum is smaller than one).
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With that, it is possible to determine the threshold of the fundamentalists to chartists ratio for

which the market model becomes unstable.

However, in a model that contains instability artifacts, when the market becomes unstable,

it is not clear whether this is due to a too large number of chartists or whether this is due to the

model structure itself. As a consequence, results from stability analyses of such models have to

be analyzed more closely and, more generally, the adequacy of such a modeling approach has to

be scrutinized. This leads us to the question how to adequately model heterogeneous agents and

avoid such structural artifacts.

Stability of the Explicit Model

w_C

w
_F

−2 −1 0 1 2

0
1

2
3

4
5

Figure 3: The explicit model (5) is stable for parameter combinations inside the “triangle.”

The key to answer this question is the observation that model (5) contains an explicit Euler

discretization

p(t+ h) = p(t) + hg(t, p(t))

of a stiff ordinary differential equation (stiff ODE)

ṗ(t) = g(t, p(t)),

see, e.g., Deuflhard and Bornemann (2012, Chapter 6) or Wanner and Hairer (1996). Such

a discretization is known to cause exactly the effects visible in Figure 2 (cf. Deuflhard and

Bornemann, 2012, Figure 6.3).

10
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When setting wC = 0 in Equation (5) we obtain

p(t+ 1) = p(t) + 1g(t, p(t))

with g(t, p(t)) = wF (f − p(t)). This is exactly the explicit Euler discretization of the ODE

ṗ(t) = wF (f − p(t)) (6)

with step size h = 1.

4 Implicit Discretization

A well-known remedy to account for the oscillatory instability of stiff ODEs is to use an implicit

discretization. Such an approach—avoiding oscillations by replacing the explicit discretization

by an implicit one—is common in engineering sciences, mathematics, and physics (see, e.g.,

Deuflhard and Bornemann, 2012; Wanner and Hairer, 1996). However, there is a fundamental

difference to the application in HAMs and, more generally, in economics: In physics, for example,

the underlying mechanisms are typically modeled via differential equations. These equations

have to be simulated and, thus, a discretization is necessary. The task is then to choose the right

method for this discretization, such that the simulated behavior is close to the real behavior of the

underlying differential equation. In our case, the financial market decisions are already modeled

in discrete time, i.e., per se, there is no need to discretize and accordingly, there is no such thing

as a wrong discretization technique. However, as shown above, the discrete-time model implies

some counterintuitive behavior, which is in stark contrast to real market mechanisms (cf. limit

orders). For this reason, we propose the following work-around: (i) find a differential equation

such that the initial discrete-time model is an explicit discretization of this differential equation

and (ii) calculate the implicit discretization of this continuous-time model.

The differential equation for which our original recurrence relation is an explicit discretization

is given in Equation (6). As an implicit version, we use an implicit Euler discretization with step

size h > 0, leading to

p(t+ h) = p(t) + hwF (f − p(t+ h)),

11
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i.e., p(t+h) = p(t)+hwF f
1+hwF

. To this equation we add the demand of the chartists from Equation (5)

(adjusted for h > 0). Thus, we have

p(t+ h) =
p(t) + hwF f

1 + hwF
+ hwC(p(t)− p(t− h)). (7)

In case of h = 1 this is

p(t+ 1) =
p(t) + wF f

1 + wF
+ wC(p(t)− p(t− 1)). (8)

We note that there is no reason to use an implicit discretization also for the chartists as

we could not observe any artificial instabilities caused by this part of the model. In fact, using

an implicit discretization for the chartists would be difficult, since the update rule cannot be

interpreted as a discretization of an ordinary differential equation at all. Due to the dependence

of the chartist dynamics on past prices, one would have to resort to so-called delay differential

equations for this task. This is a technically quite involved procedure, which is unnecessary

because of the lack of stiffness of this part of the model. We note that discretization methods

that discretize only parts of an equation implicitly are also used in numerical analysis, see, e.g.,

the linearly implicit schemes described by Wanner and Hairer (1996).

Implicit discretization is used in other fields of economics, see e.g., a recent version of Nord-

haus’ Dynamic Integrated model of Climate and Economy (DICE, see, e.g., Nordhaus, 2017) and

his 2018 Nobel Prize lecture (see Kellett et al., 2019, Footnote 4). However, Nordhaus (2017)

does not elaborate on the choice of this type of discretization.

Figure 4 depicts the simulations of the implicit model (7) using the same parameter values as

the simulations of the explicit model (5) in Figure 2. Note that the model is stable in the absence

of chartists even for wF > 2, while at the same time, it still allows for overshooting prices and

instabilities caused by an abundance of chartists, cf. the graphs of Figures 4 and 5 with wC > 0.

Rewriting Equation (7) leads to p(t+ h) =
(

1
1+hwF

+ hwC

)
p(t) + hwF f

1+hwF
− hwCp(t− h) or,

12
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Figure 4: Price dynamics for the implicit model with varying weights wF and wC = 0 (first
five plots) resp. wC = 0.8 (sixth plot) and step size h = 1.

as a first-order equation,

 p1(t+ h)

p2(t+ h)

 =

 1
1+hwF

+ hwC −hwC

1 0


 p1(t)

p2(t)

+

 hwF f
1+hwF

0


with eigenvalues

λ1,2 =
h2wCwF + hwC + 1±

√
h4w2

Cw
2
F + 2h3w2

CwF − 4h3wCw2
F + h2w2

C − 6h2wCwF − 2hwC + 1

2(1 + hwF )
.

Next, we analyze the influence of the step size h on the stability of the implicit model. Note
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that in the implicit model we can introduce w̃C = hwC and w̃F = hwF , which eliminates all

wF , wC , and h. In other words, the stability region scales with h, which is a well-known result

in numerical analysis (see Deuflhard and Bornemann, 2012, Section 6.1.2). In Figures 5 and 6

the implicit model is simulated for the same weights (wF , wC) = (4, 0), (10, 1), and (10, 1.5) but

with varying step size h = 1, 0.25, and 0.1. We can see that a smaller step size stabilizes the

model. In Figures 7, 8, and 9 the respective stability regions for the implicit model are shown.

With that, the question arises whether it is a reasonable behavior of the model that the

stability region scales with the step size (more specifically with h−1) since this implies that for

h → 0, the model becomes unconditionally stable. From an economic point of view, there are

two explanations for this feature. On the one hand, the smaller h > 0 becomes, the faster

the fundamentalists react to price changes, which should increase their stabilizing effect on the

market. On the other hand, the smaller h > 0 is, the shorter the reference period [t−h, t] becomes

that the chartists use to calculate past gains or losses based on p(t) and p(t − h). Thus, these

gains and losses, and consequently, the price changes caused by the chartists become smaller

and smaller for shrinking h, hence, reducing their destabilizing effect on the market. In more

mathematical terms, the term hwc(p(t) − p(t − h)) tends to 0 faster than h, meaning that its

effect after N ∼ 1/h time steps decreases with h even though the number of simulation steps N

up to a given time T increases proportionally to 1/h.

As a consequence, the time step h > 0 should not be chosen depending on the trading

frequency. It could be very high in some of today’s financial markets, e.g., in high-frequency

trading, so that h > 0 would be very small. Instead, it should reflect the time horizon the

chartists use for defining their trading strategy. When the trading frequency is of interest, i.e.,

when the time distance between two trades h and the chartists’ time horizon are different, another

parameter has to be added to the model. Although a very interesting aspect, it is beyond the

scope of this work and, thus, the subject of future work. It is particularly important that the

model produces plausible qualitative results also for relatively large time steps h > 0—and this

is precisely what an implicit discretization achieves, cf. the discussion of A-stability and related

concepts, e.g., in the work of Deuflhard and Bornemann (2012).

Taken together our analysis draws attention to the following two drivers of price instabilities:

first, the instability of the model is caused by the fundamentalists due to some numerical artifacts
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Figure 5: Price dynamics for the implicit model with varying weights wF , wC and step size
h = 1.

and, second, the instability of the model is caused by a too large number (resp. weight) of chartists

relative to fundamentalists. Clearly, the second effect is the one of interest when analyzing

bubbles etc.

5 Economic Interpretation of the Implicit Pricing Rule

When reconsidering the explicit pricing rule (2) resp. (5), we can interpret the next period’s

log-price in a straightforward way as a function of the current log-price and a share of the ex-

cess demand of all traders, where the demand of the fundamentalists depends on the difference

between the market price and the fundamental value. That is exactly how the model was con-

15
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Figure 6: Price dynamics for the implicit model with varying weights wF , wC and step size
h = 0.25 (graphs on the left) resp. h = 0.1 (graphs on the right).

structed in the first place. In contrast, a first look at the implicit pricing rule for h = 1 (8) does

not yield such a straightforward interpretation. However, when rewriting Equation (8) to

p(t+ 1) =
p(t) + wF f

1 + wF
+ wC(p(t)− p(t− 1))

=

(
1

1 + wF
p(t) +

wF

1 + wF
f

)
+ wC(p(t)− p(t− 1)),

a new intuitive interpretation suggests itself. Note that limwF→0
1

1+wF
= 1, limwF→∞

1
1+wF

= 0,

limwF→0
wF

1+wF
= 0, and limwF→∞

wF

1+wF
= 1. Next period’s log-price is a convex combination of

the log-fundamental-value and the current log-price depending on the weight of the fundamental-

16
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Stability of the Implicit Model (h=1)
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Figure 7: Parameters for which the implicit model (7) with step size h = 1 is stable.

ists plus a certain share of the excess demand of the chartists or, in general, of all traders except

the fundamentalists. Thus, with the explicit pricing rule, the actions of the fundamentalists

(“What do they do?”) are modeled specifically. In contrast, in the case of the implicit pricing

rule, the implications of the fundamentalists’ trading (“What happens?”) is reproduced—which

is exactly in line with the qualifications “explicit” and “implicit.” If we are interested in an ade-

quate reproduction of the behavior of real-world systems—the reduced form—and not so much

of the specific mechanics—the structural form—the implicit rather than the explicit model is the

adequate choice.

To this end, let us again consider a market in which only fundamentalists trade. In the explicit

model, when the weight of the fundamentalists is small, the price converges monotonically to the

fundamental but never reaches it. When the respective weight is medium-sized, the price jumps

to the fundamental value within one step and stays there. When the weight is high, the price

oscillates around the fundamental value, maybe converges to it, but never reaches it. Finally,

when the fundamentalists’ weight is even higher, the price oscillates and explodes.

In the implicit model, the price converges to the fundamentals monotonically for all weights,

and the larger wF is, the closer the price is to the fundamental value after one time step. More

precisely, the difference between this price after one time step and the fundamental value tends

to 0 if wF tends to infinity. In financial markets with limit orders, a constant fundamental

17



Analyzing HAMs Avoiding Explicit Discretizations 18

Stability of the Implicit Model (h=0.25)
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Figure 8: Parameters for which the implicit model (7) with step size h = 0.25 is stable.

value, and fundamentalist traders only, under one sufficiently large trade, the price jumps to the

fundamental value in one step and stays there. When there are enough small trades, the price

converges to the fundamental value monotonically and reaches it. When there are too few small

trades, the price might at first move towards the fundamental value and then stay at some other

level without jumping to the fundamental value.

Hence, qualitatively, the implicit model seems to capture the price behavior in today’s finan-

cial markets much better than the explicit model. It reflects not only monotone convergence,

which implies that asset prices do not jump across their fundamental values but also the fact

that the resulting prices are the closer to their fundamental values the larger wF is. One aspect

that is not captured by the implicit model is that using a sufficiently large limit order, the price

may reach the fundamental value in finite time. However, given that markets are subject to

noise, uncertainty of the fundamental value, and perturbations by other trader types, this phe-

nomenon is likely to occur only in highly idealized markets. Moreover, when considering prices,

for instance, in USD or EUR, we can consider the fundamental value practically reached when

|ρ(t)−φ(t)| < 0.005 since there is a smallest unit. Thus, the fact that this particular phenomenon

is not reflected in the implicit model is much less of a drawback than the artificial overshootings,

oscillations, and instability of the classical explicit model. An interesting point for future work

would be the development of a model with a so-called event-based timeline, but that is beyond

18
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Stability of the Implicit Model (h=0.1)
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Figure 9: Parameters for which the implicit model (7) with step size h = 0.1 is stable.

the scope of this paper.

6 Evolutionary Rules for the Numbers of the Traders

To examine whether our insights also hold in more complex financial environments, we generalize

our model along three dimensions in the next step. We allow for more types of traders, in

particular, noise traders and sentimentalists, introduce an evolutionary mechanism that drives

the distribution of the different types of traders in the market, and allow the fundamental value to

be stochastic. Based on these generalizations, we develop two versions of an agent-based market

model that differ only concerning the pricing rule. Model a) uses the explicit discretization (5) of

the differential equation (6). In contrast, model b) makes use of the implicit one (7). With this

approach, we should be able to better differentiate the effects of the two discretization techniques.

Firstly, we introduce additional trader types, namely noise traders and sentimentalists. Noise

traders (N) trade more or less independently of market dynamics. This can be the case because

they are the proverbial small traders without enough information about the market or because

they are liquidity traders, i.e., traders who have to buy/sell specific amounts of the asset irrespec-

tive of the price and the fundamental, e.g., because they need it for hedging, for a mutual funds

portfolio, or some external engagement. Sentimentalists (S) are a type of trader that switches

with a certain probability or ratio to other, usually better performing strategies, i.e., they observe

19
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the profits of the other trader types and can switch in every period to their preferred strategies.

The demand functions of the basic trader types are:

DN (t)/N ∼ N
(
h
(
µN − σ2

N/2
)
, σN
√
h
)
i.i.d.,

DF (t) = hF (f(t)− p(t)),

and

DC(t) = hC(p(t)− p(t− 1) · 1t>0.

with t ∈ {0, h, 2h, . . . , T/h}, T = dy the total number of trading days, d the number of trading

days per year, y the total number of years under analysis, h the time step between two trades,

C,F,N > 0 parameters modeling the aggressiveness of the respective trader group, f the log-

fundamental-value, p the log-price (either modeled explicitly or implicitly), as well as µN > −1

the trend and σN > 0 the volatility of the noise traders’ demand.

Secondly, we introduce evolutionary growth rules for the share of traders as a second general-

ization (cf. Hommes, 2006). More specifically, we apply so-called exponential replicator dynamics.

Thus, we fix the share of traders for chartists NC ≥ 0, fundamentalists NF ≥ 0, noise traders

NN ≥ 0, and sentimentalists NS ≥ 0 such that NC + NF + NN + NS = 1. The overall share

of a specific trading strategy is determined by the sentimentalists as they are the only group of

traders that is allowed to switch the strategy. With a given initial distribution for the sentimen-

talists NSC
(0) ≥ 0, NSF

(0) ≥ 0, and NSN
(0) ≥ 0 (such that NSC

(0)+NSF
(0)+NSC

(0) = 1) we

define the numbers of the different sentimentalists’ trading types via

NSC
(t+ 1) =

NSC
(t) exp(βUC(t+ 1))

NSC
(t) exp(βUC(t+ 1)) +NSF

(t) exp(βUF (t+ 1)) +NSN
(t) exp(βUN (t+ 1))

,

NSF
(t+ 1) =

NSF
(t) exp(βUF (t+ 1))

NSC
(t) exp(βUC(t+ 1)) +NSF

(t) exp(βUF (t+ 1)) +NSN
(t) exp(βUN (t+ 1))

,

20
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and

NSN
(t+ 1) =

NSN
(t) exp(βUN (t+ 1))

NSC
(t) exp(βUC(t+ 1)) +NSF

(t) exp(βUF (t+ 1)) +NSN
(t) exp(βUN (t+ 1))

,

where β > 0 is a parameter controlling the speed of adaption (cf. Brock and Hommes, 1997)

and

UC(t+ 1) = DC(t) · (exp(p(t+ 1)− p(t))− 1),

UF (t+ 1) = DF (t) · (exp(p(t+ 1)− p(t))− 1),

as well as

UN (t+ 1) = DN (t) · (exp(p(t+ 1)− p(t))− 1)

describe the fitness of the trader groups. Taken together, at time t the share of the chartists

is NC + NSNSC
(t) ∈ [NC , NC + NS ], the share of the fundamentalists is NF + NSNSF

(t) ∈

[NF , NF +NS ], while the share of the noise traders is NN +NSNSN
(t) ∈ [NN , NN +NS ]. The

sentimentalists do not have an own trading rule, but they are allowed to switch between the

three basic trading rules F , C, and N . When NS = 1, all traders can switch. However, note

that NS = 1 does not necessarily mean that there are no chartists, for example.

As a third extension, we allow the fundamental value of the asset to be stochastic. We

define the fundamental value φ to fulfill the stochastic differential equation dφ(t) = µFφ(t)dt+

σFφ(t)dW (t), where W is a standard Brownian motion (Wiener process), µF > −1 is the trend

of the fundamental, and σF > 0 the volatility of the fundamental, i.e., the fundamental value,

but not necessarily the price process, follows a geometric Brownian motion. We assume that the

fundamental value is a stochastic process that can be observed perfectly by the fundamentalists,

who base their demand at time t on f(t) = log(φ(t)). As an alternative, one could assume that

there is a deterministic fundamental value that cannot be observed perfectly by the traders.

However, the difference between these alternatives is negligible in our simulations; we do not

concentrate on the mechanisms, but on the behavior. Hence, the pricing rules are for the implicit

discretization

21
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pimp(t+ h) =
pimp(t) + hF (NF +NSNSF

(t))f(t)M−1

1 + hF (NF +NSNSF
(t))M−1

+ hC(NC +NSNSC
(t))(pimp(t)− pimp(t− h))M−11t>0

+ (NN +NSNSN
(t))DN (t)M−1

and for the explicit discretization

pexp(t+ h) =pexp(t) + hF (NF +NSNSF
(t))(f(t)− pexp(t))M−1

+ hC(NC +NSNSC
(t))(pexp(t)− pexp(t− h))M−11t>0

+ (NN +NSNSN
(t))DN (t)M−1.

Figure 10 depicts simulated price dynamics of four typical, qualitatively different cases: a

hill-shaped price development, a temporary downward trend, a U-shaped price development,

and a temporary upward trend. The simulations are based on the following parameter values,

which were found by an extensive trail-and-error calibration. The parameters are chosen in such

a way that the simulation is consistent with empirical stylized facts (cf. Hommes, 2006). There

are d = 250 trading days per year and y = 1 year making a total of T = 250 trading days. The

step size is set to h = 1, i.e. one trade per day. The initial values are f(0) = pimp(0) = pexp(0) =

log(1) = 0. The fundamental’s trend is µF = 0.1h/d and its induced volatility is σF = 0.03.

The noise traders’ parameters are µN = 0.05 and σN = 0.5. The shares of the traders are fixed

to one quarter each, i.e., NF = NC = NN = NS = 0.25 while the sentimentalists are allowed

to switch. Their initial shares are approximately one third each, i.e., NSF
= NSC

= 0.33 and

NSN
= 0.34. The scaling parameter for the market power and trading volume is set toM = 1 and

the sentimentalists’ switching velocity is defined as β = 1. The aggressiveness of the respective

trading rule is C = 2.1, F = 1.7, and N = 0.2.

Additionally to the price dynamics of Simulation 1 to 4 in Figure 10 (fundamental value: solid,

implicit price: dashed, and explicit price: dotted), the shares of the sentimentalists following
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fundamentalists (dashed), chartists (solid), or noise traders (dotted) are depicted in Figure 11

for the explicit model (fine) as well as for the implicit model (bold). Further, in Figure 12, the

induced volatility of the fundamental σF (fine) and its sliding historical volatility (bold) with

window size m = 20 are plotted (solid) together with the historical volatilities (with the same

window size m) of the implicit model (dashed) and the explicit model (dotted). We observe

that there are much more pikes in the price paths both for the implicit and the explicit model

than in the fundamentals. Sometimes, the pikes in the implicitly modeled price correspond to

pikes in the explicit model. However, there are as well pikes in the explicit model where no

pikes in the implicit one are visible and vice versa. Additionally we mention that no trader type

becomes extinct—a stylized fact market models should fulfill (Hommes, 2006; Kirman, 1993).

This means that if there is no financial bubble in either model, the two models tend to follow a

similar pattern.

In Simulation 1, in both models, the fundamentalists’ rule is most profitable, and so their

share (within the group of sentimentalists) increases. In Simulation 2, this is true for the chartists,

and in Simulation 3, the noise traders’ share is increasing. The latter point is remarkable since

it has been argued that noise trading should be unprofitable because it is not rational—yet

noise traders’ profits, as well as trend followers’ profits (Hommes, 2006), are considered to be

an important stylized fact of financial markets (cf. De Long et al., 1987; Green and Heffernan,

2019). In Simulation 4, there are not only quantitative but also qualitative differences between

the implicit and the explicit model. While fundamentalists gain under explicit discretization,

they do not make profits under the implicit model. Note that in this model, the interrelation

between the price dynamics and the successful type of trader is not limited to those cases shown,

but these are only an illustrative selection. However, all in all, the simulations give reason to

assume that, as common sense also suggests, chartists are more likely to win when trends are

clear.

In Figure 12, we observe that in both models, price volatility is not only higher than the

fundamental volatility but also clustered—two stylized facts market models should reproduce

(Hommes, 2006). There are parameter settings, e.g., σF = 0.1, C = N = 1, F = 10, and all

others as above, such that in all simulation runs price bubbles are generated under the explicit

model, while no bubbles appear in the implicit model, cf. Figure 13, Simulation 5. Sets of
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parameters that generate bubbles under implicit discretization, but no bubble paths under the

explicit model, are very rare—while there are many parameter settings leading to the opposite

behavior (cf. Section 7). Under explicit discretization, more bubbles occur, preceded by higher

volatilities.

Once implicit discretization is allowed for, there is a broader parameter space with bubble-

and-crash free model specifications. That means when empirical data are used to estimate model

parameters, those in the implicit model are potentially better, as those in the explicit model are

biased. Especially when predictions or policy recommendations are to be made, it is preferable

to use a larger parameter space, i.e., the implicit model (cf. Schröppel, 2018; Shiller, 1980)

Taken together, our results from the simple model typically carry over to the more general

setting. Explicit discretization typically generates more unstable prices as well as price bub-

bles and crashes. In contrast, implicit discretization of the same underlying financial market

model is associated with steadier price developments and, in particular, far fewer bubbles. In

empirical analyses, models based on explicit discretization might lead to biased results as the

calibration exercise to find the best fit to the stylized facts is restricted to a smaller parameter

space than under implicit discretization. Thus, the choice of discretization—a seemingly tech-

nical issue only—is far from innocent but might have far-reaching implications for the analysis

and interpretation of heterogeneous agent models.

7 Simulations

At first sight, the implicit and explicit modeling do not seem to differ substantially with respect

to price dynamics, traders’ success, and volatilities (see Figures 10, 11, and 12). However, as

we have shown in the analytical investigations (Sections 3 and 4) the stability behavior differs

significantly. In those cases where there appears no bubble in either model, the models behave

similarly. However, the parameters’ range in which the explicit model is stable is much smaller

than the range in which the implicit model is stable. This means that if the parameters are

adjusted to historical, real market developments, the space over which the implicit model is

optimized is larger and therefore could deliver better results. For the range in which both models

are stable, the simulation results are similar, so it is possible to switch from the explicit model
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Figure 10: Simulations 1 (above left), 2 (above right), 3 (bottom left), and 4 (bottom right):
fundamental value (solid), price path implicitly modeled (dashed) and explicitly modeled (dot-
ted).

to the implicit one without restrictions. The differences between the explicit and the implicit

model in the cases without any bubbles should therefore be at a minimum. In order to show

that the implicit model has a larger stable range not only in theory, we perform an extensive

simulation below with 1,000 runs.

In the simulation we use the setting of Section 6 including its pricing rules (explicit and im-

plicit), its evolutionary rules, and, with few exceptions, its parameter specifications. In the

simulation, we consider varying parameters C = −10, −9.9, −9.8, . . . , 9.9, 10 and F =

0, 0.1, 0.2, . . . , 19.9, 20 for the aggressiveness of the chartists resp. fundamentalists. In this

way, we can see which parameter constellations lead to stable or unstable dynamics. Addition-

ally, we increase the volatility of the fundamental values to σF = 0.1 and the aggressiveness of

the noise traders to N = 1 to bring more variety to the simulation runs.

We simulated 1,000 fundamental value developements and performed the pricing and evolu-

tionary rules for the two models and for all parameter pairs (C,F ) in the mentioned range. In

Figure 14 we see a countur plot of the numbers of bubbles in the explicit model for the varying

parameters C and F . There is a small area for small F and C around zero where no bubbles
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Figure 11: Simulations 1 (above left), 2 (above right), 3 (bottom left), and 4 (bottom right):
shares of fundamentalists (dashed), chartists (solid), and noise traders (dotted); fine: explicit
model, bold: implicit model.

occur. Outside this area there are bubbles in all of the 1,000 runs. In contrast, Figure 15 shows

a contour plot of the numbers of bubbles in the implicit model for the varying parameters C and

F . We define a bubble as a price development that tends to infinity. There are no bubbles for C

around zero and all parameter values of F , which is perfectly in line with our analytical findings.

Additionally, in Figures 16 and 17, we show the contour plots for the numbers of “excessive”

bubbles in the corresponding model, i.e. for max{0,#Bubbles in the explicit model − #Bubbles

in the implicit model} and max{0,#Bubbles in the implicit model − #Bubbles in the explicit

model}. Thus, we can easily observe the areas in which one model produces more bubbles than

the other one. On the one hand, there is a very small area with C approximately between three

and four and F around four, where the explicit model is more stable, on the other hand, the

implicit model is more stable for C approximately between minus two and four and all F larger

than some values between two and six. The fact that the explicit model is not dominated by the

implicit one is not very significant. The standard literature on discretization techniques (Deu-

flhard and Bornemann, 2012; Wanner and Hairer, 1996) just states that in the case C = 0 the

implicit model is more stable—as is the case in our simulation. It would be rather unusual if for
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Figure 12: Simulations 1 (above left), 2 (above right), 3 (bottom left), and 4 (bottom right):
induced (fine) and historical (bold) volatility of the fundamental value (solid), historical volatility
of the implicitly modeled price path (dashed) and the explicitly model price path (dotted).

C 6= 0 there were no fluctuations in the results.

8 Conclusion

Heterogeneous agent models provide an interesting approach to analyze financial markets. Build-

ing on the interactions of different types of traders, in particular fundamentalists and chartists,

HAMs have proven to be a very productive tool to analyze financial dynamics. However, when

using these models, particular care should be taken to the specific modeling of the group of

fundamentalist traders, a core element in this type of models. Following the standard approach

in the literature by combining the excess demand of fundamentalists and chartists with a market

maker mechanism can lead to quite counterintuitive price developments. Even in a simple mar-

ket set up with fundamentalist traders only, market instabilities with exploding oscillatory prices

might occur. We relate this odd market behavior to a seemingly technical issue, the explicit

discretization of the price equation that is implied in a typically standard HAM analysis.

As a remedy to improve the HAM approach, we propose to instead use the implicit dis-
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Figure 13: Simulation 5: Fundamental value (solid), price path implicitly modeled (dashed)
and explicitly modeled (dotted). The explicitly modeled price path explodes.

cretization of the price equation as a straightforward, easy to implement procedure. Under this

procedure, HAMs can be more trusted do be in line with today’s financial markets, i.e., in par-

ticular, the presence of limit orders. Not accounting for this seemingly technical issue might

have far-reaching implications. Researchers are likely to overestimate the occurrence of financial

crashes and asset price bubbles. Also, when calibrating HAMs to replicate relevant empirical

stylized facts, models based on implicit discretization incorporate a more extensive parameter

space that should mitigate the issue of biased parameter values and improve the empirical fit

of the models. Taken together, this should help to enhance HAMs’ value as an instrument to

design, analyze, and evaluate financial markets and related policies.
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Black-and-white plots for the print version when required.
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Figure 18: Number of bubbles in the explicit model from 0 (white) to 1,000 (gray).
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Figure 19: Number of bubbles in the implicit model from 0 (white) to 1,000 (gray).
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Figure 20: Number of excessive bubbles in the explicit model from 0 (white) to 1,000 (gray).
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Figure 21: Number of excessive bubbles in the implicit model from 0 (white) to 1,000 (gray).
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