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Abstract

The fascinating properties of organic molecular semiconductors paved the way for a new
class of electronic devices such as organic light-emitting diodes, transistors, or solar cells.
Despite an inferior e�ciency as compared to commonly used silicon-based technologies,
organic semiconductors promise the advent of fully �exible devices for large-area displays
and solar cells, printed transistors as low-cost radio frequency identi�cation (RFID) tags,
displays for electronic books, and disposable measuring instruments for medical diagnosis.
Hence, the investigation of organic molecular semiconductors has emerged as a vibrant
�eld of development both in industry and in academia, spanning a wide range of subjects
from physics, chemistry, and materials science to engineering and technology. Theoretical
physicists can contribute to this progress by developing methods that allow to determine
the electronic properties of organic semiconductors from �rst principles and thus deepen our
knowledge of the underlying electronic processes in organic electronic devices.

The calculation of the electronic properties of molecular semiconductors issues a serious
challenge to theoretical physicists and chemists. Typically, organic semiconductor molecules
employ several hundreds of electrons. For systems of that size, approaches that work with
model Hamiltonians are typically not accurate enough in predicting many important elec-
tronic properties. However, solving the many-particle Schrödinger-equation by employing
highly accurate perturbation theory approaches is often numerically too expensive to be
considered as a convenient alternative. Hence, density functional theory (DFT) naturally
arises as the method of choice. However, although in theory DFT yields an exact formu-
lation of quantum mechanics, the quality of the results obtained from DFT calculations in
practice strongly depends on the used approximations to the so-called exchange-correlation
functional. This work concentrates on the problem of self-interaction, which is one of the
most serious problems of commonly used approximative density functionals.

As a major result of this work, it is demonstrated that self-interaction plays a decisive role
for the performance of di�erent approximative functionals in predicting accurate electronic
properties of organic molecular semiconductors. This is particularly true for the calculation
of ionization potentials, photoelectron spectra, dissociation, and charge-transfer processes.
In search for a solution to the self-interaction problem, a new concept for correcting com-
monly used density functionals for self-interaction is introduced and applied to a variety
of systems, spanning small molecules, extended molecular chains, and organic molecular
semiconductors. It is further shown that the performance of functionals that are not free
from self-interaction can vary strongly for di�erent systems and observables of interest, thus
entailing the danger of misinterpretation of the results obtained from those functionals.
The underlying reasons for the varying performance of commonly used density functionals
are discussed thoroughly in this work. Finally, this thesis provides strategies that allow to
analyze the reliability of commonly used approximations to the exchange-correlation func-
tional for particular systems of interest.

This cumulative dissertation is divided into three parts. Part I gives a short introduction
into DFT and its time-dependent extension (TDDFT). Part II provides further insights
into the self-interaction problem, presents a newly developed concept for the correction of
self-interaction, gives an introduction into the publications, and discusses their basic results.
Finally, the four publications on self-interaction and charge-transfer in extended molecular
systems and organic molecular semiconductors are collected in Part III.



Kurzfassung

Die faszinierenden Eigenschaften organischer molekularer Halbleiter bilden die Grundlage
für eine neue Klasse an elektronischen Bauteilen wie etwa organischen Leuchtdioden,
Transistoren und Solarzellen. Trotz ihrer deutlich schlechteren E�zienz gegenüber herkömm-
lichen Silizium-Technologien verspricht der Einsatz von organischen Materialien die Ent-
wicklung von voll �exiblen, groÿ�ächigen Displays und Solarzellen, gedruckten Transistoren
als Radio Frequency Identi�cation (RFID)-Etiketten in der Warenlogistik, Displays für
elektronische Bücher und gedruckten Einweg-Messgeräten für die medizinische Diagnos-
tik. Die Untersuchung organischer molekularer Halbleiter bietet damit ein interessantes
Feld sowohl für die industrielle Anwendung als auch für die Grundlagenforschung in Physik,
Chemie, Material- und Ingenieurwissenschaften. Die Theoretische Physik kann zu dieser
Entwicklung beitragen indem sie Methoden bereitstellt, welche die Berechnung der
elektronischen Eigenschaften von organischen Halbleitermaterialien ermöglicht und damit
erlaubt das Verständnis der zugrundeliegenden Prozesse zu vertiefen.

Aus Sicht der theoretischen Physik stellt die Berechnung der elektronischen Eigenschaften
von Molekülen mit einigen hundert Elektronen eine spezielle Herausforderung dar. Für
Systeme dieser Gröÿe ist der Zugang über Modell-Hamiltonians für gewöhnlich nicht aus-
reichend exakt. Die Lösung der Vielteilchen-Schrödingergleichung mithilfe quanten-
mechanischer Störungstheorie hingegen ist oftmals numerisch zu teuer. Diese Konstella-
tion führt auf die Dichtefunktionaltheorie (DFT) als Methode der Wahl. Obwohl die DFT
im Prinzip eine exakte quantenmechanische Formulierung darstellt, ist in der Praxis die
Qualität der mithilfe der DFT erzielten Ergebnisse stark von der Näherung für das sog.
Austausch-Korrelations-Funktional abhängig. Die vorliegende Arbeit beschäftigt sich in
erster Linie mit dem Problem der Selbstwechselwirkung in gewöhnlich verwendeten Dichte-
funktionalen.

Bei der Berechnung der elektronischen Eigenschaften von organischen Halbleitern mithilfe
der DFT spielt die Freiheit der verwendeten Funktionale von Selbstwechselwirkung eine zen-
trale Rolle, insbesondere für die Berechnung von Ionisationspotentialen, Photoelektronen-
spektren, Dissoziations- und Ladungstransferprozessen. Die Gründe für das Versagen von
nicht selbstwechselwirkungsfreien Näherungen an das Austausch-Korrelations-Funktional
sind dabei vielfältig und werden in dieser Arbeit im Einzelnen diskutiert. Zur Lösung
der Selbstwechselwirkungsproblematik wird ein neues Konzept zur Selbstwechselwirkungs-
korrektur gewöhnlich verwendeter Dichtefunktionale vorgestellt und auf eine Reihe an
Systemen angewendet. Darüber hinaus werden Strategien vorgeschlagen, welche es er-
lauben, die Zuverlässigkeit von Dichtefunktionalen für bestimmte Systeme und Observablen
zu testen. Die dabei erarbeiteten Erkenntnisse werden schlieÿlich genutzt um die zugrunde-
liegenden elektronischen Prozesse in einem jüngst experimentell untersuchten System aus
zwei �uoreszierenden und elektronisch gekoppelten organischen Halbleitermolekülen aufzu-
klären.

Diese kumulative Dissertationsschrift ist in drei Teile gegliedert. Teil I gibt eine kurze
Einführung in die Grundlagen der DFT und ihrer zeitabhängigen Erweiterung (TDDFT).
Weitergehende Einblicke in das Problem der Selbstwechselwirkung und dessen Korrektur,
eine Zusammenfassung der wichtigsten mathematischen und numerischen Hintergründe der
vorgestellten Methodik und eine Einführung in die Publikationen sind in Teil II dargestellt.
Den Abschluss bilden die vier Publikationen zum Thema Selbstwechselwirkungskorrektur
und Ladungstransfer in organischen Halbleitermolekülen in Teil III.
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Chapter 1.

Density functional theory

1.1. Introduction

There is an oral tradition that, shortly after Schrödingers fundamental equation of quantum
mechanics had been spectacularly validated for the Helium atom, P. A. M. Dirac declared
solemnly that chemistry had come to end - its content was entirely contained in that equa-
tion. Too bad, he is said to have added, that in almost all cases this equation was far too
complex to allow for solution.

More than eight decades later, researchers have learned that Dirac was just partly right:
Of course, even with the most modern computers and with the most e�ective algorithms
we are not able to �nd the exact solution of Schrödinger's equation, even for rather small
molecules, and we most probably will never be. This has a very simple and pragmatic
reason: storing the many-electron wavefunction of a system with only 1000 electrons would
require a computer's memory to keep track of more information bits than the estimated
number of particles in the universe. In order to classify this number one should relate it
to the size of a typical biomolecule: the largest human chromosome is approximately 220
million base pairs long, each of which contains several hundreds of electrons.

However, today we know that Schrödinger's equation is not the end of the story. In par-
ticular, we have learned that the many-electron wavefunction is not a very e�ective way of
describing the properties of atoms, molecules or solids. This is very impressively demon-
strated in the seminal work of Hohenberg and Kohn [46], which in the early 1960s set the
stage for the nowadays most widely used method for electronic structure calculations in
quantum chemistry and condensed matter physics: density functional theory (DFT).

One of the main achievements of Hohenberg and Kohn was to demonstrate that, at least
in principle, it is possible to gain any information about a system from its ground-state
density n (r). This makes it possible to work with the electron density as a basic variable.
The drastic advantage of this approach is obvious: While the density only depends on 3
spatial coordinates, a many-particle wavefunction scales with the number of particles N in
the system as 3N.

Formally, the work of Hohenberg and Kohn can be summarized in two central theorems. The
�rst Hohenberg-Kohn theorem states that for a given particle-particle interaction W (r, r′)
there exists a one-to-one mapping between the one-particle ground-state density n (r) and
the local multiplicative external potential v (r) (up to a constant in the potential which has
no physical consequences). As a consequence, the Hamiltonian Ĥ = T̂ +Ŵ + V̂ of a system,

where T̂ =
∑

i
p̂2

i
2m , V̂ =

∑
i v(r̂i), and Ŵ =

∑
i6=j w(r̂i, r̂j), is su�ciently and completely

determined by its ground-state density. In other words, the ground state |ψ0〉 itself, where

1



Chapter 1. Density functional theory

Ĥ|ψ0〉 = E0|ψ0〉, as well as every other observable is a functional of the ground-state density.
The second Hohenberg-Kohn theorem sets the stage for a methodology that allows to �nd
the ground-state density for any system of interest. By reworking the Rayleigh-Ritz vari-
ational principle, Hohenberg and Kohn showed the existence of a universal functional
F [n] = 〈ψ0| T̂ + Ŵ |ψ0〉 which via straightforward minimization of the total energy

E [n] = F [n] +
∫

v (r)n (r) dr (1.1)

yields the exact ground-state energy E0 and density n (r) corresponding to a given local
potential v (r).

As a consequence of the Hohenberg-Kohn theorems, the Schrödinger equation is formally
replaced by a simple but exact variational equation, i.e.,

δE [n]
δn (r)

= 0 . (1.2)

However, the complexity of solving Schrödingers equation has turned into a new problem
that is equally complex [118] to solve exactly: �nding the exact functional F [n] for an inter-
acting many-particle system. In the light of Dirac's comment on the Schrödinger equation
one may be tempted to say: too bad that in almost all cases this functional is probably far
too complex to �nd.

1.2. The Kohn-Sham scheme

In order to practically exploit the Hohenberg-Kohn theorems one has to �nd a way to
approximate the functional F [n] as good as possible. The most successful scheme that
allows to �nd such an approximation has been provided by Kohn and Sham in 1965. Hence,
it is called the Kohn-Sham scheme [59].

The basic idea of Kohn and Sham was to introduce an auxiliary system of non-interacting
particles moving in a local multiplicative potential vKS

σ , i.e., the Kohn-Sham potential. In
this system, the many-electron problem is reduced to a system of one-electron Schrödinger
equations, called the Kohn-Sham equations:[

− h̄2

2m
∇2 + vKS

σ (r)
]
ϕiσ (r) = εiσ ϕiσ (r) , (1.3)

n (r) =
∑

σ=↑,↓
nσ (r) =

∑
σ=↑,↓

Nσ∑
i=1

niσ (r) =
∑

σ=↑,↓

Nσ∑
i=1

fiσ |ϕiσ (r)|2 , (1.4)

∑
σ=↑,↓

Nσ∑
i=1

fiσ = M . (1.5)

Here, ϕiσ (r) are the orthonormal Kohn-Sham orbitals for spin σ, fiσ are their occupation
numbers, nσ (r) are the total spin densities, Nσ the number of occupied orbitals with spin σ
and M is the total number of electrons. In the Kohn-Sham (KS) approach, the total energy

2



1.2. The Kohn-Sham scheme

reads

EKS = Ekin [n] + Eext [n] + EHart [n] + Exc [n] . (1.6)

The interaction energy of the electron density with an external potential vext (r) (which
includes the potential of the atomic cores as well as external �elds)

Eext [n] =
∫

n (r) vext (r) dr (1.7)

and the classical mean-�eld Coulomb interaction, i.e., the Hartree interaction energy

EHart [n] =
e2

2

∫∫
n (r)n(r′)
|r− r′|

dr dr′ (1.8)

are known as explicit functionals of the ground-state density. Importantly, the non-interacting
kinetic energy

Ekin =
∑

σ=↑,↓

Nσ∑
i=1

fiσ〈ϕiσ| −
h̄2

2m
∇2|ϕiσ〉 (1.9)

is not an explicit but an implicit functional of the ground-state density: due to the �rst
Hohenberg-Kohn theorem, the KS potential is a functional of the ground-state density.
Then, by virtue of the KS equations, the KS orbitals and thus the kinetic energy are implicit
density functionals.

The so-called exchange-correlation energy functional Exc [n] =
∑

σ=↑,↓Exc,σ [n↑, n↓], which
by de�nition carries everything that has been neglected or approximated in Ekin [n], Eext [n],
and EHart [n] (such as all non-classical particle-particle interactions and the interacting
part of the kinetic energy), is not known explicitely and therefore has to be approximated.
The quality of the used approximation to Exc [n] is decisive for the success of any DFT-
calculation. Frequently used approximations and their properties will be discussed in section
1.4.

The KS potential vKS
σ (r) results from the functional derivative of Eq. (1.6) with respect to

nσ (r). One thus obtains the Kohn-Sham Hamiltonian

ĥKS
σ (r) = − h̄2

2m
∇2 + vKS

σ (r) (1.10)

= − h̄2

2m
∇2 + vHart (r) + vext (r) + vxc,σ (r) ,

which includes the Hartree-potential vHart (r) = e2
∫ n(r′)

|r−r′| dr
′ and the exchange-correlation

potential vxc,σ (r) = δExc/δnσ (r).

By de�nition, the KS potential is that auxiliary external potential for which non-interacting
particles yield the same total density n (r) as the fully interacting particles in the physical
external potential vext (r). Note that it is not clear per se that such a potential exists for
all possible densities. However, all reasonably well-behaved densities that are of practical
importance correspond to an existing external potential, i.e., they are v-representable. For
a detailed discussion of the v-representability problem the reader is referred to Ref. [24] and
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Chapter 1. Density functional theory

references therein.

Solving the KS equations (1.3), i.e., diagonalizing the KS Hamiltonian, lies at the very heart
of any implementation of KS DFT. Importantly, only the exchange correlation potential is
approximated in the KS equations. This clearly emphasizes the importance of the used
approximation to vxc,σ.

1.3. The self-interaction problem

One of the most basic and most often discussed problems in DFT is also one of the oldest
ones. Its origin lies at the very heart of the KS scheme, and actually it is even older than
DFT itself: the self-interaction problem [106].

From a historical point of view, the KS equations can be seen as an improvement of the
equations published by Hartree only few years earlier. Whereas Hartree's equations ignored
all non-classical electron-electron interactions, Kohn and Sham introduced the exchange-
correlation potential which, by de�nition, carries everything that has been neglected in the
Hartree formulation. However, many important features of Hartree's equations are shared
by the formulation of Kohn and Sham, such as the treatment of the kinetic energy and
the formulation of the classical Coulomb interaction as a functional of the charge density.
This is why the Coulomb interaction energy of Eq. (1.8) is called the Hartree energy. If
one evaluates Eq. (1.8) for a one-electron problem, e.g., the hydrogen atom, the non-zero
Hartree energy describes the Coulomb interaction of one electron with itself. Of course, this
spurious self-interaction is also present in many-electron systems, although in this case it is
much less palpable.

At �rst sight this erroneous treatment of the classical particle-particle interaction is not
disturbing, as the exchange-correlation functional Exc should, by construction, correct for it.
However, while the exact Exc naturally corrects for Hartree self-interaction, commonly used
approximations do not entirely correct for self-interaction in many-electron systems. Even
worse, being approximate functionals of the density themselves, they typically introduce
a second self-interaction error. As will be demonstrated in this thesis (see, e.g., section
3.3.1), one of the key features of the commonly used approximations to Exc is that these two
contributions to the self-interaction energy cancel to a large extent. In the following section,
some of the most important approximations to Exc and their performance in correcting the
self-interaction error will be discussed.

Self-interaction and its correction play a central role in this thesis. A main step for correcting
self-interaction, however, is the de�nition of self-interaction in systems with many electrons.
Possible de�nitions and their consequences will be discussed in detail in chapter 2.

1.4. Approximate exchange correlation functionals

Although KS DFT is exact in principle, the exact exchange-correlation functional is generally
unknown. Hence, it has to be approximated in practice. Numerous approximations to the
exact Exc can be found in the literature and an exhaustive discussion certainly goes beyond
the scope of this thesis. The most commonly used approximations can be classi�ed upon
the number and kind of their ingredients. In the following, three classes of functionals and

4



1.4. Approximate exchange correlation functionals

their most important representatives will be discussed. Note that appendix A.4 provides a
list of all functionals used in this thesis and their abbreviations.

1.4.1. Semilocal functionals

Functionals that employ only local quantities such as the spin-density nσ (r) and its deriva-
tives or the kinetic energy density are called semilocal functionals. This class of functionals
is by far the most popular and most often used one. This is due to their excellent accuracy-
to-computational-cost ratio and, with some reservations, the ease of their implementation
in DFT codes.

In general however, semilocal functionals are not able to correct entirely for self-interaction
and, as a consequence, often su�er from notorious failures (see, e.g., Ref. [67] and publica-
tion 2 for an overview and pertinent references). In semilocal functionals, self interaction
typically leads to incorrect dissociation limits, underestimation of energy barriers to chemi-
cal reactions, and a wrong asymptotic behavior of the exchange-correlation potential (with
all its consequences, such as instability of many experimentally stable anions, the absence of
a Rydberg series, wrong long range interactions, etc.). Semilocal functionals are usually not
able to describe electron-localization e�ects in transition metal oxides and widely overesti-
mate charge transfer properties such as the polarizability of molecular chains and electronic
transport in molecular devices.

The oldest and most popular representative of the class of semilocal functionals is the
local density approximation (LDA) [46]. This approximation is based on the homogeneous
electron gas limit, for which the exact exchange energy density is known analytically as [22]

εhom
x [n] = −3

4

(
3
π
n

) 1
3

e2 (1.11)

and the numerically exact correlation energy density εhom
c can be evaluated on the basis of

a suitable parametrization [14, 106, 105]. With εhom
xc = εhom

x + εhom
c the LDA-energy then

reads

ELDA
xc [n] =

∫
n (r) εhom

xc [n (r)] dr . (1.12)

A straightforward improvement of the LDA approach can be achieved by introducing the
density gradients ∇nσ (r) weighted by �tting parameters as corrections to Eq. (1.12). These
approaches are called generalized gradient approximations (GGAs). The parameters can
either be determined via a constrained satisfaction technique, i.e., the functional is �tted
to satisfy as many exact constraints as possible, or by empirical �tting, i.e., numerical
�tting to selected data sets from experiment or more involved wave-function-based studies.
Among the most popular GGAs are the non-empirical GGA provided by Perdew, Burke
and Ernzerhof (PBE) [101] and the semiempirical BLYP which combines Becke88 exchange
[7] with the correlation functional given by Lee, Yang, and Parr [72].

A special type of semilocal functionals is given by the so-called meta-GGAs. A functional is
called a meta-GGA if it employs the kinetic energy density τσ (r) = h̄2

2m

∑Nσ
i=1 fiσ|∇ϕiσ (r) |2

or the Laplacian∇2nσ in Exc,σ. Hence meta-GGAs, although employing only local quantities
and their derivatives, can also fall into another category, i.e, the orbital functionals.
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Chapter 1. Density functional theory

1.4.2. Orbital functionals

Functionals that employ the orbitals ϕiσ explicitely in Exc are called orbital functionals.
Equivalent to the case of the kinetic energy density (see Eq. (1.9) and following discussion),
orbital functionals are implicit density functionals by virtue of the KS equations. For a
detailed review on orbital functionals the reader is referred to Ref. [67].

There are several arguments for using orbitals in the construction of improved exchange-
correlation functionals, the probably strongest one being the fact that the inclusion of
orbitals allows to compensate for Hartree self-interaction. The most prominent orbital-
functional is given by the formulation of the Fock integral in terms of the KS orbitals, i.e,
the exact exchange functional (EXX)

Ex [{ϕiτ}] = −e
2

2

∑
σ=↑,↓

Nσ∑
j,k=1

fjσfkσ

∫∫
ϕ∗jσ (r) ϕ∗kσ(r′)ϕkσ (r) ϕjσ(r′)

|r− r′|
dr dr′ . (1.13)

In this approach, the Hartree self-interaction energy is compensated by the intra-orbital
exchange, whereas the inter-orbital exchange energy is treated exactly. However, the re-
maining parts of Exc, i.e., the interacting kinetic energy as well as the correlation energy,
are neglected completely. Although being able to heal many of the above-mentioned prob-
lems of semilocal functionals (see, e.g., Ref. [67] for an overview), EXX su�ers from the
absence of a compatible correlation functional, the signi�cant increase in numerical costs as
compared to semilocal functionals, and the unfavorable quadratic scaling of the exchange
energy with the number of electrons.

Orbital functionals allow to introduce additional �exibility in the construction of functionals.
However, there is a price that one has to pay. Solution of the KS scheme requires an
expression for the exchange-correlation potential vxc,σ (r) = δExc/δnσ (r). For the case of
an orbital functional Exc [{ϕjτ}] however, taking this functional derivative is signi�cantly
more involved than for explicit density functionals. By virtue of the chain rule

vxc,σ =
∑

α=↑,↓

∑
β=↑,↓

Nα∑
i=1

∫∫ (
δExc [{ϕjτ}]
δϕiα(r′)

δϕiα(r′)
δvKS

β (r′′)
+ c.c.

)
δvKS

β (r′′)
δnσ (r)

dr′ dr′′ (1.14)

and by evaluating the functional derivative δϕiα(r′)/δvKS
β (r′′) on the basis of the KS equa-

tions one obtains an integral equation for vxc,σ:

Nσ∑
i=1

fiσ

∫
ϕ∗iσ(r′)

(
vOEP
xc,σ (r′)− uxc,iσ(r′)

)
Giσ(r′, r)ϕiσ (r) dr′ + c.c. = 0 , (1.15)

where

uxc,iσ (r) :=
1

fiσ ϕ∗iσ (r)
δExc [{ϕjτ}]
δϕiσ (r)

, (1.16)

Giσ(r, r′) :=
∞∑

k=1
k 6=i

ϕkσ (r)ϕ∗kσ(r′)
εiσ − εkσ

. (1.17)

Eq. (1.15) is the optimized e�ective potential equation [121, 124, 37]. Solving this equation for

6



1.4. Approximate exchange correlation functionals

vOEP
xc,σ yields the optimized e�ective potential (OEP), i.e., the exchange-correlation potential
which by virtue of the KS equation yields those KS orbitals that minimize the total energy
corresponding to the orbital-functional Exc [{ϕjτ}]. The OEP-equation plays a central role
in the theory of orbital functionals. Its detailed derivation and a thorough discussion of its
properties can be found, e.g., in Ref. [67].

As demonstrated in Ref. [60] and further clari�ed in Refs. [37] and [69], the OEP equation
(1.15) can be written in an alternative form that takes a simple interpretation:

− δn (r) = −
Nσ∑
i=1

δϕ∗iσ (r) ϕiσ (r) + c.c. = 0 , (1.18)

where

δϕ∗iσ (r) = fiσ

∞∑
j=1
j 6=i

∫
ϕ∗iσ(r′)

[
uxc,iσ(r′)− vOEP

xc,σ (r′)
]
ϕjσ(r′) dr′

εiσ − εjσ
ϕ∗jσ (r) (1.19)

is the �rst-order perturbation-theory shift in ϕ∗iσ subject to the perturbation potential

∆viσ (r) = uxc,iσ (r)− vOEP
xc,σ (r) . (1.20)

Eq. (1.18) states that the optimal (i.e., yielding the lowest total energy) exchange-correlation
potential vOEP

xc,σ (r) to replace the orbital-speci�c potential uxc,iσ (r) is the one that makes
the change in the density vanish to �rst order in the perturbation ∆viσ (r).

Note that Eq. (1.18) does not only yield an alternative interpretation of the OEP but also
opens the way for an algorithm to numerically solve the OEP equation [69, 70] (further
details on this approach will be provided in section 3.1). However, solving the OEP-equation
exactly is computationally very costly. Thus, there is a need for good approximations to
the exact OEP. In the literature, a number of approximations to the OEP can be found, the
most popular one being the approximation given by Krieger, Lee, and Iafrate (KLI) [61, 60].
The basic idea of the KLI-approach is the approximation εiσ− εkσ ≈ ∆ε = const., for which
Eq. (1.15) can be solved analytically. Importantly, the resulting KLI potential

vKLI
xc,σ (r) =

1
2nσ

Nσ∑
i=1

{
|ϕiσ (r)|2

[
uxc,iσ (r) +

(
v̄KLI
xc,iσ − ūxc,iσ

)]}
+ c.c. , (1.21)

where

v̄KLI
xc,iσ :=

∫
ϕ∗iσ(r′) vKLI

xc,σ(r′)ϕiσ(r′) dr′ , (1.22)

ūxc,iσ :=
∫

ϕ∗iσ(r′)uxc,iσ(r′)ϕiσ(r′) dr′ , (1.23)

is thus derived from an approximation in the potential and not in the energy functional.
Strictly speaking, the KLI-approximation therefore de�nes a potential functional. A corre-
sponding energy functional does not exist. This leads to a couple of fundamental and numeri-
cal problems, especially when evaluating the energy functional or its derivatives directly (see,
e.g., Ref. [66]) or in the time-dependent case [92, 93]. However, the KLI-approximation can
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Chapter 1. Density functional theory

be formally justi�ed by the fact that, given the set of orbitals derived from a self-consistent
OEP calculation, changing the potential from OEP to KLI does not (directly) a�ect the
total energy [60, 37]. Hence, the KLI-approach yields a reasonable approximation to OEP
as long as the employed approximation in the potential does not substantially a�ect the
self-consistent iteration of the KS equations. However, in publication 1 it is demonstrated
that the latter assumption does not always hold. As a consequence, the KLI-approximation
can fail dramatically.

As will be shown in chapter 2, standard OEP is not a suitable approach for all orbital
functionals. Hence, a generalized version of the OEP equation is derived in section 2.2.2.
In this context, further details on the OEP formalism will be provided.

1.4.3. Hybrid functionals

Exact exchange as well as the Hartree-Fock (HF) approach correct for Hartree self-interaction,
but they do not employ correlation. In contrast, semilocal functionals employ a consistent
de�nition of local exchange and correlation, however, without being able to correct entirely
for Hartree self-interaction. The idea of hybrid functionals is to take advantage of the best of
both worlds by mixing a �xed fraction of HF-exchange EHF

x with a �xed fraction of semilocal
exchange Esl

x and correlation Esl
c , i.e.,

Ehybrid
xc = aHF

0 EHF
x + (1− aHF

0 )Esl
x + Esl

c . (1.24)

The parameter aHF
0 depends on the used semilocal functional. Typically, it is determined

empirically [8] or rationalized via the fundamental adiabatic connection theorem [75, 103].

Strictly speaking, a hybrid functional is just a special case of an orbital functional, and the
corresponding exchange-correlation potential could be derived via the OEP equation (1.15).
In practice however, one typically derives the KS potential for hybrids as the sum of a frac-
tion of the orbital-speci�c Fock potential operator coming from the exact exchange part and
a fraction of the exchange-correlation potential coming from the employed semilocal func-
tional. This proceeding is computationally less costly and pragmatically justi�ed by the fact
that the usually small di�erence between the thus obtained potential and the corresponding
OEP can largely be buried in the �tting parameter aHF

0 . Formally, the introduction of an
integral operator in the potential can be justi�ed on the basis of a concept known as the
generalized Kohn-Sham scheme [119]. In this scheme, DFT is conceptually based on an
interacting reference system that can still be represented by a single Slater determinant.
For a more detailed discussion the reader is referred to Ref. [67] and references therein.

Another pragmatic step in the development of hybrid functionals was to include more than
one �ttable parameter in the functional form. Today, most of the commonly used hybrid
functionals employ 3 parameters that are �tted to yield good results for a large set of
systems and observables. The most popular representative of this new class of hybrids is
the B3LYP-functional [122]

EB3LYP
xc = ELDA

xc + aHF
0

(
EHF

x − ELDA
x

)
+ ax

(
EB88

x − ELDA
x

)
+ ac

(
ELYP

c − ELDA
c

)
, (1.25)

which employs the Becke88 GGA for exchange EB88
x [7], the GGA for correlation given by

Lee, Yang, and Parr ELYP
c [72], and ELDA

xc in the parametrization of Vosko, Wilk and Nusair
[137]. By �tting a set of atomization energies, ionization potentials, proton a�nities and
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1.5. Properties of the exact functional

total atomic energies, the empirical parameters were determined to aHF
0 = 0.20, ax = 0.72,

and ac = 0.81. Note that by including the semi-empirical GGA expressions Becke88 and
LYP, the e�ective number of parameters in B3LYP is 8, not 3.

Hybrid functionals only correct for a fraction of the total Hartree self-interaction energy.
Hence, hybrids are generally not free from self-interaction. However, many of the above
mentioned failures of semilocal functionals can be cured by including a fraction of exact
exchange in the functional and by �tting the empirical parameters to ever larger training sets.
As a consequence, modern hybrid functionals such as B3LYP usually yield very accurate
results for a wide range of observables. Due to its slightly better performance as compared
to other hybrids and despite its ad hoc construction, B3LYP has become the most popular
among all hybrid functionals and a work horse for practical applications of KS DFT, in
particular within the organic chemistry community.

1.5. Properties of the exact functional

The overview of functionals provided in the previous section shows that a large variety of
di�erent approaches to approximate the exact exchange-correlation functional exists. All
functionals have certain pros and cons related to their accuracy and computational costs.
However, at the end of the day it all depends on the accuracy of a functional in determining
the observable of interest. Therefore, the �rst step of every DFT calculation is to ensure the
reliability of the used functional for the investigated system. A convenient way to test the
accuracy of a functional is to compare its properties to those of the exact one. This section
introduces those properties of the exact functional which are of direct importance for the
problems studied in this work.

I start this overview with a discussion of the behavior of the exact functional for fractional
particle numbers. The latter has been shown to be decisive for a functional's ability to
correctly predict charge transfer properties such as the polarizabilities of molecular chains or
charge transfer excitations. Hence, this discussion yields important background for sections
1.6.3 and 4.1 as well as for publication 1.

1.5.1. Kohn-Sham DFT for fractional particle numbers

Mermin's generalization of the Hohenberg-Kohn theorem to equilibrated systems in a reser-
voir [84] allows to introduce the concept of fractional particle numbers to ground-state DFT.
This concept provides the basis for the inclusion of fractional occupation numbers into the
KS scheme, i.e., using fiσ with 0 ≤ fiσ ≤ 1 in the equations of section 1.2. In doing this, it
allows to determine several decisive properties of the exact functional.

Following an argument of Janak [48], the derivative of the total energy with respect to the
occupation numbers fiσ (orbitals are kept �xed) yields

∂E

∂fiσ
= εiσ , (1.26)

where εiσ and fiσ are KS eigenvalue and occupation number corresponding to the ith orbital
of spin σ, respectively. Eq. (1.26) is known as Janak's theorem.

Minimizing E with respect to fiσ subject to the constraint of particle conservation (see
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Chapter 1. Density functional theory

Eq. (1.5)) is equivalent to the minimization of E − µM (using the Lagrange multiplier µ),
which yields

δ(E − µM) =
∑

σ=↑,↓

Nσ∑
i=1

(εiσ − µ) δfiσ ≥ 0 . (1.27)

Note that it's the additional constraints 0 ≤ fiσ ≤ 1 that make Eq. (1.27) an inequality [106].
Eq. (1.27) states that orbitals ϕiσ with eigenvalues εiσ < µ are fully occupied, i.e., δfiσ ≤ 0
and thus fiσ = 1 and those with εiσ > µ have δfiσ ≥ 0 and thus fiσ = 0. Degeneracy
aside, fractional occupation is thus only allowed for the one orbital ϕHσ for which εHσ = µ.
Eq. (1.27) is called aufbau principle, µ can be identi�ed as the chemical potential or the
negative electronegativity of the system and ϕHσ is called the highest occupied molecular

orbital (HOMO) of spin σ. In combination with Janak's theorem, the aufbau principle thus
yields

∂E

∂fHσ
=

∂E

∂M
= µ = εHσ . (1.28)

Hence, the KS eigenvalue of the HOMO has a clear physical meaning. If calculated with
the exact functional, it equals the exact ionization potential. In this sense, Janak's theorem
can be interpreted as an analog of Koopman's theorem within KS DFT, the latter stating
that all HF-eigenvalues can be interpreted as approximative electron removal energies. Note
however, that in KS DFT only the KS eigenvalue corresponding to the HOMO has a clear
and distinct physical meaning. Still, it is possible to interpret KS eigenvalue di�erences as
well-de�ned approximations to excitation energies (see discussion in section 1.5.5).

Further insight was provided by Perdew et al. who, by employing the constrained search

technique, showed that the relaxed ground-state energy of a system consisting of N + ω
particles, where N is an integer and 0 ≤ ω ≤ 1, is given by [104]

EN+ω = (1− ω)EN + ωEN+1 . (1.29)

Here, EN is the exact ground-state energy of the N -particle system. Thus, the exact total
energy of a �nite system with non-integer particle number varies linearly with the fractional
occupation as shown in Fig. 1.1. At integer occupations however, the derivative of the
energy with respect to the fractional occupation jumps discontinuously. The value of this
discontinuity ∆ is given by the di�erence of the system's ionization potential I(N) and
electron a�nity A(N), which according to Eq. (1.28) can be written as (spin indices omitted)

I(N) = − lim
ω→0

µ(N − ω) , A(N) = − lim
ω→0

µ(N + ω) , (1.30)

∆ := I(N)−A(N) . (1.31)

Using the variational principle, i.e., δ (E−µM) = δ
(
E − µ

∫
n (r) dr

)
= 0, one can further

derive the Euler equation [104]

δE [n]
δn (r)

= µ . (1.32)
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1.5. Properties of the exact functional

Figure 1.1:

Exact ground-state energy of a �nite system
with non-integer electron number N + ω. I(N)
is the ionization potential and A(N) the elec-
tron a�nity of the system with integer electron
number N . Note the discontinuous derivative of
the energy at integer electron number.

Hence, ∆ can be split into two contributions:

∆ = I(N)−A(N) = lim
ω→0

{µ(N + ω)− µ(N − ω)} (1.33)

= lim
ω→0

{
δE [n]
δn (r)

∣∣∣∣
N+ω

− δE [n]
δn (r)

∣∣∣∣
N−ω

}
= εN+1 − εN︸ ︷︷ ︸+ lim

ω→0

{
vxc(r)

∣∣
N+ω

− vxc(r)
∣∣
N−ω

}
︸ ︷︷ ︸

= ∆KS + ∆xc .

As an important consequence, the exact exchange-correlation potential vxc(r) jumps discon-
tinuously by a constant ∆xc when the particle number crosses an integer. ∆xc is called the
derivative discontinuity of Exc. Note that, strictly speaking, the concept of the derivative
discontinuity is only applicable to open systems with a non-integer number of electrons.
However, as will be discussed in the following two sections, it has very important conse-
quences also in systems with an integer number of electrons.

1.5.2. The gap-problem

Following Janak's theorem, the HOMO-eigenvalue as calculated with the exact functional
equals a system's ionization potential. Inspired by this exact relation, it seems a natural
approach to calculate the energy gap between a system's ground state and its lowest excited
state as the di�erence between the eigenvalues of HOMO and HOMO+1, i.e., theKohn-Sham
gap ∆KS = εH+1 − εH . However, calculations routinely �nd KS gaps that are signi�cantly
smaller than experimental excitation gaps. This ambiguity is a frequent source of confusion
in the literature and will be referred to as the gap-problem in the following.

There are two fundamentally di�erent experimental gaps that should be distinguished in a
thorough discussion of the gap problem. The optical gap is the energy di�erence between
a system's ground state and its �rst optically accessible excited state. The proper way for
computing the optical gap is to use time-dependent DFT (TDDFT), which will be discussed
in section 1.6. However, on the basis of Görling-Levy perturbation theory [76, 36] (see
section 1.5.5 for a discussion), it has been argued that KS eigenvalue di�erences calculated
from a suitable functional can be interpreted as zeroth-order approximations to optical
excitation energies. Still, despite this formal argument there is no fundamental reason why
KS eigenvalue di�erences should agree exactly with optical excitation energies, even if they
are calculated with the exact functional.

The fundamental gap is the di�erence between a system's ionization potential and its electron
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Chapter 1. Density functional theory

a�nity. Although from a fundamental point of view the fundamental gap is an excited state
property, it could in principle be derived exactly from two separate ground-state calculations
on theN and theN+1 electron system. However, it can not be derived from a single ground-
state calculation on the neutral system. The reason for this is buried in Eq. (1.33): while
the KS gap ∆KS can be evaluated on the basis of a single ground-state calculation, the
derivative discontinuity ∆xc can only be evaluated on the basis of at least two separate
calculations that employ a di�erent total number of electrons.

Hence, even for the exact functional the KS gap does not agree with any experimental
gap. Therefore, any search for the �ultimate functional� that would yield highly accurate
excitation gaps from a single ground-state calculation is inherently doomed. Still, there
are high hopes to �nd functionals that are able to predict reasonable gaps based on a
systematic cancellation of errors. E.g., it has been shown that in many cases B3LYP yields
KS gaps that are very close to the optical gap, especially for π-systems such as organic
semiconductors. Note that an example of this cancellation of errors in the B3LYP KS gap
of organic semiconductors is provided in publication 4.

1.5.3. Step-like structure of the exchange-correlation potential

As discussed above, the derivative discontinuity in the exact Exc only shows up if one varies
the fractional number of electrons in a system across an integer. However, under certain
circumstances a doppelganger of the derivative discontinuity can be found in calculations
with �xed, integer occupation numbers. This doppelganger is usually referred to as the
step-like structure of the exchange-correlation potential. A typical situation in which the
step-like structure of the potential becomes apparent is also a particularly important one:
charge transfer between two separated atoms or molecules.

Imagine two equal atoms A and B at large separation. If the atoms are su�ciently separated,
the exact exchange-correlation potential vxc of this model-system is basically a sum of the
potentials of the single atoms as indicated in Fig. 1.2 a). Now assume that an in�nitesimal
fraction ω of an electron is transfered from B to A (note that ω represents a negative

fractional charge). According to the discussion in section 1.5.1, the potential of A jumps by a
constant ∆A

xc while the potential of B basically remains una�ected by the in�nitesimal charge
transfer. As a consequence, a step appears in vxc which counteracts the charge transfer (see
Fig. 1.2 b)). As observed already early by Perdew et al. [104], this step in vxc has important
physical consequences as it suppresses charge �uctuations between neighboring atoms and
molecules and thus assures the principle of integer preference: in a collection of separated
objects, nature prefers to locate an integer number of electrons on each object.

Due to its charge-transfer counteracting behavior, the occurrence of a step-like structure in
vxc is of fundamental importance. In general, approximative functionals without a step-like
structure will signi�cantly overestimate charge transfer properties. However, as indicated
by the above analysis, the occurrence of a step-like structure in the exchange-correlation po-
tential requires a strong spatial non-locality in the functional. Hence, semilocal functionals
fail badly in predicting charge transfer properties such as polarizabilities of molecular chains
(see publication 1) or energies of charge-transfer excitations (see section 1.6.3 and publica-
tion 4). Although considerable progress has been made in including a step-like structure in
semilocal functionals [4], a common approach to improve upon the performance of semilocal
functionals is to go over to orbital functionals or hybrids [34, 68]. However, in several stud-
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Figure 1.2:

a) Schematic description of the exact
vxc of a system of two equal subsys-
tems A and B at large separation (ar-
bitrary units).
b) Transfer of an in�nitesimal fraction
ω of an electron from B to A yields a
discontinuous step in vxc which coun-
teracts the charge-transfer. Note that
the potential is rescaled as compared
to the one in a) so that it falls o� to
zero at in�nity.

ies it has been found that a functionals treatment of the self-interaction error (SIE) plays
a decisive role for its performance in charge-transfer problems (see, e.g., Refs. [99, 113] and
publication 1). Therefore, the relation between the SIE and the derivative discontinuity will
be the topic of the following section.

1.5.4. Self-interaction and the derivative discontinuity

The derivative discontinuity is a property of the generally unknown exact exchange-
correlation functional in open systems. The step-like structure in the exact vxc of a closed
system is a direct consequence of the derivative discontinuity. In a number of publications,
it has been shown that a step-like structure occurs in those approximations to Exc that
correct for the SIE. In contrast, functionals that are not at least approximately free from
self-interaction typically show no step-like structure in the potential. These facts strongly
indicate a close relation of self-interaction and the derivative discontinuity. This section
provides an approximative but descriptive explanation of this relationship.

Imagine the following gedanken experiment: Take a system composed of two well separated
and initially neutral atoms, e.g., Na and Cl, and assume an externally applied �eld that
gradually transfers an electron from the HOMO of Na to the LUMO (lowest unoccupied
molecular orbital) of Cl. In the following, let the total energy of the system be the observable
of interest. Now consider two di�erent situations. First, assume that this problem is treated
with an approximative functional that does not su�er from self-interaction. Then, as the
number of transfered electrons ω varies from 0 to 1, the atomic orbital being �lled basically
�sees� the potential of a neutral Cl-atom. Thus, the energy of the Cl-atom varies almost
as if the extra orbital density is being �lled in a constant potential, i.e., linearly with ω.
The energy of the Na-atom also varies almost linearly with ω, as does the total energy. If
however ω crosses an integer, the transfered electron will suddenly �see� a new potential,
e.g., at ω = 0 the potential on the Cl-side changes from of that of a positively charged Cl-ion
to that of a neutral Cl-atom. This sudden jump of the potential yields an abrupt change in
the slope of the total energy (see Fig. 1.3), i.e., a derivative discontinuity.

Then, assume that the same problem is treated with a functional that su�ers from self-
interaction, i.e., an approach in which the total energy accounts for the interaction of single
electron densities with themselves. In this case, the potentials of Na and Cl and thus
the total energy of the system vary smoothly with the number of transfered electrons. In
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Figure 1.3:

Gedanken experiment: change in the total en-
ergy of a system composed of two well-separated
atoms (Na and Cl) as a function of the number
of electrons transfered from sodium to chlorine.
Note that a self-interaction free approach yields
a kink in the total energy at integer particle num-
ber whereas the energy varies rather smoothly in
an approach that su�ers from self-interaction.

particular, there is no sudden change in the potential at integer particle number. This is
because the di�erence between the Cl-potential constructed from 17− ω electrons and the
one constructed from 17+ω electrons (where ω � 1) is negligible if the self-interaction of the
transfered electron is accounted for in the construction of the potential. Further, as there
is no discontinuity in the derivative of the total energy, no charge-transfer counteracting
step-structure in the potential can be expected. As the chemical potential of Cl is lower in
energy than the one of Na, the system can therefore gain energy by transferring a fraction
of an electron from Na to Cl. Hence, a functional that su�ers from self-interaction can yield
a minimum of the total energy for a fractional number of transfered electrons and thereby
violate the principle of integer preference.

Note that, although Fig. 1.3 can be constructed solely on the basis of the above gedanken
experiment, the predicted behavior of the total energy for a system of well-separated Na-
and Cl-atoms has in fact been proven by calculations that employ the LDA functional and
a self-interaction corrected approach [100]. Note also that the above reasoning assumes a
couple of approximations such as the neglect of relaxation e�ects. The in�uence of these
approximations will be discussed in further detail in section 2.1.2.

The central statement of this section is that a functional's freeness from self-interaction is
decisive for the inclusion of a step-like structure in the corresponding exchange-correlation
potential and thus for an accurate prediction of charge-transfer properties. The question of
how to correct semilocal functionals for self-interaction will be discussed in section 2.

1.5.5. The physical interpretation of Kohn-Sham eigenvalues

The combination of Janak's theorem and the aufbau principle as provided in Eq. (1.28)
allows to assign a physical meaning to the eigenvalue of the HOMO: if calculated from the
exact functional, it equals the exact ionization potential of the studied system. However,
such a distinct statement does not exist for other KS eigenvalues. In particular, there is
no one-to-one DFT-analog of Koopman's theorem, which states that the i-th HF-eigenvalue
approximates the energy di�erence between the (i + 1)- and the i-particle system if the
many-electron wave function of the system is approximated by a single Slater determinant
of HF-orbitals.

Yet, Görling-Levy perturbation theory [76, 36] yields a methodology which allows to base the
physical interpretation of KS eigenvalues on rigorous grounds. Its basic idea is to express
the eigenenergies of the fully interacting system in terms of ground-state properties of the
KS system by virtue of an adiabatic connection [42, 71, 41], which is characterized by the
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Schrödinger equation [
T̂ + α V̂ee + v̂α

]
ψα

n = Eα
n ψ

α
n , (1.34)

with the kinetic energy T̂ , the electron-electron repulsion V̂ee and the potential v̂α. The
square root of the coupling constant α can be interpreted as a factor scaling the elementary
charge of the electron. Eq. (1.34) represents a continuous connection between the nonin-
teracting KS system and the real physical system: for α = 1 Eq. (1.34) turns into the
Schrödinger equation of the fully interacting system in an external potential v̂1 = vext,
whereas for α = 0 the corresponding KS equations with v̂0 = vKS result. The requirement
that the ground state ψα

0 yields the density n0 (r) independently of the value of α de�nes
the potential vα [n0, r] along the coupling constant path up to an α-dependent additive
constant.

In Ref. [36] Görling used the adiabatic connection methodology to show that the eigen-
energies Eα

n of the fully interacting system can be developed in a Taylor series

Eα
n =

∞∑
k=0

αk kEn , (1.35)

where the terms kEn can be expressed in terms of KS eigenvalue di�erences, KS orbitals,
and the external potential. In particular, the zeroth order contribution to the excitation
energy between the ground state of the fully interacting system and the excited state that is
adiabatically connected to the two KS states obtained by promoting an electron from orbital
ϕi into orbital ϕj is given by the di�erence of the corresponding KS eigenvalues, i.e., εj− εi.
In this sense, Görling-Levy perturbation theory assigns a well de�ned physical meaning to
KS eigenvalues: their di�erences are approximations to excitation energies of zeroth order

in the electron-electron interaction. In combination with Eq. (1.28), the KS eigenvalues
themselves can be interpreted as zeroth order approximations to electron removal energies.

In order that the interpretation of KS eigenvalues is useful in practice, it is of course crucial
that the approximation of zeroth order in the coupling constant is in fact a good one.
However, this is not at all clear per se and must be tested thoroughly. In a number of
publications [11, 2, 56, 62, 63, 132, 92], in particular in the work of Chong et al. [20],
it is shown that KS eigenvalues usually compare surprisingly well to vertical ionization
potentials, especially if they are calculated from high-quality KS potentials obtained from
highly accurate ab initio densities. Clearly, these results warrant the physical reliability of
the zeroth order approximation, yet at the same time they emphasize the importance of
using high-quality functionals. In publication 3, it is demonstrated that it is mainly the
absence of self-interaction in the used functional that plays a decisive role for the physical
reliability of the occupied eigenvalue spectrum.

1.6. Time-dependent density functional theory

Following the Hohenberg-Kohn theorem, the ground-state density of a system uniquely de-
termines its many-body Hamiltonian and thus all its properties. Hence, all ground and
excited state properties are, at least in principle, encoded in the ground-state density. How-
ever, an explicit link between excited state properties and the ground-state density is not
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known. Therefore, KS DFT is not a suitable approach to calculate excited state quantities.
Yet, there is also a rigorous way for calculating excited state properties within a density
functional framework, i.e., time-dependent density functional theory (TDDFT). More than
twenty years after the formulation of its basic theorems, TDDFT has become one of the
most prominent and most widely used approaches for the calculation of excitation energies,
oscillator strengths and excited state geometries of medium to large molecular systems.

1.6.1. Background

The formal foundation of TDDFT is the Runge-Gross theorem [111]. This theorem can be
interpreted as the time-dependent analogue of the �rst Hohenberg-Kohn theorem and it has
been shown to be valid on rather general grounds [73]. Its central statement is that the
densities n(r, t) and n′(r, t) evolving from a common initial state under the in�uence of two
local potentials v(r, t) and v′(r, t) are always di�erent provided that the potentials di�er
by more than a purely time-dependent function. In close analogy to the static case, most
TDDFT calculations are based on the time-dependent KS equations

ih̄
∂

∂t
ϕjσ(r, t) =

[
− h̄2

2m
∇2 + vKS

σ (r, t)
]
ϕjσ(r, t) , (1.36)

in which the fully-interacting system is mapped to a non-interacting system evolving under
the local time dependent KS potential

vKS
σ (r, t) = vHart(r, t) + vext(r, t) + vxc,σ(r, t) . (1.37)

Although the time-dependent KS equations are exact in principle, the exchange-correlation
part of the potential again has to be approximated in practice. As for ground-state DFT,
the accuracy of TDDFT results strongly depends on the employed functional and the system
and observable of interest. For many of the approximative functionals discussed in section
1.4 the extension to the time-dependent case is straightforward. Usually, one employs the
adiabatic approximation in which the memory e�ects in the exact potential are neglected.
As a consequence of this approximation, vadiabatic

xc,σ (r, t) only depends on the density at time t
and not on the density at all prior times t′ < t. For a detailed discussion of memory e�ects
the reader is referred to Ref. [127]. Detailed reviews on TDDFT, used functionals, and
methodologies can be found, e.g., in Refs. [80, 25, 28].

The time-dependent KS equations can be solved explicitely by propagating the KS orbitals
in time. This method is referred to as real-time TDDFT [142] (see also Refs. [92] and [127] for
an overview). The most prominent and most often used TDDFT-approach however focuses
on the analysis of the linear response regime within the Casida-formalism [13], which will
be discussed in the following section.

1.6.2. Excitations from linear response and Casida's equations

According to the Runge-Gross theorem, any observable is a functional of the time-dependent
density and of the initial state. Usually, one chooses the initial state to be the system's
ground-state. In this case, the initial state itself is a functional of the density via the
Hohenberg-Kohn theorem, and thus every observable is again a pure density functional.
Then, in order to probe a system's excited state properties, an external �eld vext(r, t) is
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1.6. Time-dependent density functional theory

applied. The idea of linear response TDDFT is to analyze the �rst order density response
to a weak excitation. By Fourier-transformation in time, one can identify the excitation
energies of a system as the poles of its KS density response function in frequency space.
Numerous reviews on linear response TDDFT can be found in the literature [80, 25, 28].
Therefore, only a short introduction is given in the following.

The central equations of the linear response formalism in TDDFT are Casida's equations

[13] (spin indices and occupation numbers are omitted for clarity)[
A B
B∗ A∗

] [
Xω

Yω

]
= ω

[
1 0
0 −1

] [
Xω

Yω

]
, (1.38)

where (in a general notation for hybrid functionals in the spirit of Eq. (1.24))

Aia,jb = δij δab (εa − εi) + (ia|jb)− aHF
0 (ij|ab) + (1− aHF

0 )(ia|fxc|jb), (1.39)

Bia,jb = (ia|bj)− aHF
0 (ib|aj) + (1− aHF

0 )(ia|fxc|bj) . (1.40)

Here, the two-electron integrals are given in Mulliken notation, i.e.,

(ia|jb) :=
∫∫

ϕ∗i (r)ϕa(r)
1

|r− r′|
ϕj(r′)ϕ∗b(r

′) dr dr′ , (1.41)

(ia|fxc|jb) :=
∫∫

ϕ∗i (r)ϕa(r) fxc(r, r′)ϕj(r′)ϕ∗b(r
′) dr dr′ , (1.42)

fxc is the exchange correlation kernel of the semilocal functional Esl
xc used in Eq. (1.24)

fxc(r, r′) =
δEsl

xc

δn(r) δn(r′)
, (1.43)

ϕi are the occupied (indices i and j) and unoccupied (indices a and b) KS orbitals of the
system's ground-state, and εi are the corresponding KS eigenvalues. A and B are matrices
of rank (Nocc ×Nunocc)

2, where Nocc is the number of occupied and Nunocc the (�nite)
number of unoccupied orbitals in the employed basis. If both the KS orbitals and the kernel
fxc are real-valued, Eq. (1.38) can be cast into a Hermitian eigenvalue problem of dimension
Nocc ×Nunocc [13]

(A−B)1/2 (A + B) (A−B)1/2 Zω = ω2 Zω , (1.44)

where

Zω = (A−B)−1/2 (Xω + Yω) . (1.45)

The eigenvalues ω2 equal the square of the excitation frequency ω, and the eigenvectors
Zω are the corresponding transition density matrices in the basis of KS orbitals. One thus
obtains the transition density ρω (r) at energy ω

ρω (r) =
Nocc∑

i

Nunocc∑
a

Zia,ω (εa − εi)−1/2 ϕi(r)ϕa(r) (1.46)

in terms of products of occupied and unoccupied KS orbitals. Oscillator strengths γω for
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dipole transitions can be obtained via

γω =
2
3

3∑
β=1

∣∣∣RT
β Q1/2Zω

∣∣∣2 , (1.47)

where

(Rβ)ia =
∫

ϕ∗i (r) rβ ϕa (r) dr, (r1, r2, r3) = (x, y, z) , (1.48)

and

Qia,jb = δijδab (εa − εi) . (1.49)

Note that aHF
0 vanishes for proper (non-hybrid) density functionals. By setting aHF

0 in
Eqs. (1.39) and (1.40) to 1 one immediately obtains the linear response time-dependent
Hartree-Fock (TDHF) equations. This shows the close analogy in the methodology of lin-
ear response TDDFT and TDHF. In general however, it is found that TDDFT excitation
energies improve signi�cantly upon those obtained from TDHF.

1.6.3. Charge-transfer excitations

Imagine two spatially separated molecules A and B where the orbitals of molecule A and the
orbitals of molecule B have zero overlap. An excitation in which an electron is transfered
from an occupied state on A to an unoccupied state of B is called a charge-transfer (CT)
excitation. As the obtained negative and positive charges on A and B electrostatically
attract each other, the energy of the CT state has a 1/R-dependence, where R is the
distance between A and B. In the limit R → ∞, the CT excitation energy approaches the
di�erence between the ionization potential of A and the electron a�nity of B, i.e., IA−AB.

The behavior of linear response TDDFT for charge transfer excitations can be understood
on the basis of Eqs. (1.39) and (1.40). As the overlap between orbitals i, j at molecule A
and orbitals a, b at molecule B is negligible, one obtains

Aia,jb = δij δab (εa − εi)− aHF
0 (ij|ab) + (1− aHF

0 )(ia|fxc|jb), (1.50)

Bia,jb = (1− aHF
0 )(ia|fxc|bj) . (1.51)

As long as the used exchange-correlation kernel fxc does not have a singularity which is able
to compensate for the vanishing overlap of the orbitals, B and the last term in A vanish.
As a result of Eq. (1.44), the excitation energy of a CT state as calculated from a pure
density functional (aHF

0 = 0) is then simply given by the di�erence of the KS eigenvalues of
the electron-donating and the electron-accepting molecular orbitals εa and εi, thus failing to
restore the correct 1/R behavior. In TDHF (aHF

0 = 1) however, the correct 1/R-dependence
of the excitation energy is obtained due to the second term in the A-matrix of Eq. (1.50).

The failure of commonly used functionals to correctly predict CT excitation energies is well
known and frequently discussed in the literature. Quite often, this failure is understood to
be a failure of TDDFT itself. However, it should be noted that, despite the above reasoning,
TDDFT yields correct CT excitation energies if the exact exchange-correlation functional is
employed. This is due to the step-like structure in the exact exchange-correlation potential,
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which has been discussed in section 1.5.3. In case of an electron transfer from molecule A to
molecule B, the exact exchange-correlation potential at B jumps by a constant. This leads to
a discontinuous step in the overall exchange-correlation potential and, as a consequence, to a
singularity in the derivative of vxc with respect to the density, i.e., the exchange-correlation
kernel fxc. This singularity compensates for the vanishing orbital overlap between the
orbitals of A and B in the last terms of Eqs. (1.50) and (1.51). Therefore, these terms in
fact contribute to CT excitations and the correct 1/R-dependence is obtained.

In the spirit of section 1.5.4, the failure of TDDFT for CT excitations can also be traced
back to a SIE in the employed functionals. As discussed above, the 1/R-dependence of the
exact CT excitation energy is a consequence of the Coulombic interaction of the transfered
electron with the hole it left behind. If the employed functional su�ers from self-interaction,
the transfered electron in orbital a experiences the electrostatic repulsion with itself still
being in orbital i, i.e., it experiences the A-molecule as being neutral. Therefore, there is
no electrostatic interaction between hole and electron and no 1/R-dependence. Again, this
demonstrates the close relation of self-interaction in the functional and step-like structure
in the potential.

Note that a reliable criterion whether an excitation energy calculated from a common density
functional su�ers from the CT problem or not arises from Eqs. (1.50) and (1.51). If the
excitation of interest is a CT excitation, then its energy is particularly sensitive to the
fraction of HF-exchange in the employed hybrid functional. In this case, the excitation
energy usually varies by several eV when tuning aHF

0 between 0 and 1, whereas the energy-
variation in non-CT excitations is usually much smaller. In publication 4 this criterion is
used to test the reliability of the calculated excitations.

1.6.4. Visualizing electronic excitations

The composition of electronic excitations into transitions between single-particle orbitals
as done in Eq. (1.46) provides a possibility to obtain more information about the nature of
electronic excitations. In particular, it is often of interest �which electron is transfered from
where to where�, especially in the case of CT excitations. If in the spirit of Eq. (1.46) one can
identify certain leading occupied and unoccupied orbitals in the transition of interest, a plot
of these orbitals can often help to distinguish quickly between CT states and valence-excited
states.

A more general approach to study the nature of excitations is to plot the natural transition
orbitals (NTOs) introduced in Ref. [81]. Analogous to the well-known natural orbitals,
which are obtained by diagonalization of the ground-state single-electron density matrix, the
NTOs of a certain excitation result from the diagonalization of the corresponding transition
density matrix Zia. As shown in the previous sections, the transition density matrices
and the corresponding excitation energies are obtained as eigenvectors and eigenvalues of
Casida's matrix. However, as Zia is a rectangular Nocc × Nunocc matrix, it cannot simply
be diagonalized. Instead one uses a singular value decomposition

Z = USV† , (1.52)

where U and V are Nocc ×Nocc and Nunocc ×Nunocc unitary matrices, respectively, and S
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is a singular matrix containing the singular values of Z, i.e.,

Sia =
√
λi δia . (1.53)

Employing several matrix multiplications, Eq. (1.52) can be reformulated to

U† ZZ† U = V† Z† ZV = S2 . (1.54)

The unitary transformations U and V diagonalize the matrices ZZ† and Z† Z, respectively,
and thus contain their eigenvectors as columns. Although the matrices ZZ† and Z† Z have
di�erent dimensions, i.e., Nocc × Nocc and Nunocc × Nunocc, respectively, their �rst Nocc

eigenvalues λi are identical. The λi are the quadratic singular values of S, which satisfy

0 ≤ λi ≤ 1 , i = 1, 2, ..., Nocc (1.55)

λa = 0 , a ≥ Nocc + 1 (1.56)
Nocc∑
i=1

λi = 1 . (1.57)

The additional zero eigenvalues λa arise from mapping the transition density matrix onto
the larger matrix Z† Z.

One can now de�ne the occupied and virtual natural transition orbitals Φj and Φ′
b, respec-

tively, as

(Φ1,Φ2, ...,ΦNocc) := (ϕ1, ϕ2, ..., ϕNocc)U , (1.58)(
Φ′

1,Φ
′
2, ...,Φ

′
Nunocc

)
:=

(
ϕ′1, ϕ

′
2, ..., ϕ

′
Nunocc

)
V , (1.59)

where ϕi and ϕ
′
a are occupied and unoccupied ground-state KS orbitals, respectively. Fol-

lowing Eq. (1.54), the matrices U and V can be obtained from diagonalizing ZZ† and Z† Z,
respectively.

Note that in Eq. (1.59) one actually obtains only Nocc and not Nunocc NTOs. The remaining
unoccupied orbitals are mapped onto the null vector due to Eq. (1.56). The NTOs thus allow
to associate each hole in the occupied space with one single corresponding particle in the
virtual space. The importance of such a particle-hole pair for a certain electronic excitation
is re�ected by the corresponding eigenvalue λi. The main advantage of this approach is
however that usually electronic transitions can be expressed by one single particle-hole pair
with λi ' 1, even if the transition is of a highly mixed nature in the basis of KS orbitals.
One can thus assign one hole- and one electron-NTO to each electronic transition obtained
from Casida's equations. If a transition is mainly a transition between two KS orbitals, the
NTO-approach will basically yield these two orbitals as hole- and electron-NTO, respectively.

It should be mentioned that there are several other approaches to visualize the transition
density matrix. An overview can be found, e.g., in Refs. [130, 25]. For more details on
the NTO approach the reader is referred to Ref. [81]. An example which demonstrates
how NTOs can help to gain information about electronic transitions in complex molecular
structures is provided in publication 4.
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Chapter 2.

Self-interaction

Self-interaction is one of the oldest, most substantial, and most often discussed problems
in DFT. Therefore, the question arises why it is that hard to �nd a functional which is
completely free from self-interaction. In the following, this question will be discussed in two
steps. Section 2.1 concentrates on the problem of how to de�ne self-interaction in a system of
many electrons, while section 2.2 presents ways to approximately correct for self-interaction
in many-electron systems.

2.1. The ambiguity in de�ning self-interaction

Although KS DFT is per construction a many-particle scheme, the one-particle system is
an interesting limit revealing crucial properties of the unknown exact functional. This is
due to the trivial fact that there is no electron-electron interaction in a one-electron system.
As an important consequence, all electron-electron interaction parts of the total energy (see
Eq. (1.6)) and of the KS Hamiltonian (see Eq. (1.10)) have to cancel exactly, i.e.,

EHart [n1] + Exc [n1] = 0 , (2.1)

vHart [n1] (r) + vxc [n1] (r) = 0 , (2.2)

for every v-representable density n1 (r) with∫
n1 (r) dr = 1 . (2.3)

While the exact functional ful�lls Eqs. (2.1) and (2.2) by de�nition, most of the commonly
used approximations to Exc, in particular all semilocal functionals, violate these conditions.

The discussion of the one-electron system thus reveals a substantial drawback of semilocal
density functionals. Obviously, this problem still exists in many-electron systems. However,
in this case self-interaction is much harder to pin down. This is due to one of the central
statements of quantum mechanics: in a system of many interacting particles, it is not
possible to distinguish between single particles. This leads to an ambiguity in the de�nition
of self-interaction in many-electron systems, which is made a subject of discussion in the
following sections.
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2.1.1. One-electron self-interaction and the unitary invariance problem

As the de�nition of self-interaction via Eqs. (2.1) and (2.2) is straightforward for one-electron
densities, the question arises whether a similar idea can be carried forward to many-electron
systems. There is an approach that appears quite naturally: By identifying orbital-densities
niσ = fiσ |ϕiσ (r)|2 with electrons, one can de�ne an interaction energy for every single
electron by

δiσ = EHart[niσ] + Eapp
xc [niσ, 0] . (2.4)

Then, if

∑
σ=↑,↓

Nσ∑
i=1

δiσ = 0 (2.5)

holds, declare the approximative functional Eapp
xc [n↑, n↓] as being free from self-interaction.

For the exact functional Eex
xc [n↑, n↓] all δiσ vanish independently as every interacting v-

representable one-electron density niσ can be interpreted as the ground-state density of
some one-electron system. Consequently, Eq. (2.5) is a necessary property of Eex

xc [n↑, n↓].

The application of Eqs. (2.4) and (2.5) to commonly used density functionals however reveals
two drawbacks of these approximations. First, δiσ does not vanish in general for one-
electron densities. Most functionals show this failure, i.e., they su�er from one-electron

self-interaction [114, 88]. Second, for most of the common density functionals, δiσ takes
di�erent values for di�erent one-electron densities. This failure will be referred to as the
unitary invariance problem in the following.

As will be shown in section 2.2, the unitary invariance problem poses a severe di�culty
when it comes to correcting functionals for self-interaction. Here, the central aspect is that
in a many-electron system there is no unique way of de�ning a density for a single electron.
Especially, identifying orbital densities with single electrons, as done in Eq. (2.4), raises the
question which orbitals to use. Of course, from a KS DFT perspective it seems natural to use
the KS orbital densities as the one-electron densities needed in Eq. (2.4). However, orbitals
are quantities that are intrinsically linked to the one-electron picture. Strictly speaking, KS
orbitals are just auxiliary quantities which yield, when correctly summed up, the ground-
state density. Therefore, KS orbital-densities can be associated with electrons no less and no
more than all other orbital-densities which add up to the correct ground-state density. Con-
sequently, a quanti�cation of self-interaction in a many-electron system should be invariant
under unitary transformation, i.e., a transformation which changes the individual orbital
densities but leaves the total density unchanged. However, for common density functionals
Eq. (2.5) does not have this property. Clearly, this is a profound drawback of this de�nition.

Note that the EXX functional (see Eq. (1.13)) solves both the one-electron self-interaction
problem and the unitary invariance problem: the diagonal elements of the Fock-integral
cancel out the Hartree self-interaction while the Fock-integral itself is invariant under unitary
transformation of the orbitals. However, EXX does not include correlation and therefore
su�ers from many other problems.
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2.1.2. Many-electron self-interaction and relaxation e�ects

The above discussed problems arising from the de�nition of one-electron self-interaction via
Eq. (2.5) have led to the search for a more suitable de�nition of self-interaction in many-
electron systems. The �ndings of section 1.5 lay the foundation for such an alternative
approach. In section 1.5.1 it was demonstrated that the exact total energy of a �nite
system with non-integer particle number varies linearly with the fractional occupation, thus
yielding kinks at the integers. Section 1.5.4 discussed the relationship of the straight-line
behavior and the self-interaction problem. It was shown in this context that functionals
which su�er from self-interaction are not able to reproduce the straight-line behavior of
the exact functional. This �nding suggests an alternative de�nition of self-interaction: A
functional is said to be free from many-electron self-interaction if its relaxed ground-state
energy yields a straight line with the correct slope for noninteger particle numbers [114, 88].

It has been demonstrated that none of the known density, orbital, or hybrid functionals is
able to ful�ll this stringent requirement for a wide range of systems, at least not without
including a system-dependent parameter [88, 139]. At �rst sight, this empirical �nding
seems to contradict the rationale of the gedanken experiment of section 1.5.4. According to
Fig. 1.3, a functional which is free from one-electron self-interaction, such as EXX, should
at least approximately show a straight-line behavior with kinks at integer occupations. The
explanation for this discrepancy lies in the approximations used in the descriptive gedanken
experiment of Fig. 1.3. In the following, these approximations as well as their consequences
for the straight-line behavior will be discussed in further detail.

A concept which has been neglected in the discussion of section 1.5.4 are the relaxation

e�ects. A clear de�nition of relaxation can be made on the basis of the exact functional.
In this case, it is known that the ground-state energy of a �nite system with non-integer
particle number varies linearly with the fractional occupation. According to Eq. (1.28), the
exact HOMO-eigenvalue εH (degeneracy of the HOMO and spin indices are omitted for
clarity in this whole section) is therefore constant for occupation numbers 0 < fH ≤ 1. Yet,
all other occupied and unoccupied eigenvalues are free to change with varying fH. As a
change in fH implies a change in the density and thus a change in the KS potential and the
KS Hamiltonian, respectively, all other eigenvalues, all orbitals and thus the total energy
will be a�ected by the change in the HOMO-occupation. These second order e�ects are
referred to as relaxation e�ects in the following.

A quanti�cation of relaxation e�ects can be gained by comparing the relaxed energy with
the unrelaxed one. In the unrelaxed case, the HOMO ϕH and the residual density n̄H :=
n−nH = n−fH|ϕH|2 are kept �xed while varying fH between 0 and 1. For fH � 1 relaxation
e�ects are very small and the unrelaxed energy equals the relaxed one. The in�uence of
relaxation e�ects on the energy increases with increasing fH. For the exact functional one
therefore expects a deviation of the unrelaxed energy from the linearity of the exact energy
as indicated in Fig. 2.1. Note that the gedanken experiment of Fig. 1.3 basically focuses on
the unrelaxed case, i.e., �lling an electron in a constant potential. Still, the exact functional
does not vary linearly in this case as relaxation e�ects are in general nonlinear. Clearly,
this emphasizes that the straight-line behavior of the relaxed energy warrants more than
the freedom from one-electron self-interaction.

Further insight can be gained by discussing the scaling of the unrelaxed total KS energy
with fH. According to Eqs. (1.7) and (1.9), the external energy Eext as well as the kinetic
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energy Ekin scale linearly with fH. The Hartree energy can be split into three contributions
with di�erent scaling, i.e.,

EHart [n] =
e2

2

∫∫
n (r)n(r′)
|r− r′|

dr dr′ =
e2

2

H−1∑
i,j=1

fifj

∫∫ |ϕi (r) |2|ϕj(r′)|2

|r− r′|
dr dr′ (2.6)

+ e2
H−1∑
i=1

fifH

∫∫
|ϕi (r) |2|ϕH(r′)|2

|r− r′|
dr dr′ +

e2

2
f2
H

∫∫
|ϕH (r) |2|ϕH(r′)|2

|r− r′|
dr dr′

= EHart [n̄H] + EL
Hart [n̄H, nH] + EHart [nH] ,

where

EL
Hart [n̄H, nH] := e2

∫∫
n̄H (r)nH(r′)
|r− r′|

dr dr′ (2.7)

is the Coulomb-interaction energy of the HOMO-density nH with the residual density n̄H.
In the unrelaxed case, EHart [n̄H] is constant, EL

Hart [n̄H, nH] scales linearly and the spurious
Hartree self-interaction of the HOMO EHart [nH] quadratically in fH. Although its general
form is unknown, the same type of splitting can formally be done for the exchange-correlation
functional Exc by de�ning

ER
xc [n̄H, nH] := Exc [n]− Exc [n̄H]− Exc [nH] . (2.8)

For di�erent functionals, ER
xc is a di�erent function of fH. The scaling of ER

xc for the exact
functional is in general unknown.

Eqs. (2.6)-(2.8) together with Eq. (2.4) yield

EHart [n] + Exc [n] = EHart [n̄H] + Exc [n̄H] + EL
Hart [n̄H, nH] + ER

xc [n̄H, nH] + δH . (2.9)

The scaling of di�erent functionals for fractional particle numbers in the unrelaxed case can
now be evaluated on the basis of Eq. (2.9). As stated above, the �rst two terms of Eq. (2.9)
are constant and the third term scales linearly in fH. Hence, the scaling of E

R
xc [n̄H, nH] and

the one-electron self-interaction energy of the HOMO δH ∼ f2
H are decisive for the overall

scaling of the unrelaxed energy corresponding to a given functional.

For semilocal functionals, δH does not vanish in general. Therefore, their overall scaling
behavior is usually dominated by the quadratic scaling of δH, which is overlayed with the
functional-speci�c scaling of ER

xc. This leads to the parabola-like behavior shown in Fig. 2.1.
Additional non-linear relaxation e�ects lower the energy, but the typical parabola-like form
remains. Another interesting example is the EXX-functional. Here, it is straightforward to
show that the Fock integral from Eq. (2.6) can be split up into three parts just as the Hartree
energy. One thus �nds a part which is constant for the unrelaxed system, a part that is
linear in fH and a third part which corresponds to the diagonal element of the Fock-integral
corresponding to the HOMO. The third part exactly cancels out the Hartree self-interaction
of the HOMO, i.e., δEXX

H = 0. As ER
x [n̄H, nH] is linear in fH, the unrelaxed total energy for

the EXX-functional yields straight lines for non-integer particle numbers. As the correlation
part of the derivative discontinuity ∆xc is missing, kinks at the integers are underestimated.
Nonlinear relaxation e�ects then lead to a nonlinear relaxed energy. Both the relaxed and
unrelaxed energies are sketched in Fig. 2.1.
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Figure 2.1: Sketch of the relaxed and unrelaxed ground-state energies of a �nite system
with non-integer particle number N + ω for di�erent functionals. The energies are shifted
to match at ω = 0. Note that the exact functional has a linear relaxed and and a nonlinear
unrelaxed energy while the exact exchange functional (EXX) has a linear unrelaxed and a
nonlinear relaxed energy. Note that freedom from one-electron self-interaction does imply a
derivative discontinuity at integers but not a straight-line behavior for noninteger particle
numbers.

Again, the exact functional is of particular interest. Here, the one-electron self-interaction
vanishes, i.e., δH = 0, and the derivative discontinuity at integers is correct due to vanishing
relaxation e�ects for fH � 1. Although the scaling of ER

xc [n̄H, nH] is in general unknown,
it is clear from these �ndings that ER

xc [n̄H, nH] has to compensate for all relaxation e�ects.
Hence, the energy ER

xc [n̄H, nH] as de�ned in Eq. (2.8) can be interpreted as the negative
relaxation energy. However, this is only true for the exact functional. For approximative
functionals relaxation e�ects and ER

xc [n̄H, nH] do not cancel in general. As a result, the free-
dom from one-electron self-interaction does not necessarily lead to a straight-line behavior
of the relaxed ground-state energy.

In the light of the above �ndings, it becomes clear that the requirement of absence of
many-electron self-interaction as de�ned above is a very stringent one. A functional that
strictly yields straight lines with the correct slope between all integer occupations for a large
variety of systems (without having to adjust any parameters when going from one system
to another) ful�lls that many exact constraints that it is likely to be the exact functional.
Therefore, it is at least debatable whether it makes sense to distinguish between being

free from many-electron self-interaction and being exact. One may further argue that the
de�nition of many-electron self-interaction is not a very feasible one. This is especially true
when it comes to correcting functionals for self-interaction, as the de�nition via the straight-
line behavior does not trigger an obvious correction scheme. In contrast, the de�nition of
one-electron self-interaction suggests an obvious and manageable correction scheme, which
will be discussed in the following section.
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2.2. Self-interaction corrections (SICs)

2.2.1. The concept of Perdew and Zunger

As early as 1981, Perdew and Zunger [106] proposed a self-interaction correction (SIC)
scheme which today is by far the most commonly used SIC. Its basic idea is to subtract
the one-electron self-interaction energy as de�ned in Eqs. (2.4) and (2.5) directly from the
usually semilocal functional Esl

xc[n↑, n↓]. The obtained SIC-functional

ESIC
xc [n↑, n↓] = Esl

xc[n↑, n↓]−
∑

σ=↑,↓

Nσ∑
i=1

δiσ (2.10)

= Esl
xc[n↑, n↓]−

∑
σ=↑,↓

Nσ∑
i=1

[
EHart[niσ] + Esl

xc[niσ, 0]
]

is free from one-electron self-interaction by construction. Yet at the same time, it carries
along the unpleasant features of Eq. (2.4). The functional depends on the orbitals explicitly,
i.e., it is no longer an explicit density functional. In addition ESIC

xc [n↑, n↓] is not invariant
under unitary transformation of the orbitals. This means that one can de�ne various dif-
ferent and a priori equally valid ESIC

xc that correspond to a given charge density. Therefore,
the usual way of minimizing the total energy with respect to the density in order to �nd a
system's ground state

δE

δnσ
= 0 (2.11)

can not be applied in a straightforward manner. As a further consequence, there is no unique
way of �nding an exchange-correlation potential corresponding to Eq. (2.10). Thereby, the
unitary invariance problem in de�ning self-interaction in a many-electron system strikes one
through the backdoor in the Perdew-Zunger-SIC approach.

Due to its explicit dependence on the orbitals and its variance under unitary transformation
among these, the self-consistent minimization of the SIC-functional of Eq. (2.10) is more
involved than the one for standard density functionals. In their original work [106], Perdew
and Zunger directly minimized the functional with respect to the orbitals. This procedure,
which is justi�ed as discussed in Ref. [74], leads to single-particle equations[

− h̄2

2m
∆ + veff,iσ (r)

]
ψPZ

iσ (r) = εiσψ
PZ
iσ (r) (2.12)

with the e�ective, orbital speci�c potentials

veff,iσ = vext (r) + vHart [n] (r) + vsl
xc,σ [n↑, n↓] (r)− vHart [niσ] (r)− vsl

xc,σ [niσ, 0] (r) . (2.13)

By introducing orbital speci�c potentials, this approach (PZ-SIC) is outside the foundations
of KS theory while not leaving the realm of the Hohenberg-Kohn theorem.

The PZ-SIC-orbitals ψPZ
iσ are generally speaking non-orthogonal. By imposing an orthog-

onality constraint in the minimization of the energy functional, i.e., by making use of the
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2.2. Self-interaction corrections (SICs)

Lagrange multipliers

λσ
ij = 〈ψ̃jσ|H̃iσψ̃iσ〉 (2.14)

with the e�ective one-electron Hamiltonian

H̃iσ = H0σ + ṽSIC
iσ (2.15)

where (using ñiσ = f̃iσ

∣∣ψ̃iσ (r)
∣∣2)

H0σ = − h̄2

2m
∆ + vext (r) + vHart [n] (r) + vsl

xc,σ [n↑, n↓] (r) , (2.16)

ṽSIC
iσ = −vHart [ñiσ] (r)− vsl

xc,σ [ñiσ, 0] (r) , (2.17)

one derives [43] the system of self-consistent equations

H̃iσψ̃iσ =
(
H0σ + ṽSIC

iσ

)
ψ̃iσ =

Nσ∑
j=1

λσ
ijψ̃jσ . (2.18)

Again, the one-electron Hamiltonian H̃iσ and thus the matrix of Lagrange multipliers is
not invariant under unitary transformation of the orbitals. At the minimum of the PZ-SIC
energy, the matrix of Lagrange multipliers becomes hermitian and thus unitarily diagonal-
izable [96, 97, 98, 35]. This has led to the de�nition of two di�erent types of orbitals: The
orthogonal orbitals that minimize the PZ-SIC energy are often referred to as localized or-
bitals ψ̃iσ, as localization of the orbitals naturally increases EHart[niσ] and thus minimizes
ESIC

xc [n↑, n↓] in many systems. These orbitals are similar to the PZ-SIC orbitals but incor-
porate the additional orthogonality constraint. In contrast, the so called canonical orbitals
ψiσ are delocalized orbitals that diagonalize the matrix of Lagrange multipliers. They are
related to the localized orbitals by the unitary transformation Uσ

ij ,

ψ̃iσ =
Nσ∑
j=1

Uσ
ij ψjσ. (2.19)

As the canonical orbitals diagonalize the Lagrange multipliers matrix in the minimum of
the SIC energy, they can be interpreted as KS-type eigenorbitals of the transformed one-
electron Hamiltonians Hjσ. The eigenvalues of λij are often used as equivalents to KS
orbital energies [96, 97, 98], although recent work suggests a di�erent interpretation [139].

The existence of two di�erent kinds of orbitals in this approach is a direct consequence of
the unitary invariance problem. The orbitals ψ̃iσ that minimize the PZ-SIC energy under
the constraint of orthonormality are di�erent from the canonical eigenorbitals ψiσ of the PZ-
SIC-Hamiltonians. However, as the localized orbitals are related to the canonical orbitals
by unitary transformation, they both yield the same density.

The treatment of the SIC functional with orbital-speci�c potentials instead of a global KS
potential for all orbitals has many serious drawbacks. The existence of a global potential
is one of the features that makes KS DFT attractive, as it considerably simpli�es the nu-
merical e�orts and facilitates the interpretation of results. For instance, the KS eigenvalues
can directly be used for evaluating Janak's theorem, they can be interpreted on the basis
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of Görling-Levy perturbation theory, or used as input to time dependent linear response
methods in the spirit of Eq. (1.38). In contrast, for the PZ-SIC approach it is much more
unclear how to interpret orbital-energies (see, e.g., Ref. [139] for a discussion) and many
exact relations of KS DFT such as Janak's theorem do not hold. Therefore, it is highly
desirable to bring the SIC functional back under the umbrella of KS DFT. The following
sections deal with the question of how to achieve that consistently.

2.2.2. A generalized optimized e�ective potential scheme (GOEP)

As discussed in section 1.4.2, a correct treatment of orbital functionals within the KS scheme
requires to solve the OEP equation (1.15). The idea of the OEP scheme is to �nd the
exchange-correlation potential which, by virtue of the KS equation, yields those KS orbitals
that, employed in the orbital functional of interest, minimize the total energy. In the
derivation of the OEP equation, one thus makes explicit use of the fact that the orbitals
employed in the functional are eigenstates of the KS Hamiltonian, i.e., KS orbitals. However,
having in mind the unitary invariance problem this seems to be a rather crude constraint.
Although from a fundamental point of view all orbital representations of a given charge
density should be equivalent, it is well established in the literature that, e.g., natural orbitals
[21] or the spatially localized Foster-Boys orbitals [12, 31] yield a more intuitive picture of
chemical bonds and lone-pairs than the KS orbitals. In this sense, it may be possible that
approximative orbital functionals constructed from natural or localized orbitals improve
upon those constructed from KS orbitals, e.g., when it comes to capture the correct physics
of chemical bonds or self-interaction.

However, for quite a long time this inherent constraint of the OEP scheme has not been
brought into focus in the literature. The reason for this is simple: so far, most implemen-
tations used the OEP methodology in the context of the EXX functional (see Eq. (1.13)),
which is invariant under unitary transformation of the orbitals. Hence, the orbital repre-
sentation of EXX can always be chosen such that it conforms with the constraint of OEP,
i.e., the orbitals in Eq. (1.13) are chosen to be the KS orbitals.

The SIC-functional of Eq. (2.10) however constitutes a more complicated case. The unitary
invariance problem allows for the de�nition of di�erent functionals with di�erent proper-
ties yielding di�erent OEP-potentials and overall di�erent results in practical applications,
depending on which orbital-densities are used in the correction terms. Yet, all of these
functionals correspond to the same orbital-dependent energy expression. This is a typical
situation in which it may be useful to use other orbitals than the KS orbitals in the orbital
functional, e.g., in order to capture the correct physics of self-interaction in many-particle
systems. However, as explained above this is impossible within the standard OEP scheme.
Hence, the main goal of this section is to generalize the OEP methodology so that it allows
to treat functionals that are variant under unitary transformation of the orbitals.

As a start, assume an orbital-functional EG
xc [{ϕ̃iσ}] which depends on orbitals ϕ̃iσ that are

linked to the KS orbitals ϕjσ by a unitary transformation Uσ
ij via

ϕ̃iσ (r) =
Nσ∑
j=1

Uσ
ij ϕjσ (r) . (2.20)

In this section all occupation numbers fjσ and f̃iσ of ϕjσ and ϕ̃iσ, respectively, are assumed
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to be 1 for i, j ≤ Nσ and 0 for i, j > Nσ, i.e., there is no fractional occupation. Note that
fractional occupation numbers lead to a number of problems in the de�nition of Eq. (2.20),
which will be referred to in detail in section 3.2. With this in mind, the chain rule of
Eq. (1.14) becomes

vxc,σ (r) =
∑

α=↑,↓

∑
β=↑,↓

∑
γ=↑,↓

Nα∑
i=1

Nβ∑
j=1

(2.21)

∫ ∫ ∫ (
δEG

xc [{ϕ̃kτ}]
δϕ̃iα(r′)

δϕ̃iα(r′)
δϕjβ(r′′)

δϕjβ(r′′)
δvKS

γ (r′′′)
+ c.c.

)
δvKS

γ (r′′′)
δnσ (r)

dr′dr′′dr′′′ .

By evaluating Eq. (2.21) on the basis of Eqs. (1.3) and (2.20) and after some algebra (see
publication 2 for details) one obtains the central result of this section, the generalized opti-

mized e�ective potential (GOEP) equation for unitarily variant orbital functionals:

Nσ∑
j=1

∫
ϕ∗jσ(r′)

(
vxc,σ(r′)− uG

xc,jσ(r′)
)
Gjσ(r′, r)ϕjσ (r) dr′ + c.c. = 0 , (2.22)

where

uG
xc,jσ(r) :=

1
ϕ∗jσ(r)

Nσ∑
i=1

(
Uσ

ij +
δUσ

ij

δϕjσ(r)
ϕjσ(r)

)
δEG

xc [{ϕ̃nτ}]
δϕ̃iσ(r)

, (2.23)

Gjσ(r, r′) :=
∞∑

k=1
k 6=j

ϕkσ(r)ϕ∗kσ(r′)
εjσ − εkσ

. (2.24)

The interpretation of this equation is: Solving Eq. (2.22) yields the unique local potential
vGOEP
xc,σ (r) that by virtue of the KS equations leads to KS orbitals which, when transformed
according to Eq. (2.20), yield the lowest total energy that can possibly be obtained with two
sets of orbitals linked by the unitary transformation Uσ

ij . Eq. (2.22) represents a generalized
version of the OEP equation for arbitrary orbital functionals. It includes the standard OEP
equation (1.15) as a limiting case for unitarily invariant orbital functionals such as EXX or
if the unitary transformation is chosen to be the identity matrix.

A detailed derivation of the GOEP equation as well as a thorough discussion of its properties
and its relationship to non-KS DFT approaches using orbital-speci�c potentials in the spirit
of Eq. (2.18) are presented in publication 2. Moreover, strategies to solve the GOEP equation
numerically can be found in section 3.1. Note however that an important property of
Eq. (2.22) is that it re�ects the basic structure of the standard OEP equation, while the
consequences of the additional unitary transformation can formally be incorporated into
the orbital-speci�c potentials uG

xc,jσ. Hence, most of the algorithms known for solving the
standard OEP equation can still be applied for GOEP. Moreover, this formal equivalence
allows to de�ne an approximation to the GOEP in the spirit of the approximation to the
OEP provided by Krieger, Lee, and Iafrate [61, 60]. The KLI approximation to GOEP
(GKLI) yields

vGKLI
xc,σ (r) =

1
2nσ

Nσ∑
i=1

{
|ϕiσ (r)|2

[
uG

xc,iσ (r) +
(
v̄GKLI
xc,iσ − ūG

xc,iσ

)]}
+ c.c. , (2.25)
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where v̄GKLI
xc,iσ and ūG

xc,iσ are de�ned analogous to Eqs. (1.22) and (1.23).

Although the GOEP scheme generally allows to treat any orbital functional of interest, the
main motivation for its derivation was the variance of the SIC-functional under unitary
transformation of the orbitals. In contrast to standard OEP, the GOEP scheme allows to
treat the SIC consistently within the KS scheme although orbitals di�erent from the KS
orbitals are employed in Eq. (2.10). Indeed, there is a hint that using orbitals di�erent from
the KS orbitals may be a useful approach for the SIC: strictly speaking, by employing KS
orbital densities in Eq. (2.10) one does not ful�ll the variational principle. The orbitals
that minimize the SIC-energy for a given charge density are those orbitals which maximize
the one-electron self-interaction energy

∑
σ,i δiσ. As will be demonstrated in section 3.3.1,

these orbitals are usually spatially localized, i.e., the Hartree self-interaction is maximized.
This is in agreement with the empirical �nding that the direct variation of the SIC-energy
with respect to the orbitals, as done in the PZ-SIC approach, typically also yields spatially
localized orbitals. Therefore, the orbitals that minimize the SIC energy for a given charge
density will be referred to as localized orbitals in the following. Strategies to �nd localized
orbitals will be discussed in section 3.3. The concept of using localized orbitals in the
SIC energy expression and to use the GOEP equation in order to derive the corresponding
exchange-correlation potential will be referred to as localized SIC-GOEP (LOC-OEP) in the
following.

Although many reasons plead for employing localized orbitals in the SIC energy expression,
the most transparent way of calculating an OEP potential corresponding to Eq. (2.10) is to
use the KS orbitals. With the trivial ansatz, Uσ

ij = δij the di�erence between the two sets
of orbitals vanishes, i.e., ϕ̃iσ = ϕiσ and Eq. (2.22) reduces to the standard OEP equation.
The concept of �nding the corresponding OEP will be referred to as Kohn-Sham SIC-GOEP

(KS-OEP). The problems and prospects of both the LOC-OEP and the KS-OEP approach
will be discussed in the following sections.

2.2.3. Kohn-Sham SIC-GOEP

By identifying each KS orbital density niσ (r) = fiσ |ϕiσ (r)|2 of a many-electron system
with an electron, one can de�ne a SIC of the LDA [105] by virtue of Eq. (2.10), i.e.,

EKSOEP
xc [{ϕjτ}] = ELDA

xc [n↑, n↓]−
∑

σ=↑,↓

Nσ∑
i=1

[
EHart[niσ] + ELDA

xc [niσ, 0]
]
. (2.26)

The GOEP-methodology discussed in the previous section then allows to �nd the corre-
sponding exchange-correlation potential. As the orbitals used in Eq. (2.26) are the KS
orbitals, Uσ

ij = δij and ϕ̃iσ = ϕiσ hold, the GOEP equation reduces to the standard OEP

equation and the orbital-speci�c potentials uKS
xc,iσ can be derived following Eq. (1.16), i.e.,

uKS
xc,iσ (r) =

1
fiσ ϕ∗iσ (r)

δEKSOEP
xc [{ϕjτ}]
δϕiσ (r)

(2.27)

= vLDA
xc,σ [n↑, n↓] (r)− vHart [niσ] (r)− vLDA

xc,σ [niσ, 0] (r) .

In publication 1, the KS-OEP approach is used to calculate the electrical response of molec-
ular chains (note that a detailed introduction into publication 1 and a discussion of its basic
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results is presented in section 4.1). In this context, it is demonstrated that the KS-OEP
approach yields excellent results for the polarizabilities of model hydrogen chains, whereas
the KLI-approximation breaks down dramatically. Importantly, the failure of KS-KLI is
general for extended molecular systems and has been known in the literature for several
years [33, 95]. However, being the �rst application of full KS-OEP calculations on extended
molecular systems, publication 1 is able to show that this failure is due to the breakdown
of the KLI approximation and not, as previously expected, due to a general failure of the
SIC-OEP approach. Note that the reasons for the breakdown of KS-KLI are discussed in
publication 2. In addition, appendix A.2 o�ers an alternative perspective on the breakdown
of KS-KLI for extended molecular systems based on more recent �ndings.

Considering the fact that solving the OEP equation exactly is numerically very expensive,
the breakdown of KS-KLI makes the KS-OEP approach as a whole unfeasable for a large
number of systems. Although KS-KLI has been shown to yield good results for atoms
[19] and small clusters [134], an alternative SIC-approach is clearly needed for extended
molecular systems such as polymers or organic semiconductors.

2.2.4. Localized SIC-GOEP

Localized orbitals ϕ̃jσ minimize the SIC energy for a given spin density nσ =
∑Nσ

i=1 |ϕiσ (r)|2

=
∑Nσ

j=1 |ϕ̃jσ (r)|2 (again, occupation numbers are set to 0 or 1, respectively, throughout this
section). Employing localized orbital densities ñjσ (r) = |ϕ̃jσ (r)|2 in Eq. (2.10) thus yields
the absolute minimum of the total energy corresponding to the SIC that can be obtained
within KS theory. The SIC of the LDA [105] then reads

ELOCOEP
xc [{ϕ̃iτ}] = ELDA

xc [n↑, n↓]−
∑

σ=↑,↓

Nσ∑
j=1

[
EHart[ñjσ] + ELDA

xc [ñjσ, 0]
]
. (2.28)

As the orbitals used in Eq. (2.28) are not eigenorbitals of the KS Hamiltonian, the full
GOEP equation has to be solved in order to �nd the corresponding exchange-correlation
potential. By neglecting the second-order term δUσ

ij/δϕjσ in Eq. (2.23) (see publication 2

for an interpretation of this approximation), the orbital speci�c potentials uLOC
xc,jσ read

uLOC
xc,jσ(r) =

Nσ∑
i=1

Uσ
ij

ϕ̃∗iσ(r)
ϕ∗jσ(r)

(
vLDA
xc,σ [n↑, n↓] (r)− vHart [ñiσ] (r)− vLDA

xc,σ [ñiσ, 0] (r)
)
. (2.29)

Publication 2 deals with the derivation, implementation, and interpretation of LOC-OEP.
In addition, its performance is tested and compared to other SIC approaches for a set of
systems. Publication 2 shows that LOC-OEP yields good results for ionization potentials
and excellent dissociation curves. In particular, it is demonstrated that LOC-KLI yields
a very good approximation to LOC-OEP even for extended molecular systems. This is a
clear advantage over KS-OEP and makes Eq. (2.28) a suitable approach for a large number
of systems in which SIEs degrade the results obtained from semilocal functionals. E.g., in
publication 3 the LOC-KLI approach is used to calculate accurate eigenvalue spectra of
organic semiconductors for which semilocal functionals fail. Note that an introduction into
publication 3 as well as a summary of its basic results is provided in section 4.3.

As noted above, the failure of KS-KLI for molecules has been known for quite a few years in
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the literature. In the light of the �ndings of the orbital-speci�c SIC methods in the spirit of
Eq. (2.18), this failure has been suspected to be related to missing orbital localization e�ects
in KS-KLI. As a consequence, several early approaches to use localized orbitals in the SIC
energy of Eq. (2.10) can be found in the literature. However, it is important to point out
the di�erences of these methods to the LOC-OEP approach.

Garza et al. [33] and others [95, 99] directly replaced the KS orbitals in the KS-KLI po-
tential by Foster-Boys- [12, 31] or Pipek-Mezey- [108] orbitals, respectively. As discussed
in detail in publication 2, the resulting potential is not equal to the GKLI-potential of the
corresponding unitary transformation. Hence, there is no straightforward way of improving
this approximative approach to a full OEP level. Moreover, the localizing transformations
used in these approaches do not yield energy-minimizing orbitals but only approximations to
those (see also section 3.3 for a discussion of orbital localization and energy minimization).

In contrast, the authors of Ref. [85] used energy minimizing orbitals in their SIC-OEP ap-
proach. However, these calculations are based on the most crude approximation to the
GOEP, i.e., the generalized Slater-approximation, an approximation in the potential which
results from setting v̄GKLI

xc,iσ − ūG
xc,iσ = 0 in Eq. (2.25). The part of the GOEP-potential that

is neglected in the Slater-approximation is usually called the response part of vGOEP
xc,iσ . The

reason for this is that this part of the potential is responsible for the step-like structure
in the SIC-OEP potential and thus for the good performance of the SIC-OEP approaches
in calculating the electric response of extended molecular systems (see publication 1 and
Ref. [99]) and other charge transfer properties. As a result, the generalized Slater approxi-
mation [85] misses some of the most important advantages of LOC-OEP without being able
to yield a signi�cant improvement in computational e�ciency as compared to LOC-KLI.

2.2.5. Prospects of Localized SIC-GOEP

The main purpose of LOC-OEP is to consistently correct LDA from self-interaction without
introducing any empirical parameters. In contrast to most GGAs and hybrid functionals,
LOC-OEP is completely derived from �rst principles. As a consequence of its construction,
LOC-OEP is not expected to yield results as close to experiment as many hybrid functionals
do. This is particularly true for those systems and observables that are typically included
in the training sets for empirical functionals. However, it is important to make clear that
the prospect of SIC-approaches such as LOC-OEP is not to improve upon the accuracy
of hybrid functionals for standard test systems and observables. Its main aim is rather
to exploit those �elds of application where GGAs and hybrid functionals fail and thereby
improve our understanding of self-interaction e�ects in DFT. In addition to the applications
discussed in this thesis, LOC-OEP and in particular the less expensive LOC-KLI o�er a
wide range of possibilities for future implementations in DFT and TDDFT. The prospects
and problems of some of these possible realizations will be discussed in the following.

A problem that is of high interest in the solid state community is how to describe the
electron localization e�ects that occur in the Mott transition, e.g., in transition-metal oxides,
correctly within KS DFT. An overview of the performance of DFT for transition-metal
oxides, a thorough comparison of several functionals for the Mott transition of MnO, and
an overview of the pertinent literature in this �eld can be found, e.g., in Ref. [54]. As orbital
densities coming from semilocal functionals usually tend to be delocalized due to the self-
interaction problem, LDA and GGAs are not able to describe electron localization e�ects
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correctly. The Mott transition of transition-metal oxides however is characterized by the fact
that some electrons (e.g., the 3d-band electrons in MnO) localize at certain regions of space
whereas the other electrons stay itinerant. It has been shown that a SIC methodology using
orbital-speci�c potentials is able to distinguish naturally between localized and delocalized
electron-densities and thus yields a signi�cantly improved description of the Mott transition
as compared to semilocal functionals [126, 125]. However, this scheme leaves the framework
of KS DFT and thus su�ers from the same problems as the PZ-SIC approach discussed
in section 2.2.1. The LOC-OEP approach allows to bring the SIC approach back into
KS DFT. The unitary transformation introduces an additional variational freedom which
allows to distinguish naturally between localized (Wannier states) and delocalized orbitals
(Bloch states). Yet, the KS orbitals and the KS Hamiltonian can have the full symmetry
of the system. This is an important di�erence to KS-OEP. In an in�nite periodic system,
the KS Hamiltonian has the full symmetry of the system and the KS orbitals are Bloch
states, for which the one-electron self-interaction energy vanishes [106]. As a consequence,
KS-OEP reduces to standard LDA for periodic boundary conditions. The main problem
in using LOC-OEP and LOC-KLI with periodic boundary conditions is to �nd the energy
minimizing unitary transformation. The currently implemented algorithms (see section 3.3
and appendix A.3) only work for �nite systems, and the transformation of Bloch orbitals
to Wannier orbitals [140, 82, 128] does not strictly guarantee the minimization of the total
energy. Although this obviously presents a challenge to future implementations, one can
be optimistic that in the near future LOC-KLI will yield an interesting alternative for the
description of electron localization e�ects in transition-metal oxides.

Another promising �eld of application for LOC-KLI is real-time TDDFT for charge-transfer
problems. Clearly, the correction of self-interaction improves the description of charge-
transfer, while the superior scaling behavior of the SIC (linear in particle number M) as
compared to EXX methods (∼M2) contains the computational e�ort. In addition, the
energy-minimizing unitary transformation might o�er a possibility to arti�cially restore the
zero force theorem, which is violated in the KLI-approximation [93, 92]. For an introduction
into the real-time TDDFT LOC-KLI approach see Ref. [45].

The discussion of many-electron self-interaction in section 2.1.2 provides for a third interest-
ing �eld of application for LOC-KLI. It is based on the close analogy between the unitary
invariance problem and the many-electron SIE. For a one-electron system, the de�nition
of self-interaction is clear: it is equal to the de�nition of one-electron self-interaction. For
a many-electron system however, the de�nition of self-interaction becomes ambiguous, i.e.,
the unitary invariance problem emerges. At the same time, the many-electron SIE occurs.
In this light, the unitary invariance problem may be interpreted as the manifestation of the
missing link between one- and many-electron self-interaction. Note that the close relation
between the localization of orbitals and the many-electron SIE is also discussed in detail in
Ref. [89]. The authors of this letter argue that the many-electron SIE of HF and semilocal
functionals can be traced back to a localization and delocalization error of the corresponding
orbitals, respectively.

In summary, these �ndings trigger the idea to relate the one-electron SIE and the many-
electron SIE by a certain unitary transformation. The goal of such an approach would
be to correct a functional from many-electron SIE by virtue of the SIC-GOEP approach.
The procedure would thus be as follows: for integer particle numbers choose the usual
energy-minimizing unitary transformation and derive the corresponding GOEP; for non-
integer particle numbers however choose the unitary transformation such that the total
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energy varies linearly with the fractional occupation. The resulting functional would be free
from one-electron SIE and almost free from many-electron SIE (of course, the slopes of the
straight lines may not be completely accurate). However, it is not clear per se that a unitary
transformation which ful�lls this additional constraint does exist in general. Moreover, if
such a scheme even exists, it requires an algorithm to �nd this unitary transformation as well
as a GOEP scheme for fractional occupation numbers. While the latter will be introduced
in section 3.2, the former certainly requires signi�cant additional e�orts and ideas.

2.2.6. The orbital self-interaction error

Eq. (2.10) measures how one-electron self-interaction in�uences the exchange-correlation en-
ergy of a system of interest. In many cases however (see, e.g., section 4.3 and publication 3),
the in�uence of self-interaction on the KS eigenvalues themselves is of particular interest. A
straightforward way to test this in�uence is to run two independent self-consistent calcula-
tions, e.g., one employing a semilocal functional and one using a self-interaction correction
within the GOEP methodology in the spirit of sections 2.2.1 - 2.2.4 and compare the result-
ing eigenvalues, i.e., calculate the di�erence

∆εiσ = εsliσ − εGOEP
iσ =

〈
ϕsl

iσ

∣∣∣ ĥsl
σ

∣∣∣ ϕsl
iσ

〉
−
〈
ϕGOEP

iσ

∣∣∣ ĥGOEP
σ

∣∣∣ ϕGOEP
iσ

〉
. (2.30)

∆εiσ is the change in the ith eigenvalue of spin σ when going from a semilocal functional
(KS Hamiltonian ĥsl

σ ) to a self-interaction corrected one using the GOEP methodology (KS
Hamiltonian ĥGOEP

σ ). It therefore measures the in�uence of self-interaction on the KS
eigenvalue spectrum. However, as SIC-GOEP calculations are usually rather expensive,
this proceeding is often inconvenient, especially as the size of the studied systems increases.
Having done a calculation employing a standard semilocal functional one would like to have
an easy criterion which estimates the in�uence of self-interaction e�ects on the obtained
eigenvalue spectrum without having to go through a full SIC-GOEP calculation. As will
be shown in the following, such a criterion can be based on Eq. (2.30) if one introduces
a number of approximations. Note that the justi�cation of these approximations will be
discussed in detail in the appendix A.1.

The �rst approximation is that, although the order of orbitals may change due to a shift
of the corresponding eigenvalues, the self-consistency e�ects of the SIC on the orbitals
themselves are su�ciently small, i.e., for every orbital ϕsl

iσ there exists an orbital ϕGOEP
jσ

with

ϕsl
iσ ≈ ϕGOEP

jσ =: ϕiσ (2.31)

and therefore

nsl =
∑

σ=↑,↓

Nσ∑
i=1

∣∣ϕsl
iσ

∣∣2 ≈ ∑
σ=↑,↓

Nσ∑
j=1

∣∣ϕGOEP
jσ

∣∣2 = nGOEP =: n . (2.32)

Using Eqs. (2.31) and (2.32), one obtains

∆εiσ
(2.31)
≈

〈
ϕiσ

∣∣ ĥsl
σ − ĥGOEP

σ

∣∣ϕiσ

〉 (2.31)+(2.32)
≈

〈
ϕiσ

∣∣ vsl
xc,σ [n]− vGOEP

xc,σ [n]
∣∣ϕiσ

〉
. (2.33)
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Note that in the second step of Eq. (2.33), the Hartree-parts of the KS Hamiltonians cancel
due to Eq. (2.32) whereas the kinetic parts cancel as a consequence of Eq. (2.31), respectively.

The second approximation is to replace the GOEP by the orbital-speci�c potentials uG
xc,iσ.

This approximation can be formally justi�ed on the basis of a �rst-order perturbation-theory
argument in the spirit of Eq. (1.18): the change in the density subject to the replacement
of the GOEP by uG

xc,iσ vanishes to �rst order. An alternative interpretation of this approx-
imation can be gained by adding a zero to Eq. (2.33), i.e.,

∆εiσ
(2.33)
≈

〈
ϕiσ

∣∣ vsl
xc,σ [n]− uG

xc,iσ

∣∣ϕiσ

〉
+
〈
ϕiσ

∣∣uG
xc,iσ − vGOEP

xc,σ [n]
∣∣ϕiσ

〉
(2.34)

=
〈
ϕiσ

∣∣ vsl
xc,σ [n]− uG

xc,iσ

∣∣ϕiσ

〉
−
(
v̄GOEP
xc,iσ − ūG

xc,iσ

)
,

where v̄GOEP
xc,iσ and ūG

xc,iσ are de�ned analogous to Eqs. (1.22) and (1.23), respectively. Thus,
replacing the GOEP in Eq. (2.33) by the orbital-speci�c potentials is formally equivalent to
setting

v̄GOEP
xc,iσ − ūG

xc,iσ = 0. (2.35)

Using Eqs. (2.31)-(2.35), one can thus de�ne the orbital self-interaction error (OSIE) as

eiσ :=
〈
ϕiσ

∣∣ vsl
xc,σ [n]− uG

xc,iσ

∣∣ϕiσ

〉
≈ εsliσ − εGOEP

iσ . (2.36)

eiσ is the approximative shift of the ith eigenvalue of spin σ when changing the poten-
tial functional from vsl

xc,σ to vGOEP
xc,σ . The obvious advantage of Eq. (2.36) as compared to

Eq. (2.30) is that it can be evaluated solely on the basis of one calculation employing a
semilocal functional.

As discussed in the previous sections, the SIC-GOEP can be de�ned in various ways due to
the unitary invariance problem of the SIC energy expression. A detailed discussion of the
orbital self-interaction error in KS-OEP and LOC-OEP is presented in the appendix A.1.

The combination of Eq. (2.36) with Eq. (2.27) plays a central role in publication 3. There,
it is shown that the OSIE can serve as a warning against the possible misinterpretation of
KS eigenvalue spectra obtained from semilocal functionals. A detailed introduction into the
problems discussed in publication 3 is given in section 4.3.
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Chapter 3.

GOEP Methodology

3.1. Solving the GOEP equation

The GOEP equation (2.22) can be formally written in a way that allows to split up its
solution into two separate steps. Both steps need to be taken once in every cycle of the
self-consistent iteration of the KS equations (1.3). Step one is to �nd the energy minimizing
unitary transformation Uσ

ij of the given KS orbitals and to incorporate it into the orbital-

speci�c potentials uG
xc,jσ of Eq. (2.23). This procedure will be discussed in detail in section

3.3. Step two is to solve equation (2.22) for the GOEP. For this, one can formally use the
methodologies known from solving the standard OEP equation.

Following Refs. [69] and [70], the OEP equation can be solved iteratively on the basis of
Eq. (1.18). With the help of the orbital shifts δϕ∗iσ (r) derived in Eq. (1.19) one de�nes

Sσ (r) =
Nσ∑
i=1

δϕ∗iσ (r) ϕiσ (r) + c.c. . (3.1)

Given a certain vxc,σ (r), the corresponding Sσ (r) can be calculated by evaluating the orbital
shifts following Eq. (1.19). For the exact OEP, Sσ (r) vanishes according to Eq. (1.18). For
any other vxc,σ (r) however, Sσ (r) is in general non-zero. Since Sσ (r) is an indicator for the
error inherent in a given approximation to the OEP, one can improve this approximation
by adding the corresponding Sσ (r) to it:

vnew
xc,σ (r) = vold

xc,σ (r) + c Sσ (r) . (3.2)

Here, c is an empirical parameter that is introduced because Sσ (r) is not an exact represen-
tation of the error in vold

xc,σ (r) but just an estimate. Although c in�uences the convergence
of the so-called S-iteration, i.e., the self-consistent iteration of Eqs. (3.2), (1.19), and (1.3),
it does not in�uence the �nal result. Usually, the KLI-approximation as derived from
Eq. (1.21) yields a convenient initial guess for the S-iteration. A more detailed discussion
of the S-iteration can be found in Ref. [69].

For the KS-OEP and LOC-OEP calculations presented in this thesis, the GOEP method-
ology including both the KLI-approximation and the S-iteration was implemented in a
customized version of the PARSEC program package [64]. PARSEC is an open-source code
for electronic structure calculations employing �nite di�erences on a uniform Cartesian
real-space grid. The true atomic potentials are replaced with e�ective norm conserving
pseudopotentials [131]. For further computational details see Ref. [64].
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3.2. Fractional occupation numbers in GOEP

In section 2.2.2, the GOEP methodology has been introduced only for integer occupation
numbers fjσ of the KS orbitals ϕjσ. However, according to the aufbau principle fractional
occupation numbers can occur if the HOMO is degenerate. Moreover, as discussed in section
1.5.1, one can formally introduce the concept of fractional particle numbers (and thus a
fractional occupation of the HOMO) in ground-state DFT by coupling the KS system to
a particle-reservoir. In particular, fractional occupation numbers become important when
discussing the problem of many-electron self-interaction. However, it turns out that the
introduction of fractional particle numbers to the GOEP scheme is an intricate topic. The
reasons for this will be discussed in this section.

As a start, assume N occupied KS orbitals ϕj (r) with fractional occupation numbers
0 < fj ≤ 1∀ j = 1, N . Note that spin-indices are omitted for clarity. According to the
aufbau principle, fractional occupations are only allowed for those orbitals with eigenvalues
εj = εH. The number of electrons in the system is M =

∑N
j=1 fj and the density is derived

via n (r) =
∑N

j=1 fj |ϕj (r)|2. Further, assume a second set of orbitals ϕ̃i (r) with occupa-

tion numbers 0 < f̃i ≤ 1∀ i = 1, N . Note that there is no aufbau principle for the ϕ̃i (r).
Hence, fractional occupation is allowed for all i = 1, N .

In the following, we claim both sets of orbitals to represent the same total number of
electrons, i.e., M̃ =

∑N
i=1 f̃i =

∑N
j=1 fj = M and the same density, i.e., ñ (r) = n (r). Em-

ploying the unitary transformation Uij between the two sets of orbitals as done in Eq. (2.20),
i.e.,

ϕ̃i (r) =
N∑

k=1

Uik ϕk (r) , (3.3)

yields the density

ñ (r) =
N∑

i=1

f̃i |ϕ̃i (r)|2
(3.3)
=

N∑
j,k=1

N∑
i=1

f̃i U
∗
ij Uik ϕ

∗
j (r)ϕk (r) !=

N∑
j=1

fj |ϕj (r)|2 = n (r) . (3.4)

It is straightforward to show that Eq. (3.4) holds if and only if

N∑
i=1

f̃i U
∗
ij Uik = fj δjk ∀ j, k = 1, N . (3.5)

However, this is only true if f̃i = fj ∀ i, j = 1, N holds, i.e., for the trivial cases f̃i = fj = 0
or f̃i = fj = 1∀ i, j = 1, N . Hence, the unitary transformation as de�ned in Eq. (2.20) does
not allow for fractional occupation of the orbitals.

Yet, there is a way to de�ne a unitary transformation for fractional occupation numbers
that preserves the density. Employing the unitary transformation Kij in√

f̃i ϕ̃i (r) =
N∑

k=1

Kik

√
fk ϕk (r) , (3.6)
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yields the density

ñ (r) =
N∑

i=1

f̃i |ϕ̃i (r)|2
(3.6)
=

N∑
j,k=1

N∑
i=1

K∗
ijKik︸ ︷︷ ︸

= δjk

√
fjfk ϕ

∗
j (r)ϕk (r) =

N∑
j=1

fj |ϕj (r)|2 =n (r). (3.7)

Of course, the ϕ̃i (r) of Eq. (3.6) are chosen to be normalized, i.e., 〈ϕ̃i (r) |ϕ̃i (r)〉 = 1, thus
determining the occupation f̃i as

f̃i = f̃i 〈ϕ̃i (r) |ϕ̃i (r)〉 =
N∑

j,k=1

K∗
ij Kik

√
fj fk 〈ϕj (r) |ϕk (r)〉︸ ︷︷ ︸

= δjk

=
N∑

k=1

K∗
ik Kik fk . (3.8)

With this also the number of particles is conserved, i.e.,

M̃ =
N∑

i=1

f̃i
(3.8)
=

N∑
k=1

N∑
i=1

K∗
ik Kik︸ ︷︷ ︸

= δkk=1

fk =
N∑

k=1

fk = M . (3.9)

However, the de�nition of Eq. (3.6) su�ers from a di�erent inherent problem: in contrast
to the KS orbitals, the transformed orbitals ϕ̃i (r) are no longer orthogonal. This can be
demonstrated by calculating the integral

〈ϕ̃i (r) |ϕ̃j (r)〉 =
N∑

k,l=1

K∗
ik Kjl

√
fk fl√
f̃i f̃j

〈ϕk (r) |ϕl (r)〉︸ ︷︷ ︸
=δkl

=
1√
f̃i f̃j

∑
k

K∗
ik Kjk fk 6= δij (3.10)

for fractional occupation numbers fk. For integer occupation numbers however, the localized
orbitals are orthogonal.

From a pragmatic point of view, the non-orthogonality of the transformed orbitals ϕ̃i (r)
can be accepted as a curious by-product of the unitary invariance problem and the theory
of fractional particle numbers. As the localized orbitals are just auxiliary quantities in the
GOEP methodology, there are no fundamental reasons that oppose the non-orthogonality.
Therefore, Eq. (3.6) allows to introduce fractional occupation numbers in the GOEP scheme.
Rederivation of the GOEP equation for fractional particle numbers straightforwardly yields
(now with spin-indices σ)

Nσ∑
j=1

fjσ

∫
ϕ∗jσ(r′)

(
vxc,σ(r′)− uG

xc,jσ(r′)
)
Gjσ(r′, r)ϕjσ (r) dr′ + c.c. = 0 , (3.11)

where

uG
xc,jσ(r) :=

1
fjσ ϕ∗jσ(r)

Nσ∑
i=1

√
fjσ

f̃iσ

(
Kσ

ij +
δKσ

ij

δϕjσ(r)
ϕjσ(r)

)
δEG

xc [{ϕ̃nτ}]
δϕ̃iσ(r)

. (3.12)

41



Chapter 3. GOEP Methodology

A case of particular interest is LOC-OEP. Here, Eq. (3.12) yields (compare also to Eq. (2.29))

uLOC
xc,jσ(r) =

Nσ∑
i=1

Kσ
ij

√
f̃iσ ϕ̃

∗
iσ(r)√

fjσ ϕ∗jσ(r)

(
vLDA
xc,σ [n↑, n↓] (r)−vHart [ñiσ] (r)−vLDA

xc,σ [ñiσ, 0] (r)
)
, (3.13)

where

ñiσ := f̃iσ |ϕ̃iσ|2 . (3.14)

Of course, it remains an open question how to choose the unitary transformation Kij in the
case of fractional occupation numbers. As discussed in section 2.2.5, Kij could in principle
be chosen such that the many-electron SIE is reduced. This is of course an interesting idea,
however, it requires the introduction of completely new concepts for the determination of
the unitary transformation. A second possibility is to choose the energy-minimizing unitary
transformation as usually done for integer occupation numbers. A methodology that allows
to �nd this energy-minimizing transformation will be discussed in section 3.3.3.

3.3. Localizing transformations

The orbitals that minimize the SIC energy are usually called localized orbitals. This is
due to the empirical �nding that the PZ-orbitals found from solving the orbital-speci�c
PZ-SIC equations (2.12) are typically rather localized in space. Commonly, this �nding is
rationalized by the argument that the Hartree self-interaction energy, which is supposed
to be the leading term in the SIC of Eq. (2.10), increases with growing localization of the
orbital densities. However, there are two inaccuracies in this argument. First, not only
EHart [n] increases with the localization of n but also the absolute value of Exc [n]. While
EHart [n] represents an anti-binding interaction, Exc [n] acts binding, i.e., it has a negative
sign. Hence, there are two di�erent contributions with di�erent signs to the SIC that
in general scale di�erently with the localization of n (note that this di�erent scaling is a
manifestation of the unitary invariance problem). The energy-minimizing n thus represents
the best tradeo� between both contributions. The second inaccuracy in the above argument
refers to the term localization. As will be demonstrated in section 3.3.2, there are several
equally valid but substantially di�erent de�nitions for the localization of orbitals. As a
consequence, orbitals that are maximally localized, e.g., in the sense of the Foster-Boys

orbitals [12, 31], do not necessarily yield a minimal SIC energy.

The relationship of localization and self-interaction is an intricate problem. This is re�ected
in the large number of SIC-approaches employing di�erent kinds of localization schemes for
orbitals [96, 35, 33, 95, 99, 85]. The purpose of this section is thus to discuss the relationship
of localization and self-interaction in detail. This is particularly important for the correct us-
age of the LOC-OEP methodology, as the energy-minimizing unitary transformation enters
the LOC-OEP-equations as a decisive factor.

3.3.1. Localization and self-interaction

One way to look at the relationship between localization and self-interaction without having
to deal with di�erent de�nitions of localization is to consider a simple test case for which an
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3.3. Localizing transformations

Figure 3.1: Simple model for understanding the relationship of one-electron self-interaction
and localization: Hartree energy EHart

[
nG
]
, LDA energy ELDA

xc

[
nG
]
, and sum of both for

a Gaussian density distribution nG (r) are plotted as a function of the Gaussian standard
deviation σ. The total self-interaction energy is plotted again on a magni�ed energy scale
in the upper part of the �gure. It is positive for strongly localized densities and negative
for delocalized ones. Note, that in region 2 (purple area in upper plot) the self-interaction
energy is negative, i.e., the LDA self-interaction is larger than the Hartree self-interaction,
yet the system can still gain energy by delocalizing the one-electron density.

obvious and straightforward de�nition of localization exists, e.g., the 3-dimensional Gaussian
distribution of a one-particle density

nG (r) = (2πσ2)−3/2 exp
(
− r2

2σ2

)
. (3.15)

The advantage of this density distribution is that its localization can be varied smoothly just
by varying the Gaussian standard deviation σ. For this purpose, the density of Eq. (3.15)
has been sampled on the real-space grid of PARSEC [64] and its Hartree energy EHart

[
nG
]
,

LDA energy ELDA
xc

[
nG
]
, and sum of both have been calculated for a set of Gaussian standard

deviations σ. The result is plotted in Fig. 3.1.

The �rst observation that can be drawn from Fig. 3.1 is that EHart

[
nG
]
and ELDA

xc

[
nG
]

largely cancel out so that the remaining self-interaction energy is more than an order of
magnitude smaller than its individual contributions. The second observation is that, at least
on the energy scale of the lower part of Fig. 3.1, the remaining self-interaction energy looks
more or less constant for a large range of σ. Note, that these two �ndings re�ect important
features of the LDA. In fact, the large cancellation of the Hartree self-interaction by the LDA
self-interaction is one of the main reasons for the surprisingly good performance of LDA for
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a wide range of systems. The third interesting observation in Fig. 3.1 is that EHart

[
nG
]

exceeds ELDA
xc

[
nG
]
only for very localized Gaussians (region 1: blue area in upper plot)

whereas for more delocalized densities (regions 2 and 3: purple and green area in upper plot)
ELDA

xc

[
nG
]
exceeds EHart

[
nG
]
. Of course, one may argue that the Gaussian distribution is

a special case and that for real orbital-densities things look di�erent. However, for systems
with rather delocalized KS orbitals, e.g., π-systems such as organic semiconductors (see,
e.g., publications 3 and 4), it is consistently found that the LDA self-interaction exceeds the
Hartree self-interaction for most orbital densities.

Fig. 3.1 shows why the orbitals that minimize the SIC energy are typically localized in
space: the maximum of the self-interaction energy can be found for very localized Gaus-
sians. However, a curiosity can be found in the region of mid-level localization, i.e., re-
gion 2 in the upper plot of Fig. 3.1. Here, the absolute value of ELDA

xc

[
nG
]
exceeds the

Hartree energy EHart

[
nG
]
, yet at the same time the system can still gain energy by de-

localizing the one-electron density. In other words: although the self-interaction energy
EHart

[
nG
]

+ ELDA
xc

[
nG
]
is negative, self-interaction can still yield a spurious delocaliza-

tion of nG. For one-electron densities in region 3 however, self-interaction yields spurious
localization.

3.3.2. Common localization schemes

As demonstrated in the previous section, there exists a clear relationship between localiza-
tion and the self-interaction energy of a simple Gaussian one-electron density distribution.
In practice however, one has to deal with signi�cantly more complex orbital densities, for
which the total energy needs to be minimized by a unitary transformation. Further, the
maximum possible degree of localization is signi�cantly restricted by the constraint of re-
producing the density given by the KS orbitals. Still, it is an empirical �nding that also in
this more complicated case, the energy-minimizing orbitals are typically localized in space.
This observation has led to a number of approximative approaches for �nding the energy-
minimizing orbitals by applying localizing unitary transformations which were originally
introduced to �nd orbitals that mimic the chemist's intuition of chemical bonds. Among
the most popular localized orbitals are those introduced by Forster and Boys [12, 31], Ed-
minston and Ruedenberg [27], and Pipek and Mezey [108].

The di�erence between these methods is to be found in the de�nition of localization (see,
e.g., Ref. [108] for an overview). The Foster-Boys orbitals for example can be obtained by
minimizing the functional [12, 31]

Lσ
FB =

Nσ∑
i=1

∫∫
|ϕiσ (r)|2

(
r− r′

)2 ∣∣ϕiσ(r′)
∣∣2 dr dr′ , (3.16)

which measures the spatial extension of the orbitals ϕiσ (r) . In contrast, the Pipek-Mezey
criterion [108] used, e.g., in Ref. [99] measures the mean number of atoms over which the
molecular orbitals extend. For this purpose, it evaluates the so-called atomic population

operator, which projects the molecular orbitals onto the atomic basis sets of single atoms in
the molecule. Hence, this procedure is intrinsically linked to the description of orbitals via
atomic basis sets and can not be used straightforwardly if one solves the KS equations on a
uniform grid as done in PARSEC [64]. Finally, the orbitals introduced by Edminston and
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Ruedenberg [27] maximize the Hartree self-interaction energy, i.e.,

Lσ
ER =

Nσ∑
i=1

EHart

[
|ϕiσ|2

]
. (3.17)

As a result of the study presented in Fig. 3.1, the Edminston Ruedenberg criterion is equiv-
alent to the minimization of the total self-interaction energy for the simple case of Gaussian
orbital densities. Note however that for more complex orbital densities this may no longer
be the case.

Having chosen a criterion for localization, one has to �nd a way to numerically �nd its
minimum or maximum, respectively. To this end, several approaches exist in the literature.
The most often applied optimization algorithm originally suggested by Edminston and Rue-
denberg [27] determines the optimum unitary transformation by consecutive two by two
rotations among the orbitals, i.e., the so-called Jacobi-sweeps, until convergence is reached.
The optimum rotation angle for each iterative step can be determined analytically from
the respective localization criterion, e.g., Lσ

ER or Lσ
FB. Further details of the Jacobi-sweeps

approach can be found, e.g., in Refs. [27] and [108]. For the purpose of this thesis, in par-
ticular for the Garza-SIC calculations presented in publication 2 and as an initial guess for
the numerical procedure presented in section 3.3.3, the Jacobi-sweeps algorithm employing
both the Foster-Boys and the Edminston-Ruedenberg localization has been implemented
in PARSEC [64]. On a side note, there exist a couple of more involved algorithms that
employ, e.g., a direct optimization of the localization criterion Lσ along its gradient [27, 35]
using some conjugate gradient technique, or an accelerated direct inversion of iterative sub-

space (DIIS) algorithm [123]. However, the Jacobi-sweeps algorithm has been chosen for
our implementation because of a couple of signi�cant advantages: it is straightforward to
implement, it converges reliably and for all systems discussed in this thesis its computational
costs are bearable.

An important property of the di�erent localization schemes is how they scale with the size of
the system. This is particularly important as one of the usually brought forward arguments
that speak for SIC approaches as compared to EXX calculations is their superior scaling
behavior: the computation time needed for calculating the SIC energy scales linearly with
the number of electrons M , for EXX it scales ∼ M2. However, it turns out [108] that
traditional algorithms to �nd the localizing transformation scale ∼ M3 for the Foster-
Boys localization and even ∼M5 for the Edminston-Ruedenberg localization. Clearly, this
turns the advantage of the SIC-approaches into a signi�cant disadvantage. However, it has
been demonstrated that by employing highly sophisticated linear scaling techniques and an
accelerated DIIS-like algorithm for the orbital localization, the computation of Edminston-
Ruedenberg orbitals can actually be done in a time proportional to M [123]. Although,
to the best of my knowledge, this procedure has not yet been implemented in any SIC
approach so far, it clearly o�ers an interesting option for future applications within the LOC-
OEP methodology. Hence, LOC-OEP remains an interesting alternative for calculations on
systems with an increasing number of electrons.

3.3.3. The energy-minimizing unitary transformation

The unitary transformation that is actually needed in the LOC-OEP approach is the one
which leads to the absolute minimum of the total SIC energy for a given set of KS orbitals,
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i.e., for a given density. A relation that allows to �nd this unitary transformation was �rst
introduced by Pederson, Heaton, and Lin in 1984 in the context of orbital-speci�c SIC [96]
and since then addressed by several authors [50, 29, 138, 85, 86]. Pederson et al. considered
an in�nitesimal orthogonal transformation Uσ

ij (see Eq. (2.19)) with matrix elements Uσ
ii = 1,

Uσ
ij = ωσ

ij ∀ i < j, and Uσ
ij = −ωσ

ji ∀ i > j. Following Ref. [96], the minimization of the total

SIC energy ESIC
t , i.e.,

0 =
(
∂ESIC

t

∂ωσ
kl

)
ωσ

ij=0

(3.18)

where l > k, j > i∀ k, l, i, j together with Eqs. (2.17) and (2.19) then yields〈
ψ̃iσ

∣∣ ṽSIC
iσ − ṽSIC

jσ

∣∣ ψ̃jσ

〉
= 0 . (3.19)

Eq. (3.19) is called the symmetry condition, as it is straightforward to show that it is equiv-
alent to the requirement of hermiticity of the Lagrange-multipliers matrix of Eq. (2.14), i.e.,
λσ

ij = λσ
ji

∗. The orbitals ψ̃iσ which ful�ll Eq. (3.19) minimize the total energy.

Eq. (3.19) can be used in order to �nd the energy-minimizing unitary transformation for
LOC-OEP. Employing a unitary transformation which takes the set of KS orbitals {ϕiσ} to
the set of energy-minimizing orbitals {ϕ̃iσ} via Eq. (2.20), Eq. (3.19) can be rewritten to

Nσ∑
k,l=1

Uσ
ik U

σ
jl

〈
ϕkσ

∣∣ ṽSIC
iσ − ṽSIC

jσ

∣∣ ϕlσ

〉
= 0 , (3.20)

where with the localized orbital densities ñiσ = |ϕ̃iσ|2

ṽSIC
iσ = −vHart [ñiσ] (r)− vLDA

xc,σ [ñiσ, 0] (r) . (3.21)

Solving Eq. (3.20) for Uσ
ij yields the energy-minimizing unitary transformation needed for

LOC-OEP.

Pederson et al. [97] proposed a double iteration procedure using the Jacobi-sweeps technique
for solving the symmetry condition. In our implementation we follow a di�erent approach
which is based on an idea introduced by Fois et al. [29]. By evaluating Uσ

ij = δij + τσ
ij in the

symmetry condition (3.20), Fois et al. found an iterative equation for τσ
ij (see Ref. [29] and

appendix A.3 for details). As the resulting Uσ
ij does not guarantee unitarity, the authors

proposed to apply a Gram-Schmidt procedure to the U 's after having solved the iterative
equation for the τ 's. However, we found that one can signi�cantly speed up the convergence
of the τ -iteration by including a symmetric Löwdin-orthogonalization [77, 83] directly in the
iterative equation for the τ 's. A detailed derivation of this improved algorithm for solving
the symmetry condition for Uσ

ij can be found in appendix A.3.

As shown in Ref. [97], the symmetry condition can be straightforwardly carried over to the
case of fractional occupation numbers by replacing the orbitals ϕiσ by

√
fiσϕiσ and the local-

ized orbitals ϕ̃iσ by

√
f̃iσϕ̃iσ, respectively. This allows to �nd a unitary transformation Kσ

ij

as de�ned in Eq. (3.6) that preserves the density and the number of particles for fractional
occupation numbers (see discussion in section 3.2). The solution of the symmetry condition
for Kσ

ij follows the same lines as for integer occupation numbers (see appendix A.3.).
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The symmetry condition (3.20) allows to �nd the energy-minimizing orbitals to be used in
LOC-OEP. As the convergence of the iterative equation for the τ 's is signi�cantly improved
by a good initial guess for the orbitals, we found that it is recommendable to start the
τ -iteration from roughly converged Foster-Boys or Edminston-Ruedenberg orbitals.

The spatial localization of the energy-minimizing orbitals depends crucially on the system
of interest. However, it is consistently found that the energy-minimizing orbitals are signif-
icantly more localized in space than the KS orbitals. Examples of the spatial distribution
of the energy-minimizing orbitals can be found, e.g., in publication 2.

3.3.4. Localized orbitals and exact exchange

The fact that the orbitals which minimize the SIC energy are typically well localized in space
gives rise to an interesting analogy of the LOC-OEP approach to EXX. As can be derived
from Eq. (1.13), the exact exchange energy Ex [{ϕiτ}] is invariant under unitary transfor-
mation of the orbitals. Such a unitary transformation may be useful from a computational
point of view in order to facilitate the calculation of the exchange energy Ex [{ϕiτ}]. In
particular spatially localized orbitals yield very small non-diagonal contributions, i.e., terms
in Eq. (1.13) with j 6= k, which may therefore be neglected. Interestingly, the sum over the
remaining diagonal contributions equals the Hartree correction part of Eq. (2.10) as evalu-
ated with localized orbitals. Therefore, SIC approaches working with localized orbitals take
into account the dominant contribution to the exact exchange energy although only eval-
uating its diagonal elements. If the localizing transformation can be computed e�ciently
(see discussion in previous sections), they therefore provide for a competitive alternative to
exact exchange calculations for large molecules due to their superior scaling behavior (∼M
instead of ∼M2) and the consistent inclusion of correlation.

Note that an illustrative example of the close analogy of EXX and LOC-OEP is provided
in Fig. 3 of publication 2. There, the ground-state energy of He+2 is plotted as a function
of the internuclear distance. LOC-OEP and EXX-KLI yield the same asymptotic behavior
and a similar equilibrium bond length. However, the total energy curves are shifted relative
to each other by a constant due to the neglect of the correlation energy in EXX. This leads
to a signi�cantly improved dissociation limit of LOC-OEP as compared to EXX-KLI. On
a side note, a similar behavior is found for the relative eigenvalue spectra of the organic
semiconductors discussed in publication 3. Typically, the eigenvalue spectra of LOC-KLI
and EXX-KLI di�er mainly by a constant which is introduced by the neglect of correlation
in the EXX approach.
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Chapter 4.

Introduction to the publications

This chapter introduces the four publications collected in Part III of this thesis. Publi-
cation 1 deals with the calculation of linear polarizabilities of molecular chains using the
KS-OEP methodology. Section 4.1 sketches the problems that arise in polarizability cal-
culations for extended molecular systems within KS-DFT and elaborates the motivation
for using SIC approaches to improve upon the performance of commonly used function-
als. In addition, it discusses the relationship of the results obtained in publication 1 with
more recent SIC calculations and explains how the �ndings of this comparison motivate the
development of the GOEP approach.

The derivation and discussion of the GOEP methodology is the central aspect of publica-
tion 2. As the GOEP approach has already been introduced in sections 2.2.2 to 2.2.5 of this
thesis, section 4.2 focuses on a di�erent major result obtained in publication 2, i.e., the per-
formance of the GOEP approach in calculating dissociation curves for diatomic molecules.
It is explained why this problem poses a severe challenge to common density functionals,
why this is related to the self-interaction problem, and how GOEP performs for the intricate
dissociation of He+2 .

Publication 3 shows that self-interaction also plays a major role in the prediction of reliable
KS eigenvalue spectra for organic semiconductor molecules. Section 4.3 introduces the
technique of combining DFT calculations with photoelectron spectroscopy measurements in
order to gain important information on the electronic structure of organic semiconductors.
It is discussed how self-interaction can destroy the physical reliability of the KS eigenvalues
and thus lead to the misinterpretation of eigenvalue spectra obtained from commonly used
functionals. Publication 3 shows that an easy criterion for the reliability of the KS eigenvalue
spectrum can be based on the OSIE introduced in section 2.2.6 and that the GOEP approach
yields reliable eigenvalues also in those cases for which semilocal functionals typically fail.

Finally, publication 4 discusses the reasons for a �uorescence quenching that has been ob-
served experimentally [117] in a recently synthesized system [6] composed of two organic
semiconductor molecules that are linked by a saturated, �exible hydrocarbon bridge. Sec-
tion 4.4 introduces and discusses the most important experimental results of Ref. [117] and
explains how a theoretical study based on DFT, TDDFT, and molecular dynamics (MD)
calculations can help to clarify the origin of the �uorescence quenching. It is shown that
the �uorescence is quenched by charge transfer between the two organic semiconductors.
Charge-transfer excitations are identi�ed using the NTO approach introduced in section
1.6.4. The problems that arise within the TDDFT approach for these excitations are dis-
cussed in the spirit of section 1.6.3. MD simulations allow for an analysis of the system's
dynamics in solution. Combining the results obtained from DFT, TDDFT, and MD calcu-
lations, our study thus facilitates a consistent explanation of the experimentally obtained
results.
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4.1. Polarizabilities of molecular chains

Molecular chains, in particular conjugated polymers, have a large linear and nonlinear elec-
trical response. Together with their cheap production and easy processibility, this feature
makes them highly interesting candidates for nonlinear optical devices [52]. Hence, there
is a need for a large-scale but computationally feasible electronic structure theory which
gives a good description of the properties of these systems. Regarding the typical size of
conjugated polymers, DFT appears to be the natural choice for this purpose. However, over
the last years several studies have shown that the accurate prediction of electronic response
properties of extended molecular systems is one of the most severe challenges for density
functionals, with Refs. [18, 34, 39, 90, 15, 120, 53] just being a few examples from a vast body
of literature. Generally speaking, almost all semilocal functionals overestimate the linear
and nonlinear response of molecular chains dramatically. For example, the polarizabilities
and hyperpolarizabilities as calculated from LDA or GGAs can be o� by more than 100% as
compared to high-quality quantum-chemical calculations, even for rather short conjugated
chains with less than 10 monomeric units [18].

In order to establish a benchmark test for the performance of density functionals in pre-
dicting accurate response properties of extended molecular systems, one typically resorts
to a model system which allows to reduce the numerical costs while retaining the typical
bond-alternating structure, i.e, the hydrogen chain. This system of single hydrogen atoms
arranged in a chain with alternating intermolecular distances of 2 and 3 bohrs, respectively,
has been introduced by Champagne et al. [17] and frequently referred to since then in the
literature [4, 18, 34, 66, 68, 87, 90, 99, 113, 112, 120, 135]. All of these studies highlight
the important role played by the �eld-counteracting response originating from the step-like
structure of the exact exchange-correlation potential. As discussed in section 1.5.3, a charge
transfer induced by an external electric �eld leads to a �eld-counteracting step-structure in
the exact vxc. As a consequence, functionals which show a derivative discontinuity in Exc

typically yield signi�cantly improved response properties for the hydrogen chain as com-
pared to LDA or GGAs [34, 90, 68, 4, 99]. This observation is further strengthened by the
�ndings of Refs. [4, 53]. The authors of these publications demonstrate that the inclusion of
a derivative discontinuity term in a semilocal functional can signi�cantly improve the func-
tionals performance for polarizability calculations of molecular chains. However, in Ref. [4]
it is also shown that the mere presence of a step-like structure in the exchange-correlation
potential is often not enough, in particular if the potential is not a functional derivative
of a corresponding energy functional. Clearly, these �ndings underline the importance of
working with potentials that are at least approximate functional derivatives.

The crucial impact of the step-like structure of the response term in vxc in combination with
the considerations discussed in section 1.5.4 suggests that self-interaction plays a major role
for the failure of semilocal functionals to predict accurate response properties. This con-
sideration is the basic driving force behind the work presented in publication 1, in which
the linear electrical response of hydrogen chains is calculated within the KS-KLI and the
KS-OEP approach. The relevance of this investigation is underlined by the fact that, almost
simultaneously to our work, a couple of other groups have worked on very similar problems.
In Refs. [113, 112] Ruzsinszky et al. present calculations of polarizabilities and hyperpolar-
izabilities of hydrogens chains with the orbital-speci�c SIC-approach of Eq. (2.18). In the
work of Pemmaraju et al. [99], linear polarizabilities of hydrogen chains are calculated using
an approximate self-interaction corrected KS potential. Although the authors call their ap-
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proach �KLI-SIC�, it actually involves a modi�ed version of the Garza-SIC approach [33], in
which the KS orbitals in the KS-KLI potential, i.e., Eq. (2.25) with the orbital-speci�c po-
tentials of Eq. (2.27), are replaced by localized orbitals. In contrast to Garza et al. however,
the authors of Ref. [99] used Pipek-Mezey orbitals instead of Foster-Boys orbitals. As dis-
cussed in more detail in section 2.2.4 and in publication 2, the resulting potential-functional
can be viewed as an approximation to LOC-KLI. However, there is no straightforward way
of improving this approach to a full OEP level.

From a fundamental point of view, our work is characterized by the fact that it is the only
approach in which a self-interaction correction of LDA is done within KS theory but without
employing any approximation. Hence, it allows to distinguish clearly between e�ects of the
SIC and those that are introduced by using the KLI approximation in the potential. Note
that the importance of doing a full OEP calculation instead of using the KLI approximation
in calculating the polarizabilities of hydrogen chains has been stressed before, even for
the usually noncritical case of EXX [68]. Publication 1 demonstrates that the di�erence
between KLI and full OEP calculations is even more pronounced for the case of the SIC.
It is shown that KS-OEP yields polarizabilities that are in excellent agreement with high-
quality benchmark calculations [17, 16], whereas the KS-KLI results can be o� by more than
50%. Although the dramatic failure of KS-KLI for extended molecular systems has been
known in the literature for a couple of years [33, 95], publication 1 is the �rst to show that
this failure is due to the KLI approximation and not due to the SIC functional itself. The
reasons for the failure of KS-KLI are buried in the unitary invariance problem. Whereas
KS-OEP leads to strongly localized KS orbitals, the self-consistent KS-KLI orbitals remain
delocalized over the whole system. The unitary invariance problem thus leads to signi�cantly
di�erent self-interaction corrections and, as a direct consequence, to dramatically di�erent
results for most observables.

Importantly, the dramatic failure of the KLI approximation to KS-OEP does not challenge
the validity of the KLI approximation in general. As discussed in section 1.4.2, it has
been known that the KLI approximation yields reliably good results only as long as the
approximation does not substantially a�ect the self-consistent iteration. As demonstrated
in publication 1, the latter assumption can no longer be uphold in the case of KS-OEP,
at least not for extended molecular systems. For a more detailed analysis of the failure of
KS-KLI the reader is referred to publication 1 and appendix A.2.

Fig. 4.1 shows the linear polarizability of hydrogen chains calculated with the di�erent SIC
approaches discussed above as a function of the chain length. Here, all KS methods working
without an additional unitary transformation are plotted together with the non-KS PZ-SIC
results from Ref. [113] in part a). Part b) shows the results obtained from SIC-approaches
working with an additional unitary transformation in the potential. The SIC approaches are
compared to the polarizabilities obtained from LDA calculations and to those recently ob-
tained from high-quality benchmark calculations using a coupled cluster singles and doubles
calculation with perturbative estimate of triples (CCSD(T)) [16]. Except for the PZ-SIC
and the CCSD(T) calculations, all polarizabilities shown in Fig. 4.1 were calculated in a
customized version of PARSEC [64], thus allowing for a fair comparison of the di�erent
approaches. In addition, we employed the same energy-minimizing unitary transformation
for all SIC approaches shown in part b). Despite our slightly di�erent approach (real-space
grid, energy-minimizing unitary transformation), our calculations show reasonable agree-
ment with the polarizabilities obtained in Refs. [87] and [99], respectively. This suggests
that using a numerically less costly localization criterion than the symmetry condition may
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Figure 4.1: Longitudinal polarizability of model hydrogen chains in atomic units as a
function of the chain length. Polarizabilities have been calculated in PARSEC [64] using
di�erent SIC approaches with (b) and without (a) an additional unitary transformation
among the orbitals (see discussion in text) and compared to the LDA results. Recent high-
quality coupled cluster calculations (CCSD(T)) from Ref. [16] are taken as a benchmark. PZ-
SIC results were taken from Ref. [113]. For an overview of the abbreviations of functionals
see also appendix A.4.

be a possible alternative for future applications of LOC-OEP.

The comparison shown in Fig. 4.1 allows for several conclusions:
i) Among all discussed SIC-methods, KS-OEP yields those hydrogen-chain polarizabilities
that are closest to the benchmark CCSD(T) results. The good performance of KS-OEP is
one of the basic �ndings of publication 1.
ii) The localization of the orbitals used in the SIC is essential. KS-OEP and PZ-SIC yield
self-consistent orbitals that are localized in space. However, in case one can not use exact
OEP or PZ-SIC calculations, e.g., because of the high numerical costs for larger molecules,
it is clearly necessary to include an additional unitary transformation of the orbitals.
iii) The failure of KS-KLI for extended molecular systems is �rmly underlined by Fig. 4.1 a).
The polarizability is underestimated for short chains and signi�cantly overestimated for
longer ones, thus indicating a clear trend to a growing overestimation for increasing chain
lengths. The same reasoning holds for KS-Slater, which performs even worse than KS-KLI
due to the absence of the response part of the potential.
iv) The response part of the GOEP potential is essential for both GOEP approaches. The
performance improves when going from G-Slater over G-KLI to G-OEP. This is in line with
previous �ndings, e.g., for EXX-OEP [90, 68].
v) The deviation of KS-OEP from the benchmark CCSD(T) results alternates with the
number of H2 pairs in the chain. The same behavior can be found for PZ-SIC. Obviously,
this is a consequence of the localization of the self-consistent orbitals. In contrast, neither
the LDA or CCSD(T) results nor the polarizabilities obtained from the approaches working
with a unitary transformation of the orbitals show this symmetry dependent behavior.

In addition, the good performance of the Garza-SIC approach is quite surprising. In pub-
lication 2, it is argued that Garza-SIC and LOC-KLI, if employed with the same unitary
transformation, deviate in the response part of the potential. At least this explains the
di�erence between LOC-KLI and Garza-SIC in calculating polarizabilities. However, it re-
mains unclear why Garza-SIC yields better results than all other SIC approaches shown in
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Fig. 4.1 b). However, despite its good performance for the hydrogen chains Garza-SIC suf-
fers from a di�erent inherent problem. It is a potential functional which, due to its inherent
approximations, most likely does not correspond to any energy functional. Hence, there is
no straightforward way of improving this approximative approach, e.g., to a full OEP level.
Even worse, serious problems arise, e.g., in the time-dependent case due to the violation
of the zero-force theorem [93, 92] and in those cases in which the energy functional or its
derivatives need to be evaluated directly (see, e.g., Refs. [66] and [4]). These are serious
drawbacks which clearly limit the practical usefulness of this approximation. Still, the good
performance of Garza-SIC for the hydrogen chains as �rst demonstrated in Ref. [99] clearly
underlines the importance of a unitary transformation of the KS-orbitals in those cases in
which one cannot do a full KS-OEP calculation. The solution to this puzzle is to employ
the unitary transformation directly in the SIC-energy and derive the corresponding OEP
potential. The result of this derivation is the GOEP approach introduced in publication 2
and further discussed in section 2.2.2. Publication 2 further discusses the performance of
the newly developed GOEP approach in calculating ionization potentials, HOMO-LUMO
gaps and total energies for a set of small molecules. The following section however focuses
on the performance of GOEP in calculating dissociation curves of small molecules.

4.2. Dissociation of diatomic molecules

The accurate description of dissociation processes is a challenge for common density func-
tionals. This is mainly because of two reasons. First, commonly used functionals tend to
dissociate a neutral molecule AB to fractionally charged fragments A+q and B−q. This
empirical �nding can be rationalized by the fact that these functionals do not ful�ll the
principle of integer preference due to the lack of a derivative discontinuity (see discussion in
sections 1.5.3 and 1.5.4). As can also be depicted from Fig. 1.3, the NaCl molecule for ex-
ample will dissociate to Na+0.4 and Cl−0.4, with an energy lowering of about 1 eV in an LDA
calculation [100, 114]. An analogous e�ect has also been observed for LiF, LiCl and NaF
using GGAs and hybrid functionals [94, 26]. Due to the close relation between the principle
of integer preference and the many-electron self-interaction problem (see the discussion in
sections 1.5.4 and 2.1.2), the authors of Refs. [114] argue that this failure of common density
functionals can be traced back to the presence of many-electron self-interaction.

The second reason for the failure of commonly used functionals for dissociation processes is
closely related but somewhat better known [102, 5, 40]. Symmetric charged radicals such
as H+

2 and He+2 show very unrealistic binding energy curves, although both fragments are
identical and thus carry the same fractional charge during the dissociation process. For H+

2

for example, the dissociation process typically ends up with half an electron sitting on each
dissociated proton. However, the total energy of the dissociated system is dramatically too
low as an unambiguous consequence of the spurious one-electron self-interaction.

In publication 2, we tested the performance of the GOEP methodology for the dissociation
of He+2 . Being a two-center three-electron system, He+2 belongs to the typically used set of
benchmark tests used in the literature [5, 40]. Fig. 4.2 shows the basic result, i.e., the ground
state energy of He+2 as a function of the internuclear distance for di�erent functionals. The
red lines denote the exact nonrelativistic dissociation limit [115] and the experimental equi-
librium bond length [141], respectively. LDA predicts a too large equilibrium bond length
as well as a spurious energy barrier in the dissociation curve at around 2 angstroms. Note
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Figure 4.2: He+2 dissociation: ground
state energy as a function of the internu-
clear distance R. Dashed red lines mark
the energy of the exact nonrelativistic dis-
sociation limit at −9.81 Ry [115] and the
experimental equilibrium bond length at
1.081 angstroms [141], respectively.

that, due to one-electron self-interaction, the LDA energy falls o� to even lower energies for
larger distances, thus yielding a dramatically wrong dissociation energy [115]. In contrast,
the self-interaction free EXX-KLI approach yields a correct asymptotic behavior. How-
ever, due to the neglect of correlation, the dissociation energy obtained from EXX-KLI is
signi�cantly too low.

As a consequence of the consistent inclusion of correlation and the correction of self-
interaction, the LOC-KLI approach yields an accurate dissociation energy and a reasonable
though somewhat too low equilibrium bond length. Note that the LOC-OEP results de-
picted in Fig. 3 of publication 2 are very close to the LOC-KLI results plotted in Fig. 4.2.
This is in line with the overall �nding of publication 2 that LOC-KLI is a very good approx-
imation to LOC-OEP, even for extended molecular systems. In contrast, the dissociation
curve obtained from KS-KLI supports the �nding of publication 1: KS-KLI yields unphysical
results for extended molecular systems as a consequence of the unitary invariance problem.
Note that, although both KS-KLI and LOC-KLI are free from one-electron self-interaction,
only the LOC-KLI approach yields a reliable description of the He+2 dissociation. This
underlines the importance of the unitary invariance problem, even in a system with only
three electrons. Another interesting conclusion that can be drawn from Fig. 4.2 is the close
analogy of the LOC-KLI curve with the one from EXX-KLI. As derived in publication 2, the
constant by which the EXX-KLI and the LOC-KLI curve in Fig. 4.2 di�er solely arises from
the neglect of correlation in the EXX approach. A discussion of this interesting property of
LOC-KLI is given in section 3.3.4.

4.3. Photoelectron spectra of organic semiconductors

Photoelectron spectroscopy has emerged as one of the most important techniques for clarify-
ing the electronic structure of molecules and solids. The combination of such measurements
with DFT-based electronic structure calculations allows to gain far reaching physical in-
sight, especially in those cases where other methods of determining a material's electronic
structure are hard to apply. Formally, this approach is justi�ed by Görling-Levy perturba-
tion theory. Following the discussion in section 1.5.5, KS eigenvalues can be interpreted as
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Figure 4.3: Comparison of experimental photoelectron spectra of a) Na−5 [91] and b) Si−6
[62] with KS density of states (DOS). LDA KS eigenvalues (blue lines) were calculated with
PARSEC [64] and superimposed with Gaussians (black line) of σ = 0.08 eV to make visual
comparison easier. The HOMO-peaks of both the experimental and the KS spectrum were
shifted to 0.

approximations to electron removal energies as long as they are derived from a high-quality
functional [20]. In practice however, it is often unclear under which circumstances a func-
tional is accurate enough to predict a reliable eigenvalue spectrum for a particular system of
interest. Whereas for some systems LDA or GGAs yield spectra that compare surprisingly
well to the experimental spectrum, they may fail dramatically for others. Quite frequently,
the only way out is to do the calculation with di�erent functionals and choose the one which
yields the best agreement with experiment. Clearly, this considerably limits the practical
usefulness of this method and triggers the need for an easy criterion which can serve as a
warning against possible misinterpretation of the KS eigenvalue spectrum. Publication 3
shows that such a criterion can be based on the OSIE introduced in section 2.2.6.

The physical interpretation of KS eigenvalue spectra obtained from LDA or GGA calcu-
lations has been used very successfully in the past [11, 2, 56, 20, 62, 63, 132, 92]. In
particular, this concept has been proven to be of importance in the �eld of small cluster
physics. Whereas the ionic structure of small inorganic clusters is often neither accessible by
any experimental nor theoretical technique alone, the combination of theory and experiment
frequently allows to determine the geometrical structures rather accurately. On the theoret-
ical side, the main problem is that the high-dimensional energy-landscape of small clusters
typically has a large number of local minima with rather similar total energies. However,
the comparison of the corresponding KS eigenvalue spectra with the experimental photo-
electron spectrum frequently allows to determine the present ionic con�guration reliably.
This interplay between theory and experiment has been used very successfully in the past
[57, 2, 56, 62, 92]. An example is provided in Fig. 4.3. Here, the KS eigenvalues of the small
clusters Na−5 and Si−6 obtained from LDA-calculations and superimposed with a Gaussian
broadening of σ = 0.08 eV are compared to the corresponding experimental photoelectron
spectra [62, 91]. Although there are a number of small deviations, the agreement of theory
and experiment is surprisingly good, in particular in view of the various approximations
that go into this comparison.

Due to the great success of this concept for inorganic clusters, a number of approaches exist
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to apply it to other systems as well. Important examples that are of great fundamental and
practical interest are organic semiconductor materials. In recent years, considerable progress
has been made in raising the technological usability of organic molecules in a new class of
(opto)-electronic devices, e.g., organic light-emitting diodes, transistors and solar cells. The
advantages of these materials are obvious: light weight, mechanical �exibility, tunability of
electronic properties, low costs, and easy processability. The ever growing interest in organic
molecular semiconductors triggers the need for a detailed understanding of the electronic
properties of these materials. Their electronic structure can be investigated by ultraviolet
photoemission spectroscopy (UPS) either in thin solid �lms or with single molecules in the
gas phase. The comparison of the experimental spectra with DFT-based electronic struc-
ture calculations then allows to gain far reaching insight into intermolecular bondings and
polarization [136, 47, 23, 55, 110, 79, 116]. For quite a number of organic semiconductors,
the spectra obtained from LDA or GGA calculations compare quite well with experimental
UPS spectra. The usually observed small di�erences between the measured and calculated
spectra are commonly ascribed to the various approximations that go into this comparison.
However, from time to time systems are found for which semilocal functionals fail dramati-
cally in predicting the measured spectra. One example is the PTCDA molecule, a paradigm
system in the �eld of organic semiconductors [23].

Fig. 4.4 compares the KS eigenvalue spectra of PTCDA for di�erent functionals to the exper-
imental gas phase photoelectron spectrum reported in Ref. [23]. To make visual comparison
easier, the KS eigenvalues are convoluted with Gaussians and all spectra are aligned so that
the HOMO-peaks match. Note that the experimental spectrum shows a pronounced gap
marked by the shaded area between the HOMO and the HOMO-1 peak. The semilocal
functionals LDA and PBE predict several eigenvalues to be right in the middle of the exper-
imental gap, thus failing completely to predict an accurate density of states. The authors of
Ref. [23] solve this problem by going over to a hybrid functional. As can be depicted from
the green curve in Fig. 4.4, B3LYP predicts a correct gap and an overall reliable eigenvalue
spectrum.

The �ndings of Ref. [23] trigger a number of obvious questions: How can it be that semilocal
functionals fail completely for PTCDA but work reliably for rather similar systems such as
pentacene [47, 129]? Why do semilocal functionals fail for PTCDA and why does B3LYP
work? Can we predict under which circumstances and for which systems semilocal func-
tionals fail?

The fact that going over to a functional which includes parts of HF-exchange opens the gap
in PTCDA triggers the assumption that the failure of semilocal functionals might be related
to the self-interaction problem. Ref. [23] provides further indications for this assumption by
looking at the spatial distribution of the highest occupied LDA orbitals (see Fig. 4.5). The
orbitals corresponding to those LDA eigenvalues that lie inside the shaded area of Fig. 4.4,
i.e., inside the gap of the experimental spectrum, are enclosed in red boxes. It is evident that
the structure of the orbitals inside the gap is fundamentally di�erent from the structure of
the other orbitals. However, following the discussion in section 3.3.1, the structure of orbital
densities has a signi�cant in�uence on the corresponding SIE due to the unitary invariance
problem. Further, as discussed in section 2.2.6, the presence of self-interaction in the used
functional can in�uence the KS eigenvalue spectrum signi�cantly if di�erent orbitals su�er
from a di�erent amount of OSIE. Looking at the orbital structures of PTCDA in Fig. 4.5, it
is to be expected that, e.g., HOMO-5 and HOMO-7 su�er from roughly the same amount
of self-interaction whereas the self-interaction energies of, e.g., HOMO-5 and HOMO-4 can
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4.3. Photoelectron spectra of organic semiconductors

Figure 4.4: Experimental photoelectron spectrum of PTCDA (red line) from Ref. [23]
compared to KS eigenvalue spectra obtained from LDA (black), PBE (blue), and B3LYP
(green) calculations in TURBOMOLE [32, 1, 133]. KS eigenvalues are superimposed with
Gaussians (colored lines) of width σ = 0.08 eV and all HOMO-peaks are set to 0 to make
visual comparison easier. The shaded area marks the pronounced gap in the experimental
spectrum. This gap is absent in the KS-DOS obtained from semilocal functionals.

be expected to be rather di�erent.

In publication 3, we establish that it is indeed the combination of self-interaction in the
used functional and varying spatial structure in the highest occupied orbitals of the studied
system that causes the failure of semilocal functionals. We show this by plotting the OSIE
for a set of test systems. It is consistently found that in those systems for which semilocal
functionals yield reliable eigenvalue spectra, the OSIE is roughly the same for all of the
highest occupied orbitals. In these cases, the OSIE simply shifts the whole eigenvalue
spectrum by a constant. However, as the experimental and theoretical spectra are typically
shifted so that the HOMO-peaks match, this constant does not have any consequences for
the comparison of theory and experiment. If however the highest occupied orbitals su�er
from signi�cantly di�erent amounts of OSIE, using a functional which is not free from self-
interaction will distort the eigenvalue spectrum signi�cantly. Publication 3 shows that this
is indeed the case for PTCDA and thus explains the �ndings of Ref. [23].

In summary, publication 3 has four important messages:
i) The spatial structure of the highest occupied orbitals enters the reliability of the occupied
KS eigenvalue spectrum as a decisive factor. If the highest occupied orbitals have signi�-
cantly di�erent spatial structures, it is to be expected that semilocal functionals will not
yield reliable eigenvalue spectra.
ii) The OSIE introduced in section 2.2.6 can serve as a warning against the misinterpretation
of KS eigenvalue spectra. If the highest occupied orbitals su�er from signi�cantly di�erent
amounts of OSIEs, the KS eigenvalue spectrum obtained from semilocal functionals is not
reliable. The OSIE criterion is computationally cheap, easy to implement and can be com-
puted solely from quantities obtained in an LDA or GGA calculation.
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Figure 4.5: Highest occupied orbitals of
PTCDA as obtained from an LDA calcula-
tion in PARSEC [64]. Red boxes mark the
orbitals for which the corresponding eigen-
values lie inside the HOMO/HOMO-1 gap
of the experimental spectrum, i.e., in the
shaded area of Fig. 4.4. The di�erent spa-
tial structures of the orbitals in red boxes
give a hint that self-interaction may play
a prominent role in the failure of semilocal
functionals.

iii) A self-interaction correction using the LOC-KLI approach yields reliable eigenvalue spec-
tra of organic semiconductors also in such cases where semilocal functionals fail. This
demonstrates that self-interaction is the major reason for the failure of semilocal function-
als. In this context, it is interesting to note that the self-interaction correction cures the
failures of LDA without introducing any empirical parameters. Note that B3LYP also yields
a reliable spectrum for PTCDA, however, on the basis of 8 empirically �tted parameters.
iv) The OSIE methodology suggests an easy shortcut that leads to a correct eigenvalue
spectrum: if the OSIE eiσ is a good approximation to the total shift of the eigenvalues,
i.e., to ∆εiσ de�ned in Eq. (2.30), an unphysical LDA spectrum could be corrected simply
by subtracting eiσ from the LDA eigenvalues on an orbital-by-orbital basis. However, as
will be discussed in appendix A.1, in those cases in which self-interaction has a signi�cant
in�uence on the eigenvalue spectrum, self-consistency e�ects of the SIC are typically rather
large. As a consequence, eiσ as calculated from LDA quantities typically overestimates the
actual shift ∆εiσ signi�cantly in such cases. This and other arguments discussed in more
detail in appendix A.1 limit the practical usefulness of this a posteriori correction. How-
ever, we found that one can estimate the self-interaction corrected eigenvalues for PTCDA
and NTCDA rather accurately from LDA quantities by using an expression introduced by
Perdew and Zunger in the context of atomic SIC calculations [106]. More details on this
approximation can be found in publication 3 and appendix A.1.

In addition to PTCDA, publication 3 also studies the eigenvalue spectrum of the similar but
smaller organic semiconductor NTCDA. It is found that the spectrum of NTCDA calculated
from LDA or GGAs is signi�cantly distorted due to a varying OSIE in the highest occupied
orbitals. In particular, it is shown that the order of the highest occupied orbitals changes
dramatically when going from LDA to LOC-OEP. Note that, only shortly after our work, a
gas phase spectrum of NTCDA was published in Ref. [116]. The B3LYP eigenvalue spectrum
for NTCDA agrees well with experiment, as does the LOC-OEP spectrum. In particular, the
authors of Ref. [116] found by a detailed experimental study of the vibrational broadening
of the HOMO-peak, that the HOMO of NTCDA is a �non-bonding molecular orbital� [116].
This �nding con�rms that the HOMO found from the LDA-calculation is indeed wrong and
that LOC-OEP correctly predicts a change in the ordering of the highest occupied orbitals.

Publications 1-3 highlight the important role played by the self-interaction problem in pre-
dicting accurate KS eigenvalues, KS gaps, dissociation and charge transfer properties of
organic polymers and molecular semiconductors by virtue of DFT calculations. A sound
understanding of the problems and prospects of di�erent density functionals is clearly needed
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in order to be able to use DFT calculations as a tool for understanding and improving organic
electronic devices. An example for such an application of DFT for organic semiconductors
is provided in publication 4.

4.4. Fluorescence quenching in an organic donor-acceptor
dyad

In the past decades, considerable progress has been made in improving the performance
and e�ciency of organic semiconductor devices. From the basic research side, this progress
is fueled by a rich variety of experimental and theoretical studies of the properties and
structure of organic molecular semiconductors. In this context, especially tailored model
systems based on small π-conjugated molecules play a particularly important role as they
allow to improve our understanding of energy- and charge-transfer processes in organic
materials.

The organic dyes perylene bisimide (PTCDI) and triphenyl diamine (TPD) are among the
most prominent compounds used in these model systems (see Fig. 4.6 for details on the
chemical structures). Both PTCDI and TPD show strong �uorescence in the visible range
and the emission spectrum of TPD overlaps with the absorption spectrum of PTCDI. Hence,
TPD and PTCDI are an ideal pair to study resonant excitation energy transfer. Following
this line of thought, a donor-bridge-acceptor (DBA) system consisting of TPD as an energy
donor (D), PTCDI as an energy acceptor (A) linked by a saturated and �exible organic
bridge (B) has recently been synthesized [6] and studied [117] by time-resolved �uorescence
spectroscopy measurements.

Traditionally, the transfer of excitation energy between two molecules with spectral overlap
is treated within the Förster-resonant-energy-transfer (FRET) methodology [30]. FRET
approximates the donor and acceptor molecules as point dipoles. Higher order multipoles
as well as all kinds of electronic and vibrational couplings between D, A, a possible bridge,
and the surrounding medium are neglected. With these approximations, Fermi's golden rule

allows to �nd a rate expression for the energy transfer which employs only quantities that
can be measured in the experiment and the distance r between D and A. The transfer rate
itself can also be determined experimentally by comparison of the D lifetime in the presence
of A to the lifetime of the free D. Due to the typical distance dependence of the dipole-dipole
interaction ∼ r−6, FRET has been used very successfully as a ruler on the nanoscale, e.g.,
for monitoring conformational changes in proteins. However, over the years many studies
showed that the approximations used in FRET can break down rather easily, especially if
the distance between D and A is reduced. Refs. [65, 9, 10, 49, 45, 44] are just a few examples
from a vast body of literature that deals with the breakdown of the Förster-formula.

The authors of Ref. [117] used FRET to determine the mean distance between PTCDI
and TPD in the DBA system presented in Fig. 4.6. By measuring the change in the D
�uorescence decay rate, the authors derived a D-A distance that corresponds to a fully
stretched conformation of the bridge. However, they also found evidence on other electronic
processes in the system: the decay rate of A in DBA is substantially increased as compared
to free A, thus indicating an e�cient quenching process of the A �uorescence in the bridged
system. This quenching can also be observed if one excites DBA directly at the A absorption
energy, i.e., it occurs independently from the excitation energy transfer. A possible and
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Figure 4.6: The organic molecular semiconductors discussed in publication 4: TPD (D),
PTCDI (A), and donor-bridge-acceptor molecule (DBA).

frequently invoked explanation for �uorescence quenching in this type of DBA systems is
charge transfer between D and A, which can be caused either by a superexchange coupling
through the saturated bridge [51] or by orbital overlap between D and A as a consequence
of a collapse of the bridge in solution. As for the former, a superexchange coupling as strong
as the one observed here would be quite unusual considering the length of the saturated
bridge. As for the latter, a collapse of the bridge seems to contradict the �ndings of the
FRET experiment. However, if D and A are strongly coupled electronically, the FRET
methodology used to derive the D-A distance in Ref. [117] might no longer be applicable.
Still, if the bridge is not stretched in solution, one would expect this coupling to have a
signi�cant in�uence on the �uorescence spectrum itself and not only on the lifetimes.

In summary, the experimental �ndings of Ref. [117] alone are not conclusive. In publication 4
it is shown that a theoretical analysis employing DFT and TDDFT as a tool to study the
electronic properties of the DBA system can shed new light on the processes observed in
DBA. The importance of the self-interaction problem for the alignment of KS eigenvalues
(see publication 3), for the calculation of ionization potentials (see publication 2), and
for the evaluation of charge transfer problems (see publication 1), in particular for charge
transfer excitations (see discussion in section 1.6.3), demands high standards on the used
functionals and underlines the importance of a careful and thorough interpretation of the
obtained results. In publication 4, we compare the results obtained from DFT and TDDFT
calculations both with other theoretical studies of PTCDI [107] and TPD [78] as well as
with the experimental results from Refs. [6] and [117]. We discuss the problems concerning
the calculation of ionization potentials, KS gaps, and charge-transfer excitations. As for the
latter, we employ and compare a set of functionals using di�erent fractions of HF-exchange
and analyse the obtained excitation spectrum with the help of the natural transition orbitals
introduced in section 1.6.4 in order to distinguish between charge-transfer and pure valence
excitations. Our calculations take into account an empirical dispersion correction of the
used functionals [38] as well as a continuum model for the solvent [58]. The dynamics of the
DBA system in solution are analyzed by means of classical MD [109, 3] (note that further
details on the MD calculations are given in publication 4).

By comparing the calculations for a mixture of free donors and acceptors to those for the
bridged DBA molecule in stretched conformation, publication 4 �nds that the large HOMO-
LUMO-gap of the saturated bridge keeps the electronic spectra of D and A completely
separate. Hence, the direct in�uence of the bridge on the ground- and excited-state spectra
of D and A is negligible and a superexchange coupling through the bridge can be ruled out.
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However, by employing MD simulations of DBA in di�erent solvents, publication 4 reveals
that it is the mechanical in�uence of the bridge that causes the A-�uorescence quenching.
The bridge folds in solution so that donor and acceptor stack at a distance of ∼ 5 angstroms,
which is typical for π-π stacks. DFT calculations of DBA in this con�guration show that
the orbitals of donor and acceptor overlap, thus yielding an energy gain of approximately
0.55 eV as compared to the stretched DBA. As a consequence, the stacked con�guration
is thermally stable. The strong electronic coupling between D and A opens up a non-
radiative de-excitation pathway of the A excitation, which includes charge transfer and
recombination. As a consequence, the A-�uorescence is quenched e�ciently. In addition,
the FRET-methodology is no longer applicable.

Finally, TDDFT calculations on the folded DBA explain why the strong electronic coupling
between D and A can not be observed directly in the �uorescence spectrum. The DBA-
exciplex shows major excitations at the original excitation energies of D and A. However, an
analysis with the help of NTOs shows that the nature of the DBA excitations has changed
signi�cantly as compared to free D and A. In addition, in DBA three excitation energies can
be found in the energetic vicinity of the original D excitation. Due to the large vibrational
broadening of the �uorescence spectrum, these three excitations can not be distinguished
directly in the measured spectrum. However, the coupling leads to a multi-exponential
decay of the DBA-�uorescence at the donor-emission energy. This is in agreement with
recent experimental studies and thus supports the �ndings of publication 4.
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Appendix

A.1. The orbital self-interaction error in KS-KLI and LOC-KLI

The orbital self-interaction error (OSIE) derived in section 2.2.6 is an approximation to the
shift of an eigenvalue subject to a self-interaction correction following the GOEP method-
ology. As demonstrated in publication 3, the OSIE can serve as a warning against misinter-
pretation of eigenvalue spectra obtained from semilocal functionals. In general, the OSIE
is de�ned via the semilocal exchange-correlation potential vsl

xc,σ and the orbital-speci�c po-

tentials uG
xc,iσ of the SIC (see Eq. (2.23)). Then, the OSIE is the approximate shift in the

eigenvalue spectrum when changing the potential from vsl
xc,σ to the GOEP belonging to the

chosen orbital-speci�c potentials uG
xc,iσ. Assuming the semilocal potential to be the LDA-

potential in the following, the OSIE thus depends on the unitary transformation used in
SIC-GOEP. As a consequence, the OSIE corresponding to KS-OEP is expected to be dif-
ferent to the OSIE corresponding to LOC-OEP. In this appendix, the OSIEs corresponding
to KS-OEP and LOC-OEP are discussed and compared in detail using the example of the
organic molecular semiconductor PTCDA (see also publication 3).

With the KS orbitals ϕi and orbital densities ni (r) = |ϕi (r)|2 (spin indices are omitted for
clarity) obtained from a self-consistent LDA calculation and with the corresponding energy-
minimizing orbitals ϕ̃j with densities ñj (r) = |ϕ̃j (r)|2 one can plot and compare a number
of quantities.

eKS
i

(2.36)
=

〈
ϕi

∣∣vLDA
xc [n]− uKS

xc,i

∣∣ϕi

〉 (2.27)
=

〈
ϕi

∣∣vHart [ni] + vLDA
xc [ni]

∣∣ϕi

〉
, (A.1)

∆εKS
i

(2.30)
= εLDA

i − εKSKLI
i (A.2)

are the OSIEs and self-consistent eigenvalue shifts corresponding to KS-KLI,

eLOC
i

(2.36)
=

〈
ϕi

∣∣vLDA
xc [n]− uLOC

xc,i

∣∣ϕi

〉 (2.29)
=

N∑
j=1

Uji

〈
ϕj

∣∣vHart [ñj ] + vLDA
xc [ñj ]

∣∣ϕi

〉
, (A.3)

∆εLOC
i

(2.30)
= εLDA

i − εLOCKLI
i (A.4)

are the OSIEs and self-consistent eigenvalue shifts corresponding to LOC-OEP,

LFB
i :=

∫∫
|ϕi (r)|2

(
r− r′

)2 ∣∣ϕi(r′)
∣∣2 dr dr′ (A.5)

is the Foster-Boys localization of the KS orbital ϕi according to Eq. (3.16), and

δKS
i

(2.4)
= EHart [ni] + ELDA

xc [ni] (A.6)

is the self-interaction energy of the KS orbital-density ni. Self-consistency e�ects can be
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tested by evaluating Eq. (2.33). Hence, we compare the self-consistent eigenvalue shifts
∆εKS

i and ∆εLOC
i to the one-shot eigenvalue shifts

ηKS
i :=

〈
ϕi

∣∣vLDA
xc [n]− vKSKLI

xc [n]
∣∣ϕi

〉 (2.34)
= eKS

i −
(
v̄KSKLI
xc,i − ūKS

xc,i

)
(A.7)

and

ηLOC
i :=

〈
ϕi

∣∣vLDA
xc [n]− vLOCKLI

xc [n]
∣∣ϕi

〉 (2.34)
= eLOC

i −
(
v̄LOCKLI
xc,i − ūLOC

xc,i

)
, (A.8)

respectively. The validity of the �rst-order perturbation-theory argument of Eq. (2.35) can
then be tested by comparing ηKS

i and ηLOC
i to eKS

i and eLOC
i , respectively.

Fig. A.1 plots these quantities as calculated with PARSEC [64] for the PTCDA molecule
introduced in publication 3. Part a) denotes the self-interaction energies δKS

i of the KS
orbital densities |ϕi|2 for the highest occupied LDA orbitals according to Eq. (A.6). Part b)

Figure A.1: Self-interaction error and orbital-localization in PTCDA: a) Self-interaction
energy according to Eq. (A.6); b) Foster-Boys orbital-localization according to Eq. (A.5); c)
OSIE eKS

i (red), self-consistent eigenvalue shift ∆εKS
i (green), and one-shot eigenvalue shift

ηKS
i (blue) for the KS-KLI approach according to Eqs. (A.1), (A.2), and (A.7), respectively;
d) OSIE eLOC

i (red), self-consistent eigenvalue shift ∆εLOC
i (green), and one-shot eigenvalue

shift ηLOC
i (blue) for the LOC-KLI approach according to Eqs. (A.3), (A.4), and (A.8),

respectively. The HOMO is orbital number 70. Dashed lines are just a guide to the eye.
For comparison with the corresponding orbital structures please see Fig. 4.5.
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shows the corresponding Foster-Boys localization LFB
i . These two plots quantify what has

already been derived in section 4.3 and publication 3 qualitatively from just looking at the
orbital structures of PTCDA in Fig. 4.5. The orbitals HOMO-1 to HOMO-4 are signi�cantly
less localized than the other highest occupied orbitals. The di�erent orbital structures yield
di�erent self-interaction energies. In section 4.3, this has been identi�ed as the reason for
the failure of semilocal functionals in predicting a correct eigenvalue spectrum for PTCDA.
Note that δKS

i is negative for all KS orbitals, i.e., the LDA self-interaction energy exceeds
the Hartree self-interaction energy. This is an important di�erence to smaller systems such
as atoms or small molecules, for which the KS orbitals are usually more localized so that
δKS
i is positive. Note further that there is a clear correlation between LFB

i and δKS
i . This

�nding is in line with the discussion in section 3.3.1 and it is a consequence of the unitary
invariance problem.

Part c) of Fig. A.1 shows the OSIE eKS
i (red), the self-consistent eigenvalue shift ∆εKS

i

(green), and the one-shot eigenvalue shift ηKS
i (blue) for the KS-KLI approach according to

Eqs. (A.1), (A.2), and (A.7), respectively. The OSIE eKS
i follows the same trend as δKS

i .
Self-consistency e�ects have a large in�uence on the eigenvalue shifts, as can be derived from
a comparison of ∆εKS

i and ηKS
i . However, the relative eigenvalue shift is basically scaled by

a factor and the general trends are preserved. Comparison with eKS
i further shows that the

�rst-order perturbation theory argument holds. Hence, the approximations used in section
2.2.6 are reasonable and the relative OSIE can be seen as a reliable indicator for actual
shifts in the eigenvalue spectrum due to self-interaction.

Part d) shows the OSIE eLOC
i (red), the self-consistent eigenvalue shift ∆εLOC

i (green), and
the one-shot eigenvalue shift ηLOC

i (blue) for the LOC-KLI approach according to Eqs. (A.3),
(A.4), and (A.8), respectively. As a consequence of the localization of the energy-minimizing
orbitals, all OSIEs eLOC

i are manifestly positive. As in the case of KS-KLI, self-consistency
e�ects and the perturbation theory argument of Eq. (2.35) basically scale the relative eigen-
value shift by a factor. The most striking �nding of part d) however is that, at least on
a relative scale, all three plotted quantities follow the opposite trend as for KS-KLI. For
example, HOMO-1 to HOMO-4 are shifted downwards relative to the HOMO in LOC-KLI
and upwards in KS-KLI. Comparison of c) and d) clearly reveals a negative correlation
between eLOC

i and eKS
i and between ∆εLOC

i and ∆εKS
i , respectively. In search for a more

quantitative measure of this correlation, we evaluate the partial correlation function

κ (α, β) =
1/N

∑N
i=1 (αi − ᾱ)

(
βi − β̄

)√
1/N

∑N
i=1 (αi − ᾱ)2

√
1/N

∑N
i=1

(
βi − β̄

)2 ∈ [−1, 1] , (A.9)

ᾱ = 1/N
N∑

i=1

αi , β̄ = 1/N
N∑

i=1

βi (A.10)

of the eigenvalue shifts in KS-KLI and LOC-KLI for a number of organic semiconduc-
tors in the following. If these two quantities are indeed negatively correlated, one expects
the κ-value to be close to −1; if there is no correlation, κ vanishes. Table A.1 shows
κ
(
∆εKS,∆εLOC

)
for the organic molecular semiconductors PTCDA, NTCDA, Pentacene,

Pyrene, Triphenylene (TPL), and Hexabenzocoronene (HBC). A clear negative correlation
between the self-consistent eigenvalue shifts in KS-KLI and LOC-KLI can be found for all
molecules.

As an important consequence of the above discussion, the OSIE evaluated with the orbital-
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PTCDA NTCDA Pentacene Pyrene TPL HBC

κ
(
∆εKS,∆εLOC

)
-0.96 -0.95 -0.93 -0.86 -0.88 -0.92

Table A.1: Partial correlation function κ of the self-consistent eigenvalue shifts of KS-
KLI and LOC-KLI as compared to LDA following Eq. (A.9) for a set of organic molecular
semiconductors.

speci�c potential of KS-KLI can indeed serve as a measure for the reliability of eigenvalue
spectra obtained from semilocal functionals. However, due to self-consistency e�ects and as a
consequence of the perturbation theory argument of Eq. (2.35), the relative OSIE is typically
scaled by a factor as compared to the relative eigenvalue shift in a self-consistent calculation.
Although the eigenvalue shifts in LOC-KLI and KS-KLI take completely di�erent values,
they are strongly negatively correlated. Hence, both the OSIE evaluated with the orbital-
speci�c potential of KS-KLI and the self-interaction energy δKS

i of the KS orbital densities
reliably indicate possible eigenvalue shifts in a LOC-KLI calculation. This is the basic
�nding of publication 3.

In this context, it is interesting to note that the approximative correction of the LDA
eigenvalue εLDA

i used in Eq. (2) of publication 3, i.e.,

εesti = εLDA
i − 0.94

∫ (
|ϕi|2

) 4
3 dr− 〈ϕi | vLDA

c [|ϕi|2, 0] |ϕi 〉. (A.11)

corrects the LDA eigenvalues in the same direction as the GKLI approach (see publication 3
for examples). At �rst sight, this �nding is quite surprising, as Eq. (A.11) is evaluated with
the KS orbitals and not with localized orbitals. However, it can be rationalized by the fact
that Eq. (A.11) is based on an approximative correction scheme which has originally been
introduced by Perdew and Zunger [106] for the special case of atoms, i.e., it is assumed that
the orbitals used in the self-interaction correction are localized in space. Hence, the local-
ization of orbitals is already incorporated in the approximation used to derive Eq. (A.11).

Note that the results discussed above provide a new perspective on the failure of the KS-KLI
approach. The latter will be discussed in appendix A.2.

A.2. The failure of KS-KLI

It has been known for quite a long time in the literature that the KS-KLI approach, although
being rather successful for small atoms [19, 134], yields unrealistic results for molecules
[33, 95]. The idea to employ localized orbitals instead of KS orbitals in the KS-KLI po-
tential [19, 134] was inspired by the empirical �nding that a direct variation of the total
energy with respect to the orbitals typically leads to orbitals that are rather localized in
space [106]. The results presented in this work further strengthen the importance of the
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Figure A.2: KS eigenvalue spectra obtained from LDA (black), KS-KLI (blue), and LOC-
KLI (green) compared to the experimental photoelectron spectrum (red). The blue and
green arrows denote the shifts of the LDA eigenvalues corresponding to HOMO-1 to HOMO-
4 in KS-KLI and LOC-KLI, respectively. KS eigenvalues are superimposed with Gaussians
of width σ = 0.08 eV and all HOMO-peaks are set to 0 to make visual comparison easier.

localizing transformation. In particular, the performance of the di�erent SIC-approaches
for the linear response of hydrogen chains (see Fig. 4.1 and discussion in text) demonstrates
that using localized orbitals is essential. Publication 1 shows that the self-consistent KS
orbitals themselves can be localized in space due to a symmetry-break in the self-consistent
iteration. As a consequence, KS-OEP yields very accurate results for the response of model
hydrogen chains. However, it is an empirical �nding that KS-KLI, in contrast to KS-OEP,
never leads to a symmetry-break. Hence, KS-KLI orbitals are typically delocalized over the
whole system. Importantly, the orbitals found from a self-consistent KS-KLI calculation are
not those KS orbitals that minimize the total energy corresponding to the SIC-functional.
The inability of the KS-KLI approach to yield the energy-minimizing KS orbitals has to be
ascribed to the nature of the KLI-approximation. The latter is based on the assumption
that the used approximation in the potential does not spoil the self-consistent iteration.
Publication 1 clearly demonstrates that this assumption can not be uphold for the SIC-
functional.

The �ndings of appendix A.1 provide a new perspective on the failure of the KS-KLI ap-
proach for extended molecular systems. Table A.1 shows that the relative eigenvalue shift
of KS-KLI is negatively correlated to the relative eigenvalue shift of LOC-KLI for a set
of organic molecular semiconductors. From publication 3 it is further known that LOC-
KLI yields a reliable eigenvalue spectrum for PTCDA. Fig.A.2 compares the KS eigenvalue
spectra of LDA, KS-KLI, and LOC-KLI to the experimental photoelectron spectrum. The
eigenvalue shifts of KS-KLI and LOC-KLI for the crucial orbitals HOMO-1 to HOMO-4
are indicated by the blue and green arrows, respectively. As a consequence of the results
provided in Table A.1, the LDA eigenvalues are shifted in opposite directions in KS-KLI
and LOC-KLI, thus yielding two completely di�erent eigenvalue spectra. In contrast to
LOC-KLI, KS-KLI does not at all improve upon the LDA spectrum. Actually, the KS-KLI
spectrum is even worse. With the analysis of appendix A.1, the reason for this failure is
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obvious. KS-KLI corrects the eigenvalues in the wrong direction. The reason behind this
failure is the unitary invariance problem. In contrast to the energy-minimizing orbitals,
delocalized KS-KLI orbitals are obviously not suitable for calculating the self-interaction
error in many-particle systems. Still, the strong correlation between the KS-KLI and the
LOC-KLI shift shows that the delocalized KS-KLI or LDA orbitals carry important infor-
mation on the self-interaction in many-particle systems. The art of doing a self-interaction
correction in many-particle systems is thus to extract this information from the delocalized
KS orbitals in a correct manner. This is the basic idea behind the unitary transformation
employed in the GOEP approach.

A.3. How to solve the symmetry condition

According to the discussion in section 3.3.3, the energy minimizing unitary transformation
needed in the LOC-OEP and LOC-KLI approach can be found by solving the symmetry
condition (3.20). Following an idea of Fois et al. [29], one can replace the Uσ

ij in Eq. (3.20)
by the transformation T σ

ij = δij + τσ
ij , with τ

σ
ij = −τσ

ji (note that all orbitals and thus the
unitary transformations between them are chosen to be real in this appendix). However,
the thus obtained T σ

ij is not strictly unitary:

Nσ∑
k=1

T σ
ik T

σ
jk = δij + τσ

ij + τσ
ji︸ ︷︷ ︸

=0

+
Nσ∑
k=1

τσ
ik τ

σ
jk 6= δij . (A.12)

By employing Löwdin's method of symmetric orthogonalization [77, 83], the nonorthogonal
orbitals

ϕ̃no
iσ (r) =

Nσ∑
j=1

T σ
ij ϕjσ (r) (A.13)

can be orthonormalized by multiplication with the Löwdin matrix

Cσ
ij :=

(
Sσ

ij

)−1/2 :=
〈
ϕ̃no

iσ |ϕ̃no
jσ

〉−1/2
. (A.14)

By construction, the Löwdin-orthogonalized orbitals

ϕ̃jσ (r) =
Nσ∑

m=1

Cσ
jm ϕ̃no

mσ (r) =
Nσ∑

k,m=1

Cσ
jm T σ

mk ϕkσ (r) (A.15)

are those orthonormal orbitals that are closest in the least-squares sense to the original
non-orthogonal orbitals ϕ̃no

mσ (r). With this, the symmetry condition (3.20) reads

Nσ∑
k,m=1

Cσ
jm T σ

mk

Nσ∑
l,n=1

Cσ
in T

σ
nl

〈
ϕkσ

∣∣ ṽSIC
jσ − ṽSIC

iσ

∣∣ ϕlσ

〉︸ ︷︷ ︸
=: 〈 k | j−i | l 〉

= 0 . (A.16)
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Regarding the Löwdin matrix one derives

Sσ
ij :=

〈
ϕ̃no

iσ |ϕ̃no
jσ

〉
=

Nσ∑
p,q=1

T σ
ip T

σ
jq 〈ϕpσ|ϕqσ〉︸ ︷︷ ︸

= δpq

=
Nσ∑
q=1

T σ
iq T

σ
jq . (A.17)

During the self-consistent iteration of the τ 's (see below), the non-orthogonality of T σ
ij is

small for every iteration step. Hence, one can approximate [77]

Cσ
ij =

(
Sσ

ij

)−1/2 ≈ δij −
1
2
(
Sσ

ij − δij
) (A.17)

=
3
2
δij −

1
2

Nσ∑
q=1

T σ
iq T

σ
jq . (A.18)

By inserting Eq. (A.12) and τσ
jq = −τσ

qj one thus obtains

Cσ
ij ≈

3
2
δij −

1
2

(
δij −

Nσ∑
q=1

τσ
iq τ

σ
qj︸ ︷︷ ︸

=: (τσ
ij)

2

)
= δij +

1
2
(
τσ
ij

)2
. (A.19)

For the unitary transformation Uσ
ij this yields

Uσ
ij =

Nσ∑
k=1

Cσ
ik T

σ
kj ≈

Nσ∑
k=1

(
δik +

1
2

(τσ
ik)

2

)(
δkj + τσ

kj

)
= δij + τσ

ij +
1
2
(
τσ
ij

)2+
1
2
(
τσ
ij

)3︸ ︷︷ ︸
=: ωσ

ij

. (A.20)

Note that, similar to T σ
ij , also U

σ
ij is not strictly unitary due to the approximation in the

Löwdin matrix provided in Eq. (A.18). However, we �nd that by taking into account an
additional order in τσ

ij , the unitarity of Uσ
ij is signi�cantly improved as compared to T σ

ij .
Note that, if necessary, this approach can be improved straightforwardly by taking into
account further orders in the expansion of the Löwdin matrix (see Ref. [77]).

By inserting Eq. (A.20) into the symmetry condition (A.16) one obtains after some algebra

〈j |j − i| i〉+
Nσ∑
l=1

ωσ
il 〈j |j − i| l〉+

Nσ∑
k=1

ωσ
jk 〈k |j − i| i〉+

Nσ∑
k,l=1

ωσ
ilω

σ
jk 〈k |j − i| l〉 = 0. (A.21)

Adding the auxiliary zeros

Nσ∑
l=1

δjlτ
σ
il − τσ

ij = 0 , (A.22)

−
Nσ∑
k=1

δikτ
σ
jk + τσ

ji = 0 , (A.23)

75



Appendix

and again using τσ
ij = −τσ

ji one derives

2τσ
ij = τσ

ij − τσ
ji = 〈j |j − i| i〉 +

Nσ∑
l=1

ωσ
il 〈j |j − i| l〉+ δjlτ

σ
il (A.24)

+
Nσ∑
k=1

ωσ
jk 〈k |j − i| i〉 − δikτ

σ
jk

+
Nσ∑

k,l=1

ωσ
il ω

σ
jk 〈k |j − i| l〉 .

With ωσ
ij = τσ

ij + 1
2

(
τσ
ij

)2+ 1
2

(
τσ
ij

)3
one �nally obtains an iterative equation for the τ 's:

τσ
ij = τ0

ij +
1
2

{
Nσ∑
l=1

[(
τσ
il +

1
2

(τσ
il )

2+
1
2

(τσ
il )

3

)
〈j |j − i| l〉+ δjlτ

σ
il

]
(A.25)

+
Nσ∑
k=1

[(
τσ
jk +

1
2
(
τσ
jk

)2+
1
2
(
τσ
jk

)3) 〈k |j − i| i〉 − δikτ
σ
jk

]

+
Nσ∑

k,l=1

(
τσ
il +

1
2

(τσ
il )

2+
1
2

(τσ
il )

3

)(
τσ
jk +

1
2
(
τσ
jk

)2+
1
2
(
τσ
jk

)3) 〈k |j − i| l〉

}
,

where τ0
ij = 1

2 〈i |i− j| j〉 can be interpreted as the 0th order solution. Note that one
immediately obtains the iterative equation proposed by Fois et al. [29] if one replaces the
ωσ

ij by τ
σ
ij on the right hand side of Eq. (A.24) or Eq. (A.25), respectively.

The solution of Eq. (A.25) now follows an iterative procedure:
(i) Start with some set of orbitals ϕkσ. This could be the KS orbitals. However, a faster
convergence can be achieved by using localized orbitals such as Foster-Boys or Edminston-
Ruedenberg orbitals as initial guess.
(ii) Calculate the corresponding τ0

ij , 〈k |j − i| l〉 and the orbital-speci�c SIC-potentials ṽSIC
iσ

according to Eq. (3.21).
(iii) Insert τσ

ij = τ0
ij on the right hand side of Eq. (A.25) and derive the new τσ

ij .
(iv) Use the new τσ

ij in order to calculate the unitary transformation Uσ
ij and a new set of

orbitals. Note that Uσ
ij can be calculated approximately via Eq. (A.21). However, we derive

Uσ
ij by applying an explicit Löwdin orthogonalization on T σ

ij = δij + τσ
ij .

(v) Calculate the corresponding 〈k |j − i| l〉 and the orbital-speci�c SIC-potentials ṽSIC
iσ ac-

cording to Eq. (3.21), insert on the right hand side of Eq. (A.25), calculate a new τσ
ij and

repeat until the symmetry condition (3.20) is satis�ed.

We �nd that by employing the Löwdin orthogonalization of T σ
ij in Eq. (A.25), the τ -iteration

converges signi�cantly faster and more reliably as compared to the procedure proposed by
Fois et al. for many systems. However, an essential step for improving the convergence of
Fois' iterative procedure is to replace the proposed Gram-Schmidt orthogonalization of Uσ

ij

by a symmetric Löwdin orthogonalization.

Fractional occupation numbers can be introduced into the iterative solution of the symmetry
condition just be replacing the orbitals ϕiσ by

√
fiσϕiσ and the localized orbitals ϕ̃iσ by√

f̃iσϕ̃iσ, respectively. One thus obtains the energy-minimizing unitary transformation Kσ
ij
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to be used in Eq. (3.6). Basically, the iterative solution of the symmetry condition for
fractional occupation numbers follows exactly the same lines as for integer occupation.
However, one has to take into account that, although Kσ

ij is unitary, the localized orbitals
obtained from Eq. (3.6) are no longer orthogonal (see Eq. (3.10)). As a consequence, the
Löwdin orthogonalization employed in the τ -iteration does not orthogonalize the localized
orbitals themselves but only the transformation matrix.

In some cases, it might be useful to split the iterative procedure in an inner and an outer
iterative loop. In the inner loop, Eq. (A.25) would be solved iteratively for τσ

ij for �xed

〈k |j − i| l〉 and ṽSIC
iσ . Only in the outer loop, the Uσ

ij , 〈k |j − i| l〉 and ṽSIC
iσ are updated

using the converged τσ
ij . Note however that the inner loop usually only converges reliably

if one includes the orthogonalization of τσ
ij directly in the iterative equation as done in

Eq. (A.25). In our implementation, we usually start the iterative procedure with roughly
converged Foster-Boys or Edminston Ruedenberg orbitals. With this initial guess, the algo-
rithm usually converges within some tens of (outer) iterative steps.

A.4. List of used functionals and their abbreviations

This appendix provides a short overview of all functionals used or referred to in this work
and their abbreviations.

LDA:

Local density approximation with correlation contributions in the parametrization of
Ref. [105].

PBE:

Non-empirical generalized gradient approximation (GGA) provided by Perdew, Burke and
Ernzerhof [101].

BLYP:

Semiempirical GGA, which combines Becke88 exchange [7] with the correlation functional
given by Lee, Yang, and Parr [72].

B3LYP:

Hybrid functional according to Eq. (1.25), which employs the Becke88 GGA for exchange
EB88

x [7], the GGA for correlation given by Lee, Yang, and Parr ELYP
c [72], and the ELDA

xc

in the parametrization of Vosko, Wilk and Nusair [137]. The empirical parameters were
determined to aHF

0 = 0.20, ax = 0.72, and ac = 0.81 [122], respectively.

EXX-OEP:

Exact exchange orbital functional according to Eq. (1.13) evaluated with the OEP-
methodology introduced in Eqs. (1.15)-(1.17).

EXX-KLI:

KLI-approximation to EXX-OEP as provided in Eq. (1.21).

Self-interaction corrections play a particular important role in this thesis. Due to the
problems discussed in section 2, the SIC proposed by Perdew and Zunger, i.e., Eq. (2.10),
leaves the foundations of KS DFT by introducing orbital-speci�c potentials. Further, the
unitary invariance problem allows to de�ne many di�erent SICs on the basis of Eq. (2.10)
by using di�erent orbitals in the SIC energy. This leads to a large variety of di�erent
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approximative or exact approaches to de�ne an exchange-correlation potential corresponding
to Eq. (2.10). The abbreviations used in this thesis for the di�erent approaches are provided
below. Note that all presented SICs refer to a SIC of LDA.

PZ-SIC:

Derivation of Eq. (2.10) directly with respect to the orbitals leads to the orbital-speci�c po-
tentials of Eq. (2.13). Frequently, an orthogonality constraint is applied in the minimization
of the energy functional. One thus obtains the system of self-consistent equations (2.18).
By introducing orbital speci�c potentials, PZ-SIC is outside the foundations of KS theory.

GOEP:

Orbital functionals such as Eq. (2.10) that are not invariant under unitary transformation
can be brought back under the umbrella of KS DFT by virtue of the generalized opti-
mized e�ective potential approach derived in publication 2 and further explained in section
2.2.2. Solving Eq. (2.22) yields the optimized e�ective potential to any orbital-functional
and unitary transformation of interest. In this thesis, two particular choices for the unitary
transformation Uσ

ij are used for the SIC functional of Eq. (2.10):

KS-OEP:

Abbreviation for Kohn-Sham SIC-GOEP. The energy functional is provided in Eq. (2.26). It
employs the KS orbital densities in the SIC of LDA following Eq. (2.10). Hence, the unitary
transformation in the GOEP methodology is chosen to be the identity matrix, the set of
localized orbitals ϕ̃iσ (see Eq. (2.20)) equals the set of KS orbitals and the GOEP equation
(2.22) reduces to the standard OEP-equation (1.15). vKSOEP

xc,σ can be derived following the
methodology discussed in section 3.1.

LOC-OEP:

Abbreviation for localized SIC-GOEP. The energy functional is provided in Eq. (2.28). It
employs the energy-minimizing orbital densities in the SIC of LDA following Eq. (2.10). The
unitary transformation can be derived from solving the symmetry condition (3.20). With
this, one obtains vLOCOEP

xc,σ by virtue of the GOEP equation (2.22) following the methodology
discussed in section 3.1.

GKLI:

KLI-approximation to GOEP as provided in Eq. (2.25). Note that this is an approximation
in the potential and not in the energy functional. Similar to GOEP, GKLI is generalized in
the sense that it works for any orbital-functional and unitary transformation. Again, two
cases are of particular interest in this thesis:

KS-KLI:

KLI-approximation to KS-OEP, i.e., use the orbital-speci�c potentials uKS
xc,iσ from Eq. (2.27)

in the GKLI expression (2.25).

LOC-KLI:

KLI-approximation to KS-OEP, i.e., use the orbital-speci�c potentials uLOC
xc,jσ from Eq. (2.29)

in the GKLI expression (2.25).

G-Slater:

Crude approximation to GOEP. The Slater-approximation is derived by setting v̄GKLI
xc,iσ −

ūG
xc,iσ = 0 in the GKLI potential of Eq. (2.25). Hence, the response part of the GOEP

potential is completely neglected. As a consequence, the Slater-approximation misses one of
the key-features of self-interaction free orbital-functionals, i.e., the good response properties
(see discussion in section 4.1 and publication 1).
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KS-Slater:

Slater-approximation to KS-OEP.

LOC-Slater:

Slater-approximation to LOC-OEP.

Garza-SIC:

Approximative exchange-correlation potential for the SIC �rst proposed by Garza et al. [33]
and later referred to by other authors [95, 99]. In this approximation, the KS orbitals in
the expression for the KS-KLI potential are replaced by localized Foster-Boys or Pipek-
Mezey orbitals, respectively. As discussed in publication 2, the thus newly de�ned potential
functional can be seen as an approximation to the LOC-KLI potential. However, in contrast
to the LOC-KLI case the used orbitals are not the energy-minimizing orbitals, and there is
no straightforward way of improving the Garza-SIC approach to a full-OEP level.
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Abstract

The accurate prediction of electronic response properties of extended molecular systems has
been a challenge for conventional, explicit density functionals. We demonstrate that a self-
interaction correction implemented rigorously within Kohn-Sham theory via the optimized
e�ective potential (OEP) yields polarizabilities close to the ones from highly accurate wave-
function-based calculations and exceeding the quality of exact-exchange OEP. The orbital
structure obtained with the OEP-SIC functional and approximations to it are discussed.
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The accurate prediction of electronic response properties of extended molecular systems has been a
challenge for conventional, explicit density functionals. We demonstrate that a self-interaction correction
(SIC) implemented rigorously within Kohn-Sham theory via the optimized effective potential (OEP)
yields polarizabilities close to the ones from highly accurate wave-function-based calculations and
exceeding the quality of exact-change OEP. The orbital structure obtained with the OEP-SIC functional
and approximations to it are discussed.
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Gaining microscopic insight into the quantum-
mechanical electronic effects that govern energy transfer
and charge transfer in processes like light-harvesting,
charge separation in organic solar cells, or the response
of molecular optoelectronic devices would be extremely
beneficial to the understanding of these phenomena. But
the computational complexity of solving the many-
electron Schrödinger equation leaves little hope that
wave-function-based approaches can address these prob-
lems any time soon. The formulation of quantum mechan-
ics without a wave function, i.e., density-functional theory
(DFT) in the Kohn-Sham framework, is computationally
much more efficient and allows us to handle systems with
up to several hundreds of electrons. Therefore, it appears as
the ideal tool for investigating the above mentioned prob-
lems. However, the predictive power of DFT calculations
depends crucially on the approximations made in the de-
scription of the exchange-correlation effects. Structural,
ground-state molecular properties are obtained with rea-
sonable to excellent accuracy using standard, explicit den-
sity functionals like the local spin density approximation
(LSDA) or generalized gradient approximations (GGAs).
But these functionals notoriously fail in the description of
charge-transfer processes [1,2] and associated problems
like predicting the response [3] or transport [4] properties
of extended molecular systems. There is, thus, a serious
need for exchange-correlation approximations that allow
us to calculate response properties like polarizabilities of
extended systems reliably on a quantitative scale and with
bearable computational costs.

It has been demonstrated that improvements in the
density-functional description of the response of conju-
gated polymers can be achieved based on current density-
functional theory [5] and related ideas [6], or by incorpo-
rating full [3,7,8] or partial [9] exact exchange. It has also
been argued that correlation effects play a non-negligible
role in the proper description of response properties [10].
However, evaluating the Fock integrals in exact-exchange
approaches increases numerical costs substantially, and the

computational complexity of approaches using exact ex-
change with ‘‘compatible’’ correlation is significant [11].

In this Letter we demonstrate that these problems can be
overcome with a self-interaction correction (SIC) em-
ployed rigorously within Kohn-Sham theory. In the SIC-
scheme, only direct, i.e., self-exchange integrals, need to
be evaluated; thus, computational costs are lowered. OEP-
SIC yields highly accurate results for the response of
extended molecular systems without involving empirical
parameters.

The first ‘‘modern’’ SIC was proposed by Perdew and
Zunger as a correction to LSDA [12]. They devised the
LSDA-SIC functional
 

ESIC
xc �n"; n#� � ELSDA

xc �n"; n#�

�

� X
��";#

XN�
i�1

EH�ni;�� � ELSDA
xc �ni;�; 0�

�
; (1)

where ELSDA
xc is the LSDA exchange-correlation energy

functional, EH the Hartree (classical Coulomb) energy, n"
and n# the up- and down-spin densities, respectively,N" and
N# the numbers of occupied spin-orbitals, and ni;� the
orbital spin densities. Equation (1) is not the only way in
which a SIC can be defined [13], but it is plausible and
straightforward: The spurious self-interaction effects that
are contained in the Hartree energy and the LSDA func-
tional are subtracted on an orbital-by-orbital basis.
However, a subtlety is buried in this seemingly simple
equation: The functional depends on the orbitals explicitly,
i.e., it is not an explicit density functional. The traditional
way of approaching this problem has been to minimize the
total energy with respect to the orbitals [12,14,15]. This
approach is within the realm of the Hohenberg-Kohn theo-
rem, but it is outside the foundations of Kohn-Sham theory:
minimizing with respect to the orbitals leads to single-
particle equations with orbital-specific potentials instead
of a global, local Kohn-Sham potential for all orbitals. But
the existence of a common, local potential is one of the
features that makes Kohn-Sham DFT attractive: Only with
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a local potential is the noninteracting kinetic energy den-
sity a well-defined density functional; a local potential
considerably simplifies numerical efforts, it facilitates the
interpretation of results, and it yields not only corrected
occupied eigenvalues, but also corrected unoccupied ones.
But on the other hand, Perdew-Zunger SIC [12] has be-
come popular in some areas of solid state physics exactly
for the reason that it does not work with one common local
potential but with several orbital-specific ones, because
orbital-specific potentials straightforwardly allow to take
into account orbital localization effects: SIC with orbital-
specific potentials can treat, e.g., p and d orbitals of a
crystalline solid on a different footing. In this way, Perdew-
Zunger SIC can naturally distinguish between localized
and delocalized states. In order to benefit from the advan-
tages of working with a local potential without losing the
ability to describe localization effects, schemes have been
devised which make use of the fact that Eq. (1) is not
invariant under transformations of the orbitals that change
the individual orbital densities but leave the total density
unchanged. Calculating orbitals from a common
Hamiltonian and then subjecting these orbitals to localiz-
ing transformations has proved to be a successful scheme
for solids [16,17] and molecules [18–20].

However, localizing orbital transformations can become
computationally involved in large finite systems and in
time-dependent calculations. Therefore, yet another vari-
ant of the SIC has become popular. It uses the Krieger-Li-
Iafrate (KLI) construction [21] to obtain the KLI potential
corresponding to Eq. (1) and evaluates Eq. (1) directly with
the KLI orbitals [22–25]. This approach has been justified
as an approximation to the OEP version of SIC (OEP-SIC),
which is defined by evaluating Eq. (1) with the orbitals
obtained from the SIC Kohn-Sham potential that follows
from the optimized effective potential (OEP) formalism
[11]. But to the best of our knowledge, the performance of
the OEP-SIC approach itself has remained largely unex-
plored, and tests of the KLI-SIC approach were restricted
to spherical atoms [22]. In this manuscript we demonstrate
that OEP-SIC, but not KLI-SIC, allows us to predict elec-
tric response coefficients of molecular systems very reli-

ably and may thus become an important tool to investigate
charge-transfer questions.

One of the most demanding tests of a functional’s ability
to adequately describe charge transfer is calculating the
polarizability of hydrogen chains. It has been shown that
obtaining the response of hydrogen chains correctly is even
more difficult than obtaining the response of real polymers
like polyacetylene [5]. Therefore, calculating the polar-
izability of hydrogen chains has become a benchmark
test for many-particle approaches from both the density
functional [3,5–8] and the wave-function worlds [26,27].
Since a response quantity like the polarizability determines
how a system reacts to a field that induces a density shift,
calculating the polarizability also probes the ability to
correctly describe charge transfer. As a second, positive
side effect, investigating hydrogen chains also allows us to
address the question of size consistency of the OEP-SIC
functional [12,28,29].

Our calculations are based on a real space approach [30],
which we employed to calculate the ground-state of hydro-
gen chains with alternating interatomic distances of 2 and 3
a0, using KLI-SIC. From the converged KLI-SIC solution
we calculated the true OEP following the iterative proce-
dure described in [31], which is more cumbersone for the
SIC-LDA functional than for pure exchange, but does
converge. The ground-state calculations (no electrical field
applied yet) lead to a remarkable result. For the sake of
clarity we discuss it using the specific example of the
shortest chain, H4. The KLI solution is spatially symmetric
as expected and as depicted in the left part of Fig. 1. It is
also manifestly spin unpolarized; i.e., the self-consistent
KLI iteration returns to a spin-unpolarized solution from a
spin-polarized starting guess. But starting from the spin-
unpolarized KLI solution and iterating the OEP to self-
consistency without restriction on the spin polarization, we
observe a spontaneous change in symmetry. After a few
iterations of the OEP self-consistency cycle, the up- and
down-spin orbitals separate and each orbital starts to center
around one nucleus. For the interatomic distances of 2 and
3 a0 frequently used in the literature [3,8,26,32], the effect
is moderate, but clearly visible, as shown in the middle of
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FIG. 1 (color online). Left: Orbital densities of H4 with interatomic distances of 2 and 3 bohr (a0), respectively, obtained from self-
consistent KLI-SIC calculation. Up- and down-spin orbitals are identical. Middle: Spin-orbital densities for the same system obtained
from self-consistent OEP-SIC calculation. Right: Spin-orbital densities of H4 with interatomic distances of 2.5 and 3 a0, respectively,
obtained from self-consistent OEP-SIC calculation. The orbital localization increases with increasing interatomic distance.
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Fig. 1. If the interatomic distances are increased further,
e.g., to 2.5 and 3 a0 as shown in the right part of Fig. 1, the
orbital localization becomes pronounced and one can un-
doubtedly associate one orbital with one nucleus. This
effect is not only observed for H4, but also for the other
hydrogen chains we studied.

A conclusion from this finding is that the KLI-SIC
potential is not necessarily a good approximation to the
OEP-SIC potential. In order to understand this one should
recall that the KLI-potential is justified as a mean-field
approximation [11,21,24]: The difference between the true
OEP and the KLI-potential is a term of the kind
�1=n�r��rf�r�, where f�r� is a well-defined function de-
pending on the full spectrum of Kohn-Sham orbitals.
Averaged over the density, the term vanishes [21,24]. But
implicitly this mean-field argument assumes that the
‘‘averaged’’ term has little influence in the self-consistent
iteration so that the density obtained with and without the
neglected term are very similar. However, our calculations
show that this is not the case for the SIC functional: taking
into account the term that is neglected in the KLI potential
drives the self-consistent iteration to a very different solu-
tion. This is possible because the neglected term contains
all orbitals and is thus relevant for unitary (in)variance and
greater variational freedom. The breakdown of the KLI-
SIC approximation may be a surprise in view of its good
performance for atoms [22], but appears less surprising in
view of other drawbacks [33].

The hydrogen chain ground-state results also naturally
trigger thoughts about the bulk limit that one would reach
by adding ever more atoms. We briefly want to ponder this
case. Recall that for an infinite lattice of hydrogen atoms
with a lattice constant that tends to infinity, the exact Kohn-
Sham orbitals are delocalized Bloch orbitals for which the
self-interaction correction vanishes on a per atom basis
[12]. Using such orbitals in Eq. (1) yields the (wrong)
uncorrected LSDA energy. Inherent to the logic of this
argument is a certain order of taking the two ‘‘infinity
limits’’: first the number of atoms tends to infinity, i.e.,
an infinite lattice is built, and then the lattice constant is
made ever larger.

Our calculations suggest that a different result is ob-
tained if the order of taking these two limits is inter-
changed. For finite systems of largely separated hydrogen
atoms, our OEP-SIC calculations lead to localized orbitals
and thus, a self-interaction corrected energy. Now imagine
building up an ever larger lattice of hydrogen atoms with
ever larger interatomic separation by adding atoms to a
finite starting system. At each step of this buildup process,
one will be dealing with a large but finite system. Our
calculations suggest that at each stage of the buildup
process, OEP-SIC will yield localized orbitals and thus a
self-interaction corrected energy. This idea is in line with
earlier findings that revealed that it makes a great differ-
ence whether the surface of an extended system is explic-
itly taken into account or not [34]. In any case our results
show that OEP-SIC can yield localized orbitals that differ

greatly from the KLI orbitals. How strong the OEP-SIC
localization is will depend on the specific system.
Generally speaking, we expect localization effects to be
even more pronounced in SIC schemes using orbital de-
pendent potentials [12] or orbital localizing transforma-
tions [16–20].

With the ground-state structure of OEP-SIC discussed
we come to the most important aspect of this manuscript,
the calculation of the electrical response. As a first test we
calculated the response of the two dimers Na2 and N2,
which can be seen as representing the ‘‘extreme ends’’ of
dimer bonding with a soft single and a strong triple bond,
respectively. The OEP-SIC polarizability (tensor average
in a3

0) is obtained as 274 for Na2 (KLI-SIC performs
similar) and 10.3 for N2 (no convergence for KLI-SIC).
The value for the sodium dimer compares favorably with
the most recent experimental result of 270 [35], the value
for the nitrogen dimer is too low but not unreasonable [36].
It is a noteworthy observation that OEP-SIC increases the
polarizability (by 12%) for Na2 (where LDA underesti-
mates) while it decreases it (by 18%) for N2 (where LDA
overestimates); i.e., it works ‘‘in the right direction’’ in
both systems. OEP-SIC also yields greatly improved ei-
genvalues. For CH4, e.g., OEP-SIC yields "OEP-SIC

HOMO �

14:56 eV, which compares much better with the experi-
mental ionization energy of 14.42 eV than the LDA value
"LDA

HOMO � 9:52 eV.
The true and most important test is how OEP-SIC per-

forms for the response of extended systems where semi-
local functionals fail badly. This is tested by calculating the
response of the hydrogen chains. The Kohn-Sham SIC
longitudinal static electric polarizabilities obtained from
an accurate finite field approach [37] are shown in Table I
together with LSDA, exact-exchange OEP (OEP-EXX),
and fourth-order Møller-Plesset perturbation theory (MP4)
results. The MP4 results are close to the exact values and
serve as the quasiexact benchmark. The first observation is
that the KLI-SIC results vary unsystematically—the polar-
izability of H4 is substantially underestimated, whereas the
polarizability of all other chains is overestimated.
Comparison with OEP-EXX and LSDA shows that KLI-
SIC improves over LSDA, but is less accurate than
exchange-only theory. The picture changes when SIC is
employed with the true, self-consistent OEP instead of
with the KLI-approximation: KLI-SIC and OEP-SIC po-
larizabilities are rather different. Comparing OEP-SIC to
the wave-function based results shows that OEP-SIC polar-
izabilities are within a few percent of the MP4 results in all
cases and are noticeably closer to the MP4 values than the
exchange-only OEP results, which up to now represented
the best density-functional results for such systems.

One may wonder why the SIC functional, in which
localization of the orbitals plays an important role, and
exact exchange, which is unitarily invariant and thus inde-
pendent of orbital localization, can both lead to a reason-
able description of the chain response. The solution lies in
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the interpretation of the exchange part of the SIC func-
tional: The Hartree self-interaction correction corresponds
to the self-exchange part of the EXX functional, and it is
well known that the diagonal (self-)exchange integrals are
the dominant part of exchange; i.e., they are noticeably
larger than the off-diagonal exchange integrals. The larger
the diagonal ‘‘classical’’ parts of the exchange energy are
in comparison with its off-diagonal parts, the more accu-
rate becomes the SIC description which neglects the off-
diagonal parts. Since the diagonal parts are typically maxi-
mal for localized orbitals, it becomes clear why localized
orbitals are crucial in the SIC approach. So from this
perspective, SIC takes into account the most important
part of EXX at the cost of needing to employ localized
orbitals, but with the huge benefit of greatly reducing the
number of exchange integrals that have to be evaluated. In
addition, SIC offers an improvement over bare EXX that
can be attributed to the non-EXX parts of the functional.
Following [3] one can also show that the improved OEP-
SIC polarizabilities stem from a field-counteracting term in
the response-part of the exchange-correlation-potential
[39]. Thus, SIC is an approach which allows to reliably
investigate the electrical response of a broad range of
molecular systems [40].

S. K. acknowledges financial support by the DFG and
the German-Israel Foundation.

[1] D. J. Tozer, J. Chem. Phys. 119, 12697 (2003).
[2] N. T. Maitra, J. Chem. Phys. 122, 234104 (2005).
[3] S. J. A. van Gisbergen et al., Phys. Rev. Lett. 83, 694

(1999).
[4] C. Toher et al., Phys. Rev. Lett. 95, 146402 (2005).
[5] M. van Faassen et al., Phys. Rev. Lett. 88, 186401 (2002).
[6] N. T. Maitra and M. van Faassen, J. Chem. Phys. 126,

191106 (2007).
[7] P. Mori-Sánchez, Q. Wu, and W. Yang, J. Chem. Phys.

119, 11 001 (2003).
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[32] M. Grüning, O. V. Gritsenko, and E. J. Baerends, J. Chem.

Phys. 116, 6435 (2002).
[33] M. Mundt et al., Phys. Rev. A 75, 050501(R) (2007).
[34] D. Vanderbilt, Phys. Rev. Lett. 79, 3966 (1997).
[35] D. Rayane et al., Eur. Phys. J. D 9, 243 (1999); but,

comparisons have to be done carefully, see S. Kümmel,
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I. INTRODUCTION

During the past decades, density functional theory �DFT�
has become one of the most widely used electronic structure
methods because of its ability to provide for an accurate
description of numerous properties of many-particle systems
such as atoms, molecules, nanostructures, and solids at a
bearable computational cost. The breakthrough of DFT was
prefaced by the formulation of the Kohn–Sham equations.1

Kohn and Sham introduced the so-called exchange-
correlation potential which, by definition, carries all many-
body effects. The corresponding exchange-correlation energy
and the classical Coulomb interaction energy

EH�n� =
e2

2
� � n�r�n�r��

�r − r��
dr�dr , �1�

also often called the “Hartree energy”, together take into
account all of the electron-electron interaction. However, a
careful look at Eq. �1� reveals one of the most substantial
problems of Kohn–Sham DFT, i.e., self-interaction.2 This be-
comes apparent when looking at the hydrogen atom, where
the Hartree energy describes the Coulomb interaction energy
of one electron with itself. Also in a larger system the inter-
action of every single electron with itself is accounted for in
the Hartree energy, although in this case the self-interaction
is less palpable.

At first sight this erroneous treatment of the classical
particle-particle interaction is not disturbing, as the
exchange-correlation functional �Exc� should, by definition,
take care of that. However, while the exact Exc corrects for
self-interaction, commonly used approximations such as the
local density approximation �LDA� do not entirely correct
for self-interaction in many-electron systems.

This shortcoming has been identified as the main reason
for notorious failures and serious drawbacks of common
density functionals.3 Typically, self-interaction leads to in-
correct dissociation limits,4,5 underestimation of energy bar-
riers to chemical reactions,6 and a wrong asymptotic behav-
ior of the exchange-correlation potential2 �with all its

consequences, such as instability of many experimentally
stable anions,7 absence of a Rydberg series, wrong long
range interactions, etc.�. Functionals which are not free from
self-interaction are not able to describe electron-localization
effects in transition metal oxides8 and widely overestimate
charge transfer properties such as the polarizability of mo-
lecular chains9–11 and electronic transport in molecular
devices.12,13

II. CORRECTING SELF-INTERACTION

As self-interaction is one of the oldest, most substantial,
and thus most often discussed problems in DFT, the question
arises why it is that hard to find a functional which is com-
pletely free from self-interaction. In the following we will
discuss this problem in two steps. To begin with, we address
the problem of how to define self-interaction in a system
with more than one electron. For that purpose we consider an
arbitrary many-electron system. Solving the Kohn–Sham
equations

�−
�2

2m
� + vKS,��r���i��r� = �i��i��r� �2�

for this system with some approximate exchange-correlation
potential vxc,�

app ,

vKS,��r� = vext�r� + e2� n�r��
�r − r��

dr� + vxc,�
app �r� , �3�

yields the corresponding ground-state density

n�r� = 	
�=↑,↓

n� = 	
�=↑,↓

	
i=1

N�

ni� = 	
�=↑,↓

	
i=1

N�

��i��r��2, �4�

where N� is the number of occupied spin orbitals �i� and ni�

are the spin-orbital densities. Given these quantities, how
would one know whether the approximate functional is free
from self-interaction?

There is an approach that appears quite naturally: By
identifying orbital densities with electrons, one can define an
interaction energy for every single electron bya�Electronic mail: thomas.koerzdoerfer@uni-bayreuth.de.
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�i� = EH�ni�� + Exc
app�ni�,0� . �5�

Then, if

	
�=↑,↓

	
i=1

N�

�i� = 0 �6�

holds, declare the functional Exc
app�n↑ ,n↓� as being free from

self-interaction.
Note that for the exact exchange-correlation functional

Exc
ex�n↑ ,n↓�, Eq. �6� holds for every interacting v represent-

able one-particle density ni�. This is due to the fact that ni�

can be interpreted as the ground-state density of some one-
electron system, and in any one-electron system, the
electron-electron interaction vanishes. Consequently, Eq. �6�
is a necessary property of Exc

ex�n↑ ,n↓�. In practice, however,
the application of Eqs. �5� and �6� actually reveals two draw-
backs of commonly used approximations to Exc

ex�n↑ ,n↓�: First,
�i� does not vanish in general for one-particle densities.
Most of the commonly used density functionals show this
failure, i.e., they suffer from “one-electron
self-interaction.”14,15 Second, for most of the common den-
sity functionals, �i� will take different values for different
one-particle densities. This is the “unitary invariance prob-
lem.” In the following we will explain it in detail and dem-
onstrate its great importance for the definition of self-
interaction in many-electron systems via Eq. �6�. The central
aspect is that in a many-electron system, there is no unique
way of defining a density for a single electron. Especially,
identifying orbital densities with single electrons, as done in
Eq. �6�, raises the question which orbitals to use. Thus, the
definition of self-interaction via Eq. �6� becomes ambiguous.

From a Kohn–Sham DFT perspective, it seems natural to
use the Kohn–Sham orbital densities as the one-particle den-
sities needed in Eq. �6�. However, orbitals are quantities that
are intrinsically linked to the one-particle picture. Strictly
speaking, Kohn–Sham orbitals are just auxiliary quantities
which yield, when correctly summed up, the ground-state
density. Therefore, Kohn–Sham orbital densities can be as-
sociated with electrons no less and no more than all other
orbital densities which add up to the correct ground-state
density. Consequently, a quantification of self-interaction in a
many-electron system should be invariant under unitary
transformation, i.e., a transformation which changes the in-
dividual orbital densities but leaves the total density un-
changed. However, for common density functionals, Eq. �6�
does not have this property. Clearly, this is a profound draw-
back of Eq. �6�.

The ambiguity in defining self-interaction in a many-
electron system via Eq. �6� has led to the search for a more
suitable definition of “many-electron self-interaction.”14,15

Recently, progress has been made by studying fractionally
charged systems that can arise in charge transfer or dissocia-
tion processes.5,16 These systems are often treated as sepa-
rated subsystems with noninteger electron number. As Per-
dew et al.17 argued, in exact Kohn–Sham DFT, the orbital
energy of the highest occupied orbital �HO is constant for
noninteger particle numbers M −1�N�M, where M is an

integer, and equal to minus the electron removal energy from
the ground state of the M-electron system. Following Janak’s
theorem,18 this yields

�E

�N
= �HO = const. �7�

Thus, for the exact Exc, the plot of the ground-state energy E
as a function of N is a series of straight line segments with a
derivative discontinuity at each integer N. In Ref. 19 the
failure of a density functional to fulfill Eq. �7� is traced back
to its inherent self-interaction. Following this train of
thought, functionals are said to be free from many-electron
self-interaction if they show a strictly linear behavior of the
ground-state energy for noninteger particle numbers. It has
recently been demonstrated that neither the commonly used
density or orbital functionals nor the Hartree–Fock approach
fulfill this rather stringent requirement.15,16

Even though the considerations made above bear a hand
in understanding the sophisticated problem of self-
interaction in many-electron systems, the construction of
functionals which are free from many-electron self-
interaction in the sense of Eq. �7� is cumbersome. It has been
argued that it requires the mixing of an r-dependent fraction
of exact exchange �EXX�.20,21 While approaches of this type
may offer the highest hopes for overall high accuracy, a lot
of improvement and understanding can be gained already by
thoroughly investigating how to reach being free from one-
electron self-interaction and what the consequences may be.
It has also been argued that the correction of one-electron
self-interaction in a spirit that we also follow in this paper,
although not completely eliminating many-electron self-
interaction, does greatly reduce it.14,22

Therefore, we will now go back to the question of one-
electron self-interaction freeness and the one-electron sys-
tem. Clearly, in this system, capturing self-interaction is
much easier. The reason for this is that, different from the
many-electron case, the orbital density now has a clear
physical meaning as it equals the ground-state density.
Therefore, the self-interaction energy can be unambiguously
defined via Eq. �5�. This yields a possibility to correct an
arbitrary functional Exc

app�n↑ ,n↓� by subtracting �i� and thus
obtaining a self-interaction corrected functional.

The basic idea of the self-interaction correction �SIC� of
Perdew and Zunger,2 which today is by far the most com-
monly used SIC, is to carry forward this approach to many-
electron systems.23 The obtained functional

Exc
SIC�n↑,n↓� = Exc

app�n↑,n↓� − 	
�=↑,↓

	
i=1

N�

�EH�ni,��

+ Exc
app�ni,�,0�� �8�

is free from one-electron self-interaction. Thus, the SIC of
Perdew and Zunger constitutes a plausible and straightfor-
ward approximation. However, it carries along the unpleas-
ant features of Eq. �5�. The functional depends on the orbitals
explicitly, i.e., it is not an explicit density functional. In ad-
dition Exc

SIC�n↑ ,n↓� is not invariant under unitary transforma-
tion of the orbitals. This means that one can define various
different and a priori equally valid Exc

SIC that correspond to a
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given charge density. Therefore, the usual way of minimizing
the total energy with respect to the density in order to find a
system’s ground state,

�E

�n�

= 0, �9�

cannot be applied in a straightforward manner. As a further
consequence, there is no unique way of finding an exchange-
correlation potential corresponding to Eq. �8�. Thereby, the
unitary invariance problem in defining self-interaction in a
many-electron system strikes you through the backdoor in
the Perdew–Zunger-SIC approach.

The problem of the explicit orbital dependence of Eq. �8�
can be overcome by constructing the optimized effective po-
tential �OEP�. However, the unitary invariance problem al-
lows the definition of different OEPs depending on which
orbital densities are used in Eq. �8�. Although all of these
potentials correspond to the same orbital-dependent energy
expression, they may all show different behaviors and yield
different results in practical applications.

The purpose of this manuscript is to discuss and com-
pare different SIC approaches that employ a local,
nonorbital-specific potential. Thus, we provide a theoretical
framework for SIC-OEP methods working with �or without�
explicit unitary transformation of the orbitals. Our presenta-
tion is divided into five parts. After a short review of some
non-OEP methods that are based on Eq. �8�, we derive a
generalized OEP equation in Sec. IV. This equation enables
us to find the correct OEP for a set of orbitals which differs
from the Kohn–Sham orbitals by a unitary transformation.
Section V is devoted to the construction of the unitary trans-
formation which yields the minimum of the total energy.
Finally, we compare the results of our method to other ap-
proaches to construct a local effective potential correspond-
ing to Eq. �8� in Sec. VI and summarize our findings in Sec.
VII.

III. REVIEW OF NON-OEP METHODS

Due to its explicit dependence on the orbitals, the self-
consistent minimization of the SIC functional of Eq. �8� is
more involved than the one for standard density functionals
such as LDA. In their original work,2 Perdew and Zunger
directly minimized the functional with respect to the orbitals.
By imposing an orthogonality constraint on the orbitals, i.e.,
by making use of the Lagrange multipliers,

	ij
� = 

̃ j��H̃i�
̃i�� , �10�

with the effective one-electron Hamiltonian

H̃i� = H0� + ṽi�
SIC, �11�

where

H0� = −
�2

2m
� + vext�r� + vH�n��r� + vxc,�

app �n↑,n↓��r� , �12�

ṽi�
SIC = − vH�ñi,���r� − vxc,�

app �ñi,�,0��r� , �13�

one thus derives24 the system of self-consistent equations

H̃i�
̃i� = �H0� + ṽi�
SIC�
̃i� = 	

j=1

N�

	ij
�
̃ j�. �14�

By introducing orbital-specific potentials, this approach �PZ-
SIC� is outside the foundations of Kohn–Sham theory while
not leaving the realm of the Hohenberg–Kohn theorem. Due
to the unitary invariance problem, the one-electron Hamil-

tonian H̃i�, and thus the matrix of Lagrange multipliers, is
not invariant under unitary transformation of the orbitals. At
the minimum of the PZ-SIC energy, the matrix of Lagrange
multipliers becomes Hermitian and thus unitarily
diagonalizable.25,26 This has led to the definition of two dif-
ferent types of orbitals: The orthogonal orbitals that mini-
mize the PZ-SIC energy are often referred to as localized

orbitals 
̃i� , as localization of the orbitals naturally increases
EH�ni,�� and thus minimizes Exc

SIC�n↑ ,n↓� in many systems. In
contrast, the so-called canonical orbitals 
i� are the orbitals
that diagonalize the matrix of Lagrange multipliers and typi-
cally are delocalized. They are related to the localized orbit-
als by the unitary transformation Uij

�,


̃i� = 	
j=1

N�

Uij
�
 j�. �15�

As the canonical orbitals diagonalize the Lagrange-multiplier
matrix in the minimum of the SIC energy, they can be inter-
preted as Kohn–Sham-type eigenorbitals of the transformed
one-electron Hamiltonians Hj� �see Eq. �16��. The eigenval-
ues of 	ij are often used as equivalents of Kohn–Sham or-
bital energies,26 although recent work suggests a different
interpretation.16

By applying the unitary transformation Uij
�, Pederson et

al.26 introduced equations similar to Eq. �14� for the canoni-
cal orbitals,

Hj�
 j� = �H0� + v j�
SIC�
 j� = 	

i=1

N�

� ji
�
i�, �16�

where

v j�
SIC = 	

k=1

N�

Ukj
� ṽk�

SIC 
̃k�


 j�
, �17�

� ji
� = 	

k,l=1

N�

Ujk
�−1	kl

�Uli
�. �18�

Here, the SIC potential v j�
SIC associated with the �delocalized�

canonical orbital 
 j� can be interpreted as a weighted aver-
age of the SIC potentials for the localized orbitals ṽi�

SIC.
Thereby the unitary invariance problem provides for the ex-
istence of different exchange-correlation potentials for differ-
ent orbitals that add up to the same density.

PZ-SIC and its successors using localizing transforma-
tions have been used successfully for solids27,28 and
molecules.29–31 It has been shown that these approaches im-
prove dissociation curves,29 total energies, and energy barri-
ers to chemical reactions.32 PZ-SIC enhances the agreement
of the highest occupied orbital energy of LDA with minus
the ionization potential25,26 �IP� and the localized PZ-SIC
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orbitals are able to capture electron-localization effects in
crystalline solids.27,28 However, it was found that it predicts
too short bond lengths in molecules25,31 and it fails badly in
the prediction of some basic thermodynamical properties.30,33

In summary, PZ-SIC often seems to overcorrect in many-
electron systems. Therefore, efforts have been made in order
to scale down the PZ-SIC in many-electron regions.34 How-
ever, although improving the thermodynamical properties,
the scaled down version of the PZ-SIC is inferior to the
standard PZ-SIC in terms of many-electron self-interaction
freeness.14

Having discussed the properties of Eq. �8�, the peculiari-
ties of PZ-SIC in regions with many electrons do not come
as a surprise. Clearly, they are due to the intrinsic approxi-
mation of the PZ-SIC, i.e., to carry forward the concept of
one-electron self-interaction to many-electron systems. This
approximation becomes manifested in the unitary invariance
problem. Therefore, we believe that the unitary invariance
problem plays an important role in bridging the concepts of
one- and many-electron self-interaction. This assumption is
supported by recent work �Ref. 35�, in which the many-
electron self-interaction problem is directly related to the lo-
calization or delocalization of Kohn–Sham orbitals. In the
following section, we propose a formalism which allows to
approach the unitary invariance problem in the realm of
Kohn–Sham DFT by introducing a generalized version of the
OEP equation for functionals which are variant under unitary
transformation of the orbitals.

IV. A GENERALIZED OPTIMIZED EFFECTIVE
POTENTIAL SCHEME

Minimizing Eq. �8� directly with respect to the orbitals
leads to single-particle equations with orbital-specific poten-
tials instead of a global Kohn–Sham potential for all orbitals.
However, the existence of such a potential is one of the fea-
tures that makes Kohn–Sham DFT attractive, as it consider-
ably simplifies the numerical efforts and facilitates the inter-
pretation of results. Moreover, the existence of a local
potential ensures that the noninteracting kinetic energy is a
well-defined density functional. In the literature, various
schemes have been proposed to construct a local effective
potential from Eq. �8�.26,36–42 However, the most natural
definition of a Kohn–Sham potential based on the SIC of
Perdew and Zunger has been largely unexplored: the con-
struction of the local effective potential that by virtue of the
Kohn–Sham equations leads to orbitals that minimize the
total energy, i.e., the OEP.

The OEP method �see Ref. 3 for an overview� is based
on the variation in the total energy with respect to a trial
potential,43

��Etot��n���
�vKS,�

�
vKS,�=vKS,�

OEP
= 0, �19�

or equivalently �by virtue of the Hohenberg–Kohn theorem�
with respect to the spin density,44

�Etot��n���
�n�

= 0. �20�

However, due to the unitary invariance problem discussed
above, a problem is buried in Eq. �20�. As the SIC functional
Etot

SIC��n��� is not invariant under unitary transformation of
the orbitals, many different total energies can be attached to
the same density. Therefore, an OEP based on Eq. �20� is not
uniquely defined unless the orbitals with which to construct
Etot

SIC��n��� are explicitly specified. Based on the experience
made with the SIC methods using orbital-specific potentials,
at least two options appear reasonable: Either use the Kohn–
Sham orbitals, i.e., the eigenorbitals of the Kohn–Sham
Hamiltonian, or use the orbitals that minimize Etot

SIC��n���
under the constraint of reproducing the density given by the
Kohn–Sham orbitals. However, the derivation of the standard
OEP equation requires that the orbitals used to construct
Etot��n��� are eigenorbitals of the Kohn–Sham Hamiltonian.
Hence, the usual OEP equation does not allow to use other
orbitals than the Kohn–Sham orbitals.

In the following we will investigate how the choice of
orbitals that are different from the Kohn–Sham orbitals af-
fects the derivation of the OEP integral equation. These or-
bitals are related to the Kohn–Sham orbitals �i� by a unitary
transformation Uij

� and will be referred to as localized orbit-
als �̃i�, i.e.,

�̃i� = 	
j=1

N�

Uij
�� j�. �21�

In the first step, we write the total SIC energy as a functional
of the localized orbitals, i.e., Etot

SIC��̃n���, and derive from Eq.
�20� by virtue of the chain rule,

vxc,�
OEP =

�Exc
SIC��̃n���
�n��r�

= 	
�,,�=↑,↓

	
i=1

N�

	
j=1

N � � � �Exc
SIC��̃n���

��̃i��r��
��̃i��r��
�� j,�r��

�
�� j,�r��

�vKS,��r��
�vKS,��r��

�n��r�
dr�dr�dr� + c.c. �22�

From Eq. �21� one derives

��̃i��r��
�� j,�r��

= ����r� − r���Uij
� + 	

k=1

N� �Uik
�

�� j,�r��
�k,��r���

�23�

and application of first order perturbation theory yields

�� j,�r��
�vKS,��r��

= ��Gj��r�,r��� j,��r�� , �24�

�vKS,��r��
�n��r�

= �����
−1�r�,r� , �25�

with the Green’s function
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Gj��r�,r� = 	
k = 1
k�j

�

�k��r���k�
* �r�

� j� − �k�

�26�

and the static Kohn–Sham response function

���r�,r� = 	
j=1

N�

	
k = 1
k�j

�

�
j�
* �r���k��r���k�

* �r�� j��r�
� j� − �k�

+ c.c.

= 	
j=1

N�

�
j�
* �r��Gj��r�,r�� j��r� . �27�

Inserting Eqs. �23�–�27� in Eq. �22� yields the first central
result of this manuscript, the generalized OEP equation for
unitarily variant orbital functionals:

	
j=1

N� � �
j�
* �r���vxc,�

OEP�r�� −
1

�
j�
* �r��	i=1

N�

��Uij
� +

�Uij
�

�� j,��r��
� j,��r����Exc

SIC��̃n���
��̃i��r�� �

�Gj��r�,r�� j��r� + c.c.dr� = 0. �28�

The interpretation of this equation is as follows: Solving Eq.
�28� yields the unique local potential vxc,�

OEP�r� that by virtue
of the Kohn–Sham equations leads to Kohn–Sham orbitals
which, when localized according to Eq. �21�, yield the lowest
total energy that can possibly be obtained with two sets of
orbitals linked by a unitary transformation Uij

� via Eq. �21�.
Note that Eq. �28� is general in the sense that it is neither
limited to the SIC energy expression �simply replace Exc

SIC�
nor to a certain unitary transformation Uij

� . However, for all
functionals which are invariant under unitary transformation
of the orbitals, Eq. �28� reduces to the standard OEP equa-
tion.

As the generalized OEP equation is nontrivially different
from the usual OEP equation, we discuss the relation be-
tween the two types of OEP approaches in detail in the fol-
lowing. To this end, first assume that Uij

� =�ij. With this
trivial ansatz for Uij

�, the difference between the two sets of
orbitals vanishes, i.e., �̃i�=�i� , and Eq. �28� reduces to the
usual Kohn–Sham OEP equation �KS-OEP�. KS-OEP is the
most transparent way of calculating an OEP potential corre-
sponding to the SIC functional from Eq. �8� because there is
only one Hamiltonian and one set of orbitals, the Kohn–
Sham orbitals. Contrary to the elements of the Lagrange-
multiplier matrix or its counterparts in other SIC
approaches16 that were mentioned earlier, the Kohn–Sham
eigenvalues can be unambiguously associated with the cor-
responding Kohn–Sham orbitals. This clearly facilitates the
interpretation of results. For instance, the Kohn–Sham eigen-
values can directly be used for evaluating Janak’s theorem18

or as input to time dependent linear response methods.45 Due
to the numerical effort of solving the full-OEP equation, the
KS-OEP approach so far has remained largely unexplored.
Recently, KS-OEP has been tested with great success in cal-
culating the response of extended molecular systems.46

These results revealed a substantial discrepancy between the
full-OEP calculations and the Krieger–Li–Iafrate �KLI� ap-

proximation to the KS-OEP �KS-KLI�. Both approaches, i.e.,
KS-OEP and KS-KLI, will be examined later in this manu-
script. Before we do so, we, however, have to return to the
drawback which is inherent to the KS-OEP approach when it
is used with energy expressions such as the SIC one that are
not unitarily invariant: For a given density, KS-OEP does not
yield the minimum of the total energy. Therefore, one could
argue that KS-OEP does not truly fulfill the variational prin-
ciple, which is one of the basic theorems of Kohn–Sham
DFT.

This drawback can be overcome by finding the unitary
transformation matrix Uij

� which yields those localized orbit-
als �̃i� that minimize the total energy under the constraint of
reproducing a given density. The problem of finding this lo-
calizing transformation will be addressed in Sec. V. Here, we
first want to discuss the effect that this transformation has in
the OEP equation �28�. So in the following we now assume
that Uij

� is the unitary matrix that transforms a set of orbitals
in such a way that the transformed orbitals yield the mini-
mum of the total energy under the constraint of reproducing
a given density. In this case �LOC-OEP�, the solution vxc,�

OEP�r�
of Eq. �28� is the unique local potential corresponding to Eq.
�8� that leads to Kohn–Sham orbitals which, when localized
according to Eq. �21�, yield the lowest total energy of the
system. Note that this energy will still be higher than the
energy obtained from a free variation of the orbitals accord-
ing to Eq. �14�. However, it is the lowest energy that can
possibly be obtained by virtue of one local potential corre-
sponding to Eq. �8�. In this spirit, the LOC-OEP approach is
as close as you can get to the original idea of the OEP.

Equation �28� is formally equivalent to the standard OEP
equation if one defines

uxc,j�
loc �r�� ª

1

�
j�
* �r��	i=1

N� �Uij
� +

�Uij
�

�� j,��r��
� j,��r���

�
�Exc

SIC��̃n���
��̃i��r��

, �29�

as an “orbital-specific potential” similar to the orbital-
specific potential

uxc,i�
ui �r�� ª

1

�
i�
* �r��

�Exc
ui ��n���

��i��r��
, �30�

that appears in the standard OEP equation for a unitarily
invariant functional Exc

ui ��n��� such as EXX �compare, e.g.,
Eq. �2� in Ref. 47 or p. 12 in Ref. 3�. Despite the obvious
formal similarity, the two types of orbital-specific potentials
differ nontrivially. By naively employing Eq. �30� one can
also define other orbital-specific potentials for localized or-
bitals,

ũxc,i�
loc �r�� ª

1

�̃
i�
* �r��

�Exc
SIC��̃n���

��̃i��r��
. �31�

Rewriting Eq. �29� in terms of ũxc,i�
loc �r�� while neglecting the

variation in the transformation matrix with respect to the
orbitals, i.e., setting �Uij

� /�� j,�=0, yields
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uxc,j�
loc �r�� = 	

i=1

N�

Uij
� ũxc,i�

loc �r��
�̃

i�
* �r��

�
j�
* �r��

. �32�

Thus, a comparison of Eq. �32� with Eq. �17� suggests an
interpretation of uxc,j�

loc �r��: the orbital-specific potentials
uxc,j�

loc �r�� of Eq. �29� are associated with the Kohn–Sham
orbitals and can be regarded as the weighted average of the
orbital-specific potentials ũxc,i�

loc �r�� of the localized orbitals.
The meaning and interpretation of the generalized OEP equa-
tion �28� are thus clear. As a final remark we would like to
stress that the generalized OEP equation �28� must and will
yield different OEPs for different unitary transformation ma-
trices Uij

�.
The obvious next question is how to solve Eq. �28� in

practice. As it differs from the standard OEP equation only in
the orbital-specific potentials, all of the standard procedures
of solving the OEP equation can be applied. In this manu-
script, we use the approach described in Refs. 47 and 48. As
solving the OEP equation is a numerically demanding task, a
number of approximations to the full-OEP have been
proposed.49–53 A commonly used one is the approximation
given by Krieger et al.

vxc,�
KLI �r� =

1

2n�
	
i=1

N�

��i��r��2�uxc,i��r� + �v̄xc,i�
KLI − ūxc,i����

+ c.c. �33�

As the KLI approximation is easy to implement and numeri-
cally less demanding than calculating the full OEP, it yields
an appealing approach to construct a local effective potential
for orbital functionals. Therefore, a number of attempts to
use Eq. �33� for the SIC functional can be found in the
literature.36–39 Due to the unitary invariance problem, some
approaches40–42 used localized orbitals in order to evaluate
Eq. �33�, i.e., they used the potential

vxc,�
Garza�r� =

1

2n�
	
i=1

N�

��̃i��r��2�ũxc,i�
loc �r� + �v̄xc,i�

KLI − uDxc,i�
loc ���

+ c.c. �34�

Note that this approach �Garza� is different from the KLI
approximation to the LOC-OEP �LOC-KLI�, which is de-
fined as the potential one obtains from Eq. �33� by replacing
uxc,i��r� with the orbital-specific potentials of Eq. �32�:
Whereas in Garza’s approach all Kohn–Sham orbitals in Eq.
�33� are replaced by localized orbitals, LOC-KLI only differs
from the KS-KLI approximation in the orbital-specific
potentials.

Note, however, that the Slater part of Garza’s potential
conforms with the Slater part of the LOC-KLI potential, as
can be seen by inserting Eq. �32� in Eq. �33�. This gives rise
to the assumption that both approaches yield similar results
in practical application. The examples in Sec. VI show that
this is indeed the case. However, although Eq. �34� yields a
legitimate way of defining an effective one-particle potential,
there is no straightforward way of improving the Garza ap-
proach to a full-OEP level. The generalized OEP approach
presented here can be interpreted as the unifying concept and

the foundation of the earlier developed approaches that use a
local potential along with localizing transformations.

V. LOCALIZING TRANSFORMATIONS

The aim of the unitary transformation of the Kohn–Sham
orbitals is to find those orbitals �̃i� which minimize the en-
ergy of Eq. �8� while leaving the density unchanged. In order
to find the energy-minimizing unitary transformation, we use
the method proposed in Ref. 54. The resulting orbitals are
typically much more localized in space than the Kohn–Sham
orbitals. This observation is by no means surprising, as the
PZ-SIC orbitals, i.e., those orbitals that result from a free
variation in the total energy with respect to the orbitals, are
typically also well localized in space. The reason for this is
that the Hartree SIC terms in Eq. �8� increase with increasing
localization of the orbitals. This reasoning has led to a vari-
ety of different approaches to find localized orbitals that �ap-
proximately� minimize the SIC energy, most of them based
on localizing transformations which were originally intro-
duced to find orbitals that mimic the chemist’s intuition of
chemical bonds. Among the most popular localized orbitals
are those introduced by Foster and Boys,55 Edminston and
Ruedenberg,56 and Pipek and Mezey.57 The difference be-
tween these methods is to be found in the definition of local-
ization �for details, see Ref. 57�.

However, this kind of reasoning is based on an oversim-
plified picture of the impact of the SIC on the structure of the
energy-minimizing orbitals. The localization of the orbitals
does not only increase the Hartree correction EH�ni,�� but
also the correction of the self-interaction embedded in the
local functional, i.e., Exc

LDA�ni,� ,0�. Both contributions have a
different sign and are typically of the same order of magni-
tude. The goal of the energy-minimizing unitary transforma-
tion is thus to find the best trade-off between both contribu-
tions. Therefore, the degree to which the energy-minimizing
orbitals are localized in space does strongly depend on the
system. In contrast to the method proposed in Ref. 54, none
of the commonly used localizing transformations is able to
account for these subtleties. Nevertheless, experience shows
that in many systems, the Foster–Boys orbitals provide for
an excellent approximation to the energy-minimizing orbit-
als.

VI. RESULTS AND DISCUSSION

In the following we test different functionals which are
all based on the SIC energy expression of Eq. �8�. The ap-
proximate exchange-correlation functional which is cor-
rected for is in each case the LDA with correlation contribu-
tions in the parametrization of Ref. 58 if not stated
otherwise. We employ a real space approach using norm con-
serving pseudopotentials.59 In all calculations we used LDA
pseudopotentials and this, in principle, leads to an inconsis-
tency between the treatment of the exchange-correlation ef-
fects in the pseudopotential construction and in the actual
molecular calculations. However, we have carefully tested
that for the light nuclei which we study here, pseudopotential
�in�consistency does hardly influence the results. For ex-
ample, comparison with all-electron calculations40 shows
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that the largest difference between the highest occupied mo-
lecular orbital �HOMO� energies obtained in KS-KLI calcu-
lations �without correlation contributions in order to be able
to compare to the calculations done in Ref. 40� based on a
LDA pseudopotential and the ones obtained in all-electron
calculations is observed for H2O and is of the order of
0.01 Ry. A difference of this smallness may as well be re-
lated to basis-set questions and other issues and is at the limit
of what is of interest here. The very limited influence of
pseudopotential consistency has also been reported in other
works.25 �It should be noted, however, that the picture
changes for heavy nuclei, see, e.g., the discussion in Ref. 3.�
Experimental geometries are used for all molecules if not
stated otherwise.

The systems that we study in the following are chosen
such that we span a range of different bonding situations
with a few instructive, pertinent molecular systems. Our first
test case is a model system of weakly interacting subunits, a
chain of four single hydrogen atoms with interatomic dis-
tances of 2.5 and 3 bohrs �a0�, respectively. This system pro-
vides for a well suited testing ground for the SIC functionals.
In the limit of infinite interatomic separation, it goes over
into a collection of single, separated hydrogen atoms for
which Eq. �8� is exact and unambiguous. Decreasing the in-
teratomic distance will mix the eigenstates of the single at-
oms and introduce the ambiguousness of Eq. �8� and thus the
unitary invariance problem. Therefore, a noticeable differ-
ence between the different SIC approaches can be expected.
In addition the simplicity of the orbital structure of the H4

chain facilitates the demonstration of orbital localization
effects.

For the sake of completeness, we first briefly address the
KS-OEP SIC method, i.e., solving Eq. �28� with Uij

� =�ij and
thus �̃i�=�i� and uxc,j�

loc �r��= ũxc,j�
loc �r��, so only the Kohn–

Sham orbitals are used. We calculate the ground state of H4

using KS-KLI and from this, the KS-OEP following the it-
erative procedure of Refs. 47 and 48. The obtained ground-
state Kohn–Sham orbitals are presented in Fig. 1. Note that
the KS-KLI solution is spatially symmetric as expected,
whereas the KS-OEP calculation leads to a spontaneous
change in symmetry, ending up in a manifestly spin polarized
ground state. The KS-OEP orbitals are clearly localized and
can undoubtedly be associated with single nuclei. In contrast,
the KS-KLI orbitals are delocalized over all nuclei. This pro-
found difference in the ground-state spin densities does also
become apparent in the ground-state energies �see Table I�.
This is an outstanding result, as all comparable calculations

for other orbital functionals such as EXX show only a minor
difference between KLI and OEP ground-state energies and
virtually no visible difference in the ground-state densities.
This surprising finding has been explained in Ref. 46.

Another surprising aspect of the KS-KLI functional be-
comes apparent from Table I when comparing the respective
SIC ground-state energies to the LDA energy: The KS-KLI
ground-state energy of H4 is not only very different from the
KS-OEP, but also significantly higher than the LDA energy.
This can be explained by the fact that the SIC correction
from Eq. �8� does not only contain the correction of the
Hartree self-energy EH�ni,�� but also the self-interaction en-
ergy of the exchange-correlation approximation
Exc

LDA�ni,� ,0�. In contrast to the former, the latter increases
the total energy, as it corrects for the overestimation of the
�negative� exchange-correlation energy. For the studied hy-
drogen chain, we find

	
�=↑,↓

	
i=1

N�

EH�ni,�� + Exc
app�ni,�,0� � 0 �35�

if we use spin-orbital densities ni,� from self-consistent LDA
or KS-KLI calculations. In contrast, the correction becomes
positive when the localized spin-orbital densities from the
self-consistent KS-OEP calculation are used.

A careful look at the literature40,41 reveals that it is well
known that KS-KLI can produce unrealistic and curious re-
sults when applied to molecules. This was attributed to the
unitary invariance problem: orbitals minimizing Eq. �8� are
localized orbitals, whereas a local Kohn–Sham potential is
supposed to yield orbitals that are delocalized over the whole
system. Therefore, localizing transformations were incorpo-
rated in KS-KLI in the spirit of Eq. �34�. However, our re-
sults for the H4 model system give rise to an alternative
interpretation: Fig. 1 shows that a local Kohn–Sham poten-
tial �here: KS-OEP� can indeed yield localized Kohn–Sham
orbitals. Therefore, the failure of the KS-KLI functional for
some molecules might be due the KLI approximation and not
due to the absence of a localizing transformation. This as-
sumption is supported by recent calculations of response
properties of molecular chains,46 for which KS-KLI shows
unrealistic and unreliable results, whereas the KS-OEP re-
sults are close to quantum-chemical accuracy.

In our next step we study the LOC-OEP approach, i.e.,
solving Eq. �28� with the unitary transformation Uij

� that
minimizes the total energy. Therefore, we calculate Uij

� via
the iterative procedure proposed in Ref. 54 in every step of
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FIG. 1. �Color online� Left: Kohn–
Sham orbital densities of H4 with in-
teratomic distances of 2.5 and 3 bohrs
�a0�, respectively, obtained from self-
consistent KS-KLI calculation. Up-
and down-spin orbitals are identical.
Right: Kohn–Sham spin-orbital densi-
ties for the same system obtained from
self-consistent KS-OEP calculation.
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the self-consistent iteration. Now two types of orbitals are
involved: the Kohn–Sham orbitals, i.e., eigenfunctions of the
Kohn–Sham Hamiltonian, and the localized orbitals, i.e., or-
bitals that minimize the total energy under the constraint of
reproducing the density given by the Kohn–Sham orbitals.
Figure 2 shows both types of orbitals for a converged LOC-
OEP calculation of the H4 chain. Note that the Kohn–Sham
orbitals are delocalized over all nuclei, whereas the energy-
minimizing orbitals are much more localized in space. Com-
paring the LOC-OEP orbitals with the KS-OEP orbitals in
Fig. 1, we find that the LOC-OEP Kohn–Sham orbitals are
more localized than those from the KS-KLI calculation,
whereas the localized LOC-OEP orbitals are more delocal-
ized than the Kohn–Sham orbitals from the KS-OEP calcu-
lation. This observation might be surprising at first sight, but

it is a consequence of self-consistency: Localized orbitals
lead to a density that is to a large extent localized at the
nuclei. As a consequence of localization, the kinetic and the
Hartree energy increase whereas the ion-electron and the
exchange-correlation energy decrease. Therefore, the balance
of these contributions decides to what extent the Kohn–Sham
orbitals are localized. However, the additional localizing
transformation in the LOC-OEP approach allows to have a
delocalized density that provides for reasonably low kinetic
and Hartree energies but localized orbitals that gain a lot of
exchange-correlation energy. Table I shows the different en-
ergy contributions to the ground-state energies. As expected,
the LOC-OEP ground-state energy is noticeably deeper than
the KS-OEP energy due to the additional variational free-
dom. This freedom allows for a more delocalized density and

TABLE I. Total energy and components of the electronic energy in rydbergs.

LDA KS-KLI KS-OEP Garza LOC-KLI LOC-OEP

H4 Ekin 3.121 2.877 3.312 3.060 3.102 3.139
Ehart 5.622 5.539 5.666 5.651 5.648 5.655
Exc −2.157 −1.939 −2.325 −2.225 −2.247 −2.268
Eion −14.102 −13.826 −14.184 −14.062 −14.080 −14.104
Etot −4.272 −4.105 −4.287 −4.332 −4.332 −4.333

N2 Ekin 26.785 26.393 27.215 26.910 26.849 26.915
Ehart 55.740 55.489 56.121 56.151 56.042 56.127
Exc −9.602 −9.369 −9.903 −10.019 −10.003 −10.025
Eion −136.832 −136.245 −137.480 −137.239 −137.139 −137.270
Etot −39.724 −39.547 −39.861 −40.066 −40.066 −40.067

CO Ekin 29.114 29.060 29.520 29.365 29.325 29.374
Ehart 57.519 57.597 58.024 58.080 58.003 58.060
Exc −9.920 −10.030 −10.222 −10.392 −10.382 −10.400
Eion −142.463 −142.471 −143.241 −143.174 −143.067 −143.156
Etot −43.216 −43.309 −43.383 −43.586 −43.586 −43.587

H2O Ekin 24.586 24.754 24.792 25.024 24.977 24.986
Ehart 42.624 42.964 42.976 43.307 43.241 43.233
Exc −8.230 −8.351 −8.366 −8.742 −8.728 −8.736
Eion −107.138 −107.591 −107.632 −108.124 −108.024 −108.018
Etot −34.203 −34.268 −34.274 −34.580 −34.580 −34.581

CH4 Ekin 12.846 12.771 12.808 13.046 13.032 13.063
Ehart 30.715 30.759 30.777 31.042 31.012 31.015
Exc −6.232 −6.158 −6.180 −6.666 −6.661 −6.674
Eion −72.835 −72.814 −72.850 −73.278 −73.238 −73.262
Etot −16.058 −15.994 −15.998 −16.409 −16.409 −16.410
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FIG. 2. �Color online� Left: Kohn–Sham spin-orbital densities �i.e., ��i�2� of H4 obtained from self-consistent LOC-OEP calculation. Middle: Localized
spin-orbital densities �i.e., ��̃i�2� for the same calculation. Right: Spin densities from self-consistent LOC-KLI and self-consistent LOC-OEP.
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thus a smaller contribution from the kinetic and the Hartree
part of the total energy while the exchange-correlation en-
ergy is maximized by the unitary transformation of the orbit-
als. However, in the case of H4, the unitary transformation
�Eq. �21�� does only mix two orbitals per spin direction.
Therefore, the additional variational freedom provided by the
unitary transformation is limited due to the small number of
orbitals. As a consequence, the localized orbitals are less
localized than expected.

In summary, the approaches using localizing transforma-
tions can be viewed as the search for the “best trade-off”
between localized and delocalized orbitals. In contrast, the
KS-OEP approach forces the system to decide between ex-
tremely localized Kohn–Sham orbitals which yield a large
gain in exchange-correlation and external �ionic� energies
and completely delocalized Kohn–Sham orbitals that mini-
mize the kinetic and the Hartree energy. The example of the
H4 model system shows that there can be a remarkable shift
in ground-state energies by introducing localizing transfor-
mations self-consistently, although the variation in the orbit-
als at a given ground-state density often only has a minor
direct effect on the energy.

In this context, it should be mentioned that the KLI ap-
proximation to the LOC-OEP, i.e., the LOC-KLI, yields
ground-state energies �see Table I� and spin densities �see
Fig. 2� close to the ones from the full OEP. This is due to the
observation that the localizing transformation acts as an ad-
ditional driving force for the change in spin symmetry during
the self-consistent iteration. Note that both of the approaches
working with localizing transformations yield spin-polarized
densities that are very similar to the KS-OEP densities from
Fig. 1.

In addition we tested Garza’s approach,40 i.e., self-
consistently solving Eq. �34� using Foster–Boys orbitals, in
order to compare with our method. Table I shows that there
is no profound difference in the total energies of Garza’s SIC
compared to LOC-KLI. Note that all functionals working
with localizing transformations yield nearly equal total
ground-state energies, but from the fact that the separate con-
tributions to the total energies differ in the different ap-
proaches, it is apparent that the ground-state densities in the
different approaches are not the same. This behavior might
be an indication for a very flat energy landscape, and in our
experience this appears to be a typical feature of the SIC.

With the example of the model H4 chain discussed, we
now proceed to real molecules. Table I shows the results of
the different SIC schemes for methane, water, carbon mon-
oxide, and the nitrogen molecule. This set of molecules
makes for a good testset as it comprises different types of
bonding. Obviously, the additional variational freedom of the
approaches using localizing transformations consistently
leads to a large gain in total energy in the range of 2%–3%
when compared to the KS-OEP scheme. In comparison to
these energy differences, the deviations in total energy be-
tween the different schemes using localizing transformations
are negligible. Just like in the example of the hydrogen
chain, the large differences in the total energy are caused by
the self-consistent inclusion of localization, which leads to
noticeable differences in the ground-state densities. Again,

we show the individual contributions to the total energy in
order to illustrate this complex behavior. Strikingly, the cal-
culation of the nitrogen molecule shows some of the same
features that were observed in the model system H4. In con-
trast to the KS-OEP calculation, the KS-KLI energy is sub-
stantially higher than the LDA energy. Again, this is due to a
change in spin symmetry in the KS-OEP calculation which is
not captured by KS-KLI. Interestingly, this break in spin
symmetry does not affect all occupied Kohn–Sham orbitals
of the nitrogen molecule. Whereas the affected orbitals are
spin polarized and distinctly localized, the other orbitals only
show minor deviations from standard LDA orbitals. This is
an important result as it shows that the H4 results are not
mere artifacts introduced by the simplicity of the model sys-
tem.

The results for carbon monoxide and water shown in
Table I are in line with the expectations: the correction of
self-interaction and the additional variational freedom in the
approaches using localizing transformations consistently lead
to a decrease in the total energy. However, the calculations
for methane show a further conspicuity. The total energies of
both the KS-KLI and the KS-OEP approach are remarkably
higher than the LDA energy. Obviously, methane is another
example of a molecule where the self-interaction energy of
the LDA exchange-correlation functional is significantly
larger than the Hartree self-interaction and thus the correc-
tion of Eq. �8� becomes positive. At first sight, this finding
seems to contradict the results reported in Ref. 40, where
all-electron KS-SIC calculations showed a decrease in the
total energy compared to LDA. However, in contrast to our
calculations, Garza et al. did not include correlation. For
comparison with the results of Garza et al., we also did
exchange-only LDA calculations on methane and found very
good agreement with the all-electron results. The conclusion
that follows from this observation is that because of the de-
crease in the self-interaction energy that is brought about by
the LDA correlation, the absolute value of the exchange-
correlation energy increases, and it increases to the extent
that its self-interaction exceeds the Hartree self-interaction.
As a consequence, the SIC correction becomes positive.

The results presented so far underline the importance of
the unitary invariance problem for the SIC presented in Eq.
�8�. The choice of the orbitals with which to construct the
OEP significantly influences its properties. Remember that
all presented results are for functionals based on LDA that is
corrected for self-interaction. However, using different or-
bital densities in Eq. �8� amounts to defining different func-
tionals. The difference between these functionals lies in the
definition of many-electron self-interaction in a density func-
tional treatment. In other words, it is the question of to what
extent we can identify orbitals, e.g., the Kohn–Sham orbitals,
with electrons. Therefore, the question arises which approach
we should buy into. Of course, one might argue that if you
feel impelled to identify electrons with some orbitals, the
most natural procedure is to choose the Kohn–Sham orbitals.
At least they are directly related to the Kohn–Sham eigen-
values whose physical interpretation has been stressed in the
literature.61–63 On the other hand, the presented results make
it clear that an approach using the Kohn–Sham orbitals in the
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most rigorous way of defining a single, one-particle potential
for Eq. �8�, i.e., KS-OEP, does not fully minimize the total
energy. In addition, it is well known that the straightforward
physical interpretation of Kohn–Sham orbital densities is
problematic. Interestingly, this is the original field of appli-
cation for localizing transformations.55–57

Hence, it is to be feared that the only way out is a prag-
matic one. Therefore, we compare our calculations to experi-
mental results. Evaluating Janak’s theorem �see Eq. �7��,18

the Kohn–Sham eigenvalue of the HOMO should equal the
IP �for the exact functional�.64 Furthermore, the gap energy,
i.e., the difference between the HOMO and the lowest unoc-
cupied molecular orbital �LUMO� eigenvalues, should be an
approximation to the experimental excitation energy.60,61

Therefore, we present experimental IPs and excitation ener-
gies compared to HOMO and calculated Kohn–Sham gap
energies, respectively, in Table II. As expected, the correction
of self-interaction improves upon the LDA HOMO energies
significantly. However, while the KS-KLI/OEP energies are
very close to the experimental IPs for all investigated mol-
ecules, the approaches working with localizing transforma-
tions seem to overcorrect.

Again, the nitrogen dimer is a case of particular interest.
Note the big difference in HOMO energies in the KS-KLI
and KS-OEP calculations, which is a direct consequence of
the symmetry breaking behavior discussed above. Interest-
ingly, the KS-KLI HOMO is much closer to the IP than the
KS-OEP result. However, N2 is known to be a special case
where Hartree–Fock �−�H=1.24 Ry �Ref. 64�� and exact ex-
change KLI �−�H=1.28 Ry �Ref. 64�� yield HOMO energies
which are very different from the IP but show an interesting
agreement with KS-OEP and the approaches using localizing
transformations. The reason for the failure of EXX methods
is the importance of static correlation in the triple bonds of
the nitrogen molecule. Consequently, semi-local density
functionals in which static correlation is mimicked by local
exchange3,65 yield greatly improved results. However, it
seems likely that a SIC can destroy this sensitive cancellation
of errors. Moreover, it has been argued that there is a close

analogy between EXX and SIC calculations employing lo-
calized orbitals.46,67 Thus, it is plausible that the approaches
working with localizing transformations or those leading to
substantially localized Kohn–Sham orbitals �such as KS-
OEP� are not able to improve upon EXX methods. There-
fore, only the fact that the self-consistent KS-KLI calculation
does not yield the energy-minimizing density �see Table I
and the discussion above� is responsible for the good agree-
ment of its HOMO energy with the experimental IP. In this
train of thought, the expected overcorrection of KS-KLI for
nitrogen is canceled by its inability to find the true minimum
of the total energy. In this light, the good result for the
HOMO energy of N2 that is obtained with KS-KLI looks
more like a piece of luck than a piece of systematic physics.

The comparison of the gap energy with experimental
excitation energies is less instructive. This is mainly due to
the fact that the differences in gap energies between the dif-
ferent SIC approaches are comparable to the differences be-
tween experimental singlet and triplet transition energies.
Moreover, Kohn–Sham gap energies are not supposed to
yield exact excitation energies but only approximations to it.
Note that typically, the influence of the unitary transforma-
tion on the LUMO is noticeably weaker than its influence on
the HOMO. This behavior may have been expected as only
the occupied orbitals are accounted for in the unitary trans-
formation.

Summarizing the IP results, it can be said that KS-KLI
and KS-OEP show good agreement of the HOMO energies
with experimental IPs, whereas the localized SIC approaches
seem to overcorrect. However, due to the construction of one
local potential for all orbitals, all of the presented SIC ap-
proaches do not only correct occupied orbital energies but
also unoccupied ones. This is a clear advantage over methods
working with orbital-specific potentials.

Finally, we test the generalized OEP approach for a more
complex case, i.e., the dissociation of a symmetric two-
center three-electron system. This system provides for one of
the most striking examples of the failure of common density
functionals. Due to their self-interaction error, common func-

TABLE II. Negative HOMO ��H� and LUMO ��L� energies and their difference �gap� in rydbergs compared to
experimental IPs and excitation energies �Ref. 66�. Experimental excitation energies refer to final singlet � 1�
and triplet states � 3�, respectively.

LDA KS-KLI KS-OEP Garza LOC-KLI LOC-OEP Expt.

N2 −�H 0.77 1.08 1.34 1.33 1.31 1.31 1.14
−�L 0.16 0.47 0.66 0.69 0.67 0.64 ¯

Gap 0.61 0.61 0.68 0.64 0.64 0.67 0.563 /0.681

CO −�H 0.67 1.09 1.14 1.15 1.15 1.14 1.16
−�L 0.16 0.55 0.56 0.62 0.62 0.60 ¯

Gap 0.51 0.54 0.58 0.53 0.53 0.54 0.463 /0.621

H2O −�H 0.54 0.98 0.98 1.10 1.08 1.09 0.92
−�L 0.07 0.42 0.44 0.47 0.46 0.45 ¯

Gap 0.47 0.56 0.54 0.63 0.62 0.64 0.523 /0.561

CH4 −�H 0.70 1.02 1.07 1.19 1.18 1.18 1.06
−�L 0.02 0.32 0.38 0.37 0.36 0.36 ¯

Gap 0.68 0.70 0.69 0.82 0.82 0.82 0.803 /0.821
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tionals predict a spurious energy barrier in the dissociation
curve at intermediate bond lengths.69,70 In the course of the
discussion of many-electron self-interaction, the ability of
functionals to correctly describe the dissociation curves of
symmetric charged radicals has recently regained a lot of
attention in the literature.5,16 Figure 3 shows the ground-state
energy curve of He2

+ as computed with LOC-OEP compared
to other SIC and non-SIC approaches applying a local poten-
tial. As LOC-KLI and Garza’s approach both show only mi-
nor deviations from LOC-OEP, only the LOC-OEP curve is
plotted. LDA shows the well known energy barrier at around
2 Å originating from spurious self-interaction. Not surpris-
ingly, LOC-OEP provides for the lowest total energy of all
approaches. Due to the analogy to EXX mentioned above,
the LOC-OEP curve deviates from the EXX-KLI curve
mainly by a constant shift. This shift originates from the
inclusion of local correlation via the LDA functional. This
has been tested by calculating a LOC-OEP curve neglecting
the local LDA correlation. This curve �not plotted� lies al-
most on top of EXX-KLI. Note that straightforward KS-KLI
provides for a too short bond length and a wrong dissociation
limit. This reflects the problems of KS-KLI when applied to
molecules, as discussed above. Hence, Fig. 3 impressively
demonstrates the importance of consistently including an
energy-minimizing unitary transformation in the computa-
tion of an OEP for the self-interaction correction of Eq. �8�.

VII. CONCLUSION

We have discussed solutions to the problem of finding a
single, local Kohn–Sham potential for the SIC proposed by
Perdew and Zunger. Two issues have been addressed: the
explicit dependence of the Perdew–Zunger energy on the or-
bitals and its variance under unitary transformation. We de-
veloped a generalized OEP scheme that is able to address
both problems in one go. We argued that the unitary invari-
ance problem is a direct consequence of the ambiguity in
defining self-interaction in a many-electron system. Thus, a

clear and practically applicable definition of many-electron
self-interaction on which improved schemes of self-
interaction correction can be based is highly desirable. In the
presented generalized OEP approach, the just mentioned am-
biguity shows up in the pretended arbitrariness of choosing
the unitary transformation matrix. In our work, minimizing
the energy was used as the criterion to specify the transfor-
mation matrix. By presenting full-OEP calculations on a per-
tinent set of molecules and comparing different SIC
schemes, we were able to show that the self-consistent inclu-
sion of a localizing transformation significantly influences
the results for the ground-state densities and thus for all elec-
tronic properties. Our final conclusion is that although cor-
recting self-interaction in an “orbital-by-orbital” fashion may
not lead to the ultimate functional, the OEP based SIC dis-
cussed here is an attractive approach incorporating many de-
sirable features into Kohn–Sham DFT.
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Abstract

The combination of photoelectron spectroscopy and density functional theory is an im-
portant technique for clarifying a material's electronic structure. So far, however, it has
been di�cult to predict when the spectrum of occupied Kohn-Sham eigenvalues obtained
from commonly used (semi-)local functionals bears physical relevance and when not. We
demonstrate that a simple criterion based on evaluating each orbital's self-interaction allows
prediction of the physical reliability of the eigenvalue spectrum. We further show that a
self-interaction correction signi�cantly improves the interpretability of eigenvalues also in
di�cult cases such as organic semiconductors where (semi-)local functionals fail.
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Photoelectron spectroscopy has emerged as one of the
most important techniques for clarifying the electronic struc-
ture of molecules and solids. It plays a particularly important
role in nanophysics and interface problems where other
methods of determining a material’s electronic structure are
often hard to apply. Typically, such measurements are
complemented by density functional theory �DFT�-based
electronic structure calculations. The combination of experi-
ment and theory then frequently allows to gain far-reaching
physical insight, and this type of approach has been used
very successfully in the past, as exemplified for finite sys-
tems by Refs. 1–7.

However, on the theoretical side this concept suffers from
the fact that Kohn-Sham eigenvalues are frequently, but not
always, good approximations to electron removal energies.
Moreover, for some systems the eigenvalue spectrum
changes a lot when going from one type of exchange-
correlation potential �vxc� to another. Important examples in
this respect that are of great fundamental and practical inter-
est are molecules used in organic electronics, e.g., Refs.
8–20. This limits the practical usefulness of interpreting
Kohn-Sham eigenvalues because when discrepancies with
experiment are observed, one does not know whether they
are “real”21 or just a reflection of the shortcomings of the
employed density functional approximation.

Importantly, although Kohn-Sham eigenvalues are not ex-
act quasiparticle excitation energies, the physical interpreta-
tion of Kohn-Sham eigenvalues does have a sound theoreti-
cal basis and is not coincidental. Interpreting the occupied
eigenvalues is not to be confused with the notorious “band-
gap problem,”22 and it is a well-established fact that eigen-
values of energetically high-lying occupied orbitals, to which
we restrict our analysis, are good approximations to electron
removal energies when computed from a high-quality
vxc.

22–27 The pressing question is, then, when a practically
used vxc approximation leads to Kohn-Sham eigenvalues that
can be trusted.

In this Rapid Communication we demonstrate that orbital
self-interaction enters the structure of the occupied Kohn-

Sham spectrum as a decisive factor. When different orbitals
have significantly different spatial character, e.g., localized
vs delocalized, their eigenvalues can carry largely different
self-interaction errors �SIEs�. In such cases the occupied
Kohn-Sham eigenvalue spectrum no longer reflects the
physical electron binding. We propose a simple test that does
not predict the correct spectrum but can serve as a warning
against possible misinterpretation of the occupied Kohn-
Sham spectrum. We demonstrate that a parameter-free self-
interaction correction �SIC� implemented rigorously within
the Kohn-Sham framework28 yields physically interpretable
eigenvalues also in cases where �semi-�local approximations
fail. Finally, we suggest a shortcut to approximately incorpo-
rate the effects of the SIC without the need to actually go
through a SIC calculation.

Figure 1 exemplifies the typical problem that we have in
mind. The bottom curve shows the experimental photoelec-
tron spectrum of the 3,4,9,10-perylene tetracarboxylic dian-
hydride �PTCDA� molecule,9 which is a paradigm system in
the field of organic semiconductors.8 The top curve shows
the occupied eigenvalues obtained from a local density ap-
proximation �LDA� calculation in the typically used density-
of-states �DOS� interpretation: the eigenvalues are convo-
luted with a Gaussian and shifted to compensate for the
wrong intrinsic asymptotics of the LDA potential.2,4 For ease
of comparison we align all spectra in this Rapid Communi-
cation such that the highest-occupied molecular orbital
�HOMO� energies match. Although this type of procedure
leads to very good agreement with experiment for many sys-
tems it fails badly for PTCDA. The second peak of the LDA
spectrum is right where the experimental spectrum shows a
pronounced gap between the HOMO and the HOMO-1 peak.
Using a generalized gradient approximation �GGA� func-
tional hardly changes the picture. This is disconcerting be-
cause this part of the spectrum is weakly bound and effects
that make the eigenvalue interpretation doubtful for energeti-
cally deep lying states27 are unimportant. It is also puzzling
from the perspective that the geometry of PTCDA is well
described by �semi-�local functionals, which could lead one
to expect an overall correct description.
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By employing the GW method or by resorting to hybrid
functionals that incorporate empirical parameters, one can
obtain a theoretical spectrum that does reproduce the experi-
mental HOMO-HOMO-1 gap9 but at the price of a tremen-
dously increased computational effort or at the price of an
increased computational effort and additional parameters that
may hinder performance for other systems,29 respectively.
Therefore, from a practical point of view it would be ex-
tremely helpful to �i� have a criterion that signals whether the
approximative interpretation of the Kohn-Sham eigenvalues
is justified for a given system and vxc approximation and �ii�
have a method to obtain physically reliable eigenvalues in
cases where approximations such as LDA and GGAs fail.
Both are presented below.

The desired a priori knowledge about the reliability of the
Kohn-Sham eigenvalue spectrum, e.g., as obtained with
LDA, can be gained simply by evaluating each orbital’s SIE,

ei = ��i�vH���i�2���i� + ��i�vxc���i�2,0���i� . �1�

Here, vxc���i�2 ,0� denotes the approximate expression for the
�spin-polarized� exchange-correlation potential, in our case
LDA, evaluated with the corresponding Kohn-Sham orbital
density ��i�2. vH is the corresponding Hartree potential.
Equation �1� is the change one expects in the ith eigenvalue
from first-order perturbation theory when one applies a self-
interaction correction.30

Self-interaction is one of the most prominent problems in
present-day DFT �Ref. 22� and was identified as a fundamen-
tal difficulty early on.30 For the unknown exact exchange-
correlation energy functional, the SIE defined in Eq. �1� must
vanish when the potentials are evaluated on a one-electron
density.28,30 Since every Kohn-Sham orbital density has the
structure of a one-electron density, Eq. �1� should vanish in

exact DFT. However, it is nonzero when an approximation
such as LDA or GGA is employed. Thus, every Kohn-Sham
orbital’s eigenvalue will be offset to some extent due to or-
bital self-interaction. In terms of a photoelectron interpreta-
tion this need not be a problem if all orbitals suffer from
roughly the same amount of SIE because then all occupied
eigenvalues will be offset by roughly the same value and the
structure of the spectrum will be preserved. However, if a
system consists of orbitals, wherein some carry large self-
interaction and others little, then the SIE will distort the
spectrum and it will no longer reflect the physical nature of
the electronic binding.

That orbital self-interaction is indeed a reason for the dis-
agreement seen for PTCDA becomes clear from Fig. 2. It
shows ei-eHOMO, i.e., the self-interaction error of each orbital
relative to the one of the system’s HOMO, evaluated for the
highest LDA Kohn-Sham orbitals for four different systems.
This relative error is the quantity relevant for the usual com-
parison to experiment in which the HOMO peaks are
aligned. First focusing on the black circles denoting the re-
sults for PTCDA, it is evident that the orbitals from
HOMO-1 to HOMO-4 carry much larger self-interaction
than, e.g., HOMO and HOMO-5. Figure 1 depicts these or-
bitals and indicates which peak in the DOS interpretation is
associated with them. HOMO-1 and HOMO-2 are the orbit-
als whose eigenvalues lie where the experiment shows a pro-
nounced gap in the spectrum.

In order to check whether this finding is coincidental or
systematic we have repeated the analysis for other systems.
With Si4D− and pentacene we have chosen two very different
systems—but for both it is known that the eigenvalues from
�semi-�local functionals can quite reasonably be compared to
experiment.4,16,31 Figure 2 reveals that this is in agreement
with the ei analysis: for both systems �and for other clusters
that are not shown here and for which LDA also yields a
reasonable DOS�, all of the high-lying orbitals carry very
similar SIE. Thus, we note as a first important result that Eq.
�1� can be used to warn against possible misinterpretation of
occupied Kohn-Sham eigenvalues.

One may wonder why ei varies strongly over the orbitals
for some systems and hardly varies for others. In a nutshell,
the answer is that in systems in which the high-lying occu-
pied orbitals all have a similar spatial structure, they typi-
cally also carry similar self-interaction. Returning to the ex-
ample of PTCDA depicted in Fig. 1 we see that here different

FIG. 1. �Color online� Simulated and measured photoemission
spectra of PTCDA. From top to bottom: isosurface plots of Kohn-
Sham orbitals �labels HOMO, HOMO-1, etc., refer to the LDA
ordering�, Kohn-Sham eigenvalues broadened by 0.1 eV for LDA
and GKLI, and gas phase experimental data from Ref. 9. Note that
the experiment shows a pronounced gap between the HOMO and
the HOMO-1 peaks that is reproduced by the GKLI spectrum but
not by the LDA one.

FIG. 2. �Color online� Orbital self-interaction ei for the least
bound LDA orbitals of PTCDA, NTCDA, pentacene, and Si4D−

relative to the respective eHOMO. Dashed lines are a guide to the
eye.

KÖRZDÖRFER et al. PHYSICAL REVIEW B 79, 201205�R� �2009�

RAPID COMMUNICATIONS

201205-2



orbitals have a rather different spatial structure: HOMO and
HOMO-5 lead to probability densities that are delocalized
over the entire molecule, whereas the other shown orbitals
correspond to densities on the anhydride �side� groups. Thus,
the observation of largely different ei can be rationalized by
the fact that self-interaction is related to localization.30,32

With self-interaction thus identified as a main source of
error, the following question arises: what should one do once
one has realized through the above analysis that orbital self-
interaction is likely to distort the occupied Kohn-Sham spec-
trum for the system of interest? In view of the above findings
it is a natural idea to resort to a density functional which
reduces self-interaction. A first-principles parameter-free ap-
proach to achieve this is the SIC.30 It can rigorously be
brought under the umbrella of Kohn-Sham theory in the gen-
eralized optimized effective potential �GOEP� approach,28

which includes energy-minimizing orbital transformations in
the self-consistent iteration. Therefore, the Krieger-Li-Iafrate
�KLI� approximation made to the GOEP �called GKLI� is
reliable, whereas the KLI approximation made to the usual
optimized effective potential �OEP� equation for the SIC is
not.33 As the SIC approach does include correlation and only
requires evaluation of the self-exchange integrals, it is an
attractive alternative to pure exact exchange or hybrid func-
tional methods. The middle part of Fig. 1 shows the spectrum
of occupied Kohn-Sham eigenvalues obtained using the
GKLI approach. As one can see from the relation between
the orbitals and their corresponding eigenvalues, the GKLI
spectrum corrects the failure of LDA, opening a gap between
HOMO and HOMO-1 that corresponds well to the experi-
mentally observed gap.

The data shown in Figs. 2 and 3 for 1,4,5,8-naphthalene
tetracarboxylic dianhydride �NTCDA� confirm that the rela-
tion between orbital structure and eigenvalue correction is
not coincidental. Similar to PTCDA there are orbitals of dif-
ferent spatial structure, and again, switching from LDA to
GKLI opens a gap between HOMO and HOMO-1. We also
verified that the SIC has practically no effect on the spectrum
of pentacene and Si4D−. Thus, we have arrived at a second
important result: A self-interaction free approach can yield
physically interpretable occupied eigenvalues also in cases
where �semi-�local functionals fail.

Finally, the results so far beg an obvious question: having
realized that the problem of physically meaningful eigenval-
ues is closely related to SIE and orbital structure, can one
estimate the effect that the SIC will have on the occupied
eigenvalues without actually having to go through a full SIC
calculation? The answer is yes. Estimating the Hartree and
LDA exchange contributions while neglecting the difference
between SI-corrected and uncorrected orbitals as in Refs. 30
and 34, but additionally taking into account LDA correlation,
one can estimate �using atomic units� the self-interaction cor-
rected eigenvalue purely from LDA quantities by

�i
est = �i

LDA − 0.94� ���i�2�4/3d3r − ��i�vc
LDA���i�2,0���i� .

�2�

Figure 4 compares the shift of the GKLI eigenvalues
relative to the GKLI shift for the HOMO, i.e.,
��i

GKLI−�i
LDA�− ��HOMO

GKLI −�HOMO
LDA � to the same relative

shift evaluated with the estimated eigenvalues, i.e.,
��i

est−�i
LDA�− ��HOMO

est −�HOMO
LDA �. Again, this relative shift is

the quantity relevant for the usual comparison to experiment.
In view of the simplicity of Eq. �2� which can be evaluated
straightforwardly based on the ingredients of a standard
LDA code, the approximation works well. Thus, our third
result is that via Eq. �2� one can obtain an estimate of the
effects that SIC will have on the occupied eigenvalues with
very little computational effort.

In summary, we have shown that orbital self-interaction is
decisive for the interpretability of the occupied Kohn-Sham
spectrum as a DOS as measured in photoelectron spectros-
copy. It can serve as a transparent criterion to judge the in-
terpretability of the occupied Kohn-Sham spectrum. A self-

FIG. 3. �Color online� DOS plots for NTCDA from occupied
Kohn-Sham eigenvalues as obtained in LDA and GKLI, and isos-
urface plots of Kohn-Sham orbitals as in Fig. 1. Again, GKLI opens
a gap between HOMO and HOMO-1 that is not seen with the LDA.

FIG. 4. �Color online� Orbital shift relative to the shift for the
HOMO as obtained from the GKLI calculation �blue triangles� and
Eq. �2� �black circles� for PTCDA �top� and NTCDA �bottom�. The
HOMO is orbital number 70 �top� or 48 �bottom�, respectively.
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interaction correction implemented within the Kohn-Sham
framework can yield reliable spectra also in such cases
where �semi-�local density functionals fail, and its effect on
the eigenvalues can be estimated with little effort. These
findings extend the range of systems for which reliable pre-
dictions can be made, as demonstrated here for prototypical
organic semiconductor molecules.

S.K. and T.K. acknowledge financial support by the
German-Israeli Foundation and the Studienstiftung des Deut-
schen Volkes, respectively. N.M. and L.K. acknowledge fi-
nancial support by the Gerhard Schmidt Minerva Center for
Supra-Molecular Architecture and the Lise Meitner Center
for Computational Chemistry. S.K. acknowledges the hospi-
tality of the Weizmann Institute of Science.

1 N. Binggeli and J. R. Chelikowsky, Phys. Rev. Lett. 75, 493
�1995�; J. Muller, B. Liu, A. A. Shvartsburg, S. Ogut, J. R.
Chelikowsky, K. W. Michael Siu, K. M. Ho, and G. Gantefor,
ibid. 85, 1666 �2000�.

2 J. Akola, M. Manninen, H. Häkkinen, U. Landman, X. Li, and
L.-S. Wang, Phys. Rev. B 62, 13216 �2000�.

3 S. N. Khanna, M. Beltran, and P. Jena, Phys. Rev. B 64, 235419
�2001�.

4 L. Kronik et al., Nature Mater. 1, 49 �2002�; Eur. Phys. J. D 24,
33 �2003�.

5 N. Bertram, Y. D. Kim, G. Ganteför, Q. Sun, P. Jena, J. Tam-
uliene, and G. Seifert, Chem. Phys. Lett. 396, 341 �2004�.

6 H. Häkkinen, M. Moseler, O. Kostko, N. Morgner, M. A. Hoff-
mann, and B. v. Issendorff, Phys. Rev. Lett. 93, 093401 �2004�.

7 G. Tu, V. Carravetta, O. Vahtras, and H. Agren, J. Chem. Phys.
127, 174110 �2007�.

8 E. Umbach and R. Fink, in Proceedings of the International
School of Physics “Enrico Fermi,” edited by V. M. Agrenovich
and G. C. La Rocca �IOS Press, Amsterdam, 2002�, p. 233.

9 N. Dori, M. Menon, L. Kilian, M. Sokolowski, L. Kronik, and E.
Umbach, Phys. Rev. B 73, 195208 �2006�.

10 G. Heimel, L. Romaner, J.-L. Brédas, and E. Zojer, Surf. Sci.
600, 4548 �2006�.

11 N. Marom, O. Hod, G. E. Scuseria, and L. Kronik, J. Chem.
Phys. 128, 164107 �2008�; N. Marom, O. Hod, G. E. Scuseria,
and L. Kronik, Appl. Phys. A 95, 159 �2009�; 95, 165 �2009�.

12 C. Risko, C. D. Zangmeister, Y. Yao, T. J. Marks, J. M. Tour, M.
A. Ratner, and R. D. van Zee, J. Phys. Chem. C 112, 13215
�2008�.

13 S. Yanagisawa and Y. Morikawa, Chem. Phys. Lett. 420, 523
�2006�.

14 M. Rohlfing, R. Temirov, and F. S. Tautz, Phys. Rev. B 76,
115421 �2007�.

15 M. L. Tiago, J. E. Northrup, and S. G. Louie, Phys. Rev. B 67,
115212 �2003�.

16 K. Hummer and C. Ambrosch-Draxl, Phys. Rev. B 72, 205205
�2005�.

17 S. Kera, H. Yamane, H. Fukagawa, T. Hanatani, K. K. Okudaira,
K. Seki, and N. Ueno, J. Electron Spectrosc. Relat. Phenom.
156-158, 135 �2007�.

18 X. Zhan, C. Risko, F. Amy, C. Chan, W. Zhao, S. Barlow, A.

Kahn, J.-L. Brédas, and S. R. Marder, J. Am. Chem. Soc. 127,
9021 �2005�.

19 H. Vázquez, R. Oszwaldowski, P. Pou, J. Ortega, R. Pérez, F.
Flores, and A. Kahn, Europhys. Lett. 65, 802 �2004�.

20 S. Duhm, G. Heimel, I. Salzmann, H. Glowatzki, R. L. Johnson,
A. Vollmer, J. P. Rabe, and N. Koch, Nature Mater. 7, 326
�2008�.

21 “Real” differences may arise from systematic deviations between
Kohn-Sham eigenvalues and quasiparticle excitation energies,
e.g., for deep lying �Ref. 27� or strongly coupled excitations
�Ref. 35�, from matrix element effects, or other experimental
intricacies.

22 S. Kümmel and L. Kronik, Rev. Mod. Phys. 80, 3 �2008�.
23 J. F. Janak, Phys. Rev. B 18, 7165 �1978�.
24 M. Levy, J. P. Perdew, and V. Sahni, Phys. Rev. A 30, 2745

�1984�; C.-O. Almbladh and U. von Barth, Phys. Rev. B 31,
3231 �1985�.

25 A. Görling, Phys. Rev. A 54, 3912 �1996�.
26 C. Filippi, C. J. Umrigar, and X. Gonze, J. Chem. Phys. 107,

9994 �1997�.
27 D. P. Chong, O. V. Gritsenko, and E. J. Baerends, J. Chem. Phys.

116, 1760 �2002�.
28 T. Körzdörfer, S. Kümmel, and M. Mundt, J. Chem. Phys. 129,

014110 �2008�. Computational details of our approach can be
found in this paper.

29 J. Paier, M. Marsman, and G. Kresse, J. Chem. Phys. 127,
024103 �2007�.

30 J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 �1981�.
31 H. Fukagawa, H. Yamane, T. Kataoka, S. Kera, M. Nakamura, K.

Kudo, and N. Ueno, Phys. Rev. B 73, 245310 �2006�; O. Mc-
Donald et al., Surf. Sci. 600, 3217 �2006�; M. L. M. Rocco et
al., J. Chem. Phys. 129, 074702 �2008�.

32 A study quantifying the amount of localization and its relation to
ei will be presented elsewhere.

33 T. Körzdörfer, M. Mundt, and S. Kümmel, Phys. Rev. Lett. 100,
133004 �2008�.

34 R. S. Gadre, L. J. Bartolotti, and N. C. Handy, J. Chem. Phys.
72, 1034 �1980�.

35 M. Mundt and S. Kümmel, Phys. Rev. B 76, 035413 �2007�; M.
Walter and H. Häkkinnen, New J. Phys. 10, 043018 �2008�.

KÖRZDÖRFER et al. PHYSICAL REVIEW B 79, 201205�R� �2009�

RAPID COMMUNICATIONS

201205-4



Publication 4

Fluorescence quenching in an organic
donor-acceptor dyad: A �rst principles study

T. Körzdörfer1, S. Tretiak2, and S. Kümmel1

1Physics Institute, University of Bayreuth, D-95440 Bayreuth, Germany
2Theoretical Division, Center for Nonlinear Studies (CNLS) and Center for Integrated

Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, USA

The Journal of Chemical Physics 131, 034310 (2009)

© 2009 American Institute of Physics

DOI: 10.1063/1.3160666

availabe at: http://link.aip.org/link/?JCPSA6/131/034310/1

Abstract

Perylene bisimide and triphenyl diamine are prototypical organic dyes frequently used in
organic solar cells and light emitting devices. Recent Förster-resonant-energy-transfer ex-
periments on a bridged organic dyad consisting of triphenyl diamine as an energy-donor
and perylene bisimide as an energy-acceptor revealed a strong �uorescence quenching on
the perylene bisimide. This quenching is absent in a solution of free donors and acceptors
and thus attributed to the presence of the saturated CH2O(CH2)12-bridge. We investigate
the cause of the �uorescence quenching as well as the special role of the covalently bound
bridge by means of time dependent density functional theory and molecular dynamics. The
conformational dynamics of the bridged system leads to a charge transfer process between
donor and acceptor that causes the acceptor �uorescence quenching.
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Perylene bisimide and triphenyl diamine are prototypical organic dyes frequently used in organic
solar cells and light emitting devices. Recent Förster-resonant-energy-transfer experiments on a
bridged organic dyad consisting of triphenyl diamine as an energy-donor and perylene bisimide as
an energy-acceptor revealed a strong fluorescence quenching on the perylene bisimide. This
quenching is absent in a solution of free donors and acceptors and thus attributed to the presence of
the saturated CH2O�CH2�12-bridge. We investigate the cause of the fluorescence quenching as well
as the special role of the covalently bound bridge by means of time dependent density functional
theory and molecular dynamics. The conformational dynamics of the bridged system leads to a
charge transfer process between donor and acceptor that causes the acceptor fluorescence
quenching. © 2009 American Institute of Physics. �DOI: 10.1063/1.3160666�

I. INTRODUCTION

Photoinduced transfer of electronic excitation energy
and charges are among the most prominent phenomena both
in biology, e.g., in photosynthesis, and in modern material
science, e.g., in organic solar cells or light emitting diodes.
In the past decades, considerable progress has been made in
the understanding of energy and charge transfer processes.
Hopes are high that a better understanding will allow one to
improve the efficiency of organic photovoltaics �see Refs.
1–4 for an overview�. In many investigations, especially tai-
lored model systems based on �-conjugated organic mol-
ecules play a prominent role. Examples are molecular
switches,5 light harvesting systems,6 dendrimers7 and self-
organized polymers8 based on perylene dyes, J-aggregates,9

and organic donor-bridge-acceptor �DBA� systems.10–12

Among the most prominent organic compounds used in
these model systems, as well as in current applications are
the �-conjugated dyes perylene bisimide �PTCDI� and triph-
enyldiamine �TPD� �see Fig. 1�. PTCDI is a thermally and
photochemically stable organic semiconductor that grows
highly ordered thin films on different inorganic substrates
and has been incorporated in a variety of electronic devices
such as organic field-effect transistors13 or photovoltaics.14

TPD is widely used in hole transport layers of photoelec-
tronic devices15 due to its good hole injection and mobility
characteristics. Furthermore, both PTCDI and TPD show
strong fluorescence in the visible range12 and the emission
spectrum of TPD overlaps with the absorption spectrum of
PTCDI. Thus, TPD and PTCDI are an ideal pair to study
resonant excitation energy transfer.

Following this line of thought, a DBA system consisting
of TPD �D� as an energy-donor and PTCDI �A� as an energy
acceptor linked by a saturated and flexible CH2O�CH2�12-

bridge �B� has recently been synthesized11 and studied12 as a
model system for excitation energy transfer. Making use of
time-resolved and fluorescence emission spectroscopy this
study revealed an efficient photoinduced energy transfer
from D to A. However, simultaneously a strong quenching of
the A-fluorescence was found. As this quenching is absent in
a solution of free donors and acceptors, it is obviously attrib-
uted to the presence of the saturated bridge. The aim of this
manuscript is to clarify the role of the saturated bridge in the
quenching process by means of time-dependent density func-
tional theory �TDDFT� and molecular dynamics �MD�.

To this end, our manuscript is organized as follows: after
a short introduction to the experimental observations, we
summarize the used methods in Sec. III. In Sec. IV we
present and discuss our results before concluding in Sec. V.

II. THE EXPERIMENT

In the following we introduce the experimental results as
far as this is necessary to follow the upcoming discussion.
Details can be found in the original publication.12 The

a�Electronic mail: thomas.koerzdoerfer@uni-bayreuth.de.

FIG. 1. The investigated materials: TPD �D�: N ,N�-Bis�3-methylphenyl�-
N ,N�-bis�phenyl�benzidine, PTCDI �A�: 2,9-Bis-�1-heptyl-octyl�-anthra-
�2,1,9-def; 6,5,10-d�e�f��-diisochinoline-1,3,8,10-tetraone, DBA molecule:
9-�12-N-�4-benzyloxy�-N ,N� ,N�-triphenyl benzidinedodecyl�-2-�1-hepty-
loctyl�-anthra-�2,1,9-def;6,5,10-d�e�f��-diisochinoline-1,3,8,10-tetraone.
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system under investigation is the DBA molecule
9-�12-N-�4-benzyloxy�-N ,N� ,N�-triphenyl benzidine-
dodecyl�-2-�1-heptyloctyl�-anthra-�2,1,9-def;6,5,10-d�e�f��-
diisochinoline-1,3,8,10-tetraone �see Fig. 1�, which we will
abbreviate as DBA in the following. Initially, D and A were
dissolved separately in toluene and investigated via fluores-
cence spectroscopy. Figure 2�a� shows the absorption and
emission spectra of D and A. After chemically linking D and
A with the CH2O�CH2�12-bridge and dissolving the resulting
DBA in toluene the absorption spectrum shown in Fig. 2�b�
is measured. In addition, Fig. 2�b� provides the emission
spectrum of DBA as induced by an excitation at 3.5 eV, i.e.,
at the absorption energy of D. Obviously, the excitation of D
is followed by an efficient excitation energy transfer to A.
Thus, the resulting DBA emission spectrum appears as a su-
perposition of the D and A emission spectra. Apart from this,
the saturated bridge has only minor effects on the position of
the absorption and emission energies.

The decay rates kD and kA of D and A, respectively, are
provided in Table I. The energy transfer in DBA and in a
solution of free donors and acceptors �D+A� leads to an
increase in the measured decay rate kD

DBA of D in DBA, i.e.,

kD
DBA = kD + kET. �1�

Thus, the energy transfer rate kET can be determined by mea-
suring kD and kD

DBA. Utilizing kET in the standard Förster-

resonant-energy-transfer �FRET�-methodology, the authors
of Ref. 12 derive a D-A distance in DBA that corresponds to
a fully stretched conformation of the bridge.

Note that Table I reveals evidence on other electronic
processes in the system. The substantial increase in the decay
rate kA

DBA of A in DBA as compared to free A indicates an
efficient quenching process. From

kA
DBA = kA + kQ, �2�

one finds a quenching rate kQ of 0.33 1/ns. This finding re-
veals the presence of an additional nonradiative decay chan-
nel in the bridged system. In contrast to the energy transfer
process �see. Eq. �1��, this decay channel is absent in a solu-
tion of free donors and acceptors. Furthermore, it occurs in-
dependently of the energy transfer passage, i.e., the quench-
ing can also be observed if one excites DBA directly at the A
absorption.

A possible and frequently invoked explanation for fluo-
rescence quenching in this type of systems is charge transfer.
A charge transfer coupling between D and A could be caused
either by a superexchange coupling through the saturated
bridge �see e.g., Refs. 1, 2, and 16 for an overview of the
superexchange formalism� or by a collapse of the bridge in
solution that leads to orbital overlap of D and A. As for the
former, a superexchange coupling as strong as the one ob-
served here would be quite unusual considering the length of
the CH2O�CH2�12-bridge. Our DFT calculations described
below address questions of electronic coupling insofar as
they give detailed insight into the electronic properties of the
DBA-system. As for the latter, it must be noted that a col-
lapse of the bridge in solution seems to contradict the find-
ings of Ref. 12 concerning the distance between D and A.
The derivation of this distance however is based on the
FRET-methodology, i.e., D and A are approximated as inter-
acting point dipoles. Higher order multipoles as well as elec-
tronic and vibrational couplings of D, B, and A are com-
pletely neglected. Depending on the particularities of the
investigated system, these approximations can influence the
distance-dependence of the energy-transfer rate
significantly.18 Therefore, distances derived by using stan-
dard FRET-methodology can either be over- or underesti-
mated. As a consequence, the D-A distance derived in Ref.
12 may not be trustworthy. However, if the hydrocarbon
bridge folds so that D and A couple electronically, one would
expect this coupling to have a significant influence on the
measured DBA-spectra, e.g., similar to the situation found
for the PTCDI dimer whose spectrum shows strong devia-
tions from the monomer spectrum due to orbital overlap.19

Yet Fig. 2 demonstrates that this is not the case.
Summing up these observations one can only conclude

that the information from the fluorescence spectroscopy mea-
surements is not conclusive. A theoretical analysis can shed
light on these findings. Therefore a detailed study of the role
of the bridge in the observed fluorescence quenching by
means of DFT, TDDFT, and MD is the aim of this manu-
script.

FIG. 2. �a� Absorption and emission spectra of D and A in toluene. �b�
Absorption and emission spectra of DBA in toluene. The emission spectrum
of DBA has been excited at 3.5 eV �Ref. 17�.

TABLE I. Experimental fluorescence energies and decay rates of D, A, D
+A �at concentrations cD=2.3 mM and cA=6.2 mM� and DBA in toluene
as provided in Ref. 12; energies are taken at the maxima of the emission
spectra; exp. kD in DBA is on the edge of the instrument response threshold.

ED

�eV�
kD

�1/ns�
EA

�eV�
kA

�1/ns�

D 3.1 1.18 ¯ ¯

A ¯ ¯ 2.3 0.25
D+A 3.1 1.75 2.3 0.25
DBA 3.1 �12.5 2.3 0.59
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III. METHODOLOGY

Quantum chemical calculations are performed using the
linear-response TDDFT formalism as implemented in the
TURBOMOLE v5.10 �Ref. 20� and GAUSSIAN03 �Ref. 21� pro-
gram packages. Ground state molecular geometries of D, A,
and DBA are obtained from TURBOMOLE geometry
optimization22 employing an empirical dispersion
correction.23 Unless otherwise noted, all DFT and TDDFT
calculations make use of the B3LYP functional24 and an SVP
basis set.25 No symmetries are enforced. Solution effects are
simulated using COSMO.26,27 The natural transition orbitals
�NTO� approach28 is used to identify and visualize electronic
excitations. MD calculations are performed using the TINKER

program package29 and the MM3 force field.30 Pre- and post-
processing operations are performed with the help of VIEW-

MOL �Ref. 31� and VMD.32

IV. RESULTS AND DISCUSSION

We start our computational analysis by calculating the
ground-state geometrical structures and Kohn–Sham �KS� ei-
genvalue spectra of D and A using DFT. Unless otherwise
noted, the C7H15-sidechains of A are replaced with hydro-
gens in all quantum chemical calculations presented in this
work. Their only purpose in the experiments is to increase
the solubility of A. Beyond this, an influence of the
sidechains on the ground state and/or the excited state prop-
erties of A was observed neither experimentally12 nor
computationally.33

The geometrical structures we derived agree with the
ones from earlier DFT calculations for D �Ref. 34� and A.35

For details on bond length and angles we therefore refer the
reader to those publications.

According to Janak’s theorem,36 the KS eigenvalue of
the highest occupied molecular orbital �HOMO� calculated
with the exact density-functional equals the ionization poten-
tial �IP�.37 Furthermore the difference between the HOMO
and the lowest unoccupied molecular orbital �LUMO� eigen-
values can be interpreted as an approximation to the experi-
mental excitation energy.38,39 Although strictly speaking the
latter approximation is not applicable to hybrid functionals, it
is known in the literature that in practice the B3-LYP gap
often yields a good approximation to the true optical gap.40,41

Following this line of thought, one can gain a first insight
into the processes involved in the above described experi-
ments by drawing a highly approximative but instructive
one-particle picture.

We start by comparing our DFT results with cyclic vol-
tametry experiments.11 The HOMO energies of �4.90 eV for
D and �5.92 eV for A agree well with the experimental IPs
of �5.10 and �6.03 eV, respectively. Using the calculated
LUMO-energies of �1.16 eV for D and �3.43 eV for A
yields approximative excitation energies of 3.74 and 2.49 eV.
They compare surprisingly well with the experimentally ob-
served excitation energies of 3.5 and 2.35 eV, respectively.42

The uppermost box in Fig. 3 sketches the relative position of
the HOMO- and LUMO-energies of D and A, drawing an
intuitive one-particle picture of the observed processes. As
indicated by the left hand sides of the two circles in Fig. 3,

there are two main pathways for going from a mixture of free
donors and acceptors in their ground states �DA� to a con-
figuration with an excited acceptor �DA��. While the inner
circle indicates the obvious pathway, i.e., the direct excita-
tion of DA at the acceptor absorption energy, the outer circle
involves an excitation of DA at the donor absorption energy
followed by a nonradiative energy transfer to the acceptor. It
is important to recapture that in Ref. 12 these two pathways
have been used experimentally to generate DBA� and that
for both pathways an efficient quenching of the acceptor
fluorescence was found. Therefore, besides the acceptor fluo-
rescence �indicated by the inner circle on the right hand side
of Fig. 3� there must exist at least one additional, nonradia-
tive pathway going back from the photoexcited state �DA��
to the ground state �DA�.

The approximative one-particle picture suggests such a
nonradiative pathway. It is indicated by the outer circle on
the right hand side of Fig. 3. Starting from DA�, the system
undergoes a charge transfer from the HOMO of D to the
HOMO of A. This charge-separated state turns into the neu-
tral state through charge recombination. Obviously, the oc-
currence of this pathway requires charge transfer coupling
between D and A. Contrary to the long-range energy transfer
coupling which falls off as �1 /r3,43 charge transfer coupling
is a short-range interaction that decays exponentially.1 As a
consequence, there is a wide range of D-A distances in which
energy transfer takes place whereas charge transfer does not.
Obviously, the D+A mixture investigated in Ref. 12 features
such distances. However, the fluorescence quenching in
DBA indicates that the inclusion of the saturated bridge in-
troduces charge transfer coupling between D and A and
thereby opens the nonradiative de-excitation pathway sug-
gested by the outer circle in Fig. 3.

In order to test the influence of the saturated bridge on
the electronic structure of DBA we now calculate the DBA
ground state with DFT. We start by analyzing the DBA con-
formation in which the saturated bridge is completely
stretched. Clearly, this constitutes an important limit, not
least because the experimental results predict such a

FIG. 3. Approximative one-particle picture of the observed processes in DA
following optical excitation. HOMO �H� and LUMO �L� energies are posi-
tioned according to DFT results. Energy transfer, charge transfer, and charge
recombination are nonradiative processes and therefore cannot be observed
directly in fluorescence spectroscopy measurements.
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bridge-conformation.12 The main result of our computational
analysis of stretched DBA is that the influence of the satu-
rated bridge on the geometrical and electronical structure of
D and A is negligible. The bridge features a large HOMO-
LUMO gap of 9.85 eV. As a consequence, it does not affect
the electronic spectra of D and A in the energy range close to
their HOMO and LUMO eigenvalues. The orbitals of DBA
can strictly be separated into A-, B-, and D-orbitals and even
for energetically close-lying D- and A-states no splitting of
the KS-eigenvalues can be observed within the numerical
accuracy. Thus, there is no evidence for a through-bond
charge transfer coupling of D and A in the electronic ground-
state of stretched DBA. Considering the length and the
HOMO-LUMO gap of the saturated hydrocarbon bridge, this
finding is in line with earlier works on through-bond cou-
plings �see, e.g., Ref. 16�.

Now we go over to excited-state calculations. Table II
shows TDDFT excitation energies and oscillator strengths
for D, A, D+A, and DBA. For free D and A one obtains
strong HOMO-LUMO transitions with large oscillator
strengths at 2.41 and 3.27 eV, respectively. This is in good
agreement with the experimental absorption spectrum.

For the investigation of D+A, we choose the relative
orientation and distance of D and A such that is consistent
with the geometry of DBA in a stretched-bridge conforma-
tion. Thus, we make sure that possible differences between
the stretched DBA and D+A calculations originate only
from the inclusion of the bridge. As a large number of exci-
tations with zero or almost zero oscillator strengths is intro-
duced by the simultaneous calculation of D and A in one
system, we only provide those excitation energies with oscil-
lator strengths larger than 10−2 in one of the geometries. In
Table II we compare energies and oscillator strengths of cor-
responding excitations in different systems. The good agree-
ment of the excitation energies and oscillator strengths of
stretched DBA and D+A shows that in this case the influ-
ence of the saturated bridge is clearly negligible.

After having investigated the stretched DBA-system, the
close lying next step is to investigate other conformations.
However, from the computational point of view finding the
global minimum of DBA is challenging as the corresponding
high-dimensional energy-landscape is very flat. This is a con-
sequence of the large number of energetically inexpensive
conformational changes in the bridge. We have performed

several steepest descent optimizations starting from different
initial geometries. The local minimum in which the steepest
descent relaxation ends up is strongly predetermined by the
initial guess. Finding the global energy minimum would
therefore require extensive simulated annealing, which is
computationally costly. Yet more importantly, for further un-
derstanding of the experimental data it is not just one mini-
mum that is of interest, but the finite-temperature conforma-
tional dynamics of DBA in solution.

Therefore, we now go over to an analysis of the confor-
mational dynamics of DBA in solution �see Fig. 4� using
MD. This step is motivated by the fact that up to this point,
our results do not give any indication for a charge transfer
coupling between D and A in the stretched bridge conforma-
tion of DBA. We set up MD-simulations of DBA in different
solvents, assuming periodic boundary conditions, room-
temperature and pressure. Solvents are taken into account
explicitely. Different from the quantum chemical calcula-
tions, in the MD we explicitely take into account the
C7H15-sidechains on A as they considerably influence its
solubility. For the following analysis, we use the distance
��r�AD�� between D and A, as well as the orientation factor �2

defined via the normalized transition dipoles �d�D and d�A� by

�2 = �cos �T − 3 cos �D cos �A�2, �3�

where

cos �T = d�Dd�A, �4�

cos �D = d�Dr�AD, �5�

cos �A = d�Ar�AD, �6�

�see also Fig. 4�. A plot of the the D-A distance and �2 as
derived from an MD-calculation of DBA in pentane is given
in Fig. 5. Starting from a stretched conformation the bridge
immediately starts to fold. After 2.5 ns the bridge has col-
lapsed completely. Henceforward, D and A remain stacked at
a distance of �5 Å and go on executing a shear movement
in the stacked position �as can be derived from the plot of
�2�. We repeated the MD-simulation using a variety of dif-
ferent polar �ethanole, acetone, and toluene� and unpolar
�pentane, decane, dodecane, and hexadecane� solvents. In all

TABLE II. Excitation energies �in eV� and oscillator strengths �in atomic
units� of D, A, D+A, and DBA in stretched and folded bridge geometry. The
folded bridge geometry is the MD-step 2 geometry �see Fig. 5 and discus-
sion in the text�. Corresponding NTOs are provided in Fig. 6.

A D D+A DBA stretched DBA folded

2.41�0.627� ¯ 2.41�0.630� 2.40�0.707� 2.41�0.581�
¯ ¯ ¯ ¯ 3.26�0.107�
¯ ¯ ¯ ¯ 3.28�0.021�
¯ 3.27�1.128� 3.27�1.129� 3.26�1.198� 3.31�0.967�
¯ ¯ ¯ ¯ 3.33�0.010�

3.55�0.056� ¯ 3.55�0.054� 3.53�0.037� 3.58�0.019�
¯ ¯ ¯ ¯ 3.61�0.035�
¯ 3.59�0.015� 3.59�0.014� 3.58�0.016� 3.62�0.017�

FIG. 4. MD-simulation of DBA in pentane. During the calculation, the
periodic boundary box including 1170 pentane-molecules and one DBA is
kept at a temperature of 298 K and a pressure of 1 atm. The time step used
for the MD is 1 fs.
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cases we found qualitatively the same behavior. However,
polarity and viscosity of the different solvents influence the
average D-A distances and the time scale of the folding pro-
cess. A detailed analysis of the influence of different solvents
on the fluorescence depolarization and on the energy-and
charge-transfer rates is thus subject of future experimental
and theoretical work.

In this work however, our focus is on the charge transfer
coupling between D and A. To this end, we analyze DBA for
three different stages of the folding process by means of DFT
and TDDFT. These stages are indicated in Fig. 5.

The first step of our MD analysis �DBA1� corresponds to
the stretched bridge conformation and has been analyzed in
detail above. In step 2 �DBA2� the folding process has
evolved to a D-A distance of �10 Å. Still, we observe no
indication for electronic coupling between D and A in the
ground-state calculations. In step 3 �DBA3� D and A are
stacked at their final distance of �5 Å. Note that the initial
�DBA1� and final �DBA3� geometries of DBA are reopti-
mized to the next local minimum of the corresponding
bridge-conformation. In contrast, the DBA2 geometry is di-
rectly taken from the MD.44 From these calculations we find
that the stacked configuration of DBA3 is energetically fa-
vored by approximately 0.55 eV as compared to DBA1 due
to a �-�-stacking of D and A. The KS-orbitals at the Fermi-

level can no longer be unambiguously associated with D or
A and their energies are shifted, e.g., compared to DBA1 the
HOMO of A is shifted by +0.2 eV while the HOMO of D is
shifted by +0.1 eV. Hence, we can clearly identify elec-
tronic coupling between D and A in DBA3 �see also discus-
sion below�. As discussed above, the electronic coupling be-
tween D and A can explain the fluorescence quenching on A.
Importantly, the stacked configuration of DBA3 is thermally
stable due to the large �-�-binding energy. Therefore, we
expect that the soluted DBA most frequently occurs in the
stacked configuration. However, one might wonder why this
strong coupling cannot be observed in the experimental spec-
tra. In search for an answer to this question we analyze the
excited-state properties of DBA1-3 by means of TDDFT in
the following.

A tool that allows us to visualize electronic excitations
and thus facilitates the interpretation of the TDDFT results
for DBA is the NTOs approach developed in Ref. 28. Given
a TDDFT transition density, the NTOs provide its graphical
representation in real-space by expanding the electronic ex-
citations in the space of single KS transitions. As a result,
TDDFT excitations can be characterized by single particle
transitions from a hole-NTO to an electron-NTO. Thus, the
NTO approach is frequently used to identify and visualize
charge-transfer excitations in TDDFT.45,46 In our work, we
use the NTOs in order to analyze the occurrence of charge-
transfer excitations in the folded DBA.

Again, for DBA1 a detailed analysis of the excited state
properties is provided above. As a summary of those results,
the spectrum of DBA1 is basically a superposition of the
excited state spectra of D and A. However, already for DBA2
the picture changes significantly. In Table II, the excitation
energies and oscillator strengths of DBA2 �folded DBA� are
compared to those of DBA1 �stretched DBA� and D+A. Ob-
viously, a number of “new” excitations with nonvanishing
oscillator strengths appear. The analysis of these excitations
with the help of NTOs �as provided for one example in Fig.
6� reveals that these new excitations have charge-transfer

FIG. 5. Distance �r�AD� between D and A �see Fig. 4� and orientation factor
�2 �see Eq. �3�� from an MD-calculation of DBA in pentane. Starting from a
stretched bridge conformation, the fast folding of the bridge is followed by
a shear movement of the stacked D and A.

FIG. 6. TDDFT excitation spectra �see also Table II� and NTO of DBA at three stages of the MD �see Fig. 5�. While in the stretched bridge conformation only
pure D- and A-states occur, the folding introduces charge-transfer states. In the stacked position, a clear separation of D- and A-excitations from charge-
transfer excitations is no longer possible.
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character, i.e., hole- and electron-NTO are located on differ-
ent parts of the DBA-molecule with some nonvanishing or-
bital overlap.

It is well known that local and semilocal functionals
typically do not predict charge-transfer excitation correctly.47

Although B3LYP has been shown to yield reasonable results
for some charge-transfer excitations,45 one cannot expect it
to be generally accurate. This expectation is strengthened by
the observation that the excitation energies of the new exci-
tations in DBA2 vary by several eV when tuning the fraction
of exact exchange in the used functional.48 However, the
purpose of our study is not to predict the energies of the
charge-transfer excitations accurately—for our purposes it is
enough to establish that charge transfer excitations appear.
This is established without doubt by our calculations. For a
detailed discussion of the charge-transfer excitation problem
in TDDFT and how to deal with it we refer the reader to the
pertinent literature.47,49

Coming to DBA3, the excitation spectrum still shows
major excitations at the original D and A excitation energies.
However, the NTO-analysis reveals that the nature of these
excitations has changed significantly. Obviously, a clear
separation of D and A excitations is no longer possible in
DBA3. Moreover, new excitations appear at the excitation
energy of D. The corresponding NTOs allow for the interpre-
tation that these are excitations of the newly formed D-A
complex.

At this point, one might wonder whether the above men-
tioned problem of commonly used density functionals in pre-
dicting long-range charge-transfer excitations does affect the
energy of those new excitations. Note however that it is not
possible to distinguish clearly between charge-transfer and
noncharge-transfer excitations in DBA3, as one can see from
the NTOs shown in Fig. 6. This is due to the strong elec-
tronic coupling between D and A that has already been ob-
served in the ground-state calculations. Moreover, in DBA3
the D-A distance and thus the importance of the correct de-
scription of long-range charge-transfer excitations of the
used density functional is significantly reduced as compared
to DBA2. As a consequence, it is reasonable to assume that
long-range charge transfer does not play a prominent role in
our calculations on DBA3. In order to test the above reason-
ing we repeated the excited state calculations on DBA3 with
a number of functionals that employ different fractions of
exact exchange. Different from DBA2 and different from
what would be expected for long-range charge-transfer exci-
tations, here the fraction of exact exchange has only a minor
effect on the new excitations of the DA complex.50 Thus our
results are not affected significantly by the long-range
charge-transfer problem of commonly used functionals.

Note also that although the nature of the excitations
shown in Fig. 6 changes drastically when going from DBA1
to DBA3, the shift of the excitation energies is surprisingly
small. Considering a vibrational broadening of the experi-
mental spectra of 0.1 eV and a computational accuracy of
our approach of approximately the same magnitude, this shift
of the excitation energies is negligible. This explains why the

�-�-stacking of D and A cannot be observed directly in the
absorption spectra. However, it becomes apparent in the
A-fluorescence quenching in DBA.

The results of the above TDDFT analysis of DBA3 al-
low for an experimental verification of our findings. In case
DBA3 de facto constitutes the most frequent configuration of
DBA in solution, one should be able to find more than one
excitation in the immediate energetic vicinity of the D exci-
tation energy. Indeed our calculations indicate that one might
not be able to distinguish between these excitations in the
absorption spectrum due to vibrational broadening. However,
one should be able to find several decay rates at the
D-emission energy in the fluorescence spectra. From an ex-
perimental point of view this poses a challenge as the effi-
cient energy transfer in DBA strongly shortens the lifetimes
�decay rates are increased� of the D fluorescence. For these
reasons, kD

DBA could not be determined exactly in Ref. 12 as
the corresponding lifetime was shorter than the instrument
response function of 80 ps. However, recent studies of DBA
employing more involved experimental techniques51 support
the notion of multiple excitation energies in the frequency
range of the donor emission.

At this point, it is important to make clear that our veri-
fication of the electronic coupling between D and A is a
qualitative and not a quantitative one. Therefore, we cannot
predict quenching rates or efficiencies. A number of ab initio
approaches for the calculation of charge transfer rates via
Marcus theory52 can be found in the literature.53–55 However,
these approaches are computationally demanding and yield
charge-transfer coupling elements only for one specific dis-
tance, configuration and relative orientation of the donor and
acceptor molecules. It is also known that the electronic cou-
pling is extremely sensitive to distance, relative orientation
and displacement of donor and acceptor.3,4 In order to use
these methods for predicting the experimentally observed
quenching rates in our case, we therefore would have to do
this type of calculation for every single time step of the MD-
simulation. Clearly, this is not an option.

V. CONCLUSION

In this work, we have analyzed the role of the saturated
CH2O�CH2�12-bridge in the fluorescence quenching mecha-
nism in a DBA system that has recently been investigated
experimentally. Using TDDFT and comparing calculations
for a mixture of free donors and acceptors to those for the
bridged DBA molecule in stretched conformation, we were
able to show that the large HOMO-LUMO-gap of the satu-
rated bridge keeps the electronic spectra of D and A com-
pletely separate. Thus, the direct influence of the bridge on
the ground- and excited-state spectra of D and A is negli-
gible. However, MD-simulations of DBA in different sol-
vents revealed that it is the mechanical influence of the
bridge that causes the acceptor-fluorescence quenching. The
bridge folds in solution so that donor and acceptor stack at a
distance of �5 Å, which is typical for �-� stacks. In this
configuration, the orbitals of donor and acceptor overlap and
their spectra are electronically coupled. This coupling opens
up a nonradiative de-excitation pathway including charge
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transfer and recombination. As a consequence, the
A-fluorescence is quenched efficiently. TDDFT calculations
on the stacked DBA revealed that the electronic coupling of
D and A cannot be directly observed in the absorption spec-
trum due to a surprisingly small shift in the excitation ener-
gies. However, the coupling leads to a multiexponential de-
cay of the DBA-fluorescence at the donor-emission energy.
This finding is in agreement with recent experimental
studies.
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