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Abstract: In this paper, the dynamic mechanic and optical properties of composites made of Polyvinyl
Butyral (PVB) and Micro Glass Flakes (MGF) with matching refractive indices (RIs) are investigated.
The composite is produced by a slurry-based process using additional blade casting and lamination.
It can be shown that a high degree of ordering of the MGF in the polymer matrix can be achieved
with this method. This ordering, combined with the platelet-like structure of the MGF, leads to very
efficient strengthening of the PVB with increasing content of the MGF. By carefully adjusting the
RIs of the polymer, it is shown that haze is reduced to below 2%, which has not been achieved with
irregular fillers or glass fibers.

Keywords: Micro Glass Flakes; PVB; Glass Particles; Transparent Composite

1. Introduction

Highly transparent polymers have a very broad application spectrum. Polycarbonate (PC) and
polymethyl methacrylate (PMMA) are common examples for applications that require high stiffness
like displays, windows or transparent electronic packaging [1]. Low-density polyethylene (LDPE) and
polyethylene terephthalate (PET) is used in applications which require high flexibility like packaging
and foils for food and beverages, as well as medical applications like tubing, pipes, and bottles [2].
Lesser known are Polyvinyl Butyral (PVB) and Ethylene Vinyl Acetate (EVA), which are utilized in
laminated panes and windows as interlayer materials [3]. However, typical polymer properties like
high thermal expansion, low stiffness, low thermal conductivity, and low wear and scratch resistance
have led to different approaches to using fillers to create a transparent composite with enhanced
properties [4–8].

Employing glass particles as filler material for transparent polymers with similar refractive indices
(RIs) shows promising properties for the application in transparent components [9]. Glass beads
in a polymer matrix lead to increased stiffness [10,11] and reduced thermal expansion [12,13]. In
theory, perfectly matched RIs between matrix polymer and glass filler should result in an unobstructed
transparency [14]. However, in reality, RI matching is far from simple, as impurities and cooling rates
at production have a significant impact on the RIs. Also, the RIs of glass and polymers depend on
temperature (thermo-optic coefficient) and measured wavelength (dispersion), which can be used for
optical temperature sensors [15,16]. The RI of typical glasses increases with increasing temperature
with a thermo-optic coefficient ∆nrel/∆T between −6.7 and 24.1 × 10−6/K4 [17]. However, the RI of
the most common transparent polymers decreases with increasing temperature with thermo-optic
coefficients which are nearly two orders of magnitude higher (−0.9 to −3.1 × 10−6/K4) [18].
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Extensive research has been conducted on optical and mechanical properties of glass-reinforced
polymers with similar RI using PMMA and glass fibers [19] or epoxy filled with irregular-shaped glass
particles [20]. The influence of different particle sizes, filler contents and influence of RI mismatch was
studied. All studies show that transmission decreases with increasing filler content, even with identical
RI. This was traced back to the wetting behavior of the filler, particularly when using molding processes
or inhomogeneity in the RI within the particles or matrix. However, using refractive index oils in
cuvettes as a model matrix with perfect wetting behavior, it could be shown that high transparency
can also be achieved with high filler contents [21].

The aim of this study is to create a new type of transparent composite using Micro Glass Flakes
(MGF)—a platelet-like glass particle with a high aspect ratio. Micro glass particles such as MGF are a
very recent innovation in glass production. Despite that, they have already gained a broad application
spectrum due to their chemically inert properties combined with platelet-like morphology [22,23].
They are most commonly used as reflective and effect pigments in cosmetic applications [24] and as
filler material to increase the barrier properties of protective coatings [25].

A method was developed to incorporate these glass flakes in a model polymer via a slurry-based
lab-scale casting process in order to increase the ordering of these flakes. With this combined approach,
using platelets in a highly ordered assembly, the influence of residual RI mismatch between particle
and matrix on the transparency and haziness of such a structure could be minimized, as displayed in
Figure 1. At the same time, glass flakes with a high aspect ratio could greatly improve the mechanical
properties of the composite in all in-plane directions simultaneously.
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Figure 1. Schematics of the influence of glass fibers and glass flakes on transmitted light in a matrix
with a mismatch of refractive indices.

2. Experimental

2.1. Materials

2.1.1. Micro Glass Flakes

Three different types of Micro Glass Flakes (MGF) were used in this study. Two of them are
commercially available from Glassflake Ltd® (GF100, GF001, Leeds, UK) [26] and one type was derived
by a laboratory flaker setup (GF-V8) with a boron-rich silicate glass composition (Figure 2). They differ
in mean diameter, thickness and thus, in the aspect ratio, as well as the RI due to a different glass
composition between the commercial MGF and from the laboratory flaker setup (Table 1).
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Figure 2. Scanning electron microscopy (SEM) image of commercial Micro Glass Flakes (MGF). 
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GF-V8 120 µm 2.0–5.0 µm 2.3 g/cm3 

2.1.2. Polyvinyl Butyral (PVB) 

Polyvinyl butyral (PVB) is considered to be an acetal and is formed from the reaction of an 
aldehyde and alcohol. The general structure of PVB is shown in Figure 3, whereby the shares of PVB, 
polyvinyl alcohol (PVOH), and polyvinyl acetate segments are variable. Depending on the supposed 
application of the PVB, the relative amounts of these segments are controlled but they are generally 
randomly distributed through the molecular chain. 
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For this study, commercially available PVB powder (Mowital® from kuraray® Europe GmbH, 
Hattersheim am Main, Germany) was used. Mowital® is offered in a range of various grades, which 
are mainly determined by their molecular weights and their degree of acetalization [28]. For this 
study, B 30 H was used as a base material for all composites with an average molecular weight and 
degree of acetalisation (Table 2). 
  

Figure 2. Scanning electron microscopy (SEM) image of commercial Micro Glass Flakes (MGF).

Table 1. Properties of Micro Glass Flakes used in this study.

Type Mean Diameter (D50) Thickness Specific Density

GF100 160 µm 1.0–1.3 µm 2.3 g/cm3

GF001 30 µm 0.9–1.3 µm 2.3 g/cm3

GF-V8 120 µm 2.0–5.0 µm 2.3 g/cm3

2.1.2. Polyvinyl Butyral (PVB)

Polyvinyl butyral (PVB) is considered to be an acetal and is formed from the reaction of an
aldehyde and alcohol. The general structure of PVB is shown in Figure 3, whereby the shares of PVB,
polyvinyl alcohol (PVOH), and polyvinyl acetate segments are variable. Depending on the supposed
application of the PVB, the relative amounts of these segments are controlled but they are generally
randomly distributed through the molecular chain.
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Figure 3. Butyral (A), Alcohol (B) and Acetate (C) groups of commercial PVB compositions. The
relative amount of A:B:C varies with the targeted application and properties [27].

For this study, commercially available PVB powder (Mowital® from kuraray® Europe GmbH,
Hattersheim am Main, Germany) was used. Mowital® is offered in a range of various grades, which
are mainly determined by their molecular weights and their degree of acetalization [28]. For this study,
B 30 H was used as a base material for all composites with an average molecular weight and degree of
acetalisation (Table 2).
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Table 2. Properties of common types of Mowital® powder [28].

Properties B 14 S B 30 H B 60 HH B 75 H

Glass transition temperature (◦C) 60 68 65 73
Content of polyvinyl alcohol (%) 14–18 18–21 12–16 18–21
Content of polyvinyl acetate (%) 5–8 1–4 1–4 0–4

Dynamic viscosity 10% in EtOH (mPa·s) 9–13 35–60 120–280 60–100
Bulk density (g/cm3) 0.34 0.32 0.21 0.20

Specific density (g/cm3) 1.1 1.1 1.1 1.1

2.1.3. Softener 3G8

Softeners are a standard ingredient in commercially available polymer products. They are added
to increase the flexibility and workability of the polymers. In PVB applications like interlayer sheets
for safety glass, Triethylenglycol-di-(2-ethyl hexanoate) or 3G8 is commonly used, with a density of
0.97 g/cm3 and a molecular weight of 402.57 g/mol with contents ranging from 20–27 wt %. [29] The
molecular structure is shown in Figure 4.

J. Compos. Sci. 2019, 3, 101 4 of 17 

 

Table 2. Properties of common types of Mowital® powder [28]. 

Properties B 14 S B 30 H B 60 HH B 75 H 
Glass transition temperature (°C) 60 68 65 73 
Content of polyvinyl alcohol (%) 14–18 18–21 12–16 18–21 
Content of polyvinyl acetate (%) 5–8 1–4 1–4 0–4 

Dynamic viscosity 10% in EtOH (mPa·s) 9–13 35–60 120–280 60–100 
Bulk density (g/cm3) 0.34 0.32 0.21 0.20 

Specific density (g/cm3) 1.1 1.1 1.1 1.1 

2.1.3. Softener 3G8 

Softeners are a standard ingredient in commercially available polymer products. They are added 
to increase the flexibility and workability of the polymers. In PVB applications like interlayer sheets 
for safety glass, Triethylenglycol-di-(2-ethyl hexanoate) or 3G8 is commonly used, with a density of 
0.97 g/cm3 and a molecular weight of 402.57 g/mol with contents ranging from 20–27 wt %. [29] The 
molecular structure is shown in Figure 4. 

In this study, softener was added mainly to decrease the RI of PVB to further improve index 
matching with the MGF. 

 
Figure 4. Molecular structure of softener 3G8 [29]. 

2.2. Preparation of Composite Sheets 

2.2.1. Slurry Preparation 

The PVB–MGF composites were derived via a slurry-based preparation method. This process 
was chosen as it allows to carefully control and adjust the composition and homogeneity of the 
composites as well as the orientation and distribution of the glass flakes. 

In the first step, Mowital® B 30 H powder was mixed with ethanol until a clear solution with 
honey-like viscosity was achieved. For this, B 30 H powder was added in small portions to ethanol 
in a rotary flask over a 48 h period. PVB powder is hygroscopic, with water not only influencing the 
mechanical but also, the optical properties. Therefore, the flask was continuously purged with dry 
nitrogen gas during the mixing period. The final solution was then kept in an air-tight glass drum to 
prevent the evaporation of ethanol and contamination through humidity. The final composition of 
the solution was 30 wt % B 30 H to 70 wt % ethanol. 

In the second step, defined amounts of MGF were added to the solution and mixed using an AR-
100 Thinky Mixer (Thinky® U.S.A. INC., Laguna Hills, CA, USA). To ensure a homogeneous 
distribution of MGF in the slurry, a total of 6 min of mixing time at 2000 rpm was selected. To further 
prevent any kind of gas or bubble formation, an additional degassing step of 6 min was added after 
the initial mixing. The resulting slurry was a clear, homogeneous and bubble-free paste (Figure 5a,b). 

Figure 4. Molecular structure of softener 3G8 [29].

In this study, softener was added mainly to decrease the RI of PVB to further improve index
matching with the MGF.

2.2. Preparation of Composite Sheets

2.2.1. Slurry Preparation

The PVB–MGF composites were derived via a slurry-based preparation method. This process was
chosen as it allows to carefully control and adjust the composition and homogeneity of the composites
as well as the orientation and distribution of the glass flakes.

In the first step, Mowital® B 30 H powder was mixed with ethanol until a clear solution with
honey-like viscosity was achieved. For this, B 30 H powder was added in small portions to ethanol in
a rotary flask over a 48 h period. PVB powder is hygroscopic, with water not only influencing the
mechanical but also, the optical properties. Therefore, the flask was continuously purged with dry
nitrogen gas during the mixing period. The final solution was then kept in an air-tight glass drum to
prevent the evaporation of ethanol and contamination through humidity. The final composition of the
solution was 30 wt % B 30 H to 70 wt % ethanol.

In the second step, defined amounts of MGF were added to the solution and mixed using an
AR-100 Thinky Mixer (Thinky® U.S.A. INC., Laguna Hills, CA, USA). To ensure a homogeneous
distribution of MGF in the slurry, a total of 6 min of mixing time at 2000 rpm was selected. To further
prevent any kind of gas or bubble formation, an additional degassing step of 6 min was added after
the initial mixing. The resulting slurry was a clear, homogeneous and bubble-free paste (Figure 5a,b).
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In this study, the fraction of MGF and softener in the final composite are given as volume
percentage (MGF) and weight percentage (3G8) relative to the PVB. To calculate the necessary weight
of the raw components to achieve the desired composition, the following calculations were used:

mPVB = msolution·yPVB (1)

VPVB =
mPVB

ρPVB
(2)

uMGF = 1− uPVB (3)

VMGF = VPVB·
uMGF

uPVB
(4)

mMGF = VMGF·ρMGF (5)

Using Equations (1), (2) and (3) with mPVB as mass of PVB powder, msolution as mass of the PVB
ethanol solution, yPVB as the weight fraction of PVB in the solution, VPVB as volume of PVB, VMGF

as volume of the MGF, ρPVB and ρMGF as the specific density of PVB and MGF, respectively, and
uMGF as the volume fraction of MGF in the final composite, the mass of MGF can be calculated with
Equation (6).

mMGF = msolution·yPVB·
uMGF

1− uMGF
·
ρMGF

ρPVB
(6)

When softener is added, the relative increased volume of the PVB VPVB,so f tener can be calculated
using Equations (7) and (8) with mso f tener as required mass of softener, yso f tener as weight fraction of the
softener and ρso f tener as the specific density of the softener.

mso f tener = mPVB·
yso f tener

1− yso f tener
(7)

VPVB,so f tener =
mPVB

ρPVB
+

mso f tener

ρso f tener
(8)

The weight content of MGF in the final composite can, therefore, be calculated using Equation (9).

mMGF = msolution·yPVB·
uMGF

1− uMGF
·ρMGF·

 1
ρPVB

+
yso f tener

ρso f tener
(
1− yso f tener

) . (9)
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2.2.2. Forming and Drying

To produce a composite with homogenous thickness and distribution of MGF, a blade casting
setup, also known as doctor blade or knife coater, was used. As a substrate for the slurry, a standard
0.1 mm LDPE-foil was used. Due to the long carbon chain of the LDPE with no hydrogen groups for
bonding, no to very little adhesion and sticking behavior to the PVB was observed. The substrate
foil was thoroughly cleaned with ethanol before casting and was held in place by an array of holes
combined with an applied vacuum.

The sheets were cast using a blade with a width of 250 mm (Figure 6a). The gap between the blade
and the substrate foil was set to precisely 0.5 mm, which was found to be the smallest gap to still yield
foils with an even thickness distribution, while at the same time, providing a geometric constraint
which is necessary to align the MGF (Figure 6b). The sheets were drawn with a speed of 2.5 mm/s.
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After the casting step, the sheets were quickly transferred into a drying cabinet where they were
kept for 5 to 7 days at room temperature and a relative humidity of below 5%. To ensure that no
ethanol or other form of moisture remains in the final composite, the sheets where then further dried
in a vacuum oven at up to 140 ◦C for 6 h.

2.2.3. Lamination

After drying, the sheets have a mean thickness of 120 µm (PVB without MGF) to 300 µm (PVB
with 26 vol % MGF). However, due to the inhomogeneous drying, small gas bubbles, as well as a rough
surface, particularly at a high volume content of MGF, cannot be prevented. Therefore, an additional
lamination step is necessary. For this, the sheets were cut into 60 mm round blanks. Three blanks were
stacked and placed into a stainless steel forming mold with mirror-finished surfaces. The forming
mold was then placed into a sealed vacuum bag with a vacuum pump attached. The setup was then
placed into a hot press. With the vacuum pump active, the press was heated to 100 ◦C and a pressure
of 2 kN was applied for a duration of 20 min. The setup was cooled and the composite was taken from
the mold.

It was found in mechanical characterization that the roughness and homogeneity of the samples
were sufficient. However, in optical measurements, the samples were found to be too rough. Roughness
greatly influences the optical properties, especially the haziness of a sample due to the scattering of
light on an uneven surface. Therefore, all samples were laminated between two glass sheets for optical
characterization. As glass panes, Optiwhite™ glass sheets from Pilkington® (St Helens, UK) with a
thickness of 2 mm were used. The additional haziness and loss of transmission due to the addition of
two glass panes on both sides can be neglected (Figure 7).
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2.3. Experimental Characterization Methods

2.3.1. Transparency and Haze Measurement

The transparency and haze of the composite were measured according to standards ISO 13,468 and
14,782 [30,31] using a HAZE-GARD plus® haze meter from BYK-Gardener® (Geretsried, Germany).
The total transmission of a sample is measured using an integrating sphere. However, depending on
the scattering behavior of the sample, transmitted photons either pass the sample without disturbance
(clarity) or get scattered away from the direct path and, therefore, lead to a phenomenon described as
haziness. Haze is measured as relative transmission with an angle above 2.5◦ from the direct optical
path. Clarity is defined as relative transmission within 2.5◦ of the direct optical path. The difference
can be measured using a ring detector inside the integrating sphere (Figure 8).
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2.3.2. Measuring of RI

The RI of the PVB sheets and the MGF was determined using an Abbemat MW® (Anton Paar®,
Graz, Austria) using a standard wavelength of 589.3 nm (Na-D) at a fixed temperature of 20.0 ◦C.
The difference of RI between matrix and particle is commonly described by the ratio m, which can be
calculated with Equation (10).

m(λ) =
nParticle(λ)

nMatrix(λ)
(10)

2.3.3. Morphology Characterization

The morphology of the composite sheets was determined using light microscopy, as well as SEM
imaging (Zeiss Leo 1530, Carl Zeiss Microscopy GmbH, Jena, Germany). To prepare the samples,
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they were cooled down in liquid nitrogen and then broken to receive a fresh area of fracture and
cross-section of the samples without any preparation artifacts.

2.3.4. Dynamic Mechanic Analysis (DMA)

Polymers deform either elastic, viscous or, when only a small deformation is applied, visco-elastic
as a mixture of both. Elasticity is defined as a deformation that is completely reversible with the
Elastic Modulus (Young’s Modulus) as a fixed ratio of applied strain and stress (Hook’s law). During
viscous deformation, the polymer behaves more like a liquid with the stress depending not only on the
applied strain but also on the speed of the applied strain (strain rate). Visco-elastic behavior, therefore,
describes reversible deformation that is strain-rate- and thus time-dependent [32]. The stress–strain
curves of such a material usually show a hysteresis loop (Figure 9).
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time-dependent behavior.

The dynamic mechanical properties of the composite were determined with a Texas Instrument
DMA 2980 (Dallas, TX, USA) Dynamic Mechanic Analyzer setup. Using this, a slight deformation is
applied to the sample and the corresponding force is measured (Figure 10).
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Figure 10. Stress–strain behavior of elastic (a) and visco-elastic (b) materials with an applied sinus
deformation and a given frequency. The delay in the measured stress is determined by the phase shift
δ [32].

The rate of the applied deformation can be adjusted as deformations per second or frequency.
Using the sample geometry, frequency-dependent stress–strain behavior can be measured with the
following equations [33].
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σA
εA

= |E∗| =
√
[E′(ω)]2 + [E′′ (ω)]2. (11)

|E∗| is the complex modulus, E′ the storage modulus and E′′ is the loss modulus.

E∗(ω) = E′(ω) + iE′′ (ω). (12)

E′ = |E∗|· cos δ (13)

E′′ = |E∗|· sin δ (14)

tan δ =
E′′ (ω)
E′(ω)

. (15)

Using the complex modulus and the phase shift δ, the storage modulus (Equation (13)) and the
loss modulus (Equation (14)) can be calculated. The ratio of loss to storage modulus is, therefore,
described by tan δ.

For this study, the focus was on elastic properties at room temperature, as well as on Tg of the
composite. The experimental parameters are shown in Table 3.

Table 3. Measurement parameters for Dynamic Mechanical Analysis (DMA).

Measurement Parameter Symbol Settings

Sample length l0 25 mm
Sample length (clamping) lE 17.5 mm
Sample width b0 5 mm
Sample thickness d0 0.5–0.7 mm
Strain εA 0.00085
Amplitude ∆l 15 µm
Frequency f 1 Hz
Temperature range ◦C −50–100 ◦C
Heating/cooling rate 1 K/min

3. Results and Discussion

3.1. Morphology of Composite Samples

To determine the morphology and orientation of the MGF within the PVB matrix, samples
with 9 vol %, 13 vol %, 16 vol %, 20 vol %, 23 vol % and 26 vol % of GF100 (d50 = 160 µm) and
GF001 (d50 = 30 µm) were produced. Their cross-sections were investigated with a light microscope
(Figure 11).
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Figure 11. Cross-section of PVB–MGF composites with (a) 16, (b) 23 and (c) 26 vol % of GF100 glass
flakes and an average thickness of y ~120–150 µm. The alignment of the flakes parallel to the sample
surface is increased with volume content.
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As it can be clearly seen, the alignment of the glass flakes parallel to the surface is increased with
increasing content of glass flakes. At the same time, this high degree of ordering does not lead to any
significant breakage or any kind of failure of the interface between the matrix and glass surface with
increasing volume content.

Figure 12 shows a comparison of samples with the same volume content (16 vol %) but using
glass flakes with different mean diameters of 160 µm and 30 µm. A clear difference in the degree of
ordering can be seen. On average, the glass flakes with the bigger diameter show a stronger alignment
parallel to the surface, while the smaller glass flakes do not show a clear alignment or ordering.
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Using SEM imaging, the interface of glass and polymer was investigated. Although the preparation
was carefully carried out using cryo-fracture of the sample, delamination artifacts could not be prevented,
as displayed in Figure 13. However, it can be seen that the glass flakes are completely covered and
surrounded by the polymer matrix. It can be assumed that the flakes were well dispersed and
homogeneously distributed in the slurry with a good wetting behavior.
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3.2. Optical Properties

3.2.1. Influence of Volume Content of MGF

To determine the optical properties, three samples of each composition were produced and
laminated and each sample was measured five times at slightly different positions on the surface.
Figure 14 shows the results of glass laminates with a PVB–MGF interlayer containing different volume
fractions of MGF as measured with the haze meter. The transmission of the Optiwhite™ soda-lime
glass was measured at 93.5% which lies well within the typical range of flat glass of 92–94%. The
loss of transmission can be accounted for by reflection on the surfaces of the glass pane and can be
calculated with a simplified Fresnel equation (Equation (16)). For glass (n = 1.5) and air (n = 1), this
equals approximately 96% transmission for one surface and 92% for two surfaces (front and back).

T =
4nAir·nGlass

(nAir + nGlass)
2 . (16)
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Figure 14. Transmission (a) and haze (b) in relation to volume content and size of MGF with GF100
(d50 = 160 µm) and GF001 (d50 = 30 µm). Thickness of composite was normalized to 200 µm.

All other losses in transmission can be attributed to absorption, scattering or reflection of the
particles in the interlayer. The transmission is reduced with increasing volume content of MGF.
However, the slope of the reduction is not linear, as the drop from 0 vol % to 9 vol % is roughly 1% in
transmission, while it further only changes by another 0.5% at 26 vol %. A similar behavior can be seen
with the results of the haze measurement (Figure 14b). There is a steep increase of 4% of haze between
pure PVB and 9 vol %, while it does not exceed 9% total at 26 vol % of MGF.

This non-linear behavior of the transmission and haze of these PVB–MGF composites with respect
to the volume content contradicts the findings of most other studies that investigate glass fibers or
glass particles as fillers and find the increase in haze and reduction transmission to be linear with
increasing volume content. It is, therefore, assumed that the difference in behavior can be explained
by the high aspect ratio of the MGF and, therefore, high ordering of the flakes parallel to the surface,
which reduces the effect of haze caused by an RI mismatch.

3.2.2. Influence of Glass Flakes’ Size and Ordering

To further evaluate the effect of ordering of the MGF in the PVB matrix, measurements of a
sample with 16 vol % of GF001 (d50 = 30 µm) were included in the comparison (Figure 14). While the
transmission does not seem to be influenced by the change of mean diameter of the MGF, the haze
doubles from 8.1% using GF100 to 18.7% with GF001 at 16 vol %.
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These findings were compared to a study by Wildner et al. They investigated the optical properties
of irregularly shaped glass particles with a mean size of 79 µm, 143 µm and 202 µm in a PMMA matrix
using injection molding [9]. The difference of RI of the glass particles to PMMA was measured as ∆n =

0.0047. Figure 15 shows the absolute haze values of these measurements when corrected for sample
thickness (in this case, 500 µm). The measured haze values of the glass particles were found to be
between 30% to 50% at a volume fraction of 11 to 13 vol %. There is no clear dependence on particle
size. When compared to GF001 flakes with a low aspect ratio, the haze is comparable (45%). However,
when compared to GF100 with a high aspect ratio, the measured haze is two- to three-times higher at
similar volume fractions.
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3.2.3. Influence of RI Mismatch of MGF and PVB Matrix

Mismatch of the RI of filler to a matrix is the main contributor to haze as the degree of scattering
increases with increasing difference of the RI at an interface (Snells’ Law, Equation (17)) between
material 1 with an incident angle δ1 and material 2 with a refractive angle δ2

n1· sin(δ1) = n2· sin(δ2) (17)

Measurements show that pure B 30 H sheets have a lower RI than the commercial MGF GF100
and GF001 (Table 4). The difference in RI (Figure 14a) was m = 1.005 with ∆n = 0.007.

Table 4. Refractive index n at 589.3 nm (nD) as measured with Abbemat MW.

Component nD @ 20 ◦C

GF100/GF001 1.500
GF-V8 1.485

Sheet B 30 H 1.493
Sheet B 30 H + 25 wt % 3G8 1.483

Softener 3G8 1.444 *

* from TMDS (not measured).

As the RI of a polymer cannot be easily increased, we, therefore, chose to change the RI of the
MGF by changing the glass composition to match that of pure PVB or, if not possible, to achieve a RI
slightly below that of pure PVB. While increasing the RI of PVB is not easily possible, it can be lowered
by at least ∆n = 0.010 by adding Softener. The Softener itself has an even lower RI and by mixing, the
RI of the residual PVB–softener is therefore determined by a simple rule of mixture.
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MGF with different compositions were produced with the Sample “GF-V8” showing the most
promising properties with a RI of 1.485 (+/−0.003), which was slightly below that of pure PVB. The
flakes were milled and sieved below 250 µm with a mean diameter of 120 µm. The thickness of these
flakes was measured to be between 2 and 5 µm. It should be noted that these laboratory-produced
flakes scatter more in terms of thickness and RI when compared to commercially produced flakes like
GF100 or GF001. However, the aspect ratio is comparable to that of commercial flakes (~100–300).

Using these GF-V8 MGF, samples with 15 vol % MGF and 0 wt %, 10 wt %, 20 wt %, 30 wt % and
40 wt % of softeners were produced and the haze was measured. In this set, the lowest haze was found
with a composition of 20 wt %. To further determine the optimal softener content for index matching
of the glass flakes, another set of samples with 15 to 27.5 wt % (in 2.5 wt % steps) was produced and
measured. All results were normalized using a linear regression to 200 µm sheet thickness.

Figure 16 shows the result of the haze measurements. The lowest haze of 1.5% was found at 22.5
wt % 3G8. This is only marginally above the haze produced by pure PVB (Figure 14b) and can be
considered as completely transparent.
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As stated, these low haze values cannot simply be contbuted to the RI matching itself, as slight
variations in the RI of the flakes (+/−0.003) are still present. However, the combination of the platelet-like
structure, high degree of ordering and low RI mismatch result in these highly transparent composites.

3.3. Dynamic Mechanical Analysis (DMA)

3.3.1. Influence of Volume Content on MODULUS

Figure 17 shows the DMA results of PVB B 30 H with 0, 5, 10 and 15 vol % of GF100 flakes. Pure
PVB shows a storage modulus of about 2 GPa at room temperature when measured with 1 Hz, which
increases to 3.5 GPa at 5 vol %, 5.5 GPa at 10 vol % and 7.5 GPa at 15 vol %. The storage modulus
decreases with increasing temperature, with a drop at around 60 ◦C. At the same time, tan δ increases
with increasing temperatures—starting at 60 ◦C with a maximum at 76 ◦C. This marks the point of the
transition between elastic and viscoelastic behavior, which usually happens at temperatures around
the glass transformation point (Tg). In the case of B 30 H, the glass transformation point at 68 ◦C
is 8 K below the point of the maximum of tan δ. For simplification, the point of tan δ maximum is,
therefore, considered as Tg. Therefore, with increasing an volume content of GF100, Tg does not change.
However, the maximum of tan δ changes from 2.0 at 0 vol % to 0.8 at 15 vol %. This can be explained
by a higher stiffness and, therefore, brittleness of the composite with increasing filler content.
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3.3.2. Influence of Glass Flake Size on Modulus

Figure 18 shows the storage modulus E’ with different volume fractions of MGF of types GF100
and GF001at 25 ◦C. With increasing volume content of the MGF, the storage modulus increases as
well. However, the increase in stiffness using high-aspect GF100 is about two-times higher than that of
lower-aspect and smaller MGF of type GF001.
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Figure 18. Storage modulus E’ at 25 ◦C with different volume fractions of GF100 (d50 = 160 µm) and
GF001 (d50 = 30 µm).

This can be explained using a model of ideal serial and parallel connections of materials stiffnesses
using Equations (18) and (19) [34–36] with EMGF and EMatrix as the Young’s Modulus of the matrix
material and the MGF, respectively, and uMGF as the volume fraction of MGF in the matrix.

Ideal Parallel Connection Ec,parallel = uMGFEMGF + (1− uMGF)EMatrix. (18)

Ideal Serial Connection Ec,serial =
EMatrixEMGF

uMGFEMatrix + (1− uMGF)EMGF
(19)

Both ideal cases were included in Figure 18. As MGF have a finite size, they can be represented by
a mixture of both serial and parallel connection in respect of the direction of the tensile force (in-plane).
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Using this model, it can be explained why shorter flakes with lower aspect ratio show a behavior
that is more similar to ideal serial connection, while longer flakes with higher aspect ratio show a
behavior more towards ideal parallel connection. The effect of ordering thus cannot be easily observed.
However, when again comparing to results from the literature, GF100 flakes show a nearly two-fold
higher stiffness with volume content when compared to glass particles with similar mean diameter [9].

3.3.3. Influence of Softener on Modulus and Glass Transition of PVB (Tg)

As stated above, softener was used in this study mainly to adjust the RI of the polymer to match the
RI of the MGF. The main application of softener is usually the decrease of stiffness and the “softening”
of the polymer. Figure 19a shows the storage modulus at 25 ◦C as a function of the softener and
volume content of GF100 MGF. It can be seen that by adding 25 wt % of softener, the storage modulus
is decreased by two-orders of magnitude.
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At the same time, the stiffening effect of MGF is comparable in terms of relative values. As such
E’ at 0 vol % GF100 and 25 wt % 3G8 is around 8 MPa, while it is increased to about 40 MPa at 15
vol % GF100 and 25 wt % 3G8. Within the margin of error, this five-fold increase is comparable to
the four-fold increase when no softener is added. That means that using MGF in combination with
softener, the storage modulus of the resulting composite can be adjusted between 8 MPa and 8 GPa.

Adding softener to a polymer also changes the glass transition temperature, as shown in Figure 19b.
Tg is moved from 76 ◦C to room temperature (25 ◦C) when softener is added from 0 to 25 wt %. This is
especially important when visco-elastic behavior is preferable to the application.

4. Summary

The results show that it was possible to produce a transparent composite of PVB with different
volume contents of MGF and softener using a slurry process combined with blade casting. The storage
modulus of such composites increases with the volume content of MGF and decreases with the addition
of softener. MGF with higher mean diameter and, therefore, higher aspect ratio at a fixed thickness
show a stronger stiffening behavior when compared to MGF with smaller diameter and, therefore,
smaller aspect ratio.

The composites show increasing haze with the addition of MGF. The increase was found to be
non-linear when adding MGF with a high aspect ratio. In comparison to irregular glass particles
and MGF with small aspect ratio, the haze was found to be significantly lower. With the addition of
softener, the RIs of such composites can be matched, resulting in a residual haze below 2%, which is
considered as highly transparent.
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It should be noted that using the above-stated approach, the mechanical properties due to the
addition of softener cannot be independently changed without also influencing the RI mismatch and
thus haze and vice versa. By further fine-tuning the glass composition to match the RI closer to 1.493,
it is possible to achieve high stiffness and at the same time, high transparency, as explained above.

Considering the possible industrial application of this method, the limiting factors are the size
of the blade-casting setup and drying oven. However, combining smaller patches, laminated glass
composites of up to 0.5 m2 have already been produced. Instead of blade casting, printing the slurry
on a substrate could, in theory, greatly increase the individual size of composite sheets and speed of
production. A disadvantage of the current process for scaling is the roughness and waviness of the
composite sheets after drying, which require an additional hot pressing step with a smooth surface or
lamination, as shown in this study, to achieve high transmission and low haze as the surface properties
greatly influence the optical properties.
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