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Abstract

Indentation experiments are a common tool to measure the elastic properties of many different kinds
of samples. However, only few techniques are available to measure the elastic modulus and the Poisson
ratio of thin elastic films. Recently, we have described a novel technique based on the steel sphere
method to simultaneously measure both parameters of a thin elastic film in a single experiment by
placing millimeter-sized steel spheres on the films. In this work, we investigate how various
measurement parameters can be tuned to increase the measurement accuracy significantly. These
parameters include the number, size, and density of the spheres, the number of data points per sphere
and the film thickness. With experiments and simulations we demonstrate that the precision of the
measurement can be improved drastically if the parameters are chosen appropriately. We show how to
adjust the number of data points to achieve a good balance between workload and accuracy.
Additionally, the accuracy can be improved by covering a wide range of different indentation
geometries. In particular the use of larger spheres and spheres with a higher density is generally more
favorable. We provide Java software to easily adopt the technique and to simplify the data analysis.

Introduction

The mechanical interactions between cells and their environment have become a major point of interest in the
field of biophysics during the last decades [1]. Cells are able to sense the mechanical stiffness of their
environment and in turn alter their behavior depending on the mechanical properties of the environment.
Examples include cell proliferation [2], differentiation [3, 4], and cell migration along stiffness gradients [5, 6].
Cells have also been found to be able to exert forces on their environment [7] and various techniques have been
developed to quantify these forces. Most notably, traction force microscopy enables spatially and temporally
resolved stress measurements of individual cells [8] and has thus become a common tool to study
mechanosensitivity [1, 9—11]. Many of these studies rely on a thin, soft film as a simple model system. Materials
such as polyacrylamide (PAA) and polydimethylsiloxane (PDMS) are commonly used as a film material due to
its tunable mechanical and chemical properties [9, 10].

Multiple techniques to characterize such films are available. On the one hand, tension tests are suitable to
characterize macroscopic samples [5]. Indentation experiments on the other hand are a common and well
established tool to mechanically characterize thin samples such as polyacrylamide films [9, 12]. Indentation tests
are also commonly used to probe the rheological properties of individual cells [13]. For single cell experiments,
atomic force microscopy is used in many cases since it provides very detailed control over many experimental
parameters [ 14—16]. For samples with a thickness of at least a few tens of micrometers, the steel sphere method is
asuitable technique to characterize the rheological properties. In this technique, small steel spheres with a
diameter of about a millimeter are placed on the sample. The spheres sink into the sample due to gravity and the
indentation depth can be measured with fluorescent fiducial markers in the top layer of the sample [9, 17, 18].

©2019 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/2399-6528/ab2374
https://orcid.org/0000-0002-6064-9878
https://orcid.org/0000-0002-6064-9878
mailto:holger.kress@uni-bayreuth.de
https://doi.org/10.1088/2399-6528/ab2374
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/ab2374&domain=pdf&date_stamp=2019-06-03
https://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/ab2374&domain=pdf&date_stamp=2019-06-03
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

I0OP Publishing J. Phys. Commun. 3 (2019) 055021 W Gross and H Kress

PBS
steel sphere

R

elastic film
E v h

fluorescent microparticles

coverslip

Figure 1. Overview over the steel sphere method. A millimeter-sized steel sphere with radius R is placed on a thin elastic film with
thickness h. The sphere sinks into the film due to gravity. Florescent microparticles are used to visualize the top and bottom layer. The
indentation region is imaged with epifluorescence microscopy.

However, with all those techniques, care has to be taken with regard to finite thickness effects, which can lead
to an apparent stiffening when the sample is e.g. placed on a glass coverslip, which is orders of magnitude stiffer
than the sample itself [ 19]. Several models based on linear elastic theory have been developed to account for these
finite thickness effects for spherical [12], conical [20] and flat cylindrical indenters [21]. During the last years,
finite thickness models accounting for nonlinear material properties have also been developed for spherical and
cylindrical indentation geometries [17, 22]. In general, these finite thickness effects can only be neglected when
the contact radius of the indenter is significantly smaller than the thickness of the film that is to be probed.

Recently, we have shown that these finite thickness effects are not necessarily a liability but can be exploited
to measure the elastic modulus and the Poisson ratio of a thin film simultaneously with the steel sphere method
[18]. In this work, we show how the accuracy of the technique can be improved drastically by a good choice of
measurement parameters such as the number and size of the spheres or the film thickness. Even though the
technique is commonly referred to as the steel sphere method, other materials with different densities such as
gold can also be used.

Theory

Our technique is based on a theoretical model developed by Dimitriadis et al which accounts for finite thickness
effects [12]. An overview of the method is shown in figure 1. A sphere with radius R indents a soft film with elastic
modulus E and Poisson ratio v. The model assumes that the film is a homogeneous and isotropic elastic material,
which is probed within the linear regime. Additionally, adhesion effects are assumed to be negligible during
indentation. The sphere and the film are completely immersed in a fluid, e.g. PBS. The sphere is pushed into the
film with an indentation force F resulting in an indentation depth 6. In our case, the indentation force is given by

gravity:
4
F = SRng (b, — prys)- @
gdenotes the gravitational acceleration, p, the density of the spheres and pp the density of the surrounding
medium. For a film of thickness £, the elastic modulus is given by [12]
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and the parameters o and 3y, which are functions of the film’s Poisson ratio. In the case of a film bonded to a
stiff surface o and Gy are given by [12]:

1.2876 — 1.4678 v + 1.3442 v?

Qg = — > (4)
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1—v

Bo (5

x = ~/R6 /hisafunction of the indentation geometry. The theory is valid in the range 0 < y < 1and
represents an ab initio extension of the Hertzian solution which is valid for an infinite half space [23].

Using the Hertzian model, which is recovered in the case of x = 0, itis only possible to measure the term
E/(1 — v?).However, as we have recently demonstrated experimentally [ 18], both elastic parameters can be
recovered when finite thickness effects are exploited. Since the correction term C depends on the Poisson ratio
and the indentation geometry, both parameters can be determined reliably by fitting equation (1) to indentation
data 6 (h, R).

Materials and methods

Sample preparation

Polyacrylamide and Poly-N-isopropylacrylamide films were prepared as described [ 18] in analogy to a
previously published protocol [5, 24]. Briefly, 40 x 22 mm? sized coverslips (Glaswarenfabrik Karl Hecht,
Sondheim v. d. R6hn, Germany) were cleaned and coated with (3-aminopropyl)trimethoxysilane (Sigma-
Aldrich, St. Louis, MO) and aqueous 0.5% glutaraldehyde solution (Sigma-Aldrich) to covalently bind the
coverslips to the films. A second coverslip with a diameter of 15 mm (Menzel-Gliser, Braunschweig, Germany)
was coated hydrophobically with RainX (Krako Car Care International) according to the manufacturers’
protocol to facilitate better detachment of the films [25].

To polymerize a thin polyacrylamide film, a monomer solution containing 10% w/v acrylamide (AA,
Sigma-Aldrich) and 0.06% w/v N,N’-methylenebisacrylamide (BIS) in phosphate buffered saline (1 x PBS,
0.2 gI' KClI, 8.0 gI~! NaCl, 1.44 gl-'Na,HPO,, 0.24 gl-'KH,PO, in deionized water) was prepared. As a
catalyst, we added 1/2000 v/v N,N,N’,N’-Tetramethylenediamine (TEMED, Thermo Fisher Scientific,
Waltham, MA). Furthermore, we added fluorescent microparticles (FluoSpheres, diameter 0.2 ym, Ex/Em:
505/515 nm, carboxylated surface modification, Thermo Fisher Scientific) which diffuse to the top and bottom
layer of the films during the polymerization, serving as a marker for both layers. The polymerization reaction
was started by adding 1,/200 v/v freshly prepared 10% w/v aqueous ammonium-persulfate (APS) solution.

A thin film of Poly-N-Isopropylacrylamide (PNIPA) was prepared similarly. A monomer solution
containing 10% w/v N-isopropylacrylamide (NIPA, Sigma-Aldrich) and 0.1% w/v BIS was used. Since we
found that NIPA solutions polymerized slower than the PAA solution, we degassed it for 45 min and doubled
both the TEMED concentration to 1,/1000 v/v and the APS concentration to 1/100 v/v.

To prepare thin films, 15 u1 of the monomer solutions were placed between one RainX- and one
glutaraldehyde-coated coverslip and polymerized at room temperature and at an air humidity of 60%—-80% to
minimize evaporation effects.

Measurement setup, imaging and data analysis

Indentation experiments were carried out as described before [ 18]. The films were soakedin 1 x PBS, mounted
on an inverted, motorized epifluorescence microscope (Nikon Ti-E, Nikon, Tokyo, Japan) and steel (AISI 420C,
density p, = (7.76 & 0.15) g cm™!) spheres (grade 10, IHSD-Klarmann, Bamberg, Germany) with nominal
radii R between 200 pm and 500 pm were placed on the film. An overview over all spheres used for this study is
given in table 1. Experiments with PAA were carried out at room temperature while all measurements with
PNIPA were performed at 30 °C which is slightly below the lower critical solution temperature of 32 °C for our
system.

Fluorescence images of the indentation region were acquired using 40 x (CFI Apo LWD 40 x WI AS,
numerical aperture 1.15, Nikon) and 60 x (CFI Plan Apo IR 60 x WI, numerical aperture 1.27, Nikon) water
immersion objectives in combination with a 14 bit EMCCD camera (Andor Luca R, Andor Technology, Belfast,
Northern Ireland). We acquired axial image stacks of the indentation region with a vertical image to image
distance of 0.2 pm which is sufficient to oversample the image given the axial resolution of the microscope [26].

3



10P Publishing

J. Phys. Commun. 3 (2019) 055021 W Gross and H Kress

Table 1. Indentation forces of all the
spheres used in the experiments and
simulations.

Indentation
force F/uN

Radius R/pum Steel Gold

200 2.2 6.0
250 4.3 11.7
350 11.9 32.2
400 17.8 48.1
500 34.8 94.0

Simulation and reconstruction process
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Figure 2. Schematic overview over the simulation and reconstruction process.

After the measurement the sphere was moved with a small magnet to acquire multiple data points at different
locations. The indentation depth 6 was determined from the stacks as described [18].

Simulation of indentation data and reconstruction of the elastic parameters

The simulations of indentation data were carried out as described in figure 2. In the following, the term
‘condition’ summarizes the values of the true elastic modulus Ey, the true Poisson ratio v, the thickness range of
the film hmin — Hmax, the number of data points per measurement N, and the used spheres with radii R and with
adensity p. For every condition we simulated 50 individual measurements. Every measurement consists of N
independent data points, each of which represents the indentation of a steel sphere with a given radius R into the
film at one particular film height. If not stated otherwise, the density of the spheres was kept constant at the
density of steel (AISI420C, p, = (7.76 & 0.15) g cm ). For some conditions we also tested gold spheres which
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have a higher density of p¢ = 19.3 g cm™> [27]. The total number of data points N was split up evenly over all the
spheres used. For every data point, we randomly chose a film thickness between h,,;, and Ay, and solved
equation (2) numerically for the indentation depth ¢. In order to account for the measurement errors, we
randomized R, §, and h by adding a normally distributed offset with a standard deviation o, g5 and 0j, of our
experimental uncertainties s = 1.5 um, ss = 0.2 um, and s, = 1.5 um if not stated otherwise.

We applied the previously developed least squares fitting algorithm [ 18] to reconstruct the elastic parameters
and their respective errors from the indentation data. To calculate the errors of the elastic parameters in one
measurement, we used a Monte Carlo approach [28]. In 1000 replications, the indentation depth, the sphere
radius and the gel height were randomized by normally distributed offsets with a standard deviation of the
experimental uncertainties given above. Then we fitted equation (2) to the indentation data § (h, R) for all
replications to determine the probability distributions of E and v. As described [ 18], the probability distributions
were then fitted with asymmetric Gaussian distributions in Matlab (The Mathworks, Inc., Natic, MA) to
determine E fssgg and the Poisson ratio Vfg , the elastic modulus and their respective uncertainties of a single
measurement. If any of the fits failed per condition, i.e. in any of the 50 simulated measurements, we considered
the whole condition not to be reconstructable.

Then, we averaged the reconstruction uncertainties over all 50 measurements and report the mean
reconstruction uncertainties (s;) = (s§ + sz)/2and (s,) = (5,7 + s,) /2 asameasure of how precisely the
elastic parameters can be determined in a particular condition. In all tested conditions, we were able to
reconstruct the ground truth values within the margin of error if not stated otherwise. The Java source code of
the software used to do the calculations is available in the SI.

Results

Choice of data point count and film thickness
We investigated how precisely our simulated data can predict the reconstruction uncertainties (s) and (s,,)
resulting from experimental data. For this purpose, 60 measured data points acquired on a polyacrylamide film
(10% AA, 0.03% BIS, Ey = 15.17}2 kPa, 1/, = 0.48 + 0.02, h = (55 — 120) ;zm) and 50 measured data points
on poly-N-isopropylacrylamide (PNIPA, 10% NIPA, 0.1% BIS, E, = (11.7 & 0.7) kPa, 15, = 0.3310%,
h =~ 90 pm)were split up into smaller, yet independent data sets and reconstructed independently. The data
points were acquired with spheres of R = 200, 250, 350, 400, and 500 pzm on the PAA film and R = 200 and 400
pm on the PNIPA film. The experimental uncertainties of the indentation were s; = 0.3 pm for spheres with
R < 350 pm and ss = 0.4 pm for spheres with R > 400 pm. Using the same conditions, we simulated
indentation data as described in the materials and methods section.

The average measurement uncertainties are shown in figure 3 as a function of the number of independent
data points N used per reconstruction. The measurement uncertainties decreased in all of these cases with
increasing number of measurement points and are well described by the heuristic fit function

BE,:/
JN

For both film types, the uncertainties from simulated and measured datasets and their dependence on the
number of data points per reconstruction were in excellent agreement. Therefore, we conclude that our
approach for the simulation of the uncertainties is suitable to predict the accuracy of real measurements.

We further investigated how the number of measurement points N influences the measurement accuracy by
simulating the indentation of two spheres with radii of 200 ;m and 500 pm into films with an elastic modulus
of Ey = 15 kPa and various Poisson ratios of v = 0.3, 0.4, and 0.5. Furthermore, we investigated two different
film geometries.

The first geometry includes films which have a uniform thickness 4. For our simulations, we chose h such
that the total range of x values covered by both spheres is maximal, therefore providing optimal contrast for the
reconstruction of E and v. This is the case when the indentation geometry of the largest sphere corresponds to
X (R = 500 um, h, 6(h)) = 1.Forexample in the case of the incompressible film with a thickness of
h = 54 pm, the sphere with R = 200 pm is expected to sink in 2.5 gm which corresponds to y = 0.39 while
the sphere with R = 500 pm is expected to sink in 6.8 m which correspondsto y = 1 (see supplementary
information (SI) figure 1(A) is available online at stacks.iop.org/JPCO/3 /055021 /mmedia). Thicknesses lower
than h would correspond to x > 1 for which equation (3) is not valid [12]. A thicker film would decrease the
contrast in the correction factor achievable by both spheres.

The second geometry consists of films with a thickness that varies between h,;, and hp,, = 500 pm. We
chose hppin such that x (R = 500 um, Ay, 6 (hmin)) = 1. Atathickness of 500 um, the values of y are below
0.2 for both spheres in all conditions. In this case, the correction factor C varies only slightly as a function of
(see SI figure 2 and Gross and Kress [18]). Therefore, we consider the small differences in contrast between the

<5E,1/> - AE,V + (6)
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Figure 3. Comparison of the average reconstruction uncertainties of experimental and simulated datasets of (A) the elastic modulus
and (B) the Poisson ratio as a function of the number of data points N. The number of data points correspond to the values denoted by
the tick labels at the abscissa and the symbols (squares and circles) were slightly offset horizontally relative to each other for better
visibility. The error bars denote the standard deviation of the reconstruction uncertainties for every condition. Solid lines represent fits
of equation (6).
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Figure 4. Average simulated reconstruction uncertainties of (A) the elastic modulus and (B) the Poisson ratio of films with

number of datapoints N

E, = 15 kPa characterized with two spheres (R = 200 ym and R = 500 pm) as a function of the number of data points per
measurement N. The data points were distributed evenly between the two spheres and distributed evenly in the interval i, and Apgy.
Solid lines represent fits of equation (6). The data belong to the values denoted by the tick labels at the abscissa and were offset slightly
horizontally for better visibility. The error bars denote the standard deviation of the reconstruction uncertainties for every condition.

different conditions to be negligible. Under all conditions, the N data points were chosen equally spaced
between ki, and A,y The resulting probability distributions of y covered by both spheres in the case of
vy = 0.5 are shown in SI figure 1(B).

The resulting reconstruction uncertainties of the elastic modulus and the Poisson ratio are shown in figure 4.
In general, it can be stated that the higher the Poisson ratio, the more accurately it can be determined

(figure 4(B)). Interestingly, this is different for the elastic modulus. Our results for films with a uniform thickness

show that the reconstruction of the elastic modulus is more accurate at low Poisson ratios (figure 4(A), circles).
As it was the case for the experimental data, the reconstruction uncertainty decreases in all conditions with
increasing number of measurement points (figure 4, both panels) and is well described by equation (6) (the fit
parameters A and B were positive in all cases). Therefore, by increasing the number of data points, the
uncertainties can at most be reduced by the factor B/(A + B) and every increase in the number of data points
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Figure 5. Average simulated reconstruction uncertainties of (A) the elastic modulus and (B) the Poisson ratio of films with v = 0.5,
elastic moduli E( between 1 kPa and 50 kPa and uniform thicknesses for different combinations of spheres
(200 gm < R < 500 pem). For every condition, 60 data points were distributed evenly between the sphere sizes. Closed symbols
represent simulations done with steel spheres, open symbols represent simulations done with gold spheres. It was not possible to
recover the elastic parameters of the 50 kPa film with any of the tested steel sphere combinations. The error bars denote the standard
deviation of the reconstruction uncertainties for every condition.

yields diminishing returns. For our parameter set, N = 60 appears to be a good compromise between the overall
reconstruction accuracy and the workload required for data acquisition and evaluation. At this point, the
remaining uncertainty A + 0.13B is of the same order of magnitude as A and thus, any increase in N only yields
amarginal improvement. Notably, the reconstruction uncertainty of the elastic modulus is barely influenced by
the Poisson ratio when a film with non-uniform thickness is used (figure 4(A) squares). In this case, the
reconstruction accuracy is also barely influenced by the number of data points per measurement. Therefore,
only a few data points (N < 60) are required to determine the elastic modulus.

Choice of sphere count, radii, and density

The choice of the sphere radii also has a major influence on the reconstruction accuracy. In theory, the upper
limit for the sphere radius is given by the theoretical geometric limitation that /R § < h. Due to gravity a larger
sphere will sink deeper into the film which results in an upper limit for the sphere radius given by R;,,,, = h?/6.
On the other hand, a sphere that is too small does not sink in enough such that the indentation depth is below the
resolution limit of the set-up. Based on these limitations, we chose to investigate the use of up to 5 spheres with
radii between 200 pm and 500 pm and chose the film thickness such that y ~ 1for R = 500 pm in the
thinnest region of the film. We varied the elastic modulus between 1 and 50 kPa and investigated two Poisson
ratios of v = 0.3 and 0.5. We kept the total number of data points constant at N = 60 and distributed them
evenly over all sphere sizes.

There are two major cases that need to be distinguished. When a film with a homogeneous thickness is used,
the reconstruction is not possible with only one sphere since the correction term Cis identical for all data points
(see equation (3)). Therefore, the use of at least two spheres is mandatory in this case. The reconstruction
accuracies strongly depend on the size of the spheres that are used, both for incompressible films (figure 5) and
films with v = 0.3 (SI figure 3). In all tested conditions, the combination of 5 different spheres yielded one of the
most precise results. The use of only two relatively large spheres with radii of 400 gm and 500 pzm was least
precise. In SI figure 4(A), it can be seen that in this case, only a very limited range of 0.8 < x < 1iscovered.

The situation is very different when a film with an inhomogeneous thickness is available. When data points
at different film heights are acquired, one sphere can cover a wide range of y values (see SI figure 4(B)).
Therefore, the reconstruction is also possible with only one sphere. Our simulation shows that the
reconstruction is most precise when only one sphere and in particular, the largest sphere suitable for a film with
vy = 0.5 (figure 6) and vy = 0.3 (SI figure 5) is used. We attribute this to the fact that in this case, alarge range of
x values can be covered by one sphere. For this reason, there is no need to utilize smaller spheres which, in
general, offer less resolution since the relative error of the indentation is larger. Additionally, small spheres cover
asmaller range of lower ) values where the contrast factor C depends only slightly on the Poisson ratio (see SI
figure 2).
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Figure 6. Average simulated reconstruction uncertainties of (A) the elastic modulus and (B) the Poisson ratio of films with v = 0.5,
elastic moduli E( between 1 kPa and 50 kPa and non-uniform thicknesses for different combinations of spheres

(200 pm < R < 500 pem). Data points were chosen randomly in the interval iy, < h < hyay. For every condition, 60 data points
were distributed evenly between the spheres. Closed symbols represent simulations done with steel spheres, open symbols represent
simulations done with gold spheres. It was not possible to recover the elastic parameters of the 50 kPa film with steel spheres with

R = 200 pm and R = 250 pm alone. The error bars denote the standard deviation of the reconstruction uncertainties for every
condition.

Notably, the reconstruction is generally more precise on soft films (see figures 5, 6 and SI figures 3 and 5). We
attribute this to the fact that the relative error of the indentation is lower on softer films since the spheres sink in
deeper. For example, in the case of Ey = 50 kPa and v, = 0.5, the steel sphere with a radius of R = 200 pm is
only expected to sink approximately 1.2 ym into a film with a thickness of 55 pm, thus the error of the
indentation about 17%. For this reason, the reconstruction was not possible with any of the tested steel sphere
combinations on a homogeneous film. One way to alleviate this issue is to increase the indentation depth by
placing spheres with a higher density on the film. When gold spheres with a density of pg = 19.3 g cm ™2 are used
on aslightly thicker film (h = 55 pm) the indentation depth of a sphere with R = 200 pym increases to 2.5 pm.
As a consequence, the reconstruction was possible in all cases and the uncertainties are comparable to the
conditions when steel spheres were used on a 15 kPa gel. This can be understood from equation (2). Since the
fraction E/(py — pppg) is similar in both cases, the relative reconstruction uncertainty of the elastic modulus
and the reconstruction uncertainty of the Poisson ratio are also similar.

Discussion

By simulating the indentation of metal spheres into thin films we are able to reproduce our experimental
uncertainties of the elastic modulus and the Poisson ratio. Thus, our simulation approach is suitable to predict
the precision of real experiments. Our results suggest that there are three general points that should be
considered during the planning of such experiments. First of all, we have shown that an increase in the number
of data points does not necessarily make the reconstruction significantly more accurate. For our set-up,
measuring more than 60 individual data points only results in marginal improvements. Secondly, our
simulations demonstrate that the use of larger spheres generally leads to more accurate results. Thirdly, it is
highly beneficial to cover a wide range of x values during the experiment. In particular, it is most important to
cover the range between y = 0.4 and the highest possible value y = 1. Guidelines for the optimal choice of
measurement parameters for a given set of boundary conditions of the samples are summarized in figure 7.

To calculate the indentation depth and y during the planning phase, a rough estimate of the elastic
parameters of the film are necessary. We suggest running first preliminary experiments to get a rough estimate
for the elastic modulus and, if available, estimate the Poisson ratio using literature data.

With fixed elastic properties, we have investigated three basic ways to achieve a broad range of different
geometries and thus, y values. One can either use different sphere densities, sphere radii or a film with an
inhomogeneous thickness.

The density of the spheres should be chosen such that the indentations of the smallest sphere can be easily
resolved. We were able to reconstruct the elastic properties in all tested conditions when the fraction
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Mechanical characterization of elastic films
with the steel sphere method
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Figure 7. Guidelines for the optimal choice of measurement parameters to maximize the accuracy of the mechanical characterization
of various thin elastic films.

E/(ps — pppg) was smaller than 2.7 m? s~2. However, the reconstruction was significantly more precise in
conditions where E/(pg — ppgs) was one order of magnitude smaller.

Our results suggest that films with a non-uniform thickness offer great benefits. On the one hand, the
accuracy of the reconstruction is vastly superior. In comparison to films with a homogeneous thickness the
uncertainty of the Poisson ratio can be reduced significantly by up to 40% and the uncertainty of the elastic
modulus can be reduced by up to 75%. On the other hand, films with an inhomogeneous thickness enable the
reconstruction with only one sphere size, which reduces the experimental complexity. In fact, the reconstruction
of the elastic parameters of such films is most precise when only one large sphere is used.

However, a film with a very wide thickness distribution might be unfeasible in an actual experiment due to
the slope of the upper surface. A practical solution could be to choose .y such that
X(R, hmaxs 6(hmax)) = 0.4 to cover the range from xy = 0.4 to 1. Another possible solution to this problem
would be to use two films with different thicknesses but otherwise identical properties. When only a film with a
homogeneous thickness is available, the only option to reconstruct both elastic parameters is to choose a set of
different sphere radii. In this case, we suggest a large sphere to cover the point y = 1in combination witha
smaller sphere to cover the lower y-range. The indentations of the small sphere however should be large enough
so that they can be easily resolved. The use of more than two spheres yielded only marginal improvements.

Additionally, we would like to highlight the fact that multiple radii offer another benefit. Since equation (2) is
highly nonlinear in R, multiple radii can be used to test whether equation (2) is valid for the indentation data.
Since the indentation depths and contact areas significantly depend on the radii of the spheres, multiple spheres
with different radii offer the possibility to test that the film is probed within the linear elastic regime or whether
for example adhesion effects between the film and the indenter are at play. In this case, these effects have to be
accounted for by other models [17,29-31].
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Conclusions

The steel sphere method is a common tool to probe the stiffness of soft, thin films with a stiffness in the range of
mammalian tissue [9, 29, 32]. Recently, we have extended the method such that not only the elastic modulus but
also the Poisson ratio can be measured [18]. In this work, we have demonstrated that the reconstruction
accuracy of the elastic modulus and the Poisson ratio can be determined with a statistical approach. We have
shown that the gel geometry and the radii and density of the spheres that are used have a major impact on the
reconstruction accuracy. To maximize this accuracy, we suggest to carefully plan mechanical characterization
experiments according to the guidelines given in this manuscript.

Asarule of thumb, the density of the spheres should be chosen such that the fraction E/(p, — ppgs) is less
than 2.7 m? s~2. The contact geometry can then be adjusted by the choice of the sample thickness and the sphere
radii and should be chosen such that 0.4 < x < 1. A film with an inhomogeneous thickness should be used for
the measurement whenever possible. In this case, the sample can be probed with one sphere radius and the
measurement is generally more accurate than the characterization of a film with a homogeneous thickness
where two sphere radii should be used.
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