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Abstract: The distribution of relaxation times (DRT) analysis offers a model-free approach for
a detailed investigation of electrochemical impedance spectra. Typically, the calculation of the
distribution function is an ill-posed problem requiring regularization methods which are strongly
parameter-dependent. Before statements on measurement data can be made, a process parameter
study is crucial for analyzing the impact of the individual parameters on the distribution function.
The optimal regularization parameter is determined together with the number of discrete time
constants. Furthermore, the regularization term is investigated with respect to its mathematical
background. It is revealed that the algorithm and its handling of constraints and the optimization
function significantly determine the result of the DRT calculation. With optimized parameters,
detailed information on the investigated system can be obtained. As an example of a complex
impedance spectrum, a commercial Nickel–Manganese–Cobalt–Oxide (NMC) lithium-ion pouch
cell is investigated. The DRT allows the investigation of the SOC dependency of the charge transfer
reactions, solid electrolyte interphase (SEI) and the solid state diffusion of both anode and cathode.
For the quantification of the single polarization contributions, a peak analysis algorithm based on
Gaussian distribution curves is presented and applied.

Keywords: electrochemical impedance spectroscopy; distribution of relaxation times; Tikhonov
regularization; Li-ion battery; polarization analysis

1. Introduction

Electrochemical impedance spectroscopy (EIS) is a well-known method applied since the 1970s [1]
for electrochemical power sources and their components including materials such as commercial
battery cells [2], single electrodes [3,4], experimental cells with reference electrodes [5], solid oxide
fuel cells (SOFCs) [6], polymer membrane fuel cells (PEMFCs) [7], separators, membranes or
electrolytes [8,9]. In addition, the technique is used in other scientific fields, e.g., to obtain the bio
impedance in medicine [10] or biology.

The EIS provides the frequency-dependent impedance of an electrochemical system by applying
a sinusoidal current, measuring the voltage response (galvanostatic EIS) or vice versa (potentiostatic
EIS), and applying Ohm’s law. The impedance spectra are interpreted regarding their high-frequency
inductive behavior [11] caused by geometry, wiring and the test setup, their low-frequency diffusion
behavior [12] and mainly their interphase behavior. Numerous studies focus on battery impedance,
e.g., correlating aging to changes in the impedance spectrum [13] or explaining the relaxation behavior
in graphite anodes [14]. Analyzing the impedance without applying further techniques is complex,

Batteries 2019, 5, 43; doi:10.3390/batteries5020043 www.mdpi.com/journal/batteries

http://www.mdpi.com/journal/batteries
http://www.mdpi.com
https://orcid.org/0000-0002-1438-2244
https://orcid.org/0000-0002-4519-6209
https://orcid.org/0000-0003-3972-9360
https://orcid.org/0000-0002-4135-7263
http://www.mdpi.com/2313-0105/5/2/43?type=check_update&version=1
http://dx.doi.org/10.3390/batteries5020043
http://www.mdpi.com/journal/batteries


Batteries 2019, 5, 43 2 of 21

though. Effects overlap, processes are non-ideal, causing deviations between the expected and
the measured spectra. Even the number of single processes cannot be obtained unambiguously.
Therefore, the DRT became of interest in the 1990s [1] and was applied first for SOFCs [15,16]. Later
on, the DRT was adapted for the characterization of PEMFC and batteries [2,7,17]. As the result of
a mathematical transformation, the polarization contributions at predefined time constants of the
investigated system are derived. Exemplary, in Figure 1a the impedance spectrum of two RC elements
(resistor and capacitor in parallel) connected in series is shown: a deformed semi-circle with no
distinct maximum of − Im(Z) results. This shape might be caused, e.g., by a non-ideal process due to
large inhomogeneities within the electrode or by separate processes. Investigating the impedance
spectrum, no further conclusions can be drawn. Applying the DRT algorithm as shown in Figure 1b,
the two involved processes can be separated easily. Therefore, the contribution of single processes to
the system’s impedance can be calculated.
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Figure 1. Impedance spectrum of two RC elements connected in series (a) appearing as a single,
asymmetric semi-circle in the Nyquist plot; the distribution of relaxation times (DRT) (b) reveals both
processes involved.

The DRT offers a model-free, universal approach for the detailed analysis of electrochemical
systems or any other data obtained from impedance measurement. This means that no a-priori
assumptions, e.g., electrical, physical or chemical models or knowledge are necessary, which is an
essential advantage when dealing with complex or hardly understood specimen such as fuel cell stacks
or new materials with novel conducting mechanisms.

On the other hand, the DRT analysis strongly depends on the choice of its process parameters
which are, in many publications, neither revealed nor discussed. Thus, the DRT algorithm containing
those parameters is described in detail within this paper. Furthermore, an extensive parameter
study is performed to evaluate the impact and correlation of those process parameters on the
calculated distribution function. The study includes the optimization of the regularization parameter,
the number of predefined discrete time constants as sampling points of the distribution function
and the mathematical formulation of the regularization term. It is investigated whether real
parts, imaginary parts of the complex impedance or both should be used for the calculation of
the DRT. Finally, the impact of the optimization function and optimization algorithm is shown.
As an instructive example of a complex impedance spectrum comprising inductive, resistive,
capacitive and diffusive overlapping polarization contributions of multiple components within an
electrochemical system, the algorithm is applied on impedance data from a commercial 3.3 Ah
Nickel–Manganese–Cobalt–Oxide (NMC) lithium-ion pouch cell by Kokam and the results are
discussed in detail. Furthermore, the features of the impedance spectra are assigned to the individual
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peaks observed in the distribution functions. For more insight into the single peaks within the DRT,
a novel post-processing approach is presented, adapting modified Gaussian peaks to the distribution
function resulting in a quantification of every single process within the spectrum.

By reporting all relevant information about the used algorithm, the results presented in this
publication can be easily reproduced by other researchers. The information includes

• the optimization algorithm,
• the error function,
• the type of data used, i.e., using real or imaginary parts of the complex impedance,
• measurement parameters, e.g., current or frequency range,
• regularization parameter,
• number of time constants,
• the pre- and post-processing routine,
• the minimum and maximum time constants for the DRT.

2. Deriving DRT from EIS Data

The main idea of the DRT is to express the complex-valued, frequency-dependent impedance
of an electrochemical system as an infinite series of differential RC-elements in series with an ohmic
resistor R0 [7,15,17]:

Z(jω) = R0 +
∫ ∞

0

h(τ)
1 + jωτ

dτ. (1)

The integral is often normalized by introducing∫ ∞

0
g(τ)dτ = 1, (2)

which leads to

Z(jω) = R0 + Rpol ·
∫ ∞

0

g(τ)
1 + jωτ

dτ. (3)

The normalized Equation (3) has two advantages compared to Equation (1):

• The total polarization resistance of the system gets apparent by Rpol.
• Systems with impedances in different orders of magnitude can be compared easily.

The term g(τ)
1+jωτ corresponds to the relative differential contribution of a single ohmic-capacitive

element as τ = RC and g(τ) = R/Rpol results in R
1+jωRC , which is the well-known equation for

an RC-element.
The function g(τ) is computed numerically. Therefore, the integral in Equation (3) has to be

discretized yielding the finite sum

Z(jω) = R0 + Rpol ·
n

∑
k=1

g(τk)

1 + jωτk
. (4)

The range of time constants [τ1, τn] has to be chosen a priori based on the available frequency
range of the impedance data. Usually, the interval of time constant matches the interval of measured
frequencies. The number of time constants n has to be large compared to the expected numbers of
processes within the investigated system. The determination of the optimal number is part of our
process parameter analysis in Section 3.

Equation (4) describes the resistive–capacitive behavior of the impedance spectrum as a sum of RC
elements connected in series with predefined time constants. Neither assumptions are made regarding
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the number of processes involved nor model concepts on electrical, physical or chemical processes are
required as in case of the model-based analysis of electrochemical impedance spectroscopy. Hence,
the DRT analysis is regarded as a model-free method for the characterization of electrochemical
systems. Furthermore, it has to be stated that due to the ohmic-capacitive nature of Equation (4),
the DRT is not valid for inductive systems. Purely capacitive contributions cannot be described neither.
Mathematically, these restrictions regarding the examined complex impedance can be expressed as

lim
ω→0

Im(Z(jω))
!
= 0 (5)

lim
ω→∞

Im(Z(jω))
!
= 0 (6)

Im(Z(jω))
!
≤ 0 ∀ω. (7)

2.1. Dealing with Artefacts at the Boundaries of the Measured Frequency Range

If the measured impedance spectrum is not converging towards the real axis at the boundaries of
the measured frequency range as demanded by Equations (5) and (6), as is it the case e.g., for diffusion
processes at low frequencies, the DRT analysis will yield artefacts, i.e., singularities or diverging, steep
slopes at the boundaries of the interval of time constants corresponding to the extremes of the measured
frequencies. To deal with this issue we propose to extend the predefined vector of time constants
beyond the minimum or maximum time constant corresponding to the according maximum and
minimum frequency. Mathematically this is legitimate since the choice of the predefined time constants
does not have to match the measured frequencies compulsorily as can be seen in the definition of the
optimization problem later. This approach does not extrapolate the measured spectrum beyond the
measured frequency range. Not even new assumptions are made on the behavior of the device under
test beyond the measured frequency range. Instead, the optimization problem maps a wider vector of
time constants onto the exactly same impedance information in frequency domain and therewith helps
to better extract all information contained in the measured frequency spectrum. A back calculation of
the identified DRT into frequency domain would be the same as fitting an RC circuit to the measured
spectrum. As for fitting an equivalent circuit model to a measured impedance spectrum, the model is
only valid for the measured frequency range. Since real systems will never have a limited bandwidth
and a measurement system will never be able to measure an unlimited frequency range, we show
in the results that broadening the predefined vector of time constants is beneficial for the analysis of
electrochemical systems, especially if polarization processes are not abated at the boundaries of the
measured frequencies as it the case for the solid state diffusive behavior of lithium-ion batteries.

2.2. Calculation of g(τ)

For the equations above, g(τ) has to be calculated from an impedance spectrum. Measured or
model-based, computer-generated spectra are limited in their number of frequency points. Typically,
the frequency vector of the treated impedance data is logarithmically scaled, with 6 [14], 7 [18], 10 [7,19]
or 16 [20] steps per decade, respectively. Often, this information is missing in publications [2,21,22].
However, this relatively small amount of m data points (i.e., the measured data including frequency
and impedance values) leads to the issue that there are usually less data points than sampling points
for the time constants of the DRT analysis (m < n).

Therefore, the resulting optimization problem

min
{∣∣∣∣Ax− b

∣∣∣∣2} , (8)

with the matrix A and the vector b as introduced below is ill-posed and might be ill-conditioned.
Therefore, it cannot be solved analytically. One way to overcome the ill-posed optimization problem in
Equation (8) is to apply numerical regularization. Among the regularization techniques commonly
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used for calculation of DRTs of electrochemical systems, Tikhonov regularization has proven to be a
powerful technique [23,24]. The optimization function

min
{∣∣∣∣Ax− b

∣∣∣∣2+∣∣∣∣λx
∣∣∣∣2} (9)

is extended by a regularization term ||λx||2 where λ is the regularization parameter. Its influence on
the resulting distribution will be discussed in Section 3. The parameter x represents the discrete values
of the distribution function g(τ).

The parameter λx can be extended to M · λx, where M is the regularization matrix. In the simplest
case, M is defined as I, representing the n× n identity matrix.

In addition, the constraint

xk = g(τk) ≥ 0 ∀ k, 0 < k ≤ n (10)

has to be taken into account, since negative contributions to the impedance are physically not feasible.
The solution of the problem stated in Equation (9) can be obtained by multiple numeric algorithms.

As the optimization problem is ill-posed with no unique solution and as commonly used least-squares
algorithms are only able to find local optima, it is crucial to be aware of the used optimization algorithm.
Otherwise, the results of the DRT can hardly be reproduced. Ciucci et al. [25] and Wan et al. [26] give
insight into the optimization problem including a detailed discussion on the regularization matrix.
Nevertheless, to the authors’ knowledge there is no publication which gives insight into the used
optimization algorithm.

Considering Equation (4), the matrix A consists of Ai,k in i-th line and k-th column where

Ai,k =
1

1 + jωiτk
(11)

represent normalized RC-elements with a time constant τk evaluated at the angular frequency ωi.
The vector b consists of the m measured or generated impedance values. This may happen in

various ways:

• Using complex values:

A =


A1,1 A1,2 . . . A1,n
A2,1 A2,2 . . . A2,n

...
...

. . .
...

Am,1 Am,2 . . . Am,n

 , b =


Zmeas,1

Zmeas,2
...

Zmeas,m

 . (12)

In this case, a solver is needed which is able to handle complex values as well as constraints.
• Using the real parts only:

A =

Re(A1,1) . . . Re(A1,n)
...

. . .
...

Re(Am,1) . . . Re(Am,n)

 , b =

Re(Zmeas,1)
...

Re(Zmeas,m)

 . (13)

Ignoring imaginary parts is legitimate due to the Kramers–Kronig relationship [27,28], as long as
its conditions are fulfilled. It can be assumed that a properly measured spectrum complies with
these. The linear Kramers–Kronig test is one option to prove the Kramers–Kronig validity of the
examined impedance data.

• Using the imaginary parts only: equivalent to Equation (13) substituting real parts by
imaginary parts.
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• Using both real and imaginary parts:

A =



Re(A1,1) . . . Re(A1,n)
...

. . .
...

Re(Am,1) . . . Re(Am,n)

Im(A1,1) . . . Im(A1,n)
...

. . .
...

Im(Am,1) . . . Im(Am,n)


, b =



Re(Zmeas,1)
...

Re(Zmeas,m)

Im(Zmeas,1)
...

Im(Zmeas,m)


, (14)

which provides more, in case of a noise-free measurement redundant, information. If not stated
otherwise, this method is used within this publication.

With both real and imaginary parts used, a number of time constants n > 2× m leads to an
under-determined system. With n < 2× m, the problem is overdetermined. Both cases lead to an
ill-posed problem as there is no unique solution. If n = 2×m, the system is well-posed. For all three
cases, Tikhonov regularization is applicable.

A non-negative least squares (NNLS) solver is used as proposed by Lawson and Hanson ([29],
p. 161). As this algorithm can only deal with matrix-vector-systems, Equation (9) is re-written according
to Kaipio [30] and Wu [31]:

AReg =

[
A

λ · I ∈ Rn×n

]
bReg =

[
b

0 ∈ Rn

]
. (15)

The solver returns h(τk) which turns into g(τk) after normalization.

2.3. Pre-Processing of Measurement Data

As stated above, the DRT can only deal with resistive–capacitive systems. The frequency-
independent R0 has to be subtracted from the impedance before running the DRT routine. In addition,
electrochemical systems are never only resistive–capacitive. There are inductive contributions due to
the measurement setup or the specimen itself [11] as well as diffusive behavior e.g., when investigating
batteries. Therefore, it is critical that such influences are removed from the impedance data beforehand.

There are two proper ways to deal with inductive and capacitive branches: the first is to fit an
appropriate equivalent circuit (EC) to the measurement data using the model-and-reduce approach.
This EC may contain a resistor, an inductor, a capacitor, RL-elements (resistor and inductivity
in parallel), RC-elements, ZARC-elements (ZZARC = R

1+(jωRC)ϕ ), constant phase elements (CPE)

(ZCPE = 1
1+(jω)ϕC ) and Warburg-elements (planar and spherical diffusion) all connected in series.

The contribution of non-resistive–capacitive EC elements is subtracted from the measured spectrum to
fulfil the RC-constraint of the DRT (Equations (5)–(7))

This pre-processing step is in opposition to the advantage of not needing any a priori knowledge
for the DRT at first glance as the EC fit needs to be precise. Only non-RC elements have to be identified
and characterized precisely to be subtracted properly while the exact characterization of electrode
and interface processes is not essential within this step. Imprecise EC fits lead to peaks without any
physical meaning, offering space for misinterpretations. For an appropriate fit, Equations (5) and (6)
should be fulfilled after subtracting non-inductive-resistive components.

Choosing an EC requires experience by the scientist. A by-inspection analysis of the impedance
spectrum while keeping in mind the spectra of the specific elements is beneficial. The EC is then fitted
using a trust-region method. The two-dimensional error function to be minimized is given by

e =

[
(Re(Z)− Re(Zmod))/|Z|
(Im(Z)− Im(Zmod))/|Z|

]
, (16)
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with Zmod representing the impedance function of the EC whose parameters are to be optimized.
The second option, called cut-and-shift approach, does not need any a priori assumptions: first,

all data points with Im(Z) > 0 are cut off the spectrum. As a second step, the ohmic offset is removed
by subtracting R0 = min{Re(Z)} from the spectrum.

The entire workflow is summarized in Figure 2. The validity of the measured spectrum is proven
by Kramers–Kronig test: in accordance to literature, a spectrum is said to be valid as long as the
residual between the measured and the Kramers–Kronig reconstructed impedance is below 1% for
every data point. Within the pre-processing step non-resistive–capacitive components are removed.
Finally, the DRT is calculated from the reduced spectrum and g(τk) is obtained.

Tikhonov regularization is not the only possible approach for calculating the DRT. Fourier
transformation is used as well [15,17]. A comparison between regularization and Fourier transform
is not part of this paper, though a study on benefits and disadvantages of either method might be
interesting in the future.

Impedance
data {Z, f}

Kramers-Kronig
Validy Test

||Z − ZKK||

Pre-processing
Optional:

Impedance
model

Repeat
measurement

Inductance

Subtract
non-resistive-

capacitive
elements

Improve model

Calculate DRT
meta

parameter

g(τk)
reconstructed

impedance
spectrum

separation and
quantification

of single
processes

< 1 %

> 1 %

completely removed

not completely removed

eq. 2.4 peakfit

Figure 2. Flowchart of DRT algorithm for handling real, non-ideal measurement data.
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2.4. Post-Processing of Result

In general, once g(τk) has been calculated, the distribution function can simply be interpreted in
a phenomenological manner: the number of processes involved can be identified as well as changes
e.g., during ageing or relaxation or differences between used materials, morphologies or cell designs.
For a proper quantitative analysis, post-processing is required.

We quantify the polarization of each peak by fitting the numerical distribution to a sum of
modified, non-normalized Gaussian probability density functions with adjustable height H, standard
deviation σ and skew s using a logarithmic time constants scale. The introduction of the skew allows
asymmetric distributions:

H · exp

{
− (log10 τ − log10 τ0) ·

[
1 + sgn(log10 τ − log10 τ0) · s

]
2 · σ2

}
. (17)

Thus, the area under each specific peak corresponds to the impedance contribution of the
underlying process. Furthermore, the standard deviation corresponds to the ideality or uniformity
of a process, e.g., a narrow peak indicates a process with a small band width, e.g., a uniform particle
size. Wide peaks point to distributed processes, e.g., a wide spread particle size distribution or a
geometric influence of a large-scale specimen. The skew indicates the distribution of the non-ideal
process, e.g., whether there are more small-sized or large particles within the electrode. Yet, an overall
quantification or correlation to the system’s attributes is not easily achievable, but a quantitative
comparison between various DRTs can be achieved.

The entire algorithm, as described within this chapter, is available for download at http://www.
ec-idea.uni-bayreuth.de.

3. Analysis of DRT Process Parameters

3.1. Regularization Parameter and Number of Time Constants

For reliable and meaningful results, the regularization parameter λ and the number of time
constants n have to be chosen adequately. In Equation (9), the condition λ > 0 forces x towards
small ||x|| as a direct consequence of the minimization problem. Other publications have noted that
an increase of λ results in a smoother shape of the DRT. This might lead to the risk that narrow
peaks merge or small peaks disappear while small λ may cause oscillations or peaks with no physical
meaning [7,32,33]. It is intuitive that small values of ||x|| lead to a smoother shape of gk and vice versa.
Small ||x|| are achieved by a vector whose elements differ little, as outliers deteriorate the norm in the
second order.

The expectations from literature are perfectly matched by the results shown in Figure 3. For small
λ, oscillations occur for low time constants and around the second peak. If λ is chosen too large, the two
peaks begin to merge and cannot be separated anymore. Furthermore, the amplitude decreases while
the width of the peaks increases. The total area below the graphs does not change significantly. Several
publications were dealing with the issue of optimizing the regularization parameter for their purposes.
For this study, we investigated three approaches made by Saccoccio et al. [34] and Hansen [35]: using
the so-called discrepancy method, the term

||xRe(λ)− xIm(λ)||2 (18)

is minimized by varying λ. It calculates the DRT using real parts of the impedance values within
A and b returning xRe and using imaginary parts only resulting in xIm. The difference is meant to
be a measure for the quality of the DRT as a function of λ [34]. Due to Kramers–Kronig relation,
the difference should be zero. Thus, the regularization parameter is expected to fit best when the above
expression is closest to zero. In this case, noise impact is minimized but there is no over-regularization.

http://www.ec-idea.uni-bayreuth.de
http://www.ec-idea.uni-bayreuth.de
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The second criterion, cross-validation [34], is based on a similar idea:

min
x

(
||ARexIm(λ)− bRe||2 + ||AImxRe(λ)− bIm||2

)
. (19)

−6 −5 −4 −3 −2 −1 0 1 20.00

0.02

0.04

0.06

τ1 = 0.5 ms

τ2 = 5 ms

log(τ/s)

g k

λ =
0.001
0.01
0.1
1
10

Figure 3. DRT of an RC-element (R1 = 5 mΩ, C1 = 0.1 F) and a ZARC-element (R2 = 7 mΩ, C2 =

0.71 F, ϕ = 0.8) in series, calculated at five different λ logarithmically equally-distributed between 0.001
and 10.

Equation (19) takes x from imaginary parts and A, b containing real parts and vice versa. Using
Kramers–Kronig relation again, both terms should be zero in theory. As for the discrepancy method,
noise and discretization effects lead to deviations from the ideal result. In this case, λ is chosen
appropriately if the DRT calculated from the imaginary part of the measurement data matches the real
part of the measurement data and vice versa. The aim is similar to that of the discrepancy method:
Kramers–Kronig being fulfilled best without causing over-regularization.

The third criterion is based on the L-curve [35,36]: a curve is plotted with

log (||Ax(λ)− b||) on the abscissa and (20)

log (||x(λ)||) on the ordinate. (21)

An L-shaped graph emerges with a distinct edge. The regularization parameter leading to the
data point at the edge is used as the optimum. It can be seen as a compromise between the precision
of the result (abscissa) and the norm (ordinate) which is forced to be small by the regularization: λ

smaller than that value lead to large x by only marginally increasing the precision; large λ reduce the
precision at a slight decrease in ||x||.

As can be seen from Table 1, the optimum value for λ differs strongly with the used method.
Taking Figure 3 into account, oscillations occur at λ = 0.01. Thus <1 × 10−5 and 6 × 10−4 cannot be
well-chosen. The parameter λ = 0.13 seems suitable, though. Therefore, for the RC-ZARC element
used for this analysis, the discrepancy method is the only useful method. Modifying the ZARC to a
second RC, keeping R2 and C2 constant, leads to a suggested regularization parameter of 2 and thus to
over-regularization. There are two possible explanations why none of the proposed algorithms works
satisfactorily: first, this could be due to another algorithm used as explained in Section 2 having a
different sensitivity towards λ. Second, the magnitude of the investigated system’s impedance could
play a role as λ · x scales linearly with x. The latter could be ruled out by scaling R and C of our
example system where the results coincide.
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Table 1. λ obtained from three different optimum criteria for the RC-ZARC-element as shown in
Figure 3.

Criterion λ

Discrepancy 0.13
Cross Validation <1 × 10−5

L-Curve 6 × 10−4

Since none of the above criteria lead to physically meaningful values for λ, the accuracy based
on the sum of squared errors sse = ∑i (yi − ŷi)

2 of the reconstructed spectrum is used. Considering
the sse as a quality criterion for the choice of λ, a co-dependency from the number of considered
time constants n must be assumed. This is reasonable because a higher amount of predefined time
constants should eventually lead to a better match of the original and the reconstructed spectrum.
Figure 4a,b reveal that the spectrum obtained by the DRT correlates disproportionately less to the
original impedance spectrum with growing λ. Starting at around 0.2, the slope increases significantly.
For n ≥ 2 m, there is no significant reduction of the error below λ = 0.1 while oscillations increase (cf.
Figure 3). Thus, 0.1 ≤ λ ≤ 0.2 should be chosen. This range was verified by a parameter variation
of the simulated test circuit and by the application of the proposed DRT algorithm to measurement
data. These values proved adequate in most of our use cases but possibly have to be adapted when
applying the algorithm to different impedance data. Hereinafter, λ is set to 0.1. Even if smaller or
larger values for λ might lead to reasonable distributions, the later interpretation of the polarization
processes would be less conclusive.

Analyzing the number of time constants n, Figure 4a,b show that the sse decreases significantly
until n = 3 m and does not change much for larger numbers of time constants within the preset range
for λ.

Figure 4c displays gk for n = m up to n = 5 m. Up to n = 2 m, the graph is edgy, especially in
the time constants range of the huge, narrow peak (approximately 1 × 10−3 s) caused by the large ∆τ

between τk and τk+1. Furthermore, the peaks differ in height although gk is normalized. The reason
for this is that the normalization is dependent on the number of time constants the plot consists of. So,
more time constants would lead to a greater ∑k gk if the height was equal. It is therefore expected that
the height scales linearly with n. This is proven in Figure 4d where each graph, consisting of c · n time
constants, is multiplied by c. The resulting curves overlap. Though, having only few time constants,
the peaks lack height, but are wider as there are not enough time constants to precisely form the sharp
peak. In addition, the characteristic time constant for the oscillation at low time constants shifts slightly
to higher values with increasing n. This has no physical meaning, but is caused by the optimization
algorithm and the regularization.

Summarizing, the number of time constants should be three times the number of frequency
sampling points of the impedance data. The DRT does not change significantly with a further increase
of sampling points, but the equation system enlarges and therefore the computation time rises from
milliseconds to few seconds on a standard PC. As stated when analyzing the regularization parameter,
there is no n where the DRT could be called wrong, but the cost-benefit ratio can be suboptimal.

In Figure 5, the parameter dependency of the condition number cond(AReg) is investigated.
The non-regularized optimization problem is ill-conditioned as the condition number is in the range
of 1019. Increasing λ, the condition number is reduced significantly, resulting in a linear relationship
on a double logarithmic scale. The smaller the number of time constants within a constant frequency
range, the lower the condition number. A dependency on the absolute values of τmin and τmax was
observed as well as a correlation to the width of the interval [τmin τmax]. Thus, Tikhonov regularization
has also a substantial impact on the noise sensitivity of the DRT which is mainly determined by the
condition number.
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3.2. Setup of A and b

As mentioned in Section 2, in our case the matrix A as well as b consist of real and imaginary
parts following the idea that using as much data as possible reduces noise or discretization effects and
leads to more reliable results. To prove that assumption, the DRT of various RC-ZARC elements were
calculated using real parts only, imaginary parts only and both real and imaginary parts.

Furthermore, the time constants were varied from sub-µs to several seconds to cover a wide band
of typical time constants in electrochemical systems. The sse was calculated for all parameters and
the three matrices. As can be seen in Table 2, the error is minimal for all parameters when using both
real and imaginary parts. This is supposed to be caused by the Kramers–Kronig relation not fulfilled
perfectly due to numeric deviations for this mathematical equivalent circuit model. As the sse returns
an absolute error, the absolute sse value varies strongly with respect to the total polarization resistance
of the system. The capacities do not influence the sse significantly. Thus, by using real and imaginary
parts, containing redundant information when neglecting numerical issues and measurement noise,
the result can be improved by a factor of 1.2 to 1.6. Though, it has to be considered that an enlarged
A is accompanied by an increase of the size of the equation system and thus by an increase in
computation time.

Table 2. The sum of squared errors (sse) of the reconstructed impedance spectrum using DRT varying
A and b. RC-ZARC elements. For the ZARC, ϕ = 0.8 is kept constant. Also, λ = 0.1, n = 3 m

Parameters ssereal sseimag ssereal&imag

R1 = 5 mΩ, C1 = 0.1 F
4.57 × 10−9 3.42 × 10−9 2. 86 × 10−9

R2 = 7 mΩ, C2 = 0.71 F

R1 = 5 µΩ, C1 = 0.1 F
4.56 × 10−15 3. 42 × 10−15 2. 86 × 10−15

R2 = 7 µΩ, C2 = 0.71 F

R1 = 5 Ω, C1 = 0.1 F
4. 57 × 10−3 3.42 × 10−3 2.86 × 10−3

R2 = 7 Ω, C2 = 0.71 F

R1 = 5 mΩ, C1 = 10 F
4.52 × 10−3 3.48 × 10−3 2.83 × 10−3

R2 = 7 mΩ, C2 = 0.71 F

3.3. Impact of Optimization Function and Solving Algorithm

The impact of the algorithm was investigated by comparing our approach (“Algorithm 1”) with
another one using an interior-point method as suggested by Byrd et al. [37] (“Algorithm 2”). The latter
is based on the direct evaluation of Equation (9) which is possible due to the structure of the algorithm.
For this investigation, only the real parts were taken into account for A as using both real and imaginary
parts is not possible within Algorithm 2. Again, the identical RC-ZARC element was used setting
λ = 0.1 and n = 3 m.

Four major differences can be obtained from Figure 6a. First, the height of the RC-peak increases
while its width decreases. Second, the minimum between the peaks does not reach zero for Algorithm 2.
Third, the time constant of the ZARC element shifts slightly to higher time constants coinciding with
an increase in height and decrease in width. Fourth, the small peak at low time constants is not
visible using Algorithm 2. Furthermore, Algorithm 2 causes gk to rise when reaching the highest
time constants and |gk| is higher than for algorithm 1 when investigating the time constants where
no specific process is visible. Concerning the sse, Algorithm 1 (4.57 × 10−9) outmatches Algorithm 2
(9.78× 10−9) by a factor of approximately 2. This is in accordance with the analysis of the reconstructed
impedance spectra (not displayed) underlining the hypothesis made in Section 2 that the DRT is
strongly dependent on the exact algorithm and optimization function used and that spectra can neither
be compared nor reproduced when the underlying mathematics are not revealed. Nevertheless, both
algorithms yield a polarization resistance of 12.1 mΩ. This absolute value can therefore be used as
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a cross-link between different approaches on how to obtain the DRT. Three differences between the
algorithms might cause the different DRT:

• Convergence towards different local minima. This can be resolved using proper initial values and
analyzing the reconstructed impedance spectrum.

• Different optimization functions might lead to differing results, e.g., by using relative or
absolute errors.

• Treatment of non-negativity constraint. Various algorithms handle constraints differently which
can influence the result.

The latter two cannot be resolved nor separated as they coincide. Thus, it has to be taken into
account that, although both algorithms converge, the results may differ for numerical reasons. This
must not be seen as a flaw of the DRT but more as an issue that has to be considered when comparing
DRT of different sources.

(a)
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0.03

τ1 = 0.5 ms
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g k
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Algorithm 2

(b)
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2nd derivative
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Figure 6. (a) DRT of an RC- (R1 = 5 mΩ, C1 = 0.1 F) and a ZARC-element (R2 = 7 mΩ, C2 = 0.71 F,
ϕ = 0.8) in series, λ = 0.1, n = 3 m. Algorithm 1 as pointed out within Section 2, Algorithm 2 using
an interior-point method, (b) using identity matrix, first and second derivative for regularization.
(c) Showing the regularization term representing the matrix according to (b).
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3.4. Regularization Matrix

Usually, the regularization parameter is multiplied by an identity matrix. Nevertheless,
e.g., Weese [24], uses a second derivative operator depicted in matrix form. Figure 6b displays the
impact of the second derivative by Weese as well as a first derivative matrix following the same scheme.
Considering the first derivative, the RC-peak decreases in height and increases in width while the
ZARC peak behaves vice versa. Using the second derivative, both peaks decrease in height and increase
in width showing a behavior similar to an increase of the regularization parameter. The distribution
function between these peaks not becoming zero allows the same conclusion. In opposition, oscillations
at high time constants increase significantly when using derivative matrices as would be expected by
low regularization parameters.

Applying regularization using the first derivative can be interpreted as a regularization towards
low slopes: at time constants where gk is steep, the regularization has a large effect compared to areas
where gk is flat. This is exactly what is observed for the shape and position of the two main peaks in
Figure 6b. The interpretation for the second derivative is conducted analogue to the first derivative
considering its mathematical nature: The regularization term forces the curvature to be small. Hence,
the peaks should widen and the tip should become less sharp. Again, this can be witnessed well in
Figure 6b. The τ1 peak shows a smoother shape at the local maximum leading to a lower overall
height. The peaks becoming wider and therefore less easily separable coincides with oscillations
leading to physically non-meaningful peaks. Using the derivative matrices for the regularization is
not advantageous in our example, but might be appropriate when handling different data, e.g., when
dealing with shallow slopes.

Figure 6c underlines the hypothesis above, showing the regularization term λ · M · x: the
regularization terms are large for large ||x|| using the identity, for large slopes using the first derivative
and for large curvatures when using the second derivative. Thus, each of the matrices focuses on
regularizing specific sections of the distribution function to a larger extent than others leading to the
deviations visible in Figure 6b.

4. Analysis of Measurement Data

The algorithm was applied on measured impedance spectra to validate the method and to quantify
the predominant polarization effects in a real electrochemical system. As specimen, a commercial
Li-ion battery, Kokam SLPB526495 with a nominal capacity of 3.3 Ah in pouch cell format with a
high energy NMC cathode was investigated. The impedance spectrum was measured using a Zahner
ZENNIUM pro electrochemical workstation applying galvanostatic EIS at an amplitude of 120 mA
within a frequency range of 20 mHz to 5 kHz with 21 steps per decade. The SOC (state of charge)
was varied between 20% and 100% in 20% steps. For the variation, the cell was charged to 100%
SOC as recommended by the manufacturer. After 3 h of relaxation, the impedance was measured.
Then, the cell was repeatedly discharged at 0.5C for ∆SOC = 20%. Again, after 3 h of relaxation,
the impedance was measured. The five resulting spectra are displayed in Figure 7a. The upper
frequency limit was set so that there was no inductive behavior within the spectrum, while interface
processes and the diffusion branch were visible. The ohmic resistance increased monotonously from
5.9 mΩ to 6.1 mΩ with decreasing SOC. The high-frequency feature of the impedance spectrum is
typically associated with the process at the current collector/active material interface process [4].
Though, this assignment has to be studied carefully as there might be inductive contributions within
that frequency range. The mid-frequency feature was strongly dependent on the SOC. It can be
assumed that the underlying process was related to the charge transfer reaction [4]. The diffusion,
which occurs at low frequencies, did not seem to show an obvious SOC-dependency within the
Nyquist plot. A quantitative comparison is hard due to the offset in Re(Z) and possibly overlapping
electrode processes between the different graphs.
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Figure 7. (a) Measured impedance spectra of commercial High Energy-NMC cell at varied SOCs
(frequencies correspond to 100% SOC, (b) non-normalized distribution of time constants, (c) measured
and reconstructed impedance spectrum for 20% SOC, (d) absolute residual between measured and
reconstructed impedance for 20% SOC.

In Figure 7b, the distribution functions of the spectra in Figure 7a are shown. The DRT have been
obtained by applying the cut-and-shift approach introduced in Section 2. In addition, the range of time
constants has been extended by three decades towards low frequencies compared to the measured
range also introduced within Section 2. The branch itself was fitted to the time constants for the
measured frequencies, while semi-circles which were caused by contributions of lower frequencies in
hk are necessary to bypass the resistive–capacitive restriction. This procedure was proven to be suitable
by comparing the reconstructed spectrum to the original data in Figure 7c as the graphs do not deviate
strongly at 20% SOC. The reconstructions of the other SOCs have been of equal quality (not shown
here). Only for high frequencies, the graphs do not entirely match due to the onset of superimposed
inductive contributions. This influence must be neglected for the DRT anyway. For the data point at
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20 mHz there was a deviation due to the non-RC restriction which cannot be compensated perfectly,
but in a sufficient manner.

Figure 7d shows the absolute residual between measured and reconstructed impedance within
the measured frequency range where Z′′ > 0. Due to the cut-and-shift approach, the data point for
the highest displayed frequency is close to zero. Thus, even a small difference would lead to a huge
relative error which, in this case, is of no specific relevance. The good quality of the fit is proven by
deviations below 0.2 mΩ for the entire spectrum, except the very small time constants. As stated above,
this was caused by a beginning inductive influence, which can neither be avoided nor subtracted
precisely. For the highest time constants, the difference begins to grow as the limitations regarding
Equation (5) begin to impact the reconstructed spectrum.

Analyzing Figure 7b in more detail, the absolute distribution function h is used instead of g,
enabling both a quantitative and qualitative analysis as the distribution functions are all within the
same magnitude. The value h1, representing the contribution of the lowest time constant, is not equal
to zero. This is caused by a combination of imperfect subtraction of the purely ohmic resistance and
the presence of some minor inductive contributions at high frequencies. The absolute value of h1

is strongly dependent on the number of measurement points, the regularization parameter and the
number of time constants used within the DRT. This peak can be ignored for further investigations
as it is not related to an electrode process. At high time constants, the contribution of the solid-state
diffusion is dominant. Preliminary studies with constant phase and Warburg elements have shown
that the three peaks closest to the main peak are also diffusion-related and necessary for a precise
reconstruction. This is in accordance to a recent publication by Boukamp [38] who also derives a
formula for the characteristic time constants of the peaks obtained in relation to the exact time constant
calculated from finite length Warburg element formula. The results of our preliminary study are in
very good accordance to the formula given as [38]

τi =
τ0

π2 · (i− 0.5)2 , (22)

where the main diffusion peak is referred to as τ1 and the smaller ones as τ2, τ3 etc. with decreasing time
constant, respectively. With synthetic Warburg data, τ0 calculated from τ1 to τ3 is equal. Increasing the
regularization parameter, the calculated τ0 differ increasingly, especially for high indices of τ, and shift
towards lower time constants. Investigating the battery as a whole, the match of the theoretical
and practical peak positions τ0 differs up to a factor of eight between the three small and one large
diffusion-related peaks. Furthermore, at 60% there is a small additional peak visible. This non-ideal
behavior may be caused by the distributed solid-phase diffusion throughout the porous electrode
material and by the simultaneous presence of anode and cathode diffusion process. These result
in non-ideal Warburg behavior in combination with the regularization-based effect as mentioned
above. Further, the polarization resistances of the four peaks differ from their theoretical values for the
same reason.

In contrast to Figure 7a, a significant change in diffusive behavior becomes visible when
investigating the DRT. For intermediate SOCs, the diffusion shows a smaller peak in the DRT than for
high or low SOCs within the measured frequency range. As previously seen in Figure 7a, the slowest
interface process is strongly dependent on the electrodes’ SOC and therefore on the lithium surface
concentration of the particles. Starting with the fully charged cell, the polarization and the characteristic
time constant decreases strongly and is almost constant for 80% and 60%. When discharging further,
the polarization rises by more than a factor of two and the time constant shifts towards higher values.
At around τ ≈ 1 × 10−3 s there are two more processes visible. Due to their characteristic time
constants, it can be assumed that these peaks represent electrode or interface processes. The faster
process shows the highest polarization resistance at 20% and 100%, while the value is lower and close
to constant for intermediate SOCs. The fastest process shows a constant shape and height. For further
investigations, a quantitative analysis of the three electrode process-related peaks is inevitable.
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The peak analysis shown in Figure 8 allows a quantitative analysis of each separate distribution
in Figure 7b. As mentioned above, peak 1 does not show a noteworthy SOC-dependency and has a
polarization resistance of 1.8 mΩ. It can be assumed that this peak represents the particle-particle or
particle-current collector interface [4].
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Figure 8. Non-normalized DRT with peak analysis for (a) 100% SOC, (b) 80% SOC, (c) 60% SOC,
(d) 40% SOC, (e) 20% SOC.

Peaks 2 and 4 show a similar SOC dependency: For high and low SOCs, the polarization resistance
is large, while it is low for intermediate SOCs. The higher the resistance, the higher is furthermore
the time constant. The width of the peaks does only change due to the change in height. As there
are two charge transfer reactions expected within the battery, it can be assumed that peaks 2 and 4
represent those. Peak 3 behaves differently: it significantly changes its width and the characteristic
time constant at 60% is lower than could be expected when compared to the other SOCs. This
peak could hence be assigned to the SEI, while the exact reason for this behavior remains unclear.
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Considering these findings, peak 4 can be assigned to the anodic charge transfer reaction based on the
following indicators:

1. The time constant of the anodic charge transfer is typically higher than that of the SEI [39,40]
2. The resistance increases for high and low values reaching a minimum at medium SOCs. Figure 9

underlines this observation. This is in accordance with the Butler–Volmer kinetics, where the
exchange current density is small at high and low SOCs [14,41]. To differentiate the process
from the cathodic reaction, Figure 9 shows that the resistance is highest at low SOCs, whereas
the increase is only shallow at 80% and 100%. It has to be considered that in commercial cells,
the anode is over-dimensioned so that lithium plating is avoided by restricting high lithium
concentrations in the anode. This leads to an disproportionate distribution of the anode’s degree
of lithiation. Thus, its SOC is not well-proportionate but shifted towards smaller concentrations.
This leads to the conclusion that peak 3 is caused by the anodic charge transfer reaction.
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Figure 9. Polarization resistance of (presumably anodic) charge transfer (peak 4) reaction and the value
obtained by the DRT for the diffusion of both electrodes (which must not be interpreted as an absolute
resistance value).

The qualitative investigation of the diffusive process in Figure 9 is of interest as well. The absolute
value is calculated by adding the resistances of peaks 5–8. Summing up the values of charge transfer
and diffusion obtained e.g., for 20% SOC, approx. 37 mΩ are achieved. However, the maximum value
of |Z| is below 30 mΩ in Figure 7a. As the assumption of convergence towards Im(Z(jωmin)) = 0 for
frequencies below the measured range is not necessarily fulfilled, e.g., when a limited reservoir leads
to capacitive behavior for very low frequencies, the polarization contribution obtained for the diffusive
branch must neither be interpreted as an absolute value for an overall diffusion resistance nor be used
to draw conclusions of processes outside the measured frequency range. Instead, the values can be
taken into account for a comparison of different spectra to visualize changes in diffusive behavior,
if the frequency range and the regularization parameter is equal for the investigated spectra.

The qualitative behavior of the diffusive values can be interpreted in two ways: in a descriptive
manner, the diffusion is limited when the concentrations are either close to the maximum while
there are still more ions to be intercalated and transported towards the particles’ center or when the
concentration is close to zero, but there is a demand of ions from the inner particle to be deintercalated
at the surface. Considering electrochemistry, diffusion leads to a high polarization when the differential
capacity is small, i.e., a small change of concentration leads to a large change in the open circuit voltage
when the surface concentration differs from the average concentration. This is the case at high SOCs,
but even stronger at low SOCs for the investigated NMC cell. Both explanations lead to the same result:
As the resistance increases for high and for low SOCs in a similar way, it can be assumed that anodic
and cathodic solid state diffusion overlap within the diffusion peak showing similar time constants
without the possibility of separation.

Analyzing the DRT, we are able to gain significantly more information on the dominant
polarization mechanisms. The SOC dependency of solid state diffusion could be assessed quantitatively
and the dominating electrode processes could be assigned to peak 2–4.
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5. Conclusions

The DRT offers a model-free characterization for electrochemical systems. Its information value is
strongly dependent on a proper choice of process parameters which are needed to solve the ill-posed
problem. Choosing the regularization parameter λ too small leads to oscillations and a large number of
peaks not connected to physical processes. A large regularization parameter leads to a merger of peaks
so that independent processes cannot be separated properly. In our case, λ should be chosen between
0.1 and 0.2. This value is strongly dependent on the exact algorithm used as there are publications
using λ differing by magnitudes. The measurement data and its signal-to-noise-ratio also influences
the optimum value. The number of sampling points of time constants for the DRT analysis should
be large enough for a smooth result. Exceeding a reasonable amount increases the computational
effort without significant improvements to the result, though. The threefold number of measured
frequency points has shown to be appropriate. A smaller number increases the difference between
measured and reconstructed impedance spectrum notably, while a higher number does not reduce the
error significantly. Choosing the highest time constant three decades above the minimum measured
frequency, processes where lim

τ→0
(Im(Z)) 6= 0 can be analyzed.

The regularization parameter can be used as a linear factor on the distribution function itself or on
the first or second derivative. Dependent on that, either the absolute height, the slope or the curvature
is regularized leading to contrasting effects on gk. The implementation of those approaches verifies this
hypothesis. We recommend to use the non-derived regularization matrix for most cases. Furthermore,
the optimization algorithm used, the optimization function fed into the algorithm and the way the
algorithm deals with the non-negativity constraint affect the outcome. This constraint is physically
inevitable as there must not be negative contributions to the overall polarization. With the parameters
set as above, processes with similar polarization resistances can be separated if their time constants
differ by a factor of two to four. The exact factor cannot be determined in advance but is dependent
on the shape of the individual peaks. If the polarization resistance of peaks differ strongly, the gap
between the characteristic time constants needs to be higher to be able to observe the smaller peak.
The algorithm used is available at http://www.ec-idea.uni-bayreuth.de within a software package
based on the Matlab runtime environment.

The introduced peak analysis algorithm facilitates the separation of the peaks and enables the
calculation of the individual polarization resistances. One large and several smaller peaks at high
time constants can be assigned to solid state diffusion. A hypothesis was established to correlate
three specific peaks to the anodic and cathodic charge transfer and the SEI due to their time constants
and SOC behavior. For both identified processes, diffusion and charge transfer, a non-monotonous
behavior emerges with a maximum polarization resistance for low SOCs, decreasing for medium and
again increasing resistances for high SOCs. Investigating the impedance spectrum only, e.g., by fitting
equivalent circuits, there is no evidence on the number of involved processes. The DRT offers the
benefit of a detailed insight into the electrochemical mechanisms taking place in the specimen and
their characteristic time constants.
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