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Abstract
Weanalyse liquid-crystalline ordering in vertically vibratedmonolayers of cylinders confined in a
circular cavity. Short cylinders form tetratic arrangements with C4 symmetry. This symmetry, which is
incompatible with the geometry of the cavity, is restored by the presence of four point defects with
total topological charge+4. EquilibriumMonte Carlo simulations predict the same structure. A new
method tomeasure the elastic properties of the tetraticmedium is developedwhich exploits the clear
similarities between the vibrated dissipative system and the thermal equilibrium system.Our
observations open up a new avenue to investigate the formation of defects in response to boundary
conditions, an issuewhich is very difficult to realise in colloidal ormolecular systems.

Introduction

Monolayers of vertically vibrated grains have been shown to exhibit a surprisingly rich behaviour [1–5],
including pattern formation in steady-state structures and non-equilibriumphenomena [6]. Even though
experimental control parameters, such as vibration frequency and amplitude, critically affect the observed
phenomena, in some regions of parameter space non-equilibriumbehaviour is absent or not predominant, and
observed patterns resemble those typical of interacting particle systems in thermal equilibrium.Of particular
interest are the patterns exhibited by elongated particles with cylindrical shape, which project on a plane
approximately as hard rectangles (HRs); when their aspect ratio ismoderate, these particles arrange into two-
dimensionalmonolayers with strong tetratic correlations [1, 7, 8]. The tetratic phase is a liquid-crystalline
arrangementwith particles aligned preferentially along two equivalent perpendicular orientations with global C4

symmetry.Mean-field density-functional theories for rectangular particles in thermal equilibriumhad
predicted the existence of this phase [9, 10], whichwas confirmed experimentally [11] and by simulation
[12, 13]. It is remarkable that the same symmetry has also been observed inmonolayers of vibrated granular rods
[1, 7, 8]. Some theoretical ideas have been advanced to explain general similarities between thermal and granular
systems [4, 14], but none of them is based on deep physical roots. In the case of systems exhibiting liquid-
crystalline order only plausiblemechanisms that drive locally ordered arrangements of particles can be invoked
[8]. Also, from the experimental evidence, it is tempting to use arguments based on equilibrium entropy
maximisation and excluded-volume ideas to qualitatively explain the effective driving forces that lead to the
extended ordered domains observed in the non-equilibrium vibrated granular systems, like in the
corresponding equilibrium fluid of two-dimensionalHR.

Before a complete theoretical framework for vibrated granular two-dimensional particles is formulated,
more evidence on their similarities with thermal particles is building up. In our previous paper [8], we briefly
reported on yet another intriguing behaviour of vibrated granularmatter, this time in amonolayer of cylinders
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contained in a quasi-two-dimensional circular cavity.We showed that the tetraticmonolayer exhibits four
defects symmetrically located at the corners of a square.

In the present paperwe analyse this experimental system in detail and show that this behaviour is exactly
what is expected in an equivalent thermal system: ourMonte Carlo (MC) simulations of such a system give rise
to exactly the same structure [15]6.Therefore the granularmonolayer can respond to geometrical frustration
much likewhat onewould expect in a thermal system, i.e. by creating localised defects that interact through the
elastic stiffness of the fluid tetraticmedium. Also, we show that the defected structure is stable in time and occurs
in a range of densities. Finally, we propose amethod to calculate the effective interaction between defects in an
equilibrium system, and from this the elastic stiffnessmodulus of the liquid-crystalmedium. Assuming that the
granular system can be treated in the samemanner, the resultingmodulus turns out to be of the same order of
magnitude in both thermal and granular systems. Our conclusion is that not only their local order and their
response to geometric frustration in terms of defect formation are similar, but also that the elastic properties that
mediate long-range interactions between the defects are similar.

From the evidence gathered by previous experiments [1, 7, 8], it is clear that the configurations of cylinders of
low length (L)-to-width (D) ratioκ=L/D change, as packing fractionj=ρ LD (where ρ=N/A is the
effective density, withN the number of cylinders andA the area) is increased, fromorientationally disordered, or
isotropic,fluid arrangements, to tetraticfluid configurations. Tetratic configurations persist for aspect ratios up
toκ; 7; this limit is also predicted byMC simulations ofHR in thermal equilibrium [7] and supported by
density-functional theories [16]. At even higher densities smecticfluctuations can also be seen in the
experiment [8].

Experiment

In the experiment (see [8] formore details) cylindersmade of nonmagnetic steel with length 4 mmandwidth
1 mm (κ=L/D=4) are placed inside a horizontal circular cavitymade of aluminium and covered from above
by a circularmethacrylate lid resulting in a free height of 1.8 mmand radiusR=7 cm (R L 17.5= ). The
sample ismechanically agitated using an electromagnetic shakerwhich generates a sine-wave verticalmotion of
frequency ν=37 Hz and amplitude a0 with an effective acceleration a g4 22

0p nG =  , with g the gravity’s
acceleration. The imageswere takenwith a carefully collimated digital camera during thewhole duration of the
experiment (roughly 3 h).

Particle identification (position and orientation) is done using the ImageJ [17] software supplemented by
our own image processing code. Three types of particle arrangements are observed: isotropic, where particles are
disordered in both orientations and positions; tetratic, where particles show fluid behaviour but are oriented on
average along two equivalent, perpendicular directions; and smectic, with particles forming fluid layers. These
configurations are identified bymeans of order parameters q ncosn J= á ñ, with n=2, 4 (respectively uniaxial
and tetratic order parameters), and q e q r

s
i= á ñ· (smectic order parameter) on each particle, whereϑ is the angle

of the particle with respect to the local alignment direction n̂, r its position and q awavevector compatible with
the cylinder length. In locally tetratic configurations q2<q4 and qs∼0; isotropic and smectic configurations
are identified by q2∼q4∼0, qs;0 and q2>q4, qs>0, respectively. Note that, in our experiments, extended
uniaxial nematic configurations are not formed for any value of aspect ratio and, due to geometric frustration
and excitation of vorticity smectic domains are limited in size and time [8].

Simulation

Two types of simulations have been performed in this work. First, we conducted equilibriumMC simulations on
a systemofHR that intends tomimic the experimental granular system, i.e. using the same particle aspect ratio,
cavity radius and packing fraction. Each particle is characterised by its position and orientation vector.N
particles are placed in a cavity of radius R L 17.5= . The interaction between the particles and the cavity is a
hard potential acting on the corners of the particles. That is, thewall-particle potential is infinity if at least one
corner of the particle is outside the cavity and vanishes otherwise.

Following the ideas of [18]we initialise the system at very low packing fractionj=0.1 forwhich the
equilibrium state is isotropic. Next we adiabatically increase the number of particles in steps ofΔj=0.05 until
the desired packing fraction is reached. After every increment in the number of particles we run 106Monte Carlo
Sweeps (MCS) to equilibrate the system. EachMCS is an attempt to sequentiallymove and rotate every particle
in the system. Themaximum rotation and displacement each particle is allowed to perform in oneMCS is

6
These defects have also been theoretically studied byMC simulations and elastic free-energy calculations on thermal systemswith tetratic

ordering on spherical surfaces, resulting in the presence of eight disclinations located at the vertexes of an anticube.
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recalculated in each simulation such that the acceptance probability of themotion is∼0.25. In order to insert
newparticles we randomly select one particle in the cavity and create a replica with the same orientation but
displaced by∼D along the long axis. If the newparticle overlaps with other particles or with the cavitywe reject
the insertion and select another randomparticle. Once a newparticle is acceptedwe perform a fewhundred
rotations and translations on it. The orientational order parameters and other quantities of interest, such as the
positions of the defects, are calculated following the same procedures as for the experiments.

Second, we performedBrownian simulations on systems of four point particles inside a circular cavity.
These effective particles represent point defects of the real system. The effective particles interact with each other
via a repulsive pair potential u s c s alog= -( ) ( ), where a is an irrelevant length-scale, s is the interdefect
distance, and c is a strength parameter related to the stiffness coefficient. The use of a logarithmic pair potential
can be justified by invoking the interaction that results from the solution of the Frank elastic theory [19]. In the
elastic theory the constant a is the characteristic dimension of the defect core. However at the dynamical level
this constant does not play any role because forces are not affected by its value. Thereforewe used a=R as a
length-scale. In addition, the effect of the cavity surface is introduced through a potential
V r R rexp l= - -( ) [ ( )], where ò, andλ are the strength and the inverse decay-length of thewall potential.
Defects are assumed to be subject to thermalfluctuations fromparticles in the tetraticmedium, driven by a
thermal energy kBT. These fluctuations are taken care of by solving a Langevin equation v F v gm i i i iz= - +˙ ,
wherem is an effectivemass, vi the velocity of the ith defect, Fi the force on the defect from the total potential
V r u r ,i j i ij z+ å ¹( ) ( ) a friction coefficient, and gi a stochastic white noise. Using the cavity radiusR and the
parameter c as length and energy scales, respectively, the dimensionless discretised equation, in the non-inertial,
Brownian regime, becomes

r r Ft h t t T t2 , 1i i i i* * * *hg g+ = + +( ) ( ) ( ) ( ) ( )

where r ti*( ) is the position of the ith defect in units ofR at time t, Fi* is the force on the ith defect in units of c/R,
T k T cB* = , whereT is an effective temperature, hc R2g z= , h the time step, and ih a dimensionless Gaussian
noise of unit variance and zeromean. The free parameters of themodel are T R,* *l l= , and c* = . Since
the simulations involve only four particles they can be extended for several hundredmillions time steps to collect
statistically significant information.

Results

Figure 1 shows particle configurations from (a) our experiment and (b)MCsimulation. In each case two values
of the packing fraction,j=0.70 and 0.75, are shown. The two orientational order parameters, uniaxial q2 and
tetratic q4, have been coded in false colour on each particle, using the same protocols in both experiment and
simulation. To obtain the order parameter fields at some point r we average over the particles locatedwithin a
circular region of radius ξ=4L centred at r as discussed in [8].

Figure 1.Colourmaps of the local tetratic q4 and uniaxial q2 order parameters. The colour of each particle represents the value of the
order parameter as specified in the central colour bar. Data for the casesj=0.70 and 0.75,κ=4 and R L2 35.0= from (a) the
experiment, and (b)MCsimulation. Particles have been slightly shortened to improve visualisation, and holes in (a) correspond to
particles that could not be identified by the imaging software.
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The structure in the cavity is similar in the two cases, experiment and thermalmodel. Also, tetratic
configurations are visible at the two densities, as indicated by the high values of the tetratic order parameter (see
central colour bar) and the low values of the uniaxial order parameter. In these ‘fluid’ configurations, which are
very stable, particles are globally oriented along two perpendicular directions, with approximately half of the
particles pointing in each direction. This balance holds locally, except in the high-density experimental
configuration shown, which exhibits clear patches where the q2 order parameter is enhanced; these correspond
to domainswhere particles point along a commondirection and organise into ‘smectic’ layers. Smectic domains
fluctuate in time in a sea of particles with tetratic order.When present, as in the configuration shown, they adopt
a four-fold symmetry. In the q4maps four regions containing particles with a q4-depleted neighbourhood are
also clearly visible. These regions are always present in this range of densities. They can be assimilated to point
defects of topological charge 1i = + (i=1,K, 4). The presence of these four defects restores the globally
tetratic symmetry, which is broken by the circular geometry of the cavity. The total charge+4 satisfies the
constraint imposed by theGauss–Bonnet theorem for amediumwithC4 symmetry. Note that these numbers
fulfil the equation pi i cå = , with p=4 the p-fold symmetry of the tetratic phase, whileχ=1 is the Euler
characteristic of the disk [19]. The same four-defect structure is visible in theMC simulations. Indeed the
thermal system reacts to confinement in the sameway as the granular system, i.e. by creating four point defects
symmetrically located next to thewall. In this case, however, smectic domains are never seen; instead, thewhole
cavity isfilledwith a defected smectic configuration at higher densities (not shown). By comparing the uniaxial
and tetraticmaps for densityj=0.75,figure 1(a), we can see that the smectic domains in the experiments at
high densities are located between neighbouring defects and close to thewall. As shown in our previous work,
the presence of smectic textures at high packing fractions in granular rodswith relative small aspect ratio is due
to strong particle clustering promoted by a local energy dissipationmechanism [8].

In order to understand the similarities and differences between the two systems inmore detail, we have
analysed the average defect behaviour. First we computed the position r x y,= ( ) of the point defects using the
q4 order parameter by identifying those particles with q4<0.2 in strongly-developed tetratic configurations
such as the ones shown infigure 1. This protocol leads to fourwell-separated groups of particles associatedwith
each of the four regionswhere the tetratic order is depleted. The centre ofmass of each group of particles, r , is
taken as the position of the corresponding defect. The same procedure is implemented in both experiments and
MC simulation.

In the following the lab frame is assumed to be placed at the centre of the circular cavity, and polar
coordinates r r rcos , sinq q= ( ) for the position of the defects are used to analyse various trends and
distributions. The unwanted tendency of the system to rotate [20], both in experiments and simulations, is
suppressed by calculating the instantaneous average of the azimuthal angle over the four defects and subtracting
this angle from the angular position of each defect. This process isolates the inherent fluctuations of the defects
about amean position by referring theirmotion to a frame that rotates rigidly with the sample. Figure 2 shows
the sampled positions of the defects in this frame for both systems at packing fractionj=0.75 (in the following
results are presented only for this case, since all the densities explored, in the rangej=0.70−0.75, are
qualitatively similar, while forj>0.75 large clusters in smectic-like configurations strongly compete with the
tetratic ordering). Defects are colour-coded according to either the experimental time or the ‘MCtime’. The plot
shows that the system is being sampled ergodically. Sampling in the experimental system is comparatively
poorer.

Figure 2. Sampling of defect positions in experiment (left) andMonteCarlo simulation (right). Colour bars below indicate the
experimental time in hours, and the ‘MC time’ in units of 108MC sweeps.
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The time evolution of defect positions in the experiment and in theMC simulation are shown in detail in
figure 3. Panels (a)–(c) correspond to the experiment, while panels (d)–(f) show theMC results. Figure 3(a)
shows the time evolution of the defect angles θi, i=1,L, 4, and also of the average angle with respect to the lab
frame. In this particular experiment the sample rotates globally in one direction, but this is not the case in
general. Clearly defects slowly rotate with approximately constant angular velocityω andwith superimposed
fluctuations. Particle tracking and velocity calculations indicate that this rotation is very rigid (i.e. linear velocity
is roughly proportional to radial distance). Some of thesefluctuations are correlated,meaning that the solid-
body rotation occurs at nonconstant angular velocityω(t).

Figure 3(b) shows the angles θiwith respect to the framewith axes rotatingwithω(t); in this frame individual
defectfluctuations about theirmean are isolated and can be properly analysed. The radial distance of the defects
alsofluctuates in time, figure 3(c). In general defects stay close to the surfaces, which results from the repulsive
defect interactions (we further comment on this point below).MC simulation results, shown infigures 3(d)–(f),
are qualitatively similar. Note that the poorer experimental sampling due to practical time restrictions limit the
temporal extent offluctuationswith respect to the simulation.

To show thefluctuation dynamics of the defects inmore detail, the distribution of azimuthal angle, f (θ), is
plotted infigure 4(a). Defect libration closely follows aGaussian distribution in both systems, but theMC result
presents a slightly broader distribution, although this is not conclusive due to the relatively poorer statistics in
the experiment. The radial distance distributions f1(r) in the granular and thermal systems are also qualitatively
similar, see figure 4(b). They are not Gaussian but bimodal. In the case of the experiment this is clearly seen in
figure 3(c), where the position of the two favoured distances is indicated by horizontal dotted lines. Our
interpretation for the bimodality is the following: even though defects repel each other, particles do form an
ordered surface structure thatmodifies thewall-defect interaction and prevents defects from reaching thewall.
However, when this surface layer is absent, defects can be in close contact with the surface, resulting in the
existence of two favoured distances from thewall. The thickness of the surface layer ismainly determined by the
density, but it differs substantially in the experiment andMC simulations, since the favoured particle surface
orientation is different. In the experiment, the orientation ismostly along thewall normal, with a thickness of
one or two particle lengths. In theMC simulations, by contrast, the orientation ismostly planar [18], with a
thickness of a few particle widths. In both cases the average defect position along the radial distance is
determined by the competition between the repulsive defect-defect interaction, which tends to push the defects
to thewall, and the repulsive surface-defect interaction, which depends on the particle orientation at thewall.
Thefinal distribution is bistable, but the location of the twomaxima is different in the experiment and in theMC
simulation because of the different particle orientation favoured at thewall.

Figure 3. (a)–(c)Experimental positions of the four defects as a function of time (given in hours). Data for each defect are displaced for
clarity. (a)Azimuthal angles θi in the lab frame for each defect (indicated as labels). The average angle is represented by the orange
curve. Dashed lines are linearfits, while labels in blue indicate the values of the slope in degrees per hour. (b) Same as in (a), but angles
referred to the instantaneous rotating frame (curve in orange in panel (a)). Labels indicate variance in each case. (c)Defect radial
distances r/R scaledwith cavity radius. Dashed lines indicate the edge of the cavity in each case, while dotted lines correspond to the
twomaxima of radial distance distribution,figure 4(b). Panels (d)–(f) show the samemagnitudes as obtained fromMC simulations. In
(d) labels indicate the absolute value of the slope in degrees perMCS,multiplied arbitrarily by a factor 2×108 tomake it of the same
order ofmagnitude as in panel (a).
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To better characterise the defect dynamics, we have also calculated the distribution of relative distances
between the defects, f2(s), which is shown infigure 4(c). As expected, it is also bimodal and exhibits twomaxima,
corresponding to the nearest neighbour and next-nearest neighbour distances. The ratio between the two is very
close to 2 , which confirms that the defects on average form a square configuration. This arrangement is again
the result of the repulsive surface–defect, and defect–defect interactions. The distribution can be regarded as a
superposition of two distributions located at the two characteristic distances.

The similarities between theMC simulations and the granular experiment shown above as regards the
distribution functions fi suggests that the non-equilibrium fluctuations of the order parameter field in the
experimental system can be assimilated to that of an effective systemof Brownian point defects interacting
through a fluctuating elasticmedium. Themediumwould be characterised bymeans of an elastic constant. The
mapping is natural for the equilibriumMC simulation.However, in the case of the experiment thismapping is
not clear. The connection can be realised by relating thefluctuations of the order parameter field in the
experiment, scaledwith an effective temperature, to that of the equilibrium system,measured through the usual
elastic constant scaledwith the temperature. Fluctuations in the experiment certainly depend on dissipation
mechanisms such as inelastic particle interactions or friction between particles. Also, the definition of
temperature in a granular system is controversial, and several choices can be found in the literature. Therefore
we suggest, as aworking hypothesis, that the the strength of elastic interactions, scaledwith an effective
temperature, in the granular and equilibrium systems, are similar.We used this scaled elastic constant
estimation as away to quantify these interactions. Themapping is amere hypothesis, and the precise value of the
scaled elastic constant in the granular systemmight be different to that obtained below. Therefore, our result
should be treated as a conjecture to be confirmed in the future by other directmethods.

We have implemented this procedure to extract information about the elastic stiffness coefficient of the
tetraticmedium. In fact, the use of elastic-theoretical concepts in the context of granularmonolayers is not new.
Galanis et al [3] applied elastic theory on the global orientation field of a vibratedmonolayer to infer the elastic
behaviour of amonolayer consisting of very long rod in a uniaxial nematic configuration.However, defects were
omitted from the analysis. Herewe proceed differently, and assume the defect dynamics shown in the previous
paragraphs can bemodelled by equilibrium thermalfluctuations of an effective systemof four Brownian
particles interacting through logarithmic potentials with no interveningmedium. Anumerical value for the
conjectured elastic stiffness coefficientK of the tetraticmedium is then extracted by comparing the defect
distribution of the experiment to that of the thermal effectivemodel, explored bymeans of Brownian
simulation.

As pointed out before, themodel has three free parameters:T*, R*l l= , and c* = . To obtain their
valueswe focus on the relative-distance distribution f2(s) and define a best-fit function in terms of the distance-
integrated square difference between the experimental and the time-averaged Brownian distribution extracted
from simulationwith fixed parameters T , ,* * *l . The values of these parameters are then optimised by
minimising this function (note that the simulation results do not depend on the scaled inverse friction
coefficient γ). The optimised values areT 0.07, 25* *l» » and 1.0* » . The optimised f2(s) function is
shown in green infigure 4(c). Thefitting is reasonable. Also infigure 4(b) the function f1(s) from the Brownian
simulation is shown in green. Despite not being used as a target function, the comparisonwith the experimental
distribution f r

1
exp ( )( ) is reasonable.

From the above optimised value of the parameters we obtain c k T14 B . Sincewe expect the coefficient c to
be related to the elastic stiffness coefficient by c=π k2K [19], where k=1/4 is thewinding number of each of
the four+1 defects, we obtain the elastic stiffness coefficient as K k T 70B  .We note that, to accommodate the

Figure 4. (a)Azimuthal angle distribution f (θ) from experiment (histogram) and simulation (black curve). (b)Radial distance
distribution f1(r) from experiment (histogram) and simulation (black curve), with respect to radial distance scaledwith cavity radius.
(c)Distribution of the relative-distance between defects, f2(s), with respect to the interdefect distance scaledwith cavity radius.
Histogram: experimental results. Black curve: simulation. Green curves in (b) and (c): Brownian simulation using the best-fitmethod
applied on f2(s), as explained in the text.
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fine structure of the experimental distribution f s
2

exp ( )( ) , we also used a bistable wall potentialV(r). The resulting
value for the scaledK hardly changes, even though thefit certainly improves.

It is interesting to note that the value of the scaledK obtained is remarkably close to the values of elastic
coefficients in two-dimensional nematic liquid-crystal phases. A two-dimensional nematic can only support
splay and bend distortions, with elastic coefficientsK1 andK3, respectively. In the tetratic phase symmetry
imposesK1=K3=K. To our knowledge the only calculations of elastic constants in two-dimensional liquid
crystals focused on rather long rods (which can only exhibit uniaxial nematic ordering [21]) at relatively low
densities. The values have the same order ofmagnitude as the one obtained here. Obviously afitting of the
Brownianmodel to theMC f2(s) function, which should be equivalent to a direct calculation ofK, gives a similar
value.However we note that, in the experiment, smecticfluctuations in the regions between neighbouring
defects are frequent, as can be seen infigure 1. This adds an extra stiffness to the effective defect interaction, a
feature that could explain the differences observed in f s2 ( ) between experiment and the equilibrium simulation.

Conclusions

In summary, we have shown that a vertically vibratedmonolayer of granular rods can form configurations with
tetratic symmetries in a circular cavity. To restore the global symmetry broken by the cavity, the systemdevelops
four localised defects close to thewall forming a square configuration. This is completely similar to the
behaviour of the equivalent thermalmonolayer, whichwe have also investigated usingMC simulation. In
addition, the defect fluctuations about their average positions in the experimental and thermal systems are
similar.We have exploited this observation to conjecture that a properly scaled elastic stiffness coefficient for the
granularmonolayer should be similar to that of the equilibriumMC simulation. In order to exploit this idea, a
Brownian dynamics simulation has been used to extract a value for such a scaled elastic constant. The resulting
value is close to those obtained from equilibrium theories on hard rods in two dimensions. Our results give
evidence that vibratedmonolayers of dissipative particles, at least in somewindowof experimental conditions,
have similar ordering properties, respond equally to symmetry-breaking external fields, andwould possess
elastic stiffness constants as in the corresponding thermal systems.

The fact that the number of defects and their spatial distributions depend on the symmetry of the ordered
phases (nematic, tetratic or smectic) and on the geometrical restrictions imposed by confinement,makes
granular rodmonolayers an ideal tool to device well controlled experiments with the aim to study the
dependence of these properties on the systemboundary conditions. For example the design of a ring-shaped
container could change the nature of stationary textures present in the system and also the distribution of defects
[22]. Note that, in experiments on colloidal ormolecular systems, the presence of non-controlled
heterogeneities at particle length scales in the confining surfaces gives rise to important fluctuations that distort
the orientational director field and consequently thefinal distribution of defects.Moreover, the study of liquid-
crystalline textures and defects in granular systems is not limited to quasi-two-dimensional systems [23].
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