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Abstract 

Although the pyrolite model is widely accepted as providing the chemical composition of 

the Earth’s fertile upper mantle, it is still not clear whether it is also representative of the 

lower mantle. A comparison between seismic wave velocities in the lower mantle with 

models for what these velocities should be if the lower mantle has a pyrolitic composition is 

the only way to ultimately test this assumption. This requires data on mineral elastic 

properties and a method for determining the proportions and compositions of minerals as a 

function of depth and bulk composition. The Earth’s lower mantle is comprised mainly of 

the mineral bridgmanite (Brg), with lesser amounts of ferropericlase (Fp) and CaSiO3 

perovskite. In this study multi-anvil experiments have been performed to derive a 

methodology for determining the compositions of Brg and Fp as a function of bulk 

composition in the lower mantle. As Brg can contain significant proportions of ferric iron it is 

also important to predict the composition of Brg as a function of oxygen fugacity. Brg-Fp 

assemblages have been synthesized with different proportions of Fe and Al and at different 

oxygen fugacities at 25 GPa and 1973 K. Water was added to some assemblages to induce 

the growth of large Brg single crystals with differing amounts of Fe2+, Fe3+ and Al. This 

produced hydrous partial melts that were also examined.  

In the first part of the study, single crystal X-ray diffraction measurements were made on ten 

Brg single crystals with different compositions. Based on these measurements and some 

data from the literature the partial molar volumes of the main Brg components were 

determined assuming a linear volume-composition relationship. These volumes, which are 

essential for the thermodynamic description of Brg chemistry at high pressures, decrease in 

the order: FeFeO3 > MgFeO2.5 > FeAlO3 > MgAlO2.5 > AlAlO3> FeSiO3 > MgSiO3. All lattice 

parameters, B-O bond distances, octahedral tilting and polyhedral distortion as well as the 

spontaneous strain components, e4 and etx, increase with charge coupled M3+M3+O3 

(M3+=Al3++Fe3+) and oxygen vacancy MgM3+O2.5 substitution, whereas the octahedral tilting 

and A-site distortion decrease with Fe2+SiO3 substitution. Calculations based on the bond 

strengths of individual B-O and A-O lengths suggest that the octahedral tilting of Fe,Al-

bearing Brg increases with pressure and point to a more compressible octahedral site and 

less compressible A-site with respect to the MgSiO3 end-member.  
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In the second part of this study, the Fe3+ content of Brg was investigated experimentally as a 

function of composition and oxygen fugacity (fo2). Recovered samples were analyzed using 

the electron microprobe and Mössbauer spectroscopy. The Brg Fe3+/ΣFe ratio increases with 

Brg Al content and fo2 and decreases with increasing total Fe content and with temperature. 

The fo2 dependence was found to decrease with increasing Al content. Thermodynamic 

models were calibrated to describe Brg and Fp compositions in the Fe-Mg-Si-O and Fe-Al-

Mg-Si-O systems as well as the inter-site partitioning of 3+ cations in Brg. These models fit 

the experimental data very well, particularly given the small number of adjustable terms. 

The models allow the mineral compositions for plausible mantle bulk compositions to be 

calculated as a function of fo2 and can be extrapolated to higher pressures using data on the 

partial molar volumes of Brg components. The results show that Fe-Mg partitioning 

between Brg and Fp is strongly fo2 dependent, which allows the results of previous 

contradictory studies to be brought into agreement. For a pyrolite bulk composition with an 

upper mantle bulk oxygen content, a lower mantle fo2 of IW – 0.8 is indicated with a Brg 

Fe3+/ΣFe ratio of 0.51 and a bulk rock ratio of 0.28. This requires the formation of 0.6 wt.% 

Fe-Ni alloy. With increasing pressure, the model predicts a gradual increase in the Fe3+/ΣFe 

ratio in Brg in contrast to several previous studies. Oxygen vacancies in Brg decrease to 

practically zero by 40 GPa, likely influencing transport properties in the top portion of the 

lower mantle. 

Lastly, using analyses of melts coexisting with Brg and Fp a thermodynamic model was 

developed to describe the Fe-Mg exchange between Brg and hydrous melt. Based on this 

model melt compositions were calculated at different assumed melt fractions (0.1 wt.%- 1 

wt.%) for a pyrolite composition and the corresponding melt density was calculated along a 

mantle geotherm from 22-28 GPa. The density of a 1 wt.% hydrous partial melt is 

significantly lower than the surrounding lower mantle but is close to neutral buoyancy at 

the base of the transition zone. This raises the possibility that hydrous melts might rise out 

of the lower mantle but pond or freeze on entering the transition zone. If such a process 

occurs in regions of down-welling then melt bearing regions may be continuously dragged 

into the lower mantle before grain scale migration allows melts to flow upwards, potentially 

creating long term seismically observable low velocity layers. 
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Zusammenfassung 

Obwohl das Pyrolit-Modell weitestgehend akzeptiert ist als das, das die chemische 

Zusammensetzung des oberen Erdmantels darstellt, ist es jedoch nicht klar, ob die Pyrolit-

Zusammensetzung auch repräsentativ für den unteren Erdmantel ist. Ein Vergleich zwischen 

seismischen Wellengeschwindigkeiten als Funktion der Tiefe im unteren Erdmantel  und 

Modellen dieser Geschwindigkeiten für eine pyrolitische Zusammensetzung des unteren 

Erdmantels ist die einzige Möglichkeit, diese Annahme schlussendlich zu testen. Das 

erfordert Daten über die elastischen Eigenschaften der Minerale sowie eine Methode zur 

Bestimmung der Anteile und Zusammensetzung der Minerale als Funktion der Tiefe und der 

Gesamtzusammensetzung. Der untere Erdmantel besteht hauptsächlich aus dem Mineral 

Bridgmanit (Brg), mit geringeren Anteilen von Ferroperiklas (Fp) und CaSiO3 Perowskit. In 

der vorliegenden Arbeit wurden Experimente mit der Vielstempelpresse durchgeführt, um 

eine Methodologie zur Bestimmung der chemischen Zusammensetzung von Brg und Fp als 

Funktion des Gesamtchemismus im unteren Erdmantel zu abzuleiten. Da Brg signifikante 

Anteile von Eisen im oxidierten Zustand enthalten kann, war es außerdem auch wichtig, die 

Zusammensetzung von Brg als Funktion der Sauerstoffugazität vorhersagen zu können. Brg-

Fp Aggregate wurden von Ausgangszusammensetzungen mit unterschiedlichen Anteilen von 

Fe und Al sowie bei verschiedenen Sauerstoffugazitäten bei 25 GPa und 1973 K synthetisiert. 

Wasser wurde bei einigen Ausgangsmaterialien hinzugegeben, um das Wachstum von 

großen Brg Einkristallen mit verschiedenen Anteilen von Fe2+, Fe3+ und Al zu induzieren. Das 

führte außerdem zur Bildung von hydratisierten Schmelzen, die auch untersucht wurden.  

Im ersten Teil der vorliegenden Arbeit wurden Röntgenbeugungsmessungen an zehn Brg 

Einkristallen mit verschiedenen Zusammensetzungen durchgeführt. Basierend auf diesen 

Messungen und Literaturdaten wurden die partiellen Molarvolumen der Brg-

Hauptkomponenten unter der Annahme einer linearen Beziehung zwischen Volumen und 

Zusammensetzung bestimmt. Die Volumen sind essentiell für die thermodynamische 

Beschreibung des Brg Chemismus unter Hochdruckbedingungen und nehmen in dieser 

Reihenfolge ab: FeFeO3 > MgFeO2.5 > FeAlO3 > MgAlO2.5 > AlAlO3> FeSiO3 > MgSiO3. Alle 

Gitterparameter, B-O Bindungsabstände, Oktaederkippungen und Polyederverformungen 

sowie die spontanen Strainkomponenten e4 and etx steigen mit den ladungsgekoppelten 
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M3+M3+O3 (M3+=Al3++Fe3+) und an Sauerstoffleerstellen gebundenen MgM3+O2.5 

Substitutionen an, während die Oktaederkippung und die Verformung des A Gitterplatzes 

mit der Fe2+SiO3 Substitution abnehmen. Auf der Bindungsstärke der individuellen B-O und 

A-O Bindungslängen basierende Berechnungen deuten darauf hin, dass die 

Oktaederkippung von Fe,Al-haltigem Brg mit Druck zunimmt und zeigen einen stärker 

komprimierbaren Oktaeder-Gitterplatz und einen weniger komprimierbaren A-Gitterplatz 

relativ zum MgSiO3-Endglied auf. 

Im zweiten Teil dieser Untersuchung wurde der Fe3+-Gehalt von Brg experimentell als 

Funktion von chemischer Zusammensetzung und Sauerstoffugazität untersucht. Aus 

Experimenten gewonnene Proben wurden dazu mithilfe der Elektronenmikrosonde und der 

Mössbauerspektroskopie analysiert. Das Brg Fe3+/ΣFe Verhältnis steigt mit Brg Al-Gehalt 

und Sauerstoffugazität (fo2) an und verringert sich mit steigendem Gesamt-Fe-Gehalt und 

mit steigender Temperatur. Die fo2 Abhängigkeit verringert sich mit steigendem Al-Gehalt. 

Thermodynamische Modelle wurden kalibriert, um die Brg und Fp Zusammensetzungen in 

den Fe-Mg-Si-O and Fe-Al-Mg-Si-O Systemen sowie die Verteilung von 3+ Ionen zwischen 

Gitterplätzen in Brg zu beschreiben. Das Modell reproduziert die experimentellen Daten 

sehr gut, insbesondere angesichts der geringen Anzahl von anpassbaren Termen. Das 

Modell erlaubt es ausserdem, die Mineralzusammensetzungen für plausible 

Gesamtzusammensetzungen des Mantels als Funktion der Sauerstoffugazität zu berechnen 

und kann durch die Nutzung der Daten der partiellen Molarvolumen der Brg-Komponenten 

zu höheren Drücken extrapoliert werden. Die Resultate zeigen, dass die Fe-Mg Verteilung 

zwischen Brg und Fp stark abhängig von fo2 ist, so dass die Resultate vorhergehender, sich 

widersprechender Studien wahrscheinlich in Einklang zu bringen sind, wenn fo2 

berücksichtigt wird. Für eine Pyrolit-Gesamtzusammensetzung mit einem Sauerstoffgehalt 

wie im oberen Erdmantel ergibt das Modell eine Mantel fo2 von IW – 0,8, einem Fe3+/ΣFe 

Verhältnis von 0,51 für Brg und 0,28 für das Gesamtgestein, was die Bildung von 0,6 Gew.% 

Fe-Ni Legierung bei 25 GPa erfordert. Mit ansteigendem Druck sagt das Modell einen 

graduellen Anstieg im Fe3+/ΣFe Verhältnis von Brg voraus, was im Widerspruch zu einigen 

vorhergehenden Studien steht. Die Sauerstoff-Leerstellen-Komponente von Brg reduziert 

sich gegen praktisch Null bei 40 GPa, was die Transporteigenschaften im oberen Bereich des 

unteren Mantels stark beeinflussen würde. 
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Im letzten Teil der Arbeit wurde ein thermodynamisches Modell entwickelt, das, basierend 

auf chemischen Analysen der Schmelzen, die mit Brg und Fp koexistieren, den Fe-Mg 

Austausch zwischen Brg und wasserhaltigen Schmelzen bei 25 GPa und 1923 K beschreibt. 

Mit diesem Modell wurden Schmelzzusammensetzungen bei unterschiedlichen 

Aufschmelzungsgraden (0,1 - 1 Gew.%) für eine Pyrolitzusammensetzung berechnet und die 

korrespondierenden Schmelzdichten wurden entlang einer Mantelgeotherme von 22 bis 28 

GPa ermittelt. Die Dichte einer 1 Gew.% wasserhaltigen Schmelze wäre signifikant geringer 

als die des umgebenden unteren Mantels, aber sie hätte einen nahezu neutralen Auftrieb 

an der Basis der Ü bergangszone des Erdmantels. Das eröffnet die Möglichkeit, dass 

wasserhaltige Schmelzen aus dem unteren Mantel aufsteigen, aber sich an der 

Ü bergangszone sammeln oder kristallisieren. Wenn ein solcher Prozess in Regionen von 

absinkendem Material vorkommt, dann würden schmelzhaltige Bereiche kontinuierlich in 

den unteren Mantel transportiert, bevor Migration auf der Kornebene ihnen erlauben 

würde wieder aufwärts zu fließen, und so potentiell zur Bildung einer seismisch 

detektierbaren Schicht mit niedrigen Wellengeschwindigkeiten beizutragen. 
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1 Introduction 

The lower mantle makes up by far the largest region of the Earth and its composition is not 

only important for understanding how, and from what, the Earth was formed, but also for 

determining the style of mantle convection and the geochemical evolution of the interior. 

Despite the importance of the lower mantle’s composition to the geophysical and 

geochemical state of the Earth, it remains uncertain. It is still a matter of debate, for 

example, whether the lower mantle is chemically different from the upper mantle. The only 

feasible way to ultimately constrain this composition is through the interpretation of 

seismic wave velocities as they travel through the lower mantle (Cottaar et al., 2014; 

Jackson, 1983; Stixrude and Jeanloz, 2007). In order to do this a mineral model is required 

that reproduces the elastic properties, and therefore the seismic velocities, of the lower 

mantle for a specific chosen bulk composition.  Such a model principally requires data on 

the elastic properties of minerals at suitable pressures and temperatures. A further 

important aspect, however, is the necessity to determine the compositions and proportions 

of the mineral phases as a function of pressure, temperature and bulk composition because 

elastic properties are dependent on mineral chemistry (Boffa Ballaran et al., 2012; Chantel 

et al., 2012; Lin et al., 2013). The bulk composition of the lower mantle can then be 

evaluated from the extent to which the mineral physics-based model, based on a specific 

composition, matches the observed seismic velocity profiles. Although there may be more 

than one bulk composition and adiabatic profile that gives a good fit to these profiles (Bina 

and Helffrich, 2014), the results would nevertheless place constraints on plausible solutions 

and potentially exclude possible scenarios. The chemical compositions of individual minerals 

in the lower mantle are also important for understanding transport properties such as 

rheology (Holzapfel et al., 2005) and electrical and thermal conductivity (Keppler et al., 2008; 

Manthilake et al., 2011; Ohta et al., 2014; Okuda et al., 2019; Xu et al., 1998) and for 

exploring the origin of mineral inclusions in diamonds that are proposed to come from the 

deep mantle (Kaminsky et al., 2015; McCammon et al., 1997; McCammon et al., 2004c; 

Walter et al., 2011). The diamond anvil cell based experimental methods used to explore 
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the mineralogy of the lower mantle have intrinsic uncertainties due to small sample sizes 

and large thermal gradients. For this reason, it is essential to have a thermodynamic model 

based on a rigorous set of experiments performed at well constrained experimental 

conditions that can be used to assess and interpolate between high pressure data sets. 

This thesis is aimed at understanding the composition of the dominant lower mantle 

mineral bridgmanite and determining how its composition and structure will be influenced 

by changes in chemistry and oxygen fugacity. Understanding the controls on the chemistry 

of bridgmanite is the first step in ultimately modelling the mineral physics and seismic 

properties throughout the lower mantle.  

1.1 Seismic observations of the mantle 

Seismic waves propagating through the Earth’s interior provide direct information on the 

Earth’s structure, since their propagation velocities depend on the density and elasticity of 

the medium they travel through. Geophysical observations are therefore essential for 

constraining any mineral physics model of the deep Earth. 

1.1.1 Velocity-depth profile 

Spherically symmetrical (1D) Earth models such as the Preliminary Reference Earth Model 

(PREM, Dziewonski and Anderson, 1981), iasp91 (Kennett and Engdahl, 1991) and AK135 

(Kennett et al., 1995) are based on a large catalogue of body-wave travel times and normal 

mode observations (standing waves due to the free-oscillation of the Earth) and provide 

profiles of wave velocity, density, and attenuation throughout the Earth. In these models, 

velocities are refined to a set of polynomial functions that operate over certain depth 

ranges, with assumed seismic discontinuities at certain depths (Fig. 1.1). Several 

discontinuities in the upper mantle have been well established, the properties of which 

provide a link between mineral physics experiments and seismic observations as well as 

important constraints on models of mantle composition and dynamics. These discontinuity 

properties include the discontinuity depths and topography, the size of the velocity and 
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density increases and the sharpness of the boundaries. Discontinuities in the transition zone, 

for example, are considered to arise from nominally isochemical first order mineral phase 

transitions. The depths of these discontinuities can, therefore, be interpreted, through 

experimental studies, to provide information on the temperature of the mantle. 

 

Figure 1.1 The density ρ, S wave velocity Vs and P wave velocity Vp as a function of depth according 

to the PREM model (Dziewonski and Anderson, 1981).  

1.1.1.1 Discontinuity depth  

The depths of seismic discontinuities can be obtained using a variety of approaches 

including analysis of seismic waves that bottom near the discontinuities (refractory 

seismology) or seismic waves that are either reflected or converted at the discontinuity 

(Shearer, 2000). The Mohorovicic discontinuity marks the base of the crust and the top of 

the Earth’s upper mantle. Two major global seismic discontinuities of the mantle transition 

zone at mean depths of about 410 and 660 km (hereafter termed 410 and 660) have been 

well established by observations in SS (S phase with one reflection at the surface) (e.g. Heit 

et al., 2010 and references therein), PP (P phase with one reflection at the surface) (e.g. 

Deuss, 2009 and references therein), and P’P’(abbreviation of PKIKP, a P phase bottoming 

in the inner core with one reflection at the surface) precursors (e.g. Day and Deuss, 2013 
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and references therein), Ps (P-to-S converted wave) and Sp (S-to-P converted wave) 

conversions at the discontinuities (receiver functions) (e.g. Andrews and Deuss, 2008 and 

references therein), and ScS (S wave reflected from the core-mantle boundary) 

reverberations (e.g. Katzman et al., 1998 and references therein), whereas the presence of 

a discontinuity at about 520 km (hereafter termed 520) has been controversial (e.g. Kind 

and Li, 2015 and references therein). This discontinuity is clearly observed in some regions 

by SS precursor, PP precursor, ScS reverberation and receiver function studies but it is not 

visible in other regions. Therefore, the 520 does not appear to be a laterally homogeneous 

global discontinuity, but also it cannot be considered a local one because it has a relatively 

common distribution (e.g. Kind and Li, 2015 and references therein). All modern global 

reference Earth models (Brown and Shankland, 1981; Kennett and Engdahl, 1991; Kennett 

et al., 1995) include a sudden increase of the velocities of the elastic waves and densities at 

410 and 660 km, while the 520 is absent in all but the mineral physics based model of 

Cammarano et al. (2005).  The depth ranges reported for the 410, 520 and 660 are from 390 

km to 430 km, from 500 km to 520 km and from 650 km to 680 km, respectively. The SS 

precursor observations may be the most suitable for globally averaged depth estimates due 

to the wide distribution of their bounce points which provides comprehensive global 

coverage (Shearer, 2000), resulting in mean discontinuity depths close to 410, 520 and 660 

km. These average discontinuity depths to a first approximation match well with those 

expected for the pressure and temperature-induced phase transitions from olivine to 

wadsleyite, from wadsleyite to ringwoodite and from ringwoodite to bridgmanite (Brg) plus 

ferropericlase (Fp), respectively. If this is true, the discontinuity depth could provide 

relatively direct information on mantle temperatures using knowledge of the 

transformation boundaries of certain mineral phase changes.  

1.1.1.2 Discontinuity topography 

Differences among discontinuity depth estimates obtained in different studies imply that 

global variations in discontinuity depths, i.e. topography, exists (Shearer, 2000) that can be 

most likely attributed to mantle temperature variations. Discontinuity topography may be 
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detected using SS precursor techniques, ScS reverberations or Ps and Sp conversion 

techniques (Kind and Li, 2015). Precursor techniques can reach locations without local 

stations or earthquake sources, allowing a better global distribution of sampling points. The 

resolution of long period SS precursors does not allow small-scale topography of the 

discontinuities to be resolved because they are associated with maximum travel-time 

phases and can be contaminated by small scale, off-great-circle-path structure (Kind and Li, 

2015; Shearer, 2000). Small-scale discontinuity topography less than a few tens of 

kilometers can be detected instead using Ps and Sp conversion techniques, i.e. waves 

reflected or converted at the discontinuities close to either the source or receiver (receiver 

function) (Kind and Li, 2015). The converted phases are minimum travel-time phases and 

allow a better resolution due to their smaller Fresnel zones but are restricted to near-

station or earthquake locations (Kind and Li, 2015).  

The amplitude of the global 660 topography (38-50 km) appears to be larger than the 

410 topography (22-40 km) (Flanagan and Shearer, 1998; Gu et al., 2012; Shearer, 1991, 

1993). Whether the 410 and 660 are globally anticorrelated is still under debate due to 

contradictory observations (Gu et al., 2003; Gu et al., 2012; Hu et al., 2013; Humphreys et 

al., 2000; Ramesh et al., 2005). Both global and high-resolution local observations show 

depression of the 660 of between 20 and 50 km at subduction zones on a large scale (Tibi 

and Wiens, 2005; Tonegawa et al., 2005; Tonegawa et al., 2006; Tono et al., 2005). Evidence 

of 410 uplift at subduction zones, instead, is less convincing due to locally contradicting 

observations (Tibi and Wiens, 2005; Tonegawa et al., 2005; Tonegawa et al., 2006; Tono et 

al., 2005). The transition zone structure beneath hot spots, many of which are in oceanic 

regions, is less clear due to the limited data set (Kind and Li, 2015). To a first approximation 

the discontinuity topography provides information on lateral mantle temperature variations 

and depends on the Clapeyron slopes of the mineral transformations giving rise to the 

discontinuity, although other factors such as chemistry and metastable olivine due to 

sluggish kinetics at low temperature may also play a role (Kirby et al., 1996). The Clapeyron 

slopes of mineral phase transitions can be determined by means of high pressure and high 

temperature experiments, but to be useful they need to be determined with high accuracy. 
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The local elevation of the 410 and depression of the 660 near the slabs (Fig. 1.2) are 

consistent with the opposite sign of the Clapeyron slopes of corresponding phase 

transitions (Helffrich and Bina, 1994; Shearer, 2000). If the Clapeyron slope of the 410 phase 

transition is higher than that of the 660 as some mineral physics studies proposed (Hirose, 

2002; Irifune, 1998; Ito and Takahashi, 1989; Katsura et al., 2004; Katsura et al., 2003), the 

above mentioned observation would indicate larger lateral temperature variations at 660 

km depth. 

 

Figure 1.2 Topography of 410 and 660 km discontinuities in the region of the Japan subduction zone 

(modified from Tonegawa et al., 2005). (a) Depth variations of 410 km discontinuity. (b) Depth 

variations of 660 km discontinuity. The black curves denote the depth contours corresponding to the 

top surface of the Pacific Plate (PAC). Colors indicate differences from 410 km and 660 km. Red to 

yellow shows the elevation and pale-blue to blue shows the depression. The black ellipse indicates 

the uplift portion of 410 km discontinuity.  

1.1.1.3 Discontinuity sharpness 

The sharpness of the transition zone discontinuities, i.e. the depth interval over which a 

discontinuity occurs, can be determined using observations of high-frequency data such as 

P’P’ precursors or locally reflected and converted seismic waves because such high-

frequency seismic waves can only be influenced by a high impedance contrast (equal to the 

product of compressional velocity and density) across a narrow discontinuity.  These data 

are consistent with a sharp 660 (≤2 km thick) and a more diffuse 410 discontinuity which 
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can be modelled as a 7-km-wide gradual transition with a sharp jump at the end (Xu et al., 

2003). The variation of the sharpness of 660 discontinuity among different areas was quite 

small between 2-5 km (Benz and Vidale, 1993; Tibi and Wiens, 2005; Tonegawa et al., 2005; 

Yamazaki and Hirahara, 1994) while the 410 may be more variable in sharpness than 660 

which ranges from 2 to 35 km (Benz and Vidale, 1993; Priestley et al., 1994; Tonegawa et al., 

2005; Yamazaki and Hirahara, 1994). Two exceptions were reported by Bostock (1996) and 

Petersen et al. (1993) who found a sharper 410 (5-7 km) than 660 (20-30 km) from Ps 

conversion studies. The 520 reflector was observed in long-period SS precursor studies but 

absent in high-frequency P’P’ precursor observations, suggesting that the thickness of 520 

discontinuity is between 10 and 50 km (Shearer, 2000). The sharpness of the discontinuities 

provides important information of the deep mantle. If the phase transition of the olivine 

system is responsible for the discontinuities, the pressure interval of the phase transition 

should be consistent with the sharpness of the discontinuity.  

1.1.2 Lateral heterogeneity  

The oceanic lithosphere is thought to drive convection and create chemical heterogeneity in 

the mantle during subduction.  A subducting slab is in fact a downward continuation of the 

surface oceanic plate, marked seismologically by high P-wave and S-wave velocities and low 

P-wave and S-wave attenuations and geodynamically by low temperature, high density, and 

negative buoyancy relative to the surrounding mantle. The most reliable indicator of a 

subducting slab is the positive anomaly of seismic velocity. 

Near-horizontal deflection of subducted slabs was first detected by Okino et al. (1989) 

from travel time analysis and later imaged by Van der Hilst et al. (1991) and Van der Hilst 

and Seno (1993) in the transition zone beneath Japan and by Fukao et al. (1992) in the 

western Pacific using P-wave travel time tomography. Fukao et al. (2001) referred to these 

subducted slabs with a tendency to horizontally flatten at various depth between ~ 400 and 

1000 km as stagnant slabs. Fukao and Obayashi (2013) systematically imaged the subducted 

slabs in the circum-Pacific region revealing a progressive lateral variation of the 

configuration of slabs along arcs. They interpreted this systematical change as an indication 
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for successive stages of slab subduction and identified four distinct stages: (1) slab stagnant 

above the 660 discontinuity; (2) slab penetrating the 660 km discontinuity; (3) slab trapped 

in the uppermost lower mantle at a depth of 660-1000 km and (4) slab descending well into 

the deep lower mantle (Fig. 1.3, Fukao and Obayashi, 2013). Moreover, at least some slab 

segments appear to sink to the core-mantle boundary (Van der Hilst et al., 1997). As there is 

no velocity discontinuity in one-dimensional seismic models (Dziewonski and Anderson, 

1981) nor known phase transition at ~ 1000 km depth, the reason for slab stagnation at this 

depth which may lead to the formation of chemically distinct reservoirs in Earth’s deep 

mantle (Hofmann, 1997), is still unclear. A possible explanation of increasing viscosity in this 

region between 800 and 1200 km depth has been proposed (Marquardt and Miyagi, 2015; 

Rudolph et al., 2015), which would have to result from changes in the rheological properties 

of mantle minerals and rocks. A further possibility would be the attainment of neutral 

buoyancy between the slabs and the surrounding mantle. To evaluate either possibility 

requires a detailed understanding of the chemistry, defect structures and elastic properties 

of lower mantle minerals. 
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Figure 1.3 Seismic images of stagnant slabs in the transition zone (left) and of trapped slabs in the 

uppermost lower mantle (right) from five subduction zones. Each pair of the left and right images 

horizontally belongs to the same subduction zone (Modified from Fukao and Obayashi, 2013). 

1.2 Chemical composition of the mantle 

There are three main approaches which have been used to estimate the chemical 

composition of the upper mantle: (1) using analysis of primitive peridotites; (2) using mantle 

melt-residue relations; (3) using cosmochemical constraints. 

The first approach makes use of petrological and geochemical analyses of tectonically 

exposed mantle rocks such as massif peridotites and ophiolite bodies, abyssal peridotites 

and xenoliths in kimberlites and alkali basalts. For example, Jagoutz et al. (1979) used the 

average composition of six seemingly fertile spinel lherzolite xenoliths (Fig. 1.4) which were 

believed to have experienced only very small degrees of partial melting. High pressure and 

high temperature experiments (Fujii and Scarfe, 1985; Hirose, 1997; Hirose and Kawamoto, 

1995; Hirose and Kushiro, 1993) have shown that 10-30% partial melting of lherzolite is able 

to produce ordinary basaltic melts; lherzolites, therefore, represent a fertile bulk 

composition. By contrast, harzburgites or dunites represent the most melt-depleted 

refractory mantle bulk compositions (Fig. 1.4). Care must be taken to choose such primitive 

samples. On the one hand, most natural peridotites are depleted in incompatible elements 

to different extents, i.e. they have lower contents of CaO, Al2O3, Na2O, etc. than the fertile 

mantle is expected to have (Palme and O'Neill, 2014). On the other hand, some peridotites 

with the highest CaO and Al2O3 may also not represent the pristine peridotite because they 

show evidence of metasomatism which may replenish incompatible elements after melt 

extraction (Palme and O'Neill, 2014). However, aside from a few inclusions in diamonds that 

may have a deeper origin, most mantle rock samples come from depths less than ~ 200 km, 

therefore studies on natural samples can constrain only the composition of the upper 

mantle. Isotope and trace element heterogeneities found in ocean island basalts (OIB), 

which are considered to derive from plumes rising from the Earth’s lower mantle, have led 

geochemists to argue for an undepleted and undegassed reservoir as a result of limited 
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mass exchange between the lower and the upper mantle (Albarède and van der Hilst, 2002; 

Arevalo and McDonough, 2010; Jochum et al., 1983).  

 

Figure 1.4 Mineralogical classification ternary diagram for peridotites and pyroxenites. Peridotite 

have > 40% olivine. The shaded field represents the range of values for most upper mantle 

peridotite samples. The arrows indicate the melting trend from lherzolite (L) to harzburgite (H) to 

dunite (D) (Modified from McDonough and Rudnick, 1998).  

Rather than directly using the chemical composition of natural samples, the second 

approach is based on melt-residue relations. Pyrolite, a theoretical model mantle 

composition conceived by Ringwood as the source rock for mid-oceanic ridge basalts 

(MORB), was constructed by mixing a mantle-derived magma (basaltic or komatiitic) with a 

refractory residue (harzburgite or dunite) in proportions so that the resultant model mantle 

would contain 3-4 wt.% CaO and Al2O3 and olivine of approximately Fo89 composition 

(Ringwood, 1975; Sun, 1982). The term ‘Pyrolite’ refers, thus, to a model-dependent 

composition instead of a rock type and consists of a mineralogy dominated by olivine > 

pyroxene and capable of yielding basaltic magmas during partial melting. Whether this 

mineralogical model is also capable of describing the composition of the lower mantle is still 

a matter of debate. However, if the mantle convects and mixes as a single unit then the 

asthenospheric mantle that melts beneath ridges should have the same composition as the 

lower mantle. 
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The third approach consists of constructing compositional models based on chondritic 

meteorite compositions. Chondrite classification is based on bulk chemistry, oxygen isotopic 

composition, mineralogy, petrology and proportions of various chondritic components (Krot 

et al., 2014). Fourteen groups of chondrites have been recognized and thirteen of them 

comprise three major classes: carbonaceous (C), ordinary (O), and enstatite (E), each of 

which contains different groups. If we assume these chondrites to be the possible building 

blocks of the Earth, the mass ratio between the Earth’s core and mantle as well as their 

chemical compositions could be calculated based on the bulk composition of these 

meteorites. CI carbonaceous chondrites may be the most suitable for this purpose as they 

are the most primitive chondritic meteorites having a composition which closely matches 

that of the solar photosphere (Allègre et al., 1995; Li and Fei, 2014; Lodders, 2003). Most 

meteorite-based Earth models assume that the refractory lithophile elements have 

chondritic ratios but models then differ in the way they consider major element abundances. 

Some models assume that the Earth has a bulk major element composition equal to that of 

CI carbonaceous chondrites or enstatite chondrites (Allègre et al., 1995; Javoy, 1995), 

whereas other models assume that the Earth is depleted in major elements (50% 

condensation temperature TC=1355-1250 K) relative to the refractory lithophile elements 

(TC=1850-1355 K) (McDonough and Sun, 1995; Palme and O'Neill, 2014). As Mg and Si are 

depleted in the upper mantle relative to refractory lithophile elements, when compared to 

all chondritic meteorites, the first class of models appeal either to a superchondritic Mg/Si 

ratio or to an additional reservoir of Si either in the core or lower mantle. Such models are, 

therefore, often cited as evidence that the lower mantle is chemically different from that of 

the upper mantle. The question of whether the lower mantle is isochemical with the upper 

mantle is therefore a complex issue which is still controversial. Some believe peridotitic or 

pyrolitic materials are dominant in the whole mantle (e.g. Ringwood, 1962), while others 

claim a more Fe and Si-rich lower mantle (e.g. Anderson, 1989; Hart and Zindler, 1986; Liu, 

1982). Although it is difficult to unambiguously resolve such a controversy based on the 

current seismological observations and mineral -physics data (e.g. Bina, 2003; Mattern et al., 

2005), most geophysical observations such as seismic velocities and electrical conductivity 
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measurements are in reasonable agreement with a pyrolitic whole mantle composition to a 

first approximation, although the uncertainties are currently very large. Indeed, seismic 

tomography supports ‘whole-mantle’ circulation with oceanic lithosphere subducted into 

the lower mantle and a return flow of upwelling plumes into the upper mantle (Bercovici 

and Karato, 2003). This evidence, however, does not exclude the possibility that the mass 

exchange between the upper and lower mantle has been only partial during the history of 

the Earth and that very deep regions of the lower mantle may have indeed a different 

composition (Ballmer et al., 2017; Kellogg et al., 1999).  

Estimated bulk silicate Earth/upper mantle compositions from different studies using 

various methods are compared in Table 1.1, which show remarkable similarity to one 

another in major element concentrations. As mentioned above, models assuming similar 

bulk Earth major element concentrations with chondritic meteorites require a lower Fe and 

higher Si content for the lower mantle (Liu, 1982). 

Table 1.1 Major element composition of pyrolite calculated by different studies. 

 1 2 3 4 5 6 7 8 9 10 11a 11b 

MgO 38.1 38.8 38.30 37.97 36.86 35.5 37.8 37.8 37.77 36.77 39.89 35.1 

Al2O3 3.3 4.4 3.97 4.30 4.11 4.75 4.06 4.45 4.09 4.49 3.30 3.8 

SiO2 45.1 45.0 45.16 44.49 45.94 46.2 46.0 45.0 46.12 45.40 45.00 53.8 

CaO 3.1 3.4 3.50 3.50 3.54 4.36 3.27 3.55 3.23 3.65 2.65 2.8 

FeO 8.0 7.6 7.82 8.36 7.58 7.70  8.05 7.49 8.10 8.00 3.5 

TiO2 0.2 0.17 0.217 0.22 0.18 0.23  0.201 0.18 0.21 0.15 0.15 

Cr2O3 0.4 0.45 0.46 0.44 0.46 0.43  0.384 0.38 0.37 0.44 0.39 

NiO 0.2 0.26 0.27 0.25 0.27 0.23  0.25 0.25 0.24 0.09 0.08 

MnO 0.15 0.11 0.13 0.14 0.13 0.13  0.135 0.15 0.14 0.13 0.12 

Na2O 0.4 0.4 0.33 0.39 0.39 0.40  0.36 0.36 0.35 0.33 0.3 

K2O  0.003 0.03     0.03 0.03 0.03 0.02 0.02 

Total 98.95 100.59 100.12 100.06 99.46 99.93  100.21 100.05 99.75 100 100.1 

Mg# 0.895 0.901 0.897 0.890 0.897 0.891  0.893 0.900 0.890 0.90 0.94 

Notes: 1 Ringwood (1979); 2 Green (1979); 3 Jagoutz et al. (1979); 4 Sun (1982); 5 Wänke et al. 

(1984); 6 Palme and Nickel (1985); 7 Hart and Zindler (1986); 8 McDonough and Sun (1995); 9 

Allègre et al. (1995); 10 Palme and O'Neill (2014); 11 Liu (1982).  Mg#, molar Mg/(Mg+Fe). aupper 

mantle; bmore silica-rich lower mantle. 
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1.3 Mineralogy of pyrolite and subducted slab as a function of 

depth 

Knowledge of the mineralogical composition of the mantle is essential for determining the 

velocity and density structure, which is required for the interpretation of geophysical data. 

Mineralogical models for the deep mantle are based on the results of high pressure and 

high temperature phase equilibria experiments performed as a function of pressure, 

temperature and bulk chemical composition. Such results can also be evaluated, supported 

and interpolated using thermodynamic modeling (Holland et al., 2013; Stixrude and 

Lithgow-Bertelloni, 2005, 2011). Moreover, it is not only important to determine the 

proportion of stable phases and phase transformations which dominate the structure and 

dynamics of the Earth. The element partitioning, which controls the chemical compositions 

of the individual minerals with varying pressures and temperatures, is also important in 

order to constrain the influence of mineral chemistry on the elastic properties of these 

materials. 

1.3.1 Phase relations and phase transitions in pyrolite 

The variation in mineral proportions of a pyrolitic bulk composition as a function of depth 

along the geotherm (Brown and Shankland, 1981) is shown in Fig. 1.5a. The topmost upper 

mantle consists of four main minerals-olivine (Mg,Fe)2SiO4, orthopyroxene (Mg,Fe)2Si2O6, 

clinopyroxene Ca(Mg,Fe)Si2O6 and an aluminous phase which varies with increasing 

pressure from plagioclase, to spinel or garnet (Frost, 2008). For the purpose of describing 

the phase transformations in pyrolite the assemblage can be divided into two parts: (1) the 

(Mg,Fe)2SiO4 phase, which undergoes a series of phase transformations that occur over very 

narrow depth intervals and are each related to a seismic discontinuity; (2) the remaining Si- 

and Al- rich minerals, which undergo phase transformations over much boarder depth 

intervals.  

At a depth of 410 km (~ 14 GPa), (Mg,Fe)2SiO4 olivine (57 vol.%)  transforms to 
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wadsleyite (also referred to as β-phase or modified spinel), marking the beginning of the 

transition zone. At ~ 17.5 GPa (520 km), wadsleyite transforms into ringwoodite (also 

referred to as γ-phase or silicate spinel), causing a weak seismic discontinuity observed only 

regionally. The discontinuity between the bottom of the transition zone and the top of the 

lower mantle occurs at ~ 24 GPa (660 km), where ringwoodite breaks down to an 

assemblage of bridgmanite (Mg,Fe)(Si,Al)O3 and ferropericlase (Mg,Fe)O. 

Above 3 GPa the Si- and Al-rich phases are orthopyroxene (16 vol.%), clinopyroxene (14 

vol.%) and garnet (13 vol.%). With increasing pressure, both orthopyroxene and 

clinopyroxene start to dissolve into garnet (Mg,Fe,Ca)3Al2SI3O12 due to the substitution of 

Mg, Fe and Si onto the octahedral site initially occupied by Al. The substitution first 

decreases the proportion of orthopyroxene and then also that of clinopyroxene. As a result, 

the majoritic component, i.e. the Al-free garnet end member (Mg,Fe)4Si4O12, increases with 

pressure as more and more of the pyroxene components are incorporated into garnet. By 

mid–transition zone conditions, all pyroxene components are hosted by garnet with an 

approximate stoichiometry (Mg,Fe,Ca)3(Mg,Al,Si)2Si3O12 and the mineralogy of the pyrolitic 

mantle may be simply described by wadsleyite/ringwoodite + garnet. At pressures higher 

than 18 GPa, CaSiO3 starts to exsolve from garnet, forming an additional calcium silicate 

perovskite phase. At depths greater than 660 km, garnets also undergo a phase transition 

into bridgmanite over a wider pressure range than that expected for the transformation of 

ringwoodite into bridgmanite and ferropericlase. The transformation of garnet gives rise to 

a gradual increase of the Al content of bridgmanite within the top 50 km of the lower 

mantle.  
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Figure 1.5 Mineral proportion changes in (a) Pyrolite, (b) MORB, and (c) harzburgite as a function of depths. Data modified from Akaogi (2007); Frost 

(2008); Hirose et al. (1999, 2005); Hunter et al. (2013); Irifune and Ringwood (1987a); Ono et al. (2001); Trønnes (2010) and Irifune and Tsuchiya (2015). 

Ol, olivine; Wad, wadsleyite; Rw, ringwoodite; Gar, garnet; Mj, majorite garnet; Cpx, clinopyroxene; Opx, orthopyroxene; Fp, ferropericlase; Brg, 

bridgmanite; Ca-Pv, calcium perovskite; pPv, post-perovskite; Coe, coesite; St, stishovite; Hex, hexagonal Al phase; Akm, akimotoite; CF, calcium-ferrite 

phase; CT, calcium-titanite phase; CC, CaCl2 phase; AP, α-PbO2 phase. 
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At depths of approximately 750 km a pyrolite composition assemblage comprises 

bridgmanite (75 vol.%), ferropericlase (18 vol.%) and calcium silicate perovskite (7 vol.%) 

(Irifune et al., 2010). This assemblage is stable throughout most of the lower mantle. Only at 

pressures corresponding to that of the top of the so-called D’’ layer, does bridgmanite 

transform to a post-perovskite phase with the CaIrO3 structure (Murakami et al., 2004). 

Moreover, a spin crossover of Fp was proposed to occur between 1700 km and 2700 km 

depth (Lin et al., 2013; Mao et al., 2011) and a high-spin to low-spin transition of Fe3+ on the 

B site of Brg was proposed to occur at approximately 15-50 GPa (see Lin et al., 2013 for a 

review), which may yield an additional density increase and affect the partitioning of iron 

between bridgmanite and ferropericlase.  

1.3.2 Phase relations and phase transitions in subducted slabs 

Subducting oceanic lithosphere shows marked vertical stratification and can be generalized 

as having a top thin layer (~ 1 km) of terrigenous and pelagic sediments, covering layers of 

basaltic-gabbroic oceanic crust of about 6 km thick overlying thicker layers (~ 50-100 km) of 

melt depleted harzburgite (5-20 km) and followed by more fertile lherzolite (Fig. 1.6). 

During subduction a significant section of the sedimentary layer may be scraped off the slab 

to form a fore-arc accretionary wedge. A thermal and rheological boundary layer must also 

form most likely within the less depleted lherzolite material to decouple the asthenospheric 

mantle from the subducting lithosphere. A slab approaching the 660 km seismic 

discontinuity can be reasonably simplified as comprising a basaltic crust (MORB) and 

underlying harzburgite rocks (Irifune and Tsuchiya, 2015). The compositions of harzburgite 

and MORB are different from pyrolite (Table 1.2), leading as a result to different 

mineralogies at high pressure and high temperature conditions corresponding to the Earth’s 

mantle.  
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Figure 1.6 Schematic sections of the subducting oceanic lithosphere (modified from Ringwood, 

1991).   

Table 1.2 Representative chemical compositions of pyrolite, MORB and Harzburgite.  

 Pyrolite Harzburgite MORB 

SiO2 44.5 43.6 50.4 

TiO2 0.2 - 0.6 

Al2O3 4.3 0.7 16.1 

Cr2O3 0.4 0.5 - 

FeO 8.6 7.8 7.7 

MgO 38.0 46.4 10.5 

CaO 3.5 0.5 13.1 

Na2O 0.4 - 1.9 

K2O 0.1 - 0.1 

Notes: Pyrolite, Sun (1982); Harzburgite, Michael and Bonatti (1985); MORB, Green (1979). 
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1.3.2.1 Harzburgite 

Harzburgite, which represents the melt residue of lherzolite, is depleted in Al and Ca and 

enriched in Mg and thus it has a lower Fe/Mg ratio compared with pyrolite. As a result, 

harzburgite has a higher proportion of olivine with high magnesium number, Mg# 

(=Mg/(Mg+Fe)*100)= ~ 92 and a smaller proportion of garnet and clinopyroxene. At the 

topmost part of the mantle, harzburgite consists of ~ 80 vol.% olivine, ~ 15 vol.% 

orthopyroxene and ~ 5 vol.% garnet. Thus, the mineralogy of harzburgite is dominated by 

the phase transformations in olivine described in section 1.3.1 and orthopyroxene. 

Orthopyroxene transforms to clinopyroxene at ~ 10 GPa and then into garnet at transition 

zone conditions. At ~ 19-22 GPa, ringwoodite (~ 89 vol.%) coexists with garnet (~ 8 vol.%) 

and a minor amount of stishovite (~ 3 vol.%). Due to the low Al content, the (Mg,Fe)SiO3 

pyroxene component is not able to be totally incorporated into garnet at high pressures, 

and an additional phase, akimotoite ((Mg,Fe)SiO3 with an ilmenite-type structure) (~ 6-10 

vol.%) coexists with ringwoodite (~ 82 vol.%) and majoritic garnet (~ 7-12 vol.%) at pressure 

above 22 GPa (~ 600 km) (Irifune and Ringwood, 1987a; Ringwood, 1991). This assemblage 

transforms to bridgmanite (~ 75 vol.%) plus ferropericlase (~ 25 vol.%) near the 660 km 

discontinuity (Irifune and Ringwood, 1987a; Ringwood, 1991). Because the transformation 

of akimotoite to bridgmanite occurs at lower pressures compared with ringwoodite, the 

bridgmanite stability field will be shifted to shallower depth compared to a pyrolitic 

composition (Irifune and Ringwood, 1987a). Although no experimental data is available at 

pressures higher than 26 GPa, the phase relations in harzburgite at lower mantle conditions 

can be inferred based on changes in the two constituent phases—bridgmanite and 

ferropericlase which have been extensively studied in other bulk compositions (Irifune and 

Tsuchiya, 2015). The mineral assemblages of harzburgite as a function of depth are shown 

in Figure 1.5c. 

1.3.2.2 Mid-ocean ridge basalt (MORB)  

Phase transitions in basaltic compositions as illustrated in Figure 1.5b are quite different 

from those expected in pyrolitic and harzburgitic compositions due to the higher Al, Ca and 
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Na and lower Mg contents. At the uppermost mantle conditions, MORB is comprised of 

clinopyroxene, garnet and an additional Si phase, i.e. coesite (~ 10 vol.%) (Irifune and 

Ringwood, 1987b, 1993). At pressures between 4-10 GPa, the relative proportions of garnet 

and pyroxene only change a little (<10 vol.%). Above 10 GPa, coesite transforms to 

stishovite (St) and Ca-rich clinopyroxene progressively dissolves into garnet (Irifune and 

Ringwood, 1987b, 1993). At transition zone conditions (14-15 GPa), Ca-rich clinopyroxene is 

entirely dissolved into garnet, forming a garnetite assemblage (majorite garnet+small 

amount of St) (Irifune and Ringwood, 1987b, 1993). CaSiO3 perovskite (Ca-Pv) begins to 

exsolve from majorite (Mj) at ~ 20 GPa (Akaogi, 2007; Irifune and Ringwood, 1987b) and a 

mineral assemblage of Mj (~ 74 vol.%) +St (~ 10 vol.%) +Ca-Pv (~ 16 vol.%) is observed at 24 

GPa (Hirose et al., 1999; Irifune and Ringwood, 1993). The assemblage progressively 

changes to an assemblage of bridgmanite (~ 40 vol.%), CaSiO3 perovskite (~ 22 vol.%), 

stishovite (~ 20 vol.%) and an Al-rich phase (hexagonal or calcium-ferrite (CF)/ calcium-

titanite (CT) structures, ~ 18 vol.%) over a wide pressure range from ~ 24 to 27 GPa (Akaogi, 

2007; Hirose et al., 1999; Irifune and Ringwood, 1993; Irifune and Tsuchiya, 2015; Ono et al., 

2001; Trønnes, 2010). Because only garnet is involved in the transformation to bridgmanite, 

the stability field of bridgmanite is shifted to greater depth compared with pyrolitic 

compositions. This assemblage of Brg+Ca-Pv+St+Al-phase is stable in the upper part of the 

lower mantle. Stishovite transforms to a CaCl2-type structure at 62 GPa (~ 1500 km) (Hirose 

et al., 2005; Ono et al., 2002) which further transforms to α-PbO2-type structure at ~ 120 

GPa (~ 2600 km) (Hirose et al., 2005; Murakami et al., 2003). The most abundant mineral, 

bridgmanite, then undergoes the phase transition to the CaIrO3-type post-perovskite phase 

above 110 GPa at 2500 K (Hirose et al., 2005).  

When the oceanic lithosphere subducts into the mantle, a density contrast between 

MORB and the surrounding pyrolite, due to their different mineralogy, is expected. At 

transition zone conditions, the garnetite facies of MORB consisting of majorite, stishovite 

and CaSiO3 perovskite, are denser than the mineral assemblage of the surrounding pyrolite 

mantle. However, a density crossover is expected to occur at 660-720 km depth due to the 

slow garnet to bridgmanite phase transition. Therefore, the oceanic crust may be 
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gravitationally trapped at this depth. Nevertheless, MORB will be denser than pyrolite at 

depths greater than ~ 720 km and throughout almost the entire region of the lower mantle 

once bridgmanite and Ca perovskite are formed. As a result, if slabs accumulate to a 

sufficient thickness at the top of the lower mantle, they may have the chance to sink into 

the deeper lower mantle (Akaogi, 2007; Hirose et al., 1999).  

Due to the slow solid-state homogenization processes in the mantle, equilibration 

between cold subducted slabs and the surrounding mantle is only expected to occur at 

lengths scales of the order of meters (Holzapfel et al., 2005). Therefore, the mantle may be 

a disequilibrium mechanical mixture of different rock types with varying length scales. In 

fact, geophysical observations have confirmed the existence of small-scale heterogeneities 

in the mantle that scatter seismic waves, which may be attributed to recycled oceanic crust 

based on the size of the scatter (Frost, 2008; Kaneshima and Helffrich, 1999, 2003; Vinnik et 

al., 2001). Moreover, the cold subducting slabs are also far from being in thermal 

equilibrium with the surrounding mantle although the temperature difference may 

decrease with depth. The unique chemical compositions and temperature of the subducted 

oceanic lithosphere would give rise to distinct seismic velocities and transport properties 

compared to the surrounding pyrolite mantle, which may have considerable geodynamic 

significance. 

1.4 Bridgmanite in the lower mantle 

Although the composition of Earth’s lower mantle is still poorly constrained, bridgmanite 

(Mg,Fe)(Si,Al)O3, formed from both the primary pyrolite mineral ringwoodite and the 

secondary mineral majorite garnet in the transition zone, is widely thought to be the 

dominant phase of this region. Bridgmanite dominated by the MgSiO3 component is stable 

over a wide range of depths from 660 km to several hundred kilometers above the core-

mantle boundary (~ 2700 km) and as such its physical properties are primarily responsible 

for the seismic and transport properties of this region.  
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1.4.1 Proportions of bridgmanite in different bulk compositions 

As described in section 1.3.1 and 1.3.2, the proportions of bridgmanite and other lower 

mantle minerals depend on the assumed composition of the mantle. For a most exhaustive 

comparison, average compositions reported in the literature for different chondritic 

meteorites (Wasson and Kallemeyn, 1988) have been used to derive mineral proportions at 

conditions of the lower mantle. To this end, only the major elements of the chondritic 

compositions have been considered and the following assumptions have been used to 

calculate the oxides wt.% reported in Table 1.3 following a minimization procedure: (1) 

highly volatile elements like C, H, N as well as the moderately volatile S were neglected; (2) 

The core was assumed to consist exclusively of Fe and Ni, with the total amount of Ni 

partitioning completely into the core; (3) The Fe content of the mantle has been fixed at 6.2 

atomic wt.% according to the value accepted for the upper mantle of the Earth. This 

resulted in a value of 7.98 wt.% of FeO for all chondritic compositions; (4) the oxygen 

content was calculated in order to obtain a final mantle composition expressed in oxide 

wt.% (Table 1.3) close to 100%. From these compositions it was then possible to calculate 

the mineral proportions; partitioning all elements between bridgmanite and ferropericlse 

according to the experimental compositions reported by Irifune et al. (2010) at 36.4 GPa and 

1973 K, and assuming both CaSiO3 perovskite and stishovite SiO2 to be pure end-members 

(Table 1.3). Although these calculations are only a crude approximation, the trend obtained 

for different chondrite compositions shows that bridgmanite is always the most abundant 

phase in the lower mantle, that CaSiO3 perovskite amount is pretty constant among all 

chondritic compositions. Only Carbonaceous chondrites would form ferriopericlase in the 

lower mantle whereas enstatite chondrites produce a lower mantle containing an excess 

SiO2 phase.  A number of studies have proposed such meteorite based mantle models for 

the bulk silicate Earth (Fitoussi et al., 2016; Javoy et al., 2010). If suitable mineral models 

and elasticity data were available, the extent to which these different mantle compositions 

fit lower mantle seismic velocities could be evaluated.   
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Table 1.3 Calculated mantle compositions, lower mantle mineral proportions for different chondrite 

compositions. The lower mantle mineral proportion calculated from pyrolite composition from 

McDonough and Sun (1995) is also shown for comparison.  

 

Pyrolite 

Carbonaceous  

chondrite 

Ordinary  

chondrite 

Enstatite 

chondrite 

CI CM CO CV H L LL EH EL 

Mantle compositions (wt.%) 

SiO2 45.00 48.37 48.36 48.44 47.30 50.96 51.61 51.69 56.48 53.56 

TiO2 0.20 0.16 0.17 0.19 0.23 0.14 0.14 0.13 0.12 0.13 

Cr2O3 0.38 0.82 0.78 0.74 0.75 0.75 0.74 0.70 0.73 0.60 

Al2O3 4.45 3.45 3.91 3.85 4.69 3.01 3.01 2.87 2.42 2.67 

FeO 8.05 7.98 7.98 7.98 7.98 7.98 7.98 7.98 7.98 7.98 

MgO 37.80 33.97 34.00 34.24 34.08 32.72 32.22 32.44 27.79 31.47 

CaO 3.55 2.75 3.11 3.15 3.77 2.46 2.39 2.33 1.88 1.90 

Na2O 0.36 1.46 0.97 0.79 0.63 1.22 1.23 1.21 1.45 1.05 

MnO 0.14 0.53 0.38 0.30 0.27 0.42 0.43 0.43 0.45 0.28 

P2O5 0.02 0.53 0.36 0.34 0.32 0.35 0.28 0.25 0.72 0.36 

Total 99.95 100.02 100.01 100.00 100.01 100.01 100.03 100.02 100.01 100.02 

Lower mantle mineral proportions (%) 

Brg 80 89 88 88 85 96 96 96 87 93 

Fp 13 6 7 6 9 
     

Ca-Pv 6 5 5 5 7 4 4 4 3 3 

SiO2  
    

   10 4 

 

1.4.2 Bridgmanite structure 

MgSiO3 bridgmanite has a perovskite-type structure with an orthorhombic distortion and 

space group Pbnm (Horiuchi et al., 1987). It consists of a three-dimensional framework of 

tilted corner-linked SiO6 octahedra (B site) forming cavities in the shape of bicapped trigonal 

prisms (A site) occupied by Mg. This orthorhombic structure derives from an ideal cubic 

structure (Space group Pm3̅m) through in-phase and out-of-phase tilting of the SiO6 

octahedra in addition to cation displacements at the A site due to the relatively small Mg2+ 

ion (e.g. Glazer, 1972; Howard and Stokes, 1998, 2005) (see Fig. 1.7). Compared with the 

aristotype structure, four of the Mg-O bonds are lengthened and the remaining eight are 
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shortened (Fiquet et al., 2000; Ross and Hazen, 1990). This distortion increases with 

pressure and eventually leads to a phase transition into “post-perovskite” above 120 GPa 

(Murakami et al., 2004).  

 

Figure 1.7 Structural model of MgSiO3 bridgmanite consisting of two cation sites. The A site is 

occupied by Mg (orange) and the octahedral B site is occupied by Si (blue). The orthorhombic 

distortion of the perovskite-like structure is due to the in-phase and out-of-phase tilting of the 

octahedral framework. 

1.4.3 Composition of bridgmanite 

High-pressure and high-temperature experiments indicate that bridgmanite can 

accommodate a substantial amount of Fe and Al (Frost and Langenhorst, 2002; Lauterbach 

et al., 2000). For a pyrolitic mantle composition, bridgmanite incorporates most of the Al 

and much of the Fe (Irifune, 1994; Irifune et al., 2010), with a nominal FeO content of ~ 6-7 

wt.% and Al2O3 content of ~ 4-5 wt.% at the top lower mantle. The Al2O3 content increases 

gradually from 1 wt.% to 4-5 wt.% over the first 50 km of the lower mantle due to the 

transformation of majoritic garnet, the main host for Al in the upper mantle and transition 

zone. The Fe content will also vary as a result of the effect of pressure on the partitioning of 

Fe between bridgmanite and coexisting ferropericlase, which may be further influenced by 

an electronic spin transition of FeO in ferropericlase at pressures between 70-125 GPa (Lin 
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et al., 2013; Mao et al., 2011). Harzburgite has a lower Al content than pyrolite, due to melt 

extraction beneath ridges, thus bridgmanite in harzburgitic compositions has an Al2O3 

content of only 1-2 wt.%; on the contrary, MORB is enriched in Al while depleted in Mg, thus 

bridgmanite in a MORB composition has an extremely high Al2O3 and Fe2O3 content of ~ 16 

wt.% and ~ 23 wt.%, respectively (Hirose et al., 1999; Hirose et al., 2005; Irifune and 

Ringwood, 1987b). Therefore, although bridgmanite in Earth’s lower mantle has a nominal 

Al and Fe content of ~ 0.1 atoms per formula unit (pfu), such content may vary between 0 to 

0.40 atoms pfu due to the presence of chemical heterogeneities that may arise either from 

the subduction of oceanic lithosphere or the presence of primordial material (Kellogg et al., 

1999). Cation substitutions in bridgmanite may strongly influence the behavior of MgSiO3 

bridgmanite such as density and elastic properties in Earth’s lower mantle.  

1.4.4 Substitution mechanisms in bridgmanite 

Although iron exists predominantly as Fe2+ in the upper mantle and transition zone, 

significant amounts of Fe3+ have been identified in bridgmanite (Fe3+/ΣFe= ~ 16% without Al 

and ~ 50-75% with Al), even when in equilibrium with Fe metal (Frost et al., 2004; 

Lauterbach et al., 2000; McCammon, 1997). The abundance of Fe3+ appears to depend on 

the Al content of bridgmanite and arises from the unusual crystal chemistry of silicate 

perovskite (McCammon, 2005). The higher Fe3+ content seemingly required in the lower 

mantle relative to the upper mantle could be explained in an isochemical mantle if the 

disproportionation of Fe2+ (2Fe2+→Fe3++Fe0) occurs. This expansion in the stabilization of 

Fe3+ is induced by the coupled substitution in bridgmanite of Fe3+ + Al3+ replacing Mg + Si. 

This results in a rather complex crystal chemistry of lower mantle bridgmanite as a result of 

the different possible substitution mechanisms. 

Ferrous iron, Fe2+, incorporates into the bridgmanite structure through the substitution 

of Mg2+ on the A site creating compositions along the MgSiO3-FeSiO3 join (Andrault et al., 

1998; Lauterbach et al., 2000; McCammon et al., 1992). For the incorporation of trivalent 

cations M3+ (M3+=Fe3+ or Al3+) into bridgmanite at least two mechanisms need to be taken 

into account. One is a charge-coupled substitution (CCS) forming compositions along the 
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MgSiO3-M2O3 join:  

MgMg
X + SiSi

X → MMg
∙ + MSi

′ (1.1) 

where two trivalent cations substitute for Mg at the A site and Si at the B site, maintaining 

electrical neutrality without the formation of vacancies (here the superscripts ˙ and 

‘ represent a positive or negative net charge on the site, respectively and X indicates no 

charge). This reaction is analogous to the substitution of aluminum for tetrahedral silicon 

and octahedral magnesium along the diopside-Ca-Tschermak’s pyroxene join, CaMgSi2O6-

CaAlAlSiO6, therefore it also is referred to as stoichiometric or Tschermakitic substitution 

(Navrotsky et al., 2003). Although Fe3+ and Al may occupy both cation sites in bridgmanite, 

there is some evidence that in the presence of Al, Fe3+ preferentially occupy the A site 

(McCammon et al., 2013). 

The other mechanism is oxygen vacancy substitution (OVS) along the MgSiO3-MgMO2.5 

join 

2SiSi
X → 2MSi

′ + VO
∙∙ (1.2) 

where trivalent cations only replace Si4+ at the B site and oxygen vacancies are required for 

charge balance (VO
∙∙  is an oxygen vacancy). This mechanism is analogous to the formation of 

defect perovskites along the CaTiO3 pervoskite-CaFeO2.5 brownmillerite join (Becerro et al., 

1999), thus it also is referred to as nonstoichiometric, defect, or brownmilleritic substitution. 

Most low-pressure ceramic perovskites incorporate trivalent cations according to this 

second mechanism (Navrotsky, 1999) and this also may be an important mechanism in the 

Earth’s lower mantle, which contains ferropericlase coexisting with bridgmanite and thus 

buffers low SiO2 activity favouring Mg/Si>1. The oxygen vacancies created by this 

substitution mechanism are of particular interest since they may provide a way of 

incorporating water into the dense structure of bridgmanite (Murakami et al., 2002; 

Navrotsky et al., 2003) and may affect the diffusivity, conductivity, compressibility and creep 

rate of the mantle. 
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1.4.5 Spin transition of bridgmanite 

Fe2+ and Fe3+ in bridgmanite exist in the high-spin state under ambient conditions (e.g. 

McCammon, 2006). For Fe2+, it is still under debate whether the abnormal increase in 

quadrupole splitting of Fe2+ at the A site of bridgmanite at high pressures is related to a 

high-spin (HS) to intermediate-spin (IS) transition or enhanced lattice distortion of the A site 

(Hsu et al., 2010; Lin et al., 2012; Lin et al., 2013; McCammon et al., 2008). On the other 

hand, there is general consensus that Fe3+ at the A site remains in the high-spin state to at 

least 100 GPa (Catalli et al., 2011; 2010; Fujino et al., 2012; Glazyrin et al., 2014; Kupenko et 

al., 2014; Lin et al., 2012; Potapkin et al., 2013) and only Fe3+ at the B site undergoes a spin 

crossover from high-spin to low-spin at about 30 to 60 GPa (Catalli et al., 2011; 2010; Fujino 

et al., 2012; Kupenko et al., 2015; Lin et al., 2012; Liu et al., 2018a; Mao et al., 2015). The 

spin transition pressure of Fe3+ is positively related to the Fe3+ content. Knowledge of the 

Fe3+ distribution among the two structural sites of the bridgmanite structure is therefore 

important in order to assess whether its spin state may influence the elastic properties of 

bridgmanite or whether it may be invisible to seismic observations.  

1.5 Oxygen fugacity of Earth’s mantle 

Oxygen fugacity (fO2) is the effective partial pressure of oxygen in a particular environment 

and was first used in petrology by Eugster (1957) when developing oxygen buffers to control 

the oxidation potential in experimental runs. In this method, oxygen fugacity is imposed 

upon the system by redox reactions in the surrounding oxygen buffers, i.e. oxygen 

controlling equilibria. The well-known end-member reactions extensively used in petrology 

to define planes of increasing fO2 in oxygen fugacity-pressure-temperature (P-T-fO2) space 

(Fig. 1.8) are (Frost, 1991; Wood et al., 1990): 

QIF: 2Fe + SiO2 + O2 = Fe2SiO4 (1.3) 

        metal   quartz            fayalite 
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IW: Fe + 1/2O2 = FeO (1.4) 

        metal                 wustite 

WM: 3FeO + 1/2O2 = Fe3O4 (1.5) 

             wustite                 magnetite 

FMQ: 3Fe2SiO4 + O2 = 2Fe3O4 + 3SiO2 (1.6) 

              fayalite             magnetite   quartz 

MH: 2Fe3O4 + 1/2O2 = 3Fe2O3 (1.7) 

        magnetite                     hematite 

For pure end-member phases, the stability field of the three oxidation states of iron (Fe0, 

Fe2+, and Fe3+) are well-defined in the P-T- fO2 space by these reaction curves (Fig. 1.8). For 

example, in the Fe-O-SiO2 system, the stability field of Fe2+-bearing assemblages are limited 

by the reactions FMQ and QIF. Therefore, oxygen fugacity is a variable that determines the 

valence state of iron in a particular phase for a given set of conditions. In the mantle, 

however, although Fe2+ is dominant in the peridotitic upper mantle, it does not constrain fO2 

closely because the stability of Fe2+ in the fO2 space is largely expanded due to the solution 

of Mg into iron silicates. 
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Figure 1.8 Log oxygen fugacity corresponding to the buffer equilibria (Eq. 1.3-1.7) plotted against 

the temperature at 1 bar. The acronyms are the same as explained in the text (modified from Wood 

et al., 1990).  

In natural systems, oxygen fugacity, rather than a fixed parameter imposed upon a rock by 

the environment, is controlled by multicomponent equilibria reactions that happen during 

rock formation process and varies to accommodate the change of mineral compositions 

(Frost, 1991). The oxygen fugacities recorded by natural assemblages can be determined 

using conditions of equilibrium based on equilibria (1.3) -(1.7) given above. For example, the 

oxygen fugacity of a mineral assemblage could be calculated by equilibrium (1.6) according 

to: 

log𝑓𝑂2
=

∆𝐺(1.6)
0

ln(10)R𝑇
+ 2log𝑎Fe3O4

+ 3log𝑎SiO2
− 3log𝑎Fe2SiO4

(1.8) 

where 𝛥𝐺(1.6)
0  is the standard state (pure end-members at the pressure and temperature of 

interest) Gibbs free energy change of equilibrium (1.6), R is the gas constant, ai is the 

activity of component i in the corresponding phase j. In the case of pure end-member 

phases, the activity is 1 for each phase while in the case of solid solution, the activity could 

be expressed by  
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𝑎𝑖
𝑗

= 𝑥𝑖
𝑗

× 𝛾𝑖
𝑗 (1.9) 

where 𝑥𝑖
𝑗
 is the mole fraction of component i in phase j and 𝛾𝑖

𝑗
 is the activity coefficient 

which is 1 in the case of ideal mixing between sites and in the case of a symmetrical regular 

solution,  𝛾𝑖
𝑗
 maybe obtained from: 

R𝑇ln𝑟𝑖
𝑗

= (1 − 𝑥𝑖
𝑗
)

2
𝑊𝐺 (1.10) 

where WG is the interchange energy or interaction parameter called Margules parameter 

representing the interchange energy between cations (Wood and Fraser, 1977). 

As shown in Fig. 1.8, the oxygen fugacity of all buffers changes dramatically with 

temperature, therefore the oxygen fugacities are usually normalized to a given buffer to 

remove the effect of temperature from the buffer curves. For natural assemblages in the 

mantle, FMQ is commonly used and the oxygen fugacity compared with FMQ buffer is 

denoted by ΔFMQ.  For the current study, IW buffer was used for the normalization. 

1.5.1 Upper mantle oxygen fugacity 

The upper mantle oxygen fugacity has been evaluated by studying the distribution of 

Fe3+/ΣFe ratio in peridotites, and in MORB and OIB. In particular, MORB and OIB show a 

narrow range of Fe3+/ΣFe between 8%-15% with an average value of 12%, giving an oxygen 

fugacity (fO2) of 0.4 log units below the FMQ buffer at ambient conditions and ~ FMQ at its 

mantle source region. Abyssal peridotites, considered to be the MORB mantle residues, 

display a more reduced value between FMQ and FMQ-2.5. Comparison of V/Sc ratio of 

peridotites and basalts between samples from the Archean and those from present days 

indicates that the oxygen fugacity almost did not change over the last 3.5 billion years 

(Gyrs).  

Spinel peridotite xenoliths, that formed at depths between 30 and 60 km, contain 0.1-

0.3 wt.% Fe2O3 in the whole rock which corresponds to a Fe3+/ΣFe ratio of between 1% and 

3% (Canil and O'Neill, 1996; Woodland et al., 2006). Spinel itself has the highest Fe3+/ΣFe 

ratio which ranges between 15 wt.% and 34 wt.%; in contrast, the dominant mineral olivine 
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contains negligible Fe2O3 (Canil and O'Neill, 1996). The oxygen fugacity in spinel peridotites 

can be calculated using the equilibrium 

6Fe2SiO4 + O2 = 3Fe2Si2O6 + 2Fe3O4 (1.11) 

Olivine                       opx              spinel 

The measured oxygen fugacity for the spinel peridotite facies from different localities and 

settings vary significantly between -3 and +2 log units with respect to the FMQ buffer as 

shown in Fig. 1.9, reflecting some degree of heterogeneity of the mantle as a result of 

different processes such as partial melting and metasomatism. Abyssal peridotites and 

some massif peridotites record the lowest fO2, with a mean value 1 log unit below MORB at 

its source while other massif peridotites and xenoliths are more oxidized which may be 

attributed to metasomatism processes. The most oxidized samples are xenoliths from 

subduction zones where the mantle reacts with hydrous fluids (Frost and McCammon, 

2008). 

 

Figure 1.9 Calculated Oxygen fugacity ranges for spinel peridotites from different geological settings. 

The stars represent the mean values (modified from Frost and McCammon, 2008). 
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The redox state of the mantle at depths greater than 60 km is recorded by garnet peridotite 

xenoliths from kimberlite magmas (Luth et al., 1990). Garnet peridotites show similar whole 

rock Fe2O3 contents as spinel peridotites and the Fe3+/ΣFe in garnet varies between 2% and 

14% (Canil and O'Neill, 1996). The Fe3+/ΣFe in garnet increases with depth due to the 

preferred partitioning of Fe3+ into garnet compared with pyroxene with increasing 

temperature, while the Fe2O3 content of the whole rock remains generally constant (Canil 

and O'Neill, 1996; Woodland and Koch, 2003). The oxygen fugacity recorded by garnet 

peridotites can be calculated using the equilibrium (Gudmundsson and Wood, 1995), 

2Fe3Fe2
3+Si3O12 = 4Fe2SiO4 + 2FeSiO3 + O2 (1.12) 

garnet                olivine             opx 

according to the equation, 

log 𝑓𝑂2
=

−𝛥𝐺𝑟
0

ln(10) R𝑇
+ 2 log 𝑎Fe3Fe2Si3O12

Gar −  2 log 𝑎FeSiO3

opx
− 4 log 𝑎Fe2SiO4

olivine (1.13) 

The calculated oxygen fugacity relative to FMQ for garnet peridotite rocks from Kaapvall 

cratonic lithosphere are plotted in Fig. 1.10 as a function of pressure, showing a general 

trend of decreasing fO2 with depth from +5 log units at ~ 2 GPa to +0.5 log units at ~ 7 GPa 

relative to IW (Frost and McCammon, 2008; Luth et al., 1990; McCammon et al., 2001; 

Woodland and Koch, 2003). In fact, this decrease of fO2 with pressure is not related to 

composition. Instead, it can be totally attributed to the positive volume change of Eq. (1.12) 

which means that increasing pressure stabilizes the Fe3Fe2
3+Si3O12 skiagitic garnet 

component (Gudmundsson and Wood, 1995).  
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Figure 1.10 Oxygen fugacity in the upper mantle calculated for a four-phases garnet peridotite 

assemblage assuming a value of Fe3+/ΣFe=2% along a cratonic geotherm relative to the IW buffer.  

The solid triangles are xenoliths from Kaapvaal craton lithosphere. The blue dashed line is the 

calculated Ni precipitation curve (NiPC) for a peridotite assemblage with values indictaing the Ni 

content (mol%) in the precipitating metal. Line 1 and line 2 are the fO2 calculated for garnet 

peridotite before and after crossing the NiPC repectively. Line 3 is the metastable extrapolation 

assuming no metal precipitation. The figure has been modified from Frost and McCammon (2008) in 

which the details for the calculation were described.  

1.5.2 Deep upper mantle and transition zone oxygen fugacity 

Due to the lack of natural samples from depths below 200 km (6 GPa), a model of the 

mantle oxygen fugacity as a function of depth was estimated by Frost and McCammon 

(2008) for a bulk silicate Earth (BSE, McDonough and Sun, 1995) composition assuming a 

constant bulk O/Fe ratio. The model was calculated along a continental geotherm and 

shows a general trend of decreasing fO2 with pressure, which agrees generally with value 

calculated from natural garnet peridotite xenoliths (Fig. 1.10). This decrease is induced by 

the positive volume change of Eq. (1.12) as discussed above as well as by the dilution of the 

Fe3Fe2
3+Si3O12 skiagite component in garnet due to the increase of the Mg4Si4O12 majoritic 

component arising from the pyroxene-garnet transition. The oxygen fugacity is about 5 log 
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units above the iron-wüstite (IW) buffer at ~ 2 GPa but decreases continuously, and is 

projected to meet the Ni precipitation curve (NiPC, O'Neill and Wall, 1987) at about 8 GPa 

and 250 km depth, which is slightly below the IW buffer. As Ni-Fe metal precipitates, the 

oxygen fugacity deviates from that calculated assuming no metal precipitation and 

continues to decrease only slightly with depth, reaching a value of  IW-0.3 at the bottom of 

the upper mantle (~ 14 GPa) where about 0.1-0.2 wt.% metal would form (Fig. 1.10, Frost 

and McCammon, 2008).  

In the transition zone, olivine transforms to wadsleyite and ringwoodite which can 

have a Fe3+/ΣFe content ~ 2% when in equilibrium with Fe metal. Since majorite garnet with 

Fe/(Fe+Mg)=0.15 can contain 7% Fe3+/ΣFe when in equilibrium with Fe metal at transition 

zone conditions (O'Neill et al., 1993a; O'Neill et al., 1993b), the minimum bulk Fe3+/ΣFe ratio 

is  3% for transition zone pyrolite, which is larger than the 2% expected for the pristine 

mantle; requiring precipitation of  ~ 0.1 wt.% Fe-Ni metal therefore a similar fO2 as the base 

of the upper mantle (IW-0.3) (Frost and McCammon, 2008). 

1.5.3 Oxygen fugacity in the lower mantle 

The dominant mineral of the lower mantle, bridgmanite, has a strong preference for Fe2O3, 

which can be incorporated into its structure in large proportions (Fe3+/ΣFe ratio as high as 

0.6) (Frost and Langenhorst, 2002; Lauterbach et al., 2000; McCammon et al., 2004b) at 

typical mantle Al2O3 contents even at very reducing conditions. If the lower mantle has the 

same bulk O/Fe ratio as that of the upper mantle, Fe2+ likely disproportionates to produce 

the high Fe2O3 content present in bridgmanite. For example, Frost et al. (2004) have shown 

that ~ 1 wt.% metal with a composition approximately 88 wt.% Fe, 10 wt.% Ni and 1 wt.% S 

would be produced by disproportionation in a BSE lower mantle composition. The oxygen 

fugacity in the lower mantle would be well buffered by the metal and was calculated to be 

between IW and IW-1.5 based on the composition of coexisting metal and ferropericlase 

(Frost and McCammon, 2008). 
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The oxygen fugacity in the Earth’s interior is a key parameter controlling the reactions 

and dynamic processes within the mantle and between the mantle and the surface. For 

example, the oxidation state of the mantle governs the speciation of the C-H-O volatiles 

present (Frost and McCammon, 2008; Wood et al., 1990), the form of which would in turn 

influence the mantle solidus and the composition of liquids, playing an important role in 

magma genesis, metasomatism and mantle degassing processes (Rohrbach and Schmidt, 

2011; Stagno et al., 2013). In addition, the valence and electronic states of Fe, Earth’s most 

abundant transition metal, also depend on the redox state of the mantle which may have 

important effects on mantle seismic velocities, rheology, transport properties and chemical 

reactions. If a significant proportion of the iron in bridgmanite is Fe3+ then this may also 

influence the elastic properties and the velocities of seismic waves in the lower mantle 

(Boffa Ballaran et al., 2012; Mao et al., 2015). 

1.6 Aim of this study 

The Earth’s lower mantle consists mainly of bridgmanite with lesser amounts of 

ferropericlase and CaSiO3 perovskite. Although the pyrolite model for the composition of 

the mantle is widely accepted for Earth’s upper mantle, it is still not clear whether it is also 

representative for the lower mantle (Xu et al., 2008). The conclusions from previous studies 

based on comparisons between sound velocity measurements for lower-mantle minerals 

under high pressure and high temperature conditions and seismological observations are 

contradictory (Kurnosov et al., 2017; Murakami et al., 2012). The elasticity and seismic 

velocities of both bridgmanite and ferropericlase are strongly dependent on the chemical 

composition of the phases, especially the Fe content and its valence state (Fan et al., 2019; 

Mao et al., 2017). Therefore, to make a reliable comparison, it is important to know the 

compositions of each phase under lower mantle conditions. While ferric iron appears to 

partition favorably into bridgmanite, ferrous iron is more strongly partitioned into 

ferropericlase (Frost and Langenhorst, 2002; Lauterbach et al., 2000; McCammon et al., 

2004b; McCammon et al., 1998; Nakajima et al., 2012). As a result, knowledge of the 
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oxidation state of iron in Brg is necessary in order to constrain how Fe partitions between 

Brg and Fp. The  valence state and structural position of iron in Brg will also have an effect 

on whether a spin transition of iron would occur under lower mantle pressure and 

temperature conditions (Hsu et al., 2011; Kupenko et al., 2014; 2012; Lin et al., 2013; Mao 

et al., 2015; McCammon et al., 2010) and may also influence lower mantle elasticity, 

rheology and transport properties (Boffa Ballaran et al., 2012; Holzapfel et al., 2005; 

Reichmann et al., 2000; Xu et al., 1998). In spite of the importance mentioned above, the 

Fe3+/ΣFe in Brg at lower mantle conditions is poorly constrained. As can be seen in Fig. 1.11, 

results on Fe3+/ΣFe in Brg and Fe partitioning between Brg and Fp as a function of pressure 

obtained by different diamond anvil cell (DAC) studies show hardly any agreement (Piet et 

al., 2016; Prescher et al., 2014; Shim et al., 2017; Sinmyo et al., 2011). Experiments on Brg at 

deep lower mantle conditions are extremely challenging considering the large thermal 

gradients, the difficulty in precise pressure calibration and control of oxygen fugacity within 

laser-heated DAC experiments. However, even in multi-anvil studies at uppermost lower 

mantle conditions, the Fe3+/ΣFe ratios reported vary over a wide range between 30% and 

80% (Fig. 1.11a) (Frost et al., 2004; Irifune et al., 2010; Lauterbach et al., 2000; McCammon, 

1997; Stagno et al., 2011). These variations between studies likely arise due to poor control 

of the oxygen fugacity in addition to possible experimental error. By varying the oxygen 

fugacity however good constraints on the thermodynamic properties of ferric iron bearing 

bridgmanite components can be potentially gained. This could be used to construct a model 

that describes the composition of bridgmanite for a given bulk composition, temperature 

and oxygen fugacity. If the volumes of these bridgmanite components could also be 

determined an understanding of how the composition of bridgmanite may change at higher 

pressures in the lower mantle could be obtained. This could then be used to evaluate the 

results of DAC studies performed at higher pressure conditions. 
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Figure 1.11 (a) Ferric iron content in Al-bearing bridgmanite as a function of pressure from different 

previous studies (modified from Shim et al., 2017). (b) Fe2+-Mg distribution coefficient 

(KD=(𝑥
Fe2+
Brg or pPv

/𝑥Mg
Brg

)/((𝑥
Fe2+
Fp

/𝑥Mg
Fp

)) between bridgmanite or post-perovskite and coexisting 

ferropericlase as a function of pressure from previous studies (modified from Sinmyo et al., 2008). 

There are three main aims of this study.  

1) To examine the compositions of Brg and Fp at 25 GPa and 1973 K using starting 

materials with different bulk Fe and Al compositions and under different oxygen fugacities 

and to derive a thermodynamic model to describe these results. The factors that influence 

the speciation of Fe and Al in Brg were explored and thermodynamic models describing this 

speciation are constructed in Al-bearing, Fe-bearing and Fe + Al-bearing systems. Based on 

these models, the compositions of phases in the lower mantle and the amount of metal that 

may need to be formed through Fe2+ disproportionation were calculated. The oxygen 

fugacity in the lower mantle can be determined for varying scenarios from these models. 

This has important implications for the speciation of volatiles, the conditions at which 

diamonds may be formed in the lower mantle and the redox state of the mantle as a whole 

during core formation. 

2) In order to extrapolate thermodynamic calculations for the speciation of Fe and Al 

components in Brg to higher pressures, single crystal X-ray diffraction measurements were 

performed on synthesized large Brg single crystals principally to determine the partial molar 

volumes of these components. The influence of Al and Fe on the structure and 

compressibility of Brg were investigated. Since the phase transition of Brg to post-perovskite 
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can be related to the degree of octahedral tilting (Martin and Parise, 2008; Tateno et al., 

2010), the effect of Al and Fe substitution on the pressure dependence of distortion are also 

discussed for a possible explanation of the higher phase transition pressure in Fe, Al-bearing 

Brg reported in some previous studies (see Hirose et al., 2017 for a review).  

3) To determine the partitioning of Fe between Brg, Fp and hydrous melt at lower 

mantle conditions. A low-velocity anomaly has been observed at the top of the lower 

mantle (Liu et al., 2016, 2018b; Schmandt et al., 2014) which was proposed to be explained 

by the presence of buoyant hydrous partial melt. The iron content of the melt at these 

conditions will exert one of the major influences on the melt density but this is poorly 

constrained by existing studied. Although numerous melting studies have been conducted in 

anhydrous peridotite systems (Herzberg and Zhang, 1996; Ito and Takahashi, 1987; Trønnes 

et al., 1992; Trønnes and Frost, 2002; Zhang and Herzberg, 1994), the temperatures of these 

experiments are much higher than the current mantle geotherm. Only two previous studies 

in hydrous peridotite systems have been performed at uppermost lower mantle conditions 

(Kawamoto, 2004; Nakajima et al., 2019), however, the composition of the partial melts are 

significantly different between these studies. In order to resolve this discrepancy, 

experiments were performed under hydrous conditions at ~ 25 GPa and 1923 ± 50 K. A 

thermodynamic model was constructed to describe Fe partitioning between Brg and melt at 

these conditions and the composition of the melt in a hydrous peridotite system was 

calculated based on mass balance calculations performed for a range of melt fractions. The 

density of the melt was calculated along the current mantle geotherm (Brown and 

Shankland, 1981) between 22 and 28 GPa and compared with previous studies.  
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2 Experimental methods 

2.1 Starting material preparation 

Six pyroxene compositions (A)-(F) with different Fe and Al contents as shown in Table 2.1 

were prepared from dried oxide mixtures of reagent grade MgO, SiO2, Al2O3 and Fe2O3. To 

ensure chemical homogeneity, the oxides were first made into glass by grinding the 

weighed oxide powders together under ethanol, then, after drying, fusing them at 1650 °C 

followed by rapidly quenching into cold water. The obtained glass (Table 2.1) was then 

powdered and cold pressed into pellets and fired in a CO2-CO gas-mixing furnace at 1250 ˚C 

at an oxygen fugacity of 2 log units below the fayalite-magnetite-quartz buffer for 48 hours. 

To make sure that the Fe3+ of the whole sample was reduced homogeneously, the rapidly 

quenched pellets were re-ground and re-fired at identical conditions. The recovered 

samples consisted of pyroxene containing only Fe2+ as confirmed by means of Mössbauer 

spectroscopy. Glass (F) was not reduced and thus contains only some Fe2+ as a result of the 

glass making process in air. These pyroxenes (A-E) and glass (F) were then mixed with 

different materials to produce the starting compositions for multi-anvil experiments.   

Table 2.1 Composition of pyroxenes and glass starting materials. 

  MgO SiO2 Al2O3 Fe2O3 Tot. Mg Si Al Fe ΣCat 

(A)   F11 34.7 57.2 - 8.01 100 0.89 1.00 - 0.11 2.0 

(B)   A5F5 37.6 56.0 2.5 3.9 100 0.95 0.95 0.05 0.05 2.0 

(C)   A7F7 36.6 54.5 3.5 5.5 100 0.93 0.93 0.07 0.07 2.0 

(D)   A7F11 35.3 52.7 3.4 8.62 100 0.91 0.91 0.07 0.11 2.0 

(E)   A12F12 34.0 50.8 5.9 9.32 100 0.88 0.88 0.12 0.12 2.0 

(F)  A25F11 31.8 47.4 12.3 8.51 100 0.82 0.82 0.25 0.11 2.0 

Notes: Oxides are reported in wt.%. Cations are reported normalized to two cations. (A)-(E) 

crystallized to pyroxene during the reducing procedure and (F) was still glass since it was not 

reduced. 1Enriched with 20% 57Fe. 2Enriched with 100% 57Fe.  



46 

 

In order to study the influence of Fe and Al substitution on the crystal chemistry of 

bridgmanite, large high-quality single crystals with various compositions are needed. To this 

end several strategies were followed (see Table 2.2 for details). In most experiments, 

(Mg0.9Fe0.1)O (reduced to have only Fe2+) was added to produce an MgO saturated 

environment in order to maximize the oxygen vacancy substitution mechanism (Litasov et 

al., 2003; Navrotsky, 1999). In other experiments, Fe metal (6-9 μm grain size powder) or 

hematite were added to achieve relatively reducing or oxidizing conditions respectively. In 

order to synthetize crystals large enough for single crystal X-ray diffraction (XRD), water was 

added either directly using a syringe or as hydroxides in order to favor growth of the 

bridgmanite crystals. For one synthesis experiment (S6631), the starting material consisted 

of a ground mixture of MgO, Mg(OH)2, Al(OH)3, SiO2 and Fe2O3 designed to produce a 

(Mg0.8Fe0.2)(Si0.8Al0.2)O3+10 wt.% H2O bulk composition. The final starting compositions 

(Table 2.2) were loaded into gold foil capsules of 1.8 mm length and 0.8 mm diameter, 

which were then put into a platinum tube 2 mm long with a 1.0-0.8 mm diameter that was 

welded closed. The amount of free water added using a syringe could be only roughly 

estimated due to the small volumes involved. 
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Table 2.2 Starting compositions and run conditions used for the syntheses of large bridgmanite single crystals. Pt capsule was employed for 

sample S6631 and Pt-Au double capsule were employed for all other syntheses. All experiments were conducted at 25 GPa and the 

temperatures were estimated from the power-temperature relationship. 

Run No. Start composition (wt.%) Temperature (°C) Run duration (h) 

S6631 13.5% MgO, 19.5% Mg(OH)2, 13.5% Fe2O3, 40.4% SiO2, 13.1% Al(OH)3  1300 2.5 

S6689 100% (B), 0.1 μl H2O 1400 2 

S6732 85% (B), 10%Fe, 5%(Mg0.9Fe0.1)O, 0.2 μl H2O 1400 8 

S6805 75% (C), 15%Fe, 10%(Mg0.9Fe0.1)O, 3 Fe foil (φ=0.65mm, Thickness=0.025 mm), 0.2 μl H2O 1600 12 

S6813 80% (C), 15%Fe, 5%(Mg0.9Fe0.1)O,  0.2 μl H2O 1700 12 

S6833 75% (C), 15%Fe, 5% Ir, 5%(Mg0.9Fe0.1)O,  0.4 μl H2O 1700 12 

S6840 75% (C), 15%Fe, 5% Ir, 5%(Mg0.9Fe0.1)O,  0.4 μl H2O 1600 12 

S6843 75% (C), 15%Fe, 5% Ir, 5%(Mg0.9Fe0.1)O,  0.2 μl H2O 1600 12 

S6848 63.8% (C), 15% Fe, 5% Ir, 16.2% Mg(OH)2 1600 12 

S6838 75% (C), 20%Fe2O3, 5%(Mg0.9Fe0.1)O,  0.5 μl H2O 1700 12 

H4615 90% (E), 5%Ir, 5%(Mg0.9Fe0.1)O,  0.1 μl H2O 1700 12 

S7241 83.8% (F), 16.2% Mg(OH)2 1600 12 
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To study the effect of composition and oxygen fugacity on the Fe3+/ΣFe ratio in bridgmanite, 

the starting materials (Table 2.1) were mixed with different oxygen buffering assemblages 

(Table 2.3). Depending on the redox conditions needed, either Fe metal, ReO2, Fe2O3, Ru-

RuO2 (molar ratio 1:10), or PtO2 were used. In some experiments, buffers were not used 

and iridium metal (5 wt.%) was added to act as a sliding redox sensor which alloys with 

some of the Fe present in the starting material during the experiment. The Fe content of the 

Ir-Fe alloy depends on the fO2 at the experimental conditions, from which the fO2 can be 

determined using chemical analyses performed after the experiment is recovered. In 

addition, reduced (Mg0.9Fe0.1)O ferropericlase (5-10 wt.% ) was added to all experiments to 

ensure an MgO saturated bulk composition as in the lower mantle. In most experiments, 

the starting compositions were loaded into folded Au foil capsules that were enclosed in 

welded Pt tubes to avoid the loss of Fe through the formation of Pt-Fe alloy. In experiments 

where the Ru-RuO2 buffer was added, the mixtures were directly sealed into platinum 

capsules in order to avoid the possible reaction of Ru with the Au capsule. In experiments 

where PtO2 was added, a Pt capsule was used to buffer the oxygen fugacity of the 

experiment through the Pt-PtO2 buffer. For experiments where ReO2 was added or for 

which a high temperature of ~ 2100 °C was employed, folded Re foil capsules were adopted 

(Table 2.3). The capsules were 1 mm in diameter and 1.5 mm in length. In experiments 

S7132 and S7138, two capsules with 1 mm length were placed in the same assemblage on 

either side of the thermocouple. The measured oxygen fugacities of the experiments are 

reported in Table 3.2 and the methods of calculation are described in detail in Chapter 5.1. 
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Table 2.3 Starting materials, buffers, capsule materials and run conditions for the experiments for 

which the oxygen fugacity was controlled. All experiments were conducted at 25 GPa.  

Run No.  Starting materials buffer Capsule Temp. ( °C) Duration (h) 

S7122 (A) Fe Pt-Au 1700 20 

S7251 (A) ReO2 Re 1700 12 

S7262 (A) ReO2 Re 1700 12 

S7113-2 (A) Ru-RuO2 Pt 1700* 4 

S7138-1 (A) Ru-RuO2 Pt 1700* 12 

S7120 (A) Pt-PtO2 Pt 1700 12 

H4737 (C) Fe Pt-Au 1700 24 

S7132-2 (C) Fe Pt-Au 1700 24 

S7021 (C) Ir Pt-Au 1700 12 

S7028 (C) Ru-RuO2 Pt 1700 12 

H4755 (D) Fe Pt-Au 1700 24 

S7132-1 (D) Fe Pt-Au 1700 24 

S7046 (D) Ru-RuO2 Pt 1700 12 

S7138-2 (D) Ru-RuO2 Pt 1700* 12 

H4746 (E) Fe Pt-Au 1700 24 

S7209 (E) Fe Re 2100* 2 

S6920 (E) Fe+Ir Pt-Au 1700 12 

S6907 (E) Ir Pt-Au 1700* 12 

S6921 (E) Fe2O3 Pt-Au 1700 12 

S6950-1 (E) Fe2O3 Pt-Au 1700 12 

S6950-2 (E) Fe2O3 Pt-Au 1700 12 

S6952 (E) Ru-RuO2 Pt 1700 12 

S7214 (F) Ru-RuO2 Pt 1700 12 

Notes: *Temperature estimated from the power curve due to failure of the thermocouple. 

2.2 High pressure experiments 

The bridgmanite syntheses were carried out at high pressure and high temperature 

conditions using the 1000-tonne (Hymag) or 1200-tonne (Sumitomo) kawai-type multi-anvil 

apparatus at the Bayerisches Geoinstitut (BGI). This split-sphere multi-anvil design was 

introduced by Kawai et al. (1970), which featured a steel sphere split into 6 wedge-shaped 

anvils also referred to as first stage anvils forming cubic space in which a set of eight corner-
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truncated tungsten carbide cubes (second stage anvils) is placed. High pressures are 

achieved using these two stages of anvils to direct a uniaxial force of up to 1200 tonnes 

generated by a hydraulic press onto a small sample volume occupied by a ceramic high-

pressure octahedral assembly. The sample is contained inside the octahedral pressure 

medium and pyrophyllite gaskets are placed between the anvils. Both pressure medium and 

gaskets flow under pressure, creating a quasi-hydrostatic pressure on the sample (Figure 

2.1). By varying the force exerted by the hydraulic press, the truncation edge length (TEL) of 

the second stage anvils and the octahedral edge length (OEL) of the pressure medium, 

different pressures can be achieved. 

    

    

Figure 2.1 The setup for a muti-anvil press experiment. (a) Assembly parts used; (b) The octahedral 

cell assembly placed in the eight corner-truncated tungsten carbide anvils; (c) Kawaii-type split-

sphere first stage anvils; (d) 1200-tonne Sumitomo multi-anvil press.  

In this study, all experiments were conducted at 25 GPa and temperatures ranging between 

1300 and 2000 °C in a multi-anvil press (Table 2.2 and 2.3), corresponding to pressures in 
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the upper part of the Earth’s lower mantle. Tungsten carbide cubes of 32 mm edge length 

and 3 mm truncation edge length were employed with standard 7 mm edge length Cr2O3-

doped (5 wt.%) MgO octahedron as pressure medium (referred to as 7/3 assembly). The 

capsule was surrounded by an insulating MgO sleeve and placed in the central portion of a 

cylindrical lanthanum chromite (LaCrO3) furnace. MgO spacers filled the space at the top 

and bottom of the capsule and LaCrO3 lids were located at the top and bottom of the heater 

to ensure good electrical contact with the anvils (Figure 2.2).  

 

Figure 2.2 Schematic cross-section of 7/3 pressure assembly for multi-anvil experiments. 

The pressure calibrations as a function of oil pressure employed in this study were those 

routinely used at BGI based on the phase transitions of quartz to coesite, CaGeO3 garnet to 

perovskite and coesite to stishovite (Keppler and Frost, 2005). For large bridgmanite single 

crystal syntheses experiments, temperatures were estimated from the power-temperature 

relationship. In experiments performed to study the effect of oxygen fugacity on ferric Fe in 

bridgmanite, temperature was monitored with a W97Re3-W75Re25 (Type D) thermocouple 

wire (0.08 or 0.13 mm thick) inserted longitudinally through the wall of the furnace, with 

the hot junction at the midpoint of the heater. Coils made of the same thermocouple wire 

were used to protect the thermocouple as they pass through the gaskets. For those 

experiments in which the thermocouple failed, temperature was estimated from the 

electrical power-temperature relationship (Table 2.3).  

The experiments were first pressurized up to approximately 25 GPa and then heated to 

the target temperature between 1300-2100 ˚C by a rate of ~ 100 ˚C/min. The desired 
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temperature was kept for 2-24 hours after which the runs were rapidly quenched by 

shutting off the electric power to the heater and the pressure was released slowly over 20 

hours. The experimental conditions are summarized in Table 2.2 and 2.3. Two bridgmanite 

samples, H3004 and S4253, synthesized from a previous study (Boffa Ballaran et al., 2012), 

having respectively a MgSiO3 end-member composition and a very Fe,Al-rich composition 

were also used in this study. All run products are described in detail in section 3.1 and 3.2.  

2.3 Sample characterization 

The recovered samples were mounted in epoxy resin, sectioned and polished for analysis 

with scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), X-ray 

diffraction (XRD), and electron probe microanalysis (EPMA). Before the SEM and EPMA 

measurements, the charges were coated with an 8 nm thick carbon layer to avoid electrical 

charging of the surface under electron beams. 

2.3.1 Scanning electron microscopy 

Textural observations, preliminary phase identification and semi-quantitative composition 

determination of the recovered run products were performed using a scanning electron 

microscope (ZEISS Gemini 1530) operating at 15 kV equipped with a field emission gun and 

energy-dispersive X-ray spectrometer (EDS). A working distance of 13-14 mm was normally 

applied. 

In this technique, a focused electron beam generated from an electron gun, is scanned 

across a polished specimen. Depending on the interaction between the electron beam and 

the sample, different signals such as secondary electrons, back-scattered electrons and 

auger electrons can be generated. The secondary electrons with low energy are emitted 

from the near-surface regions of the sample due to inelastic interactions between the 

primary electron beam and the sample, which can be used for inspection of the topography 

of the sample’s surface. On the other hand, backscattered electrons (BSE), produced by 

elastic collisions of electrons with atoms originate from a wide region within the interaction 
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volume. Heavy atoms are stronger scatters of electrons compared with light atoms, 

therefore the intensity of the BSE is proportional to the average atomic number of the 

target sample, providing imaging with information on the sample’s composition and helping 

to distinguish between different phases. Moreover, when the electron beam collides with 

the sample, electrons from the inner shells are ejected and the resulting vacancies are filled 

later by outer shell electrons, emitting characteristic X-rays, which depend only on the type 

of elements and thus can be used for rapid qualitative chemical analysis of minerals. 

2.3.2 Electron probe micro-analyzer (EPMA) 

Precise quantitative analysis of major and minor element concentrations of coexisting 

phases were obtained using a JEOL JXA-8200 electron microprobe equipped with five 

wavelength-dispersive spectrometers. 

The physical principles of electron microprobe are fundamentally the same as the ones 

of the SEM. When the sample is bombarded by an accelerated and focused electron beam 

produced by a tungsten filament, the electron-sample interactions yield both derivative 

electrons and X-rays. The secondary and back-scattered electrons, as discussed before, are 

useful for imaging a surface or obtaining an average composition of the material; while 

accurate quantitative elemental analyses are mainly based on measurement of 

characteristic X-rays. Electrons penetrate a volume of the sample whereby an inner-shell 

electron is ejected from its orbit by inelastic collisions of the incident electrons, leaving a 

vacancy. And electrons from the outer shell fall back to fill this vacancy and shed some 

energy as X-rays (Reed, 2005).  

These X-rays are characteristic of the element and can be analyzed either by an energy 

dispersive spectrometer or by crystal spectrometers (wavelength dispersive mode). For 

precise quantitative analysis wavelength-dispersive spectroscopy (WDS) was employed. The 

electron microprobe is equipped with different crystal spectrometers (e.g. synthetic LiF, PET 

or TAP crystals) each with a specific d spacing, and the characteristic X-rays from the 

samples are selected based on their wavelength using the Bragg reflections from the 
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crystals. The position and intensity of each spectral line are then compared with those 

emitted by standards with known composition, allowing precise chemical composition 

determination after matrix corrections have been made. In EPMA analysis, matrix 

corrections are applied in order to obtain ‘true’ concentrations including atomic number, 

absorption and fluorescence corrections represented by the acronym ‘ZAF’ (Reed, 2005). 

There are mainly four actual types of models used for matrix corrections in EPMA: (1) 

Empirical, the simplest, it is based on known binary experimental data; (2) ZAF: 1st 

generalized algebraic procedure, it assumes a linear relation between concentration and x-

ray intensity; (3) Phi-rho-Z, it is based upon depth profile (tracer) experiments; (4) Monte 

Carlo, it is based upon statistical probabilities of electron-sample interactions and it is used 

particularly for unusual specimen geometries (Heinrich and Newbury, 2013).  

In this study, an accelerating voltage of 15 kV and a beam current of 5 nA were 

employed. Counting times per element were 10 s on the peak and 5 s on the background 

with a defocused beam of 30 μm for melt and 3 μm for Brg grains larger than 5 μm. For 

smaller Brg grains and other mineral phases, focused beam was used. Enstatite for Mg and 

Si, Fe metal for Fe, corundum for Al, Ir metal for Ir, Pt metal for Pt, and Ru metal for Ru were 

used as standards. The composition of pure MgSiO3 akimotoite single crystals also was 

determined using the same settings as a benchmark analysis before each period of 

measurement to ensure that an accurate Mg/Si ratio was measured for these high-pressure 

phases. Only once the Mg/Si ratio obtained both for the enstatite and akimotoite standards 

was equal to 1.00 (1) the analyses of the samples were performed. The purpose of using low 

beam current, short counting time and defocused beam was to minimize the amorphization 

and damage of Brg induced by the electron beam. The Phi-rho-Z correction routine was 

applied for all analyses of this work. More than 20 points for each sample were measured in 

order to check the homogeneity of the synthetized bridgmanite crystals. The average 

compositions of the Brg crystals synthetized in this study are reported in Table 3.3 and 3.4. 

2.3.3 Micro-focus X-ray diffraction 
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Micro-focus X-ray diffractions was performed for phase identification of the recovered 

samples. A micro-focused X-ray diffractometer (Bruker, D8 DISCOVER) equipped with a two-

dimensional solid-state detector (VÅNTEC500) and micro-focus Co-K radiation source (IμS) 

operated at 40 kV and 500 μA was used (Figure 2.3).  The X-ray beam was collimated to a 

minimum of 50 μm spot in diameter using an IFG polycapillary X-ray mini-lens. The unique 

2-dimentional large-area detector enables the coverage of a larger reciprocal space and 

achievement of high diffraction angles. The patterns were collected for 2400 - 6000 s in the 

2θ range between 25° and 85°. 

 

Fig 2.3 D8 DISCOVER diffractometer equipped with a micro-focus Co-K radiation source (IμS) and 

two-dimensional solid-state detector (VÅNTEC500). 

2.4 Single crystal X-ray diffraction and structural refinements 

Single-crystal X-ray diffraction experiments provide direct measurements of intensity data 

which can be used to determine both unit-cell parameters and the atomic structure of a 

material. Ten single crystals with a wide range of Fe and Al contents varying from 0 to 0.40 

atoms pfu were selected for single crystal X-ray diffraction study using the Xcalibur single 

crystal diffractometer and the Huber 4-circle diffractometer. The Huber 4-circle Eulerian 
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cradle diffractometer (Fig. 2.4) is equipped with Mo-Kα radiation operating at 50 kV and 40 

mA and a point detector. Point detectors offer advantages over area detectors in terms of 

signal-to-noise ratio and accuracy of the determined lattice parameters (Angel et al., 2000). 

Intensity data were collected at ambient conditions using an Oxford Diffraction Xcalibur 2 

diffractometer (kappa geometry) with Mo-Kα radiation (λ=0.71073 Å) operated at 50 kV 

and 40 mA, equipped with a Sapphire 2 CCD detector and a graphite monochromator 

(Figure 2.5).  

 

Figure 2.4 Four-circle Huber diffractometer (Mo-Kα radiation) equipped with a conventional tube 

and a point detector. 

 

Figure 2.5 Oxford Diffraction Xcalibur 2 diffractometer (kappa geometry) with Mo-Kα radiation 

equipped with a Sapphire 2 CCD detector and a graphite monochromator. 
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2.4.1 Crystal selection 

Bridgmanite crystals larger than 70 μm in size and optically free of defects with 

homogeneous extinction under crossed polarizers were carefully selected from the run 

products reported in Table 3.1 under an optical microscope and mounted on the tip of glass 

fibers for single crystal diffraction.  

After determination of the orientation matrix using the Xcalibur diffractometer, the 

crystal quality was assessed by scanning ω profiles of individual reflections on a Huber 4-circle 

Eulerian cradle diffractometer. The widths of ω profiles of individual reflections reflect the 

degree of defects of a crystal. Broader ω profile of a given reflection indicate higher 

misorientations of domains in the crystal. Therefore, only crystals with full width at half 

maximum (FWHM) of ω scans below 0.1° were used for further analysis. 

2.4.2 Accurate Unit-cell parameter determination 

The unit-cell lattice parameters of single crystals were accurately and precisely determined 

using the Huber diffractometer. Each crystal was first aligned to the center of rotation, then, 

based on the preliminary lattice parameters and orientation matrices extracted from two-

dimensional diffraction pattern obtained by CCD area detector on Xcalibur diffractometer, 

individual reflections were centered following a 8-position centering procedure according to 

King and Finger (1979) and Angel et al. (2000). The setting angles of a single reflection 

always deviate from the “true” angles as a result of a number of experimental aberrations 

(Angel et al., 2000) such as offsets of the crystal from the center of the goniometer, 

absorption by the crystal and a number of diffractometer aberrations like an incorrect zero 

position. By applying the eight-position centering method, small misalignments of the 

crystal and of the diffractometer can be taken into account (Miletich et al., 2005).  

The centering procedure and vector least square refinement of the lattice parameters 

were performed using the SINGLE software (Angel and Finger, 2011). The procedure 

consists of centering a single reflection at the 8 equivalent positions on the diffractometer. 

This involves measurements of well resolved profiles of a Bragg reflection in various 
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directions in the reciprocal space through a sequence of ω, ω/2θ, and χ scans. More than 30 

reflections were centered for each crystal. The total integrated intensity, the positions and 

FWHM of individual reflections were refined based on the refit reflection positions, 

providing lattice parameters and unit cell volumes with uncertainties smaller than 0.001 Å 

and 0.05 Å3 respectively. Unit cell parameters were refined assuming orthorhombic 

symmetry with space group Pbnm and are reported in Table 4.4.  

2.4.3 Intensity data collection and structure refinement 

Intensity data were collected at ambient conditions using an Oxford Diffraction Xcalibur 2 

diffractometer (kappa geometry). Omega scans were chosen to obtain the coverage of the 

full reciprocal sphere up to 2θmax=80˚, with an exposure time of 20 s/frame and step size of 

0.5˚ at a crystal-detector distance of 45.1 mm. 

Lorentz and polarization factors together with an analytical absorption correction 

based on the crystal shape were performed for the correction of the reflection intensities 

using the CrysAlis package (Oxford Diffraction 2006). The measured reflections were 

consistent with the orthorhombic space group Pbnm and resulted in a total of 472-723 

unique reflections with a discrepancy factor 

𝑅int =
∑|𝐹obs

2 − 𝐹obs
2 (mean)|

∑|𝐹obs
2 |

(2.1) 

between 0.022 and 0.051 (Table 2.4) where Fobs is the observed structure-factor amplitude 

of individual symmetry-equivalent reflections contributing to the same unique reflection 

and 𝐹obs(mean) is the mean structure-factor amplitude value of these symmetry equivalent 

contributors.  

Symmetrically equivalent reflections were merged and structure refinements were 

performed based on F2 using the SHELX97 program package (Sheldrick, 2008) implemented 

in the WinGx System (Farrugia, 1999). The structure refinements were carried out in space 

group Pbnm using the atomic coordinates reported by Horiuchi et al. (1987) as starting 
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parameters. Neutral scattering factors for Mg, Si, Al, Fe, and O were used (Allen et al., 1992; 

Wilson and Prince, 1992) and all atoms were refined anisotropically. 

In order to model the cation distribution of Al and Fe between the A- and B- site we 

have taken the following steps: 1) the occupancies of Fe and Mg were refined at the A site 

with their sum constrained to be equal to 1; 2) the B site has been refined only using the Si 

scattering factor with the occupancy of Si free to vary; 3) oxygen occupancies have been 

fixed to the value of 1, given that the amount of vacancies resulting from the EPMA 

analyses is smaller than 0.02 atoms pfu (Table 4.1) , concentration well below the sensitivity 

of the structural refinements. In this way we obtained mean atomic numbers (m.a.n., 

number of electrons) representing the electronic charge of the cations at the A- and B- sites 

which can be compared with the cation distribution calculated from the EPMA analysis 

(Table 4.1). Details of data collections and refinement parameters are reported in Table 2.4 

and the refinement results are listed in Table 4.2.  
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Table 2.4 Details of the structural refinements performed for the Brg single crystals in this study. 

Sample H3004 S6689 S6732 H4615 S6848 S6805 S6838 S6631 S4253 S7241 

Measured reflections 3423 3424 3642 3977 3400 3584 3491 6199 4413 3608 

Unique reflections 474 472 476 552 476 476 477 493 723 482 

Fo > 4σ(Fo) 454 432 462 527 450 453 456 485 673 468 

Rint 0.0299 0.0509 0.0222 0.0318 0.0399 0.0265 0.0388 0.0236 0.0286 0.0368 

R1 (F) for Fo > 4σ(Fo) 0.0295 0.0391 0.0247 0.0306 0.0349 0.0272 0.0360 0.0173 0.0253 0.0295 

R1 (F) for all 0.0323 0.0450 0.0258 0.0330 0.0399 0.0288 0.0390 0.0179 0.0285 0.0301 

wR2 (F2) 0.0712 0.0936 0.0591 0.0671 0.0727 0.0675 0.0843 0.0446 0.0562 0.0772 

GooF 1.194 1.176 1.132 1.207 1.21 1.101 1.251 1.152 1.107 1.153 

No. parameters 28 30 30 30 30 30 30 30 30 30 

Notes: R1= 
∑ || 𝐹obs|−|𝐹calc||

∑ |𝐹obs|
; wR2 (F2)={

∑[𝑤(𝐹obs
2 −𝐹calc

2 )
2

]

∑[𝑤(𝐹obs
2 )

2
]

}

0.5

; 𝑤 =
1

𝜎2(𝐹obs
2 )+(𝑎×𝑃)2+𝑏×𝑃

; 𝑃 =
𝑀𝑎𝑥(𝐹obs

2 ,0)+2𝐹calc
2

3
; GooF = (

∑[𝑤(𝐹obs
2 −𝐹calc

2 )
2

]

(𝑛−𝑝)
)

0.5

where n 

is the number of reflections and p is the total number of parameters refined.  
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2.5 Mössbauer spectroscopy and electron energy loss spectroscopy 

(EELS) 

The Fe3+/ΣFe ratios in the Brg samples synthetized in this study were determined using 

either Mössbauer spectroscopy or electron energy loss spectroscopy (EELS) with a 

transmission electron microscope (TEM). 

2.5.1 Mössbauer spectroscopy 

Mössbauer spectroscopy is based on the emission and absorption of gamma rays which are 

related to transitions between different states of the atomic nucleus, therefore could be 

used to study the local atomic environment around the nuclei of the atoms of interest. 

During the emission and absorption of a γ quantum by an atomic nucleus in a gas or liquid, 

the γ quantum would lose some of its energy to the recoil of the nuclei; as a result, 

recoilless emission as well as resonant absorption of γ radiation are not possible. However, 

when the emitting nucleus is incorporated into a solid crystal, the emitting or absorbing 

atoms hardly move and this recoil-free emission and resonant absorption of γ radiation is 

called the Mössbauer effect.  

The principle set-up of the Mössbauer experiment used in this study is shown in Figure 

2.6 and can be divided into three parts—the source, the absorber and the detector. 

Radioactive nuclides serve as a convenient source of gamma rays. Upon decay of a nuclide, 

the newly formed nucleus is initially in an excited state which decays to the ground state by 

emission of gamma rays. 57Fe is the most frequently used Mössbauer isotope, which is 

produced by the decay of 57Co/Rh with a half-life of 270 days. The transition of the Fe 

nucleus from the first excited state with a spin 3/2 to the ground state with a spin 1/2 

provides γ radiation with an energy of 14.413 KeV (Figure 2.6a). This monochromatic energy 

can be changed using the Doppler effect by moving the source relative to the absorber. The 

gamma rays interact with the sample (absorber) as they pass through. A detector is placed 

behind the sample that records the count rate as a function of frequency (or source velocity 
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(mm/s)). Only gamma rays that do not interact with the absorber are recorded while those 

that are absorbed are not recorded by the detector because they will be re-emitted in a 

different direction (Fig. 2.6b). Usually, the absorption frequency of the sample is not equal 

to the emission frequency of the source due to the hyperfine interactions between the 

nuclear moments and surrounding electric and/or magnetic fields which perturb the nuclear 

energy levels (as discussed in detail below). The resulting Mössbauer spectrum shows dips 

instead of peaks (Fig. 2.6b) and two important spectral parameters, the isomer-shift, δ0, (or 

chemical shift) and the quadrupole splitting, ΔEQ, can be extracted to provide information 

on the hyperfine interactions between the nucleus and the atomic electrons. 

 

 

Figure 2.6 (a) Energy levels for Mössbauer spectroscopy. (b) Schematic view of a Mössbauer 

spectrometer modified from McCammon (2004). 

The electric monopole interaction is an electrostatic interaction between the positively 

charged nucleus and the negatively charged electrons and causes a shift of the nuclear 

energy levels which is called the isomer shift or chemical shift (δ0) (Fig. 2.7a). Upon 

transition from the ground state to the excited state, the radius of the atom changes slightly. 

The isomer shift δ0 relative to a standard source (Fig. 2.7b) depends on this radius 
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difference as well as the difference in the electronic charge density especially the s electron 

density at the absorber nuclei and the source nuclei. The former is a constant for a 

particular Mössbauer isotope while the latter depends on the coordination, valence state 

and spin state of the Mössbauer atoms.  

     

Figure 2.7 Nuclear energy level diagram and the corresponding Mössbauer spectrum. (a) The 

electric monopole interaction shifts the nuclear energy levels of the source and the absorber 

differently. (b) In the corresponding Mössbauer spectrum, the difference between the centroid of 

the line and the zero-velocity point corresponds to the isomer shift δ0 (modified from Gütlich et al., 

1978). 

Quadrupole splitting (QS or ΔEQ) is often regarded as a measure of the degree of site 

distortion. Electric quadrupole interaction takes place between the nuclear quadrupole 

moment Q and an electric field gradient (EFG) q, causing the splitting of degenerate nuclear 

energy levels. When the nuclear spin quantum number I is larger than 1/2, the nuclear 

charge distribution deviates from spherical symmetry and the nucleus has a quadrupole 

moment. If the charge distribution around the nucleus (valence electrons and lattice ions) 

deviates from cubic symmetry, the EFG would be non-zero. This deviation arises from two 

contributions: (1) the valence term which reflects the asymmetry of the charge distribution 

arising from the valence electrons; (2) the lattice term which results from non-cubic charge 

distribution of the surrounding atoms. In the case of 57Fe the quadrupole interaction splits 

the first excited level (I=3/2) of 57Fe nucleus in two sublevels. Since the ground state with 

spin 1/2 has no quadrupole moment, two nuclear transitions from the ground state to the 

split excited state would occur. This results in two resonant absorption lines in the 

Mössbauer spectrum separated by the quadrupole splitting ΔEQ which describes the energy 
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difference between the two excited states (Fig. 2.8). The magnitude of quadrupole splitting 

ΔEQ depends on both Q and EFG. The quadrupole moment Q is constant for a certain 

Mössbauer isotope therefore the difference in quadrupole splitting mainly arises from 

changes of the EFG. The quadrupole splitting depends on the valence, spin state, 

coordination of the absorber atoms as well as the degree of distortion of the 

crystallographic site at which the atom resides.  

 

 

Figure 2.8 (a) The quadrupole splitting in a 1/2 →3/2 transition of 57Fe. The ground state of the 

nucleus with spin 1/2 does not split whereas the first excited state with spin 3/2 split into two 

sublevels. As a result, two transitions from the ground state to both excited sublevels are possible. 

(b) In the corresponding Mössbauer spectrum, two lines are observed (quadrupole doublet) and the 

distance between them is the quadrupole splitting ΔEQ (mm/s). The distance between the centroid 

of both lines and the zero-velocity point corresponds to the isomer shift δ0 (modified from Gütlich et 

al., 1978). 

A nucleus with a spin quantum number I larger than 1 has a non-zero magnetic dipole 

moment. The magnetic hyperfine splitting ΔEM arises from the interaction of this nuclear 

magnetic dipole moment µ and a magnetic field H (internal or external) at the nucleus, i.e. 

Zeeman effect. In the case of 57Fe, the magnetic dipole interaction splits the first excited 

state (I=3/2) into 4 sublevels and the ground state (I=1/2) into 2 sublevels. Considering the 

selection rules for magnetic dipole transitions, six transitions are allowed, resulting in a 

sextet peak in the Mössbauer spectrum (Fig. 2.9).   



65 

 

 

Figure 2.9 (a) A schematic view of the magnetic dipole splitting in 57Fe. (b) In the corresponding 

Mössbauer spectrum, six peaks are observed (sixtet). The distance between the centroid of the six 

lines and the zero-velocity point corresponds to the isomer shift δ0 (modified from Gütlich et al., 

1978). 

For a particular Mössbauer isotope, the isomer shift δ0 relative to a standard source can be 

simply expressed as 𝛿0 = 𝛼(|𝜓(0)|𝐴
2 − |𝜓(0)|𝑆

2) where α is the isomer shift calibration 

constant, |𝜓(0)|𝐴
2  is the s-electron density at the absorber nuclei and |𝜓(0)|𝑆

2 is the s-

electron density at the source nuclei. α=2/5πZe2(Re-Rg)( Re+Rg) (Ze is the nuclear charge, Re 

and Rg are the radius of the nucleus of the excited state and ground state respectively) is 

positive when Re>Rg and negative when Re<Rg (Amthauer et al., 2004).  In the case of Fe, the 

radius of the nucleus in the excited state (Re) is smaller than the ground state (Rg) therefore 

α is negative (Amthauer et al., 2004) and the isomer shift δ0 decreases with increasing s-

electron density at the 57Fe nucleus. Ferrous iron Fe2+ with an electronic configuration of 

[Ar]3d6 has a smaller s electron density at the nucleus compared to Fe3+ with an electronic 

configuration of [Ar]3d5 due to the shielding effect of the extra 3d electron on 3s electrons 

of Fe2+. Therefore Fe2+ would have a larger isomer shift in comparison with Fe3+ if the 

coordination polyhedron remains unchanged. Moreover, for Fe species with the same 

electron configuration, δ0 decreases with decreasing coordination number of iron because 

the smaller average cation-anion distance causes strong orbital overlap therefore increases 

s-electron density at the Fe-nucleus (Fig. 2.10a). In general, a quadrupole doublet assigned 

to high spin Fe2+ exhibits a large quadrupole splitting whereas that assigned to Fe3+ often 

exhibits a smaller quadrupole splitting (Fig. 2.10b). The high value of quadrupole splitting of 

high spin Fe2+ mainly arises from the strong asymmetry of the Fe2+ electron distribution 

around the nucleus with a configuration [Ar]3𝑑↑
53𝑑↓

1. In contrast, the five valence electrons 
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of high spin Fe3+each occupies one 3d orbitals with the same spin direction ([Ar]3𝑑↑
5) is 

almost spherically symmetric, therefore leading to a small quadrupole splitting.  

   

Figure 2.10 (a) Room temperature center shift ranges for high-spin Fe2+ and Fe3+ minerals with 

different coordination, modified from McCammon (2004). (b) Room temperature isomer shift versus 

quadrupole splitting data for common rock-forming minerals, modified from Dyar et al. (2006). The 

highlighted region with a center shift in the range 0.5 - 0.9 mm/s between the ranges for Fe2+ and 

Fe3+ is poorly constrained and usually assigned to Fe2.5+, representing the delocalization of electrons 

between adjacent Fe2+ and Fe3+.  

In this study, samples were prepared as stacked single crystals or thin sections for 

Mössbauer measurements. For single crystal synthesis experiments, the recovered samples 

for Mössbauer spectroscopy were carefully prepared in order to exclude large areas of melt. 

In some measurements, Brg single crystals were used. In other experiments the bulk 

assemblages were used but because the melt concentrates in the higher temperature part, 

i.e. middle part of the capsule (Fig. 3.1), the bulk assemblage on the side consisting mainly 

of Brg were cut and areas for γ-ray to pass through were carefully chosen in a way that large 

melt areas were not observed from both ends of the sample. In this way only bridgmanite 

and ferropericlase were measured in the recovered assemblage from the single crystal 

synthesis experiments. For all oxygen fugacity buffered experiments, thin sections of bulk 

assemblages were used. The thicknesses of the different samples varied between 30-500 

μm, depending on the Fe content and 57Fe enrichment of Brg (Table 2.1), to produce an 

absorber thickness of ~ 5 mg Fe/cm2 to avoid saturation effects. Mössbauer spectra were 

recorded in transmission mode over 1 to 7 days at room temperature (298 K) on a constant 
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acceleration Mössbauer spectrometer with a nominal 370 MBq 57Co point source in a 12 μm 

Rh matrix. The active dimensions of the point source were 500 x 500 μm2. The velocity scale 

was calibrated relative to a 25 μm α-Fe foil. Spectra were collected using a velocity range of 

-5 to +5 mm/s for normal samples and -7 to +7 mm/s for samples containing magnetically 

ordered Fe metal phase. Spectra were then folded and fitted to multiple doublets and 

sextets with pseudo-Voigt line shape using the MossA program. The full transmission 

integral was used for thick samples (Prescher et al., 2012). The resulting Mössbauer 

parameters are discussed in Section 3.4. 

2.5.2 Electron energy-loss spectroscopy (EELS) 

Transmission Electron microscopy (TEM) is a microscopy technique in which a beam of 

electrons is transmitted through a specimen and the interaction between the specimen and 

electrons can be used to observe the internal fine structure (the microstructure or 

ultrastructure) and chemistry in minerals. When the high-energy incident electron beam of 

the TEM passes through the sample, it interacts with the constituent atoms in a number of 

ways. Some transmitted electrons suffer inelastic scattering and lose part of their energy 

(traveling speed becomes slower) through interactions with electrons and with the crystal 

lattice of the specimen. The electron energy-loss spectroscopy (EELS) method records the 

energy spectra of these inelastically scattered electrons to perform qualitative and 

quantitative analysis of elements and electronic structure analysis from micro- or nano-

scale areas. Measurement of the transmitted electron-energy distribution is achieved by 

dispersing the electrons according to their kinetic energy (and hence energy loss during 

passage through the sample) using an electron spectrometer that employs a magnetic field 

that is normal to the electron beam. The high energy region (more than about 50 eV) of an 

EELS spectrum is called the "core-loss spectrum". The energy-loss near-edge structure 

(ELNES) describes the fine structure in an energy region of about 30 eV above the 

absorption-edge energy in the EELS core-loss spectrum, which arises due to transitions of 

electrons from the inner-shell state to the conduction band (unoccupied state). 
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In this study, EELS was carried out at the Fe L2,3 edges to study the valence state of iron 

in some of the recovered Brg samples (Table 4.1), which were not suitable for Mössbauer 

measurement due to peak overlap with coexisting ferropericlase. The ELNES of the Fe L2,3 

edges are characterized by two white-lines features arising from dipole-allowed transitions 

to vacant d orbitals. The excitation of a 2p core electron changes the atomic state from the 

ground state 2p63dn to the 2p53dn+1 state (n=5 for Fe3+ and n=6 for Fe2+). The spin quantum 

number (s) can couple to the orbital angular momentum (l) either positively or negatively, 

leading to spin-orbit splitting of the Fe 2p core hole with an energy difference of about 13 

eV (Van Aken and Liebscher, 2002). As a result, two signals with similar shape successively 

appear in the EELS spectrum: the L3 line corresponds to transitions from the 2p3/2 to the 

3d3/23d5/2 orbital and the L2 line corresponds to transitions from the 2p1/2 to the 3d3/2 orbital. 

The subscripts refer to the total spin angular momentum number (j) of the electron that 

equals to the orbital angular momentum (l) plus the spin quantum number (s) (Garvie and 

Craven, 1994). Their intensities are related to the unoccupied 3d states (Garvie and Craven, 

1994; Van Aken and Liebscher, 2002). L2,3 edges are sensitive to the valence state of Fe, for 

example, the L3 edges for the divalent and trivalent Fe are at ca. 707.8 eV, and ca. 709.5 eV, 

respectively. In this project, Fe3+/ΣFe ratios were determined following the procedure of 

Van Aken and Liebscher (2002) using the modified integral intensity ratio I(L3)/I(L2)mod which 

employs two 2-ev-wide integration windows from 708.5 to 710.5 eV centered at the Fe L3 

maximum for Fe3+ and from 719.7 to 721.7 eV centered at the Fe L2 maximum for Fe2+ (e.g. 

Figure 2.11). 
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Figure 2.11 Fe L2,3 edges from almandine and andradite, modified from Van Aken and Liebscher 

(2002). The dotted lines represent the position of the Fe L3 white-line maxima located at 707.8 and 

709.5 eV for Fe2+ and Fe3+, respectively. The grey shaded areas represent the 2-ev-wide integration 

windows used for the Fe3+/ΣFe quantification by applying the universal curve.  

TEM thin foils were prepared using either a conventional Ar-milling or a focused ion beam 

(FIB) instrument. Ar-milling is a physical etching technique whereby the ions of an inert gas 

(typically Ar) are accelerated from a wide beam ion source into the surface of a substrate 

(or coated substrate) in vacuum in order to remove material to some desired depth or 

underlayer. FIB-SEM is a highly versatile tool in the field of materials research. It consists of 

a fully equipped scanning electron microscope incorporating a scanning ion beam column. 

The latter one allows imaging of the surface of the samples by ion induced secondary 

electrons as well as by secondary ions. Depending on the selected beam parameters, the 

focused ion beam is used to remove material from the sample. This, in conjunction with 

electron beam imaging enables structuring of the samples surface with an accuracy in the 

range of 10 nm. The combination of ion beam-cutting and electron imaging facilitates the 

highly localized metallographic sectioning of all materials accessible by scanning electron 

microscopy. Sequential sectioning and imaging are the fundament of the “slice and view” 

technique delivering three-dimensional microstructure information. Furthermore, thin 

lamellae for TEM investigations can be produced from relevant regions of devices or 
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materials by controlled thinning. Removal is done by means of an integrated micro 

manipulator with a Platinum needle. 

ELNES spectra were collected using both a Philips CM20FEG equipped with a parallel 

electron energy-loss spectrometer, PEELS Gatan 666, and a FEI Titan G2 80-200 S/TEM 

equipped with an energy filter system, Gatan Quantum SE, operating at 200 kV. The TEM 

experiments were performed at -170 °C using a liquid-nitrogen-cooling holder. Fe-L2,3 edge 

ELNES spectra were collected in diffraction modes at the thinnest part of the ion-thinned 

sample. Quantification of the Fe-L2,3 edge ELNES was performed following the procedure 

described by Van Aken and Liebscher (2002), using an empirically calibrated universal curve. 

The EELSA program (https://github.com/CPrescher/EELSA), was used to evaluate the 

Fe3+/ Σ Fe ratios reported in Table 4.1. The time-series analyses of the spectra showed that 

the measured ratios did not change remarkably with increasing electron irradiation time up 

to 80 secs of acquisition. 

  

https://github.com/CPrescher/EELSA
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3 Phase assemblage and composition of 

recovered samples 

3.1 Recovered phase assemblages from experiments to obtain 

single crystals 

In the run products recovered from the synthesis experiments aimed at obtaining large 

single crystals (Table 3.1), melt coexisted with Brg due to the presence of water in the 

starting materials (Fig. 3.1). Runs S6631 and S7241 each contained an additional hydrous 

phase, which was identified by single crystal XRD to be phase D and superhydrous phase B 

(shy B), respectively (Table 3.1; Figure 3.1b, e). These hydrous phases were not observed in 

other runs. Phase D has the nominal composition MgSi2O4(OH)2 with approximately 10 wt.% 

H2O, which has a stability field up to ~ 50 GPa (Frost, 1999; Frost and Fei, 1998) relatively 

high among the dense hydrous magnesium silicates (DHMS). Previous studies on the 

Mg2SiO4-H2O system have shown the stability limit of phase D of 1200-1400 °C at 24 GPa 

(Frost and Fei, 1998; Ohtani et al., 2000). A more recent study has shown that the addition 

of Al2O3 increases the stability temperature of phase D to 1600 °C in the Fe-free, Al-bearing 

bulk composition; while addition of FeO has an opposite effect, leading to the thermal 

stability of phase D in the FeO–MgO–Al2O3–SiO2–H2O (FMASH) composition similar to those 

in the MgO-SiO2-H2O (MSH) system between 1350 and 1400 °C at 24 GPa (Ghosh and 

Schmidt, 2014). All the starting materials for the purpose of synthesizing large Brg single 

crystals (Table 2.1 and 2.2) in this study contain both Fe and Al, therefore phase D in such 

bulk compositions should only be stable up to near 1350- 1400 °C at 25 GPa, this may 

explain why phase D only appears in run S6631 conducted at 1300 °C but not in other 

experiments conducted at higher temperatures (> 1400 °C) (Table 2.2). The water content 

of Phase D in S6631 with (Mg+Fe)/Si of 0.69 is about 14 wt.% as inferred from the total 

mass of EPMA analysis (Table 3.3) and single crystal XRD by Xcalibur diffractometer 
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confirmed the crystal structure with the P31m symmetry (Boffa Ballaran et al., 2010). Shy B 

has a nominal composition of Mg10Si3O14(OH)4 containing approximately 6 wt.% H2O 

(Gasparik, 1993). Although studies in the MgO-SiO2-H2O system have shown that the 

stability temperature of shy B at 24-25 GPa is between 1200-1500 °C (Frost, 1999; Frost and 

Fei, 1998; Gasparik, 1993; Ohtani et al., 2003; Ohtani et al., 2001), the most recent study in 

the Al-bearing system indicated that the incorporation of Al would increase the stability 

field of shy B. Shy B can accommodate a significant amount of Al2O3, up to 32 wt.%, and shy 

B with an Al content of 3.91 atoms pfu is still stable at 24 GPa and 2000 °C (Kakizawa et al., 

2018). Moreover, the maximum water content appears to increase to 11.1 wt.% when Al=3 

atoms pfu in Al-bearing shy B, which is 1.9 times higher than the content in the end-

member Mg10Si3O14(OH)4 shy B (Kakizawa et al., 2018).  The starting material of S7241 

contained a large amount of Al2O3 (12.3 wt.%, Table 2.1, 2.2), resulting in the formation of 

Brg with Al2O3 as high as 9.3 wt.% (Table 3.3) and an additional Al-rich phase shy B 

containing 21.1 wt.% Al2O3 (or 2.8 pfu of Al normalized to 13 cations) with the presence of 

water at 25 GPa and 1600 °C. Considering the high Al content, the experimental conditions 

were well within the stability field of shy B. The water content is estimated to be 11.4 wt.%, 

inferred from the total mass of the EPMA analyses, and single crystal XRD using the Xcalibur 

diffractometer confirmed the shy B structure with the space group Pnmn (Pacalo and Parise, 

1992). The Al2O3 content of the starting materials in other experiments were lower (<6 wt.%, 

Table 2.1, 2.2), therefore all of the Al could be incorporated into Brg and melt, and likely 

due to the resulting contraction in the stability field, shy B did not form. 

The other phases present in the run products from single crystal synthesis experiments 

include, melt, which crystallized to a fine-grained assemblage on quenching (e.g. Fig. 3.1c, 

d), ferropericlase (Fig. 3.1c), stishovite (Fig. 3.1d), and Fe metal (Fig. 3.1a). High quality 

bridgmanite crystals from 8 of the 12 synthesis experiments (Table 3.1 marked with 

superscripts a) were chosen for the single crystal XRD study described in detail in section 2.4. 

The remaining four experiments (Table 3.1 marked with superscripts b provided unsuitable 

crystals and were only used to study the Fe-Mg partitioning between bridgmanite and melt, 

as discussed in detail in Chapter 6 (Table 3.3). These experiments contained Fp coexisting 
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with Brg and melt and the fraction of melt was sufficiently large enough to enable accurate 

compositions to be obtained by EPMA (Table 3.1, Figure 3.1c).   

Table 3.1 Recovered phase assemblage in single crystal synthesis experiment conducted at 25 GPa.  

Run No.  Recovered assemblages Run No.  Recovered assemblages 

S6631a Brg+Phase D+melt S6813b Brg+Fp+melt 

S6689a Brg+melt S6833b Brg+Fp+Fe-Ir+melt 

S6732a Brg+Phase D+Fp+melt S6840b Brg+Fp+melt 

S6805a Brg+Fp+St+melt S6843b Brg+Fp+Fe-Ir+melt 

S6848a, b Brg+Fp+Fe-Ir+melt   

S6838a Brg+St+melt   

H4615a Brg+Fe-Ir+melt   

S7241a Brg+shy B +melt   

Notes: aSamples chosen for single crystal X-ray diffraction measurements. bSamples used for Fe 

partitioning study. Brg=bridgmanite; Fp=ferropericlase; St=stishovite; shy B=superhydrous Phase B; 

Fe-Ir=Fe-Ir metal alloys. 
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Figure 3.1 Selected back scattered images of recovered assemblage of Brg single crystal synthesis 

experiments: (a) Run H4615, Brg crystals (grey) coexist with Fe-Ir metal (bright) and minor amount 

of melt (dark). (b) Run S6631, large Brg crystals (bright) coexist with Phase D (dark) and minor 

amount of melt. (c) Run S6833, large Brg crystals (grey) coexist with minor amount of Fp (bright) and 

large amount of melt. (d) Run S6838, large Brg crystals (bright) coexist with minor amount of St 

(dark) and huge amount of melt. (e) Run S7241, Brg crystals (bright) coexist with Phase 

superhydrous phase B (dark) and melt. Abbreviations are the same with Table 3.1. 

3.2 Recovered phase assemblages from oxygen fugacity buffered 

experiments  

In all experiments where the oxygen fugacity was controlled or monitored, coexisting Brg 

and Fp were successfully recovered together with the buffering phases which were disperse 

throughout the charge (Table 3.2; Fig. 3.2). In the synthesis experiments performed with 
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Re+ReO2 or Ru+RuO2 oxygen buffers, both phases were present. For experiments in which 

20 wt.% Fe2O3 was added as the buffer material, however, no hematite was observed in the 

run products and a (Mg,Fe)2Fe2O5 phase belonging to the Mg2Fe2O5-Fe4O5 join was present 

instead (Fig. 3.2b). A trace amount of carbon was observed in a few experimental charges 

indicating the presence of carbon in the starting material (Table 3.2), the carbon may come 

from the absorption of atmospheric CO2 by the oxygen buffering materials and/or dust from 

the air during sample preparation.  Carbon appeared as carbide Fe3C in metal saturated 

experiments and as carbonate in higher oxygen fugacity experiments, which is discussed in 

detail in section 6.1 (Table 3.2). In the low Al and high Fe bearing experiments where the 

Ru/RuO2 buffer was added (S7113, S7138-1, S7138-2, S7046), an extra phase, 

(Mg,Fe)(Fe,Ru,Si)2O4, was present which had the CaMn2O4 or CaTi2O4 structure (personal 

communication from Nobuyoshi Nakajima who performed electron diffraction using the 

TEM).  A minor amount of majorite garnet with composition Mg2.8Fe0.5Al1.4Si3.3O12 (H4746) 

and Mg2.7Fe0.8Al1.4Si3.1O12 (S6920) was observed in experiments at reduced conditions when 

employing starting materials with Al2O3 contents higher than 5.9 wt.%. The Al content of 

the majorite phase was more than three times that of coexisting Brg, note that garnet was 

not present in experiments with similar starting compositions run at higher oxygen 

fugacities, implying that the formation of ferric iron expanded the Brg stability field. In 

experiment S7214 which had a starting composition containing 12.3 wt.% Al2O3, an Al-rich 

phase Mg1.37Si0.42Fe0.09Al1.05Ru0.07O4 with the CaFe2O4 structure was found to coexist with 

Brg and Fp. The run conditions and recovered phase assemblages are reported in Table 3.2.  
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Table 3.2 Recovered assemblages for experiments where the oxygen fugacities were controlled. 

Run No.  buffer Mineral assemblagea log fO2 (ΔIW) 

S7122 Fe Brg, Fp, Fe, Fe3C -0.71 (25) 

S7251 ReO2 Brg, Fp, Re, ReO2 4.05 (52) 

S7262 ReO2 Brg, Fp, Re, ReO2 4.05 (52) 

S7113-2 Ru-RuO2 Brg, Fp, Ru, RuO2, Mst, CT/CM 7.65 (31) 

S7138-1 Ru-RuO2 Brg, Fp, Ru, RuO2, Mst, CT/CM 7.65 (31) 

S7120 PtO2 Brg, Fp, Pt, Mst 8.75 (87) 

H4737 Fe Brg, Fp, Fe, Fe3C -0.93 (13) 

S7132-2 Fe Brg, Fp, Fe, Fe3C -0.82 (14) 

S7021 Ir Brg, Fp, Fe-Ir alloy 2.30 (82) 

S7028 Ru-RuO2 Brg, Fp, Ru, RuO2, Mst 7.65 (31) 

H4755 Fe Brg, Fp, Fe, Fe3C -0.64 (5) 

S7132-1 Fe Brg, Fp, Fe, Fe3C -0.67 (6) 

S7046 Ru-RuO2 Brg, Fp, Ru, RuO2, Mst, CT/CM 7.65 (31) 

S7138-2 Ru-RuO2 Brg, Fp, Ru, RuO2, Mst, CT/CM 7.65 (31) 

H4746 Fe Brg, Fp, Fe, Fe3C, Mj -0.60 (5) 

S7209 Fe Brg, Fp, Fe -0.89 (5) 

S6920 Fe+Ir Brg, Fp, Fe-Ir alloy, Fe3C, Mj -0.14 (11) 

S6907 Ir Brg, Fp, Mst, Fe-Ir alloy 2.70 (73) 

S6921 Fe2O3 Brg, Fp, (Mg,Fe)4O5, Mst 4.90 (66) 

S6950-1 Fe2O3 Brg, Fp, (Mg,Fe)4O5, Mst, Fe-Ir alloy 3.95 (34) 

S6950-2 Fe2O3 Brg, Fp, (Mg,Fe)4O5, Mst, Fe-Pt alloy 3.61 (30) 

S6952 Ru-RuO2 Brg, Fp, Ru, RuO2, Mst 7.65 (30) 

S7214 Ru-RuO2 Brg, Fp, Mst, CF, Ru, RuO2 7.65 (31) 

Notes: Brg: bridgmanite; Fp: ferropericlase; Mst: magnesite; Mj: majorite garnet; CF: (Mg,Fe)2SiO4-

(Mg,Fe)Al2O4 solid solution with the CaFe2O4 structure; CT/CM: (Mg,Fe)(Fe,Ru,Si)O4 phase with 

CaTi2O4 or CaMn2O4 structure. 
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Fig. 3.2 Back-scattered electron images of experimental run products obtained at different oxygen 

fugacities: (a) Run H4746: low oxygen fugacity buffered by Fe metal. (b) Run S6921: Hematite was 

added and reduced to (Mg,Fe)2Fe2O5 phase, carbon exists as magnesite. (c) Run S7251: Middle 

oxygen fugacity buffered by the coexisting of Re and ReO2. (d) Run S6952:  High oxygen fugacity 

achieved by the coexistence of Ru-RuO2 buffer. In all of the experiments, the buffer materials were 

well mixed with the starting material and dispersed throughout the sample to minimize the diffusion 

pathways. Abbreviations: Brg, bridgmanite; Fp, ferropericlase; Mst, magnesite. 

3.3 Composition of run products 

The compositions, measured by EPMA, of each phase in the recovered assemblages are 

summarized in Table 3.3 and Table 3.4. The details of the measurements can be found in 

chapter 2.3.2. Table 3.3 shows the results from experiments aiming at synthesizing large 

bridgmanite single crystals. In general, more than 20 points were measured for each phase 

in the experiment and the 1 sigma standard deviations of these analyses are shown. For 
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some phases, only a few points could be measured due to only minor amounts of suitably 

sized crystals being present. Quenched crystals from melts were measured with a 30-μm 

diameter defocused beam in order to get an average composition. When melt was present 

only in small amounts, a smaller beam size of 10-μm was used. Table 3.4 shows results from 

experiments studying the effect of composition and oxygen fugacity on the Fe3+/ΣFe ratio in 

bridgmanite. 
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Table 3.3 Phase compositions in wt.% measured by EPMA and cation proportions normalized by number of cations per formula unit. All Fe (ΣFe) 

is treated as FeO. No. represents the number of points measured for each phase and the number in parenthesis are 1 standard deviation of the 

analysis. Abbreviations are the same as in Table 3.1.    

Run # Phases No.  MgO SiO2 FeO Al2O3 Total Mg Si Fe Al ΣCation 

S6631 Brg 25 28.3(4) 44.4(3) 17.2(6) 9.2(2) 99.2(6) 0.753(7) 0.794(6) 0.258(8) 0.194(4) 2.00  

 Phase D 22 19.0(3) 48.8(5) 6.2(3) 12.1(4) 86.0(5) 0.882(8) 1.516(16) 0.160(7) 0.441(15) 3.00  

S6689 Brg 26 37.7(3) 56.0(4) 3.6(2) 2.7(2) 100.0(4) 0.948(5) 0.947(5) 0.050(3) 0.055(3) 2.00  

S6732 Brg 41 34.7(4) 54.9(6) 8.3(5) 2.3(2) 100.2(7) 0.890(8) 0.944(8) 0.119(7) 0.047(4) 2.00  

 Fp 25 34.0(6) 0.05(3) 67.7(9) 0.03(3) 101.7(10) 0.472(6) 0.0005(2) 0.528(6) 0.0003(3) 1.00  

 Phase D 2 21.3(1) 57.4(3) 3.4(1) 4.52(1) 86.6(1) 0.978(6) 1.769(9) 0.088(3) 0.1642(2) 3.00  

 Melt (10 μm) 10 23.2(5) 56.0(5) 3.592) 4.5(3) 87.1(8) 0.350(4) 0.567(4) 0.030(2) 0.054(4) 1.00  

S6805 Brg 31 31.9(4) 53.4(4) 11.0(5) 3.492) 99.7(7) 0.834(7) 0.936(7) 0.161(6) 0.070(4) 2.00  

 Fp 14 28.1(3) 0.05(3) 71.7(6) 0.10(3) 100.0(5) 0.411(4) 0.0005(3) 0.588(4) 0.0011(3) 1.00  

 St 10 0.03(4) 98.8(6) 1.1(4) 1.3(2) 101.2(7) 0.0004(6) 0.975(5) 0.009(3) 0.015(2) 1.00  

S6813 Brg 41 32.8(5) 52.7(5) 11.0(5) 3.4(2) 99.9(7) 0.852(8) 0.919(9) 0.160(6) 0.069(3) 2.00  

 Fp 23 33.7(7) 0.13(7) 66.7(8) 0.13(4) 100.6(9) 0.472(6) 0.0015(6) 0.525(6) 0.0012(4) 1.00  

 Melt (30 μm) 14 26.0(11) 23.3(20) 28.1(23) 1.5(4) 78.9(37) 0.445(26) 0.266(15) 0.269(17) 0.020(5) 1.00  

S6833 Brg 61 33.0(3) 53.2(3) 10.6(4) 3.3(2) 100.2(7) 0.854(5) 0.924(6) 0.155(6) 0.067(3) 2.00  

 Fp 7 35.8(3) 0.14(4) 65.0(11) 0.12(2) 101.0(13) 0.494(3) 0.0013(4) 0.503(4) 0.0013(2) 2.00  

 Melt (30 μm) 99 27.4(13) 22.9(20) 28.9(20) 1.6(4) 80.7(31) 0.455(18) 0.255(19) 0.269(15) 0.021(5) 2.00  

 (continued on next page) 
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Table 3.3 (Continued) 

Run # Phases No.  MgO SiO2 FeO Al2O3 Total Mg Si Fe Al ΣCation 

S6840 Brg 25 33.1(2) 52.2(4) 10.5(4) 3.2(2) 99.0(6) 0.866(4) 0.914(8) 0.154(6) 0.067(4) 2.00  

 Fp 4 33.7(4) 0.08(2) 67.0(9) 0.10(2) 100.9(8) 0.472(5) 0.0008(2) 0.527(5) 0.0011(2) 1.00  

 Melt (30 μm) 28 28.6(13) 21.7(14) 27.5(24) 1.6(1) 79.4(18) 0.478(23) 0.243(15) 0.257(22) 0.022(2) 1.00  

S6843 Brg 32 33.1(4) 53.1(4) 10.5(5) 3.3(2) 99.9(8) 0.858(6) 0.923(6) 0.152(6) 0.067(4) 2.00  

 Fp 18 31.3(3) 0.05(3) 69.0(9) 0.09(3) 100.4(9) 0.446(4) 0.0005(3) 0.552(4) 0.0010(4) 1.00  

 Melt (30 μm) 6 28.3(11) 22.4(25) 27.2(40) 1.9(2) 79.2(22) 0.471(19) 0.250(28) 0.254(37) 0.026(2) 1.00  

S6848 Brg 22 33.3(4) 54.0(4) 10.1(5) 3.3(2) 100.7(6) 0.857(8) 0.931(6) 0.145(7) 0.067(5) 2.00  

 Fp 17 40.9(3) 0.06(3) 59.6(8) 0.10(3) 100.7(9) 0.549(4) 0.0005(3) 0.449(4) 0.0011(3) 1.00  

 melt 5 31.8(11) 21.2(16) 27.7(31) 1.5(8) 82.3(35) 0.506(17) 0.227(17) 0.248(27) 0.019(11) 1.00  

S6838 Brg 33 32.4(5) 49.6(5) 13.2(7) 3.8(1) 99.1(7) 0.850(9) 0.875(5) 0.195(11) 0.080(3) 2.00  

 St 9 0.02(1) 98.5(7) 0.3(1) 0.55(5) 99.4(7) 0.0003(2) 0.990(1) 0.003(1) 0.006(1) 1.00  

 Melt (30 μm) 97 29.3(15) 19.0(14) 28.2(24) 0.6(1) 77.0(15) 0.503(23) 0.218(17) 0.271(23) 0.008(1) 1.00  

H4615 Brg 25 34.2(3) 51.7(3) 8.1(4) 5.7(2) 99.7(7) 0.879(5) 0.889(6) 0.117(5) 0.115(4) 2.00  

S7241 Brg 37 33.9(3) 48.8(4) 7.8(4) 9.3(3) 99.9(5) 0.865(6) 0.835(7) 0.112(5) 0.188(6) 2.00  

 shy B 17 47.2(3) 18.2(2) 2.0(2) 21.1(2) 88.6(5) 7.948(35) 2.056(23) 0.191(23) 2.804(27) 13.00 

 Melt (10 μm) 13 45.5(14) 15.3(8) 1.9(3) 7.8(4) 70.5(17) 0.722(11) 0.163(7) 0.017(3) 0.097(5) 1.00  
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Table 3.4 Composition of bridgmanite, ferropericlase, magnesite and oxides of run products in wt.% and cation proportions normalized by 

number of cations per formula unit obtained from oxygen fugacity buffered experiments. No. represents the number of points measured for 

each phase and the number in parenthesis are 1 standard deviation of the analysis. The abbreviations are the same as in Table 3.2. 

Run # Phase No. MgO  SiO2  FeO  Al2O3  RuO2 Total Mg Si Fe Al Ru ΣCat 

S7122 Brg 27  35.3(4) 56.8(4) 6.7(4) - - 98.8(5) 0.915(8) 0.988(8) 0.098(5) - - 2.00  

 Fp 19  57.8(106) 0.2(1) 41.2(104) - - 99.1(7) 0.708(88) 0.001(1) 0.290(89) - - 1.00  

S7251 Brg 29  36.7(4) 57.0(5) 6.3(5) - - 100.0(7) 0.935(7) 0.975(7) 0.091(7) - - 2.00  

 Fp 16  64.5(12) 0.2(3) 35.9(12) - - 100.7(7) 0.760(9) 0.002(2) 0.238(9) - - 1.00  

S7262 Brg 59  36.7(4) 57.7(5) 6.2(5) - - 100.6(6) 0.931(6) 0.981(7) 0.088(8) - - 2.00  

 Fp 34  58.3(12) 0.1(1) 42.1(11) - - 100.05(6) 0.711(10) 0.001(1) 0.288(9) - - 1.00  

S7113-2 Brg 36  38.1(4) 57.7(5) 4.0(5) - - 99.9(6) 0.964(9) 0.979(7) 0.057(7) - - 2.00  

 Fp 18  90.9(7) 0.2(1) 8.5(4) - - 99.5(6) 0.949(2) 0.001(1) 0.050(2) - - 1.00  

 Mst 4  46.4(6) 1.2(6) 1.0(1) - - 48.6(7) 0.971(10) 0.017(9) 0.012(1) - - 1.00  

 CT/CM 6  15.7(5) 1.1(2) 45.2(12) - 34.0(35) 96.0(24) 0.921(17) 0.040(6) 1.484(19) - 0.555(13) 3.00  

S7138-1 Brg 41  38.3(4) 58.1(5) 4.0(4) - - 100.4(7) 0.963(8) 0.980(8) 0.056(5) - - 2.00  

 Fp 24  91.7(4) 0.1(2) 7.8(3) - - 99.6(5) 0.954(2) 0.001(1) 0.045(2) - - 1.00  

 Mst 2  46.87(4) 0.05(3) 0.85(4) - - 47.77(5) 0.989(0) 0.001(0) 0.010(0) - - 1.00  

 CT/CM 8  14.5(5) 1.0(6) 46.3(7) - 32.5(7) 94.2(10) 0.853(25) 0.038(23) 1.530(34) - 0.579(11) 2.42  

S7120 Brg 37  36.8(3) 54.9(5) 7.3(5) - - 99.0(5) 0.946(6) 0.949(8) 0.105(8) - - 2.00  

 Fp 5  86.2(2) 0.1(0) 12.2(2) - - 98.5(1) 0.926(1) 0.001(0) 0.074(1) - - 1.00  

 Mst 30  47.3(4) 0.1(4) 0.7(1) - - 48.2(5) 0.991(2) 0.001(1) 0.008(2) - - 1.00  

H4737 Brg 18  37.0(5) 55.6(5) 4.9(3) 3.8(4) - 101.3(6) 0.925(11) 0.932(7) 0.069(5) 0.074(8) - 2.00  

 Fp 16  70.1(4) 0.2(2) 30.5(6) 0.3(1) - 101.1(5) 0.800(4) 0.002(2) 0.195(4) 0.003(0) - 1.00  

S7132-2 Brg 19  36.8(4) 55.8(5) 4.9(2) 3.7(4) - 101.2(5) 0.921(7) 0.937(9) 0.068(2) 0.073(8) - 2.00  

 Fp 22  64.3(58) 0.3(4) 36.2(57) 0.4(1) - 101.2(7) 0.754(44) 0.002(3) 0.240(44) 0.004(1) - 1.00  

 (continued on next page) 
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Table 3.4 (Continued) 

Run # Phase No. MgO  SiO2  FeO  Al2O3  RuO2 Total Mg Si Fe Al Ru ΣCat 

S7021 Brg 23  36.9(6) 56.8(6) 4.2(3) 3.5(6) - 101.4(4) 0.921(13) 0.951(10) 0.059(4) 0.069(11) - 2.00  

 Fp 12  81.8(9) 0.3(4) 18.8(8) 0.2(1) - 101.1(6) 0.882(5) 0.002(3) 0.113(5) 0.002(1) - 1.00  

S7028 Brg 17  36.8(2) 55.3(6) 5.4(4) 3.3(2) - 100.9(6) 0.925(6) 0.932(7) 0.076(5) 0.066(4) - 2.00  

 Fp 16  92.5(5) 0.3(4) 6.4(2) 0.1(0) - 99.3(6) 0.961(1) 0.001(1) 0.037(1) 0.001(0) - 1.00  

 Mst 14  47.6(5) 0.3(4) 0.6(1) 0.0(0) - 48.5(6) 0.990(3) 0.003(3) 0.007(2) 0.000(0) - 1.00  

H4755 Brg 15  35.7(4) 54.893) 7.0(5) 3.7(4) - 101.2(4) 0.900(7) 0.928(4) 0.099(7) 0.074(8) - 2.00  

 Fp 17  54.2(8) 0.2(2) 46.5(8) 0.5(1) - 101.3(4) 0.671(7) 0.001(2) 0.323(7) 0.005(1) - 1.00  

S7132-1 Brg 37  35.0(7) 55.3(5) 7.0(6) 3.9(4) - 101.2(6) 0.886(14) 0.938(9) 0.099(8) 0.077(8) - 2.00  

 Fp 27  55.8(26) 0.1(1) 45.0(26) 0.3(0) - 101.3(7) 0.685(22) 0.001(1) 0.311(22) 0.003(0) - 1.00  

S7046 Brg 27  36.0(3) 53.0(4) 6.9(3) 3.4(1) - 99.2(6) 0.922(6) 0.911(6) 0.099(4) 0.069(2) - 2.00  

 Fp 29  88.9(5) 0.1(1) 9.7(4) 0.1(0) - 98.8(5) 0.941(3) 0.001(0) 0.057(3) 0.001(0) - 1.00  

 Mst 29  46.9(4) 0.2(2) 1.1(2) 0.0(0) - 48.2(5) 0.985(5) 0.000(1) 0.013(2) 0.002(3) - 1.00  

S7138-2 Brg 37  35.9(3) 53.7(4) 6.7(4) 3.3(1) - 99.6(5) 0.918(5) 0.920(6) 0.096(5) 0.067(2) - 2.00  

 Fp 27  90.5(5) 0.1(1) 8.7(3) 0.0(0) 0.8(4) 100.1(7) 0.946(2) 0.000(1) 0.051(2) 0.000(0) 0.003(1) 1.00  

 Mst 23  47.7(5) 0.0(1) 0.8(1) - - 48.6(5) 0.989(2) 0.001(1) 0.010(1) - - 1.00  

 CT/CM 23  15.0(3) 0.8(2) 48.0(12) - 30.2(6) 94.0(10) 0.874(17) 0.030(7) 1.565(24) - 0.531(13) 3.00  

H4746 Brg 23  34.2(6) 52.8(8) 8.2(7) 5.5(5) - 100.6(8) 0.870(10) 0.902(12) 0.118(10) 0.110(9) - 2.00  

 Fp 23  51.4(19) 0.2(2) 49.1(19) 0.3(0) - 100.9(6) 0.648(17) 0.001(2) 0.347(17) 0.003(0) - 1.00  

 Mj 18  26.8(5) 46.9(7) 9.1(6) 17.2(9) - 100.0(7) 2.790(47) 3.273(42) 0.528(39) 1.409(67) - 8.00  

S7209 Brg 38  33.3(4) 52.4(4) 8.3(7) 5.8(2) - 99.8(7) 0.856(7) 0.904(8) 0.120(10) 0.119(3) - 2.00  

 Fp 24  62.6(10) 0.2(1) 35.8(12) 1.6(1) - 100.3(6) 0.744(8) 0.002(1) 0.239(9) 0.015(1) - 1.00  

S6920 Brg 15  33.7(5) 53.1(4) 8.4(5) 6.1(4) - 101.3(5) 0.855(10) 0.903(8) 0.119(7) 0.123(8) - 2.00  

 Fp 17  41.0(4) 0.1(1) 58.3(9) 0.5(1) - 100.0(10) 0.552(5) 0.001(1) 0.441(5) 0.006(1) - 1.00  

(continued on next page) 
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Table 3.4 (Continued) 

Run # Phase No. MgO  SiO2  FeO  Al2O3  RuO2 Total Mg Si Fe Al Ru ΣCat 

 Mj 1  25.7 45.09 12.91 17.55 - 101.2 2.668  3.140  0.752  1.440  - 8.00  

S6907 Brg 21  34.4(4) 52.2(4) 7.5(4) 5.6(2) - 99.6(7) 0.882(6) 0.897(7) 0.108(6) 0.113(3) - 2.00  

 Fp 15  81.8(5) 0.12(8) 18.3(5) 0.25(5) - 100.4(9) 0.886(2) 0.001(1) 0.111(2) 0.002(0) - 1.00  

 Mst 3  46.9(2) 0.6(2) 1.94(2) - - 49.4(4) 0.969(3) 0.008(3) 0.023(0) - - 1.00  

S6921 Brg 34  31.7(5) 49.8(4) 14.8(6) 5.1(1) - 101.4(4) 0.818(9) 0.863(6) 0.214(9) 0.105(3) - 2.00  

 Fp 12  71.1(4) 0.5(1) 29.5(4) 0.3(0) - 101.4(5) 0.806(3) 0.004(1) 0.188(3) 0.003(0) - 1.00  

 (Mg,Fe)4O5 19  22.0(3) 1.7(1) 69.2(8) 1.5(1) - 94.3(8) 1.394(14) 0.073(4) 2.460(14) 0.073(4) - 4.00  

 Mst 17  46.0(4) 0.1(1) 3.7(6) 0.03(2) - 49.8(7) 0.955(6) 0.000(0) 0.043(7) 0.002(2) - 1.00  

S6950-1 Brg 16  31.1(4) 49.3(3) 14.5(6) 5.3(1) - 100.1(9) 0.813(4) 0.865(7) 0.212(7) 0.109(3) - 2.00  

 Fp 11  32.2(4) 0.34(6) 67.7(9) 0.15(4) - 100.3(11) 0.457(4) 0.003(1) 0.538(4) 0.002(0) - 1.00  

 (Mg,Fe)4O5 13  9.5(3) 1.6(2) 81.3(7) 1.3(1) - 93.6(7) 0.664(19) 0.073(8) 3.194(22) 0.069(4) - 4.00  

 Mst 7  45.3(4) 0.3(2) 5.1(3) 0.03(2) - 50.7(5) 0.936(4) 0.004(3) 0.059(3) 0.001(0) - 1.00  

S6950-2 Brg 18  28.8(5) 50.0(4) 16.6(5) 5.2(1) - 100.6(9) 0.759(9) 0.886(7) 0.247(8) 0.108(3) - 2.00  

 Fp 7  22.5(3) 0.6(3) 75.7(6) 0.16(4) - 99.1(5) 0.343(3) 0.007(3) 0.648(6) 0.002(0) - 1.00  

 (Mg,Fe)4O5 9  8.4(2) 1.9(3) 81.3(11) 1.0(1) - 92.6(12) 0.599(15) 0.092(15) 3.252(23) 0.057(6) - 4.00  

 Mst 12  43.0(4) 0.1(2) 8.1(4) 0.10(4) - 51.3(4) 0.902(6) 0.002(3) 0.095(4) 0.002(1) - 1.00  

S6952 Brg 37  34.7(4) 50.9(4) 8.6(3) 5.6(2) - 99.8(7) 0.889(5) 0.875(5) 0.124(4) 0.113(3) - 2.00  

 Fp 22  91.7(6) 0.2(2) 7.1(3) 0.3(0) - 99.3(7) 0.955(2) 0.001(1) 0.041(2) 0.002(2) - 1.00  

 Mst 17  46.1(4) 0.2(2) 0.9(2) 0(0) - 47.3(5) 0.986(4) 0.003(3) 0.011(2) 0.001(1) - 1.00  

S7214 Brg 42  32.3(3) 46.2(4) 8.0(4) 11.2(4) 1.1(2) 98.8(6) 0.840(6) 0.804(7) 0.116(6) 0.231(7) 0.009(2) 2.00  

 Fp 35  89.7(7) 0.2(3) 3.8(3) 1.9(1) 4.5(2) 100.2(7) 0.945(3) 0.002(2) 0.023(1) 0.016(1) 0.014(1) 1.00  

 CF 19  36.3(4) 16.7(2) 4.4(3) 35.2(3) 6.5(3) 99.1(6) 1.367(7) 0.421(5) 0.092(5) 1.046(8) 0.074(3) 3.00  

 Mst 11  46.3(9) 0.5(4) 0.6(2) 0.4(1) 0.4(6) 48.1(9) 0.977(9) 0.006(5) 0.007(2) 0.007(2) 0.003(4) 1.00  
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3.4 Fe3+/ΣFe determination in bridgmanite 

As mentioned in section 2.5.1, either single Brg crystals or thin sections comprise mainly of 

Brg and Fp were used for Mössbauer measurement for single crystal synthesis experiments. 

All Mössbauer spectra present two main quadrupole doublets corresponding to high-spin 

(HS) Fe2+ (chemical shift (CS)=1.01-1.15 mm/s, quadrupole splitting (QS)=1.69-1.99 mm/s) 

and HS Fe3+ (CS=0.45 mm/s, QS=0.87-0.90 mm/s) which are consistent with these cations 

occupying the A site of Brg. These hyperfine parameters are in excellent agreement with 

values reported for bridgmanite in previous studies  (see for example McCammon et al., 

2013). These are the only features present in the spectra collected for samples S6689, 

S6631, and H4615 and S7241 (Fig. 3.3a). For sample S6848 an additional doublet with 

CS=0.965 mm/s and QS=0.962 mm/s is visible (Fig. 3.3b) and can be assigned to Fe2+ in 

ferropericlase. Finally the Mössbauer spectrum of sample S6838 presents two additional 

doublets (Fig. 3.3c), one with relatively low CS=0.183 mm/s and QS=0.590 mm/s which may 

be attributed to Fe3+ at the B site of Brg (Kupenko et al., 2015) in agreement with the EPMA 

analysis and the other with relatively larger CS=1.089 mm/s and QS=2.350 mm/s which may 

also be assigned to Fe2+ in the A site in Brg. It has been reported that the signal of Fe2+ 

present at the A site of bridgmanite may be very broad due to the slightly different 

coordination environment around the Fe2+ atoms and therefore it may be better described 

using 2 doublets instead of only one (McCammon et al., 2013). The Fe3+/ΣFe ratios of the 

bridgmanite samples used in this study were determined from the relative areas of their 

Fe3+ and Fe2+ Mössbauer components and are reported in Table 4.1.  
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Figure 3.3 Selected Mössbauer spectra of Fe, Al-bearing Brg at Room temperature: (a) S6631; (b) 

S6648; (c) S6638. Experimental data are indicated by solid circles while the fitted curve is shown by 

the red thick solid line. Components are shaded as indicated and the fitting residual is shown 

beneath each spectrum. For S6631, single crystal of Brg was used for the measurement thus the 

doublet is asymmetric and the ratio between the two peaks of the doublet of Fe3+ and Fe2+ in Brg 

was constrained to be equal. For S6848 and S6838, the bulk sample assemblages in the capsule were 

used, therefore, other Fe component of coexisting phases like the Fp was also detected and shown 

in the spectrum. 

Selected Mössbauer spectra collected at room temperature for the samples synthetized in 

oxygen fugacity controlling experiments are shown in Fig. 3.4. Because the bulk 

assemblages were measured, peaks from all iron-containing phases are present. Mössbauer 

spectra were deconvoluted using the minimum number of components (quadrupole 

doublets and magnetic sextets) required to achieve statistically acceptable fits to the data. 

The full transmission integral was used and conventional constraints for quadrupole 
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doublets (i.e. components constrained to equal width and area) were applied. In many 

cases, three doublets were used to fit the spectra: one corresponding to Fe3+ in Brg and two 

to Fe2+ in Brg and Fp respectively. In a few spectra, some hyperfine parameters had to be 

constrained due to peak overlap or weak peak intensity (Table 3.5). Derived hyperfine 

parameters are listed in Table 3.5 and compared with data for Brg in the literature 

(reviewed by McCammon et al., 2013) in Fig. 3.4d. In the Brg samples measured in this 

study, the hyperfine parameters for Fe2+ (center shift (CS)= ~ 1.1 mm/s, quadrupole splitting 

(QS)=1.60-2.30 mm/s) and Fe3+ (CS=0.33-0.51 mm/s, QS=0.29-0.96 mm/s) are in good 

agreement with previous studies. While the hyperfine parameters allow Fe2+ to be assigned 

unambiguously to the A site (8-12 coordinated), the location of Fe3+ in the perovskite-type 

structure is difficult to resolve from QS values alone because high-spin Fe3+ in both the A 

and B sites have low values of QS (Lin et al., 2012; McCammon, 1998). The Fe3+/ΣFe ratios in 

Brg then determined from the relative areas of Fe2+ and Fe3+ Brg components are reported 

in Table 3.5. Uncertainties were estimated based on fit statistics and from the uncertainties 

in the fitting model itself. 

No peaks from carbonate were observed in the spectra, most likely because the Fe 

contents measured for the carbonates in the experiments were always less than 2 mol% 

(Table 3.4). Samples saturated with Fe metal show additional peaks indicating magnetically 

ordered phases (Fig. 3.4a), which were fitted to one or two magnetic sextets. The phase 

with the larger hyperfine magnetic field of H= ~ 33 T could be assigned to Fe metal and the 

other phase with a smaller hyperfine magnetic field of H= ~ 20 T could be assigned to Fe0 in 

carbides. In certain spectra, the Fe bearing phase (Mg,Fe)(Fe, Ru, Si)2O4 (S7113-2, S7138-1) 

or (Mg,Fe)2(Fe, Al, Si)2O5 (S6921, S6950-1, S6950-2) also exist. However, the hyperfine 

parameters of these phases are not well constrained and couldn’t be separated from the 

current spectra, therefore we assume all the peaks of these samples are from Brg and Fp in 

the fitting process.  
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Figure 3.4 Representative room temperature Mössbauer spectra of run products: (a) S7122 

(Brg+Fp+Fe+carbide) (b) H4755 (Brg+Fp+Fe+carbide (c) S6952 (Brg+Fp) (d) Hyperfine parameters of 

Brg from Mössbauer spectra collected at ambient conditions. Solid red and blue circle indicate the 

parameters of Fe2+ on the A site and Fe3+ in Brg obtained from this study respectively. Open red, 

pink and blue circles indicate the Brg FeA
2+, Fen+, and Fe3+ parameters from previous studies of Fei et 

al. (1994); Jackson et al. (2005); Lauterbach et al. (2000); Li et al. (2006); McCammon (1997, 1998); 

McCammon et al. (1992, 2004b) and Narygina et al. (2010). The blue triangle and diamond 

represent the parameters of Fe3+ on the A site and B site in Brg proposed by Hummer and Fei (2012).  
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Table 3.5 Hyperfine parameters derived from fitting to Mössbauer spectra. 

Run No. 
CS 
(mm/s) 

FWHM 
(mm/s) 

QS or ε 
(mm/s) 

BHF (T) χ2 
Site 
assignment 

Fe3+/ΣFe in 
Brg 

S7122 0.00(1) 0.19(5) 0.02(1) 32.89(3) 2.8 Fe0 alloy 0.12(3) 
 

0.20(2) 0.31(17) 0.16(5) 20.19(18) 
 

Fe0 carbide  
 

0.33(2) 0.23(6) 0.93(3) N/A 
 

Fe3+ Brg  
 

1.08(1) 0.38(3) 1.62(1) N/A 
 

Fe2+ Brg  
 

0.92(1) 0.23(6) 0.88(3) N/A 
 

Fe2+ Fp  

S7251 0.41(2) 0.40(5) 0.95(2) N/A 1.5 Fe3+ Brg 0.32(5) 
 

1.10(1) 0.51(3) 1.71(2) N/A 
 

Fe2+ Brg  
 

0.94(3) 0.41(8) 0.85(4) N/A 
 

Fe2+ Fp  

S7262 0.41(2) 0.33(6) 0.90(3) N/A 1.6 Fe3+ Brg 0.27(7) 
 

1.10(1) 0.49(3) 1.67(2) N/A 
 

Fe2+ Brg  
 

0.94(3) 0.46(7) 0.86(6) N/A 
 

Fe2+ Fp  

S7113-2 0.44(1) 0.42(1) 0.67(1) N/A 5.9 Fe3+ Brg 0.66(5) 

 0.82(1) 0.38(3) 2.18(2) N/A  Fe2+ Brg  

 0.86(1) 0.32(2) 0.91(2) N/A  Fe2+ Fp  

S7138-1 0.43(1) 0.44(2) 0.64(1) N/A 1.4 Fe3+ Brg 0.69(6) 

 0.83(1) 0.32(6) 2.21(3) N/A  Fe2+ Brg  

 0.85(2) 0.34(6) 0.99(4) N/A  Fe2+ Fp  

S7120 0.42(1) 0.47(3) 0.91(2) N/A 2.6 Fe3+ Brg 0.92(4) 
 

0.33(1) 0.16(8) 0.29(2) N/A 
 

Fe3+ Brg  
 

1.10 0.60 1.81(12) N/A 
 

Fe2+ Brg  

H4737 0.00(1) 0.17(9) 0.00 33.13(4) 1.4 Fe0 alloy 0.53(6) 
 

0.21 0.35 0.35(12) 20.28(47) 
 

Fe0 carbide  
 

0.39(4) 0.29(21) 0.87(7) N/A 
 

Fe3+ Brg  

 1.05 0.51 2.11(19) N/A  Fe2+ Brg  
 

0.89(4) 0.34(14) 1.00 N/A 
 

Fe2+ Fp  

S7132-2 0.00(1) 0.12(17) 0.00 32.85(4) 1.0 Fe0 alloy 0.53(7) 
 

0.21 0.35 0.12(12) 20.08(40) 
 

Fe0 carbide  
 

0.36(3) 0.35(9) 0.86(5) N/A 
 

Fe3+ Brg  
 

1.00 0.60 1.94(21) N/A 
 

Fe2+ Brg  

 (continued on next page) 
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Table 3.5 (Continued) 

Run No. 
CS 
(mm/s) 

FWHM 
(mm/s) 

QS or ε 
(mm/s) 

BHF (T) χ2 
Site 
assignment 

Fe3+/ΣFe in 
Brg 

 
0.85(4) 0.36(12) 1.08(9) N/A 

 
Fe2+ Fp  

S7021 0.44(2) 0.37(10) 0.83(5) N/A 1.1 Fe3+ Brg 0.70(6) 
 

1.00 0.51 2.13(19) N/A 
 

Fe2+ Brg  
 

0.90 0.48(20) 0.85(11) N/A 
 

Fe2+ Fp  

S7028 0.45(1) 0.26(7) 0.88(2) N/A 1.1 Fe3+ Brg 0.94(5) 
 

1.10 0.40(36) 1.94(29) N/A 
 

Fe2+ Brg  
 

0.90 0.50(54) 0.90 N/A 
 

Fe2+ Fp  

H4755 0.00(1) 0.14(8) 0.00 33.23(7) 6.2 Fe0 alloy 0.37(5) 
 

0.22(1) 0.27(8) -0.02(3) 20.91(11) 
 

Fe0 carbide  
 

0.37(1) 0.32(2) 0.91(1) N/A 
 

Fe3+ Brg  
 

1.03(1) 0.51 1.81(3) N/A 
 

Fe2+ Brg  
 

0.91(1) 0.27(4) 0.98(2) N/A 
 

Fe2+ Fp  

S7132-1 0.00(1) 0.21(6) 0.00 33.27(7) 1.7 Fe0 alloy 0.37(7) 
 

0.23(5) 0.25(44) 0.23(10) 20.06(33) 
 

Fe0 carbide  
 

0.41(2) 0.36(8) 0.96(2) N/A 
 

Fe3+ Brg  
 

1.10 0.60 1.85(6) N/A 
 

Fe2+ Brg  
 

0.91(4) 0.28(26) 1.02(5) N/A 
 

Fe2+ Fp  

S7046 0.44(1) 0.53(1) 0.86(1) N/A 1.2 Fe3+ Brg 0.88(3) 
 

1.13(2) 0.79(7) 1.77(4) N/A 
 

Fe2+ Brg  

S7138-2 0.44(1) 0.44(1) 0.86(1) N/A 1.2 Fe3+ Brg 0.89(3) 
 

1.04(2) 0.73(6) 1.94(7) N/A 
 

Fe2+ Brg  
 

0.90(1) 0.30(7) 0.94(2) N/A 
 

Fe2+ Fp  

H4746 0.00(1) 0.16(7) 0.00 32.96(3) 2.2 Fe0 alloy 0.50(7) 
 

0.20(2) 0.37(12) 0.12(4) 20.58(13) 
 

Fe0 carbide  
 

0.38(1) 0.34(5) 0.88(2) N/A 
 

Fe3+ Brg  
 

1.05 0.51 2.22(7) N/A 
 

Fe2+ Brg  
 

0.89(2) 0.55(8) 1.12(4) N/A 
 

Fe2+ Fp  

S7209 0.46(1) 0.29(1) 0.82(1) N/A 2.4 Fe3+ Brg 0.28(6) 
 

1.06(1) 0.46(3) 2.37(5) N/A 
 

Fe2+ Brg  
 

1.11(1) 0.27(3) 1.60(3) N/A 
 

Fe2+ Brg  

(continued on next page) 
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Table 3.5 (Continued) 

Run No. 
CS 

(mm/s) 

FWHM 

(mm/s) 

QS or ε 

(mm/s) 
BHF (T) χ2 

Site 

assignment 

Fe3+/ΣFe in 

Brg  
0.99(3) 0.54(3) 0.90(2) N/A 

 
Fe2+ Fp  

S6920 0.19(1) 0.32(6) 0.00(2) 20.23(7) 8.0 Fe0 carbide 0.55(7) 
 

0.35(1) 0.33(2) 0.85(2) N/A 
 

Fe3+ Brg  
 

1.05 0.51 2.06(7) N/A 
 

Fe2+ Brg  
 

0.89(1) 0.53(4) 1.10(2) N/A 
 

Fe2+ Fp  

S6907 0.43(1) 0.36(3) 0.90(1) N/A 5.1 Fe3+ Brg 0.76(13) 
 

1.00 0.51 2.27(4) N/A 
 

Fe2+ Brg  
 

0.90 0.59(8) 0.91(4) N/A 
 

Fe2+ Fp  

S6921 0.48(1) 0.52(1) 0.71(1) N/A 2.6 Fe3+ Brg 0.67(10) 
 

0.89(1) 0.42(9) 2.03(6) N/A 
 

Fe2+ Brg  
 

0.89(1) 0.36(7) 2.88(5) N/A 
 

Fe2+ Brg  

 0.98(2) 0.28(6) 0.91(3) N/A  Fe2+ Fp  

S6950-1 0.43(1) 0.34(3) 0.86(2) N/A 2.1 Fe3+ Brg 0.69(8) 
 

1.19(2) 0.39(4) 1.95(2) N/A 
 

Fe2+ Brg  
 

0.97(1) 0.59(4) 0.98(3) N/A 
 

Fe2+ Fp  

S6950-2 0.42(1) 0.30(3) 0.89(1) N/A 1.6 Fe3+ Brg 0.51(5) 
 

1.16(1) 0.42(3) 1.88(1) N/A 
 

Fe2+ Brg  
 

0.94(1) 0.59(3) 0.99(2) N/A 
 

Fe2+ Fp  

S6952 0.44(1) 0.38(1) 0.91(1) N/A 1.6 Fe3+ Brg 0.95(3) 
 

1.11(3) 0.71(12) 1.87(11) N/A 
 

Fe2+ Brg  
 

0.95(2) 0.10(18) 0.96(3) N/A 
 

Fe2+ Fp  

S7214 0.44(1) 0.44(1) 0.96(1) N/A 1.8 Fe3+ Brg 0.98(2) 
 

1.10 0.7 2.33 (18) N/A 
 

Fe2+ Brg  

Notes: CS=Center shift relative to α-Fe; FWHM=Full width at half maximum; QS=Quadrupole 

splitting (non-magnetic spectra); ε=Quadrupole shift (magnetic spectra); BHF=Hyperfine magnetic 

field. Uncertainties of the last digit are shown in brackets. Values without uncertainties were fixed 

during the fitting process. 
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4 The crystal chemistry of Fe-Al-bearing 

bridgmanite 

The Brg samples investigated in this study cover a wide range of Fe and Al contents up to 

0.40 Fe and 0.36 Al pfu and have variable Fe3+/ΣFe ratios (Table 4.1). Based on cation radii (Ⅷ

Mg2+
A=1.03 Å, ⅧFe2+

A, HS=1.06 Å, ⅧFe3+
A, HS=0.92 Å, ⅥSi4+

B=0.54 Å,  ⅥAl3+
B=0.675 Å, ⅥFe2+

B, 

HS=0.92 Å, ⅥFe3+
B, HS=0.785 Å) it would seem logical that Fe3+ partitions more favorably into 

the Brg A site and Al3+ into the B site (Shannon, 1976).  As the Mössbauer spectroscopy 

results are inconclusive in determining the Fe3+ site assignment (Lin et al., 2013; McCammon, 

1998) we can only estimate the site occupancies by assuming that the cations partition 

between the two sites in according to their radii. Moreover, although Fe3+ and Al may 

occupy both cation sites in bridgmanite, there is some evidence that in the presence of Al, 

Fe3+ preferentially occupy the A site (McCammon et al., 2013). A simple procedure can, 

therefore, be followed to estimate the site occupancies whereby the B site is first filled with 

the Al cations and the A site with Fe3+ and if either cations remain after the site occupancy 

reaches unity then they are placed on the other site. The trivalent cations on the A and B 

site are considered to form CCS first. If charge balance is not maintained, then OVS is 

assumed to occur. The resulting cation distribution between A and B site and the amount of 

different substitutions are listed in Table 4.1. In line with Fig. 4.1, this procedure never 

results in an excess of 3+ cations on the A site, which would require an A site cation vacancy 

to achieve charge balance.  

The fractional occupancies, atomic coordinates and anisotropic displacement 

parameters from the single crystal XRD refinement are reported in Table 4.2. The m.a.n. 

(mean atomic numbers) for each Brg site determined by means of single-crystal structural 

refinements are in good agreement with the cation assignments resulting from the EPMA 

analysis (Table 4.3), confirming the preference of Fe3+ in the A site and Al in the B site when 
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coexisting. The small difference may suggest the presence of slightly larger disorder 

between Al and Fe3+ than assumed. 

Table 4.1 Brg compositions measured by EPMA, cation proportions normalized to two cations per 

formula unit and derived end-member components for the Brg single crystals investigated in this 

study. 

Sample S6689 S6732 H4615 S6848 S6805 S6838 S6631 S7241 

Chemical compositions of bridgmanite by EPMA (wt.%)  

MgO 37.7(3) 34.7(4) 34.4(2) 33.3(4) 32.0(4) 31.9(4) 28.3(3) 34.0(2) 

SiO2 56.0(4) 54.8(6) 51.6(3) 54.0(4) 53.4(3) 50.1(5) 44.4(3) 48.9(5) 

Al2O3 2.7(2) 2.3(2) 5.7(2) 3.3(2) 3.4(2) 3.8(1) 9.2(2) 9.3(4) 

FeO 3.6(2) 8.2(5) 8.3(4) 10.1(5) 11.2(4) 13.3(7) 17.4(4) 7.9(3) 

total 100.0(4) 100.0(7) 100.0(3) 100.1(3) 100.0(3) 99.1(6) 99.4(4) 100.0(2) 

Fe3+/ΣFe 0.85(5)a 0.30(5)b 0.83(8)a 0.54(7)a 0.30(5)b 0.81(5)a 0.87(5)a 0.95(2)a 

Cation proportions normalized to a total of two cations 

A site         

Mg 0.949(5) 0.891  (8) 0.880(5) 0.857  (8) 0.833  (8) 0.840(7) 0.753  (7) 0.865(5) 

Fe2+ 0.008(5) 0.083  (8) 0.020(6) 0.067(10) 0.115  (9) 0.038(8) 0.034(13) 0.006(4) 

FeA
3+ 0.043(6) 0.026(11) 0.099(8)  0.076(11) 0.049(10) 0.122(9) 0.213(15) 0.107(7) 

AlA - - - - 0.003  (5) - - 0.022(10) 

B site         

Si 0.946(5) 0.944(9) 0.886(6) 0.932  (6) 0.933(7) 0.882  (9) 0.794  (5) 0.835(7) 

Al 0.054(3) 0.047(4) 0.114(5) 0.067  (5) 0.067(5) 0.079  (2) 0.194  (4) 0.165(7) 

FeB
3+ - 0.009(9)  - 0.002(11) - 0.039(10) 0.012(15) - 

         

O 2.994 2.985 2.992 3.001 2.993 3.002 3.003 2.982 

End-member components  

MgSiO3 0.938 0.861 0.859 0.857 0.818 0.840 0.753 0.829 

Fe2+SiO3 0.008 0.083 0.020 0.067 0.115 0.038 0.034 0.006 

Mg(M3+)O2.5 0.011 0.030 0.015 - 0.015 - - 0.036 

M3+M3+O3 0.043 0.026 0.099 0.076 0.052 0.122 0.206 0.129 

a Determined by means of Mössbauer spectroscopy; b determined by means of EELS. Mg(M3+)O2.5 = 
oxygen vacancy component; M3+ M3+O3=couple substitution component. Note: Sample S4253 (Boffa 
Ballaran et al. 2012) with composition: A(Mg0.60Fe2+

0.03Fe3+
0.37)B(Si0.63Al0.36Fe3+

0.01)O3 has the following 
end-member components: MgSiO3=0.600, Fe2+SiO3=0.030, M3+ M3+O3=0.370 
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Table 4.2 Refined fractional occupancies, fractional atomic coordinates and anisotropic displacement parameters of bridgmanite single crystals. 

Sample H3004 S6689 S6732 H4615 S6848 S6805 S6838 S6631 S4253 S7241 

Mg, Fe (A-site)  

XMg 1 0.943(8) 0.888(5) 0.908(5) 0.885(5) 0.840(5) 0.843(7) 0.766(4) 0.625(5) 0.890(6) 

XFe - 0.057(8) 0.112(5) 0.092(5) 0.115(5) 0.160(5) 0.157(6) 0.234(4) 0.375(5) 0.110(6) 

x 0.5139(1) 0.5141(1) 0.5123(1) 0.5145(1) 0.5125(1) 0.5118(1) 0.5139(1) 0.5149(1) 0.5160(1) 0.5151(1) 

y 0.5556(1) 0.5566(2) 0.5543(1) 0.5577(1) 0.5546(1) 0.5540(1) 0.5571(1) 0.5584(1) 0.5599(1) 0.5588(1) 

z 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

U11 0.0066(2) 0.0085(4) 0.0079(2) 0.0066(2) 0.0073(3) 0.0086(2) 0.0076(3) 0.0068(1) 0.0071(1) 0.0075(2) 

U22 0.0070(2) 0.0082(4) 0.0085(2) 0.0063(2) 0.0074(3) 0.0093(2) 0.0085(3) 0.0066(1) 0.0064(1) 0.0074(3) 

U33 0.0082(2) 0.0106(4) 0.0095(2) 0.0079(2) 0.0091(3) 0.0101(2) 0.0101(3) 0.0087(1) 0.0092(1) 0.0115(3) 

Ueq 0.0073(1) 0.0091(3) 0.0086(2) 0.0069(2) 0.0079(2) 0.0093(2) 0.0087(2) 0.0074(1) 0.0076(1) 0.0088(2) 

Si, Al, Fe3+ (B-site)  

XSi 1 1.001(8) 1.003(5) 0.976(5) 0.990(6) 1.003(5) 1.018(7) 0.994(4) 0.985(4) 0.997(6) 

x 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

y 0 0 0 0 0 0 0 0 0 0 

z 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

U11 0.0044(2) 0.0065(3) 0.0053(2) 0.0049(2) 0.0052(2) 0.0063(2) 0.0057(2) 0.0052(1) 0.0058(1) 0.0062(2) 

U22 0.0052(2) 0.0057(3) 0.0055(2) 0.0048(2) 0.0047(3) 0.0058(2) 0.0064(3) 0.0049(1) 0.0052(1) 0.0062(2) 

(continued on next page) 
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Table 4.2 (Continued) 

Sample H3004 S6689 S6732 H4615 S6848 S6805 S6838 S6631 S4253 S7241 

U33 0.0049(2) 0.0064(3) 0.0059(2) 0.0046(2) 0.0054(3) 0.0064(2) 0.0062(3) 0.0054(1) 0.0058(1) 0.0066(2) 

Ueq 0.0048(1) 0.0062(2) 0.0056(1) 0.0048(1) 0.0051(2) 0.0062(1) 0.0061(2) 0.0052(1) 0.0056(1) 0.0063(2) 

O1  

x 0.1023(2) 0.1039(3) 0.1022(2) 0.1056(2) 0.1030(3) 0.1026(2) 0.1057(3) 0.1082(1) 0.1134(2) 0.1079(2) 

y 0.4666(2) 0.4656(3) 0.4655(2) 0.4631(2) 0.4647(3) 0.4647(2) 0.4628(3) 0.4610(1) 0.4565(2) 0.4618(2) 

z 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

U11 0.0058(4) 0.0078(6) 0.0071(3) 0.0067(4) 0.0081(6) 0.0077(4) 0.0078(5) 0.0072(3) 0.0079(3) 0.0078(4) 

U22 0.0077(4) 0.0088(6) 0.0076(3) 0.0075(4) 0.0073(6) 0.0083(3) 0.0087(5) 0.0068(2) 0.0071(3) 0.0083(3) 

U33 0.0049(4) 0.0071(6) 0.0065(3) 0.0066(4) 0.0073(5) 0.0071(3) 0.0091(5) 0.0072(2) 0.0088(3) 0.0078(4) 

Ueq 0.0061(2) 0.0079(3) 0.0070(2) 0.0070(2) 0.0076(3) 0.0077(2) 0.0085(3) 0.0071(1) 0.0079(1) 0.0080(2) 

O2  

x 0.1963(1) 0.1955(2) 0.1956(1) 0.1950(2) 0.1953(2) 0.1951(1) 0.1945(2) 0.1941(1) 0.1924(1) 0.1943(1) 

y 0.2014(1) 0.2009(2) 0.2007(1) 0.2000(1) 0.2004(2) 0.2003(1) 0.1998(2) 0.1990(1) 0.1975(1) 0.1993(1) 

z 0.5529(1) 0.5537(2) 0.5527(1) 0.5545(1) 0.5534(1) 0.5531(1) 0.5546(1) 0.5559(1) 0.5586(1) 0.5556(1) 

U11 0.0055(3) 0.0080(4) 0.0067(2) 0.0072(3) 0.0077(4) 0.0080(3) 0.0078(4) 0.0075(2) 0.0088(2) 0.0074(3) 

U22 0.0065(3) 0.0070(4) 0.0069(2) 0.0071(3) 0.0071(4) 0.0077(2) 0.0094(4) 0.0074(2) 0.0086(2) 0.0084(2) 

U33 0.0070(3) 0.0095(5) 0.0083(2) 0.0076(3) 0.0085(4) 0.0087(2) 0.0092(4) 0.0079(2) 0.0093(2) 0.0090(3) 

Ueq 0.0063(1) 0.0082(3) 0.0073(1) 0.0073(2) 0.0078(2) 0.0081(2) 0.0088(2) 0.0076(1) 0.0089(1) 0.0083(2) 
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Table 4.3 Comparison between mean atomic numbers (m.a.n.) obtained for the A and B sites from 

single crystal X-ray diffraction and those calculated from the cation distribution derived from the 

chemical analyses reported in Table 3.3. 

 m.a.n. A site m.a.n. B site 
 

XRD EPMA XRD EPMA 

S6689 12.770 12.714 14.028 13.946 

S6732 13.582 13.526 14.042 14.061 

H4615 13.302 13.680 13.720 13.886 

S6848 13.862 13.988 13.888 13.957 

S6805 14.254 14.299 14.042 13.933 

S6838 14.212 14.240 14.280 14.389 

S6631 15.332 15.458 13.916 13.950 

S4253 17.376 17.600 13.790 13.760 

S7241 13.526 13.591 13.972 13.835 

 

 

Figure 4.1 Ternary concentration diagram of the system (Mg,Fe2+)O-0.5(Al2O3 + Fe2O3)-SiO2 showing 
the compositions of (Mg,Fe)(Si,Al)O3 bridgmanite synthesized in the current study and those from 
Frost and Langenhorst (2002); Lauterbach et al. (2000) and Saikia et al. (2009). The two vectors 
correspond to the charge coupled substitution and oxygen vacancy substitution, respectively. 
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4.1 Al and Fe substitution mechanisms in bridgmanite 

The Brg compositions investigated in this study are plotted in a ternary diagram with 

respect to the (Mg,Fe)O - SiO2 - (Al,Fe)2O3 components (Fig. 4.1). Data from Frost and 

Langenhorst (2002), Lauterbach et al. (2000), Saikia et al. (2009) and Liu et al. (2019a) are 

also shown for comparison. The solid lines in Figure 4.1 indicate the substitution trends 

expected along the MgSiO3-M2O3 join, i.e. the charge coupled substitution mechanism, CCS, 

(where M=Fe3+ or Al3+) and the MgSiO3-MgMO2.5 join, i.e. the oxygen vacancy substitution 

mechanism, OVS. At low M3+ concentrations (<0.1 pfu), our data fall between the two trend 

lines, indicating both substitution mechanisms are important. At higher M3+ concentrations 

(>0.1 pfu), our samples follow the CCS trend line confirming that the CCS (mainly FeAlO3) is 

the predominant substitution mechanism for trivalent cations. Some sample deviate slightly 

from the trend indicating MgM3+O2.5 OVS is also included even at high trivalent cation 

concentrations. The MgM3+O2.5 component is mainly MgAlO2.5
 and do not exceed 0.04 pfu 

for the investigated single crystals.  

4.2 Unit-cell parameters and Molar volumes of (Fe,Al)–bearing 

MgSiO3 bridgmanite 

The molar volumes (Vm) of the samples investigated in this study (Table 4.4) are plotted as a 

function of their composition expressed as the sum of the end-member contents and 

compared with published data in Figure 4.2. The trend defining the Fe2+SiO3 substitution is 

well constrained by the data along the MgSiO3-FeSiO3 join reported by McCammon et al. 

(1992), Jephcoat et al. (1999) and Tange et al. (2009) whose samples were synthesized using 

starting materials mixed with Fe metal and loaded into Fe capsules, ensuring in this way 

relatively reducing conditions during the synthesis experiments. The molar volume of the 

Fe2+SiO3 end-member assuming ideal mixing i.e. a linear relation between the end member 

volumes, is 25.339 cm3/mol, calculated using a linear fit through these data. The trend 

defining the variation of the Brg molar volume along the MgSiO3-Fe3+AlO3 join has been 
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constrained using the Brg volumes reported by Mao et al. (2017), and those of samples 

S6631 and S4253 in which the composition and Fe3+/ΣFe were measured, containing no OVS 

and only a small amount of FeSiO3 substitution (<0.03 pfu). The volume was linearly 

corrected for the contribution due to the presence of a small amount of Fe2+ (i.e. Vm= 

XMgSiO3*VMgSiO3 + XFeSiO3*VFeSiO3 + XFeAlO3*VFeAlO3). The resulting molar volume of Fe3+AlO3 is 

27.081 cm3/mol. Most samples investigated in this study lie between these two linear 

trends suggesting that FeAlO3 CCS and FeSiO3 are the two main substitution mechanisms in 

our single crystal samples. The molar volume of each Brg sample investigated in this study 

has been expressed in terms of the summation of partial molar volumes of the four end-

member components (Table 4.1) in order to constrain the molar volume of the MgM3+O2.5 

end-member. This procedure resulted in a molar volume for MgM3+O2.5 of 26.565 cm3/mol, 

i.e. practically identical to the molar volume of MgAlO2.5 of 26.64 cm3/mol reported by Liu 

et al. (2019a). This suggests that the creation of oxygen vacancies has a similar effect on the 

structure of bridgmanite independently of whether this substitution occurs in an Fe + Al-

bearing or in an Al-bearing system.  In the Fe + Al-bearing system, however, Al3+ very likely 

dominates as the M3+ cation at the B site. The molar volume of 25.79 cm3/mol for AlAlO3
 

end member reported by Liu et al. (2019a) is smaller than MgAlO2.5 end member (Fig. 4.2). 

Sample S6838 plot above the Fe3+AlO3 trend seems to mainly result from Fe3+ substituting 

into the Brg octahedral B site. It has an Fe3+ content that is significantly greater than Al 

where at least 0.04 Fe3+ atoms pfu must substitute into the B site to provide charge balance 

(Table 4.1), this could of course be more if some Al partitioning into the A site. 

Measurements from Catalli et al. (2011) and Hummer and Fei (2012) were proposed to be 

from samples that contain only an Fe2O3 substitution and indeed indicate that this end 

member must have the largest molar volume, which can be estimated from these previous 

studies to be 29.474 cm3/mol, if a linear volume relation is assumed. For completeness it is 

also of interest to consider the volume of the MgFe3+O2.5 end member, which is an 

important component under certain conditions, as will be discussed in section 5.3.2. A 

rough estimate of the molar volume of this end member can be made using the results of 

Hummer and Fei (2012) and corresponds to 27.5 cm3/mol which is larger than the molar 
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volume of the Fe3+AlO3 end-member, but smaller than the Fe3+Fe3+O3 end-member. It 

appears therefore that the OV substitution mechanism in Fe3+ - and Fe3+/Al-bearing system 

gives rise to a smaller increase in molar volume than the CC substitution mechanism. This is 

clearly an opposite effect than that observed for Al-bearing Brg  (Liu et al., 2019a). The 

molar volume trend for different end members in Brg are plotted in Fig. 4.2 which clearly 

shows a sequence of FeFeO3 > MgFeO2.5 > FeAlO3 > MgAlO2.5 > AlAlO3> FeSiO3 > MgSiO3. 

Table 4.4 Unit-cell lattice parameters of the bridgmanite single-crystals investigated in this study. 

Sample a (Å) b (Å) c (Å) V (Å3) 
Molar volume 

(cm3/mol) 

H3004 4.7767(5) 4.9294(5) 6.8964(5) 162.38(3) 24.447(5) 

S6689 4.7819(9) 4.9402(9) 6.9150(8) 163.36 (4) 24.594(6) 

S6732 4.7907(5) 4.9392(6) 6.9170(6) 163.67(3) 24.641(5) 

H4615 4.78811(13) 4.95280(15) 6.93762(14) 164.522(7) 24.769(1) 

S6848 4.7938(3) 4.9452(3) 6.9257(3) 164.18(2) 24.718(3) 

S6805 4.7969(5) 4.9452(5) 6.9267(5) 164.31(2) 24.737(3) 

S6838 4.7982(4) 4.9624(4) 6.9517(4) 165.52(2) 24.920(3) 

S6631 4.8003(2) 4.9742(2) 6.9714(2) 166.46(1) 25.061(2) 

S4253 4.8107(4) 4.99964(14) 7.02636(17) 169.00(1) 25.444(2) 

S7241 4.7883(9) 4.9606(9) 6.9563(9) 165.23(5) 24.876(8) 
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Fig. 4.2 Variation of the molar volumes of Brg as a function of the sum of end-member components. The 

seven dashed lines indicate molar volumes along the MgSiO3–FeSiO3 join, MgSiO3-AlAlO3 join (Liu et al., 

2019a), MgSiO3-MgMO2.5 join, MgSiO3-MgAlO2.5 join (Liu et al., 2019a), MgSiO3–FeAlO3 join, MgSiO3-

MgFeO2.5 join and MgSiO3-FeFeO3 join respectively. (a) Current study and previous studies used for fitting. 

Fe2+ rich indicates the three samples (S6805, S6732, S6848) containing 0.07-0.12 pfu FeSiO3; FeFeO3 

bearing indicates S6838 which contains 0.04 pfu FeFeO3 and Fe2+ poor represents other samples which 

have <0.03 pfu FeSiO3. (b) Comparison with other studies not used for fitting. The uncertainties not 

shown are within the symbols. 
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Results from previous studies not used for fitting due to unconstraint of accurate 

composition or contamination are also plotted for comparison in Fig. 4.2b. Studies on 

(Mg,Fe)SiO3 Brg, which either report nominal compositions (Andrault et al., 2001; Lundin et 

al., 2008; Mao et al., 1991; Parise et al., 1990) or report small amounts of Fe3+ in the 

investigated samples (Mao et al., 2017 Bm6) give Brg molar volumes which lie close to the 

calculated Fe2+SiO3 trend (Fig. 4.2b). Some of the diamond anvil cell experiments claiming 

only FeAlO3 substitution based on the starting composition fall exactly on our FeAlO3 trend 

(Andrault et al., 2001; Nishio‐Hamane et al., 2008) while others deviate from the trend 

(Catalli et al., 2011; Nishio‐Hamane et al., 2005). The larger volume than expected along 

the MgSiO3-FeAlO3 join may indicate some of the Fe3+ on the B site and the smaller volume 

compared with the MgSiO3-FeAlO3 trend may indicate some FeSiO3 substitution or iron loss 

during laser heating. Sample S3602 studied by Saikia et al. (2009) (Table 1 in the mentioned 

study) containing 0.05 FeSiO3 + 0.18 FeAlO3 substitution also has a larger molar volume than 

the MgSiO3-FeAlO3 trend line, likely requires Fe3+ to enter the B site. Note that the sample 

of Saikia et al. (2009) appears to follow the MgSiO3 - Fe3+AlO3 molar volume trend in the 

plot reported by those authors (Fig. 5 in the mentioned study) because they calculated the 

Fe3+AlO3 trend using the data point reported in Nishio‐Hamane et al. (2005). We have 

preferred to ignore this point because the two data points in the paper are inconsistent 

with each other and also incompatible with Nishio‐Hamane et al. (2005). The large 

deviation of the Fe, Al-rich samples reported by Vanpeteghem et al. (2006) instead may be 

due to the presence of 0.017 Na atoms pfu at the A site in one of them and of 0.030 Ti 

atoms pfu in the octahedral site in the other (Figure 4.2b). 

All unit-cell lattice parameters (Table 4.4) increase with increasing M3+M3+O3 

substitution due to the substitution of mainly Al into the octahedral site, the largest 

increase being that of the c-axis and the smallest that of the a-axis (Fig. 4.3). This can be in 

part attributed to the changes in the individual B-O bond distances, since the B-O1 distance, 

which lies mainly along the c-axis, has the largest variation, whereas the intermediate B-O2 

distance which lies mainly along the a-axis shows the smallest variation (Fig. 1.7, 4.4). 

Interestingly the FeSiO3 substitution affects only slightly the c- and b-axes but significantly 
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increases the a-axis. The samples synthesized by Tange et al. (2009) have in fact c- and b-

axes lengths that are very similar to those of the MgSiO3 end-member (Figure 4 in the 

mentioned study), whereas their a-axes values follow the same trend as that defined by the 

a-axis of the sample investigated in this study. This effect can also be seen in the 

intermediate B-O2 distance in which the Fe2+-rich samples deviate from the trend having 

larger distances. Although the shortest A-O1 bonds and the fourth longest A-O1 bonds 

mainly along the a-axis of Fe2+-rich samples seem do not deviate from the trend to a larger 

distance (Fig. 4.5), the displacement of Mg atom may decouple the length of a-axis from 

individual A-O bond distances. The Fe2+SiO3 substitution would decreases the displacement 

of Mg atom along both a- and b-axes (Fig. 4.6) as will be discussed in detail in section 4.3. 

The data from Vanpeteghem et al. (2006) are also plotted for comparison, the impurities of 

Na+ and Ti4+ largely increase the lattice parameters as expected (Fig. 4.3).  

 

Fig. 4.3 Variation with couple and vacancy substitution of the unit-cell lattice parameters normalized 

with respect to those of end-member MgSiO3 bridgmanite. Diamonds with left half-filled indicate 

sample S6838 which contains 0.04 pfu FeFeO3; Diamonds with right half-filled indicate three Fe2+-

rich samples (S6805, S6732, S6848) containing 0.07-0.12 pfu FeSiO3 and solid diamonds represent 

other samples which have <0.03 pfu FeSiO3. Errors are within the symbols.  
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4.3 Distortion of the perovskite-type structure of bridgmanite 

The increase of molar volume in Brg with increasing Fe and Al content is mainly due to the 

changes occurring in the octahedral framework, in terms of B-O bond distances, octahedral 

tilting and distortion. The M3+M3+O3 and MgM3+O2.5 substitution gives rise to an increase of 

all individual octahedral B-O bond distances (Table 4.4; Fig. 4.4) due mainly to the 

substitution of Al at the octahedral site. In particular the B-O1 bond distance, which involve 

the apical oxygen and therefore lies mainly along the c-axis (Fig. 1.7) increases more rapidly 

(Figure 4.4), giving rise to an elongated octahedron for Fe3+-Al-rich Brg. The bond lengths 

can be seen to provide a very sensitive indication of the substitution processes because 

sample S6838 that has Fe3+ substitution into the B site shows a small but clearly resolvable 

deviation from the Fe + Al trend (diamonds with left half-filled in Fig. 4.4). The samples 

analyzed by Vanpeteghem et al. (2006) are in broad agreement with the results presented 

in this study, except for the Fe + Al-richest sample which however contains 0.03 Ti atoms 

pfu at the octahedral site and therefore has much longer B-O bond distances (Fig. 4.4). 

There is, instead, no clear effect of Fe2+SiO3 substitution on the octahedral bond lengths, as 

indicated from the three most Fe2+-rich samples (S6732, S6848, S6805) containing 0.07-0.12 

pfu FeSiO3 component which only slightly deviate from the trend (right half-filled diamonds 

in Fig. 4.4), since Fe2+ occupies only the A site. The Fe3+ + Al substitution also has a large 

effect on the coordination of the A-site (Table 4.5; Figure 4.5). In fact, the four shorter 

individual A-O bond distances (Figure 4.5a) all decrease, whereas all other longer distances 

(Figure 4.5 b,c) increase with increasing Fe3++ Al content giving rise to a larger distortion of 

the A site. The three Brg samples (S6732, S6848 and S6805) containing a larger amount of 

Fe2+ plot off these trends (Figures 4.5) suggesting that Fe2+ decreases the distortion of the A 

site. The individual A-O bond lengths of Brg from Vanpeteghem et al. (2006) also agree with 

our experiments; the small deviations from our trend can likely be ascribed to the impurity 

contents of the samples investigated by Vanpeteghem et al. (2006). 
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Fig. 4.4 Variation of individual B-O bond lengths of Brg as a function of the sum of M3+M3+O3 and 

MgM3+O2.5 components. Symbols are the same as in Fig. 4.3. Vanpeteghem et al. (2006) indicated by 

open circles are also shown for comparison. The errors are within the symbols. 
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Fig. 4.5 Variation of individual A-O bond distances as a function of the coupled substitution and 

oxygen vacancy substitution end-members. (a) Shortest A-O bonds; (b) Intermediate A-O bonds. (c) 

Longest A-O bonds. Symbols are the same as in Fig. 4.3. The errors are within the symbols if not 

indicated. 
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Table 4.5 B-O bond lengths (Å) resulting from the structure refinements of the bridgmanite single crystals. <A-O>8 is the average bond lengths of 

the eight shortest A-O bonds and <A-O>12 is the average bond lengths of all the 12 A-O bonds. <B-O> is the average B-O bond lengths. 

Sample H3004 S6689 S6732 H4615 S6848 S6805 S6838 S6631 S4253 S7241 

A-O1 2.0144(11) 2.0126(17) 2.0128(9) 2.0131(12) 2.0127(15) 2.0121(9) 2.0137(14) 2.0115(7) 2.0044(8) 2.0085(10) 

A-O2(X2) 2.0526(8) 2.0528(12) 2.0539(7) 2.0533(8) 2.0524(11) 2.0533(7) 2.0547(10) 2.0519(5) 2.0456(6) 2.0504(7) 

A-O1 2.1003(12) 2.0979(18) 2.1036(10) 2.0885(12) 2.1021(16) 2.1038(10) 2.0933(15) 2.0877(7) 2.0784(9) 2.0844(10) 

A-O2(X2) 2.2801(8) 2.2818(12) 2.2993(7) 2.2834(8) 2.2989(11) 2.3050(7) 2.2933(10) 2.2887(5) 2.2909(6) 2.2817(7) 

A-O2(X2) 2.4263(7) 2.4336(12) 2.4287(6) 2.4424(7) 2.4344(10) 2.4323(6) 2.4461(9) 2.4584(5) 2.4859(6) 2.4514(7) 

<A-O> 8 2.2041(9) 2.2059(13) 2.2100(7) 2.2075(9) 2.2108(12) 2.2121(7) 2.2119(11) 2.2122(6) 2.2160(7) 2.2075(8) 

A-O1 2.8448(11) 2.8558(18) 2.8601(9) 2.8688(12) 2.8655(16) 2.8680(9) 2.8781(14) 2.8891(7) 2.9202(8) 2.8786(11) 

A-O1 2.9562(12) 2.9733(19) 2.9595(10) 3.0007(12) 2.9693(16) 2.9655(10) 3.0047(15) 3.0301(7) 3.0802(9) 3.0192(11) 

A-O2(X2) 3.1164(9) 3.1332(13) 3.1204(7) 3.1530(8) 3.1297(11) 3.1261(7) 3.1584(10) 3.1807(5) 3.2262(6) 3.1713(8) 

<A-O> 12 2.4722(9) 2.4785(14) 2.4784(8) 2.4863(9) 2.4817(12) 2.4819(8) 2.4912(11) 2.4982(6) 2.5150(7) 2.4917(8) 

B-O2(X2) 1.7829(7) 1.7872(11) 1.7880(6) 1.7952(7) 1.7913(10) 1.7909(6) 1.7982(6) 1.8058(4) 1.8206(6) 1.8002(6) 

B-O2(X2) 1.7952(7) 1.8009(11) 1.8006(6) 1.8046(7) 1.8033(10) 1.8042(6) 1.8100(9) 1.8136(5) 1.8257(6) 1.8079(6) 

B-O1(X2) 1.7996(3) 1.8067(5) 1.8053(3) 1.8159(3) 1.8089(4) 1.8087(3) 1.8199(4) 1.8290(2) 1.8522(2) 1.8240(3) 

<B-O> 1.7926(6) 1.7983(9) 1.7980(5) 1.8052(6) 1.8012(8) 1.8013(5) 1.8094(6) 1.8161(4) 1.8328(5) 1.8107(5) 
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The orthorhombic distortion of the Brg structure with respect to the ideal cubic Pm3̅m 

aristotype is due to the tilting of the octahedral units and has been described first by Glazer 

(1972) in terms of tilt components around “pseudo-cubic” axes, i.e. around the axes of the 

cubic aristotype structure.  

Several methods for calculating the tilting angles have been described in the literature, 

the simplest of them being that of using the unit-cell lattice parameters. This is based on the 

assumption that the octahedral framework is rigid and regular; however, the octahedral site 

in Brg is slightly distorted and its distortion increases with increasing Fe and Al content (Fig. 

4.4). More realistic tilt angles can be calculated using the atomic coordinates of the oxygen 

atoms (Kennedy et al., 1999; Zhao et al., 1993a, b) whose displacements from the atomic 

positions in the cubic aristotype result not only from tilting but also from the distortion of 

the octahedral sites. A clear and unambiguous way to separate the effects of distortion and 

tilting of the perovskite structures is instead provided by analysis of the irreducible 

representations (Irreps) describing the displacive modes of the A cation and oxygens from 

the atomic positions of the cubic aristotype structure (Howard and Stokes, 1998; Perez-

Mato et al., 2010). The program ISODISTORT (Campbell et al., 2006b) has been used to 

decompose the Brg structures refined in this study into different symmetry-adapted modes 

with respect to parent cubic structures having identical volumes to that of our samples 

(Table 4.6). The information needed to put into the software are the atomic positions and 

unit-cell parameters of both the undistorted parent phase and the distorted Brg samples as 

well as the relationships between the orthorhombic and the cubic space group.  For the 

cubic parent phase, the atomic positions Mg (0.5, 0.5, 0.5), Si (0, 0, 0), O (0.5, 0, 0) were 

used and the lattice parameters a=b=c were calculated by acubic=Vcubic
1/3=(VBrg/Z)1/3, where 

Z=4 is the number of molecules in the unit cell of Brg. The structure information of the 

distorted Brg are obtained from the refinement of single crystal XRD. A summary of the 

basis distortion modes of different symmetry frozen in the structure and corresponding 

distortion amplitudes of our Brg samples is shown in Table 4.6. Five mode displacements 

associated with the k-points X (0, 0,½ ) M (½ , ½ , 0) and R (½ , ½ , ½ ) are allowed for the space 
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group Pbnm [the notation is taken by Miller and Love (1967)]. We can clearly see that two 

of them, namely R4
+ and M3

+, have much larger amplitudes, As, than the others. R4
+ and M3

+ 

are therefore the two dominant primary distortion modes in Brg (Table 4.6). These two 

modes represent oxygen displacements with R4
+ mode correlated to the out-of-phase tilting 

along the [110] direction where tilting occurs in the opposite sense for successive 

octahedral layers (through movements of both O1 and O2) and M3
+ mode corresponds to 

in-phase octahedral tilting along [001] where tilting occurs in the same sense for successive 

octahedral layers (through movement of O2). The secondary mode X5
+, involving both O and 

Mg displacements, has a significant non-zero amplitude suggesting that the cation 

substitution in Brg causes not only an increase of the octahedral tilting, but also a large 

degree of distortion of both B and A sites. In detail, the X5 mode characterizes both the Mg 

displacement from the center of the aristotype unit cell along the b-axis and the O1 

displacement along the b-axis. The two remaining secondary distortion modes are very 

weak. The M2
+ mode which describe the distortion of the basal plane of the octahedral site 

is zero within experimental resolution, the R5
+ mode describing the oxygen displacement is 

also zero, whereas the R5
+ mode describing the displacement of the Mg atoms along the 

orthorhombic a-axis is not negligible, albeit very small. The displacement amplitudes of the 

R4
+, M3

+, X5
+ and R5

+ modes are shown in Figures 4.6 a-c as a function of the sum of 

MgM3+O2.5 and M3+M3+O3 components. The X5
+ oxygen displacement and the M3

+ tilting 

mode appear to depend only on the M3+M3+O3 and MgM3+O2.5 substitution as all samples, 

even those having a large Fe2+ content, plot on the same positive linear trends. The Fe2+SiO3 

substitution affects instead the R4
+ tilting and the X5

+ and R5
+ displacements of the A cations, 

giving rise to smaller oxygen and A-cation displacements for Fe2+-rich samples due to the 

larger cation size of Fe2+. 
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Table 4.6 Amplitudes of the symmetry-adapted modes describing the distortion of Pbnm bridgmanite, A and B polyhedral volumes and their 

ratio calculated both from the diffraction data and from the symmetry-adapted modes amplitudes. 

 

 

Notes: * VA/VB calculated from the symmetry adapted modes amplitudes according to Eq. (4.2).

 H3004 S6689 S6732 H4615 S6848 S6805 S6838 S6631 S6452 S7241 

R4
+ 1.430 1.453 1.431 1.482 1.447 1.440 1.486 1.525 1.606 1.514 

d’O,R4+ 0.1040 0.1055 0.1038 0.1074 0.1049 0.1043 0.1074 0.1100 0.1153 0.1095 

R5
+ (Mg) -0.135 -0.137 -0.119 -0.142 -0.122 -0.115 -0.136 -0.146 -0.157 -0.148 

R5
+ (O) 0.023 0.022 0.022 0.023 0.024 0.025 0.023 0.025 0.026 0.022 

d’O,R5+ 0.0017 0.0016 0.0016 0.0017 0.0018 0.0018 0.0016 0.0018 0.0019 0.0016 

M3
+ 0.994 1.010 1.012 1.025 1.018 1.021 1.035 1.048 1.084 1.041 

d’O,M3+ 0.1023 0.1037 0.1038 0.1050 0.1043 0.1046 0.1058 0.1069 0.1101 0.1064 

M2
+ 0.049 0.052 0.049 0.049 0.049 0.050 0.051 0.049 0.049 0.048 

d’O,M2+ 0.0051 0.0052 0.0051 0.0050 0.0051 0.0051 0.0052 0.0050 0.0049 0.0049 

X5
+ (Mg) 0.540 0.552 0.529 0.563 0.533 0.526 0.558 0.573 0.590 0.574 

X5
+ (O) 0.326 0.335 0.337 0.360 0.341 0.345 0.364 0.383 0.428 0.373 

d’O,X5+ 0.0335 0.0344 0.0345 0.0369 0.0350 0.0353 0.0372 0.0390 0.0434 0.0382 

           

VA X-ray 34.338 34.537 34.625 34.774 34.724 34.761 34.990 35.165 35.658 34.908 

VB X-ray 7.675 7.748 7.744 7.837 7.784 7.786 7.891 7.978 8.197 7.908 

VA/VB X-ray 4.474 4.457 4.471 4.437 4.461 4.464 4.434 4.407 4.350 4.414 

VA/VB * 4.289 4.271 4.284 4.248 4.273 4.276 4.244 4.216 4.154 4.223 
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Fig. 4.6 The amplitudes of the main distortion mode in Brg structure as a function of the summation 

of couple and vacancy substitutions. R4
+ and M3

+ are related to the octahedral tilting and X5
+ Mg, X5

+ 

O and R5
+ Mg corresponding to the displacements of Mg and O ions from the aristotype cubic 

position. Symbols are the same as in Fig. 4.3. 

The normalized mode amplitudes, As, obtained from ISODISTORT have been subsequently 

converted in mode amplitudes measured in Å, d’ (Table 4.6), using the equation (Wang and 

Angel, 2011): 

𝑑′ = 𝐴𝑠 ×  𝑛𝑜𝑟𝑚𝑓𝑎𝑐𝑡𝑜𝑟 ×  𝐹 (4.1) 

where the individual values of As and normfactor were produced by ISODISTORT and the F 

factors were calculated by transforming the displacive mode direction vectors back into the 

parent cell. This factor is 1 for  R4
+, R5

+ and X5
+ modes and 2 for M2

+ and M3
+ modes as 

described in detail in the working example reported by Wang and Angel (2011). In this way 

we can calculate the A-site / B-site volume ratio in terms of the amplitudes of the symmetry 

adapted modes according to the expression (Wang and Angel, 2011): 
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𝑉A

𝑉B
=

6

1−4𝑑′
𝑂,𝑀2

+
2

+4𝑑′
𝑂,𝑀3

+
2

+8𝑑′
𝑂,𝑅4

+
2

−8𝑑′
𝑂,𝑅5

+
2

+16𝑑′
𝑂,𝑋5

+(𝑑′
𝑂,𝑀2

++𝑑′
𝑂,𝑀3

+)(𝑑′
𝑂,𝑅4

++𝑑′
𝑂,𝑅5

+)
− 1 (4.2) 

where the subscripts of d’ refer to the oxygen atom, O, and to the symmetry-adapted mode 

involved. The VA/VB ratio calculated using Eq. (4.2) is about 4% smaller than the VA/VB ratio 

obtained from the polyhedral A- and B-site volumes calculated using the program Vesta 

(Momma and Izumi, 2011) (Figure 4.7). This large difference may be due to the fact that the 

calculation of the A site volume in Vesta may be affected by a large error due to the large 

coordination of the A cations which can be described as a bi-caped prism. This polyhedron is 

not easily separated into well distinct tetrahedra for the volume calculation in Vesta and 

may results in part of its volume being counted twice in different tetrahedral, giving rise to a 

VA/VB overestimated. The behavior of this quantity is however the same independent of the 

calculation method and it decreases with increasing M3+M3+O3 and MgM3+O2.5 substitution, 

as expected given that this component increases the distortion of bridgmanite. Fe2+SiO3, in 

the other end, plot above this trend confirming the observation that this cation enters the A 

site and decreases the octahedral tilting due to its slightly larger size than Mg.  

 

Figure 4.7 Variation of the ratio between the volume of the A site and that of the B site of the Brg 

investigated in this study as a function of the sum of the M3+M3+O3 and MgM3+O2.5 end-member. 

Symbols are the same as in Fig. 4.3. The VA/VB ratio calculated using Eq. (4.2) is about 4% smaller 

than the VA/VB ratio obtained from the polyhedral A- and B-sites volumes calculated using the 

program Vesta. 
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4.4 Spontaneous strain 

The symmetry-adapted modes can be used to link the microscopic geometrical description 

of the tilting transitions in perovskite-type structures to the macroscopic approach based on 

symmetry-breaking order parameters and spontaneous strains. Specifically the order 

parameter components giving rise to the orthorhombic symmetry of Brg are associated with 

the M3
+ and R4

+ modes and can be expressed in terms of 3 components, i.e. q2 (relative to 

the M3
+ displacement mode), q4 and q6, with q4=q6 (relative to the R4

+ displacement mode) 

(Carpenter et al., 2001; Stokes and Hatch, 1988). Note that the symmetry analysis is done in 

the conventional space group Pnma and therefore the transformation of the unit-cell axes 

and atomic coordinates from Pbnm to Pnma has been applied. For the Pnma perovskite-

type structure, the octahedral tilting transition can be described using the Landau free 

energy (G) expansion at room pressure (Carpenter et al., 2001; 2006): 

𝐺 =
1

2
𝑎1(𝑇 − 𝑇𝑐1)𝑞2

2 +
1

2
𝑎2(𝑇 − 𝑇𝑐2)2𝑞4

2 +
1

4
(𝑏1 + 𝑏1′)𝑞2

4 +
1

2
(2𝑏2 + 𝑏2′)𝑞4

4 +

1

6
(𝑐1 + 𝑐1′′)𝑞2

6 +
2

3
(𝑐2 + 𝑐2′′)𝑞4

6 + 2λ𝑞𝑞2
2𝑞4

2 + 𝑒𝑎(λ1𝑞2
2 + 2λ2𝑞4

2) + 2 (
1

√3
(2𝑒1 − 𝑒2 −

𝑒3)) (λ3𝑞2
2 − λ4𝑞4

2) + λ5𝑒4𝑞4
2 + (λ6 + λ7)𝑒4

2𝑞2
2 +

1

4
(𝐶11

0 − 𝐶12
0 )(𝑒𝑜

2 + 𝑒𝑡
2) +

1

6
(𝐶11

0 +

2𝐶12
0 )𝑒𝑎

2 +
1

2
𝐶44

0 (𝑒4
2 + 𝑒5

2 + 𝑒6
2)                                                                                                    (4.3) 

where q2, q4, and q6 are order parameter components; a1, a2, b1 are normal Landau 

coefficients; Tc1, Tc2 are critical temperatures; λ1, λq, etc., are coupling coefficients between 

the spontaneous strain components or a linear combination of them and the order 

parameters; 𝐶11
0 , 𝐶12

0  and 𝐶44
0  are bare elastic constants; e4, e5, e6 are shear strain 

components; ea, eo and et are symmetry-adapted strains which are combinations of the 

linear strain components e1, e2 and e3 according to: 

𝑒𝑎 = 𝑒1 + 𝑒2 + 𝑒3 (4.4) 

𝑒𝑜 = 𝑒1 − 𝑒2 (4.5) 
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𝑒tx =
1

√3
(2𝑒1 − 𝑒2 − 𝑒3) (4.6) 

Here 𝑒tx is a tetragonal shear strain with the tetragonal axis parallel to the b-axis of the 

Pnma bridgmanite structure. The individual spontaneous strain components can be derived 

from the variation of the unit-cell lattice parameters of the orthorhombic bridgmanite 

structures obtained in this study according to the expressions (Carpenter et al., 2001): 

𝑒1 =

𝑏
2 − 𝑎0

𝑎0

(4.7) 

𝑒2 + 𝑒3 =

𝑎

√2
− 𝑎0

𝑎0
+

𝑐

√2
− 𝑎0

𝑎0

(4.8) 

|𝑒4| = |

𝑎

√2
− 𝑎0

𝑎0
−

𝑐

√2
− 𝑎0

𝑎0
| (4.9) 

reported by Carpenter et al. (2001) and Carpenter et al. (2006) where a, b and c are lattice 

parameters of our samples with the Pnma structure and a0 represents the cubic perovskite 

structures having the same unit-cell volumes as those of our samples. The sign of 𝑒4 will be 

positive for a>c and negative for a<c and in our case be positive. Under equilibrium 

conditions, the crystal must be stress-free, implying  𝜕𝐺/𝜕𝑒𝑎 = 𝜕𝐺/𝜕𝑒0 = 𝜕𝐺/𝜕𝑒𝑡 = 0, etc., 

and hence requires coupling between the order parameters and three strain components e4, 

et and ea expressed as  (Carpenter et al., 2001):  

𝑒4 = −
𝜆5𝑞4

2

𝐶44
0

(4.10) 

𝑒𝑎 = −
(𝜆1𝑞2

2 + 2𝜆2𝑞4
2)

1
3

(𝐶11
0 + 2𝐶12

0 )
(4.11) 
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𝑒𝑡𝑥 = −
2(𝜆3𝑞2

2 − 𝜆4𝑞4
2)

1
2

(𝐶11
0 − 𝐶12

0 )
(4.12) 

The ea strain component is very small for all compositions whereas both etx and e4 strain 

components have significant values which increase with increasing M3+M3+O3 and 

MgM3+O2.5 substitution and decrease with increasing FeSiO3 substitution (Fig. 4.8) once 

again confirming that the orthorhombic distortion of the perovskite-type structure 

increases with increasing M3+M3+O3 and MgM3+O2.5 component and decreases with 

increasing Fe2+ substitution. Whilst the etx strain component couples with a combination of 

the squares of the order parameters q2 and q4, the shear strain e4 couples either only with 

q2
2 or with q4

2 (Carpenter et al., 2001). There should be, therefore, a linear correlation 

between e4 and the square of the order parameters, if our calculations are self-consistent. 

The square of the amplitude of the R4
+ and M3

+ modes which are directly correlated with 

the q4 and q2 order parameter components are plotted versus the values of e4 obtained for 

our samples in Figure 4.9. The M3+M3+O3 + MgM3+O2.5 substitution and Fe2+SiO3 substitution 

define two distinct linear trends suggesting that the coupling coefficient between order 

parameter and strain is strongly compositional dependent.  
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Fig. 4.8 The change of e4 and etx strain with the increase of CC and OV substitution. Blue symbols 

show the e4 strain and red symbols show the etx strain. Both strains increase with CC and OV 

substitution (diamonds and solid trend line) and decrease with FeSiO3 substitution (circles and 

dashed trend line). Symbols are the same as in Fig. 4.3. Our samples Fe2+-rich samples (diamonds 

with right half filled) fall between these two trends, almost showing a flat trend by the opposite 

effect of MMO3 substitution and FeSiO3 substitution.  
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Fig. 4.9 The e4 strain versus (a) the square of R4
+ octahedral tilting (b) the square of M3

+ octahedral 

tilting shows a linear relationship. Symbols are the same as in Fig. 4.3. The Fe2+-poor and Fe2+-rich 

samples show two different trends.  
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4.5 Compression behavior of bridgmanite 

We can expect that the changes in tilting and distortion that occur in the perovskite-type 

structure of bridgmanite due to different cation substitutions play a role in the compression 

behavior of this mineral and in its transformation to the post-perovskite structure. The 

compressibilities of the AO12 and BO6 Brg sites i.e. βA and βB, depend on the strengths of the 

individual bonds that the A- and B- cations have with the oxygens. Cation substitution will 

affect the bond strength and hence the compressibility behavior of the two sites 

determining ultimately whether the perovskite-type structure would become more or less 

distorted with increasing pressure and/or temperature. It has been shown how the relative 

compressibilities βB/βA can be directly deduced from the basic bond-valence parameters 

(Brown and Altermatt, 1985) and the bond lengths measured at room pressure (Angel et al., 

2005; Zhao et al., 2004), i.e βB:βA=MA:MB.  MA and MB represent the site parameters defined 

as 𝑀𝑖 =  ∑
𝑅𝑖𝑗

𝐵
exp(

𝑅0−𝑅𝑖𝑗

𝐵
)

𝑁𝑖
𝑗=1  where R0 is the bond-valence parameter that depends only 

upon the particular cation-anion pair, B is a universal constant equal to 0.37 Å (Brese and 

O'keeffe, 1991; Brown and Altermatt, 1985) and Rij and Ni are the average bond length and 

coordination number of the cation site at ambient conditions, respectively. Since the 

bridgmanites investigated in this study do not have an end-member composition, we have 

used individual bond lengths and we have calculated R0 as a linear combination of the bond-

valence parameters of the different proportions of cations occupying the bridgmanite A and 

B sites, rather than using simply the average bond distances. The resulting MA/MB ratio 

(Figure 4.10) are all smaller than 1 implying that the octahedral tilts will increase with 

pressure because the AO12 site is more compressible than the octahedral site (Angel et al., 

2005). This ratio increases with increasing M3+M3+O3 and MgM3+O2.5 substitution suggesting 

either an increase in B-site compressibility or a decrease of the A-site compressibility as a 

function of M3+M3+O3 and MgM3+O2.5 substitution, given the inverse proportionality 

between the B-site/A-site compressibility ratio and the MA/MB ratio. This implies that 

substitution of mainly Al into the octahedral site increases its compressibility, whereas the 
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substitution of mainly Fe3+ at the A site decreases its compressibility likely due to the 

decrease of the shortest A-O distances (Fig. 4.5a).  

 

Fig. 4.10 The relative compressibility of the B site over A site (MA/MB=βB/βA) versus the sum of CCS 

and OVS. Symbols are the same as in Fig. 4.3. 

It is been suggested that as octahedral tilting of a perovskite-type structure increases which 

decreases the polyhedral volume ratio VA/VB, the repulsion between inter-octahedral 

anions increases and may destabilize the perovskite relative to the post-perovskite 

structure when the distance of intra-octahedral anions (l) reaches the average separation 

distance of the intra-octahedral anions (i.e. the average length of the octahedra edges, <X-

X>I) (Martin et al., 2006; Martin and Parise, 2008). This critical point (l: <X-X>I=1) is 

empirically found to occur at VA/VB=4.038 (Martin and Parise, 2008) (Fig. 4.11). The effect of 

Fe and Al substitution on the perovskite to post-perovskite phase transition in bridgmanite 

is still a matter of debate, however there is some experimental and theoretical evidence 

that points to Al and Fe stabilizing the perovskite-type structure (see Hirose et al., 2017 for 

a review). Although the octahedral tilting increases with M3+M3+O3 and MgM3+O2.5 
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substitution at room pressure resulting in a smaller VA/VB ratio at ambient conditions (Fig. 

4.7, 4.11), a more compressible octahedral site in Fe+Al-bearing bridgmanite would imply a 

less steep increase in the tilting angle or decrease in VA/VB ratio with pressure and therefore 

we may expect a larger pressure at which repulsion between oxygens will occur driving the 

phase transformation with respect to the MgSiO3 end-member.   

 

Fig. 4.11 The O2-O2 (Wyckoff position 8d) distance along the [001] direction l(001), the O1-O1 

(Wyckoff position 4c) distance along the [hk0] direction l(hk0) and the O2-O2 (Wyckoff position 8d) 

distance in a general direction l(hkl) normalized to the average octahedron edge length <O-O>I and 

plotted with the VA/VB ratio in single Brg crystals from the current study. l: <X-X>I=1 and empirical 

value of VA/VB=4.038 are thought to be the critical point where perovskite structure is not stable 

anymore. Symbols are the same as in Fig. 4.3.   
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5 Speciation of Fe and Al in bridgmanite 

as a function of composition and oxygen 

fugacity 

As explained in section 1.6, in order to determine the compositions of Brg and Fp in the 

lower mantle it is essential to understand how iron is accommodated in Brg. The Brg Fe3+ 

content, for example, is known to be strongly influenced by the presence of Al but must also 

be a function of the oxygen fugacity. The speciation of Fe and Al in Brg will not only affect 

the interphase Fe-Mg partitioning with Fp but will also influence the possible formation of 

metallic iron alloy and the elastic and transport properties in the lower mantle (Frost and 

Langenhorst, 2002; Frost et al., 2004; McCammon, 1997; Nakajima et al., 2012). Given the 

difficulty in performing experiments on Brg at conditions that correspond to the entire 

lower mantle it is essential that a clear understanding of the influences on Brg site 

occupancies are at least obtained at lower pressures where the conditions can be relatively 

well constrained. 

 In this study experiments have been performed to examine the compositions of Brg 

and Fp at 25 GPa and 1973 K within bulk compositions with varying Fe and Al contents and 

over a range of oxygen fugacities. The factors affecting the speciation of Fe3+ and Al in Brg 

are examined and thermodynamic models are developed to describe this speciation in the 

Fe-Mg-Si-O, Al-Mg-Si-O and Fe-Al-Mg-Si-O systems. 

5.1 Determination of oxygen fugacity 

Oxygen fugacities in the experiments were either imposed by buffering assemblages, which 

were assumed to have reached equilibrium, or were measured using sliding redox sensors. 
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For experiments conducted at Fe metal saturation, the oxygen fugacity was measured with 

the equilibrium, 

2Fe + O2 = 2FeO (5.1)       

metal                Fp 

using the expression, 

log(𝑓O2
) =

∆𝐺𝑃,𝑇 (5.1)
0

ln(10)𝑅𝑇
+ 2 log(𝑎𝐹𝑒𝑂

𝐹𝑝 ) − 2 log(𝑎𝐹𝑒
𝑚𝑒𝑡𝑎𝑙) (5.2) 

where ∆𝐺𝑃,𝑇 (5.1) 
0 is the standard state Gibbs free energy of equilibrium (5.1), determined 

using the data in Table 5.1, and 𝑎𝑖
𝑗
 is the activity of component i in phase j and is equal to 

𝑥𝑖
𝑗

× 𝛾𝑖
𝑗
, where 𝑥𝑖

𝑗
 and 𝛾𝑖

𝑗
 are the mole fraction and activity coefficient of component i in 

phase j, respectively. The activity coefficient of FeO in Fp (𝛾𝐹𝑒𝑂
𝐹𝑝 ) was determined from, 

R𝑇ln𝛾𝐹𝑒𝑂
𝐹𝑝 = 𝑊𝑀𝑔𝐹𝑒

𝐹𝑝 (1 − 𝑥𝐹𝑒𝑂
𝐹𝑝 )

2
(5.3) 

using the Margules interaction parameter (𝑊𝑀𝑔𝐹𝑒
𝐹𝑝 ) from Frost (2003). In experiments where 

pure Fe was employed 𝑎𝐹𝑒
𝑚𝑒𝑡𝑎𝑙 = 1. In experiments where Ir metal was added the activity 

coefficient of Fe in the resulting Fe‐Ir alloy (𝛾𝐹𝑒
𝑚𝑒𝑡𝑎𝑙) was determined from, 

R𝑇ln𝛾𝐹𝑒
𝑚𝑒𝑡𝑎𝑙 = (1 − 𝑥𝐹𝑒

𝑚𝑒𝑡𝑎𝑙)
2

× (−51814 + 0.0736𝑃 − 21964𝑥𝐹𝑒
𝑚𝑒𝑡𝑎𝑙) (5.4) 

where P is pressure in bars (Stagno and Frost, 2010). In one experiment (S7120) the oxygen 

fugacity was determined from a Pt-Fe alloy using the Margules expression for 𝛾𝐹𝑒
𝑚𝑒𝑡𝑎𝑙from 

Kessel et al. (2001).  

In experiments where hematite was added to the starting material and a (Mg,Fe)2Fe2
3+O5 

phase was formed in the resulting assemblage, the fO2 was estimated using the equilibrium, 

8FeO + O2 = 2Fe4O5 (5.5) 

 Fp                   oxides 
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Table 5.1 End-member thermodynamic data used for calculating oxygen fugacity 

 
Tr (K) ΔfH0

298 (J/mol) HTr-H298 (J/mol) STr(J·K-1·mol-1) 
Heat Capacity (Cp) terms 

Source 
 a b c d 

Fe (FCC) 1200 0 35543 76.91 23.991 8.360E-03   1 

FeO 298 -2.65E+05  58.00 42.638 8.971E-03 -2.608E+05 196.6 3 

Fe4O5 298 -1.34E+06  230.00 306.9 1.075E-03 -3.140E+06 -1470.5 3 

Ru 298.15 0  28.50 13.054 1.005E-02 -3.457E+05 205.2 4 

RuO2(cubic) 298.15 -3.00E+05  41.94 121.951 6.260E-04 -1.058E+05 -1074.6 5 

O2 298.15 0  205.15 47.255 -4.550E-04 4.402E+05 -393.5 4 

 Tr (K) V0, Tr (J/bar) K0, Tr (GPa) K' ∂K/∂T (bar·K-1) α0 α1 θ(K) Source 

Fe (FCC) 1273 0.738  110.8 5.3 -0.0281 4.50E-05 1.81E-08  2 

FeO 298 1.224  152 4.9  3.22E-05   3 

Fe4O5 298 5.38  185.7 4  2.38E-05   3 

Ru 298.15 0.8176 301  -0.05 2.15E-05 7.80E-09  5 

RuO2(cubic) 298.15 1.736 237   2.32E-05  512  5 

Notes:  1.   O'Neill (1987); 2. Tsujino et al. (2013); 3. Myhill et al. (2016); 4. O'Neill and Nell (1997); 5. Armstrong (2018). CP=a+bT+cT-2+dT-0.5 (J·K-

1·mol-1), α=α0+α1T. Tr is reference temperature.
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and the relation 

log(𝑓O2
) =

∆𝐺𝑃,𝑇 (5.5)
0

ln(10)R𝑇
+ 2 log(𝑎𝐹𝑒4𝑂5

𝑜𝑥𝑖𝑑𝑒 ) − 8 log(𝑎𝐹𝑒𝑂
𝐹𝑝 ) (5.6) 

Ideal mixing of Fe2+ and Mg were assumed such that 𝑎𝐹𝑒4𝑂5

𝑜𝑥𝑖𝑑𝑒𝑠   = (𝑥𝐹𝑒2+
𝑜𝑥𝑖𝑑𝑒𝑠)2, where 𝑥𝐹𝑒2+

𝑜𝑥𝑖𝑑𝑒𝑠 =

𝐹𝑒2+ (𝐹𝑒2+ + 𝑀𝑔)⁄ . ∆𝐺𝑃,𝑇 (5.5) 
0 was calculated using the data of Myhill et al. (2016) given in 

Table 5.1. 

Oxygen fugacities for the equilibria, 

Ru + O2 = RuO2 (5.7) 

and  

Re + O2 = ReO2 (5.8) 

were calculated from, 

log(𝑓𝑂2
) =

∆𝐺𝑃,𝑇 (5.7,5.8)
0

ln(10)R𝑇
(5.9) 

using the expression of Armstrong (2018) for ∆𝐺𝑃,𝑇 (5.7) 
0 . For Re-ReO2 the 1 bar expression 

of Pownceby and O'Neill (1994) was used to calculate ∆𝐺 𝑇 ,1𝑏𝑎𝑟(5.8)
0  i.e, 

451020 + 297.595 × 𝑇 − 14.6585 × 𝑇 × ln𝑇 (5.10) 

and the volume change of the equilibrium (ΔVRRO) was obtain from the data of Campbell et 

al. (2006a) by fitting the expression, 

∆𝑉𝑅𝑅𝑂 = 𝐴 × 𝑃 + 𝐵 ∗ (𝑇 − 293) + 𝐶 (5.11) 

where A=-0.07 cm3/GPa, B=0.0002 cm3/K and C=9.944 cm3. Uncertainties in oxygen 

fugacities were propagated from the chemical analyses of the various oxide and metal 

phases involved in the determinations. 
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5.2 Fe3+/ΣFe dependence on fO2, composition and temperature in 

bridgmanite 

Previous studies have shown that in Al free Brg, Fe3+/ΣFe apparently increases with 

increasing total iron abundance and oxygen fugacity while in Al-containing Brg, the Al 

concentration has been viewed as having the most important influence on the Fe3+/ΣFe 

ratio, which has been proposed to be less strongly correlated with oxygen fugacity (Frost et 

al., 2004; McCammon et al., 2004b; Nakajima et al., 2012). In the past this conclusion was 

based on the fact that the Brg Fe3+/ΣFe ratio is correlated with Al content regardless of 

whether experiments were conducted in Fe or Re capsules. In this study, however, the Brg 

Fe3+/ΣFe ratio at a fixed pressure and temperature is found to be a function of fO2 in both Al-

free and Al bearing samples but it is also a function of Brg Al content and total Fe content 

(Fig. 5.1, 5.7).  
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Fig. 5.1 (a) Fe3+/ΣFe ratio as a function of Al content in Brg at fixed Fe content of 0.10-0.12 atoms pfu 

and oxygen fugacities of IW-0.6 and IW+7.5 at 25 GPa and 1973 K. Open circles show results from 

Lauterbach et al. (2000) with Fe=0.08-0.11 atoms pfu in Brg saturated with Fe metal at 26 GPa and 

1923-2023 K. The solid line shows the calculation using the thermodynamic model constructed in 

the current study at 25 GPa and 1973 K with Fe fixed at 0.11 pfu and constant fO2 at IW-0.6 and 

IW+7.5, respectively. (b) Fe3+/ΣFe ratio versus total iron concentration (in cations per formula unit) 

at 25 GPa and fixed Al content of 0.07 atoms pfu. The solid diamonds indicate experiments of the 

current study conducted at 1973 K and fO2= ~ IW-0.8. Open blue symbols indicate experiments from 

Frost et al. (2004) and Lauterbach et al. (2000) conducted at 24-26 GPa, 1873-2023 K and Fe metal 

saturated conditions. The open orange symbols show the results from Frost et al. (2004) and 

Boujibar et al. (2016) performed at 24-25 GPa and higher temperatures of 2173-2573 K in C capsules. 

The solid line shows the results based on the thermodynamic model from the current study 

calculated at an oxygen fugacity of IW-1, Al=0.07 atoms pfu, P=25 GPa and T=1973 K. 

Four sets of experiments were performed at 1973 K and 25 GPa and at oxygen fugacities 

ranging between -1 and +9 log units relative to the iron-wüstite buffer (ΔIW). In the first 

three sets the total iron content of Brg was kept constant at  0.11 atoms pfu but for each 

set the Brg Al concentration was either 0, 0.07 or 0.11 atoms pfu. In a final set of 
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Table 5.2 Cation proportions and site assignment in Brg normalized to two cations per formula unit.  

 
Run 

A site B site 
Fe3+/ΣFe log fO2 (ΔIW) 

 Mg Fe2+
A Fe3+ A AlA Si AlB Fe3+

B 

Fe0.10 S7122 0.915(8) 0.086(6) - - 0.988(8) - 0.012(8) 0.12(3) -0.71(25) 

 S7251 0.935(7) 0.061(6) 0.004(9) - 0.975(7) - 0.025(7) 0.32(5) 4.05(52) 

 S7262 0.931(6) 0.064(8) 0.005(9) - 0.981(7) - 0.019(7) 0.27(7) 4.05(52) 

 S7113-2* 0.964(9) 0.019(4) 0.017(9) - 0.979(7) - 0.021(7) 0.66(5) 7.65(31) 

 S7138-1* 0.963(8) 0.017(5) 0.019(10) - 0.980(8) - 0.020(8) 0.69(9) 7.65(31) 

 S7120 0.946(6) 0.008(4) 0.046(12) - 0.949(8) - 0.051(8) 0.92(4) 8.75(87) 

           

Al0.07Fe0.10 H4755 0.900(7) 0.063(7) 0.036(6) 0.001(9) 0.928(4) 0.072(4) - 0.37(5) -0.64(5) 

 S7132-1 0.886(14) 0.062(9) 0.037(8) 0.015(12) 0.938(9) 0.062(9) - 0.37(7) -0.67(6) 

 S7046 0.922(6) 0.012(3) 0.067(8) - 0.911(6) 0.069(2) 0.021(6) 0.88(3) 7.65(31) 

 S7138-2 0.918(5) 0.010(3) 0.072(8) - 0.920(6) 0.067(2) 0.013(6) 0.89(3) 7.65(31) 

           

Al0.12Fe0.12 H4746 0.870(10) 0.059(10) 0.059(10) 0.012(15) 0.902(12) 0.098(12) - 0.50(7) -0.60(5) 

 S6920 0.855(10) 0.054(9) 0.065(9) 0.025(11) 0.903(8) 0.097(8) - 0.55(7) -0.14(11) 

 S6907 0.882(6) 0.026(14) 0.082(15) 0.010(7) 0.897(7) 0.103(7) - 0.76(13) 2.70(73) 

 S6952 0.889(5) 0.006(3) 0.105(7) - 0.875(5) 0.113(3) 0.012(6) 0.95(3) 7.65(30) 

           

Al0.07Fe0.07 H4737 0.925(11) 0.033(5) 0.036(5) 0.006(11) 0.932(7) 0.068(7) - 0.53(6) -0.93(13) 

 S7132-2 0.921(7) 0.032(5) 0.036(5) 0.011(12) 0.937(9) 0.063(9) - 0.53(7) -0.82(14) 

 S7021 0.921(13) 0.018(4) 0.041(5) 0.021(15) 0.951(10) 0.049(10) - 0.70(6) 2.30(82) 

 S7028 0.925(6) 0.004(4) 0.070(10) - 0.932(7) 0.066(4) 0.002(8) 0.94(5) 7.65(31) 

Notes: * Brg samples with low Fe content of 0.06 pfu.  
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experiments the Brg Al content was 0.07 and the Fe content was lowered to 0.07. The site 

assignment of Al and Fe (Table 5.2) was performed according to the procedure described in 

Chapter 4 with the B site first filled with the Al cations and the A site with Fe3+ assuming 

therefore cation ordering between the two sites and then allowing the excess of Al to 

occupy the A site or the excess of Fe3+ to occupy the B site only if their site occupancy had 

not reached unity. As can be seen in Fig. 5.1a and Fig. 5.7 the Fe3+/ΣFe ratio of Brg increases 

with the Al content but is also strongly dependent on fO2. The nature of this relationship, 

however, apparently changes with Al content. For Al free samples, the Fe3+/ΣFe ratio 

increases from 0.12(3) to 0.92(4) upon an fO2 increase from IW-0.7 to IW+8.8 (Fig. 5.4). For 

Al-bearing samples, Fe3+/ΣFe also increases with fO2 but the slope is obviously less steep (Fig. 

5.7).  

The effect of Al content on the Fe3+/ΣFe ratio in Brg is shown in Fig. 5.1a at a bulk Fe 

content of 0.11 atoms pfu and at oxygen fugacities determined both by the presence of 

metallic iron (~ IW-0.6) and Ru-RuO2 (IW+7.5). The Fe3+/ΣFe ratio in Brg increases with Al 

content, consistent with previous work (Frost and McCammon, 2008; Lauterbach et al., 

2000; McCammon et al., 2004b) but the gradient of this dependence changes with fO2 

content. At reducing conditions there is an initial strong dependence on Al that becomes 

weaker at higher Al contents, whereas at high fO2 the Al content dependence is also much 

weaker, essentially because the Fe3+/ΣFe ratio is near 100 % even at low Al contents. 

The effect of varying the bulk Fe content at a constant Al content (0.07) and fO2 (~ IW-

0.8) can be evaluated by also considering data from previous studies (Frost et al., 2004; 

Lauterbach et al., 2000). At 1873-2023 K, Al=0.07 atoms pfu and fO2=IW-0.8 (i.e. Fe metal 

saturated) the Brg Fe3+/ΣFe ratio decreases with increasing total Fe content (Fig. 5.1b). The 

influence of total Fe content at other conditions, such as higher oxygen fugacities, is not 

well constrained by the currently available data set. For a similar fO2 and Al content the 

Fe3+/ΣFe ratio also appears to decrease (by 0.2) with increasing temperature as shown by 

the orange open symbols in Fig. 5.1b. Although these higher temperature experiments were 
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conducted in graphite capsules, (which transformed to diamond during the synthesis), the 

presence of Fe metal was identified in the recovered samples implying an oxygen fugacity 

close to IW-0.8. A decrease in Brg Fe3+/ΣFe ratio is also supported by experiments 

performed with Al=0.11 atoms pfu shown in Fig. 5.7. At oxygen fugacity of IW-0.8 the 

Fe3+/ΣFe ratio drops from 0.46 at 1973 K to 0.28 at 2373 K (shown by the black diamond).  

In summary, the Fe3+/ΣFe ratio in Brg increases with both Al content and oxygen 

fugacity with the log fO2 dependence being seemingly stronger for the Al-free samples. At 

IW <1 the Fe3+/ΣFe ratio is strongly dependent on Al content but this dependence weakens 

with increasing fO2 becoming seemingly independent of Al content at high oxygen fugacity. 

On the other hand, the Brg Fe3+/ΣFe ratio decreases with total Fe content and temperature. 

5.3 Substitution mechanisms in Bridgmanite 

5.3.1 Al-bearing bridgmanite 

In order to understand the distribution of cations in Brg in the Fe + Al bearing system it is 

useful to first examine the speciation in the individual Al and Fe bearing subsystems. For the 

Al-Mg-Si-O system this is possible using previously published data (Kojitani et al., 2007; Liu 

et al., 2019a; 2019b; Liu et al., 2017; Navrotsky et al., 2003). In Fig. 5.2a, the Si content of 

Fe-free Al-bearing Brg is plotted against the Al content. Two solid lines indicate the 

expected trends for the charge coupled substitution mechanism along the MgSiO3-AlAlO3 

join and the oxygen vacancy substitution mechanism along the MgSiO3-MgAlO2.5 join, 

respectively. Bulk compositions along the MgSiO3-AlAlO3 join (green circles) produce Brg 

samples that fall along the CCS trend line. Bulk compositions with Mg>Si, on the other hand, 

result in Brg compositions (orange circles) that fall between the CCS and OVS trend lines. 

The proportions of the two substitution mechanisms change with the Al content in 

bridgmanite, from MgAlO2.5 OVS dominating at low Al content (<0.10 pfu) to equal 

abundance of OVS and CCS with Al between 0.1-0.15 atoms pfu and finally to AlAlO3 

dominance at high Al content > 0.15 atoms pfu. The variation in the two substitution 
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mechanisms for Brg with a bulk starting composition of Mg>Si can be seen more clearly in 

Fig. 5.2b, where the proportions of the two components are determined from the equation 

MgxAlzSiyOx+1.5z+2y=yMgSiO3+(x-y) MgAlO2.5+0.5(z-x+y) AlAlO3 (x+y+z=2, Liu et al., 2017). The 

CCS AlAlO3 component increases monotonically with increasing Al content while the 

MgAlO2.5 OVS component initially increases to a maximum at Al= ~ 0.1 atoms pfu and then 

decreases upon a further increase in Al. 
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Fig. 5.2 (a) The variation of the Si content of Brg with Al content at 25-27 GPa and 1873-2000 K. The 

two solid lines are expected trend lines for CCS along the MgSiO3-AlAlO3 join and the OVS along the 

MgSiO3-MgAlO2.5 join respectively. The orange symbols indicate Brg with starting bulk composition 

Mg>Si and the green symbols represent Brg with starting bulk composition Mg=Si. Data are taken 

from Kojitani et al. (2007); Liu et al. (2017, 2019a, b) and Navrotsky et al. (2003). (b) The mole 

fraction of AlAlO3 and MgAlO2.5 component in Brg as a function of Al content at 27 GPa and 2000 K. 

Open circles represent data from Liu et al. (2019a, b) with a bulk composition Mg > Si in the system. 

Solid lines are the calculated values based on the thermodynamics models derived at 27 GPa and 

2000 K. 

The exchange of the AlAlO3 and MgAlO2.5 components in Brg can be described by the 

equilibrium: 

2MgAlO2.5 = AlAlO3 + 2MgO (5.12) 

Brg               Brg             Per 

The equilibrium coefficient K for this reaction is defined as: 

𝐾 =
𝑎AlAlO3

Brg

(𝑎MgAlO2.5

Brg
)2

(5.13) 

where 𝑎AlAlO3

Brg
and 𝑎MgAlO2.5

Brg
are the activities of the AlAlO3 and MgAlO2.5 components in Brg 

respectively. At equilibrium, the standard state Gibbs free-energy change can be expressed 

by  

∆𝐺(5.12)
0 = −R𝑇ln

𝑎AlAlO3

Brg

(𝑎MgAlO2.5

Brg
)

2
(5.14) 

taking the standard state to be the pure end-members at the pressure and temperature of 

interest. The activities of the Brg component are defined as: 

𝑎AlAlO3

Brg
= 𝑥AlAlO3

Brg
× 𝛾AlAlO3

Brg (5.15𝑎) 

𝑎MgAlO2.5

Brg
= 𝑥MgAlO2.5

Brg
× 𝛾MgAlO2.5

Brg (5.15𝑏) 

where γ is the activity coefficient. Substituting these equations into equation (5.14) yields: 
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∆𝐺(5.12)
0 = −R𝑇ln

𝑥AlAlO3

Brg
× 𝛾AlAlO3

Brg

(𝑥MgAlO2.5

Brg
× 𝛾MgAlO2.5

Brg
)

2 = −R𝑇ln
𝑥AlAlO3

Brg

(𝑥MgAlO2.5

Brg
)

2 − R𝑇ln
𝛾AlAlO3

Brg

(𝛾MgAlO2.5

Brg
)

2

= −R𝑇ln𝐾D − R𝑇ln𝛾AlAlO3

Brg
+ 2R𝑇ln𝛾MgAlO2.5

Brg
                                      (5.16) 

which should yield a constant value for a given pressure and temperature regardless of the 

composition. MgSiO3 bridgmanite has two oxygen sites, O1 with a multiplicity of 1 and O2 

with a site multiplicity of 2. If we consider that oxygen vacancies occur on one half of the 

available O1 sites, then the mole fraction of the MgAlO2.5V0.5 component can be written as,  

𝑥MgAlO2.5V0.5

Brg
= 2𝑥Mg,A𝑥Al,B(𝑥V,O1)

0.5
(𝑥O,O1)

0.5
(5.17) 

where 𝑥Mg,A  and 𝑥Al,B are the mole fractions of Mg on the A site and Al on the B site 

respectively, and XV,O1 and XO,O1 are the mole fractions of vacancies and oxygen on the O1 

site where 𝑥V,O1 = 0.5 (𝑥Al,B − 𝑥Al,A). The integer 2 in equation (5.17) is required such that 

the activity of the end-member MgAlO2.5V0.5 is equal to unity. For the coupled substitution 

of Al, it is assumed that charge balance results in local ordering of Al on each site, such that 

the mole fraction of the AlAlO3 component is: 

𝑥AlAlO3

Brg
= 𝑥Al,A = 𝑥Al,B (5.18) 

Using a symmetric mixing model, the deviation from ideal mixing can be described by: 

R𝑇ln𝛾AlAlO3

Brg
= 𝑊MgAl,A

Brg
(1 − 𝑥Al,A)

2
+ 𝑊AlSi,B

Brg
(1 − 𝑥Al,B)

2
+ 𝑊OV,O1

Brg
(1 − 𝑥O,0.5O1)

2
(5.19𝑎) 

R𝑇ln𝛾MgAlO2.5

Brg
= 𝑊MgAl,A

Brg
(1 − 𝑥Mg,A)

2
+ 𝑊AlSi,B

Brg
(1 − 𝑥Al,B)

2
+ 𝑊OV,O1

Brg
(1 − 𝑥OV,0.5O1)

2
(5.19𝑏) 

where W is a Margules interaction parameter that describes the interaction energy 

between Mg2+-Al3+ on the A site, Si4+-Al3+ on the B site and the O-vacancy on the O1 site. By 

using three symmetric interaction parameters, equation (5.16) becomes: 
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∆𝐺(5.12)
0 = −R𝑇ln𝐾D

− [𝑊MgAl,A
Brg

(1 − 𝑥Al,A)
2

+ 𝑊AlSi,B
Brg

(1 − 𝑥Al,B)
2

+ 𝑊OV,O1
Brg

(1 − 𝑥O,0.5O1)
2

]

+ 2

× [𝑊MgAl,A
Brg

(1 − 𝑥Mg,A)
2

+ 𝑊AlSi,B
Brg

(1 − 𝑥Al,B)
2

+ 𝑊OV,O1
Brg

(1 − 𝑥OV,0.5O1)
2

]    (5.20)  

By using the mole fractions of different ions on A, B and O1 sites in Brg obtained from the 

experiments, the equation can be fitted using a non-linear least-squares algorithm to 

determine the three interaction parameters and ∆𝐺(5.12)
0 . However, values for the three 

interaction parameters are highly correlated, and a range of values will provide a 

satisfactory fit. Refining all three interaction parameters at the same time gives 

unreasonable solutions, but always gives 𝑊AlSi,B

Brg
=0 kJ/mol, therefore 𝑊AlSi,B

Brg
 was fixed at 0 

kJ/mol, 𝑊OV,O1

Brg
 was adjusted manually and then only 𝑊MgAl,A

Brg
 was refined. A reasonable 

solution was obtained at 𝑊OV,O1

Brg
=70 kJ/mol, giving the value of 𝑊MgAl,A

Brg
=152.6 kJ/mol and 

∆𝐺(5.12)
0 = - 85(4) kJ/mol at 27 GPa and 2000 K. The mole fraction of AlAO3 and MgAlO2.5 in 

bridgmanite as a function of Al content calculated using the above derived interaction 

parameters are shown in Fig. 5.2b and they agree very well with the experimental data.  

The very large interaction parameters required to fit the Al distribution in Fe-free Brg 

imply significant non ideality in the mixing of oxygen vacancies and between Mg and Al 

mixing on the A site. The magnitude of the interaction parameters is far greater than those 

normally observed for cation mixing among mantle silicates and is also much greater than 

the values required to fit AlAlO3 mixing between Brg and corundum in the MgSiO3-AlAlO3 

system (Panero et al., 2006). This seems to be inevitable, however, because the 

concentration of the MgAlO2.5 component goes through a maximum over a relatively small 

change in Al content. As the excess enthalpy contribution to the free energy is a function of 

concentration (Eq. 5.19 a, b), large coefficients i.e. interaction parameters, are required in 

order for the small change in total Al content to have a large effect on the speciation.  
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5.3.2 Fe-bearing bridgmanite 

Experiments performed in the Fe-Mg-Si-O system coexisting with ferropericlase are plotted 

in Fig. 5.3a, with the trends expected for the OVS (Mg,Fe)FeO2.5 and the CCS FeFeO3 

substitution shown. As for the periclase saturated Al-Mg-Si-O system, the data fall very 

close to the OVS mechanism when Fe3+ is less than 0.03 atoms pfu although uncertainties 

here are high due to the relatively low concentrations. At higher Brg bulk Fe3+ 

concentrations, i.e. higher oxygen fugacity, the data move closer to CCS substitution. This 

indicates that the substitution mechanism is changing with Fe3+ concentration: MgFeO2.5 

OVS appears to dominate at low Fe3+ abundance (<0.03 atoms pfu) and FeFeO3 CCS 

dominates at higher Fe3+ concentration (≥ 0.04 atoms pfu). The change between these two 

substitution mechanisms, as for the Al-bearing system, appears to occur rapidly over within 

a narrow Fe3+ range of ~ 0.02 atoms pfu. Data from Frost and Langenhorst (2002) and 

McCammon et al. (2004b) saturated with MgO and Lauterbach et al. (2000) and Hummer 

and Fei (2012) where MgO is undersaturated are also shown for comparison. Compared 

with data from Lauterbach et al. (2000) and Hummer and Fei (2012) conducted at MgO 

undersaturated conditions, there seems to be no obvious effect of whether starting 

compositions are Fp-saturated or SiO2-saturated on the substitution mechanism (Fig. 5.3). 

However, the EPMA composition measurement in these studies were performed using a 

high beam current of 15 nA and 30 nA respectively, which may have resulted in an incorrect 

Mg/Si ratio since Brg is metastable under electron beams especially for samples with low Fe 

content. Note, moreover, that the errors of the chemical compositions were not given in 

Lauterbach et al. (2000). The point at Fe3+=0.074 atoms pfu from Hummer and Fei (2012) is 

far above the region constrained by the CCS and OVS mechanism, indicating more Fe3+ on 

the A site than on the B site which requires the formation of Mg2+ vacancies on the A site 

for charge balance. However, the Fe3+/ΣFe ratio in this sample was not measured and the 

sample may in fact contain some ferrous iron. Moreover, the experiment may be not in 

equilibrium since, as mentioned in their study, in the run products Brg coexisted with small 

amounts of unreacted MgO and SiO2 (Hummer and Fei, 2012).  
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In Fig. 5.3b, the mole fractions of FeFeO3 CCS and MgFeO2.5 OVS are plotted as a 

function of the oxygen fugacity (thus total Fe3+ content). As in Al-bearing Brg, the CCS 

component increases with increasing ferric Fe content and the OVS first increases and then 

decreases with increasing Fe3+ content. However, the OVS component appears to reach a 

maximum at much lower trivalent cation concentrations (0.03 atoms pfu Fe3+) compared 

with Al-bearing samples (0.1 atoms pfu Al) and the proportion of the OVS component is 

also smaller being at most 2 mol% in the Fe-bearing system compared to 5 mol% in the Al-

bearing system (Liu et al., 2017). 
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Fig. 5.3 (a) The variation of the Si content of Brg with the Fe3+ content at 25-26 GPa and 1923-2073 K. 

The two solid lines are expected trend lines for CCS along the MgSiO3-Fe3+Fe3+O3 join and the OVS 

along the MgSiO3-MgFe3+O2.5 join respectively. The solid orange diamonds and the open orange 

circles represent the current study and data from Frost and Langenhorst (2002) and McCammon et 

al. (2004b) respectively where Brg coexisting with Fp. The open green circles are data from 

Lauterbach et al. (2000) and Hummer and Fei (2012) where Brg is not in equilibrium with Fp. (b) The 

mole fraction of FeFeO3 and MgFeO2.5 component in Brg as a function of oxygen fugacity at 25 GPa 

and 1973 K. Solid lines are the calculated values based on the thermodynamics models derived at 25 

GPa and 1973 K. 

A similar equilibrium to that in the Al-bearing system can be written to describe the 

distribution of Fe3+ between cation sites in Brg i.e., 

2MgFeO2.5 = FeFeO3 + 2MgO (5.21) 

Brg               Brg             Fp 

The equilibrium coefficient K for this reaction is: 

𝐾 =
𝑎FeFeO3

Brg
𝑎MgO

Fp

(𝑎MgFeO2.5

Brg
)2

(5.22) 
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where 𝑎FeFeO3

Brg
and 𝑎MgFeO2.5

Brg
are the activities of the FeFeO3 and MgFeO2.5 components in 

Brg, respectively. At equilibrium, the standard state Gibbs free-energy change can be 

expressed by 

∆𝐺(5.21)
0 = −R𝑇ln

𝑎FeFeO3

Brg
𝑎MgO

Fp

(𝑎MgFeO2.5

Brg
)

2
(5.23) 

As will be seen later the Brg components are assumed to mix ideally so that 

𝑎MgFeO2.5V0.5

Brg
= 2𝑥Mg,A𝑥Fe,B(𝑥V,O1)

0.5
(𝑥O,O1)

0.5
(5.24) 

and 

𝑎FeFeO3

Brg
= 𝑥Fe,A𝑥Fe,B (5.25) 

For MgO in ferropericlase however, 

𝑎MgO
Fp

= 𝑥MgO
Fp

. 𝛾MgO
Fp (5.26) 

where 𝑥MgO
Fp

 is the mole fraction of MgO in ferropericlase and the activity coefficient,  𝛾MgO
Fp

, 

is determined from the interaction parameters given by Frost (2003). 

Because the proportions of Fe3+ and Fe2+ in Brg depend on the fO2 a further equilibrium is 

required to define their concentration, such as, 

2FeO + 0.5O2 = FeFeO3 (5.27) 

Fp                       Brg 

for which the condition of equilibrium is, 

∆𝐺(5.27)
0 = −R𝑇ln

𝑎FeFeO3

Brg

(𝑎FeO
Fp

)2(𝑓𝑂2
)

0.5
(5.28) 

The activity of FeO in ferropericlase is defined as in equation (5.26) and calculated using the 

same activity composition data. For each experimental data point obtained in this study 

standard state Gibbs free energy terms can be calculated from equations (5.23) and (5.28). 
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Two constant values of ∆𝐺(5.21)
0 and ∆𝐺(5.27)

0  should then be obtained for all data, which in 

theory would also require activity composition relations to be considered. Brg site 

assignments estimated from EPMA data and Mössbauer Fe3+/ΣFe ratios have large 

uncertainties, however, relative to the small concentrations of Fe3+ involved. One way to fit 

the relationship between the Fe3+ content and fO2 is to allow the site occupancies of Fe3+ on 

the A and B Brg sites to vary under the constraint of mass balance and to find the Fe3+ site 

occupancies where constant values of the two ∆𝐺0 terms are found for each experiment. In 

fact this method leads to a range of solutions with the best result judged by the degree of 

agreement with the experimental fO2-Fe3+ relationship, shown in Fig 5.4a, and with the 

proportions of the two components, shown in Fig 5.3b. This result is achieved with ∆𝐺(5.21)
0 = 

- 27.886 kJ/mol and ∆𝐺(5.27)
0 =172.236 kJ/mol. Note that in Fig 5.4a the data that appear to 

be in poor agreement with the model at IW +7.7 have a Brg bulk Fe content of only 0.05 

atoms pfu, whereas the other data points as well as the model have 0.1 atoms pfu of Fe. In 

fact all data fit the model reasonably well once the different total Fe content is accounted 

for (Fig. 5.4b). It was not possible to find a solution that fitted both the total Fe3+ and the 

Fe3+ speciation perfectly, slightly better solutions could be found that assumed very little of 

the CCS component, but this was deemed to be in poor agreement with the experimentally 

determined site occupancies. Activity composition models similar to those described in 

equations (5.19a, b) were found to provide very little improvement in the fitting even when 

Margules terms of the order of mega Joules per mole were employed. Similarly, an activity 

model that accounts for the Brg reciprocal solution: 

FeFeO2.5 + MgSiO3 = MgFeO2.5 + FeSiO3 (5.29) 

Brg               Brg              Brg                Brg 

provided very little overall improvement of the fit. As a result, it was considered that the 

resulting model, which has only 2 fitting terms, provides the best fit within the uncertainties.  
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Fig. 5.4 (a) The ferric iron content in Brg and (b) the ferric iron over total iron ratio in Al-free Brg as a 

function of oxygen fugacity at P=25 GPa, T=1973 K and fixed Fe content of 0.10 atoms pfu (except 

for the data points indicated) in Brg. The solid lines are calculated model curves.  
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5.3.3 Fe, Al-bearing bridgmanite 

The substitution mechanisms in Fe and Al bearing Brg from both fO2 buffered experiments 

and single crystal synthesis experiments are examined using the results of EMPA and 

Mössbauer spectroscopy analysis in Fig. 5.5. Data from Frost and Langenhorst (2002); Frost 

et al. (2004); Lauterbach et al. (2000) and McCammon et al. (2004b) are also shown for 

comparison. At Fp saturated conditions (red symbols in Fig. 5.5), both OVS and CCS 

substitution mechanisms are important at low M3+ (M3+=Al3++Fe3+) concentrations (<0.1 

atoms pfu). The CCS mechanism appears to be the most favorable substitution mechanism 

at high M3+ concentrations (> 0.1 atoms pfu) but it is possible that some OVS is present even 

at high M3+ concentrations of 0.34 atoms pfu. Based on the samples analyzed in this study, 

OVS accounts for up to 4 mol% of the Brg components. This maximum OVS component 

value was achieved in the sample where the Al content (0.23 atoms pfu) is significantly 

higher than the Fe3+ content (0.11 atoms pfu) in Brg (S7214). Experiments performed at Fp 

undersaturated conditions in this study fall almost along the CCS trend line, indicating that 

only CCS is present as in Al-bearing samples with bulk Mg=Si. In contrast, Lauterbach et al. 

(2000) conducted at Fp undersaturated conditions have some MgM3+O2.5 OVS component 

comparable with those at Fp saturated conditions. As mentioned in section 5.3.2, it is not 

clear whether this may be due to errors in the EPMA composition measurements. Because 

Brg is easy to become amorphous under electron beams, the Mg/Si ratio may be incorrect 

at high electron beam current of 15 nA as that used in the mentioned study. This 

phenomenon is more serious at low Brg Fe concentrations. Moreover, the errors of the 

chemical composition were not provided by Lauterbach et al. (2000) and the errors shown 

in the figure all come from the Fe3+/ΣFe ratio measurement of Brg.  
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Fig. 5.5 The variation of the Si content of Brg with the total trivalent cation content (i.e. 
M3+=Al3++Fe3+) for Fe and Al-bearing Brg at 25-27 GPa and 1873-2023 K.  Two solid lines indicate the 
expected trend for the charge coupled substitution (CCS) and oxygen vacancy substitution (OVS) 
mechanisms. Solid red diamonds and open red diamonds indicate Brg from Fp saturated 
experiments from this study and from Frost and Langenhorst (2002); Frost et al. (2004) and 
McCammon et al. (2004b) respectively.  Solid blue diamonds and open blue diamonds indicate Brg 
at Fp undersaturated conditions from this study and from Lauterbach et al. (2000) respectively.  

In line with Fig. 5.5, the cation distribution procedure (Table 5.2) never results in an excess 

of 3+ cations on the A site, which would require an A site cation vacancy to achieve charge 

balance. Whether Fe3+ occupies the A or B site then simply depends on the relative 

proportions of Fe3+ and Al. When Fe3+ ≤ Al (i.e. Δ(Fe3+-Al) ≤ 0) as indicated in Fig. 5.6a, the 

content of Fe3+ determined for the B site is zero, within error. However, when Fe3+ becomes 

larger than Al, i.e. Δ(Fe3+-Al) > 0, Fe3+ also occupy the B site. In Fig. 5.6b, the two trend lines 

for MgFeO2.5 OVS and FeFeO3 CCS are also shown. When Δ(Fe3+-Al) is small, the different 

substitution mechanisms are impossible to distinguish but when Δ(Fe3+-Al) gets larger, the 

data fall on the FeFeO3 CCS trend line.  
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Fig. 5.6 (a) The amount of Fe3+ on the A site and B site versus the total Fe3+ content in Brg for Al > 

Fe3+. Red diamonds indicate Fe3+ on the A site and blue diamonds indicate Fe3+ on the B site. The 1:1 

trend line representing all Fe3+ at the A site is also shown. (b) The amount of Fe3+ on the B site versus 

the difference between Fe3+ and Al in Brg. When Δ(Fe3+-Al) ≤ 0, no Fe3+ is considered present at the B 

site while when Δ(Fe3+-Al) > 0, Fe3+ starts to go into the B site. The two solid lines indicate the 

MgFeO2.5 OVS and FeFeO3 CCS trend line expected. 

In reality, however the site occupancies are likely to be more complicated than assumed by 

this simple treatment. In the Fe or Al free systems both 3+ cations are capable of entering 

both sites and both appear to be capable of entering the B site with charge balance 
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provided by the OVS mechanism. Although the FeAlO3 component is likely important, if 

excesses of Al or Fe3+ occur then each cation still has to enter the other site. Furthermore, it 

is improbable on configurational entropy grounds that Fe3+ and Al order fully into the A and 

B sites respectively, even when they are present in equal proportions.  

In order to build a thermodynamic model that correctly describes the effects of Al, 

total Fe content and fO2 on the Brg Fe3+ content a number of components need to be 

considered in order to allow the site occupancies of 3+ cations to be realistically described. 

By including a mass balance constraint for the bulk Al content three equilibria are required 

to describe the 3+ cation site occupancies. For this purpose the following equilibria are used, 

2MgFeO2.5 = FeFeO3 + 2MgO (5.30) 

Brg       Brg             Fp 

2MgAlO2.5 = AlAlO3 + 2MgO (5.31) 

    Brg             Brg      Fp 

And 

2FeO + AlAlO3 + 0.5O2 = 2FeAlO3 (5.32) 

Fp          Brg              Brg 

Expressions for the standard state Gibbs free energies for equilibria (5.30) and (5.31) are 

given in equations (5.21) and (5.12) and the activities of each component have also been 

defined. For equilibrium (5.32) we can write, 

∆𝐺(5.32)
0 = −R𝑇ln

(𝑎FeAlO3

Brg
)

2

(𝑎FeO
Fp

)2 𝑎AlAlO3

Brg
(𝑓𝑂2

)
0.5

(5.33) 

where 𝑎FeAlO3

Brg
= 𝑥Fe3+,A𝑥Al,B   and  𝑎AlAlO3

Brg
= 𝑥Al,A𝑥Al,B  with the latter also used for 

equilibrium (5.31) for consistency. Values for ∆𝐺(5.30)
0 , ∆𝐺(5.31)

0  and ∆𝐺(5.32)
0  are calculated 

for each experimental data point by allowing the site occupancies of Fe3+ on the A and B 

sites and Al on the A site to vary in a minimisation routine that finds sets of occupancies 

where ∆𝐺0  values for each of the three equilibrium are identical for each data point. The Al 
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content on the B site and the Fe2+ content on the A site are determined from a mass 

balance using the bulk Al and Fe contents of the experimental samples. The experimental 

oxygen fugacity is employed and the Mg and Si sites are constrained by summing site 

occupancies to unity. A range of successful sets of constant ∆𝐺0  values can be found for the 

experimental parameters with the overall optimisation then judged by how accurately the 

total Fe3+ content of each experimental is matched. The best fit to the 11 experimental data 

points employed was found for the values ∆𝐺(5.30)
0 = - 180.438 kJ/mol,  ∆𝐺(5.31)

0 = - 32.807 

kJ/mol and ∆𝐺(5.32)
0 = 24.605 kJ/mol.  The quality of this fit is shown in Fig. 5.7a where the 

fit to the Al-free data set is also shown. One data point deviates from the model at Al=0.07, 

Fe=0.07 atoms pfu at ΔIW=2 because it actually has a lower total Fe content of 0.06 atoms 

pfu with respect to the other data points. The agreement with the experimental data in 

both total Fe3+ and Fe3+/ΣFe is very good considering that the model has only 3 adjustable 

parameters.  

Activity composition models similar to those described for the Fe-Mg-Si-O system were 

tested but no significant improvement in the data fitting was achieved. It should be noted 

that this does not necessarily imply that the site mixing is ideal but rather that activity 

composition relations do not have a sufficient effect over the compositional range 

examined. Using this model, the ferric Fe content and its distribution over A and B sites in 

Brg at 25 GPa and 1973 K as well as the composition of coexisting Fp can be obtained at any 

given oxygen fugacity and Fe and Al content in Brg. The Fe3+/ΣFe ratio as a function of Al 

content in Brg calculated at constant fO2=IW-0.6 and Fe=0.11 atoms pfu and fO2=IW+7.5 and 

Fe=0.11 atoms pfu are in good agreement with our experimental data (Fig. 5.1a). The 

Fe3+/ΣFe ratio was also calculated as a function of Fe content in Brg at Al content of 0.07 pfu 

and oxygen fugacity of IW-1, which also reproduce the experimental trend very well (Fig. 

5.1b).  
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Fig. 5.7 Calculated model curves predicting the (a) Fe3+ content and (b) Fe3+/ΣFe ratio in Fe, Al-

bearing Brg given the oxygen fugacity, the bulk Al and Fe content in Brg at 25 GPa and 1973 K, 

plotted with the data at similar conditions and compositions from the experiments. The model curve 

for Al free samples described in section 5.3.2 is also plotted for comparison. The black diamond 

indicates a Brg sample with Al=0.12 and Fe=0.12 atoms pfu synthesized at higher temperature of 

2373 K.  
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5.4 Composition of bridgmanite and ferropericlase as a function of 

oxygen fugacity in pyrolite 

Using the model described above for the Brg composition in conjunction with the 

expression for the Fe2+-Mg distribution coefficient between Fp and Brg from Nakajima et al. 

(2012), it is possible to calculate the coexisting compositions for Brg and Fp as a function of 

fO2 for a given bulk composition. The pyrolite bulk composition employed by Irifune (1994) 

is used for this purpose. The Fe2+-Mg distribution coefficient between Brg and Fp, 𝐾D =

(𝑥FeSiO3

Brg
/𝑥MgSiO3

Brg
)/(𝑥FeO

Fp
 /𝑥MgO

Fp
), is described by 

R𝑇ln𝐾D = −∆𝐺𝑜(𝑃, 𝑇) − 𝑊FeMg
Brg

(1 − 2𝑥FeSiO3

Brg
) + 𝑊FeMg

Fp
(1 − 2𝑥FeO

Fp
) (5.34) 

where ∆𝐺𝑜 = (22300+200P+4T) J/mol,  𝑊FeMg
Brg

= 4900 J/mol and 𝑊FeMg
Fp

= (11000+110*P) 

J/mol and P is pressure in GPa (Nakajima et al., 2012). A mass balance is constructed to 

determine the mineral compositions and proportions corresponding to this bulk 

composition with the Fe2+ and Fe3+ contents for Brg and Fp calculated from the model. The 

Al content of Brg is refined to agree with the mass balance and a small amount of Al (Table 

5.3) is considered in Fp in line with measurements made in this study. For completeness a 

CaSiO3 perovskite composition has also been included. The concentrations of Cr, Na and Ti 

are not considered in the model neither is the Ca content of Brg and the Mg content of 

CaSiO3 as these concentrations are all small. The results of such a calculation are shown in 

Table 5.3 and compared with the results of two experiments performed on this bulk 

composition by Irifune (1994) and Irifune et al. (2010) at 1873 K and approximately 28 GPa. 

Note that the model has only been fit to data from 25 GPa and 1973 K, but as these 

previous studies show, such differences in conditions should lead to relatively modest 

changes in mineral compositions once pressures above the garnet stability field are reached. 

In order to achieve a similar distribution of total Fe between Brg and Fp it was necessary to 

perform the calculation at an oxygen fugacity of IW + 1.5, which is a reasonable value for 

these experiments. As can be seen in Table 5.3 the agreement between the model 
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Table 5.3 Comparison between experimental and model calculations for lower mantle phase compositions in weight % for a pyrolite bulk 

composition.  

 Fraction SiO2 TiO2 Al2O3 Cr2O3 ΣFeO FeO Fe2O3 MgO CaO NiO Na2O Total KD (app) 

Pyrolite 

Bulk 

 
45.2 0.3 3.9 0.5 8.1   37.5 3.8 0.3 0.3 99.9 

 

Model results, 25 GPa, 1973 K, IW=1.5  

Brg 0.785 52.97  5.04  7.09 1.77 5.32 34.9    100 
0.79 

Fp 0.134   0.36  18.88 18.88  79.55    100 

CaPv 0.079 51.72        48.27   100  

Bulk  45.74  4.01  8.11   38.12 3.84   100  

Irifune et al. (2010)  

M439, 28.7 GPa, 1873 K 

 

Brg  50.21 

(72) 

0.40 

(15) 

4.58 

(9) 

0.58 

(20) 

6.61 

(35) 

  33.42 

(100) 

0.48 

(45) 

0.04 

(3) 

0.07 

(5) 

96.38 

0.77(5) 
Fp  0.81 

(62) 

0.10 

(10) 

0.71 

(3) 

0.71 

(20) 

18.90 

(3) 

  73.47 

(84) 

0.11 

(14) 

1.45 

(27) 

0.07 

(22) 

97.31 

 

Irifune (1994) 

E631, 28 GPa, 1873 K 

 

Brg  53.07 0.31 4.92 0.56 7.04   33.43 0.25 0.15 0.23 99.96 
0.75 

Fp  1.01  0.97 0.98 20.47   72.56 0.25 1.22 1.22 98.33 
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Fig 5.8. Model results for KD (app) describing the Fe-Mg exchange between Brg and Fp and the 

Fe3+/ΣFe ratio of both Brg and the whole rock calculated for a pyrolite composition as a function of 

oxygen fugacity. The calculation is based on the model determined from data at 25 GPa and 1973 K. 

The blue shaded region shows the range in KD(app) reported by Irifune et al. (2010) for a pyrolite 

composition between 28.7 and 47.4 GPa, with the solid horizontal line showing the value at 28.7 

GPa. While Irifune et al. (2010) suggest that the changes in KD (app) may result from an Fe2+ spin 

transition in Fp, the results presented here show that changes in the experimental fO2 between IW  

and IW +1.5 can also explain the range of KD (app). 

calculation at these conditions and both experiments is very good. Furthermore Irifune et al. 

(2010) report two estimates of the Fe3+/ΣFe ratios of Brg in the reported experiment of 0.66 

(±0.06) and 0.52 (±0.1) from electron energy loss and Mössbauer spectroscopy 

measurements respectively. The Fe3+/ΣFe ratio obtained from the model at fO2=IW + 1.5 is 

0.79 and 0.67 at fO2=IW + 1. 

Irifune et al. (2010) calculated the apparent Fe-Mg distribution coefficient, KD (app), 

between Brg and Fp where all Fe is considered to be Fe2+. Between 28 and 47.4 GPa a 

decrease in KD (app) was reported which they attributed to a possible iron spin transition. 
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For experiment M439 of Irifune et al. (2010) reported in Table 5.3 the calculated KD (app) is 

0.77(5) whereas the model gives a value of 0.79 at fO2 of IW + 1.5. In fact as shown in Fig 5.8 

KD (app) is a strong function of fO2 and the entire range in values reported by Irifune et al. 

(2010) can be achieved through changes in fO2 between IW  and IW + 1.5. Such an oxygen 

fugacity range would be quite consistent with the use of graphite capsules by Irifune et al. 

(2010) which would impose only a maximum possible fO2 of approximately 2 log units above 

IW as discussed in section 6.1. There could of course be other reasons why KD (app) was 

observed to change with pressure, including a spin transition, however these results clearly 

demonstrate that such determinations are unconstrained unless the oxygen fugacity is fixed 

as a result of the strong variation in the Fe3+ content of Brg with fO2. Variations in fO2, for 

example, could easily explain the significant discrepancies in KD (app) found for deep lower 

mantle conditions shown in Fig 1.11b 

Figure 5.9 shows how the proportions of 3+ cations on each Brg site change with the 

oxygen fugacity for a pyrolite composition. The proportion of oxygen vacancies (OV) is also 

shown. The amount of Fe3+ on the Brg B site is determined to be less than 0.0001 atoms pfu 

and is therefore not shown.  As the ferric iron content increases Al is pushed out of the A 

site and into the B site. At the same time the amount of 3+ cations charge balanced in the B 

site through oxygen vacancies decreases. No direct comparison can be made with the 

experiments because the Brg formed in the pyrolite composition contains approximately 0.1 

total cations of Al and 0.07 cations of iron pfu. However the proportion of oxygen vacancies 

determined for a bulk composition with Al=0.1 cations and Fe=0.1 cations pfu is shown for 

comparison and is in reasonable agreement with a general decrease, although the 

propagated errors are large. It is important to note that at high oxygen fugacity the 3+ 

cation proportions can be described almost completely with a charge coupled Fe3+AlO3 

component, however, at lower oxygen fugacities both the AlAlO3 and (Mg,Fe)AlO2.5 

components are present, although the latter is also near negligible in proportion. The 

presence of OV at oxygen fugacities that are more realistic for the bulk of the lower mantle 

is likely to be important for Brg transport properties. 
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Fig. 5.9 Model results for proportions of trivalent cations and oxygen vacancy substitution fractions 

in Brg as a function of oxygen fugacity for a pyrolite composition. The calculation is based on data at 

25 GPa and 1973 K. Brg formed in a pyrolite composition contains 0.10 pfu Al and 0.07 pfu Fe. The 

orange diamonds show experimentally determined OVS proportions in Brg with 0.11 pfu Fe and Al.  

5.5 Metal saturation determination 

As shown in Fig. 5.8 the Fe3+/ΣFe ratio of the pyrolite whole rock is a function of the oxygen 

fugacity and even at oxygen fugacities below IW the ratio remains over 0.2. Upper mantle 

rocks have low Fe3+/ΣFe ratios with values generally not exceeding 0.03 (Canil et al., 1994; 

Woodland et al., 2006). As pointed out by Frost et al. (2004), this implies that if the mantle 

has a relatively constant bulk oxygen content then the oxygen fugacity in the lower mantle 

would be driven to values where iron-nickel alloy or iron-nickel-sulphur rich phases would 

form. The oxygen released by this reduction satisfies the requirement of Brg for ferric iron 

at low oxygen fugacities. Ferric iron is therefore produced through the reaction 

3FeO = Fe2O3 + Fe (5.35) 

    Fp             Brg        alloy 
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Although there is no evidence that NiO is present in the 3+ oxidation state in Brg, NiO would 

start to reduce to form Fe-Ni alloy at a higher oxygen fugacity than that at which reaction 

(5.35) would occur in the lower mantle and the reduction of NiO would therefore also 

provide oxygen to form ferric iron in Brg. Using a pyrolite bulk composition with an initially 

defined bulk Fe3+/ΣFe ratio, the proportion of iron-nickel metal that would precipitate to 

provide sufficient ferric iron in Brg for the implied oxygen fugacity can be calculated. This 

calculation uses the model describes in section 5.3.3 combined with a pyrolite composition 

mass balance and a thermodynamic description for the reduction of NiO to Fe-Ni metal. 

In this calculation the oxygen fugacity is fixed by the equilibria 

2Fe + O2 = 2FeO (5.36) 

Alloy             Fp 

And 

2Ni + O2 = 2NiO (5.37) 

Alloy             Fp 

where the fO2 for equilibrium (5.36) is determined from 

log𝑓O2
=

∆𝐺(5.36)
0

R𝑇ln(10)
+ 2log

𝑥FeO
Fp

𝑥Fe
Alloy

+ 2log
𝛾FeO

Fp

𝛾Fe
Alloy

(5.38) 

∆𝐺(5.36)
0  is the standard state free energy of equilibrium (5.36) at the pressure and 

temperature of interest and is determined employing the equations of Holland and Powell 

(2011) but using the data given in Table 5.5. 𝛾𝐹𝑒𝑂
𝐹𝑝 , the activity coefficient of FeO in 

ferropericlase, is determined using a ternary (MgO-FeO-NiO) symmetric Margules equation 

with the terms given in Table 5.4. In order to obtain Ni partition coefficients between Fp 

and Fe-Ni alloy that were in agreement with the existing experimental data (Urakawa, 1991) 

it was necessary to assume ideal mixing in the Fe-Ni alloy. An identical expression to 

equation (5.38) can be written for equilibrium (5.37). In the refinement the fO2 is, therefore, 

constrained by the equilibria (5.36) and (5.37). The alloy composition and the proportion of 
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NiO in Fp are refined within the constraints of a mass balance such that both equilibria yield 

the same oxygen fugacity, but with the total amount of alloy produced controlled by the Brg 

Fe3+ content through reaction (5.35). The FeO concentration of Fp is controlled by 

equilibrium (5.36) and the Brg FeO content is constrained by the conditions of equilibrium 

for equilibria (5.30), (5.31) and (5.32), which in turn depends on the fO2 and the total Fe and 

Al in the bulk composition. A non-linear least squares minimization routine is used to vary 

the proportions and compositions of the four phases, Brg, Fp, CaSiO3 perovskite and Fe-Ni 

alloy, while maintaining mass balance and ensuring that the Gibbs free energy of each of 

the described equilibria is equal to zero. This also requires that the site occupancies of 3+ 

cations in Brg are also refined simultaneously. 

Table 5.4 Margules terms for non-ideal mixing of Fp. 

WFe-Mg WFe-Ni WMg-Ni 

11000+110*P (GPa) -9500 -14000 

 

Table 5.6 shows the resulting calculated compositions of lower mantle phases for a pyrolite 

bulk composition with an initial Fe3+/ΣFe ratio of 0.03 i.e. similar to the value proposed for 

the upper mantle. The oxygen fugacity is IW – 0.8, which results in the formation of 0.6 wt.% 

Fe-Ni alloy containing approximately 26 wt.% Ni. The resulting Fe3+/ΣFe ratio of Brg is 0.51 

and the bulk pyrolite has a ratio of 0.28. Figure 5.10 shows similar calculations performed 

for both a pyrolite and a harzburgite bulk composition assuming different initial bulk 

Fe3+/ΣFe ratios. The proportion of metal alloy that forms is much smaller for a harzburgite 

bulk composition because the Al content of the Brg formed is smaller, approximately 0.2 

atoms pfu, and the Fe3+/ΣFe ratio in equilibrium with metallic alloy is only approximately 0.3. 
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Table 5.5 Thermodynamic and equation of state data. 

 ΔfHo 
(J/mol) 

S 
(J/K/mol) 

V 
(J/bar) 

a b c d o (x105) 
(K-1) 

Ko 
(kbar) 

K’ 

FeO Fp -271970 60.6 1.226 44.4 0.00828 -1214200 185.2 3.49 1469 4.00 

NiO Fp -239470 38 1.097 47.7 0.007824 -392500 0 3.30 1900 5.40 

Fe Alloy  27.09 0.707 46.2 0.005159 723100 -556.2 3.56 1330 5.00 

Ni Alloy  29.87 0.659 49.8 0 585900 -533.9 4.28 1790 4.30 

O2    48.3 -0.0006913 499230 -420.66    

FeAlO3 (Brg)   2.708     1.87 2510 4.14 

AlAlO3 (Brg)   2.579     1.87 2510 4.14 

MgAlO2.5 (Brg)   2.664     1.87 2510 4.14 

FeFeO3 (Brg)   2.947     1.87 2510 4.14 

MgFeO2.5 (Brg)   2.750     1.87 2510 4.14 

Notes: All data from Holland and Powell (2011) except Brg data where the volumes are from this study and equation of state data are assumed to be the same as for 

MgSiO3 Brg from Holland and Powell (2011) and data in itallics which are from Campbell et al. (2009). a-d are heat capacities terms with CP=a+bT+cT-2+dT-0.5 

Table 5.6 Model calculation for the composition and proportions of lower mantle phases as well as the precipitated metal in weight % for 

a pyrolite bulk composition assuming an initial Fe3+/ΣFe ratio of 0.03 

 Fraction SiO2 Al2O3 ΣFeO FeO Fe2O3 MgO CaO NiO Ni Fe Total 

Brg 0.771 54.02 5.08 5.25 2.43 2.82 35.63  0.05   100 

Fp 0.143    25.89 25.89  73.36  0.74   100 

CaPv 0.080 51.72      48.27    100 

Alloy 0.006         26.33 73.66  

Bulk  45.79 3.92 8.20 5.57 2.18 37.96 3.87 0.14 0.16 0.45 100 
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Fig. 5.10 The metallic alloy formed in weight % for pyrolite and harzburgite bulk compositions as 

a function of the initial Fe3+/ΣFe ratio of the whole rock. 

5.6 Extrapolation to higher pressures 

In the model described in section 5.3.3 the composition of Brg is determined using three 

equilibria involving different Brg and Fp components, for which standard state Gibbs free 

energies have been estimated at the pressure and temperature of interest, i.e. 25 GPa and 

1973 K. In section 4.2 the volumes of these Brg components have been determined which 

allows the pressure dependencies of the three equilibria to be estimated. For equilibrium 

(5.32) for example the pressure dependence can be included using the equation 

∆𝐺(5.32)
0 − ∫ ∆𝑉. 𝑑𝑝

25

0

+ ∫ ∆𝑉. 𝑑𝑝
𝑃

0

= −R𝑇ln
(𝑎FeAlO3

Brg
)

2

(𝑎FeO
Fp

)2 𝑎AlAlO3

Brg
(𝑓O2

)
0.5

(5.39) 
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where the first integral corrects the standard state of ∆𝐺(5.32)
0  to room pressure. Similar 

equations can then be written for equilibrium (5.30) and (5.31). Volumes and equation of 

state data used to calculate the integrals are given in Table 5.5.  The formalism of Holland 

and Powell (2011) is employed. Equation of state terms for the Brg components are 

assumed to be the same as those for MgSiO3 Brg. Although there may be significant 

uncertainties in assuming that the compressibilities of the Brg components are identical, 

this assumption is unlikely to change the direction of the calculated trends with increasing 

pressure but there are significant uncertainties in the gradients of the calculated trends 

with pressure. These uncertainties increase with pressure and for this reason the 

extrapolation is performed over a relatively small pressure range. The model was calculated 

from 26-40 GPa at two assumed conditions: (1) at a constant oxygen fugacity of IW+1.5; (2) 

in equilibrium with Fe-Ni metal. Extrapolation to pressures higher than 40 GPa maybe not 

suitable due to the possible spin transition in ferropericlase proposed to begin at 40-50 GPa 

(see Lin et al., 2013 for a review). The predicted Fe3+/ΣFe ratio of Brg versus pressure is 

plotted in Fig. 5.11 in which the results from previous studies are also shown for 

comparison. Due to the negative volume change of reaction (5.32), the calculated Fe3+/ΣFe 

ratio of Brg increases with pressure. The Fe3+/ΣFe ratio of the two multi-anvil studies from 

Irifune et al. (2010) and Stagno et al. (2011) (open circles in Fig. 5.11) fall well within the 

range between the two model curves. Although the Al content (0.07 atoms pfu) of Brg in 

Stagno et al. (2011) is slightly lower than Irifune et al. (2010) and our model (0.10 atoms 

pfu), it was buffered at an oxygen fugacity of IW+2 that is slightly higher than used in the 

model calculation. The carbon capsule adopted in Irifune et al. (2010) also implies that the 

oxygen fugacity in their experiments should not have exceeded approximately IW+2, as 

discussed in section 6.1. The Fe3+/ΣFe ratios of Brg reported from previous laser heated 

diamond anvil cell experiments have, in general, lower values (Fig. 5.11). For the studies of 

in Prescher et al. (2014) and Kupenko et al. (2015) the Al contents of Brg were lower (0.05-

0.07 pfu) than our model (0.1 atoms pfu), which as shown in Fig. 5.1a may account for some 

of the difference in Fe3+/ΣFe ratio compared with the model. The Fe content of Brg in in the 

study of Shim et al. (2017) and Kupenko et al. (2015) was also much higher (~ 0.2 atoms pfu) 
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than our model (0.1 atoms pfu) which as shown in Fig. 5.1b would also result in lower 

Fe3+/ΣFe ratios. Shim et al. (2017) performed one of the only studies in DAC where attempts 

were made to buffer the fO2 with the presence of Fe metal. However, Fp was not present in 

the experiments, which instead contained an SiO2 polymorph. As such the results are not 

applicable to the model determined in this study. Andrault et al. (2018) report that the 

potential presence of garnet in their experimental results up to 30-35 GPa may explain why 

the Fe3+/ΣFe ratios are low. However if Brg coexisted with garnet at these conditions its Al 

content would be expected to be very high (Akaogi et al., 2002) and if the bulk Fe contents 

were comparable, the minimum Fe3+/ΣFe ratio should be greater than that determined from 

the model. The Al and Fe contents of Brg were not reported in the study of Andrault et al. 

(2018), so it is very hard to make a comparison with these results. One point worth noting is 

that in most of the DAC experiments, the Fe3+/ΣFe ratios measured from the high pressure 

samples are quite close to those of the starting material, which may indicate a lack of 

equilibrium. For example, the Fe3+/ΣFe ratios of the starting materials are 0.07, 0.35 and 

0.42 for Andrault et al. (2018), Kupenko et al. (2015) and Prescher et al. (2014) respectively 

and the corresponding Fe3+/ΣFe ratio of Brg at 23-27 GPa are 0.12, 0.38 and 0.42 

respectively. This comparison serves to underline the fact that control of factors such as fO2, 

Brg Al and Fe contents and SiO2 activity are likely essential if any systematic information is 

to be gained on the evolution of Brg Fe3+/ΣFe ratios with pressure. 
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Fig. 5.11 Fe3+/ΣFe ratio of aluminous bridgmanite as a function of pressure. The red solid line 

indicates model results calculated with a constant fO2=IW + 1.5 and the blue solid line indicates 

model results calculated for an assemblage in equilibrium with Fe-Ni metal. Previous diamond anvil 

cell results from Andrault et al. (2018); Kupenko et al. (2015); (2014); Shim et al. (2017) and multi-

anvil experiment results from Irifune et al. (2010) and Stagno et al. (2011) are also shown for 

comparison. The upper and lower value from Irifune et al. (2010) are measurements made on the 

same sample using electron energy loss and Mössbauer spectroscopy respectively. 

The apparent KD for Mg and Fe exchange between Brg and Fp was also calculated as a 

function of pressure assuming three different scenarios: (1) at a constant oxygen fugacity of 

IW+1.5; (2) for constant Fe3+/ΣFe ratio in Brg equal to 0.69; and (3) for an initial whole rock 

Fe3+/ΣFe ratio of 0.03 which would result in the precipitation of Fe-Ni metal. The results are 

shown and compared with those of Irifune et al. (2010) in Fig. 5.12. The KD (app) value 

assuming constant fO2=IW+1.5 is the largest while that with initial whole rock ferric Fe over 

total Fe ratio of 0.03 is the smallest. For both conditions, the KD (app) does not change very 

much in the pressure range of 26-40 GPa. In contrast, the KD (app) value for constant 

Fe3+/ΣFe=0.69 in Brg decreases from 0.67 at 26 GPa to 0.48 at 40 GPa. The KD (app) value of 

0.48 at 40 GPa for Brg Fe3+/ΣFe ratio of 0.69 is in good agreement with that from Irifune et 
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al. (2010) which has a Fe3+/ΣFe ratio of 0.67 and a KD (app) of 0.51(7). Therefore for the two 

data points where Fe3+/ΣFe ratios where measured by Irifune et al. (2010) there is 

reasonable agreement with the model. The KD (app) decreases because of the effect of 

pressure on Fe2+-Mg exchange between Brg and Fp. For the other scenarios this is not 

apparent because the Fe3+/ΣFe ratio increases with pressure. In order for the Fe3+/ΣFe ratio 

to remain constant the fO2 would have had to decrease in the experiments from IW+1 to IW. 

This provides one explanation for the overall decrease in KD (app) but the sharp drop 

observed in KD (app) can only be explained if some further evolution in the fO2 of the 

experiments occurred. This again serves to underline the fact that experiments on Fe-Mg 

partitioning in the lower mantle are simply unconstrained unless the fO2 and Fe3+/ΣFe ratio 

of Brg, are constrained. 

 

Fig. 5.12 Model curves for Fe-Mg exchange KD between Brg and Fp plotted against pressure at 

different assumed conditions. Data from Irifune et al. (2010) also are shown for comparison. The 

arrows represent the two pressure points where the Fe3+/ΣFe in Brg were measured in Irifune et al. 

(2010) and the values obtained are indicated. The different Fe3+/ΣFe value shown from Irifune et al. 

(2010) are measurements made on the same sample using electron energy loss and Mössbauer 

spectroscopy respectively. 
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Oxygen vacancies in Brg have aroused great interest as they have been considered to be 

possible sites for the substitution of hydrogen and noble gasses (Litasov et al., 2003; 

Shcheka and Keppler, 2012) and may also influence the compressibility and transport 

properties of Brg. The model predicts that the proportion of oxygen vacancies in Brg 

decreases with pressure. As shown in Fig. 5.13, calculated at an fO2=IW + 1.5 and for a 

pyrolite composition, the proportion of oxygen vacancies deceases sharply up to 32 GPa, 

reaching practically zero at 40 GPa. This trend is consistent with previous results in Al-Brg 

in both experimental and theoretical studies (Brodholt, 2000; Liu et al., 2017). Although the 

proportion of oxygen vacancies in Brg appears relatively small at 26 GPa, no other mantle 

mineral contains such a large amount of such vacancies. Since the amount of oxygen 

vacancies should be positively correlated to the rate of chemical diffusion, at least for 

oxygen anions, the decrease in Brg oxygen vacancies with pressure in the upper part of the 

lower mantle may influence transport properties in the upper regions of the lower mantle 

(Karato and Wu, 1993). It might, for example, provide an explanation for a proposed 

increase in lower mantle viscosity towards 1000 km depth (Rudolph et al., 2015). This 

viscosity increase was proposed as a possible physical mechanism to explain why some 

subducting slabs seem to stagnate towards the mid lower mantle (Fukao and Obayashi, 

2013).  
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Fig. 5.13 The proportion of oxygen vacancies per formula unit in Brg versus the pressure at a 

constant oxygen fugacity of IW+1.5 calculated for a pyrolite composition using the thermodynamic 

model developed in this study. Note that the oxygen vacancy proportion shown here is the absolute 

number of oxygen vacancies pfu in Brg which is half the value of mole fraction of MgM3+O2.5 

component (𝑋MgM3+O2.5
) as in Fig. 5.9.  
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6 Other Mg, Fe-bearing phases coexisting 

with bridgmanite 

6.1 Speciation of carbon at different oxygen fugacities 

Fig. 6.1 summarizes Fe3+/ΣFe ratios measured for Brg as a function of the fO2 of the synthesis 

experiments (Table 3.2). As discussed in the previous section the Brg Fe3+/ΣFe ratios vary at 

a fixed oxygen fugacity due to the different amounts of Al or bulk Fe present in the samples. 

As mentioned in section 3.2 small amounts of carbon appear to have also been present in 

some of the experiments as a contaminant (Table 3.2). As the oxygen fugacities are well 

constrained in the experiments, information on the speciation of carbon as a function of fO2 

can be obtained and, in particular, limits can be placed on the extent of the MgCO3 stability 

field with respect to fO2. This information can be combined with data on the Fe3+/ΣFe ratios 

of proposed Brg inclusions from natural diamonds in order to determine whether it is 

possible that such diamonds formed through the reduction of carbonates in the mantle. 

As indicated in Table 3.2 and shown in Fig 6.1, at oxygen fugacities of ≤ IW, carbon is 

observed to be present in the experiments as carbide or diamond. At oxygen fugacities > 

IW+2.7 (monitored by Ir as the sliding redox sensor), however, carbon is present as 

(Mg,Fe)CO3 carbonate. This means that the equilibrium:  

(Mg, Fe)CO3 = (Mg, Fe)O + C + O2 (6.1) 

Magnesite            Fp          diamond 

is bracketed by the experiments between oxygen fugacity of IW and IW + 2.7. Stagno et al. 

(2011) determined the fO2 of this equilibrium at approximately 25 GPa between 1773–1973 

K to be at IW+2.46, as shown in Fig 6.1, which is in very good agreement with the current 

results. However, the Fe-Ir alloy used to determine the fO2 in these experiments has large 
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associated uncertainties. Using the Holland and Powell (2011) data base the calculated fO2 

for this equilibrium is IW+4.0, which is significantly higher than both experimental 

determinations.  This probably arises from uncertainties in the equation of state of MgCO3 

and likely means that the derivative of the bulk modulus with respect to pressure, K’, is less 

than the value of 4 proposed in the database.  

 

Fig. 6.1 The Fe3+/ΣFe ratio in Brg obtained in this study is shown as a function of oxygen fugacity. The 

blue and red symbols indicate experiments where carbon exist as carbide/diamond or carbonate, 

respectively. The grey shaded area shows the oxygen fugacity at which diamond and carbonate 

coexist in Stagno et al. (2011) at 23-25 GPa and 1773-1973 K. The solid line shows the fO2 of 

equilibrium determined with the database of Holland and Powell (2011).  

If diamonds in the sub lithospheric mantle are produced from carbonates, as often 

proposed (Brenker et al., 2007), then equilibrium (6.1) defines the fO2 at which this should 

occur. The results shown in Fig. 6.1 indicate that this cannot happen at typical lower mantle 

oxygen fugacities, which as demonstrated in section 5.5 must be at approximately IW - 0.8 

at the top of the lower mantle, because carbonates are clearly unstable at these conditions.  
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McCammon et al. (1997) report Fe3+/ΣFe ratios for two inclusions in diamonds from the 

São Luiz River, Brazil, that are proposed to have originally been Brg trapped at conditions of 

the top of the lower mantle. Using the model proposed in section 5.4 the oxygen fugacities 

recorded by these inclusions can be determined assuming they formed at conditions 

compatible with the top of the lower mantle, which has been proposed for at least some of 

the inclusions (McCammon et al., 2004a). One inclusion (BZ251B) is reported to have an 

Al2O3 content of 1.3 %, a total Fe content of 3.8 % and a Fe3+/ΣFe ratio of 0.20(6). Using the 

model, the minimum fO2 for such a composition, where it coexists with Fe-Ni alloy, is 

determined to be  IW -0.8 and the minimum Fe3+/ΣFe ratio is determined to be 0.32, which 

is higher than observed but potentially still within the combined uncertainties of the model 

and measurement. Considering the results of section 5.2 the lower Fe3+/ΣFe ratio of the 

inclusion with respect to the model conditions might also imply that it formed at slightly 

higher temperatures. Given its fO2 it is unlikely that the diamond itself formed from a 

carbonate bearing assemblage. A second inclusion (BZ210B) is reported to contain 10 wt.% 

Al2O3 and 5.56 % total iron and has an Fe3+/ΣFe ratio of 0.75(3). The fO2 calculated for this 

inclusion is IW +0.7 which falls between the conditions bracketed in Fig. 6.1 for the 

carbonate-diamond stability fields but is most likely too low in fO2 to imply formation from 

carbonate. One further inclusion (KK-16 b; McCammon et al., 2004a; Stachel et al., 2000) in 

a deep mantle diamond reported from Kankan, Guinea, has an Al2O3 content of 0.55 wt.%. 

This Al2O3 content is too low to be interpreted using the Al-bearing model reported in 

section 5.3.3 but can be examined using the Al-free model from section 5.3.2. The resulting 

fO2 for this inclusion, which contains 3.34 wt.% total iron and has a Fe3+/ΣFe ratio of 0.09 

(25), is IW - 0.5, which is very close to equilibrium with Fe-Ni metal. A value of IW+3.0 is 

obtained, however, for the upper uncertainty boundary, which would be consistent with 

formation from carbonate. Interestingly the diamond in which this inclusion is found also 

contains FeCO3 siderite, however, the Brg inclusion is unlikely to have been in equilibrium 

with such a carbonate because as shown in section 3.2 equilibrium carbonates should have 

Fe/(Fe+Mg) ratios of approximately 0.01-0.03.  
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In summary, the Al and Al-free models developed in the previous section can be used 

to interpret the oxygen fugacities at which Brg inclusions in diamonds were formed. By 

comparison with phase equilibrium data on the fO2 stability of carbonate these data can 

then be used to determine if the diamonds themselves were likely to have been formed by 

the reduction of carbonate, which would imply a likely origin from subducted material. Two 

inclusions from São Luiz River, Brazil reveal oxygen fugacities that are clearly below the 

carbonate stability field and therefore are unlikely to have been produced from pure 

carbonate phases. The uncertainty in the Fe3+/ΣFe ratio from one inclusion from Kankan, 

Guinea, on the other hand, translates to an fO2 range that potentially overlaps with the pure 

carbonate stability field.  

6.2 Fe partitioning between bridgmanite and melt and density of 

the melt 

6.2.1 Chemical compositions of coexisting Brg and melt 

Water was added to a number of experiments conducted at 25 GPa between 1873-1973 K 

(Table 2.2) with the initial aim of encouraging the growth of larger Brg single crystals. Phase 

assemblages from these experiments, that all contained hydrous melt, are reported in Table 

3.1. All recovered samples contained bridgmanite and ferropericlase coexisting with 

quenched microcrystals from the melt. These experiments allow the systematics of melt 

compositions at these pressures to be examined as a function of temperature and in 

particular the iron partitioning between minerals and melts can be determined, which is a 

very important aspect when determining melt densities in the lower mantle. 

Backscattered electron (BSE) images of typical liquidus assemblages are shown in Fig. 

6.2. In the central part of the capsule (i.e. the highest temperature region), Brg coexists with 

quenched melt, while at the end side of the capsule (i.e. lower temperatures), Fp coexists 

with Brg. The composition of the Brg throughout the whole capsule is quite homogeneous 

and within 0.01 atoms pfu when normalized to 2 cations. In Fig. 6.3a, the Fe/(Mg+Fe) ratio 
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is plotted against the (Mg+Fe)/Si ratio of the quenched melt;  previous studies in both 

hydrous (Nakajima et al., 2019) and anhydrous systems  (Hirose and Fei, 2002; Kuwahara et 

al., 2018; Liebske et al., 2005; Ohtani and Sawamoto, 1987; Trønnes, 2000; Trønnes and 

Frost, 2002) where Brg and Fp coexist with melt are also shown for comparison. The 

Fe/(Mg+Fe) ratios of the hydrous melts analyzed in this study are significantly higher (0.32-

0.38) than those reported recently by Nakajima et al. (2019) (0.10-0.12). The two points 

with the highest Fe/(Mg+Fe) ratio of 0.59 from Liebske et al. (2005) and 0.48 from Trønnes 

(2000) are due to the high FeO content (34.8-35.2 wt.%) in the CI chondrite analogue 

starting material (Fig. 6.3a). The other points in previous studies all used peridotitic starting 

materials with a lower FeO content (~ 8 wt.%). All experiments were conducted at 23.5-27 

GPa but the temperatures range from 1573-1873 K for the hydrous experiments of 

Nakajima et al. (2019), to 1873-1973 K for this study, and to 2293-2723 K for the anhydrous 

studies. The (Mg+Fe)/Si ratio of the melt can be seen to increase with decreasing 

temperature (Fig. 6.3b), consistent with previous experimental observations made at lower 

pressures (Kawamoto, 2004). The Fe/(Mg+Fe) ratio in the melt does not appear to have a 

simple dependence on either temperature or (Mg+Fe)/Si ratio (Fig. 6.3c).  

    

Figure 6.2 (a) Back-scattered electron (BSE) image of Run S6843 recovered from 25 GPa and 1873 K. 

The hydrous quenched melt concentrates in the central part of the capsule, most likely where the 

hottest part of the capsule was. Bridgmanite (Brg) coexists with hydrous melt in the middle part of 

the capsule but melt also appears on grain boundaries in regions towards the end of the capsule 

where bridgmanite coexists with ferropericlase (Fp). (b) An enlargement of the blue area in (a), 

showing melt coexisting with Brg.  
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Fig. 6.3 (a) The Fe/(Mg+Fe) ratio versus the (Mg+Fe)/Si ratio in melt in both hydrous and anhydrous 

systems. (b) The (Mg+Fe)/Si ratio in the melt as a function of synthesis experiment temperature. (c) 

The Fe/(Mg+Fe) ratio in the melt as a function of synthesis experiment temperature. The symbols 

are the same in (b) and (c) as in (a).  

6.2.2 Fe partitioning between Brg and melt 

If it is assumed, for the moment, that all iron in the experiments is ferrous, then the Fe- Mg 

exchange equilibrium between Brg and melt can be expressed by  

MgSiO3 + FeSiO3 = FeSiO3 + MgSiO3 (6.2) 

Brg          melt            Brg           melt 

and the equilibrium exchange coefficient of the reaction is defined as  

𝐾D = (𝑥FeSiO3

Brg
/𝑥MgSiO3

Brg
)/(𝑥FeO

melt/𝑥MgO
melt) (6.3) 

where 𝑥𝑖
𝑎 is the mole fraction of component i in phase a. For example, 𝑥FeSiO3

Brg
 is the molar 

Mg/(Mg+Fe) ratio of Brg. At equilibrium, if the standard state was taken to be the pure 

phases at the pressure and temperature of interest, then the standard state free-energy 

change of reaction (6.2) can be described by 
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Δ𝐺0 = −R𝑇ln𝐾D − 𝑊MgFe
Brg

(1 − 2𝑥FeSiO3

Brg
) + 𝑊MgFe

melt (1 − 2𝑥FeO
melt) (6.4) 

assuming symmetrical Fe-Mg mixing models for Brg and melt where 𝑊MgFe
Brg

 and 𝑊MgFe
melt  are 

the Margules interaction parameters describing the interaction energy between Fe and Mg 

in Brg solid solution and melt respectively. Compositions of Brg and melt in anhydrous 

systems from Hirose and Fei (2002); Liebske et al. (2005); Trønnes (2000); Trønnes and Frost 

(2002) and Ohtani and Sawamoto (1987) were used to fit equation (6.4) using a non-linear 

least squares algorithm to determine Δ𝐺0 at ~ 25 GPa and 2573 K and the two interaction 

parameters 𝑊MgFe
Brg

 and 𝑊MgFe
melt . Because these two interaction parameters are highly 

correlated, 𝑊MgFe
Brg

= 0 KJ/mol at 25 GPa taken from Nakajima et al. (2012) was fixed and the 

value of 𝑊MgFe
melt  and Δ𝐺0  was allowed to be refined. The least-square fitting gave 

𝑊MgFe
melt =15.0 KJ/mol and Δ𝐺0=29.6 ±2 KJ/mol at 25 GPa and 2573 K. If the same 𝑊MgFe

melt  is 

assumed for the lower temperatures of the current study 1873-1973 K, then Δ𝐺0 is 

calculated to be 22.3 (7) KJ/mol. Values of 𝐾D
Brg−melt

 determined from the current and 

previous studies are plotted against the 𝑥FeSiO3

Brg
 of Brg in Fig. 6.4 along with the results of 

the fitting procedure performed at 1973 K and 2673 K. Values of KD determined from the 

results of Nakajima et al. (2019) are much higher than those calculated for either the 

hydrous experiments from this study or previous anhydrous experiments (Fig. 6.4). Even 

though the experimental conditions in the study of Nakajima et al. (2019) overlap with 

those from the current study they contain much less iron in the melts for a given Brg iron 

content. This discrepancy most likely has one major cause, in that the starting material 

employed by Nakajima et al. (2019) only contained ferric iron. The oxygen fugacity in the 

experiments was, therefore, very high and due to the presence of H2O and potential loss of 

H2 from the capsule it is most likely that all iron remained in the ferric state. As the KD for 

these experiments is close to unity it can be concluded that ferric iron partitions evenly 

between Brg and melt at these high fO2 conditions. However, in the current study the 

starting materials contained metallic iron and although this iron oxidized due to reaction 

with H2O, Mössbauer measurements show that the Fe3+/ΣFe ratio of Brg in one of the 
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samples is 0.54 (7). Given that the starting materials and KD values are all similar, it is likely 

that the Fe3+/ΣFe ratios are all in this range. However, as we expect silicate melts to contain 

more ferric and ferrous iron than the mineral phases the KD is driven to lower values that 

are likely more compatible with those in the mantle. In fact in three samples (S6833, S6843, 

S6848) the presence of Ir metal allowed the fO2 to be estimated by Eq. (5.2) using the 

composition of coexisting Fp and Fe-Ir alloy which gave a consistent oxygen fugacity of IW + 

2. Using the model determined in section 5.3.3 the Fe3+/ΣFe ratio expected for Brg with such 

a composition and at this fO2 is 0.47, which is just inside the analysis uncertainties. 

 

Fig. 6.4 Experimental results of Fe-Mg partitioning between Brg and melt plotted as KD against 

𝑥FeSiO3

Brg
 in Brg. Results from the previous studies of Hirose and Fei (2002); Kuwahara et al. (2018); 

Liebske et al. (2005); Ohtani and Sawamoto (1987); Trønnes (2000); Trønnes and Frost (2002) and 

Nakajima et al. (2019) are also shown. The blue and red line show isothermal KD values at 2573 K 

and 1923 K respectively, obtained by fitting equation (6.4) to the data.  

In summary, it would appear that the Fe-Mg KD between silicate melt and Brg is strongly 

affected by the oxygen fugacity whereas the effects of temperature and other melt 

components, such as H2O, are apparently much smaller. The release of H2O from a 
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subducting slab into the mantle may well cause oxidation through the generation and 

release of H2. The effect causes oxidation in the high-pressure multi-anvil experiments 

because the H2 produced then diffuses through the metal capsule and leaves the system. 

Loss of H2 in this way can lead to almost complete oxidation of minerals in an experiment 

(McCammon et al., 2004a). The extent of oxidation that may take place due to H2O in the 

mantle, however, is hard to assess because it depends on what happens to the H2 and on 

the equilibrium relationship between the amount of H2 formed and the oxygen fugacity. As 

the oxygen fugacity increases the amount of H2 produced would decrease and the mantle 

may reach a limiting amount of H2O oxidation. The recent observation of a very water rich 

ringwoodite inclusion within a diamond (Pearson et al., 2014) is at least one indication that 

the extent of mantle oxidation by H2O may be limited as the fO2 must have at least remained 

in the diamond stability field.  In the following we assume an oxidation state similar to the 

experiments, i.e.  IW + 2.  Higher oxidation states, however, would lead to more ferric iron 

in the system but proportionately lower iron contents in the melts, which would obviously 

cause melts to have lower densities. 

6.2.3 Composition of hydrous melt at the uppermost lower mantle 

Using partition and exchange coefficients between Brg, Fp and melt a model can be 

developed to determine the composition of a hydrous melt at the top of the lower mantle. 

This composition can then be used to estimate melt densities. Assuming a pyrolite type bulk 

silicate earth composition (McDonough and Sun, 1995) in a simple MgO-SiO2-FeO-Al2O3-CaO 

system and that partial melting occurs with melt coexisting with Brg and Fp, the 

composition and proportion of each phase can be calculated based on a mass balance for 

various melt fractions (0.1 wt.%, 0.5 wt.%, and 1 wt.%) and melt water contents (15-30 wt.%) 

at 25 GPa and 1923 K. The water concentration of the melt is poorly constrained. Nakajima 

et al. (2019) assume an H2O content at 1673-1773 K of 29.9 wt.% based on the deficit in the 

energy dispersive X-ray spectrometry totals but a simple melting point depression 

calculation implies that the H2O contents must be at least 15 wt.% and for this reason a 

range up to 30 wt.% is examined (Novella et al., 2017). The following further constraints are 
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used in the calculation: (1) The Mg-Fe partition coefficient between Brg and Fp (KD) 

describing only ferrous iron (Fe2+) exchange was taken from Nakajima et al. (2012) and the 

Fe3+/ΣFe ratio in Brg was assumed to be 0.5 as in the experiments and corresponding to ΔIW 

+ 2; (2) the Mg-Fe partition coefficient (KD) between Brg and melt obtained from the current 

study described in chapter 6.2.2 was used; (3) The (Mg+Fe)/Si ratio in the melt and the 

partition coefficient of Al between Brg and melt (𝐷Al
Brg−melt

= 𝑥Al
Brg

/𝑥Al
melt)  were fixed to be 

equal to the values found in this study. In the experiments equilibrated at 25 GPa and 1923 

± 50 K, the partition coefficient of Al between Brg and melt (𝐷Al
Brg−melt

= 𝑥Al
Brg

/𝑥Al
melt) is 

3.19 and the (Mg+Fe)/Si ratio of the melt is 2.96. Moreover, the CaO content of the melt 

was set to be 9 wt.% according to the average values in hydrous melt from Nakajima et al. 

(2019). Assuming 15 wt.% water in the melt, the calculated FeO content in the melt would 

decrease from 16.25 wt.% with a 0.1 wt.% melt fraction to 16.1 wt.% with 1 wt.% melt 

fraction. Assuming 30 wt.% water in the melt, the calculated FeO content in the melt would 

decrease from 13.02 wt.% with 0.1 wt.% melt fraction to 12.89 wt.% with 1 wt.% melt 

fraction. 

6.2.4 Density of the melt 

Based on the calculated melt composition, melt densities were determined using the 

second-order Birch-Murnaghan equation of state with the thermal pressure term proposed 

by Wakabayashi and Funamori (2013): 

𝑃 =
2

3
𝐾0,𝑇0

((
𝑉0,𝑇0

𝑉𝑃,𝑇
)

7
3

− (
𝑉0,𝑇0

𝑉𝑃,𝑇
)

5
3

) + 𝛼0,𝑇0
𝐾0,𝑇0

(𝑇 − 𝑇0) (6.5) 

where P, T, K, V, α are pressure, temperature, bulk modulus, molar volume and thermal 

expansion coefficient respectively. The first and second subscripts denote the pressure and 

temperature respectively. T0 is the reference temperature of 2500 K. Parameters for the 

equation of state of silicate melt were provided as 𝑉0,𝑇1,𝑖, 𝛼0,𝑇1,𝑖 and 𝐾0,𝑇1,𝑖 for each melt 



172 

 

component SiO2, Al2O3, FeO, MgO, and CaO (Wakabayashi and Funamori, 2013).  Using 

𝑉0,𝑇1,𝑖, the zero-pressure molar volume of silicate melts at T1 could be expressed as: 

𝑉0,𝑇1
= ∑ 𝑥𝑖𝑉0,𝑇1,𝑖

𝑖

(6.6) 

where 𝑥𝑖  is the molar fraction of component i and T1 is the reference temperature of 1773 K. 

Differentiating equation (6.6) with respect to temperature yields  

𝛼0,𝑇1
𝑉0,𝑇1

= ∑ 𝑥𝑖𝛼0,𝑇1,𝑖𝑉0,𝑇1,𝑖 

𝑖

(6.7) 

and then the zero-pressure thermal expansion coefficient of silicate melt at T1 is calculated 

from, 

𝛼0,𝑇1
=

∑ 𝑥𝑖𝛼0,𝑇1,𝑖𝑉0,𝑇1,𝑖 𝑖

𝑉0,𝑇1

(6.8) 

The zero-pressure thermal expansion coefficient at the temperature of interest is,  

𝛼0,𝑇 =

𝛼0,𝑇1
(1 −

10

√𝑇
)

1 −
10

√𝑇1

(6.9) 

The zero-pressure molar volume at T0 is calculated from the values of the molar volume and 

zero-pressure thermal expansion coefficient at T1 according to  

𝑉0,𝑇0
= 𝑉0,𝑇1

exp ( ∫ 𝛼0,𝑇𝑑𝑇

𝑇0

𝑇1

) (6.10) 

Differentiating equation (6.5) with respect to pressure yields 

𝑉0,𝑇0

𝐾0,𝑇0

= ∑ 𝑥𝑖

𝑉0,𝑇0,𝑖

𝐾0,𝑇0,𝑖
𝑖

(6.11) 

so the zero-pressure bulk modulus at T0 can be calculated by  
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𝐾0,𝑇0
=

𝑉0,𝑇0

∑ 𝑥𝑖

𝑉0,𝑇0,𝑖

𝐾0,𝑇0,𝑖
 𝑖

(6.12)
 

To this end, we have all the parameters (𝐾0,𝑇0
, 𝑉0,𝑇0

, and  𝛼0,𝑇0
) of equation (6.5) and the 

molar volume of silicate melt at any pressure and temperature of interest could be 

calculated accordingly. The average molecular weight can be calculated from the molecular 

weight of each component by 

𝑀 = ∑ 𝑥𝑖𝑀𝑖

𝑖

(6.13) 

and the density of the silicate melt at any pressure and temperature of interest is then 

calculated from 

𝜌 =
𝑀

𝑉𝑃,𝑇

(6.14) 

Parameters used in this study are listed in Table 6.1 (Wakabayashi and Funamori, 2013). In 

Fig. 6.5 densities of silicate melts estimated using equation (6.5) and the parameters in 

Table 6.1 are compared with high-pressure experimental results obtained using the sink-

float technique with both olivine and diamond (Agee and Walker, 1993; Ohtani et al., 1997; 

Suzuki and Ohtani, 2003; Suzuki et al., 1995, 1998). There is very good agreement for the 

different melt compositions.  

Table 6.1 Parameters for silicate melt density calculation used in this study from Wakabayashi and 

Funamori (2013). 

 
Mi(g/mol) 

𝑉0,𝑇1,𝑖  (cm3/mol) 

(T1=1,773 K) 

𝛼0,𝑇1,𝑖  (10-5/K) 

(T1=1,773 K) 

𝐾0,𝑇0,𝑖  (GPa) 

(T0=2,500 K) 

SiO2 60.1 23.1 2 41 

Al2O3 102 27.1 10 98 

FeO 71.8 13.97 20.9 82 

MgO 40.3 11.73 22.3 82 

CaO 56.1 16.85 17.3 82 

 



174 

 

 

Fig. 6.5 Comparison of silicate melt densities calculated from the equation of state of Wakabayashi 

and Funamori (2013) with high-pressure experimental results. The calculation was performed under 

the same conditions (i.e. pressure, temperature and composition) as reported in the experiments. 

The solid line indicates the 1: 1 correspondence. The experimental data on peridotitic melt are from 

Agee and Walker (1993); Ohtani et al. (1997); Suzuki and Ohtani (2003); Suzuki et al. (1995, 1998). 

The experimental data on partial melt of peridotite which is melt formed by partial melting of 

PHN1611 peridotite at 20 GPa is taken from Ohtani et al. (1997). The experimental data on Basaltic 

and Picritic melt are from Ohtani and Maeda (2001).  

Because the melt contains some amount of water, the effect of H2O on the density of 

silicate melt needs to be considered. The partial molar volume of H2O at the pressure and 

temperature of interest is calculated using the Vinet equation of state (Sakamaki, 2017): 

𝑃 = 3𝐾𝑇 [1 − (
𝑉̅H2O

𝑉̅H2O,0

)

1
3

] (
𝑉̅H2O

𝑉̅H2O,0

)

2
3

𝑒𝑥𝑝 {
3

2
(𝐾′ − 1) [1 − (

𝑉̅H2O

𝑉̅H2O,0

)

1
3

]} (6.15) 

where 𝑉̅H2O is the high-pressure partial molar volume of H2O,  𝑉̅H2O,0 is the zero-pressure 

partial molar volume taken from Bouhifd et al. (2015) at a reference temperature of 1273 K 
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and 𝐾𝑇 is the isothermal bulk modulus. The zero-pressure partial molar volume of water at 

the temperature of interest is calculated from 

𝑉̅H2O,0,𝑇 = 𝑉̅H2O,0,1273 K + (
𝜕𝑉̅H2O,0

𝜕𝑇
)

𝑃

(6.16) 

The parameter of 
𝜕𝑉̅H2O,0

𝜕𝑇
 as well as 𝑉̅H2O,0, KT and K’ were taken from Sakamaki (2017) and 

are shown in Table 6.2 where the temperature effects on KT and K’ have been neglected. 

The density of the hydrous melt is calculated at the pressure and temperature of interest 

from  

𝜌 =
(1 − 𝑥H2O)𝑀melt + 𝑥H2O𝑀H2O

(1 − 𝑥H2O)𝑉melt,𝑃,𝑇 + 𝑥H2O𝑉̅H2O,𝑃,𝑇

(6.17) 

where 𝑥H2O is the molar fraction of H2O in the melt, 𝑀melt is the average molecular weight 

of the melt without H2O calculated from equation (6.13), 𝑀H2O is the molecular weight of 

water, 𝑉melt,𝑃,𝑇 is the partial molar volume at high pressure and temperature from equation 

(6.5) and 𝑉̅H2O,𝑃,𝑇 is the high-pressure and high temperature partial molar volume of H2O 

obtained from equation (6.15).  

Table 6.2 Parameters used in this study for the equation of state for the partial molar volume of 

H2O in magma from Sakamaki (2017). 

 Parameters at 1273 K 

𝑉̅H2O,0 (cm3/mol)  23.8 

(𝜕𝑉̅H2O,0/𝜕𝑇)𝑃 (cm3/(mol · K))  15.9 × 10−3 

𝐾𝑇 (GPa)  1.29 

𝐾′ 6.38 

The obtained densities for hydrous melts at 25 GPa and 1923 K are plotted against the melt 

water contents for different partial melt fractions in Figure 6.6. The hydrous silicate melts 

range in density between 3.95 and 3.98 g/cm3 over the range of parameters examined and 

decrease with the water content. The uncertainties in the melt H2O composition, therefore, 

have very little effect on the determined densities at these conditions.  
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Figure 6.6 The density of the hydrous melt versus the water content of the melt calculated with 

different melt fractions at 25 GPa and 1923 K.  

The low solubility of H2O in Brg and Fp raises the possibility that water could be released by 

subducting material as it enters the lower mantle (Bolfan-Casanova et al., 2003). Released 

H2O would then cause partial melting. The density of the hydrous partial melts then formed 

is important for determining whether they are likely to rise out of the lower mantle and 

potentially rehydrate the transition zone or whether they could form neutrally buoyant 

melt layers that could potentially lead to seismically observable decreases in shear wave 

velocities (Schmandt et al., 2014). Nakajima et al. (2019) attempted this calculation based 

on the chemical compositions of experimental melts produced in equilibrium with Brg and 

Fp and found melts to have a lower density than the lower mantle. However, as described 

in section 6.2.2 the iron contents of these melts were likely lower than plausible for the 

lower mantle as a result of the use of a highly oxidized starting material and the strong 

effect of redox state on the Fe-Mg partitioning between Brg and melt. Nakajima et al. (2019) 

also made no consideration for the degree of melting and simply used melt compositions 

found in their experiments. In the mantle the proportion of H2O present will control the 
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melt fraction, which in turn will control the amount of iron in the melt. Although no analysis 

exists that is specific for the lower mantle, a comparison with a study made for the 410 km 

discontinuity (Hier-Majumder and Courtier, 2011) implies that observable decreases in 

shear wave velocity in the lower mantle could result from partial melt fractions that lie in 

the range of 0.005 to 0.01 (Schmandt et al., 2014). 

In Figure 6.7 the densities of hydrous peridotite partial melts with compositions 

calculated in this study are determined along a mantle geotherm  (Brown and Shankland, 

1981) using the equations of state (6.5) and (6.15). For comparison, the PREM model for the 

density of the mantle (Dziewonski and Anderson, 1981) is also shown. The red and blue 

solid lines show the result for hydrous melts containing 15 wt.% H2O and 30 wt.% H2O 

produced by 1 wt.% melting of the mantle respectively. The hydrous melt density obtained 

for 0.1 and 0.5 wt.% partial melting is nearly identical to 1 wt.% melting with a difference of 

only ~ 0.002 g/cm3, and is therefore not shown. Because the density of water in silicate melt 

intersects with that of silicate melt at 25.3 GPa, the water content has a negligible effect 

on the melt density between 25-26 GPa (Sakamaki, 2017). Below 25 GPa, the difference of 

the two compositions increases with decreasing pressure due to the high compressibility of 

H2O and the effect of H2O content on the density becomes more significant with decreasing 

pressure (Fig. 6.7). Extrapolations to higher and lower pressures are isochemical, however, 

whereas in reality the melt composition will change gradually with pressure to make the 

prediction increasingly inaccurate. The density of partial melts generated from peridotite 

under hydrous conditions (Kawamoto, 2004; Nakajima et al., 2019) at ~ 25 GPa and ~1673 K 

and dry conditions (Ito and Takahashi, 1987; Kuwahara et al., 2018; Trønnes and Frost, 2002; 

Wang and Takahashi, 2000) at ~ 25 GPa and  2473-2773 K are also calculated and shown for 

comparison (Fig. 6.7). The density profile of hydrous melts (Kawamoto, 2004; Nakajima et 

al., 2019) were calculated along the current mantle geotherm (Brown and Shankland, 1981). 

The water content in the melt was assumed to be 30 wt.% by Nakajima et al. (2019) from 

the deficit in the EDS analysis totals. For Kawamoto (2004) the same technique using the 

electron microprobe analysis totals leads to a 40 wt.% melt water content. It can be seen 

that the hydrous melt in our study is denser than both those of Nakajima et al. (2019) and 
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Kawamoto (2004) (Fig. 6.7). As this is the case when both melt H2O contents are identical, 

the higher density in our study can be wholly attributed to the higher Fe content of the melt, 

as discussed in section 6.2.2. The density of dry melt generated by peridotite was calculated 

along the mantle geotherm as well as the peridotite solidus (Herzberg et al., 2000). The 

composition of the dry melt was taken from the average value from Ito and Takahashi 

(1987); Kuwahara et al. (2018); Trønnes and Frost (2002); Wang and Takahashi (2000). As 

can be seen in Fig. 6.7, the density of dry melt along the peridotite solidus is much lower 

than the hydrous melt in our study and Nakajima et al. (2019) at 22-28 GPa. Compared with 

the dry melt density calculation along the mantle geotherm (purple line in Fig. 6.7), the 

smaller density of dry melt is not only caused by the higher temperature but also the 

smaller Fe content in the melt. At higher temperatures in anhydrous melting experiments, 

the Fe content in both melt and coexisting Brg decreases, mainly due to the higher melt 

fractions encountered. Kuwahara et al. (2018), for example, estimated that melts containing 

7-8 wt.% FeO account for 81-99 wt.% based on mass balance calculations.   

Schmandt et al. (2014) reported a region of low shear wave velocities below the 660 

km discontinuity under the south western USA, which from the lateral extent might be 

interpreted as a region containing neutrally buoyant partial melt.  In Fig. 6.7, however, it is 

clear that the density of such a 1 wt.% hydrous partial melt would be much lower than the 

density of the lower mantle at this depth, as constrained by the PREM model (Dziewonski 

and Anderson, 1981).  Such a melt composition, however, should also be close to 

equilibrium with an assemblage compatible with the base of the transition zone, as the solid 

phases must also be in equilibrium with such an assemblage at slightly lower pressures. This 

raises the possibility, therefore, that hydrous melts might rise out of the lower mantle but 

may tend to pond at the base of the transition zone on top of the 660 km discontinuity or 

that they may freeze due to the increase in H2O solubility of the mantle minerals. The 

region examined by Schmandt et al. (2014) appears to be down welling, however, with a 

rate of up to 2 cm/year. It may be that hydrous mantle is continuous dragged down from 

the transition zone into the lower mantle and that the low velocities arise due to melts 

forming in this downwelling material and rising back up again in a continuous cycle. 
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Figure 6.7 Calculated densities of the partial melts of anhydrous and hydrous peridotite from the 

current study and previous studies along the mantle geotherm (Brown and Shankland, 1981). The 

preliminary reference earth model (PREM) is also plotted (Dziewonski and Anderson, 1981) as a 

solid black line. The red and blue lines are compositions calculated from the current study for 1 % 

partial melt containing 15 wt.% and 30 wt.% water respectively. Melt densities based on the results 

of previous hydrous and anhydrous melting studies are shown for comparison.  
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7 Major conclusions 

This thesis focused on investigating the substitution mechanisms in bridgmanite (Brg), the 

speciation of Al and Fe3+ as a function of oxygen fugacity and composition, the influence of 

Fe and Al substitution on the crystal structure of Brg as well as the composition, mainly the 

Fe content, of hydrous melts coexisting with Brg. The main conclusions can be summarized 

as follows:   

(1) In Fp saturated systems, at low M3+ (M3+=Fe3++Al3+) concentrations (<0.15 atoms pfu in 

Al bearing system, <0.03 atoms pfu in Fe bearing system and <0.10 atoms pfu in Fe, Al-

bearing system), both charge-coupled substitution (CCS) and oxygen vacancy substitution 

(OVS) mechanisms are important in Brg. At higher trivalent cation concentrations, the 

charge coupled substitution predominates. The maximum amount of OVS in the current 

study is 0.04 pfu. This maximum OVS component value was achieved in the sample where 

the Al content (0.23 atoms pfu) is significantly higher than the Fe3+ content (0.11 atoms pfu) 

in Brg (S7214). The oxygen vacancy proportion shown in Fig. 5.13 is the absolute number of 

oxygen vacancies pfu in Brg which is half the value of that expressed in mole fraction of 

MgM3+O2.5 component (𝑥MgM3+O2.5
).  

(2) When both Fe3+ and Al are present, Al prefers to occupy the B site and Fe3+ prefers to go 

onto the A site, which is confirmed by single crystal X-ray diffraction through refinement of 

the mean atomic numbers at the A and B sites. FeAlO3 charge coupled substitution is the 

major substitution mechanism for trivalent cations when the amount of Fe3+ and Al in Brg 

are similar. When there is additional Al or Fe3+, MgAlO2.5, MgFe3+O2.5 OVS and AlAlO3 or 

Fe3+Fe3+O3 CCS are also present. For the samples analyzed in this study it appears that Fe3+ 

enters the B site only when the amount of Fe3+ is larger than Al.  

(3) The molar volume of Brg increases with increasing Fe and Al substitution. The molar 

volume of pure MgSiO3 end-member is 24.447(5) cm3/mol. If a linear volume relation is 

assumed, the molar volumes of the Brg end-members FeSiO3, FeAlO3, MgAlO2.5, MgFeO2.5 

and FeFeO3 are determined to be 25.339 cm3/mol, 27.081 cm3/mol, 26.565 cm3/mol, 27.5 



182 

 

cm3/mol and 29.494 cm3/mol, respectively. The volumes of these components are essential 

for any thermodynamic calculation of Brg chemistry at pressures within the lower mantle. 

(4) All lattice parameters of Brg increase with increasing M3+M3+O3 and MgM3+O2.5 

substitution, with the largest increase being that of the c-axis and the smallest being that of 

the a-axis. This can, in part, be attributed to changes in the corresponding individual B-O 

and A-O bond distances. The Fe2+SiO3 has only a minor effect on b- and c- axes but results in 

increases in the a-axis.  

(5) All B-O bond distances in Brg increase with increasing M3+M3+O3 and MgM3+O2.5 

substitution, with the B-O1 individual length which lies mainly along the c-axis increasing 

more rapidly than the intermediate B-O2 distances which are mainly in the a-b plane. This 

gives rise to an elongation of the B site octahedron along the c-axis due to the M3+ cation 

substituting Si at this site. Fe2+SiO3 substitution has no obvious effect on the B-O bond 

distances. 

(6) The shortest four A-O bond distances in Brg decrease while the other longer distances 

increase with increasing M3+M3+O3 and MgM3+O2.5 substitution, leading to a larger 

distortion of the A-site coordination polyhedral. Fe2+SiO3 substitution, on the contrary, 

decreases the distortion of the A site.  

(7) The orthorhombic distortion of Brg has been described using the irreducible 

representations (Irreps) describing the displacive modes of the A cation and oxygens from 

the atomic positions of the cubic perovskite aristotype structure. Five mode displacements 

are allowed for the orthorhombic Brg structure: R4
+ and M3

+, which describe the out-of-

phase tilting along the [110] direction and the in-phase octahedral tilting along [001] 

respectively, are the two primary distortion modes in Brg. The secondary modes include X5+, 

which describes the displacement of O and of Mg from the center of the aristotype unit cell 

and the R5
+ mode, which describes the displacement of the Mg atoms along the 

orthorhombic a-axis. Although these modes are only secondary (i.e. do not drive the cubic 

to orthorhombic phase transformation) they have a no negligible amplitude which increase 

with increasing M3+M3+O3 and MgM3+O2.5 substitutions. In contrast, the Fe2+SiO3 
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substitution decreases the R4
+ tilting and the X5

+ and R5
+ displacements of the A cations and 

therefore its distortion in agreement with the variation observed for the A-O individual 

bond distances.  

(8) The spontaneous strain e4 and etx in Brg increases with M3+M3+O3 and MgM3+O2.5 

substitution and decreases with Fe2+SiO3 substitution. The coupling coefficient between the 

order parameters (describing the octahedral tilting driving the cubic to orthorhombic phase 

transition) and the spontaneous strain is strongly dependent on composition.  

(9) At constant pressure and temperature, the Fe3+/ΣFe ratio in Brg is found to be a function 

of oxygen fugacity (fO2) as well as the Al and Fe content. At a fixed oxygen fugacity and Fe 

content, the Fe3+/ΣFe ratio in Brg increases with Al content, whereas this dependency 

decreases at higher oxygen fugacities. This is simply because the Fe3+/ΣFe ratio approaches 

unity at high fO2 regardless of the Al content. At a fixed Al and Fe content, the Fe3+/ΣFe ratio 

in Brg increases with oxygen fugacity and the dependency is smaller at higher Al content. At 

fixed Al content and oxygen fugacity, the Fe3+/ΣFe ratio in Brg decreases slightly with 

increasing Fe content. In addition, the Fe3+/ΣFe ratio in Brg seems to decrease with 

increasing temperature if all other parameters remain constant.  

(10) Previous studies (Liu et al., 2017, 2019a, 2019b) indicate that for Fe-free Al-bearing Brg, 

the AlAlO3 CCS increases monotonically with Al content while the MgAlO2.5 component first 

increases with Al content, reaching a maximum at Al=0.1 pfu and then decreases with Al 

content. This behavior can be described by a thermodynamic model with 𝑊MgAl,A

Brg
=152.6 

kJ/mol and ∆𝐺(5.12)
0 = - 85(4) kJ/mol for the equilibrium 2MgAlO2.5 = AlAlO3 + 2MgO (5.12) at 

27 GPa and 2000 K. The large interaction parameter is necessary because a significant 

change in the speciation occurs over a relatively narrow Brg Al content.  

(11) A similar thermodynamic model can be constructed using the equilibrium 2MgFeO2.5 = 

FeFeO3 + 2MgO (5.21) in Al-free, Fe-bearing Brg with an additional equilibrium used to 

determine the oxygen fugacity dependence i.e. 2FeO + 0.5O2 = FeFeO3 (5.27) at 25 GPa and 

1973 K.  The best solution was achieved with ∆𝐺(5.21)
0 = - 27.886 kJ/mol and ∆𝐺(5.27)

0 = 
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172.236 kJ/mol. Using activity-composition models does not improve the fitting even with 

Margules parameters in the order of MJ/mol. Therefore, the resulting model which has only 

two fitting parameters is considered to provide the best fit within experimental 

uncertainties.  

(12) In order to develop a thermodynamic model to describe the Fe3+ and Al speciation in 

Brg it is necessary to consider mixing of the 3+ cations on both cation sites and to constrain 

this inter-site mixing using the equilibria: 2MgFeO2.5 = FeFeO3 + 2MgO (5.30) and 2MgAlO2.5 

= AlAlO3 + 2MgO (5.31). One further equilibrium is then used to impose the control of fO2 i.e. 

2FeO + AlAlO3 + 0.5O2 = 2FeAlO3 (5.32). The experimental data were then fitted by allowing 

the site occupancies of 3+ cations for each experimental composition to vary under the 

constraints of mass balance and finding the sets of site occupancies that allow three 

constant values of ∆𝐺0  values to be determined for all the experiments. Using 11 

experimental analyses of coexisting Brg and Fp samples with varying concentrations of total 

Fe, Al and at different oxygen fugacities the following best fit standard state Gibbs free 

energies were obtained at 25 GPa and 1973 K: ∆𝐺(5.31)
0 = - 180.438 kJ/mol,  ∆𝐺(5.32)

0 = -

32.807 kJ/mol and ∆𝐺(5.33)
0 = 24.605 kJ/mol. Brg total Fe3+ and Fe3+/ΣFe ratio calculated 

using the model are in good agreement with the experimental data even though the model 

has only three adjustable parameters. Several activity-composition models were tested but 

were found not to significantly improve the fitting. This does not imply that the mixing is 

ideal but that the activity-composition relations do not have a significant effect in the 

compositional range examined. Using this model, the ferric Fe content of Brg and its 

distribution over the A and B sites can be determined at 25 GPa and 1973 K as a function of 

fO2 for any given bulk Fe and Al content of Brg.  

(13) Using this model combined with a mass balance calculation, the composition and 

proportion of coexisting Brg and Fp were calculated for a pyrolite bulk composition at 

different oxygen fugacities. The results were compared with the experimental results of 

Irifune (1994) and Irifune et al. (2010) at 28 GPa that employed the same composition.  

The model can reproduce the apparent KD (i.e. the Mg-Fe exchange coefficient between Brg 
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and Fp that assumes all iron is Fe2+) and the Fe3+/ΣFe ratio in Brg from these experiments if 

an oxygen fugacity of IW + 1.5 is assumed. This is a quite reasonable assumption for these 

experiments that employed carbon capsules. 

(14) The model shows that KD (app) is a strong function of oxygen fugacity due to the 

variation of the Brg Fe3+ content with fO2. The changes in KD (app) observed between 28 and 

47.4 GPa by Irifune et al. (2010) can be achieved through changes in fO2 between IW  and IW 

+1.5. While Irifune et al. (2010) attributed changes in KD (app) to an Fe2+ spin transition in Fp, 

the results of this study shown that changes in experimental fO2 provide at least as good an 

explanation. The absence of fO2 measurements in almost all previous experimental 

determinations of KD (app) for Brg-Fp at deep lower mantle conditions almost certainly 

explains the large variations observed between studies. 

(15) The calculated models for a pyrolite composition show that ferric Fe on Brg A site 

increases with oxygen fugacity causing Al to be pushed from A site to B site. Moreover, the 

oxygen vacancy component in Brg decreases with increasing oxygen fugacity. At low oxygen 

fugaicties, which are more realistic for the bulk of the lower mantle, both AlAlO3 and 

(Mg,Fe)AlO2.5 components are present, which may be important for Brg transport properties 

and lower mantle transport properties in general.  

(16) If the mantle has a relatively constant bulk oxygen content, the oxygen fugacity in the 

lower mantle would be driven to values where iron-nickel alloy or iron-nickel-sulphur-rich 

phases would form to fulfill the requirement of Brg for high Fe3+ concentrations. Ferric iron 

would be formed through disproportionation of Fe2+ as well as reduction of NiO. Our 

calculations show that for a pyrolite bulk composition with an initial Fe3+/ΣFe ratio of 0.03, 

the oxygen fugacity at the top of the lower mantle would be IW – 0.8, which results in the 

formation of 0.6 wt.% Fe-Ni alloy containing approximately 26 wt.% Ni. The resulting 

Fe3+/ΣFe ratio of Brg is 0.51 and the bulk pyrolite has a ratio of 0.28. The proportion of 

metal alloy that forms is much smaller for a harzburgite bulk composition because the Al 

content of the Brg formed is smaller. 
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(17) Using the partial molar volumes determined for the different Brg 3+ cation components 

the thermodynamic model describing the mineral compositions in a pyrolite bulk 

composition can be extrapolated to high pressures. This extrapolation was made assuming 

both a constant oxygen fugacity (IW+1.5) and assuming an initial bulk Fe3+/ΣFe ratio of 0.03, 

where Fe-Ni metal is formed. In both cases the Fe3+/ΣFe ratio of Brg increases with pressure 

between 26-40 GPa, which is in contrast to the results of a number of laser heated diamond 

anvil cell experiments. This comparison underlines the fact that it is very important to 

control the fO2 in such experiments if any meaningful conclusions are to be made. 

(18) Model pyrolite calculations indicate that KD (app), determined either at a constant fO2 of 

IW+1.5 or at equilibrium with Fe-Ni metal, does not change significantly over the pressure 

range of 26-40 GPa. In contrast, KD (app) calculated for a constant Brg Fe3+/ΣFe ratio of 0.69, 

i.e. similar to the value reported from the multianvil experiments of Irifune et al. (2010), 

decreases from 0.67 at 26 GPa to 0.48 at 40 GPa. This decrease is in very good agreement 

with the results of Irifune et al. (2010) i.e. the model reproduces both the experimental KD 

(app) and the Brg Fe3+/ΣFe ratio. 

(19) The proportion of oxygen vacancies in Brg determined using the model extrapolation 

for a pyrolite composition at fO2=IW+1.5, decreases continuously from 25 to 40 GPa, 

reaching almost zero at  40 GPa. This decrease in oxygen vacancies with pressure in the 

upper part of the lower mantle may provide an explanation for a proposed increase in 

mantle viscosity between 660 and 1000 km depth. 

(20) In the experiments performed to determine Brg and Fp compositions at 25 GPa and 

1973 K, carbon occurs as either diamond or carbide at oxygen fugacities ≤ IW and as 

carbonate at oxygen fugacities >IW+2.7. These observations bracket the fO2 of the 

(Mg,Fe)CO3 =(Mg,Fe)O+ C + O2 equilibrium. This indicates that sub-lithospheric diamonds 

cannot be formed from carbonate at typical uppermost lower mantle oxygen fugacities, 

which are likely to be  IW - 0.8 if the upper mantle has the same bulk oxygen concentration 

as the lower mantle. 
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(21) For three diamond inclusions, which were proposed to have originally been Brg trapped 

at conditions of the top of the lower mantle (McCammon et al., 1997; McCammon et al., 

2004c; Stachel et al., 2000), the oxygen fugacities can be calculated, using the model 

derived in the current study, based on measurements of the inclusion Fe3+/ΣFe ratios and 

assuming that they originally formed as Brg at the top of the lower mantle. The results show 

a minimum fO2 of IW-0.8 for one inclusion and IW+0.7 and -0.5 for the other two inclusions. 

This implies that these diamonds were unlikely to have been formed by the reduction of 

pure carbonate, which would imply a likely origin from subducted material. 

(22) From water bearing experiments where hydrous melts were formed it was possible to 

calculate values of  𝐾𝐷𝐹𝑒−𝑀𝑔
𝐵𝑟𝑔−𝑀𝑒𝑙𝑡 describing the Mg-Fe exchange between Brg and melt. The 

values determined for this KD were lower than those reported in the recent study of 

Nakajima et al. (2019) that imply a much higher Fe content in the melt for a given Brg iron 

content. This discrepancy can be attributed to the very oxidized conditions employed in the 

experiments of Nakajima et al. (2019) and compared to the more realistic reducing 

conditions used in the current study.  

(23) A model was developed to describe the Mg-Fe partitioning between Brg and melt, 

based on the ion-exchange equilibrium. Using this model and mass balance constraints, the 

compositions of Brg and hydrous melt for a pyrolite composition at the top of the lower 

mantle were calculated for various melt fractions (0.1 wt.%, 0.5 wt.%, and 1 wt.%) and melt 

water contents (15-30 wt.%) for which some uncertainty exists. The model shows the melt 

iron content to be higher than previous experimental studies not just due to the difference 

in assumed fO2 but also due to the examination of smaller, more realistic melt fractions that 

do not significantly deplete the solid residue in iron. 

(24) Based on the calculated melt composition, melt densities were determined using a 

second-order Birch-Murnaghan equation of state along a mantle geotherm from 22-28 GPa. 

In this pressure range, the hydrous melt formed in the current study is determined to be 

denser than those encountered by Nakajima et al. (2019) and Kawamoto (2004) and also 

much higher than the density of dry melt generated near the dry peridotite solidus. This 
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raised density is mainly due to the higher proportion of Fe partitioning into the melt. The 

density of a 1 wt.% hydrous partial melt would be significantly lower than the density of the 

lower mantle at this depth but would be close to neutral buoyancy at the base of the 

transition zone. This raises the possibility, that hydrous melts might rise out of the lower 

mantle but pond or freeze on entering the transition zone. If such a process occurs in 

regions of down-welling then melt bearing regions may be continuously dragged into the 

lower mantle before grain scale migration allows them to flow upwards, potentially creating 

long term low velocity layers (Nakajima et al., 2019). 
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