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Abstract 

Rice (Oryza sativa L.) is a staple food for more than half of the world’s population; however, 

it accumulates 10 times more toxic arsenic (As) in its grains than other cereals. Arsenic is 

ubiquitously present in the environment and mobilized in paddy fields during reductive 

dissolution of iron (Fe)-minerals under anoxic conditions in flooded paddy soils. Commonly, 

only inorganic arsenite and arsenate, as well as organic monomethylarsenate (MMAV) and 

dimethylarsenate (DMAV) are considered to be important As species in paddy soils, even 

though sulfate-reducing, methanogenic conditions are reported in paddy soil pore-water. 

Thioarsenates, As species where oxygen atoms were replaced by sulfur atoms, have been 

found under sulfate-reducing conditions in geothermal and terrestrial environments before 

but have never been reported in paddy fields up to now. 

The aim of this thesis was to investigate the occurrence of inorganic and methylated 

thioarsenates in paddy fields and to study their transformation, uptake, accumulation, and 

translocation by rice plants. Additionally, the mobility of methylated thioarsenates in 

presence of Fe(oxyhydr)oxide was examined and it was tested whether roots covered with 

Fe(oxyhydr)oxide could be a barrier for the uptake of methylated thioarsenates in rice 

plants. 

In the first study, methylated and inorganic thioarsenates were detected in the pore-water 

of a large variety of paddy soils from different origins and throughout the whole growing 

season in Italian soils. The contributions of thioarsenates to total As concentrations were 

similar to methylated oxyarsenates. By determining the thiolation potential in anoxic lab 

incubations, the soil pH was found to be an easy to measure indicator for the formation of 

methylated or inorganic thioarsenates. Sulfur-fertilization increased thiolation and 

methylation in soil but lowered the total As concentration in the pore-water. Increased 

shares of methylated and thiolated As with decreasing total As indicated that mobility of 

thioarsenates in the rhizosphere could be higher than that of inorganic As. 

The following two studies revealed that thioarsenates could be taken up and transported by 

hydroponically grown rice plants, nevertheless, differences were observed for the individual 

thioarsenates. Inorganic monothioarsenate (MTA) was taken up in rice roots and rapidly 

transformed to arsenite by a so far unknown enzyme, however, this transformation was not 

complete and MTA was detected in the xylem, as well as in roots and shoots. Higher 

translocation from roots to shoots, compared to the non-thiolated analog arsenate implied 

that different, so far unknown, enzymes and transporters were involved in the uptake, 

reduction, and translocation of MTA. Monomethylmonothioarsenate (MMMTA) is oxygen-

sensitive and was partly transformed to its non-thiolated analog MMAV outside the rice root 
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by root oxygen loss. No transformation was detected inside the root cells and MMMTA was 

partly transported to the xylem. The overall As uptake and translocation of rice plants 

exposed to MMMTA was similar to MMAV, indicating effective As sequestration in roots, 

even though the exact mechanism for MMMTA sequestration remained unknown. 

Dimethylmonothioarsenate (DMMTA) was not transformed by root oxygen loss and taken 

up inside the rice roots. However, DMMTA was partly transformed to DMAV in roots but non-

transformed DMMTA was partly transported to the xylem. The transformation of DMMTA 

was most likely a chemical disproportionation in the presence of glutathion to DMAV and 

dimethyldithioarsenate (DMDTA). High As accumulation in roots and shoots when plants 

were exposed to DMMTA revealed that the detoxification and translocation of DMMTA is 

clearly different from its non-thiolated analog DMAV. 

The fourth study confirmed the assumption from the pore-water speciation in study 1 that 

methylated thioarsenates were sorbed less to Fe(oxyhydr)oxides than inorganic or 

methylated As species. Goethite-rich iron plaque formed around rice roots, was no barrier 

for the uptake of MMMTA and DMMTA in rice roots, as they were not sorbed effectively. 

Lab studies with goethite and ferrihydrite revealed that methylated thioarsenates have to be 

transformed to the non-thiolated analogs MMAV and DMAV prior to sorption. Especially 

DMMTA was poorly sorbed in all treatments due to its slow transformation to DMA 

explaining its high mobility in the rhizosphere.  

Altogether, the four studies demonstrated the importance of thioarsenates in paddy soils 

and for the uptake, translocation, and accumulation in rice plants. Thus, adequate analytical 

methods that can detect thioarsenates should be included in further studies and their 

contribution to As accumulation in rice grains should be evaluated, especially as the highly 

toxic DMMTA has already been detected in rice grains before.  
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Zusammenfassung 

Reis (Oryza sativa L.) ist ein wichtiges Grundnahrungsmittel für mehr als die Hälfte der 

Weltbevölkerung, allerdings nimmt Reis auch 10-mal mehr Arsen (As) als andere 

Getreidesorten auf. Arsen kommt ubiquitär in der Umwelt vor und wird unter reduzierenden 

Bedingungen, wie sie in gefluteten Reisfeldern vorkommen, durch die Auflösung von Eisen 

(Fe)-Mineralen mobilisiert. Üblicherweise werden in Reisfeldern nur anorganische (Arsenit 

und Arsenat) und organische (Monomethylarsenat; MMAV und Dimethylarsenat; DMAV) As-

Verbindungen als wichtig erachtet, obwohl in Reisfeldern sulfatreduzierende, methanogene 

Bedingungen herrschen. Thioarsenate sind As-Verbindungen, bei denen Sauerstoff- durch 

Schwefelatome ersetzt wurden und diese Verbindungen wurden bereits unter 

sulfatreduzierenden Bedingungen in Geothermalwässern und terrestrischen Ökosystemen 

nachgewiesen, allerdings noch nie in Reisfeldern. 

Ziel der vorliegenden Arbeit war es, das Vorkommen von anorganischen und methylierten 

Thioarsenaten in Reisfeldern zu analysieren und ihre Umwandlung, Aufnahme, 

Akkumulierung und Translokation in Reispflanzen zu untersuchen. Außerdem wurde die 

Mobilität von methylierten Thioarsenaten in Gegenwart von Fe(oxyhydr)oxiden untersucht 

und getestet, ob die Bildung von Fe(oxyhydr)oxidbelägen entlang von Wurzeln die 

Aufnahme von methylierten Thioarsenaten verhindern kann. 

In der ersten Studie konnten methylierte und anorganische Thioarsenate in Porenwasser 

verschiedener Reisböden und im Verlauf der gesamten Vegetationsperiode italienischer 

Reisböden nachgewiesen werden. Thioarsenate hatten einen ähnlichen Anteil an den 

Gesamtarsengehalten wie methylierte Oxyarsenate. In anoxischen Laborversuchen, die 

das Thiolierungspotenzial von Böden ermitteln sollten, war der Boden pH-Wert ein einfach 

zu messender Indikator für die Bildung von methylierten oder anorganischen 

Thioarsenaten. Zusätzliche Schwefeldüngung der Reisböden erhöhte den Anteil an 

thiolierten und methylierten As-Spezies, konnte aber gleichzeitig die Gesamtarsengehalte 

im Porenwasser senken. Allerdings zeigt die Erhöhung des Anteils an thioliertem und 

methyliertem As, dass diese As-Spezies im Porenwasser mobiler sein könnten als 

anorganische As-Spezies. 

Die folgenden zwei Studien zeigten, dass Thioarsenate von hydroponisch gezogenen 

Reispflanzen aufgenommen und transportiert werden können, auch wenn es Unterschiede 

zwischen den einzelnen Thioarsenaten gab. Anorganisches Monothioarsenat (MTA) wurde 

in die Wurzeln aufgenommen und rasch durch ein unbekanntes Enzym zu Arsenit 

umgewandelt, jedoch war diese Umwandlung nicht vollständig und MTA konnte sowohl im 

Xylem als auch in den Wurzeln und im Spross nachgewiesen werden. Eine im Vergleich 
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zum nicht-thiolierten Arsenat höhere MTA-Translokation von den Wurzeln in den Spross 

legt nahe, dass bisher unbekannte Enzyme und Transporter an der Aufnahme, Reduktion 

und Translokation von MTA beteiligt sind. Monomethylmonothioarsenat (MMMTA) ist 

sauerstoffsensitiv und wurde teilweise außerhalb der Reiswurzel durch die 

Sauerstoffabgabe der Wurzeln in das nicht-thiolierte Analogon MMAV umgewandelt. 

MMMTA wurde in den Wurzeln nicht weiter umgewandelt und teilweise weiter ins Xylem 

transportiert. Die Gesamtarsenaufnahme und As-Translokation war für Reispflanzen, die 

MMA oder MMMTA ausgesetzt waren, ähnlich und lässt darauf schließen, dass As effektiv 

in den Wurzeln zurückgehalten wurde, obwohl die Mechanismen für MMMTA bis jetzt noch 

unbekannt sind. Dimethylmonothioarsenat (DMMTA) wurde in die Reiswurzeln 

aufgenommen, ohne durch die Sauerstoffabgabe der Wurzeln umgewandelt zu werden. 

Allerdings wurde DMMTA in den Wurzeln teilweise zu DMAV umgewandelt, aber ein Teil 

des verbleibenden DMMTAs wurde weiter ins Xylem transportiert. DMMTA zerfällt 

wahrscheinlich in Gegenwart von Glutathion durch chemische Disproportionierung zu 

DMAV und Dimethyldithioarsenat (DMDTA). Wenn Pflanzen DMMTA ausgesetzt wurden, 

nahmen sie hohe As-Gehalte in den Spross und in die Wurzeln auf, was zeigt, dass sich 

die Detoxifizierung und Translokation von DMMTA klar von DMAV unterscheidet. 

Die vierte Studie konnte die Vermutungen aus der ersten Studie bestätigen, dass 

methylierte Thioarsenate schlechter an Fe(Oxyhydr)oxide sorbieren als anorganische oder 

methylierte As-Spezies. Goethithaltige Eisenbeläge entlang von Reiswurzeln konnten keine 

Barriere für die Aufnahme MMMTA und DMMTA bilden, da diese Verbindungen nicht 

effektiv sorbiert wurden. Laborstudien mit Goethit und Ferrihydrit zeigten, dass methylierte 

Thioarsenate erst in ihre nicht-thiolierten Analoga MMAV und DMAV umgewandelt werden 

müssen, bevor sie sorbiert werden können. DMMTA wurde besonders schlecht sorbiert, da 

die Umwandlung zu DMAV nur sehr langsam geschieht, wodurch sich seine hohe Mobilität 

erklärt. 

Zusammen konnten die vier Studien die Wichtigkeit von Thioarsenaten in Reisböden und 

für die Aufnahme, Translokation und Akkumulation in Reispflanzen zeigen. Deswegen 

sollten in folgenden Studien adäquate Analysemethoden verwendet werden, die auch 

Thioarsenate nachweisen können. Die Rolle von Thioarsenaten bei der Akkumulierung von 

As in Reiskörnern muss weiter untersucht werden, da einzelne Studien bereits das 

hochgiftige DMMTA in Reiskörnern nachweisen konnten. 
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Extended summary 

1. Introduction 

1.1. General problem of arsenic in rice 

More than half of the world’s population consumes rice (Oryza sativa L.) as a major staple 

food for their subsistence (Chen et al., 2017; Meharg et al., 2009). Besides all its nutritious 

benefits, rice is known to accumulate 10 times more arsenic (As) in its grains than other 

cereals (Williams et al., 2007a; Williams et al., 2007b). Especially people depending on a 

rice-based diet and young children have a higher exposure to As than the average 

population (BfR, 2014; Mantha et al., 2017). Arsenic was listed first in the substance priority 

list of the US Agency for Toxic Substances and Disease Registry (ATSDR) which takes the 

abundance, toxicity, and potential for human exposure of a toxic substance into account 

(ATSDR, 2017). Generally, As is classified as a human class 1 carcinogen (WHO, 2010) 

without a defined safe uptake limit that is not increasing the cancer risk (BfR, 2014). Uptake 

of As should, therefore, be limited to the lowest level possible. 

The toxicity of As is strongly dependent on its redox-state and formation of different As 

species. Arsenic species in rice are separated in organic and inorganic As. Both inorganic 

arsenite and arsenate are cytotoxic with arsenite being even more toxic than arsenate 

(Naranmandura et al., 2011; Petrick et al., 2000) and both species are highly bioavailable 

during digestion in the human gut (Meharg and Zhao, 2012). Organic As is often used as a 

synonym for monomethylarsenate (MMAV), dimethylarsenate (DMAV), and 

tetramethylarsonium in rice grains (Hansen et al., 2011; Meharg and Zhao, 2012), but 

arsenobetain,- cholein, -sugars, -phosphates or -lipids are other common organic As 

species in food such as fish or mushrooms (Molin et al., 2015). Methylated oxyarsenates 

(MMAV and DMAV) are regarded as less toxic compared to inorganic As (Naranmandura et 

al., 2011; Naranmandura et al., 2007), however, both species can be reduced to their 

trivalent analogs during digestion and the acute toxicity of MMAIII und DMAIII is higher than 

that of arsenite (Bartel et al., 2011; Naranmandura et al., 2011; Naranmandura et al., 2007; 

Petrick et al., 2000; Styblo et al., 2002). Trivalent As species are generally more toxic than 

pentavalent species.  

Threshold values for inorganic As in rice (200 µg/kg for white rice) were introduced in the 

European Union and China to minimize the As uptake from rice consumption (Chen et al., 

2018; European Commission, 2015). If rice is used for the production of baby food an even 

lower limit of 100 µg/kg inorganic As was established in the European Union and the USA. 
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Taking the highly toxic metabolites of methylated oxyarsenate species into account, their 

exemption from food guidelines seems questionable.  

After outlining the general problem of As accumulation in rice grains, the following sections 

will identify reasons and mechanisms for As occurrence in paddy fields, its uptake by plants 

and accumulation in rice grains. 

1.2. Arsenic in soil and pore-water of paddy fields 

Arsenic is ubiquitously present in the environment at low background levels resulting from 

weathering of As containing minerals, volcanic eruptions or discharge of geothermal waters 

(Alloway and Trevors, 2013). The global average of As in soils is about 5-7.5 mg/kg 

(Matschullat, 2000) but soil concentrations can reach up to hundreds of mg/kg in areas with 

As-rich bedrocks (Alloway and Trevors, 2013). Anthropogenic As contamination from 

mining, industry or use of As-containing pesticides or fertilizers can cause locally elevated 

As concentrations in soils or drinking water (Alloway and Trevors, 2013).  

Under oxic soil conditions, used for growing most crops, the predominant As species in the 

pore-water is pentavalent arsenate. Arsenate is highly immobile due to sorption to iron (Fe)-

, manganese (Mn)-, or aluminum (Al)(oxyhydr)oxides and uptake into crops is low (Goldberg 

and Johnston, 2001; Raven et al., 1998; Williams et al., 2007b). Rice, however, is grown 

under flooded soil conditions to increase nutrient availability, control weeds or pests, and 

avoid drought stress (Meharg and Zhao, 2012). Traditionally, rice fields are only drained 

shortly before harvest to ensure complete ripening of rice grains. Flooding induces several 

important processes in paddy fields, starting with the depletion of oxygen in soil followed by 

the reduction of nitrate, manganese oxides and Fe(oxyhydr)oxides. The reduction of ferric 

Fe is a common indicator for anoxic soil conditions under which sulfate is reduced to sulfide 

and methane production is enabled. Depending on the soil heterogeneity and different 

redox conditions in micro-pore sites, these reactions might occur simultaneously and not 

only step-wise. Solely decreasing redox potential is enough to enable all reactions, 

however, most reactions are catalyzed by microorganisms which accelerate slow reaction 

kinetics (Kirk, 2004). After flooding, the soil pH increases to 6.5 – 7 due to the proton 

consumption during ongoing reduction (Kirk, 2004). Flooding induces further indirect 

mobilization of nutrients or metals that were sorbed or incorporated in minerals, which were 

dissolved under reducing conditions. Arsenate or phosphate are for example released 

during reductive dissolutions of Fe(oxyhydr)oxides and accumulate in the pore-water 

(Takahashi et al., 2004; Zhang et al., 2003). 

Arsenate released into the pore-water is unstable under anoxic conditions and reduced to 

thermodynamically stable arsenite (Masscheleyn et al., 1991). Speciation analysis in pore-
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water samples from flooded paddy fields revealed that besides inorganic arsenite, 

methylated As species occurred (Takamatsu et al., 1982). Soil microorganisms or algae are 

able to biomethylate inorganic As by the enzyme AsIII S-adenosylmethionine (SAM) 

methyltransferase and produce MMAV and DMAV (Fan et al., 2018; Lomax et al., 2012). 

Recent findings showed that especially sulfur-reducing bacteria (SRB) play an important 

role in the formation of MMAV in paddy soils, while the demethylation of DMAV is controlled 

by methanogenic archaea (Chen et al., 2019).  

Reducing conditions in paddy fields do not only mobilize As into the pore-water but can also 

lead to As volatilization into the atmosphere (Mestrot et al., 2011). Methylated oxyarsenates 

formed under reducing conditions in the pore-water can be volatilized by microorganisms 

(Bentley and Chasteen, 2002) and mostly trimethylarsine, with small contributions of arsine, 

monomethylarsine, and dimethylarsine were detected above paddy fields or in the 

headspace of incubations with paddy soils (Mestrot et al., 2011). Rice plants were found to 

be additional trimethylarsine emitters when methylated As species were present in paddy 

soil and taken up by the rice plant (Jia et al., 2012). Compared to large As pools in paddy 

soils, only minor amounts of As are volatilized per year (less than 1% As) but 

biovolatilization still contributes up to 6% to natural As emissions (Mestrot et al., 2011). 

Although flooded paddy fields are overall anoxic, redox potentials can vary on a very small 

scale for example in micro-pore sites or along rice roots. Rice roots release oxygen (ROL; 

root oxygen loss) through the aerenchyma to the rhizosphere to cope with anoxic soil 

conditions. Ferrous iron (Fe2+) that was mobilized during reductive dissolution of Fe-

minerals after flooding is re-oxidized by the released oxygen and precipitates in nearby 

rhizosphere or along the roots where it is forming so-called iron plaque (IP). Typical 

Fe(oxyhydr)oxide minerals such as ferrihydrite, goethite, lepidocrocite, or siderite are found 

in IP and their contents vary depending on pore-water chemistry (Bacha and Hossner, 1977; 

Chen et al., 1980; Liu et al., 2006; Seyfferth et al., 2010; Seyfferth et al., 2011; Tripathi et 

al., 2014). Toxic metalloids (e.g. As) or nutrients (e.g. phosphate) that were mobilized before 

can be re-sorbed to the newly formed minerals and are therefore effectively removed from 

pore-water. The sorption of metalloids and nutrients is strongly dependent on pH, mineral 

crystallinity, competitive ions and their chemical speciation (Dixit and Hering, 2003; Lafferty 

and Loeppert, 2005; Raven et al., 1998).  

Both arsenite and arsenate are sorbed to Fe(oxyhydr)oxides primarily by strong bidentate 

binuclear inner-sphere complexes (Manning et al., 1998; Ona-Nguema et al., 2005), 

however weaker outer-sphere complexes can be formed as well (Goldberg and Johnston, 

2001). Similar to inorganic As, methylated oxyarsenates sorb to Fe(oxyhydr)oxides forming 

bidentate binuclear inner-sphere complexes and especially DMAV forms additional outer-
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sphere complexes via electrostatic interactions or hydrogen bonds (Lafferty and Loeppert, 

2005; Shimizu et al., 2011). The sorption of all four As species is greater to amorphous 

Fe(oxyhydr)oxides than to crystalline Fe(oxyhydr)oxides due to the large differences in 

surface area (Dixit and Hering, 2003). Compared to inorganic As, the additional methyl 

groups of MMAV and DMAV decrease the sorption to Fe(oxyhydr)oxides and facilitate the 

desorption from Fe(oxyhydr)oxides when competing ions such as phosphate or sulfate are 

present (Lafferty and Loeppert, 2005). 

Formation and behavior of inorganic or methylated As species in paddy soils have been 

intensively studied over the last decades. However, focusing only on these species might 

not account for all As species occurring in paddy field pore-water. Anoxic conditions after 

flooding (described above) are producing methanogenic environments in paddy soils 

(Kogel-Knabner et al., 2010) which implies that thermodynamically sulfate reduction was 

favored before methane is produced (standard redox potential for sulfide formation (−221 

mV) vs methane formation (−243 mV) (Sigg and Stumm, 1994)). Nevertheless, sulfate 

reduction was often considered non-important in paddy soils due to the low sulfate 

concentration in soils (Wind and Conrad, 1997) and formation of mackinawite (FeIIS) as a 

final S-sink (Ayotade, 1977). This concept omits the possibility of sulfur (S)-cycling, often 

termed “cryptic” S-cycle (Wind and Conrad, 1997). In this “cryptic” S-cycle, small amounts 

of sulfate are continuously reduced to sulfide and stepwise re-oxidized to zero-valent S, 

thiosulfate, and sulfate. None of the S-species is building up in larger quantities during this 

cycling, but the continuous resupply of S-species triggers many further reactions.  

Anoxic, sulfide-rich aquatic environments are known to form As-S-compounds, so-called 

thioarsenates, were oxygen atoms are replaced by sulfur (Planer-Friedrich et al., 2007) and 

thioarsenate formation was also reported in terrestrial environments with low sulfide 

concentrations in the pore-water. Thioarsenate formation in terrestrial environment is most 

likely controlled by S surface-bound to minerals or organic matter that reacts with pore-

water As (Besold et al., 2018; Planer-Friedrich et al., 2018). Thioarsenates are separated 

in inorganic and organic (methylated) species (Figure 1). Inorganic thioarsenates form at 

neutral to alkaline pH when S-reducing conditions lead to ligand exchange of OH−/SH− at 

arsenite molecules followed by the addition of zerovalent sulfur (Planer-Friedrich et al., 

2010; Stauder et al., 2005). Depending on how many oxygen atoms are substituted, mono-

, di-, tri, or tetrathioarsenate is formed (H3AsSnO4−n, n=1-4). Inorganic thioarsenates are 

abbreviated as MTA, DTA, TTA, and TTTA depending on the number of S-atoms. 

Methylated thioarsenates form in contrast to inorganic thioarsenates primarily at acidic pH 

from MMAV and DMAV via ligand exchange of OH− by SH− (Conklin et al., 2008; 

Wallschläger and London, 2008). Four methylated thioarsenates have been found in the 
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environment so far, namely monomethylmonothioarsenate (MMMTA), 

monomethyldithioarsenate (MMDTA), dimethylmonothioarsenate (DMMTA), and 

dimethyldithioarsenate (DMDTA) (Planer-Friedrich et al., 2007; Wallschläger and London, 

2008).  

Inorganic As species Organic As species 

 

Arsenite 

 

Arsenate 

 

MMAV 

 

DMAV 

  

 

MTA 

 

MMMTA 

 

DMMTA 

 

 

 

DTA 

 

MMDTA 

 

DMDTA 

  

 

TTA     

  

 

TTTA     

 As  O  S 
 
CH3 

Figure 1: Schematic overview of major organic and inorganic As species investigated in rice 

research so far and environmental relevant organic and inorganic thioarsenates. 

Even though the formation of thioarsenates seems highly likely in paddy soils, they have 

not been detected there, yet. Therefore, no information about their behavior in paddy soils 

or rice plants is available until now. One reason for this lack of information is that 

thioarsenates are destroyed by routine, acidic pore-water sample stabilization and 

thioarsenates are either transformed to arsenite or oxyarsenates (Planer-Friedrich and 

Wallschläger, 2009) or precipitate as As-S minerals (Smieja and Wilkin, 2003). Thus, 

thoughtful sample stabilization by e.g. flash-freezing and alkaline chromatographic elution 

is needed to preserve thioarsenates in natural samples (Planer-Friedrich et al., 2007). 

Thioarsenates 
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1.3. Arsenic uptake and transport in rice plants 

Uptake of non-essential As to rice plant roots is not actively controlled by the plants but As 

is rather hitchhiking through uptake transporters with similar essential nutrients (Clemens 

and Ma, 2016). If arsenate (pKa1 2.2, pKa2 6.9) is present in the pore-water, it is a structural 

analog to phosphate (pKa1 2.1, pKa2 7.1) sharing similar chemical properties. Uptake 

transporters for phosphate such as OsPht1;1 (Sun et al., 2012), OsPht1;4 (Cao et al., 2017; 

Ye et al., 2017), or OsPht1;8 (Wang et al., 2016) cannot distinguish between arsenate and 

phosphate and take up the arsenate unintentionally. Arsenite (pKa1 9.2) occurs as an 

uncharged molecule at pH 7 in flooded pore-water similar to silicic acid (pKa1 9.5). Silicic 

acid and arsenite are passively taken up through a nodulin 26-like intrinsic protein (NIP) 

aquaglyceroporins Lsi1 (OsNIP2;1; Figure 2) (Li et al., 2009; Ma et al., 2006; Ma and 

Yamaji, 2015; Ma et al., 2008; Zhao et al., 2010). Rice is known to accumulate high silicon 

(Si) concentrations in tissues as protection against grazing or abiotic stress and increase 

thereby the uptake of arsenite as well (Ma and Yamaji, 2015). Methylated oxyarsenates 

MMAV (pKa1 4.2) and DMAV (pKa1 6.1) are partly undissociated at a pore-water pH around 

7 and can be taken up through the same aquaglyceroporin channel (OsNIP2;1, Figure 2) 

as arsenite (Li et al., 2009). The uptake of dissociated MMAV and DMAV via additional 

transporters has been hypothesized but no transporter was identified up to now (Meharg 

and Zhao, 2012).  

 

Figure 2: Schematic summary of lateral As transport in the rice root. Arsenite, MMAV, and 

DMAV are transported through the rice root by two aquaporin channels Lsi1 and Lsi2 and 

sequestered in the vacuoles after PC-complexation (except DMAV). Passive diffusion 

pathways are indicated by dashed arrows (Clemens and Ma, 2016). 
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Especially inorganic As is toxic for rice plants and plants have developed two major 

detoxification strategies to cope with As uptake. Arsenic is either effluxed out of the root or 

sequestered in the root to avoid distribution to above-ground biomass. Non-charged As 

species (arsenite, MMAV, and DMAV) can be effluxed directly via the Lsi1 transporter 

(Clemens and Ma, 2016; Zhao et al., 2010). Arsenate has to be reduced to arsenite prior to 

efflux or sequestration and recently, several such arsenate reductases, for example, 

HAC1;1, HAC1;2, and HAC4 (Shi et al., 2016; Xu et al., 2017) have been identified in rice 

plants. Non-effluxed trivalent As species can be complexed with thiol ligands such as 

phytochelations (PC) due to their high affinity to SH--groups. Phytochelatins are synthesized 

in roots cells from glutathione (GSH) and have the general structure (γ-Glutamic acid 

Cysteine)n-Glycine with n=2-11 (Cobbett and Goldsbrough, 2002). Arsenite is complexed 

by SH--groups from cysteine forming an AsIII-PC complex (Clemens, 2006; Mendoza-Cozatl 

et al., 2011; Pickering et al., 2000; Verbruggen et al., 2009). Besides arsenite, MMAV can 

be reduced to MMAIII and complexed by PCs as MMAIII-PC (Mishra et al., 2017; Raab et 

al., 2005), however, no DMAIII-PC complexes have been found in rice roots so far (Raab et 

al., 2005). Solely, the complexation of As is not sufficient for effective detoxification and PC-

complexes have to be sequestered in root vacuoles to avoid translocation to above-ground 

biomass. The transport of As-PC complexes to vacuoles is mediated by an OsABCC1 

transporter (Song et al., 2014) and As-PC complexes are sequestered in vacuoles under 

acidic pH which enhances their stability (Schmöger et al., 2000). 

Even though detoxification of As is quite efficient for inorganic As and MMAV, not all As 

taken up is trapped in roots and the remaining As can be distributed to above-ground 

biomass via xylem and phloem. Rice roots developed an efficient system to transport the 

essential nutrient Si to the xylem and As is transported inevitably with Si. Besides the Lsi 1 

transporter that mediates the Si and arsenite influx in the root cells, a similar Lsi 2 

transporter mediates the efflux out of root cells and contributes to arsenite and Si loading 

into the xylem (Figure 1) (Ma et al., 2007; Ma et al., 2008). However, more transporters 

could be involved in the xylem loading (Clemens and Ma, 2016; Lindsay and Maathuis, 

2016; Xu et al., 2015). Methylated oxyarsenates are known to reach the xylem but the 

involved transporters remain unknown until now (Li et al., 2016; Li et al., 2009).  

The most important pathway for inorganic As to reach the rice grain is via phloem transport 

(around 90% of inorganic grain As and 55% DMAV) while macronutrients (e.g. sugars or 

amino acids) are accumulated in the rice grains (Carey et al., 2010; Meharg and Zhao, 

2012). Phloem and xylem are two separated systems and transfer from xylem to phloem 

requires active transporters, which can be found in the nodes. Especially node I is important 

for transferring As from the xylem to the phloem and then further to the grain (Clemens and 
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Ma, 2016). Phloem cells in the nodes can additionally help to sequester As by PC-

complexation and storage of As in cell vacuoles limiting the further As translocation to grains 

(Song et al., 2014). Before macronutrients or toxicants reach the filial tissue (endosperm, 

aleurone layer, and embryo) they have to pass a symplastic discontinuity between maternal 

and filial tissue (ovular vascular trace, OVT) which could act as the last barrier for As 

accumulation (Meharg and Zhao, 2012).  

All the different mechanisms outlined above contribute to As translocation from roots to 

shoots and further to grains. The transport of inorganic As is understood quite in detail, 

while much less is known about methylated oxyarsenates and nothing is known about 

thioarsenates, yet. Comparing the detailed transport (e.g. knowing the exact transporter) of 

different As species is often difficult and therefore simple As ratios (translocation factors) of 

two different tissues can already give valuable information about the different behavior of 

As species. 

1.4. Arsenic accumulation in rice grains 

Uptake, detoxification, and transport through the rice plant are different for each As species 

(see 1.3 for details). The As distribution in rice mirrors the different mobility of As species 

showing high accumulation of arsenite in roots with decreasing contents in stems, leaves, 

and grains. DMAV, in contrast, is poorly retained in roots and shoots, but translocated to the 

grain efficiently (Carey et al., 2010; Zheng et al., 2011). Equal arsenite and DMAV 

concentrations can therefore be found in rice grains even if DMAV concentrations are 5 

times lower in paddy soil pore-water than arsenite (Zhao et al., 2013). Arsenite and DMAV 

are the dominant As species in rice grains, however, minor amounts of arsenate, MMAV, 

DMMTA, and tetramethylarsonium were found in rice grains before (Ackerman et al., 2005; 

Hansen et al., 2011; Meharg and Zhao, 2012). The location of the two major compounds 

arsenite and DMAV has been identified in rice grains by x-ray absorption spectroscopy 

(XAS) mapping. Arsenite accumulation is highest in the OTV (Figure 3a) while DMAV is 

distributed throughout the whole endosperm (Figure 3b) (Zheng et al., 2012), which is in 

line with the high mobility of DMAV in all rice tissues leading to accumulation in the terminal 

plant part. The As distribution in rice grains is also mirrored in the differences between 

brown and white (polished) rice where the bran and embryo are removed from the 

endosperm. White rice has lower As concentration and higher shares of DMAV compared 

to brown rice (Sun et al., 2008). 
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Figure 3: Arsenic distribution obtained by synchrotron x-ray fluorescence imaging for a 

mature rice grain. Rice plants were treated with a: 5 µM arsenate and b: 5 µM DMAV. The 

color chart displays the fluorescence density indicating high As concentrations by red color 

and the scaling bar equals 500 µm (Zheng et al., 2012).  

The As speciation in rice grains gave first hints, that As-S molecules (AsIII-S complexes and 

DMMTA) can be found in the rice grain, when sophisticated analysis methods were used 

but it was not clear whether these As species were taken up in the rice plant or formed 

inside the plant. Analysis of intact rice grains with synchrotron-based X-ray absorption near 

edge structure (XANES) revealed that trivalent As can be complexed by thiol groups of 

sulfur-rich amino acid oligomers in rice grains (e.g. AsIII-PC-complexes). These complexes 

were most likely formed inside the rice plant and not taken up from the rhizosphere. 

Analyzing the same rice grains with the standardized acidic digestion, the As-S complex 

was destroyed and quantified as arsenite (Lombi et al., 2009; Raab et al., 2004). An 

enzyme-based extraction method used to quantify bioavailable As detected DMMTA in 

several rice grains and further tests showed that DMMTA is transformed to DMAV during 

acidic digestion (Mantha et al., 2017). If thioarsenates occur in the paddy soil pore-water, 

DMMTA might be taken up directly and transported to the rice grains but neither the 

occurrence of DMMTA in soil pore-water nor the plant uptake was investigated until now. 

The quantification of DMAV instead of DMMTA is problematic especially as regulatory 

guidelines in Europe and China exempted organic As from their threshold values due to the 

lower toxicity compared to inorganic As. DMMTA, in contrast to DMAV, is considered as 

a 

b 
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toxic as arsenite (Naranmandura et al., 2007) but not taken into account for consumer safety 

using the standard acidic digestion.  

Based on the data from several market surveys around the world, the total As concentration 

in rice grains can reach from a few up to more than 800 µg/kg. Inorganic As species 

contribute between 10 to 100% of total As with the remaining 0 to 90% being DMAV (Zhao 

et al., 2013). The As speciation showed different patterns between countries or continents 

with a higher share of inorganic As in Asia, similar shares of organic and inorganic As in 

Europe and highest shares of organic As in the USA. Rice grains from the USA and Europe 

often show decreasing percentage of inorganic As when the total As concentrations 

increased, however, no such trend is found in Asian rice samples (Zhao et al., 2013). The 

large regional variability could be either due to regional differences in planted rice varieties 

(genetic differences) or to differences in environmental conditions, especially different soil 

types. Several studies investigated the same rice variety growing on different soils or 

different rice varieties on the same soil, revealing that soil properties and water-

management have great influence on the As speciation, but genetic differences between 

rice varieties contribute to the different As speciation as well (Norton et al., 2009; Syu et al., 

2015; Zhao et al., 2013). 

1.5. Arsenic mitigation strategies 

Natural background levels of As in soil are sufficient to accumulate As concentrations in rice 

grains that are close to or even above the threshold values in Europe or China, especially 

when rice is intended as baby food (100 µg/kg inorganic As). Several strategies have been 

developed during the last years to mitigate the As uptake and accumulation in rice grains. 

Breeding new rice varieties that naturally take up less As or translocate As less efficiently 

to the grains would be the most effective strategy, however, breeding is a long-lasting and 

expensive process that will not solve the problem on the short-term. Modifying rice plants 

genetically (e.g. disabling certain transporters) could be faster (Clemens and Ma, 2016) but, 

at least in Europe, most consumers would not accept these rice varieties.  

If the rice plants cannot be modified, the second strategy is to lower As concentrations in 

the pore-water and/or to hinder the uptake of As. The major problem of high As 

concentrations in paddy soil pore-water results from the rice cultivation under flooded 

conditions and the release of As during reductive Fe dissolution (see 1.2 for details). 

Changing the water management regime from constantly flooded conditions to altering 

periods of flooding and draining the soil, shows several benefits. Obviously, less irrigation 

water is used and no anoxic conditions are developed over a long period, which hinders Fe 

dissolution and mobilization of As and has the beneficial side effect of lowering methane 

production (Linquist et al., 2015). Grain As accumulation is reduced compared to constantly 
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flooded rice fields (Hu et al., 2015; Somenahally et al., 2011), however, the grain uptake of 

Cadmium (Cd) is increased as Cd mobility increases under oxic conditions (Hu et al., 2015). 

Observed losses in grain yields after draining soils might be another limitation of this 

strategy (Linquist et al., 2015).  

A third method to mitigate the uptake of As in rice grains is additional soil fertilization for 

example with Si or S. Arsenite is taken up accidentally via Si transporters (see 1.3 for 

details) due to the high demand of Si by rice plants. Supplying rice plants with additional Si 

helps to downregulate the Si transporter and less arsenite is taken up (Ma et al., 2006; 

Seyfferth et al., 2016; Teasley et al., 2017). Recent findings show, that the uptake of DMAV 

can be reduced by Si-fertilization as well (Limmer et al., 2018).  

Sulfur-fertilization improves nutrient uptake and rice growth (Crusciol et al., 2013) while 

methane emissions are decreased (Minamikawa et al., 2005; Schütz et al., 1989). 

Compared to Si, S-fertilization decreases As uptake not by direct competition but reduces 

As concentration on the pore-water by enhanced formation of IP (Jia et al., 2015; Saalfield 

and Bostick, 2009) and newly formed Fe minerals (Jia et al., 2015; Saalfield and Bostick, 

2009). Enhanced formation of PCs and arsenite-PC complexes (Dixit et al., 2015; Fan et 

al., 2013; Zhang et al., 2011) can further contribute to lowering the As accumulation in rice 

grains after S-fertilization (Fan et al., 2013), however, S-fertilization could not decrease As 

uptake in grains in Fe rich soils and even increased pore-water As compared to non-

fertilized controls (Boye et al., 2017). These findings show that the results for S-fertilization 

are not fully conclusive, yet. One reason might be that the redox chemistry in paddy fields 

can favor the formation of thioarsenates (see 1.2 for details) and S-fertilization can further 

promote their formation by supplying a highly available S pool. Higher As concentrations in 

pore-water after S-fertilization could, for example, be due to less sorption affinity of inorganic 

thioarsenates to Fe-minerals (Couture et al., 2013; Suess and Planer-Friedrich, 2012). 

Before promoting S-fertilization as an effective mitigation strategy for As uptake in rice 

grains, the role of thioarsenates in paddy soils and their contribution to As uptake in rice 

plants should be evaluated. 

1.6. Objectives 

The main aim of this thesis was to elucidate the role of thioarsenates in paddy soils and 

their uptake, transformation, and translocation in rice plants. Thioarsenates have not been 

reported in paddy soil pore-water so far, although their formation could be expected under 

methanogenic, sulfate-reducing conditions in paddy fields (see 1.2 for detailed explanation). 

Therefore, the first step was to detect thioarsenates in paddy soil pore-water and reveal soil 

parameters that influence their formation. The second step of the current thesis was to 

evaluate whether inorganic and methylated thioarsenates can be taken up, translocated 
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and accumulated by rice plants and whether they are transformed during these processes. 

Finally, the influence of Fe(oxyhydr)oxide minerals on the mobility of methylated 

thioarsenates in the pore-water and the influence of IP on their uptake into rice plants was 

investigated. All these detailed investigations of the behavior of thiolated As species should 

help to improve our understanding of As accumulation in rice with the overall goal to find 

strategies for producing rice with low As in grains.  

The specific objectives presented in this thesis were to:  

(1) investigate the occurrence of inorganic and methylated thioarsenates in paddy 

fields on different scales and identify the governing parameters driving their 

formation (study 1) 

(2) study the transformation of inorganic and methylated thioarsenates by rice plants 

(study 2 and 3) 

(3) evaluate the uptake, accumulation, and translocation of inorganic and 

methylated thioarsenates by rice plants (study 2 and 3) 

(4) investigate the mobility of methylated thioarsenates in presence of IP and 

Fe(oxyhydr)oxide minerals (study 4) 

 

 

 



Methods  

13 
 

2. Methods 

2.1. Experiments for detecting thioarsenates in paddy soil pore-water 

After the first screening for thioarsenates in French and Italian paddy soils in August 2016, 

the occurrence of thioarsenates was studied in detail during the whole growing season 

(mesocosms) and for different soil types (incubations). The first screening revealed 

problems with poor recovery for As speciation and an improved method for sample 

stabilization was developed. Iron in pore-water samples for As speciation was complexed 

with 10 mM (DTPA diethylenetriaminepentaacetic acid) (neutralized to pH 7.5), flash-frozen 

and stored at -20°C until analysis by ion-chromatography coupled to inductively coupled 

plasma mass spectrometry (IC-ICP-MS). Basic soil parameters including pH, 0.5 M HCl-

extractable Fe, total As, C, and N were determined for all paddy soils used in further 

experiments.  

The two Italian paddy soils (Fornazzo and Veronica soil) selected for mesocosm 

experiments contained the highest concentrations of thioarsenates during the first 

screening. Twelve 0.82 m² containers were filled with each od the soils and installed at the 

rice research center Ente Nazionale Risi in Italy. All mesocosms were fertilized and 

amended with rice straw according to agronomic practice in Italy. Additionally, half the 

mesocosms were fertilized with sulfate and either dry or water seeded with rice seeds 

(Oryza sativa L. cv. Selenio). Pore-water in mesocosms was sampled using micro rhizon 

samplers (Rhizon MOM, Rhizosphere Research Products, The Netherlands) at seven rice 

growing stages (tillering, stem elongation, flowering, grain filling, dough, and mature stage). 

General pore-water parameters (pH, EH, conductivity, DIC, DOC, FeII, and total As) were 

determined and the As-speciation was stabilized and analyzed as described above.  

Thiolation potential of 31 Chinese paddy soils was evaluated with anaerobic incubations of 

10 g air-dried soil amended with 2.5 mM glucose and 1.5 mM K2SO4 (3 mmol/kg sulfate) or 

without sulfate as a control treatment. After 14 days incubation at room temperature in the 

dark, pore-water was sampled. In addition to As-speciation, the aqueous phase was 

characterized by the following parameters: pH, redox potential, dissolved free sulfide, 

aqueous and soil-bound zero-valent S, total As and Fe. 

2.2. Hydroponic culture 

Hydroponic experiments were conducted with a European rice variety (Oryza sativa L. cv. 

Arelate) and two Chinese rice varieties (Oryza sativa L. cv. Yangdao 6 “YD” and Nongken 

57 “NK”). After germination, rice seedlings were grown in 50 mL tubes (Sarstedt) containing 

a nutrient solution for 20 days (16 h of light and 8 h of darkness at 23°C and 110 µE) and 

the nutrient solution was exchanged bi-weekly to ensure sufficient supply with nutrients. 
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For some plants, IP formation was induced at 14-days-old plants by replacing chelated Fe 

in nutrient solution with 100 mg/L FeIICl2 (Sigma-Aldrich) and reducing the phosphate 

concentration to 1/20. The nutrient solution was exchanged daily for the following 7 days to 

ensure sufficient supply with FeII and nutrients. The IP composition was analyzed by micro-

focused X-ray diffractometer (µ-XRD, Bruker, D8 DISCOVER). 

2.3. Transformation of thioarsenates  

To determine the species transformation of (methylated) thioarsenates in the nutrient 

solution, 20-day-old plants were exposed to 10 µM arsenate, MTA, MMAV, MMMTA, DMAV, 

or DMMTA for 24 h and sub-samples for As-speciation were taken over time. Abiotic 

oxidation by oxygen was tested for 10 µM of MTA, MMMTA, or DMMTA by purging As 

spiked nutrient solutions with pressurized air (≈40 mM O2/h) for 24 h. All samples for As-

speciation were flash-frozen and stored at -20°C until analysis by IC-ICP-MS unless stated 

otherwise. 

Further, crude protein extracts were used to evaluate whether the transformation of 

(methylated) thioarsenates could be enzymatically driven (Bleeker et al., 2006; Duan et al., 

2005; Wu et al., 2002). Proteins were extracted from flash-frozen rice roots using a protein 

buffer. As species transformation in crude protein extracts was studied by spiking 500 µL 

root protein extract with 3.33 µM MMMTA, DMMTA, or MTA under anoxic atmosphere 

(glovebox) and analyzing sacrifice samples over 120 min immediately by IC-ICP-MS. To 

account for matrix effects, As spiked protein buffer and denaturated protein extracts were 

analyzed as well. 

2.4. Uptake and translocation of thioarsenates 

Toxicity of arsenate, arsenite, and MTA was determined by obtaining growth inhibition 

curves for 5-225 µM As during a 20-day growth period at two phosphate concentrations (1.8 

and 0.9 mM P). A three-parameter-log-logistic dose-response model (Sigma plot) and IC50 

values were derived from the relative root and shoot lengths, as well as seedling fresh 

weights. 

As-speciation in xylem sap was analyzed by IC-ICP-MS after rice plants were exposed to 

10 µM arsenate, MTA, MMAV, MMMTA, DMAV, or DMMTA for 24 h. Therefore, plants were 

cut 2 cm above the roots with a sharp blade and xylem was sampled for 1.5 h into a diluted 

ice-cold phosphate buffer saline (PBS, 2 mM NaH2PO4 (Grüssing) + 0.2 mM Na2-EDTA 

(Grüssing); pH 6.0 (Xu et al., 2007)). 

After testing the stability of MTA in different extractants and evaluating their extraction 

efficiency, a new method for MTA extraction in plant tissue was developed. Therefore, plant 

material was flash-frozen and ground in liquid nitrogen before 0.01-0.06 g was extracted in 
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1.5 mL PBS (Xu et al., 2007). The samples were boiled for 5 min to reduce MTA 

transformation, before vortexing them for 55 min under anoxic conditions inside a glovebox. 

The As speciation was analyzed immediately after extraction by IC-ICP-MS. 

Uptake and translocation of 10 µM arsenate, MTA, MMAV, MMMTA, DMAV, or DMMTA in 

rice roots and shoots was studied over 72 h. After exposure to As, roots were washed with 

1 mM KH2PO4, 5 mM Ca(NO3)2, 5 mM MES for 10 min to remove As sorbed to root surface 

(Xu et al., 2007). Additional uptake experiments were conducted for rice plants covered with 

and without IP, exposing the plants to 10 µM MMAV, MMMTA, DMAV, or DMMTA for 8 h. 

Total As concentrations of all samples were determined by ICP-MS after microwave 

digestion (0.01-0.08 g plant material was digested in concentrated HNO3 and 30% H2O2 

(ratio 1.5:1) using a CEM Mars 5 microwave digestion system (CEM Corp., Matthews, NC). 

For rice seedlings exposed to arsenate and MTA, the As speciation was analyzed by IC-

ICP-MS using the newly developed method. Translocation factors from roots to shoots were 

calculated (As-shoot/As-root).  

2.5. Sorption of thioarsenates to Fe-minerals 

Laboratory sorption experiments of methylated thioarsenates on goethite and ferrihydrite, 

the two most common components of IP, were conducted under anoxic conditions. After 

pre-equilibration for 16 h, MMAV, MMMTA, DMAV, or DMMTA were spiked to goethite or 

ferrihydrite and equilibrated. Samples for As speciation and total As (stabilized with 2.5% 7 

M HNO3) were taken after centrifuging for 5 min (5000 rpm; Hettich) and the pH was 

measured in the remaining samples. Three different sorption experiments were conducted. 

First, the kinetic sorption was evaluated by spiking 5 µM MMAV, MMMTA, DMAV, or DMMTA 

at pH 6.5 to both minerals and taking sacrifice samples over 72 h. Sorption isotherms were 

obtained at pH 6.5 by spiking 0.5-500 µM MMAV, MMMTA, DMAV, or DMMTA to mineral 

suspensions and equilibration for 2 h. The pH-dependent sorption was determined by 

spiking 5 µM MMAV, MMMTA, DMAV, or DMMTA at pH 4-12 for 2 h to goethite and 

ferrihydrite. All sorption experiments were conducted in an electrolyte that mimics the 

rhizosphere pore-water (called ARPW, artificial rhizosphere pore-water) and can sustain 

rice plant growth. 

2.6. As-measurements 

Pore-water samples stabilized with DTPA were diluted 1:5 with deionized water prior to 

analysis. Arsenic species for all experiments were analyzed by IC (Dionex ICS-3000) 

coupled to ICP-MS (XSeries2, Thermo-Fisher) using oxygen as reaction gas (AsO+ m/z 91). 

Pore-water and laboratory samples containing (methylated) thioarsenates were separated 

using an AS16 column (Dionex AG/AS16 IonPac column, 2.5−100 mM NaOH, flow rate 1.2 
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mL/min) and 2.4% methanol was added for pore-water samples to enhance detection limits 

(Wallschläger and London, 2008). As speciation in laboratory samples without methylated 

thioarsenates was determined by using a PRP-X100 column (Hamilton, 10 mM NH4NO3, 

10 mM NH4H2PO4 and 500 mg/L Na2-EDTA at a flow rate of 1.0 mL/min) at the IC-ICP-MS 

(Van de Wiele et al., 2010). All samples for determination of total As (AsO+ m/z 91) and Fe 

(Fe+ m/z 56 using -2V kinetic energy discrimination with helium as collision gas) were 

analyzed by ICP-MS and Rhodium (Rh+ m/z 103) was used as an internal standard 

correction for signal drift. 
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3. Results and discussion 

3.1. Occurrence of inorganic and methylated thioarsenates in paddy fields on 

different scales and parameters influencing their formation (study 1) 

Thioarsenates were detected throughout the whole growing cycle in the pore-water of 

mesocosms with and without S-fertilization as well as in all soil incubations regardless of 

the soil type. Up to 19% (4.1% on average; all values calculated as the share of total As) 

thioarsenates and up to 33% (6.5% on average) methylated species were found in the pore-

water of mesocosms during the rice growth (see appendix study 1, Figure 2 and 3). Among 

the thioarsenates, the share of inorganic thioarsenates was higher than that of methylated 

thioarsenates (19 compared to 8.2%, respectively). Additionally, the thiolation and 

methylation potential of paddy soils was determined in soil incubation experiments, without 

rice plants to eliminate additional effects of As uptake and changing redox-conditions by 

ROL. There, the maximum share of total thiolation with 56% (9.6% on average) and total 

methylation with 38% (7.5% on average) was higher than in mesocosms (study 1, Figure 

4). Similar to the mesocosms, more inorganic thioarsenates were found compared to 

methylated thioarsenates (40 compared to 32%, respectively).  

Both field and lab experiments revealed that thioarsenates could occur in paddy soil pore-

water; however, parameters driving their formation were unknown until now. Our results 

showed that inorganic and methylated thioarsenates have to be evaluated separately as 

their formation is influenced by different parameters. Alkaline soil pH and soil zero-valent S 

showed a positive correlation with the formation of inorganic thioarsenates, while the share 

of methylated oxyarsenates and acidic soil pH showed the best correlation with the 

formation of methylated thioarsenates (study 1, Figure 4). Soil bound zero-valent S was 

shown to control the formation of inorganic thioarsenates in terrestrial low sulfide 

environments (Besold et al., 2018; Planer-Friedrich et al., 2018) and soil zero-valent S 

increased with soil pH in our experiments. The positive correlation of soil pH and formation 

of inorganic thioarsenates was therefore mainly caused by the strong correlation between 

soil pH and soil zero-valent S, mirrored in our data where zero-valent S predicted the 

formation of inorganic thioarsenates best. The pedogenic (0.5 M HCl-extractable) Fe had 

little influence on the formation of inorganic thioarsenates because only low concentrations 

of Fe were dissolved due to the high pH (study 1, Figure 4). 

In contrast to inorganic thioarsenates, the formation of methylated thioarsenates was mainly 

correlated to the share of methylated oxyarsenates. Acidic soil pH was enhancing the 

formation of methylated oxyarsenates that are preferably formed at pH 3.5 to 5.5 (Baker et 

al., 1983) and additionally enhanced the formation of methylated thioarsenates as they are 
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formed under acidic pH by a nucleophilic attack of reduced S to the As atom (Conklin et al., 

2008). However, the influence of pedogenic Fe was greater on methylated than on inorganic 

thioarsenates, as more Fe was soluble at low pH. Moreover, low total As concentrations in 

soil were a powerful predictor for high (thio)methylation because only the absolute 

concentrations of inorganic As species increased with increasing soil As and the share of 

(thio)methylated As species stayed constant (study 1, Figure 4). 

Besides the natural soil properties discussed above, As concentrations and thiolation were 

further influenced by S-fertilization. Sulfur-fertilization in mesocosms decreased the total 

pore-water As compared to treatments without additional S (study 1, Figure 2), which is in 

line with previously published data (Jia et al., 2015; Saalfield and Bostick, 2009). Additional 

sulfate stimulated SRBs and with this enhanced the sulfide production and formation of Fe-

minerals (Jia et al., 2015; Saalfield and Bostick, 2009). Newly formed FeIIFeIII or FeS 

minerals were sinks for especially inorganic As species while inorganic and methylated 

thioarsenates, as well as methylated oxyarsenates sorbed to a lower extent and their 

relative contribution to total pore-water As increased with S-fertilization (see study 4 for 

discussion about sorption to Fe minerals). Additionally, S-fertilization enhanced the As 

thiolation because more zero-valent S was available and the pore-water Fe concentration, 

as well as the redox potential, were decreased. The effects of S-fertilization were most 

pronounced in soils with very low zero-valent S. One of these soils was the Italian soil 

Veronica used for mesocosms and lab incubations. There, S-fertilization increased zero-

valent S by 49% compared with non-fertilized soil and total thiolation increased from 28.7 

to 56.1% in incubation and from 1.9 to 6.2% in mesocosms. The second Italian soil, 

Fornazzo, had a higher zero-valent S concentration and S-fertilization increased the soil-

bound zero-valent S only by 13%. Sulfur-fertilization did not increase the As thiolation in this 

soil (study 1, Figure 3 and 4).  

3.2. Transformation of inorganic and methylated thioarsenates by rice plants (study 

2 and 3) 

After we detected thioarsenates and proved their importance in paddy fields (study 1), we 

were interested in their transformation and uptake by rice plants. To investigate the 

interaction of thioarsenates with rice plants, we conducted all further experiments in 

hydroponic culture to simplify the system and amended the nutrient solution with 

thioarsenates. We selected the inorganic species MTA and the two methylated 

thioarsenates MMMTA and DMMTA as model compounds that were synthesized in our lab. 

In first experiments, we monitored the As speciation in nutrient solution spiked with 

thioarsenates over time to estimate whether the As species can be transformed by rice 
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plants (via uptake or by ROL). We could show that all rice cultivars transformed MTA to 

arsenite or arsenate while MTA remained stable in the control treatment without plants (Kerl 

et al., 2018; Kerl et al., 2019). Surprisingly, different compositions of the nutrient solutions 

in study 2 (without phosphate and only 50% Fe) and 3 (complete nutrient solution) led to 

MTA transformation either to arsenite (study 2, Figure 4) or to mainly arsenate (study 3, 

Figure 2). Additional tests without plants revealed that higher phosphate and Fe 

concentrations could slightly increase the oxidation of arsenite to arsenate but it remained 

unclear whether this could explain the observed differences in MTA transformation. Based 

on knowledge about arsenate reduction to arsenite and arsenite efflux by plants as part of 

their As detoxification process (Xu et al., 2007; Zhao et al., 2009), the transformation of 

MTA to arsenite instead of arsenate was more likely. We further analyzed the As speciation 

in crude protein extracts of rice roots to separate the processes and interactions of the 

nutrient solution from the reactions inside the rice roots. Crude protein extracts transformed 

MTA to arsenite rapidly in all cultivars, while MTA remained stable in denatured crude 

protein extracts (study 3, Figure 3). Our results were explained best by an enzymatic 

transformation of MTA to arsenite inside rice roots similar to the reduction of arsenate to 

arsenite by HAC-family enzymes (Shi et al., 2016; Xu et al., 2017). However, up to now, no 

enzyme is known that can reduce MTA to arsenite and further studies need to identify the 

responsible enzyme. 

Both methylated thioarsenates were transformed by rice plants when they were spiked to 

the nutrient solution, but the underlying mechanisms were different from the enzymatic 

transformation of MTA. Rice plants transformed MMMTA, present in the nutrient solution, 

faster to MMAV than in the control treatment without plants (study 3, Figure 2). However, 

MMMTA was stable in crude protein extracts indicating that the transformation from 

MMMTA to MMAV was not driven by enzymes (study 3, Figure 3). Pre-tests revealed that 

MMMTA was sensitive to oxygen and transformed into MMAV when exposed to air (study 

3, Figure 1) (Cullen et al., 2016; Kerl et al., 2019). Rice roots are known to release oxygen 

into the rhizosphere and this ROL most likely transformed MMMTA to MMAV by oxidizing 

the sulfide bound in MMMTA outside the rice root.  

Like MTA and MMMTA, DMMTA was transformed to DMAV by rice plants when spiked to 

the nutrient solution, while the control without rice plants remained stable (study 3, Figure 

2). Transformation of DMMTA in crude protein extracts was not significantly different from 

the transformations found in denatured controls (study 3, Figure 3). Further tests showed 

that DMMTA was disproportionated to DMAV and DMDTA in the protein buffer without root 

material. A similar reaction was observed before where DMMTA disproportionated 

abiotically in the presence of glutathione (GSH) to DMAIII and DMDTA under neutral to basic 
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conditions and to DMAIII-GSH and DMDTA under acidic conditions (Raab et al., 2007b; 

Suzuki et al., 2008). Our protein buffer contained dithiothreitol (DTT) instead of GSH, but 

tests with DTT revealed that DMMTA was disproportionated to DMAV and DMDTA in its 

presence as well. Compared to the enzymatic transformation of MTA and the oxidation of 

MMMTA by ROL, DMMTA was most likely transformed abiotically by the root matrix for 

example by disproportionation of DMMTA to DMDTA and DMAIII in the presence of GSH 

under neutral and slightly alkaline conditions as they occur in cytoplasm (pH 7.5) (Suzuki et 

al., 2008). 

3.3. Uptake, accumulation and translocation of inorganic and methylated 

thioarsenates by rice plants (study 2 and 3) 

The results of As species transformation in the nutrient solution gave first evidence that 

thioarsenates were taken up by rice plants, however, the direct proof of thioarsenate uptake 

in plants was still missing. Growth inhibition curves of rice seedlings with MTA in comparison 

to arsenite and arsenate revealed that MTA (IC50: 50 µM for shoot weight) was at least as 

toxic as arsenate (IC50: 190 µM) but less toxic than arsenite (IC50: 4 µM) and these results 

were additional evidence for MTA uptake (study 2, Figure 3) (Kerl et al., 2018). Similar 

toxicity of As species was found before for A. thaliana (arsenite>MTA>arsenate) indicating 

that MTA is toxic for different plant families (Planer-Friedrich et al., 2017).  

The first direct evidence for uptake of thioarsenates in rice plants was found when xylem 

sap of rice plants exposed to thioarsenates was sampled. Up to 20±5% MTA, 18±1% 

MMMTA, and 7±1% DMMTA were detected in the xylem sap proving that these species 

were taken up intact by the rice roots and at least partially transported in the xylem (study 

2, Figure 5 and study 3, Figure 4) (Kerl et al., 2018; Kerl et al., 2019). For MTA, we 

additionally developed an extraction method with which we can determine the As speciation 

in shoots and roots and found 12-19% MTA in roots and 4% MTA in shoots, respectively 

(study 2, Figure 6) (Kerl et al., 2018). 

After we proved that MTA, MMMTA, and DMMTA were directly taken up and transported in 

the xylem, the next step was to quantify the accumulation and translocation of total As in 

roots and shoots when 20-day-old rice plants were exposed to 10 µM thioarsenates. Rice 

roots accumulated most total As (after 72 h) in plants when exposed to MMMTA (220±27 

µmol/kg), MMAV (146±5 µmol/kg), and DMMTA (130±22 µmol/kg), less total As when plants 

were exposed to MTA (57±2 µmol/kg) or DMAV (14±1 µmol/kg). The order of total As 

accumulation in shoots was different and most As was taken up when plants were exposed 

to DMMTA (44±6 µmol/kg), followed by MTA (40±7 µmol/kg), MMMTA (17±8 µmol/kg), 

MMAV (10±1 µmol/kg) and DMAV (9±3 µmol/kg) (study 2, Figure 6 and study 3, Figure 5). 
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Combining the results from roots and shoots, the following root-to-shoot translocation 

factors were calculated: DMAV (0.61±0.15) = MTA (0.55±0.14) ≈ DMMTA (0.34±0.03) > 

MMMTA (0.08±0.03) = MMAV (0.07±0.01) (Kerl et al., 2018; Kerl et al., 2019). 

Our results showed that uptake, accumulation, and translocation of thioarsenates were 

different from their non-thiolated analogs. Compared to organic and inorganic As (arsenate, 

arsenite, MMAV, and DMAV) which were studied intensively during the past, no information 

about uptake mechanisms, involved enzymes, or transporters was available for 

(methylated) thioarsenates. Arsenate (pKa1 2.2; pKa2 6.9), phosphate (pKa1 2.2; pKa2 7.2), 

and MTA (pKa1 3.3; pKa2 7.3) are structural analogs and the structural similarity 

inadvertently leads to arsenate uptake via phosphate transporters (Cao et al., 2017; 

Clemens and Ma, 2016; Wu et al., 2011). Our growth inhibition experiments showed that 

reduced phosphate concentrations in the nutrient solution increased the MTA toxicity for 

rice seedlings (IC50: 50 µM compared to 7.5 µM) similar like for arsenate (IC50: 190 µM 

compared to 25 µM; study 2, Figure 3) (Kerl et al., 2018). Hence, the increased MTA toxicity 

with reduced phosphate concentration could be indirect evidence that MTA was taken up 

through phosphate transporters as well.  

Compared to the anions arsenate, phosphate, and MTA, both MMAV (pKa1 4.2) and DMAV 

(pKa1 6.1) are taken up as non-charged molecules by the aquaporin channel OsNIP2;1 (Li 

et al., 2009). Depending on the pH in nutrient solution or pore-water (pH 5 for our 

experiments or in paddy soil pore-water 6.5-7), dissociated MMAV and DMAV become 

dominant at higher pHs and their uptake decreases with increasing pH (Li et al., 2009). No 

uptake transporter for methylated thioarsenates is known until now. Theoretical 

assumptions about a possible uptake transporter for methylated thioarsenates were more 

difficult than for MTA because no pKa values were determined for MMMTA and DMMTA, 

yet. Nevertheless, the chromatographic behavior of DMMTA led to the assumption that the 

pKa1 for DMMTA is between 6-7 and MMMTA might be similar to MMAV (Raml et al., 2006). 

Uptake as non-charged molecules via aquaporin channels could be possible for both, 

MMMTA and DMMTA. However, systematic uptake experiments with varying composition 

of the nutrient solution are needed to identify possible transporters and additionally 

knockout mutants could be used to verify the uptake through a selected transporter. 

Once phytotoxic As species are taken up into the rice root, the rice plant has two major 

defense mechanisms to avoid As transport and accumulation in shoots and grains. One 

mechanism is the efflux of As species out of the plant root and the other mechanism is As 

complexation and sequestration in root vacuoles. Both mechanism were discovered before 

for inorganic and organic As species, but no information was available about thioarsenates 

so far.  
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The first step in the detoxification of arsenate is its reduction to arsenite by enzymes from 

the HAC-family (Shi et al., 2016; Xu et al., 2017). This step is necessary because only 

arsenite can be efflux out of root cells via aquaporins (Zhao et al., 2009) or complexed by 

phytochelatins (PC) and further stored in root vacuoles (Clemens, 2006; Mendoza-Cozatl 

et al., 2011; Pickering et al., 2000; Verbruggen et al., 2009). Our results monitoring the MTA 

transformation in crude protein showed that MTA was rapidly reduced to arsenite, which 

could be complexed as AsIII-PC in root vacuoles (study 3, Figure 3). We did not quantify the 

amount of PCs that were induced after exposure to thioarsenates, but previous experiments 

revealed that A. thaliana synthesized PCs after exposure to MTA (Planer-Friedrich et al., 

2017). Whether MTA could be directly complexed by PC for example as MTAIII-PC is still 

unknown. Taking the As translocation and accumulation in shoots into account, we found 

higher translocation and accumulation for MTA than for arsenate exposed plants (study 2, 

Figure 6). This clearly showed that the detoxification of MTA is at least partly different from 

arsenate. Possible reasons for the observed differences could be that enzymes responsible 

for MTA reduction to arsenite were spatially separated in root tissue from arsenite PC 

complexation and were, therefore, less efficient in trapping MTA in root vacuoles compared 

to arsenate/arsenite. With this, MTA could be loaded to the xylem more efficiently and 

transported to the shoots. 

The detoxification of MMAV is similar to arsenate and involves the reduction of the 

pentavalent MMAV to MMAIII, which can then be complexed by PCs as MMAIII-PC before its 

sequestration in root vacuoles (Mishra et al., 2017; Raab et al., 2007a). In contrast to MMAV, 

DMAV can not be reduced to its trivalent species and therefore no PC-complexes can be 

formed (Raab et al., 2007a). Our results for MMAV and DMAV uptake, accumulation, and 

translocation were in line with previous studies, showing that most MMAV is sequestered in 

roots and only few As is translocated or accumulated in shoots, while DMAV concentrations 

were low in roots but translocation and accumulation in shoots were high (study 3, Figure 

5) (Mishra et al., 2017; Raab et al., 2007a).  

No detoxification mechanisms for methylated thioarsenates are known, yet. Taking all our 

results obtained for MMMTA into account, high As concentrations in roots indicated that 

MMMTA could be sequestered in roots cells similar to MMAV. However, the results from 

crude protein extracts showed that MMMTA was not transformed to MMAV by root protein 

and the formation of a so far unknown MMMTA-PC complex would be necessary for 

sequestration (study 3, Figure 3). Another possibility is that MMMTA was partly transformed 

to MMAV by ROL outside the root and then taken up as MMAV. Translocation and 

accumulation in shoots were similar for MMMTA and MMAV indicating that the detoxification 

processes might be comparable (study 3, Figure 5). Our results showed greater differences 
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between DMMTA and DMAV than for MMMTA and MMAV. Plants exposed to DMMTA had 

about 10 times more As in roots than plants exposed to DMAV which could result from higher 

As uptake and /or higher As sequestration in roots (study 3, Figure 5). Similar to DMAV, no 

PC complex has been reported for DMMTA but Brassica oleracea exposed to DMAV 

contained a DMMTA-GSH complex (Raab et al., 2007b), however, no information about 

possible sequestration of this complex in root cells is available. Although DMMTA exposed 

plants accumulated high As concentrations in roots, translocation, as well as accumulation 

in shoots, was high, too, which is contradicting a quantitative complexation by thiols 

especially as the total As content in shoots was highest for plants exposed to DMMTA. 

3.4. Mobility of methylated thioarsenates in presence of iron plaque and 

Fe(oxyhydr)oxide minerals (study 4) 

The first three studies presented in this thesis revealed that thiolated arsenic species are 

occurring in paddy field pore-water over the whole growing season and under a broad 

variety of soil types and conditions (study 1) from where they are taken up by rice plants 

and transported further to the shoots (Kerl et al., 2018; Kerl et al., 2019). Sulfur-fertilization, 

applied to rice fields to reduce grain As content, enhanced the formation Fe-minerals and 

IP (Fan et al., 2013; Hu et al., 2007) and reduced total As concentrations in pore-water. Our 

mesocosm experiments showed an increasing share of methylated and thiolated As species 

after S-fertilization (study 1) which could be caused by preferential sorption of inorganic As 

species to the newly formed Fe-minerals and greater mobility of methylated and thiolated 

As species. Greater mobility of methylated oxyarsenates and inorganic thioarsenates was 

already shown in the presence of Fe(oxyhydr)oxide (Couture et al., 2013; Lafferty and 

Loeppert, 2005; Suess and Planer-Friedrich, 2012). Therefore, our aim was to get new 

insight into the sorption behavior of methylated thioarsenates to Fe(oxyhydr)oxide or IP and 

whether IP could act as a barrier for uptake of methylated thioarsenates into rice plants. 

Uptake experiments with 20-day-old plants revealed that IP (mainly goethite) was no barrier 

for the uptake methylated thioarsenates spiked to the nutrient solution (pH 6.5) when 

comparing the As uptake in shoots to that in rice plants without IP covered roots. Little and 

no net As enrichment was found in IP for MMMTA and DMMTA, respectively and total As 

concentrations in shoots were not decreased for rice plants with IP (compared to plants 

without IP) when exposed to 10 µM MMMTA and DMMTA. In comparison to methylated 

thioarsenates, both methylated oxyarsenates MMAV and DMAV were sequestered in IP 

however, only the accumulation of MMAV in shoots was decreased compared to rice plants 

without IP while DMAV concentrations in shoots were even increased (study 4, Figure 1).  

In order to improve the understanding of the sorption behavior of methylated thioarsenates, 

we conducted sorption experiments with the two synthetic end-members of 
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Fe(oxyhydr)oxides that occur in IP: amorphous ferrihydrite and highly crystalline goethite. 

Highest sorption was found for MMAV both on goethite and on ferrihydrite but sorption to 

ferrihydrite was faster (within 10 min compared to 24 h), higher (30-50 times more), and the 

pH range of complete sorption was larger (pH<7.0 compared to <5.3) compared to goethite 

(study 4, Figure 3 and 4). The general sorption pattern for MMMTA was similar to MMAV, 

however, especially the time-resolved sorption experiment to goethite revealed that sorption 

of MMMTA was slower than that of MMAV (sorption maximum after 48 than 24 h) and 

therefore less MMMTA was sorbed in pH and concentration-dependent short-term 

experiments (study 4, Figure 3 and 4). Compared to MMAV and MMMTA, less DMAV was 

sorbed to goethite and slightly less to ferrihydrite. DMMTA was not sorbed to goethite 

quantitatively at any pH, concentration, or time (study 4, Figure 2, 3, and 4). DMMTA 

sorption to ferrihydrite increased over time to 32% after 72 h but short-term pH and 

concentration-dependent sorption were negligible (study 4, Figure 2). 

Taking the results from all experiments into account, we found that IP was an effective 

barrier, which decreased the MMAV accumulation in shoots by immobilizing MMAV on IP 

(study 4, Figure 1). Sorption of MMAV to mainly goethite containing IP was in line with our 

sorption experiments using synthetic Fe-minerals (study 4, Figure 2, 3, and 4) and 

previously published studies (Kersten and Daus, 2015; Lafferty and Loeppert, 2005). The 

sorption of DMAV was lower to IP and Fe(oxyhydr)oxides but some DMAV was still 

immobilized by IP. Nevertheless, the DMAV accumulation in shoots was even higher when 

plants with IP were compared to plants without IP (study 1, Figure 1). The IP could act as a 

DMAV reservoir where DMAV is bound to Fe via weak outer-sphere complexes instead of 

stronger inner-sphere complexes like for MMAV. Desorption and with this remobilization is 

higher for outer-sphere complexes than for inner-sphere complexes (Adamescu et al., 2010; 

Lafferty and Loeppert, 2005). Mobile DMAV that is taken up by rice plants was not 

sequestered by PC complexation in roots and was translocated to shoots to a greater extent 

than MMAV complexed as MMAIII-PC in root vacuoles which is limiting its translocation to 

shoots (see 3.3 for further details) (Mishra et al., 2017; Raab et al., 2007a). 

The sorption behavior of MMMTA is more complicated than the behavior of MMAV and 

DMAV. Little As was sorbed to IP after MMMTA exposure, which seemed to contradict the 

much higher sorption of MMMTA on synthetic Fe(oxyhydr)oxides (study 4, Figure 1). Taking 

the MMMTA speciation results and the time lag in sorption to goethite into account, we 

propose that MMMTA was transformed to MMAV first and then MMAV was sorbed to the Fe-

minerals (study 4, Figure 2). Results from study 2 and literature showed that oxygen could 

transform MMMTA to MMAV (Cullen et al., 2016; Kerl et al., 2019; Wallschläger and London, 

2008) and additional transformation was expected in presence of FeIII as it is a stronger 

oxidant than oxygen. A continuous transformation of MMMTA to MMAV would explain the 
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time lag in sorption to goethite and the smaller differences between MMMTA and MMAV for 

the sorption to highly reactive ferrihydrite. Low sorption to IP is well explained assuming 

that MMMTA was not directly sorbed to IP, because transformation of MMMTA to MMAV 

was hindered by exchanging the ARPW spiked with MMMTA every 2 h during uptake 

(results from study 2 showed that less than 10% MMMTA are transformed to MMMTA within 

2 h).  

No or very little DMMTA was sorbed to Fe(oxyhydr)oxides and the IP was no barrier for the 

uptake of DMMTA in rice plants (study 4, Figure 1). Similar to MMMTA, direct binding to 

Fe(oxyhydr)oxides seemed unlikely for DMMTA especially as one S and two methyl groups 

could hinder the binding sterically. DMMTA was more stable against oxidation compared to 

MMMTA and therefore less transformation to DMAV was expected in the presence of 

oxygen or FeIII (Kerl et al., 2019; Kim et al., 2016), explaining its poor sorption. Slightly 

higher sorption to highly reactive ferrihydrite than to crystalline goethite might be due to 

faster DMMTA transformation to DMAV with higher surface area and reactivity of amorphous 

ferrihydrite (study 4, Figure 2).  

Similar to inorganic thioarsenates, thiolation also decreased the sorption of methylated As 

species to Fe(oxyhydr)oxides, however, we found no evidence for direct sorption of 

methylated thioarsenates to Fe as it was reported before for inorganic thioarsenates (Burton 

et al., 2013; Couture et al., 2013; Suess and Planer-Friedrich, 2012). The extent of As 

sorption to IP in paddy fields is dependent on multiple factors that can de- or increase the 

sorption compared to the standardized lab experiments. Rice roots releasing oxygen in the 

rhizosphere will transform more oxygen-sensitive MMMTA to MMAV than stabile DMMTA to 

DMAV resulting in a higher mobility of DMMTA. Sulfate-reducing conditions in the 

rhizosphere sustain the precipitation of amorphous FeS, which could scavenge additional 

As from the pore-water. Unintended FeS precipitation during sorption experiments with 

more than 100 µM MMMTA (10-fold sulfide excess remaining after synthesis) revealed that 

at least MMMTA was sequestered through this mechanism, too (study 4, Figure 3). Another 

factor that had a great influence on the sorption of MMAV, MMMTA, and DMAV was the 

crystallinity of the Fe(oxyhydr)oxides. Natural iron plaque consisting mainly of ferrihydrite 

might increase sorption (30-50 times in our experiments) compared to our goethite rich IP, 

however, the sorption of DMMTA would not increase significantly in the presence of 

ferrihydrite (study 4, Figure 3). Besides these factors increasing the sorption to IP, 

experiments showed that competing ions, such as phosphate or sulfate decreased the 

sorption of methylated As species (Lafferty and Loeppert, 2005) and indirectly methylated 

thioarsenates. Increasing pH significantly reduced the sorption of methylated As species to 

Fe(oxyhydr)oxides. Our experiments were conducted at pH 6.5, which is the minimum of 

pH values occurring in paddy fields and a slight increase from 6.5 to 7 decreased the 
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sorption already by around 30% for MMMTA and MMAV and by around 20% for DMAV on 

goethite (study 4, Figure 4). In order to disentangle the contribution of these different 

parameters hindering or enhancing the sorption of methylated thioarsenates, pore-water 

and IP of soil-grown rice plants will need to be monitored on a temporal and special scale.  
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4. Conclusion 

Arsenic accumulation in rice grain is a well-known and intensively studied problem, 

however, past studies focused on inorganic and methylated arsenic species although the 

occurrence of thiolated arsenic species seemed highly plausible under sulfate-reducing 

conditions in flooded paddy fields. The present thesis aimed therefore to elucidate the role 

of thioarsenates in paddy soils and their uptake, transformation, and translocation in rice 

plants. A more detailed understanding of the As speciation in paddy field pore-water and 

rice plants will help to evaluate challenges or benefits of new strategies for producing low-

level As rice grains (e.g. S-fertilization, water-management). 

Methylated and inorganic thioarsenates could be determined in the pore-water of paddy 

soils form a large variety of soil types and throughout the whole rice-growing season (study 

1). Thiolation of As species was a common process in paddy field pore-water with similar 

shares of thioarsenates and methylated oxyarsenates, revealing their importance for further 

investigations. Inadequate sample stabilization (e.g. HCl) or chromatographic separation 

methods (e.g. neutral pH) hindered the detection of thioarsenates in previous studies. Lab 

incubations, that determined the thiolation potential of soils, clearly showed that the soil pH 

was an effective predictor for the formation of inorganic or methylated thioarsenates. 

Inorganic thioarsenates were mainly formed at alkaline pH from arsenite via OH- and SH- 

ligand exchange and addition to zero-valent sulfur (Figure 4a). Methylated thioarsenates, in 

contrast, formed from methylated oxyarsenates via nucleophilic ligand exchange of OH- and 

SH- groups under acidic pH (Figure 4a). Natural S contents in paddy soils were sufficient 

for the formation of thioarsenates, however, additional S-fertilization promoted thiolation and 

methylation further. Beneficial effects of S-fertilization were detected when total As 

concentration in pore-water was decreased after fertilization, especially when the soil was 

low in zero-valent S. Even though the total As in pore-water was decreased, the share of 

methylated and thiolated As species was increased in the pore water. Sulfur-fertilization is 

known to increase the formation of Fe-minerals and IP along rice roots. Inorganic As, 

especially arsenate, has a high sorption affinity to Fe-minerals while methylated 

oxyarsenates and inorganic thioarsenates showed less sorption affinity. Sorption 

experiments with methylated thioarsenates revealed that these As species had very low 

sorption affinity to Fe(oxyhydr)oxides, especially to highly crystalline goethite (Figure 4b; 

study 4).  
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Figure 4 a: Summarized and simplified formation of inorganic thioarsenates (Planer-

Friedrich et al., 2015) and methylated thioarsenates (Fan et al., 2018) in paddy soils. b: 

Uptake of thioarsenates in roots and shoots of rice plants without IP compared to the As 

uptake in shoots for rice plants covered with IP (no data for the MTA uptake available). 

Stability of methylated thioarsenates in the presence of oxygen and ferric Fe and sorption 

of thioarsenates to IP (goethite and ferrihydrite) and the resulting As mobility in the pore-

water (Kerl et al., 2018; Kerl et al., 2019). 

After detecting thioarsenates in paddy soils, their interaction with rice plants was evaluated. 

Hydroponic studies showed that inorganic and methylated thioarsenates were taken up by 

rice plants and were partly transported in the xylem and partly transformed to their non-

thiolated analogs (study 2 and 3, Figure 4b). Different transformation pathways and 

accumulation patterns were identified for the individual thioarsenates. Monothioarsenate 

was taken up, possibly by a phosphate transporter and rapidly transformed to arsenite by a 

so far unknown enzyme in rice roots. Although most MTA was transformed to arsenite in 

roots, the remaining MTA could be detected in the xylem, roots, and shoots of rice plants 

and MTA translocation from roots to shoots was higher than for the non-thiolated analog 

arsenate (Figure 4b). The exact mechanisms and enzymes or transporters involved in MTA 

uptake, reduction, and translocation are still unknown but the results from this thesis clearly 

showed the different behavior of MTA and arsenate and the need for identification of the 

involved transporters and reductases.  

Both methylated thioarsenates behaved differently from MTA in rice plants. The oxygen-

sensitive MMMTA was partly transformed to MMAV by ROL prior to uptake, but no 

transformation of MMMTA to MMAV was detected inside roots. Speciation of xylem sap 
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proved that MMMTA was taken up into rice plants by a so far unknown transporter and that 

it could be partly translocated from roots to shoots. The As uptake and translocation of 

plants exposed to MMMTA was similar to its non-thiolated analog MMAV. Both As species 

were efficiently sequestered in rice roots and few As was translocated to shoots, however 

the exact mechanisms for MMMTA are unknown similar to MTA (Figure 4b).  

DMMTA was taken up into rice roots by an unknown transporter and partly transformed to 

DMAV inside roots and partly transported in the xylem. Different from MTA and MMMTA, 

DMMTA was not transformed enzymatically or by ROL but disproportionated chemically in 

the presence of GSH to DMAIII and DMDTA. Plants exposed to DMMTA accumulated more 

As in roots and shoots than plants exposed to the non-thiolated analog DMAV leading to the 

highest As accumulation in shoots and could possibly contribute to a high As accumulation 

in rice grains (Figure 4b). 

The increasing share of methylated and thiolated As species in pore-water after S-

fertilization in mesocosms indicated that these species were more mobile in the rhizosphere 

and the hydroponic studies showed that these species were taken up by rice plants and 

increased shoot accumulation of As. Therefore, the sorption behavior of MMMTA and 

DMMTA on Fe-minerals was tested and IP was evaluated as a possible barrier limiting their 

uptake in rice plants. The IP, containing mostly goethite, was no barrier for the MMMTA and 

DMMTA uptake in rice roots as methylated thioarsenates were not directly sorbed to IP but 

had to be transformed to the corresponding methylated oxyarsenates first (Figure 4b; study 

4). The more detailed sorption experiments with goethite and ferrihydrite revealed that 

thiolation of methylated As species decreased sorption kinetics and lowered the extent of 

sorption because transformation to the methylated oxyarsenates was necessary prior to 

sorption. Especially, the DMMTA transformation to DMAV was very slow resulting in poor 

sorption of DMMTA to Fe(oxyhydr)oxides and higher mobility of DMMTA than any other As 

species tested.  

The four studies of this thesis revealed that thioarsenates were formed in paddy soils and 

were more mobile (especially DMMTA) in the pore-water due to their lower sorption affinity 

to Fe(oxyhydr)oxides. The more mobile thioarsenates were taken up by rice plants, where 

especially MTA and DMMTA increased the total As translocation to above-ground biomass. 

However, the most important question for rice consumers is whether any toxic thioarsenates 

can reach the rice grain and if thioarsenate accumulation increases the uptake of total As 

in rice grains. Accumulation of MTA or MMMTA in rice grains is less critical because MMAV, 

the transformation product to MMMTA during sample digestion, is typically only found in 

traces in rice grains and arsenite and arsenate, the MTA transformation products, are 

regulated in the guideline values. 
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Highly toxic DMMTA is the As species of greatest concern since it was already detected in 

rice grains. Routine acidic sample digestion transforms DMMTA, which is then quantified 

as less toxic DMAV and therefore excluded from the food guidelines. The contribution of 

thioarsenate uptake to total As accumulation in rice grains remains unclear up to now and 

more studies are needed that identify involved transporters and enzymes. Before S-

fertilization is further advertised as beneficial for reducing inorganic As in rice grains, the 

contribution of thioarsenates, especially DMMTA, in grains should be further investigated. 

Therefore, sample stabilization and analytical methods have to be adapted to account for 

thioarsenates and the exemption of organic As from the food guidelines should be 

reevaluated.  

Future rice production will face challenges such as the need to lower methane emissions, 

or save water, and adopt management to changing climate, besides lowering the 

concentrations of toxicants (As, Cd, Pb) in rice grains. To fulfill all these demands, one 

management strategy might not be enough, as most mitigation strategies have undesired 

side effects (yield loss, Cd increase, thioarsenates formation). Preliminary data from 

combined S-fertilization with alternate wetting and drying showed quite promising results 

that addressed most challenges (reduces grain As and Cd, formation of thioarsenates, 

methane production, water use) and might be an interesting option for the future. 
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ABSTRACT: The accumulation of carcinogenic arsenic in rice, the main staple crop in the world, represents a health threat

to millions of people. The speciation of arsenic controls its mobility and bioavailability, and therefore its entry into the food

chain. Inorganic and methylated oxyarsenic species have been a focus of research, but arsenic characterization in the field
has largely ignored thioarsenates, in which sulfur takes the place of oxygen. Here, based on field, mesocosm, and soil

incubation studies across multiple paddy soils from rice cultivation areas in Italy, France, and China, we find that
thioarsenates are important arsenic species in paddy-soil pore waters. We observed thioarsenates throughout the cropping

season, with concentrations comparable to the much-better-investigated methylated oxyarsenates. Anaerobic soil
incubations confirmed a large potential for thiolation across a wide diversity of paddy soil types in different climate zones

and with different parent materials. In these incubations, inorganic thioarsenates occurred predominantly where soil pH
exceeded 6.5 and in the presence of zero-valent sulfur. Methylated thioarsenates occurred predominantly at soil pH below

7 and in the presence of their precursors, methylated oxyarsenates. High concentrations of dissolved iron limited arsenic
thiolation. Sulfate fertilization increased thioarsenate formation. It is currently unclear whether thiolation is good or bad for

rice consumption safety. Nevertheless, we highlight thiolation as an important factor to arsenic biogeochemistry in rice
paddies.

INTRODUCTION

Rice is the main staple crop for more than half of the
World´s population. At the same time, it represents a major

dietary source of arsenic (As), a class I carcinogen 1.
Premises for As accumulation in rice grains are its global

occurrence in soils and efficient uptake by rice plants
together with essential nutrients 2, 3, 4. Soil-derived As

becomes plant-available under flooded conditions when

the reductive dissolution of iron (Fe) (oxy)hydroxides and
arsenate reduction release sorbed As 5. Pore-water As

speciation is dominated by inorganic As (arsenite and
arsenate). Microbe-mediated As methylation leads to

formation of mono- (MMA) and dimethylarsenate (DMA)
6 which typically are minor species in pore-waters 7,

although DMA can contribute up to 90% of total As in the
grain due to high root-shoot translocation 8. Current

research on As biogeochemistry in paddy soils mainly has
been focusing on these four oxyarsenic species and it is

well-accepted that As speciation is responsible for its
mobility and bioavailability 9.

Our objective was to reveal whether and to what extent

thioarsenates contribute to As speciation in paddy soil
pore-waters. Thioarsenates are pentavalent As species in

which sulfur (S) replaces oxygen. They form upon reaction
of arsenite with zero-valent S and sulfide (in case of

inorganic thioarsenates) 10, or MMA and DMA with
sulfide (in case of methylated thioarsenates) 11, 12 (Fig. 1).

Thioarsenates typically occur in aquatic environments
with excess dissolved sulfide 13. Just very recently they

have also been detected in low sulfide environments where
thiolation is probably controlled by reactions with reduced

S bound to surfaces of minerals or organic matter 10, 14.

To date, occurrence of thioarsenates in paddy soils has
never been addressed which is only partially a

methodological problem. Routine sample preservation and

many chromatographic separation methods use acids
which transform thioarsenates to arsenite or oxyarsenates
15 or lead to As loss by As-S precipitation 16, so
thioarsenates are plainly overlooked. However, the main

reason for neglectance of thioarsenates is a conceptual
limitation because flooded paddy soils are primarily

regarded as methanogenic environments 17. Sulfate
reduction, though thermodynamically favored relative to

methanogenesis, is often considered insignificant due to
typically low (except for acid sulfate soils) sulfate contents
18, and sulfide reactivity being limited by mackinawite
(FeIIS) precipitation 19. There is, however, evidence for a

“cryptic” S-cycle 18, where sulfide re-oxidation to zero-
valent S is coupled to reduction of Fe(III) (oxy)hydroxides

and formation of mixed FeIIFeIII minerals or pyrite (FeIIS2)
besides Fe2+ 20. Further S oxidation to thiosulfate and

sulfate is coupled to nitrate or oxygen reduction (Fig. 1).
Such a S-cycle sustains high sulfate reduction rates in the

bulk soil and especially the rhizosphere 18. We
hypothesized that low but continuously replenished sulfide

and zero-valent S could promote thioarsenate formation
besides or instead of As scavenging on newly formed Fe
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minerals 21. A similar observation was made in paddy soil

incubation studies where initially sequestered As was

remobilized under sulfidic conditions 22. Thioarsenate

formation was suspected, but no As-S speciation analysis

was done. Sulfate fertilization, recently investigated for its

potential benefits in improving nutrient uptake and rice

growth 23, as well as mitigating methane emissions 24, 25 and

rice As accumulation 26, 27, might further contribute to

thioarsenate formation.

During an initial field survey, we had discovered

thioarsenates while sampling planted paddy fields

covering the main rice cropping areas of the river Po plain

in Italy (soil pH 5.0-6.1, As 5.1-16 mg/kg), and of the

Camargue coastal plain in France (soil pH 7.5-7.6, As

10.4-20.2 mg/kg). Contribution of total thiolation to total

As concentrations was 8.3% at maximum and 2.1% on

average; numbers comparable to those observed for the

much more-commonly-investigated methylated

oxyarsenates (for details see supporting information

section 1, Table S1, Fig. S1-S4).

Key to all further investigations was the development of a

novel sampling and analytical method using

diethylenetriamine-pentaacetic acid (DTPA, 10 mM) to

complex excess dissolved Fe, followed by flash-freezing

for sample preservation, sample dilution and the use of an

adapted eluent for chromatographic separation to avoid

negative effects of high DTPA concentrations such as

retention time shifts, peak splitting, and poor species

resolution. Detection limits of the optimized method were

0.03 µg/L As and recovery rates >80%, which is the

currently by far best available stabilization and analysis

method for detection of the up to 11 species of interest (see

methods´ section for details).

We then examined occurrence of inorganic and methylated

thioarsenates in comparison to their oxyarsenic analogues

over a range of scales moving from our initial field surveys

to controlled mesocosm experiments and laboratory soil

incubations.

Figure 1 | Conceptual model for the formation of thioarsenates in paddy soils coupled to a cryptic S cycle. Low but

continuously replenished concentrations of sulfide and zero-valent sulfur [S(0)] lead to As thiolation instead of or besides

As scavenging by newly formed mixed FeIIFeIII minerals and pyrite (FeS2) or, at excess sulfide, mackinawite (FeS) and AsS;

concentrations and rate numbers (taken from references 18 and 36) are displayed to present typical quantities and extents of

sulfate reduction rates (B = bulk soil, R = rhizosphere, SRB = sulfate-reducing bacteria): MTA = monothioarsenate, DTA =

dithioarsenate, TTA = trithioarsenate, MMA = monomethylarsenate, MMMTA = monomethylmonothioarsenate, MMDTA

= monomethyldithioarsenate, DMA = dimethylarsenate, DMMTA = dimethylmonothioarsenate, DMDTA =

dimethyldithioarsenate.
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Thioarsenate formation in rice cultivation mesocosms.

Based on the field survey (Table S1), we selected two
Italian paddy soils (an Eutric Gleysol from a paddy field

near Cascina Veronica and an Umbric  Gleysol from a
paddy field near Cascina Fornazzo), characterized by

highest proportions of thiolation, for mesocosm

experiments (setup see Fig. S5). The two soils had the
same total soil As contents (5.5 mg/kg) and were relatively

similar in soil pH (5.6 and 5.8 for Veronica and Fornazzo,
respectively), while in comparison to Fornazzo, Veronica

had slightly lower contents of 0.5 M HCl-extractable Fe
(52 vs. 71 mmol/kg), total C (2.0 vs. 4.7 %), and total S

(2.6 vs. 3.2 g/kg) (Table S2). All mesocosms were planted

with the same rice variety (Oryza sativa L. cv. Selenio) and

managed in a completely randomized factorial
arrangement representing (i) treated with (S) or without

sulfate (no S, control) fertilizers and (ii) water or dry
seeded (Fig. S5, S6). In water seeded treatments soils were

flooded from one day before seeding throughout the

growing season, while in dry seeded treatments oxic soil
conditions were maintained until tillering stage (20 days

after seeding) after which the soils were flooded (Fig. S6).
Consequently, dry seeded soils showed higher redox

potentials and lower pore-water Fe(II) concentrations at
tillering stage with respect to the water seeded treatments

(Table S3).

Figure 2 | Pore-water As thiolation, methylation, and total As concentrations over time during rice cultivation. a)

Fornazzo soil, water seeded, b) Fornazzo soil, dry seeded, c) Veronica soil, water seeded, d) Veronica soil, dry seeded; blue
colors refer to control treatments (no S), orange-red colors to sulfate addition (S); percentages refer to proportion of total

As; e, f) total As concentrations for the two soils with and without sulfate addition; standard deviation reflects results from
3 mesocosms (n=3).

Thioarsenates were observed in all mesocosms of both

soils at all seven sampling stages (tillering, stem

elongation, booting, flowering, grain filling, dough, and

mature stage) under both water and dry seeded treatments
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(Fig. 2a-d). The contribution of thioarsenates to total As

ranged from 0.1% to 19%, on average 4.1%. For
comparison, methylated oxyarsenates ranged from below

detection limit to 33%, on average 6.5%. Concentrations
of inorganic thioarsenates were generally higher (max. 6.4

µg/L or 19% of total As) than those of methylated

thioarsenates (max. 1.1 µg/L or 8.2% of total As) in both
soils. No clear trend in the proportion of inorganic or

methylated thioarsenates was observed over time (Fig. 2a-
d). For details on trends in total As pore-water

concentrations over time see supporting information,
section 2.

Sulfate fertilization significantly decreased total pore-

water As concentrations (Fig. 2e, f). All S fertilized
mesocosms, including dry seeded Veronica soil, had pore-

water As concentrations at or below 20 µg/L already at
stem elongation stage. The same faster decrease in As

concentrations upon addition of sulfate has been reported
before due to stimulation of sulfate-reducing bacteria

(SRB), increased sulfide production, and formation of new
Fe minerals 20, 28 (Fig. 1). A decrease due to re-adsorption

was, however, mainly observed for inorganic oxyarsenic
species, while proportions of inorganic and methylated

thioarsenates, as well as methylated oxyarsenates,
increased with sulfate fertilization (Fig. 3). Average total

thiolation with sulfate addition was 5.9% compared to
2.2% in controls, average methylation was 8.8% compared

to 4.3% in controls. Higher proportions of methylated As
species upon sulfate addition are in line with previous

observations 29. Similar to the control treatment, there were
no significant trends in thiolation or methylation over time

(Fig. 2a-d).

Seeding practices did not only impact total As

concentrations (with higher concentrations in dry
compared to water seeded treatments) but also As

thiolation. Both without and with sulfate fertilization,
higher percentages were observed in water compared to

dry seeded mesocosms due to the longer duration of

anaerobic conditions in the former (Fig. 3c, g).

Comparison between the two different soils showed that
sulfate fertilization had a stronger impact in Veronica

compared to Fornazzo soil. We observed both a stronger
decrease in total As concentrations (Fig. 2e, f), as well as

a stronger increase in average proportions of methylated
oxy- and thioarsenates, in both water and dry seeded

treatments, as well as inorganic thioarsenates in dry seeded
treatments, for Veronica compared to Fornazzo soil (Fig.

3, Table S4). The exact redox chemistry, especially the role
of organic C, remains to be investigated, but we propose

that the lower soil C content caused less reducing
conditions (reflected in higher redox potentials and less

aqueous FeII; Table S3) in Veronica soil compared to
Fornazzo soil. Thereby, besides efficient removal of As on

mixed FeIIFeIII minerals, more recycling of SRB-produced
sulfide to sulfate with formation of zero-valent S and As

thiolation (see also below) was favored, compared to more
removal on FeS minerals and less thiolation in Fornazzo

soil.

Finally, multivariate regression tree analysis comparing
the relative importance of the investigated effects on pore-

water As speciation in our mesocosms showed the clearest
separation between sulfate and non-sulfate treatments,

followed by the differences of the two selected soil types.
The different rice growing stages had the least effects on

pore-water As speciation (Fig. S7).

Figure 3 | Proportions of inorganic, methylated, and total thioarsenates as well as methylated oxyarsenates integrated
over time. a, e) inorganic thioarsenates, b, f) methylated thioarsenates, c, g) total thioarsenates, d, h) methylated oxyarsenates

integrated over all sampling times for Fornazzo and Veronica soils, respectively, water seeded (left side of each graph) and
dry seeded (right, shaded side) treatment, blue colors refer to control treatments (no S), orange-red colors to sulfate addition

(S); percentages refer to proportion of total As, boxplots: line: median; cross: mean; box: interquartile range; whiskers: 1.5
interquartile range; data from 3 mesocosms over 7 times (n=21).
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Thioarsenate formation potential in soil incubations.

To estimate the potential for thioarsenate formation on a

large scale, we conducted anaerobic soil incubation
experiments with the two Italian soils plus 31 soils

sampled from across China (for coordinates see Table

S5a). China is one of the biggest rice cultivation countries.
The selected soils cover all major rice production regions

in China, with paddy soils located in different climate
zones (Fig. S8), developed over different parent material,

resulting in different soil types (Table S5a, Fig. S9), and at
sites of different geology and geomorphology (Table S5b).

The samples cover a wide range of soil pH (4.5 to 9.0),
total As contents (2.6 to 38.8 mg/kg), 0.5 M HCl-

extractable Fe (30 to 184 mmol/kg), and SOM (14.0 to 104

g/kg) (Table S5c).

After two weeks of incubation, As thiolation was detected
in all paddy soils with and without sulfate addition. The

proportion of total thioarsenates ranged from 0.1% to 56%,

with an average of 9.6% and a median of 4.8% (Fig. S10a).
In comparison, the proportion of methylated oxyarsenates

ranged from 0.5% to 17%, with an average of 3.1% and a
median of 1.8% (Fig. S10e). The dominant individual As

species were DTA (> trithioarsenate (TTA) > MTA) and
DMDTA (> MMMTA ≥ MMDTA > DMMTA) for

inorganic and methylated thioarsenates, respectively (Fig.
S11), with different factors controlling their formation.

Figure 4 | Parameters that determine occurrence of inorganic and methylated thioarsenates in anaerobic soil

incubations. Paddy soils were from Italy (2; experimental triplicates) and China (31, single experiments). a) concentrations
of inorganic thioarsenates in relation to soil pH and b) solid phase zero-valent S, c) concentrations of methylated

thioarsenates in relation to soil pH and d) methylated oxyarsenates; blue colors refer to control treatments (no S), orange-
red colors to sulfate addition (S); standard deviation for samples from Italy reflect results from 3 incubations (n=3); e) linear

regression analysis showing relative importance of selected soil parameters in control treatments on proportion of inorganic
and methylated thioarsenates (with and without considering methylated oxyarsenates) (for complete list of soil parameters

considered and data for sulfate addition see Table S7).



48

For inorganic thioarsenates, high absolute

concentrations tended to occur at high soil pH and soil
zero-valent S contents (Fig. 4a, b, confirmed by

Spearman correlation (Table S6) and principal
component analysis (Fig. S12)). The pH-dependency

of inorganic thioarsenates formation is at first glance
surprising. Inorganic thioarsenates are known to

transform to oxyarsenic species at low pH 15, 16, but
even though soil pH (when oxic) ranged from 4.5 to

9.0, pore-water pH values of all incubations were near-
neutral to slightly alkaline (6.9 to 7.9; Fig. S13a) and

should not have influenced inorganic thioarsenate
(trans)formation. Linear regression analysis showed

that the most important predictor for inorganic
thioarsenate formation potential in our incubations was

soil zero-valent S (weight factor 51%, Fig. 4e, Table
S7). Soil zero-valent S increased with soil pH (Fig.

S13c), which explains the observed correlation of soil

pH and inorganic thioarsenates as an indirect effect
through zero-valent S. In most samples, we also

detected aqueous zero-valent S (Fig. S13d), but
absolute concentrations were more than one order of

magnitude lower than those for solid phase zero-valent
S, and even in the absence of detectable aqueous zero-

valent S, inorganic thioarsenates were observed. The
greater impact of solid phase zero-valent S is consistent

with previous observations in low-sulfide terrestrial
environments where inorganic thioarsenate formation

was found to be controlled by reactions with S bound
to surfaces of minerals or organic matter 10, 14. The

concentrations of pedogenetic (0.5 M HCl-extractable)
Fe had a negative, but relatively low impact on

inorganic thioarsenate formation potential (weight
factor -6%, Fig. 4e, Table S7), likely because little Fe

dissolved at high pH (Fig. S13e).

Methylated thioarsenates showed a completely
different behavior. The most important predictor for

their formation was the proportion of methylated
oxyarsenates (weight factor 46%, Fig. 4e, Table S7).

Methylated thio- and oxyarsenates showed a strong
positive correlation (Fig. 4d, Table S6). Negative

correlation of methylated thioarsenates with soil pH
(Fig. 4c, Table S6) suggests that their formation in

nature proceeds by nucleophilic attack of reduced S to
the As atom which is facilitated at low pH 12. The

higher proportion of methylated oxyarsenates observed
at low pH (Fig. S8e) is in line with previous

observations in other environments of highest

methylation rates at pH 3.5 to 5.5 30. An almost even
contribution of thio- and oxyarsenates to total

methylation (Fig. 4d), as well as the absence of a
correlation with zero-valent S (Table S6), suggest that

thiolation of methylated species proceeds rapidly and
is typically not limited by S supply but mainly by the

availability of methylated oxyarsenates (in contrast to
inorganic thioarsenates where relatively large excess of

S over arsenite is required for thiolation). Examining
soil properties, low total soil As concentrations were

the best predictor of the potential for a high
(thio)methylation contribution to total As (weight

factor -40%, Fig. 4e, Table S7). We found that high soil
As concentrations only led to increased inorganic As

release into pore-water while absolute concentrations

of methylated species did not change with increasing

total soil As and therefore relative contributions
decreased (Fig. S14). Finally, pedogenetic Fe had a

stronger negative impact on methylated thioarsenates
compared to inorganic thioarsenates (weight factor -

27%, Fig. 4e, Table S7), likely because of the higher
Fe solubility at low pH (Fig. S13e) where methylated

thioarsenates prevailed.

Compared to the strong effects that the different soil
properties had on thiolation in our incubation

experiments, the effect of sulfate addition was less
pronounced. It promoted total thiolation (Fig. S15a) by

increasing zero-valent S contents (Fig. S13c, S15b)
and decreasing pore-water Fe concentrations (Fig.

S13e) and redox potential (Fig. S13b), but it did not
generally change the relative differences in

thioarsenate formation potential between different
soils. An exception were soils that had very low initial

soil zero-valent S contents. Here, sulfate addition led

to a strong increase in zero-valent S and total thiolation
(Fig. S15b, c). An example was Veronica soil where an

increase of zero-valent S from 0.14 to 0.41 mmol/kg
compared to a much smaller increase in Fornazzo soil

(from 0.34 to 0.39 mmol/kg) might explain the
observed stronger increase in total As thiolation in the

soil incubations (inorganic thioarsenates from 3.9 to
24%, methylated thioarsenates from 25 to 32%) which

is also in line with an observed stronger increase of
total thiolation upon sulfate addition in the mesocosm

studies (from 1.9 to 6.2%).

ENVIRONMENTAL IMPLICATIONS

Our combined results from field surveys, mesocosms,
and soil incubations reveal thioarsenates as important

but previously overlooked and unforeseen contributing
species to As biogeochemistry in rice paddies.

Thioarsenates form in various paddy soil types,
throughout the cropping season, independent of

seeding practice, and in quantities comparable to
methylated oxyarsenates. Soil pH represented an easy-

to-measure parameter indicative for thiolation
potential. We suspect that in paddy soils where

methylated oxyarsenates have been identified,
methylated thioarsenates could have contributed

comparable quantities that were, however, not
distinguished from the methylated oxyarsenates due to

analytical limitations in the current methodologies
adopted. Sulfate fertilization promotes thiolation,

especially in soils originally low in zero-valent S.

Comparison of our anaerobic soil incubations to

mesocosm experiments shows lower proportions of
inorganic and especially methylated thioarsenates in

the presence of rice plants (Fig. S16). Higher order
thiolated inorganic arsenates 15 and MMMTA 31 are

known to be oxygen-sensitive, so that root radial
oxygen loss might lead to (partial) transformation in

the rhizosphere. However, MTA 15 and DMMTA 32 are
not oxygen-sensitive. The differences in the proportion

of thioarsenates between incubations and mesocosms
might therefore point towards their preferential uptake.

So far, uptake of thioarsenates and their efficient root-

shoot translocation has only been shown in hydroponic
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cultures using high concentrations of pure thioarsenate

standards 33, 34 and only one thioarsenate species
(DMMTA) has been discovered in commercial rice

grains by chance during an enzymatic extraction 35.
Now that we deliver compelling support of the

widespread presence of inorganic and methylated
thioarsenates in paddy soil pore-waters, further transfer

of methods and experiments from laboratory to field
scale is required. Whether thiolation finally is boon or

bane for rice safety remains to be investigated.

METHODS

Aqueous As species preservation and analysis

Arsenic speciation throughout the study was done
using ion chromatography (IC, Dionex ICS-3000;

AG/AS16 IonPac column, 4 mm, eluent gradient
2.5−100 mM NaOH at a flow rate of 1.2 mL/min)

coupled to inductively coupled plasma-mass
spectrometry (ICP-MS, XSeries2, Thermo-Fisher) at

Bayreuth University. Retention times of the As species
were verified by comparison with commercial

standards (arsenite (NaAsO2, Fluka), arsenate
(Na2HAsO4 × 7H2O, Fluka), MMA (CH3AsNa2O3 ×

6H2O, Supelco), DMA (C2H6AsNaO2 × 3H2O, Sigma-
Aldrich)), standards synthesized according to

previously published methods (DMMTA (purity 67%;
28% DMDTA, 5% DMA) and MMMTA (purity 96%;

1% MMA, 3% MMDTA) 1, MTA (purity of 98.5%;
0.5% arsenite, 1% arsenate) 2) or by comparison with

previously published  retention times (MMDTA,
DMDTA, DTA, TTA) 3.

For our initial field survey (see supporting information
section 1) we used sample flash-freezing, a

preservation method that we previously employed
successfully in other aquatic environments 4, 5, 6. In

contrast to sample acidification, this method revealed
the occurrence of thioarsenates. However, we observed

that As recoveries (calculated as the sum of all detected
As species in flash-frozen samples versus total As

measured in oxidized and HNO3-acidified samples)
were generally below 50%, in many cases even below

10% (Fig. S4), especially at Fe concentrations > 0.5
mM due to Fe (oxyhydr)oxide precipitation and As co-

precipitation and sorption. The low recoveries
prompted us to adapt the sample preservation and

analysis method. Since acidification could not be used
to keep Fe in solution because it changes thioarsenate

speciation and could lead to AsS mineral precipitation
7, we tested different Fe chelating agents. In pre-tests,

paddy soil solutions derived from anaerobic
incubations were preserved with different pH-

neutralized chelating agents such as EDTA
(ethylenediaminetetraacetic acid disodium salt

solution, Sigma–Aldrich), deferoxamine mesylate salt
(Sigma-Aldrich), and DTPA (diethylenetriamine-

pentaacetic acid pentasodium salt, Sigma-Aldrich).
Highest As species recoveries were observed when

using DTPA, an octadentate ligand which can
completely sequester Fe 8, 9. The better performance

compared to EDTA, for which we previously reported

accelerated oxidation of arsenite and some thioarsenate
artefact formation 10, might be attributed to the fact that

FeII-DTPA complexes are significantly less oxygen-

sensitive than FeII-EDTA complexes 11. Based on
expected high aqueous Fe concentrations in the

sampled paddy soil pore-waters (measured values up
to 6.9 mM in samples from China, see section 4), we

used 10 mM DTPA, neutralized to pH 7.5, for Fe-
complexation.

For a representative paddy soil pore-water matrix

(“model pore-water”) for method development, we
used pore-waters extracted from anaerobic incubations

of paddy soil from Fornazzo (for details on soil
properties see section 3, description of mesocosms). To

address the effect of DTPA on As species retention
times, peak shape, and species resolution, one week old

model pore-water was spiked with 100 µg/L of
different As species standards and 10 mM DTPA was

added for sample preservation. DTPA had a significant
effect on peak shapes and retention times, especially

for the species with short retention times (Fig. S17).

The DMA peak that eluted after 297 s in the absence
of DTPA was shifted to the dead volume (142 s, Fig.

S17a). DMMTA and DMDTA were partially retained
at their original retention times (376 and 446 s) but

peaks became wide and small and part of the As was
lost in a high baseline background from 150 to 350 s

(Fig. S17b). The same change in peak shape and total
As loss was observed for arsenite (original retention

time at 406 s; Fig. S17c). Mixes of arsenite, DMA, and
DMMTA also showed that species resolution between

arsenite and DMMTA was lost in the presence of
DTPA (Fig. S17d). MMMTA and arsenate were less

affected but peak splitting (Fig. S17e) and peak
fronting (Fig. S17f), respectively, were observed in the

presence of DTPA as well.

Since we could not reduce the DTPA concentration
because of the expected Fe concentrations but needed

to decrease the negative effects of DTPA on peak
separation, we tested 10-fold dilution with deionized

water of a fresh model pore-water sample without As
spikes after addition of 10 mM DTPA (bringing DTPA

concentrations down to 1 mM, but also diluting Fe, As,
etc. 10-fold). The 1:10 sample dilution increased peak

separation and largely avoided As elution in the dead
volume (Fig. S18) but some peaks were close to or

below detection limit. Adding 2.4% methanol to the
2.5-100 mM NaOH gradient eluent in the IC enhanced

signal intensities of all peaks, except for arsenite, by a

factor of 2 to 10 (Fig. S18). A slight decrease in
retention times and some arsenate fronting was

observed, but all peaks could be identified and little As
was lost in the dead volume.

For a quantitative evaluation we spiked the fresh model

pore-water sample with a mixed standard of 1 µg/L of
DMA, DMMTA, arsenite, MMA, MMMTA, and

arsenate. Comparing preservation in 10 mM DTPA in
deionized water vs. model pore-water matrix (analyzed

1:5 and 1:10 diluted), showed that the pore-water
matrix itself had a minor effect on peak shifting

compared to the influence of DTPA (Fig. S19). A
dilution of 1:5 resulted in peak broadening for DMA

and DMMTA but no additional As loss. Quantitatively,
the results of 1:10 or 1:5 dilution were comparable
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(Table S8). Measured total As concentration in HNO3

for that sample was 14.3 µg/L and recovery from
speciation analysis for the 1:10 and 1:5 dilution with

76% and 77%, respectively, was good. Species with
concentrations of 0.28 and 0.15 µg/L (equivalent to 2.5

and 1% of total As) could clearly be identified in the
1:10 and 1:5 dilutions, respectively.

Three commercial standards were routinely used for

calibration (arsenate dibasic-heptahydrate, disodium
methyl arsonate hexahydrate, dimethylarsinic acid in 2

mM DTPA). No significant differences were observed
between using an average calibration of the three

commercial standards or calibrating each species
individually using the calibration standard which was

closest in retention time. Arsenite was not used for
calibration because in deionized water we observed

transformation of arsenite in the presence of DTPA
(Fig. S20). The arsenite transformation product eluted

at the retention time of arsenate but with significant

peak fronting. Whether the species really is arsenate
(obtained from arsenite oxidation) or an As(III)- or

As(V)-DTPA complex is currently unclear. In spiked
natural samples, we did not observe this arsenite

transformation.

The final protocol for As speciation that was applied
for the mesocosm and incubation experiments

described in the following is summarized as follows.
Samples were filtered, preserved in 10 mM DTPA,

flash-frozen on dry ice, and stored at -20 °C. Prior to
analysis, frozen samples were thawed under anoxic

atmosphere inside a glovebox (COY, N2/H2 95/5%
(v/v)) at room temperature. Samples were diluted 1:5

with deionized water and analyzed with a 2.5-100 mM
NaOH gradient containing 2.4% methanol.

We are aware that sample dilution might transform

higher thiolated As species such as DMDTA,
MMDTA, DTA, or TTA as reported previously 12 and

that we may therefore underestimate the extent of As
thiolation. Further, recoveries generally were >80%,

which is good considering that we calculate the sum of
up to 11 species, but could still indicate a loss of As

species by Fe scavenging. Therefore, where species
proportions are reported in %, the reference is not the

sum of species, but always total As from a sample
preserved with 0.5% H2O2 and 0.8% HNO3 as an

independent measurement. The reported % values are
therefore minimum values if a species is not affected at

all by Fe scavenging. If thiolated species are scavenged

by Fe similar to arsenite and arsenate we may further
slightly underestimate their importance with the

currently available analytical methods. Despite some
remaining shortcomings, the developed DTPA-method

is the current best compromise, given the complexity
of the paddy soil pore-water samples which are rich in

organic carbon, contain high Fe that is prone to
oxidation (so mere flash-freezing does not work) and

As-complexed sulfide that is prone to precipitation at
low pH (so acidification does not work) plus relatively

low concentrations of As. The method enabled us to
provide the so far most complete aqueous As

speciation data for paddy soil pore-waters.

Mesocosm rice cultivation

For mesocosm experiments, we selected two paddy

soils characterized by highest proportions of thiolation
in pore-water during our field survey in August 2016,

Veronica (E 8°53′48′′, N 45°10′39′′; Eutric Gleysol)
and Fornazzo (E 8°57′50′′, N 45°13′54′′; Umbric

Gleysol) (Table S1, S2). A large batch of dry soil
material was collected from the plow layer of the two

fields in March 2017 and transported to the Rice
Research Centre Ente Nazionale Risi (ENR) in

Castello d'Agogna (Pavia, Italy) where we set up the
mesocosms. For basic soil characterization, soil pH

(measured in 2.5 mL 0.1 M CaCl2 solution with 1 g
soil), 0.5 M HCl-extractable Fe, total C and N (CHN

analyzer), and total S (determination by ICP-MS after
microwave digestion in aqua regia) were determined.

Twenty-four plastic containers (0.82 m2) were installed

open air at the property of ENR. A nylon mesh roof top

protected the setup from birds or hail. Each container
was filled with approximately 30 cm of gravel with a

size of 2-5 cm in diameter, overlaid by approximately
20 cm of soil. Twelve containers each were filled with

the two different paddy soil types (Fig. S5). The soil
layers were mixed with 5 t/ha equivalent rice straw

according to the common rice straw returning practice
in this region. The rice straw was cut into pieces of

approximately 20 cm length before mixing it with the
soil. Six containers of each paddy soil type were either

dry or water seeded. Water seeded soils were first
fertilized with 100 kg N/ha and flooded on May, 16th

(Fig. S6) before sowing with pre-germinated rice seeds
(Oryza sativa L. cv. Selenio) the following day. Dry

seeded soils were fertilized with 100 kg N/ha and sown
on May, 17th (Fig. S6). Planted seeds germinated

within 10 days. Soils were kept moist until tillering
stage (June, 6th) and subsequently flooded. All

mesocosms were manually thinned to 340 rice plants
per container. Irrigation water (characteristics see

Table S9) was supplied with a garden hose for both dry
and water seeded treatments, to maintain a standing

water level of approximately 10 cm depth during the
cropping season. In addition to basal fertilization, N-,

P-, or K-fertilizers were applied in form of urea, triple
superphosphate, and potassium chloride as solid salts

at tillering, stem elongation and booting stages (Fig.
S6). Three containers of each soil and seeding practice

were additionally fertilized with sulfate fertilizer, the

other three containers did not receive sulfate (control
treatments). Sulfate was applied as ammonium sulfate

and potassium sulfate, while equivalent amounts of
urea and potassium chloride were used in the control

treatment.

Sampling was done at seven rice growing stages,
namely tillering stage (June, 14th), stem elongation

stage (July, 4th), booting stage (July, 18th), flowering
stage (August, 1th), grain filling stage (August, 8th),

dough stage (August, 22th), and mature stage
(September, 13th) (Fig. S6). Pore-water was extracted

by micro rhizon samplers (Rhizon MOM, Rhizosphere
Research Products, The Netherlands) inserted about 3-

4 cm deep into the paddy soil and connected to 100 mL
evacuated glass bottles. The bottles were prepared
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prior to sampling by purging them with argon (purity

> 99.9%) for 15 min, sealing them with a butyl rubber
septum and then evacuating them to negative

atmospheric pressure of ~900 mbar. Sampling took on
average 40 minutes. An aliquot of pore-water was

preserved in 10 mM DTPA, flash-frozen on dry ice,
and stored at -20°C until analysis. Non-stable chemical

parameters (pH, redox potential) were measured
immediately on-site. Samples for dissolved organic

carbon (DOC) and dissolved inorganic carbon (DIC)
were kept anoxic, in the dark at 4°C, and analyzed the

following day at the University of Turin (VarioTOC,
Elementar, Hanau, Germany). Information on pH, EH,

conductivity, DIC, DOC, Fe(II), and total As can be
found in Table S3.

Soil sampling and anaerobic incubations

Paddy soil samples were collected from the cultivated

horizon of 31 different paddy fields across China,
which represent the main rice production regions in 18

different Chinese provinces. The geographic origins
covered an area from 22.5° to 47.2° N and 98.4° to

131.6° E, spanning climate zones from sub-tropical
monsoon climate (23 soils) to temperate continental

climate (1 soil) and temperate monsoon climate (7
soils) (Fig. S8). Based on the Chinese soil taxonomic

classification, all paddy soils are classified as Stagnic
Anthrosols with both a hydragric epipedon (including

cultivated horizon and plowpan) and a hydragric

horizon. Those paddy soils represent three out of four
key groups of Stagnic Anthrosols, namely Fe-

accumuli- (15), Fe-leachi-(8), and Hapli- (8) Stagnic
Anthrosols (Fig. S9). Detailed information regarding

sampling site coordinates, soil classification, parent
material, geology, geomorphology, and climate zone

can be found in Table S5a, 5b. Twenty-nine out of the
31 paddy fields had As concentrations below the

Chinese risk screening values for contamination of
agricultural land (30 mg/kg when pH ≤ 6.5 13), and are

thus considered to represent the natural background.
Only two soils namely Guangxi-Nanning (CH2, 34.2

mg/kg) and Jiangxi-Ganzhou (CH6, 38.8 mg/kg)
exceeded the Chinese risk screening values for paddy

soil. We intentionally focused on non-contaminated
paddy soils having background As concentrations

because of the wider implications linked with human
exposure, with respect to the less ubiquitous

anthropogenically-contaminated sites (e.g. only 2.7%
of paddy soils in China according to a recent survey 14),

that often have rather specific biogeochemistries that
greatly depend on contamination source and type.

Selected soil properties, including pH, 0.5 M HCl-
extractable Fe, SOM, CEC, clay content, total As and

other chalcophile metals (Cd, Pb, Cu and Zn), and soil
zero-valent S content were analyzed by standard

methods 15, 16, 17. All soils were air-dried and sieved to
< 2 mm before analysis and incubation.

For incubation, 10 g dry soil was suspended in 20 mL

of 2.5 mM glucose solution without (control, no S) or
with 1.5 mM K2SO4 (3 mmol/kg sulfate, S) in a

glovebox (N2/H2 95/5% (v/v)). The vials were
incubated anaerobically, at room temperature and in

the dark for 14 days. This duration was assumed from

pre-experiments and literature 18 to be sufficient for
microbial growth to reach a steady state. For sampling,

soil suspensions were centrifuged and filtered (0.2
μm). Aqueous phase parameters (pH, redox potential,

dissolved free sulfide and aqueous zero-valent S, total
As) were measured as described above. Another

aliquot was preserved in 10 mM DTPA, flash-frozen
on dry-ice, and stored at -20 °C for As speciation

analysis. Aqueous total Fe was measured immediately
by the ferrozine test 19. Soil for solid phase zero-valent

S extraction was first freeze-dried (EDWARDS
Modyla & Vacuum oven Heraeus), then extracted with

chloroform (10 mg soil + 700 µL chloroform) and
analyzed by HPLC 20. Thus, soil-bound zero-valent S

in our study is operationally defined as chloroform-
extractable, reduced inorganic S.

Statistical analyses

All statistical analyses were performed via R statistical

computing environment. Spearman’s correlation was
calculated using the “Hmisc” package. Principal

component analysis of As species (DMA, MMA,
DMDTA, MMDTA, MMMTA, DMMTA, MTA,

DTA, and TTA) in the batch incubations was
calculated using the “vegan” package. Multiple linear

regression (MLR) analysis between inorganic and
methylated thioarsenates (%), respectively, and soil

physical and chemical properties (soil pH, total zero-
valent S, total soil As, 0.5 M HCl-extractable Fe, CEC,

SOM, clay content, and soil chalcophile metals (sum
of Cd, Pb, Cu. and Zn)) was done using “MASS”

package (with default parameters). For methylated

thioarsenates two models were calculated, one with, a
second without considering methylated oxyarsenates.

Relative importance of variables in multiple regression
was calculated using the “relaimpo” package (type =

“Img”) 21. Residuals were checked for normal
distribution, which is a prerequisite for multiple linear

regression. Multivariate regression tree analyses were
done using the “mvpart” package (with default

parameters) 22.
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1. Thioarsenates discovered in planted paddy fields in Italy and 

France 

 

Methods. For an initial field survey, we sampled 23 different paddy fields in Italy (17 

fields) and France (6 fields) (all located in the Mediterranean climate zone, for 

coordinates see Table S1) during the cropping season in August 2016 when the rice 

plants were in the flowering to grain filling stage. Sampling in Italy covered most of the 

rice cropping areas of the river Po plain, where the majority of the Italian rice is 

produced. The paddy fields were located in the alluvial plain, the river valley, and the 

lower river plain. All Italian soils developed on recent clastic deposits with mixed 

lithology (e.g., noncalcareous gravels, silty sands), and are mostly classified as luvisols, 

gleysols, and a few fluvisols and cambisols (Soil Atlas of Europe, 

https://esdac.jrc.ec.europa.eu/content/soil-atlas-europe). Paddy fields in France 

covered the whole extent of the only rice cultivation area in France which is located in 

the coastal plain of the Camargue region, in the delta of the river Rhone. The soils there 

developed on recent deposits of the Rhone river and are classified as gleyic fluvisols. 

In total, 35 pore-water samples were collected. At most paddy fields only one pore 

water sample was taken, at five paddy soils we took replicates. Pore-water was 

extracted by micro rhizon samplers (Rhizon MOM, Rhizosphere Research Products, 

The Netherlands) inserted about 3-4 cm deep into the paddy soil and connected to 

evacuated 100 mL glass bottles. The bottles were first sealed with a butyl rubber 

septum in an anoxic glovebox (N2/H2 95/5% (v/v)), then evacuated to negative 

atmospheric pressure of ~900 mbar. During sampling, glass bottles were shielded with 

aluminum foil to avoid potential photooxidation 1. To retrieve enough volume (minimum 

10 mL) for all analyses, minimum sampling time was 4 hours, maximum sampling time 

up to 24 hours. After retrieving the pore water samples, one soil sample from the plow 

layer was collected at each site. 

After collection, pore-water samples were filtered through 0.2 µm cellulose-acetate 

filters. Samples for As speciation analysis were immediately flash-frozen on dry ice, 

and stored at -20 °C before being analyzed by ion chromatography (IC, Dionex ICS-

3000) coupled to inductively coupled plasma-mass spectrometry (ICP-MS, XSeries2, 

Thermo-Fisher) at Bayreuth University following a previously established method for 

analysis of inorganic and methylated thioarsenates 2.  
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Retention times of the As species were verified by comparison with commercial 

standards (arsenite (NaAsO2, Fluka), arsenate (Na2HAsO4 × 7H2O, Fluka), MMA 

(CH3AsNa2O3 × 6H2O, Supelco), DMA (C2H6AsNaO2 × 3H2O, Sigma-Aldrich)), 

standards synthesized according to previously published methods (DMMTA (purity 

67%; 28% DMDTA, 5% DMA) and MMMTA (purity 96%; 1% MMA, 3% MMDTA) 3, MTA 

(purity of 98.5%; 0.5% arsenite, 1% arsenate)) 4 or by comparison with previously 

published 5 retention times (MMDTA, DMDTA, DTA, TTA). Calibration standard 

solutions were made from arsenate dibasic-heptahydrate, sodium (meta)arsenite, 

disodium methyl arsonate hexahydrate, and dimethylarsinic acid. All other As species 

were quantified by peak area comparison to the standard closest in retention time. 

Validity of this method has been proven previously 2. 

An example of the chromatographic separation of the different As species is reported 

in Fig. S1. Samples for total As and Fe were acidified in 0.5% H2O2 and 0.8% HNO3 

and kept at 4°C until analysis by ICP-MS. Samples for zero-valent S were stabilized 

with zinc acetate (25 µL of 200 g/L ZnAc +725 µL sample), kept at 4°C until extraction 

by chloroform in the laboratory, then measured with high performance liquid 

chromatography (HPLC) (Merck Hitachi L-2130 pump, L-2200 autosampler, and L-

2420 UV-VIS detector; C18 column, 100% methanol eluent at 0.2 mL/min) as described 

before 6. Sulfide was measured photometrically on-site using the methylene blue 

method (HACH procedure No. 8131). Redox potential, pH, and conductivity were 

measured directly on-site by a WinLab redox micro-electrode, a WinLab 423 

combination pH electrode, and a Mettler Toledo TetraCon 325 electrode. 

Soil samples were analyzed for soil pH (measured in 2.5 mL 0.1 M CaCl2 solution with 

1 g soil), 0.5 M HCl-extractable Fe, total C and N (CHN analyzer), and total As and S 

(determination by ICP-MS after microwave digestion in aqua regia). 

 

Results. Soil pH ranged from 5.0-6.1 and 7.5-7.6, total soil As contents from 5.2-16 

and 10.4-20.2 mg/kg, HCl-extractable Soil Fe contents from 50-198 and 105-181 

mmol/kg, and total C from 0.8-4.7 and 4.5-6.0 %, for the Italian and French paddy soils, 

respectively (Table S1a). Thioarsenates were determined in 23 out of 35 pore-water 

samples and in 14 out of 23 different fields (Table S1b). The contribution of total 

thiolation to total As concentrations was 8.3% at maximum and 2.1% on average. 

These numbers are comparable to those observed for the much more-commonly-

investigated methylated oxyarsenates which we detected in 31 samples from 20 fields 
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(max. 10.4%, on average 1.3%). Inorganic thioarsenates (monothioarsenate (MTA) and 

dithioarsenate (DTA)) were detected in 11 samples (max. 7.4%, on average 3.2%) and 

methylated thioarsenates (monomethylmonothioarsenate (MMMTA), DMMTA, 

dimethyldithioarsenate (DMDTA)) in 18 samples (max. 2.9%, on average 0.7%). Seven 

samples taken within the same paddy field (Veronica, Table S1b) showed large 

heterogeneity in the proportion of thioarsenates (2.9-8.3%) without any obvious relation 

to pore-water chemistry, such as dissolved sulfide concentrations (Table S1b). 

Inorganic thioarsenates were observed in large quantities only at pore-water Fe 

concentrations < 0.5 mmol/L suggesting that Fe concentrations above a threshold 

value could limit their formation (Fig. S2a). Methylated thioarsenates, in contrast, 

occurred over a wider range of dissolved Fe concentrations (Fig. S2b) and Spearman´s 

correlation test showed positive correlation with methylated oxyarsenates (r = 0.60, 

P<10-4; Fig. S2b, S2c, S3). There was no correlation between inorganic and methylated 

thioarsenates. 

For these first field surveys, we used relatively long pore-water sampling times (4-24 

hours) to obtain enough volume for analyses (minimum 10 mL) and, for species 

preservation, we used just flash-freezing, without adding stabilizing agents. Even 

though all As chromatographic peaks were clearly distinguishable (Fig. S1), high Fe 

concentrations (up to 2.3 mmol/L) caused Fe precipitation and, by co-precipitation and 

sorption, low As recoveries (calculated as the sum of all detected As species in flash-

frozen samples versus total As measured in oxidized and acid-stabilized samples; Fig. 

S4).  

All species proportions are reported with respect to total As (not the sum of species). 

As such, a partial precipitation or sorption of thiolated As species on any Fe 

(hydr)oxides 7 formed during sample storage could have contributed to an 

underestimation of the true proportions reported here. 

For all later analyses, short sampling times (0.5-1 hour) and an optimized DTPA-

sample stabilization and analysis were chosen. For details on the DTPA method 

development and evaluation see main manuscript and Fig. S15-S18. 
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Figure S1 | Example chromatogram for determination of inorganic and 

methylated thio and oxy As species in paddy field pore-water by IC-ICP-MS. The 

presented sample is IT_Cascina Veronica (pH 6.36, Table S1). 
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Figure S2 | Arsenic speciation in paddy field pore-waters from Italy and France 

in relation to aqueous Fe and sulfide. Contribution of a) inorganic thioarsenates, b) 

methylated thioarsenates and c) methylated oxyarsenates to total As; bubble size 

represents concentration of As species; bubbles are only displayed where 

concentrations of As species were above detection limit. 
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Figure S3 | Correlation of methylated thioarsenates with methylated 

oxyarsenates in paddy field pore-waters from Italy and France. 
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Figure S4 | Effect of Fe on As recovery for samples from paddy fields in Italy and 

France. Arsenic recovery is calculated as sum of As species from flash-frozen samples 

versus total As in H2O2-HNO3-stabilized samples. 
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2. Mesocosm rice cultivation experiments – effects of sulfate-

fertilization, seeding-practice, and soil type on thioarsenate 

formation 

 

Looking at the pore-water total As concentrations during rice cultivation in the 

mesocosm experiments (Fig 2), one can see that over time, pore-water total As 

concentrations in control treatments decreased from approximately 100 and 50 

µg/L at tillering stage in the dry and water seeded mesocosms, respectively, to 

<20 µg/L around flowering stage (except for the dry seeded Veronica soil where 

concentrations only dropped after the dough stage, Fig. 2e, f). Highest pore-

water As concentrations occurred within days after flooding due to rapid As 

mobilization by reductive dissolution of Fe(III)-(oxy)hydroxides, and then 

decreased due to As re-adsorption on or precipitation with newly formed Fe 

minerals in line with previous reports 8, 9. The higher As concentrations in dry 

vs. water seeded treatments at the same sampling date could be explained by 

an overall less As mobilization in water seeded treatments because they are 

flooded in May when microbially catalyzed As mobilization is still partially limited 

by lower temperatures while flooding of dry seeded treatments in June leads to 

higher As mobilization due to enhanced microbial activity. In addition, the 

difference could reflect the time it takes for As concentrations after flooding and 

initial mobilization to drop again due to re-adsorption and precipitation reactions 

(4 weeks later in dry than in water seeded treatments). No clear trend in the 

proportion of inorganic or methylated thioarsenates was observed over time 

(Fig. 2a-d). 
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Table S2 | Soil classification and basic chemical parameters for Veronica and 

Fornazzo soil 

Parameters  Veronica  Fornazzo 

Geology/geomorphology Lower river plain Valley of the Ticino river 

Parent material Pleistocene alluvium Olocene alluvium 

Soil classification    

USDA 

Aeric Endoacquepts 
coarse-loamy over sandy, 

mixed, mesic 
Histic Humaquepts coarse-

loamy, mixed, mesic 

FAO Eutric Gleysoil Umbric  Gleysoil 

   

Texture   

gravel (%weight) nd 23.9 

clay % 2.1 1.4 

fine silt % 11.5 6.2 

coarse silt % 8.8 6.8 

fine sand % 18.2 23.7 

coarse sand % 59.3 61.8 

   
Cation exchange capacity 
(cmol /kg) 

9.52 14.39 

Base saturation (%) 0.24 0.24 

Effective base saturation 
(%) 

0.84 0.91 

soil pH 5.6 5.8 

0.5 M HCl-extractable Fe 
(mmol/kg) 

52 71 

Oxalate-extracted Fe  
(mmol/kg)  

9.9  19.2 

C (%) 2.0 4.7 

N (%) 0.6 0.5 

Total As (mg/kg) 5.8 5.6 

Oxalate-extracted As 
(mg/kg) 

1.4 1.5 

S (g/kg) 2.6 3.2 
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Figure S5 | Photos and schematic design of the mesocosm rice cultivation 

experiments. A total of 24 mesocosms with 2 different soil types, water and dry 

seeded, with and without sulfate fertilization (each setup conducted in triplicates) were 

installed at the Rice Research Centre Ente Nazionale Risi in Castello d'Agogna (Pavia, 

Italy); a) flowering stage; b) seeding practices; c) mature stage; d) scheme of the setup.  
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Figure S6 | Agronomic management of water and dry seeded mesocosm rice 

cultivation experiments in 2017. For sulfate treatments, ammonium sulfate and 

potassium sulfate were applied, while urea and potassium chloride were used 

equivalent in N and K for control treatments. Dates in red indicate pore-water sampling 

dates.  
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Figure S7 | Multivariate regression tree for pore-water As speciation in the 

mesocosm experiments for a) water seeded and b) dry seeded treatments. 

Multivariate regression tree analyses were done following previously published 

methods10. Capital letters A-G on the node represent the seven rice growth stages from 

tillering stage to maturity. Indicator species, based on relative abundance and relative 

frequency of occurrence of As species, are denoted by stars. Pre-separation in water 

and dry seeded was done because different redox regimes lead to an offset of growth 

stages in dry seeded compared to water seeded treatments by about 7-10 days. 
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Table S7 | Relative importance of predictor values for the occurrence of inorganic and 
methylated thioarsenates (%) using multiple linear regression analysis with soil physical 
and chemical properties separated by control (no S) and sulfate-addition (S) 
incubations; for methylated thioarsenates two models were used, one including the 
share of methylated oxyarsenates in the pore water and one only using soil parameters; 
significance levels (sig. level) are indicated as *** (0-0.001), ** (0.001-0.01), * (0.01-
0.05), and . (0.1-1) 
 
 

Control (no S) 
weight 

factor % 
lower 95% 
range [%] 

upper 95% 
range [%] 

sig. level 

inorganic thioarsenates         

CEC [cmol/kg] 13.6 1.7 30.2 ** 

Clay [%] -18.3 -3.3 -40.6 ** 

HCl-extractable Fe [g/kg] -6 -1.1 -16.6 * 

{H+} [mol/L] -4.4 -2.8 -14.5   

zerovalent S [µmol/kg] 50.8 17.8 74.9 *** 

SOC [g/kg] -4.5 -0.9 -11.2   

total soil As [mg/kg] -1.3 -0.4 -8.1   

Total chalcophile metals [mmol/kg] -1.1 -0.5 -8.2   

r2 = 0.7352, p = 7.1*10-5 

 

methylated thioarsenates + oxyarsenates 

CEC [cmol/kg] 3.2 1.6 24.5   

Clay [%] -9.8 -1.1 -21.6 * 

HCl-extractable Fe [g/kg] -10.8 -3.3 -29.1   

{H+} [mol/L] -1.8 -0.9 -10.9   

zerovalent S [µmol /kg] -3.2 -0.8 -20.4   

SOC [g/kg] -0.8 -0.7 -9.4   

total soil As [mg/kg] -18.8 -8.8 -30.3 * 

Total chalcophile metals [mmol/kg] 5.7 2.3 23 * 

methylated oxyarsenates [%] 45.9 8.2 55.7 ** 

r2 = 0.6902, p = 8.9*10-4 
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methylated thioarsenates - oxyarsenates 

CEC [cmol/kg] -6 -1.6 -25.7   

Clay [%] -10.1 -1 -23.8 . 

HCl-extractable Fe [g/kg] -26.9 -3.9 -45.4 * 

{H+} [mol/L] -4 -1.3 -19.6   

zerovalent S [µmol /kg] -6.7 -0.9 -30.3   

SOC [g/kg] -1 -0.8 -15.6   

total soil As [mg/kg] -40.4 -12.3 -49.1 ** 

Total chalcophile metals [mmol/kg] 4.9 2.6 37.1   

r2 = 0.5022, p = 2.8*10-2 

 
 
 

Sulfate treatment 
weight 

factor % 
lower 95% 
range [%] 

upper 95% 
range [%] 

sig. level 

inorganic thioarsenates         

CEC [cmol/kg] 20.6 3 30.6 ** 

Clay [%] -12.6 -1.6 -31.5 * 

HCl-extractable Fe [g/kg] -8.8 -1.8 -19.4 * 

{H+} [mol/L] -4.2 -2.7 -17.3   

zerovalent S [µmol /kg] 46.1 21 68.6 ** 

SOC [g/kg] -6.3 -1.1 -15.5 * 

total soil As [mg/kg] -0.8 -0.4 -10.4   

Total chalcophile metals [mmol/kg] -0.8 -0.5 -7.7   

r2 = 0.674, p = 5.6*10-4 
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methylated thioarsenates + oxyarsenates 

CEC [cmol/kg] 4.3 1.5 14.6   

Clay [%] -1.5 -0.5 -17.5   

HCl-extractable Fe [g/kg] -12.9 -3.2 -21   

{H+} [mol/L] -0.8 -0.5 -15.4   

zerovalent S [µmol /kg] -3.7 -0.6 -13.6   

SOC [g/kg] -0.3 -0.4 -8.2   

total soil As [mg/kg] -11.2 -4.7 -23.6   

Total chalcophile metals [mmol/kg] 1.5 0.6 19.9   

methylated oxyarsenates [%] 63.8 21.2 65.8 *** 

r2 = 0.8304, p = 2.8*10-6 

 

methylated thioarsenates - oxyarsenates 

CEC [cmol/kg] -8.3 -1.8 -19.6   

Clay [%] -1.9 -0.6 -29.4   

HCl-extractable Fe [g/kg] -39.1 -3.6 -47.3 * 

{H+} [mol/L] -1.7 -1.2 -27.5   

zerovalent S [µmol /kg] -10.9 -0.9 -28 . 

SOC [g/kg] -0.8 -0.8 -14.9   

total soil As [mg/kg] -33.1 -9.3 -49.7 * 

Total chalcophile metals [mmol/kg] 4.1 1.1 40.9   

r2 = 0.5151, p = 2.2*10-2 

 
 
Note: Implications of HCl-extractable Fe, pH, zerovalent S, total soil As, and methylated 
oxyarsenates are discussed in the main manuscript; the reasons for the sig. negative 
impact of clay on both inorganic and methylated thioarsenates and the sig. positive 
impact of CEC (Cation Exchange Capacity) on inorganic thioarsenates are currently 
unclear. The correlation with CEC might be in line with previous observations of high 
ionic strengths increasing the kinetics of inorganic thioarsenate formation from arsenite 
and reduced sulfur in solution. 11, 12 
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Figure S8 | Sampling sites of 31 paddy fields in different climate zones over 

China. The geographic origins covered an area from 22.5° to 47.2° N and 98.4° to 

131.6° E, spanning climate zones from sub-tropical monsoon climate (23 fields) to 

temperate continental climate (1 fields) and temperate monsoon climate (7 fields).The 

base map used is from the National Fundamental Geographic Information System of 

China.  
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Figure S9 | Sampling sites of 31 paddy fields based on soil classification over 

China. The colored background indicates the distribution of Stagnic Anthrosols in 

China. Based on Chinese Soil Taxonomic Classification (adopted by WRB in 1998), all 

paddy soils used here are classified as Stagnic Anthrosols, including Fe-accumuli- (15 

soils), Fe-leachi-(8 soils ), Hapli- (8 soils) Stagnic Anthrosols. Stagnic Anthrosols are 

anthrosols that have an anthrostagnic moisture regime and have both a hydragric 

epipedon (including a ultivated horizon and a plowpan) and a hydragric horizon. The 

base map used is from the National Fundamental Geographic Information System of 

China.  
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Figure S10 | Summarized As speciation determined in anaerobic soil incubations 

in relation to soil pH. Data from control and sulfate addition for 31 paddy soils from 

China and 2 paddy soils from Italy were combined. a) total thiolation which is the sum 

of b) inorganic thiolation and c) methylthiolation; d) total methylation which is the sum 

of e) oxymethylation and c) methylthiolation; f) all mono- and g) all dimethylated 

arsenates (integrating oxy and thio species). 
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Figure S11 | Individual As speciation of inorganic thioarsenates in anaerobic soil 

incubations in relation to soil pH. a) MTA, b) DTA, c) TTA, d) monomethylated oxy- 

(MMA) and thioarsenates e) MMMTA, f) MMDTA) and g) dimethylated oxy- (DMA), and 

thioarsenates h) DMMTA, i) DMDTA .Data from control and sulfate addition for 31 

paddy soils from China and 2 paddy soils from Italy were combined. 
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Figure S12 | Principal component analysis of As speciation in anaerobic soil 

incubations. Site distribution reveals clustering of methylated oxyarsenates (DMA and 

MMA) and methylated thioarsenates (DMDTA, MMDTA, MMMTA, DMMTA) with low 

pH soils and inorganic thioarsenates (MTA, DTA, and TTA) with high pH soils during 

anaerobic incubation of 31 paddy soils from China and 2 paddy soils from Italy; a) 

control treatment and b) sulfate addition. 

95



 
 

Figure S13 | Pore-water chemistry for anaerobic soil incubations as a function of 

soil pH. a) pore-water pH, b) EH, c) solid phase zero-valent S, d) aqueous zero-valent 

S, e) total dissolved Fe, and f) total dissolved As for anaerobic soil incubations of 31 

paddy soils from China and 2 paddy soils from Italy (experimental triplicates); blue 

colors refer to control treatments (no S), orange-red colors to sulfate addition (S).  
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Figure S14 | Absolute and relative concentrations of inorganic As (a, b) and 

methylated oxyarsenates (c, d) in relation to total soil As. Anaerobic soil 

incubations were conducted with 31 paddy soils from China and 2 paddy soils from Italy 

(experimental triplicates); blue colors refer to control treatments (no S), orange-red 

colors to sulfate addition (S). 
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Figure S15 | Effects of sulfate addition on arsenic thiolation and zero-valent S 

formation. Comparison of a) total thiolation (%) and b) solid phase zero-valent S with 

and without sulfate addition; c) ratio of zero-valent S increase from control to sulfate-

treatment versus original zero-valent S concentrations in control for anaerobic soil 

incubations of 31 paddy soils from China and 2 paddy soils from Italy.  
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Figure S16 | Comparison of arsenic speciation in anaerobic soil incubations to 

mesocosm experiments and field survey. a) occurrence of inorganic thioarsenates, 

b) methylated thioarsenates, and c) methylated oxyarsenates in the field with plants 

(one-time survey Italy/France at late plant growth stage (I+F); n = 35; mesocosms with 

Veronica and Fornazzo soil integrated over whole rice cultivation period of 4 months; n 

= 42 each) and in anaerobic soil incubations (with Veronica and Fornazzo soils (n=3 

each) and paddy soils over a pH-gradient in China (n=31 each); blue colors refer to 

control treatments (no S), orange colors to sulfate addition (S) 
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Table S9 | Characteristics of irrigation water for mesocosm rice cultivation 
experiments. 
 

Parameters  Irrigation water  

pH 7.7 

Conductivity (µS/cm) 508 

TIC (mg/L)a 17.5 

TOC (mg/L)b 1.2 

Cl- (mg/L) 11.4 

NO3
- (mg/L) 1.11 

NO2
- (mg/L) 1.05 

PO4
3- (mg/L) 1.01 

SO4
2- (mg/L) 11.1 

Si (mg/L) 8.9 

Mn (µg/L) 1.5 

Cu (µg/L) 2.6 

Zn (µg/L) 16.5 

As (µg/L) 6.4 

 
a Total inorganic carbon; b Total organic carbon 
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Figure S17 | Effect of 10 mM DTPA on retention time, peak shape, and resolution 

of As speciation. Tested model pore-water was spiked with 100 µg/L standards of a) 

DMA; b) DMMTA; c) arsenite; d) a mix of arsenite, DMA, DMMTA; e) MMMTA; f) 

arsenate; black lines = without DTPA, red lines = with 10 mM DTPA. 
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Figure S18 | Effect of sample dilution and use of methanol in the eluent on 

retention time, peak shape, and resolution of As speciation. Fresh, non-spiked 

model pore-water samples stabilized with 10 mM DTPAwere a) analyzed without 

dilution and without 2.4% methanol; b) analyzed without dilution with 2.4% methanol; 

c) diluted 1:10 with deionized water before analysis and analyzed without 2.4% 

methanol; d) diluted 1:10 with deionized water before analysis and analyzed with 2.4% 

methanol. All samples were analyzed with a 2.5-100 mM NaOH gradient eluent. 
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Figure S19 | Effect of pore-water matrix and different DTPA dilution on retention 

time, peak shape, and resolution of As speciation. Fresh model pore-water samples 

were spiked with 1 µg/L of DMA, DMMTA, arsenite, MMA, MMMTA, and 

arsenate,stabilized with 10 mM DTPA (all analyzed with 2.4% methanol in the eluent). 

a) comparison deionized water (red) and pore-water matrix 1:10 diluted (black), b) 

comparison 1:5 (blue) vs. 1:10 (black) dilution of pore-water matrix sample. 
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Figure S20 | Effect of 1 mM DTPA on arsenite standards in deionized water. The 

question mark behind the arsenate label indicates that the observed transformation 

product elutes at the retention time of arsenate but might also be an unidentified As-

DTPA complex. 
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ABSTRACT: Thioarsenates form under sulfur-reducing con-
ditions in paddy soil pore waters. Sulfur fertilization, recently
promoted for decreasing total arsenic (As) grain concentrations,
could enhance their formation. Yet, to date, thioarsenate toxicity,
uptake, transformation, and translocation in rice are unknown.
Our growth inhibition experiments showed that the toxicity of
monothioarsenate (MTA) was similar to that of arsenate but
lower than that of arsenite. Higher toxicity of MTA with lower
phosphate availability might imply uptake through phosphate
transporters similar to arsenate. To demonstrate direct uptake of
MTA by rice plants, a species-preserving extraction method for
plant samples was developed. When plants were exposed to 10
μM MTA for 72 h, up to 19% and 4% of total As accumulated in
roots and shoots, respectively, was MTA. Monothioarsenate was detected in xylem sap and root exudates, and its reduction to
arsenite in rice roots and shoots was shown. Total As uptake was lower upon exposure to MTA compared to arsenate, but root
to shoot translocation was higher, resulting in comparable As shoot concentrations. Thus, before promoting sulfur fertilization,
uptake and detoxifying mechanisms of thioarsenates as well as potential contribution to grain As accumulation need to be better
understood.

■ INTRODUCTION

Human arsenic (As) exposure from rice consumption is a well-
known problem. Rice takes up approximately 10 times more As
than other crops1,2 and is a major staple food for half of the
world’s population.3,4 Inorganic As (arsenate and arsenite) is a
class 1 carcinogen, and there is no safe intake limit for
humans.4 In soils, As is ubiquitously present with an average
global geogenic background ranging from 5 to 7.5 mg/kg.5

During rice cultivation on flooded paddy soils, As is mobilized
due to reducing conditions with arsenite being the dominant
species. Arsenate might form, e.g. in the rhizosphere due to rice
plant root oxygen loss.6−8

Arsenate (pKa1 2.2, pKa2 6.9) is a structural analog to
phosphate (pKa1 2.1, pKa2 7.1) and is taken up inadvertently in
rice plants via phosphate transporters such as OsPht1;1,9

OsPht1;4,10,11 or OsPht1;8.12 Arsenite (pKa1 9.2) is uncharged
(H3AsO3) in paddy soil pore water and passively taken up via
nodulin 26-like intrinsic protein (NIP) aquaglyceroporins Lsi1
(OsNIP2),13−16 a transporter for silicic acid. If As is in its
oxidized state, it will, after uptake, first be reduced to arsenite
by arsenate reductase, for example HAC1;1, HAC1;2, and
HAC4.17,18 Arsenite is then either effluxed from the roots15,19

or complexed by phytochelatins (PC)20−23 and stored as
arsenite-PC complexes in root vacuoles after transport by

OsABCC1.24 Both processes decrease As toxicity in the plant.
Part of the arsenite might also be loaded into the xylem,
presumably by NIP proteins.19,25,26 Further transfer from
xylem to phloem in node I is required to transport As into the
grains via long-distance phloem transport.19

Until now, only the uptake of inorganic and methylated
(mono- and dimethyl As acid) As species has been studied in
rice plants. No information about the uptake of thioarsenates
(HAsSnO4−n

2−, n = 14) is available. Thioarsenates are
structural analogues to arsenate and form under sulfur-
reducing conditions from arsenite by OH−/SH−-ligand
exchange and oxidative addition of zerovalent sulfur.27−29

Sulfur-reducing conditions can occur in flooded rice paddy
fields,30,31 especially when sulfur (S) is applied as fertilizer.
This has recently been suggested to lower grain As
concentrations30,32−36 with the beneficial side effect that
emissions of methane are significantly decreased.37 No
conclusive data about the effects of S fertilization have been
obtained so far. Enhanced formation of PCs and arsenite-PC
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complexes32,33,35 or iron plaque34,35 were proposed as the
dominant mechanisms. However, thiolation could also be a
significant process depending on the S(-II)/As(III) and S(0)/
As(III) ratios, pH, and micro-oxic conditions in the soil. First
data from recent studies in our group show that thioarsenates
can contribute up to 10% to total As in natural paddy soils
without sulfate fertilization and up to 60% in microcosms with
sulfate spikes.38 Monothioarsenate (MTA) is the most stable
of all thioarsenate species39 and can occur over the whole pH
range typically found in paddy fields (pH 2.58).31,40

The toxicity and uptake of MTA has to date only been
studied in the model plant Arabidopsis thaliana.41 Mono-
thioarsenate was found to be more toxic than arsenate but less
toxic than arsenite, and root to shoot translocation was higher
for MTA compared to arsenate. Additional experiments with
PC-synthesis and transport mutants showed that the PC
detoxification pathway is important for MTA as well as for
arsenate. However, in the absence of species-preserving
extraction protocols, As speciation in A. thaliana roots and
shoots could not be investigated, and therefore no direct
evidence for uptake of intact MTA by plants could be
obtained.
The aim of this study was to develop an extraction method

for MTA in rice roots and shoots and to generate information
about toxicity, uptake, transformation, and translocation of
MTA in rice plants. Growth inhibition by arsenite, arsenate,
and MTA was compared for 20 days exposure in hydroponic
culture. Reduction of arsenate and MTA to arsenite and efflux
of arsenate and MTA to the nutrient solution were
investigated. Uptake, transformation, and translocation were
studied in short-term hydroponic experiments.

■ METHODS AND MATERIALS
Growth Conditions for Rice. All experiments were

conducted with a European rice variety (Oryza sativa L. cv.
Arelate), and seedlings were grown under the following
conditions unless specified otherwise. Rice grains were
germinated inside a plastic box on wet paper towels at 33
°C for 7 days (d). Seedlings were transferred into polymerase
chain reaction (PCR) tubes (Biozym) and placed in 50 mL
tubes (Sarstedt) containing nutrient solution (Table SI 1). The
plants were grown inside a growth cabinet under long day
conditions (16 h of light/8 h of darkness) at 23 °C and 110 μE
for 20 d, and the nutrient solution was changed twice a week to
ensure sufficient supply of nutrients.
Method Development for MTA Extraction from Plant

Tissues. Stability of MTA in MQ Extracts of Plant Tissues.
Monothioarsenate stability was tested in the presence of rice
roots and shoots to determine whether plant tissues affect As
speciation. Therefore, rice plants were grown hydroponically
without As for 20 d. Shoots and roots were flash-frozen and
ground in liquid nitrogen (N2) or dried for 2 days at 110 °C to
destroy enzymes and other proteins. Microreaction tubes
(Sarstedt) were filled with 0.4 g of glass beads (Retsch), 0.7 g
of shoot material, or 0.4 g of root material, respectively, and 1.5
mL of 0.66 μM MTA in ultrapure water (MQ). Because of a
lack of a commercially available standard, MTA was
synthesized as Na3AsO3S·2H2O in our laboratory as described
in detail previously.42,43 The purity was 98.5% MTA, the
remainder being 0.5% arsenite and 1% arsenate (analyzed by
IC-ICP-MS). Stability tests of 0.66 μM MTA were performed
under N2-atmosphere using a glovebox (COY, N2/H2 95/5%
(v/v)). Samples were vortexed at room temperature (RT) for

10240 min. An extra subset of flash-frozen roots and shoots
was heated in a boiling water bath for 5 min and then cooled
back to RT in an ice bath for 2 min followed by 53 min
vortexing at RT to destroy enzymes and other proteins. The
two methods are termed “RT” and “5 min boiling” in the
following. All samples were filtered with 0.2 μm cellulose
acetate (CA) filters (Machery-Nagel), and As speciation was
analyzed within 30 min using ion-chromatography coupled to
inductively coupled plasma mass spectrometry (IC-ICP-MS).

Stability of MTA in Different Extractants in the
Absence of Plant Tissues. To date, there is no method
for the extraction of thioarsenates from plant tissues. We tested
the stability of arsenite and MTA (0.66 μM each) in different
potential extractants in the absence of plants. The extractants
were phosphate-buffer (PBS; 2 mM NaH2PO4 (Grüssing) +
0.2 mM Na2-EDTA (Grüssing); pH 6.0),44 MQ, 0.1 and 0.01
M NaOH (Merck), 10% ethanol (EtOH, VWR), 1% formic
acid (FAc, Fluka), and 0.28 M HNO3 (Kraft). These
extractants were selected because arsenite and arsenate are
commonly extracted using PBS,6,44−46 whereas earlier
publications tested MQ, NaOH, and MQ:methanol mix-
tures.47−49 For the extraction of As phytochelatin complexes,
1% formic acid was used in earlier studies,50 and for As
speciation analysis rice grains are often extracted using 0.28 M
HNO3.

51,52 For all extractants, the two different extraction
procedures, RT and 5 min boiling, were tested for 60 min.

Evaluation of Extraction Efficiency in Different
Extractants in the Presence of Plant Tissues. Extraction
was then tested using 20 d old plants which were exposed to P-
free nutrient solution containing 50 μM MTA for 24 h. The
nutrient solution was changed every 6 and 12 h during day-
and nighttime, respectively, to maintain As speciation (3
replicates for MTA and 1 for arsenate exposure). After
exposure, rice roots were washed for 10 min using 1 mM
KH2PO4 (Grüssing), 0.5 mM Ca(NO3)2 (Grüssing), and 5
mM MES (Roth),44,53 flash-frozen, and ground in liquid N2.
Between 0.03 and 0.05 g of shoot or root material was
extracted under N2-atmosphere in ultrapure water, 10% EtOH,
or PBS using both extraction procedures described above (RT
and 5 min boiling), and As speciation was analyzed
immediately by IC-ICP-MS. In addition to that, total As
concentrations in roots and shoots were determined by ICP-
MS after microwave digestion.

Toxicity Experiment. In order to obtain growth inhibition
curves, arsenite (NaAsO2; Fluka), arsenate (Na2HAsO4·7H2O;
Fluka), or MTA were added to the nutrient solution (5225
μM; Table SI 2) for the whole growth period of 20 d (4
replicates for each treatment). The same experiment was also
performed with only 50% of the initial phosphate concen-
tration in the nutrient solution (−50% P; 5150 μM As;
Table SI 2) to investigate whether MTA might be taken up via
phosphate transporters like arsenate. After 20 d, the primary
root and shoot lengths, as well as the seedling fresh weights,
were determined. The stability of arsenite, arsenate, or MTA
was tested by incubating the nutrient solution without plants
for 4 d in the growth cabinet and analyzing the As speciation
with IC-ICP-MS (4 d was the maximum time before changing
the nutrient solution). Dose response curves were derived from
these data using a three-parameter-log−logistic dose−response
model in the program Sigma plot and the IC50 values were
obtained graphically.

MTA and Arsenate Influx/Efflux Experiments. For
quantifying species transformation of arsenate and MTA in the

Environmental Science & Technology Article
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nutrient solution, 20 d old plants were exposed to 10 μM
arsenate or MTA for 24 h in a 100 mL P-free nutrient solution.
For analysis of As speciation in the nutrient solution, samples
were taken after 0, 3, 5, 7.5, 12, and 24 h, filtered through 0.2
μm CA filters, and flash-frozen until analysis by IC-ICP-MS
(Influx-experiment, 4 replicates per treatment). The nutrient
solution, containing 10 μM arsenate or MTA, was changed
after 6 and 12 h during day- and nighttime, respectively, for all
further experiments to maintain As speciation. For quantifying
the As efflux into the nutrient solution after arsenate or MTA
exposure for 24 h, roots were washed as described before and
placed into a 15 mL As-free solution containing tap water with
P- and Ca-concentrations like in the original nutrient solution.
This solution was selected because pretests with different
growth media compositions (MQ/tap water, ± Ca, ± P, and ±
Fe) showed best MTA stability at low concentrations (10
ppb). Arsenic speciation samples were taken after 3, 9, and 24
h, filtered through 0.2 μm CA filters, and flash-frozen until
analysis by IC-ICP-MS (Efflux-experiment, 4 replicates).
Sampling of Xylem Sap. To obtain xylem sap, plants

exposed to 10 μM arsenate or MTA for 24 h were cut 2 cm
above the roots with a sharp blade. Xylem was collected over
1.5 h using a 2 μL pipet. Samples were diluted in 750 μL of ice-
cold PBS, and As speciation was analyzed immediately by IC-
ICP-MS (9 replicates). Xylem sap collected from three plants
was pooled into one sample.
MTA and Arsenate Uptake and Translocation. To

follow uptake and translocation of arsenate and MTA, rice
plants were exposed to 10 μM arsenate or MTA for 3, 6, 24,
48, and 72 h. Sampled roots were washed as described before
(3 replicates for MTA, 1 replicate for arsenate). After the fresh
weights of roots and shoots were determined, plants were flash-
frozen and ground in liquid N2. Plant material (0.010.06 g)
was extracted in 1.5 mL of PBS. Samples were boiled for 5 min
and vortexed for an additional 55 min as described above (“5
min boiling” method). Arsenic speciation was analyzed
immediately, and additional samples were microwave-digested
to obtain total As concentrations. Translocation factors were
calculated (As-shoot/As-root).
As-Measurements. Arsenic speciation was analyzed by IC

(Dionex ICS-3000) using a PRP-X100 column (Hamilton, 10
mM NH4NO3, 10 mM NH4H2PO4, and 500 mg/L Na2-EDTA
at a flow rate of 1.0 mL/min and 50 μL injection volume)54

coupled to ICP-MS (XSeries2, Thermo-Fisher) using oxygen
as reaction cell gas (AsO+, m/z 91). Retention times of
arsenite, arsenate, and MTA were determined using individual
standards. For total As concentrations, 0.010.08 g of plant
material was digested in concentrated HNO3 (Kraft) and 30%
H2O2 (VWR) (ratio 1.5:1) in a CEM Mars 5 microwave
digestion system (CEM Corp., Matthews, NC) and analyzed
by ICP-MS.

■ RESULTS AND DISCUSSION
Evaluation of the Species-Preserving Extraction

Method. First tests of MTA stability in shoot and root
matrices showed significant reduction of MTA to arsenite (38
and 83% MTA remained after 240 min, respectively). No
reduction to arsenite was observed in controls without plants
over 240 min (98% MTA, Figure 1) as well as in experiments
where plants were dried at 110 °C for 2 days, destroying all
enzymes and other proteins. No kinetic information can be
obtained from this experiment, because the amount of proteins
present in the roots and shoots was not quantified. Never-

theless, the tests clearly showed that MTA reduction to
arsenite was an enzymatic process. For speciation analyses of
root and shoot samples, drying samples at 110 °C for 2 days
was not an option because it may alter As speciation. Previous
experiments at 80 °C had shown no speciation changes for
MTA over 2 h55 but a transformation of about 60% MTA to
arsenite after 2 d.56 We therefore tested boiling samples for a
very short time (5 min) and vortexing them for 55 min
afterward. Using this “5 min boiling” method, MTA trans-
formation was limited to less than 8% and 13% in shoots and
roots, respectively.
Testing the stability of arsenite and MTA in different

potential extractants in the absence of plants, we found that
MTA was stable in all extractants (9599%; Figure SI 1) at
RT, while arsenite was only stable in PBS, MQ, and 10% EtOH
over 60 min (94100%; Figure SI 2). Therefore, NaOH,
HNO3, and formic acid are excluded from the following
discussion. Results can be found in Figures SI 1 and 2 (62
80% arsenite recovery). In the absence of plants, arsenite and
MTA were stable in PBS, MQ, and 10% EtOH when samples
were boiled before (“5 min boiling”; Figure SI 2). Testing the
stability of MTA in different potential extractants in the
presence of rice shoot and root material, MTA was partially
reduced to arsenite in all extractants (5784 and 8791%
MTA remained in shoots and roots after 60 min, respectively)
at RT. Boiling the samples for 5 min limited the reduction of
MTA to arsenite to less than 10% (9192 and 8793%
MTA) in shoots and roots.
The extraction efficiency was tested with rice seedlings

exposed to 50 μM MTA for 24 h (Figure 2). Extraction at RT
using PBS, MQ, and 10% EtOH showed large variations
between the extractants (2737 and 101247 μmol/kg in
shoots and roots) and poor recovery (76102 and 70
172%) especially for root samples. After boiling the samples for
5 min no or minor differences were observed between MQ,
PBS, and 10% EtOH in shoots and roots (3133 and 190
μmol/kg). Comparing the results for As concentrations from
total As analysis by ICP-MS versus the sum of species analyzed
by IC-ICP-MS (arsenite, arsenate, MTA) we found an overall

Figure 1. Test of 0.66 μM MTA stability in the presence of shoot
(left) and root extracts (right) from 20 d old rice seedlings grown
without As exposure. Test conditions were as follows: powders of
flash frozen roots and shoots extracted in MQ for 10240 min at RT
(circles) or boiled for 5 min and then extracted for 55 min at RT
(crosses); powder of roots and shoots dried at 110 °C for 2 d and
extracted in MQ for 10240 min at RT (diamonds), all in
comparison to controls without plants (squares). As speciation of the
initial MTA solution was determined by IC-ICP-MS for different
treatments of plant samples; legend in the right panel applies to both
graphs.
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good agreement for the shoot samples (sum of species slightly
lower than totals; 86−92%, n = 3, Figure 2 upper right panel).
For the roots, samples exposed to 10 μM MTA for 24 h
showed comparable values (sum of species 72−83% of totals, n
= 3), but in plants exposed to 50 μM MTA for 24 h the sum of
species was consistently higher than totals (132%; n = 3, Figure
2 lower right panel). Whether this difference was due to
underestimation of totals or overestimation of species
concentrations could not be determined. However, considering
all samples that were analyzed for this study, no systematic
error was found for comparison of sum of species to total As
concentration (94 ± 32%, n = 52). Higher uncertainties were
especially found in plants after short-term exposure (3 or 6 h)
where total As concentrations as low as 2.6 nM were measured
which are close to the limit of quantification of 1.5 nM for our
ICP-MS.
Monothioarsenate Toxicity to Rice. Exposing rice

seedlings to increasing arsenite, arsenate, and MTA concen-
trations resulted in lower relative shoot lengths and weights
(Figure 3). Growth inhibition was strongest for arsenite (IC50
of shoot weight: 4 μM; Figures SI 3, 4) followed by MTA
(IC50: 50 μM) and arsenate (IC50: 190 μM). When the
phosphate concentration in the nutrient solution was lowered
by 50%, IC50 values for arsenate (IC50: 25 μM; Figures SI 3, 5)
and MTA (IC50: 7.5 μM) were decreased by a factor of 6.7 and
7.6, respectively, whereas arsenite (IC50: 3.1 μM) decreased
only by a factor of 1.4 (Table SI 3). The results from this
toxicity experiment clearly showed that MTA was toxic for rice
plants. The higher toxicity of MTA in nutrient solution with
lower phosphate availability could be indirect evidence for
MTA uptake through phosphate transporters similar to
arsenate10,57 (detailed discussion see below). The same order

of toxicity (arsenite > MTA > arsenate) was observed in
experiments with A. thaliana41 and human cells58 before.

Arsenic Speciation Changes in Nutrient Solution of
Hydroponic MTA Influx and Efflux Experiments. In the
nutrient solution (control without plants), arsenite, arsenate,
and MTA stability was confirmed over 4 days. Less than 10%
oxidation to arsenate was found for arsenite and MTA.
Arsenate was completely stable (Figure SI 6). In contrast to
the control without plants, significant reduction of MTA to
arsenite was observed in hydroponic cultures with rice
seedlings (Figure 4; Influx experiment). Within 6 h, 50% of

MTA was reduced to arsenite, whereas arsenate reduction was
slower (50% reduced to arsenite after 24 h). For arsenate,
reduction to arsenite and efflux of arsenite is a known part of
the detoxification process.44,59 The reduction of MTA to
arsenite by plants has not been observed so far, while microbes
are known to transform MTA to arsenite27,55,56,60 or
arsenate.61

Figure 2. Comparison of As extraction in shoots (top panel) and
roots (bottom panel) using MQ, PBS, and 10% EtOH at RT for 60
min (left) or after 5 min boiling and 55 min at RT (right). Rice
seedlings were grown for 20 d without As and exposed to 50 μM and
10 μM MTA for 24 h. Nutrient solution was exchanged frequently
during influx to minimize reduction to arsenite (every 6 h during
daytime and after 12 h during nighttime). Total As concentrations
were determined after microwave digestion (cross) (n = 3).

Figure 3. Relative root and shoot lengths for 20 d old rice seedlings
exposed to increasing concentrations (logarithmic scale) of arsenite,
arsenate, and MTA (n = 4) in original nutrient solution (+ P; left
panel) and with 50% reduction of phosphate (− P; right panel) in the
nutrient solution.

Figure 4. Arsenic speciation in growth media monitored over 24 h
with rice seedlings exposed to 10 μM MTA (left) or arsenate (right)
and control without plants in dashed lines (Influx experiment, n = 4).
Sum of species and totals are used as synonyms in the text.
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Total As concentrations did not change in the hydroponic
cultures over 24 h during MTA exposure, but during arsenate
exposure, total As started to decrease after 12 h (1.3 ± 1.0 μM
loss after 24 h). The loss of As in the nutrient solution is
already a first indication toward higher uptake of arsenate into
the rice roots, which is later also mirrored in higher As
concentrations detected in arsenate-exposed roots (see
discussion below). After the observed rapid reduction of
MTA to arsenite by rice seedlings in these experiments, we
renewed the nutrient solution in all further experiments every 6
h during daytime and every 12 h during nighttime to minimize
arsenite uptake.
The reduction of MTA to arsenite in the nutrient solution

gave indirect evidence that MTA is actively taken up by rice
plants and reduced inside the plant to arsenite and that this
arsenite is then effluxed from the roots. However, reduction on
the root surface could not be excluded. We therefore
investigated the root efflux in As-free media after 24 h
exposure to arsenate or MTA (Figure SI 7, Efflux experiment).
Total effluxed As concentrations were 4-times higher in plants
exposed to arsenate (82 ± 3 μmol/kg root) than in plants
exposed to MTA (21 ± 3 μmol/kg root). In plants exposed to
MTA, we detected up to 3% MTA in the efflux medium, which
supports the assumption that MTA was taken up intact into
the plant. Surprisingly, the dominant As species detected in the
efflux medium after both exposure to arsenate and MTA was
arsenate (8497%), not arsenite. This dominance of arsenate
might be due to oxidation or preferential release of non-PC-
complexed As (Note that total concentrations in the efflux
experiment are 10−20 times lower than in the influx
experiment; for a detailed discussion on the possible reasons
for arsenate dominance in the efflux also refer to Figure SI 7.).
Detection of Monothioarsenate in the Xylem Sap.

Both the influx and the efflux experiments provided indirect
evidence that MTA can be taken up by rice plants, yet direct
detection in plant material was still missing. By sampling xylem
sap from plants exposed to arsenate or MTA for 24 h, we were
able to directly detect MTA (20 ± 5%) in the xylem of rice
seedlings (Figure 5). This clearly showed that MTA was taken
up intact by rice roots and at least partially transported into
shoots. Comparing the total amount of As in the xylem, slightly
more As was found in the MTA-exposed plants (0.08 ± 0.02

μmol/kg root) than in arsenate-exposed plants (0.05 ± 0.01
μmol/kg root), although the difference was not significant.

Analysis of Monothioarsenate Uptake and Trans-
location Time Courses by Species-Preserving Plant
Tissue Extractions. The uptake and translocation of MTA
in comparison to arsenate was studied over 72 h in 20 d old
rice seedlings. The dominant As species in the roots was
arsenite in both treatments (6777% in MTA-exposed and
6381% in arsenate-exposed plants, respectively) with minor
contributions of arsenate (11−14% and 18−37%, respec-
tively). In MTA-exposed plants, between 1219% MTA was
found in the roots. In shoots, arsenite was the dominant
species (7186%) except for plants exposed to arsenate for
more than 48 h (up to 54% arsenate). A maximum of 4% MTA
was also detected in shoots. The absolute arsenite concen-
trations in shoots of the MTA-exposed plants were higher than
in the arsenate-exposed plants (ranging from 1.1 to 28.4 μmol/
kg for MTA and from 0.7 to 20.0 μmol/kg for arsenate
throughout the 3 to 72 h exposure).
Total As uptake after 72 h was lower in plants exposed to

MTA compared to arsenate (34 μmol/kg for MTA exposure
compared to 50 μmol/kg for arsenate exposure in shoots and
61 μmol/kg compared to 360 μmol/kg in roots, Figure 6). The
higher As uptake, especially in roots, during the arsenate
exposure is in line with the higher loss of As found in the
arsenate influx experiment (Figure 2). The same trend was
observed in A. thaliana plants exposed to arsenate and MTA
for 4 d, where root uptake was 45 times lower for MTA-
exposed plants41 (here 5 times lower after 3 d). No uptake

Figure 5. Left side: As speciation in xylem sap of rice seedlings which
had been exposed to 10 μM MTA (left) or arsenate (right) for 24 h.
Sum of species was 0.08 ± 0.02 μmol/kg root for MTA exposure and
0.05 ± 0.01 μmol/kg root for arsenate exposure. Growth media were
changed every 6 h (daytime) and after 12 h (nighttime) during influx
to minimize reduction to arsenite (n = 3). Right side: Exemplary
chromatograms for As speciation in xylem analyzed with IC-ICP-MS
(MTA exposure: top panel; arsenate exposure: bottom panel).

Figure 6. Arsenic uptake kinetics for rice seedlings grown for 20 d
without As following exposure to 10 μM MTA (left) and arsenate
(right) for 3, 6, 26, 48, and 72 h. Arsenic speciation (logarithmic
scale) in shoots (top panel) and roots (bottom panel) was determined
using PBS-extraction (5 min boiling and 55 min at RT). Total As
concentrations were determined after microwave digestion (cross) (n
= 3 for MTA and n = 1 for arsenate).
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transporter is known for MTA in plants, yet. However, the
increased arsenate and MTA toxicity when plants were grown
in the presence of 50% lower phosphate concentration
(Figures SI 4, 5) may be interpreted as first evidence that
MTA, like arsenate, is taken up inadvertently via phosphate
transporters.10,19,57 Arsenate [MW(HAsO4

2−) = 140 g/mol;
pKa2 = 6.9] and phosphate [MW(HPO4

2−) = 96 g/mol; pKa2 =
7.2] are structural analogues but are slightly different in
molecular weight and pKa-values. Comparing MTA [MW-
(HAsSO4

2−) = 156 g/mol; pKa2 = 7.3] to arsenate and
phosphate the molecular weight is similar to arsenate, whereas
the pKa2 is similar to phosphate. All three ions have a
tetrahedral structure, but the double bonds AsO (1.69
1.71 Å62,63), AsS (2.142.15 Å64), and PO (1.56 Å65)
have different lengths, slightly changing the molecule
geometry. Therefore, the chemical parameters of MTA,
arsenate, and phosphate might be similar enough to enable
uptake through the same phosphate transporters.
The root to shoot translocation factor determined for

arsenate in the present study (0.14; Figure SI 8) is comparable
to that determined in a previous study (0.1).66 In comparison
to arsenate, the root to shoot translocation factor for MTA-
exposed plants was higher (0.55 ± 0.04 after 72 h). This
observation is also in line with the higher As concentrations
found in the xylem of MTA-exposed plants in the present
study and the reported higher translocation of MTA relative to
arsenate in A. thaliana.41 The reason for higher MTA
translocation is unclear, yet. One important limitation for As
translocation from roots to shoots is detoxification of As by
phytochelatins (PC)20−23 and storage of arsenite-PC com-
plexes in root vacuoles mediated by OsABCC1.24 The first step
in the detoxification process is the reduction of arsenate to
arsenite by arsenate reductase.17,18 Rapid reduction of MTA to
arsenite observed in the present experiments and synthesis of
PCs after MTA exposure observed in previous experiments
with A. thaliana41 suggest that detoxification of MTA could
proceed similar to detoxification of arsenate. Furthermore, in
case no reduction or PC-complexation occurs at all, trans-
location factors should be higher and comparable to those of
DMAV (translocation factor up to 4.967), for which no
corresponding DMA-PC complexes68 are known. MTA
translocation could be comparable to MMAV (translocation
factor up to 0.266,67) for which relatively high transport to
shoots is known despite an efficient reduction to MMA(III)
and complexation with PCs in rice roots.50,67 Whether MTA
can be directly complexed by PCs (e.g., as MTAIII-PC) is not
known, yet. Differences in identity and localization of the
enzymes responsible for MTA reduction to arsenite (or
MTAIII) compared to those for arsenate reduction to arsenite
could result in lower rates of As complexation and storage in
roots and more efficient transport to the xylem.
Implications. Improved strategies to decrease As accumu-

lation in rice grains are currently investigated to comply with
the As threshold levels in China69 and those just recently
(2016) introduced in the European Union.70 Besides different
water-management strategies and selection of low As
accumulation rice varieties, fertilization of paddy soils with
sulfur is being tested, with the beneficial side effect that
emission of the greenhouse gas methane is significantly
reduced. However, the effects of S fertilization in soils and
plants are not fully understood, yet. One aspect of S
fertilization is the formation of thioarsenates, but only limited
information about the behavior of thioarsenates in plants

(obtained with the model organism A. thaliana41) was available
until now.
Taking the results from the present study into consideration,

focusing only on the uptake of arsenate, arsenite, and
methylated As from paddy soils into rice might not be
sufficient to explain As accumulation in rice grains, because we
could show that MTA was taken up by rice plants intact and
transported into the xylem. Monothioarsenate reduction to
arsenite inside the rice plant was observed. Its role for As
metabolism, however, is not understood, yet. Higher rates of
As translocation from roots to shoots, when rice was exposed
to MTA compared to arsenate, were also observed for A.
thaliana in a previous study.41 This observation requires
further detailed investigations on passage to the grain in order
to determine whether MTA contributes to As accumulation in
grains. The mechanisms for the high MTA translocation are
not clear, yet. Different uptake and translocation rates for MTA
and arsenate might indicate that as yet unknown enzymes play
an important part in the MTA-metabolism. Hence, the
transporters for MTA uptake and translocation as well as the
MTA-reductases need to be identified to gain a better
mechanistic understanding.
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S1 

Table SI 1. Composition of nutrient solution used for plant growth. 

Nr. Macronutrients 
Concentration 

(mg/L) 
Vendor 

1 Ca(NO3)2*4H2O 1000 Grüssing 

2 KCl 120 Grüssing 

3* KH2PO4 
250 Grüssing 

4 MgSO4*7H2O 250 Merck 

5 Fe-EDDAH (5.7% Fe) 20 Duchefa Biochemie 

Nr. Micronutrients 
Concentration 

(µg/L) 
Vendor 

1 KJ 27 Grüssing 

2 LiCl 27 Fluka 

3 CuSO4*5H2O 55 Grüssing 

4 ZnSO4*7H2O 111 Roth 

5 H3BO3 
55 Merck 

6 Al2(SO4)3 
55 Alfa Aesar 

7 MnCl2*4H2O 388 AppliChem 

8 NiSO4*7H2O 55 Aldrich 

9 Co(NO3)2*6H2O 55 Fluka 

10 KBr 27 Merck 

11 (NH4)6Mo7O24 
55 Fluka 

* -50% P: 125 mg/L KH2PO4 
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S2 

Table SI 2. Arsenic concentration for toxicity experiment in original nutrient solution or with -

50% P. 

Experiment 
Arsenite 

(µM) 

Arsenate 

(µM) 

MTA 

(µM) 

o
ri

g
in

al
 

5 5  

- - 7.5 

10 10 - 

- - 15 

25 25 - 

37.5 37.5 37.5 

50 50 - 

- 75 75 

100 100 - 

 150 150 

 225 225 

-5
0
%

 P
 

5 5 5 

10 10 10 

25 25 25 

50 50 50 

100 100 100 

150 150 150 
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S3 

Table SI 3. Comparison of IC50 values from rice seedlings grown in original nutrient solution 

(Table 1) and seedlings grown in nutrient solution with -50% phosphate. Factors were calculated 

as (IC50 (original) / IC50(-50% P)).  

 Arsenite 

IC50 (µM) 

MTA  

IC50 (µM) 

Arsenate  

IC50 (µM) 

S
h

o
o
t 

le
n

g
th

 

original 

-50% P 

Factor 

15 

14 

1.1 

>225 

52 

>4.3 

>225 

110 

>2.0 

S
h

o
o
t 

w
ei

g
h

t 

original 

-50% P 

Factor 

4.2 

3.1 

1.4 

50 

7.5 

6.7 

190 

25 

7.6 
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S4 

 

Figure SI 1. Test of 0.66 µM MTA stability in different extractants for 60 min as abiotic control 

(top panel), for shoot (middle panel) and roots (bottom panel). All samples were extracted at RT 

for 60 min, as well as with 5 min boiling and 55 min at RT afterwards 
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S5 

 

Figure SI 2. Test of 0.66 µM arsenite stability in different extractants for 60 min as abiotic. All 

samples were extracted at RT for 60 min, as well as with 5 min boiling and 55 min at RT 

afterwards. 
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S6 

 

Figure SI 3. Relative shoot and root weights for 20 d old rice seedlings exposed to increasing 

concentrations (logarithmic scale) of arsenite, arsenate, and MTA (n=4) in original nutrient 

solution (+ P; on the left panel) and with 50% reduction of phosphate in nutrient solution (- P; on 

right panel). 
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S7 

 

Figure SI 4. Dose response curves of relative shoot weights and lengths versus individual As 

species concentration (logarithmic scale) after exposure to arsenite, arsenate and MTA (n=4). 

IC50 values (marked by red lines) were derived from these curves using a three parameter log-

logistic dose-response model in the program Sigma plot. 
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S8 

 

Figure SI 5. Dose response curves of relative shoot weights and lengths versus individual As 

species concentration (logarithmic scale) after exposure to arsenite, arsenate and MTA and 50% 

reduction of phosphate in nutrient solution (n=4). IC50 values (marked by red lines) were derived 

from these curves using a three parameter log-logistic dose-response model in the program Sigma 

plot. 
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S9 

 

Figure SI 6. Abiotic control of nutrient solution after 4 days in growth cabinet under the same 

conditions as plants. As speciation for nutrient solution amended with MTA, arsenate, and 

arsenite. 
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Figure SI 7. Efflux of arsenite, arsenate, and MTA after rice seedlings had been exposed to 10 

µM MTA (left) or arsenate (right) for 24 h. Growth media was changed every 6 h during daytime 

and after 12 h during nighttime during influx to minimize reduction to arsenite (Efflux 

experiment, n=4). Sum of species and totals are used as synonyms in the text. 

Based on the results from the influx experiment, mostly arsenite should be effluxed by the rice 

plants, but arsenate was the dominant species found. One explanation could be that arsenite is 

effluxed continuously at trace amounts (maximum As concentration measured in efflux media 0.9 

µM in 24 h compared to 10 µM in the influx experiment) that are quickly abiotically oxidized. 

Even though abiotic oxidation rates of up to 0.8 µM/h have been reported before 
1
, our abiotic 

controls of 0.06 and 0.13 µM arsenite in efflux media were not oxidized to arsenate within 24 h, 

showing that the arsenate in our experiments is no abiotic oxidation artefact. An alternative, and 

here probably more likely, explanation could be that root oxygen loss (ROL) is the main driver 

for arsenite oxidation. Rice roots are known to release oxygen 
2,3

 into the rhizosphere creating 

oxidizing microenvironments where, for example, iron plaque is formed 
4
. Oxidation of arsenite 

to arsenate is very likely under these conditions as arsenate is the dominant As species found in 

iron plaque 
5,6

. Compared to the arsenite release during the influx experiment (Figure 4), the As 

concentrations were much lower during the efflux experiment and therefore, the effluxed arsenate 

could be the remaining arsenate that was not reduced to arsenite yet.  

129



S11 

 

Figure SI 8. Translocation factors from root to shoot for rice seedlings grown for 20 d without 

As following exposure to 10 µM MTA (left) and arsenate (right) for 3, 6, 24, 48, and 72 h. 

Factors were calculated for As species in seedlings, as well as for total As (n=3 for MTA and n=1 

for arsenate). 
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ABSTRACT: Methylated and inorganic thioarsenates have
recently been reported from paddy fields besides the better-
known oxyarsenates. Methylated thioarsenates are highly toxic
for humans, yet their uptake, transformation, and translocation
in rice plants is unknown. Here, hydroponic experiments with
20 day old rice plants showed that monomethylmono-
thioarsenate (MMMTA), dimethylmonothioarsenate
(DMMTA), and monothioarsenate (MTA) were taken up
by rice roots and could be detected in the xylem. Total arsenic
(As) translocation from roots to shoots was higher for plants
exposed to DMMTA, MTA, and dimethylarsenate (DMAV)
compared to MMMTA and monomethylarsenate (MMAV).
All thioarsenates were partially transformed in the presence of
rice roots, but processes and extents differed. MMMTA was
subject to abiotic oxidation and largely dethiolated to MMAV already outside the plant, probably due to root oxygen loss.
DMMTA and MTA were not oxidized abiotically. Crude protein extracts showed rapid enzymatic reduction for MTA but not
for DMMTA. Our study implies that DMMTA has the highest potential to contribute to total As accumulation in grains either
as DMAV or partially as DMMTA. DMMTA has once been detected in rice grains using enzymatic extraction. By routine acid
extraction, DMMTA is determined as DMAV and thus escapes regulation despite its toxicity.

■ INTRODUCTION

Rice, being a staple food for half of the world’s population,1,2

takes up approximately 10 times more arsenic (As) than other
cereals3,4 and contributes to human As exposure.5 Arsenic is
ubiquitously present in soils and mobilized during rice
cultivation on flooded paddy soils by reductive dissolution of
iron (Fe) minerals.6,7 While arsenite is the most abundant As
species under reducing conditions, minor amounts of arsenate,
monomethylarsenate (MMAV), and dimethylarsenate (DMAV)
were reported in pore water of paddy soils.5,8 Methylated
oxyarsenates originate from soil microorganisms or algae that
are able to biomethylate inorganic As by the enzyme As(III) S-
adenosylmethionine (SAM) methyltransferase prior to uptake
by plants.9,10 Uptake of inorganic arsenite (by nodulin 26-like
intrinsic protein (NIP) aquaglyceroporins such as Lsi1
(OsNIP2;1)11−13) and arsenate (by phosphate transporters
such as OsPht1;1,14 OsPht1;4,15,16 or OsPht1;817) is well-
studied. Less is known about methylated As which is
microbially produced in the rhizosphere.10 Similar to arsenite,
nondissociated MMAV ((CH3)AsO(OH)2, pKa1 4.2) and

DMAV ((CH3)2AsO(OH), pKa1 6.1) are taken up via
OsNIP2;1.18 However, additional, so far unknown transporters
are hypothesized to account for the uptake of dissociated
MMAV and DMAV.5 Further transport of As to xylem and
phloem is limited by As sequestration in root cell vacuoles via
phytochelatin (PC) complexation. Inorganic As is stored as
AsIII−PC complexes19−22 and MMAV is stored as MMAIII−PC
complexes after reduction of MMAV to MMAIII.23,24 No
DMAIII−PC complexes have been found in rice roots so far.23

Lack of DMAIII complexation explains the strong differences in
root-to-shoot translocation rates which follow the order
arsenite < MMAV < DMAV.24,25 In consequence, DMAV

concentrations in rice grains can reach up to 90% of total
As,26 while in soils it typically contributes only a few percent
(maximum 20%) to total As.10
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In addition to the better-known oxyarsenates, paddy soil
pore waters can also contain inorganic and methylated
thioarsenates.27 Even though to date there is still little
analytical evidence for thioarsenate occurrence in paddy
soils, because routine sample stabilization and analytical
techniques do not preserve thioarsenates, their formation is
highly plausible from a geochemical point of view. Paddy fields
are well-known methane emitters28,29 and sulfate reduction to
sulfide precedes methane formation (standard redox potential
for sulfide formation (−221 mV) vs methane formation (−243
mV)).5,30 Even though rice fields typically have low dissolved
free sulfide concentrations,31 peatland studies have just
recently shown that thiolation is largely controlled by As−S
surface reactions and proceeds even when there is little to no
detectable dissolved sulfide.32 Inorganic thioarsenates are
structural analogues to arsenate and form under sulfur-
reducing, alkaline conditions from arsenite via OH−/SH−

ligand exchange and addition of zerovalent sulfur.33,34

Methylated thioarsenates form, in contrast to inorganic
thioarsenates, after nucleophilic attack under acidic pH via
ligand exchange of OH−/SH− in MMAV or DMAV

molecules.35 One driver for the occurrence of thiolation is
sulfur (S) addition, even though naturally occurring S
concentrations are already sufficient for As thiolation in
paddy soils.27 Sulfur fertilization has recently been suggested to
lower grain As concentration;36−41 however, no conclusive
data have been obtained so far.
While MMAV and DMAV are considered less toxic than

inorganic As, monomethylmonothioarsenate (MMMTAV;
(CH3)AsS(OH)2) and dimethylmonothioarsenate
(DMMTAV; (CH3)2AsS(OH)) are considered highly toxic
with LD50 values in the same range as those for trivalent As in
arsenite, MMAIII, or DMAIII.42 Despite their toxicity, however,
knowledge about (methyl)thiolated As species in plants is very
limited, in contrast to well-studied metabolism in other
organisms.9 Recently, rice plants were found to take up
monothioarsenate (MTA; AsS(OH)3), to partly reduce MTA
to arsenite, and to transport it in the xylem.43 However, uptake
transporters or enzymes catalyzing the reduction are not yet
identified for MTA. In Arabidopsis thaliana, it was shown that
PC-dependent detoxification confers MTA tolerance.44 In
contrast, no data are available about uptake, transformation, or
translocation of methylated thioarsenates in plants, even
though DMMTA was detected in rice grains more than 10
years ago.45 One reason for the lack of studies about DMMTA
in rice grains might be that the widely used acid based As
species extraction converts DMMTA into DMAV during
sample preparation.46 Only enzymatic extraction as used by
Ackerman et al.45 appears to preserve DMMTA, at least partly.
Considering food guidelines for rice grains in Europe and
China [0.2 mg of inorganic As/(kg of dry weight (d.w.))],47,48

this is problematic since methylated As is excluded from
threshold values due to lower toxicity compared to inorganic
As even though measured DMAV is the sum of actual DMAV

and transformed DMMTA. The occurrence of methylated
thioarsenates in paddy soils and the detection of DMMTA in
rice grains indicate that methylated thioarsenates have the
potential to contribute to As accumulation in rice grains.
The purpose of this study was to obtain first insights into

uptake, transformation, and contribution to total As trans-
location of methylated thioarsenates in rice plants and to
compare the behavior of methylated thioarsenates to that of
inorganic MTA. Transformation of (methylated) thioarsenate

speciation was studied in nutrient solution and in the presence
of crude protein extracts derived from three different rice
cultivars grown hydroponically. Uptake, speciation of As in
xylem sap, and translocation of total As was studied for one
cultivar by exposing rice seedlings to methylated thioarsenates
for 6−72 h and measuring accumulation of total As in plant
tissues.

■ METHODS AND MATERIALS
Growth Conditions for Rice. Experiments were con-

ducted with a European rice variety (Oryza sativa (O. sativa) L.
cv. Arelate) and two Chinese rice varieties (O. sativa L. cv.
Yangdao 6 “YD” and Nongken 57 “NK”). Arelate was chosen
for comparison because we used it previously to study MTA
uptake in rice.43 The other two rice varieties were added
because of reported differences in root oxygen loss (ROL).49

Our determinations of ROL, quantifying titaniumIII citrate
oxidation from all three cultivars under experimental
conditions, showed the highest ROL for NK, less for YD,
and significantly less for Arelate (P < 0.05; see Supporting
Information Figure SI 1 for a detailed description). A similar
pattern was found for ROL/(g of root), with significantly
higher values for NK than for YD and Arelate (P < 0.05; Figure
SI 1).
Growth conditions for plants were described in detail

elsewhere.43 Briefly, after germinating seeds for 7 days,
seedlings were transferred to 50 mL tubes (Sarstedt)
containing nutrient solution (Table SI 1), which was renewed
twice a week to ensure sufficient nutrient supply. Seedlings
were grown for 20 days under long day conditions (16 h of
light/8 h of darkness) at 23 °C and 110 μE. Seedling weights
for all experiments can be found in the Supporting Information
(Table SI 2).

Synthesis of Methylated Thioarsenates. Monomethyl-
monothioarsenate ((CH3)AsS(OH)2) was synthesized as
described before50,51 under anoxic atmosphere inside a
glovebox (COY, 95/5% N2/H2 (v/v)). Briefly, MMAV

(CH3AsNa2O3·6 H2O, Supelco) and sulfide (Na2S·9 H2O,
Sigma-Aldrich) solutions were mixed with molar As:S ratios of
1:2.66 and pH was adjusted to 3 by adding 0.1 M HCl (Kraft).
After 30 min reaction time, pH was increased to 12.3 using 1
M NaOH (Merck) and reaction continued for another 60 min,
before aliquots were flash-frozen on dry ice and stored at −20
°C until usage.
DMMTA (CH3)2AsS(OH)) was synthesized following a

slightly modified method by Cullen et al.35 Briefly, DMAV

((CH3)2AsNaO2·3 H2O, Sigma-Aldrich) and Na2S·9 H2O
(As:S ratio, 1:1.6) were mixed in molar ratios of 1:1.6 As:S in
anoxic atmosphere, and concentrated sulfuric acid (H2SO4,
Sigma-Aldrich) was added dropwise to an As:H2SO4 ratio of
1:1.6. After 25 min reaction time, formed DMMTA was
extracted using diethyl ether (C4H10O, VWR Chemicals) and
separated from liquid phase. A constant stream of N2 was used
to evaporate the solvent and yellowish-white crystals formed.
Synthesized DMMTA was stored anoxically and in darkness at
5 °C. For DMMTA stock solutions, crystals were dissolved in
water and filtered using 0.2 μm cellulose−acetate (CA) filters
(Machery-Nagel), before aliquots were flash-frozen on dry ice
and stored at −20 °C until usage.
Monothioarsenate was synthesized as Na3AsO3S·2H2O in

our laboratory as described in detail previously.52,53

MMMTA, DMMTA, and MTA were identified by ion
chromatography coupled to inductively coupled mass spec-
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trometry (IC-ICP-MS) using previously published retention
times50 (Figure SI 2 for chromatograms). The purity of the
MMMTA was 96% containing 1% MMAV and 3% MMDTA.
The DMMTA stock contained 67% DMMTA, 28% DMDTA
((CH3)2AsS(SH)), and 5% DMAV. The MTA stock contained
98.5% MTA, 0.5% arsenite, and 1% arsenate.
All experiments with hydroponically grown rice plants were

conducted with nominal As concentrations of 10 μM, with the
exception of one subset of MMMTA samples where, by
mistake, only 3 μM As was applied. However, no difference in
transformation kinetics of control treatments (without plants)
with 3 and 10 μM MMMTA were found, so we included this
data set. Data are displayed in percent for better comparability.
Absolute As concentrations for all experiments can be found in
the Supporting Information Tables SI 3−SI 7.
Stability of Methylated Thioarsenates. In order to

maintain the highest stability of MMMTA and DMMTA
during the experiments and meanwhile minimize the share of
DMDTA from the synthesized standard, two nutrient solutions
were tested: “original” nutrient solution and nutrient solution
without Fe (− Fe). A 10 μM amount of MMMTA or
DMMTA in the respective nutrient solution was filled in 50
mL tubes and shaded from light with aluminum foil, and
samples were taken after 1, 3, 6, 12, and 24 h. Samples were
filtered using 0.2 μm CA filters, flash-frozen on dry ice, and
stored at −20 °C until analysis by IC-ICP-MS. MMMTA and
DMMTA were stable in both nutrient solutions. However,
50% of the DMDTA was converted to DMMTA in the Fe-
containing nutrient solution within 1 h (Figure SI 3).
Transformation of DMDTA to DMMTA in the presence of
FeIII was reported before.54 Therefore, all further experiments
were conducted with Fe-containing nutrient solution to start
experiments with a high share of DMMTA.
The different susceptibilities of thiolated As species to

abiotic oxidation were tested by purging 50 mL of nominally
10 μM MTA, DMMTA, or MMMTA in original nutrient
solution with pressurized air (≈40 mM O2/h). Subsamples of
500 μL were taken after 0.25, 0.5, 1, 2, 4, 6, 12, and 24 h,
filtered, and flash-frozen. Oxygen flow was about 1 order of
magnitude higher than ROL in our experiments, but larger
sized bubbles (less reactive surface area) during purging might
have lowered oxidation rates. For interpretation, we therefore
do not use quantitative comparison of oxidation rates between
purging and ROL but only relative differences for the
individual thiolated As species.
Methylated Thioarsenates Influx and Protein Ex-

tracts. Transformation of (methylated) thioarsenates by three
different rice cultivars, Arelate, YD, and NK, was studied by
exposing 20 day old plants for 24 h to 50 mL of nominally 10
μM MMAV, MMMTA, DMAV, DMMTA, or MTA in nutrient
solution. Subsamples of 500 μL for analysis of As speciation
were taken after 0, 3, 6, 12, and 24 h, filtered through 0.2 μm
CA filters, and flash-frozen until analysis by IC-ICP-MS.
For a first approach to determine whether transformation of

(methylated) thioarsenates could be enzymatically driven, we
used crude protein extracts similar to earlier studies that tested
enzyme-driven arsenate reduction.55−57 Twenty day old plant
roots were washed, flash-frozen, and ground in liquid nitrogen
(N2). To extract intact root proteins, protein buffer (Table SI
8) and ground root material were mixed in a 7:1 ratio,
incubated on ice for 15 min, and centrifuged twice for 10 min
at 4000 rpm. The protein buffer was freshly prepared before
analysis and stored on ice in the meantime. Transformations of

As species were studied by spiking 500 μL of root protein
extract with 3.33 μM MMMTA, DMMTA, or MTA under
anoxic atmosphere (glovebox) for 0, 10, 30, 60, and 120 min.
Effects of plant or buffer matrix were tested by analyzing
denatured root protein extracts (boiled for 2 min at 100 °C)
and buffer solution without root material with respective As
spike after 120 min. All samples were filtered using 0.2 μm CA
filters, and As speciation was analyzed immediately by IC-ICP-
MS.

Sampling of Xylem sap. All further experiments were
conducted with 20 day old Arelate plants only. To maintain As
speciation during exposure, nutrient solution containing 10
μM MMAV, MMMTA, DMAV, or DMMTA was changed after
6 and 12 h during day- and nighttime, respectively.
After exposure to 10 μM MMAV, MMMTA, DMAV, or

DMMTA for 24 h, xylem sap was collected from rice plants cut
2 cm above roots with a sharp blade. Over 1.5 h xylem sap was
collected using a 2 μL pipet and diluted in 750 μL of
phosphate-buffered saline [PBS; 2 mM NaH2PO4 (Grüssing)
+ 0.2 mM Na2-EDTA (Grüssing) (pH 6.0)]58 chilled on ice.
Xylem sap from three plants was pooled into one sample and
As speciation was analyzed immediately after filtering with a
0.2 μm CA filter. Oxidation during xylem sap sampling cannot
be entirely ruled out; therefore arsenite and arsenate are
summarized as inorganic As and the measured methylated
thioarsenates represent the minimum amount of methylated
thiolated As in the xylem.

Uptake and Translocation of Methylated Thioarsen-
ates. Uptake and translocation in rice roots and shoots was
analyzed after exposure to 10 μM MMAV, MMMTA, DMAV,
or DMMTA for 6, 24, 48, and 72 h. Roots were washed 10 min
in 1 mM KH2PO4, 5 mM Ca(NO3)2, and 5 mM MES to
remove As sorbed to the root surface.58 The fresh weight for
roots and shoots was determined, as well as dry weight after
drying at 60 °C for 2 days. Total As concentrations were
determined by ICP-MS after microwave digestion (Mars 5
microwave digestion system, CEM Corp., Matthews, NC,
USA) of 0.1−0.2 g of plant material in concentrated HNO3
(Kraft) and 30% H2O2 (VWR) (ratio, 1.5:1). Total As
translocation factors (TFs) were calculated (As-shoot/As-
root).

Arsenic Measurements. Arsenic speciation was analyzed
by ion chromatography (Dionex ICS-3000) coupled to ICP-
MS (XSeries2, Thermo-Fisher) using oxygen as the reaction
cell gas (AsO+, m/z 91). Samples from experiments conducted
with MMAV, DMAV, or MTA were separated using a PRP-
X100 column (Hamilton, 10 m NH4NO3, 10 mM NH4H2PO4,
and 500 mg/L Na2-EDTA at a flow rate of 1.0 mL/min),43,59

and samples from experiments conducted with MMMTA or
DMMTA, as well as protein extracts and xylem sap, were
separated using an AS16 column (Dionex AG/AS16 IonPac
column; 2.5−100 mM NaOH; flow rate, 1.2 mL/min).50 Total
As concentrations were determined by ICP-MS (AsO+, m/z
91) using rhodium (Rh+, m/z 103) as an internal standard.

Statistics. Two-way ANOVA with Tukey post hoc test was
performed using Sigma Plot 11.

■ RESULTS AND DISCUSSION
Transformation or Stability of MMMTA, DMMTA, and

MTA upon Aeration. The only species that transformed in
experiments purging nutrient solutions with air was MMMTA.
DMMTA and MTA showed no transformation over 24 h,
which is in line with previous literature reports.54,60 For
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MMMTA, 71% was transformed to MMA after 24 h when

purged with air, while no more than 37 ± 12% was

transformed in control treatments, where only a small

headspace was filled with air (Figure 1). Rapid conversion of

MMMTA to MMAV upon exposure to air has been observed

before,35 but the reason for this fast abiotic transformation of

MMMTA currently remains unclear.

Arsenic Speciation Changes in Nutrient Solution of
Hydroponic MMMTA, DMMTA, and MTA Influx Experi-
ments and Protein Extracts. Speciation changes observed
during influx experiments are discussed together with those
observed in crude protein extracts, because the latter only
shows enzymatic transformations in the plant while the former
integrates transformations in solution by ROL and abiotic or
enzymatic transformations in the plant after uptake, followed

Figure 1. Abiotic air purging experiment (40 mM O2/h) of 3 μMMMMTA and 10 μM DMMTA or MTA in nutrient solution for 24 h (air-purged
(solid lines, n = 1); controls (dotted lines, n = 3)).

Figure 2. Arsenic speciation in nutrient solution monitored over 24 h with 20 day old rice seedlings (upper panel, Arelate; middle panel, YD; lower
panel, NK) exposed to 10 μM MMMTA, DMMTA, or MTA (solid lines) and controls without plants (dotted lines; influx experiment; n = 3−7).
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by efflux of transformation products. All three As species were
transformed during the influx experiments, but only MTA
showed significant and fast transformation in crude protein
extracts.
For MMMTA, transformation to MMAV was observed in all

three cultivars during the first 12 h of the influx experiment
(Arelate, 56 ± 29%; YD, 51 ± 19%; NK, 64 ± 18% MMAV,
respectively) and transformation was faster than in control
treatments (11 ± 7% MMAV; Figure 2(left panel)). No
significant differences were observed between the three
cultivars over time and compared to controls after 24 h.
MMAV itself can be further reduced to MMAIII, as observed in
nutrient solutions of plants initially exposed to MMAV, but the
extent was small (2% MMAIII after 24 h; Figure SI 4) and no
MMAIII was observed during MMMTA exposures.
In contrast to the influx experiment, MMMTA was stable in

the presence of crude root protein extracts, as well as
denatured controls over 120 min (Figure 3(left panel)),
indicating that enzymatic transformation of MMMTA to
MMAV is negligible, based on our crude protein extracts. We
therefore assume that transformations during influx experi-
ments were most likely caused by ROL, leading to the
oxidation of sulfide bound in MMMTA and thereby trans-
formation of MMMTA to MMAV. This observation is also in

line with results from air purging that showed MMMTA was
not stable in the presence of oxygen.
For DMMTA, transformation to DMA was observed for all

three cultivars (Arelate, 60 ± 32%; YD, 68 ± 20%; NK, 60 ±
17% DMA, respectively; Figure 2(middle panel)). In control
treatments, DMMTA remained stable after 24 h. No significant
differences in transformation rates were found between
cultivars. However, the remaining DMDTA was transformed
significantly faster in the presence of plants than in controls
without plants for the first 6 h (P < 0.05). When plants were
exposed to DMA, no further species transformation occurred
(data not shown), as reported in literature before.18 Since
DMMTA was stable during air purging, we concluded that the
observed transformation was not due to root oxygen loss but
happened after DMMTA uptake by the plant.
In contrast to MMMTA and MTA, DMMTA was not stable

in protein buffer without root proteins and transformed to
DMA (31%) and DMDTA (57%), respectively (Figure SI 5).
Abiotic complexation of DMMTA with glutathione (GSH)
molecules via thiol groups of GSH and further disproportio-
nation to DMAIII-GSH and DMDTA was reported under
acidic conditions, whereas DMAIII and DMDTA were directly
formed in the presence of GSH under neural to basic
conditions.61,62 The used protein buffer did not contain
GSH but contained dithiothreitol (DTT) with a thiol group.

Figure 3. Arsenic speciation in protein extracts (upper panel, Arelate; middle panel, YD; lower panel, NK) spiked with 3.33 μM MMMTA,
DMMTA, and MTA monitored over 120 min (protein extract (solid lines); controls denatured at 100 °C for 2 min (dotted lines); n = 1).
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The capability of DTT to disproportionate DMMTA was
confirmed by incubating DMMTA and DTT for 120 min and
DMMTA was disproportionated in the presence of DTT to
35% DMA and 37% DMDTA after 120 min. DMMTA
transformation to DMA in crude protein extracts showed no
significant differences to the abiotic transformations observed
in denatured controls (after 120 min for Arelate 60 and 65%
DMMTA, respectively, YD 50 and 39%, respectively, and NK
40 and 44%, respectively; Figure 3(middle panel)). Also, in
comparison to fast transformation of MTA during influx
experiments and in protein extracts (see paragraph below),
DMMTA transformation in both protein buffer and denatured
protein buffer was slower and incomplete. We therefore
conclude that DMMTA transformation in our crude protein
extracts is negligible compared to abiotic transformation in the
root matrix. A possible reaction is conversion of DMMTA to
DMDTA and DMAIII in the presence of GSH under neutral
and slightly alkaline conditions as they occur in cytoplasm (pH
7.5).62

For MTA, transformation to arsenite has been previously
reported for the Arelate cultivar in similar influx experiments.43

Here, our influx experiments showed transformation of MTA
to arsenate for all three cultivars within 24 h (Arelate, 89 ± 3%;
YD, 39 ± 19%; NK, 57 ± 16% arsenate, respectively; Figure
2(right panel)), while control treatments remained stable.
Comparing MTA transformation within the three cultivars,
Arelate was significantly faster than NK and YD (P < 0.05,
except for NK 6 h). Formation of arsenate instead of the
expected arsenite might be due to different oxidizing potentials
or compositions of the nutrient solutions. We were able to
trace back that both phosphorus and Fe in the nutrient
solution increased the share of arsenate slightly (Figure SI 6),
but also in their absence arsenate formation was observed.
Hence, there is still an unexplained influence of the nutrient
solution composition on final product formation (arsenite or
arsenate) from MTA.
In crude protein extracts, MTA transformed to arsenite

rapidly and the order of cultivars was the same as in the influx
experiments (share of arsenite after 10 min in Arelate, 86%;
YD, 67%; NK, 83%; Figure 3(right panel)). No transformation
was observed in denatured controls. ROL cannot explain
transformation of MTA to arsenite, because MTA was stable in
the presence of oxygen during the air-purging experiments and
the fastest transformation was found for Arelate, the cultivar
with the lowest ROL (Figure SI 1). We therefore conclude that
transformation of MTA to arsenite was enzymatic, which
would also explain the fast transformation rates compared to
slower abiotic transformation in protein extracts for DMMTA.
Up to now, no enzyme in plants is known to reduce MTA to
arsenite. For its structural analogue, arsenate, reduction to
arsenite by HAC-family enzymes has been described,63,64 but it
is unclear to date whether MTA and arsenate are both
accepted as substrates by the same reductases. The preliminary
results from our crude protein extracts show a specific need to
study the cellular stability of MTA in detail and to identify the
enzymes responsible for its transformation.
In summary, the experiments showed that MMMTA is

transformed to MMA already outside the roots, probably just
by ROL, while both DMMTA and MTA are transformed
inside the rice plants. For DMMTA transformation to DMA is
probably a non-enzymatic reaction with SH-containing
molecules and for MTA transformation to arsenite is probably
enzymatically catalyzed.

Detection of Methylated Thioarsenates in Xylem. In
order to evaluate whether methylated thioarsenates could be
taken up intact into rice plants and transported to shoots,
xylem sap of rice plants exposed to methylated thioarsenates
was analyzed. After exposure to MMMTA, up to 18 ± 1% of all
As species detected in the xylem was MMMTA; for DMMTA
it was up to 7 ± 1% of all As species (Figure 4). The xylem

data therefore show that both As species were taken up and
transported. We assume that the detected amounts are
minimum numbers, because some MMMTA or DMMTA
might have transformed during sampling and handling for
analysis where small amounts (1−2 μL) were taken over 1.5 h
and diluted in an ice-cold phosphate buffer under oxic
conditions. The dominant species in the xylem were the
expected transformation products MMAV from MMMTA and
DMAV from DMMTA. In DMMTA experiments, the only
other species was traces of inorganic As (2 ± 1%), which is in
line with previous studies.18 In MMMTA and MMAV

experiments, in addition to inorganic As (17 ± 3 and 10 ±
4%, respectively) also DMAV (25 ± 4 and 15 ± 3%,
respectively) was found. The presence of DMAV could either
be explained by further methylation of MMAV to DMAV in
nonsterile hydroponic cultures10,26 or by traces of DMAV in
the nutrient solution that accumulated in the xylem due to high
root-to-shoot translocation24,25 (Figure SI 7). No MMAIII was
detected in xylem sap of MMMTA- and MMAV-exposed
plants, as could have been expected from root speciation10,18,24

and our influx experiment. This observation might be either
explained by rapid oxidation of MMAIII to MMAV24 during
xylem sap sampling when a few microliters of sample were
transferred to phosphate buffer (see methods of xylem
sampling for further details) or by sequestration as MMAIII-
PC in root vacuoles (see discussion below for further
details).18

Comparing the sum of As species for each treatment, most
As was transported in xylem of DMMTA-exposed plants (1.18
± 0.09 nmol/g root) followed by DMAV (0.49 ± 0.11 nmol/g
root), and similar amounts of As were transported in MMMTA
and MMAV treatment (0.10 ± 0.01 and 0.22 ± 0.07 nmol/g
root). The implications of As transport in the xylem will be
discussed in detail together with uptake and translocation
below.

Figure 4. Arsenic speciation in xylem sap after 20 day old rice
seedlings had been exposed to 10 μM MMAV, MMMTA, DMAV, or
DMMTA for 24 h. Growth medium was changed every 6 h during
daytime and after 12 h during nighttime to minimize transformation
of As speciation (n = 3); As concentrations are normalized to root
weights to account for small differences in seedling weights (Table SI
2).
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Uptake and Translocation of Methylated Thioarsen-
ates over Time. In order to quantify differences in the total
As uptake and translocation after exposure to methylated
thioarsenates in comparison with methylated oxyarsenates and
the inorganic MTA, 20 day old plants were exposed to MMAV,
DMAV, MMMTA, and DMMTA for 6−72 h. Data for MTA
were taken from our previous study for comparison.43 After 72
h, total As uptake was highest for roots exposed to MMMTA
(220 ± 27 μmol/kg), followed by MMAV (146 ± 5 μmol/kg),
and DMMTA-exposed roots (130 ± 22 μmol/kg), then MTA
(57 ± 2 μmol/kg), and significantly lower for DMAV-exposed
roots (14 ± 1 μmol/kg; Figure 5 (lower panel)). The pattern

was different in shoots where the total As concentrations for
DMAV-, MMAV-, and MMMTA-exposed plants were similar
after 72 h (9 ± 3, 10 ± 1, and 17 ± 8 μmol/kg, respectively),
but higher for MTA- (40 ± 7 μmol/kg) and significantly
higher for DMMTA-exposed plants (44 ± 6 μmol/kg; P <
0.001; Figure 5(upper panel)). Calculation of shoot-to-root
TFs for total As in plants exposed to one of the following As
species for 72 h yielded the following order DMAV (0.61 ±
0.15) = MTA (0.55 ± 0.14)43 ≈ DMMTA (0.34 ± 0.03) >
MMMTA (0.08 ± 0.03) = MMAV (0.07 ± 0.01, Figure SI 7).
Results for the methylated oxyarsenates were in line with

previous observations. The lower DMAV compared to MMAV

root concentrations are probably largely due to higher
translocation, not lower uptake. Typically, MMAV (pKa1, 4.2)
and DMAV (pKa1, 6.1) are taken up as uncharged molecules by
aquaporin channel OsNIP2;1.18 Even though it has been
postulated that dissociated MMAV and DMAV can be taken up
as well,5 no corresponding transporters have been identified to
date and the general observation is that uptake decreases with
increasing pH.18 The pH of our nutrient solutions was 5.0, so if
there was a reduced uptake due to increasing dissociation, it
should have affected MMAV rather than DMAV. On the other
hand, rice roots are known to reduce MMAV to MMAIII and

form an MMAIII−PC complex that is sequestered in root
vacuoles.24,25 Low total As concentrations in shoots and xylem,
as well as low TFs for MMAV, are in line with MMAV

sequestration in roots, as reported before.24,25 DMA in
contrast is not reduced by rice roots and does not form PC
complexes,25 explaining its low concentration in roots but high
concentrations in shoots and xylem, as well as high TFs.
For the methylated thioarsenates, to the best of our

knowledge, no pKa1 values have been determined exper-
imentally, yet. Based on chromatographic behavior, pKa1 for
DMMTA was assumed to be between 6 and 7.65 With a pKa1
similar to that of DMAV, uptake for DMMTA should not be
limited. Whether uptake of MMMTA is similar to that of
MMAV is currently unknown. Reduction or complexation of
MMMTA was not reported in plant roots so far. However,
high total As concentrations in roots indicated that MMMTA
was either sequestered in root cells, too, or MMMTA was
transformed to MMAV in the rhizosphere due to ROL and
taken up as MMAV. Taking into account that we found no
indication for a transformation of MMMTA to MMAV by root
proteins (Figure 3(left panel)), storage as MMMTA−PC
might be possible. This needs to be further investigated.
Similar total As concentrations in shoots and xylem as well as
similar total As TFs compared to MMAV might represent
further evidence for similar detoxification routes as docu-
mented for MMAV.
Surprisingly, DMMTA concentrations in roots were about

10 times higher than for DMAV, indicating high uptake and/or
sequestration in roots. No direct evidence for DMMTA−PC
complexation was reported in literature, but a DMMTA−GSH
complex has been described in Brassica oleracea exposed to
DMAV.54 Shoot concentrations of DMMTA-exposed plants
were significantly higher than for other As species, which was
in line with the highest As concentrations in xylem sap and
high total As TFs. Xylem speciation showed that the high
translocation was not only due to transformation of DMMTA
to highly mobile DMAV, but DMMTA itself contributed to
shoot uptake. This might indicate that DMMTA is not
quantitatively complexed by thiols.
A similar pattern of sequestration in roots with concurrent

high total As TFs and shoot As concentrations was found for
MTA before (Figure 5 and Figure SI 7; data from Kerl et al.43).
Arsenic speciation in protein extracts showed MTA was rapidly
reduced to arsenite (Figure 3(right panel)), which can be
complexed as AsIII−PC in root vacuoles.19−22 High total As
translocation to shoots was assumed to be due to efficient
xylem loading that was faster than MTA−arsenite reduction
and PC complexation.43 Alternatively, reduction and PC
complexation might be spatially separated in root tissue.

Implications for Grain Arsenic. To limit chronic
exposure of humans and comply with threshold values for As
in rice grains, different approaches, such as water management
and selection of low As accumulation varieties or S-
fertilization, are investigated. Sulfur fertilization seems to be
a promising strategy for lowering As uptake in rice on the one
hand;36 on the other hand, S-fertilization promotes formation
of methylated, thiolated, and methylthiolated arsenates that
can be taken up and translocated by rice plants.43 The
important question is, could inorganic and methylated
thioarsenates reach rice grains or increase total grain As?
MMMTA and MTA might be less critical with regard to

accumulation in grain. Even though MMMTA is highly toxic
and might not be transformed inside rice plants, it showed low

Figure 5. Arsenic uptake kinetics for rice seedlings grown for 20 days
without As before exposure to 10 μM MMAV, MMMTA, DMAV, or
DMMTA for 6, 24, 48, and 72 h. MTA data were added from our
previous study.43 Total As concentrations were determined after
microwave digestion (n = 3) and contain error bars.
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translocation to shoots similar to MMAV. Overall, contribution
to total grain As might be very minor because most MMMTA
seems to be transformed to MMAV by ROL outside the rice
roots and MMAV concentrations in rice grains are usually only
a few micrograms per kilogram.26 For MTA, direct
accumulation in grains might also be negligible, because
MTA is transformed to arsenite rapidly. However, high total As
translocation factors imply MTA exposure might increase total
As concentrations in grains, instead of lowering grain As.
In contrast to MMMTA and MTA, DMMTA could be

much more critical from a food safety perspective because
uptake and total As translocation are high. Although, in our
experiments, a relatively large share of DMMTA was
transformed to DMAV, up to 20% DMMTA has been detected
in enzymatic extracts of commercial rice samples before.45,46 In
our own preliminary studies using the same extraction method,
we also detected up to 11% DMMTA in 2 out of 11 randomly
selected commercial samples (data not shown). DMMTA is
highly toxic, comparable to inorganic As, but co-determined as
DMA using common acid extraction for rice grains because the
acid converts DMMTA to DMAV.37 This is especially
problematic, because DMAV is not considered toxic and
exempt from food regulatory guidelines. Contribution of
DMMTA and total As in rice grains especially after S-
fertilization needs to be further investigated, and potentially
both standard extraction methods and guidelines need to be
adapted.
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Figure SI 1 Root oxygen loss

Figure SI 1. Differences in root oxygen loss of 20 day-old plants under experimental conditions 

(n=9). Differences between cultivars were calculated and cultivar with highest ROL was 

normalized to 1.

The root oxygen loss (ROL) was determined according to Kludze, et al. 1. Briefly, 0.2 M sodium 

citrate solution (Sigma-Aldrich) was prepared under anoxic atmosphere in a glovebox (COY, 

N2/H2 95/5% (v/v)) to prevent oxidation 2 and 15% titanium(III)-chloride solution (Sigma-Aldrich) 

was added to form titanium(III)-citrate. The pH of the titanium(III)-citrate solution was adjusted to 

5.6 by adding saturated sodium carbonate (Roth). 

The nutrient solution was purged with N2 for 1 h to remove oxygen. Twenty day old rice plants 

were coated with parafilm and placed into 40 mL nutrient solution. The test tubes were layered 

with paraffin immediately after 5 mL of titanium(III)-citrate were spiked into the nutrient solution. 

After 6 h, aliquots of the nutrient solution were taken with a needle and syringe and absorbance of 

the titanium(III)-citrate solution was measured photometrically at 527 nm (LKB B).
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The released oxygen was quantified by obtaining a standard absorbance curve for a titanium(III)-

citrate dilution series of 0.27 – 15 mmol/L and extrapolating the measured absorbance of 

samples.

𝑅𝑂𝐿 =
𝑐(𝑦 ― 𝑧)

6 ;(1)           𝑅𝑂𝐿𝑊 =
𝑐(𝑦 ― 𝑧)

6 ∙ 𝑤  ;(2)

ROL= radial oxygen loss in µmol O2 plant-1 h-1; 

c = initial volume of Ti(III)-citrate added to each test tube in L; 

y = concentration of Ti(III) in solution of control (without plants) in µmol Ti(III) L-1; 

z = concentration of Ti(III) in solution after 6 h treatment with plants in µmol Ti(III) in solution 

plant-1 L-1

w = dry weight of root in g
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Figure SI 2 Retention times for As species

Figure SI 2. Example chromatogram for retention times of different As species on AS16 column 

(Dionex AG/AS16 IonPac column, 2.5−100 mM NaOH, flow rate 1.2 mL/min)3: in black 

calibration standard with 500 ppb DMAV, arsenite, MMAV and arsenate; in yellow 960 ppb 

DMMTA stock solution with traces of 50 ppb DMAV, and 100 ppb DMDTA, and in blue 850 ppb 

MMMTA stock solution with traces of 30 ppb MMAV.
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Figure SI 3 DMMTA stability with and without Fe

Figure SI 3. Stability test of 10 µM DMMTA in nutrient solution with and without Fe. As 

speciation of the initial DMMTA solution was determined by IC-ICP-MS for different treatments 

(n=1).
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Figure SI 4 Influx-experiment for MMAV with sample chromatogram

Figure SI 4. As-speciation in nutrient solution monitored over 24 h with rice seedlings exposed to 

10 µM MMAV (–) and control without plants (∙∙∙). As speciation of the initial MMAV solution was 

determined by IC-ICP-MS as shown in an example chromatogram on the right side (Influx 

experiment; n=3). 
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Figure SI 5 MMMTA, DMMTA, & MTA stability in protein buffer

Figure SI 5. As-speciation in protein buffer without roots spiked with 3.33 µM MMMTA, 

DMMTA, and MTA monitored over 120 min. As speciation of the initial MMMTA, DMMTA and 

MTA solution was determined by IC-ICP-MS for different treatments (n=1).

151



S7

Figure SI 6 Influence of nutrient solution composition in arsenite oxidation

Figure SI 6. As-speciation in original nutrient solution, nutrient solution without P, and without P 

& 0.5 Fe (-50% Fe compared to original nutrient solution) as used in Kerl, et al. 4 spiked with 10 

ppb arsenite monitored over 24 h. Share of arsenate is displayed in % for better comparison of three 

nutrient solutions. As speciation of the initial arsenite solution was determined by IC-ICP-MS 

(n=3).

Same experimental setup was used as for influx experiments except that a 10 ppb arsenite spike 

instead of MTA was used. The ‘original’ nutrient solution compared to the nutrient solution without 

P and without P & 0.5 Fe was tested to see influence of nutrient solution composition on abiotic 

arsenite oxidation. All nutrient solutions oxidize arsenite initially to arsenate, however, the 

‘original’ nutrient solution oxidized more arsenite to arsenate over time (42±1 ppb compared to 

34±2 ppb (w/o P) 23±1 ppb (w/o P & Fe) after 24 h). Abiotic transformation of arsenite to arsenate 
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during influx experiment using the ‘original’ nutrient solution is in line with results shown in Figure 

2 in the main manuscript.
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Figure SI 7 Translocation factors

Figure SI 7. Translocation factors from root to shoot for rice seedlings grown for 20 d without As 

following exposure to 10 µM MMAV, MMMTA, DMAV, or DMMTA for 6, 26, 48, and 72 h (n=3). 

Data for MTA from Kerl, et al. 4
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Table SI 1 Nutrient solution

Table SI 1. Composition of nutrient solution used for plant growth.

Nr. Macronutrients Concentration 
(mg/L) Vendor

1 Ca(NO3)2*4H2O 1000 Grüssing

2 KCl 120 Grüssing

3 KH2PO4 250 Grüssing

4 MgSO4*7H2O 250 Merck

5 Fe-EDDAH (5.7% Fe) 20 Duchefa Biochemie

Nr. Micronutrients Concentration 
(µg/L) Vendor

1 KI 27 Grüssing

2 LiCl 27 Fluka

3 CuSO4*5H2O 55 Grüssing

4 ZnSO4*7H2O 111 Roth

5 H3BO3 55 Merck

6 Al2(SO4)3 55 Alfa Aesar

7 MnCl2*4H2O 388 AppliChem

8 NiSO4*7H2O 55 Aldrich

9 Co(NO3)2*6H2O 55 Fluka

10 KBr 27 Merck

11 (NH4)6Mo7O24 55 Fluka
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Table SI 2 Seedling fresh weights for all experiments

Table SI 2. Table SI 2 Seedling fresh weights for all experiments.

Influx Xylem
root fresh weight in (g) shoot fresh weight in (g) root fresh weight in (g)

MMAV 0.1739 ± 0.0966 0.2136 ± 0.0229 0.1978 ± 0.0461
MMMTA 0.5783 ± 0.1207 0.5490 ± 0.1603 0.2495 ± 0.0793

DMAV 0.2173 ± 0.0472 0.2283 ± 0.0336 0.2090 ± 0.1372
DMMTA 0.3948 ± 0.0612 0.4493 ± 0.0681 0.2987 ± 0.0531A

re
la

te

MTA 0.4053 ± 0.1785 0.5111 ± 0.1494

MMMTA 0.5753 ± 0.0705 0.6515 ± 0.0493
DMMTA 0.6098 ± 0.0702 0.6558 ± 0.0721Y

D

MTA 0.4694 0.1266 0.7032 ± 0.1299

MMMTA 0.4060 ± 0.0795 0.4048 ± 0.0534
DMMTA 0.2975 0.0180 0.3800 ± 0.0381N

K

MTA 0.3688 ± 0.0903 0.5308 ± 0.1683    

Uptake
root fresh weight in (g) shoot fresh weight in (g)

0 h 0.3524 ± 0.0782 0.5519 ± 0.1195
6 h 0.4281 ± 0.0674 0.7006 ± 0.0778
24 h 0.3227 ± 0.0658 0.5248 ± 0.0493
48 h 0.3182 ± 0.0379 0.6258 ± 0.0853M

M
A

V

72 h 0.3984 ± 0.0702 0.7705 ± 0.0828

0 h 0.3524 ± 0.0782 0.5519 ± 0.1195
6 h 0.3692 ± 0.0229 0.6653 ± 0.0268
24 h 0.2870 ± 0.0447 0.5830 ± 0.1299
48 h 0.2835 ± 0.1063 0.4775 ± 0.2234M

M
M

T
A

72 h 0.4093 ± 0.0168 0.9060 ± 0.1303

0 h 0.3524 ± 0.0782 0.5519 ± 0.1195
6 h 0.2718 ± 0.0847 0.4607 ± 0.0953
24 h 0.2547 ± 0.1066 0.4491 ± 0.2160
48 h 0.3910 ± 0.0603 0.8004 ± 0.0671D

M
A

V

72 h 0.4817 ± 0.0484 0.9273 ± 0.1366

0 h 0.3524 ± 0.0782 0.5519 ± 0.1195
6 h 0.2855 ± 0.0849 0.4189 ± 0.0676
24 h 0.3771 ± 0.1071 0.6061 ± 0.1393
48 h 0.3201 ± 0.0394 0.8374 ± 0.1139D
M

M
T

A

72 h 0.3115 ± 0.0590 0.5555 ± 0.1113
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Table SI 3 Absolute values of DMMTA stability with and without Fe

Table SI 3. Absolute values of DMMTA stability with and without Fe.

  DMMTA (µM)
Time (h) DMAV DMMTA DMDTA

0 0.59 7.43 3.19
1 0.63 10.30 1.91
3 0.67 10.18 1.87
6 0.45 11.19 1.71
12 0.39 10.62 1.46

N
ut

ri
en

t s
ol

ut
io

n

24 0.37 11.08 1.17

0 0.59 7.43 3.19
1 0.44 5.78 3.10
3 0.34 5.91 3.21
6 0.37 5.91 2.85
12 0.33 6.28 2.52

N
ut

ri
en

t s
ol

ut
io

n 
w

/o
 

Fe

24 0.31 6.59 2.40
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Table SI 4 Absolute values of air purging

Table SI 4. Absolute values of air purging.

  MMMTA (µM)  DMMTA (µM)  MTA (µM)
Time (h) MMAV MMMTA DMAV DMMTA DMDTA Arsenite Arsenate MTA

0 0.07 2.26 0.69 8.19 1.12 1.07 0.67 6.08
0.25 0.08 2.31 0.56 8.52 0.70 1.16 0.65 6.20
0.5 0.13 2.28 0.64 9.19 0.82 1.08 0.57 6.25
1 0.13 2.29 0.56 8.44 0.64 1.15 0.44 5.64
2 0.26 2.21 0.56 8.91 0.63 1.13 0.84 6.14
4 0.45 2.03 0.65 8.64 0.95 1.11 0.85 6.07
6 0.43 2.04 0.53 9.31 0.46 1.22 1.07 5.80
12 1.19 1.34 0.71 11.50 0.28 1.19 0.86 6.57
24  1.92 0.76  0.95 11.55 0.13  1.31 1.38 6.96
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Table SI 7 Absolute values of protein buffer

Table SI 7. Absolute values of protein buffer.

  MMMTA (nM)  DMMTA (nM)  MTA (nM)
Time (min) MMAV MMMTA DMAV DMMTA DMDTA Arsenite Arsenate MTA

0 71 4496 280 2111 767 0 38 1875

B
uf

fe
r

120 66 4879  435 84 797  167 126 2216
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Table SI 8 Protein extract

Table SI 8. Composition of protein extract.

Nr. Chemicals Concentration Vendor

1
Tris-HCl, pH 7 (2-Amino-2-
(hydroxymethyl)propane-1,3-diol 
Hydrochloride)

50 mM Roth

2 DTT ((2S,3S)-1,4-Bis(sulfanyl)butane-2,3-diol) 3 mM Roth

3 EDTA (2,2′,2″,2‴-(Ethane-1,2-
diyldinitrilo)tetraacetic acid)

1 mM Grüssing

4 complete EDTA-free protease inhibitor 1 x conc. Sigma-Aldrich

5 Triton X-100 (Polyethylene glycol p-(1,1,3,3-
tetramethylbutyl)-phenyl ether) 0.5% Sigma-Aldrich

The protein concentration was measured using the Bradford protein assay.5
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Iron Plaque at Rice Roots: No Barrier for Methylated Thioarsenates
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ABSTRACT: Iron (hydr)oxide coating at rice roots, so-called iron plaque
(IP), is often an important barrier for uptake of inorganic oxyarsenic species
and their accumulation in rice grains. Sorption of methylated thioarsenates,
which can co-exist with inorganic and methylated oxyarsenates in paddy soils,
was not studied yet, even though these toxic species were detected in xylem
and grains of rice plants before. Hydroponic experiments at pH 6.5 with 20
day-old rice plants showed lower net arsenic enrichment in IP for plants
exposed to monomethylthioarsenate (MMMTA) compared to monomethyl-
arsenate (MMA) and no enrichment for dimethylmonothioarsenate
(DMMTA). Goethite was the dominant mineral phase in our IP. Sorption
experiments with synthesized goethite and ferrihydrite revealed a 30-times-higher sorption capacity for MMMTA to amorphous
ferrihydrite than to crystalline goethite, comparable to methylated oxyarsenates. No evidence for direct MMMTA binding was
found. Instead, we postulate that MMMTA transformation to MMA is a prerequisite for removal. DMMTA showed very little
sorption, even to amorphous ferrihydrite, which is in line with a lack of direct binding and reported slow transformation to
dimethylarsenate. Our study implies that IP is no effective barrier for methylated thioarsenates and that especially DMMTA is
very mobile with a high risk of uptake in rice plants.

■ INTRODUCTION

Arsenic (As) accumulation in rice grains is a well-known health
concern in regions where rice is a major staple food.1,2 Several
countries, including the European Union, China, and the USA,
have introduced threshold values for inorganic As (arsenite and
arsenate) in rice (200 μg/kg for polished rice) and especially
low limits for baby food (100 μg/kg).3,4 High As grain
accumulation is caused by rice cultivation under flooded
conditions, which induce reductive dissolution of soil iron (Fe)
minerals with concurrent release of sequestered As.5,6 Arsenic
released to the pore water is mostly reduced to arsenite, which
is highly mobile, while arsenate concentrations are typically
low.7,8 Soil microorganisms or algae are able to biomethylate
inorganic As by the enzyme AsIII-S-adenosylmethionine
methyltransferase to organic As (monomethylarsenate; MMA
and dimethylarsenate; DMA).9,10 The methylated oxyarsenates
are considered less toxic and therefore exempt from threshold
values.3,4

Mitigation strategies to reduce As accumulation in rice
typically address As immobilization in soil (e.g., by dedicated
water management with drainage periods during cultivation11)
or decrease of uptake by the plant (e.g., by supplying silicon
which competes with arsenite, MMA, and DMA for uptake
through aquaglyceroporin channels12). A very efficient barrier
for As uptake can, however, also be iron plaque (IP). IP is
formed by oxidation of FeII, which is mobile under reducing
soil conditions, along the surface of rice roots when plants
release oxygen. IP typically contains varying amounts of
Fe(oxyhydr)oxide minerals such as ferrihydrite, goethite,
lepidocrocite, or siderite, depending on pore-water chem-

istry.13−18 These freshly formed minerals can offer sorption
sites to nutrients or toxic metal(oid)s such as phosphate or As.
The sorption of inorganic and organic As on IP and Fe
minerals has been studied in great detail during the past
decades, revealing that sorption is strongly dependent on
mineral crystallinity, pH, As speciation, and competitive
ions.19−21 Differences in IP crystallinity and mineralogy due
to soil or hydroponic culture composition determine the
capacity of IP to sorb inorganic As, generally lowering the As
uptake in rice plants;22−25 however, for example, in the
presence of high phosphate concentrations,23 desorption of
previously sorbed arsenate from IP can even increase net As
uptake in rice plants.26

Just very recently, we have shown that As speciation in
paddy soil pore waters comprises more than just the four
oxyarsenic species typically considered.27 Even though
dissolved free sulfide concentrations in paddy soils typically
are low, arsenic−sulfur species, so-called thioarsenates, can
form. Inorganic thioarsenates hereby form under sulfur-
reducing, pH neutral to alkaline conditions from arsenite via
OH−/SH−-ligand exchange and addition of zerovalent
sulfur.28,29 Methylated thioarsenates form under acidic pH
from the methylated oxyarsenates MMA or DMA via ligand
exchange of OH− by SH− after nucleophilic attack.30 Although
methylated thioarsenates, namely, monomethylmonothioarsen-
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ate (MMMTA; (CH3)AsS(OH)2) and dimethylmono-
thioarsenate [DMMTA; (CH3)2AsS(OH)], are considered to
be more toxic than MMA and DMA,31,32 their existence, fate,
and mobility in paddy soils are relatively unknown, yet. We
have previously shown that methylated thioarsenates can be
taken up by rice plants and that hydroponically grown rice
plants accumulated most total As in shoots after exposure to
DMMTA.33 An earlier market survey even detected DMMTA
in commercially available rice grains.2,34

Whether IP could contribute anything to decrease uptake of
methylated thioarsenates in rice grains was unknown to date.
To the best of our knowledge, not even information about the
sorption behavior of methylated thioarsenates to synthetic Fe
minerals was available so far. Previous studies with inorganic
thioarsenates revealed that thiolation increased the mobility of
As species in Fe-rich systems. Mono- and trithioarsenate
(MTA and TTA) sorbed less on goethite, ferrihydrite, and
mackinawite compared to inorganic As.35,36 If, similarly,
thiolation decreases sorption affinity for methylated arsenates,
their mobility in paddy soils and risk for uptake might be
higher than that of methylated oxyarsenates which combined
with their higher toxicity poses a serious health concern.
The aim of our study was to determine whether IP can

decrease the uptake of methylated thioarsenates to the same
extent as that of methylated oxyarsenates by comparing total
As in shoots and roots of rice plants with and without IP after
exposure to the respective individual species. Additionally, we
compared the sorption of methylated thioarsenates and
methylated oxyarsenates to goethite and ferrihydrite as two
endmembers of IP minerals in terms of sorption kinetics,
nonequilibrium isotherms, and pH dependency to understand
the potential for mineral sorption and species transformation at
IPs.

■ METHODS AND MATERIALS
Synthesis of Methylated Thioarsenates and Fe

Minerals. MMMTA [(CH3)AsS(OH)2] was synthesized as
described before.37,38 Briefly, MMA (disodium methyl arsonate
hexahydrate, CH3AsNa2O3·6H2O, Supelco) and sulfide
(sodium sulfide nonahydrate, Na2S·9H2O, Sigma-Aldrich)
solutions were mixed with molar As/S ratios of 1:10 and pH
was adjusted to 3 by adding 1 M HCl (Kraft) in an anoxic
atmosphere inside a glovebox [COY, N2/H2 95/5% (v/v)].
After 30 min reaction time, pH was increased to 12.3 using 1
M NaOH (Merck) and reaction continued for another 60 min,
before aliquots were flash-frozen on dry ice and stored at −20
°C until usage.
DMMTA [(CH3)2AsS(OH)] was synthesized slightly

modifying a method by Cullen et al.30 Briefly, DMA [dimethyl
arsinic acid, (CH3)2AsNaO2·3H2O, Sigma-Aldrich] and sulfide
(As/S−II ratio 1:1.6) were mixed and concentrated sulfuric acid
(H2SO4, Sigma-Aldrich) was added to an As/S+VI ratio of
1:1.6. After 25 min of reaction time, the formed DMMTA was
extracted using diethyl ether (C4H10O, VWR Chemicals) and
yellowish-white crystals formed after evaporation of solvent.
Synthesized DMMTA was stored anoxically and in darkness at
5 °C. For DMMTA stock solutions, crystals were dissolved in
water and filtered using 0.2 μm cellulose-acetate (CA) filters
(Machery-Nagel), before aliquots were flash-frozen on dry ice
and stored at −20 °C until usage.
MMMTA and DMMTA were identified by ion chromatog-

raphy coupled to inductively coupled mass spectrometry (IC−
ICP−MS) using previously published retention times37 and

example chromatograms.33 Purity of the MMMTA was 84%
containing 3% MMA and 13% monomethyldithioarsenate
[MMDTA; (CH3)AsS(SH)(OH)]. The DMMTA stock
contained 67% DMMTA, 28% dimethyldithioarsenate
[DMDTA; (CH3)2AsS(SH)] and 5% DMA.
Commercially available goethite (α-FeOOH, Bayferrox

920Z, Lanxess) used for all experiments was purified as
described before.36 Briefly, 75 g of α-FeOOH was suspended
in 900 mL of 0.1 M NaNO3 and pH was adjusted to 10 using
NaOH for 24 h to remove impurities. The suspension was
centrifuged and washed five times with 0.1 M NaNO3,
following several washing steps with ultrapure water until
conductivity was <5 μS/cm. After washing, the material was
freeze-dried.
2-line ferrihydrite (called ferrihydrite hereafter) was

synthesized as described before.21,39 Briefly, 20 g of ironIII

nitrate nonahydrate [Fe(NO3)3·9H2O; Acros Organics] was
dissolved in ultrapure water and pH was adjusted to 7.3 using 1
M KOH (Aldrich). After aging for 2 h, the precipitated mineral
was centrifuged and washed with ultrapure water four times
and was finally suspended in artificial rhizosphere pore water
(ARPW, see below) to a final concentration of 0.5 M ferric
iron (FeIII). The suspension was stored cooled (4 °C) under
nitrogen atmosphere and in darkness. All experiments with
ferrihydrite were performed within one week after synthesis.

Hydroponic Culture. Growth conditions for plants were
described in detail elsewhere.40 Briefly, after germinating rice
seeds (Oryza sativa L. cv. Arelate) for 7 days, seedlings were
transferred to 50 mL tubes (Sarstedt) containing nutrient
solution (Table S1), which was renewed twice a week to
ensure sufficient nutrient supply. Seedlings were grown for 20
days under long day conditions (16 h of light/8 h of darkness)
at 23 °C and 110 μE.

IP Formation. IP formation was induced when rice
seedlings were 12 days old by growing them on phosphate-
free nutrient solution for one day to remove excess P and limit
the precipitation of Fe−P minerals. For the following 7 days,
half of the plants were grown with 1/20 of the initial P
concentration and Fe-EDDAH (Duchefa Biochemie) was
replaced by 100 mg/L FeIICl2 (Sigma-Aldrich) to form IP
along rice roots (treatment called “IP”). The remaining plants
were continuously grown using Fe-EDDAH but P concen-
tration was reduced to 1/20 as well (“w/o Fe”). The nutrient
solution was changed daily to ensure sufficient supply with FeII

and nutrients. All plants were transferred to Fe-free nutrient
solution 24 h prior to uptake experiments to remove
noncrystallized Fe from the root surface.

Uptake of Methylated (Thio)arsenates in Rice Plants
with and without IP. Uptake and later sorption experiments
were performed in an electrolyte (ARPW) that mimics natural
conditions in the paddy field rhizosphere and sustains rice
plant growth for uptake experiments, instead of the widely
used NaNO3. Therefore, phosphorus (P) concentration in the
range of experimentally measured values in rice rhizospheres41

was chosen, and the concentrations of all other nutrients were
adjusted to maintain the same stoichiometry as in the original
nutrient solution used for rice growth (Table S2). The pH was
adjusted to 6.5, which is at the lower end of pore-water pH in
paddy soils under flooded conditions.7

Arsenic uptake and translocation in rice plants containing IP
and control plants without IP (w/o Fe) were analyzed after
exposure to 10 μM MMA, MMMTA, DMA, or DMMTA for 8
h in ARPW (pH 6.5; n = 4). Arsenic-spiked ARPW was

Environmental Science & Technology Article

DOI: 10.1021/acs.est.9b04158
Environ. Sci. Technol. 2019, 53, 13666−13674

13667

168



renewed every 2 h to limit the previously shown trans-
formation of MMMTA and DMMTA to MMA and DMA in
the presence of rice roots.33 After exposure, roots were washed
with ultrapure water to remove As containing nutrient
solution. Dry weight for roots and shoots was determined
after drying at 60 °C for 2 days (Table S3). Total As and Fe
concentrations of dried roots and shoots were determined by
ICP-MS after microwave digestion (Mars 5 microwave
digestion system, CEM Corp., Matthews, NC) in concentrated
HNO3 (Kraft) and 30% H2O2 (VWR) (ratio 1.5:1). Arsenic
sorbed to IP and Fe content of IP were calculated by
subtracting the mean As or Fe content in the rice roots without
IP from the total As or Fe concentration in roots covered with
IP (As As Assorbed IP w/o Fe= − ). Quantifying As concentration
in the IP directly using the dithionite−citrate−bicarbonate
(DCB) extraction method42 was not possible because As
concentrations in DCB extracts were below limits of
quantification (LOQ) (1000-fold dilution of DCB extracts
was necessary to enable sample introduction into ICP−MS).
Sorption Experiments of Methylated (Thio)arsenates

to Iron Minerals. Sorption of methylated (thio)arsenates to
goethite and ferrihydrite was studied because those minerals
are reported as major components of IP.13−18 The
experimental and sampling procedure for the three different
sorption experiments (pH, kinetic, and isotherms) followed a
general procedure described below with detailed information
for each experiment given in the next paragraph. Fe minerals
[goethite: 36 mM; ferrihydrite: 3.6 mM ferric iron (FeIII)]
were pre-equilibrated under anoxic conditions for 16 h in
ARPW at the respective pH in 10 mL vials (Sarstedt). Each
sample was spiked with MMA, MMMTA, DMA, or DMMTA,
shaken on an overhead shaker (13 rpm), and kept anoxic
during sorption. After equilibration, samples were centrifuged
for 5 min (5000 rpm; Hettich); supernatants were filtered
through 0.2 μm filters (CA), and subsamples for As speciation
by IC−ICP−MS were flash-frozen on dry ice immediately.
Further subsamples for analysis of total As by ICP−MS were
stabilized with 2.5% 7 M HNO3 (Kraft), and the pH was
measured in the remaining samples (Figures S6 and S8).
For pH-dependent sorption envelopes, both Fe minerals

were pre-equilibrated at pH 4−12 and spiked with 5 μM
MMA, MMMTA, DMA, or DMMTA (n = 1). Samples were
taken after 2 h equilibration time. For sorption kinetics, both
Fe-mineral suspensions were pre-equilibrated at pH 6.5, prior
to spiking with 5 μM MMA, MMMTA, DMA, or DMMTA (n
= 1). Sacrifice samples were taken after 10, 20, 30 min, 1, 3, 6,
10, 24, 48, and 72 h. For nonequilibrium sorption isotherms,
both Fe-mineral suspensions were pre-equilibrated at pH 6.5
and spiked with 0.5, 5, 50, 100, and 500 μM MMA, MMMTA,
DMA, or DMMTA (n = 3). Samples were taken after 2 h
equilibration time.
X-ray Diffraction. Freeze-dried samples of goethite and

ferrihydrite were analyzed by X-ray powder diffraction (XRD)
using a Philips X’Pert Pro diffractometer operating in the
reflection mode with monochromated Co Kα1 radiation
operated at 40 kV and 40 mA, in the 2θ range 15°−90°
with a step size of 0.02° and scan speed of 0.66°/min.
Comparison between the collected X-ray diffraction pattern of
goethite with a reference pattern taken from the Inorganic
Crystal Structure Database (Nr. 245057-ICSD) confirmed that
the commercial goethite was free of impurities and not altered
during purification (Figure S1). The XRD pattern for the
synthesized 2-line ferrihydrite revealed two broad characteristic

peaks in line with published references (Figure S2).39 The
surface area of goethite (9.0−12.5 m2/g)43 is nearly two orders
of magnitude smaller than for ferrihydrite (200−600 m2/g)39

which is in line with the high crystallinity of goethite and
amorphous structure of ferrihydrite seen in the XRD spectra.
Two powdered rice root samples one covered with IP and one
without IP were also analyzed using the same XRD
diffractometer; however, no difference between the two
samples was observed likely because of the amount of IP
being below the detection limit of the instrument (Figure S3).
For this reason, an intact rice root with IP was analyzed using a
microfocused X-ray diffractometer (Bruker, D8 DISCOVER)
equipped with a two-dimensional (2D) solid-state detector
(VANTEC500) and a microfocus source (IμS) with Co Kα
radiation operated at 40 kV and 500 μA. The X-ray beam was
focused to 50 μm using an IFG polycapillary X-ray mini-lens.
Different portions of the root sample were chosen according to
their bright orange color, and 2D diffraction patterns were
collected in the 2θ range 15°−90° for 1000 s/frame (Figure
S4). The diffraction patterns present weak, well-defined spots,
suggesting the presence of a good crystalline material. The
integrated one-dimensional diffraction patterns show diffrac-
tion peaks which can be mostly explained with the presence of
goethite together with vivianite because of the presence of
phosphate in the ARPW (Figure S5). Note, however, that an
accurate analysis of such diffraction patterns is hindered by the
low intensity of the diffraction peaks and the poor statistic due
to the few number of crystals present in the microfocused
beam.

As Measurements. Arsenic species were separated by IC
(Dionex ICS-3000) using an AS16 column (Dionex AG/AS16
IonPac, 2.5−100 mM NaOH, flow rate 1.2 mL/min)37 and
quantified by ICP−MS (XSeries 2, Thermo Fisher) as AsO+

(m/z 91) using oxygen as reaction cell gas. Additionally, total
As (AsO+ m/z 91) and Fe (Fe+ m/z 56 using-2 V kinetic
energy discrimination with helium as collision gas) concen-
trations were determined by ICP−MS and the signal drift was
corrected using 48 nM rhodium (Rh+ m/z 103) as an internal
standard added manually to each sample. Quality of ICP−MS
measurements was checked by recovery of the certified
reference material (TMDA 54.5, Environment Canada 98 ±
4%) and recovery of As spiked into diluted samples prior to
measurement (80−103%). The limits of detection (LOD) and
of LOQ for As were 2.1 and 2.4 nM for the As uptake in rice
plants and 0.9−1.3 nM (both LOD and LOQ) for As sorption
to Fe minerals, respectively. The lowest detectable concen-
trations for As speciation were between 0.4 and 0.8 nM.

Statistics. Two-way analysis of variance with the Tukey
post hoc test was performed using SigmaPlot 11.

■ RESULTS
Uptake of Methylated Thioarsenates in the Presence

of IP. Comparing the total As uptake in rice plants covered
with IP or without IP after 8 h exposure to 10 μM MMA,
MMMTA, DMA, or DMMTA, the largest effect was found for
plants exposed to MMA (Figure 1a,b). In comparison to roots
without IP, roots with IP accumulated significantly more MMA
[2.0 ± 0.3 vs 1.1 ± 0.4 mmol/kg (P < 0.001)] and translocated
little less As to the shoots [13 ± 3 vs 18 ± 7 μmol/kg (P =
0.57)]. Less MMA uptake in shoots by IP sequestration is in
line with the highest net As enrichment in IP found in MMA-
exposed rice roots (1.3 ± 0.3 μmol As/mmol Fe; Figure 1c).
IP-coated roots exposed to DMA showed increased DMA
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concentrations in roots [0.8 ± 0.1 compared to 0.3 ± 0.0
mmol/kg in roots without IP (P = 0.013)] similar to MMA-
exposed roots, but increased As concentrations in shoots as
well [40 ± 13 compared to 12 ± 5 μmol/kg in shoots without
IP (P = 0.005)]. Taking the net As enrichment in roots (0.7 ±
0.1 μmol As/mmol Fe; Figure 1c) into account, the results
imply that DMA was sorbed to IP to a lesser extent than
MMA.
Plants exposed to MMMTA showed slightly higher As

concentrations in IP roots [0.4 ± 0.1 compared to 0.2 ± 0.0
mmol/kg in roots without IP (P = 0.42)] without effects on As
accumulation in shoots [32 ± 20 compared to 24 ± 9 μmol/kg
in shoots without IP (P = 0.42)]. Compared to MMA and
DMA, less spiked MMMTA was sorbed to IP-covered roots,
resulting in a lower net As enrichment (0.2 ± 0.1 μmol As/
mmol Fe; Figure 1c). IP had no effect on As uptake in plants
exposed to DMMTA and no sorption of DMMTA to IP was
observed.
Sorption Kinetics. Sorption kinetics of methylated (thio)-

arsenates on goethite and ferrihydrite were clearly different
between the two minerals but the order of sorption was the
same for both minerals with a decrease from highest total As
sorption after exposure to MMA, followed by MMMTA,
DMA, and DMMTA (Figure 2a). Goethite sorbed 56% MMA
within the first 10 min (Figure S7) and increased further to a
maximum of 87% after 24 h (Figure 2a) while ferrihydrite
sorbed MMA completely within the first 10 min (Figure S7).
Arsenic speciation revealed that the MMA remaining in the
ARPW was stable throughout the experiment (data not
shown). Larger differences were observed for spiked
MMMTA, where sorption to goethite was much slower than
to ferrihydrite (15% sorbed within 10 min compared to 97%,
respectively, Figure S7). Sorption to goethite increased slowly
and reached values comparable to MMA after 48 h (84% for
MMA and 78% for MMMTA; Figure 2a). Ferrihydrite sorbed

97% of spiked MMMTA within the first 10 min (Figure S7),
sorption after 24 h increased only slightly further on to 99%
(Figure 2a). In contrast to experiments with MMA, the As
speciation of MMMTA was not stable over time. The
MMMTA standard used contained impurities of MMDTA,
which originated at least partly from pH adjustment to 6.5 as
concentration of MMDTA (up to 57%) increased compared to
the synthesized stock solution (13%). MMDTA was trans-
formed to MMMTA within the first 10 min and the remaining
13% of MMDTA was stable for 72 h (Figure 2b). Impurities of
MMA in the synthesized stock solution were not detectable
after 10 min due to rapid sorption to the Fe minerals. The
MMMTA concentration remaining in the ARPW decreased
over time (Figure 2b).
DMA was sorbed within the first 10 min (Figure S7) with

the quantity of sorption being higher on ferrihydrite than on
goethite (90% compared to 18% after 10 min, respectively).
No species transformations were found for DMA during
sorption, and DMA remained stable for 72 h (data not shown).
Sorption of spiked DMMTA on goethite was below 8% with

Figure 1. As uptake for rice seedlings grown with root IP and without
root IP (w/o Fe) after exposure to 10 μMMMA, MMMTA, DMA, or
DMMTA in ARPW for 8 h. Total As concentrations were determined
after microwave digestion (n = 4); (a) shoot contents, (b) root
contents, (c) net As enrichment in IP of rice roots after exposure to
10 μM MMA, MMMTA, DMA, or DMMTA in ARPW for 8 h.
Amounts of As and Fe in roots w/o Fe were subtracted to obtain As/
Fe ratios in IP (n = 4). No net As enrichment in IP was found for rice
seedlings exposed to DMMTA.

Figure 2. Sorption kinetics for 5 μM MMA, MMMTA, DMA, or
DMMTA on goethite (36 mM) and ferrihydrite (3.6 mM) in ARPW
after 0−72 h equilibration (n = 1). Sorbed total As is calculated as
difference between As concentration in control without goethite or
ferrihydrite and measured total As concentration in the aqueous phase
after equilibration (a). Arsenic speciation for MMMTA (b) and
DMMTA (c) is shown as the measured As concentration in the
aqueous phase after equilibration; for a higher resolution of changes
happening between 0 and 1 h equilibration, please refer to Figure S7.
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no clear trend over time (Figure 2a), and As speciation was
stable over time (Figure 2c). Spiked DMMTA sorption to
ferrihydrite continuously increased over 72 h to 32% without
reaching a maximum (Figure 2a). The As speciation revealed
slowly decreasing DMMTA concentrations over time. Similar
to the MMMTA stock, the DMMTA standard synthesized in
our lab contained impurities of DMDTA as well. Dimethyldi-
thioarsenate, in contrast to MMDTA, was stable for 72 h at
≈20% (Figure 2c).
Nonequilibrium Sorption Isotherm. Sorption isotherms

were determined after 2 h reaction time to limit species
transformation, even though equilibrium was not reached in all
cases, yet (Figure 3). Both Fe minerals sorbed highest

quantities of As after exposure to MMA, followed by
MMMTA (below 50 μM MMMTA initially spiked to the Fe
mineral) and DMA. Sorption on ferrihydrite was 30−50 times
higher than on goethite. Similar to the previous experiments,
spiked DMMTA was not sorbed on goethite; however, small
amounts of spiked DMMTA were sorbed on ferrihydrite
independent of the As concentration in the aqueous phase.
Arsenic speciation of spiked MMMTA and DMMTA in the
aqueous phase showed less transformation of MMDTA to
MMMTA and DMDTA to DMMTA with higher As/Fe ratios
(increasing As spikes) (Figure S9). The highest transformation
of MMMTA to MMA and DMMTA to DMA was found for
the lowest As spike (0.5 μM).
pH-Dependent Sorption Envelopes. Sorption of both

methylated oxyarsenates and thioarsenates on goethite and
ferrihydrite decreased with increasing pH (Figure 4).
Decreased sorption of MMA started above pH 5.3 and 7.0
on goethite and ferrihydrite, respectively. Sorption of spiked
MMMTA and DMA started to decrease above pH 6.1 and 5.8,
on goethite and ferrihydrite, respectively. Spiked DMMTA was
not sorbed quantitatively at any pH. Ferrihydrite sorbed spiked
MMA, MMMTA, and DMA completely (≥98% for MMA and
MMMTA, ≥96% for DMA) at low pH values in contrast to
goethite, where only MMA was sorbed completely (≥99%).
Spiked MMMTA and DMA were not absorbed to more than

88 and 41%, respectively. The pH of the ARPW itself did not
change the As speciation of the spiked As species (Figure S10).
Compared to sorption studies using NaNO3 as the

“standard” electrolyte instead of our ARPW, sorption of
MMA and DMA in ARPW started to decrease at lower pH
values on goethite (see own data for comparison between
ARPW and 10 mM NaNO3 in Figure S11) and ferrihydrite.19

Additionally, less DMA was sorbed to goethite in ARPW
compared to NaNO3 (Figure S11).

■ DISCUSSION
IP is often considered an effective barrier for decreasing the
uptake of the inorganic As species arsenite and arsenate in
plants.22−25 Much less is known about potential mitigating
effects of IP on methylated oxyarsenates and nothing so far
about methylated thioarsenates. We could show that IP acts as
a barrier for MMA (Figure 1), with higher MMA
immobilization at the plant roots and slightly decreased
translocation to above ground biomass compared to plants
without IP. The observed high sorption to IP is in line with our
results from sorption studies with synthetic minerals as well as
previously published data.19,44 At pH 6.5, where we conducted
plant uptake experiments, both goethite and ferrihydrite show
nearly complete sorption. Formation of weak outer-sphere
complexes has been reported for MMA before45 which is
caused by attraction because of the net positive surface charge
of the Fe minerals (pH at the point-of-zero-charge, pHpzc
goethite 6.543−8.6,44 pHpzc ferrihydrite 8.319) and the net
negative charge of MMA (pKa1: 4.2; pKa2: 8.2). Independent of
electrostatic interactions, formation of strong bidentate
binuclear inner-sphere complexes via Fe−O−As bonds has
been described for MMA.19,46 The presence of competing ions,
such as phosphate, is known to limit sorption of methylated
oxyarsenates, especially when they are bound as outer-sphere
complexes.19 Also in our experiments, we observed some loss
in retention of MMA in the presence of phosphate at pH 6.5
(around −20%, Figure S11). However, even if in the presence
of IP, some additional MMA would make its way from the IP
reservoir at the outside of the plant roots to the inside; MMA
is known to be sequestered quite efficiently in root vacuoles via
MMAIII−phytochelatin (PC) complexes, limiting translocation
to shoots.47−49

For DMA, such as for MMA, higher As immobilization at
the plant roots was found in the presence of IP than in its
absence. Compared to MMA, however, the net As enrichment

Figure 3. Nonequilibrium sorption isotherm for nominal 0.5−500
μM MMA, MMMTA, DMA, or DMMTA on goethite (36 mM) and
ferrihydrite (3.6 mM) in ARPW after 2 h equilibration (n = 3).
Sorbed As calculated as difference between As concentration in
control without goethite or ferrihydrite and measured total As
concentration in the aqueous phase normalized to the Fe content;
solutions at nominal 100 and 500 μM MMMTA for goethite turned
black upon addition of the spike but were clear after filtration
indicating precipitation of FeS minerals; solutions at 500 μM spike
ferrihydrite remained black even after filtration, indicating the
presence of colloids.

Figure 4. Sorption envelope for 5 μM MMA, MMMTA, DMA, or
DMMTA on goethite (36 mM) and ferrihydrite (3.6 mM) in ARPW
(n = 1). Sorbed As calculated as difference between As concentration
in control without goethite or ferrihydrite and measured total As
concentration in aqueous phase after 2 h equilibration.

Environmental Science & Technology Article

DOI: 10.1021/acs.est.9b04158
Environ. Sci. Technol. 2019, 53, 13666−13674

13670

171



in IP was lower (Figure 1c) and translocation to above ground
biomass was not decreased but actually increased in the
presence of IP. Lower As sorption and a decrease in maximum
potential sorption already at pH > 6 was also observed in the
sorption studies with goethite and ferrihydrite. A significant
extent of DMA sorption was only observed at the highly
reactive ferrihydrite (61%, Figure 4), while sorption to
goethite, which was the dominant Fe mineral in our IP, was
only 26% at pH 6.5. One reason for the lower sorption affinity
of DMA compared to MMA might be a higher pKa value (pKa:
6.1), so almost 40% of all DMA is noncharged at pH 6.5,
potentially decreasing electrostatic interactions with the
negatively charged Fe-mineral surfaces. The presence of the
second methyl group in DMA might also be a greater steric
hindrance to binding.19 The presence of phosphate further
decreases DMA sorption (Figure S11). Some extent of
sorption but combined with easy remobilization, for example,
in the presence of competing anions such as phosphate,19,45

could in fact explain why for DMA the IP does not act as a
barrier but rather as a reservoir providing additional DMA for
uptake into the plant. Once inside the plant roots, in contrast
to MMA, DMA is not complexed by PCs and sequestered into
root vacuoles but escapes root storage with enhanced
translocation from roots to shoots.
In contrast to the methylated oxyarsenates, MMMTA

showed much lower and DMMTA showed no net As
enrichment in IP at all (Figure 1c). The much higher As
sorption to root IP after exposure to MMA compared to
exposure to MMMTA at first glance seems to contradict the
much more similar sorption behavior observed in the studies
with goethite and especially ferrihydrite. On ferrihydrite,
MMMTA sorbed as quickly and completely as MMA, while
sorption to goethite was slower and slightly lower with
maximum sorption after 48 h at pH 6.5 only reaching around
78% compared to 84% for MMA (Figure 2a). The exact
sorption mechanism of MMMTA is unclear at the moment.
From studies on inorganic MTA, we know that binding to Fe
occurs via the O atom and is lower than binding of the
oxyarsenate.35,36 The additional S group might be a steric
hindrance for binding. MMMTA contains, besides the S group,
an additional methyl group. We therefore assume, in
comparison to MTA, even lower or no direct binding at all.
From the time lag in sorption and from speciation analyses, we
propose that MMMTA is first transformed to MMA, which
then sorbs. MMMTA is known to be unstable in the presence
of oxygen30,37 and transforms to MMA within 30 min.33 FeIII is
a very strong oxidant, so transformation of MMMTA to MMA
over 72 h can be expected. Slow but continuous transformation
of MMMTA could explain the lower sorption of spiked
MMMTA compared to MMA and a lack of MMA built-up in
the aqueous phase because it is immediately sorbed (Figure
2b). The higher reactivity of ferrihydrite might accelerate the
transformation of MMMTA to MMA, explaining higher overall
sorption. The observed significantly lower sorption to IP upon
exposure to MMMTA fits this proposed mechanism, because
during uptake experiments, we exchanged the As-spiked
ARPW every 2 h. Previous experiments indicated that rice
plant-induced transformation of MMMTA to MMA was less
than 10% within the first 2 h of exposure.33 A higher As/Fe
ratio (≈34 μmol As/mmol Fe) in the experiments with IP-
coated roots compared to Fe-mineral sorption experiments
(0.14 μmol As/mmol Fe for goethite and 1.4 μmol As/mmol
Fe for ferrihydrite) further contributes to lower MMMTA

transformation to MMA in the presence of FeIII. If we assume
that only MMA but not MMMTA sorbs, the observed low
sorption to IP is well explained. For MMDTA, we also saw no
evidence for direct sorption; after initial transformation to
MMMTA within the first 10 min, remaining MMDTA
concentrations did not change any further over time (Figure
2b).
After exposure to DMMTA, very little As sorption was

observed on IP and pure goethite, only slightly more
(maximum 32% after 72 h) on the highly reactive ferrihydrite.
Like for MMMTA, the exact sorption mechanisms are
unknown yet. Following a similar argumentation as above,
direct binding of DMMTA seems unlikely considering the
steric hindrance of one S and two methyl groups. Trans-
formation to DMA is probably low because previous
experiments revealed that DMMTA is less sensitive to
oxidation than MMMTA33 and stable in the presence of
FeIII for several days.50 Arsenic speciation of the aqueous phase
revealed little significant trends over time except for a clear
decrease in DMMTA both in the presence of goethite and
ferrihydrite already after 10 min (Figure S7). For goethite, with
little overall sorption (and not much sorption of pure DMA
either), the decrease in DMMTA was mirrored in an increase
in DMA in solution, probably indicating the transformation
pathway from DMMTA to DMA. For ferrihydrite, the DMA
concentrations seem to stay constant over time, but this could
also be a dynamic equilibrium between some DMA formation
from DMMTA and some DMA sorption to ferrihydrite. Like
for MMDTA, we also found no evidence for direct sorption of
DMDTA, as aqueous concentrations showed no significant
trend over time. DMDTA was reported to transform to
DMMTA in the presence of FeIII after 15 days;50 however, 72
h was not enough time for transformation and DMDTA
seemingly persisted without sorption.

■ ENVIRONMENTAL IMPLICATIONS
Our study showed that thiolation of methylated arsenates
decreases sorption kinetics and lowers the extent of sorption to
the Fe minerals goethite and ferrihydrite as representative
endmembers of IP at rice roots. Also for inorganic
thioarsenates, less sorption to the Fe minerals goethite,
ferrihydrite, or mackinawite was reported before.35,36,51

However, there is evidence for direct sorption of the inorganic
thioarsenates MTA and TTA,35 while our data showed no
evidence for direct sorption of methylated thioarsenates and
indicated that transformation to methylated oxyarsenates is a
prerequisite to removal by IP at rice roots. Higher trans-
formation of MMMTA to MMA versus DMMTA to DMA will
lead to relatively more removal of MMMTA and a very high
mobility for DMMTA in the rhizosphere.
In natural paddy soils, a multitude of factors will influence

the fate of methylated thioarsenates in the rhizosphere, the
contribution of IP to their removal, and finally their uptake in
the rice plants. One factor that could lead to higher removal of
methylated thioarsenates at IPs in natural paddy soils
compared to our experiments is the quantity, distribution,
and large diversity of IP formed under different paddy soil
conditions and different ROL of rice plants.52 The IP formed
in our experiments mainly consisted of goethite. Its high
crystallinity lowers the available sorption sites and reduces
sorption capacity (Figures 1−4). IP consisting mainly of
amorphous ferrihydrite could sorb significantly (30−50 times
in our study) more MMA, MMMTA, and DMA than goethite;
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however, it would still not contribute much to DMMTA
removal. Another factor that could lead to sequestration of
methylated thioarsenates despite low sorption to IP is co-
precipitation with FeS minerals. Methylated thioarsenates form
under anoxic conditions in the presence of reduced sulfur from
their precursors, methylated oxyarsenates. Paddy soil con-
ditions that sustain formation of (methylated) thioarsenates
also enable the formation and precipitation of amorphous FeS,
which can scavenge or co-precipitate As. Our MMMTA
isotherm studies, for example, showed very high As removal at
high aqueous As with a linear increase between 100 and 500
μM spiked MMMTA (Figure 3). We suspect that the process
observed here was not only sorption to goethite but also co-
precipitation with and sorption to FeS minerals. The excess
reduced sulfur in our experiments comes from the synthesis
process because MMMTA was synthesized with 10-fold sulfide
excess, which could not be removed after synthesis. The Fe-
mineral suspensions at high MMMTA concentrations (100
and 500 μM As, corresponding to 1 and 5 mM sulfide) turned
black upon addition of the spike, indicating rapid formation of
amorphous FeS which could co-precipitate or sorb MMMTA.
Colloid formation, such as probably observed at 500 μM
MMMTA spike to ferrihydrite, will not contribute to overall As
removal from the aqueous phase.
Factors that could decrease removal of methylated

thioarsenates, beyond what we predict from our laboratory
experiments, are the presence of competing anions, such as
phosphate (shown in our study) but potentially also nitrate,
sulfate, silica, and so forth, and a high pH. Our experiments
were conducted at pH 6.5, which is already at the lower end of
typical paddy soil pore water pH values. An increase from, for
example, 6.5−7, which is quite common in flooded paddy soils,
decreases sorption significantly (around 30% for MMMTA and
MMA and around 20% for DMA on goethite, based on our
data, Figure 4).
The high mobility of methylated thioarsenates in the rice

rhizosphere is directly related to their plant availability, as both
MMMTA and DMMTA can be taken up by rice plants and
further transported to the xylem33 and DMMTA, potentially
also to the rice grain.2,34 Using common acid-based extraction
methods for As speciation in rice, highly toxic methylated
thioarsenates are converted to and co-determined with their
methylated analogues,2 which are exempted for regulatory
values because of their lower toxicity compared to inorganic
As.31,32 The occurrence and uptake of MMMTA seems to be
less critical because MMA concentrations in the rice grain were
often below the detection limit or had only a minor
contribution to total As.53 Compared to MMMTA, the high
mobility of DMMTA is of greater concern as its uptake and
total As translocation to shoots were high33 and it has been
detected in rice grains before, using an extraction method that
at least partly preserves DMMTA.34 More studies are needed
that monitor the fate of thioarsenates in paddy soils and the
rhizosphere and find mitigation strategies to limit uptake and
potential grain transport, especially for DMMTA.
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Figure SI 1 X-ray diffraction pattern of goethite

Figure SI 1. Measured X-ray diffraction pattern of α-goethite (black line) mineral used for sorption 

experiments compared with the goethite pattern reported in the Inorganic Crystal Structure 

Database (Nr. 245057-ICSD) (red line).
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Figure SI 2 X-ray diffraction pattern of ferrihydrite

Figure SI 2. X-ray diffraction pattern of a 2-line ferrihydrite mineral used for sorption experiments.
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Figure SI 3 X-ray diffraction pattern of rice root with and without IP

Figure SI 3. Bulk X-ray diffraction (XRD) pattern were obtained from grounded rice roots covered 
with IP (orange line, left picture) and roots without IP (black line, right picture) used for uptake 
experiments. The results showed that bulk XRD is not sensitive enough for determining IP 
compared to the background noise of rice roots w/o IP.
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Figure SI 4 Example of a 2D diffraction pattern collected for a portion of a rice root

Figure SI 4. Example of a 2D diffraction pattern collected for a portion of a rice root with IP. The 
pattern has been collected with a diffraction beam focused down to 50-100 microns. The few 
diffraction spots visible in the frames suggest, therefore, that only few large grains of IP are present 
in the area covered by the X-ray beam and therefore only few planes obey the diffraction geometry, 
giving rise to well defined spots instead of Debye rings as expected for a statistically oriented 
powdered sample. The color chart shows the signal intensity, with lowest intensity in black and 
highest intensity in white. 
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Figure SI 5 µ-X-ray diffraction pattern of rice root with IP

Figure SI 5. 1D X-ray diffraction pattern of rice root covered with IP (red line) obtained by 
integrating the 2D frames collected with the micro-focused diffractometer compared to goethite.
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Figure SI 6 pH values of sorption kinetics on goethite and ferrihydrite

Figure SI 6. pH values of sorption kinetics for 5 µM MMA, MMMTA, DMA, or DMMTA on 

goethite (36 mM) and 2-line ferrihydrite (3.6 mM) in ARPW after 0-72 h equilibration (n=1).
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Figure SI 7 As speciation of sorption kinetics on goethite and ferrihydrite during first hour

Figure SI 7. Sorption kinetics for 5 µM MMA, MMMTA, DMA, or DMMTA on goethite (36 

mM) and 2-line ferrihydrite (3.6 mM) in ARPW after 0-1 h equilibration (n=1). Sorbed total As is 

calculated as difference between As concentration in control without goethite or 2-line ferrihydrite 

and measured total As concentration in aqueous phase after equilibration (upper panel). As 

speciation for MMMTA (middle panel) and DMMTA (lower panel) is shown as measured As 

concentration in the aqueous phase after equilibration.
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Figure SI 8 pH values of non-equilibrium sorption isotherm on goethite and ferrihydrite

Figure SI 8. pH values of non-equilibrium sorption isotherm for 0.5-500 µM MMA, MMMTA, 

DMA, or DMMTA on goethite (36 mM) and 2-line ferrihydrite (3.6 mM) in ARPW after 2 h 

equilibration (n=3).
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Figure SI 9 As speciation of non-equilibrium sorption isotherm on goethite and ferrihydrite

         

Figure SI 9. As speciation of non-equilibrium sorption isotherms for 0.5-500 µM MMMTA, or 

DMMTA on goethite (36 mM) and 2-line ferrihydrite (3.6 mM) in ARPW after 2 h equilibration 

(n=3). As speciation shown as measured As concentration in the aqueous phase after 2 h 

equilibration (left side) and As speciation in percent (right side). 
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Figure SI 10 As speciation of pH dependent sorption envelope on goethite and ferrihydrite

Figure SI 10. As speciation of pH dependent sorption envelope for 5 µM MMMTA, or DMMTA 

on goethite (36 mM) and ferrihydrite (3.6 mM) in ARPW (n=1). As speciation shown as measured 

As concentration in aqueous phase after 2 h equilibration.
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Figure SI 11 pH dependent sorption envelope of goethite comparing different electrolytes

pH dependent sorption experiments were performed analogue to experiments in ARPW. Goethite 

(36 mM ferric iron FeIII) was pre-equilibrated for 16 h in ARPW, ARPW without phosphate and in 

10 mM NaNO3 at the respective pH. Each sample in 10 mL vials (Sarsteadt) was spiked with MMA 

or DMA and kept anoxic during sorption. After 2 h equilibration, samples were centrifuged 5 min 

(5000 rpm; Hettich), supernatants were filtered through 0.2 µm filters (cellulose-acetate, Machery-

Nagel), and sub-samples for analysis of totals As by ICP-MS were stabilized with 2.5% 7 M HNO3 

(Kraft) and pH was measured in the remaining sample.

Figure SI 11. Sorption envelope for 5 µM MMA and DMA on goethite (36 mM) in ARPW, ARPW 

without P and 10 mM NaNO3 (n=1). Sorbed As calculated as difference between As concentration 

in control without goethite and measured total As concentration in aqueous phase after 2 h 

equilibration.
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Table SI 1 Nutrient solution

Table SI 1. Composition of nutrient solution used for plant growth.

Nr. Macronutrients Concentration 
(mg/L) Vendor

1 Ca(NO3)2*4H2O 1000 Grüssing

2 KCl 120 Grüssing

3 KH2PO4 250* Grüssing

4 MgSO4*7H2O 250 Merck

5 Fe-EDDAH (5.7% Fe) 20** Duchefa Biochemie

Nr. Micronutrients Concentration 
(µg/L) Vendor

1 KI 27 Grüssing

2 LiCl 27 Fluka

3 CuSO4*5H2O 55 Grüssing

4 ZnSO4*7H2O 111 Roth

5 H3BO3 55 Merck

6 Al2(SO4)3 55 Alfa Aesar

7 MnCl2*4H2O 388 AppliChem

8 NiSO4*7H2O 55 Aldrich

9 Co(NO3)2*6H2O 55 Fluka

10 KBr 27 Merck

11 (NH4)6Mo7O24 55 Fluka

* 12.5 mg/L during IP formation and in control treatment

** 100 mg/L Fe(II)Cl2 during IP formation; plants in control treatment were grown using Fe-
EDDAH
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Table SI 2 Artificial rhizosphere pore water

Table SI 2. Composition of artificial rhizosphere pore water used for sorption experiments.

Nr. Macronutrients Concentration 
(mg/L) Vendor

1 Ca(NO3)2*4H2O 10 Grüssing

2 KCl 1.2 Grüssing

3 KH2PO4 2.5 Grüssing

4 MgSO4*7H2O 2.5 Merck

Nr. Micronutrients Concentration 
(µg/L) Vendor

1 KI 0.3 Grüssing

2 LiCl 0.3 Fluka

3 CuSO4*5H2O 0.6 Grüssing

4 ZnSO4*7H2O 1.1 Roth

5 H3BO3 0.6 Merck

6 Al2(SO4)3 0.6 Alfa Aesar

7 MnCl2*4H2O 3.9 AppliChem

8 NiSO4*7H2O 0.6 Aldrich

9 Co(NO3)2*6H2O 0.6 Fluka

10 KBr 0.3 Merck

11 (NH4)6Mo7O24 0.6 Fluka
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 Table SI 3 Seedling dry weights for uptake experiments

Table SI 3. Seedling dry weights for uptake experiments.

Uptake
root dry weight in (g) shoot dry weight in (g)

no As 0.0182 ± 0.0051 0.0366 ± 0.0058
MMAV 0.0177 ± 0.0026 0.0331 ± 0.0096

MMMTA 0.0165 ± 0.0030 0.0284 ± 0.0094
DMAV 0.0182 ± 0.0040 0.0317 ± 0.0078

IP

DMMTA 0.0258 ± 0.0076 0.0495 ± 0.0245

no As 0.0259 0.0015 0.0536 0.0046
MMAV 0.0194 ± 0.0051 0.0446 ± 0.0206

MMMTA 0.0232 ± 0.0035 0.0510 ± 0.0115
DMAV 0.0302 ± 0.0049 0.0695 ± 0.0121C

on
tr

ol

DMMTA 0.0213 ± 0.0033 0.0492 ± 0.0136
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