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1 I ntroduction  

1.1 Polymers in modern production processes and the need of 

surface modification  

From simple products like cutlery or cases, to highly complex products such as aircraft 

and cars, a variety of materials are utilized. Polymers often represent the main compo-

nent, becoming indispensable during the last decades.[1,2] In regards to global warming 

and eco-friendly lifestyles in recent years, special emphasis has been placed on sustain-

able development of novel polymers from renewable resources.[3] The selection of the 

particular polymer in the production process of an object is mainly influenced by its prop-

erties, such as thermal stability, tensile strength, elastic modulus, resistance to solvents 

or acids as well as transparency. Yet, the surface properties of the product after pro-

cessing rarely fit the applicationsô needs. To overcome this deficit, surface modification is 

employed to facilitate desired properties, such as reduced friction or sensibility to chemi-

cals and surfactants, improved wettability or adhesion and special optical features.[4-6] 

Surface modification techniques differ, depending on the product. For soft and moldable 

materials, physical methods affecting the surface structure are preferred. Those methods 

comprise embossing, impulsive peening, rolling, fretting and stressing amongst many 

others.[7] The main disadvantage of those treatments is the destructive nature with plastic 

deformation and ablation of the productsô material. Hence, to provide a certain level of 

protection against mechanical stress or degradation, protective layers have to be add-

ed.[8] Such protective coating layers are mainly obtained via chemical treatments using 

additional substances.[9]  

By definition of O. S. Parmaj and Prof. Dr. M. D. Teli, both experts on the subject of fiber 

and textile processing from the Institute of Chemical Technology in Mumbai: ñCoating is 

an application of an appropriate chemical system to form a layer of coating compound on 

the substrateò.[10] The proper application of a coating onto a subject is a crucial proce-

dure, with either solid phases (lining/ lamination, melt extrusion, calendaring) or liquid 

phases (dimethylformamide (DMF) coagulation/ wet processing, roller coating, doctor 

blading, dip coating/ Foulard-process, pressure-/ spray coating) typically being em-



Introduction  

 
 

 

 

2 
 

 

 
 

 

ployed. Solid phase coatings mainly affect the template surface. In contrast to that, wet 

coatings are more homogeneous throughout the total material at the expense of exten-

sive amounts of coating solution required. Remaining solvents and excessive coating 

substance have to be removed mechanically, increased drying temperatures are re-

quired and additionally they are comparably time consuming.[11-14] Such highly effective, 

but costly coating methods are most frequently utilized for efficient treatment of highly 

porous and voluminous mass-produced articles like textiles.[15,16] 

Manufacturing of yarn and fabric for furniture has been optimized over several centuries. 

Especially, high quality furniture fabrics, which are mainly built from polymer filaments, 

processed into yarns and subsequently arranged to fabrics, need an extraordinary quali-

ty and long lifetime.[12] For such mass-product articles with several structural levels 

commonly combinations of mechanical treatment with subsequent chemical coatings are 

utilized. In terms of textile processing O. S. Parmaj and Prof. Dr. M. D. Teli refine the 

definition of coatings to: ñéa process in which a polymeric layer is applied directly on 

one or both the surface of a fabric.ò[10] Fabrics are exposed to high extends of mechani-

cal stress but are supposed to remain their appearance as long as possible besides spe-

cial requirements, such as dirt repellency or flame resistance. In that regard, mechanical 

treatment is stretched to its limits, emphasizing the need of protective coatings.[13,14,17] 

Unfortunately, those basic coating substances providing flame retardancy usually com-

prise harmful substances, such as fluorochlorinated hydrocarbons amongst others. This 

factor strongly contrasts with sustainable development goals.[18,19] Therefore, the need 

for novel green coatings, derived from ecologically friendly materials and solvents is ob-

vious and research on this topic, steadily gains importance.[20-23] 
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1.2 Filtration  

Wherever mechanical processes are carried out and two different media are in contact, 

interactive motions between the media generate friction. Consequentially, particles and 

fragments are extracted from the materialsô surfaces, which distribute in the surrounding 

medium. In case of air, light particles either occur in the form of an aerosol or, if a certain 

particle weight is overcome, build sediment. Such particles commonly are called dust. 

Additionally, this term comprises all kinds of mineral dirt and sand particles, biological 

remains, such as hair, skin scales, pollen or mite feces, as well as, ashes in conse-

quence of combustion process. It is well known, that inhaling such particles carries an 

enormous risk to the human body.[24] Hence, it is crucial to extract them from the sur-

rounding matter to clean the living environment - this process is called filtration. By defi-

nition of the Encyclopedia Britannica: ñFiltration is the process in which solid particles in 

a liquid or gaseous fluid are removed by the use of a filter medium that permits the fluid 

to pass through but retains the solid particles. Either the clarified fluid or the solid parti-

cles removed from the fluid may be the desired product.ò[25] Focusing the cleaning of the 

gaseous media, such as air or combustion gases in industrial processes, often cyclones 

and settling chambers are employed. In human daily routine still predominantly vacuum 

cleaners, using vacuum cleaner bags are used. Also in medical surroundings and places 

where clinical purity is demanded, high-efficiency particulate air (HEPA) or ultra-low pen-

etration air (ULPA) filter media are employed. Those filter bags and media are composed 

of polymer fibers, assembled in the form of woven or nonwovens. Depending on the pro-

cess requirements, the production conditions, the processing and in particular the mate-

rial itself are precisely chosen.[26] 

In the following chapters polymer types and their typical representatives are introduced. 

Those examples are relevant either regarding the production volume and therefor im-

portance for the human daily life or concerning the polymersô suitability for fiber produc-

tion. 
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1.3 Synthetic  polymers  

Well known over centuries for their versatility, as well as, cost- and weight-efficiency, 

crude oil based synthetic polymers are found most prominently in almost all production 

processes. From astro- and aeronautics to home- and textile industries, synthetic poly-

mers are omnipresent in the human life and gain even more importance in modern tech-

nical development.[27,28] After immense oil field discovery during the conquest of the 

North American continent in the late 19th century, crude oil became abundant. Petroleum, 

which was initially used as lamp oil since the antiquity, subsequently accelerated the 

industrial revolution in the form of production machinery fuel. After the First World War, 

construction materials and metals were consumed for the manufacture of war machinery, 

and above all had become very rare and expensive for daily products. Hence, the search 

for new materials, meeting the requirements of the citizensô convenience goods, was 

accelerated. From this demand, a manifold of petroleum-based polymers were devel-

oped and molded to all kinds of elements, vessels, cases and surfaces.[1,29] 

From a chemical point of view, polymers are long repetitive molecules, comparable to 

chains, built up from several thousands of repeating single units of macromolecules that 

comprise structural basic units. Defined by Mark, for synthetic polymers made from 

crude oil, those core units consist of carbohydrates either in basic form, modified by 

functional groups or alternating with characteristic molecules, such as aromatics.[30] The 

main chain, forming the backbone, exemplarily consists of repeating carbon units (in 

vinyl-derived polymers) or carbon combined with non-carbon units (other condensation 

derived polymers).[31,32] One of the polymersô main benefits might be located in inter- and 

intra-chain bonding, which alternate with the nature of the backbone, the chain size and 

geometry, molecular weight and additives amongst others and enables the versatility in 

appearance and mechanical properties.[33,34] The major drawback of synthetic polymers 

is the limited residual amount of their raw material. Crude oil originates from ancient bi-

omass, which has been chemically converted in a millions-of-years-long process and still 

cannot be produced artificially in the required amounts. Since human life and industrial 

processes now depend considerably on synthetic polymers, the artificial production of 

crude oil is researched intensely. 
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The Norwegian company Nordic Blue Crude AS in cooperation with Sunfire GmbH and 

others, have announced the development of an industrial scale plant for the synthesis of 

this valuable raw material from water, carbon dioxide and eco electricity starting in 

2020.[35]  

Some of the best known and most employed synthetic polymers in the textile industry, 

hygiene products and healthcare are presented in the following. Amongst the industrial 

polymers especially polyesters are highly prominent due to their extensive usage in the 

textile industry. Chemically the main premise for Polyesters is the presence of an ester 

group in their main molecule (see Figure 1.1). 

 

Figure 1.1: Characteristic ester group (monomer) in polyester molecules, derived from poly-

condensation reactions between acids and alcohols or phenols. 

Even though Polyesters are a whole subcategory of synthetic polymers, labels of textiles 

contain this term, as well as, the abbreviation PES in the material composition section, 

mostly without further specifications. Consequently, in the textile industry two types of 

polyester fibers are used, the more prominent poly(ethylene terephthalate) (PET) and the 

rarely used Poly(-1, 4-cyclohexylene-dimethyle terephthalate) (PCDT). Whilst PET is 

more durable and strong, and therefore is used alone, as well as, in blends, PCDT has a 

higher elasticity and resilience and is processed in blends only.[36-38]  

 

1.3.1 Poly (ethylene terephthalate )  

Poly(ethylene terephthalate) (PET) is a thermoplastic, produced via poly-condensation 

reaction between ethylene glycol and dimethyl terephthalate or terephthalic acid. Indus-

trial applications range from plastic bottles, foils, food and household containers to textile 

fibers, which were developed in 1941 by J. R. Whinfield and J. T. Dickson in Great Brit-

ain.[39,40] In a first step, ethylene is synthesized from petroleum and oxidized to glycol 

monomers.  



Introduction  

 
 

 

 

6 
 

 

 
 

 

Those are then combined with monomeric terephthalic acid in vacuum, and at high tem-

peratures in the second step in a catalytic reaction to obtain the final polymer (see Figure 

1.2).[41] 

 

Figure 1.2: Monomer of PET, derived from poly-condensation reaction between ethylene 

glycol and dimethyl terephthalate or terephthalic acid. 

Fibers made from PET feature high mechanical strength, which is based on the mole-

cules polar character and the resulting intermolecular interaction. Additionally, the linear 

structure of the chains yields semi-crystalline regions, without preliminary cross-linking. 

Therefore, the fibers feature an increased fracture strength and shape stability perfectly 

suited for fibrous or planar applications.[42] New attempts of PET, modified with glycol 

(PETG), use its low viscosity for advanced fused deposition molding in 3D-printing appli-

cations.[41]  

The major drawback of PET is its low resistance against strong mineral acids, especially 

sulfuric, nitric and hydrochloric acid. Due to the intensive industrial production of PET, 

the total production volume still increased steadily to 56 million tons in 2016 alone and 

therefore the importance of recycling has been steadily growing during the first decades 

of the 21st century.[43]  

 

1.3.2  Poly (acrylonitrile )  

Another polymer that is well-known in textile industry and additionally for serving as a 

precursor in carbon fiber production is poly(acrylonitrile) (PAN). The semi-crystalline 

molecule is derived from polymerization of polar acrylonitrile (see Figure 1.3) and fea-

tures a high youngôs modulus (stiffness) and tensile strength due to strong intermolecular 

interactions, mainly brought forth by the attached nitrile group.[44] 
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Figure 1.3: Characteristic acrylonitrile monomer in PAN molecules.  

Furthermore, PAN is resistant to most solvents and chemicals, burns slowly and has a 

low permeability to gases. Therefore, PAN fibers are for example used in industrial hot 

gas filtration systems.[45] Fibers made from PAN feature a smooth touch and a shiny sur-

face. The main amount of the worldôs annual output is employed in the production of 

highly stressed outdoor textiles like sails for yachts or tents, as well as, in knitted cloth-

ing- and furniture textiles acting as wool replacements. Most prominent textile fibers 

made from PAN are sold using trademarks such as Dralon and Dolan and many more.[46]  

1.3.3  Poly (ethylene oxide ) 

Chemically, Poly(ethylene oxide) (PEO) belongs to the group of polyethers in the form of  

-R1-O-R2-O-R3- and might be considered as their representative build from the simplest 

monomeric unit (see Figure 1.4).[47] 

 

Figure 1.4: Monomeric unit (ethylene oxide) of PEO.
[47]

 

This polymer is also referred to as poly(ethylene glycol) (PEG). Both names are treated 

synonymously, whereas historically PEG was used for molecules up to a molecular 

weight of 20 kg/ mol and PEO for larger molecules. Depending on the chain length PEO 

is available as liquids or low-melting solids. The latter are highly soluble in water and are 

hygroscopic and therefore used as thickener or dispersant in numerous cosmetic prod-

ucts such as lotions, creams or as anti-foaming agent in food.[48,49] PEO is generally con-

sidered to be biologically inert, highly biocompatible and safe. Hence, in medical industry 

it is applied as a biomaterial for the production of hydrogels or building blocks in copoly-

mers, as non-degradable polymeric carrier materials in drug delivery or as enhancer of 
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the osmotic pressure in gastrointestinal cleaning fluids.[50-52] Also in industrial scale PEO 

is used, exemplarily as binder in precursor for production of ceramics.[53] Because of its 

versatility PEO is one of the most prominent and common polymers and, in addition to its 

comparatively safe and easy handling and preparation, often employed as a demonstra-

tive model for the processing of water-soluble polymers. 

1.4 Biopolymers  

Polymers from natural origin, plants and animals as well, in the first place are widely im-

portant for human daily nutrition. In form of carbohydrates and proteins, such as gelatin 

or silks of arthropods, polymers are ingredients in most foods. Additionally, polyesters 

such as cutin and suberin, both found as insoluble epidermal cell wall components in 

higher plants also are subsumed under the term biopolymer.[54] 

Since the components of those materials may be metabolized and completely degraded 

after the internal application, many studies focused on broad medical approaches and 

therefore their employment as Biomaterial. Especially polysaccharides are well known, 

and easy to modify for different purposes offering a wide field of applications.[55] One of 

those polysaccharides, cellulose, is called rayon in one of its regenerated form and is 

also widely used in industrial scale textile production and even as bio-textile in medical 

implants.[56-58] 

Biopolymer applications were made in the field of drug delivery for example with orally 

applied chondroitin sulfate for treatment of articular pathology.[59] Here, the degradation 

of the carrier and therefore the consumption dynamic is mainly influenced by the degree 

of sulfation.[60,61] Other studies focused on the cross-linking of chitosan to create loadable 

microparticles or liposomes and granules to benefit from low density cholesterol-lowering 

and weight-loss supporting effects of chitosan.[62-64] Definitions of biopolymers differ in 

terms of the origin of the raw material and their application. The technical report 15932 

(CEN/TR 15932) for bio-based products, which was published from the technical com-

mittee 249 of the European Communications, Entertainment & Technology Law commit-

tee (CEN/TC 249) included a recommendation for the terminology and characterization 

of biopolymers and bioplastics as depicted in Figure 1.5.  
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Figure 1.5: Definition of biopolymers modified after CEN/TR 15932.
[65]

 

Regarding this definition, biotechnologically derived polymers such as poly(lactic acid) 

(PLA), for the production of bioplastics in food packaging, belong to category 1B. On the 

other hand, natural polymers, such as collagen, as well as, polysaccharides like cellulose 

and starch, used in cosmetics, belong to category 1A. [65-68] Despite their versatility, the 

main drawbacks of the latter polysaccharides are source-related variations in material 

properties, microbial contaminations, poor mechanical properties on top of both water 

uptake and uncontrolled degradation.[69]  

One of the most prominent examples for bioplastics based on renewable resources is 

biodegradable thermoplastic poly(lactic acid) (PLA) (Figure 1.6), also referred to as ñpol-

ylactideò, made from renewable resources, such as starch from corn, sugarcane, tapioca 

roots or yeast. It cannot be harvested in nature directly. The aliphatic molecule is mostly 

prepared industrially in a step-wise polymeric growth from renewable resources.[70,71] 

This can either be done by direct polycondensation in high boiling solvents or direct 

polymerization in bulk followed by chain extension with reactive additives.[72] Despite of 

its name PLA belongs into the category of polyesters rather than polyelectrolytes (poly-

acid). 

Biopolymers  

Based on renewable resources Polymers with bio-functionality 

Bio-mass 
based natural 

polymers 

Bio-mass 
based synthetic 

polymers 

Biodegradable 
polymers  

Polymers for 
medical 

applications 

1 2 

A B A B 
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Figure 1.6: Monomeric unit (lactic acid) of PLA.
[73]

 

PLA might be employed as mulch-films in ecological friendly farming or as cups, bags or 

similar, acting as degradable plastics replacements.[73] Because of the mostly autocata-

lytic degradation poly(lactic acid) is mainly applied in medical products. Whilst degrading, 

the material induces an acidic milieu, harmful in some tissues. PLA is often applied in 

bone plugs, screws or fracture fixation plates. Yet, the applications are limited because 

of a rapidly reducing material strength in vivo.[74] 

Silks, another well-known example for biopolymers, in scientific terms are fibrous pro-

teins, containing repetitive amino acid sequences, which are spun or pulled under shear 

forces. According to Craig (2003), some male myriapoda produce fibrous proteins from 

accessory glands, which could be called silk, for mating purposes (sperm stalks, sperm 

webs, mating threads).[75] The coiling millipede (Glomeris marginata), or the chilipod cen-

tipede (Orphnaeus brasilianus) produce sticky and toxic secretions, but the main silk 

producing organisms are found amongst the arthropoda-classes of insecta (insects) and 

arachnida (arachnids).  

 

1.4.1 Natural Polymers  

1.4.1.1 Spider silks  

In the subphylum of chelicerates, only the all-terrestrial class of arachnida, comprising 

the silk producing orders true spiders or araneae (web-building spiders, tarantulas and 

wolf spiders), acari (mites and ticks), as well as, pseudoscorpiones (false scorpions), are 

able to secrete silks.[76] Whilst acari and pseudoscorpiones are using glands in their tro-

phi attached to their head, spiders are in particular specialized on silk production through 

glands placed at the end of their abdomen. These spiders are capable of producing up to 
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seven different types of silk.[75] To produce fibers, these spiders developed unique spe-

cialized protrusions, called spinnerets as depicted in Figure 1.7.[77,78] 

True spiders use silk in a manifold of 

ways to catch prey by building highly 

structured webs (web weaving spiders), 

to enhance their tactile sense and to pro-

tect their offspring.[79] Orb-weaving spi-

ders may produce up to seven different 

types of silk from which araneidae use 

tubiliform silk for the deposition of their 

eggs and the sheathing in a protective 

cocoon (Figure 1.8, white, 1/2). The re-

maining five types are used for the con-

struction of their webs, one of the most 

effective and economical methods of 

catching prey in the animal kingdom.[80-82] 

The proteins of each silk are produced in 

their individual gland inside the spiderôs 

abdomen and pulled out of the storage by 

attaching the end of the thread to a fixed 

point and dragging the thread while walk-

ing in the desired direction.[83,84] The main 

frame of the web, as well as, the stabiliz-

ing outer construction (Figure 1.8, 3.1) 

and the spiderôs dragline (Figure 1.8, 3.2), used for self-protection while rappelling, is 

composed of major ampulate silk. It is characterized by exceptional tensile strength and 

mechanical toughness.[85] During the web construction the spider builds an assistant-

spiral (Figure 1.8, 4) using minor ampulate silk, to facilitate the following buildup of the 

catching spiral (Figure 1.8, 5), composed of flagelliform silk. The extraordinary extensibil-

ity of this silk type is necessary for the intake of the kinetic energy of an impinging flying 

insect without ripping and its subsequent dissipation into the web structure. To prevent 

the repulsion from the web and to fix the prey on the impact spot, the threads of the 

catching spiral are covered with sticky droplets of aggregate silk (Figure 1.8, 6).  

 

Figure 1.7: European garden cross spider 

(A. diadematus) while rappelling 

using its dragline with highlighted 

spinneret. 
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Figure 1.8: Web construction of orb-weaving spiders from different silk types with outer and 

inner shell of their cocoon (white, 1/2), the framework of the web (bold black, 3.1), 

the spiders dragline (bold black/red, 3.2), the supporting spiral (light grey, 4) 

which is used by the spider to build up the catching spiral (black, 5) covered with 

sticky silk droplets (brown, 6); the whole web constructions are fixed on surfaces 

via the frame construction using cement silk dots (grey, 7).  

 

The last silk-type used for the web construction is named piriform silk and acts as ce-

ment, attached to the ends of the webôs frame structure and connects it to the environ-

mental fix points (Figure 1.8, 7). Many spider families have developed two identical spin-

nerets placed next to each other, which enable them to spin double threads in case of 

emergency to reinforce their dragline even more or while wrapping of their prey with 

aciniform silk.[86]  

 

1.4.1.2  Recombinant production of silk proteins  

Due to the desirable mechanical properties of silks numerous applications in human 

healthcare and industrial purposes have been published.[87-91] Those properties comprise 

2 
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extraordinary toughness (spider silk) or high bending stiffness (egg stalk silk of lace-

wings). One major drawback is the limited access to naturally sourced spider silks, due 

to their cannibalistic and territorial behavior, hampering their large-scale farming.[92] To 

overcome this hurdle, recombinant production of silk proteins has been auspiciously es-

tablished in the past.[90,93-95] For recombinant production spider silk proteins (spidroins) 

consensus sequences, based on repetitive motives of the core sequences of dragline 

silk-spidroins were created. In a following step the genetic information was adapted to 

the codon usage of the host organism, e.g. Escherichia coli (E. coli). Furthermore, mul-

timerization via cloning steps was performed, and the transfer of the genetic information 

into a vector resulted in a plasmid.[96]  

Recombinant production of insect silk proteins is comparable to that of spider silk. In this 

process the lacewing Chrysoperla carnea (C. carnea) served as model organism. In a 

first approach consensus sequences were created as well. Yet, for the following produc-

tion of recombinant egg stalk protein consensus sequences were not needed anymore, 

since the usage of natural sequences was facilitated.[97,98]  

 

1.4.1.3  Insect silks  

Within the class of insecta, in the subphylum hexapoda amongst arthropods the larvae of 

the silkworm Bombyx mori (B. mori) is the best-known producer of silk. Because of its 

touch, shine and good availability, it is used for textile production by men since millen-

nia.[99] Similar to other silk secreting organisms, B. mori - silk proteins are produced in 

glands, placed in the prosoma, the front part of the body, and secreted by their differently 

shaped mandibles.[100] Other insects like lacewings and most spiders use secretion pro-

trusions or spinnerets connected to their specialized glands at the end of their opistho-

soma, the abdomen.[77,78] To generate a fiber out of the highly concentrated silk dope, 

most organisms use pultrusion rather than extrusion to apply the necessary tension. Re-

garded separately, B. mori silkworms attach their silk to a prior produced layer of ran-

domly spun silk threats between sticks and then pultrude the silk out of their storage us-

ing a lying-eight-movement to enwrap themselves in a final cocoon.[84] Less known, hon-

ey bees like Apis mellifera (A. mellifera), or wasps (apocrita) include silky threads in the 

highly hydrophobic waxen structure of combs inside their hives to reinforce the structure. 
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Underwater insects are also able to produce sticky silks such as caddisflies (trychoptera) 

whose larvae collect debris and stick it to their abdomen using their silk as cement to 

yield an underwater shelter.[101] The lacewing Chrysoperla carnea (C. carnea) places a 

silky droplet on leafs and lifts its abdomen to pultrude an extraordinary bending stiff 

thread. On its lower end it is attached to an egg, hanging from the leaf to be protected 

from predators. Especially the notable mechanical properties of lacewing silk, induced by 

cross-beta structures, were extensively studied.[89,97,98,102,103] 
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1.5 Properties of synthetic and natural polym ers  

Due to the multitude of conversion and synthesis possibilities of petroleum into all kinds 

of industrially utilized polymers, they are highly used for a variety of convenience goods. 

Yet the source material is limited, which is the greatest drawback of synthetic polymers. 

Additionally, oil production will become more difficult due to depleted easy accessible 

resources.[104] Hence, replacements must be found, which may be derived from renewa-

ble resources. Even though scientific research and technical development offer the us-

age of renewable polymers, most of them are produced with the need to care for distinct 

production methods, conditions and treatments. Hence, the costs are much higher com-

pared to their synthetic counterparts. The second major drawback dulling the enthusiasm 

for polymers from renewable resources, is the still much lower mechanical resilience.[105] 

These facts represent the greatest disadvantages compared to synthetic polymers. Syn-

thetic ones furthermore might be ñgraftedò, modified chemically on a molecular level by 

substitution or insertion of molecules and thereby altering the polymer backbone to ad-

just their properties as desired in respect of the distinct application.[106,107] The develop-

ment of synthetic polymers culminated in a multifold assortment providing various chem-

ical and mechanical properties, as well as, geometric shapes as displayed in Table 1.1 

that comprises a selection of synthetic polymers with high production volumes and their 

typical morphologies, properties, features and potential application. 

Most prominent materials are deployed in all fields of daily life from medical therapies 

and pharmacy to industrial textiles.[108-110] Important factors regarding fiber applications 

are the lateral contraction, elasticity, youngôs modulus, the total appearance, including 

touch, look and surface morphology, in addition to durability, and abrasion resistance. 

Polyamide (PA) fibers for example provide low density and thereof produced lightweight 

products featuring a low water uptake and reduced swelling.[111] A nature-like optic at the 

expense of moderate mechanical stability might be obtained by employing 

Poly(acrylonitrile) (PAN) fibers with a woolen soft and warm touch, as well as, Cellulose 

Acetate (CA) fibers with a silky shine and minor wrinkle propensity.[112] Yet, if water repel-

lency is demanded for production of woven outdoor textiles, shoes or electrical insula-

tions Poly(vinyl chloride) (PVC) is the raw material of choice. Altogether, polymeric mate-

rials are most prominent for their versatility due to thermoplastic behavior amongst oth-

ers. In that context Polycarbonate (PC) is a well-known example used in planar applica-

tions such as lenses for sun glasses or disks.[113] 
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Table 1.1: Overview of a selection of the most common and best known synthetic 

polymers used for industrial scale applications. 

Material  Application  Features  Properties  Morphology  

Poly(acrylonitrile) 
(PAN) 

Yarns in textile in-
dustry/ carbon fiber 

precursor 

Wool like aes-
thetics (warm 

and soft touch) 

Moderate abrasion 
resistance, well  

colorable 

Filaments/ 
Fibers, Yarns 

Polyacrylate  
sodium salt (PA) 

Super-absorber 
(diapers) 

High porosity 
May take up water of 
more than 300 times 

the bulk mass 

Highly porous 
particles 

Polycarbonate 
(PC) 

Sunglasses, eye 
lenses, disks 

High fracture 
strength 

Two benzene rings 
stabilize monomer 

Planar  
objects 

Poly(ethylene 
oxide) (PEO) 

Medical 
formulations, 

lubricant 

Highly hydro-
philic, well solv-

able in water 

Different molecular 
weights, solutions up 

to gels obtainable 

Particle pow-
ders, pellets 

Poly(ethylene 
terephthalate) 

(PET) 

Packaging, plastic 
bags, plastic bottles 

Flexibility, highly 
(re)formable 

Thermoplastic, 
therefore highly  

versatile 
Films and foils 

Poly(p-phenylen 
theraphthalamid) 

(PPTA) 

ñKevlarò in bullet  
resistant vests, 

immensely stress 
resistant fibers 

High tensile 
strength and 
toughness 

Two benzene rings 
and nitrile group 

strengthen monomer 
Fibers 

Poly(vinyl chlo-
ride) (PVC) 

Pipes, outdoor tex-
tiles, sport shoes, 
electric insulation 

Water repellen-
cy, pressure 
resistance 

Chloride ion in  
monomer raises 

stability 

Planar objects, 
Filaments/ 

fibers 

Yet, the certainly most widely used polymeric material in everyday life are Poly(ethylene 

terephthalate) (PET) due to its processability into tear-resistant and tenacious foils and 

films for the manufacturing of all kinds of bags, as well as, for (food) packaging purposes 

and plastic containers and bottles.[114] 

Polymers from natural resources on the other hand are increasingly utilized in applica-

tions due to improved processing methods and the increasing production rate. The most 

prominent naturally derived polymers, as well as, their origin, possible application, prop-

erties and typical product morphology are displayed in Table 1.2. The use of some of 

those naturally derived polymers are not recent inventions, but known for decades such 

as rubber, which became one of the most important resources in the production of tires 
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induced by the discovery of the vulcanization reaction of natural rubber and sulfur by 

Charles Goodyear in 1839. The reaction, also called curing, is used to crosslink the natu-

ral rubber molecules with sulfur resulting in a remarkable tenacity and flexibility.[115-117]  

Wood has been used as strong construction material for thousands of years, and the 

strength of plant fibers has been known for long. Hence, the highly robust cellulose fi-

bers, derived from herbal cell walls, as the most prominent representative of polysaccha-

rides, is utilized in textile production, and as a solid fuel. Lately, this material is also gain-

ing more importance in modern medical research, drug delivery, as well as, tissue engi-

neering. In the field of polysaccharides also chitin, derived from marine crustacean 

shells, and its more water-soluble derivate chitosan, are candidate materials in this field 

of research. For bone replacement applications also mammal collagen is promising.[55,118-

120] Moreover, another aspect of modern research is the development of genetic engi-

neering and biotechnological manufacturing methods, which enable the large scale pro-

duction of natural derived polymers, such as PLA for textile industry or spider silk pro-

teins. Yet, PLA is barely used in medical application, due to its acidic metabolites.[70,121] 

Spider silk is a multifaceted material with various desirable properties. Those range from 

fibrosis reducing effects when used as a component or coating in medicine and prosthet-

ics, embodying an efficient water vapor and oxygen shield utilized in food packaging, to 

providing high toughness and elasticity when employed as fiber.[122-125] The development 

of biotechnological production methods overcomes the lack of natural availability further 

pushing investigation of possible applications.[90,93-95] Additionally, the material might be 

metabolized completely into harmless amino acids by most living creatures.[87,88,126] 

Hence, silk proteins might be considered as one of the most promising bio-derived mate-

rials when it comes to sustainability in combination with extraordinary mechanical proper-

ties. But also other highly specialized animal proteins besides spider silks serve as tem-

plates for research and biotechnological production, such as the mechanically gradually 

altering mussel byssus or other insect silks, for example from honey bees.[90,127-130] As 

soon as research and implementation of multiple technical applications overcomes the 

hurdle of mass production, biologically derived recombinant proteins, headed by spider 

silk protein, might guide the way into a new industrial revolution of materials.[131] 
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Table 1.2: Overview of the renewable polymers under research and their properties as well 

as possible applications. 

Material  Derived from  (Possible) Application  Properties  Morphology  

Cellulose 
Plants (Wood), 

biosynthetic  
synthesis 

Wooden constructions, 
textiles (lyocell), tissue 

engineering, drug delivery  

Highly stable 
molecule 

Raw material 
(wood), fibers 
and textiles, 

films, capsules 

Chitin/ 
Chitosan 

Crustacean shells 
Outdoor clothing, food 
packaging, cosmetics  

Solvable in acidic 
aqueous media, 

resistant  

Films and foils, 
particles 

Collagen 
Mammal corpses 

(human, pig) 

Tissue engineering,  
regenerative medicine, 

cosmetics 

Elasticity, adapt-
able mechanical 

properties 

Particle pow-
ders, fibers, 
hydrogels 

Pectin 
Protopectin from 
plant cells/ fruits 

Hydrogels in industry  
and medicine 

High molecular 
weight - viscosifi-
er, high natural 

presence 

Particles/ pow-
ders to form gels 

Poly(lactic 
acid) 

Lactic acid from 
plants (e.g. corn) 

Textile industry, food 
packaging, implants 

Versatile, UV- 
and flame re-
sistance, low 

moisture regain 

Fibers, films, 
foils, medical 

implant connec-
tion elements 

Rubber 
Natural rubber as 

latex (milky colloid) 
from rubber tree 

Tires, sealing gaskets, 
Control interfaces, 

Anti-shock elements 

Large stretch 
ratio, flexibility, 
elasticity and 

resilience 

Volume bodies, 
blocks, sleeves 

Silk 
 proteins 

Recombinant  
production 

Fibers for textiles/  
industrial purposes, drug 
delivery, protective and  
biocompatible coatings 

High tensile 
strength,  

toughness,  
versatility 

Fibrils, fibers, 
films, foils,  
particles 

 

1.6 Fiber pr oduction  methods  

Fibrous materials from natural resources have been long utilized by mankind to create 

textiles for protection, warming, camouflage or fashion purposes. Prominent examples 

are the fur or wool of mammals, as well as, silk from arachnids and insects - from animal 

origin - on one hand, or fibers from herbal origin (linen (Li) made of flax, cotton, hemp, 

bamboo) on the other. Technological development has allowed mimicking these by using 

basic materials from alternative resources, available in larger scale, such as synthetic 

polymers made of crude oil. Through modern research and technology, many artificial 

fibrous products even surpassed the natural ones, in terms of mechanical or optical 
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properties. To customize fiber parameters, such as surface morphology, fiber strength, 

diameter and appearance, different processes were invented. The herein used categori-

zation is based on a combination of the solvent or physical solvating force of the raw 

material respectively, as well as, the driving force of the spinning process. Earth and 

reddish colors are displaying spinning methods based on polymer melts; yellow and 

greenish colors stand for electrically driven spinning processes and blue colors decrypt 

solution spinning methods (Figure 1.9).[132] 

 

Figure 1.9:  Overview of the mainly industrially employed spinning methods and the respec-

tive fiber diameter range.
[128-143]
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1.6.1 Melt  spinning  

The name of these spinning methods refers to the preparation of fibers from the melt. 

Heat is used to melt the employed thermoplastics. In its most basic form, the melt extru-

sion spinning, the highly viscous liquefied polymer-melt is extruded and further trans-

ported via a gear pump (Figure 1.10 A). Subsequently, the viscous melt is led into a dye 

block to further supply a subsequent (multifilament) spinneret. In the simplest form, the 

emerging filaments of the molten polymer that are extruded from the spinneret, enter a 

hardening zone, which is composed of a space cooled by quenching air (Figure 1.10 A). 

The filaments thereby cool down and solidify. 

Following this, the emerging fibers are led through stretching pipes and either taken up 

to be post-stretched in a second step (two step continuous filament spinning, Figure 1.10 

B) and finally collected on a bobbin, or deflected to create randomly oriented nonwovens, 

directly being deposited upon a receiver mat using suction-air (spunbonded fabric pro-

cess, Figure 1.10 C). Both methods are versions of classical melt extrusion spinning.[133]  

 

1.6.1.1 Melt -blown spinning  

The most common and most frequently employed spinning method to produce synthetic 

fiber nonwovens for textile industry is melt-blowing (Figure 1.10 D). The basic form of 

this subcategory of melt spinning processes is carried out by feeding the polymer melt to 

a nozzle structure instead of a multifilament spinneret. Cooling air is then streamed in 

high velocities at the nozzle tip, resulting in a spray-like jet of multiple fibers. Deposition 

on a rotating drum results in nonwoven fiber mats.[133] 
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Figure 1.10: Basic scheme of melt spinning method; a polymer is led into a heated extruder 

screw where the material is molten and then extruded with a constant flow 

through a multifilament spinneret with the help of a metering pump (A). In classi-

cal melt spinning, the fibers are cooled and hardened by quenching air and let in-

to a stretching pipe. Subsequently, the filament bundles are either collected to be 

post-stretched with altering rotational velocities, followed by a yarn take-up (B) or 

deflected to be randomly deposited on receiver mat using suction-air via a spun-

bonded process (C). For melt blow processes the polymer melt is directly pumped 

into a blowing nozzle, here hot air is used to accelerate multiple fiber jets. These 

fly towards a collection unit and solidify due to cooling by the quenching air 

(D).
[133-135]
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1.6.1.2  Special melt spinning methods  

Due to their special behavior, melt spinning of liquid crystals with thermoplastic character 

is regarded as special subcategory. Furthermore, the careful choice of working parame-

ters provides a controlled spinning of uniform fibers. For example, researchers were able 

to produce melt spun single fibers in a one-digit micrometer range from liquid crystalline 

carbon.[135]  

 

1.6.2  Solution  spinning  methods  

In contrast to melt spinning methods, in solution spinning methods, the utilized polymeric 

raw materials are dissolved in the organic or inorganic solvents. Most preferably aque-

ous solutions are employed to maintain a stable dope concentration by reduced evapora-

tion at room temperature. Though, often polymers require aggressive and highly volatile 

solvents which demand a considerably increased amount of precaution, as well, as at-

tention during handling and processing. Low viscous dope solutions are stored in tanks 

and transported using liquid pumps (Figure 1.11 A), while high viscous polymers are 

prepared using extruder screws and transported via gear pumps (Figure 1.11 B).[133,136-

139] 

 

1.6.2.1  Dry spinning  

In its simplest version, solution spinning is performed by extruding the polymer solution 

through a multi-hole spinneret, and solidification of the emerging polymer is forced by the 

employment of hot drying air, in a special chamber. This method is called dry spinning 

(Figure 1.11 C). Provided, that the used solvent is highly volatile, this method is preferred 

due to its simplified fiber curing. The fiber production is relatively slow compared to other 

spinning methods. Typically fiber diameters obtained from dry spinning are in the range 

from 1 µm to several micrometers. 
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The take-up has to be performed in reduced velocities due to the risk of a fiber break. A 

poststretching step can subsequently be added to produce high performance fibers 

(Figure 1.11 E).[133,140] 

 

Figure 1.11: Basic scheme of solution spinning methods; a polymer is dissolved in a proper 

solvent; either a low viscous polymer solution is pumped, using a liquid pump (A), 

or a highly viscous high molecular weight polymer solution is extruded, using a ro-

tating extruder (B), into multi-hole spinnerets. Hot drying air is directly streamed at 

the emerging filaments, which solidify and are subsequently collected, using go-

dets regarding dry spinning (C). Emerging fibers might be led into a coagulation 

bath, either sub-liquid level (C1, classical wet spinning), or using an air gap (C2) 

and collected upon solidification. The fiber bundles from dry or wet spinning may 

be poststretched, using godets with slightly increasing rotational velocities, if de-

sired (E). Regarding ultra-high molecular polyethylene poststretching is performed 

in a heated drying chamber with fibers in a gel state to create high modulus poly-

ethylene filaments (F).
[133,136-138,140-147]
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