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ABSTRACT 

 

Fires are a regular feature of savanna ecosystems worldwide. Although Namibia is the most arid 

country across Sub-Saharan Africa, the seasonal occurrence of fires is widespread. Humans and 

biophysical controls are known to govern the spatio-temporal patterns of fire. Yet, the interplay 

among the controlling factors and their individual contribution to the generation of fires lack 

generality. An overall impact of fire on vegetation and its structure is controversial – especially in 

drier regions. Remote sensing provides a unique means for the assessment and modelling of fire 

regimes and vegetation. Earth observation missions such as the Moderate-Resolution Imaging 

Spectroradiometer (MODIS) offer consistent records of fire and quantitative vegetation parameters. 

The scale of observation in space and time impose an inherent source of uncertainty with any 

remotely-sensed dataset. As such, background contamination and phenology usually complicate the 

discrimination of sparse green vegetation. Unmanned Aerial Vehicles (UAV) introduce new 3D 

opportunities for optical remote sensing, however their full potential remains to be explored. 

In the present study, remote sensing and spatial modelling are the primary tools for a 

quantitative investigation of fire and vegetation parameters across Namibia. Several spatial datasets 

are applied to achieve this task. These range from readily-available thematic products from Earth 

observation over higher-resolution RapidEye and UAV imagery to vector datasets. Fire regimes are 

analysed and modelled using a set of common statistical and machine learning techniques. Field 

measurements and upscaling techniques are combined in order to comparatively explore the 

estimates of Leaf Area Index (LAI). Imagery generated from an UAV mission facilitates the 

reconstruction of vegetation structure in 3D by means of a photogrammetric approach known as 

Structure-from-Motion – Multi-View Stereopsis (SfM-MVS). Woody individuals are then delineated 

in order to yield approximate stand structures. 

The results show that productivity is the major control of fire activity in Namibia. A distinct 

increase in both Burned Area (BA) and Fire Occurrence (FO) with a mean annual precipitation above 

400 mm is observed and located in the northern parts of the country. Although humans are known to 

account for the majority of ignitions, their activities also consume the fuels that are required for 

burning. Hence, increasing densities of population and livestock reduce fire activity across the 

country. 

A case study from Owamboland in northern Namibia confirms the uncertainties that are 

associated with the spectral remote sensing of low-productivity ecosystems. As such, a mean 

underestimation of 0.34 (±0.2) is found with the estimates of LAI from MODIS (MOD15A2), which 

are compared to an empirically-calibrated model of LAI. In contrast to the general underestimation 

by MOD15A2, overestimations of LAI are apparent in the case of a recent fire in the region. 

Image-Based Point Clouds (IBPC) and the autonomous use of an UAV are found to be suitable for 

the assessment of woody vegetation and stand-scale heights in the northern Otjozondjupa region. 

The height parameters derived from this approach outline a promising agreement with field 

measurements, with an R² of approximately 0.7 and RMSE generally <1.9 m. However, no significant 

height reductions are found with the long-term presence of fire. Instead persistent grazing reduces 

the stands’ heights which may be indicative of woody encroachment. 

This thesis contributes to the causal understanding of fire and the patterns fire creates in dry 

savannas, which is an important prerequisite for national policy decisions and the anticipation of 
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future fire activity. It is concluded that fire has limited capabilities for a sustainable alteration of 

vegetation structure as woody communities are often adapted to fire. Future research should 

therefore explicitly consider the role of individual species in woody communities in order to quantify 

the structural impact of different fire regimes. UAVs and active remote sensing techniques could 

assist such studies. Finally, it is suggested that the human dimension of fire is inadequately captured 

by moderate-resolution fire records as controlled burnings, which are usually smaller, are likely to 

be underrepresented. Regional studies that explicitly aim at addressing the human dimension of fire 

should thus apply fire records of higher resolution. 
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ZUSAMMENFASSUNG 

 

Feuer ist ein Bestandteil global auftretender Savannenökosysteme. Auch in Namibia, dem 

aridesten Land im Subsaharischen Afrika, sind saisonal auftretende Brände weit verbreitet. Neben 

biophysikalischen Einflussgrößen steuert vor allem der Mensch die raum-zeitlichen Muster dieser 

Brände. Das Zusammenspiel und die Wichtigkeit einzelner Einflussgrößen entziehen sich jedoch 

einer generellen Regelmäßigkeit. Des Weiteren werden die Auswirkungen solcher Brände auf die 

Vegetation und deren Struktur, speziell in trockeneren Regionen, kontrovers diskutiert. Die 

Fernerkundung bietet einzigartige Mittel zur Erfassung und Modellierung von Feuerregimen und der 

Vegetation. Erdbeobachtungsmissionen, wie der Moderate-Resolution Imaging Spectroradiometer 

(MODIS), liefern konsistente Datenreihen von Bränden und quantitativen Vegetationsparametern. 

Jedoch haftet Fernerkundungsdaten, schon aufgrund der räumlichen und zeitlichen Charakteristika 

des erfassenden Sensors, immer eine gewisse Unschärfe an. So erschweren die Einflüsse der 

darunterliegenden Oberfläche und der Phänologie eine fernerkundliche Ableitung grüner Vegetation 

und geringer Bedeckungsgrade. Unbemannte Flugobjekte (UAV) verleihen der optischen 

Fernerkundung bisher nicht vorhandene Möglichkeiten der dreidimensionalen 

Oberflächenerfassung. Gleichzeitig ist deren Anwendung Gegenstand aktueller Forschung. 

Die vorliegende Studie nutzt vorwiegend Fernerkundung und Methoden der räumlichen 

Modellierung, um Feuer und Vegetationsparameter in Namibia quantitativ zu untersuchen. Dabei 

findet eine Vielzahl räumlicher Datensätze Anwendung, die von vollständig vorverarbeiteten 

Fernerkundungsprodukten globalen Ausmaßes, über höheraufgelöste RapidEye- und UAV-Bilddaten, 

bis hin zu Vektordatensätzen reichen. Auf Basis gängiger statistischer Verfahren und Machine 

Learning werden Feuerregime analysiert und modelliert. Um fernerkundliche Ableitungen des 

Blattflächenindex (LAI) im Vergleich zu betrachten, werden Geländemessungen und Methoden zur 

Überbrückung von Skalensprüngen (upscaling) angewandt. Eigens mit einem UAV beflogene 

Bilddaten dienen der dreidimensionalen Rekonstruktion von Gehölzbeständen. Dabei kommt ein 

neueres photogrammetrisches Verfahren, die sogenannte Structure-from-Motion – Multi-View 

Stereopsis (SfM-MVS), zum Einsatz. Es wird versucht, die Gehölze auf Ebene von Individuen 

abzuleiten, um eine möglichst repräsentative Bestandsstruktur zu erlangen. 

Die Ergebnisse zeigen, dass der Produktivität eine Hauptrolle bei der Begrenzung von Bränden 

zukommt. Sowohl das räumliche Ausmaß (BA) als auch die Häufigkeit (FO) der Brände steigen bei 

einem mittleren Jahresniederschlag von >400 mm an. Derartige Niederschlagsmengen sind vor 

allem im Norden Namibias vorhanden. Obwohl der Mensch wohl die Hauptentzündungsquelle in 

Namibia darstellt, beschränken seine Aktivitäten ebenso die Verfügbarkeit von brennbarer 

Biomasse. Auf nationaler Ebene wirken gesteigerte Bevölkerungs- und Viehdichten daher Feuer 

reduzierend. 

Bekannte Unsicherheiten der rein spektralen Ableitung von grüner Vegetation und geringen 

Bedeckungsgraden bestätigen sich in einer Fallstudie im Owamboland (Nordnamibia). Ausdruck 

dessen ist eine im Vergleich mittlere Unterschätzung des LAI von 0,34 (±0,2) durch das MODIS-

Produkt (MOD15A2) gegenüber dem empirisch kalibrierten Modell. Jedoch kehrt sich diese 

Beziehung im Bereich einer kurz zuvor von Feuer erfassten Fläche um. Es wird daher empfohlen, 

Fernerkundungsdaten in Regionen geringer Produktivität systematisch auf die Auswirkungen des 

Bildhintergrunds und räumlicher Skalen(-sprünge) zu untersuchen. 
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Eine autonome Nutzung von UAVs und die 3D-Rekonstruktion auf Basis von bildbasierten 

Punktwolken erlauben hier eine angemessene Erfassung der Höhen in Gehölzbeständen. Der 

verwendete Ansatz erzielt eine vielversprechende Übereinstimmung mit den Geländemessungen in 

der nördlichen Otjozondjupa Region (R² um 0,7 bzw. RMSE <1,9 m). Jedoch zieht das längerfristige 

Vorhandensein von Bränden keine signifikante Änderung der Gehölzhöhen nach sich. Im Gegensatz 

dazu führt eine stetige Beweidung zur Verringerung der betrachteten Höhenparameter, was als Indiz 

für eine voranschreitende Verbuschung gewertet werden kann. 

Die vorliegende Studie versteht sich als Beitrag um Feuer in Trockensavannen – sowohl in Bezug 

auf ihre Ursache als auch auf die daraus entstehenden Landschaftsmuster – besser zu verstehen. 

Damit einher geht eine besondere Relevanz der Studie für Handlungsentscheidungen auf nationaler 

Ebene sowie für mögliche Veränderungen des Feuerregimes in Zukunft. Auf Basis der Ergebnisse 

kann geschlossen werden, dass Brände in Trockensavannen lediglich eine geringe Beeinflussung der 

Vegetationsstruktur nach sich ziehen, da die Gehölzgemeinschaften wohl weitestgehend daran 

angepasst sind. Hierbei sollte die Rolle einzelner Arten innerhalb einer Gehölzgemeinschaft 

Gegenstand weiterer Forschung sein, um Veränderungen der Bestandsstruktur in Abhängigkeit von 

unterschiedlichen Brandcharakteristika besser quantifizieren zu können. UAVs und aktive 

Fernerkundungssensoren können dazu wertvolle Beiträge leisten. Des Weiteren wird vermutet, dass 

der menschliche Einfluss in der vorgestellten Analyse insgesamt unterschätzt wird. Dem liegt zu 

Grunde, dass die verwendeten Fernerkundungsdaten von mittlerer Auflösung kontrollierte und 

damit kleinere Feuer nicht ausreichend erfassen. Regionale Studien, die sich auf höher auflösende 

Fernerkundungsdaten stützen, sollten den gesamten Wirkungskomplex des Menschen auf Feuer 

detaillierter erfassen können. 
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PART I  

RESEARCH CONCEPT 

  



 

 

1. MOTIVATION AND RESEARCH QUESTIONS 

 

Fire is a phenomenon of global occurrence and relevance. Across Southern African savannas, vast 

areas burn during the dry season. In Namibia, climate and human land use are two major controls of 

fire and vegetation. Yet fire and the spatio-temporal patterns it forms are not fully understood in its 

complexity. Furthermore, fire’s impact on woody vegetation is perceived to be controversial. Remote 

sensing is a valuable source of information for the observation and understanding of land surface 

processes and phenomena at different scales. Consequently, the datasets obtained from a suite of 

available remote sensing systems – from satellite missions of differing scopes to airborne systems 

such as the emerging Unmanned Aerial Vehicles (UAV) – are frequently applied in quantitative 

modelling of vegetation and fire. This thesis intends to contribute to the understanding of fire and its 

impact on vegetation in the dry savannas of Namibia. Moreover, it highlights the potentials and 

limitations of optical remote sensing for the quantitative estimation of vegetation in such regions. 

The present thesis is structured as follows: PART I is dedicated to framing the research by 

initially imparting the reader with current knowledge on the nexus of vegetation, humans, and fire in 

the context of Southern Africa savannas and relevant remote sensing research. Gaps in knowledge 

are identified thereof, which are then considered in the guiding questions and the hypotheses to be 

addressed. Chapter 2 introduces the study areas and highlights datasets and key methods that were 

applied. Three peer-reviewed manuscripts (Chapters 4, 5, and 6) that together embody the central 

research activity of this thesis are presented in PART II. Based on the manuscripts, results and 

implications are discussed and reflected upon with regards to additional research needs (PART III). 

Finally, the Appendix (PART IV) lists the author’s further contributions to the topic and contains the 

declaration of honour. 

 

1.1. Savannas, humans, and the role of fire 

Savannas are flammable ecosystems (Bond and Keeley, 2005; Simpson et al., 2016) that account 

for almost two thirds of the global extent of fire (Randerson et al., 2012). Unlike other fire-prone 

ecosystems, such as boreal forests or Mediterranean shrublands, grass fuels the propagation of fires 

in savannas. Evidence and simulations suggest that their historic expansion, as well as the 

simultaneous retreat of tropical forest in the Late Miocene was substantially linked to C4 grasses1 

and the occurrence of fire (Cerling et al., 1997; Scheiter et al., 2012). These fires were, of course, 

ignited by lightning. An intentional use of fire by human ancestors is documented as early as 400,000 

years ago (Roebroeks and Villa, 2011). 

In their current distribution, tropical grassy biomes, i.e. savannas and grasslands, occupy 

approximately 20-25% of the terrestrial surface, where they are characterised by the simultaneous 

presence of C4 grasses and a discontinuous woody layer (Bond, 2008; Scholes and Archer, 1997). 

These characteristics may be found in regions with a Mean Annual Precipitation (MAP) of up to 

2500 mm in South America (Lehmann et al., 2011), but with C4 grasslands occurring in extremely 

dry regions such as the Namib desert as well. Among African savannas, woody vegetation cover 

varies from virtually zero to >80% (Sankaran et al., 2005) and as Bond (2008) states, climate alone 

                                                            
1 The C4 photosynthetic pathway, as opposed to the “older” C3, is considered an evolutionary adaption to 
warm and dry climate as it reduces water losses from transpiration (Ehleringer and Monson, 1993). 
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fails to explain their vegetation. In this regard, Scholes (2003) emphasizes the heterogeneous 

appearance that covers arid shrublands to dry forests indicating that any attempt to set limits within 

the savanna continuum would be “unavoidably arbitrary” (Scholes, 2003, p. 258). This diversity in 

vegetation structure and the mechanisms behind coexistence in general have challenged ecologists 

ever since. Some early and still intensively debated reflections on this issue were based on 

observations from Namibia by Walter (1939, in Ward et al., 2013). Since then, a variety of 

explanations and models have been proposed for coexistence and the controls of woody vegetation 

in savannas (for reviews see Scholes and Archer (1997), Sankaran et al. (2004), and  

Bond (2008)). Following the latter author, these separate into bottom-up, i.e. water and soil 

nutrients, and top-down, i.e. demographic bottlenecks created by fire and herbivory, controls. Yet 

their relative importance and the interactions across environmental gradients remain a debated 

issue (e.g. Higgins et al., 2010; Midgley et al., 2010; Sankaran et al., 2008) and seem to vary on the 

inter-continental scale (e.g. Lehmann et al., 2014). By means of maximum woody cover across 

African savannas, Sankaran et al. (2005) identified stable, resource-limited (<650 mm MAP) and 

instable, disturbance-driven savannas. As a consequence, fire and herbivory would alter community 

structure and dynamics only within the climatic framework in dry savannas. 

Fire impacts have been studied through the use of dynamic vegetation models  

(e.g. Lehsten et al., 2016), but also from plot-based replicated fire manipulation and exclusion 

experiments that were often carried out in protected areas across Southern Africa  

(see van Wilgen et al. (2007) and Furley et al. (2008) for overviews). However, abundant herbivory 

is likely a bias in these empirical studies. Many experiments point to the legacies in vegetation 

structure as a result of fire history that are, for instance, expressed by an altered size distributions of 

the woody community (e.g. Higgins et al., 2007; Kennedy and Potgieter, 2003; Levick et al., 2015). 

Fire frequency and intensity are often regarded as important determinants of shifted woody height 

distributions (e.g. Govender et al., 2006; Smit et al., 2010). Yet, as Higgins et al. (2007) conclude, 

woody demographics are resilient to fire. This suggests that certain species are adapted to fire and 

have evolved traits that allow them to persist, e.g. through resprouting, and to resist, e.g. through a 

thick bark (see Allen, 2008). Hence, the community composition would be largely irresponsive to the 

fire regime, but fire exclusion may be accompanied by species responses especially from the 

herbaceous stratum (van Wilgen et al., 2007). There appears to be a general tendency towards 

stronger fire impacts as a function of productivity (Furley et al., 2008; van Wilgen et al., 2007), but 

variations may arise with the species affected. For instance, hardly any fire impacts on the size 

distribution of a woodland community were found in a study from Namibia’s Kavango region 

(Geldenhuys, 1977). Despite comparable MAP, fire-induced mortalities of the fire-sensitive species 

Acacia erioloba were high, particularly among taller individuals (Seymour and Huyser, 2008). 

Studies that explicitly addressed a gradient in MAP find a relatively higher reduction of woody cover 

at drier sites (e.g. Devine et al., 2015; Smit et al., 2010). The above illustrates some of the 

controversy associated with the role of fire in shaping savannas, but implies its function as a tool in 

order to manage landscapes and to achieve certain desirable goals. 

Relatively little is known about the extent of early human land use in Southern Africa. The largest 

but probably most sustained impact on vegetation was of an indirect nature: the arrival of European 

colonists marked the beginning of a rigorous depletion of (mega-)herbivores and the simultaneous 

introduction of livestock (Hoffman, 2003). The extent of deforestation in Namibia is not comparable 

to more humid tropical regions, extensive clearings for cultivation are, however, reported in 

Northern Namibia (e.g. Mendelsohn et al., 2000; Siiskonen, 1996; Strohbach, 2013). Commercial and 

subsistence livestock ranching on private and communal land is widespread across Namibia and 

stocking rates are generally high (Mendelsohn et al., 2002). Pasture degradation, such as the shift 

from palatable perennial to less palatable annual grass communities or the massive spread of highly 
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persistent woody species known as “encroachers”, is an issue in Namibia (de Klerk, 2004; 

Mendelsohn et al., 2002) as well as across semi-arid rangelands worldwide (e.g. Maestre et al., 2009; 

O'Connor et al., 2014; van Auken, 2009). A general causal explanation of woody encroachment is not 

available but land use alone may be an insufficient explanation (see D‘Odorico et al. (2012) for a 

recent synthesis). In fact, studies also point to the importance of climatic anomalies  

(e.g. Higgins et al., 2000) and, more recently, to global drivers (e.g. Bond and Midgley, 2012;  

Stevens et al., 2016; Wigley et al., 2010). Long-term management practices have contributed to the 

development of woody encroachment in Namibia, where fire has been applied as a traditional tool in 

order to clear and clean land, replenish pastures, control pests or hunt game. This perception was, 

however, largely replaced during the first half of the last century by a view that aimed at the 

exclusion and suppression of fire – at least from a state authority’s perspective. Prescribed burning 

in protected areas such as the Etosha National Park was a “necessary evil” in order to prevent 

massive fuel accumulation. Only recently fire is being more and more rehabilitated in Namibia for 

the management of protected areas and rangelands – also with regards to woody encroachment  

(see Beatty, 2011; MAWF, 2012; MET, 2016). 

The above suggests that the human dimension of fire is likely the product of the interrelations 

among socio-economy, culture and policy. Humans possess tremendous leverage to directly and 

intentionally manipulate fire activity by impacting the timing and number of ignitions as well as 

through their efforts to actively supress fire (e.g. Archibald, 2016; Bowman et al., 2011). Livestock 

grazing, croplands, and human infrastructure reduce fuel loads, i.e. the biomass available for 

burning, and, by fragmenting the landscape, the connectivity of fuels. Indeed, the majority of fires in 

Southern Africa are lit by humans2 (e.g. Archibald et al., 2009; 2010b; Roy et al., 2008), and studies 

highlight the importance of land use and its intensity (e.g. Archibald et al., 2009; Hudak et al., 2004; 

Le Roux, 2011; Mishra et al., 2016; Stellmes et al., 2013), as well as policy (e.g. Pricope and Binford, 

2012) in addressing fire activity. There is global (e.g. Andela et al., 2017; Knorr et al., 2014) and 

regional (e.g. Archibald et al., 2009; Swetnam et al., 2016) evidence that the net effect of human 

activity on fire may be dominated by the indirect leverage of altering fuels. Likewise fire is strongly 

embedded in a framework of climate and its variability (e.g. Krawchuk and Moritz, 2011; Pausas and 

Ribeiro, 2013). For instance, moist areas of high productivity such as South-East Asia burn 

excessively during dry spells that are imposed by El Nino conditions there (e.g. Page et al., 2002). At 

the arid end of fire-prone ecosystems, the atmospheric conditions would facilitate fire on a seasonal 

basis, but such regions are limited in productivity. Productivity peaks from one or several 

consecutive years with above-average precipitation are necessary in order to accumulate enough 

grass biomass to fuel a fire (e.g. Archibald et al., 2010a; Heinl et al., 2007). However, some semi-arid 

regions such as North-Eastern Namibia burn on a quasi-annual basis (Siljander, 2009;  

Verlinden and Laamanen, 2006). The resultant spatio-temporal patterns of fire, i.e. the fire regime, 

are thus the product of complex and regionally specific interactions of climate, vegetation, and 

humans. Their empirical examination is usually facilitated by records obtained from remote sensing 

(Krawchuk and Moritz, 2014; see Chapter 1.2), but poses some general methodological difficulties. 

For instance, most of the controlling variables of fire can only be measured indirectly (see Figure 1), 

while their selection can never be complete and is always arbitrary to some degree  

(e.g. Krebs et al., 2010). Empirical studies from regions with strong contrasts in climate and land 

management, such as Namibia, could contribute to our general understanding of fire on Earth. The 

controls of fire as well as its impact on vegetation structure in such “extreme” regions are also 

relevant to the parameterization of process-based models and to the response of fire regimes in the 

face of a changing climate (e.g. Hantson et al., 2016). 

                                                            
2 Human-caused fires, albeit intentionally or unintentionally, make up approximately 90% of the total fire 
numbers worldwide (Costafreda-Aumedes et al., 2017). 
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1.2. Remote sensing of vegetation and fire 

Remotely-sensed data of the land surface is a primary source of information for the analysis and 

monitoring of ecological processes and phenomena. In many cases, the spectral information detected 

from remote sensing provides the only means to sample large areas in its spatial variability and 

ideally in a systematic, repeated, and objective manner (Eisfelder et al., 2012; Roy et al., 2011). The 

variables derived from remote sensing are critical to many research domains, including greenhouse 

gas emissions from biomass burning (e.g. Alleaume et al., 2005; Lehsten et al., 2009;  

Randerson et al., 2012; Scholes et al., 2011; Stroppiana et al., 2010), as well as fire regimes. Likewise, 

the quantification of biosphere-atmosphere interactions at different scales often relies on 

biophysical parameters such as the Leaf Area Index (LAI) in order to estimate carbon and water 

fluxes (e.g. Sellers et al., 1997; Turner et al., 2006; Yan et al., 2012). The “primary data” behind such 

applications and models, which are in many cases operationally produced satellite remote sensing 

products of global scope, need to be evaluated for their accuracy and limitations. For vegetation 

products, such as the estimates of LAI from the Moderate-resolution Imaging Spectroradiometer 

(MODIS), evaluations based on field measurements that are carried out across different biomes and 

gradients of productivity are essential (Garrigues et al., 2008). However, the scaling of point-based 

field measurements to the areal measurements delivered from remote sensing data is a pervasive 

problem with such evaluation efforts (Tian et al., 2002; Wu and Li, 2009). In order to reliably 

overcome the large gap in scale between the two data sources, the aforementioned authors 

recommend an intermediate step whereby field measurements are first related to high-resolution 

remote sensing data. The resultant high-resolution estimates are then upscaled to the coarser-scale 

estimates such as from MODIS. 

Studies that evaluate MODIS LAI in low-productivity ecosystems are generally sparse, and 

savannas depict a challenge due their heterogeneous appearance in terms of structure and 

phenology (e.g. Garrigues et al., 2008; Fang et al., 2013a; 2013b). Contradicting results are reported 

for the accuracy of MODIS LAI in (semi-)arid regions. The results range from occasionally severe 

underestimation (e.g. Scholes et al., 2004; Sprintsin et al., 2009; Tian et al., 2002; Zhang et al., 2007) 

to overestimations (e.g. Fensholt et al., 2004; Privette et al., 2002; Sea et al., 2011). 

Optical satellite remote sensing faces some general uncertainties in the derivation of vegetation 

properties in (semi-)arid regions. Vegetation cover is often sparse and organized in patches. Hence, 

the underlying soil strongly contributes to the spectral signature of vegetation. Background 

contaminations are likely to increase as a function of decreasing spatial resolution (Tian et al., 2002), 

whereas certain Spectral Vegetation Indices (SVIs) were designed to theoretically minimize 

contaminations (see Bannari et al., 1995). Nevertheless, classic SVIs that incorporate the red and 

Near Infrared (NIR) spectra remain to be applied throughout semi-arid regions (Eisfelder et al., 

2012). Distinct seasonality is a typical feature of semi-arid lands: during the dry season, dry grass, 

litter, and the woody components of vegetation constitute major proportions of the reflective 

properties in vegetation stands, which complicates the derivation of green vegetation (Asner, 1998; 

van Leeuwen and Huete, 1996). Several approaches that apply a variety of sensors have evolved to 

address these (see Li and Guo (2016) for a recent review). Given that pure pixels of soil, 

photosynthetic and non-photosynthetic vegetation are available, spectral mixture analysis on 

hyperspectral data can be used in order to derive the respective proportions of the contributing 

surfaces (e.g. Asner and Heidebrecht, 2002; Guerschman et al., 2009), but was also shown to be 

limited (e.g. Okin et al., 2001). Some studies used the Short-Wave Infrared (SWIR) spectrum to 

quantify dry vegetation (e.g. Jacques et al., 2014), whereas others aimed at the varying phenology of 

grass and woody species apparent from time series decomposition in order to distinguish them from 
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one another (e.g. Brandt et al., 2016; Kahiu and Hanan, 2018; Verbesselt et al., 2006;  

Wagenseil and Samimi, 2006). 

The traditional techniques of optical remote sensing are largely restricted to the horizontal 

domain, although the vertical dimension of vegetation structure may to some degree be expressed 

through indirect relationships with spectral information. The typical spatial resolutions of satellite 

missions range from several metres to several kilometres and can be thought of as an additional 

constraint for deriving meaningful vertical information in heterogeneous canopies. For instance, 

texture analysis applied to (very) high-resolution imagery could approximately derive vegetation 

heights (e.g. Kayitakire et al., 2006; Petrou et al., 2015). The standard approach to estimate three-

dimensional (3D) structures of vegetation, however, involves active sensors (Bergen et al., 2009; 

Dandois and Ellis, 2010). Laser altimetry, i.e. Light Detection And Ranging (LiDAR), and Radio 

Detection And Ranging (RaDAR), which comprises certain microwave spectra, have proven their 

suitability in measuring canopy objects by intercepting the sensor’s emitted radiation in their 3D 

distribution (Bergen et al., 2009; Lefsky et al., 2002). Especially LiDAR is attractive for the study of 

canopies as it potentially allows for the derivation of complete 3D profiles of objects through full-

waveform returns (Wagner et al., 2008). As a spaceborne LiDAR mission is temporarily no longer 

available (e.g. Simard et al., 2011), airborne systems are usually applied. For instance, airborne 

LiDAR data have been used to study fire (e.g. Levick et al., 2015; Smit et al., 2010) and herbivore 

impacts (e.g. Asner et al., 2009) on 3D vegetation structure in the savannas of Kruger National Park, 

South Africa. In addition, Wessels et al. (2011) focus on the land-use related differences in savanna 

structure using LiDAR. Spaceborne Synthetic Aperture RaDAR (SAR) data are increasingly applied in 

these ecosystems as well (e.g. Mathieu et al., 2013; Naidoo et al., 2015; 2016). 

Recently, UAVs have gained much attention in the remote sensing community. Their obvious 

benefit is a flexible and application-oriented data acquisition at potentially ultra-high spatial 

resolution. Although the potential of UAVs for environmental applications has already been noted in 

the early 1980s, developments in micro-electronics and computer vision have enabled UAVs to 

become an active part of research since the mid-2000s (Hardin and Jensen, 2011). All kinds of 

sophisticated sensors (e.g. LiDAR, multispectral, hyperspectral, or Thermal Infrared (TIR)) can now 

be mounted on lightweight UAVs, however consumer-grade cameras remain to be an inexpensive, 

yet powerful sensor alternative – at least for applications that do not require quantitative analyses of 

spectral information. Dandois & Ellis (2010) were perhaps the first to demonstrate the potential of 

UAV-acquired Image-Based Point Clouds (IBPC) for deriving canopy information in 3D. Since then, a 

number of studies have derived top-of-the-canopy heights in forests and artificial vegetation stands 

based on Canopy Height Models (CHM) generated from IBPC (e.g. Lisein et al., 2013; Torres-Sánchez 

et al., 2015; Zarco-Tejada et al., 2014). UAVs are increasingly used in order to assess disturbance 

impacts on vegetation and its recovery thereof. For instance, quantifications of insect tree damage 

(Klein Hentz and Strager, 2018; Näsi et al., 2015), the investigation of forest recovery from 

anthropogenic disturbances (Chen et al., 2017; Hird et al., 2017), and the identification of small-scale 

spectral variations in a post-fire environment (Fernández-Guisuraga et al., 2018) have been fulfilled 

from UAV-derived datasets. However, as UAVs are an emerging technology, the workflows for data 

processing remain to some degree experimental and a general knowledge on the performance of 

such datasets across different environments and observational settings is scarce  

(Dandois et al., 2015). 

The remote sensing of fire is essentially a multi-temporal problem and covers two main foci: (i) 

the detection of fire and (ii) the study of its effects, whereas overlaps between the two exist. The 

obvious immediate effect of fire is a removal of biomass that is largely driven by the direct physical 

controls of fire and culminates in an individual fire’s behaviour (Figure 1). The associated spectral 
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changes with an area burned may be tracked by an SVI or the differenced Normalized Burn Ratio 

(dNBR) from pre- and post-fire imagery (Lentile et al., 2006). Such indices are used as proxies for 

the determination of the ecological impact or the severity of fire (e.g. Lutz et al., 2011;  

van Wagtendonk et al., 2004). The severity essentially depends on the criteria considered. For 

instance, the fire severity of a grass fire may be high, i.e. the biomass removed is extensive, but the 

burn severity in this case is relatively low, as the grass community is likely to regenerate within the 

next rainy season. Furthermore, the long-term effects of fire such as the suppression of certain 

species or demographic legacies in the woody community, both of which are of interest for 

management purposes, require the study of the fire regime. Global remote sensing products provide 

a reasonable means to detect these spatio-temporal patterns of fire (Krawchuk and Moritz, 2014;  

Mouillot et al., 2014). With many remote sensing missions, the observational records are nowadays 

long enough to derive “fire normals” (sensu Lutz et al., 2011) that are characterized by the main 

parameters of a fire regime such as their spatial extent and temporal occurrence (Figure 1). 

 

Figure 1: A conceptual model of fire controls and regime parameters (in bold) in the context of 

geospatial analysis. The model illustrates principal links between the direct physical controls of fire 

and the outcome fire (regime) parameters. Direct measurements of these controls are often difficult 

or even impossible (e.g. ignition) especially in post-hoc analyses. Therefore, measurable indirect 

controls work as a substitute. Fire regime parameters can be assessed from two types of globally 

available satellite products (in capital letters; the MODIS nomenclature is used). All geospatial 

datasets are given in boxes. Based on Archibald et al. (2009). 
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Two principal techniques are available for the detection of fire from remote sensing  

(Justice et al., 2002; Roy et al., 2011): (i) active fire detection from hotspots and (ii) post-fire Burned 

Area (BA) mapping. The energy released during combustion is detectable in certain spectra of the 

Mid-Wave Infrared (MWIR; 3,000-5,000 nm) and TIR (10,500-12,500 nm). Therefore, active fires 

can be detected by anomalies in these spectra, also in relation to their surroundings  

(Giglio et al., 2003). While this approach is accurate in terms of location and timing of a fire, its 

detective capabilities are limited by satellite overpass frequency and cloud obscuration, which 

typically results in an underestimation of the spatial extent of burning (e.g. Eva and Lambin, 1998; 

Roy et al., 2008). In contrary to hotspot detection, the removal of biomass and the residue 

combustion products, such as charcoal and ash, cause a variation in the spectral signal that is 

persistent on the short-term (Pereira, 2003; Trigg and Flasse, 2000). As a consequence, BA can be 

discriminated from multi-temporal approaches (e.g. Roy et al., 2005). While BA is regarded as being 

more reliable than active fire products, some general biases in global BA products are apparent and 

especially relevant to savannas (see Laris (2005)). Given the spatial resolution of 500 m of the 

MODIS BA product, an omission of low-intensity and small-sized fires is likely. Varying accuracies 

were retrieved in studies that evaluated MODIS BA using fire records based on high-resolution 

imagery. Laris (2005) reports underestimations of 90% in a West African savanna, whereas Roy and 

Boschetti (2009) find correct detections of up to 75% in Southern Africa. The most recent version of 

MODIS BA includes the active fire approach for an initial selection of BA candidates, which aims at 

higher detections of small fires (Giglio et al., 2016). Due to the global release in spring 2017, this 

version could not be applied for this thesis. 

 

1.3. Research questions and hypotheses 

The vegetation of dry savannas is affected by a number of factors, one of which is potentially fire. 

Fires are the result of a complex interplay of the biophysical framework and human actions in a 

region. Remote sensing provides unique means for the quantification of vegetation and an 

assessment of fire on a spatio-temporal basis. Optical remote sensing is prone to uncertainties in dry 

environments and UAV accuracy benchmarks and applications are evolving steadily. The present 

thesis is designed to contribute to current research from a thematic and a methodological 

perspective. It aims at the quantitative spatial modelling of vegetation and fire regimes in Namibia 

thereby using remote sensing as both a primary data input to statistical models and a technique that 

is a subject of investigation itself. As such, a number of remotely-sensed and other spatial datasets of 

varying scale are applied. This thesis focuses on some pending questions regarding the human 

component of fire and the ecology of fire in dry savannas. 

Three main research questions are addressed within this thesis: 

i. Which controls determine the fire activity across Namibia? 

ii. How is dry-season vegetation captured in different approaches of optical remote sensing, 

and what is the role of scale? 

iii. What is the impact of fire on the quantitative attributes of woody vegetation? 

Taking into account prior research and current knowledge, three hypotheses are accordingly 

proposed: 
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Hypothesis 1: Namibia’s fire activity generally follows a productivity gradient. Human activities have 

the potential to alter this relationship on smaller spatial scales. 

Fire activity in dry savannas is fuel-limited. MAP depicts a primary control of productivity, and its 

importance for the resultant fire regimes has been confirmed in studies from Southern Africa  

(Archibald et al., 2009; 2010a) and specifically Namibia (Le Roux, 2011). Humans are the sole source 

capable to directly and deliberately manipulate fires and manage these. It is unclear if they 

eventually limit or facilitate fire at lower population densities. Humans may increase the occurrence 

but simultaneously limit the spatial extent of fire. Previous studies in the region largely determined 

the controls of fire from bivariate correlations and single predictive models. Fire regimes are, 

however, a highly multidimensional problem. A complete assessment of the governing controls 

behind Namibia’s fire regimes and their relative importance are not available. Such fire regime 

modelling ideally includes a comparison of different predictive techniques in order to increase the 

robustness of results (Bar Massada et al., 2012). 

 

Hypothesis 2: Regionally-calibrated, spectral estimates of green vegetation during the dry season 

deviate from those obtained with a global satellite product. Due to a coarser base resolution, the latter 

yields higher generalization and lower estimates of green vegetation. 

Green vegetation in Namibia’s Owamboland is largely restricted to riparian areas and certain 

woody species during the dry season. Highly heterogeneous patterns and generally low covers of 

green vegetation are thus present at this time of the year. Small-scale heterogeneity could obviously 

be more accurately captured by smaller entities of observation, i.e. at a higher spatial resolution. 

With sparse covers the contribution of surfaces and materials other than green vegetation to the 

spectral signals detected from remote sensing increases. In contrast to green vegetation, the spectral 

signals of non-photosynthetic vegetation and bare soil across the optical spectrum are both 

characterized by a roughly linear increase of reflectance with increasing wavelength. Background 

surfaces such as sandy soils could excessively contaminate the signals of green vegetation as a 

function of brightness. With the discrimination of green vegetation, such contaminations usually 

result in an underestimation, which may also be an issue of spatial resolution (Tian et al., 2002). 

Whereas mixed pixels are generally acknowledged as a problem apparent with spectral remote 

sensing, only little is known about the translation of background contaminations across spatial 

scales. Given the large extent of (seasonally-) dry regions and the frequent use of global remotely-

sensed vegetation datasets such as MODIS LAI, their accuracy under dry-season conditions requires 

further investigation. Accordingly, previous studies from semi-arid regions have often found MODIS 

LAI to underestimate local or regional estimates of LAI (e.g. Scholes et al., 2004;  

Sprintsin et al., 2009; Tian et al., 2002; Zhang et al., 2007). 

 

Hypothesis 3: The long-term fire regime is reflected by the vertical stand structure. Thus, the presence 

of fire leads to stand-scale height reductions of woody vegetation, which can be assessed using optical 

UAV data.  

Fires in dry savannas are mostly of a low intensity, where their impact is often restricted to the 

surface stratum. Canopy scorching is, however, reported from Namibia’s Kavango and Zambezi 

regions (Verlinden and Laamanen, 2006), and fire damage and mortality may essentially vary 

according to the species affected (e.g. Seymour and Huyser, 2008). The long-term presence of fire, as 
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opposed to its absence, should be expressed in a reduction of the average woody heights on stand 

scale. This effect is not necessarily the result of fewer adult individuals, but rather a larger 

proportion of small individuals that are inhibited in reaching adult heights. It is hypothesized that 

IBPCs, which can be derived from ultra-high resolution UAV imagery, provide sufficient accuracies to 

detect such disturbance legacies in the 3D stand structure. The discontinuity of savanna canopies 

could be beneficial to the autonomy of UAV systems, as ground points are not obscured and the base 

heights of woody vegetation may be extracted from the IBPC (e.g. Jensen and Mathews, 2016). Dry-

season phenology, which includes partly leaf-off conditions, could be beneficial in this regard but 

may complicate the retrieval of height information from woody individuals. 
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2. MATERIALS AND METHODS 

 

2.1. Study areas 

Namibia is a dry country. Climate is hyper-arid along the coast but sub-humid conditions with up 

to approximately 700 mm Mean Annual Precipitation (MAP) characterize the Zambezi region of 

North-Eastern Namibia (Mendelsohn et al., 2002). Although inter-annual rainfall variability is 

generally high, a significant increase in precipitation has been observed across Southern Africa in 

recent decades, which has been attributed to a strengthening of the Walker cell  

(Maidment et al., 2015). Indeed, parts of North-Western Namibia have received higher precipitation 

amounts since 2000, and a greening trend has been observed in the North-East (Hoscilo et al., 2015). 

This greening may, however, also be indicative of woody encroachment. Vegetation structure largely 

follows the climatic gradient from south-west to north-east (Mendelsohn et al., 2002). Only sparse 

grass cover is found along the coast. Shrublands of the Karoo are located in the south but reach far 

north along the highlands of the Great Escarpment. Savannas that range from feather-leaved 

shrublands to broad-leaved woodlands characterize Central and Northern Namibia, respectively. Soil 

depth and minimum temperatures generally increase towards the Kalahari Basin in the east, and 

depict further determinants of vegetation across Northern Namibia (Mendelsohn et al., 2002). 

Azonal formations, such as with the Cuvelai drainage in Owamboland or along (ephemeral) rivers, 

reflect the edaphic situation. 

Livestock ranging is a widely spread practice throughout Namibia. The “veterinary fence”3 marks 

a segregating line – not only for historical reasons. It largely separates communally-administered 

lands in the north from privately-held, commercial rangelands in the south that are important for 

meat production and export (Figure 2). Where the population density of Namibia is generally among 

the lowest worldwide, a considerable proportion of the country’s rural population live in the 

northern regions, especially in Owamboland. Overall, 14% of the country is owned by the 

government, with protected areas covering large portions thereof (Mendelsohn et al., 2002). 

The research conducted within this thesis considered three different study areas which are 

depicted in Figure 2. The fire regime was investigated at the national scale and involved all areas that 

experienced fire within the period of 2000–2016. In addition, two (case) study areas were located in 

Owamboland and the northern Otjozondjupa region. Both of these were selected with regards to 

distinct environmental heterogeneity and human-related gradients. For instance, the study area in 

Owamboland covers a strong decrease in population density from north to south. Natural vegetation 

in Owamboland is diverse: broad-leaved shrub- and woodlands are interspersed by ephemeral water 

bodies and saline grasslands in the lowlands (Mendelsohn et al., 2000). The study area in northern 

Ojtozondjupa emphasized the variations in land use and tenure that are accompanied by differences 

in grazing intensity and fire regime (Le Roux, 2011; see also Figure 3). Further information on the 

study areas is given in the respective sections of the manuscripts (Chapters 4, 5, 6). 

                                                            
3 Veterinary fences were built across Southern Africa in order to prevent livestock from animal diseases. In 
Namibia, initial veterinary fencing occurred around 1900, but its present-day extent results from the 
exhaustive efforts to control recurring outbreaks of foot-and-mouth disease during the 1960s. 
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Figure 2: The study areas in Namibia. The map shows the extent of fire at 0.1°-resolution from 2000 

to 2016 (burned cells in orange) as well as the two (case) study areas (in red) in Owamboland and 

northern Otjozondjupa. All burned cells were included in order to model the fire regime of Namibia. 

The Leaf Area Index (LAI) was modelled in Owamboland, and stand-scale heights of woody 

vegetation were assessed in the northern Otjozondjupa region. 

 

2.2. Field data 

Field measurements in remote areas are usually conducted with a limited amount of time available. 

Hence, efficient sampling strategies that explicitly target the study objectives are needed. A prior 

consideration of the extent and heterogeneity of the area, scale and accuracy requirements, validity 

in terms of representativeness and sample size, as well as the purpose of the survey are thus vital 

(McCoy, 2005). The specific purposes of the field data applied within this thesis were to calibrate 

spectral data for a biophysical parameter of vegetation, namely LAI, on the regional scale (Chapter 

2.2.1) and to verify a remotely-sensed model of canopy height on stand-scale (Chapter 2.2.2). Both 
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purposes consider field measurements as the reference data4 of the current vegetation condition for 

remotely-sensed datasets. As a consequence, these time-critical measurements and ancillary data 

ought to be collected close to the timing of the remote sensing observations in order to reflect their 

spectral and spatial properties (Jones and Vaughan, 2010; Lillesand et al., 2008). All sampling plots 

were also geo-located using a hand-held Global Navigation Satellite System (GNSS)-receiver with 

Geographic Information System (GIS)-capability. 

As Curran and Williamson (1985) conclude, capturing the variability at all spatial scales is of 

outmost priority when collecting reference data for remote sensing. Although this view appears 

futile in a strict sense, the importance of capturing scale-dependent variability efficiently is also 

recognized in vegetation ecology (e.g. Roleček et al., 2007). A two-step scheme consisting of a plot 

selection and the actual measurements conducted on sub-plots was applied to address these needs: 

i) Stratification, i.e. the categorization of a landscape by some comprehensible criterion 

such as vegetation structure or disturbance regime, was an important initial 

consideration in the field. Also with regards to accessibility and logistics, plot selection 

aimed at representative entities of the stratification and a maximum of intra-plot 

homogeneity. Admittedly, the latter is generally difficult to achieve in savannas. A 

preferential plot selection is prone to bias and generally violates statistical randomness 

in the first place. Likewise it is highly efficient in capturing gross ecological heterogeneity 

from representative units (Roleček et al., 2007). 

ii) Sampling on sub-plots was conducted using systematic approaches. Although true 

statistical randomness was once again lacking, these intended to adequately resolve 

intra-plot heterogeneity of vegetation structure in a consistent and objective manner. 

 

2.2.1. Leaf Area Index 

The Leaf Area Index (LAI), i.e. the one-sided (projected5) leaf area per area horizontal ground, is 

one of the most widely used canopy descriptors (Ollinger, 2011). A field-based estimation of LAI is 

either destructive, i.e. leaves are harvested, or indirectly estimated from canopy light interception 

measurements that often use the gap fraction approach (Bréda, 2003; Jonckheere et al., 2004). As all 

canopy elements contribute to light interception, indirect methods measure a Plant Area Index (PAI) 

in a strict sense. Phenology and spatial clumping of foliage and individuals further complicate the 

estimates of real LAI in savanna ecosystems (Ryu et al., 2010). 

A dataset of indirect LAI estimates from 109 plots and ancillary data6, which originated from the 

author’s diploma thesis (Mayr, 2012), was applied here. As canopy structure and productivity in the 

region largely follow edaphic conditions and human activities (Mendelsohn et al., 2000), sampling 

plot selection took into account the compositional and structural properties of the vegetation and 

topographic elevation. Plot size was chosen with regards to the spatial properties of the RapidEye 

imagery (Chapter 2.3.7). Following the Validation of Land European Remote sensing Instruments 

(VALERI) project (Garrigues et al., 2002), a systematic sampling approach, using regular intervals 

                                                            
4 Classical remote sensing terminology refers to “ground truth”, which is somehow misleading as it implies an 
absolute accuracy of the field measurements (Jones and Vaughan, 2010). 
5 Definitions vary with application. Projected leaf area includes leaf angular distributions as seen from above 
and is related to the remotely-sensed estimation of LAI. One-sided leaf area emphasizes on biosphere-
atmosphere interaction, and is most common with field measured LAI. 
6 E.g. dominant species, relative terrain position, and total plant cover. 
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along two perpendicular intersecting transects was adapted and applied for the creation of this 

dataset. 

 

2.2.2. Woody heights 

Gradients of fire frequency and grazing impacts were the main criteria of stratification and 

preceded the selection of plots used for height measurements. These prevailing disturbance regimes, 

which were retrieved from expert interviews, field recognition, and satellite observations, were 

assumed to be indicative of the long-term situation. Further conditions for plot selection were 

related to the requirements of the UAV mission (Chapter 2.3.8), and included even terrain and 

moderate canopy cover. Along a regular grid of points, upward facing hemispherical photographs 

were taken as part of a related M.Sc. thesis (Malß, 2017). Rather than applying a fixed radius around 

the grid points, all individuals of woody vegetation >1.5m that were contained within the 

photographs were instantly sampled. Height was derived from trigonometric measurements using a 

laser device with angular capabilities and a magnifying scope. The trigonometric method7 is 

prominent in forestry as it is fast and provides realistic accuracies of 0.1-0.5 m (West, 2015). As the 

scope was oriented towards plot heights rather than individuals, per-plot averages and maxima were 

calculated to represent the stands’ vertical structure. 

 

2.3. Spatial data and products 

A large set of spatial datasets (raster and vector) from different sources were applied within this 

thesis (Table 1). This section lists their main properties. Aerial surveys were conducted by means of 

an Unmanned Aerial Vehicle (UAV). Spatial referencing of the UAV datasets was obtained post hoc 

using photogrammetric methods (Chapter 2.4.3). Nevertheless, the UAV data are listed here as well. 

 

2.3.1. Lightning rate 

Until April 2015, the Lightning Imaging Sensor (LIS) aboard the Tropical Rainfall Measuring 

Mission (TRMM; Kummerow et al., 1998) recorded instant brightness variations from lightning 

along a latitudinal belt of ±38° around the equator. Where night-time optical discrimination of 

lightning appears straightforward, the day-time detection rates from LIS are approximately 70% 

(Albrecht, 2016). With the Very High Resolution gridded lightning Monthly Climatology (VHRMC) 

dataset (Albrecht et al., 2016), LIS observations from 1998 to 2013 are processed to yield monthly 

flash rate densities at 0.1°-resolution. As lightning is a potential source of ignition, the LIS-VHRMC of 

the respective dry-season months was included here in order to study Namibia’s fire regimes. 

 

                                                            
7 Trigonometric height estimation combines one distance measurement and two angular measurements at 
ground- and top level, respectively. 
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2.3.2. Precipitation 

Monthly and 10-day precipitation estimates for the African continent are available from the 

Tropical Applications of Meteorology using Satellite data and ground-based observations (TAMSAT) 

dataset (Tarnavsky et al., 2014). Building on several METEOSAT observations per day, TAMSAT 

covers a continuous record from 1983 to present at a resolution of 0.0735°, which corresponds to 

approximately 4 km. Based on the simple premise that cloud height is proportional to the amount of 

precipitation, cloud-top temperatures as detected from Thermal Infrared (TIR) imagery allow for the 

estimation of precipitation – at least in convective systems. However, as Kidd and Huffman (2011) 

note, this relationship is indirect and affected by regional and temporal variations. As a consequence, 

TAMSAT combines TIR observations with a regional calibration based on historical gauge records 

(Tarnavsky et al., 2014). Gauge records are sparse and generally decreasing in numbers across 

Southern Africa (Hughes, 2006; Layberry et al., 2006). In addition, their spatial representativeness is 

limited in convective precipitation regimes. TAMSAT was preferred over gauge-only and more 

sophisticated satellite products, such as the TRMM Multisatellite Precipitation Analysis (TMPA) 

product (Huffman et al., 2007), within this thesis due to its long-term reliability as well as spatial 

resolution and consistency. 

Dataset 
Temporal 
coverage 

Spatial 
resolution 

Temporal 
resolution 

Usage 

MCD45A1 v5.1 2000-2016 500 m monthly fire regime 

MOD13A1 v6 2000-2016 500 m 16-day NDVI phenology 

LIS-VHRMC 1998-2013 0.1° monthly dry-season lightning 

TAMSAT v2 
1998-2016 

(1983-2016) 
0.0375° 

monthly 
(10-day) 

precipitation 

SRTM v4.1 2000 3-arc sec. static terrain 

OSM Dec 2016 - static road network 

AON/EIS various - static 
various biophysical and  
human-related variables 

RapidEye L3A Nov 2010 6.5 m static 5 bands 

MOD15A2 v5 Nov 2010 1 km static (8-day)  LAI 

UAV Sept 2015 <2 cm static CHM 

Table 1: Overview of the spatial datasets used in this thesis. Horizontal lines between the datasets 

distinguish the datasets according to their main application in the manuscripts of this thesis. Note 

that the spatial coverage and temporal resolution are only given as applied here and may differ from 

the general availability of the dataset. 
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2.3.3. Terrain 

A Digital Elevation Model (DEM) of global coverage at three-arc seconds8 is provided by the 

Shuttle Radar Topography Mission (SRTM). Where vertical errors of the DEM are generally <16 m, 

missing data in regions with low textures, such as deserts, were largely filled with the newest release 

of the dataset (i.e. version 4.1; Jarvis et al., 2008). Surface roughness, i.e. the elevation range covered 

by the cells surrounding a central pixel in a DEM (Wilson et al., 2007), was calculated from the SRTM 

DEM as a surrogate of terrain properties that potentially influence the spread of fire. 

 

2.3.4. MODIS products 

The Moderate-resolution Imaging Spectroradiometer (MODIS) aboard the Aqua and Terra 

satellites is one of the most prominent Earth observation missions. It provides global coverage 

within two days and covers 36 spectral bands (visible to TIR) with spatial resolutions from 250 m to 

1 km thereby facilitating a large suite of land, ocean, and atmospheric applications and the 

monitoring thereof (Lillesand et al., 2008). Numerous readily-processed products are derived from 

spectral MODIS data. Three MODIS land products (Justice et al., 1998) were used in this thesis and 

are listed in the subchapters below. 

2.3.4.1. Burned Area 

The MODIS Burned Area (BA) product (MCD45A1 version 5.1) is delivered monthly and at a 

resolution of 500 m. It maps the recent burning of pixels and assigns the approximate date of first 

occurrence with a detection precision of ± eight days (Roy et al., 2008). Daily Terra and Aqua MODIS 

surface reflectances of the previous and following months are partly included in the derivation of BA 

of a respective month. The algorithm is a bi-directional reflectance model-based change detection 

approach described by Roy et al. (2005): spectral variations due to sensor-viewing and illumination 

conditions are predicted across time9 and compared to the respective observed reflectances in order 

to discriminate consistent and significant changes in the NIR and two SWIR bands, which are 

sensitive to burned surfaces. A MCD45A1-record that covered the period from April 2000 to March 

2016 was applied in order to derive the fire regime parameters for Namibia and to investigate their 

controls. 

2.3.4.2. Vegetation Index 

Similar to the considerations described in Chapter 2.4.1, two proxies of vegetation greenness are 

contained in the MODIS Vegetation Index product (MOD13A1; Huete et al., 2002). First, the 

Normalized Difference Vegetation Index (NDVI), which is probably the most widely used remotely-

sensed vegetation proxy, and second the Enhanced Vegetation Index (EVI). These are both delivered 

at a 500 m-resolution. Version 6 of MOD13A1 constitutes a 16-day Maximum Value Composite 

(MVC) where the compositing value of a pixel is determined by a consideration of the two highest 

observations of NDVI (if available) and their viewing angles10, respectively (Didan et al., 2015). As 

saturation problems that are typically related to NDVI in regions of high biomass (Huete et al., 2002) 

                                                            
8 Three-arc seconds correspond to a spatial resolution of approximately 90m at the equator. 
9 A minimum of 16 days is considered, which is extended (e.g. due to the presence of clouds) until at least 
seven observations are reached (Boschetti et al., 2013). 
10 Observations closer to nadir view are preferred in this procedure. 
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were not expected to occur in Namibia, NDVI was preferred over EVI in order to derive phenological 

metrics (see Chapter 2.4.2). 

2.3.4.3. Leaf Area Index/Fraction of absorbed Photosynthetically Active Radiation 

The MODIS LAI/Fraction of absorbed Photosynthetically Active Radiation (FPAR) product 

(MOD15A2; Myneni et al., 2002) applies a physical approach to produce the per-pixel output 

LAI/FPAR at a resolution of 1 km. The algorithm, which is described by Knyazikhin et al. (1998), is 

based on the inversion of a 3D Radiative Transfer Model (RTM)11. However, different inversion 

solutions may lead to the same simulated reflectance – known as the ill-posed inverse problem 

(Combal et al., 2003). In order to constrain the set of possible solutions, the MOD15A2 algorithm 

applies biome-specific parameterizations for the typical spectral reflectance and their respective 

uncertainties in so-called Look-Up Tables (LUT). If several solutions are available, their average is 

used to compute the daily LAI retrieval. Otherwise, an empirical back-up algorithm is applied and is 

based on the NDVI (Knyazikhin et al., 1998). In compositing, daily LAI retrievals are then selected 

using the maximum FPAR value across an eight-day period (Yang et al., 2006). Only a single eight-

day composite of MOD15A2 that had the highest temporal agreement with the RapidEye imagery 

(Chapter 2.3.7) was selected for this thesis. 

 

2.3.5. Environmental Information System of Namibia  

The Environmental Information System of Namibia (EIS; www.the-eis.com) hosts a bulk of 

publications and (spatial) datasets from different contributors. Among these are spatial datasets 

from the Atlas Of Namibia (AON; Mendelsohn et al., 2002), which is probably the most 

comprehensive, complete and accurate source of socioeconomic and environmental data for 

Namibia. For instance, gridded population density from this source includes the national census as 

well as regional population surveys from different government directorates. Overall, the estimated 

total population of Namibia was 3% higher as compared to census-only estimates  

(Mendelsohn et al., 2002). Given the regional abundance of informal settlements in Namibia, the 

population dataset as provided by the AON is intended to be superior to global spatial datasets, such 

as Gridded Population of the World (Doxsey-Whitfield et al., 2015), and to reflect the spatial 

distribution of the rural population with higher accuracy. 

 

2.3.6. OpenStreetMap 

OpenStreetMap (OSM) is a mainly volunteer-based global mapping project that is distributed 

under the CreativeCommons BY-SA 2.0 license12. OSM is a serious source of vector map data, also in 

developing countries, and its dynamics have gained attention in the field of rapid response and 

disaster mapping (e.g. Zook et al., 2010). In order to derive a complete road network of Namibia, a 

full extract of the OSM database (Geofabrik and OpenStreetMap contributors, 2016) was used in this 

thesis. Roads can impact fire in different ways. For instance, roads separate the landscape and may 

                                                            
11 A RTM generally describes the relationship between a set of canopy characteristics (e.g. LAI, canopy cover, 
and background soil contribution), i.e. the input, and spectral reflectance, i.e. the output. Given a proper RTM, 
the more inputs are known, the more accurate the outputs will be. 
12 See https://creativecommons.org/licenses/by-sa/2.0/ for further information. 
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inhibit the spread of fire. Road density may be a proxy for ignitions due to negligence, but at the 

same time enhances the accessibility for fire fighting activities. 

 

2.3.7. RapidEye 

RapidEye is a five-satellite constellation offering five spectral bands (from blue to NIR) at a 

spatial resolution of 5 m, which is resampled from a nominal resolution of 6.5 m  

(RapidEye AG, 2011). Further technical details on the mission are given by Tyc et al. (2005). At 

present, RapidEye is part of the commercial brand Planet Labs Germany, but imagery was formerly 

available at no cost for scientific applications through the RapidEye Science Archive (RESA) hosted 

by the German Aerospace Centre (DLR). This thesis applied a single scene of orthorectified and 

sensor-calibrated RapidEye imagery (Level 3A). RapidEye’s high resolution was intended to 

adequately capture vegetation in its spatial heterogeneity. A notable feature of the sensor’s 

multispectral configuration is a red-edge band (690-730 nm) as it may improve the derivation of 

canopy parameters from RapidEye imagery in low-productivity regions (e.g. Li et al., 2012;  

Ramoelo et al., 2012; Schumacher et al., 2016). However, other studies that applied Rapid Eye’s red-

edge band in arid environments report no improvements thereof (e.g. Ehammer et al., 2010;  

Zandler et al., 2015). 

 

2.3.8. Unmanned Aerial Vehicle surveys 

UAVs have matured to serious remote sensing systems that allow autonomous and flexible data 

acquisition at potentially high resolutions (Colomina and Molina, 2014; Nex and Remondino, 2014). 

However, aerial surveys with such systems require considerable pre-survey preparation and post-

processing to yield meaningful spatial data (see Chapter 2.4.3). 

In accordance with the field measurements described in Chapter 2.2.2, 19 flights were carried 

out using a Soleon Coanda x12 multi-rotor UAV. Compared to fixed-wing UAVs, multi-rotor UAVs 

provide only a limited spatial range, where the area sampled within a single flight is typically small, 

but benefit from increased stability during the flight and vertical take-off/landing near or within the 

sampling plots. With regards to the aims of this aerial survey, a sufficient spatial resolution and 

overlap of the imagery were two major prerequisites in order to allow for a posterior 3D 

reconstruction of canopy elements (Dandois et al., 2015; Salamí et al., 2014). The imaging sensors 

aboard the UAV were two consumer-grade cameras, Nikon 1 V3, both with a sensor size of 13.2 × 

8.8 mm and a respective resolution of 18.4 megapixels. Focal lengths were fixed to 10 mm in order to 

cover a large field-of-view. Taking into account the optical properties of the sensors, the routes for 

autonomous sampling by means of an autopilot were planned using waypoints in a “lawnmower 

mode” (Anderson et al., 2014). These routes were programmed with a flight altitude of 60-70 m and 

waypoint densities facilitating an image acquisition with nominal sideward and forward image 

overlaps of 50%. This setup generally yielded a spatial resolution of <2 cm and with each object 

along the inner flight lines being contained by approximately four images taken from different 

angles. In order to ensure consistent overlaps across the entire plots of field sampling, the aerial 

coverage was larger and planned with a spatial buffer around the field plots.  

The UAV mission yielded a total of 29 gigabytes of raw imagery. Flight telemetry from the UAV’s 

integrated Inertial Navigation System (INS)/GNSS unit contained – among numerous other 
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parameters – the position, orientation, and altitude of the UAV during image acquisition. The 

mentioned telemetry parameters were essential for the post hoc derivation of spatial information 

from the imagery (see Chapter 2.4.3). All flights were carried out under clear skies and at high solar 

angles in order to largely avoid radiometric variations as a result of illumination conditions and 

shadows, both of which would complicate the post-processing of imagery (Carrivick et al., 2016; 

Dandois et al., 2015). Quantitative spectral analyses, such as the derivation of SVI (Chapter 2.4.1), 

were not achievable as the cameras lacked the necessary radiometric calibration (Candiago et al., 

2015). Unfortunately, a LiDAR system, which is often argued to be the most accurate system for 

aerial 3D applications (Dandois and Ellis, 2010; Leberl et al., 2010; Ota et al., 2015), was not 

available for this thesis. 

 

2.4. Data processing 

2.4.1. Spectral vegetation indices 

Mathematical combinations of spectral bands represent a classic tool in the field of optical 

remote sensing. Owing to the characteristic spectral response of the materials contained, adequate 

band combinations facilitate the discrimination of different target surfaces and ideally reduce the 

signal variations caused by atmospheric properties, sensor viewing geometry, terrain or surface 

background signals (Baret and Guyot, 1991; Jones and Vaughan, 2010). With regards to green 

foliage, strong absorptions by chlorophyll across the visible spectrum and by cell water content in 

certain spectra of the SWIR, respectively, contrast with the high reflectance of vital cell tissue in the 

NIR. As such, the combination of spectra results in potentially useful information for the study of 

vegetation. For instance, combinations incorporating the red and NIR are frequently applied, as their 

contrast is sensitive to the amount and vitality of vegetation present. A vast list of SVIs of varying 

complexity and (sensor-specific) spectra have been proposed (see Bannari et al. (1995) for an 

overview) in order to quantitatively derive and monitor vegetation and its condition. 

Considerable uncertainties are associated with the application of satellite-based SVI and real-

world canopies. Firstly, as a function of spatial resolution of the sensor, the spectral signal detected 

is a spatial average across the entity of observation, i.e. the pixel. Secondly, radiative transfer at 

vegetated surfaces is complex (Jones and Vaughan, 2010; Ollinger, 2011; Sellers, 1985): foliage 

arrangement (e.g. leaf angles) and chemical properties, non-photosynthetic canopy components (e.g. 

litter, stems, fruits, and flowers), but also shadows and background conditions (e.g. soil, understorey 

vegetation) all contribute to the spectral signal detected. When considering the low to moderate 

plant covers of dry savannas, their distinct spatial clumping of individuals, and the offset phenology 

(e.g. green canopy vs. senescent herbaceous understorey), the spectral signals of green vegetation 

are likely to be complicated. Although SVI are accepted proxies for biophysical (e.g. aboveground 

biomass, LAI, and fractional cover), and biochemical (e.g. nitrogen, chlorophyll) properties of 

vegetation, they often only yield moderate correlations with field-measured quantities (Glenn et al., 

2008; Sellers, 1985). Furthermore, no single SVI has been identified as “the best” across different 

species, canopy architectures, and leaf structures (Huete, 2014; Viña et al., 2011). In order to relate 

field-measured properties of vegetation to their representation in satellite imagery, a large set of 

sensor-specific candidate SVI had to be considered (see Chapter 5 for a full overview). 
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2.4.2. Time series analysis 

A distinct feature of operationally-produced remote sensing data is the potential to monitor 

ecological processes and phenomena based on the temporal integration of systematic discrete time 

steps. Each individual raster in the temporal domain covers the same spatial extent and resolution, 

i.e. the spatial domain. Resultantly, per-pixel analyses may be performed similar to non-spatial time 

series. Given a sufficient temporal record (e.g. 2000-2016 in case of the MODIS products), the typical 

behaviour13 in terms of time and magnitude of an observed variable can be characterized according 

to its temporal aggregation and descriptive statistics. For instance, per-pixel TAMSAT monthly 

precipitation sums were aggregated to annual sums14 and subsequently averaged across the full 

period of observation to yield MAP. 

The calculation of metrics from satellite time series suffers from data gaps and quality issues. 

Temporary instrument failure, limited observations due to prolonged cloud cover (in the case of land 

surface products), as well as atmospheric, and sensor-viewing properties may contribute to time 

series gaps and observations of varying quality (Eklundh and Jönsson, 2017; Goward et al., 1991). As 

a consequence, satellite time series are often delivered in aggregated time steps, which also holds 

benefits for their processing performance. MODIS products are made available with a Quality 

Assurance (QA) layer that indicates the quality of retrieval for each pixel. Accordingly, the MODIS 

time series used within this thesis (MCD45A1 and MOD13A1; see Chapter 2.3.4) were filtered to 

include only retrievals of highest quality. This constrained the MCD45A1 BA record (see Figure 3), 

while intending to increase its reliability. 

 

Figure 3: Exemplary illustration of the MCD45A1 Quality Assurance (QA) layer for the study area in 

northern Otjozondjupa, Namibia. Burned area sums from April 2012 to March 2013 (in red) were 

filtered to highest-quality retrievals only (QA=1; in grey). 

 

As NDVI time series, such as the MOD13A1 product, are sensitive to changes in green vegetation, 

they facilitate the derivation of phenological metrics. In order to close the gaps arising from quality 

filtering and to deal with noise in the data, smoothing functions, which are fitted per-pixel, are 

usually applied. Noisy observations frequently introduce a negative bias. Hence, smoothing functions 

intend to fit to the upper envelope of the data (Eklundh and Jönsson, 2017). The present thesis fitted 

                                                            
13 Different terminologies are used within scientific disciplines to describe the typical behaviour of a variable: 
e.g. climatologies in atmospheric sciences, or fire regime (parameters) in fire ecology, respectively. 
14 Annual sums of precipitation were calculated from September to August of the next year with regards to the 
initialization of the rainy season across large parts of Namibia. 
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the MOD13A1 NDVI record using a double logistic function (Beck et al., 2006). The suitability of the 

double logistic function for unimodal growing seasons has been confirmed across various canopy 

architectures (e.g. Atkinson et al., 2012; Butt et al., 2011; Fischer, 1994; Hird and McDermid, 2009). 

Seasonally-decomposed phenological metrics were then averaged per pixel and across the NDVI 

record. However, a trend analysis, as has been performed on comparable datasets 

(e.g. Andela et al., 2017; Brandt et al., 2016; Fensholt et al., 2009; Maidment et al., 2015), was beyond 

the scope of this work.  

 

2.4.3. Unmanned Aerial Vehicle photogrammetry 

Photogrammetry generally aims at making measurements from imagery. Established 

photogrammetric methods for aerial triangulation15 were not designed for surveys using an UAV  

(Colomina and Molina, 2014). Their inefficiency with the use of UAV imagery arises from 

uncalibrated cameras in terms of lens geometry and distortion, and the irregularities in image 

acquisition such as variations in overlap and camera attitude, i.e. the 3D position and orientation. 

Thus the determination of interior and exterior image orientations and the 3D scene reconstruction 

thereof are nowadays frequently accomplished by computer vision techniques  

(Carrivick et al., 2016; Colomina and Molina, 2014). The Structure-from-Motion (SfM) - Multi-View 

Stereopsis (MVS) approach provides a flexible, yet to some degree arbitrary, framework to process 

UAV imagery (see Westoby et al. (2012), or Carrivick et al. (2016) for detailed overviews). In brief, 

so-called tie points, which are based on the recognition of common scale-invariant features among 

the imagery (e.g. Lowe, 2004) are initially identified with SfM-MVS photogrammetry. From the tie 

points, camera position and orientation are estimated, and planar image points are re-projected into 

3D coordinates. The product of this bundle (block) adjustment is a sparse Image-Based Point Cloud 

(IBPC). At this stage, spatial reference data, such as high-accuracy Ground Control Points (GCP), are 

introduced in order to optimize the absolute positioning of the sparse IBPC. As absolute spatial 

accuracy was not a priority here, only the flight telemetry data from the on-board INS/GNSS  

(see Chapter 2.3.8) were used for spatial referencing. Subsequently, computationally intensive MVS 

algorithms that iteratively optimize the 3D reconstruction using textural image information and 

filtering procedures were applied. The resultant dense IBPC was then spatially interpolated in order 

to yield a Digital Surface Model (DSM) and to derive an orthomosaic (see Figure 4). 

 

2.4.4. Derivation of canopy height 

The estimates of canopy height from 3D remote sensing data, i.e. a Canopy Height Model (CHM), 

may provide spatially consistent insights into stand structure. In a first step, a CHM was derived 

from the difference in height between the canopy and ground level (Chen et al., 2006). In order to 

adequately reflect the stand structure, a delineation of individuals and their maximum height from 

the CHM was necessary. However, this is admittedly a difficult task when it comes to connected 

crowns with similar heights of individuals, or irregularly shaped crowns. Hence, open and uneven 

canopies in savannas should be fairly well suited for an automated delineation as compared to closed 

forest canopies. Several methods are reported in the literature, which are reviewed by Ke and 

Quackenbush (2011) and, with a focus on LiDAR, by Zhen et al. (2016). Rather than a survey-grade, 

high-resolution DEM of the solid ground which was not available for northern Otjozondjupa, a 

                                                            
15 Aerial triangulation describes the process of solving orientations and positions for a set of overlapping 
imagery with the aim of producing a single aligned image. 
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separate DEM was derived from a classification of the ground points contained in the dense IBPC 

(Chapter 2.4.3.). Watershed segmentation was then performed on the CHM, whereby crowns were 

“filled” around local maxima points. 

 

Figure 4: Exemplary orthomosaic (left) and hill-shaded Digital Surface Model (DSM; right) near Farm 

Rooidag, Namibia, that were created using Unmanned Aerial Vehicle (UAV) photogrammetry. 

 

2.4.5. Spatial aggregation and upscaling 

Several datasets of different resolution and type (e.g. raster vs. vector) were included in this 

thesis. In order to facilitate their combined analyses, each dataset had to be aggregated to the 

resolution of the coarsest respective dataset. The preservation of a maximum of information across 

scale is a central question in these regards (Hay et al., 1997). One should be aware that different 

scales of observation may result in different implications drawn thereof – an issue more generally 

known as the Modifiable Areal Unit Problem (MAUP; Dark and Bram, 2007). 

Also data conversions, such as from vector- to raster data format, are likely to introduce errors in 

shape as a function of the raster’s resolution. Spatial aggregation, as was achieved with resampling 

techniques and descriptive functions, is usually accompanied by a reduction in variance  

(Hay et al., 1997). Variance reduction may also be desirable for smoothing noisy data and to enhance 

processing performance, as was done with the output UAV CHM. A special case of spatial aggregation 

was the upscaling from discrete point measurements of vegetation attributes to satellite imagery 

where a statistical model determined the required transfer function (see Chapter 2.5.1). 

 

2.5. Predictive Modelling 

Predictive models aim at revealing the relationships within a set of data with the intention to 

forecast, i.e. to predict, a certain outcome variable (Kuhn and Johnson, 2013). An initial 

understanding of the problem context is therefore essential to yield meaningful models. By selecting 

relevant data and processing it in an adequate modelling framework forecasting can be envisaged. 

Adequacy of the prediction is determined by the stated modelling problem in combination with the 

data’s characteristics, such as dimensions, variable type(s), and expected relationships among the 
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variables. Two different predictive modelling problems of varying complexity16 were addressed in 

this thesis. These are briefly outlined below. 

 

2.5.1. Upscaling using linear regression 

Field measurements are probably the closest approach to reality in terms of accuracy and scale. 

However they are mostly of a discrete spatial nature. Remote sensing measurements are usually 

consistent in space and certain spectral bands are sensitive to green vegetation (Chapter 2.4.1). 

Spectral information, as synthetized by a SVI, can be indirectly related to field-measured canopy 

parameters using a statistical model. Thus, remote sensing is used as a scaling tool with the intention 

to extrapolate information in space. Empirical-statistical modelling, or upscaling, is a standard tool in 

the evaluation and validation of global-scale satellite products on a regional basis  

(Justice et al., 2000; Liang et al., 2002; Morisette et al., 2006). Upscaling is usually performed on 

high-resolution imagery as an intermediate step. Simple linear regression models that relate plot-

averaged LAI samples, i.e. the response, with the averaged SVIs of the corresponding RapidEye pixels 

were conducted here. The final model was selected based on the highest agreement as outlined by 

the coefficient of determination (R²). Non-linear models were not considered due to the low range of 

LAI in Owamboland. The application of non-linear transfer functions in heterogeneous environments 

also introduces a scaling bias, which would have necessitated further corrections  

(see Garrigues et al., 2006; Jiang et al., 2018). 

 

2.5.2. Fire regime modelling 

Conceptually, the complexity behind a fire regime arises from the interaction of multiple 

environmental and human-related processes (Figure 1). This complexity of processes is translated to 

statistics as predictor variables. Predictors indirectly measure one or more processes at different 

scales, include different data types (e.g. continuous vs. categorical) and distributions, and may show 

various relationships (e.g. (non-) linear or additive) with the fire regime or other predictors. An ideal 

modelling framework should be able to sufficiently address all of these properties, however, such a 

framework and setting is not available. Rather, each modelling framework has its specific 

assumptions, strengths, and weaknesses (Kuhn and Johnson, 2013). A broad range of different 

modelling approaches from traditional statistics and machine learning were considered in this thesis 

in order to analyse Namibia’s fire regimes. These included Generalized Linear Models (GLM;  

Nelder and Wedderburn, 1972), Multivariate Adaptive Regression Splines (MARS; Friedman, 1991), 

Regression Trees from Recursive Partitioning (RPART; Breiman et al., 1984), Random Forest (RF; 

Breiman, 2001), and Support Vector Machines for Regression (SVR; Vapnik, 1995).  

An ensemble interpretation of model outputs is beneficial in the thorough identification of the 

fire regime’s major controls, and thus the most important predictors. For this specific task, 

ordination methods, such as Multidimensional Non-Metric Scaling (NMDS) technique, as frequently 

applied in plant community ecology, could have been an alternative. Although ordination has been 

applied with fire regimes (e.g. Moreno and Chuvieco, 2016), it is rather an exploratory tool dedicated 

to vivid graphical representations of complex data settings, than a modelling framework  

(Wildi, 2013). As the focus of fire regime modelling was on predictive power rather than on 

transferability in space or time, the principle of parsimony (see Crawley (2007)) was neglected here. 

                                                            
16 Complexity refers to the properties of data structure here. 
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Instead, a large set of predictors that were selected with regards to their relevance for the fire 

regime, and based on a redundancy-removal procedure, were included in the models. 

 

2.6. Model evaluation 

Evaluation generally describes a crucial procedure to assess the performance, i.e. the accuracy 

and precision of a model based on a specified reference (Willmott et al., 1985). The reference 

denotes some independent observations or another model that is regarded as the “truth”. These 

observations can be field measurements or, in the case of a model comparison, simply another 

model. From a statistical perspective, independence of the reference is achieved either by splitting a 

set of observations into separate partitions for model building and evaluation, or resampling 

techniques such as cross-validation (CV; Kuhn and Johnson, 2013). With k-fold CV, a set of 

observations is separated into k subsets of approximately equal size. In an iterative procedure, a 

model is trained from k–1 subsets, where the remaining fold subset is resampled, i.e. its values are 

randomly permuted, and used for evaluation of the trained model (Kuhn and Johnson, 2013). As the 

presence of spatial autocorrelation (SAC) potentially underestimates true model errors  

(Dormann et al., 2007; Dorner et al., 2002), spatial CV setups, where the evaluation partition is 

spatially clustered, were additionally investigated following Brenning and Ruß (2010). An 

assessment of the individual predictor’s importance in the models was achieved by means of a 

permutation-based approach (Altmann et al., 2010; Strobl et al., 2007). 

Different measures to quantify a model’s performance or to outline its errors have been 

proposed. For qualitative outputs, such as the delineation of woody individuals (Chapter 2.4.4), an 

error matrix of correct vs. incorrect delineations was applied here. For quantitative outputs, three 

groups of performance measures could be distinguished (Legates and McCabe, 1999; Moriasi et al., 

2007): “goodness-of-fit” from standard regression, dimensionless relative measures, and those 

outlining an error in terms of the output’s unit. The Root Mean Square Error (RMSE) is a prominent 

example of the latter. As certain performance measures are inappropriate or of limited reliability 

under certain circumstances17, Legates and McCabe (1999) recommend the consideration of at least 

one measure from two of the three groups outlined above. This recommendation was largely 

followed in the quantitative models of this thesis. Visual inspection was an additional valuable, yet 

subjective evaluation strategy for the mapped model outputs. 

 

2.7. Software 

A suite of commercial and open software was applied in the fulfilment of this thesis. These 

include (in alphabetical order): Agisoft PhotoScan, ESRI ArcGIS and ArcPad, GPXViewer2, LI-COR 

FV2200, Microimages TNTmips, Mikrokopter GPXTool and MKTool, MODIS Re-projection Tool, QGIS, 

R and distributed packages, SAGA-GIS, and TIMESAT. 

                                                            
17 For instance, correlation-based measures such as R² are tied to the assumptions of the linear model, whereas 
RMSE suffers from sensitivity to outliers. 
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A B S T R A C T

Dry-season fires affect the grassland and savanna ecosystems in Namibia and other regions around the globe.
Whereas climate, especially precipitation, has been found to constrain fire activity in (semi-)arid regions through
productivity, the feedbacks with human systems lack generalization. Here, we assess the biophysical and human-
related controls of fire activity in Namibia based on a 16-year record (2000–2016) of the MODIS Burned Area
product (MCD45A1). The two derived parameters of fire activity include burned area (positive continuous) and
the number of fire occurrences (zero-inflated counts), and are individually investigated at a 0.1°-resolution by
means of five common statistical and machine-learning techniques. We evaluate performance and consistency
among the models using the adjusted coefficient of determination and the root mean square error, which is
obtained from 5-repeated 10-fold cross-validation. A comparable measure of predictor importance among the
models is assessed by means of a permutation-based approach. As spatial autocorrelation is present for both
parameters of fire activity, we consider this with a spatial cross-validation setup, where k-Means clusters of
geographic coordinates are used to derive the test partitions. We find complex machine-learning techniques
generally improve the predictions of both parameters of fire activity. Our results confirm the exceptional im-
portance of mean annual precipitation for fire activity across Namibia and highlight human impacts as an ad-
ditional control of fuel availability. Apart from an increase of burned area and fire occurrences at a mean annual
precipitation of approximately 400mm, population and livestock densities strongly limit fire activity in the best-
performing Random Forest models. The largest burned areas are found with moderate green-up rates of vege-
tation, which we attribute to the presence of open landscapes. The consideration of spatial autocorrelation
generally decreases model performances but the relative decreases are higher for the models of burned area,
which we attribute to the increased spatial autocorrelation present with this response variable. Resultantly, we
recommend accounting for spatial autocorrelation in the evaluation of spatial ecological models and the as-
sessment of predictor importance. Although Namibia’s land use practices denote a special case, our model may
be of relevance to other regions located at the arid fringe of fire-affected ecosystems and those with projected
future aridification.

1. Introduction

Southern Africa is a hotspot of global fire activity (Andela et al.,
2017; Giglio et al., 2013). The evolution and maintenance of these
savanna and grassland ecosystems have been causally linked to recur-
ring fire occurrence (Bond, 2008; Bond and Keeley, 2005; Cerling et al.,
1997). Fires impact greenhouse gases and aerosol emissions (Bond
et al., 2013; Giglio et al., 2013; Lehsten et al., 2009), vegetation

succession (Heinl et al., 2007; Keeley et al., 2005), nutrient cycling
(Coetsee et al., 2010; Pivello et al., 2010) and species composition/
diversity (Pausas and Verdú, 2008; Uys et al., 2004). Thus, their spatio-
temporal patterns are critical inputs for global climate and dynamic
vegetation models (Mouillot et al., 2014; Thonicke et al., 2010). Global
climate change is likely to alter these patterns (Bowman et al., 2009;
Krawchuk et al., 2009), yet large uncertainties about the direction and
regional influence remain (Settele et al., 2014). Hence, the assessment
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of the typical fire occurrence in a region, i.e. the fire regime, and a
detailed understanding of its controls build a vital framework to address
these uncertainties and to potentially adapt policies.

Operationally produced fire records from Earth observation sys-
tems, such as the National Aeronautics and Space Administration’s
(NASA) Moderate-resolution Imaging Spectroradiometer (MODIS)
Burned Area (BA) product (Roy et al., 2005), are currently widely used
in the fire research domain as they are globally available and of unique
spatial and temporal consistency. With almost 20 years in orbit, the
MODIS BA record also allows for the capturing of variability of lower-
frequency fire recurrence, such as those found at the arid fringe of fire-
affected ecosystems.

Within the (semi-)arid spectrum of fire-affected ecosystems, such as
Namibia, fire activity is generally constrained by productivity
(Krawchuk and Moritz, 2011; Pausas and Ribeiro, 2013). Thus, the
availability of (surface) fuels, which is a function of preceding pre-
cipitation and its variability, limit the initiation and spread of fires,
although atmospheric conditions during dry season would promote
these. The importance of climate-fuel interactions for fire regimes has
been confirmed at various scales and for different savanna regions – e.g.
Northern Australia (Spessa et al., 2005), Eastern (Nelson et al., 2012)
and Southern Africa (Archibald et al., 2009, 2010a; Heinl et al., 2006;
O'Connor et al., 2011; van Wilgen et al., 2004). Fire activity in Namibia
follows a distinct climatic gradient from the arid South and West to the
more humid North-East, where approximately 30–50% of the land area
burns on an annual basis (Verlinden and Laamanen, 2006).

Biophysical determination accounts for the framework of fire oc-
currence. However, humans strongly impact fire regimes as they acci-
dently and deliberately ignite fires, while simultaneously directly and
indirectly suppressing them (Archibald et al., 2012; Guyette et al.,
2002). Indirect human suppression pathways act on fuel load via re-
duction as well as fragmentation, e.g. from land conversion or livestock
grazing. All over Southern Africa the majority of fires are intentionally
lit by humans (Archibald et al., 2010b), who use fire as a tool for land
management (e.g. hunting, pest control, land clearance, nutrient re-
cycling, green shoot initiation, among others). Accordingly, Archibald
et al. (2010a) conclude that the climatic controls on fire are stronger in
protected areas, which are hypothesized to be less affected by humans
as compared to the whole subcontinent. However, generalizations of
human impacts on the fire regime appear difficult, even at a regional
scale. Increasing human densities were found to reduce BA (Archibald
et al., 2009), and shift fire size distributions towards smaller, more
frequent fires (Archibald et al., 2010b). Le Roux (2011) finds Namibian
fire regimes to differ among land tenures which he attributed to the
corresponding fire management strategies and capabilities. The im-
portance of management is supported by a study of the Kavango-
Zambezi Transfrontier Conservation Area (Pricope and Binford, 2012),
that documents the marked differences in BA and fire recurrence as a
function of the fire policies in the five countries involved (including
Namibia).

A large set of facilitating and limiting variables of biophysical and
human origin and their complex interactions may, thus, be responsible
for the observed patterns of fire activity in a region. State-of-the-art
predictive modeling techniques help us to quantitatively understand
such patterns and to unveil the dependencies behind these. So-called
machine-learning algorithms are often shown to improve complex
pattern identification as compared to conventional statistical methods
in the fire research domain (e.g. Amatulli et al., 2006; Bar Massada
et al., 2012; Bedia et al., 2014; Cortez and Morais, 2007; Faivre et al.,
2016; Rodrigues and de la Riva, 2014; de Vasconcelos et al., 2001), as
well as other disciplines (e.g. Goetz et al., 2015; Singal et al., 2013 –
among many others). However, no single method has been identified as
the best method, rather each has different strengths and weaknesses
(e.g. with the handling of factor predictors and extreme values, the
treatment of interactions, and interpretability).

With regards to predictive modeling, a major limitation of the

approach arises from the fact that the ignitions can only be inferred
from indirect variables (Krawchuk and Moritz, 2014). The exact oc-
currence of an ignition, especially of unintentional origin or from
lightning, carries an indeterminable uncertain degree of stochasticity.
As fires originate from an ignition source and propagate under facil-
itating conditions, their observations are likely to be autocorrelated, i.e.
their patterns show distinct spatial, but also temporal dependencies.
Where the presence of Spatial Autocorrelation (SAC) violates the as-
sumption of independence with parametric techniques, its negligence
may generally result in biased models (Dormann et al., 2007; Dorner
et al., 2002). Best-practice spatial modeling accounts for SAC, either by
including SAC as a separate (weighing) variable in the model or re-
moving SAC from the observations, e.g. by selection of a non-correlated
subset (see Dormann et al. (2007) for an overview). Another approach
is to correct for the underestimation of model errors as a result of SAC
by spatially clustering the evaluation partitions in a cross-validation
procedure (Ruß and Brenning, 2010). Hence, the full set of observations
may be used to fit the model and the effects of SAC on model perfor-
mance. In addition, predictor importance can easily be assessed by
comparing ‘non-spatial’ vs. ‘spatial’ evaluations across various pre-
dictive techniques.

Here, we apply a predictive modeling approach to investigate the
controls of two main fire regime parameters derived from a 16-year
Earth-observation record, namely Burned Area (BA) and Fire
Occurrence (FO), in Namibia. We use five common statistical and ma-
chine-learning techniques to predict BA, which is positive-continuous,
and FO, which comprises zero-inflated counts. We assess the models’
performance and consistency, and consider spatial dependency struc-
tures as indicated by SAC. Precipitation is hypothesized to be the pri-
mary control of overall fire activity in Namibia as it determines fuel
availability. Human activities (e.g. land fragmentation or tenure) could
alter and even override the climate-fire relationship. We expect that
human activities may lead to diverse feedbacks on fire activity, i.e. they
negatively affect the spatial extent of fires (BA) but could cause more
frequent fires (FO). Both fire regime parameters should show distinct
spatial structures, which would justify the consideration of SAC in the
model evaluation. Furthermore, we expect complex interactions with
biophysical and human-related predictors, favoring the usage of ma-
chine-learning over conventional statistical techniques.

The expected insights of our work contribute to the highly-needed
quantitative understanding of the linkage between biophysical and
human systems (Beringer et al., 2015). As fire management plans and
policy decisions are often determined nationwide, our investigation on
the national scale could deduce important implications for the man-
agement of fire and ecosystems in Namibia, as well as for countries with
comparable environmental conditions and land use practices. Ulti-
mately, our case study may prove as a reference for the understanding
of fire regime responses to future aridification as proposed for many
savanna regions (Kirtman et al., 2013).

2. Materials and methods

2.1. Study area

In Namibia, the most arid country of Sub-Saharan Africa, pre-
cipitation is largely restricted to the Austral summer, where the de-
pendence on convective complexes introduces a pronounced spatial
variability in intra-seasonal water availability (Blamey and Reason,
2013). Inter-annual variability of precipitation is a function of aridity
due to the increasing dependence on single events for Mean Annual
Precipitation (MAP). Relative variability is most pronounced in the
West and South of Namibia and the North and North-East reach the
highest MAP of up to approximately 600mm (Mendelsohn et al., 2002).
The gradient of MAP largely determines natural vegetation, but edaphic
properties may alter this pattern of productivity. For instance, high
salinity in the proximity of ephemeral water bodies facilitates the
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formation of azonal grasslands in Northern-Central Namibia (Mayr and
Samimi, 2015). Wetter regions of the country are characterized by
feather-leaved (mainly Acacia spp.) and broad-leaved savannas, which
also form woodlands (e.g. Colophospermum mopane, Baikiaea plurijuga)
in the North-East.

Approximately 17% of Namibia is covered by protected areas (MET,
2016), but vast areas that are privately-held, especially in Central Na-
mibia, or communally-administered are used for livestock farming.
High stocking rates are often associated with the expansion of woody
vegetation, i.e. bush encroachment (de Klerk, 2004; Mayr et al., 2017;
Wagenseil and Samimi, 2007). Fire suppression and exclusion are re-
garded as contributing factors to bush encroachment among others (but
see O'Connor et al., 2014).

National fire policy has targeted the strict avoidance of fires since
colonial times. However, recent considerations in fire management give
increased consideration to prescribed and controlled burning in some
communal areas (Beatty, 2011) as well as in protected areas and their
surroundings (MET, 2016). Approximately half of the country experi-
enced fire within the period 2000–2016 (Fig. 1). These burned areas are
under investigation in this study.

2.2. Data

2.2.1. Response variables
2.2.1.1. MODIS monthly burned area (MCD45A1). The MODIS burned
area product (MCD45A1) is the most frequently applied satellite-based
fire estimate (Mouillot et al., 2014). It uses daily MODIS Aqua and Terra
reflectance with a bi-directional change detection approach to
discriminate burned areas and assign an approximate date of burning
(Roy et al., 2008). Evaluation studies from Southern Africa, partly
including Namibia, revealed low errors of omission but high errors of
commission, especially for smaller fires (de Klerk et al., 2012; Tsela
et al., 2014), making it a conservative estimate of burned areas. Yet true

detections were reported as high as 75% for the region (Roy and
Boschetti, 2009).

A 16-year time series (April 2000–March 2016) of three MCD45A1
v5.1 tiles (h19v10, h19v11, h20v10) covering Namibia were down-
loaded from the NASA's Land Processes Distributed Active Archive
Center (LPDAAC) via the United States Geological Survey (USGS) Earth
Resources Observation and Science (EROS) Center (https://e4ftl01.cr.
usgs.gov/MOTA/MCD45A1.051/). The tiles of the monthly time series
were mosaicked and re-projected to geographic coordinates (World
Geodetic System 1984; WGS84) using the MODIS Re-projection Tool
(MRT). We filtered the monthly mosaics for the Days-Of-Year (DOY) of
the corresponding month and limited the burned pixels to highest-
quality retrievals only (i.e. Quality Assessment=1). Annual burned area
sums from April to March were calculated, which is in accordance with
Boschetti and Roy (2008) for Southern African savannas. It should be
noted that June 2001 was missing in the time series due to technical
problems related to the MODIS instrument (Boschetti et al., 2013). No
filling was applied for this month. Two response variables of per-pixel
fire activity could be derived: the total number of Fire Occurrences
within the 16 years (FO) and, by correcting for latitude, the approx-
imate mean Burned Area in km2 (BA).

2.2.2. Predictor variables of the biophysical environment
2.2.2.1. Terra MODIS 16-day composite NDVI (MOD13A1). The
Normalized Difference Vegetation Index (NDVI) is a reflectance based
proxy for photosynthetically active vegetation. The MOD13A1 product
(Huete et al., 2002), which is derived from daily Terra MODIS surface
reflectance observations, provides 16-day Maximum Value Composites
(MVC) of NDVI. Due to the MVC being prone to noise introduced from
viewing geometry, atmospheric composition and cloud contamination,
such datasets need to be corrected by the application of a smoothing
function (Chen et al., 2004).

In analogy to the MCD45A1 dataset, a time series (6 April 2000–21

Fig. 1. Map showing Namibia and the ex-
tent of fire within the period April
2000–March 2016. The burned cells (in
grey; n=3700), which are the scope of this
study, contain at least one fire within the
period of observation. These were derived
from a spatial aggregation to 0.1°-resolution
based on NASA’s MODIS Burned Area pro-
duct (MCD45A1 at 500m-resolution; in
color). (For interpretation of the references
to color in this figure legend, the reader is
referred to the web version of this article.)
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March 2016) of the three MOD13A1 v6 tiles were downloaded from the
NASA’s LPDAAC/EROS (https://e4ftl01.cr.usgs.gov/MOLT/MOD13A1.
006/) and pre-processed in MRT. Following (Fensholt et al., 2009), we
included only binary numbers ≤8 from the NDVI quality assessment
layer, but additionally filtered the pixels for their land mask and cloud
shadow attributes.

Further processing of the NDVI time series was completed via
TIMESAT v3.3 (Jönsson and Eklundh, 2004). Based on visual inspection
of per-pixel time series all over Namibia, we chose a double-logistic
filter in order to fill the gaps resulting from the quality-based selection,
and to smooth the seasonal NDVI signals. The output NDVI metrics per
season were averaged using the mean, whereby temporal metrics con-
taining DOY (e.g. start of the growing season (VSOS)) were rounded to
integers. Table 1 provides an overview of the derived NDVI metrics.

2.2.2.2. TAMSAT monthly precipitation. The Tropical Applications of
Meteorology using SATellite data and ground-based observations
(TAMSAT) dataset (Tarnavsky et al., 2014) combines a Thermal
Infrared (TIR) cold cloud detection approach with regional gauge
calibration. As the TIR data originate from Meteosat, TAMSAT covers
the period 1983-present with an approximate spatial resolution of 4 km.
The TAMSAT approach has performed well in different African regions
(Asadullah et al., 2008; Dinku et al., 2007), but also underestimates
amounts of precipitation (Maidment et al., 2014; Thorne et al., 2001;
Young et al., 2014). As Maidment et al. (2014) point out, accurate
representations of low precipitation amount and inter-annual
variability is a priority of the TAMSAT approach. This suggests that
this is a dataset that is suitable for Namibia.

We downloaded the complete TAMSAT v2.0 monthly and dekadal
(i.e. a 10-day period) datasets from https://www.tamsat.org.uk/data/
archive. Available fine fuels, such as grass, are often considerably de-
termined by the two preceding rainy seasons (Siegfried, 1981; van

Wilgen et al., 2004). Therefore we used a monthly time series from
September 1998 to August 2016 for the calculation of Mean Annual
Precipitation (September–August; MAP), and mean seasonal precipita-
tion amounts for the early season (September–October–November;
PSON), the main season (December–January–February; PDJF), and the
late season (March–April–May, PMAM). Two months of the monthly
time series in use were missing (January 1999, September 2006). These
gaps were filled by summing the two dekades of the corresponding
month, which were available from the dekadal TAMSAT dataset, and
the mean (1983–2016) of the missing dekade.

2.2.2.3. SRTM 3-Arc-second elevation. Ten 5×5 degree (°) tiles of
NASA’s Shuttle Radar Topology Mission (SRTM) 3-Arc-second v4.1
elevation product were retrieved from the CGIAR Consortium for
Spatial Information database (CGIAR-CSI; http://srtm.csi.cgiar.org/)
(Jarvis et al., 2008). Compared to earlier versions, missing data for
deserts were largely filled in this dataset. We calculated the Surface
Roughness (SR) as a measure of terrain heterogeneity from the
mosaicked tiles.

2.2.2.4. LIS-VHRMC lightning. Daily lightning flash rates covering the
period 1998–2013 were available at 0.1°-resolution from the Lightning
Imaging Sensor – Very High Resolution gridded lightning Monthly
Climatology (LIS-VHRMC) product (Albrecht et al., 2016) which is
provided by NASA’s Earthdata portal (https://urs.earthdata.nasa.gov/).
The mean of annually summed Lightning flash Rates (LR) was
calculated, restricting to the months of potential lightning-caused fire
ignition (April–November).

2.2.2.5. Sub-biomes. A categorical vector dataset of the (Sub-) Biomes
of Namibia (SBIOM) was available from the Atlas Of Namibia (AON;
Mendelsohn et al., 2002) and retrieved from the Environmental

Table 1
Overview of the variables used in this study including the names and descriptions of the individual response and predictor variables that were spatially aggregated to
the variable of coarsest resolution (i.e. 0.1°), the corresponding units (where applicable), the original resolution (for rasters), and the data source. Predictor variables
shown in italic letters (n=11) were excluded from further analysis after predictor pre-selection and thus are not part of the models. For further explanation, please
see text.

Name Description Unit Original Res. Data source

Response variables
Burned Area (BA) Mean annual sums (2000–2016) km2 500m MCD45A1 (v5.1)
Fire Occurrences (FO) Majority number of occurrences (2000–2016) n

Predictor variables of the biophysical environment
Lightning Rate (LR) Mean of Apr-Nov sums (1998–2013) n km−2 day−2 0.1° LIS-VHRMC
Mean Annual Precipitation (MAP) Mean of annual sums (1998–2016) mm 0.0375° TAMSAT (v2)
Early Season Precipitation (PSON) Mean of Sept-Oct-Nov sums (1998–2016)
Main Season Precipitation (PDJF) Mean of Dec-Jan-Feb sums (1998–2016)
Late Season Precipitation (PMAM) Mean of Mar-Apr-May sums (1998–2016)
Surface Roughness (SR) Mean surface roughness – 0.00083° SRTM 3-arc (v4.1)
NDVI Start-of-Season (VSOS) Mean start-of-season (2000–2016) DOY 500m MOD13A1 (v6)
NDVI End-of-Season (VEOS) Mean end-of-season (2000–2016) DOY
NDVI Length-of-Season (VLOS) Mean length-of-season (2000–2016) DOY
NDVI Middle-of-Season (VMOS) Mean middle-of-season (2000–2016) DOY
NDVI Amplitude (VAMP) Mean seasonal amplitude (2000–2016) –
NDVI Base Value (VBV) Mean seasonal base value (2000–2016) –
NDVI Maximum (VMAX) Mean seasonal maximum (2000–2016) –
NDVI Left Derivative (VLD) Mean seasonal left derivative (green-up) (2000–2016) –
NDVI Right Derivative (VRD) Mean seasonal right derivative (brown-off) (2000–2016) –
NDVI Small Integral (VSINT) Mean seasonal small integral (2000–2016) –
Sub-biomes (SBIOM) Levels of sub-biomes (n= 4) – – AON/EIS
Herbivore Diversity (HDIV) Ranks of natural herbivore diversity (n= 3) – –

Predictor variables of human activity
Roads and Railways (RR) Summed length of roads and railways km – OSM/Geofabrik, AON/EIS
Bush Encroachment (BENC) Binary of bush encroachment – – AON/EIS
Land Tenure (LTEN) Levels of land tenure (n= 3) – –
Land Use (LU) Levels of land use (n=4) – –
Livestock Density (LSD) Mean total biomass of livestock kg ha−2 10 km
Population Density (POPD) Mean population density (around year 2000) n km−2 1 km
Power Lines (PWL) Summed length of power lines (June 2009) km – NamPower/EIS
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Information System Namibia (EIS; http://www.the-eis.com/). In order
to achieve a balanced distribution of the levels, biomes of the ‘Succulent
Karoo’ and the ‘Nama Karoo’, were merged to a class ‘Karoo’. Similarly,
pans and desert levels were combined to yield the class ‘Desert, Pans’.
The biome ‘Tree-and-Shrub-Savanna’ was split along a line feature
provided by the dataset to yield separate levels of feather-leaved- and
broad-leaved savanna.

2.2.2.6. Herbivore diversity. The number of large mammalian natural
herbivores was available as a vector dataset from the AON/EIS.
Although Herbivore Diversity (HDIV), which largely coincides with
their overall abundance in Namibia (Mendelsohn et al., 2002), may
reflect human activities (e.g. hunting vs. conservation), these were
attributed to the biophysical environment. We reclassified the number
of herbivore species to ranked levels corresponding to low (≤2
species), moderate (3–6 species) and high diversity (≥7 species).

2.2.3. Predictor variables of human activity
Raster and vector data from the Atlas Of Namibia (AON;

Mendelsohn et al., 2002), which were available from EIS, were re-
garded as the best-available source at the national scale in terms of
resolution, completeness and reliability. The AON/EIS was the main
source for the predictors of human activity. If not otherwise mentioned
below, the data originated from this source and the references given in
Mendelsohn et al. (2002).

2.2.3.1. Bush encroachment. Based on a vector dataset containing the
approximate contiguous areas of bush encroachment and the
corresponding species of encroachment, we created a binary dataset
of non-encroached and encroached areas (BENC). According to the
dataset, approximately 52% of the study area were subject of
encroaching woody species.

2.2.3.2. Land use and tenure. In order to reduce levels and to increase
their balance, the vector datasets of land use and tenure were
reclassified. This resulted in the following levels for Land Use (LU):
‘large-scale agriculture’ (8.8% of the study area), ’small-scale
agriculture’ (80.5%), ‘protected’ (i.e. areas for conservation and
mining; 9.5%), and ‘other’ (i.e. urban areas and resettlements; 1.2%).
For Land Tenure (LTEN), we separated between ‘communal’,
‘governmental’, and ‘private’ controls of land, where the latter also
includes private-held land in communal and urban areas. The largest
proportion of the study area was ‘private’ land (52%), whereas 36% and
12% were under communal and government controls, respectively.

2.2.3.3. Livestock density. Livestock Densities (LSD), which is the total
biomass of cattle, goats, sheep, and donkeys, were available in kg ha−1

and at a 10-km-resolution. As national parks were masked in the
original dataset, these areas were set to null. Still, mean LSD across the
study area was 14.58 kg ha−1 with maxima of approximately
220 kg ha−1.

2.2.3.4. Population density. Population Densities (POPD) around the
year 2000 in n km−2 were available at a 1-km-resolution. Although
spatial population estimates in developing countries may be inaccurate
due to the lack of census availability and informal housing, we believe
the AON/EIS dataset utilized here, which combines several sources (see
Mendelsohn et al. (2002) for further details), was the most suitable for
Namibia. The generally low population numbers across Namibia are
outlined by a mean POPD of 2.22 people km−2 in the study area.

2.2.3.5. Power lines. Power Lines (PWL), which are a potential source
of ignition but are often accompanied cut lines that fragment fuels,
were provided by the Namibia Power Corporation Ltd. (NamPower)
and available from EIS for June 2009. We filtered the dataset for
existing and overhead power lines only.

2.2.3.6. Roads and railways. Roads and Railways (RR) were merged
from two sources in order to form a predictor of land fragmentation.
Where the railway network was available from AON/EIS, roads were
retrieved from a database extract of OpenStreetMap (OSM) on 12
December, 2016, which was provided by Geofabrik GmbH (http://
download.geofabrik.de/africa/namibia.html). All roads equal to or
higher than tertiary (i.e. Namibian D-roads) were merged with the
railroad dataset.

2.2.4. Spatial aggregation
Our analysis was carried out at a 0.1°-resolution to match the spatial

resolution of the coarsest scaled variable in the dataset, which was the
LIS-VHRMC lightning record. The 0.1°-resolution yielded a sample of
3700 grid cells that contained at least one burned MCD45A1-pixel
within the period of observation (April 2000–March 2016; Fig. 1).

The response variables were aggregated using the mean BA and the
majority FO of all MCD45A1-pixels contained within the 0.1° grid cell.
Positive continuous and integer (count) data types could be derived for
BA and FO, respectively. The quantitative predictors of precipitation
(MAP, PSON, PDJF, and PMAM), topography (SL and SR), vegetation/
phenology (VSOS, VEOS, VLOS, VMOS, VAMP, VBV, VMAX, VLD, VRD,
and VSINT), livestock density (LSD), and population density (POPD)
were aggregated using the mean. Instead line-based predictors (RR,
PWL) were aggregated and rasterized using the sum, whereas for
polygon-based predictors (SBIOM, BENC, HDIV, LTEN, and LU) the
level corresponding to the maximum area within the 0.1° grid cell was
used. Table 1 provides a full overview of all response and predictor
variables derived here as well as their properties.

2.3. Methods

2.3.1. Pre-selection of predictor variables
In order to decrease model complexity, we pre-selected the initial

predictors and their groups by means of multicollinearity and re-
dundancy removal. The seasonal precipitation measures (PSON, PDJF;
and PMAM) were all highly correlated (R2 > 0.89; not shown) with
Mean Annual Precipitation (MAP). Therefore, only MAP was included
for further analysis. From ten initial NDVI-based predictors of vegeta-
tion and phenology, only four predictors (VSOS, VLOS, VBV, and VLD)
were included based on a backward-stepwise Variance Inflation Factor
(VIF) procedure using a threshold ≤5. The association among catego-
rical predictors was assessed from pairwise Cramer’s V. Strong asso-
ciations (Cramer’s V > 0.5) were found for LTEN vs. LU and SBIOM vs.
BENC. LU and SBIOM were eliminated from the dataset due to higher
imbalance of the levels of LU and an assumed strong dependency of
SBIOM by MAP. In total, 11 of the 25 initial predictors were excluded
through the process of pre-selection (cf. Table 1).

2.3.2. Spatial autocorrelation
We tested the response variables (BA and FO) for spatial auto-

correlation (SAC), as it would have implications for the estimation of
model performance and predictor importance (see Sections 2.3.4-5).
Based on spatial dependencies outlined by the global Moran’s I (Moran,
1950), we graphically assessed SAC from correlograms using R package
‘ncf’ (Bjornstad, 2016). Uniform distance classes of 110 km were as-
sumed, which corresponds to approximately ten cells in the 0.1° re-
solution dataset.

2.3.3. Predictive modeling
We tested the ability of, and the agreement among, different mod-

eling techniques to predict the response variables BA and FO in a
mixed-data type setting consisting of continuous and factor predictors.
Both responses covered a sample of 3700 observations and had a right-
skew distribution. BA was positive continuous, whereas FO covered
zero-inflated counts with excess discrete zeros (n=854) as a result of
the spatial aggregation using the majority. BA and FO were also
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considerably correlated (Spearman correlation coefficient of 0.68; not
shown).

Five common statistical and machine-learning techniques were
compared in this study, including: (i) Generalized Linear Models (GLM;
Nelder and Wedderburn, 1972), (ii) Multivariate Adaptive Regression
Splines (MARS; Friedman, 1991), (iii) Regression Trees from Recursive
Partitioning (RPART; Breiman et al., 1984), (iv) Random Forest (RF;
Breiman, 2001), and (v) Support Vector Machines for Regression (SVR;
Vapnik, 1995). These were selected with regards to the broad range of
techniques and complexity covered (e.g. parametric vs. non-parametric,
regression-based vs. tree-based (ensemble) techniques). Each of the
techniques offered multiple configuration settings for model building. If
not otherwise mentioned below, we used the default settings.

GLMs extend multiple regression for the exponential family of dis-
tributions through the application of a canonical link function
(Crawley, 2007; Dobson, 2002). We estimated the optimal distribution
for fitting the GLM of BA by estimating the power parameter of the
variance-mean function with the R package ’tweedie’ (Dunn and Smyth,
2005). A power parameter of two was retrieved, which is a Gamma
distribution. The GLM of BA was fitted using a Gamma distribution with
logarithmic link function (log link). For FO, we applied a hurdle model
(Mullahy, 1986) that separately treats zeros and positive counts. In-
itially, a binomial model (with logit link) was used for the determina-
tion of the zero vs. non-zero components. We subsequently fitted the
non-zeros to a negative binomial distribution (with log link) in order to
account for the left-truncated counts. For this, we used an im-
plementation of the hurdle model provided with the R package ‘pscl’
(Zeileis et al., 2008).

The non-parametric MARS is an extension of multiple regression. In
an adaptive procedure, MARS initially creates two separate hinge-
functions for each predictor by searching for the optimal split positions
(Kuhn and Johnson, 2013). This forward selection is likely to yield
complex models and over-fit the data. Superfluous model terms are
subsequently removed based on a generalized Cross-Validation (CV)
procedure (Hastie et al., 2009). We used an implementation of the
MARS algorithm in the R package ‘earth’ (Milborrow, 2017) and forced
predictor inclusion in the model.

Regression trees apply ‘if-then’ conditions to seek for homogenous
groups within the data in order to optimally predict a response variable
(Kuhn and Johnson, 2013). With the Classification and Regression Tree
(CART) algorithm (Breiman et al., 1984), the nodes of the binary tree
are created from the predictor and the split values that lead to the
highest reduction in overall Sums of Squares Error (SSE). With RPART,
this hierarchical procedure is repeated until there is no further reduc-
tion in SSE, i.e. no extra information is gained from a node. Thus,
RPART may create highly complex trees that lack interpretability and
are prone to over-fitting (Kuhn and Johnson, 2013; Loh, 2011).

In order to avoid over-fitting, the RF algorithm creates an ensemble
of tree predictions, known as a forest, each generated with a different
bootstrapping sample of the predictor dataset (Breiman, 2001). Ad-
ditionally, each node split within a single RF tree is determined by the
optimal subset of randomly selected predictors. The mean of the RF
trees is then used for the final prediction. Here, we used the tuning
function implemented in the R package ‘randomForest’ (Liaw and
Wiener, 2002) to estimate the optimal number of random variables
used for node splitting (mtry) as indicated by the minimum Out-of-Bag
(OOB) error from a total of 1000 iterations (ntree=1000).

SVR is an extension of the algorithm originally developed for clas-
sification problems (Cortes and Vapnik, 1995; Vapnik, 1999). SVR maps
feature data at higher-dimensional space so that feature separation can
be realized by linear functions, so-called ‘hyperplanes’. The aim is to
maximize the margins defined by boundary points, the eponymous
‘support vectors’, around the hyperplanes (Kuhn and Johnson, 2013).
This projection is achieved by (non-linear) kernel functions. We applied
a radial kernel function due to its suitability with non-linear problems
(Kuhn and Johnson, 2013). Kernel parameters such as Cost (C), which

moderates model complexity and accuracy, and Epsilon (∊), which
defines the threshold margins around the Cost Function [−∊, ∊], es-
sentially regularize the SVR solution (Karatzoglou et al., 2006; Smola
and Schölkopf, 2004). We trained our models for the optimum C- and
∊-parameters using the grid search function provided with R package
‘e1071’ (Meyer et al., 2017).

2.3.4. Model performance
We evaluated the performance of each of the five modeling tech-

niques to predict BA and FO using two different goodness-of-fit mea-
sures:

i) the adjusted coefficient of determination (adj.-R2) that allows for an
assessment of the percentage of variance explained by the predicted
model;

ii) the Root Mean Square Error (RMSE) as an absolute measure of
performance.

As the RMSE was regarded more reliable here, our interpretation of
the models focused on this measure. We calculated the RMSE using
repeated k-fold Cross-Validation (CV) from the R package ‘sperrorest’
(Brenning, 2012). We chose a 5-repeated 10-fold CV (i.e. 50 iterations),
which was regarded as a trade-off between acceptable levels of variance
and bias as well as moderate computational times (Kuhn and Johnson,
2013). In order to account for potential SAC among the observations of
BA and FO, separate CV runs using conventional and spatial setups were
conducted. In contrast to the conventional setup, the test partition (i.e.
approximately 10% of the observations in case of a 10-fold CV) within
an individual iteration of the spatial CV is selected based on k-Means
clustering of the observations’ geographic coordinates (Ruß and
Brenning, 2010). As a result, spatial autocorrelation between training
and test partitions would be largely reduced and allow for an unbiased
assessment of model performance.

2.3.5. Spatial predictor importance
We used a permutation-based approach that randomly generates the

values of one predictor while the other predictors remain unaltered
(Altmann et al., 2010; Strobl et al., 2007). Hence, the decrease (or in-
crease, in case of ‘disturbing’ predictors) in prediction error is due to the
permutation only and facilitates a comparison of the Spatial Predictor
Importance (SPI) between different modeling techniques. We estimated
the SPI as outlined by alterations of RMSE from 50 iterations within the
spatial CV procedure described.

All data processing and modeling steps were carried out in R v3.3.2
(R Core Team, 2016) and QGIS ‘Wien’ v2.8 (QGIS Development Team,
2015).

3. Results

3.1. Model performance

Most predictive models were able to reproduce the general patterns
of Burned Area (BA) in Namibia (Fig. 2). Only the GLM yielded a vast
underestimation of BA which is also reflected by the highest Root Mean
Square Errors (RMSE) and the lowest adjusted R2 among all predictive
modeling techniques under investigation here (Table 2). It is also in-
teresting to note that the performance of the GLM increased (i.e. RMSE
decreased) by approximately 14% when considering spatial structures
in the model evaluation. With the MARS, RPART, RF, and SVR models
of BA, RMSEs increased in the range of 26–58% from conventional
(non-spatial) to spatial cross-validation (Table 2), which was expected
due to the presence of Spatial Autocorrelation (SAC) among the ob-
servations (Fig. 3).

The MARS, RPART, RF, and SVR (Fig. 2c–f) tended to smooth BA in
their predictions as compared to the observed reference (MCD45A1;
Fig. 2a). Consequently, the maxima BA in North-Eastern Namibia could
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only partly be reproduced by these models and the predictions were
often unable to map the abrupt transitions of BA. This smoothing was
most expressed in the MARS model, whereas RPART could often re-
produce regions of higher BA. The RF and SVR models appeared to best
reproduce patterns and extremes of BA. The RF yielded the highest
model performances for BA by means of RMSE, whereas adj.-R2 was
slightly higher with RPART and SVR (Table 2).

The predictions of Fire Occurrence (FO) were visually more con-
sistent among the models as compared to BA. However, as with BA, the
distinct patchiness of FO (e.g. in the eastern Kavango Region) could
only partly be reproduced (Fig. 4). Lower non-zero values of FO in
Central Namibia were generally underestimated, but were most ade-
quately captured with the MARS, RF, and SVR models. Under-
estimations of FO maxima were more expressed in the MARS and SVR
models (Fig. 4c, f) but also the GLM, which was the only model that also
overestimated FO in the western parts of the Zambezi Region (Fig. 4b).

Furthermore, the GLM yielded the highest RMSE errors in both the non-
spatial and spatial CV setups, whereas the increase of RMSE from
spatial CV was also largest with the GLM (+119%; Table 2). SAC was
present with the observations of FO but of a lower magnitude as
compared to BA (Fig. 3). Resultantly, an evaluation using spatial CV
increased the RMSEs (<+35%) for the MARS, RPART, RF, and SVR
models (Table 2). The highest model performances by means of RMSE
were retrieved with the RF, as was the case for BA. Yet adj.-R2 was
again slightly higher for RPART and SVR.

In essence, the highest model performances for both responses as
outlined by the RMSE were retrieved with RF. However, the adj.-R2

ranked the RPART and SVR models slightly higher for both responses.
Apart from the GLM of BA, RMSEs generally increased with the con-
sideration of SAC in the evaluation of the models. From a visual in-
spection of the prediction maps, all models tended to underestimate the
maxima of the observed responses and to smooth proximal

Fig. 2. Observed and predicted Burned Area (BA) of Namibia from April 2000–March 2016. Figures depict a) the observed BA based on the MODIS Burned Area
product (MCD45A1) aggregated to 0.1°-resolution using the mean of annual sums (n=3700); as well as the predicted BA from b) Generalized Linear Models (GLM);
c) Multivariate Adaptive Regression Splines (MARS); d) Recursive Partitioning (RPART); e) Random Forest (RF); and f) Support Vector Regression (SVR).

Table 2
Performance of the five predictive models for Burned Area (BA) and Fire Occurrence (FO). The mean prediction errors are outlined by the Root Mean Square Error
(RMSE), which was assessed using a 5-repeated, 10-fold Cross-Validation (CV). The table lists the RMSEs from conventional CV (‘RMSE (non-spatial)’) and spatial CV
(‘RMSE (spatial)’), where test partitions with the latter are created from k-Means clustering of the sample’s geographic coordinates; the relative difference in RMSE
between conventional and spatial CV (‘ΔRMSE (%)’); and the adjusted coefficient of determination (‘adj.-R2’).

BA (km2 cell−1) FO (n cell−1)

RMSE (non-spatial) RMSE (spatial) ΔRMSE (%) adj.-R2 RMSE (non-spatial) RMSE (spatial) ΔRMSE (%) adj.-R2

Generalized Linear Models (GLM) 8.59 7.35 −14.47 0.42 1.08 2.37 +119.25 0.25
Multivariate Adaptive Regression Splines (MARS) 5.54 7.00 +26.36 0.59 0.95 1.08 +14.54 0.40
Recursive Partitioning (RPART) 5.19 6.57 +26.71 0.81 0.91 0.98 +7.87 0.70
Random Forest (RF) 3.97 5.94 +49.69 0.78 0.76 0.94 +23.44 0.60
Support Vector Regression (SVR) 4.37 6.92 +58.19 0.83 0.84 1.13 +34.17 0.64
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heterogeneities.

3.2. Spatial predictor importance

Due to the presence of SAC with both responses (Fig. 3), only the
Spatial Predictor Importance (SPI), i.e. from permutations within the
spatial CV, are reported here.

With all BA models, Mean Annual Precipitation (MAP) was con-
sistently of exceptional importance (Fig. 5). MAP had the highest SPI in
four models and its SPI in the RPART model was only slightly lower

than Population Density (POPD). POPD was also among the top-three
predictors in the RF and SVR models. Beyond the importance of MAP
and POPD, there was less agreement among the models with regards to
predictors of high SPI. In this regard, Lightning Rate (LR) was important
in the GLM, MARS and SVR models. The phytophenological predictors
green-up rate of NDVI (Left Derivative; VLD) and seasonal minimum of
NDVI (Base Value; VBV) were both of notable SPI in two of the five
models under investigation here. The predictors Surface Roughness
(SR) and Bush Encroachment (BENC) were generally of little im-
portance and SR even negatively affected model performance in the

Fig. 3. Correlograms of the response vari-
ables (BA and FO). Fourteen equidistant
classes of 110 km and their Spatial
Autocorrelation (SAC) as indicated by the
Moran’s I are depicted. A typical pattern of
spatial dependence with positive SAC at
near distances, and vice versa, is encountered
for both responses. Significance (at the 0.05-
level; assessed from 99 permutations) is
encountered for all but one discrete class
(denoted by ‘*’).

Fig. 4. Observed and predicted Fire Occurrence (FO) of Namibia April 2000–March 2016. Figures depict a) the observed FO based on the MODIS Burned Area
product (MCD45A1) aggregated to 0.1° resolution using the majority (n=3700; including 854 zeros); as well as the predicted FO from b) Generalized Linear Models
(GLM); c) Multivariate Adaptive Regression Splines (MARS); d) Recursive Partitioning (RPART); e) Random Forest (RF); and f) Support Vector Regression (SVR).
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GLM and MARS models.
The primate importance of MAP obtained less agreement with the

Fire Occurrence (FO) models as compared to the BA models. However,
MAP had the highest and second-highest SPI in all models except for the
GLM (Fig. 6). VLD and VBV yielded the highest SPI in the GLM and SVR
models, whereas POPD had the highest SPI in the RPART model. Li-
vestock Density (LSD) was of high SPI in four models, but was the least
important in the MARS model, where its SPI was negative.

Across the set of BA and FO models under investigation, MAP was
the single most important predictor. RPART models consistently out-
lined POPD as the most important predictor. The predictors related to
human activities, POPD and LSD, but also the phytophenological pre-
dictors, VLD and VBV, yielded high SPI in many cases. Apart from MAP,
no clear pattern regarding the differential importance of biophysical vs.
human-related predictors appeared. In many cases, the models outlined
a strong gradient in SPI from the (two) highest predictors to the re-
maining predictor. This pattern was more dominant among the BA
models.

3.3. Response dependence

Based on the findings of the previous two sections, the response
dependence on the three most important predictors was assessed in the
best performing models by means of RMSE, namely the Random Forest
(RF).

The highest BA was modeled for areas with high rainfall, low

population, and moderate green-up rates. Predicted BA largely followed
the gradient of Mean Annual Precipitation (MAP), which was by far the
most important predictor of BA (Fig. 5d), with higher BA generally
restricted to MAP > 400mm (Fig. 7a). Likewise, low green-up rates of
NDVI (VLD) resulted in low BA, but the highest BA was predicted with
moderate VLD. Large scatter of BA appeared with low values of popu-
lation density (POPD), but high BA was limited to low POPD: e.g. only
BA < 30 km2 cell−1 was predicted with more than five inhabitants
km−2 (POPD > 5).

The dependencies on MAP and POPD retrieved for the predicted FO
largely resemble those of BA (Fig. 7b). FO was even more strongly
limited by POPD and its importance was almost equal to MAP (Fig. 6d).
Additionally, Livestock Density (LSD) exhibited a limiting effect on the
predictions of FO, with frequent fire recurrence, i.e. high FO, only
predicted for low LSD.

4. Discussion

4.1. Cross-model findings

Seven of ten predictive models ranked Mean Annual Precipitation
(MAP) as the most important predictor of fire activity across Namibia
(Figs. 5 and 6). The response variables Burned Area (BA) and Fire Oc-
currence (FO) were considerably correlated. It appears that the five
predictive modeling techniques applied here were in many cases able to
determine similar relationships with the predictors for both the positive

Fig. 5. Spatial Predictor Importance (SPI) of the Burned Area (BA) models: a) Generalized Linear Models (GLM); b) Multivariate Adaptive Regressions Splines
(MARS); c) Recursive Partitioning (RPART); d) Random Forest (RF); and e) Support Vector Regression (SVR). SPI was calculated from alterations of the Root Mean
Square Error (RMSE) within the spatial cross-validation setup by randomly permuting (n=50) each of the 14 predictors individually. SPI was then standardized
based on division by the predictor of highest importance in the corresponding model. The plots also show the predictors’ correspondence to the biophysical
environment (in green) or human activities (in orange). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

M.J. Mayr et al. Ecological Indicators 91 (2018) 324–337

332
36



continuous BA and the zero-inflated FO. Given that the distribution of
both responses was strongly right-skewed, with frequent low BA and FO
across Namibia, this might explain the underestimation of the maxima
in the models. All models except for the BA Generalized Linear Model
(GLM; Fig. 2b) were able to reproduce the general patterns of BA and

FO. This is also reflected in the numerical evaluation of model perfor-
mance, where the BA GLM yielded a substantially higher non-spatial
Root Mean Square Error (RMSE) and lower adjusted coefficients of
determination (adj.-R2) as compared to the other models (Table 2). This
model was also unique in the way that its RMSE decreased when

Fig. 6. Same as Fig. 5 but for the Fire Occurrence (FO) models.

Fig. 7. Dependence of the predicted response in the Random Forest (RF) models: a) Burned Area (BA) vs. Mean Annual Precipitation (MAP), Population Density
(POPD), and green-up rate of NDVI (Left Derivative; VLD); b) Fire Occurrence (FO) vs. MAP, POPD, and Livestock Density (LSD). The 3D-plots show the influence of
the three predictors with the highest Spatial Predictor Importance (SPI; cf. Figs. 5d and 6d) on the response variable predicted by the RF (in color). Note that 60 of the
total 3700 observations were omitted in the figures for reasons of graphical presentation here (i.e. urban areas with POPD > 20 omitted). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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applying the spatial Cross-Validation (CV) setup. Although the RMSE of
the 50 spatial CV iterations was lower, the variance and maxima among
the individual CV iterations increased as compared to its non-spatial
setup (not shown). This may be the result of the rather uniform pre-
diction of BA and little indication of spatial structures with this model’s
predictions (Fig. 2b). The general underestimation by the BA GLM
likely reflects the response’s distribution, i.e. many low and few high BA
values, being inadequately fit with the model’s assumed Gamma dis-
tribution.

Spatial dependency patterns of fire activity, represented through
Spatial Autocorrelation (SAC), were observed and confirmed to be
significant for both BA and FO by the correlograms (Fig. 3). The lower,
but more realistic model performances retrieved from spatial CV, met
our expectations. Apart from the GLM, the relative increases of the
RMSE were more apparent in the models of BA, which also had higher
SAC as compared to those of the FO models. Lower performances in
spatial CV were also found with models that are not violated in their
basic assumptions from the presence of SAC, such as the Random Forest
(RF; Cutler et al., 2007). As a consequence, we would argue that SAC
should generally be considered in performance evaluations if not in-
cluded as a separate predictor.

Through our graphical (Figs. 2 and 4) and numerical evaluation
(Table 2) of the predictions, we conclude that the machine-learning
techniques outperformed the GLM, which is in accordance with our
initial hypothesis. This finding is likely the result of their ability to
detect complex (non-linear) relationships and non-additive interac-
tions, as well as their flexibility with skewed distributions of the re-
sponse. The performance of statistical techniques, such as GLM, es-
sentially reflects the degree to which the response variable follows its
assumed distribution in the model.

Among the machine-learning techniques, the predictions were re-
latively consistent, but the RF yielded the highest performances in
terms of RMSE for BA and FO using non-spatial and spatial CV. This
finding is consistent with other studies comparing predictive modeling
techniques in a fire-related context (e.g. Faivre et al., 2016; Rodrigues
and de la Riva, 2014). Yet we admit that the adj.-R2 was slightly higher
for the predictions with RPART and SVR as compared to RF. We focused
on RMSE our investigations of model performance as it allowed to
evaluate spatial and non-spatial error setups and to assess individual
predictor importance in each model.

4.2. Controls of fire activity in the Random Forest (RF) models

The RF models consistently outlined MAP and Population Density
(POPD) as the two most important predictors, however for the FO
models POPD was almost of equal importance to MAP.

It was unexpected that the most important predictors related to
human activities, namely POPD and Livestock Density (LSD), were of a
‘fuel-limiting’ nature in the two best-performing models (Fig. 7a, b).
This agrees well with the general negative feedback of POPD on FO
found in a global study (Knorr et al., 2014), but contradicts the finding
of more frequent fires with increasing population across Southern
Africa (Archibald et al., 2010b).

The direct influence of livestock on fuel removal appears reason-
able. Its fire-limiting effect may also reflect an uncertain amount of
tenure and management practices as farmers make efforts to protect
their livestock and pastures from fire (sensu Le Roux, 2011). The pre-
dictor Land Tenure (LTEN) yielded only moderate importance in the RF
models.

The green-up rate of NDVI (Left Derivative; VLD) was ranked as the
third-most important predictor of BA. Interestingly, the highest BA was
predicted with moderate levels of VLD (Fig. 7b). As the green-up rate
combines time and overall magnitude, areas of moderate VLD may
correspond to open woodlands with sufficient grass biomass that ra-
pidly evolves with the onset of the vegetation period.

4.3. (Non-)stationarity of controls

All models executed here assume the relationships of fire activity
with the drivers to be of a stationary nature across the fire-affected area
of Namibia and the period of observation (2000–2016). However, it can
be hypothesized that these would vary as a function of the scale of
investigation, i.e. the areal extent, and resolution. Some predictors that
are of a clearly non-stationary nature over the period of observation
(e.g. population, roads or power lines; cf. Table 1), were assumed to be
constant in our study. Different controls of fire activity were reported in
the case of Southern California and separate models were used to infer
these (Faivre et al., 2016). In a study covering continental-scale Sub-
Saharan Africa, (Sá et al., 2011) the non-stationarity of fire controls is
modeled using Geographically Weighted Regression (GWR). GWR was
not an option with our dataset due to the limitations of the assumptions
associated with the linear model (Brunsdon et al., 1998).

We considered only cells that burned within the period 2000–2016
in this study. It would, however, be interesting to conduct binary
models that investigate the controls behind burned and unburned
classes. The issue was partly addressed with the FO models that in-
cluded zeros as a result of a spatial aggregation using the majority
values of the respective pixels. Yet the issue would need further in-
vestigation – especially on smaller spatial scales. Vast unburned areas
along the coast and in the South of Namibia are simply too arid to burn.
Instead in Central Owamboland, i.e. in proximity to the city of Oshakati
(Fig. 1), the lack of fire is likely the result of high population densities,
which would concur with our models. Low fire activity and its exclusion
in parts of the Otjozondjupa Region, i.e. eastwards of the cities of
Tsumeb and Otjiwarongo (Fig. 1), may eventually reflect people’s at-
titude towards fire there. Fire is largely neglected as a land manage-
ment tool and landowners aim at fire suppression on these privately-
owned commercial farmlands (Le Roux, 2011). Where our study fo-
cused on the national scale and thus applied a scale of observation of
0.1°, regional studies may be carried out at higher spatio-temporal re-
solution and may be able to consider additional predictors. For in-
stance, Verlinden and Laamanen (2006) investigated annual fire re-
currence from Landsat imagery in Namibia’s Kavango and Zambezi
Regions. Their results suggest livestock density and preceding rainfalls
to be of negligible importance for annual BA, but the implementation of
fire management efforts, such as cut lines and awareness programs, led
to significant declines in BA.

Although it was beyond the scope of our investigation, an analysis of
the annual and time-lagged controls of fire activity, such as last fire and
fuel accumulation, could shed light into the potential dynamics of the
controls behind Namibia’s fire regimes. Biennial precipitation sums
were found to drive fire occurrence in Etosha National Park (Siegfried,
1981), but this relationship could be weakened where fuels are largely
removed by natural and domestic herbivory. As Krawchuk and Moritz
(2014) point out, a general agreement on whether averaged predictors
or their extremes and inter-annual variation should be favored is
lacking. In a study from boreal Canada that compared the annual vs.
average controls of fire activity, the relationships varied little (Parisien
et al., 2014). To the best of our knowledge this issue has not yet been
addressed in detail for Southern African savannas but we acknowledge
that it is of crucial relevance for the assessment of potential future fire
activity based on stationary controls (e.g. Mann et al., 2016).

4.4. Data quality of MCD45A1

As a ground-based national fire inventory does not exist for
Namibia, the MODIS Burned Area product (MCD45A1 v5.1) was the
best choice to derive the records of the fire regime parameters at the
time of conducting the analyses. A major drawback of such datasets
from moderate-resolution sensors are the low detection rates of ob-
scured understory fires, and – what is likely more crucial with semi
(-arid) savanna ecosystems – the detection of small and low-intensity
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fires (Krawchuk and Moritz, 2014).
In early 2017, the MCD64A1 v6 product was launched which is

based on a hybrid algorithm described by Giglio et al. (2009). This
version of MCD64A1 applies multi-temporal change detection known
from MCD45A1 and additionally makes use of active fire hotspots,
which aims at lower omission errors, increased detection of small fires,
and improving detections under cloudy conditions (Giglio et al., 2016).
Where the latter is probably negligible due to mostly clear conditions
during Namibia’s fire season, our records of BA and FO may benefit
from an improved detection of small fires, which is a limitation of
MCD45A1. The detection problems of low-intensity fires from crop-
lands are reported to remain with the new MCD64A1 dataset (Zhu
et al., 2017). An evaluation of our findings based on MCD64A1 is a
declared follow-up task of this study.

5. Conclusion

The study presented here has confirmed the fuel limitation of (semi-
)arid ecosystems. Based on a 16-year record (April 2000-March 2016)
derived from the MODIS Burned Area product (MCD45A1) and a large
set of environmental and human-related predictors, we assessed the
controls of two main fire regime parameters in Namibia, namely Burned
Area (BA) and Fire Occurrence (FO). We examined the predictive per-
formance of five common statistical and machine-learning techniques
and considered the effects of spatial autocorrelation in their evaluation.
Machine-learning techniques improved the predictions of BA and FO,
which we attribute to their ability to detect complex non-linear inter-
actions. Where model performances generally decreased with the con-
sideration of spatial effects and even showed indications of pro-
portionality, we recommend accounting for potential spatial
autocorrelation.

Our findings highlight the exceptional importance of average pre-
cipitation for fire activity across Namibia. Precipitation indirectly
controls fire activity by productivity and, thus, by the availability of
(surface) fuels. In the Random Forest models which performed best
according to the Root Mean Square Error, both fire regime parameters
were predicted to increase above an approximate threshold of 400mm.
A certain openness of the landscape, which was indicated by moderate
levels of vegetation green-up, appeared to be beneficial to BA and,
hence, the extent of fires. Human activities, such as the number of in-
habitants and livestock amount, modify the biophysical determination
of fire activity on smaller spatial scales as they additionally ‘consume’
fuels. Resultantly, consistent negative relationships were retrieved for
both fire regime parameters.

Although smaller and lower-intensity fires are largely missed with
the MCD45A1 record and non-stationarity of the relationships retrieved
cannot be neglected, our findings may facilitate a framework for an
effective and adaptive fire management in Namibia. The adaptation of
our model to other regions, however, needs further testing as the land
use practices and the low population in Namibia may limit transfer-
ability.
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Abstract: The Leaf Area Index (LAI) is one of the most frequently applied measures to 

characterize vegetation and its dynamics and functions with remote sensing. Satellite missions, 

such as NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) operationally 

produce global datasets of LAI. Due to their role as an input to large-scale modeling activities, 

evaluation and verification of such datasets are of high importance. In this context, savannas 

appear to be underrepresented with regards to their heterogeneous appearance (e.g.,  

tree/grass-ratio, seasonality). Here, we aim to examine the LAI in a heterogeneous savanna 

ecosystem located in Namibia’s Owamboland during the dry season. Ground measurements 

of LAI are used to derive a high-resolution LAI model with RapidEye satellite data. This 

model is related to the corresponding MODIS LAI/FPAR (Fraction of Absorbed 

Photosynthetically Active Radiation) scene (MOD15A2) in order to evaluate its performance 

at the intended annual minimum during the dry season. Based on a field survey we first 

assessed vegetation patterns from species composition and elevation for 109 sites. Secondly, 

we measured in situ LAI to quantitatively estimate the available vegetation (mean = 0.28). 

Green LAI samples were then empirically modeled (LAImodel) with high resolution RapidEye 

imagery derived Difference Vegetation Index (DVI) using a linear regression (R2 = 0.71). As 

indicated by several measures of model performance, the comparison with MOD15A2 

revealed moderate consistency mostly due to overestimation by the aggregated LAImodel. 
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Model constraints aside, this study may point to important issues for MOD15A2 in savannas 

concerning the underlying MODIS Land Cover product (MCD12Q1) and a potential 

adjustment by means of the MODIS Burned Area product (MCD45A1). 

Keywords: dry season; savanna; Leaf Area Index; vegetation pattern; RapidEye; MOD15A2; 

empirical modeling; Namibia 

 

1. Introduction 

Savannas are characterized as ecosystems where the co-existence of woody and grass species is 

moderated by resources and disturbances. One hypothesis in this context is that different phenological cycles 

of woody and herbaceous species are one reason for their co-existence [1,2]. Deep-root water uptake allows 

woody species to initiate early leaf expansion and to prolong the leaves into the dry season. Contrarily, grass 

growth is stimulated by the first precipitation events yet they wither as soon as near-surface water vanishes. 

Thus, the general term “growing season” appears imprecise for such regions [3]. 

The Leaf Area Index (LAI) is a quantitative measure of the green vegetation available per surface 

area. Hence, it is a proxy for the above-mentioned phenological cycles. Several definitions exist (cf. [4]), 

they typically vary according to the field of application of LAI (e.g., vegetation growth and phenology, 

potential physiological activity, light attenuation under plant canopies). Of these, a widely acknowledged 

definition of LAI is the one-sided, or hemi-surface, leaf area per unit of the horizontal land below. 

Besides being a proxy for plant growth the LAI is an important biophysical parameter for the interaction 

between plants and the atmosphere because processes like photosynthesis and evapotranspiration are 

linked to LAI [5,6]. Thus, the LAI is often used to model and monitor evapotranspiration, Net Primary 

Production (NPP) and Net Ecosystem Exchange (NEE) at different scales (e.g., [7–10]). 

Such applications require LAI in a sufficient medium to high resolution [8,9], which could be derived 

with ground-based methods and through remote sensing, only the latter allowing LAI estimates for larger 

regions in a cost effective way. For monitoring purposes, a high temporal resolution as provided by 

MODIS is critical. Hence, often a combination of different spatial and temporal resolutions is needed, 

which requires validation and up-scaling [11]. 

In this context, ground-based methods for assessing LAI are essential. They include (semi-)direct, 

such as harvesting of leaves or allometric relationships, and indirect approaches [12]. The predominant 

benefits of indirect methods arise from their non-destructive nature and an increased spatial sampling 

rate, whereas direct methods are considered the most reliable measurements [13]. With indirect methods, 

the spatial heterogeneity of canopy elements is inferred using photosensitive instruments, which either 

record the transmitted radiation at multiple points (multi-sensor array) or from a single sensor with 

angular capacity [13]. Sensors with angular capacity most frequently apply the concept of gap fraction, 

i.e., the fraction of sky visible from below a canopy in any specific direction, in order to determine 

canopy gaps [14]. The actual derivation of LAI is subsequently achieved by inversion and the application 

of a light extinction model [13]. Such models relate the recorded transmission of radiation through a 

canopy to idealized, randomly arranged canopy architecture [14,15]. In real canopies, however, leaf 

inclination angles are species-specific and often reflect phenology, whereas clumping of foliage is 

44



Remote Sens. 2015, 7 4836 

 

initially caused by plant morphology. Van Gardingen et al. [16] report that clumping alone may reduce 

indirect estimates of LAI by up to 50%. Consequently, Chen & Black [17] introduced the term “effective 

LAI” (LAIeff) for optically derived LAI. Furthermore, most optical devices fail to discriminate green 

tissue from other canopy elements (Stem or Woody Area Index (SAI, WAI, respectively)), which 

actually leads to a plant area index (PAI) [12,18]. 

LAI can also be estimated using remote sensing techniques with the advantage of increased spatial 

sampling. Here, LAI is mapped based on the relationship between in situ samples and spectral 

information sensitive to vegetation. However, such empirical-statistical models lack transferability to 

other regions due to varying atmospheric and surface conditions as well as the sensor-view sun 

conditions [19]. Nevertheless, their application on a regional scale is justified through their simplicity 

and subsequent short computational times [20]. 

Earth-observation systems, such as NASA’s Moderate Resolution Imaging Spectroradiometer 

(MODIS) mission, operationally produce global LAI datasets (MOD15A2). These datasets are generated 

using the physical approach, i.e., Radiative Transfer Models (RTM) that link surface reflectance (output) 

with the structural parameters of a canopy (input) through a set of approximations for canopy 

architecture, leaf properties, and the sensor-view sun conditions [6,20]. The actual derivation of a 

biophysical variable is achieved through RTM model inversion. Several uncertainties are associated with 

the physical approach, and summarized by Garrigues et al. [6]. The accuracy of datasets such as 

MOD15A2 is critical for the applications that use these. Hence, many efforts have been put into the 

evaluation and validation of MOD15A2 for different biomes (e.g., [21–26] ). A direct validation of 

MODIS with ground measurements is not possible because of scale differences. Hence, validation 

studies often use high to medium resolution datasets to scale up in situ LAI. The derived datasets are 

then again scaled up to allow for a comparison with MOD15A2 [23,26]. 

Independent of the method applied, the determination of LAI in savannas is a complex task, yet 

relatively few studies have focused on the inaccuracies that arise from high heterogeneity and small-scale 

patchiness in such ecosystems [27]. Furthermore, phenological aspects are often neglected in studies 

assessing LAI [18]. Remote sensing applications traditionally focus on green vegetation for practical 

reasons. Phenology and senescent vegetation as structural and functional components of ecosystem 

dynamics seem to be gaining more attention recently [28]. Furthermore, dry-season grass and litter 

availability are especially important in savanna ecosystems, as they serve as the fine fuels that promote 

seasonally occurring fires [29]. 

Thus, the objectives of this paper are to: 

(1). Assess ground-based dry-season LAI in a Namibian savanna ecosystem; 

(2). upscale LAI field measurements to high-resolution RapidEye imagery; 

(3). and compare an in situ-calibrated model of LAI with the MODIS LAI product (MOD15A2) in 

order to evaluate its performance. 

2. Study Area 

The region of interest covers an area of about 2915 km2 in the Ovamboland, situated in  

Northern-Central Namibia (cf. Figure 1). According to Mendelsohn et al. [30], the region’s climate is 

classified as semi-arid with precipitation being restricted to the austral summer months due to a seasonal 
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shift of the Congo Air Boundary and the establishment of a stable high-pressure cell over Southern 

Africa during the austral winter. Mean annual precipitation (MAP) in the region varies between 400 and 

500 mm [30]. Aside from distinct inter-annual variability of local precipitation, the region’s hydrological 

regime is predominantly controlled by the rivers of the Cuvelai-Iishana system, which originate in the 

Encoco Highlands of Angola (MAP ~800 mm) [30]. As a consequence of the topography, the seasonal 

waters of the Cuvelai spread and meander southwards from the Angolan-Namibian border in channels 

(known as Iishana) forming a delta-like network that repeatedly experiences devastating floods towards 

the end of the rainy season [31]. The interplay of alternating drought and flood, together with the highest 

solar irradiance rates throughout Namibia, explain why salinity is a major issue in the region [32]. Aside 

from the environmental conditions, human activities, and especially high livestock densities, have a 

considerable role in the formation of patterns in, as well as the composition of the edaphic grasslands 

and shrub lands around the Iishana. 

 

Figure 1. Map of Northern-Central Namibia illustrating the study area and the Cuvelai catchment. 

3. Materials and Methods 

3.1. Remote Sensing Data 

3.1.1. RapidEye 

The RapidEye mission consists of five satellites, which provide a 5 m-spatial resolution and cover 

the three visible bands (blue: 440–510 nm, green: 520–590 nm, red: 630–685 nm), a red-edge (RE) band 
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(690–730 nm), and a near-infrared (NIR) band (760–850 nm) [33]. A set of “RapidEye Ortho-Level 3A” 

scenes, acquired on 10 November 2010, was used in this study. These data are delivered with 

radiometric, sensor, and geometric corrections already applied and assigned to UTM projection  

(Zone 33S) with WGS 84 datum. No post hoc atmospheric correction was performed, because it is not 

improving results for single date images [34]. Digital numbers (DN) were converted to values of  

top-of-atmosphere radiance following the RapidEye Product Specifications [33] and, subsequently, to 

at-ground reflectances by applying the equations given in Mather & Koch [35]. 

3.1.2. MODIS 

Since 2007, the most recent version, “Collection 5” of the MODIS LAI/FPAR product (MOD15A2) 

has been available. Compared to the preceding “Collection 4”, the land cover map (an aggregated 

scheme of the MODIS Land Cover product (MCD12Q1)) used for parameterization of the  

look-up-tables (LUT) has been modified. Thus, the biome-specific estimation of LAI is now expanded 

from six to eight [36]. Furthermore, the LUTs were recalculated using a new stochastic RTM [37]. This 

refinement of the main algorithm is expected to enhance “high quality” LAI retrievals. “Collection 5” is also 

the first to provide quality indication measures such as the standard deviation of LAI per pixel, i.e., the 

accuracy of solutions as retrieved by the main algorithm [38], and a quality control (QC) layer providing 

information about the emergence of a pixel value (e.g., main or empirical back-up retrieval algorithm, 

cloud contamination, etc.). 

A MOD15A2-scene covering an 8-day period from 9 to 16 November 2010, was the best temporal 

match to the RapidEye image. This scene was obtained from the “USGS MODIS Reprojection Tool 

Web Interface” (accessible via: mrtweb.cr.usgs.gov) in order to ensure the data were available in the 

same coordinate system as the RapidEye images. Further processing steps included clipping to the extent 

of the study area and applying the scale factor (DN × 0.1) for the derivation of LAI values. The 

information contained by the supplied MOD15A2-QC layer revealed mainly high quality retrievals. 

3.2. Field Data 

3.2.1. Site Selection 

During a field survey at the end of the dry season in October and November 2010 the transitional 

period of the vegetation prior to the first rains was assessed. In order to determine typical vegetation 

attributes and phenological status Functional Landscape Units (FLU) of vegetation and landscape 

parameters were sampled. Functional entities are generally dependent on scale and thus subject to 

complication by the fuzzy nature of ecological boundaries and gradients [39]. As the field data was also 

intended to serve as the ground-truth for the remote sensing data, scale had to be considered in relation 

to the spatial resolution of the RapidEye images, especially with regards to areas of relative 

homogeneity. Such sampling is referred to as “nested”, as the scale of observation determines the 

perception of an entity [40]. Representative plots of at least 30 × 30 m (6 × 6 pixels) within a FLU and 

a minimum buffer of 10 m to the adjacent FLU were chosen and geo-located using a GPS. Based on 

experience in the field, these plots (termed Elementary Sampling Units (ESU)), were preferentially 

selected via a stratified approach. 

47



Remote Sens. 2015, 7 4839 

 

3.2.2. Recorded Parameters 

In total, data from 109 vegetation covered ESUs were collected. These were mainly located around 

two sites: (i) IIpopo, and (ii) Omulunga, situated in the central regions of the study area. The vegetation 

parameters surveyed included: (i) estimated plant cover (in %), (ii) the corresponding relative 

contribution of the main species for each stratum (if available), (iii) terrain position, and finally (iv) LAI. 

3.2.3. Leaf Area Index 

Indirect measurements of LAI (hereinafter termed: LAI2200) were conducted for each of the vegetated 

ESUs using a Li-Cor LAI-2200 Plant Canopy Analyzer device. The sensors record the canopy 

transmittances of diffuse radiation from above and below canopy records at five concentric zenith angle 

ranges (centered at 7°, 22°, 38°, 52°, and 68°) in order to derive canopy interception by inversion [41]. 

For the internal computation of LAI2200, Li-Cor’s “horizontal canopy model” (also known as “Poisson 

model”) was used. Here, the radiative transfer through a canopy is described by an extension of the  

Beer-Lambert law [12]. For a hypothesized canopy with an infinite (and hence infinitely thin) number 

of statistically independent, horizontal layers the probability of incident light to experience a particular 

number of contacts with these canopy layers is expressed by a Poisson distribution [42]. Following  

Weiss et al. [5], the probability of no contact (𝑃), or the gap fraction (𝐹), for incident irradiance at any 

zenith (𝜃) and azimuth angle (𝜗) is: 

𝑃(𝜃, 𝜗) = 𝐹(𝜃, 𝜗) = 𝑒𝑥𝑝 [
− 𝐺(𝜃,𝜗)LAI

cos 𝜃
] = 𝑒𝑥𝑝[−𝑘(𝜃, 𝜗)LAI ] (1)  

where 𝐺(𝜃, 𝜗) is the so-called G-function, which denotes the mean projected area of a unit leaf area in 

the direction (θ, ϑ). The term cos 𝜃 accounts for an increased cross-section of canopy to be passed at 

larger zenith angles [43]. Together the two parameters 𝐺(𝜃, 𝜗) and cos 𝜃 form the canopy extinction 

coefficient (𝑘(𝜃, 𝜗)). 

LAI2200 is calculated using the mean contact number (𝐾�̅�) and the weighing factors (𝑊𝑖) for each of 

the five concentric zenith angles as follows [41]: 

𝐿𝐴𝐼2200 = ∫ −
ln 𝑃(𝜃)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑆(𝜃)

𝜋/2

0

∆𝜃 sin 𝜃 = 2 ∑ 𝐾�̅�

5

𝑖=1

𝑊𝑖 (2)  

where 𝑆(𝜃) denotes the path length at the incident angle 𝜃. 

Although the “horizontal canopy model” assumes that foliage elements are randomly distributed, the 

device computes an approximate parameter of the spatial distribution of foliage from its view angles 

known as the Apparent Clumping Factor (ACF), which, thus, accounts for foliage clumping. 

All samples were conducted according to the “Li-Cor LAI-2200 Plant Canopy Analyzer Instruction 

Manual” [41]. As overcast sky conditions are not existent during the dry season, the sampling 

predominantly took place at low solar elevation angles as recommended by Kobayashi et al. [44]. 

Additionally, the sensor was always shaded from direct illumination by the operator. A 45° view cap 

was used to reduce the underestimating influence of canopy gaps [45]. Each LAI2200 measurement 

consisted of at least one reference measurement (above-canopy) and several below-canopy 

measurements, taken just above the ground. In the sampling scheme, measurements were made at 5 m 
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intervals along two perpendicularly intersecting transects (cf. Figure 2), following a modified systematic 

approach given in Garrigues et al. [46]. 

The device-internal calculation of LAI2200 solely applied the standard settings with the exception of 

transmittances >1.0. In this case, transmittance values were “clipped” to 1.0 (above-canopy irradiance = 

below-canopy irradiance), as, especially when using narrow view caps, the possibility of having no 

vegetation within the sensor’s view is present [41]. 

 

Figure 2. Schematic illustration of spatial sampling for ESU I66: measurements were made 

at 5 m intervals along two perpendicularly intersecting transects. Points (orange) indicate the 

15 measurements below the canopy in ESU I66 (green). Directions of the sampling process 

are indicated by the white arrows. 

3.3. Empirical-Statistical Modeling of LAI  

In order to map LAI on a fine scale, it is necessary to establish a statistical relationship between in situ 

measured LAI (LAI2200) and the reflectances contained in the RapidEye pixels. Thus, variation in 

spectral information is assumed to result from variation in LAI only [25]. In reality, this assumption is 

hampered by a number of uncertainties (e.g., optical and structural species-specific leaf properties, 

background illumination, topography, and interference of radiation with the atmosphere or sensor 

viewing geometry) [43]. Numerous Spectral Vegetation Indices (SVI) have been proposed (cf. [47] for 

an overview) in order to minimize external noise and to accentuate the spectral signal of (green) 

vegetation from non-vegetated surfaces [48]. 

In a first step, SVIs including RapidEye’s RE band and several established SVIs were computed from 

the band reflectances (Table 1). For each ESU, the mean of the respective SVI was compiled from all 

pixels where the centroid was contained within the respective ESU. Due to RapidEye’s band 

configuration, only classes of green vegetation (“open woodland” and “Colophospermum mopane shrub 

land”; cf. Figure 3) could be used in this process. Other ESUs were excluded due to mainly senescent 

vegetation, or spectral interference from surface heterogeneity (e.g., “wetlands”). In order to determine 

the most accurate relationship between the two parameters, a correlation analysis was performed for the 

paired observations of LAI2200 and respective SVIs. The agreement of the variables was identified using 

the Coefficient of Determination (R2). Although the relationship between LAI and SVIs has often been 
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reported to appear non-linear, as a saturation of the SVI is likely to occur with more dense canopies [15,49], 

only linear models were tested. This can be justified because sparse vegetation is dominant, and therefore 

only a small range of LAI2200 is represented by the ESUs. 

Table 1. Spectral Vegetation Indices (SVI) used in this study. The last four SVIs include the 

red-edge band of RapidEye. 

Spectral Vegetation Index Equation Reference 

Simple Ratio (SR) 𝑁𝐼𝑅/𝑅 [50] 

Difference Vegetation Index (DVI) 𝑁𝐼𝑅 − 𝑅 [51] 

Normalized Difference Vegetation Index (NDVI) (𝑁𝐼𝑅 –  𝑅)/(𝑁𝐼𝑅 + 𝑅) [52] 

Transformed Vegetation Index (TVI) √((𝑁𝐼𝑅 –  𝑅)/(𝑁𝐼𝑅 + 𝑅) + 0.5) [53] 

Soil-adjusted Vegetation Index (SAVI) (𝑁𝐼𝑅 –  𝑅)/(𝑁𝐼𝑅 + 𝑅 + 𝑆𝐿) (1 + 𝑆𝐿) [49] 

Enhanced Vegetation Index (EVI) 2  (𝑁𝐼𝑅 –  𝑅)/(𝐿 + (𝐶1  𝑁𝐼𝑅) + (𝐶2   𝑅)) [49] 

Simple Ratio (SR NIR/RE) 𝑁𝐼𝑅/𝑅𝐸 [54] 

Simple Ratio (SR RE/R) 𝑅𝐸/𝑅 [54] 

Normalized Difference Vegetation Index (NDVI NIR/RE) (𝑁𝐼𝑅– 𝑅𝐸)/(𝑁𝐼𝑅 + 𝑅𝐸) [54] 

Normalized Difference Vegetation Index (NDVI RE/R) (𝑅𝐸 − 𝑅)/(𝑅𝐸 + 𝑅) - 

NOTE: 𝑆𝐿 = 0.1, 𝐿 = 1.0, 𝐶1 = 6.0, and 𝐶2 = 7.5 - - 

 

Figure 3. Exemplary sites of green vegetation in the study area: (left) Colophospermum 

mopane shrub lands. (right) Open woodlands, mainly containing Makalani palms 

(Hyphaene petersiana). 

As the estimation of LAI from remote sensing gives “real” LAI values, an absolute value of 0.35 was 

subtracted post hoc from the empirically calibrated LAImodel. This aimed to account for the contribution 

of WAI to the LAI2200 samples and was adopted from Privette et al. [21], who corrected in situ estimates 

of LAI in a validation study of MOD15A2 in the Kalahari in a similar manner. Furthermore, negative 

values of LAImodel were set to zero (no vegetation). 

3.4. Comparing the Empirical Model with MODIS LAI (MOD15A2) 

In order to allow for a comparison between high-resolution modeled LAI (LAImodel) from RapidEye 

and MOD15A2, the LAImodel was co-registered (to minimize geometric errors) and spatially aggregated 

(to match the 1 × 1 km spatial resolution of MOD15A2) [55]. The median was used for the aggregation 

of the LAImodel, due to its robustness in dealing with extreme values, which are more pronounced at high 
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resolution. Nevertheless, as a pixel-by-pixel comparison is hampered by locational errors and the fact 

that the MODIS retrieval algorithm offers a mean value of possible solutions, Yang et al. [56] 

recommend a comparison only be carried out at a multi-pixel scale. 

The aggregated LAImodel only distinguishes between vegetated and non-vegetated pixels. The pixels 

classified as “urban” in the MOD15A2 scene were used as a mask in the aggregated LAImodel to exclude 

potentially mixed pixels, which may result from a mosaic of gardens and sealed surfaces in urban areas. 

The remaining non-vegetated pixels in the MOD15A2 scene were all assigned to “LAI = 0”. 

The consistency between the aggregated LAImodel and MOD15A2 was tested by several metrics of 

model performance after Kanniah et al. [57]. These include: 

(1). the Coefficient of determination (R2) to specify the proportion of variance between two models 

explained by the predictor variable; 

(2). the Root-Mean-Square-Error (RMSE), which is calculated using: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − 𝑦𝑖)² 𝑛

𝑖=1 

𝑛
 (3) 

where 𝑥𝑖 is the predictor variable (i.e., the aggregated LAImodel), 𝑦𝑖 is the estimated variable (i.e., 

MOD15A2), and 𝑛 is the sample size (i.e., the number of pixels); 

(3). the Relative Predictive Error (RPE), which provides a directional measure from mean difference 

between 𝑥𝑖 and 𝑦𝑖 in percent and is defined as: 

𝑅𝑃𝐸 =
(�̅�−�̅�)

�̅�
 100  (4)  

with: y̅, the mean of ∑ yi
n
i=1 , and x̅, the mean of ∑ xi

n
i=1 ; 

(4). the Modified Index of Agreement (mIOA) [58]: 

𝑚𝐼𝑂𝐴 = 1 − 
∑

 
|𝑥𝑖−𝑦𝑖|

𝑛
𝑖=1

∑ (|𝑥𝑖−𝑦�̅�| +|𝑦𝑖−𝑦�̅�|)𝑛
𝑖=1

  (5)  

The last measure provides a dimensionless index value, where 0 would indicate no fit and 1 would 

indicate a perfect fit between the models. In comparison to the original IOA (as used in [57]), mIOA has 

been shown to be more robust concerning errors introduced by outliers [59]. 

4. Results 

4.1. Field Data 

A total of 13 different vegetated FLUs were identified in the field following Mueller-Dombois & 

Ellenberg [39]. Several main FLUs were extended in terms of species composition (e.g., dominance of 

a certain species) and terrain position (cf. Table 2). Terrain position clearly affects species composition, 

as it reflects edaphic properties, such as soil salinity. Thus, low land grasslands (“grassland tufts”, 

“seasonally flooded grassland”, and “Rennera limnophila forbs”) are often characterized by salt-tolerant 

species, such as Sporobolus iocladus, Leptochloa fusca, Rennera limnophila, or Willkommia sarmentosa 

(Table 2). In general, lower elevation FLUs show a tendency towards lower total plant cover, which may 

partly be attributed to recurring seasonal flooding. However, selective grazing likely alters this situation 

significantly and, thus, explains the wide range of plant cover in these FLUs. A potential influence of 
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selective grazing in grasslands at higher elevation could be indicated by the dominance of non-palatable 

species, such as Aristida stipoides and Odyssea paucinervis. In contrast, increasing plant cover as a 

function of elevation could also result from the contribution of shrub and tree strata, which are almost 

exclusively related to middle and top terrain position in the data. 

Table 2. Overview of the in situ FLUs, their characteristics, and sample size  

(“No. of ESUs”). 

FLU Description Characteristic Species 
Total Plant 

Cover (%) 

Predominant 

Terrain Position 

No. of 

ESUs 

open woodland 
tree cover (>5 m) >30% or 

trees are dominant 
H. petersiana 30–90 middle-top 9 

wooded shrub 

land 
shrub cover >30% 

Acacia arenaria,  

Acacia hebeclada tr. 
50–60 top 8 

P.-L. leubnitziae 

shrub land 
shrub cover >30% Pechuel-Loschea leubnitziae 40–70 top 8 

C. mopane 

shrub land 
shrub cover >30% C. mopane 40–70 middle-top 8 

grassland tufts 
grassland at low elevation,  

tuft forming species 

S. iocladus,  

Eragrostis lehmanniana 
10–40 bottom-middle 7 

grassland 

medium 
grassland at medium elevation A. stipoides, W. sarmentosa 5–30 middle 11 

grassland high grassland at high elevation 
A. stipoides, 

O. paucinervis 
40–70 top 8 

shrub-wooded 

grassland 
grassland with shrub cover <30% 

A. stipoides, O. paucinervis,  

A arenaria, A. hebeclada tr. 
20–80 middle-top 11 

P.-L. leubnitziae 

grassland 
grassland with shrub cover <30% 

A. stipoides, O. paucinervis,  

P-L. leubnitziae 
20–50 top 7 

seasonally 

flooded 

grassland 

grassland in minor depressions, 

tall-growing species vs. intense 

grazing 

L. fusca, S. iocladus, 

Elytrophorus globularis 
10–90 bottom-middle 16 

R. limnophila 

forbs 
R. limnophila dominant R. limnophila 10–20 bottom-middle 8 

agricultural 

land 
remains of Pennisetum glaucum - 10 top 4 

wetland 
co-existence of vegetation, water 

surface and bare soil 
- 40–60 bottom-middle 4 

4.2. In Situ LAI (LAI2200) 

Due to the sparse vegetation present at the time of the sampling, the overall mean LAI2200 was 0.28, 

with a standard error of LAI2200 (SEL) of ±0.05 (n = 109). A median of 0.21 indicates a skewness of 

distribution towards lower values of LAI2200 (cf. Table 3). For the two classes of green vegetation (n = 17), 

mean LAI2200 was 0.47, with SEL ±0.1, which appears to be noticeably higher than the overall average, 

though the smaller sample size might be responsible for the increase. At the same time, Apparent 

Clumping Factors (ACF) for the green vegetation samples are lower as compared to the overall sample. 
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Accordingly, the difference between LAI2200 and effective LAI (LAIeff) increases. Lower ACFs appear 

to be reasonable for these classes, as the overall sample largely consists of grassland sites (68 out of 109 

sites). Hereby, the spatial distribution of foliage elements in grassland sites can be assumed to be more 

regular on site scale as compared to shrub lands. 

Table 3. Descriptive statistics of in situ LAI (LAI2200) and associated parameters (SEL, ACF, 

number of samples per site and LAIeff) for all sites (n = 109) and the sites of green vegetation 

only (n = 17). Note that LAIeff was calculated by multiplying LAI2200 with the respective ACF. 

  LAI2200 SEL ACF No. of Samples LAIeff 

Overall (n = 109) 

Mean 0.28 0.05 0.90 19 0.24 

Min. 0.01 0.00 0.63 14 0.01 

Max. 2.09 0.26 0.99 33 1.65 

Median 0.21 0.04 0.93 19 0.20 

Green vegetation only (n = 17) 

Mean 0.47 0.10 0.83 18 0.37 

Min. 0.22 0.04 0.66 15 0.20 

Max. 1.14 0.26 0.94 25 0.75 

Median 0.44 0.09 0.87 18 0.33 

 

Figure 4. Conditional plots for LAI2200 and estimated total plant cover in %, per terrain 

position class. The black circles denote the samples from an ESU, the red lines show the 

respective LOESS smoothing lines (NOTE: the “bottom-middle”-plot only shows 20 from 

21 samples due to presentation purposes). 

The dependence of vegetation in the region on elevation and livestock grazing, as hypothesized in 

Section 4.1, is also found in the LAI2200 values, which generally correlate quite well with the total plant 

cover estimation (R2 = 0.61; not depicted). Changes in these patterns determined by elevation may arise 

from grazing (e.g., the maximum LAI2200 (= 2.09) was measured at a fenced grassland site at a lower 

elevation). The conditional plots shown in Figure 4 mainly confirm that increasing terrain position (i.e., 
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an increase in elevation) seems to result in higher total plant cover and LAI2200. As is illustrated by the 

LOESS (Locally Weighted Scatterplot Smoothing) line, a near-linear trend between LAI2200 and total 

plant cover is found for higher elevated FLUs. However, this relationship is partly perturbed by fencing 

and species of little grazing value in FLUs of bottom to middle elevation. 

4.3. Empirical-Statistical Modeling  

The relationships found for the in situ green vegetation samples and SVIs revealed mostly moderate 

correlations (Table 4). This was also true for the experimental SVIs – meaning that, for this study, no 

advancements were achieved with the use of the RapidEye RE band. The NDVI and similar indices also 

provided unsatisfactory results as shown in other regions with spares vegetation (e.g., [60]). However, a 

sophisticated relationship between the green vegetation LAI2200 samples and the DVI was found  

(R2 = 0.71). The use of a linear model seemed to be best practice as the green vegetation LAI2200 samples 

generally had low values that only covered a range of about 0.92 (cf. Table 3). Thus, with the LAI2200 

serving as the explaining variable for the DVI, a linear model could be established (cf. Figure 5) with 

the transfer function: 

𝐿𝐴𝐼𝑚𝑜𝑑𝑒𝑙 =
𝐷𝑉𝐼

0.09
− 0.102. (6)  

Table 4. Correlations between LAI2200 and SVIs from linear regression. 

SVI SR SRNIR/RE SRRE/R DVI NDVI NDVINIR/RE NDVIRE/R TVI EVI SAVI 

R2 0.48 * 0.55 * 0.37 * 0.71 * 0.49 * 0.56 * 0.36 ** 0.49 * 0.32 ** 0.57 * 

NOTE: * Significance (2-tailed) p < 0.01; ** Significance (2-tailed) p < 0.05 

 

Figure 5. Bivariate plots of in situ LAI2200 and DVI derived from RapidEye imagery. The linear 

regression model (R2 = 0.71) is indicated by the solid line, whereas green points represent samples 

of the classes “C. mopane shrub land”and “open woodland” (n = 17). Note the different origins of 

axes in the figure. 
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The mean of LAImodel was 0.57 (±0.37). As can be seen from Figure 6a, larger areas of high LAI, i.e., 

dense vegetation, were found at the western and north-eastern edges of the study area, whereas the 

highest LAI (11.85) was located within an irrigated park like area in the urban area of Oshakati. The 

central regions, where the test sites and the 17 sites used for the model were located, mainly consist of 

grasslands. Thus, they are characterized by lower LAIs. Extensive non-vegetated areas were found in 

southern and south-eastern parts of the region. As already observed for the field data, the vegetation 

density is related to the topographic position. 

 

Figure 6. LAI maps of the study region: (a) High-resolution map of LAImodel (5 × 5 m) based 

on the transfer function given in Equation (6). For cartographic reasons, no differentiation 

for pixels with a LAImodel > 1.3 was made. (b) Aggregated map of the LAImodel. (c) 8-day 

mean MODIS LAI (MOD15A2) map (spatial resolution: 1 × 1 km). (d) Absolute difference 

between (b) and (c), where positive values indicate the aggregated LAImodel to exceed 

MOD15A2, and vice versa. (NOTE: For (b) and (d), urban areas, as classified by (c), were 

a priori excluded from processing). 
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4.4. Comparison of the High-Resolution LAImodel with MOD15A2  

The aggregation of the high-resolution LAImodel to the resolution of MOD15A2 (1 km) reduced the 

effects of spatial heterogeneity and the influence of extreme values; the maximum LAImodel pixel value 

decreased from 11.85 in the high-resolution model to 1.3 at moderate resolution (aggregated LAImodel). 

However, as illustrated by Figure 6b, the spatial patterns of LAI are preserved, which is further expressed 

by a similar mean with a moderate variance, which decreased by 0.02 to 0.55. 

The MOD15A2 scene used here, generally points to a more uniformly distributed LAI in regions, 

which can be attributed to the more coarse initial spatial resolution of MOD15A2. Though the spatial 

patterns of LAI coincidence at a multi-pixel scale, only moderate consistency was found regarding the 

magnitude of LAI between the two models. This is especially true for areas with a higher LAI (e.g., 

western margin of the study area), where the variation between the aggregated LAImodel and MOD15A2 

often exceeds 0.5 LAI units (max. = 1) (cf. Figure 6d). For the central and southern parts of the study area, 

the offset is lower (often around 0.1–0.3 units LAI). Though the mean of the aggregated LAImodel is higher 

than MOD15A2, certain areas in the central south also show an underestimation up to 0.3 units LAI. 

One major source of inconsistency between the aggregated LAImodel and MOD15A2 is related to the 

differing spatial distribution of non-vegetated pixels, which can already be recognized through visual 

interpretation (grey in Figure 6b,c). Further confirmation comes from the calculated measures of model 

performance (cf. Table 5): whereas RMSE and RPE only show minor improvements, the R2 from linear 

regression and the mIOA reveal a distinct increase in model fit if all non-vegetated pixels from the 

MOD15A2 scene are excluded. 

Table 5. Comparing the aggregated LAImodel and MODIS LAI. Measures of model 

performance for all pixels (upper row; n = 2811) and vegetated pixels only in the MOD15A2 

scene (lower row; n = 2448): the linear model equation and the corresponding Coefficient of 

Determination (R2), Root-Mean-Square Error (RMSE), Relative Predictive Error (RPE) and 

the Modified Index of Agreement (mIOA). 

x Pixels Valid (n) Linear Model R2 RMSE RPE mIOA 

MODIS LAI 2811 y = 0.8463x + 0.371 0.182 0.40 −62.97% 0.13 

MODIS LAI > 0 2448 y = 1.3396x + 0.2521 0.293 0.39 −59.18% 0.42 

5. Discussion 

5.1. Sampling  

A critical issue for retrieving in situ environmental parameters is the determination of a suitable 

sampling strategy [61,62]. The preferential-stratified approach, as applied here, risks the inclusion of 

circular reasoning. The data retrieved might merely reflect the environmental criteria used for 

stratification [63]. On the other hand, this strategy is highly effective for the sampling of the maximum 

diversity of FLUs with a relatively small number of samples. In contrast, purely random approaches 

have the potential to show limited representativeness (oversampling of frequently occurring FLUs, 

undersampling of rare or spatially restricted FLUs). Furthermore, their common perception as being 

statistically independent is initially impaired by a general spatial auto-correlation of vegetation [63]. 
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5.2. In Situ LAI  

Compared to other biomes, savannas are underrepresented in studies focusing on the indirect 

sampling of LAI [64], where even fewer deal with dry season LAI. For example, Boulain et al. [10] 

investigated a shrub land fallow in Western Niger (MAP = 479 mm) with the annual minima of LAI ranging 

between 0.1 and 0.2. From Southern Africa, Privette et al. [21] report a mean dry season LAI of 0.8 in Zambia 

(MAP = 950 mm), whereas a mean dry season LAI of 0.79 (±0.13) was found in several Miombo woodland 

sites in Northern Mozambique (MAP = 900 mm) [65]. Within the Kalahari Transect [64], two shrub land 

sites located in Tsane (MAP = 350 mm) and Okwa (MAP = 424 mm) in Botswana were sampled during 

a drought period within the growing season. Here, LAI ranged between 0.51 and 0.83 in Tsane and 

between 0.19 and 1.75 in Okwa. In a study from Australia [66], dry season LAI means ranged from 0.1 

to 2.1 along an precipitation gradient from below 400 mm/yr to above 1200 mm/yr. Therefore, a mean 

LAI2200 of 0.28 (±0.05) in our study region in Northern-Central Namibia with a MAP between 400 and 

500 mm is well in the range of the other studies carried out in dry-season savanna environments. 

Ryu et al. [27] attribute the great challenge of accurately deriving LAI from indirect methods in 

savannas to the quantification of a spatially representative element clumping index (Ω). The ACF, as 

provided with the estimates from the Li-Cor LAI-2200 instrument, gives an approximate measure of 

clumping. Instruments measuring gap-size distribution, such as the “Tracing Radiation and Canopy 

Architecture (TRAC)”-device or Digital Hemispherical Photography (DHP), would provide a more 

correct derivation of Ω [27]. Another possibility to account for the non-random distribution of vegetation 

elements is the post hoc incorporation of an external, satellite-derived Ω (e.g., from [67]). However, the 

ACF values, as calculated with the instrument used here, seem to produce reasonable results. 

Specifically, “Open woodland” appears to occupy the lowest ACF, while grasslands mostly account for 

the highest ACFs, i.e., relatively little clumping is observed (not shown). The same is confirmed by  

Ryu et al. [68], who conclude that the ACF gives a good approximation of clumping at site level, whereas 

the additional usage of an external Ω would possibly result in an “overcorrection” of foliage clumping 

with this device. 

The contribution of non-photosynthetic canopy elements, woody area index (WAI), to estimates of 

LAI is the subject of an on-going controversy [16]. Owing to the fact that woody components are 

inherently spatially auto-correlated with the photosynthetic features of a canopy, the contribution of WAI 

to LAI2200 is likely to decrease as the growing season proceeds. For grasses and non-deciduous species, 

variations in foliage shape (e.g., leaf roll up) and inclination may introduce biases, not only for the 

contribution of WAI, but also for LAI determination itself. Phenology may further affect optically-derived 

LAI estimates, as with senescent leaves the transmittance of radiation increases and, hence, LAI is 

underestimated [6]. 

5.3. Empirical-Statistical Modeling  

High-resolution satellite images, such as the RapidEye scene used in this study, enable the proper mapping 

of landscape heterogeneity and spatially distinct phenomena. In accordance with Ehammer et al. [54], who 

report no improvement of LAI and FPAR modeling from SVIs incorporating RapidEye’s RE band in a 

Central-Asian agro-ecosystem, the correlations of SVIs using the RE band with LAI2200 were only 
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moderate in this study (cf. Table 4). The insignificance of the RE band for the detection of LAI found 

here may be attributed to the broad range covered by this band (40 nm). Another reason could be the 

poorly distinctive inflexion point of the RE band and, thus, a nearly linear slope for vegetation 

reflectance between R and NIR bands. 

For the creation of the high-resolution map of LAI (LAImodel), a linear transfer function was 

established as the highest agreement for all SVIs tested was found between LAI2200 and the DVI  

(cf. Table 4). The DVI has often been found to be linearly related with LAI [43,69]. As mentioned earlier, 

an in situ quantification of WAI could not be performed. The adopted value of 0.35 for WAI was 

subtracted from LAImodel with the aim of approximately transferring the empirically calibrated LAI to 

estimates of “real” LAI. As the latter measure is given by MOD15A2, this processing step was the best 

practice possible to carry out a comparison, being aware that such approaches simplify the diverse nature 

of WAI. 

Qi et al. [20] point out that also the general relationship between a given SVI and LAI may differ 

substantially with the vegetation types considered. A major limitation of the applied transfer function is 

that only 17 of all 109 sample sites contained mainly green vegetation at this time of the year. Grasslands, 

which cover large parts of the study area, could not be included in the model calibration. Nevertheless, 

the full range of LAI was covered by the 17 samples, which are representative for the region. The 

excluded samples had mostly very low LAIs. Including them would have caused a concentration of low 

values in the regression model shown in Figure 5.  

As the signal detected by a given SVI refers to the amount of green vegetation [49], senescent 

vegetation would only have been indirectly detected by the SVI as a function of reduced soil background 

reflectance. In general, the noise introduced by the underlying soil and litter is regarded as a major 

challenge associated with SVIs [69–71]. Litter and standing senescent vegetation together with bright 

and dry sandy soils in the study area may serve as a severe source of error for the detected spectral 

signals. Accordingly, in sparsely vegetated ecosystems, soil background reflectance leads to an 

overestimation of the SVI and, hence, of the derived biophysical variables as well [70]. To date, several 

approaches have been developed to account for soil background reflectance. A simple example is the 

SAVI. However, the SAVI achieved only moderate performance in this study (cf. Table 4). Other 

approaches to discriminate senescent vegetation and litter make use of the Short-Wave and Mid-Wave 

Infrared spectra (SWIR, MWIR). Marsett et al. [72] introduced the Soil Adjusted Total Vegetation Index 

(SATVI), while other approaches used a combination of NDVI and the Cellulose Absorption Index 

(CAI) to discriminate green and senescent vegetation from bare soil [73]. However, SWIR and MWIR 

spectra are not covered by the RapidEye bands. 

5.4. Comparison with MOD15A2 

In general, the conclusions drawn from a comparison between in situ LAI and satellite-derived LAI 

products often lack spatial coverage due to the discrete nature of in situ measurements. Scholes et al. [64] 

compared in situ LAI estimates with a respective MOD15A2 scene concluding that MOD15A2 tended 

towards underestimation with increasing aridity as compared to AccuPAR ceptometer estimates.  

Privette et al. [21] found that MOD15A2 tended towards overestimation for dry sites and the contrary 

for wet sites. Fensholt et al. [23] report that MOD15A2 overestimated LAI, especially during the dry 
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season in Senegal. Tian et al. [22] again, find underestimations of LAI using MOD15A2 in savanna 

ecosystems, which they generally attribute to increased soil background contamination with lower 

spatial image resolution as well as the heterogeneity of these ecosystems. 

The approach followed in this study was to model in situ LAI2200 with a low level of generalization, 

i.e., using high resolution data. The spatial aggregation of this LAImodel enabled a comparison with 

MOD15A2 for the entire study area. However, only a moderate agreement between these two models 

was found (cf. Table 5). For large parts of the study area, overestimation was found, which often 

exceeded the range of the standard deviation of MOD15A2 (cf. Figure 7a). This overestimation is in 

accordance with some of the above-mentioned studies. However, certain areas in the south of our study 

area show an opposite trend (cf. Figure 6d). The results presented here and the conclusions drawn  

from the above-mentioned studies highlight the inconsistencies associated with LAI estimations in  

savanna ecosystems. 

 

Figure 7. (a) Standard deviation of MODIS LAI (MOD15A2) and non-vegetated pixels 

(grey in Figure 6c) separated into desert (black) and water (blue). (b) Monthly MODIS 

Burned Area (MCD45A1) product from September 2010. 

As the main MOD15A2 algorithm relies on a land cover map (i.e., the MCD12Q1 product) for the 

structural canopy attributes, one critical issue for the performance of MOD15A2 is the correct biome 

allocation [24]. Fang et al. [74] compared global datasets of the MOD15A2 and MCD12Q1 for the time 

span from 2003 to 2009, concluding that biome misclassification and, thus, LAI overestimation would 

be highest for savannas, again in accordance with our results. For our study region, biomes were 

correctly assigned in MCD12Q1 (“annual broadleaf vegetation” and “annual grass vegetation”; not 

depicted). However, the classification of non-vegetated pixels in MOD15A2 apparently affected the 

model performance negatively (cf. Table 5). Differing initial spatial, temporal, and spectral resolutions 

as well as the aggregation process can be hypothesized to ultimately result in an inconsistent distribution 

of non-vegetated pixels between high-resolution models and the MOD15A2 product. Non-vegetated 

pixels, as assigned by MCD12Q1, are a priori excluded from computation of MOD15A2 [75]. For the 

study area, the temporal resolution of MCD12Q1, which represents the annual average of the preceding 
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year, could lead to errors due to sparse vegetation cover as well as intra-annually changing land cover 

resulting from seasonal flooding, drought or fire. These effects are illustrated through the varying 

distribution of water bodies from MCD12Q1 (cf. Figure 7a) and the MODIS Burned Area Product 

(MCD45A1; cf. Figure 7b). For the monthly MCD45A1, water bodies are derived from daily MODIS 

surface spectral reflectances (MOD09) by applying thresholds for NDVI (<0.1), band 7 (<0.04) and/or 

the quality assessment (QA) table [76]. 

Furthermore, our LAI model appears to show sensitivity to ecological disturbance from fire. The 

MCD45A1 product identifies the burning of a region, located in the central-southern part of the study 

area (cf. Figure 7b), to have occurred on Sep 23 and 24, 2010. Although no quantitative estimate of the 

intensity of these fires can be drawn, its spatial extent (34 pixels or km2) is not negligible. However, this 

vegetation anomaly is not detected in the MOD15A2 scene. Though the causality of this issue needs a 

further examination, it may point to a potential for optimization of MOD15A2 by the incorporation of 

vegetation anomalies derived from MCD45A1. 

6. Conclusions  

The study presented here used field and remote sensing data to assess dry-season vegetation patterns, 

thereby focusing on LAI in a savanna ecosystem located in Northern-Central Namibia. In order to 

expand pattern identification from a point to a regional scale, we used an empirical-statistical approach 

to model LAI. Due to senescent vegetation, a constrained number of LAI2200 samples were used in this 

process. Nevertheless, a sophisticated relationship was retrieved between green-vegetation LAI2200 and 

the DVI derived from RapidEye reflectances. The red-edge channel of the RapidEye sensor did not 

improve modeling results in the dry season with predominantly senescent vegetation. However, with the 

high resolution it is possible to record the spatial heterogeneity of savanna ecosystems. Sensors with a 

resolution of RapidEye and bands in the MWIR are expected to yield in higher accuracy of dry-season 

LAI estimations. Further improvements are possible for the field measurements [44] on which the  

high-resolution models are based. 

A comparison with MODIS LAI (MOD15A2) revealed several inconsistencies. These included a 

mean negative offset of MOD15A2 and its insensitivity to vegetation anomalies, induced by disturbance 

like fire. In general, the results of our study are in accordance with other studies carried out under similar 

conditions and comparable phenological stages. The given differences, mainly overestimations, to the 

MOD15A2 product are tolerable, especially because the general spatial patterns are consistent in the 

three methods, field measurement, high-resolution model and MOD15A2. 

Our study is a contribution to the validation of standard LAI products in an ecological setup, which 

is underrepresented in similar studies, especially during the dry season. Despite the discussed variation 

of the measured and modeled LAI in such reason the overall results prove to be consistent and the 

standard MODIS LAI product (MOD15A2) is robust. 
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ABSTRACT
Disturbances affect the woody, i.e. trees and shrubs, and herbaceous
vegetation in savannah ecosystems worldwide. In Northern Namibia,
livestock grazing and fires depict two prominent agents of distur-
bance. These affect the structural parameters of vegetation such as
the height of woody species. Remote sensing is a tool to quantify such
structural parameters. In particular, Image-Based Point Clouds (IBPCs)
obtained from unmanned aerial vehicles (UAVs) are nowadays increas-
ingly used for three-dimensional (3D) remote-sensing applications.
Here we aim at deriving the height of woody stands through a
multi-plot UAV campaign (n = 19) carried out at the end of the dry
season. We use direct georeferencing from the navigation-grade
instruments on board the UAV in a Structure-from-Motion (SfM)
approach. Watershed segmentation is applied to derive plot-scale
height metrics (maximum, mean, and median) based on delineated
individuals. Fire and grazing – both individually and synergistically –
are then investigated for their impacts on UAV-derived height metrics.
The results indicate good agreement between the UAV-derived and in
situ-measured height metrics on the plot scale (coefficient of determi-
nation (R2) approximately 0.7, root mean square error (RMSE) <1.9 m).
Underestimations of height are apparent with large, leafless trees.
Clumping of equally sized individuals complicated their correct deli-
neation. Grazing was found to be significant for all height metrics as
well as in combination with fire for the plots’ maxima. We conclude
that the approach applied here is able to reproduce the plot-scale
heights of woody vegetation with acceptable accuracy. We attribute
the observed height reductions with the simultaneous presence of
disturbances to legacy effects.
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1. Introduction

Unmanned aerial vehicle (UAV) remote sensing is an emerging field of research and so is its
applications. These range from archaeology (Verhoeven 2011; Roosevelt 2014), geomorphol-
ogy and terrain mapping (Westoby et al. 2012; Harwin and Lucieer 2012; Jaud et al. 2016),
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forestry (Heinzel and Koch 2012; Näsi et al. 2015), and atmospheric monitoring (Rogers and
Finn 2013), to more proactive applications such as precision agriculture (Mathews and Jensen
2013; Torres-Sánchez et al. 2013; Candiago et al. 2015) and even landmine detection (Colorado
et al. 2015) or active prescribed-fire ignition (Twidwell et al. 2016). Owing to their flexibility in
terms of timing of data acquisition and the sensors used, UAVs provide newopportunities also
for spatial ecology (Anderson and Gaston 2013). The spatially explicit sampling with resolu-
tions in the range of m to cm is of relevance in the process of upscaling as UAVs potentially
enable filling the scale gap between tedious point-based field measurements and the usually
coarser-scaled satellite remote-sensing products. In addition, the ability to monitor dynamic
processes from repeated acquisitions makes UAVs a suitable tool to address process–function
relationships on the local scale. In this context, UAVs have been applied to model animal
abundances (Mulero-Pázmány et al. 2015), detect invasive species (Hung, Xu, and Sukkarieh
2014), or to monitor fire impacts on vegetation cover (Breckenridge et al. 2012).

1.1. UAV photogrammetry and vegetation

With image-based UAV remote sensing, a set of overlapping imagery is usually acquired
and processed using methods of digital photogrammetry (DP) in order to yield mapping
products such as digital surface models (DSMs) and (mosaicked) orthoimagery
(Colomina and Molina 2014). Whereas traditional DP relies on ground control points
(GCPs) for triangulation and georeferencing (Chiang, Tsai, and Chu 2012), which is not
always feasible, an automated DP is enabled by solving the orientations of and registra-
tion among the imagery using the Structure-from-Motion (SfM) approach (Snavely, Seitz,
and Szeliski 2008).

Typically, SfM involves an initial detection of the shared features among the indivi-
dual imageries based on segmentation procedures, which is followed by a Bundle Block
Adjustment (BBA), where image orientations are calculated and tie points are aligned.
The resulting three-dimensional (3D) sparse point cloud of the scene is then recon-
structed using Multi-View Stereopsis (MVS) techniques in order to yield a dense Image-
Based Point Cloud (IBPC) (Harwin and Lucieer 2012; Nex and Remondino 2014).
Although the SfM-MVS procedure is solvable without any additional information on
image position and orientation (Dandois and Ellis 2010; Xu et al. 2016), direct and
indirect (e.g. GCPs or reference imagery) georeferencing of the imagery is commonly
applied. For mono-temporal acquisitions, direct georeferencing obviously enhances the
automation of the processing workflow. However, UAVs are often intended for low-cost
applications, and consequently only provide positional and orientation accuracies in the
range of several metres and degrees, respectively. Although trade-offs in absolute spatial
accuracy are given, direct georeferencing is successfully applied with such systems (e.g.
Chiang, Tsai, and Chu 2012; Zarco-Tejada et al. 2014; Colorado et al. 2015; Díaz-Varela
et al. 2015; Gatziolis et al. 2015; Näsi et al. 2015).

IPBC can also facilitate 3D applications. With regard to vegetation, height derivation is
probably themost commonly applied 3Dmeasurement (Dandois and Ellis 2013). Vegetation
heights at different scales, which are often remotely assessed with expensive Light
Detection And Ranging (LiDAR) systems, are highly relevant inputs for allometric models,
carbon sequestration studies, and inventories (Salamí, Barrado, and Pastor 2014). In this
context, IBPC could allow for rapid and cost-efficient acquisitions that result in high-density
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point clouds given suitable surface textures and image resolution. Different results regard-
ing the accuracy of height retrievals from IBPC have been obtained: IBPC was found to be
less accurate compared with terrestrial (Fritz, Kattenborn, and Koch 2013) and UAV-LiDAR
(Dandois and Ellis 2010), but also similar accuracies (Jensen and Mathews 2016) and strong
agreement with LiDAR (Lisein et al. 2013) could be obtained. With both technologies, LiDAR
and IBPC, individual tree delineation is critical to deriving reliable heights and stand
structures. The methods to discriminate individuals include maxima detection (e.g. local
maxima, thresholding) and crown delineation algorithms (e.g. region-growing, watershed
segmentation) (Ke and Quackenbush 2011). However, these have been rarely examined
with IBPC; e.g. Zarco-Tejada et al. (2014) used a moving-window local maxima detection,
whereas Näsi et al. (2015) applied watershed segmentation.

1.2. Fire, grazing, and vegetation structure in dry savannahs

In the dry savannahs that cover vast areas of Namibia, the distribution of woody species
is limited by precipitation (Scholes and Archer 1997; Sankaran et al. 2005). Disturbances
of natural and anthropogenic origin (e.g. fire, herbivory, or droughts) are identified as
additional determinants of vegetation structure as they modify the competitive balance
between woody and herbaceous species, and affect the growth and survival rates of
woody individuals (Bond and Keeley 2005; Holdo 2007; Bond 2008). Fires, which are
mainly lit by humans in Southern Africa (Archibald et al. 2010), primarily cause demo-
graphic bottlenecks by suppressing seedling recruitment and sapling maturation (Bond
and Keeley 2005; Joubert, Smit, and Hoffman 2012; Levick, Baldeck, and Asner 2015).
Rather than direct mortality of mature individuals, fires in semi-arid regions often only
impose reduced growth rates from canopy scorching and hydraulic damage (Midgley,
Lawes, and Chamaillé-Jammes 2010).

Natural herbivory is nowadays largely replaced by livestock grazing due to large parts of
Namibia being used as rangelands (Mendelsohn et al. 2002; de Klerk 2004). Prolonged and
extensive grazing activities in African savannahs are often accompanied by the expansion
of certain woody species that, once established, tend to form thickets and consequently
result in pasture degradation (Roques, O’Connor, and Watkinson 2001; Moleele et al. 2002;
de Klerk 2004). This phenomenon, termed woody or bush encroachment, was first recog-
nized in Namibia in the 1950s, but could not be controlled effectively since then (de Klerk
2004). Woody encroachment has been identified to be the result of the combined effects of
overgrazing and fire exclusion, but more recent studies also emphasize the role of increas-
ing atmospheric carbon dioxide (CO2) concentrations in this process (e.g. Wigley, Bond, and
Hoffman 2010; Bond and Midgley 2012; Stevens et al. 2016).

1.3. Aims and scope of the study

In this study, we aim at assessing the plot-scale (i.e. 0.5–2 ha) height metrics of woody
vegetation in a Namibian savannah using IPBC acquired with a UAV. Thus, we test
whether a low-cost approach that solely relies on the data acquired by the UAV can
reliably reproduce the heights of plots consisting of trees and shrubs in an experimental
setup. Mostly fragmented and isolated canopies as well as moderate covers should make
these savannah ecosystems suitable for height delineations based on IBPC (Dandois and
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Ellis 2010), although this has never been explicitly examined to our knowledge. The rare
examples aiming at remotely sensed woody vegetation heights (Wessels et al. 2011;
Khalefa et al. 2013) and single tree delineation (Chen et al. 2006) in savannahs were all
conducted using air- and space-borne LiDAR systems.

If successful, the UAV-derived height metrics could be used to investigate the possible
links of prominent disturbance agents, such as fire and livestock grazing, with stand
structure. We hypothesize that disturbances generally have a reducing effect on vertical
stand structure, i.e. lower average heights with the presence of disturbances. Due to the
small-scale heterogeneity of disturbances, e.g. selective grazing or patchy burning, we
consider the plot rather than the woody individual as the appropriate spatial scale of
investigation here. Remote-sensing approaches addressing such disturbance feedbacks
often rely on changes in woody cover, and are thus largely restricted to the growing season
in deciduous environments. For partly undeveloped canopies at the end of the dry season –
an environmental setting regarded as challenging with the remote sensing of vegetation
(e.g. Harwin and Lucieer 2012; Mayr and Samimi 2015) – height retrievals from IBPC could be
an alternative parameter to study the disturbance impacts on woody vegetation, but may
also assist in the quantification of available biomass.

2. Materials and methods

2.1. Study area

The area of interest (Figure 1) is located in the northern Otjozondjupa Region, Namibia, and
covers a rectangular bounding box of approximately 3,408 km2. Located at the western
fringe of the Kalahari Basin, the landscape is generally flat with fossil longitudinal dunes,
especially in the eastern parts, and occasionally incising ephemeral valleys constituting the
main relief features (Mendelsohn et al. 2002; Strohbach 2014). The soils of the Kalahari
formation originate from unconsolidated aeolian materials and are characterized by poor
nutrient availability (Wang et al. 2007). According to the SoilGrids database (www.soilgrids.
org; Hengl et al. 2014), the predominant soil types are Ferralic Arenosols with sand fractions
of approximately 80% and Petric Calcisols in the west. The climate is classified as semi-arid,
with rainfalls occurring from October to April (Mendelsohn et al. 2002). Mean annual
precipitation for the period 1990–2013 is 538 mm at the city of Grootfontein, which lies
to the west of the study area, and 496 mm at Farm Gaikos, which is the only official rain
gauge available in the study area (NMS 2015). The variability of annual rainfall sums is high,
as outlined by the coefficients of variation >30% for both stations. Hence, although years of
drought are common, winter frosts too may harm the vegetation locally. The predominant
vegetation type is tree-and-shrub savannah, with a noticeable transition from feather-
leaved (mainly Acacia spp.) to broad-leaved deciduous woody species towards the east
(Giess 1971; Mendelsohn et al. 2002). Broad-leaved species (e.g. Pterocarpus angolensis,
Burkea africana) tend to develop even-sized, mono-specific stands at this location (Graz
2006). Woody encroachment is a serious issue in these parts of Namibia (Mendelsohn et al.
2002; de Klerk 2004; Wagenseil and Samimi 2007). The spread of encroaching species, such
as Acacia mellifera, Dichrostachys cinerea, and Terminalia sericea, is increasingly encountered
on rangelands in the region (de Klerk 2004). Since colonial times, Namibia’s fire manage-
ment policy has been focussing on fire prevention and suppression (Beatty 2011; MAWF
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2012). Yet, the fire regime is heterogeneous, with communal rangelands exhibiting frequent
burning as fires are used as a traditional tool in land management. In contrast, fires in
freehold rangelands are less common, because of the existence of infrastructure and
capabilities to extinguish uncontrolled wildfires (Le Roux 2011).

2.2. Data acquisition

Aerial and in situ samplings were conducted on 19 plots located in three subregions of
the study area that covered different tenures and land uses: (i) at three farms in the
freehold area, (ii) on the communal rangelands around the village of Kano, and (iii) in the
protected areas of Kanovlei State Forest (Figure 1). The maximum distance between the
sites was approximately 110 km.

2.2.1. Flight campaign
A campaign consisting of 19 flights (i.e. one per plot) was carried out in late September 2015
using a Soleon Coanda x12 UAV (Soleon s.r.l., Varna, Italy) (Figure 2). The UAV is powered by
12 brushless electric engines with rotary wings in a coaxial setup and a payload of 3.4 kg. For
flight control and navigation, the UAV operates on a Micro Electro Mechanical Systems
(MEMS)-based Inertial Navigation System (INS)/single-frequency global positioning system
(L1-GPS) integrated system that is based on assemblies (FlightCtrl v2.5, NaviCtrl v2.0) and
software by MikroKopter (HiSystems GmbH, Moormerland, Germany). The imaging system

Figure 1. The study area and the plots used for aerial and in situ experiments in the northern
Otjozondjupa region, Namibia. Black numbers indicate the number of plots if >1 at the given position
due to reasons of presentation. Settlements and roads (based on OpenStreetMap (© OpenStreetMap
contributors; www.openstreetmap.org)) are also shown in addition to regional administrative
boundaries and land tenure (adapted from Mendelsohn et al. (2002)) as well as the Digital Elevation
Model (DEM) from NASA’s Shuttle Radar Topography Mission (SRTM) at 1 arc-second (i.e. 30 m
horizontal resolution) (Farr et al. 2007; SRTM data are available from lpdaac.usgs.gov).
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is a consumer-grade Nikon 1 V3 camera with a Nikkor VR 10–30 mm lens (Nikon Corp.,
Tokyo, Japan), which is mounted on a two-axis gimbal-stabilized platform. This camera
comes with a 13.2 × 8.8 mm Complementary Metal–Oxide–Semiconductor (CMOS) sensor
and 18.4 megapixels resolution (5232 × 3488 pixels). As our initial intention was to addi-
tionally study early green-up species (see the two-camera setup in Figure 2), the first eight
flights were conducted with wavelengths <550 nm obstructed by an optical filter mounted
on the lens (Optic Makario GmbH, Mönchengladbach, Germany). The remaining 11 flights
were completed in Red-Green-Blue (RGB) configuration.

We fixed the focal length to 10 mm and set the manual focus to infinity. All other optical
parameters (e.g. shutter speed, aperture, and light sensitivity) were set to automatic for
reasons of simplicity. Image acquisition was generally performed around midday in order to
minimize shadows, as well as under sunny conditions in order to facilitate optimal radiometric
differentiation. All flights were carried out in automatic waypoint mode at a stable forward
velocity of 3 m s−1 and with a 50% sideward and forward overlap. As the UAV is fairly stable in
air and the two-axis gimbal ensures near-nadir angles of the imagery, these overlaps are
considered a trade-off between data quality of 3D reconstruction and processing perfor-
mance. In practice, the overlaps were often higher, as two consecutive images were acquired
at many waypoints via infrared triggering, although we admit the pattern behind the double
triggering remained unresolved. The altitude above ground (AAG) was approximately 70 m,
except for one flight carried out at 60m. This yielded a ground sampling distance (GSD) <2 cm
in all cases (Table 1). From 30 images on average, a mean areal coverage, i.e. the mosaicked
footprint, of 3.11 ha could be produced.

2.2.2. Ground data collection
The field plots were all contained within the plots of the flight campaign, and their size
ranged from 0.65 to 1.86 ha. Homogeneity within the stand was the criterion considered

Figure 2. The Soleon Coanda x12 during data collection in Namibia. As can be seen from the
background, canopy development varied between woody species at the time of sampling (late
September 2015).
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for plot selection, where it was understood to target flat and even terrain conditions,
and a large range of disturbance regimes between the plots.

A total of 322 trees and shrubs >1.5 m were measured on the 19 field plots
(Table 2) using a Leica DISTO D510 laser-distance meter (Leica Geosystems AG,
Heerbrugg, Switzerland) that was mounted on a tripod. The sampling was con-
ducted along a 30 m regular grid. At each grid point, all woody individuals that
were contained in an upward full-frame fisheye photograph (taken at 1 m height)
were sampled.

2.2.3. Disturbance regime
We estimated the prevailing fire and grazing regime for each plot based on expert
interviews with landowners (freehold rangelands), residents (communal rangelands) as
well as forestry staff (state-protected forest), in-field recognition (e.g. burning scars), and
the National Aeronautics and Space Administration’s (NASA) Fire Information for
Resource Management System (FIRMS) database (firms.modaps.eosdis.nasa.gov).

To investigate the disturbance impacts on plot heights, plots were grouped according
to fire occurrence within the last 15 years, whereas grazing effects were separated

Table 1. Descriptive statistics (mean, minimum, maximum, median, and standard deviation (SD)) of
the flight campaign (n = 19). Columns list the number of images, the areal coverage of the flights,
altitude above ground (AAG) from barometric measurement, and ground sampling distance (GSD).

Images (n) Coverage (ha) AAG (m) GSD (cm)

Mean 30a 3.11 74.3 1.67
Min. 14 1.86 60.3 1.11
Max. 40 4.42 82.9 1.82
Median 30.5 3.32 73.8 1.68
SD 5.97 0.82 4.85 0.15

a rounded mean.

Table 2. Descriptive statistics (number of samples, mean, minimum,
maximum, median, and standard deviation (SD)) of the field campaign
per plot (n = 19) and in total.
Plot Samples (n) Mean Min. Max. Median SD

gk001 20 7.91 4.1 16.4 7.10 3.26
gk002 10 4.16 2.2 6.8 4.25 1.30
gk003 13 3.25 2.0 4.0 3.30 0.64
gk004 11 5.19 2.3 8.1 4.80 1.75
gk006 16 4.51 2.2 10.1 3.95 2.53
kc002 22 3.35 1.7 6.0 2.90 1.51
kc004 21 4.46 1.6 8.2 4.80 2.16
kc005 4 4.13 1.6 7.5 3.70 2.86
kr001 24 4.39 1.9 7.5 4.35 1.51
kr002 7 1.97 1.5 2.3 2.10 0.30
ks001 25 4.52 1.6 12.0 3.10 3.23
ks002 8 7.44 3.8 12.1 7.35 2.81
ks003 13 6.65 2.4 11.3 6.40 3.02
ks004 31 8.26 4.5 11.2 8.40 1.64
ks005 13 6.20 2.1 11.4 6.10 2.89
ks006 18 7.47 2.5 10.0 8.00 2.45
ks008 29 5.58 2.0 13.0 4.30 3.54
ks009 19 7.17 2.3 11.0 8.00 2.85
ks010 18 6.21 1.6 11.3 6.75 2.95
total 322 5.41 1.5 16.4 5.24 2.27
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according to regular (i.e. annual to biennial) and irregular grazing on the plots.
Furthermore, a combined disturbance regime was derived based on considerations of
intensity as follows:

● low (no fire within 15 years and irregular grazing);
● moderate (single fire within 15 years or regular grazing); and
● high (several fires within 15 years, or single fire within 15 years and regular grazing).

2.3. Processing workflow

2.3.1. Photogrammetric processing
Each of the 19 flights was processed separately and in a highly automated approach
using the commercial software Agisoft PhotoScan Professional (v1.2.4; Agisoft LLC, St.
Petersburg, Russia) in order to derive orthomosaics, DSMs, and digital elevation models
(DEMs) for each plot. PhotoScan uses an SfM approach that is based on matching
features (tie points) between the overlapping individual images in order to obtain the
3D models of the entire scene (Westoby et al. 2012). The tie points are retrieved from a
modified version of the Scale Invariant Feature Transform (SIFT) algorithm described by
Lowe (2004). A detailed description of the SIFT algorithm and its performance is given in
Lingua, Marenchino, and Nex (2009).

Preprocessing included manual checks for blurring of the imagery and the conversion
of the selected raw imagery to Tagged Image File Format (TIFF). From the flight logs
recorded by the UAV, camera trigger points were extracted to yield the approximate
spatial reference of the imagery. For the internal orientation of the imagery, we cali-
brated the lens with Agisoft Lens (v0.4.2; Agisoft LLC, St. Petersburg, Russia). This
implementation accounted for focal length, sensor dimensions, and the nonlinear dis-
tortion coefficients from Brown’s model (Brown 1966).

A BBA was performed in order to align the imagery and to correct the camera
positions. Aiming at the performance of the BBA and to facilitate direct georeferencing
of the scene, we used the parameters of the calibrated lens as well as the spatial
reference (Latitude/Longitude in World Geodetic System 1984 (WGS84) datum) and
AAG (in metres) for each image from the on-board instruments, i.e. a ‘photolog’. GCPs
were not feasible in this study regarding the number of plots sampled. Hence, the
external orientation of the imagery relied solely on the on-board navigation instruments:
the L1-GPS (u-blox LEA-6S; u-blox AG, Thalwil, Switzerland), which has a circular error
probability of 2.5 m for horizontal positioning (u-blox AG 2015), and a barometric sensor,
as it is more accurate than the GPS-retrieved heights (Turner, Lucieer, and Watson 2012;
Dandois, Olano, and Ellis 2015). The attitude parameters (yaw, pitch, and roll) were not
included due to the presence of a gimbal and the accuracy characteristics of the low-
cost MEMS-based INS (Turner, Lucieer, and Watson 2012). Based on the BBA, a dense
IBPC was created by applying the ‘high’ quality setting and a ‘moderate’ depth filter in
PhotoScan. At this stage, obviously erroneous points from visual inspection were manu-
ally removed from the IBPC. Object surfaces were then reconstructed by creating a 3D
triangular irregular network (‘mesh’). We used the ‘height field’ as the surface type,
which creates a 2.5D model of the planar surfaces, i.e. the canopy horizontal maxima are
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extended to the ground. A posterior hole filling was applied to the mesh using the
default settings in PhotoScan. Finally, with the mesh serving as the DSM, orthomosaics
of the overlapping imagery could be derived.

2.3.2. DEM from ground points
As no high-resolution, survey-grade DEMwas available for the study region, an approximate
DEM was conducted by classifying bare ground points in the IBPC. As has been shown by
Mathews and Jensen (2013) and Jensen and Mathews (2016), UAV-derived ground point
classification can reliably reproduce the ground surface for low-terrain environments with
moderate covers of vegetation – as was the case here. Ground points were automatically
extracted in PhotoScan using the following parameters (Agisoft LLC 2016):

● preparatory DEM points were selected from a regular grid as the lowest values
within cells of 10 × 10 m,

● a maximum vertical angle between a potential ground point and the preparatory
DEM of 10°, and

● a maximum elevation difference between a potential ground point and the pre-
paratory DEM of 1 m.

Points meeting the angular and elevational conditions were added to the preparatory
DEM. Similar to the procedure described earlier, surfaces were subsequently recon-
structed (‘mesh’) from the ground point cloud in order to yield a DEM for each plot.

Finally, orthomosaics, DSMs, and DEMs were resampled to a 10 cm resolution and
exported as GeoTIFFs. All products were also clipped to the footprint of the in situ plots
for further processing.

2.3.3. Canopy Height Model (CHM)
By subtracting the DEM from the corresponding DSM, a CHM or a normalized DSM could
be derived (Chen et al. 2006). As in situ sampling only included woody individuals with a
minimum height of 1.5 m (Table 2), this threshold was applied for the CHM as well.

2.3.4. Woody individuals’ delineation
Although the CHM alone might be sufficient for the height derivation of isolated
individuals, connected and overlapping canopies will be treated as a single canopy in
this way. To largely overcome this limitation and derive more realistic plot-scale height
structures, (inverse) watershed segmentation was frequently applied as a tool with
LiDAR-derived CHMs (e.g. Pyysalo and Hyyppä 2002; Chen et al. 2006; Reitberger et al.
2009; Heinzel and Koch 2012; Wallace, Lucieer, and Watson 2014). However, this has
rarely been performed with image-based CHMs (e.g. Näsi et al. 2015). Heterogeneous
canopies potentially complicate the segmentation process – especially in times of leaf
loss, and even some savannah woody species develop flattened to umbrella-shaped
canopies. Hence, in order to balance between over- and under-segmentation, the CHM
was initially smoothed using a 3 × 3-mean (low-pass) filter. In addition, segments <1 m2

were merged to their neighbouring segment where applicable and the minimum seed-
to-saddle difference was set to 2 m based on on-screen verification. For each of the
segments, i.e. the individual canopies, the local maximum and its position were
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subsequently extracted from the unfiltered CHM. The performance of the watershed
segmentation was assessed for 50 randomly generated points per randomly chosen
subplot (30 × 30 m) and by comparing the segmentation results with the manual
delineation of crowns from on-screen interpretation.

We used an implementation of the watershed segmentation algorithm provided by
System for Automated Geoscientific Analyses - Geographic Information System(SAGA-GIS;
Conrad et al. 2015) and calculated the per-plot maximum, mean, and median in order to
enable further statistical analysis.

2.3.5. Statistical analyses
To evaluate the accuracy of the per-plot UAV-derived heights against the corresponding in
situ metrics, we computed linear models and root mean square errors (RMSEs). Initial
Shapiro–Wilk normality tests suggested normality for all UAV-derived height metrics, but
additional normal Quantile-Quantile (QQ-normal) plots confirmed deviations of the data
from normal distribution (both not shown). Hence, with regard to test robustness, non-
parametric tests were performed to investigate the potential impacts of disturbances on the
UAV-derived woody height metrics. All analyses were conducted in R (R Core Team 2014).

3. Results

3.1. Photogrammetric processing and spatial accuracy

The photogrammetric processing was successful for each of the 19 data sets. The mean
effective overlap of the imagery was 3.98 (Table 3), whereby a value of four would indicate a
forward and sideward overlap of 50%. Effective overlap may reflect the number of flight lines
as the outer image acquisition lines will always have lower sideward overlaps, which is
essentially an issue of areal coverage. The same is true for the number of tie points used for
image alignment, which varied largely (min.: 11,123 tie points; max.: 123,621) as a function of
the area covered by the imagemosaics. Point densities of the dense cloudwere generally high
as a function of the GSD: the mean was 990.32 and the maximum was 2,182.34 points/m2,
respectively. The maximum was obtained by one flight carried out at an AAG of 60 m.

Regarding the reconstruction accuracy of the IBPC, the RMSE values of re-projection
were, in most cases, below one pixel (mean: 0.71 m; max.: 1.17 m; standard deviation (SD):
0.18 m) (Table 3). Image reference positions showed high variation. The RMSE ranged from
0.63 to 10.71m for the x-coordinate, and from 0.72 to 15.94 m for the y-coordinate, whereas
the respective means were >3 m for both coordinates. RMSE of the z-coordinate (i.e. height)
yielded better reconstruction accuracies that remained mostly below 1 m (mean: 0.75 m,
median: 0.7 m, SD: 0.35 m). The mean of the total positional RMSE was 5.17 m for all flights.
A visual inspection of the processed orthomosaics and a comparison with GoogleEarth
imagery also revealed good orientations and fairly positional accuracies (Figure 3).

3.2. Woody individuals’ delineation

The delineation of woody individuals is a critical step for the retrieval of representative
plot-scale woody height structures. A comparison carried out on a subsample and with
manually delineated crowns revealed promising delineations by the watershed
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segmentation: correct assignments to canopy/non-canopy points were generally > 80%
(average: 92.63%; Table 4), which may also reflect the moderate covers of woody
vegetation. Instead incorrect assignment was accordingly low (> 10% for five plots)
and almost exclusively contained omitted canopy points (false negatives; Table 4).

A visual interpretation of the watershed segmentation retrievals generally showed
reasonable delineations of individuals with homogeneous canopies, i.e. green canopies
and dry bushes with a dense branch structure (Figure 4(a)). Owing to the canopy
morphology of many savannah species, the maxima of individuals were not always
centred within the crown. For large individual trees with leaf loss, the success of
watershed delineation using a CHM appeared to be limited. The sparse branch structure

Table 3. Descriptive statistics (mean, minimum, maximum, median, and standard deviation (SD)) of the
photogrammetric image processing for all flights (n = 19). Columns list the effective overlap of imagery,
number of tie points for image alignment, the root mean square error (RMSE) of re-projection in pixels
(i.e. the offsets between the position of tie points from the estimated camera poses versus their position
in the imagery), RMSE of position (x and y from L1-GPS, z from barometric measurement, and total error
of xyz), and point density of the dense Image-Based Point Cloud (IBPC).

Effective overlap
Tie points

(n)
RMSE re-projection

(pixels)
RMSE position (m)

(x, y, z, total)
Point density
(number/m2)

Mean 3.98 73,157.72 0.71 3.46 3.15 0.75 5.17 990.32
Min. 2.47 11,123 0.5 0.63 0.72 0.35 1.08 818.03
Max. 7.7 123,621 1.17 10.71 15.94 1.77 16.1 2,182.34
Median 3.55 70,742 0.66 3.56 2.52 0.7 4.75 940.25
SD 1.22 29,604.61 0.18 2.33 3.36 0.35 3.5 302.15

Figure 3. Exemplary orthomosaics from UAV acquisition at Kanovlei State Forest Fire Trial plots, their
footprints (black), and the respective in situ sampling plots (red). For the yellow mosaics, imagery
was acquired with yellow filter that obstructs wavelengths <550 nm mounted on the camera lens.
Background image credit: GoogleEarth (© DigitalGlobe).
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Table 4. Performance assessment of the automated crown delineation using watershed
segmentation based on the smoothed Canopy Height Model (CHM) at 10 cm resolution on
randomly chosen 30 × 30 m subplots for each plot (n = 19) and in total. Fifty randomly
generated points per subplot were applied to evaluate the correct/incorrect assignment of the
automated crown delineation using on-screen, manually delineated crowns from the ortho-
mosaics at native resolution as a reference. Shown are points correctly assigned as Canopy
(True Positives (TP)) and Non-canopy (True Negatives (TN)), points incorrectly assigned as
Canopy (False Positives (FP)) and Non-canopy (False Negatives (FN)) as well as the overall
percentages of correct/incorrect assignment. Note that points assigned as TN make up large
numbers due to moderate vegetation covers.

Correctly assigned Incorrectly assigned

ID Canopy (TP) Non-canopy (TN) (%) Canopy (FP) Non-canopy (FN) (%)

gk001 6 39 90 3 2 10
gk002 8 36 88 1 5 12
gk003 1 46 94 0 3 6
gk004 3 45 96 0 2 4
gk006 7 39 92 0 4 8
kc002 6 40 92 0 4 8
kc004 5 42 94 0 3 6
kc005 1 48 98 0 1 2
kr001 4 43 94 1 2 6
kr002 0 50 100 0 0 0
ks001 1 48 98 0 1 2
ks002 2 42 88 0 6 12
ks003 5 42 94 0 3 6
ks004 2 43 90 0 5 10
ks005 2 40 84 0 8 16
ks006 1 49 100 0 0 0
ks008 5 38 86 1 6 14
ks009 2 40 84 1 7 16
ks010 4 45 98 0 1 2
total 65 815 92.63 7 63 7.37

Figure 4. Examples of the delineation of woody individuals (red polygons) and canopy maxima
positions (blue points) from watershed segmentation: (a) shrub canopies with and without leaves.
Background image: 10 cm-resolution UAV orthomosaic with yellow filter mounted; (b) tree canopy
with leaf loss and overlay of the Canopy Height Model (CHM; white to green as a function of
increasing height). Background image: UAV orthomosaic at the native resolution of 1.77 cm.
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resulted in a dense IBPC of limited density, and hence a strongly fragmented CHM.
Consequently, individual crown areas were underestimated and the derived heights
potentially do not reflect the actual canopy maxima of these individuals (Figure 4(b)).

3.3. Plot-scale height retrievals

The UAV-derived height metrics (maximum, mean, and median) yielded a satisfactory
agreement with the corresponding measured heights on a plot scale (Figure 5(a–c)).
Generally, a tendency towards a slight overestimation on plots with lower heights, and
vice versa, is observed for all UAV-derived height metrics under investigation. Where the
coefficients of determination (R2 and adjusted R2) consistently range around 0.7 for all
height metrics, the RMSE is remarkably higher for UAV-derived maxima (1.86 m) than for
mean and median heights (0.91 m and 1.02 m, respectively). This increase in RMSE may
reflect the larger range covered by the maximum heights between the individual plots.

In accordance with the linear models, Wilcoxon signed rank tests reveal no significant
differences of the group median between the measured and UAV-derived height metrics
(Table 5). Again, the 95%-confidence intervals (CI (95%)) result in a broader range around
the group median for maximum height compared with the mean and median heights.
Mean differences between the groups (i.e. measured vs. UAV-derived) reveal the

Figure 5. Linear models of UAV-derived and in situ-measured height metrics: (a) maximum height
(m) per plot; (b) mean height (m) per plot; and (c) median height (m) per plot. Each panel shows
data pairs for the individual plots (n = 19; black points), 1:1 line (grey), linear model (red), as well as
the linear model equation, coefficients of determination (R2 and adjusted R2), and root mean square
error (RMSE; in m).

Table 5. Results of the Wilcoxon signed rank tests. The differences of the median between the
measured and UAV-derived height metrics (maximum, mean, and median) are compared on a plot
scale (n = 19). Summed ranks of positively signed group differences (V) are given, whereas p-values
(p) >0.05 indicating no significant differences between the median of the groups were obtained.
Columns also show the range of the 95%-confidence interval around the median in m (CI (95%)) and
the mean of the differences between the groups in m (mean Δ).
Measured vs. UAV-derived V p CI (95%) mean Δ

Maximum height 115 0.441 [−0.53; 1.44] 0.51
Mean height 97 0.953 [−0.47; 0.54] −0.03
Median height 95 1 [−0.56; 0.59] −0.03
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maximum heights from measurement to be 0.51 m higher than those from UAV
derivation. For mean and median heights, the UAV-derived heights are negligibly higher
(<0.05 m) than those from the measurement.

3.4. Disturbance impacts on plot heights

The good agreement between each UAV-derived andmeasured height metrics (see Section
3.3) allows the former to be used as a surrogate for the latter in assessing potential feed-
backs of disturbances on plot height metrics. Fires, i.e. the last fire within 15 years, had no
significant effect on these metrics (Table 6). Nevertheless, maximum heights were strongly
reduced by the presence of fire as depicted by a median difference of more than 2 m
between plots with and without fire occurrence in the last 15 years (Figure 6(a)). Mean and
median plot heights did not respond to the presence of fire (Table 6), but were even slightly
higher on plots that were affected by fire within the last 15 years (Figure 6(b,c)).

Grazing had a significant effect on all plot height metrics under investigation
(Table 6). Regular grazing generally resulted in a reduction of plot-scale heights
(Figure 6(d–f)). Only minor reductions of the mean and median plot heights were
found with increasing intensities of the combined disturbance regime (Figure 6(h,i)). In
contrast, the combined disturbance regime had marginally significant effects on the
plots’ maxima (Table 6). Figure 6(g) further illustrates that plots with moderate and high
intensities of the combined disturbance regime are characterized by lower maximum
heights compared with plots with a low disturbance regime. Hence, fire and grazing
together contribute to the reduction of plot-scale height maxima.

4. Discussion

4.1. Image acquisition and photogrammetric processing

With a nominal forward and sideward overlap of 50%, the overlaps in this study were
lower than those recommended by Dandois, Olano, and Ellis (2015) for forested ecosys-
tems. However, the savannah ecosystem under investigation was of lower heights

Table 6. Results of the non-parametric tests on disturbance effects. The impacts of individual
disturbances and the combined disturbance regime from fire and grazing on UAV-derived height
metrics (maximum, mean, and median) on the plot scale (n = 19) are compared. The impact of fire
(last fire) was assessed for the groups with last fire occurrence ‘<15 years’ (n = 12) versus ‘>15 years’
(n = 7). Grazing impacts were assessed for the groups ‘regular’ (n = 7) versus ‘irregular’ grazing
(n = 12). The combined disturbance regime was grouped into ‘low’ (n = 4), ‘moderate’ (n = 8), and
‘high’ (n = 7); see Section 2.2.3 for further explanation. For the Mann–Whitney tests, columns list the
Wilcoxon rank sum statistic (W) and the p-value (p) for each of the height metrics. For the Kruskal–
Wallis tests, columns are the chi-squared value (χ2), the degrees of freedom (df), and the p-value (p)
for each of the height metrics.

Maximum Mean Median

Mann–Whitney test W p W p W p

Last fire 24 0.142 45 0.837 44 0.902
Grazing 66 0.045* 15 0.022* 18 0.045*

Kruskal–Wallis test χ2 df p χ2 df p χ2 df p

Combined disturbance regime 4.849 2 0.089** 0.139 2 0.933 0.04 2 0.98

* significant at the 0.05 level (two-sided); ** significant at the 0.1 level (two-sided).
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compared with a forest, the terrain was even, and the GSD of <2 cm was fairly high.
Woody height delineation was also restricted to the central parts of the mosaicked
footprint (i.e. clipping to the in situ plots; Figure 3). Consequently, the imagery of the
outer flight paths, which usually have the lowest overlaps, was often completely
excluded. Still, it has to be noted that increasing overlaps are likely to improve IBPC
accuracies, but an examination with varying flight parameters was beyond the scope of
this study.

It can be speculated whether the radiometric camera settings (e.g. sensor sensitivity
(ISO), exposure, and aperture) should be fixed to yield an increased radiometric homo-
geneity of the individual imagery. For instance, low values of automatic aperture may

Figure 6. UAV-derived height metrics of woody vegetation and disturbance impacts at the plot scale
(n = 19). The box plots show: (a) maximum, (b) mean, and (c) median height (m) versus the last fire
occurrence; (d) (*) maximum, (e) (*) mean, and (f) (*) median height (m) versus grazing; (g) (**)
maximum, (h) mean, and (i) median height (m) versus the combined disturbance regime from fire
and grazing.
Note: * significant at the 0.05 level (two-sided); ** significant at the 0.1 level (two-sided); see also Table 6.
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result in (soil) background blurring. As imagery was acquired from a stable forward
flight, we emphasized on the optimal ratios of aperture and exposures. Hence, the mean
exposure of the 561 images used for processing was 1/834 s (not shown). With a mean
of 4.98 (not shown), the aperture was fairly high at the same time and given the lens’
range of aperture (i.e. 3.5–5.6). For quantitative spectral analyses instead, radiometric
homogeneity between the images and sensor calibration in general would of course be
mandatory (Honkavaara et al. 2012; Zarco-Tejada et al. 2014). With feature matching and
point cloud reconstruction, radiometric variation may be an issue (Hirschmüller and
Scharstein 2009; Mukherjee, Wu, and Wang 2015), but is ubiquitous, and even viable, as
a result of the different viewing angles between the imagery. In addition, the numbers
of tie points relative to areal coverage and the point densities as a function of GSD were
generally high (Table 3). Furthermore, we did not recognize any shortcomings during
photogrammetric processing (e.g. lower numbers of tie points for image alignment) with
the flights carried out with the yellow filter mounted on the lens. Some degree of
blurring in the orthomosaics at native resolution was found here (Figure 4(b)). This
remains an unresolved issue, which has also been noticed by other studies (e.g.
Mathews and Jensen 2013; Näsi et al. 2015; Torres-Sánchez et al. 2015).

4.2. Spatial accuracy

We used a direct georeferencing approach based on the on-board L1-GPS and baro-
metric instrument. These instruments were not of survey-grade accuracy. Hence, the
discrepancy in position between the barometric instrument and the imaging sensor on
the UAV could be neglected. Furthermore, we did not account for the delay of the
camera shutter as the exposures were generally short (Section 4.1) and the UAV was
programmed to fly at 3 m s−1. The RMSEs of position were on average <3.5 m and <1 m
for horizontal and vertical accuracies, respectively (Table 3), which generally met the
expectations with the instruments used. Sub-metric spatial accuracies were unachieva-
ble due to the lack of a differential or a Real-Time-Kinematic GPS and the absence of
high-resolution, survey-grade maps or imagery for this remote region. In addition,
indirect georeferencing (e.g. by means of GCPs) would have required tremendous
additional human efforts and thus appeared unfeasible with regard to the multi-plot
design of the study. The best freely available reference source by means of resolution
and spatial accuracy would have been the Landsat Operational Land Imager (OLI)
instrument, which offers a 15 m resolution with the panchromatic band, and a circular
error of 12 m (Roy et al. 2014). Instead, we found acceptable consistency of the derived
orthomosaics with GoogleEarth, which offers high-resolution imagery, but is potentially
affected by large spatial offsets itself (Potere 2008).

The advantage of the approach applied here is the efficient processing of multiple data
sets and a largely automatedworkflow from raw data to orthomosaics. It is certainly not suited
for all applications. For an evaluation of UAV-derived heights versus the measured heights at
the individual scale, the spatial accuracy of the presented approach would exacerbate the
correct allocation of woody individuals. However, for the evaluation of plot-scale woody
heights with their in situ-measured correspondents, we are convinced that the internal or
relative spatial accuracy achieved with the reconstructed model, i.e. the correctness of
distances, is of primary importance. The RMSE of re-projection, a measure of relative accuracy,
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was on average 0.71 ± 0.18 pixels (Table 3). Studies that used comparable georeferencing and
similar software reported slightly higher relative accuracies (Näsi et al. 2015), but also lower
relative accuracies (Zarco-Tejada et al. 2014). In these regards, lens calibration, high GSD, and
distinct textures in the imagery constituted a framework for accurate feature matching and
reconstruction. The IBPCs obtained using the SfM-MVS reconstruction algorithm in Agisoft
PhotoScan were previously found to be fairly convenient (e.g. Neitzel and Klonowski 2011;
Verhoeven 2011; Roosevelt 2014; Jaud et al. 2016; – among others).

4.3. Woody vegetation heights derivation

Terrain properties, i.e. flat and even ground, and a certain openness of the stands, were
important prerequisites for successful plot-scale derivation of woody vegetation heights
through the CHM in this study. The base heights for the CHM depended on a DEM. As no
high-resolution, survey-grade DEM was available for the study region, a DEM was derived
from a classification of the dense IBPC. The parameters used in this step are explicitly site-
specific as they were identified on-screen and verified through visual inspection.
Subsequently, they were uniformly applied to all plots. Ota et al. (2015) compared CHMs
from LiDAR, IBPC, and combined sources in a seasonal tropical forest ecosystem, concluding
that CHMs relying only on IBPCs obtained the lowest accuracies. These were attributed to
ground obscuration as a result of stand density. The CHMs had a 1 m resolution in that
study, which is substantially coarser than the 10 cm resolution used here. In another study
from two Mediterranean orchards, tree height delineation accuracy was largely reduced
with spatial resolutions >35 cm (Zarco-Tejada et al. 2014). Indeed, high spatial resolutions of
the input imagery (i.e. <2 cm) and the CHM as applied here were probably among the
factors responsible for the promising agreement between the UAV-derived and in situ
heights (R2 approximately 0.7, and RMSE <1.9 m; Figure 5). Compared with two studies
evaluating plot height metrics from a fully IBPC-based CHM, the agreements found here are
lower (Jensen and Mathews 2016) or partly lower (Dandois and Ellis 2013). However, it
should be noted that georeferencing was assisted by GCPs and the canopies were generally
green in these two studies. Instead, the RMSEs achieved here are similar to those conducted
with a comparable set of plot heights (Jensen and Mathews 2016), and lower than those
carried out in an ecosystem of taller heights (Dandois and Ellis 2013). In a South African
savannah, Khalefa et al. (2013) used space-borne LiDAR, which resulted in moderate agree-
ments with in situ heights – probably due to the coarser spatial resolution. In the same
region, Wessels et al. (2011) compared airborne LiDAR estimates of woody individuals,
reporting overall explained variances of 93%, but acknowledging the underestimation of
individuals <2 m. Here, it can only be speculated whether enhanced height agreements are
achievable on an individual scale. Our in situ sampling design (i.e. height measurements of
all individuals >1.5 m that were contained in an upward-facing hemispheric photograph)
unfortunately inhibited such an additional investigation. Only heights of the individuals and
their distances from the sampling grid were recorded, whereas geo-locational uncertainties
of the sampling grid were imposed using a navigation-grade GPS in the field campaign.
Instead, we used watershed segmentation to delineate woody individuals in order to derive
a representative plot height structure for the mean and median metrics. For plot maxima,
the initial CHM would have been sufficient.
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A performance assessment of the watershed segmentation by means of a manually
delineated subsample revealed correct assignments of canopy/non-canopy points of
>80% (Table 4). Dry dense (i.e. bushes) and green canopies were probably the most
suited for automated delineation. Canopy green-up prior to the first rains is a phenolo-
gical feature of certain savannah trees and shrubs, yet poorly understood (Whitecross,
Witkowski, and Archibald 2016). Because of their dense branch structure, also dry shrubs
could be successfully delineated (Figure 4(a)). Conversely, canopy fragmentation, i.e.
over-segmentation, was observed with large-sized trees that had undeveloped canopies
at the time of sampling (e.g. Pterocarpus angolensis, Burkea africana, or Schinziophyton
rautanenii). Hence, their heights were potentially underestimated (Figure 4(b)). This is in
accordance with other studies (e.g. Dandois and Ellis 2010; Lisein et al. 2013; Torres-
Sánchez et al. 2015) that reported IBPC-based 3D reconstruction of heterogeneous and
low-density canopies to be challenging. In these regards, it should be mentioned that in
situ height measurements too are prone to errors (Hunter et al. 2013; Larjavaara, Muller-
Landau, and Metcalf 2013).

With highly clumped canopies of similar height, watershed segmentation is likely
inaccurate as the algorithm fails to separate these reliably. However, this issue is also
apparent with traditional local maxima extraction (e.g. Díaz-Varela et al. 2015). An
interesting approach to partly overcome under-segmentation was presented by Chen
et al. (2006), who parameterized the moving window used for local maxima determina-
tion by means of an empirical relationship between height and crown size in a
Californian savannah. Such allometric relationships are problematic for Southern
African savannahs, where even intraspecific growth forms vary largely – also as a
response to fire and grazing (cf. Archibald and Bond 2003; Holdo 2006).

4.4. Disturbance impacts versus environmental heterogeneity

Compared with extensive ground-based studies (e.g. Higgins et al. 2007; Poorter et al. 2008),
the sample size (n = 19) was small. Still, the sample generated from UAV derivation was
sufficient to indicate certain fire and grazing impacts on these plots. The presence of
disturbances often caused a reduction in the plot-scale heights of woody vegetation. For
regularly grazed plots, this effect was significant for all height metrics under investigation
(Table 6). Plot maximum heights were higher on plots that had no fire within the last
15 years (Figure 6(a)), although not significant, and plots classified with a low combined
disturbance regime (Figure 6(g)). However, the observed disturbance impacts on plot
heights should be regarded in the context of the uncertainties presented with UAV-derived
heights (Figure 5).

While the disturbance relations generally appear reasonable, the processes behind them
differ. Woody height reductions may refer to an encroachment of shrub species, which is
accompanied by changes in species composition. Although no short-term direct link
between grazing and woody heights is perceivable, height reductions on these rangelands
are probably the outcome of an intense, prolonged grazing regime. Freehold farms were
established during the first half of the twentieth century in the region (U. Gressmann,
personal communication, 25 February 2015) and communal lands were probably used for
livestock ranching even earlier. Similar legacy effects have also been reported for fire
impacts in the South African savannahs (e.g. Kennedy and Potgieter 2003; Levick, Baldeck,
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and Asner 2015). Although the long-term fire history has not been documented for this
region, it can be speculated that the plots, except for the Kanovlei Fire Trials, which were
only established in the 1990s, have experienced quasi-similar fire regimes as during our
period of observation. This is reasonable for the observed maxima reduction, as these age
classes are the least affected by fire due to their size, but also the species-specific adaptions
such as thick bark (Bond and Keeley 2005).

Investigating woody covers, e.g. by using object-based image analysis, would shed further
light onto the disturbance-vegetation feedbacks on the plots. This would require another
flight campaign during the growing season, which was beyond the scope of this study.

From an ecological perspective, however, our analysis of disturbance impacts is a strong
simplification of the real world as it suggests an exclusive and direct feedback of fire and
grazing on woody vegetation heights in these savannah ecosystems. Environmental varia-
tion was intended to be minimized by our study design, e.g. rainfall, flat terrain, and plots
regarded as homogenous in terms of their vegetation structure. The latter is admittedly
imprecise, as small-scale heterogeneity is inherent to savannahs (Skarpe 1991; Jeltsch et al.
1998). Furthermore, soil properties (e.g. depth, nutrient availability), species differences, and
other disturbances (e.g. local frost events, browsing herbivory, or pests) are important
determinants of plot-scale woody height that were not considered here. Future studies of
disturbance-vegetation feedbacks need to account for these.

5. Conclusions

The study presented here used IBPC acquired through a multi-plot UAV campaign
(n = 19) in an experimental setup to derive plot-scale height metrics in a Namibian
savannah. Moderate densities of woody vegetation, alongside flat and even terrain as
well as the high relative accuracy of the IBPC achieved by a GSD <2 cm, were identified
as a suitable framework for the autonomous generation of a CHM here.

The results for the plot-scale height metrics were promising given the season of
observation with green and dry canopies, and despite the lack of high-accuracy spatial
reference data. Watershed segmentation was, in most cases, found to reasonably delineate
individual canopies, and hence to retrieve representative plot height structures.
Resultantly, all plot-scale height metrics derived from UAV (maximum, mean, and median)
showed good agreement with the corresponding in situ measurements. Explained var-
iances (R2) were generally around 0.7, whereas RMSEs were approximately 1 m for means
and medians, and 1.9 m for the maxima. Still, survey-grade navigational systems would
increase absolute spatial accuracy, which is critical for many applications, and allow for
height assessments on the scale of individuals, which could not be achieved here. A flight
campaign during the growing season could solve inaccuracies by means of individual
delineation and height as encountered with fragmented, dry canopies. Alternatively,
clumped and equally sized canopy delineation may benefit from the incorporation of
spectral information to assist the separation of individuals by species.

The evaluation of plot-scale woody vegetation height metrics and their feedbacks with fire
and livestock grazing impacts largely met the proposed hypotheses. Significant plot-scale
height reductions of all metrics under observation were found for regularly grazed plots. This
could be an indication of woody encroachment and combined pasture degradation. Height
maxima were also significantly higher with a low combined disturbance regime from fire and
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grazing. We attribute the observed height reductions to legacy effects imposed by a longer-
term disturbance regime. Still, this model clearly simplifies the complexity of environmental
systems. Future work should also include soil properties, species differences as well as other
disturbance impacts (e.g. from meteorology, browsing, or pests).

This study highlighted the potential of UAVs for applications in spatial ecology. To the
best of our knowledge, it is also the first study to assess the disturbance impacts on the
height of woody vegetation by means of a UAV in a savannah ecosystem. Plot height
response to disturbances is essential to modelling and quantifying carbon sequestration as
(average) heights are strongly linked to available biomass. In these regards, the good
agreement foundwith field measurements is favourable to upscale these to coarser satellite
products via high-resolution UAV imagery. Although further research on height derivation
and IBPC in different ecosystems and environmental settings is needed, UAVs may oper-
ationally assist in the efficient assessments of vegetation structural parameters and envir-
onmental monitoring, e.g. phenology and post-disturbance regeneration, in the near future.
With regard to Namibia, UAVs could be used to assess rangeland conditions and monitor
stands of woody encroachment, especially those that are difficult to access from the ground.
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PART III  

SYNTHESIS AND OUTLOOK 

  



 

 

7. SYNTHESIS 

 

This thesis aimed at modelling fire activity and vegetation using remote sensing data. Thereby, a 

number of datasets, from global satellite products to ultra-high-resolution imagery from an 

Unmanned Aerial Vehicle (UAV), were applied. Common and newer methods of remote sensing, such 

as time series analysis, the application of Spectral Vegetation Indices (SVI), aggregation techniques, 

and UAV photogrammetry, as well as common predictive modelling techniques were used in order to 

investigate the following three main hypotheses: 

 

1. Namibia’s fire activity generally follows a productivity gradient. Human activities have the 

potential to alter this relationship on smaller spatial scales. 

2. Regionally-calibrated, spectral estimates of green vegetation during the dry season deviate 

from those obtained with a global satellite product. Due to a coarser base resolution, the latter 

yields higher generalization and lower estimates of green vegetation. 

3. The long-term fire regime is reflected by the vertical stand structure. Thus, the presence of fire 

leads to stand-scale height reductions of woody vegetation, which can be assessed using optical 

UAV data. 

 

While the research activities focused on Namibia, some of the findings conducted here may be of 

relevance to comparable regions, as well as semi-arid ecosystems in general. The following chapter 

details concluding remarks that can be drawn from the approach applied and the findings presented. 

Fire forms distinct spatio-temporal patterns in Namibia with large areas being burned in the 

central north of Namibia (southern parts of the regions Omusati, Oshana, and Oshikoto), as well as in 

the North-East (eastern Otjozondjupa, Kavango, and Zambezi Regions). Both fire regime parameters 

under consideration, i.e. Burned Area (BA) and Fire Occurrence (FO), were spatially autocorrelated. 

The extensive assessment of Namibia’s fire regimes and its indirect controls from multiple spatial 

predictive models is a considerable achievement of this thesis. As such, the consideration of spatial 

structures in model evaluation and an inter-comparison of different models enhance the robustness 

of statements derived therefrom. Seven out of ten models ranked Mean Annual Precipitation (MAP) 

as the most important control of fire activity in Namibia. Above 400 mm MAP, both BA and FO 

generally increased. This confirms that productivity is the major control of fire in dry savannas and 

that fire activity in these ecosystems is essentially limited by fuels. 

Productivity was assumed stationary across time, which obscures its inter-annual fluctuations 

and the resultant variability in fire activity. Apart from MAP, human activities, as measured by the 

densities of people and livestock, were of higher importance in many models applied here. While it 

was expected that human activities limit BA, a similar relationship with the number of fires (FO) was 

found by the best-performing Random Forest (RF) models. The reduction of FO with increasing 

human activities is somehow contradictory as humans are known to be the main source of ignitions 

in the region. However this reduction may reflect the fuel consumption and the landscape 

fragmentation that accompany human activities. As fuels are generally scarce at the arid fringe of 
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fire-prone ecosystems, human activities and land use seem to be of a critical level for fire across 

Namibia – even at low population densities there. Contrasting patterns of fire activity were found in 

the adjacent Otjozondjupa and southern Kavango Regions, where the veterinary fence separates 

commercial, privately-held farmlands from communal farmlands. These contrasts essentially reflect 

people’s attitude towards fire in the sense that they actively use fire as a tool or aim at its 

suppression and exclusion. It is surprising that land tenure was not among the most important 

predictors and contradicts earlier findings from Namibia (see Le Roux (2011)). The reasons thereof 

could be the known minor treatment of categorical predictors in some of the models applied and the 

scale of observation used here. It likely that the role of humans on the fire patterns as perceived by 

the MODIS Burned Area product (MCD45A1) is underestimated. For land management purposes, 

people aim at controlled burnings, which are often low in spatial extent and intensity. The coarse 

scale of observation by MCD45A1, i.e. a spatial resolution of 500 m, prevents the reliable detection of 

such fires. Taking these uncertainties into account, the approach and the findings presented at the 

national scale provide a framework for future research on (semi-)arid fire regimes and could 

support policy decisions in Namibia, but would require further investigations on smaller scales. 

The spatial scale of observation is a determining factor inherent to any remote sensing 

application. As was shown with the regional assessment of the Leaf Area Index (LAI) in the study 

area located in Owamboland, North-Central Namibia, the two models under comparison differ 

markedly. The empirically-derived model of LAI at 1 km-resolution which was based on the 

upscaling of field measurements revealed a considerably higher spatial heterogeneity as compared 

to the estimates from MODIS LAI (MOD15A2). In addition, offsets in absolute terms were present 

between the two models of LAI. An accurate treatment of non-photosynthetic canopy components in 

the field measurements and spectral data remain unresolved at this stage. The same is true for 

background contaminations, which affect both models and are highest during the dry season. A 

quantification of deteriorating contributions and their spectral response would necessitate a 

systematic consideration of different background surfaces and canopy covers, but such was beyond 

the scope of this thesis. Nevertheless, it was hypothesized that the contaminating effects increase as 

the base resolution of the observation decreases. The finding that the MOD15A2 product, which 

relies on moderate-resolution MODIS imagery, yields mostly lower values, can be regarded as an 

indication thereof. However, the issue needs further examination. For instance, the direction of offset 

between the two models inverted with a recently burned area. This patch was successfully detected 

as burned by MCD45A1, but MOD15A2 outlined no change in LAI relative to the surrounding 

unburned areas. The finding is counterintuitive, as both, MCD45A1 and MOD15A2, rely on spectral 

data of similar resolution, but essentially reflects the different foci of the retrieval algorithms 

underlying these datasets. Furthermore, the temporal scope of the land cover mask behind 

MOD15A2, which uses an annual aggregation of the preceding year, appeared to be unsuitable for 

this particular environment, but is updated in the follow-up release (version 6) of MOD15A2. 

Although the general patterns of LAI in the study area were captured by MOD15A2, the above 

findings highlight the need for a critical examination of global remote sensing products. Their 

evaluation and validation for steady improvement and refining of the underlying algorithms is vital. 

An increased consideration of dry-season settings in remote sensing studies is desirable, as such 

essentially helps to enhance our integrated understanding of the ecological processes that take place 

throughout the year. 

The derivation of vertical stand structure by means of UAV data as applied in this thesis was 

experimental. It was demonstrated that UAVs have the potential to serve as autonomous remote 

sensing systems and that newer photogrammetric techniques such as SfM-MVS provide maturing 

means for the modelling of 3D structures. As stand heights are a primary parameter for forest 

inventories and biomass assessments, UAV data are a useful complement to field surveys. A 
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considerable advantage of the usage of imaging sensors over LiDAR sensors is the potentially higher 

density of the Image-Based Point Cloud (IBPC) with top-of-the-canopy elements. It is important to 

note that the density of the IBPC, and thus the quality of the 3D reconstruction, is the product of the 

features recognized in the input imagery. Canopies are complex surfaces and their elements are 

constantly in motion, which complicates their 3D reconstruction. Dry-season phenology reduces the 

effects of motion, but likewise decreases the abundance of canopy elements of deciduous broad-

leaved species. Higher overlaps between the images, i.e. more images per object and lower angular 

variations, could have partly resolved the height underestimations apparent with sparse branch 

structures. Nevertheless, the stands’ height structures were roughly captured with the UAV 

approach presented. The absolute number of woody individuals is certainly underestimated as 

smaller and clumped individuals have a considerable chance to be missed or at least to not to be 

correctly delineated as canopy vegetation. As a consequence, a feature-based remote sensing of 

vegetation as facilitated with UAV data prevents some of the uncertainties associated with lower 

canopy covers and dry-season phenology in traditional pixel-based approaches. The accuracy of the 

average stand height parameters (mean and median) derived from the IBPC and canopy 

segmentation was <1 m as compared to field measurements, where higher accuracies can be 

achieved from the inclusion of survey-grade reference and positional data. The latter would enable 

multi-temporal assessments of vegetation with growth rates, phenological development, or post-fire 

regeneration depicting potential targets of investigation. 

From the single-date UAV surveys conducted here, there is little evidence that fire will 

significantly affect the stand structure of woody communities on the long-term. While ecological 

complexity was obviously neglected, this approach assumed mono-causal stand height reductions 

due to the long-term presence of fire. This relationship was not supported by the dataset, which 

suggests two possible causes: firstly, fires are either too infrequent or too low in intensity to 

seriously affect woody vegetation, and/or secondly, the species community is just well adapted and, 

thus, largely resilient to the prevailing fire regime. From personal observations in the field, both 

explanations are feasible. Recently burned plots showed distinct heterogeneity in burning, ranging 

from only patchy burning that was largely restricted to the herbaceous understorey, to fire scars 

reaching >5 m and fallen adult trunks as a result of fire. The dominant woody species on certain 

plots in northern Otjozondjupa, such as Pterocarpus angolensis, are known to resist fire due to their 

thick barks, and resprouting is common with many savannas species. While the assessment focused 

on heights and generally neglected individuals <1.5 m for methodological reasons, woody densities 

and cover are additional parameters to consider with assessments of the long-term impact of fire. 

Their consideration would be valuable to support the finding that stand heights are significantly 

reduced under regular grazing conditions. This finding was interpreted to be indicative of bush 

encroachment, but, as height maxima were also reduced within grazed stands, it could point to soil-

imposed limitations in productivity as well. It cannot be excluded that the height reductions 

ultimately result from mechanical rangeland clearings in the past, which illustrates the general 

uncertainties associated with disturbance histories over a range of several decades.  
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8. OUTLOOK 

 

A number of unresolved questions arise from the research objectives elaborated and the 

knowledge generated, and from the shortcomings of the applied approach within this thesis. A 

personal, yet incomplete, appraisal of remaining questions to be addressed in the future, and ways 

forward are found in the following chapter. 

- What is needed to improve the quantification of the human role in fire regimes? 

From a remote sensing perspective, fire estimates that also detect small fires from land 

management purposes are critical for the understanding of human-induced fire regimes. The 

synergistic use of burned area and active fire approaches, as is done with the release of the newest 

version of MODIS BA in 2017, is a step in this direction. However, early evaluations suggest only 

minimal improvements with the smaller fraction of fires (e.g. Zhu et al., 2017). Higher-resolution 

Landsat data would facilitate a long-term record, but automated (regional) BA detection approaches 

from Landsat time series are just emerging (e.g. Hawbaker et al., 2017). Moreover, analyses that 

focus on regions with contrasting fire patterns but quasi-homogenous environmental conditions, 

such as those outlined for the northern Otjozondjupa and Kavango Regions, could provide valuable 

insights and generate new hypotheses on the human determination of fire regimes. Interdisciplinary 

approaches that involve social sciences could be particularly useful in this regard. 

- Are remote sensing and geospatial analysis suitable techniques in order to seasonally 

forecast fire? 

The study conducted here outlined the patterns of fire in Namibia and inferred the general 

drivers thereof. This knowledge could serve as a framework for seasonal predictions of fire 

occurrence. As fuels are a primary factor in Namibia, the preceding seasonal precipitation sums, 

which can be spatially inferred from remote sensing, are anticipated as a first indicator of the general 

strength of the upcoming fire season. Fuel availability and condition can, to some degree, be mapped 

from remote sensing (see below) in order to determine fire hazard. Field measurements of fine fuel 

biomass and the temporal relation of fuel moisture with microclimatic conditions are considered as 

useful inputs for the calibration of remotely-sensed fuel estimates. These parameters are available 

from the field data collection period, however have not yet been analysed. Fuel estimates are 

essential for the determination of ignition probabilities and the potential damages to human 

livelihoods and natural resources – together known as fire risk (see Hardy, 2005). In a recent review, 

Costafreda-Aumedes et al. (2017) conclude that our current capabilities to predict fires in space and 

time from remote sensing and geospatial analysis remain generally limited. This is attributed to the 

lack of universal relationships underlying ignitions and the stochastic nature of fire occurrence in 

general. As has been shown here, also the availability and quality of the predictors that are available 

to causally infer fire limits our predictive capabilities – especially in developing countries. 

- Which possibilities are available through remote sensing in order to “go beyond green 

vegetation”? 

As was shown here, feature-based approaches could be essentially useful for the assessment of 

woody vegetation in a dry-season environment. Admittedly, satellite sensors that provide the 

required spatial resolutions at no cost are scarce at the moment. Likewise, UAVs are limited in 

spatial coverage, but are potentially suitable for repeated measurements at the local scale. A recent 
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study used space-borne, passive microwave observations in order to infer non-photosynthetic 

woody vegetation (Tian et al., 2017). Also, active sensors, such as SAR, are continuously evolving, 

and their capabilities for analysing and monitoring vegetation are not yet fully explored  

(Li and Guo, 2016). The upcoming ICESat-2 mission, which was launched in late 2018, will provide 

global LiDAR estimates in the near future. 

Apart from the woody canopy, the biomass and condition of the surface stratum are important 

parameters for rangeland assessments and fuel modelling. One major obstacle thereby is canopy 

obscuration in denser stands, which could, in part, be circumvented by multi-temporal approaches. 

(Hyper-) spectral approaches that incorporate the SWIR spectrum are promising, as certain SWIR 

regions are sensitive to plant water content and two dominant compounds of senescent leaves, 

namely lignin and cellulose. Nevertheless, the soil background may again be a deteriorating influence 

for lower surface covers. 

- Are fire impacts moderated at the scale of species? 

The study of fire impacts in this thesis did not consider the community involved. In addition, the 

prevailing disturbance regime was assumed to be representative of the long-term situation. Fire-

sensitive species may have been replaced earlier on the burned stands. However, if similar 

communities are present under different disturbance regimes, there is a reasonable chance that 

these possess the ability to adapt some of their characteristics, known as functional traits, 

accordingly. For instance, species exposed to recurring fire could relatively increase their investment 

in height growth in smaller individuals or bark thickness in adult individuals. An upcoming thesis by 

Elisabeth Ofner, which is linked to this thesis, is dedicated to shed light into such intra-specific 

plasticity and the species composition of the stands that were under investigation here. 

- How will climate change affect future fire regimes? 

Future fire activity is often suggested to increase as climate warms on a global scale  

(see Flannigan et al., 2009). Where current empirical investigations find a global decrease in fire 

activity since the 2000s, Southern Africa countered this trend (e.g. Andela et al., 2017). The North-

East of Namibia experienced an increase in fire activity during this period (not shown). Although 

future precipitation changes are less certain than temperature, Southern Africa is expected to dry 

within the 21st century (Niang et al., 2014). Little is also known on the intra-seasonal alteration of 

precipitation which essentially determines the “temporal window” of fire occurrence. For Namibia, a 

future aridification will probably continue to constrain fire to regions of higher productivity, but 

community shifts towards grass could enhance fire activity there. Finally, as humans largely 

determine ignitions and control fuels, future fire regimes in Namibia and elsewhere will depend on 

how humans use land and fire for their specific purposes. 
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