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Abstract

Structure Formation in Tokamak Turbulence: Impact of
Collisions and Kinetic Electrons

In this thesis, the formation of structures in the zonal E×B shear flow of the plasma in a
Tokamak fusion reactor is studied with the nonlinear Eulerian gyro-kinetic code gkw. As
this sheared zonal flow suppresses ion temperature gradient driven turbulence, structures
in the zonal flow have a vast impact on the heat transport observed in a Tokamak and
thus play a crucial role in developing an efficient fusion reactor.

The formation of staircases in the shear of the zonal flow suppresses turbulence and
leads to an upshift of the threshold in the temperature gradient, at which a significant
heat flux is observed. The defining feature of this particular threshold, the so-called
finite heat flux threshold, is that the heat flux does not go smoothly to zero when the
threshold value is approached from above. An examination of the influence of ion-ion
collisions reveals that this threshold is shifted to lower values due to collisions. Their
influence is most prominent in the regime below the collisionless finite heat flux threshold
and above the previously measured Dimits threshold. Investigating both the intensity
as well as the radial profile of the E × B shear rate allows to reliably link the radial
structure of the staircase to the observed behaviour. Fully developed staircases are
observed below the finite heat flux threshold, while partially developed staircases are
observed above. Increasing the collision frequency hinders the transgression from a partial
to a fully developed staircase, leading to the observed reduction of the finite heat flux
threshold. The results cannot be explained satisfactorily by solely considering the shear in-
tensity alone, which bolsters the importance of the structure formation in the E×B shear.

Investigating E ×B shear structures in the zonal flow while treating the electrons as a
fully kinetic species, reveals that the formation of staircases can be observed. However,
in many cases strong small scale structures emerge in the shear rate, which appears to
hinder staircase formation and prevents an efficient suppression of the turbulence induced
heat transport. The small scale structures are linked to the self-interaction of turbulent
modes through the double periodic boundary conditions of the toroidal geometry of a
Tokamak plasma. Compared to simulations in the adiabatic electron limit, the influence
of the boundary conditions is more prominent, because of the long extension of the mode
structure along the field lines in the kinetic electron case. As the self-interaction is a newly
discovered mechanism to drive the zonal flow, an extensive characterization is carried out.

5



It is found that the driven structures scale with the normalized Larmor radius, are weakly
affected by collisions and are also observed in global simulations. Changing the boundary
conditions through the variation of the magnetic shear weakens the small scale struc-
tures, which leads to a reappearance of the staircase structure and most of its typical traits.

The observation of the small scale structures driven by self-interaction in simulations
with kinetic electrons raises the question, how effective certain zonal flow structures
damp the ion temperature gradient instability driving the turbulence. To investigate this
question, the growth rate of the turbulent modes after quenching is measured under the
damping effect of a zonal flow profile. A quantitative measurement for the efficiency of a
structure is provided by considering the damping in relation to the intensity of the zonal
flow structure. All results of this examination lead to the conclusion that the damping is
predominantly effected by zonal flow structures with a low radial wave vector.
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Zusammenfassung

Strukturbildung in Tokamak-Turbulenz: Der Einfluss von
Kollisionen und kinetischen Elektronen

In dieser Abhandlung wird die Strukturbildung in der zonalen E×B Strömung des Plasmas
eines Tokamak Fusionsreaktors mit Hilfe des nichtlinearen Euler’schen gyrokinetischen
Codes gkw untersucht. Da diese gescherte zonale Strömung die Ionentemperaturgradient-
getriebene Turbulenz unterdrückt, haben Strukturen in der zonalen Strömung einen
starken Einfluss auf den Wärmetransport in einem Tokamak und spielen deshalb eine
wichtige Rolle bei der Entwicklung eines effizienten Fusionsreaktors.

Die Bildung von Treppenstrukturen (Staircases) in der Scherrate der zonalen Strömung
unterdrückt die Turbulenz und führt zu einer Erhöhung des Schwellwerts im Tempe-
raturgradienten, ab dem ein signifikanter Wärmefluss beobachtet wird. Das Besondere
dieses Schwellwerts, dem sogenannten Schwellwert mit endlichem Wärmefluss (Finite
Heat Flux Threshold), ist, dass der Wärmefluss sich unstetig der Null annährt, wenn man
sich dem Schwellwert rechtsseitig annähert. Eine Untersuchung des Einflusses von Ionen-
Ionen-Kollisionen zeigt, dass dieser Schwellwert durch Kollisionen nach unten verschoben
wird. Der Einfluss der Kollisionen ist in dem Bereich zwischen dem bereits bekanntem
Dimits-Schwellwert und dem kollisionsfreien Schwellwert mit endlichem Wärmefluss
am stärksten. Eine Betrachtung der Intensität als auch des radialen Profils der E ×B
Scherrate erlaubt es das Auftreten und die Form der Treppenstruktur eindeutig mit den
Beobachtungen zu verknüpfen. Voll entwickelte Treppenstrukturen werden unterhalb des
Schwellwerts beobachtet, während teilentwickelte Treppenstrukturen oberhalb beobachtet
werden. Ein Erhöhen der Kollisionsfrequenz behindert den Übergang von einer teilentwi-
ckelten zu einer voll entwickelten Treppenstruktur, was zu der beobachteten Senkung des
Schwellwert mit endlichem Wärmefluss führt. Diese Resultate können nicht durch die
Intensität der Scherrate allein erklärt werden, was die Wichtigkeit der Strukturbildung
in der E ×B Scherrate unterstreicht.

Eine Untersuchung der Strukturen in der E × B Scherrate, bei der die Elektronen als
vollwertige kinetische Spezies betrachtet werden, zeigt dass auch hier Treppenstrukturen
beobachtet werden können. Jedoch treten auch oft starke, kleinskalige Strukturen auf,
welche die Bildung von Treppenstrukturen und damit die Unterdrückung von Turbulenz
behindern. Diese kleinskaligen Strukturen stehen mit der Selbstinteraktion turbulen-
ter Moden durch die doppelt-periodischen Randbedingungen der toroidalen Geometrie
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eines Tokamak-Plasmas in Verbindung. Verglichen mit Simulationen im adiabatischen-
Elektronen Grenzfall ist hier in der kinetischen Betrachtung der Einfluss der Randbedin-
gungen stärker, da die Modenstruktur entlang der Feldlinien weiter ausgedehnt ist. Da
die Selbstinteraktion ein neu entdeckter Mechanismus ist um die zonale Strömung zu
treiben, wird eine weitreichende Untersuchung und Charakterisierung durchgeführt. Hier-
bei wird festgestellt, dass die kleinskaligen Strukturen mit dem normierten Larmorradius
skalieren, schwach von Kollisionen beeinflusst werden und auch in globalen Simulationen
beobachtet werden können. Eine Veränderung der Randbedingungen durch eine Variation
der magnetischen Scherung führt zu einer Abschwächung der kleinskaligen Strukturen,
was zu einem erneutem Auftauchen der Treppenstrukturen führt.

Die Beobachtung der durch die Selbstinteraktion getriebenen, kleinskaligen Strukturen
wirft die Frage auf, wie effektiv verschiedenen Strukturen in der zonalen Strömung die,
die Turbulenz treibende Ionentemperaturgradientinstabilität dämpfen. Um dieser Frage
nachzugehen, wird die Wachstumsrate der turbulenten Moden nach der Unterdrückung
gemessen, wobei der dämpfenden Einfluss von Strukturen in der Scherrate der zonalen
Strömung berücksichtigt wird. Indem die Dämpfung mit der Intensität der Struktur in
Relation gesetzt wird, kann die Effizienz der Struktur quantifiziert werden. Die Ergebnisse
dieser Untersuchung ergeben, dass die Dämpfung hauptsächlich durch Strukturen mit
einem kleinen Wellenvektor erfolgt.
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1. Motivation

Thermonuclear fusion appears as a promising solution to satisfy the worlds rising hunger
for clean and sustainable energy. In a fusion reactor, two atomic nuclei are brought
close together, leading to the formation of a different nuclei. For lighter elements, the
reactants’ mass exceeds the mass of the products. This mass difference is released as
kinetic energy of the products, which can be harvested (to obtain electrical energy).

Atomic nuclei repulse each other due to the Coulomb force. To overcome this Coulomb
barrier, the reactants need to have a high temperature. To obtain suitable fusion reaction
rates 108 degrees Kelvin or more are required [1], as shown in Fig. 1.1, in which the
reaction rates for feasible fusion reactions are depicted. At that temperature, the atoms
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Figure 1.1.: Fusion reaction rates averaged over a Maxwellian distribution for promis-
ing fusion reactions [1, 2] labelled by their reactants: D - deuterium, T - tritium,
3He - helium-3.

are fully ionized, i.e. they are in the plasma state. Two promising methods to confine a
fusion plasma are known: magnetic confinement and inertial confinement. In the field of
magnetic confined fusion, the Tokamak and the Stellarator are the two favoured designs,
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1. Motivation

both featuring a toroidally shaped magnetic field to contain the plasma. This work
focuses on the Tokamak fusion reactor, whose defining feature is toroidal symmetry. An
example of a Tokamak reactor experiment is the asdex Upgrade (Fig. 1.2) located near
Munich. The next stage Tokamak, currently (as of 2019) under construction, will be the

Figure 1.2.: asdex Upgrade during assembly. From Ref. [3].

International Thermonuclear Experimental Reactor (iter) [4, 5] located in Cadarache
(south France).

The intermediate goal of fusion reactor research is to achieve ignition, i.e. sustaining
the required plasma temperature solely through the heating of the fusion process. This
can be described as a constraint [6] for the triple product of the plasma’s density n, the
temperature T and the energy confinement time τE

nTτE ≥ 3 · 1021keVs
m3 , (1.1)

given here for the generally favoured deuterium-tritium reaction. The value of nTτE is
determined by the quality of the magnetic confinement of a fusion reactor. Consequently,
the improvement of the confinement is a prerequisite for ignition and is therefore one of
the most focused topics in fusion research. The quality of the confinement is affected
negatively by a multitude of effects, with turbulence in the plasma being the most
important. Under reactor conditions, the ion temperature gradient instability, which
is investigated in this thesis, is considered to be the dominant driving mechanism for
turbulence. Turbulence can be suppressed or regulated by sheared zonal flow, i.e. a
sheared, axisymmetric plasma rotation. The zonal flow is driven by the turbulence itself,
leading to a self regulation of the turbulence and to an improvement of the confinement
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of the plasma. Recent findings [7–11] show that structures form in the zonal flow,
which enhance the stabilization of the turbulence. The main subject of this thesis is to
understand how the structures formed in the zonal flow behave and how they affect the
turbulence. It will improve the understanding and predictions of the turbulence and the
quality of the confinement.
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2. Plasmas and Tokamaks

In this chapter, a brief overview of the theoretical background used in the later chapters
is given. An overview of typical mechanisms that govern the particle motion in a plasma
is given in Sec. 2.1. Sec. 2.2 presents general information about a tokamak fusion reactor.
The Ion Temperature Gradient instability (itg), a cause of turbulence, is introduced in
Sec. 2.3. In Sec. 2.4, the zonal flow, the common model to describe its generation and
the suppression of turbulence through the zonal flow are discussed. After that, a short
overview of the current state of research on the structure formation in the zonal flow is
presented in Sec. 2.5. Finally, Sec. 2.6 gives a brief note on particle collisions in a plasma.

2.1. Particle motion in a magnetised plasma

Here, basic physical mechanisms that occur in a (tokamak) plasma are briefly presented.
A more detailed treatment can be found, for example, in Refs. [6, 12, 13].

Due to the Lorentz force, charged particles in a magnetic field execute a circular motion
with the (cyclotron) frequency

ωc,s = |qs|B
ms

(2.1)

in the plane perpendicular to the field. Here, ms is the particle mass, qs its charge, B
the strength of the magnetic field and the particle species are denoted with a s-subscript.
The radius of that motion is called Larmor (or gyro) radius ρs

ρs =
msv⊥,s
|qs|B

, (2.2)

where v⊥,s is the particle’s velocity perpendicular to the magnetic field. For typical
tokamak parameters the Larmor radius ranges in the millimetres for ions (protons) and is
a factor of fifty to hundred smaller for electrons [6]. The direction of the rotation depends
on the sign of the charge, thus ions and electrons gyrate in the opposite direction. It is
convenient to put the Larmor radius in relation to a system size, e. g. the major radius
of the reactor Rref, typically several meters. This defines a dimensionless normalized
Larmor radius ρ∗

ρ∗ = ρi
Rref

, (2.3)

commonly used in relation to the ion species. From the values given above it can be
seen that ρ∗ is very small for fusion reactors, being ≈ 10−3 to ≈ 10−4. On a large scale
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2. Plasmas and Tokamaks

particles can be considered as confined on a magnetic field line, exhibiting a free motion
only along the magnetic field. This picture holds for a homogeneous, isotropic and
static magnetic field without external forces, as only then the particles move in properly
closed circles (in projection). In a reactor, the field configuration deviates from these
assumptions. Under these circumstances the particle orbits do not close upon themselves
(in projection), leading to a small net particle motion perpendicular to the field lines,
i.e. a drift of the centre of the gyro motion. Although the aforementioned picture is still
valid on a coarse level, corrections have to be introduced to describe the drifting of the
particles. Compared to the motion along the magnetic field, the motion due to the drifts
is small, i.e. of the order of ρ∗, as it is related to the inhomogeneities on the scale of
the Larmor radius. The most important of these drifts will be briefly explained in the
following.

In the presence of an electric field with a component perpendicular to the magnetic
field, particles undergo the so-called E ×B drift vd,E×B, which moves the particle in the
direction perpendicular to both fields. Through the Coulomb force the electric field leads
to an acceleration of the particle over one half of the gyration and a deceleration over
the other half. From Eq. (2.2) it can be seen that this leads to a correspondingly varying
Larmor radius such that the centre of the gyromotion moves, as depicted schematically in
Fig. 2.1. Considering that both the direction of the Coulomb force and the circumferential

B

p⁺

E

e⁻

Figure 2.1.: Schematic of the E ×B drift.

direction depend of the sign of the particle’s charge, it can be seen that the direction
of vd,E×B does not depend on the sign of the particle’s charge. Solving the equation of
motion under the influence of the Lorentz force for a particle leads to

vd,E×B = E×B
B2 , (2.4)

where E denotes the electric field. This mechanism can be applied not only to the
Coulomb force, but also to an arbitrary force F leading to a general drift vd

vd = F×B
qB2 , (2.5)

18



2.2. Tokamak Fusion Reactor

However, as in general F does not depend on the particle’s charge, the direction of vd
does depend on the charge. If the magnetic field exhibits inhomogeneities, the ∇B drift
vd,∇B is found. It can be described heuristically by a variation of the Larmor radius
through the spatial variation of the strength of B. Again from the equation of motion,
under the assumption of a large gradient length compared to the Larmor radius,

vd,∇B =
mv2
⊥

2q
B×∇B
B3 (2.6)

is obtained. It can be seen that the direction of the ∇B drift does depend on the particle
charge. If a particle’s gyrocentre follows a curved magnetic field line, a drift perpendicular
to the curvature radius, the so-called curvature drift vd,R, appears. When the particle
follows the curved field line with curvature radius Rc, it is subjected to a centrifugal
force, leading to a deviation of the circular motion and subsequently, a drift. To describe
vd,R, a general drift, i.e. Eq. (2.5) with a centrifugal force is used. Assuming a large
curvature radius, this leads to

vd,R =
mv2
‖

qR2
c

Rc ×B
B2 =

mv2
‖

q

B× (B · ∇)B
B4 . (2.7)

Again, the direction of the drift depends on the sign of the particle’s charge. For a plasma
where the pressure is low compared to the magnetic field strength,

vd,R ≈
mv2
‖

q

B×∇B
B3 (2.8)

can be written, which allows to treat vd,R similar to vd,∇B. A time varying electric field
leads to the polarization drift vd,p. The temporal variation of E leads to a variation of
the Larmor radius, resulting in the drift

vd,p = 1
ωcB

dE

dt
, (2.9)

which also depends on the charge.

2.2. Tokamak Fusion Reactor

In this section, the basics of a tokamak fusion reactor are presented. For a more in-depth
treatment Ref. [6] is advised. A Tokamak confines a plasma magnetically. A corre-
spondingly strong magnetic field leads to a gyro-radius much smaller than the device
size, preventing the particles from escaping perpendicularly to the magnetic field. To
prevent the particles from leaving the reactor through the motion along the magnetic
field lines, the magnetic field is shaped in the form of a torus, as sketched in Fig. 2.2.
Such a magnetic field, which has only a toroidal component, however, does not lead
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2. Plasmas and Tokamaks

B

x

x

x

x

x

x

coil

Figure 2.2.: Simple toroidal confinement.

to a stable configuration. Due to the toroidal curvature, the magnetic field posses a
radial gradient with a higher magnetic field strength obtained closer to the axis of
symmetry. Following Eq. (2.6) and Eq. (2.7) it can be seen that this leads to a curvature
and ∇B drift of the particles as depicted in Fig. 2.3. Because these drifts are charge

B

p⁺
E

e⁻

x

∇ B

vExB

v∇B,R

v∇B,R

Figure 2.3.: View of a poloidal cut with the ∇B drift and the resulting E ×B drift
in a tokamak.
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2.2. Tokamak Fusion Reactor

dependent, they lead to a charge separation and consequently to the generation of an
electric field. As shown in Eq. (2.4), the electric field leads to a radially outward E ×B
drift, also shown in Fig. 2.3, which carries all particles outwards onto the device wall.
To prevent this, the magnetic field is twisted helically by superimposing a poloidal field.
In this configuration, a particle following a magnetic field line is subjected to the ∇B
drift both on the upper and the lower side, leading to a compensation, which allows a
stable magnetic confinement. A schematic overview of a tokamak is given in Fig 2.4 (in
comparison, a technical sketch of iter is given in Fig. 2.7). The field in the toroidal

Figure 2.4.: Schematic view of a tokamak fusion reactor. From Ref. [14].

direction is produced by the corresponding main field coils. To generate the poloidal
field, a toroidal current is induced in the plasma, commonly through central poloidal
(transformer) coils. Additional coils are used for fine tuning of the plasma position and
shape. Due to the need to induce the current via a change of the magnetic flux in the
primary transformer coil, a tokamak can only operate in a pulsed mode.

The geometry of the magnetic field configuration in a tokamak is described as a set of
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2. Plasmas and Tokamaks

nested surfaces with constant magnetic flux, so-called flux-surfaces. Following toroidal
coordinates are introduced to gain an initial description, they are sketched in Fig. 2.5
The major radius of a torus Rref describes the distance to the magnetic axis, being

φ

ϴ

ψ

R

z

Rref

magnetic axis

flux-surface

Figure 2.5.: Sketch of nested flux-surfaces and toroidal coordinates (ψ, θ, φ) and for
reference, cylindrical coordinates (R,−φ, z). For convenience, the special case of
circular and concentric flux-surfaces is depicted.

the innermost flux-surface. The flux-surfaces are labelled by the corresponding flux
ψ. Generally, the radius of a flux-surface depends on the poloidal angle θ, where the
exact form can be determined by the Grad-Shafranov equation [15]. In a tokamak, the
toroidal magnetic field component is an order of magnitude larger than the poloidal
field component. Consequently, the vector that lies inside the magnetic surface and is
perpendicular to the field makes only a small angle with the unit vector of the poloidal
direction, so they are often used used as synonyms. The toroidal angle is denoted φ. For
theoretical studies, the described configuration is often simplified under the assumption
of circular and concentric flux surfaces. In that case, the minor radius r, comparable to
ψ, is used. To describe the form of a flux surface, the inverse aspect ratio

ε = r

R
(2.10)

is defined. An important quantity to describe a tokamak plasma is the safety factor q.
It is defined as the number of toroidal revolutions needed by a field line to end up at
the same poloidal position. If q has a rational value, the field line closes upon itself, if
irrational, the field line traces out the flux-surface. From definition one obtains

q = 1
2π

∮ 1
R

Bφ
Bθ

ds, (2.11)

22



2.2. Tokamak Fusion Reactor

which gives for small ε
q = ε

Bφ
Bθ

. (2.12)

The safety factor varies with the minor radius and plays an integral role for large scale
magnetohydrodynamic instabilities, hence its name. To describe this variation, the
(magnetic) shear ŝ

ŝ = r

q

∂q

∂r
(2.13)

is defined. To describe the quality of the confinement, the so-called plasma-β is used. It
is the ratio of the kinetic and the magnetic pressure and is defined as

β = p

B2/2µ0
, (2.14)

where p is the pressure and µ0 the magnetic permeability.

Due to the toroidal shape, the strength of the magnetic field changes if one follows the
twisted magnetic field lines around the torus. At the outboard mid plane, the magnetic
field has a minimum, thus called the low field side, while at the inner board side, the
field has a maximum, thus called the high field side. For circular concentric flux surfaces
B(θ) is given as

B(θ) = B0
1 + ε cos θ . (2.15)

The variation of the magnetic field along the field line leads to trapping of (a part of the)
charged particles on the low field side. This can be seen by considering the magnetic
moment and energy of the particle. The magnetic moment of a gyrating particle, which
can be shown to be a constant of motion, is

µ =
mv2
⊥

2B(θ) = const. . (2.16)

Thus, the variation of B(θ) along a field line yields a variation of the perpendicular
velocity v⊥. Since the total kinetic energy of a particle

W = m

2 v
2 = m

2 v
2
‖ + v2

⊥ = const. (2.17)

is conserved, the velocity along the field line v‖ decreases as the particle moves from the
low field side to the high field side. A particle with a parallel velocity on the low field
side that satisfies

v‖ ≤
(
Bmin
Bmax

− 1
)
v⊥, (2.18)

cannot reach the high field side and is trapped in the magnetic field well. Particles
with a v‖ above that threshold are commonly denoted passing particles. The poloidal
projections of the particle’s orbits of both cases are shown in Fig. 2.6a and Fig. 2.6b.

23



2. Plasmas and Tokamaks

(a) Sketch of the orbit of a passing particle’s gyro-centre in a tokamak (green). The projection
on a poloidal plane is shown in dark blue. The field is oriented outwards in that poloidal plane
whereas the particles move inwards.

(b) Sketch of the orbit of trapped particle’s gyro-centre in a tokamak (green). The projection
on a poloidal plane is shown in dark blue. The field is oriented outwards in that poloidal plane
whereas the particles move inwards.

The passing particles exhibit a circular curve, slightly shifted due to drifts, whereas the
trapped particles show a “banana” shaped orbit.

The largest tokamak experiment, a grand international project, will be the International
Thermonuclear Experimental Reactor (iter) [4, 5], located in the south of France, with
the first plasma to be scheduled in 2025 [16] (as of 2019). Its plasma geometry has
a major radius of 6.2m, a minor radius of 2m and a volume of 840m3 [16]. A sketch
is shown in Fig. 2.7. Further tokamak experiments notable for this thesis that are
operating, are asdex Upgrade [3] (Germany), diii-d [17] (us) and jet [18] (uk). They
are predecessors of iter, with their major radii being about a factor of 2 to 4 smaller. A
historical overview of fusion research, inter alia detailing their involvement, can be found
in Ref. [19]
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2.3. Turbulence due to the Ion Temperature Gradient instability

Figure 2.7.: Sketch of iter. From Ref. [16].

2.3. Turbulence due to the Ion Temperature Gradient
instability

In the plasma of a fusion reactor, the Ion Temperature Gradient (itg) instability (see
for example Ref. [20] and references therein) is expected to be the dominant instability
leading to anomalous transport connected with turbulence. The understanding of the itg
requires the concept of drift waves (see for example Refs. [6, 12]). They are self-consistent
wave-like density perturbations and flow velocity patterns that propagate across the
magnetic field due to a density gradient in the plasma. Drift waves are not necessarily
unstable and can be purely travelling waves, however they become unstable due to
dissipative effects in the plasma. As they do not depend on the curvature of the magnetic
field, a simplified description can be carried out in slab-like geometry (where magnetic
field lines are straight and r ≡ x, θ ≡ y, ϕ ≡ z, B = Bez) that represents a poloidally
small part of the torus. Starting with a small plane wave perturbation of the background
ion density n0,i:

ni ∝ exp[kyy − ωt]. (2.19)

The electrons react significantly faster than the ions due to their smaller mass and move
along the magnetic field lines (z-direction) to restore quasi-neutrality, which leads to a
change in the electron pressure

pe = (n0,e + ne)T0,e, (2.20)

with the electron density perturbation ne and the (here unperturbed) temperature T0,e.
Thereby, the electrons obey the (simplified) force balance

(n0,e + ne)me

∂v‖,e

∂t
= −∂pe

∂z
+ (n0,e + ne)eEz, (2.21)
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The inertial term is neglected, as the electron reaction is considered instantaneous on the
time scale of the ion dynamics, such that the pressure is balanced only by the electric
field. Assuming that T0,e is constant in the small region considered here and neglecting
second order terms, this results in

T0,e
∂ne
∂z

= n0,ee
∂φ

∂z
, (2.22)

which leads to the adiabatic electron response

ne = n0,ee
φ

T0,e
, (2.23)

which generates a potential perturbation φ in phase with the density perturbation ni.
The resulting electric field leads to an E ×B drift of the ions vE = −ikyφ/Bex. Their
reaction is described with the linearised continuity equation:

∂ni
∂t

= −vE · ∇n0,i. (2.24)

The drift is aligned with the density gradient ∇n0,i/n0,i = −ex/Ln and moves ions into
the region of the perturbation out of phase in relation to the density perturbation. From
the dense region, plasma is moved (in x-direction) to one side of a high density region
of the perturbation. From the region with lower background density, plasma is moved
to the other side of that perturbation’s region. This results in a propagation of the
perturbation:

−iωni = − ikyφ
B

n0,i
Ln

. (2.25)

Assuming quasineutrality ni = ne and Eq. (2.23), the frequency of the drift wave is given
as

ω = kyT0,e
eBLn

. (2.26)

A sketch of the drift wave process is shown in Fig. 2.8. Note that in reality, this process
(and also the process described in the following) is not a successive, but rather a simulta-
neous process, as quasineutrality has to be satisfied.

For the itg instability to arises from drift waves, in addition to the density gradient, an
ion temperature gradient and a magnetic field gradient (and a curved magnetic field), as
found in toroidal configurations, have to be present. When the ion temperature gradient
is parallel to the density gradient, the drift wave mechanism pulls dense and also hot
plasma, and similarly, less dense and also cold plasma into the corresponding regions of
the perturbation. Consequently, the density perturbation of the drift waves coincides
with an π/2 out of phase temperature perturbation Ti. As described in Sec. 2.1, the ∇B
drift (and the curvature drift) vd lead to a temperature dependent motion of a particle’s
gyrocentre in the poloidal (corresponds to ey) direction. The drift velocity vd depends
on the velocity of the particles, thus vd depends on the plasma temperature. Therefore,
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Figure 2.8.: Sketch of the density n of a drift wave in slab geometry (with B = Bez)
with a background density gradient ∇n0. A perturbation of the ion density (n+, n−)
leads to a potential perturbation (φ+, φ−) due to the electron dynamic. The electric
field results in an E ×B drift of the ions, which is aligned to the background density
gradient. From the high (low) background density region, plasma is moved to the
upper side of a high (low) density region of the perturbation. The perturbation
moves upwards.

more particles are moved from a hot region of the temperature perturbation than from a
cold region. On the outboard side of the torus, the magnetic field gradient is parallel to
the other gradients and the plasma of a hot region (cold region) is moved towards a high
density region (low density region). Then the perturbations grow due to the favourable
phase difference, the drift waves become unstable (and have a complex frequency) and
the itg is observed. If the magnetic field gradient is anti-parallel, as found on the inboard
side, the ∇B drift is reversed, which leads to a stabilization of the drift waves through
the described mechanism. A schematic synopsis of this process is given in Fig. 2.9. The
(adiabatic) itg does not lead to a time averaged particle flux in the radial (corresponds to
ex) direction. However, the time averaged heat flux Q in the radial direction is non-zero,
as the temperature perturbation and the E ×B drift due to the perturbation is out of
phase:

Q = 〈TevE · ex〉t. (2.27)

The calculation of Q requires the knowledge of the fluctuations, which are obtained
through nonlinear simulations.

itg turbulence exhibits a threshold in the temperature gradient, with the itg developing
only for temperature gradients above the critical value. In fact, several thresholds are
known: the linear threshold, the nonlinear threshold and the finite-heat-flux-threshold.
The linear threshold is calculated from linear theory with the itg developing only for
temperature gradients above the critical value. The nonlinear threshold, described in
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Figure 2.9.: Sketch of the itg instability. The density n is shown on the left, the (ion)
temperature T is shown on the right. Drift waves are augmented with a gradient
of the background temperature and background magnetic field. A temperature
perturbation π/2 out of phase with the density perturbation is observed. The
gradient of the magnetic field leads to a temperature dependent ∇B drift, that
reinforces the density perturbation, which renders the drift waves unstable.

Ref. [21], lies at a higher temperature gradient and is found in nonlinear turbulence
studies. The up-shift in the threshold compared to the linear theory is caused by the
zonal flow, a secondary mechanism that stabilizes the turbulence, which will be explained
in the next section. The finite-heat-flux-threshold [11] shifts the observed threshold
further upwards and is related to structure formation in the zonal flow.

An important numerical test case for itg turbulence is the so-called cyclone base case
(cbc). It represents a parameter set from an iter-relevant diii-d [17] high confinement
shot (shot #81499, t = 4000ms, Ref [22]). Its importance stems from the use in Ref. [21],
where the several physical models and also different numerical implementations were
compared towards their prediction of itg turbulence and the resulting transport. From
then on, the cyclone base case has served as a common benchmark for many models and
applications, further consolidating its relevance. For these reasons it is often employed in
the studies of this thesis.

2.4. Zonal flows and turbulence suppression thereby

Zonal flows are latitude parallel, toroidally symmetric shear flows, i.e. being only a
function of the radial coordinate. In the radial direction bands are formed, as sketched in
Fig. 2.10. This band structure is reminiscent of the atmospheric phenomena, paradigmatic
being the distinct belt structure perceptible in the Jovian atmosphere [23]. Zonal flows
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Figure 2.10.: Sketch of zonal flows in a plasma.

are linearly stable, but are nonlinearly driven by turbulence. To describe the evolution
of the zonal flow, the momentum balance equation can be used (for a more elaborate
derivation see for example Ref. [24]). Using the Reynolds decomposition, assuming
incompressibility and taking the flux surface average (denoted as 〈. . .〉) one obtains for
the zonal flow velocity vZF

∂vZF
∂t

= − ∂

∂ψ
τ. (2.28)

Here, τ denotes the flux surface averaged Reynolds stress

τ = 〈vψvθ〉 , (2.29)

determined with the radial and binormal component of the E × B flow, vψ and vθ
respectively. The zonal flow is related to a potential φZF that is only a function of the
radial coordinate

vZF = 1
B

∂φZF(ψ)
∂ψ

. (2.30)

A heuristic picture of the zonal flow drive can be given as follows. Isotropic turbulence,
which can be visualized with perfectly circular turbulent vortices, leads to a vanishing
Reynolds stress as the products vψvθ cancel in the flux surface average due to symmetry.
However, a small shearing of the turbulent vortex breaks the symmetry and results in a
non-vanishing averaged Reynolds stress and a net flow leading to a further shearing of
the turbulent vortex. The mechanism outlined above represents an instability known as
the modulation instability [25, 26]. A more elaborate quantitative approach assumes a
multi-mode-interaction, the so-called four-wave approach, which is treated for example in
Refs. [25–29]. Although the evolution of zonal flows is governed by nonlinear processes,
significant insights can be gained from their linear response to perturbations akin to
turbulence [30]. The response kernel K(t) for the evolution of the (spectral) zonal
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potential after an initial perturbation is given as [30–32]:

K(t) =
φkψ(t)
φkψ(0) = KGAM(t)(1−KR) +KR. (2.31)

Early on, a damped Geodesic Acoustic Mode (GAM) [33] with frequency ωGAM is found,
which is described with

KGAM(t) = cos(ωGAMt) exp(−γGAMt), (2.32)

with the damping rate γGAM. At later times, after the GAM has decayed, a residual
potential remains:

KR = 1
1 + 1.6q2/ε1/2 , (2.33)

valid for collisionless itg turbulence.

Zonal flows can be damped by various effects. The damping due to collisions [32,
34, 35] is investigated in this thesis. It occurs through the friction force between the
trapped and passing particles enhancing the shielding of the zonal potential through
the neoclassical polarization and the relaxation of the (velocity) distribution function
towards a Maxwellian. In the response kernel it can be accounted for with a decaying
residual [32, 35], i.e. KR → KR(t). Ref. [35] proposes to use

KR(t) = ε2/q2

1 + ε2/q2

1 + 1−Θ
Θ + ε2/q2 exp

(
−(1 + ε2/q2)Γ

Θ + ε2/q2
t

τii

) (2.34)

instead of Eq. (2.33). Here, Θ ≈ 1.635ε3/2 and Γ ≈ 0.6
√
ε describe the aspect ratio

corrections. Furthermore, the damping due to turbulent momentum transport should be
noted [36].

Zonal flows lead to the suppression or regulation of turbulence [37–43]. A direct effect
of this suppression is the already mentioned nonlinear up-shift of the itg turbulence
threshold, observed in Ref. [21], the so-called Dimits-shift. As this has a strong influence
of the resulting transport and thus the quality of the confinement of a tokamak, zonal
flows are considered with strong interest. The suppression of turbulence can be attributed
to the shear decorrelation of the turbulent fluctuations, described in Refs. [44, 45] and is
proposed as an explanation for the high confinement regime (H-mode) found in Tokamaks
(first observed in asdex) [46]. Here, a sheared background flow vZF is added to a generic
fluid model where a fluctuating field ζ evolves according to( ∂

∂t
+ (vZF + v) · ∇+ Ld

)
ζ = S, (2.35)

with the a free energy source S and a sink Ld. It leads to a reduced radial correlation
length of the fluctuations and as a consequence, the fluctuation level is reduced compared
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Figure 2.11.: A sheared E × B flow leads to a tilting of turbulent vortices and
eventually to the suppression of these structures.

to its ambient level. Furthermore, the shear leads to a damping of the turbulence due to
a tilting of the vortices [47], depicted in Fig. 2.11. The vortices are sheared due to the
E×B flow in the background, which leads to a tilted elongation. If elongated sufficiently,
a vortex breaks into smaller vortices, i.e. the turbulent structures are suppressed and the
resulting transport is reduced. Structures with a large radial extend are affected more
and fast temporally varying shear flows do not contribute significantly [48]. The general
idea is condensed in the so-called Waltz rule/criterion [49, 50]. It states that effective
turbulence suppression will occur if the zonal flow shear rate is comparable to the growth
rate of the itg instability:

ωE×B ≈ γITG. (2.36)

Hereby the shear rate of the zonal flow, i.e. the radial variation of the flow velocity,
abbreviated E ×B shear rate, is related to the zonal potential via

ωE×B = 1
B

∂2φZF
∂ψ2 . (2.37)

2.5. Structures in the zonal flow

Recent studies [8–11, 51] describe the appearance of radial structures, so-called (E ×B)
staircases, in the zonal flow and the corresponding shear. First indications of these
structures are found in Ref. [8], where staircases are observed in global gyrokinetic simu-
lations. First indications are found in the non-local/non-diffusive transport behaviour,
which stems from an avalanche mediated transport related to the staircase structures,
i.e. avalanche like structures strongly dominate the transport in the radial direction but
are confined between the staircase flanks. The study in Ref. [9] further investigates this
topic and shows first experimental indications of these structures in the Tore Supra
tokamak [52]. In Ref. [10], a comparison of gradient and flux driven simulations leads to
the observation of staircases in local simulations and first indications of the turbulent
threshold are found. The analysis of Ref. [11] detailed the influence of the staircase
structures on the threshold of the itg turbulence. It was found that the emergence
of E × B staircases coincides with a further up-shift of the turbulence threshold, the
so-called finite heat flux threshold. This threshold also differs from the nonlinear threshold
in a qualitatively different behaviour of the heat flux as a function of the temperature
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gradient. Whereas the heat flux goes smoothly to zero at the nonlinear threshold, the heat
flux has a finite value up to the finite heat flux threshold, where a jump to zero is observed.

E × B staircases are characterized by distinct forms in the E × B shear ωE×B and
corresponding quantities as show in Fig. 2.12. Their exact form is found to be dependent

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 10 20 30 40 50 60 70

ω
E
×
B
[v

th
/R

]

ψ[ρ∗]

Figure 2.12.: Example of a (fully developed) staircase structure in ωE×B (in gradient
driven simulations).

on the type of the simulation. For flux-driven local simulations (see Chap. 3), triangular
shaped structures are found. Gradient-driven simulations, as in the case of Fig. 2.12,
exhibit box-shaped structures, which are generally more distinct than in flux-driven
simulations. Here, a correlation between a partial opening of the box-shape and a
decreased suppression of turbulence can be observed. In global simulations, “valley”-like
structures in the shear are observed [51]. The appearance of staircases leads to an
ordering of the turbulence on the mesoscale in the radial direction: Transport avalanches
are found in the heat flux. They mostly originate at distinct radial positions correlated
with the staircase structure and propagate up to the barriers formed by the staircases.
This leads to transport barriers that hinder long scale avalanches, effectively reducing
transport. Furthermore, the distinct staircase structure allows a high shear over most
of the radial domain, best seen in gradient driven simulations, which allows to fulfil the
Waltz rule (Eq. (2.36)) effectively.
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2.6. Collisions

Collisions between particles in a plasma can have an impact on the quality of the con-
finement. As particles in a plasma are charged, one could handle all interactions between
them using the Coulomb force for a particle-particle interaction (neglecting electromag-
netic influences). However it is convenient to split the treatment into a macroscopic
and microscopic part, where a rough threshold length is given by the Debye length
[12]. The macroscopic treatment governs large scale movements, i.e. drifts etc., using
collectively calculated fields and their influence on the particles as described above. The
microscopic treatment governs the particle’s interactions on a small scale, dubbing these
interactions collisions. This separation allows a sensible analytic and numerical treatment.

Collisions are relatively scarce in most of the plasma and can sometimes be neglected,
nonetheless they often do play a crucial role. A prominent example of such a case is the
bootstrap current, a pressure driven current closely related to the collisional coupling of
trapped and passing particles [53]. Another notable example is the damping of the zonal
flow due to collisions [32, 34], which is investigated in this thesis.
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This chapter presents the gyro-kinetic model, which is used to describe small scale
turbulence in a Tokamak fusion reactor’s plasma in this thesis. It also details on the
implementation of this model into the code gkw (Gyro-Kinetic Workshop) [54], the code
used throughout this thesis. Sec. 3.1 presents an overview of the gyro-kinetic model. The
adiabatic electron response, a widely used approximation of the electron dynamics, is
discussed in Sec. 3.2. The description of the non-trivial field line geometry of a Tokamak
is discussed in Sec. 3.3. The spectral treatment of this system is touched upon in Sec. 3.4.
Sec. 3.5 gives details on the employed simulation domains. Sec. 3.6 concludes with details
specific to gkw, in particular its gyro-kinetic equation.

3.1. Gyro-kinetics

A typical reactor plasma consists of about 1022 particles 1, which is vastly out of scope for
an individual particle description / simulation [30]. Therefore, reduced physical models
are used, the choice depending on the physical effects that are examined. This thesis
focuses on the investigation of turbulence, which has typical length scales comparable
to the ion Larmor radius, i.e. of ∼ 10−3m to ∼ 10−2m. Typical timescales are of the
order of the ion transit time which is R/vth ≈ 10−5s. For a conclusive description of the
turbulence, it is required to follow the evolution of many turbulent structures over a
considerable time (∼ 10−4s to ∼ 10−3s). This means length scales of ∼ 100 Larmor radii
perpendicular to the magnetic field. Furthermore, parallel to the field, the dynamic is
fast and the whole field line (several meters) has to be considered. Thus the description
of turbulence involves a vast range of spatio-temporal scales. Consequently, a simulation
requires a sophisticated model to keep the computational resources at a manageable
amount, while at the same time retaining the defining physical characteristics of the
system. This is achieved with the gyro-kinetic model, which will be briefly presented in
the following, reviews of this topic can be found for example in Refs. [30, 56, 57].

3.1.1. Kinetic description of a plasma

As the vast amount of particles does not enable a feasible description of a plasma as
individual particles, a kinetic- or a fluid-model has to be used instead. The (simplest) fluid
model, magnetohydrodynamics (mhd), does not allow the description of itg-turbulence.
It does not properly depict the required scales [30]. Also, mhd lacks several features

1iter: ∼ 1023, asdex Upgrade: ∼ 1021, jet: ∼ 1021 [3, 16, 18, 55].
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relevant for (itg-)turbulence, examples being an energy balance equation or kinetic
effects. Consequently, for the tasks of this thesis, a kinetic model has to be chosen.
Therein, the plasma is described via a particle density distribution function fp(x,v) in
phase space, the space spanned by the possible degrees of freedom, here the position x
and the velocity v. fp describes the density of particles in phase space:

N =
∫ ∫

fp dv dx, (3.1)

where N denotes the total number of particles. The distribution function is evolved in
time via the Vlasov equation:

∂fp
∂t

+ {fp, Hp} = ∂fp
∂t

+ dx
dt
· ∂fp
∂x + dv

dt
· ∂fp
∂v = 0, (3.2)

whereHp is the Hamiltonian and the curly brackets denote the Poisson-bracket. This leads
to a reduced description of the many particle system, as the particles are uncorrelated.
As a plasma consists of charged particles, the interactions between particles are assumed
to be electromagnetic. They are split into short range, particle-particle-interactions and
long range interactions through a “smoothed out” electric and magnetic field (see Sec. 2.6.
The short range interactions are described with a collision operator at the r. h. s of
Eq. (3.2). Then, the evolution of the distribution function of a species s due to collisions
with the species S′ is governed by

∂fp,s
∂t

+ {fp,s, Hp,s} = C(fp,s, f ′p,s). (3.3)

Using the Maxwell equations to calculate the electric and magnetic fields and considering
the Lorentz force, it is possible to describe the long range interactions. The combination
of Eq. (3.2) and the Maxwell equations forms the Vlasov-Maxwell system, which is used to
describe a plasma. However, to describe turbulence in a (reactor) plasma, it is beneficial
to use characteristic properties of such a plasma, which lead to a further reduction of the
description.

3.1.2. Gyro-kinetic ordering

In the turbulence of Tokamak fusion reactor’s plasma, a characteristic separation of
spatial and temporal scales is observed. The presence of a strong magnetic field leads to
a gyro-motion with a Larmor radius ρi ≈ 10−3 . . . 10−2m, which is small compared to the
device size (∼ 1 . . . 10m) and related characteristic length scales, for example the density
gradient length Ln = 1/|∇n|. However, the length scales of turbulence can be comparable
to ρi, which requires one to cover these length scales for a physically correction description
of plasma turbulence. The time scale of the gyro-motion 1/Ωi,e ≈ 10−8s is smaller than
times characteristic for turbulence, which evolves on the transit or Alfvén time scale
a/vA ≈ 10−6s < 1/ωturb < R/vth ≈ 10−5s. Therefore, it is not a necessity to cover
time scales comparable to 1/Ωi,e to describe turbulence. Furthermore, perturbation of
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plasma quantities (like the perturbed density δn) can be considered small compared to
their background (background density n0). Similar assumptions can be made for the
fields (for example the perturbed magnetic field B1 and the background magnetic field
B0). The strong magnetic background field introduces a characteristic anisotropy in to a
Tokamak plasma: The particle velocity perpendicular to a field line (caused by drifts
vd) is small compared to the velocity along the field line vth. Consequently, quantities
exhibit strong variations in the direction perpendicular to a field line (∇⊥, k⊥) compared
to the variation along the field line (∇‖, k‖). This ordering can be summarized (see for
example Ref. [30]):

1� ρi
Ln

∼
ωturb
Ωi

∼
δn

n0
∼
B1
B0

∼
vd
vth

∼
∇‖
∇⊥

∼
k‖

k⊥
∼ εg, (3.4)

where it is assumed that all smallness-relations are comparable which is related to a
smallness parameter εg. Taking advantage of this ordering allows a much more efficient
use of computational resources.

3.1.3. The gyro-kinetic transform

To use the aforementioned separation of scales, the gyro-centre transform is employed on
the kinetic model. This transform is best motivated in guiding-centre coordinates (see
for example Ref. [58] and references therein), which takes advantage of the gyro-motion.
Here the position of a particle in six dimensional phase space is defined in relation
to the position of its gyro-centre with spatial coordinates X in conjunction with the
velocity parallel to the magnetic field v‖ and the magnetic moment µ = msv

2
⊥/2B0 of

the gyration. The actual position of the particle is determined with the gyro-phase-angle
ζ. As argued above, the time scale of the gyro-motion is small compared to time scales
relevant for turbulence. Therefore, one can “average out” the gyro-motion, which is done
with the so-called gyro-centre transform [59, 60], sketched in Fig. 3.1. It eliminates the

ρ

gyro-centre transform

6D phase space 5D phase space

Figure 3.1.: Schematic presentation of the gyro-centre transform.

fast gyro-motion and further high-frequency phenomena while retaining essential kinetic
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effects that are required to describe turbulence. This allows to increase the time step of a
simulation which saves computational resources. Also, the dimensionality of the problem
is reduced as the dependence on the gyro-phase-angle ζ is removed. However, as typical
length scales of the turbulence are comparable to the scale of the Larmor-radius, this
variation of the fields on this scale has to be accounted for in the averaging process to
allow a correct investigation of plasma turbulence. The gyro-centre transform is based
on a Hamiltonian formalism with Lie perturbation theory [61] and it requires that the
perturbation of the treated quantities are small (as shown with εg in Eq. (3.4)). A rigorous
derivation of the gyro-centre transform can be found in Ref. [56]. This transformation
ensures that the Hamilton structure of the system is kept, which retains the conservation
properties of the Vlasov-Maxwell system. Formally it represents a transformation from
standard phase space coordinates over guiding-centre coordinates to the position of the
gyro-centre:

(x,v)→ (X, v‖, µ, ζ)→ (X, v‖, µ). (3.5)

3.1.4. The gyro-kinetic equation

Applying the gyro-centre transform on the Vlasov equation (Eq. (3.2)) leads to an
equation for the evolution of the distribution function of the gyro-centre f . Taking
into account that the gyro-centre magnetic moment is constant µ̇ = 0 [56] and that in
gyro-centre phase space the gyro-angle can be neglected, allows to write the (collisionless)
gyro-kinetic equation

∂f

∂t
+ dX

dt
· ∂f
∂X +

dv‖

dt

∂f

∂v‖
= 0. (3.6)

The second term can be expanded to

dX
dt

= v‖b + vE + vD, (3.7)

where b denotes the unit vector along the magnetic field. It describes the motion along
the field line, the motion due to the E ×B drift and the combined ∇B and curvature
drift. The third term in Eq. (3.6) can be evaluated using the relation

dv‖

dt
= − 1

mv‖

dX
dt

(µ∇B + Ze∇〈φ〉), (3.8)

which models the influence of an inhomogeneous magnetic and electric field.

To calculate the electromagnetic fields, the gyro-kinetic Poisson and Ampère equations
are required. In a plasma, no large electric fields are present (on the scales relevant for
gyro-kinetics), therefore not the Poisson equation, but the quasineutrality constraint∑

s

Zsns(x) = 0 (3.9)
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3.2. Adiabatic electron response

is considered. This requires the species particle density ns(x) (in particle phase space),
which has to be obtained from fs, the gyro-centre distribution function by inverting the
gyro-centre transform with the operator T averaged over the gyro-angle (denoted with
angle brackets):

0 =− 2πB
∑
s

qs

∫
dv‖

∫
dµ〈T fs〉 =

− (e(n̄i − n̄e) + ρpol) = −(ρ̄+ ρpol),
(3.10)

with the gyro-centre densities n̄s. The polarization density ρpol is used to describe the
difference (at a point in real space) between the actual charge density and the charge
density of the gyro-centres ρ̄:

ρpol(X) = 2πB
∑
s

qs

∫
dv‖

∫
dµ(〈T fs〉(X)− fs(X)) ∝ φ(x)− 〈φ〉(X). (3.11)

Ampères law requires a similar treatment:

∇2A‖ = 2πB
∑
s

Zs

∫
dv‖

∫
dµ〈vT fs〉. (3.12)

The gyro-kinetic equation and the accompanying field equations in the form in which
they are implemented in gkw are found in Sec. 3.6.1.

3.2. Adiabatic electron response

Due to their lower mass, the electrons move rapidly along the magnetic field lines. on
the time scale of the ion dynamics, the movement of the electrons traces out the flux
surface, resulting in an almost constant electron temperature on the surface and a density
response that is only connected to the electric field [6]. This allows the approximation
of the electron dynamics with the so-called adiabatic electron response / limit, which
is sufficient for many numerical experiments. In that case, only the ion dynamics are
simulated, whereas the electrons of the plasma are not simulated as a kinetic species.
Instead, the influence of the electrons is calculated with an analytical expression, which
leads to a large reduction of computational resources. The main reason is that, as
ions have a smaller thermal velocity than electrons, the simulation of the ions in the
adiabatic electron limit allows a larger time step to satisfy the Courant-Friedrichs-Lewy
condition [62] (the condition that particles / perturbations have to move less than the
grid width within a time step). The relation of the thermal velocities of both species
(protons/electrons) is

vth,e
vth,i

=
√
mi

me
≈ 43, (3.13)

so a significant reduction is possible, when the explicit simulation of electrons can be omit-
ted. The adiabatic electron response is often abbreviated as “adiabatic electrons”, whereas
the explicit simulation of electrons as a kinetic species is abbreviated as “kinetic electrons”.
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3.3. Field aligned coordinates and background magnetic field
configuration

Here, the field aligned coordinates used by gkw, the Hamada coordinates [63, 64], are
presented. Also an overview of the models to describe the equilibrium magnetic field,
called geometries, is given.

3.3.1. Hamada Coordinates

It is easily understood that using coordinates which are aligned with the magnetic field
holds many benefits for the simulation of a tokamak plasma. Most quantities show only
a small variation along the direction of the magnetic field, whereas a strong variation
is found perpendicular to the field. Consequently, if the coordinate grid is aligned with
the magnetic field, for nearly all problems, along the field a coarser resolution can be
employed, strongly reducing the computational cost [65]. As the form of the magnetic
field in a tokamak fusion reactor is winding helically, as shown in Fig. 3.2, the chosen
coordinates are not trivial. The so-called (field aligned) Hamada coordinates [63, 64]

Figure 3.2.: Flux surface (blue) and magnetic field lines with q = 1, 4 (green) and
q = 2.0 (red).

are used in gkw. Their features are straight magnetic field lines and also straight
current-density lines [66], where the coordinates are aligned with the magnetic field lines.

Here, a brief overview of the required transformation to obtain the coordinates shall
be given. For this transformation, it is required that the magnetic field is known. One
starts with an orthogonal toroidal coordinate system (ψ, θ, ϕ), sketched in Fig. 3.3. Here,
ψ is the radial coordinate (direction of the minor radius) and taken as a label for flux
surfaces, so that

B · ∇ψ = 0 (3.14)

holds. The major radius is denoted with R and ψ = 0 is located at Rref. θ denotes the
poloidal angle and ϕ denotes the toroidal angle. The transform is split into two parts, the
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3.3. Field aligned coordinates and background magnetic field configuration

φ

ϴ

z

ref

ψ

Figure 3.3.: Schematic of the initially used toroidal coordinates.

first obtaining straight magnetic field lines and the second part aligning the coordinates
with the magnetic field lines. With the intermediate coordinates it reads

(ψ, θ, ϕ)→ (ψ, s, γ)→ (ψ, ζ, s), (3.15)

where ζ labels magnetic field lines on a flux surface and s parametrizes the magnetic
field line, γ being a subsidiary coordinate.

The first part of the transformation is motivated in the sketch shown in Fig. 3.4. Starting

field line

cut

φ

ϴ

flux surface

ϴ
φ γ

s

constant s

Figure 3.4.: Schematic of the initial part of the transformation, which straightens
the field lines. The radial coordinate is going outwards in the left picture and out of
the drawing plane on the others.

with a flux surface of a torus (left), a surface which is equivalent if correct boundary
conditions are taken, can be found (middle). In this surface, the magnetic field lines
wiggle due to the curvature on a torus in the (ψ, θ, ϕ) system (Eq. (3.14) still holds).
To compensate this, new coordinates (ψ, s, γ) are introduced. In that system, the field
lines are straight, as shown in the rightmost surface of Fig. 3.4. To construct the
transformation, one starts with the magnetic field written in terms of its contravariant
components

B = sBRBt∇ϕ+∇ϕ×∇Ψ, (3.16)
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where Ψ, the poloidal flux with ψ = ψ(Ψ), is used for generality and sB denotes the sign
of B. For the new coordinates it is required that

s(ψ, θ), γ(ψ, θ, ϕ). (3.17)

The requirement that the field lines are straight, i.e. that

Bγ

Bs
= const. (3.18)

for any fixed ψ, can be achieved if the contravariant components of the magnetic field
are flux functions

Bs = Bs(ψ), Bγ = Bγ(ψ). (3.19)

Requiring toroidal symmetry and Eq. (3.14) leads to

Bs = B · ∇s = B · ∇θ ∂s
∂θ
. (3.20)

Integrating in θ and using that Bs = Bs(ψ) yields

s = Bs

∫ 1
B · ∇θ dθ. (3.21)

Constraining s to the domain [−1/2, 1/2] as one poloidal turn

1 =
∮
∂s

∂θ
d θ (3.22)

gives

Bs = 1
/∮ 1

B · ∇θd θ, (3.23)

resulting in the expression for s

s = s(ψ, θ) =
∫ θ

0

dθ′

B · ∇θ′

/∮ dθ′

B · ∇θ′ . (3.24)

To obtain γ, one starts with a subsidiary function g(θ, ψ)

γ = ϕ

2π + g, (3.25)

so that γ ∈ [0, 1] corresponds to a toroidal turn. Here

Bγ = sBBϕ
2πR + B · ∇θ∂g

∂θ
(3.26)
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3.3. Field aligned coordinates and background magnetic field configuration

gives the contravariant component of the magnetic field along γ. This allows to determine
g:

g =
∫ θ

0

dθ′

B · ∇θ′
[
Bγ − sBBϕ

2πR

]
. (3.27)

Bγ can be determined through the periodicity of g

0 =
∮ dθ′

B · ∇θ′
[
Bγ − sBBϕ

2πR

]
, (3.28)

which results in
Bγ =

{sBBϕ
2πR

}
, (3.29)

where the curly brackets denote the flux surface average. Taking into account that
Bϕ ∝ 1/R leads to

γ(ψ, θ, ϕ) = γ(ψ, θ, ϕ) = ϕ

2π + sB
RBt
2π

∫ θ

0

dθ′

B · ∇θ′
[{ 1
R2

}
− 1
R2

]
, (3.30)

which completes the first transformation.

The result of the second transformation to align the coordinates with the magnetic field
lines is sketched in Fig.3.5. This is done via the transformation

∇s ζ

∇ζ

s

Figure 3.5.: Aligning the coordinates with the magnetic field lines leads to a non-
orthogonal coordinate system. The toroidal angle is flipped, so that the coordinate
system can be defined as (ψ, ζ, s).

ζ = qs− γ, (3.31)

where q is the safety factor q = Bγ/Bs. This transform changes the sign of the toroidal
angle, so that the coordinate system can be defined with (ψ, ζ, s) as a right handed
coordinate system. A relatively extensive treatment of this transformation and some
possible caveats are discussed in Refs. [67, 68].
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3.3.2. Background magnetic field configuration

To simulate a plasma while using the coordinates described above, the shape of the
background magnetic field has to be specified. Several models, in this context called
geometries, can be employed to describe the background field. The shape of the field is
determined by the force balance. For a toroidally symmetric system, this equilibrium
configuration is described by the Grad-Shafranov equation [69, 70]. It can be solved, for
example, with the equilibrium solver code chease [71] and subsequently fed to into gkw.
However, the exact geometry of the magnetic field can be cumbersome in an analytical
or numerical analysis and therefore several approximations exist.

One of the most common geometries for an axisymmetric tokamak is the so-called s− α
geometry. It is a simplified model where the flux surfaces are taken to be circular and
concentric. Furthermore, it is the model approximating the Grad-Shafranov-equilibrium
in the lowest order of the inverse aspect ratio ε. The variation in the first order of
ε is kept only in the amplitude of the magnetic field itself, in all other quantities the
dependence is neglected. Consequently, this model is only valid for a large aspect ratio
tokamak (ε→ 0). It can be seen as the crudest model that still reproduces trapping effects.
Nevertheless it holds significance at present due to its vast prevalence in the scientific field.

The model that will be referred to as “circular geometry” fixes the aforementioned
problems because it retains the modulation of the magnetic field in all geometric quan-
tities. In this model, again circular concentric flux surfaces are assumed, leading to a
deviation from the exact equilibrium obtained through the Grad-Shafranov-equation.
This assumption of circular concentric flux surfaces is valid for small ε and low plasma-β,
allowing to neglect poloidal variations of the flux surface ∝ ε2 or the Shafranov-shift (the
displacement of the flux surface’s centre) [72]. However, as all orders of ε are kept in the
derivation of the circular geometry, a completely consistent description of the geometry
is ensured in this model, which is the important factor for the analysis of many effects.
It proves to be sufficient for the problems studied in the scope of this thesis [73]. The
field aligned coordinates are given with Eq. (3.24) as

s = 1
2π (θ + ε sin θ) (3.32)

and with Eq. (3.30) and Eq. (3.31) as

ζ = − ϕ

2π + q

π
arctan

[√
1− ε
1 + ε

tan θ2

]
. (3.33)

As radial coordinate, the minor radius of the flux surface is used. The deficits of the s−α
model compared with the circular model do have significant influences on the obtained
results, however they are mostly quantitative. An in-depth comparison of both models
and their influence on turbulence analysis can be found in Ref. [73]. Relevant for this
thesis, Ref. [11] shows the differences of the obtained heat flux in the s − α and the
circular geometry.
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3.4. Spectral representation

3.4. Spectral representation

Due to the symmetries of a torus, a spectral representation of the quantities proves to
be beneficial. Here, the term spectral is used in the sense that the relevant quantities,
for example the distribution function, are Fourier transformed in a designated direction.
Instead of examining the quantities on a grid in real space, the Fourier coefficients of the
quantities, dubbed modes, are used in the code. This leads to an increase in efficiency, as
the finite difference scheme required for a derivative can be replaced by a multiplication
with the corresponding wave vector, which saves the memory access to the quantities’
adjacent grid points. In all cases, gkw treats the binormal direction spectrally and the
direction along the magnetic field non-spectral. The treatment of the radial direction can
be chosen, with the choice depending on what radial domain is used and on the physical
problem that is examined. Due to the available choices, the adverb “radially” will be
omitted in the following. The distribution function is represented by a sum of Fourier
modes:

f(ψ, ζ, s) =
∑
kζkψ

f̂(kψ, kζ , s) exp[ikζζ/ρ∗ + ikψψ/ρ∗]. (3.34)

As f(ψ, ζ, s) is a real quantity, the amplitude of the mode with (kψ, kζ) must equal the
complex conjugate of the amplitude of the mode (−kψ,−kζ). This can be exploited by
limiting the sum to positive wave vectors. For the numerical treatment with gkw one
limits kζ ≥ 0 to be compliant to common FFT routines [74]. It results in

f(ψ, ζ, s) =

∑
kζ>0,kψ

f̂(kψ, kζ , s) exp[ikζζ/ρ∗ + ikψψ/ρ∗] + f̂ †(kψ, kζ , s) exp[−ikζζ/ρ∗ − ikψψ/ρ∗]


+

∑
kζ=0,kψ

f̂(kψ, kζ = 0, s) exp[ikψψ/ρ∗].

(3.35)

3.5. Simulation domains in a Tokamak

For the simulation of the (turbulent) plasma in a Tokamak, several types of simulation
domains can be used. In the scope of this thesis two options are used: simulations on the
flux-tube domain and simulations on the global domain.

3.5.1. Flux-tube simulation

The flux-tube domain represents a radially thin tube confined by flux-surfaces. When
this domain is used, it is assumed that key features of the desired plasma behaviour have
a small radial extend compared to the system size or the length scales of background
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quantities. This is often given for turbulence (far from the edge), as discussed in the
gyro-kinetic ordering in Sec. 3.1.2. Therefore a radially small simulation domain can
be used and the variation of the background quantities in the radial direction can be
neglected. As a consequence, the turbulence is taken to be homogeneous, which allows the
use of periodic boundary conditions. These boundary conditions also require a statistical
assumption, as it is assumed that the turbulence in the simulation domain is (exactly)
similar to the one in the adjacent domain. This assumption can lead to unphysical effects
that overestimate the correlation, as turbulence can be homogeneous but not necessarily
correlated over longer distances. To prevent these effects, it must be ensured that the
correlation length of the turbulence is smaller than the size of the simulation domain
[65]. The small radial extend leads to the assumption of the local limit. Here, the set
of normalized equations becomes independent of ρ∗. Flux-tube simulations lead to a
reduction in the required computational resources. Beside the obvious reduction due to
a smaller domain size, several factors come into play. Due to the constant background
quantities and the assumption of homogeneous turbulence, it is possible to treat the radial
direction spectrally. This leads to a decrease in computation costs, because the finite
difference scheme representing a derivative can be replaced by an analytic expression,
as described in Sec. 3.4. Due to the toroidal symmetry, the spectral representation
alongside of periodic boundary conditions is used in the binormal direction (not limited
to the flux-tube domain). As one can assume that the turbulence is homogeneous in the
binormal direction, the domain can be restricted. Again, care has to be taken, not to
overestimate the correlation in the binormal direction. As a result, instead of the full
torus, only a thin quadrilateral tube is simulated, for clarification a sketch is shown in
Fig. 3.6.
Due to the helical winding of the flux-tube, part of the boundary conditions become

Figure 3.6.: Sketch of a flux tube domain in a torus with q = 1.4. The magnetic axis
is indicated in red.

non-trivial. In the radial direction, periodic boundary conditions apply to a quantity f

f(ψ + l, ζ, s) = f(ψ, ζ, s) (3.36)

for a box of length l. Similarly in the binormal direction, the condition of toroidal
periodicity is formulated:

f(ψ, ζ + 1, s) = f(ψ, ζ, s), (3.37)
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here, the box is normalized to unity. When using Fourier harmonics (Sec. 3.4), this leads
to the following condition for the smallest (non-zero) binormal wave vector kmin:

kmin
ζ

ρ∗
= 2πN, (3.38)

where N denotes an integer. 1/N can be interpreted as the fraction of the poloidal
domain that is covered by the simulation. Due to the smallness of ρ∗, the constraint can
be satisfied with very small changes in ρ∗ or kζ . Because the equations are independent
of ρ∗ in the local limit, the periodicity constraint is satisfied. In the s direction, assuming
s = 0 to be located at the outboard mid plane, the helical winding has to be accounted
for:

f(ψ, ζ + q/2, 1/2) = f(ψ, ζ − q/2,−1/2). (3.39)

In the case of a spectral simulation this leads to∑
k

f̂(kψ, kζ , 1/2) exp
[
i
(kψψ
ρ∗

+
kζζ

ρ∗
+
qkζ
2ρ∗

)]
+ c.c. =

∑
k

f̂(kψ, kζ ,−1/2) exp
[
i
(kψψ
ρ∗

+
kζζ

ρ∗
−
qkζ
2ρ∗

)]
+ c.c. .

(3.40)

With an expansion of q up to first order at a reference value q0 taken at the centre of the
radial domain

q(ψ) ≈ q0 + ∂q

∂ψ
|0ψ, (3.41)

and the magnetic shear (Eq. (2.13)) the boundary condition becomes

f̂(kψ, kζ , 1/2) = f̂(kψ + kζ ŝq/r, kζ ,−1/2). (3.42)

This formulation is close to the so-called ballooning transform [75–77] and leads to a
connection between the radial and the binormal modes. As it is generally desired to have
the mode to which the reconnection takes place to be in the grid, a constraint for the
spacing of the modes is generated.

3.5.2. Global simulation

The arguments for the use of flux-tube simulations are consistent with the gyro-kinetic
ordering, however their validity depends on the smallness of ρ∗. For a comprehensive
description of turbulence, domains with a larger extend are required, which can invalidate
the assumption of constant background quantities if ρ∗ is not small. In such a case, a so-
called global simulation domain is used, where the background quantities are not assumed
to be constant and instead, profiles are specified or are taken from experimental data.
Furthermore, the periodicity in the radial direction is dropped and boundary conditions
at both sides have to be given, where generally, Dirichlet boundary conditions are
chosen. Due to these restrictions, the radial direction can only be treated non-spectrally.

47



3. Simulating Plasma

However the binormal direction is still treated spectrally and the aforementioned boundary
conditions, Eq. (3.37), apply. In the direction along the magnetic field, the boundary
conditions, Eq. (3.39), lead to a phase factor

f̂(ψ, kζ , 1/2) = f̂(ψ, kζ ,−1/2) exp(2πiq(ψ)kζ). (3.43)

In general, these simulations become computationally much more demanding than flux-
tube simulations.

3.6. Gyro-Kinetic Workshop (GKW)

In this section, several of the less general aspects of the nonlinear Eulerian gyro-kinetic
codegkw, i.e. the gyro-kinetic equation, the normalization of gkw, the implementation
of the finite-difference scheme and the collision operator are presented. More details on
these topics can be found in Ref. [78].

3.6.1. Gyro-kinetic equation of GKW

Here, a brief overview of the gyro-kinetic equation and the corresponding field equations
that are implemented in gkw is given. The tedious derivation of these equations will not
be repeated here, but it can be found in Refs. [30, 56]. To obtain the gyro-kinetic equation
in the form in which it will be solved in gkw, the gyro-centre transform is applied to the
Poisson-bracket in Eq. (3.2), which is expanded in its individual contributions, i.e. in the
drifts described in Chap. 2 and further contributions and is employed in a co-moving
frame, i.e. a frame of reference moving along with the plasma bulk rotation. Furthermore,
following from the gyro-kinetic ordering (Eq. (3.4)), the distribution function is split in a
background part and a perturbed part δf . For the background, a Maxwellian distribution
FM is assumed:

FM = nR0

π3/2v3
th

exp

−(v‖ − (RBt/B)ωφ)2 + 2µB/m
v2

th
− EΩ/T

, (3.44)

where nR0 is the reference density at the middle of the radial domain, ωφ is the plasma
rotation and EΩ the centrifugal energy (defined in Eq. (3.51)). From the gyro-kinetic
ordering it follows that δf/FM ∼ ρ∗, which leads to the so-called δf -approximation,
where higher orders in δf are neglected in the nonlinear terms. Solving the field equations
requires to address a further problem: The calculation of the electric field requires a
time derivative of the magnetic field, and consequently, a time derivative of the vector
potential A‖. Therefore, apart from ∂f/∂t, an additional time derivative appears in the
equation system. To circumvent this problem, the distribution function and the vector
potential are merged into a new quantity

g = f + Ze

T
v‖〈A‖〉FM , (3.45)
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which is evolved in gkw with the gyro-kinetic equation for the electrostatic case [78]
∂g

∂t
+ vχ · ∇g + (v‖b + vD) · ∇f − b

m
· (µ∇B +∇EΩ) ∂f

∂v‖
= S. (3.46)

vχ is the combination of the E × B drift and the parallel motion along the perturbed
magnetic field line:

vχ = b×∇χ
B

, (3.47)

where χ is the combined field
χ = 〈φ〉 − v‖〈A‖〉, (3.48)

consisting of the electric potential φ and the parallel component of the gyro-averaged
vector potential 〈A‖〉. The motion along the unperturbed magnetic field is described
with the term v‖b · ∇f . The drift due to the inhomogeneous magnetic field and inertial
terms is described with vD, which is given as:

vD = 1
Ze

[mv2
‖

B
+ µ

]B×∇B
B2 +

mv2
‖

2ZeBβ
′b×∇ψ +

2mv‖
ZeB

Ω⊥ + 1
ZeB

b×∇EΩ. (3.49)

The first term represents the ∇B- and the curvature drift (see Sec. 2.1 in Chap. 2). The
second term is a correction of the curvature drift due to a finite radial pressure gradient
∂p/∂ψ, where β′ is defined as

β′ = 2µ0
B2

∂p

∂ψ
. (3.50)

The third term describes the Coriolis drift due to the co-moving frame with Ω⊥ denoting
the angular rotation vector. The fourth term represents the combined centrifugal drift
and influence of the background potential Φ. Therefore, the centrifugal energy EΩ is
defined:

EΩ = ZeΦ− 1
2mΩ2(R2 −R2

0). (3.51)

The last two terms in Eq. (3.46) describe the forces along the magnetic field lines due to
an inhomogeneous magnetic field, the co-moving frame and Φ. The source term is given
as

S =− (vχ + vD)

·

∇nR0

nR0
+

 v2
‖

v2
th

+ (µB + EΩ)
T

− 3
2

∇T
T

+
mv‖

T

RBt
B
∇ωφ

FM
− Ze

T
[v‖b + vD] · ∇〈φ〉FM .

(3.52)

The fields are calculated with the Poisson equation and Ampères law. The Poisson
equation in spectral representation to calculate φ̂ is

∑
s

ZsnR0,s

2πB
∫

dv‖dµJ0(k⊥ρs)ĝs + Zs
TRs

[Γ(bs)− 1] exp(−Es)φ̂

 = 0, (3.53)
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with the combined energy

Es = Ze〈Ψ〉 − m

2 Ω2
φ(R2 −R2

0) (3.54)

of the plasma’s kinetic rotational energy and the energy of the equilibrium electric
field. Eq. (3.53) is in fact a quasi-neutrality equation, as described in Sec. 3.1.4. To
reconstruct the charge density in real space from the density distribution function from
the gyro-centres, the Bessel function J0(k⊥ρs) [79] and the modified Bessel function Γ(bs)
[80] are required in the integral over the distribution function and the polarization of the
Maxwell background. The species dependent argument bs is defined as

bs = ms

2 Tskθρ∗
Rref
ZsB2 . (3.55)

The spectral version of Ampère’s law to calculate the vector potential A‖ isk2
⊥ + β

∑
sp

Z2
spnR0,sp

mRsp
exp(Es)Γ(bsp)

Â‖ =

β
∑
sp

ZspvRspnR0,sp2πB
∫

dv‖
∫

dµv‖J0ĝsp.

(3.56)

Similarly to the Poisson equation, the Bessel and the modified Bessel function are required
to obtain the current density in real space. The second term of the l. h. s. of Eq. (3.56)
is a correction, as the current carried by the unmodified density distribution function f ,
and not g, determines the vector potential.

3.6.2. Normalization

The quantities in the code are normalized with a reference major radius Rref , a reference
magnetic field, Bref , a reference mass mref , a reference thermal velocity vth,ref , a reference
density nref , a reference temperature Tref and a reference Larmor radius ρref , where

Tref = mref
2 v2

th,ref , ρref =
mrefvth,ref
eBref

(3.57)

holds. They are taken at a reference position in the middle of the simulational domain,
except the magnetic field which is taken at the magnetic axis. A dimensionless, normalized
Larmor radius is defined as

ρ∗ = ρref
Rref

. (3.58)

With these, it is possible to relate to the dimensionless quantities required by the code as

m = mN mref , vth = vth,N vth,ref , n = nN nref , T = TN Tref , (3.59)
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where m denotes the physical quantity and mN the normalized mass used in the code.
Using ρ∗ to ensure that the normalized perturbed quantities are of order of unity,

φ = ρ∗
Tref
e
φN , A‖ = BrefRrefρ

2
∗A‖N . (3.60)

Consequently, the time is normalized as

t = Rref
tN

vth,ref
(3.61)

and the coordinates of the velocity space as

v‖ = v‖,N v‖,ref , µ =
mrefv

2
th,ref

Bref
µN . (3.62)

The perturbed distribution function and the background are normalized as

f = ρ∗
nref
vth,ref

fN , FM
nref
vth,ref

FM,N . (3.63)

For the gradient of the temperature and density

− 1
T

∂T

∂ψ
= Rref

LT
= 1
LT,N

, − 1
n

∂n

∂ψ
= Rref

Ln
= 1
Ln,N

(3.64)

and for the plasma-β

βN = nrefTref
B2

ref/2µ0
, (3.65)

is given. Note that, following common practice, for convenience in this thesis the subscript
N is omitted, except for ambiguous situations.

3.6.3. Implementation

Before the gyro-kinetic equation is implemented in gkw, is brought in a form where the
time derivative of the distribution function is set against the terms that represent its
evolution. The terms are sorted by their physical meanings, the complete set of equations
can be found in Ref. [78]. This has the advantage that it is possible to switch of distinct
physical effects. An important case of this is the suppression of all nonlinear terms,
allowing a linear stability analysis. It will be called “linear simulation”, whereas the
contrary will be called “nonlinear simulation” or “turbulence simulation”.

To implement the gyro-kinetic equation in gkw, a combination of finite-differences
schemes and spectral methods is used. As the order of the finite-difference scheme is
important for the observations of some effects examined in this thesis, it will be presented
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in more detail. Generally, the fourth order finite-difference scheme is used for derivatives
along the field at a grid point at position i and a velocity v:

v
∂f

∂s
→ vi

fi−2 − 8fi−1 + 8fi+1 − fi+2
12∆s +Dvd

fi−2 − 4fi−1 + 6fi − 4fi+1 + fi+2
12∆s . (3.66)

The second term on the r. h. s. is the upwind-dissipation term, with the diffusion
parameters D and vd. It is the main source of numerical dissipation, which stabilizes the
solution numerically. However, the dissipation can also have an unwanted influence on
physical effects if these are susceptible to (numerical) dissipation. This is for example
the case in the “Rosenbluth-Hinton”-test (see for example Sec. 4.1). Therefore it is
often desired to keep the numerical dissipation at a minimum. One way to reduce the
numerical dissipation is to increase the number of grid points, however this also increases
the required computational resources. To circumvent this, the order of the finite-difference
scheme can be increased, which decreases the dissipation. It also increases the required
computational resources due to a bigger stencil, i.e. an increased memory access, however,
this increase is negligible compared to increase due to a larger grid. A recent study
[11] found that the (numerical) dissipation of the zonal flow suppresses the formation
of staircases. To reduce the dissipation and allow an investigation of the effect, a sixth
order scheme for the zonal mode has been implemented. A derivative along the magnetic
field line is calculated with

v
∂f

∂s
→ vi

−fi−3 + 9fi−2 − 45fi−1 + 45fi+1 − 9fi+2 + fi−3
60∆s +

Dvd
fi−3 − 6fi−2 + 15fi−1 − 20fi+1 + 15fi+1 − 6fi+2 + fi−3

60∆s .

(3.67)

This scheme allows the investigation of zonal flow structure formation with reasonable
computational requirements and is used for most of the simulations of this thesis.

3.6.4. Modelling Collisions

To model collisions between particles, gkw uses a collision operator C(fa). It appears
as an additional term on the r. h. s of the gyrokinetic evolution equation, Eq. (3.46). C
operates on the distribution function of the particle species a, modelling the influence of
collisions with the species b. Starting from the Landau collision integral depending on
the velocity v and the pitch angle ϑ, under the assumption of a Maxwellian background,
a linearised collision operator is derived [81]:

C(fa) =
∑
b

1
v2

∂

∂v

v2

Da/b
vv

∂fa
∂v
− F a/bv fa


+ 1

v sinϑ
∂

∂ϑ

sinϑDa/b
ϑϑ

1
v

∂fa
∂ϑ

. (3.68)

The coefficient for pitch angle scattering is Da/b
ϑϑ , the coefficient for the energy scattering

is Da/b
vv and the coefficient for the relaxation towards a Maxwellian is F a/bv . Respectively
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to these, the collision operator is split into three parts

C(fa) = Cϑϑ(fa) + Cvv(fa) + Cv(fa), (3.69)

which can be used individually in gkw. The three coefficients Da/b
ϑϑ , D

a/b
vv , F a/bv are (for

each species b) proportional to a constant Γa,b, which describes the collision frequency of
two species a and b:

Γa,b =
RrefnbZ

2
aZ

2
b e

4 ln Λa,b

4πε20m2
am

2
bvth,a

. (3.70)

(Here, nb is the density of species b, Za/b is the corresponding charge number, e the
elementary charge, ε0 the vacuum permittivity, ma/b the corresponding mass and vth,a
the thermal velocity of species a.) The Coulomb logarithm ln Λa,b depends on the
combination of ions or electrons chosen for a and b. For ion-ion collision of the same
species i, as used in this thesis, the Coulomb logarithm is

ln Λi,i = 17.3− ln
( Z2

i

TiTref

)
− 1

2 ln
(

0.1nref
Tref

)
− 1

2 ln
(

2niZ
2
i

Ti

)
. (3.71)

The parameter Ti denotes the temperature normalized to Tref and ni the density normal-
ized to nref. For ion-ion collisions, Γi,i becomes

Γi,i = RrefniZ
4
i e

4 ln Λi,i

4πε20m2
i vth

≈ 1.18 · 10−3RrefniZeff
T 2
i

, (3.72)

where Zeff is the effective charge number. The linearised Fokker-Planck collision operator
conserves the particle number but does not conserve particle momentum or energy [81].
To reintroduce momentum conservation, the term

Cmomv‖FM (3.73)

is added to the collision operator. The constant Cmom is calculated through

2πCmom

∫
dv‖

∫
dµv2

‖FM + 2πB
∫
dv‖

∫
dµv‖C(fa) = 0, (3.74)

which follows from the first moment of the collision operator. Energy conservation is
achieved by adding

Cene(v2
‖ + 2µB −A)FM , (3.75)

where

2πCene

∫
dv‖

∫
dµv2

‖(v
2
‖ −A)FM + 2πB

∫
dv‖

∫
dµ(v2

‖ −A)C(fa) = 0, (3.76)

is used to calculate Cene. The factor A ensures particle conservation and is determined
via

A =

∫
dv‖

∫
dµv2

‖FM∫
dv‖

∫
dµFM

. (3.77)
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Flux Threshold

In tokamaks, turbulence generated by the ion temperature gradient (itg) instability is
regulated by so-called zonal flows [82]. These poloidal flows are nonlinearly driven by
the turbulence through the Reynolds stress and, in turn, reduce the turbulence through
shear decorrelation [44]. The influence of the zonal flows is most prominent close to
the threshold for turbulence generation, given by a specific temperature gradient length
(R/LT ≡ −R∇T/T ). In a landmark paper [21], it was shown that this threshold is not
determined by the linear stability of the itg, but rather is nonlinearly up-shifted. For
gradient lengths (R/LT) in between the threshold for linear stability R/LT,lin and the
so-called Dimits threshold R/LT,Dim, the itg is linearly unstable, but as the turbulence
develops it drives zonal flows that are sufficiently strong to suppress the turbulence,
resulting in a state with a vanishing heat flux. The results of Ref. [21] were obtained
in the collisionless case. Indeed, the collisional case is qualitatively different due to the
collisional damping of the zonal flow. The heat flux below the Dimits threshold for the
collisional case has been discussed in Ref. [34]. It was found that also for the collisional
case the zonal flow spins up and suppresses the turbulence below the Dimits threshold,
but due to the collisional damping of the zonal flows the lifetime of the phase with
vanishing heat flux is limited and turbulence reappears again. This leads to an oscillatory
behaviour in the heat flux, and a rise of the time averaged heat flux with collisionality
[34].
It has recently been shown [10, 11] that the picture given above is incomplete, at least
for the collisionless case. The nonlinear threshold for turbulence generation is not given
by the Dimits threshold, i. e. the threshold obtained by interpolating the turbulent heat
flux to zero. Rather, the threshold is given by the so-called finite heat flux threshold
(R/LT,fh) that is significantly up-shifted compared with the Dimits threshold. At the
finite heat flux threshold, the heat flux does not change continuously, but rather shows a
jump from a state where turbulence is suppressed and the heat flux vanishes to a state
where a finite heat flux is present. The latter heat flux can be larger than the heat fluxes
obtained under experimental relevant conditions, and suggests that experimental heat
flux calculations must, at least in some cases, be obtained from flux rather than gradient
driven simulations [10]. The jump in the heat flux is shown to be related to the formation
of staircases [11], which were first observed in fully developed turbulent simulations in
Refs. [7–9]. In the state where turbulence is not suppressed, the finite heat flux is induced
by avalanches [8, 83]. The simulations in Ref. [11], also show that sufficiently small
dissipation is necessary to observe the finite heat flux threshold, and that in the region
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R/LT,Dim < R/LT < R/LT,fh the turbulent system takes a considerable amount of time
to settle in the vanishing heat flux state, particularly close to the finite heat flux threshold.
This raises the question if the observation of the finite heat flux threshold is of mere
academic interest. Does a significant change in the behaviour compared to the results pre-
sented in Refs. [10, 11] occur for experimentally relevant collision frequencies and how does
this relate to previous understandings [34, 82]? It is this question this chapter will address.

The chapter is structured as follows. Section 4.1 presents an analysis of the zonal flow
damping by collisions. Then in Section 4.2 the influence of the collision frequency on the
turbulence and the finite heat flux threshold is examined. The corresponding behaviour
of the (radially averaged) shear intensity is shown in Section 4.3. In Section 4.4 the inter-
pretation of the correlation between the heat flux and staircases is explained. Section 4.5
gives a concluding discussion.

The content of this chapter has been published in Ref. [84].

4.1. Collisional damping of zonal flows

Before the influence of collisions on the finite heat flux threshold is examined, the
collisional damping of the zonal flows is investigated in more detail. To this extent,
linear simulations with an initial radial charge separation, equivalent to the (undamped)
residual zonal flow “Rosenbluth-Hinton”-test [30–32], are carried out with gkw [54].
Collisions are included in this test and the time evolution of the electrostatic potential φ
connected with the zonal flow is examined. The potential consists of a decaying oscilla-
tion of a geodesic acoustic mode (GAM) and a slower decay of the residual potential.
The latter contribution to the potential is thought to be responsible for turbulence
suppression, and its decay is related to the collisional damping of the zonal flow. The col-
lisional damping rate of the residue is measured and compared with an analytic model [35].

In the Rosenbluth-Hinton test, care has to be taken to mitigate the influence of the
so-called recurrence-problem [41, 85]. Over time, the Landau damping [86] of the GAM
generates fine structures of the distribution function in the velocity space [87–89]. Since
in eulerian codes, the phase space is discretized with a fixed grid, this so-called phase
space filamentation causes an under resolving of the distribution function after a certain
time [90, 91]. This lack of resolution leads to an unphysical recurrence of an earlier
structure of the distribution function and consequently, to the incorrect reappearance
of the GAM-oscillation. The duration for which a simulation is physically correct, is
determined by its grid-resolution, and therefore, long simulation times are connected
with high computational resource demands.

To examine the relevance of the recurrence problem for the analysis of the damping of
the zonal flow, simulations with the following parameters are carried out with gkw [54]:
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A geometry with circular concentric flux-surfaces is used, with safety factor q = 1.3,
magnetic shear ŝ = 0.1, and inverse aspect ratio ε = 0.15. The following grid sizes are
used: Ns = 128, Nµ = 16, and Nv‖ = 128, where Ns is the number of grid points along
the field line, Nµ in the magnetic moment and Nv‖ in the parallel (to the magnetic field)
velocity direction. A spectral representation is used for the directions perpendicular to the
field, and only one radial wave vector with krρ� 1 is retained. No numerical dissipation
is applied in all directions and for this preliminary examination, collision are not included.
All simulations neglect plasma rotation, and use the electrostatic limit with the adiabatic
electron response. The results are shown in Fig. 4.1. The thick blue line depicts the
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Figure 4.1.: Evolution of the normalized electrostatic potential in the Rosenbluth-
Hinton-test. Results from a simulation with a standard test case parameter set and
simulations with a doubled number of grid points along the magnetic field Ns or
doubled points in the parallel velocity Nv‖ are shown. Note that different line widths
are used to depict the (partly) similar data.

result of the simulation carried out with these parameters. Here, the initial perturbation
of φ leads to a decaying oscillation. However, the unphysical recurrence of the oscillation
is observed at t ≈ 160R/vth. This effect does not allow physically correct interpretations
at later times. It has to be mitigated, either by suppressing the phase-space-filamentation
or by increasing the resolution in the velocity space. A common method to suppress
the filamentation is to use a form of dissipation in the velocity space. Often a small,
sometimes artificial collisions frequency is chosen [87]. If however, this dissipation would
lead to an unwanted distortion of the results, which is exactly the case in this analysis,
this option cannot be used and the resolution in the velocity space has to be increased.
This is shown with the red line in Fig. 4.1, where a doubling of the grid points in the
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parallel velocity leads to a later onset of the recurrence (not visible). A doubling of the
points along the magnetic field line (green line) has no effect on the onset of the recurrence.

The simulations used to examine the collisional damping of the zonal flow have parameters
similar to the aforementioned ones, with the following annotations: The grid is adapted
to Nµ = 96 and Nv‖ = 512. It has to be noted that, as phase-space-filamentation is
suppressed by dissipation, the recurrence problem appears mainly in the low collisionality-
regime. But to ensure compatibility, the same grid sizes are used for all collision
frequencies in this analysis. The values of q = 1.3, ŝ = 0.1, and ε = 0.15 are chosen to
feature a relatively quick decay of the GAM, which allows to observe a larger part of the
decay of the zonal potential unobstructed by the recurrence. To prevent vitiation of the
collision’s influence, no numerical dissipation is applied. Ion-ion collisions are included
and are modelled with a pitch-angle scattering collision operator. The corresponding
normalized collision frequency is defined as

νii = RnZ4
i e

4 ln Λi/i

4πε20m2
i vth

≈ 1.18 · 10−3Rn
19Zeff
T 2
k

, (4.1)

where R is the major radius in meters, n the density, Zi the nuclear charge number, e the
elementary charge, ln Λi/i the coulomb logarithm, mi the ion-mass, vth the ion-thermal
speed, n19 the density in units of 1019m−3, Zeff the effective nuclear charge number and
Tk the ion temperature in units of keV . The collision frequency in the equation above is
normalized to vth/R, where vth =

√
2T/mi is the thermal velocity. To give a relation

to experiments, some values have been calculated for typical cases: iter-prediction [92]
(Rref = 6, n19

ref = 12, Zeff = 1.9, Tref = 15): νii = 6 · 10−4, simulated iter discharge in
diii-d, shot 81499, cyclone base case [21, 22] (Rref = 1.7, n19

ref = 5, Zeff = 1.9, Tref = 3):
νii = 2 · 10−3, DIII-D shot 128913, shortfall-case at edge [93, 94] (Rref = 1.7, n19

ref = 1.2,
Zeff = 1.3,Tref = 0.27): νii = 4 · 10−2.

A sample result, a simulation with νii = 1.2 · 10−3, is shown in Fig. 4.2. The already
described behaviour of the zonal potential φ can be seen: an initial charge perturbation
leads to a decaying GAM-oscillation revealing a zonal flow potential that is slowly damped
by collisions. As the time in which the evolution of the potential can be observed is
limited, the following method is used to obtain the evolution of the collisionally damped
residual potential for early times, where the oscillation of the GAM are present: The
mean value of two neighbouring maxima of the GAM-oscillation is used together with
the value of the intermediate minimum (cyan + in Figures 4.2) to estimate the value of
the potential (red x in Figures 4.2) at the time of the minimum. A similar calculation is
made using two minima and one maximum to estimate the potential at the time of the
corresponding maximum. Using all possible values, a good approximation of the potential
is obtained, which is depicted (dashed red curve) in Fig. 4.2. This approximation is valid
if the change in the GAM’s oscillation and in its decay are sufficiently small, which is
already given very early in the simulation. For very late times, when the GAM has been
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Figure 4.2.: Time evolution of the electrostatic potential φ (blue) and the collisionally
damped residual potential, where the influence of the GAM is removed (dashed
red line), for a simulation with q = 1.3, ε = 0.15 and a collision frequency of
νii = 1.2 · 10−3. To provide an example for the method to remove the GAM-influence
several points are marked: To calculate one point of the potential, two maxima and
one minima are marked (cyan “+”). The small box shows the long time decay of the
potential.

strongly damped, a time average of the potential evolution over the GAM’s oscillation’s
period is taken to ensure compliance with the data from early times.

Following this procedure, an analysis of the collisional damping of the zonal flow is
undertaken varying the collision frequency νii between 10−5 and 10−1. Also the influence
of inverse aspect ratio and safety factor is studied, varying ε at q = {1.3, 1.4}. The
time evolution of the potential can be roughly described with an exponential decay,
i.e. φ(t) = φa exp[−νDt], and a zonal flow damping rate (νD) can be determined. This
damping rate is shown in Fig. 4.3 as a function of the collision frequency, showing a
nearly linear relation νD ≈ ανii.
The agreement between the analytic model and the numerical simulations is good at
sufficiently low collision frequencies, and less satisfactory at higher collision frequencies.
The predicted influence of ε and q on the collisionless residual and the residual at moderate
collision frequencies can be reproduced numerically, which is shown in Fig. 4.4 (see also
Ref. [54]).
Furthermore, for high collision frequencies the damped residual zonal flow converges to a
finite stationary value within the simulated time interval. The latter undamped zonal
flow corresponds to a purely toroidally rotating plasma, with the numerically obtained
result in good agreement with the prediction of Ref. [35].
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Figure 4.3.: Zonal flow damping rate as a function of the collision frequency following
Ref. [35].
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4.2. Analysis Of The Finite Heat Flux Threshold

To examine the influence of collisions on the heat flux and the finite heat flux threshold,
a set of nonlinear flux-tube simulations is carried out with gkw. For this task, the

60



4.2. Analysis Of The Finite Heat Flux Threshold

parameters are chosen to be compliant to the well known cyclone base case: safety
factor q = 1.4, magnetic shear ŝ = 0.78, inverse aspect ratio ε = 0.19, density gradient
R/Ln = 2.2, and electron to ion temperature ratio Te/Ti = 1. The geometry, however, is
not modelled by the ŝ−α geometry as in Ref. [21], but rather through the use of a circular
flux surface geometry that keeps all orders in the inverse aspect ratio. This choice leads
to a change in the Dimits shift (from 6.0 for ŝ− α to 4.7 for the circular geometry) and
also influences the finite heat flux threshold [11]. The grid is chosen as follows: number
of radial modes Nx = 83, number of toroidal modes Ny = 21, number grid points along
the field line Ns = 16, number of magnetic moment grid points Nµ = 9, and number
of parallel velocity grid points Nv‖ = 64. For the zonal mode the sixth order scheme
along the magnetic field is used, and the dissipation coefficients are Dx = 0.1, Dy = 0.1,
Ds = 1, and Dv‖ = 0.1. A detailed description of the implementation and its effect on the
dissipation can be found in Ref. [11]. Following this analysis, the exponential damping
rate due to the chosen grid is expected to be |γ(6)

d |= 1.9 · 10−4 normalized to vth/R
and might only have an influence on the simulations with lower collision frequencies.
A comparison of the zonal flow damping due to this resolution with the one due to
the resolution used in Section 4.1 shows no significant differences in the damping. The
temperature gradient is varied in a range of R/LT ∈ [3.0, 16.0], where the main part
of the simulations is focused on the area around the finite heat flux threshold. Ion-ion
collisions are, similar to the above study, treated with pitch-angle scattering, varying the
collision frequency in a range of νii ∈ [10−5, 1].

Previous studies of collisionless itg turbulence have shown that there are three specific
ion temperature gradients lengths in the zonal-flow / itg system that are relevant for
the description of the heat flux near the threshold: the gradient length of linear stability
R/LT,lin, the Dimits gradient length R/LT,Dim [21], and the finite heat flux threshold
R/LT,fh [10, 11], with R/LT,lin < R/LT,Dim < R/LT,fh. Here, the Dimits threshold is
defined as the gradient length for which the extrapolated heat flux goes through zero, with
the heat fluxes used in the extrapolation being obtained for gradient lengths well above
the threshold. The finite heat flux threshold is the temperature gradient length below
which a vanishing heat flux is found, i.e. it is the temperature gradient length at which the
heat flux is discontinuous. In light of the findings outlined above, it is natural to divide
the gradient length parameter space into three zones: I R/LT,lin < R/LT < R/LT,dim, II
R/LT,dim < R/LT < R/LT,fh, and III R/LT > R/LT,fh (see Fig. 4.8a). Indeed it will be
shown below that the influence of collisions on the heat flux is very different in these
three regions.

In general, the observed time evolution of the flux surface averaged heat flux can be
described as follows (some examples are presented in Fig. 4.5a): After a short initial
”linear“ growth due to the itg-instability, a turbulent state with a finite heat flux develops.
If the temperature gradient length is far below the finite heat flux threshold (i.e. in region
I and to some extend in region II close to the border with region I), the turbulent state
hardly develops. Zonal flows quickly suppress the turbulence, and a state of vanishing

61



4. Influence of collisions on the Finite Heat Flux Threshold

heat flux results. This is the physics picture described in Ref. [21]. Closer to the finite
heat flux threshold (region II), the turbulent state can persist for a long time before the
turbulence is eventually suppressed. Additionally, a temporary inversion of states, from
a high to a low heat flux state and vice versa, can be observed. Thus, for the evaluation
of the heat flux and the heat conductivity, care has to be taken that the simulation
has reached a proper stationary state. For gradient lengths above the finite heat flux
threshold (region III), the turbulence remains in a high heat flux state for the entire
duration of the simulation.

It should be noted that only two states are properly discernible. Below the finite heat
flux threshold a state where turbulence is suppressed and the heat flux is close to zero, is
found. Only a small baseline turbulence that drives the zonal flow against the collisional
dissipation remains. Above, a state where turbulence is only partially suppressed and
the heat flux is finite (heat conduction χ & 1) due to mediation by avalanches, is present.
The physics picture that even in the low heat flux state the zonal flow can be driven
against the collisional dissipation is confirmed by a study of the free energy transfer.
For the low heat flux state with a collision frequency νii = 1.3 · 10−4, the free energy
source due to the heat flux in the ion temperature gradient (QiR/Lt) is well in excess
of the free energy transferred to the zonal flow through the nonlinear interaction. The
latter energy transfer, in turn is larger than the collisional dissipation. Nevertheless,
an in-depth analysis, as carried out in Ref. [95] appears as a rewarding topic for future
investigations.

If parameters close to the finite heat flux threshold are chosen, fragile states with a
transpositions of the two states are found. This transposition appears below and above
the finite heat flux threshold and was already observed in Ref. [11]. Slightly below the
threshold, these simulations show flares where a finite heat flux appears for a reason-
able time interval (& 1000R/vth). Slightly above the threshold, short periods with a
suppressed heat flux are found, but the transposed state appears less pronounced as
below the threshold. Generally, this transposition is found to appear at lower collision
frequencies.

Two examples of simulations with such a transposition below the finite heat flux threshold
are presented in Fig. 4.5a, where the time evolution of the heat conductivities for two
simulations at R/LT = 5.4, νii = 1.8 · 10−3 and at R/LT = 6.1, νii = 1.3 · 10−4 are shown.
The latter simulation nicely shows the transposition: the turbulence is suppressed at
t ≈ 3000 (time is normalized to R/vth) and the simulation remains in the suppressed state
for 3000 time units before a flare in t ∈ [6000, 8000] appears, afterwards the simulation
remains in the suppressed state until the end of the simulation (a period of 6000, not
depicted in Fig. 4.5a). In the evolution of the heat conductivity of the simulation at
νii = 1.8 · 10−3 this behaviour, albeit less pronounced, can also be seen: a relatively quiet
time in t ∈ [1800, 3400] is followed up by two flares at t ≈ 3400 and t ≈ 4200.
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(b) Time evolution of the shearing rate k2
xφ for simulations at R/LT = 5.4, νii = 1.8 · 10−3 and at

R/LT = 6.1, νii = 1.3 · 10−4 (both zone II), represented on the left y-axis. To give an idea for the
estimated decay of the zonal flow potential, the results from the linear analysis in Section 4.1 are
added at the corresponding times, being represented on the right y-axis. Data from simulations
with collision frequencies of νii = 1.3 · 10−4 and νii = 2.3 · 10−3 are used respectively. The data
was adapted to the parameters used in this analysis according to the model of Ref. [35].

Furthermore, these simulations can be used to demonstrate the influence of the avalanches.
Therefore the time evolution of the radial profile of the heat conductivity is presented in
Fig. 4.6.
The structure and radial propagation of the avalanches is visible, for example in the
inlet depicting the time period t ∈ [6600, 6900] (note the periodic boundary conditions).
Similar to the results of Ref. [11], corresponding structures are also found in the perturbed
temperature gradient. As previously observed, the perturbed temperature gradient, aver-
aged over the turbulent period, shows a decrease in the area where the avalanches are
generated and also a decrease where the avalanches disappear (these areas correspond
with the flanks of the staircases, as discussed further below). A clear correlation of the
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Figure 4.6.: Time evolution of the radial profile of the heat conductivity χ for a
simulation at R/LT = 6.1 and νii = 1.3 · 10−4. The inlets show a short turbulent
time period (top) and a period at the transition to the suppressed state (bottom).
The area where avalanches emerge is marked with dashed white lines and is located
radially at approximately 20ρ.

avalanche activity with the time evolution of the averaged heat conductivity in Fig. 4.5a
can be seen. The correlation between avalanches and a finite heat flux is paradigmatic
not only for the transposing simulations, but for all simulations. For gradient lengths
just above the finite heat flux threshold as well as for the transposing states, avalanches
are identified as the main reason for a finite heat flux. Further examinations of these
simulations follow in Section 4.3 and 4.4.

Fig. 4.7 shows the heat conduction coefficient χ depending on the gradient length R/LT
and the collision frequency νii. The heat conduction coefficients in this figure have been
averaged over sufficient long time intervals to address possible intermittent behaviour of
the heat flux. For visual convenience Fig. 4.8a depicts χ as a function of the gradient
length for certain values of νii. For vanishing νii the results of a collisionless study [11] are
reproduced, with only slight differences which are connected with the different resolution
used in this analysis. It can be directly observed that the susceptibility towards collisional
effects is very different in the three regions. In region I and III, i.e. below the Dimits
gradient length or above the finite heat flux threshold, collision frequencies νii > 0.1
are required to generate a still relatively small change in the heat flux. To put this in
perspective, at R = 1.7 m, n = 4 · 1019 m−3, this corresponds to a temperature T ≈ 250
eV. Therefore, collisional damping of the zonal flows above the finite heat flux threshold
or below the Dimits threshold is in present day experiments important only in the outer
edge of L-mode discharges. The influence of collisions is, however, much larger in the
region II. Already at moderate collision frequencies the finite heat flux threshold gradient
length (R/LT,fh) is reduced with increasing νii. A clear step in the heat flux, with no
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Figure 4.7.: Averaged heat flux in the R/LT -νii-plane.

clear sign of a flattening of the heat conduction versus temperature gradient length curve,
however, remains visible up to high collision frequencies (νii > 0.1). Only at very high
values of the collision frequency (νii ≈ 1) does the heat flux go smoothly to zero.
A steep threshold is also observed in the heat conduction coefficient (χ) as a function
of collision frequency as shown in Fig. 4.8b. As stated before, the heat conduction
coefficient obtained in the region I and III (R/LT = 4.5, 6.2 and 6.4) only changes at
high collision frequencies. For R/LT in region II, χ shows a threshold, which changes
its position towards lower νii and considerably softens for increasing R/LT. Here also a
slight increase of the heat flux below the finite heat flux threshold can be observed, which
manifests both in the mean value of the baseline turbulence and also in an increased
appearance and markedness of small unsuppressed turbulence flares in the (not shown)
time traces. Above the finite heat flux threshold, the influence of the collisions becomes
less pronounced.
Fig. 4.9 shows the finite heat flux threshold as a function of νii. Here, the threshold
for each νii is determined as the lowest value of R/LT where χ has a (proper) finite
value. For νii = 9.5 · 10−1 the threshold is set to the value where the heat flux vanishes
(R/LT = 3.5). It follows that the difference between the finite heat flux threshold and the
Dimits threshold is significant up to relatively high collision frequencies. In collisionless
simulations it was found that it can take a considerable time for the heat flux to settle
in the low heat flux state, especially close to the finite heat flux threshold [11]. Indeed
close to this threshold a very small collision frequency is sufficient to generate a finite
heat flux. However further below the collisionless finite heat flux threshold, the system
settles in a considerable shorter time, and a higher collision frequency is required to
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generate a high heat flux. In modern day experiments and certainly in iter the heat
flux is predicted to have a discontinuous behaviour as a function of R/LT. However it
should be noted that, as seen if the temperature gradient is considered a function of the
heat flux, this behaviour should be contemplated cautiously as an exact analysis and
flux driven simulations might be employed. Nevertheless the gradient driven simulations
provide important conclusions on the collisional behaviour.

The analysis of the dependence of the heat flux on the collision frequency allows a
comparison with the work presented in Ref. [34]. In the latter reference a rise of the heat
flux with increasing collision frequency was found. The results presented here suggest a
somewhat steeper, discontinuous transition, from a state with vanishing heat flux to a
state with a finite heat flux. Although the rise in the heat flux with collision frequency is
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Figure 4.9.: Position of the finite heat flux threshold as a function of the collision
frequency marked as blue ”x“. The estimated threshold for very high νii is added as
red ”+“. The position of the three sample collision frequencies given in Section 4.1
are depicted. Also the value of the Dimits threshold R/LT,Dim = 4.7 is indicated.

qualitatively similar, it should be noted that the interpretation of the turbulent state
is rather different. In Ref. [34] it is assumed that the value R/LT = 5.3 lies below the
Dimits threshold, whereas in this chapter this value is shown to lie above the Dimits
threshold but below the finite heat flux threshold. It is furthermore noted that much
larger time intervals have been used in this chapter. It has been found that these long
time intervals are essential to obtain the correct heat flux at values close to the threshold.

4.3. Analysis of the shear intensity

The finite heat flux threshold is connected with a radial structure formation known as
staircase. Before investigating the radial profiles of the shearing rate, in this section the
magnitude of the shearing rate as a function of the parameters is investigated. The focus
is on the shearing rate (ωE×B) of the lowest radial wave vector in the computational
domain since it is the wavelength of this mode that sets the radial scale length of the
staircase close to the finite heat flux threshold.

In Fig. 4.10, this shearing rate ωE×B = k2
xφ of the simulations presented above (Fig. 4.7

etc.), normalized with vth/R, is depicted in the R/LT -νii-plane. To ease the discussion
of these results, Fig. 4.11 shows the values of ωE×B as a function of the gradient length
R/LT for selected νii. The shearing rate as a function of R/LT shows a similar behaviour
for all values of the collision frequency. The rate is small for values of the temperature
gradient length well below the finite heat flux threshold and increases almost linearly
with R/LT, having the same value for all collision frequencies. At the corresponding
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Figure 4.10.: Zonal flow shear strength of the zero mode in the R/LT -νii-plane.
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Figure 4.11.: Zonal flow shear strength of the zero mode depending on R/LT for
various νii.

collisional finite heat flux threshold a change in slope of the shearing rate as a function of
the gradient length is observed, with the shearing rate decreasing when further increasing
the gradient length. In accordance with the behaviour of the finite heat flux threshold,
the gradient length of this change is reduced if the collision frequency is raised. As a
consequence of this behaviour a lower maximum shearing rate is found for higher collision
frequencies . It is noted, that a small parameter region in R/LT exists, where a relatively
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high value of the shearing rate is paired with a finite heat flux. This shows that the
absolute value of the long wave length zonal mode amplitude is not the only factor that
determines turbulence suppression. The simultaneous occurrence of a high heat flux and
a high ExB shear is relatively insensitive to the collision frequency, but the region in
R/LT where it occurs shifts downward with increasing collision frequency which signals
that the proximity to the finite heat flux threshold is important.
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Figure 4.12.: Zonal flow shear strength of the zero mode depending on νii for various
R/LT.

Fig. 4.12 shows the shearing rate as a function of collision frequency for various values
of the temperature gradient length. For intermediate R/LT (below the collisionless
threshold at R/LT = 6.2), the shearing rate shows a slight increase when νii is in-
creased. At collision frequencies that correspond to the finite heat flux threshold, the
shearing rate drops quickly and finally slowly decays towards a finite value for high
collision frequency. The latter value appears to be almost independent of the gradient
length. At high R/LT, above the collisionless threshold, the shearing rate decays more
smoothly towards the same finite value for high νii. It is noted, that the latter simulations
show a smaller shearing rate when compared with the shearing rate that is obtained
at the finite heat flux thresholds in simulations with smaller temperature gradient lengths.

We interpret the results shown above as follows: Below the finite heat flux threshold (but
above the Dimits threshold) the turbulence drives the long wave length zonal flow mode
connected with staircase formation until it is large enough to suppress the turbulence.
Since the growth rate (γ) of the itg depends on the gradient length, but is, at these
values of the collision frequency, relatively insensitive to the collision frequency, the shear
values required for turbulence stabilization (ωE×B ≈ γ) scales roughly linear with the
gradient length. For this reason the shearing rate is observed to increase with R/LT
independent of the collision frequency. Above the finite heat flux threshold, the shearing
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rate is observed to decay with increasing R/LT, despite the increase in turbulence in-
tensity and heat flux. This result is quite contrary to the usual discussion on zonal flow
development, where the zonal flow is driven by the modulation instability and saturates
over collisional damping or nonlinear terms connected with the zonal flow amplitude.
In the latter scenario one would not predict a reduction in the zonal mode amplitude
with increasing R/LT at constant collision frequency. Here, it appears that the increase
in turbulence intensity leads to a reduction in the zonal flow. The reason for this is at
present unknown. Either the turbulence directly acts to decrease the zonal flow amplitude
or the turbulence drives the zonal flow less effectively. There does not appear to be a
satisfactory physics picture for either of these explanations. Also it should be noted,
however, that the results shown in Fig. 4.12 concern the long wave length zonal flow
only, and do not reflect on the shorter wavelength shear layers. The physics governing
the different length scales of the zonal flow are possibly very different. The reduction in
the finite heat flux threshold with the collision frequency can be explained as follows: In
collisionless simulations it is observed that the time the system takes to settle in the low
heat flux state increases as the finite heat flux threshold is approached. The long wave
length zonal flows take longer to develop as the gradient length is increased and, there-
fore, collisions affect the heat flux most strongly at gradient lengths closer to the threshold.

Evidence for the influence of staircases can be seen in an examination of the shearing rate
of the simulations showing a transposition of states mentioned in Section 4.2. In Fig. 4.5b
(in Section 4.2), the time evolution of the shear intensities for simulations at R/LT = 5.4,
νii = 1.8 · 10−3 and at R/LT = 6.1, νii = 1.3 · 10−4 are depicted next to their heat
conduction coefficients shown in Fig. 4.5a. There are several noteworthy observations. As
commonly known the initial turbulence leads to a growth of the shear intensity. Following
the interpretation [34, 82], a suppression of the turbulence with a subsequent collisional
decay of the shear intensity and the emergence of an oscillatory behaviour should be
observed. For the simulation at R/LT = 5.4, νii = 1.8 · 10−3, this behaviour can be
roughly made out for early times t . 5000, but not for later times. In the data of the
simulation with a lower collision frequency at R/LT = 6.1, νii = 1.3 · 10−4, this behaviour
is hardly recognisable at all. Furthermore, for later times in all simulations below the
finite heat flux threshold, the state with the vanishing heat flux is present and does not
show an oscillating behaviour of the turbulence. The simulations showing the transposing
behaviour are also in this state in between two flares, for example t ∈ [3000, 6000] in
Fig. 4.5a and 4.5b for R/LT = 6.1, νii = 1.3 · 10−4 or less pronounced in the simulation
with higher collision frequency in the period where t ∈ [1800, 3400]. Also, the time the
simulation is in this state is considerably longer than one would expect if the decay of the
zonal flow potential is considered. To point this out, the expected decay of the zonal flow
potential is depicted at the according position in Fig. 4.5b. It is calculated with the results
obtained in Section 4.1 for collision frequencies of νii = 1.3 · 10−4 and νii = 2.3 · 10−3

to match the frequencies respectively. The data is adapted to the parameters used in
this analysis (described in Section 4.2) according to the model of Ref. [35]. Although
the data was obtained with a much higher resolution, it is still relevant (see discussion
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in Section 4.2). Here it can be seen, that the zonal potential from the linear analysis
already would have been significantly decayed before another flare erupts. Although the
intensity of the shear shows a decay resembling the one predicted by the linear analysis,
it does so only for a very short time and then stays rather constant at a relatively high
value due to a baseline turbulence before another flare appears. This shows that the
potential does not follow the proposed decay. This becomes exceptionally clear, when not
the period between two flares is considered, but the period after the last flare: t ≥ 5000
for the simulation with a higher collision frequency and t ≥ 8000 for the simulation with
lower collision frequency (here the simulation ran until t = 14400). In that time the zonal
flow should have decayed and turbulence reappeared, which is not the case.

4.4. Analysis Of the radial shear profile

Further insight can be gained from the shape of the radial shear profile. Nearly all of
the simulations described in this chapter show so-called staircases in their radial shear
profile, i.e. self-organized shear flow structures [7–9], which require long timescales to
develop properly. They have been classified [11] into fully (box-shaped in gradient-driven
simulations) and partially developed (sawtooth shaped in gradient-driven simulations)
staircases. A fully developed staircase is thought to suppress turbulence as it allows a
sufficiently high shear over nearly all of the radial domain. A partial developed staircase
has a wider region with a low shearing rate (compared with the associated itg growth
rate) and allows heat flux avalanches to originate from such regions, leading to a finite
heat flux. An example of these forms can be seen in Fig. 4.13: a fully developed staircase
at νii = 4.5 · 10−3, a partially developed staircase at νii = 1.1 · 10−2. We assume that
staircases form with specific radial extends and are not affected by the boundary condi-
tions imposed in the radial direction due to the box-size test carried out in Ref. [10].

In the simulations carried out in this analysis, the expected correlation with the finite
heat flux threshold is found not only, as already previously examined, in the direction
of the temperature gradient length, but also if the finite heat flux threshold is passed
in the collision frequency. As an example for this, Fig. 4.13 presents the radial shear
profiles averaged over a substantial time period of simulations with different collision
frequencies for a fixed temperature gradient length of R/LT = 5.3. For the chosen
temperature gradient length, the finite heat flux threshold (in νii-direction) is located at
νii = 1.1 · 10−2 following the definition given in Section 4.2. Below the finite heat flux
threshold, fully developed staircases are present at times when turbulence is suppressed,
for example the shear profile at νii = 4.5 · 10−3 in Fig. 4.13. Slightly above the threshold,
partially developed staircases are present, as visible in the shear profile at νii = 1.1 · 10−2

in Fig. 4.13. Here, avalanches emerge from the region where shear is low ωE×B � γ
and propagate through the regions where shear is high ωE×B ≈ γ, which leads to a
finite heat flux. It should be noted, that in all simulations with a partial staircase, it
was observed that the softening of the flank occurred at the transition where the shear
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changes its value from approximately +γ to −γ. At very high collision frequencies, no
discernible structures are found, an paradigmatic radial profile is shown for νii = 1.0 ·10−1.
Furthermore it should be noted that the simulations above the finite heat flux threshold
show significantly higher fluctuations in the radial shear profile. This is thought to be a
consequence of the turbulent activity.
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Figure 4.13.: Radial shear profile for different νii at a fixed temperature gradient
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rate for the most unstable itg-mode.
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As already pointed out in Ref. [11], the change of the staircase type can also be seen in
the different time periods of the simulations which show a transposition of states. To
exemplify this, the radial shear profile of the simulation at R/LT = 6.1, νii = 1.3 · 10−4,
averaged in time periods representing the different states, is shown in Fig. 4.14. If the
profiles of the different times are related to the time evolution of the heat conduction coef-
ficient presented in Fig. 4.5a, the correspondence between times, where a fully developed
staircase is present and periods where the heat flux is suppressed, and vice versa, is clearly
visible. In the periods t ∈ [3000, 6000] and t ∈ [8000, 14400], where the heat flux is sup-
pressed, the radial shear profile shows a fully developed (box-shaped) staircase structure.
Whereas in the time range t ∈ [6000, 8000], a finite heat flux is present and the radial shear
profile shows the structure of a partial staircase. This can also be seen in the avalanche
activity visible in the radial profile of the heat conduction coefficient presented in Fig. 4.6.
Here it can also be nicely seen that the avalanches emerge from the softened flank of the
staircase. The softened flank of the staircase for t ∈ [6000, 8000] lies at approximately 20ρ
and leads to an area of low shear around it, as visible in Fig. 4.14. This area corresponds
to the area where the avalanches emerge, indicated with the dashed white lines in Fig. 4.6.

We interpret the results as follows: The form of staircase stands in direct correlation to
the heat flux. A fully developed staircase allows a high shear, meaning about the same
magnitude as the growth rate of the fastest growing corresponding itg mode, over nearly
the whole radial domain. This effectively suppresses turbulence. Also, for this form, the
regions where the shear is low are considerably small and thus, heat flux avalanches cannot
emerge from these regions. If the structure changes to a partial staircase i.e. the flank
softens, the region where the shear is low is wide enough to allow heat flux avalanches to
be generated. They propagate through the regions where the shear is high and thus lead
to a finite heat flux over nearly the whole radial domain. As the transition appears both
if R/LT or the collision frequency is increased, the mechanism causing this structure
appears to be susceptible to both effects. Furthermore, the transposition of states over a
significant time shows that the staircase structure has an, albeit small, stability. Very
high collision frequencies do not allow the formation of even only a partial staircase. This
is thought to explain the second shift at high collision frequencies in the threshold seen
in Fig. 4.9 and the corresponding linear behaviour.

4.5. Conclusion

In this chapter the influence of collisions on the ion temperature gradient driven heat
flux, close to the nonlinear threshold is examined. In particular the impact of collisions
on the finite heat flux threshold is investigated, and the following results are obtained.
The decay of the zonal potential is examined in the Rosenbluth-Hinton test, and is
compared with the analytical model of Ref. [35]. The numerically obtained zonal flow
decay rates agree well with the analytic prediction for low collision frequencies, while
higher frequencies yield somewhat less satisfactory results. Furthermore, the influence of
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the safety factor and the inverse aspect ratio, and the remaining residual zonal flow not
affected by collisions are reproduced.
The behaviour of the finite heat flux threshold is examined by an extensive scan in the
temperature gradient length and the collision frequency. In the simulations generally
two distinct states are visible: a state where turbulence is suppressed and the heat
flux almost vanishes, and a state with a finite heat flux. For some parameters, a
transposition of both states for a considerable time period is observed. Three different
temperature gradient lengths that characterize the near threshold dynamics are identified:
the gradient length of linear stability R/LT,lin, the Dimits gradient length R/LT,Dim and
the finite heat flux threshold R/LT,fh, where R/LT,lin < R/LT,Dim < R/LT,fh applies.
It is found that the influence of the collisions is most prominent in the region where
R/LT,Dim < R/LT < R/LT,fh. Here, only small changes in the collision frequency lead
to a noticeable shift of the finite heat flux threshold towards lower R/LT, while outside
of this region, the influence of collisions is minimal and very high collision frequencies
are required to produce a significant change of the heat flux. A comparison of the time
spent in the vanishing heat flux state and the collisional zonal flow decay time, reveals
that in the linear analysis the potential would have decayed substantially long before
the end of the state is reached. For sufficiently small collision frequencies the zonal flow
can, therefore, be driven against the collisional dissipation even when the heat flux is
vanishingly small. Despite the reduction of the finite heat flux threshold with increasing
collision frequency, it remains considerably larger compared to the interpolated Dimits
threshold for collision frequencies relevant to current experiments.
For a fixed collision frequency, the shear rate of the longest wave length radial mode
increases almost linearly with R/LT up to the value of the finite heat flux threshold,
for larger values a decay is observed. Only very high collision frequencies lead to a
suppression of this behaviour. The latter decay suggests a saturation mechanism of
the zonal flow directly related to the turbulence intensity. If the collision frequency is
increased for a fixed R/LT, the shear intensity stays relatively constant until the finite
heat flux threshold is reached, then decays to a finite value for high collision frequencies.
A small region, in temperature gradient lengths, above the finite heat flux threshold is
found, where a high shear intensity is paired with a finite heat flux, indicating that the
contemplation of only the shear intensity is not sufficient for an explanation of the finite
heat flux threshold.
The radial profile of the E×B shearing rate exhibits staircase formation. Fully developed
staircases (i.e. box shaped shearing rates) are observed below the finite heat flux threshold
and lead to a suppression of turbulence with a vanishing heat flux. Partially developed
staircases (which have a sawtooth shape) allow the appearance of avalanches and lead to
a finite heat flux. The latter are observed above the finite heat flux threshold, both in
the direction of R/LT and collision frequency. It was also observed that, although the
transition from fully developed to partially developed staircase requires only small changes
in the collision frequency at the corresponding R/LT, very high collision frequencies were
required to suppress the formation of partial staircases themselves. The examination
of staircases provided a satisfying explanation for the behaviour of the finite heat flux

74



4.5. Conclusion

threshold. Nevertheless, a model to explain the influence of collisions on the formation
and behaviour of the staircases remains to be desired.
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5. Zonal flow generation through
self-interaction

Recent work [8, 9] has revealed that zonal flows in global itg turbulence with adiabatic
electrons self-organize in so-called staircase structures. These structures have subse-
quently been observed in gradient as well as flux driven flux tube simulations, and have
been shown to affect the dynamics close to the nonlinear threshold of itg turbulence
[10, 11]. Furthermore, collisions at levels relevant to the experiment, do not prevent
staircase formation [51]. However, to our knowledge, the existence of staircases has not
been verified in turbulence simulations with kinetic electrons. Indeed, their existence in
this case is non-trivial, since zonal flows are then generally found to be weaker compared
with the adiabatic electron case. Consequently, it is unclear if staircases form under these
more experimentally relevant conditions. In this chapter it will be shown that staircases
are also obtained with kinetic electrons, but not for all cases. In studying the staircase
formation with kinetic electrons a new mechanism for zonal flow drive is revealed: the
self-interaction of a turbulent mode due to the double periodicity of a toroidal flux
surface. The self-interaction is connected with the parallel boundary conditions and is
not necessarily physical when obtained in a flux tube simulation with a small normalized
Larmor radius. It will be shown that, when it does occur, it can have a profound effect
on staircase formation and the heat flux behaviour close to the threshold. Furthermore,
it will be argued that the self-interaction can indeed occur under some conditions.

This chapter is structured as follows. In Sec. 5.1, the self-interaction mechanism is
discussed in detail. In Sec. 5.2 an initial numerical investigation of the heat conduction
as a function of the temperature gradient length is presented. Small scale structures in
the E ×B shearing rate are observed and their physical nature is discussed in Sec. 5.3,
where they are linked to the self-interaction. Sec. 5.4 then investigates the parameter
dependence of the self-interaction, and Sec. 5.5 exploits the gained knowledge to con-
firm the existence of staircases with kinetic electrons. In Sec. 5.6, the self-interaction
mechanism is investigated in global simulations. The influence of collisions is examined
in Sec. 5.7 and the use of electromagnetic simulations is detailed and tested in Sec. 5.8.
A synopsis and concluding remarks are given in Sec. 5.9. A derivation of the drive due
to the self-interaction can be found in App. B.

The core of this chapter is based on the publication of Ref. [96].
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5.1. Zonal flow drive through self-interaction

In a tokamak, when following the field lines, the modes are twisted due to the magnetic
shear. The ballooning transform [76], to which the flux tube description is closely related,
incorporates this effect through the dependence of the radial wave vector on the poloidal
angle. In the flux tube formulation [65] the same effect is present, albeit often hidden in
the metric of the field aligned coordinates. For the ballooning transform the field line
is extended to infinity, and the radial wave vector keeps increasing after one turn. In
the flux tube formulation (employed in this study) the computational domain contains
only one turn of the field line, with the parallel boundary conditions at the end point
of the field line connecting the mode to a mode with a higher radial wave vector. This
boundary condition is in essence equivalent to the increasing radial wave vector of the
ballooning transform.
gkw [54], the code employed for the flux-tube simulations of this investigation, uses
straight field line Hamada coordinates [63, 64] (ψ, ζ, s). Here ψ represents the flux
label, ζ is the binormal coordinate and s is the coordinate parallel to the field, where ζ
and s are normalized to obtain a computational domain ζ ∈ [0, 1] and s ∈ [−1/2, 1/2]
respectively. The high field side position is given by s = ±1/2. The double periodic
boundary conditions for the phase-space distribution function (f) on the toroidal flux
surface then are

f(ψ, ζ, s) = f(ψ, ζ + 1, s)
f(ψ, ζ, s) = f(ψ, ζ − q, s+ 1),

(5.1)

where the first represents the periodicity in the toroidal and the second in the poloidal
direction. The latter boundary condition takes into account that, when moving over one
turn along the field (s = +1), the binormal coordinate undergoes a change +q, where q
is the safety factor.
The distribution function in the radial (ψ) and binormal (ζ) direction is represented by
Fourier modes

f =
∑

k
f̂(kψ, kζ , s) exp[ikψψ + ikζζ] + c. c., (5.2)

while the direction along the field line (s) is treated in real space. A proper choice of the
binormal wave vectors (kζ) leads to a periodic solution on the domain ζ ∈ [0, 1] and the
first condition of Eq. ((5.1)) is automatically satisfied. To fulfil the second condition, the
safety factor is chosen such that q(0)kζ = 2kπ, with k = 1, 2, . . . in the centre (ψ = 0) of
the radial domain. Then the modes are resonant in the centre of the domain. This choice
can be motivated by the high toroidal mode numbers of the itg turbulence, leading to a
resonant surface in close proximity to the local surface considered in the computation.
Although the modes are resonant in the centre of the box, the magnetic shear ŝ must be
considered. The change in the safety factor, taken as

q(ψ) = q(0) + ∂q(ψ)
∂ψ

∣∣∣∣∣∣∣
ψ=0

ψ, (5.3)
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5.1. Zonal flow drive through self-interaction

leads to non-resonant modes away from the centre. Using this expression for the safety
factor, it is possible to satisfy the second condition of Eq. ((5.1)) by imposing

f̂(kψ, kζ ,
1
2) = f̂(kψ + kζ

∂q

∂ψ
, kζ ,−

1
2) (5.4)

as the boundary condition in s-direction. This means that, at the end points of a field
line, modes with a different radial wave vector (kψ) couple. The shift in the radial wave
vector is

∆kψ = kζ
∂q

∂ψ
= kζ ŝ

q

ε
, (5.5)

where ε = r/R is the inverse aspect ratio. However, commonly the poloidal wave vector
(kθ) is used. The relation to the binormal wave vector depends on the employed geometry.
For the circular concentric flux surfaces used in this work, the shift in terms of kθ becomes

∆kψ = kθ2πŝ
q

ε

1 + ε(
1 + (q/ε)2(1− ε2)

)1/2 . (5.6)

This shift is used to set up the kψ grid. In order to allow for equal resolution in radial
and binormal direction, an integer ik ≈ 2πŝ is introduced, so that the step size of the
radial wave vector is δkψ = ∆kψ/ik. The boundary conditions as formulated above are
globally consistent [67, 68].
From the discussion on the boundary conditions, the zonal flow drive through self-
interaction can be understood easily. Consider an unstable itg mode with a wave
vector (kψ, kζ). Over the parallel boundary conditions this mode will connect with the
(kψ ±∆kψ, kζ) mode, i.e. parallel streaming can transfer energy to higher or lower kψ
modes. If a nonlinear interaction between the (kψ, kζ) and (kψ ±∆kψ, kζ) modes can
occur, it will transfer energy into the (2kψ ±∆kψ, 2kζ) as well as the (±∆kψ, 0) mode.
The latter is a zonal mode and, as the shear-periodic boundary condition connects modes
with a distinct difference in the radial wave vector, a zonal mode with the distinct radial
wave vector ∆kψ is driven. The self-interaction can therefore directly drive specific zonal
modes. Several points should be noted. The self-interaction mechanism uses all radial
modes with the same kζ to drive the same distinct zonal mode. The (2kψ ±∆kψ, 2kζ)
mode is driven generally only by one pair of modes.
The proposed self-interaction mechanism shares similarities with the familiar modulation
instability [25, 97]. Both can be explained with a quadratic nonlinearity leading to
wave interaction which drives the zonal mode. However, the physical mechanism of the
self-interaction differs from the one of the modulation instability. There, the side bands
grow exponentially due to the interaction of the zonal flow with the pump wave, leading
to an exponential growth of the zonal flow, which is a smooth function of the radial wave
vector In the self-interaction mechanism, the side bands obtain their energy through the
flow along the field lines and the mechanism drives zonal modes at distinct radial wave
vectors. As such a mode is driven by all turbulent modes with the same kζ , an effective
invocation of feedback on the driving modes is not possible, so an algebraic rather than
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5. Zonal flow generation through self-interaction

an exponential growth is observed, which is shown later on. Following from that, a 3D
description is a mandatory requirement to obtain the self-interaction. It should also be
mentioned that an interaction between the two modes must not necessarily occur in a
turbulent plasma. Following a field line over one poloidal turn, it is in general shifted in
the toroidal direction. At a fixed toroidal angle, the (0, kζ) and (±∆kψ, kζ) mode might
be uncorrelated, thus yielding a zero time averaged drive.
As stated above, the boundary conditions applied in a flux tube are consistent with the
double periodicity of the toroidal flux surface and a flux tube can describe the dynamics
inside the flux surface without approximation. Nevertheless, an additional approximation
is usually made in the case of a small normalized Larmor radius. In this case, the
description of the turbulence on the whole flux surface would require a large amount of
kζ modes. In order to save computational resources it is assumed that the turbulence on
a smaller wedge of the surface is equivalent to all other parts. Then the computational
domain is represented by a part of the toroidal circumference and the first boundary
condition of Eq. ((5.1)) is assumed to apply on this smaller domain (renormalizing ζ such
that the domain is still [0, 1]). It must be stressed that this condition is of a different
nature compared with the exact double periodic boundary condition described above.
The boundary condition on the smaller domain can only be justified using a statistical
argument, i.e. on average the turbulence on all the wedges is similar. Such an argument
fails if the description of the physics processes demands that no correlation between the
turbulence in the different wedges occurs [98]. The self-interaction is an effect that can
be overestimated if the statistical argument is applied: If a small wedge is considered,
following the field line for one poloidal turn will in general lead to a toroidal shift outside
the domain of the wedge. The applied periodic boundary conditions on the ζ domain map
the perturbation back into the computational domain, possibly generating a spatially
localized correlation between modes that do not exist on the full flux surface.
As a consequence, the self-interaction can only be properly calculated if the whole flux
surface is considered. Of course, every flux tube simulation can be considered to describe
a whole flux surface provided the normalized Larmor radius is large enough. However,
experimentally relevant normalized Larmor radii require a large amount of binormal
modes. Assuming that the turbulence requires the resolution of wave lengths up to
kθρ ≈ 1, with kθ ≈ nq/r where n is the toroidal mode number, ρ the Larmor radius and
r the radius of the poloidal flux surface, then a full surface simulation requires

Nθ = r

qRρ∗
(5.7)

kθ modes. In the equation above ρ∗ = ρ/R, with R being the major radius. So, for
current day experiments Nθ ≥ 64 is commonly assumed.
Furthermore, following the argument above, it might appear that the self-interaction
has to be considered unphysical, as commonly, in adiabatic simulations, no correlation
of the turbulent modes over long distances in the flux surface is found. However, if
kinetic electrons are considered, turbulence does exhibit a correlation over long distances.
To show this, the normalized correlation function CN is evaluated for an adiabatic and
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5.2. Heat flux near marginal stability

a kinetic standard simulation (see Sec. 5.2 for details on the numerical setup). CN is
determined using only the turbulent part (without the zonal mode) of the perturbed
electrostatic potential, the values are averaged over a stationary turbulent period.

Figure 5.1.: Correlation function CN in the binormal/poloidal direction summed
over all radial modes for simulations with standard parameters and a grid G3 (see
Sec. 5.2).

Fig. 5.1 shows the resulting correlation function in the binormal direction, summed over
all radial modes. Here it is evident that, if kinetic electrons are considered, CN does
not go to (almost) zero, as in the adiabatic simulation. Instead, a finite value for long
distances can be assumed. To back up this claim, the local maxima are fitted with a
function of the form a+ exp (−bθ) where a long range correlation of a = 0.052 is found.
This is attributed to the increased electron velocity. Similar results are also found for
other simulations with different parameters or resolutions.
In this section the self-interaction mechanism has been discussed in some detail, as it
will enter in the simulations discussed in the next section. The reason why it appears in
simulations with kinetic electrons, but has not been observed in the simulations using
adiabatic electrons, is the long extension of the mode structure along the field line in the
kinetic electron case [99, 100]. This leads to an increased connection via the boundary
conditions in the s-direction.

5.2. Heat flux near marginal stability

In this section a numerical investigation of the heat transport close to the nonlinear
threshold of itg turbulence with kinetic electrons is presented. The flux-tube version of
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5. Zonal flow generation through self-interaction

Nψ Nθ Ns Nµ Nv‖ kψ,max kθ,max

G1 43 11 32 9 64 3.5 1.4
G2 83 21 32 9 64 3.4 1.4
G2-b 165 21 32 9 64 3.4 1.4
G3 165 41 16 9 64 3.4 1.4

Table 5.1.: Overview of used grid sizes.

the nonlinear Eulerian gyro-kinetic code gkw [54] is used in this study. The simulations
are gradient driven, neglect plasma rotation as well as collisions, and have a standard
parameter set compliant to the well known cyclone base case: safety factor q = 1.4,
magnetic shear ŝ = 0.78, inverse aspect ratio ε = 0.19, and density gradient R/Ln = 2.2.
Electrons are treated kinetically with an electron to ion-mass-ratio me/mi = 2.72 · 10−4

(deuterium). The temperature gradient (R/LT ) is varied to investigate the heat flux
close to the threshold value, and is in general smaller than the cyclone base case value
due to the stronger instability connected with the kinetic electrons. Finally, electron and
ion temperature (T ) as well as their gradients are chosen to have the same value, the
standard value being R/LT = 3.5. To reduce the computational cost, a small electron
plasma beta βe = 3 · 10−4 is assumed so that the simulations retain the shear Alfvén wave
physics. With this choice, the shear Alvén wave propagates at a velocity comparable
to the electron thermal speed, thus allowing an optimal time step. The impact of the
electro-magnetic effects are checked and no significant differences in the heat flux or zonal
flow dynamics compared with the pure electro-static case are found, more detail is given
in Sec. 5.8.
To be compliant to the commonly used depictions, numerically obtained spectra are
presented as a function of the poloidal rather than the binormal wave vector. The used
grid sizes are shown in Tab. 5.1. Here, Nψ (Nθ) is the number of radial (binormal/poloidal)
modes, Ns the number of points along the magnetic field, Nµ the number of points in
the magnetic moment, and Nv‖ the number of points in the parallel velocity direction.
The maximal radial and poloidal wave vectors are denoted by kψ,max and kθ,max. G1 is a
grid with a reduced resolution and is assumed to exhibit some inadequacies. It is used in
section 5.4 and section 5.5 as an additional comparison. G2 is the standard resolution
used in most of the simulations, and G3 a high resolution case that is computationally
demanding. G2-b is a variation used for an individual tests. To counteract the increased
computational cost, the parallel resolution in the G3 case is reduced. To ensure that
this reduction does not affect the results quantitatively in a noticeable manner, the so-
called Rosenbluth-Hinton test [32] is employed. Here, the evolution of the residual zonal
potential is investigated. Therefore two linear simulations with comparable parameters
and a grid of Nψ = 3, Nθ = 2, Nµ = 16, Nv‖ = 64 and Ns ∈ {16, 32} are carried out.
The evolution of the zonal potential φZF (t) is used to calculate the residual value via an
averaging of adjacent peaks of the overlaying GAM oscillation, similar to the procedure
detailed in Chap. 4. The resulting residual potentials φres are shown in Fig. 5.2. It has
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Figure 5.2.: Comparison of the influence of the resolution along the magnetic field.
The residual potential φres of linear simulations with Ns ∈ {16, 32} are shown. As
comparison, the complete zonal potential φ of the simulation with Ns = 32 is shown.

to be noted that the maximum time range of this analysis is limited by the onset of
the recurrence problem, which is determined by the employed resolution. Comparing
φres of both simulations, it can be deducted that the reduction of the number of grid
points along the magnetic field does not lead to a significant damping of the residual
potential. This analysis also guarantees that no over-damping occurs. All the wave
vectors are given in relation to the Larmor radius ρ = mdvth/eB with md the deuterium
mass, e the elementary charge, B the magnetic induction and vth =

√
2T/md is the

thermal velocity. Note that a factor two is used in the latter definition, and the thermal
velocity is

√
2 larger compared with the often employed sound speed. The size of the

radial wave vector grid is determined by the condition of Eq. ((5.6)), where normally
ik = 5 is used to ensure a comparable resolution in the radial and binormal direction. For
the zonal mode the sixth order scheme along the magnetic field is used, the dissipation
coefficients are Dx = 0.1, Dy = 0.1, Ds = 1, and Dv‖ = 0.2 (see Ref. [11] for details on
the implementation of the scheme and dissipation).
Fig. 5.3 shows the normalized ion heat conduction coefficient (χ, normalized to ρ2vth/R)
as a function of the ion temperature gradient length (R/LT ). It is obtained from the
time average over a sufficiently long stationary period. The curve with resolution G1
shows an appreciable difference from the G2 and G3 resolution cases, and it can be
concluded that the resolution is insufficient to obtain accurate results. The G2 and G3
cases, however, are in good agreement, showing that the result is converged in these
cases. In contrast to the simulations with adiabatic electrons [10, 11, 84], the heat flux
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5. Zonal flow generation through self-interaction

Figure 5.3.: Heat conductivity χ averaged over a stationary period as a function of
the temperature gradient length R/LT . The results of simulations with the three
different grid sizes (see table 5.1) are shown. Furthermore the results from simulations
with an increased magnetic shear ŝ and resolution G2 are shown, further discussed
in Sec. 5.5.

goes smoothly to zero, and there is no sign of a finite heat flux threshold. Note that
χ does not go linearly (estimated for χ ' 1) in R/LT to zero, instead a flattening for
small χ is seen. Here, a small but finite heat conduction coefficient is found. In these
cases, a late onset of a suppressed turbulent state is not anticipated, as considerably long
simulations > 7000R/vth do not exhibit signs of suppressed turbulence. The appearance
of the finite heat flux threshold in the adiabatic electron case, in which a jump in the
heat flux is observed at the threshold, is connected with a staircase structure in the
E ×B shearing rate [11]. Just below the threshold, the staircase is fully developed and
turbulence suppression occurs over the whole radial domain. At the threshold the radial
profile of the structure changes with one of the crossings of the E × B shearing rate
through zero becoming less steep. At the latter location avalanches form, that then carry
the heat through the regions of high E ×B shear. The smooth functional dependence
of the heat conduction coefficient on the gradient length in the case of kinetic electrons
suggests that staircases do not form in these cases.

To investigate this, the radial profile of the E×B shear rate ωE×B = ∂2φ/∂ψ2/2B for the
standard parameter set with R/LT = 3.5 is shown in Fig. 5.4. Here, ωE×B is normalized
with vth/R, the potential is normalized with e/(ρ∗T ), ψ is normalized with ρ∗ and B
with the field on the magnetic axis. It can be observed, that small scale fluctuations, that
appear in quasi-periodic bunches, dominate the E×B shearing profile. These small scale
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5.2. Heat flux near marginal stability

Figure 5.4.: Top: Evolution of the radial E×B shearing profile ωE×B for a simulation
with the standard parameter set and grid size G3. Bottom: Averaged profiles in the
initial and the stationary states respectively. The expected linear itg growth rate
of γ = 1.5 · 10−1vth/R is indicated with black horizontal lines. Note that periodic
boundary conditions apply in the radial direction.

structures are remarkably stationary in time, as is evident from the relatively large time
interval over which the signals presented in Fig. 5.4 have been averaged. The amplitude
of the small scale E × B shearing rate structures is considerably larger than the itg
growth rate (γ = 1.5 · 10−1vth/R), indicated by the horizontal lines. These structures,
therefore, do not stabilize the itg as efficiently as the Waltz rule ωE×B ≈ γ would predict
[49, 50], presumably due to their very short wavelength. In fact, it is at present unclear
if any appreciable itg stabilization is generated. It should be noted that the fine scale
structure is relatively stationary and the reduced impact of shear stabilization can not
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be explained through a temporal dependence as in Ref. [48].

The behaviour described above is observed in all simulations that use standard parameters.
A typical staircase structure cannot be made out in the radial shear profiles, even when
attempting to filter out the small scale fluctuations. Although avalanches in the heat flux
are observed (but not shown), these do not have starting or ending points at fixed radial
positions, as is observed for the staircase structures obtained with adiabatic electrons
[9–11, 84]. In conclusion, the dependence of the heat conduction on the gradient, the
profile of the E × B shear, and the radial distribution of avalanches all indicate that
staircases do not form in these cases.

5.3. Physical nature of the small scale ωE×B structures

The small scale structures in the E ×B shearing rate are caused by the self-interaction
connected with the parallel boundary conditions, which will be shown below. For that
task, the results of a simulation with grid resolution G3 and the aforementioned standard
parameters (with R/LT = 3.5) are discussed. After an initial linear phase, the simulations
exhibits a quasi-stationary, turbulent state in which the self-interaction drives the distinct
zonal modes. Fig. 5.5 shows the electric potential |φ|, taken as a measurement of the
mode intensity, in the kψ-kθ-plane (only positive wave vectors are shown).

Here, several observations can be made. The itg turbulence generates a maximum
potential amplitude located at low kψ and kθρ ≈ 0.35. The extended itg mode structure
along the magnetic field line, connected with the fast passing electrons, leads to the
generation of a contribution at higher kψ. That the visible enhancement at higher
kψ is due to the parallel boundary conditions is evident from the marks (white circles)
indicating ∆kψ given by Eq. ((5.6)) as a function of kθ. The nonlinear interaction between
modes grouped around kψ ≈ 0 and those at kψ = ∆kψ then drives the zonal mode, which
can be seen as a discontinuous band at the bottom of the figure. Here, a correlation
between the itg-maximum and an exceptional strong drive of the zonal modes can be
discerned.

The radial spectrum of the absolute value of the electrostatic potential |φ| at kθ = 0 is
shown in Fig. 5.6 (mind the logarithmic scaling of kψ here). As discussed in Sec. 5.1 the
self-interaction mechanism drives zonal flows with a distinct radial wave vector. Indeed,
the spectrum in Fig. 5.6 shows spikes at distinct positions. Furthermore, these spikes
coincide with the radial shift ∆kψ due to the boundary conditions which are marked by
the red vertical lines, indicating the modes driven through self-interaction. Moreover, if
the relative size of the spikes is taken into account, the relation to the itg-maximum is
nicely visible. In Fig. 5.6 the radial spectrum of the E ×B shear rate is also depicted. It
can be seen that the spikes at high kψ dominate the ωE×B spectrum. This is consistent
to the form of the radial shear profile presented in Fig. 5.4. The wave length of the
small scale ωE×B structures shown there is consistent with the shift ∆kψ and are a direct
consequence of the self-interaction mechanism.
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Figure 5.5.: Spectral slice in kψ- and kθ-direction of the electrostatic potential |φ|,
averaged over the stationary turbulent state. The simulation uses the standard
parameter set and grid resolution G3. The radial shift given in Eq. ((5.6)) corre-
sponding to each kθ, is indicated by the white circles. Take notice of the discontinuous
behaviour of the zonal mode at the bottom of the figure and that only a portion of
the spectral plane is shown.

Furthermore the question arises whether the intensity of the driving modes are in
accordance with the growth of the spikes. Therefore, the required growth time tG for the
individual spikes is coarsely estimated by mimicking the mechanism of the self-interaction.
Motivated by an analysis of the momentum balance between the Reynolds stress and the
zonal flow vorticity, tG for a zonal mode φZF driven by the modes at kθ is given as

tG =
|φZF(∆kψ, 0, s)|∑

kψ
kψkθ|φ(kψ, kθ, s)||φ(kψ + ∆kψ, kθ, s)|

. (5.8)

Here, φZF is taken as the size of the spikes ∆|φ| which are taken as the difference between
the potential at the position of the spike and a logarithmic baseline. Generally, the two
nearest points in each direction are taken to define the baseline. In a few cases, where
this is not possible, only the adjacent points are used. It should be noted that due to
turbulent fluctuations, this method becomes less exact for spikes being small in relation
to the baseline, which can be anticipated for example in Fig. 5.6. These results are
compared to the observed growth rates in a simulations with standard parameters and
resolution G2. For this, the spikes are first suppressed, i.e. the modes determined via
Eq. ((5.6)) are set to a vanishing value. Then the suppression is lifted and the mode
grows to a stationary state. Results of this process are presented in Fig. 5.7. Here, the
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Figure 5.6.: Radial spectrum at kθ = 0 of |φ| (blue and corresponding to the left
axis) and ωE×B (green and corresponding to the right axis). It is averaged over
the stationary state of a simulation with the standard parameter set and the grid
G3. ∆kψ is indicated with red vertical lines. Note the logarithmic scaling of kψ in
comparison to Fig. 5.5.

evolution of the individually normalized electrostatic potential |φ|/|φ|max for some of the
zonal modes that are resonant to the self-interaction after the suppression are depicted as
an example. The end of the suppression occurs at t = 900R/vth and to indicate the later
stationary state its average value is depicted as a horizontal line. The time needed for
the mode to grow to the stationary state is found to be around 100R/vth to 150R/vth,
which is well above the predicted growth time estimated with Eq. ((5.8)), being 10R/vth
to 50R/vth. So it is concluded that the self-interaction mechanism is able to drive the
observed spikes in the zonal mode. In Fig. 5.7 it can also be seen that the self-interaction
leads to an algebraic growth and not to an exponential growth, with the latter being
expected from the modulation instability.
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Figure 5.7.: Evolution of the individually normalized electrostatic potential |φ|/|φ|max
after an initial suppression for some of the zonal modes that are resonant to the
self-interaction. The end of the suppression occurs at t = 900R/vth. As comparison,
the corresponding average over the later stationary state is depicted as a horizontal
line.

5.4. Parameter dependence of the self-interaction

The above result on small scale structures in the E × B shearing rate raises several
questions: Do they prevent the formation of a staircase structure, or is it merely an
additional artefact? Is the self-interaction relevant for any experiment or future reactor?
And if it is not relevant, do flux tube calculations produce inaccurate results because
of these structures? To answer these questions the parameter dependence of the self-
interaction is studied below.
In the discussion in Sec. 5.1 it was argued that every flux tube simulation can be thought
of as correctly describing a whole flux surface, provided the normalized Larmor radius
is chosen consistent with the computational domain. For the resolutions used in this
chapter these normalized Larmor radii are G1: ρ∗ = ρ/R = 1.9 ·10−2, G2: ρ∗ = 9.5 ·10−3,
G3: ρ∗ = 4.75 · 10−3. Consequently, if one assumes to describe the entire flux surface, it
cannot be assumed that the resolutions of the smaller grids represent current experiments,
only the case G3 can be deemed relevant. From the discussion in Sec. 5.1 it is clear that
one can expect the self-interaction to decrease with increasing device size, i.e. decreasing
normalized Larmor radius. For the flux tube simulations the change in the normalized
Larmor radius implies a large amount of modes. The scaling of the self-interaction with
the number of modes can also be argued as follows: The potential perturbations are
unaffected when the resolution in real space is doubled for a fixed box size. Parseval’s
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theorem then states that that the turbulence intensity calculated by summing the Fourier
amplitudes of all modes I ∝

∑
k|φ̂|2 should be unaffected. If the resolution is doubled

in binormal direction, the higher mode density in k−space then implies that each of
the modes carries an intensity that is two times smaller. Since the self-interaction is
connected to the nonlinearity, it scales proportional to the intensity, and the drive of
each of the spikes can be assumed to be two times smaller. Since the number of kθ modes
that must be kept in the simulation of a full flux surface scales as 1/ρ∗, it is expected
that the intensity of the spikes is roughly proportional to the normalized Larmor radius.
Note that the same argument does not directly apply to the doubling of resolution in
the radial direction. Although doubling the resolution in this direction leads to a similar
decrease in the turbulence intensity, all modes with the same kθ drive the same zonal
flow mode with kψ = ∆kψ and, consequently, the same amplitude in this mode can be
expected.

The above mentioned scaling with the number of modes is shown in Fig. 5.8 where the
resulting spike intensities ∆|φ| (see Sec. 5.3 for calculation) are depicted for the different
resolutions (see Tab.5.1) used in this chapter. For the grids G2 and G3, beginning
from small kψ, the spike size decreases, after a minimum at kψρ ≈ 2, another maximum
appears and then the ∆|φ| decreases again. The grid G1 has an insufficient kψ-resolution
to show this behaviour. The behaviour of the grids G2 and G3 is in accordance with
the binormal spectrum of φ, summed in the radial direction. As already mentioned,
the calculation of the spikes is tainted by turbulent fluctuations. This leads to small
discrepancies and is taken as explanation for the (albeit very small) negative spike sizes
found. Concluding from that, high spikes located at regions with a low turbulent baseline
(region at kψρ ≈ 2) are deemed the most expressive in this analysis. If the results of
the different grid sizes are compared, the expected decrease of the spike intensities with
increasing resolution is observed. Comparing ∆|φ| for corresponding kψ, the relation
between the grids G1 and G2 does exhibit an averaged relation of ∆|φ|G1/∆|φ|G2≈ 2,
which is found quite consistently over the whole kψ range. For the grids G2 and G3,
again an averaged relation of ∆|φ|G2/∆|φ|G3≈ 2 is found, however deviations from that
value for many points are found. These are attributed to turbulent fluctuations. The
reduction in spike size for increasing resolutions suggests that at small ρ∗ no significant
self-interaction can occur. Still, at the resolution G3, which corresponds to a normalized
Larmor radius of ρ∗ = 4.75 · 10−3, the effect is remarkably strong as seen in Sec. 5.2
and Sec. 5.3, and a significantly large mode density (smaller ρ∗) would be required to
eliminate the small scale structures in the ωE×B shearing rate. To test the aforementioned
argument of the scaling, a simulation with standard parameters and resolution G2-b is
used, the results are shown in Fig. 5.8. Here, compared to G2, the number of radial
modes is doubled, the number of binormal modes is kept the same. Consequently, the
strength of the spikes observed here is expected to be similar to the G2 case. If both
results are compared, a sub-par agreement for spikes at lower kψ is found. It is assumed
to be caused by the different resolutions in the radial and binormal direction having a
higher influence on spikes that are small in relation to the baseline. The results at higher
kψ do compare relatively well and are taken to be more credible as the relative spike size
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Figure 5.8.: Intensities of the spikes in the zonal mode caused by self-interaction. The
simulations are using the standard parameter set, the four different grid sizes shown
in table 5.1 are used. Furthermore, the results of a simulation with an increased
me/mi and the grid G2 are shown. Negative values are omitted and the neighbouring
points are not connected.

is higher (compare for example in Fig. 5.6). Thus, the argument is assumed to hold in
the framework of this analysis.
Furthermore, the influence of the electron-ion-mass-ratio of me/mi is investigated. The
self-interaction is caused by the long extension of the mode along the field line, which
is connected to the large mobility of the electrons [99, 100]. As the electron mass is
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5. Zonal flow generation through self-interaction

increased, the mode is more localized and the self-interaction is assumed be weaker. This
is investigated with simulations on the grid G2 with the standard parameter set and
an increased electron-ion-mass-ratio of me/mi = 1.65 · 10−2 and me/mi = 1.0. In these
simulations, a reduction in the intensity of the spikes is indeed observed. This is shown
for me/mi = 1.65 · 10−2 in Fig. 5.8, where a clear reduction compared to the standard
G2 case is visible, which proves the assumption.

Figure 5.9.: Radial spectrum of the zonal potential (blue, corresponding to the left
axis) and E × B shear (green, corresponding to the right axis), averaged over a
stationary state with suppressed turbulence. The simulations uses the grid G2 and
the standard parameter set but with an increased magnetic shear of ŝ = 1.092. As
comparison, the E × B shear of a simulation with the standard parameter set is
depicted.

The wave vectors of the driven zonal modes also depend on the value of the magnetic
shear ŝ, as it is clear from Eq. ((5.6)). If the magnetic shear is varied, the wave vectors of
the driven zonal flows should vary correspondingly. To test this impact, simulations for
magnetic shear values ŝ ∈ {0.156, 0.312, 1.092, 1.404} have been performed with a grid
resolution G2. The parameter ikψ has to be adapted accordingly, using ikψ ∈ {1, 2, 7, 9}
for the respective shear cases. As an example, the radial spectrum of the electrostatic
potential of a simulation with ŝ = 1.092 is shown in Fig. 5.9. In this and all other
simulations, the expected spike position, calculated following Eq. ((5.6)), is found to be
in perfect agreement with the position of the spikes in the kψ spectrum of the zonal flows.
Because ikψ has to decrease for smaller values, the overall drive through self-interaction
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increases, in turn decreasing the relative spike size (not shown). However, the influence
on the radial shear profile remains and strong small scale structures dominate. The
simulations with a higher ŝ show a smaller influence of self-interaction, which can be
seen in Fig. 5.9. This especially concerns ωE×B at higher kψ. Comparing ωE×B of the
simulation with ŝ = 1.092 to a corresponding simulation with ŝ = 0.78, a reduction
is visible. It is attributed to the lower density of modes that are affected by the self-
interaction.

5.5. Staircase structures with kinetic electrons

The dependence on the magnetic shear allows the investigation of pattern formation in
the E×B shear avoiding, to some extend, the small scale structures. To exemplify this, a
scan over R/LT at ŝ = 1.092, which affects the itg only slightly [101], is carried out. This
leads to a reappearance of the staircase structure and most of the typical traits associated
with it [11]. As an example, the evolution of the radial E ×B shear rate of a simulation
at R/LT = 3.6 is depicted in Fig. 5.10 together with the evolution of the averaged
heat conduction coefficient χ. A clear correspondence between periods with a marked
decrease of the small scale structures and a suppressed heat flux is visible. Eventually,
an established stationary state with a suppressed heat flux is reached. Here, a staircase
structure in the E ×B shear can be identified, as shown in Fig. 5.11. Correspondingly,
the spikes in the radial spectrum are weak. Compared to adiabatic simulations a higher
shear is found in the suppressed state which is attributed to the albeit small but still
present small scale fluctuations.
Furthermore, a coincidence between this large scale structure and a radial localization of
heat flux avalanches similar to the observations in adiabatic simulations [9–11] can be
made out. To show this, the radial profile of the heat conductivity in the period where
a staircase structure appears is shown in Fig. 5.11. Here avalanches can be observed,
however they are considerably weaker compared to adiabatic simulations, as described
in Ref. [102]. Nevertheless, a relation between the avalanche source- and sink-regions
and the staircase is visible (mind the periodic boundary conditions): They emerge from
the flank of the staircase at ψ ≈ 15ρ and run towards a region at ψ ≈ 50ρ − 60ρ. In
accordance with the flattened flank, no exact sink-region can be identified. It should
also be noted that the (local) strength of the avalanches coincides with local small scale
perturbations of the staircase structure caused by self-interaction, visible for example
around t ≈ 2000vth/R.
Also, the heat conductivity in the stationary state for varying R/LT is examined, the
results are shown in Fig. 5.3. A shift in the threshold compared to the simulations at
ŝ = 0.78 is visible. This is be associated with the increased magnetic shear, leading to
a weakening of the itg instability. The typical abrupt drop in the heat flux cannot be
made out. It should be noted that the simulations close to the threshold do exhibit short
states with suppressed turbulence, however no final, i.e. long term, stationary state is
observed despite long simulation times. If the curve for an increased ŝ is compared to

93



5. Zonal flow generation through self-interaction

Figure 5.10.: Top: Time evolution of the radial E × B shear profile ωE×B of a
simulation where the mechanism is weakened due to a different magnetic shear. It
uses the grid size G2 and the standard parameters except ŝ = 1.092 and R/LT = 3.6.
The colour range of ωE×B is clipped to improve visibility. Bottom: Corresponding
time evolution of the flux surface averaged heat conductivity χ.

the results from standard parameters, a difference for small heat conductivities χ / 1 is
visible. Where for standard parameters a small but finite χ is found, for an increased
ŝ the heat conductivity does go approximately linear to zero. This difference can be
attributed to the appearance of the staircase structure and is backed by considerably
long simulations.
It is concluded that staircase structures do form in simulations with kinetic electrons.
The fact that the various signatures are only observed when reducing the self-interaction
gives strong support to the idea that the small scale E × B shearing rate structures
prevent the formation of staircases. Why the observed small scale structures do not
suppress turbulence as efficiently as large scale structures can not be answered in the
scope of this analysis, however it will be a topic of future work.
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Figure 5.11.: Top: Radial heat conductivity profile of a simulation with ŝ = 1.092
and R/LT = 3.6 on a grid G2. Bottom: Corresponding radial E ×B shear profile
averaged over a stationary period. Mind the periodic boundary conditions.

5.6. Self-interaction in global simulations

Furthermore the question arises, in what way the self-interaction is observed in global
simulations. This question is motivated as follows. The mechanism of the self-interaction
requires the coupling of radial modes through the boundary conditions along a field line.
These depend on q, which is taken to be constant in a flux-tube simulation, whereas
in a global simulation, q varies over the radius. Consequently, the coupling also varies
with the radius which could influence the self-interaction mechanism. It should also be
stressed that all investigations of the self-interaction beforehand were carried out with the
radial domain represented spectrally. In a global simulation this is not the case, therefore
global simulations would allow to test, if the self-interaction mechanism is (unphysically)
influenced by the choice of a spectral representation. To answer these questions, a global
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5. Zonal flow generation through self-interaction

simulation is carried out.

The numerical investigation is performed with gkw [54] in the global version with the
following parameters: Number of radial points Nx = 384, number of binormal modes
Nζ = 24, number of points along the field line Ns = 16, number of points in the magnetic
moment Nµ = 18, number of points in the parallel velocity Nv,‖ = 16. To correspond to
the previously discussed simulations, an electromagnetic simulation with kinetic electrons
and no plasma rotation is carried out. Electrons are treated kinetically with an electron
to ion-mass-ratio me/mi = 5.69 · 10−4. A small electron plasma beta βe = 3 · 10−4

is assumed so that the simulation retains the shear Alvén wave physics to reduce the
computational costs. In contrast to flux tube simulations, background profiles of the
common parameters are specified, they are shown if Fig. 5.12. They are chosen to
generate a simulation comparable to the previously studied local analyses. A small
collision frequency is introduced to ensure computational stability. Therefore following
parameters are chosen: nref = 1.0, Tref = 1.0, Rref = 1.0, resulting in the collision
frequencies νii ≈ 7 · 10−4, νie ≈ 7 · 10−4 and νee = 3 · 10−4.

The simulation exhibits a non-vanishing heat flux Q as shown in Fig. 5.13. One has
to be careful, as the time scale of this simulation might not be long enough to exhibit
the formation of a fully-developed staircase structure, which can take considerable time
as shown before and in Refs. [10, 11]. More insight in the long time behaviour can be
gained from the observation of the radial shear profile. The radial shear is calculated
similar to the local limit, however now, Dirichlet boundary conditions are assumed. The
resulting shear is shown in Fig. 5.14. Here, the strong small scale structures typical
for the self-interaction are observed. This shows that the self-interaction is also found
when q and ŝ are not assumed to be constant. The strength of the small scale structures
indicates that the formation of a staircase will most likely not be observed later on and
the turbulence will not be suppressed. Additionally, the low order rationals of q are
indicated as red vertical lines in Fig. 5.14. However no conclusive correlation between
the position of the low order rationals and the small scale structures can be found.
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5.7. Self-interaction influenced by collisions

The analysis presented in Chap. 4 shows that the structure formation in the radial
E ×B shear is influenced by collisions. Therefore the question arises, whether and how
the small scale structures driven by the self-interaction are affected by collisions. To
investigate this, simulations with the standard parameter set and with the additional
consideration of collisions are carried out on the grid G2. The parameters related to
collisions are: nref ∈ {0.5, 3.0}, Tref = 1.0, Rref = 1.0. They result in the collision
frequencies νii ∈ {6 · 10−4, 3 · 10−3}, νie ∈ {5 · 10−4, 3 · 10−3} and νii ∈ {5 · 10−4, 3 · 10−3}.

The simulations do not exhibit significant changes compared to the collisionless simu-
lations. The small scale structures dominate the radial profiles, characteristic staircase
structures cannot be made out and no state with suppressed turbulence is observed,
which will be detailed in the following. In Fig. 5.15, the radial spectra of the electrostatic
potential and the E×B shear of the simulation with the higher collision frequencies (with
nref = 3.0), are shown. For comparison, the spectra of a collisionless, but otherwise similar
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Figure 5.15.: Radial spectrum at kθ = 0 of |φ| (blue and corresponding to the left axis)
and ωE×B (green and corresponding to the right axis), averaged over the stationary
state for an electrostatic simulation with grid G2. ∆kψ is indicated with red vertical
lines. for comparison, the potential and shear of a collisionless simulation with
corresponding parameters are shown with dashed lines.

simulation is also depicted. It can be seen that the modes driven by the self-interaction

99



5. Zonal flow generation through self-interaction

mechanism at lower wave vectors are damped relatively strongly by collisions, whereas
the modes at higher kψ are damped only slightly. Consequently, a large scale modulation
in the shear is observable only weakly. The small scale structures dominate in the corre-
sponding radial shear profile, which is shown in Fig. 5.16. In this profile, hints of staircase
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Figure 5.16.: Averaged radial shear profile of a simulation with the standard parameter
set and nref = 3.0. The linear growth rate of the itg is indicated by black vertical
lines.

formation, i.e. a partial staircase, are not observed. In accordance to these findings, no
suppression of turbulence is seen and a reduced heat flux is not measured. Due to no sig-
nificant weakening of the small scale structures in combination with the damping of large
scale structures (the scale of the staircase) and no sign of a partially developed staircase, it
is concluded that the formation of a fully developed staircase at later times is not possible.

Comparing to these results, the simulation with lower collision frequencies (with nref = 0.5)
shows the effects mentioned above in a less pronounced manner. indications on the
formation of a staircase are not observed as this shear profile is also dominated by small
scale structures. For similar reasons as mentioned above it is again concluded that the
formation of a staircase at later times is not possible.

In conclusion it is found that collisions do not damp the small scale structures significantly,
whereas structures at larger scales, akin to staircases, are affected more strongly. Taking
the analysis of Chap. 4 into account, it can be concluded that regimes with collision
frequencies strong enough to damp the small scale structures will not exhibit staircase
formation either. In regimes with small collision frequencies, the damping of the small
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scale structures can be neglected. Therefore, the formation of staircases in the kinetic
electron picture is not aided by the consideration of collisions.

5.8. Reduced time step in the electromagnetic picture

Here, the use of (slightly) electromagnetic simulations, i.e. a small plasma-β 6= 0, to
reduce the required time step, will be briefly explained and examined. The use of β 6= 0
raises the question whether this has an influence on the observed generation of the small
scale structures. Therefore, a short investigation of the self-interaction in the electrostatic
picture, where β = 0, follows.

The shear Alfvén wave is a propagating displacement of the particles in the direction
perpendicular to the magnetic field. The restoring force of the oscillation is provided by
the magnetic field, a bent field line exerting a force B · ∇B towards the centre of the
osculating circle. A simplified analysis in the MHD-picture, found for example in Ref. [6],
shows that the Alfvén wave travels along the magnetic field with the Alfvén velocity

vA = B
√
µ0%
∝ 1√

β
, (5.9)

with the magnetic permeability µ0 and the mass density of the fluid % (cgs). Consequently,
a very small β leads to fast shear Alfvén waves. Following the Courant-Friedrichs-Lewy
condition [62], this would require a very small time step to properly describe shear Alfvén
waves physics. Furthermore, (electromagnetic) shear Alfvén waves physics are required,
as otherwise, the kinetic version of the Alfvén wave converts into an electrostatic electron
thermal wave at small perpendicular length scales, where its velocity changes from the
Alfvén velocity to the thermal electron velocity. Again, this would require a smaller
time step, increasing the required numerical resources. On the other hand, a relatively
large β would lead to the appearance of noticeable electromagnetic effects relevant for
transport. Consequently, a small β will suppress the electrostatic shear Alfvén wave
which allows a bigger time step, but does not lead to relevant electromagnetic effects [103].

To investigate, whether the small plasma β used in this investigation, might influence the
self-interaction mechanism, a comparable simulation in the electrostatic limit is carried
out. Otherwise the simulation uses the standard parameter set and the grid G2. For
the grid G2, the choice of an electrostatic simulation already leads to a decrease of the
required time step by a factor of ≈ 2.5. The simulation also shows the distinct drive of
the resonant modes through self-interaction, presented in Fig. 5.17. Here, no qualitative
differences to the electromagnetic cases, also shown in Fig. 5.17 as dashed lines or in
Fig 5.6, can be found. A comparison of the spike intensities (see Sec. 5.3 for calculation)
shows also shows no qualitative differences. In accordance to this, the resulting small
scale structures in the radial shear profile are found and no suppression of the heat flux is
observed. This investigation leads to the conclusion that the use of a small plasma-β 6= 0
does not influence the results of the analysis presented in this chapter.
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Figure 5.17.: Radial spectrum at kθ = 0 of |φ| (blue and corresponding to the left axis)
and ωE×B (green and corresponding to the right axis), averaged over the stationary
state for an electrostatic simulation with grid G2. ∆kψ is indicated with red vertical
lines. For comparison, the potential and shear of an electromagnetic simulation with
corresponding parameters are shown with dashed lines (blue and green).

5.9. Conclusion

In this chapter staircase structures are shown to develop in gyro-kinetic simulations with
kinetic electrons. Staircases, however, do not develop under all circumstances. In many
cases a large amplitude small scale structure in the E ×B shearing rate is observed, and
in these cases no staircase structure can be identified. The heat flux then goes smoothly
to zero when reducing the temperature gradient length, and no radial localization of
avalanches is observed. The small scale E ×B shearing rate structures are interpreted
to disrupt the formation of the larger scale staircase structures. This interpretation is
empirically obtained since there is at present no convincing explanation for the staircase
formation.
The small scale structures observed in the E ×B shearing rate are interpreted as being
driven by the self-interaction of turbulent modes that is generated over the periodic
boundary conditions of the double periodic torus. While the itg mode with adiabatic
electrons is localized along the magnetic field, and shows no appreciable self-interaction,
the mechanism is present in the case of kinetic electrons due to the extended mode
structure. A proper numerical evaluation of the effect can only be obtained when the

102



5.9. Conclusion

whole flux surface is treated, and consequently a flux tube simulation that covers only part
of the toroidal circumference can produce spurious results near the nonlinear threshold
of turbulence generation. The self-interaction is shown to decrease with the number
of toroidal modes kept in the simulation, and for a full flux surface simulation scales
proportional to ρ∗. It is to be expected that the effect is small in a reactor plasma,
but at ρ∗ = 5 · 10−3 it is still dominantly present and it is therefore likely that it is of
importance to present day experiments. Also the magnetic shear is observed to affect
the results through their impact on the boundary conditions. This dependence was
utilized to generate conditions under which staircases can be observed to form. In global
simulations, the strong small scale structures are observed, indicating that the self-
interaction is not limited to the local approximation. To complement these investigations,
the influence of collisions on the self-interaction mechanism and the resulting structures
are examined. These structures are found to be affected only slightly by collisions
compared to the staircase structures that are observed in Chap. 4. The entirety of the
carried out investigations leads to the conclusion that the self-interaction is a relatively
robust mechanism.
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6. Suppression of ITG due to structures in
the zonal flow

It is widely known that itg turbulence is regulated through structures in the zonal flow
[8–11, 51, 84]. The self-organization of the E ×B shear flow into staircases [8], can lead
to the emergence of a state with suppressed turbulence and a strongly reduced heat flux
as shown in as shown in Ref. [11], where a finite threshold in the heat flux was observed
as a result of staircase formation. Subsequent analyses investigated the influence of
collisions, the impact of momentum transport and tertiary instabilities [36, 84, 104]. A
further analysis of staircase formation using the kinetic electron response [96], showed
that, through the so-called self-interaction, structures with high shearing rates and small
wavelengths are generated in the zonal flow. However, these structures do not damp the
turbulence sufficiently to establish a state with suppressed turbulence. This observation
raises the question, how the wavelength of the structures that form in the zonal flow
impacts the regulations of turbulence. In the analysis presented here, this question is
investigated.

The method to measure the suppression of turbulence can be summarized as follows: A
simulation is run until a stationary state is observed. This ensures that the structure
formation in the zonal flow has advanced sufficiently. Then, the turbulence but not
the zonal flow (or only a part of it) is quenched, i.e. set to a value that is small in
comparison to the initial values used in the simulations. After that, the turbulence is
allowed to re-establish, while the zonal flow (or a modified version of it) which has not
been quenched, is kept fixed. This ensures that a subsequent decay of the zonal flow
due to an absent drive does not affect the results. Here, a (mostly) linear period, with
behaviour similar to the initial evolution of a simulation, is observed. In this period,
the amplitude of the modes is relatively small, therefore the nonlinear interactions can
be neglected. Consequently, the modes grow nearly exponentially in this period. In
this linear period, the remaining zonal flow damps the exponential growth of the modes.
By varying its radial structure, i.e. using only certain modes of the zonal flow, it is
possible to gain insights on how the structure of the zonal flow affects the growth of the itg.

6.1. Numerical setup

The simulations are carried out with the spectral flux-tube version of the nonlinear
Eulerian gyro-kinetic code gkw [54]. They are gradient driven, neglect plasma rotation
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as well as collisions, and have a standard parameter set compliant to the well known
cyclone base case: safety factor q = 1.4, magnetic shear ŝ = 0.78, inverse aspect ratio
ε = 0.19, and density gradient R/Ln = 2.2. Electrons are either treated in the adiabatic
limit (adiabatically) or as a separate kinetic species (kinetically) with an electron to ion-
mass-ratio of me/mi = 2.72 · 10−4 (deuterium). A temperature gradient of R/LT = 6.9
for the adiabatic cases and a R/LT = 3.5 for the kinetic cases is used. These values are
chosen to ensure a comparable turbulent behaviour of both simulation types, as both
values of R/LT are located slightly above the respective thresholds [11, 84, 96]. However,
care has to be taken if adiabatic and kinetic simulations are compared in a quantitative
manner. Electron and ion temperature (T ) as well as their gradients are chosen to have
the same value. To reduce the computational cost in the kinetic case, a small electron
plasma beta βe = 3 · 10−4 is assumed so that the simulations retain the shear Alfvén wave
physics. With this choice, the shear Alvén wave propagates at a velocity comparable
to the electron thermal speed, thus allowing an optimal time step without affecting the
desired behaviour, as shown in Chap. 5. The used grid size is: the number of radial
modes Nψ = 83, the number of Binormal modes Nθ = 21, the number of points along
the magnetic field Ns = 32, the number of points in the magnetic moment Nµ = 9, the
number of points in the parallel velocity direction Nv‖ = 64 and the maximal radial wave
vector is kψ,max = 1.4. All the wave vectors are given in relation to the Larmor radius
ρ = mdvth/eB with md the deuterium mass, e the elementary charge, B the magnetic
induction and vth =

√
2T/md is the thermal velocity. Note that the thermal velocity is√

2 larger compared with the often employed sound speed. The size of the radial wave
vector grid is determined by the condition that modes connected through the boundary
along the field line can be represented on the grid, see Chap. 5 for details. To ensure
a comparable resolution in the radial and the binormal direction albeit this condition,
the integer factor ik = 5 is used [78]. For the zonal mode the sixth order scheme along
the magnetic field is used, the dissipation coefficients are Dx = 0.1, Dy = 0.1, Ds = 1,
and Dv‖ = 0.2 (see Ref. [11] for details on the implementation of the scheme and the
dissipation).

A linear analysis is carried out to examine the undamped growth rates in the adiabatic
and kinetic case. Therefore, the aforementioned parameters are used, however, the
nonlinear terms in the gyro-kinetic equation are neglected. The results are depicted in
Fig. 6.1, where the binormal spectra of the growth rate γ and the dominant frequency ω
in the adiabatic and kinetic case, are shown. In the kinetic electron case (green), the
trapped electron mode (tem), distinguishable by a negative mode frequency for higher
kθ [105–107] influences the spectrum.

To change the form of the zonal flow, parts of it are disregarded by setting the corre-
sponding modes to zero. To illustrate this behaviour, the zonal part of the electrostatic
potential of such a simulation is depicted in Fig. 6.2. Here, only the zonal modes that
are driven by the self-interaction, see Eq. (5.6), are retained, the other zonal modes are
set to zero.
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Figure 6.1.: Binormal spectra of the growth rate γ and the dominant frequency ω
for a linear simulation. In the kinetic case, the spectrum shows the influence of a
trapped electron mode tem for higher kθ.

In the adiabatic simulations, the following problem arises: The partially developed stair-
case, which is found above the finite heat flux threshold, is obstructed by fast fluctuations
(see for example Ref. [11]) due to the unsuppressed turbulence. The typical staircase
structure is only found if the E × B shear is averaged over a long period. Therefore,
keeping the current zonal flow fixed would bias the results. To circumvent this problem,
the zonal flow is not kept fixed over time in that case. This can be justified as the linear
period, in which the growth rates are measured, is relatively small (≈ 50R/vth) compared
to the decay of the zonal flow, as shown in Chap. 4. A consequence of the turbulence
quenching is that the fluctuations are not found any more. However, this is assumed to
be negligible, as fast fluctuations exert no significant suppression [48]. If the damping
of a fully developed staircase is investigated, this problem does appear, as no strong
fluctuations are found in that case. In kinetic simulations strong small scale fluctuations
are found, however they are not (strongly) fluctuating in time, which can be seen for
example in Fig. 5.4 from Chap. 5. Consequently, it is assumed that keeping the zonal
flow fixed does not bias the results.
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Figure 6.2.: Evolution of the radial spectrum of the zonal part (kθ = 0) of the
electrostatic potential φZF. At tr = 0R/vth (t = 534R/vth), only the zonal modes
driven by self-interaction are kept. Note that the colour axis is logarithmic, however
zero values are shown, they are indicated with white.

An example of linear growth after the quenching of the turbulence is given in Fig. 6.3.
Here, the evolution of the poloidal spectrum of the electrostatic potential’s absolute value
averaged in the radial direction, which is taken as a measurement for mode intensity, is
depicted. For visual convenience, only selected modes are shown, the quenching occurs
at tr = 0R/vth (t = 534R/vth). The figure depicts the results of a kinetic simulation,
where only the zonal modes driven by self-interaction are kept (see Fig. 6.2) after the
turbulence is quenched. Consequently a suppressed regrowth is observed. To quantify
the regrowth, the evolution of each mode is fitted with an exponential function of the
form |φ(t)|= A exp[γt] in the linear period, to obtain the growth rate γ of that mode.
These fits are indicated with dashed lines in Fig. 6.3, the obtained growth rate spectrum
is shown in Fig. 6.5. In most simulations, the period where a perfectly linear growth due
to the itg prevails is rather small. After that, nonlinear interactions lead to a grow of
modes at high kθ. This is used as a reference for the end of the (purely) linear period in
which the growth rate is measured.
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Figure 6.3.: Evolution of the poloidal spectrum of the electrostatic potential’s absolute
value averaged in the radial direction for selected binormal modes. The quenching
occurs at tr = 0R/vth (t = 534R/vth). The exponential fit is shown with dashed
lines of the same colour. In this kinetic simulation, only the zonal modes driven by
self-interaction are kept (see Fig. 6.2).

6.2. Comparison of growth rate spectra

At first, a qualitative investigation of the damping of the zonal flow is carried out with
the proposed method. Therefore adiabatic simulations are used, as in these simulations,
no self-interaction is found [96] and a strong shear suppression is present [9–11, 51, 84].
In the adiabatic case, four growth rate spectra are measured with the proposed method
and are shown in Fig. 6.4: A spectrum obtained from a simulation without the zonal
flow (blue). A spectrum with the zonal flow, where a partially developed staircase is
found (green) (here the zonal flow is not kept fixed over time). A spectrum where a fully
developed staircase is present in the zonal flow (solid red). This zonal flow structure
is obtained from a simulation below the finite heat flux threshold (R/LT = 6.1), where
the zonal flow is kept fixed and R/LT is changed to R/LT = 6.9 after the quenching.
Furthermore, a spectrum also with a fully developed staircase, but where the zonal
flow is not kept fixed (dashed red). The growth rate spectrum observed without the
zonal flow shows only minor differences to the linear spectrum depicted in Fig. 6.1.
A slight reduction of the overall growth rate and a small reduction of the unstable
region are observed. This shows that the proposed measurement method can be used
to obtain good results. The spectrum obtained here will be used as a reference value
in Sec. 6.3 and later on. If this spectrum is compared to the spectra measured with
a zonal flow, a strong damping is observed. The spectrum measured with a partial
staircase shows a weaker damping than the spectrum obtained from a fully developed
staircase. This is compliant to the findings described for example in Chap. 4 or Ref. [11].
When comparing these two spectra directly, care has to be taken as the zonal flow
intensity depends on the strength of the turbulence (Waltz rule [49, 50]) and therefore
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Figure 6.4.: Comparison of the measured binormal growth rate spectra after quenching.
Results of an adiabatic simulations without zonal flow (blue), with a partially
developed staircase (green) and a fully developed staircase (red) are shown.

on R/LT , which leads to a small bias. The spectrum obtained from the simulation in
which the zonal flow is not kept fixed shows only very slight variations compared to the
spectrum measured with a fixed zonal flow. Thus it is assumed that not keeping the zonal
flow fixed in the simulation with a partial staircase does not affect the results significantly.

Furthermore, in Fig. 6.5 three spectra that are obtained in the kinetic case are shown:
A spectrum without the zonal flow (cyan). A spectrum where the complete zonal flow,
with the dominant small scale structures driven by self-interaction, is present (yellow). A
spectrum where only these small scale structures in the zonal flow are present, i.e. only
the zonal modes driven by self-interaction are kept (magenta). A spectrum where these
small scale structures, i.e. the modes driven by self-interaction, are removed from the
zonal flow. Small differences, that are similar to the ones observed in the adiabatic case,
between the growth rate spectrum obtained without the zonal flow and the linear growth
rate spectrum are observed. The spectrum which is measure with the complete zonal
flow, shows a considerable damping of the growth rates. The spectrum obtained with
only the self-interaction-driven zonal modes, shows that these modes do contribute to
the damping only marginally despite their large intensity. In the case where the modes
driven by self-interaction are neglected, a strongly suppressed growth rate spectrum is
measured, which is comparable to the one obtained with the complete zonal flow.
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Figure 6.5.: Binormal growth rate spectra measured in kinetic simulations without
the zonal flow (cyan), with the complete zonal flow (yellow), with only the modes
driven by self-interaction (magenta) and with the zonal flow but without the modes
driven by self-interaction (dark grey).

6.3. Relative Suppression Strength

The analysis described above shows the damping due to the zonal flow. However, the
amplitude of the structures in the zonal flow is not taken into account, which hinders a
quantitative statement about the efficiency of the damping due to a certain structure. To
rectify this, the relative damping (efficiency) αkθ is defined to correspond to the Waltz
rule, which states that turbulence suppression occurs when ωE×B ≈ γITG. The relative
damping efficiency is calculated as the difference (per mode) in the growth rate between
an undamped reference spectrum φref and the spectrum itself φ in relation to the total
zonal flow intensity:

αkθ =
γref,kθ − γkθ

1/2
∑
kψ

k2
ψφZF,kψ

. (6.1)

Therefore, αkθ should be approximately unity in simulations where the Waltz rule applies.
For φref, the spectra measured for the cases without a zonal flow, depicted in Fig. 6.4
and Fig. 6.5 respectively for the adiabatic and kinetic cases, are chosen. This analysis
allows to determine the damping efficiency of a certain zonal flow structure.

The relative damping αkθ is calculated for the simulations presented in Sec. 6.2, the
results of the adiabatic cases are shown in Fig. 6.6. The relation between the relative
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Figure 6.6.: Relative damping αkθ for adiabatic simulations where a partially devel-
oped (green) or a fully developed (red) staircase is present.

damping αkθ of a full staircase and the Waltz rule, suggests that αkθ ≈ 1. However, this
is not found and instead, surprisingly low values are observed. A possible explanation
can be given as follows. Assuming that the suppression predominantly stems from the
modes with low kθ, taking all modes, especially those at high kθ, into account, will reduce
the intensity of αkθ (Eq. (6.1)). However, these modes will not lead to a significant
suppression of the itg, resulting in the observed discrepancy. Taking only the modes
with kψρ ≤ 1 would lead to an increase of αkθ about a factor of ≈ 2. Another reason
for a part of the discrepancy could be the difference in R/LT between the simulation
used to obtain the zonal flow and the simulation where the growth rate is measured.
From linear itg simulations this would give a factor of ≈ 0.2. The partial staircase has a
lower relative damping than the fully developed staircase, which is in accordance to the
observation that fully developed staircases lead to suppressed turbulence. At first glance,
the difference appears relatively large, as partial staircases exert a strong suppression
over most of the radial domain similar to fully developed staircases. But in the region of
the softened flank, the suppression is reduced leading to the measurement of a strong
itg and consequently, a low relative damping.

The relative damping efficiency measured in the kinetic cases is shown in Fig. 6.7.
Compared to the adiabatic cases, the relative damping is further reduced (in all cases).
Again this can be explained as an overestimation of the contribution from the zonal
modes at high kψ. These modes are stronger in the kinetic case due to the self-interaction,
therefore the claim made above can explain the lower values of αkθ observed here. The
complete zonal flow shows a relative damping which is comparable to the case with only
the self-interaction-driven modes in the zonal flow. It is attributed to the fact in the
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Figure 6.7.: In the kinetic case, results from simulations with the complete zonal
flow (yellow), with only self-interaction driven modes (magenta) and without the
self-interaction driven modes (dark grey) are shown.

latter case the total zonal flow intensity is considerably smaller than in the first case.
Therefore, only a slight reduction of the observed growth rate results in a considerable
damping efficiency. Removing the self-interaction driven modes from the zonal flow leads
to an increase of the relative damping efficiency, as the growth rate spectra do not differ
significantly, but a considerable part of the total zonal flow intensity is allocated in these
modes, predominantly at higher radial wave vectors. This hints that the strongly driven
modes might not play a significant role in the damping of the itg and that the damping
is mainly caused by modes with a low radial wave vector.

6.4. Relation to zonal flow spectrum

In this section, the relation of the damping to the wave vector will be examined more
closely. Therefore, the relative damping αkθ is measured for simulations, where only
parts of the zonal flow structure is kept. In the first analysis, kinetic simulations are used,
where modes in the zonal flow spectrum up to a certain (maximal) radial wave vector
kψ are retained. They are chosen to coincide with the modes driven by self-interaction.
The resulting relative damping spectra are shown in Fig. 6.8. With only the large scale
structures in the zonal flow where kψρ ≤ 0.41, a high damping efficiency is measured.
When the maximal radial wave vector is increased, the damping efficiency decreases.
Here, a notable drop in efficiency is observed between the simulations with kψρ ≤ 0.82
and kψρ ≤ 2.47. It has to be noted, that in the different cases, relatively comparable
growth rate spectra are observed. The reduced intensity measured in the cases with
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Figure 6.8.: Relative suppression αkθ for zonal flow spectra where modes up to a
specified radial wave vector kψ are kept.

higher maximal kψ is then mainly caused by the increased intensity of the zonal flow
itself (compare for example with Fig. 5.6). This proves the point made in the previous
chapter. The modes at low kψ effect the observed suppression, whereas the modes at
high kψ cause a negligible suppression of the itg. Consequently, retaining these modes
(in the calculation of αkθ) leads to an underestimation of the relative damping αkθ .

Motivated by these findings, the damping efficiency of large scale structures for the
adiabatic cases is examined. Therefore simulations with a zonal flow spectrum where
only modes with kψρ ≤ 1 are kept, are carried out. The measured relative damping is
shown in Fig. 6.9. αkθ of a simulation with a partial staircase (green) and a simulation
with a full staircase (red) are depicted. The simulation with a full staircase again shows
a higher relative damping than the simulation with a partial staircase, as discussed in
Sec. 6.3. The overall value of αkθ increases, which further strengthens the conclusion
that the damping of the growth rate is predominantly caused by zonal flow structures
with a low radial wave vector.
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Figure 6.9.: Relative suppression αkθ of zonal flow spectra where only modes with
kψρ ≤ 1 are kept. Results of adiabatic simulations with a partially developed (green)
and a fully developed (red) staircase are depicted.

6.5. Conclusion

In this chapter, the damping of the itg driven turbulent modes due to structures in the
zonal flow is investigated. Therefore adiabatic and kinetic simulations with the gyro-
kinetic code gkw are carried out. To measure the growth rate of the modes, the turbulent
modes are quenched, i.e. set to a small value. After that, a period where these modes
exhibit a linear behaviour and an exponential growth is visible, which allows to measure
their growth rates. The established zonal flow from before the quenching is kept fixed or
modified, therefore a damped growth of the turbulent modes is observed. A qualitative
analysis of the growth rate spectra measured without a zonal flow shows only minor
differences compared to the spectra measured in linear simulations. In the adiabatic case,
a strong damping of due to fully developed staircase and a less pronounced damping due
to a partial staircase is observed. In the kinetic case, also a strongly damped growth rate
spectrum is measured if the complete zonal flow is kept. If only the modes that are driven
by the self-interaction are kept, albeit their hight intensity, only a moderately damped
spectrum is observed. In turn, if these modes are removed, a damping comparable to the
full zonal flow is measured. To quantify the analyses, the relative damping αkθ , which is
taken as a measure of the damping efficiency of a zonal flow structure, is introduced. It is
defined as the per mode growth rate difference to the corresponding undamped spectrum
in relation to the total zonal flow intensity. In general, surprisingly low values of αkθ are
measured, which is linked to the damping being effected predominantly by the modes
with low radial wave vectors. Consequently, taking all modes into account leads to an
underestimation of αkθ . For adiabatic simulations it is found that the damping efficiency
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of a partially is smaller than the efficiency of a fully developed staircase, which is expected.
In all the kinetic cases, even lower values of αkθ are observed. As the main contribution
of the modes driven by self-interaction lies at higher radial wave vectors, it is concluded
that this result strengthens the claim made above. The modes driven by self-interaction
have a comparable damping efficiency to the complete zonal flow, whereas removing these
modes leads to an increase of the damping efficiency. Furthermore, the relation of the
relative damping to the radial zonal flow spectrum is examined, by keeping only the zonal
flow spectrum below a certain maximum radial wave vector kψ. A high damping efficiency
is observed for large scale structures, increasing the maximum wave vector leads to a
significant decrease of efficiency. This behaviour suggest again that mainly large scale
structures contribute to the turbulence suppression. To complement this investigation,
a comparison of αkθ for zonal flow structures with kψρ ≤ 1 in adiabatic simulations is
carried out. The relative damping increases, which corroborates the conclusion that the
damping is predominantly effected by zonal flow structures with a low radial wave vector
and therefore the modes driven by self-interaction do not contribute significantly.
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In this thesis, the structure formation in the E × B shear in a Tokamak plasma was
investigated.

The influence of ion-ion collisions on the ion temperature gradient driven heat flux
and its relation to the formation of staircases in the E × B shear were examined in
the adiabatic limit. In a linear analysis the influence of collisions on the decay of the
zonal potential has been examined and was compared with the analytical model of
Ref. [35]. The obtained decay rates agree well with the analytic prediction mainly for
low collision frequencies. The influence of the safety factor and the inverse aspect ratio
were reproduced. An extensive scan in the temperature gradient length and the collision
frequency parameter space was carried out to investigate the behaviour of the finite
heat flux threshold. In these simulations two distinct states are visible: a state where
turbulence is suppressed and the heat flux almost vanishes, and a state with a finite
heat flux. At some points in the parameter space, a transposition of both states for a
considerable time period was observed. Three different temperature gradient lengths
that characterize the near threshold dynamics were identified: the gradient length of
linear stability R/LT,lin, the Dimits gradient length R/LT,Dim and the finite heat flux
threshold R/LT,fh, where R/LT,lin < R/LT,Dim < R/LT,fh applies. In the region where
R/LT,Dim < R/LT < R/LT,fh, the collisions exert the most influence on the finite heat
flux threshold. Slight increases of the collision frequency lead to a noticeable decrease
of the finite heat flux threshold. Outside of this region a very strong increase of the
collision frequency was needed to produce a significantly larger heat flux. A comparison
of the time spent in the vanishing heat flux state and the collisional zonal flow decay
time, revealed that in the linear analysis the potential would have decayed substantially
long time before the end of the state has been reached. For sufficiently small collision
frequencies, the zonal flow can therefore be driven against the collisional dissipation even
when the heat flux is vanishingly small. Despite the reduction of the finite heat flux
threshold with increasing collision frequency, it remained considerably larger compared to
the interpolated Dimits threshold for collision frequencies relevant to current experiments.
For a fixed collision frequency, the shear rate of the radial mode with the longest wave
length increased almost linearly with R/LT up to the value of the finite heat flux thresh-
old, for larger values a decay was observed. This behaviour was not seen for very high
collision frequencies. The latter decay suggests a saturation mechanism of the zonal flow
directly related to the turbulence intensity. If the collision frequency was increased for a
fixed R/LT close to the finite heat flux threshold, the shear intensity stayed relatively
constant until the finite heat flux threshold was reached, then decayed to a finite value for
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high collision frequencies. A small region in temperature gradient lengths, above the finite
heat flux threshold, was found, where a high shear intensity is paired with a finite heat
flux, indicating that the contemplation of only the shear intensity is not sufficient for a
description of the finite heat flux threshold. The radial profile of the E ×B shearing rate
showed staircase formation in relation to the finite heat flux behaviour. Fully developed
staircases were observed below the finite heat flux threshold and lead to a suppression of
turbulence with a vanishing heat flux. Partially developed staircases (which have the
shapes of sawtooth) allow the appearance of avalanches and lead to a finite heat flux. The
latter were observed above the finite heat flux threshold, both in the direction of R/LT
and collision frequency. It was also observed that, although the transition from fully
developed to partially developed staircase required only small changes in the collision
frequency at the corresponding R/LT, very high collision frequencies were required to
suppress the formation of partial staircases themselves. The examination of staircases
provided a satisfying explanation for the behaviour of the finite heat flux threshold.

Furthermore, the formation of structures in the zonal flow was investigated in the ki-
netic electron picture. It was shown that staircase structures do develop in gyro-kinetic
simulations with kinetic electrons, however not under all circumstances. In many cases
strong small scale structures in the E ×B shearing rate were observed. In these cases,
no staircase structure could be identified and consequently, the heat flux went smoothly
to zero when the temperature gradient length was reduced. Heat flux avalanches were
observed, however no radial localization could be made out. The small scale E × B
shearing rate structures are interpreted to disrupt the formation of the larger scale
staircase structures. As no convincing explanation for the staircase formation is available,
this interpretation is empirical. The small scale structures observed in the E×B shearing
rate are interpreted as being driven by the self-interaction of turbulent modes that were
generated over the periodic boundary conditions of the double periodic torus. While
the ITG mode with adiabatic electrons is localized along the magnetic field, and shows
no appreciable self-interaction, the mechanism is present in the case of kinetic electrons
due to the extended mode structure. This explains the differences to the previously
conducted adiabatic analysis. The self-interaction was shown to decrease with the number
of toroidal modes kept in the simulation, and for a full flux surface simulation scaled
proportional to ρ∗. It is to be expected that the effect is small in a reactor plasma,
but at ρ∗ = 5 · 10−3 it was still dominantly present and it is therefore likely that it
is of importance to present day experiments. Also the magnetic shear was observed
to affect the results through its impact on the boundary conditions, which allowed to
generate conditions under which staircases were observed to form in kinetic simulations.
An investigation of the self-interaction mechanism in global simulations also allowed to
observe the strong small scale structures. This ruled out, that the self-interaction and the
small scale structures were an artefact of the local approximation. To complement the
investigation of Chap. 4, the influence of collisions on the self-interaction mechanism was
examined. The small scale structures were found to be affected only slightly by collisions
compared to the staircase structures observed in the adiabatic limit. The entirety of the
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carried out investigations lead to the conclusion that the self-interaction is a relatively
robust mechanism.

Furthermore, the damping of the ITG driven turbulent modes due to structures in the
zonal flow shear was examined in adiabatic and kinetic simulations. To obtain quan-
titative data, the growth rates were fitted exponentially in the linear regime after a
quenching of the turbulent modes. The established zonal flow from before the quenching
was completely kept or partly modified, therefore a damped growth of the turbulent
modes was measured. A qualitative analysis of the growth rate spectra observed without
a zonal flow showed only minor differences to the spectra measured in linear simulations.
In the adiabatic case, a strong damping due to a fully developed staircase and a less
pronounced damping due to a partial staircase was observed. In the kinetic case, also
a strongly damped growth rate spectrum was measured if the complete zonal flow was
kept. If only the modes that are driven by the self-interaction were kept in the zonal flow,
albeit their high intensity, only a moderately damped spectrum was observed. In turn, if
these modes were removed, a damping comparable to the full zonal flow was measured.
To quantify the analyses, the relative damping αkθ , which is taken as a measure of the
damping efficiency of a zonal flow structure, was introduced. It is defined as the per
mode growth rate difference to the corresponding undamped spectrum in relation to the
total zonal flow intensity. In general, low values of αkθ were observed. This could be
explained if the damping is predominantly caused by modes with low radial wave vectors
and consequently, taking the complete zonal underestimates the efficiency. For adiabatic
simulations it was found that the damping efficiency of a fully developed staircase was
larger than the efficiency of a partial staircase. Kinetic simulations showed that the
modes driven by self-interaction have a damping efficiency comparable to the complete
zonal flow, removing these modes lead to an increase of the damping efficiency. As
the main contribution of these modes lies at higher radial wave vectors, these results
hinted that the damping is caused by modes with low radial wave vectors. Furthermore,
the relation of the relative damping to the radial zonal flow spectrum was examined,
by keeping only the zonal flow spectrum below a varying maximum radial wave vector
kψ. A high damping efficiency was observed for large scale structures, which suggest
that mainly these large scale structures contribute to the turbulence suppression. To
complement this investigation, a comparison of αkθ for zonal flow structures with kψρ ≤ 1
was carried out for adiabatic simulations. Its results corroborated the conclusion that
the damping is predominantly effected by zonal flow structures with a low radial wave
vector and therefore the modes driven by self-interaction do not contribute significantly
to the damping of the itg.

The analyses showed that the staircase structure can be considered relatively robust.
It has been widely observed in varying conditions, not only in the scope of this thesis
but also for example in Refs. [8–11, 36, 51] and its suppression of turbulent transport
has also been reported outside of this thesis in Refs. [10, 11]. Collisions do not affect
the formation significantly at moderate collision frequencies. Instead, a wide range in
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the collisional regime with high relevance to the core region of current or future reactor
experiments is suitable for staircase formation. The strong small scale structures driven by
self-interaction, which are robustly found in kinetic simulations are observed to hinder the
formation of fully developed staircases. At the same time they do not provide an efficient
damping of turbulence themselves. However there are regimes where staircase formation
dominates and states with a suppressed heat flux are present. As the self-interaction is
found to scale with the Larmor radius, its influence on future reactor experiments might
be overestimated by current day numerical investigations and staircase formation and
an augmented turbulence suppression might prevail. This shows that the formation of
structures in Tokamak fusion reactors is an important and rewarding topic.
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A. Running GKW with LAW

A brief summary over the “library Arne Weikl” (law) is given in this chapter. law is a
collection of bash-scripts1, facilitated to minimize the “manual” effort required to run
gkw on a (or many) super computer(s) (external machine - em), i.e. if one feels too
important to copy files by hand. It is intended not only to save valuable time, but also
to encourage a sufficient amount of accompanying tests and convergence studies for an
examined problem. In theory, running a simulation should only require to: type the name
of the law-script, specify an input.dat-file, make up a directory-name and hit -ENTER-
multiple times. Its work flow is based on a central run-directory (crd), which contains
all simulations and is usually located on the local hard-disk. For basic operation, four
scripts, being at the “front-end”, are needed:
• law_compile_external: copy the relevant part of a gkw-directory to an em and

compile the code there
• law_run_external: start a simulation on an em and once finished, copy the results

back to crd
• law_scan_external: do a multitude of simulations on an em
• restart_external: restart a simulation

More “front-end” scripts do exist, for example a backup for the crd, conversion to or
from a gkwrun-style directory structure, etc. . A detailed description can be found at the
beginning of each script. Currently the following ems are (were) supported: Bayreuth
cluster III, Bayreuth cluster II, (Helios), (Marconi).

A working version can be found at /home/btpp/btp00000/arne/LAW-scripts. To install,
the parameters found in ‘lib_AW.txt have to be adapted, the scripts in the script directory
have to be given execution-rights and paths to this directory and also the internal_script
directory have to be exported. Furthermore, the installation of a ssh-key (to prevent a
password prompt) is recommended. To use it, a work flow with a crd and the crd itself
are (obviously) necessary. Also, for the external compilation, everything required for the
compilation (modules, etc.) has to be loaded even for a “non-interactive” ssh-prompt.
More detailed information on the installation and the use can be found at the beginning
of the lib_AW.txt-file. It uses selective ssh-multiplexing to circumvent several restrictions
from the ems. It will also do basic statistics of the simulations which were run with the
library. Furthermore it will deposit extensive information about the versions of gkw
which was used to run each simulation to ease version management and prevent errors.

1Done in bash due to the (probably) same reasons for every bash-script.
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B. GTS-theory

Here, an equation for the evolution of the spikes in the zonal flow is derived, with the
electrostatic potential being used as a variable. The time averaged momentum balance
equation of the Navier-Stokes equations is used as a starting point. Using the Reynolds
decomposition and neglecting spatial variations of the plasma density, the magnetic field
and external forces leads to the only contribution to the slow varying zonal flow coming
from the time averaged Reynolds stress in the momentum balance equation [53]:

∂vZF
∂t

+∇ · 〈ṽṽ〉t = 0. (B.1)

As the evolution of the zonal flow is considered, the zonal potential φZF is introduced as

vZF = 1
B

∂φZF
∂ψ

. (B.2)

Taking the flux-surface average, indicated with curly brackets, allows to take only the
net transport of momentum by the Reynolds stress. Assuming that the variation of the
Reynolds stress in the directions other than the radial are small and can be neglected,
the momentum balance is transformed to{

∂

∂ψ

∂φZF
∂t

}
= −B

{
∂

∂ψ
〈ṽψṽζ〉t

}
. (B.3)

This is equal to {
∂φZF
∂t

}
= −B{〈ṽψṽζ〉t}. (B.4)

The relation of the fluctuating flows to the electrostatic potential is given through the
E ×B flow in the lowest order of Tokamak geometry:

ṽψ = − 1
ψB

∂φ̃

∂ζ
ṽζ = 1

B

∂φ̃

∂ψ
. (B.5)

Normalizing the potential with φ = Tρ∗
e φN and assuming a slim flux tube allows to write

(where the subscript N is omitted in the following)

{
∂φZF
∂t

}
= Tρ∗
eBψ

{〈
∂φ̃

∂ζ

∂φ̃

∂ψ

〉
t

}
, (B.6)
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to obtain an evolution equation for the zonal potential. To estimate the drive of each
mode, a spectral representation, similar to the one employed by gkw as detailed in
Chap. 3, is used to describe the potential:

φ(ψ, ζ) =
∑

kζ>0,kψ

φ̂(kψ, kζ) exp[ikζζ + ikψψ] +
∑

kζ>0,kψ

φ̂†(kψ, kζ) exp[−ikζζ − ikψψ]

+
∑
kψ

φ̂(kψ, 0) exp[ikψψ].

(B.7)

Note that the binormal wave vector is restricted to the positive domain (and the sum
is split), whereas the radial wave vector is not. The dependence along the magnetic
field is not taken into account as it can be neglected for this analysis. Inserting this
representation into the evolution equation with the zonal flow being restricted to kζ = 0
and introducing distinguished wave vectors leads to{

∂

∂t

∑
kZF
ψ

φ̂(kZFψ , 0) exp[ikZFψ ψ]
}

=

{〈( ∑
k1
ζ>0,k1

ψ

ik1
ζ φ̂(k1

ψ, k
1
ζ ) exp[ik1

ζζ + ik1
ψψ]−

∑
k1
ζ>0,k1

ψ

ik1
ζ φ̂
†(k1

ψ, k
1
ζ ) exp[−ik1

ζζ − ik1
ψψ]
)
·

( ∑
k2
ζ>0,k2

ψ

ik2
ψφ̂(k2

ψ, k
2
ζ ) exp[ik2

ζζ + ik2
ψψ] +

∑
k2
ζ>0,k2

ψ

ik2
ψφ̂
†(k2

ψ, k
2
ζ ) exp[−ik2

ζζ − ik2
ψψ]
)〉

t

}
,

(B.8)

where the wave vectors and the time derivative have been normalized according to gkw’s
standard [78]. Here k1 and k2 denote the wave vectors of the turbulent modes and kZF

the wave vector of the zonal mode. To progress, the following has to be considered. The
flux surface average provides an integral in ψ, ζ and s. Following from a basic identity of
the delta-distribution [108], only modes where

k1 + k2 − kZF = 0 (B.9)

holds, need to be considered, as observed in three wave interaction theory. Various mode
interactions are possible, however only interactions where both binormal wave vectors
are antisymmetric can drive the zonal flow. Furthermore, modes which are connected
through the boundary conditions along a field line with a wave vector shift of ∆kψ (see
Eq. 5.6) are expected to generate a strong drive due to their strong connection. This
leads to the selection of mode pairs with

k1
ψ = −(k2

ψ −∆kψ) (B.10)
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and vice versa. Using this selection in Eq. B.9 means that all modes at the same binormal
wave vector will drive the zonal mode at the radial wave vector distinguished by the
wave vector shift ∆kψ. This will lead to an exceptionally strong drive. The described
behaviour is visualized if Fig: B.1, where the interaction is depicted in the spectral plane
for two modes with different kψ (black and blue). It can be seen that for both kψ the

kψ

kζ

Figure B.1.: Sketch of the wave vector selection rules of the self-interaction for two
modes with different kψ.

same zonal mode (red) is driven. Using this information allows to estimate the drive
from modes at a specified kζ of a zonal mode at the corresponding ∆kψ:

∂

∂t
φ̂ZF(∆kψ) =

∑
kψ>0

kψkζ

(
φ̂(−kψ, kζ)φ̂†(kψ + ∆kψ,−kζ)+

φ̂†(−kψ,−kζ)φ̂(kψ + ∆kψ, kζ)
)
.

(B.11)

Note that this equation describes the growth of zonal modes at positive ∆kψ, a corre-
sponding expression is found for negative ∆kψ.
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