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Abstract

Geometrical objects with integral sides have attracted mathematicians for ages. For exam-
ple, the problem to prove or to disprove the existence of a perfect box, that is, a rectangular
parallelepiped with all edges, face diagonals and space diagonals of integer lengths, remains
open. More generally an integral point set P is a set of n points in the m-dimensional Eu-
clidean space E™ with pairwise integral distances where the largest occurring distance is
called its diameter. From the combinatorial point of view there is a natural interest in the
determination of the smallest possible diameter d(m, n) for given parameters m and n. We
give some new upper bounds for the minimum diameter d(m, n) and some exact values.
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1 Introduction

Geometrical objects with integral sides have long attracted mathematicians. One
of the earliest results is due to the Pythagoreans and characterizes the smallest
rectangle with integral sides and diagonals, more precisely, the integral rectangle
with the smallest possible diameter where diameter denotes the largest occurring
distance of the points. This is a rectangle with edge lengths 3 and 4 so that the
diagonal has length 5 by Pythagoras’ Theorem. In this context, a famous old open
problem is to show the existence of a perfect box, a rectangular parallelepiped with
all edges, face diagonals and space diagonals of integer lengths [2,10]. Because
this problem seems to be too hard for our current state of mathematics, the authors
of [15] considered combinatorial boxes, i.e., convex bodies with six quadrilaterals
as faces, and gave 20 examples of integral combinatorial boxes, one of which is
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proven to be minimal with regard to the diameter in [6]. In [1], it is shown that
there exist infinitely many integral combinatorial boxes.

Generally, an integral point set P is a set of n points in the m-dimensional Eu-
clidean space [£™ with pairwise integral distances, where not all n points are con-
tained in a hyperplane. From the combinatorial point of view, there is a natural
interest in the minimum possible diameter d(m, n) for given parameters m and n.

In the following, we will focus on bounds and exact numbers for d(m,n). For a
more general overview and applications on integral point sets and similar structures,
we refer to [3]. Clearly, the condition n > m+ 1 is necessary for an m-dimensional
point set. Due to general constructions, see i.e. [4], the condition is also sufficient
for the existence of an m-dimensional integral point set consisting of n points.

Theorem 1 Forn > m + 1 we have

gn=m+1 _ —m=0 mod 2
(@) d(m,n) < forn —m mod 2, 14
3(2"™ —1) forn—m =1 mod 2,
(b) d(m,n) < (n —m)c'818("=m) for q sufficiently large constant c, [5]
(c) \/5=n!/™ < d(m,n), [8]
M)?%nu2<dBJwﬁwnZ5, [8]
(e) cn < d(2,n) for a sufficiently small constant c, [17]
(f) din,n+1) =1,
(g) 3<d(m,n) <4form+2<n<2mandd(m,2m) =4, [7,16]
(h) d(m,2m +1) <8, [16]
(i) d(m,2m +2) < 13, [16]
(j) d(m,3m) <109, [9]

(k) and d(m,n — 1) < d(m,n).

We conjecture that d(m—1,n) > d(m,n). Each of the known bounds are increasing
in n for fixed m and decreasing in m for fixed n. Several functional relations f
between m and n exist for which d(m, f(m)) can be bounded from above by a
constant. Examples are the inequalities of Theorem 1.(g,h,1,j) and of Theorem 2.(a)
below.

Aside from general bounds, some exact values of d(m,n) have been determined
(the bold printed value d(3,9) = 16 was incorrectly stated as d(3,9) = 17 in the
literature, see i.e. [3,16]):

(d(2,n)),_5 4 =1,4,7,8,17,21,29,40, 51,63, 74,91,104, 121, 134, 153, 164,
106,212, 228, 244, 272, 288, 319, 332, 364, 396, 437, 464, 494, 524, 553, 578, 608,
642, 667,692, 754,816, 897, 959, 1026, 1066, 1139, 1190, 1248, 1306, 1363, 1410,
1460, 1514, 1564, 1614, 1675, 1727, 1770, 1817, 1887, 1906, 2060, 2140, 2169,
2231, 2299, 2432, 2494, 2556, 2624, 2692, 2827, 2895, 2993, 3098, 3196, 3204,
3465, 3575, 3658, 3749, 3885, 3922, 4223, 4380, 4437, 4559, 4693, 4883  [3,12,14]



.....

195,212,228 [3,13,12,16]
d(3,5) = d(6,8) = d(8,10) = 3 [3]
dim,m+2) =3for8 <m < 23 [12]
dim,n) =4for3<m <12andm+3 <n <2m [12]
dim,n) =4for13 <m <23and2m —9 <n <2m [12]

Our main results are

Theorem 2

(a) d(m,m? +m) < 17,

(b) dim,n—24+m) < d(2,n) for9 <n <122,
the exact values

d(2,n) =90, 122 = 5018, 5109, 5264, 5332, 5480, 5603, 5738, 5938, 5995, 6052,
6324, 6432, 6630, 6738, 6939, 7061, 7245, 7384, 7568, 7752, 7935, 8119, 8321,
8406, 8648, 8729, 8927,9052, 9211, 9423, 9534, 9794, 9905

d(3,24) = 244,
and the following two constructions:

Theorem 3 [f P is a plane integral point set with diameter diam('P) consisting of
n points, where n — 1 points are situated on a line AB, then d(m,n — 2+ m) <

diam(P).

Theorem 4 [f P is a planar integral point set consisting of n points, where n — 1
points are situated on a line AB, the n-th point has distance h to the line AB,
and P’ is an (m — 1)-dimensional point set consisting of n' points on an (m — 1)-
dimensional sphere of radius h, then we have for m > 2 that

d(m,n +n' — 1) < max(diam(P), diam(P")).

Aside from these results, we have:

Conjecture

(a) d(m,n) > (n —m)cel8"=m) for each fixed m and suitable large n and c,
(b) d(m,m+2) =3 form > 8§,



(c) dilm —1,n) > d(m,n),

(d) the bound of Theorem 3 is sharp for m = 2, n > 9y m = 3, n > 22, and
m >4, n > m?+m+ 1, respectively,

(e) dim,n —2+m) < d(2,n) form > 2.

2 Proofs

The exact values of d(m, n) were obtained by exhaustive enumeration via the meth-
ods described in [13,12,14]. For future improvements due to faster computers, we
refer the reader to [11]. By a look at the plane integral point sets with diameter at
most 10000, it turns out that those with minimum diameter and 9 < n < 122 points

[
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Figure 1. Plane integral point set P with n — 1 points on a line.

have a very simple structure [12,14]. They consist of n — 1 points situated on a line
[ plus one point P apart from [, see Figure 1. An easy method is given in [12,14]
to construct such integral point sets with diameters at most n¢°81°¢™ for a suitably
large constant c, by choosing integers h? with many divisors. If we replace the point
P by an (m — 2)-dimensional regular simplex S with edge length 1, we obtain an
m-dimensional integral point set with the same diameter, which proves Theorem 3
and Theorem 2(b).

If we assume that we have a plane integral point set P consisting of a line L with
n — 2 points and a parallel line with two points P, and P, (see Figure 2), we can

Figure 2. Plane point set with points on two parallel lines.

slightly modify the construction of Theorem 3 and blow up P and P, to regular
(m — 2)-dimensional simplices S; and S, of side length v. An example is given in
Figure 3. Because the distance of two points p; € §; and py € Ss is either f or
w = +/f? + v? we have to choose a suitable v so that w is an integer.
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Figure 3. 3-dimensional integral point set consisting of 8 points with minimum diameter.

Theorem 5 Let P be a plane integral point set consisting of n — 2 points on a line
L and two points P, and P, on a parallel line M with distance r between L and M.
If there exist positive integers v, w with f?+v* = w? and v < 2r, where P, P, = f,
then

d(m,n —242(m — 1)) < max(w,diam(P)).

Theorem 5 is tight in the cases m = 2, n = 4,7,8 and m = 3, n = 8, and also
gives d(m, 2m + 2) < 13 (cf. Figure 3).

Besides blowing up points to regular simplices, another technique to construct inte-
gral point sets of arbitrary dimension is to truncate simplices. By truncating regular
m-dimensional simplices of side length a at all vertices of a regular m-dimensional
simplex of side length b+ 2a, we get a point set P with m? + m points. For m = 2,
we can easily determine the set of distances of P to be {a, b, a+b, Va? + ab + b},
so diam(P) = a + b. The smallest integral example is depicted in Figure 4 (here
the two missing lines have edge length 7). It is indeed the smallest integral point
set with m = 2 and n = 6.

Figure 4. Smallest integral hexagon.

For m > 3, the occurring distances of P are given by

D = {a,b,a +b,Va®+ ab+ b2,V a? + 2ab + 2b%},

so diam(P) = va? + 2ab + 2b2. The smallest integral solution is given by a =
7 and b = 8 which lead to the m-dimensional integral point set with diameter
17 consisting of m? + m points and proves Theorem 2(a). We have depicted this
integral point set for m = 2 and m = 3 in Figure 5.



Figure 5. 3-dimensional integral point sets from a truncated tetrahedron.

{7,8} and {2021 231,8 109409} are the only coprime pairs of integers with a, b <
10000 000, where all values of D are integers. It is not known whether infinitely
many such parameter sets exist. We remark that a generalization of this approach
to the other platonic solids does not lead to integral point sets by our methods.

There is another important construction of integral point sets for. In Figure 6, we
have depicted a plane integral point set consisting of 12 points of which 11 are col-

P;

Figure 6. 2-dimensional integral point set with n = 12 and diameter 77.

linear. If we rotate the point P; around the line AB, it forms a circle with radius
8v/15. If we scale the plane integral point set of Figure 7 by a factor of 15, we
can arrange 4 points on this circle, so that we get a 3-dimensional integral point set
consisting of 15 points with diameter d(3, 15) = 77.
3
E\

4

Figure 7. Smallest plane integral point set with n = 4 and no three points on a line.

Generally, for m > 2 we may consider an (m — 1)-dimensional sphere S that in-
tersects I, has its center on the line AB, and spans a hyperplane that is orthogonal
to AB. (If m = 2, then S consists of the point P; and its reflection in AB.) If it
is possible to place n’ points on this sphere with pairwise integral distances, then
these points together with the points of the line AB form an m-dimensional integral
point set consisting of n + n’ — 1 points. This gives the proof of Theorem 4. It is
tight for m = 3, 13 < n < 21. Nevertheless, we conjecture that Theorem 3 yields
better bounds for m = 3 and n > 22.
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