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1. Summary 

 

The aim of this thesis was the synthesis and characterisation of new Cu(II), Zn(II), Fe(II) and 

Fe(III) complexes with tridentate, Schiff base-like ligands. Their magnetic behaviour (Cu and 

Fe) was investigated, as well as their catalytic activity (Zn), and cytotoxicity (Cu). The ligands 

are derived from the Jäger type; those are normally rigid, tetradentate, and provide an N2O2
2− 

or N4
2− coordination sphere around the metal centre. The tridentate N2O ligands on the other 

hand are more flexible due a methylene group. The coordination geometries (e.g. square 

planar/pyramidal, trigonal bipyramidal, octahedral) are similar to those realised by tetradentate 

ligands, but the coordination of additional co-ligands (anions or solvent molecules) in cis 

position is possible. Another advantage of these ligands is the enhanced stability of octahedral, 

mononuclear complexes compared to those derived from the tetradentate ligands.  

The synthesis of the ligands was established and carried out in one step by condensation of 2-

picolylamine and the corresponding keto-enol ether. Fe(II) and Fe(III) complexes were 

synthesised and characterised with regard to their potential spin crossover behaviour. The 

coordination geometry is octahedral and in case of Fe(III) as central metal atom varying anions 

were used to determine their influence on the spin transition. The single crystal X-ray structures 

of five Fe(III) and one Fe(II) complex could be obtained. The Fe(II) compounds stay mostly 

high spin, the majority of Fe(III) complexes on the other hand show SCO behaviour. The 

transition from HS to LS is mostly rather gradual over a large temperature range, indicating low 

cooperativity between the metal centres. In the case of [Fe(L1)2]ClO4 a parallel fourfold aryl 

embrace interaction was found in the crystal structure of the complex. Therefore the packing is 

very dense and the volume change required for a SCO is prevented. The isostructural pair 

[Fe(L2)2]ClO4 and [Fe(L2)2]BF4 allowed the direct evaluation of the size of the anion on the 

transition temperature. Both complexes show an abrupt ST which is shifted to lower 

temperatures for the larger perchlorate anion. Strong hydrogen bonds from a methyl group of 

one ligand to the keto group of another ligand explain the abrupt SCO. No direct influence of 

the anion on the SCO behaviour was seen in the other cases. The electrochemical properties of 

the Fe complexes were measured, quasi-reversible processes between −0.40 and −0.51 V (vs. 

Ag/AgNO3) take place, corresponding to the redox process Fe(II) ↔ Fe(III). The values are 

independent of the oxidation state of the starting material.  
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The Cu(II) complexes with varying anions were synthesised as well. Single crystal X-ray 

structures revealed that most of the compounds crystallised as dimers, with the Cu(II) centres 

coordinated by one tridentate ligand and connected via the anions. This resulted in a square 

pyramidal coordination sphere. It was found that anions with more than one donor atom (such 

as acetate or nitrate) coordinate mostly with only one of those. The magnetism of the 

compounds were investigated as dimeric Cu(II) complexes can show magnetic exchange 

interactions like superexchange. In almost all cases either weak ferro- or antiferromagnetic 

interactions were found and no direct relation between the structure and the magnetism could 

be established. The complex [(µ-1,1-NO3)(µ-1,3-NO3)(CuL1)2] showed a rather strong 

superexchange, which can be explained with the slightly different structure of the compound. 

One of the two nitrate anions is bridging the metal centres with two instead of one oxygen atom. 

This results in a larger bridging angle for the other anion and therefore a better overlap of the p 

orbital of the oxygen and the magnetic orbital of the Cu(II) centres. 

Not only the magnetic properties of the compounds were of interest, the potential of 18 Cu(II) 

substances as anticancer agents was investigated as well. Complexes with different side chains 

were chosen and additional substituents at the pyridine ring were introduced. Most compounds 

showed moderate activity against the tested cancer cell lines with IC50 values between 10 and 

50 µM. Two complexes with methoxy or methyl groups in 4-position on the pyridine ring and 

only ester groups on the chelate cycle were very active with IC50 values below 10 µM. The 

closely related compounds with a cyanide side chain on the other hand showed no activity, 

pointing towards a combination of steric and electronic effects. The possible mechanism of 

action of those complexes was investigated. No correlation with the formation of reactive 

oxygen species could be detected, but the inhibition of the enzyme topoisomerase I, which plays 

a crucial part in the supercoiling of the DNA, was found. 

It was found that the Zn(II) complexes are capable of catalysing the ring opening polymerisation 

of lactide. The dimeric compounds were obtained by the reaction of zincacetate and the 

tridentate ligands. The metal centre is coordinated by one tridentate ligand and two acetates are 

bridging the two zinc atoms. The complexes were tested with regard to their catalytic behaviour 

in the ROP of non-purified rac-lactide in melt at 150 °C. A coordination-insertion mechanism 

was proposed and the resulting molecular weight of the polymer in combination with end group 

analysis revealed that the monomeric species is the catalytically active one. This also explains 

an induction phase in the beginning of the polymerisation. The cytotoxicity of one complex 
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against five different cell lines was investigated. With IC50 values > 100 µM the compound can 

be considered non-hazardous to health.  
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2. Zusammenfassung 

 

Das Ziel der vorliegenden Arbeit war die Synthese und Charakterisierung neuer Cu(II), Zn(II), 

Fe(II) und Fe(III) Komplexe mit dreizähnigen, Schiff-Base ähnlichen Liganden. Das 

magnetische Verhalten (Cu und Fe) wurde untersucht, ebenso die katalytische Aktivität (Zn) 

und die Zytotoxizität (Cu). Die Liganden stammen vom Jäger Typ ab; diese sind normalerweise 

starr, vierzähnig und bilden eine N2O2
2− oder N4

2− Koordinationsumgebung um das 

Metallzentrum. Die dreizähnigen N2O-Liganden hingegen sind durch die Methylengruppe 

flexibler. Die verschiedenen Koordinationsgeometrien (z.B. quadratisch planar/pyramidal, 

trigonal bipyramidal, oktaedrisch) sind ähnlich der, die mit den vierzähnigen Liganden realisiert 

werden können. Jedoch ist die Koordination von zusätzlichen Co-Liganden (Anionen oder 

Lösungsmittelmolekülen) in cis Position möglich. Ein weiterer Vorteil dieser dreizähnigen 

Liganden ist die erhöhte Stabilität von okteadrischen, mononuklearen Komplexen verglichen 

mit denen der vierzähnigen Liganden.  

Eine einstufige Ligandensynthese, der Kondensation von 2-Picolylamin und dem 

entsprechenden Keto-Enol Ether, wurde etabliert. Fe(II) und Fe(III) Komplexe wurden 

hergestellt und hinsichtlich ihres möglichen Spin Crossover Verhaltens untersucht. Es wird eine 

oktaedrische Koordinationsgeometrie um das Metallzentrum beobachtet und im Fall von Fe(III) 

wurden verschiedenen Anionen verwendet, um deren Einfluss auf den Spinübergang zu 

untersuchen. Einkristallstrukturen von fünf Fe(III) und einem Fe(II) Komplex konnten erhalten 

werden. Die Fe(II) Verbindungen bleiben meist im High Spin Zustand, die Mehrheit der Fe(III) 

Komplexe zeigen hingegen SCO Verhalten. Der Übergang vom HS zum LS Zustand ist meist 

graduell und über einen großen Temperaturbereich gestreckt, was auf eine geringe 

Kooperativität zwischen den Metallzentren hinweist. Im Fall von [Fe(L1)2]ClO4 wurde eine 

starke „parallel fourfold aryl embrace“ Wechselwirkung in der Kristallstruktur des Komplexes 

gefunden. Diese sorgt für eine sehr dichte Packung und die Volumenänderung, die für einen 

SCO nötig ist, wird verhindert. Das isostrukturelle Paar [Fe(L2)2]ClO4 und [Fe(L2)2]BF4 

erlaubt eine direkte Untersuchung des Einflusses der Größe des Anions auf die 

Übergangstemperatur. Beide Komplexe zeigen einen abrupten Spinübergang, der im Falle des 

größeren Perchlorations zu tieferen Temperaturen verschoben ist. Starke 

Wasserstoffbrückenbindungen zwischen der Methylgruppe des einen Liganden und einem 
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Ketosauerstoff eines anderen Liganden erklären den abrupten SCO. In den anderen Fällen 

konnte kein direkter Einfluss der Anionen auf das SCO Verhalten gefunden werden. Die 

elektrochemischen Eigenschaften der Verbindungen wurden untersucht, es finden quasi-

reversible Übergänge zwischen −0.40 und −0.51 V (gegen Ag/AgNO3) statt, diese können dem 

Redoxprozess Fe(II) ↔ Fe(III) zugeordnet werden. Diese Werte sind unabhängig von der 

Oxidationsstufe des Ausgangsmaterials.  

Die Cu(II) Komplexe wurden ebenfalls mit unterschiedlichen Liganden hergestellt. 

Röntgeneinkristallstrukturanalyse zeigte, dass die meisten Verbindungen als Dimere 

kristallisieren, in denen die Cu(II) Zentren von den dreizähnigen Liganden koordiniert und 

durch die Anionen verbrückt werden. Dies resultiert in einer quadratisch-pyramidalen 

Koordinationsgeometrie. Anionen mit mehr als einem möglichen Donoratom (zum Beispiel 

Acetat oder Nitrat) koordinieren in den meisten Fällen mit nur einem dieser Atome. Der 

Magnetismus der Verbindungen wurde untersucht, da dimere Cu(II) Komplexe magnetische 

Austauschwechselwirkungen, wie den Superaustausch, aufweisen können. In fast allen Fällen 

wurden entweder schwache ferro- oder antiferromagnetische Wechselwirkungen gefunden und 

es konnte kein direkter Zusammenhang zwischen der Struktur und dem Magnetismus 

hergestellt werden. Der Komplex [(µ-1,1-NO3)(µ-1,3-NO3)(CuL1)2] zeigte einen 

vergleichsweise starken Superaustausch, welcher sich mit der leicht unterschiedlichen Struktur 

der Verbindung erklären lässt. Eines der beiden Nitrationen verbrückt mit zwei anstelle von 

einem Sauerstoffatom. Dies führt zu einem größeren Bindungswinkel für das andere Anion und 

damit zu einer besseren Überlappung des p-Orbitals des Sauerstoffs mit des magnetischen 

Orbitals der Cu(II) Zentren.  

Nicht nur die magnetischen Eigenschaften der Verbindungen waren von Interesse, auch die 

Möglichkeit, die Cu(II) Substanzen als potentielles Mittel gegen Krebszellen zu nutzen, wurde 

untersucht. Es wurden Komplexe mit unterschiedlichen Seitengruppen ausgewählt und 

zusätzliche Substituenten am Pyridinring wurden eingeführt. Die meisten der 18 Verbindungen 

zeigten moderate Aktivitäten gegen die getesteten Krebszelllinien mit IC50 Werten zwischen 10 

und 50 µM. Zwei Komplexe mit Methoxy- beziehungsweise Methylgruppen in 4-Position am 

Pyridinring und nur Estergruppen am Chelatring waren sehr aktiv mit IC50 Werten unter 10 µM. 

Die jeweiligen Verbindungen mit einer Cyanidseitengruppe zeigten hingegen keine Aktivität. 

Der mögliche Wirkmechanismus der Komplexe wurde untersucht. Es konnte keine Bildung 

von reaktiven Sauerstoffspezies detektiert werden, jedoch wurde die Inhibition des Enzyms 
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Topoisomerase I, welches eine entscheidende Rolle in der Superverdrillung der DNA spielt, 

gefunden.  

Es wurde zudem festgestellt, dass die Zn(II) Komplexe in der Lage sind, die 

Ringöffnungspolymerisation von Lactid zu katalysieren. Die dimeren Substanzen wurden 

durch die Reaktion von Zinkacetat und den dreizähnigen Liganden erhalten. Das Metallzentrum 

ist von einem dreizähnigen Ligand umgeben und zwei Acetationen verbrücken die beiden 

Zinkatome. Die Komplexe wurden hinsichtlich ihrem katalytischen Verhalten in der ROP von 

nicht aufgereinigtem rac-Lactid bei 150 °C getestet in der Schmelze. Als Mechanismus wurde 

ein Koordinations-Insertions-Mechanismus vorgeschlagen und die erhaltenen 

Molekulargewichte in Kombination mit Endgruppenanalyse ergaben, dass die monomere 

Spezies die katalytisch aktive ist. Dies erklärt auch eine Induktionsphase zu Beginn der 

Polymerisation. Die Zytotoxizität eines Komplexes gegen fünf verschiedenen Zelllinien wurde 

untersucht. Mit IC50 Werten > 100 µM kann die Verbindung als gesundheitlich unbedenklich 

eingestuft werden.  
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3. Introduction 

 

The design of new functional materials is a challenging and highly interesting field of research. 

In this regard, complexes are actively investigated since their properties can be easily tuned by 

the choice of the metal centre and design of the ligand(s). Coordination compounds with readily 

available 3d elements as central metal atom are actively investigated in the fields of magnetism, 

catalysis, or biological activity, just to mention a few examples.[1–6] The choice of ligand 

significantly influences the properties of the resulting complex. Monodentate ligands are often 

weakly coordinating and can be easily replaced and therefore result in a free coordination place, 

e.g. for catalysis.[7] Multidentate ligands usually result in stable complexes and by variation of 

the donor atoms (N, O, S, …) and/or the charge of the ligand the ligand field can be tuned.[8] 

Tridentate ligands offer a wide flexibility regarding their ligand structure and coordinated metal 

centres and therefore a variability in the resulting properties.[9–13] 

 

 Magnetism in first row transition metal complexes 

 

Spin crossover (SCO) is a phenomenon that can occur in first row transition metal complexes 

with an electronic configuration of d4–7. The metal centre is in the low spin (LS) state if the 

ligand field splitting ∆O is much higher than the total spin pairing energy P, and in the high spin 

(HS) state if P is much higher than ∆O. In case neither of these two conditions is clearly fulfilled, 

so if ∆O ≈ P, a SCO is possible. The spin state of the complex can be switched between the HS 

state and the LS state by external stimuli such as temperature, pressure, or light irradiation 

(Figure 1). This leads to significant changes in the physical properties of the complex.[14,15] 

Most commonly investigated are complexes of Fe(II)[8, 16–19] and Fe(III)[20–22]. In the case of 

Fe(III) metal centres both spin states are paramagnetic with S = 5/2 (HS) and S = 1/2 (LS). Upon 

SCO the metal-ligand bond lengths shorten, as the antibonding eg* orbitals are only occupied 

in the HS state. This leads to a smaller volume in the LS state. Also the colour of the complex 

differs in the two spin states.[14,15] 
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Figure 1. Schematic representation of SCO for a compound with a 3d5 electronic configuration. LS state (left), HS state (right). 

 

Due to the significant changes SCO can be monitored by a number of different temperature 

dependent techniques. Magnetic measurements are the most useful, but also UV-Vis (in solid 

state or solution), single crystal/powder X-ray diffraction, IR/Raman spectroscopy, or 

Mössbauer spectroscopy are used.[23–26] 

SCO is a thermodynamic process[27] driven by the Gibbs free energy G. The following equation 

describes the transition from the HS to the LS state, where ∆ corresponds to the difference 

between the HS and the LS state:  

∆� = 	∆� − � ∙ ∆	 

The transition temperature T1/2 is the temperature at which half of the metal centres changed 

their spin state and is defined as ∆G = 0 and therefore as: 

�
/� =	∆� ∆	
  

In the HS state the enthalpy H is higher than in the LS state thus upon SCO ∆H is positive. The 

entropy S is higher in the HS state as well, which means that also ∆S is positive for a transition 

from the HS to the LS state. At lower temperature H is the dominating factor and therefore the 

LS state is energetically favoured, whereas at higher temperatures the dominating factor is the 

product T·∆S, resulting in a stabilisation of the HS state.  

There are different ways in which a SCO can occur: gradual and (in)complete, abrupt with or 

without hysteresis, a two-step transition with a plateau between the two steps, or a combination 
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of all of those (Figure 2). SCO can be influenced by many factors; the chosen ligand and metal 

centre are the most important ones and determine if a SCO can be observed. Also the solvent 

or anions are known to have a strong influence, as they can be involved in hydrogen bonding 

through the crystal lattice. Cooperative interactions through hydrogen bonds, van der Waals 

interactions, or π···π interactions can influence the ST as well. In most cases the stronger those 

interactions between the metal centres are the more abrupt the SCO is. Of course, in solution 

none of these interactions are present, so the ST is normally gradual and follows a Boltzmann 

distribution.[15,27] 

 

 
Figure 2. Different types of spin transition: a) gradual and complete, b) abrupt, c) abrupt with hysteresis, d) two-step, and e) 
gradual and incomplete.[15] 

 

The spin transition cannot only be triggered by temperature, but also by light irradiation. This 

phenomenon is called Light Induced Excited Spin State Trapping (LIESST). Through light 

irradiation at low temperatures (usually below 10 K) a transition from the LS to the metastable 

HS state takes place. Upon warming the LS state is occupied again, the transition temperature 

is defined as TLIESST.[28] In 2000, the first Fe(III) complex [Fe(pap)2]ClO4·H2O (Hpap = bis[2-

hydroxyphenyl-(2-pyridyl-)methaneimine) showing this behaviour was reported by Sato et 

al.[29] The metal centre is coordinated by two Schiff base N2O ligands and one perchlorate anion 

compensates the third positive charge. A complete ST with a 15 K wide hysteresis takes place 

between 165 and 180 K, strong π···π interactions between the tridentate ligands of two 

complexes are responsible for this cooperative behaviour. The LIESST temperature is slightly 
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above 100 K. Dominant π···π and/or parallel fourfold aryl embrace (P4AE) interactions are 

often responsible for cooperative ST in Fe(III) complexes of the quinolylsalicyladimine type.[21] 

In 2018, Hayami et al. reported four SCO complexes with varying aromatic counterions.[30] 

Those allowed them to tune the intermolecular coupling and therefore the ST. Three complexes 

also showed the LIESST effect, one with the highest conversion from LS to HS (59 %) reported 

for Fe(III) complexes so far. 

 

 

Figure 3. Crystal structure (left) and magnetic measurement (right) of [Fe(pap)2]ClO4·H2O.[29] 

 

Not only the SCO phenomenon can cause a change of magnetism with temperature, there are 

also magnetic exchange interactions that can lead to an increase or decrease of magnetisation 

with decreasing temperature. Dinuclear coordination compounds with a spin of S = 1/2 (like 

Cu(II)) which are bridged by diamagnetic linkers, such as acetate ions, can show magnetic 

exchange interactions leading to antiferromagnetic or ferromagnetic interactions.[31–33] For 

complexes with antiferromagnetic interactions the singlet state S = 0 is energetically more 

favourable than the triplet state S = 1. The energy difference between those two states is defined 

as coupling constant J. It is negative for antiferromagnetic materials and the spins of the metal 

centres align antiparallel (Figure 4, left), resulting in a decrease of magnetisation with 

decreasing temperature (Figure 5, right).[34] 
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Figure 4. Schematic representation of antiferromagnetic (left) and ferromagnetic (right) interactions with the orientation of the 
spins of the metal centres. 

 

A prominent example is the copper(II) acetate, [Cu2(OAc)4(H2O)2]. The two Cu(II) centres are 

bridged via the four acetate anions, leading to an overlap between the magnetic dx2−y2 orbitals 

of the metal centres and the p orbitals of the oxygen atoms (Figure 5, left and middle). The 

electron exchange interaction through diamagnetic linkers is called superexchange; this leads 

to an antiferromagnetic coupling with a coupling constant J = −296 cm−1.[31,34] 

 

 
Figure 5. ORTEP drawing (left), magnetic orbitals of the Cu(II) centres and p orbitals of the bridging ligands (middle) with 
the orientation of the spins, and χMT vs. T plot of [Cu2(OAc)4(H2O)2]. 

 

In complexes with ferromagnetic interactions the triplet state S = 1 is the ground state and 

therefore the coupling constant J is positive (Figure 4, right). The spins of the metal centres 

align parallel and the magnetisation is increasing with decreasing temperature (Figure 6, top 

right).[34] A well-known example is the heterobinuclear complex [CuVO(fsa)2en(MeOH)] 
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((fsa)2en4− = N,N’-(2-hydroxy-3-carboxybenzlidene)-1,2-diaminoethane).[35] The magnetic 

orbitals of the two metal centres, dx2−y2 for Cu(II) and dxy for V(IV), are orthogonal, therefore 

no superexchange can occur (Figure 6, top and bottom left). Hence, the coupling constant J is 

positive with a value of 118 cm−1. If the V(IV) centre in this complex is exchanged with a Cu(II) 

centre the magnetic orbitals of the metal centres can overlap (Figure 6, bottom right), resulting 

in a strong antiferromagnetic interaction (J = −650 cm−1).[34,35] 

 

 
Figure 6. Structure (top left) and χMT vs. T plot of [CuVO(fsa)2en(MeOH)] (top right). Relative symmetries of the magnetic 
orbitals of [CuVO(fsa)2en(MeOH)] (bottom left) and [Cu2(fsa)2en(MeOH)] (bottom right).[34,35] 

 

Not only the magnetic orbitals of the metal centres influence the kind and strength of magnetic 

exchange interactions, also the angle through which the metals are bridged has to be considered. 

Hatfield and Hodgson described the first magneto-structural correlation between the Cu–O–Cu 

angle in bis(hydroxido) bridged complexes and the nature and magnitude of the magnetic 

exchange interactions.[36] They proposed a linear relationship between the coupling constant J 

and the bridging angle. Ferromagnetic interactions were observed if this angle is smaller than 

97.5° and antiferromagnetic interactions were found if the angle is larger than 97.5°. Also the 

magnitude of J increased; for a smaller angle stronger ferromagnetic interactions were observed 
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and for a bigger angle stronger antiferromagnetic interactions can be found. The bond lengths 

of the first coordination sphere and the M···M distances were found to have an impact on the 

magnetic exchange interactions as well.[34] The distortion parameter τ, also called Addison 

parameter[37], is an important structural factor in equatorial-axial complexes. It is calculated 

according to the following formula: 

� = 	� − �60°  

β and α are the two largest angles of the coordination sphere, and β > α. For an ideal square 

pyramidal coordination geometry it is 0, for a trigonal bipyramidal coordination sphere it is 1. 

Ribas et al. found in 2004 that for the maximal value of τ a minimal value of J was 

experimentally determined in equatorial-axial bridged Cu(II) azido complexes.[38] 

Cu(II) complexes are not only investigated with regard to their interesting magnetic 

properties[39–41], copper is also an essential element and important for the development of 

organisms. As such it plays an important role in several enzymes (e.g. tyrosinase or 

catecholase).[6,7] Also, Cu(II) complexes are currently investigated as potential anticancer 

agents.[42] 

 

 Copper complexes as potential anticancer agents 

 

Cancer still remains one of the leading causes of death in the world. About 1 in 6 fatalities are 

caused by cancer, and the disease was responsible for 9.6 million deaths in 2018 globally.[43] It 

can be treated by surgery, so removal of the affected tissue, radiotherapy, chemotherapy, or a 

combination of those. Treatment of cancer is proven to be difficult, as it is not a single disease; 

there are more than 200 different types of cancer as a result from different cellular effects. 

Therefore an effective treatment against one cancer type can be ineffective against another 

type.[44] 

Normal cells have regulatory mechanism which control growth and multiplication. Those are 

lost in cancer cells, they become “rogue cells”. Specialised characteristics that differentiate one 

cell type (e.g. liver cell) from another (e.g. lung cell) are missing in those cells as well. This is 
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called loss of differentiation. Apoptosis, a built-in cellular self-destruction process, is the 

mechanism with which the body protects itself against abnormal or faulty cells. A series of 

different chemical signals helps cells to monitor themselves and in case any of these signals are 

missing, apoptosis takes place. This process is responsible for destroying cells that are leaving 

their normal tissue environment. Genetic changes of metastasing cancer cells allow them to 

avoid apoptosis. There are two distinct pathways for apoptosis: extrinsic and intrinsic. In case 

of the first, apoptosis results from external factors: the lack of growth factors or hormones, 

death activator proteins, which can bind to the cell membrane and trigger a signalling process 

resulting in apoptosis, or T-lymphocytes produced by the immune system. Those lymphocytes 

search for damaged cells and can perforate the cell membrane to inject an apoptosis-initiating 

enzyme. The intrinsic pathway may be triggered by factors like DNA damage (e.g. from 

exposure to chemicals, oxidative stress, or drugs). The cell detects the damage and increases 

the production of a tumour suppressor protein. This can trigger apoptosis at high enough 

concentrations. Cell death by apoptosis is also triggered by radiotherapy and many 

chemotherapy drugs.[42,44,45] 

Chemotherapy is often used in combination with surgery and radiotherapy. The use of different 

chemotherapy drugs with various modes of action can lead to an increased efficiency, decreased 

toxicity, and evasion of drug resistance. Most of the traditional chemotherapy drugs act against 

targets present in normal and cancer cells. Therefore both, the effectiveness and selectivity, 

dependent on the fact, that cancer cells grow faster and therefore accumulate nutrients, synthetic 

building blocks, and drugs more quickly, resulting in a higher concentration of the drug in the 

cancer cells. Bone marrow cells grow rapidly as well leading to common side effects of 

chemotherapy like a weakening of the immune response and decreased resistance to infection. 

Cancer cells can have intrinsic or acquired resistance against chemotherapy drugs. While for an 

intrinsic resistance the cells show little response for the anticancer agent from the very start 

(e.g. due to poor uptake of the drug, slow growth rate and/or biochemical/genetic properties of 

the cell), cells with an acquired resistance are susceptible to the drug in the beginning, but 

become resistant over time. Acquired resistance may be caused by a mixture of drug-sensitive 

and drug-resistant cells in the tumour. The drug effects the sensitive cells, while leaving the 

resistant unaffected. Only one resistant cell is required for the growth of a new, now resistant 

to this specific drug, tumour. The cell in the centre of a tumour is often dormant and therefore 

intrinsically resistant. Another cause of resistance is mutation. The uptake of the drug by the 

cell can be decreased, or the synthesis of the target molecule may be increased. Some drugs 
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have to be activated in the cell in order to be efficient; the cell may adapt in a way, that those 

activation processes no longer take place. Also, the drugs can be expelled from the cell as soon 

as they enter; this may result in multi-drug resistance.[42,44,45] 

The best-known coordination compound used as a chemotherapy drug is cis-platin (cis-

diamminedichloridoplatinum(II)). It has to be activated in the cells; the two chlorides are 

replaced by DNA bases, this results in interstrand crosslinking and replication can no longer 

take place. Cis-platin is not very selective towards cancer cells, and they often acquire a 

resistance against this chemotherapy drug.[46–48] This is why there is a constant need for 

alternatives. Copper complexes are investigated during the last years[42,49–55], as they may have 

different mechanisms of action, biodistribution, and/or a lower toxicity than the commonly used 

platinum-based drugs. There is a chance that they may overcome intrinsic or acquired resistance 

and the poor chemoselectivity, and therefore have less side-effects.[42] 

Copper complexes can interact with the DNA as well, e.g. through intercalation or the inhibition 

of enzymes responsible for replication and transcription. Intercalating drugs are compounds 

containing planar or heteroaromatic features. They can insert in the base pair layers of the DNA 

double helix, where the compounds are hold in place by van der Waals interactions. Further 

stabilisation can be achieved with the interaction of ionised groups on the drug with the charged 

phosphate groups of the DNA backbone. This insertion leads to the hindrance of transcription 

and replication and therefore to cell death. Consequences of intercalation are for example the 

deformation of the double helix or the hindrance of the unwinding of the double helix. The later 

prevents the synthesis of messenger RNA and therefore no transcription takes place.[42,44] 

The Cu(II) complex of Hpyramol (Figure 7, left) [Cu(Pyrimol)Cl] (Figure 7, middle; the ligand 

Hpyramol oxidises upon coordination of the metal centre) exhibits high antitumour activity 

against cis-platin resistant and sensitive cancer cells.[56] The similar complex 

[Cu(L)(H2O)(OAc)] (HL = N-2-pyridylmethylidene-2-hydroxy-5-chlorophenylamine, Figure 7, 

right) also oxidatively cleaves the DNA by the formation of reactive oxygen species (ROS). It 

inhibits the growth of cervix carcinoma cells (HeLa) in a dose-dependent matter; the free ligand 

showed no cytotoxicity.[57] 
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Figure 7. Hpyramol (left), [Cu(Pyrimol)Cl] (middle), and [Cu(L)(H2O)(OAc)] (right).[56,57] 

 

Another type of enzymes which are identified as clinical important targets are the 

topoisomerases.[42,44] They play a crucial part in the supercoiling process, where the DNA is 

coiled into a 3D shape so it can fit in the nucleus of the cell. This allows the efficient storage of 

DNA but it has to be uncoiled again for transcription and replication. The unwinding process 

leads to increased tension if the DNA is still supercoiled. Topoisomerases catalyse the passing 

of one stretch of DNA helix across another. The enzyme temporarily cleaves one 

(topoisomerase I) or both (topoisomerase II) strands of DNA helix to create a temporary gap 

and releases the strand(s) once the crossover has taken place. The uncoiling process is catalysed 

as well by topoisomerases therefore inhibition of those enzymes can effectively block 

transcription and replication. The topoisomerase II interacts with parts of the DNA where two 

regions of the double helix are in close proximity to each other. It binds to one helix and a 

tyrosine residue is used to nick both strands of the DNA. This temporary covalent bond between 

the enzyme and each strand stabilises the DNA. The strands are then pulled in opposite 

directions to create a gap, through which the intact DNA can pass. The enzyme reseals the 

strands and departs. Topoisomerase I acts similar to II, but cleaves only one strand of DNA. 

The relaxation of the torsional strain can be achieved by passing the intact strand through the 

nick (see Figure 8) or free rotation of the DNA about the uncleaved strand. As soon as the 

torsional strand has been relieved, the enzyme rejoins the cleaved strand of the DNA and 

departs.[58,59] Compounds targeting the topoisomerases can be divided into two groups: 

topoisomerase poisons and catalytic inhibitors. The poisons stabilise the reversible, covalent 

complex formed between the DNA and the enzyme, whereas catalytic inhibitors, which mostly 

target topoisomerase II, interfere in the catalytic cycle without trapping the covalent 

complex.[42,44] 
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Figure 8. Schematic representation of DNA cleavage reaction catalyse by topoisomerase I. (a): DNA nicking, (b): strand 
passage, (c): resealing of the strand and departure of the enzyme.[58] 

 

The two plumbagin (HL) derivative complexes [Cu(L)2]·2H2O and 

[Cu(L)(bipy)(H2O)]2(NO3)2·4H2O (Figure 9) exhibit a high cytotoxicity against several human 

cancer cell lines and were more active than plumbagin. Both coordination compounds bind 

noncovalently to the DNA and mostly intercalated neighbouring DNA base pairs. They also 

inhibited topoisomerase I more efficiently than plumbagin.[60] 

 

 
Figure 9. Structure of plumbagin (left), [Cu(L)2]·2H2O (middle), and [Cu(L)(bipy)(H2O)]2(NO3)2·4H2O (right). Non-
coordinating solvent molecules were omitted for clarity.[60] 

 

 Ring-opening polymerisation of lactide 

 

Synthetic polymers have a huge impact on today’s industry and everyday-life. Polyesters are 

one of the most versatile classes of those polymers, as they can be used in many different fields 

(fibres, plastics, coatings, …). Polylactide (PLA) is a biodegradable polymer, with a monomer 

(lactide acid or lactide) which can be obtained from annually renewable sources like corn or 

beets. It can be produced via the condensation of lactide acid or the ring-opening polymerisation 

(ROP) of lactide (cyclic dimer of lactide acid). ROP has many advantages: it leads to well 

controlled molecular weight, low polydispersity (PDI), and allows control over the 

stereochemistry of the product. A good catalyst for ROP has a metal centre, which is redox-

inactive and an oxidation state between +2 and +4, inert to β-hydrogen atom abstraction from 
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the growing alkoxide polymer chain, and the complex should be inert towards ligand 

scrambling.[61,62] 

Many metal based reactions follow the coordination-insertion mechanism. This is very well 

understood in the case of Al(Oi-Pr)3 as catalyst (Scheme 1). The first step (1) is the coordination 

of the monomer to the lewis-acidic metal centre. Afterwards (2) the monomer inserts into the 

Al–Oi-Pr bond via nucleophilic addition of the Oi-Pr group on the carbonyl oxygen. The ring-

opening (step 3) proceeds via an acyl-oxygen cleavage. Hydrolysis of the O–Al bond leads to 

PLA.[62] 

 

 
Scheme 1. Coordination insertion mechanism for the ROP of lactide with Al(Oi-Pr)3. RO refers to the initiating isopropyl 
group or the growing polymer chain.[62] 

 

The catalyst mostly used is industry is Sn(Oct)2.[63,64] It is not removed after the polymerisation 

in melt, and upon the compost degradation of PLA it accumulates.[65] As it is, like most tin 

compounds, thought to be harmful, a replacement has to be found.[66] Commonly investigated 

metal centres are Mg2+, Al3+, and Zn2+.[67] 

The dinuclear Zn(II) complex [Zn2LEt(HMDS)2] (Figure 10, left) (LEt is a 

bis(imino)diphenylamido macrocycle, HMDS = bis(trimethylsilyl)amido) shows a high activity 

in THF solution (c(rac-lactide) = 1 mol/L, 0.1 mol% catalyst) with turnover frequency values 

up to 60000 h−1, resulting in M(polylactide) = 14000 g/mol, under immortal conditions (10 eq 

of isopropanol).[68] The complex has a folded conformation, this combines short intermetallic 

distances and open coordination sites with strong electron donation. A similar complex with 

OiPr as anion shows a planar ligand conformation and the OiPr groups are bridging the metal 

centres. This compound has a much lower activity compared to the HMDS complex, which has 

been explained with the lower flexibility of the macrocyclic ligand once the metal centres are 

bridged by additional co-ligands. The Zn(II) atoms in [Zn2LEt(HMDS)2] are easily accessible 

for the monomer and therefore insertion and coordination are much faster.  
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The mononuclear complex [ZnCl2(DMEGasme)] (Figure 10, right) (DMEGasme =  

2-[(1,3-dimethylimidazolidin-2-ylidene)amino]benzoate) was investigated under industrial 

relevant conditions (polymerisation of technical grade rac-lactide in melt at 150 °C).[69] The 

rate constant was determined as kapp = 1.26·10−4 s−1 and polylactide with a molar mass of 69100 

g/mol was obtained. The analogous bromide complex was as active as the chloride compound 

and produced chains with a higher molar mass (70400 g/mol). A coordination insertion 

mechanism was proposed and kinetic measurements revealed a fast first order behaviour with 

a polymerisation rate constant of kp of 9.5·10−2 s−1mol−1L. 

 

 
Figure 10. Catalysts based on Zn(II) for the ROP of lactide. Left: [Zn2(LEt(HMDS)2] X = N(SiMe3)2, right: 
[ZnCl2(DMEGasme)].[68,69] 
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4. Synopsis 

 

This thesis comprises three publications (Chapters 6–8), and two manuscripts (Chapters 9 and 

10). The individual contributions to joint publications are summarised in Chapter 5.  

This work deals with the synthesis of tridentate Schiff base-like ligands and their corresponding 

3d metal complexes, namely Cu(II), Fe(II)/(III), and Zn(II). The tridentate ligands are derived 

from the Jäger type ligands and provide an NNO coordination sphere. Normally, the Weber 

group uses tetradentate Schiff base-like ligands. These are rigid and the resulting coordination 

spheres are limited to square planar, square pyramidal, or octahedral. Tridentate ligands are 

more flexible and can provide a wider range of coordination geometries, depending on the metal 

centre and possible co-ligands, e.g. solvent or coordinating anions. The general idea was to 

investigate these possibilities depending on the preferred coordination sphere of the metal 

centre and the resulting properties of the complexes. 

The ligands were prepared by a simple condensation reaction between the commercially 

available 2-picolylamine and the corresponding keto-enol ether. Conversion with the respective 

metal salt and a base, needed for the deprotonation of the ligands, resulted in the formation of 

the 3d metal complexes. As expected, the Fe(II)/(III) complexes have an octahedral 

coordination sphere, whereas it is mostly square pyramidal for the Cu(II) and Zn(II) complexes 

(Figure 1). 

 

 
Figure 1. Structure of the ligands HL1–HL6 (left), the Fe(II)/Fe(III) complexes (middle), and Cu(II)/Zn(II) complexes.  
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In Chapter 6, the synthesis of six new ligands (HL1–HL6) and their Cu(II) complexes is 

described. The ligands, CuSO4, and sodium methoxide were heated to reflux in dry methanol 

under an argon atmosphere to avoid the formation of Cu(OH)2. This dark blue precursor 

solution was split in aliquots and the Cu(II) complexes were precipitated with an aqueous 

solution of an anion X−. The metal centre is coordinated by one tridentate ligand, and the second 

positive charge is compensated by varying anions X− (OAc−, NO3
−, Cl−, I−, NCS−, and N3

−).  

X-ray structures of four ligands and 22 Cu(II) complexes were obtained. Most of the Cu(II) 

complexes crystallised as dimers and the metal centres are bridged by the anions. For anions 

with more than one possible donor atom (e.g. NO3
−) the coordination with only one of those is 

observed in most cases. The crystallisation of monomers (the fifth coordination place is 

occupied by a solvent molecule) or coordination polymers (the metal centres are either bridged 

by the anions to 1D chains or the –CN group of HL4 connects the Cu(II) ions) occurred as well. 

It was shown that for the dimeric complexes the Cu–X bond length and the Cu–X–Cu angle 

correlate well with the size of the anion. A smaller bridging anion leads to shorter bond lengths 

and larger angles. Powder X-ray diffraction was used to confirm the identical structures of the 

bulk complexes and the single crystals. The magnetic properties of the dimers were 

investigated, as Cu(II) complexes can show interesting magnetic behaviour such as 

superexchange. Most of the compounds are bridged by the anions in double axial-equatorial 

positions and have small coupling constants J, indicative of rather weak antiferromagnetic (J 

negative) or ferromagnetic (J positive) interactions. No direct correlation between the nature of 

the magnetic exchange interactions and the structural parameters, such as the Cu–X–Cu angle 

or the distortion parameter τ was found, making it difficult to predict those interactions.  

[(µ-I)2(CuL5)2] has the largest distortion parameter (0.28) and the second highest coupling 

constant (in absolute value) of −7.36 cm−1. The complex with the strongest superexchange  

(J ≈ −129 cm−1) is [(µ-1,1-NO3)(µ-1,3-NO3)(CuL1)2] and has a different structure in the solid 

state (Figure 2) than the other dimeric Cu(II) complexes, the nitrate bridges at interlinking 

equatorial-equatorial and axial-axial positions at the adjacent Cu(II). One of the two nitrates 

coordinates with two oxygen instead of one, resulting in a much larger Cu–O–Cu angle of ≈143° 

for the second anion. This and the equatorial-equatorial coordination provide a better overlap 

between the magnetic dx2−y2 orbital of the Cu(II) centre and the p orbital of the oxygen. 

Therefore the super exchange is much more pronounced than for the other complexes, resulting 

in this comparatively high coupling constant.  
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Figure 2. Complex [(µ-1,1-NO3)(µ-1,3-NO3)(CuL1)2] (left), thermal ellipsoids were drawn at 50 % probability level, hydrogen 
atoms were omitted for clarity. Right: χMT vs. T plot.  

 

Selected coordination polymers were investigated as well considering their magnetic properties. 

The chloride bridged complex [(µ-Cl)(CuL5)]n showed weak ferromagnetic interactions, 

whereas for the –CN bridged complex [CuL4(NO3)]n almost ideal Curie behaviour was 

observed. This indicates that, even though the cyanide chain coordinates in an equatorial 

position, the exchange pathway is too long.  

Fe complexes can show interesting magnetic properties as well, a phenomenon called spin 

crossover. The spin state of the metal centre can be switch from the high spin to the low spin 

state by external stimuli, such as temperature. This was investigated in Chapters 7 and 8. The 

Fe(II) and Fe(III) complexes (with varying anions) were synthesised, characterised, and 

compared to the known [Fe(bipy)3]Cl2 and [Fe(bipy)3](PF6)3 (bipy = 2,2’-bipyridine) in Chapter 

7. The Fe(II) complexes were obtained by a ligand exchange reaction between Fe(OAc)2 and 

the respective tridentate ligand under an argon atmosphere. The Fe(III) complexes were 

synthesised by reacting Fe(NO3)3·9H2O, sodium acetate, and the tridentate ligands. Afterwards 

the nitrate anion was exchanged by Cl−, Br−, I−, BF4
−, PF6

−, or ClO4
−. The X-ray structure of 

one Fe(II) complex, [Fe(L6)2]·MeOH, and three Fe(III) complexes ([Fe(L1)2]ClO4, 

[Fe(L2)2]PF6·MeCN, and [Fe(L6)2]ClO4) were obtained. The crystallographic data for the 

Fe(II) complex were of low quality, and therefore the complex was only discussed as general 

structural motif. The structures of the Fe(III) complexes were described in more detail. The spin 

state of [Fe(L1)2]ClO4 is HS at the measured temperature (133 K), the other two are LS. The 

spin states were attributed by the comparison of the bond lengths (as they are shorter in the LS 

state), the octahedral distortion parameter Σ (which is around 40° in the LS state and around 

80° in the HS state), and the Npy–Fe–O angle (closer to 180° in the LS state). Several 
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intermolecular interactions were observed in the packing. The complex molecules form two 

layers, which are turned 180° with respect to each other. In the case of the two complexes in 

the LS state, the anions separate these layers. In [Fe(L1)2]ClO4, a strong P4AE (Parallel 

Fourfold Aryl Embrace), a combination of π···π and C–H···π interactions (see Figure 3), leaves 

no place for the anions between the layers. The magnetic measurements showed that the Fe(II) 

complexes remained mostly HS over the complete investigated temperature range (300–50 K), 

whereas out of the twelve Fe(III) complexes ten showed SCO behaviour. The spin transition is 

gradual in all cases, and mostly incomplete in the HS and the LS region. Two complexes show 

a small hysteresis: [Fe(L1)2]Br (6 K) and [Fe(L1)2]PF6 (5 K). The gradual nature of the SCO 

can be explained with the missing cooperativity between the Fe(III) centres, although several 

intermolecular interactions were observed in the crystal packing. The strong P4AE interaction 

in [Fe(L1)2]ClO4 is believed to prevent the occurrence of SCO, as the packing is very dense 

and a spin transition is always accompanied by a volume change. The complex [Fe(bipy)2]Cl2 

undergoes an abrupt ST above 340 K. This process is irreversible and can be explained by the 

loss of solvent at elevated temperatures. On the other hand, [Fe(bipy)3](PF6)3 is a pure LS 

complex. The difference in SCO behaviour of the Fe(II) and Fe(III) complexes can be explained 

with the different ligand field splitting; it increases with a higher oxidation state of the central 

metal atom, therefore for negatively charged ligands the ligand field of the Fe(III) complexes 

is in a region which allows a ST, whereas the Fe(II) complexes remain HS. For the neutral 

bidentate ligand bipy it is the opposite, the ligand field for the Fe(II) complex is in a region 

suitable for SCO, and the Fe(III) complex remains LS.  

The complexes were investigated considering their properties in solution (UV-Vis spectroscopy 

and cyclic voltammetry) as well. The absorption maxima for the Fe(II) complexes are in the 

region of 450 nm, with an absorption coefficient that indicates a charge transfer process 

responsible for the colour of the complexes. The Fe(III) complexes show two absorption 

maxima (around 530 and 645 nm), which are independent of the used anion and only depend 

on the used tridentate ligand. The two maxima correspond to the HS and the LS state 

(respectively) of the iron(III) and indicate that a spin transition in solution is possible. Again, a 

charge transfer process is responsible for the colour of the complexes. The electrochemical 

behaviour was investigated with cyclic voltammetry. All Fe complexes with the tridentate 

ligands show quasi-reversible processes between −0.51 and −0.40 V, that correspond to the 

Fe(II)/Fe(III) redox process. Additionally an irreversible oxidation of the ligand above 1.1 V 

was observed as well. No significant influence of the counterions or the oxidation state of the 
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starting material on the redox potentials was found. The redox potential of the pair 

[Fe(bipy)3]2+/[Fe(bipy)3]3+ is at 0.72 V (reduction) and 0.83 V (oxidation). This shows again a 

strong impact of the different chelate ligands used (anionic and tridentate vs. neutral and 

bidentate). 

 

  
Figure 3. Left: Structure of [Fe(L1)2]ClO4 illustrating the P4AE interaction; ellipsoids were drawn at 50 % probability level, 
hydrogen atoms and side chains were omitted for clarity. Right: χMT vs. T plot of [Fe(L1)2]Br.  

 

So far, only gradual SCO was observed. This is different for the isostructural Fe(III) complexes 

[Fe(L2)2]BF4 and [Fe(L2)2]ClO4, that are discussed in Chapter 8. Both complexes crystallise in 

the orthorhombic space group P212121 with one complex molecule and one anion per 

asymmetric unit. It was possible to obtain the single crystal structures of the two compounds in 

both, the HS and the LS state. The complexes show an abrupt ST above 100 K; the transition 

temperature T1/2 is shifted by 30 K towards lower temperature for the perchlorate complex 

(145 K � 115 K). This shift can be explained by the size of the anion, as the perchlorate is 

slightly larger than the tetrafluoroborate anion and therefore stabilises the HS state. By 

comparing the structures in the HS and LS state it was seen that the volume change upon SCO 

is smaller for [Fe(L2)2]ClO4 (2.3 %) than it is for [Fe(L2)2]BF4 (2.8 %). The packing of the 

complex molecules in the crystal is similar to the SCO active iron(III) complexes described in 

Chapter 7: two layers of molecules are formed, which are turned 180° with respect to each other 

and are separated by the anions. Several intermolecular interactions are observed in the packing 

of the crystals, therefore a Hirshfeld surface analysis was performed to identify significantly 

strong/short contacts. There are dominant H···O interactions between a keto oxygen of one 
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ligand and a methyl group of another ligand (see Figure 4). A chain of molecules along [100] 

is formed by these non-classical hydrogen bonds. These interactions are a possible explanation 

for the very cooperative and therefore abrupt ST compared to the other Fe(III) complexes, that 

were discussed in Chapter 7.  

 

 
Figure 4. Hirshfeld surface (left) and 2D fingerprint plot (middle) of [Fe(L2)2]BF4 in the HS state. The red circle is highlighting 
the area of strong C–H···O interactions. Right: χMT vs. T plot of [Fe(L2)2]BF4. 

 

So far, the focus of this work was on the magnetic properties of the complexes. Compounds 

with additional weakly binding ligands can also show interesting catalytic or biological activity. 

In Chapter 9, the dinuclear Zn(II) complexes were investigated considering their potential 

application as catalysts for the ring opening polymerisation of lactide. The white complexes 

were obtained by an easy complexation reaction between Zn(OAc)2·2H2O and the tridentate 

ligands. It was possible to obtain the single crystal X-ray structures of the two complexes  

[(µ-1,1-OAc)(µ-1,3-OAc)(ZnL1)2] and [(µ-1,1-OAc)(µ-1,3-OAc)(ZnL5)2]. Both show the 

same general motif, the two Zn(II) atoms are coordinated by the tridentate ligands and bridged 

via two acetate anions, one is coordinating with only one oxygen atom, while the other is 

bridging the Zn(II) centres with both oxygen atoms. Zn complexes of ligands HL1, HL2, HL4, 

HL5, and HL6 were tested regarding their activity in the ring opening polymerisation of non-

purified rac-lactide in melt at a temperature of 150 °C. Due to the high fluorescence of complex 

[ZnL4OAc] it was not possible to perform a kinetic study. For the other four complexes 

polymerisation data were obtained. Compound [(µ-1,1-OAc)(µ-1,3-OAc)(ZnL5)2] was the 

slowest catalyst with an apparent rate constant kapp one order of magnitude lower than the other 

three complexes (10−4 vs. 10−3 s−1). This is due to the higher steric demand of the phenyl groups 

at the chelate cycle, making the access of the lactide more difficult. A coordination-insertion 
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mechanism was proposed; an induction phase takes place at the beginning, during which the 

dissociation of the dinuclear complex into a monomeric species leads to the formation of the 

active species. This was further supported by the fact that the obtained molar masses are much 

closer to the theoretically calculated molar masses if each Zn atom propagates a chain. Also, 

analysis of the polylactide by MALDI-ToF confirmed that the monomeric complex is attached 

to a chain end. 1H NMR showed that only atactic polymers are formed. TGA revealed that the 

complexes are stable up to 225 °C, a temperature higher than the typical industrial conditions 

(180–200 °C). Complex [ZnL2OAc] was investigated considering its cytotoxicity towards one 

melanoma, two colon carcinoma, one cervix carcinoma, and one non-malignant human 

fibroblast cell lines. It showed no cytotoxicity towards any of these cell lines with IC50 values 

>100 µM and can be considered non-hazardous to health. This study points out that those Zn 

complexes have a high potential to replace the toxic Sn(Oct)2 catalyst which is currently used 

for ring opening polymerisation of lactide in industry.  

 

 
Figure 5. Structure (left) of [(µ-1,1-OAc)(µ-1,3-OAc)(ZnL5)2] and semi-logarithmic plot (right) of the polymerisation of non-
purified rac-LA with [(µ-1,1-OAc)(µ-1,3-OAc)(ZnL5)2] [M]/[I] = 500:1, 150 °C, 260 rpm, conversion determined by in situ 
Raman spectroscopy, showing the induction phase at the beginning of the polymerisation.  

 

In Chapter 10, the Cu(II) complexes were investigated considering their possible application as 

anticancer agents. The influence of the anion was analysed by testing complexes of ligand HL1 

with different anions (NO3−, Cl−, Br−, and NCS−). The effect of the side chains on the chelate 

cycle on the cytotoxic activity was examined by choosing Br− as anion for the complexes of 

HL1–HL6. Additionally, substituents (4-OMe, 4-Cl, 4-Me, 5-Me, 6-Me) on the pyridine ring 
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were introduced to further alter the electronic environment of the central metal atom, and thus 

influence the cytotoxic activity. Only ligands of the type HL3 and HL4 were synthesised with 

substituents on the pyridine ring. X-ray structure analysis of four of the new complexes shows 

that unlike the examples with unsubstituted pyridine-rings (always square pyramidal 

coordination sphere) a square planar coordination is observed. In all cases short interactions 

between the Cu centre and a π system of a neighbouring ligand are observed (see Figure 6). 

UV-Vis spectroscopy and conductivity measurements were performed in water and/or DMSO 

to investigate if the anion coordinates to the Cu(II) centre in solution, which is especially of 

interest for the dimeric complexes. The absorption maxima only depend on the tridentate ligand 

and not the anion in aqueous solution, and in both solvents the conductivity was higher 

compared to the pure solvent. Therefore it was concluded that the anion does not coordinate to 

the metal centre and that the dimeric complexes are in fact monomeric and cationic species in 

solution. The low magnitude of the absorption coefficient ε (102) indicates a d–d transition 

responsible for the colour. The electrochemical behaviour of the complexes was investigated as 

well. Mostly irreversible Cu(II) � Cu(I) processes were found below −0.4 V. The anodic 

processes are ill-defined and correspond to oxidation processes of the ligand. The compounds 

were investigated with regard to their cytotoxic activity and were therefore tested against 

different cancer cell lines: one melanoma, two colon carcinoma, and one cervix carcinoma. 

Most complexes were moderately active against the cell lines with IC50 values > 10 µM. Two 

compounds showed high activity with IC50 values < 10 µM: complexes of the type HL3 with 

4-OMe and 4-Me as substituents on the pyridine ring [Cu(4-OMeL3)Br] and [Cu(4-MeL3)Br]. The 

respective compounds of the type HL4 were not active against the cancer cell lines (IC50 > 50 

µM). CuSO4 was also tested and less active than most Cu(II) complexes. The uptake of the 

most active complexes was investigated using ICP-MS. Their cytotoxic activity nicely 

correlates with the Cu concentration in the cells; a higher Cu content in the cells leads to a lower 

IC50 value. The possible mode of action of the complexes was investigated. No direct interaction 

with the DNA was observed, and also only a tiny generation of reactive oxygen species was 

detected. It was found that the complexes inhibit the enzyme topoisomerase I which is a clinical 

important target for anticancer drugs. Again, CuSO4 was tested as well and showed no 

inhibition.  
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Figure 6. Asymmetric unit (left) and packing in the crystal along [101] (right) of [Cu(5-MeL3)Br]. 

 

In summary, the new tridentate NNO Schiff base-like ligands (middle Figure 7) have a wide 

variety of interesting properties ranging from magnetic exchange interaction (Cu, top left Figure 

7) over spin crossover (Fe, bottom left Figure 7) to catalysts for the ring-opening polymerisation 

of lactide (Zn, bottom right Figure 7) and possible anti-cancer agents (Cu, top right Figure 7). 

Compared to the tetradentate ligands used by the Weber group, the observed coordination 

geometries are the same (square planar, square pyramidal, and octahedral) but due to the weakly 

binding co-ligands in cases of Zn(II) and Cu(II) complexes a free coordination place is easily 

accessible. This allows the Zn(II) compounds to act as catalysts for the ROP of lactide, which 

is not possible for Zn(II) complexes with the tetradentate ligands. The Cu(II) coordination 

compounds can show superexchange due to the bridging anions, a behaviour that is not 

observed with the tetradentate ligands. Also, their water solubility is much higher thus allowing 

the investigation of their cytotoxicity. In case of Fe(II)/Fe(III) complexes only the Fe(III) 

complexes with the tridentate ligands show SCO behaviour, whereas the Fe(II) complexes with 

the tetradentate ligands and an N4O2 coordination sphere are SCO active.  
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Figure 7. Overview of the different properties of the complexes with the new tridentate ligands depending on the metal centre.  
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5. Individual contributions to joint publications 

 

The results of this thesis were obtained in collaboration with others and are published, accepted, 

or to be submitted as explained below. In this chapter, the contributions of all co-authors are 

specified. The asterisk denotes the corresponding author(s).  

 

Chapter 6 

This work was published in CrystEngComm (CrystEngComm 2018, 20, 818–828) with the title: 

“Novel Cu(II) complexes with NNO-Schiff base-like ligands : structures and magnetic 

properties” 

Katja Dankhoff and Birgit Weber* 

I synthesised and characterised all the ligands and complexes in this work, carried out the 

magnetic measurements, solved the crystal structures, and wrote the publication. Birgit Weber 

supervised this work, was involved in scientific discussions, wrote the introduction, and 

corrected the manuscript. 

 

Chapter 7 

This work was published in Zeitschrift für anorganische und allgemeine Chemie (Z. Anorg. 

Allg. Chem. 2018, 644, 1839–1848) with the title: 

“Iron(II) and Iron(III) Complexes of Tridentate NNO Schiff Base‐like Ligands – X‐ray 

Structures and Magnetic Properties” 

Katja Dankhoff, Sandra Schneider, René Nowak, and Birgit Weber* 

The complexes with the tridentate ligands were synthesised and characterised by me or Sandra 

Schneider during a practical course. I carried out the magnetic measurements, measured and 

solved the crystal structures, and wrote the publication. René Nowak synthesised and 
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characterised the iron(II) complex of 2,2’-bipyridine. Birgit Weber supervised this work, was 

involved in scientific discussions, wrote the introduction, and corrected the manuscript. 

 

Chapter 8 

This work was published in Dalton Transactions (Dalton Trans. 2019, DOI: 

10.1039/c9dt00846b) with the title: 

“Isostructural iron(III) spin crossover complexes with a tridentate Schiff base-like ligand: X-

ray structures and magnetic properties” 

Katja Dankhoff and Birgit Weber* 

I synthesised and characterised the complexes discussed in this work, carried out the magnetic 

measurements, measured and solved the crystal structures, and wrote the publication. Birgit 

Weber supervised this work, was involved in scientific discussions, wrote the introduction, and 

corrected the manuscript.  

 

Chapter 9 

This work was published in ChemistryOpen (ChemistryOpen 2019, 8, 1020–1026) with the 

title: 

“Towards new robust Zn(II) complexes for the ring-opening polymerisation of lactide under 

industrial relevant conditions” 

Pascal M. Schäfer, Katja Dankhoff, Matthias Rothemund, Agnieszka N. Ksiazkiewicz, Andrij 

Pich, Rainer Schobert, Birgit Weber* and Sonja Herres-Pawlis* 

Pascal M. Schäfer carried out the polymerisation of lactide, the kinetic investigations, and wrote 

the manuscript. I synthesised and characterised the complexes used as catalysts, measured and 

solved the crystal structures, and wrote this part of the manuscript. Matthias Rothemund carried 

out the cell tests. Agnieszka N. Ksiazkiewicz carried out the MALDI measurements. Andrij 
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Pich, Rainer Schobert, Birgit Weber, and Sonja Herres-Pawlis supervised this work, were 

involved in scientific discussions, and corrected the manuscript.  

 

Chapter 10 

This work was published in Dalton Transactions (Dalton Trans. 2019, 48, 15220–15230) with 

the title:  

“Copper(II) complexes with tridentate Schiff base-like ligands: solid state and solution 

structures and anticancer effects” 

Katja Dankhoff, Madeleine Gold, Luisa Kober, Florian Schmitt, Lena Pfeifer, Andreas 

Dürrmann, Hana Kostrhunova, Matthias Rothemund, Viktor Brabec, Rainer Schobert* and 

Birgit Weber* 

The complexes and ligands discussed in this work were synthesised and characterised by me, 

Lena Pfeifer, or Andreas Dürrmann during their bachelor thesis. I measured and solved the 

crystal structures and wrote the manuscript. Madeleine Gold, Luisa Kober, Florian Schmitt, and 

Matthias Rothemund carried out the cell tests. Hana Kostrhunova carried out the uptake studies 

of selected complexes using ICP-MS. Viktor Brabec, Rainer Schobert, and Birgit Weber 

supervised this work, were involved in scientific discussions, and corrected the manuscript. 
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6. Novel Cu(II) complexes with NNO-Schiff base-like ligands : structures 

and magnetic properties 

Katja Dankhoff and Birgit Weber* 

Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, 

Germany. E-mail: weber@uni-bayreuth.de; Tel: +49(0)921552555 

 

Published in: CrystEngComm 2018, 20, 818–828. (DOI: 10.1039/C7CE02007D) 

Reproduced by permission from The Royal Society of Chemistry 

 

Abstract:  We present a series of six new tridentate Schiff base-like ligands, derived from 2-

picolylamine, providing an NNO coordination sphere. Their corresponding Cu(II) complexes 

were synthesised with a range of varying counter anions (OAc−, NO3
−, Cl−, I−, NCS−, and N3

−). 

The results from single X-ray structure analyses of four ligands and 22 Cu(II) complexes are 

presented. The majority of the complexes crystallised as dimers with the anion bridging the 

Cu(II) centres in a µ-fashion; depending on the substituents at the ligand and the counter ion 

the formation of coordination polymers or mononuclear complexes is also possible. 

Temperature dependent magnetic measurements revealed that the exchange interactions 

between the Cu(II) centres depend on the nature of the bridging ligand (axial/equatorial), the 

Cu–X–Cu angle, and the distortion between a square pyramidal and a trigonal bipyramidal 

coordination sphere, explicable by assuming a superexchange. 

 

 Introduction 

 

The design of functional materials is a great challenge for synthetic chemists. With regard to 

this, oligonuclear complexes and coordination polymers that are built through self-assembly of 

metal centres and polytopic ligands are actively investigated. Depending on their structure, 
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intriguing properties in the field of magnetism, catalytic or biological activity, or sensing 

applications can be found.[1] Tridentate ligands are widely used in many different fields of 

coordination chemistry due to their wide variability and also flexibility with regard to the ligand 

structures, coordinated metal centres, and the related physical and chemical properties.[2] In the 

case of metal centres that prefer an octahedral coordination sphere, usually mononuclear 

complexes of the general formula [ML2]n+ are obtained. Some of those complexes show an 

interesting magnetic bistability (e.g. spin crossover, SCO).[3,4] Additionally, for rigid tridentate 

ligands, control over either a facial (trispyrazolylmethane/-borate and related ligands) or a 

meridional coordination (terpyridine and related) is obtained. However, if a preferred 

coordination number of the metal centre is 4 or 5, as in the case of copper(II), the synthesis of 

mononuclear, dinuclear, or polymeric complexes is possible.[5,6] The different structural motifs 

will significantly influence the properties of the material. For coordination polymers and 

oligonuclear complexes different magnetic exchange interactions are possible.[6,7] Here it needs 

to be pointed out, that already small structural differences can significantly influence the 

magnetic properties.[8,9] Due to the S = ½ spin state of the copper(II) center systematic 

investigations on the influence of different bridging ligands on magnetic exchange interactions 

are possible.[10–13] One of the first prominent examples for a magnetostructural correlation of 

dinuclear µ-hydroxide-bridged copper(II) complexes was proposed by Hatfield and 

Hodgson.[14] The coupling constant J was found to strongly depend on the Cu–O–Cu angle of 

the dinuclear unit. For a more detailed discussion of the magnitude and nature of the exchange 

interactions in dinuclear and polymeric copper(II) complexes, the position of the bridging 

ligand (axial vs. equatorial) with regard to the magnetic orbital (usually dx2−y2) has to be taken 

into account.[8,15] For penta-coordinated complexes with axial/equatorial bridging ligands the 

distortion parameter τ (ref. 16) that helps to distinguish between square pyramidal (τ = 0) and 

trigonal bipyramidal (τ = 1) complexes also needs to be considered.[17,18] Furthermore, 

mononuclear or dinuclear complexes with additional weakly binding (monodentate) ligands can 

show interesting biological or catalytic activity.[19] These complexes can be capable of 

activating oxygen and therefore oxidise phenol or catechol. This can be used to mimic the active 

site of tyrosinase or catecholase.[20] Other examples serve as active site for ethylene 

polymerisation[21] or are discussed as anticancer agents.[22] Here we present six new tridentate, 

2-picolylamine derived NNO Schiff base-like ligands and their corresponding Cu(II) 

complexes. In combination with different anions a variety of Cu(II) complexes could be 
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obtained in an easy, three-step synthesis. Their X-ray structures and magnetic properties were 

compared. 

 

 Results and discussion 

Synthesis 

The Cu(II) complexes were synthesised in three steps (Scheme 1). First, the 2-picolylamine 

derived, tridentate Schiff base-like ligands (HL1–HL6 ) were synthesised, then treated with 

CuSO4 under basic conditions to give the corresponding Cu(II) chelate complex which finally 

had its counter anion exchanged to afford either monomeric, dimeric, or polymeric Cu(II) 

complexes. For 22 of the 30 Cu(II) complexes thus obtained, the structures could be elucidated. 

An overview of the synthesised complexes is given in Table 1.  

 

 
Scheme 1. General procedure for the synthesis of the ligands HL1–HL6  and the corresponding Cu(II) complexes. The ligands 
were obtained in 50 to 98% yields, the yields of the Cu(II) complexes ranged from 13 to 79%. 
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Ligands. The new tridentate 2-((pyridin-2-yl)methylamino)-methylene-1,3-dicarbonyl ligands 

HL1–HL6  were prepared by a condensation reaction between 2-picolyl amine A and the 

respective β-acylenol ether B. The ligands were obtained as white to slightly red powders and 

their identity and purity was confirmed by 1H NMR spectroscopy, elemental analysis, mass 

spectrometry, and IR spectroscopy.  

Cu(II) complexes. The reaction of the ligands HL1–HL6  with CuSO4 and sodium methoxide 

in methanol, acting as a base for the deprotonation of the ligand, resulted in dark blue solutions. 

These were split in aliquots and the respective Cu(II) complexes were precipitated by addition 

of an aqueous solution of the sodium or potassium salt of the desired anion. The resulting 

complexes were obtained as dark green to blue, fine crystalline powders. Their identity and 

purity was confirmed by means of elemental analysis, mass spectrometry, and IR spectroscopy. 

For some compounds only a few single crystals could be obtained, as either their solubility was 

too high (all complexes of the type [CuL]2SO4) or the obtained bulk material was not pure 

enough as to elemental analysis (for complexes with I− or N3
− as anion). In those cases only the 

results from single crystal X-ray structure analysis are presented. 

 

Table 1. Overview of the synthesised complexes. Complexes of unknown structure were obtained as fine crystalline powders. 
For entries with “/” neither bulk material nor single crystals could be obtained. 

ligand / anion L1 L2 L3 L4 L5 L6 

OAc− dimer structure 

unknown 

dimer polymer structure 

unknown 

dimer 

NO3
− dimer monomer structure 

unknown 

polymer dimer structure 

unknown 

Cl− dimer dimer dimerb structure 

unknown 

polymer dimer 

I− dimera / / / dimerb / 

NCS− polymer monomer structure 

unknown 

structure 

unknown 

structure 

unknown 

dimer 

N3
− dimera dimera / / / / 

SO4
2− / dimera dimera,b / / / 

a Only obtained as single crystals. b Due to bad quality of the data the structures will only be discussed as general structural motif. 
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X-ray structure analysis  

Crystals suitable for X-ray structure analysis were obtained for four ligands and 22 Cu(II) 

complexes. The crystallographic data were collected at 133 K and are given in the ESI, Table 

S1. ORTEP drawings of the ligands are shown in Fig. S1, and of selected complexes in Fig. 1. 

The remaining ORTEP drawings of the complexes are presented in Fig. S2 and S3, bond lengths 

and selected angles are given in Table S3.  

Ligands. Colourless crystals suitable for X-ray structure analysis were obtained for ligands 

HL1 , HL5 , and HL6  by slow evaporation of the mother liquor at room temperature, and of 

HL4  directly from synthesis. For the free ligands two tautomers can be expected: the keto-

enamine or the iminoenol form.[17] The results from X-ray structure analyses show that the 

ligands exist predominantly in the keto-enamine form. The length of the bond C7–C8 with an 

average value of 1.39 Å is clearly shorter and more in the order of a double bond, while the 

bond C8–C9 (1.45 Å on average) is significantly longer and more in the range expected for a 

single bond. The relevant bond lengths are given in Table S2. This is in agreement with other 

structures reported for similar tetradentate ligands of this Schiff base-like ligand type.[23,24] 

Cu(II) complexes. The Cu(II) complexes with a onefold negatively charged anion crystallised 

with one counter ion and one tridentate ligand per copper centre whereas the complexes with 

sulfate crystallised with half a counter ion and one tridentate ligand per copper centre. In most 

cases the counter ion serves as additional ligand. With the exception of 2-SO4 and 3-SO4 the 

Cu(II) centre has a square pyramidal coordination sphere. The bond lengths between the Cu(II) 

centre and the donor atoms of the tridentate ligand show average values of 2.00 Å (Cu–Npy), 

1.92 Å (Cu–N), and 1.93 Å (Cu–O), and are thus all in the same order of magnitude and similar 

to those of other Cu(II) complexes of related Schiff base-like ligands.[23]  
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Fig. 1. ORTEP drawings of 3-OAc (top left), 5-Cl (top centre), 1-N3 (top right), 1-NO3 (middle left), 2-SO4 (middle centre), 
2-NCS (middle right), 3-Cl (bottom left), 6-NCS (bottom centre), and 4-NO3 (bottom right). Ellipsoids are drawn at 50% 
probability level. Hydrogen atoms were omitted for clarity. 

 

Monomeric Cu(II) complexes. Two of the 27 complexes for which a crystal structure was 

obtained crystallised as monomers: 2-NO3 and 2-NCS. In both cases the Cu(II) centre has a 

square pyramidal coordination sphere, being coordinated by one tridentate ligand, the 

corresponding anion, and a solvent molecule, e.g. water for 2-NO3 and methanol for 2-NCS. 

An ORTEP picture of 2-NCS is given in Fig. 2. Several intermolecular interactions between 

the ketone side chain, the anion, and the solvent molecules (one H2O in 2-NO3) are apparent. 

For both complexes metallophilic interactions between one Cu centre and the chelate ring of 
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the tridentate ligand of a neighbouring complex can be observed. Details of all intermolecular 

interactions are given in Tables S4–S8.  

Dimeric Cu(II) complexes. The majority of the Cu(II) complexes characterised by single 

crystal XRD have a dimeric structure (16 out of 22). Except for four of those dimers (2-SO4, 3-

Cl, 3-SO4, and 6-NCS), the overall structure of these compounds is similar. Each Cu(II) centre 

is coordinated by the tridentate ligand and the metal centres are bridged by two anions in a µ-

fashion. The ligands are orientated trans towards each other. In cases where the bridging anions 

have more than one possible donor atom (such as OAc−, NO3
−, N3

−) coordination with only one 

of these donor atoms is observed (with one exception: 1-NO3). While the bond lengths between 

the donor atoms of the chelate cycle and the Cu(II) centre are very similar for all complexes, 

the bond lengths to the bridging anion are asymmetric, one is shorter than the other. The bond 

lengths are very similar for complexes with the same bridging anion regardless of the side 

chains of the tridentate ligand. The Cu–X–Cu angle strongly depends on the bridging atoms, it 

is much closer to 90° for big anions (such as I−) than for smaller atoms such as the oxygen of 

OAc−. This angle is very similar for complexes with the same bridging anion and not depending 

on the side chains of the tridentate ligands. A graphic illustration of the Cu–X–Cu angle vs. 

Cu–X bond lengths is shown in Fig. 2. Several intermolecular interactions between the 

ketone/ester side chains, the anions, and the aromatic CH-groups of the pyridyl ring were 

identified for all complexes. In case of additional solvent molecules in the crystal packing, 

hydrogen bonds with them are observed. For example, in the packing of the complex 6-OAc a 

chain of hydrogen bonds between the additional four water molecules lies along axis [100]. 

Interactions between the chelate ring of one complex and the pyridine ring or the Cu(II) centre 

of a neighbouring complex molecule were frequently observed. Details of all interactions are 

provided in Tables S4–S8. The coordination environment of the Cu(II) centre in 6-NCS differs 

from that in previously described complexes. The tridentate ligand and the anion form a square 

planar coordination sphere around the metal centre, while the carbonyl oxygen of the ester side 

chain of an adjacent tridentate ligand occupies an axial coordination site of the Cu(II), resulting 

in a square-pyramidal coordination sphere. The complex also crystallised as a dimer.  

The complexes [CuL]2(SO4) were formed, but could not be obtained as pure materials due to 

their high solubility. However, crystals suitable for X-ray structure analysis were isolated of 

complexes 2-SO4 and 3-SO4. The crystals of 3-SO4 were of a low quality and therefore will be 

discussed only as a general structural motif. A square planar coordination sphere was observed 
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for both Cu(II) centres in 3-SO4. Each Cu(II) centre is coordinated by the tridentate ligand and 

one oxygen atom of the anion. Two solvent molecules per asymmetric unit are present: one 

methanol and presumably one water, however the hydrogen atoms of the water molecule are 

not refined due to the low quality of the data. The Cu(II) centres in 2-SO4 have different 

coordination spheres: one Cu(II) centre has a square planar coordination sphere with one 

tridentate ligand and one oxygen of the SO4
2−. The second Cu(II) centre has a square-pyramidal 

coordination sphere with one methanol molecule in axial position. One additional molecule of 

methanol per asymmetric unit is present as well. The distance between the Cu(II) centre and 

the SO4
2− is similar to that between Cu(II) and the oxygen atom of other oxygen-bridged 

complexes.  

The complex 3-Cl also crystallised as a dimer, although the coordination is different. 

Unfortunately, the crystals obtained were of a low quality and therefore the structure can only 

be described as a motif, with no conclusions as to bond lengths and angles being drawn. The 

tridentate ligand and the chloride anion form a square-planar coordination around the metal 

centre. For one Cu(II) centre of the dimer the fifth coordination place is occupied by the chloride 

ion of another Cu(II) centre. For the second metal centre this is not the case, although a rather 

short metallophilic interaction between the Cu(II) centre and the chelate ring of the other 

complex molecule can be observed.  

 

 
Fig. 2. Correlation of the Cu–X–Cu angles vs. Cu–X bond lengths for the Cu(II) complex dimers. 
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Cu(II) complex polymers. Four Cu(II) complexes crystallised as coordination polymers; two 

are µ-bridged via the anion (1-NCS, and 5-Cl), and two complexes form a 1D chain via the  

–CN side chain of ligand L4 (4-OAc and 4-NO3). In 1-NCS the anion is bridging to the nitrogen 

on one side and to the sulphur on the other side. The direction of the 1D chains is [100] for 1-

NCS, [010] for 4-OAc and 4-NO3, and [001] for 5-Cl. Complex 4-OAc has presumably seven 

water molecules per asymmetric unit, but adding the corresponding hydrogen atoms led to an 

unstable refinement. Those water molecules separate the 1D chains from each other. Similar 

intermolecular interactions as for previously described complexes can be observed, all details 

are given in Tables S4–S8. 

Powder X-ray diffraction 

Powder X-ray diffraction of the dimeric complexes was done to confirm whether or not the X-

ray structures obtained by slow diffusion and the complexes obtained from synthesis have the 

same structure. The calculated and measured spectra are given in Fig. S4 and S5. It can be seen 

that the patterns are almost identical for all measured complexes, with minor differences which 

can be explained with the different techniques and temperatures used to obtain the data. 

Magnetism 

The magnetic properties of all Cu(II) complexes that were obtained as bulk material were 

investigated. The central question was if exchange interactions mediated by the bridging ligands 

might be observable for the dimeric and polymeric complexes. Dimeric Cu(II) complexes are 

known to show either antiferromagnetic or ferromagnetic exchange interactions of very 

different magnitude, depending on the possible exchange pathways between the magnetic 

orbital (usually dx2−y2, with the orbital lobes pointing towards the ligands with the shorter bond 

lengths) and the occurrence or absence of strict or accidental orthogonality. Which case is 

observed depends on several parameters such as the bridging mode, the Cu–X–Cu angle, the 

bridging ligand X, but also the distortion parameter τ,[8,11,17,18] as will be discussed in the 

following.  

The temperature dependent magnetism was determined between 300 and 50 K for all 

complexes, and for selected complexes from 300 to 2 K. The values for µeff (µeff = effective 

Bohr magneton number, at 300 K), and χMT (χM = molar magnetic susceptibility, at 300 K, 50 

K, and if measured, at 2 K) are given in Table S9. The effective Bohr magneton numbers (µeff) 
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found were in good agreement with the calculated spin only values of µSO = 1.73 (monomer or 

polymer) and µSO = 2.45 (dimer). Plots of χMT vs. T for all complexes are given in Fig. S6–S9.  

For the complexes discussed in this work, there are five different ways how the Cu(II) centres 

in the dimeric compounds are bridged, which can be relevant for the magnetic exchange 

pathways: 

1) Interlinking equatorial–equatorial and axial–axial positions at the adjacent Cu(II) 

centres (1-NO3) 

2) Connecting equatorial–equatorial positions (2-SO4) 

3) Double axial–equatorial positions (e.g. 1-OAc or 5-NO3) 

4) Single axial–equatorial positions (3-Cl) 

5) Double axial–axial positions (6-NCS). 

The focus of this work was set on the complexes for which the bulk material and the single 

crystals have the same structure. Those were investigated down to 2 K to accurately determine 

a coupling constant between the Cu(II) centres and allow a magneto-structural correlation. As 

illustrated in Table 2, those complexes are bridged as explained in 1) or 3) above.  

The χMT vs. T plot for 1-NO3 is shown in Fig. 3 as a representative example. The fitting 

parameters for all investigated complexes (coupling constant J, g-value, and temperature 

independent paramagnetism TIP or the percentage of monomers α) are given in Table 2 together 

with selected structural parameters and examples from literature. For a dinuclear complex with 

two S = ½ centres, the Hamilton operator is  

� = −�	
	�      (1) 

and the experimental values were fitted with one of the two following formulas[11] 

��� =	 �∙��∙��∙��
�∙�� !"#$%&'∙()*

+ �,- ∙ �    (2) 

��� =	 �∙��∙��∙��
�∙�� !"#$%&'∙()*

∙ .1 − �0 + ��∙��∙��
�∙� ∙ �   (3) 

Since dimeric Cu(II) complexes can have monomeric impurities,[11,12,25] the percentage of 

monomers (α) has to be taken into account when performing the fit to obtain reasonable fitting 
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parameters (eqn (3), as was the case for 1-NO3). The magnetic data of the other complexes were 

fitted by taking TIP (temperature independent paramagnetism) into account, resulting in better 

fit of the experimental data. 

It can be seen that the coupling constants of all complexes are very small (< ± 10 cm−1) except 

for 1-NO3. For this complex a rather negative coupling constant of J = −129.5(19) cm−1 was 

determined, indicative of antiferromagnetic interactions. The difference between the coupling 

constant of 1-NO3 and the other compounds can be explained based on the X-ray structures of 

the complexes. First of all, 1-NO3 is the only complex where the Cu(II) centres are bridged in 

equatorial–equatorial and axial–axial positions by the anion (type 1 in Table 2). For such 

complexes a good overlap between the magnetic orbitals and the orbitals of the bridging ligand 

is possible that depends further on the bridging angle. Here, especially the equatorial–equatorial 

bridge (oxygen atom O11) needs to be considered. The angle Cu1–O11–Cu1 (143.39(9)°) is 

very large for 1-NO3 and therefore a good overlap between the magnetic dx2−y2 orbital of the 

Cu(II) centre and the p orbital of the oxygen atom of the counter ion is possible. This suggests 

a super exchange pathway[26] for 1-NO3 with the Cu(II) centres coupling antiferromagnetically. 
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Table 2. Cu–X–Cu angles and distances, distortion parameter τ, coupling constants J, g-factors, temperature-independent 
paramagnetism TIP, and percentage of monomers α of selected Cu(II) complexes. 

 Cu–X–Cu 

[°]  

Cu–X [Å] Type τ J [cm−1] g TIP 

[cm3mol−1] 

α [%] 

Ref. 

1-OAc 102.65(6) 1.9549(15) 

2.3542(14) 

3 0.11 −2.581(3) 2.121(2) 8.23(10)·10−4 

/ 

This 

work 

1-NO3
 143.39(9) 2.3258(14) 

2.6745(14) 

1 0.14 −129.5(19) 2.383(9) / 

3.4(5) 

This 

work 

1-Cl 92.81(4) 2.2786(11) 

2.7766(12) 

3 0.08 −1.060(13) 2.1325(10) 3.68(5)·10−4 

/ 

This 

work 

2-Cl 92.79(3) 2.2907(9) 

2.7953(10) 

3 0.13 −0.60(3) 2.140(2) 6.19(9)·10−4 

/ 

This 

work 

3-OAc 104.07(8) 1.9436(17) 

2.3516(17) 

3 0.15 −3.56(9) 2.178(7) 11.2(3)·10−4 

/ 

This 

work 

5-NO3 104.59(6) 1.9836(14) 

2.3997(15) 

3 0.04 1.82(6) 2.113(2) 4.69(9)·10−4 

/ 

This 

work 

5-I 76a  3 0.28 −7.36(15) 2.122(8) 5.3(4)·10−4 

/ 

This 

work 

6-OAc 105.93(8) 1.9560(18) 

2.3814(17) 

3 0.10 −2.63(4) 2.139(3) 10.00(15)·10−4 

/ 

This 

work 

6-Cl 93.44(3) 2.2844(9) 

2.7709(11) 

3 0.17 4.8(11) 1.89(2) 4.4(6)·10−4 

/ 

This 

work 

[Cu2(dpa)2(NC

O)4]  

98.8 1.966(2) 

2.629(2) 

3 0.19 3.14 2.06 / [28] 

[{Cu(Hdeg)2}2]  106.1(2) 1.957 

2.263(3) 

3 / 1.0 2.09 / [29] 

[Cu2(dpp)2Cl4]  98.5 

88.7 

2.3043(12) 

2.5600(13) 

4 / 6.8(1) 

1.0(1) 

2.08(1) 

2.06(1) 

/ [30] 

{[{Cu(bpca)} 2(

H2ppba)]·1.33

DMF ·0.66DMS

O}n
 

107.6(1) 1.964(3) 

2.538(3) 

3 / 1.70(1) 2.06(1) / [8] 

Cu2(5-Br-

L) 2(CH3COO)2

b 

96.3(2) 2.003(4) 

2.665(4) 

3 / −1.84(1) 2.10 / [31] 

[CuL’N 3]2
c 88.3   0.13 −2.63(1) 2.11 / [32] 

a Only approximate value, X-ray structure can only be discussed as motif. b L: N-methyl-N′-(5-bromosalicylidene)-1,3-propanediamine. c {N-

[2-(Ethylamino)ethyl]-salicylaldimine}. 
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Fig. 3. χMT vs. T plot of 1-NO3. The black squares represent the reading points, the red line represents the fitted curve. 

 

For the other complexes, the Cu(II) centres are bridged in double axial–equatorial fashion (type 

3) and, additionally, the Cu–X–Cu angle is much closer to 90°. In these cases it is difficult to 

predict if very weak super exchange interactions are still possible (J negative) or if the magnetic 

orbitals are orthogonal (strict or accidental) to each other leading to ferromagnetic interactions 

(J positive).[13,27] Indeed, the complexes 1-OAc, 3-OAc, and 6-OAc showed weak 

antiferromagnetic interactions with coupling constants of J = −2.581(3) cm−1, J = −3.56(9) 

cm−1, and J = −2.63(4) cm−1, respectively, whereas complex 5-NO3 showed weak ferromagnetic 

interactions with J = 1.82(6) cm−1. In all complexes the Cu(II) centres are bridged via one 

oxygen atom and the Cu–O–Cu angles are 102.65(6)° (1-OAc), 104.07(8) (3-OAc), 105.93(8)° 

(6-OAc), and 104.59(6)° (5-NO3). The Cu–X–Cu angle for the halide-bridged complexes is 

much closer to 90°, and no trend of the interactions can be recognised here, either. The chloride-

bridged complexes show either weak ferro- or antiferromagnetic interactions. For such systems 

an additional parameter can be considered to obtain a magnetostructural correlation.[17,18] The 

distortion parameter τ (also called Addison parameter)[16] helps to distinguish between a square-

pyramidal coordination geometry (τ close to 0) and a trigonal-bipyramidal coordination 

geometry (τ close to 1). The calculated values for the characterised complexes are given in 

Table 2. It can be seen that in all cases the coordination geometry is closer to square pyramidal 

with τ values between 0.04 and 0.28. Interestingly, for complex 5-I with the maximum value of 

τ (0.28) the minimum value of J (−7.36(15) cm−1) is obtained for the presented complexes of 

type 3. This is in line with results previously reported in literature on similar systems[17] and 

can be explained with an improved overlap of the orbitals. 
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The complex 5-Cl crystallised as polymer and was investigated as well. The interactions 

between the Cu(II) centres, which are bridged via the anion, are ferromagnetic, however, it was 

not possible to determine a coupling constant. The bridging mode can be assigned to type 4 

(single equatorial–axial). Complex 4-NO3 also crystallised as polymer, with the Cu(II) centres 

bridged via the –CN group of the ligand. For this complex an almost ideal Curie behaviour (Fig. 

S10) was observed (C = 0.46 cm3 mol−1 K). Although the cyanide side chain coordinates in an 

equatorial position at the neighbouring Cu(II) centre, the exchange pathway is too long.  

In conclusion, it is possible to determine parameters to predict the structure of the obtained 

copper(II) complexes. Dimers are formed by the majority of the complexes whereas monomers 

were only observed for complexes of the rather small and rigid ligand L2. Ligands with side 

chains that can serve as ligand for neighbouring metal centres, as in the case of L4, increase the 

probability for the formation of coordination polymers. Several factors need to be considered 

for a magneto-structural correlation: the type of interaction, the Cu–X–Cu angle and the 

distortion parameter τ were used in this manuscript. However, in some cases opposed effects 

with regard of sign and magnitude of coupling constant are possible and an in-depth explanation 

is not always possible.  

 

 Experimental section 

 

Synthesis 

MeOH was purified by distillation over Mg under argon. Ethoxymethylenethylacetoacetate, 

methoxymethylenacetylacetone, methoxymethylenmethylacetoacetate, and ethoxyphenylen-

ethylacetoacetate were synthesised as already published.[33] All other chemicals were 

commercially available and used without further purification. 1H NMR spectra were measured 

at room temperature and 300 MHz with a Varian INOVA 300. Elemental analysis were 

measured with a Vario EL III from Elementar Analysen-Systeme with acetanilide as standard. 

The samples were placed in a small tin boat. Mass spectra were recorded with a Finnigan MAT 

8500 with a data system MASPEC II. IR spectra were recorded with a Perkin Elmer Spectrum 

100 FT-IR spectrometer.  
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HL1 . 2-Picolylamine (2 mL, 0.019 mol) was diluted in EtOH (5 mL) and 

ethoxymethylenethylacetoacetate (4.34 g, 0.023 mol) was added. The orange solution was 

heated to reflux for 1 h. After cooling to RT the solvent was removed under reduced pressure 

yielding a dark red oil. After one night at −28 °C the oil solidified. It was suspended in ice-cold 

diethyl ether (5 mL) and the resulting light orange solid was filtered and washed with ice-cold 

diethyl ether (10 mL). Yield: 4.22 g (248.28 g mol−1, 88%). Elemental analysis (C13H16N2O3, 

%) found C 62.98, H 6.50, N 11.33; calcd. C 62.89, H 6.50, N 11.28. 1H NMR (298 K, 300 

MHz, CDCl3): δ = 11.40 (1H, bs, –NH), 8.61 (1H, d3, J = 3.8 Hz, 6-PyH), 8.14 (1H, d3, J = 

13.5 Hz, =CH), 7.73 (1H, dt3, J = 7.7 Hz, J = 1.5 Hz, 4-PyH), 7.28 (1H, m, 5-PyH), 7.26 (1H, 

m, 3-PyH), 4.68 (2H, d3, J = 6.1 Hz, 2-Py-CH2), 4.21 (2H, q3, J = 7.0 Hz, O=C–CH2), 2.50 (3H, 

s, O=C–CH3), 1.31 (3H, t3, J = 7.1 Hz, –CH2–CH3) ppm. MS (EI, pos.) m/z (%): 248 

(C13H16N2O3, 11), 93 (C6H6N, 100). IR: ν = 3203 (w, NH), 1693 (s, C=O), 1628 (s, C=O) cm−1.  

HL2. 2-Picolylamine (2 mL, 0.019 mol) was diluted in MeOH (5 mL) and 

methoxymethylenacetylacetone (3.27 g, 0.023 mol) was added. The yellow solution was heated 

to reflux for 1 h. After cooling to RT the solvent was removed under reduced pressure yielding 

an orange oil. After 12 d at −28 °C the now yellow solid was suspended in ice-cold diethyl ether 

(5 mL), filtered and washed with ice-cold diethyl ether (10 mL). Yield: 3.17 g (218.25 g mol−1, 

75%). Elemental analysis (C12H14N2O2, %) found C 65.99, H 6.48, N 12.88; calcd. C 66.04, H 

6.47, N 12.88. 1H NMR (298 K, 300 MHz, CDCl3): δ = 11.42 (1H, s, –NH), 8.62 (1H, d3, J = 

4.2 Hz, 6-PyH), 7.95 (1H, d3, J = 13.0 Hz, =CH), 7.75 (1H, dt3, J = 7.64, J = 1.6 Hz, 4-PyH), 

7.29 (2H, m, 5- & 3-PyH), 4.69 (2H, d3, J = 6.1 Hz, 2-Py-CH2), 2.50 (3H, s, O=CH3), 2.30 (3H, 

s, O=CH3) ppm. MS (EI, pos.) m/z (%): 218 (C12H14N2O2, 25), 93 (C6H6N, 100). IR: ν = 3169 

(w, NH), 1608 (s, C=O) cm−1.  

HL3. 2-Picolylamine (2 mL, 0.019 mol) was diluted in EtOH (10 mL) and 

diethylethoxymethylenemalonate (6.49 g, 0.03 mol) was added. The orange solution was heated 

to reflux for 1 h. After cooling to RT the solvent was removed under reduced pressure yielding 

an orange oil. This oil was stored at −28 °C for one night, where it solidified. The yellow solid 

was suspended in ice-cold diethyl ether (10 mL), filtered, and washed with ice-cold diethylether 

(10 mL). Yield: 5.3 g (278.31 g mol−1, 98%). Elemental analysis (C14H18N2O4, %) found C 

60.24, H 6.51, N 10.04; calcd. C 60.42, H 6.52, N 10.07. 1H NMR (298 K, 300 MHz, CDCl3): 

δ = 9.60 (1H, s, –NH), 8.61 (1H, d3, J = 4.5 Hz, 6-PyH), 8.12 (1H, d3, J = 14.1 Hz, =CH), 7.75 

(1H, dt3, J = 7.54, J = 1.0 Hz, 4-PyH), 7.29 (2H, m, 5- & 3-PyH), 4.69 (2H, d3, J = 6.0 Hz, 2-
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Py-CH2), 4.21 (4H, m, O=C–O–CH2), 1.31 (6H, m, O=C–O–CH2–CH3) ppm. MS (EI, pos.) 

m/z (%): 278 (C14H18N2O4, 22), 232 (C12H13N2O3, 97), 93 (C6H6N, 100). IR: ν = 3290 (w, NH), 

1677 (s, C=O), 1623 (s, C=O) cm−1.  

HL4. 2-Picolylamine (3 mL, 0.0291 mol) was diluted in EtOH (20 mL) and 

ethyl(ethoxymethylene)cyanoacetate (5.88 g, 0.0349 mol) was added. The yellow solution was 

heated to reflux for one hour. After cooling to RT the solution was stored at −28 °C for 14 d. A 

white, crystalline solid occurred, which was filtered and washed with EtOH. Yield: 4.16 g 

(231.25 g mol−1, 62%). Elemental analysis (C12H13N3O2, %) found C 62.32, H 5.72, N 18.20; 

calcd. C 62.33, H 5.67, N 18.17. 1H NMR (298 K, 300 MHz, CDCl3): δ = 9.48 (1H, s, –NH), 

8.63 (1H, m, 6-PyH), 8.01 (1H, d3, J = 14.1 Hz, =CH), 7.77 (1H, m, 4-PyH), 7.33 (2H, m, 5- & 

3-PyH), 4.69 (2H, d3, J = 5.3 Hz, 2-Py-CH2), 4.22 (H, m, O=C–O–CH2), 1.30 (3H, m, O=C–

O–CH2–CH3) ppm. MS (EI, pos.) m/z (%): 231 (C12H13N3O2, 50), 93 (C6H6N, 100). IR: ν = 

3266 (w, NH), 2204 (s, C≡N), 1695 (s, C=O) cm−1.  

HL5. 2-Picolylamine (1 mL, 0.0097 mol) was diluted in EtOH (5 mL) and 

ethoxyphenylenethylacetoacetate (2.89 g, 0.012 mol) was added. The yellow solution was 

heated to reflux for 1 h. After cooling to RT the solvent was removed under reduced pressure 

yielding a dark yellow oil. This oil was stored at −28 °C for 3 d. The now yellow solid was 

suspended in ice-cold diethyl ether (5 mL), filtered, and washed with ice-cold diethyl ether (10 

mL). Yield: 2.92 g (310.35 g mol−1, 97%). Elemental analysis (C18H18N2O3, %) found C 69.49, 

H 5.87, N 8.84; calcd. C 69.66, H 5.85, N 9.03. 1H NMR (298 K, 300 MHz, CDCl3): δ = 10.93 

& 9.60 (0.6 & 0.3H, s, –NH), 8.61 (1H, d3, J = 4.5 Hz, 6-PyH), 8.19 & 7.96 (0.6 & 0.4H, d3, J 

= 13.8 Hz, =CH), 7.73 (1H, dt3, J = 7.64, J = 0.9 Hz, 4-PyH), 7.57 (1H, d3, J = 7.0 Hz, 5-PyH), 

7.46–7.24 (6H, m, 3-PyH & 2-, 3-, 4-, 5-, & 6-PhH), 4.75 (2H, d3, J = 6.2 Hz, 2-Py-CH2), 4.00 

(2H, q3, J = 6.9 Hz, O=C–O–CH2), 0.91 (3H, t3, J = 7.0 Hz, O=C–O–CH2–CH3) ppm. MS (EI, 

pos.) m/z (%): 310 (C18H18N2O3, 30), 93 (C6H6N, 100). IR: ν = 3223 (w, NH), 1676 (s, C=O), 

1618 (s, C=O) cm−1.  

HL6. 2-Picolylamine (2.3 mL, 0.022 mol) was diluted in MeOH (5 mL) and 

methoxymethylenmethylacetoacetate (4.18 g, 0.026 mol) was added. The yellow solution was 

heated to reflux for 1 h. After cooling to RT the solvent was removed under reduced pressure 

yielding an orange oil. After 1 week at −28 °C the now orange solid was suspended in ice-cold 

diethyl ether (5 mL), filtered, and washed with ice-cold diethyl ether (10 mL). Yield: 2.43 g 
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(234.25 g mol−1, 47%). Elemental analysis (C12H14N2O3, %) found C 61.53, H 6.05, N 12.05; 

calcd. C 61.53, H 6.02, N 11.96. 1H NMR (298 K, 300 Hz, CDCl3): δ = 11.42 (1H, s, –NH), 

8.61 (1H, d3, J = 4.2 Hz, 6-PyH), 8.14 (1H, d3, J = 13.4 Hz, =CH), 7.75 (1H, dt3, J = 7.74, J = 

1.2 Hz, 4-PyH), 7.28 (2H, m, 5- & 3-PyH), 4.69 (2H, d3, J = 6.2 Hz, 2-Py-CH2), 3.72 (3H, s, 

O=C–O–CH3), 2.49 (3H, s, O=C–CH3) ppm. MS (EI, pos.) m/z (%): 234 (C12H14N2O3, 20), 93 

(C6H6N, 100). IR: ν = 3225 (w, NH), 1695 (s, C=O), 1638 (s, C=O) cm−1. 

General procedure for the synthesis of the Cu(II) complexes 

1 g of the corresponding ligand, CuSO4 (1.2 eq.), and sodium methoxide (1.2 eq.) were 

dissolved in MeOH (100 mL) under argon atmosphere and heated to reflux for 1 h, resulting in 

a dark blue solution. After cooling to RT the excess of CuSO4 and sodium methoxide was 

removed by filtration. All further reactions were carried out in air. 20 mL of the dark blue 

solution were taken and the Cu(II) complexes were precipitated with an aqueous solution of the 

corresponding sodium or potassium salt of the anion (4 eq. in 20 mL). If no precipitate occurred, 

the solvent was removed under reduced pressure until a solid could be isolated. This solid was 

washed with water and MeOH and dried in air. 

[(µ-1,1-OAc)2(CuL1)2] (1-OAc). Yield: 0.15 g blue powder (739.73 g mol−1, 25%). Elemental 

analysis (C30H36Cu2N4O10·H2O, %) found C 47.39, H 5.42, N 7.35; calcd. C 47.55, H 5.09, N 

7.39. MS (EI, pos.) m/z (%): 369 (C15H18CuN2O5, 1), 309 (C13H15CuN2O3, 10), 248 

(C13H15N2O3, 14), 93 (C6H6N, 46). IR: ν = 1684 (s, C=O), 1601 (s, C=O) cm−1.  

[(µ-1,1-NO3)(µ-1,3-NO3)(CuL1)2] (1-NO3). Yield: 0.22 g dark blue crystalline powder 

(745.65 g mol−1, 37%). Elemental analysis (C26H30Cu2N6O12, %) found C 41.94, H 3.93, N 

10.93; calcd. C 41.88, H 4.06, N 11.27. MS (EI, pos.) m/z (%): 372 (C13H15CuN3O6, 4), 309 

(C13H15CuN2O3, 32), 248 (C13H15N2O3, 14), 93 (C6H6N, 100). IR: ν = 1690 (s, C=O), 1608 (s, 

C=O) cm−1. 

[(µ-Cl)2(CuL1)2] (1-Cl). Yield: 0.20 g green, crystalline powder (692.54 g mol−1, 36%). 

Elemental analysis (C26H30Cl2Cu2N4O6, %) found C 45.06, H 4.63, N 8.09; calcd. C 45.09, H 

4.37, N 8.09. MS (EI, pos.) m/z (%): 345 (C15H18ClCuN2O3, 6), 309 (C13H15CuN2O3, 33), 248 

(C13H15N2O3, 14), 93 (C6H6N, 100). IR: ν = 1684 (s, C=O), 1606 (s, C=O) cm−1. 

[(µ-1,3-NCS)(CuL1)]n (1-NCS). Yield: 0.27 g dark green powder (368.90 g mol−1, 91%). 

Elemental analysis (C14H15CuN3O3S, %) found C 41.94, H 3.93, N 10.93; calcd. C 41.88, H 
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4.06, N 11.27. MS (EI, pos.) m/z (%): 368 (C14H15CuN3O3S, 3), 309 (C13H15CuN2O3, 6), 248 

(C13H15N2O3, 8), 93 (C6H6N, 100). IR: ν = 2090 (s, NCS), 1668 (s, C=O), 1614 (s, C=O) cm−1.  

[CuL2(OAc)]·2H2O (2-OAc). Yield: 0.09 g blue powder (375.87 g mol−1, 26%). Elemental 

analysis (C14H16CuN2O4·2H2O, %) found C 45.24, H 5.31, N 7.42; calcd. C 44.74, H 5.36, N 

7.45. MS (EI, pos.) m/z (%): 218 (C12H13N2O2, 93), 93 (C6H6N, 100). IR: ν = 3366 (wb, OH), 

1643 (s, C=O), 1615 (s, C=O) cm−1. 

[CuL2(NO 3)(H2O)]·H2O (2-NO3). Yield: 0.22 g dark green, crystalline powder (378.83 g 

mol−1, 64%). Elemental analysis (C12H15CuN3O6·H2O, %) found C 37.68, H 4.71, N 11.10; 

calcd. C 38.05, H 4.52, N 11.09. MS (EI, pos.) m/z (%): 279 (C12H13CuN2O2, 19), 216 

(C12H13N2O2, 45), 93 (C6H6N, 100). IR: ν = 3445 (wb, OH), 3084 (wb, OH), 1615 (s, C=O), 

1578 (s, C=O) cm−1. 

[(µ-Cl)2(CuL2)2] (2-Cl). Yield: 0.17 g dark green powder (632.49 g mol−1, 30%). Elemental 

analysis (C24H26Cl2Cu2N4O4, %) found C 45.68, H 4.19, N 8.84; calcd. C 45.58, H 4.14, N 8.86. 

MS (EI, pos.) m/z (%): 279 (C12H13ClCuN2O2, 10), 218 (C12H13N2O2, 46), 93 (C6H6N, 100). 

IR: ν = 1647 (s, C=O), 1613 (s, C=O) cm−1. 

[CuL2(NCS)]·0.5H2O (2-NCS). Yield: 0.22 g green, crystalline powder (346.87 g mol−1, 

69%). Elemental analysis (C13H13CuN3O2S·0.5H2O, %) found C 44.91, H 3.71, N 12.19; calcd. 

C 44.88, H 4.06, N 12.08. MS (EI, pos.) m/z (%): 338 (C13H13CuN3O2S, 1), 216 (C13H13N3O2, 

50), 93 (C6H6N, 100). IR: ν = 2076 (s, NCS), 1650 (s, C=O), 1595 (s, C=O) cm−1. 

[(µ-1,1-OAc)2(CuL3)2]·2H2O (3-OAc). Yield: 0.09 g dark blue, crystalline powder (835.81 g 

mol−1, 15%). Elemental analysis (C32H40Cu2N4O12·2H2O, %) found C 45.90, H 6.68, N 5.47; 

calcd. C 45.99, H 6.70, N 5.31. MS (EI, pos.) m/z (%): 339 (C14H17CuN2O4, 17), (C14H17N2O4, 

26), 232 (C12H12N2O3, 53). IR: ν = 1690 (s, C=O), 1608 (s, C=O) cm−1.  

[CuL3(NO 3)] (3-NO3). Yield: 0.08 g dark blue, crystalline powder (402.85 g mol−1, 28%). 

Elemental analysis (C14H17CuN3O7, %) found C 41.80, H 3.91, N 10.45; calcd. C 41.74, H 4.25, 

N 10.43. MS (EI, pos.) m/z (%): 402 (C14H17CuN3O7, 8), 339 (C14H17CuN2O4, 23), 232 

(C12H12N2O3, 72), 93 (C6H6N, 100). IR: ν = 1654 (s, C=O), 1618 (s, C=O) cm−1. 

[(µ-Cl)2(CuL3)2] (3-Cl). Yield: 0.17 g green needles (752.60 g mol−1, 32%), Elemental analysis 

(C28H34Cl2Cu2N4O8, %) found C 44.54, H 4.60, N 7.47; calcd. C 44.69, H 4.55, N 7.44. MS 
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(EI, pos.) m/z (%): 375 (C14H17ClCuN2O4, 12), 339 (C14H17CuN2O4, 15), 232 (C12H12N2O3, 56), 

93 (C6H6N, 100). IR: ν = 1685 (s, C=O), 1623 (s, C=O) cm−1. 

[CuL3NCS]·1.5H2O (3-NCS). Yield: 0.18 g green, crystalline powder (425.95 g mol−1, 59%). 

Elemental analysis (C15H17CuN3O4S·1.5H2O, %) found C 42.46, H 4.46, N 10.28; calcd. C 

42.30, H 4.73, N 9.87. MS (EI, pos.) m/z (%): 398 (C15H17CuN3O4S, 1), 341 (C14H17CuN2O4, 

2), 278 (C15H17N2O4, 20), 93 (C6H6N, 100). IR: ν = 2092 (s, NCS), 1674 (s, C=O), 1604 (s, 

C=O) cm−1. 

[(CuL4)(OAc)] n (4-OAc). Yield: 0.1 g dark green, crystalline powder (352.84 g mol−1, 33%) 

Elemental analysis (C14H15CuN3O5, %) found C 47.64, H 4.50, N 12.01; calcd. C 47.66, H 4.29, 

N 11.91. MS (EI, pos.) m/z (%): 353 (C14H15CuN3O4, 1), 293 (C12H12CuN3O2, 5), 231 

(C12H12N3O2, 38), 93 (C6H6N, 100). IR: ν = 2202 (s, C≡N), 1620 (s, C=O) cm−1. 

[(CuL4)(NO 3)]n·1.5H2O (4-NO3). Yield: 0.26 g green, crystalline powder (382.82 g mol−1, 

79%). Elemental analysis (C12H12CuN4O5·1.5H2O, %) found C 38.01, H 4.26, N 14.29; calcd. 

C 37.65, H 3.95, N 14.64. MS (EI, pos.) m/z (%): 355 (C12H12CuN4O5, 1), 292 (C12H12CuN3O2, 

3), 231 (C12H12N3O2, 35), 93 (C6H6N, 100). IR: ν = 2223 (s, C≡N), 1636 (s, C=O) cm−1. 

[CuL4Cl] (4-Cl).  Yield: 0.19 g green needles (329.54 g mol−1, 67%). Elemental analysis 

(C12H12ClCuN3O2, %) found C 43.65, H 3.59, N 12.99; calcd. C 43.78, H 3.67, N 12.76. MS 

(EI, pos.) m/z (%): 328 (C12H12ClCuN3O2, 11), 292 (C12H12CuN3O2, 8), 231 (C12H12N3O2, 35), 

93 (C6H6N, 100). IR: ν = 2201 (s, C≡N), 1627 (s, C=O) cm−1. 

[CuL4NCS]·0.5H2O (4-NCS). Yield: 0.24 g green crystalline powder (360.88 g mol−1, 78%). 

Elemental analysis (C13H12CuN4O2S·0.5H2O) found C 43.09, H 3.49, N 15.49; calcd. C 43.27, 

H 3.63, N 15.53. MS (EI, pos.) m/z (%): 231 (C12H12N3O2, 35), 93 (C6H6N, 100). IR: ν = 2207 

(s, C≡N), 2091 (NCS), 1636 (s, C=O) cm−1. 

[CuL5(OAc)] (5-OAc). Yield: 0.24 g dark blue powder (449.95 g mol−1, 53%). Elemental 

analysis (C20H20CuN2O5 ·H2O, %) found C 53.42, H 4.56, N 6.19; calcd. C 53.39, H 4.93, N 

6.23. MS (ES, pos.) m/z (%): 310 (C18H17N2O3, 11), 93 (C6H6N, 75). IR: ν = 1691 (s, C=O), 

1602 (s, C=O) cm−1.  

[(µ-1,1-NO3)2(CuL5)2] (5-NO3). 0.18 g dark blue, crystalline powder (869.79 g mol−1, 32%). 

Elemental analysis (C36H34Cu2N6O12, %) found C 49.77, H 4.31, N 9.37; calcd. C 49.71, H 
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3.94, N 9.66. MS (EI, pos.) m/z (%): 434 (C18H17CuN3O6, 1), 371 (C18H17CuN2O3, 5), 308 

(C18H17N2O3, 18). IR: ν = 1673 (s, C=O), 1605 (s, C=O) cm−1. 

[(µ-Cl)(CuL5)] n (5-Cl). Yield: 0.18 g dark green, crystalline powder (408.34 g mol−1, 69%). 

Elemental analysis (C18H17ClCuN2O3, %) found C 52.84, H 4.19, N 6.86; calcd. C 52.94, H 

4.20, N 6.86. MS (EI, pos.) m/z (%): 310 (C18H17N2O3, 29), 205 (C11H12N2O2, 42), 93 (C6H6N, 

100). IR: ν = 1693 (s, C=O), 1613 (s, C=O) cm−1. 

[(µ-I)2(CuL5)2] (5-I). Yield: 0.2 g dark green needles (999.60 g mol−1, 32%). Elemental 

analysis (C36H34Cu2I2N4O6, %) found C 43.38, H 3.70, N 5.62; calcd. C 43.26, H 3.43, N 5.61. 

MS (EI, pos.) m/z (%): 308 (C18H17N2O3, 20), 93 (C6H6N, 100). IR: ν = 1673 (s, C=O), 1613 

(s, C=O) cm−1.  

[CuL5(NCS)]·0.5H2O (5-NCS). Yield: 0.21 g blue-green powder (439.98 g mol−1, 75%). 

Elemental analysis (C19H17CuN3O3S·0.5H2O, %) found C 52.05, H 3.87, N 9.70; calcd. C 

51.87, H 4.12, N 9.55. MS (EI, pos.) m/z (%): 308 (C18H17N2O3, 40), 93 (C6H6N, 100). IR: ν = 

2094 (s, NCS), 1671 (s, C=O), 1610 (s, C=O) cm−1. 

[(µ-1,1-OAc)2(CuL6)2]·4H2O (6-OAc). Yield: 0.09 g dark blue, crystalline powder (783.73 g 

mol−1, 14%). Elemental analysis (C28H32Cu2N4O10·4H2O, %) found C 43.15, H 5.23, N 7.34; 

calcd. C 42.91, H 5.14, N 7.15. MS (ES, pos.) m/z (%): 234 (C12H13N2O3, 27), 93 (C6H6N, 93). 

IR: ν = 3533 (w, OH), 3397 (wb, OH), 1682 (s, C=O), 1616 (s, C=O) cm−1. 

[CuL6(NO 3)]·0.5MeOH (6-NO3). Yield: 0.21 g dark blue, crystalline powder (374.60 g mol−1, 

66%). Elemental analysis (C12H13CuN3O6, %) found C 40.45, H 4.04, N 11.39; calcd. C 40.06, 

H 4.03, N 11.21. MS (EI, pos.) m/z (%): 358 (C12H13CuN3O6, 5), 295 (C12H13CuN2O3, 32), 234 

(C12H13N2O3, 22), 93 (C6H6N, 100). IR: ν = 1699 (s, C=O), 1616 (s, C=O) cm−1. 

[(µ-Cl)2(CuL6)2] (6-Cl). Yield: 0.19 g green, crystalline powder (664.49 g mol−1, 34%). 

Elemental analysis (C24H26Cl2Cu2N4O6, %) found C 43.40, H 3.99, N 8.42; calcd. C 43.38, H 

3.94, N 8.43. MS (EI, pos.) m/z (%): 331 (C12H13ClCuN2O3, 9), 295 (C12H13CuN2O3, 37), 234 

(C12H13N2O3, 54), 93 (C6H6N, 100). IR: ν = 1685 (s, C=O), 1613 (s, C=O) cm−1. 

[CuL6(NCS)]·0.3H2O (6-NCS). Yield: 0.14 g dark green powder (360.87 g mol−1, 45%). 

Elemental analysis (C13H13CuN3O3S·0.3H2O, %) found C 42.37, H 3.74, N 11.78; calcd. C 
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42.56, H 3.94, N 11.45. MS (EI, pos.) m/z (%): 234 (C12H13N2O3, 28), 93 (C6H6N, 100). IR: ν 

= 2102 (s, NCS), 1684 (s, C=O), 1619 (s, C=O) cm−1. 

X-ray diffraction on single crystals 

The X-ray analysis of all crystals was performed with a Stoe StadiVari diffractometer using 

graphite-monochromated MoKα radiation. The data were corrected for Lorentz and 

polarization effects. The structures were solved by direct methods (SIR-97)[34] and refined by 

fullmatrix least-square techniques against Fo2–Fc2 (SHELXL-97).[35] All hydrogen atoms were 

calculated in idealised positions with fixed displacement parameters. ORTEP-III[36] to illustrate 

molecule packing. CCDC 1566611–1566627 and 1566633–1566641 contain the supplementary 

crystallographic data for this paper. 

Powder X-ray diffraction 

Powder diffractograms were measured with a STOE StadiP Powder Diffractometer (STOE, 

Darmstadt) using Cu[Kα1] radiation with a Ge Monochromator, and a Mythen 1K Stripdetector 

in transmission geometry. 

Magnetic measurements 

Magnetic measurements on the compounds were carried out using a SQUID MPMS-XL5 from 

Quantum Design with an applied field of 5000 G, and in the temperature range from 300 to 50 

K (or 2 K). The sample was prepared in a gelatine capsule held in a plastic straw. The raw data 

were corrected for the diamagnetic part of the sample holder and the diamagnetism of the 

organic ligand using tabulated Pascal's constants.[11] 

 

 Conclusions 

 

We presented six new tridentate, NNO Schiff base-like ligands and their corresponding Cu(II) 

complexes with varying anions (OAc−, NO3
−, Cl−, I−, NCS−, N3

−, SO4
2−). It was possible to 

obtain single crystals of four ligands and 22 Cu(II) complexes. The majority of the Cu(II) 

complexes where a structure was obtained crystallised as µ-bridged dimers with the tridentate 
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ligands oriented trans to each other. Selected complexes were investigated considering their 

magnetic properties. Most of the dimers have rather small coupling constants which are either 

ferro- or antiferromagnetic. No correlation between the X-ray structures of the complexes and 

the nature of the coupling constants could be found. Only compound 1-NO3 has a rather high 

coupling constant of J = −129.5(19) cm−1 compared to the other complexes. This difference can 

be explained with the bridging mode (type 1) and Cu–X–Cu angle, which is higher for 1-NO3 

(143.3(9)°) than it is for the other complexes (<106°). For complex 5-I with the second smallest 

coupling constant (J = −7.36(15) cm−1) the largest distortion parameter (τ = 0.28) was 

determined. Both factors support the overlap between the magnetic orbital of the Cu(II) centres 

(dx2−y2) and the p-orbital of the anion, which leads to a greater coupling constant.  
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Table S1. Crystallographic data for the ligands and complexes presented in this paper.  

 HL1 HL4 HL5 HL6 1-OAc 1-NO 3 1-Cl 1-I 
CCDC 1566611 1566612 1566613 1566614 1566615 1566619 1566623 1566633 
formula HL1 HL4 HL5 HL6 [(µ–1,1–

OAc)2(CuL1)2] 
[(µ–1,1–NO3)(µ–
1,3–NO3)(CuL1)2] 

[(µ–Cl)2(CuL1)2] [(µ–I)2(CuL1)2] 

sum 
formula 

C13H16N2O3 C12H13N3O2 C18H18N3O3 C12H14N2O3 C30H36Cu2N4O10 C26H30Cu2N6O12 C26H30Cl2Cu2N4O6 C26H30I2Cu2N4O6 

M/ g mol-1 248.28 231.25 310.34 234.25 739.70 745.64 692.54 875.44 
crystal 
system 

monoclinic triclinic triclinic monoclinic monoclinic monoclinic triclinic monoclinic 

space 
group 

P21/a P−1 P−1 C2/c P21/c C2/c P−1 P21/C 

crystal 
description 

colourless block colourless block colourless block colourless block blue block blue block blue block green block 

a/ Å 7.339(5) 6.0280(4) 5.5863(5) 25.029(5) 7.5927(5) 12.7796(5) 7.3859(5) 7.8179(3) 
b/ Å 14.815(5) 9.2207(6) 11.6567(11) 4.211(5) 23.9283(12) 13.8977(8) 9.1298(7) 14.6683(6) 
c/ Å 11.777(5) 11.3737(7) 13.2094(12) 28.823(5) 8.5927(5) 16.9969(6) 10.3252(7) 13.0905(4) 
α/ ° 90 74.653(5) 71.808(7) 90 90 90 94.110(6) 90 
β/ ° 97.495(5) 75.243(5) 79.534(7) 129.016(5) 93.078(5) 105.798(3) 96.016(6) 92.391(3) 
γ/ ° 90 87.728(5) 77.545(7) 90 90 90 105.895(6) 90 
V/ Å3 1269.5(11) 589.26(7) 791.86(13) 2360(3) 1558.87(16) 2904.7(2) 662.26(8) 1499.85(10) 
Z 4 2 2 8 2 4 1 4 
ρcalcd/gcm-3 1.299 1.303 1.302 1.319 1.576 1.705 1.736 1.938 
µ/ mm-1 0.093 0.092 0.090 0.096 1.428 1.540 1.858 3.522 
crystal size/ 
mm 

0.149×0.128×0.230 0.266×0.182×0.137 0.162×0.137×0.362 0.186×0.210×0.203 0.135×0.115×0.097 0.118×0.093×0.088 0.120×0.105×0.093 0.101×0.077×0.063 

F(000) 528 244 328 992 764 1528 354 852 
T/ K 133(2) 133(2) 133(2) 133(2) 133(2) 133(2) 133(2) 133(2) 
λ/ Å Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 
Θ range/ ° 1.7-28.0 1.92–28.42 1.9-28.1 1.7-28.0 1.70–27.98 2.22–26.62 2.00–28.40 2.08–27.62 
Reflns. 
collected 

7264 6744 6984 7104 3530 9232 6277 3516 

Indep. 
reflns.(Rint) 

2852 (0.112) 2762 (0.031) 3448 (0.037) 2682 (0.083) 2653 (0.0403) 3429 (0.0237) 3054 (0.0820) 2940 (0.0314) 

Parameters 163 154 208 154 208 210 181 181 
R1 (all 
data) 

0.0757 0.0421 (0.0560) 0.0512 0.0620 0.0307 (0.0483) 0.0251 (0.0335) 0.0609 (0.0701) 0.0205 (0.0273) 

wR2 0.2103 0.1172 0.1397 0.2176 0.0618 0.0766 0.1742 0.0458 
GooF 0.92 1.029 0.96 1.04 0.909 1.076 1.069 0.936 
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Table S1 (continued). Crystallographic data for the ligands and complexes presented in this paper. 

 1-NCS 1-N3 2-NO3 2-Cl 2-NCS 2-N3 2-SO4 3-OAc 
CCDC 1566635 1566638 1566620 1566624 1566636 1566639 1566640 1566616 
formula [(µ–1,3–

NCS)(CuL1)]n 
[(µ–1,1–
N3)2(CuL1)2] 

[CuL2(NO3)(H2O)]
·H2O 

[(µ–Cl)2(CuL2)2] [CuL2(SCN)(MeOH
)] 

[(µ–1,1–
N3)2(CuL2)2] 

[(CuL2)2SO4]·MeO
H 

[(µ–1,1–
OAc)2(CuL3)2] 

sum 
formula 

C14H15CuN3O3S C26H30Cu2N10O6 C12H15CuN3O6, 
H2O 

C24H26Cl2Cu2N4O4 C14H17CuN3O3S C24H26Cu2N10O4, 
2(H2O) 

C25H30Cu2N4O9S, 
CH4O 

C32H40Cu2N4O10, 
2(H2O) 

M/ g mol-1 368.89 705.68 378.82 632.46 370.90 681.66 721.71 835.78 
crystal 
system 

monoclinic monoclinic monoclinic triclinic monoclinic triclinic monoclinic triclinic 

space group P21/n C2/c P21/c P−1 P21/n P−1 P21/c P−1 
crystal 
description 

blue block blue needle blue hexagon blue block blue block blue block blue green block blue block 

a/ Å 5.9027(5) 20.5772(11) 8.7846(4) 7.6352(5) 9.8474(5) 7.3993(4) 12.7600(18) 8.8660(6) 
b/ Å 16.4411(12) 19.5249(15) 18.8515(6) 9.0924(6) 15.5449(6) 9.3862(5) 16.897(3) 8.8511(6) 
c/ Å 15.7542(13) 7.1596(4) 9.0280(4) 9.5031(6) 10.2348(6) 10.6959(5) 13.781(2) 12.7620(8) 
α/ ° 90 90 90 91.652(5) 90 105.369(4) 90 94.241(5) 
β/ ° 98.344(6) 94.083(4) 99.363(3) 98.150(5) 92.590(4) 99.166(4) 102.639(11) 104.942(5) 
γ/ ° 90 90 90 107.858(5) 90 97.860(4) 90 108.277(5) 
V/ Å3 1512.7(2) 2869.2(3) 1475.14(11) 619.77(7) 1565.11(14) 694.52(6) 2899.3(7) 905.63(11) 
Z 4 4 4 1 4 1 4 1 
ρcalcd/ g cm-3 1.620 1.634 1.706 1.695 1.574 1.630 1.653 1.532 
µ/ mm-1 1.597 1.543 1.523 1.971 1.544 1.590 1.603 1.247 
crystal size/ 
mm 

0.112×0.051×0.
045 

0.145×0.071×0.06
8 

0.145×0.103×0.096 0.124×0.074×0.043 0.155×0.102×0.067 0.098×0.091×0.05
9 

0.170×0.115×0.114 0.169×0.107×0.08
0 

F(000) 756 1448 780 322 764 350 1488 434 
T/ K 133(2) 133(2) 133(2) 133(2) 133(2) 133(2) 133(2) 133(2) 
λ/ Å Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 
Θ range/ ° 1.82–28.49 1.99–28.36 2.16–27.65 2.17–28.08 2.39–28.46 2.02–26.62 1.76–26.00 1.68–26.61 
Reflns. 
collected 

3520 3421 3572 2769 3689 3289 6861 4267 

Indep. 
reflns.(Rint) 

2615 (0.0386) 2681 (0.0335) 3105 (0.0452) 2197 (0.0792) 3020 (0.1146) 2967 (0.0168) 4686 (0.0615) 3604 (0.0366) 

Parameters 199 199 224 163 200 190 390 243 
R1 (all data) 0.0313 (0.0517) 0.0277 (0.0413) 0.0250 (0.0311) 0.0454 (0.0563) 0.0746 (0.0659) 0.0256 (0.0294) 0.0468 (0.0742) 0.0309 (0.0397) 
wR2 0.0632 0.0606 0.0639 0.1123 0.1957 0.0672 0.1030 0.0867 
GooF 0.894 0.934 1.030 0.962 1.067 1.084 0.909 1.140 
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Table S1 (continued). Crystallographic data for the ligands and complexes presented in this paper. 

 3-Cl 3-SO4 4-OAc 4-NO3 5-NO3 5-Cl 5-I 
CCDC 1566625 1566641 1566617 1566621 1566622 1566626 1566634 
formula [CuL3Cl]2 [(CuL3)2SO4]·MeOH·H2O [CuL4(OAc)]n {[CuL4(H2O)]·NO3·H2O}n [(µ–1,1–

NO3)2(CuL5)2] 
[(µ–Cl)(CuL5)]n [(µ–I)2(CuL5)2] 

sum formula C28H34Cl2Cu2N4O8 C28H34Cu2N4O10S, CH4O, 
H2O 

C14H15CuN3O4, 
7(H2O) 

C12H14CuN3O3, NO3, H2O C36H34Cu2N6O12 C18H17ClCuN2O3 C36H34Cu2I2N4O6 

M/ g mol-1 752.56 827.81 478.94 391.83 869.76 408.32 999.55 
crystal system monoclinic triclinic monoclinic monoclinic monoclinic monoclinic monoclinic 
space group P21/n P−1 P21/c P21/c P21/n Cc P21/n 
crystal 
description 

green block purple plate blue plate blue block blue block green block green plate 

a/ Å 10.9871(5) 6.7842(6) 6.8193(4) 9.0597(6) 10.2653(4) 12.9059(7) 10.3415(7) 
b/ Å 20.1512(12) 15.8946(15) 11.6812(6) 14.5372(7) 8.8823(4) 18.9389(13) 9.2060(4) 
c/ Å 13.9510(6) 15.9754(18) 28.7206(16) 11.8354(8) 20.2634(9) 7.6909(4) 19.3186(14) 
α/ ° 90 93.458(9) 90 90 90 90 90 
β/ ° 94.232(3) 96.606(8) 95.047(4) 95.232(5) 97.713(3) 115.017(4) 98.818(5) 
γ/ ° 90 97.754(8) 90 90 90 90 90 
V/ Å3 3080.4(3) 1690.5(3) 2278.9(2) 1552.26(7) 1830.89(14) 1703.47(18) 1817.5(2) 
Z 8 2 4 4 2 4 2 
ρcalcd/ g cm-3 1.623 1.622 1.355 1.677 1.578 1.592 1.826 
µ/ mm-1 1.610 1.394 1.012 1.452 1.235 1.459 2.919 
crystal size/ 
mm 

0.179×0.112×0.094 0.157×0.095×0.086 0.177×0.158×0.132 0.150×0.109×0.083 0.163×0.136×0.134 0.142×0.110×0.090 0.130×0.102×0.075 

F(000) 1544 852 948 804 892 836 980 
T/ K 133(2) 133(2) 133(2) 133(2) 133(2) 133(2) 133(2) 
λ/ Å Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 
Θ range/ ° 1.78–28.59 1.76–28.26 1.49–26.02 2.23–28.52 2.03–28.45 2.05–28.22 2.12–28.50 
Reflns. 
collected 

7232 7952 5514 3688 4324  2498 4329 

Indep. 
reflns.(Rint) 

4234 (0.2943) 4466 (0.2163) 3886 (0.0791) 2876 (0.0312) 3240 (0.0405) 2368 (0.0354) 3384 (0.2146) 

Parameters 397 451 262 233 253 226 226 
R1 (all data) 0.0711 (0.1126) 0.1353 (0.1789) 0.0567 (0.0824) 0.0274 (0.0410) 0.0314 (0.0487) 0.0240 (0.0260) 0.1270 (0.1413) 
wR2 0.1847 0.3285 0.1517 0.057 0.0687 0.0544 0.3393 
GooF 0.956 1.137 0.999 0.906 0.913 1.033 (Flack 

0.010(12) ) 
1.372 
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Table S1 (continued). Crystallographic data for the ligands and complexes presented in this paper. 

 6-OAc 6-Cl 6-NCS 
CCDC 1566618 1566627 1566637 
formula [(µ–1,1–OAc)2(CuL6)2]·4H2O [(µ–Cl)2(CuL6)2] [(CuL6)SCN]2 
sum formula C28H32Cu2N4O10, 4(H2O) C24H26Cl2Cu2N4O6 C26H26Cu2N6O6S2 
M/ g mol-1 783.72 664.46 709.73 
crystal system orthorhombic triclinic monoclinic 
space group Pbca P−1 P21/c 
crystal description blue needle green block blue needle 
a/ Å 8.7017(4) 7.5941(5) 12.3364(8) 
b/ Å 18.0339(11) 9.0685(6) 13.4022(11) 
c/ Å 21.7086(12) 10.0399(6) 8.6223(5) 
α/ ° 90 90.393(5) 90 
β/ ° 90 96.377(5) 97.437(5) 
γ/ ° 90 110.150(5) 90 
V/ Å3 3406.6(3) 644.33(7) 1413.57(17) 
Z 4 1 2 
ρcalcd/ g cm-3 1.528 1.712 1.668 
µ/ mm-1 1.320 1.906 1.705 
crystal size/ mm 0.198×0.049×0.048 0.130×0.105×0.082 0.176×0.057×0.051 
F(000) 1624 338 724 
T/ K 133(2) 133(2) 133(2) 
λ/ Å Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 
Θ range/ ° 1.88–28.46 2.05–28.44 2.26–27.48 
Reflns. collected 4130 3031 3338 
Indep. reflns.(Rint) 1910 (0.0705) 2347 (0.0786) 1756 (0.0997) 
Parameters 233 172 190 
R1 (all data) 0.0343 (0.0985) 0.0470 (0.0606) 0.0551 (0.1126) 
wR2 0.0531 0.1161 0.1208 
GooF 0.728 0.942 0.857 
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Fig. S1. ORTEP drawings of ligands HL1  (top left), HL4  (top right), HL5  (bottom left), and HL6  (bottom right). 

Ellipsoids were drawn at 50 % probability level. 

 

Table S2. Selected bond lengths / Å of the ligands HL1 , HL4 , HL5 , and HL6 . 

 HL1 HL4 HL5 HL6 

N2–C7 1.310(5) 1.3147(17) 1.312(2) 1.305(6) 

C7–C8 1.391(4) 1.3805(18) 1.392(3) 1.391(4) 

C8–C9 1.453(5) 1.4570(18) 1.442(3) 1.451(5) 

C9–O1 1.243(4) 1.2155(16) 1.246(2) 1.245(4) 
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Fig. S2. ORTEP drawings of 1-Cl (top left), 1-I (top centre), 1-OAc (top right), 1-NCS (middle left), 2-N3 (middle 

centre), 2-Cl (middle right), 2-NO3 (bottom left), 3-SO4 (bottom centre), and 4-OAc (bottom right). Ellipsoids are 

drawn at 50 % probability level. Hydrogen atoms and solvent molecules (2-N3, 3-SO4, and 4-OAc) were omitted 

for clarity.  
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Fig. S3. ORTEP drawings of 5-NO3 (top left), 5-I (top right), 6-OAc (bottom left), and 6-Cl (bottom right). 

Ellipsoids are drawn at 50 % probability level. Hydrogen atoms and solvent molecules (6-OAc) were omitted for 

clarity.  
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Table S3. Bond lengths/Å and angles/° of the coordination sphere of the complexes discussed in this work.  

 
 

Cu–Npy Cu–N Cu–O Cu–X Cu–Y Cu–X–Cu X–Cu–X 

1-OAc 2.0052(17) 1.9255(16) 1.9411(17) 1.9549(15) 
2.3542(14) 

/ 102.65(6) 77.35(5) 

1-NO3 1.9883(16) 1.9130(14) 1.9245(13) 2.3258(14) 
2.6745(14) 

/ 143.39(9) 
137.40(12) 
121.7(2) 
(O–N–O) 

84.54(6) 

1-Cl 2.014(3) 1.925(4) 1.938(3) 2.2786(11) 
2.7766(12) 

/ 92.81(4) 97.19(4) 

1-I 2.001(2) 1.9296(18) 1.9189(18) 2.6187(4) 
3.2212(4) 

/ 82.48(1) 97.52(1) 

1-N3 1.9918(16) 1.9278(17) 1.9103(14) 1.9745(17) 
2.6005(15) 

/ 95.45(6) 84.55(6) 

1-NCS 1.9995(18) 1.9162(19) 1.9296(16) 1.9420(19) (N) 
2.9063(7) (S) 

/ / / 

2-NO3 1.9795(13) 1.9191(13) 1.9136(11) 2.3620(13) 1.9690(12) (H2O) / / 

2-Cl 1.999(3) 1.926(3) 1.929(3) 2.2907(9) 
2.7953(10) 

/ 92.79(3) 87.21(3) 

2-N3 1.9973(14) 1.9233(15) 1.9266(12) 1.9868(15) 
2.5097(15) 

/ 96.16(6) 83.84(6) 

2-NCS 2.001(3) 1.920(3) 1.936(3) 1.944(4) 2.358(3) (MeOH) / / 

2-SO4 1.998(3) 
1.990(3) 

1.901(3) 
1.920(3) 

1.910(3) 
1.926(3) 

1.928(2) 
1.955(3) 

2.409(3) (Cu2, MeOH) / / 

3-OAc 2.0084(18) 1.9213(18) 1.9562(15) 1.9436(17) 
2.3516(17) 

/ 104.07(8) 75.93(7) 

4-OAc 1.985(3) 1.919(3) 1.950(2) 1.962(2) 2.668(3) (–CN) / / 

4-NO3 1.9964(15) 1.9366(15) 1.9725(13) / 2.2064(14) (H2O) 
1.9828(15) (–CN) 

/ / 

5-NO3 1.9764(17) 1.9112(16) 1.9081(14) 1.9836(14) 
2.3997(15) 

/ 104.59(6) 75.41(5) 

5-Cl 2.030(3) 1.930(3) 1.944(2) 2.2539(8) 
2.8230(9) 

/ 101.41(3) 102.43(3) 

6-OAc 1.996(3) 1.920(3) 1.941(2) 1.9560(18) 
2.3814(17) 

/ 105.93(8) 74.07(7) 

6-Cl 2.004(3) 1.926(3) 1.932(2) 2.2844(9) 
2.7709(11) 

/ 93.44(3) 86.56(3) 

6-NCS 1.998(4) 1.916(4) 1.944(3) 1.940(5) 2.692(4) (–COOMe) / / 
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Table S4. Summary of the C–H···π / X–Y···π interactions of the ligands and complexes presented in this work. 

  Cg H···Cg/Å 
Y···Cg/Å 

X–H···Cg/° 
X–Y···Cg/° 

X···Cg/Å 

HL1 C3–H3 N1–C1–C2–C3–C4–C5a 2.96 106 3.345(4) 

HL5 C4–H4 C10–C11–C12–C13–C14–C15b 2.70 134 3.4289(3) 

C12–H12 N1–C1–C2–C3–C4–C5c 2.87 130 3.5592(3) 

1-OAc C6–H6A Cu1–O1–C9–C8–C7–N2d 2.96 104 3.012(2) 

1-NO3 C6–H6A Cu1–O1–C9–C8–C7–N2e 2.62 145 3.4855(18) 

C12–H12B Cu1–O1–C9–C8–C7–N2f 2.59 154 3.513(2) 

1-N3 C12–H12A N1–C1–C2–C3–C4–C5g 2.89 166 3.855(2) 

1-NCS C6–H6B Cu1–O1–C9–C8–C7–N2h 2.65 150 3.549(3) 

C11–O2 N1–C1–C2–C3–C4–C5h 3.306(2) 96.01(14) 3.642(3) 

2-Cl C12–H12C Cu1–O1–C9–C8–C7–N2i 2.93 139 3.725(4) 

2-N3 C10–H10B Cu1–O1–C9–C8–C7–N2j 2.73 129 3.424(2) 

2-NCS C10–H10B N1–C1–C2–C3–C4–C5k 2.77 91 2.917(3) 

2-SO4 C20–H20B N11–C11–C12–C13–C14–C15l 2.61 137 3.391(4) 

C20–H20C Cu2–O31–C39–C38–C37–N32m 2.69 118 3.260(4) 

C36–H36B Cu1–O11–C19–C18–C17–N12m 2.70 123 3.349(4) 

5-NO3 C2–H2 C10–C11–C12–C13–C14–C15n 2.97 114 3.464(3) 

5-Cl C2–H2 C10–C11–C12–C13–C14–C15o 2.85 142 3.641(4) 

C11–H11 N1–C1–C2–C3–C4–C5p 2.61 129 3.288(4) 

6-OAc C6–H6A Cu1–O1–C9–C8–C7–N2q 2.82 129 3.526(3) 

C12–H12C Cu1–O1–C9–C8–C7–N2r 2.69 140 3.504(3) 

6-NCS C12–H12B N1–C1–C2–C3–C4–C5s 2.83 130 3.520(7) 

a: −1/2+x, 1/2−y, z; b: 2−x, −y, 1−z; c: 1−x, −y, 1−z; d: 2−x, 2−y, 1−z; e: −x, −y, −z; f: 1/2−x, 1/2−y, −z; g: 1/2−x, 1/2−y, 1−z; h: 1−x, −y, 

1−z; i: 2−x, 1−y, 3−z; j: 2−x, 2−y, 1−z; k: 1/2−x, −1/2+y, 3/2−z; l: −x, −y, 1−z; m: x, y, z; n: −x, 1−y, 1−z; o: −1/2+x, 1/2+y, −1+z; p: x, −y, 

1/2+z; q: 1−x, −y, −z; r: 1−x, 1−y, 1−z; s: 1−x, −1/2+y, −1/2−z.  
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Table S5. Selected distances and angles of the π–π and M– π interactions of the ligands and complexes presented 

in this work. Cg(I) is the centroid of the ring number I, α is the dihedral angle between the rings, β is the angle 

between the vector Cg(I) → Cg(J) and the normal to ring I, γ is the angle between the vector Cg(I) → Cg(J) and the 

normal to ring J.  

 Cg(I) Cg(J) Cg–Cg/Å α/° β/° γ/° 

HL4 N1–C1–C2–C3–C4–C5 N1–C1–C2–C3–C4–C5a 3.8849(9) 0.03(7) 19.2 19.2 

1-Cl Cu1–O1–C9–C8–C7–N2 Cub 3.988 0 12.05 0 

1-I Cu1–O1–C9–C8–C7–N2 Cuc 3.621 0 17.21 0 

1-N3 Cu1–O1–C9–C8–C7–N2 Cu1–O1–C9–C8–C7–N2d 3.9849(9) 0.00(6) 31.4 31.4 

Cu1–O1–C9–C8–C7–N2 Cud 3.505 0 6.47 0 

2-NO3 Cu1–O1–C9–C8–C7–N2 Cue 3.481 0 10.58 0 

2-Cl N1–C1–C2–C3–C4–C5 N1–C1–C2–C3–C4–C5f 3.673(2) 0.00(18) 22.9 22.9 

Cu1–O1–C9–C8–C7–N2 N1–C1–C2–C3–C4–C5g 3.923(2) 1.75(15) 28.7 27.4 

2-N3 Cu1–O1–C9–C8–C7–N2 Cu1–O1–C9–C8–C7–N2h 3.8157(9) 0.02(6) 24.5 24.5 

Cu1–O1–C9–C8–C7–N2 Cuh 3.544 0 7.16 0 

2-NCS Cu1–O1–C9–C8–C7–N2 Cui 3.560 0 28.35 0 

2-SO4 Cu1–O11–C19–C18–C17–N12 Cu2–N31–C35–C36–N32i 3.3578(19) 14.64(14) 9.8 22.8 

Cu1–O11–C19–C18–C17–N12 Cu1j 3.234 0 3.84 0 

N31–C31–C32–C33–C34–C35 Cu1i 3.461 0 27.33 0 

3-OAc N1–C1–C2–C3–C4–C5 Cu1–O1–C9–C8–C7–N2k 3.7700(14) 10.90(11) 30.5 21.4 

4-NO3 N1–C1–C2–C3–C4–C5 Cul 3.823 0 19.87 0 

5-NO3 Cu1–N1–C5–C6–N2 N1–C1–C2–C3–C4–C5m 3.5718(11) 1.19(9) 10.2 9.5 

5-Cl Cu1–O1–C9–C8–C7–N2 Cu1–O1–C9–C8–C7–N2n 3.8568(17) 11.24(13) 27.7 25.8 

Cu1–O1–C9–C8–C7–N2 Cun 3.493 0 2.29 0 

6-NCS N1–C1–C2–C3–C4–C5 N1–C1–C2–C3–C4–C5o 3.599(3) 0.0(2) 25.9 25.9 

a: −x, −y, 1−z; b: −x, −y, 1−z; c: 2−x, 1−y, 1−z; d: 1/2−x, 1/2−y, 1−z; e: 1−x, −y, 1−z; f: 1−x, −y, 2−z; g: 2−x, 1−y, 2−z; h: 2−x, 2−y, 1−z; i: 

x, y, z; j: −x, −y, 1−z; k: 1−x, −y, 1−z; l: −x, −y, 1−z; m: −x, −y, 1−z; n: x, −y, 1/2+z; o: −x, −y, −1−z. 
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Table S6. Hydrogen bonds and angles of ligands and complexes presented in this work. 

 Donor Acceptor D–H/Å H···A/Å D ···A/Å D–H···A/° 

HL1 N2–H2 O1 0.88 1.98 2.622(4) 129 

N2–H2 N1 0.88 2.28 2.677(5) 107 

C2–H2A O1a 0.95 2.53 3.236(5) 131 

C4–H4 O2b 0.95 2.44 3.266(5) 145 

HL4 N2–H2A N3c 0.88 2.14 2.9884(16) 162 

C4–H4 N2 0.95 2.56 2.884(2) 100 

C6–H6A O1d 0.99 2.48 3.2701(16) 137 

C7–H7 O1d 0.95 2.38 3.2656(17) 155 

HL5 N2–H2A O1 0.88 2.04 2.6730(3) 128 

N2–H2A O1e 0.88 2.24 2.9878(3) 143 

C2–H2B O2f 0.95 2.46 3.3505(3) 156 

C11–H11 O1g 0.95 2.48 3.4256(3) 172 

HL6 N2–H2 O1 0.88 2.02 2.650(4) 128 

N2–H2 O1h 0.88 2.28 3.012(5) 141 

C6–H6A O1i 0.99 2.53 3.340(6) 139 

C6–H6B N1j 0.99 2.58 3.414(6) 142 

1-OAc C2–H2 O2k 0.95 2.34 3.279(3) 115 

C6–H6A O5k 0.99 2.52 3.305(2) 168 

C6–H6B O5l 0.99 2.48 3.280(3) 137 

C7–H7 O5k 0.95 2.56 3.349(2) 141 

1-NO3 C6–H6A O12m 0.99 2.56 3.179(2) 121 

C7–H7 O12m 0.95 2.37 3.179(2) 142 

1-Cl C3–H3 Cln 0.95 2.73 3.535(5) 143 

C6–H6A Clo 0.99 2.71 3.552(5) 143 

C12–H12B Clp 0.99 2.81 3.406(4) 119 

1-I C4–H4 O2q 0.95 2.55 3.317(3) 138 

C6–H6A O2q 0.99 2.57 3.321(3) 133 

1-N3 C6–H6B N5r 0.99 2.59 3.497(3) 153 

C13–H13B N5s 0.98 2.60 3.516(3) 155 

1-NCS C4–H4 O2t 0.95 2.44 3.255(3) 143 

C13–H13C S21u 0.98 2.82 3.580(3) 135 

a: −x, 1−y, −z; b: 1/2−x, −1/2+y, 1−z; c: 1−x, 1−y, −z; d: 1−x, 1−y, 1−z; e: 2−x, −y, 1−z; f: 1−x, −y, 1−z; g: 1−x, 1−y, 1−z; h: 3/2−x, 3/2−y, 
1−z; i: 3/2−x, 1/2−y, 1−z; j: x, −1+y, z; k: 2−x, 1/2+y, 1/2−z; l: −1+x, y, z; m: −x, −y, −z; n: x, 1+y, z; o: −x, −y, 1−z; p: −1+x, y, −1+z; q: 

2−x, −1/2+y, 3/2−z; r: 1/2−x, 1/2−y, 1−z; s: −1/2+x, 1/2−y, 1−z; t: 2−x, −y, 1−z; u: 3/2+x, 1/2−y, −1/2+z.  

 

  



Novel Cu(II) complexes with NNO-Schiff base-like ligands : structures and magnetic properties 
 

 
77 

Table S7. Hydrogen bonds and angles of complexes presented in this work. 

 Donor Acceptor D–H/Å H···A/Å D ···A/Å D–H···A/° 

2-NO3 O21–H21A O31 0.775(19) 1.865(19) 2.6366(18) 173(3) 

O21–H21B O2a 0.79(3) 1.93(3) 2.7355(16) 167(3) 

O31–H31A O13b 0.75(3) 2.06(3) 2.8033(19) 170(2) 

O31–H31B O11c 0.82(3) 2.06(3) 2.8385(18) 160(3) 

C1–H1 O2a 0.95 2.48 3.430(2) 177 

C6–H6A O12d 0.99 2.56 3.2213(19) 124 

C7–H7 O12d 0.95 2.48 3.3396(19) 150 

2-Cl C2–H2 O2e 0.95 2.45 3.242(5) 140 

C3–H3 Cl1f 0.95 2.79 3.542(4) 137 

C6–H6A O2g 0.99 2.82 3.350(5) 143 

C6–H6B Cl1h 0.99 2.82 3.668(4) 144 

2-N3 C3–H3 O2i 0.95 2.53 3.266(2) 134 

C4–H4 N5j 0.95 2.55 3.251(2) 131 

C6–H6B O2k 0.99 2.51 3.405(2) 151 

2-NCS O21–H21 O2l 0.84 1.91 2.742(4) 173 

2-SO4 O60–H60 O54m 0.84 1.85 2.682(5) 171 

O70–H70 O53n 0.84 1.95 2.765(6) 164 

C11–H11 O70o 0.95 2.33 3.190(6) 150 

C13–H13 012p 0.95 2.41 3.320(6) 159 

C14–H14 O31n 0.95 2.58 3.522(4) 171 

C16–H16A O52n 0.99 2.33 3.275(4) 159 

C22–H22C O70 0.98 2.42 3.294(9) 148 

C32–H32 O32p 0.95 2.49 3.382(5) 156 

C34–H34 O54n 0.95 2.57 3.511(5) 116 

3-OAc O31–H31A O22 0.75(5) 2.12(5) 2.857(3) 167(5) 

O31–H31B O3q 0.76(5) 2.25(5) 2.983(3) 164(5) 

C6–H6B O22r 0.99 2.52 3.297(3) 135 

C10–H10A O3s 0.99 2.53 3.335(3) 138 

a: 1−x, 1/2+y, 1/2−z; b: −1+x, y, z; c: 1−x, −y, −z; d: 2−x, −y, 1−z; e: −1+x, −1+y, −1+z; f: x, −1+y−1+z; g: 2−x, 1−y, 3−z; h: 2−x, 1−y, 2−z; 
i: −1+x, −1+y, −1+z; j: x, y, −1+z; k: 2−x, 3−x, 1−z; l: 1/2−x, 1/2+y, 3/2−z; m: x, 1/2−y, 1/2+z; n: −x, −1/2+y, 3/2−z; o: −x, 1/2+y, 3/2−z; p: 

−1+x, y, z; q: 1+x, y, z; r: 1−x, −y, 1−z; s: 1−x, 1−y, 2−z. 
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Table S8. Hydrogen bonds and angles of complexes presented in this work. 

 Donor Acceptor D–H/Å H···A/Å D ···A/Å D–H···A/° 

4-OAc C2–H2 N3a 0.95 2.53 3.248(5) 133 

C3–H3 O22 0.95 2.45 3.274(5) 145 

4-NO3 O31–H31A O32 0.76(3) 2.01(3) 2.745(2) 164(3) 

O31–H31B O22b 0.75(3) 2.08(3) 2.818(2) 170(3) 

O32–H32A O22c 0.79(3) 2.09(3) 2.879(3) 171(3) 

O32–H32B O23 0.79(3) 2.14(3) 2.881(3) 158(3) 

C2–H2 O22d 0.95 2.55 3.426(3) 153 

5-NO3 C4–H4 O12e 0.95 2.54 3.325(3) 140 

C6–H6B O2f 0.99 2.59 3.405(2) 140 

C7–H7 O2f 0.95 2.48 3.338(2) 150 

5-Cl C3–H3 O2g 0.95 2.31 3.050(4) 135 

C13–H13 Cl1h 0.95 2.82 3.682(4) 151 

6-OAc O21–H21A O2i 0.73(5) 2.12(5) 2.845(4) 173(5) 

O21–H21B O31j 0.78(5) 1.95(5) 2.729(4) 175(5) 

O31–H31A O21k 0.72(3) 2.07(4) 2.781(4) 170(4) 

O31–H31B O5 0.80(4) 2.01(4) 2.800(3) 174(4) 

C2–H2 O21 0.95 2.52 3.460(4) 168 

C3–H3 O5l 0.95 2.40 3.319(4) 163 

C7–H7 O5m 0.95 2.46 3.281(3) 145 

6-Cl C3–H3 Cl1n 0.95 2.75 3.500(4) 137 

C6–H6B Cl1o 0.99 2.67 3.546(4) 148 

a: x, 1+y, z; b: 1−x, −1/2+y, 3/2−z; c: x, 1/2−y, 1/2+z; d: 1−x, −y, 1−z; e: −x, −y, 1−z; f: 1−x, −y, 1−z; g: −1/2+x, 1/2+y, −1+z; h: 1/2+x, 
−1/2−y, 1/2+z; i: 1/2−x, −y, −1/2+z; j: −x, 1/2+y, −1/2−z; k: 1/2−x, −1/2+y, z; l: 1/2−x, 1/2+y, z; m: 1−x, −y, −z; n: x, −1+y, z; o: 2−x, 1−y, 
−z. 
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Fig. S4. Powder X-ray diffraction spectra of 1-OAc, 1-NO3, 1-Cl, 2-Cl, and 3-OAc. Spectra were recorded at 

room temperature, the calculated spectra were obtained from the crystal data (133 K). 

 

Fig. S5. Powder X-ray diffraction spectra 5-NO3, 5-Cl, 5-I, 6-OAc, and 6-Cl. Spectra were recorded at room 

temperature, the calculated spectra were obtained from the crystal data (133 K). 
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Table S9. Data of the magnetic measurements with µeff at 300 K, and χMT at 300 K, 50 K, and, if measured, 2 K.  

 µeff [µB] (300 K) χMT [cm3K−1mol−1] (300 K) χMT [cm3K−1mol−1] (50 K) χMT [cm3K−1mol−1] (2 K) 

1-OAc 2.95 1.09 0.88 0.39 

1-NO3 2.71 0.92 0.16 0.01 

1-Cl 2.95 1.08 0.91 0.68 

1-NCS 2.00 0.50 0.42  

2-OAc 2.07 0.54 0.40  

2-NO3 2.23 0.62 0.50  

2-Cl 2.89 1.05 0.89 0.78 

2-NCS 2.12 0.56 0.46  

3-OAc 3.18 1.27 0.95 0.20 

3-NO3 2.13 0.57 0.45  

3-Cl 2.92 1.06 0.92  

3-NCS 2.02 0.51 0.43  

4-OAc 2.17 0.59 0.47  

4-NO3 2.10 0.55 0.44 0.41 

4-Cl 2.03 0.51 0.44  

4-NCS 2.05 0.53 0.44  

5-OAc 2.07 0.53 0.43  

5-NO3 2.81 0.99 0.88 1.01 

5-Cl 2.04 0.52 0.46 0.69 

5-I 3.18 1.26 0.86 0.14 

5-NCS 2.15 0.58 0.45  

6-OAc 2.99 1.12 0.91 0.40 

6-NO3 2.17 0.59 0.48  

6-Cl 2.84 1.01 0.89 1.08 

6-NCS 2.88 1.03 0.87  
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Fig. S6. Plots of the χMT product vs. T for complexes 1-OAc (top left), 1-Cl (top right), 1-NCS (middle left), 2-

OAc (middle right), 2-NO3 (bottom left), and 2-Cl (bottom right). The data points are black squares, the red line 

corresponds to the fit. 
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Fig. S7. Plots of the χMT product vs. T for complexes 2-NCS (top left), 3-OAc (top right), 3-NO3 (middle left), 3-

Cl (middle right), 3-NCS (bottom left), and 4-OAc (bottom right). The data points are black squares, the red line 

corresponds to the fit. 
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Fig. S8. Plots of the χMT product vs. T for complexes 4-NO3 (top left), 4-Cl (top right), 4-NCS (middle left), 5-

OAc (middle right), 5-NO3 (bottom left), and 5-Cl (bottom right). The data points are black squares, the red lines 

corresponds to the fit. 
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Fig. S9. Plots of the χMT product vs. T for complexes 5-I (top left), 5-NCS (top right), 6-OAc (middle left), 6-NO3 

(middle right), 6-Cl (bottom left), and 6-NCS (bottom right). The data points are black squares, the red line 

corresponds to the fit. 
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Fig. S10. Curie-plot of 4-NO3. 
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Abstract:  A series of new [Fe(L)2] iron(II) and [Fe(L)2]X iron(III) complexes is presented with 

varying tridentate NNO coordinating Schiff base-like ligands (L–) and different counterions 

(X– = Cl–, Br–, I– BF4
–, PF6

–, and ClO4
–) in the case of the iron(III) complexes. The crystal 

structures of one iron(II) and three iron(III) complexes are discussed, as well as the magnetic 

properties of the complexes regarding the possibility of the observation of spin crossover. While 

the three iron(II) complexes are predominantly high spin, in the case of the iron(III) complexes 

spin crossover was observed for the majority of the complexes (10 out of 12). Additionally, the 

optical properties and electrochemical behavior in solution was investigated and the results are 

compared with related systems from literature. 
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 Introduction 

 

Spin crossover (SCO) compounds are an interesting class of materials, where the electronic 

configuration of a central metal atom can be switched between the high spin (HS) state and the 

low spin (LS) state by external stimuli such as temperature, pressure, or light.[1–3] The spin state 

of the central metal atom is HS, if the total spin pairing energy P is much higher than the ligand 

field splitting ∆O or LS if ∆O is much higher than P. In case neither of these two conditions is 

clearly fulfilled, a SCO is possible. This transition causes changes in the magnetic, optical, 

structural, and vibrational properties of the complex and can therefore be monitored by a 

number of different techniques, like temperature dependent magnetic susceptibility 

measurements, Mössbauer spectroscopy, UV/Vis spectroscopy, or single crystal/powder X-ray 

diffraction at different temperatures. The switching of the spin state and the resulting change in 

properties allows various possible applications as temperature/ pressure sensor or data 

storage.[4]  

In the case of octahedral complexes, this phenomenon could be observed for any d4–d7 electron 

configuration. However, due to the significantly higher ligand field splitting ∆O for 4d and 5d 

central metal atoms, it is predominantly observed for 3d complexes. Here, the most frequently 

investigated are based on iron as metal atom. Upon SCO, iron(II) complexes change from the 

paramagnetic HS state (S = 2) to the diamagnetic LS state (S = 0), whereas for iron(III) 

complexes both, the HS state (S = 5/2) and the LS state (S = 1/2), are paramagnetic. In the last 

decades, about 90% of all spin crossover complexes investigated were iron(II) complexes due 

to the pronounced changes in magnetism (diamagnetic/paramagnetic) and related properties 

(fluorescence,[5] conductivity,[6] liquid crystal phase transition,[7] just to mention few examples) 

that can be observed. Also, the structural changes often observed for iron(II) SCO complexes 

allowed the observation of spin crossover with hysteresis around room temperature quite 

frequently.[8]  

However, in recent years the focus shifted back to the more stable iron(III) complexes as the 

iron(II) complexes are often very air sensitive.[9] This development is accelerated by reports on 

iron(III) systems with wide hysteresis.[10,11] In the case of iron(II) the most frequently observed 

donor atom set is N6,[1–3] and although there are examples with an N4O2
[12,13] or N4S2

[14] donor 

atom set, they are comparatively rare. In the case of iron(III) complexes, spin crossover is more 
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frequently observed for systems with an N4O2 coordination sphere, which in their vast majority 

use Schiff base ligands.[9,15–17] So far, only few examples are reported where both, the iron(II) 

and iron(III) with the same ligand set are synthesized.[12,13]  

Due to the higher positive charge of iron(III) compared to iron(II), the ligand field splitting ∆O 

is expected to be larger in the case of iron(III) complexes, if the same ligands are used. 

However, as the spin pairing energy is much higher in the case of iron(III),[18] no general 

statements can be made for the impact of a mere change of the oxidation state at the central iron 

atom on the spin state of the complex.[15] Herein we present a series of new iron(II) and iron(III) 

complexes with anionic tridentate NNO Schiff base-like ligands. The impact of the oxidation 

state of the central metal atom on the spin state for those complexes is discussed. Please note 

that most of the iron(III) spin crossover complexes have negatively charged chelating ligands. 

One hypothesis is, that the negative charge is necessary to reach the higher ligand field splitting 

needed to compensate for the larger spin paring energy.[15] Thus the question arises if the 

negative charge of the ligand is necessary for the synthesis of iron(III) SCO complexes. We 

decided to use the [Fe(bipy)3]2+/3+ system with bipy = 2,2’-bipyridine as neutral bidentate NN 

ligand for comparison. The spin crossover behavior of trisdiimine iron(II) complexes is well 

understood by now and a very simple and straight forward approach to predict the spin state of 

such complexes was recently proposed.[19] Some examples for SCO active tris(bipyridine) 

iron(II) complexes are already reported in literature,[20] whereas for the corresponding iron(III) 

complexes only very limited data is available. Thus, the corresponding complex was 

synthesized and characterized herein as well. 

 

 Results and discussion 

Synthesis 

The general synthesis pathway of the iron(II) and iron(III) complexes is given in Scheme 1. An 

overview over all synthesized complexes together with the used abbreviations is given in Table 

1 together with some examples from literature for comparison.  
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Scheme 1. General synthesis pathway for the iron(II) and iron(III) complexes presented in this work. 

 

The tridentate ligands HL1 – HL3 were synthesized as described previously.[21] The 

corresponding iron(II) complexes [Fe(L)2] (1–3) were obtained by a reaction of iron(II) acetate 

and two equiv. of the respective tridentate ligand in ethanol (HL1) or methanol (HL2 and HL3). 

The acetate anion acts as a base for the deprotonation of the ligand. The orange to dark red 

iron(II) complexes were obtained directly from the synthesis with 0.5 to 1 solvent molecules 

associated. For the synthesis of the iron(III) complexes [Fe(L)2]X (4–15), iron(III) nitrate 

nonahydrate, sodium acetate, and the respective ligand were heated to reflux in ethanol (HL1) 

or methanol (HL2 and HL3) to obtain a dark purple solution. This solution was split in aliquots 

and the dark purple iron(III) complexes were precipitated with an aqueous solution of the 

desired anion. For comparison purpose, the pair [Fe(bipy)3]Cl2·2H2O (16) and 

[Fe(bipy)3](PF6)3·2H2O (17) was synthesized as well following literature procedures.[24,25] The 

two complexes with bipy as neutral, bidentate ligand were obtained as dark blue (17) and pink 

(16) powder. The purity of all complexes was confirmed with elemental analysis, mass 

spectrometry, and IR spectroscopy. 
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Table 1. Overview of the synthesized iron(II) and iron(III) complexes, and their SCO behavior with T1/2 and χMT at 300 and 
50 K. For comparison purpose, some examples from literature are given as well. 

 Compound SCO behavior T1/2 /K χMT /cm3 K 

mol−1 (300 K) 

µeff 

(300 K) 

χMT /cm3 K 

mol−1 (50 K) 

Literature 

1 [Fe(L1)2]·0.5EtOH HS / 3.53 5.32 3.41 this work 

2 [Fe(L2)2]·0.5MeOH HS / 3.24 5.10 2.67 this work 

3 [Fe(L3)2]·MeOH HS / 3.22 5.07 3.17 this work 

16 [Fe(bipy)3]Cl2·2H2O abrupt, 

irreversiblea) 

377 0.07 / 3.13 0.76 / 5.01 0.03 this work 

4 [Fe(L1)2]Cl·4H2O gradual 206 3.93 5.62 0.62 this work 

 [Fe(qsal-Cl)2] f) abrupt, two 

steps 

308, 

316 

/ / / [12] 

5 [Fe(L1)2]Br·2H2O gradual with 

hysteresis 

↓185 

↑191 

3.95 5.62 0.65 this work 

6 [Fe(L1)2]PF6·H2O gradual with 

hysteresis 

↓230 

↑235 

3.94 5.61 0.69 this work 

7 [Fe(L1)2]BF4·H2O HS / 4.62 6.08 4.43 this work 

8 [Fe(L1)2]ClO4 HS / 4.28 5.86 4.08 this work 

9 [Fe(L2)2]I ·2H2O gradual 111 4.44 5.96 0.66 this work 

10 [Fe(L2)2]PF6·H2O gradual and 

incomplete 

206 3.70 5.44 1.37 this work 

11 [Fe(L3)2]Cl·3H2O gradual 214 4.00 5.66 0.63 this work 

12 [Fe(L3)2]Br·2H2O gradual 211 3.95 5.63 0.71 this work 

13 [Fe(L3)2]PF6·H2O gradual and 

incomplete 

250 2.84 4.77 0.74 this work 

14 [Fe(L3)2]BF4·H2O gradual with 

two steps 

211 / 

86 

4.24 5.83 0.68 this work 

15 [Fe(L3)2]ClO4 gradual and 

incomplete 

181 3.93 5.61 1.22 this work 

17 [Fe(bipy)3](PF6)3·2H2O LSb) / 0.81 2.55 0.56 this work 

 [Fe(bzpa)2]ClO4
c) gradual and 

incomplete 

≈230 / / / [22] 

 [Fe(qsal-

I)2]OTf·EtOHd) 

abrupt with 

hysteresis 

↓139 

↑252 

/ / / [11] 

 [Fe(qsal)2]BS·MeOHe) abrupt, two 

steps 

205 

and 

195 

4.39 / 0.50 (10 K) [17] 

 [Fe(qsal)2][(C6F3I3)Cl] gradual 268 4.15 (400 K) / 0.57 (2 K) [16] 

 [Fe(acpa)2]ClO4
g) abrupt/gradual 250 / / / [23] 

a) Associated with solvent loss. b) The complex decomposes during sample preparation and measurement. c) Hbzpa = (1-benzoylpropen-2-yl) 

(2-pyridylmethyl)amine. d) qsal-I = 5-I-N-(8-quinolyl)salicylaldimine. e) q-sal = N-(8-quinolyl)salicylaldimine, BS = benzenesulfonate. f) 

qsal-Cl = 5-Cl-N-(8-quinolyl)salicylaldimine. g) Hacpa = N-(1-acetyl-2-propylidene)(2-pyridylmethyl)amine. 
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Single Crystal Structure Analysis 

Crystals suitable for single-crystal X-ray structure analysis were obtained for the iron(II) 

complex 3 and the iron(III) complexes 8, 10, and 15. For the iron(III) complexes the amount of 

solvent included in the crystal packing differs from the bulk complexes. As this can also 

influence the magnetic properties, the samples are denoted as 8a, 10a, and 15a. The 

crystallographic data of the compounds were collected at 133 K and are given in Table S1 

(Supporting Information). ORTEP drawings of the complexes are shown in Figure 1, whereas 

selected bond lengths and angles are summarized in Table 2. All complexes crystallized with 

two tridentate NNO Schiff base-like ligands being coordinated to the central iron atom, resulting 

in an octahedral N4O2 coordination sphere. 

Iron(II) Complexes. Crystals suitable for X-ray structure analysis of 3 were obtained by storing 

the mother liquor at 8 °C. The complex crystallizes in the triclinic space group -11 with two 

molecules of the complex and two methanol per asymmetric unit. An ORTEP drawing is given 

in Figure 1 (top left). Due to the low quality of the crystal and the crystallographic data this 

complex can only be discussed as a general structural motif, therefore no conclusions towards 

bond lengths, angles, or intermolecular interactions are drawn. 

 

 
Figure 1. ORTEP drawings of 3 (top left), 8a (top right), 10a (bottom left), and 15a (bottom right). Hydrogen atoms, solvent 
molecules, and disorder are omitted for clarity. Ellipsoids are drawn at 50% probability level. 
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Iron(III) Complexes.  Crystals suitable for X-ray structure analysis of 8a, 10a, and 15a were 

obtained by slow diffusion of diethyl ether into an acetonitrile solution of the complex.  

Complex 8a crystallizes in the triclinic space group -11 with one complex and one anion per 

asymmetric unit. The last carbon atom of the ethyl ester of one tridentate ligand (C23) in 8a is 

disordered into two positions (Figure S1, Supporting Information). During refinement, electron 

density of solvent molecules was present. However, those solvent molecules could not be 

refined due to disorder. Therefore SQUEEZE from Platon[26] was used to remove 43 electrons 

per unit cell. π– π interactions between the pyridine rings of two different complex molecules 

and C–H– π interactions can be observed (see Figure 3 and discussion of the packing). Complex 

10a crystallizes in the monoclinic space group I2/c with one complex, two half molecules of 

PF6
–, and one molecule of acetonitrile per asymmetric unit. Four fluorine atoms of the PF6

– 

anions are disordered in at least two positions (Figure S2, Supporting Information). Complex 

15a crystallizes in the monoclinic space group P21/c with one complex and one anion per 

asymmetric unit.  

 

Table 2. Spin state, selected bond lengths, angles, and the octahedral distortion parameter of complexes 8a, 10a, and 15a. 

 S Fe–Npy
 / Å Fe–N / Å Fe–O / Å Npy–Fe–O / ° Σ / ° 

8a 5/2 2.1537(15) 

2.1505(15) 

2.0588(14) 

2.0642(13) 

1.9661(12) 

1.9692(14) 

161.06(5) 

160.29(5) 

84 

10a 1/2  1.9567(19) 

1.9604(18) 

1.886(2) 

1.916(2) 

1.8942(16) 

1.8930(18) 

175.19(8) 

171.66(8) 

48 

15a 1/2  1.9690(19) 

1.957(2) 

1.9001(19) 

1.912(2) 

1.8999(18) 

1.8955(17) 

174.14(8) 

174.61(9) 

44 

 

In order to determine the spin state of the central iron(III) atoms, the Npy–Fe–O angle of the 

tridentate ligand was taken into account. It has an average value of 160.7° for 8a, 173.4° for 

10a, and 174.4° for 15a. This indicates that in 8a the central iron(III) atom is in the high spin 

state, whereas in the other two complexes it is in the low spin state. The octahedral distortion 

parameter Σ was calculated as well (Table 2). It can be seen that the value differs significantly 

for 8a (84°) from the values of 10a and 15a (48° and 44°, respectively). Those values support 

the assumption of the spin states. The bond lengths are in average also significantly longer in 

8a (2.15 Å Npy–Fe, 2.06 Å N–Fe, and 1.97 Å O–Fe) than in 10a (1.96 Å Npy–Fe, 1.90 Å N–Fe, 
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and 1.89 Å O–Fe) and 15a (1.96 Å Npy–Fe, 1.91 Å N–Fe, and 1.90 Å O–Fe). Those results are 

in line with the results from the magnetic measurements (see below), where 8 is a pure HS 

complex while for 10 and 15 an incomplete gradual spin crossover is observed. Please note that 

differences in the magnetic properties can be due to differences in the crystal packing. Several 

intermolecular interactions between the anion or solvent molecules and the tridentate ligands 

are observed for all complexes, as well as interactions between different tridentate ligands. 

Details of all intermolecular interactions are summarized in Table S2–S4 (Supporting 

Information). Pictures of the packing of the complexes in the crystal are shown in Figure 2 and 

discussed in more detail in the following.  

In the case of complex 8a, a π···π interaction between the pyridine ring N31–C31–C32–C33–

C34–C35 [Cg–Cg 3.6622(11) Å] of two neighboring complex molecules in combination with 

C–H···π interaction between the aromatic hydrogen atom (C33–H33) and the pyridine ring of 

the same pair leads to a P4AE (Parallel Fourfold Aryl Embrace) motif,[27] that is illustrated in 

Figure 3. Further C–X···π interactions are observed between the keto oxygen of the ester side 

chain (C41–O32) and a pyridine ring, and between the –CH2 group of the tridentate ligand 

(C36–H36B) and the six-membered ring made up by the central iron(III) atom and the chelate 

cycle of the ligand (Fe1–O31–C39–C38–C37–N32). Those interactions result in the formation 

of a 3D network of linked molecules; the details are summarized in Table S2 (Supporting 

Information). This network is further strengthened by several non-classical hydrogen bonds 

between C–H groups of the ligand and oxygen atoms of the perchlorate anion or the keto oxygen 

atoms of neighboring ligands (the details are given in Table S4, Supporting Information).  
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Figure 2. Molecular packing of 3 (top left, A, along [100]), 8a (top right, B, along [001]), 10a (bottom left, C, along [010]), 
and 15a (bottom right. D, along [100]). Hydrogen atoms not involved in intermolecular interactions are omitted for clarity. 
Hydrogen bonds are drawn as pink, dashed lines. 

 

For complex 10a, four C–H···π interactions are observed in the molecule packing. One is 

between an aromatic C–H (C32–H32) group and the pyridine ring of another complex molecule 

(N11–C11–C12–C13–C14–C15); one involves a CH2 group of the ester side chain (C40–H40B) 

and the pyridine ring of a neighboring complex (N31–C31–C32–C33–C34–C35); the other one 

is between the CH2 group of the ester side chain (C22–H22A) and the six-membered ring made 

up by the central iron(III) atom and the chelate cycle of the ligand (Fe1–O11–C19–C18–C17–

N12). The last C–H···π interaction is observed between the CH3 group of the acetonitrile (C51–

H51A) and a pyridine ring (N31–C31–C32–C33–C34–C35). A C–X···π interaction involving 

the keto oxygen atom of the side chain (C41–O32) and the pyridine ring of a neighboring ligand 

(N31–C31–C32–C33–C34–C35) is present as well. The details of those interactions are 

summarized in Table S2 (Supporting Information). As in the case of 8a, a 3D network of linked 

molecules is built, where the counterions are included through several non-classical hydrogen 

bonds between C–H groups of the tridentate ligands or solvent molecules and the PF6
– ions. 
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Some further non-classical hydrogen bonds to the keto oxygen atoms of the ligand are observed 

as well, all details are summarized in Table S4 (Supporting Information).  

 

 
Figure 3. ORTEP drawing of 8a illustrating the C–H···π and π···π interactions. Ellipsoids were drawn at 50% probability 
level. Hydrogen atoms and side chains are omitted for clarity. 

 

In the case of 15a, only one C–H···π interaction is observed, namely between the CH2 group 

of the ester side chain (C42–H42A) and the six-membered ring made up by the central iron(III) 

atom and the chelate cycle of the ligand (Fe1–O31–C39–C38–C37–N32). Additionally, several 

non-classical hydrogen bonds involving the tridentate ligands as donor and the oxygen atoms 

of the anion or the keto groups as acceptor are present in the crystal packing. The details of 

those interactions are summarized in Tables S2 and S4 (Supporting Information). Again, a 3D 

network of interacting complexes is obtained.  

In the packing of all three complexes two different layers of iron(III) sites can be observed, that 

are illustrated in Figure 4. The molecules in one layer are turned by 180° with respect to the 

second layer. In case of 10a and 15a the anions (and acetonitrile molecules) are separating those 

layers, whereas in the case of 8a the strong P4AE interaction (π···π and C–H···π) leaves no 

space for the anions between the resulting pair of complex molecules. This could be one 

explanation for the difference in the magnetic behavior of the bulk complexes 8, 10, and 15. 

Probably, the dense packing of 8a in the crystal prevents the occurrence of spin crossover as 

the associated volume change is precluded. In the case of 10a and 15a this interaction is not 

observed, the packing is less dense and a gradual spin transition takes place. Please note that 
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there are several examples in literature, where P4AE interactions are believed to be responsible 

for abrupt SCO[12] – quite in contrast to our results presented herein. 

Magnetic Measurements 

The magnetic properties of all iron(II) and iron(III) complexes were investigated with a SQUID 

magnetometer at an applied field of 5000 G to analyze the spin state and follow a possible spin 

crossover. Different anions were used in the synthesis of the iron(III) complexes as they are 

known to significantly influence the packing of the molecules in the crystal and by this the 

magnetic properties. An overview of the SCO behavior of the complexes with the χMT values 

at 300 and 50 K is given in Table 1. The compilation is completed with the data obtained for 

magnetic measurements on the previously described [Fe(bipy)3]Cl2·2H2O (16)[24] and 

[Fe(bipy)3](PF6)3·2H2O (17).[25] Although the two complexes are well known and have been 

described for many years, temperature dependent magnetic measurements are so far missing. 

This is especially interesting for [Fe(bipy)3]2+ that is known to be a stable LS complex in 

solution. The three ligands usually coordinate the central iron atom in an octahedral fashion 

with a very symmetric surrounding and a rather large ligand field splitting.[28] Therefore mostly 

diamagnetic complexes are generated. However, a reversible spin-crossover triggered by lattice 

water removal was recently reported by Luo et al. for [Fe(44mBipy)3](ClO4)(SCN)·3H2O (with 

44mBipy = 4,4’-dimethyl-2,2’-bipyridine)[20] and we observed very recently a similar 

behaviour for chloride salts of other methyl-substituted bipyridines.[29] 

 

 



Iron(II) and Iron(III) Complexes of Tridentate NNO Schiff Base-like Ligands – X-ray Structures and Magnetic Properties 
 

 
98 

 
Figure 4. Packing of 8a (top, along [100]), 10a (middle, along [010]), and 15a (bottom, along [100]). Hydrogen atoms are 
omitted for clarity. Red and blue boxes are highlighting the different iron(III) layers discussed in the text. 
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Iron(II) Complexes. In Figure 5, the χMT vs. T plot of 3 and 16 is shown as an example for a 

complex with a NNO coordinating anionic ligand and bipy as ligand. The χMT vs. T plots of 1 

and 2 are shown in Figure S3 (Supporting Information). The iron(II) complexes with the anionic 

Schiff base-like ligand are essentially in the HS state in the whole temperature range 

investigated (300–50 K). The room temperature χMT product is in the range of 3.2–3.5 

cm3·K·mol–1 (see Table 1), typical for octahedral S = 2 systems with some orbital momentum 

contribution. Upon cooling, the χMT product does not change significantly for 1 and 3. In the 

case of 2, a slight gradual drop is observed around 100 K and the final χMT product at 50 K is 

2.67 cm3·K·mol–1. This could be an indication for a very incomplete SCO with about one fourth 

of the central iron atoms involved. As expected, 16 is diamagnetic with a χMT product of 0.07 

cm3·K·mol–1 at room temperature and the magnetic moment does not change upon cooling to 

50 K. Upon heating, above 340 K an abrupt and complete transition to the HS state is observed 

and at 400 K a χMT product of 3.25 cm3·K·mol–1 is observed, characteristic for HS iron(II). 

Upon subsequent cooling, the moment does not change significantly and the compound remains 

HS. This indicated, that the spin crossover is triggered by the removal of lattice solvent 

molecules as previously reported for related complexes.[20,29] As the measurements were made 

in gelatine capsule and the sample chamber of the SQUID is under vacuum, re-absorption of 

the water molecules is not possible. However, storage of the de-hydrated sample leads to a color 

change from the black HS state back to the pink LS state (see Figure 5). 

 

 

Figure 5. Plot of the χMT product vs. T for complex 3 (left) and 16 (right). 
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Iron(III) Complexes.  In Figure 6, the χMT vs. T plot of 6 and 17 is shown as an example for 

an iron(III) complex with a NNO coordinating anionic ligand (6) and bipy as ligand (17). The 

χMT vs. T plots of the other iron(III) complexes are shown in Figures S5 and S6 (Supporting 

Information). Two of twelve iron(III) complexes (7 and 8) stay in the HS state over the complete 

temperature range (300–50 K). The room temperature χMT product is with 4.62 (7) and 4.28 

(8) cm3·K·mol–1 in the typical region for HS iron(III) complexes of this ligand type. All other 

complexes show gradual SCO that are in part incomplete, both, in the high and the low 

temperature region. As a consequence, the room temperature χMT product does not always 

reach to typical range for an HS iron(III) complex (around 4 cm3·K·mol–1), especially for 13 

the room temperature χMT product is with 2.84 cm3·K·mol–1 significantly lower. The χMT 

product at 50 K is in most cases higher than the theoretically expected value for an iron(III) LS 

(S = ½) system. The details for each complex are summarized in Table 1. Compounds 5 and 6 

show a gradual spin transition, however, with a 6 and 5 K wide hysteresis, respectively. The 

T1/2 values are 185 (↓) and 191 (↑) K for 5 and 230 (↓) and 235 (↑) K for 6. Complex 14 shows 

a gradual, two-step SCO behavior with T1/2 = 211 and 86 K. The other complexes also exhibit 

gradual spin transitions with T1/2 below 250 K. This gradual behavior can be explained with the 

missing cooperativity between the central metal atoms. Complex 17 with bipy as bidentate 

ligand stays in the LS state (50–400 K) with a χMT product (room temperature) of 0.81 

cm3·K·mol–1. This is slightly higher than expected for a pure LS central iron(III) atom, but can 

be explained with the rather unstable nature of the complex towards reduction.  

 

 
Figure 6. Plot of the χMT product vs. T for complex 6 (left) and 17 (right). 
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The difference in magnetic behavior of the iron(II) complexes, which are fully HS, and the 

iron(III) complexes, which are SCO active, can be explained with the different ligand field 

splitting allowed by the central metal atoms. This is in agreement with the spectrochemical 

series of the metal ions, as the ligand field splitting increases with an increase of the oxidation 

state of the central metal atom. Therefore ∆O is in the region of SCO for the iron(III) complexes 

of this type, whereas the iron(II) complexes are HS. In the case of the bipyridine-based 

complexes the iron(II) complex shows spin crossover, while the iron(III) complex remains in 

the LS state. Thus for the complexes presented herein the differences in spin-pairing energy for 

iron(II) and iron(III) have no significant impact on the expected magnetic properties, 

independent of the nature of the ligand (negative charge or not). Again, it is of interest to 

compare the results with examples from literature. For the system with qsal-X (X = Cl, Br, I) as 

negatively charged three-dentate N2O ligand, spin crossover is observed in the case of iron(II), 

whereas the corresponding iron(III) complexes are high spin.[12] The differences could be due 

to packing effects that are known for their strong impact on SCO properties. 

UV/Vis and Cyclic Voltammetry 

The complexes were investigated in acetonitrile solution with regard to their optical properties 

and electrochemical behavior. The absorption maxima λmax, log ε, and the electrochemical 

properties of the complexes are given in Table 3. The UV/Vis spectra of the complexes are 

given in Figures S7–S9 (Supporting Information). It can be seen that the iron(II) complexes 

have one absorption maxima in the region of 450 nm, independent of the used ligand. The 

logarithm of the absorption coefficient ε indicates a charge transfer process as origin of this 

transition. The absorption of the iron(III) complexes depends only on the tridentate ligand. As 

expected, the complexes with the same Schiff base-like ligand and different anions have the 

same absorption maxima at 528 and 640 nm for ligand HL1, 542 and 650 nm for ligand HL2, 

and 542 and 650 nm for ligand HL3. Again, the differences between the three ligands are not 

very pronounced. As for the iron(II) complexes the logarithm of the absorption coefficient ε 

indicates a charge transfer process responsible for both transitions. It is possible that the 

absorption at ca. 530 nm corresponds to the HS species of the complex, and the absorption at 

ca. 640 nm to the LS species, as observed for related systems in literature.[30] This indicates that 

a spin transition is also possible in solution and indeed, a color change from purple to blue is 

observed when solutions of the complexes are cooled with liquid nitrogen. Temperature 

dependent UV/Vis spectroscopy is needed to further confirm this hypothesis.  
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Table 3. λmax, log ε, and the electrochemical properties (in acetonitrile, 0.1 M NBu4PF6, 50 mV·s–1, vs. Ag/AgNO3). 

 λmax /nm (log ε) Ered /V Eox /V 

1 442 (3.33) −0.50 −0.37 / 1.21 

2 451 (3.43) −0.48 −0.37 / 1.20 

3 451 (3.43) −0.48 −0.37  

4 528 (3.43) / 640 (3.15) −0.45 −0.34 / 1.18 

5 528 (3.46) / 640 (3.18) −0.44 −0.37 / 1.21 

6 528 (3.48) / 640 (3.21) −0.46 −0.35 / 1.28 

7 528 (3.45) / 640 (3.18) −0.46 −0.36  

8 528 (3.29) / 640 (3.03) −0.45 −0.35 

9 542 (3.46) / 650 (3.25) −0.40 −0.33  

10 542 (3.50) / 650 (3.29) −0.41 −0.34 

11 526 (3.44) / 636 (3.18) −0.51 −0.36 / 1.10 

12 526 (3.44) / 636 (3.18) −0.48 −0.36 / 1.14 

13 526 (3.49) / 636 (3.23) −0.45 −0.37 

14 526 (3.46) / 636 (3.20) −0.49 −0.38 

15 526 (3.47) / 636 (3.21) −0.44 −0.36 

17 a 0.72 0.83 

a) It was not possible to measure the absorption of 17, as the compound was immediately reduced to the iron(II) species upon dissolving in 

acetonitrile. 

 

The electrochemical behavior of the iron complexes was investigated using cyclic voltammetry. 

The results are summarized in Table 3, the voltammograms are given in Figures S10–S12 

(Supporting Information). All complexes (1–15) show quasi-reversible processes between –

0.40 and –0.51 V, that correspond to the iron(II)/iron(III) redox process. The peak above 1.1 V 

can be attributed to the oxidation of the ligand, this process is irreversible. As expected, no 

major influence of the ligand or counterion on the electrochemical behavior is observed and the 

same results are obtained independent of the oxidation stage of the starting material. Additional 

oxidation and reduction peaks are observed in cases halide anions were used as counterions for 

the complexes. Complex 17 shows also a quasi-reversible process [iron(II)/iron(III)] at 0.72 V 

(reduction potential) and 0.83 V (oxidation potential), in good agreement with the values 

reported in literature (1.07 V vs. Ag/AgCl in 0.2 M NEt4ClO4/MeCN[31]). Please note the strong 

impact of the used chelate ligand on the redox potentials. 
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 Conclusions 

 

We presented 15 new iron(II) and iron(III) complexes with tridentate NNO Schiff base-like 

ligands. It was possible to isolate single crystals suitable for X-ray structure analysis of one 

iron(II) and three iron(III) compounds with different ligands and anions. The temperature 

dependent magnetic behavior of the complexes was studied and it was found that the iron(II) 

complexes stay HS, whereas the iron(III) complexes are spin crossover active. Ten of twelve 

iron(III) complexes show a rather gradual spin transition below 250 K. Hysteresis of 6 and 5 K 

were observed for compounds 5 and 6, respectively. The gradual nature of the spin transition 

can be explained with the missing cooperativity between the central metal atoms, although 

several intermolecular interactions were observed in the crystal packings.  

The complexes were investigated with regard to their optical properties, the absorption maxima 

depend on the tridentate ligand and the oxidation state of the central iron atom. The 

electrochemical properties were measured as well. One quasi-reversible process was found 

corresponding to the redox process iron(II)/iron(III), and one irreversible oxidation process of 

the ligand could be attributed. For comparison purpose, the pair [Fe(bipy)3]Cl2·2H2O and 

[Fe(bipy)3](PF6)3·2H2O was characterized as well. Due to the stronger ligand field splitting, the 

iron(II) complex shows spin crossover above room temperature whereas the iron(III) complex 

remains in the low spin state. The differences are also reflected in different colors and redox 

potentials and follow the expectations from the spectrochemical series of the ligands and the 

metal atoms. 

 

 Experimental Section 

 

The ligands HL1, HL2, and HL3,[21] iron(II)acetate,[32] and [Fe(bipy)3](PF6)3[25] were 

synthesized as published. All other chemicals were commercially available and used without 

further purification. Syntheses of iron(II) complexes were carried out in an argon atmosphere 

(5.0) using Schlenk tube techniques. In those cases MeOH and EtOH were saturated with argon 

for 30 min before use. CHN analyses were measured with a Vario El III from Elementar 
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AnalysenSysteme. Samples were prepared in a tin boat, and acetanilide was used as standard. 

Mass spectra were recorded with a Finnigan MAT 8500 with a data system MASPEC II. IR 

spectra were recorded with a Perkin–Elmer Spectrum 100 FT-IR spectrometer. TG was 

measured with Netzsch STA 449. 

[Fe(L1)2]·0.5EtOH (1): [Fe(OAc)2] (0.2 g, 1.15 mmol) and HL1 (0.628 g, 2.53 mmol) were 

dissolved in EtOH (15 mL) and the orange solution was heated to reflux for 1 h. After cooling 

to room temperature and left to stand for 1 d, the orange precipitate was filtered, washed six 

times with 3 mL EtOH, and dried in vacuo. Yield: 0.45 g (573.46 g·mol–1, 68%). 

C26H30FeN4O6·0.5EtOH: calcd. C 56.55, H 5.80, N 9.77; found C 56.16, H 5.60, N 9.99%; 

calcd. C 56.55, H 5.80, N 9.77%. MS (EI, pos.) m/z (%): 550 (C26H30FeN4O6, 100), 303 

(C13H15FeN2O3, 35), 93 (C6H6N, 16). IR: ν = 1664 (s, C=O), 1585 (s, C=O) cm–1. TG: up to 

150 °C: –3.4% mass change (corresponds to the loss of 0.5 ethanol molecules, theory: –4.0 %), 

above 150 °C decomposition. 

[Fe(L2)2]·0.5MeOH (2): [Fe(OAc)2] (0.2 g, 1.15 mmol) and HL2 (0.552 g, 2.53 mmol) were 

dissolved in MeOH (20 mL) and the red solution was heated to reflux for 1 h. After cooling to 

room temperature and left to stand for 1 d, the red, crystalline precipitate was filtered, washed 

once with 3 mL MeOH, and dried in vacuo. Yield: 0.28 g (506.36 g·mol–1, 48%). 

C24H26FeN4O4·0.5MeOH: calcd. C 58.11, H 5.57, N 11.06%; found C 58.05, H 5.60, N 11.06%. 

MS (EI, pos.) m/z (%): 490 (C24H26FeN4O4, 100), 273 (C12H13FeN2O2, 93), 93 (C6H6N, 33). IR: 

ν = 1633 (s, C=O), 1562 (s, C=O) cm–1. TG: up to 150 °C: –2.0% mass change (corresponds to 

the loss of 0.5 methanol molecules, theory: –3.2 %), above 150 °C decomposition. 

[Fe(L3)2]·MeOH (3): [Fe(OAc)2] (0.2 g, 1.15 mmol) and HL3 (0.592 g, 2.53 mmol) were 

dissolved in MeOH (15 mL) and the red/brown solution was heated to reflux for 1 h. After 

cooling to room temperature and left to stand for 1 d, the orange precipitate was filtered, washed 

twice with 3 mL MeOH, and dried in vacuo. Yield: 0.25 g (554.38 g·mol–1, 39%). 

C24H26FeN4O6·MeOH: calcd. C 54.16, H 5.45, N 10.11%; found C 53.91, H 5.39, N 10.12%. 

MS (EI, pos.) m/z (%): 522 (C24H26FeN4O6, 100), 289 (C12H13FeN2O3, 52), 93 (C6H6N, 23). IR: 

ν = 1664 (s, C=O), 1588 (s, C=O) cm–1. TG: up to 150 °C: –1.2% mass change (corresponds to 

the loss of 0.25 methanol molecules, theory: –1.5 %), above 150 °C decomposition. 

[Fe(bipy)3]Cl 2·2H2O (16): The complex was synthesized using standard procedures.[24] The 

product precipitated as pink powder with two water molecules. 
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General Synthesis of the Iron(III) Complexes: 1 g of the corresponding ligand (2 equiv.), 

iron(III) nitrate nonahydrate (1.2 equiv.), and sodium acetate (1.2 equiv.) were dissolved in 

100 mL of ethanol (HL1) or methanol (HL2 and HL3) and the dark purple solution was heated 

to reflux for 1 h. This solution was split in aliquots (20 mL) and approximately half of the 

solvent was removed under reduced pressure. The iron(III) complexes were precipitate with an 

aqueous solution (20 mL) of the anion. This precipitate was filtered, washed with water and 

ethanol or methanol, and dried in vacuo.  

[Fe(L1)2]Cl·4H2O (4): Yield: 0.28 g dark purple powder (657.90 g·mol–1, 95%). 

C26H30FeN4O6Cl·4H2O: calcd. C 47.47, H 5.82, N 8.52%; found C 47.09, H 5.96, N 9.03%. 

MS (EI, pos.) m/z (%): 550 (C26H30FeN4O6, 42), 93 (C6H6N, 100). IR: ν = 3395 (br. s, OH), 

1702 (s, C=O), 1588 (s, C=O) cm–1. TG: up to 150 °C: –9.2% mass change (corresponds to the 

loss of 4 water molecules, theory: –10.9 %), above 150 °C decomposition. 

[Fe(L1)2]Br·2H2O (5): Yield: 0.12 g dark purple powder (630.30 g·mol–1, 47%). 

C26H30FeN4O6Br·2H2O: calcd. C 46.90, H 5.10, N 8.40%; found C 46.8, H 5.65, N 8.49%. MS 

(EI, pos.) m/z (%): 550 (C26H30FeN4O6, 7), 131 (C8H7N2, 100), 93 (C6H6N, 82). IR: ν = 3421 

(br. s, OH), 1702 (s, C=O), 1587 (s, C=O) cm–1. TG: up to 150 °C: –3.5% mass change 

(corresponds to the loss of 1 water molecule, theory: –2.8 %), above 150 °C decomposition.  

[Fe(L1)2]PF6·H2O (6): Yield: 0.27 g dark purple powder (713.37 g·mol–1, 95%). 

C26H30FeN4O6PF6·H2O: calcd. C 43.78, H 4.52, N 7.85%; found C 43.87, H 4.58, N 8.03%. 

MS (EI, pos.) m/z (%): 550 (C26H30FeN4O6, 28), 248 (C13H15N2O3, 14), 93 (C6H6N, 100). IR: 

ν = 1684 (s, C=O), 1591 (s, C=O) cm–1. TG: up to 150 °C: –1.4% mass change (corresponds to 

the loss of 1 water molecule, theory: –2.5 %), above 150 °C decomposition. 

[Fe(L1)2]BF4·H2O (7): Yield: 0.22 g dark purple powder (655.21 g·mol–1, 47%). 

C26H30FeN4O6BF4·H2O: calcd. C 47.66, H 4.92, N 8.55%; found C 48.19, H 5.10, N 8.25%. 

MS (EI, pos.) m/z (%): 550 (C26H30FeN4O6, 14), 248 (C13H15N2O3, 17), 93 (C6H6N, 100). IR: 

ν = 1685 (s, C=O), 1587 (s, C=O) cm–1. TG: up to 150 °C: –2.8% mass change (corresponds to 

the loss of 1 water molecule, theory: –2.8 %), above 150 °C decomposition. 

[Fe(L1)2]ClO 4 (8): Yield: 0.19 g dark purple powder (649.84 g·mol–1, 73%). IR: ν = 1685 (s, 

C=O), 1590 (s, C=O) cm–1.  
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[Fe(L2)2]I·2H2O (9): Yield: 0.15 g dark purple powder (653.28 g·mol–1, 59%). 

C24H26FeN4O4I·2H2O: calcd. C 44.13, H 4.63, N 8.58%; found C 44.59, H 4.21, N 8.55%. MS 

(EI, pos.) m/z (%): 490 (C24H26FeN4O4, 4), 93 (C6H6N, 100). IR: ν = 1577 (s, C=O), 1564 (s, 

C=O) cm–1. TG: up to 182 °C: –2.6% mass change (corresponds to the loss of 1 water molecule, 

theory: –2.8 %), above 185 °C decomposition.  

[Fe(L2)2]PF6·H2O (10): Yield: 0.17 g dark purple powder (653.32 g·mol–1, 63%). 

C24H26FeN4O4PF6·H2O: calcd. C 44.12, H 4.32, N 8.58%; found C 43.86, H 4.29, N 8.40 %. 

MS (EI, pos.) m/z (%): 490 (C24H26FeN4O4, 2), 93 (C6H6N, 100). IR: ν = 1581 (s, C=O), 1567 

(s, C=O) cm–1. TG: up to 175 °C: –1.3% mass change (corresponds to the loss of 0.5 water 

molecule, theory: –1.4 %), above 175 °C decomposition.  

[Fe(L3)2]Cl·3H2O (11): Yield: 0.09 g dark purple powder. (611.83 g·mol–1, 32%). 

C24H26FeN4O6Cl·3H2O: calcd. C 47.11, H 5.27, N 10.86%; found C 46.94, H 5.34, N 10.77%. 

MS (EI, pos.) m/z (%): 522 (C24H26FeN4O6, 10), 93 (C6H6N, 22). IR: ν = 3436 (br. s, OH), 1703 

(s, C=O), 1588 (s, C=O) cm–1. TG: up to 150 °C: –10.5% mass change (corresponds to the loss 

of 3.5 water molecules, theory: –10.3 %), above 150 °C decomposition. 

[Fe(L3)2]Br·2H2O (12): Yield: 0.04 g dark purple powder. (638.27g·mol–1, 10%). 

C24H26FeN4O6Br·2H2O: calcd. C 45.16, H 4.74, N 8.78%; found C 45.57, H 4.60, N 9.42%. 

MS (EI, pos.) m/z (%): 234 (C12H13N2O3, 25), 93 (C6H6N, 100). IR: ν = 1703 (s, C=O), 1586 

(s, C=O) cm–1. TG: up to 150 °C: –6.8% mass change (corresponds to the loss of 2.5 water 

molecules, theory: –7.0 %), above 150 °C decomposition. 

[Fe(L3)2]PF6·H2O (13): Yield: 0.14 g dark purple powder. (685.32 g·mol–1, 41%). 

C24H26FeN4O6PF6·H2O: calcd. C 42.06, H 4.12, N 8.18%; found C 42.33, H 4.15, N 8.45%. 

MS (EI, pos.) m/z (%): 522 (C24H26FeN4O6, 9), 93 (C6H6N, 100). IR: ν = 1697 (s, C=O), 1667 

(s, C=O) cm–1. TG: up to 150 °C: –2.2% mass change (corresponds to the loss of 1 water 

molecule, theory: –2.6%), above 150 °C decomposition. 

[Fe(L3)2]BF4·H2O (14): Yield: 0.13 g dark purple powder. (627.16 g·mol–1, 42%). 

C24H26FeN4O6BF4·H2O: calcd. C 45.96, H 4.50, N 8.93%; found C 45.42, H 4.75, N 8.74%. 

MS (EI, pos.) m/z (%): 522 (C24H26FeN4O6, 100), 93 (C6H6N, 43). IR: ν = 1705 (s, C=O), 1589 

(s, C=O) cm–1. TG: up to 150 °C: –1.5% mass change (corresponds to the loss of 0.5 water 

molecules, theory: –1.4 %), above 150 °C decomposition. 
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[Fe(L3)2]ClO 4 (15): Yield: 0.18 g dark purple powder (621.79 g·mol–1, 57%). IR: ν = 1707 (s, 

C=O), 1588 (s, C=O) cm–1.  

[Fe(bipy)3](PF6)3 (17): The complex was synthesized using standard procedures.[25] The 

product precipitated as blue powder with 2 water molecules. 

X-ray Diffraction on Single Crystals: The X-ray analysis was performed with a Stoe 

StadiVari diffractometer using graphite-monochromated Mo-Kα radiation. The data were 

corrected for Lorentz and polarization effects. The structures were solved by direct methods 

(SIR-97)[33] and refined by full-matrix least-square techniques against Fo2–Fc2 (SHELXL-

97).[34] All hydrogen atoms were calculated in idealized positions with fixed displacement 

parameters. ORTEP-III[35] was used for the structure representation, SCHAKAL-99[36] to 

illustrate molecule packing. Crystallographic data (excluding structure factors) for the 

structures in this paper have been deposited with the Cambridge Crystallographic Data Centre, 

CCDC, 12 Union Road, Cambridge CB21EZ, UK. Copies of the data can be obtained free of 

charge on quoting the depository numbers CCDC-1862181, CCDC-1862182, CCDC-1862183, 

and CCDC-1862184 (Fax: +44-1223-336-033; E-Mail: deposit@ccdc.cam.ac.uk, 

http://www.ccdc.cam.ac.uk). 

Magnetic Measurements: Magnetic measurements on the compounds were carried out using 

a SQUID MPMS-XL5 from Quantum Design with an applied field of 5000 G, and in the 

temperature range from 300 to 50 K in settle mode. The complexes 16 and 17 were investigated 

up to 400 K. The sample was prepared in a gelatine capsule held in a plastic straw. The raw 

data were corrected for the diamagnetic part of the sample holder and the diamagnetism of the 

organic ligand using tabulated Pascal’s constants. 

Optical Properties: Absorbance spectra were obtained with an Agilent UV/Vis 

spectrophotometer 8453 (Agilent Technologies, USA) operating in a spectral range of 190–

1100 nm. The spectra were measured at 298 K in quartz cells with 1 cm lightpath (Hellma, 

Germany). 

Cyclic Voltammetry: Redox potentials were obtained with a CH Instruments Electrochemical 

Analyser (610E) in 0.1 M NBu4PF6/MeCN with a platinum electrode, referenced to 0.01 M 

AgNO3 at room temperature with a scan rate of 50 mV·s–1.  
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Supporting Information (see footnote on the first page of this article): Crystallographic data 

of 3, 8a, 10a, and 15a, magnetic measurements, UV-Vis spectra, cyclic voltammograms, and 

TG measurements can be found in the Supporting Information. 
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 Supporting Information  

 

Table S1. Crystallographic data of the complexes presented in this work.  

 8a 10a 15a 3 

CCDC 1862182 1862183 1862184 1862181 

sum formula C26H30FeN4O6, ClO4 C24H26FeN4O4, F6P, 

C2H3N 

C24H26FeN4O6, ClO4 C24H26FeN4O6, CH4O 

M/ g mol-1 649.84 676.36 621.79 554.38 

crystal system triclinic monoclinic monoclinic triclinic 

space group -11 I2/c P21/c -11 

crystal description dark purple prism purple plate purple block red plate 

a/ Å 10.6724(4) 17.5376(8) 8.8991(6) 10.3791(10) 

b/ Å 12.1462(5) 8.5840(4) 17.0675(8) 12.8918(15) 

c/ Å 12.7400(5) 37.4666(15) 17.13478(8) 20.048(2) 

α/ ° 87.407(3) 90 90 94.526(9) 

β/ ° 70.186(3) 90.865(4) 101.188(5) 90.124(8) 

γ/ ° 70.671(3) 90 90 111.074(8) 

V/ Å3 1461.95(11) 5639.7(4) 2584.8(3) 2494.0(5) 

Z 2 8 4 4 

ρcalcd/ g cm-3 1.476 1.593 1.598 1.477 

µ/ mm-1 0.669 0.674 0.753 0.658 

crystal size /mm 0.125×0.110×0.106 0.120×0.081×0.057 0.130×0.116×0.098 0.115×0.085×0.079 

F(000) 674 2776 1284 1160 

T/ K 133 133 133 133 

λ/ Å Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 

Θ range/ ° 1.7–28.5 2.2–28.6 1.7–28.6 1.7–28.1 

Reflns. collected 22010 11059 11273 23932 

Indep. reflns.(Rint) 6829 (0.031) 6707 (0.051) 6112 (0.037) 10996 (0.192) 

Parameters 389 429 361 664 

R1 (all data) 0.0333 0.0447 0.0456 0.1437 

wR2 0.0989 0.1155 0.1309 0.4062 

GooF 1.05 0.92 1.06 0.92 
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Figure S1. ORTEP drawing of 8a including the disorder of the side chain. Ellipsoids were drawn at 50 % 

probability level. Hydrogen atoms were omitted for clarity. 

 

 

Figure S2. ORTEP drawing of 10a including the disorder of the anion. Ellipsoids were drawn at 50 % probability 

level, hydrogen atoms were omitted for clarity.  
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Table S2. Summary of the C–H···π / X–Y···π interactions of the complexes presented in this work. 

  Cg H···Cg/Å 

Y···Cg/Å 

X–H···Cg/° 

X–Y···Cg/° 

X···Cg/Å 

8a C33–H33 N11–C11–C12–C13–C14–C15a 2.72 173 3.662(2) 

 C36–H36B Fe1–O31–C39–C38–C37–N32b 2.87 141 3.691(2) 

 C41–O32 N31–C31–C32–C33–C34–C35b 3.3029(17) 83.63(12) 3.389(2) 

10a C22–H22A Fe1–O11–C19–C18–C17–N12c 2.83 143 3.661(3) 

 C32–H32 N11–C11–C12–C13–C14–C15d 2.99 139 3.758(3) 

 C40–H40B N31–C31–C32–C33–C34–C35e 2.67 141 3.489(3) 

 C51–H51A N31–C31–C32–C33–C34–C35e 2.76 154 3.667(6) 

 C41–O32 N31–C31–C32–C33–C34–C35e 3.644(2) 89.24(17) 3.829(3) 

15a C42–H42A Fe1–O31–C39–C38–C37–N32f 2.77 170 3.738(4) 

a: 1−x, 1−y, 1−z; b: 2−x, 1−y, 1−z; c: 1/2−x, ½+y, −z; d: x, 4+y, z; e: x, −1+y, z; f: 1−x, −y, 1−z. 

 

Table S3. Selected distances and angles of the π– π and M– π interactions of the complexes presented in this work. 

Cg(I) is the centroid of the ring number I, α is the dihedral angle between the rings, β is the angle between the 

vector Cg(I) → Cg(J) and the normal to ring I, γ is the angle between the vector Cg(I) → Cg(J) and the normal to 

ring J. 

 Cg(I) Cg(J) Cg–Cg/Å α/° β/° γ/° 

8a N31–C31–C32–C33–C34–C35 N31–C31–C32–C33–C34–C35a 3.6622(11) 0.04(9) 18.6 18.6 

a: 1−x, 1−y, 1−z. 
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Table S4. Hydrogen bonds and angles of complexes presented in this work. 

 Donor Acceptor D–H/Å H···A/Å D ···A/Å D–H···A/° 

8a C12–H12 O12a 0.95 2.60 3.207(2) 122 

 C13–H13 O12a 0.95 2.59 3.203(2) 123 

 C14–H14 O41b 0.95 2.48 3.184(3) 131 

 C16–H16A O43 0.99 2.59 3.565(4) 170 

 C16–H16A O44 0.99 2.57 3.358(2) 136 

 C16–H16B O31c 0.99 2.52 3.445(2) 155 

 C31–H31 O44 0.95 2.48 3.335(2) 150 

 C32–H32 O42 0.95 2.56 3.255(3) 130 

 C34–H34 O43d 0.95 2.54 3.473(4) 167 

 C42–H42A O12e 0.99 2.54 3.384(2) 144 

10a C16–H16A F13 0.99 2.47 3.323(3) 144 

 C22–H22A O31f 0.98 2.54 3.378(3) 143 

 C33–H33 F23Bg 0.95 2.42 3.163(8) 135 

 C36–H36A F22Bh 0.99 2.28 3.059(7) 134 

 C51–H51C O32i 0.98 2.22 3.183(6) 168 

15a C11–H11 O52k 0.95 2.53 3.129(5) 121 

 C12–H12 O52k 0.95 2.46 3.087(5) 124 

 C13–H13 O54l 0.95 2.55 3.396(7) 149 

 C14–H14 O12m 0.95 2.41 3.198(4) 140 

 C16–H16B O53 0.99 2.46 3.298(9) 142 

 C31–H31 O51 0.95 2.58 3.391(5) 143 

 C32–H32 O32n 0.95 2.33 3.198(5) 151 

 C36–H36A O51o 0.99 2.53 3.427(5) 151 

 C40–H40B O32b 0.98 2.58 3.336(4) 134 

a: x, y, −1+z; b: 1−x, −y, 1−z; c: 2−x, −y, 1−z; d: 1−x, 1−y, 1−z; e: 1+x, y, −z+1; f: 1/2−x, 1/2+y, −z; g: x, 1+y, z; h: 1−x, y, 1/2−z; i: 1/2+x, 

−5/2−y, z; k: 1/2+x, 1/2−y, −1/2+z; l: 1+x, y, z; m: 1−x, −y, 2−z; n: −1/2+x, 1/2−y, 1/2+z; o: −1/2+x, 1/2−y, −1/2+z. 
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Figure S3. Plots of the χMT product vs. T for the iron(II) complexes 1 (left) and 2 (right).  
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Figure S4. Plots of the χMT product vs. T for complexes 4 (top left), 6 (top right), 7 (middle left), 8 (middle right), 

9 (bottom left), and 10 (bottom right). 
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Figure S5. Plots of the χMT product vs. T for complexes 11 (top left), 12 (top right), 13 (middle left), 14 (middle 

right), and 15 (bottom). 
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Figure S6. UV-Vis spectra of complexes 1 (top left), 2 (top right), 3 (middle left), 4 (middle right), 5 (bottom left), 

and 6 (bottom right).  
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Figure S7. UV-Vis spectra of complexes 7 (top left), 8 (top right), 9 (middle left), 10 (middle right), 11 (bottom 

left), and 12 (bottom right).  
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Figure S8. UV-Vis spectra of complexes 13 (top left), 14 (top right), and 15 (bottom).  
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Figure S9. Cyclic voltammograms of complexes 1 (top left), 2 (top right), 3 (middle left), 4 (middle right), 5 

(bottom left), and 6 (bottom right).  
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Figure S10. Cyclic voltammograms of complexes 7 (top left), 8 (top right), 9 (middle left), 10 (middle right), 11 

(bottom left), and 12 (bottom right).  
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Figure S11. Cyclic voltammograms of complexes 13 (top left), 14 (top right), 15 (bottom left), and 17 (bottom 

right).  
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Figure S12. TG measurements of 1–6. 
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Figure S13. TG measurements of 7–14. 
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Abstract: Here we present two isostructural iron(III) spin crossover complexes with the same 

tridentate ligand and perchlorate or tetrafluoroborate as counter ion. Single crystal X-ray 

structures in the high spin and low spin state were obtained for both complexes. An abrupt spin 

transition above 100 K is observed with the transition temperature depending on the size of the 

anion. 

 

 Introduction 

 

Spin crossover (SCO) is an interesting phenomenon which can occur in 3d transition metal 

complexes with a d4–7 electronic configuration. The spin state of the metal centre can be 

switched between the high spin (HS) state and the low spin (LS) state by external stimuli such 

as temperature, pressure, or light irradiation. This results in significant changes in the structural, 

vibrational, magnetic, or optical properties of the material.[1] Due to the pronounced property 

changes in SCO compounds, various applications, such as data storage and/or 
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temperature/pressure sensors are possible.[2,3] For iron(III) complexes both spin states are 

paramagnetic with S = 5/2 (HS) and S = 1/2 (LS). Upon SCO the bond lengths shorten and the 

volume of the unit cell is smaller in the LS than in the HS state. In the case of iron(II) the 

structural and magnetic changes upon SCO are more pronounced with a paramagnetic (S = 2) 

HS state and a diamagnetic (S = 0) LS state. However, iron(II) complexes are often air sensitive. 

Therefore the focus has recently shifted towards the more stable iron(III) complexes.[4,5] 

Compared to the large amount of iron(II) spin crossover complexes, where systematic 

investigations on the impact of different parameters such as counter ions or the inclusion of 

solvent molecules on the spin crossover properties (hysteresis, control of transition 

temperature) are available,[3,6] in the case of iron(III) the data base is limited.  

Recently, we published the synthesis and magnetic behaviour of iron(II) and iron(III) 

complexes with tridentate, Schiff base-like ligands. We found that the iron(II) complexes 

remain HS, whereas the iron(III) complexes show mostly gradual and incomplete SCO.[7] Here 

we report two isostructural iron(III) complexes with the same tridentate NNO Schiff base-like 

ligand, but different anions (BF4
− and ClO4

−) both showing a similar abrupt SCO. It is well 

known, that different anions alter the magnetic properties of iron(II) and iron(III) complexes.[8–

11] In the case of iron(III) quinolylsalicyladimate complexes it was possible to tune the SCO 

properties through variation of the size of the counter ion, small anions stabilised the LS state 

whereas larger anions stabilised the HS state.[12] However, the opposite trend was observed for 

[Fe(Him)2(happen)]+ complexes.[13] Those examples show that it is difficult to establish general 

rules, especially since differences in size and shape of the anions often trigger differences in 

the crystal packing.  

 

 Results and discussion 

 

Here we present a pair of isostructural complexes that allow a direct evaluation of the impact 

of anion size on the transition temperature. The complexes were synthesised using the same 

synthetic procedure as described previously.[7] The tridentate Schiff base-like ligand HL, 

iron(III) nitrate nonahydrate, and sodium acetate were dissolved in methanol and heated to 

reflux for one hour. The respective iron(III) SCO complexes [Fe(L)2]BF4 (1) or [Fe(L)2]ClO4 
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(2) were precipitated by adding an aqueous solution of the corresponding anion BF4
− (1) or 

ClO4
− (2) (Scheme 1). 

 

 

Scheme 1 Synthesis of the complexes discussed in this work and used abbreviations. 

 

Crystals suitable for X-ray structure analysis were obtained by slow diffusion of diethyl ether 

into an acetonitrile solution of the coordination compound. The two iron(III) complexes 

crystallise in the orthorhombic space group P212121 and the crystallographic data were 

determined at 175 K (1-HS), 150 K (2-HS), 133 K (1-LS), and 100 K (2-LS) and are 

summarised in the ESI, Table S1. An ORTEP drawing of 1 and 2 in the LS state is shown in 

Fig. 1, ORTEP drawings of both spin states of the complexes with a full numbering scheme is 

given in the ESI, Fig. S1 and S2. The asymmetric unit consists of one complex molecule and 

one anion for both complexes. The iron(III) centre is coordinated by two tridentate ligands in 

an octahedral fashion.  

Selected bond lengths, angles, and the octahedral distortion parameter Σ of the coordination 

sphere are given in Table 1. The bond lengths are significantly shorter in the LS state than in 

the HS state (Fe–Npy 0.15 Å, Fe–Nax 0.13 Å, and Fe–O 0.06 Å in average). In order to determine 

the spin state of the iron(III) centre the Npy–Fe–O angle was taken into account; it has an average 

value of 162° in the HS state and 173° in the LS state for both complexes. The calculated 

octahedral distortion parameter Σ supports this assumption, as it is much larger in the HS state 

(80° for 1-HS and 84° for 2-HS) than in the LS state (43° for 1-LS and 44° for 2-LS). This is 

in agreement with previously reported complexes of this type.[5,7]  
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Fig. 1 ORTEP drawing of 1 (LS, left) and 2 (LS, right). Ellipsoids were drawn at 50% probability level. Hydrogen atoms were 
omitted for clarity. 

 

Due to the occupation of the anti-bonding eg* orbitals in the HS state the bond lengths within 

the first coordination sphere are significantly longer than in the LS state. The volume of the unit 

cell is 2.8% (1) and 2.3% (2) larger in the HS state compared to the LS state.  

 

Table 1. Spin state, selected bond lengths [Å], angles [°], and the octahedral distortion parameter Σ [°] of complexes 1 and 2. 
 S Fe–Npy Fe–Nax Fe–O Npy–Fe–O Σ 

1-HS 5/2 2.133(4) 

2.108(4) 

2.028(3) 

2.046(3) 

1.953(3) 

1.956(3) 

161.69(14) 

162.79(14) 

80 

1-LS 1/2 1.982(4) 

1.973(3) 

1.901(3) 

1.912(3) 

1.902(3) 

1.904(3) 

171.40(14) 

174.11(15) 

43 

2-HS 5/2 2.145(3) 

2.114(3) 

2.030(3) 

2.057(3) 

1.956(3) 

1.954(3) 

160.84(12) 

162.22(12) 

84 

2-LS 1/2 1.978(3) 

1.962(3) 

1.901(3) 

1.911(3) 

1.904(2) 

1.9040(19) 

171.25(12) 

173.97(12) 

44 

 

Several C–H⋯π interactions and hydrogen bonds are present in the crystal packing of the 

complexes. Details of those intermolecular interactions are summarised in Tables S2 and S3. 

As previously shown,[7] the complex molecules form two different layers in the crystal packing, 

with each layer being separated from the other by the anions. The molecules in the first layer 

are turned 180° with respect to the second layer (Fig. 2).  
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Fig. 2 Packing of 1 (HS, top left and LS, top right) and 2 (HS, bottom left and LS, bottom right) in the crystal along [100]. 
Hydrogen atoms were omitted for clarity. Red and blue boxes highlight the different layers discussed in the main text. 

 

In the HS state of both complexes two C–H⋯π interactions are present; one between the 

aromatic C3–H3 of one pyridyl ring and the six-membered ring made up by the chelate cycle 

of one tridentate ligand and the iron(III) centre (Fe1–O21–C29–C28–C27–N22). The second 

one is between a methyl group of one tridentate ligand (C30–H30B for 1 and C30–H30C for 2) 

and the pyridyl ring of a neighbouring ligand (N21–C21–C22– C23–C24–C25). In the LS state 

of both complexes, only the second C–H⋯π interaction can be found. Many non-classical 

hydrogen bonds are observed for both complexes in both spin states; mostly between C–H 

groups of the tridentate ligands and the fluorine or the oxygen atoms of the respective anions. 

Interactions between C–H groups and keto oxygens of a neighbouring ligand are observed as 
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well. In complex 1, there are two hydrogen bonds which are present in the HS state, but not in 

the LS state, namely C1–H1⋯F2 and C26–H26B⋯F3. In case of complex 2, C1–H1⋯O31 is 

the only interaction which can be observed in the HS, but not the LS state. Pictures of the 

packing of the complexes highlighting the hydrogen bonds are shown in Fig. 3.  

 

 
Fig. 3 Packing of 1 (HS, top left and LS, top right) and 2 (HS, bottom left and LS, bottom right) in the crystal along [010]. 
Hydrogen atoms not involved in any hydrogen bonds were omitted for clarity. Hydrogen bonds were drawn as pink, dashed 
lines. 

 

The Hirshfeld surface, mapped over dnorm, of complex 1-HS is shown in Fig. 4, top left as 

example. There are dominant H⋯O interactions between the methyl group of one ligand and 

the keto oxygen of another (highlighted with a red circle in Fig. 4). Those interactions appear 

as distinct spikes in the 2D fingerprint plot (Fig. 4, bottom left) and form a chain of complex 

molecules along [100]. Other visible spots in the surface are caused by H⋯F interactions 

involving the BF4− anion and H⋯H interactions. The same kind of interactions are observed for 

the LS state of the complex, as well as for complex 2 in both spin states. The Hirshfeld surfaces 
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and fingerprint plots for those structures can be found in the ESI, Fig. S3–S5. The relative 

contribution of the different interactions to the Hirshfeld surface was calculated and is shown 

in Fig. 5. It can be seen that most interactions originate form H⋯H contacts, H⋯O interactions 

to keto oxygen, and H⋯anion interactions. Please note the very similar results for both 

complexes in both spin states that explains nicely the very similar spin crossover curve for both 

samples.  

 

 
Fig. 4 Hirshfeld surface mapped with dnorm (top left), fingerprint plots: full (top right), resolved into H⋯O/O⋯H (bottom left), 
and H⋯F/F⋯H (bottom right) contacts of complex 1-HS. 
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Fig. 5 Relative contributions of different intermolecular interactions to the Hirshfeld surface area. 

 

Temperature dependent magnetic susceptibility measurements were performed using a SQUID 

magnetometer to investigate the possible SCO properties of the two complexes. Measurements 

were performed with an applied field of 5000 G and in settle mode. Both complexes show an 

abrupt ST below 200 K; the χMT vs. T plots are shown in Fig. 6. At 300 K the iron centres of 

both complexes are clearly in the HS state with χMT values of 4.60 and 4.23 cm3 K mol−1 (1 

and 2, respectively). The transition temperature T1/2 for complex 1 is at 145 K and for complex 

2 115 K. At 50 K, the χMT values indicate a clear LS state for both complexes (0.57 and 0.58 

cm3 K mol−1, respectively). Those values are typical for both spin states of iron(III) complexes 

with this ligand type.[7] A small kinetic effect can be observed for the ST, the compounds show 

a small (7 K wide) hysteresis when measured in sweep mode with a scan rate of 5 K min−1 (Fig. 

S6). This hysteresis disappears when the samples were measured in settle mode.  

 

 
Fig. 6 Plot of the χMT product vs. T for complex 1 (left) and 2 (right). 
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The abrupt spin transition can be explained with the large number of intermolecular 

interactions, while the kinetic effects are most likely due to the breaking of intermolecular 

interactions in the crystal packing of the complexes (transition from HS to LS state). The 

differences in the transition temperature between the two complexes is best explained with the 

size of the counter ion. The smaller BF4
− in 1 stabilises the LS state leading to a higher T1/2 

compared to 2 with the larger ClO4− as anion. This trend is comparable to the matrix effects 

observed for metal dilution experiments for iron(II) complexes, where an substitution of iron(II) 

by manganese(II) or zinc(II) shifts the transition temperature due to a variation of the internal 

pressure of the different host lattices.[14,15] For the example [Fe/Zn/Mn(pic)3]2+ (pic = 2-

picolylamine) the smaller zinc(II) ion stabilises the LS state by increasing T1/2 to 117 K 

compared to the corresponding host lattice with the larger manganese(II) (T1/2 = 97 K) and the 

pure iron(II) complex (T1/2 = 74 K).[14] A similar effect upon halogen substitution on the spin 

transition temperature in iron(III) complexes was recently observed for compounds bearing 

salicylaldehyde-2-pyridyl-hydrazone-type ligands and dicarboxylic acids as counter ion.[16]  

 

 Conclusions 

 

We presented two isostructural iron(III) spin crossover complexes with the same tridentate 

ligand but different anions. Both complexes were investigated considering their magnetic 

behaviour and showed an abrupt, complete spin transition above 100 K. It was possible to obtain 

the single crystal X-ray structures of both complexes in the high spin and the low spin state. 

Both compounds crystallised in the orthorhombic space group P212121. The packing of the two 

complexes in the crystal is the same, for the spin transition of complex 1 two hydrogen bonds 

have to be broken, whereas only one of those is missing in the low spin state of complex 2. The 

transition temperature is shifted by 30 K to lower temperature for 2 with the larger anion. This 

can be explained with different internal pressures generated by the host lattice.  
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 Supporting Information 

 

Experimental: 

The ligand HL was synthesised as published previously.[1] All other chemicals were 

commercially available and used without further purification. CHN analyses were measured 

with a Vario El III from Elementar AnalysenSysteme. Samples were prepared in a tin boat, and 

acetanilide was used as standard. Mass spectra were recorded with a Finnigan MAT 8500 with 

a data system MASPEC II. IR spectra were recorded with a Perkin Elmer Spectrum 100 FT-IR 

spectrometer. 

[FeL2]BF4 (1). HL (0.2 g, 0.9 mmol, 1 eq), sodium acetate (0.05 g, 0.9 mmol, 1 eq), and iron(III) 

nitrate nonahydrate (0.22 g, 0.55 mmol, 0.6 eq) were dissolved in ethanol (20 mL) and the 
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resulting purple solution was heated to reflux for 1 h. After cooling to room temperature, 

approximately half of the solvent was removed under reduced pressure. Sodium 

tetrafluoroborate (1.14 g, 10 mmol, 25 eq) was dissolved in 20 mL water and added to the purple 

solution. The mixture was stirred at room temperature for 10 min, the resulting purple solid was 

filtrated, washed with a few mL of water and dried in vacuo. Yield: 0.10 g (577.15 g·mol−1, 40 

%). Elemental analysis (C24H26BF4FeN4O4, %) measured (calcd.): C 49.32 (49.95), H 4.30 

(4.54), N 9.56 (9.71). MS (EI, pos.) m/z (%): 490 (C24H26FeN4O4, 36), 93 (C6H6N, 100) 43 

(C2H3O, 25). IR: ν = 1579 (s, C=O), 1568 (s, C=O) cm−1.  

[FeL2]ClO4 (2). HL (0.2 g, 0.9 mmol, 1 eq), sodium acetate (0.05 g, 0.9 mmol, 1 eq), and 

iron(III) nitrate nonahydrate (0.22 g, 0.55 mmol, 0.6 eq) were dissolved in ethanol (20 mL) and 

the resulting purple solution was heated to reflux for 1 h. After cooling to room temperature, 

approximately half of the solvent was removed under reduced pressure. Barium perchlorate 

trihydrate (5.37 g, 10 mmol, 25 eq) was dissolved in 20 mL water and added to the purple 

solution. The mixture was stirred at room temperature for 10 min, the resulting purple solid was 

filtrated, washed with a few mL of water and dried in vacuo. Yield: 0.14 g (589.79 g·mol−1, 43 

%). IR: ν = 1579 (s, C=O), 1567 (s, C=O) cm−1.  

Single crystal X-ray structure analysis 

X-ray structure analysis of the crystals was performed with a Stoe StadiVari diffractometer 

using graphite-monochromated MoKα radiation. The data were corrected for Lorentz and 

polarization effects. The structures were solved by direct methods (SIR-97)[2] and refined by 

fullmatrix least-square techniques against Fo2–Fc2 (SHELXL-2017).[3] All hydrogen atoms 

were calculated in idealised positions with fixed displacement parameters. ORTEP-III[4] was 

used for the structure representation, SCHAKAL-99[5] to illustrate molecule packing. The 

Hirshfeld surfaces were mapped with dnorm, and 2D fingerprint plots were generated using 

CrystalExplorer 17.5.[6] Graphical plots of the molecular Hirshfeld surfaces use a red-white-

blue colour scheme. Red highlights contacts shorter than the van der Waals separation, contacts 

around the van der Waals separation are white, and blue is used for longer contacts.  

CCDC (1898802–1898805) contain the supplementary crystallographic data for this paper. 

These data can be obtained free of charge from The Cambridge Crystallographic Data Centre. 
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Magnetic measurements 

Magnetic measurements on the compounds were carried out using a SQUID MPMS-XL5 from 

Quantum Design with an applied field of 5000 G, and in the temperature range from 300 to 50 

K in settle and in sweep (5 K/min) mode. The sample was prepared in a gelatine capsule held 

in a plastic straw. The raw data were corrected for the diamagnetic part of the sample holder 

and the diamagnetism of the organic ligand using tabulated Pascal’s constants.[7] 

 

Table S1. Crystallographic data for the complexes at different temperatures presented in this work.  

 1-HS 1-LS 2-HS 2-LS 

CCDC 1898802 1898803 1898804 1898805 

formula C24H26FeN4O4, BF4 C24H26FeN4O4, BF4 C24H26FeN4O4, ClO4 C24H26FeN4O4, ClO4 

sum formula C24H26BF4FeN4O4 C24H26BF4FeN4O4 C24H26ClFeN4O8 C24H26ClFeN4O8 

M/ g mol-1 577.15 577.15 589.79 589.79 

crystal system orthorhombic orthorhombic orthorhombic orthorhombic 

space group P212121 P212121 P212121 P212121 

crystal description purple plate purple plate purple plate purple plate 

a/ Å 8.6392(3) 8.6111(3) 8.6776(3) 8.6347(3) 

b/ Å 16.7578(5) 16.4406(5) 16.8062(8) 16.5568(7) 

c/ Å 17.6029(8) 17.5177(8) 17.6168(6) 17.5497(6) 

α/ ° 90 90 90 90 

β/ ° 90 90 90 90 

γ/ ° 90 90 90 90 

V/ Å3 2548.44(16) 2480.01(16) 2569.19(17) 2508.96(16) 

Z 4 4 4 4 

ρcalcd/ g cm-3 1.504 1.546 1.525 1.561 

µ/ mm-1 0.660 0.678 0.747 0.765 

crystal size/ mm 0.115×0.052×0.029 0.115×0.052×0.029 0.087×0.078×0.038 0.087×0.078×0.038 

F(000) 1188 1188 1220 1220 

T/ K 175 133 150 100 

λ/ Å Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 

Θ range/ ° 1.7–28.5 2.3–28.6 2.3–28.5 2.3–28.5 

Reflns. collected 12870 14682 13721 13617 

Indep. reflns.(Rint) 5894 (0.054) 5782 (0.062) 6016 (0.045) 5863 (0.039) 

Parameters 343 343 343 343 

R1 (all data) 0.0461 0.0477 0.0405 0.0368 

wR2 0.0940 0.0975 0.0705 0.0649 

GooF 0.89 0.89 0.89 0.90 

Flack x −0.030(17) −0.02(2) −0.022(13) −0.001(12) 
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Figure S1. ORTEP drawing of 1 in the HS state (top) and LS state (bottom). Ellipsoids were drawn at 50 % 

probability level. Hydrogen atoms were omitted for clarity.  
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Figure S2. ORTEP drawing of 2 in the HS state (top) and LS state (bottom). Ellipsoids were drawn at 50 % 

probability level. Hydrogen atoms were omitted for clarity.  

 

 

Table S2. Summary of the C–H···π interactions of the complexes presented in this work. 

  Cg H···Cg/Å 

Y···Cg/Å 

X–H···Cg/° 

X–Y···Cg/° 

X···Cg/Å 

1-HS C3–H3 Fe1–O21–C29–C28–C27–N22a 2.95 153 3.818(6) 

 C30–H30B N21–C21–C22–C23–C24–C25b 2.72 134 3.470(5) 

1-LS C30–H30B N21–C21–C22–C23–C24–C25c 2.61 143 3.444(5) 

2-HS C3–H3 Fe1–O21–C29–C28–C27–N22d 2.95 153 3.824(4) 

 C30–H30C N21–C21–C22–C23–C24–C25c 2.73 134 3.481(4) 

2-LS C30–H30C N21–C21–C22–C23–C24–C25b 2.59 148 3.465(4) 

a: 3/2−x, 2−y, −1/2+z; b: 1+x, y, z; c: −1+x, y, z; d: 1/2−x, −y, 1/2+z. 
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Table S3. Hydrogen bonds and angles of complexes presented in this work. 

 Donor Acceptor D–H/Å H···A/Å D ···A/Å D–H···A/° 

1-HS C1–H1 F2a 0.95 2.54 3.008(6) 111 

 C7–H7 O2b 0.95 2.50 3.090(6) 121 

 C21–H21 F4c 0.95 2.43 3.089(6) 126 

 C23–H23 F2d 0.95 2.42 3.179(6) 137 

 C24–H24 F1d 0.95 2.52 3.357(6) 146 

 C26–H26B F3a 0.99 2.52 3.380(6) 145 

 C32–H32B O22e 0.98 2.31 3.253(8) 161 

 C32–H32A F1a 0.98 2.49 3.320(6) 142 

1-LS C7–H7 O2f 0.95 2.49 3.187(6) 131 

 C21–H21 F4g 0.95 2.47 3.346(6) 152 

 C23–H23 F1h 0.95 2.41 3.120(6) 132 

 C24–H24 F2h 0.95 2.48 3.340(6) 151 

 C32–H32A F2c 0.98 2.54 3.327(6) 137 

 C32–H32B O22i 0.98 2.36 3.308(7) 170 

2-HS C1–H1 O31k 0.95 2.60 3.039(5) 109 

 C7–H7 O2l 0.95 2.48 3.076(5) 120 

 C21–H21 O33c 0.95 2.53 3.135(4) 121 

 C23–H23 O31m 0.95 2.43 3.192(5) 137 

 C24–H24 O32m 0.95 2.55 3.384(5) 147 

 C26–H26A O34k 0.99 2.52 3.377(5) 145 

 C32–H32B O22n 0.98 2.31 3.264(6) 166 

 C32–H32C O32k 0.98 2.54 3.323(6) 137 

2-LS C7–H7 O2o 0.95 2.49 3.198(4) 132 

 C21–H21 O33p 0.95 2.51 3.383(4) 153 

 C23–H23 O32q 0.95 2.44 3.150(4) 131 

 C24–H24 O34q 0.95 2.50 3.364(4) 152 

 C26–H26A O33c 0.99 2.58 3.395(4) 140 

 C32–H32B O22r 0.98 2.39 3.347(4) 165 

 C32–H32C O34c 0.98 2.55 3.298(4) 133 

a: 1−x, −1/2+y, 3/2−z; b: 1/2+x, 5/2−y, 2−z; c: x, y, z; d: −x, −1/2+y, 3/2−z; e: −1/2+x, 3/2−y, 2−z; f: −1/2+x, 5/2−y, 2−z; g: 2−x, −1/2+y, 

3/2−z; h: 1+x, y, z; i: 1/2+x, 7/2−y, 2−z; k: 1−x, 1/2+y, 3/2−z; l: −1/2+x, −1/2−y, 1−z; m: 2−x, 1/2+y, 3/2−z; n: 1/2+x, 1/2−y, 1−z; o: 1/2+x, 

1/2−y, −z; p: 1−x, 1/2+y, 1/2−z; q: −1+x, y, z; r: −1/2+x, −1/2−y, −z.  
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Figure S3. Hirshfeld surface mapped with dnorm (top left), fingerprint plots: full (top right), resolved into 

H···O/O···H (bottom left), and H···F/F···H (bottom right) contacts of complex 1-LS. 
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Figure S4. Hirshfeld surface mapped with dnorm (top left), fingerprint plots: full (top right), and resolved into 

H···O/O···H (bottom left) of complex 2-HS. 
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Figure S5. Hirshfeld surface mapped with dnorm (top left), fingerprint plots: full (top right), and resolved into 

H···O/O···H (bottom left) contacts of complex 2-LS. 

 

 

Figure S6. Plot of the χMT product vs. T for complex 1 (left) and 2 (right) measured in sweep mode with a scan 

rate of 5 K/min. 
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Abstract:  The synthesis of bio-based and biodegradable plastics is a hot topic in research due 

to growing environmental problems caused by omnipresent plastics. As a result, polylactide, 

which has been known for years, has seen a tremendous increase in industrial production. 

Nevertheless, the manufacturing process using the toxic catalyst Sn(Oct)2 is very critical. As an 
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alternative, five zinc acetate complexes have been synthesized with Schiff base-like ligands that 

exhibit high activity in the ring-opening polymerization of non-purified lactide. The systems 

bear different side arms in the ligand scaffold. The influence of these substituents has been 

analyzed. For a detailed description of the catalytic activities, the rate constants kapp and kp were 

determined using in-situ Raman spectroscopy at a temperature of 150°C. The polymers 

produced have molar masses of up to 71 000 gmol−1 and are therefore suitable for a variety of 

applications. Toxicity measurements carried out for these complexes proved the nontoxicity of 

the systems. 

 

 Introduction 

 

The rising littering of our planet with plastics and the increasing scarcity of crude oil pose new 

challenges for society.[1] In addition to recycling systems and natural materials, bio-based and 

biodegradable plastics are a good alternative.[2] A plastic that meets both criteria is 

polylactide.[3] Sugarcane, sugar beets or maize serve as raw material source. After a 

fermentation process of the material, the lactic acid is obtained, which is esterified in a 

subsequent condensation reaction to the cyclic dimer, being the monomer unit lactide. By a 

controlled ring-opening polymerization, the corresponding polymer polylactide is then 

synthesized.[4] The controlled ring-opening succeeds with the aid of suitable catalysts.[5] From 

an economic point of view, some requirements are placed on the catalyst. In addition to cost-

effective production, high activities, low concentrations of use and robustness against air and 

moisture are in the foreground. In addition, the turnover must be ensured at temperatures 

beyond 130°C and colourless polymers are to be obtained.[6] The tin octanoate (Sn(Oct)2) 

(Oct=OCO(CH2)6CH3) fulfils these properties and is therefore currently the most widely used 

catalyst in the industrial production of PLA.[7] Since the catalyst is not removed after melt 

polymerization, it remains in the polymer and it is assumed that the tin(II) compound 

accumulates during the compost degradation of polylactide. For a long time, the toxicity of this 

tin compound has been known, so a replacement for Sn(Oct)2 is strongly advised to keep the 

bioplastic PLA “green” even if the catalyst remains in the polymer matrix.[8] Zinc-based catalyst 

systems are therefore an excellent alternative. Thus, Coates et al. developed various zinc 

complexes with β-diiminates as ligand.[9] Zinc aminophenolates from Ma et al.,[10] 
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Mehrkhodavandi et al.,[11] Tolman et al.[12] showed high activities and stereoselectivities. Hayes 

and Wheaton et al. developed zinc complexes bearing phosphinimines[13] and Schulz et al.[14] 

zinc ketoiminate and β-diketiminate complexes. Different zinc alkoxides with trispyrazolyl- 

and trisindazolylborate ligands have been designed and tested by Chisholm et al.[15] Zinc 

complexes containing OOO-tridentate bis(phenolate) or tris(pyrazolyl) methane ligands have 

been applied successfully in the ROP of lactide by Mountford et al.[16] In 2016 Williams et al. 

presented dinuclear zinc systems, which reached the highest activity in the area of zinc catalysts 

up to now.[17] While the above-mentioned systems have been tested mainly in solution and with 

purified lactide, the activity of the catalyst with non-purified lactide, low catalyst concentrations 

and high temperatures is an important criterion for industrial use. Along the way, Davidson et 

al. developed titanium, zirconium and hafnium aminophenolate complexes for the 

polymerization in melt.[18] Jones et al.[19] recently presented zinc aminophenolate complexes 

that showed high activity in melt using singly recrystallized lactide. At a ratio of 

[LA]:[I]:[BnOH] = 10 000:1:100 and a temperature of 180°C a conversion of 90% as well as 

controlled molar masses have been reached.[20] Another attractive class of ligands in this context 

are guanidines.[21] As neutral donors they form stable and robust complexes in combination 

with zinc.[22] In the past, several hybrid and bisguanidines with N,N donors have been reported 

to be good catalysts in the field of non-purified lactide polymerization. In recent years, zinc 

hybrid guanidines with neutral N,O donors have come into the focus as they have significantly 

higher activity and produce molar masses up to 86 000 gmol−1 under industrially relevant 

conditions.[23] Recently, iron guanidine complexes have been published, which show higher 

activities than pure Sn(Oct)2 using non-purified rac-LA at 150°C.[24]  

However, the search for easily accessible catalyst systems for the ROP of lactide goes on. At 

this point we report zinc systems containing Schiff base-like ligand scaffolds. Their synthesis 

succeeds starting from commercially available substances and cost-effectively in just one step. 

Various complexes were tested under industrial conditions and their activity was recorded in 

situ using Raman spectroscopy. An investigation of the mechanistic ring-opening was carried 

out by means of MALDI-ToF measurements. 
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 Results and Discussion 

Synthesis 

The Zn(II) complexes were obtained by a condensation reaction between Zn(OAc)2 ·2H2O and 

the tridentate Schiff base-like ligands in ethanol (HL1, HL3, and HL5) or methanol (HL2 and 

HL4). The tridentate ligands were synthesized by a facile condensation reaction as described 

previously.[25] The synthesis and numbering scheme is given in Scheme 1. The acetate anion is 

acting as base for the deprotonation of the ligand. The coordination compounds were obtained 

as white, crystalline powder and their purity was confirmed by means of elemental analysis, 

mass spectrometry, TGA, and IR spectroscopy. 

 

N

HN

R

R'

O

+ Zn(OAc)2 2H2O
MeOH or EtOH

N

N

R
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ON
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HL1 R = -COOEt
HL2 R = -COMe
HL3 R = -CN
HL4 R = -COOMe
HL5 R = -COOEt

1 R' = -Me
2 R' = -Me

R' = -OEt
4 R' = Me
5 R' = Ph

1-5

1h reflux

 
Scheme 1. General synthetic procedure for the synthesis of the Zn(II) complexes described in this work.  

 

X-ray structure analysis 

Crystals suitable for X-ray structure analysis were obtained for 1 by liquid-liquid diffusion of 

a methanol solution of the ligand and an aqueous solution of Zn(OAc)2 ·2H2O, and for 5 from 

the mother liquor. The crystallographic data were collected at 133 K and are summarized in 

Table S1. Complex 1 crystallized in the triclinic space group P−1, 5 in the monoclinic space 

group P21/c. Both complexes crystallized as dimers, with each metal centre coordinated by one 

tridentate ligand and two acetate anions bridging the Zn(II) centres. One anion is coordinating 

with only one of the two oxygen atoms, while for the other both are coordinating. The 

asymmetric units of both complexes are depicted in Figure 1. The bond lengths of the first 

coordination sphere are given in Table S2. The Zn–Npy bond lengths are slightly longer (2.15 Å 
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in average for 1, 2.14 Å for 5) than the other bond lengths of the first coordination sphere of the 

Zn(II) atoms (average values: Zn–Nax 2.03 Å [1], 2.04 Å [5]; Zn–Oax 2.06 Å [1], 2.05 Å [5]; 

Zn–O53 2.03 Å [1], 2.04 Å [5]; Zn–O51 2.03 Å [1], 2.01 Å [5]; Zn–O52 1.98 Å [1], 1.97 Å 

[5]). The assignment of a single or double bond in the acetate anions is clear for the ion in which 

only one oxygen is bridging the Zn(II) centres (C53–1.311(5) Å / 1.307(2) Å and C53–O54 

1.222(5) Å / 1.221(2) Å for 1 and 5, respectively), whereas for the other acetate ion the 

delocalization of the negative charge over both oxygen atoms results in similar bond lengths 

(C51–O51 1.257(5) Å / 1.250(2) Å and C51–O52 1.270(5) Å and 1.263(2) Å for 1 and 5, 

respectively).  

 

 
Figure 1. Molecular structures of complexes 1 (top) and 5 (bottom). Ellipsoids are drawn at 50 % probability level. Hydrogen 
atoms were omitted for clarity.  

 

The distortion parameter τ helps to distinguish between a square pyramidal coordination sphere 

(τ close to 0) and a trigonal bipyramidal coordination sphere (τ close to 1). It is defined as 

(α−β)/60, with the largest angle of the coordination sphere being α and the second largest β.[26] 

It has similar values for the both Zn(II) atoms in complex 1 (Zn1 0.15, and Zn2 0.21), this 

indicates a distorted square pyramidal coordination sphere. The values for complex 5 are 
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different for the Zn(II) atoms of this complex; 0.6 for Zn1 and 0.02 for Zn2. This indicates a 

nearly ideal square pyramidal geometry for Zn2. As the bond length Zn–Npy is still slightly 

longer compared to the remaining bond lengths in Zn1, the coordination geometry is likely to 

be square pyramidal as well. The significant differences in the τ values of complexes 5 can be 

explained with a C–H···π interaction between an aromatic CH group of the pyridine ring of 

Zn2 (C32–H32) and the phenyl ring of Zn1 (see Figure S1, right); this interaction causes the 

tridentate ligand of Zn2 to be more bend than for Zn1. Details of all interactions are given in 

Table S3–S5. Pictures of the packing of the complexes in the crystal are given in Figure S1. 

Powder X-ray diffraction was performed to confirm the identical structure of the bulk and the 

single crystals. The diffraction patterns are given in the Supporting Information, Figure S2. It 

can be seen that the patterns for 1 and 5 are identical for the bulk complex and the calculated 

pattern for the crystal structure. Small differences can be explained with the different 

temperatures used for the measurements (single crystal at 133 K, powder at room temperature).  

To determine the nuclearity of the complexes in solution, the conductivity of a 1.5 mM aqueous 

solution of compounds 2 and 4 was measured. Compared to the one of the used distilled water 

(1.6 µS/cm) it is enhanced (234.9 µS/cm for 2 and 217.9 µS/cm for 4). This is an indication for 

the formation of monomeric species in aqueous solution. The other compounds were not fully 

soluble in water. 

Polymerisation 

All five complexes were tested regarding their activity in the ring-opening polymerization of 

rac-lactide (Tables 1 and 2). The corresponding polymerizations were carried out with 

nonpurified rac-LA at a temperature of 150°C. The [M]/[I] ratio was 500 : 1, assuming that 

both zinc atoms of one complex propagate a chain. An additional co-initiator has been omitted. 

The kinetic measurements were accomplished by in situ Raman spectroscopy. In a steel reactor, 

the reaction progress was followed in melt at a stirring speed of 260 rpm. The kinetic evaluation 

was carried out by a semilogarithmic plot of the lactide concentration versus time 

(determination of kapp). For the complexes 1, 2, 4 & 5 detailed results are given. Due to the 

intense fluorescence of complex 3, a kinetic study was not possible. All polymers have been 

characterized by gel permeation chromatography (GPC) to give information regarding their 

molar masses.  
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Table 1. Polymerization data for rac-LA with catalyst 2. 
[M]/[I] kapp (s−1)[b] time (min) conv. (%)[c] Mn,theo (g mol−1) Mn (g mol−1)[d] PD 

500 1.14 × 10−3 25  62 45 000 65 000 1.5 

625 8.60 × 10−4 30 78 70 000 54 000 1.8 

1000 4.22 × 10−4 27 65 94 000 81 000 1.4 

1500 2.23 × 10−4 61 57 123 000 43 000 1.8 

2000 1.28 × 10−4 112 56 161 000 21 000 2.2 

[a] Conditions: 150 °C, solvent free, non-purified technical grade rac-LA. [b] Determined from the slope of the plots of ln([LA] 0/[LA] t) versus 

time. For spectra see SI. [c] As determined by 1H NMR spectroscopy. [d] Determined by GPC (in THF), Mn,theo: 72 000 g mol−1 for 100% 

conversion. 

 

Regarding the different values for kapp of the four different catalysts, it is clear that 5 is the 

slowest with a kapp = 6.08 ± 0.1 × 10−4 s−1. On the other hand, the other complexes 1, 2 & 4 with 

values of kapp = 1.22 ± 0.15 × 10−3 s−1 (1), kapp = 1.14 ± 0.04 × 10−3 s−1 (2) & kapp = 

1.41 ± 0.01 × 10−3 s−1 (4) are of identical orders of magnitude. To understand the slower activity 

of 5, it helps to look at the structure of the complex. While the complexes 1, 2 & 4 bear short 

esters or an aldehyde plus a methyl group, complex 5 has an ester- and a phenyl group attached. 

This results in a higher steric demand and access of the lactide to the metal centre is made more 

difficult. To determine the polymerization rate constant kp detailed kinetic measurements with 

complex 2 were performed (Figure 2). By polymerization experiments at different catalyst 

concentrations (up to 2000 : 1 per zinc), it was possible to obtain the rate constant kp from the 

linear fit by plotting the different kapp values against the catalyst concentration. Compared with 

the kp from the recently published zinc guanidine catalyst [ZnCl2(TMG5NMe2asme)] with a 

value of 6.10 ± 0.34 × 10−2 Lmol−1 s−1 [23b] complex 2 with kp = 8.59 ± 0.36 × 10−2 Lmol−1 s−1 is 

slightly faster.  

 

Table 2. Polymerisation data for rac-LA with catalysts 1–5.[a] 

init. kp (L mol−1 s−1)[b] kapp (s−1)[c] time (min) conv. (%)[d] Mn,theo (g mol−1)[e] Mn (g mol−1)[f]  PD 

1  1.22 ± 0.15 × 10−3 41 79 57 000 62 000 1.6 

2 8.59 ± 0.36 × 10−2 1.14 ± 0.04 × 10−3 25 62 45 000 65 000 1.5 

4  1.41 ± 0.01 × 10−3 42 78 56 000 71 000 1.5 

5  6.08 ± 0.1 × 10−4 49 75 54 000 57 000 1.6 

[a] Conditions: solvent free, non-purified technical grade rac-LA, 150°C. [b] Determined by plotting kapp versus [init.]. kp [I] [M]; kp = kapp/[I]. 

[c] Determined from the slope of the plots of ln([LA] 0/[LA] t) versus time for a ratio of [M]/[I] = 500:1. [d] As determined by 1H NMR 

spectroscopy. [e] Calculated assuming that every zinc of each dinuclear complex propagates one chain Mn,theo: 72 000 g mol−1 for 100% 

conversion at a ratio of [M]/[I] = 500:1. [f] Determined by GPC (in THF). 
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Figure 2. Plot of kapp versus [init.] for 2. Conditions: rac-LA, 150 °C, 260 rpm, non-purified; [M]/[I] = 500:1, 625:1, 1000:1, 

1500:1, 2000:1. 

 

In a comparison to the active zinc catalyst Zn(CH3COO)2 with a conversion of 69% after 24 h 

([M]/[I]= 500 : 1) the herein presented systems with a conversion of 79% after 41 min 

([M]/[I]=500 : 1) are significantly faster.[22d] The analysis of the molar masses of the respective 

polylactides shows that all systems are able to synthesise high molar masses up to 71000 gmol−1 

(4). The theoretical molar masses propose that every available zinc atom propagates a chain. 

With polydispersities (PD) of 1.5–1.6, the values are very good for polymerization in melt. As 

mechanism, we propose the coordination-insertion mechanism which will be detailed below. 

First, X-ray data show that all complexes are dinuclear. However, if the kinetics of the 

polymerization catalyzed by complex 5 (Figure 3) are considered as example, an induction 

phase is conspicuous at the beginning of the polymerization. Typically, such induction phases 

are accounted to the formation of the active species. To investigate the reaction order, a plot of 

ln(kapp) vs. ln([init.]) was used (see Figure S9). The slope of 1.57 was obtained indicating a 

fractional reaction rate. In this case a dissociation of the dinuclear complex is proposed.[27] This 

is also supported by the obtained molar masses, which are closer to the theoretical value if based 

on the calculation per zinc atom. MALDI-ToF measurements also confirm that a “half” 

complex is attached to the chain end (see Figure S11). While acetate primarily initiates the 

polymerization, the propagation of the chain takes place through half a complex. Due to a 

decomposition of the complex caused by impurities in the monomer, smaller amounts of ligand 

can be found at the end of the chains. Zinc acetate as the active species can be excluded due to 
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its lower catalysis activity.[22d] All three observations lead to the result that by dissociation of 

the complex the active species is formed. Tacticity determinations by 1H NMR spectroscopy 

showed that the catalysts produce atactic polymer. To exclude potential epimerization during 

the polymerization, an experiment with L-lactide using 2 has been performed. Homodecoupled 
1H NMR revealed purely isotactic PLA.  

 

Figure 3. Semi-logarithmic plot of the polymerisation of non-purified rac-LA with 5 [M]/[I] = 500:1, 150 °C, 260 rpm, 

conversion determined by in situ Raman spectroscopy.  

 

TGA measurements of all five complexes show that the catalytic active systems remain stable 

at temperatures up to 225°C. Therefore, they are suitable for industrial use at typical 

temperatures between 180 and 200°C. 

Cytotoxicity  

In order to identify any potential toxicity of the complexes, the catalytically active complex 2 

was tested against toxin-sensitive 518A2 melanoma, HT-29 and HCT-116wt colon carcinoma, 

Hela cervix carcinoma cells and non-malignant human fibroblasts using the MTT proliferation 

assay.[30] Complex 2 showed virtually no cytotoxicity against any of these cells with 50% 

growth inhibitory concentrations IC50 > 100 µM. It may therefore be considered non-hazardous 

to health. 
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 Conclusions 

 

Dinuclear zinc acetate complexes with five different substituted Schiff base-like ligands were 

prepared. The ligand and complex syntheses convince by their ease of preparation and their 

robustness towards higher temperature and lactide impurities. Four systems were found to be 

highly active in the catalytic ring-opening polymerization of non-purified lactide under 

industrial conditions. Their kinetic behaviour has been observed via in situ Raman 

spectroscopy. Despite an anionic ligand system, the complexes show a high degree of tolerance 

to the impurities in the monomer and produce industrially useful PLA with molar masses of up 

to 71 000 gmol−1 and a conversion of 78%. With a kp = 8.59 ± 0.36 × 10−2 Lmol−1 s−1, the 

systems are slightly faster than the recently published zinc guanidine complex[23b] and show 

that this class of ligands in combination with zinc also has a high potential to replace the 

currently industrially used catalyst Sn(Oct)2. Mechanistic investigations have shown that the 

dinuclear complex is present in melt of lactide as a mononuclear unit. As such, it forms the 

active species in the polymerization of lactide. Cytotoxic studies with sensitive non-malignant 

fibroblasts and cancer cells also demonstrated the nontoxicity of the complexes, which thus 

represent an active, robust and green catalyst for the ROP of lactide. Together with the facile 

synthesis, a viable alternative for the cytotoxic Sn(Oct)2 opens up new avenues for lactide 

polymerization. 

 

 Experimental Section 

 

HL1–HL5 were synthesised as published.[25a] All other chemicals were commercially available 

and used without further purification. Elemental analysis were measured with Vario El III from 

Elementar AnalysenSysteme. Samples were prepared in a tin boat, and acetanilide was used as 

standard. Mass spectra were recorded with a Finnigan MAT 8500 with a data system MASPEC 

II. IR spectra were recorded with a Perkin Elmer Spectrum 100 FT-IR spectrometer. TGA was 

measured with a Netzsch STA 449. 
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[ZnL1OAc] (1).  Zn(AcO)2·2H2O (0.2 g, 0.91 mmol) and HL1 (0.377 g, 1.52 mmol) were 

dissolved in EtOH (5 mL) and the light orange solution was heated to reflux for 1 h. After 

cooling to RT and left to stand for 1 night the white precipitate was filtered, washed with a few 

mL of EtOH, and dried in air. Yield: 0.21 g (743.40 g·mol−1, 31 %). Elemental analysis 

(C30H36Zn2N4O10, %) found C 48.52, H 4.91, N 7.51; calcd. C 48.47, H 4.88, N 7.54. MS (EI, 

pos.) m/z (%): 370 (C15H18ZnN2O5, 5), 310 (C13H15ZnN2O3, 93), 93 (C6H6N, 100). IR: ν = 1680 

(s, C=O), 1612 (s, C=O), 1572 (s, C=O) cm−1. 

[ZnL2OAc] (2). Zn(AcO)2·2H2O (0.2 g, 0.91 mmol) and HL2 (0.331 g, 1.52 mmol) were 

dissolved in MeOH (5 mL) and the light yellow solution was heated to reflux for 1 h. After 

cooling to RT and left to stand for 1 night the white precipitate was filtered, washed with a few 

mL of MeOH, and dried in air. Yield: 0.25 g (683.34 g·mol−1, 40 %). Elemental analysis 

(C28H32Zn2N4O10, %) found C 48.90, H 4.94, N 8.02; calcd. C 49.21, H 4.72, N 8.20. MS (EI, 

pos.) m/z (%): 340 (C14H16ZnN2O4, 5), 280 (C12H13ZnN2O2, 100), 93 (C6H6N, 65). IR: ν = 1665 

(s, C=O), 1567 (s, C=O) cm−1. 

[ZnL3OAc] (3). Zn(AcO)2·2H2O (0.2 g, 0.91 mmol) and HL3 (0.176 g, 1.52 mmol) were 

dissolved in EtOH (5 mL) and the light yellow solution was heated to reflux for 1 h. After 

cooling to RT and left to stand for 1 night the white precipitate was filtered, washed with a few 

mL of EtOH, and dried in air. Yield: 0.22 g (709.34 g·mol−1, 34 %). Elemental analysis 

(C28H30Zn2N6O8, %) found C 46.81, H 4.13, N 11.57; calcd. C 47.41, H 4.26, N 11.85. MS (EI, 

pos.) m/z (%): 353 (C14H15ZnN3O4, 6), 293 (C12H12ZnN3O2, 100). IR: ν = 2193 (s, C≡N), 1650 

(s, C=O), 1591 (s, C=O) cm−1. 

[ZnL4OAc] (4). Zn(AcO)2·2H2O (0.2 g, 0.91 mmol) and HL4 (0.356 g, 1.52 mmol) were 

dissolved in MeOH (5 mL) and the light orange solution was heated to reflux for 1 h. After 

cooling to RT and left to stand for 1 night the white precipitate was filtered, washed with a few 

mL of MeOH, and dried in air. Yield: 0.23 g (715.34 g·mol−1, 35 %). Elemental analysis 

(C28H32Zn2N4O10, %) found C 46.86, H 4.69, N 7.71; calcd. C 47.01, H 4.51, N 7.83. MS (EI, 

pos.) m/z (%): 356 (C14H16ZnN2O5, 7), 296 (C12H13ZnN2O3, 100), 93 (C6H6N, 45). IR: ν = 1681 

(s, C=O), 1611 (s, C=O), 1579 (s, C=O) cm−1. 

[ZnL5OAc] (5). Zn(AcO)2·2H2O (0.2 g, 0.91 mmol) and HL5 (0.471 g, 1.52 mmol) were 

dissolved in EtOH (5 mL) and the light orange solution was heated to reflux for 1 h. After 

cooling to RT and left to stand for 1 night the white precipitate was filtered, washed with a few 
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mL of EtOH, and dried in air. Yield: 0.32 g (867.54 g·mol−1, 41 %). Elemental analysis 

(C40H40Zn2N4O10, %) found C 55.30, H 4.56, N 6.41; calcd. C 55.38, H 4.65, N 6.46. MS (EI, 

pos.) m/z (%): 432 (C20H20ZnN2O5, 6), 372 (C18H17ZnN2O3, 100), 93 (C6H6N, 38). IR: ν = 1676 

(s, C=O), 1608 (s, C=O), 1571 (s, C=O) cm−1. 

X-ray diffraction on single crystals 

The X-ray analysis was performed with a Stoe StadiVari diffractometer using graphite-

monochromated MoKα radiation. The data were corrected for Lorentz and polarization effects. 

The structures were solved by direct methods (SIR-97)[28] and refined by fullmatrix least-square 

techniques against Fo2–Fc2 (SHELXL-97).[29] All hydrogen atoms were calculated in idealised 

positions with fixed displacement parameters. ORTEP-III [30] was used for the structure 

representation, SCHAKAL-99[31] to illustrate molecule packing. CCDC 1901404 (1) and 

CCDC 1900405 (5) contain the supplementary crystallographic data for this paper. 

Powder X-ray diffraction  

Powder diffractograms were measured with a STOE StadiP Powder Diffractometer (STOE, 

Darmstadt) using Cu[Kα1] radiation with a Ge Monochromator, and a Mythen 1K Stripdetector 

in transmission geometry.  

Reaction monitoring 

Raman spectra were obtained under process conditions using a RXN1 spectrometer from Kaiser 

Optical Systems. Ten accumulated measurements with 0.5 seconds measuring time were 

subsumed to one spectrum. The laser was used at a wavelength 785 nm and 459 mW through 

an immersion probe with a short-focus sapphire lens (d = 0.1 mm). The resulting time-resolved 

data was processed with the PEAXACT 4.0 Software. The boundaries for the lactide integration 

were 627 ‒ 713 cm−1. 

Polymerization 

All polymerizations at a ratio of [M]/[I] = 500:1 and 2000:1 have been investigated twice. 

Technical grade lactide: rac-LA from Total Corbion PLA was used for the polymerisations. 

Therefore, ᴅ- and ʟ-lactide were mixed in a ratio of 1:1. Both ᴅ- and ʟ-lactide consisted of 

maximum free acids of 3 meq kg−1 and maximum water residues of 0.01%. 
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Polymerisation followed by Raman spectroscopy: In a nitrogen filled glovebox, the catalyst 

and rac-LA (3,6-dimethyl-1,4-dixane-2,5-dione, 12.0 g, 83.3 mmol) were weighed separately. 

The catalyst and the lactide were homogenised completely in an agate mortar and the mixture 

filled in a glass vial. The steel reactor was heated at 150 °C under vacuum and flashed three 

times with argon. For polymerisation, the reaction mixture was filled in a steel reactor under 

argon conditions (99.998% purity). The reactor was closed with a shaft drive stirrer with 

agitator speed contro (“minisprint”, premix reactor AG, Switzerland) and the sample collection 

started after the reaction mixture insertion as soon as the reactor was closed. The Raman probe 

was installed close to the stirrer. The shaft drive stirrer with agitator speed control was used to 

stir the reaction at 260 rpm. The reaction mixture was removed from the reactor at 150 °C and 
1H NMR was collected at room temperature on a Bruker Avance II (400 MHz) or a Bruker 

Avance III (400 MHz) to determine the conversion. The NMR signals were calibrated to the 

residual signals of the deuterated solvent [δH(CDCl3) = 7.26 ppm]. The reaction mixture was 

dissolved in an appropriate amount of DCM, the polymer was precipitated in ethanol (r.t.), dried 

in vacuo and characterised.  

Gel permeation chromatography 

The average molecular masses and the mass distributions of the obtained polylactide samples 

were determined by GPC in THF as the mobile phase at a flow rate of 1 mL min−1. The utilised 

GPCmax VE-2001 from Viscotek was a combination of an HPLC pump, two Malvern Viscotek 

T columns (porous styrene divinylbenzene co-polymer) with a maximum pore size of 500 and 

5000 Å, a refractive index detector (VE-3580), and a viscometer (Viscotek 270 Dual Detector). 

Universal calibration was applied to evaluate the chromatographic results.  

MALDI-ToF  mass spectrometry: The end group analysis was performed by MALDI-ToF on 

a Bruker ultrafleXtreme equipped with a 337 nm smartbeam laser in the reflective mode. THF 

solutions of trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene]malononitrile (DCTB) 

(5 µL of a 20 mg/mL solution), sodium trifluoroacetate (0.1 µL of a 10 mg/mL solution), and 

analyte (5 µL of a 10 mg/mL) were mixed and a droplet thereof applied on the sample target. 

Protein 1 calibration standard is the name of the protein mixture used for calibration. For spectra 

4000 laser shots with 24% laser power were collected. The laser repetition rate was 1000 Hz. 

The homopolymer analysis was performed using Polymerix software (Sierra analytics). 

 



Towards new robust Zn(II) complexes for the ring-opening polymerisation of lactide under industrial relevant conditions 
 

 
160 

Cell culture 

The human melanoma cell line 518A2, the human colon carcinoma cell lines HT-29 and HCT-

116, the cervix carcinoma cell line Hela, and the non-malignant Hdfa fibroblasts were cultivated 

in Dulbecco’s Modified Eagle Medium supplemented with 10% FBS, and 1% antibiotic-

antimycotic at 37 °C, 5% CO2 and 95% humidity. Only mycoplasma-free cultures were used. 

MTT assay 

The cytotoxicity of the compounds was studied via the MTT-based proliferation assay [32] on 

cells of 518A2 melanoma (obtained from the department of Radiotherapy and Radiobiology, 

University Hospital Vienna, Austria), HT29 (DSMZ ACC-299) and HCT116wt (DSMZ ACC-

581) colon carcinomas, Hela (DSMZ ACC-57) cervix carcinoma, and Hdfa fibroblasts (Thermo 

Fisher). Briefly, cells (100 µL/well; 5 × 104 cells/mL for the four tumour cell lines, 1 × 105 for 

the Hdfa cells) were grown in 96-well plates for 24 h and then treated with varying 

concentrations of the test compound or solvent control (DMSO) for 72 h. After centrifugation 

of the plates (300 g, 5 min, 4 °C), the supernatant was discarded and 50 µL/well of a 0.05% 

MTT solution in PBS was added to the wells and incubated for 2 h. After another centrifugation 

step the supernatant was discarded and the formazan precipitate was dissolved in 25 µL DMSO 

containing 10% SDS and 0.6% acetic acid for at least 1 h at 37 °C and the absorbance of 

formazan (570 nm) and background (630 nm) was measured with a microplate reader (Tecan). 

The IC50 values were calculated as the mean ± standard deviation of four independent 

experiments. 
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 Supporting Information 

 

Table S1. Crystallographic data of 1 and 5. 
 1 5 

CCDC 1901404 1901405 

formula C30H36N4O10Zn2 C40H40N4O10Zn2 

sum formula C30H36N4O10Zn2 C40H40N4O10Zn2 

M/ g mol−1 743.41 867.50 

crystal system triclinic monoclinic 

space group P−1 P21/c 

crystal description colourless plate colourless plate 

a/ Å 9.4692(4) 16.9724(5) 

b/ Å 13.2391(6) 14.5261(5) 

c/ Å 13.1893(6) 17.2695(6) 

α/ ° 96.547(4) 90 

β/ ° 93.463(3) 115.352(2) 

γ/ ° 106.449(4) 90 

V/ Å3 1567.97(13) 3847.6(2) 

Z 2 4 

ρcalcd/ g cm−3 1.575 1.498 

µ/ mm−1 1.593 1.311 

crystal size/ mm 0.136×0.050×0.046 0.120×0.106×0.075 

F(000) 768 1792 

T/ K 133(2) 133(2) 

λ/ Å Mo-Kα 0.71073 Mo-Kα 0.71073 

Θ range/ ° 2.09–28.47 1.9–28.1 

Reflns. collected 8917 22994 

Indep. reflns.(Rint) 7320 (0.071) 8714 (0.033) 

Parameters 415 505 

R1 (all data) 0.0464 0.0295 

wR2 0.1134 0.0662 

GooF 0.89 0.94 

 

Table S2. Selected bond lengths/ Å of 1 and 5. 
 Zn–Npy Zn–Nax Zn–Oax Zn–O53 Zn2–O51 Zn1–O52 O51–

C51 

O52–

C51 

O53–

C53 

O54–

C53 

1 2.134(3) 

2.159(3) 

2.031(3) 

2.021(3) 

2.059(3) 

2.054(3) 

2.024(3) 

2.035(3) 

2.031(3) 1.978(3) 1.257(5) 1.270(5) 1.311(5) 1.222(5) 

5 2.1189(11) 

2.1662(19) 

2.0330(15) 

2.0424(16) 

2.0435(15) 

2.0500(16) 

2.0396(13) 

2.0499(13) 

2.0086(16) 1.9708(15) 1.250(2) 1.263(2) 1.307(2) 1.221(2) 
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Table S3. Hydrogen bonds and angles of 1 and 5. 

  D–H/Å H···A/Å D ···A/Å D–H···A/° 

1 C14–H14···O54a 0.95 2.34 3.140(5) 142 

5 C13–H13···O33b 0.95 2.43 3.287(3) 150 

 C14–H14···O54b 0.95 2.43 3.309(3) 154 

 C27–H27A···O32c 0.99 2.57 3.205(3) 122 

 C33–H33···O54d 0.95 2.46 3.175(3) 132 

 C44–H44···O51e 0.95 2.50 3.393(3) 157 

 C52–H52B···O12f 0.98 2.52 3.454(3) 160 

a: −1+x, y, z; b: x, 1/2−y, 1/2+z; c: 1+x, y, 1+z; d: 2−x, −y, 1−z; e: 1−x, −y, 1−z; f: 2−x, −y, 2−z.  

 

Table S4. Summary of the C–H···π interactions of 1 and 5. 

  Cg H···Cg/Å X–H···Cg/° X···Cg/Å 

1 C6–H6B Zn2–N31–C35–C36–N32a 2.769 147 3.626(4) 

 C36–H36A Zn1–N11_C15–C16–N12b 2.95 135 3.718(4) 

 C42–H42B Zn2–O31–C39–C38–C37–N32c 2.68 138 3.479(5) 

5 C32–H32 C20–C21–C22–C23–C24–C25d 2.67 142 3.467(2) 

 C16–H16B Zn1–O11–C19–C18–C17–N12e 2.48 153 3.388(2) 

 C44–H44 Zn2–O31–C39–C38–C37–N32f 2.85 126 3.493(2) 

a: −1+x, y, z; b: 1+x, y, z; c: 2−x, −y, 1−z; d : x, y, z; e: 2−x, −y, 2−z; f: 1−x, −y, 1−z. 

 

Table S5. Selected distances and angles of the π– π and M– π interactions of 1 and 5. Cg(I) is the centroid of the ring number 

I, α is the dihedral angle between the rings, β is the angle between the vector Cg(I) → Cg(J) and the normal to ring I, γ is the 

angle between the vector Cg(I) → Cg(J) and the normal to ring J. 

 Cg(I) Cg(J) Cg–Cg/Å α/° β/° γ/° 

1 N31–C31–C32–C33–C34–C35 N31–C31–C32–C33–C34–C35a 3.721(2) 0.00(19) 22.1 22.1 

5 N31–C31–C32–C33–C34–C35 N31–C31–C32–C33–C34–C35b 3.4814(12) 0.00(10) 18.0 18.0 

a: 2−x, −y, 2−z; b: 2−x, −y, 1−z.  
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Figure S1. Molecular packing of 1 (left, along [100]) and 5 (right, along [010]). Discussed C–H···π interactions of 5 are drawn 

as yellow, dashed lines. Hydrogen atoms not involved in intermolecular interactions were omitted for clarity. 

 

 
Figure S2. Powder X-ray diffraction patterns of 1–5, measured and calculated. The calculated patterns were obtained at 133 

K, the measured ones at room temperature. 
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Figure S3. TGA measurements of complexes 1–5.  

 

 
Figure S4. Semi-logarithmic plot of the polymerization of non-purified rac-LA with 1 [M]/[I] = 500:1, 150 °C, 260 rpm, 

conversion determined by in situ Raman spectroscopy. 
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Figure S5. Semi-logarithmic plot of the polymerization of non-purified rac-LA with 2 [M]/[I] = 500:1, 150 °C, 260 rpm, 

conversion determined by in situ Raman spectroscopy. 

 

 
Figure S6. Semi-logarithmic plot of the polymerization of non-purified rac-LA with 2 [M]/[I] = 500:1 (kapp = ), [M]/[I] = 

625:1 (kapp = ), [M]/[I] = 1000:1 (kapp = ), [M]/[I] = 1250:1 (kapp = ), [M]/[I] = 2000:1 (kapp = ), 150 °C, 260 rpm, conversion 

determined by in situ Raman spectroscopy.  
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Figure S7. Plot of kapp versus [init.] for 2. Conditions: rac-LA, 150 °C, 260 rpm, non-purified; [M]/[I] = 500:1, 625:1, 1000:1, 
1500:1, 2000:1. 

 

 
Figure S8. Logarithmic plot of ln(kapp) versus ln([init.]) for the polymerization of non-purified rac-LA with 4 [M]/[I] = 500:1, 

150 °C, 260 rpm.  
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Figure S9. Semi-logarithmic plot of the polymerization of non-purified rac-LA with 4 [M]/[I] = 500:1, 150 °C, 260 rpm, 

conversion determined by in situ Raman spectroscopy. 

 

 
Figure S10. Semi-logarithmic plot of the polymerization of non-purified rac-LA with 5 [M]/[I] = 500:1, 150 °C, 260 rpm, 

conversion determined by in situ Raman spectroscopy. 
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Figure S11. Stack of MALDI-ToF spectra obtained for a polymerisation with 4 [M]/[I] = 70:1, 150 °C, 260 rpm, rac-LA. 

 

 
Figure S12. Stack of MALDI-ToF spectra obtained for a polymerisation with 4 [M]/[I] = 70:1, 150 °C, 260 rpm, rac-LA. For 

m/z 2807.35572: 
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Table S6. Possible end-groups for the obtained polymer initiated by 4 [M]/[I] = 70:1, 150 °C, 260 rpm, rac-LA.  

 

 

Results of the MALDI-ToF analysis for all series of the spectrum:  

Ligand-Zn-PLA: 26.77%  

Ligand-PLA: 10.59%  

Acetate-PLA: 22.94%  

OH: 10.53%  

H: 17.29% 
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Figure S13. Homonuclear decoupled 1H NMR spectrum (CDCl3, 400 MHz) of PLA prepared by polymerization of L-lactide 

with 2 at 150 °C. 
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Abstract:  We report 15 new Cu(II) complexes with tridentate NNO β-acylenamino ligands 

derived from 2-picolylamine and bearing up to three alkyl, alkoxy, alkoxycarbonyl, or 

(pseudo)halide substituents. The structures of nine complexes were elucidated by single crystal 

X-ray diffraction analysis. Complexes with an unsubstituted pyridine ring crystallised with a 

square pyramidal coordination sphere, whereas substitution of the pyridine ring led to a square 

planar coordination sphere around the metal centre. The solution structures and properties of 

the complexes were characterised by UV-Vis spectroscopy and cyclic voltammetry. They were 

also tested for their cytotoxic effect on four human cancer cell lines. Two complexes were 

identified that were highly active with single-digit IC50 values, exceeding those of cisplatin by 

far. A tentative structure–activity relationship was proposed as well as topoisomerase I 

inhibition as a possible mode of action, while any significant interference with DNA and the 

level of reactive oxygen species could be excluded. 
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 Introduction 

 

The incidence and economic burden of cancer rise at an alarming rate. While the field of 

medicinal inorganic chemistry could in principle offer many avenues for the development of 

new therapeutic agents against cancer, the research is still dominated by platinum and 

ruthenium complexes.[1] Cisplatin, carboplatin, and oxaliplatin are customarily used for the 

treatment of various cancer entities such as testicular or colon cancer. These three complexes 

share a similar structure and mechanism of action. Despite their high efficacy, their clinical 

applicability is limited by serious side effects, originating from their high toxicity, and by the 

frequent occurrence of intrinsic or acquired resistance of tumours to platinum compounds.[2] 

However, anti-cancer active complexes of metals other than platinum, including copper, 

became the focus of research interest in recent years.[3] Copper is essential for the development 

of organisms as it plays an important role as part of the active site of various metalloproteins 

such as tyrosinase, catecholase, or hemocyanin.[4] Therefore its complexes have been 

investigated under the assumption that endogenous metals may be less toxic to normal cells 

than to cancer cells. Nevertheless, copper is toxic at higher concentrations as it is redox-active 

and can displace other metal ions.[5] Anti-cancer active copper complexes may act in various 

ways, e.g. by DNA binding, apoptosis induction via reactive oxygen species (ROS) generation, 

and by inhibition of topoisomerase I.[6]  

Cu(II) complexes with tridentate NNO-chelating Schiff base ligands were only occasionally 

evaluated for biological activity, and mostly for antibacterial effects.[7] For a few of them an 

interaction with DNA was observed.[8] However, to the best of our knowledge, there are no 

studies on their antiproliferative impact on cancer cells, in contrast to the related, yet well-

investigated tridentate NNS-chelated thiosemicarbazone complexes.[9]  

Here we present a series of 18 Cu(II) complexes with tridentate Schiff base-like ligands that 

bear different substituents (R, R′, and R″) to alter the electronic environment of the metal centre. 

The impact of the substituents on the properties of the corresponding complexes was already 

successfully demonstrated for the corresponding Fe(II/III) and Zn(II) complexes.[10] Here, 

single crystal X-ray structures of nine Cu(II) complexes were obtained and are discussed. All 



Copper(II) complexes with tridentate Schiff base-like ligands: solid state and solution structures and anticancer effects 
 

 
177 

compounds were tested with regard to their cytotoxic activity against different cancer cell lines. 

The underlying modes of action were investigated. 

 

 Results and Discussion 

 

Synthesis. 

The complexes were synthesised in three steps (Scheme 1). First, the tridentate ligands were 

synthesised by a condensation reaction between the amine and the respective β-acylenol ether. 

The synthesis of HL1–HL6  was carried out as described previously.[10a] The substituted 2-

picolylamines were synthesised using the synthetic procedures described by Karlin et al.[11] In 

order to obtain the corresponding Cu(II) complexes, CuSO4, sodium methoxide, which acts as 

a base for the deprotonation of the ligand, and the respective tridentate ligand were heated to 

reflux in methanol, resulting in a dark blue or dark green solution.  

 

 
Scheme 1. General synthesis of the tridentate ligands HL1-15 and their Cu(II) complexes 1–18. The organic substituents R, 

R’, and R’’ and the anions X− are specified in Table 1. Complexes 1–3 were obtained as described previously.[10a] 
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The use of a water-free base is important to avoid the formation of Cu(OH)2/CuO during 

synthesis. The Cu(II) complexes 1–18 were precipitated with an aqueous solution of the sodium 

salt of the anion. They were obtained as crystalline, blue to green powders and their purity was 

confirmed by means of elemental analysis, mass spectrometry, and IR spectroscopy. 

Complexes 1–3 were described previously.[10a] An overview of all complexes described in this 

work is given in Table 1. 

 

Table 1. Overview of the structures of copper complexes 1–18. Complexes 1–3 were described previously.[10a] 

Complex Ligand R R‘ R‘‘ X − Solid state structure 

1 HL1 -4-H -Me -COOEt NO3− Dimer[10a] 

2 HL1 -4-H -Me -COOEt Cl− Dimer[10a] 

3 HL1 -4-H -Me -COOEt NCS− Polymer[10a] 

4 HL1 -4-H -Me -COOEt Br− Dimer 

5 HL2 -4-H -Me -COMe Br− Dimer 

6 HL3 -4-H -OEt -COOEt Br− unknown 

7 HL4 -4-H -OEt -CN Br− Polymer 

8 HL5 -4-H -Ph -COOEt Br− Dimer 

9 HL6 -4-H -Me -COOMe Br− Dimer 

10 HL7 -4-OMe -OEt -COOEt Br− unknown 

11 HL8 -4-OMe -OEt -CN Br− unknown 

12 HL9 -4-Cl -OEt -COOEt Br− Monomer 

13 HL10 -4-Cl -OEt -CN Br− unknown 

14 HL11 -4-Me -OEt -COOEt Br− unknown 

15 HL12 -4-Me -OEt -CN Br− Monomer 

16 HL13 -6-Me -OEt -CN Br− unknown 

17 HL14 -5-Me -OEt -COOEt Br− Monomer 

18 HL15 -5-Me -OEt -CN Br− Monomer 

 

X-ray structure analysis.  

Crystals suitable for single crystal X-ray structure analysis were obtained for compounds 4, 5, 

7, 8, 9, 12, 15, 17, and 18 by liquid–liquid diffusion of the precursor complex solution and an 

aqueous sodium bromide solution at room temperature. The crystallographic data were obtained 

at 133 K and are summarised in Table S1. Selected bond lengths and angles of the coordination 

sphere are given in Table S2. All complexes crystallised with one anion and one tridentate 

ligand per metal centre. The structures of 4, 7, and 17 are shown in Fig. 1 as representative 

examples, the remaining structures can be found in the ESI, Fig. S1. Complexes 4, 5, 8, and 9 
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crystallised as µ-bridged dimers, with the bromide ions connecting the two Cu(II) centres and 

the ligands orientated trans to one another. Complex 7 crystallised as a one dimensional 

coordination polymer with the anions bridging the metal centres to form an infinite chain, as 

described previously by us for complexes of this type.[10a] The metal centre has a square 

pyramidal coordination sphere. Complexes 12, 15, 17, and 18 show a square planar 

coordination of the Cu(II) centre, yet do not form dimers or polymers, or coordinate additional 

solvent molecules, unlike previously described complexes. For all square planar Cu(II) 

complexes M⋯π and π⋯π interactions involving the centroids (5-ring and 6-ring) around the 

metal centre were observed, leading to a stacking of the planar complexes. Details on all 

intermolecular interactions can be found in the ESI, Tables S3–S5. Interactions between keto 

oxygen and aromatic C–H groups were also observed for all complexes.  

 

 
Fig. 1. Structures of 4 (left), 7 (middle), and 17 (right). Thermal ellipsoids were drawn at 50% probability level. Hydrogen 

atoms were omitted for clarity. 

 

Powder X-ray diffraction analyses were done to confirm that the complexes obtained from 

synthesis and the single crystals had the same structure. The diffraction patterns are given in 

the ESI, Fig. S2 and S3. Except for complexes 5 and 12, the patterns are identical. Small 

differences visible in the patterns of the other complexes can be explained with the different 

temperatures and methods used for the measurements.  

The magnetism of compounds 4–18 was investigated, the magnetic behaviour of complexes 1–

3 was described previously.[10a] Measurements down to 2 K were performed for the dimeric 
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complexes 4 and 9 and for the monomeric compound 15. The other substances were 

investigated down to 50 K. The χMT vs. T plots are presented in Fig. S4–S6, the magnetic 

moments are summarised in Table S6. The room temperature moment is within the expected 

range for dimeric or monomeric copper(II) complexes. Only weak ferromagnetic interactions 

(J < 10 cm−1) are observed in case of the dimeric complexes. This is in agreement with 

previously described complexes of this type.[10a] In the case of the monomeric complex 15 very 

weak antiferromagnetic interactions are observed that were not analysed any further. 

UV-Vis spectroscopy and cyclic voltammetry. 

UV-Vis spectra of the complexes were recorded in water (1) and DMSO (2–18); they can be 

found in the ESI, Fig. S7–S9, the absorption maxima and the logarithm of the extinction 

coefficient are summarised in Table 2. Complex 1 is not stable in DMSO solution with its colour 

quickly changing from light blue to dark red/brown. Absorption maxima (in DMSO) between 

624 and 676 nm were observed for all complexes except 16 (764 nm), possibly due to the 6-

methyl group on the pyridine ring being rather close to the metal centre. Complexes 11–18 

featured a second absorption maximum between 390 and 442 nm. In aqueous solution the 

absorption maxima are slightly blue-shifted. The complexes 3, 8, and 11 were not completely 

soluble in water. The extinction coefficient ε indicates a d–d transition and no charge transfer 

responsible for the colour. The spectra were recorded over 72 h to investigate the stability of 

the compounds in solution (1 in water, the remaining in DMSO).  

No change of the position of the absorption maxima was seen, however, for complexes 2, 3, 4, 

5, 8, 9, 12, and 13 a decrease of extinction took place. In order to determine whether or not the 

anion still coordinates the Cu(II) centre conductivity measurements were carried out (Table 2). 

This is especially of interest regarding the dimeric or polymeric species. The conductivity of 

the solution used for the UV-Vis measurements was measured three times to obtain a mean 

value. The observed values indicate that the anion is no longer coordinated to the metal centre 

but is most likely replaced by a solvent molecule. This indicates that in solution probably only 

monomeric species exist, unlike in the solid state.  
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Table 2. Absorption maxima λmax, log ε, molar conductivity σ , and electrochemical properties (in acetonitrile, 0.1 M NBu4PF6, 

vs. Ag/AgNO3, 50 mV s−1) of the complexes discussed in this work. 

 λmax [nm] (log ε) σ  [103·µS·cm-1·M-1] Ered [V]  Eox [V]  

Water DMSO Water DMSO 

1 624 (2.07) Not stable 89 Not stable −0.71 1.42 

2 630 (2.06) 668 (2.18) 85 17 −0.8 1.01 

1.39 

3 Not completely 

soluble 

639 (2.17) Not completely 

soluble 

19 −0.71 

0.24 

−0.55 

0.67 

0.81 

4 626 (2.04) 638 (2.17) 89 30 −0.66 

0.43 

0.65 

0.76 

5 626 (2.06) 640 (2.17) 101 29 −0.62 0.86 

1.38 

6 641 (1.90) 661 (2.05) 97 29 −0.6 

0.43 

0.86 

7 656 (1.85) 674 (1.99) 97 29 −0.46 

0.45 

0.72 

1.35 

8 Not completely 

soluble 

644 (2.15) Not completely 

soluble 

27 −0.62 

0.44 

0.66 

0.82 

9 624 (2.06) 640 (2.13) 96 28 −0.64 

0.43 

0.84 

10 636 (2.04)  

372 (2.56) 

654 (2.08) 95 27 −0.64 

0.43 

0.84 

11 Not completely 

soluble 

673 (2.01)  

411 (2.09) 

Not completely 

soluble 

29 −0.48 

0.44 

0.62 

0.76 

1.38 

12 645 (2.01)  

391 (2.18) 

664 (2.04) 

409 (2.15) 

102 27 −0.54 

0.47 

0.86 

13 655 (1.94)  

401 (2.09) 

676 (2.00)  

407 (2.12) 

101 27 −0.42 0.78 

1.44 

14 639 (2.03)  

386 (2.34) 

650 (1.82)  

395 (2.06) 

100 17 −0.59 

0.45 

0.84 

15 659 (2.03)  

398 (2.16) 

667 (1.99)  

408 (2.14) 

110 19 −0.46 0.75 

1.37 

16 698 (1.95)  

429 (2.11) 

746 (1.96)  

442 (2.06) 

98 27 −0.26 0.75 

1.36 

17 638 (2.03)  

390 (2.19) 

659 (2.06)  

406 (2.17) 

96 29 −0.62 

0.38 

0.77 

1.17 

18 647 (1.98)  

401 (2.11) 

674 (2.00)  

412 (2.09) 

97 29 −0.5 0.7 

1.3 
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The electrochemical behaviour of the compounds was investigated using cyclic voltammetry. 

The voltammograms are presented in the ESI, Fig. S10–S12, the reduction and oxidation 

potentials are summarised in Table 2. All complexes show irreversible reduction peaks between 

−0.4 and −0.8 V corresponding to the reduction of Cu(II) to Cu(I). The exception is again 

compound 16 with a reduction potential of −0.26 V. The anodic processes are not very well-

defined and correspond to oxidation processes of the ligand, taking place above 0.7 V. 

Cytotoxicity. 

All complexes were tested for their structure-dependent antiproliferative activity against cells 

of human 518A2 melanoma, HT-29, HCT-116wt, and HCT-116p53−/− colon carcinoma, and the 

cervix carcinoma cell line HeLa using the standard MTT assay (Table 3 and Fig. 2). The 

complexes 1–4 share the same chelate ligand HL1 , yet differ in their counter anions. The other 

complexes own the same counter anion (Br−) but carry different substituents either on the β-

acylenamino fragment (5–9) or on the latter and the pyridine ring (10–18). The free ligand 

HL11 and CuSO4 were investigated as well. The solubility of compounds 3, 8, and 11 (not fully 

soluble in water) in PBS was confirmed by diluting a 2 mM DMSO solution to 100 µM in PBS. 

No precipitate occurred and the UV-Vis spectra are presented in Fig. S13.  

All compounds showed dose-dependent growth inhibition of all cell lines, exceeding that of 

CuSO4 in most cases. Complexes 11–13 and 15 proved least active against all cell lines with 

IC50 values greater 40 µM on average. Complexes 1–4, differing only in their counter anions, 

were of comparable, moderate activity. Also, the spread in the IC50 values for complexes 4–9, 

sharing an unsubstituted pyridine ring while differing in substituents R′ and R″, was only 

marginal. In contrast, complexes 10 (R = 4-OMe) and 14 (R = 4-Me) which both have electron 

donating substituents R in 4-position of the pyridine ring and are identical in substituents  

R′ (= OEt), R″ (= COOEt) and counter anion (= Br−) showed the highest activity of all tested 

compounds, including the clinical established drug cisplatin, with single-digit micromolar IC50 

values against all cancer cell lines. Interestingly, the couple of complexes 11 (R = 4-OMe) and 

15 (R = 4-Me), identical to 10/14 in terms of substituents R and R′ yet carrying a cyanide instead 

of a COOEt substituent R″ were virtually inactive against all cell lines. So, a tentative SAR 

assumption is that the cytotoxicity of such copper complexes might be enhanced by sticking 

electron donors on the pyridine ring and by avoiding strongly electron withdrawing substituents 

R″ such as cyanide.  
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Table 3. Growth inhibitory concentrations IC50 (µM; 72 h) of complexes 1–18, ligand HL11, CuSO4, and cisplatin for cells of 

human melanoma 518A2, colon carcinomas HT-29, HCT-116wt and HCT-116p53−/−, cervix carcinoma HeLa, as well as non-

cancerous human dermal fibroblasts (adult) HDFa. Selectivity index (SI) was calculated as IC50(HDFa)/øIC50 (all tested cancer 

cell lines). 

 518A2 HT-29 HCT-116wt HCT-116p53-/- HeLa HDFa SI 

CuSO4 34.0 ± 1.3 >50 49.8 ± 3.0 >50 >50   

cisplatin[13] 7.8 ± 1.1 8.5 ± 0.3 12.0 ± 1.1 27.0 ± 4.1  41.0 ± 4.0 3.0 

1 8.2 ± 0.5 17.2 ± 0.1 8.7 ± 0.5 20.1 ± 2.6 38.8 ± 1.2 15.6 ± 1.9 0.8 

2 13.8 ± 2.4 18.2 ± 4.8 20.4 ± 1.9 34.1 ± 0.7 17.3 ± 0.5   

3 15.2 ± 1.7 15.8 ± 1.3 7.7 ± 1.3 17.6 ± 1.0 18.0 ± 1.7   

4 15.1 ± 0.2 19.4 ± 1.2 27.8 ± 1.6 18.1 ± 1.4 15.8 ± 2.5   

5 17.1 ± 1.1 23.2 ± 1.1 38.0 ± 4 27.5 ± 1.2 30.0 ± 1.2   

6 17.6 ± 1.6 25.1 ± 0.5 21.0 ± 1.9 18.6 ± 1.5 22.0 ± 2.2   

7 18.4 ± 2.3 17.5 ± 1.7 19.5 ± 0.7 25.6 ± 2.6 18.4 ± 1.1   

8 11.4 ± 0.7 27.7 ± 3.7 9.7 ± 0.8 10.0 ± 0.4 15.1 ± 1.8   

9 23.7 ± 1.3 27.0 ± 1.7 14.5 ± 1.2 19.3 ± 0.7 20.1 ± 0.6   

10 5.9 ± 0.4 2.2 ± 0.3 4.7 ± 0.1 2.2 ± 0.3 4.0 ± 0.3 18.4 ± 0.4 4.8 

11 >50 >50 44.0 ± 1.0 34.9 ± 1.2 >50   

12 >50 >50 49.7 ± 2.1 16.9 ± 0.8 47.7 ± 1.6   

13 >50 >50 49.5 ± 3.7 >50 >50   

14 8.3 ± 0.5 4.0 ± 0.2 8.1 ± 0.9 2.3 ± 0.2 9.0 ± 0.8 18.3 ± 1.1 2.9 

15 >100 >50 >50 >50 >50   

16 15.9 ± 0.6 40.8 ± 4.9 16.7 ± 0.6 20.1 ± 1.4 43.7 ± 5.5   

17 15.1 ± 1.2 30.7 ± 2.4 11.0 ± 0.7 20.8 ± 1.4 17.8 ± 0.6   

18 17.4 ± 0.8 26.4 ± 2.7 50.5 ± 3.9 29.1 ± 9.8 37.4 ± 5.4   

HL11 >100 >100 >100 >100 >100   

CuSO4 + HL11 (1 : 1) 23.5 ± 1.3 16.8 ± 1.2 9.9 ± 0.1 7.6 ± 0.3 38.8 ± 6.4   

 

The free ligand HL11 of compound 14 was also tested inactive. Mixtures of ligand HL11 and 

CuSO4 (1 : 1) were less cytotoxic against all cancer cell lines in comparison to the 

corresponding complex 14. What little activity we found for these mixtures can probably be 

ascribed to a spontaneous, partial complex formation, as solutions of HL11 and CuSO4 turned 

immediately greenish (like solutions of pure complex 14) after mixing.  

The selectivity for tumour cells of the most active complexes 1, 10, and 14 can be estimated by 

comparison of their cytotoxicities against cancer cell lines and non-cancerous cells (HDFa). In 

this context, complex 10 showed a very high selectivity with a selectivity index (SI = 4.8) higher 

than that of cisplatin (SI = 3.0). The stability of those compounds in PBS solution (100 µM) 
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was investigated at 37 °C over 72 h using UV-Vis spectroscopy (Fig. S14). No change can be 

seen indicating that the complexes are stable under these conditions.  

 

 
Fig. 2. Cell line specificities of copper complexes 1 (left), 10 (middle) and 14 (right) as deviations of the log(IC50) for individual 

cells lines from the mean log(IC50) value over all cell lines. Negative values indicate lower and positive values higher than 

average activities. Mean log(IC50) values are 1.3 for complex 1, 0.58 for complex 10, and 0.80 for complex 14. 

 

Moreover, the uptake of the most active complexes 1, 10 and 14 into HCT-116wt colon 

carcinoma cells was quantified using ICP-MS (Table 4). These three complexes appear to have 

about the same intrinsic cytotoxic activity against this particular cancer cell line. The 

differences in their IC50 values nicely correlate with their intracellular concentrations. It is 

remarkable that the structurally different couple 1 and 14 exhibit very similar uptake rates and 

IC50 values, while the structurewise closely related pair 10 and 14 differ by a factor of circa 2 

in both. The cellular copper content in cells after treatment with CuSO4 alone was significantly 

lower compared to that of cells treated with complexes 1, 10 or 14.  

 

Table 4. Copper content in HCT-116wt colon carcinoma cells (ng/106 cells) after treatment with 4 µM of the test compounds 

1, 10 and 14, as well as CuSO4 and mixtures of the latter with ligand HL11 for 24 h under standard cell culture conditions. The 

copper content of untreated cells (0.76 ± 0.31 ng Cu/106 cells) has already been subtracted from the presented values. 

compound copper content in cell 

lysates [ng/106 cells] 

IC50 values for  

HCT-116wt [µM] 

1 5.70 ± 1.08 8.7 ± 0.5 

10 11.78 ± 0.77 4.7 ± 0.1 

14 7.94 ± 1.65 8.1 ± 0.9 

CuSO4 3.96 ± 0.79 49.8 ± 3.0 

CuSO4 + HL11 (1 : 1) 4.46 ± 0.71 9.9 ± 0.1 
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Treatment with mixtures of CuSO4 and ligand HL11 led to values between those of CuSO4 and 

the corresponding complex 14, confirming the assumption of spontaneous, partial formation of 

complex 14 in solution. It should be noted, though, that this might be different for cell lines 

other than HCT-116wt. As the cytotoxic effect of copper complexes may originate from DNA 

binding[5,12] we investigated the interaction of complexes 1, 10, and 14 both with linear salmon 

sperm DNA using an ethidium bromide intercalation assay (cf. ESI, Fig. S15) and with circular 

pBR322 plasmid DNA in electrophoretic mobility shift assays (EMSA, Fig. S16). No 

significant effects were observed in either assay. An alternative mode of action is the generation 

of reactive oxygen species (ROS).[12,14] Therefore the complexes, CuSO4, and free ligand HL11 

were investigated with respect to their influence on the ROS level in 518A2 melanoma cells 

using NBT assays after 24 h incubation (Fig. S17). The cells were treated with the test 

compounds (1 and 10 µM) or vehicle. All compounds including CuSO4 and HL11 led to a small 

rise in cellular ROS levels. There is no stringent correlation between the rise in ROS and the 

cytotoxicity exhibited by the complexes, indicating the generation of ROS not to be the 

dominant mode of action.  

Another type of clinical important targets for anticancer drugs are the topoisomerase enzymes[6] 

which catalyse the supercoiling of the DNA. As copper complexes have been shown to be able 

to inhibit these enzymes,[5] complexes 1, 10, 14, and CuSO4 were tested for inhibition of 

topoisomerase I (Fig. 3). Compounds 1 and 10 showed a similar inhibition of the enzyme 

(setting in from 25 µM), whereas 14 inhibited topoisomerase I only at concentrations of at least 

50 µM. Addition of CuSO4 to the reaction mixture had no influence on the activity of 

topoisomerase I. This confirms that the inhibitory effect stems from the intact complexes rather 

than copper salts from decomposition. 
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Fig. 3. Inhibition of topoisomerase I by Camptothecin, complexes 1, 10, 14, and CuSO4. Lane 1: 100 µM substance without 

enzyme; lane 2–6: 100, 50, 25, 10, and 0 µM with enzyme. Top: open circular form (oc) generated by active topoisomerase I, 

bottom: supercoiled form (sc). 

 

 Experimental Section 

 

Complexes 1–3, ligands HL1–HL6 , 2-aminomethyl-4-methoxypyridine, 2-aminomethyl-4-

chloropyridine, 2-amino-methyl-4-methylpyridine, 2-aminomethyl-5-methylpyridine, and 2-

aminomethyl-6-methylpyridine were synthesised by previously described procedures.[10,11] 

Methanol used for the complex synthesis was distilled over magnesium under argon. All other 

chemicals were commercially available and used as received. 1H NMR spectra were measured 

at room temperature and 300 MHz with a Varian INOVA 300. Elemental analysis were 

measured with a Vario EL III from Elementar Analysen-Systeme with acetanilide as standard. 

The samples were placed in a small tin boat. Mass spectra were recorded with a Finnigan MAT 

8500 with a data system MASPEC II. IR spectra were recorded with a PerkinElmer Spectrum 

100 FT-IR spectrometer. Conductivity was measured with a FiveGo F3 portable meter from 

Mettler Toledo.  

HL7. 2-Aminomethyl-4-methoxypyridine (0.6 g, 4.3 mmol, 1 eq.) was diluted in ethanol 

(5 mL) and diethylethoxymethylenemalonate (1.2 g, 5.2 mmol, 1.2 eq.) was added, resulting in 

an orange solution. This mixture was heated to reflux for 1 h. After cooling to room temperature, 

the solvent was removed under reduced pressure, yielding a dark orange oil. After one week at 



Copper(II) complexes with tridentate Schiff base-like ligands: solid state and solution structures and anticancer effects 
 

 
187 

−28 °C, the now orange solid was suspended in icecold diethyl ether (3 mL), filtered, washed 

with ice-cold diethyl ether (5 mL), and dried in air. Yield: 0.86 g (308.33 g mol−1, 64%). 

Elemental analysis (C15H20N2O5·0.3H2O, %) found C 57.17, H 6.84, N 8.57; calcd C 57.32, H 

6.63, N 8.91. 1H NMR (298 K, CDCl3, 300 MHz): δ = 9.6 (1 H, m, –NH), 8.42 (1 H, m, 6-

PyH), 8.11 (1 H, d, 3J = 14.1 Hz, =CH), 6.78 (2 H, m, 2-&4-PyH), 4.62 (2 H, d, 3J = 6.1 Hz, 2-

Py–CH2), 4.23 (4 H, m, –O–CH2–CH3), 3.87 (3 H, s, –O–CH3), 1.34 (6 H, m, –O–CH2–CH3) 

ppm. MS (EI, pos.) m/z (%): 308 (C15H20N2O5, 20), 262 (C13H15N2O4, 100), 123 (C7H8NO, 85). 

IR: ν = 3275 (m, N–H), 1684 (s, C=O), 1630 (s, C=O) cm−1. 

HL8. 2-Aminomethyl-4-methoxypyridine (0.5 g, 3.6 mmol, 1 eq.) was diluted in ethanol 

(5 mL) and ethyl(ethoxymethylene)cyanoacetate (0.73 g, 4.3 mmol, 1.2 eq.) was added, 

resulting in a yellow suspension. This mixture was heated to reflux for 1 h. After cooling to 

room temperature white needles precipitated. Those were filtered, washed with ethanol, and 

dried in air. Yield: 0.34 g (261.28 g mol−1, 36%). Elemental analysis (C13H15N3O3, %) found C 

59.60, H 5.50, N 16.00; calcd C 59.76, H 5.79, N 16.08. 1H NMR (298 K, CDCl3, 300 MHz): 

δ = 9.43 (1 H, m, –NH), 8.43 (1 H, d, 3J = 5.8 Hz, 6-PyH), 7.48 (1 H, d, 3J = 13.8 Hz, =CH), 

6.85 (2 H, m, 3-&5-PyH), 4.63 (2 H, d, 3J = 5.9 Hz, 2-Py–CH2), 4.22 (2 H, q, 3J = 7.3 Hz, –O–

CH2–CH3), 3.92 (3 H, s, –O–CH3), 1.29 (3 H, t, 3J = 7.1 Hz, –O–CH2–CH3) ppm. MS (EI, pos.) 

m/z (%): 261 (C13H15N3O3, 100), 232 (C11H10N3O3, 25), 215 (C11H10N3O2, 65), 188 

(C10H10N3O, 45), 149 (C8H10N2O, 60), 123 (C7H8NO, 100). IR: ν = 3202 (m, N–H), 2206 (s, 

C≡N), 1683 (s, C=O) cm−1.  

HL9. 2-Aminomethyl-4-chloropyridine (0.5 g, 3.5 mmol, 1 eq.) was diluted in ethanol (5 mL) 

and diethylethoxymethylenemalonate (0.91 g, 4.2 mmol, 1.2 eq.) was added, resulting in a 

yellow solution. The mixture was heated to reflux for 1 h. After cooling to room temperature 

approximately half of the solvent was removed under reduced pressure. A light yellow solid 

precipitated, which was filtered, washed with ethanol, and dried in air. Yield: 0.7 g (312.75 g 

mol−1, 63%). Elemental analysis (C14H17ClN2O4, %) found C 53.71, H 5.32, N 8.94; calcd C 

53.77, H 5.48, N 8.96. 1H NMR (298 K, CDCl3, 300 MHz): δ = 9.62 (1 H, m, –NH), 8.52 (1 H, 

m, 6-PyH), 8.09 (1 H, d, 3J = 13.8 Hz, =CH), 7.37 (2 H, m, 2-&4-PyH), 4.75 (2 H, d, 3J = 6.2 

Hz, 2-Py–CH2), 4.22 (4 H, m, –O–CH2–CH3), 1.33 (6 H, m, –O–CH2–CH3) ppm. MS (EI, pos.) 

m/z (%): 312 (C14H17ClN2O4, 30), 266 (C12H12ClN2O3, 100), 153 (C7H7ClN2, 100), 127 

(C6H5ClN, 100). IR: ν = 3281 (m, N–H), 1680 (s, C=O), 1640 (s, C=O) cm−1. 



Copper(II) complexes with tridentate Schiff base-like ligands: solid state and solution structures and anticancer effects 
 

 
188 

HL10. 2-Aminomethyl-4-chloropyridine (0.5 g, 3.5 mmol, 1 eq.) was diluted in ethanol (5 mL) 

and ethyl(ethoxymethylene)cyanoacetate (0.71 g, 4.2 mmol, 1.2 eq.) was added, resulting in a 

yellow solution. This mixture was heated to reflux for 1 hour. After cooling to room temperature 

and storing at −28 °C, a solid was isolated by filtration, washed with ice-cold diethyl ether, and 

recrystallised in methanol (5 mL). The white, crystalline precipitate was filtered, washed with 

methanol, and dried in air. Yield: 0.42 g (265.70 g mol−1, 46%). Elemental analysis 

(C12H12ClN3O2, %) found C 54.05, H 4.49, N 15.83; calcd C 54.25, H 4.55, N 15.82. 1H NMR 

(298 K, CDCl3, 300 MHz): δ = 9.43 (1 H, m, –NH), 8.52 (1 H, d, 3J = 5.3 Hz, 6-PyH), 7.46 (1 

H, d, 3J = 13.8 Hz, =CH), 7.30 (1 H, dd, 3J = 5.3 Hz, 4J = 2.0 Hz, 5-PyH), 7.27 (1 H, d, 3J = 1.7 

Hz, 3-PyH), 4.61 (2 H, d, 3J = 6.1 Hz, 2-Py–CH2), 4.23 (2 H, q, 3J = 7.1 Hz, –O–CH2–CH3), 

1.32 (3 H, t, 3J = 7.1 Hz, –O–CH2–CH3) ppm. MS (EI, pos.) m/z (%): 265 (C12H12ClN3O2, 75), 

219 (C10H7ClN3O, 80), 153 (C7H7ClN2, 100), 127 (C6H5ClN, 100). IR: ν = 3288 (m, N–H), 

2208 (s, C≡N), 1679 (s, C=O) cm−1. 

HL11. 2-Aminomethyl-4-methylpyridine (0.75 g, 6.1 mmol, 1 eq.) was diluted in ethanol 

(5 mL) and diethylethoxymethylenemalonate (1.59 g, 7.4 mmol, 1.2 eq.) was added, resulting 

in a yellow solution. This mixture was heated to reflux for 1 hour. After cooling to room 

temperature the solvent was removed under reduced pressure resulting in an orange oil. This 

was stored at −28 °C for 1 day. The now orange solid was suspended in ice-cold diethyl ether 

(5 mL), filtered, washed with ice cold diethyl ether (5 mL), and dried in air. Yield: 0.71 g 

(292.14 g mol−1, 39%). Elemental analysis (C15H20N2O4·H2O, %) found C 57.84, H 7.19, N 

8.73; calcd C 58.05, H 7.15, N 9.03. 1H NMR (298 K, CDCl3, 300 MHz): δ = 9.55 (1 H, m, –

NH), 8.45 (1 H, d, 3J = 5.1 Hz, 6-PyH), 8.09 (1 H, d, 3J = 13.8 Hz, =CH), 7.21 (2 H, m, 2-&4-

PyH), 4.77 (2 H, d, 3J = 6.0 Hz, 2-Py–CH2), 4.21 (4 H, m, –O–CH2–CH3), 2.44 (3 H, s, 4-Py–

CH3), 1.30 (6 H, m, –O–CH2–CH3) ppm. MS (EI, pos.) m/z (%): 292 (C15H20N2O4, 45), 246 

(C13H14N2O3, 100), 219 (C12H15N2O2, 55), 133 (C8H9N2, 100), 107 (C7H9N, 100). IR: ν = 3262 

(m, N–H), 1675 (s, C=O), 1636 (s, C=O) cm−1.  

HL12. 2-Aminomethyl-4-methylpyridine (0.5 g, 4.1 mmol, 1 eq.) was diluted in ethanol (5 mL) 

and ethyl(ethoxymethylene)cyanoacetate (0.68 g, 4.9 mmol, 1.2 eq.) was added, resulting in a 

yellow solution. The mixture was heated to reflux for 1 hour. After cooling to room temperature 

the solvent was removed under reduced pressure and the dark yellow oil was stored at −28 °C 

for 3 days. The now yellow solid was suspended in ice-cold diethyl ether (5 mL), filtered, and 

washed with ice cold diethyl ether (5 mL). The crude product was recrystallised from methanol 
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to yield a white, crystalline solid. Yield: 0.51 g (245.12 g mol−1, 50%). Elemental analysis 

(C13H15N3O2·0.25 H2O, %) found C 62.84, H 6.17, N 16.84; calcd C 62.51, H 6.25, N 16.82. 

1H NMR (298 K, CDCl3, 300 MHz): δ = 9.43 (1 H, m, –NH), 8.48 (1 H, d, 3J = 5.1 Hz, 6-PyH), 

7.48 (1 H, d, 3J = 13.8 Hz, =CH), 7.17 (2 H, m, 3-&5-PyH), 4.67 (2 H, d, 3J = 5.7 Hz, 2-Py–

CH2), 4.25 (2 H, m, –O–CH2–CH3), 2.43 (3 H, s, 4-Py–CH3), 1.32 (3 H, t, 3J = 7.1 Hz, –O–

CH2–CH3) ppm. MS (EI, pos.) m/z (%): 245 (C13H15N3O2, 80), 199 (C11H10N3O, 50), 172 

(C10H10N3, 55), 133 (C7H9N2, 100), 107 (C7H7N, 100). IR: ν = 3280 (m, N–H), 2204 (s, C≡N), 

1673 (s, C=O) cm−1. 

HL13. 2-Aminomethyl-6-methylpyridine (1 g, 8.2 mmol, 1 eq.) was diluted in ethanol (5 mL) 

and ethyl(ethoxymethylene)cyanoacetate (1.66 g, 9.8 mmol, 1.2 eq.) was added, resulting in a 

yellow solution. The mixture was heated to reflux for 1 hour. After cooling to room temperature 

the solvent was removed under reduced pressure, yielding a dark yellow oil. After 3 days at 

−28 °C the now dark yellow solid was suspended in ice-cold diethyl ether (5 mL), filtered, and 

washed with ice-cold diethyl ether (10 mL). Recrystallisation from methanol gave a white solid. 

Yield: 0.27 g (245.12 g mol−1, 14%). Elemental analysis (C13H15N3O2·0.5 H2O, %) found C 

62.25, H 6.86, N 16.34; calcd C 61.40, H 6.34, N 16.52. 1H NMR (298 K, CDCl3, 300 MHz): 

δ = 9.42 (1 H, m, –NH), 8.43 (1 H, d, 3J = 5.8 Hz, 6-PyH), 7.48 (1 H, d, 3J = 13.8 Hz, =CH), 

6.85 (2 H, m, 3-&5-PyH), 4.63 (2 H, d, 3J = 5.9 Hz, 2-Py–CH2), 4.22 (2 H, q, 3J = 7.3 Hz, –O–

CH2–CH3), 3.92 (3 H, s, –O–CH3), 1.29 (3 H, t, 3J = 7.1 Hz, –O–CH2–CH3) ppm. MS (EI, pos.) 

m/z (%): 245 (C13H15N3O2, 100), 199 (C11H10N3O, 65), 172 (C10H10N3, 55), 133 (C7H9N2, 100), 

107 (C7H7N, 100). IR: ν = 3269 (m, N–H), 2204 (s, C≡N), 1694 (s, C=O) cm−1. 

HL14. 2-Aminomethyl-5-methylpyridine (1 g, 8.2 mmol, 1 eq.) was diluted in ethanol (5 mL) 

and diethylethoxymethylenemalonate (2.13 g, 9.8 mmol, 1.2 eq.) was added, resulting in a 

yellow solution. This mixture was heated to reflux for 1 hour. After cooling to room temperature 

the solvent was removed under reduced pressure yielding a yellow oil. This oil was stored at 

−28 °C for 1 week. The now yellow solid was suspended in ice-cold diethyl ether (5 mL), 

filtered, washed with ice-cold diethyl ether (10 mL), and dried in air. Yield: 1.36 g (292.14 g 

mol−1, 57%). Elemental analysis (C15H20N2O4·0.5EtOH·0.5H2O, %) found C 59.47, H 7.34, N 

8.23; calcd C 59.24, H 7.46, N 8.64. 1H NMR (298 K, CDCl3, 300 MHz): δ = 9.6 (1 H, m, –

NH), 8.43 (1 H, m, 6-PyH), 8.11 (1 H, d, 3J = 14.0 Hz, =CH), 7.60 (1 H, m, 4-PyH), 7.22 (1 H, 

d, 3J = 7.9 Hz, 3-PyH), 4.68 (2 H, d, 3J = 6.1 Hz, 2-Py–CH2), 4.21 (4 H, m, –O–CH2–CH3), 

2.36 (3 H, s, 5-Py–CH3), 1.29 (6 H, m, –O–CH2–CH3) ppm. MS (EI, pos.) m/z (%): 292 
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(C15H20N2O4, 45), 246 (C13H15N2O3, 100), 133 (C8H10N2, 100), 107 (C7H8N, 100). IR: ν = 3307 

(m, N–H), 1682 (s, C=O), 1617 (s, C=O) cm−1.  

HL15. 2-Aminomethyl-5-methylpyridine (1 g, 8.2 mmol, 1 eq.) was diluted in ethanol (5 mL) 

and ethyl(ethoxymethylene)cyanoacetate (1.66 g, 9.8 mmol, 1.2 eq.) was added, resulting in a 

yellow solution. This mixture was heated to reflux for 1 hour. After cooling to room temperature 

the solvent was removed under reduced pressure, yielding an orange oil. This was stored at −28 

°C for 1 day, suspended in ice-cold diethyl ether (5 mL), filtered, and washed with ice-cold 

diethyl ether (10 mL). Recrystallisation from THF gave a white, crystalline solid. Yield: 0.38 g 

(245.12 g mol−1, 19%). Elemental analysis (C13H15N3O2, %) found C 63.52, H 6.33, N 17.13; 

calcd C 63.66, H 6.16, N 17.13. 1H NMR (298 K, CDCl3, 300 MHz): δ = 8.41 (1 H, d, 4J = 0.7 

Hz, 6-PyH), 8.03 (1 H, d, 3J = 15.2 Hz, =CH), 7.43 (1 H, dd, 3J = 7.82 Hz, 4J = 0.86 Hz, 4-

PyH), 7.15 (1 H, d, 3J = 8.0 Hz, 3-PyH), 7.01 (1 H, m, –NH), 4.61 (2 H, d, 3J = 5.6 Hz, 2-Py–

CH2), 4.21 (2 H, q, 3J = 7.3 Hz, –O–CH2–CH3), 2.35 (3 H, s, 5-Py–CH3), 1.29 (3 H, t, 3J = 7.1 

Hz, –O–CH2–CH3) ppm. MS (EI, pos.) m/z (%): 245 (C13H15N3O2, 100), 199 (C11H10N3O, 70), 

133 (C8H10N2, 100), 107 (C7H8N, 100). IR: ν = 3269 (m, N–H), 2204 (s, C≡N), 1694 (s, C=O) 

cm−1.  

General procedure for the synthesis of the Cu(II) complexes 

0.2 g of the corresponding ligand, CuSO4 (1.2 eq.), and sodium methoxide (1.2 eq.) were 

dissolved in methanol (20 mL) under argon atmosphere and heated to reflux for 1 h, resulting 

in a dark blue or green solution. After cooling to RT the excess of CuSO4 and sodium methoxide 

was removed by filtration. All further steps were carried out in air. The Cu(II) complexes were 

precipitated with an aqueous solution of the corresponding sodium or potassium salt of the 

anion (4 eq. in 20 mL). If no precipitate occurred, the solvent was removed under reduced 

pressure until a solid could be isolated. This solid was washed with water and methanol and 

dried in air. 

[(µ-Br)2(CuL1)2] (4). Yield: 0.20 g green, crystalline powder (781.45 g mol−1, 32%). Elemental 

analysis (C26H30Br2Cu2N4O6, %) found C 40.07, H 3.72, N 7.20; calcd C 39.96, H 3.87, N 7.17. 

MS (EI, pos.) m/z (%): 391 (C15H18BrCuN2O3, 14), 309 (C13H15CuN2O3, 52), 248 (C13H15N2O3, 

14), 93 (C6H6N, 100). IR: ν = 1685 (s, C=O), 1604 (s, C=O) cm−1. 
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[(µ-Br)2(CuL2)2] (5). Yield: 0.12 g green needles (721.40 g mol−1, 18%). Elemental analysis 

(C24H26Br2Cu2N4O4, %) found C 39.96, H 3.88, N 7.74; calcd C 39.96, H 3.63, N 7.77. MS (EI, 

pos.) m/z (%): 361 (C12H13BrCuN2O2, 1), 279 (C12H13CuN2O2, 9), 218 (C12H13N2O2, 42), 93 

(C6H6N, 100). IR: ν = 1649 (s, C=O), 1613 (s, C=O) cm−1. 

[CuL3Br] (6).  Yield: 0.16 g green powder (420.75 g mol−1, 13%). Elemental analysis 

(C14H17BrCuN2O4, %) found C 39.99, H 4.28, N 6.91; calcd C 39.97, H 4.07, N 6.66. MS (EI, 

pos.) m/z (%): 421 (C14H17BrCuN2O4, 25), 340 (C14H17CuN2O4, 29), 93 (C6H6N, 100). IR: ν = 

1685 (s, C=O), 1623 (s, C=O) cm−1. 

[(µ-Br)(CuL4)] n (7). Yield: 0.14 g green powder (373.70 g mol−1, 43%). Elemental analysis 

(C12H12CuN3O2, %) found C 38.70, H 3.48, N 11.26; calcd C 38.57, H 3.24, N 11.24. MS (EI, 

pos.) m/z (%): 374 (C12H12CuBrN3O2, 2), 293 (C12H12CuN3O2, 4), 231 (C12H12N3O2, 23), 93 

(C6H6N, 100). IR: ν = 2201 (s, C≡N), 1627 (s, C=O) cm−1.  

[(µ-Br)2(CuL5)2] (8). Yield: 0.20 g dark green needles (905.59 g mol−1, 35%). Elemental 

analysis (C36H34Br2Cu2N4O6, %) found C 48.09, H 3.98, N 6.23; calcd C 47.75, H 3.78, N 6.19. 

MS (EI, pos.) m/z (%): 310 (C18H17N2O3, 16), 93 (C6H6N, 100). IR: ν = 1671 (s, C=O), 1602 

(s, C=O) cm−1.  

[(µ-Br)2(CuL6)2] (9). Yield: 0.20 g dark blue, crystalline powder (753.39 g mol−1, 31%). 

Elemental analysis (C24H26Br2Cu2N4O6, %) found C 38.19, H 3.18, N 7.22; calcd C 38.26, H 

3.48, N 7.44. MS (EI, pos.) m/z (%): 376 (C12H13BrCuN2O3, 6), 295 (C12H13CuN2O3, 24), 234 

(C12H13N2O3, 22), 93 (C6H6N, 100). IR: ν = 1687 (s, C=O), 1613 (s, C=O) cm−1. 

[CuL7Br] (10).  Yield: 0.09 g dark green powder (450.78 g mol−1, 31%). Elemental analysis 

(C15H19BrCuN2O5, %) found C 39.43, H 4.27, N 6.38; calcd C 39.97, H 4.25, N 6.21. MS (EI, 

pos.) m/z (%): 451 (C15H19BrCuN2O5, 5), 370 (C15H19CuN2O5, 5), 308 (C15H19N2O5, 52), 262 

(C13H14N2O4, 100), 123 (C7H8NO, 100). IR: ν = 1662 (s, C=O), 1618 (s, C=O) cm−1. 

[CuL8Br] (11).  Yield: 0.25 dark green, crystalline powder (403.72 g mol−1, 81%). Elemental 

analysis (C13H14BrCuN3O3, %) found C 39.27, H 3.98, N 10.63; calcd C 38.68, H 3.50, N 10.41. 

MS (EI, pos.) m/z (%): 404 (C13H14BrCuN3O3, 5), 323 (C13H14CuN3O3, 15), 261 (C13H14N3O3, 

100), 123 (C7H8NO, 100). IR: ν = 2207 (s, C≡N), 1616 (s, C=O) cm−1. 
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[CuL9Br] (12).  Yield: 0.12 g dark green, crystalline powder (455.19 g mol−1, 41%). Elemental 

analysis (C14H16BrClCuN2O4, %) found C 37.03, H 3.52, N 6.13; calcd C 36.94, H 3.54, N 

6.15. MS (EI, pos.) m/z (%): 455 (C14H16BrClCuN2O4, 15), 375 (C14H16ClCuN2O4, 15), 266 

(C12H12ClN2O3, 100), 127 (C6H5ClN, 100). IR: ν = 1664 (s, C=O), 1596 (s, C=O) cm−1. 

[CuL10Br] (13). Yield: 0.18 g dark green, crystalline powder (408.14 g mol−1, 59%). 

Elemental analysis (C12H11BrClCuN3O2, %) found C 35.18, H 2.55, N 10.27, calcd C 35.31, H 

2.72, N 10.30. MS (EI, pos.) m/z (%): 408 (C12H11BrClCuN3O2, 10), 327 (C11H12ClCuN3O2, 

20), 265 (C11H12ClN3O2, 60), 219 (C10H6ClN3O, 80), 127 (C6H5ClN, 100). IR: ν = 2209 (s, 

C≡N), 1616 (s, C=O) cm−1. 

[CuL11Br] (14). Yield: 0.13 g dark green, crystalline powder (434.78 g mol−1, 35%). 

Elemental analysis (C15H19BrCuN2O4·MeOH, %) found C 40.26, H 4.40, N 6.27; calcd C 

39.79, H 4.67, N 6.19. MS (EI, pos.) m/z (%): 435 (C15H19BrCuN2O4, 15), 354 (C15H19CuN2O4, 

20), 246 (C13H14N2O3, 100), 133 (C8H9N2, 100), 107 (C7H9N, 100). IR: ν = 1673 (s, C=O), 

1599 (s, C=O) cm−1. 

[CuL12Br] (15). Yield: 0.20 g dark green, crystalline powder (387.72 g mol−1, 65%). 

Elemental analysis (C13H14BrCuN3O2, %) found C 40.37, H 3.63, N 10.68; calcd C 40.27, H 

3.64, N 10.84. MS (EI, pos.) m/z (%): 388 (C13H14BrCuN3O2, 10), 307 (C13H14CuN3O2, 20), 

245 (C13H14N3O2, 80), 107 (C7H9N, 100). IR: ν = 2208 (s, C≡N), 1620 (s, C=O) cm−1. 

[CuL13Br] (16). Yield: 0.09 g dark green, crystalline powder (387.72 g mol−1, 29%). 

Elemental analysis (C13H14BrCuN3O2·H2O, %) found C 38.38, H 4.01, N 10.31; calcd C 38.48, 

H 3.97, N 10.36. MS (EI, pos.) m/z (%): 245 (C13H14N3O2, 100), 199 (C11H9N3O, 85), 133 

(C8H9N2, 100), 107 (C7H8N, 100). IR: ν = 2216 (s, C≡N), 1635 (s, C=O) cm−1. 

[CuL14Br] (17). Yield: 0.15 g dark green, crystalline powder (434.78 g mol−1, 50%). 

Elemental analysis (C15H19BrCuN2O4, %) found C 41.51, H 4.45, N 6.37; calcd C 41.44, H 

4.41, N 6.44. MS (EI, pos.) m/z (%): 435 (C15H19BrCuN2O4, 20), 353 (C15H19CuN2O4, 20), 292 

(C15H19N2O4, 20), 246 (C13H14N2O3, 100), 133 (C8H9N2, 100), 107 (C7H8N, 100). IR: ν = 1684 

(s, C=O), 1606 (s, C=O) cm−1. 

[CuL15Br] (18). Yield: 0.17 g dark green, crystalline powder (387.72 g mol−1, 54%). 

Elemental analysis (C13H14BrCuN3O2, %) found C 40.18, H 3.50, N 10.72; calcd C 40.27, H 
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3.64, N 10.84. MS (EI, pos.) m/z (%): 388 (C13H14BrCuN3O2, 5), 307 (C13H14CuN3O2, 10), 245 

(C13H14N3O2, 70), 133 (C8H9N2, 100), 107 (C7H8N, 100). IR: ν = 2204 (s, C≡N), 1622 (s, C=O) 

cm−1. 

X-ray diffraction on single crystals 

The X-ray analysis of all crystals was performed with a Stoe StadiVari diffractometer using 

graphite-monochromated MoKα radiation. The data were corrected for Lorentz and 

polarisation effects. The structures were solved by direct methods (SIR-2014)[15] and refined by 

fullmatrix least-square techniques against Fo
2 − Fc

2 (SHELXL-97).[16] All hydrogen atoms were 

calculated in idealised positions with fixed displacement parameters. ORTEP-III[17] was used 

for the structure representation. CCDC 1566628–1566632 and 1915614–1915617 contain the 

supplementary crystallographic data for this paper. 

Powder X-ray diffraction 

Powder diffractograms were measured with a STOE StadiP Powder Diffractometer (STOE, 

Darmstadt) using Cu[Kα1] radiation with a Ge Monochromator, and a Mythen 1K Stripdetector 

in transmission geometry. 

Magnetic measurements 

Magnetic measurements on the compounds were carried out using a SQUID MPMS-XL5 from 

Quantum Design with an applied field of 5000 G, and in the temperature range from 300 to 50 

K (or 2 K). The sample was prepared in a gelatine capsule held in a plastic straw. The raw data 

were corrected for the diamagnetic part of the sample holder and the diamagnetism of the 

organic ligand using tabulated Pascal’s constants.[18] 

Optical properties 

Absorbance spectra were obtained using an Agilent UV-Vis spectrophotometer 8453 (Agilent 

Technologies, USA) operating in a spectral range of 190–1100 nm. The spectra were measured 

at 298 K in quartz cells with 1 cm lightpath (Hellma, Germany). 
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Cyclic voltammetry 

Redox potentials were obtained using a CH Instruments Electrochemical Analyser (610E) in 

0.1 M NBu4PF6/MeCN with a platinum electrode, referenced to 0.01 M AgNO3 at room 

temperature with a scan rate of 50 mV s−1.  

Cell culture 

The human melanoma cell line 518A2, and the human colon carcinoma cell lines HT-29, HCT-

116wt, and HCT-116p53−/−, and the cervix carcinoma cell line HeLa were cultivated in 

Dulbecco’s Modified Eagle Medium supplemented with 10% FBS, and 1% antibiotic–

antimycotic at 37 °C, 5% CO2 and 95% humidity. Only mycoplasma-free cultures were used. 

MTT assay 

The cytotoxicity of the compounds was studied via the MTT based proliferation assay[19] on 

cells of 518A2 melanoma (obtained from the department of Radiotherapy and Radiobiology, 

University Hospital Vienna, Austria), HT-29 (DSMZ ACC-299) and HCT-116wt (DSMZ ACC-

581) colon carcinomas, HeLa (DSMZ ACC-57) cervix carcinoma, and human dermal 

fibroblasts (adult) HDFa (ATCC® PCS-201-012™). Briefly, cells (100 µL per well; 5 × 104 

cells per mL) were grown in 96-well plates for 24 h and then treated with varying concentrations 

of the test compound or solvent control (DMSO) for 72 h. After centrifugation of the plates 

(300g, 5 min, 4 °C), the supernatant was discarded and 50 µL per well of a 0.05% MTT solution 

in PBS was added to the wells and incubated for 2 h. After another centrifugation step the 

supernatant was discarded and the formazan precipitate was dissolved in 25 µL DMSO 

containing 10% SDS and 0.6% acetic acid for at least 1 h at 37 °C and the absorbance of 

formazan (570 nm) and background (630 nm) was measured with a microplate reader (Tecan). 

The IC50 values were calculated as the mean ± standard deviation of four independent 

experiments. 

Cellular uptake 

For measurement of the cellular uptake of the copper complexes into colon carcinoma cells 

ICP-MS analysis of cell lysates was carried out. Therefore, HCT-116wt cells were seeded at a 

density of 2 × 106 cells per dish and grown over night. The cells were subsequently treated with 

4 µM of the test compounds under cell culture conditions. After 24 h the cells were washed 
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with 1 × PBS, harvested, counted and pelleted. The cells were lysed using the microwave acid 

(HCl) digestion system (CEM Mars®). Copper content was determined using ICP-MS (Agilent 

7000, Japan). The copper content of untreated cells (0.76 ± 0.31 ng Cu per 106 cells) has already 

been subtracted from the presented values. 

Ethidium bromide saturation assay 

Salmon sperm DNA (SS-DNA, Sigma-Aldrich) was pipetted into a black 96-well plate in TE 

buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.5) to reach a final amount of 1 µg per 100 µL and 

incubated with varying concentrations of complexes 1, 10, 14 and CuSO4 for 2 h at 37 °C. 

Afterwards, 100 µL of a 10 µg mL−1 ethidium bromide solution in TE buffer was added to each 

well. After 5 min of incubation, the fluorescence (λex = 535 nm, λem = 595 nm) was detected 

using a microplate reader (Tecan F200). Each fluorescence value was corrected by possible 

intrinsic compound and ethidium bromide background fluorescence. As all experiments were 

carried out in triplicate, the relative ethidium bromide fluorescence was calculated as mean ± 

SD with solvent controls set to 100%. 

Electrophoretic mobility shift assay 

Circular plasmid DNA pBR322 (1.5 µg, Thermo Scientific) in TE buffer (10 mM Tris-HCl, 1 

mM EDTA, pH 8.5) was incubated with dilution series of cisplatin (CDDP) or complexes 1, 

10, and 14 (0, 5, 10, 25, 50 µM) at 37 °C for 24 h (20 µL total sample volume). Then, samples 

were subjected to gel electrophoresis using 1% agarose gels in 0.5× TBE buffer (89 mM Tris, 

89 mM boric acid, 25 mM EDTA, pH 8.3). After staining the gels with ethidium bromide (10 

µg mL−1), DNA bands were documented using UV excitation. Experiments were carried out at 

least in duplicate. 

NBT assay 

The effect of the test compounds on the relative levels of reactive oxygen species (ROS) was 

studied by using the NBT assay.[20] 518A2 melanoma cells (100 µL per well, 1 × 105 cells per 

mL) were seeded in 96 well plates and allowed to adhere for 24 h. Then, the cells were treated 

with the test compounds (1 and 10 µM) or vehicle (DMSO) for 24 h. After centrifugation (300g, 

5 min, 4 °C) the supernatant was discarded and the cells were incubated with 25 µL of a 0.1% 

NBT solution in PBS for 4 h at 37 °C. Then, the cells were centrifuged again (300g, 5 min, 4 

°C) and the NBT solution was withdrawn. The precipitated formazan was dissolved for 30 min 
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by adding first 25 µL of a 2 M KOH solution and then 33 µL DMSO. Then, the absorbance of 

formazan (630 nm) and background (405 nm) was measured with a microplate reader (Tecan). 

The formazan absorbance of the vehicle treated control cells was set as 100% ROS generation. 

All experiments were performed in sextuplicate resulting in the relative ROS generation as the 

mean ± standard deviation. 

Topoisomerase I inhibition assay 

To detect a potential inhibition of topoisomerase I a relaxation assay with supercoiled plasmid 

DNA was performed. Therefore, nuclear extracts containing topoisomerase type I and II 

enzymes were prepared from HT-29 colon carcinoma cells by differential centrifugation. 

Briefly, 0.5 µg pBR322 supercoiled plasmid DNA (Carl Roth) was incubated with the nuclear 

enzyme extracts in assay buffer (50 mM Tris/HCl, 100 mM KCl, 1 mM DTT, 1 mM EDTA, 5 

µg mL−1 acetylated bovine serum albumin, pH 7.5) with varying concentrations of the test 

compounds for 30 min at 37 °C. The absence of ATP in the reaction mixture prevented the 

activity of topoisomerase type II enzymes and the DMSO concentration was standardised to 

1% for all samples to exclude influence of the solvent. Reaction products were extracted with 

phenol–chloroform–isoamyl alcohol mixture (49.5 : 49.5 : 1; Sigma Aldrich), mixed with 5 µL 

of 5× loading dye, loaded onto a 1% agarose gel and electrophoresis was carried out at 66 V 

for 3.5 h. Gels were stained with ethidium bromide (10 µg mL−1) for 30 min, washed with 

ddH2O and photographed under UV light.  

 

 Conclusions 

 

We presented 15 new Cu(II) complexes with different tridentate Schiff base-like ligands 

bearing varying substituents on the pyridine ring and the chelate cycle. Single crystal X-ray 

structures of nine complexes were obtained and discussed. Compounds with no substituents on 

the pyridine ring crystallised as dimeric or polymeric complexes, with the metal centres being 

bridged by the anions. The introduction of substituents on the pyridine ring led to the 

crystallisation of square planar compounds with short M⋯π and π⋯π interactions. The 

compounds were tested for their cytotoxic activity towards various cancer cell lines. Three 

previously described complexes with the same tridentate ligand (HL1 ) but different anions were 
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investigated as well to rule out a potential influence of the anion. Most compounds were 

moderately active with IC50 values > 10 µM. Two complexes (10 and 14) bearing only ester 

side chains on the chelate perimeter and electronreleasing methoxy or methyl groups in 4-

position of the pyridine ring showed IC50 values in the low single-digit micromolar range. The 

respective complexes with a cyanide side chain instead of an ester group (11 and 15) were 

inactive (IC50 > 50 µM). The counter anion of the complexes does not seem to be crucial for the 

antiproliferative effect. These observations provide an entry point for future drug optimisations. 

In terms of the mode of action and the biological targets of the active copper complexes we 

could exclude the involvement of reactive oxygen species and any significant DNA interaction, 

but confirmed the inhibition of topoisomerase I to at least contribute to their anticancer effect. 

This sets them apart from other known topoisomerase I inhibitory Cu(II) complexes that already 

carry anticancer active ligands such as plumbagin,[6b] and that interfere with ROS levels and 

bind to DNA. 
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 Supporting Information 

 

Table S1. Crystallographic data of the complexes discussed in this work. 

 4 5 7 8 9 

CCDC 1566628 1566629 1566630 1566631 1566632 

formula [(µ2–Br)2(CuL1)2] [(µ2–Br)2(CuL2)2] [(µ2–Br)(CuL4)]n [(µ2–Br)2(CuL5)2] [(µ2–Br)2(CuL6)2] 

sum formula C26H30Br2Cu2N4O6 C24H26Br2Cu2N4O4 C12H12BrCuN3O2 C36H34Br2Cu2N4O6 C24H26Br2Cu2N4O6 

M/ g mol-1 781.44 721.39 373.70 905.57 753.38 

crystal system triclinic triclinic monoclinic monoclinic triclinic 

space group P−1 P−1 P21/c P21/n P−1 

crystal 

description 

blue green block blue block green plate green block blue green prism 

a/ Å 7.7302(4) 7.9933(7) 7.6905(4) 10.5383(6) 8.0566(4) 

b/ Å 9.2879(5) 9.2785(11) 24.3476(14) 9.5476(5) 8.4259(4) 

c/ Å 10.2517(5) 9.4396(10) 7.7833(4) 17.4636(12) 11.1094(5) 

α/ ° 94.782(4) 90.031(9) 90 90 75.675(4) 

β/ ° 94.310(4) 98.575(7) 113.207(4) 100.791(5) 86.846(4) 

γ/ ° 108.849(4) 111.440(8) 90 90 68.045(4) 

V/ Å3 690.07(6) 643.21(12) 1339.46(13) 1726.04(18) 677.12(6) 

Z 1 1 4 2 1 

ρcalcd/ g cm-3 1.880 1.862 1.853 1.742 1.848 

µ/ mm-1 4.485 4.798 4.614 3.600 4.567 

crystal size/ 

mm 

0.090×0.070×0.065 0.110×0.105×0.097 0.110×0.102×0.093 0.104×0.097×0.093 0.099×0.084×0.075 

F(000) 390 358 740 908 374 

T/ K 133(2) 133(2) 133(2) 133(2) 133(2) 

λ/ Å Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 

Θ range/ ° 2.00–28.50 2.2–28.6 1.68–28.67 2.11–28.47 1.9–28.4 

Reflns. 

collected 

3242 7822 3151 4145 3198 

Indep. 

reflns.(Rint) 

2709 (0.0317) 3021 (0.1611) 2226 (0.0608) 2693 (0.1860) 2677 (0.0299) 

Parameters 181 163 172 226 172 

R1 (all data) 0.0266 (0.0361) 0.0814 (0.1116) 0.0404 (0.0654) 0.0733 (0.1115) 0.0241 (0.0332) 

wR2 0.0628 0.2878 0.1099 0.2261 0.0560 

GooF 0.985 1.064 0.960 1.011 0.997 
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Table S1. (continued) 

 12 15 17 18 

CCDC 1915615 1915614 1915617 1915616 

formula [CuL9Br] [CuL12Br] [CuL14Br] [CuL15Br] 

sum formula C14H16BrClCuN2O4 C13H14BrCuN3O2 C15H19BrCuN2O4 C13H14BrCuN3O2 

M/ g mol-1 455.19 387.72 434.77 387.72 

crystal system triclinic triclinic monoclinic triclinic 

space group P−1 P−1 P21/a P−1 

crystal description green cube green plate green plate green plate 

a/ Å 8.0351(3) 7.8986(4) 7.9002(3) 7.5494(2) 

b/ Å 9.6830(3) 8.2689(3) 18.0037(6) 8.2358(3) 

c/ Å 11.4547(4) 11.3892(4) 11.3870(5) 12.3671(4) 

α/ ° 98.869(3) 85.890(3) 90 107.000(3) 

β/ ° 102.321(3) 78.823(3) 94.962(4) 96.398(3) 

γ/ ° 104.864(3) 81.476(3) 90 102.191(3) 

V/ Å3 820.70(5) 720.98(5) 1613.54(11) 706.30(4) 

Z 2 2 4 2 

ρcalcd/ g cm-3 1.842 1.786 1.790 1.823 

µ/ mm-1 3.947 4.289 3.851 4.378 

crystal size/ mm 0.095×0.076×0.065 0.119×0.117×0.098 0.079×0.052×0.037 0.085×0.045×0.032 

F(000) 454 386 876 386 

T/ K 133(2) 133(2) 133(2) 133(2) 

λ/ Å Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 Mo-Kα 0.71073 

Θ range/ ° 1.9–28.5 1.8–29.1 1.6–28.4 1.8–28.5 

Reflns. collected 12083 8912 12531 10623 

Indep. reflns.(Rint) 3966 (0.030) 3350 (0.028) 3900 (0.058) 3406 (0.027) 

Parameters 208 181 208 181 

R1 (all data) 0.0368 (0.0504) 0.0296 (0.0431) 0.0430 (0.0642) 0.0272 (0.0400) 

wR2 0.0995 0.0741 0.1137 0.0659 

GooF 1.04 1.034 1.04 1.05 
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Table S2. Selected bond lengths/Å and angles/° of the complexes discussed in this work. 

 Cu–Npy Cu–N Cu–O Cu–X Cu–X–Cu X–Cu–X 

4 2.0126(19) 1.928(2) 1.9363(18) 2.4316(4) 

2.8919(4) 

91.15(1) 88.85(1) 

5 1.993(7) 1.924(8) 1.926(6) 2.4419(14) 

2.9264(15) 

91.16(4) 88.84(4) 

7 1.995(3) 1.949(3) 1.951(3) 2.4153(6) 

2.8131(6) 

95.92(2) 96.08(2) 

8 1.994(6) 1.945(5) 1.918(4) 2.4330(12) 

2.9152(12) 

86.70(4) 93.30(3) 

9 2.0001(17) 1.9316(17) 1.9256(17) 2.4281(3) 

2.9752(4) 

91.17(1) 88.83(1) 

12 1.995(3) 1.930(3) 1.923(3) 2.3787(5) / / 

15 2.026(2) 1.976(2) 1.9730(18) 2.4174(4) / / 

17 1.990(3) 1.936(3) 1.940(2) 2.3770(6) / / 

18 2.005(2) 1.928(3) 1.9481(16) 2.3588(4) / / 
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Figure S1. Structures of 5(top left), 8 (top middle), 9 (top right), 12 (bottom left), 15 (bottom middle), and 18 (bottom right). 

Ellipsoids were drawn at 50 % probability level. Hydrogen atoms were omitted for clarity. 

 

 

Table S3. Summary of the C–H···π / X–Y···π interactions of the complexes presented in this work. 

  Cg H···Cg/Å 

Y···Cg/Å 

X–H···Cg/° 

X–Y···Cg/° 

X···Cg/Å 

5 C12–H12A Cu1–O1–C9–C8–C7–N2a 2.83 141 3.644(11) 

7 C6–H6A Cu1–O1–C9–C8–C7–N2b 2.66 141 3.485(4) 

 C10–H10B N1–C1–C2–C3–C4–C5c 2.81 141 3.634(5) 

12 C3–Cl1 Cu1–N1–C5–C6–N2d 3.3478(14) 84.40(11) 3.614(3) 

17 C10–H10A N1–C1–C2–C3–C4–C5e 2.98 132 3.709(4) 

 Cu1–Br1 Cu1–N1–C5–C6–N2f 3.3662(14) 83.37(3) 3.8900(14) 

 Cu1–Br1 N1–C1–C2–C3–C4–C5f 3.8784(15) 118.56(3) 5.4320(15) 

a: −3−x, −y, −z; b: x, 3/2−y, 1/2+z; c: x, 3/2−y, −1/2+z; d: 1−x, −y, 2−z; e: −1/2+x, 1/2−y, z; f: 1/2+x, 1/2−y, z. 
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Table S4. Selected distances and angles of the π– π and M– π interactions of the complexes presented in this work. Cg(I) is the 

centroid of the ring number I, α is the dihedral angle between the rings, β is the angle between the vector Cg(I) → Cg(J) and 

the normal to ring I, γ is the angle between the vector Cg(I) → Cg(J) and the normal to ring J. 

 Cg(I) Cg(J) Cg–Cg/Å α/° β/° γ/° 

4 Cu1–O1–C9–C8–C7–N2 N1–C1–C2–C3–C4–C5a 3.9305(14) 2.29(11) 25.5 24.0 

9 N1–C1–C2–C3–C4–C5 Cu1b 3.982 0 29.86 0 

12 Cu1–N1–C5–C6–N2 Cu1–O1–C9–C8–C7–N2b 3.3580(16) 2.53(12) 9.6 9.8 

 N1–C1–C2–C3–C4–C5 N1–C1–C2–C3–C4–C5c 3.4951(18) 0.02(15) 17.4 17.4 

 Cu1–N1–C5–C6–N2 Cu1b 3.544 0 22.30 0 

 Cu1–O1–C9–C8–C7–N2 Cu1b 3.707 0 28.89 0 

15 Cu1–N1–C5–C6–N2 Cu1–O1–C9–C8–C7–N2d 3.2977(14) 3.99(10) 11.6 11.9 

 Cu1–N1–C5–C6–N2 N1–C1–C2–C3–C4–C5a 3.6338(14) 0.81(12) 19.5 18.7 

 Cu1–N1–C5–C6–N2 Cu1d 3.635 0 30.33 0 

 Cu1–O1–C9–C8–C7–N2 Cu1d 3.423 0 20.86 0 

 N1–C1–C2–C3–C4–C5 Cu1a 3.570 0 16.69 0 

17 Cu1–N1–C5–C6–N2 Cu1–O1–C9–C8–C7–N2e 3.5852(18) 4.02(14) 21.8 18.6 

 Cu1–N1–C5–C6–N2 Cu1f 3.890 0 32.59 0 

 Cu1–O1–C9–C8–C7–N2 Cu1f 3.444 0 16.48 0 

18 Cu1–N1–C5–C6–N2 Cu1–N1–C5–C6–N2g 3.5980(14) 0.02(11) 20.0 20.0 

 Cu1–N1–C5–C6–N2 Cu1–O1–C9–C8–C7–N2h 3.4963(13) 1.40(10) 22.6 23.6 

 Cu1–N1–C5–C6–N2 N1–C1–C2–C3–C4–C5g 3.6748(13) 3.91(11) 22.6 22.3 

 Cu1–O1–C9–C8–C7–N2 N1–C1–C2–C3–C4–C5g 3.5589(13) 2.74(10) 17.7 18.0 

 Cu1–N1–C5–C6–N2 Cu1h 3.650 0 28.30 0 

 Cu1–N1–C5–C6–N2 Cu1g 3.907 0 30.19 0 

 Cu1–O1–C9–C8–C7–N2 Cu1h 3.322 0 14.07 0 

 N1–C1–C2–C3–C4–C5 Cu1g 3.548 0 21.11 0 

a: 1−x, 1−y, −z; b: 1−x, 1−y, 2−z; c: 1−x, −y, 2−z; d: 1−x, −y, −z; e: 1/2+x, 1/2−y, z; f: −1/2+x, 1/2−y, z; g: 2−x, −y, 1−z; h: 1−x, −y, 1−z. 
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Table S5. Hydrogen bonds and angles of the complexes presented in this work. 

 Donor Acceptor D–H/Å H···A/Å D ···A/Å D–H···A/° 

4 C3–H3 Br1a 0.95 2.82 3.606(3) 140 

 C6–H6B Br1b 0.99 2.77 3.652(3) 149 

5 C2–H2 O2c 0.95 2.48 3.203(12) 133 

 C6–H6A Br1d 0.99 2.83 3.730(9) 151 

 C6–H6B O2e 0.99 2.56 3.378(11) 140 

7 C6–H6B Br1f 0.99 2.88 3.766(4) 149 

 C7–H7 Br1g 0.95 2.84 3.744(4) 159 

8 C7–H7 O2h 0.95 2.39 3.318(9) 164 

9 C3–H3 Br1i 0.95 2.90 3.602(2) 132 

 C6–H6B Br1j 0.99 2.92 3.829(2) 153 

12 C2–H2 Br1k 0.95 2.91 3.842(3) 167 

 C4–H4 O3l 0.95 2.30 3.142(4) 148 

15 C6–H6A Br1m 0.99 2.88 3.747(3) 147 

17 C4–H4 O3o 0.95 2.42 3.370(5) 173 

18 C7–H7 Br1a 0.95 2.85 3.622(2) 139 

 C13–H13C Br1p 0.98 2.91 3.832(3) 157 

a: x, −1+y, z; b: 1−x, 1−y, −z; c: 1+x, 1+y, 1+z; d: −3−x, −y, 1−z; e: −3−x, −y, −z; f: 1+x, 3/2−y, 1/2+z; g: 1+x, y, 1+z; h: 2−x, −y, 1−z; i: 

−1+x, 1+y, z; j: 1−x, 1−y, 2−z; k: −x, −y, 2−z; l: 2−x, 1−y, 2−z; m: 1+x, y, z; o: −1/2−x, 1/2+y, −z; p: 2−x, 1−y, 1−z. 

 

Figure S2. Powder X-ray diffraction patterns and calculated pattern of 4, 5, 7, 8, and 9. Calculated patterns were obtained at 

133 K, measured at room temperature. 
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Figure S3. Powder X-ray diffraction patterns and calculated patterns of 12, 15, 17, and 18. Calculated patterns were obtained 

at 133 K, measured at room temperature. 
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Figure S4. χMT vs. T plots of compounds 4, 5, 6, 7, 8, and 9. 
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Figure S5. χMT vs. T plots of compounds 10, 11, 12, 13, 14, and 15. 
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Figure S6. χMT vs. T plots of compounds 16, 17, and 18. 
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Table S6. Data of the magnetic measurements with µeff at 300 K, χMT at 300 K, 50 K, and, if measured, 2 K, and, if determined, 

the coupling constant J, g, and TIP. 

 µeff [µB]  
(300 K) 

χMT [cm3K−1mol−1]  
(300 K) 

χMT [cm3K−1mol−1] 
(50 K) 

χMT [cm3K−1mol−1]  
(2 K) 

J [cm−1] g TIP 
[cm3mol−1] 

4 2.88 1.04 0.84 0.83 0.38(5) 2.057(3) 7.45(11)·10−4 

5 3.15 1.24 0.89     

6 2.33 0.68 0.50     

7 2.06 0.53 0.43     

8 3.02 1.14 0.92     

9 2.90 1.05 0.93 1.09 3.38(19) 2.163(4) 5.79(17)·10−4 

10 2.16 0.58 0.46     

11 2.01 0.51 0.42     

12 2.05 0.52 0.42     

13 2.06 0.53 0.41     

14 2.15 0.58 0.42     

15 1.99 0.50 0.42 0.21    

16 1.99 0.49 0.44     

17 2.05 0.53 0.42     

18 2.05 0.53 0.44 (120 K)*     

*due to technical difficulties this complex could only be measured until 120 K. 
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Figure S7. UV-Vis spectra of 1–6 (1 in H2O, 2–6 in DMSO) at the indicated time points.  
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Figure S8. UV-Vis spectra of 7–12 (DMSO) at the indicated time points. 
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Figure S9. UV-Vis spectra of 13–18 (DMSO) at the indicated time points. 
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Figure S10. Cyclic voltammograms (MeCN, 0.1 M NBu4PF6, vs. Ag/AgNO3, 50 mV/s) of 1–6.  
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Figure S11. Cyclic voltammograms (MeCN, 0.1 M NBu4PF6, vs. Ag/AgNO3, 50 mV/s) of 7–12. 
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Figure S12. Cyclic voltammograms (MeCN, 0.1 M NBu4PF6, vs. Ag/AgNO3, 50 mV/s) of 13–18. 
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Figure S13. UV-Vis spectra of 3, 8, and 11 in PBS. 
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Figure S14. UV-Vis spectra of compounds 1, 10, and 14 (100 µM) in PBS at 37 °C at the indicated time points.  
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Figure S15. Relative ethidium bromide–DNA adduct fluorescence after pre-incubation with vehicle (0 µM) of 1, 10, 14, and 

CuSO4 (25, 50, 75, 100 µM) for 2 h. A decreased fluorescence indicates an interaction between DNA and test compound which 

prevents the intercalation of ethidium bromide molecules between the double-stranded SS-DNA. Values ± SD derived from at 

least three independent experiments with controls set to 100 %. 

 

 

Figure S16. Electrophoretic mobility shift assay (EMSA) with circular pBR322 DNA. DNA was incubated with cis-platin 

(CDDP, top left), 1 (top right), 10 (bottom left), or 14 (bottom right) (0, 5, 10, 25, 50 µM) for 24 h and subjected to agarose gel 

electrophoresis followed by ethidium bromide staining. Supercoiled form (top) and open circular form (bottom). Pictures are 

representative for at least two independent experiments.  
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Figure S17. Effect of copper complexes 1–18, CuSO4, and HL11 on the relative superoxide levels in 518A2 melanoma cells 

after 24 h incubation as determined by NBT assays. The ROS production (%) was obtained as the mean ± standard deviation 

of six independent experiments with respect to untreated control cells set to 100 %.  

 

 

Figure S18. Mass spectrum (DIP, EI, pos.) of 4. 
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Scan 30#4:34. Entries=782. Base M/z=93.1. 100% Int.=61,9008. EI. POS. Probe =226. KD 389 / C13H15N2O3CuBr
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Figure S19. Mass spectrum (DIP, EI, pos.) of 5. 

 

Figure S20. Mass spectrum (DIP, EI, pos.) of 6. 

 

  

SCAN GRAPH. Flagging=Nominal M/z. Highlighting=Base Peak. 
Scan 33#5:02. Entries=711. Base M/z=93.1. 100% Int.=55,9872. EI. POS. Probe =212. KD 403 / C14H17BrN2O4Cu
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SCAN GRAPH. Flagging=Nominal M/z. Highlighting=Base Peak. 
Scan 43#6:33. Entries=626. Base M/z=93. 100% Int.=104,832. EI. POS. Saturated. Probe =253. KD 386 / C12H13N2O2CuBr
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Figure S21. Mass spectrum (DIP, EI, pos.) of 7.  

 

 

Figure S22. Mass spectrum (DIP, EI, pos.) of 8. 

 

  

SCAN GRAPH. Flagging=Nominal M/z. Highlighting=Base Peak. 
Scan 34#5:28. Entries=520. Base M/z=93.2. 100% Int.=47,9232. EI. POS. Probe =232. KD 427 / C12H12BrCuN3O2
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SCAN GRAPH. Flagging=Nominal M/z. Highlighting=Base Peak. 
Scan 23#3:30. Entries=590. Base M/z=93. 100% Int.=73,2416. EI. POS. Probe =222. kD 398 / C18H17N2O3CuBr
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Figure S23. Mass spectrum (DIP, EI, pos.) of 9. 

 

 

Figure S24. Mass spectrum (DIP, EI, pos.) of 10. 
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SCAN GRAPH. Flagging=Nominal M/z. Highlighting=Base Peak. 
Scan 25#3:48. Entries=1180. Base M/z=123. 100% Int.=59,3408. EI. POS. Probe =207. KD 564 / C15H19BrCuN2O5
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Figure S25. Mass spectrum (DIP, EI, pos.) of 11. 

 

 

Figure S26. Mass spectrum (DIP, EI, pos.) of 12. 

 

 

SCAN GRAPH. Flagging=Nominal M/z. Highlighting=Base Peak. 
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Figure S27. Mass spectrum (DIP, EI, pos.) of 13. 

 

 

Figure S28. Mass spectrum (DIP, EI, pos.) of 14. 
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SCAN GRAPH. Flagging=Nominal M/z. Highlighting=Base Peak. 
Scan 18#2:44. Entries=1206. Base M/z=133. 100% Int.=58,5984. EI. POS. Probe =205. LP-37 Co-Komplex / C15H19BrCuN2O4
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Figure S29. Mass spectrum (DIP, EI, pos.) of 15.  

 

 

Figure S30. Mass spectrum (DIP, EI, pos.) of 16. 
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Scan 35#5:19. Entries=1145. Base M/z=107.2. 100% Int.=57,728. EI. POS. Probe =248. LP 18 / C13H14BrCuN3O2
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SCAN GRAPH. Flagging=Nominal M/z. Highlighting=Base Peak. 
Scan 33#5:01. Entries=1065. Base M/z=107.1. 100% Int.=58,88. EI. POS. Probe =204. LP 41 [Cu(L39D)Br] / C13H1hBrCuN3O2
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Figure S31. Mass spectrum (DIP, EI, pos.) of 17. 

 

 

Figure S32. Mass spectrum (DIP, EI, pos.) of 18.  

 

 

 

 

 

 

SCAN GRAPH. Flagging=Nominal M/z. Highlighting=Base Peak. 
Scan 36#5:47. Entries=1270. Base M/z=133.1. 100% Int.=58,5728. EI. POS. Probe =191. KD 570 / C15H19BrCuN2O4
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SCAN GRAPH. Flagging=Nominal M/z. Highlighting=Base Peak. 
Scan 16#2:34. Entries=1381. Base M/z=133.2. 100% Int.=56,2432. EI. POS. Probe =214. KD 571 / C13H14BrCuN3O2

Nominal M/z
50 100 150 200 250 300 350 400 450

In
te

ns
ity

 (%
ag

e)

0

10

20

30

40

50

60

70

80

90

100

39
65

77

107

122

133

156

170

199

216

245

262

307

309
386 388



 

 

 

 

 



List of publications 
 

 
229 

11. List of publications 

 

K. Dankhoff, M. Gold, L. Kober, F. Schmitt, L. Pfeifer, A. Dürrmann, H. Kostrhunova, M. 

Rothemund, V. Brabec, R. Schobert, B. Weber: „Copper(II) complexes with tridentate Schiff 

base-like ligands: solid state and solution structures“, Dalton Trans. 2019, 48, 15220–15230. 

P. M. Schäfer, K. Dankhoff, M. Rothemund, A. N. Ksiazkiewicz, A. Pich, R. Schobert, B. 

Weber, S. Herres-Pawlis; „Towards new robust Zn(II) complexes for the ring-opening 

polymerization of lactide under industrial relevant conditions”, ChemistryOpen 2019, 8, 1020–

1026. 

K. Dankhoff, B. Weber: „Isostructural iron(III) spin crossover complexes with a tridentate 

Schiff base-like ligand: X-ray structures and magnetic properties”, Dalton Trans. 2019, DOI: 

10.1039/C9DT00846B. 

K. Dankhoff, A. Ahmad, B. Weber, B. Biersack, R. Schobert: „Anticancer properties of a new 

non-oxido vanadium(IV) complex with a catechol-modified 3,3′-diindolylmethane ligand”, J. 

Inorg. Biochem. 2019, 194, 1–6. 

K. Dankhoff, S. Schneider, R. Nowak, B. Weber: „Iron(II) and Iron(III) Complexes of 

Tridentate NNO Schiff Base‐like Ligands – X‐ray Structures and Magnetic Properties“, Z. 

Anorg. Allg. Chem. 2018, 644, 1839–1848.  

H. L. C. Feltham, K. Dankhoff, C. J. Meledandri, S. Brooker: „Towards Dual-Functionality 

Spin-Crossover Complexes”, ChemPlusChem 2018, 83, 582–589. 

K. Dankhoff, B. Weber: „Novel Cu(II) complexes with NNO-Schiff base-like ligands : 

structures and magnetic properties“, CrystEngComm 2018, 20, 818–828. 

B. Weber, E. Kaps, K. Dankhoff: „Synthesis of a New Schiff Base-like Trinucleating Ligand 

and its Copper, Vanadyl, and Iron Complexes : Influence of the Bridging Ligand on the 

Magnetic Properties”, Z. Anorg. Allg. Chem. 2017, 643, 1593–1599. 



List of publications 
 

 
230 

K. Dankhoff, C. Lochenie, F. Puchtler, B. Weber: „Solvent Influence on the Magnetic 

Properties of Iron(II) Spin-Crossover Coordination Compounds with 4,4'-Dipyridylethyne as 

Linker“, Eur. J. Inorg. Chem. 2016, 2136–2143. 

S. Schlamp, K. Dankhoff, B. Weber: „Amphiphilic iron(II) complexes with short alkyl chains 

: crystal packing and spin transition properties“, New J. Chem. 2014, 38, 1965–1972. 

 



(Eidesstattliche) Versicherungen und Erklärungen 
 

 
231 

12. (Eidesstattliche) Versicherungen und Erklärungen 

 

(§ 9 Satz 2 Nr. 3 PromO BayNAT) 

Hiermit versichere ich eidesstattlich, dass ich die Arbeit selbstständig verfasst und keine 

anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe (vgl. Art. 64 Abs. 1 

Satz 6 BayHSchG). 

(§ 9 Satz 2 Nr. 3 PromO BayNAT) 

Hiermit erkläre ich, dass ich die Dissertation nicht bereits zur Erlangung eines akademischen 

Grades eingereicht habe und dass ich nicht bereits diese oder eine gleichartige Doktorprüfung 

endgültig nicht bestanden habe. 

(§ 9 Satz 2 Nr. 4 PromO BayNAT) 

Hiermit erkläre ich, dass ich Hilfe von gewerblichen Promotionsberatern bzw. -vermittlern oder 

ähnlichen Dienstleistern weder bisher in Anspruch genommen habe noch künftig in Anspruch 

nehmen werde. 

(§ 9 Satz 2 Nr. 7 PromO BayNAT) 

Hiermit erkläre ich mein Einverständnis, dass die elektronische Fassung meiner Dissertation 

unter Wahrung meiner Urheberrechte und des Datenschutzes einer gesonderten Überprüfung 

unterzogen werden kann. 

(§ 9 Satz 2 Nr. 8 PromO BayNAT) 

Hiermit erkläre ich mein Einverständnis, dass bei Verdacht wissenschaftlichen Fehlverhaltens 

Ermittlungen durch universitätsinterne Organe der wissenschaftlichen Selbstkontrolle 

stattfinden können. 

 

………………………………………………………………………………………. 

Ort, Datum, Unterschrift   


