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Abstract

This Thesis is devoted to the theoretical description of anisotropic effects in colloidal
systems. We consider both internal anisotropy of the microscopic interactions between
colloidal particles and external anisotropy originated from external fields [1–4].

First, we focus on internal anisotropy in hard body models in which the particles are
not allowed to overlap. We investigate two-dimensional hard core systems with particles
of arbitrary shape. The interaction between two hard particles is characterized by the
excluded area, i.e. the area inaccessible to one particle due to the presence of another
particle. The magnitude of the excluded area depends on the relative orientation between
the two particles and it has a major impact on the bulk phase behaviour of a macroscopic
system of hard particles. Using Principal Component Analysis we perform a statistical
study of a large collection of excluded areas corresponding to randomly generated particle
shapes. The study shows that the magnitude of the excluded area as a function of the
relative particle orientation is dominated by global features of the particle shape such as
the elongation of the particle. Hence, despite the vast diversity of particle shapes, the
variety of possible excluded areas is more restricted. We identify limiting cases of particle
shapes that form mesophases with different orientational symmetries. We complement the
analysis with Monte Carlo simulations for selected particle shapes showing examples of the
validity and the limitations of two-body Onsager-like theoretical approaches to describe
hard core systems.

Anisotropy can also arise from external fields even if the interparticle interactions are
isotropic. A prominent example is colloidal sedimentation, i.e. the equilibrium and migra-
tion of colloidal particles in a gravitational field. We develop a theory to study the effect
of the height of the sedimentation test tube on the stacking sequence of binary colloidal
mixtures. The stacking sequence is the sequence of macroscopic layers that appear un-
der gravity in sedimentation-diffusion-equilibrium. We apply the theory to model binary
mixtures and to mixtures of patchy colloids that differ either in the number or the types
of patches. Patchy colloids are colloidal particles with anisotropic valence-based bonding
interactions. We show that the height of the sample can change the stacking sequence
of a colloidal mixture even if all other parameters such as the relative concentrations are
fixed. For example, there can be stacking sequences that only appear for certain sample
heights. We demonstrate that the sample height, which is often not systematically varied
in experimental work, is an important parameter in sedimentation.

Besides the sedimentation-diffusion-equilibrium of colloidal mixtures we also consider
the dynamics of sedimentation. We investigate an oppositely driven binary colloidal mix-
ture in which two species migrate through each other. We identify three states depending
on the driving strength. If the driving strength is low, then the two species diffuse through
each other without any ordering effects. At sufficiently high driving strength, however,
the two species demix and form dynamic lanes along the direction of the driving. For in-
termediate driving strengths the two species can block each other and form a quasi-static
jammed state. Using Brownian dynamics simulations, we sample all the contributions to
the one-body force field due to the internal interactions, the external fields, and the ther-
mal diffusion. Of particular interest is the internal force field, which we split into adiabatic
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and superadiabatic contributions. The adiabatic contribution is obtained by sampling a
reference equilibrium system with the same one-body density as the non-equlibrium sys-
tem. We demonstrate that laning is a purely superadiabatic effect and identify a species-
dependent structural superadiabatic force that counteracts the entropy of mixing of both
species. In addition, we develop a Power Functional Theory based on a velocity gradient
approximation that reproduces the observed phenomenology.

As a practical example of self-assembly in a non-equilibrium colloidal system with both
internal and external anisotropy we consider a system of patchy colloids with three patches
adsorbed on a surface patterned with a square lattice of external potential wells. We
investigate the effect of the width of the potential wells on the relaxation of a homogeneous
state of patchy colloids. A competition between the potential energy of the cores, which
is minimized if the particles aggregate in close packing near the centers of the potential
wells, and the bonding energy of the patches, which is minimized if open networks with
low packing fraction are formed, determines the dynamics of the system. For very narrow
potential wells a close packed structure with six-fold symmetry is formed, whereas for wide
potential wells the three-fold symmetry of the bonding sites of the patchy colloids leads
to the formation of an open network. For intermediate widths a core-shell structure with
a six-fold core and a three-fold shell appears. The relaxation times associated with the
formation of both structures are significantly different, which can be used to dynamically
control the self-assembly.
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Kurzfassung

Diese Dissertation befasst sich mit der theoretischen Beschreibung von anisotropen Effek-
ten in kolloidalen Systemen. Dabei werden sowohl interne Anisotropie der mikroskopischen
Wechselwirkungen zwischen kolloidalen Teilchen, als auch von externen Feldern generierte
externe Anisotropie betrachtet [1–4].

Zunächst wird interne Anisotropie in harten Modellen, in denen die Teilchen nicht
überlappen können, untersucht. Es werden zweidimensionale harte Systeme mit Teilchen
beliebiger Form betrachtet. Die Wechselwirkung zwischen zwei harten Teilchen ist charak-
terisiert durch die ausgeschlossene Fläche, d.h. die Fläche, die für ein Teilchen aufgrund
der Anwesenheit des anderen Teilchens nicht zugänglich ist. Der Betrag dieser Fläche
hängt von der relativen Orientierung beider Teilchen ab und hat für makroskopische har-
te Systeme großen Einfluss auf das Phasenverhalten im Volumen. Mit Hilfe von Princi-
pal Component Analysis erfolgt eine statistische Auswertung einer großen Anzahl an zu
zufällig generierten Teilchenformen gehörigen ausgeschlossenen Flächen. Die Auswertung
zeigt, dass die funktionelle Abhängigkeit des Betrags der ausgeschlossenen Fläche von der
relativen Teilchenorientierung von globalen Eigenschaften der Teilchenform, wie beispiels-
weise der Elongation des Teilchens, dominiert wird. Folglich ist die Vielfältigkeit möglicher
ausgeschlossener Flächen trotz der hohen Diversität an Teilchenformen eingeschränkt. Es
werden Grenzfälle von Teilchenformen, die Mesophasen mit verschiedenen Orientierungs-
symmetrien bilden, identifiziert. Die Analyse wird ergänzt mit Monte Carlo-Simulationen
ausgewählter Teilchenformen. Dabei werden Beispiele gezeigt, welche die Gültigkeit und
Grenzen von theoretischen Onsager-ähnlichen Zweiteilchenansätzen zur Beschreibung von
harten Systemen demonstrieren.

Anisotropie kann auch durch externe Felder erzeugt werden, selbst wenn die internen
Wechselwirkungen isotrop sind. Ein zentrales Beispiel hierfür ist kolloidale Sedimenta-
tion, d.h. das Gleichgewicht oder die Migration von kolloidalen Teilchen in einem Gra-
vitationsfeld. Es wird eine Theorie entwickelt um den Effekt der Probenhöhe auf die
Stapelfolge von binären kolloidalen Mischungen zu untersuchen. Die Stapelfolge ist die
Abfolge von makroskopischen Schichten, die sich unter dem Einfluss von Gravitation
im Sedimentations-Diffusions-Gleichgewicht ausbilden. Die Theorie wird angewandt auf
binäre Modellmischungen und auf Mischungen von Patch-Kolloiden, welche sich entweder
in der Zahl oder den Typen von Patches unterscheiden. Patch-Kolloide sind kolloidale Teil-
chen mit anisotropen valenz-basierten Bindungswechselwirkungen. Es wird demonstriert,
dass die Probenhöhe die Stapelfolge verändern kann, selbst wenn alle anderen Parameter
wie beispielsweise die relativen Konzentrationen unverändert sind. So können zum Beispiel
manche Stapelfolgen nur für bestimmte Probenhöhen auftreten. Es wird gezeigt, dass die
Probenhöhe, welche in experimentellen Arbeiten oft nicht systematisch variiert wird, ein
wichtiger Parameter der Sedimentation sind.

Neben dem Sedimentations-Diffusions-Gleichgewicht von kolloidalen Mischungen wird
auch die Dynamik von Sedimentation betrachtet. Eine in entgegengesetzte Richtungen
angetriebene binäre kolloidale Mischung, in der sich die beiden Spezies durcheinander be-
wegen, wird untersucht. Es werden drei Zustände abhängig von der Antriebsstärke identifi-
ziert. Wenn der Antrieb gering ist, diffundieren die beiden Spezies durcheinander ohne Ord-
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nungseffekte. Bei ausreichend hoher Antriebsstärke entmischen die beiden Spezies und for-
men dynamisches Spuren entlang der Richtung des Antriebs. Für mittlere Antriebsstärke
können sich die Spezies gegenseitig blockieren und einen quasi-statischen blockierten Zu-
stand (”jammed state”) bilden. Mit Hilfe von Brownscher Dynamik-Simulationen werden
sämtliche Beiträge zum Einteilchenkraftfeld, welche von internen Wechselwirkungen, ex-
ternen Feldern und thermischer Diffusion stammen, gesamplet. Von besonderem Interesse
ist dabei das interne Kraftfeld, welches in adiabatische und superadiabatische Beiträge auf-
spalten wird. Der adiabatische Beitrag wird erhalten, indem ein Referenzgleichgewichtssy-
stem mit derselben Einteilchendichte wie das Nichtgleichgewichtssystem gesamplet wird.
Es wird demonstriert, dass Spurbildung ein rein superadiabatischer Effekt ist und eine spe-
ziesabhängige strukturelle superadiabatische Kraft, die der Mischungsentropie beider Spe-
zies entgegenwirkt, wird identifiziert. Zusätzlich wird eine Powerfunktionaltheorie, welche
eine Approximation basierend auf dem Gradienten des Geschwindigkeitsfeldes beinhaltet
und die beobachteten Phänomene reproduziert, entwickelt.

Als eine praktische Anwendung von Selbstorganisation in einem Nichtgleichgewichtssy-
stem, das sowohl interne als auch externe Anisotropie beinhaltet, wird ein System von
Patch-Kolloiden, die an eine Oberfläche mit gitterförmig angeordneten externen Potenti-
altöpfen adsorbiert sind, untersucht. Betrachtet wird der Effekt der Breite der Potenti-
altöpfe auf die Relaxation eines homogenen Zustands der Patch-Kolloiden. Ein Wettbe-
werb zwischen der potentiellen Energie der Kerne, welche minimal ist, wenn sich die Teil-
chen dichtgepackt nahe den Zentren der Potentialtöpfe anordnen, und der Bindungsenergie
der Patches, welche minimal ist, wenn sich offene Netzwerke mit geringer Packungsdichte
bilden, kennzeichnet die Dynamik des Systems. Für sehr enge Potentialtöpfe bildet sich
eine dichtgepackte Struktur mit sechszähliger Symmetrie, wohingegen für breite Poten-
tialtöpfe die dreizählige Symmetrie der Bindungsstellen der Patch-Kolloiden zur Bildung
eines offenen Netzwerks führt. Für mittlere Breiten formiert sich eine Kern-Schale-Struktur
mit sechszähligem Kern und dreizähliger Schale. Die Relaxationszeiten der Bildung beider
Strukturen sind signifikant unterschiedlich, was genutzt werden kann, um die Selbstorga-
nisation dynamisch zu kontrollieren.
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1 Introduction

This Thesis addresses the behaviour of colloidal systems in which large numbers of nano- to
micron-sized particles self-assemble into complex structures and patterns. We investigate
how this self-assembly is influenced and promoted by different forms of anisotropy. Both
anisotropy of the microscopic interactions between colloidal particles (internal anisotropy)
and anisotropy that originates from external fields (external anisotropy) are considered.

In this introductory chapter the phenomenology in colloidal systems relevant to this
Thesis is first presented, followed by the general methods and tools required for the theo-
retical description and for the computer simulation of the investigated model systems.

1.1 Colloidal particles

Colloids consist of small particles dispersed in a solvent like water or oil. The suspended
particles, called colloidal particles, are of mesoscopic size, typically on the scale of several
nano- to micrometers. Colloidal systems are ubiquitous in our daily lives. Prominent
examples are milk, gelatin, blood, toothpaste, and paint [5–8].

A characteristic feature of colloids is Brownian motion. This phenomenon was originally
described by Robert Brown in 1827 who noticed that pollen grains suspended in water
perform random motion. In the early 20th century, Einstein and Sutherland found the
origin of this motion in the interaction between molecules of the fluid and the pollen
grains [9, 10]. The molecules of the solvent are in constant motion and collide with the
colloidal particles, exerting on them at each point in time a random net force. This leads to
a random walk of the suspended particles through the solvent known as Brownian motion.

Colloids can self-assemble into complex structures with utilization in technological ap-
plications. Examples are conductive ink [11], nanodiodes [12], and photonic crystals [13].
The electro-optical applications make use of the fact that colloids can form regular struc-
tures on a lengthscale at which visible light is diffracted. A natural example for this effect
can be observed in opals, where small regions of regularly arranged silica particles create
a beautiful play of colors [14]. Structures on the colloidal lengthscale can also be found
in our bodies. For example, the transport of nutritients and chemical agents within body
fluids depends on the fundamental properties of colloids. Hence, colloidal research is vital
for medical applications such as drug delivery [15].

Colloidal particles are generally large and slow enough to be observed via optical mi-
croscopy. For this reason, colloids are used to model and understand other systems. For
example, the mechanisms of protein assembly [16] that occur at the molecular lengthscale
can be partially understood by studying colloidal systems. In contrast, insights from col-
loidal research can also be applied to large-scale systems. In this Thesis, for example, we
study lane formation in a colloidal model system, a phenomenon that can also be observed
in e.g. a dense group of pedestrians [17].
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1.1.1 Internal anisotropy

The description of colloidal systems can be greatly simplified if the interaction between
the particles is isotropic and hence depends only on the distance between the particle
centers. Theoretical models for isotropic interactions such as the hard sphere model and
the Lennard-Jones potential have great historical relevance and are to this day an active
topic of research. These models already include an abundance of interesting phenomena.
One central example is the freezing of the hard sphere fluid presented in 1957 by Alder and
Wainwright [18]. This constitutes a purely entropically driven first order phase transition
in which the particles assemble into a regular lattice.

However, the complexity of the structures formed by isotropic colloids cannot in general
match the intricacy of configurations found at the molecular level, for example those
formed by proteins. Yet, the variety of configurations increases drastically when colloidal
particles with anisotropic interactions are considered. In this Thesis we examine systems
with two types of internal anisotropy, as laid out in the following.

Particle shape

In Ref. [1] we investigate the effect of anisotropic particle shapes on the bulk equilibrium
properties of 2D hard core systems. Studies of this topic are of prevailing experimental
relevance, since recent experimental advances have allowed the synthesis of colloidal parti-
cles with arbitrary shapes using techniques such as photolithography [19,20]. Microscope
images of colloidal particles with distinct shapes are presented in Fig. 1.1. Those images
demonstrate the variety and precision with which the shape of colloidal particles can be
controlled.

Colloidal particles with anisotropic shape possess not only positional, but also orien-
tational degrees of freedom. This gives rise to new physics, such as the formation of
mesophases with orientational order. Representative states of hard spherocylinders with
sufficiently high aspect ratio are shown in Fig. 1.2. By increasing the density the particles
undergo first an isotropic-nematic transition [21]. In the nematic state the particles are
on average aligned along a preferred orientation, called the director [22]. However, the
particles have no positional order. A further increase of the density leads to the formation
of a smectic state with both orientational order and positional order in one dimension, as
shown in Fig. 1.2c.

Substances that form this type of mesophases are known as liquid crystals to designate
materials with properties intermediate between those of a crystal and of an isotropic liquid.
A brief introduction to the theoretical description of such ordering effects is given in Sec.
1.2.7.

Patchy colloids

Anisotropy in the interactions between colloidal particles can also be introduced via di-
rectional bonding. Patchy colloids are nano- to micron-sized particles made of a hard core
with discrete attractive sites, called patches, on the surface [23]. Originally, patchy parti-
cles were introduced as a theoretical concept in order to study the behaviour of molecules
with highly anisotropic interactions [24, 25]. The hydrogen bond is a prototypical ex-
ample for such directional interactions. Advances in synthesis techniques have made the
experimental realization of patchy colloids possible [26]. Due to their similarity with the
directional interactions of particles at molecular lengthscales, patchy colloids are also re-
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Figure 1.1: Scanning electron miscroscope images of anisotropic colloidal particles created with
photolithography. Scale bars are 10µm long. Adapted from Ref. [19].

(a) (b) (c)

director

isotropic nematic smectic

Figure 1.2: Schematic representations of hard spherocylinders in three different states. (a)
Isotropic state at low density with neither positional nor orientational order. (b) Nematic state
at intermediate densities. The particles have no positional order, but are on average oriented
along the director. (c) Smectic state at high densities with both orientational and one-dimensional
positional order.
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(a) (b) (c) (d)

Cluster
Amidine
patches

Biotin
patches

DNA
patches

Figure 1.3: Schematic of the synthesis of patchy colloids using droplet polymerization. (a) A
cluster of amidinated polystyrene microspheres with tetrahedral configuration. (b) Adding and
polymerizing a styrene droplet creates the hard core of the patchy colloid. The parts of the
microspheres that are not covered by the core act as amidine patches. (c) Preparation of the
patches with biotin. (d) Adding DNA molecules with single stranded ends creates highly selective
patches. Adapted from Ref. [31].

ferred to as colloidal molecules [27]. Today, there exist several methods for synthesizing
patchy colloids [28–30]. One widely used technique is schematically shown in Fig. 1.3.

One starts with colloidal amidinated polystyrene microspheres that are attached to
liquid emulsion droplets [31]. Emulsion evaporation, i.e. removing the fluid, leads to a
shrinking of the droplets and therefore packing of the microspheres into clusters. In order
to minimize the interfacial free energy [32], these clusters form defined structures such
as tetrahedra [33], see Fig. 1.3a. Then, styrene monomer is added to the clusters. The
monomer forms a spherical droplet around the clusters. Via polymerization, the droplet
is turned into the spherical core of the patchy colloid, Fig. 1.3b. The size of the core is
such that only the outmost parts of the monosphere cluster remain outside and form the
patches. Preparation with biotin, Fig. 1.3c, allows then the attachment of DNA molecules,
Fig. 1.3d. Typically, double stranded DNA molecules with single stranded ends are used.
The sticky ends of the DNA molecules only bind to the complementary DNA molecules
of other patches, which results in highly selective patchy interactions.

The phase behaviour of patchy colloids is determined by a competition between the free
energy of the bonding of the patches and the free energy of the configurations of the cores.
We discuss this in detail in Ref. [4], where we study the relaxation of patchy colloids
adsorbed to a surface which is patterned with potential wells. In addition, in Ref. [2]
we study the sedimentation-diffusion-equilibrium of binary mixtures of patchy colloids.
Relevant parameters for patchy colloidal systems are the bonding energy, i.e. the change
in internal energy when two patches form a bond, as well as the number of patches per
particle, called the functionality. An introduction to the theoretical description of patchy
colloids is given in Sec. 1.2.6.

1.1.2 External anisotropy

Colloidal particles might respond to different types of external fields, such as magnetic or
electric fields. The external fields can be time-dependent and experimentally controlled.
Even if no external fields are applied intentionally, experiments in colloidal science are
in general influenced by the Earth’s gravitational field. Anisotropic external fields can
break the global rotational symmetry of a bulk system and create macroscopically ordered
structures, even if the internal interactions are isotropic. Constant driving with an ex-

12



ternal field keeps a system in a perpetual state of non-equilibrium. There, even a simple
homogenous external force leads to complex patterns, as we demonstrate in Ref. [3].

Sedimentation of colloidal particles

Sedimentation is the equilibrium or migration of colloidal particles in a gravitational field.
Although usually negligible on the molecular lengthscale, in colloidal systems sedimen-
tation effects can be commonly observed because the gravitational energy of particles
can be comparable to their thermal energy [34]. This is often expressed in terms of the
gravitational length

ξ =
kBT

mg
, (1.1)

where kB denotes the Boltzmann constant, T the absolute temperature, m the buoyant
mass of one particle, and g the acceleration due to gravity. For colloidal systems, gravi-
tational lengths typically are of the order of millimeters to centimeters. If experimentally
preferable, gravitational effects can be increased using centrifuges.
In addition to the interest in sedimentation experiments due to technical applications such
as using centrifugation as a separation technique [35], sedimentation experiments allow ac-
cess to fundamental properties of colloids. Famous examples are the experiments by Perrin
in 1916, which included the measurement of the Boltzmann constant [36], as well as the
test of the bulk equation of state of hard spheres by Piazza et. al. in 1993 [37].

When colloidal mixtures are considered, the sedimentation-diffusion-equilibrium can be
quite complex and can include the formation of multiple stacks [38] as well as counter-
intuitive effects such as denser particles floating on top of lighter ones [39].

As an example we show in Fig. 1.4 photographs of a sedimentation experiment with
mixtures of colloidal gibbsite platelets and silica spheres. Changing the size of the spheres
completely alters the stacking sequence, i.e. the sequence of stacks of different layers that
appear under gravity. For small spheres a nematic phase at the bottom with an isotropic
one on top is found in sedimentation-diffusion-equilibrium. This sequence changes to a
nematic phase floating between two isotropic phases for the case of bigger spheres [40].

In Ref. [2] we develop a theory for the sedimentation-diffusion-equilibrium of binary
colloidal mixtures in vessels with finite height based on the theory of sedimentation paths
for infinite vessels [41,42], which is introduced in Sec. 1.2.5 .

Opposite driving in colloidal mixtures

Specific phenomena arise when the two species of a binary colloidal mixture are driven
through each other in opposite directions. Such driving occurs for example when oppositely
charged particles are subject to a homogenous electric field and also in the case of particles
with different buoyant masses in a gravitational field. The driving can also originate from
self-propelling with aligned velocities such as e.g. for bacteria in channels [43,44].

Two characteristic states in a system of oppositely charged polymethylmethacrylate
(PMMA) spheres subject to a homogenous electric field [45] are presented in Fig. 1.5.
For high density and intermediate driving strength, the two species block each other and
form a jammed state as shown in Fig. 1.5a. In this state the two species segregate and
form bands perpendicular to the driving force in which the individual particles are almost
static. In contrast, for intermediate densities and strong driving there is the so-called
lane formation, see Fig. 1.5b. Here, the two species form lanes along the direction of the
driving in which the particles are highly dynamic.
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Figure 1.4: Photographs taken between crossed polarizers showing the time-evolution of samples
in a sedimentation experiment with colloidal mixtures of gibbsite platelets (diameter of 186 nm)
and silica spheres with diameters of 30 nm (top row) and 74 nm (bottom row). The initial bare
packing fraction of the spheres is 0.05, and for the platelets 0.01, 0.025, and 0.05, as indicated.
Changing the size of the spheres completely modifies the stacking sequence in sedimentation-
diffusion-equilibrium from bottom nematic (orange) and top isotropic (black) in the case of small
spheres (top right panel) to a nematic phase floating between two isotropic phases in the case of
big spheres (bottom right). From Ref. [40].
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(a) (b)

E

Figure 1.5: Confocal snapshots of a binary mixture of PMMA spheres with opposite charges
(indicated by green and red color). In both panels a homogenous and static electric field E in the
direction indicated by the arrow is applied. (a) At very high density and intermediate field strength
(E = 20 Vmm−1) the system is jammed and forms static bands perpendicular to the direction of
the driving. (b) Dynamic lane formation with dynamic lanes along the direction of the driving at
intermediate density and high field strength (E = 80 Vmm−1). In both panels the white scale bars
are 10µm long. Adapted from Ref. [45].

A particular property of lane formation is that it also appears in large-scale systems like
pedestrian crowds [46,47]. The research of lane formation in pedestrian crowds is of high
importance for the planning of evacuation routes.

Many aspects of lane formation have been studied, for example the formation of tilted
lanes when the driving is not opposite [48] and a reentrance effect in the formation of
lanes that appears for increasing density [49]. For further details see also Ref. [3], where
we study an oppositely driven binary colloidal mixture with computer simulations and
theory. We focus on characterizing the contributions to the one-body force field in both
the jammed state and the laned state.
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1.2 Theoretical approaches and simulation techniques in
Brownian systems

This section briefly introduces the concepts that provide the theoretical foundation for
investigating and understanding the so far presented physical phenomena.

1.2.1 Langevin and Brownian dynamics

Langevin dynamics

Langevin dynamics is an approach for modeling the dynamics of colloidal systems. A
system of N colloidal particles is considered at fixed temperature T and suspended in a
solvent. The motion of the i-th colloidal particle is described by the Langevin equation

mir̈i(t) = ftot,i(t)− ξṙi(t) + δfi(t), (1.2)

where mi and ri are the buoyant mass and the position of particle i, ξ is the friction
coefficient against the implicit solvent, and ftot,i denotes the total deterministic force acting
on particle i, which originates from both internal interactions and external fields. The
molecules of the solvent are not considered explicitly. However, the effect of the collisions
between the solvent and the colloidal particles is included via a stochastic contribution,
namely the random force δfi. This random force has zero mean, is uncorrelated between
different particles, and has an infinitely short correlation time when acting on the same
particle, i.e.

〈δfi〉 = 0, (1.3)

〈δfi(t)δfj(t′)〉 = 2ξkBTδijδ(t− t′)I, (1.4)

with Kronecker delta δij , and d × d identity matrix I, where d is the space dimension.
Langevin dynamics does not consider hydrodynamic interactions between the particles,
but includes friction via the term −ξṙi.

Brownian dynamics

In the overdamped limit, inertial effects become negligible and one obtains from Langevin
dynamics the simplified equations of motion of Brownian dynamics:

ξṙi(t) = ftot,i(t) + δfi(t). (1.5)

In our simulations these equations are discretized and integrated in time via the standard
Euler algorithm, i.e.

ri(t+ ∆t) = ri(t) +
1

ξ
ftot,i(t)∆t+ δri(t), (1.6)

where ∆t denotes one discrete time step and δri is a random displacement sampled from
a Gaussian distribution with zero mean and variance

√
2D∆t with Einstein diffusion co-

efficient D = kBT/ξ. In this Thesis we use BD to simulate the trajectories of colloidal
systems. In Ref. [3] we perform simulations for a binary mixture of oppositely driven
quasi-hard disks and in Ref. [4] we sample the relaxation of patchy colloids adsorbed to a
surface with external potential wells.
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1.2.2 Monte Carlo simulation

In this Thesis, we study colloidal systems in equilibrium and in non-equilibrium situations.
Both Langevin and Brownian dynamics can be applied in both situations. In equilibrium,
however, instead of sampling the actual time evolution of the system, it is often more
efficient to use stochastic Monte Carlo (MC) methods. The equilibrium average of an
observable A in the canonical ensemble, i.e. a system with fixed number of particles N ,
volume V , and temperature T , is given by [50]

〈A〉 =

∫
drN exp[−βU(rN )]A(rN )∫

drN exp[−βU(rN )]
. (1.7)

Here, the integrals run over all possible positional configurations rN ≡ {r1, ..., rN} of all
particles, U denotes the potential energy that depends on the configuration, and β =
(kBT )−1. In the calculation of the average value 〈A〉 each state contributes with a weight
given by the Boltzmann factor exp[−βU(rN )]. However, for increasing number of degrees
of freedom it generally becomes impossible to consider all configurations of the system.
Averages have therefore to be estimated with a finite number of configurations. The idea
behind MC methods is to sample states with a probability proportional to their Boltzmann
factor and therefore preferably generate states with a high Boltzmann factor and thus high
statistical weight in the calculation of averages.

In the standard Metropolis approach, microstates of a canonical system are generated
via the following algorithm. First, a random particle i is selected. Then, a new position r′i
for the particle is proposed by adding a random displacement ∆r to its previous position
so that r′i = ri + ∆r. The new configuration r′N with the position r′i for the i-th particle
is then accepted with probability

ptr
acc = min

(
1, exp[−β[U(r′N )− U(rN )]]

)
. (1.8)

If the configuration with the new position r′i is not accepted, the old configuration with
the position ri is restored.
We use MC simulation in the canonical ensemble in Ref. [3] to sample the adiabatic
equilibrium reference system of a non-equilibrium steady state of a binary mixture of
oppositely driven quasi-hard disks. In Ref. [1] we perform MC simulations for hard systems
with arbitrary particle shapes and thus orientational degrees of freedom. To account for
the orientational degrees of freedom we also change the particle orientations in each MC
step. Additionally, the simulations in this publication are done in the isothermal-isobaric
ensemble for which the pressure p is fixed and hence the volume V fluctuates. For these
simulations, in addition to the already presented position (and orientation) updates at fixed
volume, volume-changing moves are applied. A new volume V ′ = V + ∆V is proposed by
adding a random volume change ∆V to the current system volume. As part of this, all
particle coordinates are scaled by a factor (V ′/V )1/d, where d is the dimensionality of the
system. This leads to an enthalpy change

∆H = ∆U + p∆V − kBTN ln(V ′/V ), (1.9)

where ∆U denotes the change in potential energy. The term p∆V accounts for the me-
chanical work required to expand or compress the system and −kBTN ln(V ′/V ) accounts
for the change in the number of possible configurations of the system. The new volume is
then accepted with probability

pV
acc = min (1, exp[−β∆H]) . (1.10)
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1.2.3 Smoluchowski equation

Equivalently to the above many-body approaches, in the Fokker-Planck description a
colloidal system can be characterized via the many-body probability distribution Ψ(rN , t)
of finding a system of N particles in a microstate rN ≡ {r1, ..., rN} at time t, where ri
denotes the position of the i-th particle.

The time evolution of Ψ(rN , t) is given by the Smoluchowski equation [51]

∂Ψ(rN , t)

∂t
= −

∑

i

∇i · viΨ(rN , t), (1.11)

with ∇i indicating the partial derivative with respect to ri. The configuration space
velocity vi is defined by

ξvi = −∇iU(rN ) + fext(ri)− kBT∇i ln Ψ, (1.12)

where U is the interparticle interaction potential, fext is the external force field, and the
term −kBT∇i ln Ψ accounts for diffusion due to the random motion. In the Fokker-Planck
description the average of an observable A is built via integration over configuration space

〈A〉 =

∫
drNAΨ(rN , t). (1.13)

This average is analogous to averaging in the Langevin description over a set of stochastic
particle trajectories with different initial conditions and realizations of the random noise
in Eq. (1.2).

1.2.4 Density functional and power functional theories

In this section we discuss two theories that describe colloidal systems on the one-body
level. This leads to a drastically reduced number of variables that have to be taken into
account. Furthermore, the structure in such one-body theories can give insight about the
mechanisms behind the captured effects.

Density functional theory

Classical Density Functional Theory (DFT) was formulated in 1979 by Evans [52] based
on the electronic Density Functional Theory developed by Hohenberg, Kohn and Sham in
1964 and 1965 [53,54] and extended to nonzero temperatures by Mermin [55]. DFT is an
essential tool for the investigation of the equilibrium properties of inhomogenous systems.
A central object in classical DFT is the equilibrium one-body density distribution

ρ0(r) =

〈
N∑

i=1

δ(r− ri)

〉
, (1.14)

where δ denotes the Dirac distribution and the average is taken over all microstates ac-
cording to their equilibrium probability distribution.

Cornerstone of DFT is that for given temperature T , volume V , and chemical potential
µ, the grand potential is a functional Ω([ρ];T, V, µ) of the one-body density distribution.
This functional satisfies a variational principle that states that the functional is minimal
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when the trial density distribution ρ(r) equals the equilibrium density distribution ρ0.
That is,

δΩ[ρ]

δρ(r)

∣∣∣∣
ρ=ρ0

= 0 (min). (1.15)

Furthermore, the value of the functional evaluated at the equilibrium density profile coin-
cides with the thermodynamic grand potential Ω0

Ω[ρ0] = Ω0. (1.16)

A Legendre transformation yields the intrinsic Helmholtz free energy functional

F [ρ] = Ω[ρ]−
∫
drρ(r)(Vext(r)− µ), (1.17)

where Vext is the external potential. Applying the variational principle, Eq. (1.15), to the
free energy gives

δF [ρ]

δρ(r)

∣∣∣∣
ρ=ρ0

= µ− Vext(r). (1.18)

The free energy depends only on intrinsic properties of the system, not on the external
potential. The free energy can be split into ideal and excess (over ideal) contributions

F [ρ] = Fid[ρ] + Fexc[ρ]. (1.19)

The ideal part is (exactly) given by

Fid[ρ] = kBT

∫
drρ(r)(ln[λdρ(r)]− 1), (1.20)

with thermal wavelength λ. The excess part depends on the interparticle interactions and
it is in general unknown. Only a few exceptions exist where an exact excess functional can
be formulated, such as the free energy functional for one-dimensional hard rods developed
by Percus [56]. In general, the excess free energy needs to be approximated. Finding good
approximations for Fexc is the essential point in DFT. A number of common approaches
exist, such as the mean-field approximation [57], weighted density approximations [58],
and Rosenfeld fundamental measure theories [59–61].

We use DFT in Ref. [3] to calculate the adiabatic potential in the adiabatic reference
systems. Furthermore, DFT with Onsager’s functional for hard particles is connected to
Ref. [1].

Power functional theory

Power Functional Theory (PFT) is an exact generalization of DFT to non-equilibrium sit-
uations. PFT is also built around a central functional, which is the unique time-dependent
power functional Rt[ρ,J]. The functional depends on two trial fields, the density profile
ρ(r, t) and the current profile J(r, t). By construction, at any time t the functional is
minimum when evaluated at the actual current profile. That is, it satisfies the variational
principle

δRt[ρ,J]

δJ(r)
= 0 (min), (1.21)
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where the density ρ(r, t) as well as the history ρ(r, t′) and J(r, t′) for times t′ < t are fixed
and given by the physical time evolution of the system. The functional can be split into
three contributions

Rt[ρ,J] = Pt[ρ,J] + Ḟ [ρ]−Xt[ρ,J], (1.22)

where Ḟ [ρ] is the total time derivative of the Helmholtz free energy and describes reversible
intrinsic contributions, Xt[ρ,J] accounts for the external power, and Pt[ρ,J] accounts for
superadiabatic effects such as dissipation and structural forces [62]. Both Ḟ [ρ] and Pt[ρ,J]
are purely intrinsic functionals, i.e. they do not depend on the external field, and can be
split into ideal and excess parts. For Ḟ [ρ] this splitting follows directly from Eq. (1.19),
for Pt[ρ,J] we have

Pt[ρ,J] = Pid[ρ,J] + Pexc[ρ,J]. (1.23)

Here, the ideal part represents the free power dissipation of an ideal gas

Pid[ρ,J] =
ξ

2

∫
dr

J(r, t)2

ρ(r, t)
, (1.24)

with friction coefficient ξ. The variational principle, Eq. (1.21), yields the time-evolution
of the one-body current

ξJ(r, t)

ρ(r, t)
= −δPexc[ρ,J]

δJ(r, t)
−∇ δF [ρ]

δρ(r, t)
−∇Vext(r, t) + X(r, t), (1.25)

where Vext(r, t) is a conservative external potential and X(r, t) is a non-conservative ex-
ternal force field. Using Eq. (1.25) together with the continuity equation

∂ρ(r, t)

∂t
= −∇ · J(r, t), (1.26)

one obtains the equation of motion for the one-body density ρ(r, t).

Similar to the excess part of the free energy in DFT, Pexc is a complex object that
depends on the internal interactions in the system and therefore, analogously to Fexc in
DFT, needs to be approximated. In Ref. [3] for example we develop an excess functional
that describes lane formation in colloidal binary mixtures subject to a gravitational field
and is based on the local velocity gradient as introduced in Ref. [63]. Since its original
application to Brownian systems, PFT has also been formulated for quantum many-body
systems [64] and inertial Newtonian systems [65].

If we neglect the term δPexc[ρ,J]/δJ(r, t) in Eq. (1.25), we recover the equation of
motion of Dynamical Density Functional Theory (DDFT) [52,66–69]

ξJDDFT(r, t)

ρ(r, t)
= −∇ δF [ρ]

δρ(r, t)
−∇Vext(r, t) + X(r, t), (1.27)

where JDDFT(r, t) is the one-body current of DDFT. Neglecting δPexc[ρ,J]/δJ(r, t), i.e.
the superadiabatic contributions to the power functional, is therefore equivalent to the
so-called adiabatic approximation taken in DDFT. This approximation can also be under-
stood on the level of internal forces as follows.

The one-body current J(r, t) is generated by the total force field f(r, t) via

J(r, t) = ξ−1ρ(r, t)f(r, t). (1.28)
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The total force field can be split into three contributions

f(r, t) = fint(r, t) + fext(r, t)− kBT∇ ln ρ(r, t), (1.29)

namely the internal force field fint(r, t) due to interactions between the (colloidal) particles,
the external force field fext(r, t), and the stochastic force field, which is captured in the
diffusive term −kBT∇ ln ρ(r, t).

The internal force field can be split into adiabatic and superadiabatic part

fint(r, t) = fad(r, t) + fsup(r, t). (1.30)

Here, the adiabatic part is the internal force field in a reference equilibrium system (the
adiabatic system) with the same one-body density as the non-equilibrium system. The
remaining superadiabatic part can be identified with the previously discussed functional
derivative

fsup(r, t) = −δPexc[ρ,J]

δJ(r, t)
. (1.31)

Via the adiabatic construction, developed in Ref. [70], it is possible to obtain the adia-
batic and superadiabatic forces of a non-equilibrium system separately in simulations. In
the adiabatic construction, the adiabatic reference system is explicitly sampled, e.g. with
Monte Carlo methods. The adiabatic reference system is an equilibrium system subject
to an adiabatic potential Vad. The adiabatic potential is constructed in such a way that
the adiabatic system has the same one-body density as the non-equilibrium system. The
force balance in the adiabatic system is hence given by

fad(r)−∇Vad(r)− kBT∇ ln ρ(r) = 0, (1.32)

where ∇ indicates the derivative with respect to the position r. In Ref. [3] we extend the
adiabatic construction to binary mixtures and explicitly sample adiabatic and superadia-
batic forces in a binary mixture exhibiting non-equilibrium colloidal laning. As a result,
we demonstrate that lane formation is a superadiabatic effect by identifying a superadia-
batic force that counteracts the entropic mixing of the two species and hence leads to the
formation of lanes. In addition, we introduce the novel and general concept of splitting the
one-body force field in mixtures into a species-dependent and a species-independent part.
We show that for lane formation this approach is very useful as only the species-dependent
part, which affects concentrations, is relevant, whereas the species-independent part only
affects the total density and does not contribute to the demixing into lanes.
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1.2.5 Sedimentation-diffusion-equilibrium of binary colloidal mixtures

In Ref. [2] we extend the theory of sedimentation paths to finite sample heights and
show that the sample height is a vital parameter in sedimentation experiments. Here,
we show the basic concepts of the underlying theory of sedimentation paths for infinite
samples [41,42].

For a binary colloidal mixture subject to gravity, one can define height- and species-
dependent local chemical potentials

ψi(z) = µbi −migz, i = 1, 2, (1.33)

where µbi is the bulk chemical potential of species i in absence of gravity, mi is the buoy-
ant mass of this species, g is the acceleration due to gravity, and z denotes the vertical
coordinate in the system. Eliminating gz from the above equations yields

ψ2(ψ1) = a+ sψ1, (1.34)

with constants a = µb2 − sµb1 and s = m2/m1. Eq. (1.34) describes a straight line in the
ψ1 − ψ2 plane of local chemical potentials, the so called sedimentation path.

If all correlation lengths in the system are small compared to the gravitational lengths
ξi = kBT

mig
, one can apply a local density approximation (LDA) [71]. Then, one can assume

that the state of the system at height z is the same as the equilibrium state of a bulk
system with chemical potentials µi, that is

µi = ψi(z), i = 1, 2. (1.35)

In the limit of samples with very large (infinite) height, a sedimentation path is fully
defined by its slope s, intercept a, and direction (given by the sign of the buoyant masses).
The stacking sequence observed in a sample follows directly from its sedimentation path,
since each time the sedimentation path crosses a boundary between two phases in the
phase diagram, such as e.g. a binodal line, an interface appears in the vessel.

Fig. 1.6 shows a typical bulk phase diagram with characteristic sedimentation paths
(a) and the resulting stacking diagram (b) in the s − a plane. In this plane, each point
corresponds to one sedimentation path in the plane of chemical potentials. The boundaries
in the stacking diagram are defined by the fact that at these points an infinitesimal change
in s and/or a of the sedimentation path qualitatively changes the stacking sequence.

There are three different types of boundaries in the stacking diagram. First, there
are sedimentation binodals which are formed by the set of all sedimentation paths that
are tangent to the binodal. Second, there are terminal lines for which the corresponding
sedimentation paths cross an end point of the binodal, such as e.g. a critical point. And
third, there are asymptotic terminal lines for which the corresponding sedimentation paths
are parallel to the asymptotic behaviour of the binodal.

Fig. 1.6 shows how even a very simple bulk phase diagram already leads to a complex
stacking diagram with several stacking sequences. In Ref. [2] we extend this theory to
the experimentally relevant case of samples with finite height and analyze the stacking
diagrams of mixtures of patchy colloids. For samples with finite height sedimentation
paths are no longer infinite lines, but line segments. This qualitative distinction entails new
types of boundaries in the stacking diagram, which we discuss in detail in the publication.
We demonstrate that the sample height is an important parameter, as it changes the
length of the sedimentation paths. As a consequence, there can for example be stacking
sequences that only appear for certain sample heights when all other parameters like
relative concentrations are fixed.
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Figure 1.6: (a) Bulk phase diagram in the plane of chemical potentials of a model binary mixture.
A binodal (solid black line) that ends at a critical point (circle) separates two phases A and B,
as indicated by black letters. For each possible stacking sequence one selected sedimentation path
is represented in the bulk phase diagram (dashed lines). The arrows of the paths indicate the
direction from the bottom to the top of the sample. The colored letters indicate the stacking
sequence corresponding to each sedimentation path. (b) Stacking diagram in the s-a plane for
m1 > 0 corresponding to the bulk phase diagram in (a). The circles indicate the position of the
sedimentation paths highlighted in panel (a). Three different types of boundaries separate the
regions of different stacking sequences, as indicated.
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1.2.6 Wertheim theory and percolation

Wertheim’s association theory [72] was originally intended to describe molecular fluids,
but it has become an essential tool for the theoretical description of patchy colloids. In
this section we introduce the basic concepts and results of this theory. In Ref. [2] we use
this approach, which is also presented in e.g. Refs. [73,74], to calculate the phase diagram
of binary mixtures of patchy colloids and subsequently obtain the stacking diagrams for
these systems. Therefore, in the following we also discuss a binary mixture of patchy
colloids.

Wertheim’s first order perturbation theory describes a system of patchy colloids as a
reference system, containing the repulsive forces of the cores, which is perturbed by the
attractive bonds. The reference system is typically modeled via the hard sphere fluid,
the properties of which are well known. In its basic form, Wertheim’s theory is based on
three assumptions: (i) there are no closed loops of bonds, (ii) one bond involves only two
patches of two different particles, and (iii) the patches are randomly distributed over the
surface of the particle core.

In Wertheim’s theory the Helmholtz free energy F is expressed as the sum of the free
energy of the unperturbed reference system (hard sphere fluid in our case) and the con-
tribution due to the bonds

F/N = fHS + fb, (1.36)

where N = N1 +N2 is the total number of particles of both species, fHS is the free energy
per particle of the reference hard sphere fluid, and fb is the free energy per particle due
to bonding. The free energy of the reference hard sphere fluid can be split into ideal and
excess parts fHS = fid + fex, where the ideal part for a binary mixture is given exactly by

βfid = ln η − 1 +
∑

i=1,2

x(i) ln
(
x(i)λdi

)
. (1.37)

Here, x(i) = Ni/N is the molar fraction of species i = {1, 2}, η = η1+η2 is the total packing
fraction, and λi is the thermal wavelength of the i-th species. For a fluid the excess part
is well described with the quasi-exact Carnahan-Starling equation of state [75,76]

βfex =
4η − 3η2

(1− η)2
, (1.38)

where we have used that both species have the same diameter. With the above assump-
tions, the bonding free energy per particle is given by

βfb =
∑

i=1,2

x(i)


 ∑

α∈Γ(i)

(
lnX(i)

α −
X

(i)
α

2

)
+
f (i)

2


 , (1.39)

where X
(i)
α is the probability that a patch of type α on species i is not bonded, Γ(i) is

the set of patches on a particle of species i, and f (i) is the total number of patches of a

particle of species i, also known as functionality. The probabilities {X(i)
α } are calculated

via laws of mass action

X(i)
α =


1 + η

∑

j=1,2

x(j)
∑

γ∈Γ(i)

X(j)
γ ∆(ij)

αγ



−1

. (1.40)
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Here, the constants ∆
(ij)
αγ characterize a bond between a site α on a particle of species i

and a site γ on a particle of species j. Their values depend on how one models the patches.
For spherical patches interacting via square well potentials they are given by

∆(ij)
αγ = ∆αγ =

1

vs

∫

vαγ

gHS(r)[exp(βεαγ)− 1]dr, (1.41)

where vs denotes the volume of a single particle, and gHS(r) is the radial distribution
function of the reference hard sphere fluid. The integral is calculated over the bonding
volume vαγ , and it is assumed that the depth of the square wells εαγ only depends on the
types of bonding sites (α and γ), but not on the particle species.

The formation of bonds in patchy colloidal systems can lead to percolation, also known
as gelation. A system of patchy colloids is percolated if via bonding it forms a cluster
that spans the whole system. When a system begins to percolate, it transforms from a
viscous liquid into an elastic disordered solid [77], which in addition to the direct change
of the viscoelastic properties can lead to drastic changes in e.g. the electric conductivity.
A generalized Flory-Stockmayer theory of percolation [78–80] allows the calculation of the
threshold at which a system of patchy colloids with an arbitrary number of distinct bonding
sites percolates. Consistent with the assumptions made in Wertheim’s theory, this theory
neglects closed loops and therefore assumes a tree-like bonding structure of the cluster
as shown in Fig. 1.7. In this structure the patchy colloids can be organized in levels. A
system is percolated if the number of bonds is constant or increases with increasing level.
This can be expressed with a transition matrix containing the probabilities of forming a
bond between distinct patches. The system is percolated if the highest eigenvalue of this
matrix is higher or equal than one. For a detailed derivation see for example Ref. [74].

For binary mixtures each species can be individually percolated if one counts only those
bonds between particles of this species. Consequently, there are four different percolated
states. If the mixture is percolated when all bonds are considered but the individual species
are not percolated, the system forms a mixed gel. In a bicontinuous gel the mixture and
also both species individually are percolated. Finally, a standard gel 1 (2) is present if the
mixture as well as only species 1 (2) are percolated.
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Figure 1.7: Schematic of the tree-like bonding structure assumed in Flory-Stockmayer theory. A
binary mixture of patchy colloids is percolated if for increasing level the number of bonds (black
lines) is constant or increases. In this figure all patches are bonded and the system is percolated.
Color indicates species (blue and orange) as well as different types of patches (red and green).

1.2.7 Excluded volume and Onsager theory

Hard body models play a vital role in the theoretical description of colloids. Hard models
assume that the interaction energy U for a pair of particles has the form

U =

{
∞, if particles overlap,

0 , otherwise.
(1.42)

As a consequence, only configurations in which the particles do not overlap are possible.
When considering two particles where the position of one of them is fixed, the potential
gives rise to a volume inaccessible to the other particle. This volume is called excluded
volume (excluded area for a two-dimensional system). The excluded area between two hard
rectangles is shown in panels (a) and (b) of Fig 1.8 for two different particle orientations.

The magnitude of the excluded volume is a function of the orientation of both particles.
In two dimensions this reduces to the magnitude of the excluded area Aexc(Φ) that only
depends on the relative angle Φ between the particles. As an example, for two rectangles a
plot is presented in panel (c) of Fig. 1.8. For rectangles, Aexc(Φ) is minimal if Φ = {0, π},
which corresponds to the particles being parallel or antiparallel.

Onsager’s theory for anisotropic particles [81] uses the concept of excluded volume to
describe the isotropic-nematic phase transition introduced in Sec. 1.1.1. Applying the
modern framework of DFT, we briefly introduce the basic concept here.

The ideal part of the free energy of a system of anisotropic particles can be written as

Fid[ρ] = kBT

∫
dr

∫
dΩρ(r,Ω)(ln[λdρ(r,Ω]− 1), (1.43)

which is a direct generalization of Eq. (1.20) to a density distribution ρ(r,Ω) that in
addition to the position r also depends on the orientation Ω.

For uniform phases, i.e. ρ(r,Ω) = ρf(Ω) with orientational distribution function f(Ω),
the excess part of the free energy can be approximated via the virial expansion truncated to
second order, which provides a very good description at sufficiently low densities. Hence,

26



Φ

(a)

excluded area

(b) (c)

0.7

1

1.3

1.6

0 0.5π π 1.5π 2π

A
e
xc
L-
2

Φ

Figure 1.8: (a) Schematic of the excluded area between two hard rectangles. One rectangle
(orange with solid frame) is fixed at the origin. The other rectangle (orange with dashed frame)
is located at the border of the excluded area (blue). The arrows indicate the orientation of the
two rectangles, which are parallel. (b) Analogous schematic for two rectangles with a relative
orientation Φ. (c) Plot of the magnitude of the excluded area Aexc as a function of the relative
orientation for two identical rectangles with aspect ratio L/D = 5, with L and D the length and
the width of the rectangles, respectively.

for hard systems

β
Fexc[f ]

N
=
ρ

2

∫
dΩ

∫
dΩ′f(Ω)f(Ω′)Vexc(Ω,Ω

′), (1.44)

where Vexc(Ω,Ω
′) denotes the excluded volume between two particles with orientations

Ω and Ω′. At low densities, the total free energy is dominated by the ideal term, which
for a fixed bulk density ρ is minimal if f(Ω) is constant (isotropic phase). Therefore,
the isotropic phase in which particles are randomly oriented is stable. At high densities,
however, the excess part is the dominant term. The excess free energy is minimal if
particles preferably occupy orientations for which Vexc is minimal. For two-dimensional
rectangles, Aexc is minimal if the particles are parallel or antiparallel, as shown in Fig. 1.8c,
which stabilizes the nematic phase. In other words, in the isotropic phase the orientational
entropy is maximized and in the nematic phase the positional entropy is maximized since
minimum excluded volume means the volume accessible to each particle is maximized.

The example of the isotropic-nematic transition demonstrates that minima of Aexc can
promote orientational order. In Ref. [1] we systematically study the connection between
the particle shape, the microscopic excluded area, and the macroscopic bulk behaviour. We
numerically calculate Aexc for a large set of two-dimensional hard particles with randomly
created particle shapes. Via Principal Component Analysis (see next section) we identify
- despite the vast diversity of particle shapes - only a few qualitative types of Aexc for
which the formation of states with different orientational order is expected according to
two-body approaches like Onsager theory.
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1.2.8 Principal component analysis

Principal component analysis (PCA) is a procedure that represents a given dataset in a
new orthonormal basis. There, the basis vectors are chosen in a way that the variance
of the data projected onto them is maximized. With PCA it can be possible to identify
directions that have physical meaning and also to perform a dimension reduction of the
data while keeping as much information as possible [82,83].

For PCA the dataset is organized in an n × p matrix X̂. Each column of this matrix
contains n realizations of one specific variable and each row contains one sample of the
data, e.g. a measurement of all p relevant variables at a given time t. As a first step, the
columnwise mean m is substracted from X̂

X = X̂− hmT , (1.45)

where h is an n× 1 column vector with components hj = 1 and m a p× 1 column vector
with components

mj =
1

n

n∑

i=1

X̂ij . (1.46)

This procedure, called centering, simplifies the following calculations and can be reversed
after the transformation with PCA by adding back the transformed mean.
The centered data matrix X is then expressed in a new basis. In this basis the first basis
vector w1 is chosen so that the variance of the projection of the data onto this vector is
as large as possible

w1 = arg max
‖w1‖=1

{
‖Xw1‖2

}
:= arg max

‖w1‖=1

{
‖c1‖2

}
. (1.47)

Along all following basis vectors the variance of the data is also maximized, but under the
constraint that the vectors are orthogonal to all preceding ones. The new basis vectors
wi are called principal axes and the components of a vector expressed in this basis are
the principal components. The vector c1 defined in Eq. (1.47) contains the first principal
component of each sample.

As a toy example for the illustration of the method, consider a two-dimensional exper-
iment in which the position (x̂m0 , ŷm0) of a point mass m0 attached to an ideal spring is
measured. The spring is oriented along a random direction, the measurement is subject to
experimental error, and the position of m0 is measured at several random points in time.
This experimental setup is schematically presented in Fig. 1.9a. The resulting dataset is
shown in panel (b) of Fig. 1.9 and can be represented with an n× 2 matrix.

After centering, the data are expressed via the mean-free variables (xm0 , ym0), shown in
panel (c). Panel (d) shows the dataset in the new basis of the principal axes.
In this toy example it is clear that the direction of the first principal axis is along the ori-
entation of the spring, while in the direction of the second principal axis there is only noise
due to the experimental errors. Therefore, PCA has revealed that there is an underlying
physical structure to the data. This allows us to neglect the second principal component
without losing any relevant information and therefore reduce the dimensionality of the
data to its single physical dimension.

Mathematically, PCA is an eigenvalue problem. The principal axes wi are the normal-
ized eigenvectors of the covariance matrix C of X, which is defined as

C =
1

n− 1
XTX. (1.48)

28



(b) Initial dataset

xm̂

ym̂

xm

ym

c1

c2

(c) After centering (d) After PCA

wall

y

x

m
(xm ,ym )^ ^

spring

movement

(a) Experimental setup

0 0

0 0

0

0

0

Figure 1.9: (a) Experimental setup where the position (x̂m0
, ŷm0

) of a point mass m0 attached
to an ideal spring is measured with a small experimental error. (b) The resulting dataset before
PCA, (c) after centering, (d) represented with principal components in the new basis.

The projection of X onto a vector v is given by Xv. The variance of such a projection is

var{Xv} =
1

n− 1
(Xv)TXv = vT

1

n− 1
XTXv = vTCv. (1.49)

By construction C is real and symmetric and hence, according to the spectral theorem,
there exists an orthonormal basis of eigenvectors of C in which C has the form of a
diagonal matrix with positive eigenvalues λi as entries on the diagonal [84]. PCA labels
the eigenvalues λi such that their magnitude increases with the label i. In this basis, Eq.
(1.49) simplifies to

var{Xv} = vTCv =
∑

i

λiv
2
i . (1.50)

At this point it is clear that for a unit vector v this variance is maximized if v expressed in
the eigenbasis has the form v = (1, 0, 0, ...), which is precisely the normalized eigenvector
w1 belonging to the largest eigenvalue λ1. Sequentially, all other eigenvectors are the
vectors which maximize the variance under the constraint that they are orthogonal to all
preceding vectors, i.e. the second principal axis is given by w2 = (0, 1, 0, ...) and so on.
In Eq. (1.50) one can also see that the variance is directly given by the eigenvalue λi
provided that v is the principal axis wi.
A measure that is often used when doing a dimension reduction via PCA is how much
variance is kept when the data are expressed with only the first k principal components.
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The so called explained variance σk is defined as [85]

σk =

∑k
i=1 λi∑p
i=1 λi

, (1.51)

and it has per definition values between 0 (no variance explained) and 1 (all variance
explained). The value of σk increases monotonically with k.

In Ref. [1] we use PCA to analyze the excluded area of randomly generated hard par-
ticles. We apply PCA to a data matrix for which each row contains for one randomly
generated particle shape the magnitude of the excluded area Aexc(φ) for p relative ori-
entations (e.g. what is plotted in Fig. 1.8c for the example of a rectangle could be one
row), while in each column the relative orientation is fixed, but different particle shapes
are considered. Our analysis reveals that with only three principal components one can
surprisingly well approximate the data (σ3 ≈ 0.98). We show that this result is caused
by the fact that global features of the particle shape like the elongation of the particle
dominate the shape of Aexc(φ) rather than local features like small bumps and dents. As
a consequence, we identify a number of relevant limiting cases for the possible shapes of
Aexc(φ).

30



2 Overview of the publications

This section gives an overview of the publications contributing to this cumulative Thesis.
The order in which the publications are presented is chronological according to the time
when we started working on them, which also gives a coherent sequence. Nevertheless, all
publications are self-contained projects and can therefore be read in any order.

The four publications are closely intertwined, as schematically presented in Fig. 2.1.
In all cases anisotropy plays a major role and leads to the formation of complex and
interesting structures. Our research helps understanding how and why those structures
are formed.

The first publication [1] discusses the effect of anisotropic particle shapes on the bulk
phase behaviour of two-dimensional hard models. Using PCA we investigate different
types of excluded volume interactions in such systems.

The second publication [2] deals with sedimentation, a process that is inherently anisotropic
due to the external gravitational field. We develop a theory for sedimentation in finite
vessels in order to predict the sedimentation-diffusion-equilibrium stacking sequences of
colloidal mixtures. We investigate characteristic mixtures of patchy colloids with direc-
tional anisotropic interactions under the influence of gravity, which induces a very rich
phenomenology.

Gravity has a strong effect on colloidal systems in both equilibrium and out-of-equilibrium
situations. In the third publication [3] we study a non-equilibrium system in which a bi-
nary colloidal mixture of hard particles oppositely driven by gravity separates into macro-
scopic lanes. Although in this work we only consider a model with isotropic interparticle
interactions, the directional external driving induces anisotropy in the system.

Another non-equilibrium system is investigated in the last publication [4]. Here, we
again study the behaviour of patchy colloids. In particular, the relaxation of patchy col-
loids on a surface patterned with potential wells is examined. Hence, anisotropy is present
here in both the internal particle interactions and the external field.

In this Thesis we also develop new methods for the theoretical study and computer
simulation of colloidal systems. This includes a novel way of applying PCA to soft mat-
ter systems, a theory of sedimentation in finite samples, a power functional for binary
mixtures, and the construction of the adiabatic system in mixtures.

2.1 Principal Component Analysis of the excluded area of
two-dimensional hard particles

In this publication [1] we study the possible types of interactions in two-dimensional hard
systems via the excluded area between two particles in order to make predictions about
the structures that might appear in bulk. Such theoretical understanding is motivated by
recent experimental advances like those presented in Sec. 1.1.1, which allow the synthesis
of colloidal particles with arbitrary shape and thus complex steric interactions. The aim of
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Figure 2.1: Schematic overview of the four topics addressed in the Thesis: [1] shape anisotropy, [2]
sedimentation, [3] lane formation, and [4] patterned substrate. The links between the topics are
also presented. The color of the spheres indicates our approach to each topic: theory (light blue),
simulation (yellow), or both (green).

this work is to systematically understand the interplay between the particle shape, the ex-
cluded area, and the macroscopic bulk behaviour, as well as to identify the particle shapes
that lead to interesting self-assembly scenarios. To this end, we study two-dimensional
hard systems in which the particles are modelled via randomly generated polygons or star
lines, which are line segments radiating from a common origin. Based on edge intersection,
we develop a general method for the numerical calculation of the excluded area between
two particles of arbitrary shape at a given relative orientation. We show that for regular
polygons the variance of the magnitude of the excluded area as a function of the relative
orientation (in the following for simplicity referred to as just ”excluded area”) decreases
rapidly when the number of vertices is increased. This finding indicates that weaker orien-
tational ordering is expected by increasing the number of vertices, and it is in line with the
finding that e.g. melting properties of hard models of regular polygons quickly converge
to that of hard disks when the number of vertices is increased [86].

Subsequently, we perform a statistical analysis of a large set of excluded areas (and
therefore particle shapes) via Principal Component Analysis. This analysis reveals that
the excluded area can be described very well with only three principal components. In
the subspace of the first three principal components all excluded areas are contained in
a structure that is limited by a hierarchy of excluded areas that are characterized by
an increasing number of global minima that appear at regular relative orientations. We
find that the general elongation of a particle, which for example can drive an isotropic-
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nematic transition, has the by far highest influence for determining the excluded area.
Furthermore, we show that the global minimum of the value of the excluded area appears
for all shapes in our set when the two particles are antiparallel. As a result of our statistical
analysis, we identify several particle shapes with excluded areas that might self-assemble
into interesting structures. An example is a class of particles that can continuously be
deformed in a way that a transition from a triatic to an uniaxial structure might occur.
With NpT Monte Carlo simulations we show examples of the validity and of the limitations
of theoretical approaches that incorporate only two-body interactions to investigate hard
systems.

2.2 The role of sample height in the stacking diagram of
colloidal mixtures under gravity

Any experiment performed on the Earth is subject to gravity. In colloidal systems, due
to the comparability of thermal and gravitational energies, gravity leads to sedimentation
effects on lengthscales that are typically around the order of millimeters to centimeters.
Common situations in which such effects manifest are the undesired phase separation in
food products such as milk drinks, and also medical tests, particularly those in which
blood sedimentation is involved.

This manuscript [2] is based on a recently proposed theory [41, 42] linking the bulk
phase behaviour to the sedimentation-diffusion-equilibrium in colloidal mixtures. The
theory predicts the stacking diagram, i.e. the set of all possible sequences of different
layers in colloidal mixtures due to sedimentation, from the bulk phase diagram of the
mixture. The original theory was formulated with the assumption of very large (infinite)
samples and is introduced in Sec. 1.2.5. Here, we extend the theory to systems with finite
sample heights. Using a local density approximation (LDA) [71] for each species one can
define a height-dependent local chemical potential. This defines a so called sedimentation
path which can be represented with a line in the plane of chemical potentials µ1 − µ2 for
infinite vessels and a line segment for samples with finite height. An interface appears in
the vessel each time the respective sedimentation path crosses a boundary in the phase
diagram, e.g. a binodal. For fixed vessel height and buoyant masses of both species, the
length as well as the slope and direction of the sedimentation path are determined. The
sedimentation path then only depends on the bulk chemical potentials. Consequently, one
can represent the stacking diagram in the plane of average chemical potentials, where the
average is taken over the whole sample. Alternatively, one can transform the stacking
diagram to the plane of average packing fractions of both species for better comparison
with experiments. In the stacking diagram areas with the same stacking sequence are
separated by boundaries that correspond to limiting cases for the sedimentation paths
which are discussed in detail in the manuscript.

We apply the theory first to a model system and then to mixtures of patchy colloids that
either differ in the number or the types of patches. We obtain the bulk phase diagrams
of the mixtures using Wertheim’s theory and Flory-Stockmayer theory of polymerization.
The resulting stacking diagrams show an abundance of different stacking sequences. A
comparison between the stacking diagrams of two systems that differ only in their sam-
ple heights reveals that there can be qualitative differences between them, e.g. stacking
sequences that only appear for certain sample heights. We therefore conclude that the
sample height, which has received very little attention in experimental work, is an impor-
tant parameter in sedimentation experiments that should at least be always specified.
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2.3 Superadiabatic demixing in nonequilibrium colloids

In this publication [3] we use computer simulation and Power Functional Theory to pro-
vide deep theoretical insight into the microscopic mechanism behind non-equilibrium lane
formation and jamming in binary mixtures of oppositely driven colloids.

With BD simulations we investigate a model of monodisperse quasi-hard disks subject
to an external driving in opposite directions, originated by a gravitational field acting on
two particle species with opposite buoyant masses. The one-body force field fα(r, t) acting
on particles of species α at location r and time t is measured. The total force field is split
into three contributions

fα(r, t) = fαint(r, t) + fαext(r, t)− kBT ln ρα(r, t). (2.1)

Here, fαint arises from the internal interactions, fαext from the external driving, and the term
−kBT ln ρα(r, t) from ideal diffusion with ρα being the density of species α. The internal
interactions are further split into adiabatic and superadiabatic parts

fαint(r, t) = fαad(r, t) + fαsup(r, t). (2.2)

The adiabatic force field is obtained in Monte Carlo simulations by explicitly sampling the
equilibrium adiabatic system which has the same one-body densities as the actual driven
non-equilibrium system. In the equilibrium system, the external forces are generated by
adiabatic potentials which we estimate with a simple Density Functional Theory.

At fixed high density, depending on the driving strength, the system is in one of three
states. At low drivings the two species diffuse homogenously through each other. At high
driving strength lane formation appears. In this state the internal force field is highly
non-trivial and has several species-dependent and species-independent contributions. A
species-dependent structural force counteracts the entropic tendency of the mixture to
mix. This superadiabatic force is responsible for the lane formation. We also identify a
species-independent superadiabatic force that acts on the total density and opposes the
adiabatic excess force, and superadiabatic viscous and drag forces that act in the direction
of the external driving.

At intermediate driving strengths the system forms a jammed state where the two
species block each other. By using the same approach as for the laned state we show
the general applicability of our concepts. We demonstrate that the phenomenologically
important adiabatic contribution for the jammed state is the adiabatic excess force related
to the total density, which is in contrast to the ideal demixing vital to the lane formation.

For the laned state we develop a Power Functional theory that is able to reproduce all
listed force contributions. It is based on the velocity gradient approximation presented in
Ref. [63].

2.4 Crossover from three- to six-fold symmetry of colloidal
aggregates in circular traps

In this publication we study the dynamics of patchy colloidal particles decorated with
three patches. The particles are adsorbed to a surface which is covered with a square
pattern of attractive potential wells. The wells have a circular Gaussian profile. Similar
setups can experimentally be realized using e.g. an array of optical tweezers.

The system is in the overdamped regime. The interparticle potential consists of a
spherical repulsive interaction between the particle cores as well as an attractive patch

34



interaction, where the patches have Gaussian form and do not interact with the cores. In
addition to the internal interactions, there are external forces generated by the Gaussian
potential wells that only act on the cores.

We study the relaxation of the patchy colloidal particles after a homogenous initializa-
tion as a function of the width of the potential wells. The behaviour of the particles is
characterized by a competition between the potential energy of the cores, which is mini-
mized if the particles aggregate in close packing near the centers of the potential wells, and
the bonding energy of the patches, which is minimized if open networks with low packing
fraction are formed.

For wider traps, which lead to weak confinement forces, the particles form networks
with the three-fold symmetry of the patches. For very narrow traps a close packing
around the trap centers with six-fold symmetry arises. At intermediate trap widths a
core-shell structure with six-fold symmetric packing near the core surrounded by a three-
fold network forms. We furthermore investigate the time-scales of the relaxation process
and show that the outer network dynamics is slower than that of the close-packed core.

In order to test the dynamical properties of the system, we study its response to dy-
namically oscillating widths of the potential wells. The behaviour strongly depends on the
oscillation frequency and the temperature. The latter influences the intrinsic timescales
of diffusion and bonding. At high temperatures and low oscillation frequencies the intrin-
sic timescales are short enough such that the system can adapt instantaneously to the
changes in trap width. In contrast, at low temperatures and high oscillating frequencies,
the system remains almost unchanged in its initial state. At intermediate parameters the
system responds to changes of the potential width with some delay.

In summary, our simulations provide insight on how to dynamically control the self-
assembly of the system into different structures.
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2.5 Author contributions

In all four publications contained in this Thesis I am the first author, responsible for the
generation and interpretation of the data in close collaboration with the involved super-
visors.

In Ref. [1] my contributions are (i) the development and implementation of a flexible
numerical method for the calculation of the excluded area between randomly generated
hard particles, (ii) the implementation of the unsupervised learning algorithm of Principal
Component Analysis, as well as (iii) the implementation and realization of Monte Carlo
simulations of polygons with arbitrary shape in the isothermal-isobaric ensemble. Fur-
thermore, I contributed to the text and created all the figures of the manuscript.

In Ref. [2] I implemented the theoretical approaches presented in Ref. [73] including
Wertheim’s theory and a generalized Flory-Stockmayer theory in order to obtain the bulk
phase diagrams and the percolation properties of the investigated mixtures of patchy
colloids. Furthermore, the theory of finite sedimentation paths was developed and imple-
mented in order to find the stacking diagrams of binary mixtures at finite height. I created
the figures of the manuscript and contributed to the text.

In Ref. [3] I performed both BD simulations of the non-equilibrium system and Monte
Carlo simulations of the adiabatic equilibrium system. A main focus lied on the careful
splitting of the different force contributions to the one-body force field. Furthermore, I
implemented a Power Functional Theory based on the velocity gradient approximation as
well as the adiabatic construction in binary systems. I also contributed to the text and
created all the figures of the manuscript.

Ref. [4] is the result of my stay at the University of Lisbon for a collaboration with the
groups of N. Araújo and M. M. Telo da Gama. I obtained all the results using large scale
parallel simulations. In addition, I designed and implemented an analysis with suitable
order parameters that reveals the local bonding structure and symmetry of the system. I
contributed to the text and the figures of the manuscript.
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ABSTRACT
The excluded area between a pair of two-dimensional hard particles with given relative orientation is the region in which one particle cannot
be located due to the presence of the other particle. The magnitude of the excluded area as a function of the relative particle orientation
plays a major role in the determination of the bulk phase behavior of hard particles. We use principal component analysis (PCA) to identify
the different types of excluded areas corresponding to randomly generated two-dimensional hard particles modeled as non-self-intersecting
polygons and star lines (line segments radiating from a common origin). Only three principal components are required to have an excellent
representation of the value of the excluded area as a function of the relative particle orientation for sufficiently anisotropic particles. Indepen-
dent of the particle shape, the minimum value of the excluded area is always achieved when the particles are antiparallel to each other. The
property that affects the value of the excluded area most strongly is the elongation of the particle shape. PCA identifies four limiting cases
of excluded areas with one to four global minima at equispaced relative orientations. We study selected particle shapes using Monte Carlo
simulations.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5092865

I. INTRODUCTION

Hard body models, for which the interaction potential is infi-
nite if two particles overlap and zero otherwise, are excellent candi-
dates to model colloidal particles, which are dominated by excluded
volume. Hard body models are also relevant to understand how the
microscopic properties at the particle level determine the macro-
scopic properties of the system such as its bulk phase behavior. Since
the then unexpected classical result of fluid-solid phase transition in
a system of hard spheres,1 the bulk phase behavior of several three-
dimensional hard body models has been analyzed by both computer
simulations and theoretical approaches such as density functional
theory. Anisotropic hard particles form a surprisingly rich variety of
mesophases such as uniaxial, biaxial, and cubatic nematics, as well
as cholesteric, smectic, and columnar phases. We refer the reader to
Ref. 2 for a recent review on phase equilibria of hard body models.

The phase behavior of several two-dimensional hard models
has been also reported in the literature. Examples are hard disks,3–5

needles,6 rectangles,7–9 discorectangles,7,10,11 triangles,12,13 squares,14

rounded squares,15 pentagons,16 hexagons,17,18 ellipses,19 zigzags,20

hockey sticks,21 bananalike,22 and allophiles.23

Phase transitions in hard bodies are driven by entropy. At
sufficiently low density, the entropy of the ideal gas dominates,
and the system remains isotropic with neither positional nor ori-
entational order. As the density increases, excluded volume effects
become more important and the gain in configurational entropy can
drive a transition to a phase with orientational and/or positional
order.

The study of excluded volume effects in hard bodies starts with
the properties of the excluded volume between two particles, which
plays a role similar to the pair interaction potential in soft systems
(i.e., with continuous interaction potentials). Here, we restrict our-
selves to two-dimensional particles. As a result of the potential being
infinite if two particles overlap, there exists around each particle
an exclusion region in which no other particle can be located. The
phase behavior of the system is determined by the ideal gas entropy
and the properties of this complicated many-body exclusion region,
which depends on the positions and orientations of all particles in
the system. Within a mean fieldlike approach, the properties of the
many-body exclusion region are fully characterized by the excluded
area, which is the area inaccessible to one particle due to the pres-
ence of another particle. The excluded area alone does not determine
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the complete phase behavior of the system, but it plays a vital role
in the determination of the type of stable phases. The value of the
excluded area, Aexc, depends on the particle shape. For a given par-
ticle shape, Aexc is a function of the relative orientation between the
two particles, �. For example, the value of the excluded area between
two rectangles is minimum if their relative angle � is either 0 (par-
allel) or π (antiparallel). For squares, the value of the excluded area
is minimum if � = 0, π/2, π, and 3π/2. Although different particle
shapes might generate different excluded areas, it is evident that not
any function Aexc(�) corresponds to a valid particle shape (e.g., the
value of the excluded area cannot be negative). We investigate here
the admissible shapes of the function Aexc(�). To this end, we apply
principal component analysis24,25 (PCA) to a set of excluded areas
corresponding to randomly generated two-dimensional hard bod-
ies. PCA is an unsupervised learning algorithm intended to simplify
the complexity of a high-dimensional data set. Mathematically, PCA
is an orthogonal transformation of the data to a new basis in which
the basis vectors are sequentially chosen such that the variance of
the projection of the original data onto the new basis vectors is as
large as possible. As a result of our PCA, we identify four special or
limiting types of excluded area with one to four global minima as a
function of the relative orientation. Finally, we perform Monte Carlo
(MC) simulations for selected particle shapes.

II. METHODS
We aim to find the relevant types of excluded areas Aexc(�) in

two dimensions. To this end, we first generate random hard parti-
cles, and then apply principal component analysis to the excluded
area between two identical particles.

A. Particle generation
We generate two-dimensional hard particles following either of

two procedures. In the first one, each particle is modeled as a simple
(non-self-intersecting) polygon, as sketched in panels (a) and (b) of
Fig. 1. A polygon is defined by a closed and ordered set of m ran-
dom vertices connected via straight edges. For each polygon, the

coordinates of each vertex xi, i = 1, . . ., m are obtained by sampling
from uniform distributions a random radius ri ∈ (0, 1] and a ran-
dom angle �i ∈ [0, 2π]. We allow both convex and concave shapes,
but restrict the set to simple, non-self-intersecting, polygons, i.e., the
line segments connecting the vertices of a polygon are not allowed
to intersect (apart from the end points of two neighboring edges
that are joint at one vertex). Furthermore, no two vertices have the
exact same coordinates. If the random creation of vertices of a poly-
gon leads to self-intersections, we perform Lin 2-opt moves until all
intersections are removed. The algorithm was initially proposed to
solve the salesman problem,26,27 and it works as follows: Assume the
line segment connecting vertices xi−1 and xi and the line segment
connecting vertices xj−1 and xj intersect (j − i > 1 and periodic ver-
tices). Then, we reverse the order of all vertices between i and j, i.e.,
the sequence {i − 1, i, . . ., j − 1, j} becomes {i − 1, j − 1, . . ., i, j}.
We perform as many Lin 2-opt moves as required to remove all
self-intersections.

To increase the spectrum of particle shapes, we also gener-
ate particles modeled as star lines; see Fig. 1(c). A star line has
a center x0 connected via line segments to m vertices located at
xi, i = 1, . . ., m. The simple polygons contain the star lines as
a limiting case of polygons with zero area. However, it is very
unlikely to generate a star line with the method we use to generate
polygons.

As a final step, each particle (polygons and star lines) is rescaled
to the maximum possible size that fits in a square bounding box of
length h = 1, which defines our unit of length.

B. Computation of the excluded area
In what follows and for simplicity, we refer to Aexc(�) as sim-

ply the excluded area. To calculate the excluded area between two
particles (let them be polygons or star lines) at a given relative orien-
tation�, we use the fact that whenever two identical particles overlap
then at least two edges intersect. We first fix the relative orienta-
tion between two particles �, and the position of particle 1 (at the
origin).

FIG. 1. Excluded area. (a) A rectangle (solid orange) with vertices (empty circles) at xi , i = 1, 2, 3, 4 and a second identical rectangle (dashed orange) shifted by (∆x, ∆y) and
rotated by � with respect to the first particle. The blue area is a graphical representation of the excluded area for the center of the second rectangle at this relative orientation.
The black arrow indicates the orientation of the particles (with respect to an arbitrary axis). (b) Graphical representation of the excluded area (at a given relative orientation)
of a non-self-intersecting polygon with 10 randomly generated vertices. (c) Excluded area of a randomly generated star line (magenta) with three vertices xi connected to the
point x0.
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Next, we fix the y-distance between the two particles ∆y and
calculate the interval(s) in x for which the two particles overlap. We
loop over all pairs of edges between particles 1 and 2 checking for
which x-distances between the particles ∆x the edges overlap. The
distance ∆x (∆y) is calculated as the separation in x̂ (ŷ) between
two reference points located in the particles such as, e.g., the centers
of masses. For a fixed value of ∆y, a pair of edges intersects either
not at all or in at most one connected interval of ∆x. The bounds
of this interval represent the cases for which a vertex of one edge
lies on top of the other edge. Hence, the interval in ∆x for which
two edges overlap can be obtained by checking the values of ∆x for
which each of the four involved vertices lies on top of the other
edge. Combining the overlapping intervals of all possible pairs of
edges gives the complete overlap in the x-direction for a given value
of ∆y.

Next, we move particle 2 in the y-direction in discrete steps
of size ∆/h ≈ 5 × 10−4 between ∆ymin(�) and ∆ymax(�) which
are the minimum and maximum values of ∆y for which over-
lap is possible, respectively. ∆ymin (∆ymax) occurs when the ver-
tex with the highest (lowest) y-coordinate of particle 2 and that
with the lowest (highest) y-coordinate of particle 1 have the same
y-coordinate.

Integrating the overlapping intervals between ∆ymin and ∆ymax
yields the excluded area for the selected orientation. Finally, we
repeat the process for nφ = 360 relative orientations � ∈ [0, 2π]
between the particles and normalize the excluded area according
to

1
2πh2 ∫

2π

0
Aexc(φ)dφ = 1. (1)

C. Principal component analysis
We apply principal component analysis24,25 to the excluded

areas Aexc(�) generated by the above method. All data are organized
in a data matrix X. Each row contains one sample, i.e., the excluded
area as a function of the relative orientation for one randomly gen-
erated particle. In each column, we store the values of the excluded
areas at a given relative orientation for all samples in the system.
First, the data are centered to facilitate the following calculations.
That is, from each column of X, the mean is subtracted. We then
apply the PCA algorithm. PCA uses an orthogonal transformation
to represent the data in a new orthogonal basis. In this basis, the first
basis vector w1 (first principal axis) is chosen such that the variance
of the projection of the data onto this vector is as large as possible,
that is,

w1 = arg max
∥w1∥=1

{∥Xw1∥2} = arg max
∥w1∥=1

{∥c1∥2}. (2)

Here, the ith component of the vector c1 is the first principal com-
ponent of the ith sample. The variance of the following basis vectors,
wj with j > 1, is also maximized under the constraint that each vec-
tor is orthogonal to the preceding ones. The new basis vectors are
called principal axes, and the components of a vector expressed in
this basis are the principal components. It is often the case that only
the first principal components have high variance and are there-
fore relevant to describe the data. Hence, PCA allows a meaning-
ful dimension reduction, while retaining as much information as
possible.

Mathematically, the principal axes are the (normalized) eigen-
vectors of the covariance matrix C of the data, which is defined
as

C = 1
ns − 1

XTX (3)

with ns being the number of samples (rows) of the data matrix X.
The variance of the projection of X onto a principal axis is

var{Xwi} = wT
i Cwi. (4)

The covariance matrix is symmetric and therefore diagonal in the
basis formed by its eigenvectors. Hence, using Eq. (4), one can see
that the eigenvalues of C are simply the variance of the respective
principal component.25,28 For the actual implementation of PCA, we
use the OpenCV library.29

III. RESULTS
We start the results section analyzing the excluded area of reg-

ular polygons. Next, we show the PCA of the excluded area of ran-
domly generated particles. We end the section with Monte Carlo
simulations of selected particle shapes.

A. Regular polygons
The normalized values of the excluded areas for a line seg-

ment and for the regular polygons with 3–6 vertices are presented
in Fig. 2. To check the accuracy of the numerical calculation of the
excluded area, we have compared the numerical results against ana-
lytic expressions for line segments, equilateral triangles, and squares;
see Figs. 2(b) and 2(c).

For regular polygons, the excluded area contains as many min-
ima (and maxima) as vertices of the polygon since the rotational
symmetry of the particle is also present in the excluded area. The
excluded area of the line segment is a direct extension of this trend
as it contains two minima (and two maxima).

All the excluded areas are symmetric with respect to the rel-
ative orientation � = π. This is a general property of the excluded
area between any two identical particles that can be easily under-
stood as follows. The relative orientations −� and � are degener-
ated as they correspond to an (irrelevant) swap of the two iden-
tical particles. Hence, the excluded area is symmetric with respect
to � = 0, which implies also the symmetry with respect to � = π.
Therefore, although in Fig. 2 we present the excluded area of
particles with mirror symmetry, the symmetry of the excluded
area around � = π is also present for particles with no spatial
symmetries.

As expected, the difference between the maximum value and
the minimum value of the excluded area of regular polygons
decreases by increasing the number of vertices of the regular poly-
gon. The limit of a regular polygon with an infinite number of ver-
tices is a disk, for which the excluded area does not depend on the
relative orientation. The difference in the excluded area for differ-
ent orientations is correlated with the increase in configurational
entropy that occurs when the particles organize in a state with orien-
tational order. Hence, ordering effects are stronger for particles with
more variance in Aexc(�). For example, in Ref. 30, Anderson et al.
found that regular polygons with more than 6 vertices already melt
like disks.
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FIG. 2. Normalized excluded area for regular polygons as a function of the relative
orientation �: (a) line segment, (b) equilateral triangle, (c) square, (d) pentagon,
and (e) hexagon. The insets show the particles. Solid lines are numerical results.
The symbols are analytic expressions of the excluded area of a line segment
(a), an equilateral triangle (b), and a square (c). The dotted horizontal lines in
(a) indicate the vertical range used in panels (b)–(e).

B. Principal component analysis
In what follows, we show the result of the PCA applied to a

set of 9.3 × 104 randomly generated particles of which 4.8 × 104

are polygons with a number of vertices uniformly distributed
between 3 and 10, and 4.5 × 104 are star lines. An example
of a non-self-intersecting polygon with 10 vertices is shown in
Fig. 1(b). The number of vertices of the star lines is uniformly
distributed between 2 and 10. We investigated 10 different sets,
each one containing the same number of randomly generated par-
ticles. All sets produced the same results up to small numerical
inaccuracies.

As described in Sec. II C, the first step in PCA consists of
centering the data by removing the column-wise mean of the data
matrix. The mean excluded area m(�) [see Fig. 3(a)] has a global
minimum at� = π and a local minimum at� = 0. The mean excluded
area manifests a common feature of all excluded areas we have calcu-
lated. The excluded area between two identical particles has always
the global minimum at � = π, regardless of the shape of the particles.
This intuitive feature has been proven for convex shapes.31 Our par-
ticles are both convex and concave, and we have always observed the
global minimum to be located at � = π.

Panels (b)–(d) of Fig. 3 show the first three principal axes wi(�),
i = 1, 2, 3. The first (b) and third (d) principal axes have qualitatively
similar shapes to the excluded area of a line segment [Fig. 2(a)] and
of an equilateral triangle [Fig. 2(b)], respectively. The second prin-
cipal axis w2(�) [Fig. 3(c)] has a pronounced minimum at � = π.
Excluded areas with this feature play an important role in the PCA
analysis, as we discuss below. A data file with the mean excluded
area and the first three principal components can be found in the
supplementary material.

In Fig. 4, a semilogarithmic plot of the eigenvalues of the first
102 principal axes is presented. The first and the second eigen-
value differ in one order of magnitude, and higher order eigenvalues
decrease very fast in magnitude. Given that (i) the eigenvalue of
a principal axis is the variance of the respective principal compo-
nent25,28 and that (ii) the eigenvalues decrease very fast in magnitude
(Fig. 4), we achieve a good representation of the excluded area using
only the first three principal components. A measure of how well the
data are represented using the first n components is the explained
variance σn, which is the sum of the eigenvalues associated with the
n first principal components divided by the sum of all eigenvalues.
In our case, using three principal components, we find σ3 ≈ 0.98
and therefore we are confident that most of the full information is
already contained in the first three components. Using the principal
components of a given particle, its approximated excluded area can
be reconstructed by calculating the sum of the first three principal
axes [see Figs. 3(b)–3(d)] multiplied with their respective principal
components and adding the mean [Fig. 3(a)]. In other words, the
reconstructed excluded area Arec

exc is a linear combination of the prin-
cipal axes and the mean (see Fig. 3), with the principal components
being the coefficients of the linear combination

Arec
exc(φ) = m(φ) +

3
∑
i=1

ciwi(φ). (5)

The average L1 error

sL1 = ⟨∣Aexc(φ) − Arec
exc(φ)∣⟩ (6)
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FIG. 3. Mean excluded area m (a), first w1 (b), second w2 (c), and third w3 (d)
principal axes as a function of the relative orientation between particles �.

between the calculated values of the excluded areas Aexc(�) and
their reconstructions Arec

exc(φ) is 0.012. Here, the average is taken
over all orientations � and over all samples. We show exam-
ples of the reconstructed excluded area for relevant particle shapes
below.

In Fig. 5, we present the first three principal components ci,
i = 1, 2, 3 of the excluded area of all particles in the set. Each
point represents the excluded area Aexc(�) of one particle of the set.

FIG. 4. Semilog plot of the first 102 eigenvalues λi vs the index i. The inset is a
close view of the first five eigenvalues.

We also show two-dimensional projections onto the c1–c2, c1–c3,
and c2–c3 planes. The excluded areas are contained in a sim-
ply connected region with no holes and a well-defined boundary
with four prominent limiting cases (highlighted by red squares in
Fig. 5). We discuss in what follows these special limiting excluded
areas found with PCA, together with their associated particle
shapes.

1. First limiting case
As indicated by the eigenvalues, the first principal component

c1 has the by far highest variance with values between −3 and 7.5.
One vertex of the 3D projection of the excluded area [Fig. 5] corre-
sponds to the line segment, which is the limiting case for which c1 is
maximized. In general, the value of the c1 component increases with
the elongation of the particles. According to PCA, the elongation of
a particle is therefore the most important geometric feature influ-
encing the excluded area. The excluded areas of the particles near
this limiting case posses two well-defined minima, like in the case of
a line segment shown in Fig. 2(a).

2. Second limiting case
Maximizing the second principal component c2 is another lim-

iting case of the 3D projection; see Fig. 5. An illustrative excluded
area and its corresponding particle shape are presented in Fig. 6.
The excluded areas in this region are characterized by a pronounced
global minimum located at � = π and a global maximum near � = 0.
In Fig. 6, both the actual excluded area and the reconstruction
using only the first three principal components are shown. The real
excluded area has secondary minima that are not captured by the
reconstructed excluded area. However, the overall agreement is very
good and it justifies the use of only three principal components.
The secondary features that are not reproduced by the reconstructed
excluded area might play a role in the determination of the structure
of phases with positional order, but it is less likely that they will affect
the relative stability of fluid mesophases with only orientational
order.

The particles in this region of the 3D projection are line stars
with three arms. It might be possible to eliminate the secondary min-
ima using shapes with curved lines (similar to the symbol ∈). The
shape of the excluded area Aexc(�) suggests that the particles prefer
a state where the neighboring particles are antiparallel.
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FIG. 5. Excluded areas in the space of the first three principal components. Top: The set of all values of the excluded area Aexc(�) represented with the first three principal
components ci , i = 1, 2, 3. Each point represents one excluded area of the data set and is therefore associated to one particle shape. The color code indicates the value
of the first principal component c1. Green circles show the values of the excluded areas of selected particles, as indicated. Red squares indicate the four limiting cases
analyzed in the text. In light gray, a projection onto the c1–c2 plane is shown. In dark gray, a projection of the excluded areas of triangles and rectangles is shown. Bottom:
Two dimensional projections of the excluded areas onto the c1–c2 (left), c1–c3 (middle), and c2–c3 planes.

A fluid of three-dimensional hard boomeranglike particles can
form a biaxial nematic phase.32 In two dimensions, boomeranglike
particles can be created by a star line with two arms at an angle of
approximately 90○. In the space of the first three principal compo-
nents, these particles are located relatively close to the second limit-
ing case (see Fig. 5). The excluded area (not shown) has a prominent
minimum at � = π, a local minimum if the particles are parallel
� = 0, and depending on the relative angle between the two arms
local minima at� ≈ π/2 and 3π/2. The presence of these local minima
could stabilize a tetratic phase.

3. Third limiting case

For the third limiting case emphasized by PCA, both c1 and c2
are minimal. The excluded areas located in this region have three
pronounced equidistant minima. Before further discussing this case,
we first have a look at the excluded areas for polygons with three
vertices, i.e., triangles, which are closely related.

The excluded areas of triangles in the base of the first three
principal axes are highlighted in dark gray in Fig. 5 and also rep-
resented in Fig. 7(a). All the excluded areas of triangles form a
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FIG. 6. Excluded area (solid black line) and reconstructed excluded area using
the first three principal components (dashed red line) as a function of the relative
orientation � for the particle presented in magenta (left bottom corner).

simply connected two-dimensional region which spans between the
two limiting cases given by a line segment and an equilateral trian-
gle. These limiting cases correspond to triangles with the maximum
(line segment) and minimum (equilateral triangle) possible aspect
ratios. Going from the equilateral triangle to the line segment implies
increasing the aspect ratio of a regular triangle. There are two spe-
cial ways of elongating an equilateral triangle: (i) taking one side and

moving it away from the opposite vertex, making the angle at the
apex in the resulting acute isosceles triangle very small, and (ii) tak-
ing one side and moving its two corresponding vertices away from
each other along the direction of this side, creating an obtuse isosce-
les triangle where the angle at the apex is very large. In both cases, the
intermediate triangles are isosceles and their excluded areas form the
boundary of the 3D projection in the base of principal components;
see Fig. 7(a). We have shown in Fig. 2(b) the excluded area of an
equilateral triangle, which has three global minima at {π/3, π, 5π/3}
and three global maxima. In Fig. 7(b), we present the excluded area
of other representative triangles. In panel (b1), we show an obtuse
isosceles triangle. The excluded area has only one global minimum
at � = π. The global minima of Aexc at π/3 and 5π/3 of an equilateral
triangle are now local minima and have moved to a different rela-
tive orientation. In panel (b2), we represent the excluded area of an
acute isosceles triangle. There is only one global minimum at � = π,
and the position of the secondary minima is also shifted with respect
to that in an equilateral triangle. In panel (b3), we present a non-
isosceles triangle, which in the PCA analysis is located between the
two previous cases (b1) and (b2); see Fig. 7(a). The excluded area has
characteristics of both acute and obtuse triangles. In all three cases,
the reconstructions of the excluded areas neglect small features like
the presence of local minima and kinks, but the overall agreement
between the actual excluded area and that obtained with only three
principal components is excellent.

FIG. 7. (a) Excluded areas of triangles represented with the first three principal components, c1, c2, and c3. Each point represents the excluded area of one randomly
generated triangle. The color indicates the value of the first principal component c1. Green circles indicate the position in the space of principal components of the excluded
areas corresponding to the depicted particle shapes. The blue (red) curve indicates the location of all obtuse (acute) isosceles triangles. Bottom panels: Excluded areas (solid
black line) and reconstructions using the first three principal components (dashed red line) as a function of the relative orientation � for three particular triangles (represented
in the left bottom corner of each panel).
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FIG. 8. (a) Schematic of the third limiting case highlighted by PCA: a star line with three identical segments rotated by 2π/3 (magenta) such that the outer vertices lie on top
of an equilateral triangle (dashed gray). Splitting the inner vertex into three vertices (blue dots) creates a new particle shape (dotted green). (b) Excluded area for a star line
with three identical segments (solid black) and an equilateral triangle (dashed blue) as a function of the relative orientation �. The star line is represented in magenta (bottom
left corner). (c) Excluded area of an arrowlike particle, as shown in the bottom left corner.

In the space of principal components (see Fig. 5), the excluded
area of an equilateral triangle is located in the region where both
c1 and c2 are low, near the third limiting case for which c1 and
c2 are minimal and c3 is maximal. At this location, we find the
excluded area of a star line particle made of three identical seg-
ments, any two of them forming an angle of 2π/3. A sketch of
the particle is presented in Fig. 8(a) together with the correspond-
ing excluded area [Fig. 8(b)]. The excluded area resembles that
of an equilateral triangle (also shown in the figure for compari-
son). Due to the normalization [Eq. (1)], the excluded area of the
star line appears to have a larger variance (difference between the
maximum and the minimum values of the excluded area). However,
when normalizing the excluded area with the height of the parti-
cles, both excluded areas have the same variance. Strong differences
are expected for three-body interactions and higher order terms.
Hence, a comparison between the bulk phase behavior of this par-
ticle shape and that of equilateral triangles might help to understand
the role of higher than two-body correlations on the bulk phase
behavior.

Another interesting property of this kind of particles is that
the star line can be continuously deformed by splitting its cen-
ter and moving the resulting vertices radially toward the sides [see
Fig. 8(a)]. As a special case, this includes particles where two of the
inner vertices are located on top of the connecting line between
two of the outer vertices. The resulting particles have four ver-
tices and the shape of an arrow. The excluded area of such arrow-
like particles is shown in Fig. 8(c). The main difference compared
to the undeformed star particle is that the depth of two of the
minima has decreased. However, the minima are still located at
the same orientations as in the initial star line. This is in con-
trast to the case of triangles discussed above, for which any defor-
mation simultaneously changes the depth of the two secondary
minima as well as the relative orientations at which they occur.
In this case, there is a complete family of particles in which the
depth of the secondary minima can be tuned while keeping their
location (relative orientation) fixed. Particles of this type could
present an isotropic-triatic transition by increasing the density and
then a second transition toward a uniaxial state at even higher
densities.

4. Fourth limiting case
The last limiting excluded area according to PCA (see Fig. 5)

occurs when c3 is minimal. In this region, a number of special
particles are located. Among them, we find disks, which have a
completely flat excluded area independent of the relative orienta-
tion. Regular pentagons and hexagons together with other regular
polygons with more vertices are located near the disk. This can
be explained with the decreasing variance of the excluded area of
regular polygons by increasing the number of sides, cf. Fig. 2. For
example, the difference between the maximum and the minimum
value of the excluded area for a line segment is approximately 1.57,
whereas for the hexagon, it is approximately 0.07. It is therefore not
surprising that extra principal components are required to have a
good representation of the excluded areas in this region. As an exam-
ple, we show in Fig. 9 the excluded area of pentagons and hexagons
together with their reconstructed excluded areas. Up to six princi-
pal components are required to have a good approximation of the
excluded area of hexagons.

The regular polygon with the lowest value of c3 is the square.
In the space of principal components [Fig. 5], there is a continu-
ous curve containing all possible rectangles. At the end points of this
curve, we find the square and the line segment, which are the rect-
angles with the minimal and maximal length-to-width aspect ratios,
respectively.

We have shown above two particle shapes, an equilateral tri-
angle and a star line with three identical segments that share very
similar excluded areas; see Fig. 8(a). A similar behavior occurs for the
case of a square and a star line with four identical segments forming
the shape of a plus; see Fig. 10. The excluded area of the plus particle
resembles that of the square but with higher variance (see a com-
parison in Fig. 10). The observed trend of decreasing variance in the
excluded area for regular polygons as the number of sides increases
holds also for the case of regular star lines.

The particle shapes of the four limiting excluded areas we have
discussed above are well defined. This, however, is not the case for
most excluded areas since different particle shapes can give rise to
the same or almost the same excluded area. That two different hard
bodies can produce the same excluded volume has been recently
proven for convex bodies.33

J. Chem. Phys. 150, 184906 (2019); doi: 10.1063/1.5092865 150, 184906-8

Published under license by AIP Publishing

50



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 9. Excluded area (black solid line) and reconstructed excluded area using
three (red dashed line) and six (blue dotted line) principal components as a function
of the relative orientation � for the case of regular pentagons (a) and regular
hexagons (b).

C. Monte Carlo simulations
We have shown above how PCA is useful to characterize the

excluded areas of hard bodies (which play the role of the pair inter-
action potential in soft systems). The next natural step is a com-
plete analysis of the bulk phase behavior of those particle shapes
highlighted by PCA using, e.g., computer simulations or density
functional theory. Some of the relevant shapes we have found, like
rectangles7–9 and triangles,12,13 have been extensively studied, while
others like the star lines have, to the best of our knowledge, not been

FIG. 10. Excluded area for the fourth limiting case highlighted by PCA, a star line
with the shape of a plus (solid black line) and excluded area of a square (dashed
green line) as a function of the relative orientation�. The star line particle is shown
in the bottom left corner.

analyzed yet. Although such analysis is not the scope of this work,
we have also performed short Monte Carlo simulations for selected
particle shapes in order to have an initial understanding of how the
particle shape affects the bulk behavior.

We performed Monte Carlo (MC) simulations in the NpT
(isothermal-isobaric) ensemble. We set a very high value of the pres-
sure such that only steps that decrease the volume are accepted in
order to compress the system from the ideal gas limit to very high
packing fractions. In each simulation, a system of N = 200 particles
is compressed at constant pressure. The particles are randomly ini-
tialized at sufficiently low density so that the stable state is isotropic.
Then ∼5 × 107 Monte Carlo sweeps (MCS) are performed. Here, one
MCS is an attempt to individually move and rotate all particles in the
system. After every 1.5 × 104 MCS, an attempt to slightly change the
volume of the system is performed. To this end, all particle posi-
tions are scaled accordingly. The maximum translation and rotation
that each particle is allowed to perform in one MCS as well as the
maximum volume change in one step are chosen such that the total
acceptance probability is approximately 0.25. To detect if two parti-
cles overlap, we simply check for the intersection between all pairs
of edges.6

We present here simulations for (i) particles that resemble an
inverted umbrella [result of a deformation of a star line with three
segments as indicated in Fig. 8(a)], (ii) arrow particles, and (iii) the
polar particles we showed in Fig. 6. The shapes of the selected par-
ticles together with their excluded areas are shown in panel (a) of
Fig. 11. Representative snapshots of particle configurations at high
density are presented in panels (b) and (c). The particles (i = 1, . . .,
N) are colored according to their q(i)2 (b) and q(i)6 (c) orientational
order parameters, defined as

q(i)k =
RRRRRRRRRRR

1
Nl

Nl

∑
j=1

e−ikθj
RRRRRRRRRRR
, k = {2, 6}, (7)

where θj is the orientation of particle j with respect to a fixed and
arbitrary axis, and the sum runs over the N l particles located at a dis-
tance smaller than approximately two particle lengths from particle
i (including the ith particle). Note that the order parameter does not
change if the relative orientation between the particles θij is used in
Eq. (7) instead of the absolute orientation of the particle θj (provided
that the sum includes the ith particle).

The orientational order of the inverted umbrella particles is
triatic (three directors forming an angle of π/3 between them), as
indicated by the low q2 [Fig. 11(b) left] and high q6 [Fig. 11(c) left]
values. By contrast, the orientational order of the arrowlike particles
is uniaxial (particles oriented on average along one direction), with
high values of both q2 [Fig. 11(b) middle] and q6 [Fig. 11(c) mid-
dle]. The different behavior between these two particle shapes can
be explained with the properties of the excluded area. The excluded
areas of both particles have the global minimum at � = π and two
local minima at� = π/3 and 5π/3; see Fig. 11(a). The difference lies in
the ratio between the depths of the local minima and the global min-
imum (measured from the global maximum), which is 0.77 for the
inverted umbrella [Fig. 11(a) left] and 0.65 for the arrowlike particle
[Fig. 11(a) middle].

The relative stability of phases with triatic and uniaxial orienta-
tional order is the result of a competition between orientational and
configurational entropies. In a triatic phase, the particles populate

J. Chem. Phys. 150, 184906 (2019); doi: 10.1063/1.5092865 150, 184906-9

Published under license by AIP Publishing

51



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 11. (a) Excluded areas and geometry of three selected particles. Panels (b) and (c) show selected snapshots of a Monte Carlo simulation of N = 200 particles. The color
code of the particles indicates the local particle-based order parameters q2 (b) and q6 (c). The order parameters of each particle are computed taking into account all particles
located in a circular region of diameter two particle lengths centered at the particle of interest.

the three possible minima of the excluded area and hence the orien-
tational entropy is higher than that in the uniaxial phase. However,
in a uniaxial phase, only the global minimum of the excluded area
is populated (for which the packing is more efficient), which results
in higher configurational entropy compared to the triatic phase. The
result of this competition depends on the relative depth between the
local and the global minima. This parameter can be continuously
tuned via deformation of the particle shape.

Note also that there is no minimum at � = 0 for the excluded
area of the arrow particles. Therefore, in the uniaxial phase of the
arrow particles, neighboring particles always point in opposite direc-
tions. Our simulations suggest a possible coexistence between this
ordered state and an isotropic state for the arrow particles. Note that
a small region of the simulation box remains isotropic. However,
further longer and larger simulations are required to study this in
detail.

For the third type of particles [Fig. 11(a) right], the excluded
area has a well pronounced minimum at � = π. According to this

observation, one could expect a uniaxial state similar to that found
for the arrow particles. The simulations, however, reveal that the
particles prefer a state with triatic order. It is then clear that higher
than two-body correlations are required to predict the bulk phase
behavior for this particle shape. This resembles the case of hard
rectangles. There, particles with length-to-width aspect ratio smaller
than ∼7 form small clusters of a few particles each. The cluster for-
mation leads to a global tetratic order34–36 with two perpendicular
directors in which the symmetry differs from that of the particle
shape.

IV. DISCUSSION AND CONCLUSIONS
We have used principal component analysis to investigate the

excluded area of two-dimensional hard-bodies. We have restricted
the analysis to particle shapes given as non-self-intersecting poly-
gons and star lines. In both cases, the particle shapes were ran-
domly generated. Our analysis shows that the magnitude of the

J. Chem. Phys. 150, 184906 (2019); doi: 10.1063/1.5092865 150, 184906-10

Published under license by AIP Publishing

52



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

excluded area as a function of the relative particle orientation is
dominated by global features. Hence, despite the vast diversity
of particle shapes, the variety of possible excluded areas is more
restricted. A clear indication of this is that only three principal com-
ponents are required to produce a good approximation of the mag-
nitude of the excluded area as a function of the relative particle
orientation.

One feature shared by all excluded areas is the position of the
global minimum, which in our ∼106 randomly generated samples
always occurs when the two particles are antiparallel, forming a rel-
ative angle � = π. This result, known for convex bodies,31 seems to
also hold for nonconvex particles.

The dimension reduction via PCA identifies the elongation of
the particles as the most prominent feature affecting the excluded
area. Furthermore, when represented with the first three princi-
pal components, all excluded areas are located on a simply con-
nected three-dimensional region with no holes. At the boundaries,
we find four well-defined limiting cases corresponding to shapes of
the excluded area with one to four equidistant prominent minima.
The relative depth between these prominent minima is a parame-
ter that can be adjusted by varying the particle shape. In contrast to
this flexibility, there is not much freedom to vary the relative angle
at which the prominent minima of the excluded area occur. How-
ever, other features of the excluded area such as the position and
number of secondary minima can be tuned. While we do not expect
a high impact on the fluid phases, the secondary features might
play an important role on the stability of phases with positional
order.

We have identified different particle shapes with very similar
excluded areas. These particles are ideal candidates to investigate
the role of higher than two-body correlations on the bulk phase
behavior. Higher than two-body correlations can even dominate
the behavior of the system, in which case Onsagerlike theoretical
approaches37 that rely entirely on two-body correlations might fail
to describe the phenomenology of the system. We have shown an
example using MC simulation in which the excluded area possesses
a unique global minimum at � = π, but the orientational order of the
particles is triatic.

The phase behavior of three particle shapes highlighted in our
PCA analysis has been studied: line segments form uniaxial nematic
phases,6 a fluid of squares14 or rectangles with short aspect ratio form
a tetratic phase,7 and triangles form triatic phases.12 That is, the par-
ticle shapes highlighted in the PCA analysis give rise to the formation
of mesophases with different orientational properties. PCA is there-
fore a powerful technique to classify the interaction in hard models
and to anticipate the particle shapes of potential interest. PCA can
complement other approaches intended to understand self-assembly
in colloidal systems such as the inverse design of pair potentials38

and the systematic study of regular shapes using computer simu-
lations.39,40 Recently it has been shown how PCA can be applied
to detect phase transitions in lattice41 as well as in continuous42

systems.
Promising extensions of the current work are the application

of PCA to the excluded area of three-dimensional hard bodies and
binary mixtures. Regarding binary mixtures, we expect a much
richer variety of shapes. Note, for example, that the excluded area
between two different particles does not have to be symmetric with
respect to a certain relative orientation (in contrast to the excluded

area between identical particles, which is always symmetric with
respect to � = π).

SUPPLEMENTARY MATERIAL

See supplementary material for a data file with the principal
components.
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1. Introduction

Since the pioneer work of Perrin [1], sedimentation has 
become a central tool for investigating the phase behaviour in 
colloidal systems. The height-dependent colloidal concentra-
tion profile provides a direct measurement of the equation of 
state for monocomponent systems [2, 3]. Sedimentation 
experiments are also used to extract information from the bulk 
phase behaviour in binary colloidal mixtures, see e.g. [4–6]. 
However, thermal and gravitational energies are of the same 
order of magnitude for typical colloidal systems. This results 
in additional gravity-induced phenomenology not present in 
bulk systems. Examples are denser particles floating on top of 

lighter colloids [7], a nematic layer sandwiched by isotropic 
layers in mixtures of platelets and spheres [8] and mixtures 
of thin and thick rods [9], and reentrant network formation in 
mixtures of patchy colloids [10]. It is also common to observe 
complex stacking sequences in sedimentation with three or 
more different layers, such as e.g. in mixtures of charged 
platelets and polymers [11], plate–plate binary systems [12], 
mixtures of spheres of different sizes [13], and colloidal rod-
plate mixtures [14].

The relation between bulk phase behaviour and sedi-
mentation-diffusion-equilibrium in mixtures is therefore
intertwined with gravity-induced effects. From a theoretical
viewpoint, a generalized Archimedes principle was form-
ulated [7, 15] for the case where one of the components is 
very diluted. Sedimentation was also studied by analyzing 
the macroscopic osmotic equilibrium conditions [16, 17]. 
Recently, de las Heras and Schmidt have proposed a theory 
[18, 19] for obtaining the stacking diagram, i.e. the set of 
all possible stacking sequences under gravity, from the bulk 
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phase diagram of a given binary system. The theory is based 
on the concept of sedimentation paths. Each sedimentation 
path, which is a line in the plane of chemical potentials repre-
sentation of the bulk phase diagram, describes the state of the 
mixture under gravity, in sedimentation-diffusion-equilib-
rium. Using this theory the stacking diagrams of mixtures of 
spheres and platelets [18] and mixtures of platelets and non-
adsorbing poly mers [19] were obtained. Also, very recently, 
van Roij and coworkers have obtained the stacking diagrams 
of mixtures of thin and thick colloidal rods [9]. Although in
all these cases the bulk phase diagrams of the colloidal sys-
tems are relatively simple, the resulting stacking diagrams are
extremely rich and show complex stacking sequences. These 
works are focused on the limit of very high (infinite) sample 
heights. This idealized limit is very relevant in experimental
work since the height of the test tube is typically larger than 
the gravitational lengths of the colloids.

The interplay between micro confinement and colloidal 
sedimentation has been experimentally and theoretically 
investigated [20]. However, little attention has been paid
to the influence of the total (macroscopic) sample height 
in colloidal sedimentation. A remarkable exception is the 
experimental work of Jamie et al [21], in which the proper-
ties of the gas-fluid interface of a polymer-colloid mixture 
are analyzed as a function of the overall height of the con-
tainer. By systematically changing the total sample height
while keeping the poly mer-colloid concentrations fixed,
the interfacial properties were found to move towards the
critical point. Theoretically, it has been shown that varying 
the sample height might lead to a change in the stacking 
sequence in mixtures of colloids and nonadsorbing poly-
mers [16, 19].

Here, we use the theory of [18, 19] to study sedimentation-
diffusion-equilibrium of colloidal mixtures with finite height 
samples. We first give a full account of the theory for the case
of finite height samples. Next, we systematically investigate 
the role of sample height in the stacking diagrams of colloidal 
mixtures. To this end, we apply the theory to model binary 
systems. That is, systems with generic bulk phase diagrams 
typical of model Hamiltonian which we however do not
explicitly specify. Finally, and as an application of current 
interest, we study sedimentation in patchy colloidal mixtures. 
Patchy colloids are functionalized colloids that interact via 
a directional and valence-limited potential [22, 23]. In our
systems the two species of the mixture differ in either the 
number or in the types of patches. The bulk phase diagrams 
of these mixtures have been previously analysed [24, 25] 
using Wertheim’s theory [26]. Here, we obtain the stacking 
diagrams at different heights using only the bulk phase dia-
grams as input. The stacking diagrams are much richer than 
the corre sponding bulk phase diagrams. Moreover, we show 
that the sample height is a crucial variable in sedimentation-
diffusion-equilibrium of colloidal mixtures. The stacking 
diagrams for the same mixture but for different sample
heights differ not only quantitatively but also qualitatively. 
For example, some stacking sequences occur only in a given 
range of sample heights.

2. Theory

2.1. The sedimentation path

Consider a colloidal mixture under gravity in a sedimentation 
vessel of sample height h. The gravitational potential for each 
species i  =  1, 2 is migz, where mi is the buoyant mass of spe-
cies i, g is the acceleration due to gravity, and z is the ver-
tical coordinate (we set the origin of coordinates, z  =  0, at the 
bottom of the sample). Using a local density approximation 
[8, 18, 19, 27], we define a height-dependent local chemical 
potential for z h0 ⩽ ⩽  for each species

z m gz

z m gz

,

,

1 1
b

1

2 2
b

2

( )
( )

µ µ

µ µ

= −

= −
(1)

where i
bµ  is the bulk chemical potential, i.e. the chemical 

potential in absence of gravity. The local density approx imation 
assumes that for each z the state of the sample is analogous to 
a bulk system (no gravity) with chemical potentials given by 
(1). This constitutes a very good approximation provided that 
the correlation lengths are small compared to the gravitational 
lengths, k T m gi iB /ξ =  with kB the Boltzmann constant, and T 
the absolute temperature. Combining the expressions for the 
local chemical potentials, see (1), and eliminating the height 
variable z we find

a s ,2 1 1( )µ µ µ= + (2)

where both a and s are constants given by

a s

s m m

,

.
2
b

1
b

2 1 1 2/ /
µ µ

ξ ξ
= −
= =

(3)

The finite size of the sample z h0 ⩽ ⩽  is translated into a range 
for the local chemical potentials

m gh
i0 1, 1, 2.i i

i

b

⩽ ⩽  
µ µ−

= (4)

Equations (2) and (4) represent a line segment, which we refer 
to as the sedimentation path, in the plane of chemical poten-
tials. The sedimentation path describes how the local chemical 
potentials vary along the height coordinate in the vessel. Each 
point in the sedimentation path corresponds to the state of the 
sample at a given z.

The sedimentation path is directly related to the stacking 
sequence, i.e. the sequence of stacks of different phases that 
appear under gravity. If a path crosses a boundary between 
two phases in the phase diagram, e.g. a binodal, an interface 
appears in the vessel. The sedimentation path provides a direct 
link between the bulk phase diagram of the mixture and the 
stacking sequence. An example of a sedimentation path and its 
corresponding stacking sequence is shown in figure 1.

A sedimentation path is fully described by its (i) slope, (ii) 
location in the 1 2µ µ−  plane specified by a point on the path, 
(iii) direction and (iv) length. The slope is fixed by the ratio 
of the buoyant masses, see (3). The position is determined by 
the bulk chemical potentials in absence of gravity, and hence 
by the overall colloidal composition and concentration via a 
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change of variables using the equation of state of the mixture. 
The direction is given by the signs of the buoyant masses (note 
mi can be negative if the mass density of the solvent is higher 
than the mass density of the colloids). Finally, the length of 
the path is proportional to the height of the vessel since the 
difference in chemical potentials between the top (z  =  h) and 
the bottom of the sample (z  =  0) is

h m gh0 .i i i i( ) ( )µ µ µΔ = − = − (5)

2.2. The stacking diagram

We have shown how each sedimentation path is associated to 
a stacking sequence. The phase stacking diagram is the set of 
all possible stacking sequences for a given mixture.

Infinite height. For standard colloidal particles in typical 
sedimentation vessels the length of the sedimentation path is 
of several k TB  in the 1 2µ µ−  plane. That is, the path extends
over a big region of the bulk phase diagram of the mixture. 
Hence, a very relevant idealization is to consider the limit of 
very high (infinite) sample heights. Within this limit [18, 19] 
a sedimentation path is a straight line of infinite length (not 
a line segment) in the plane of chemical potentials. Hence, a 
sedimentation path can be fully described by using only the slope 
of the path s, and the crossing point between the path and the 

2µ  axis a, see (3). The stacking diagram can then be represented 
in the s  −  a plane. There are three types of boundaries between
different stacking sequences in the stacking diagram. Here we 
only describe each one briefly, see [18, 19] for a full account:

 (i) Sedimentation binodals. The set of all sedimentation 
paths tangent to a binodal in the bulk phase diagram is 
a boundary between two phases in the stacking diagram. 
The path labeled as (1) in figure  1 is an example. An 
infinitesimally small change in one or in both variables of 
the path, a and s, can change the stacking sequence.

 (ii) Terminal lines. The set of all paths crossing an ending 
point of a binodal in the bulk phase diagram is a boundary 
in the stacking diagram that we call the terminal line. 
The sedimentation path (2) in figure 1 is an example. An 
infinitesimal change of a changes the stacking sequence. 
An ending point can be e.g. a critical point, triple point, 
critical end point, etc.

 (iii) Asymptotic terminal lines. The third type of boundaries 
in the stacking diagram is formed by those paths that are 
parallel to the asymptotic behaviour of a binodal. See the 
path (3) in figure 1. In this case, an infinitesimal change of 
the slope s alters the stacking sequence. Both the binodal 
and the path do not terminate at finite chemical potentials. 
Hence, the sedimentation path and the binodal can cross 
due to an infinitesimal change of the slope of the path.

A binodal is not the only possible boundary between two 
regions present in the bulk phase diagram. For example, a 
percolating line dividing the bulk phase diagram into perco-
lated and nonpercolated states is another type of a boundary 
between phases. Any boundary present in the bulk phase dia-
gram generates boundaries in the stacking diagram (sedimen-
tation binodals, terminal lines and asymptotic terminal lines). 
For convenience we speak always of binodal lines but one 
should bear in mind that other lines also give rise to bounda-
ries in the stacking diagram. The patchy colloid mixtures 
studied below feature such percolation lines.

Finite height. In this paper we focus on the stacking 
diagrams for finite height samples. There exist several 
possibilities to represent the stacking diagram for finite heights. 
In an experimental work one typically varies the concentration 
and composition of the mixture, while keeping the solvent 
and the mass density of the colloids unchanged. The sample 
height is, in principle, easy to adjust3 and hence forms a useful 
control parameter. Under these circumstances the slope and 
the length of the path in the 1 2µ µ−  plane are fixed, see (3) 
and (5), and its position in the 1 2µ µ−  plane varies. A sensible 
choice of variables for the stacking diagram is the plane of 
average local chemical potentials along the path 1 2¯ ¯µ µ− . As 
the sedimentation paths are straight lines, the average local 
chemical potentials are just the local chemical potential 
evaluated at the middle of the sample z h 2i i¯ ( / )µ µ= = .

The stacking diagram for finite height samples in the 

1 2¯ ¯µ µ−  plane contains three possible types of boundaries 
between different stacking sequences. Two of them are 
sedimentation binodals originated from coexisting lines in the 
bulk phase diagrams and one boundary is due to the ending 

Figure 1. Bulk phase diagram (schematic) of a binary mixture 
in the plane of chemical potentials 1 2µ µ− . Two phases A and 
B coexist at the binodal (solid black line). The binodal ends at a 
critical point (empty circle) and has a horizontal asymptote since 
the pure system of species 2 undergoes a phase transition. The solid 
red line represents the sedimentation path of the mixture in a vessel 
of height h under gravity. The arrow indicates the direction of the 
path from the bottom to the top of the sample. The corresponding 
stacking sequence is bottom A and top B, as shown in the sketch. 
The dashed red lines are selected sedimentation paths for infinite 
height: (1) a path tangent to the binodal, (2) a path that crosses 
an ending point of a binodal, (3) a path parallel to the asymptotic 
behaviour of the binodal.

3 Solvent evaporation might occur, changing the effective sample height and 
hence the concentration of colloids.
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points of the binodals. We describe each of them in detail in 
the following.

(i) Sedimentation binodal type I (SBI). The set of all sedi-
mentation paths that either start or end at a binodal form 
a sedimentation binodal of type I. A path starts (ends) at a 
binodal if the bottom (top) of the sample is located at the 
binodal. The path labeled as (1) in figure 2 is an example. 
For each binodal in the bulk phase diagram there are two 
corresponding SBI in the stacking diagram. One SBI for 
those paths that end at the binodal and the other SBI for 
those paths that start at the binodal. Both SBI lines have 
the same shape as the bulk binodal. This type of boundary 
is not present in the case of infinite height because the 
paths do not have starting and ending points.

 Let 2,C 1( )µ µ  be the parameterization of the chemical 
potential of species 2 at a bulk coexistence line, such as a 
binodal, as a function of 1µ . Then, the two corresponding 
sedimentation binodals of type I are given by

m g
h

m g
h
2

,

2
,

2 1 2,C 1 2

2 1 2,C 1 2

¯ ( ¯ ) ( )

¯ ( ¯ ) ( )

µ µ µ µ

µ µ µ µ

= +

= −

−

+ (6)

 where

m g
h

2
.1 1 1¯µ µ= ±± (7)

 Here, 1µ
+ ( 1µ

−) is the local chemical potential of species 1 
at the bottom (top) of the sample.

(ii) Sedimentation binodal type II (SBII). The set of all paths 
tangent to a bulk binodal is also a boundary (sedimenta-
tion binodal type II) in the stacking diagram. See the path 
(2) in figure 2. This boundary is analogous to the sedi-
mentation binodals in the case of infinite height. The SBII 
boundaries are straight lines in the stacking diagram. A 
SBII line is present if and only if the slope of the path 
is the same as the slope of the binodal at some point(s). 
Each point of a binodal sharing the same slope as the path 
generates a SBII line.

 Let ,1,t 2,t( )µ µ  be the chemical potentials of a point 
on a bulk binodal. Let its local slope be that of the 
sedimentation path. That is

s
d

d
.2,C

1
1,t

µ

µ
=

µ
(8)

 Then, the associated SBII line is given by

s.2 1 2,t 1 1,t¯ ( ¯ ) ( ¯ )µ µ µ µ µ= + − (9)

 The finite size of the path limits the range of 1µ̄  to

m g
h

2
.1 1,t 1¯ ⩽µ µ− (10)

(iii) Terminal lines (TL). The terminal lines are, as in the infi-
nite height case, the set of all paths that cross an ending 
point of a binodal. See path (3) in figure  2. For each 
ending point in the bulk phase diagram there is one and 
only one TL in the stacking diagram. The TL is always a 
straight line.

 Let ,1,e 2,e( )µ µ  be the chemical potentials of an ending 
point in bulk, such as a critical point, a triple point, etc. 
The corre sponding terminal line is

s,2 1 2,e 1 1,e¯ ( ¯ ) ( ¯ )µ µ µ µ µ= + − (11)

for

m g
h

2
.1 1,e 1¯ ⩽µ µ− (12)

In the three cases (i)–(iii) any infinitesimal displacement of 
the path changes the stacking sequence (except for the special 
case in which the displacement is such that the path moves 
along the boundary of the stacking diagram). The asymptotic 
terminal lines that occur in the case of infinite sample height 
do not appear at finite height since the slope of the sedimenta-
tion path is fixed and the paths are of finite length.

The three boundaries SBI, SBII, and TL divide the stacking 
diagram in different regions. Each region corresponds to a dif-
ferent stacking sequence. In order to identify each sequence 
we first select one point inside of the desired region. Next we 
plot the corresponding path in the bulk phase diagram such 
that we can determine the sequence by inspecting the cross-
ings between the path and the binodals.

Once the stacking diagram has been calculated in the 1 2¯ ¯µ µ−
plane, we can easily transform to any other set of variables 
provided that the equation of state of the mixture is known. 

Figure 2. Schematic bulk phase diagram of a binary mixture in the 
plane of chemical potentials 1 2µ µ− . Two phases A and B coexist 
at the binodal (solid black line). The binodal ends at a critical point 
(empty circle). The solid red lines are selected sedimentation paths 
(finite height). The arrow indicates the direction of the path from 
the bottom to the top of the sample. The coordinates of the middle 
point of the path are the average local chemical potentials ,1 2( ¯ ¯ )µ µ  as 
indicated in one of the paths. The top (bottom) path marked with (1) 
starts (ends) at the binodal. The path labeled as (2) is tangent to the 
binodal. The path (3) crosses the critical point.
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In order to ease comparison to experimental work, a sensible 
choice of variables for the stacking diagram is the 1 2¯ ¯η η−  plane,
where īη  is the average packing fraction of  species i,

h
z z

1
d .i

h

i
0

¯ ( )∫η η= (13)

Here, zi( )η  is the local packing fraction of species i at a distance 
z from the bottom of the sample. To obtain zi( )η  we first 
compute the local chemical potentials at z using equation (1), 
and then use the equation of state of the system ,i i 1 2( )η η µ µ= . 
The phase diagram in the 1 2¯ ¯η η−  plane is then obtained by 
transforming the coordinates of the boundaries in the stacking 
diagram from ,1 2( ¯ ¯ )µ µ  to ,1 2( ¯ ¯ )η η . Other representations of the 
stacking diagram such as for example average osmotic pres-
sure versus average composition are also possible, following a 
similar transformation procedure.

3. Results

We first apply our theory to obtain the stacking diagrams at finite 
height of different bulk model phase diagrams (section 3.1). Although 
the bulk phase diagrams do not correspond to real microscopic 

models, they are representative of the behaviour of typical col-
loidal mixtures. The model bulk phase diagrams provide relevant 
examples of possible topologies of the stacking diagrams. In sec-
tion 3.2 we apply the theory to model binary mixtures of patchy 
colloids for which we use Wertheim’s theory to obtain the bulk 
phase diagram. Finally, in section 3.3 we compare the stacking 
diagrams at finite and infinite sample heights.

3.1. Model bulk phase diagrams

One of the simplest possible bulk phase diagrams of a binary 
mixture is schematically represented in figure 3(a). There is 
a single binodal at which two phases A and B coexist. The 
binodal ends at a critical point. The species 2 undergoes an 
A-B phase transition. Hence, the binodal has a horizontal 
asymptote and tends to the value of 2µ  at the transition (chosen 
as lim 0.8921→ µ =µ −∞ ). This phase diagram might be 
representative of e.g. a mixture of spherical colloids (species 
1) and anisotropic colloids undergoing an isotropic-nematic 
phase transition (species 2). A small degree of polydispersity 
in the spherical colloids could prevent a liquid-solid phase 
transition in the pure system of species 14.

Figure 3. (a) Schematic bulk phase diagram of a binary mixture in the plane of chemical potentials 1 2µ µ− . Two phases A and B coexist at 
the binodal (solid black line). The binodal ends at a critical point (empty circle). The solid red lines are representative sedimentation paths 
(finite height) corresponding to samples with two different heights, h1 and h h2 1> , as indicated. The slope of the path is s  =  1 in both cases. 
The arrow indicates the direction of the path from the bottom to the top of the sample. The red circle on the path h2 is located at the center 
of the path. Its coordinates are the average local chemical potentials along the path. (b) Stacking diagrams for samples with heights h1 (left) 
and h2 (right). Sedimentation binodals of type I (SBI) are indicated by black solid lines and terminal lines (TL) by black dotted lines. Each 
region is coloured and labelled according to its stacking sequence (from bottom to top). The sedimentation path corresponding to the point 
highlighted with a red circle in panel (b) is represented in the bulk phase diagram (a). The lower panels (c) and (d) show the same diagrams 
for the case of sedimentation paths with slope s  =  −1. The sedimentation binodals of type II are indicated by black dashed lines. The inset 
on the left of panel (d) is a close view of a region of the stacking diagram.

4 This ignores phase coexistence phenomena in polydisperse systems.
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The stacking diagram of the chosen model bulk phase
diagram for the case of infinite height is shown in figure 5 of 
[19]. Here we focus on the case of finite height. In figure 3(b) we
represent the stacking diagram ( 1 2¯ ¯µ µ−  plane) for two different 
heights h1 and h2 with h h2 1> . In both cases the slope of the 
paths are the same, s m m 12 1/= = , and both buoyant masses are
positive such that both local chemical potentials decrease from 
the bottom to the top of the sample. We show representative 
sedimentation paths in figure  3(a). Each sedimentation path 
in the 1 2µ µ−  plane in the bulk diagram is a point in the 

2 1¯ ¯µ µ−  plane of the stacking diagram (the coordinates of the 
middle point of the path). The stacking diagrams contain two 
sedimentation binodals of type I (generated by paths starting 
and ending at the bulk binodal) and one terminal line (paths 
crossing the critical point). There are three possible stacking
sequences, namely A, B, and AB. We label the sequences
according to the order of different stacks from bottom to top.

Next, we study the same model bulk phase diagram but 
for sedimentation paths with a different slope, s  =  −1. See 
representative paths in figure 3(c). Here m1  >  0 and m2  <  0 
such that 1µ  ( 2µ ) decreases (increases) from the bottom to 
the top of the sample. The slope of the path is, in this case, 
compatible with the slope of the binodal in the sense that there 
is one point at the binodal whose derivative equals the slope 
of the path, see (8). Hence, the stacking diagram contains a 
sedimentation binodal of type II which is formed by the set of 
paths that are tangent to the binodal in bulk. The boundaries 
of the stacking diagrams (figure 3(d)) are: two SDI lines, one 
SDII line, and one TL. These boundaries split the stacking 
diagram into five regions. The possible stacking sequences are 
A, B, AB, ABA, and BA5. The ABA sequence appears when a 
path crosses the bulk binodal twice [8, 27].

This very simple example already shows the richness of the 
stacking diagram. It also suggests that the sample height plays 

a major role. The size of the area of the stacking diagrams 
occupied by each stacking sequence depends strongly on the 
height of the sample. For example, the AB region substanti-
ally increases with h, see figure 3(b). Two samples of different 
height and different stacking sequences might have the same 
composition and concentration of colloids (we will see 
examples in the next section). The height of the sample might 
have an even stronger influence on the stacking diagram, as 
we will demonstrate in the following.

In figure 4(a) we show a further model bulk phase diagram. 
There are three different phases: A, B and C. Three binodals 
for A-B, A–C, and B-C coexistence meet at a triple point. A 
phase diagram like this might correspond to a mixture in which 
the species 1 represents spherical colloids and the species 2 
consists of e.g. elongated colloidal particles. The elongated 
particles can undergo isotropic-nematic and nematic-smectic 
phase transitions.

The stacking diagrams for this mixture are depicted in 
figure 4(b) for two different heights, h1 and h2, with h h1 2< . 
In both cases the slope of the path is s  =  1 and both buoyant
masses are positive. The boundaries in the stacking diagram 
are: six SDI lines (two for each of the three binodals), one 
SDII line (the slope of the path matches the slope of the 
B-C binodal at one point), and one TL line (originating 
from the triple point). The stacking diagrams for heights 
h1 and h2 differ substantially from each other, see left and 
right panels of figure  4(b), respectively. We observe two 
main differences between the diagrams for short and long 
samples:

First, the sedimentation paths for the small system (h1) fit 
in the space between the A-B and B-C binodals of the bulk 
phase diagram, see an example in figure 4(a). Consequently 
the stacking sequence B occurs in the stacking diagram, 
figure 4(b) (left). In contrast, the stacking sequence B does not 
occur in the large samples (h2). The B sequence is replaced by 
an ABC state, figure 4(b) (right). The sedimentation paths in 
this case are long enough such that they do not fit in the region 

Figure 4. (a) Schematic bulk phase diagram of a binary mixture in the plane of chemical potentials 1 2µ µ− . The solid black lines indicate 
binodals. Three phases A, B and C coexist at a triple point (triangle). The solid red lines are representative sedimentation paths of samples 
with two different finite heights, h1 and h2, as indicated. The slope of each path is s  =  1. The arrow indicates the direction of the path from 
the bottom to the top of the sample. (b) Stacking diagrams for samples with heights h1 (left) and h h2 1>  (right). The SBI lines are indicated 
by black solid lines. The SBII lines are represented as black dashed lines. The TL are indicated by black dotted lines. Each region is 
coloured and labelled according to its stacking sequence (from bottom to top). The inset on the left of panel (b) is a close view of a region 
of the stacking diagram.

5 Note that sequences with a single stack, such as A, are actually one 
phase-systems and not proper sequences made of different stacks.
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between the A-B and B-C binodals in bulk. Instead, the path 
must cross at least one of the binodals.

Second, the sequence CABC is generated by paths crossing 
the three binodals in bulk. This sequence is present only in the 
long samples, figure 4(b) (right). The paths corresponding to 
the short samples (h1) are not long enough to cross the three 
binodals, and hence the CABC sequence is absent.

These examples illustrate how the stacking diagrams for 
different heights might differ qualitatively. By changing the 
overall height of the sample some stacking sequences are 
replaced by others (e.g. the B sequence for h1 is replaced by 
ABC for h2) and one also observes the occurrence of new 
sequences, such as the CABC sequence for h2.

3.2. Mixtures of patchy colloids

We next apply our theory to patchy colloidal binary mixtures. 
We study two cases in which the species differ either by the 
number or by the types of patches.

3.2.1. Different number of patches. We model the colloids by 
hard spheres of diameter σ with identical patches (spheres of 
size δ) on the surface, see figure 5(a). If two patches over-
lap the internal energy of the system decreases by ε. We use 
Wertheim’s first order perturbation theory [26] and a gener-
alization of the Flory-Stockmayer theory of polymerization 
[28, 29] to compute the bulk phase diagram of the mixture. 
We follow exactly the same implementation of the theory 
as in [24]. Theory and Monte Carlo simulations for the bulk 
phase behaviour are in semi-quantitative agreement with each 
other [30, 31].

The species 1 has two patches, and the species 2 has 
three patches. The colloids with three patches undergo a 
phase transition between two fluids with different densities. 
With only two patches present the particles of species 1 can 
form only chains. The absence of branching prevents phase 
separation and there is no fluid–fluid phase transition in the 
pure system of species 1. In the mixture the transition between 
high and low density fluids ends at a critical point. See the 
binodal in the bulk phase diagram of the mixture shown in 
figure 6(a) for scaled temperature k T 0.09B / =ε . In addition

to the binodal, the phase diagram contains a percolation line 
that divides percolated and non-percolated states. The system 
is percolated if the probability that a patch is bonded, fb, is
higher than the percolation threshold pT. The percolation line
intersects the binodal close to the critical point on the low 
density side. The high density phase (G) is an equilibrium gel 
or network fluid which is always percolated. The low density 
phase does not percolate (N) except for a very narrow region
close to the critical point (G’). We refer the reader to [24, 
30] for further details about the bulk phase behaviour of this 
mixture.

To proceed and to obtain the stacking diagrams we need
to set the slope of the sedimentation paths and the height 
of the sample. We fix the gravitational lengths of the 
colloids to ξ = 5 mm1  and ξ = 2 mm2  (typical values for 
colloidal particles). Hence, the slope of the path is fixed to 
s 2.51 2/ξ ξ= = . The stacking diagrams in the 1 2¯ ¯µ µ−  plane 
for three different heights h  =  1 mm, 10 mm, and 25 mm are 
shown in figure 6(b). Each of them contains four SDI lines 
(two for the binodal and two for the percolation line) and 
two terminal lines (one for the critical point and one for the 
ending point of the percolation line). Six different stacking 
sequences are possible for this value of the slope: N, G, GN, 
G-N, G–G’, and G–G’N. We use a dash between two stacks 
in the stacking sequence, like in the G-N sequence, to indi-
cate that the sedimentation path crosses the binodal. The 
absence of a dash, e.g. in the GN sequence, indicates that the 
path crosses the percolation line.

Once the stacking diagrams in the plane of average chem-
ical potentials have been computed, we can transform the vari-
ables using the procedure described at the end of section 2. In 
figure 6(c) we show the bulk phase diagram in the plane of 
packing fractions. The bulk phase diagram can be interpreted 
as the stacking diagram in the limit of zero sample height for 
which the sedimentation path is just a point. In figure 6(d) we 
present the stacking diagrams for h  =  1 mm and h  =  10 mm in 
the plane of average packing fractions.

The number and types of stacking sequences remain the 
same for the sample heights investigated here. However, 
the region of the phase space occupied by each sequence 
significantly depends on the value of the sample height. We 
show a specific example in figure  7 in which we plot the 
density profiles of two samples with the same average packing 
fractions ( 0.0021̄η = , and 0.352η̄ = ), but different heights 
(h  =  25 mm and 10 mm). The corresponding state points are 
highlighted by green solid circles in the stacking diagrams of 
figure 6. Despite the average colloidal concentrations being 
the same, the stacking sequences differ: G-N for the sample 
with h  =  25 mm and G for the case h  =  10 mm. Other values 
of the sample height and the gravitational lengths will result 
in identical phenomenology provided that the ratios h i/ξ  with 
i  =  1, 2, are unchanged.

3.2.2. Different types of patches. As a concluding example 
we study a binary mixture of patchy colloids with different 
types of patches. The species 1 (2) possesses three patches 
of type A (B), see figure 5(b) for an illustration. When two 
patches of type α and β with A B, ,{ }α β =  overlap, the energy 

Figure 5. Schematic of the patchy colloidal particles. All colloids 
are modelled as hard spheres of diameter σ with patches on the 
surface (spheres of diameter 0.12δ σ≈ ). We study two types of 
mixtures. (a) Binary mixtures of particles with identical patches. 
The species 1 has 2 patches and the species 2 has 3 patches. (b) 
Binary mixture of particles with three patches of type A (species 1) 
and of type B (species 2). If two patches overlap the internal energy 
of the system decreases in a quantity given by the type of patches 
involved.
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of the system decreases by αβε . The bulk phase diagram of 
this model has been studied theoretically [25] and by Monte 
Carlo simulations [31] for different values of the bonding 
energies αβε . The phenomenology that emerges is very rich 
as different types of gels can occur depending on the set 
of bonding energies. Here, we set BB=ε ε  (energy scale), 

0.80AA =ε ε , and 0.85AB=ε ε . We fix the scaled temperature, 
as in the previous case, to k T 0.09B / =ε .

The bulk phase diagrams in the planes of chemical 
potentials and of packing fractions are shown in figures 6(a)
and (b), respectively. At the value of temperature considered 
only the species 2 (strongest bonds) undergoes a fluid–fluid
phase trans ition. Hence, in the mixture there is only one
binodal that ends at a critical point. In addition there are 
three percolation lines. One of these indicates whether the 
full mixture percolates, and the other two percolation lines 
indicate whether the individual species percolate. Although 
species 1 does not undergo a first order fluid–fluid phase
transition at this temper ature, it still undergoes a percolation 
transition. The percolation lines and the binodal divide 
the bulk phase diagram into five different regions. At low 
chemical potentials (and hence low densities) the system is 
non-percolated (N). The other four states are equilibrium 
percolated gels: (i) a mixed gel (M) in which the mixture 
percolates but none of the species percolates independently,
(ii) a bicontinuous gel or bigel (B) in which the mixture and
both species percolate, (iii) two gels (Gi, i  =  1, 2) in which 
the mixture and the species i percolate. See [25, 31] for 
further details about the bulk behaviour.

N

Figure 7. Density profiles iρ  of species 1 (green solid line) and 
species 2 (orange dashed line), percolation threshold pT (dot-dashed 
blue line), and bonding probability fb (dotted black line) of a binary 
mixture of patchy particles with two (species 1) and three (species 
2) patches under gravity. The height of the container is h  =  25 mm 
(a) and 10 mm (b). The system is percolated if f pb T> . In both 
cases the average packing fractions of the colloids of each species 
are the same, 0.0021̄η = , and 0.352η̄ = . The stacking sequences 
are G-N (a) and G (b), schematically represented in the upper right 
corner of the figure. The insets in (a) and (b) are close views of the 

1ρ  profile. The red arrow in panel (a) indicates the position of the 
G-N interface.

Figure 6. Bulk phase diagram of a binary mixture of patchy colloids with two (species 1) and three (species 2) identical patches in the 
plane of chemical potentials (a) and packing fractions (c). The temperature is k T 0.09B / =ε . The black solid line indicates the binodal. The 
dashed line is the percolation line of the mixture. The empty circle indicates the critical point. The black solid circle is the ending point 
of the percolation line. The inset in (a) is a close view of the region near the critical point. (b) and (d) show the stacking diagrams of the 
mixture under gravity in the plane of average chemical potentials (b) and average packing fractions (d) for three different sample heights, as 
indicated. A dash between two letters, like in the sequence G-N, indicates that the sedimentation path crosses the binodal. The absence of a 
dash, such as e.g. in GN, indicates that the path crosses the percolation line.
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Here, we study sedimentation-diffusion-equilibrium. As in 
the example above we chose the gravitational lengths to be 

51ξ =  mm and 22ξ =  mm, and study two different sample 
heights h  =  1 mm and 10 mm. The resulting stacking diagrams 
are extremely rich, see figures 8(c) and (d), with more than 
20 distinct stacking sequences. Again, the regions occupied 
for each stacking sequence depend on the sample height. In 
some cases the same stacking sequence occurs in a completely 
different range of average packing fractions when varying the 
sample height, see for example the sequence 11 (G2M) in 
figure 8(d). Even more important is the fact that the stacking 
diagrams for h  =  1 mm and h  =  10 mm are qualitatively 
different. There are several stacking sequences that are present 
only in one of the selected sample heights. For example, the 
sequence MG1 (number 10 in figure  8) is only present in 

samples with h  =  1 mm, and the sequence G2MG1M (number 
25) occurs only for the case h  =  10 mm.

3.3. Infinite versus finite height stacking diagrams

We conclude the section  with several comments regarding 
the connection between the stacking diagrams for infinite 
and finite samples. The main effect is the occurrence of 
new sequences in the case of finite height samples. The new 
sequences are formed by the removal of one or more stacks 
of the sequences for h →∞. In general, a sequence observed 
at finite height might be a truncated sequence of the infinite 
system. This observation has strong implications for the 
correct interpretation of observed stacking sequences in finite 
height samples.

Figure 8. Bulk phase diagram of a binary mixture of patchy colloids with three patches of type A (species 1) and three patches of type B 
(species 2) in the plane of chemical potentials (a) and packing fractions (b). The black solid line indicates the binodal. The dashed lines 
are percolation lines of the mixture (black), of the species 1 (red), and of the species 2 (blue). The empty circle indicates the critical point. 
The black solid circles are the ending points of the percolation lines. Shown are the stacking diagrams of the mixture under gravity in the 
plane of average chemical potentials (c) and average packing fractions (d) for two different sample heights, as indicated. The legend shows 
the occurring stacking sequences. A dash between two letters, like in the sequence 3, G2  −  N indicates that the sedimentation path crosses 
the binodal. The absence of a dash, such as e.g. in 13 (G1M) indicates that the path crosses a percolation line. The sequences marked with 
a circle in the legend are present at both sample heights. The sequences marked with a solid (dashed) square occur only for samples with 
h  =  1 mm (h  =  10 mm).
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In figure 9 we show the stacking diagram (infinite height) 
of the mixture of patchy colloids with two and three patches 
analyzed in section 3.2.1. The stacking diagram is represented 
in the s  −  a plane, see (3). The diagram has been computed 
for m1  >  0. Hence positive (negative) values of the slope 
s m m2 1/=  correspond to positive (negative) values of m2. 
There exists an analogous diagram for m1  <  0 in which the 
only difference is that the stacking sequences have the reverse 
order. There are two sedimentation binodals (one for the 
binodal and one for the percolation line), two terminal lines 
(critical point of the binodal and ending point of the perco-
lation line), and two asymptotic terminal lines (asymptotic 
behaviour of the binodal and the percolation lines).

We have shown previously the diagrams at finite height for 
the slope s  =  2.5, see figure 6. For this value of s only three 
sequences are possible at infinite height, see figure 9: GN, 
G–G’N, and G-N. The finite height diagram is richer with 
up to six different sequences. These are the same three as 
for h →∞ and three new truncated sequences of the infinite 
case (G, N, and G–G’). As expected, by increasing the height 
of the sample, the regions occupied by the new truncated 
sequences in the stacking diagrams shrink (see figure 6(d)). 
In this particular example, for h  =  25 mm, the stacking dia-
gram is already dominated by the stacking sequences of the 
infinite height case.

The infinite height stacking diagram provides the set of 
possible sequences for different values of s. Here, we have 
only analysed the value s  =  2.5 of the slope for finite height 
samples. The infinite height stacking diagram shows that for 
other values of s further complex phenomenology occurs. For 
example, for negative values of the slope, i.e. m2  <  0, it is
possible to stabilize the sequence NGN-G which constitutes a 
reentrant percolation phenomenon. This sequence also occurs 
in two-dimensional binary mixtures of patchy colloids [10].

Experimentally one can change the slope of the path via the 
synthesis of colloids with cores of different materials [32, 33] 
or changing the mass density of the solvent. Hence, the full 
range of stacking sequences of a given colloidal mixture is, in 
principle, experimentally accessible.

4. Discussion and conclusions

Our theory is based on a local density approximation which 
assumes that for each z the state of the sample can be approx-
imated by a bulk state. Non-local effects might modify the 
stacking diagrams. In particular, the theory neglects the sur-
face tension of the interfaces between stacks in the stacking 
sequence. If one of the stacks is very narrow the surface ten-
sion of the upper and lower interfaces might be higher than 
the gain in free energy due to the formation of the stack, as 
observed in colloid-polymer model mixtures [27]. Under 
such circumstances, the final equilibrium stacking sequence 
might be different than that predicted by our local theory. This 
condition is analogue of capillary condensation/evaporation. 
Surface effects such as e.g. the occurrence of wetting and 
layering near the walls of the vessel might also modify the 
stacking diagrams.

Our theory can be easily extended to multicomponent sys-
tems since the sedimentation paths remain lines in the phase 
space of chemical potentials. Also, the theory is directly appli-
cable to molecular systems. There, the gravitational lengths are 
orders of magnitude higher than in colloidal systems. Hence, 
to observe similar phenomenology one needs containers of 
considerable size, such as for example geological deposits.

We have obtained the stacking diagrams at constant sample 
height and fixed ratio of the buoyant masses. Other choices, 
such as for example keeping the colloidal concentrations fixed 
and varying the sample height, are also possible. A stacking 
diagram in which one of the variables is the height might 
be relevant to study the effects of slow solvent evaporation, 
which is a process that changes the total volume but keeps the 
particle number fixed.

We have shown that two samples with the same colloidal 
concentrations but placed in vessels of different heights might 
have different stacking sequences. We have also shown that 
the stacking diagrams might be qualitatively different for dif-
ferent heights. Therefore, the sample height plays a major role 
in sedimentation-diffusion-equilibrium experiments. This role 
is as important as for example the average colloidal concentra-
tions. We conclude that the sample height should be carefully 
measured and specified in any sedimentation experiment.

Figure 9. Stacking diagram (infinite height) in the s  −  a plane 
of a binary mixture of patchy colloids with two and three patches 
at k T 0.09B / =ε . The inset is a close view of a small region. Each 
coloured region is a different stacking sequence labelled from 
bottom to top of the sample. A dash in the label indicates the 
sedimentation path crosses the binodal. No dash indicates the path 
crosses a percolation line. The stacking diagram corresponds to 
the case m1  >  0. The stacking diagram for the case m1  <  0 can be 
obtained by just reversing the order of the stacks. The green arrows 
signal the slope s  =  2.5 for which we have obtained the stacking 
diagrams at finite height, see figure 6. Sedimentation binodals are 
represented by solid lines. Terminal lines are shown as dashed lines. 
Asymptotic terminal lines are indicated by dotted lines.
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We have focused on sedimentation-diffusion-equilibrium 
in colloidal mixtures. Future studies could consider the 
dynamics of sedimentation using dynamic density functional 
theory [34, 35] and power functional theory [36].
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We identify a unique demixing force density distribution that arises from repulsive interparticle
interactions in driven binary colloidal fluids under overdamped Brownian dynamics. The demixing
force density is resolved in space and in time and it counteracts diffusive currents which arise due to
gradients of the local mixing entropy. We construct a power functional approximation that describes
superadiabatic demixing, and apply the theory to colloidal lane formation in oppositely driven binary
quasi-hard core mixtures. We find excellent agreement of the theoretical results with our Brownian
dynamics computer simulation results for adiabatic, structural, drag and viscous force contributions.
We show that the concept of superadiabatic demixing allows to rationalize the emergence of mixed,
laned and jammed states in driven binary mixtures.

I. INTRODUCTION

The concept of mixing entropy in multi-component
systems is profound for our understanding and quanti-
tative description of complex systems. In equilibrium,
mixing entropy can overcome strong energetic repulsion
that arises due to internal interactions between the con-
stituent particles. It is a driving mechanism, if not an an-
tagonist, for a wide range of structuring and self-assembly
phenomena. The systems and phenomena where mixing
entropy plays a crucial role cover a broad range, from the
fundaments of liquid state theory, such as the determina-
tion of the equation of state of binary mixtures of hard
spheres [1] to the determination of phase behaviour, such
as entropy-driven phase transitions of colloid-polymer
mixtures [2], understanding liquid-liquid immiscibility in
polymer solutions [3], the demixing transition in ather-
mal mixtures of colloids and flexible self-excluding poly-
mers [4], liquid crystal physics, such as isotropic-nematic-
nematic phase-separation for bidisperse rod-like particles
[5], or rod-plate mixtures, where biaxiality competes with
demixing [6], percolation in binary and ternary mixtures
of patchy colloids [7], and selectivity in spatially inhomo-
geneous binary fluid mixtures [8]. Important technologi-
cal applications where mixing entropy is relevant include
the capacitive mixing for harvesting the free energy of
solutions [9], and in ’blue energy’ from ion adsorption
and electrode charging in sea and river water [10]. Al-
though in nonequilibrium the situation is much less clear,
gradients of position-resolved mixing entropy fields were
shown to be relevant e.g. for the dynamics of liquid films
with soluble surfactant [11].

Here we identify and describe a competing effect that
occurs in genuine nonequilibrium and that can counter-
act diffusive forces generated by the mixing entropy in
a similar way that explicit interparticle repulsion does
in equilibrium. We show that this effect is “superadia-

∗Electronic address: delasheras.daniel@gmail.com; URL: www.

danieldelasheras.com
†Electronic address: Matthias.Schmidt@uni-bayreuth.de

batic” in character, i.e. it acts above all effects that can be
understood on the basis of an equilibrium (“adiabatic”)
reference state and its free energy. As we show, supera-
diabatic demixing is a genuine nonequilibrium effect and
a corresponding unique superadiabatic force density dis-
tribution can be identified that acts spatially and tem-
porally resolved in nonequilibrium systems. As both a
relevant application and a demonstration of the concept
we revisit the well-studied phenomenon of colloidal lane
formation in oppositely driven binary mixtures, where for
the first time we are able to rationalize quantitatively, on
the basis of a physical model of the underlying superadi-
abatic effect, the emergence of nonequilibrium structure
formation in this system.

We show in Fig. 1 characteristic snapshots of a col-
loidal mixture of two species with repulsive interparticle
interactions driven in opposite directions (details about
the system are given below). At low driving, Fig. 1a, the
diffusive forces generated by the entropy of mixing domi-
nate and the system remains in a homogeneous state with
both species flowing through each other. At high driv-
ing however the species segregate into two lanes, Fig. 1b.
Lane formation constitutes a genuine nonequilibrium self-
organization process that has attracted much interest in
the literature since it occurs in strikingly different areas,
ranging from colloidal systems [12–17], plasmas [18, 19],
and lattice models [20], to different kinds of living sys-
tems, such as bacteria in channels [21], ant trails [22], and
groups of pedestrians [23]. Laning has also been studied
when the external driving directions of the two species are
non-parallel to each other [24], have high shear rates [25],
or other characteristics such as rotating magnetic field in
channels, and periodic driving with different friction co-
efficients [26–28]. Studies were devoted to the influence of
noise and of hydrodynamic interactions [29, 30] as well as
the characteristics of the transition toward laning in two-
dimensional systems [31]. Although the primary focus is
on purely repulsive model systems, such as model sus-
pensions of charged colloids, laning has also been shown
to appear in systems governed by attractive [32] and by
dipolar [33] interparticle interactions.

Physical mechanisms for laning were attributed to rec-
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FIG. 1: Characteristic snapshots of a two-dimensional col-
loidal mixture in a homogeneous (gravitational) external field.
Particles of species 1 (orange) possess a positive buoyant
mass, i.e. the external force acting on them is directed down-
wards. Particles of species 2 (blue) have a negative buoy-
ant mass and hence upwards directed external force acting on
them. The arrows indicate the direction of the different forces
in the system. The color of the arrow shows the species on
which the forces act, and its size indicates the relative mag-
nitude of the force as compared to the other forces. At low
external driving (a) the system is homogeneous. Forces only
act in the flow ŷ-direction. At high external driving (b) the
system segregates into lanes. The forces acting in the gradi-
ent x̂-direction (diffusive, adiabatic, and structural) balance
each other. The small white arrows indicate the direction of
the velocity inside the lanes.

tification of diffusion on the particle scale [34]. The pair
correlation functions were considered to be the key ob-
servables to quantify the laning phenomenon [35]. The-
oretical treatments have been scarce. Based on phe-
nomenological versions of dynamical density functional

theory Chakrabarti and coauthors [13, 14] obtained a
dynamical instability as a steady-state bifurcation of the
density field around the onset of structural inhomogene-
ity in the simulations. Poncet et al [35] used linearized
stochastic density functional theory for the pair correla-
tion functions. Kohl et al [36] used a microscopic ap-
proach, based on Kirkwoods superposition approxima-
tion as a closure relation, to also calculate nonequilib-
rium pair correlations in strongly interacting driven bi-
nary mixtures. Wächtler et al [32] performed a stability
analysis based on dynamical density functional theory.
Despite this progress, a systematic theoretical framework
that would describe laning has not yet been formulated.
Here we present a comprehensive theory for driven binary
mixtures that operates on the level of one-body correla-
tion functions, such as (partial) density and current dis-
tributions. The general framework constitutes a closed
theory, based on the power functional concept for mix-
tures [37, 38]. We present an approximate form of the su-
peradiabatic free power functional, which is a functional
generator of the nonequilibrium force distributions. Cru-
cially, we demonstrate that the superadiabatic demixing
force fields are kinematic functionals, i.e. depend not only
on the density, but also on the flow fields. The theory
allows us to quantitatively describe the stability of lane
formation.

The paper is organized as follows. In Sec. II we de-
velop a general theory for nonequilibrium mixtures on
the level of one-body correlation functions, putting for-
ward a unique splitting of the nonequilibrium one-body
force contributions into those acting on the total mo-
tion and those acting on the differential motion (i.e. the
counterflow of the two species). In Sec. II B we construct
a power functional approximation based on generalizing
the velocity gradient formalism [39] for mixtures. In Sec.
III we describe results of Brownian dynamics computer
simulations for the adiabatic and superadiabatic force
fields. We consider an “ideal” binary mixture in which
all particles share the same interparticle pair interaction
potential, independent of the species. The chosen setup
allows us to systematically identify the mixture contribu-
tions as consisting of drag and of superadiabatic demix-
ing contributions. The total flow is governed by viscous
and structural forces. Crucially, we demonstrate that
non-gradient contributions involving the relative velocity
of the two species generate the superadiabatic demixing
effect. We demonstrate the quantitative agreement of
theoretical results with simulation data. We conclude in
Sec. IV.

II. DYNAMICAL ONE-BODY DESCRIPTION

A. General formulation

Let the positions of N particles in d spatial dimen-
sions be indicated by r1, . . . rN ≡ rN . We consider sys-
tems that are composed of different species, labelled by α.
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The set Nα contains all particle indices i that belong to
species α. The dynamics of the system are governed by
the coupled Langevin equations for overdamped Brown-
ian motion,

γṙi = −∇iu(rN ) + fext,i(ri, t) + ξi(t), (1)

where γ is the friction constant against the (implicit)
solvent (which we consider to be the same for all par-
ticles), the overdot denotes a time derivative, ∇i indi-
cates the derivative with respect to ri, u(rN ) is the in-
terparticle interaction potential, fext,i(r, t) is an external
force field acting on particle i at position r at time t;
here r is a generic position coordinate. Furthermore ξi(t)
is a stochastic white noise force with vanishing mean,
〈ξi(t)〉 = 0, and auto-correlation given by

〈ξi(t)ξj(t′)〉 = 2γkBT1δijδ(t− t′), (2)

where the angles denote an average over the realizations
of the noise, kB indicates the Boltzmann constant, T is
absolute temperature, 1 is the d×d-unit matrix, and δ(·)
is the Dirac delta distribution. In practice, we discretize
the equations of motion (1) with a finite time step ∆t,
and integrate in time using the Euler algorithm.

We define the one-body density and current distribu-
tion functions, respectively, for each species α as

ρα(r, t) =
〈 ∑

i∈Nα

δ(r− ri)
〉
, (3)

Jα(r, t) =
〈 ∑

i∈Nα

δ(r− ri)vi

〉
, (4)

where the angles denote an average both over the noise
as before, but also over the set of initial states; the veloc-
ity of particle i is given by a symmetric time derivative,
vi(t) = (ri(t + ∆t) − ri(t −∆t))/(2∆t) [40]. We obtain
the microscopically resolved velocity profile of species α
as the ratio

vα(r, t) =
Jα(r, t)

ρα(r, t)
. (5)

The continuity equation holds individually for each
species,

∂ρα
∂t

= −∇ · Jα, (6)

where ∇ indicates the derivative with respect to r.
The one-body equation of motion translates the sum

of all forces that act into local motion. The dynamics
on the one-body level are specified by the (exact) force
density balance relationship

γJα = −kBT∇ρα + Fαint + ραfαext, (7)

where the three terms on the right hand side constitute
the force densities due to thermal diffusion, internal inter-
actions, and external influence. Due to the overdamped

character of the dynamics the sum of these forces directly
induces a current, cf. the left hand side of (7). Here the
internal force density field arises from the internal inter-
action potential u(rN ) and is defined via the average

Fαint(r, t) = −
〈 ∑

i∈Nα

δ(r− ri)∇iu(rN )
〉
. (8)

Furthermore the external force field fαext(r, t) in (7) acts
on particles of species α, hence the external force acting
on particle i ∈ Nα, as appearing in the Langevin equation
(1), is given by fext,i(ri, t) = fαext(ri, t).

The internal one-body force density distributions can
be split into adiabatic and superadiabatic one-body con-
tributions [37, 38, 41], according to

Fαint = Fαad + Fαsup. (9)

Here the adiabatic force density distribution Fαad(r, t) is
defined as the internal force density that occurs in a
corresponding “adiabatic” equilibrium system that is de-
fined by having the same partial density distributions as
the nonequilibrium system, ρad

α (r) = ρα(r, t), ∀α. The
adiabatic force density is also defined by (8), but with
the crucial alteration that the average is now taken over
an equilibrium probability distribution (i.e. that of the
adiabatic system). Here external “adiabatic” one-body
potentials V αad(r) act on species α in order to stabilize
the given partial density distributions, via (conservative)
force fields −∇V αad(r).

The superadiabatic force density distribution Fαsup(r, t)
in (9) contains therefore all nonequilibrium effects which
arise due to the presence of the flow in the system.

Dividing (7) by the partial densities ρα and using (9)
we obtain the species resolved force balance equations:

γvα = −kBT∇ ln ρα + fαad + fαsup + fαext. (10)

The total density profile ρ(r, t) and the total current
distribution J(r, t) can be obtained, respectively, by sum-
mation of (3) and (4) over all species, i.e.,

ρ(r, t) =
∑

α

ρα(r, t), (11)

J(r, t) =
∑

α

Jα(r, t). (12)

In analogy to the partial velocities (5) the mean total
velocity is then obtained as

v(r, t) =
J(r, t)

ρ(r, t)
. (13)

Summing the species-resolved continuity equation (6)
over all species and using (11) and (12) yields the total
continuity relation as

∂ρ

∂t
= −∇ · J. (14)
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Analogously, summing the species-resolved force density
balance (7) over all species yields the total force density
balance,

γJ = −kBT∇ρ+ Fint + Fext, (15)

where the total internal force density field is Fint =∑
α Fαint, with the force density Fαint acting on species α

defined via (8) and the total external force density given
by Fext =

∑
α ραfαext.

We next divide (15) by the total density profile ρ(r, t)
and use the definition (13) of the total velocity profile in
order to obtain

γv = −kBT∇ ln ρ+ fint + fext, (16)

where we have defined the total internal and external
force fields, fint(r, t) and fext(r, t), respectively, as

fint =
Fint

ρ
, (17)

fext =
∑

α

ρα
ρ

fαext. (18)

As we demonstrate below fint(r, t) is one crucial one-body
field that enables one to rationalize the nonequilibrium
behaviour of driven mixtures.

We restrict ourselves in the following to binary mix-
tures such that the species are labelled by α = 1, 2. We
view the total force field fint to act on both species in
the same way, and also introduce a differential force den-
sity Gint(r, t) which drives the two species through and
against each other. Hence using fint and Gint we ex-
press the underlying species-resolved internal force den-
sity fields as

F1
int = ρ1fint + Gint, (19)

F2
int = ρ2fint −Gint. (20)

We can invert this relationship and use (17) to obtain

Gint =
ρ2

ρ
F1

int −
ρ1

ρ
F2

int. (21)

Hence (17) and (21) express a variable transformation
from the species-resolved force densities F1

int(r, t) and
F2

int(r, t) to the total force field fint(r, t) and the differ-
ential force density Gint(r, t). As we demonstrate below,
each of the new one-body fields describes unique physical
effects. Briefly, fint contains effects that are also present
in a one-component system, while Gint contains the gen-
uine mixture contributions, such as drag and superdemix-
ing, both absent in pure systems.

The dynamics of the total density field are still gov-
erned by (16). To describe the mixture contributions,
we introduce the density difference ρ∆ and the current
difference J∆, respectively, via

ρ∆ = ρ2 − ρ1, (22)

J∆ = J2 − J1, (23)

where the continuity equation ∂ρ∆/∂t = −∇·J∆ is read-
ily obtained from the species-resolved continuity equa-
tion (6). We define the differential external force density
as

F∆
ext = F2

ext − F1
ext ≡ ρ2f

2
ext − ρ1f

1
ext. (24)

The corresponding equation of motion is obtained by
building the difference of the species-resolved one-body
force density balance (7) for α = 1 and 2, which yields

γJ∆ = −kBT∇ρ∆ + fintρ∆ + 2Gint + F∆
ext, (25)

where as before fint(r, t) is given by (17) and Gint(r, t) is
given by (21). The structure of (25) is crucial for the dy-
namics of driven mixtures. The differential current (left
hand side) emerges from four different types of force den-
sity (right hand side): the first term is the ideal diffusive
force density field due to gradients in the density differ-
ence. The second term generates a transport effect on ρ∆

which is induced by the presence of fint. The third term
is a genuine mixture contribution that acts directly on
the density difference; recall the definition (21) of Gint.
The fourth term is due to the external influence, cf. (24).

We next split the fields into adiabatic contributions
(i.e. those that can be understood on the basis of a cor-
responding equilibrium system with the same partial den-
sity profiles) and superadiabatic contributions of genuine
nonequilibrium character, according to

fint = fad + fsup, (26)

Gint = Gad + Gsup. (27)

Due to linearity, the same variable transformation as be-
fore, (17) and (21), relates the terms on the right hand
side with the species-resolved force densities (9). Hence
for the adiabatic contributions:

fad = Fad/ρ, (28)

Gad =
ρ2

ρ
F1

ad −
ρ1

ρ
F2

sup, (29)

where the total adiabatic force density is defined as Fad =∑
α Fαad. For the superadiabatic contributions:

fsup = Fsup/ρ, (30)

Gsup =
ρ2

ρ
F1

sup −
ρ1

ρ
F2

sup, (31)

where the total superadiabatic force density is defined as
Fsup =

∑
α Fαsup.

We summarize by inserting the adiabatic-
superadiabatic splitting (26) and (27) into the velocity
equation of motion (16) and into the differential current
(25), which yields

γv = −kBT∇ ln ρ+ fad + fsup + fext, (32)

γJ∆ = −kBT∇ρ∆ + ρ∆fad + ρ∆fsup

+ 2Gad + 2Gsup + F∆
ext. (33)

70



5

Equations (32) and (33) form the basis of our subsequent
classification of the different types of occurring physical
effects.

Ideal mixture. In order to highlight the fundamen-
tal nonequilibrium effects, we particularize to an “ideal”
mixture, in which the internal interactions do not depend
on the type of particle. Formally, this implies that the
value of the internal interaction potential u(rN ) is un-
changed under permutation of the positions. For pair
potentials (as we consider below) the inter-species pair
potentials φαα(r) are identical to each other and are
identical to the cross interaction potential φαα′(r) be-
tween particles of different species α and α′. Hence,
φαα′(r) = φ(r), where φ(r) is a universal function. Given
that all the internal interactions are the same, the adi-
abatic force field only has a nontrivial component that
acts fαad = fad. No differential component occurs in the
adiabatic system, hence Gad = 0, which simplifies the
dynamics, cf. (33). Importantly, this symmetry does
not apply to the external force field. Hence, in general
fαext(r, t) 6= fα

′
ext(r, t) for α 6= α′, which imprints differ-

ences into the kinematic one-body fields ρα and Jα during
the time evolution. Such driving is far from trivial. One
might picture differently coloured particles being driven
through each other.

Next, we consider a special simplifying situation con-
sisting of steady states characterized by a single direc-
tion of the flow along which all vector fields point, i.e.
v,v1,v2,J,J1,J2 are all colinear. In the simulation re-
sults shown below this is the ŷ-direction (the flow is in
the “vertical” direction). All gradients in the system also
share a common direction, which is orthogonal to the
flow. In the simulations, this is the x̂-direction (the sys-
tem is “horizontally” inhomogeneous). Such “perpendic-
ular flow” geometry forms a class of common nonequi-
librium situation encompassing e.g. simple shear flow,
steady flow between parallel plates etc.

We split the superadiabatic forces into viscous (sub-
script “visc”), drag, and structural (subscript “struc”)
contributions according to

fsup = fvisc + fstruc, (34)

Gsup = Gdrag + Gstruc, (35)

where, as we show, fvisc is a viscous force field that arises
from total shear motion, fstruc is a structural force field
that sustains gradients of the total density distribution,
Gdrag is a superadiabatic force density distribution that
describes the friction effect that occurs due to counter-
flow (i.e. when v∆ 6= 0), and Gstruc is the superadiabatic
demixing force density. We demonstrate the validity of
this interpretation below. On a formal level, the split-
ting (34) and (35) is uniquely defined by fvisc and Gdrag

acting colinear with the flow, and fstruc and Gstruc acting
perpendicular to it.

We can now separate the equations of motion accord-
ing to the direction of the forces. In the flow direction,
using (34) and (35), we obtain from (32) and (33), re-

spectively,

γv = fvisc + fext, (36)

γJ∆ = ρ∆fvisc + 2Gdrag + F∆
ext, (37)

which indicates that the total (scaled) flow (γv) arises
from a competition of the external driving (fext) and the
viscous forces (fvisc). The differential current (γJ∆) is
counteracted by a transport effect that the viscous forces
exert on the density difference (ρ∆fvis), and the drag
that any counterflow of the two species induces (2Gdrag),
and it is driven by the external differential force density
(F∆

ext).
In the gradient direction, we also use (32) and (33),

respectively, to obtain

0 = −kBT∇ ln ρ+ fad + fstruc (38)

0 = −kBT∇ρ∆ + ρ∆(fad + fstruc) + 2Gstruc. (39)

Here, remarkably, the external forces do not appear ex-
plicitly. Equation (38) constitutes a force balance rela-
tionship, where the sum of the diffusive force, the adi-
abatic force, and the structural force cancel, such that
no motion occurs. Equation (39) is crucial for under-
standing the physics of driven mixtures: The sum of the
diffusive force density difference, −kBT∇ρ∆, and the ef-
fect of total adiabatic and structural force fields on the
density difference, ρ∆(fad + fstruc), is balanced by the
structural differential force density, 2Gstruc. This implies
that Gstruc 6= 0 can induce a density contrast ρ∆ 6= 0 in
the system.

We can now revert to the species-labelled description
and start from the general relationship

vα =
ρv ± J∆

ρ± ρ∆
, (40)

where the upper sign (+) applies to species 1, and the
lower sign (−) applies to species 2. Application to the
perpendicular geometry results in the following balance
relations in the flow direction and in the gradient direc-
tion

γvα = fvisc ±
Gdrag

ρα
+ fαext (flow), (41)

0 = fad + fstruc ±
Gstruc

ρα
− kBT∇ ln ρα (grad),

(42)

where again ± corresponds to α = 1, 2. As we have four
equations for the four unknown superadiabatic fields, we
can solve for these, with the results:

fvisc = γv − fext, (43)

Gdrag =
γ

2
(J∆ − ρ∆v + ρ∆fext − F∆

ext) (44)

fstruc = kBT∇ ln ρ− fad, (45)

Gstruc =
kBT

ρ

(
ρ1∇ρ2 − ρ2∇ρ1

)
, (46)
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where fext is the total external force field given by the lin-
ear combination (18), and F∆

ext is the differential external
force density defined via (24); both fields depend on the
partial density profiles. As all quantities on the right
hand side of (43)-(46) are accessible in simulations, we
have formulated a means to obtain a complete splitting
of the nonequilibrium force contributions in the system.

The total species resolved superadiabatic force field is
then given by

fαsup = fvisc ±
Gdrag

ρα
+ fstruc ±

Gstruc

ρα
, (47)

where the first (last) two terms in the right hand side act
in flow (gradient) direction, and again ± corresponds to
α = 1, 2.

In the results section we also analyze briefly a second
case in “planar” geometry, in which there is only a single
direction in the system (ey) along which the flow occurs
and also all gradients point. The system is transitionally
invariant in ex. As the flow occurs in the direction of the
gradients, in general, such situations will be nonstation-
ary, i.e. time-dependent.

B. Power functional approximation

Power functional theory [37] (PFT) is an exact vari-
ational approach to nonequilibrium dynamics in over-
damped Brownian systems, which reduces to density
functional theory in equilibrium. Within PFT, the su-
peradiabatic force is obtained as a functional derivative
with respect to the current

fαsup = −δPexc[{ρα′ ,Jα′}]
δJα

. (48)

Here Pexc is the excess power functional [37], which is
a functional of the density and current profiles of both
species {ρα,Jα}. The superadiabatic force is therefore
also a functional of both types of one-body fields, density
and current profiles.

Approximations for Pexc in monocomponent systems
based on a series expansion of gradients of the velocity
field have been proposed in Refs. [39, 42]. The resulting
superadiabatic forces describe viscous [39] and structural
effects [42]. In a binary mixture, besides the velocity
gradients, the velocity difference between both species
v∆ = v2 − v1 is another key ingredient to construct ap-
proximated power functionals [43].

The following simple approximation for Pexc repro-
duces semiquantitatively all types of superadiabatic

forces in the system considered here:

Pexc =
Cvisc

2

∫
drρ2 (∇× v)

2
(49)

+
Cdrag

2

∫
drρ1ρ2v

2
∆ (50)

− Cstruc

∑

α

∫
drρ2v2

∆∇ · Jα (51)

+ Dstruc

∑

α

∫
drρ2 [(∇×vα)×v∆]

′ ·v∆. (52)

The approximated, local in space and in time, functional
contains four different terms, each one accounting of one
type of superadiabatic force. The prefactors in front of
each term are positive constants that represent the am-
plitudes of the superadiabatic force. We use these coef-
ficients as fitting parameters. In reality, these prefactors
depend on microscopic features of the model as the inter-
particle potential and are, in general, functionals of the
density. The prime in Eq. (52) indicates the following
time integral

[(∇× vα)× v∆]
′
=

∫ t

0

dt′K(t− t′)(∇× v′α)× v′∆, (53)

with K(t) a temporal kernel, and the primes on the right
hand side indicate dependence on t′.

The viscosity term (49) is the lowest order term in a
power series expansion in the velocity gradient [39] and
accounts for the Stokes-like viscous force. A similar term
containing the square of the divergence of the average
velocity instead of the square of the curl does not produce
any force in the current setup since the flow, i.e. velocity
profile, is free of divergence. The superadiabatic viscous
force that results from differentiating Eq. (49) is species-
independent

fvisc =
Cvisc

ρ

(
∇ρ2 · ∇v −∇ · ρ2(∇v)>

)
(54)

=
Cvisc

ρ
∇x(ρ2∇xvy(x))ŷ, (55)

where the leftmost derivatives act on each entire expres-
sion, and the second equation (55) has been particular-
ized for our current setup v(r) = vy(x)ŷ and results in a
force in flow direction.

The second term, Eq. (50), describes the drag of par-
ticles of one species due to the flow of particles of the
other species [43]. The resulting superadiabatic force is
species-dependent. The corresponding force density is:

Gdrag = Cdragρ1ρ2v∆. (56)

The structural superadiabatic force generated by the
third term, Eq. (51), is species-independent

fstruc = −Cstruc∇ (ρv∆)
2
. (57)

As we will see, this force cancels the sum of the adiabatic
force and the diffusive force of the total density gradient.
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The last term, Eq. (52), is also structural and the only
one responsible of the superdemixing. The force density
obtained via functional differentiation of Eq. (52) is

Gstruc = −Dstrucρ
2
∑

α

[(∇× vα)× v∆]
′
, (58)

where only the functional derivative with respect to un-
primed velocity difference in (52) produces a force due to
the structure of (53).

III. RESULTS

A. Model binary mixture

In the following we explicitly consider an equimolar
two-dimensional binary mixture with a total of N = 1066
particles (N1 = N2 = 532) interacting via the same

quasi-hard core pair potential φ(r) = ε (σ/r)
36

. Here,
σ denotes the characteristic particle length which sets
the length scale, and ε sets the energy scale. The parti-
cles are subject to a homogeneous gravitational field in
ŷ-direction,

fαext = −mαgêy, (59)

where g is the acceleration due to gravity, êy is a unit vec-
tor along the vertical ŷ-direction, and mα is the buoyant
mass of species α. The only difference between the two
species is that they have opposite buoyant masses, i.e.,
m1 = −m2. Although we make use of a gravitational
field to illustrate the process of lane formation, other ex-
ternal fields such as magnetic and electric fields can also
be used.

We simulate the system using Brownian dynamics sim-
ulations performed in a square simulation box of length
L/σ = 35 with periodic boundary conditions in both di-
rections. The total bulk density is hence ρbσ

2 = N/L2 =
0.87. The temperature is fixed to kBT/ε = 0.5 and the
friction coefficient is γ = 1. The particle trajectories are
integrated in time via the Euler algorithm with a dis-
crete time step ∆t/τ = 3.0 · 10−5 in units of the reduced
time τ = σ2γ/ε. The simulations of the laned state are
initialized with the particles randomly located in a ho-
mogeneous state. Once the steady state is reached the
system is sampled for a total time of ∼ 106 τ .

B. Laned state

The magnitude of the external force driving the two
species against each other, mαg, highly influences the
behaviour of the system. Without gravity, particles of
both species form an effectively homogeneous one com-
ponent system in equilibrium in which the only difference
between the species is an arbitrary label. At low values of
gravity, the steady state remains homogeneously mixed,
and the particles are driven slowly through each other,

see a characteristic snapshot in Fig. 1a for a value of the
external field m1g = 0.05 ε/σ. No forces act in the x̂-
direction. The internal interactions lead to weak supera-
diabatic drag forces in the flow ŷ-direction that partially
counteract the external force.

For sufficiently high external driving, such as e.g.
m1g = 1 ε/σ, the two species segregate into two lanes,
see Fig. 1b. Each lane is characterized by the concentra-
tion of one species being significantly higher than that
of the other (minority) species. In each lane there is a
current of particles parallel to the external force corre-
sponding to the dominant species. As shown in Sec. II
there are superadiabatic drag and viscous forces opposing
the external forces, see (36) and (37). Additionally, in the
gradient x̂-direction there is a balance of forces, see (38)
and (39). The sum of the ideal diffusion and the adiabatic
force tries to mix the two species. These forces are, how-
ever, canceled by structural superadiabatic forces that
keep the system in the demixed laned steady state.

The density profiles of the laned state are shown in
figure 2a. There, the right lane (x > 0) is dominated
by species 1 that possesses a positive buoyant mass, i.e.
the external force is directed downwards. In the left lane
(x < 0) the majority of particles belongs to species 2
with negative buoyant mass and therefore an upwards
directed external force. Although here species 1 predom-
inantly occupies the right lane, the state is degenerated
in the sense that a swap of the two lanes can be compen-
sated by a shift by L/2 in the x̂-direction (due to periodic
boundary conditions). The total density profile, Fig. 2a,
increases toward the centers of the lanes and decreases
at the interfaces, although it is quite homogeneous as
compared to the single species density profiles.

In Fig. 2b we show the velocity profiles. Only the flow
component of the velocity profiles vyα does not vanish in
steady state. The total velocity profile clearly shows the
motion of particles in opposite directions in the two lanes,
irrespective of the species. The total velocity is directed
downwards in the right lane and upwards in the left lane,
while being zero at the interfaces, as is consistent with
the symmetry of the system.

Forces acting in flow direction. We focus first on
the species resolved force balance equation (10). The flow
components of the forces and the force densities are pre-
sented in Fig. 2c and 2d, respectively. In what follows we
focus the discussion on species 1. Due to the symmetry
of the system the behaviour of species 2 follows directly.
Only two forces act in flow direction, the constant exter-
nal force field fαext (59), and the superadiabatic force field
due to interparticle interactions fαsup. Adiabatic fαad and
diffusive −kBT∇ ln ρα forces appear only when gradients
of the density profile are present. As the system is homo-
geneous in the flow direction, such contributions do not
occur in this direction. Therefore, the internal forces in
flow direction are purely superadiabatic.

For those particles located in the lane for which its
species is majority (e.g. species 1 in the right lane in
Fig. 2b), the velocity and the external force are parallel,

73



8

FIG. 2: Lane formation. Kinematic fields: (a) total density profile ρ (black dotted line) and partial density profiles ρ1 (orange
solid line) and ρ2 (blue dashed line), (b) flow component of the total velocity profile vy (black dotted line), see (13), and of
the partial velocity profiles vy1 (orange solid line) and vy2 (blue dashed line). Species resolved forces (c) and force densities (d)
acting in flow direction (10) : external fαext (dashed lines), and superadiabatic fαsup (solid lines), which is the sum of viscous
and drag (47). Species resolved forces (e) and force densities (f) acting in gradient direction: sum of adiabatic and diffusive
forces (dotted lines) and superadiabatic (solid lines), see (42). In all plots the line color indicates the species: orange (blue) for
species 1 (2). The arrows indicate the direction of the force or force density. Black circles indicate points where the force or
force density vanishes. All plots are for driving m1g = 1.0ε/σ and all values are presented as functions of the x-coordinate.

while the internal force opposes both. For those particles
in the lane for which its species is minority (e.g. species
2 in the right lane in Fig. 2b) the velocity and the ex-
ternal force are antiparallel. This is caused by a strong
internal force, mostly created by particles of the opposite
species which dominates the lane, that drags the parti-
cles of the minority species. The force densities in flow
direction are shown in Fig. 2d. The force densities are
the actual contributions to the current of particles (up
to a multiplicative constant given by the inverse friction
coefficient) and are therefore a macroscopically accessible
quantity.

Next, we split the species resolved superadiabatic
forces (47) in flow direction in its species-dependent and
species-independent contributions (41), which are the
viscous fvisc (43) and the drag ±Gdrag (44) superadia-
batic contributions, respectively.

The results are shown in Fig. 3a (forces) and Fig. 3b
(force densities). The species-dependent term ±Gdrag is
the dominant part and describes the drag of one species
due to motion of the other species. For example, for
species 1 this force density is high in the lane of particles
of species 2 (left lane) and points upwards. The species-
independent force fvisc points in the direction opposite
to the total velocity v, as corresponds to a viscous effect.
The amplitude of the viscous force is relatively small as
compared to that of the drag force. However, the maxima
(absolute value) of fvisc occur at the peaks of the partial
densities. As a result, the viscous force density ραfvisc

introduces a relevant correction to the dominant species-
dependent force density, see Fig. 3b.

A comparison between the Stokes-like viscous force
predicted by our power functional approximation (55)
and the viscous force measured in simulations is shown
in Fig. 3a (inset). The predicted force has the correct
sign everywhere (opposite of the total flow). However,
due to the spatially local approximation taken in (55)
and the strong driving conditions, the agreement is not
perfect. The drag force predicted by PFT, cf. (56), also
shows a good agreement with the simulation data, see
Fig. 3b.

Forces acting in gradient direction. In the gra-
dient direction x̂, which is perpendicular to the flow, no
external force is applied and the system is in steady state
with no flow along this direction, cf. (42). The density
modulation (formation of lanes), Fig. 2a, is solely created
by the flow along ŷ, Fig. 2b.

The species resolved net force balance (10) is zero in
x̂, and both adiabatic fαad and superadiabatic fαsup forces
contribute to the internal force. For species 1 the sum
of adiabatic and diffusive, −kBT∇ ln ρα, forces attempts
to move particles in the center of the simulation box to
the left and particles at the borders of the box to the
right, see Figs. 2e and 2f. That is, as could be expected,
the sum of the diffusive and the adiabatic forces pushes
particles outside of the majority lane and therefore tries
to mix the two species by eliminating density gradients.
The superadiabatic force in gradient direction balances
the diffusion and the adiabatic forces by pushing particles
into their majority lane and out of their minority lane,
Fig. 2e,f. The superadiabatic force is therefore the only
force that creates and sustains the demixing and segre-
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FIG. 3: Superadiabatic forces in flow directions as a func-
tion of the x−coordinate. (a) Species-independent superadia-
batic force fvisc (dark solid green), species-dependent supera-
diabatic force acting on species 1 (solid orange), Gdrag/ρ1,
and 2 (solid blue), −Gdrag/ρ2. (b) Species-dependent force
density Gdrag acting on species 1 (solid orange), and species-
independent force density acting on species 1 (orange-dark
green), fviscρ1. The arrows (colored according to the corre-
sponding data set) indicate the direction of the force. The
symbols show the theoretical predictions for the viscous force
(a) force and the drag force density (b). We have set Cvisc = 2
ετσ2 and Cdrag = 8.5 ετ in equations (55) and (56), respec-
tively.

gation into lanes in steady state. Superadiabatic forces
are therefore crucial for the description of lane forma-
tion, as expected given the nonequilibrium nature of the
phenomenon.

The adiabatic forces are obtained by sampling the in-
ternal forces in the adiabatic equilibrium system. The
adiabatic equilibrium system is also a symmetric mix-
ture with the same quasi-hard interparticle interactions
regardless of the species. The only difference between the
real nonequilibrium and the adiabatic equilibrium sys-
tems is that the external nonconservative driving force is
switched off in the adiabatic equilibrium system and re-
placed by conservative external forces generated by two
potentials V αad that reproduce the same density profiles as
in nonequilibrium. The adiabatic potentials are obtained
following the method described in Appendix A, which
also shows for both species the adiabatic potentials and
the density profiles in the adiabatic system.

In the adiabatic system the external potential counter-
acts both the ideal diffusive force −kBT∇ ln ρα and the
adiabatic force fαad. The diffusive force and the adiabatic

force have two very distinct effects, which are schemat-
ically illustrated in Fig. 4a. Quantitative plots of both
force and force density profiles are shown in Fig. 4b for
species 1 and in Fig. 4c for species 2. The diffusive force
is the only force that attempts to mix both species. In
contrast, the adiabatic force field is the same for all parti-
cles, independently of the species, due to the symmetry of
the internal interactions. That is fαad = fad, as discussed
in Sec. II. The adiabatic force tries to eliminate the den-
sity gradients of the total density profile ρ = ρ1 + ρ2 by
pushing particles of both species toward the interfaces
between the two lanes.

We next split the species resolved superadiabatic
forces (47) into the species-independent fstruc (45) and
the species-dependent ±Gstruc (46) contributions in gra-
dient direction. Both contributions are of the structural
type in the sense that they sustain the density gradients
and are non dissipative. Fig. 5a illustrates schemati-
cally the different effects of fstruc and Gstruc. The actual
profiles are displayed in Fig. 5b.

The species-independent superadiabatic force in gra-
dient direction fstruc pushes particles from the interfaces
toward the centers of the lanes, creating the total density
modulation, see Fig. 5b (top). fstruc is almost the oppo-
site of the adiabatic force fad, as shown in Fig. 5c (top)
where we plot the adiabatic force, and −fstruc. These two
terms, however, do not exactly cancel each other as the
sum of fstruc and the adiabatic force shows a clear signal
(see the bottom panel of Fig. 5c) that cancels exactly the
diffusive force orginated by the gradient of the total den-
sity profile, cf. (45). This diffusive term also describes a
species-independent effect.

The species-dependent force density +Gstruc trans-
ports particles of species 1 away from the left lane into
the right lane, see Fig. 5b (bottom). The term −Gstruc

acts on particles of species 2 in the opposite way. This su-
peradiabatic contribution is precisely the opposite of the
contribution due to the local demixing, compare Fig. 5b
(bottom) and the diffusive force density shown in Fig. 4b
(bottom). Therefore, the species-dependent term Gstruc

sustains the demixing of the two species in two lanes in
steady state.

The sum of both superadiabatic structural terms in
gradient direction cancels the diffusive and the adiabatic
contributions (42). Our power functional approximation,
Eqs. (45) and (46), is in very good agreement with the
simulation data for both fstruc and Gstruc as shown in
Figs. 5b and 5c, respectively.

C. Jammed state

We conclude the results section with a brief discus-
sion of the jammed state, see Fig. 6a, that can be found
at intermediate values of gravity, and in which flow and
gradient directions coincide. This state occurs if the two
species block each other during the diffusing process in-
duced by the external field. The state is homogeneous in
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FIG. 4: Adiabatic forces. (a) Partial snapshots of the laned state at gravity m1g = 1.0ε/σ. The arrows indicate the direction
of the adiabatic forces acting on species 1 (top) and 2 (bottom). The diffusive force field −kBT∇ ln ρα (violet arrows) tries
to mix both species. The adiabatic force field (green) is the same for both species. (b) Force (top panel) and force density
(bottom panel) profiles acting on species 1 in x̂-direction as a function of x: total force: adiabatic plus diffusion (orange
dotted), diffusive force (violet dashed), and adiabatic force (green solid). (c) Same as panel (b) but for species 2: total force
(blue dotted), diffusion (violet dashed), and adiabatic (green solid).

x̂-direction, and it is characterized by a significant change
of the total density in ŷ-direction. The opposite exter-
nal driving of the two species leads to the formation of
a compressed region with similar concentrations of both
species, high total density, and incipient crystalline or-
der. This region is surrounded by two regions rich in
particles of only one species that press against the com-
pressed area. In the jammed state strong superadiabatic
forces act against the external fields. Additionally, the
adiabatic and diffusive forces try to smooth the total den-
sity profile. In contrast to the laned state, the demixing
in the jammed state occurs along the direction of the ex-
ternal driving force. In our simulations the jammed state
is metastable but it stays for very long times allowing a
systematic study of the forces.

To characterize the jammed state we set the gravity
to m1g = 0.7ε/σ and split the time evolution of the sys-
tem in time windows of 20τ . Only those time windows
in which the difference between the maximum and the
minimum of the total density is higher than 0.2σ2 are
considered to be in the jammed state. Using several sim-
ulations, we average over these relevant windows for a
total sampling time of 105τ . The density profiles, Fig.
6b, show the demixing along the ŷ-axis. The particles of
species 1 (2) accumulate at the top (bottom) of the simu-
lation box. In the center of the box there is a region with
similar concentrations of both species. The total density
shows a small modulation with a global maximum lo-
cated in the middle of the box (in each time window we
translate the data such that the maximum density occurs
in the the middle of the box). The velocity profiles are
shown in Fig. 6b. Only the ŷ-component of the velocity

is non-zero. The total velocity is almost negligible across
the complete simulation box. The velocity of species 1
almost vanishes everywhere except at the bottom of the
box, the region rich in particles of species 2. Here, the ve-
locity of species 1 is negative. Hence, particles of species
1 move toward the top of the simulation box (we use peri-
odic boundary conditions) where the species 1 dominates.
Exactly the opposite behaviour is observed in species 2,
as expected due to symmetry considerations.

The total current vanishes, see inset Fig. 6c, and the
partial currents are small and indicate the system is still
under compression. Given that the partial currents are
not constant, it is clear the system is not in steady state.
Nevertheless, the currents are very small and rather ho-
mogeneous, which justifies the assumption of a quasi-
steady state. For other systems the jammed state has
been observed to be steady. This is the case of a 2D
hard disk system with very low opposite driving at zero
temperature [44], and also on a square lattice model [20].

The species resolved forces in ŷ-direction split into dif-
fusion, adiabatic, superadiabatic, and external, see (10).
Plots of each contribution are shown in Fig. 6d. We
compute the adiabatic force via the adiabatic potential,
as described in the Appendix A.

The external force for both species points in oppo-
site directions and it is constant in space. The sum of
the thermal diffusion and the adiabatic force is for both
species positive at the top and mostly negative at the
bottom of the simulation box. Hence, this force field
tries to smooth the density modulations by transporting
particles away from the center toward the low density
regions. The superadiabatic force for species 1 is every-
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FIG. 5: Superadiabatic forces in gradient direction. (a) Partial snapshots of the laned state (m1g = 1.0ε/σ). The arrows
indicate the direction of the species-independent fstruc (top) and dependent ±Gstruc (bottom) superadiabatic forces in gradient
direction. In the top panel the brightness of the particles indicates the total density modulation (brighter regions are less dense).
(b) Species-independent superadiabatic force fstruc (top panel) and species-dependent force density Gstruc acting on species 1
(bottom panel). Lines are simulation data and symbols denote the power functional approximation given in Eqs. (45) and (46)
with parameters Cstruc = 10.5 ετ2σ2, and Dstruc = 0.73 ετ2. (c) Top panel: Negative of the species-independent superadiabatic
force −fstruc (dark green dashed) and the adiabatic excess force fad (bright green solid). Bottom panel: Negative of the thermal
diffusion force associated to the total density (blue) and sum of the species-independent superadiabatic force and the adiabatic
force (black dotted).

FIG. 6: Jammed state formed at intermediate values of the external driving. (a) Characteristic snapshot. The orange (blue)
arrows indicate the forces acting on species 1 (2). (b) Total density profile ρ (black dotted line), and partial density profiles ρ1
(solid orange) and ρ2 (blue dashed). (c) Total velocity profile v (black dotted), and partial velocity profiles v1 (orange solid)
and v2 (blue dashed). The inset shows the current profiles: total current profile j (black dotted), and partial current profiles
j1 (orange solid) and j2 (blue dashed). (d) Forces acting in ŷ-direction: external (dashed), diffusive plus adiabatic (dotted),
and superadiabatic (solid). The color indicates the species: orange (blue) for species 1 (2). (e) Adiabatic and diffusive forces
acting in ŷ-direction acting on species 1: Sum of both forces (orange dotted), adiabatic (green solid), and ideal diffusion (purple
dashed). Data obtained for a value of gravity m1g = 0.7ε/σ. All quantities are presented as a function of the y-coordinate.

where directed upwards against the external force and
has a maximum at the bottom of the sample, the region
dominated by species 2.

The thermal diffusion and the adiabatic force acting
on species 1 are shown in Fig. 6e. The adiabatic force is

positive at the top of the box and negative at the bottom,
moving particles away from the center in order to smooth
the total density profile. Similarly, the ideal diffusion
force tries to smooth the partial density profile of species
1.

77



12

Recall that in the laned state, the diffusive force is the
only force counteracting the demixing, while the adia-
batic force has a phenomenological irrelevant effect. In
the jammed state, however, the adiabatic force has a
prominent effect while the diffusion term is only a small
contribution to the forces present in the adiabatic state.
The flow in the jammed state is curl free instead of diver-
gence free (which is the case in in the laned state). Hence,
the leading terms in the expansion of the excess free
power for the viscous and the species-independent struc-
tural forces will differ from those in Eqs. (49) and (52),
respectively.

IV. CONCLUSIONS

By splitting the nonequilibrium superadiabatic forces
of a colloidal mixture into species-dependent and inde-
pendent contributions, we have identified a structural
force contribution that induces demixing of two different
species in nonequilibrium. This superadiabatic force is
responsible for the formation of lanes in oppositely driven
binary colloidal systems. The force counteracts the ideal
thermal diffusive force that arises as a consequence of the
mixing entropy generated by a gradient in composition
between the two lanes.

The entropy driven demixing that occurs in mixtures
of hard bodies, see e.g. Ref. [45], is a well known phe-
nomenon. There, the excess free energy (adiabatic force)
orginated from particle interactions counteracts the ideal
entropy of mixing (diffusive force) and sustains the den-
sity gradients. The mechanism behind the demixing in
lane formation is completely different. Here, the adia-
batic force only leads to a minor modulation of the total
density and does not attempt to demix the species. Al-
though we have analysed ideal symmetric mixtures, we
expect this to be true also in asymmetric mixtures that
could be considered in future studies.

Lane formation is a purely superadiabatic effect. Con-
sequently a direct theoretical description of laning via dy-
namical density functional theory [46–48], in which only
adiabatic forces are considered, is not possible and phe-
nomenological ad-hoc corrections must be included [13].
We have presented here a different approach based on
power functional theory [37], an exact variational ap-
proach for nonequilibrium situations. Power functional
theory incorporates superadiabatic effects via a func-
tional of both density and velocity profiles. Our power
functional approximation reproduces semiquantitatively
all superadiabatic forces present in the system, and, to
the best of our knowledge, it constitutes the first theo-
retical approach that describes lane formation from first
principles.

Although we have focused our study on lane formation,
our approach to analyse the force contributions and our
power functional approximation are general and applica-
ble to other out-of-equilibrium situations in multicompo-
nent colloidal systems. In particular, our work paves the

way to study superadiabatic forces inside channels where
ratchet-like wall shapes can determine the direction of
the motion within the lanes [49], and the description us-
ing power functional theory of the complete dynamics of
sedimentation of binary mixtures from an initial uniform
state to the formation of the sedimentation-diffusion-
equilibrium stacking sequence [50, 51]. The power func-
tional approach presented here can also help to under-
stand the differences and similarities between lane forma-
tion in oppositely driven mixtures and in one-component
sheared systems [52, 53]. There, the formation of lanes
in steady state is induced by a shear field and likely sus-
tained by a superadiabatic force.

Appendix A: Adiabatic construction

The internal force field is a functional of the density
and the velocity profiles and can be split into adiabatic
and superadiabatic contributions. Mathematically, the
adiabatic force is the term that depends only on the den-
sity profile. Physically, the adiabatic force represents the
internal force of an equilibrium system that shares the
same density profile(s) as the actual out-of-equilibrium
system. In Ref. [41] Fortini et. al. presented the first
simulation method for sampling the superadiabatic forces
in a monocomponent BD nonequilibrium system. The
method relays on numerically finding the adiabatic ex-
ternal potential that generates the desired density profile
in equilibrium. A related and improved iterative (custom
flow) method to numerically find the adiabatic potential
is presented in Ref. [40]. We follow here another approach
to find the adiabatic potential based on classical density
functional theory (DFT) [46]. In DFT the adiabatic force
is a functional of the one-body density profiles

fαad = −∇δFexc[{ρα′}]
δρα

, (A1)

where Fexc[{ρα′}] is the excess (over ideal) Helmholtz free
energy functional.

The adiabatic system is obtained by finding the
species-dependent conservative adiabatic potentials
V αad(x, t), which are constructed such that the equilib-
rium one-body densities for both species in the adiabatic
(equilibrium) system equal those in the nonequilibrium
system. For the laned system, the system is homoge-
neous in the flow ŷ-direction and therefore the adiabatic
potentials can only depend on the x−coordinate. In the
adiabatic (equilibrium) system, the force balance reads

− kBT∇ ln ρα + fαad(x)−∇V αad(x) = 0. (A2)

In order to sample the adiabatic reference system of the
laned state, we use Monte Carlo simulations with the
same values of Nα, L, and kBT as the nonequilibrium
BD system. We initialize the adiabatic system with a
configuration taken from the BD simulations and then
equilibrate the system. The maximum displacement each
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particle is allowed to move in one Monte Carlo step is set
such that 25− 30% of the moves are accepted. We then
sample data for ∼ 1011 Monte Carlo sweeps (MCS). A
MCS is defined as an attempt to individually move all
particles in the system.

In Refs. [40, 41] iterative methods for finding the adia-
batic potential that enters in Eq. (A2) are presented. An
initial guess for the potential is iteratively adjusted until
the density profile equals the corresponding counterpart
in the nonequilibrium system. Here, we have to match
two density profiles, one for each species. As the modula-
tion of the total density is small, a calculation of the adi-
abatic potentials using a simple density functional based
on the equation of state of scaled particle theory (SPT)
for hard-disks yields excellent results. Within SPT the
compressibility factor of an homogeneous system of hard
disks is Z = (1 − η)−2 [54], with η = ρbπσ

2/4 the total
packing fraction of the system. Here ρb is the bulk den-
sity. An expression for the excess free energy per particle
ψexc follows from Z via a volume integral [55]:

ψexc(ρb) =

∫ η

0

dη′
Z − 1

η′
= − ln(1− η) +

η

1− η . (A3)

Using the above expression we construct an approxima-
tion for the excess free energy functional

βFexc[ρ] =

∫
dxρ(x)ψexc(ρ̄), (A4)

in which the excess free energy is evaluated in a weighted
density given by

ρ̄(x) =
1

σ

∫ x+σ/2

x−σ/2
dx′ρ(x′). (A5)

Since the mixture is symmetric only the total density
ρ = ρ1 + ρ2 enters the expression for the excess free en-
ergy. The resulting adiabatic force fad via functional dif-
ferentiation is species-independent and directed along the
gradient direction

fad(x) = fαad(x) = −∇∂Fexc[ρ]

∂ρ(x)
. (A6)

Eqs. (A2) and (A6) yield an expression for the species-
dependent adiabatic potential

βV αad(x) = − ln (ραΛα)− ψexc(ρ̄) (A7)

− 1

σ

∫
dx′ρ(x′)

∂ψexc(ρ̄)

∂ρ̄
, (A8)

where Λα is the (irrelevant) thermal wavelength of species
α and the spatial argument of ρ̄ and η was omitted for
clarity.

Fig. 7a displays results for the adiabatic potentials.
As expected, the potential for each species is high in
the region of the respective minority lane and low in the
majority lane, with a total difference between maximum
and minimum of approximately 1.3ε (equal to 2.6kBT ).

FIG. 7: Adiabatic potentials. (a) Adiabatic external poten-
tials V αad in the adiabatic (equilibrium) system for species 1
(orange solid) and species 2 (blue dashed) as a function of x.
(b) Total density profile ρ sampled via BD in nonequilibrium
steady state (black dotted) and via MC in the corresponding
adiabatic equilibrium system (violet solid).

The external forces created by the two adiabatic poten-
tials segregate the two species in the equilibrium sys-
tem. In Fig. 7b we present the total density sampled in
the adiabatic system and that in the nonequilibrium sys-
tem. Both systems have almost the same density profiles,
which shows the quality of the adiabatic construction.
The species-dependent density profiles in the adiabatic
system are also in very good agreement with those in
out-of-equilibrium (not shown).
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J. Dzubiella, and H. Löwen, Europhys. Lett. 61, 415
(2003).

[14] Reentrance effect in the lane formation of driven colloids.
J. Chakrabarti, J. Dzubiella, and H. Löwen, Phys. Rev.
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G. E. Morfill, and H. Löwen, J. Phys.: Condens. Matter
24, 464115 (2012).

[37] Power functional theory for Brownian dynamics, M.
Schmidt and J. M. Brader, J. Chem. Phys. 138, 214101
(2013).

[38] Power functional theory for the dynamic test particle
limit, J. M. Brader, M. Schmidt, J. Phys.: Condens. Mat-
ter 27, 194106 (2015).

[39] Velocity gradient power functional for Brownian dynam-
ics, D. de las Heras and M. Schmidt, Phys. Rev. Lett.
120, 028001 (2018).

[40] Custom flow in overdamped Brownian dynamics, D. de
las Heras, J. Renner, and M. Schmidt, Phys. Rev. E 99,
023306 (2019).

[41] Superadiabatic forces in Brownian many-body dynam-
ics, A. Fortini, D. de Las Heras, J. M. Brader, and M.
Schmidt, Phys. Rev. Lett. 113, 167801 (2014).

[42] Structural nonequilibrium forces in driven colloidal sys-
tems, N. C. X. Stuhlmüller, T. Eckert, D. de las Heras,

80



15

and M. Schmidt, Phys. Rev. Lett. 121, 098002 (2018).
[43] Nonequilibrium phase behaviour from minimization of

free power dissipation, P. Krinninger, M. Schmidt, and
J. M. Brader, Phys. Rev. Lett. 117, 208003 (2016).

[44] Velocity force curves, laning, and jamming for oppositely
driven disk systems, C. Reichhardt and C. J. O. Reich-
hardt, Soft Matter 14, 490 (2018).

[45] Entropically driven microphase transitions in mixtures
of colloidal rods and spheres, M. Adams, Z. Dogic, S. L.
Keller, and S. Fraden, Nature 393, 349 (1998).

[46] The nature of the liquid-vapour interface and other top-
ics in the statistical mechanics of non-uniform, classical
fluids, R. Evans, Adv. Phys. 28, 143 (1979).

[47] Dynamic density functional theory of fluids, U. M. B.
Marconi and P. Tarazona, J. Chem. Phys. 110, 8032
(1999).

[48] Dynamical density functional theory and its application
to spinodal decomposition, A. J. Archer and R. Evans,
J. Chem. Phys. 121, 4246 (2004).

[49] Keep-Left Behavior Induced by Asymmetrically Profiled
Walls, C. L. Oliveira, A. P. Vieira, D. Helbing, J. S.
Andrade, and H. J. Herrmann, Phys. Rev. X 6, 011003

(2016).
[50] Floating nematic phase in colloidal platelet-sphere mix-

tures, D. de las Heras, N. Doshi, T. Cosgrove, J. Phipps,
D. I. Gittins, J. S. van Duijneveldt, and M. Schmidt, Sci.
Rep. 2, 789 (2012).

[51] Phase stacking diagram of colloidal mixtures under grav-
ity, D. de las Heras and M. Schmidt, Soft Matter 9, 8636
(2013).

[52] Dynamical density functional theory analysis of the lan-
ing instability in sheared soft matter, A. Scacchi, A. J.
Archer, and J. M. Brader, Phys. Rev. E 96, 062616
(2017).

[53] Nonequilibrium phase transitions of sheared colloidal mi-
crophases: Results from dynamical density functional
theory D. Stopper and R. Roth, Phys. Rev. E 97, 062602
(2018).

[54] Theory of the Two- and One-Dimensional Rigid Sphere
Fluids, E. Helfand, H. L. Frisch, and J. L. Lebowitz, J.
Chem. Phys. 34, 1037 (1961).

[55] J.-P. Hansen and I. R. McDonald, Theory of Simple Liq-
uids, 4th ed. (Academic Press, London, 2013).

81



82



This journal is©The Royal Society of Chemistry 2018 Soft Matter, 2018, 14, 9411--9417 | 9411

Cite this: SoftMatter, 2018,

14, 9411

Crossover from three- to six-fold symmetry
of colloidal aggregates in circular traps

T. Geigenfeind,a C. S. Dias, *bc M. M. Telo da Gama,bc D. de las Heras a and
N. A. M. Araújo bc

At sufficiently low temperatures and high densities, repulsive spherical particles in two-dimensions (2d)

form close-packed structures with six-fold symmetry. By contrast, when the interparticle interaction has

an attractive anisotropic component, the structure may exhibit the symmetry of the interaction. We

consider a suspension of spherical particles interacting through an isotropic repulsive potential and a

three-fold symmetric attractive interaction, confined in circular potential traps in 2d. We find that, due to

the competition between the interparticle and the external potentials, the particles self-organize into

structures with three- or six-fold symmetry, depending on the width of the traps. For intermediate trap

widths, a core–shell structure is formed, where the core has six-fold symmetry and the shell is three-

fold symmetric. When the width of the trap changes periodically in time, the symmetry of the colloidal

structure also changes, but it does not necessarily follow that of the corresponding static trap.

1 Introduction

The control over the self-organization of colloidal particles is
a problem of both fundamental and practical interest.1–10

One promising approach is the use of chemically or otherwise
patterned substrates, where the particle–substrate interaction
is spatially dependent and may even change with time. Spatial
patterns on substrates may be created using, for example,
lithographic methods,11,12 magnetic domains,13,14 chemical
coating,15–17 or DNA-mediated functionalization of interfaces.18

It has been shown that the equilibrium phases of colloidal
particles are affected strongly by substrates with spatial patterns.
For example, patterns may induce new surface phases19 and
crystalline structures,20 or affect the wetting properties of the
surfaces.21 The collective (non-equilibrium) dynamical properties
are also affected. For example, in the limit of irreversible
adsorption, a simple pattern of pits distributed in a square-
lattice arrangement induces either local or long-range order,
depending on the size of the pits and the distance between
them.22

For simplicity, most of the previous works have considered
isotropic particles but, in general, the interparticle interaction
is anisotropic. Anisotropy may result, for example, from the

individual particle shape,23–27 heterogeneous distribution of
charges,28–30 or functionalization of the particle surface.31–41

In these cases, the final structures should depend not only on
the symmetries of the pattern but also on those of the inter-
particle potential. In a recent study the equilibrium properties
of particles with three-fold symmetric attractive interaction
adsorbed on patterned substrates were considered.42 The
properties of the pattern strongly affect both the percolation
properties and the type of network in which the particles self-
assemble.

Here, we investigate how the dynamics of self-organization
of colloidal particles with anisotropic interparticle interactions
is affected by the presence of spatial patterns. These patterns
result from a square lattice arrangement of (Gaussian) attractive
traps with a characteristic width on an otherwise flat substrate.
We show that, the structure of the colloidal aggregates, on the
substrate, depends strongly on the width of the traps. We consider
also traps with a time dependent width and show that the
dynamics may differ significantly from that of the static traps.

We introduce the model and the relevant parameters in
Section 2. In Section 3 we present the results and we draw some
conclusions in Section 4.

2 Model

We consider a monodisperse suspension of spherical (colloidal)
particles, where the particle–particle interaction is a superposition
of an isotropic repulsion and a three-fold symmetric attraction.
Following ref. 43, we describe this pairwise interaction by
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decorating the surface of the spherical particles with three
patches distributed along the equator. The patch–patch attrac-
tive interaction has a Gaussian form given by,

Upatch/patch(rp) = �e exp[�(rp/s)2], (1)

where rp is the distance between the center of the patches, e is
the interaction strength that sets the energy scale, and s = 0.1
the width of the Gaussian in units of the effective particle
diameter dp (which sets the length scale).

The core–core interaction is repulsive and given by,

Upart=partðrÞ ¼
A

k
exp �k r� dp

� �� �
; (2)

where r is the distance between the center of the particles,
A = 0.25 (in units of e/dp), and k = 0.4 is the screening length
(in units of dp).

To confine the particles to the surface of a planar substrate,
we implemented the method described in ref. 43. The surface
pattern consists of attractive potential traps, distributed in a
square-lattice arrangement (see Fig. 1), with a Gaussian form,

Upart/trap(r) = �3e exp[�(r/RW)2], (3)

where e is the strength of the patch–patch interaction (see
eqn (1)) and RW is the width (range) of the trap. The potential
is truncated at a distance of 10 particle diameters (dp) from the
center of the trap. As shown in Fig. 1, although the minimum of
the traps is kept fixed, the effective potential landscape
depends not only on RW, but also on the distance between
the center of the traps, as in some regions the particles interact
simultaneously with more than one trap. Since the particle–trap
interaction is always attractive, this implies that the net force
acting on a particle is lower if the traps overlap. We impose
periodic boundary conditions along the x- and y-directions.
This pattern can be realized experimentally, for instance, using
a setup of multiple optical tweezers arranged on a square array,
by passing a laser beam through diffractive optical elements.44

To resolve the trajectory of individual particles, we perform
Langevin dynamics using the Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS).45 Particles are spherical
with mass m and inertia I and the patches on their surface have
negligible mass. The translational and rotational motion of the

particles is described by the following equations,

m _~viðtÞ ¼ �r~riU �
m

tt
~viðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mkBT

tt

s
~xitðtÞ; (4)

and

I _~oiðtÞ ¼ �r~yiU �
I

tr
~oiðtÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2IkBT

tr

s
~xirðtÞ; (5)

where, ~ni and ~oi are the translational and angular velocities of
particle i. The translational and rotational damping times are

given by tt ¼ 0:02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mdp2

�
e

� �q
and tr = 10tt/3 for spherical colloids.

~xi
t(t) and ~xi

r(t) are stochastic terms taken from a truncated random
distribution of zero mean and standard deviation of one unit.46

U is the total potential with contributions from the particle–
particle and particle–trap interactions, and therefore it depends

on both the positions -
ri and orientations~yi of all particles i = 1. . .N

in the system. Note that, although the particles are on a planar
substrate, they can still rotate in three dimensions.

3 Results

Particles are initially distributed, without overlapping, uni-
formly at random on the substrate with a given particle number
density r, defined as the number of particles per unit volume.
Simulations were performed at a reduced temperature T* = kBT/e,
where T is the thermostat temperature, e the strength of the
patch–patch interaction and kB the Boltzmann constant. Unless
otherwise stated, we rescale the time by the Brownian time
tB = dp

2/Dt, where Dt is the translational diffusion coefficient
Dt = kBTtt/m. tB is related to the typical time taken by a particle to
diffuse in an area dp

2, considering an overdamped regime.47

All results are averages over (i) 10 different realizations and
(ii) all traps in each realization.

To evaluate the local structure formed by the colloidal
particles, we measure the local k-fold bond order parameter
of the i-th particle,48

fðiÞ
k¼f3;6g ¼

1

maxfNl ; kg
XNl

j¼1
e�ikyij

�����
�����; (6)

Fig. 1 Schematic representation of the attractive Gaussian potential traps distributed in a square-lattice arrangement. The traps are separated by a
distance of ten particle diameters (dp) and have a width (a) RW = 2, (b) RW = 4, and (c) RW = 6 in units of the particle diameter (dp). The potential strength is
in units of e.
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where Nl is the number of neighbors around the particle within
a cut-off radius rcut = 13 in units of the particle diameter (dp).
yij is the angle between the vector connecting particles i and j
and the x-direction (parallel to the substrate). k is a parameter
related to the local symmetry such that, f6 is one for perfect six-
fold symmetry and f3 is one for perfect three-fold symmetry.
We then define nk as the fraction of particles with a value of
fk above a specific threshold that we set to 1/2.

In what follows, we analyze first the dynamics at a tempera-
ture T* = 0.0625 which is below the 3D49 and 2D50 gas–liquid
critical temperature (note that the 2D bulk phase diagram may
be the most relevant for our system). Then, we consider traps
with a time-dependent width at temperatures T* = {0.0625,
0.075, 0.1, 0.125}, corresponding to a range of temperatures
encompassing the limits of irreversible and reversible bonds.

3.1 Constant potential traps

Fig. 2 shows the time evolution of the fraction of particles with
a local (a) three- (n3) and (b) six-fold (n6) symmetry, for
different values of the width of the traps (RW = 2, 4 and 6)
but the same initial particle number density r = 0.25. This
density was chosen to be well below the six-fold equilibrium
configuration and also below the percolation threshold taken
from ref. 42.

Let us focus on the case RW = 6 (squares), which is the largest
value that we have considered. Both n3 and n6 increase in time
as the particles accumulate in the potential traps. However, the
asymptotic value of n3 is about two orders of magnitude larger
than n6, as most particles have a local three-fold symmetry, in
line with the symmetry of the patch–patch attractive potential.
By contrast, when the width of the trap is reduced, the values of
n3 and n6 are comparable. For RW = 2, the fraction of particles
with a local six-fold symmetry is even larger than that of particles
with a three-fold symmetry (i.e., n6 4 n3). This can be explained
by the following mechanism. Due to the particle–trap inter-
action, particles are dragged towards the center of the potential
traps, increasing the local density there. The dragging forces
are stronger at lower values of RW (see eqn (3)). Thus, while for
RW = 6 the symmetry of the aggregates resembles that of
the particle–particle attractive potential, at a lower pressure that
corresponds to a lower packing, for RW = 2, the attractive particle–
trap forces favor an increase in the local density (packing), with a
corresponding increase of the local pressure in the region of the
trap, leading to the emergence of the six-fold symmetry.

Fig. 2 shows that the dynamics for traps with RW = 4 exhibits
a non-monotonic behavior of n3. Fig. 3 depicts snapshots of the

Fig. 2 Time dependence of the fraction of particles with a local (a) three-
(n3) and (b) six-fold (n6) bond order parameter above 1/2 for different traps
with different widths, namely, RW = {2, 4, 6}. Simulations are performed on
a substrate of linear size L = 40 (in units of the particle diameter dp). The
expected values of n6 for isotropic colloids (no patches) and traps of width
RW = {2, 4, 6} are, respectively, n6 = {0.47, 0.40, 0.04}.

Fig. 3 Bottom: Time dependence of the fraction of particles (n3) with a
local three-fold bond order parameter above 1/2 for traps with RW = 4 and
particle number density r = 0.25. Simulations are performed on a substrate
of linear size L = 40. Top: Snapshots of the structure at different times
(as marked in the bottom plot). Blue and green particles have a local
six- and three-fold bond order parameter above 1/2, respectively. In black
are the particles with none of the two local bond order parameters above
the threshold.
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structure at different instants, as pointed out in the plot in the
bottom of the same figure. Initially (in I), the particles are
randomly distributed in space, without overlapping. As the
potential traps are switched on, the particles are dragged
towards the center of the traps, establishing bonds with other
particles. The value of n3 increases (from I to II), since the
particle–particle attractive interaction favors three bonds per
particle (green particles). As more particles are attracted to the
traps (from II to III), the fraction of particles with six neighbors
in the center of the trap (blue particles) increases and the value
of n3 decreases. As the aggregates grow (from III to IV), the
outer particles are under weaker trap forces than the inner
ones, favoring again the particle–particle bonds over packing.

When RW = 4, the increase in n6 is in fact a transient.
As shown in Fig. 4, although n6 initially increases due to packing,
it eventually decreases at longer times. Particles in the aggregates
relax slowly to form domains with six-fold symmetry with strong
particle–particle bonds along the grain boundaries (see inset of
Fig. 4). As a result, the fraction of particles with six-fold symmetry
is reduced and the value of fk for a large fraction of the particles is
below the threshold for both k = 3 and 6.

Fig. 5 shows the number density (r) of particles around the
center of the trap for RW = 4. Fig. 5(a) and (b) show r(r,n3) and

r(r,n6), respectively. Note that the maxima of n3 and n6 occur at
different positions. This difference corroborates the hypothesis
that the local three- and six-fold symmetric structures are
formed in different regions. In the center of the trap, the
particles self-organize (pack) with six-fold symmetry, while in
the perimeter most particles form three bonds with other
particles. The time evolution of the radial distribution function
shows that, at early times, both structures form near the center
of the trap independently. As time evolves, a separation of the
structures is observed, with the six-fold structure in the center
of the trap and the three fold one in the perimeter. Asympto-
tically, the six-fold peak of the radial distribution function
decreases slightly due to the rearrangement discussed above.

3.2 Time-dependent potential traps

The results reported above suggest the design of a device, where
the symmetry of the aggregates may be dynamically switched
from three to six fold through the width of the potential traps.
The effectiveness of such a device, however, depends on how
the rate of the symmetry change compares to the different
timescales involved, namely those related to bond breaking/
formation and rotational/translational diffusion.47,51

We considered time dependent trap widths, as shown in
Fig. 6(a). We start with traps with RW = 2 and periodically
increase RW linearly to RW = 6 and then reduce it back (linearly)

Fig. 4 Time dependence of the fraction of particles (n6) with a local six-
fold bond order parameter above 1/2 for traps with RW = 4 and particle
number density r = 0.25. Simulations are performed on a substrate of
linear size L = 40. Snapshots are examples of clusters at the point where
the maximum occurs (left) and at the end of the simulation (right). Blue and
green particles have a local six- and three-fold bond order parameter
above 1/2, respectively. In black are the particles where none of the two
local order parameters are above threshold. The zoomed region at the top
shows the lines of defects (red-dotted line) between six-fold regions
(green-dotted line).

Fig. 5 (a) Number density of particles with a local six-fold bond order
parameter above 1/2, measured from the center of the traps at times
t = {0.20, 0.50, 1.13, 7.50}tB. (b) Number density of particles with a local
three-fold bond order parameter above 1/2, measured from the center of
the traps at times t = {0.20, 0.50, 1.13, 7.50}tB. Solid lines are averages over
neighboring points on the left and right to show the overall tendency.
Simulations were performed on a square substrate of size L = 40.
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to RW = 2. Let us discuss the dynamics at T* = 0.125, the highest
temperature considered here, here the oscillations have a
period n�1 = 20tB. In Fig. 6(b) we plot the fraction of particles
with a local six- and three-fold symmetry, as a function of time.
Here, for convenience, time is rescaled in units of the period
of the oscillation of RW (n�1). At this temperature, the local
structure oscillates between three-fold and six-fold symmetry,
with the same frequency and phase of Rw (see snapshots
Fig. 6(c) and(d)). A local minimum in n6 is observed at RW = 2
indicating that the optimal width of the trap to promote local
six-fold symmetry is around three particle diameters (dp).

Fig. 7(b) shows the time dependence of n6 (black squares)
for the same oscillating RW at a slightly lower temperature
(T* = 0.1). In this case, n6 oscillates with a period n�1 = 16tB, but
the phase is shifted by approximately 1/4 of the period. To inves-
tigate the dependence on the initial conditions, we applied the
same oscillating trap RW, starting at RW = 6 (red circles in Fig. 7).
The same shift is observed, and the periodic behavior at longer
times is clearly independent of the initial conditions.

When the temperature is reduced further, namely, T* = {0.0625,
0.075} (corresponding to periods of n�1 = {10, 12}tB), we observed a
similar shift in the (weaker) oscillations and a marked dependence

on the initial conditions. This is shown in Fig. 8, at different
temperatures (different symbols) and initial conditions (top and
bottom curves, respectively). The timescales of the relaxation
mechanisms (bond break/formation and translation/rotational
diffusion) depend strongly on temperature. Thus, at sufficiently
low temperatures, the rate of change of RW is too fast preventing
the particles to relax to the structures expected for the corres-
ponding static traps RW.

4 Conclusions

We have studied the dynamics of spherical colloidal particles on a
surface in the presence of circular potential traps. The attractive

Fig. 6 (a) Time dependent width of the potential traps (RW) that varies
periodically between two and six. (b) Time dependence of the fraction of
particles (n6) with a local six-fold and (n3) three-fold bond order parameter
above 1/2 for traps with the same oscillating width RW, particle number
density r = 0.3, and reduced temperature T* = 0.125. Here, time is rescaled
in units of the period of the oscillation. Simulations are performed on a
square substrate of size L = 40. The solid line is the equilibrium order
parameter for a potential of constant width RW = 4. Simulation snapshots
at the two limiting potential widths (c) RW = 6 and (d) RW = 2 for the
oscillating traps. Blue and green particles have a local six- and three-fold
bond order parameter above 1/2, respectively. In black are the particles
where none of the two local order parameters are above the threshold.

Fig. 7 (a) Time dependent width of the potential traps (RW) which varies
periodically between two to six. (b) Time dependence of the fraction of
particles (n6) with a local six-fold bond order parameter above 1/2 for
oscillating traps with initial widths RW(0) = 2 (squares) and RW(0) = 6
(circles) for a particle number density r = 0.3 and reduced temperature
T* = 0.1. Here, time is rescaled in units of the period of the oscillation.
Simulations are performed on a square substrate of size L = 40. The solid
line gives the equilibrium order parameter for a fixed potential of RW = 4.

Fig. 8 Time dependence of the fraction of particles (n6) with a local
six-fold bond parameter above 1/2 for traps with RW varying periodically
from two to six with initial trap widths RW(0) = 2 and RW(0) = 6 (same as
Fig. 7(a)) and reduced temperatures T* = 0.0625 (squares) and T* = 0.075
(circles), for a particle number density r = 0.3. Here, time is rescaled in
units of the period of the oscillation. Simulations are performed on a
square substrate of size L = 40.
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interaction between the particles has three-fold symmetry.
However, in the presence of potential traps, we observe a
crossover from the expected local three-fold symmetry to a
six-fold one when the width of the traps is reduced. For
intermediate values of the trap width, we find a core–shell
structure, where the symmetry in the core is six fold, while that
in the shell is three fold. Note that, for a fixed distance between
the centers of the traps, increasing the width of the traps
corresponds to smoothing out the external potential landscape.
Thus, we expect similar results when the strength of the
potential is changed, at fixed width.

For traps with oscillating widths, we find that the final
structure may deviate significantly from the thermodynamic
one, when the relaxation timescales are comparable to the
period of the oscillations. In this limit, the final structures
depend on the rate of change of the trap width, the thermostat
temperature, and the initial conditions.
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