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Kurzzusammenfassung

Unter Musterbildung versteht man einen dynamischen Prozess, bei dem durch eine In-
stabilität des Ausgangszustandes selbstorganisiert räumliche oder zeitliche Strukturen
entstehen. Die vorliegende Dissertation beschäftigt sich mit generischen Aspekten der
Musterbildung und ihren Funktionen in biologischen, chemischen und aktiven Systemen.
Die erste Hälfte der Arbeit konzentriert sich dabei auf verschiedene Auswirkungen räum-
licher Beschränkung. In der zweiten Hälfte der Dissertation werden die Effekte von Er-
haltungsgrößen thematisiert, die zu einem Nichtgleichgewichts-Entmischungsphänomen
namens “aktive Phasenseparation” führen können.

Auf dem Themengebiet der räumlichen Beschränkungen wird zunächst gezeigt, wie man
mit Hilfe einer räumlichen Kontrollparametervariation von super- zu subkritischen Wer-
ten endliche musterbildende Bereiche schaffen kann, ohne spezifische Randbedingungen
annehmen zu müssen. Anhand eines prototypischen Reaktions-Diffusions-Modells, das
einen Übergang zu periodischen Streifenmustern zeigt, lässt sich feststellen, dass die
Steilheit der Kontrollparametervariation maßgeblich die Orientierung der Streifen be-
einflusst. So findet sich ein Orientierungsübergang von senkrechten zu parallelen Strei-
fen bezüglich des Randes, wenn die Kontrollparameterstufe hinreichend steil wird. Wir
liefern generische Argumente auf der Basis von Funktionalbetrachtungen, um diesen
Orientierungswechsel zu erklären.
Ein zweites Projekt beschäftigt sich mit den Auswirkungen starker räumlicher Einschrän-
kung auf nichtlineare Wanderwellen. Anhand eines generischen Modells zeigen wir, dass
Wanderwellen unweigerlich in stehende Wellen übergehen, wenn das System hinrei-
chend klein wird. Reflexionseffekte am Rand übertreffen in diesem Fall den nichtlinea-
ren Wettbewerb von links- und rechtslaufenden Wellen, der in ausgedehnten Systemen
zur Auslöschung einer Wellenart führt und eine Überlagerung zu stehenden Wellen ver-
hindert. Mit Hilfe einer linearen Stabilitätsanalyse ermitteln wir das so genannte Eck-
hausstabilitätsband der stehenden Wellen, das deren Anpassung an die Systemgröße
zulässt. Übergänge zwischen stehenden Wellen mit verschiedener Knotenanzahl, sowie
Übergänge zu Wanderwellen in Abhängigkeit der Systemgröße werden analytisch vor-
hergesagt und in numerischen Simulationen bestätigt. Die generischen Eigenschaften
nichtlinearer Wellenmuster in stark eingeschränkten Systemen können Aspekte robuster
Selbstorganisation in biologischen Systemen erklären, etwa Pol-zu-Pol-Oszillationen der
Min-Proteine in E. coli Bakterien, die für die zuverlässige Zellteilung in der Zellmitte
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verantwortlich sind.
Schließlich erarbeiten wir auch generische Aspekte von bevorzugter Polarität stationärer
periodischer Lösungen in räumlich stark eingeschränkten Systemen. Diese liefern erste
Erklärungsansätze für Beobachtungen in einem Modell für Protein-Clustering in Zellen.
In diesem sammeln sich Proteine überwiegend in der Zellmitte an, obwohl eine Anhäu-
fung am Rand des Systems ebenfalls mit Symmetrie und Randbedingungen des Systems
vereinbar wäre. Durch die Analyse eines Minimalmodells können wir zeigen, dass starke
räumliche Einschränkung in Kombination mit einer gebrochenen ±-Symmetrie die ge-
nerische Grundlage einer solchen Polaritäts-Bevorzugung ist.

Der zweite Themenkomplex der vorliegenden Dissertation beschäftigt sich mit der so
genannten aktiven Phasenseparation – einem Entmischungsphänomen fernab des ther-
modynamischen Gleichgewichts. Wir führen ein auf Störungstheorie basiertes, systema-
tisches Schema ein, das aktive Phasenseparation als neue generische Klasse der Muster-
bildung fern vom Gleichgewicht definiert. In einer Reihe von Publikationen wenden wir
das Schema auf verschiedene Beispiele lebender und aktiver Materie an: Zellpolarisation,
Ansammlungen chemotaktisch kommunizierender Zellen, sowie aktive Brownsche Teil-
chen. Mit unserer Vorgehensweise lassen sich die Kontinuums-Modelle dieser verschie-
denen Beispiele in der Nähe des Einsatzpunktes der Phasenseparation auf eine gemein-
same universelle Gleichung reduzieren. Diese universelle Gleichung ist die Cahn-Hilliard-
Gleichung. Sie wurde ursprünglich zur Beschreibung klassischer Phasenseparation, also
der Entmischung zweier Substanzen zum Erreichen eines neuen thermodynamisches
Gleichgewichtes, eingeführt. Mit dem Cahn-Hilliard-Modell als gemeinsamer Gleichung
für den erhaltenen Ordnungsparameter können wir also erstmals einen systematischen
Zusammenhang zwischen Entmischungsphänomenen im und fern vom Gleichgewicht
herstellen. Eine Erweiterung unseres Ansatzes lässt auch die systematische Herleitung
höherer Nichtlinearitäten zu. Die daraus resultierende erweiterte Cahn-Hilliard-Gleichung
bildet Aspekte aktiver Phasenseparation bis weiter über ihren Einsatzpunkt hinaus ab.
Eine erste Erforschung der Effekte, die jenseits der aktiven Phasenseparation auftreten
können, zeigt einen sekundären Übergang von Phasenseparation zu räumlich periodi-
schen Lösungen. Die Arbeiten auf diesem Themengebiet bilden die Grundlage für die
weitere Erforschung dieser generischen Musterbildungsklasse mit erhaltenem Ordnungs-
parameter. Gleichzeitig eröffnen sich Einblicke in die Art und Weise wie die Natur
Musterbildung als Werkzeug verwendet, um essentielle Funktionen zu erfüllen und die
Maschinerie des Lebens zu erhalten.
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Abstract

Pattern formation is a dynamic process in which instabilities of an initial state lead
to the self-organized formation of spatial or temporal structures. In this thesis, we
explore generic aspects of pattern formation and their function in biological, chemical
and active systems. The first half of the thesis focuses on different effects of spa-
tial confinement. The second half deals with conservation constraints and a resulting
nonequilibrium demixing phenomenon called active phase separation.

In exploring the effects of confinement, we first show how spatial control parameter
variations from super- to subcritical values create finite regions of pattern formation
without imposing specific boundary conditions. Using a prototypical reaction-diffusion
model with a transition to stripe patterns, we show that the steepness of these so-called
control parameter drops significantly influences the stripe orientation. Increasing drop
steepness triggers an orientational transition from perpendicular to parallel stripes. We
are able to explain this orientational transition using fundamental principles of pattern
formation theory.
A second project addresses the effects of strong spatial confinement on nonlinear wave
patterns. Using a generic model, we show that traveling waves inevitably change into
standing waves if the system becomes sufficiently short. In this case, reflexion effects at
the boundaries exceed the nonlinear competition of counter-propagating waves that lead
to the selection of a single wave type in extended systems. Using linear stability analysis,
we calculate the so-called Eckhaus stability band of standing waves which allows them
to adapt to different system lengths. We are also able to predict analytically and confirm
in numerical simulations transitions between standing waves with different numbers of
nodes, as well as transitions to traveling waves depending on the system length. These
generic features of nonlinear waves in strongly confined systems shed light on aspects of
robust self-organization in biological systems: Pole-to-pole oscillations of Min proteins
in E. coli bacteria, for example, resemble boundary-induced one-node standing waves
and are responsible for accurate cell division.
Finally, we establish generic aspects of polarity bias for spatially periodic patterns in
strongly confined systems. These form the basis for an explanation of recent observa-
tions in a protein clustering model. In this model, proteins tend to cluster in the cell
center even though protein aggregations near the cell boundary are equally compatible
with the symmetry and the boundary conditions of the system. By analyzing an equiv-
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alent minimal model, we show that the basis of this so-called polarity bias is strong
spatial confinement in combination with a broken up-down-symmetry in the system.

The second part of the thesis deals with so-called active phase separation - a demix-
ing phenomenon that take place far from thermodynamic equilibrium. We introduce
a systematic perturbative scheme that defines active phase separation as a new class
of nonequlibrium phase transitions. We apply this newly-developed scheme to several
examples of living and active matter: cell polarization, chemotactic cell communities,
as well as active Brownian particles. With our approach, the continuum models of these
examples can be reduced to a universal equation near the onset of active phase separa-
tion. This universal equation is the Cahn-Hilliard equation. It was initially introduced
to describe classic phase separation, i.e. the demixing of substances to reach a new
thermodynamic equilibrium. With the Cahn-Hilliard model as the common equation for
the conserved order parameter we can thus for the first time create a direct connection
between demixing phenomena in and out of thermal equilibrium. By extending our
perturbative approach, we can also include higher order nonlinearities. The resulting
extended Cahn-Hilliard equation is able to reproduce aspects of active phase separation
even farther from the onset of phase separation. In a first foray into effects occurring in
the nonlinear regime beyond active phase separation, we found a secondary transition
from phase separation to spatially periodic patterns. Our work on the topic of active
phase separation are the basis for further research on this generic class of pattern for-
mation with a conserved order parameter and gives us new exciting insights into the
way nature uses the toolbox of pattern formation to fulfill essential functions and build
the machinery of life.
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Part I.

Extended abstract





1. Finite size effects on patterns

1.1. Self-organization in nature

The second law of thermodynamics states that any system strives towards a state of
higher entropy, usually associated with a higher degree of disorder. In the 19th century,
the so-called heat death theory built upon this idea, hypothesizing that the ultimate
fate of the universe is a state of evenly distributed energy [1]. Clearly, this idea is in
stark contrast to our everyday experience. Nature is full of remarkable examples of
order and structure [2–4]. In fact, life itself is arguably the most striking form of order
with every living creature made up of highly complex structures and precisely organized
processes [5–8]. The important difference is that most systems in nature are not in
and do not strive towards thermodynamic equilibrium. Instead, they are nonequilibrium
systems constantly consuming energy - which gives rise to the organized structures we
find all around us [9–11].
Examples of naturally occurring patterns are numerous [3, 4]: cloud streets [12, 13],
patterns on fish skin [14–16], vegetation patterns in dry landscapes [17–22], thermal
convection [23], nematic liquid crystals [24], nonlinear optical systems [25, 26], the
wrinkled surface of the brain or our fingerprint [27,28], the hexagonal cells of honeybee
or wasp combs [29, 30], and sand ripples in the desert or on a beach [31, 32]. In two
dimensions, possible spatial patterns include stripes or labyrinth-like structures, squares,
hexagons or spot-like patterns [33, 34]. Oscillations can be viewed as patterns in time.
Among them are chemical oscillators, often also called chemical clocks, such as the
Belousov-Zhabotinsky reaction which periodically changes its color [35], or the circadian
rhythms that govern biological life [36–38]. Combining both types of patterns gives rise
to moving spatial patterns such as traveling waves. They can be found in systems
ranging from binary fluid convection [39–42], electroconvection in liquid crystals [43]
to (bio-)chemical reactions [44–47].
In nature, patterns often fulfill important functions: Animals use skin patterns for cam-
ouflage [48], patterns in the early embryo guide cell differentiation [49, 50], vegetation
patterns allow for an optimized usage of scarce water resources in dry landscapes and
thus prevent desertification [18, 21], and thermal convection generates increased heat
transfer in temperature gradients [23].
Pattern formation as a research field in nonlinear physics first became popular in the
1970s with a series of experiments on Rayleigh-Bénard convection [33,51,52]. Rayleigh-
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Bénard convection is often seen as a canonical example for pattern formation - both
due to its experimental accessibility and the theoretical knowledge about the underlying
hydrodynamic equations [33]. In the context of fluid convection in 1977, Swift and
Hohenberg derived the equation that would later be named after them - the Swift-
Hohenberg equation [53]. It later became one of the most popular minimal models for
pattern formation and was used to study spatially periodic patterns far beyond the scope
of fluid convection. This is very much in the spirit of pattern formation research which
has finding and analyzing the generic system-spanning properties of patterns as one of
its main objectives [33, 34]. As the many examples mentioned above show, patterns
occur in a big variety of different systems. The details and specific mechanisms involved
in all of these systems are certainly just as diverse as the systems in which they occur.
The idea is to find the common features and the underlying basic principles of certain
types of patterns regardless of the individual system-specific details.
One of the most powerful and often used tools to study patterns is the weakly nonlinear
analysis via the amplitude equation formalism [33,34]. The underlying conceptual idea is
that even complicated pattern-forming systems can be reduced to the evolution equation
of a single scalar field near the onset of pattern formation. It has been found, for
example, that the slowly varying envelope A(x, t) of spatially periodic patterns follows
the so-called Ginzburg-Landau or Newell-Whitehead-Segel equation [33, 54–56] (first
derived in the context of superconductivity and later for Rayleigh-Bénard convection):

τ0∂tA = εA+ ξ2
0∂

2
xA− g|A|2A. (1.1)

Interestingly, Eq. (1.1) can be written as τ0∂tA = −δF/δA∗, where

F =

∫
dx
(
−ε|A|2 + ξ2

0 |∂xA|2 +
g

2
|A|4

)
(1.2)

behaves like a free energy potential [33]. The amplitude equation thus follows potential
dynamics even though the original pattern-forming systems are usually dissipative. Min-
imal generic models, linear stability analysis, weakly nonlinear analysis, the amplitude
equation formalism and considerations of the corresponding energy potentials are some
of the pillars of pattern formation theory and widely used tools within this thesis [33,34].
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1.2. Finite size effects

Almost all patterns that occur in nature or any other experimental system emerge in
confined areas or volumes. If the systems are large enough, a infinite system size or
periodic boundary conditions can be assumed. This significantly simplifies mathemati-
cal approaches while in many cases still delivering good approximations of the observed
patterns. In many other cases, however, finite size effects cannot be neglected. Bound-
aries are known to significantly influence pattern formation in finite systems. In one
spatial dimension, boundaries lead to wavenumber selection, i.e. restrictions on the
possible wavelengths of instabilities [33, 57–62]. As a result, confinement reduces the
so-called Eckhaus band of stable spatially periodic patterns, for example. In strong
spatial confinement, boundaries have also been found to influence the polarity of spa-
tially periodic Turing patterns [63]. Wavenumber selection also occurs in systems with
so-called “soft” boundaries [64–68]. In these systems, the control parameter, which
triggers the transition from the homogeneous to a patterned state, is gradually ramped
connecting a subcritical to a supercritical region. In two dimensions, boundaries break
the symmetry in inherently isotropic systems. This can lead to orientational selection
of stripe patterns. Thermal convection rolls, for example, align perpendicular to lat-
eral boundaries [33, 69, 70]. Especially in the context of biological pattern formation,
moving and/or curved boundaries mimicking the situation in living cells have been of in-
terest and have shown to, among other things, profoundly influence the orientation and
shape of stationary patterns [71–76]. In addition, boundaries also affect the dynamic
behavior such as the time scale needed to reach stationary patterned states, or defect
dynamics [70]. Traveling waves can be reflected at boundaries leading to intriguing
spatiotemporal behavior [77, 78]. Finally, finite size effects can fundamentally change
the types of patterns observed in the system, and influence the pattern onset, as well
as transitions between different pattern types [79–82].

1.3. Patterns in finite domains without boundaries

Motivation and Background— As established previously in Chapter 1.2, boundaries
can affect pattern formation in numerous significant ways. In some systems, boundaries
are well-defined. However, we can imagine scenarios where this is not the case. In pho-
tosensitive chemical reactions such as the CDIMA reaction pattern formation can be
controlled by illumination [83]. Spatially periodic patterns appear if the light intensity
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Fig. 1.1 – Principle idea of creating patterned subdomains with control parameter drops: The
control parameter (in this example the light intensity) is only supercritical in some parts of
the system. This restricts pattern formation to a finite subdomain without imposing specific
boundary conditions.

is below a certain threshold, while the chemicals remain homogeneously mixed for high
light intensities. Imagine now a scenario where only a part of the reaction cell is illumi-
nated - or shaded in the example of the CDIMA reaction (see Fig. 1.1). This creates
a pattern in a finite subdomain of the system without imposing any specific boundary
conditions on the concentration fields involved in the pattern formation process.
A similar situation can be found in recent experiments with the pattern-forming Min
protein system [84]. In this biochemical reaction stemming from E. Coli bacteria, Min
proteins create wave patterns by binding to and detaching from the cell membrane in
a coordinated fashion. In recent experiments, the pattern-forming Min protein reaction
was restricted to membrane patches of designed geometry. These were created by
micropatterning substrates with gold layers which prevent membrane formation. Since
the biochemical Min reaction involves protein exchange between the membrane and the
protein solution, this essentially restricts pattern formation to the membrane patches
while no specific boundary conditions apply to the protein concentration in the solution

membrane

protein solution

Fig. 1.2 – Schematic view of recent in vitro experiments with the Min protein system [84].
Pattern formation is restricted to membrane patches on the substrate.
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above the membrane (see Fig. 1.2).
In [Pub1], we systematically analyzed the effects of these so-called control parameter
drops on two-dimensional stripe patterns.

Model and Methods— In [Pub1], we analyzed the well-established Brusselator model
as a prototype reaction-diffusion system with a transition to spatially periodic patterns
(also known as Turing patterns) [85–87]. The evolution of the two concentration fields
u and v in this model are described by

∂tu = ∇2u+ a− (b+ 1)u+ u2v , (1.3a)

∂tv = D∇2v + bu− u2v , (1.3b)

where a and D are constant parameters and b is the control parameter1. Stripes2 with
a typical wavelength λc emerge if the control parameter exceeds the threshold bc.
We model the control parameter drop in one dimension by spatially varying the control
parameter in the following form:

β(x) := β0 +
M

2

[
tanh

(
x− xl
δx

)
− tanh

(
x− xr
δx

)]
, (1.4)

where β measures the distance from pattern onset, b = bc(1+β), and δx is referred to as
the drop width. For appropriate parameter choices, this creates a region of approximate
size L ≈ xr − xl in which the control parameter is supercritical and pattern formation
is enabled. This supercritical subregion is continuously connected to a subcritical con-
trol parameter range. The drop width δx controls the steepness of the transition from
super-to subcritical control parameter values.

Main results — Since the Brusselator model itself is isotropic, stripes in this system
do not a priori have a preferred orientation. Hence, in extended systems the pattern
usually consists of domains of randomly oriented stripes (see Fig. 1.3a). Our simulations
show that introducing a control parameter drop significantly influences stripe orienta-
tion. For shallow parameter drops (δx large), stripes favor a perpendicular orientation
with respect to the domain boundary (Fig. 1.3b). Finite system size thus leads to an

1In this model, the homogeneous basic solution (uh, vh) is a function of the control parameter b.
This is actually an essential condition for the orientational selection by the control parameter drop.
[Pub1] discusses this aspect in more detail.

2The Brusselator typically leads to hexagonal patterns directly above threshold. These can be avoided
in favor of stripe patterns for suitable system parameter choices.
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Fig. 1.3 – Control parameter drops cause orientation selection of stripe patterns. a) No
preferred stripe orientation without control parameter drop. b) Stripes are perpendicular to
the boundary for shallow control parameter drops (δx = 5λc). c) Stripes are parallel for steep
control parameter drops (δx = 0.5λc). Figures b) and c) reproduced from [Pub1].

orientational selection for stripe patterns. Surprisingly, however, we found the preferred
stripe orientation to change when the drop width is decreased. For steep control pa-
rameter drops, the preferred stripe orientation is parallel (Fig. 1.3c). We thus found
an orientational transition from perpendicular to parallel stripes when the drop width is
decreased, i.e. for steeper control parameter drops.
In [Pub1], we also present extended (semi-)analytical considerations to explain this phe-
nomenon. A weakly nonlinear analysis as mentioned in Sec. 1.1 reduces the Brusselator
model to a single amplitude equation for the slowly varying envelope A(x, y, t) near the
onset of pattern formation [33,88]:

∂tA = βA+ LA− g|A|2A. (1.5)

Depending on the stripe orientation, the linear operator L is given by

L‖ := ξ2
0

(
∂x −

i

2qc
∂2
y

)2

, (1.6a)

L⊥ := ξ2
0

(
∂y −

i

2qc
∂2
x

)2

, (1.6b)

for parallel (i.e. pattern wavevector parallel to x-axis) or perpendicular stripes, respec-
tively. In this equation, the control parameter β is assumed to be constant. The control
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parameter drop, however, constitutes a spatial variation of the control parameter. When
incorporating this into the amplitude equation, the separation of spatial scales between
the envelope A(x, t) and the underlying periodic pattern has to be considered. The
control parameter drop includes both “slowly” varying parts in the constant regions of
the step-like spatial variation, as well as “rapidly” varying local contributions near the
control parameter drop. The slowly varying part is unproblematic, since it only results
in small spatial changes of the control parameter β on the length scale of the enve-
lope A(x, t). A Fourier expansion of the rapidly varying part shows that it includes
short-wavelength contributions ∝ exp(inqcx) (with n = 1, 2, 3...). These contributions
are in spatial resonance with the parallel stripes. Thus, the control parameter drop
serves as a local resonant forcing - a short-scale resonant component localized around
the rapidly varying section of the control parameter drop. Resonance effects have been
investigated in the context of spatially periodic forcing in the past [89–93]. They cause
additional resonant terms in the amplitude equation [89]. Thus, the amplitude equation
for parallel stripes as given in Eq. (1.5) has to be expanded by, in our case, local reso-
nant terms, while the amplitude equation for perpendicular stripes remains as given by
Eq. (1.5). As a result, the transition from the homogeneous state to the stripe pattern
is fundamentally different for parallel and perpendicular stripes if a control parameter
drop is introduced. Since the resonant contributions are localized around the control pa-
rameter drop, their effect significantly depends on the drop width δx. Thus, the energy
potential corresponding to the amplitude equation (cf. Sec. 1.1) also depends on δx.
In the limit of large drop widths (shallow control parameter drops), the functional for
parallel stripes is always higher than for perpendicular stripes. However, the functional
for parallel stripes decreases significantly with decreasing drop width due to the local
resonance effects. This allows for the orientational transition observed in simulations.

Outlook — The concept of control parameter drops can easily be implemented in ex-
periments with photosensitive chemical reactions. Control parameter (in this case light
intensity) variations using projection masks have already been studied in experiments
before [94–96]. Experimentalists in these examples were interested in creating small-
scale periodic variations of the control parameter to explore forcing mechanisms. The
same experimental technique can of course be readily applied to create larger areas of
illumination (or shading, respectively). Controlling the steepness of the control param-
eter drop may pose more difficult technical challenges. However, simple light intensity
gradients have been successfully implemented in the past using neutral density filters
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a) b)

c) d)

Fig. 1.4 – In two-dimensional systems, control parameter drops with tuned drop widths can
be used to create highly controlled regular stripe patterns in rectangular domains. Reproduced
from [Pub1].

(see e.g. [97]). Overcoming these technical challenges will grant scientists the possibil-
ity to create highly controlled patterns. This is especially the case in two-dimensional
rectangular domains. Patterns become highly regular and defect-free when using suit-
able combinations of shallow and steep drops on the different edges of rectangular
subdomains (see Fig. 1.4).
As mentioned in the introductory section above, experiments with the Min protein
system on functional membrane patches are another strong candidate for further exper-
imental exploration of control parameter drops [84]. The experiments by Schweizer et al
showed that traveling protein waves orient perpendicular to the domain boundary. We
could shed light on these observations by expanding our theoretical analysis to the effect
of control parameter drops on two-dimensional traveling wave systems. More recent
experiments also opened up the possibility for optical control of the Min system [98].
Very similar to the experiments with other photosensitive chemical reactions mentioned
above, this would offer more flexibility in creating control parameter drops in the Min
system.
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1.4. Traveling waves in strong confinement

Motivation and Background — In recent years, the Min protein system has piqued
the interest of researchers as a fascinating example of pattern formation in biology [99–
101]. Due to its critical role in the life cycle of E. coli bacteria, a lot of effort has been
put into understanding the underlying mechanisms and intricacies of this biochemical
system. Overall, the system consists of the three proteins MinC, MinD and MinE [102].
MinD and MinE form the basis of a complex reaction-diffusion mechanism that gives
rise to self-organized protein waves through coordinated binding to and detachment
from the cell membrane. In the rod-like E. coli cell, the protein wave oscillates between
the two cell poles [103]. These pole-to-pole oscillations essentially inhibit formation of
the cell division site anywhere but in the center of the cell. This ensures the division
into two daughter cells of roughly equal size with an astonishing precision [99].
In ground-breaking experimental work [47], the group of Petra Schwille was first able
to recreate the Min protein waves outside of the living cell. These in vitro experiments
showed that on extended membranes, the Min system forms traveling waves with a
distinct wavelength. This is in seeming contradiction to the observations of pole-to-
pole oscillations in living E. Coli.
Answering the questions raised by the Schwille experiments is complicated by the fact
that the exact biochemical reaction mechanisms behind the Min system are still a subject
of discussion [99,104–109]. The many potential players involved in the chemical reaction
– MinD and MinE in both their membrane-bound and cytosolic form, as well as MinDE
protein complexes – add another layer of complexity to the problem. Therefore, different
mathematical models for the Min system have been proposed and extensively discussed
in the past [47,84,106,110,111].
In [Pub2], we shed light on parts of these discussions by taking a more generic approach
to the topic. In the living E. coli bacterium, the Min protein system is constricted to the
small confined space of the cell volume. We therefore analyze the influence of strong
spatial confinement on traveling wave patterns. We then show how these generic as-
pects of pattern formation can be applied to explain phenomena observed in the Min
system.

Models and Methods — The complex Swift-Hohenberg (CSH) model is a minimal
model for systems with a transition to traveling waves [112,113]:

∂tu(x, t) = (ε+ ia)u− ξ2
0(1 + ib)(q2

0 + ∂2
x)2u+ if∂2

xu− γ(1 + ic)|u|2u. (1.7)

11



Note that u(x, t) is a complex field in this case. If the control parameter ε is larger than
the critical value εc = 0, the system shows traveling waves with a distinct preferred
wavelength λ0 = 2π/q0 in extended systems. We analyze the model in finite systems
of length L assuming no-flux boundary conditions: ∂xu|x=0 = ∂xu|x=L = 0. We are
specifically interested in very strong confinement, i.e. in short systems with typical
lengths in the order of the pattern wavelength.
[Pub2] includes both numerical simulations of Eq. (1.7), as well as linear stability analysis
of nonlinear solutions. The latter involves solving linear differential equations with
periodic coefficients. This can be done via a Fourier-type separation ansatz. Note,
however, that to account for the no-flux boundary conditions, the Fourier series may
only include cosine contributions. The resulting Eigenvalue problem can be solved
numerically using standard linear algebra packages.
As a proof of principle, we also compared the generic results gained from the CSH
model to two more specific examples of systems with traveling waves: an extended
Brusselator model as a representative of a typical reaction-diffusion system with travel-
ing waves [114], and one of the proposed models for the Min protein system [47].

Main results — In large extended systems the CSH model typically shows single
traveling wave solutions moving in one direction [112]. In theory, due to the symmetry
of the system, both left- and right-moving traveling waves are possible. Due to nonlinear
interactions of the waves, however, one type of wave is suppressed. These observations
are still true for moderately small finite systems (e.g. L = 3λ0, see Fig. 1.5a, top).
However, waves are also reflected at system boundaries. These reflection effects become
more pronounced when the system length is further decreased. Beyond a critical system
length, simulations show a transition from traveling to standing waves (Fig. 1.5a, middle
and bottom). Depending on the system length, these standing waves can have different
numbers of nodes.
We complemented these observations in numerical simulations with analytical calcu-
lations by studying the linear stability of standing wave solutions. Standing waves in
Eq. (1.7) can be approximated by

u(x, t) = 2Fe−iΩt cos(qx), (1.8)

where F and Ω can be calculated from the system parameters and the wavenumber
q depends on the system length L via q = nπ/L (where n = 1, 2, 3, ...). We found
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Fig. 1.5 – Effect of strong confinement on traveling wave patterns. a) Traveling waves (top)
change into standing waves (middle and bottom) if the system length L is decreased. b)
Linear stability of standing waves as a function of system length L and control parameter ε.
Reproduced from [Pub2], published under CC-BY.

that standing waves with a certain number of nodes occupy a region of stability that
depends mainly on the system length L and the control parameter ε (see Fig. 1.5b).
Several generic features of nonlinear standing waves in strong confinement can be de-
duced from the results of the linear stability analysis: First, standing waves are able
to adapt to the system length to a certain degree. This is a direct parallel to the
well-known Eckhaus stability of periodic patterns, according to which stationary stripe
patterns or traveling waves with wavenumbers from within the so-called Eckhaus band
are stable above onset [33, 115–117]. Standing waves are stable within a large range
of control parameter values if the wavelength of the standing wave corresponds to the
preferred wavelength λ0. The stability region for standing waves with two nodes, for
example, is thus centered around L = λ0. However, the standing waves are able to
adapt to deviations of this “optimal” system length, resulting in extensive regions of
stability in the L-ε-plane (cf. the shaded regions in Fig. 1.5b). Second, the stability
regions of standing waves with different numbers of nodes partially overlap. This gives
rise to bistability of standing wave solutions. For parameters in this bistable region,
two different solutions are thus simultaneously stable and the solution depends on the
initial conditions. Third, transitions between different types of patterns are possible: If
the control parameter ε exceeds a certain threshold, standing waves eventually transi-
tion to traveling waves. This is in agreement with the observations from simulations
(Fig. 1.5a). Transitions between different types of patterns are another possibility to

13

https://creativecommons.org/licenses/by/3.0/


adapt to system length variations. If the system length is increased, standing waves
will first increase their number of nodes, before eventually changing into traveling wave
patterns. For the CSH model, this transition from standing to traveling waves when
either the system length or control parameter is increased is in the form of a supercritical
bifurcation.
The results presented in [Pub2] are very robust. First, they do not significantly depend
on any of the other system parameters in Eq. (1.7)3. Variations of other system pa-
rameters slightly change the exact shape of the stability regions shown in Fig. 1.5b.
However, this does not change the qualitative picture described above. The transition
from traveling to standing waves in sufficiently short systems is also not sensitive to the
boundary conditions. Fixed boundaries (u|x=0 = u|x=L = 0), for instance, only change
the positioning of the standing wave nodes within the system. Finally, the qualitative re-
sults are also not system-specific. Comparisons to simulations of the so-called extended
Brusselator [114] and one of the proposed models for the Min system [47] confirm the
results obtained from the generic CSH model.

Outlook — With respect to the Min system, we hope that our research contributes
to the ongoing discussions about the underlying biochemical mechanisms behind the
Min protein waves. Our research explains the seemingly contradictory behavior of Min
waves on extended membranes and in living bacteria: The nonlinear traveling Min
waves inevitably change into standing waves if they are in the strong confinement
of the cell body. Min traveling waves in vitro and pole-to-pole oscillations in vivo
thus do not result from fundamentally different instability mechanisms. Since they
result from generic features of nonlinear waves, they should be reproduced by any
mathematical model of the Min system regardless of system details. Other results
from [Pub2] can be qualitatively transferred to observations in the Min system as well:
Pole-to-pole oscillations, for example, are robust even as the individual E. coli cells
vary in length [103]. In fact, they need to be maintained even as the cell almost
doubles in length prior to cell division. This corresponds to the Eckhaus stability range
and resulting length adaptability of nonlinear standing waves. In experiments with
elongated E.coli cells, standing waves with multiple nodes or even traveling waves have
been found, as well as transitions and multistability between these different types of
patterns [103,107,118,119].

3A notable exception are parameter combinations in the Benjamin-Feir-unstable regime where trav-
eling waves are convectively unstable and spatiotemporally chaotic states are possible [112].
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An interesting next step would be an extension to two (or ultimately three) dimensions.
The Min system has recently been investigated in controlled geometries by using shaped
living bacteria [119, 120], two-dimensional membrane compartments [121] or three-
dimensional confined micro chambers [122]. In many cases, our one-dimensional results
can be qualitatively applied to explain the pattern types and orientations observed in
these experiments. On rectangular domains, for example, standing waves seem to prefer
orientations resulting in wavelengths closest to the intrinsic wavelength λ0. A second
spatial dimension, however, offers the possibility of additional instabilities (e.g. zig
zag instabilities) that could qualitatively change the picture [33, 112]. Another path of
inquiry is to explore systems with subcritical bifurcations to traveling waves. This opens
up a wealth of other dynamic solutions such as fronts and pulses [123].

1.5. Polarity bias through strong confinement

Motivation and Background — In a recent publication [124], Murray and Sour-
jik investigated the positioning of protein clusters inside cells. They present a simple
three-component reaction-diffusion model for protein clustering on a membrane. Their
study shows that in short confined systems (with no-flux boundary conditions), the
proteins cluster to form a single concentration peak. In the vast majority of cases, this
concentration peak is positioned in the center of the system with only few exceptions
where the highest concentrations could be found near the system boundaries. Murray
and Sourjik were able to explain aspects of this self-positioning within the scope of their
specific model. In [Pub3], we approach the same question from a pattern formation
point of view in order to investigate the possible generic aspects of protein-positioning.

Models and Methods — The model introduced in [124] has three distinctive charac-
teristics: First, the system undergoes a transition to spatially periodic patterns (finite k-
instability) when the total molecule concentration exceeds a critical threshold. Second,
the up-down-symmetry in the system is broken resulting in solutions with pronounced
asymmetric peaks as opposed to simple harmonic cosine-like solutions. Third, the total
number of molecules in the system is conserved. A minimal model incorporating these
three characteristics is the conserved Swift-Hohenberg model [125–128]:

∂tu(x, t) = −∂2
x

[
εu−

(
q2

0 + ∂2
x

)2
u+ αu2 − u3

]
. (1.9)
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Fig. 1.6 – Solution types and rate of occurence in simulations of the conserved SH equation,
Eq. (1.9), in small confined systems (L = λ0).

We assume small confined systems with no-flux boundary conditions and system lengths
which are multiples of the preferred pattern wavelength: L = nλc = n2π/q0. Linear
stability analysis in these finite systems with no-flux boundaries requires the same meth-
ods as described in Sec. 1.4.

Main results — The symmetry-breaking parameter α significantly influences the types
of solutions found in simulations of Eq. (1.9) in very small systems (L = λ0 = 2π/q0).
Figure 1.6 is an overview of the typical concentration pofiles found in simulations for
different values of α. In general, solutions become more and more complex, i.e. are
composed of more contributing Fourier modes, with increasing α. Of the different
solution types, the 1±-type is most closely related to the kinds of solutions found in
the Murray/Sourjik protein clustering model. The solution with negative polarity, 1−,
has a single concentration peak located in the system center, while the positive polarity
indicates highest concentrations near the boundaries. Simulation results reveal that for
moderate values of the symmetry-breaking parameter (α = 1.1), both of these solutions
are equally likely to be found starting from random initial conditions. If α is increased
to 1.5, however, the solution 1+ vanishes. Thus, in this parameter region, there is a
polarity bias towards the 1− solution.
Semi-analytical calculations confirm this polarity bias in very small systems. The sim-
plest approximate solution in the system is the dominating intrinsic mode q0 with a
small contribution of the higher harmonic 2q0 which is excited by the broken up-down
symmetry:

u(x) = A cos(q0x) +B cos(2q0x). (1.10)

16



Plugging this ansatz into Eq. (1.9) and projecting onto the two Fourier modes results
in a coupled system of equations for the amplitudes A and B. The two different real-
valued solutions, [A,B] and [−A,B] (where A > B > 0), suggest two solution types
of different polarity: u+ and u−, respectively. u+ is the solution with maxima at the
system boundaries, while u− suggests a peak in the center of the system. Due to the
broken up-down symmetry, the linear stability of these solutions depends on the polarity
of the solution. Our analysis shows that in very small systems (L = λ0) depending on
the symmetry-breaking parameter α, the solution with negative polarity can be stable,
while the solution u+ is already unstable. Thus, polarity bias occurs in a specific range
of α. Polarity bias, however, also depends on the system length. The polarity bias
vanishes if the system length is doubled to L = 2λ0. In this case, both solutions u±
become simultaneously unstable at a critical value αc. The linear stability of solutions
in finite systems depends on the system length, since only perturbations with discrete
wavenumbers q = nπ/L (where n = 1, 2, 3, ...) fulfill the no-flux boundary conditions.
Larger system sizes thus allow for more perturbative modes to be unstable and especially
reduce the smallest possible wavenumber π/L of perturbations. In short, the polarity
bias in the case L = λ0 originates from the stabilization of the solution with negative
polarity by the small system size even as the solution with positive polarity is already
unstable.
Further considerations in [Pub3] show that conservation actually does not have an
impact on the polarity bias. Polarity bias also appears in the classic Swift-Hohenberg
model with an unconserved order parameter u(x, t) [33, 53]:

∂tu = εu−
(
q2

0 + ∂2
x

)2
u+ αu2 − u3. (1.11)

In summary, the generic basis of polarity bias is the stabilizing effect of strong spatial
confinement which affects solutions differently depending on their polarity due to the
broken up-down symmetry.

Outlook — The results presented in [Pub3] are a first step towards understanding
some of the observations in the cell clustering model [124]. However, further analysis
is needed to get a clear picture of the polarity bias. Our simulations of the CSH model
show, for example, a variety of different solution types - especially for strongly broken
up-down symmetry (cf. Fig. 1.6). These other solutions do not exhibit a concentration
peak in the system center and would thus not account for positioning of protein clusters
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in the cell center. Thus, additional mechanisms seem to play a role in the protein model
to avoid the asymmetric solutions found in the CSH model. Additionally, the protein
clustering model shows polarity bias even in larger systems with multiple concentration
peaks, while the polarity bias in our model vanishes if the system size is increased.
Getting answers to some of these questions is a great starting point for further fruitful
collaboration at the interface of pattern formation and biology.

18



2. Active phase separation

2.1. Active matter

Active matter has emerged as an exciting new research field in recent years [129–131].
Active matter systems consist of large numbers of components which locally consume
energy and transform it into mechanical work, usually movement. This makes active
matter an inherently nonequilibrium system. Interactions between the individual active
components give rise to complex collective behavior such as flocking or clustering,
oscillations and waves, order-disorder transitions and pattern formation [130,132–136].
Prominent examples of active matter in nature are animal aggregations such as flocks
of birds or schools of fish [137–139]. On a smaller scale, bacterial suspensions or
colonies [140–143] or the cytoskeleton of living cells [144] can show active behavior.
The most common example of synthetic active matter are suspensions of self-propelled
colloids or nanoparticles. A variety of different techniques and mechanisms have been
used to create these active particles [145, 146]. In many cases, propulsion is achieved
by using phoretic forces due to gradients which can be - among others - chemical,
electrostatic or thermal in nature [147]. Particles become self-propelled by creating their
own local phoretic gradient in combination with asymmetric properties that determine
the direction of motion [148]. Janus particles are often used in this context [149].
Particles can also become active by an external driving mechanism such as electric
or magnetic fields or vibrating plates [150–152]. Other active matter systems studied
in the lab are suspensions of microtubules and molecular motors which form so-called
active nematics [153,154], or on a macroscopic scale even systems of robots [155].

2.2. Equilibrium phase separation

Phase separation describes the thermodynamic process in which a homogeneous mixture
separates into two coexisting phases [156–159]. One of the early examples where this
phenomenon has been observed are binary alloys [160]. Other examples include binary
fluid mixtures such as water and oil [161, 162] or polymer blends [163]. In all of these
examples, phase separation is initiated by a temperature quench, usually to a lower
temperature, which renders the homogeneous mixed state thermodynamically unstable.
Once the distinct phases have started to form, the domains continuously grow in size in
order to reduce the interfacial energy until the system has reached the new equilibrium
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Fig. 2.1 – a) Typical coarsening behavior during phase separation processes. b) Characteristic
growth rate of perturbations in systems showing phase separation.

state. This so-called coarsening process (see Fig. 2.1a) of increasing characteristic
length scales over time often follows characteristic scaling laws [156].
The continuum description of phase separation dynamics is the so-called Cahn-Hilliard
equation for the order parameter field ψ(x, t) [156,164],

∂tψ = −∇2
[
∇2ψ − V ′(ψ)

]
, (2.1)

which is derived from a Ginzburg-Landau free energy functional via

∂tψ = ∇2 δF

δψ
. (2.2)

In this energy functional, V (ψ) is a double-well potential representing the two equi-
librium phases, while the other contribution accounts for the interface energy. The
homogeneous state ψ = 0 in Eq. (2.1) is unstable towards perturbations with the typ-
ical growthrate dispersion relation as given in Fig. 2.1b. Note that there is a finite
fastest-growing mode while the range of unstable perturbation wavenumbers extends
down to q → 0. This is the typical growth rate behavior for long-wavelength instabili-
ties 4. Note that the neutral growth rate at q = 0 indicates conservation of the order
parameter field.
Recently, biologists have become increasingly interested in phase separation as a means
to understand structural organization within the cell [165–168]. In this context, phase
separation is also often referred to as dynamic compartmentalization. In these seminal
works, the well-known concepts from equilibrium phase separation as described above

4In contrast, finite wavelength-instabilities as they are typical for Turing patterns, for instance, have
a range of unstable modes at finite wavenumbers while long wavelength modes are damped.
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have been the basis to tackle issues of self-organization in cell biology. It is important
to note, however, that cells as living matter operate far from thermal equilibrium. It is
thus not inherently clear whether the principles of equilibrium phase separation should
apply to the conditions of living cells as well.

2.3. A universal approach to active phase

separation

2.3.1. Introduction

Many of the active matter systems introduced in Sec. 2.1 show collective behavior such
as clustering. On its face, the clustering in active matter systems is very reminiscent
of equilibrium phase separation described in Sec. 2.2: In both cases, a homogeneous
mixture separates into two distinct phases. In the clustering examples, the two phases
are usually a dense fluid-like phase and a dilute gas-like phase. An important distinc-
tion though is that systems which undergo classic phase separation are only temporally
driven out of thermal equilibrium and strive towards a new equilibrium state. In con-
trast, active systems that show clustering such as chemotactically communicating cells
or active colloids are inherently, permanently far from thermal equilibrium. Cell po-
larization is another example of a nonequilibrium phenomenon that closely resembles
classic equilibrium phase separation. In contrast to the clustering examples above, there
are usually no active particles involved. Instead, aggregations of molecules in cells are
achieved by chemical reactions inside the living cell – an environment far from thermal
equilibrium.
In [Pub4]-[Pub7], we present seminal work on the phenomenon of active phase sepa-
ration, i.e. phase separation processes in nonequilibrium systems. We establish active
phase separation as a new class of nonequilibrium phase transitions. Our approach for
this is a parallel to the amplitude equation formalism for spatially periodic patterns
in nonequilibrium systems (cf. Sec. 1.1). This allows us to derive the universal model
equation representing the generic properties of active phase separation and also indicate
the connection to equilibrium phase separation. We present different examples from ac-
tive and living matter which show active phase separation, and also take a first look at
nonequilibrium phenomena occurring beyond the initial phase separation process.
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2.3.2. Model systems

Throughout [Pub4]-[Pub6], we use a variety of model systems as examples for active
phase separation. Among them, cell polarization refers to a broken spatial symmetry
with respect to the morphology or the biochemical components of a cell [169–173].
The associated definition of a unique axis within the cell is the basis of important cell
biological functions such as asymmetric cell division, cell differentiation, tissue forma-
tion, morphogenesis, or cell migration. In [Pub4], we examine a minimal model for cell
polarization. The model assumes a single molecule species that exists in a cytosolic
form or can be bound to a membrane, represented by concentration fields u(x, t) and
v(x, t), respectively. Their dynamics are governed by reaction-diffusion equations given
by

∂tu = Du∂
2
xu+ f(u, v), (2.3a)

∂tv = Dv∂
2
xv − f(u, v), (2.3b)

where f(u, v) represents the nonlinear membrane-cytosol exchange. We choose

f(u, v) = −bu+ (u+ v)2 − (u+ v)3, (2.4)

thereby essentially using a simplified version of other established cell polarization models
based on the reaction-diffusion mechanism [174]. The form of Eqs. (2.3) accounts for
the fact that no molecules are produced or destroyed during the cell polarization process.
Thus, the total amount of molecules u+ v in the system is conserved.
The second example analyzed in [Pub4] are chemotactic cell communities. Chemo-
taxis is the directed motion of cells along a chemical gradient [175, 176]. Chemotaxis
plays an essential role in many aspects of biological life: Sperm cells swim towards
chemical signals emitted from the egg, single organisms use chemotaxis to detect food
sources, leukocytes in the body move towards sources of inflammation and the slime
mold Dictyostelium discoideum relies on chemotactic signaling to form multicellular
fruiting bodies in conditions of starvation. The latter example of slime mold aggregation
was mathematically modeled by Keller and Segel [177,178]. The resulting Keller-Segel
model even today remains one of the cornerstone theoretical models for cell aggregation
via chemotaxis. In [Pub4], we analyze a variant of the classic Keller-Segel model for
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the cell density ρ(x, t) and the signal concentration c(x, t) [179]:

∂tρ = ∂2
xρ− s∂x

(
ρ

1 + αρ
∂xc

)
, (2.5a)

∂tc = Dc∂
2
xc+ ρ− c. (2.5b)

The additional parameter α accounts for a density-dependent chemotactic sensitivity.
For α = 0, the set of equations reduces to the classic Keller-Segel model.
In [Pub5], we analyzed a different variant of the Keller-Segel model, given by

∂tρ = ∇2ρ− s∇
(

ρ

(1 + βc)2∇c
)
, (2.6a)

∂tc = Dc∇2c+ sκ∇(ρ∇c) +
ρ

1 + γρ
− c. (2.6b)

This generalized, extended version includes several variations of the classic Keller-Segel
model which account for different additional aspects of cell clustering: signal-dependent
chemotactic sensitivity (β 6= 0) [179, 180], saturation of signal production for high
cell densities (γ 6= 0) [179], as well as anisotropic production of the chemical signal
(κ 6= 0) [181].
In [Pub6] we concentrate on the example of motility-induced phase separation (MIPS).
MIPS describes the collective behavior of self-propelled particles with a density-dependent
swimming speed which separate into a denser liquid-like phase and a dilute gas-like
phase [182–187]. We analyzed a mean-field description for a suspension of active
Brownian particles introduced by Speck et al [188,189]:

∂tρ = −∇ · [v(ρ)p−De∇ρ] , (2.7a)

∂tp = −1

2
∇ (v(ρ)ρ) +De∇2p− p, (2.7b)

where ρ(x, t) is the local particle density and p(x, t) the polarization (corresponding
to the orientational order parameter of the particles). v(ρ) is the density-dependent
swimming speed given by

v(ρ) = v0 − ρζ + λ2∇2ρ, (2.8)

with an additional non-local contribution for λ 6= 0 [190].
All these models have a number of characteristic similarities: As mentioned before, all
of these systems are far from thermal equilibrium. They either involve actively moving
particles or - in the case of cell polarization - take place in an inherently nonequilibrium
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environment. Second, as described in Sec. 2.3.1, they all show behavior that is very
reminiscent of equilibrium phase separation: Self-propelled particles or chemotactic
cells aggregate to form dense clusters embedded in a dilute low-concentration phase.
In polarized cells, molecules separate spatially to create regions of higher and lower
concentration. Third, all of these examples include some kind of conservation constraint:
the numbers of cells, active particles or molecules within a cell are conserved on the
time scale of the phase separation. Finally, in each example a homogeneously mixed
state is linearly unstable towards a spatially inhomogeneous state. The growth rate
behavior of perturbations has the characteristic form of a long-wavelength instability as
known from classic phase separation (cf. Fig. 2.1b).

2.3.3. The Cahn-Hilliard model for active phase separation

In [Pub4], we first introduce our concept of Active Phase Separation. We use this
term to describe a new class of nonequilibrium phase transitions. This class consists of
nonequilibrium demixing phenomena with certain characteristic generic properties. Our
research published in [Pub4] reveals that these generic features are manifested in the
existence of a universal model equation which describes active phase separation near
onset. We show that this equation is the Cahn-Hilliard (CH) equation:

∂tu = −∂2
x

[
α1εu+ α2∂

2
xu− α3u

2 − α4u
3
]
. (2.9)

This equation is the same CH model which was initially introduced to describe demixing
processes at thermal equilibrium (cf. Eq. (2.1) in Sec. 2.2). Our research shows, how-
ever, that it is also the leading order description of active phase separation in nonequi-
librium systems. In addition to establishing the CH model as the universal equation for
active phase separation near onset, our research thus also creates a fundamental link
between demixing phenomena in and far from thermal equilibrium. Note that the CH
equation, Eq. (2.9), can be derived from a free energy potential (see Sec. 2.2). Thus,
the active phase separation behavior near onset follows potential dynamics even though
the original mean-field models from which the CH model was derived are dissipative
systems. While this may seem a surprising result, it is a well-known parallel to the
amplitude equation of spatially periodic stripes (see Sec. 1.1).
In [Pub4], we introduce the systematic perturbative scheme that allows us to derive the
CH equation directly from the mean-field models of active phase separation systems.
This approach is similar to the derivation of the Ginzburg-Landau equation as the
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evolution equation for the envelope of stationary periodic patterns [33,34] (see Sec. 1.1).
It involves a rescaling of space and time by the introduction of a new spatial scale
X =

√
εx and two new time scales T3 = ε3/2t and T = ε2t, yielding the operator

replacements
∂x →

√
ε∂X and ∂t → ε3/2∂T3 + ε2∂T . (2.10)

ε denotes the distance of the control parameter from its critical value, i.e. the value
where the spatially homogeneous state becomes unstable and the phase separation
process sets in. The growth of the instabilities is assumed to be saturated by cubic
nonlinearities. This suggests an expansion of the involved fields in orders of

√
ε, e.g.

u =
√
εu1 + εu2 + ε3/2u3 + ... (2.11)

Sorting with respect to the different orders of ε leads to a set of hierarchical differential
equations. Applying the Fredholm theorem then gives rise to solvability conditions for
the contributions to the fields at different orders (ui in the example above). At leading
order, this results in the CH equation as introduced in the context of equilibrium phase
separation in Sec. 2.2:

∂tρ = −∂2
x

[
α1ρ+ α2∂

2
xρ+ α3ρ

2 − α4ρ
3
]
. (2.12)

Note, however, that due to the systematic approach introduced in [Pub4], the coeffi-
cients αi of the CH equation are directly linked to the parameters of the full mean-field
models that were the starting point of the derivation. In this sense, the derived CH
equation is not a purely phenomenological model but can be directly linked to the full
system close to the onset of active phase separation.
Starting in [Pub4], and continuing the work in [Pub5] and [Pub6], we consider different
examples of nonlinear demixing or clustering and prove that they belong to the class of
active phase separation described above. These examples of active phase separation are
represented by the models introduced in Sec. 2.3.2 and include cell polarization (using
a generic model in [Pub4], as well as a more specific model in [191]), chemotactically
communicating cells (as modeled by variants of the Keller-Segel model in [Pub4] and
[Pub5]) and motility-induced phase separation by active Brownian particles (in [Pub6]).
In addition to introducing the concept of active phase separation and presenting the
perturbative scheme that classifies systems as active phase separation, [Pub4] also as-
sesses the validity range of the reduction to the CH equation. Comparisons of numerical
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simulations between the full cell polarization and the derived CH equation show that
the CH model is generally able to reproduce the solutions obtained from the full model.
Given that the perturbative scheme is a weakly nonlinear analysis near the onset of phase
separation, the quantitative agreement increases closer to phase separation onset. The
best quantitative agreement can be achieved in the case of symmetric phase separa-
tion, i.e. if the symmetry-breaking quadratic nonlinearity in the CH equation vanishes
(α2 = 0 in Eq. (2.9)). Note also that the transition to phase separation is supercritical
in this case, while it becomes discontinuous in the case of asymmetric phase separation
– as has already been known from the CH model [192].
Our perturbative approach can be seen as a framework to classify systems as active
phase separation. Many systems only fall into the category of active phase separation
for certain parameter ranges. These restrictions on system parameters stem from the
limitations on the coefficients αi of the CH model, Eq. (2.9). Due to the direct math-
ematical link to the parameters of the full system, these limitations can be transferred
to the system parameters. α4, for example, is the coefficient of the saturation term
∝ u3 and should thus be positive in order to ensure saturation of the field u(x, t) (and
also justify expansion of the amplitude in orders of

√
ε). These parameter limitations

on active phase separation are particularly interesting in the case of chemotactic cell
communities. They have been investigated as another example of active phase separa-
tion in [Pub4], as well as in more detail in [Pub5]. By applying the perturbative scheme
introduced in [Pub4] to different variants of the Keller-Segel model (as introduced in
Sec. 2.3.2), we found that chemotactic cell clustering belongs to the class of active
phase separation only if the model contains some form of damping. Possible damping
mechanisms include density-dependent chemotactic sensitivity (discussed in [Pub4]),
signal-dependent chemotactic sensitivity or nonlinear signal saturation (both discussed
in [Pub5]). Either of these damping coefficients need to be finite in order to ensure
saturation of the phase separation solution via the cubic nonlinearity. In return, this also
means that clustering as described by the classic Keller-Segel model (without any form
of damping) does not belong to the class of active phase separation. These insights
may be related to the so-called blow-up solutions in the classic Keller-Segel model in
which the cell density can locally increase to form a δ-peak [179,193].

2.3.4. The extended Cahn-Hilliard model

A third example of active phase separation is so-called motility-induced phase separa-
tion (MIPS), i.e. the clustering of self-propelled particles. In [Pub6], we show that
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a mean-field model for MIPS (see Sec. 2.3.2) can in fact be reduced to the classic
CH equation at phase separation onset. Similarities between MIPS and classic phase
separation have been recognized in the past. Speck et al. [188, 189] have derived an
effective Cahn-Hilliard equation by applying a standard procedure known from uncon-
served systems for two special cases but without using the required scaling introduced
in [Pub4]. Others have recently proposed phenomenological extensions of the classic
CH model for MIPS with the argument that higher nonlinearities are the significant
nonequilibrium contribution [194,195].
In [Pub6], we extended the perturbative scheme introduced in [Pub4] to include higher
order nonlinearities. With this, we were able for the first time to systematically derive
an extended generic CH model for active phase separation:

∂tρ = −∂2
x

[
(α1 + β1) ρ+ (α2 + β2) ∂2

xρ+ (α3 + β3) ρ2 − α4ρ
3

+ β5 (∂xρ)2 + β6∂
2
xρ

2 + β7ρ
4
]
. (2.13)

In this equation, the coefficients αi are the leading order contributions as described in
Eq. (2.9). The coefficients βi can be derived by continuing the perturbative scheme
(see Sec. 2.3.3) to the next higher order of ε. The first three higher order contributions
(β1, β2 and β3) are quantitative corrections to the leading order terms that form the
classic CH model. The last three terms (β5, β6 and β7) in Eq. (2.13) are the generic
higher order nonlinearities for active phase separation.

a) b)

Fig. 2.2 – Comparison of leading order CH equation, extended CH equation and full MIPS
model. a) Solution profiles in the asymmetric case for ε = 0.02. b) Plateau values as a
function of the control parameter ε.
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By rescaling space, time and ρ in the case of α3 = 0, Eq. (2.13) can be rewritten to

∂t′ρ
′ = −∂2

x′
[
ρ′ + ∂2

x′ρ′ − ρ′3
]

−√ε∂2
x′

[
γ1ρ
′2 + γ2∂

2
x′ρ′2 + γ3 (∂x′ρ′)

2
+ γ4ρ

′4
]
. (2.14)

The first part is the parameter-free version of the CH equation [196]. In this rescaled
form it is easy to see that the higher order extensions (γ1-γ4) vanish for ε→ 0, i.e. when
approaching the onset of phase separation. This reiterates the fact that the classic CH
model is the leading order description of active phase separation. Thus, the CH model
in its classic equilibrium form is already sufficient to describe nonequilibrium behavior.
The higher order extensions are useful to describe effects that occur further from phase
separation onset. The extended CH model is, for example, able to reproduce the full
MIPS model with high accuracy even when the leading order CH model already shows
significant quantitative deviations (see Fig. 2.2).

2.3.5. Behavior beyond active phase separation

In [Pub4] and [Pub5], we mainly focused on the surprising similarities between phase
separation in and out of equilibrium. The extension to higher nonlinearities in [Pub6] is
a first indication that the dynamics of active phase separation can go beyond what has
been known from equilibrium phase separation. [Pub7] is a first step to explore possible
nonequilibrium phenomena that occur beyond the onset of active phase separation. We
study a variation of the extended CH model derived in [Pub6] that includes an additional
sixth derivative term, as well as one of the symmetry-breaking higher nonlinearities:

∂tψ = −∂2
x

[
εψ +D4∂

2
xψ −D6∂

4
xψ − ψ3 + β2ψ∂

2
xψ
]
. (2.15)

This model thus includes as special cases both the extended CH model introduced in
Sec. 2.3.4 (for D6 = 0), as well as the conserved Swift-Hohenberg model introduced
earlier in Sec. 1.5 (for β2 = 0). For D4 > 0, the homogeneous state ψ = 0 first
undergoes a long-wavelength instability leading to active phase separation for ε > 0.
Further from threshold, however, we find for certain parameter combinations a secondary
instability triggering a transition to spatially periodic patterns (see Fig. 2.3). We explore
the phase diagrams of phase separation and periodic solutions in more detail in [Pub7].
We also show that there is a region of bistability in which both phase-separated and
periodic solutions may exist.
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time

Fig. 2.3 – Transition from a phase-separated state (left) to a spatially periodic pattern (right)
beyond a secondary bifurcation in a generic active phase separation model.

The existence of spatially periodic patterns in active phase separation systems is in-
triguing. This is a potential further parallel to phenomena known from equilibrium
phase separation processes: Diblock copolymers are known to show a behavior called
microphase separation [198–200]. Here, the covalent binding of two thermodynami-
cally incompatible polymer blocks prevents phase separation on a macroscopic scale.
Instead, the coarsening process in these systems is arrested on the length scale defined
by the polymer sizes creating micro-scale spatial structures. The results presented in
[Pub7] show that periodic patterns are also possible in active phase separation systems.
Importantly, however, the periodic patterns in [Pub7] arise from a secondary instability
while the classic microphase separation described above is the primary instability in
the system. Examples of periodic patterns in nonequilibrium demixing systems include
MIPS clusters which have been found to not always grow to the largest possible size
but instead saturate to form a steady state of “arrested phase separation” [195]. Pe-
riodic patterns have also been found in colonies of reproducing bacteria [201], in the
Vicsek flocking model [202], in simulations of self-propelled particles with long-range
interactions [203] for chemorepulsive active colloids [181], and in mixtures of active and
passive particles [204].

2.3.6. Outlook

The work presented in [Pub4]-[Pub7] introduced active phase separation as a new class
of pattern formation and the Cahn-Hilliard model as the universal amplitude equation
for the conserved order parameter near active phase separation onset. This lays the
foundation for further investigation of nonequilibrium phase separation phenomena.
With cell polarization, chemotactically communicating cells and motility-induced phase
separation we already introduced multiple examples of active phase separation. There
are, however, many other systems that could potentially be categorized into this new
class of pattern formation. With our systematic perturbative scheme introduced in
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[Pub4], we present a recipe to expand the class of active phase separation in the future.
In the work presented here, we mainly focused on the stationary long-term behavior of
active phase separation systems. Analyzing their coarsening dynamics in more detail
is an interesting task to be tackled in the future as well. However, coarsening in the
CH model scales logarithmically in one spatial dimension in the absence of additional
noise [197]. In order to avoid these slow dynamics, our considerations should thus be
expanded to two dimensions prior to detailed investigation of dynamics. Some first
studies on the coarsening behavior in cell polarization models have been performed
within our group [191].
In [Pub6] and sources referenced therein, we have already established that higher order
nonlinearities are believed to play an important role in the dynamic behavior of active
phase separation, especially in the context of MIPS. This aspect is thus worth analyzing
in more detail in the future.
In [Pub7], we found that periodic patterns can arise from a secondary instability further
from active phase separation onset. This is a first indication of a whole world of complex
dynamic behavior and patterns that could lie beyond active phase separation and has
yet to be explored. An interesting question in the context of spatially periodic patterns
is whether a form of active microphase separation also exists immediately at onset.
Several examples of active matter systems which suggest that this could be the case
were referenced in Sec. 2.3.5. A similar perturbative approach as introduced in [Pub4]
could generate a universal equation for active microphase separation.
Finally, the work presented here could be expanded to include oscillatory instabilities.
For unconserved order parameters, we already know that the Ginzburg-Landau equation
as the amplitude equation for spatially periodic patterns has a complex-valued coun-
terpart: the complex Ginzburg-Landau equation describes the amplitude dynamics of
patterns arising from an oscillatory finite-wavelength instability [112]. This raises the
question what an oscillatory counterpart to the CH model would look like and which
spatiotemporal dynamics arise from such an instability. Some preliminary work on this
topic suggests rich spatiotemporal behavior such as coarsening traveling waves or bi-
modal solutions that is worth exploring in more detail in the future.
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Abstract – We investigate the orientation of nonlinear stripe patterns in finite domains. Moti-
vated by recent experiments, we introduce a control parameter drop from supercritical inside a
domain to subcritical outside without boundary conditions at the domain border. As a result,
stripes align perpendicularly to shallow control parameter drops. For steeper drops, non-adiabatic
effects lead to a surprising orientational transition to parallel stripes with respect to the borders.
We demonstrate this effect in terms of the Brusselator model and generic amplitude equations.

editor’s  choice Copyright c© EPLA, 2016

Introduction. – Pattern formation is central to the
wealth of fascinating phenomena in nature. It occurs in a
great variety of physical, chemical and living systems [1,2].
Examples include patterns in isotropic and anisotropic
convection systems [3–7], chemical reactions [8,9] and
biological systems [10–12], or environmental patterns [13].

In real systems, patterns emerge in finite areas or vol-
umes. Consequently, spatially periodic patterns only con-
tain a finite number of wavelengths. Along the system
borders, the relevant fields have to obey boundary condi-
tions that influence the pattern in different ways [3,14–25].
In isotropic systems, stationary patterns may be oriented
perpendicularly to the boundaries [3,15]. In thermal con-
vection, convection rolls align perpendicularly to side walls
due to boundary conditions for the flow fields [17–19].
Boundary conditions at the side walls may also restrict
the range of possible stable wave numbers of periodic pat-
terns [20]. Traveling waves of finite wave number may be
reflected at the boundaries leading to a number of inter-
esting and complex phenomena [21–25].

However, finite systems can also be achieved when the
fluxes and forces driving a pattern, the so-called control
parameters, are sufficiently strong (supercritical) only in a
subdomain of the system. In this case, no specific bound-
ary conditions act on the fields at control parameter drops
to subcritical values. Related to this are studies of ramps
in quasi–one-dimensional systems [26], whereby smooth
ramps may lead to wave number selection [26,27] and rapid
parameter changes to pinning effects for spatially periodic
patterns [28]. But the effects of restricting two dimen-
sional patterns to a finite domain by control parameter

Fig. 1: Stripe patterns inside supercritical subdomains in the
Brusselator model. The control parameter drops on different
length scales δx,y along x and y from βm = 0.05 to subcritical
values in a wide vicinity: (a) δx = δy = λc, (b) δx = δy =
0.32λc, (c) δx = 0.32λc, δy = 1.5λc, (d) δx = 1.5λc, δy =
0.32λc.

drops have not been systematically investigated so far.
Examples of pattern orientations resulting from different
widths of the control parameter drops are shown in fig. 1
and explained in this work.

Recent experiments where pattern forming protein re-
actions take place in finite subdomains of substrates [29]
belong to this class. Control parameter drops can also
be designed in light-sensitive chemical reactions where
illumination of the reaction cell suppresses pattern
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formation [30,31]. If the illumination is only applied to
a subdomain of the system, again no boundary conditions
for the concentration fields are defined along the edge of
the illumination mask.

We investigate how control parameter drops along the
borders of a supercritical subdomain affect the orientation
of stationary spatially periodic patterns when no bound-
ary conditions for the fields are specified. We choose the
Brusselator as a representative model system to study the
influence of the control parameter drop width. This is
complemented by studies of the so-called amplitude equa-
tions for supercritical bifurcations to spatially periodic
patterns [3]. As a general description for this class of pat-
terns, the conclusions drawn from the amplitude equations
emphasize the universality of our results.

For large drop widths, we find that stripes align per-
pendicularly to the borders of the supercritical control
parameter domain. By decreasing the length scale for the
control parameter drop, we find a surprising orientational
transition to stripes in parallel alignment. The analysis of
the amplitude equations reveals additional non-adiabatic,
resonance-like effects favouring parallel stripes.

Model systems and control parameter drop. –

Brusselator. The Brusselator is a common model for
reaction-diffusion systems [32–35]. We use it as a pro-
totype system for supercritical bifurcations to spatially
periodic patterns (Turing patterns). It describes the non-
linear behaviour of the concentration fields u(x, y, t) and
v(x, y, t):

∂tu = ∇2u + a − (b + 1)u + u2v , (1a)

∂tv = D∇2v + bu − u2v, (1b)

with the control parameter b and constant parame-
ters a, D. These equations have the homogeneous fixed
point solution

uh = a , vh = b/a. (2)

Turing patterns with the critical wave number qc bifurcate
from this basic state for control parameter values beyond
its critical one bc [34], where

bc = (1 + aη)2 , qc =
√

aη, (3)

and η :=
√

1/D. The relative distance β of the control
parameter from its critical value bc is given by

b = bc(1 + β), (4)

i.e. βc = 0. Hexagons are typical for the Brusselator near
the onset of Turing patterns. But in this work, we consider
the special case D = a2 where stripes are preferred at the
onset [35]. In this case, the critical wavelength of the
stripes according to eq. (3) is λc := 2π/qc = 2π. We
choose a = 4 throughout this work.

Amplitude equations. The two concentration fields
u and v may be combined to the vector field w(r, t) =
(u(r, t), v(r, t)). We write spatially periodic stripes with
the wave vector qc in the form [3,34]

w(r, t) = wh + Aw̃ei(qc·r) + A∗w̃∗e−i(qc·r), (5)

where wh = (uh, vh). Slow variations (compared to the
wavelength λc) of the envelope A(r, t) can be described
by a dynamical amplitude equation [3,36].

The Brusselator model is isotropic. Hence, in extended
systems only the magnitude qc of the critical wave vector
qc for Turing stripes is fixed, but not its direction. Thus,
all stripe orientations are equally likely at pattern onset.
We consider the amplitude equations in two limits of stripe
orientations: qc = (qc, 0) and qc = (0, qc), called parallel
and perpendicular hereafter. The reduction method to
amplitude equations, the so-called multiple scale analysis,
is well established for supercritical bifurcations [3,36]. The
generic amplitude equations for the two stripe orientations
in the case of a small and constant control parameter β are

∂tA = βA + LA − g|A|2A, (6)

with

L = L2
‖ := ξ2

0

(
∂x − i

2qc
∂2

y

)2

, for qc = (qc, 0), (7a)

L = L2
⊥ := ξ2

0

(
∂y − i

2qc
∂2

x

)2

, for qc = (0, qc). (7b)

The coherence length ξ0 and the nonlinear coefficient g for
the Brusselator in the special case of D = a2 are ξ2

0 = 1
and g = 3/(2a2) [35].

Control parameter drop. We introduce the control pa-
rameter drop by assuming the spatially dependent control
parameter β(x, δx):

β = β0 +
M

2

[
tanh

(
x − xl

δx

)
− tanh

(
x − xr

δx

)]
. (8)

We assume L := xr − xl � λc and β0 < 0. M and β0

are chosen such that the maximum value βm = β0 + M
is small and positive. Then β(x, δx) is supercritical in the
subdomain x̄l < x < x̄r, where

x̄l,r = xl,r ± δx

2
ln

( −β0

M + β0

)
, (9)

and drops down to the subcritical value β0 outside this do-
main. The steepness of the control parameter drop around
x̄l,r increases with decreasing values of the drop width δx.

For small values of δx, the control parameter β(x, δx)
varies rapidly in a narrow range around x̄l,r. However,
only the slowly (adiabatically) varying contributions to
β(x, δx) affect the solutions of amplitude equations. The
rapidly (non-adiabatically) varying part is smoothed out
and must be treated separately. We therefore decompose
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β(x, δx) into an adiabatic and non-adiabatic part. For
this purpose, we introduce the slow length scale δA :=
2ξ0/

√
βm > δx and choose β0 = −ε, M = 2ε (where ε is

positive and small). We then express the slowly varying
contribution B0(x) via eq. (8) by choosing δx = δA:

B0(x) = β(x, δA). (10)

The difference between β(x, δx) and B0(x) becomes
small in the centre of [xl, xr] and takes its largest val-
ues around xl,r. We expand the rapidly varying difference
β(x, δx) − B0(x) into a series to obtain

β(x, δx) = B0(x) +
M

2

∑

m

{
Bl

m(x) sin [mqc(x − xl)]

+Br
m(x) sin [mqc(x − xr)]

}
, (11)

where m = n/NL, n ∈ N and NL = L/λc. The functions
Bl,r

m (x) are localised around xl,r and we choose a Gaussian
for their representation:

Bl,r
m (x) = B̂l,r

m exp

[
− (x − xl,r)

2

δ2
G,m

]
. (12)

The Gaussian amplitudes B̂l,r
m and their widths δG,m are

determined via a correlation analysis. We calculate the
correlation function between the rapidly varying part

Δβ̃(x, δ) = tanh(x/δ) − tanh(x/δA) (13)

and the test function

fm(x, δtest) =
1√

πδtest
e−x2/δ2

test sin(mqcx). (14)

We then choose the Gaussian width δG,m to be the value of
δtest that maximises the correlation function. The ampli-
tudes B̂l,r

m are calculated via the overlap integral between
fm(x, δG,m) and Δβ̃. Figure 2(a) shows the contributions
B̄l

m := εBl
m(x) sin(mqcx) for m = 1, 2 in comparison to

the full shape of β(x, δx). Both functions are localised
around xl = 0 and approach zero within a short range
(� δA) around the control parameter drop. The Gaussian

amplitudes B̂l,r
1 and B̂l,r

2 decrease as a function of the drop
width δx (fig. 2(b)). These non-adiabatic contributions

vanish for δx > δA. The amplitude B̂l,r
1 is usually larger

than B̂l,r
2 , except in the limit of very small drop widths.

The patterns in fig. 1 are obtained for a rectangular su-
percritical subdomain of the control parameter in the form

β = β0 +
M

4

[
tanh

(
x − xl

δx

)
− tanh

(
x − xr

δx

)]

×
[
tanh

(
y − yb

δy

)
− tanh

(
y − yt

δy

)]
. (15)

Here, we introduced a second drop width δy to describe
the additional spatial dependence of β in the y-direction.
β(x, y, δx, δy) is supercritical in the two-dimensional area
[x̄l, x̄r] × [ȳb, ȳt].

-ε

0

ε

-δA 0δx δA

a)

x

β(x) B−l
1(x) B−l

2(x)

0

0.2

0.4

0.6

0 δA/4 δA/2 3δA/4 δA

b)

δx

B̂l,r
1 B̂l,r

2

Fig. 2: (a) Contributions B̄l
1(x) and B̄l

2(x) to the control pa-
rameter drop β(x, δx) for δx = 0.11δA. (b) Gaussian ampli-
tudes B̂l,r

1 and B̂l,r
2 of the localised amplitudes as a function of

the drop width δx for ε = 0.05.

Non-adiabatic effects cause an orientational
transition. – We now include the control parameter drop
into the amplitude equation using the decomposition given
in eq. (11). The control parameter β in eq. (6) is re-
placed by the slowly (adiabatically) varying part B0(x)
as given by eq. (10). The short-wavelength contributions
∝ Bl,r

m (x) exp (imqcx) with m = 1, 2, 3, 4 in eq. (11) cause
additional (non-adiabatic) terms in the amplitude equa-
tion for parallel stripes [37]. It then takes the form

∂tA = B0(x)A + L2
‖A − g|A|2A

+

4∑

m=1

αmBm(x) (A∗)m−1
. (16)

Here, αm are constant parameters depending on the re-
spective system. The complex localised contributions
Bm(x) due to the control parameter drop are given by

Bm(x) = i
M

4

[
Bl

m(x)e−imqcxl − Br
m(x)e−imqcxr

]
. (17)

The magnitudes of B1(x) and B2(x) are similar, as shown
in fig. 2. The coefficient B2(x) reduces the threshold of the
pattern onset [37]. B1(x) changes the supercritical bifur-
cation (in the case B1 = 0) into an imperfect one [37,38]
and, therefore, has a stronger impact than B2(x). The ef-
fects caused by B3,4(x) are restricted to the post-threshold
regime and are much smaller than B1,2(x). Hence, they
are neglected henceforth. Equation (16) can be derived
from the functional

F‖ =

∫
dxdy

[
−B0(x)|A|2 +

g

2
|A|4 +

∣∣L‖A
∣∣2

−
2∑

m=1

αm

m

(
Bm(x)A∗m

+ B∗
m(x)Am

)]
(18)

via ∂tA = −δF‖/δA∗. For the Brusselator in the case
D = a2, we find α1 = 2a and α2 = 5/3.

The amplitude equation for perpendicular stripes with
qc = (0, qc) is not affected by resonance contributions
∝ Bm. It is described by eq. (6) with L = L2

⊥ as given
in eq. (7b) and the slowly varying control parameter
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β = B0(x), cf. eq. (10). The related functional is

F⊥ =

∫
dxdy

[
−B0(x)|A|2 +

g

2
|A|4 + |L⊥A|2

]
. (19)

For small values of δx, the coefficients B1,2 have consid-
erable magnitude (fig. 2(b)). However, the related non-
adiabatic effects only affect the amplitude equation for
parallel stripes, cf. eq. (16). Due to the imperfect bifurca-
tion, parallel stripes already have a finite amplitude below
the bulk threshold βm = 0, especially around xl,r, where
B1,2 take the largest values. This finite amplitude A de-
creases the functional F‖ for parallel stripes with respect
to F⊥. Thus, for small values of δx, parallel stripes are
preferred compared to perpendicular stripes.

For large values of δx, the non-adiabatic contributions
B1,2 become small and can be neglected (fig. 2(b)). In this
case, the amplitude equations and the functionals for the
two different stripe orientations only differ in the linear op-
erator. These include different orders of derivatives in the
x-direction: |∂xA|2 in the functional for parallel stripes,
eq. (18), and |∂2

xA|2 for perpendicular stripes, eq. (19).
Thus, spatial variations of the amplitude A(r, t) affect the
two functionals differently. The slow spatial variation of
the control parameter B0(x) in the x-direction is reflected
in a spatial variation of the amplitude A(r, t). This in-
creases both functionals. However, due to the different
orders of x-derivatives, the functional for perpendicular
stripes has a lower value [3,39]. Therefore, perpendicular
stripes will be preferred for large δx.

According to this reasoning, we predict stripes aligned
perpendicular to the supercritical border for a large drop
width δx and parallel for small δx. Therefore, we expect
an orientational transition for medium values of δx. Note,
for these considerations only the contributions B0, B1 and
B2 to the decomposition in eq. (11) are taken into account.
However, the predicted orientational transition of stripes
is rather insensitive to these approximations as confirmed
by simulations of the Brusselator in the next section.

Numerical results for the Brusselator. – In the
previous part we found an orientational transition of
stripe patterns by changing the width of control parameter
drops. This prediction is based on a reasoning including
approximations. Therefore, the effect is verified by simula-
tions of the Brusselator model, cf. eqs. (1), with supercrit-
ical subdomains of width L = 20λc, embedded in larger
subcritical domains with overall system sizes lx,y. The
model is solved using a common pseudospectral method
with periodic boundary conditions [40] and Nx,y modes,
respectively. We choose β0 = −0.05 and perturb the basic
solution by small amplitude random noise.

For large widths δx of control parameter drops, i.e. slow
variations of the control parameter, the preferred orienta-
tion of a stripe pattern is nearly perpendicular to the bor-
ders of the supercritical domain, i.e. q ∼ (0, qc), as shown
in fig. 3 for δx = 5λc. This confirms the prediction in
terms of the amplitude equations in the previous section

Fig. 3: Stripes favour a perpendicular orientation with respect
to shallow control parameter drops (δx = 5λc). Simulation of
the Brusselator started at βm = 0.001 and was slowly increased
to βm = 0.05. Parameters: lx = ly = 50λc, Nx = Ny = 1024.
Note: only a cutout of the simulation is shown.

Fig. 4: Simulations of the Brusselator model with a narrow
control parameter drop (δx = 0.5λc). Cross-sections of the
two-dimensional stripe pattern for (a) βm = −0.025, (b) βm =
−0.01, (c) βm = 0. (d) The stripe amplitude as a function
of βm implies an imperfect bifurcation. (e) Snapshot of the
parallel stripes for βm = 0.02. Simulation parameters: lx =
50λc, ly = 25λc, Nx = 1024, Ny = 512.

(for similar results for periodic modulations in extended
systems see ref. [41]). Similar orientations are obtained
for drop widths down to about δx 	 λc.

For small δx, e.g. δx = 0.5λc, the stripes align parallelly
to the borders of the supercritical range, i.e. qc ∼ (qc, 0),
as in fig. 4(e) for βm = 0.02. Moreover, localised Tur-
ing stripe patterns of finite amplitude occur around the
borders at xl,r already at subcritical values of βm (see
cross-sections in fig. 4(a) and (b)). For increasing βm,
they expand into the whole supercritical domain. At the
bulk threshold βm = 0 (fig. 4(c)) the stripes already have a
finite amplitude throughout the range [xl, xr]. The maxi-
mum stripe amplitude of the stationary solution as a func-
tion of βm is shown in the bifurcation diagram in fig. 4(d).
The form of the bifurcation is imperfect, as expected from
the analysis on the basis of the amplitude equations in the
previous section.

The two different preferred stripe orientations for large
δx = 5λc in fig. 3 and small δx = 0.5λc in fig. 4
clearly confirm an orientational transition of stripes in the
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Fig. 5: Comparison of the functional for stripes as a function
of the drop width δx with the stripe wave vector qc = (0, qc)
(filled circles) and qc = (qc, 0) (open diamonds). Parameters:
β0 = −0.05, M = 0.1.

supercritical domain depending on the width of the control
parameter drop along its border.

We can further restrict the domain size by varying
the control parameter simultaneously along the x- and
y-direction, cf. eq. (15). In these rectangular domains1,
one can combine different drop widths δx and δy to trig-
ger different stripe orientations as shown by four exam-
ples in fig. 1. Combining, e.g., large drop widths at the
long side of the rectangle with small drop widths at the
short side creates a remarkably uniform stripe pattern, cf.
fig. 1(d). Using different combinations of δx,y may be a
promising tool for designing Turing patterns in localised
light-sensitive chemical reactions [42].

Orientational transition regime. – The orienta-
tional transition of stripes is deduced in terms of ampli-
tude equations and confirmed by numerical simulations of
the Brusselator model. The amplitude equations can be
derived from the functionals, eqs. (18) and (19). Calcu-
lating these functionals as a function of the drop width
allows to determine the preferred orientation for this δx.
In the range where F⊥ < F‖, a perpendicular stripe ori-
entation is expected and vice versa. For this purpose, we
perform simulations of the amplitude equations for the two
stripe orientations using the aforementioned pseudospec-
tral algorithm (simulation parameters: lx = ly = 50λc,
Nx = Ny = 1024, L = 20λc, β0 = −0.05, βm = 0.05).
When the solutions reach the stationary state, the func-
tionals displayed in fig. 5 are calculated.

The functional corresponding to perpendicular stripes
in eq. (19) does not contain the non-adiabatic contribu-
tions B1 and B2 to the control parameter drop. Re-
gardless of the assumptions made for the justification of
eq. (19) and the related amplitude equation, one may use
β(x, δx) instead of B0(x). The functional then deviates
only slightly from its constant value in the case of B0(x).
In addition, fig. 5 shows that the functional with β(x, δx)
is nearly independent of δx, i.e. stripes perpendicular to

1Simulation parameters: β0 = −0.1, βm = 0.05, Lx = 30λc,
Ly = 20λc, lx = 60λc, ly = 50λc, Nx = Ny = 1024.

the border of the supercritical range are rather insensitive
to the width δx.

For parallel stripes, q = (qc, 0), the resonance effects
covered by B1 (and B2) are relevant and the associated
functional is given in eq. (18). The two functionals for
the two different stripe orientations are shown as a func-
tion of the drop width δx in fig. 5. For narrow control
parameter drops, i.e. δx small, the functional for parallel
stripes is significantly lower. Thus, the parallel orientation
is preferred. However, the functional for parallel stripes
strongly increases as a function of the drop width. The
orientational transition takes place at the intersection of
the two functionals. For larger δx, the perpendicular ori-
entation of the stripes is preferred.

Summary and conclusions. – In this work, we iden-
tified and investigated a new class of finite pattern forming
systems confined by control parameter drops from super-
to subcritical values. These orient stripe patterns even
without boundary conditions for the relevant fields. The
stripe orientation depends on the width of the control pa-
rameter drops. We found a novel orientational transition
of stripe patterns with respect to the borders as a function
of the width of control parameter drops.

In light-sensitive chemical reaction-diffusion systems
showing Turing patterns [30,31] the transition length be-
tween the patterns (supercritical) and the homogeneous
state (subcritical) may be varied by the length of a smooth
transition between illuminated and dark areas.

The Swift-Hohenberg (SH) model [43] is, besides the
Brusselator a further paradigmatic model for studying the
formation of spatially periodic patterns [2,3]. It behaves
differently with respect to control parameter drops along
the border of a supercritical domain. The basic state of
the Brusselator is a function of the control parameter b,
cf. eq. (2). Therefore, control parameter drops change
the basic state of the bifurcation to Turing patterns. In
the case of steep control parameter drops, the bifurcation
to parallel stripes becomes imperfect, causing a different
orientation than for smooth control parameter variations.
In contrast, the basic state uh = 0 of the SH model re-
mains unchanged for spatially varying control parameters.
The onset of periodic patterns is reduced but the bifurca-
tion remains perfect. The local 1:2 resonance occurring
in the case of a steep control parameter drop is not suffi-
cient to change the stripe orientation like for the Brusse-
lator. The same applies to the mean-field model for block
copolymers (see, i.e., [44]). Therefore, we do not find the
aforementioned orientational transition of stripe patterns
in the SH or the block copolymer model. However, in
common systems where the basic state is also changed by
control parameter variations, orientational transitions of
stripe patterns are very likely.

Our results for stationary patterns may also be im-
portant for traveling waves that occur, for instance, in
the cell biological MinE/MinD protein reaction on flat
substrates [12,29]. To mimic the effects of cell confinement
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in such extended experiments, reactive membranes were
created in subdomains of the substrate [29,45]. In this
way, the traveling waves are restricted to the range above
the functionalised parts of the membrane. These may be
interpreted as subdomains with a supercritical control pa-
rameter. In this experiment the traveling waves align per-
pendicularly to the borders of the functionalised area [29].
It is very likely that this orientational behaviour is again
governed by generic principles similar to those discussed
in this work and specific molecular reaction schemes or
three-dimensional effects provide quantitative modifica-
tions [29,46,47]. Is the complex behavior of MinE/MinD
oscillations in further restricted domains, as investigated
recently in ref. [48], determined by the specific properties
of the kinetic reaction models? Or do again generic prin-
ciples of pattern formation play a leading role as described
in this work?

∗ ∗ ∗
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Abstract
Pattern formation and selection are fundamental, omnipresent principles in nature—from small cells
up to geological scales. InE. coli bacteria, for example, self-organized pole-to-pole oscillations ofMin
proteins—resembling a short standingwave—ensure correct positioning of the cell division site. The
same biochemical reaction leads to traveling proteinwaves on extendedmembranes in in vitro
experiments. Are these seemingly contradictory observations of system-spanning importance?We
show that a transition of nonlinear travelingwave patterns to reflection-induced standingwaves in
short systems is a generic and robust phenomenon. It results from a competition between two basic
phenomena in pattern formation theory.We confirm the genericfindings for the cell-biologicalMin
reaction and for a chemical reaction–diffusion system. These standingwaves showbistability and
adapt to varying system lengths similar as pole-to-pole oscillations in growing E. coli.Our generic
results highlight key functions of universal principles for pattern formation in nature.

1. Introduction

Avariety of fascinating patterns emerges spontaneously in awealth of living or inanimate driven systems [1–13].
The esthetic appeal of these patterns is immediately apparent to all observers [1]. But universal principles of
patterns and their importance in nature also attract researchers frommany disciplines. They explore, for
instance, the important functions patterns fulfill: self-organized patterns in biology guide size sensing [6],
positioning of protein clusters [7], self-drivenmorphogenesis [8] and communication between species [10].
They furthermore enhance heat transport influid systems [3, 11] and are the basis of successful survival
strategies for vegetation inwater-limited systems [12–14].

Patterns include both stationary spatial structures such as stripes or hexagons, and dynamic structures like
travelingwaves [1–4]. Travelingwaves occur in such different and prominent systems as thermally driven fluid
convection [3, 15–18], electroconvection in nematic liquid crystals [19, 20] or the biochemicalMin protein
reaction on extendedmembranes [21, 22]. As these examples show, patterns emerge in diverse systems and are
driven by very differentmechanisms.Nevertheless, once stripes, hexagons or travelingwaves have evolved, they
often have certain universal properties described by pattern formation theory [2–4, 12].

In nature, patterns often evolve in the presence of domain boundaries—be it thewalls of a convection cell,
thefinite size of a petri dish or themembrane enclosing the cytosol of a biological cell. These boundaries have a
strong influence on the process of pattern formation. Stripe patterns, e.g., respond to systemboundaries by
adjusting their stripe orientation or selecting specificwavelengths [3, 23–25]. Systemboundaries in general
break symmetries. Spatially varying parameters break them, too, and thus have similar effects [26–28]. The
response of stationary periodic patterns to such symmetry breaking effects is broadly similiar in different
systems, i.e. independent of systemdetails [3, 23, 25]. Travelingwaves near boundaries show similar fascinating
spatio-temporal behavior [15, 16, 29, 30]. However, the effects of strong confinement on nonlinear wave
patterns have not yet been thoroughly examined.
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In this work, we show that nonlinear travelingwaves inevitably change into reflection-induced standing
waves in sufficiently short, confined systems. Since this generic phenomenon relies on basic universal principles
of pattern formation, we explore it atfirst within aminimalmodel for nonlinear travelingwaves. The resulting
system-spanning properties can then be transferred to related phenomena in nature: in theMin system, e.g.,
travelingwaves formby coordinated attachment and detachment ofMin proteins from themembrane. This
protein systemoriginates fromE. coli bacteria where it plays an important role in the cell division process
[31–33]: inside the rod-shaped E. coli bacteria, oscillating proteins shuttle between the two cell poles. Thereby,
they ensure the positioning of the cell division site at the cell center. In in vitro experiments on the other hand,
the same biochemical reaction leads to travelingwaves on large extendedmembranes [21, 22]. A deeper
understanding of generic properties of nonlinear waves in confinement will help to reconcile these seemingly
contradictory observations.

2. Transition to reflection-induced standingwaves in short systems

Wefirst analyze the transition fromnonlinear travelingwaves in extended systems to reflection-induced
standingwaves in strongly confined systems using a genericmodel. ‘Strong confinement’ refers to short system
lengths in the order of the preferredwavelength of the travelingwave. Themodel we use is the complex Swift–
Hohenberg (CSH)model [4, 34–36],

u x t a u b q u f u c u u, i 1 i i 1 i , 1t x x0
2

0
2 2 2 2 2e x g¶ = + - + + ¶ + ¶ - +( ) ( ) ( )( ) ( )∣ ∣ ( )

for the complex scalar field u(x, t) in one spatial dimension. In extended systems and for ε>0, thismodel shows
travelingwaveswith a preferred wavelengthλ0=2π/q0 over a wide range of parameters.Wemeasure the
system length L in units ofλ0 since it represents an intrinsic length scale of the problem.

Simulations of equation (1)with no-flux boundary conditions (see appendix A for details) for three different
system lengths lead to the results shown infigure 1: depending on the system length, we get three significantly
different wave solutions.

Inmoderately short systems (L=3λ0, top), wefind a travelingwave pattern in the center (bulk) of the
system. This resembles the travelingwave patterns that occur for theCSHmodel in large, quasi-unconfined
systems. Two travelingwave directions, described by uR(x−ωt) (traveling to the right) and uL(x+ωt)
(traveling to the left), are equally likely in extended pattern forming systems. In contrast to, e.g., light or sound
waves, however, travelingwaves in pattern forming systems are nonlinear.While light or soundwaves are thus
superimposable, two counter-propagating nonlinear waves compete with each other: one of the travelingwave
directions is spontaneously selected, while the other is suppressed [3, 29]. But their confinement infinite systems
introduces an additional effect: travelingwaves are reflected at the boundaries of afinite system. The boundary
conditions apply to thewholefield u(x, t) in equation (1), i.e. the incoming and reflectedwaves together.

Figure 1. Strong confinement leads to significantly different wave solutions depending on the system length. (Top)Modulated
travelingwave (TW) for L=3λ0, (Middle) two-node standingwave (SW) for L=λ0, (Bottom) one-node standingwave for
L=λ0/2. Simulations of equation (1)with no-flux boundaries, represented in space-time plots. Shown is the real part of the complex
field u(x, t) for the parameters ε=0.5, a=−0.8, ξ0=1, b=0, q0=1,f=0.5, γ=1, c=0.5.
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Therefore, the sum uR+uL, has tomatch them at the systemborders. This boundary coupling forces the
incoming and reflectedwaves into coexistence in afinite neighborhood of the boundary. The resulting
superposition of bothwave directions leads to standingwave patterns. Further away in the bulk the nonlinear
competition between bothwave directions dominates and the reflectedwave is damped by the predominant
incoming travelingwave. The largest system infigure 1 (top) shows the interplay between both bulk and
boundary effects. Reflection effects dominate very close to the top and bottomboundaries of the system. There,
the incoming and reflectedwave form a local standingwave. The extent of this standingwave depends on the
distance ε from threshold and increases by decreasing ε. In the bulk region, however, wave competition prevails
—the pattern resembles a travelingwave. By decreasing the system length L, the boundariesmove closer
together, i.e. the fraction of the systemwith significant superposition of incoming and reflectedwaves increases.
Therefore, the boundary-induced reflection becomesmore andmore important. For sufficiently short systems
—shorter than a critical length Lc—the reflection effect predominates the nonlinear competition in thewhole
system. As a result, standingwaves become inevitable. Note that these standingwaves are reflection-induced. In
principle, standingwave solutions can be inherently stable.However, this is not the case here: in theCSHmodel,
standingwaves in extended systems are always unstable. Thus, the standingwaveswefindhere are a direct
consequence of the confinement.While this novel, reflection-induced transition from traveling to standing
waves is generic, the critical length Lc depends on the chosen parameters and is specific to each system. The
middle and bottompanel infigure 1 show simulations for L=λ0 and L=λ0/2, respectively. Both system
lengths are below Lc leading to standingwave patterns. In the standingwave regime, the system length influences
the number of standingwave nodes. For L=λ0 (figure 1,middle) and similar lengths, wefind a two-node
standingwave. If only about half of the preferredwavelength fits into the system (e.g. L=λ0/2,figure 1
bottom), the standingwave has a single node in the system center.

3. Length adaptability and bistability of nonlinear standingwaves

The discovered reflection-induced standingwaves in strongly confined systems are further characterized by
exploring their linear stability. For stationary stripe patterns it is well known that they are stable for different
wavenumbers in afinite bandwidth. The basis of thismultistability is the so-called Eckhaus stability band
[37, 38]. Both fluid experiments [39, 40] and numerical analysis of different systems [27, 41] confirmed
multistability for stationary patterns (e.g. stripes) in extended systems. The Eckhaus stability band also exists for
travelingwaves in unconfined systems [4, 17, 42, 43]. Do the standingwaveswe find in strongly confined systems
also showmultistable behavior? Does the confinement influence the stability band compared to spatially
extended systems?

An analytical approximation of a standingwave solution of equation (1) is given by

u x t F F qx, e e e 2 e cos , 2t qx qx ti i i i= + =- W - - W( ) [ ] ( ) ( )

with amplitude F and frequencyΩ,
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Due to the no-flux boundaries, thewavenumber q is connected to the system length L via q=nπ/L, where
n=1, 2, 3 ... is the number of nodes. This standingwave solution in equation (2) theoretically exists for F2>0,
i.e. for q q0

2
0
2 2 2e x> -( ) . In nature, e.g. in (bio)chemical reactions, the control parameter value, corresponding

to ε in ourmodel, is oftenfixed above the threshold of pattern formation. Then, standingwaves only fulfill the
aforementioned existence conditionwithin afinite range of system lengths. Therefore standingwaves with n
nodes only exist in a certain length regime (existence band), located around L=nλ0/2. In addition, existence
ranges of standingwaves with different numbers of nodesmay overlap. Thus, for certain system lengths,
multiple standingwave solutions (with different numbers of nodes) exist simultaneously. However, parameter
rangeswhere patterns theoretically exist are not equivalent to the parameter rangeswhere they are stable. In fact,
patterns are usually not stable throughout their whole existence range [3, 17, 27, 39–42]. By also analyzing the
stability of standingwaves, we thus identify the range inwhich to expect these solutions, especially in
experiments (see SM is available online at stacks.iop.org/NJP/20/072001/mmedia formore details on the
linear stability analysis).

Figure 2(a) shows the stability regions of standingwave solutions as a function of both system length L and
the control parameter ε. For a given system length, standingwaveswith n nodes only exist for sufficiently large

q n L0
2

0
2 2 2e x p> -( ( ) ) . Below this threshold (black line infigure 2(a)) , the homogeneous solution u=0 is

stable and no pattern occurs. The stability range of standingwaveswith nnodes is located around L=nλ0/2 at
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moderate values of ε. For L=nλ0/2, thewavelength of the standingwave corresponds to the preferred
wavelengthλ0 of the CSHmodel. For these ‘optimal’ system lengths, standingwaves are stable over a large range
of control parameter values. Nevertheless, we can deviate from these optimal lengthswhile stillmaintaining
stable standingwaves. This creates regions of stability in the ε-L-plane. These stability regions constitute the
Eckhaus stability band for different number of nodes.We can now compare thewidth of the Eckhaus band to the
width of the existence band for the standingwaves. In extended systems, thewaves are only stable in a subrange
of their existence band. In contrast, in our confined systems close to the onset of pattern formation, the Eckhaus
band spans thewhole existence range (see figure 1 in SI). Additionally, adjacent stability regionsmay be large
enough to overlap. In these cases, standingwaveswith both n and n+1 nodes are stable. These overlapping
stability regions therefore constitute areas ofmultistability. For large values of ε (above the dashed line in
figure 2(a)), standingwaves eventually lose stability. Simulations then show a transition to travelingwave
patterns such as infigure 1 (top). The details of the stability regions also depend on the other parameters of the
CSHmodel. Parameter f, e.g., which is connected to the group velocity of thewaves, qualitatively changes the
exact shape of the stability regions (figure 2(b)). As a result, the overlap between adjacent stability regions
increases with increasing f. Other systemparameters such as b or c onlymarginally change the stability of
standingwaves (figures S2 and S3) in confined systems. Importantly, however, the generic principle of a
transition from traveling to standingwaves in short systems remains qualitatively independent from system
details.

Note that due to the shape of the stability regions, different scenarios are possible upon observing systems
with increasing length: if we choose ε such that stability regions overlap, we expect direct transitions between
standingwaveswith an increasing number of nodes (as seen infigure 1). Inside the overlap, there is bistability of
standingwaveswith different numbers of nodes. Therefore, both types of standingwaves are possible and the
resulting pattern depends on initial conditions (see figure 3(a)). Notably, this provides the possibility for
hysteresis. The transition fromone to two nodes in a growing system, e.g., takes place at a different system length
than the reverse transition in a shrinking system. For other values of ε, the different standingwave solutions are
intersected by either the homogeneous solution (for small ε) or by travelingwave patterns (for larger ε,
figures 3(b), (A)–(C)). In all cases, standingwaves eventually lose stability for sufficiently large systems (after
crossing the dashed line infigure 2(a)). For afixed system length L, standingwaves also loose their stability for
sufficiently large ε (figures 3(b), (D)–(E)). These transitions tomodulated travelingwaves—both as a function of
L and ε—take place in the formof supercritical (continuous) bifurcations (figure 3(c), see SM for details on how
this was calculated).

4. Reflection-induced standingwaves inmodels for a chemical reaction and theMin
protein system

Minimalmodels such as theCSHmodel we study here for travelingwaves are powerful tools to study system-
spanning properties of self-organized patterns. System-specificmodels describing travelingwaves are usually
more complex than theCSHmodel. They are, e.g., often composed of several coupled nonlinear equations and/
or include higher order nonlinearities (see e.g. [3, 21, 22, 44–49]).Moreover, travelingwaves can occur far from
the onset of pattern formation. Possible intricacies in these cases include secondary instabilities or anharmonic

Figure 2. Stability and length adaptability of standingwaves. (a) Stability regions of standingwaves as a function of system length L and
control parameter ε. Shaded regions indicate stable standingwaves with n=1, 2, 3, 4 nodes. Homogeneous solution is stable below
solid black line and travelingwave patterns in the bulk above dashed lines. Parameters in equation (1): a=0, ξ0=1, b=0, q0=1,
f=0.5, γ=1, c=0.5. (b) Influence of the group velocity parameter f on the stability of standingwaves solution in the CSH system.
Parameters: f=0.0 (I), 0.2 (II), 0.5 (III), 0.7 (IV), other parameters as in (a).
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wave profiles. Such effects can potentially overshadow the generic behavior of travelingwaves under constraints
discussed so far. Apart from these exceptions, however, evenmore complex scenarios often qualitatively follow
generic principles extracted fromminimalmodels. Thus, our results obtained from the generic CSHmodel help
us to understandwave patterns inmore complex systems.

We support this view by investigating the behavior of nonlinear travelingwaves under confinement in two
specific systems far from equilibrium. Thefirstmodel describes the aforementionedMin protein oscillations in
E. coli bacteria [21]. The second example is an extended Brusselator—a chemical reaction–diffusionmodel that
forms travelingwaves [49] (see appendices B andC for details on bothmodels). Asfigures 4(a) and (b) show, the
qualitative behavior of nonlinear waves in both of thesemodels is very similar to the generic CSHmodel: in
sufficiently strong confinement, travelingwave patterns inevitably change into reflection-induced standing
waves. Depending on the system length, we alsofind standingwave patterns with different numbers of nodes.
Note that both sets of simulations take place far beyond threshold. In this highly nonlinear regime the spatial
dependence of thewaves cannot be described by a single harmonic as in equation (2). Instead, they include
higher harmonics—as seen in the Fourier spectra infigures 4(c) and (d).

Bothmodels have a similar growth dispersion relation for perturbations of the homogeneous basic state as
theCSHmodel—with amaximumat afinite wavenumber, while othermodes are damped. Furthermore, the
extended Brusselator shows a continuous bifurcation from the homogeneous state to travelingwave patterns—
again, similar to theCSHmodel. On the basis of these commonproperties, the similar behavior of nonlinear
waves in strong confinementwere to be expected. Travelingwaves in theMinmodel infigure 4(b) are even
further from threshold and thus in the strongly nonlinear regime.Nevertheless, we find the same scenarios for
theMin reaction as for theCSHmodel and the Brusselator. This further supports the generic nature of our
predictions on reflection-induced standingwaves.

Figure 3. Scenarios for transitions between standing and travelingwave patterns. (a)Bistability of standingwaves with 1 and 2 nodes
due to overlapping stability regions. Depending on initial conditions, both a standingwavewith one node (left) or two nodes (right) is
possible for L=0.79λ0 and ε=0.55. (b)Different scenarios are possible upon changing systemparameters. Forfixed ε=0.8, we
get 3 different solutions upon increasing the system length L: from a standingwavewith one node (A, L=0.5λ0) tomodulated
travelingwaves (B, L=0.8λ0) to 2-node standingwave (C, L=λ0). For a fixed system length L=1.5λ0, there is a transition from a
3-node standingwave (D, ε=0.4) to amodulated travelingwave (E, ε=0.8). (c)Transitions from standingwaves tomodulated
travelingwaves are supercritical bifurcations as both a function of the system length L (left) and the control parameter ε: the amplitude
of travelingwaves increases continuously above the critical length Lc or the critical control parameter εc, respectively (see SM formore
details). Additional systemparameters for all simulations in this panel: f=0.2, rest as given infigure 1.
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Furthermore, ourfindings are not limited to no-flux boundary conditions. The reflection-induced
transition to standingwaves prevails for different boundary conditions such asfixed boundaries
(u u 0x x L0 = == =∣ ∣ ). The only qualitative difference is the position of the standingwave nodes: they are shifted
to the boundaries due to the vanishing fields at these points (see figure S4).

Nonlinear travelingwaves in extended systemsmay be convectively unstable directly beyond threshold. This
is also known as Benjamin–Feir instability [3, 4]. For theCSHmodel, this is the case in the parameter range
b f q c4 10

2
0
2x+ > -( ) . In this Benjamin–Feir unstable regime, spatio-temporally chaotic solutions are possible

(above the transition to absolute instability). System sizematters for spatio-temporal chaos aswell: strong
confinement and the related boundary-induced reflection can reestablish ordered standingwaves (seefigure S5).

5.Discussion

In ourworkwe identified generic properties of nonlinear waves in very short systems, i.e. under strong spatial
confinement.We found a universal and robust reflection-induced transition from travelingwave patterns in
extended systems to standingwaves in sufficiently short systems. Stability analysis shows that these standing
waves can adapt to different system lengths. This corresponds to stability within afinite wavenumber band—a
feature they sharewith stationary spatially periodic patterns or travelingwaves [3, 17, 38–42]. They can also react
to larger length variations by changing their number of nodes.We alsofindmultistability of standingwaveswith
different numbers of nodes in a systemof the same length.

Our results obtained in terms of basic pattern formation theory show striking similarities to oscillatingMin
protein patterns.We hypothesize that basic generic properties of nonlinear wave patterns have a key function in
theMin system. Theymay provide themissing link between pole-to-poleMin oscillations in short systems [31,
50–52] and traveling proteinwaves on extendedmembranes [21, 22]: the pole-to-pole oscillations inE. coli
behave like standingwaves originating from travelingwaves confined to short systems.We also suggest that
generic features of the reflection-induced standingwaves such as length adaptability further contribute to the

Figure 4.Waves in confinement in a Brusselator andMinmodel. (a)Effects of strong confinement onwave patterns in an extended
Brusselatormodel, equations (2.1a)–(2.1c): (Top)modulated travelingwave for L=15λc, (Middle) six-node standingwave for
L=3λc, (Bottom) one-node standingwave for L=λc/2. (Shown are space-time plots of the concentration field u(x, t).) (b)Effects of
strong confinement onwave patterns in simulations of theMinmodel, equations (3.1a)–(3.1d): (Top)Modulated travelingwave for
L=300 μm, (Middle) two-node standingwave for L=100 μm, (Bottom) one-node standingwave for L=50 μm. (Shown are
space-time plots of the totalMinD concentration.) (c)Power spectra for the simulations of the Brusselatormodel shown in (a) for
L=λc/2 (left) and L=15λc (right). Themode n=1 corresponds to the dominantmode in the Fourier spectrum, n=2, 3 to
multiples of the dominantmode. (d)Power spectra for the simulations of theMinmodel shown in (b) for L=50 μm (left) and
L=300 μm (right).
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regulation of cell division. This view is supported by experimental observations in theMin system: depending on
bacteria length, theMin proteins also form standingwaveswithmultiple nodes [31, 47, 53] or even traveling
waves [47].More importantly though, not only do living bacteria slightly differ in length, they also actively grow.
Tomaintain accurate cell division at the cell center, the pole-to-pole oscillationsmust be robust over a range of
cell sizes. The generic length adaptability of reflection-induced standingwaves enables pole-to-pole oscillations
in theMin system to adapt to the growing cell. In fact, E. colimaintain robust pole-to-pole oscillations even as
they almost double in length prior to cell division. Continued cell growth tofilamentous bacteria also allows for
transitions between standingwaveswith different numbers of nodes or to travelingwaves [33, 47, 53]. Even
multistability of different wave patterns has recently been found in living E. coli [51].

Due to their generic nature, we expect ourfindings to be independent of systemdetails. Our simulations of a
Min proteinmodel and an extended Brusselator substantiate this claim.While we analyzed one-dimensional
systems in this work, we believe the basic principles also apply to two or three spatial dimensions: in sufficiently
smallmultidimensional systems the boundary reflection of travelingwaves along the long axis will likely
overrule the bulk competition between counter-propagating travelingwaves. Thus, systemborders force them
into reflection-induced standingwaves—with slight system-specificmodifications. Fluid experiments [17, 30]
or oscillating chemical reactions guided by recentmodels as in [48, 49] are further suitable candidates to verify
our results. Pattern formation theory applied to stationary 2d patterns recently provided important insights into
pattern orientationwith respect to spatial inhomogeneities or confinement [28, 54]. A combination of these
approaches with our analysis of nonlinear travelingwaves in confined systems is very promising. Itmay reveal
further generic properties of nonlinear travelingwaves and, e.g., provide additional guidance for experiments in
2dMin systems [50, 52]. This is particularly interesting for designing bottom-up approaches in synthetic biology
to reconstitute cells [52]. In this context, our robust rules about nonlinear (protein)wavesmay present another
puzzle piece to understand hownature controls crucial steps of life.
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AppendixA. Simulationmethods

We solve theCSHmodel aswell as themodels for theMin oscillations and the chemical reactions below
numerically by using a pseudo-spectralmethodwith a semi-implicit time step (implicit Euler for the linear part
of the equation, explicit Euler for the nonlinearities) (66).We calculate all spatial derivatives by transformation
to a suitable function space depending on the boundary conditions.We use Fourier representations of the fields
for periodic boundaries (i.e. in case of theCSHmodel u ux x L0 == =∣ ∣ ), a cosine transform for no-flux
boundaries ( u 0x x L0,¶ ==∣ ) and a sine transform for vanishing fields at the boundary (u 0x L0, ==∣ ), where L is
the system length.

Appendix B.Oscillating chemical reaction

As amodel for a pattern forming chemical reaction, we use an extended Brusselatormodel as proposed by Yang
et al [49]. The Brusselator is awell-known prototype for reaction–diffusion systems. Typically, this system is a
two-component activator-inhibitormodel with a bifurcation to Turing patterns or homogenousHopf
oscillations. Themodel by Yang et al extends the Brusselator by a third component. The dynamics of the three
concentration fields u, v and w are given by:

u D u a b u u v cu dw a1 , 2.1t u x
2 2¶ = ¶ + - + + - +( ) ( )

v D v bu u v b, 2.1t v x
2 2¶ = ¶ + - ( )

w D w cu dw c. 2.1t w x
2¶ = ¶ + - ( )

Wechoose a=0.8, c=2, d=1,Du=0.01,Dv=0 andDw=1.We consider b the control parameter of the
system. The homogeneous solution (uh=a, vh=b/a,wh=ac/d) becomes unstable towards travelingwaves at
the critical value bc=3.076. The intrinsic wavelength of the travelingwave pattern above threshold isλc≈9.5.
We performour simulations close to pattern onset, for b=bc(1+ε)where ε=0.005. The onset of the Turing
instability (i.e. of stationary periodic patterns) tends to infinity for D 0v  . By choosingDv=0, we thereby
eliminate any competition between travelingwaves andTuring structures.
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AppendixC.Min oscillationmodel

As a representativemodel for theMin oscillations shown infigure 4, we consider themodel given by
equations (3.1a)–(3.1d) as proposed by Loose et al [22] (see also equations [1]–[4] in their supplementary
information). Thismodel describes the dynamics of bothMinD andMinE in the cytosol (cD and cE,
respectively), theMinD concentration on themembrane cd and the concentration ofMinD/MinE complexes on
themembrane cde:

c D c c c c a, 3.1t D D x D de de D D dD d
2 w w w¶ = ¶ + - +( ) ( )

c D c c c c c b, 3.1t E E x E de de E d E eE de
2 2w w w¶ = ¶ + - +( ) ( )

c D c c c c c c c, 3.1t d d x d D D dD d E d E eE de
2 2w w w w¶ = ¶ + + - +( ) ( ) ( )

c D c c c c c d. 3.1t de de x de E d E eE de de de
2 2w w w¶ = ¶ + + -( ) ( )

For the simulation shown in figure 4we choose the parameters as suggested in [22]:DD=DE= 60 μm2 s–1,
Dd= 1.2 μm2 s–1,Dde= 0.4 μm2 s–1,ωde= 0.029 s−1, 2.9 10 sD

4 1w = - -· , 4.8 10 m sdD
8 2 1w m= - -· ,

1.9 10 m sE
9 2 1w m= - -· , 2.1 10 m seE

20 6 1w m= - -· .We choose a totalMinD concentration of
c c c c 3.6 10 mD D d de,tot

6 2m= + + = -· , and a totalMinE concentration of
c c c c 5.8 10 mE E e de,tot

6 2m= + + = -· . In large, quasi-unconfined systems this leads to travelingwaveswith a
typical wavelengthλmin≈ 71 μm.
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A model for selforganization of bacterial protein clusters was presented recently [Nat. Phys.
13, 1006 (2017)]. In this model, in the great majority of cases, a single protein cluster will be
positioned in the center of the cell. Maximum density at the boundaries occurs far less likely even
though for symmetry reasons the two solutions should be equivalent. By studying generic models
of pattern formation, we found that broken up-down-symmetries in combination with strong spatial
confinement are the generic basis of this observed polarity bias.

I. INTRODUCTION

Living systems require high levels of complexity and
(self-)organization [1–3]. Complex structural compo-
nents interact in a series of intricate processes to create
the machinery of life - often displaying astonishing pre-
cision and robustness. Pattern formation is a part of na-
ture’s toolbox to implement some of these processes [4–6].
Some of the many examples include embryonic pattern
formation [7], cell polarization [1, 8], collective behavior
in multicellular organisms such as the slime mold Dic-
tyostelium discoideum [9–11], skin patterning [12, 13],
the placement of hair follicles [14] or positioning of the
cell division site in E. coli via the Min protein system
[15–17].

A recent publication dealt with the question of precise
positioning of protein clusters within cells [18]. They
found that protein clusters show a clear bias to being
positioned in the center of the system. A single protein
concentration peak is unlikely to occur at the boundaries
of the system. This is suprising since due to the symme-
try of the system, the phase of the solution is a priori not
fixed.

In this work, we give insights into the generic basis of
these observations. We study minimal models of pattern
formation in very small systems - mimicking the strong
spatial confinement of protein clusters in cells. We assess
the minimal requirements to recreate the polarity bias
observed in the protein cluster model.

II. CHARACTERISTICS OF THE PROTEIN
CLUSTERING MODEL

The protein clustering model presented in [18] de-
scribes the dynamics of a two-’species’ system in which
one protein species only exists on the surface of a mem-
brane (vm), while the second protein species exists in a
cytosolic (uc) and a membrane-bound state (um). The

dynamic equations are given by

∂tum =Dum
∂2xum − αum − βumv2m

+ γvm + εuc − δum, (1a)

∂tvm =Dvm∂
2
xvm + αum + βumv

2
m

− γvm − δ′vm, (1b)

∂tuc =Duc∂
2
xuc − εuc + δum + δ′vm. (1c)

The rates ε, δ and δ′ describe transitions between the
membrane and the cytosol, α and γ are linear transition
rates between the two states at the membrane, and β is
a nonlinear reaction rate. Note that the reaction terms
are chosen such that the total number of proteins in the
system is conserved.

A homogeneous solution of Eqs. (1) is (ũm, ṽm, ũc),
where ṽm is the solution of the 3rd order polynomial

ṽ3m − a2ṽ2m + a1ṽm − a0 = 0, (2)

with

a2 =
βε

ε+ δ
c0, (3)

a1 =
(γ + δ′ + α)ε+ (δ + α)δ′ + δγ

β(ε+ δ′)
, (4)

a0 =
εα

β(ε+ δ′)
c0, (5)

and

ũm =
ε

ε+ δ
c0 −

ε+ δ′

ε+ δ
ṽm, (6)

ũc = c0 − ũm − ṽm, (7)

and c0 is the total protein concentration:

c0 = ũm + ṽm + ũc. (8)

We analyze the stability of the homogeneous state by
adding small perturbations and solving the linearized
model equations via an ansatz ∝ exp(σt + iqx). The
resulting eigenvalue problem determines the perturba-
tion growth rate σ. Using the total protein concentration
c0 as the control parameter in the system, we generally
find two types of dispersion relations σ(q): A finite k-
instability where the growth rate is positive in a range
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of finite wavenumbers, and a long-wavelength instability
where the band of unstable wavenumbers extends down
to q = 0. We call these dispersion relations CSH-type
and CH-type, respectively, after the prototypical pat-
tern formation models with the same type of instability
- the conserved Swift-Hohenberg (CSH) model [19] and
the Cahn-Hilliard (CH) model [20]. Figure 1 shows the
linear stability as a function of the total protein concen-
tration c0. The growth rate σ is positive within the black
line. The colored shading indicates the dispersion rela-
tion type introduced above and as sketched in Fig. 1b.
The important conclusion from this linear stability anal-

ysis is that the primary instability in the system is of the
finite wavelength (CSH) type. While the long-wavelength
instability does exist for a range of total protein con-
centrations, the homogeneous basic state first becomes
unstable towards perturbations of the CSH-type when
increasing the total protein concentration above the crit-
ical level of c0 = 357 in this case. The fastest growing
mode indicating the pattern wavelength above onset is
q = 1.36.

A third important characteristic of the protein clus-
tering model can be identified from the shape of the so-
lutions found in the model. Figure 2 shows a typical
stationary solution found in simulations of Eqs. (1). It
clearly shows that the deviation of the local protein con-
centration from its mean value (dashed line) is strongly
asymmetric. This indicates a broken up-down symmetry
in the system.

III. A MINIMAL PATTERN FORMATION
MODEL

As established in the previous chapter, the protein
clustering model presented in [18] has three key charac-
teristics: The system undergoes a finite-k instability, the
total protein concentration in the system is conserved,
and the up-down symmetry is broken. A minimal pat-
tern formation model with the same characteristics is the
conserved Swift-Hohenberg (CSH) model [19]:

∂tu(x, t) = −∂2x
[
εu−

(
q20 + ∂2x

)2
u+ αu2 − u3

]
. (9)

In this model, u(x, t) is a conserved order parameter
field. For ε > 0, the homogeneous state u = 0 is unstable
towards periodic patterns with the preferred wavenum-
ber q0. The dispersion relation of the perturbation
growth rate is of the CSH-type as sketched in Fig. 1b.
The quadratic nonlinearity breaks the ±u-symmetry
in the system and can be tuned with the asymmetry
parameter α. We analyze this model in finite systems
assuming no-flux boundary conditions.

Simulations of Eq. (9) show that different solu-
tion types are possible depending on the value of the
symmetry-breaking parameter α (see Fig. 3). For α =
1.1, we find solutions mainly consisting of the mode
∝ cos(q0x) with very small contributions from higher
harmonics. This solution exists with two polarities: The
concentration peak is located in the system center for 1−

and near the boundaries for 1+. For α = 1.1 both so-
lutions are equally likely to occur starting from random
inital conditions. If α is increased to 1.5, the 1+-solution
vanishes. The 1−-solution occurs with a probability of
around 45%. In addition, a new solution of the approxi-
mate form

2± = A cos(q0x)±B cos
(q0

2
x
)

(10)
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appears. There is no bias towards either of the two po-
larities of this solution. For α = 3.5, the solution 1− van-
ishes. The solutions 2± still appear with approximately
equal probability. Additionally, there is a third solution
type of the form

3± = −A cos(q0x)±B cos
(q0

2
x
)
∓C cos

(
3q0
2
x

)
. (11)

While several modes significantly contribute to this so-
lution type, the shape is very similar to the 1−-solution.
In the 3±-solution, however, the concentration peak is
located slighty off-center compared to the central posi-
tioning in the 1−-solution. In this case again, simula-
tions show no clear bias towards the positive or negative
polarity.

IV. LINEAR STABILITY & ANALYTICAL
CONSIDERATIONS

In this section, we gain more insight into the simula-
tion results presented in Fig. 3 via some semi-analytical

considerations. Due to the no-flux boundary conditions,
any possible solution of the system can be written as a
series of cosine functions:

u(x) =
N∑

n=1

un cos(knx), (12)

where kn = nπ/L (with the system length L). The
simulation results suggest that for moderate symmetry-
breaking parameters α, stationary solutions mainly have
a contribution from the basic mode q0 (if the system
length matches the preferred wavelength λ0 = 2π/q0).
However, due to the broken up-down symmetry in the
system, higher harmonics of the intrinsic mode q0 are
actually always excited. An approximation of the sta-
tionary solution for finite values of α is thus given by

u(x) = A cos(q0x) +B cos(2q0x). (13)

We calculate the amplitudes A,B in Eq. (13) by plug-
ging the ansatz into the conserved SH equation, Eq. (9).
Projecting onto the cosine modes ∝ cos(q0x) and ∝
cos(2q0x), we find two coupled equations for the ampli-
tudes A and B:

0 = A

(
ε+ αB − 3

4
gA2 − 3

2
gB2

)
, (14)

0 = εB +
1

2
αA− 3

4
gB3 − 3

2
gA2B − 4q40B. (15)

Assuming the amplitudes to be real, we generally find
two relevant solutions: [A > 0, B > 0] and [−A,B].
The different signs in the amplitude of the contribu-
tion ∝ cos(q0x) correspond to solutions with different
polarities. We call a solution with a maximum in the
center of the system u−, corresponding to the solution
[−A,B], while u+ is a solution with the maximum at
the system boundary corresponding to [A,B] (see Fig. 4,
top). Figure 4 (bottom) shows the amplitudes A and
B as a function of the symmetry-breaking parameter
α. Both A and B increase with increasing α. Thus,
the contribution B of the higher harmonic ∝ cos(2q0x)
is small for small values of the asymmetry parameter
α and becomes significant only for strongly broken
symmetry. This is in agreement with observations in the
simulations.

We next analyze the stability of these solutions by
adding a small perturbation v to the stationary solution,
u = u± + v, plugging the ansatz into Eq. (9) and lin-
earizing with respect to v. The dynamic equation for the
perturbation v then reads:

∂tv = −∂2x
[
εv −

(
q20 + ∂2x

)2
v + 2αu±v − 3gu2±v

]
. (16)

The term 2αu±v already suggests that the stability will
be different depending on the polarity of the solution. We
solve Eq. (16) via a cosine ansatz for the perturbation v:

v = eσt
N∑

n=1

vn cos(knx), (17)
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where σ is the growth rate of the perturbation and kn =
nπ/L. Projecting onto the different cosine modes, we
end up with an eigenvalue problem for the growth rate σ
that we can solve numerically.

Figure 5 shows the largest eigenvalue for the two solu-
tion types with different polarity, u±, as a function of α,
the strength of the broken up-down-symmetry. In the top
image in Fig. 5 the system size is L = λ0. In this case, the
growth rate for the solution u− with the concentration
maximum in the system center is always smaller than for
the solution u+. The solution u+ first becomes unstable
at α = 1.3. The solution with negative polarity stays sta-
ble up until α = 3.1. Thus, in the region 1.3 < α < 3.1,
only the solution with negative polarity is stable. This
is the parameter region of polarity bias towards the solu-
tion u−. For α > 3.1, finally, both solutions are unstable.
These results explain the simulation results presented in
Fig. 3: both solutions u± were equally likely for α = 1.1,
the solution u+ vanishes when α is increased above the
critical value of α = 1.3. For even larger α, both solutions
vanish in favor of multi-mode solutions.

Interestingly, the situation changes if the system size
is doubled to L = 2λ0 (Fig. 5, bottom). Changing the
system size influences the linear stability due to the dis-
cretization of possible perturbation modes. In the ansatz
for the perturbation, Eq. (17), the perturbation modes
are given by kn which is connected to the system length
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σ

FIG. 5. Largest growth rates for perturbations of the station-
ary two-mode solutions u± as a function of the up-down sym-
metry parameter α for two different system lengths: L = λ0

(top) and L = 2λ0 (bottom). Other parameters: q0 = 1,
g = 1, ε = 0.5.

via kn = nπ/L. Thus, in a larger system, the smallest
possible perturbation wavenumber as well as the distance
between the modes decreases - opening up more possi-
bilities for the solution to become unstable. Here, the
solutions with different polarity become simultaneously
unstable at α = 1.3, and the polarity bias thus vanishes.
This is also confirmed in simulations for system lengths
L = 2λ0, in which no polarity bias can be detected for
α < 1.3. For larger values of α, both two-mode solutions
u± vanish in favor of more complex multi-mode solutions.

V. MINIMUM REQUIREMENTS

The conserved SH model was the first simple model
where we found polarity bias. The decision to study the
two-mode solution, Eq. (13), was based on simulation re-
sults and the knowledge that broken up-down symmetries
excite higher harmonics. However, neither conservation
nor two-mode solutions are required to find polarity bias.
In fact, the results are mostly unchanged if we study the
standard unconserved Swift-Hohenberg model [4],

∂tu = εu− (q20 + ∂2x)2u+ αu− u3, (18)
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with a simple periodic solution of the form

u = A cos(q0x), (19)

where the stationary amplitude is given by

A = ±
√

4

3
ε. (20)

In the following, we will call the solution with positive
amplitude u+, while u− stands for the solution with A <
0.

Fig. 6 shows the largest perturbation growth rates for
the two solutions u± in a system of size L = λ0 as a
function of α. The solution u+ becomes unstable at α =
1.2, while the solution u− only becomes unstable at α =
2.4. Thus, in the range α = [1.2, 2.4], only the solution
with the negative sign of the amplitude is stable - creating
a polarity bias.

As was the case for the CSH model discussed in the
previous section, the polarity bias depends on the sys-
tem size. If we increase the system size to L = 2λ0, the
polarity bias disappears (see. Fig. 7). The largest growth
rate in this case does not depend on the sign of the ampli-
tude. Thus, both solution types become unstable at the
same time (at α = 1.2) resulting in no clear bias towards
any of the two solutions.

From these observations we can conclude the minimum
requirements for polarity bias: A broken up-down sym-
metry in a small finite system leads to polarity bias.

VI. MORE DETAILED OBSERVATIONS

The broken up-down symmetry is obviously required
to create solutions of different polarity in the first place.
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FIG. 7. Largest growth rates for perturbations of the station-
ary solutions u± in the regular SH model of size L = 2λ0 as
a function of the up-down symmetry parameter α.

However, why do we also need small system sizes? In
general, the solution seems to first become unstable to-
wards small perturbation wavenumbers. Note that due
to the finite system size and the no-flux boundary condi-
tions, the smallest possible perturbation wavenumber is
kmin = π/L, where L is the system length. In the sys-
tem of size L = λ0, the smallest possible wavenumber is
kmin = q0/2. If we assume the perturbation to only have
contributions with this wavenumber, the single growth
rate for the perturbation is given by

σλ0
= ε− 9

16
q40 −

3

2
gA2 ± αA. (21)

Due to the linear contribution ∝ αA, this growth rate de-
pends on the sign of the amplitude A. Thus, the solution
u+ (where A > 0) first becomes unstable at

αc =
(2g − 1)

√
3

2

√
ε+

9
√

3

32

q40√
ε
. (22)

For the parameters used in Fig. 6, we get αc ≈ 1.3.
This is in good agreement with our earlier observations
where we used a multimode ansatz, Eq. (17). For this
single-mode perturbation and the parameters used in
Fig. 6, the solution u− would, in fact, never become
unstable. However, as we saw from the detailed linear
stability analysis earlier in this chapter, higher harmonic
contributions to the perturbation eventually destabilize
the solution u− for higher values of α. Nevertheless,
from this single-mode peturbation approximation, we
can already see the origin of the polarity bias.

Increasing the system size to L = 2λ0 allows for
smaller perturbation wavenumbers, namely kmin = q0/4.
A single-mode perturbation with the wavenumber q0/4



6

would lead to the growth rate

σ = ε− 225

256
q40 −

3

2
gA2 = (1− 2g)ε− 225

256
q40 . (23)

For g = 1, this growth rate is always negative and thus
the solution would remain stable. However, this changes
when we also take the next perturbation mode that cou-
ples to the mode q0/4 into account, thus making an
ansatz of the form

v = expσt
(
v1 expi

1
4 q0x +v2 expi

3
4 q0x

)
. (24)

Of the two eigenvalues, one is usually negative, while the
other is given by

σ2λ0
= ε− 137

256
q40 −

3

2
gA2 +

√
α2A2 +

121

1024
q80 . (25)

Comparing this to σλ0
, Eq. (21), we find that σ2λ0

> σλ0
.

By increasing the system size and thus allowing smaller
wavenumbers, the instability towards the q0/2 mode be-
comes irrelevant. Instead the new smallest wavenumber
and the higher harmonic modes it couples to are responsi-
ble for the instability of the stationary periodic solution.
σ2λ0 , however, is independent of the sign of the ampli-
tude. Thus both solutions u+ and u− simultaneously
become unstable at αc ≈ 1.2 which is in agreement with
the value we found earlier in the full stability analysis.

VII. CONCLUSIONS & OPEN QUESTIONS

In this work, we tackled the question of protein clus-
ter positioning in cells from a generic pattern formation
perspective. In order to do so, we studied minimal pat-
tern formation models which mimick key characteristics

of a recently introduced protein clustering model [18] in
small confined systems. We found that polarity bias, i.e.
a preference for high density clusters in the center of the
system instead of aggregations near the system boundary,
is a result of a broken up-down symmetry in combination
with strong spatial confinement.

However, this work can only be seen as a first step to
further explore this issue. Many questions still remain
when it comes to understanding how biological systems
control spatial positioning. In our minimal system,
polarity bias is limited to the simplest quasi-one-mode
solution type. For stronger asymmetry parameters α in
the range of where the polarity bias occurs, solutions
quickly become more complex with multiple contribut-
ing Fourier modes. These solutions do not achieve
the desired effect of robust cluster positioning in the
cell center. The solution type 2±, for example, would
aggregate proteins near one of the system boundaries.
Solutions similar to type 3± achieve high densities at a
slightly off-center position in the system. If the system
size is increased, multi-mode solutions are even more
prevalent. In the protein clustering model [18], however,
cluster positioning remains robust even for multiple
clusters (i.e. if the system length is increased to include
multiple wavelengths of the periodic pattern). From
these observations we must conclude that confinement
and broken symmetry are unlikely to be the only
positioning mechanisms used in cells. Some of these
possible additional mechanisms such as surface fluxes
have already been discussed in [18]. Diving deeper into
this subject matter in the future, we hope to gain further
insights into additional generic mechanisms of polarity
bias.

Fruitful discussions with S. Murray are gratefully ac-
knowledged.
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We identify active phase separation as a generic demixing phenomenon in nonequilibrium systems with con-
servation constraints. Examples range from cell polarization to cell populations communicating via chemotaxis,
and from self-propelled particle communities to mussels in ecology. We show that system-spanning properties
of active phase separation in nonequilibrium systems near onset are described by the classical Cahn-Hilliard
(CH) model. This result is rather surprising since the CH equation is famous as a model for phase separation at
thermal equilibrium. We introduce a general reduction scheme to establish a unique mathematical link between
the generic CH equation and system-specific models for active phase separation. This approach is exemplarily
applied to a model for polarization of cells and a model for chemotactic cell communities. For cell polarization,
we also estimate the validity range of the CH model.

DOI: 10.1103/PhysRevE.98.020603

Demixing phenomena in active, nonequilibrium systems
currently attract great attention. Examples include cell polar-
ization [1–12], chemotactically communicating cells [13–17],
self-propelled particles [18–21], active matter models [22],
mixtures of particles with different mobilities [23–26], models
of ion-channel densities [27], or mussels in ecology [28]. All
of these examples have three properties in common: First,
they resemble classic equilibrium phase separation. Second,
in contrast to classic phase separation, these are nonequilib-
rium transitions. Third, they are all subject to conservation
constraints. Since these demixing phenomena take place in
nonequilibrium systems, we call them active phase separa-
tion. Their (local) driving mechanisms are as different as
the systems themselves. But do these systems nevertheless
share fundamental properties described by a generic model?
Here we provide a universal framework for the cross-system
characteristics of a class of active phase separation phenomena.

A conceptual parallel to this idea are self-organized patterns
in nature. Stripe, hexagonal, or traveling wave patterns are
driven by mechanisms that are also as diverse as the systems
in which they form [29–34]. Nevertheless, periodic patterns
in these different nonequilibrium systems share well-known
generic properties [33,34]. They are covered by unconserved
order-parameter fields that describe the slowly varying am-
plitude(s) [envelope(s)]. Even though stripe patterns occur
in very different systems, the envelope obeys the same fun-
damental (nonlinear) Ginzburg-Landau equation [33,34]. It
can be derived from basic equations and provides the key
to understanding the generic properties of stripe patterns
[30,34–36].

In this work, we formulate a similar approach for active
phase separation in nonequilibrium systems. We present a
reduction scheme generalized to conserved order parame-
ters. At leading order, we thereby obtain the Cahn-Hilliard
model [37,38] as the generic model for active phase separation

*Corresponding author: walter.zimmermann@uni-bayreuth.de

in nonequilibrium systems. So far, it has typically been used to
model liquid-liquid demixing in thermal equilibrium [37,38].
However, we show here that it also describes the system-
spanning properties of phase separation in nonequilibrium.
Thus, we manage to capture the essence of active phase
separation in very different systems in one universal equation.
At the same time we expose the underlying similarities between
phase separation in and out of equilibrium. The reduction
scheme we present here provides a direct mathematical link
between the Cahn-Hilliard (CH) model and system-specific
models. It also provides the criteria to identify candidates for
this class of active phase separation. Our approach is explicitly
demonstrated for two representative examples from living
matter: a continuum model for cell polarization and a model
for chemotactic cell communities.

Cell polarization is central to processes as diverse as
cell motility, differentiation, and cell division [1–10]. The
polarized cell has two distinct regions similar to the two
phases of a separated liquid-liquid mixture. However, cell
polarization in living systems is a nonequilibrium phenomenon
driven by dissipative processes. The molecules that trigger
cell polarization are conserved on the timescales of the self-
organization. Models for cell polarization usually involve the
nonlinear dynamics of several coupled concentration fields
for regulating molecules (see, e.g., [4]). However, minimal
models with only two concentration fields for the membrane-
cytosol exchange already cover essential properties [5–10].
One concentration field ũ(r, t ) thereby represents molecules
bound to the membrane. The other concentration field ṽ(r, t )
describes molecules in the cytosol. Here, we use

f̃ (ũ, ṽ) = −bũ + (ũ + ṽ)2 − (ũ + ṽ)3 (1)

for the membrane to cytosol exchange in the one-dimensional
equations for the fields ũ and ṽ:

∂t ũ = Du∂
2
x ũ + f̃ (ũ, ṽ), (2a)

∂t ṽ = Dv∂
2
x ṽ − f̃ (ũ, ṽ) (model P ). (2b)

2470-0045/2018/98(2)/020603(5) 020603-1 ©2018 American Physical Society
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Both fields are coupled via the conservation condition

M = 1

L

∫ L

0
[ũ(x) + ṽ(x)]dx. (3)

Another variant of a nonequilibrium phase separation process
is clustering of chemotactically communicating cells. They
play, for instance, a central role on the route to multicellular
fruiting bodies [39]. Here the number of cells is conserved on
the timescale of the clustering, but the chemical density field
for the cell-cell communication is not [13–17]. We describe a
system of chemotactically communicating cells by an extended
Keller-Segel model [13–16] with cell density ρ̃(r, t ) and signal
molecule density c̃(r, t ):

∂t ρ̃ = ∂2
x ρ̃ − s∂x

(
ρ̃

1 + βρ̃
∂x c̃

)
, (4a)

∂t c̃ = Dc∂
2
x c̃ + ρ̃ − c̃ (model C). (4b)

Model P in Eqs. (1) and model C in Eqs. (4) have spatially
homogeneous solutions uh, vh or ρh, ch, respectively. These
become unstable beyond critical values of the respective con-
trol parameters Dv and s. Immediately above these thresholds,
a generic equation can in both cases describe the resulting
active phase separation. In the following steps we develop this
equation for the conserved order-parameter field.

For both models, we separate the inhomogeneous parts
from the basic state, writing ũ = uh + u(x, t ), etc. We first
consider the instability of the homogeneous states with respect
to small perturbations. The linear equations in u, v are then
solved by the ansatz u, v = ū, v̄ exp(σ t + iqx) (or for ρ

and c, respectively). We consider the case when one of two
eigenvalues σ1,2 is always negative close to the onset of phase
separation. The other eigenvalue, expanded with respect to
powers of q2, is of the form

σ = G2q
2 − G4q

4 + O(q6) (5)

with G4 > 0. The leading order coefficients G
(P )
2 or G

(C)
2

include the control parameters Dv and s for models P and
C, respectively. The homogeneous solutions become linearly
unstable for G2 > 0. G2 = 0 thus defines the critical values of
the control parameters:

Dc
v = Dufv/fu, sc = (ρ0h)−1, (6)

where fu,v = ∂u,vf and h = (1 + βρ0)−1. As a measure for
the distance from the onset of phase separation, we choose the
dimensionless control parameter ε, where

Dv = Dc
v (1 + ε), s = sc(1 + ε). (7)

Next, we consider the basic equations [cf. Eqs. (2) and (4)] in
the range of small ε, i.e., G2 ∝ ε. With G4 = O(1) the growth
rate σ becomes positive in a range of small q2 ∝ ε and is of the
order σ ∝ ε2. Therefore, we introduce the “slow” spatial scale
X = √

εx and the timescale T = ε2t , which is slower than
for periodic patterns [34]. The nonlinear analysis demands the
introduction of an additional slow timescale, T3 = ε3/2t [40].
This leads to the operator replacements

∂x → √
ε∂X, ∂t → ε3/2∂T3 + ε2∂T . (8)

In compact matrix form, Eqs. (2) and (4) are

∂tw = Lw + N, (9)

with the respective vectors w = (u, v) and w = (ρ, c). The
right-hand side includes a linear part Lw and the nonlinear
part N. For both models we expand w in orders of ε1/2:

w = ε1/2w1 + εw2 + ε3/2w3 + O(ε2), (10)

leading to

L = L0 + (εL1 + ε2L2)∂2
X + O(ε3), (11)

N = εN2 + ε3/2N3 + ε2N4 + ε5/2N5 + O(ε3). (12)

Inserting the new scalings and expansions into Eq. (9) requires
a sorting of the basic equations up to two orders higher in ε1/2

than for common spatial patterns [34]:

ε1/2 : L0w1 = 0, (13a)

ε : L0w2 = −N2, (13b)

ε3/2 : L0w3 = −L1∂
2
Xw1 − N3, (13c)

ε2 : L0w4 = ∂T3 w1 − L1∂
2
Xw2 − N4, (13d)

ε5/2 : L0w5 = ∂T3 w2 + ∂T w1 − L1∂
2
Xw3

− L2∂
2
Xw1 − N5. (13e)

For model P , we find at order ε1/2 [41]

w1 = Ã(X, T )

(
fv

−fu

)
. (14)

Note that in contrast to the Ginzburg-Landau equation for
stripes, Ã(X, T ) in our case is not the envelope of an underyling
small-scale structure. An iterative solution of the hierarchy,
Eqs. (13), leads to a dynamical equation for Ã via Fredholm
alternatives at orders ε2 and ε5/2 [34]. After returning to
the original coordinates x and t , and rescaling the amplitude
A = √

εÃ, it takes the following form:

∂tA = −∂2
x

[
α1εA + α2∂

2
xA − α3A

2 − α4A
3
]
. (15)

This is the Cahn-Hilliard model in one dimension [37] with
a quadratic nonlinearity ∝A2 (where α1, α2, α4 > 0). It cor-
responds to nonsymmetric mixtures of two liquids at thermal
equilibrium. Equation (15) covers the approximate dispersion
relation of the full model in Eq. (5) and nonlinearities up to third
order inA. The derivation of the CH equation via the introduced
reduction scheme automatically provides a mathematical link
to the model for cell polarization in Eqs. (2). That is, the
coefficients αi are expressed by the parameters of the full
model:

α1 = Dufv/b, α2 = D2
ufv/(bfu), (16a)

α3 = Dub(3M − 1)/fu, α4 = Dub
2/fu, (16b)

with fu = −3M2 + 2M − b and fv = −3M2 + 2M .
By application of the reduction scheme, the chemotaxis

model C reduces to a similar equation for the density variation
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FIG. 1. Steady-state profiles A(x ) in the symmetric case (M =
1/3): Comparison of model P , Eqs. (2) (solid lines), to the corre-
sponding solutions of the reduced CH model, Eq. (15) (dashed lines),
for two values of the control parameter ε = 0.01, 0.04.

ρ, but with different coefficients [41]:

∂tρ = −∂2
x

[
ερ + Dc∂

2
xρ + 1

2 sch
2ρ2 − 1

3 scβh3ρ3
]
. (17)

Note that the chemical signal c follows the cell density
adiabatically.

The reduced models, Eqs. (15) and (17), capture the dynam-
ics of the respective slow mode of phase separation [34]. Both
CH models follow potential dynamics [38] even though the
full Eqs. (2) and (4) do not. These qualities are a direct parallel
to stripe patterns and their representation via the universal
Ginzburg-Landau equation [30,34–36]. Thus, similar to the
amplitude equation for stripes, we expect the CH model to play
a generic role for active phase separation. Note that the reduced
CH models, Eqs. (15) and (17), describe the behavior of a
conserved order parameter—a reflection of the conservation
constraints placed upon the original models P and C. The
reduced models certainly cover the behavior of the full system
near the (supercritical or weakly subcritical) bifurcation point.
But in which parameter range further from the onset of phase
separation does this agreement prevail? We will explore this
by comparison of stationary solutions for the cell polarization
model [cf. Eqs. (2)] and its approximation by the CH model in
Eq. (15). We first study the special case M = 1/3, i.e., α3 = 0
and ± symmetry of Eq. (15). This corresponds to the classic
CH model [37]. For this case we compare in Fig. 1 steady-state
solutions of the full model P to those of the related CH model
for two different control parameter values ε (see Supplemental
Material [41] for details on simulation methods). Due to the
± symmetry in Eq. (15), the maximum and minimum of
these profiles have the same absolute value. According to
the conservation condition, the two phases with increased or
decreased concentration each occupy half the system. With
respect to both properties, the CH model covers the behavior
of the full model. With increasing ε, the plateau values of
the steady-state profiles increase and the coherence length
decreases. Consequently, the profiles in Fig. 1 evolve toward
a more steplike form. Note that in Figs. 1–5, the amplitude for
the full model is calculated from the field v. The amplitude
for u resembles the amplitude A from Eq. (15) even more
closely.

FIG. 2. Plateau values of the steady-state solutions in the symmet-
ric case (M = 1/3): Comparison of model P , Eqs. (2) (solid line), to
the corresponding values of the reduced CH model, Eq. (15) (dashed
line), as a function of the control parameter ε.

Figure 2 shows the plateau values of the steady-state
solutions as a function of ε. It thereby illustrates the validity
range of the CH model—including the perfect agreement at
onset, and the expected increasing deviations with increasing
ε. Figure 2 also illustrates that the transition to active phase
separation in the symmetric case occurs in a supercritical
bifurcation. Note that the finite system size shifts the onset
of phase separation to a positive value εc = α2π

2/(L2α1)
(=0.00296 for the chosen parameters).

For M �= 1/3, the quadratic term in Eq. (15) is finite. This
leads to asymmetric phase separation, where the concentration
deviates asymmetrically from its mean value. An example of
this scenario is shown in Fig. 3 for M = 0.3. This corresponds
to a small asymmetry parameter α3/

√
α4 � 0.055. In this

case, Eq. (15) captures the behavior of the full model very
well. A comparison between the CH equation and the full
model as a function of ε is presented in Fig. 4. In the
presence of A2, the bifurcation from the homogeneous state

FIG. 3. Similar as in Fig. 1, but in the asymmetric case (M = 0.3),
i.e., with theA2 contribution in Eq. (15). Steady-state profiles of model
P , Eqs. (2) (solid lines), compared to the corresponding solutions of
the reduced CH model, Eq. (15) (dashed lines), for two values of the
control parameter ε = −0.03, 0.04.
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FIG. 4. Similar as in Fig. 2, but in the asymmetric case (M =
0.3). Upper and modulus of the lower plateau values of model P ,
Eqs. (2) (solid lines), compared to the corresponding values of the
reduced CH model, Eq. (15) (dashed lines), as a function of the control
parameter ε.

to phase separation is subcritical. That is, we find a jump
from A = 0 to finite plateau values. Moreover, we observe the
phase-separated state already for subcritical control parameter
values. If the asymmetry parameter α3/

√
α4 is of O(

√
ε), both

nonlinear terms in Eq. (15) are of the same order. As Fig. 5
shows, the reduced CH model is a good representation of the
full model up to these moderate asymmetries. For stronger
asymmetries, however, the full model may deviate strongly
from its approximation [41]. That is, the full model may exhibit
either for strong asymmetries or for large values of ε its own
nongeneric “dialect” of active phase separation.

In this work, we identify a generic, system-spanning be-
havior for a number of very different demixing phenomena
in active and living systems—a class of active phase sep-
aration. We have shown that this nonequilibrium transition
is at leading order described by the CH equation [37,38]—
the same equation that usually describes phase separation at
thermal equilibrium. All models in this class have three central

FIG. 5. Upper and modulus of the lower plateau values of the
full (dashed lines) vs reduced model (solid lines) as a function of the
asymmetry parameter M at a fixed control parameter value ε = 0.01.

properties in common: First, the slow mode growing out of a
homogeneous basic state is conserved. Second, the slow mode
follows the dispersion relation in Eq. (5). Third, nonlinearities
up to third order in the order-parameter fields are sufficient near
onset of active phase separation. These conditions ensure the
correct signs of the coefficients αi in the CH equation, Eq. (15).
Furthermore, we introduced a perturbative reduction scheme
that allows a direct derivation of the CH equation from system-
specific nonequilibrium models. With this mathematical link,
we can also determine the system-specific values of the coef-
ficients in the CH model. This even allows for a quantitative
comparison between the CH model and the original model
equations. Note that the derived CH model follows potential
dynamics [38], even though the system-specific equations—
as the starting point of the reduction—are nonpotential
systems.

We verified our generic approach by applying it explicitly to
two active matter systems: a minimal model of cell polarization
and a model for clustering in chemotactic cell communities.
We found a convincing validity range of the generic CH
equation as a representation of a cell polarization model
near onset. Beyond the system-specific validity range of the
CH model further interesting individual “dialects” of active
phase separation may come into play. These include, for
instance, the effects of higher-order nonlinearities covered by
the full system-specific models. The so-called “active model
B,” for example, was recently introduced for modeling the
nonequilibrium phenomenon “motility-induced phase sepa-
ration’ (MIPS) by a single mean field [42,43]. It includes
the higher-order nonlinearity �[∇A(r)]2 ∝ ε3. This additional
contribution renders the active model B nonintegrable [42] (see
Supplemental Material [41] for a more detailed discussion of
integrability with higher-order nonlinearities). However, this
higher-order contribution becomes negligible near the onset of
active phase separation, i.e., the validity range of the generic
CH model. For some systems, fluctuations may also become
relevant—especially for the coarsening dynamics in low spatial
dimensions. This is similar to coarsening in equilibrium phase
separation [38].

Our work also suggests the universality of phase separation
processes—whether in or out of equilibrium. Their shared
characteristics at leading order are reflected in the joint rep-
resentation by the CH model. Our insights justify the recent
usage of the CH equation as a phenomenological model for the
clustering phenomenon observed for mussels [28] and further
nonequilibrium demixing phenomena.

We expect our generic reduction to the CH model to work
for further systems showing active phase separation. These
include active colloids [18,21,43], active matter systems [22],
or ion channels [27]. We anticipate these systems to also
show the fingerprints of the class of active phase separation
we introduced here for systems with a conserved order pa-
rameter. In this sense, our results are a conceptual parallel
to the Ginzburg-Landau equation for an unconserved order
parameter [30,34–36], which captures the essence of nonequi-
librium stripe patterns near onset and also follows potential
dynamics.

Our generic approach is a starting point for further inves-
tigations of nonequilibrium phenomena in systems with con-
served quantities. Possible generalizations are order-parameter
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models that also cover systems with more general dispersion
relations than in Eq. (5) (see, e.g., Refs. [44,45]) or oscillatory
phase separation phenomena.

Support by the Elite Study Program Biological Physics and
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are gratefully acknowledged.
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I. CH-MODEL FOR MINIMAL CELL
POLARIZATION MODEL

A minimal model for a conserved reaction diffusion sys-
tems for with concentration fields, ũ and ṽ is described
in the main text. The two coupled equations are

∂tũ = Du∇2ũ+ f(ũ, ṽ), (1a)

∂tṽ = Dv∇2ṽ − f(ũ, ṽ) (1b)

with the reaction scheme

f(ũ, ṽ) = −bũ+ (ũ+ ṽ)2 − (ũ+ ṽ)3. (2)

The homogeneous basic states (uh, vh) are determined by

f(uh, vh) = 0.

and the conservation condition

M =
1

L

∫ L

0

[uh + vh]dx = uh + vh.

Accordingly, the basic states are

uh =
M2(1−M)

b
, (3a)

vh =
M(M2 −M + b)

b
. (3b)

A linear stability analysis of the homogenous basic state
leads to the the growth rate σ for a small perturbation:

σ± =
1

2

[
γ1 ±

√
(fu − fv)

2
+ 2q2γ2 + q4γ23

]
, (4)

where

γ1 = − (Du +Dv) q2 + fu − fv ,
γ2 = − (fu + fv) (Du −Dv) , (5)

γ3 = Du −Dv ,

with

fu =
∂f

∂ũ

∣∣∣∣
ũ=uh,ṽ=vh

= −3M2 + 2M − b , (6a)

fv =
∂f

∂ṽ

∣∣∣∣
ũ=uh,ṽ=vh

= −3M2 + 2M . (6b)

Expanding the maximum growth rate for small values of
q in the case fv > fu, we find

σ+ = G2q
2 −G4q

4 +O(q6) (7)

with

G2 =
Dvfu −Dufv

fv − fu
,

G4 =
2(Du −Dv)2fufv

(fv − fu)2
.,

Note, for f(ũ, ṽ) given by Eq. (2) we have fv − fu =
b. This means for positive b, the inequality fv > fu is
fulfilled. Physical constraints, like uh, vh > 0 for the
concentrations, lead to restrictions on the parameters.
In our work, we choose b = 0.3, which restricts M to the
interval 0.228 .M . 0.438.

As in the main text Eqs. (1) can be written in a com-
pact form as follows

∂tw = Lw + N , (8)

with w = (u, v), the linear part

L =

(
Du∂

2
x + fu fv
−fu Dv∂

2
x − fv

)
,

and the nonlinear part

N =
[
(1− 3M)(u+ v)2 − (u+ v)3

]( 1
−1

)
.

Applying the scalings and expansions of the perturbative
reduction scheme as described in the main text, leads as
in Eqs. (13) of main text to a hierarchy of equations. At
the order

√
ε of this hierarchy we find as solution

w1 = Ã(X,T3, T )

(
fv
−fu

)
. (9)

At the order ε we find an equation for w2:

fuu2 + fvv2 = −b(1− 3M)Ã2 .

Since we have only one equation to determine u2 and v2,
we have an additional degree of freedom. We choose this
in a way that the solution at order ε is

w2 = Ã2b(1− 3M)

(
1
−1

)
+ B̃(X,T3, T )

(
fv
−fu

)
, (10)

with B̃(X,T3, T ) reflecting the additional degree of free-
dom. In a similar way we solve the equation in order ε3/2

with

w3 =

[
Du

fv
b
∂2XÃ− b2Ã3 + b(2− 6M)ÃB̃

](
1
−1

)

+ C̃(X,T3, T )

(
fv
−fu

)
. (11)
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Finally, in the orders ε2 and ε5/2 the Fredholm alterna-
tive leads to two amplitude equations:

∂T3Ã = −Du
b

fu
(1− 3M)∂2X(Ã2) , (12a)

∂T Ã = −∂2X
[
Dufv
b

Ã+
D2

ufv
bfu

∂2XÃ−
Dub

2

fu
Ã3

]
. (12b)

Returning to the original scales x and t finally leads to
the amplitude equation

∂tA =−Du∂
2
x

[
fv
b

(εÃ+
Du

fu
∂2xA)

− b

fu

[
(3M − 1)A2 + bA3

] ]
(13)

as given by Eq. (14) of the main text.

II. CH-MODEL FOR CHEMOTACTICALLY
COMMUNICATING CELLS

We start with a modified Keller-Segel model from the
main text

∂tρ̃ = ∂2xρ̃− s∂x
(

ρ̃

1 + βρ̃
∂xc̃

)
, (14a)

∂tc̃ = Dc∂
2
xc̃+ ρ̃− c̃ . (14b)

The homogeneous basic state is given by

ρh = ch. (15)

Linear stability analysis of the homogeneous state results
in two eigenvalues for the perturbation growth rate σ±,

σ± =
1

2

[
γ1 ±

√
1 + 2q2γ2 + q4γ23

]
, (16)

where

γ1 = −1− q2(1 +Dc) ,

γ2 = Dc − 1 + 2shρh , (17)

γ3 = Dc − 1 .

The eigenvalue σ− is always negative for small values of
q. We expand σ+ with respect to q2 and find

σ+ = G2q
2 −G4q

4 +O(q6), (18)

where

G2 = shρh − 1 ,

G4 = shρh (shρh +Dc − 1) .

We apply the perturbative method as described in the
main text and solve the equations hierarchically. The
signaling field c follows the density ρ adiabatically. The

fields ci in the different orders of ε are thus determined
by

c1 = ρ1 ,

c2 = ρ2 , (19)

c3 = Dc∂
2
xc1 + ρ3 .

For the density we obtain in the lowest order O(ε3/2)

0 = (1− schρh) ∂2xρ1 . (20)

Due to the instability criterion this equation is fulfilled
trivially. In the next order O(ε2), we find

∂T3
ρ1 = (1− schρh) ∂2xρ2 − sch2

[
ρ1
(
∂2xρ1

)
+ (∂xρ1)

2
]

= −1

2
sch

2∂2x
(
ρ21
)
, (21)

where we again applied the instability condition. At
O(ε5/2) the relevant terms are

∂T ρ1 =−Dcschρh∂
4
xρ1 − schρh∂2xρ1

+ scβh
3
[
ρ21
(
∂2xρ1

)
+ 2ρ1 (∂xρ1)

2
]

= −Dc∂
4
xρ1 − ∂2xρ1 +

1

3
scβh

3∂2x
(
ρ31
)
. (22)

Going back to the original time and spatial scales by
setting ∂tρ1 = ε3/2∂T3ρ1 + ε2∂T ρ1, and ∂̃2x = ε∂2x, and
choosing ρ =

√
ερ1 yields

∂tρ = −∂̃2x
[
ερ+Dc∂̃

2
xρ+

1

2
sch

2ρ2 − 1

3
scβh

3ρ3
]
. (23)

III. SIMULATION METHODS

We solve the cell polarization model (2) numerically
by using a pseudo-spectral method We calculate all spa-
tial derivatives by transformation to a suitable function
space depending on the boundary conditions. For pe-
riodic boundaries (i.e. u|x=0 = u|x=L, v|x=0 = v|x=L,
where L is the system length), we use Fourier represen-
tations of the fields. For Figs. 1-5 in the main text, we
use a system length L = 200 and N = 256 modes in
Fourier space. As an initial condition, we use a step-like
function of the form

u(x) = A(tanh[x− xl)/δ]− tanh[x− xr)/δ])− C,

where we choose C such that
∫ L

0
u(x)dx = 0 to fulfill the

conservation law. We let this initial condition relax to
a steady state. These steady state solutions are shown
in Fig. 1 and Fig. 3 and are also used to calculate the
plateau values for different ε and M values in Fig. 3,
Fig. 4 and Fig. 5, respectively (all references refer to the
main text). Fig. 1 and Fig. 3 shows only one half of the
system. The second half is axially symmetric and thus
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does not contain additional information. Note that due
to this inherent symmetry of the profiles, the result for
periodic boundary conditions with a system size L are
equivalent to those with no flux boundaries and half the
system size.

IV. DISCUSSION: EFFECTS OF STRONG
ASYMMETRIES

Fig. 5 in the main text shows a comparison between
results of the full cell polarization model and its approxi-
mation via the CH model as a function of the parameter
M (corresponding to the asymmetry). We found that
the CH model deviates from the full model for stronger
asymmetries. There are two main reasons for that: First,
the amplitude calculated from the field v is defined as

Av =
vh − v
fu

, (24)

- compare also to Eq. (9). fu according to Eq. (6a) has
its maximum for the symmetric case M = 1/3 and de-
creases when M deviates from this value. These small
values of fu strongly amplify small differences between
the field v and the CH model when calculating the ampli-
tude via Eq. (24). A second problem causing deviations
of the CH model at stronger asymmetries is illustrated in
Fig. 1. For stronger asymmetries the homogeneous ba-
sic state of the full system deviates from the analytical
calculation as given by Eqs. (3a) and (3b). Therefore,
the homogeneous part of the solution in the full system
does not match the vh used to determine Av. This even
explains the seemingly contradictory negative values of
the amplitude modulus in Fig. 5 of the main text. Note
that the homogeneous parts deviate from the theoreti-
cal values for both fields u and v for strong asymmetries.
However, the derivative fv needed to calculate the ampli-
tude from field u is an order of magnitude larger than fu.
Thus, small deviations are much more strongly amplified
for the amplitude calculated from field v.

V. HIGHER ORDER NONLINEARITIES
VERSUS INTEGRABILITY

In Ref. [41] the so-called ‘active model B’ was intro-
duced as an expansion of the classic CH model for active
particles. As mentioned in the main text, the additional
nonlinearity ∆(∇A)2 ∝ ε3 is of higher order compared to
the amplitude-limiting nonlinearity of the Cahn-Hilliard
model, α4∆A3 ∝ ε5/2 (where α4 > 0 and α4 ∼ O(1)).
This additional nonlinearity becomes negligible close to
threshold and it is not generic.

Nevertheless, if this nonlinearity is taken into account,
by systematic reasons one would also have to take into
account the following second nonlinearity of the same
order, ∆(A∆A) ∝ ε3. The CH model extended by both
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u h
, v

h
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vh

FIG. 1. Basic states uh and vh as a function of the asymmetry
parameterM . The theoretical values (solid line) deviate from
those of the full system (dashed line) for strong asymmetries.

nonlinearities takes the following form:

∂tA = −∂2x
[
α1εA+ α2∂

2
xA− α3A

2 − α4A
3

]

− ∂2x
[
λ1(∂xA)2 + λ2(A∂2xA)

]
. (25)

This equation can be derived from a potential via

∂tA = − ∂2

∂x2
δF
δA

(26)

with

F =

∫
dx

{
−εα1A

2

2
+
α3A

3

3
+
α4A

4

4
+
α2

2
(∂xA)2

+γ1A
2∂2xA+ γ2A (∂xA)

2
}

(27)

and the following parameter combination:

λ2 = 2λ1 and λ1 = 2γ2 − γ1 . (28)

Therefore, taking the next higher order nonlinearities
into account in a systematic expansion (similar to the
one we present in the main text) does not necessarily im-
ply that the resulting model become nonintegrable. In
addition, the two mentioned higher order nonlinearities
are non-generic within a systematic expansion and vanish
by approaching the onset of active phase separation.
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We investigate the collective dynamics of particles (e.g. microorganisms) interacting via chemo-
tactic gradients. Specifically, we focus on continuum models for chemotaxis that include a damping
of the chemical production with increasing local particle density and/or systems where the chemo-
tactic sensitivity is reduced with increasing local concentration of the chemical. Using a recently
introduced perturbative method [Phys. Rev. E 98, 020603 (2018)], we show that the onset of
particle clustering in these systems is described by the universal Cahn-Hilliard (CH) model. One
the one hand, this establishes particle-conserving models for chemotaxis as a further example for
the universal class of non-equilibrium demixing phenomena we call active phase separation. On the
other hand, the reduction to the CH model allows an analytical determination of suitable parameter
ranges wherein, e.g., the transition to spatial density modulations is continuous and/or undesired
blow-up solutions can be avoided. A comparison between the numerical solutions of the chemotaxis
model and the derived CH model also provides the parameter range where the basic chemotaxis
model behaves like other systems showing active phase separation, including the coarsening behav-
ior in two spatial dimensions. Our approach highlights how basic principles of pattern formation
theory allow the identification of common basic properties in different chemotaxis models.

I. INTRODUCTION

The directed motion of microorganisms and cells along
concentration gradients of signal molecules is known as
chemotaxis [1–3]. Chemotaxis plays a critical role in the
life cycle of both bacteria and multicellular organisms:
From foraging to wound healing and cancer growth [4] to
the formation of fruiting bodies in the social amoeba Dic-
tyostelium discoideum [5]. Chemotaxis is also mimicked
in synthetic systems using catalytically active phoretic
colloids (see e.g. Refs. [6, 7]). Microorganisms, cells or
active autophoretic colloids produce and detect a chemi-
cal concentration field and communicate via this field.

Keller and Segel (KS) introduced a commonly used
continuum model for the interplay between the particle
density and a chemical concentration field [8, 9]. The KS
model includes particle movement via a diffusive flux and
an advective flux with the particle velocity depending
on the gradient of the concentration field. The chem-
ical signal production, in turn, is proportional to the
cell density. With these ingredients, the model displays
so-called ’auto-aggregation’ and thus serves as a simple
model for the onset of cell clustering. Beyond the onset
of cell aggregation, however, the classic KS model can
show unrealistic behavior. So-called blow-up solutions,
for example, result in huge particle densities. That is
why different extensions of the KS model incorporating
additional aspects of cell clustering have been developed
and explored in recent years (see e. g. [11, 12]). One ex-
tension is based on the idea of nonlinear signal molecule
kinetics leading to saturation of the chemical signal pro-
duction with increasing particle density [12, 13]. This
prevents excessive chemoattractant production, thereby
limiting the amplitudes of the involved fields. Another
variant includes signal-dependent chemotactic sensitiv-
ity, i.e. a dependence of the particle velocity on the
concentration of the chemical fields. The underlying as-

sumption based on experimental observations is that the
chemotactic sensitivity saturates for high concentrations
of signal molecules, e.g. due to receptor-signal binding
[12]. Generalized models of chemotaxis have also recently
been used to describe clustering dynamics in colloidal ac-
tive matter systems [10]. This work used an extended KS
variant with a contribution for anisotropic production of
the chemical concentration field. Here, we investigate
a generalized chemotaxis model that includes all three
above-mentioned extensions of the classic KS model.

The cell density patterns described by these models
usually arise and disappear in less than a generation time
of the cells. Thus, the number of cells is roughly con-
served during the pattern formation process. Addition-
ally, the instability of homogeneous concentration fields
is of the so-called type II [15], i.e. perturbations follow
a growth rate dispersion of the form σ = G1q

2 − G2q
4.

In particular, this means that long wavelength perturba-
tions are not damped. With these two criteria fulfilled,
chemotactic clustering is a suitable candidate for the re-
cently introduced generic class of active phase separation
[14]. In Ref. [14], we showed that the universal order pa-
rameter equation near the onset of active phase separa-
tion is the Cahn-Hilliard (CH) model [16, 17]. Other ex-
amples of these nonequilibrium demixing phenomena in-
clude cell polarization [18–21] or motility-induced phase
separation (MIPS) of active colloidal particles [23–27].
For an exemplary cell polarization model [18] and a
mean-field model for MIPS [27], we were recently able
to show that these examples also belong to the class of
active phase separation [22, 28]. Does - and if so under
which circumstances - chemotactic cell clustering also be-
long to the class of active phase separation?

To answer this question, this work is organized as fol-
lows: We first introduce the continuum model of chemo-
tactic clustering in Sec. II and analyze the linear stability
of homogeneous particle/cell densities. In Section III, we
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use a perturbative scheme to reduce the mean-field model
to the universal CH equation for active phase separation
and discuss suitable system parameters. Finally, in Sec-
tion IV, we compare the numerical solutions of the basic
chemotaxis model with the solutions of the derived CH
model and estimate the validity range of the reduction to
the CH model. We also compare exemplarily the typical
coarsening behavior of clustering dynamics in two spatial
dimensions.

II. A GENERALIZED CONTINUUM MODEL
FOR CHEMOTAXIS

We investigate a generalized continuum model for
chemotaxis (GCM) that merges three previously used
extended Keller-Segel models [10–12]. It describes the
dynamics of a density field ρ̃(r, t) representing the den-
sity of the chemotactic cells or active colloidal particles.
Note that ρ̃ is a conserved quantity. The density field is
coupled to the concentration c̃ of a chemoattractant (or
signal molecules):

∂tρ̃ = ∂2xρ̃− s∂x
(

ρ̃

(1 + βc̃)
2 ∂xc̃

)
, (1a)

∂tc̃ = Dc∂
2
xc̃+ sκ∂x(ρ̃∂xc̃) +

ρ̃

1 + aρ̃
− c̃ . (1b)

In the first equation, the diffusion constant is scaled to
unity. Dc in the second equation thus describes the ratio
between the diffusion constants of ρ̃ and c̃. The coefficient
s is a measure for the chemotactic drift. For β 6= 0, the
model takes into account the dependence of the effective
chemotactic drift on the chemoattractant concentration
(see Ref. [12] and references therein): For β > 0, the
chemotactic sensitivity decreases with increasing density
of the chemoattractant. For finite values of the parame-
ter a, the model includes a reduction of the local signal
production with increasing density ρ̃ [12, 13]. This essen-
tially prevents further accumulation at high local particle
densities. For κ 6= 0, the model also includes anisotropic
production of the chemoattractant. This is considered
important when chemotactic continuum models are used
for modeling active colloids [10]. For κ = a = β = 0,
Eqs. (1a) and (1a) reduce to the original Keller-Segel
model [8, 9].

The homogeneous cell (colloid) density ρ0 defines the
chemoattractant concentration c0 of the homogeneous
basic state:

c0 =
ρ0

1 + aρ0
. (2)

Next we separate the homogeneous part from the inho-
mogeneous parts of both concentrations:

ρ̃(x, t) = ρ0 + ρ(x, t) ,

c̃(x, t) = c0 + c(x, t) . (3)

In the resulting equations we take the fields ρ(x, t) and
c(x, t) up to their cubic power into account:

∂tρ = ∂2xρ− sρ0∂2xc (4a)

− sh2∂x
[(
ρ− 2βhρ0c+ 3β2h2ρ0c

2 − 2βhρc
)
∂xc
]
,

∂tc = (Dc + sκρ0)∂2xc+ sκ∂x(ρ∂xc)

+ g2(ρ− agρ2 + a2g2ρ3)− c , (4b)

where

g =
1

1 + aρ0
and h =

1

1 + βc0
. (5)

A. Linear stability of basic state

We assume small inhomogeneous perturbations ρ(x, t)
and c(x, t) of the basic state and keep only linear con-
tributions in Eqs. (4). For the resulting linear equa-
tions we choose the ansatz ρ = ρ̄ exp(λt + iqx) and
c = c̄ exp(λt+ iqx) with the growth rate λ and wavenum-
ber q. This determines the growth rate λ:

λ± =
1

2

[
γ1 ±

√
1 + 2q2γ2 + q4γ23

]
(6)

with the coefficients

γ1 = −1− q2(1 +Dc + sκρ0) , (7)

γ2 = Dc − 1 + sρ0(2g2h2 + κ) , (8)

γ3 = Dc − 1 + sρ0κ . (9)

The second eigenvalue λ≈− is always negative for small
values of q. It is thus irrelevant to the question of linear
stability of the homogeneous state. Expanding λ+ up to
leading order of the wavenumber q, we find

λ≈+ = G2q
2 −G4q

4 + O(q6) (10)

with

G2 =
(
sρ0g

2h2 − 1
)
, (11a)

G4 = sρ0g
2h2

[
sρ0(g2h2 + κ) +Dc − 1

]
. (11b)

The coefficient G2 vanishes for s = sc, where

sc =
1

ρ0g2h2
. (12)

If s > sc, the coefficient G2 also becomes positive and
thus the growth rate λ≈+ becomes positive in a finite range
of q. Furtheron s is chosen as the control parameter in
this system. As the dimensionless control parameter, we
choose ε with

s = sc(1 + ε). (13)

With this choice we obtain G2 = ε. Therefore, the
growth rate becomes positive for ε > 0 in a finite range
0 < q < q0 with q20 = ε/G4.
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Figure 1 shows the growth rates - both the full growth
rate λ+ as given in Eq. (6), as well as its approximation
in Eq. (10). To simplify the following calculations, we de-
termined the onset of clustering from the approximated
growth rate. Figure 1 suggests that close to the transi-
tion - when the growth rate first becomes positive - the
approximation is in good agreement with the full growth
rate as given in Eq. (6).
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FIG. 1. Comparison of the growth rate λ+(q) given by Eq. (6)
(solid lines) and its approximation λ≈

+ up to 4th order in q as
given by Eq. (10) (dashed lines). The growth rate is negative
for s < sc and positive for s > sc within a finite range of
wavenumbers.

III. DERIVATION OF THE CAHN-HILLIARD
MODEL

In this section, we first derive in Sec. (III A) the Cahn-
Hilliard model from the basic equations (4) in the neigh-
borhood of the threshold sc. In Sec. III B, we then dis-
cuss the obtained results including certain aspects of its
possible solutions.

A. Perturbative expansion

In order to further describe the clustering process be-
yond sc often simulations of the coupled equations (1)
are used. Here, we proceed analytically and derive an
order parameter equation near the onset sc via a re-
cently introduced perturbative expansion [14]. Immedi-
ately beyond onset sc, the growth rate is only positive in
a range of small values of the wavenumber q, specifically
for [0 < q < q0] with q0 ∝

√
ε. In this range the growth

rate is also small, more specifically σ ∝ ε2. Accordingly
the spatial variations take place on large length scales
and the temporal dynamics are slow. Therefore, we in-
troduce a the new spatial scale X = εx, as well as the
slow time scales T1 = ε3/2t and T = ε2t. This gives rise

to the following replacements for the spatial and tempo-
ral derivatives [15, 29]:

∂x →
√
ε∂X ,

∂t → ε3/2∂T1
+ ε2∂T . (14)

We assume that the transition from the homogeneous
to the phase separated state is continuous. Accordingly,
we choose the following expansion for the density and
concentration fields:

ρ = ε1/2ρ1 + ερ2 + ε3/2ρ3 + . . . , (15)

c = ε1/2c1 + εc2 + ε3/2c3 + . . . . (16)

Usually the chemoattractant diffuses much faster than
the particles or cells. The chemoattractant concentra-
tion c thus essentially follows the density ρ adiabatically.
In this case, we can express the densities ci as func-
tions of the densities ρi by solving the successive orders
ε1/2, ε, ε3/2 of Eq. (4b) as follows:

c1 = g2ρ1 , (17a)

c2 = g2ρ2 − ag3ρ21 , (17b)

c3 = D̃∂̃2xc1 + g2ρ3 − 2ag3ρ1ρ2 + a2g4ρ31 . (17c)

Note that ∂̃x denotes the derivation to the slow spatial
variables X and Y , and D̃ = Dc + scκρ0.

Next we consider the successive orders
√
ε
n

in Eq. (4a).
At order ε3/2, we find

0 = (1− scρ0g2h2)∂̃2xρ1 . (18)

Due to the instability condition in Eq. (12), this equation
is trivially fulfilled. Hence, ρ1 and c1 are both undeter-
mined at this order. At order ε2 we have

∂T1
ρ1 = (1− scρ0g2h2)∂̃2xρ2

+
1

2
scg

2h2
(
2βρ0g

2h+ 2aρ0g − 1
)
∂̃2x
(
ρ21
)
. (19)

Using again the instability condition in Eq. (12), we gain
an equation for the time development of ρ1 on the slow
time scale T1 that is determined by the quadratic non-
linearity,

∂T1
ρ1 = α3∂̃

2
x(ρ21) , (20)

where

α3 =
1

2
scg

2h2
(
2βρ0g

2h+ 2aρ0g − 1
)
. (21)

At the next higher order ε5/2 we obtain

∂T1
ρ2 + ∂T ρ1 =

(
1− scρ0g2h2

)
∂̃2xρ3 − D̃∂4xρ1 − ∂̃2xρ1

− scg3h2 (a+ βgh)

(
βρ0g

2h+ aρ0g −
2

3

)
∂̃2x
(
ρ31
)

+ F(ρ1, ρ2). (22)
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Omitting any terms including ρ2 since they should be-
come irrelevant near threshold, we end up with

∂T ρ1 = −D̃∂4xρ1 − ∂̃2xρ1 + α4∂̃
2
x

(
ρ31
)
, (23)

where

α4 = scg
3h2 (a+ βgh)

(
2

3
− βρ0g2h− aρ0g

)
. (24)

Going back to the original time and spatial scales by
setting ∂tρ1 = ε3/2∂T1ρ1 + ε2∂T ρ1, and ∂2x = ε∂̃2x, and
choosing ρ =

√
ερ1 yields

∂tρ = −∂2x
[
ερ+ D̃∂2xρ− α3ρ

2 − α4ρ
3
]
. (25)

This equation has the form of the Cahn-Hilliard model
[16, 17] with an additional quadratic nonlinearity.

B. Discussion of the derived Cahn-Hilliard
equation

Linear stability analysis similar as described in
Sec. II A shows that perturbations with respect to the
homogeneous state ρ = 0 in Eq. (25) grow according to
the growth rate

λCH = εq2 − D̃q4, (26)

where D̃ = Dc + scκρ0. Comparing this to Eq. (10), the
growth rate for the full generalized chemotaxis model
(GCM), the quadratic contributions are in agreement.

The contribution G4 in the full model tends to D̃ for
ε → 0. Thus, the CH model is able to reproduce the
linear growth behavior of the full model in the limit of
small ε.

Equation (25) results in stationary solutions with finite
amplitudes if the saturation coefficient α4 is positive. In
the absence of dampings, a = β = 0, we find α4 = 0. This
opens up the possibility of numerical blow-up solutions.
The saturation coefficient already becomes positive if the
model includes a small finite damping term in either the
signal production or the chemotactic sensitivity. Thus,
in order to avoid blow-up, we should demand α4 > 0 by
choosing at least one of the damping terms a or β to be
finite. However, for increasing values a, β, the saturation
coefficient is only positive in the range

ρ0g (a+ βgh) <
2

3
. (27)

With the definitions in Eq. (2) and Eq. (5), this simplifies
to

(a+ β)ρ0 < 2 . (28)

If this condition is not fulfilled, the amplitudes of the
density ρ are not limited by the cubic nonlinearity. Thus,

description of the demixing phenomena via the CH model
becomes invalid if the mean density ρ0 exceeds a certain
value (which depends on the damping parameters a, β).
Alternatively, the damping parameters a or β need to
be sufficiently small - corresponding to a finite but suffi-
ciently weak damping.

If α4 < 0, the CH model is obviously not a good repre-
sentation of the full system dynamics. Since the solution
does not saturate at leading order in this case, higher or-
der nonlinearities will quickly become important. They
can be taken into account by continuing the perturbative
expansion presented here to the higher orders ε3 or ε7/2

(see also [28]). Note that these higher order nonlinear-
ities could potentially serve as saturating terms. This
could prevent blow-up even if α4 < 0. However, systems
of this type do not belong to the class of active phase
separation we discuss here.

Equation (25) is ±ρ-symmetric if the quadratic non-
linearity vanishes, i.e. if α3 = 0. Using Eq. (21), this
condition is fulfilled if

2ρ0g(a+ βgh) = 1 , (29)

which simplifies to

(a+ β)ρ0 = 1 . (30)

For given damping parameters a, β there is thus a specific
mean density

ρsym =
1

a+ β
(31)

that leads to symmetric phase separation. In this case,
the condition in Eq. 28 is fulfilled and thus α4 > 0. Con-
sequently, Eq. 31 is the condition for a continuous tran-
sition to active phase separation with finite steady-state
amplitudes. Note that the symmetric case cannot be
achieved if a = β = 0, i.e. in the classic KS model.

In the symmetric case (α3 = 0) and in long systems, a
possible steady state solution of Eq. (25) is the domain
wall solution

ρ(x) =

√
ε

α4
tanh

(
x√
2`

)
, (32)

with the coherence length `

` =
ξ0√
ε
, ξ0 =

√
Dc + scκρ0 . (33)

This solution again requires α4 > 0.

IV. NUMERICAL RESULTS

In this section we determine steady state solutions of
the full GCM in Eqs. (4), and the reduced CH model
in Eq. (25) (see Appendix A for simulation details). As
discussed in the previous section, we choose the system
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FIG. 2. The steady state cell-density ρ(x) is shown very close
to threshold at ε = 0.01 for the full GCM in Eqs. (4) (dashed-
dotted line) and for the symmetric case of the reduced model
in Eq. (25) (solid line).

parameters such that α4 > 0. This can be achieved by
either a reduction of the signal production, i.e. a > 0,
or by a reduction of the drift sensitivity with increasing
density of the chemoattractant, i.e. β > 0 (or a combi-
nation of both damping mechanisms). In the following,
we will thus consider exemplarily the case of a reduc-
tion of the chemoattractant production with a = 0.5 and
β = 0. Other system parameters used are κ = 1.0 and
Dc = 10.0. Note that we use a large (relative) diffusion
coefficient ( i.e. Dc � 1), as the small chemical molecules
usually diffuse much faster than the cells. This also jus-
tifies the adiabatic approximation used in the previous
chapter.

A. Symmetric phase separation

We first investigate the case ρ0 = 2 where the
quadratic nonlinearity in Eq. (25) vanishes, i.e., α3 = 0
for a = 0.5 and β = 0. The CH equation then has so-
lutions that are symmetric around the average density
ρ0.

Figures 2 and 3 show the steady state solutions of both
the full GCM (dashed-dotted line) and the reduced CH
model (solid line) for two different supercritical values of
the control parameter, ε = 0.01 and ε = 0.1, respec-
tively. The CH model shows a symmetric separation
into two phases ρmin and ρmax. I.e the extremal val-
ues of the density, ρmin and ρmax, deviate equally from
the mean density ρ0 with each phase occupying about
half of the system. Close to the onset of phase separa-
tion at ε = 0.01, the solution resembles a cosine where
the wavelength equals the system size. As Fig. 2 shows,
the solution of the full model is very similar to the re-
duced model. However, the solution is already slightly
asymmetric. Further from the onset of phase separa-
tion (ε = 0.1, Fig. 3), the transition between the two

0 50 100 150 200 250 300 350 400
x

2

1

0

1

2

3

4

(x
)

CH model
full GCM

FIG. 3. The steady state cell-density ρ(x) is shown further
beyond threshold at ε = 0.1 for the full GCM in Eqs. (4)
(dashed-dotted line) and the symmetric case of the reduced
model given by Eq. (25) (solid line). The solution of the CH
model is nearly identical to the domain wall solution given by
Eq. (32) (dashed line).

phases becomes more step-like. The solution of the CH
model remains symmetric with the transition between
the two phases following the domain wall solution given
by Eq. (32). The full model, however, becomes more
asymmetric with increasing ε, thus deviating more from
the CH model. These deviations have its origin in the
approximations used for the derivation of the CH model:
we only took contributions up to cubic power in ρ and c in
the basic equations into account. In the limit α3 = 0 the
contributions of ρ2 and c2 vanish by construction. How-
ever, with increasing values of ε higher order contribu-
tions such as ρ4 and c4 may become increasingly relevant
for the full model in Eq. (1). Higher order terms of even
power break the ±-symmetry, i.e. deviations of ρmin,max

from ρ0 are not symmetric anymore (see dashed-dotted
lines in Fig. 2 and Fig. 3).

For smaller values of the control parameter ε, ap-
proaching the onset of phase separation, the solutions
of the GCM and the CH model become nearly indistin-
guishable. The full model then also approaches symmet-
ric solutions. This is indicated in Fig. 4 that shows the
deviations ρmax and |ρmin| from ρ0 as a function of the
control parameter ε. On the one hand, this tells us that
the CH model is an excellent approximation of the full
Keller-Segel model in the range of small ε. This is further
proof that the full model belongs to the class of active
phase separation described by the CH model at onset.
On the other hand, the numerical solutions confirm the
prediction that the transition to clustering is continuous
for α4 > 0 and α3 = 0. Note that in an infinite system
the onset of the clustering is at ε = 0. However, in a con-
fined system, as shown here for L = 400, the clustering
onset is slightly increased.
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FIG. 4. Comparison of the maximum and modulus of the
minimum amplitude in the full GCM (dashed-dotted line) to
the reduced CH equation (solid line) in the symmetric case
(ρ0 = 2).
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FIG. 5. Typical steady state solutions ρ(x) in the case of
asymmetric phase separation, i.e. α3 6= 0. Solution of the
full GCM in Eqs. (4) (dashed-dotted line) compared to the
derived CH model (solid line) for ε = 0.003, ρ0 = 2.5.

B. Asymmetric phase separation

For ρ0 6= 2, the quadratic nonlinearity in Eq. (25) is
finite. Thus, the ±-symmetry of the CH model is broken.
As a result, we expect an asymmetric phase separation
process where ρmax 6= |ρmin|. Figure 5 shows these asym-
metric solutions for the full KS model, as well as the CH
model for ε = 0.003 and ρ0 = 2.5. The solutions are
very clearly asymmetric with ρmax < |ρmin| and the area
where ρ(x) > 0 now occupying about two thirds of the
system. Comparing the full model to its description via
the reduced CH model, we find that the CH model is
able to predict ρmax fairly well. However, it significantly
overestimates |ρmin| even for this rather small control
parameter of ε = 0.003.
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FIG. 6. Comparison of ρmax and |ρmin| in the full model
(dashed-dotted line) to the reduced CH equation (solid line)
as a function of ε in the case of strongly asymmetric phase
separation (ρ0 = 2.5).
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FIG. 7. Maximum and modulus of the minimum amplitude
at ε = 0.005 as a function of the mean density ρ0 for the full
model (dashed-dotted line) and the reduced CH model (solid
line). The mean density ρ0 defines the asymmetry of the
phase separation via the asymmetry parameter α3 in Eq. (21).

This observation is consistent when investigating ρmax

and |ρmin| as a function of the control parameter (Fig. 6):
The smaller deviation from the mean density (in this case
ρmax) is similar for both the full model and the reduced
CH model The larger density variation |ρmin|, however,
is significantly overestimated by the CH model. Most
notably, however, the transition to the phase separated
state is not continuous anymore. Instead, there is a jump
to finite values of ρmax and |ρmin| at the onset. Note that
the onset of phase separation is decreased compared to
the symmetric case.

Figure 7 shows the variations from the mean density ρ0
for a fixed value of the control parameter (ε = 0.005) as a
function of the mean density ρ0. In accordance with pre-
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vious results, the minimum and maximum density vari-
ation become similar, i.e. the steady state solution be-
comes symmetric, around ρ0 = 2. In this region, the
steady state solutions of the reduced CH model is in good
agreement with the results for the full model. As can be
calculated analytically, the perfectly symmetric solution
in the reduced CH model is reached for ρ0 = 2. The so-
lution for the full model is symmetric for ρ0 ≈ 2.05, thus
slightly deviating from the reduced model for this finite
value of the control parameter ε. For increasing or de-
creasing values of the mean density ρ0, the steady state
solution becomes more and more asymmetric. While full
model and reduced CH model are in good agreement up
to moderate asymmetries. Only for very strong asymme-
tries do the two solutions deviate more clearly.

The fact that the quality of the approximation via the
CH model decreases for strong asymmetries is actually
not surprising. In fact, we can estimate the range of ρ0
values for which we assume the approximation to still be
in good agreement with the full model. In order to do so,
we assume stationary, spatially homogeneous solutions
ρ = A of Eq. (25):

ε− α3A− α4A
2 = 0 . (34)

We rescale the amplitude by setting A = B/
√
α4 in order

to get

ε− α3√
α4
B −B2 = 0 . (35)

In the stationary case, the saturation term should bal-
ance the first term, suggesting B2 ∝ O(ε). If we want to
keep the second term of the same order than the other
two terms, we have to demand

α3√
α4

.
√
ε . (36)

If this condition is fulfilled, we would assume the CH
model to be a good approximation for asymmetric phase
separation. For the given system parameters, this cor-
responds to mean densities ρ0 in a range of about
[1.84, 2.16]. As Fig. 7 clearly shows, deviations of the
CH approximation from the full model only become ap-
parent well beyond this region of moderate asymmetries.

C. Coarsening in two dimensions

Starting from random initial conditions in two spa-
tial dimensions, both the full GCM in Eqs. (4) and the
CH model in Eq. (25) show coarsening dynamics as they
are characteristic for phase separation phenomena. The
snapshots shown in Fig. 8 at different times are obtained
for ε = 0.1, i.e. quite far from phase separation onset. In
Fig. 8a) and Fig. 8b), we considered the symmetric case
at onset, i.e., α3 = 0. However, the full model is already
strongly asymmetric at ε = 0.1 since higher order nonlin-
earities break the up/down-symmetry in the system. For

full GCM

CH
symmetric

CH
asymmetric

time

a)

b)

c)

FIG. 8. Simulation results in two dimensions at ε = 0.1 and
times t1 = 6 · 104, t2 = 1.2 · 105 and t3 = 3 · 105 (system size:
800 × 800). In a) snapshots for the full model and in b) for
the CH model are shown in the symmetric case, i.e., α3 = 0.
Part c) shows the CH model in the asymmetric case ρ0 = 2.5.

comparison, Fig. 8b) shows simulations of the CH model
for the same parameters. In this symmetric case, the
system shows typical labyrinth-like patterns. Figure 8c)
shows simulations of the CH model in the asymmetric
case for ρ0 = 2.5. The spot-like patterns seen both here
and the full model in Fig. 8a) are typical for asymmetric
phase separation.

D. Both dampings

Both damping parameters a and β contribute to the
amplitude limitation parameter α4 and the asymmetry
parameter α3 in Eq. (25). The condition for satura-
tion of the amplitude, α4 > 0, can already be fulfilled
by one of both damping parameters. Therefore, we fo-
cused in the previous section on a finite a 6= 0, as well
as an anisotropic signal production, i.e. κ 6= 0, in or-
der to keep the comparisons between the full and the
reduced CH model straightforward. The anisotropy κ
only contributes by varying the diffusion constant Dc [see

D̃ = Dc + scκρ0 in Eq. (25)]. It thus does not qualita-
tively influence the stationary solutions obtained in the
model. Taking a signal-dependent sensitivity into ac-
count (β 6= 0) - in addition to the nonlinear signal pro-
duction we already considered in the previous chapter
- will change the parameter sets that fulfill the condi-
tions outlined in Section III. Besides these quantitative
changes to the CH model and its validity range as an
approximation of the full model, β 6= 0 does not change
the qualitative results described in the previous section.
Numerical simulations for the parameters a = 3, β = 1,
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Dc = 5, κ = 0 confirmed this (see Appendix B).

V. SUMMARY AND CONCLUSIONS

In this work we have analyzed a continuum model
for chemotaxis with a globally conserved particle den-
sity that is coupled to an unconserved concentration
field of a chemoattractant. Compared to the original
Keller-Segel (KS) model for chemotaxis, our generalized
chemotaxis model (GCM) also saturation of the chemoat-
tractant production with increasing particle density, as
well as reduction of the drift sensitivity with increasing
chemoattractant density [12]. The model also allows for
anisotropic chemical production as used for autophoretic
colloids [10]. We showed here that this model belongs to a
recently introduced class of active phase separation that
can be reduced near onset to the Cahn-Hilliard model.

To obtain this result, we applied a recently intro-
duced perturbation method for mass-conserved systems,
cf. Ref. [14], to the continuum model for the collective
particle chemotaxis used in this work. Due to the sys-
tematic perturbative approach, the coefficients of the CH
model are mathematically linked to the system parame-
ters of the GCM, i.e. the coefficients of the CH model are
expressed in terms of parameters of the basic model. This
direct link also allows us to analytically predict suitable
parameter ranges. We can, for example, predict where
the transition from homogeneous particle and chemoat-
tractant densities to clustering becomes continuous. We
can also show when the cubic nonlinearity in the CH
equation limits the amplitude of the density field. This
can only be the case if at least one of the included damp-
ing effects considered in this work become sufficiently
strong. These damping effects thus are obviously able
to eliminate undesired blow-up solutions known from the

original Keller-Segel model. This information is useful,
for example, when using chemotactic models to describe
active colloidal systems. Recently, a Keller-Segel-type
model has been used to describe clustering in these sys-
tems [10]. As our analysis showed, including some form of
damping in these models can help avoiding blow-up solu-
tions and thus more realistically describe particle-based
observations.

With this work we can include chemotactic clustering
into the class of active phase separation. Other examples
in this class include cell polarization [14, 22] and motility-
induced phase separation (MIPS) [28]. The coefficients
of the CH model for these systems are different than for
the chemotactic system considered here. However, since
the coefficients of the CH equation can be rescaled to
unity by rescaling time, space and the field amplitudes,
all these systems show the same universal behavior near
onset active phase separation, including the typical coars-
ening behavior known from equilibrium phase separation
[17].

Our presented perturbation approach from Ref. [14]
and applied here is a systematic extension of pattern for-
mation theory. It can be applied to further variants of
models for chemotactic particles with particle conserva-
tion in order to reveal system-spanning properties for fur-
ther models as well. It can also be extended to include
higher order nonlinearities as demonstrated in Ref. [28]
for MIPS. Analyzing the influence of these higher order
nonlinearities in the context of cell clustering is an inter-
esting future task.
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Abstract. We consider a continuum model for motility-induced phase separation (MIPS) of active Brow-
nian particles (ABP) (J. Chem. Phys. 142, 224149 (2015)). Using a recently introduced perturbative
analysis (Phys. Rev. E 98, 020604(R) (2018)), we show that this continuum model reduces to the classic
Cahn-Hilliard (CH) model near the onset of MIPS. This makes MIPS another example of the so-called
active phase separation. We further introduce a generalization of the perturbative analysis to the next
higher order. This results in a generic higher-order extension of the CH model for active phase separation.
Our analysis establishes the mathematical link between the basic mean-field ABP model on the one hand,
and the leading order and extended CH models on the other hand. Comparing numerical simulations of
the three models, we find that the leading-order CH model agrees nearly perfectly with the full contin-
uum model near the onset of MIPS. We also give estimates of the control parameter beyond which the
higher-order corrections become relevant and compare the extended CH model to recent phenomenological
models.

1 Introduction

Active matter systems are non-equilibrium systems which
consume fuel and disspative energy locally. These sys-
tems are full of fascinating phenomena and have recently
attracted increasing attention in the scientific commu-
nity [1–8]. Examples range from active molecular pro-
cesses which are driven by chemical free energy provided
by metabolic processes [9] up to flocks of birds and schools
of fish [1,2]. Various active matter systems also show col-
lective non-equilibrium transitions. On the time scale of
these transitions, the number of involved entities such as
proteins, cells or even birds is conserved. Examples include
cell polarization [10–16], chemotactically communicating
cells [17–20], self-propelled colloidal particles [21–27], as
well as mussels in ecology [28].

Self-propelling colloidal particles undergo a non-
equilibrium phase transition into two distinct phases —a
denser liquid-like phase and a dilute gas-like phase [21–
23]— if their swimming speed decreases with increasing
local density. This is known as motility-induced phase
separation (MIPS) [4, 24, 26]. It strikingly resembles well-
known phase separation processes at thermal equilibrium
such as the demixing of a binary fluid. We recently in-
troduced a class of such non-equilibrium demixing phe-

a e-mail: walter.zimmermann@uni-bayreuth.de

nomena we call active phase separation [16]. Among the
phenomena identified as members of this class are cell po-
larization or chemotactically communicating cells. For this
class we have shown that the similarities between equilib-
rium and non-equilibrium demixing phenomena are in fact
not coincidental. We have generalized a classical weakly
nonlinear analysis near a supercritical bifurcation with
unconserved order parameter fields [29] to the case of ac-
tive phase separation with a conserved order parameter
field [16]. The generic equation describing active phase
separation systems turned out to be the classic Cahn-
Hilliard (CH) model —the same generic model that also
describes equilibrium phase separation. The class of ac-
tive phase separation thus defines non-equilibrium demix-
ing phenomena whose conserved order parameter is close
to onset described by the Cahn-Hilliard model.

In this work, we raise the question whether the recently
introduced nonlinear perturbation approach in ref. [16] is
also directly applicable to MIPS. We employ this reduc-
tion approach to a mean-field description of active Brow-
nian particles (ABP) showing MIPS provided by Speck et
al. [27, 30] and show how the ABP model reduces to the
CH model at leading order.

Recently, several phenomenological extensions of the
CH model have also been considered as continuum mod-
els of MIPS [31,32]. These are extensions of the CH model
to the next higher order of nonlinear contributions. In this
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work, we therefore also introduce an extension of our per-
turbative scheme that allows us to systematically derive
higher-order nonlinearities directly from the continuum
model for MIPS. Due to our systematic approach, the ex-
tended CH model we derive is not a phenomenological
model. Instead, we directly map the continuum model for
ABP to the extended CH model. Note that we concentrate
on the example of MIPS in this work. However, the exten-
sion introduced here can be applied to any system in the
class of active phase separation. We thus show in general
how both the leading-order CH model and its extension
describe active phase separation as a non-equilibrium phe-
nomenon.

This work is organized as follows: We first present the
mean-field ABP model and calculate the onset of phase
separation in the system. We then introduce the pertur-
bative scheme we use to reduce the ABP model to the
classic CH equation near the onset of phase separation.
In the next step, we extend the previous approach to in-
clude nonlinearities at the next higher order. Section 5 is
an in-depth discussion of the derived leading-order and ex-
tended CH models including their connection to the mean-
field ABP model and other phenomenological descriptions
of MIPS. Finally, in sect. 6, we present numerical simu-
lations comparing leading-order and extended CH to the
full mean-field ABP model to assess validity and accuracy
of the reduced models.

2 Model

On a mean-field level, phase separation of active Brow-
nian particles (ABP) can be described by two coupled
equations for the particle density ρ̃(r, t) and a polariza-
tion p(r, t) [23, 30]. The evolution of the particle density
ρ̃ is determined by

∂tρ̃ = −∇ · [v(ρ̃)p − De∇ρ̃] , (1)

where De is the effective diffusion coefficient of the active
Brownian particles. v(ρ̃) is the density-dependent particle
speed given by

v(ρ̃) = v0 − ρ̃ζ + λ2∇2ρ̃; (2)

v0 is the speed of a single self-propelled particle. With in-
creasing particle density, the velocity is reduced by ζρ̃ due
to interactions with other particles. ζ is related to the pair
distribution function of the individual particles and as-
sumed to be spatially homogeneous [23]. The nonlocal con-
tribution in eq. (2) was earlier introduced in refs. [25, 33]
and later incorporated into the model by Speck et al. [30].
It incorporates the effect that active Brownian particles
sample the neighboring particle density on a length scale
λ larger than the particle spacing. Equation (2) is coupled
to a dynamical equation for the polarization [23,30],

∂tp = −∇P (ρ̃) + De∇2p − p, (3)

with the “pressure”

P (ρ̃) =
1

2
v(ρ̃)ρ̃. (4)

3 Onset of phase separation

A stationary solution of eq. (1) and eq. (3) is any con-
stant density ρ̄ and p = 0. Therefore, we decompose the
particle density into its homogeneous part ρ̄ and the in-
homogeneous density variation ρ:

ρ̃ = ρ̄ + ρ. (5)

Accordingly, we investigate the following dynamical equa-
tions for ρ and p in one spatial dimension:

∂tρ = −∂x

[
α − ζρ + λ2∂2

xρ
]
p + De∂

2
xρ, (6a)

∂tp = −∂x

[
βρ − 1

2
ζρ2 +

λ2

2
(ρ̄ + ρ) ∂2

xρ

]

+De∂
2
xp − p, (6b)

where

α = v0 − R, β =
1

2
(v0 − 2R), (7)

with the density parameter

R = ζρ̄. (8)

We assume ζ and De to be constant [30].
The homogeneous basic solution ρ = 0, p = 0 is unsta-

ble if the perturbations ρ, p = ρ̂, p̂ exp(σt+ iqx) grow, i.e.
if the growth rate σ is positive. Solving the linear parts of
eqs. (6) with this perturbation ansatz, the largest eigen-
value gives us the dispersion relation

σ(q) = −1

2
− Deq

2 +
1

2

√
1 − 4αβq2 + 2λ2αρ̄q4,

= D2q
2 − D4q

4 + O(q6), (9)

where

D2 = −(De + αβ), (10)

D4 =

(
α2β2 − λ2

2

R

ζ
α

)
. (11)

D2 changes its sign as a function of v0. Assuming D4 >
0, the growth rate σ becomes positive in a finite range
of q = [0, qmax], when D2 > 0. Note that the range of
wavenumbers q with positive growth rate extends down
to q = 0. The related instability condition

De + αβ = 0 (12)

provides a quadratic polynomial for the critical mean den-
sity ρ̄ (represented by the density parameter R) and the
respective particle speed v0(R):

1

2
v2
0 − 3

2
Rv0 + De + R2 = 0. (13)

For particle speeds v0 > v∗, where

v∗ = 4
√

De, (14)
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Fig. 1. Instability curve R±(v0) as given by eq. (15). The
minimum of the parabolic function is at (v∗, R∗) = (1.0, 0.75),
assuming ζ = 1, De = 1/16. For v0 > v∗, the homogeneous so-
lution is unstable for mean densities within the shaded region.

this polynomial has two real solutions

R± =
1

4

[
3v0 ±

√
v2
0 − 16De

]
. (15)

This corresponds to a critical value R∗ of the density pa-
rameter:

R∗ = R(v∗) =
3

4
v∗. (16)

Note that the assumption D4 > 0 is fulfilled if λ2 <
2ζαβ2/R, i.e. for sufficiently small λ. At the critical point,
v0 = v∗ and R = R∗, this condition simplifies to

λ2 < ζv2
∗/24. (17)

For particle velocities below v∗, the homogeneous solution
is stable for any value of the density parameter R = ζρ̄.
For v > v∗ and R− < R < R+ (shaded region in fig. 1)
the homogeneous particle density becomes unstable with
respect to perturbations.

4 Derivation of Cahn-Hilliard models

In this section, we will apply the systematic pertubative
scheme introduced recently in ref. [16] to the mean-field
model, eqs. (6), and reduce them near onset to the well-
known Cahn-Hilliard (CH) model. In a second step, we
will then expand the pertubative scheme to include higher-
order contributions.

The transition from the homogenous state of eqs. (1)
and (3) to MIPS is either supercritical or slightly subcriti-
cal. In both cases, cubic nonlinearities limit the growth of
density modulations —as we also confirm in this work a
posteriori. Therefore, the amplitudes of the density mod-
ulations near MIPS are small and we write

ρ =
√

ερ1 (18)

with a small parameter ε and ρ1 ∼ O(1). Thereby ε mea-
sures the distance from the critical velocity v∗:

v0 = v∗(1 + ε). (19)

This also allows an expansion of R±(v0) in eq. (15) near
R∗. At leading order, we find R± � R∗(1 ± η

√
ε) with

η =
√

2/3. This suggests the following parameterization
of R in the ranges v0 > v∗ and R− < R < R+ near R∗:

R = R∗(1 + r1), with r1 =
√

εr̃1. (20)

According to the dispersion relation in eq. (9), the
fastest growing mode is given by q2

e = D2/(2D4). The
largest growing wavenumber qmax (calculated from σ = 0)
is q2

max = D2/D4. Thus, both q2
e and q2

max scale with the
factor D2/D4. Using the previously introduced definitions
and expanding for small values of the control parameter
ε, we find D2/D4 ∝ ε at leading order. Thus, both qe

and qmax are of the order
√

ε, i.e. perturbations of the
homogeneous basic state vary on a large length scale. Ac-
cordingly, we introduce the new scaling x̃ =

√
εx, resulting

in the following replacement of the differential operator:

∂x → √
ε∂̃x. (21)

From q2 of order O(ε) and D2 ∝ ε follows that σ ∝ ε2

according to eq. (9). Thus, the growth of these long wave-
length perturbations is very slow. Accordingly, we intro-
duce the slow time scale T1 = ε2t. In order to capture the
dynamics at the next higher order of ε1/2, we also intro-
duce a second slow time scale T2 = ε5/2t. This suggests
the following replacement of the time derivatives:

∂t → ε2∂T1
+ ε5/2∂T2

. (22)

Since we expressed the density ρ as a multiple of
√

ε, see
eq. (18), we also expand the polarization field p in orders
of

√
ε:

p =
√

εp0 + εp1 + ε3/2p2 + ε2p3 + ε5/2p4 + . . . . (23)

We insert these scalings into the dynamic equations (6)
and collect terms of the same order

√
ε
n
. The polarization

follows the density field adiabatically. Thus, the contribu-
tions to the polarization in increasing orders up to ε5/2

are

p0 = 0, (24)

p1 = −β∗∂̃xρ1, (25)

p2 = R∗r̃1∂̃xρ1 +
ζ

2
∂̃x(ρ2

1), (26)

p3 = −v∗
2

∂̃xρ1 −
(

Deβ∗ +
λ2

2

R∗
ζ

)
∂̃3

xρ1, (27)

p4 = De∂̃
3
x

(
r̃1R∗ρ1 +

ζ

2
ρ2
1

)

−λ2

2
∂̃x (r̃1ρ∗ + ρ1) ∂̃2

xρ1. (28)
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With these solutions, we can systematically solve the
equations for the density ρ1 in the successive orders of√

ε. In the lowest order O(ε3/2), we find

0 = (α∗β∗ + De) ∂̃2
xρ1. (29)

This equation, however, is trivially satisfied due to the
instability condition α∗β∗ + De = 0.

At order O(ε2), we get

0 = −(α∗ + β∗)
[
R∗r̃1∂̃

2
xρ1 + ζ∂̃x

(
ρ1∂̃xρ1

)]
. (30)

With the definition of R∗ in eq. (16) it follows that α∗ +
β∗ = 0. Thus, eq. (30) is again trivially fulfilled.

At order O(ε5/2), we finally get a dynamic equation
for ρ1:

∂T1
ρ1 = −∂̃2

x

[(
1

8
v2

∗ − 9

16
v2

∗ r̃2
1

)
ρ1

+

(
1

256
v4

∗ − 3

32ζ
λ2v2

∗

)
∂̃2

xρ1

− 3

4
ζv∗r̃1 ρ2

1 − 1

3
ζ2 ρ3

1

]
. (31)

Note that we used the expressions in eq. (14) and eq. (16)
to eliminate R∗ and De. Equation (31) has the form
of the well-known Cahn-Hilliard (CH) equation [34, 35].
This shows that MIPS is a further example of the
non-equilibrium demixing phenomenon which shares the
universal CH model with classic phase separation. Re-
cently, the notion active phase separation was coined for
these types of non-equilibrium phenomena [16]. Other re-
cently discussed examples of active phase separation are
cell polarization or chemotactically communicating cell
colonies [16]. All of these very different systems can be
reduced to the same universal equation near the onset of
phase separation. They thus share generic features as ex-
pressed in their common representation via the CH equa-
tion.

In the next step, we extend the reduction scheme in-
troduced in ref. [16] to include higher-order nonlinearities.
Continuing the expansion above to the next order O(ε3),
we obtain:

∂T2
ρ1 = −∂̃2

x

[
9

8
v2

∗ r̃1ρ1 +
3

16ζ
λ2v2

∗ r̃1

(
∂̃2

xρ1

)
+

3

4
ζv∗ρ

2
1

+

(
3

128
ζv3

∗ − 5

16
λ2v∗

) (
∂̃xρ1

)2

+
λ2

8
v∗∂̃

2
xρ2

1

]
. (32)

We will discuss these new contributions in detail in
sect. 5.2 below.

Equations (31) and (32) can be combined into a sin-
gle equation by reconstituting the original time scale via
∂tρ1 = ε2∂T1

ρ1 +ε5/2∂T2
ρ1. In addition, we go back to the

original spatial scaling by setting ∂̃x = ∂x/
√

ε, to the orig-
inal density ρ via eq. (18), and r1 as defined in eq. (20).

The complete extended amplitude equation for the density
variations ρ then reads:

∂tρ = −∂2
x

[
(α1 + β1) ρ + (α2 + β2) ∂2

xρ

+(α3 + β3) ρ2 − α4ρ
3

+β5 (∂xρ)
2

+ β6∂
2
xρ2

]
. (33)

In this equation, contributions with the coefficients αi

originate from the leading order and are given by

α1 =
1

8
v2

∗ε − 9

16
v2

∗r2
1, (34a)

α2 =
1

256
v4

∗ − 3

32ζ
λ2v2

∗, (34b)

α3 = −3

4
ζv∗r1, (34c)

α4 =
1

3
ζ2. (34d)

In other words, eq. (33) with βi = 0 is the rescaled version
of eq. (31). The coefficients βi signal the new contributions
from the next higher order. They are given by

β1 =
9

8
v2

∗r1ε, (35a)

β2 =
3

16ζ
λ2v2

∗r1, (35b)

β3 =
3

4
ζv∗ε, (35c)

β5 =
3

128
ζv3

∗ − 5

16
λ2v∗, (35d)

β6 =
λ2

8
v∗. (35e)

5 Discussion of the derived Cahn-Hilliard
models

In this section, we will discuss the results obtained in the
previous sect. 4. At first we consider the classic CH equa-
tion that resulted at leading order of our perturbative
analysis. We then take a closer look at the higher-order
corrections ∝ βi in eq. (33). We also focus on the relation
of the higher-order coefficients βi to the parameters of re-
cently introduced phenomenological extensions of the CH
model for MIPS [31,32,36].

5.1 Classic CH equation at leading order

For βi = 0, the leading order of eq. (33),

∂tρ = −∂2
x

[
α1ρ + α2∂

2
xρ + α3ρ

2 − α4ρ
3
]
, (36)

corresponds to the asymmetric version of the Cahn-
Hilliard (CH) equation, see e.g. refs. [34, 35], The coef-
ficients αi are given in eqs. (34). Note that the quadratic
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nonlinearity implies a broken ±ρ-symmetry. This is usu-
ally not included in the classic representation of the CH
equation since it can be removed by adding a constant to
the density: ρ → ρ + ρh. In any case, the quadratic non-
linearity vanishes for α3 = 0. For the ABP model, this is
fulfilled for r1 = 0, or ρ̄ = ρ∗ accordingly. This special
case has also been considered in [30] where they found a
CH equation with coefficients consistent with αi above.

Equation (36) can be derived from the energy func-
tional

F =

∫ [
−α1

2
+

α2

2
(∂xρ)2 − α3

3
ρ3 +

α4

4
ρ4

]
dx (37)

via

∂tρ = ∂2
x

δF

δρ
. (38)

At first glance this is a surprising result since the two
initial dynamical equations for the density, eq. (1), and
the polarization, eq. (3), do not follow potential dynamics
and therefore cannot be derived from a functional. Nev-
ertheless, this specific property has been seen for other
non-equilibrium systems: The evolution equation for the
envelope of spatially periodic patterns also follows poten-
tial dynamics while the dissipative starting equations do
not [29,37].

5.2 Extended CH model

We now take a closer look at the CH model extended to
the next higher order, eq. (33) with coefficients βi given
in eqs. (35). The contributions β1, β2 and β3 are correc-
tions to the coefficients α1, α2 and α3 of the leading-
order CH equation. Note, however, that according to
eqs. (35a) and (35c), β1 and β3 are functions of ε and
thus both increase with the distance ε from phase separa-
tion onset. Notably, β3 —the correction to the quadratic
nonlinearity— is not a function of the relative deviation
r1 from the critical density parameter R∗. Thus, while for
r1 = 0 the CH model at leading order is ±ρ-symmetric,
the symmetry is always broken at higher order.

The coefficients β5 and β6 are the prefactors of higher-
order nonlinearities. These new contributions ∝ ∂2

x(∂xρ)2

and ∝ ∂4
xρ2 are structurally different compared to the

terms in the leading-order CH model. In general, an ad-
ditional nonlinearity ∝ ∂2

xρ4 is of the same order as these
two contributions. However, in the exemplary case of ABP
we analyze here this term does not appear. Note, however,
that the higher-order extension of the CH model presented
here can also be applied to other active phase separation
systems. We expect the additional nonlinearity of the form
∝ ∂2

xρ4 to be relevant in other examples such as cell po-
larization or chemotaxis.

In the context of MIPS, a contribution ∝ ∂2
x(∂xρ)2

has been introduced via a phenomenological approach
in ref. [31]. The CH model extended by this term has
been called Active Model B. It was considered as a non-
equilibrium extension of the CH model and minimal model
for MIPS. We would like to reiterate that the CH model as

given by eq. (36) (without any additional nonlinear terms)
is the leading-order description of the non-equilibrium
phenomenon of active phase seperation [16]. As we have
shown here, this also includes MIPS. All higher-order non-
linearities vanish for ε → 0 (see also the discussion in
sect. 5.4). In that respect Active Model B is a nonlin-
ear extension of the CH model —not an extension of the
CH model to non-equilibrium systems. Our systematic ap-
proach reveals the existence of the additional higher non-
linearity ∝ ∂4

xρ2 = 2∂2
x[(∂xρ)2 + ρ∂2

xρ]. It includes the
nonlinear correction to the CH model, ∝ ∂2

x(∂xρ)2, that
leads to the Active Model B [4, 31]. The second part of
the new nonlinear correction term, ∝ ∂2

x(ρ∂2
xρ), has re-

cently been included in a further CH extension for MIPS
called Active Model B+ [32, 36]. Note that the contribu-
tion ∝ β6 in eq. (33) vanishes for λ = 0. Active Model B
and Active Model B+ also do not include the quadratic
nonlinearity ∝ β3ρ

2. Our analysis shows, however, that
the coefficients βi in general are not independent of each
other and β2 in fact always appears simultaneously with
the nonlinearity ∝ β5. The broken ±-symmetry and the
resulting asymmetric phase separation profiles depend on
the distance ε from threshold (see β3 in eq. (35c)). It is
an important qualitative feature of the system behavior
above threshold.

As discussed in sect. 5.1, the leading-order CH model
can be derived from an energy potential. For the extended
CH model, eq. (33), the existence of an energy functional
depends on the coefficients of the additional higher-order
contributions: for arbitrary values of β5 and β6, the ex-
tended CH model is non-potential. In the special case
β6 = −β5, however, eq. (33) can be derived from the en-
ergy functional

F =

∫ [−α1 + β1

2
ρ2 +

α2 + β2

2
(∂xρ)2

−α3 + β3

3
ρ3 − α4

4
ρ4 +

β5

2
ρ2∂2

xρ

]
dx. (39)

For the ABP model, eqs. (6), this condition is fulfilled for

λ2 =
ζv∗2

8
. (40)

Note, however, that the linear stability analysis in sect. 3
introduced a condition for λ: λ2 < ζv2

∗/24 in eq. (17). This
condition and eq. (40) cannot be fulfilled simultaneously.
Thus, whether the extended CH model can be derived
from an energy functional depends on the exact parame-
ter choices. For the ABP continuum model we investigate
here, there do not seem to be suitable parameter choices.
But note again that our approach can be applied to other
systems showing active phase separation. For these other
models, the coefficients of the extended CH model could
allow for the existence of a suitable potential.

5.3 Comparison of linear stability

As a first step to assess the quality of our derived reduced
equation, eq. (33), we analyze the linear stability of the
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homogeneous basic state ρ = 0, and compare to the sta-
bility of the full ABP model. As discussed in sect. 3, the
instability condition for the full ABP system is given by
eq. (12). Using v0 = v∗(1 + ε), R = R∗(1 + r1) and the
definitions of De and R∗ as given by eqs. (14) and (16),
we find

εc =
1

8
(1 + 9r1) − 1

8

√
1 + 18r1 + 9r2

1

≈ 9

2
r2
1 − 81

2
r3
1 +

891

2
r4
1 + O(r5

1) (41)

for the onset of phase separation. Thus, in the symmet-
ric case r1 = 0 the threshold is εc = 0. For r1 	= 0 the
onset of phase separation is shifted to larger values of ε.
Larger particle velocities v0 are thus required to trigger
the demixing process.

Similarly, we can analyze the linear stability of both
the leading-order CH equation, eq. (36), and its higher-
order extension, eq. (33). The threshold calculated from
the linear parts of eq. (36) is given by

εc,lead =
9

2
r2
1. (42)

Comparing this to εc in eq. (41), we find that the shift-
ing of the threshold due to finite r1 is represented up to
leading order of r1. Assuming r1 > 0, εc,lead significantly
overestimates the real threshold εc. For the extended CH
equation, eq. (33), we find the threshold

εc,ext =
9r2

1

2(1 + 9r2
1)

≈ 9

2
r2
1 − 81

2
r3
1 +

729

2
r4
1 + O(r5

1). (43)

This is in agreement with the threshold for the full model,
eq. (41), up to the order O(r3

1). The threshold is therefore
only slightly underestimated compared to the full model.
Keeping these different threshold values in mind is partic-
ularly important for the numerical comparison of the ABP
model, eqs. (1) and (3), to its two reductions, eqs. (36)
and (33) in sect. 6. All three equations only provide the
exact same threshold, namely εc = 0, in the special case
r1 = 0.

The linear stability analysis also provides the disper-
sion relation for the perturbation growth rate σ. For the
full model, it is given by eq. (9). Expanding for small per-
turbation wavenumbers q, the general form of the growth
rate is

σ = D2q
2 − D4q

4 + O(q6). (44)

The coefficients D2 and D4 are given in eqs. (10) and (11),
respectively. Using the definitions introduced in the course
of the perturbative expansion, D2 can be rewritten to

D2 =
1

8
v2

∗ε − 9

16
v2

∗r2
1 +

9

8
v2

∗r1ε − 1

2
v2

∗ε2. (45)

Good agreement between the full ABP model and its re-
duction to eq. (33) can only be expected if the reduced
equations are able to reproduce the basic form of this

growth rate. The linear part of eq. (33) leads to a growth
rate of the form

σ(q) = G2q
2 − G4q

4, (46)

where

G2 =
1

8
v2

∗ε − 9

16
v2

∗r2
1 +

9

8
v2

∗r1ε, (47)

G4 =
1

256
v4

∗ − 3

32ζ
λ2v2

∗ +
3

16ζ
λ2v2

∗r1. (48)

G2 is in agreement with D2 of the full model equations up
to linear order in ε. D2 only includes an additional term
of order O(ε2): D2 = G2 − v2

∗ε2/2. G4 exactly reduces to
D4 in the case ε = r1 = 0. In the limit ε → 0 but r1 	= 0,
the two terms agree up to linear order in r1. As discussed
in sect. 3, the coefficient D4 has to be positive for the
instability condition to hold and to ensure damping of
short wavelength perturbations. The same applies to the
coefficient G4. The condition G4 > 0 is fulfilled if

λ2 <
1

24
v2

∗ζ
1

1 − 2r1
. (49)

Note the similarity to the previously derived condition in
eq. (17).

5.4 Significance of nonlinear corrections

In this section, we discuss the importance of the higher-
order nonlinearities compared to the leading-order terms
of the classic Cahn-Hilliard model in eq. (36). For this
comparison we focus on the case with ±-symmetry at
leading order, i.e. r1 = 0. We rescale time, space and
amplitude in eq. (33) via t′ = τ0ε

2t, x′ = ξ0
√

εx and
ρ′ = ρ0ρ/

√
ε, respectively, where

τ0 =
4ζv2

∗
v2∗ζ − 24λ2

, (50a)

ξ2
0 =

32ζ

v2∗ζ − 24λ2
, (50b)

ρ0 =
2
√

6

3

ζ

v∗
. (50c)

This allows us to rewrite eq. (33) in the following form:

∂t′ρ′ = −∂2
x′

[
ρ′ + ∂2

x′ρ′ − ρ′3]

−√
ε∂2

x′

[
γ1ρ

′2 + γ2∂
2
x′ρ′2 + γ3 (∂x′ρ′)

2
]
, (51)

where

γ1 =
3
√

6

2
, (52a)

γ2 =
8
√

6λ2

v2∗ζ − 24λ2
, (52b)

γ3 =

√
6(3v2

∗ζ − 40λ2)

2(v2∗ζ − 24λ2)
. (52c)
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The first line in eq. (51) is the parameter-free, ±ρ-
symmetric version of the Cahn-Hilliard model as de-
scribed, e.g., in refs. [34, 35]. The additional three con-
tributions are the first higher-order corrections as gained
above via a systematic reduction of the continuum model
for MIPS. These three corrections are proportional to

√
ε

and thus vanish when approaching the onset of active
phase separation (ε → 0). In the limit ε → 0 the classic CH
model thus fully describes the non-equilibrium mean-field
dynamics of MIPS. With increasing ε, the higher-order
contributions become more and more important.

Note that eq. (51) was derived under the assumption
r1 = 0. As discussed in sect. 5.1, the CH model at leading
order is ±ρ-symmetric in this case. The three higher-order
contributions in eq. (51), however, break the ±ρ-symmetry
with increasing ε. Moreover, in the case of the ABP model
we analyze here, the coefficient γ1 does not depend on any
of the system parameters at all. Thus, there is in fact no
special case in which this contribution can be neglected.

The coefficients of the other two higher-order nonlin-
earities, γ2 and γ3, are functions of the system parameters,
especially of λ. Typical parameter choices for the contin-
uum model in eq. (6) are such that v∗ and ζ are of order
O(1). Accordingly, λ has to be small to fulfill the condi-
tion in eq. (17). Therefore, an expansion of γ2 and γ3 in
terms of small λ is appropriate:

γ2 =
8
√

6

v2∗ζ
λ2 + O(λ4), (53)

γ3 = γ1 + 2γ2 + O(λ4). (54)

In the limit λ = 0 the coefficient γ2 vanishes, i.e. γ2 = 0,
and γ3 simplifies to γ3 = γ1. For finite λ, γ2 also becomes
finite. But since according to eq. (53) γ2 is proportional to
λ2, it will be much smaller than γ3 for small λ. For MIPS
as described by the mean-field model in eqs. (6), the im-
pact of the nonlinearity ∝ ∂2

x(∂xρ)2 thus seems to over-
shadow the term ∝ ∂4

xρ2. This predominance of γ3, how-
ever, is specific to MIPS as described by the ABP model.
For other examples of active phase separation such as cell
polarization or chemotactically communicating cells, we
expect that the nonlinearities described by γ1 or γ2 can
be of similar order as γ3. As mentioned earlier, for both ex-
amples of active phase separation we also expect an addi-
tional higher-order correction ∝ ∂2

xρ4 which is completely
absent in the ABP model.

6 Numerical comparison

In this section, we compare numerical simulations of the
full ABP model, eqs. (6), to both the leading-order CH
equation, eq. (36), as well as the extended version includ-
ing higher nonlinearities, eq. (33). On the one hand, this
allows us to assess the quality and validity range of our re-
duction scheme in general. On the other hand, comparing
the leading-order and the extended CH model also gives
us information about the importance of higher-order non-
linearities in MIPS.

Fig. 2. Comparison of the steady-state profiles in the “sym-
metric” case (ρ̄ = ρ∗) at ε = 0.01: full ABP model (shaded
grey) vs. leading-order CH equation (dashed line) vs. extended
CH equation (dotted line). Other parameters: ζ = v∗ = 1.

All simulations were performed using a spectral
method with a semi-implicit Euler time step. The system
size was L = 100 with periodic boundary conditions and
N = 256 Fourier modes were used.

We first analyze the special case r1 = 0, i.e. ρ̄ =
ρ∗. This is the case in which the ±-symmetry-breaking
quadratic nonlinearity vanishes at leading order. We
choose v∗ = 1 and ζ = 1 throughout all of the follow-
ing simulation results. As discussed in sect. 5.4, λ has to
be small and is thus not expected to significantly influence
the results. We thus set λ = 0.

Figure 2 shows the steady-state profiles for the three
models (full ABP model, leading-order CH and extended
CH) at ε = 0.01. The profiles are typical for phase sepa-
ration solutions: We find two distinct regions where the
mean density is either increased (ρ > 0) or decreased
(ρ < 0). In each of the regions ρ is essentially spatially
constant, creating two distinct density plateaus ρmin and
ρmax. The two plateaus are smoothly connected at their
boundary, resembling a hyperbolic tangent function. Note
that the mean density in the system is conserved. Thus,
the areas under the positive and negative parts of ρ(x) are
equal.

The solution for the full system is represented as the
outline of the grey shaded area. We first compare this
to the leading-order CH equation (dashed line). As pre-
dicted, the leading-order CH equation results in a sym-
metric phase separation profile, i.e. the two plateaus have
the same absolute value: ρmax = |ρmin|. This does not ac-
curately represent the solution for the full system, which
is already slightly asymmetric. However, the leading-order
CH equation gives a good approximation of the plateau
values with a deviation of less than 7% from the real value.
Extending the CH equation to the next higher order (dot-
ted line in fig. 2), we can almost perfectly reproduce the
profile for the full ABP model. It accurately represents the
asymmetry of the phase separation profile. The deviation
in the plateau values shrinks to less than 2%.
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Fig. 3. Comparison of plateau values |ρmin| and ρmax as a
function of the control parameter ε for ρ̄ = ρ∗ (i.e., r1 = 0): full
ABP model (solid line) vs. leading-order CH equation (dashed
line) vs. extended CH equation (dotted line).

Figure 3 shows the absolute plateau values |ρmin| and
ρmax as a function of ε —the distance from the phase
separation onset. The bifurcation to active phase separa-
tion is supercritical in this case: starting at εc = 0, the
plateau values increase monotonically. Considering only
the leading-order approximation (dashed line), we again
find the system to be symmetric for all values of ε. In
reality, the full system (solid lines) becomes more and
more asymmetric for increasing ε. This is very accurately
represented by the higher-order approximation (dotted
lines). It only starts to deviate from the full model fur-
ther from threshold. Importantly though, close to the on-
set of mobility-induced phase separation, as ε becomes
smaller, the full model becomes more and more symmetric.
All three models then are in increasingly good agreement.
This again underlines the fact that the classic CH model
is the simplest generic model for active phase separation.
All active phase separation phenomena of this type can
be reduced to the CH model close to onset. Higher-order
nonlinearities only come into play further from threshold.

If we allow r1 	= 0, phase separation is asymmetric even
at leading order. This can be seen in fig. 4 which shows the
steady-state profiles for the full ABP model, leading-order
CH and extended CH at ε = 0.02. Here, the leading-order
CH equation (dashed line) results in an asymmetric solu-
tion. However, the predicted plateau values deviate about
20% from the full system (outlines of shaded grey region).
The extended CH model, meanwhile, is still able to accu-
rately predict the full system solution with a deviation of
less than 6%.

Looking at the plateau values as a function of ε (see
fig. 5) solidifies this impression: the leading-order CH
model gives a good qualitative representation of the full
system. Going to the extended CH model provides very
good quantitative agreement with the full model even for
larger values of ε. As discussed earlier in sect. 5.3, the
onset of phase separation (i.e. the ε-value at which the
homogeneous solution |ρmin| = ρmax = 0 becomes unsta-
ble) is shifted to finite values of ε in the case r1 	= 0.

Fig. 4. Comparison of the steady-state profiles for ρ̄ = 0.8 at
ε = 0.02: full ABP model (shaded grey) vs. leading-order CH
equation (dashed line) vs. extended CH equation (dotted line).

Fig. 5. Comparison of plateau values |ρmin| and ρmax as a func-
tion of the control parameter ε for ρ̄ = 0.8 (or r1 = 1/15): full
ABP model (solid line) vs. leading-order CH equation (dashed
line) vs. extended CH equation (dotted line).

For the given system parameters, the threshold for the
full system is shifted to εc ≈ 0.013. The leading-order CH
model significantly overestimates this threshold, shifting
to εc ≈ 0.02. The extended CH model only very slightly
underestimates the real threshold. Note that above this
threshold, the plateau values immediately jump to finite
values. Thus, the transition from the homogeneous to the
phase-separated state is no longer smooth. On the other
hand, fig. 5 also shows that the branches of finite density
plateau values extend below the thresholds noted above.
This creates a range of bistability —a range of control
parameter values in which both the homogeneous and
the phase-separated state are stable simultaneously. All
of these characteristics indicate that bifurcation from the
homogeneous state to active phase separation is now sub-
critical.
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7 Conclusion

Starting from the mean-field model for active Brownian
particles in refs. [23, 30], we applied a perturbative ap-
proach introduced in ref. [16]. We showed that the non-
equilibrium phenomenon motility-induced phase separa-
tion (MIPS) is described near its onset at leading order
by the Cahn-Hilliard (CH) model [34,35,38,39]. This is in
agreement with a recent observation that the CH model
describes the system-spanning behavior of a number of
very different demixing phenomena in active and living
systems far from thermal equilibrium [16]. The results
in this work show that MIPS also belongs to this class
of active phase separation. Thus, even though the CH
model was originally introduced to describe phase sep-
aration of binary mixtures in thermal equilibrium, our
analysis shows that it is also the generic leading-order de-
scription of active phase separation —a non-equilibrium
phenomenon.

We also extended the perturbative scheme introduced
in ref. [16] beyond the CH model to next higher-order
nonlinearities. In this work, we used the continuum ABP
model as a framework to establish this concept. The ex-
tension of our nonlinear expansion, however, can also be
applied to other systems showing active phase separation
(with a conserved order parameter field) such as cell po-
larization and clustering of chemotactically communicat-
ing cells. Having a ±-symmetric CH model at the onset
of active phase separation, we find that in general four
nonlinear terms come into play at the next higher or-
der. Two of them have the same form as contributions
suggested in previous phenomenological extensions of the
CH model for MIPS [4,31,32,36]. These phenomenological
models are thus related to the extended CH model that
our perturbative scheme provides. Our approach, however,
is non-phenomenological: it establishes a direct mathe-
matical link between the coefficents of the extended CH
model and the full mean-field description of ABPs (or any
other basic model of active phase separation in general). It
shows in addition, that the coefficients of the additional
contributions in the extended CH model are in general
not independent of each other, as often assumed in phe-
nomenological approaches. Furthermore, these coefficents
are system-specific and cannot be removed by rescaling
as in the case of the leading-order CH model. It is also
important to reiterate that these nonlinear extensions be-
come negligible when approaching the onset of MIPS or
other examples of active phase separation. Therefore, the
leading-order CH model already covers the universal be-
havior of MIPS (as a non-equilibrium phenomenon) near
its onset. Higher-order nonlinearities mainly improve ac-
curacy and become relevant further from threshold. They
should thus not be seen as the key to expand the CH
model to non-equilibrium systems.

Within the systematics of the pattern formation the-
ory, the work we introduced in ref. [16] and extended here
is a weakly nonlinear analysis and reduction method for
active phase separation described by conserved order pa-
rameter fields. It can be seen as a yet unexplored counter-
part to the weakly nonlinear analysis of (non-oscillatory)

spatially periodic patterns with unconserved order param-
eter fields and its numerous applications [29,37,40–42].

Our generic approach for active phase separation opens
up several pathways for further system-spanning investi-
gations. Coarsening dynamics in large systems, and es-
pecially the role of higher nonlinearities in this context,
have already been of particular interest to the scientific
community (see, e.g., ref. [32] for MIPS). Other active
phase separation phenomena such as cell polarization, on
the other hand, take place in very small systems where
coarsening plays a less important role [43]. For these sys-
tems, spatial constraints may significantly influence the
behavior instead. Studies on spatially periodic patterns
have already shown that confinement may trigger various
interesting generic effects (see e.g. [44]) and even induce
patterns in small systems which are unstable in larger sys-
tems (see [45] and references therein). On the basis of our
results, it will be interesting to investigate finite size ef-
fects on non-equilibrium phase transitions with conserva-
tion constraints.
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Abstract –We investigate a model equation for a conserved order-parameter field that covers
as special cases the conserved Swift-Hohenberg model and the extended Cahn-Hilliard model for
active phase separation. This model has a primary bifurcation from a homogeneous state to large-
scale phase separation. We show here that further from the onset of phase separation, there is
a secondary bifurcation which triggers a transition to spatially periodic patterns. This is a first
example of pattern formation phenomena which can occur beyond active phase separation. We
present phase diagram, bistability between phase separation and periodic patterns,...

Introduction. – There is a great variety of patterns
occuring in the animate and inanimate world [1–5] (etc.).
Many of these spatially periodic patterns are described by
unconserved order parameter fields. On the other hand
there is a variety of demixing phenomena in active, non-
equilibrium systems which may be described by conserved
order parameter fields. Examples include cell polarization
[6–17], chemotactically communicating cells [18–22], self-
propelled particles [23–26], or active matter models [27].
We recently named this class active phase separation [28].

There are, however, also systems described by a con-
served order parameter field that show spatially periodic
patterns [29]. We know from active phase separation sys-
tems that the range of unstable wavenumbers increases
with the distance from phase separation onset. Therefore,
one may raise the question, whether these increasing pos-
sibilities for instabilities eventually give rise to a secondary
bifurcation from a phase-separated state to a spatially pe-
riodic pattern.

Model. – To investigate this quesition we suggest a
model that covers on the one hand the conserved Swift-
Hohenberg model [29,30] as a limiting case, as well as the
extended Cahn-Hilliard model for active phase separation
[31]. We thus suggest and investigate the following non-
linear equation for a real conserved order-parameter field
ψ(x, t):

∂tψ =− ∂2x
[
εψ +D4∂

2
xψ −D6∂

4
xψ − ψ3

]

−∂2x
[
εβ1ψ

2 + β2ψ∂
2
xψ + β3 (∂xψ)

2
+ β4ψ

4
]
, (1)

For βi = 0 (i = 1, 2, 3, 4), D6 = 1, D4 = −2 and ε→ r− 1
this model reduces to the ±ψ-symmetric conserved Swift-

Hohenberg model suggested in Ref. [29]. For D6 = 0 and
D4 = 1 the model equation (1) reduces to the extended
Cahn-Hilliard model for active phase separation described
in Ref. [31]. The four contributions including the param-
eters βi (i = 1, 2, 3, 4) are the generic next higher order
corrections to the Cahn-Hilliard model [31] and cover the
contribution of the so-called active model B [32] and active
model B+ [33]. Using in this case the scaling X =

√
εx

and ψ =
√
εϕ the parameters βi become multiplied by the

factor
√
ε [31]. This shows that the contributions includ-

ing the coefficients βi(i = 1, 2, 3, 4) are next higher order
corrections to the leading order Cahn-Hilliard model for
active phase separation and vanish by approaching the
threshold, i.e. ε→ 0.

Phase separation solutions. – In the following, we
only consider one of the symmetry-breaking higher non-
linearities and thus set β1 = β3 = β4 = 0. This simplifies
Eq. (1) to

∂tψ = −∂2x
[
εψ +D4∂

2
xψ −D6∂

4
xψ − ψ3 + β2ψ∂

2
xψ
]
. (2)

We assume all parameters to be positive and real-valued.
In the special case D6 = β2 = 0 this equation reduces to
the classic Cahn-Hilliard model where a stationary phase
separation solution is given by

ψ(x) =
√
ε tanh

(√
ε

2D4
x

)
. (3)

We assume that this is still a reasonable approximation
for D6, β2 6= 0. If we consider a long system with only a
single domain wall, there are large parts of the system with
nearly constant solutions ψ0 = ±√ε (see also Fig. 1a). We
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Fig. 1: a) Typical stationary phase separation solution as given
by Eq. (3). b) Growth rate dispersion relation for perturbations
of homogeneous solutions ψ0 = ±√ε in Eq. (2). Parameters:
D4 = 0.15, D6 = 1/6, β2 =

√
2.

analyze the stability of these constant regions with respect
to small perturbations ψ1(x, t) by choosing the ansatz

ψ = ψ0 + ψ1, (4)

which we plug into Eq. (2) and linearize with respect to
ψ1:

∂tψ1 =− ∂2x
[
−2εψ1 +

(
D4 ± β2

√
ε
)
∂2xψ1 −D6∂

4
xψ
]
.
(5)

Using the ansatz ψ1 = F exp(σt + iqx), we find the dis-
persion relation

σ = −2εq2 −
(
D4 ± β2

√
ε
)
q4 −D6q

6. (6)

In the case of the negative sign, the contribution ∝ q4 can
become positive for sufficiently large β2 (see Fig. 1b). In
addition to q = 0, the dispersion relation has a maximum
at

q2max =
1

3D6

[
β2
√
ε−D4 +

√
(β2ε−D4)

2 − 6D6ε

]
(7)

if β2
√
ε > D4. The growth rate σ(qmax) first becomes

positive at the critical control parameter value given by

εq =
D2

4(
2
√

2D6 − β2
)2 . (8)
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Fig. 2: Amplitudes of the two-mode solution as a function
of ε. a) Amplitudes Ā for q = 0 and the wavenumber that
results in the largest value for Ā. b) Corresponding values
of the amplitude B̄. c) Wavenumber resulting in the largest
amplitude Ā. Parameters: D4 = 0.15, D6 = 1/6, β2 =

√
2.

Thus, there is an upper limit of the control parameter
above which constant solutions become unstable. By
extension this should also be a good approximation for
phase-separated solutions which consist of large regions of
constant concentration.

Two-periodic solutions. – From the shape of the
dispersion relation in Eq. (6), we can predict a transition
from the phase-separated state to spatially periodic pat-
terns. Due to the broken ±ψ-symmetry in the system, a
typical periodic pattern is a two-mode solution of the form

ψ = A(t)eiqx +A∗(t)e−iqx +B(t)e2iqx +B∗(t)e−2iqx. (9)

Projecting onto the modes ∝ exp(iqx) and ∝ exp(2iqx),
we find coupled equations for the amplitudes A and B:

Ȧ = q2
[(
ε−D4q

2 −D6q
4 − 3|A|2 − 6|B|2

)
A

−5β2q
2A∗B

]
, (10)

Ḃ = 4q2
[(
ε− 4D4q

2 − 16D6q
4 − 3|B|2 − 6|A|2

)
B

−β2q2A2
]
. (11)

Assuming stationary solutions, we set: A = Ā and B =
B̄ exp(iφ). The imaginary parts of Eqs. (10) and (11) are

p-2
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solved by sinφ = 0, i.e. φ = 0, π, 2π, ..., from which follows
cosφ = ±1. The real parts lead to the coupled equations

0 = LA − 3Ā2 − 6B̄2 ∓ 5β2q
2B̄, (12)

0 = LBB̄ − 3B̄3 − 6Ā2B̄ ∓ β2q2Ā2, (13)

where

LA = ε−D4q
2 −D6q

4, (14)

LB = ε− 4D4q
2 − 16D6q

4. (15)

From Eq. (12), we find

Ā2 =
1

3

[
LA − 6B̄2 ∓ 5β2q

2B̄
]
. (16)

Substituting this into Eq. (13), we find the following poly-
nomial for the amplitude B̄:

0 = 9B̄3 ± 12β2q
2B̄2 ∓ 1

3
β2q

2LA

+

(
LB − 2LA +

5

3
β2
2q

4

)
B̄ (17)

The polynomial can be solved numerically. From the up
to three solutions, only real-valued solutions are relevant.
Additionally, the amplitude Ā as calculated from B̄ via
Eq. (16) has to be real-valued as well. Note that in addi-
tion to the system parameters, the solutions also depend
on the wavenumber q.

The amplitudes of two-mode periodic solutions as a
function of the control parameter ε are shown in Fig. 2.
The other system parameters in this case are fixed. They
were calculated numerically from Eqs. (17) and (16) for
different values of the wavenumber q. Figure 2a shows the
largest amplitude Amax (maximized as a function of q) in
comparison to the amplitude of a homogeneous perturba-
tion (q = 0). The corresponding amplitude B̄ is shown in
Fig. 2b. Figure 2c shows the wavenumber q that results
in the largest amplitude Amax. For small values of the
control parameter ε, the solution with the largest ampli-
tude is homogeneous (i.e. q = 0). At a critical value εc,
however, a periodic solution with a finite wavenumber q
results in a higher stationary amplitude. This periodic so-
lution has a finite higher harmonic contribution B̄. This,
again, indicates a transition from a phase-separated state
to a spatially periodic pattern.

The predicted transition to spatially periodic patterns
also depends on the other system parameters. Phase dia-
grams of the expected solutions in the ε-β2-, as well as ε-
D4 phase space are shown in Figure 3a and b, respectively.
The color code in these images shows whether the largest
amplitude Ā is given for q = 0 or a finite wavenumber
- representing homogeneous or periodic solutions, respec-
tively. The predicted secondary bifurcation to periodic
solutions is shifted to larger values of ε for smaller values
of β2, i.e. for a weaker symmetry-breaking nonlinearity, or
for larger values of D4. In fact, no transition is expected
if β2 is too small or D4 too large. This is in accordance
with the condition β2ε > D4 for a growth rate dispersion
with a maximum at finite wavenumber [see Eq. (7)].
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Fig. 3: Phase diagrams for periodic solutions in the a) ε-β2-
plane and the b) ε-D4-plane, respectively. Pink dots indicate
parameter combinations where the homogeneous solution (q =
0) results in the largest amplitude A, while a periodic solution
with finite wavenumber q has a higher amplitude for blue dots.

Numerical simulations. – Simulations of Eq. (2)
confirm the predictions from linear stability analysis. For
small values of the control parameter ε, we find a phase-
separated solution similar as given in Eq. (3). With in-
creasing ε, the solution starts to deviate from this classic
kink solution. Due to the higher order symmetry-breaking
nonlinearity, characteristic overshoots start to appear (see
Fig. 4, left). If ε is further increased, the phase-separated
solution finally becomes unstable and changes into a spa-
tially periodic solution (see Fig. 4).

Figure 5 shows this transition from a phase-separated
state to periodic solutions as a function of ε: Starting
from small ε we first find phase-separated solutions with
increasing plateau values as a function of ε. The transition
to spatially periodic solutions takes place at about ε ≈
0.065. The periodic pattern stays stable for increasing ε
with increasing amplitude. If ε is decreased starting from
larger values, the spatially periodic state stays stable down
to values of ε ≈ 0.05, before the solution changes to the
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time

Fig. 4: Transition from a phase-separated solution to a periodic pattern as a space-time plot (center). Profiles of the respective
solutions (left: phase separation, right: periodic pattern). Parameters: D4 = 0.15, D6 = 1/6, β2 =

√
2. (LR: ε angeben)
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Fig. 5: Maximum value ψmax and magnitude of minimal value
|ψmin| of steady state solutions in simulations of Eq. (2) as
a function of ε. Transition from phase separation to periodic
solutions at around ε ≈ 0.065. Hysteresis when decreasing
ε starting from periodic solutions: Transition back to phase
separation around ε ≈ 0.05.

phase-separated state again. Thus, there is a bistability
region in the range 0.05 . ε . 0.065 where both the phase-
separated and the spatially periodic solution are stable. In
fact, in the bistability parameter region, hybrid solutions
with local coexistence of the two solution types are stable
as well (see Fig. 6).

Conclusions. – In this work, we explored a possible
pattern formation scenario happening beyond active phase
separation. We studied a generic model that includes both
the conserved Swift-Hohenberg model (known for spatially
periodic patterns) and the extended Cahn-Hilliard model
for active phase separation. Analytical considerations pre-
dict and numerical simulations confirm that in this model,
phase-separated states can transition to spatially periodic
patterns in a secondary bifurcation further from the onset
of active phase separation.

Exploring the phase space for this model, we found that
the secondary instability to periodic patterns appears for
sufficiently low interfacial energy and sufficiently strongly
broken up-down-symmetry via a higher nonlinearity. We

0 100 200 300 400

x

−0.2

0.0

0.2

ψ
(x

)

Fig. 6: Hybrid solution of phase separation and periodic pat-
tern in the bistability region. a) Profile of the solution ψ(x, t),
b) Time development of the solution depicted in a). Parame-
ters: D4 = 0.15, D6 = 1/6, β2 =

√
2, ε = 0.06.

also found a region of bistability between phase-separated
states and spatially periodic solutions. This also allows
for hybrid states with local coexistence between the two
solution types.

The work we present here is a first proof for the
generic existence of spatially periodic patterns in active
phase separation systems. This is especially interesting
since periodic patterns have been observed in different
potential active phase separation systems. Among these
are self-propelled particles showing motility-induced
phase separation [33], chemorepulsive active colloids [34],
active particles with long-range interactions [35] or binary
mixtures of active and passive particles [36]. This work
should thus be seen as a first step to further explore
periodic patterns in active matter systems with conserved
order parameters. Similar to active phase separation
as a nonequilibrium parallel to the classic equilibrium
phase separation, there could be a generic class of active
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microphase separation which can be explored in more
detail in the future.

Acknowledgments. We gratefully acknowledge fruitful
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