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Abstract

Small scale turbulence in a magnetically confined fusion plasma is the major loss channel for
energy and critically limits the confinement. This thesis investigates the interactions between
the turbulence and the neoclassical equilibrium background in a tokamak fusion plasma and
conducts various numerical investigations using the nonlinear gyrokinetic code gkw. It is
conventionally assumed that the neoclassical and turbulent description of a plasma can be
treated separately. This is, in many cases, a reasonable approximation because of the large
separation of the respective length and time scales. Moreover, different aspects of plasma
behaviour are well described by employing just the relevant one of these two descriptions.
However, cross-coupling can be important in some cases and in this thesis several aspects of
turbulence-background cross-coupling are examined.
Firstly, the influence of turbulent dynamics on the neoclassical equilibrium with an emphasis
on the turbulence driven stationary electric current is investigated. The neoclassical solu-
tion is evaluated using the Hirschmann-Sigmar formalism into which the turbulent dynamics
enter as driving terms. These driving terms are evaluated through time averages of gyroki-
netic turbulence simulations and are linked with the velocity nonlinearity in the gyrokinetic
equation. The time averaged turbulent driving terms provide a non-negligible current drive,
despite being a correction of second order in the normalised Larmor radius. For ion tempera-
ture gradient mode turbulence, the force exerted due to the heat flux balance is the dominant
contribution to the current, which is mostly driven by the electrons, namely by the parallel
fluctuations of electron density/temperature and the electrostatic potential. The current is in
magnitude comparable to the bootstrap current in the kinetic cyclone base case and increases
the total current by a few percent in cases with an experimentally relevant heat flux. A sym-
metry breaking mechanism for the mode structure along the magnetic field is required for the
turbulent current drive. In this study the symmetry breaking is provided by a background ro-
tation or rotation gradient. Consequently the current is nearly linear in the plasma rotation or
its gradient. Additional current generation is of great economic interest for tokamaks as the
inductive current drive for the poloidal magnetic field naturally limits the operation time.
Secondly, a large scale parameter study of the intrinsic rotation caused by neoclassical mod-
ifications to the Maxwellian background in turbulent simulations is performed and a simple
scaling model using the first order neoclassical flow and its gradient is developed. The results
show that the toroidal angular momentum flux is roughly linear in the parallel flow veloc-
ity obtained by the neoclassical theory. This suggests that the parallel flow in the neoclassical
equilibrium provides the most important symmetry breaking mechanism required for momen-
tum transport, and allows for a simple scaling law for the flux in terms of the flow. The scaling
law provides a good approximation of the intrinsic rotation due to the neoclassical corrections,
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but does not perfectly reproduce the momentum flux as there is a significant amount of scatter
in the data.
Thirdly, a new damping mechanism for zonal flows is discovered. Zonal flows are toroidally
symmetric poloidal shear flows and are not considered a neoclassical phenomena; however,
they can be seen as a background flow that couples with the turbulence and has a critical im-
pact on its regulation. It is shown that the radial transport of parallel momentum provides a
damping mechanism for the zonal flow relevant for plasmas turbulence close to the nonlinear
threshold. The damping mechanism is confirmed by a “Rosenbluth-Hinton“ test with a model
radial momentum diffusion, in which the decay rate of the residual potential is found to be
proportional to the model diffusion coefficient and in good agreement with the analytic re-
sult. Nonlinear simulations show that stronger long wavelength zonal flow shearing occurs
when momentum transport is suppressed. This is relevant for the spontaneously occurring
meso-scale structures in the E×B shear, known as staircases, which critically impact the non-
linear stability at experimentally relevant turbulence levels. The suppression of momentum
transport allows for the development of fully developed staircase structures in the E×B shear,
which can suppress turbulence completely for a finite time window. No impact on shorter
wavelength zonal flows is observed, in contrast to the analytic prediction which suggests a
high damping rate. The latter result raises questions about the relevance of the residual zonal
flow for turbulence saturation.
Finally, the interplay between an external torque and staircase structures in the E×B shear is
investigated. Gyrokinetic simulations show that the E×B shear connected with the external
torque does not simply add to the shear of the meso-scale structures. A positive (negative) ex-
ternally forced E×B shear leads to a broadening of the corresponding region of the staircase,
but does not significantly change the plateau value or the narrow layer of zero shear. In con-
sequence, while the space and time averaged shearing rate is enhanced by the external torque,
there is little or no effect on the turbulent transport. This raises doubts about the importance
of driven or intrinsic rotation as a means to improve plasma confinement close to the stability
threshold.
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Zusammenfassung

Kopplung zwischen gyrokinetischer Turbulenz
und dem neoklassischen Hintergrund in

Tokamak-Plasmen
In einem magnetisch eingeschlossenem Fusionsplasma ist kleinskalige Turbulenz der domi-
nante Energieverlustmechanismus und stört den Einschluss signifikant. Diese Dissertation
untersucht dieWechselwirkung zwischen Turbulenz und dem neoklassischen Gleichgewichts-
hintergrund in einem Tokamak-Fusionsplasma, vornehmlich mit Hilfe von numerischen Un-
tersuchungen mit dem nichtlinearen gyrokinetischen Code gkw. Es wird üblicherweise ange-
nommen, dass die neoklassische und turbulente Beschreibung des Plasmas getrennt behandelt
werden kann. Aufgrund der großen Unterschiede zwischen den jeweiligen Längen- und Zeit-
skalen ist dies in vielen Fällen eine vernünftige Näherung. Außerdem können verschiedene
Aspekte des Plasmaverhaltens gut beschrieben werden, indem nur die Relevante der beiden
Beschreibungen verwendet wird. Allerdings kann die Kreuzkopplung in einigen Fällen wichtig
sein. In dieser Arbeit werden mehrere Aspekte der Kopplung zwischen Turbulenz und Hinter-
grund untersucht.
Erstens wird der Einfluss der turbulenten Dynamik auf das neoklassische Gleichgewicht mit
besonderem Augenmerk auf den turbulenzgetriebenen stationären elektrischen Strom unter-
sucht. Die neoklassische Lösung wird mit dem Hirschmann-Sigmar-Formalismus ermittelt,
wobei die turbulente Dynamik als zusätzliche Kraftquelle berücksichtigt wird. Diese treiben-
den Terme werden über die Zeitmittelwerte von gyrokinetischen Turbulenzsimulationen er-
mittelt und sind mit dem nichtlinearen Geschwindigkeitsterm in der gyrokinetischen Glei-
chung verknüpft. Die zeitgemittelten turbulenten Quellterme treiben einen nicht vernachläs-
sigbaren Strom, obwohl es sich um eine Korrektur zweiter Ordnung im normalisierten Larmor-
radius handelt. Bei einer durch die Ionentemperaturgradientenmode getriebenen Turbulenz ist
die Kraft, die durch die Wärmeflussbilanz ausgeübt wird, der dominante Beitrag zum Strom,
der vornehmlich von den Elektronen getragenwird und zwar durch die parallelen Schwankun-
gen der Elektronendichte/-temperatur und des elektrostatischen Potentials. Der Strom ist von
der Größenordnung vergleichbar mit dem Bootstrap-Strom im kinetischen cyclone base case
und erhöht den Gesamtstrom um einige Prozent für einen Fall mit experimentell relevantem
Wärmefluss. Für den turbulent getriebenen Strom ist ein Symmetriebrechungsmechanismus
für die Modenstruktur entlang des Magnetfeldes erforderlich, der in dieser Studie durch eine
Hintergrundrotation oder einen -rotationsgradienten bereitgestellt wird. Folglich ist der Strom
nahezu linear in der Plasmarotation oder ihrem Gradienten. Die zusätzliche Stromerzeugung
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ist für Tokamaks von großemwirtschaftlichen Interesse, da der induktive Stromantrieb für das
poloidale Magnetfeld naturgemäß die Betriebszeit begrenzt.
Zweitens wird die intrinsische Rotation, die durch neoklassische Modifikationen des Maxwell-
schen Hintergrunds in turbulenten Simulationen verursacht wird, in einer groß angelegten
Parameterstudie untersucht. Dabei wird ein einfaches Skalierungsmodell unter Verwendung
des parallelen neoklassischen Flusses erster Ordnung und dessen Gradienten entwickelt. Die
Ergebnisse zeigen, dass der toroidale Drehimpulstransport in etwa linear in der parallelen
Strömungsgeschwindigkeit ist, die durch die neoklassische Theorie ermittelt wird. Dies deu-
tet darauf hin, dass die parallele Strömung im neoklassischen Gleichgewicht den wichtigsten
Mechanismus für die Symmetriebrechung, die für den Impulstransport benötigt wird, liefert,
und ermöglicht ein einfaches Skalierungsgesetz für den Impulsfluss. Das Skalierungsgesetz
bildet den zwar Impulsfluss nicht perfekt ab, d.h. es gibt eine signifikante Streuung in den Da-
ten, bietet aber eine gute Annäherung an die von den neoklassischen Korrekturen getriebene
intrinsische Rotation.
Drittens wird ein neuer Dämpfungsmechanismus für zonale Strömungen aufgedeckt. Zonale
Strömungen sind toroidalsymmetrische poloidale Scherströme und gelten nicht als neoklassi-
sche Phänomene, können aber als Hintergrundströmungen betrachtet werden, die mit der Tur-
bulenz gekoppelt sind und eine kritische Rolle bei der Regulierung von Turbulenz spielen. Es
wird gezeigt, dass der radiale Transport von parallelem Impuls einen Dämpfungsmechanismus
für die zonale Strömung bietet, der relevant für Turbulenz nahe dem nichtlinearen Schwellen-
wert ist. Der Dämpfungsmechanismus wird durch einen „Rosenbluth-Hinton“-Test mit einer
modellierten radialen Impulsdiffusion bestätigt, wobei die Abklingrate des Residualpotenzi-
als proportional zum Diffusionskoeffizienten ist und in guter Übereinstimmung mit dem ana-
lytischen Ergebnis steht. Nichtlineare Simulationen zeigen, dass bei unterdrücktem Impuls-
transport eine stärkere langwellige Scherung durch die zonale Strömung stattfindet. Dies ist
relevant für die spontan auftretenden mesoskaligen Strukturen in der E×B-Scherströmung,
die die nichtlineare Stabilität bei experimentell relevanter Turbulenz entscheidend beeinflus-
sen. Die Unterdrückung des Impulstransports ermöglicht die Entwicklung voll ausgeprägter
Strukturen in der E×B Scherströmung, die die Turbulenz für ein begrenztes Zeitfenster voll-
ständig unterdrücken können. Im Gegensatz zur analytischen Vorhersage, die auf eine hohe
Dämpfungsrate hindeutet, ist kein Einfluss auf zonale Strömungen mit kürzerer Wellenlänge
zu beobachten. Dieses Ergebnis wirft die Frage nach der Relevanz der zonalen Residualströ-
mung für die Turbulenzsättigung auf.
Abschließend wird das Zusammenspiel zwischen einem externen Drehmoment und E×B-
Scherstrukturen untersucht. Gyrokinetische Simulationen zeigen, dass die mit dem externen
Drehmoment verbundene E×B-Scherströmung sich nicht einfach zur Scherung durch die mes-
oskaligen Strukturen addiert. Eine positive (negative) extern erzwungene E×B-Scherung führt
zu einer Verbreiterung des entsprechenden Strukturbereichs, ändert aber weder den Plateau-
wert noch die schmale Region ohne Scherung wesentlich. Während die räumlich und zeitlich
gemittelte Scherrate durch das externe Drehmoment erhöht wird, beeinflusst es den turbulen-
ten Transport dabei wenig bis gar nicht. Dies wirft Zweifel an der Bedeutung von getriebe-
ner oder intrinsischer Rotation als Mittel zur Verbesserung des Plasmaeinschlusses nahe dem
Schwellwert für Stabilität auf.
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1. Introduction

The promise of virtually unlimited sustainable clean energy from a fusion power plant has
motivated about seven decades of research and has never been more appealing than in to-
day’s context of looming climate change paired with the ever increasing demand for power.
Continuous and impressive progress has been made rivalling the rate of development of mi-
croprocessors, maybe one of the greatest success stories in the 20th century (see Fig. 1.1).
However, a breakthrough in form of an economically viable reactor is not yet in sight. This
shows the many scientific and technical challenges that accompany the task of maintaining a
process that in nature only happens in the core of a star.

Figure 1.1. Progress in fusion research measured by the triple product nTτ of density, temperature and
confinement time. The rate of progress is shown to be in the same league asmicroelectronics
or particle accelerators. Figure from Ref. [1].

The fusion of two light atoms generates a large amount of energy, due to the higher bonding
energy of the product, with the most promising reaction being the fusion of the hydrogen
isotopes deuterium and tritium

2
1D+ 3

1T −→ 4
2He+ 1

0n+ 17.6MeV,

as it exhibits the highest cross section at the required temperature of the order of 100 million
Kelvin. The extreme temperatures are required as the nuclei need to overcome their Coulomb
repulsion. The fusion plasma (the atoms are ionised at such high temperatures) has to be
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1. Introduction

confined with minimal energy loss to keep the reaction alive. This is the main challenge of
fusion power, for which two solutions, inertial and magnetic confinement, have been studied
extensively, with the latter being the most promising approach. In magnetic confinement an
external magnetic field is imposed to confine the plasma, with the Lorentz force preventing
a motion across the field lines. There are two main concepts for magnetic confinement de-
vices: the tokamak and the stellarator. Both confine the plasma along closed field lines in a
torus. While recent stellarator experiments like Wendelstein 7-X have shown great promise,
the tokamak has historically been more developed and is the focus of this work. Starting in
the late 1950s, tokamak experiments have steadily improved, demonstrating fusion reactions
and temperatures hotter than in the core of the Sun [2]. There are several research reactors
worldwide, with an example, asdex Upgrade, shown in Fig. 1.2, while the first reactor to gen-
erate significantly more fusion power than its required input power, iter, is currently under
construction.
Sadly, the particles do not follow the magnetic field line indefinitely but the plasma is subject
to a plethora of instabilities. Large scale instabilities which disrupt the confinement, were the
main problem in early experiments but are nowadays well understood and kept in check by
modern reactor design and control [2]. However, small scale instabilities drive turbulent trans-
port degrading the confinement and are still only partly understood as well as more difficult to
control. The underlying physics of microturbulence is highly complex and the nonlinear and
high dimensional nature of the problem poses significant challenges for numerical modelling.
However, the development of a specialised theory to deal with the large range of time and

Figure 1.2. The asdex Upgrade fusion reactor during assembly. (Source: “Max Planck Institute for
Plasma Physics”: https://www.ipp.mpg.de/14905/magnetspulen [Accessed 25 Apr.
2019])
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space scales, the gyrokinetic theory, accompanied by the rise of high-performance computing
has allowed for significant progress.
This thesis continues the work on this topic by studying turbulence driven by the ion temper-
ature gradient instability - the dominant instability - and accompanying transport processes.
Firstly, the coupling of turbulence with the neoclassical background, which are usually treated
separately, is investigated. In Chapter 2 it is shown that turbulence can generate a sizeable
plasma current, potentially allowing for longer tokamak operation. Furthermore, the toroidal
plasma rotation generated by the neoclassical background is investigated in Chapter 3. Sec-
ondly, turbulence suppression connected with the recently discovered structure formation of
the zonal flow is studied, detailing the effect of momentum transport in Chapter 4 and plasma
rotation in Chapter 5 to gain new insight in the physics processes and to enhance our predictive
capabilities of turbulent transport.
Part of the work reported in this thesis has been published in (or submitted to) peer-reviewed
journals as listed below:
(a) F. Seiferling, A. G. Peeters, R. Buchholz, S. R. Grosshauser, F. Rath, and A. Weikl. On

turbulence driven stationary electric currents in a tokamak. Physics of Plasmas, 25(10),
102305, 2018

(b) F. Seiferling, A. G. Peeters, R. Buchholz, S. R. Grosshauser, F. Rath, and A. Weikl.
Damping of zonal modes through turbulent momentum transport. Physics of Plasmas,
25(2):022505, 2018.

(c) F. Seiferling, A. G. Peeters, S. R. Grosshauser, F. Rath, and A. Weikl. The interplay of an
external torque and E×B structure formation in tokamak plasmas; submitted to Physics
of Plasmas

Chapters 2, 4 and 5 are based on (a),(b) and (c) respectively. Chapter 3 is part of the EUROfusion
project WP17-ENR-CEA-02.
The remainder of this chapter first introduces the basic principles of plasma physics and the
tokamak reactor in section 1.1. Then the neoclassical theory used to describe the background
is briefly discussed in section 1.2 before important aspects of turbulence are explained in sec-
tion 1.3. Finally, the gyrokinetic theory and gyrokinetic simulations with the code gkw are
introduced in sections 1.4 and 1.5.
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1. Introduction

1.1. Principles of magnetic confinement

This section aims at discussing the fundamental principles required for the advanced theory
in the following sections and the later chapters of this thesis. Starting with the motion of a
charged particle along a magnetic field in Sec. 1.1.1, the design of the tokamak device and basic
associated phenomena are covered in Sec. 1.1.2.

1.1.1. Single particle motion

Here, the motion of a single charged particle in an inhomogeneous magnetic and electric field
is discussed. For a more detailed treatment the reader is referred to a standard textbook, like
Refs. [3–5].
Subjected to the Lorentz force, charged particles perform a circular motion around the mag-
netic field line in the plane perpendicular to the magnetic field. The Larmor (or gyro-) radius
ρ and cyclotron frequency ωc of the gyration are given by

ρs =
msv⊥,s
|Zs|eB

and ωc,s =
ZseB

ms
. (1.1)

The subscript s denotes the particle species,m is the particle mass, Z the charge number, e the
elementary charge, v⊥ the velocity perpendicular to the magnetic field and B the magnetic
induction. For typical parameters in a reactor the gyroradius is of the order of millimetres for
deuterium ions and less by roughly a factor of 60 for the electrons. Both the ion as well as the
electron Larmor radii are small compared to the system size of several meters. Furthermore,
the turbulent fluctuations are slow compared to the ion and electron cyclotron frequencies
(ωc,i ∼ 2 · 108s−1, ωc,e ∼ 8 · 1011s−1). This large separation of length and time scales makes it
favourable to separate the particle motion into the fast gyration and the slower motion of the
gyrocentre. In consequence, the magnetic moment µ = mv2⊥/2B is an adiabatic invariant of
the motion, i.e. dµ/dt = 0.
The free cyclotron motion around the field described above is only valid for straight field lines
and no external forces acting on the particle. If a force F is applied to the particle, the gyrocentre
will drift perpendicular to the magnetic field with the drift velocity vd,

vd =
F× B
ZeB2

. (1.2)

The drift velocity is small compared to the thermal velocity vth or the velocity parallel to the
magnetic field v∥, as the force can be considered small compared to the Lorentz force connected
with the strongmagnetic field. However, the gyrocentre drift provides an important correction,
since it is a motion perpendicular to the magnetic field, and leads to several new phenomena.
There are several drift mechanisms to consider.
First, the E×B drift

vE =
E× B
B2

, (1.3)

4



1.1. Principles of magnetic confinement

due to the electrostatic force connected with an electric field E, is unique compared to the
other drifts as the charge dependency in Eq. 1.2 cancels and the velocity is the same for ions
and electrons. If the electric field is not constant, the inertial force connected with the time
dependent E×B drift leads to an additional drift, the polarisation drift

vp =
1

ωcB

dE
dt . (1.4)

The second important mechanism is the curvature and∇B drift

vD =
mv2∥B× (B · ∇)B

ZeB4
+
µB×∇B
ZeB2

. (1.5)

Two contributions are considered here. The first term is due to the centrifugal force acting on
the particle following a curved field line. The second term is caused by the magnetic mirror
force F = −µ∇B acting on the particle as the magnetic field strength varies over the cyclotron
orbit. If the plasma pressure is low compared to the magnetic field strength ∇ × B = 0 is a
good approximation and the curvature term can be rewritten using (B ·∇)B = B∇B, leading
to the commonly used drift velocity

vD =
(
mv2∥ + µB

) B×∇B
ZeB3

. (1.6)

Finally, in a rotating plasma that is described in the co-moving frame additional drifts occur.
This thesis only considers the drift connected with the Coriolis force [6]

vc =
2mv∥

ZeB
Ω⊥, (1.7)

where Ω⊥ = Ω − (Ω · b)b is the part of the angular toroidal rotation vector perpendicular
to the field and b the unit vector in the direction of the magnetic field. The drift due to the
centrifugal force connected with the plasma rotation is neglected because it is of second order
in Ω ∼ 0.1vth/R.
The motion of the guiding centre positionX is given by the movement parallel to the magnetic
field and the drift velocity,

dX
dt = v∥b+ vE + vD + vp. (1.8)

Here, like in the remainder of the thesis, the plasma is assumed to be electrostatic, i.e. ∂B/∂t = 0,
and phenomena connected with local magnetic field fluctuations are not considered.

1.1.2. The tokamak fusion reactor

The tokamak reactor confines the plasma in a torus using a strong magnetic field. For clarity,
the toroidal geometry and the associated quantities are shown in Fig. 1.3. The defining feature
of the tokamak is the toroidal symmetry, i.e. all properties are invariant to any rotation around
the central axis of the torus (z-axis). The toroidal magnetic field is generated by external coils,
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1. Introduction

with a schematic shown in Fig. 1.4. The toroidal field coils provide the major part of the mag-
netic field, which is not uniform but has a radial variationB ∼ 1/R due to toroidal geometry.
As a consequence, this toroidal field alone is not sufficient for confinement. Considering the
drift mechanisms discussed previously it is easily seen that the ∇B drift causes charge sepa-
ration in the plasma and the E×B drift due to the resulting electric field causes the particles to
drift outwards in the direction of the major radius. To remove this effect, a secondary magnetic
field in the poloidal direction is employed. The field is realised by a toroidal plasma current
driven by a central solenoid. The resulting helical winding of the magnetic field lines averages
the radial component of the∇B drift to zero. Thus, the large electric field of the case without
a poloidal magnetic field can not build up and the plasma is not ejected. While inductive cur-
rent drive is the easiest way to generate the toroidal current required for the poloidal magnetic
field, it naturally limits the operation time of a tokamak. The current in the central solenoid
can not increase indefinitely and additional ways of current generation are needed to extend
the length of an operation pulse or achieve stationary operation.

The magnetic field configuration results in helical field lines winding around the torus, they
map out nested surfaces with constant magnetic fluxψ, called flux surfaces (see Fig. 1.5), which
are described by the Grad-Shafranov equation [8–10].

Equilibrium confinement requires that the pressure force is balanced by the Lorentz force.
Using a fluid description of the plasma, also referred to as magnetohydrodynamics (mhd), this
can be written as

J× B = ∇p, (1.9)

magnetic field line

Rz r
θφ

Rref

Figure 1.3. The toroidal geometry with major radiusR, minor radius r, toroidal angle φ, poloidal angle
θ and an example for a helical magnetic field line (red) on a flux surface with safety factor
q=2. The field line reaches its original poloidal position after two toroidal turns.
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1.1. Principles of magnetic confinement

Figure 1.4. Schematic of the setup of the magnetic coils and the resulting magnetic field in a tokamak.
Figure from Ref. [7].

where J is the current and p the pressure of the plasma. Here, we have neglected the cen-
trifugal force, which is only important for strongly rotating plasmas. Two observations can be
made here. Firstly, the flux surfaces are also surfaces of constant pressure, because B ·∇p = 0.
Secondly, J · ∇p = 0 and thus the current must lie in the flux surface. Since the particles can
move freely along the magnetic field over the flux surface, the fast thermal motion ensures
equilibrium, i.e. density n and temperature T are constant on a flux surface. Thus, the equilib-
rium satisfies the aforementioned toroidal symmetry. In the context of this force balance, the
dimensionless ratio of kinetic and magnetic pressure

β =
p

B2/2µ0
, (1.10)

with the magnetic permeability µ0, is a frequently used plasma parameter to describe the qual-
ity of confinement and usually has values of a few percent in most tokamaks. Even though the
flux surfaces in tokamaks are usually elongated and exhibit triangularity (like in Fig. 1.5), the
theoretical description of the plasma often uses circular flux surfaces as a good approximation,
especially close to the plasma core. Similarly, in this thesis the flux surfaces are assumed to be
concentric and circular. This allows for the minor radius r to be used as the flux surface label.
Several geometric quantities are used for the description of the flux surface. The inverse aspect
ratio ϵ,

ϵ = r/Rref, (1.11)

is the ratio of the minor radius over the major radius of the magnetic axis Rref. It is usually
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1. Introduction

assumed to be small (of the order of 0.1) and, especially when developing a theoretical descrip-
tion, terms are often only considered up to the first order in ϵ. Although numerical calculations,
like in the later chapters of this thesis, retain all orders of ϵ. The safety factor q denotes the
number of toroidal revolutions required for the magnetic field line to reach its original poloidal
position and the name originates from its critical impact on large scale mhd-instabilities. The
safety factor is calculated by

q =
1

2π

∮
Bt
RBp

ds ≈ ϵ
Bt
Bp

(1.12)

where
∮
ds is a closed line integral over the flux surface and Bt (Bp) is the toroidal (poloidal)

component of the magnetic field. The second expression is valid up to the first order in ϵ. If
q has an irrational value the field line does not close upon itself but maps out the whole flux
surface. The safety factor is determined by the current profile and in general varies with the
minor radius. The magnetic shear ŝ is introduced to describe the variation

ŝ =
r

q

dq
dr . (1.13)

Usually, q > 1 is required for stability and the safety factor varies from q ≈ 1 at the magnetic
axis up to 3 ∼ 5 at the last closed flux surface (before the field lines interact with the wall).
Due to the conservation of energy and the magnetic moment, there are two different kind of
particle orbits: Particles trapped on the low field side and passing particles completing full
poloidal turns. Their respective orbits are sketched in Fig. 1.6.
The extrema of the magnetic induction are located in the mid plane of the torus with the

Figure 1.5. Nested flux surfaces in a tokamak.

∇B

B

Figure 1.6. Poloidal projection of trapped
(blue) and passing (green) ion
orbits. The deviation of the orbits
from the flux surface is due to the
vertical∇B drift.

8



1.1. Principles of magnetic confinement

minimum on the outboard side and the maximum on the inboard side, called low- and high-
field side respectively.

B(θ) =
B0

1 + ϵ cos θ , (1.14)

whereB0 is the value of themagnetic field on themagnetic axis. The trapped passing boundary
is obtained by setting the parallel velocity on the high field side to zero. Using the conservation
of energy

Ekin =
1

2
m
(
v2∥ + v2⊥

)
=
mv2∥

2
+ µB = const., (1.15)

the conservation of the magnetic moment and Eq. 1.14 lead to

v2∥ =
2µ

m
(Bmax −Bmin) = v2⊥

2ϵ

1− ϵ
≈ 2ϵv2⊥, (1.16)

where Bmax and Bmin are the respective strengths of the magnetic field at the high- and low-
field side, and the last expression is valid up to the first order in ϵ. If the parallel velocity at
the low field side is lower than the threshold given by Eq. 1.16, the parallel velocity reaches
zero on the way towards the high field side and the particle will turn around until it bounces
again upon approaching the high field, like in a magnetic mirror. Only particles with a parallel
velocity higher than the threshold can make a full poloidal turn. As a rough approximation,
the fraction ft =

√
ϵ of all particles can be considered trapped.

Similar to the transit frequency νT = vth/(2πqR), the time scale for a full passing orbit par-
allel to the field line, trapped particle orbits also have a characteristic time scale, the bounce
frequency ωb. In the limit of strongly trapped particles (the poloidal turning point is close to
the mid-plane θb ≪ 1) and large aspect ratio the bounce frequency is given by [3]

ωb =

√
ϵ

2

v⊥
qR

. (1.17)

Due to the inhomogeneity of the magnetic field the particles do not follow the magnetic field
line exactly but are subject to a vertical drift. This drift leads to a radial width of the orbit
and, inspired by the shape (see. Fig. 1.6), the term banana orbit is commonly used for trapped
particles. The half widthw of the orbit can be calculated from the conservation of the canonical
toroidal angular momentum, which is an invariant of the motion

Pφ = mv∥RBt/B + ZeAφ = const., (1.18)

where Aφ is the toroidal component of the vector potential with dAφ/dr = RBp. Using the
approximation Bt ≈ B the orbit width is given by

w =
mv∥

ZeBp
. (1.19)

Note that particles are not trapped indefinitely as they can exchange momentum through
Coulomb collisions.
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1. Introduction

1.2. Neoclassical theory

In contrast to the classical theory, which describes the collisionally generated transport of
particles and energy across a homogeneous magnetic field, the term neoclassical was estab-
lished to stress that the theory describes collisional transport in a toroidal geometry. Indeed,
the particular features of the particle orbits generated by the drifts in toroidal geometry lead
to a strongly enhanced collisionally generated transport. While the thermal loss from colli-
sional transport is up to two orders of magnitude smaller than the turbulent transport due
to microinstabilities, neoclassical theory still provides an important baseline for confinement.
Furthermore, several aspects of the plasma, like current and resistivity, are governed by neo-
classical effects.

Classical transport assumes a plasma with a homogeneous magnetic field, where transport can
be understood in terms of a simple diffusion process, where the diffusion coefficientD = ρ2/τc
is determined by the Larmor radius ρ and the collision time τc, serving as the characteristic time
scale. The toroidal geometry fundamentally changes the behaviour of the plasma. Firstly, due
to the curvature there is a toroidally induced force which acts outwards along the major radius,
which has to be compensated by a current flow in the plasma. Flux surfaces are surfaces of
constant pressure but the area on the outboard side of the torus is larger, due to the largermajor
radius, than the area on the inboard side. Consequently there is a net imbalance which results
in the aforementioned force. Using the force balance J×B = ∇p, the pressure force imbalance
has to be counteracted by a vertical current, which in turn is compensated by an internal flow
to prevent charge accumulation. The internal current flow, named Pfirsch-Schlüter current
and the associated transport is examined in more detail in the next section. Secondly, the
fluid description assumes a sufficiently high collisionality, which is not given for the high
temperatures in modern fusion plasmas. For the low collisionalities in fusion plasmas the
particles perform several transit or bounce orbits before they are scattered by collisions. In
this situation the details of the orbits connected with the toroidal geometry have a strong
impact on the obtained transport coefficients. Specifically particles trapped on the low field
side (see Sec. 1.1.2) trace out a so-called banana orbit which has an orbit width much larger
than the Larmor radius. For low collisionality these orbits dominate the diffusive transport
and one speaks of the so-called banana regime.

This section aims at covering the aspects of neoclassical theory relevant for this thesis. First
the different transport regimes are examined in more detail and the bootstrap current, the most
important intrinsic current in a tokamak is explained briefly. Finally, the kinetic description
of neoclassical transport using the flux surfaced averaged balance equation is introduced.

1.2.1. Neoclassical transport and current

Based on Ref. [3] this section gives a brief phenomenological discussion of the diffusive neo-
classical transport.
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1.2. Neoclassical theory

Resistive diffusion

The resistive diffusion in a plasma is governed by Ohm’s law

E+ v× B = ηj (1.20)

and the force balance
j× B = ∇p, (1.21)

where j is the current. The resistivity η scales with the collision time η ∼ m/(ne2τc) but in
general it is a tensor and has different values for parallel η∥ and perpendicular η⊥ currents re-
spective to the magnetic field. Crossing Eq. 1.20 with B and using Eq. 1.21 yields an expression
for the perpendicular velocity

v⊥ =
E× B
B2

− η⊥
∇p
B2

, (1.22)

where the vector identity (v × B) × B = −B2v⊥ is used. In a particle description the terms
can be understood as the macroscopic E×B drift and the collisional diffusion of the particles.
The diffusive nature of the second term becomes apparent when considering the continuity
equation for E = 0 and constant temperature

∂n

∂t
= −∇ · (nv⊥) = ∇ · η⊥nT∇n

B2
=
η⊥β

2µ0
∇2n, (1.23)

where for the last step the plasma beta β = nT/(B2/2µ0) is used and its local variation is
neglected.
For high collisionality, the influence of trapped particles can be neglected and the neoclassical
transport is described by the Pfirsch-Schlüter regime. High collisionality means that particles
are scattered before they can perform a full transit orbit, i.e. the collision frequency ν has to
satisfy ν > vth/(qR). The Pfirsch-Schlüter current can be approximated by a simple calcu-
lation only considering the mid-plane of the torus. The outboard side of the flux surface has
a larger surface area than the inboard side but the pressure on the flux surface is constant,
resulting in the outward force density F along the major radius

F ∼ r

R

dp
dr . (1.24)

A vertical current jz balances the force

jz ∼
1

B

r

R

dp
dr , (1.25)

whereBt ≈ B is used. A current j∥ parallel to the field arises to prevent charge accumulation.
The vertical component of the current must balance jz . At the mid-plane where the poloidal
and vertical direction are identical and the parallel current is

j∥ =
B

Bp
jp = − B

Bp
jz ∼ − 1

Bp

r

R

dp
dr . (1.26)
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The formal calculation is slightly more complex, but the Pfirsch-Schlüter current jPS has a
similar form for circular flux surfaces in the large aspect-ratio limit (up to the first order in
ϵ = r/R) and is given by,

jPS = − 2ϵ

Bp

dp
dr cos θ. (1.27)

The cos θ variation is due to the orientation of the poloidal component of the current to the
vertical direction. The Pfirsch-Schlüter current drives a perpendicular flow,

{(v⊥R)PS}
R0

= −2η∥q
2 dp/dr
B2

(1.28)

where the curly brackets denote the flux surface average. Consequently, the diffusion is larger
by 2q2η∥/η⊥ than the classical value.
However, the high collisionality case is usually not relevant for tokamak core plasmas studied
in this thesis and the neoclassical transport is described by the banana regime. Particles with
v∥ <

√
2ϵv⊥ are trapped on the low field side and can perform at least one bounce orbit before

they are detrapped by collisions. The transition from trapped to passing requires a scattering
angle of ϑ ∼

√
ϵ in velocity space and thus the effective collision frequency for detrapping is

ν/ϵ. Consequently, the condition for the banana regime is

ν <
ϵ3/2vth
qR

, (1.29)

i.e. the detrapping frequency is smaller than the bounce frequencyωb =
√
ϵvth/(qR). Since the

trapped particles have a radial orbit widthwb ∼ (q/
√
ϵ)ρ, they have a larger step length for the

diffusion process than the classical step length, the Larmor radius ρ. Taking into account that
only the fraction

√
ϵ of the particles are trapped, the diffusion coefficient can be approximated

as
D ∼

√
ϵw2

b (ν/ϵ) ∼
q2

ϵ3/2
νρ2. (1.30)

Again the diffusion is much larger than the classical value by a factor q2/ϵ3/2.

The bootstrap current

Currents that are not driven externally, like the Pfirsch-Schlüter current, are called intrinsic
currents. Intrinsic toroidal currents are of great interest for tokamak operation as the poloidal
magnetic field requires a toroidal current that, in the absence of a intrinsic currents, must be
driven by a central solenoid leading to a pulsed operation. The bootstrap current [11–13] is
the most important intrinsic current and is briefly explained below.
Two trapped ions with the same energy and magnetic moment but with opposite parallel ve-
locity will have orbits with a different averaged radius as one drifts outwards due to the ∇B
drift while the other drifts inwards. If a radial density gradient exist the outer orbit will be less
populated than the inner one and a flow parallel to the magnetic field arises due to the asym-
metry in the parallel velocity distribution. Note that the flow of the electrons is antiparallel to
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1.2. Neoclassical theory

the ions as their∇B drift is in the opposite direction. Thus, a current jb called banana current
is generated. It is given by

jb ∼
ϵ3/2

Bp
T
dn
dr (1.31)

and is not the bootstrap current, or at least only part of it.
The dominant contribution turns out to be driven by the passing particles. The asymmetry
in the velocity distribution of the trapped particles implies a discontinuity at the trapped-
passing boundary. Collisions, which couple passing and trapped particles will remove the
discontinuity and cause an asymmetry in the passing domain as well. While ionsmostly collide
with themselves, the electron-ion collisions are more important for electrons. Therefore, their
velocity distribution is shifted not as much as that of the ions. The derivation of the ion and
electron flows is omitted here and can be found for example in Ref. [13]. It is the difference in
flow velocities between ions and electrons that yields the bootstrap current

jBS ∼
√
ϵ

Bp
T
dn
dr , (1.32)

which is a factor 1/ϵ larger than the banana current.

1.2.2. Kinetic description of neoclassical transport

The exact calculation of the neoclassical flows is much more complex than the phenomeno-
logical discussion in the previous section and requires the kinetic treatment of the plasma.
Neoclassical theory describes the equilibrium transport in the plasma. Therefore, the goal is to
obtain the steady state distribution function f (i.e. ∂f/∂t = 0) from the Vlaslov Fokker-Planck
equation

v · ∇f +
Ze

m
(E+ v× B) · ∂f

∂v
= C(f), (1.33)

where C is the collision operator. With the distribution function the current or the transport
across flux surface can be easily calculated. However, for multiple particle species, especially
when considering heavy impurity ions which are only partly ionised, the solution of the kinetic
equation is not straightforward.
The Hirshmann-Sigmar formalism [14] is probably the most commonly used way to obtain
the neoclassical equilibrium and is also used in Chapter 2 even though impurities are not
considered in this thesis. The formalism rewrites the kinetic equation as a set of flux surface
averaged parallel balance equations in the reduced charge state description.
Following the more readable adaptation from Ref. [15] and considering only one charge state
per species the set of equations will be briefly introduced here. The three balance equations
(α = 1, 2, 3) are

{B · ∇ · Paα} = {Faα · B}+ Sa∥,α, (1.34)

for each species a and follow from taking the odd velocitymoments {
∫
d3v maB·vL3/2

α−1(x
2
a) · · · }

of the kinetic equation. Here Paα is the viscosity tensor, Faα the friction force and Sa∥,α are the
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source terms. The curly brackets {· · · } denote the flux surface average and the Laguerre
polynomials L3/2

α−1(x
2
a) are,

L
3/2
0 (x2a) = 1, (1.35)

L
3/2
1 (x2a) =

5

2
− x2a, (1.36)

L
3/2
2 (x2a) =

35

8
− 7

2
x2a +

1

4
x4a, (1.37)

with xa = v/vth,a and vth,a being the thermal velocity of species a. The three moments cor-
respond to the force balance, the heat flux balance and the parallel balance of the next higher
order term. The latter term has no direct physical interpretation but cannot be neglected when
the bootstrap current and the radial fluxes are to be calculated accurately. There are several
parallel source and sink terms that can be considered in Sa∥,α. The influence of an external
electric field E that drives the Ohmic current is an integral part of neoclassical theory and is
represented by SaE∥,α = Zanae{E · B}. Other sources like the momentum driven by neutral
beam injection or a model term for anomalous transport can be added as well.
The friction forces are given by the velocity moments of the Collision operator

Faα =

∫
d3v mavL

3/2
α−1(x

2
a)Ca (1.38)

and couple the equations for species a with the other species b as the Fokker-Plank Coulomb
Collision operator Ca

Ca =
∑
b

Cab(fa, fb) (1.39)

includes collisions with all other species b (including b = a).
Eq. 1.34 can be written in terms of parallel flows as well as friction and viscosity coefficients.
The parallel friction forces are

{Faα · B} =
∑
b

∑
β

la,bαβ û
b
β, (1.40)

using the parallel friction coefficients la,bαβ and the normalised parallel flows ûaα. The forces for
each species and order have contributions from all other species b and orders β. The neoclas-
sical viscosity is mainly connected to the friction between passing and trapped particles. Both
move along the field but the poloidal flow of the passing particles is subject to friction with
the particles trapped on the low field side, and is described by a parallel viscosity. The viscous
forces are approximately given by

{B · ∇ · Paα} =
{
B2
}∑

β

µ̂aαβû
a
θ,β . (1.41)

The poloidal components of the flow ûaθ,α are damped by the parallel viscosity with the co-

14



1.2. Neoclassical theory

efficients µaαβ . The poloidal flows have to be removed to solve the parallel balance equation,
and, using that the fluid velocity is divergence free (∇·u = 0), are expressed via parallel flows
using the force balance normal to the flux surface,{

B2
}
ûaθ,α = ûaα + Saθ,α, (1.42)

where the sources for poloidal momentum and heat flow are given by the thermodynamic
gradients and if present a radial electric field. The coefficients are complicated functions of the
background distributions and collision operators and can be found for example in Ref. [15].
Using the expressions above, Eq. 1.34 becomes a set of three equations per species which can
be solved to obtain the parallel flows. It has the general form

A · ûa =
∑
b

Λ(ûb) + Sa, (1.43)

with ûa = (ûa1, û
a
2, û

a
3), i.e. each component of the vectors represents an order of the balance

equation. The tensor A and the vectors for the friction Λ(ûb) are determined by the friction
and viscosity coefficients. The source term vector is given by the thermodynamic gradients
and the external Sa∥,α terms considered. In this form the set of equations essentially becomes a
linear algebra problem which can be solved numerically. For more details, the reader is again
referred to Ref. [15]. Once the flow velocities are known, the current and radial transport in
the neoclassical equilibrium can be directly calculated, e.g. the parallel current is {J · B} =∑

a Zaenaû
a
1 .
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1.3. Drift wave turbulence

Early tokamak experiments quickly demonstrated that the neoclassical theory was not able to
explain the confinement times achieved. Energy and particle transport are one or two orders
of magnitude larger then predicted by neoclassical theory. This transport, originally termed
“anomalous transport”, is nowadays understood to be caused by “drift wave” microturbulence
driven by the large temperature and density gradients in the plasma. Turbulent heat flux is
recognised as the major loss mechanism for tokamak fusion plasmas. For an in-depth discus-
sion of drift waves and associated instabilities the reader is referred to Ref. [16].
Here, we focus on the ion temperature gradient (itg) instability [17] which is expected to be
the dominant instability under standard conditions. Also, the turbulence studied in the later
chapters of this thesis is dominated by the itg instability. The physical mechanisms behind the
itg are explained in Sec. 1.3.1 and then the self-regulating zonal flows along with their impact
on the nonlinear stability of turbulence are discussed in Sec. 1.3.2.

1.3.1. The ion temperature gradient instability

In contrast to the large scale instabilities described by mhd, microturbulence has character-
istic wavelengths of the scale of the Larmor radius, and thus the ion and electron dynamics
have to be considered separately on this scale, making a single fluid model unsuitable. The
disparate dynamics interact through the electrostatic force, working against the local charge
disparity, trying to restore quasi-neutrality in the plasma. Quasi-neutrality is an intrinsic fea-
ture of any plasma. Despite the ability of positively and negatively charged particles to move
independently there is no large scale charge separation, as large electric fields would build up
otherwise.
A simplified geometry, neglecting the curvature effects of the toroidal geometry, called slab
geometry, can be used to qualitatively understand drift waves and instabilities. An annulus
with the inner radius rs is rolled out into a slab and a Cartesian coordinate system is used as
shown in Fig. 1.7. The x direction denotes the radial distance from the flux surface at radius
rs, z is in the direction of the magnetic field on the flux surface, approximately in the toroidal
direction and y is perpendicular to the field line, approximately in the poloidal direction. Con-
sider an ion density perturbation ñi ∝ exp[i(kyy − ωt)] of the background density n0 which
has a gradient in the negative x−direction due to the radial confinement. Due to their small
mass the electrons react much faster to the perturbation than the ions and the cold ion approx-
imation is used. In this case the ion thermal motion, and ion pressure is neglected. Confined
by the field line, the electrons can move parallel to the magnetic field (z−direction) to restore
quasi-neutrality. The change in electron pressure pe = (ne0+ñe)Te due to the electron density
perturbation ñe has to be balanced by an electric field

∂

∂z
pe = −(ne0 + ñe)eEz, (1.44)

Introducing the perturbed potential ϕ̃ and assuming a constant electron temperature Te on the
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1.3. Drift wave turbulence

flux surface Eq.1.44 becomes
Te

∂

∂z
ñe = ne0e

∂

∂z
ϕ̃, (1.45)

where the second order perturbation ∝ ñeϕ̃ has been neglected. Integrating yields the adia-
batic electron response

ñe = ne0
eϕ̃

Te
. (1.46)

As the electron density perturbation matches that of the ions, the perturbed potential causes
an electric field in the y−direction from the dense to the less dense regions. The resulting
E×B-drift is out of phase with the density perturbation, and brings the higher density plasma
from the inside ahead of the density maximum of the wave, resulting in a propagation in the
vertical direction, but no instability. Thus, the oscillating density and potential perturbation
propagates in the y−direction. The process is shown in Fig. 1.8 and is a stable drift wave at
this point.

R

r = rs

y = 2πrs

z = 2πRq

x
y

z

B

rs

Figure 1.7. The slab geometry: An annulus is
rolled out, neglecting the effects
of toroidal geometry, to form a
Cartesian coordinate system.

x

y

z ∇n B

ñ < 0

ñ > 0

ñ < 0

E

E

wave propagation

vE

vE

n = const.

Figure 1.8. An initial density perturbation
causes an oscillating density and
potential perturbation, propagat-
ing in the y−direction. The
dashed red line shows the constant
density surface at a later point in
time.
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However, with the right phase shift between density and potential perturbation, a positive
feedback loop will further increase (decrease) the density in the dense (less dense) regions,
forming an exponentially growing instability driven by the background density gradient. Such
an instability is possible if friction is considered in the electron response and is called dissipa-
tive instability.
In the core of the plasma the coupling to the temperature perturbation is more important than
the mechanism discussed above. The coupling of density and temperature perturbations due
to the curvature drift in tokamaks leads to the itg-instability. As the strength of the ∇B-
drift depends on the particle velocity (see Eq. 1.6), which scales with the thermal velocity
vth =

√
2T/m, a temperature perturbation leads to a modulation of the averaged drift veloc-

ity, which in turn compresses the ions, generating a density perturbation. Similar to the drift
wave mechanism discussed above, the electrons move to restore quasi-neutrality and generate
an electric field from the dense to the less dense regions. The resulting E×B-drift can stabilise
or destabilise the perturbation depending on the orientation of temperature and magnetic in-
duction gradient (see Fig. 1.9). At the high field side where the gradients point in opposite
directions the E×B-drift causes hotter plasma to flow towards the cold areas and vice versa.
However, at the low field side where the gradients are in the same direction, the temperature
perturbation is further enhanced, leading to an unstable itg mode. The instability leads to
an exponential growth of the modes, until they reach an amplitude where nonlinear interac-

high field sidehigh field side

x

y

z

B
∇T
∇B

v∇B

v∇Bñ > 0

ñ < 0

E

E

E

vE

vE

vE

low field sidelow field sidex

y

z B
∇T
∇B

v∇B
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ñ < 0

E

E

E

vE

vE

vE

Figure 1.9. Schematic explanation of the itg-instability. A temperature perturbation causes an ion
density perturbation due to the temperature dependence of the ∇B-drift. The adiabatic
electron response to the perturbation causes an electric field from the dense to the less
dense regions. The resulting E×B-drift stabilises the temperature perturbation at the high
field side (left) but further enhances it at the low field side. Thus, the itg-instability, driven
by the temperature gradient, can form at the low field side.
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tions can no longer be neglected, resulting in a turbulent state. It is this turbulent state that is
responsible for the degraded confinement of the tokamak.
A critical temperature gradient is required for the itg-mode to become unstable. Depending
on the complexity of the model, different thresholds are reported in the literature: the linear
threshold, the nonlinear threshold [18] and the finite-heat-flux-threshold [19]. The nonlin-
ear turbulence calculation finds an up-shift compared with the linear theory, which is due to
turbulence suppression by zonal shear flows. A more recent discovery is the finite-heat-flux-
threshold which is even higher, and is related to structure formation in the zonal flow. Zonal
flows and their structure formation will be discussed in more detail in the following section as
they play an integral role in the Chapters 4 and 5.

1.3.2. Zonal flows

Zonal flows are latitude parallel, toroidally symmetric shear flows. The collective flow pat-
tern only depends on the radial coordinate and band-like structures are formed as sketched in
Fig. 1.10. Originally a meteorological term, it is used in plasma physics due to the similarity
to the oceanic and atmospheric flows, with popular examples being jet streams or the distinct
belt structure of the Jovian atmosphere. Zonal flows exhibit a self-regulating character as they
work to reduce their drive, in the above example a temperature or pressure difference in the
atmosphere. In laboratory fusion plasma experiments, turbulence drives a zonal flow through
nonlinear coupling. In turn, the zonal flow reduces the turbulence through eddy shear sta-
bilisation. A thorough review of plasma zonal flows and their interaction with drift waves,
sometimes referred to as “drift wave-zonal flow turbulence” is given in Ref. [20]. However, the
interaction of zonal flows with turbulence is an active research topic and recent findings sug-
gest that the previously advocated predator-prey model does not capture all relevant effects
[21–23]. Furthermore, structure formation in the zonal flow, which will be discussed later in
this section, can critically modify the effect of zonal flows on turbulence generation [19, 24].
Zonal flows are driven by turbulent Reynolds stresses [25]. Considering the flux-surface av-
eraged momentum balance equation of an incompressible fluid and splitting the velocity v =
v̄ + ṽ in a mean and a fluctuating part, the mean poloidal flow (the zonal flow vzf) is given by

∂

∂t
vzf = −

{
∂

∂r
(ṽrṽθ)

}
, (1.47)

where {· · · } denotes the average over the flux surface and ṽr, ṽθ are the radial and poloidal
velocity components of the turbulent velocity. For isotropic turbulence, i.e. perfectly circu-
lar turbulent vortices, the Reynolds stress (ṽrṽθ) vanishes under the flux surface average due
to the symmetry. A finite Reynolds stress can, for instance, occur through the modulation
instability [26–30], and has been observed in experiments [31]. In a heuristic picture the mod-
ulation instability works as follows: A small tilt (modulation) of the turbulent vortex breaks
the symmetry, which drives a zonal flow further shearing the vortex. An exponential growth
of the zonal flow results, that continues until its amplitude is sufficiently large for damping
mechanisms to balance the growth. Several damping mechanisms saturate the zonal flows,
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including collisional damping [21, 32] and Kelvin Helmholtz tertiary instabilities [33]. A new
mechanism, the damping of zonal flows through turbulent momentum transport is introduced
in Chapter 4.

The zonal flow is associated with a zonal electrostatic potential ϕzf,

vzf =
Bt
B2

∂ϕzf
∂r

≈ 1

B

∂ϕzf
∂r

. (1.48)

Since it is an E×B flow, the terms E×B shear flow or E×B shearing are commonly used for
zonal flows. The radial variation of the zonal flow, the E×B shear rate ωE×B ,

ωE×B =
∂vzf
∂r

=
1

B

∂2ϕzf
∂r2

(1.49)

is an important measure for the ability of zonal flows to regulate or suppress turbulence. The
turbulence suppression by zonal flows is attributed to the shear decorrelation of the turbulent
fluctuations and used to explain the high confinement regime (H-mode [34]) reported in toka-
maks [35–37]. Using a simplistic picture, shown in Fig. 1.11, the turbulent eddies are subject to
the radially varying zonal flow leading to a tilted elongation. If they are sheared sufficiently,
the vortices will break into smaller ones, reducing the radial correlation length of turbulent
structures and thus reducing transport. In this picture it is easy to see that quickly time vary-
ing zonal flows are much less effective in suppressing turbulence than slowly varying ones,
because the flow pattern changes before the eddies are sufficiently distorted [38]. Therefore,
even though the instantaneous value of the shearing rate is typically dominated by the quickly
fluctuating components the mean shear rate is the interesting quantity. The above discussion

Figure 1.10. Schematic representation of
zonal flows in a tokamak.

vzf

x
y

Figure 1.11. The zonal flow shears the turbu-
lent eddies, leading to tilted elon-
gation until they break in smaller
eddies.
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1.3. Drift wave turbulence

can be reduced to a rule of thumb for turbulence suppression. Turbulence suppression will
occur if the mean E×B shearing rate is comparable to or higher than the growth rate γ of the
dominant instability (with the latter calculated without taking shearing into account),

ωE×B ≈ γitg, (1.50)

which is the so-called Waltz-criterion [39, 40].
A recent milestone in our understanding of drift wave-zonal flow turbulence is the discovery
of meso-scale structures, called staircases, in the E×B shear flow (see Fig. 1.12) [24, 41, 42], and
their ability to partially or completely suppress turbulence [19, 43]. E×B staircases lead to a
further up-shift of the temperature gradient threshold for turbulence, the so-called finite heat
flux threshold. This threshold is qualitatively different to the nonlinear threshold, as the heat
flux does not decline smoothly but jumps from a finite value to zero.
For a thorough discussion of the appearance and features of E×B staircases the reader is re-
ferred to Ref. [24]. Here, the most important aspects for the purposes of this thesis will be
briefly summarised. The E×B staircase is a near-marginal pattern, i.e. it only appears close
to the instability threshold. However, this is a likely operating regime for current and future
tokamaks and indications of staircases have been reported in the Tore Supra tokamak, making

Figure 1.12. The structure formation of the E×B shear in a global gyrokinetic simulation. Figure from
Ref. [24].
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zonal flow structure formation highly relevant for understanding turbulent transport in fusion
reactors. The radial heat transport for plasmas close to stability is dominated by avalanches.
They mostly originate in the narrow low shear regions of the staircase structure and and prop-
agate through the high shearing rate regions until they reach the so called bipolar shear layer,
a region in which the shearing rate quickly changes sign. The latter acts as a micro-barrier
hindering large scale avalanches, thus reducing transport. Staircase structures are long-lived
and have a radial extent of several ten Larmor radii. While the overall magnitude of zonal flow
shear is not modified, their distinct structure allows for large connected radial regions with
high shear fulfilling the Waltz-criterion and effectively suppressing turbulence.
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1.4. Gyrokinetic theory

The description of a tokamak plasma featuring about 1022 particles and requiring the simulta-
neous study of large range of length and time scales provides a formidable challenge. Particles
gyrate around the magnetic field line with a Larmor radius of a few millimetres while the de-
vice size is of several meters. The temporal scale covers even more orders of magnitude: the
fast cyclotron frequency ωc,i ∼ 108s−1, the frequency of one toroidal revolution called transit
frequency ωT,i = vth/(qR) ∼ 105s−1, the collision frequency νii ∼ 10−3ωT,i ∼ 100Hz, and
the energy confinement time of a few seconds¹. As discussed in Sec. 1.3.1, a fluid model can
not accurately describe microinstabilities, and thus turbulent transport, which is the major loss
channel in tokamaks. Consequently, a sophisticated theory is required to make the theoretical
study of turbulence numerically feasible. The gyrokinetic description uses the large scale sep-
aration to analytically average over the gyromotion, while retaining all physical effects which
are believed to be relevant for microturbulence. While the underlying idea is simple, the theo-
retical formalism and numerical implementation prove to be quite complex and a more general
review can be found in Ref. [45], while Refs. [46] and [47] providemore details on the analytical
formalism and the numerical implementation as well as the comparison to experiments. Here,
the kinetic model and ordering is outlined and, skipping the tedious analytical derivation, the
local gyrokinetic equation is given.
Tracing every particle motion of each species is not feasible even with modern (or future) su-
percomputers. Therefore, a kinetic theory is used to describe the plasma with a particle distri-
bution function fs(q, p) for each species s in the six-dimensional phase space given by the par-
ticle position q and momentum p. The fusion plasma, especially hot plasmas with T ∼ 10 keV,
can be considered weakly coupled, as the density is low and the kinetic energy is much larger
than the average potential energy between particles due to the Coulomb interaction. There-
fore, all particle interactions are neglected except two particle Coulomb collisions, which are
treated by a collision operator C(fs′ , fs). Indeed, studies of microturbulence often use a colli-
sionless plasmamodel, as the collision frequency ismuch lower than the frequency of turbulent
fluctuations and thus collisions do not have a critical impact on many aspects of turbulence.
The time evolution of the particle distribution function is given by the Boltzmann equation,

dfs
dt =

∂fs
∂t

+ {fs,Hs} = C(fs′ , fs) (1.51)

or the Vlaslov equation when neglecting collisions

∂fs
∂t

+ {fs,Hs} = 0 (1.52)

The curly brackets {·, ·} denote the Poisson bracket for the canonical coordinates (q, p)

{f,H} =
∂f

∂qj

∂H
∂pj

− ∂f

∂pj

∂H
∂qj

(1.53)

¹All magnitude approximations are made for deuterium ions in an expected iter scenario [44].
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andHs is the Hamiltonian of the collisionless single particle motion

Hs(q, p) =
1

2ms
|p− ZseA|2 + Zseϕ, (1.54)

where A is the vector potential for the magnetic field B = ∇ × A and ϕ the electrostatic
potential. The plasma charge density ϱ and current J are given by summing the respective
velocity moments of the distribution function for each species

ϱ =
∑
s

Zse

∫
d3p fs, (1.55)

J =
∑
s

Zse

∫
d3p vfs, (1.56)

where v = (p− ZseA)/ms is the particle velocity. Charge density and current are sources in
the Maxwell equations and the latter have to be solved to obtain the electrostatic potential and
vector potential used in the Hamiltonian of the Vlaslov equation. While being considerably
more elegant than a Newton-Maxwell description, the Vlaslov-Maxwell system is not suitable
to study low frequency phenomena, i.e. slow compared to the cyclotron frequency, like drift
waves due to the extreme time scale discrepancy. This is where the gyrokinetic approach is
required.
Modern gyrokinetic theory [46] is based on the Hamiltonian or Lagrangian formalism paired
with the Lie perturbation theory [48, 49]. This approach allows to correctly study collisionless
turbulent dynamics, keeping the conservation and symmetry properties of the system.
The starting point of gyrokinetic theory is to introduce an ordering based on the scale separa-
tion discussed above and the physical properties of drift waves to develop an expansion of the
kinetic equation using a smallness parameter. While the temporal, spatial and perturbation to
background scale separations are not identical, a single smallness parameter, the normalised
ion gyro radius ρ∗ = ρi/R is usually employed and provides a good description of large as-
pect ratio tokamak core turbulence studied here. Microturbulence is considered to obey the
ordering [47]:

ω

ωc,s
∼
k∥

k⊥
∼ vD
vth,s

∼ δns
n0

∼ B1

B0
∼ ρs
Ln

∼ ρ∗, (1.57)

where ω is the characteristic frequency of turbulence, k∥ and k⊥ are the components of the
wave vector, parallel and perpendicular to the magnetic field respectively, vD is the drift veloc-
ity, δn the density perturbation, n0 the equilibrium density,B0 the background magnetic field,
B1 the perturbed field and finally Ln = |∇ lnn0| is the characteristic length scale of the back-
ground density. Because the normalised Larmor radius is ρ∗ ∼ 10−3 for current machines and
even smaller for a much larger actual power plant, standard gyrokinetic theory only considers
terms up to the first order in ρ∗, but higher order terms can be included as the gyrokinetic
formalism is in principle correct up to an arbitrary order in ρ∗.
Two transformations the guiding-centre transform [50–53] and the gyrocentre transform
[54–57] are employed. The guiding-centre transform allows to describe the particle using
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its guiding-centre position, the gyroangle αwhich determines the actual position, the velocity
parallel to the magnetic field, and the magnetic moment. Taking advantage of the scale sep-
aration the gyrocentre transform allows for an average over the gyromotion, i.e. eliminates
the gyroangle. This also removes high frequency phenomena from consideration like Lang-
muir waves, which are believed to be not important for turbulence, allowing the study of the
relevant effects [58, 59]
While reducing the demands on the time resolution by roughly three orders of magnitude (and
even more for electron dynamics), the gyrocentre transform also reduces to the dimensionality
of the problem to a 5D phase space. The rigorous derivation is omitted here and can be found
in Ref. [46].
The gyrokinetic equation for the time evolution of the gyrocentre density distribution function
f̄s(X, v∥, µ) is given by

∂f̄s
∂t

+ Ẋ · ∇f̄s + v̇∥
∂f̄s
∂v∥

= C(f̄s′, f̄s), (1.58)

whereX is the gyrocentre position, v∥ the parallel velocity, and µ the magnetic moment, which
is an adiabatic invariant, i.e. dµ/dt = 0. Note that turbulence is on the scale of the Larmor
radius, therefore the local variation of the fields over the gyromotion has to be considered in
the averaging process of the gyrocentre transform. Neglecting magnetic field perturbations in
the low plasma β limit, the Maxwell equations reduce to the solution of the Poisson equation
of electrostatics. Gyrokinetics is valid for length- and timescales for which quasi-neutrality is
satisfied. Therefore, the local charge density is zero and the Poisson equation is not suited to
find the electric field. The gyrokinetic Poisson equation is actually derived from the constraint
of quasi-neutrality ∑

s

Zsens(x) = 0. (1.59)

However, this requires the actual particle position x in physical phase space (x, v), whereas
the distribution function is given in gyrocentre phase space (X, v∥, µ). The gyrokinetic quasi-
neutrality condition

ρ̄(X) + ρpol(X) = 0 (1.60)

is expressed via the gyrocentre charge density

ρ̄ =
∑
s

Zsen̄s =
∑
s

Zse

∫
d3v f̄s (1.61)

and the gyrocentre polarisation density

ρpol =
∑
s

Zse

∫
d3v

(
⟨T f̄s⟩ − f̄s

)
. (1.62)

The angle brackets ⟨· · · ⟩ denote the average over the gyroangle and the operator T transforms
the distribution function from gyrocentre phase space back to physical phase space. The polar-
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isation density is used to describe the difference between the actual charge density at a given
point in physical space and the charge density read from the gyrocentre density. The correc-
tion to the density can be understood as a Boltzmann response npol ∝ exp[−Zeδϕ/T ] as the
particles are subject to the variation δϕ = ϕ − ⟨ϕ⟩ over the course of their gyromotion. The
gyrokinetic Poisson equation up to first order in ρ∗ is given by [47]∑

s

∫
d3v

[
Zse⟨δfs⟩+

Zse
2

Ts
FM,s (ϕ− ⟨⟨ϕ⟩⟩)

]
= 0 (1.63)

and is used to calculate the potential at a given point x in real space. It is derived from Eq. 1.60
and the potential enters through the pull-back operator T . Here, the gyrocentre distribution
f̄s = δfs + FM,s is split into the first order perturbation δfs and the Maxwellian background
FM,s. The first term of Eq. 1.63 is the gyrocentre charge density while the second represents
the linearized polarisation density.
The equations can be subject to further approximations (see Secs. 1.4.2-1.4.3) and the exact
equations solved in simulations for this thesis will be given in Sec. 1.5.

1.4.1. Field Aligned Coordinates

The gyrokinetic study of turbulence is best done using a specialised coordinate system. The
benefits of a field-aligned coordinate system are easy to see, when considering the length scale
differences of the dynamics parallel and perpendicular to the field line. A high resolution grid
is needed perpendicular to the field to cover the dynamics on the scale of the Larmor radius but
a low resolution grid is sufficient parallel to the field, where variations are on the scale of the
system size. If the coordinate system is not field aligned, one has to retain the Larmor radius
resolution in all three coordinates, which significantly increases the computational costs.
Here, the field aligned Hamada coordinates (ψ, ζ, s) [60, 61] are presented and the necessary
transformations starting from the known orthogonal toroidal coordinate system (ψ, θ, φ) are
derived in detail. θ, φ are the poloidal and toroidal angle respectively and ψ the radial coordi-
nate. The derivation works for any arbitrarily shaped magnetic field configuration, provided
it is toroidally symmetric. Then, the magnetic field can be written as

B = RBt∇φ+∇φ×∇Ψ, (1.64)

where Bt = B · ∇φ/|∇φ| = RB · ∇φ is the toroidal magnetic field strength, R the local
major radius and Ψ the poloidal flux. The radial coordinate ψ = ψ(Ψ) is a flux surface label,
i.e. ψ =const. on a given flux surface. For the purposes of this thesis, where circular flux sur-
faces are assumed it is convenient to directly use the minor radius as the radial coordinate. The
goal is to have straight magnetic field lines and a coordinate s aligned to the field line. Fur-
thermore, to keep using the benefits of the toroidal symmetry all quantities independent of the
toroidal angleφ need to be independent of the new “toroidal” coordinate ζ . The transformation
is split into two steps

(ψ, θ, φ) → (ψ, s, γ) → (ψ, ζ, s) (1.65)
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1.4. Gyrokinetic theory

and the process is illustrated in Fig. 1.13. First, the poloidal and toroidal angle are replaced
by s = s(ψ, θ) and γ = γ(ψ, θ, φ) with the goal to get straight field lines on a flux surface
(ψ =const.), i.e.,

dγ
ds =

Bγ

Bs
= q(ψ), (1.66)

where q is the safety factor. Therefore, the contravariant components of the magnetic field
have to be functions of only the radial coordinate ψ

Bs = Bs(ψ), Bγ = Bγ(ψ). (1.67)

Note that the magnetic field configuration already demands B · ∇ψ = Bψ = 0. The transfor-
mation for s is obtained by taking

Bs = B · ∇s = B · ∇θ ∂s
∂θ

(1.68)

and integrating the expression in θ

s = Bs

∫ θ

0

1

B · ∇θ′
dθ′. (1.69)

field line

cut

φ

ϴ

flux surface

ϴ
φ γ

s

constant s

∇s ζ

∇ζ

s

Figure 1.13. Illustration of the transformation from toroidal to field aligned Hamada coordinates [Arne
Weikl, personal communication, March 13, 2019]. The field lines are straightened and
aligned to the s−coordinate.
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Demanding that s = [−1/2, 1/2] corresponds to one poloidal turn, Eq. 1.69 yields,

1 = Bs

∫ 2π

0

1

B · ∇θ′
dθ′. (1.70)

and inserting back in Eq. 1.69 gives the transformation for s

s(ψ, θ) =

∫ θ

0

1

B · ∇θ′
dθ′
/∫ 2π

0

1

B · ∇θ′
dθ′. (1.71)

Choosing that γ = [0, 1] corresponds to one toroidal revolution, the ansatz

γ(ψ, θ, φ) =
φ

2π
+ g(θ, ψ), (1.72)

with the subsidiary function g, is used to find the expression for γ. Then, the contravariant
component Bγ is given by

Bγ = B ·
(
∇φ∂γ

∂φ
+∇θ∂γ

∂θ

)
=

Bt
2πR

+ B · ∇θ∂g
∂θ
. (1.73)

Integrating in θ allows to determine g,

g =

∫ θ

0

1

B · ∇θ′

(
Bγ − Bt

2πR

)
dθ′. (1.74)

Demanding that g is poloidally periodic, i.e.

0 =

∫ 2π

0

1

B · ∇θ′

(
Bγ − Bt

2πR

)
dθ′, (1.75)

yields an expression for Bγ

Bγ =

∮
Bt
2πR

dθ′
B · ∇θ′

/∮ dθ′
B · ∇θ′

=

∮
Bt
2πR

ds =
{
Bt
2πR

}
. (1.76)

The curly brackets denote the average over the flux surface {Q} =
∮
Qds. Inserting Eqs. 1.74

and 1.76 in 1.72 and using that Bt ∝ 1/R, i.e. RBt = const. to rewrite the expression yields
the transformation for γ

γ(ψ, θ, φ) =
φ

2π
+
RBt
2π

∫ θ

0

({
1

R2

}
− 1

R2

)
dθ′

B · ∇θ′
. (1.77)

The coordinates (ψ, γ, s) are the Hamada coordinates but they are not yet field aligned. The
second transformation (ψ, s, γ) → (ψ, ζ, s) aligns the s−coordinate with the magnetic field
line

B · ∇ = Bs ∂

∂s
(1.78)
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or equivalently Bψ = Bζ = 0. The condition Bζ = 0 translates to

Bγ ∂ζ

∂γ
+Bs∂ζ

∂s
= 0. (1.79)

It is easy to verify that the linear transformation

ζ = qs− γ (1.80)

satisfies Eq. 1.79 as q = Bγ/Bs. Note that the transformation flips the sign of the toroidal
angle. Therefore, the right handed field aligned Hamada coordinate system is (ψ, ζ, s).

All transformations depend on the background magnetic field B. Therefore, the magnetic field
configuration has to be specified in simulations. While it is possible to get the exact equilib-
rium field by solving the Grad-Shafranov equation [10] for a specific reactor experiment, this
process is not only cumbersome but also further impedes comparability of the results within an
already vast parameter space. Furthermore, the shaped plasmas used in experiments usually
require a higher numerical resolution to obtain a similar accuracy compared with a simplified
equilibrium. Therefore, several approximations are commonly used for high aspect ratio core
plasma turbulence.

Most notably are the s–α geometry and the circular geometry, which both feature concentric
circular flux surfaces. The s–α geometry is the crudest model that still features trapped parti-
cles, keeping only the lowest order of the expansion in the inverse aspect ratio ϵ. The poloidal
variation up to the first order in ϵ is only kept for the magnetic field strength and neglected
(ϵ → 0) for all other quantities². Despite its limitations, significant quantitative differences
to a mhd equilibrium and inconsistency in the ϵ ordering [62], the s–α geometry is regularly
used due to its prevalence in the literature.

The circular geometry retains the full ϵ dependence of all geometric quantities and thus pro-
vides a significant improvement to the s–α model. However, it is not an exact solution of the
the Grad-Shafranov equation as it assumes concentric circular flux surfaces, i.e. the Shafranov-
shift ∝ ϵ2 [63], which displaces the flux surface centre, is neglected. Even though it can be
considered sufficient for the turbulence studied in this thesis [62].

In the circular geometry the field aligned coordinates are

s =
1

2π
(θ + ϵ sin θ) , (1.81)

ζ = − φ

2π
+
q

π
arctan

(√
1− ϵ

1 + ϵ
tan θ

2

)
(1.82)

and the minor radius is used as the radial coordinate.

²The most common simulation parameter set, the Cyclone Base Case, uses ϵ = 0.19.

29



1. Introduction

1.4.2. Local flux tube limit

Nonlinear gyrokinetic simulations are computationally very expensive, especially so called
global simulations which cover a large radial extent of the torus. The local flux tube limit uses
the scale separation in the gyrokinetic ordering to provide a model which makes computer
simulations more feasible. All simulations in this thesis are flux tube simulations, which still
allow for the study of physical mechanisms and predicting the magnitude of transport phe-
nomena.

The simulation domain is reduced to a radially thin region, the flux tube, confined by flux
surfaces. The large scale separation allows the choice of a radial extend Lψ of the domain
which satisfies

ϵR≫ Lψ ≫ ρ. (1.83)

The domain is much smaller than the system size and the background quantities can be taken to
be constant on this scale. Yet, the characteristic length scale of turbulence, the Larmor radius,
is again much smaller and it is assumed that the key features of plasma turbulence are not
affected by the size of the simulation domain. This limit is valid for small ρ∗ = ρ/R and the
smallness of ρ∗, implied by Eq. 1.83, also suggests the use of the δf formalism, f = δf+FM , i.e.
the distribution function can be decomposed in a time independent Maxwellian background
distribution and the turbulent perturbation δf which is one order smaller in ρ∗, δf ∼ ρ∗FM .
Higher order perturbations are neglected. Note that while background quantities are evaluated
at the flux surface in the centre of the flux tube and are constant over the simulation domain
they still have a radial gradient which is also constant across the domain. The background
density and temperature gradients are retained as linear drive terms of the turbulence.

Since there is no radial variation in the background, the turbulence is homogeneous and peri-
odic radial boundary conditions can be used, provided the correlation length of the turbulence
is smaller than the computational domain [64]. Due to the toroidal symmetry, homogeneous
turbulence can also be assumed in the binormal (ζ) direction. Periodic boundary conditions
allow to reduce the simulation domain to a quadrilateral tube winding around the torus as
illustrated in Fig. 1.14. Besides the obvious reduction in the computational costs due to the
smaller grid sizes for the reduced simulation domain, the periodic boundary conditions allow
for a spectral treatment of turbulence, further improving the efficiency.

Figure 1.14. Schematic representation of the flux tube simulation domain for q = 1.4. The magnetic
axis of the torus is shown in blue.
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1.4.3. Adiabatic electron approximation

Due to their lowmass the electrons move rapidly along the field lines with a much higher ther-
mal velocity than the ions. For a deuterium plasma with similar electron and ion temperature
this leads to a ratio of

vth,e
vth,i

=

√
mi

me
≈ 60 (1.84)

for the thermal velocities. On the time scale of ions the electrons react nearly instantly to
restore quasi-neutrality, i.e. their density response is described solely by the electric field due
to an ion density perturbation. The adiabatic electron response (see Sec. 1.3.1)

ñe
ne0

=
eϕ̃

Te
, (1.85)

where the tilde denotes a perturbed quantity, can be used to approximate the influence of the
electrons in the Poisson equation analytically. Then, only the ions are treated as a kinetic
species and the electron dynamics do not need to be simulated. Simulations with “adiabatic
electrons” have significantly reduced requirements on computational resources, as the slower
thermal ion velocity allows for a much larger time step.
The adiabatic electron approximation is suitable for many numerical experiments, where the
dynamics are dominated by the ions, e.g. the heat transport due to itg turbulence is mainly
carried by the ions. In that case the electron dynamics provide a quantitative correction but
do not impact the physical mechanisms or qualitative result. However, the kinetic treatment
of electrons, often abbreviated by “kinetic electrons”, is required for many plasma phenomena
like the trapped electron mode instability [16], or the intrinsic current driven by turbulence
(see Chapter 2).
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1.5. The gyrokinetic code gkw

All turbulence simulations in this thesis are performed with the gyrokinetic code gkw (Gy-
roKinetic Workshop). gkw is a Eulerian Vlaslov code designed for the study of turbulence
and microinstabilities in a magnetically confined plasma. It solves the gyrokinetic equation
on a fixed grid in the 5-dimensional phase space using a combination of finite difference and
pseudo-spectral methods. This section details the aspects relevant to this work, namely the
normalisation, the exact equations solved, and a brief discussion of the spectral representation
and treatment of collisions. A complete description of the code is given in Ref. [65].

1.5.1. Normalisation

As is good practice in computer simulations all quantities in the code are normalised using a
set of reference quantities: reference massmref, density nref, temperature Tref, thermal veloc-
ity vthref, magnetic field Bref evaluated on the magnetic axis and reference major radius Rref.
Naturally these are interrelated by

Tref =
1

2
mrefv

2
thref and ρref =

mrefvthref
eBref

, (1.86)

with the reference Larmor radius ρref which is used to define the smallness parameter, the
normalised Larmor radius

ρ∗ =
ρref
Rref

. (1.87)

Using the reference values it is possible to relate the dimensionless quantities (subscript N )
used in the code to the corresponding physical ones:

m = mrefmN , n0 = nrefnN , vth = vthrefvth,N . (1.88)

Note that the normalised mass, density and thermal velocity are defined for each kinetic
species. Similarly, the velocity space coordinates are normalised for each species

v∥ = vthv∥N , µ =
mvth
Bref

µN (1.89)

and accordingly the distribution functions

f = ρ∗
n0
v3th
fN , FM =

n0
v3th
FM,N . (1.90)

The total particle distribution function ftot = f + FM is split in the Maxwellian background
FM and the perturbed distribution function f . As all normalised quantities are supposed to be
of order unity, factors of ρ∗ are added for perturbed quantities.
All other quantities are normalised by using reference values only. The perturbed electrostatic
potential ϕ is given by

ϕ = ρ∗
Tref
e
ϕN (1.91)
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and the time t, angular rotation frequency Ω, major radius R, as well as the magnetic field B
by

t =
Rref
vthref

tN , Ω =
vthref
Rref

ΩN , R = RrefRN , B = BrefBN . (1.92)

The radial coordinate ψ is normalised with Rref, and for circular flux surfaces ψ = r/Rref = ϵ
is used, where r is the minor radius. The gradients are also normalised using the major radius

∇ =
1

Rref
∇N . (1.93)

The perpendicular variation of fluctuating quantities is on the scale of the Larmor radius and
the wave vectors used in the case of a spectral representation are therefore normalised to ρref:

k =
1

ρref
kN . (1.94)

Finally, as customary in the literature, the dimensionless background temperature (density)
gradient length scale R/LT (R/Ln) is used

R/LT = −Rref
T

∂T

∂r
= − 1

T

∂T

∂ψ
, R/Ln = −Rref

n0

∂n0
∂r

= − 1

n0

∂n0
∂ψ

. (1.95)

1.5.2. The gyrokinetic equation in gkw

The flux tube version of gkw solves the gyrokinetic equation for the gyroaveraged particle
distribution function ftot(X, v∥, µ) in a co-moving frame, using the gyrocentre position X,
the velocity parallel to the magnetic field v∥ and the magnetic moment µ, which serves as the
perpendicular velocity coordinate, to describe the 5-dimensional phase space. The collisionless
equation takes the form [53, 66]:

∂ftot
∂t

+
dX
dt · ∇ftot +

dv∥
dt

∂ftot
∂v∥

= 0. (1.96)

Note that themagnetic moment is an adiabatic invariant in the gyrokinetic theory, i.e. dµ/dt =
0. For kinetic electrons or multiple ion species the equation has to be solved for each kinetic
species but this section uses a single kinetic species for clarity and omits the species subscript.
The code is designed to include a variety of physical mechanisms including centrifugal effects
[66, 67] and electromagnetic field perturbations. However, these are neglected in the studies
performed in this thesis and the terms are omitted in this section to avoid confusion. The time
evolution of the gyrocentre position is given by

dX
dt = v∥b+ vE + vD, (1.97)

where b is the unit vector in direction of the magnetic field. The velocity includes the motion
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parallel to the field line, the E×B drift

vE =
b×∇⟨ϕ⟩

B
(1.98)

and the drifts due to the inhomogeneous magnetic field and inertial terms (see Sec. 1.1.1)

vD =
(
mv2∥ + µB

) b×∇B
ZeB2

+
2mv∥

ZeB
Ω⊥, (1.99)

where Ω⊥ = Ω − (Ω · b)b is the part of the angular toroidal rotation vector perpendicular
to the field. The first term represents the ∇B and the curvature drift in the low plasma β
approximation and the last term is the Coriolis drift [6].

The parallel acceleration dv∥/dt can be derived using the conservation of energy

d
dt

[
1

2
mv2∥ + µB + Ze⟨ϕ⟩

]
= 0 (1.100)

mv∥
dv∥
dt = −dX

dt · [µ∇B + Ze∇⟨ϕ⟩] . (1.101)

The distribution function is split into the perturbed part f(X, v∥, µ) and the Maxwellian back-
ground FM , i.e. ftot = f + FM and the δf approximation is employed. The equation for the
time evolution of the perturbed distribution is given by [66]

∂f

∂t
+
(
v∥b+ vE + vD

)
· ∇f − µ

m
b · ∇B ∂f

∂v∥
= S, (1.102)

where the source term S is determined by the background distribution and only terms up to
the first order in ρ∗ are considered. The Maxwellian is given by

FM =
n0

π3/2v3th
exp

[
−
(v∥ − (RBt/B)ωφ)

2 + 2µB/m

v2th

]
, (1.103)

where n0 and vth are the density and thermal velocity of the species. They are evaluated at the
considered flux surface and are constant with a constant gradient across the radial domain of
the flux tube. The mean parallel velocity u∥ = (RBt/B)ωφ(r)with the toroidal component of
the magnetic field Bt and the angular rotation ωφ is zero at the flux surface considered, as the
equations are formulated in a co-moving frame which rotates as a rigid body with constant
angular frequencyΩ. However, plasma rotation can have a radial gradient and∇ωφ will enter
the equations, because a differential rotation of the frame is impractical as it entails a time
dependent metric.

Inserting the Maxwellian in the gyrokinetic equation yields the source term
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S = −(vE + vD) ·

[
∇n0
n0

+

(
v2∥

v2th
+
µB

T
− 3

2

)
∇T
T

+
mv∥

T

RBT
B

∇ωφ

]
FM

−Ze
T

(v∥b+ vD) · ∇⟨ϕ⟩FM . (1.104)

Note that S also contains the time evolution of the background without turbulence, which is a
ρ∗ correction to theMaxwellian and is given by the term vD ·∇FM , i.e. the part proportional to
vD of the first term on the right. All other terms which are also of the order ρ∗ are connected
to the perturbed potential, which is determined by f . If one were to use a time-dependent
background distribution function, the vD · ∇FM term would allow to describe the neoclas-
sical transport in the gyrokinetic equation. The coupling of turbulence can be of interest for
example for current generation or intrinsic rotation (see Chapters 2 and 3) but the numeri-
cal requirements for turbulence and neoclassics do not match up well, in particular, the high
resolution required for an accurate calculation of the neoclassical background would lead to
very expensive nonlinear turbulence simulations. Therefore, other methods, like the coupling
of the code with a dedicated neoclassical equilibrium solver, to account for the neoclassical
background are preferable. In standard gyrokinetic simulations the Maxwellian is assumed
constant and the correction ρ∗FM is neglected. Note that when considering only the turbu-
lent perturbation this is consistent with the ordering used in Eq. 1.102, as the correction to the
perturbed distribution f ∼ ρ∗(FM + ρ∗FM ) would be of second order in ρ∗.

To close the set of equations, the gyrokinetic Poisson equation needs to be adjoined to cal-
culate the perturbed potential ϕ. gkw uses a spectral representation of the linearized gy-
rokinetic Poisson equation, which considers the polarisation density only for the Maxwellian
background. In normalised units the equation is given for a single Fourier mode ϕ̂ by∑

s

Zsn0,s

[
B

∫∫
dv∥d(2πµ) J0(k⊥ρs)f̂s +

Zs
TN,s

(Γ(bs)− 1) ϕ̂

]
= 0, (1.105)

where the Bessel function J0(k⊥ρs) is used for the gyroaverage and the modified Bessel func-
tion Γ(bs) to express the polarisation density for the Maxwellian background. The species
dependent parameter bs is given by

bs =
1

2
mN,sTN,s

ρrefk⊥
ZsB2

. (1.106)

The sum is performed over every kinetic species s. In the adiabatic electron limit the simplified
equation∑

ions

[
B

∫∫
dv∥d(2πµ) J0(k⊥ρs)f̂s +

Zs
TN,s

(Γ(bs)− 1) ϕ̂

]
=
n0,e
TN,e

(ϕ̂− {ϕ̂}) (1.107)

sums only over the ions and uses the adiabatic electron response on the right hand side to
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account for the electrons.
In gkw the terms of the time evolution are sorted by their physical meaning and it is possible to
switch of or modify distinct physical effects for numerical experiments. Most notably, the non-
linear term can be suppressed to perform a linear stability analysis, where the toroidal modes
do not interact with each other, referred to as “linear simulations”. The full set of equations
including their implementation with geometric tensors can be found in [65].

1.5.3. Spectral representation

The local flux tube limit allows for periodic boundary conditions in the radial (ψ) and the
binormal (ζ) direction as the assumption of a homogeneous background leads to homogeneous
turbulence. Therefore, the turbulence in the plane perpendicular to the magnetic field line can
be described by a computationally efficient Fourier approach. Therefore, gkw uses a semi-
spectral space representation, i.e. the direction parallel to the field (s) and the velocity phase
space is treated with a finite difference grid approach, while the ζ, ψ dependency is given by
Fourier modes kψ, kζ . It is possible to also treat the radial direction with a finite difference
scheme, which is used for so called flux-driven simulations and global simulations, where
profile effects are kept. Flux-driven simulations use the local limit approximation with the
turbulence driven by source and sink functions at the edges of the radial domain rather than
by background gradients. They are used in Chapter 5 while all other chapters use gradient-
driven simulations and the semi-spectral representation.

f(ψ, ζ, s) =
∑
kψ ,kζ

[
f̂(kψ, kζ , s) exp[ikψψ/ρ∗ + ikζζ/ρ∗]

]
(1.108)

Thus, the derivative in β = ψ, ζ direction is treated analytically ρ∗∂/∂xβ = ikβ . Note that f
is a real quantity and thus f̂(kψ, kζ , s) = f̂ †(−kψ,−kζ , s). This is used in the code to calculate
only the evolution of modes with kζ ≥ 0. The distribution function is given by

f(ψ, ζ, s) =
∑

kζ>0,kψ

[
f̂(kψ, kζ , s) exp[ikζζ/ρ∗ + ikψψ/ρ∗]+

f̂ †(kψ, kζ , s) exp[−ikζζ/ρ∗ − ikψψ/ρ∗]
]
+
∑
kψ

f̂(kψ, kζ = 0, s) exp[ikψψ/ρ∗]

(1.109)

with an equivalent expression for ϕ.

1.5.4. Collisions

Coulomb collisions between particles can be included in gkw. They are modelled with a lin-
earized Fokker-Planck collision operator C, which is added to the right hand side of the gyroki-
netic equation (1.102). Assuming a Maxwellian background the linearized collision operator
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can be derived from the Landau collision integral [68]

C(fa) =
∑
b

1

v2
∂

∂v

[
v2
(
Da/b
vv

∂fa
∂v

− F a/bv fa

)]
+

1

v sinϑ
∂

∂ϑ

[
sinϑDa/b

ϑϑ

1

v

∂fa
∂ϑ

]
. (1.110)

The operator acts on the distribution of species a and sums over all species b (including self
interaction). It is given in the (v, ϑ) coordinate system, where v is the velocity and ϑ the pitch
angle, the angle between the velocity vector and the magnetic field. The model includes pitch
angle scattering, energy scattering and momentum scattering with their respective coefficients
D
a/b
ϑϑ , D

a/b
vv and F a/bv .

The coefficients are proportional to the collision frequency

Γa,b =
RrefnbZ

2
aZ

2
b e

4 lnΛa,b

4πϵ20m
2
am

2
bvth,a

(1.111)

for collision of species a with species b. The expressions for the Coulomb logarithm Λa,b, the
coefficients and the implementation in the code is given in Ref. [65]. While the linearized
Fokker-Planck preserves the particle number, there is no exact conservation of energy or mo-
mentum. Therefore, there are ad hoc corrections terms that an be used to artificially restore
conservation.
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2. Turbulence driven stationary electric
currents in a tokamak

It is conventionally assumed, that the neoclassical and turbulent description of a plasma can
be treated separately. This is, in many cases, a reasonable approximation because of the strong
separation in length and time scales, with the neoclassical solution having length scales of the
order of the plasma size and a timescale equal to the confinement time, while the turbulent
dynamics have length scales of the order of the gyro-radius and evolve on the ion transit time
scale. Furthermore, different aspects of plasma behaviour are well described by employing just
one regime. Turbulent transport is the dominant loss channel for thermal energy in tokamak
plasmas, while several other aspects, like current and resistivity are governed by neoclassical
effects. A popular example is the intrinsic current called bootstrap current which is driven by
pressure gradients [11–13].
Recently the impact of the neoclassical modifications to the background distribution function,
used in turbulent transport calculations, has been the object of a number of studies, show-
ing its relevance for the generation of intrinsic rotation [69–75]. Chapter 3 of this thesis is
also dedicated to this effect. Another example for the interplay of turbulence and neoclas-
sics is the synergy of the respective impurity transport channels [76]. The influence of the
turbulent dynamics on the neoclassical transport has received less interest, but it has been
shown to modify the momentum flux in neoclassics, which can also drive intrinsic rotation
[77]. Furthermore, several mechanisms for turbulent current drive are known. These include
modifications to Ohm’s law like hyper-resistivity, anomalous resistivity, as well as turbulent
sources, e.g. electromotive forces due to the interplay of density and potential perturbations
and electromagnetic flutter. Also modifications to the electron momentum flux and a “turbu-
lent bootstrap current” proportional to the current gradient have been investigated [78–83].
The magnitude of the turbulence driven current is expected to be up to 10% [81] or even 25%
[83] of the neoclassical bootstrap current. In present experiments large parts of the current
density are driven by an external transformer, limiting the operational time, and thus making
additional current sources interesting for economically viable reactors.
The work presented in this chapter introduces turbulent source terms, which are connected
to the parallel velocity nonlinearity in the gyrokinetic equation. These source terms have a
non-zero time average and exert a force on the neoclassical background. The method of us-
ing a gyrokinetic and a neoclassical code separately and considering the full parallel balance
equations, captures the impact of homogeneous turbulence consistently from a nonlinear de-
scription. Especially the force due to the heat flux balance can be expected to play an important
role in itg turbulence, and is not considered in the global simulations in Ref.[79] or in the quasi-
linear theory used in the analytic description of fluxes in Ref. [81]. Thus, the study extends
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2. Turbulence driven stationary electric currents in a tokamak

previous work but, in the process, neglects effects generated by inhomogeneous turbulence.
The remainder of this chapter is structured as follows. In Section 2.1 the coupling of neoclassics
and turbulence is discussed in detail and the turbulent terms associated with the velocity non-
linearity, affecting the neoclassical solution are derived. Section 2.2 gives a rough estimate of
the relevance of the effect. Section 2.3 presents the results of simulations to assess the current
generated by turbulence. Finally, conclusions are formulated in Section 2.4.

2.1. Coupling of turbulence and neoclassics

Consider the gyrokinetic equation for the distribution function f , written in conservative form

∂f

∂t
+∇ ·

[
dX
dt f

]
+

∂

∂v∥

[dv∥
dt f

]
= C(f). (2.1)

Here, dX/dt is the gyrocentre velocity

dX
dt = v∥b+ vD + vE , (2.2)

where v∥b is the velocity parallel to the magnetic field, vD is the drift velocity connected with
the magnetic field inhomogeneity as well as the plasma rotation, and vE is the E×B velocity.
The plasma is assumed to be electrostatic and dv∥/dt is the acceleration

mv∥
dv∥
dt = −dX

dt · [Ze∇⟨ϕ⟩+ µ∇B] (2.3)

where ⟨ϕ⟩ is the gyroaveraged potential and B the magnetic induction. Finally, C(f) is the
collision operator which will be assumed to be accurately described by its linearized form.
The equation for the distribution function describes both the turbulent as well as the neoclas-
sical transport. Below the evolution equation (2.1) is split to describe as far as possible each of
these effects separately. This allows for the determination of the coupling between turbulence
and neoclassics and clarifies how the turbulent transport can influence the neoclassical solu-
tion. To split the equation it is assumed that the turbulence can be described within the local
flux tube limit. Thus, the turbulence is described as homogeneous in the plane perpendicu-
lar to the magnetic field. It is stressed that this approximation eliminates a channel through
which the turbulence can have an impact on the neoclassical solution. Therefore the coupling
between neoclassics and turbulence derived below does not contain all possible effects. The
reader is referred to Ref. [77] for further details.
To proceed the distribution function f , the gyro-centre velocity dX/dt and the parallel accel-
eration dv∥/dt are split into a time independent (bar) and a fluctuating part (tilde)

f = f̃ + f
dX
dt =

dX̃
dt +

dX
dt

dv∥
dt =

dṽ∥
dt +

dv∥
dt , (2.4)
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where, by definition, the time average of the fluctuating quantities disappears〈
f̃
〉
t
= 0

〈
dX̃
dt

〉
t

= 0

〈dṽ∥
dt

〉
t

= 0. (2.5)

The fluctuating part describes the turbulent dynamics, while the neoclassical solution as well
as the background are contained in the time independent part. Substituting the expressions
above in the evolution equation (2.1) and taking the time average yields

∂f

∂t
+∇ ·

[〈
dX̃
dt f̃

〉
t

+
dX
dt f

]
+

∂

∂v∥

[〈dṽ∥
dt f̃

〉
t

+
dv∥
dt f

]
= C(f). (2.6)

The equation above uses ⟨C(f̃+f)⟩t = C(f)which is true for the linearized collision operator.
Two terms appear in this equation that are connected with the turbulence. Using

dX̃
dt = ṽE =

b×∇⟨ϕ̃⟩
B

, (2.7)

the first term can be written in the form〈
dX̃
dt f̃

〉
t

=
〈
ṽE f̃

〉
t
. (2.8)

In the case of homogeneous turbulence the time averaged fluxes are independent of the radial
coordinate and the fluxes vanish under the divergence operator. Then, using

mv∥
dṽ∥
dt = −Ze

(
v∥b+ vD

)
· ∇⟨ϕ̃⟩ − µṽE · ∇B, (2.9)

the only term in the equation (2.6) for f related to the turbulence is:〈dṽ∥
dt f̃

〉
t

= −
〈

1

mv∥

[
Ze
(
v∥b+ vD

)
· ∇⟨ϕ̃⟩+ µṽE · ∇B

]
f̃

〉
t

. (2.10)

The various velocitymoments of this term represent the particle, momentum and energy fluxes.
The terms in the equation above can be transformed using the relation

µṽE · ∇B = µ
b×∇⟨ϕ̃⟩

B
· ∇B = −µb×∇B

B
· ∇⟨ϕ̃⟩, (2.11)

and the equation for the drift in the low beta approximation

vD =

[
mv2∥

B
+ µ

]
b×∇B
ZeB

+
2mv∥

ZeB
Ω⊥, (2.12)

whereΩ⊥ = Ω−(Ω ·b)b is the part of the angular rotation perpendicular to the field line. The
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∇B-drift in the gyrocentre motion is then cancelled by the inner product of the fluctuating
E×B velocity and the gradient of the magnetic field which yields〈dṽ∥

dt f̃
〉
t

= −
〈[

Ze

m
b+

v∥b×∇B
B2

+
2

B
Ω⊥

]
· ∇⟨ϕ̃⟩f̃

〉
t

. (2.13)

With the expression above the equation for the steady state distribution can be written in the
form

∂f

∂t
+∇ ·

[
dX
dt f

]
+

∂

∂v∥

[dv∥
dt f

]
− C(f) =

∂

∂v∥

[〈(
Ze

m
b+

v∥b×∇B
B2

+
2

B
Ω⊥

)
· ∇⟨ϕ̃⟩f̃

〉
t

]
. (2.14)

The left hand side is the equation that is usually solved in neoclassical theory, while the right
hand side presents an additional source due to the turbulence. The source term does not depend
explicitly on the steady state distribution f , and if the turbulent solution is known, can thus
be evaluated separately taking only the turbulent solution.
Subtracting the equation for f from the original equation (2.1), one obtains the equation for
the turbulence

∂f̃

∂t
+∇ ·

[(
dX
dt +

dX̃
dt

)
f̃

]
+

∂

∂v∥

[(dv∥
dt +

dṽ∥
dt

)
f̃

]
=

C(f̃)−∇ ·

[
dX̃
dt f

]
− ∂

∂v∥

[dṽ∥
dt f +

〈dṽ∥
dt f̃

〉
t

]
. (2.15)

The equation for the turbulence is usually formulated without the last term in the square brack-
ets, i.e. the time averaged velocity nonlinearity. The velocity nonlinearity is one order higher
in the normalised Larmor radius and will be neglected in the evaluation of f̃ . Note, however,
that it is the velocity nonlinearity that generates the cross-coupling between the turbulence
and the neoclassical solution. It should be also noted, that the neoclassical transport can in-
fluence the turbulence as well [71, 73]. The time averaged distribution f must be seen as a
solution of Eq. (2.14), which can be assumed constant on the time scale of the turbulence, and
will affect the turbulence through the terms on the right hand side. Here, this cross-coupling
will not be examined, and the background will be assumed to be a Maxwellian f = FM .
The neoclassical equation (2.14) can be solved with a set of flux surface averaged parallel bal-
ance equations [14]. The left hand side of Eq. (2.14) is equivalent to the kinetic equation used
in Ref. [14] (see Appendix A for the derivation of the parallel force balance starting from
Eq. (2.14)). Following the notation of Ref. [15] (only for single charge states) the equations
are given by

{B · ∇ · Paα} = {Faα · B}+ Sa∥,α, (2.16)

for each species a with α = 1, 2, 3 and follow from the kinetic equation by taking the odd
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velocity moments {
∫
d3v maB · vL3/2

α−1(x
2
a) · · · }. Here Paα is the viscosity tensor and Faα the

friction force. The curly brackets {· · · } denote the flux surface average and the Laguerre poly-
nomials L3/2

α−1(x
2
a) are,

L
3/2
0 (x2a) = 1, (2.17)

L
3/2
1 (x2a) =

5

2
− x2a, (2.18)

L
3/2
2 (x2a) =

35

8
− 7

2
x2a +

1

4
x4a, (2.19)

with xa = v/vth,a and vth,a being the thermal velocity of species a. The three moments corre-
spond to the force balance, the heat flux balance and a higher order term, which has no direct
physical interpretation but can strongly influence the lower order quantities. The source terms
Sa∥,α = SaE∥,α + Savnl∥,α include an external electric field E and the turbulent terms given by
the right hand side of Eq. (2.14). The turbulent source terms are

Savnl∥,α =

{∫
d3v maB · vL3/2

α−1(x
2
a)

∂

∂v∥

〈dṽ∥
dt f̃

〉
t

}

= −
〈{∫

d3v maB
∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
) dṽ∥

dt f̃
}〉

t

, (2.20)

where partial integration in the parallel velocity is used for the last step and dṽ∥/dt is given by
Eq. (2.13). The terms, having different underlying physical mechanisms, are split in three parts
SaT ,α, with T = A,B, C. They are connected to the parallel electrostatic field perturbations
(A), the curvature (B) and the Coriolis force (C) and are given by

SaT ,α = −
〈{∫

d3v ∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
)
T f̃a

}〉
t

(2.21)

with

A = ZeBb · ∇⟨ϕ̃⟩, (2.22)

B =
mav∥

B
b×∇B · ∇⟨ϕ̃⟩, (2.23)

C = 2maΩ⊥ · ∇⟨ϕ̃⟩. (2.24)

For the normalisation and implementation in gkw see Appendix B.

There is a crucial symmetry argument to be made here, closely following the discussion of
momentum transport in Refs. [84–86]. In the model employed here and without background
rotation or rotation gradient, the nonlinear gyrokinetic equation is invariant under the set of
transformations

v∥ → −v∥, s→ −s, ψ → −ψ, f → −f, ϕ→ −ϕ, (2.25)
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where s is the field-aligned coordinate and ψ the radial coordinate. Furthermore, it can be
shown that the source terms SA and SB change sign under the transformation while SC , which
is zero without plasma rotation, is invariant. This allows for equivalent solutions of the gyroki-
netic equation, which appear with equal probability but have the opposite sign in SA and SB.
Consequently, the time average of the turbulent state will yield a zero net contribution. How-
ever, this argument is no longer valid if the symmetry is broken by a non-zero background
rotation or rotation gradient. If the symmetry breaking is small the effect will be linear in
the responsible quantity. Note that SC is also linear in the background rotation. The linear
dependence on the background rotation can be verified in Fig. 2.1. Similarly, a small gradient
in the rotation profile provides a linear scaling for A and B. It is important to note, that the
neoclassical description used here does not include rotational effects, whilst the turbulence
simulations have a rotating background. This approximation, however, only leads to a small
error in the limit of slow rotation, as the corrections to particle and heat fluxes are of the order
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Figure 2.1. The time averaged source terms SA,B,C for ions and electrons as a function of the angular
frequency for a kinetic Cyclone Base Case simulation. Each order α is normalised to its
respective value at Ω = 0.1.
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(RΩ/vth)
2 [15, 87]. Another important observation is that the direction of the force depends

on the direction of the toroidal rotation. The current driven by SA and SB is always opposite
to the rotation. The situation is more complicated for SC , which also depends on the orienta-
tion of B. However, the current driven by Sel

A is the most important contribution making the
effect relevant for both directions of the magnetic field. Furthermore the orientation of the
background current appears to have no significant effect on all terms considered.

2.2. Estimate of the effect of turbulence on the neoclassical
solution

Before working out the effects of the turbulence forces on the neoclassical solution, the phys-
ical interpretation of the forcing terms is discussed.
The contribution fromA can be interpreted as the interplay of density (or temperature) and po-
tential perturbations and has already been studied for a global electromagnetic case in Ref. [79].
Density and potential are largely linked by the quasi-neutrality condition and the term can nat-
urally be assumed small. It was found to be negligible with a current increase of about one
percent. However there are two major differences to the approach taken here. Firstly, no
plasma rotation was considered in Ref. [79]. Then the symmetry of Eq. (2.21) is not broken
and in the formalism outlined above one would obtain a zero current contribution. Conse-
quently, the current described in this chapter is caused by a different mechanism compared
with Ref. [79], with the latter being related to the electromagnetic response or profile effects
rather than the symmetry breaking. Secondly, higher order terms, especially the heat flux
balance, which also exerts a force, were not considered. The dominant drive of the itg is the
temperature gradient. One may expect that the contribution of the heat flux forces is larger
than that of the term studied by Ref. [79].
To better identify the physical origin of the source terms, the first velocity moment, which
is the force the turbulence transfers to the background, is investigated in the fluid picture.
In the following a tilde denotes a perturbed quantity, which is, compared to the background,
one order smaller in ρ∗ = ρi/R, i.e. the ion Larmor radius over the major radius. Ignoring
the dependence of the quantities on the position inside the flux surface and neglecting the µ
dependence of the gyroaverage, it is possible to express the terms with fluid quantities:

SaA,1 ∼ −ZeBb · ∇⟨ϕ̃⟩
∫

d3v f̃a = −ZeBñab · ∇⟨ϕ̃⟩, (2.26)

SaB,1 ∼ −ma

B
b×∇B · ∇⟨ϕ̃⟩

∫
d3v v∥f̃a ≈ −ma

B
n0ũ∥ab×∇B · ∇⟨ϕ̃⟩, (2.27)

SaC,1 ∼ −2maΩ⊥ · ∇⟨ϕ̃⟩
∫

d3v f̃a = −2mñaΩ⊥ · ∇⟨ϕ̃⟩, (2.28)

where
∫
d3v v∥f̃ = ñu∥ ∼ (n0 + ñ)(u∥0 + ũ∥)− n0u∥0 ≈ n0ũ∥ is interpreted as a first order

perturbation of background density and perturbed fluid velocity ũ. It is possible to identify
the terms above with their counterparts in the fluid equation. For this purpose the first order
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2. Turbulence driven stationary electric currents in a tokamak

perturbed fluid velocity ũ can be expressed as,

n0ũ =

∫
d3v

(
v∥b+ vD + vE

)
(FM + f̃) = n0ũ∥b+

2n0T0
ZeB

b×∇B
B

+ n0
b×∇ϕ̃
B

, (2.29)

assuming that the background is a Maxwellian FM and f = FM + f̃ . Note that∫
d3v

mv2∥

2
FM =

1

2
n0T0 and

∫
d3v

mv2⊥
2

FM = n0T0. (2.30)

The fluid equation in the co-moving frame neglecting centrifugal forces, which is consistent
with the treatment of the drifts in Eq. (2.12), is

mn

[
∂u

∂t
+ (u · ∇)u

]
= −2mnΩ× u+ Zen [E+ u× B]−∇p−∇ ·Π. (2.31)

The first term on the right hand side is the Coriolis force. The force due to the turbulent
fluctuations is

FC = −⟨2mñΩ× ũ⟩t. (2.32)

Using Eq. 2.29 and taking the inner product with B and averaging over the flux surface yields

⟨{B · FC}⟩t = −
〈{

2mñ

(
Ω⊥ · ∇ϕ̃+

2T0
ZeB

Ω⊥ · ∇B
)}〉

t

= –
〈{∫

d3v 2mΩ⊥ · ∇ϕ̃f
}〉

t

+

〈{
2mñ

2T0
ZeB

(
ϵ

q
Ω cos θ

)(
ϵ

q
sin θ|∇B|

)}〉
t

≈ SC,1.

(2.33)

Here the approximation Bp/B = ϵ/q ≪ 1 is used, where q is the safety factor and ϵ the
inverse aspect ratio. The last step requires that the magnitude of the gradient of B is nearly
constant on the flux surface and that ñ is only weakly up-down asymmetric. This shows that
C is an inertial term, which is directly linked to the fluid equation. Note that A can also be
obtained from the fluid equation if E = −∇ϕ̃ is used in ZenE. The curvature term B is not
directly linked to the inertiamn(u · ∇)u of the fluid equations. Rather, it is expected to enter
through the viscous term.
In the remainder of this section a rough estimate of the magnitude of the source terms is given
by using standard gyrokinetic ordering: ñ ∼ ρ∗n0, ũ∥a ∼ ρ∗vth,a, ϕ̃ ∼ ρ∗T/e,∇B ∼ B/R
andΩ⊥ ∼ vth,i/R. The value of the magnetic fieldB is taken to be the same as on the magnetic
axis and vth,a =

√
2T/ma is the thermal velocity of species a. Furthermore the mass ratio

mRa = ma/m is introduced, where m is the deuterium mass. The parallel length scale is of
the order of the major radius R, while the perpendicular length scale is of the order of the ion
gyro radius ρi = mvth,i/(eB). Using the above ordering in the Eqs. (2.26-2.28) yields

SaA,1 ∼ ZB
n0T

R
ρ2∗, (2.34)
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SaB,1 ∼
√
mRaB

n0T

R
ρ2∗, (2.35)

SaC,1 ∼ mRaB
n0T

R
ρ2∗. (2.36)

All terms are force densities multiplied with the magnetic field strength B and are of second
order in ρ∗. Note that the mass ratio appears only in the last two terms, likely making them
small when considering electrons sincemRe ≈ 1/3600. However, the electrons have a larger
contribution to the current due to their low mass. Thus, especially the first term can yield a
significant contribution when also considering the electron dynamics of the turbulence. In the
following considerations the force exerted on the background is assumed to be ρ2∗n0T/R.

The ordering described above allows to predict the impact on neoclassical transport, as well as
the current driven in a tokamak. A toroidal force Ft, like the one generated by the turbulent
source terms, is balanced in the steady-state, usually either by a radial flux or, if applicable,
electron-ion friction. Note that in the strict sense the forces introduced are parallel to the field
but Bt ≈ B is a good approximation. Using the Lorentz force F = Zenv × B yields Ft =
ZenvrBp, where vr is the radial velocity and Bp the poloidal magnetic field. Consequently,
the radial velocity vvnlr driven by the turbulent source terms is

vvnlr =
Ft

ZenBp
∼ nT

enBpR
ρ2∗ =

ρiB

RBp
ρ2∗ ≈

q

ϵ
vthρ

3
∗. (2.37)

The radial heat flux Q being mostly carried by the ions is the most important aspect of trans-
port in terms of plasma confinement and can be written in diffusive form asQ = nχ∇T , with
thermal diffusivity χ. This flux also corresponds to a radial flow nvrT , which can be com-
pared to the radial velocity vvnlr . The flow driven by the temperature gradient is vr = χ/LT ,
where 1/LT = ∇T/T is the temperature gradient length scale. Taking the banana-plateau
ion thermal diffusivity χ ∼ q2ϵ−3/2νiρ

2 [3] as an approximation for the neoclassical transport
yields

vvnlr /vneor =

√
ϵ

q
ρ∗
vth
Rνi

1

R/LT
, (2.38)

where νi is the ion collision frequency. While ρ∗ is a small parameter, the normalised colli-
sionality Rνi/vth in high temperature plasmas is small as well, and thus the ratio vvnlr /vneor is
not necessarily small under all conditions.

Lastly, the plasma current modifies the magnetic field configuration and more importantly in
tokamaks limits the operation time, as it is mainly induced by a central solenoid. The externally
driven current Jext can be expressed through the poloidal field, using Ampere’s law, as Jext =
2Bp/(µ0r). The parallel force also drives a current J∥ = ene(u∥,i−u∥,e), where the subscript i
(e) denotes ion (electron) quantities. Here it is assumed that only the electrons are significantly
accelerated, while the ions remain quasi-stationary due to their large mass. In a steady state
the friction caused by electron-ion-collisions balances this parallel force:

F∥ −meneνei(u∥,i − u∥,e) = 0 (2.39)
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2. Turbulence driven stationary electric currents in a tokamak

J∥ =
eF∥

meνei
(2.40)

This simple model allows us to estimate the magnitude of the effect on neoclassical transport
and current in the plasma. In Table 2.1 cyclone base case parameters as well as device proper-
ties for asdex Upgrade (aug) or iter are employed to give the corresponding estimates.

Table 2.1. Estimation of the generated current J∥ and modified transport due to the turbulent forcing
terms. Cyclone base case parameters, as well as device properties for aug and iter are used.

aug iter
q 1.4 1.4
ϵ 0.19 0.19
R/LT 6.9 6.9
n/1019m−3 5 10
T/keV 1.5 8.0
B/T 2.5 5.3
R/m 1.65 6.2
νi/s

−1 200 32
νei/10

3s−1 34.1 5.5

J∥/Jext 0.08 0.21
vvnlr /vneor 0.10 0.11

Even though there is a ten percent change in the radial neoclassical transport, it is usually
negligible compared to the turbulent transport. However, the change in current that is in the
ten percent range of experimental accuracy, is significant, especially for the iter scenario.
Generating intrinsic current can be of great use for tokamak operation, as it allows for longer
pulse length or potentially even steady state operation.

2.3. Numerical results

The current driven by the turbulent source terms is determined by first running a nonlinear
simulation with the nonlinear gyrokinetic turbulence code gkw [65]. There the force, heat
and higher order moments of the velocity nonlinearity are calculated and time averaged. The
averages are added as source terms in the neoclassical equilibrium solver neoart, which solves
the flux surface averaged balance equations (2.16). The method of neoart is nearly identical
to the code nclass, for more details see Refs. [15, 88]. The current calculated with neoart can
then be compared with and without source terms, with the latter representing the bootstrap
current. The parameters are compliant to the Cyclone Base Case (cbc), but with a moderate
plasma rotationΩN = RrefΩ/vthref = 0.1. This plasma rotation is neglected in the neoclassical
description of the system. However, the modification to the particle and heat fluxes is only of
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2.3. Numerical results

the order (ΩN )2 and thus negligible [87]. A deuterium-electron plasma is simulated, assuming
a circular flux surface with safety factor q = 1.4, inverse aspect ratio ϵ = 0.19 and magnetic
shear ŝ = 0.78. The gradient length scales are R/LTi = R/LTe = 6.9 for ion and electron
temperature respectively and R/Lni = R/Lne = 2.2 for the density. The gkw simulations
are nonlinear and electrostatic with kinetic electrons, using 83 radial and 21 toroidal modes,
with a maximum poloidal wave vector kθρ = 1.4. The grid sizes are Ns = 16 along the field
line and Nv∥ = 64, Nµ = 9 for the velocity space. The device parameters used in neoart are
given in Table 2.2.

Table 2.2. Device parameters used in simulations.

Parameters diiid aug iter
n/1019m−3 1.9 5 10
T/keV 0.77 1.5 8.0
B/T 1.57 2.5 5.3
R/m 1.65 1.65 6.2

Without an external electric field and the turbulent drive neoart calculates the banana plateau
bootstrap current Jbs, as shown in Fig. 2.2 for different temperature gradients. It is found to
be in good agreement, with the analytic approximation in Ref. [89].
Note that the turbulent source terms are strongly fluctuating and require long averaging times,
making the simulations computationally expensive. The statistical error can be estimated by
taking the most important contribution Sel

A,2 and determining the error of the mean using a
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Figure 2.2. Benchmark of Bootstrap current calculated by neoart compared to analytical approxima-
tion as a function of temperature gradient for aug and iter device parameters.
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five part average. Varying the input value for neoart according to the error range yields a rel-
ative error of less than 10% for the current driven by turbulence in the kinetic cbc simulation,
leading to reasonably accurate results. The magnitude of the different contributions and re-
spective orders in the velocity are shown in Fig. 2.3 as well as a comparison between different
devices. The turbulence driven current is of the same magnitude as the bootstrap current and
most current is driven by the parallel fluctuations of density/temperature and potential. The
device size only weakly affects the result as the changed properties largely balance each other.
The turbulent forcing (∼ ρ2∗nT/R) is smaller for larger reactors but the electron-ion collision
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Figure 2.3. The ratio of turbulence driven current Jturb to the bootstrap current Jbs. The contribution of
each order α in the velocity moment as well as the total is shown for each individual term.
(a) Kinetic cyclone base case with iter parameters. (b) Comparison for different devices.
(c) Only electron source terms and (d) only ion source terms for iter parameters.
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frequency is reduced as well and compensates the change. Furthermore, the current drive as-
sociated with the heat flux balance is the most important contribution. This can be expected,
as the source terms are calculated in itg turbulence where heat flow is the dominant transport
channel. The force exerted by the heat flux balance scales with the heat flow, and thus also
the temperature gradient, which will be shown later on. The bottom panel of Fig. 2.3 shows
electron and ion drive separately, showing that the electron contribution fromA is dominant,
which agrees with the mass scaling in Eqs. (2.34 - 2.36). The ion terms drive less than 20% of
the current, which is almost exclusively due to their high contribution to the heat flux.
Fig. 2.4 shows the current driven in dependence of the temperature and density gradient for
runs with iter and cbc parameters. As expected the current increases with the temperature
gradient as the turbulent transport and especially the heat flux is increasing. The dependence
on the density gradient is non-monotonic. The physical reason for this is at present unclear.
While the importance of the heat flux shows the necessity to consider the higher orders of the
parallel balance equations, the current driven in a realistic scenario is much lower since the
heat flux in nonlinear gyrokinetic turbulence simulations with cbc parameters is much larger
than the experimental relevant heat flux levels. The current driven scales linearly with the
heat flux as can be seen in Fig. 2.5, where an estimate for the heat flux in iter is represented
by the vertical black line which is estimated by

Q =
0.2Pfusion
(2πR)2

ϵ

ϵ2core
≈ 0.2

MW
m2

, (2.41)

considering that only 20% of the fusion power (Pfusion = 500 MW) is stored in the α par-
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Figure 2.4. Bootstrap current (dashed lines) and current with turbulent drive (solid lines) as a function
of R/LT (crosses) with fixed R/Ln = 2.2 and as a function of R/Ln (squares) with fixed
R/LT = 7.0. The other parameters used are those of the kinetic cyclone base case and the
iter case.
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Figure 2.5. Current driven by itg turbulence as a function of heat flux, using the temperature gradient
scan shown in Fig. 2.4. The dashed dark green line is a linear fit of the data and the vertical
black line shows an estimation of the expected heat flux in an iter scenario.

ticles and assuming that the power is uniformly generated in the core region with radius
r = ϵcoreR = 0.25R. This leads to a realistic current, which is one order of magnitude smaller
than in the cyclone base case. However, ten percent of the bootstrap current is still significant
for high intrinsic current scenarios.

For practical purposes it is more interesting to compare the current generated to the total
current required for present tokamak operation, i.e. including an external field E. The loop
voltageU = ER in neoart is chosen such that the current obtained corresponds to the current
required for the poloidal magnetic field, Jext + Jbs = 2Bp/(µ0r) ≈ 2qB/(µ0R). Adding the
turbulent source terms gets the actual increase in total current, shown in Table 2.3 for the
kinetic cyclone base case which is found to be in good agreement with the estimate in Section
2.2. Table 2.3 also shows the impact of a rotation gradient, which provides a strong symmetry
breaking mechanism further increasing the turbulent current.

Scaling down the values given in Table 2.3 to realistic heat flux levels, an intrinsic current
driven by turbulence of 0.03 MA/m2 might be achieved for an iter scenario, which still
amounts to a few percent additional current. Higher values can be achieved for operational
scenarios with high rotation since the drive is nearly linear inΩ and the simulations described
in this chapter use a relatively low rotation of Ω = 0.1. Alternatively, a rotation gradient
provides a strong symmetry breaking, further increasing the current driven by turbulence.
For a still realistic value of u′ = −1 the turbulent current is nearly tripled, thus allowing up
to ten percent additional current generated by the turbulence.
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Table 2.3. Loop voltage U and current J in MA/m2 for aug or iter using kinetic cyclone base case
parameters with RrefΩ/vthref = 0.1. A rotation gradient u′ = −R2

ref∇Ω/vthref significantly
increases Jturb. However, the turbulent current and thus also the relative current increase
for a realistic heat flux is one order of magnitude smaller.

Device aug iter
U/V 0.1 0.017
Jbs 0.16 0.21
Jbs + Jext 1.71 1.0
Jturb + Jbs + Jext u′ = 0 1.91 1.27

u′ = −1 2.28 1.79
relative increase u′ = 0 12% 27%

u′ = −1 33% 79%

2.4. Conclusions

The parallel velocity nonlinearity in the gyrokinetic equation couples with the neoclassical
background and can drive a substantial current, provided the symmetry along the magnetic
field is broken, for example due to background rotation. The current driven is mostly linear
in the turbulent heat flux and even when scaling down to realistic values an increase of a few
percent of total current can be expected in an iter scenario. As an upper limit for scenarios
with strong rotation or strong rotation gradient up to ten percent increased total current can
be achieved. However, the model used only aims to identify the effect and establish the or-
der of magnitude. Corrections can be expected from other symmetry breaking mechanisms
like the stationary E×B flow associated with the rotation gradient, or the coupling with the
neoclassical background, as described in Ref. [73]. Furthermore it is interesting to include the
mechanism from Ref. [79], which is related to the electromagnetic response or profile effects,
which are not treated here. For a proper quantitative prediction as the next possible step all
these effects have to be included to study if they partly cancel each other or possibly further
increase the current driven.
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3. Scaling of intrinsic rotation with
neoclassical flow

Intrinsic rotation, i.e. plasma rotation without an external momentum source, has been ob-
served in multiple tokamak experiments [90] and is particularly important in reactor plasmas
where the external torque will be comparatively small. Significant toroidal flow gradients can,
by means of flow shearing, stabilise plasma turbulence and thus improve confinement [37, 39,
40, 91]. As turbulence drives the majority of heat and particle transport in magnetic fusion
devices, understanding the generation and transport of toroidal rotation has received consid-
erable interest [85, 92].
It is conventionally assumed, that the neoclassical and turbulent description of a plasma can
be treated separately. This is in many cases a reasonable approximation because of the strong
separation in length and time scales, with the neoclassical solution having length scales of
the order of the plasma size and a timescale determined by the collision frequency, while the
turbulent dynamics have length scales of the order of the gyroradius and evolve on the ion
transit time. Turbulent transport is the dominant loss channel for thermal energy in tokamak
plasmas, while several other aspects like current and resistivity are governed by neoclassi-
cal effects. A popular example is the intrinsic current called the bootstrap current driven by
pressure gradients [11–13].
Recently the impact of the neoclassical modifications to the background distribution function,
used in turbulent transport calculations, has been the object of a number of studies showing
the relevance for the generation of intrinsic rotation [69–75]. Neoclassical effects are a possible
drive of intrinsic rotation and the underlying physical mechanisms, the breaking of the parity
symmetry [85, 93], is connected to the neoclassical toroidal particle and heat flow [71].
This chapter aims to provide insight in two different ways: firstly, by showing a large scale
parameter analysis of the momentum transport driven by the neoclassical modifications to the
background and exploring simple scalingmodels; secondly, a rough estimate of the equilibrium
rotation gradient depending solely on the neoclassical first order flow is given.
The chapter is structured as follows. In Section 3.1 the implementation and numerical setup is
explained in more detail. Section 3.2 shows simulation results and discusses the scaling of the
momentum transport.

3.1. Numerical setup

The simulation process is split into two steps. First the neoclassical background is calculated
by the neoclassical equilibrium solver neo [94], which solves the drift kinetic equation. The
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neoclassical modifications to the Maxwellian background distribution are then used in the
gyrokinetic flux tube code gkw [65]. The reader is referred to Ref. [73] for details on the
coupling of the codes and the modifications to the turbulence evolution due to the neoclassical
background. Like in Ref. [73] the neoclassical modifications to the background are assumed
constant because the time scale of neoclassical flows is significantly longer than the time scale
of turbulence. Furthermore their cross–coupling is not considered, i.e. the influence of the
turbulence on the neoclassical background is neglected.

In the following all quantities are normalised, unless explicitly stated otherwise. The full set
of equations solved and the normalisations can be found in Refs. [65, 73]. The basic parameter
set used is that of the Cyclone Base Case (cbc): Circular flux surfaces, safety factor q = 1.4,
magnetic shear ŝ = 0.8, inverse aspect ratio ϵ = 0.18 (of the r/a = 0.5 flux surface). Ion
and electron temperatures and densities are equal, Ti = Te and ni = ne. The logarithmic
gradients are R/Ln = R∂ lnn/∂r = 2.2 for the density and R/LTi = R/LTe = 6.9 for
the ion and electron temperature. The grid resolution for simulations performed with neo
is, NE = 10, Nζ = 19, NΘ = 41 for the energy, angular polynomials and in the poloidal
direction respectively. In gkw the grid sizes are Ns = 30 points along the field, Nv∥ = 64
(96 for ϵ = 0.05) and Nµ = 16 grid points for the parallel velocity and magnetic moment
respectively. For the radial resolution Nx = 21 modes are used. The local flux tube model is
used [64], which is periodic in both the radial and binormal directions and shear-periodic in
the parallel direction. The simulations are linear with kinetic electrons.

While the basic case is the Cyclone Base Case, the turbulent momentum flux driven by the
neoclassical background is investigated for a large parameter space, listed in Table 3.1. Where
αx are the normalised second derivatives of the ion (electron) temperatureTi (Te) or the density
n at the flux surface, e.g. αTi = 1/(R/LTi)

2R2∂2Ti/∂r
2. This second derivative significantly

influences the gradient of the first order parallel flow. As multiple parameters are changed
simultaneously they were grouped in three arbitrary groups to keep the number of simulations
achievable. Simulations are performed for all combinations of a group, e.g. “geometry”, for
different ion-ion collision frequencies νii while the remaining parameters are set to the cbc
value.

Assuming that the symmetry breaking caused by the first order neoclassical flow and its gra-
dient are the dominant drive of the intrinsic rotation, it is possible to develop a simple scaling
model. Following Ref. [85] the flux of toroidal momentum Π, normalised by the heat flux Q,
can be written like,

Π/Q = χφEu
′
∥E + χφNu

′
∥N + VφEu∥E + VφNu∥N +Πother, (3.1)

with the addition of distinguishing the neoclassical part (subscriptN ) and the part connected
with the radial electric field (subscript E). Thus, the parallel flow velocity u∥ = u∥E + u∥N
and its gradient u′∥ = u′∥E +u′∥N as well as the corresponding momentum diffusivities χφ and
momentum pinch coefficients Vφ treat the neoclassical and electric field part separately. All
other contributions to the momentum transport, e.g. due to the heat flux or the background
potential, are contained in Πother.
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Table 3.1. The parameter space covered in the simulations. The reference quantities vthref for the ther-
mal velocity and Rref for the major radius are used for the normalisation of the ion-ion
collision frequency νii and αx are the normalised second derivatives of the temperature or
density.

Parameter Values “classification”
νii/(10

−2/vthref/Rref) 0.2, 2, 20
ϵ 0.05, 0.18, 0.30 geometry
q 1.4, 2.2, 3.0 geometry
ŝ 0.2, 0.8, 1.5 geometry
R/LTi 4.0, 6.9, 9.0 gradients
R/LTe 4.0, 6.9, 9.0 gradients
R/Ln 0.0, 2.2, 4.0 gradients
αTi 0.0, 1.0, 2.0 profile
αTe 0.0, 1.0, 2.0 profile
αn 0.0, 1.0, 2.0 profile

3.2. Results

The first set of simulations uses the full neoclassical background distribution calculated by
neo. Without bulk rotation (or rotation gradient) connected with the electric field, Eq. 3.1 is
then reduced to

Π/Q = χφNu
′
∥N + VφNu∥N +Πother. (3.2)

Fig. 3.1 shows the flux ratios driven by the neoclassical background as a function of the neo-
classical flow and flow gradient according to Eq. (3.2). Each point is a parameter tuple of the
indicated group in Table 3.1. There is a significant amount of scatter in the data, especially for
points with different aspect ratio or magnetic shear. Using a reduced parameter set without
these parameters significantly changes the fit values of the coefficients. Not all aspects of the
momentum transport generation can be covered by the scaling law which only uses the quan-
tities directly responsible for the symmetry breaking. However, the data does follow a trend
and the scaling can be used for a rough approximation. Note that in spite of χφ being one
order of magnitude smaller the flow gradient still is the most significant contribution, as there
is much more variation compared to the flow (standard deviation of 0.50 to 0.05).
The second set of simulations does not use the neoclassical background but sets the back-
ground rotation and its gradient to match the neoclassical flows. Fig. 3.2 again shows the flux
ratios and a similar linear dependence with significant outliers as found for the full neoclassical
simulations is found.
For the second simulation set, Eq. 3.1 reduces to

Π/Q = χφEu
′
∥E + VφEu∥E +Πother. (3.3)

57



3. Scaling of intrinsic rotation with neoclassical flow

Assuming that the contributions from flow and flow gradient are linearly independent, two
simulations are run for each data point in this set: one where the corresponding neoclassical
flow (from the first simulation set) is input as a background rotation and one using the same
procedure for the flow gradient. This method makes all coefficients in Eq. 3.1 accessible by
fitting the data.

Combining both simulation sets, it is possible to predict the equilibrium rotation gradient
driven by the neoclassical background modifications. If there is no external momentum ap-
plied, the momentum flux has to go to zero, i.e. a rotation gradient u′∥eq has to balance the
flux generated by the neoclassical first order flow. Assuming that the momentum diffusivities
are similar for the neoclassical and the electric field part, i.e. χφ = χφE ≈ χφN , which is
justifiable as can be seen in Fig. 3.2, it is possible to predict the equilibrium gradient driven by
the neoclassical flow using Eq. 3.1.
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Figure 3.1. The ratio of the radial momentum flux (Πi) to the radial heat flux (Qi), for simulations with
the full neoclassical background, as a function of the neoclassical first order flow u∥N and
its gradient u′∥N . Themomentum diffusivityχφN and themomentum pinch coefficient VφN

are determined by a least square fit, assuming the model in Eq. (3.2). (a) Every point is a
different parameter combination of the indicated group (see Table 3.1). (b) Reduced set of
geometry parameters, where ϵ = 0.18 and ŝ = 0.8 are not varied.
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3.2. Results

0 = χφ

(
u′∥E + u′∥N

)
︸ ︷︷ ︸

u′∥eq

+VφEu∥E + VφNu∥N +Πother (3.4)

u′∥eq = − 1

χφ

(
VφNu∥N − VφEu∥E −Πother

)
(3.5)

While the VφEu∥E contribution does not drive a momentum flux in most cases (see Fig. 3.3),
the Coriolis pinch will still lead to a peaking of the toroidal velocity profile and thus modify the
rotation profile [6]. However, without knowledge of the plasma edge in the local model used
in this work the absolute magnitude of the Coriolis pinch is not accessible and is neglected in
the following as the focus is on the effect of the neoclassical modifications to the background
distribution. For a standard case with u∥N ≈ 0.1 and the coefficients from Fig. 3.1 this leads
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Figure 3.2. The ratio of the radial momentum flux (Πi) to the radial heat flux (Qi), for simulations
without the neoclassical background, as a function of background rotation and rotation
gradient. The input rotation and gradient are set to match the flow that would be driven
by the neoclassical background. (a) The momentum diffusivity χφE and the momentum
pinch coefficient VφE are determined by a least square fit, assuming the model in Eq. (3.3).
(b) χφE is fixed to the value of χφN for the fit, showing the validity of the assumption of
equal momentum diffusivity made for Eq. (3.5). The fit is qualitatively unchanged and the
sum of squared residuals is virtually the same.
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3. Scaling of intrinsic rotation with neoclassical flow
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Figure 3.3. The ratio of radial momentum flux (Πi) to the radial heat flux (Qi) against the background
rotation. The input rotation is set to match the flow that would be driven by the neoclassical
background. In most cases no momentum flux is driven by the toroidal flow.

to
u′∥eq ≈

VφN
χφ

u∥N ∼ 0.5, (3.6)

which is a sizeable contribution to the rotation gradient, which usually is of the order of one.
However, with the significant amount of scatter in the data this rather serves as a magnitude
prediction rather than a detailed scaling law. Nevertheless the quality of the prediction for low
collisionality and regular magnetic shear and aspect ratio is significantly improved.
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4. Damping of zonal modes through
turbulent momentum transport

Zonal flows are latitude parallel, toroidally symmetric shear flows. They are observed in nature
as well as in the laboratory. Popular examples are atmospheric phenomena like jet streams or
the distinct belt structure of Jupiter. Zonal flows exhibit a self-regulating character as they
work to reduce their drive, in the above example a temperature or pressure difference in the
atmosphere. In laboratory fusion plasma experiments, turbulence drives a zonal flow through
nonlinear coupling. The zonal flow in turn reduces the turbulence through eddy shear stabili-
sation [20]. Zonal flows lead to a nonlinear upshift of the temperature gradient threshold for
turbulence generation, known as the Dimits shift [18]. Recent investigations [19, 21, 43] have
shown that this upshift can be further enhanced through the formation of staircase structures
[24, 41, 42]. The nonlinear upshift is beneficial for energy confinement since the turbulent
transport sets in at higher temperature gradients when compared with linear stability predic-
tions and, consequently, has been studied extensively.
The drift wave-zonal flow system is often described through a predator-prey model [20]. In
this model the zonal flow is driven by the turbulence through the modulation instability [27,
95], and regulates the turbulence through E×B shearing [39, 40, 91]. The magnitude of the
obtained turbulence reduction through E×B shearing depends critically on the saturation of
the zonal flows, for which two mechanisms have been identified: collisional damping [21, 32]
and Kelvin Helmholtz tertiary instabilities [33].
In this chapter a newmechanism, the damping of the zonal flow through turbulent momentum
transport, is introduced, and shown to be relevant for the description of sufficiently long lived
zonal flow structures. The basic idea is relatively simple. In tokamak plasmas the poloidal
plasma rotation connected with the radial electric field of the zonal flow is not divergence
free due to the inhomogeneity of the magnetic field. An initial perturbation in the zonal ion
density then excites a geo-acoustic mode (gam), that undergoes collisionless damping on the
ion transit time, resulting in a final state that has a residual zonal flow [96]. The latter residual
flow is the combination of the E×B velocity due to the radial electric field, and a parallel
flow that removes the compression. Whether this final state is relevant for all zonal flows in
the turbulent state is questionable, since it needs several transit times to develop and might
therefore not be relevant for rapidly fluctuating zonal flows. Large wavelength zonal flows,
however, are observed to be long lived, and can be expected to be well described by the residual
zonal flow solution. This is particularly true for the staircase zonal flow structures that can live
for many hundreds or thousands of transit times. For the residual zonal flow solution, also the
evolution of the parallel flow needs to be considered, and this flow is affected by the turbulence
through parallel momentum transport. It has been shown that a parallel dissipation can damp
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4. Damping of zonal modes through turbulent momentum transport

the zonal flow relatively effectively [19], and it can be expected that the turbulent transport of
parallel momentum will have a similar effect. Therefore, in a turbulent state the zonal flow is
not merely driven by the Reynolds stress connected with the fluctuating perpendicular E×B
velocity, it will also be damped by the stress connected with the fluctuations in the parallel
velocity. This is different from the predator-prey model, in which the saturation mechanism
of the zonal flow is independent of the turbulent dynamics.
The remainder of this chapter is structured as follows. In Section 4.1 some back of the envelope
estimates of the magnitude of the effect are made. Section 4.2 then shows the effect by per-
forming the Rosenbluth-Hinton test with the effect of the turbulence modelled by a diffusion
of parallel momentum. Section 4.3 assesses the relevance for the turbulent state by eliminating
the nonlinear convection of parallel momentum while maintaining the turbulent transport of
density and temperature. Finally, conclusions are formulated in Section 4.4.

4.1. Reduced model

Below a qualitative description of the residual zonal flow state is given, after which the zonal
flow damping rate due to the parallel momentum transport is estimated and compared with the
growth rate due to the modulation instability. The focus is on the long term quasi-stationary
state, and the gam oscillation will not be considered.
Assume a zonal ion density perturbation is excited through the interaction of turbulent modes.
The electrons can not retain quasi-neutrality through their motion along the magnetic field
and, consequently, a large radial electric field quickly builds up until the ion polarisation den-
sity balances the initial ion density perturbation. The radial electric field (Er(0)), however, also
modifies the orbits of the particles. In particular, trapped particles can not be rotated in the
poloidal direction by the radial electric field. They must rotate toroidally with a velocity

vtr =
Er
Bp

, (4.1)

where Bp is the poloidal magnetic field, to satisfy the force balance. The velocity above is
connectedwith a shift of the trapped particle domain in velocity space, with the domain centred
around vtr (Centrifugal effects will furthermore widen the trapping domain [66, 67], but will be
neglected here). The shift in the trapped particle domain transforms some trapped particles to
passing, while some originally passing particles will become trapped. This generates a rather
complicated distribution function where the flow of trapped particles is partly balanced by a
back flow in the passing domain carried by barely passing particles [97].
The modification in the distribution function due to the initial radial electric field (E0

r ) occurs
on the time-scale of the bounce time and, due to the finite radial extend of the trapped particle
orbits, the process is connected with a radial current, that will modify the radial electric field.
The residual electric field (E∞

r ) that remains has been calculated by Rosenbluth andHinton [96]

E∞
r =

1

1 + 1.6q2/
√
ϵ
E0
r . (4.2)
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4.1. Reduced model

Important for the mechanism discussed in this chapter is that the final state has a finite par-
allel flow. This can be directly understood from the conservation of angular momentum. The
original radial electric field E0

r , corresponds to a toroidal angular momentum connected with
the toroidal component of the E×B velocity

L0 = ni
RE0

rBp
B2

≈ ni
ϵ

q

RE0
r

B
, (4.3)

where Bp/B ≈ ϵ/q was used. Assuming the final state has a parallel flow

L∞ = ni
RBt
B

u∥ + ni
ϵ

q

RE∞
r

B
, (4.4)

using the conservation of angular momentum, Bt ≈ B, and substituting the result of Rosen-
bluth and Hinton, one obtains

niu∥ = 1.6q
√
ϵni

E∞
r

B
. (4.5)

The toroidal component of this parallel flow is much larger than the toroidal component of the
E×B flow (niE∞

r Bp/B
2 ≈ niϵE

∞
r /(qB), but smaller by a factor ϵ compared with the flow in

the trapped particle population
nu∥|tr =

q√
ϵ
ni
E∞
r

B
, (4.6)

where the density of trapped particles is approximated by ntr =
√
ϵni. This shows that most

of the trapped particle flow is indeed compensated by a back flow of passing particles.
The Reynolds stress, that drives the zonal flow, does not modify the total angular momentum.
Rather, angular momentum is radially transported, generating a local angular momentum per-
turbation that integrates to zero when the whole radial domain is considered. If the zonal flow
is sufficiently long lived, the quasi-stationary state is described by the residual solution, and
the electric field is accompanied by a stationary parallel flow, with the latter generating the
dominant contribution to the toroidal angular momentum. In a turbulent state toroidal angular
momentum is transported radially

∂L(r)

∂t
+∇ · [χϕ∇L] = 0, (4.7)

where χϕ is the transport coefficient. We neglect contributions from the pinch term as well as
residual stresses and consider only diffusive transport in the model, since it is the dominant
transport channel for small length scale systems. In the following it is assumed that the dif-
fusion coefficient can be well approximated by the diffusion coefficient that is calculated for a
background flow gradient [84], and which for itg turbulence can be reasonably well approxi-
mated by the ion heat conduction coefficient since the Prandtl number is generally found to be
of the order 0.7 and varies only slightly when changing plasma parameters like temperature
gradient [85, 98]. It is furthermore assumed that the diffusive transport is not a strong function
of the velocity space coordinates and is thus roughly equal for trapped and passing particles.
This is a reasonable assumption for the ion temperature gradient (itg) mode due to its fluid
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4. Damping of zonal modes through turbulent momentum transport

character. Since the toroidal flow of the trapped particles is directly related to the radial elec-
tric field, the transport of angular momentum reduces the radial electric field accordingly and
Eq. (4.7) yields

∂Er
∂t

= ∇ · [χϕ∇Er]. (4.8)

We proceed by considering a zonal flowdescribed by a single Fouriermodeϕ = ϕA exp[ikZFx+
γt], to obtain the damping rate

γ = −χϕk2ZF . (4.9)

In the following only normalised quantities will be used. The transport coefficient is nor-
malised with the gyro-Bohm diffusion ρ2vth/R, where ρ = mvth/eB is the ion Larmor ra-
dius, vth =

√
2T/m is the thermal velocity, and R is the major radius. The zonal flow radial

wave vector kZF is normalised with the ion Larmor radius, and the damping rate is normalised
with respect to vth/R. The normalisation leaves the equation above unchanged. The equation
above gives the damping rate of the zonal flow through the parallel momentum transport, but
does not include the driving term due to the modulation instability since the drive enters in the
perpendicular dynamics over the negative viscosity effect. In toroidal geometry an expression
for the growth rate of the zonal flow was derived in Ref. [27] and adding this to the growth /
damping rate one obtains (neglecting a numerical factor of order unity)

γ = ϵ1/4kZFky
√
I/q − k2ZFχ0I (4.10)

where I = (eϕ/Tρ∗)
2 is the turbulence intensity, with ϕ the fluctuating potential, ρ∗ = ρ/R

is the normalised Larmor radius, and ky is the wave vector of the turbulence (normalised to the
Larmor radius). To bring out the correct scaling of the damping term, the momentum transport
coefficient has furthermore been expressed in the turbulence intensity χϕ = χ0I , where χ0 is
a coefficient of order unity.
The following observations can be made:
• The damping rate scales with the zonal flow wave vector squared, and is quite substantial.
Assuming χϕ = χ0I ≈ 1, even a long wavelength zonal flow kZF = 0.1 has a damping
rate γ = −0.01. This is substantially larger than the collisional damping for realistic pa-
rameters [21]. The damping rate, however, does not scale with the zonal flow intensity, and
therefore modifies the growth and possibly stabilises the modulation instability, but does not
provide a saturation mechanism.
• The scaling of the damping rate with turbulence intensity and zonal flow wave vector is
different when compared with the scaling of the growth rate of the modulation instability.
In particular, for small intensities (I ≪ 1) the modulation instability dominates, while for
strongly turbulent systems the damping can be dominant. This suggest a threshold in the
turbulent intensity (It) above which the zonal flow of a certain wavelength is suppressed

It =

√
ϵk2y

χ0k2ZF q
2

(4.11)

• Shorter wavelength zonal flows are damped more strongly. Stability of the residual zonal
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4.2. Rosenbluth Hinton test

flow is obtained for

kZF >

√
ϵ1/2k2y
χ2
0q

2I
(4.12)

for typical values k2y = 0.04 χ0 = 1, I = 1, q = 1.4 and ϵ = 0.19, one obtains stabil-
ity for kZF > 0.09, which is a relatively long wavelength zonal flow. Note that it does not
mean that the modulation instability can not be effective in driving zonal flows at short wave-
lengths. Damping occurs only for sufficiently long lived zonal flows, that can be described by
the residual zonal flow state. It does however suggest that the residual zonal flow may play no
significant role in well developed turbulence of sufficient intensity.
•Thephysicsmechanism outlined above is possibly relevant for staircase formation. Staircases
form only at sufficiently small turbulence intensity [43], and are large wavelength long lived
structures. Both the long wavelength nature of the staircase structure, as well as its occurrence
in low turbulent states, is consistent with the mechanism outlined above.

4.2. Rosenbluth Hinton test

The reduced model presented in the previous section predicts a damping of the zonal flow
through angular momentum transport. The validity of the model is tested in this section by
performing a “Rosenbluth-Hinton-test” [96] including a model diffusion term for angular mo-
mentum in the gyrokinetic equation. The toroidal angular momentum of the residual zonal
flow state was shown to be dominated by the parallel flow component, which in gyrokinetic
theory can be expressed as

L =

{
mRBt
B

∫
d3v v∥f

}
, (4.13)

where f(X, v∥, µ) is the distribution function with gyrocentre position X, velocity parallel to
the magnetic field v∥ and magnetic moment µ. The curly brackets denote the flux-surface
average. The radial momentum diffusion

∂L

∂t
= D

∂2L

∂x2
, (4.14)

can then be modelled by adding the term

∂f

∂t

+
= D

∂2fa
∂x2

= −Dk2xfa. (4.15)

Here, +
= denotes that the term is added on top of the usual time evolution of the distribu-

tion function in a (linear) gyrokinetic simulation. The full set of equations solved can be
found in Ref. [65]. In the last step of the equation above the spectral representation of f
is introduced, i.e. ∂f/∂x = ikxf . Note that the diffusion term is evaluated for fa, which
is the part of the distribution function which is anti-symmetric in the parallel velocity, i.e.
fa = 1/2(f(v∥)− f(−v∥)). The even parallel velocity moments of the added term vanish,
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4. Damping of zonal modes through turbulent momentum transport

and the radial density or temperature profiles are not affected. The added term, however, does
lead to a diffusion of toroidal angular momentum.
Fig. 4.1 shows the time evolution of the electrostatic potential for the Rosenbluth-Hinton test,
with parameters: safety factor q = 1.3, inverse aspect ratio ϵ = 0.05, magnetic shear ŝ = 0.1,
and radial wave vector kx = 8.4 · 10−2. The adiabatic electron approximation is used and the
grid sizes are Ns = 264 points along the field line, Nv∥ = 256 parallel velocity grid points,
and Nµ = 16 magnetic moment grid points. The top graph shows the potential (blue) as
well as the residual potential (red), with the latter obtained through the method described in
Ref. [21] that filters out the geo acoustic mode. The bottom graph shows the residual potential
for different values of the diffusion coefficient D. A clear damping of the zonal potential,
with the damping rate increasing with the diffusion coefficient can be observed. Assuming an
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Figure 4.1. (a) The time evolution for the electrostatic potential ϕ and the residual potential ϕr with-
out momentum diffusion (D = 0). The residual potential is obtained by averaging three
neighbouring extrema, e.g. the green point is calculated from the three blue points.
(b) The time evolution of the residual electrostatic potential ϕr for different values of the
diffusion constant D. Without diffusion (solid blue line) the zonal flow is undamped and
has a non-zero steady final state. In simulations with momentum diffusion (dashed and
dot-dashed lines) the zonal flow is dampened over time. The inlay shows the decay rate γD
of the residual potential as a function off the diffusion coefficientD. The decay of the resid-
ual potential to zero cannot be shown as the simulation time is limited by the non-physical
recurrence of the gam-oscillation.
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exponential decay ϕr = ϕr0 exp(γDt), the zonal flow damping rate γD can be obtained from
the data through a fit, and is shown in the inlay in Fig. 4.1b as a function of D. Using χϕ ≈ 1
in Eq. (4.9) yields γD ≈ −k2x = −7 · 10−3 which is slightly larger but in good agreement with
the decay rate γD = −5 · 10−3 obtained in the simulation with D = 1. It is noted that the
obtained damping rate is one order of magnitude larger than collisional damping for realistic
ion collision frequencies νii (Ref. [21] finds a damping rate of a few 10−4 for νii ≈ 10−3). While
the damping rate due to angular momentum transport depends critically on the wavelength of
the zonal flow, it is expected to be relevant for zonal potential wavelengths up to kx = 10−2.

4.3. Nonlinear simulations

In this section a nonlinear numerical experiment is presented that aims at investigating the
role of the zonal flow damping through angular momentum transport. The normalised radial
fluxes of density, parallel momentum and heat for the electrostatic case are given by

Γi =

{∫
d3v (vE · ∇ψ)αif

}
, (4.16)

where vE = (B × ∇ϕ)/B2 is the E×B-velocity, ψ the normalised radial coordinate and
αi = {1,mRBt/Bv∥, v2} are the respective parallel velocity moments. Writing the dis-
tribution function, as the sum of the symmetric and anti-symmetric part in the parallel ve-
locity f = fs + fa, it is clear from the equation above that only the symmetric part fs =
1/2(f(v∥)+ f(−v∥)) contributes to the transport of particles and energy, while only the anti-
symmetric part fa = 1/2(f(v∥)−f(−v∥)) contributes to the transport of parallel momentum.
By changing the E×B nonlinearity in the gyrokinetic equation to act on the symmetric part of
the distribution function only

vE · ∇f −→ vE · ∇fs, (4.17)

transport of the odd moments of the perturbed distribution function is suppressed, thereby
eliminating the turbulent parallel momentum transport. It is assumed here that the density
and temperature perturbations, which are still transported, dominate the dynamics of the itg,
and that the nonlinear turbulent state is not strongly affected by the artificial modification
made above.
Fig. 4.2 shows the heat conduction coefficient in gyro-Bohm units for nonlinear simulations
with suppressed and regular momentum transport. The parameters are close to the cyclone
base case: safety factor q = 1.4, inverse aspect ratio ϵ = 0.19, magnetic shear ŝ = 0.78, and
density gradientR/Ln = 2.2. The simulations use s–α geometry and adiabatic electrons. The
temperature gradient length has been chosen to be larger than the finite heat flux threshold
(R/LTc = 7.3 see Ref. [19]). Simulations are performed with 83 radial and 21 toroidal modes,
with a maximum kθρ = 1.4, and the grid sizes are: Ns = 16 along the field line andNv∥ = 64,
Nµ = 9.
It is shown in Fig. 4.2 that the removal of the parallel momentum transport can lead to re-
duced heat transport or even complete suppression of turbulent transport for weak turbulence
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Figure 4.2. Gyro-Bohm heat diffusivity χwith error bars as function of temperature gradientR/LT =
−R∂ lnT/∂r. The blue squares are simulations where the momentum transport is artifi-
cially suppressed, which significantly reduces the turbulent heat flux compared to regular
runs (red crosses). This effect is only relevant for weak turbulence with temperature gradi-
ents slightly above the nonlinear stability threshold R/LTc = 7.3.

directly aboveR/LTc, in agreement with the physical picture that the removal of the momen-
tum transport allows for stronger zonal flow growth and, therefore, stronger suppression of
turbulence. A direct comparison of zonal flow amplitudes does not necessarily show higher
zonal flow amplitudes, since the turbulent drive of zonal modes is modified as well by a change
in turbulent intensity. It is noted that the transition between zero heat flux at R/LT = 7.3
and finite heat flux above the threshold goes more smoothly in the case in which momentum
transport is suppressed. The proposed mechanism for zonal flow damping can explain the
step in the heat flux that occurs at the finite heat flux threshold (see Refs. [19, 43]), since the
mechanism predicts a critical turbulence intensity (It see Eq. 4.11) above which the damping
dominates over the growth.
Fig. 4.3 depicts the time evolution of the heat flux forR/LT = 7.4 and shows that the suppres-
sion of turbulence is connected with the formation of areas with strong zonal flow shearing
(ωE×B = ∂vE/∂r). These structures in the E×B shear are known as staircases [41]. The long
wavelength structures in the zonal flow observed in Fig. 4.3b becomemore clearly visible when
averaging over the corresponding time windows. The staircase structures are stable for several
hundreds of transit times, allowing for the residual state to form. Staircases can completely
suppress turbulence when they are fully developed [19], in which case the E×B shear equals
the growth rate of the most unstable mode over (almost) the entire radial domain. Although
not fully developed staircases have a similar E×B shear rate over a large part of the radial do-
main, the shear rate goes more gradually through zero and, consequently there is a sufficiently
large radial region where turbulence can develop. Transport through the stable regions with
γ ≈ ωE×B then occurs through avalanches. Fig. 4.4 shows the radial profile of the E×B shear
for the case with and without parallel momentum transport. It can be seen that both develop
staircase structures. The case without momentum transport, and therefore stronger zonal flow
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Figure 4.3. (a) Heat flux Q over time for a weakly turbulent (R/LT = 7.4) nonlinear simulations
with suppressed momentum transport (blue) and full transport (red). The zonal flow shear
rate ωE×B for the simulation without momentum transport (b) forms long wavelength
structures and suppresses the turbulence compared to the one with full transport (c). Note
the highlighted areas I and II where the heat flux is significantly reduced and the staircase
structure of the zonal flow is visible in b.

growth, allows the formation of a fully developed staircase, whereas the case with momentum
transport does not.
Although the nonlinear experiment presented in this section suggests the parallel momentum
transport is a mechanism that must be considered in staircase formation, it does not appear to
have any impact on shorter wavelength zonal flows. For larger temperature gradients (above
R/LT = 8), no visible staircase structure appears in the E×B shearing rate, and the heat trans-
port with or without parallel momentum transport is observed to be identical. This observation
is striking since it is expected from the derivation in the Section II that the zonal flow damping
rate scales inversely proportional to the square of the zonal flow wavelength. The reason why
only long wavelengths are affected is at present not entirely clear. It is possible that short
wavelength zonal flows have a temporal behaviour that is too fast to properly develop the
residual state. In this case no significant parallel flows develop and the momentum transport
does not provide a mechanism for zonal flow damping. It is also possible that the residual zonal
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Figure 4.4. Time average of the shear rate of the highlighted areas I: t ∈ [10000, 12000] (solid line) and
II: t ∈ [27000, 29000] (dashed line) in Fig. 4.3 for suppressed momentum transport (a) and
full transport (b). Suppressing the momentum transport allows the development of a fully
developed staircase, which is not observed in the case with momentum transport.

flow plays no or a very limited role in the saturation of gyrokinetic turbulence. Although the
residual flow state has been proposed as an explanation for the difference between gyrofluid
and gyrokinetic turbulence, a clear proof that this is the case appears to be lacking. Indeed, re-
sults presented in Ref. [99] suggest that scenarios exist in which the residual does not provide
the dominant saturation mechanism. If the residual flow does not affect turbulence satura-
tion, its damping will have little effect on the turbulent heat flux. These interesting research
questions are left for future work.

4.4. Conclusions

The radial transport of parallel momentum provides a damping mechanism for the zonal flow,
which is relevant for staircase formation in weakly turbulent simulations. Removing the zonal
flow damping mechanism connected with the parallel momentum transport allows fully de-
veloped staircases to form at higher gradient lengths, and makes the transition in the heat flux
as a function of the gradient length smoother. The damping mechanism can therefore explain
the jump in the heat flux at the finite heat flux threshold. However, the mechanism discussed
in this chapter counter-intuitively does not appear to affect shorter wavelength zonal flows.
The results therefore give rise to questions about the relevance of the residual potential in
turbulence saturation.
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5. Interplay of an external torque and E×B
structure formation

Rotation in tokamak plasmas is generally considered to be beneficial for confinement, as
toroidal flow gradients can stabilise plasma turbulence by means of flow shearing[37, 39, 40,
91]. Furthermore, the resistive wall mode can be stabilised by sufficiently large rotation [100,
101]. Plasma rotation can occur intrinsically, without any external momentum source, or be
driven by an external torque, caused, for example, by neutral beam injection. Intrinsic rota-
tion, a phenomenon observed in multiple tokamak experiments [90], is particularly important
in reactor plasmas, where the external torque will be comparatively small. Because of its
promising effect in regulating the turbulence and, therefore, particle and energy confinement,
the physics of the generation and transport of rotation has received considerable attention in
the literature [85, 92]. However, in connection with the effects due to rotation it should be
noted that a fusion experiment or reactor operates close to the nonlinear threshold of turbu-
lence generation, where substantial shear flows are driven by the turbulence itself. It is well
known that zonal flows lead to a nonlinear upshift of the temperature gradient threshold of
turbulence generation, known as the Dimits shift [18] and recent investigations [19, 43] have
shown that this upshift is further enhanced through the formation of meso-scale structures in
the E×B shear, known as staircases [24, 41, 42]. Several studies [21–23, 102] have shown these
structures to be robust features of plasma turbulence that are not suppressed by collisions or
tertiary instabilities.
The staircase structures are stable for several hundred transit times and can completely sup-
press turbulence when they are fully developed, in which case the E×B shear equals or is
greater than the growth rate of the most unstable mode over (almost) the entire radial domain.
The radial average of the shear without external momentum is zero and the transition between
high positive and negative shear is very steep, leaving no space for turbulence to develop. Al-
though not fully developed staircases have a similar E×B shear rate over a large part of the
radial domain, the shear rate passes through zero more gradually, and, consequently, there is
a sufficiently large radial region where turbulence can develop. Energy is then transported
through the stable regions by heat flux avalanches.
The above-mentioned studies of staircases are conducted without external torque and also ex-
clude themechanisms that lead to intrinsicmomentumgeneration through symmetry breaking
[84, 86]. The synergy between externally imposed torque and E×B structure formation is an
unexplored area. Adding an external torque to the system will modify the shear flows and the
radial average of the shear rate can be expected to be nonzero. However, how does this exter-
nally forced shear interact with the existing structures? Does the external shear simply add
to the shear connected with the staircase, or is the staircase structure modified, perhaps even
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destroyed? The answer to this question is highly relevant for the influence of plasma rotation
on confinement: If an external torque destroys the staircase structure, it might adversely affect
plasma confinement, whereas an unmodified staircase structure implies that the torque does
not influence the confinement.
This chapter aims at clarifying the synergy of staircases and externally forced shear using gy-
rokinetic simulations. The shear profile and heat transport under the influence of a momentum
source is studied slightly above the nonlinear stability threshold.
In Section 5.1 the simulation setup is discussed in detail and numerical results are presented.
Finally, conclusions are formulated in Section 5.2.

5.1. Simulations

To assess the interplay between an external torque and staircase structure formation, nonlin-
ear gyro-kinetic flux driven simulations using the gkw code [65] are performed, where the
turbulence is driven by prescribing a heat source rather than a fixed background temperature
gradient. Flux driven simulations are required to accurately study the turbulence close to the
nonlinear turbulence stability threshold and the reader is referred to Ref. [43] for more details.
Furthermore, flux driven simulations allow to prescribe the momentum input rather than the
externally forced shearing rate. This is of the utmost importance since only this choice allows
the shearing rate to develop into a self-consistent profile.
Following the setup of Ref. [43] (for a full overview of the model equations see also Ref. [65]),
a Gaussian source and sink function are introduced at the edges of the computational domain,
with a large source free region in the centre of the box. The source and sink will lead to an
energy and momentum flux through the source free region, where the data is evaluated. The
velocity dependence G(v) of the source function is chosen such that it does not provide a
particle source:

G(v) = ∆S

 v2

v2th
−

∫
d3v v2

v2th
FM∫

d3v FM

FM . (5.1)

Here,∆S is a parameter to control the source strength, vth is the ion thermal velocity and FM
the Maxwellian background distribution. By shifting the midpoint of the Maxwellian in the
parallel velocity domain by vshift, the source is modified to generate both an energy as well as
a parallel momentum input. The Maxwellian

FM ∝ exp
[
−
(v∥ − vshift)

2 + v2⊥
v2th

]
, (5.2)

where the velocities parallel and perpendicular to the magnetic field are denoted by v∥ and
v⊥ respectively. For clarity it is noted that the shifted Maxwellian is only used in the source
functionwhich appears on the right-hand side of the gyrokinetic equation, while the remaining
equation is unchanged.
The strength of themomentum source is specified by the ratioPS/QS with the toroidal angular
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momentum density

PS = R

∫
d3v mv∥G(v) (5.3)

and the energy density

QS =

∫
d3v 1

2
mv2G(v) (5.4)

generated by the source, where R is the major radius and m is the ion mass. The source can
be considered as similar to using neutral beam injection in tokamak experiments, where the
angle between the beam injection and the magnetic field line, in conjunction with the beam
velocity, controls the ratio of applied torque to heating. In the following, for easier readability,
the ratio PS/QS is understood to be normalised by R/vth.
The source strength∆S = 10 is chosen such that the simulation without a momentum source
(vshift = 0) is slightly above the nonlinear turbulence stability threshold (see Ref. [43]). Note
that increasing |vshift| leads to an increased heating strength QS as well. Therefore, when in-
creasing vshift,∆S = 10 is reduced to ensure that all simulations are subject to the same level
of heating, allowing for a direct comparison of turbulent transport. Furthermore, to ensure
that the equilibrium state is a state in which the plasma rotates toroidally (rather than having
a flow parallel to the magnetic field) collisions are used with an ion-ion collision frequency
νii = 10−2vth/R. The collisions are modelled by a linearized Fokker-Planck pitch angle scat-
tering collision operator that satisfies momentum conservation [65]. To ensure the fast relax-
ation of the particle distribution in velocity space, the collision frequency is set relatively high
in comparison to the value of 6 · 10−4vth/R expected in iter. However, the effect of colli-
sions is still weak enough to only slightly dampen the zonal flow and still allow for staircase
formation [21].
All simulations use the adiabatic electron approximation and parameters similar to the Cyclone
Base Case, with circular flux surfaces, safety factor q = 1.4, inverse aspect ratio ϵ = 0.19,
magnetic shear ŝ = 0.78, density gradient R/Ln = 2.2, and electron to ion temperature
ratio Te/Ti = 1. A background temperature gradient of R/LT0 = 3.0 is used in addition to
the heat source to reduce the equilibration time. Simulations are performed with 28 toroidal
modes, with a maximum wavenumber kθρ = 1.4, while the other dimensions are treated with
finite differences with the grid sizes being Nv∥ = 32 for the parallel velocity, Nµ = 8 for the
magnetic moment, Ns = 24 along the field line and Nx = 240 in the radial direction. The
radial box size is 120 Larmor radii and the local flux tube model is used [64].
Fig. 5.1 shows the averaged E×B shear rate ⟨⟨ωE×B⟩⟩ for increasing momentum source
strength. The shear rate is defined as the radial derivative of the E×B velocity ωE×B =
∂/∂r vE×B and the double brackets ⟨⟨· · · ⟩⟩ denote both a time as well as a spatial average
over the source free region. It can be seen that the momentum source is working as intended,
driving E×B shear in the simulation domain, with an average that depends linearly on the
momentum source strength. The comparison with collisionless simulations shows that the
collision frequency is not too high to deter the zonal flow from developing. All data shown in
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the following is from simulationswhich take ion-ion collisions into account (νii = 10−2vth/R).
The values ofPS/QS considered do indeed represent realistic values for forced plasma rotation,
which can be verified by a simple magnitude estimation. Using Bp/B ≈ ϵ/q and the force
balance Er = Bpvφ, where Er is the radial electric field, Bp the poloidal magnetic field and
vφ the toroidal velocity, it is possible to connect the shear rate with the ion Mach numberM .
The shear rate

ωE×B ∼ 1

a
vE×B ≈ 1

a

Er
B

≈ vth
Rq

vφ
vth

=
vth
Rq

M, (5.5)

where ϵ = a/R is theminor over themajor radius. With theMach number beingM ∼ 0.1−0.3
for most tokamaks [90], weak to moderate plasma rotation is well covered with PS/QS up to
0.25 (see Fig. 5.1).
The externally forced shear can also be seen in Fig. 5.2 in the shear profile, along with it’s
effect on the radial meso-scale structures. Note that the time series and averages, are taken
after very long equilibration times of about 104 transit times, which are required for the actual
turbulence and shear profile to form in simulations close to the nonlinear stability threshold.
Staircases can be observed for up to moderate values of external torque, as shown in the fig-
ure. They are stable over the entire time interval, and are only sporadically interrupted by
avalanches that move through the system. Furthermore, they exhibit plateau areas with high
shearing |ωE×B| > 0.2vth/Rwith a radial extend of several ten Larmor radii. From Fig. 5.2 the
interplay between the external torque and the staircase structure can be observed: increasing
external torque the positive shear areas are broadened at the expense of the negative ones, thus
leading to the positive externally forced average shear. This behaviour can be observed until
most of the simulation domain is covered by the high shear plateau areas. While the average
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Figure 5.1. Averaged E×B shear rate ⟨⟨ωE×B⟩⟩ as a function of themomentum source strengthPS/QS .
The shear rate for simulations with collisions νii = 0.01 (purple crosses) increases linearly
with the external torque applied, which shows that the momentum source is indeed driv-
ing E×B shear as expected. For simulations without collisions νii = 0.00 (green squares)
the behaviour is slightly erratic, which is likely due to the external momentum not being
distributed evenly in velocity space.
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Figure 5.2. Radial structure of the E×B shear rate ωE×B over time and its time average for increas-
ing values of the external torque. The large band like structures well visible in (a,b) are
prime examples for so called staircase structures, which can effectively regulate turbulence.
(a-c) Increasing the strength of the momentum source broadens the positive shear areas but
preserves the qualitative structure, up to the point where the negative shear regions have
nearly vanished. (d) Further increasing the torque breaks the structure and virtually the
whole box exhibits high positive shear. (e) Despite the strongly modified shear, the time
averaged shearing rate has similar plateau values for all cases.
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shear increases with increasing external torque, the plateau values of the shear rate remain
similar for all cases shown. The ability of staircases to suppress turbulence very effectively is
due to two aspects of the shear profile: Firstly, large connected areas with an absolute shear
rate comparable to or exceeding the itg growth rate of γITG ≈ 0.2vth/R are present. Secondly,
the intermittent regions between positive and negative shear are very narrow. Transport is
caused by avalanches generated in the region where the E×B shear passes through zero, which
then propagate through the regions of high shear. This situation is similar for the first three
structures shown in Fig. 5.2, regardless of the respective proportion of positive and negative
shear areas. In consequence the ability to suppress turbulence is fairly similar in the examples
shown even though the averaged shear rate is significantly modified. Only for the highest
shown value PS/QS = 0.36, the staircase structure is broken and the whole domain exhibits
strong positive shear, except for a small region at the edge, which should lead to increased
turbulence suppression compared to the cases with a weaker momentum source. This qualita-
tive argument can be verified in Fig. 5.3, showing the radial heat flux profileQ and its average
⟨⟨Q⟩⟩, which indicates the strength of the turbulent transport. The values are similar to, or
exceed experimental relevant heat fluxes and the heat is mostly carried by avalanches, which
build up in the low shear region and carry the energy into the suppressed high shear regions.
This behaviour is similar for up to PS/QS = 0.25, i.e. even a significant torque on the plasma
does not improve confinement. Only very high values allow for improved turbulence suppres-
sion: Longer periods of several hundred transit times which exhibit no turbulent transport are
occasionally interrupted by short bursts of avalanche dominated transport, which are quickly
suppressed by the strong shearing rate.

5.2. Conclusions

Using nonlinear gyro-kinetic simulations it is shown, that for an external torque, comparable
to that used in neutral beam heating experiments, the externally forced shear from rotation
does not improve plasma confinement. The additional E×B shear does not simply yield an
offset over the simulation domain but interacts with the meso-scale structures in the E×B
shear, leaving the maximum shearing rate virtually unchanged. The ability of staircases to
regulate turbulence very effectively is due to large connected areas where the absolute shear
rate is equal or higher than the itg growth rate γITG ≈ 0.2 and the intermittent low regions
between positive and negative shear being very narrow. A positive (negative) externally forced
shear leads to a broadening of the corresponding region, but does not significantly change the
plateau value or the narrow zero shear region. In consequence, the radial average is changed
by the externally forced shear but the effect of the shear structures on the turbulent transport
remains unaffected. Thus, a flux of radial momentum, which can be caused by neutral beam
injection or intrinsic rotation does not aid in suppressing turbulent transport in this case, even
though it modifies the average E×B shearing. The implication of this result is devastating. In
contrast to the generally acknowledged beneficial impact of rotation on transport, this chapter
shows that induced plasma rotation and, by extension, intrinsic rotation are irrelevant in the
determination of experimentally relevant transport levels.
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Figure 5.3. Radial structure of the radial heat flux Q in gyro-Bohm units over time and its average
⟨⟨Q⟩⟩ for increasing values of the external torque. (a-c) Increasing the strength of the mo-
mentum source does not impact the turbulent transport, which is mainly carried by heat
flux avalanches originating in the low shear regions. (d) For very strong external shear the
turbulence exhibits periods of complete suppression over several 100 transit times, which
are interrupted by short avalanche-like bursts that are eventually suppressed again. (e)
The averaged radial heat flux ⟨⟨Q⟩⟩ is, within the margin of error, nearly identical for a
momentum source up to PS/QS = 0.25, confirming the qualitative observations on the
profile. The error bars of the heat flux are given by three part time averaging and the gyro-
Bohm heat diffusivity χ = ⟨⟨Q⟩⟩/⟨⟨R/LT ⟩⟩ is shown for reference to showcase that all
simulations are subject to a similar temperature gradient driving the turbulence.
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Turbulent transport is a core problem when magnetically confining a fusion plasma. The the-
oretical description has advanced significantly over the last few decades as the gyrokinetic
models of turbulent transport in tokamak plasmas, employing the increased computational
power, have become increasingly sophisticated, allowing to consider more and more physical
effects. This thesis continues the efforts of understanding and predicting turbulence in a toka-
mak by studying the cross-coupling of the background described by neoclassical theory and
the gyrokinetic turbulence.
In Chapter 2, it was shown that the parallel velocity nonlinearity in the gyrokinetic equation
couples with the neoclassical background. The term can cause a parallel drive of momentum
and heat, provided the symmetry along the magnetic field is broken, for example through a
background rotation. It was shown that this modification to the neoclassical equilibrium drives
a substantial current, which is of great interest for tokamak operation as it can potentially in-
crease the pulse time limited by the necessity of inductive current drive. The current driven is
mostly linear in the turbulent heat flux and for the cyclone base case comparable in magnitude
to the bootstrap current. When matching realistic heat flux values expected in an iter sce-
nario, the current drive still makes up for a few additional percent of total current. As an upper
limit for scenarios with strong rotation or strong rotation gradient up to ten percent increase
in total plasma current can be achieved. However, the model used only aims to identify the
effect and establish the order of magnitude. Corrections can be expected from other symmetry
breaking mechanisms like the stationary E×B flow associated with the rotation gradient, or
the coupling with the neoclassical background. Furthermore, there are other current driving
mechanisms from turbulence related to the electromagnetic response and profile effects [79].
Further research is required for a quantitative prediction, including all the mechanisms dis-
cussed above to assert if they partly cancel each other or possibly further increase the current
driven.
Intrinsic rotation has been a topic of great interest in tokamak research, as plasma rotation
is considered beneficial for confinement (even though the results of Chapter 5 question this
assessment). Intrinsic rotation is always connected to symmetry breaking and in Chapter 3,
a large scale parameter study of the intrinsic rotation caused by neoclassical modifications to
the Maxwellian background in turbulent simulations was performed. It was shown that the
toroidal angular momentum flux is mostly linear in the first order neoclassical flow and its gra-
dient. However, there is a significant amount of scatter especially for different aspect ratios
and values of the magnetic shear suggesting that a scaling law employing only the parameters
directly involved in the symmetry breaking, namely the parallel flow and its gradient, is in-
sufficient to produce accurate results. Comparing gyrokinetic simulations using neoclassical
modifications and simulations with a Maxwellian background but subject to background rota-
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tion (and rotation gradient) a model was developed to predict the equilibrium rotation gradient
driven by the neoclassical modifications to the background. The results show that the toroidal
angular momentum flux is roughly linear in the parallel flow velocity obtained in neoclassi-
cal theory. This suggests that the parallel flow in the neoclassical equilibrium provides the
most important symmetry breaking mechanism required for momentum transport, and allows
a simple scaling law for the flux in terms of the flow.
Zonal flows have a regulating effect on turbulence and play a critical role for the nonlinear sta-
bility threshold of turbulence. In Chapter 4 it was shown that the radial transport of parallel
momentum provides a damping mechanism for the zonal flow. The damping mechanism was
confirmed by “Rosenbluth-Hinton“ tests with a model radial momentum diffusion. The decay
rate of the residual potential was found to be proportional to the model diffusion coefficient
and in good agreement with the analytic result. In nonlinear simulations the damping mech-
anism was shown to be relevant for turbulence slightly above the stability threshold, where
the meso-scale structures called staircases in the zonal flow play a critical role. Removing the
zonal flow damping mechanism connected with the parallel momentum transport allows fully
developed staircases to form at higher temperature gradient lengths. Thus, turbulence is peri-
odically suppressed above the stability threshold, called finite-heat-flux threshold, leading to
a smoother transition in the heat flux as a function of the gradient length from the suppressed
state to the weakly turbulent state above the threshold. The damping mechanism can therefore
explain the jump in the heat flux at the finite heat flux threshold. However, while the mech-
anism scales with the wave number it counter-intuitively does not appear to affect shorter
wavelength zonal flows. Furthermore, there is no effect on the heat flux level for strong tur-
bulence significantly above the stability threshold. The results therefore give rise to questions
about the relevance of the residual potential in turbulence saturation.
In Chapter 5, using nonlinear gyrokinetic simulations it was shown, that for an external torque,
comparable to that used in neutral beam heating experiments, the externally forced shear from
rotation does not improve plasma confinement. The additional E×B shear does not simply
yield an offset over the simulation domain but interacts with the meso-scale structures in the
E×B shear, leaving the maximum shearing rate virtually unchanged. The ability of staircases
to regulate turbulence very effectively is due to large connected areas where the absolute shear
rate is equal or higher than the itg growth rate γITG ≈ 0.2 and the intermittent low regions
between positive and negative shear being very narrow. A positive (negative) externally forced
shear leads to a broadening of the corresponding region, but does not significantly change the
plateau value or the narrow zero shear region. In consequence, the radial average is changed
by the externally forced shear but the effect of the shear structures on the turbulent transport
remains unaffected. Thus, a flux of radial momentum, which can be caused by neutral beam
injection or intrinsic rotation does not aid in suppressing turbulent transport in this case, even
though it modifies the average E×B shearing. The implication of this result is devastating.
In contrast to the generally acknowledged beneficial impact of rotation on transport, it was
shown that induced plasma rotation and, by extension, intrinsic rotation are irrelevant in the
determination of experimentally relevant transport levels.
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Appendix

A. Derivation of the parallel force balance
equation from the gyrokinetic
Fokker-Planck equation

The gyrokinetic description of the steady state distribution (Eq. (2.14) in section 2.1 is equiva-
lent to the kinetic equation used in Refs. [14, 15] to derive the parallel force balance equations.
Obviously the gyrokinetic equation contains higher order drift effects, which are not treated
in standard neoclassical theory, but these terms can be shown to be small. It is stressed that
the goal of this work is to study only the effect of the turbulent velocity nonlinearity on the
leading order of the neoclassical equilibrium and not to provide a more accurate neoclassical
solution. The derivation of the balance equations is demonstrated deriving the first order of
balance equation for a single species,

{B · ∇ · P1} = {F1 · B}+ S∥,1, (A.1)

with the viscosity tensor P1 = (p∥ − p⊥)(bb− 1
3 I), the friction force F1 =

∫
d3v mC(f) and

source terms S∥,1 = SE∥,1+Svnl∥,1 = Zen{E·B}+Svnl∥,1 where Svnl∥,1 is given by Eq. (2.21).
The pressure p = 1/3 p∥ + 2/3 p⊥ is expressed by a parallel p∥ =

∫
d3v m(v∥ − u∥)

2f and a
perpendicular part p⊥ =

∫
d3v m|v⊥ − u⊥|2/2 f .

The steady state distribution f = f0 + f1 is split in a Maxwellian background f0 and the
neoclassical modification f1, which is assumed to be one order smaller. Furthermore terms in
the drift velocity vD are assumed to be one order smaller than the parallel velocity v∥b. Thus,
the contributions inO(vDf1) are neglected for the large scale equilibrium. Using this ordering
and the steady state (∂f/∂t = 0) in Eq. (2.14) yields

[
v∥b+ vE

]
· ∇f + vD · ∇f0 −

µ

m
(b · ∇B)

∂f

∂v∥
+

[
v∥b×∇B

B2
+

2

B
Ω⊥

]
· E∂f0
∂v∥

= C(f)− Ze

m
b · E ∂f

∂v∥
+

∂

∂v∥

[〈[
Ze

m
b+

v∥b×∇B
B2

+
2

B
Ω⊥

]
· ∇⟨ϕ̃⟩f̃

〉
t

]
(A.2)

The neoclassical electrostatic potential ∇ϕ, being a perturbed quantity, is ignored like in
Ref. [14], and only the external field E is considered.
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The first velocity moment {B ·
∫
d3v v · · · } of the right hand side of Eq. A.2 is

{B · F1} − Ze

{∫
d3v B · Ev∥

∂f

∂v∥

}
+ Svnl∥,1 = {B · F1}+ Ze

{
B · E

∫
d3v f

}
+ Svnl∥,1

= {B · F1}+ Zen {E · B}+ Svnl∥,1 = {F1 · B}+ S∥,1 (A.3)

and thus equal to the right hand side of Eq. A.1.
The velocity moment of the left hand side is more complicated and will be done in multiple
steps. First the terms containing the Maxwellian background are removed using that f0 is even
in v∥

f0(v∥, µ) = f0(−v∥, µ). (A.4)

Note that vD with the exception of the Coriolis term is even in v∥ as well and f0 spatially
depends only on the radial coordinate ψ. Thus,{∫

d3v mBv∥(vD · ∇)f0

}
=

{∫
d3v

2m2v2∥

Ze
(Ω⊥ · ∇)f0

}

=

∫
d3v

2m2v2∥

Ze

∂f0
∂ψ

{Ω⊥ · ∇ψ} = 0, (A.5)

because Ω⊥ · ∇ψ = Ω · ∇ψ is up-down symmetric it follows that the flux surface average
of this quantity is zero. The two following terms are not exactly zero but can be shown to
hold only a much smaller contribution. It is used that the electric field is only in the toroidal
direction and that Bp/B = ϵ/q, which is true up to the first order in ϵ. First{∫

d3v mBv∥vE · ∇f
}

=

{∫
d3v mv∥(E× B) · ∇f

}
=

{
(E× B) ·

∫
d3v mv∥∇f1

}
≈ ϵ

q

{
EB

∫
d3v mv∥∇ψf1

}
,

(A.6)

where ∇ψ is the radial derivative. The term is in ϵ and only the small up-down asymmetric
part of f1 contributes to the flux surface average, making it negligible. The last term on the
left hand side disappears as well{∫

d3v
[
mv2∥

B
b×∇B + 2mv∥Ω⊥

]
· E∂f0
∂v∥

}

= −
{∫

d3v
[
2mv∥b×∇B

B
+ 2mΩ⊥

]
Ef0

}
= −

{∫
d3v 2mΩ⊥ · Ef0

}
= −{2mn0Ω⊥ · E} =

{
2mn0
B

(Ω · B)b · E
}

= −
{
2mn0
B

(Ω · Bp)b · E
}

≈ 2mn0
ϵ

q
Ω {± cos θ(b · E)} ≈ 0. (A.7)
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Here θ is the poloidal angle and Bp/B ≈ ϵ/q is used. The sign depends on the direction of
current and rotation.
Now the left hand side has two remaining terms connected with the parallel and perpendicular
pressure:

{∫
d3v mBv2∥b · ∇f −

∫
d3v µBv∥(b · ∇B)

∂f

∂v∥

}
=

{∫∫
dv∥d(2πµ) mv2∥

B

m
B · ∇f +

∫
d3v µB(b · ∇B)f

}
=

{∫∫
dv∥d(2πµ) mv2∥

[
(B · ∇)

(
B

m
f

)
− (b · ∇B)

B

m
f

]
+

∫
d3v

mv2⊥
2

(b · ∇B)f

}
=

{
(B · ∇)

[∫∫
dv∥d(2πµ)

B

m
mv2∥f

]
− (b · ∇B)

[∫∫
dv∥d(2πµ)

B

m
mv2∥f

]
+ (b · ∇B)

∫
d3v

mv2⊥
2

f

}
=

{
(B · ∇)

[∫
d3v mv2∥f

]
− (b · ∇B)

[∫
d3v mv2∥f

]
+ (b · ∇B)p⊥ + (b · ∇B)nmu2⊥

}
=
{
(B · ∇)p∥ − (b · ∇B)(p∥ − p⊥)

}
+

{
(B · ∇)nmu2∥ − (b · ∇B)nm(u2∥ −

1

2
u2⊥)

}
. (A.8)

The second term containing the fluid velocities is of second higher order in ρ∗ and can be
neglected.
Adding

0 = B · ∇p− B · ∇p = B · ∇p− (B · ∇)

[
1

3
p∥ +

2

3
p⊥

]
(A.9)

to the left hand side equation we get{
(B · ∇)p+

2

3
(B · ∇)(p∥ − p⊥)− b · ∇B(p∥ − p⊥)

}
. (A.10)

Using {B · ∇p} = 0 we can write the parallel force balance equation{
2

3
(B · ∇)(p∥ − p⊥)− (b · ∇B)(p∥ − p⊥)

}
= {F1 · B}+ S∥,1. (A.11)

Rewriting the viscosity ⟨B · ∇ · Pa1⟩ using Pa1 = (p∥ − p⊥)(bb− 1
3 I) and p̃ ≡ p∥ − p⊥ yields

⟨B · ∇ · Pa1⟩ =
{
B ·
[
∇p̃ · (bb− 1

3
I) + p̃∇ · (bb− 1

3
I)
]}

=

{
B ·
[
(∇p̃ · b)b− 1

3
∇p̃+ p̃∇ · (bb)

]}
=

{
B(b · ∇p̃)− 1

3
B · ∇p̃+ p̃Bj

∂bjbk
∂xk

}
=

{
2

3
B · ∇p̃+Bp̃

[
bjbj

∂bk
∂xk

+ bjbk
∂bj
∂xk

]}
=

{
2

3
B · ∇p̃+Bp̃ [∇ · b+ b · (b · ∇)b]

}
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A. Derivation of the parallel force balance equation from the gyrokinetic Fokker-Planck equation

=

{
2

3
B · ∇p̃+Bp̃

[
1

B
∇ · B− B · ∇B

B2
+ b · (∇(b · b)− b× (∇× b))

]}
=

{
2

3
B · ∇(p∥ − p⊥)− (b · ∇B)(p∥ − p⊥)

}
, (A.12)

which is the left hand side of Eq. (A.11) showing that it is indeed the same as Eq. (A.1).
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B. Normalisation and implementation of
the velocity nonlinearity source terms

The source terms are given in Eq. (2.21)

SaA,α = −
〈{∫

d3v ∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
)
ZeBb · ∇⟨ϕ̃⟩f̃a

}〉
t

(B.1)

SaB,α = −
〈{∫

d3v ∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
) mav∥

B
b×∇B · ∇⟨ϕ̃⟩f̃a

}〉
t

(B.2)

SaC,α = −
〈{∫

d3v ∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
)
2maΩ⊥ · ∇⟨ϕ̃⟩f̃a

}〉
t

(B.3)

The following normalisations are made according to Ref. [65]. Normalised quantities are de-
noted by a subscript N or R for velocity, mass and density. The velocity element is

d3v = dv∥2πv⊥dv⊥ =
B

m
dv∥2πd

(
mv2⊥
2B

)
=
B

m
dv∥d (2πµ) = BNv

3
thdv∥Nd (2πµN ) (B.4)

with B = BNBref, v∥ = vthv∥N and µ = mv2th/Bref µN . Furthermore: ∇ = 1/Rref∇N ,
ϕ̃ = ρ∗Tref/e ϕN , f̃ = ρ∗nR0/v

3
th fN , Ω⊥ = vthrefΩ⊥N/Rref, nR0 = nRnref, vth = vRvthref,

m = mRmref, x2a = v2/v2th = (v2∥N + 2BNµN ). The Larmor radius is ρ = mrefvthref/(eBref)

and ρ∗ = ρ/Rref.

In the following all quantities except the reference values are dimensionless and the subscript
N is omitted. The normalised source terms are

SaA,α = −Bref
nrefTref
Rref

ρ2∗nR

〈{∫∫
dv∥d(2πµ)

∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
)
ZB2b · ∇⟨ϕ⟩fa

}〉
t

(B.5)

SaB,α = −Bref
nrefTref
Rref

ρ2∗mRnRvR

〈{∫∫
dv∥d(2πµ)

∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
)
v∥b×∇B · ρ∗∇⟨ϕ⟩fa

}〉
t

(B.6)

SaC,α = −Bref
nrefTref
Rref

ρ2∗mRnR

〈{∫∫
dv∥d(2πµ)

∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
)
2BΩ⊥ · ρ∗∇⟨ϕ⟩fa

}〉
t

(B.7)
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B. Normalisation and implementation of the velocity nonlinearity source terms

with the derivatives of the Laguerre polynomials given by

∂

∂v∥

(
v∥L

3/2
0 (x2a)

)
= 1 (B.8)

∂

∂v∥

(
v∥L

3/2
1 (x2a)

)
=

5

2
− (v2∥ + 2Bµ)− 2v2∥ (B.9)

∂

∂v∥

(
v∥L

3/2
2 (x2a)

)
=

35

8
− 7

2
(v2∥ + 2Bµ) +

1

4
(v2∥ + 2Bµ)2 − 7v2∥ + v4∥ (B.10)

Hamada coordinates α = ψ, ζ, s (see Sec. 1.4.1) are used and the vector products are calculated
using the geometry tensors F ,D,H

b · ∇ = F ∂

∂s
(B.11)

Dα = − 1

B2
(∇xβ ×∇xβ) · b

∂B

∂xβ
=

1

B2
(b×∇B) · ∇xβ (B.12)

Hα = − sB
BΩ

Ω⊥ · ∇xβ (B.13)

where sB is the sign of the magnetic field and Ω the normalised angular frequency. Note that
the approximation Ds∂⟨ϕ⟩/∂s = Hs∂⟨ϕ⟩/∂s = 0 is used, as the geometry tensors are of
similar magnitude but are connected with the parallel derivative which is one order smaller in
ρ∗ than the perpendicular derivative. Using the representation of the gradient

∇⟨ϕ⟩ = ∇ψ∂⟨ϕ⟩
∂ψ

+∇ζ ∂⟨ϕ⟩
∂ζ

+∇s∂⟨ϕ⟩
∂s

(B.14)

and the geometry tensors, the source terms are

SaA,α =−Bref
nrefTref
Rref

ρ2∗nR

〈{∫∫
dv∥d(2πµ)

∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
)
ZB2F ∂⟨ϕ⟩

∂s
fa

}〉
t

(B.15)

SaB,α =−Bref
nrefTref
Rref

ρ2∗mRnRvR

〈{∫∫
dv∥d(2πµ)

∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
)

v∥B
2

(
Dψρ∗

∂⟨ϕ⟩
∂ψ

+Dζρ∗
∂⟨ϕ⟩
∂ζ

)
fa

}〉
t

(B.16)

SaC,α =−Bref
nrefTref
Rref

ρ2∗mRnR

〈{∫∫
dv∥d(2πµ)

∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
)

−2sBB
2Ω

(
Hψρ∗

∂⟨ϕ⟩
∂ψ

+Hζρ∗
∂⟨ϕ⟩
∂ζ

)
fa

}〉
t

(B.17)

The distribution function and potential use a semi-spectral space representation, i.e. ζ, ψ de-
pendency of f and ϕ is given by Fourier modes kψ, kζ while the field aligned coordinate s is
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treated in real space.

f(ψ, ζ, s) =
∑

kζ>0,kψ

[
f̂(kψ, kζ , s) exp[ikζζ/ρ∗ + ikψψ/ρ∗] + f̂ †(kψ, kζ , s) exp[−ikζζ/ρ∗ − ikψψ/ρ∗]

]
+
∑
kψ

f̂(kψ, kζ = 0, s) exp[ikψψ/ρ∗] (B.18)

With an equivalent expression for ϕ. Thus, the derivative in β = ψ, ζ direction is ρ∗∂/∂xβ =
ikβ .

The flux surface average is, despite its name, a volume average over the volume between two
infinitely close flux surfaces. The flux tube limit assumes that there is an infinitely large scale
separation between the Larmor radius and the system size. A computational box in the radial
direction is used that scales with the Larmor radius, and although it has a finite radial extend,
this length is, within the formulation, always negligible to the system size. For this reason no
radial dependence of any of the background quantities is retained in the flux tube formulation
and the Jacobian J being a flux surface label in the gkw coordinate system is a constant that
can be removed from the integral. The coordinates s and ζ are chosen such that

∫
ds
∫
dζ = 1.

Then the flux surface average of a quantity Q in the local limit is

{Q} =

∫
d3x Q∫
d3x

=

∫
ds
∫
dψ
∫
dζ JQ∫

ds
∫
dψ
∫
dζ J

=
1

Lψ

∫
ds
∫

dψ
∫

dζ Q, (B.19)

where Lψ is the radial box size. Note that in the flux tube approximation only f and ϕ depend
onψ and ζ in Eqs. (B.15-B.17). Hence theψ and ζ integral of the ∂ϕ/∂xβf part of the equations
be can directly simplified, as the quantities are periodic in kψ, kζ . Thus, a space integral over
a nonzero wave vector (or a combination of wave vectors) vanishes.

1

Lψ

∫
dψ
∫

dζ ρ∗
∂ϕ

∂ψ
f =

1

Lψ

∫
dψ
∫

dζ
( ∑
kζ>0,kψ

[
ikψϕ̂(kψ, kζ , s) exp[ikζζ/ρ∗ + ikψψ/ρ∗]

− ikψϕ̂†(kψ, kζ , s) exp[−ikζζ/ρ∗ − ikψψ/ρ∗]
]
+
∑
kψ

ikψϕ̂(kψ, kζ = 0, s) exp[ikψψ/ρ∗]
)

( ∑
k′ζ>0,k′ψ

[
f̂(k′ψ, k

′
ζ , s) exp[ik′ζζ/ρ∗ + ik′ψψ/ρ∗] + f̂ †(k′ψ, k

′
ζ , s) exp[−ik′ζζ/ρ∗ − ik′ψψ/ρ∗]

]

+
∑
k′ψ

f̂(k′ψ, k
′
ζ = 0, s) exp[ik′ψψ/ρ∗]

)

=
∑

kζ>0,kψ

[
ikψϕ̂f̂ † − ikψϕ̂†f̂

]
+
∑
kψ

ikψϕ̂(kψ, kζ = 0, s)f̂(−kψ, kζ = 0, s)
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B. Normalisation and implementation of the velocity nonlinearity source terms

=
∑

kζ>0,kψ

2kψℜ
[
iϕ̂f̂ †

]
+
∑
kψ

ikψϕ̂(kψ, kζ = 0, s)f̂ †(kψ, kζ = 0, s)

=
∑

kζ>0,kψ

−2kψℑ
[
ϕ̂f̂ †

]
+
∑
kψ>0

ikψϕ̂(kψ, 0, s)f̂ †(kψ, 0, s) +
∑
kψ<0

ikψϕ̂(kψ, 0, s)f̂ †(kψ, 0, s)︸ ︷︷ ︸
=
∑
kψ>0 −ikψϕ̂†(kψ ,0,s)f̂(kψ ,0,s)

=
∑

kζ>0,kψ

−2kψℑ
[
ϕ̂f̂ †

]
+

∑
kζ=0,kψ>0

−2kψℑ
[
ϕ̂f̂ †

]
=

∑
kζ>0,kψ

−2kψℑ
[
ϕ̂f̂ †

]
+

∑
kζ=0,kψ>0

−kψℑ
[
ϕ̂f̂ †

]
+
∑
kψ<0

kψℑ
[
ϕ̂(−kψ, 0, s)f̂ †(−kψ, 0, s)

]
=

∑
kζ>0,kψ

−2kψℑ
[
ϕ̂f̂ †

]
+

∑
kζ=0,kψ>0

−kψℑ
[
ϕ̂f̂ †

]
+
∑
kψ<0

kψ ℑ
[
ϕ̂†(kψ, 0, s)f̂(kψ, 0, s)

]
︸ ︷︷ ︸

=−ℑ[ϕ̂(kψ ,0,s)f̂†(kψ ,0,s)]

=
∑

kζ>0,kψ

−2kψℑ
[
ϕ̂f̂ †

]
+

∑
kζ=0,kψ

−kψℑ
[
ϕ̂f̂ †

]
=
∑
kζ ,kψ

−γ(kζ)kψℑ
[
ϕ̂f̂ †

]
(B.20)

with γ(kζ > 0) = 2 and γ(kζ = 0) = 1 and ℜ (ℑ) taking the real (imaginary) part of the
expression. The expression for the ζ derivative is equivalent and an analogous calculation for
∂ϕ/∂s leads to

∫
dψ
∫

dζ ∂ϕ
∂s
f =

∑
kψ ,kζ

γ(kζ)ℜ

[
∂ϕ̂

∂s
f̂ †

]
(B.21)

Themoments are output for every large time step and the time average is done post simulation.
For the sake of completeness the terms as in written the code (for each species) are

SA,α =−
∑
kψ ,kζ

∫∫
dv∥d (2πµ)

∫
ds (ZnRB2)

∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
)
γ(kζ)Fℜ

[
∂⟨ϕ̂⟩
∂s

f̂ †

]
(B.22)

SB,α =
∑
kψ ,kζ

∫∫
dv∥d (2πµ)

∫
ds (mRnRvRB

2)v∥
∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
)
γ(kζ)Dβkβℑ

[
⟨ϕ̂⟩f̂ †

]
(B.23)

SC,α =−
∑
kψ ,kζ

∫∫
dv∥d (2πµ)

∫
ds (2mRnRsBB

2Ω)
∂

∂v∥

(
v∥L

3/2
α−1(x

2
a)
)
γ(kζ)Hβkβℑ

[
⟨ϕ̂⟩f̂ †

]
(B.24)

with β = ψ, ζ . Note that the factor for denormalisation is ρ2∗BrefnrefTref/Rref.
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