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1. Introduction 
  

 

 1.1 General  

 

The field of synthetic polymers or plastics is currently one of the fastest growing material’s 

industries. The interest in plastics is driven by their manufacturability, recyclability, 

mechanical properties, and lower costs as compared to many alloys and ceramics. Also the 

macromolecular structure of plastics provides good biocompatibility and allows them to 

perform many biomimetic tasks that cannot be performed by other synthetic materials. 

 

Prior to the early 1920's, chemists doubted the existence of molecules having molecular 

weights greater than a few thousand. This limiting view was challenged by Hermann 

Staudinger,[1-4] a German chemist who proposed that polymers consisted of long chains of 

atoms held together by covalent bonds. He formulated a polymeric structure for rubber, based 

on a repeating isoprene unit. For his contributions to chemistry, Staudinger received the 

Nobel Prize in 1953.[5] 

 

Nowadays, the world's most widely used polymers are polyolefins (POs). Polyolefins are a 

group of plastics that are polymers of various alkenes or olefins. They include large-volume 

materials such as polyethylene (PE), polypropylene (PP), and specialty materials. 

Polyethylene is probably the polymer you see most in daily life and the most popular plastic 

in the world. It was first synthesized by the German chemist Pechmann[6] and characterized 

by his colleagues Bamberger and Tschirner[7] while the first industrially practical 

polyethylene synthesis was discribed in 1933 at the British company Imperial Chemical 

Industrial (ICI). The first commercial process to produce polyethylene (low density 

polyethylene, LDPE) was via radical polymerization using high pressure.[8] The next attempts 

in the synthesis of polyethylene were toward developing several types of catalysts that 

promote ethylene polymerization at milder temperature and pressure conditions. The first of 

these catalysts consisted of a chromium oxide catalyst supported on silica gel (the so-called 

“Phillips-catalyst”). By discovering that catalyst, Hogan and Banks[9] achieved the 

commercial production of polyethylene at low pressure. Even today, 40% of the worldwide 

polyethylene production uses this catalyst[10] because it is less expensive and easy to work 

with. Subsequent development was done in 1953 by Karl Ziegler and his workgroup who 
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discovered a catalytic system based on titanium halides and organoaluminum compounds that 

worked at even milder conditions than the Phillips catalyst to produce high density 

polyethylene (HDPE).[11,12] One year later, Giulio Natta used similar catalysts to polymerize 

propylene[13] since he thought polypropylene (PP) would be cheaper than polyethylene. In 

1963, Ziegler and Natta was awarded the Nobel Prize in Chemistry[14,15] for the work on high 

molecular weight polymers and the development of the so-called “Ziegler-Natta catalyst”. 

Up to now, the structure and function of polymerization active centers of Ziegler-Natta 

catalysts are not completely elucidated and understood. It is assumed that different catalyst 

species produce polymers with various molecular weight distributions. Polymers with defined 

structures became available with the discovery by Breslow and Newburg,[16] and Natta:[17] 

metallocene (titanocene) complexes in combination with aluminum alkyl halides can be used 

as homogeneous catalyst systems to polymerize ethylene. However, industrial application 

was not worthwhile due to low activity. 

 

The discovery of methylaluminoxane (MAO) as cocatalyst by Sinn and Kaminsky[18,19] in 

1980 marked the most significant breakthrough in the field of metallocene catalysis. The 

activity of the metallocene dichloride complexes of titanium, zirconium and hafnium could 

be increased by orders of magnitude through the use of this new cocatalyst. MAO is mainly 

obtained by controlled hydrolysis of trimethylaluminum (TMA). Despite the difficulty of 

assigning the structure of MAO due to the presence of multiple equilibria between different 

(AlOMe)n oligomers coupled with the interaction between MAO and TMA, there were 

various structures that have been proposed to match the behaviour of MAO as a Lewis 

acid.[20-25] The structure of MAO could be linear (chains), cyclic, or cage like (with six or 

twelve monomeric MAO units). 
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Scheme 1. Proposed structures of MAO: linear (left), cyclic (middle), and cage (right).  
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Experimental[26] and theoretical[27,28] studies have been performed to determine the structure 

of the dormant and active species in MAO-activated polymerization. The proposed structure 

by these studies is shown in Scheme 2. 
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Scheme 2. The structure predicted to form from the interaction of MAO with the 

metallocene complex Cp2ZrMe2. 

 

 

The most widely accepted mechanism for olefin polymerization on Ziegler-Natta and 

metallocene catalysts is the Cossee-Arlman[29-31] mechanism (see scheme 3). It is assumed 

that when MAO is used to activate a metallocene complex, the first step is to replace the 

chloride atoms on the metallocene dichloride with two methyl groups from the TMA 

molecules which locate into the cage of MAO, and the next step is the abstraction of one 

methyl group from the metallocene to form the metallocene cation and the counterion [MAO-

X]-. The metallocene cation has a vacant site on the metal atom (M). An olefin can coordinate 

to that vacant site followed by the insertion of the olefin into the metal methyl bond (M-CH3) 

and the reformation of the vacant site on the metal atom. This mechanism shows that 

metallocene catalyst has only one active site where the starting monomers are linked to 

produce largely identical polymer chains in orderly fashion with narrow molecular weight 

distribution (MWD), therefore metallocene catalysts are called single-site catalysts (SSC).  
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Scheme 3. Cossee-Arlman mechanism: activation of a metallocene complex by MAO 

(top) and insertion of ethylene (bottom). 

 

In 1985, Brintzinger demonstrated that metallocenes are eminently suited as catalysts for 

stereospecific polypropylene synthesis. He synthesized isotactic polypropylenes using a 

chiral ethylene-bridged zirconocene derivative containing tetrahydroindenyl ligands.[32,33] 

Three years later, Razavi synthesized syndiotactic polypropylenes using isopropylidene-

bridged zirconocene derivatives containing cyclopentadieny1-1-fluorenyl ligands. [34]  
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 Scheme 4. Catalysts for stereospecific polypropylene synthesis. 
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One reason for the high activity of metallocene complexes is their homogeneous nature 

where every single molecule has the potential to act as catalyst.[35]  Nevertheless, the 

homogeneous nature of these complexes causes reactor fouling: the formed polyolefin is 

deposited at the reactor walls, the stirring device, and the thermocouple and inhibits the 

reaction control. That makes a continuous polymerization process not possible. The solution 

to prevent reactor fouling is the heterogenization of metallocene catalysts. In 1998, Peifer and 

Alt[36] developed a heterogenization method called ‘’self-immobilization’’. It means to 

synthesize metallocene catalysts with an olefin or alkyne function that can be used as a 

comonomer in the polymerization process. The following complexes are typical examples for 

this approach. 
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Me

Zr
Me
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etc.

free coordination sites

heterogeneous catalyst

+ MAO

+ x C2H4

(activation and copolymerization)

 

Scheme 5. Proposed mechanism for the “self-immobilization” of a homogeneous ansa-

metallocene complex.
[36]
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The drawback of metallocene catalysts is that they are unable to polymerize polar molecules, 

such as common acrylics or vinyl chloride. This is due to the high oxophilicity of the early 

transition metals, their propensity for binding to oxygen. Introduction of a polar monomer 

into a reaction system will bring the catalyst activity to almost zero. As a consequence, 

polymer chemists have started searching for new types of single site catalysts. A lot of 

research is now being directed at other types of catalysts that can produce polyolefins with 

the desired properties. Currently, work has progressed using metals from all over the Periodic 

Table but one area in particular is proving advantageous: late transition metal compounds. 

These compounds have good polymerization activities, although slightly less than 

metallocenes. However, crucially they can polymerize reactions with polar monomers. In 

1995, Brookhart[37,38] developed the first class of post-metallocene catalysts. They were based 

upon palladium or nickel complexes bearing bulky, neutral, α-diimine ligands. These 

complexes can be tuned to produce a variety of structures that range from high density 

polyethylene through hydrocarbon plastomers and elastomers by reducing the bulk of the α-

diimine used. 

 

R

N

R

N

M

X X

R' R'

R = Alkyl, Aryl                       R' = Alkyl, Halogen

M = Ni, Pd                              X = Cl, Br  

 

Scheme 6. General structure of αααα-diimine complexes discovered by Brookhart. 

 

The second class of post-metallocene catalysts was discovered by Grubbs.[39] Several neutral 

nickel complexes with phenoxy-imine ligands were synthesized. They are active catalysts for 

the polymerization of ethylene under mild conditions in the presence of a phosphine 

scavenger. These catalysts can be tuned by varying the substituents on the phenoxy-imine 

ligands to enhance the polymerization activity.[40] Fujita et al.[41-43] used a similar ligand 

system to prepare a new family of zirconium complexes with two phenoxy-imine ligands. 
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These complexes showed a very high activity for ethylene polymerization and the catalysts 

are named FI catalysts. 

 

R  = H, t-Bu, Ph, 9-phenanthrenyl, 9-anthracenyl
X  = H, OMe, NO2

O

R

X

H

N

i-Pr

i-Pr

Ni
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O
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NN

ClCl

H H

t-Bu

t-Bu
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Scheme 7. Structures of some phenoxy-imine complexes. 

 

In 1998, Gibson[44-47] and Brookhart[48-50] independently reported a new family of olefin 

polymerization and oligomerization catalysts, derived from iron and cobalt complexes 

bearing 2,6-bis(imino)pyridyl ligands.  

 

R = Alkyl, Halogen

M = Fe, Co

X = Cl, Br

N

N N

M

Cl Cl

R R

 

 

Scheme 8. General structures of bis(imino)pyridine complexes for the polymerization 

and oligomerization of olefins. 
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The polyethylene produced by these catalysts is highly linear HDPE. Later studies found that 

substituents on the aniline part of the ligand backbone show the strongest influence on the 

catalytic behaviour.[51] For instance, by changing the pattern of substitution from 2-alkyl to 

2,6-dialkyl, the catalysts no longer produce oligomers with 2–40 carbon atoms but high 

molecular weight polyethylenes.[52,53] 

 

Similar to metallocene catalysts, the good activities of all late and early transition metal 

catalysts that were synthesized using α-diimine, phenoxy-imine, or bis(imino)pyridine 

ligands arise from their homogeneous nature. Thus, the polymerization process cannot be 

continuous due to reactor fouling. The solution to avoid the reactor fouling is to heterogenize 

these catalysts. Self-immobilization is a very elegant method to heterogenize these catalysts 

and prevent reactor fouling. A first work to transfer this method to bis(imino)pyridine 

complexes was reported by Herrmann and co-workers[54] in 2002, who used ω-alkenyl 

substituents at the imino carbon atom.  
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N N
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Scheme 9. Iron complexes of bis(imino)pyridine bearing ω-alkenyl functions were 

reported by (a) Jin et al., (b) Herrmann, (c) Seitz and Alt, (d) Görl and Alt. 
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In the same year, Jin et al.[55] reported similar complexes bearing allyl functions at the para 

positions of anilines. Seitz and Alt[56] in 2006 reported some iron (II) complexes of 

bis(imino)pyridine ligands bearing alkenyloxy substituents in position 4 of the pyridine rings. 

One year later, Görl and Alt[57] reported a series of self-immobilized iron catalysts of 

bis(imino)pyridine ligands bearing ω-alkenyl functions in position 2 of the aniline rings.  

 

Jin et al.[58-60] heterogenized some catalysts with phenoxy-imine ligands via the self-

immobilization method. The ligand frameworks of these phenoxy-imine catalysts possess 

allyl or allyloxy functions at the arene moieties of the ligands structures (see the examples in 

Scheme 10).  
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Scheme 10. Complexes containing phenoxy-imine ligands bearing allyl or allyloxy 

functions reported by Jin et al.
[58-60]  

 

Only few complexes with α-diimine ligands bearing ω-alkenyl functions were reported 

comparing to bis(imino)pyridine or phenoxy-imine complexes. Jin et al.[61,62] reported self-

immobilized nickel catalysts of α-diimine ligands bearing one or two allyl groups. These 

self-immobilized nickel catalysts not only kept the good activities of their analogous 

homogeneous catalysts but also improved the particle morphology of the produced 

polyethylene.[61] 
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Scheme 11. Some nickel complexes with αααα-diimine ligands bearing allyl groups. 

 

 

The use of single site catalysts for olefin polymerization has the disadvantage of producing 

narrow molecular weight distributions (MWD). It is due to identical active sites of the 

catalyst. This can cause problems for industrial processings like extrusion or injection 

moulding. The solution is to develop a new class of catalysts which are able to produce 

polyolefins with broader MWDs.  
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1.2 Aim of the work 

 

Polyolefins having a bi- or multi-modal or at least a broad MWD can be obtained from a 

variety of methods including mechanical blending, multi-stage reactors, mixed catalysts, and 

asymmetric dinuclear catalysts. The last method is the most desirable one in terms of capital 

expense and product properties. The dinuclear catalysts have the ability to produce the broad 

or multi-modal resin in a single reactor. This process will help to avoid the need for an 

additional reactor and controls. 

 

The goals of my work are to synthesize dinuclear catalysts that provide two different active 

sites for the oligomerization and polymerization of α-olefins, especially ethylene. The 

precursors will contain a diimine moiety coordinated to late or early transition metals and a 

metallocene or half sandwich moiety. In order to achieve these goals, the plan is to 

functionalize an α-diimine with allyl or alkyl halide groups and then couple this modified α-

diimine compound with a metallocene or a half sandwich complex. 
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2. General Part 

 
 

2.1. α-Diimine compounds bearing allyl groups and their complexes 

 
2.1.1 General 

 
Diimines or diketimines can be prepared by condensation reactions of two equivalents of 

amines or anilines with one equivalent of a diketone. 1,2-Diimines (α-diimines) are important 

candidates in coordination chemistry and catalysis because they are well-known to stabilize 

organometallic complexes.[63-65]   

   

 

R , R'  =  alkyl  or  aryl

R R

NR' R'N

 

 

Scheme 12. General structure of αααα-diimine compounds. 

 

The use of α-diimines as ligands in transition metal complexes has received a great deal of 

attention since 1995 when Brookhart and co-workers[37,38] discovered α-diimine complexes of 

nickel(II) and palladium(II) as catalysts for the polymerization and oligomerization of 

olefins.[66-73]  Several complexes were prepared later using various metal salts with α-diimine 

ligands.[74-82] Among them, nickel catalysts attained special interest because of their tunable 

olefin polymerization activity and polymer microstructure by simple modification of the 

ligand architecture and the ability of producing polyethylene with branched structures 

without the use of α-olefin comonomers.[72] Substituents on the arene moiety and/or the 

backbone of the ligand influence the active site of the catalyst during the polymerization 

reaction.[83-97] For instance, when the catalyst has bulky substituents at the ortho-positions of 

the arene moieties, the catalyst will produce high molecular weight polymer because the axial 

bulk provided by the ortho-substituents hinders the chain transfer and causes slow chain 

transfer relative to chain propagation.[87-97] When the steric bulk is eliminated, the rate of 
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chain transfer will be increased and the catalyst will produce oligomer rather than polymer.[83-

86] The productivities and the type of the produced polymers of the same nickel catalysts 

bearing bulky α-diimine ligands depend not only on the ligand environment at the nickel 

centre but also on the type of co-catalyst,[98-99] the monomer pressure,[100-102] and the 

polymerization temperature.[101,102] 

Despite the many advantages of α-diimine nickel catalysts, the homogeneous nature of these 

catalysts can cause difficulties in controlling the polymer particle morphology and severe 

reactor fouling when they are used in slurry or gas-phase polymerization processes. To 

overcome these drawbacks, several works were carried out to heterogenize these catalysts via 

fixing them on different types of inorganic supports, such as silica,[103-107] or polymeric 

supports.[62,107] Although, self-immobilization is a very elegant method to heterogenize such 

catalysts, only few α-diimine nickel complexes bearing ω-alkenyl functions were prepared 

and heterogenized via the self-immobilization method.[61,62,107] 

  

 

2.1.2 Synthesis and characterization of ligands 

 
 

2.1.2.1 Synthesis and characterization of compounds 1-3   

 

 

The α-diimine compounds, ArN=C(Me)-C(Me)=NAr {where Ar = 2,6-dimethylphenyl (1); 

2,6-diethylphenyl (2); or 2,6-diisopropylphenyl (3)} were synthesized by condensation 

reactions of two equivalents of substituted aniline derivatives with one equivalent of diacetyl  

(2,3-butadione) in the presence of formic acid (HCOOH) as catalyst. 

 

R

R R

R

NH2

R R

+      2 - 2H2O

HCOOH

R =  Me
R =  Et     
R = i-Pr

NN

OO

(1)
(2)
(3)  

Scheme 13. The synthesis of αααα-diimine compounds. 
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The compounds 1 - 3 were characterized via GC-MS, 1H NMR, and 13C NMR spectroscopy 

(see the appendices for the full analysis data). The mass and NMR spectra of compound 3 

will be discussed as an example. 

 

 

 

Scheme 14. Mass spectrum of the αααα-diimine compound 3. 

 

The mass spectrum of compound 3 (see Scheme 14) was obtained at the retention time of 

804s. The molecular ion appears at m/z = 403 with very weak intensity of 0.8% relative to the 

base peak. The loss of an isopropyl fragment leads to the peak at m/z = 361, while the base 

peak at m/z = 202 can be explained with the fragmentation of the diimine compound to two 

identical imine molecules. 

 

The 1H NMR spectrum of compound 3 (see Scheme 15) shows a signal at δ = 7.20 ppm 

which is assigned to the protons of the aromatic CH groups (11,12,13,14) while the signal at 

δ = 7.13 ppm arises from the protons of the aromatic CH groups (15,16). The protons 

belonging to the CH groups of the isopropyl functions give the septet signal at δ = 2.75 ppm. 

The singlet appearing at δ = 2.10 ppm is assigned to the protons of the methyl groups at the 

backbone of the compound structure while the protons of the methyl groups belonging to the 

isopropyl functions produce two doublet signals at δ = 1.22 and 1.18 ppm which overlapped 

to form a pseudo triplet signal.                
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Scheme 15. 
1
H NMR spectrum of the αααα-diimine compound 3. 

 

The 13C NMR spectrum of compound 3 (see Scheme 16) shows the signal of the imine 

carbon atoms at δ = 168.0 ppm. The signals belonging to the quaternary carbon atoms of the 

aromatic ring systems appear at δ = 146.0 and 135.0 ppm, while the signals at δ = 123.8 and 

123.0 ppm can be assigned to the aromatic CH groups. The carbon atoms of the CH groups of 

the isopropyl functions give the signal at δ = 28.5 ppm while the signal at δ = 22.8 ppm is 

generated by the methyl groups of the isopropyl functions. The signal of the methyl groups at 

the backbone of the compound structure appears at δ = 16.8 ppm.  

 

 

 

Scheme 16. 
13

C NMR spectrum of the αααα-diimine compound 3. 
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2.1.2.2 Synthesis and characterization of compounds 4-6   

 

The compounds 4 – 6 containing α-diimine ligands bearing allyl groups at the backbone of 

the ligand structures were synthesized via metalating the appropriate α-diimine compound (1, 

2, or 3) with a 1:1 mixture of n-butyllithium (n-BuLi) and tetramethylethylenediamine 

(TMEDA). The resulting lithium salts were then reacted with allyl bromide to afford the 

corresponding products 4, 5, or 6 as shown in Scheme 17. 
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R = i-Pr

N N

R

R R

R
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R R

R

1) BuLi / TMEDA

2)
Br

- LiBr

(1)
(2)
(3)

R =  Me
R =  Et
R = i-Pr
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Scheme 17. The synthesis of the allylated αααα-diimine compounds 4, 5, and 6. 

 

The compounds 4 - 6 were characterized via GC-MS, 1H NMR, and 13C NMR spectroscopy 

(see the appendices for the full analysis data). The mass and NMR spectra of compound 6 

will be discussed as example. 

 

The mass spectrum of compound 6 (see Scheme 18) shows the molecular ion at m/z = 444 

with an intensity of 28% relative to the base peak. The loss of a methyl group results in a 

fragment with a weak intensity of 1% at m/z = 429 while the loss of an isopropyl group leads 

to a fragment with a peak mass of m/z = 401 with an intensity of 76%. The fragmentation of 

the diimine compound generates two imine moieties where the one bearing the allyl group 

produces the base peak at m/z = 242 and the other appears at m/z = 202 with an intensity of 

56%.  
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Scheme 18. Mass spectrum of the αααα-diimine compound 6. 

 

The 1H NMR spectrum of compound 6 (see Scheme 19) shows the overlapped signals at δ = 

7.16 ppm which are assigned to the protons of the aromatic CH groups while the CH group of 

the allyl function produces the multiplet signal at δ = 5.70 ppm. The terminal methylene 

group of the allyl function give the proton NMR signal at δ = 4.95 ppm. The signal at δ = 

2.75 ppm is assigned to the CH groups of the isopropyl functions which overlap with the 

signal of the methylene group (2) at δ = 2.65 ppm. 

 

 

 

Scheme 19. 
1
H NMR spectrum of the αααα-diimine compound 6. 
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The quartet signal appearing at δ = 2.27 ppm is produced by the protons of the methylene 

group (29). The methyl groups at the backbone of the compound structure yield the resonance 

signal at δ = 2.05 ppm while the methyl groups belonging to the isopropyl functions produce 

the multiplet signal at δ = 1.20 ppm. 

 

The 13C NMR spectrum of compound 6 (see Scheme 20) shows the signal of the imine 

carbon atom connected to the allyl group at δ = 170.5 ppm which is at higher field by 2.5 

ppm than the other imine carbon atom at δ = 168.0 ppm. The signals belonging to the 

quaternary carbon atoms of the aromatic ring systems appear at δ = 146.5, 145.5, 135.2, and 

134.8 ppm, while the signal at δ = 137.5 ppm is produced by the CH group of the allyl 

function. The signals at δ = 123.7, 123.0, and 122.7 ppm can be assigned to the aromatic CH 

groups. The terminal methylene group of the allyl function gives the signal at δ = 115.0 ppm 

while the methylene groups (2) and (29) can be assigned to the signals at δ = 30.5 and 29.0 

ppm, respectively. The carbon atoms of the CH groups of the isopropyl functions generate the 

intensive signal at δ = 28.5 ppm. The signals at δ = 23.3, 23.2, 22.7, and 22.1 ppm are 

assigned to the methyl groups of the isopropyl functions while the carbon atom of methyl 

group at the backbone of the compound structure appears at δ = 17.1 ppm.  

 

 

 

Scheme 20. 
13

C NMR spectrum of the αααα-diimine compound 6. 
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Single crystals of 6 were obtained by slow solvent evaporation from a concentrated methanol 

solution. The molecular structure of compound 6 was unambiguously established by X-ray 

analysis. The numbering system is given in Scheme 21. The crystal data and structure 

refinement are listed in table D1 at the appendices. 

 

 

 

Scheme. 21 Molecular structure of compound 6 (ORTEP plot at 40 % probability level, 

hydrogens except H5, H6A and H6B are omitted for clarity). 

 

The selected bond lengths (Å): C1-N1 1.274(2), C1-C2 1.496(3), C1-C31 1.500(3), C2-N2 

1.280(2), C2-C3 1.493(3), C3-C4 1.531(3), C4-C5 1.477(3), C5-C6 1.213(5), C7-N2 

1.418(2). Selected bond angles (˚): N1 C1 C2 115.78(15), N1 C1 C31 125.84(17), C2 C1 C31 

118.29(16), N2 C2 C3 126.27(17), N2 C2 C1 115.64(16), C3 C2 C1 118.06(16), C2 C3 C4 

112.51(16), C5 C4 C3 113.9(2), C6 C5 C4 131.0(3), C8 C7 N2 120.32(17), C12 C7 N2 

117.79(17), C20 C19 N1 121.02(17), C24 C19 N1 116.99(16), C1 N1 C19 121.31(15), C2 

N2 C7 122.42(15). 

The principle plane contains N1C1C2N2 and they are not in the same plane. The mean 

deviation is 0.0752 Å due to different groups attached to the carbon atoms C1 and C2. The 

carbon atoms C7-C12 of the aromatic ring are in the same plane which has the angle 85.3˚ 

with the principle plane while the carbon atoms C19-C24 of the other aromatic ring are in the 

same plane which has the angle 84.9˚ with the principle plane. These two planes formed by 

the aromatic rings are not parallel to each other and slightly twisted by an angle of 6.8˚.  
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2.1.2.3 Synthesis and characterization of compound 7   

 

4-Allyl-2,6-diisopropylaniline was prepared according to the literature.[108] Compound 7 was 

synthesized via condensation reaction of one equivalent of 2,3-butandione with two 

equivalents of 4-allyl-2,6-diisopropylaniline in the presence of formic acid as catalyst. The 

synthesis and the structure of compound 7 are shown in Scheme 22.  
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Scheme 22. Synthesis of the αααα-diimine compound 7. 

 

Compound 7 was characterized by GC-MS, 1H NMR, and 13C NMR spectroscopy (see the 

appendices for the full analysis data).  

 

The mass spectrum of compound 7 (see Scheme 23) shows the molecular ion at m/z = 484 

with a weak intensity of 1% relative to the base peak, while the peak at m/z = 441 with an 

intensity of 38% results from the loss of an isopropyl group. The base peak at m/z = 242 is 

produced by the cleavage of the compound into two imine moieties having the same mass. 
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Scheme 23. Mass spectrum of the αααα-diimine compound 7. 

 

The 1H NMR spectrum of compound 7 (see Scheme 24) shows a singlet at δ = 6.95 ppm 

which is assigned to the protons of the aromatic CH groups while the CH groups  of the allyl 

functions produce the multiplet signal at δ = 6.01 ppm. The terminal methylene groups of the 

allyl functions give a doublet of doublet proton NMR signal at δ = 5.10 ppm. The signal at δ 

= 3.38 ppm is assigned to the methylene groups 29 and 30 while the CH groups of the 

isopropyl functions produce the septet signal at δ = 2.67 ppm.  

 

 

 

Scheme 24. 
1
H NMR spectrum of the αααα-diimine compound 7. 
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The singlet signal at δ = 2.04 ppm is assigned to the protons of the methyl groups at the 

backbone of the compound while the protons of the methyl groups of the isopropyl functions 

produce the two doublet signals at δ = 1.17 and 1.14 ppm.                 

 

The 13C NMR spectrum of compound 7 (see Scheme 25) shows the signal of the imine 

carbon atoms at δ = 168.4 ppm. The signals of the quaternary carbon atoms of the aromatic 

rings which are bonded to the imine moieties appear at δ = 144.3 ppm while the other 

quaternary carbon atoms of the aromatic rings produce the signal at δ = 135.0 ppm. The 

signal at δ = 138.0 ppm is assigned to the CH groups of the allyl function while the aromatic 

CH groups appear at δ = 123.2 ppm. The terminal methylene groups of the allyl functions 

give the signal at δ = 115.3 ppm while the signal at δ = 40.2 ppm is produced by the 

methylene groups 29 and 30. The carbon atoms of the CH groups of the isopropyl functions 

generate the signal at δ = 28.5 ppm. The signal at δ = 22.8 ppm is assigned to the methyl 

groups of the isopropyl functions while the signal of the methyl groups at the backbone of the 

compound appears at δ = 16.5 ppm.  

 

 

 

 

Scheme 25. 
13

C NMR spectrum of the αααα-diimine compound 7. 
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2.1.3 Synthesis and characterization of the complexes 

 

2.1.3.1 Synthesis and characterization of the complexes 4a-g, 5a-g, and 6a-g   

 

The complexes 4a-g, 5a-g, and 6a-g were synthesized via reacting the desired metal salt with 

the respective α-diimine compound 4, 5, or 6. The metal salts titanium tetrachloride (TiCl4), 

zirconium tetrachloride (ZrCl4), vanadium trichloride (VCl3), chromium trichloride (CrCl3), 

iron trichloride (FeCl3), dibromo(1,2-dimethoxyethane)nickel(II) (NiBr2·DME), or 

dichloro(1,5-cyclooctadiene)palladium(II) (PdCl2·COD) were used. The complexes 4a-g, 5a-

g, and 6a-g are bearing allyl groups on the backbones of the complex structures. The 

synthesis and the structure of the complexes are depicted in Scheme 26. 
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Scheme 26. Synthesis of the αααα-diimine complexes 4a-g, 5a-g, and 6a-g. 

 

The complexes 4a-g, 5a-g, and 6a-g were characterized via mass spectroscopy and elemental 

analysis. The complex 6g was characterized by 1H NMR, and 13C NMR spectroscopy, (see 

the appendices for the full analysis data). The mass and NMR spectra of complex 6g will be 

discussed as example.  
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The mass spectrum of complex 6g (see Scheme 27) shows the peak of the molecular ion at 

m/z = 621 with an intensity of 7% relative to the base peak. The loss of a chloro group results 

in a peak at m/z = 587 (intensity 20%) while the peak at m/z = 580 with an intensity of 35% 

is assigned to the loss of an isopropyl group. The peaks appearing at m/z = 544 and 463 with 

the intensities 32% and 48% are produced by the loss of two and four isopropyl groups. The 

loss of both chloro groups and the palladium center results in the molecular ion of the α-

diimine ligand at m/z = 444 with an intensity of 58%. Further cleavage of the α-diimine 

ligand framework gives two imine moieties where the one bearing the allyl group appears at 

m/z = 240 with an intensity of 45% and the other produces the base peak at m/z = 202. 

 

 

 

Scheme 27. Mass spectrum of the αααα-diimine complex 6g. 

 

 

The 1H NMR spectrum of complex 6g (see Scheme 28) shows a triplet signal at δ = 7.40 ppm 

which is assigned to the protons of the aromatic CH groups 15 and 16. The signal of the other 

aromatic CH groups is splitted into two doublet signals at δ = 7.29 and 7.27 ppm. The CH 

group of the allyl function produces the multiplet signal at δ = 5.64 ppm while the terminal 

methylene group of the allyl function gives a doublet of doublets at δ = 5.01 ppm. The signal 

of the CH groups of the isopropyl functions is split into two septet signals at δ = 3.10 and 

2.98 ppm. The methylene group 2 produces the triplet signal at δ = 2.54 ppm while the 

pseudo quartet signal at δ = 2.21 ppm is assigned to the methylene group 29. The methyl 

group at the backbone of the complex structure yields the intensive singlet signal at δ = 2.13 
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ppm while the methyl groups belonging to the isopropyl functions produce four doublet 

signals at δ = 1.54, 1.47, 1.29 and 1.23 ppm. 

 

 

 

Scheme 28. 
1
H NMR spectrum of the αααα-diimine complex 6g. 

 

The 13C NMR spectrum of complex 6g (see Scheme 29) shows the signal of the imine carbon 

atom connected to the allyl group at δ = 178.6 ppm which is higher by 8 ppm than the signal 

of the analogous atom of the free ligand. The signal of the other imine carbon atom appears at 

δ = 174.0 ppm while the analogous atom of the free ligand appears at δ = 168.0 ppm. The 

signals of the quaternary carbon atoms of the aromatic ring systems appear at convergent 

values: δ = 141.3, 140.9, and 139.3 ppm. The CH group of the allyl function produces the 

signal at δ = 134.2 ppm while the signals at δ = 129.0 and 124.0 ppm can be assigned to the 

aromatic CH groups. The terminal methylene group of the allyl function is assigned to the 

signal at δ = 117.3 ppm while the methylene groups 2 and 29 give the signals at δ = 32.6 and 

31.0 ppm. The carbon atoms of the CH groups of the isopropyl functions generate the signals 

at δ = 29.5 and 29.3 ppm while the signals at δ = 24.2 and 23.5 ppm are assigned to the 

methyl groups of the isopropyl functions. The methyl group at the backbone of the complex 

appears at δ = 20.8 ppm which is higher by 3.7 ppm than the signal for the analogous group 

of the free ligand. 
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Scheme 29. 
13

C NMR spectrum of the αααα-diimine complex 6g. 

 

Single crystals of complex 6g were obtained by slow solvent evaporation from a concentrated 

methylene chloride solution. The molecular structure of complex 6g was unambiguously 

established by X-ray analysis. The numbering system is given in Scheme 30. The crystal data 

and structure refinement are listed in table D2 at the appendices. 

 

The selected bond lengths (Å): C1-N1 1.294(4), C1-C3 1.484(4), C1-C2 1.505(11), C3-N2 

1.297(4), C3-C4 1.523(17), C4-C5 1.621(19), C5-C6 1.478(8), C6-C7 1.278(18), C8-N2 

1.445(4), C20-N1 1.447(4), N1-Pd1 2.009(2), N2-Pd1 2.010(3), Cl1-Pd1 2.2803(8), Cl2-Pd1 

2.2752(8). Selected bond angles (˚): N1 C1 C3 114.3(3), N1 C1 C2 120.5(5), C3 C1 C2 

125.2(5), N2 C3 C1 114.2(3), N2 C3 C4 121.3(7), C1 C3 C4 124.5(7), C3 C4 C5 110.8(11), 

C6 C5 C4 120.5(7), C7 C6 C5 125.3(10), C1 N1 C20 121.4(2), C1 N1 Pd1 116.1(2), C20 N1 

Pd1 122.48(18), C3 N2 C8 121.5(3), C3 N2 Pd1 116.1(2), C8 N2 Pd1 122.4(2), N1 Pd1 N2 

78.74(10), N1 Pd1 Cl2 173.75(8), N2 Pd1 Cl2 96.33(8), N1 Pd1 Cl1 95.35(7), N2 Pd1 Cl1 

173.84(8), Cl2 Pd1 Cl1 89.68(3). 
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Scheme 30. Molecular structure of complex 6g (ORTEP plot at 30 % probability level, 

hydrogens except H6, H7A and H7B are omitted for clarity). 

 

The coordination number of the palladium(II) center of complex 6g is four and the geometry 

around the palladium is square planar. The unit cell includes a methylene chloride molecule. 

The principle plane contains N1N2Pd1Cl1Cl2 which are slightly deviated from this principle 

plane; the mean deviation is 0.0423 Å. The deviation is caused by the different groups 

attached to the backbone structure of the complex. The carbon atoms C8-C13 of the aromatic 

ring are in the same plane and their plane is slightly twisted from being perpendicular to the 

principle plane by an angle of 91.6˚ while the analogous plane of the free ligand is twisted by 

an angle of 85.3˚. The carbon atoms C20-C25 of the other aromatic ring are in the same 

plane, too, and their plane is twisted against the principle plane by an angle of 89.6˚ while the 

analogous angle of the free ligand is 84.9˚. Therefore, the planes are formed by the aromatic 

rings are closer to be perpendicular to the principle plane in the complex than in the ligand. 

These two planes formed by the aromatic rings are twisted by an angle of 20.7˚ from each 

other where the analogous angle of the free ligand is 6.8˚ which means that these planes are 

closer to be parallel to each other in the free ligand than in the complex. The bond lengths of 

C1-N1 (1.294(4) Å) and C3-N2 (1.297(4) Å) in complex 6g are longer compared with those 

(1.274(2) Å) and (1.280(2) Å) in compound 6. The bond lengths between the two carbon 

atoms of the diimine moiety in complex 6g (1.484(4) Å) are shorter than the analogous bonds 

in compound 6 (1.496(3) Å). The bond angles N1C1C3 (114.3(3)˚) and N2C3C1 (114.2(3)˚) 
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in complex 6g are smaller compared with the analogous angles (115.78(15)˚) and 

(115.64(16)˚) in the ligand precursor 6. 

 

 

2.1.3.2 Synthesis and characterization of complex 8   

 

Complex 8 was synthesized via reacting the α-diimine compound 7 with dibromo(1,2-

dimethoxyethane)nickel(II) (NiBr2·DME). The prepared α-diimine nickel complex 8 is 

bearing two allyl groups on the arene moieties. The synthesis of the complex is shown in 

Scheme 31. 
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Scheme 31. Synthesis of the αααα-diimine nickel complex 8. 

 

Complex 8 could not be characterized by NMR spectroscopy due to the paramagnetic nature 

of the nickel center. Therefore, mass spectroscopy and elemental analysis were used for 
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characterization (see the appendices for the full analysis data). A single crystal of the 

complex was isolated and analyzed via X-ray diffraction. 

 

The mass spectrum of complex 8 (see Scheme 32) shows a peak from the molecule losing a 

methyl and an isopropyl group at m/z = 643 with an intensity of 10% relative to the base 

peak. The loss of a bromo substituent produces the peak at m/z = 622 with the intensity of 

18% while the peak appearing at m/z = 485 with an intensity of 9% is assigned to the loss of 

both bromo groups and the nickel center. Further cleavage of the α-diimine ligand framework 

gives two imine moieties having the same mass which yields the base peak at m/z = 242. 

 

 

 

 

Scheme 32. Mass spectrum of the αααα-diimine nickel complex 8. 

 

 

Single crystals of complex 8 were obtained by slow solvent evaporation from a concentrated 

methylene chloride solution. The molecular structure of complex 8 was unambiguously 

established by X-ray analysis. The numbering system is given in Scheme 33. The crystal data 

and structure refinement are listed in table D3 at the appendices. 

 

Selected bond lengths (Å): C1-N1 1.276(7), C1-C2 1.497(8), C1-C3 1.498(8), C3-N2 

1.284(7), C3-C4 1.495(7), C5-N2 1.441(7), C14-N1 1.462(7), N1-Ni1 1.979(4), N2-Ni1 

1.993(4), Ni1-Br2 2.3045(10), Ni1-Br1 2.3443(9). Selected bond angles (˚):N1 C1 C2 

126.1(5), N1 C1 C3 114.4(5), C2 C1 C3 119.4(5), N2 C3 C4 125.5(5), N2 C3 C1 114.9(5), 
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C4 C3 C1 119.5(5), C1 N1 C14 120.4(5), C1 N1 Ni1 115.4(4), C14 N1 Ni1 124.2(3), C3 N2 

C5 120.4(5), C3 N2 Ni1 114.2(4), C5 N2 Ni1 125.4(3), N1 Ni1 N2 80.52(17), N1 Ni1 Br2 

118.31(13), N2 Ni1 Br2 114.90(13), N1 Ni1 Br1 105.53(12), N2 Ni1 Br1 108.11(13), Br2 

Ni1 Br1 121.81(4). 

 

 

 

 

 

Scheme 33. Molecular structure of complex 8 (ORTEP plot at 30 % probability level, 

hydrogens are omitted for clarity). 

 

 

The geometry around the nickel(II) center of complex 8 is tetrahedral. The nickel center has 

the coordination number four where it is coordinated to two bromo groups and the two 

nitrogen atoms of the diimine moiety. The unit cell contains two independent molecules of 

the nickel complex which are not twins based on the high value, 98.6 %, of the parameter 

(Completeness to θ = 25.7°). The principle plane contains C1N1Ni1N2C3 which are slightly 

deviated from this principle plane, the mean deviation is 0.0345 Å. The deviation is caused 

by the allyl groups attached to the arene moieties. The carbon atoms C5-C10 of the aromatic 

ring are in the same plane and their plane is slightly twisted from being perpendicular to the 

principle plane by an angle of 89.7˚. The carbon atoms C20-C25 of the other aromatic ring 

are in the same plane, too, and their plane is twisted against the principle plane by an angle of 

90.8˚. These two planes formed by the aromatic rings are twisted from each other by an angle 

of 13.8˚. 
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2.1.4 Polymerization experiments 

 
2.1.4.1 General 

 

The olefin polymerization or oligomerization using (α-diimine)nickel(II) complexes activated 

with methylalumoxane (MAO) is explained with the so-called ''chain running'' or ''chain 

walking'' mechanism and depends on the structure of the catalyst precursor[66-73 , 83-97] 

(Scheme 34). 

 

 
 

Scheme 34. Chain running mechanism.
 [66-73 , 83-97] 
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It is found that when bulky substituents are introduced at the ortho-positions of the arene 

moieties of (α-diimine)nickel(II) catalysts, the catalysts will produce high molecular weight 

polymers because the axial bulk provided by the ortho-substituents hinders the chain transfer 

and causes slow chain transfer relative to chain propagation.[87-97] When the steric bulk is 

eliminated, the rate of chain transfer will be increased and the catalyst will produce oligomers 

rather than polymer.[83-86] Deng et al.[109,110] proved this with calculations for the transition 

states of the chain propagation and the chain transfer reaction. The ortho-substituents have a 

considerable influence on the monomer addition to the catalytic center and the dissociation of 

the formed polymer from the metal due to their interaction with the axial coordination sites of 

the metal center. 

 

N N
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Scheme 35. Axial (Ax) and equatorial (Eq) coordination sites of the metal center and 

their steric interactions with the bulky ortho-substituents.
[109,110] 

 

The effect of introducing bulky substituents at the backbone of (α-diimine)nickel(II) catalysts 

is an increase of the molecular weight of the produced polymers and a decrease of the catalyst 

activity.[83-86,91] The bulky substituents reduce the free rotation of the aryl rings. Therefore, 

the axial coordination sites of the metal center are sterically more hindered and the 

coordination of the olefin monomer via these axial coordination sites is hindered, too.[84-86] 
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2.1.4.2 Polymerization experiments with the complexes 4a-g, 5a-g, and 6a-g  

 

2.1.4.2.1 Polymerization results of the complexes 4a-g 

 

The complexes 4a-g are a series of α-diimine complexes bearing allyl groups at the backbone 

of their structures and methyl substituents at the ortho positions of their arene moieties. These 

bulky substituents suppose to provoke the catalyst to produce polymer rather than oligomers 

according to the suggested mechanism. The structures of these complexes are shown in 

Scheme 36. 
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Scheme 36. The structures of αααα-diimine complexes 4a-g. 

  

 

Suspensions of a few milligrams of these complexes in around 5 ml toluene were activated 

with methylaluminoxane (MAO), the M:Al ratio was 1:1500. The catalysts were transferred 

to a 1 l Büchi laboratory autoclave under inert atmosphere and tested for the polymerization 

of ethylene (in 250 ml of n-pentane, 10 bar ethylene, and polymerization temperature of 65 ْ

C). The results of the ethylene polymerizations are illustrated in Scheme 37. 
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Scheme 37. The polymerization activities of the αααα-diimine complexes 4a-g. 

 

 

The most active catalyst among the series is the nickel catalyst 4f and the second most active 

catalyst is the vanadium catalyst 4c. The palladium catalyst 4g showed no activity for 

ethylene polymerization. This may be attributed to internal interactions between the active 

sites of the palladium catalysts with the allyl functions attached to the backbone of the 

catalyst with the result of blocking the active sites. This unique behavior occurred only with 

the palladium catalyst. The iron catalyst 4e showed the lowest activity (49 kg PE / mol cat. 

h). Also, a low activity (302 kg PE / mol cat. h) was observed using the chromium catalyst 

4d. The zirconium catalyst 4b showed higher activity in comparison to the titanium catalyst 

4b. This can be assigned to the better separation between the cationic active species of the 

catalyst and the anionic MAO species in the zirconium catalyst. The better separation allows 

more monomers to reach the active sites of the catalyst raising the polymerization activity. 

The activity of the vanadium catalyst 4c was higher than for the titanium catalyst 4a and the 

zirconium 4b. This may attribute to the different metal and the lower number of ligands 
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coordinated to the vanadium center than in case of the titanium or zirconium catalysts 

resulting in less interactions with the methyl substituents at the ortho positions of the arene 

moieties. These interactions can hinder the coordination sites of the metal center and lower 

the catalyst activity. The same explanation can be used to interpret the higher activity of the 

nickel catalyst 4f compared with the vanadium catalyst 4c.  

 

 

 2.1.4.2.2 Polymerization results of the complexes 5a-g 

   

The complexes 5a-g are α-diimine complexes similar to the complexes 4a-g bearing allyl 

groups at the backbone of their structures but different in having ethyl substituents at the 

ortho positions of their arene moieties. The structures of these complexes are shown in 

Scheme 38. 
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Scheme 38. The structures of αααα-diimine complexes 5a-g. 

 

The complexes 5a-g were activated with MAO, the M:Al ratio was 1:1500. The catalysts 

were tested for the polymerization of ethylene by applying the same polymerization 
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conditions used for catalysts 4a-g. The results of the ethylene polymerizations are illustrated 

in Scheme 39. 
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Scheme 39. The polymerization activities of the αααα-diimine complexes 5a-g. 

 

The catalysts bearing ligand 5 showed a similar trend in the polymerization activities like 

catalysts 4a-g with the exception of the titanium and zirconium catalysts. The titanium 

catalyst 5a showed higher polymerization activity than the zirconium catalyst 5b while it was 

the opposite for the titanium and zirconium catalysts 4a and 4b. Reduced catalyst activities 

were found for the catalysts of ligand 5 compared to the catalysts of 4 except for the iron 

catalyst 5e which showed a slight increase in the activity compared to the iron catalyst 4e. 

The lower activities are assigned to the ethyl subtituents introduced into the ligand 

frameworks of the catalysts 5a-g. They are bulkier than the methyl subtituents of the catalysts 

bearing the ligand 4. The palladium catalyst 5g showed no activity for ethylene 

polymerization while the most active catalyst was the nickel compound 5f.  
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2.1.4.2.3 Polymerization results of the complexes 6a-g 

 

The complexes 6a-g are analogous to the complexes 4a-g and 5a-g with the difference of 

having isopropyl groups substituting the ortho positions of the arene moieties. The structures 

of these complexes are shown in Scheme 40. 
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Scheme 40. The structures of the αααα-diimine complexes 6a-g. 

 

 

The complexes 6a-g were activated with MAO, the M:Al ratio was 1:1500. The catalysts 

were tested for the polymerization of ethylene by applying the same polymerization 

conditions used for catalysts 4a-g and 5a-g. The results of the ethylene polymerizations are 

illustrated in Scheme 41. 

 

The catalysts 6a-g showed the lowest polymerization activities in comparison with the 

analogous catalysts bearing the ligands 4 and 5. The lower activity is assigned to the 

isopropyl subtituents which are bulkier than the subtituents of either the catalysts 4a-g or the 

catalysts 5a-g. The trend resulting from the change in polymerization activity by changing the 

metal center of the catalysts 6a-g was the same as observed for catalysts 4a-g. 
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Scheme 41. The polymerization activities of the αααα-diimine complexes 6a-g. 

 

 

2.1.4.2.4 Comparison between the polymerization results of 4a-g, 5a-g, and 6a-g  

 

The palladium catalysts 4g, 5g, and 6g showed no polymerization activities. That may 

attribute to the allyl functions attached to the backbone of the catalyst structures which can 

interact with the active sites of the palladium catalysts resulting in blocking the active sites 

and deactivating the catalyst. This behavior was not observed with the other metals and was a 

distinguished behavior by palladium. The chromium catalysts 4d, 5d, and 6d showed higher 

activities than the analogous iron catalysts which showed very low activities. The vanadium 

catalysts 4c, 5c, and 6c showed lower activities than the analogous nickel catalysts which 

showed the highest activities. The zirconium catalysts showed higher activity compared to 

the titanium catalysts with the exception of catalyst 5b. Both of the titanium and zirconium 

catalysts had lower activities than the vanadium catalysts. The change in polymerization 

activity with the change of the ortho substituents at the arene moieties of the catalyst 
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structures showed that the bulkier the substituents, the lower the polymerization activity. This 

result is compatible with the chain running mechanism which suggests that the bulky 

substituents can hinder the monomers from reaching the active catalytic centers due to their 

interaction with the axial coordination sites of the metal centers resulting in lower activities. 

The influence of the substituent's size on the catalyst activity was higher in the case of nickel 

and zirconium catalysts.  

 

 

 

 

Scheme 42. Change of polymerization activities when changing the structure of αααα-

diimine complexes and the metal centers. 

 

 

Samples of the produced polyethylene by the nickel catalysts 4f, 5f, and 6f were analyzed by 

gel permeation chromatography (GPC). The aim was to study the effect of varying the bulk 

of the ortho substituents at the arene moieties on the molecular weight (MW) of the produced 

polyethylene and the molecular weight distribution (MWD). The results of GPC are 

summarized in Table 1. 
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Table 1. GPC results of the polyethylenes produced by the catalysts 4f ,5f, and 6f. 

 

Complex Number ortho-substituents 
Mw 

( g/mol ) 
MWD 

4f Me 362916 4.34 

5f Et 422106 3.96 

6f i-Pr 1153553 3.93 

    

 

The GPC results showed an increase in the molecular weights and a decrease in the molecular 

weight distributions when increasing the bulk of the ortho substituents at the arene moieties. 

The results can be explained by referring to the chain running mechanism suggesting that the 

bulkier the ortho substituents the more hinderance at the axial plane of the nickel center. This 

causes a slow chain transfer relative to chain propagation and thus, a polyethylene with 

higher molecular weight will be produced. 

   

 

2.1.4.3 Polymerization experiments with the complex 8  

 

Compound 8 is an α-diimine nickel complex bearing two allyl groups at the para positions of 

the arene moieties. The complex was prepared via reacting the dibromo(1,2-

dimethoxyethane)nickel(II) (NiBr2.DME) with compound 7. The structure of complex 8 is 

shown in Scheme 43. 
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Scheme 43. The structure of αααα-diimine complex 8. 
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Complex 8 was activated with MAO, the M:Al ratio was 1:1500. The catalyst was tested for 

the polymerization of ethylene using the same polymerization conditions as for the nickel 

catalyst 6f. The catalyst 8 demonstrated higher polymerization activity than catalyst 6f by a 

factor of one and a half. The ethylene polymerization results are listed in Table 2. 

 

 

Table 2. Polymerization results of the catalysts 6f and 8. 

 

Complex Number Allyl group position 
Activity 

(kg PE /  mol cat. h) 

6f at the backbone 3980 

8 at the arene moiety 5912 

 

 

In order to have a better understanding for the effect of introducing allyl groups in the 

structure of the α-diimine nickel(II) catalysts at either the backbone or the para positions of 

the arene moieties, the Brookhart nickel catalyst was prepared according to the literature.[37] 

The structure of the catalyst is shown in Scheme 44. 
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Scheme 44. The structure of an αααα-diimine nickel(II) catalyst described by Brookhart.
[37] 

 

The complexes 6f, 8, and Brookhart's nickel complex were activated with MAO, the M:Al 

ratios were 1:1500. The catalysts were transferred to a 1 l Büchi laboratory autoclave under 

inert atmosphere and tested for the polymerization of ethylene (in 250 ml of n-pentane and 10 
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bar ethylene). The polymerization temperature was 50 ْC because Brookhart reported a 

deactivation of his catalysts at 60 ْC or above.[90] The results of the ethylene polymerization 

reactions are illustrated in Scheme 45. 

 

 

 

 

Scheme 45. The effect of introducing allyl groups in the ligand frameworks of α-diimine 

nickel(II) catalysts on their polymerization activities.  

 

The introduction of an allyl group in the backbone of the Brookhart nickel(II) catalyst, such 

as in catalyst 6f, results in a lower activity by a factor of 3.5. The reason is the steric bulk in 
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the backbone caused by the allyl group reducing the free rotation of the aryl rings. Therefore, 

the axial coordination sites of the metal center are sterically hindered and the coordination of 

the ethylene monomer via these axial coordination sites is hindered, too. Accordingly, 

reduction in the catalyst activity was observed. The reduced activity of catalyst 8 compared to 

the Brookhart nickel(II) catalyst by a factor of  2.3 is assigned to the allyl groups attached to 

the arene moieties. These allyl groups have a similar effect to the one attached to the 

backbone of the catalyst structure except they have less influence on reducing the free 

rotation of the aryl rings. The allyl groups in the structure of catalyst 8 are away from the 

coordination plane of the nickel center. Thus, catalyst 8 shows higher polymerization activity 

than catalyst 6f.      

 

Samples of the produced polyethylene by the nickel catalysts 6f, 8, and the Brookhart catalyst 

were analyzed by gel permeation chromatography (GPC) to study the effect of introducing 

allyl groups in the ligand framework of Brookhart nickel(II) catalyst on the molecular weight 

(MW) of the produced polyethylene. The GPC results are summarized in Table 3. 

 

 

Table 3. GPC results of the polyethylenes produced by the catalysts 6f , 8 and the 

Brookhart catalyst. 

 

Complex Number Allyl group position 
Mw 

( g/mol ) 
MWD 

6f at the backbone 1203511 3.97 

8 at the arene moiety 792580 4.90 

Brookhart catalyst  - 674295 3.64 

 

 

The GPC results showed that the introduction of allyl groups in the ligand framework of the 

Brookhart catalyst caused an increase of the molecular weight of the produced polyethylene. 

The allyl groups at either the para positions of the arene moieties, such as in 8, or at the 
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backbone of the catalyst structure, such as in 6f, can fix the planes of the aryl rings closer to 

be perpendicular to the coordination plane of the nickel center. The positions of the aryl ring 

planes cause the ortho substituents at these rings to hinder the axial plane of the nickel center. 

As a result the chain transfer relative to the chain propagation slows down, and a 

polyethylene with a high molecular weight is produced. The molecular weight of the 

polyethylene produced with the nickel catalyst 6f was higher than the one of 8. This result 

can be attributed to the increased hindrance at the axial plane of the nickel center caused by 

the allyl group at the backbone than the hindrance caused by the allyl group at the para 

positions of the arene moieties. 
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2.2. Dinuclear complexes of α-diimines coupled with an ansa 

zirconocene unit 

 

2.2.1 General 

 

2.2.1.1 Preview of dinuclear complexes 

 

The use of single site catalysts for olefin polymerization reactions has the disadvantage of 

producing narrow molecular weight distributions (MWD) due to the identical active sites of 

the catalyst. This can cause problems for industrial processings like extrusion or injection 

moulding. The solution is to have polyolefins with bimodal or broader MWDs. Polyolefins 

having a bimodal MWD are desirable because they can combine the advantageous 

mechanical properties of the high molecular weight fraction, such as toughness, strength, and 

environmental stress cracking resistance, with the improved processing properties of the low 

molecular weight fraction. An ideal polyolefin would consist of a low molecular weight 

homopolymer and a high molecular weight copolymer.[111] 

 

 

 

Scheme 46. The ideal molecular weight distribution of polyolefins for technical 

processing.
 [111]
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There are several methods for the production of polyolefin resins with bimodal or broad 

molecular weight distributions: melt blending, reactor in series configuration, or single 

reactor with dual site catalysts. Melt blending suffers from the disadvantages brought on by 

the requirement of complete homogenization and high cost. The method of having two 

reactors linked in series results in an expensive production due to the costly process required. 

The method of using dual site catalysts in a single reactor is widely employed.[111-133] In most 

cases, mixtures of two mononuclear catalysts often lead to resins with averaged molecular 

weights while the dinuclear catalysts containing combined ligand frameworks seemed to 

produce resins with bimodal or broad molecular weight distributions when the metal centers 

are kept separately from each other by the ligand frameworks. 

 

 2.2.1.2 Preview of hydrosilylation reaction  

 

The hydrosilylation reaction involves the addition of a hydrosilane unit (Si-H) onto a carbon-

carbon double or triple bond to generate an alkyl- or a vinylsilane. The significance of this 

reaction is assigned to the produced organosilicon compounds which are useful as 

intermediates in organic synthesis. [134-138] Several electron-rich complexes of late transition 

metals such as Co(I), Rh(I), Ni(0), Pd(0), or Pt(0) are used to activate the hydrosilylation 

reaction while the most used catalysts are Speier's catalyst[139-142] (chloroplatinic acid, 

H2PtCl6) and Karstedt's catalyst[143-144] (Pt2{[(CH2=CH)Me2Si]2O}3).  
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Scheme 47. The structure of Speier's and Karstedt's catalysts. 

 

The hydrosilylation reaction is generally assumed to proceed by the Chalk-Harrod 

mechanism[145-148] (cycle A, in Scheme 48) or the modified Chalk-Harrod mechanism[149-154] 

(cycle B) depending on the substituents on the silicon atom and the nature of the metal 
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catalyst.[148] The Chalk-Harrod mechanism suggests an oxidative addition of a hydrosilane 

giving a hydrido-silyl complex (I) which is coordinated with the substrate alkene. Complex I 

undergoes migratory insertion of the alkene into the M-H bond (hydrometallation) to give the 

alkyl-silyl species (II). Reductive elimination of the alkyl and silyl ligands from the alkyl-

silyl species II forms the hydrosilylation product. The modified Chalk-Harrod mechanism has 

been proposed as an alternative mechanism which involves preferentially an alkene insertion 

into the M-Si bond (silylmetallation) to form the β-silylalkyl-hydrido intermediate (III), 

followed by reductive elimination to complete the hydrosilylation. 

 

 

 

  Scheme 48. The proposed mechanisms of hydrosilylation reaction. 

 

The hydrosilylation reaction has been used to synthesize dinuclear or multinuclear complexes 

via coupling two or more moieties where at least one contains a hydride silane and the other 

possesses an alkenyl group.[155-159] The two moieties can be either two mononuclear 

complexes or two organic compounds which can coordinate metal centers.  
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Herein, the complexes 4a-g, 5a-g, and 6a-g bear allyl groups which can be coupled with a 

complex possessing a hydride silane moiety via hydrosilylation reaction to afford a dinuclear 

complex.   

 

2.2.2 Synthesis and characterization of complex 9C 

 

Bis(cyclopentadienyl)methyl silane 9L was prepared first via reacting methyldichlorosilane 

with two equivalents of sodium cyclopentadienide to produce the compound 9L by salt 

elimination reaction. The next step was treating the 9L with two equivalents of n-butyllithium 

(n-BuLi) followed by the addition of zirconium tetrachloride (ZrCl4) to yield the silyl bridged 

zirconocene complex 9C. The synthesis equations for the compound 9L and the complex 9C 

are shown in Scheme 49. 

 

+
-  2 NaCl

9L

Si

HNa

Si

H

ClCl

2

Si

H

-  2 LiCl

+  ZrCl4

-  2 n-BuH

+  2 n-BuLi

Si

H

Zr

Cl Cl

9C  

 

Scheme 49. The synthesis of compound 9L and the complex 9C. 

 

Compound 9L was characterized by GC-MS while the complex 9C was characterized via 

mass spectroscopy, 1H NMR and 13C NMR spectroscopy, and elemental analysis (see the 

appendices for full analysis data). 
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The mass spectrum of complex 9C (see Scheme 50) shows the peak of the molecular ion at 

m/z = 331 with an intensity of 48% relative to the base peak. The loss of a methyl group 

results in a peak with an intensity of 18% at m/z = 317 while the peak at m/z = 296 (intensity 

78%) is assigned to the loss of a chloro substituent. The peak appearing at m/z = 259 

(intensity 23%) is produced by the loss of two chloro groups while further loss of the 

zirconium center yields the ligand fragment at m/z = 174 with an intensity of 14%.  

 

 

 

 

Scheme 50. Mass spectrum of complex 9C. 

 

 

The  1H NMR  spectrum of complex  9C  (see Scheme 51),  shows a multiplet  signal at δ = 

6.80-6.40 ppm  which is assigned to the protons of the cyclopentadienyl rings (5, 6, 7, 8) 

while the other protons (3, 4, 9, 10) produce the doublet signal at δ = 6.10 ppm. The signal of 

the proton attached to the silicon atom appears at δ = 5.16 ppm. The intensive singlet signal 

at δ = 0.10 ppm is produced by the methyl group bonded to the silicon atom. 
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Scheme 51. 
1
H NMR spectrum of the complex 9C.  

 

The 13C NMR spectrum of compound 9C (see Scheme 52) shows the signals of the carbon 

atoms of the cyclopentadienyl rings (5, 6, 7, 8) at δ = 130.0 and 128.0 ppm while the other 

carbon atoms (3, 4, 9, 10) produce the signals at δ = 115.0 and 114.0 ppm. The quaternary 

carbon atoms of the cyclopentadienyl rings yield the signal at δ = 108.0 ppm while the signal 

at low chemical shift (δ = -2.0 ppm) is produced by the methyl group bonded to the silicon 

atom.  

 

 

 

Scheme 52. 
13

C NMR spectrum of complex 9C. 

 

The synthesis of complex 9C which possesses a hydride silane moiety affords one of the two 

required complexes for preparing a dinuclear precursor via hydrosilylation reaction. The 

other required complex can be one of the α-diimine compounds 4a-g, 5a-g, and 6a-g which 
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bear terminal alkenyl groups. Five new dinuclear precursors were synthesized by combining 

complex 9C with some α-diimine compounds as will be described hereafter. 

 

 

2.2.3 Synthesis and characterization of complexes 10-14 

 

The silyl bridged zirconocene complex 9C was coupled with the α-diimine complexes 6a-c, 

6f, and 6g via hydrosilylation reaction using Karstedt's catalyst, platinum(0)-1,3-divinyl-

1,1,3,3-tetramethyldisiloxane (0.1 M in xylene), to produce the corresponding dinuclear 

precursors 10-14. The structures and the synthesis equation of these precursors are shown in 

Scheme 53. 
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Scheme 53. The synthesis of the dinuclear complexes 10-14.  
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The dinuclear complexes 10-14 were characterized via mass spectroscopy and elemental 

analysis while complex 14 was characterized by 1H NMR spectroscopy too, (see the 

appendices for the full analysis data). The mass and NMR spectra of complex 14 will be 

discussed as example. 

 

The mass spectrum of complex 14 (see Scheme 54), shows the peak of the molecular ion at 

m/z = 955 with an intensity of 5% relative to the base peak. The dissociation of a chloro 

substituent results in a peak with an intensity of 13% at m/z = 921 while the peak at m/z = 

884 with an intensity of 16% is assigned to further loss of another chloro group. The peak 

appearing at m/z = 797 with an intensity of 15% is produced by the dissociation of the 

zirconium dichloride moiety while the loss of the palladium dichloride center yields the 

fragment at m/z = 779 with an intensity of 20%.  

 

 

 

Scheme 54. Mass spectrum of the dinuclear complex 14. 

 

 

The 1H NMR spectrum of complex 14 (see Scheme 55) shows a multiplet signal at δ = 7.40-

7.20 ppm which is assigned to the protons of the aromatic rings while the signals at δ = 7.00, 

6.50, 6.20, and 6.00 ppm are attributed to the protons of the cyclopentadienyl rings. The CH 

groups of the isopropyl functions yield the multiplet signal at δ = 3.10 ppm while the 
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methylene group (2) produces the signal at δ = 2.35 ppm. The singlet signal at δ = 2.10 ppm 

is assigned to the methyl group bonded to the diimine moiety while the methylene group (21) 

affords the signal at δ = 1.70 ppm. The methyl groups of the isopropyl functions produce the 

multiplet signals at δ = 1.50 and 1.30 ppm. The methylene groups (22, 23) generate a broad 

signal at δ = 0.90 ppm while the singlet signal at δ = 0.10 ppm is attributed to the methyl 

group attached to the silicon atom.  

 

 

 

Scheme 55. 
1
H NMR spectrum of the dinuclear complex 14. 

 

 

The 1H NMR spectrum of complex 14 proves the completion of the hydrosilylation reaction 

when it was compared with the 1H NMR spectra of the starting complexes 6g and 9C (see 

Scheme 56). The spectrum of complex 14 shows the disappearance of three proton signals: 

 

- The two signals observed from the spectrum of complex 6g at δ = 5.64 and 5.01 ppm 

which are assigned to the protons of the terminal double bond (-CH=CH2) of the allyl 

group. 

- The signal produced by the proton of the silane group in the spectrum of complex 9C 

which appears at δ = 5.16 ppm.    
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 Scheme 56. Comparison of the 
1
H NMR spectrum of the dinuclear complex 14 with the 

spectra of complexes 6g and 9C. 

   

The disappearance of these signals can be explained by the addition of the hydrosilane group 

(Si-H) into the double bond of the allyl function, the hydrosilylation reaction. The evidence 

of this addition is observed from the formation of a new signal at δ = 0.90 ppm which is 

attributed to the methylene groups of the linkage (-CH2- CH2-Si-) replacing the terminal 

double bond of the allyl group (-CH=CH2). Hence, the proton NMR spectroscopy assisted to 

evince and monitor the hydrosilylation reaction. 
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2.2.4 Polymerization experiments with the dinuclear complexes 10-14 and 

complex 9C 

 

The dinuclear complexes 10-14 were suspended in toluene and activated with 

methylaluminoxane (MAO), the M:Al ratio was 1:1500. The activated complexes were 

transferred to a 1 l Büchi laboratory autoclave under inert atmosphere and tested for the 

polymerization of ethylene (in 250 ml of n-pentane, 10 bar ethylene, and a polymerization 

temperature of 65 ْC).  

 

The bridged silyl zirconocene moiety is the same for all dinuclear complexes 10-14. 

Therefore, the polymerization activities of the catalysts 10-14 are expected to show 

dependence on the variant metal centers of the α-diimine moiety. The results of ethylene 

polymerization using the dinuclear catalysts 10-14 were illustrated in Scheme 57. 

 

 

 

Scheme 57. The polymerization activities of the dinuclear complexes 10-14. 
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The mononuclear complex 6g which was used to prepare the dinuclear precursor 14 showed 

no polymerization activity while the dinuclear catalyst 14 produced polyethylene with the 

second highest activity among the dinuclear series 10-14. This result can be explained 

hereinafter. The inactivity of the catalyst 6g is assigned to the allyl functions attached to the 

backbone of the ligand frameworks which can interact with the active sites of the metal 

centers resulting in blocking the active sites and deactivating the catalyst. In the 

hydrosilylation reaction used to prepare the dinuclear precursor 14, the allyl function of 

complex 6g reacted with the silane group of complex 9C and disappeared upon forming the 

silyl-alkyl link coupling the two dinuclear moieties. Consequently, both catalytic parts of the 

dinuclear catalyst 14 can polymerize ethylene. The ethylene polymerization activities of the 

dinuclear catalysts 10-13 were almost double of the activities of their analogous α-diimine 

precursors 6a-c and 6f (see table 4). The trend resulting from the change in polymerization 

activity by changing the metal center of the dinuclear catalysts 10-13 was the same observed 

for the catalysts 6a-c and 6f. 

 

Table 4. Comparison of the polymerization activities of the dinuclear catalysts 10-14 

versus the catalysts 6a-c, 6f, and 6g. 

 

Complex 

No. 

Activity 

(kg PE / mol Cat. h) 

Complex 

No. 

Activity 

(kg PE / mol Cat. h) 

6a 761 10 1731 

6b 1119 11 3528 

6c 3428 12 6973 

6f 3980 13 8409 

6g 0 14 7523 
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For comparison, the silyl  bridged  zirconocene complex 9C  (see Scheme 58) was activated 

with MAO, the Zr:Al ratio was 1:1500. The catalyst was tested for the polymerization of 

ethylene using the same polymerization conditions of the dinuclear catalysts 10-14.  

 

Si

Zr

Cl Cl

H

 
 

Scheme 58. Structure of the silyl bridged zirconocene complex 9C. 

 

The ethylene polymerization activity of the silyl bridged zirconocene catalyst 9C was 16130 

kg PE / mol Cat. h. The dinuclear catalysts 10-14 showed lower polymerization activities 

compared to the summarized activities of their mononuclear precursors (see Scheme 59).  

 

 
 

Scheme 59. Comparsion of the ethylene polymerization activities of the dinuclear 

complexes 10-14 and their ''precursor'' complexes. 
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These low activities are attributed to the reduced activity of the silyl bridged zirconocene 

complex when coupled with the α-diimine precursors 6a-c, 6f, and 6g. The coupling 

increases the steric hindrance around the active zirconium sites and prevents the ethylene 

molecules from reaching these sites leading to a reduced activity. 

 

Samples of the produced polyethylene by the dinuclear catalysts 11-13 and the single site 

catalyst 9C were analyzed by gel permeation chromatography (GPC). The GPC results are 

summarized in Table 5. 

 

 

Table 5. GPC results of the polyethylenes produced by the dinuclear catalysts 11-13 and 

the catalyst 9C. 

 

Complex Number 
Mw 

( g/mol ) 

Mn 

( g/mol ) 
MWD 

11 392266 8323 47.13 

12 763410 10251 74.47 

13 884741 28880 39.43 

9C 200745 69556 2.89 

  

 

The GPC spectra of the polyethylenes produced with the dinuclear catalysts displayed the 

desired broad or bimodal molecular weight distributions due to the dual site catalysts. The 

molecular weight of the polyethylene resulting from the silyl bridged zirconocene catalyst 9C 

is 200745 g/mol. Consequently, the ansa zirconocene unit of the dinuclear precursors is 

estimated to produce the lower molecular weight fraction. The GPC spectrum of polyethylene 

produced with the dinuclear catalyst 13 will be discussed as example and will be compared to 

the GPC spectrum of polyethylene produced with its mononuclear catalyst 6f (see Scheme 

60).  
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 Scheme 60. GPC spectra of the polyethylenes produced with the mononuclear catalyst 

6f (top) and the dinuclear catalyst  13 (bottom). 
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The GPC spectrum of the polyethylene resulting from the nickel catalyst 6f shows a narrow 

molecular weight distribution (MWD = 3.93) while a broad molecular weight distribution 

(MWD = 39.43) is afforded by the polyethylene of the dinuclear catalyst 13. The nickel 

center of the dinuclear catalyst 13 yielded the higher molecular weight fraction.  
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2.3. Dinuclear complexes of α-diimines coupled with half sandwich 

complexes 

 

2.3.1 General 

 

Hydrosilylation reactions are convenient routes for connecting two mononuclear complexes 

to tailor dinuclear precursors for producing polyethylene resins having specific molecular 

weight distributions. Although these methods are simple approaches to afford dinuclear 

complexes in one step reactions, they may encounter purification difficulties when the 

coupling reactions do not produce the ultimate yield. These difficulties arise from the 

similarities in solubilities between the unreacted mononuclear complexes and the produced 

dinuclear precursors in addition to the need of performing the purification work under inert 

gas atmosphere due to the instability of these precursors when they are exposed to air. 

Consequently, the purification process will probably lower the yield of the produced 

dinuclear complexes.  

 

The method of preparing a potential organic ligand possessing two different moieties which 

are able to coordinate two different metal centers can be an alternative method to synthesize 

dinuclear complexes.[114,129,133,156-158] This method will help to avoid the purification 

difficulties facing the method of coupling two complexes because of the ease of separation 

and the higher stability of the organic ligand compared to the complex. 

 

Herein, some α-diimine compounds bearing different ortho substituents at their aryl rings 

were modified to have cyclopentadienyl groups. These modified compounds were easily 

synthesized and purified with good yields to be promising ligand systems for dinuclear 

complexes. The α-diimine moiety can coordinate early or late transition metals while the 

cyclopentadienyl group can combine an early transition metal to afford a half sandwich 

complex. These modified α-diimine compounds are able to generate dinuclear complexes 

with only one metal salt. The different molecular weights of the polyethylenes produced by 

the α-diimine and the half sandwich catalysts make their combination to be an elegant system 

to produce bimodal or broad molecular weight distributions.  
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2.3.2 Synthesis and characterization of the ''free ligands'' 

 

2.3.2.1 Synthesis and characterization of compounds 15-17 

 

The compounds 15 – 17 containing α-diimine moieties bearing chloro-alkyl groups at the 

backbone of the ligand structures were synthesized via metalating the appropriate α-diimine 

compound 1, 2, or 3 by a 1:1 mixture of n-butyllithium (n-BuLi) and 

tetramethylethylenediamine (TMEDA). The resulting lithium salts were then reacted with 1-

bromo-3-chloropropane to afford the corresponding products 15, 16, or 17 as shown in 

Scheme 61. 
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Scheme 61. Synthesis of the αααα-diimine compounds 15-17.  
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Compounds 15 - 17 were characterized by GC-MS, 1H NMR, and 13C NMR spectroscopy 

(see the appendices for the full analysis data). The mass and NMR spectra of compound 17 

will be discussed as example. 

 

The mass spectrum of compound 17 (see Scheme 62) showed the molecular ion peak at m/z 

= 480 with a weak intensity of 1% relative to the base peak. The loss of a chloro group results 

in a fragment with an intensity of 12% at m/z = 444 while the further loss of a methyl group 

gives the peak at m/z = 429 with an intensity of 9%. 

 

 

 

 

Scheme 62. Mass spectrum of the αααα-diimine compound 17. 

 

The mass peak appearing at m/z = 437 with an intensity of 36% is assigned to the 

dissociation of an isopropyl group while the further loss of a chloro group gives the mass 

peak at m/z = 401 with an intensity of 91%. The dissociation of two isopropyl groups along 

with a chloro ligand leads to a fragment affording the mass peak at m/z = 359 with an 
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intensity of 18%. The fragmentation of the diimine compound generates two imine moieties 

where the one bearing the chloropropyl group appears at m/z = 278 with an intensity of 87% 

and the other produces the base peak at m/z = 202. The mass peak arising at m/z = 242 with 

an intensity of 75% is attributed to the loss of a chloro ligand from the imine moiety bearing 

the chloropropyl group. 

 

The 1H NMR spectrum of compound 17 (see Scheme 63) shows a multiplet at δ = 7.20-7.14 

ppm which is assigned to the protons of the aromatic CH groups 11, 12, 13, and 14 while the 

other aromatic CH groups produce the signal at δ = 7.11 ppm. The methylene group binding 

the chloro ligand gives the proton NMR signal at δ = 3.41 ppm while the septet signal at δ = 

2.72 ppm is assigned to the CH groups of the isopropyl functions. 

 

 

 

 

Scheme 63. 
1
H NMR spectrum of the αααα-diimine compound 17. 

 

The signal appearing at δ = 2.55 ppm is produced by the protons of the methylene group 2 

while the methyl group at the backbone of the compound structure yields the singlet signal at 

δ = 2.07 ppm. The broad signal at δ = 1.68 ppm is attributed to the methylene groups 29 and 

30 while the methyl groups belonging to the isopropyl functions produce the four doublets at 

δ = 1.25, 1.22, 1.19, and 1.14 ppm. 
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The 13C NMR spectrum of compound 17 (see Scheme 64) shows the signal of the imine 

carbon atom connected to the chloropropyl group at δ = 170.5 ppm which is higher by 2.5 

ppm than the other imine carbon atom at δ = 168.0 ppm. The signals belonging to the 

quaternary carbon atoms of the aromatic ring systems appear at δ = 146.1, 145.6, 135.2, and 

134.9 ppm, while the signals at δ = 123.8, 123.7, 123, and 122.8 ppm can be assigned to the 

aromatic CH groups. 

  

 

 

Scheme 64. 
13

C NMR spectrum of the αααα-diimine compound 17. 

 

 

The methylene group binding the chloro ligand gives the signal at δ = 44.6 ppm while the 

methylene groups 2, 30 and 29 can be assigned to the signals at δ = 32.9, 28.9 and 23.9 ppm. 

The carbon atoms of the CH groups of the isopropyl functions generate two signals which 

overlap at δ = 28.5 ppm while the signals at δ = 23.2, 22.7, 22.2 and 22.1 ppm are assigned to 

the methyl groups of the isopropyl functions. The carbon atom of the methyl group at the 

backbone of the compound structure yields the resonance signal at δ = 17.1 ppm.  
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2.3.2.2 Synthesis and characterization of compounds 18-20 
 
The compounds 18 – 20 consist of α-diimine moieties combined with cyclopentadienyl 

ligands via butyl group. These compounds were synthesized by reacting the appropriate α-

diimine compound 15, 16, or 17 with sodium cyclopentadienide (NaCp) to afford the 

corresponding product 18, 19, or 20. The synthesis steps are shown in Scheme 65. 
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Scheme 65. Synthesis of the αααα-diimine compounds 18-20 bearing butylcyclopentadienyl 

groups at their backbones.  
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The compounds 18 - 20 were characterized via GC-MS, 1H NMR, and 13C NMR 

spectroscopy (see the appendices for the full analysis data). The mass and NMR spectra of 

compound 20 will be discussed as example. 

 

The mass spectrum of compound 20 (see Scheme 66) shows the peak of the molecular ion at 

m/z = 510 with an intensity of 15% relative to the base peak. The fragment appearing at m/z 

= 467 with an intensity of 56% results from the dissociation of an isopropyl group from the 

molecule 20. The loss of a propylcyclopentadienyl group which is attached to the backbone 

of the compound framework gives the peak at m/z = 405 with an intensity of 2%. 

 

 

 

Scheme 66. Mass spectrum of the αααα-diimine compound 20. 

 

The fragmentation of the diimine compound generates two imine moieties where the one 

bearing the propylcyclopentadienyl group produces the base peak at m/z = 308 while the 

unsubstituted counterpart appears at m/z = 202 with an intensity of 52%. Further dissociation 

of the imine moiety bearing a propylcyclopentdienyl group yields the mass peak at m/z = 266 

with an intensity of 5% which is attributed to the loss of an isopropyl group while the further 
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fragmentation of the other imine moiety affords the mass peaks at m/z = 186 and 160 with the 

intensities of 9% and 14% which arise from the loss of a methyl and an isopropyl group.  

 

The 1H NMR spectrum of compound 20 (see Scheme 67) shows a signal at δ = 7.12 ppm 

which is assigned to the protons of the CH groups belonging to the aryl rings. The aromatic 

CH groups of the cyclopentadienyl moiety (33, 34, 35, 36) produce the signals at δ = 6.33, 

6.17, 6.00, and 5.85 ppm while the aliphatic one yields the signal at δ = 2.86 ppm. 

 

 

 

Scheme 67. 
1
H NMR spectrum of the αααα-diimine compound 20. 

 

The CH groups of the isopropyl functions afford the signal at δ = 2.70 ppm. The signal at δ = 

2.53 ppm is assigned to the methylene group bearing the propylcyclopentadienyl moiety 

while the methylene group binding the cyclopentadienyl ligand gives the signal at δ = 2.25 

ppm which is lower by 1.16 ppm then the signal of the analogous methylene group binding to 

chloro ligand in the starting compound 17. The signal appearing at δ = 2.03 ppm is produced 

by the protons of the methyl group at the backbone of the compound while the methylene 

groups 29 and 30 yield the multiplet at δ = 1.48 ppm. The four overlapping signals at δ = 
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1.25, 1.19, 1.15 and 1.12 ppm are attributed to the methyl groups belonging to the isopropyl 

functions. 

 

The 13C NMR spectrum of compound 20 (see Scheme 68) shows the signal of the imine 

carbon atom bearing the propylcyclopentadienyl group at δ = 171.2 ppm which is higher by 

3.2 ppm than the other imine carbon atom at δ = 168 ppm. The signals belonging to the 

quaternary carbon atoms of the aromatic ring systems (6) and (5) appear at δ = 146.2 and 

145.7 ppm while the other quaternary carbon atoms (7, 8, 9, 10) arise at δ = 135.2 and 135.0 

ppm. 

 

 

 

Scheme 68. 
13

C NMR spectrum of the αααα-diimine compound 20. 
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The carbon atoms belonging to the aromatic CH groups of the cyclopentadienyl moiety 

produce the signals at δ = 134.5, 133.7, 132.4, and 130.4 ppm. The signals at δ = 123.7 and 

123.6 ppm are attributed to the aromatic CH groups 15 and 16 while the aromatic CH groups 

(11, 12, 13, 14) yield the signals at δ = 123.0 and 122.8 ppm. The carbon atom of the 

aliphatic CH group of the cyclopentadienyl moiety affords the signal at δ = 44.7 ppm while 

the signal at δ = 43.1 ppm arises from the methylene group connected to the 

propylcyclopentadienyl moiety. The methylene group bearing the cyclopentadienyl ligand 

gives the signal at δ = 41.2 ppm which is lower by 3.4 ppm than the analogous methylene 

group binding the chloro ligand of the starting compound 17. The signal at δ = 29.6 ppm is 

assigned to the methylene group 29 while the methylene group 30 produces the signal at δ = 

26.2 ppm. Two signals overlapping at δ = 28.4 ppm result from the CH groups of the 

isopropyl functions while the methyl groups of these functions generate the signals at δ = 

23.2, 23.1, 22.7, and 22.1 ppm. The carbon atom of the methyl group at the backbone of the 

compound structure yields the resonance signal at δ = 17.2 ppm. 

 

2.3.3 Synthesis and characterization of dinuclear complexes 

 

The synthesized compounds 18 - 20 consist of α-diimine moieties bearing different ortho 

substituents at their aryl rings and cyclopentadienyl groups. These compounds are significant 

ligand systems for new dinuclear precursors. Each of the cyclopentadiene and α-diimine 

moieties can coordinate an early transition metal salt. This is an easy approach of preparing a 

dinuclear complex by reacting one of these ligand systems 18 - 20 with only one metal salt. 

Furthermore, the dinuclear catalysts of these ligands are tunable to control the molecular 

weight of the produced polyethylene via changing the bulk of the ortho substituents at the 

aryl rings of the ligand frameworks. Herein, six new dinuclear precursors using these ligand 

systems were synthesized as will be described next. 

 

The appropriate α-diimine compound bearing a cyclopentadienyl group (18, 19, or 20) was 

reacted with n-butyllithium (n-BuLi). The resulting lithium salt was then mixed with two 

equivalents of titanium tetrachloride (TiCl4) or zirconium tetrachloride (ZrCl4). The 

corresponding dinuclear complexes (18a,b; 19a,b; or 20a,b) were prepared from this mixture 

by salt elimination reaction. The synthesis steps of the resulting complexes are shown in 

Scheme 69. 
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Scheme 69. Synthesis of the dinuclear complexes 18a,b; 19a,b; and 20a,b.  
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The dinuclear complexes 18a,b; 19a,b; and 20a,b were characterized via mass spectroscopy 

and elemental analysis (see the appendices for the full analysis data). The mass spectrum of 

complex 20b will be discussed as example. 

 

The mass spectrum of complex 20b (see Scheme 70), shows the peak of the molecular ion at 

m/z = 938 with an intensity of 9% relative to the base peak. The dissociation of a chloro 

substituent results in a peak with an intensity of 5% at m/z = 902 while the peak at m/z = 810 

with an intensity of 8% is assigned to the loss of three isopropyl groups. The peak appearing 

at m/z = 739 with the intensities 13% is produced by the dissociation of zirconium trichloride 

while the further loss of the other metal center (the zirconium tetrachloride) yields the ligand 

peak at m/z = 510 with an intensity of 7%.  

  

 

 

Scheme 70. Mass spectrum of the αααα-diimine compound 20b. 

 

The dissociation of all chloro substituents from the metal centers affords the mass peak at m/z 

= 688 with an intensity of 10% while the fragmentation of the diimine ligand generates two 

imine moieties where the one bearing the propylcyclopentadienyl group appears at m/z = 308 

with an intensity of 12% and the other part produces the base peak at m/z = 202. 
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2.3.4 Polymerization experiments with the dinuclear precursors 18a,b; 

19a,b; and 20a,b  

 

The dinuclear complexes 18a,b; 19a,b; and 20a,b were suspended in toluene and activated 

with methylaluminoxane (MAO), the M:Al ratio was 1:1500. The catalysts were transferred 

to a 1 l Büchi laboratory autoclave under inert atmosphere and tested for the polymerization 

of ethylene (in 250 ml of n-pentane, 10 bar ethylene, and a polymerization temperature of 65 ْ

C). The results of the ethylene polymerizations are illustrated in Scheme 71.       

 

 

 

 

Scheme 71. The polymerization activities of the dinuclear complexes 18a,b; 19a,b; and 

20a,b. 
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In consequence of the similar half sandwich metallocene complexes attached to the dinuclear 

precursors 18a,b; 19a,b; and 20a,b, the polymerization activities of the dinuclear catalysts 

are expected to show a dependence on the variant metal centers of the α-diimine moiety and 

the size of the ortho substituents at the aryl rings of the catalysts structures.  

 

The dinuclear catalysts 18b, 19b, and 20b bearing zirconium centers showed higher ethylene 

polymerization activities than the analogous titanium catalysts 18a, 19a, and 20a. This can be 

assigned to the better separation between the cationic active species of the catalysts and the 

anionic MAO species in the zirconium catalysts than in titanium ones. 

 

The ethylene polymerization activities of both titanium and zirconium dinuclear catalysts 

demonstrated an obvious dependence on the size of the ortho substituents at the arene 

moieties. Among the dinuclear catalysts with the same metal centers, the catalysts bearing 

isopropyl substituents at the aryl rings (20a, 20b) showed the lowest polymerization activities 

while the catalysts having methyl substituents (18a, 18b) resulted in the highest activities. In 

general, the ethylene polymerization results reveal that the bulkier the substituents, the lower 

the polymerization activity. These results are compatible with the chain running mechanism 

which suggests that the bulky substituents can hinder the monomers from reaching the active 

catalytic centers due to their interaction with the axial coordination sites of the metal centers 

resulting in lower activities.  

  

For comparison, the half sandwich complexes, cyclopentadienyltitanium trichloride A and 

cyclopentadienylzirconium trichloride B were activated with methylaluminoxane (MAO), the 

M:Al ratio was 1:1500. The activated complexes were tested for the polymerization of 

ethylene using the same polymerization conditions applied to the dinuclear catalysts 18a,b; 

19a,b; and 20a,b.  

 

The ethylene polymerization activity of catalyst A was 6750 kg PE / mol Cat while the 

activity of catalyst B was 8130 kg PE / mol Cat. h. These activities are lowered when the half 

sandwich complexes were coupled with α-diimine moieties to afford the dinuclear catalysts 

18a,b; 19a,b; and 20a,b. The coupling increases the steric hindrance around the active 

zirconium or titanium sites and prevents the ethylene molecules from reaching these sites 

leading to a reduced activity.  
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Samples of the polyethylenes produced with the dinuclear catalysts 18a,b and 19a,b and the 

half sandwich catalysts A and B were analyzed by gel permeation chromatography (GPC). 

The aim of this analysis is to test the bimodality of these dinuclear precursors. The results of 

GPC are summarized in Table 6. 

 

Table 6. GPC results of the polyethylenes produced by the dinuclear catalysts 18a,b and 

19a,b and the half sandwich catalysts A and B. 

 

Complex Number 
Mw 

( g/mol ) 

Mn 

( g/mol ) 
MWD 

18a 148100 5361 27.62 

18b 172914 4800 36.02 

19a 396920 23657 16.78 

19b 407573 8026 50.78 

A 345628 102821 3.36 

B 429880 121921 3.53 

  

 

The GPC results of polyethylenes produced with the dinuclear catalysts 18a,b and 19a,b 

displayed the desired broad or bimodal molecular weight distributions. These results can be 

assigned to the different active sites of the dinuclear catalysts. The molecular weights of the 

polyethylenes obtained with the half sandwich catalysts A and B are 345628 and 429880 

g/mol. Therefore, the higher molecular weight fraction is estimated to be yielded by the 

catalyst A or B while the metal center of the α-diimine unit affords the lower fraction. The 

GPC spectra of polyethylenes produced with the dinuclear catalysts 18a (see Scheme 72) and 

18b (see Scheme 73) will be discussed as examples and will be compared with the GPC 

spectra of polyethylenes produced with the mononuclear catalysts A and B. 



2. General part 
 

 76 
 

 

 

Scheme 72. GPC spectra of the polyethylenes produced with the mononuclear catalyst A 

(top) and the dinuclear catalyst  18a (bottom). 
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Scheme 73. GPC spectra of the polyethylenes produced with the mononuclear catalyst B 

(top) and the dinuclear catalyst  18b (bottom). 
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The GPC spectra of the polyethylenes produced with the half sandwich catalysts A and B 

exhibit narrow molecular weight distributions with MWD = 3.36 and 3.53 while their 

dinuclear catalysts 18a,b afford polyethylenes with bimodal molecular weight distributions of  

MWD = 27.62 and 36.02. 
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3. Experimental Part  

 

3.1 General 

 

All experimental work was routinely carried out using Schlenk technique. Dried and purified 

argon was used as inert gas. n-Pentane, n-hexane, diethyl ether, toluene and tetrahydrofuran 

were purified by distillation over Na/K alloy. Diethyl ether was additionally distilled over 

lithium aluminum hydride. Methylene chloride was dried with phosphorus pentoxide and 

calcium hydride. Methanol and ethanol were dried over molecular sieves. Deuterated solvents 

(CDCl3, CD2Cl2) for NMR spectroscopy were purchased from Euriso-Top and stored over 

molecular sieves (3 Å). Methylalumoxane (30% in toluene) was purchased from Crompton 

(Bergkamen) and Albemarle (Baton Rouge, USA/Louvain, La Neuve, Belgium). Ethylene 

(3.0) und argon (4.8/5.0) were supplied by Rießner Company (Lichtenfels). 4-Allyl-2,6-

diisoproylaniline was prepared according to the literature[108] All other starting materials were 

commercially available and used without further purification.  

 

 

3.2 Measurement methods 

 

3.2.1 NMR spectroscopy 

NMR spectra were recorded with Bruker ARX (250 MHz), Varian Inova (300 MHz) or 

Varian Inova (400 MHz) spectrometers. The samples were prepared under inert atmosphere 

(argon) and routinely recorded at 25ْ C. The chemical shifts in the 1H NMR spectra are 

referred to the residual proton signal of the solvent (δ = 7.24 ppm for CDCl3, δ = 5.32 ppm 

for CD2Cl2) and in 13C NMR spectra to the solvent signal (δ = 77.0 ppm for CDCl3, δ = 53.5 

ppm for CD2Cl2).
 

 

3.2.2 Mass spectrometry 

Mass spectra were routinely recorded at the Zentrale Analytik of the University of Bayreuth 

with a VARIAN MAT CH-7 instrument (direct inlet, EI, E = 70 eV) and a VARIAN MAT 

8500 spectrometer. 
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3.2.3 GC/MS 

GC/MS spectra were recorded with a FOCUS Thermo gas chromatograph in combination 

with a DSQ mass detector. A 30m HP-5 fused silica column (internal diameter 0.32 mm, film 

(df = 0.25 µm), and flow 1 ml/min) was used and helium (4.6) was applied as carrier gas. The 

routinely performed temperature program started at 50ْ C and held this temperature for 2 min. 

After a heating phase of twelve minutes (20 ْ  C/min, final temperature was 290 ْC), the end 

temperature was held for 30 min (plateau phase).  

At the Zentrale Analytik of the University of Bayreuth, GC/MS spectra were routinely 

recorded with a HP5890 gas chromatograph in combination with a MAT 95 mass detector. 

 

3.2.4 Gel permeation chromatography (GPC) 

GPC measurements were routinely performed by the analytical department at Saudi Basic 

Industries Corportion (SABIC) in Riyadh, Saudi Arabia. 

 

3.2.5 Elemental analysis 

The analyses were performed with a Vario EL III CHN instrument. Therefore, 4–6 mg of the 

complex was weighed into a standard tin pan. The tin pan was carefully closed and 

introduced into the auto sampler of the instrument. The raw values of the carbon, hydrogen, 

and nitrogen contents were multiplied with calibration factors (calibration compound: 

acetamide). 

 

3.2.6 Crystal structure analysis 

X-ray crystal structure analyses were performed by using a STOE-IPDS II diffractometer 

equipped with an Oxford Cryostream low-temperature unit. 

 

Crystal data: 

 

C31H44N2 (6): yellow prism crystallized from methanol; orthorhombic; space group is 

P2(1)2(1)2; a = 19.014(4) Å; b = 23.571(5) Å; c = 6.2853(13) Å; α, β, and γ = 90°; V = 

2816.9(10) Å3; Z = 4; d(calc) = 1.049 g/cm3; wavelength = 0.71073 Å; Absorption coefficient 

= 0.06 mm-1; F(000) = 976; reflections collected 13013; independent reflections 5198; 

Goodness-of-fit = 0.97; R indices (R1 = 0.0447, wR2 = 0.1054). 
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C32H46Cl4N2Pd (6g): orange prism crystallized from methylene chloride; triclinic; space 

group is P-1; a = 8.8350(6) Å; b = 10.5840(8) Å; c = 18.9310(13) Å; α = 80.81°; β = 84.76°; 

γ = 86.89°; V = 1738.8(2) Å3; Z = 2; d(calc) = 1.350 g/cm3; wavelength = 0.71069 Å; 

Absorption coefficient = 0.86 mm-1; F(000) = 732; reflections collected 23280; independent 

reflections 6549; Goodness-of-fit = 0.94; R indices (R1 = 0.0358, wR2 = 0.0859). 

 

C68H96Br4N4Ni2 (8): brown needle crystallized from methylene chloride; triclinic; space 

group is P-1; a = 13.0160(7) Å; b = 15.7980(9) Å; c = 18.3480(11) Å; α = 94.41°; β = 

108.59°; γ = 97.45°; V = 3517.6(3) Å3; Z = 2; d(calc) = 1.328 g/cm3; wavelength = 0.71069 Å; 

Absorption coefficient = 2.846 mm-1; F(000) = 1456; reflections collected 13251; 

independent reflections 7408; Goodness-of-fit =1.049; R indices (R1 = 0.0607, wR2 = 

0.1327). 

 

3.3 Synthesis procedures 

 

3.3.1 General synthesis of the α-diimine compounds 1-3 and 7 

To a mixture of 10 g (116 mmol) of 2,3-butanedione and 50 ml of methanol in a 250 ml 

round-bottom flask, 238 mmol of the appropriate aniline was added. The mixture was stirred 

for five minutes followed by the addition of 12.28g (267 mmol) of formic acid. The stirring 

of the reaction mixture at room temperature resulted in the formation of a yellow precipitate 

within ten minutes and the reaction mixture was left to stir for 18 h to reach the maximum 

yield. The resulting yellow solid was collected by filtration then washed with 60 ml of 

methanol and dried under vacuum. For purification, the products were recrystallized from 

methanol to afford yellow crystals. Yields: 1, 79%; 2, 85%; 3, 87%; 7, 82%. All compounds 

were characterized by GC/MS and NMR spectroscopy. 

 

3.3.2 General synthesis of the α-diimine compounds bearing allyl groups (4-6) 

A mixture of  3.15 ml (21 mmol) of tetramethylethylenediamine (TMEDA) and 13.13 ml (21 

mmol) of n-butyllithium (1.6 M in n-hexane) was prepared in a pressure-equalizing dropping 

funnel containing 40 ml n-pentane. This mixture was added drop-wise to a stirred solution of 

20 mmol of the appropriate α-diimine compound (1, 2, or 3) in 100 ml of pentane. 

Immediately a color change of the solution from yellow to orange was observed. The reaction 

mixture was stirred overnight. The next step was the addition of 4 equiv. of allyl bromide (80 
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mmol, 7 ml) and refluxing the reaction mixture overnight. Later, the refluxing was stopped 

and the reaction mixture was allowed to cool down to room temperature. Removal of the 

solvent and the excess of allyl bromide by evaporation resulted in a viscous yellow liquid 

which was dissolved in n-pentane and filtered over sodium sulphate and silica. The solvent 

was removed and the resulting yellow powder was recrystallized from methanol at room 

temperature to afford the products as yellow crystals. Yields: 4, 75%; 5, 73%; 6, 80%. All 

compounds were characterized by GC/MS and NMR spectroscopy. Compound 6 gave single 

crystals that were suitable for an X-ray analysis.   

 

3.3.3 General synthesis of the complexes of α-diimines bearing allyl groups (4a-g, 5a-g, 6a-g 

and 8) 

The metal salts titanium tetrachloride (TiCl4), zirconium tetrachloride (ZrCl4), vanadium 

trichloride (VCl3), chromium trichloride (CrCl3), iron trichloride (FeCl3), dibromo(1,2-

dimethoxyethane)nickel(II) (NiBr2·DME), or dichloro (1,5-cyclooctadiene)palladium(II) 

(PdCl2·COD) were used. 3 mmol of the desired metal salt was added to 4 mmol of the 

respective α-diimine ligand bearing allyl groups (4, 5, 6, or 7) dissolved in 150 ml THF. 

Diethyl ether was used instead of THF for the synthesis of the titanium and iron complexes. 

The mixture was stirred for 18 h at room temperature. For purification, the volume of the 

solvent was reduced in vacuo and the complexes were precipitated by adding pentane. After 

washing several times with n-pentane until the solvent stayed colorless, the products were 

dried in vacuo. The complexes were obtained as powders. The yields were 55-90%. All 

compounds were characterized by MS and elemental analysis. Complexes 6g and 8 gave 

single crystals that were suitable for an X-ray analysis.   

 

3.3.4 Synthesis of bis(cyclopentadienyl)methyl silane (9L) 

Methyldichlorosilane (8.62 g, 75 mmol) in 80 ml of diethyl ether was cooled to -78 ْC and to 

this mixture sodium cyclopentadienide (13.2 g, 150mmol) dissolved in 100 ml 

tetrahydrofuran was slowly added over a period of 3 h. The solution was left to warm to room 

temperature with continuous stirring. The suspension was filtered and the solvents of the 

filtered solution  were removed under reduced pressure to afford the final product 

MeSiH(CpH)2 as viscous clear yellow oil (12.3 g, 92%), a mixture of three stereoisomers. 

The product was used without purification in the next reaction.  
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3.3.5 Synthesis of the complex (C5H4-SiHMe-C5H4)ZrCl2 (9C) 

100 mmol of (C5H5-SiHMe-C5H5) was dissolved in 200 ml diethylether and mixed with 200 

mmol of n-butyllithium (1.6 M in n-hexane) at −78 ْ C. After warming up to room 

temperature, the mixture was stirred for 4 h. Subsequently, at −78 ْ C, 2.33 g (100 mmol) 

zirconium tetrachloride were added and stirred for 12 h at room temperature. Then, the 

solvent was evaporated and the residue was extracted with dichloromethane and the solution 

was filtered over sodium sulfate. The solution was reduced in volume and the product was 

precipitated by adding n-pentane. The yield was 86%. The complex was characterized by MS 

and elemental analysis. 

 

3.3.6 General synthesis procedure for the dinuclear precursors 10-14 via hydrosilylation 

reactions 

The appropriate α-diimine complex (2 mmol) bearing an allyl group (6a, 6b, 6c, 6f, or 6g) 

was mixed with 2 mmol of (C5H4-SiHMe-C5H4)ZrCl2 in 100 ml toluene. The mixture was 

stirred and then a few drops of Karstadt’s catalyst, platinum(0)-1,3-divinyl-1,1,3,3-

tetramethyldisiloxane (0.1 M in xylene), were added. The reaction mixture was stirred at 

room temperature for 40 h. The mixture was then filtered through a glass frit and the resulting 

solid was washed several times with toluene and dried in vacuo to afford the dinuclear 

precursors. The yields were 40-90%. All precursors were characterized via MS and elemental 

analysis. 

   

3.3.7 General synthesis procedure for the α-diimine compounds bearing chloropropyl groups 

(15-17) 

A mixture of 3.3 ml (22 mmol) of tetramethylethylenediamine (TMEDA) and 13.75 ml (22 

mmol) of n-butyllithium (1.6 M in n-hexane) was prepared in a pressure-equalizing dropping 

funnel containing 40 ml n-pentane. This mixture was added drop-wise to a stirred solution of 

22 mmol of the appropriate α-diimine compound (1, 2, or 3) in 100 ml of n-pentane. 

Immediately the color of the solution changed from yellow to orange. The reaction mixture 

was stirred overnight. The next step was the addition of 2 equiv. of 1-bromo-3-chloropropane 

(44 mmol, 4.36 ml) and refluxing the reaction mixture for 24 h. Later, the refluxing was 

stopped and the reaction mixture was allowed to cool down to room temperature. Removal of 

the solvent and an excess of 1-bromo-3-chloropropane by evaporation resulted in a viscous 

yellow liquid which was dissolved in n-pentane and filtered over sodium sulphate. The 



3. Experimental part 
 

 84 
 

solvent was removed and the resulting yellow thick liquid was purified by column 

chromatography on silica gel using n-hexane as eluant. The products were obtained after 

evaporating the solvents as viscous yellow liquid. Yields: 15, 72%; 16, 77%; 17, 74%. All 

compounds were characterized by GC/MS and NMR spectroscopy. 

 

3.3.8 General synthesis of the α-diimine compounds bearing cyclopentadienyl groups (18-20) 

An amount of 3.52 g of sodium cyclopentadienide (40 mmol) was added to 40 mmol of the 

appropriate α-diimine compound bearing a chloropropyl group (15, 16, or 17) in 100 ml of 

THF. The reaction mixture was stirred at 60 ْC for 36 h. The heating was stopped allowing the 

mixture to cool down to room temperature and the solvent was evaporated followed by the 

addition of n-pentane to the residue and filtering the resulting solution over sodium sulphate. 

The solvent was removed to afford the products as golden viscous liquids which were used in 

the next reactions without further purification. Yields: 18, 75%; 19, 73%; 20, 82%. All 

compounds were characterized by GC/MS and NMR spectroscopy. 

 

3.3.9 General synthesis of the dinuclear precursors (18a,b , 19a,b , and 20a,b)  

5 mmol of n-butyllithium (1.6 M in n-hexane) was drop-wise added to 5 mmol of the 

appropriate α-diimine compound bearing a cyclopentadienyl group (18, 19, or 20) which was 

dissolved in 100 ml diethyl ether at −78 ْ C. After warming up to room temperature, the 

mixture was stirred for 6 h. Subsequently, at −78 ْ C, 10 mmol of titanium tetrachloride or 

zirconium tetrachloride was added and the mixture was stirred for 36 h at room temperature. 

Then, the solvent was evaporated and the residue was extracted with dichloromethane and the 

solution was filtered over sodium sulfate. The solution was reduced in volume and the 

products were precipitated by adding n-pentane. The yields were 70-85%. The compounds 

were characterized by MS and elemental analysis. 

 

3.4 Polymerization of ethylene in the 1 l Büchi autoclave 

 

An amount of 1–5 mg of the desired complex was suspended in 5ml of toluene. 

Methylalumoxane (30% in toluene, M:Al = 1:1500) was added resulting in an immediate 

color change. The mixture was added to a 1 l Schlenk flask filled with 250 ml n-pentane. This 

mixture was transferred to a 1 l Büchi laboratory autoclave under inert atmosphere and 

thermostated at 65◦ C or 50◦ C. An ethylene pressure of 10 bar was applied for 1 h. After 
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releasing the pressure, the polymer was filtered over a frit, washed with diluted hydrochloric 

acid, water, and acetone, and finally dried in vacuo. 
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4. Summary 

 

It was the goal of this project to synthesize dinuclear catalysts that provide two different 

active sites for the oligomerization and polymerization of α-olefins, especially ethylene. The 

plan of synthesis involves precursors consisting of a diimine moiety coordinated to a late or 

early transition metal and a metallocene or half sandwich moiety. In order to achieve these 

goals, some α-diimine compounds were functionalized with allyl or alkyl halide groups and 

then coupled with a metallocene or a half sandwich complex. 

 

Three different α-diimine compounds were synthesized and characterized by GC-MS, 1H 

NMR, and 13C NMR spectroscopy. These compounds are bearing allyl functions at their 

backbones and different ortho substituents at the arene moieties of their frameworks. 21 

different complexes were prepared using these compounds and they were characterized by 

mass spectroscopy and elemental analysis. These complexes were activated with 

methylalumoxane (MAO) and tested for the catalytic polymerization of ethylene.  

  

 

R = Me

R = Et

R = i-Pr

4a

6a

5a

4b 4c 4d 4e 4f 4g

5b 5c 5d 5e 5f 5g

6b 6c 6d 6e 6f 6g

N N

R

R R

R

Xn

M

TiCl4MXn = ZrCl4 VCl3 CrCl3 FeCl3 NiBr2 PdCl2

 



4. Summary 
 

 87 
 

The ethylene polymerization results revealed that the bulkier the substituents at the aryl rings 

of the catalyst structure, the lower the polymerization activity. These results are compatible 

with the chain running mechanism which suggests that bulky substituents can hinder the 

monomers from reaching the active catalytic centers due to their interaction with the axial 

coordination sites of the metal centers. The palladium catalysts showed no polymerization 

activity as distinguished behavior. That may attribute to the allyl functions attached to the 

backbone of the catalyst structures which can interact with the active sites of the palladium 

catalysts resulting in blocking the active sites and deactivating the catalyst. 

  

 

 
 
 
 

Five α-diimine complexes bearing allyl groups were coupled with a bridged zirconocene 

complex possessing a hydride silane moiety via hydrosilylation reaction in the presence of 

Karstedt's catalyst to afford five new dinuclear precursors.  
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These dinuclear precursors were activated with methylalumoxane (MAO) and tested for the 

polymerization of ethylene. 
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The bridged silyl zirconocene moiety is the same for all these dinuclear complexes. 

Therefore, the ethylene polymerization activities of their catalysts showed a dependence on 

the variant metal centers of the α-diimine moiety. The trend of polymerization activities was: 

Ni > Pd > V > Zr > Ti. The produced polyethylenes were analyzed via gel permeation 

chromatography (GPC). The GPC results showed broad molecular weight distributions due to 

the dual sites of these catalysts. The GPC spectrum of polyethylene produced with the 

dinuclear catalyst 13 was discussed as an example and compared with the GPC spectrum of 

polyethylene produced with its mononuclear catalyst 6f.  

 

Six novel dinuclear precursors consisting of α-diimine moieties connected to half sandwich 

metallocene complexes were prepared and characterized via mass spectroscopy and elemental  

analysis. These dinuclear precursors were activated with methylalumoxane (MAO) and tested 

for the polymerization of ethylene. 
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The ethylene polymerization activities of these dinuclear catalysts demonstrated a 

dependence on the size of the ortho substituents at the aryl rings of the catalysts structures. 

The results of ethylene polymerization agreed with the chain running mechanism: the bulkier 

the substituents the lower the polymerization activities. The results of gel permeation 

chromatography (GPC) of polyethylene produced by these catalysts exhibited bimodal 

molecular weight distributions. These results can be assigned to the different active sites of 

the dinuclear catalysts. The GPC spectra of polyethylenes produced with the dinuclear 

catalysts 18a,b were discussed as examples. 
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5. Zusammenfassung 

 
Ziel dieser Arbeit war es zweikernige Komplexe mit zwei unterschiedlichen aktiven Zentren 

darzustellen und deren Einsatz für die Oligomerisation und Polymerisation von Ethen zu 

untersuchen. Für die Komplexsynthese wurden zwei verschiedene Katalysatorvorstufen 

verknüpft. Die eine enthielt ein mit Alkyl- Alkylhalogeniden funktionalisiertes 

Diiminfragment mit einem späten oder frühen Übergangsmetall, die andere bestand aus einer 

Metallocen- oder Halbsandwicheinheit. 

 

Es wurden drei verschiedene α-Diimin-Verbindungen dargestellt und mittels GC-MS, 1H-

NMR und 13C-NMR Spektroskopie charakterisiert. Diese organischen Ligandvorstufen 

besitzen Allylfunktionen am Grundgerüst und verschiedene ortho-substituierte 

Anilinfragmente. 21 verschiedene Komplexe wurden daraus synthetisiert und mit Hilfe der 

Massen-spektroskopie und C, H, N-Elementaranalyse charakterisiert. Nach Aktivierung mit 

Methylaluminoxan (MAO) wurden diese Komplexe hinsichtlich ihrer katalytischen Aktivität 

bei der Polymerisation von Ethen untersucht.  
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Die Aktivitäten der Katalysatoren zeigten, dass eine sterische Zunahme der Größe des 

Substituenten am Arylring mit einer Abnahme der Aktivitäten einherging. Diese Ergebnisse 

sind mit dem „chain running mechanism“ erklärbar, welcher besagt, dass sterisch 

anspruchsvolle Substituenten das Monomer an dessen Wechselwirkung mit dem aktiven 

Metallzentrum, aufgrund der axial koordinierenden Zentren, hindern können. Die Palladium-

Katalysatoren zeigten keine katalytische Aktivität bei den Polymerisationsreaktionen. Der 

Grund dafür sind die Allylgruppen am Grundgerüst des Katalysators. Diese können mit den 

aktiven Zentren des Palladium Katalysators wechselwirken und sie besetzen. Dadurch kommt 

es zu einer Deaktivierung des Katalysators. 

 

 
 
Fünf α-Diimin-Komplexe mit Allylgruppen wurden durch Hydrosilylierungsreaktionen mit 

einem verbrückten Zirconocen-Komplex verbunden. Dabei wurde die Allylgruppe mit der 

Silanfunktion des Zirkonocen-Komplexes in Gegenwart eines Karstedt-Katalysators 

umgesetzt, wodurch fünf neue zweikernige Katalysator-Vorstufen entstanden. Nach der 
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Aktivierung mit Methylaluminoxan wurden diese Komplexe hinsichtlich ihrer katalytischen 

Aktivität bei der Polymerisation von Ethen untersucht. 
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Die verbrückte Zirkonoceneinheit ist für alle zweikernigen Komplexe nicht variiert worden. 

Die Aktivitäten der Polymerisationsreaktionen zeigten folgende Abhängigkeit von der Art 

des Zentralmetalls der Diimineinheit: Ni > Pd > V > Zr > Ti. Die GPC-Analysen des 

erhaltenen Polyethylens wiesen breite Molekulargewichtsverteilungen (Mn) auf, was den 

zwei unterschiedlichen aktiven Zentren der Katalysatoren entspricht.  

 

Sechs neue zweikernige Katalysatorvorstufen mit einer α-Diimin-Einheit, gebunden an einen 

Metallocen Halbsandwich-Komplex, wurden funktionalisiert. Sie wurden durch 

Massenspektroskopie und C, H, N-Elementaranalyse charakterisiert. Nach der Aktivierung 

mit Methylaluminoxan wurden auch diese Komplexe hinsichtlich ihrer katalytischen 

Aktivität bei der Polymerisation von Ethen untersucht. 
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Die Aktivitäten der Polymerisationensreaktionen dieser zweikernigen Katalysatoren zeigten 

eine Abhängigkeit von der Größe der ortho-Substituenten (R) des Arylrings. Auch hier 

stimmten die Ergebnisse mit dem „chain running mechanism“ überein: Größere Substituenten 

bedingten ein Erniedrigung der Aktivitäten der Polymerisationskatalysatoren. Die Ergebnisse 

der GPC-Analysen der hergestellten Polyethylene wiesen eine bimodale 

Molekulargewichtsverteilung auf. Dies kann den beiden aktiven Zentren der zweikernigen 

Komplexe zugeschrieben werden. Die GPC-Spektren der mit den zweikernigen Katalysatoren 

18a und b hergestellten Polyethylene wurden als Beispiele diskutiert.  
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7. Appendices 
 

Appendix A: Mass spectra 
 

Table A1: Mass spectra of organic compounds 

 

Nr. Structure 
Retention time 

[s] 

Mass spectra 

[
m

/z(%)] 

 

 

1 

 

 

 

 

NN

 

740 
292(M·+), 277(24), 172(1), 

146(100), 105(30) 

 

 

2 

 

 

 

 

NN

 

796 
348(M·+), 333(1), 319(91), 
200(1), 174(100), 105(30) 

 

 

3 

 

 

 

 

NN

 
 

804 
404(M·+,0.8), 361(70), 

212(1), 202(100), 160(23) 

 

 

 

4 

 

 

 

 

NN

 
 

792 
332(M·+,24), 317(36), 

212(1), 186(100), 146(65), 
105(38) 

 

 

 

5 

 

 

 

 

NN

 

834 
388(M·+,4), 359(50), 240(1), 
214(100), 174(81), 105(87) 
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Nr. Structure 

Retention 

time 

[s] 

Mass spectra 

[
m

/z(%)] 

 

 

 

6 

 

 

 

 

NN

 

836 

444(M·+,28), 
429.3(1),  
401(76), 

242(100), 
202(56), 
186(22) 

 

 

7 

 

 

 

 

 

NN

 
 

892 

484(M·+,1), 
441(38), 
242(100), 
200(12), 
186(18), 
158(13) 

 

 

9L 

 

 

 
 

Si

H Me

 
 

416 
174(M·+, 8), 
109(100), 

93(42), 81(25) 

 

 

15 

 

 

 

 

 

Cl

NN

 

859 

368(M·+,1) 
353(36), 

317(100), 
222(67), 
146(94), 
105(50) 

 
 

16 

 
 
 
 

 

NN

Cl  

897 

424(M·+), 
395(2), 

388(26), 
359(100), 
306(18), 
214(94), 
174(64), 
105(20) 
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Nr. Structure 
Retention time 

[s] 

Mass spectra 

[
m

/z(%)] 

 
 

17 

 
 
 
 

 

NN

Cl  

896 

480(M·+,1), 444(12),  
437(36), 429(9), 401(91), 

359(18), 278(87), 242(75), 
202(100), 160(26) 

 
 

18 

 
 
 
 

 

NN

 

927 
398(M·+,28), 383(32), 

293(8), 252(100), 236(6), 
146(64), 105(58) 

 
 

19 

 
 
 
 

 

NN

 

976 
454(M·+,12), 425(100), 
349(3), 280(53), 250(4), 

174(42), 105(39) 

 
 

20 
 
 
 
 

 

NN

 

974 
510(M·+,15), 467(56), 

405(2), 308(100), 266(5), 
202(52), 186(9), 160(14) 
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Table A2: Mass spectra of complexes 
 

Nr. Structure 
Mass spectra 

[
m

/z(%)] 

 

 

 

4a 

 

 

 

 

NN
Ti

Cl Cl
Cl Cl

 

522(M·+, 10), 508(15), 488(12), 484(8), 
449(22), 331(100), 318(58), 186(50), 

146(53), 105(50) 

 

 

 

4b 

 

 

 

 

NN
Zr

Cl Cl
Cl Cl

 

562(M·+, 6), 528(4), 455(13), 332(65), 
317(48), 229(27), 212(64), 121(100), 

106(83) 

 

 

 

4c 

 

 

 

 

NN
V

Cl Cl

Cl

 

489(M·+, 15), 472(11), 382(24), 332(47), 
317(45), 213(80), 198(100), 157(32), 

121(93), 106(40) 

 

 

 

4d 

 

 

 

 

NN
Cr

Cl Cl

Cl

 

488(M·+, 8), 450(8), 359(20), 332(32), 
317(30), 157(5), 122(15), 105(21) 

 

 

 

4e 

 

 

 

 

NN
Fe

Cl Cl

Cl

 

493(M·+, 3), 460(2), 451(12), 435(5), 
332(91), 317(35), 161(46), 121(95), 

106(98), 77(100) 
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Nr. Structure 
Mass spectra 

[
m

/z(%)] 

 

 

 

4f 

 

 

 

 
 

NN
Ni

Br Br

 
 

550(M·+), 510(10), 470(32), 332(55), 
318(34), 186(43), 146(57), 105(100) 

 

 

 

4g 

 

 

 

 
 

NN
Pd

Cl Cl

 
 

507(M·+, 6), 470(5), 332(20), 317(20), 
186(48), 146(64), 120(42) 

 

 

 

5a 

 

 

 

 
 

NN
Ti

Cl Cl
Cl Cl

 
 

577(M·+, 3), 543(4), 535(7), 495(2), 471(3), 
388(100), 359(18), 240(32), 214(13), 
190(16), 174(80), 134(65), 105(50) 

 

 

 

5b 

 

 

 

 
 

NN
Zr

Cl Cl
Cl Cl

 
 

619(M·+, 28), 589(31), 547, (15), 520(30), 
478(10), 388(100), 231(40), 214(24), 

174(32) 
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Nr. Structure 
Mass spectra 

[
m

/z(%)] 

 

 

 

5c 

 

 

 

 

NN
V

Cl Cl

Cl

 
 

544(M·+, 2), 502(4), 479(6), 424(14), 
402(12), 388(13), 241(42), 215(35), 

174(50), 142(16), 134(76), 120(26), 106(28) 

 

 

 

5d 

 

 

 

 

NN
Cr

Cl Cl

Cl

 
 

545(M·+, 6), 510(12), 504(18), 474(10), 
425(25), 401(8), 388(18), 239(16), 213(80), 

156(28), 144(100), 120(84) 

 

 

 

5e 

 

 

 

 

NN
Fe

Cl Cl

Cl

 
 

549(M·+, 15), 535(22), 520(8), 508(15), 
428(7), 388(100), 359(28), 240(44), 

214(33), 174(65), 162(22), 120(20), 105(97) 

 
 
 

5f 

 

 

 

 

NN
Ni

Br Br

 
 

606(M·+, 5), 565(12), 527(20), 486(14), 
447(20), 388(16), 359(100), 214(92), 
174(59), 158(18), 120(30), 105(74) 
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Nr. Structure 
Mass spectra 

[
m

/z(%)] 

 

 

 

5g 

 

 

 

 
 

NN
Pd

Cl Cl

 
 

565(M·+, 2), 529(5), 526(10), 500(7), 
388(45), 214(20), 174(6), 105(16) 

 

 

 

6a 

 

 

 

 
 

NN
Ti

Cl Cl
Cl Cl

 
 

634(M·+), 598(13), 563(25), 544(14), 
526(36), 519(8), 444(50), 401(40), 357(15), 

277(28), 242(64), 202(80), 190(15), 
186(100), 117(34) 

 

 

 

6b 

 

 

 

 
 

NN
Zr

Cl Cl
Cl Cl

 
 

674(M·+, 8), 643(6), 633(10), 586(3), 
502(5), 444(100), 401(33), 242(46), 

202(42), 186(37), 176(13) 

 

 

 

6c 

 

 

 

 
 

NN
V

Cl Cl
Cl

 
 

598(M·+, 7), 567(13), 529(3), 512(10), 
494(12), 443(20), 427(27), 352(30), 

254(48), 226(72), 177(29), 156(10), 105(58) 
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Nr. Structure 
Mass spectra 

[
m

/z(%)] 

 

 

 

6d 

 

 

 

 

NN
Cr

Cl Cl
Cl

 
 

601(M·+, 6), 566(10), 558(15), 515(6), 
585(12), 445(10), 425(5), 177(6), 158(35), 

120(19) 

 

 

 

6e 

 

 

 

 

NN
Fe

Cl Cl
Cl

 
 

605(M·+, 5), 570(10), 566(6), 562(12), 
519(15), 488(20), 478(10), 444(38), 
430(12), 401(13), 352(10), 252(44), 

242(95), 201(84), 186(100), 177(93), 
162(100), 130(35), 120(63) 

 

 

 

6f 

 

 

 

 

NN
Ni

Br Br

 
 

662(M·+, 10), 623(18), 619(15), 582(37), 
578(52), 545(22), 502(45), 444(77), 
399(38), 263(28), 242(73), 216(10), 

202(100), 158(35), 120(26) 
 
 
 

 

 

 

6g 

 

 

 

 

NN
Pd

Cl Cl

 
 

621(M·+, 7), 587(20), 580(35), 544(32), 
463(48), 444(58), 240(45), 202(100), 

118(38) 
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Nr. Structure 
Mass spectra 

[
m

/z(%)] 

 

 

8 

 

 

 

 

NN
Ni

Br Br

 

702(M·+), 643(10), 622(18), 
485(9), 441(87), 242(100), 
200(28), 186(82), 158(53) 

 

 

9C 

 

 

 

 

Si

H Me

Zr

Cl Cl  
 

331(M·+, 48), 317(18), 
296(78), 259(23), 227(63), 
192(15), 174(14), 162(25), 

109(21) 

 

 

10 

 

 

 

 

 

Si

Me

Zr

Cl Cl

NN

Ti

Cl
Cl Cl

Cl

 
 

966(M·+), 931(8), 922(15), 
901(7), 878(25), 792(13), 

618(22), 535(14), 444(100), 
290(92), 238(38), 202(47), 

186(35) 

 

 

11 

 

 

 

 

 

Si

Me

Zr

Cl Cl

NN

Zr

Cl
Cl Cl

Cl

 
 

1008(M·+), 977(3), 973(5), 
888(3), 848(8), 835(5), 

796(3), 775(10), 717(5), 
595(6), 531(9), 462(7), 

444(25), 369(6), 325(7), 
254(24), 202(100), 162(48) 
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Nr. Structure 
Mass spectra 

[
m

/z(%)] 

 

 

12 

 

 

 

 

 

Si

Me

Zr

Cl Cl

NN

V

Cl
Cl

Cl

 
 

934(M·+), 899(3), 802(5), 778(6), 774(10), 
758(15), 751(16), 707(23), 672(20), 
616(18), 509(29), 444(60), 364(42), 

293(44), 252(48), 202(100) 

 

 

13 

 

 

 

 

 

Si

Me

Zr

Cl Cl

NN

Ni

Br Br

 
 

996(M·+), 965(3), 937(2), 904(2), 837(2), 
778(4), 762(7), 710(12), 512(9), 456(10), 

444(53), 427(44), 388(24), 271(52), 
202(54), 186(51) 

 

 

14 

 

 

 

 

 

Si

Me

Zr

Cl Cl

NN

Pd

Cl Cl

 
 

955(M·+, 5), 921(13), 884(16), 797(15), 
779(20), 624(19), 445(35), 403(37), 
467(18), 326(23), 269(34), 244(64), 

202(76) 
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Nr. Structure 
Mass spectra 

[
m

/z(%)] 

 
 

18a 

 
 
 
 

 
 

NN

Ti

Cl

Cl

Cl

Ti
Cl Cl

Cl Cl

 
 
 

738(M·+, 7), 706(5), 588(5), 551(6), 
486(14), 424(15), 316(10), 216(18), 

188(48), 158(37), 146(100), 120(49), 
105(93) 

 
 

18b 

 
 
 
 

 
 

NN

Zr

Cl

Cl

Cl

Zr
Cl Cl

Cl Cl

 
 
 

827(M·+, 3), 792(9), 721(7), 632(8), 
597(4), 484(12), 442(9), 386(5), 345(7), 

290(8), 214(16), 146(63), 121(100), 
106(97) 

 
 

19a 

 
 
 
 

 

NN

Ti

Cl

Cl

Cl

Ti
Cl Cl

Cl Cl

 
 
 

796(M·+), 761(12), 741(2), 710(4), 
643(10), 606(6), 455(15), 434(7), 362(9), 

308(10), 250(9), 216(15), 174(11), 
134(24) 
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Nr. Structure 
Mass spectra 

[
m

/z(%)] 

 
 

19b 

 
 
 
 

 

NN

Zr

Cl

Cl

Cl

Zr
Cl Cl

Cl Cl

 
 
 

879(M·+, 4), 845(3), 809(8), 774(5), 
763(7), 736(12), 689(4), 469(8), 454(20), 

411(6), 359(17), 280(7), 242(10), 
174(53), 149(63), 134(100), 120(35) 

 
 
20a 

 
 
 
 

 

NN

Ti

Cl

Cl

Cl

Ti
Cl

Cl Cl

Cl

 
 
 

854(M·+), 825(7), 784(4), 765(3), 748(7), 
734(6), 697(7), 512(15), 462(19), 

390(20), 244(24), 202(100), 162(100), 
144(33), 120(39) 

 
 

20b 

 
 
 
 

 

NN

Zr

Cl

Cl

Cl

Zr
Cl

Cl Cl

Cl

 
 
 

938(M·+, 9), 902(5), 810(8), 739(13), 
688(10), 510(7), 407(14), 308(12), 

244(17), 202(100), 187(26), 162(55), 
132(27), 120(52) 
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Appendix B: NMR spectra 
 

Table B1: 
1
H-NMR and 

13
C-NMR spectra of organic compounds 

 

Nr. Structure 
1
H-NMR [ppm]

a)
 

13
C-NMR [ppm]

b)
 

 

 

1 

 

 

 

 

NN

 

7.5(d,4H), 6.92(t,2H), 

2.02(s,12H), 1.98(s,6H). 

Cq: 168, 148.3, 124.6 

CH: 127.9, 123.2 

CH2: - 

CH3: 17.8, 15.8 

 

 

2 

 

 

 

 

NN

 
 

7.1(d,4H), 7.04(t,2H), 

2.37(m,8H), 2.05(s,6H), 

1.15(dd,12H). 

Cq: 168, 147.5, 130.5 

CH: 126.1, 123.5 

CH2: 24.7 

CH3: 16.2, 13.6 

 

 

3 

 

 

 

 

NN

 
 

7.20(d,4H), 7.13(t,2H), 

2.75(sep,4H), 

2.10(s,6H), 1.22(d,12H), 

1.18(d,12H). 

Cq: 168, 146, 135 

CH: 123.8, 123, 28.5 

CH2: - 

CH3: 22.8, 16.8 

 

 

 

 

4 

 

 

 

 

NN

 

7.06(d,4H), 6.93(t,2H), 

5.65(m,1H), 

4.89(dd,2H), 2.62(t,2H), 

2.25(q,2H), 

2.04(s,12H), 2.02(s,3H). 

Cq: 171, 167.6, 148.2, 

       147.9, 126.8 

CH: 137.5, 128.1, 

        123.4 

CH2: 115.2, 30.9, 28.8 

CH3: 18.3, 18.1, 16.2 

 

 

 

 

5 

 

 

 

 

NN

 

7.1(d,4H), 7.02(t,2H), 

5.65(m,1H), 

4.88(dd,2H), 2.63(t,2H), 

2.4(m,8H), 

2.25(q,2H), 2.05(s,3H), 

1.17(t,12H). 

Cq: 170.5, 167.8, 

      147.4, 146.9, 130.3 

CH: 137.5, 126.2, 

        125.8, 123.5 

CH2: 115, 30.6, 28.7, 

         24.7 

CH3: 16.8, 13.9, 13.4 

a) 25 ˚C in chloroform-d1, rel. CHCl3, δ = 7.24 ppm 
      b)   25 ˚C in chloroform-d1, rel. CHCl3, δ = 77.0 ppm   



7. Appendices 
 

 114 
 

Nr. Structure 
1
H-NMR 
[ppm]

a)
 

13
C-NMR [ppm]

b)
 

 

 

 

6 

 

 

 

 

NN

 

7.16(m,6H), 

5.7(m,1H), 

4.95(dd,2H), 

2.75(sep,4H), 

2.65(t,2H), 

2.27(q,2H), 

2.05(s,3H), 

1.2(m,24H). 

Cq:   170.5, 168, 

        146.5, 145.5, 

        135.2, 134.8 

CH:  137.5, 123.7, 

        123, 122.7, 28.5 

CH2: 115, 30.5, 29 

CH3: 23.3, 23.2, 22.7, 

         22.1, 17.1 

 

 

7 

 

 

 

 

NN

 

6.95(s,4H), 

6.01(m,2H), 

5.10(dd,4H), 

3.38(d,4H), 

2.67(sep,4H), 

2.04(s,6H), 

1.17(d,12H), 

1.14(d,12H) 

Cq:  168.4, 144.3, 

       135 

CH: 138, 123.2, 

        28.5 

CH2: 115.3, 40.2 

CH3: 22.8,16.5 

 

 

15 

 

 

 

 

 

Cl

NN

 

7.06(d,4H), 

6.94(t,2H), 

3.38(t,2H), 

2.52(t,2H), 

2.04(s,6H), 

2.02(s,6H), 

2.01(s,3H), 

1.64(m,4H). 

Cq:  170.8, 167.5, 

       148.4, 147.8, 

       124.6 

CH: 128.5, 128, 

       123.3, 123.3 

CH2: 44.4, 32.7, 

         28.3, 24.2 

CH3: 18,16.3 

 
 

16 

 
 
 
 

 

NN

Cl  

7.1(d,4H), 

7.02(t,2H), 

3.37(t,2H), 

2.52(t,2H), 

2.36(m,8H), 

2.03(s,3H), 

1.65(m,4H), 

1.18(t,6H) 

1.13(t,6H). 

Cq:  170.4, 167.7, 

       147.4, 146.9, 

       130.6, 130.3 

CH: 126.1, 125.9, 

       123.6, 123.5 

CH2: 44.4, 32.8, 

        28.6, 24.8, 24 

CH3: 16.7, 13.9, 13.4 

      a)   25 ˚C in chloroform-d1, rel. CHCl3, δ = 7.24 ppm   
      b)   25 ˚C in chloroform-d1, rel. CHCl3, δ = 77.0 ppm   
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Nr. Structure 
1
H-NMR [ppm]

a)
 

13
C-NMR [ppm]

b)
 

 
 

17 

 
 
 
 

 
 

NN

Cl  
 
 

7.20-7.14(m,4H), 

7.11(t,2H), 

3.41(t,2H), 

2.72(sep,4H), 

2.55(t,2H), 

2.07(s,3H), 

1.68(m,4H), 

1.25(d,6H), 

1.22(d,6H), 

1.19(d,6H), 

1.14(d,6H). 

Cq:  170.5, 168, 146.1, 

       145.6, 135.2, 

       134.9 

CH: 123.8, 123.7, 123, 

       122.8, 28.5 

CH2: 44.6, 32.9, 28.9, 

         23.9 

CH3: 23.2, 22.7, 22.2,  

         22.1, 17.1 

 

 
 

18 

 
 
 
 

 

NN

 
 

7.05(d,4H), 6.92(t,2H), 

6.34(m,1H), 6.18(m,1H), 

5.98(m,1H), 5.83(m,1H), 

2.86(m,1H), 2.52(t,2H), 

2.23(q,2H), 2.03(s,3H), 

2.01(s,6H), 2.00(s,6H),  

1.46(m,4H). 

Cq:  171.5, 167.5, 

       148.5, 148, 

       124.7, 124.6 

CH: 134.6, 133.6, 

       132.3, 130.4, 128, 

       123.2, 44.7 

CH2: 43.1, 41.2, 29.3, 

         26.4 

CH3: 18, 16.3 

 
 

19 

 
 
 
 

 
 

NN

 
 
 

7.10(d,4H), 7.01(t,2H), 

6.34(m,1H), 6.18(m,1H), 

5.98(m,1H), 5.84(m,1H), 

2.86(m,1H), 2.52(t,2H), 

2.35(q,8H), 2.22(q,2H), 

2.02(s,3H), 1.46(m,4H), 

1.16(t,6H), 1.13(t,6H). 

Cq:  171.2, 167.7, 

       147.5, 147, 130.6, 

       130.4 

CH: 134.6, 133.6, 

       132.3, 130.4, 

       126.1, 125.8, 

       123.5, 123.4,  

       44.7 

CH2: 43.1, 41.2, 29.4, 

         26.3, 24.8, 24.7 

CH3: 16.8, 13.8, 13.4 

 
 a)   25 ˚C in chloroform-d1, rel. CHCl3, δ = 7.24 ppm   

b)   25 ˚C in chloroform-d1, rel. CHCl3, δ = 77.0 ppm 
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Nr. Structure 
1
H-NMR [ppm]

a)
 

13
C-NMR [ppm]

b)
 

 
 

20 

 
 
 
 

 

NN

 

7.12(m,6H), 6.33(m,1H), 

6.17(m,1H), 6.00(m,1H), 

5.85(m,1H), 2.86(m,1H), 

2.70(m,4H), 2.53(t,2H), 

2.25(q,2H), 2.03(s,3H), 

1.48(m,4H), 1.25(d,6H), 

1.19(d,6H), 1.15(d,6H), 

1.12(d,6H). 

 

Cq:  171.2, 168, 

       146.2, 145.7, 

       135.2, 135 

CH: 134.5, 133.7, 

       132.4, 130.4, 

       123.7, 123.6, 

       123.0, 122.8,  

       44.7, 28.4 

CH2: 43.1, 41.2, 

         29.6, 26.2 

CH3: 23.2, 23.1, 

         22.7, 22.1,  

         17.2 

 
     
      a)   25 ˚C in chloroform-d1, rel. CHCl3, δ = 7.24 ppm   
      b)   25 ˚C in chloroform-d1, rel. CHCl3, δ = 77.0 ppm   
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Table B2: 
1
H-NMR and 

13
C-NMR spectra of complexes 

 

Nr. Structure 
1
H-NMR [ppm]

a)
 

13
C-NMR [ppm]

b)
 

 

 

 

 

6g 

 

 

 

 
 

NN
Pd

Cl Cl

 
 
 

7.40(t,2H), 7.29(d,2H), 

7.27(d,2H), 5.64(m,1H), 

5.01(dd,2H), 3.10(sep,2H), 

2.98(sep,2H), 2.54(t,2H), 

2.21(q,2H), 2.13(s,3H), 

1.54(d,6H), 1.47(d,6H), 

1.29(d,6H), 1.23(d,6H). 

Cq:  178.6, 174, 

141.3, 140.9, 

       139.3 

CH: 134.2, 129, 124, 

        29.5, 29.3 

CH2: 117.3, 32.6, 31 

CH3: 24.2, 23.5, 20.8 

 

 

9C 

 

 

 

Si

H Me

Zr

Cl Cl  

6.8-6.4(m,4H), 6.1(d,4H), 

5.16(s,1H), 0.1(s,3H). 

Cq:  108 

CH: 130, 128, 115, 

       114 

CH2: - 

CH3: -2 

 

 

14 

 

 

 

 

 
 

Si

Me

Zr

Cl Cl

NN

Pd

Cl Cl

 
 
 

7.4-7.2(m,6H), 7-6(br,8H), 

3.1(m,4H), 2.35(br,t,2H), 

2.1(s,3H), 1.7(m,2H), 

1.5(m,12H), 1.3(m,12H), 

0.9(m,4H), 0.1(s,3H). 

n. a. 

      a)   25 ˚C in methylene chloride-d2, rel. CH2Cl2, δ = 5.32 ppm   
      b)   25 ˚C in methylene chloride-d2, rel. CH2Cl2, δ = 53.5 ppm   
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Appendix C: Elemental analysis 
 

Table C1: Elemental analysis data of the complexes 4a-f 

 

4a 4b 

 

NN
Ti

Cl Cl
Cl Cl

 
 

Measured: C, 53.04 ; H, 5.48 ; N, 4.98 
 

Calculated: C, 52.90; H, 5.40; N, 5.36 
 

NN
Zr

Cl Cl
Cl Cl

 
 

Measured: C, 48.52; H, 5.13; N, 5.04 
 

Calculated: C, 48.85; H, 4.99; N, 4.95 

4c 4d 

 

NN
V

Cl Cl

Cl

 
 

Measured: C, 55.85; H, 5.65; N, 5.85 
 

Calculated: C, 56.40; H, 5.76; N, 5.72 
 

NN
Cr

Cl Cl

Cl

 
 

Measured: C, 57.17; H, 5.90; N, 5.48 
 

Calculated: C, 56.28; H, 5.75; N, 5.71 

4e 4f 

NN
Fe

Cl Cl

Cl

 
 

Measured: C, 54.83; H, 5.68; N, 5.20 
 

Calculated: C, 55.84; H, 5.71; N, 5.66 

 

NN
Ni

Br Br

 
 

Measured: C, 48.47; H, 4.97; N, 4.82 
 

Calculated: C, 50.14; H, 5.12; N, 5.08 
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Table C2: Elemental analysis data of the complexes 4g and 5a-e 

 

4g 5a 

 

NN
Pd

Cl Cl

 
 

Measured: C, 52.63; H, 5.64; N, 5.25 
 

Calculated: C, 54.19; H, 5.54; N, 5.49 
 

NN
Ti

Cl Cl
Cl Cl

 
 

Measured: C, 56.39; H, 6.27; N, 4.69 
 

Calculated: C, 56.08; H, 6.27; N, 4.84 
 

5b 5c 

 

NN
Zr

Cl Cl
Cl Cl

 
 

Measured: C, 55.42; H, 6.03; N, 4.37 
 

Calculated: C, 52.17; H, 5.84; N, 4.51 
 

 

NN
V

Cl Cl

Cl

 
 

Measured: C, 62.52; H, 6.37; N, 5.31 
 

Calculated: C, 59.41; H, 6.65; N, 5.13 
 

5d 5e 

 

NN
Cr

Cl Cl

Cl

 
 

Measured: C, 61.45; H, 6.08; N, 5.30 
 

Calculated: C, 59.29; H, 6.63; N, 5.12 
 

 

NN
Fe

Cl Cl

Cl

 
 

Measured: C, 57.50; H, 6.38; N, 5.02 
 

Calculated: C, 58.88; H, 6.59; N, 5.09 
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Table C3: Elemental analysis data of the complexes 5f, 5g, and 6a-d 

 

5f 5g 

NN
Ni

Br Br

 
 

Measured: C, 56.35; H, 6.18; N, 4.61 
 

Calculated: C, 55.42; H, 5.98; N, 4.61 
 

NN
Pd

Cl Cl

 
 

Measured: C, 56.84; H, 6.45; N, 4.86 
 

Calculated: C, 57.30; H,6.41; N, 4.95 
 

6a 6b 

 

NN
Ti

Cl Cl
Cl Cl

 
 

Measured: C, 58.79; H, 6.89; N, 4.15 
 

Calculated: C, 58.69; H, 6.99; N, 4.42 
 

NN
Zr

Cl Cl
Cl Cl

 
 

Measured: C, 55.07; H, 5.27; N, 4.03 
 

Calculated: C, 54.94; H, 6.54; N, 4.13 

6c 6d 

 

NN
V

Cl Cl
Cl

 
 

Measured: C, 59.83; H, 6.98; N, 4.80 
 

Calculated: C, 61.85; H, 7.37; N, 4.65 
 

 

NN
Cr

Cl Cl
Cl

 
 

Measured: C, 59.29; H, 7.20; N, 4.45 
 

Calculated: C, 61.74; H, 7.35; N, 4.65 
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Table C4: Elemental analysis data of the complexes 6e-g, 9C, and 8 

 

6e 6f 

 

NN
Fe

Cl Cl
Cl

 
 

Measured: C, 59.58; H, 7.29; N, 4.26 
 

Calculated: C, 61.35; H, 7.31; N, 4.62 
 

 

NN
Ni

Br Br

 
 

Measured: C, 55.63; H, 6.52; N, 4.01 
 

Calculated: C, 56.14; H, 6.69; N, 4.22 
 

6g 9C 

 

NN
Pd

Cl Cl

 
 

Measured: C, 60.18; H, 7.11; N, 4.38 
 

Calculated: C, 59.86; H, 7.13; N, 4.50 
 

 
 
 

Si

H Me

Zr

Cl Cl  
 
 
 

Measured: C, 38.76; H, 3.53; N, - 
 

Calculated: C, 39.51; H, 3.62; N, - 
 

8 

 

NN
Ni

Br Br

 
 

Measured: C, 57.41; H, 6.53; N, 3.96 
 

Calculated: C, 58.07; H, 6.88; N, 3.98 
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Table C5: Elemental analysis data of the complexes 10-13 

 

10 11 

 

Si

Me

Zr

Cl Cl

NN

Ti

Cl
Cl Cl

Cl

 
 

Measured: C, 49.15; H, 6.15; N, 2.92 
 

Calculated: C, 52.07; H, 5.83; N, 2.89 
 

 

Si

Me

Zr

Cl Cl

NN

Zr

Cl
Cl Cl

Cl

 
 

Measured: C, 48.15; H, 5.88; N, 2.80 
 

Calculated: C, 49.84; H, 5.58; N, 2.77 
 

12 13 

 

Si

Me

Zr

Cl Cl

NN

V

Cl
Cl

Cl

 
 

Measured: C, 53.16; H, 6.47; N, 2.95 
 

Calculated: C, 53.87; H, 6.03; N, 2.99 
 

 

Si

Me

Zr

Cl Cl

NN

Ni

Br Br

 
 

Measured: C, 49.97; H, 5.97; N, 2.58 
 

Calculated: C, 50.57; H, 5.66; N, 2.81 
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Table C6: Elemental analysis data of the complexes 14, 18a, 18b, 19a 

 

14 18a 

 

Si

Me

Zr

Cl Cl

NN

Pd

Cl Cl

 
 

Measured: C, 51.50; H, 6.29; N, 3.16 
 

Calculated: C, 52.74; H, 5.90; N, 2.93 
 

 
 
 

NN

Ti

Cl

Cl

Cl

Ti
Cl Cl

Cl Cl

 
 
 

Measured: C, 45.39; H, 4.47; N, 4.10 
 

Calculated: C, 45.36; H, 4.49; N, 3.78 
 

18b 19a 

 
 
 

NN

Zr

Cl

Cl

Cl

Zr
Cl Cl

Cl Cl

 
 
 

Measured: C, 40.45; H, 4.01; N, 3.63 
 

Calculated: C, 40.61; H, 4.02; N, 3.38 
 

 
 

NN

Ti

Cl

Cl

Cl

Ti
Cl Cl

Cl Cl

 
 
 

Measured: C, 46.95; H, 5.01; N, 3.61 
 

Calculated: C, 48.19; H, 5.18; N, 3.51 
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Table C7: Elemental analysis data of the complexes 19b, 20a, and 20b 

 

19b 20a 

 

NN

Zr

Cl

Cl

Cl

Zr
Cl Cl

Cl Cl

 
 

Measured: C, 42.53; H, 5.13; N, 3.16 
 

Calculated: C, 43.46; H, 4.67; N, 3.17 
 

 

NN

Ti

Cl

Cl

Cl

Ti
Cl

Cl Cl

Cl

 
 

Measured: C, 48.54; H, 6.07; N, 3.35 
 

Calculated: C, 50.65; H, 5.79; N, 3.28 
 

20b 

 

NN

Zr

Cl

Cl

Cl

Zr
Cl

Cl Cl

Cl

 
 
 

Measured: C, 44.31; H, 5.28; N, 2.76 
 

Calculated: C, 45.98; H, 5.25; N, 2.98 
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Appendix D: Crystal structure analysis 
 

Table D1: Crystal data and structure refinement of compound 6. 

 
 
C31 H44 N2 

444.68 

133(2) K 

0.71073 Å 

Orthorhombic 

P2(1)2(1)2 

 

a = 19.014(4) Å            α = 90° 

b = 23.571(5) Å    β = 90°  

c = 6.2853(13) Å           γ = 90° 

 

2816.9(10) Å3
 

4 

1.049 Mg/m3
 

0.06 mm-1
 

976 

0.63 x 0.38 x 0.29 mm3
 

2.1  to  25.6° 

-19<h<23, -28<k<24, -7<l<7 

13013 

5198 [R(int) = 0.0304] 

99.3 % 

None 

Full-matrix least-squares on F2
 

5198 / 0 / 299 

0.97 

R1 = 0.0447, wR2 = 0.1054 

R1 = 0.0582, wR2 = 0.1103 

0.36 and -0.21 e.Å-3 

 
Empirical formula                                                       

Formula weight                                                           

Temperature                                                                

Wavelength                                                                 

Crystal system                                                            

Space group                                                                

 

Unit cell dimensions              

 

 

 

Volume             

Z               

Density (calculated)        

Absorption coefficient              

F(000)                

Crystal size              

θ range for data collection     

Index ranges             

Reflections collected           

Independent reflections           

Completeness to θ = 25.6°       

Absorption correction      

Refinement method                   

Data / restraints / parameters        

Goodness-of-fit on F2
      

Final R indices [I > 2σ (I)]           

R indices (all data)              

Largest diff. peak and hole 
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Table D2: Crystal data and structure refinement of complex 6g. 
 

 
C32 H46 Cl4 N2 Pd 

706.91 

133(2) K 

0.71069 Å 

Triclinic 

P-1 

 

a = 8.8350(6) Å            α = 80.81° 

b = 10.5840(8) Å    β = 84.76°  

c = 18.9310(13) Å         γ = 86.89° 

 

1738.8(2) Å3
 

2 

1.350 Mg/m3
 

0.86 mm-1
 

732 

0.50 x 0.28 x 0.14 mm3
 

2.0  to  25.7° 

-10<h<10, -12<k<12, -23<l<23 

23280 

6549 [R(int) = 0.043] 

98.9 % 

None 

Full-matrix least-squares on F2
 

6549 / 0 / 390 

0.94 

R1 = 0.0358, wR2 = 0.0859 

R1 = 0.0480, wR2 = 0.0886 

1.18 and -0.97 e.Å-3 

 
Empirical formula                                                       

Formula weight                                                           

Temperature                                                                

Wavelength                                                                 

Crystal system                                                            

Space group                                                                

 

Unit cell dimensions              

 

 

 

Volume             

Z               

Density (calculated)        

Absorption coefficient              

F(000)                

Crystal size              

θ range for data collection     

Index ranges             

Reflections collected           

Independent reflections           

Completeness to θ = 25.7°       

Absorption correction      

Refinement method                   

Data / restraints / parameters        

Goodness-of-fit on F2
      

Final R indices [I > 2σ (I)]           

R indices (all data)              

Largest diff. peak and hole 
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Table D3: Crystal data and structure refinement for complex 8. 
 

 
C68 H96 Br4 N4 Ni2 

1406.55 

133(2) K 

0.71069 Å 

Triclinic 

P-1 

 
a = 13.0160(7) Å          α = 94.41° 

b = 15.7980(9) Å    β = 108.59°  

c = 18.3480(11) Å         γ = 97.45° 

 
3517.6(3) Å3

 

2 

1.328 Mg/m3
 

2.846 mm-1
 

1456 

0.95 x 0.27 x 0.14 mm3
 

1.7  to  25.7° 

-15<h<14, -19<k<19, 0<l<22 

13251 

7408 [R(int) = 0] 

98.6 % 

Numerical 

Full-matrix least-squares on F2
 

7408 / 0 / 703 

1.049 

R1 = 0.0607, wR2 = 0.1327 

R1 = 0.1134, wR2 = 0.1415 

1.38 and -1.05 e.Å-3 

 
Empirical formula                                                       

Formula weight                                                 

Temperature                                                                

Wavelength                                                                 

Crystal system                                                            

Space group                                                                

 
Unit cell dimensions              

 

 

 
Volume             

Z               

Density (calculated)        

Absorption coefficient              

F(000)                

Crystal size              

θ range for data collection     

Index ranges             

Reflections collected           

Independent reflections           

Completeness to θ = 25.7°       

Absorption correction      

Refinement method                   

Data / restraints / parameters        

Goodness-of-fit on F2
      

Final R indices [I > 2σ (I)]           

R indices (all data)              

Largest diff. peak and hole 
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