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Zusammenfassung

Diese Dissertation beschäftigt sich mit der Mikrofluidik und insbesondere der
Dynamik von Mikrometer großen Teilchen, wie z.B. Polymeren, Kapseln und
roten Blutzellen, in Strömungen bei kleiner Reynoldszahl. Dabei wird vor allem
der Transport der Teilchen senkrecht zur Strömung betrachtet, die sogenann-
te transversale Migration. Klassische Beispiele sind die Migration eines de-
formierbaren Teilchens zum Zentrum einer Poiseuille-Strömung oder die Mi-
gration durch die abstoßende Wechselwirkung mit einer Kanalwand. Jedoch
kann eine Migration durch viele weitere Mechanismen verursacht bzw. durch
äußere Einflüsse gezielt gesteuert werden, was in dieser Arbeit untersucht wird.
Diese Migrationsmechanismen könnten zur Teilchentrennung in mikrofluidischen
Systemen, z.B. von gesunden Zellen und Krebszellen, genutzt werden. Mikro-
fluidische Systeme sind eine vielversprechende Technologie in der Biotechnologie,
Pharmakologie, medizinische Diagnose und Grundlagenforschung.
Eine Möglichkeit zur Erzeugung einer Migration sind gekrümmte Stromlinien,

wie z.B. in einem Kanal mit sinusförmig modulierten Wänden, was anhand einer
Kapsel und einer roten Blutzelle gezeigt wird. Diese nicht parallelen Stromlin-
ien in Verbindung mit der endlichen Größe des Teilchens führt dazu, dass es
senkrecht zur Strömung migriert, was zu einem zweiten Attraktor führt. Da
dieser Effekt von den Teilcheneigenschaften abhängt, können damit Teilchen
untersucht und getrennt werden, wie z.B. kranke (Krebs-) und gesunde Zellen.
Weiterhin ist es interessant, den Einfluss einer Zeitabhängigkeit der Strömung

auf die Migration zu untersuchen. Es wird gezeigt, dass bereits ein linearer
Scherfluss zu einer Migration führen kann, wenn er zeitabhängig ist und das
sich darin befindliche Teilchen eine intrinsische Asymmetrie besitzt.
Oszilliert ein zeitabhängiger Fluss schnell genug, so ist die Trägheit eines sich

darin befindlichen Teilchens nicht länger vernachlässigbar. Ein asymmetrisches,
deformierbares Teilchen mit einer anderen Dichte als das umgebende Fluid kann
sich in in diesem Fluss im Mittel bewegen, selbst wenn der Fluss keine mittlere
Geschwindigkeit besitzt. In dieser Arbeit wird anhand einer Januskapsel gezeigt,
dass der Effekt ausreichend stark ist, um die Gravitation zu überwinden und
dass man durch einen asymmetrischen Fluss auch einen Nettofortschritt eines
symmetrischen Teilchen, z.B. einer homogenen Kapsel, erhält.
Neben dem Einfluss der Strömung auf die Migration ist es interessant, wie sich

äußere Kräfte auf den Transport von Teilchen auswirken. Dazu wird der bereits
bekannte Fall eines deformierbaren Teilchens in der Poiseuille-Strömung unter-
sucht und dabei um eine externe Kraft ergänzt, wie sie z.B. bei einer Kapsel
auftritt, die innerhalb eine höhere Dichte als das umgebende Fluid aufweist.
Durch die Deformation im Poiseuille-Fluss oder im linearen Scherfluss wird der
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Reibungskoeffizient anisotrop, sodass eine externe Kraft in Flussrichtung auch
eine Bewegung senkrecht zum Fluss bewirkt. Im Poiseuille-Fluss findet man,
je nach der Richtung der externen Kraft, entweder eine Migration zum Zen-
trum oder zur Wand, was mit der abstoßenden Wandwechselwirkung zu einem
Attraktor führt.
Der Transport eines Teilchens in einer Flüssigkeit durch äußere Kräfte er-

laubt es zudem die Eigenschaften des Teilchens zu bestimmen. Dadurch wurde
das magnetische Moment des magnetotaktischen Bakteriums Magnetospirillum
gryphiswaldense gemessen, indem es mit Hilfe eines bekannten Magnetfeldes
durch eine ruhende Flüssigkeit bewegt wurde. Mit den hier verwendeten Mod-
ellen wurden die Reibungskoeffizienten der spiralförmigen Bakterien bestimmt,
die für die Messung benötigt wurden. Durch diese Art der Messung konnte die
Form der einzelnen Bakterien berücksichtigt werden. Die Ergebnisse können
zum genaueren Verständnis der Biosynthese des Magnetosoms und des resul-
tierenden magnetischen Moments beitragen.
In dieser Arbeit wird zudem untersucht, wie sich ein Gradient in der Viskosität

auf die Migration von Teilchen auswirkt. Solch ein Gradient lässt sich direkt
durch einen Temperaturgradienten erzeugen, da die Viskosität stark von der
Temperatur abhängt. Zudem findet man bei Strömungen scherverdünnender
Flüssigkeiten durch einen Kanal eine räumlich abhängige Viskosität. Im Falle
eines deformierbaren Teilchens und eines Gradienten senkrecht zu einem linearen
Scherfluss ergibt sich eine Migration hin zur geringeren Viskosität, bzw. mit der
Wandwechselwirkung zu einem Attraktor. Im Poiseuille-Fluss findet man einen
zweiten Attraktor in Wandnähe, neben dem Attraktor im Zentrum.
Betrachtet man Teilchen die kleiner sind als die vorher genannten, so kann

das thermische Rauschen den Transport in einer Strömung beeinflussen. Ein
Beispiel hierfür sind semiflexible Polymere oder Filamente, die eine Migration
im parabolischen Poiseuille-Fluss aufweisen. Je nach Steifheit des Polymers
migriert es entweder überall weg vom Zentrum oder unterhalb eines kritischen
Wertes zu einem Attraktor. Hier wird der Einfluss des Rauschens auf diesen
Attraktor untersucht: Durch das Rauschen wird der kritische Wert vergrößert.
Zudem wird der Einfluss der Wand bei endlichen Rauschen untersucht.
Als Anhang folgt eine Diskussion der einfachen Kugel-Modelle, die zur Sim-

ulation von weichen Teilchen in Mikroströmungen verwendet wurden (neben
der Lattice Boltzmann Methode). Diese Kugel-Modelle erlauben einerseits ef-
fiziente Simulationen und andererseits stimmen sie gut mit bereits vorhandener
Literatur und mit anderen Methoden überein. Darüber hinaus erlauben sie
genäherte, semi-analytische Berechnungen um die Migrationsgeschwindigkeit
eines deformierbaren Teilchens in einem Fluss grob abzuschätzen und die Mecha-
nismen, die zu einer Migration führen, anzugeben.
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Abstract

This thesis deals with microfluidics and especially with the dynamics of microm-
eters sized particles like polymers, capsules, and red blood cells in flows of low
Reynolds number. Thereby especially the transport of the particles perpendic-
ular to the stream lines is studied, the so-called cross-streamline migration. A
classical example is the migration of a soft particle to the center of a Poiseuille
flow or the migration due to the repulsive interaction with a channel boundary.
However, a migration can be caused by many further effects or can be con-
trolled by external influences, what is studied in this thesis. These mechanisms
of migration can be used in microfluidic devices to separate different kinds of
particles, for example of healthy and cancer cells. Such microfluidic devices are
promising tools in biotechnology, pharmacology, medical diagnostics and basic
research.
A possibility to generate a migration are curved stream lines, which are found

for example in a channel with sinusoidally modulated boundaries, which is shown
with a capsule and a red blood cell. These non-parallel stream lines in combi-
nation with the finite size of the particle lead to a cross-stream migration, what
results in a second attractor. Because this effect depends on the properties of
the particles, it can be used to analyze and separate particles like malignant
(cancer) and healthy cells.
Furthermore it is interesting to study the influence of a time-dependent flow on

the migration. It is shown that even a linear shear flow can lead to a migration,
if it is time-dependent and if the particle has an intrinsic asymmetry.
If a time-dependent flow oscillates fast enough, then the inertia of an im-

mersed particle is no longer negligible. An asymmetric deformable particle with
a different density than the surrounding fluid may move on average in such a
flow, even if the flow has a vanishing mean velocity. This thesis shows that the
effect is strong enough to overcome gravity with the help of a Janus capsule and
that one can achieve a net motion of a symmetric particle, e.g. a homogeneous
capsule, by an asymmetric flow.
Besides the influence of the flow on the migration, it is interesting how ex-

ternal forces affect the transport of particles. For this purpose the well-known
migration of a soft particle in a Poiseuille flow is investigated in presence of an
additional external force, for example a buoyancy force due to different densi-
ties of the fluid inside the capsule and of the surrounding fluid. Because of the
deformation in the Poiseuille flow or in a linear shear flow the friction coefficient
becomes anisotropic so that a force in flow direction leads also to a motion per-
pendicular to the flow. In a Poiseuille flow one finds a migration towards the
center or the wall which leads in combination with the repulsive wall interaction
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to an attractor.
The transport of particles in a fluid due to external forces allows furthermore

to determine properties of the particle. In this way the magnetic moment of
the magnetotactic bacterium Magnetospirillum gryphiswaldense was measured
by moving it with the help of a known magnetic field through a quiescent fluid.
With the models used here the friction coefficient of the spiral shaped bacte-
ria was determined, what is needed for the measurement. With this kind of
measurement it is possible to consider the shape of individual bacteria. The
results may contribute to a deeper understanding of the Biosynthesis of the
magnetosome and the resulting magnetic moments.
In this work is also investigated how a gradient in the viscosity influences

the migration of particles. Such a gradient can be generated directly by a
temperature gradient because the viscosity of fluids strongly depends on the
temperature. Additionally, one finds also in flows of shear thinning fluid through
a channel a spatially dependent viscosity. In case of a deformable particle and a
gradient perpendicular to a linear shear flow, on finds a migration to the lower
viscosity and an attractor if the wall interaction is considered. In a Poiseuille
flow one finds a second attractor close to the wall besides the one at the channel
center.
If particles are investigated that are smaller than those mentioned before,

then the thermal noise can affect the transport in a flow. An example are here
semi-flexible polymers or filaments, which display also a migration in a parabolic
Poiseuille flow. Depending on the stiffness of the polymer, it migrates outwards
or below a critical value to an attractor. In this thesis the effect of the noise is
investigated. The noise increases this critical value. Furthermore the influence
of the wall is studied.
As appendix follows a discussion of simple bead models used to simulate soft

particles in microflows (besides the Lattice Boltzmann Method). These bead
models allow on the one hand efficient simulations and on the other hand they
agree well with the literature and with other methods. In addition, they allow
semi-analytical approximations which allow to roughly estimate the migration
of a deformable particle in a flow and to determine the mechanisms that lead
to a migration.
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Motivation

Theoretical microfluidics investigates the dynamics of fluids or suspensions in
submillimeter sized systems. It is a broad field and many such submillimeter
sized systems exist. Examples are, among other things, the study of blood and
especially the dynamics of red blood cells in flows or other type of cells [1–5],
or the behavior of microswimmers (artificial ones or bacteria), e.g. the question
how microswimmers achieve a net motion at low Reynolds numbers without
inertial effects [6, 7]. Further examples are DNA sorting or polymer processing
[4, 5, 8, 9].
Another reason for the scientific and technological interest in microfluidics is

the rapidly evolving field of lab-on-a-chip (LOC) systems [10]. Hereby the tech-
nology developed to produce microelectronics is used to assemble the LOC sys-
tems. Such a LOC system consist for example of components like microchannels
(where the fluid streams through) and micro-pumps. Other components can be
mixers, chemical reaction chambers, optical devices (e.g. lasers and waveguides),
or microelectronics (like photo-diodes) [10–12]. Such devices can be used to an-
alyze chemical or biological systems like cells. Microfluidics and LOC systems
are a promising technology in biotechnology, pharmacology, medical diagnostics,
forensics, environmental monitoring and basic research [2, 4, 8, 10, 13–20].
This thesis addresses the transport of particles in microflows. For example it

is possible that particles do not follow simply the streamlines of the flow, but
move also additionally perpendicular to the flow. This is called cross-stream
migration (CSM). Segre and Silberberg reported in 1961 that rigid particles in
a tube flow with finite Reynolds number do not solely follow the flow but move
also perpendicular to the flow and gather at an position between the center of
the tube and the walls [21]. Such effects of a non-zero Reynolds number are used
in inertial microfluidics e.g. to focus or sort different kinds of particles like cells
in microfluidic devices [20, 22–26]. But also at zero Reynolds number a CSM
of soft particles can be found. A well-known example is the migration of soft
particles away from channel boundaries due to the repulsive interaction of soft
particles and the boundaries in linear shear flows and Poiseuille flows [2, 27–31].
Also far away from boundaries a CSM of soft particles is found in a Poiseuille
flow which is caused by the spatially dependent shear rate. Examples of such soft
particles are dumbbells [32, 33], droplets [34, 35], vesicles and capsules [36–38].
In this thesis, new mechanisms of CSM and particle transport are shown, for

example in microchannels by a modulation of the walls or by time-dependent
flows. Possible applications may be the sorting of different kinds of particles or
cells with respect to their properties, like their size or stiffness, in microfluidic
devices. Such a sorting is useful in diagnostics [20] because the stiffness of a
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cell is an important biomarker for detecting diseases like malaria [39], diabetes
[40], and cancer [41]. Especially cancer cells [42] have a different stiffness than
healthy cells or the stiffness of red blood cell is affected by diseases like anaemia
[43]. Hence the cross-stream migration of deformable particles is usefull method
to determine the deformability and sort e.g. healthy and infected cells [20].

Methods

The equation of motion for fluids

The dynamics of fluids is governed by the Navier-Stokes equation [44]. The
equation connects the velocity of a fluid uuu(rrr, t) with the pressure p. It is given
by

ρ(∂t + uuu · ∇)uuu = −∇p+ η∆uuu , (1)

whereby ρ and η denote the density and the viscosity of the fluid, respec-
tively. Typical values of the viscosity and the density of fluids e.g. of water
are η = 1mPas and ρ = 103 kg/m3. To solve the equation it must be extended
with an equation of state and the mass conservation. In the most simple case
of an incompressible fluid the conservation of mass becomes

∇ · uuu = 0 . (2)

It is helpful to rescale the equations to receive a nondimensional equation. With
the help of a system’s typical length L and velocity U one can define uuu = Uuuu′,
∂tuuu = U2/L∂t′uuu

′ and p′ = ρU2p (other terms analogue) which leads to the
equation

∂t′uuu
′ + (uuu′ · ∇′)uuu′ = −∇′p′ + 1

Re
∆′uuu′ (3)

with the Reynolds number

Re =
ρUL

η
. (4)

The Reynolds number compares the inertial force and the viscous force. If it is
much smaller than one then the viscous forces dominate and the inertial terms
can be neglected. This leads to the Stokes equation

−∇p+ η∆uuu = 0 . (5)

It is possible that external forces like gravity act on the fluid. In this case the
equation becomes

−∇p+ η∆uuu+ fff = 0 (6)

with the external force density fff.
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Bead-spring models

The Oseen Tensor and its extensions

The Stokes equation of an incompressible fluid, i.e. eqs. (2) and (6), can be
solved for an arbitrary force density. This can be done for example by a Fourier
transformation of these linear equations [45]. This lead to the flow field of a
point force fff = FFFδ(rrr) located at the origin

uuu(rrr) = OOO(rrr) ·FFF , with OOO(rrr) =
1

8πηr

(
111 +

rrrrrr

r2

)
, (7)

whereby the boundary condition is that the flow vanishes at infinity. Hereby
OOO(rrr) is called the Oseen tensor. It is the Greens function of the Stokes equation.
The flow field of an arbitrary force density is then obtained by

uuu(rrr) =

∫
OOO(rrr − rrr′) · fff(rrr′)d3r′ . (8)

The flow field of the Oseen tensor given by eq. (7). It can be used to ap-
proximate the flow around a particle, as long as it can be treated as a point
particle, i.e. as long as the diameter of the particle is small compared to the
distance between the particle and the point at which the flow is evaluated. The
approximation can be improved by assuming a sphere with radius a and includ-
ing corrections in the radius. This is done by the method of reflections and
Faxén’s law and results in the so called Rotne-Prager matrix [46–49]

PPP (rrr) =





1
8πηr

[(
1 + 2a2

3r2

)
111 +

(
1− 2a2

r2

)
rrrrrr
r2

]
with r > 2a ,

1
6πηr

[(
1− 9r

32a

)
111 + 3r

32a
rrrrrr
r2

]
with r ≤ 2a .

(9)

A further advantage besides the correction of the flow is that this tensor does
not diverge at r → 0.
The Oseen tensor is derived with the boundary condition that the flow van-

ishes at infinity. Therefore it can not be used e.g. in presence of a wall. In
this case the velocity vanishes at the wall and not at infinity. Similar as the
derivation of the Rotne-Prager tensor also the boundary condition of a vanish-
ing velocity at a plane, e.g. a flat wall can be included [50]. The location of the
force rrrf is important here and especially its distance to the wall. This leads to
the so called Blake tensor [50] given by

BBB(rrr, rrrf) = SO(r− rf)− SO(r− r′f) + DH(r, r′f)− SDH(r, r′f) , (10)

where r′f = (xf , yf ,−zf) is the position of the force mirrored at the boundary
which is located at the plane given by z = 0. The first tensor in eq. (10) is
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the Oseen tensor. The second contribution is the Oseen tensor with the mirror
image of the point force. It is now helpful to define the distance

r̃ = r− r′f = r̃ˆ̃r (11)

between the point where the flow is evaluated and the mirrored force. The
components of the vectors r and r̃ are denoted by rα and r̃α with α = x, y, z.
In eq. (10) the contribution

DHαβ
ij (ri, r

′
j) =

1

4πηr̃3
ij

z2
j (1− 2δβz)

(
δαβ − 3

r̃αij r̃
β
ij

r̃2
ij

)
(12)

is the Stokes doublet (D) and

SDHαβ
ij (ri, r

′
j) =

zj(1− 2δβz)

4πηr̃3
ij

(
δαβ r̃

z
ij − δαz r̃βij + δβz r̃

α
ij − 3

r̃αij r̃
β
ij r̃

z
ij

r̃2
ij

)
(13)

is the source doublet (SD). The complete Blake tensor given by eq. (10) is the
solution of the flow generated by a point force in presence of a wall. But often
a channel is simulated which includes two walls. In this case one can use the
Blake tensor for each wall as a reasonable approximation if the ratio between
the wall-wall distance and the particle extension is larger than 5 [51].

Stokesian dynamics simulations

Bead-spring models are a simple method to simulate e.g. polymers, fibers, red
blood cells, or capsules in a flow. An overview of bead-spring models and their
applications is given here and more detailed in pub8. These models consist of
a number of beads with radius a which cover the surface of a particle, e.g. a
capsule. The model uses different equations that connect the deformation of the
particle and the force fff i acting on the i-th beads. The Stokesian dynamics of
the beads [46] is given by the equation of motion

ṙrri = uuu0(rrri, t) +
1

6πηa
fff i +

∑

j,j 6=i
HHH i,j · fff j with HHH i,j = OOO(rrri − rrrj) . (14)

Hereby rrri means the location of the i-th bead (and ṙrri its velocity), uuu0(rrr, t)

denotes the undisturbed flow without the particle, fff i/6πηa is the Stokes friction
of a sphere and the last term describes the flow disturbance generated by the
presence of the other beads. Instead of the Oseen tensor (eq. (7)), also the
Rotne-Prager (eq. (9)) tensor or the Blake tensor (eq. (10)) can be chosen,
as discussed above. This flow disturbance created by one bead and influencing
another is called hydrodynamic interaction between the beads. In certain cases
it can be interesting to compare simulations with and without hydrodynamic
interaction to determine its influence.
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The Lattice Boltzmann Method

Kinetic theory of gases

A different method to calculate flows is the Lattice Boltzmann Method (LBM).
One should note that the LBM solves the full Navier-Stokes equation unlike
simulations using the Oseen tensor. Here a short introduction based on [52] is
given.
The LBM originates from the mesoscopic kinetic theory of gases. Mesoscopic

means here that the gas is neither described by single particles (microscopic) nor
solely by macroscopic quantities like the density or the flow velocity. Instead a
particle distribution function f is used which specifies the density of particles
which are located at rrr and have the velocity ξξξ at time t, i.e. f = f(rrr, ξξξ, t). This
distribution function allows to calculate macroscopic quantities by its moments,
for example

the density ρ(rrr, t) =

∫
f(rrr, ξξξ, t)d3ξ , (15)

the momentum density uuu(rrr, t)ρ(rrr, t) =

∫
ξξξf(rrr, ξξξ, t)d3ξ , (16)

and the energy density EEE(rrr, t)ρ(rrr, t) =

∫
|ξξξ|2f(rrr, ξξξ, t)d3ξ . (17)

The distribution function of a gas, e.g. consisting of colliding single atoms, can
be calculated in certain cases: It is reasonable to assume that a system can reach
an equilibrium if it is not disturbed by external influences. One can assume that
the distribution function of the equilibrium f eq does not depend on the spatial
coordinates, and is isotropic in the velocities. If one assumes further that f eq

can be written in a separable form f eq(rrr, ξξξ, t) = f eq
1D(ξξξx)f eq

1D(ξξξy)f eq
1D(ξξξz) (other

derivations are possible [53]) one can derive the Maxwell-Boltzmann distribution

f eq(rrr, ξξξ, t) = ρ

(
ρ

2πp

) 3
2

exp

(
−p|ξ|

2

2ρ

)
. (18)

It is furthermore interesting how the gas can reach this equilibrium, i.e. how
the distribution function changes over time and what is its equation of motion.
The total derivative of f yields

df

dt
=
∂f

∂t
+
∂f

∂rβ

drβ
dt

+
∂f

∂ξβ

dξβ
dt

, (19)

=
∂f

∂t
+
∂f

∂rβ
ξβ +

∂f

∂ξβ

Fβ
ρ

(20)

with the force on the particle given by FFF . One has to consider here that the
distribution function changes if the particles collide. This collisions are described

6



by a collision operator Ω(f) which leads to the Boltzmann equation

∂f

∂t
+
∂f

∂rβ
ξβ +

∂f

∂ξβ

Fβ
ρ

= Ω(f) . (21)

This collision operator is non-trivial. But one can determine the properties of
this operator: It must conserve the mass, the momentum and the total energy.
Furthermore it must lead to an equilibrium state. A most simple ansatz that
fulfills all these requirements is the approximation of Bhatnagar, Groos and
Krook [54], which is the so called BGK operator. It is given by

Ω(f) =
1

τ
(f − f eq) . (22)

The Lattice Boltzmann Method

Overview The LBM is inspired by the mesoscopic kinetic theory of gases de-
scribed above. It uses a discretized distribution function and a discretized Boltz-
mann equation to simulate the flow of fluids numerically [52, 55]. Hereby the
space, the time and the velocity of the distribution function is discretized. Usu-
ally hereby the lattice distance ∆x = 1 and the time step ∆t = 1 is chosen. The
discrete velocities are denoted by ccci. The discretization is generally classified as
DdQq with the number of dimensions d and the number of discrete velocities of
the distribution function q. Most common are D2Q9 and D3Q19. As example
D3Q19 means a three dimensional simulation with a set of 19 different vectors
ccci. The discrete velocity function is then written as fi(rrr, t) and denotes the
density of particles moving with velocity ccci at the position rrr and time t. This
allows to calculate the macroscopic flow velocity and the density by

ρ(rrr, t) =
∑

i

fi(rrr, t) , (23)

uuu(rrr, t)ρ(rrr, t) =
∑

i

cccifi(rrr, t) . (24)

To calculate fi the discretized version of the Boltzmann equation is solved, which
is given by

fi(rrr + ccci∆t, t+ ∆t) = fi(rrr, t) + Ωi(rrr, t) , (25)

whereby at first an external force is neglected. The values of ccci are chosen such
that rrr + ccci∆t lies on a lattice grid. For the collision operator one can chose
among many possibilities, but the most common is the BGK collision operator
[52, 54, 55] given by

Ωi = −fi − f
eq
i

τ
∆t . (26)
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Hereby also the equilibrium distribution function is discretized. Often the dis-
cretization up to the second order is used [52, 55] which is given by

f eq
i = wiρ

(
1 +

uuu · ccci
c2
s

+
(uuu · ccci)2

2c4
s

− uuu · uuu
2c2
s

)
with cs =

1√
3

∆x

∆t
(27)

and with the weights wi that depend on the used discretization. Equation (25)
becomes with the BGK collision operator

fi(rrr + ccci∆t, t+ ∆t) = fi(rrr, t)−
∆t

τ
[fi(rrr, t)− f eq

i (rrr, t)] (28)

with the relaxation time τ . This is the lattice Boltzmann equation. It can be
divided in two steps [52, 55]. On can calculate at first the right hand side and
define

f ∗i (rrr, t) = fi(rrr, t)−
∆t

τ
[fi(rrr, t)− f eq

i (rrr, t)] (29)

which is called the collision step because the collision operator is calculated.
The next step is then the calculation of

fi(rrr + ccci∆t, t+ ∆t) = f ∗i (rrr, t) . (30)

It means that the distribution function (or the particles) move with their ac-
cording velocity to the neighboring lattice sides.
These equations allow to calculate the distribution function and hence the

flow numerically. But it is not trivial that these equations solve indeed the
Navier-Stokes equation, i.e. that they describe the motion of a fluid. This can
be shown by the so-called Chapman-Enskog analysis. The full calculation is not
reproduced here and can be found in e.g. [52, 56, 57] and only the idea is given.
The distribution function is expanded in terms of a small parameter ε by

fi = f eq
i + εf

(1)
i + ε2f

(2)
i + ... (31)

Hereby ε represents a measure of the Knudsen number Kn= lmfp/l which is the
ratio of the mean free path of the particles (the mean distance moved between
two collision) and the typical size of the system considered. Usually only the first
order is considered and one does not look close at orders higher than f (1)

i . These
expansion is used together with eq. (28) which leads to a set of semi-independent
equations for the f (j)

i . One assumes that each f (j)
i fulfills the conservation laws.

Then these equations are taylor-expanded and the mean value and the first
moment is calculated. This results in the conservation of the mass and the
Navier-Stokes equation. Hence the LBM can describe a fluid. Further results
are firstly that the pressure and the density is connected by the equation p = c2

sρ,
secondly that cs as given in eq. (27) is the speed of sound and thirdly that the
viscosity is given by

η = ρc2
s

(
τ − ∆t

2

)
. (32)
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Implementation in this thesis Up to here the basics of the LBM are de-
scribed by giving a brief summery of the book of T. Krüger et. al. [52]. In
the following the concrete implementation used for the work in this thesis and
further necessary details are described like the treatment of external forces and
boundary conditions, e.g. walls. The common D3Q19 [52] discretization is used
together with the Bhatnagar-Gross-Krook (BGK) collision operator [54, 55].
The equation of the temporal evolution of the probability distribution with an
external force Fi is given by [57]

fi(r + ci∆t, t+ ∆t) = fi(r, t)−
∆t

τ
(fi(r, t)− f e

i (r, t)) + ∆tFi . (33)

The equilibrium distribution is given by eq. (27) and the weighting factors wi
of D3Q19 can be found in [52, 55]. The probability distribution function allows
to calculate the density and the velocity of the fluids via its moments. With an
external force a correction term is needed [57] so that the equations become

ρ(r, t) =
∑

i

fi(r, t) , (34)

ρ(r, t)u(r, t) =
∑

i

cifi(r, t) +
1

2
∆tF(r) . (35)

The external forces are used to drive the flow instead of a pressure gradient
because this results in the same flow and allows to use periodic boundaries in flow
direction [52]. This is useful especially to simulate a particle in a micro channel
because the particle can simply pass the periodic boundary which mimics an
infinite channel. A pressure gradient however implies a pressure boundary, i.e.
a fixed pressure, at both ends of the channel (the simulation box). But the
presence of a particle immersed in the flow changes the pressure, i.e. the particle
must be placed far away from the boundaries. Especially it can not pass the
boundaries to avoid an interaction with the fixed pressure boundary condition.
This means a large box must be chosen which results in a long simulation time.
Therefore it is much more practicable to drive the flow by an external force
and to use periodic boundary conditions. Also in this case the box must large
enough to avoid self-interactions of the particle, but can be chosen shorter.
Besides the external force also the channel walls must be included in the

LBM, i.e. no slip boundary conditions. This is done in the streaming step: If
the distribution function would stream into a lattice side that is considered as a
part of a wall the particles are reflected and come back to the node they came
from. But they have now a reversed velocity [52, 55]. Also periodic boundary
conditions can be used which can be applied straightforwardly in the streaming
step.
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Furthermore the soft particles, e.g. capsules must be included in the LBM.
The particle consists of a set of nodes located at rrrj on the surface of the particle
and certain laws that allows to calculate the forces on this nodes due to the
deformation of the particle. One must consider thereby that the nodes of the
particle not necessarily lie on the lattice sides of the LBM grid at the points
rrrLBM,i. Therefore a method is needed to calculate the flow at the position of
the particle’s nodes and also to couple the forces of the particle to the flow,
i.e. to the LBM grid. This is done by the immersed boundary method [52, 58].
The forces acting on the particle’s surface, i.e. on its nodes, are distributed to
neighboring LBM grid nodes by the function φ: With the help of this function
the force on a LBM lattice site denoted by FFF (rrrLBM,i) can be calculated with the
forces fff j acting on the particle’s node at rrrj via

FFF (rrrLBM,i) =
∑

j

φ (rrrLBM,i − rrrj)fff j (36)

with the sum over all forces of the particle. Also the velocity at the position
of the nodes of the particle must be calculated. With the velocity uuu(rrrLBM,j)

calculated with the LBM at the LBM grid points one can calculate the velocity
vvvi at the position of the particle’s nodes at rrri by

vvvi =
∑

j

φ (rrri − rrrLBM,j)uuu(rrrLBM,j) . (37)

Now an appropriate choice of φ must be chosen. One assumes at first that φ
can be written as the product

φ(r) =
1

(∆x)3 φ̃
( x

∆x

)
φ̃
( y

∆x

)
φ̃
( z

∆x

)
. (38)

with the distance of the grid points ∆x of the LBM. It is reasonable that φ̃(r)

(r denotes x
∆x

, y
∆x

or z
∆x

) should fulfill the following requirements

φ̃(r) is continous for all real values of r (39)

φ̃(r) = 0 for |r| ≥ 2 (40)
∑

j even
φ̃(r − j) =

∑

j odd
φ̃(r − j) =

1

2
(41)

∑

j

(r − j)φ̃(r − j) = 0 (42)

∑

j

φ̃2(r − j) = const. (43)
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The idea behind this requirements is that no sudden jumps in the force or the
velocity should appear while the particle moves through the LBM grid (eq.
(39)). The force is also only distributed to near neighbors (eq. (40)) so that
the only over a few points of the grid must be summed (eqs. (36) and (37)).
Equation (41) ensures a higher numerical stability if finite differences are used
(as done in [58]). It implies also

∑

j

φ̃(r − j) = 1 (44)

so that the force distributed to the neighboring grid nodes is equal to the force on
the particle. The eqs. (42) and (43) ensure that linear functions are interpolated
exactly. With these requirements the function φ becomes a delta peak if the
grid distance ∆x goes to zero. Hence it can describe point forces. This system
of equations can be solved for φ which leads to a cumbersome expression. It
can be extremely well [58] approximated by

φ̃(R) =

{
1
4

(
1 + cos(πR

2
)
)

if |R| ≤ 2

0 else
. (45)

This allows now to calculate the flow with the LBM with an immersed particle.
The nodes of the particle follow the flow and their equation of motion is

ṙrri = vvvi (46)

with the interpolation given by eq. (37).

Modeling of particles

The particles are discretized and consist of a number of beads or nodes on the
surface of the particles and a set of equations that allow to calculate the forces
on the particle due to the deformation. The flow around the particle and its
motion can be simulated either with the Oseen tensor with eq. (14) or with the
LBM and the immersed boundary method with eq. (46). The calculation of the
forces due to the deformation is the same in both methods.

Polymers and semi-flexible fibers

To simulate polymers or semi-flexible fibers in this thesis N beads are arranged
in a line in the equilibrium position. They are connected by simple springs
and a bending potential. Also other force laws for the bending or springs with
finite extensibility, so called FENE springs (finitely extensible non-linear elastic
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springs, cf. e.g. [59]) are used in other studies. The forces are derived from
potentials via fff i = −∇V . The potential of a spring is given by

Vstr =
k

2

N−1∑

i=1

[b− rij]2 , with j = i+ 1 (47)

with the bead to bead distance rrrij = rrri − rrrj, the spring constant k and the
equilibrium distance b between two neighboring beads. The bending potential
[60] is given by

Vb = −κ
2

N−1∑

i=2

ln (1 + cos βi) (48)

with the bending stiffness κ, the inner product

cos(βi) = r̂rr(i−1)i · r̂rri(i+1) (49)

and the unit vectors r̂rri = rrri/|rrri|. Furthermore a truncated Lennard-Jones po-
tential [60, 61]

VLJ = ε
N−1∑

i=1

N∑

j=i+1

[
1

2

(
rc
ri,j

)12

−
(
rc
ri,j

)6
]

Θ(rc − r) , (50)

can be used to avoid that the beads overlap. Hereby ε and rc denote the strength
and the cut-off length, respectively.
If small particles like polymers are studied also the Brownian motion, i.e.

the thermal noise can play a role. In this case a stochastic force fff s must be
included besides the deterministic forces due to the deformation. The stochastic
force [46, 62, 63] has a vanishing mean value and its amplitude is given by the
fluctuation dissipation theorem [64, 65] which means

〈
fff s
j(t)
〉

= 0 ,
〈
fff s
i(t)fff

s
j(t
′)
〉

= 2kBTHHH ijδ(t− t′) (51)

with Boltzmann’s constant kB and the temperature T . This noise is included
in the equations of motion (eq. (14)) via

ṙrri = uuu0(rrr) +
∑

j

HHH i,j · fff j + fff s
i(t) . (52)

with

HHH i,j =

{
OOO(rrri − rrrj) for i 6= j

1
6πηa

for i = j
. (53)

Instead of the Oseen tensor (eq. (7)) also the Rotne-Prager tensor (eq. 9) or
the Blake tensor (eq. (10)) can be chosen.
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Capsules

A capsule consists of a fluid that is encapsulated by an elastic membrane [66].
Artificial capsules can be assembled e.g. by polymerization of a liquid droplet
which leads to spherical particles with a thin, solid membrane. Such capsules are
used for example in pharmaceutical, cosmetic, and food industries. Besides the
artificial capsules also natural particles can be found that can be approximately
modeled as capsules. Examples are simple models of cells like cancer cells or
red blood cells [1, 66, 67].
To model the capsule, assumptions of the membrane and its shape are made

[66]: First it is assumed that the membrane can be treated as a two dimen-
sional surface, because the thickness of the membrane is much smaller than the
diameter of the capsule. Secondly, the membrane is impermeable for the fluid.
Thirdly, in this work, the equilibrium shape of the capsule is assumed to be
spherical.
To simulate the capsule, its surface must be discretized, which can be done

in many ways. A solution that leads to sufficient homogeneous distribution of
nodes works as follows [68, 69]: One starts with an icosahedron and refines it
by adding new nodes at the center of each edge. The new edges are shifted then
outwards to the surface of the sphere. This process can be repeated until the
surface of the sphere has a sufficient resolution. A typical value is a number of
N = 642 nodes. The reason for starting with an icosahedron is that it consists
of equilateral triangles. Also the same number of triangles meet at all vertexes
of the icosheadron. This properties lead to a homogeneous distribution of nodes
of the refined meshes.
Also the forces acting on a deformed capsule must be calculated. An often

used model of the elastic forces is the neo-Hookean law [66, 70, 71]. It describes
a rubber like material with a constant elastic modulus. It is derived by assuming
an thin, incompressible membrane. Incompressible means that a streching of
the area of the membrane is balanced by a thinning of its thickness. Hence the
neo-Hookean force law can not describe particles with a conserved surface. The
derivation involves the surface displacement gradient SSS defined via dxxx = SSS · dXXX
with the line elements dxxx and dXXX of the deformed and undeformed surface,
respectively. This allows to calculate the Green-Lagrange strain tensor

eee =
1

2

(
SSST ·SSS − 111 + nnnnnn

)
(54)

with the unit normal vector of the deformed surface nnn. The eigenvalues of this
tensor are called principal extension ratios λ1, λ2. With their help on can define
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two deformation invariants

I1 = tr(SSST ·SSS)− 2 = λ2
1 + λ2

2 − 2 , (55)

I2 = det(SSST ·SSS)− 1 = λ2
1λ

2
2 − 1 . (56)

The product λ1λ2 is the ratio of the deformed and the undeformed surface. The
potential of the neo-Hookean law is then given by

VNH =
G

2

(
I1 − 1 +

1

1 + I2

)
(57)

with the elastic modulus G. The according force can be calculated by the
gradient of the potential which involves the derivatives of I1 and I2 with respect
to the coordinates. How this is done numerically, i.e. with the help of the
discretized mesh, is explained in detail in [69]. It is useful to measure the
stiffness of the capsule by a dimensionless number, the capillary number, which
is given by

Ca =
ηR

G
γ̇ (58)

with the radius of the capsule R, the viscosity η and the shear rate of the flow γ̇.
It compares the causes of a deformation, e.g. the friction forces on the capsule
due to the viscosity and the shear rate with the strength of the elastic restoring
forces, i.e. the elastic modulus. A high value of the capillary number means the
capsule is relatively soft and displays a strong deformation.
Besides the Neo-Hookean law, also other forces are considered. A resistance

to a bending of the membrane [72] is described by the potential

Vb =
κ

2

∑

i,j

[1− cos (βi,j)] (59)

whereby κ means the bending stiffness, βi,j denotes the angle between two nor-
mal vectors of neighbouring triangles of the discretized surface and the sum is
over neighbouring triangles. At last one must take care about that the mem-
brane is usually impermeable for the fluid, i.e. the volume of the capsule is
conserved. This can be implemented by a penalty potential [73] given by

VV =
kV

V0

(V(t)− V0)2 (60)

with the volume V(t) and the reference volume V0. A sufficient high value of
the stiffness kV of the potential ensures small changes in the volume over the
time of the simulation.
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Main results

Here, a summary of the main results of the thesis is given. At first, it is discussed
how the properties of the flow (like curved stream lines in pub1 or a time-
dependence in pub2 and pub3 ) can generate a cross-streamline migration or a
transport of an immersed particle. Furthermore, the effect of external forces on
a particle in a flow are examined (pub4 ) and are used to measure properties of
bacteria (pub5 ). Then follows an investigation of the influence of a viscosity
gradient (e.g. due to a temperature gradient or shear-thinning, cf. pub6 ) and
of the thermal noise (pub7 ). As appendix, the simple bead spring model, which
is used among other simulations, is compared to other methods. Also a semi-
analytical approximation of migration velocities is shown (pub8 ).

Influence of the flow on particle transport

Modulated microchannels

It is well-known that soft particles in a Poiseuille flow at low Reynolds number,
e.g. in a micro channel, migrate across the straight stream lines towards the
center of the channel, even in the bulk without considering the wall interaction.
Examples of such particles are dumbbells [32, 33], droplets [34, 35], vesicles and
capsules [36–38]. This cross-stream migration is caused by the deformability and
the spatially dependent shear rate. It is now an interesting question whether a
modulation of the channel walls can lead to a qualitatively different behavior
than a migration to the center. Such modulated channels have been studied
before, but in the case of nonzero Reynolds number flows [20, 22–26] or with
a complex shear thinning fluid [74]. But little is known about the particle
dynamics in a flow through a modulated channel at low Reynolds number and
with a Newtonian fluid.
The idea why a particle displays a different migration behavior in a modulated

channel than in a straight one is the following: A particle in a plane Poiseuille
flow lags behind the flow (see e.g. [38]). This can be explained by a simple
approximation just by averaging the undisturbed Poiseuille flow over the surface
of the particle. This average of the Parabolic flow profile is smaller than the
velocity at the particle’s center. Hence the particle migrates laterally and lags
behind due to its finite size. One can now think about how this effect can be
utilized to cause a cross-stream migration. To achieve this, the stream lines
must not be parallel, which can be achieved by a channel with modulated walls.
The migration in such a channel is discussed in pub1. The walls are modulated
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sinusoidally and are given by

y = d

[
1 + ε sin

(
2π

λ
x

)]
(61)

with the channel’s mean diameter d, the modulation amplitude ε and the mod-
ulation’s wavelength λ. The flow streams in a diverging section of the channel
away from the center and in a converging part towards the center. A lag be-
hinds means now that the particle can not follow the flow: Hence, while it moves
through a converging part and the flow streams towards the center of the chan-
nel, the particle can not follow completely and migrates towards the walls. A
stiff particle would migrate exactly the same distance towards the center in the
following diverging part of the channel, which results in no net effect. A soft
particle however displays a different deformation in the converging and diverging
section of the channel, which breaks this symmetry and results in a net effect
towards the walls. This migration due to the curved stream lines competes with
the common migration in a Poiseuille flow to the center of the channel.
The considerations are proofed by simulations, whereby both Stokesian dy-

namics simulations and Lattice Boltzmann simulations are used. Hereby a cap-
sule and a red blood cell is utilized. This allows to show that the effect is both
found with an artificial capsule and a biological red blood cell. Furthermore a
capsule can also represent a cancer cell [67].
Indeed the both models showed a migration away from the center: Particles

that are positioned initially close to the center of the channel migrate to the cen-
ter as in a flat flow. But particles with a sufficient distance to the center migrate
away from it towards a second, off-center attractor. Hence in a wavy channel a
second, off-center attractor coexists with the attractor at the center and both
are separated by a repeller. The second attractor is found without wall inter-
actions (Stokesian dynamics) and with wall interactions (Lattice Boltzmann).
The reason for this coexistence is that close to the center the streamlines are
nearly straight so that the common center-migration, as found in a flat Poiseuille
flow, dominates. Closer to the walls the stream lines are more curved and the
migration due to the curved stream lines dominates.
The second attractor is only found at certain parameters: The wavelength

of the channel must be chosen to be approximately 10 times larger than the
particle radius. If the wavelength is much higher or lower than this value then
the curvature of the flow plays no role at the length of the particle and the
effect of the curved streamlines on the particles migration vanishes. In this case
a center-migration as in a flat Poiseuille flow is found. Also the modulation of
the channel must be sufficiently high so that the migration to the center can
be overcome. Hence only above a critical value of the modulation amplitude an
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attractor is found, i.e. at ε > εc (cf. eq. (61)). For example with a wavelength
of 12 times the particle radius the critical modulation amplitude is εc = 0.14

for the investigated particle. If the wavelength is less well adjusted the critical
modulation amplitude becomes higher, e.g. with a wavelength of 20 times the
particle radius the value is εc = 0.23. If the modulation amplitude is increased
beyond the critical value the attractor is shifted closer towards the walls the
repeller comes closer to the center due to the stronger migration induced by the
curved stream lines. Besides the particles size the critical modulation ampli-
tude depends also on the particle’s stiffness: The critical modulation amplitude
increases with the cell’s stiffness.
A possible application is the sorting of particles with respect to their proper-

ties like their size or stiffness. Especially a sorting of cells with different stiffness
is useful because the health status of cells correlates with the cell’s stiffness for
example at cancer cells [75].

Time-dependent, linear shear flow

It is well-known that in a flow with parallel stream lines a curvature of the
flow (e.g. in a Poiseuille flow) is necessary to find a migration of a soft particle.
Examples are the cross-stream migration of dumbbells [32, 33], droplets [34, 35],
vesicles and capsules [36–38]. Another well-studied effect is the migration of soft
particles in a linear shear flow or a Poiseuille flow near a boundary [2, 27–31].
Besides this, also the influence of particle properties, like a viscosity contrast
[76] or a chirality of the particle [77] was investigated. But less is known about
the migration of soft particles in time-dependent flows. It is now an interesting
question whether and under which conditions a migration in a linear shear flow
can be reached, if the flow is time-dependent. This is discussed in pub2.
The time-dependent, linear shear flow is chosen as follows

uuu(y, t) =

{
γ̇yêeey at 0 ≤ t < T

2
,

−γ̇yêeey at T
2
≤ t < T ,

(62)

which is continued periodically. This means the linear shear flow changes period-
ically its flow direction with a period length of T but has a constant magnitude
and shear rate. To study the migration in this time-dependent, linear shear flow
three models are used. The first model is a simple dumbbell consisting of two
beads with different radii, connected by a spring. The second one is a ring, i.e.
six beads connected by springs and a bending potential with a different stiffness
at both halves of the ring. These both models are simulated with the Stokesian
Dynamics simulations. The third model is a capsule with a Neo-Hookean force
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and bending potential, which differs at both halves of the capsule. The capsule
was simulated with the LBM.
The simulations of all three models showed qualitatively the same behavior.

A symmetric particle, i.e. dumbbell with equally sized beads and a ring or a
capsule with the same strength of the bending potential at both halves, follows
the stream lines completely and no migration is found. The reason is the point-
symmetric deformation of the particle. An asymmetric particle in constant flow
(i.e. without switching the flow’s direction) already displays a cross-stream
migration because the particles are not point symmetric due to the intrinsic
asymmetry. The dumbbell displays a migration towards the smaller bead and
the capsule and the ring migrate towards the stiffer half. But the particles also
show a tank-treading motion. This means the particle migrates after one full
turn the same distance in both the positive and negative y-direction (perpen-
dicular to the flow). Hence there is no net effect. But if the flow changes its
direction periodically than the smaller bead or the stiffer half points always
in positive (or negative) y-direction which leads to a net effect. Hence both
the asymmetry of the particles and a periodical change of the flow direction is
essential.
One can now study the reason of the migration, at first with the dumbbell.

The center of the dumbbell weighted with the drag coefficients ζi of both beads
is given by

rrrc =
ζ1rrr1 + ζ2rrr2

ζ1 + ζ2

. (63)

Its equation of motion is given by

ṙrrc = uuu(yc, t)−
ζ2 − ζ1

ζ1 + ζ2

1

4πηR
fff(R) (64)

with the drag coefficients ζ1 < ζ2, the distance of the beads RRR (pointing from
the larger to the smaller bead), the unit vector êeeR = RRR/R and the spring force
fff(R) = k(R − b)êeeR with the equilibrium length b. The derivation of eq. (64)
shows that the hydrodynamic interaction, i.e. the Oseen-tensor is essential for
the migration. Without interaction of the beads, i.e. if just their Stokes friction
with the undisturbed flow is considered one receives ṙrrc = uuu(yc, t), which means
the center follows the stream lines. One can see furthermore that the migration
vanishes if both beads have the same radius. Moreover eq. (64) shows that if the
spring is compressed the particle migrates parallel to the spring and towards the
smaller bead, i.e. RRR. This means if the spring is compressed and the dumbbell is
asymmetric it can exert a force on the fluid: The larger bead pushes fluid in one
direction and the dumbbell moves in the other direction. Thus the migration is
caused by the asymmetry and the interaction with the fluid.
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The migration of the ring and the capsule can be understood similar. They
do not consist of different sized beads but their shape is not symmetric due to
the different strength of the bending potential. Also the migration of the ring
and the capsule caused by the asymmetry and the interaction with the fluid.
After discussing the mechanism also the dependence on the period length is

investigated. Again all three models show qualitatively the same behavior. At
very short periods the particles can not follow the flow and display nearly no
migration. At longer periods the particle is deformed by the flow, but do not
reach an equilibrium shape before the flow is switched. Nevertheless a migration
is found. If the period is further increased an equilibrium state is reached and
the tank-treading motion sets in. In this range of T the migration is maximal.
At higher values of the T the tank-treading rotates the particle by a large angle.
The stable mean orientation is in this case oriented such that the small bead (or
the stiff half) is the same duration above and below the center of the particle,
such that the migration vanishes. This causes an unsteady drop of the migration
velocity as function of the period. The migration velocity falls from a nonzero
migration velocity to zero above a critical value of the period.
Furthermore the magnitude of the migration velocity does not depend on the

initial condition because the particles reorient to certain stable orientations.
After a transient the same magnitude is found independent of the initial condi-
tions. Only the direction, i.e. positive or negative y-direction, depends on the
initial orientation.
A possible application of this kind of migration may be the sorting of asym-

metric or inhomogeneous particles from symmetric particles with a linear, time-
dependent shear flow.

Particles with finite inertia in time-dependent flows

A time-dependent flow raises also the question whether the inertia of the particle
(not of the fluid, i.e. at low flow Reynolds number) plays a role and how the
inertia can be used to achieve a net motion. This is especially interesting because
many studies investigate how a microswimmer can achieve a net motion at low
Reynolds number. Such a motion can not be created easily at low Reynolds
number. A simple swimmer with one reciprocally changing degree of freedom,
e.g. a shell that opens and closes periodically can achieve a net motion at a
high Reynolds number, but does not move in total at low Reynolds number.
This result is often referred to as Purcell’s scallop theorem [6]. Many studies
deal with the question of how to break the scallop theorem, which can be done
by active microswimmers by using two degrees of freedom [78–81], by amoeboid
swimming [82–84] or nonreciprocal motion of cillia [85–87] and flagella [88–90],
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among many other examples.
Another way to break the scallop theorem is to include the inertia of the

particle. In this case a swimmer can achieve a net motion by an active shape
deformation even if the motion is reciprocal [91] because the scallop theorem
assumes no inertia of the particle. This leads to the question if a completely
passive particle with inertia can display a net motion in a time-dependent flow,
which can be seen as a kind of artificial microswimmer driven by the external
flow (with zero mean flow). It was shown recently that a passive particle shows a
net motion in a sinusoidal oscillating, spatially homogeneous flow, if the particle
is asymmetric [92]. Hereby a simple model of two rods, which are connected by
a torsion spring with an equilibrium angle of π/4, was used. This simple model
clearly demonstrated the effect. However, gravity was neglected. This raises the
question of whether the effect is relevant if gravity is included.
The effect was studied further by another paper [93]: A capsule was simulated

that is filled with another fluid than the surrounding one and also a small bead
with the density of gold was inserted in the capsule. This bead is connected by
springs with the membrane of the capsule. Such a particle may be non-trivial
to assemble. This particle can be tuned such, that the mean density inside
the capsule fits nearly the density of the surrounding fluid, which solves the
problem of the sinking due to gravity. This particle displays a non-reciprocal
deformation of its surface due to the asymmetric density distribution inside the
capsule, which leads to a net motion upwards. The paper also studied a capsule
that has inside a mean density (of the fluid inside and the bead) that is higher
than the surrounding fluid. In this case the effect is explained by the time-
dependent drag. But the effect found with this particle is to weak to overcome
gravity.
Thus the question is open if simple particles exists that can overcome gravity

in shaken liquids. Such particles are presented in pub3 : A Janus capsule that
has a stiff and a soft half displays a net motion in a time-dependent flow. It
is shown also that an even simpler particle, a isotropic capsule can also rise
in a shaken liquid against gravity if an appropriate flow is used, i.e. a flow
that streams short and fast in one direction and slower and longer in the other
direction (with zero mean flow). The effect is also explained in detail by simple
bead-spring models of the asymmetric particle, a tetrahedron, and a isotropic
particle, a ring.
The models are simulated with the help of the Maxey and Riley equation [94],

which describes the motion of one rigid sphere with finite inertia in a flow at low
Reynolds number. The interaction between the beads of the model are described
with the time-dependent Oseen tensor [95]. The capsules are simulated with a
multi-relaxation-time lattice Boltzmann method with an extension to describe
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a density contrast inside and outside the capsule [55, 57, 58, 96–99].
At first a short analytical consideration is given to explain the effect in detail

and to determine reasonable parameters. Hereby only the most important terms
of the Maxey and Riley equation are considered which leads to

M
dv(t)

dt
= ζ(t) [u(t)− v(t)] +Mf

du(t)

dt
(65)

with the external time-dependent flow u(t) = U sin(ωt), the mass of the particle
M the displaced mass Mf and its velocity v(t). The friction coefficient of the
particle is assumed to be time-dependent and is given by

ζ(t) =

{
ζ1 at 0 ≤ t < T

2
,

ζ2 at T
2
≤ t < T ,

(66)

which is periodically continued. The time-dependence of ζ is caused by a de-
formation of the particle due to the inertia and the time-dependent flow and
the asymmetric shape. The deformation is not calculated directly here but the
simulations confirm that ζ is indeed time-dependent.
This approximation yields the velocity at each half period

v1,2(t) = C1,2(t)e−
ζ1,2t

m + UB1,2 sin(ωt) + UD1,2 cos(ωt) (67)

with

Bi =
MMfω

2 + ζ2
i

ω2M2 + ζ2
i

, (68a)

Di =
ωζi(Mf −M)

ω2M2 + ζ2
i

, (68b)

which can be continued periodically. The boundary conditions

v1(0) = v2(T ), v1

(
T

2

)
= v2

(
T

2

)
(69)

allows to determine C1,2

C1 = UωΓ
(ω2M − ζ1ζ2)(e−

2ζ2π
ωM + e−

ζ2π
ωM )

e−
π(ζ1+2ζ2)

ωM − e− ζ2πωm
, (70)

C2 = UωΓ
(ω2M − ζ1ζ2)(1 + e−

ζ1π
ωM )

e−
π(ζ1+2ζ2)

ωM − e− ζ2πωm
(71)

with the constant
Γ =

(ζ1 − ζ2)(M −Mf )

(ω2M2 + ζ2
2 )(ω2M2 + ζ2

1 )
. (72)
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The mean velocity of the particle is given by

〈v(t)〉T =

∫ T
0
v(t)dt

T
=

Uω2MΓ

2ζ1ζ2π
(
e
π(ζ1+ζ2)
ωM − 1

) ·

[
(ζ1 + ζ2)(ζ1ζ2 + ω2M2)

(
1− eπ(ζ1+ζ2)ωm

)

+ (ζ1 − ζ2)(ω2M2 − ζ1ζ2)
(
e
ζ1π
ωM − e ζ2πωM

)]
. (73)

This allows to determine the requirements of a net motion after one period of
the flow. Firstly, the density of the particle must differ from the one of the
fluid, i.e. 〈v(t)〉T = 0 with M = Mf (Γ = 0). Secondly the frequency must be
high enough so that the inertia plays a role. The influence of the inertia can
be measured by comparing the velocity relaxation time of the particle τv = M

ζ

and the frequency of the flow ω. Equation (73) shows that the net velocity
vanishes if the inertia is negligible due to a low frequency, i.e. 〈v(t)〉T → 0 at
M
ζ1,2
ω → 0 and Mf

ζ1,2
ω → 0. Thirdly, the drag coefficient must change over time

and must be in one half period larger than in the following, i.e. 〈v(t)〉T = 0 with
ζ1 = ζ2. For example the particle must have a higher drag while the flow streams
upwards. In this calculation a time-dependent drag is assumed. Such a time-
dependence can be achieved by the deformation of an asymmetric particle. To
get a high deformation the frequency of the flow must be in the same range than
the spring’s relaxation time (for a tetrahedron) τk = M

k
with the spring stiffness

k and the mass M , e.g. one must choose M
k
ω ≈ 1. All three conditions must be

fulfilled to get a net motion. In this calculation, a symmetric (sinusoidal) flow
is used. Also a symmetric particle in an asymmetric flow can be used which is
shown in the following by the simulations.
The calculation helps to explain why the particle investigated in [92] would

be sinking if gravity is included: With the small parameters M
ζ1,2
ω = 0.063� 1

the inertial effect is weak.
These results are confirmed by simulations. The tetrahedron shows that the

drag is indeed time-dependent which leads to a net velocity and it rises against
gravity. Hereby the frequency of the flow must both fit the spring relaxation
time and also τvω is chosen not too small. Also the flow’s velocity must be
higher than a certain value so that the net velocity induced by the external flow
is higher than the sinking velocity. The Janus capsule shows qualitatively the
same behavior. Also the asymmetry of the capsule can be varied, i.e. the ratio
of the stiffness of both halves. Here the net velocity as function of the ratio
shows that the asymmetry is necessary. A symmetric capsule with equal halves
in a symmetric flow is only sinking, due to the gravity.
Also symmetric particles in an asymmetric flow are investigated. The flow is
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given by
u0(t) = U [sin (ωt) + ε cos (2ωt)] êy , (74)

It is flowing long and slow in one direction and fast and short in the other one,
so that the mean velocity is zero. This flow induces an asymmetric drag of a
symmetric particle due to the different flow velocities. Therefore the same effect
is found as for the asymmetric particles. Also the symmetric particle can rise
against gravity. This is confirmed by simulations of a ring and of a capsule. It
is found that the asymmetry of the flow ε must be high enough to induce an
upwards net motion, besides a sufficient high flow velocity U and a frequency
that fits the velocity relaxation time and the elastic relaxation time. The sign
of ε determines if the net velocity induced by the flow is directed upwards or
downwards which means the particle’s motion can be controlled by the flow.
A possible application of this effect could by the assembly of artificial mi-

croswimmers. The microswimmers investigated here are driven by the back-
ground flow which is a new method compared with the well known actuation
of artificial microswimmers like the actuation by magnetic [100–103], electric
[104, 105], chemical [106, 107] or optical [108] forces. It is shown here that the
an actuation by the background flow can be achieved with simple particles, e.g.
with a capsule. A further application is the sorting of different particles: For ex-
ample biological cells have a different density than e.g. water [109] and healthy
and malignant cells differ in their stiffness [75]. Hence they may be sorted in a
shaken fluid because the inertia induced velocity depends on their stiffness.

Transport due to external forces

Transport of soft particles due to external forces in flows

Besides the properties of the flow studied in the previous section also external
forces can influence the transport of particles in flows. An external force on
a particle can be realized e.g. by using lighter or heavier particles than the
fluid, which results in a buoyancy force. Such systems have been studied pre-
viously: For example heavy and rigid particles at finite Reynolds number in a
flow downwards or upwards a gravity field migrate away from or to the tubes
center, respectively [110]. Also the effects of axial forces on the transport of soft
particles in a flow with a finite Reynolds number through a tube was studied
[111–113]. Further examples are the effect of forces on polymers in Poiseuille
flows, e.g. electrical forces on charged polymers [114, 115]. Also the shape and
the characteristic deformation of sedimenting heavy vesicles have been investi-
gated recently [116–118]. But very little is known about the dynamics of soft
and non-neutrally buoyant particles in vertical Stokes flows, which is studied in
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pub4.
Here the transport of a soft capsule is studied in a linear shear flow and a

Poiseuille flow
uuu(rrr) = U

[
1 +

(y
d

)2
]
êeex (75)

with the Poiseuille flows maximal velocity U , the viscosity η and the center to
wall distance d. This is done by an analytical calculation and with simulations
of a soft capsule. Thereby Stokesian dynamics simulations are used with the
Oseen tensor, which neglects wall interactions, and with the Blake tensor that
includes the wall interaction. Also LBM simulations are utilized.
At first an explanation of the dynamics is given. In a linear shear flow the cap-

sule is deformed and adopts the shape of an ellipsoid. The shape in a Poiseuille
flow is approximately also an ellipsoid. An ellipsoid has an anisotropic drag
coefficient. Due to the anisotropic drag a force in flow direction results also in
a transport perpendicular to the flow. In pub4 the migration due to the force
was calculated approximately (cf. also pub8 and eq. (91)). The shape of a
soft capsule in a linear shear flow was calculated by D. Barthès-Biesel for small
capillary numbers, i.e. small deformations [66, 70]. By using the expression of
the shape together with the drag coefficient of an ellipsoid given in [119], here
the velocity due to the external force is calculated approximately. This results
in

vm,f ≈
5

96

F ext
x

πηR
(76)

with the particle radius R. Thus a transport perpendicular to the flow due to
a force in flow direction is already found in a linear shear flow. In a Poiseuille
flow one can approximately use the local shear rate of the Poiseuille flow which
results in

vm,f ≈ −
5

48

F ext
x Uyc
πGd2

≈ −0.0331
F ext
x Uyc
Gd2

(77)

with the particle’s distance to the center yc and the Neo-Hookean stiffness G
of the capsule. The result is similar to eq. (91) and the small difference is due
to the different approximations. This allows to determine the direction of the
migration induced by the external force in flow direction: For example if the
particle is heavier than the fluid (e.g. F ext

x < 0) and the flow streams upwards
(U > 0) then the particle migrates to the walls (vm,f > 0 with yc). This means
the particle migrates to the walls if the external force is antiparallel to the flows
direction. A change in the flow direction (U < 0) or the usage of a lighter
particle (F ext

x > 0) results in a reversal of the migration velocity. In this case
the force and the flow direction is parallel.
The simulations allow to verify the calculations, to use larger deformations

and to include the wall interaction. All simulation methods show a good agree-
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ment with the calculations as long as the deformation is small and at a sufficient
distance to the wall. The migration velocity as function of the capillary number
without walls displays a linear increase with the capillary number and a satu-
ration at a sufficient high capillary number. If the external force is parallel to
the flow the migration to the center is enhanced and if both are antiparallel the
migration is directed towards the walls. The walls can be included by using the
Blake tensor. In this case the inwards migration due to a force parallel to the
flow is enhanced by the wall repulsion. The outwards migration due to a force
antiparallel to the flow is canceled by the wall repulsion at a certain distance
to the wall. Hence this distance is an attractor. The location of this attractor
depends on the parameters like the capillary number or the external force.
This effect can be used to sort different kinds of particles. For example bio-

logical cells have a 5% to 15% higher density than water [109]. The simulations
show that this density difference is enough to achieve a migration to the walls.
Moreover healthy and malignant cancer cells differ in their stiffness [75], so that
the stiffness is an indicator of the health status. Because the location of the
off-center attractor depends on the capillary number the effect may be used to
sort cells with respect to their stiffness.

Measurement of the magnetic moment of bacteria

Here another example of the transport of particles due to an external force is
given but without an external flow of the fluid. pub5 shows that a transport
due to an external force allows to determine properties of particles. More pre-
cisely, the magnetic moment of a magnetotactic bacterium, Magnetospirillum
gryphiswaldense, is measured.
Among many other organism like algae, bees, pigeons and mice [120], also

bacteria [121] like Magnetospirillum gryphiswaldense use the magnetic field
of the earth for navigation and orientation. To do this, Magnetospirillum
gryphiswaldense synthesizes magnetosomes which are intracellular organelles
that comprise membrane-enclosed magnetite (Fe3O4) nanoparticles [122–125].
These magnetosomes allow to navigate and to align along the geomagnetic
field [126]. The bacterium has a helical shape with the length of several mi-
crometers and a diameter of a half micrometer. It was studied previously, e.g.
its motility [127], its swimming in presence of magnetic fields [128, 129] and
the magnetotaxis and aerotaxis [130]. Also the molecular mechanism underly-
ing the magnetosome biosynthesis and intracellular alignment has been studied
[123, 125, 126, 131–139].
But the physical property that makes magnetotaxis possible, the magnetic

moment, was not studied at a single cell level before. This previous studies
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used a complete population to measure the average magnetic moment of Mag-
netospirillum gryphiswaldense by assuming all bacteria have the same shape.
Moreover the shape was approximated as a cylinder or an ellipsoid. The results
of this studies differ by more than one order of magnitude [129, 140, 141]. This
raises the question why these results show this large spread. A possible reason
is that the shape and the dimensions of the individual cells must be considered
instead of using simplified, averaged shapes. Another study suggested further-
more that the noise induced by living bacteria can lead to a systematical error
of the measurement [142]. Therefore dead bacteria are used.
pub5 shows a method to determine the magnetic moment taking each indi-

vidual shape into account, whereby more than 350 individual cells were used.
Inhomogeneous switchable magnetic fields are generated by magnetic tweezers.
Such magnetic tweezers are often used in single molecule and cellular studies
[143–149]. This allows to measure the motion of the bacteria in the magnetic
field. The translational motion due to the magnetic force is studied with a
magnetic gradient field and a rotational motion by an alternating field. The
magnetization can now be determined by the force balance of the magnetic
field and the viscous forces because the field strength and the drag coefficient is
known and the trajectories are measured by microscopy.
The drag coefficient must hereby be determined by the measured shape of the

bacteria. Here comes the bead models into play, which allows to calculate the
drag coefficient of an arbitrary shaped particle [45, 46, 150]. The drag was also
calculated by the boundary integral method [151–153].
Besides this measurement with the magnetic tweezers a second method was

used, which allows to compare both methods. Hereby images of the bacteria
were generated by transmission electron microscopy. This allows to determine
the volume of the magnetosomes. By using the volume and the known saturation
magnetization of magnetite this allows to compare both methods and to show
that they are consistent.
The results of the average magnetic moments of Magnetospirillum

gryphiswaldense were firstly µ = (2.4± 1.1) · 10−16 Am2 at B = 6 − 23mT
obtained with by measuring the rotation of the bacteria in the alternating fluid,
secondly µ = (7.7± 3.4) · 10−16 Am2 at B = 90 − 130mT by measuring the
translation of the bacteria and thirdly µ = (9.9± 2.6) · 10−16 Am2 by measuring
the volume of the magnetosomes with the transmission electron microscope and
using the saturation magnetization of magnetite for large external fields.
The study allows to answer the raised questions. At first it is discussed if

the helical shape must be taken into account. Therefore the results obtained
with the drag of a helix is compared with the results obtained by assuming an
averaged cylinder and neglecting individual shapes. The study shows an error
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of 10% of the average magnetization of all bacteria if the helical shape is not
considered. If distribution of magnetization of individual bacteria is investigated
the individual shape is even more important. For example if the magnetic mo-
ment of the shortest bacterium is determined the error between a measurement
using the individual helical shape and the average shape using a cylinder is 29%.
For the longest bacterium the error is −22%.
A further question was whether dead or living cells should be used for mea-

surement. The study used only dead cells so that no final answer can be given.
But a comparison with other studies [129, 154] that uses dead bacteria shows
a good agreement, especially compared with large spread of the studies using
living cells mentioned above. Hence one can conclude that the measurement of
dead cells provides more consistent results.

Cross-stream migration due to a viscosity gradient

Besides the mechanisms of cross-stream migration discussed above, also com-
plex, non-Newtonian fluids can cause a cross-stream migration. This was studied
in channels with flat or modulated walls [20, 74, 155–160]. The dynamics of par-
ticles immersed in such viscoelastic and shear-thinning fluids is rather complex
and is caused and influenced by many effects like the fluid elasticity, wall in-
teraction, shear thinning and the particle’s deformability. This can lead to a
migration to the channel walls. But it is difficult to determine the cause of the
migration to the walls in a complex fluid. For example, no explicit expression
of the force on the particle due to the fluids elasticity is known in presence of
a non-constant viscosity [157]. Therefore a more simple fluid is investigated in
pub6, where a fluid with constant gradient in the viscosity is used. It can be seen
as a first approximation of a viscosity profile of a shear thinning fluid without
considering elastic forces. This allows to show that a viscosity contrast alone
can lead to a migration towards a wall in simple shear flows and Poiseuille flows:
A migration towards the lower viscosity is found, if the viscosity varies perpen-
dicular to the flow. This simplified system can help to better understand the
migration in complex fluids. Another advantage is that such a viscosity gradient
can be also realized experimentally with a temperature gradient, because the
viscosity of a fluid often strongly depends on the temperature. A temperature
gradient can easily be created in microfluidic devices [161].
To investigate the migration in a flow with a viscosity gradient, the viscosity

profile η(rrr) with a constant gradient GGGη is used

η(rrr) = η0 +GGGη · rrr with ∇η = GGGη . (78)

Only flows at low Reynolds number are considered in pub6, which are determined
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by solving the Stokes equation

−∇p+∇ ·
{
η[∇u + (∇u)T ]

}
+ f = 0 (79)

with the flow velocity u and the pressure p for two setups: The flow can be
driven by a moving plate or a pressure gradient. If the flow is driven by a
pressure gradient it results in the parabolic flow profile without the viscosity
gradient, whereas with gradient the maximum of the flow velocity is shifted
towards the lower viscosity.
To investigate the influence of the gradient in the viscosity on the transport

of particles, a capsule is utilized. The capsule is simulated with the Stokesian
dynamics method which neglects wall interactions and the lattice Boltzmann
method where the wall interaction is included. To use the Stokesian dynamics
method, the Oseen tensor is required which can only be used with a constant
viscosity. Therefore, a generalized Oseen tensor is derived in first order of the
viscosity gradient. The calculation is given in the appendix of pub6.
At the beginning, pub6 gives a simple explanation why a migration in a linear

shear flow is found for a gradient in the viscosity. This is done by considering
the symmetries of the flow and the capsule and by calculating the forces on
the particle numerically. At first a rigid spherical particle is discussed (cf. fig
1). Such a particle rotates in a linear shear flow and it follows the stream line
through its center. Due to the symmetry of the flow and the capsule the net
force on the particle is zero. But if this motion, i.e. the rotation, is performed
in presence of a viscosity gradient then the symmetry is broken. As example,
the gradient is oriented here perpendicular to the flow and lies inside the shear
plane (y-direction). This results in a non vanishing net force FFF net =

∮
FFF fdA

(of the friction force due to the rotation). But this force is parallel to the
flow and thus no cross-stream migration is found with a rigid capsule (only a
lateral migration). The situation in case of a deformable particle is similar. But
the deformable particle is not spherical and adopts the shape of an ellipsoid.
Due to this shape, the net force in presence of the gradient has a component
perpendicular to the flow, which leads to a cross-streamline migration. It is
oriented towards the lower viscosity.
These findings are confirmed by the simulations. In a flow driven by a moving

plate a cross-stream line migration is only found with a gradient in the viscosity
and with a soft particle. The migration is directed towards the lower viscosity
and increases with the gradient and with the capillary number. A comparison of
the Stokesian dynamics simulations using the LBM and the generalized Oseen
tensor shows a good agreement (an error of 10%) as long as the viscosity varies
not too much, i.e. 15% over the size of the particle. With the LBM the wall
interaction is included so that the particle migrates until the wall repulsion stops
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Figure 1: (a) A sketch of a rigid, spherical capsule in a linear shear flow. Its
surface rotates with the velocity us due to the flow u. This motion leads to
a friction force FFF f , whereby the net force is zero. (b) If the same motion
is performed with a gradient, the friction force at the half with the higher
viscosity is higher than at the other half, which leads to a non-vanishing net
force. The force is parallel to the flow because the system is still symmetric
to the yz-plane. (c) A deformable capsule performs a tank-treading motion
in the flow and is deformed to an ellipsoid. It has a point symmetry which
prevents a net force without gradient. (d) If this motion is performed with a
gradient then the point symmetry is broken which causes a net force. This
force has a component perpendicular to the flow, towards the region with the
lower viscosity.

the migration at a certain distance to the wall. This distance depends on the
particle’s properties.
Also in a Poiseuille flow a temperature gradient and therefore a viscosity gra-

dient can be applied which is also simulated with Stokesian dynamics (without
the wall interaction) and with the LBM (with the wall interaction). Due to
the viscosity gradient, the maximal flow velocity is shifted towards the lower
viscosity. In a Poiseuille flow both the spatially varying shear rate (found also
without a gradient) and the gradient in the viscosity causes a migration. There-
fore, without wall interaction, the particle migrates either to the maximal flow
velocity or to the wall with the lower viscosity, depending on the initial condi-
tion. Also the migration is faster, compared to the case without gradient. But
if the wall interaction is included, the particles migrate for every initial position
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to the maximal flow velocity. The reason is that the wall interaction is stronger
than the migration due to the viscosity gradient in this flow profile.
But another viscosity profile is also possible: In a flow of a shear thinning

fluid the viscosity is maximal in the center and minimal at the boundaries.
Therefore a fixed viscosity profile is used with a maximum at the center and a
linear decrease towards the walls, which is an approximation of a shear thinning
behavior. It reproduces a flow profile that is characteristic for shear thinning
fluids, i.e. a flow profile with the maximal velocity at the center, a nearly
constant velocity close to the center and a fast decrease of the velocity close to
the walls. This system is simulated with the lattice Boltzmann method. Here
particles close to the center migrate to the center and particles further away
from the center migrate towards the lower viscosity, i.e. towards the walls until
the wall repulsion stops the migration. Hence the attractor at the center and
the attractor at the walls coexist.
A possible application of the focusing of particles, found in the linear shear

flow with a viscosity gradient, may be the sorting of different particles. This is
possible because the migration velocity and the attractor’s distance to the wall
depend on the particle properties, e.g. on their stiffness. The linear temperature
gradient applied to a Poiseuille flow helps to enhance the migration velocity
and allows to position the particles via the shift of the maximal velocity. The
simulations with the viscosity profile that approximates the one of shear thinning
fluids show a migration towards the walls. Hence the viscosity gradient (with
the deformability of the particle) alone can already lead to a wall migration.
This may help to understand the migration behavior in more complex fluids,
where it is not easy to determine which of many possible effects leads to the
wall migration.

Influence of noise on the cross-stream migration

In the previous part of this thesis, systems are investigated in which thermal
noise can be neglected. In systems of smaller size like semi-flexible polymers or
small fibers in a Poiseuille flow, the noise can become important and one can
ask how the cross-stream migration of deformable particles is affected by noise
effects. This is studied in pub7.
These kinds of particles are often investigated in previous studies. For exam-

ple early observations of an enhanced polymer concentration near a channel wall
[162] were explained by polymer kinetic theories for bead-spring chain models
in inhomogeneous flows [163, 164]. Also lift forces were predicted for flexible
polymers near a wall (as for vesicles [28, 29]) in simulations [165] and are found
in experiments [166]. For Brownian fibers a small off-center concentration peak

30



was predicted [167, 168] and experiments showed such a peak with actin fila-
ments [169]. Also the distribution of semi-flexible polymers was investigated
in many simulations which investigate especially the influence of the boundary
effects [170–173]. It was shown recently that fibers can also migrate without
a wall interaction and how the wall influences the migration. This system was
investigated without noise in [9, 174, 175]. In pub7 also the migration without
the boundary and the influence of the wall interaction on the migration of fibers
or semi-flexible polymers is investigated, whereby here especially the influence
of the noise on the migration is discussed.
The study in this thesis continues the research of Steffen Schreiber [176].

Semi-flexible polymers or fibers in pub7 are simulated with a bead-spring model.
Hereby a chain of beads is used which is connected by springs and a bending
potential is used. As mobility matrix the Rotne-Prager tensor is used and wall
interactions with the Blake tensor are included. Besides the deterministic forces
due to the springs and the bending potential, also stochastic forces, i.e. the
thermal noise, are included. The chain consists of three beads and is confirmed
by simulations with five beads, that show qualitatively the same results. The
flow is a planar Poiseuille flow.
At first semi-flexible bead-spring models are studied without the interactions

with the wall. With low thermal noise a cross-streamline migration to an off-
center attractor is found. The particles migrate to this attractor if they are
positioned initially not too close to the wall. If the particles are closer to the
wall, they migrate towards the wall and leave the channel due to the missing wall
interaction. This means also a repeller exists between the off-center attractor
and the channel wall. At higher thermal noise the dynamics is different: Here,
the particles migrate towards the attractor at all initial positions in the channel,
i.e. no repeller is found. The same qualitative results are also found in a tube
flow.
After identifying the attractor and the repeller, it is investigated how their

position depend on the parameters. At first is discussed how the position de-
pends on the bending stiffness at low thermal noise. At increasing stiffness the
attractor is shifted away from the center and the repeller comes closer to the
center. Above a critical value of the stiffness the attractor and repeller van-
ishes. In this case, the particles migrate everywhere away from the center of a
parabolic flow profile. These results are found in the simulations performed for
this thesis and also in [176].
It is especially investigated how the attractor is affected by the noise: At high

thermal noise the attractor exists at higher values of the stiffness than without
noise, i.e. the critical value is increased.
A closer look on the dynamics of the chain allows to give a criterion which
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determines the migration direction. A chain is a long time oriented parallel to
a stream line until it is a bit inclined due to the noise. Then it rotates very fast
due to the shear rate and is then again oriented parallel to the flow. But due to
the spatially dependent shear rate in a Poiseuille flow the chain does not only
rotate but is also bend by the flow. The simulations show that the maximal
bending angle during one flip determines the migration direction. A maximal
bending angle lower than π/2 leads to a migration to the center and an angle
above π/2 to a migration away from the center.
This criterion can explain why the attractor vanishes at a high bending stiff-

ness and exists at a low stiffness. At a low stiffness the situation is the following:
Close to the center the shear rate is small and the particle is bend less, i.e. it
migrates outward. Further away from the center the shear rate is higher and
the chain is more bend, i.e. it migrates towards the center. This explains the
attractor. In the region close to the wall the shear rate is even higher. In this
case the chain rotates very fast and is less bend. Hence the chain migrates to-
wards the wall and not to the attractor which explains the repeller. At a higher
bending stiffness the chain is bend less at all initial positions. Hence it migrates
everywhere away from the center of the parabolic flow profile. Therefore no
attractor exists at a high bending stiffness above the critical value. At a high
noise the situation is different: The interplay between the high noise and the
shear rate increases the deformation and the bending. Thus the noise stabilizes
the attractor.
The migration of the semi-flexible bead-spring models is also investigated with

the wall interaction. One could expect that the particles, which migrate away
from the center of the flow profile are hindered by the wall, so that one new
attractor appears. But interestingly two new attractors appear at low values of
the noise: At small values of the bending stiffness three attractors are found.
If the bending stiffness is increased two attractors vanish and one attractor is
found at all values of the bending stiffness.
With a high thermal noise only two attractors are found at a low bending

stiffness. The third attractor found at low noise has a small basin of attraction
so that particles at a high noise can be pushed out of the basin by the noise. It
is therefore not found in the case of large noise amplitudes. At higher values of
the bending stiffness one attractor vanishes and the other is found at all values
of the bending stiffness. It is at the same location as in case of a lower thermal
noise.
This can be again explained with the criterion of the maximal bending angle.

The wall interaction influences the maximal bending angle during one flip be-
cause the bead which is located the closest to the wall is slowed down by the wall
interaction. The bead chain is thus influenced on the one hand by the spatially
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dependent shear rate and also by the wall interaction. The interplay between
both determines the maximal bending angle and the migration direction which
leads to the new attractors. The details of this dynamics are given in pub7.
Hence it is shown in pub7 that the noise is important and can change the

behavior qualitatively. For example it can stabilize an attractor in the case
without wall effects. Also with wall effects the behavior with high and low noise
is different.

Describing cross-streamline migration by bead-spring
models

In this thesis bead-spring models are used, besides LBM-simulations, to model
the cross-stream migration of soft particles in flows. Such simple models are
helpful to understand the mechanisms leading to a cross-streamline migration.
This approach was for example used by Watari and Larson to show in a very
clear way that a chirality of soft particles leads to a CSM even in a linear shear
flow [77]. Besides this, bead-spring models can even describe vesicles, also with
an viscosity contrast [9, 177], or red blood cells [178] in a very efficient way.
Further examples are the modeling of DNA [179], cilia [180], flexible filaments,
[181], proteins [182, 183], general colloidal particles [184] and microswimmers
[185–187]. Also conceptual work was done in the last years to improve bead
models further [188, 189].
The bead model of a capsule used in this thesis was not used before. Therefore

pub8 compares the model quantitatively with other methods as a benchmark
test. Besides the capsule also other simple models of deformable particles, i.e. a
triangle, a tetrahedron, and a ring of beads, are investigated to demonstrate the
minimal requirements that a bead-spring model must have to describe the cross-
stream migration qualitatively. Furthermore, the simple bead-spring models are
used to derive a semi-analytical expression for the cross-streamline migration.
A viscosity contrast is not used in the models in this thesis.
The models are compared with the results of other studies found for a two

dimensional vesicle [36] and a three dimensional capsule [38] in a flow with
parallel stream lines. The results of these studies are firstly that a migration
is not found in a linear shear flow, but in a Poiseuille flow. The Poiseuille flow
has a non-vanishing second derivative, e.g. a curvature of the flow profile, and
thus the shear rate varies across the particle. Secondly the migration is directed
to the center of the flow, i.e. towards the maximal flow velocity. Thirdly, no
migration is found at a vanishing capillary number (cf. eq. (58)), e.g. the
deformation is necessary for a migration. The migration increases with the
capillary number until it reaches a constant value above a certain value of the
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capillary number.

The findings of these studies are compared with the two dimensional bead-
spring models, at first with the triangle. It is a simple model and consists of
three beads that are connected by springs. Already this simple model displays
a migration. It is not found in a linear shear flow, but in a Poiseuille flow where
it displays a migration to the center. The migration velocity as function of the
capillary number (Ca) shows that the migration vanishes if the capillary number
approaches zero (i.e. a very rigid triangle), which means the deformability is
necessary. At higher values of the capillary number at the order of one the
migration is maximal and at values larger than one the migration becomes
slower and vanishes with an increasing Ca due to the high deformation. This
means the simple triangle fits the findings of the vesicle at low values of the
capillary number. At higher values the vesicle’s area conservation prevents a
high deformation and the migration becomes independent of Ca whereas the
deformation of the triangle becomes large and its migration vanishes.

The ring behaves similar to the triangle, except that its bending potential pre-
vents high deformations at high values of Ca. Thus the ring can also reproduce
the plateau at high values of Ca found with the vesicle and agrees qualitatively
well with the vesicle.

The findings with the three dimensional models are similar to the two di-
mensional models: The tetrahedron agrees quantitatively well with [38] at low
capillary numbers, but the migration of the tetrahedron vanishes at high values
of Ca due to the high deformations. In case of the bead capsule model the high
deformation is prevented by the volume conservation and the plateau at high
values of Ca is reproduced well.

The bead capsule model can also be compared to other capsule models.
Barthès-Biesel [66] has shown that the Taylor parameter D= L−B

L+B
with the

long and the short half axis L and B of the deformed, ellipsoidal capsule, is
given by D = 25

12
Ca in case of small deformations. Simulations of the bead

capsule model fit this result. A further benchmark was a comparison with the
migration velocity of a capsule in a pipe flow calculated by Helmy and Barthès-
Biesel [66, 190] in case of small deformations, which the simulations also agree
with. A third test was a comparison with a LBM simulation of a capsule in a
flat Poiseuille flow. To compare the bead model with the LBM, the Blake tensor
is used because the LBM solves the full equations, i.e. includes also the wall
interaction. Here a good agreement between the two models is found. Thus the
bead capsule model can describe the CSM of capsules well.

Besides the fast simulations, the models can also be used for semi-analytical
calculations. The migration velocity is defined as difference between the particles
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velocity ṙrrc and the flow’s velocity uuu(rrrc) at the particles center rrrc

vvvm = ṙrrc − uuu(rrrc) . (80)

With the help of the bead-spring models one can show that the migration is
given by

vvvm = uuum − uuu(rrrc) + ζζζ−1(FFF ext −FFF u −FFF tt) (81)

or with uu = ζζζ−1FFF u and utt = ζζζ−1FFF tt by

vvvm = uuum − uuu(rrrc) + uu + utt + ζζζ−1FFF ext , (82)

which allows to discuss the origin of the cross-streamline migration (the complete
calculation is given in pub8 ): The first term uuum − uuu(rrrc) means that a particle
can migrate if the flow’s mean velocity, i.e. the undisturbed flow without the
particle averaged over the surface of the particle is not equal to the flow at the
particles center. For example in a flat Poiseuille flow the average is lower than
the flow at the particles center which leads to a lag behind of the particle (cf.
e.g. [38]). But because the flow points everywhere in the same direction, also
the average points in flow direction, which means this term can only lead to a
lateral migration. This is not the case in a flow with non-parallel stream lines,
e.g. in a channel with modulated walls (cf. pub1 ). The second term ζζζ−1FFF ext

describes the Stokes friction, i.e. the effect of an externally applied force FFF ext

with the friction matrix ζζζ (cf. pub4 ). The other forces FFF u and FFF tt describe the
friction between the fluid and the particle. The force FFF tt describes the friction
that is caused by the tank-treading motion in the fluid. The force FFF u is exerted
on the particle by the external flow, e.g. a Poiseuille flow, that streams around
the particle. As example in a homogeneous flow eq. (82) becomes

vvvm = ζζζ−1FFF ext , (83)

which means
ṙrrc = uuu+ ζζζ−1FFF ext . (84)

This describes just the Stokes friction. In a Poiseuille flow, which is spatially
dependent, the particle is deformed so that the term FFF u is non-zero. Also a tank-
treading occurs and FFF tt is non-zero. The terms can be calculated numerically
(cf. pub8 ) which shows that both terms contribute to the migration to the
center. Hence the migration is caused both by the friction due to the spatially
dependent flow that streams around the deformed capsule FFF u and by the tank-
treading motion FFF tt.
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The migration can also be calculated semi-analytically. The details of the
calculation are given in pub8. The flow is Taylor-expanded around the position
of the particle at rrrc which results in

uuu0 ≈
2∑

n=0

1

n!
[(x− xc)∂x + (y − yc)∂y]nx=xc,y=yc

uuu0 , (85)

=

k+l≤2∑

k,l=0

bbbk,l(x− xc)k(y − yc)l . (86)

and small deformations are assumed. This allows to calculate the migration
velocity in dependence of the Taylor coefficients bbbk,l of the flow, the viscosity
and of the stiffness and the radius of the particle. For the sake of simplicity
a translational independence is assumed in one spatial direction, i.e. the flow
depends only on two spatial coordinates. The calculation shows that the contri-
butions of the flow around the particle and the tank-treading to the migration
are

(uu + utt) ∝ CaC . (87)

Also the contribution of the mean flow uuum − uuu(rrrc) can be calculated but this
term does not contribute in a planar flow with parallel stream lines. Thus the
migration in a planar flow is proportional to the capillary number Ca = ηR

Gs
bσ,

whereby bσ is a Taylor coefficient that contains a first derivative of the flow
(cf. eq. (86)). The migration is furthermore proportional to the curvature of
the flow profile C = R2bσ′ , whereby bσ′ denotes a Taylor coefficient containing
a second derivative of the flow (cf. eq. (86)). This means the migration is
caused by the particle’s deformability, i.e. by a nonzero value of Ca and by a
shear rate that varies across the particle, i.e. by a nonzero value of C which
is the curvature of the flow profile. The proportionality factors are calculated
numerically and are given in pub8. Also the Stokes friction matrix ζζζ−1 and the
mean velocity uuum can be calculated as function of the Taylor-coefficients of the
flow, the viscosity and the particles parameters.
This allows for example to discuss why no migration is found in a linear shear

flow. Here the second derivative of the flow is zero, i.e. C = 0 and the migration
vanishes. In a planar Poiseuille flow

uuu0 = U

[
1−

(y
d

)2
]
êeey (88)

the Taylor coefficients are

bbbσ = −2U
yc
d2
êeey and bbbσ′ = −U

d2
êeey . (89)
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With eqs. (82) and (87) and the proportionality constant given in the appendix
of pub8 follows the cross-streamline migration velocity

vm,y =uu,y + utt,y + (ζζζ−1FFF ext) · êeey , (90)

=− 0.8875U2ηycR
3

Gsd4
+ 0.0527

F ext
y

ηR
− 0.0388

UycF
ext
x

Gsd2
. (91)

Hence the calculation reproduces the migration to the center in a Poiseuille flow
and the Stokes friction with 0.0527

F exty

ηR
≈ F exty

6πηR
. Due to the deformation of the

soft particle in the Poiseuille flow to an ellipsoid also the force in x-direction
contributes to the CSM in y-direction, which is described by the last term in
eq. (91) (cf. also pub4 ).
Furthemore the results can be compared e.g. with the work Helmy and

Barthès-Biesel for the migration velocity of capsules in pipe flow [190]. The
calculation with the bead-spring model shows an error of 10% compared with
the more exact calculation of Helmy and Barthès-Biesel which needs less ap-
proximations. But the easier bead-spring model allows the calculation in the
more general, Taylor-expanded flow.
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Microflows constitute an important instrument to control particle dynamics. A prominent example is the
sorting of biological cells, which relies on the ability of deformable cells to move transversely to flow lines.
A classic result is that soft microparticles migrate in flows through straight microchannels to an attractor at
their center. Here, we show that flows through wavy channels fundamentally change the overall picture.
They lead to the emergence of a second, coexisting attractor for soft particles. Its emergence and off-center
location depends on the boundary modulation and the particle properties. The related cross-stream
migration of soft particles is explained by analytical considerations, Stokesian dynamics simulations in
unbounded flows, and Lattice-Boltzmann simulations in bounded flows. The novel off-center attractor can
be used, for instance, in diagnostics, for separating cells of different size and elasticity, which is often an
indicator of their health status.

DOI: 10.1103/PhysRevLett.122.128002

Microfluidics attracts great attention across several dis-
ciplines [1–9]. The field includes important physics-based
strategies to understand the dynamics of particles in micro-
flows and the mechanics of (deformable) cells with a great
variety of applications in life science and technology. For
example, studies of soft particles in suspension and their
cross-streamline migration (CSM) in low Reynolds-num-
ber linear shear and Poiseuille flows provide important
insights about blood flow, cell dynamics, DNA sorting, and
polymer processing, among others [8–13]. Furthermore, a
surprising splitting of streams of wormlike colloids in
shear-thinning fluids through modulated channels was
found [14]. In modulated channels with secondary flows
[15] or in serpentine [16] or curved channels [17,18], for
instance, particle dynamics and separation may also be
driven by inertia. Very little is known about the behavior of
soft microparticles such as (red blood) cells in pressure
driven Newtonian fluid flows at low Reynolds number
through microchannels with modulated walls. For this case,
we describe the emergence of a novel second attractor for
soft particles. This may give rise to promising applications
in particle separation, such as biological cells with differing
elasticity or size.
Segré and Silberberg reported in 1961 on CSM of rigid

particles in low Reynolds-number flows through pipes [19].
Such finite Reynolds-number effects are exploited in
inertial microfluidics [17,20]. When particles and channels
approach the micrometer scale, it is also possible that fluid
inertia does not matter and particles follow the Stokesian
dynamics. In this limit, there is no CSM of rigid particles
but of soft particles which are deformed by the local shear

rate. This drives, for instance, tank-treading vesicles away
from walls in Poiseuille and linear shear flows [9,21–25].
Away from walls the spatially varying shear rate in bulk
Poiseuille flows breaks the fore-aft symmetry of the

(a)

(b)

〉
〈

FIG. 1. (a) The trajectory of a soft capsule (dashed line) in plane
Poiseuille flow approaches the attractor at the channel center at
y ¼ 0: The inset shows the channel cross section with the particle
attractor (dash-dotted line). (b) A soft capsule in a wavy channel
moves to either the off-center attractor (solid line) or to the center,
depending on its initial position. The left inset shows the
particle’s wavy motion around the trajectory’s mean (cf. anima-
tions in the Supplemental Material [38]). The right inset shows
the wavy off-center particle attractor (dotted line) and the attractor
at the channel center (dash-dotted line). For parameters, see [39].
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deformed particle, so that dumbbells [26,27], droplets
[28,29], vesicles, and capsules [30–32] exhibit bulk
CSM, even in unbounded Poiseuille flows where the
interaction with the channel boundaries is neglected.
Such parity breaking mechanisms may be induced sponta-
neously by viscosity contrast [33] or chirality [34], which
are not considered here. Surprisingly, CSM of soft particles
can be also reversed by gravitational effects [35]. Recently,
migration was also found for nonsymmetric soft particles in
time-periodic linear shear flows [36] and even in time-
periodic homogeneous plug flows when particle inertia is
considered [37].
As we show, soft particles in flows through wavy

channels experience a periodically altering local shear rate;
therefore they are periodically deformed. However, they
adopt a different shape during each half period of a wavy
flow. This nonsymmetric deformation causes an off-center
attractor for soft particles in Newtonian fluid flow that
coexists with the particle attractor at the channel center, as
indicated in Fig. 1 (cf. animations in the Supplemental
Material [38]).
We consider red blood cells (RBCs) and soft capsules in

flows through a channel with modulated walls at

yb ¼ �d½1þ ε sin ðKxÞ� with K ¼ 2π

λ
; ð1Þ

with the mean boundary distance 2d, the modulation
amplitude ε, and the wavelength λ. The resulting wavy
flow field uðrÞ ¼ ðux; uy; 0Þ is determined up to first order
in the modulation amplitude ε (see Supplemental Material
[38]) [40]

ux ¼ ũ

�
1 −

y2

d2
þ 2ε sinðKxÞ

× ½B1Ky sinhðKyÞ þ ðB1 þ B2Þ coshðKyÞ�
�
; ð2aÞ

uy ¼−2ũεcosðKxÞ½B1KycoshðKyÞþB2 sinhðKyÞ�; ð2bÞ

with the flow amplitude ũ. The soft particle’s surface is
represented by N beads with radius a and located at ri.
Their Stokesian dynamics [41] is described by a set of
equations

_ri ¼ uðriÞ þ
XN
j¼1

Hij · Fj: ð3Þ

The particle center is at rc ¼
P

N
i¼1 ri=N and particle-wall

interactions are neglected. The force on the jth bead is
given by Fj ¼ −∇jVðrÞ with the total potential VðrÞ, and
Hij denoting the mobility matrix (see the Supplemental
Material [38]) [42–44].

For the capsule, the total potential is VðrÞ ¼ VNH þ
Vb þ Vv with the neo-Hookean part VNH, that describes
rubberlike materials with a constant surface shear-elastic
modulus G [45,46]. The beads form triangles as indicated
in the Supplemental Material [38]. With the angles βi;j
enclosed by the normal vectors at neighboring triangles and
the bending elasticity κ, the bending potential is Vb ¼
κ=2

P
i;jð1 − cos βi;jÞ [47]. The potential Vv ¼ kv½VðtÞ −

V0�2=V0 keeps the capsules volume VðtÞ close to the
reference volume V0 ¼ 4=3πR3 of a spherical capsule of
radius R with volume stiffness kv [48].
For the RBC we use as total potential VðrÞ ¼ VSk þ

Vb;R þ Vv þ Va [48]. VSk denotes the potential of the
Skalak law which describes the elastic forces of a
RBC with the shear and area resistance κs and κα (see

[48,49]). The bending potential is given by Vb;R ¼ffiffiffi
3

p
κR=2

P
i;jðβi;j − βð0Þi;j Þ2 where βð0Þi;j denotes the angles

of the equilibrium shape, whereby we use the typical
biconcave shape (see the Supplemental Material [38] and
Ref. [50]). The potentials Vv ¼ kv=V0½VðtÞ − V0�2 and
Va ¼ ka=A0½AðtÞ −A0�2 keep deviations of VðtÞ and
AðtÞ from the reference values V0 and A0 small [48].
The (dimensionless) parameters are given in Ref. [39].
We use also simulations for the particle dynamics with a

standard lattice Boltzmann method (LBM) with the
Bhatnager-Gross-Krook collision and the immersed boun-
dary method [51–55]. Hereby, the effects of the channel
boundary on the particle dynamics are fully taken into
account.
The migration velocity vm of a particle is the difference

between the particle velocity _rc and the undistorted flow
velocity uðrcÞ at the particle’s position rc, leading to

vm ¼ _rc − uðrcÞ ¼
X
i

uðriÞ
N

− uðrcÞ
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼vfm

þ 1

N

X
i;j

Hij · Fj

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼vHIm

:

The contribution vfm is the difference between the undis-
turbed flow, averaged over the particle’s surface, and the
undisturbed flow at its center. In Poiseuille flow, the shear
gradient varies across an extended particle and accordingly
the particle does not follow a single streamline. The second
contribution vHIm describes the flow disturbance due to a
particle.
In plane Poiseuille flow, vfm is antiparallel to the straight

flow direction and causes a lag behind of particles with
respect to the undistorted, local flow, but does not con-
tribute to CSM. The classical CSM to the channel center is
induced by vHIm . In a wavy channel, vfm contributes also to
the migration perpendicular to the channel axis. In the
diverging parts of the channel, a particle lags behind the
outward directed streamline. Accordingly, the particle
migrates towards a streamline closer to the center. In the
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converging flow section the opposite is the case: The
particle migrates to a streamline farther away from the
center. For a rigid spherical particle in a periodically
alternating diverging and converging flow at low
Reynolds number, the migration steps inside and outside
compensate each other and there is no net migration.
However, the situation with deformable particles is differ-
ent: The particle’s shape is nonreciprocal during the
periodically alternating converging and the diverging
channel sections as indicated by the two snapshots for a
capsule from Stokesian dynamics simulations in Fig. 2.
This leads altogether to a net contribution of vfm to the
migration away from the channel axis.
We demonstrate by a simple analytical consideration that

the outward directed net migration caused by vfm may
become larger than the classical inward migration driven by
vHIm . By a Taylor expansion of uðrÞ around rc and with the
relations

X
i

ðri− rcÞ ¼ 0;
X
i

ðxi− xcÞðyi− ycÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
changes sign

≪
X
i

ðxi − xcÞ2|fflfflfflfflffl{zfflfflfflfflffl}
>0

we obtain for the y component of vfm

vfm;y ¼ 1

N

X
i

½uðriÞ − uðrcÞ� · ey

≈
∂2
xuy
2N

X
i

ðxi − xcÞ2 þ
∂2
yuy
2N

X
i

ðyi − ycÞ2: ð4Þ

The signs of the curvatures ∂2
xuy and ∂2

yuy of the wavy flow
determine the local direction of the migration velocity vfm;y.
Their values for the imposed flow evaluated at y=d ¼ 0.7
are shown in Fig. 2(b). The two sums in Eq. (4) are shape
factors. They indicate that the local migration velocity
increases with the deformation. In a widening channel

section the signs of both curvatures are negative and
therefore the migration direction points to the flow center
(vfm;y < 0).
In the following section, the flow is converging and the

signs of the curvatures are positive; i.e., the direction of
vfm;y points in this section away from the flow center.
During the converging half period, the soft particle is
stretched in flow direction with a maximum of the shape
factors of about (

P
iðxi−xcÞ2¼22.8 and

P
iðyi−ycÞ2¼

17.7). Both factors are larger than their maxima during the
diverging flow part, (

P
iðxi−xcÞ2¼21.4and

P
iðyi−ycÞ2¼

11.2), where the capsule is compressed in the flow
direction. Both shapes in Fig. 2(a) are not mirror symmetric
to the dashed vertical line. Therefore, the migration velocity
averaged over one spatial period, hvfm;yiλ, points for these
parameters away from the channel center.
The curvature of the flow lines vanishes at the channel

center. The local migration velocity vfm;y increases at every
x position with the distance from the channel center and
with the boundary-modulation amplitude ε. Above a
critical boundary-modulation amplitude εc the contribution
vfm;y may outweigh the classical inward migration described
by vHIm;y. In this case the resulting off-center attractor
coexists with the attractor at the channel center at y ¼ 0.
Depending on the initial value of y, particles migrate either
to the center or to the off-center attractor.
The trends of cross-stream migration illustrated by

analytical considerations are characterized by Stokesian
dynamics simulations of models for capsules and red blood
cells in unbounded wavy flows and by simulations using
the LBM in bounded flows. In Fig. 3, the averaged CSM
velocity hvm;yiλ of capsules and RBCs is shown as a
function of λ=R and in units of ũ for two values ũ ¼ 5, 11.
This averaged CSM velocity is obtained by a linear fit (over
a sufficient number of periods) of the lateral particle
position yðtÞ, whereby the mean values of each period
are used. For an initial particle position of y ¼ d=2 in
Fig. 3, the averaged migration direction hvm;yi points to the
channel center in the range of small and large values of
λ=R. This means capsules and RBCs migrate in both ranges
towards the channel center, similar as in unmodulated
channel flows. Here, the averaged modulation-induced
outward CSM, hvfm;yiλ, becomes small and cannot out-
weigh anymore the common inward migration hvHIm;yiλ. This
can be understood from Fig. 2: The flow’s curvature plays a
role only if the modulation wavelength is not much larger
and not much shorter than the particle size, such as in the
intermediate range of λ=R in Fig. 3. For the flow amplitude
ũ ¼ 5, capsules migrate in the range 7R≲ λ≲ 25R away
from the channel center and the outward CSM velocity
reaches a maximum at λ ≈ 12R. For a larger flow velocity at
the channel center ũ ¼ 11, the respective ranges for
capsules and RBCs are slightly shifted to larger values
of λ=R. With increasing particle distance y from the channel
center, the λ=R range of outward migration increases.

y 
/ d

0.

0.

∂

λ

∂ ∂

...........

.........

(a)

(b)

FIG. 2. (a) Two snapshots of a capsule are shown, resulting
from their Stokesian dynamics simulation in an unbounded wavy
flow field (black arrows). The flow is symmetric to the dashed
vertical line, but the deformed particle is not (see, e.g., colored
bars). (b) shows the second derivatives ∂2

xuyðxÞ and ∂2
yuyðxÞ of

the vertical flow velocity uy at y ¼ 0.7d.
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Importantly, the qualitative behavior of the CSM velocity
for capsules and RBCs is equivalent.
Figure 4 shows the averaged CSM velocity hvm;yiλ of a

capsule in units of the flow amplitude ũ and as a function of
the y position of the capsule for three amplitudes ε ¼ 0, 0.2,
0.3. Here, the CSM velocity results from LBM simulations
of the capsule in a wavy channel, fully accounting for wall
effects. In a flat channel with ε ¼ 0 the capsule migrates
from every 0 < y < d to the channel center. Beyond a
critical modulation amplitude, e.g., for ε ¼ 0.2, the CSM
velocity is negative at y≲ 0.15d and beyond one finds an
outward migration. The zero crossing of hvm;yiλ at y ≈
0.15d marks the position of a repeller. When a soft particle
approaches the channel wall, its migration changes to the

inward direction again. This means particles with y≳
0.15d migrate for ε ¼ 0.2 to the off-center attractor at y ≈
0.4d where the migration velocity vanishes again. For a
larger modulation amplitude ε ¼ 0.3 the repeller is moved
closer to the channel center and the attractor closer to the
wall as indicated by the dashed line in Fig. 4. Hence, the
results from LBM simulations for bounded Poiseuille
flows confirm the analytical considerations and the
results obtained by Stokesian dynamics simulations for
unbounded flows.
Figure 5 shows the y positions of the off-center particle

attractors (solid lines) and its repeller (dashed line) as a
function of the boundary-modulation amplitude ε for un-
bounded Poiseuille flows and for three ratios λ=R ¼ 12, 16,
20. In each case, the second attractor and the repeller appear
if ε is larger than the respective critical value εc ¼ 0.14, 0.19,
0.23. Capsules starting at a y position below the repeller
migrate towards the channel center, while capsules starting
above the repellermigrate to the off-center attractor. Figure 5
shows that the y positions of the second attractor and the
repeller move closer to the channel center with increasing
λ=R, i.e., with decreasing particle size for a given modula-
tion wavelength λ. The off-center attractor and the repeller
move also closer to the channel center with increasing
stiffness of the capsules, as shown in the Supplemental
Material [38].
The emergence of the second attractor for soft particles

in low Reynolds-number flows through wavy channels is
different to the inertia driven off-center attractors [7]. It
coexists with an attractor at the channel center and this
suggests a novel method for separating soft particles
according to their sizes and elasticities. For instance,
if two different sized particles with different radii R with
R ¼ λ=20 and R ¼ λ=12 are injected at y ≥ 0.5d in a

〉
〈

FIG. 3. The averaged CSM velocity hvm;yiλ of capsules and
RBCs in unbounded wavy Poiseuille flow as a function of λ=R.
hvm;yiλ is given for two amplitudes ũ ¼ 5, 11. It is negative for
small and rather large values of λ=R and the particles migrate to
the channel center. hvm;yiλ is positive in the intermediate range of
λ=R, where particles migrate away from the channel center. For
further parameters, cf. [39].

〉
〈

FIG. 4. The averaged migration velocity hvm;yiλ=ũ for capsules
in bounded flows obtained by LBM simulations as a function of
the particle’s y position and for the modulation amplitudes
ε ¼ 0.0, 0.2, 0.3. The capsule migrates toward the center
(y ¼ 0) at small y below the repeller (empty circles) and
otherwise to the second attractor (solid circles), confirming the
analytical considerations and Stokesian dynamics simulations in
unbounded flows. The arrows mark the migration direction, i.e.,
the sign of hvm;yiλ. For further parameters, cf. [56].

FIG. 5. The y position of the second attractors (solid lines) and
the repellers (dashed lines) of capsules as a function of ε for
λ=R ¼ 12, 16, 20. Particles with an initial position below the
repeller migrate to the channel center. The second attractor occurs
for ε larger than the respective critical values εc ¼ 0.14, 0.19,
0.23, which increase with increasing wavelength.
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channel with ε ≈ 0.22 they will be separated: The smaller
particle with R ¼ λ=20 migrates to the channel center,
whereas the larger particle with R ¼ λ=12 migrates to the
off-center attractor. Hence, they can be separated with two
different outlets, one at the channel center and one off
center. These trends are confirmed by taking fully into
account the boundary effects. For example, a capsule of
radius R ¼ 6.6 (λ=R ≈ 17) at y ¼ 0.3 migrates in LBM
simulations to the wall for parameters as in Fig. 4 and a
larger particle with R ¼ 20 (λ=R ¼ 5.5) to the channel
center. We also remark that the migration direction does not
depend on the flow direction. This allows us to utilize
shorter channels simply by reversing the flow’s direction in
experiments.
The discovered cross-stream migration of soft particles

in Newtonian fluids through wavy channels is controlled by
the amplitude of the boundary modulation and the ratio of
the particle size and the modulation wavelength. The origin
of this CSM is the interplay between a lag behind of a
particle with respect to the local flow and its asymmetric
deformation in each half-period of the channel modulation.
It can outweigh the classical CSM to the channel center
[30–32] and induce a second, coexisting off-center attrac-
tor. This generic CSM for soft particles may play also an
important role for the recently observed splitting of streams
of wormlike colloids in shear thinning fluids through wavy
channels [14]. Furthermore, the emergence of the second
attractor allows us to separate soft particles also with
respect to their stiffness (see also the Supplemental
Material [38]). Since the health status of cells has been
shown to affect the cell elasticity [57], our proposed
approach may improve further the separation of healthy
cells from malignant (e.g., cancer) cells.
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η ¼ 1.0; capsule: kv ¼ 0.1, κ ¼ 0.002, G ¼ 0.002, b ¼ 1,
R ¼ 6.6, particle Reynolds number Rep ¼ 0.4.

[57] J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah,
S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R.
Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C.
Bilby, Biophys. J. 88, 3689 (2005).

PHYSICAL REVIEW LETTERS 122, 128002 (2019)

128002-6



Supplementary Information

Matthias Laumann,1, 2 Winfried Schmidt,1 Alexander Farutin,2 Diego

Kienle,1 Stephan Förster,3 Chaouqi Misbah,2, 1 and Walter Zimmermann1

1Theoretische Physik I, Universität Bayreuth, 95440 Bayreuth, Germany
2Universite Grenoble Alpes/CNRS UMR 5588, LIPhy, 38041 Grenoble, France

3JNCS-1/ICS-1, Forschungszentrum Jülich, 52428 Jülich, Germany
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SECONDARY ATTRACTORS AS FUNCTION OF DEFORMABILITY

Besides their size, the coexisting off-center attractor allows separation of soft particles due to elasticity as well. For
capsules, the surface shear-elastic modulus G serves as a measure for the latter. Fig. 1 shows values of vanishing
averaged migration velocity 〈vm,y〉λ as a function of the modulation amplitude ε and the capsule’s y-position in the
channel in units of the mean channel diameter d. Analogously to Fig. 5 (main text), solid lines indicate attractors
(lateral positions with a negative migration velocity above and a positive one below) and dashed lines repellers (lateral
positions with a positive migration velocity above and a negative one below). The graphs for three different values
of G are shown. Increasing values of G (increased stiffness of the capsule) result in a shift of both the attractor and
repeller to smaller values of y. I. e. for a channel with ε = 0.2, a capsule with G = 0.1 entering the channel at
y ≈ 0.45d will migrate towards its center, whereas a capsule with four times this surface shear-elastic modulus located
at the same lateral position will move in the opposite direction towards the walls. In addition, Fig. 1 indicates that
the critical value εc increases with growing G (a coexisting off-center attractor occurs for larger values of ε, the stiffer
the capsule is).

 0.3
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G = 0.4
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 /

 d

ε

FIG. 1. The y-position of secondary attractors (solid lines) and repellers (dashed lines) of capsules as function of ε for three
different values of the stiffness G = 0.1, 0.2, 0.4. Similar as in Fig. 5 (main text), capsules with an initial position below the
repeller migrate to the channel center and capsules with an initial position above move to the secondary off-center attractor. The
secondary attractor occurs beyond the respective critical values εc = 0.122, 0.135, 0.142 which increase with growing stiffness.

SECONDARY ATTRACTORS OF RBC

Fig. 2 complements Fig. 5 (main text) for Stokesian dynamics simulations of RBCs in unbounded flows. The
secondary attractor and the repellers are shifted to the center with increasing wavelength. This behavior agrees
quantitatively with the capsule, especially at a ratio of the channel wavelength and the capsule’s radius of λ/R = 12,
but the attractor and repeller are found closer to the center compared to the capsule. Especially at λ/R = 20 the
repeller is shifted towards the center of the flow. Furthermore the red blood cells displays a new repeller at initial
positions close to the wall at λ/R = 16 and λ/R = 20. An initial orientation of the RBC with its rotational symmetry
axis along the flow vorticity (cf. RBC sketch I) in Fig. 4) has been used.
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FIG. 2. The y-position of the secondary attractors (solid lines) and repellers (dashed lines) of RBCs as function of the
dimensionless modulation amplitude ε for three different values of the wavelength to particle size ratio λ/R = 12, 16, 20. The
secondary attractor occurs if the value of ε is larger than a critical value εc = 0.17, 0.21, 0.23 which increases with increasing
wavelength.
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INFLUENCE OF INITIAL CONDITIONS OF RBC

The red blood cell has no spherical symmetry, the migration velocity thus depends on the initial orientation.
Therefore we give here again the migration velocity in dependence of the wavelength as shown Fig. 3 in the main text
but with different initial orientations. We start with the red blood cell’s rotational symmetry axis in the x-y-plane
(cf. orientation II) in Fig. 4, whereas in the main text we used an initial orientation as in Fig. 4, I)) and determine the
migration velocity. We use eight simulations with different angles ϕ between the symmetry axis and the x-direction
and average the migration velocity over them. The resulting migration velocity is shown in Fig. 3. We observe
small local maxima at λ /R = 11, 16, 26 which are not found with the initial orientation used in the main text. The
reason are the more complex trajectories which show e.g. a tumbling motion (rotational symmetry axis of RBC
perpendicular to the flow’s vorticity) whereas in the main text the red blood cell displays a tank-treading motion
(rotational symmetry axis of RBC parallel to the flow’s vorticity). But besides this local maxima we find the same
qualitative shape of the curve as given in Fig. 3 in the main text: The red blood cell displays a migration to the
center if the wavelength is short with λ . 5R or much longer than the cell with λ & 27R. At intermediate values we
find a migration to the walls with a maximum at λ ≈ 10R. Thus the qualitative behavior does not depend on the
orientation.
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FIG. 3. The lateral migration of a red blood cell is shown as function of the ratio between modulation wavelength λ and the
particle radius R. The initial position is y0 = d/2. To get a migration away from the center (positive values of 〈vm〉λ) the
wavelength must be adjusted to the particle’s size. If the wavelength is too small compared to the particle’s radius or too large
the waviness of the flow plays no role and the particle migrates to center as in a flat channel. At λ ≈ 10R the wavelength is
well adjusted and the migration away from the center reaches it maximum.
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FIG. 4. The two initial orientations of the RBC with respect to the channel which have been used are shown: Whereas in
the main text (see Fig. 3) and in Fig. 2, an initial orientation as shown in I) has been applied, in Fig. 3 the RBC’s initial
rotational symmetry axis is perpendicular to the flow vorticity, as shown in II). In addition, the angle ϕ which is enclosed by
the rotational symmetry axis of the RBC and the channel axis, is varied for this orientation.
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DETAILS OF THE USED MODELS

THE MOBILITY MATRIX

As described in the main text, the soft particle’s surface is represented by N beads (nodes) , with bead i being
located at a position ri. This is shown in Fig. 5. Their Stokesian dynamics [1] is given by Eq. 3 in the main text

ṙi = u(ri) +

N∑

j=1

Hij · Fj , (1)

whereby Fj is the force (derived from a potential) on the j-th bead and the mobility matrix Hij describes the
hydrodynamic interaction between the beads. We use the Rotne-Prager tensor [2–4] as mobility matrix

Hij(ri, rj) =





1
8πηrij

[(
1 + 2a2

3r2ij

)
1 +

(
1− 2a2

r2ij

)
eijeij

]
, rij > 2a

1
6πηa

[(
1− 9rij

32a

)
1 +

3rij
32a eijeij

]
, rij ≤ 2a

(2)

with eij = rij/rij and rij = ri − rj ; η and a refer to the viscosity and the bead radius, respectively.

THE FORCES AND POTENTIALS

Besides the potentials given in the main text we use the potential of the neo-hookean law [5, 6]

VNH =
G

2

(
I1 − 1 +

1

I2 + 1

)
, (3)

whereby G denotes the surface shear elastic modulus and I1 and I2 are the in-plane strain invariants, which are related
to the local membrane deformation tensor. We also use the potential of the Skalak law [7, 8]

Vsk =
κs
12

(
I21 + 2I1 − 2I2

)
+
κα
12
I22 . (4)

Hereby κs and κα means the shear and the area resistance, respectively.

(a) (b)

x

y

rc

FIG. 5. Snapshots of simulated particle shapes for (a) a deformed capsule and (b) a biconcave red blood cell. Both models are
discretized with N = 642 beads (nodes) that form triangles. The center of the particle is denoted by rc.
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The equilibrium shape of the red blood cell is given as follows: Assuming rotational symmetry of the shape of the
RBC around the z-axis, one has the following relation between

z(%) = ±

√
1−

(
%
R

)2

2

(
C0 + C2

( %
R

)2
+ C4

( %
R

)4)
(5)

and % :=
√
x2 + y2 whereby the constants Ci define the shape [9]. Their values are C0 = 1.62, C2 = 15.66, C4 = −8.78.

CALCULATION OF THE FLOW PROFILE

Besides the interaction between the particles, also the undisturbed flow u(r) must be calculated. Thus the pressure
driven flow at zero Reynolds number through a channel with walls located at

y = ±h(x) = ±d [1 + ε sin (Kx)] (6)

with the average channel diameter 2d, the dimensionless modulation amplitude ε and the wave number K is calculated
in first order of ε (see e. g. [10]). The Stokes equation

∇p = η∆u

with the pressure p and the viscosity η can be rewritten in terms of the stream function Ψ̃, defined by ux = ∂yΨ̃ = Ψ̃y

and uy = −∂xΨ̃ = −Ψ̃x by

0 =η∆∇× u (7)

0 =∆∆Ψ̃ . (8)

The boundary conditions are

0 =ux(x, y = ±h(x)) = Ψ̃y(x, y = ±h(x)) (9)

0 =uy(x, y = ±h(x)) = −Ψ̃x(x, y = ±h(x)) . (10)

We nondimensionalize the stream function by

Ψ =
Ψ̃

ũd
(11)

with the velocity of the flow at the origin ũ. The stream function is expanded in series of ε. We calculate the first
order which means

Ψ ≈ Ψ(0) + Ψ(1)ε . (12)

We transform the problem to coordinates with straight boundaries

ϑ =
x

d
(13)

ζ =
y

h(x)
(14)

with boundary conditions

Ψϑ = 0, Ψζ = 0 at ζ = ±1 . (15)

The equation of the stream function in Eq. 8 in the new coordinates reads for the zeroth order

Ψ
(0)
ζζζζ = 0 (16)

The solution is

Ψ(0) = ζ − ζ3

3
(17)

The first order equation is

Ψ
(1)
ϑϑϑϑ + 2Ψ

(1)
ϑϑζζ + Ψ

(1)
ζζζζ + 12ζhϑϑ + ζ(1− ζ2)hϑϑϑϑ = 0 . (18)

The solution is
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Ψ(1) =

[
2 cosh(Kd) sinh(Kdζ)− 2 sinh(Kd)ζ cosh(Kdζ)

cosh(Kd) sinh(Kd)−Kd − ζ(1− ζ2)

]
sin(Kϑd) . (19)

The flow is calculated by the stream function and a transformation back to the Cartesian coordinates. After that a
Taylor expansion in ε is necessary because only the first order of ε was calculated. This means the flow fulfills the
Stokes equation exactly and the divergence of the flow is zero, but the boundary condition is fulfilled only in first
order. The resulting flow is

ux =ũ

(
1− y2

d2
+ 2 sin(Kx)

[−K sinh(Ky)y − cosh(Ky)] sinh(Kd) +Kd cosh(Kd) cosh(Ky)

Kd− cosh(Kd) sinh(Kd)
ε

)
(20a)

uy =2ũK cos(Kx)
sinh(Kd)y cosh(Ky)− cosh(Kd)d sinh(Ky)

Kd− cosh(Kd) sinh(Kd)
ε (20b)

which can be simplified to

B1 =
− sinh(Kd)

Kd− cosh(Kd) sinh(Kd)
, B2 =

Kd cosh(Kd)

Kd− cosh(Kd) sinh(Kd)
,

ux =ũ
(

1− y2

d2
+ 2ε sin(Kx) [B1Ky sinh(Ky) + (B1 +B2) cosh(Ky)]

)
(20c)

uy =− 2ũε cos(Kx) [B1Ky cosh(Ky) +B2 sinh(Ky)] (20d)
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PACS 47.15.G- – Low-Reynolds-number (creeping) flows
PACS 47.57.ef – Sedimentation and migration
PACS 83.50.-v – Deformation and flow

Abstract – We study the dynamics of asymmetric, deformable particles in oscillatory, linear
shear flow. By simulating the motion of a dumbbell, a ring-polymer, and a capsule we show
that cross-stream migration occurs for asymmetric elastic particles even in linear shear flow if the
shear rate varies in time. The migration is generic as it does not depend on the particle dimension.
Importantly, the migration velocity and migration direction are robust to variations of the initial
particle orientation, making our proposed scheme suitable for sorting particles with asymmetric
material properties.

Copyright c© EPLA, 2017

Introduction. – During the recent years, microfluidics
has evolved to a cross-disciplinary field, ranging from ba-
sic physics to a plethora of biological and technical ap-
plications [1–7], including the control of small amounts of
fluids, chemical synthesis [8,9], biological analysis [10,11],
and the study of the deformation dynamics of droplets,
vesicles, capsules, or blood cells [12–40]. An important
transport mechanism in microfluidic flows is the cross-
stream migration (CSM), where particles move across
streamlines and can be sorted due to their particle-specific
properties [41,42].

The CSM effect has been first reported in 1961 by
Segre and Silberberg for rigid particles at finite Reynolds
number in pipes with diameters of several millime-
ters [43]. When channels approach the micrometer scale,
the Reynolds number vanishes (Stokes regime) and fluid
inertia does not matter; likewise, for μm-sized parti-
cles thermal effects can be discarded. In the Stokes
regime, CSM arises in curvilinear [12–15] and rectilinear
flow [16–20], if the particle is elastic and, in case of rec-
tilinear flow, the flow’s fore-aft symmetry is broken, re-
quiring intra-particle hydrodynamic interaction [16–19].
Such symmetry breaking occurs near boundaries via
wall-induced lift forces [19,21–23] or by space-dependent

(a)E-mail: diego.kienle@uni-bayreuth.de (lead author and
project coordination)

shear rates, so that dumbbells [16–18], droplets [24–26],
vesicles and capsules [27–29] exhibit CSM even in un-
bounded flow. These parity breaking mechanisms may
be accompanied by other effects due to viscosity con-
trast [24,44] or particle chirality [45], which further impact
the CSM.

Here we show that a controlled cross-stream migration
is possible even in unbounded linear shear flow, provided
that 1) the particle holds an intrinsic asymmetry (parity
breaking), and 2) the shear rate varies in time, causing
time-dependent particle deformations. Importantly, the
cross-stream migration occurs irrespective of the dimen-
sionality of the particle, accentuating its generic nature,
as we show by studying particles extending in one (1D),
two (2D), and three (3D) dimensions. We demonstrate
that the CSM depends on external flow parameters such
as switching period, which can be controlled conveniently
to achieve an optimized migration.

Model and approach. – To reveal the generic behav-
ior of the CSM in oscillatory shear flow, we use three kinds
of particles, which share the common features that they
are deformable, asymmetric, and their constituent parts
interact hydrodynamically. The first two particle types are
a dumbbell (1D) and a ring-polymer (2D), modeled by a
sequence of bead-spring units with the i-th bead located at
ri and connected to its nearest neighbors by linear springs
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with an equilibrium bond length b and force constant k.
The dumbbell asymmetry is modeled by assigning differ-
ent friction coefficients ζ1 and ζ2 to unequal sized beads
1 and 2 with rζ = ζ2/ζ1 = 3 (fig. 1(a), inset). The asym-
metry of the N -bead ring-polymer is realized by a space-
dependent bending stiffness κ({r}) along the ring contour
{r}. The third particle is an elastic capsule (3D), the asym-
metry of which is implemented likewise by a spatially vary-
ing bending stiffness κ({r}) along the capsule surface {r}.
For the purpose of this study, we split the contour/surface
of the ring/capsule in equal parts (Janus-particle); the stiff
and bendy portion in either case has a bending stiffness
of κ2 and κ1 with a ratio rκ = κ2/κ1 = 1.5 (fig. 1(b) and
(c), inset).

The migration behavior of all three particle kinds is ob-
tained from their non-Brownian trajectories. The trajec-
tories for the dumbbell and ring-polymer, exposed to an
unperturbed flow field u(r), are determined by solving the
standard Stokesian dynamics for bead-spring models [46],

ṙi = u(ri) +
N∑

j=1

Hij ·
[
Fbo

j + Fbe
j

]
. (1)

Fbo
i and Fbe

i refer to harmonic bonding and bending forces,

obtained from the potentials U bo =
∑N

i=1
k
2 (Ri − b)2 and

U be = − ∑N
i=1 κ(ri) ln[1 + cosαi]. Ri = |ri − ri+1| de-

notes the absolute value of the bond vector and cosαi =
eRi−1 ·eRi is the angle between the bond vectors Ri−1 and
Ri with eRi = Ri/Ri the bond unit vector. The hydro-
dynamic interaction (HI) between bead i and j, inducing
a hydrodynamic backflow (HB), is included in eq. (1) via
the mobility matrix Hij within the Oseen tensor [46],

Hij =

{
1

8πηRij

[
I + eRij ⊗ eRij

]
i �= j,

1
ζi

I i = j
(2)

with eRij = Rij/Rij and Rij = ri − rj . The capsule
path is calculated using the immersed boundary method
in conjunction with the lattice Boltzmann method for
the flow [47–49], employing an adapted version of the
ESPResSo package [50]. Throughout we assume a time-
dependent (td), linear shear flow u(x, y) = S(t)y ex along
the ex-axis; the shear rate S(t) has a period T with S(t) =
+γ̇ during the first half-period T1 and S(t) = −γ̇ during
the second half-period T2 with T1 = T2 = T/2. The initial
orientation of all three particles is φ0 = 2.0 π with the
small ζ1-bead, respectively, the stiff κ2-contour/surface
being located to the left.

Generic behavior. – Figure 1 shows the transverse
component of the center of drag yc(t) (ζ-weighted), scaled
with respect to the bond length b of the bead-spring unit
or the capsule radius a, as a function of the scaled time
tγ̇ with fixed γ̇ for all three particles. For symmetric par-
ticles (rζ,κ = 1.0), the cross-stream migration is zero at
any time (dashed line) [14,17] as parity breaking does not

Fig. 1: (Color online) Lateral position yc(t) vs. scaled time tγ̇
for the asymmetric (a) 1D dumbbell, (b) 2D ring, and (c) 3D
capsule, sketches of which are shown in the inset. Irrespective
of the model details, all particle types perform a net cross-
stream migration in linear shear (blue solid), if the shear rate
is time-dependent (td). At steady shear (ss), yc(t) oscillates
around a constant mean (red solid), so that the net migra-
tion vanishes [14,17]. For symmetric particles (rζ,κ = 1.0), the
migration is zero. The initial orientation is φ0 = 2.0 π.

occur irrespective of whether the shear flow is station-
ary (ss) or time dependent (td). For asymmetric parti-
cles (rζ,κ > 1.0) in stationary shear flow parity breaking
exists, resulting indeed in a temporary CSM, as reflected
in the oscillatory behavior of yc(t), whereas the net mi-
gration over one shear-cycle is still zero (red solid line).
This interim migration of asymmetric particles can be ex-
ploited to attain a net cross-stream migration, if the shear
rate S(t) is made time dependent by switching S(t) at a
frequency 1/T , as shown in fig. 1(a)–(c) by the blue solid
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line. The fact that all three particles display cross-stream
behavior irrespective of their dimensionality and model
details is an indication of a generic property1, which can
be attributed to the different mean shapes the particle
acquires during each half-period, as discussed next.

Migration mechanism. – To understand the CSM
mechanism, we take a closer look at the cross-stream
dynamics of an asymmetric dumbbell (rζ > 1) and an
asymmetric ring (rκ > 1), consisting of N -bead-spring
units; we note that the discussion provided for the ring
is general insofar as it applies for the 3D capsule as well
where the ring is viewed as a 2D cut through the cap-
sule plane of symmetry. To keep the explanation of the
CSM mechanism transparent, we focus in either case on
the steady-state regime (approached by all three particles
after a transient), where the dumbbell and the ring have
adopted a stable mean orientation 〈φ〉T/2 or 〈φ〉T , as de-
termined by averaging their orientation angle φ(t) over a
half or full shear-cycle, respectively.

Starting with the dumbbell, one can derive from eq. (1)
a closed-analytical expression for the instantaneous cross-
stream velocity vm(t) of its ζ-weighted center yc(t), as
detailed in footnote 1 and given by

vm(t) =
k

4πη

rζ − 1

rζ + 1

R(t) − b

R(t)
sin φ(t), (3)

with η the viscosity, φ(t) the orientation angle, and R(t) =
|r1 −r2| the distance between bead 1 and 2, as introduced
in fig. 1(a). Equation (3) facilitates reading off various,
well-known limiting cases: in linear shear flow CSM does
not occur at any time (vm(t) = 0), irrespective of whether
the flow is stationary or time-dependent, if the dumbbell
is i) symmetric (rζ = 1), ii) very soft (small k), or iii) if
HI is absent (free-draining) or weak, as realized for large
bond lengths b [17].

Once the dumbbell is asymmetric (rζ > 1) and simulta-
neously deformable (finite k), vm(t) �= 0, a net migration
may be possible. Even though the precise conditions for
a net migration step Δyc during one half-cycle can be
obtained only by integrating eq. (3), one can still gain im-
portant insights on the CSM mechanism by a qualitative
inspection of eq. (3) and how the various terms interplay.
First, as long as the switching period T and the shear
rate γ̇ are not too large to avoid full turnovers, the dumb-
bell orientation φ(t) oscillates (after a transient regime)
around a mean angle 〈φ〉T/2 = 3π/2 or π/2, depending
on the initial orientation φ0. When 〈φ〉T/2 = 3π/2 (π/2),
we observe that sin φ(t) remains negative (positive) over
the entire half-cycle and becomes largest once φ(t) ≈ 3π/2

1The Supporting Information (SI) contains further details on the
models, a derivation of eq. (4), plots and movies on the generic
behavior (including an extension of the orientation robustness) of
the dumbbell and capsule (Movie1.mp4, Movie2.mp4, Movie3.mp4,
Movie4.mp4, Movie5.mp4, Movie6.mp4, Movie7.mp4, Movie8.mp4,
Movie9.mp4, and Supplementarymaterial.pdf). A link of the abrupt
vm-drop to the 〈φ〉T -attractors is provided, too.

Fig. 2: (Color online) (a) Time dependence of the terms R(t)−
b, (R(t) − b)/R(t), and sin φ(t), appearing in eq. (3), over a
half period T/2 for the dumbbell orientation oscillating around
〈φ〉T/2 = 3π/2. (b) Evolution of the transverse component of
the center of drag yc(t), obtained by integrating eq. (3), and
the net migration step Δyc > 0 acquired at the end of T/2.

(π/2), i.e., the dumbbell is perpendicular to the flow direc-
tion, as shown in fig. 2(a). The bond length R(t) oscillates
also around the equilibrium bond length b, so that the
term R(t) − b in eq. (3) alters its sign (fig. 2(a)), causing
the instantaneous CSM velocity vm(t) = ẏc(t) to oscillate
(fig. 1(a)). Therefore, the sign of the net CSM depends
on whether the positive or negative migration increments
to Δyc contribute most during the half-cycle.

Based on eq. (3), one may expect that Δyc < 0 be-
cause sin φ(t) < 0 over the whole half-cycle while the de-
formation R(t) − b is asymmetric such that the dumbbell
is stretched more strongly (R(t) − b > 0) than being com-
pressed over T/2, as demonstrated in fig. 2(a) by plotting
the respective terms of eq. (3); the asymmetry of R(t) − b
can be ascribed to the larger difference of the flow ve-
locity between and hence larger drag on the beads when
the dumbbell is stretched. However, a mean CSM with
Δyc < 0 is in clear contradiction to our numerical re-
sults, shown in fig. 1(a). The origin for the net migration
step Δyc being positive can be attributed to the non-linear
behavior of the hydrodynamic interaction, appearing in
eq. (3) via the 1/R(t)-term, so that deformations of a com-
pressed dumbbell receive a larger negative weight; fig. 2(a)
displays the respective behavior of (R(t) − b)/R(t), which
is amplified furthermore by the peaking of sinφ(t) when
R(t) − b < 0. Hence, the positive contributions during
the dumbbell compression outbalance the negative ones
when the dumbbell is stretched. Our qualitative analysis,
based on eq. (3), indicates that Δyc is positive (negative)
when the dumbbell swings around 〈φ〉T/2 = 3π/2 (π/2).
This qualitative picture is consistent with fig. 2(b), show-
ing the evolution of yc(t) by integrating eq. (3) with the
migration step Δyc > 0 at the end of one half-cycle T/2,
and is in full agreement with our numerical result shown
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in fig. 1(a). Finally, we note that for a rigid dumbbell
(Ṙ(t) = 0) the migration step Δyc = 0 when swinging
around 〈φ〉T/2 = 3π/2 (π/2), as one can show by solving
eq. (3) analytically (see footnote 1).

We now inspect the CSM behavior of the 2D ring and
assume again that both the period T and the shear rate
γ̇ are not too large as to prevent the ring dynamics being
dominated by tank-treading, causing a net zero migration,
as discussed in the following paragraphs. Under this con-
dition and for an initial orientation φ0, the ring adopts
(after a transient) one stable mean orientation 〈φ〉T over
one shear-cycle T . Specifically, for φ0 = 2.0 π the mean
orientation of the ring is 〈φ〉T ≈ 1.75 π with the stiff con-
tour located in the upper (left) half-space and referred
to below. We note that other initial orientations φ0 may
lead to one of the other possible mean orientations with
〈φ〉T ≈ 1.25 π, ≈ 0.75 π, or ≈ 0.25 π, where the ring (and
capsule) displays CSM. Importantly, the explanation of
the CSM mechanism provided for the mean orientation
〈φ〉T ≈ 1.75 π and shown in fig. 1(b) applies irrespective
of the specific value of 〈φ〉T .

Since a closed semi-analytic expression of the CSM ve-
locity similar to eq. (3) is not possible beyond dumbbell
models, we analyze the migration of the ring in terms
of the mean steady-state CSM velocity vi

m = 〈vm(∞)〉Ti

(along the y-axis) for each half-period Ti, obtained by av-
eraging the velocity vm(t) over Ti (see footnote 1),

vi
m = 〈ey · ṙc(∞)〉Ti =

1

N

N∑

i=1

∑

j �=i

〈ey · Hi,j · Fj〉Ti . (4)

Equation (4) implies that for rectilinear flows with ey ·
u = 0, the cross-stream transport is entirely driven by
the particle drag due to the hydrodynamic backflow, in-
duced by the potential forces Fj . Further, the magnitude
and direction of each HB (and hence of vi

m) depend on
the particle shape via the force profile F({rj}) and the
dyadic mobility matrix Hi,j . An expression similar to
eq. (4) can be used to determine the mean HI-induced
flow field v(r) for each half-period (see footnote 1). The
respective 2D backflow v(r), shown in fig. 3(a) and (b)
when 〈φ〉T ≈ 1.75 π, corresponds to an elongational flow,
whose flow lines are reversed (sign change) as a result of
the altering ring deformation during the S(t)-switching
(+γ̇ → −γ̇), and displayed more clearly in fig. 3(c) and
(d). The ring asymmetry causes generally a break of the
parity symmetry (PS) of the elongational HB, but the
extent of the PS violation depends on the strength of
the mean deformation during each half-cycle Ti (fig. 3(c)
and (d)).

Comparing the mean deformation for each half-cycle,
one observes that the ring asymmetry is enhanced during
the first T1 shear-cycle, causing an increased parity break
of the elongational HB (fig. 3(c)). But this implies that the
difference between the mean opposing partial HB-drags at
the stiff and bendy side, vs

m and vb
m (see footnote 1: eq. (9)

of the SI), becomes larger with |vs
m| > |vb

m| since κ2 > κ1.

Fig. 3: (Color online) Explanation of the basic migration mech-
anism by way of the ring. Shown are simulation data for the
mean ring shape, averaged over the (a) first T1 and (b) second
T2 shear-cycle, and the potential forces Fj along the N-bead
contour. While the backflow v(r) (HB) induced within each
half-cycle Ti is approximately elongational (blue), its parity is
broken due to the particle asymmetry and leads to different
mean CSM-driving drags vs

m and vb
m at the stiff and bendy

side. Panels (c) and (d) show how the parity asymmetry of the
HB is enhanced (|vs

m| > |vb
m|) during the T1-cycle, while during

the T2-cyle the HB-parity is partially recovered (|vs
m| � |vb

m|),
leading to a net positive migration vm = v1

m + v2
m > 0.

Hence, the mean migration velocity during the T1-cycle,
v1

m = vs
m + vb

m, is large and positive. In turn, during the
T2 shear-cycle the situation is reversed as the ring shape is
roughly circular, i.e., the ring asymmetry is reduced with
the result that the parity of the elongational backflow is
partly recovered (fig. 3(b) and (d)), and the opposing par-
tial HBs almost cancel. The reason for the residual back-
flow is because the HB-drag at the stiff contour part is
slightly larger than at the bendy side (|vs

m| � |vb
m|), as a

result of the larger stiffness. During the T2-cycle the mean
migration step v2

m = vs
m + vb

m is thus small and negative.
Over the course of one shear-cycle T= T1 + T2, the net
migration vm = v1

m + v2
m is therefore positive, as displayed

by all three kinds of particles (fig. 1(a)–(c)).

Orientation robustness. – We now demonstrate that
the CSM effect is quite robust against a dispersal of ini-
tial orientations by varying the angle φ0, while keeping
the orientation axis within the y-x shear plane (tilt an-
gle θ0 = 0). Figure 4 shows the instantaneous migration
velocity of the ring 〈vm(t)〉T τb/b, averaged over one cycle
T , vs. time tγ̇ (γ̇ = 0.1 fixed, τb = ηb3/κ1) for various
orientations φ0 within the intervals I+ = [1.1; 2.0]π and
I− = [0.1; 1.0]π. The interval I+ (I−) corresponds to ring
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Fig. 4: (Color online) Instantaneous migration velocity
〈vm(t)〉T τb/b of the ring, averaged over one period T , vs.
time tγ̇ for different initial angles φ0 taken out of the interval
I+ = [1.1; 2.0] π or I− = [0.1; 1.0] π. The 〈vm(t)〉T -transient
depends on φ0, while the steady-state value vm = 〈vm(∞)〉T is
φ0-independent. Parameters: γ̇ = 0.1, T = 20, rκ = 1.5.

orientations, where during migration the stiff part lies in
the mean within the upper (lower) half-space with the
orientation angle φ(t) oscillating either around the mean
〈φ〉T ≈ 1.75 π or 1.25 π (〈φ〉T ≈ 0.75 π or 0.25 π).
As discussed before, this implies that the final, steady-
state migration velocity vm ≡ 〈vm(∞)〉T , is positive for
φ0 ∈ I+ and negative for φ0 ∈ I−, as disclosed in fig. 4
for tγ̇ > 9.0 · 103. Remarkably, the ring migrates always

at the same steady-state speed v
+/−
m even though the φ0-

orientation varies by almost Δφ
+/−
0 ≈ π, meaning v

+/−
m

is independent of φ0. In turn, the choice of φ0 determines
strongly the short-time dynamics of 〈vm(t)〉T , as shown in
fig. 4 for tγ̇ < 9.0 · 103. This imbalance of the magnitude
and in part the sign of 〈vm(t)〉T is a transient signature and
exists as the orientation angle φ(t) is not yet in-phase with
the shear signal S(t); the phase synchronization of the an-
gle takes place gradually within the transient regime over
many shear-cycles T before a phase-locking is established.
The behavior of 〈vm(t)〉T , shown for the ring in fig. 4,
is generic and displayed by the other particles types (see
footnote 1).

We note that while the migration persists (vm �= 0)
in most cases when the tilt angle θ0 between the parti-
cle axis and the y-x shear plane is non-zero (accentuating
the robustness of the CSM effect), some signatures of the
migration alter when θ0 �= 0 and depend on the particle
type, which we briefly summarize below with more details
provided in the SI (see footnote 1). In case of the dumb-
bell, the tilt angle θ(t) always relaxes back towards the y-x
shear plane (θ(∞) = 0) for any value of θ0 ∈ [0.0; π/2[, so
that 〈θ〉FP

T = 0 is an asymptotically stable fixed point;
only for one tilt angle θ0 = π/2, the dumbbell retains
its initial orientation within the z-x plane, in which case
〈θ〉FP

T = π
2 is a neutral stable fixed point and corresponds

to a non-migrating state (vm = 0). The dumbbell mi-
gration is, therefore, robust against θ0-variations over the
entire interval π/2. The capsule behaves likewise and
exhibits orientational relaxation as well, except that the

Fig. 5: (Color online) Steady-state migration velocity vmτb/b
of the ring vs. switching period T γ̇. Four dynamic regimes
are identified: (1) oscillatory shear deformation, indicated by
the horizontal arrow, at small T ; (2) weak tank-treading (TT)
superposed with (1), marked by the half-circle arrow; (3) en-
hanced tank-treading at large T ; (4) TT-dominated with zero
net migration for T γ̇ > 11. Inset: T -averaged mean orientation
〈φ〉T vs. T γ̇. Parameters: φ0 = 2.0 π, γ̇ = 0.1, rκ = 1.5.

previous robustness interval for θ0 is reduced to [0; 2
3 ]π

2
with vm �= 0, while the residual interval ]23 ; 1.0]π

2 leads to
zero migration, as the capsule axis relaxes to the other
stable fixed point 〈θ〉FP

T = π
2 . The ring migration differs

from the dumbbell and capsule insofar as all tilt angles θ0

are neutral stable fixed points, i.e., 〈θ〉FP
T = θ0 ∈ [0; π

2 ],
implying that the ring keeps its initial θ0-orientation. The
non-relaxation of the tilt angle has the consequence that
the ring moves at a different (but constant) speed for each
value θ0 ∈ [0; π

2 [. Again, the CSM of the ring is robust
over the entire θ0-interval of π/2.

Frequency dependence. – The migration process is
not entirely determined by the material properties of the
particle (e.g., stiffness), but can be controlled also by ex-
ternal parameters such as the shear rate γ̇ or the switch-
ing period T , the latter being discussed next. Figure 5
shows the steady-state migration velocity vmτb/b for a
fixed γ̇ = 0.1 vs. the period T γ̇, which sets the time
scale for the sign change of the shear rate S(t). When T γ̇
is small, the migration speed vm is rather low (regime (1))
since the quickly alternating shear rate S(t) induces only
a small shear deformation of the ring shape, so that the
ring has not sufficient time to reorient and to fully de-
velop its mean conformation within each half-period T1

and T2, respectively; at these short times tank-treading
is still marginal, as sketched in fig. 5. For larger peri-
ods T , the ring has now more time within each half-cycle
to deform and fully adopt the migration state, so that
vm monotonously grows first (regime (2)), approaching a
maximum at T γ̇ ≈ 7. At this stage, a weak partial tank-
treading (TT) of the contour is initiated, but the ring
dynamics is still dominated by oscillatory shear deforma-
tions, driving the CSM. Beyond a value of T γ̇ > 7 the
migration gradually decays since tank-treading becomes
increasingly important insofar as a larger fraction of time
of each half-cycle Ti is spent on tank-treading.
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This implies that a portion of the stiff/bendy contour
is now partly shuffled from the upper/lower half-space to
the lower/upper one (regime (3)), i.e., the dynamics of the
entire shear-cycle takes now place within two half-spaces
(with an unequal amount) and each contributes to the
CSM with opposite sign. The net velocity vm is still pos-
itive, since the mean orientation of the ring 〈φ〉T ≈ 1.75π
(fig. 5, inset) with the stiff/bendy contour part residing
on average within the upper/lower half-space. Beyond
T γ̇ > 11 the CSM comes to a halt since tank-treading
dominates now the dynamics within each half-period, so
that even a larger fraction of the stiff/bendy contour is re-
shuffled between the upper-lower half-space. Within this
TT-dominated regime, the mean orientation flips from
〈φ〉T ≈ 1.75 π (vm > 0) to 〈φ〉T ≈ 2.0 π (fig. 5, in-
set), which corresponds to a symmetric state where equal
amounts of the stiff/bendy contour lie in the mean within
both half-spaces, so that vm is zero (see footnote 1). The
abrupt vm-drop is hence inherently connected with the
abrupt change of the mean orientation 〈φ〉T , which can be
understood by inspecting the phase-space 〈φ̇(t)〉T -〈φ(t)〉T

(see SI in footnote 1 for details). Here we just note that
the phase-space features a pattern of discrete, asymptot-
ically stable orientations 〈φ〉FP

T (fixed points), which the
ring can access. Importantly, the number and value of
available 〈φ〉FP

T depend sensitively on the switching period
T (see footnote 1). In our case with φ0 = 2.0 π, the only
stable orientation the ring can adopt is 〈φ〉FP

T ≈ 1.75 π as
long as T γ̇ < 11 while 〈φ〉T ≈ 2.0 π is unstable2. When
T γ̇ > 11, the previous fixed point at 1.75 π disappears,
so that the orientation 〈φ(t)〉T ≈ 1.75 π is acquired only
temporarily while a new orientational attractor appears
at 〈φ〉FP

T = 2.0 π. Since the value 1.75 π lies within
the (extended) range of the 2π-attractor, the ring locks
in to the mean orientation of 〈φ〉T = 2.0 π (fig. 5, inset),
corresponding to a non-migrating state (vm = 0) (see
footnote 1).

Conclusions. – We have shown that deformable parti-
cles, which hold an intrinsic asymmetry (parity breaking),
display cross-stream migration (CSM) in time-perodic, lin-
ear shear flow for medium switching frequencies. The
net migration can be attributed uniquely to the particle
asymmetry as it leads to an asymmetric force distribu-
tion within the periodically deformed particle, inducing
asymmetric, non-compensating hydrodynamic backflows
(HBs). Since the magnitude and direction of the HBs de-
pend on the actual particle deformation, which is different
within the first and second half-period, the HBs averaged
over one shear-cycle T are non-zero, thus leading to a fi-
nite CSM (fig. 3). The CSM is generic inasmuch as it does

2We note that whether the system approaches an attractive fixed
point does also depend on the range of each attractor. In the case of
the ring, the 2π-fixed point is unstable for T γ̇ = 9.0, but turns into
a stable FP when T γ̇ = 10.0. Since the range of the 2π attractor
is quite small, the ring does not approach this FP, but continues to
lock in to the orientational attractor 〈φ〉F P

T ≈ 1.8 π due to its larger
range. More details are provided in the SI (see footnote 1).

not depend on the particle dimension nor on the specific
details of its asymmetry (fig. 1(a)–(c)). While the migra-
tion direction is sensitive to whether the stiff/bendy part
of the particle resides during one shear cycle in the mean
within the upper or lower half-space, the CSM speed ap-
proaches after a transient phase a constant value and is
independent of the initial particle orientation (fig. 4).

Given that even a small asymmetry in the bending
modulus (factor 1.5 or less) of micron-sized particles can
trigger for medium channel lengths a sizable migration
velocity of 20 μm

min under realistic flow conditions with a
shear rate of γ̇ = 22 1

s and a period of T = 1.75 Hz (see
footnote 1), our proposed scheme facilitates appreciable
migration distances in compact microfluidic setups just by
independently tuning the amplitude and frequency of the
shear rate. Investigating effects due to random material
inhomogeneities will be an interesting subject for future
studies.
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The supplementary note provides further details on the models and parameters used to

simulate the cross-stream migration (CSM) of the dumbbell (1D), ring-polymer (2D), and

capsule (3D) in linear shear flow. The generic behavior of the CSM is demonstrated further

by complementing the simulations of the ring (shown in Fig. 4 and 5 in the main text) with

corresponding plots, cf. Figs. 1 and 2 for the dumbbell and capsule, respectively.

I. DETAILS ON MODELS AND APPROACH

A. Bead-Spring: Dumbbell (1D) and Ring-Polymer (2D)

The dumbbell and the ring polymer are represented by a string of N beads, which over-

damped dynamics for each bead i at position ri is given by

ṙi = u(ri) +
N∑

j=1

Hij ·
[
Fbo

j + Fbe
j

]
(1)

with Fbo
i = −∇ri

U bo and Fbe
i = −∇ri

U be referring to the harmonic bonding and bending

forces, obtained from the respective potential

U bo =

N∑

i=1

k

2
(Ri − b)2 , U be = −

N∑

i=1

κ (ri) ln [1 + cosαi] . (2)

The parameters k, b, andRi denote the force constant, equilibrium bond length, and absolute

value of the bond vector Ri = |Ri| = |ri − ri+1|, respectively; κ (r) refers to the space-

dependent bending stiffness and cosαi = eRi−1
· eRi

is the angle between the bond vectors

Ri−1 and Ri with eRi
= Ri/Ri the bond unit vector.

The mobility matrix Hij accounts for the hydrodynamic interaction (HI) between bead i

and j, which in the Oseen-approximation1 reads

Hij =





1
8πηRij

[
I+ eRij

⊗ eRij

]
: i 6= j

1
ζi
I : i = j

(3)



2

where eRij
= Rij/Rij with Rij = ri − rj , and ζi = 6πηai the Stokes drag coefficient for a

single bead with radius ai.

The unperturbed flow field u (r) in Eq. (1) is given by the linear shear along the x-axis

u(x, y) = S(t)y ex (4)

with a time-dependent shear rate S(t).

If the dumbbell is exposed to the linear shear flow u(x, y) only, it will not continuously

perform a tumbling and rotational motion, rather rotates as to align with the streamlines

along the x-axis. This behavior is known to be unphysical and a consequence of approx-

imating the hydrodynamic interaction to first order only via the Oseen-tensor, assuming

point-like particles. In general, this restriction could be lifted by including third-order cor-

rections to the HI and thus reproduce the tumbling/rotational motion for the dumbbell2.

Instead, we amend the linear shear flow u(x, y) by the flow-field3

vrot(ri) =
1

2

(
aj

Rji

)3

(rj − ri) × [∇ × u(rj)] , (5)

which accounts for the rotation of finite-sized, spherical beads when being exposed to the

shear flow of Eq. (4). In this manner, we capture the correct physics of the torque-induced

tumbling and rotation of the dumbbell in the presence of flows with shear gradients.

The inclusion of tumbling and rotation in the dumbbell dynamics, as mediated by vrot(r),

ensures that the dumbbell can develop a transient dynamics (main text: Fig. 1 (a)), where

its orientation φ(t) is not yet in phase with the external shear signal S(t); the presence of

such a transient regime, however, is critical for establishing a phase synchronization of φ(t)

(phase-locking), so that the dumbbell approaches ultimately a mean steady state orientation.

Importantly, once the phase is locked the flow-field vrot(r) is no longer critical to describe

the dumbbell dynamics at steady state. Yet, launching the dumbbell using just Eq. (1)

without the vrot(r) term would not reproduce the correct transient dynamics, required to

reach phase-locking and a mean orientation. We note that in case of the 2D ring and 3D

capsule the tumbling and rotation dynamics is naturally captured by their dynamic equation,

because both particles are already extended objects, so that the flow field vrot(r) does not

need to be included in their dynamic equations.

Table I lists the parameters for the two bead-spring particles (bond length b, bead radii

ai, force constant k, bending stiffness κ1,2), and the shear flow (shear rate γ̇, period T ,
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viscosity η) used in the simulation of the 1D dumbbell and the 2D ring-polymer. With

these parameters a timescale for the relaxation of the dumbbell and ring can be defined via

τ = ζ1/k and τb = ηb3/κ1, respectively.

TABLE I: Dimensionless parameters used in the simulation of the 1D dumbbell and 2D ring.

particle kind b ai k κ1,2 γ̇ T η

dumbbell 2.0 0.1/0.3 1.0 N/A 1.0 30.0 1.0

ring-polymer 2.0 0.3 1.0 16.0/24.0 0.1 20.0 1.0

B. Bead-Spring: General Expression for Migration Velocity

An expression for the instantaneous velocity of cross-stream migration vm(t) can be de-

rived by introducing the ζ-weighted center of drag rc(t) := 1/ζ̃
∑N

i=1 ζi ri(t) for N beads

with ζ̃ =
∑N

i=1 ζi the total drag coefficient. The velocity of the drag center follows then

directly from ṙc(t); using Eq. (1) for ṙi(t) and taking into account that the sum of the total

potential forces
∑N

i=1 Fi = 0 with Fi = Fbo
i + Fbe

i , one obtains

ṙc(t) =
1

ζ̃

N∑

i=1

ζi

[
u(ri) +

∑

j 6=i

Hi,j · Fj

]
. (6)

In case of rectlinear flows such as linear shear, the axis of the main flow is perpendicular

to the migration axis, i.e., u · ey = 0, so that the instantaneous velocity of cross-stream

migration reads

vm(t) = ẏc(t) =
1

ζ̃

N∑

i=1

∑

j 6=i

ey · ζi Hi,j · Fj . (7)

From Eq. (7) one can further define the mean steady-state CSM velocity, approached in the

long-time limit, for each half-cycle, by averaging vm(t) over a half-period Ti, i.e.,

vi
m = 〈vm(∞)〉Ti

=
1

Ti

∫ t+Ti

t

dt′ vm(t
′) , (8)

so that the net CSM velocity over a full shear cycle is simply given by vm = v1
m + v2

m.

For the analysis of the CSM mechanism, as discussed in the main text, it is useful to

introduce a contour-specific migration velocity vα
m(t), which can be assigned to the stiff and
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bendy contour (α = s, b) and defined via Eq. (7) as

vα
m(t) = ẏα

c (t) =
1

ζ̃

∑

i∈α

∑

j 6=i

ey · ζi Hi,j · Fj . (9)

The mean migration velocity vα
m of the α-contour can be determined from Eq. (8) by simply

replacing vm(t) with vα
m(t).

When the beads have the same radius, as in case of the ring, the drag coefficient ζi ≡ ζ

and
∑N

i=1 ζi = Nζ , so that Eq. (6) simplifies

ṙc(t) =
1

N

N∑

i=1

[
u(ri) +

∑

j 6=i

Hi,j · Fj

]
. (10)

Eqs. (7) and (9) are modified accordingly.

The 2D mean HI-backflow v(r) at position r can be obtained from the instantaneous flow

field

v(r, t) =

N∑

j=1

H(r, rj) · Fj (11)

in a similar manner by using the mean forces, and shown in Fig. 3 (a) and (b) (see main

text), demonstrating that the 2D profile of the backflow, as induced in the mean by the

ring-forces during each shear-cycle Ti, is elongational.

C. Stiff Dumbbell: Zero Mean Migration

The equations of the Stokesian dynamics of bead-spring models, as provided in Section I,

natively comprises also the case of an asymmetric dumbbell, composed of two beads of

different radii a1 < a2 (corresponding to different drag coefficients rζ = ζ2/ζ1 > 1) and

connected by a linear spring with force constant k.

In this section we show that the mean cross-stream migration of a stiff asymmetric dumb-

bell at steady state is zero, for which purpose it is useful to rewrite the dumbbell equations

in polar coordinates, starting from the full equations for each bead

ṙ1 = u(r1) −
[
1

ζ1
I − H1,2

]
· f(R) + vrot(r1) , (12a)

ṙ2 = u(r2) +

[
1

ζ2

I − H2,1

]
· f(R) + vrot(r2) , (12b)
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where u(r1,2) denote the unperturbed external flow at the bead position r1,2, while v
rot(r1,2)

are the perturbations of the flow-field due to the shear-induced bead rotation, as given by

Eq. (5). The matrix H(R) ≡ H1,2 = H2,1 refers to the matrix elements of the Oseen-tensor,

accountig for the hydrodynamic screening between the beads

H(R) =
1

8πηR
[I+ eR ⊗ eR] , (13)

with the bond unit vector eR = R/R, the bond vector R = r1 − r2 being the bond vector

of the beads at position r1 and r2, and R = |R|. The force f of the spring is measured with

respect to the equilibrium bond length b

f(R) = k(R − b) eR = f(R) eR . (14)

Using the ζ-weighted center of the dumbbell (N = 2), i.e., rc = (ζ1r1 + ζ2r2) /ζ with ζ =

ζ1 + ζ2, the dynamic equations (12a) and (12b) can be rewritten as

ṙc =
1

ζ
[ζ1 [u1 +H(R) · f(R)] + ζ2 [u2 − H(R) · f(R)]] +

1

ζ
(ζ1v

rot

1 + ζ2v
rot

2 ) , (15)

Ṙ = u1 − u2 + vrot

1 − vrot

2 −
[
1

ζ1
+

1

ζ2

]
f(R) + 2H(R) · f(R) . (16)

Since we are interested in the CSM behavior of the dumbbell when it is at steady-state,

i.e., after it has passed through the transient regime, one can drop the non-linear flow-fields

vrot
1,2 in Eqs. (15) and (16), which simplifies the following CSM analysis of a stiff dumbbell. As

mentioned in the 2nd paragraph on Page 2 of Sect. IA, the flow-field vrot(r) is only required

to assure the existence of a transient regime, so that the dumbbell can establish phase-

locking and, hence, approach a steady-state after passing the transient. Once in steady

state, the vrot(r)-terms are no longer essential to describe the dumbbell dynamics.

Using polar coordinates of the radial and azimuthal unit vector, i.e., eR = −(cos φ, sinφ)

and eφ = (sinφ,− cosφ), along with R = R eR, to project Eqs. (15) and (16) onto the eR

and eφ direction, exploiting the relation H(R) · eR = (4πηR)−1eR and Eq. (4), one obtains

four, coupled, non-linear equations, describing the dumbbell dynamics in polar coordinates

φ̇ = −S(t) sin2 φ , (17)

Ṙ =
1

2
S(t)R sin(2φ) − f(R)

[
1

ζ1
+

1

ζ2
− 1

2πηR

]
, (18)

ẏc =
ζ2 − ζ1

ζ1 + ζ2

f(R)

4πηR
sin φ ≡ vm(t) , (19)

ẋc = S(t)yc +
ζ2 − ζ1

ζ1 + ζ2

f(R)

4πηR
cosφ . (20)
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Importantly, in the numerical simulation of the dumbbell with the respective results shown

in the main text [see Fig. 1 (a)] and in Sections IIA, IIB, and VA of the SI, the flows

vrot(r1,2) have been taken into account.

Equation (19) describes the instantaneous migration velocity vm(t) ≡ ẏc(t) of the dumb-

bell and with f(R) = k(R− b), cf. Eq. (14), leads to the final expression of Eq. (3), as given

in the main text. The net migration step per half period T/2 can be obtained by integrating

Eq. (19) over a half period

∆yc =

t+T/2∫

t

dt′ vm(t
′) =

k

4πη

rζ − 1

rζ + 1

t+T/2∫

t

dt′
R(t′) − b

R(t′)
sinφ(t′) . (21)

When the dumbbell is rigid, the bond length does not change (Ṙ = 0) and is fixed to

the equilibrium bond length R = b. This condition imposes a constraint on the dumbbell

dynamics, resulting in a constraining force f(R) which can be determined from Eq. (18)

f(R = b) =
S(t)b sin 2φ

2
(

rζ+1

ζ2
− 1

2πηb

) . (22)

The shear rate S(t) in Eq. (22) can be replaced via Eq. (17), so that the constraint force f(b),

appearing in Eq. (19), can be eliminated. We then obtain an expression for the migration

step per half cycle, which depends only on the orientation φ1 and φ2 at the beginning,

respectively, end of a half-cycle

∆yc = − 1

8πη

rζ − 1

rζ + 1

1(
rζ+1

ζ2
− 1

2πηb

)

︸ ︷︷ ︸
=:C

φ2∫

φ1

dφ
sin 2φ

sinφ
= −2C

φ2∫

φ1

dφ cosφ = 2C [sinφ1 − sin φ2] .(23)

Using Eq. (23) one can now determine the net migration step for a full shear cycle by

simply adding the respective steps for each half cycle. During the first half period T/2, the

orientation angle φ of the dumbbell changes from φ1 → φ2 where the dumbbell migrates the

step

∆y(1)
c = 2C [sinφ1 − sinφ2] . (24)

During the second half of the shear cycle, the dumbbell swings back and reverses its orien-

tation back from φ2 → φ1, and the dumbbell performs the step

∆y(2)
c = 2C [sinφ2 − sin φ1] = −∆y(1)

c . (25)
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From Eqs. (24) and (25) follows that the magnitude of the migration steps are the same,

but have the opposite sign. Therefore, when the dumbbell is rigid the net migration over a

full shear cycle vanishes, i.e., ∆yc = ∆y
(1)
c +∆y

(2)
c = 0.

D. Capsule (3D)

The Lattice-Boltzmann (LB) method is a mesoscopic method for solving fluid problems

which is based on a discretization of space and velocities. Over the last years it has become

a well-established method and we omit the details which can be found in e.g.4–6. We use

the D3Q19 scheme as implemented in the ESPResSo package7,8.

For the elastic capsule, we implemented the immersed boundary method into ESPResSo,

following the work of Refs.9,10. The surface of the particle is discretized into 1280 triangles

and endowed with an elastic shear and a bending resistance. The elastic force is described

by the Neo-Hookean law and the bending resistance by a Helfrich Hamiltonian11. We add

an additional force to ensure volume conservation as in10.

The x-z periodic LB-grid has a size of 120 × 180 × 120 lattice units and is bounded by

walls in the y direction. A linear shear flow is imposed by moving the upper and lower walls

in opposite directions with a fixed velocity. The physical length and time scales are chosen

such that the grid dimension in SI units is 720× 1080× 720 µm3, the density and kinematic

fluid viscosity are 1000 kg/m3 and 10−6 m2/s, respectively (corresponding to water); the

frequency is 1.75 Hz, the shear rate is 22.22 s−1, and the time step is 10.8 µs.

The particle has a radius of 39.6 µm, a bending resistance in the soft half of 9.2·10−17 Nm,

and an elastic modulus of 4.4 ·10−5 N/m. For comparison, the typical values for a red blood

cell are 4 µm radius, 2 · 10−19 Nm bending resistance, and 5 · 10−6 N/m elastic modulus. A

typical timescale for the capsule relaxation can be defined via τb = ηa3/κ2.

Table II lists the respective parameters for the 3D capsule (radius a, bending stiffness

κ1,2), and the shear flow (shear rate γ̇, period T , viscosity η) used in the simulation. The

conversion of each parameter ”Q” between the ”SI” units and ”sim” units is realized by

multiplying QSI with the powers of the conversion parameters for time Ct, length Cx, and

density Cρ; for example, the dynamic viscosity νSI = νsim · Cx
2/Ct, so that [ν] = m2/s.

Here, we choose Cx = 6.0 · 10−6 m, Ct = 36.0 · 10−5 s, and Cρ = 103 kg/m3 to prescribe a

micrometer length scale, and the fluid density and viscosity to resemble that of water.
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TABLE II: Parameters used in the simulation of the 3D capsule.

particle kind a κ1,2 γ̇ T η

capsule (SI units) 39.6 µm 9.2 · 10−17/13.8 · 10−17 Nm 22.22 s−1 0.57 s 10−3 Pas

capsule (sim. units) 6.6 1.53/2.3 0.008 1590 10.0

II. GENERIC BEHAVIOR OF CROSS-STREAM MIGRATION (CONTINUED)

A major outcome of this study is that the cross-stream migration of all three kinds of

particles behaves qualitatively the same, irrespective of the model details and dimensionality

of the particle, which lets us conclude that the CSM is a generic property.

Here we show that the CSM characteristics in terms of orientation robustness and fre-

quency dependence, discussed via Fig. 4 and 5 of the main text by example of the ring-

polymer (2D), are also displayed by the dumbbell (1D) and the capsule (3D).

A. Orientation Robustness of the Dumbbell (1D) and Capsule (3D)

Figure 1 shows the dependence of the migration velocity 〈vm(t)〉T of the (left) dumbbell

and (right) capsule, averaged over the period T , as a function of time tγ̇ for different initial

orientations φ0. In case of the dumbbell, φ0 is taken from the φ0-intervals I
+ = [1.1; 2.0]π

and I− = [0.1; 1.0]π, where I+/− denotes the interval leading to a positive or negative vm,

respectively. For the capsule, the corresponding intervals are given by I+ = [1.5; 2.25]π and

I− = [0.5; 1.25]π and quantitatively differ to those of the dumbbell and the ring-polymer.

Similar to the 2D ring (see main text, Fig. 4), the migration velocity 〈vm(t)〉T of the

dumbbell and capsule depends on φ0 within a transient regime and approaches a steady-

state, common value vm ≡ 〈vm(∞)〉T in the long-time limit, independent of φ0 in each case.

Again, the sign of vm depends on whether φ0 is taken from the interval I+ or I−; the width

of both intervals is with ∆I+/− ≈ π rather large, so that the terminal CSM velocity vm of

the 1D dumbbell and 3D capsule is quite robust against uncertainties in φ0, consistent with

the CSM behavior of the 2D ring (see main text, Fig. 4).
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FIG. 1: (Color online) T -averaged migration velocity 〈vm(t)〉T vs. time tγ̇ shown for the 1D

dumbbell (left) and 3D capsule (right). In each case, the 2π-range of φ0 can be grouped in two

intervals I+ and I−, leading to a positive or negative vm. The intervals I+/− are: (left) dumbbell:

I+ = [1.1; 2.0] π and I− = [0.1; 1.0] π, (right) capsule: I+ = [1.5; 2.25] π and I− = [0.5; 1.25] π.

B. Frequency Dependence of the Dumbbell (1D) and Capsule (3D)

Figure 2 shows the dependence of the migration velocity vm versus the period T γ̇ (inverse

frequency) with γ̇ fixed. Also here, about four dynamic regimes can be identified for the

(left) 1D dumbbell and (right) 3D capsule, depending on the period T similar to the 2D

ring- polymer (see main text, Fig. 5). The vm-T behavior of the capsule can be characterized

in the same manner as for the ring due to the close resemblance of the two systems, namely

a combination of shear deformation at low frequency and a setting in of a tank-treading

dynamics at medium and large frequencies.

For the dumbbell, a classification in terms of a shear- and tank-treading dynamics is

not adequate, since the ”shape” of the dumbbell with N = 2 beads can not be associated

with a proper contour as opposed to the 2D/3D particles. Instead, the dumbbell dynamics

should be described in terms of a stretch-compress dynamics of the bond length along with

a pendulous and rotational motion.

The analogy between the 1D and 2D/3D systems consists then in identifying the dumb-

bell’s shear-induced pendulous dynamics (back- and forward swing cycles along with the

stretch-compress cycle of the bond length) with the oscillatory shear deformation (low fre-

quency) of the ring and capsule, respectively, and accordingly the dumbbell rotation with

tank-treading (medium/large frequency).
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FIG. 2: (Color online) Migration velocity vm versus switching period T γ̇ (inverse frequency), shown

for the 1D dumbbell (left) and 3D capsule (right) with four dynamic regimes: (1) oscillatory mo-

tion (pendular/shear deformation) at small T (high frequency), (2) weak rotational/tank-treading

motion superposed with (1) (mid frequency), (3) enhanced rotational/tank-treading dynamics at

large T (low frequency), and (4) zero net migration. Insets: T -averaged mean orientation 〈φ〉T
vs. T γ̇ of the dumbbell and the capsule, respectively. At high frequency, the dumbbell (capsule)

orientation 〈φ〉T ≈ 1.5π (1.5π), i.e., the small ζ1 (stiff κ2-contour) remains in the mean in the

upper half-space (vm > 0). Once T γ̇ > 160 (40), the mean orientation flips to 〈φ〉T ≈ π (π), i.e.,

the dumbbell (capsule) orientation has an upper-lower symmetry (vm = 0).

What matters for the cross-stream migration is that the asymmetric parts of each type

of particle reside in the mean in one of the half-spaces when the frequency is high (small

T ), whereas at medium and in particular at low frequency (large T ) there is a ”re-shuffling”

of the differing constituents (in terms of friction coefficient or stiffness) between the two

half-spaces; whether this re-shuffling occurs via rotation (dumbbell) or tank-treading (ring,

capsule) is irrelevant and leads to the same qualitative, i.e., generic behavior for all three

kinds of particles (see main text: Fig. 4 and 5 and SI: Fig. 1 and 2, respectively).

III. SAMPLE MOVIES: ILLUSTRATION OF MIGRATION REGIMES

The MP4-format movies, cf. Table III, show the shear-induced dynamics for each par-

ticle kind in the typical CSM regime with the values for T γ̇ given in Table III. For each

case, these values are chosen in accord with the vm-T γ̇ curves of Fig. 5 (main text: 2D

ring) and Fig. 2 (SI: 1D dumbbell and 3D capsule), starting with small values of T γ̇ (high

frequency), followed by medium T γ̇-values (mid frequency), and finally large periods (low
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frequency). The movie set M1-M9 visualize how the particle dynamics traverses from the

TABLE III: MPEG movies M1-M9 visualizing the migration dynamics characteristic for each

regime. For each movie ”M#:” the value of T γ̇ used in the simulation is given.

particle kind pen/def pen/def+rot/TT rot/TT

dumbbell M1: 5 M2: 100 M3: 180

ring M4: 2 M5: 10 M6: 12

capsule M7: 6 M8: 26 M9: 45

pendulous/deformation (pen/def) regime at high frequency (small T γ̇) to the rotation/tank-

treading (rot/TT) dominated regime at low frequency (large T γ̇).

IV. ORIGIN OF ABRUPT CSM-DROP: 〈φ(t)〉T PHASE-SPACE ANALYSIS

In this section, we extend our brief discussion of the abrupt vm-drop (see main text:

Fig. 5 and SI: Fig. 2) and provide here a more in-depth analysis. As already discussed in

detail in the main text, the cross-stream migration vm = 〈vm(∞)〉T is intimately correlated

with the mean steady-state orientation 〈Φ〉T ≡ 〈φ(∞)〉T , acquired by the particle over the

course of one shear cycle and can be tuned via the external control parameter T γ̇. Figure 5

(main text) and Fig. 2 (SI) demonstrate this close relationship for all three particles, how

the mean particle orientation is the key controlling factor for the presence or absence of

CSM13. In case of the ring, cf. Fig. 5 (main text), such a change of vm occurs once the

period T γ̇ exceeds a critical value Tcγ̇ ≈ 11.

In order to gain a better insight on why the particles alter their stable mean orientation

when the switching period T is varied, we determine numerically the phase-space of the time-

dependent mean orientation 〈φ̇(t)〉T -〈φ(t)〉T , obtained by launching the particle at different

initial orientations φ0 over the entire interval φ0 ∈ [0.0, 2.0] π, and keeping the switching

period T γ̇ fixed. This procedure is then repeated at different (but fixed) values of T γ̇.

Such a phase-plot allows one then to analyze and identify in general the set of stable mean

orientations (attractors) the particle can adopt12. In accord with the discussion in the main

text, we use again the ring-polymer as representative particle.

Figure 3 shows such a phase-space plot for the ring (following the above procedure) for

three different values of the switching period around the critial value Tcγ̇ ≈ 11, where the
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FIG. 3: (Color online) Phase-space of the time-dependent mean orientation 〈φ̇(t)〉T − 〈φ(t)〉T for

the same ring, as in Fig. 5 (main text) at three different values of the switching period T γ̇ = 9,

10, and 12, around the critical value Tcγ̇ ≈ 11, marking the onset of the abrupt change of the

ring orientation. For each value of T γ̇, there is a distinct set of stable (symbol: •) and unstable

(symbol: ◦) fixed points (〈φ̇〉T = 0). The stable fixed points (FP) correspond to non-migrating

(v0
m) orientations with 〈φ〉0T = {0.0, 1.0} π or (positive/negative) migrating states (v

+/−
m ) with a

mean orientation 〈φ〉+/−
T other than 0.0 π and π. The switching period T γ̇ sensitively controls

whether migrating and non-migrating orientations coexist (T γ̇ = 10) or not (T γ̇ = 9 and 12). The

angular interval between neighboring unstable FPs define the range of an asymptotically stable FP,

as marked by the dashed lines. When the transient angle 〈φ(t)〉T lies within the range of a specific

stable FP, the ring approaches the mean orientation 〈φ〉FP
T of this fixed point.
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abrupt change of the mean orientation occurs, i.e., T γ̇ = 9, 10, and 12. From the phase-space

plot shown in Fig. 3 one can easily determine the so-called orientation fixed points (FP) of

the system, which refer to those mean orientations 〈φ〉FP
T where 〈φ̇〉T = 0, as marked by the

symbols • and ◦ in each case. Whether an FP is stable (symbol: •) or unstable (symbol: ◦)
depends on the slope β = d〈φ̇〉T/d〈φ〉T near the FP. If β < 0, the FP is asymptotically stable

and the orientation 〈φ(t)〉T moves towards the orientational fixed-point 〈φ〉FP
T , as long as

〈φ(t)〉T lies within the range of the (orientational) attractor, while it moves away from the

FP if β > 0. The respective FP is then unstable12. Near the fixed point, this behavior can be

formally described by dt〈φ(t)〉T = 〈φ̇(t)〉T ≈ β
[
〈φ(t)〉T − 〈φ〉FP

T

]
with dt = d/dt, reflecting

the exponential behavior towards or away from the FP.

Applying these general concepts to the three different phase-space plots of Figure 3, one

can identify a total of 8 FPs when T γ̇ = 9, among which the 4 orientations 〈φ〉FP
T ∈ I<

FP =

[0.25, 0.8, 1.25, 1.8] π are asymptotically stable (β < 0) and the other ones are unstable

(β > 0). Importantly, the range of each attractor (marked by the vertical dashed lines)

is about 0.5 π, so that for a given initial orientation φ0 ∈ [0.0, 2.0] π the transient ring

orientation 〈φ(t)〉T evolves towards one of these available stable FPs and acquires its affiliated

steady-state mean orientation 〈φ〉FP
T ∈ I<

FP , when 〈φ(t)〉T lies within the range of this

attractor. We note that while in general for any (but fixed) value of T γ̇ all FPs are available

to the particle, it can accept only one orientational fixed point for only one initial angle

φ0. As discussed in the main text, the existence and direction of the CSM depends on the

mean steady state particle orientation 〈φ〉T = 〈φ(∞)〉T , controlling whether the stiff/bendy

contour portions reside in the mean within the upper and lower half-space.

When T γ̇ = 9, the ring can only adopt the mean orientations 〈φ〉T ∈ I<
FP =

[0.25, 0.8, 1.25, 1.8] π, which correspond to migrating orientations only with v
+/−
m 6= 0, cf.

Fig. 3 (top). Two of these states, i.e., 〈φ〉+
T = [1.25, 1.8] π, lead to a positive migration

(v+
m > 0) since the stiff/bendy part of the ring contour reside in the mean in the up-

per/lower half-space (as discussed in the main text.), and vice versa for the two remaining

states 〈φ〉−
T = [0.25, 0.8] π. Note that within each class of stable states 〈φ〉+/−

T the CSM

steady state velocity vm is the same, while the respective mean orientation is different.

When the period is further increased to T γ̇ = 10, but still lower than the critical value

Tcγ̇ = 11, the previous set of fixed points in terms of their value remains, while four new

FPs appear at around [0.1, 0.9, 1.1, 1.9] π, all of which are unstable, cf. Fig. 3 (middle).
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Importantly, the two previously unstable FPs at 〈φ〉FP
T = π and 2.0 π reverse their character

and become now stable fixed points (attractors). Since these mean orientations have an

upper-lower symmetry where an equal amount of the stiff and bendy contour are located

in the mean within the upper and lower half-space, these states refer to non-migrating

orientations (v0
m = 0). For the initial ring orientation of φ0 = 2.0 π, the ring does not

approach the new non-migrating FP 〈φ〉FP
T = 2.0 π, but still locks-in to the ”old” migrating

fixed point 〈φ〉FP
T = 1.8 π, as shown in the 〈φ〉T -T γ̇ plot of Fig. 5 (inset: main text). This

occurs because over the course over many shear cycles, the transient angle 〈φ(t)〉T of the ring

does not lie within the narrow range of the 2π-attractor, but is located within the range of

the FP 〈φ〉FP
T = 1.8 π, which has a broad stability range of about 0.5 π, cf. Fig. 3 (middle).

When the period exceeds the critical value T γ̇ > Tcγ̇ = 11, the coexistence of migrating

and non-migrating states vanishes entirely, and only a total of 4 fixed points remain, as shown

in Fig. 3 (bottom). The respective two asymptotically stable FPs with the mean steady-

state orientation 〈φ〉FP
T ∈ I<

FP = [1.0, 2.0] π are all non-migrating states v0
m. Simultaneously,

their attractor range has substantially grown from about 0.1 π (T γ̇ = 10) to π (T γ̇ = 12).

The abrupt drop of the migration velocity vm is therefore a direct consequence of its

strong link to the mean orientation 〈φ〉T , leading to a discrete sequence of migrating (v+,−
m )

or non-migrating (v0
m) states, which may even coexist. The number and type of these stable

states 〈φ〉FP
T (attractors) can be externally tuned by the control parameter T γ̇ with the

result that the entire attractor landscape changes, including the appearance/disappearance

of new/old FPs or the reversal of stable FPs to unstable ones and vice versa. In case of

the ring and an initial orientation of φ0 = 2.0 π this means that the orientational attractor

〈φ〉FP
T = 1.8 π disappears once T γ̇ > Tcγ̇ ≈ 11, so that 〈φ(t)〉T adopts the orientation 1.8 π

only transiently while a new stable orientational fixed point emerges at 〈φ〉FP
T = 2.0 π. Since

the value 1.8 π lies within the (extended) range of the 2π-attractor, the orientation 〈φ(t)〉T

approaches this new fixed point, corresponding to a non-migrating state. Hence, at the

critical value of Tcγ̇ = 11, there is a discontinuous transition of the ring mean orientation

〈φ〉FP
T from a v+

m-migrating state to a v0
m-non-migrating one, and appears in the vm-T γ̇ plot

as abrupt drop of vm, as shown in Fig. 5 (main text).
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V. CSM-ROBUSTNESS AGAINST VARIATIONS OF TILT-ANGLE Θ

In Fig. 4 (main text) and in Fig. 1 (SI: Sect. IIA) we have shown that vm > 0 when the

initial orientation φ0 ∈ I+, and vm < 0 for φ0 ∈ I−. In all these cases we assumed that the

second angle (tilt angle θ), determining the particle orientation outside the x-y shear plane,

is zero, as indicated in the particle sketches of Fig. 1 (a)-(c) (see main text).

In general, however, one must expect that the direction of the CSM (sign of vm) does

not only depend on the initial in-plane orientation (specified by φ0 ∈ I±), but also on the

θ0-orientation outside the y-x shear plane.

In the following sections we show that the cross-stream behavior, as characterized by the

finite slope of the lateral position yc(t) corresponding to a finite migration velocity vm 6= 0,

persist and remains robust for all three particles, if their initial orientation {φ0, θ0} is allowed

to vary also away from the shear plane (θ0 6= 0.0).

A. Dumbbell (1D)

Figure 4 (left) shows the lateral position yc(t) vs. time for the 1D dumbbell at varying

tilt-angles θ0 ∈ [0.0, 0.5] π outside the y-x shear plane and an in-plane initial orientation

of φ0 = 2.0 π. The CSM behavior persist over the entire range of θ0-orientations with

θ+
0 ∈ I+ = [0.0, 0.5[ π, leading to a positive cross-stream migration (v+

m). Only for the single

tilt angle θ0
0 = 0.5 π, the CSM vanishes as reflected by the zero slope of yc(t).

Figure 4 (right) shows the respective time-dependence of θ(t), which approaches θ(∞) ≈
0.0 π for long times if θ+

0 ∈ I+. In these cases, the dumbbell reorients back towards the

stable orientation θ(t) → 0.0 π, i.e., the dumbbell axis lies within the y-x shear plane. The

tilt angle 〈θ〉FP
T = 0.0 π refers therefore to an asymptotically stable fixed point (FP)12.

In turn, for θ0 = 0.5 π the tilt angle remains constant (unstable FP) since the dumbbell

lies within the z-x plane (this plane is perpendicular to the shear plane), in which case the

shear is ineffective as the dumbbell has no lateral extension (zero thickness) and vm = 0.

Overall, the CSM-effect of the dumbbell is quite robust against a broad variation of the

initial orientations with regards to φ0 and θ0.
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FIG. 4: (Color online) Robustness of the CSM for the 1D dumbbell in regards to variations of the

tilt angle θ0 outside the y-x shear plane with θ0 ∈ [0.0, 0.5] π; the initial in-plane orientation is

φ0 = 2.0 π. Left: Lateral position yc(t) vs. time tγ̇, displaying the persistence of the CSM effect

(v+
m > 0) for the entire range of θ0-orientations with θ+

0 ∈ I+ = [0.0, 0.5[ π. Only for θ0 = 0.5 π, the

CSM is zero. Right: Time-dependence of the respective tilt angle θ(t), showing how the dumbbell

axis reorients back towards the stable orientation within the y-x shear plane (θ(∞) = 0.0 π) if

θ+
0 ∈ I+. When θ0 = 0.5 π the dumbbell retains this orientation.

B. Ring (2D)

In contrast to the 1D dumbbell and 3D capsule, both of which have an axis of high

rotational symmetry, the 2D ring-polymer has only a twofold 180o-symmetry since it is

planar, so that the ring can be tilted outside the y-x shear plane in two ways, namely by

rotating its plane either along the x- or y-axis.

Figure 5 (left) shows the lateral position yc(t) vs. time for the 2D ring with its plane

being rotated along the x-axis (top) and y-axis (bottom), respectively, at varying tilt-angles

θx,y
0 ∈ [0.0, 0.5] π outside the y-x shear plane and an in-plane initial orientation of φ0 = 2.0 π.

Similar to the dumbbell, the CSM behavior of the ring also persist over the entire range

of θx,y
0 -orientations with θ+

0 ∈ I+ = [0.0, 0.5[ π, leading to a positive cross-stream migration

(v+
m > 0), irrespective along which axis the ring plane is rotated. Only for the single tilt

angle θ0
0 = 0.5 π, the ring does not migrate. However, contrary to the dumbbell and capsule,

there is no longer a common steady-state migration velocity v+
m in the long-time limit, but

depends on the initial tilt angle θ+
0 .

Figure 5 (right) shows for either case the respective time-dependence of θx,y(t), which
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FIG. 5: (Color online) Robustness of the CSM for the 2D ring with respect to θ0-variations outside

the y-x shear plane, and an initial in-plane orientation of φ0 = 2.0 π (similar to Fig. 1 (b): see main

text). The top panel refers to θx
0 -orientations, where the ring plane is rotated along the x-axis,

and the bottom panel refers to θy
0-orientations. Left: Lateral position yc(t) vs. scaled time tγ̇,

displaying the persistence of the CSM effect (vm > 0) for the entire range of off-plane orientations

θx,y
0 ∈ [0.0, 0.5[ π. Only when θx,y

0 = 0.5 π, the CSM is zero. Right: Time dependence of the

respective off-plane orientation θx,y(t) starting at θx,y
0 , showing that the off-plane orientation of

the ring θx,y(t) remains in the mean constant.

remains constant for all times, while the ring continues to migrate within the y-x shear

plane. Hence, the ring plane does not reorient back towards the y-x shear plane as the

dumbbell and capsule do, but holds its initial orientation θx,y
0 . In this case, all angles

〈θ〉FP
T = θx,y

0 ∈ [0.0, 0.5] π are so-called neutral stable fixed points 〈θ̇〉T = 012.

Overall, the CSM-effect of the ring is quite robust against a broad variation of the initial

orientations with regards to φ0 and θ0.
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C. Capsule (3D)

Finally, we show in Fig. 6 (left) the lateral position yc(t) vs. time for the 3D capsule

at varying tilt-angles θ0 ∈ [0.0, 0.5] π outside the y-x shear plane and an in-plane initial

orientation of φ0 = 2.0 π. Similar to the 1D and 2D particle, the CSM behavior persist

also for the 3D capsule over a broad range of θ0-orientations outside the shear plane with

θ+
0 ∈ I+ = [0.0, 6/18] π, leading to a positive cross-stream migration (v+

m). When θ0
0 ∈ I0 =

[7/18, 0.5] π, the CSM vanishes in the long-time limit, as reflected by the flattening of yc(t).
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FIG. 6: (Color online) Robustness of the CSM for the 3D capsule in regards to variations of the

tilt angle θ0 outside the y-x shear plane with θ0 ∈ [0.0, 0.5] π; the initial in-plane orientation is

φ0 = 2.0 π. Left: Lateral position yc(t) vs. time tγ̇, displaying the persistence of the CSM effect

(v+
m > 0) for a broad range of θ0-orientations with θ+

0 ∈ I+ = [0.0, 6/18] π. For other orientations

θ0
0 ∈ I0 = [7/18, 0.5] π the CSM is nearly zero. Right: Time-dependence of the respective tilt

angle θ(t) showing how the capsule axis reorients back towards the stable orientation within the

y-x shear plane (θ(∞) ≈ 0.0 π) if θ+
0 ∈ I+. For θ0

0 ∈ I0 the tilt angle approaches another stable

orientation θ(∞) = 0.5 π, corresponding to a state with an upper-lower symmetry, so that vm = 0.

Figure 6 (right) shows the respective time-dependence of θ(t), which approaches in the

long-time limit towards the steady-state angle θ(∞) ≈ 0.0 π when the initial tilt angle

is θ+
0 ∈ I+. This implies that for these θ+

0 -orientations the capsule preferential stable

orientation at steady-state is such that its axis lies within the y-x shear plane. In turn, for

θ0
0 ∈ I0 the tilt angle approaches another possible stable orientation θ(∞) ≈ 0.5 π, in which

case the capsule axis lies now within the z-x plane (the plane being perpendicular to the
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shear-plane). This orientation corresponds to a state with an upper-lower symmetry, so that

in the mean vm = 0. In case of the capsule, there are now two asymptotically stable fixed

points (FP) at 〈θ〉FP
T = 0.0 π and 0.5 π12.

Overall, the CSM-effect of the capsule is quite robust against a broad variation of the

initial orientations with regards to φ0 and θ0.
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Abstract. The locomotion and design of microswimmers are topical issues of current

fundamental and applied research. In addition to numerous living and artificial active

microswimmers, a passive microswimmer was identified only recently: a soft, Λ-shaped,

non-buoyant particle propagates in a shaken liquid of zero-mean velocity [Jo et al.

Phys. Rev. E 94, 063116 (2016)]. We show that this novel passive locomotion

mechanism works for realistic non-buoyant, asymmetric Janus microcapsules as well.

According to our analytical approximation, this locomotion requires a symmetry

breaking caused by different Stokes drags of soft particles during the two half periods

of the oscillatory liquid motion. It is the intrinsic anisotropy of Janus capsules and

Λ-shaped particles that break this symmetry for sinusoidal liquid motion. Further,

we show that this passive locomotion mechanism also works for the wider class of

symmetric soft particles, e.g., capsules, by breaking the symmetry via an appropriate

liquid shaking. The swimming direction can be uniquely selected by a suitable choice

of the liquid motion. Numerical studies, including lattice Boltzmann simulations, also

show that this locomotion can outweigh gravity, i.e., non-buoyant particles may be

either elevated in shaken liquids or concentrated at the bottom of a container. This

novel propulsion mechanism is relevant to many applications, including the sorting of

soft particles like healthy and malignant (cancer) cells, which serves medical purposes,

or the use of non-buoyant soft particles as directed microswimmers .

Submitted to: New J. Phys.
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1. Introduction

Biological microswimmers and their artificial counterparts attract a great deal of

attention in research both for their fundamental relevance and their potential

applications in a variety of physical, biological, chemical or biomedical applications

(see e.g., [1, 2, 3, 4, 5]). Several studies focus on the dynamics of soft particles in

microflows, such as capsules and red blood cells [6, 7, 8, 9, 10]. Their exploration and

understanding inspires, among others, passive microswimmers that are indirectly driven

by a time-dependent liquid motion. An example is a recently identified inertia-driven,

passive microswimmer: A non-buoyant asymmetric soft microparticle in oscillatory

liquid motion of zero mean displacement was studied in [11, 12]. Here we show how

this inertia-driven locomotion mechanism can be generalized to the much wider class

of homogeneous, soft particles, such as capsules, by engineering an appropriate time-

dependent liquid motion.

Mechanisms that underly the propulsion of microswimmers include the propulsion

via chemical reactions on the anisotropic surface of Janus particles, by magnetic fields

or acoustic fields (see e.g., [4]). Common propulsion mechanisms of microorganisms at

low Reynolds number are periodic motions of flagella, cilia or the deformation of the

body shape (amoeboid motion) [2, 3, 5, 13, 14, 15, 16]. To achieve a net displacement

at these length scales the mechanism has to be non-reciprocal to break Purcell’s scallop

theorem [2, 17].

The non-reciprocal motion of biological swimmers inspired also passive artificial

microswimmers recently. One example is a soft Janus capsule in a temporally periodic

linear shear flow at low Reynolds number, whereby the intrinsically asymmetric Janus

particle is propelled perpendicular to the streamlines [18]. This type of passive swimming

and the theoretical model of a brake controlled triangle [19] are similar to cross-stream

migration of droplets and soft particles in stationary low Reynolds number Poiseuille

flows [20, 21, 22, 23, 24]. Other recent studies identified the finite inertia of soft particles

in oscillatory homogeneous liquid motion as a crucial property for passive swimming

[11, 12]. The non-reciprocal body shape and therefore the different Stokes drag in both

half periods of the periodic liquid motion is the driving force of these novel locomotion

mechanism. The first inertia driven particle locomotion at low Reynolds number was

demonstrated for a soft, asymmetric, Λ-shaped particle in a shaken liquid [11]. This was

extended to an internally structured capsule with an inhomogeneous mass distribution

in a gravitation field [12].

In this work we show that the inertia induced passive swimming of realistic

and experimentally available soft particles in oscillatory liquid motion can outweigh

gravitation. We show this at first for an Janus capsule with an asymmetric elasticity

(see e.g. [25]). We explain that an intrinsic particle asymmetry is not required for

passive swimming and we demonstrate that the inertia driven particle propulsion works

also for the much wider class of homogeneous and symmetric soft particles, such as soft

capsules. This is achieved by appropriately engineering the time-dependence of shaking
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Figure 1. Sketch of four different particles with a mass density different from that

of the surrounding liquid. The liquid shaken with the velocity u0(t) = u0(t)ey causes

an inertia-driven particle locomotion. The actuation is indicated by the motion of

the particle’s center of mass rc(t) = yc(t)ey. Part a) shows an asymmetric bead-

spring tetrahedron and part b) an asymmetric Janus capsule with different stiffness of

each half (soft part yellow). Both asymmetric particles are considered in a sinusoidal

velocity of the liquid with period T , as indicated by the upper blue curves in a) and

b). We observe for both particles a net motion along the direction of shaking against

gravitation, as described by the black curves in a) and b). The ring in c) and the

symmetric capsule in d) are shaken by non-symmetric velocities as indicated by the

blue curves in part c) and d). Also the ring and the symmetric capsule show a net

progress against gravity as indicated by the black curves in c) and d). Parameters are

given in sections 2 and 4.

the liquid. The time-dependence of the shaking determines also the direction of passive

swimming. This motion is distinct from particle locomotion in oscillatory flows at finite

Re, where propulsion is related to streaming flows and a fluid jet in the wake of the

swimmer [26].

The work is organized as follows: In section 2 we describe the modeling and

simulation of the particles sketched in figure 1. We show in section 3 by an approximate

analytical approach, that the locomotion of non-buoyant soft particles in a periodically

oscillating fluid motion requires the symmetry breaking caused by different particle

deformations and Stokes drags during the two half-periods of the shaking of the liquid.

The analytical results are confirmed in section 4 by numerical simulations of the bead-

spring models and capsules shown in figure 1. We study an asymmetric bead-spring

tetrahedron in a sinusoidal liquid motion and a symmetric semiflexible bead-spring ring

in a non-symmetric periodic liquid motion for a wide parameter range. The results

of these simulations are complemented and verified by Lattice Boltzmann simulations

of realistic soft asymmetric Janus capsules and symmetric capsules. For instance,
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we provide parameter ranges where the passive locomotion mechanism outweighs

gravitation. Discussions of the results and the conclusions are given in sec. 5.

2. Model and Approach

The dynamics of four deformable particles in a shaken liquid is investigated by taking

into account particle inertia. We use two asymmetric particles, namely a bead-spring

tetrahedron composed of four beads, and a Janus capsule, as sketched in figures 1 a) and

b), respectively. As examples of common symmetric particles we choose a bead-spring

ring, as shown in figure 1c), and a symmetric capsule, as shown in figure 1d). The

positions and the motion of the beads of the ring are restricted to the (x, y) plane.

The shaking velocity of the liquid is given by

u0(t) = u0(t)êy = U [sin (ωt) + ε cos (2ωt)] êy , (1)

with the frequency ω = 2π/T and a vanishing mean velocity 〈u0(t)〉 = 0. For ε = 0

the velocity is sinusoidal and antisymmetric with respect to a shift t → t + T/2, i.e.,

u0(t) = −u0(t+ T/2). For ε 6= 0 this symmetry is broken and the velocity of the liquid

is non-symmetric as indicated by the blue curves in figures 1c) and 1d).

In section 2.1 we describe the modeling of the bead-spring models and the capsules.

In section 2.2, we present the equations of motion of the bead spring models, the Maxey

and Riley equations [27] for several beads. They take the particle inertia into account

and are extended by the hydrodynamic particle-particle interaction via the dynamical

Oseen-tensor. The Lattice-Boltzmann-Method (LBM) for the particle simulations is

explained in section 2.3.

2.1. Modeling the bead-spring models and the capsules

The beads of the bead-spring models have the mass mi. Their mass density ρi may be

different from the mass density of the fluid, ρf 6= ρi. With the gravitational force along

the negative y direction, this leads to the buoyancy force

Fg,i = −Fg,iey, (2)

which acts on a particle immersed in the liquid with

Fg,i = gVi(ρi − ρf ) = g(mi −mf ) . (3)

The tetrahedron in figure 1a) consists of N = 4 beads at positions ri. The beads

have the same radius a, but may have different masses. They are connected by springs

with the stiffness k. The center of mass is given by

rc =
1∑
imi

∑

i

miri . (4)

Each bead experiences a force that is composed of the buoyancy force Fg and forces

imposed by springs,

F
(P )
i = −Fg,iêy −∇iVspring (5)
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with the spring potential

Vspring =
N∑

i,j 6=i
k(|ri − rj| − b)2 (6)

and the undistorted spring length b.

Also for the bead-spring model shown in figure 1c) (with N = 8 beads) the

neighboring beads are connected by Hookean springs. In addition to equation (5) a

bending potential with the stiffness κ is taken into account

Vbend = −κ
2

N∑

i=1

ln (1 + cos βi) (7)

where Ri = ri − ri+1 is the the bond vector between the next-neighbor beads i and

i + 1 and the angle βi is defined via cos βi = eRi−1
· eRi with the bond unit vectors

eRj = Rj/Rj. This bending potential causes a circular ring shape in equilibrium.

The capsules are modeled by discretizing their surface with N = 642, which is

done iteratively as described in more detail in Ref. [28]. We assume that the surface

is thin and has a constant surface shear elastic modulus Gs. In this case the relation

between the deformation and the forces is given by the neo-Hookean law described by

the potential VNH (for details we refer to [29, 30]). Furthermore a bending potential

Vb is assumed [31, 32], which is given by

Vb = −κc
2

∑

i,j

(1− cos βi,j) , (8)

where κc denotes the bending stiffness and βi,j is the angle between the normal vectors

of neighboring triangles.

For Janus capsules the stiffness is different in both halves of the capsule, as indicated

in figure. 1(c). We use a penalty force to keep the capsule’s volume V(t) close to the

reference volume V0 during the simulations. Its potential Vv is given by

Vv = −kvV0

(V(t)− V0)2 (9)

with the rigidity kv [32]. The complete potential related to the forces acting on the

capsule is given by

V (r) = VNH + Vb + Vv. (10)

2.2. Maxey and Riley equations, including the dynamic Oseen-Tensor

The dynamics of the beads at small fluid Reynolds number is described by the equations

for the particle velocities vi of Maxey and Riley [27]. These dynamical equations are

derived with the help of the time-dependent Stokes equation, i.e., the advective term of

the Navier-Stokes equation is neglected. A bead experiences besides F
(P )
i the inertial

force

F
(0)
i = mf,i

dui
dt

(11)
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caused by the liquid acceleration at the position ri of the bead. Note that the liquid

velocity includes the externally imposed homogeneous liquid motion u0(t) described in

equation (1) and the flow perturbations caused by the motion of all other particles with

respect to the liquid. Furthermore, the force F
(1)
i created by the difference between the

particle velocity vi and the liquid velocity ui must be considered. This is composed of

three contributions, the added mass, the Stokes drag and the Basset force,

F
(1)
i = − 1

2
mf,i

d

dt
(vi − ui)− ζb(vi − ui)

− 6πηa2

∫ t

0

dτ
d
dτ

[vi(τ)− ui(τ)]√
πν(t− τ)

, (12)

with the Stokes drag coefficient ζb = 6πηa. Alltogether we obtain the dynamical

equation for the velocity of the ith bead

mi
dvi
dt

= F
(0)
i + F

(1)
i + F

(P )
i . (13)

The flow disturbances at ri caused by all the other beads are determined via the dynamic

Oseen tensor [33], which is the Greens function of the time-dependent linear Stokes

equation. This provides the flow at the ith bead

ui = u0(t) +
∑

j 6=i

t∫

0

dt′ Hi,j(t
′) · F(1)

j (t′) . (14)

For the explicit expression of Hi,j(t
′) we refer to Appendix A.

Equation (12) is solved numerically for the bead-spring tetrahedron as shown

in figure 1a) and for the bead-spring ring shown in figure 1c) by using a Runge-

Kutta-scheme of fourth order. The dimensionless parameters given below are used for

simulations of equation (13) for the bead-spring tetrahedron and the bead-spring ring.

These parameters can be converted to SI units if the dimensionless time is multiplied

by the factor st = 1 ms, the length by sl = 50 µm and mass by sm = 5.2 ·10−13 kg. This

leads to the density and viscosity of water (ρwater = 1000 kg/m3, ηwater = 1 mPas ) and

the correct gravitational acceleration g ≈ 10 m/s2.

The Parameters used in simulations of the bead-spring tetrahedron are: number of

beads N = 4, bead radius a = 0.1, equilibrium spring length b = 0.25, spring stiffness

k = 15000, mass density ρi = 3600 of a bead, mass density of the fluid ρf = 240,

fluid viscosity η = 100.0, amplitude of the shaking velocity U = 10.0 in equation (1),

asymmetry parameter ε = 0, shaking period T = 0.4, gravitational acceleration g = 0.21

and time step dt = 2.5 · 10−4 in numerical integrations of equation (13).

The Parameters used in simulations of the semiflexible bead-spring ring are: number

of beads N = 8, bead radius a = 0.1, equilibrium spring length b = 0.5, spring stiffness

k = 2000, bending stiffness κ = 500, mass density ρi = 3600 of a bead, mass density

of the liquid ρf = 240, viscosity of the liquid η = 100, amplitude U = 20 of the

shaking velocity in equation (1), asymmetry parameter ε = 0.8, shaking period T = 0.4,

gravitational acceleration g = 0.21 and time step dt = 2.5·10−4 in numerical integrations

of equation (13).
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2.3. The Lattice Boltzmann Method

We utilize the common D3Q19 lattice-Boltzmann method (LBM) to simulate the

distribution f(x, t) of the fluid elements on a 3D grid of positions xi = (x, y, z) along the

discrete directions ci (i = 0, . . . , 19) [34]. The lattice constants are ∆x = 1 for spatial

and ∆t = 1 for temporal discretization. The evolution of the distribution function is

governed by the discrete Boltzmann equation

fi(x + c∆t, t+ ∆t) = fi(x, t) + C, (15)

where C defines the collision operator. Walls are incorporated by the standard bounce

back scheme (bb) [35, 36] by adding the contribution W = −2wiρ
ci·uw
c2s

for wall links to

equation (15) [36, 37], where uw is the wall velocity. The weighting factor wi and the

speed-of sound cs are constants for the chosen set of velocity directions [34].

Tetrahedron dynamics: For the simulations of the tetrahedron, the Bhatnagar-Gross-

Krook (BGK) collision operator

C = −1

τ
[fi(x, t)− f eqi (x, t)] + F (16)

is extend by the Guo force-coupling F = ∆t
(
1− 1

2τ

)
wi

[
ci·u
c2s

+ (ci·u)
c4s

ci

]
·F(e) for external

volume forces F(e) [38]. f eq is an expansion of the Maxwell-Boltzmann distribution and

τ is the relaxation parameter. The macroscopic density and momentum are obtained

from the first two moments via ρ =
∑

i fi and ρu =
∑

i cifi + ∆t
2

F(e), respectively. The

viscosity of the fluid is given by ν = c2
s∆t (τ − 1/2). The hard spheres are implemented

as moving walls according to [35], with an additional lubrication-correction for squeezing

motion of near particles, as discussed in [39]. This simulations are used to compare the

Oseen simulations and the LBM simulations (see also Appendix B).

Capsule dynamics: For the simulations of capsules, an adapted LBM-scheme of the

multi-relaxation time LBM for a spatially dependent density is used [40]. The time

evolution of the mean density ρ0(x, t) =
∑

i fi + 1
2
u∇ρ∆t, the local density ρ(x, t) and

its gradient ∇ρ is used as input for the collision operator

C = − Sil [fl(x, t)− f eql (x, t)]

+ Fi(x, t)−
1

2
SilFl(x, t). (17)

For the collision matrix S and its corresponding transformation matrix we use the set

given in [41]. The correction term Fi(x, t) = ∆t (ci−u)
c2s
·
[
∇ρc2

s(Γi − wi) + F(e)Γi
]

accounts

for the density inhomogeneity and external forces, with Γi = wi

[
1 + ei·u

c2s
+ (ci·u)2

2c4s
− |u|2

2c2s

]

[40]. The fluid velocity is linked to the density ρ via the second moment

ρu =
∑

i fici + 1
2
F(e)∆t. The equilibrium distribution has the form f eql (x, t) =

wi

[
ρ0 + ρ

(
(ci·u)
c2s

+ (ci·u)2

2c4s
− |u|2

2c2s

)]
. The capsule mesh is coupled to the LBM-grid via

the immersed-boundary method using the four-point stencil [42]. The calculation of the
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field for the density ρ(x, t) used in [40] is replaced by tracking nodes inside the capsule

and setting ρ(x, t) as ρcapsule inside and ρfluid outside of the membrane and updating

the capsule surface via the membrane-forces.

Oscillating flow. To drive the oscillating flow, an external (volume-)force F
(e)
flow =

Uρω[cos(tω) − 2ε sin(2tω)]êy is applied to the LBM. To screen hydrodynamic self-

interaction, we use bb walls in x and z-direction with velocity uw(t) = u(t) to ensure

Dirichlet boundary conditions of the flow.

Parameters and unit-conversion. The used LBM parameters can be obtained from

the SI parameters via the conversion values for length sL = 7.57 · 10−7m, mass

sM = 4.348 · 10−16kg and time sT = 4.54 · 10−8s. All LBM simulations are performed

with a viscosity η = ηwater = 1 mPas , gravitational acceleration g = 9.81m/s2, fluid

density ρ = ρwater = 1000
kg
m

3

and kv = 2.78 · 105 kg
s2m. The amplitude of the liquid’s

velocity is U = 0.5m
s and the period is T = 90µs if not given otherwise. The cubic

simulation box has a length of 1.14× 10−4m.

3. Inertia driven actuation: Approximate analytical results

Soft particles are periodically deformed in shaken liquids, which causes a time-dependent

viscous drag coefficient of the particle. How this deformability drives passive swimming

of a particle in a shaken liquid is determined by an approximate analytical approach.

We discuss here a particle with a drag coefficient ζtot. This already simplifies the

dynamical equation (13). We further neglect the Basset force and the added mass in

equation (12) but take the force F(0) and the dominant viscous drag contribution to

F(1) into account. In this case we obtain the approximate dynamical equation for the

velocity of a stiff particle

M
dv(t)

dt
= ζtot [u0(t)− v(t)] +Mf

du0(t)

dt
, (18)

with the particle mass M , the displaced fluid mass Mf and the constant Stokes drag

coefficient ζtot. To justify the validity of this approximations we compare them with the

full numerical results in the next section.

For a sinusoidal liquid motion u0(t) as described by equation (1) with ε = 0 the

solution of equation (18) is v(t) = v(t)êy with

v(t) = Ce−
ζtot
M

t + A sin (ωt+ φ) , (19)

whereby

A = U

√
M2

fω
2 + ζ2

tot

M2ω2 + ζ2
tot

= U

√
(Mfω/ζtot)

2 + 1

(Mω/ζtot)
2 + 1

(20)
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is the amplitude of the particle oscillation and the phase shift relative to the time-

dependent liquid motion is given by

φ = − arctan

(
ζtotω(M −Mf )

MMfω2 + ζ2
tot

)
. (21)

The exponential contribution to equation (19) includes the relaxation time τv = M
ζtot

that the particle needs to adjust its velocity v to the velocity of the liquid u0. We

approximate this time scale by

τv =
M

ζtot
≈ 4m

4ζb
=
m

ζb
(22)

for the bead spring models and for the capsule by

τv =
M

ζtot
=

2R2ρ

9η
(23)

with

ζtot = 6πηR , V =
4

3
πR3 , M = ρV. (24)

We discuss in the following the case M ≥ Mf (but also M < Mf is possible). For

a high friction or slow frequency, i.e. M
ζtot
ω � 1, the particle velocity adjusts rather

quickly to the liquid motion. This means the particle quickly adapts to the motion of

the liquid, i.e. A→ U and φ→ 0 (cf. equations (20) and (21)) and the particle’s inertia

is negligible in this case.

In the range M
ζtot
ω ' 1 the particle’s inertia becomes important and it can not

follow the liquid velocity, which results in A < U , φ < 0. This lag behind of the particle

can be used to achieve a non-vanishing mean velocity: If the shape of the deformable

particle and therefore the drag is different in each half cycle of the shaking, as indicated

in figure 2b), the delay of the particle with respect to the fluid is different in each half

cycle. This difference may finally lead to a net motion of the particle with respect to

the fluid. Since the liquid does not move in the mean, this relative net motion results

in an absolute particle actuation.

In order to gain further analytical insight, we consider an asymmetric, i.e.

anisotropic, deformable particle as illustrated in figure 2b). We assume a fixed shape

and therefore a fixed Stokes drag during each half period as described by

ζtot(t) =

{
ζ1 at 0 < t < T

2
,

ζ2 at T
2
< t < T ,

(25)

and continued analogously in the following periods. These two different constant values

of the Stokes drag just mimic the essence of the different time-dependent shapes and

Stokes drags of the particles sketched in figure 1. Numerical results of the full equations,

i.e. that include the deformations of the particles, are given in the next section.

For a sinusoidal liquid velocity the particle velocities in both half periods are

v1,2(t) = C1,2e
− ζ1,2

M
t + A1,2 sin (ωt+ φ1,2) , (26)
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a) b)

c) d)

tot tot

t t

Figure 2. We consider a particle of mass M different from the surrounding liquid of

mass Mf for the identical volume. We assume a sinusoidal fluid velocity u0(t) given

by equation (1) for ε = 0, see also solid lines in c) and d). If the shape and the Stokes

drag of the particle is constant in time, the particle velocity is also a sinusoidal, but

has a smaller amplitude and follows with a small phase shift (dashed line in figure c)).

For a different shape and a Stokes drag in both half periods, i.e. ζ1 6= ζ2, the particle

velocity is also differently, as indicated by the dashed line in figure d). This leads to a

different mean velocity of the particle in each half cycle. Therefore, the actuation step

is different in each half cycle which results in a net particle actuation. Parameters:

U = 1, T = 1, Mf = 1, M = 2.

whereby Ai and φi are calculated as given in equations (20) and (21) but with the

according value of ζtot(t). Due to the periodic liquid motion, the boundary conditions

for the particle velocities are

v1(0) = v2(T ), v1

(
T

2

)
= v2

(
T

2

)
. (27)

This allow the determination of the constants C1,2 as

C1 = UωΓ
(ω2M − ζ1ζ2)(e−

2ζ2π
ωM + e−

ζ2π
ωM )

e−
π(ζ1+2ζ2)

ωM − e− ζ2πωM

, (28)

C2 = UωΓ
(ω2M − ζ1ζ2)(1 + e−

ζ1π
ωM )

e−
π(ζ1+2ζ2)

ωM − e− ζ2πωM

(29)

with the abbreviation

Γ =
(ζ1 − ζ2)(M −Mf )

(ω2M2 + ζ2
2 )(ω2M2 + ζ2

1 )
. (30)

The mean velocity of the particle is then given by

vn =

∫ T
0
v(t)dt

T

=
Uω2MΓ

2ζ1ζ2π
(
e
π(ζ1+ζ2)
ωM − 1

)
[
(ζ1 + ζ2)(ζ1ζ2 + ω2M2)

(
1− eπ(ζ1+ζ2)ωM

)
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+ (ζ1 − ζ2)(ω2M2 − ζ1ζ2)
(
e
ζ1π
ωM − e ζ2πωM

)]
. (31)

The equations (30) and (31) allows to discuss the requirements of a particle actuation,

i.e. a non-vanishing mean velocity vn. To achieve a mean velocity the factor Γ must not

be zero. This means firstly that the mass density of the particle and the surrounding

fluid must differ, i.e. M 6= Mf . In addition the drag coefficients in both half cycles have

to be different, i.e., ζ1 6= ζ2. This is further illustrated in figure 2.

For an equal mass density of the particle and the liquid, M = Mf , the particle

follows the fluid motion instantaneously and the mean velocity vanishes. For M 6= Mf

but identical drag coefficients in both half periods, as in figure 2a), the fluid velocity

u0 and the particle velocity v(t) are both sinusoidal as indicated in figure 2c). Both

velocities have a different amplitude and there is a relative phase shift, but there is again

no net progress of the particle.

If the shape and drag coefficients of the anisotropic particle in figure 2b) are different

in both half cycles of the shaking, i.e. ζ1 6= ζ2, then one has a non-symmetric velocity

v(t) of the particle as shown in figure 2d). This asymmetry of v(t) causes a net progress

of the particle per cycle.

The net progress of a deformable particle depends strongly on the relaxation time

τv. For a small frequency, i.e., τvω � 1, one obtains only a small actuation because the

particle follows the liquid’s motion nearly instantaneously, i.e. v(t) ≈ u0. This means

vn → 0 for ω → 0 (which follows also with equation (31)).

Hence the requirements of the particle actuation can be discussed with equation

(31). Note that it takes the particle inertia into account but the fluid Reynolds number

is not important for the actuation.

A time-dependence of the drag coefficient can be achieved with a soft particle

in a shaken fluid. The difference in the drag coefficient in both half periods, i.e.

ζ(t) 6= ζ(t + T/2), (as sketched in figure 2b)) can be achieved with an asymmetric

particle in a sinusoidal shaken fluid. In case of a symmetric soft particle a different

shape and therefore a different drag coefficient of the particle in each half cycle can be

achieved by a non-symmetric periodic fluid velocity u0(t) with ε 6= 0 in equation (1).

This is further exemplified in the next section.

To compare the approximation in this section for v and the results from simulations

in the next section, gravity must be taken into account. Gravity leads approximately

to the additional contribution

vs =
g

2

(
Mf −M

ζ1

+
Mf −M

ζ2

)
(32)

to the mean actuation velocity, cf. equation (31).

4. Numerical Results

In this section, we explore numerically the inertia driven dynamics and locomotion of

four soft particles in a shaken liquid, which are sketched in figure 1. The selected
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numerical simulations are guided by the results of the previous section i.e., particle

locomotion is expected in parameter ranges with different mass densities of the particles

and the liquid and the Stokes drag of a particle is is unequal during each half of a

shaking period T . Such a time-dependent Stokes drag can be realized by asymmetric

particles but also with symmetric ones.

Firstly, the dynamics of the asymmetric particles is investigated for the sinusoidal

shaking velocity u0 in equation (1) with ε = 0. We show simulations of the bead-spring

tetrahedron in section 4.1 and compare the results with a more realistic Janus capsule

in section 4.2. The intrinsic anisotropic of both particles causes different deformations

and Stokes drags during each half period of the sinusoidal velocity u0.

Secondly, symmetric particles are investigated. To achieve different deformations

and Stokes drags during the two halves of the shaking period for these particles as well,

we utilize a non-symmetric shaking velocity in equation (1) with ε 6= 0. We discuss the

dynamics of a symmetric bead-spring ring and show that a symmetric capsule behaves

similar to the ring in section 4.3.

All particles are soft particles with a different mass density than the liquid. They

are deformed in shaken liquids, which is taken into account in the numerical simulations.

Hence, besides the velocity relaxation time τv (cf. equations (22) and (23)) considered

in sec. 3, also the shape relaxation time τk and especially the ratio T/τk are important.

The shape relaxation time is given by the time the particles needs to relax to their

equilibrium shape after a deformation. To determine the order of the relaxation-time

scale, we use as an estimate for the bead spring models

τk ≈
√
m

k
(33)

with the spring constant k, cf. equation (6), and the bead mass m and for the capsules

τk ≈
√
ρcapsuleV

G
(34)

with the capsule volume V and the surface shear elastic modulus G.

4.1. Actuation of a tetrahedron in a sinusoidally shaken liquid

We investigate at first the motion of asymmetric particles in a sinusoidal shaken fluid.

We begin with the simple bead-spring tetrahedron. Two orientations of the bead-spring

tetrahedron in a vertically shaken fluid are stable, one with a corner upward (N), cf.

figure 3a), and one with a corner downward (H). Figure 3a) shows the N-tetrahedron

at four deformations during one period T of a sinusoidally shaken liquid.

The center of mass of the tetrahedron, yc(t), follows via the viscous drag the

oscillatory motion of the shaken liquid. Moreover, yc(t) exhibits besides an oscillatory

motion also a mean net propulsion as indicated in figure 1a). The resulting mean velocity

vn of the center of mass, which is studied in the following, is determined by fitting a

straight line to yc(t) over a sufficient number of periods after a transient phase. The

parameters for the numerical studies are given in section 2.2. We give the mean velocity
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Figure 3. a) shows four snapshots of a deformable, upward oriented tetrahedron(N)

during one period T in a sinusoidally shaken fluid. In b) the mean propulsion velocity

vn of the tetrahedron is given for two ratios between the mass density of the beads

and of the fluid, i.e. for ρ/ρf = 5, 15. vn is given in units of the related sedimentation

velocities vs,i, respectively. The N-tetrahedron outweighs gravity for ρ/ρf = 15 in the

range U/vs,15 & 160 and rises in the shaken liquid. For ρ/ρf = 5 the N-tetrahedron

rises in the range U/vs,15 & 210. The sedimentation velocity of the H-tetrahedron

is enhanced by liquid shaking as indicated by the dash-dotted line. Parameters: see

section 2.2.

vn and the amplitude U of the shaking velocity in units of the sedimentation velocity

(absolute value) denoted by vs,r, whereby the index r indicates the ratio of the density

of the tetrahedron and the fluid, ρ/ρf = r. The sedimentation velocities vs,5 = 8.9 ·10−3

and vs,15 = 3.1 · 10−2 (absolute values) are determined without a shaking of the liquid

(pure sedimentation).

In figure 3b) we show the mean velocity vn of the tetrahedra in the gravitational

field as function of the amplitude U . For the N-tetrahedron for two ratios ρ/ρf = 5, 15

and for the H-tetrahedron for ρ/ρf = 15. The sedimentation velocity vs,r and vn increase

with the density ratio ρ/ρf . For N-tetrahedra the mean velocity vn becomes positive for

ρ/ρf = 15 beyond U/vs,15 & 160 and for ρ/ρf = 5 beyond U/vs,15 & 210. In both ranges

the locomotion of a tetrahedron outweighs the downward oriented gravitation and heavy

particles can be elevated. Therefore, for smaller mass differences between soft particles

and the liquid this locomotion mechanism becomes less effective and a higher velocity

amplitude U is required to outweigh gravitation. A downward orientated shaken heavy

tetrahedron (H) will sediment faster than without shaking. Furthermore, a buoyant

particle with ρ/ρf = 1 follows the oscillatory liquid motion and its mean velocity vn
vanishes in agreement with the reasoning given in the previous section. The inertial

actuation is also found for tetrahedra lighter than the liquid, i.e. ρ/ρf < 1. Note

that the dependence on the initial condition can be avoided by an asymmetric mass

distribution of the beads, because this leads to a reorientation of the tetrahedron. For

example with one bead lighter than the other three beads, the lighter bead will point

upwards after a certain time. The inertia driven actuation of such a tetrahedron is

discussed in Appendix B.
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Figure 4. a) shows the shaking velocity u0(t) with ε = 0 in equation (1) in units of

the sedimentation velocity vs of an upward oriented tetrahedron (N) with ρ/ρf = 15.

The deformation of a tetrahedron, cf. figure 3a), is accompanied by a time-dependent

Stokes drag ζtot as shown in b) (in units of ζb = 6πηa) for three different ratios T/τk.

c) shows the time-dependent deviation Ā from the mean area A0 of the lower triangle

of a N-tetrahedron, as defined in equation (35), as well as the phase shift Θ/π between

the velocity u0(t) and the deformation. In d) the dependence of the mean velocity

vn/vs is given as a function of T/τk for the velocity amplitude U/vs ' 32. The dashed

line is obtained by equation (31) with ζ1,2. Parameters: k = 30000 and those given in

section 2.2.

The mean velocity vn depends also on ratio between the shaking period T and the

bead-spring relaxation time τk (cf. equation (33)). This dependence is shown in figure

4d) for a N-tetrahedron. This figure shows in part b) also the time-dependence of the

drag coefficient of the tetrahedron, ζtot(t) (cf. Appendix A ), which is caused by the

time-dependent deformation. Thus, in addition the deformation amplitude Ā of the

bottom triangle of the tetrahedron with area

A(t) = Ā sin

(
2π

T
t−Θ

)
+ A0 , (35)

is given in figure 4c). Also the phase shift Θ of the deformation and the flow is shown.

The area A(t) is determined by a fit to the data.

If T is considerably smaller than the relaxation time τk, the deformation of the

tetrahedron cannot follow the liquid oscillation and remains small, as indicated for the

deformation amplitude Ā in figure 4c). Consistently, the drag coefficient ζtot is nearly

constant as indicated for T/τk = 0.4 in figure 4b). In this case particles just sediment in

a shaken liquid. For larger T the tetrahedron becomes deformed during liquid shaking

and the drag coefficient ζtot(t) shows similar as u0(t) a sinusoidal time-dependence as

indicated for T/τk = 3.6 in figure 4b). However, for such short shaking periods the

tetrahedron deformation can still not follow the liquid oscillation and ζtot is nearly in

antiphase to u0(t) as indicated by in figure 4b) and in figure 4c). Due to this phase shift

for T/τk = 3.6 the Stokes drag in figure 4b) is larger during the downward liquid motion

with u0(t) < 0 than during its upward motion. Therefore, the inertia induced locomotion

is downward oriented for T/τk = 3.6 as also indicated in figure 4d) for the whole range

T/τk . 5.7. For T/τk = 9 beyond the maximum of vn/vs in 4d) the deformation of
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the tetrahedron follows u0(t) more closely with a smaller phase difference Θ and the

drag is slightly larger during the upward motion, cf. figure 4b). In this case and in

the range T/τk & 5.7 the locomotion mechanism points into the opposite direction to

the gravitation and can even outweigh gravitation for U/vs ' 32, i.e., vn/vs becomes

positive. vn/vs remains positive up to about T/τk ∼ 27 and beyond this ratio the

tetrahedron sinks again due to the gravitation.

Besides the shape relaxation time also the velocity relaxation time τv (cf. equation

(22)) plays a role as stated in section 3. We have chosen similar values of τv ≈ 0.07 and

τk ≈ 0.03. The period T is in the range 1 . T/τv . 6, so that the particle’s inertia is

significant.
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k = 6 · 10
4
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Figure 5. The mean locomotion velocity vn of the N-tetrahedron, cf. figure 3a), is

given as a function of T/τk for three different values of the spring stiffness k in equation

(6) with ρ/ρf = 15. The minima of the curve occur at similar values of T/τk ≈ 2 and

the maxima at T/τk ≈ 3 despite different values of k.

One can also use the approximate mean velocity in equation (31) by selecting the

drag coefficient ζtot from simulations of the tetrahedron. We use the maximal drag

during each half period for ζ1,2. The resulting dependence of vn/vs is indicated in figure

4d). This result confirms that the approximate approach presented in section 3 covers

the essential inertia driven locomotion mechanism considered in this work.

In figure 5 the dependence of vn/vs on the ratio T/τk is shown for different values of

the spring constant k of the tetrahedron. The extrema and the zero of vn/vs are located

at similar values of T/τk. Moreover, the magnitudes of the minima and maxima of vn/vs
differ only slightly for different values of k. This emphasis again the importance of the

ratio between shaking period and the particle’s relaxation time τk

4.2. Actuation of a Janus capsule in a sinusoidally shaken liquid

With a Janus capsule that is composed of two parts of different elasticity we consider

in this section a realistic soft anisotropic particle. The four snapshots shown in 6a)

highlight the different deformations during a sinusoidal shaking cycle T . An asymmetric

Janus particle has also two stable orientations in the shaken liquid: One with the soft
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half on top as in figure 6a) (upward oriented Janus capsule N), or with the soft part at

the bottom (H).
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Figure 6. a) shows four snapshots of a deformable, with the soft side upward oriented

Janus capsule (N) during a period T in a shaken fluid with the elasticity ratio α = 0.1.

Figure b) shows the sinusoidal shaking velocity u0(t)/vs in units of the sedimentation

velocity vs of the Janus capsule. The lower part in b) shows the Stokes drag ζtot(t) in

units of the Stokes drag ζ0 = 6πηR of the undeformed capsule for the elasticity ratio

α = 0.1 (solid line) and the symmetric capsule with α = 1 (dashed line).

The capsule simulations are performed with the LBM and, besides the parameters

given in section 2.3, the following values are used: radius of the capsule R = 10µm,

ρJanus = 2ρfluid, G
(0) = 3.95 · 10−3kg/s2 and κ

(0)
c = 3, 77 · 10−13kg m2/s2. For the elastic

properties of the second half of the capsule we set κ
(var)
c = ακ(0) and G(var) = αG(0) with

an elasticity ratio α = 0.1. This results in the two ratios T/τk ≈ 2 and T/τv ≈ 2 (cf.

equations (23) and (34), determined with G(0)), which ensure that the Janus capsule

is deformed during the shaking of the liquid and that the inertia of the capsule is

significant.

For Janus capsules neither the deformation nor the Stokes drag ζtot has a symmetry,

i.e. ζtot(t) 6= ζtot(t+ T/2), as indicted for α = 0.1 by the snapshots in figure 6a) and in

figure 6c), respectively. Therefore the time-dependence of yc(t) for a N Janus capsule in

figure 1b) displays the inertia induced locomotion (cf. figure 1b) ). This is not the case

for the symmetric capsule with α = 1.0: The Stokes drag ζtot(t) given in figure 6c) has

the symmetry ζtot(t) = ζtot(t+ T/2). Consequently, the symmetric capsule just sinks in

a sinusoidally shaken fluid in the presence of gravitation.

The mean velocity of the Janus capsule vn/vs is shown in figure 7 as function of the

velocity amplitude U . The sedimentation velocity of the H Janus capsule is enhanced

by the oscillatory fluid motion as shown by the lower curve in 7a). For a velocity

amplitude U & 500 vs (with vs ≈ 0.15mm
s ) the locomotion of the N capsule outweighs

gravitation and moves upward, i.e., vn > 0. This is indicated by the dashed curve in

7a). As for the tetrahedron the locomotion increases with the difference between the

mass density of the capsule and the liquid. This also means, the critical amplitude
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Figure 7. The mean actuation velocity vn of a Janus capsule is given as a function

of the shaking-velocity amplitude U in equation (1) with the soft side either upwards

(N) or downwards (H). In the N-case the capsule locomotion outweighs gravitation if

U & 500 vs and vn becomes positive. In the H-case the shaking of the liquid enhances

the sinking velocity. b) shows vn/vs for the N-capsule as function of the elasticity

ratio α. At α = 1 the particle sinks. By enhancing the asymmetry (decreasing α) the

capsule locomotion outweighs gravitation for α . 0.8.

U to outweigh gravitation is reduced by increasing the ratio ρcapsule/ρliquid. The mean

locomotion velocity vn/vs for an upward oriented Janus capsule in a gravitational field

is also shown as function of elasticity ratio α in figure 7b). This graph shows that the

inertia induced locomotion increases with increasing elastic asymmetry (i.e., decreasing

α) and outweighs in the range α . 0.8 gravitation for the given parameters. The

symmetric capsule with α = 1.0 just sinks in the mean.

In figure 7a) the Reynolds number Re in LBM simulations is finite with 0 ≤ Re . 3

and an inertia induced capsule locomotion is found at small and intermediate values of

the Reynolds number (and also beyond this values). The qualitative behavior of this

capsule locomotion is similar as for the tetrahedron in the limit of vanishing Reynolds

number.

In this and the following section, we explore the conditions for which also common

symmetric soft micro-particles behave in shaken liquids as passive microswimmers. We

begin with a symmetric bead-spring ring as sketched in figure 1. The parameters

used in simulations are given in section 2.2 and the velocities are given in units of

the sedimentation velocity vs = 0.031 (determined without shaking of the liquid).

Figure 8a) shows four snapshots of a bead-spring ring during one period T of a

non-symmetric shaking velocity u0(t) given by equation (1) and as shown in figure 8b)

for ε = 1. For a sinusoidally shaken liquid with ε = 0 and u0(t) = −u0(t + T/2)

the drag coefficient ζtot(t) (cf. Appendix A ) is the same in both half periods with

ζtot(t) = ζtot(t + T/2), as indicated in figure 8c). In this case the ring exhibits no net

actuation and sinks in the gravitational field. For a non-symmetric periodic shaking

velocity with ε 6= 0 and u0(t) 6= −u0(t+ T/2) the drag coefficient of the ring is different

in both half periods as shown for ε = 1 in 8c). This leads to the passive swimming as

shown in figure 1c).
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Figure 8. a) shows four snapshots of the bead-spring ring during one period T of

the liquid velocity as shown by the solid line in b) and as given by equation (1) for

ε = 1. In this case the drag coefficient ζtot(t) (in units of ζb = 6πηa) is different in

both half periods as shown by the solid line in c), i.e., ζtot(t + T/2) 6= ζtot(t). This

causes a finite mean actuation velocity vn. For ε = 0 the shaking is sinusoidal, cf.

dashed line in b), the drag coefficient is the same in both half periods of the shaking,

i.e., ζtot(t) = ζtot(t+ T/2), and vn = 0.

Figure 9 shows the mean velocity vn of the bead-spring ring as a function of ε.

For ε & 0.05 the upward directed, inertia induced actuation is sufficiently strong to

outweigh gravitation and vn becomes positive. For ε < 0 liquid shaking enhances the

sedimentation velocity. Thus the sign of ε determines the direction of the inertia induced

actuation of the semiflexible ring.
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Figure 9. The mean actuation velocity vn varies linearly with the modulation

parameter ε of the shaking velocity in equation (1). For sufficiently positive values

ε & 0.05 the liquid shaking outweighs gravitation and vn becomes positive. For

sinusoidal shaking with ε = 0 the particle sinks due to gravity and at negative values

of ε the inertial actuation leads to an enhanced sedimentation velocity.

The mean velocity vn is given as function of the amplitude U of the shaking velocity

in figure 10. Without shaking at U = 0 the ring sinks. With increasing values of U and

ε = 1 the sinking velocity slows down until it turns over to an upward motion at larger



Engineering passive swimmers by shaking liquids 19
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Figure 10. a) shows the mean propulsion velocity vn as a function of the shaking

amplitude U . For positive ε the actuation is upward directed and for ε = 1 it outweighs

gravitation in the range U & 225vs, i.e., vn becomes positive. b) shows the mean

velocity of the ring as a function of the ratio T/τk for two different values of the spring

stiffness k. At small values of T/τk the ring can not follow the liquid motion, it is not

deformed and just sinking. At intermediate values T/τk the mean velocity becomes

positive for both values of k with a maximum in the range T/τk ≈ 5. For longer

shaking periods the ring sinks again.

The mean velocity vn depends also on the ratio between the shaking period and

the relaxation time T/τk as shown in figure 10b) for two values of the spring stiffness

k. At small values of T/τk . 0.4 the ring sinks because the shaking period is too small

to cause sufficient deformations and differences between the Stokes drags during the

two half periods. For longer periods T and intermediate values of T/τk the acceleration

induced shape and Stokes drag changes of the ring become sufficiently strong to outweigh

gravitation. For both spring constants k the mean velocity becomes positive in a wide

range and reaches its maximum at a value of T/τk ≈ 5 due to the large deformation, as

indicated in figure 10b). At higher values of T/τk the deformation becomes smaller and

therefore the ring sinks again due to gravitation. The values of the shape relaxation time

τk ≈ 0.08 (cf. equation (33)) and the velocity relaxation time τv ≈ 0.07 (cf. equation

(22)) are comparable, so that T/τv is in a range where the particle’s inertia is important.

4.3. Actuation of a symmetric capsule in a non-symmetrically shaken liquid

In the previous section we demonstrated that a symmetric, semiflexible bead-spring

ring is actuated in a liquid that is non-symmetrically shaken with u0(t) 6= −u0(t+T/2).

This is also the case for a realistic symmetric capsule as we show by LBM simulations

in this section. Besides the parameters given in section 2.3, the following ones are used:

R = 10µm, ρcapsule = 2ρfluid = 2000
kg
m3 , kv = 2.78 · 105 kg

s2m, G = 7.89 · 10−4 kg
s2 , ε = −1

and κc = 1.51 · 10−14 kg m2

s2 . The shaking period T is chosen so, that the capsule’s

inertia is significant and the capsule is sufficiently deformed: T/τv ≈ 2 and T/τk ≈ 0.9

(cf. equations (23) and (34)).
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Figure 11. a) shows the capsule’s shape at different times in a shaken liquid with a

non-symmetric liquid velocity, i.e., u0(t + T/2) 6= u0(t), as shown by the solid line in

b) and as given by equation (1) for ε = −1.0. In c) the drag coefficient ζtot(t) of the

capsule is shown in units of ζ0 = 6πηR. In a sinusoidally shaken liquid, cf. dashed line

in b), ζtot(t) is identical in both half periods. For a non-symmetrically shaken liquid

also ζtot(t) is non-symmetric, cf. solid line and ε = −1, as well as the capsule shapes

in a).
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Figure 12. a) shows the mean-propulsion velocity vn of a homogeneous capsule as a

function of the asymmetry parameter ε of the shaking velocity in equation (1). For a

sinusoidal shaking with ε = 0 the capsule sinks. At sufficiently negative values ε < 0

the capsule moves upwards and for ε > 0 downwards. This allows to control the

direction of vn via the time-dependence of liquid shaking. In b) vn is given as function

of the amplitude U of the shaking velocity. At low values of U the shaking effect is

weak and the capsule sinks. In the range U ≥ 450vs the actuation induced by the

shaking is stronger than the gravity and the capsule moves upwards.

In figure 11a) the shape of the capsule is shown during one period T of the non-

symmetric shaking velocity with u0(t + T/2) 6= u0(t). For a sinusoidal shaking as

displayed in figure 11b), i.e., ε = 0 and u0(t) = −u0(t + T/2), the capsule’s drag

coefficient ζtot(t) (cf. Appendix A ) shown in figure 11c) is the same during both half

periods of the shaking with ζtot(t) = ζtot(t+T/2). In this case there is no mean actuation

and the capsule just sediments due to gravity. If the liquid is shaken non-symmetrically



Engineering passive swimmers by shaking liquids 21

with ε 6= 0 the drag coefficient differs in both half periods, i.e., ζtot(t) 6= ζtot(t + T/2).

In this case the capsule is actuated by liquid shaking.

Figure 12a) shows how the mean velocity vn of the capsule depends on the

asymmetry parameter ε of the shaking velocity. At sufficient negative values of

ε . −0.01 the upward oriented actuation overcomes gravity and we find a positive

mean velocity vn. Positive values of ε enhance the sedimentation. Thus the direction

of the mean capsule actuation can be controlled via the asymmetry parameter ε of the

shaking velocity. Note that the mean velocity induced by the shaking also depends on

the period T .

Besides the asymmetry ε also a sufficiently high amplitude U of the shaking velocity

is required to overcome gravity. Figure 12b) displays the mean velocity vn as a function

of the amplitude U : At low values of U the capsule sinks due to the gravity. For the

chosen parameters one finds with U = 0 the sedimentation velocity vs = 0.19mm
s . For

U & 450vs the mean velocity vn induced by liquid shaking is stronger than sedimentation

and the capsule moves upwards for ε = −1.0. The Reynolds number used in figure 12b)

is 0 < Re . 2. Hence, the inertia induced actuation effect is found at small as well as

at intermediate values of Re. The qualitative results are comparable to those found for

the ring in the previous section in the limit of a vanishing Reynolds number, compare

e.g., figure 10a) and figure 12b).

5. Summary and conclusions

We investigated a new kind of microswimmers, so-called passive swimmers. These

microswimmers are soft particles with a mass density different from the liquid, which

are driven by an oscillating background flow or a shaking of the liquid.

Previous studies focused on the propulsion of intrinsically asymmetric soft particles

in sinusoidal liquid motion [11, 12]. With our extension to soft bead-spring tetrahedrons

and to asymmetric, soft Janus capsules, we show that the inertia driven propulsion

mechanism can even outweigh gravity. Moreover, we show that this novel inertia driven

passive swimming mechanism works for the wider class of symmetric soft particles, such

as capsules.

By a semi-analytical model calculation we cover the essential properties of the

inertia driven propulsion mechanism in liquids shaken periodically with the velocity

u0(t+ T ) = u0(t). It shows the following requirements: First, the mass densities of the

particles and the liquid must be different. Secondly, the Stokes drag during both periods

of the shaking with different directions must differ (e.g., due to a deformation). Thirdly,

the shaking period T has to be chosen in the order of magnitude of the relaxation time

that the particles needs to adjust to the liquid velocity. The essential difference in the

drag coefficient during both half periods is achieved by the asymmetry of the particle.

We suggest that this asymmetry can also be achieved by a non-symmetric shaking

velocity with u0(t + T/2) 6= u0(t), as given for instance by equation (1), instead of

the intrinsic particle asymmetry. Such a non-symmetric liquid shaking leads to a non-
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reciprocal particle deformation and Stokes drag.

This qualitative reasoning and the analytical considerations are verified and

supported by simulations. We use symmetric and asymmetric bead spring models and

complementary Lattice Boltzmann Simulations of realistic soft symmetric capsules and

asymmetric Janus capsules. Asymmetric particles in a sinusoidally shaken fluid have

two stable orientations and they exhibit therefore two directions of passive swimming,

depending on the initial orientation. In contrast, for the wider class of symmetric

particles in non-symmetrically shaken liquids the propulsion direction is determined

by the shaking. Therefore the swimming direction can be selected by the engineered

time-dependence of liquid shaking.

To provide examples of achievable propulsion velocities for symmetric and

asymmetric Janus capsules we chose a realistic capsule size of about 10µm and a stiffness

of 8 · 10−4 N
m, which fits the values of common capsules [25, 43, 44]. A higher mass

density for capsules than for the liquid can be achieved if salt is dissolved in the liquid

inside the capsule [45], whereby water with dissolved salt can reach densities up to three

times higher than pure water (without salt). Here we chose the mass density ratio

ρcaps/ρliquid = 2.0 and the shaking frequency 10 kHz (see e.g., [46, 47, 48]) of the order

of the inverse of velocity relaxation time of about 44µs. For this choice of parameters

and a maximal amplitude 0.5 m
s of the liquid velocity one obtains for a symmetric

capsule with in Lattice Boltzmann simulations an upward swim velocity of about 57
mm

s . For a Janus capsule one obtains for shaking-velocity amplitude 0.3 m
s

an upward

swim velocity of about 15 mm
s .

Besides the possibility to engineer passive swimmers, the described effects have

further applications: The inertia induced actuation may be exploited for separating

particles with respect to their different mass and different elasticity (deformability). The

separation of two kinds of soft particles with a different stiffness is achieved by choosing

a shaking period that fits the shape relaxation time of one type of particles but not of

the others. In this case one particle type is stronger actuated and can be accumulated

for instance near one container wall. An example are biological cells. They have often

a different density than water [49] or other carrier liquids. In addition the stiffness of

cells is often an indicator of their health status [50, 51, 52]. In this case healthy cells

may be separated for instance from malignant cells by non-symmetric liquid shaking.

Our insights about inertia driven particle propulsion might also have impact on further

systems studied at finite values of the Reynolds number [53, 54].
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Appendix A. Dynamic Oseen tensor and drag coefficient

Dynamic Oseen tensor. The liquid velocity u(ri) at the particle positions ri includes

the imposed homogeneous flow u0 as described by equation (1) and the flow disturbances

caused by differences between the particle velocities vj and the liquid velocity u0(rj).

For this we use the general solution of the linear part of the Navier-Stokes-equation

ρf
∂u
∂t

= η∆u − ∇p + f(r, t) for an arbitrary point-like force acting on the fluid. The

solution of this problem with a point force f(r, t) = F(t)δ(r − r′) is given by [33]

uδ(r) =

∫
dt′ H(r− r′, t′)F(t′) , (A.1)

H(r− r′) = p(r, t)1− q(r, t)r⊗ r

r2
, (A.2)

p(r, t) =

(
1 +

2νt

r2

)
f(r, t)− g(r, t)

r2
, (A.3)

q(r, t) =

(
1 +

6νt

r2

)
f(r, t)− 3g(r, t)

r2
, (A.4)

f(r, t) =
1

(4πνt)3/2
exp

[−r2

4νt

]
, (A.5)

g(r, t) =
1

4πr
Φ

[
r

(4νt)1/2

]
, (A.6)

with ν = η
ρ
, the error function Φ, the unit matrix 1 and the dyadic product ⊗. This

allows to calculate the liquid velocity at a bead position ui = u(ri),

ui = u0(t) +
∑

j 6=i

t∫

0

dt′ Hi,j(t
′) · F(1)

j (t′) (A.7)

with Hi,j(t) = H(ri − rj, t). This velocity is composed of the homogeneous background

flow and the liquid velocity changes caused by the differences between the particle

velocities and the flow u0, which are induced by the forces F
(1)
j given in section 2.2.

Determination of the drag coefficient. To calculate the drag ζtot(t), we follow the

procedure given in [55, 56, 57]. For this, we use the positions of the beads/nodes on the

particle surface obtained by simulations. The drag at time t is determined by assuming

a fixed shape which implies a constant velocity vi = v = vêy on each bead/node. We

calculate the forces via

vi =
∑

j

Hi,jF
(P )
j , (A.8)

where

Hi,j =

{
O(ri − rj),
1
ζ b

1
(A.9)
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is the mobility matrix including the hydrodynamic interaction between particle ri and

rj described by the Oseen tensor O(r) = 1
8πηr

(
1 + r⊗r

r2

)
. The drag finally follows with

Ftot =
∑

j

Fj = ζtotv. (A.10)

The values ζ1 and ζ2 (used in equation (25)) are chosen as the maximal value during

the first or the second halve period, respectively.

Appendix B. Tetrahedron consisting of beads with different mass

Here we investigate the effects of the mass inhomogeneity on the propulsion velocity of

a tetrahedron. If all beads of a tetrahedron have the same mass density, the upward

oriented tetrahedron (N) and the downward oriented one (H) are both stable. By

changing the mass density of one of the four beads then one of both orientations with

respect to the gravitational field is preferred, similar as in reference [12]. For example,

if the tetrahedron sinks (without liquid shaking) the lighter bead points upwards after

a certain time. For this orientation we investigate the effect of a inhomogeneous mass

density on the propulsion velocity.

We introduce the density ratio α between one and the other three beads, i.e.,

ρ1 = αρ2,3,4, and keep the mean density ρ̄ constant:

ρ =
1

N

N∑

i=1

ρi , (B.1)

ρ1 = αρ2, ρ2 = ρ3 = ρ4 . (B.2)

Figure B1 shows the mean velocity vn of the tetrahedron and the amplitude of the
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Figure B1. The left part shows the mean propulsion velocity of the tetrahedron for

different mass-density ratios ρ̄/ρf as function of the density ratio α and the right part

the amplitude of the shape deformation Ā as defined in equation (35).

shape deformation Ā (defined in equation (35)) as a function of the mass-density ratio

α. The tetrahedron moves slower with an increasing difference of the densities of the

beads, which can be explained as follows. A lighter bead can follow the heavier ones
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easily and thus the lighter bead moves more in phase with the heavy beads than a

bead of the same mass density. This results in smaller spring deformation and in a

lower deformation amplitude Ā, cf. figure B1. A smaller amplitude Ā leads to smaller

temporal changes of the drag coefficient ζtot and therefore to slower mean velocity.
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Figure B2. The mean propulsion velocity of a tetrahedron is shown for α = 0.6 as

a function of the amplitude U of the liquid velocity, obtained by simulations of the

Maxey-Riley equations and Lattice Boltzmann simulations.

So far we have used the Maxey and Riley equations and the dynamic Oseen tensor,

i.e., we have neglected effects of a finite Reynolds number. Here we compare the

results with Lattice Boltzmann simulations of the full Navier-Stokes equation with the

tetrahedron. Figure B2 shows the mean velocity of a tetrahedron with α = 0.6 as

function of the amplitude U of the shaking velocity. Both methods show that the mean

velocity increases continuously with the amplitude U . Furthermore both simulations

show that at low values of U the tetrahedron sinks and above a critical value of U the

tetrahedron rises against gravity. Thus the numerical methods agree qualitatively. This

means the LBM simulations, taking effects of a finite Reynolds number into account,

and the Maxey and Riley equations including the dynamic Oseen tensor in the limit

Re = 0 describe inertia induced propulsion of the tetrahedron. This confirms that the

mean velocity is the result the temporal change of the drag coefficient ζtot(t) and a finite

Reynolds number just modifies this result quantitatively.
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Abstract – Non-neutrally buoyant soft particles in vertical microflows are investigated. We find
for light soft particles in downward Poiseuille flow cross-streamline migration (CSM) to off-center
streamlines and for heavy particles CSM to the center. In both cases a reversal of the vertical
flow direction and the related shear gradient causes a reversal of the migration direction. This
gravitational driven CSM of soft particles occurs also in linear shear flows: heavy (light) parti-
cles migrate antiparallel (parallel) to the shear gradient. The surprising, flow-induced migration
(reversal) is characterized by simulations and analytical approximations, confirming our plausible
explanation of the effect. This might be applied for separating particles.

Copyright c© EPLA, 2017

Introduction. – Microfluidics is a rapidly evolv-
ing cross-disciplinary field, ranging from basic physics
to a large variety of applications in life science and
technology [1–3]. The blooming subfield of the dynam-
ics of neutrally buoyant soft particles in suspension and
their cross-streamline migration (CSM) in rectilinear shear
flows plays a central role for blood flow, (blood) cell and
DNA sorting or polymer processing among others [2–5].
In contrast, little is known about the dynamics of non-
neutrally buoyant soft particles in rectilinear flows. We
demonstrate in this work a novel migration reversal for
such particles.

Segre and Silberberg reported in 1961 on CSM of neu-
trally buoyant rigid particles in finite Reynolds-number
flows through pipes [6]. When particles and channels ap-
proach the micrometer scale, fluid inertia does not mat-
ter and particles follow the Stokesian dynamics. In this
limit CSM occurs not for rigid but for soft particles for
example in rectilinear flows [7,8], whereby the flows fore-
aft symmetry is broken, requiring intra-particle hydro-
dynamic interaction [7]. Such symmetry breaking occurs
also near boundaries via wall-induced lift forces [3,8,9] or
by space-dependent shear rates, so that dumbbells [7],
droplets [10,11], vesicles and capsules [12–14] exhibit CSM
even in unbounded flow. Such parity-breaking mecha-
nisms may be also accompanied by a viscosity contrast [15]
or chirality [16]. Recently, CSM was found for asymmetric
soft particles in time-dependent linear shear flow [17] and
that soft particles are actuated even in a homogeneous

but time-dependent flow by taking particle inertia into
account [18].

Heavy rigid particles in a finite Reynolds number flow
downward or upward in a gravitational field migrate away
from or to the tube center, respectively [19]. Effects of ax-
ial forces along the tube axis on particles and their CSM in
finite Reynolds number flows were studied in refs. [20–22]
and effects of axial (electrical) forces on (charged) poly-
mers in Poiseuille flows in refs. [23,24]. In the wide field
of sedimentation, characteristic deformations of sediment-
ing heavy vesicles have been explored only recently [25],
but very little is known about the dynamics non-neutrally
buoyant soft particles in vertical Stokes flows.

Here we show that during sedimentation in a channel
heavy soft microparticles migrate to its center, while rigid
particles do not [26]. Moreover, heavy (light) soft parti-
cles migrate antiparallel (parallel) to the shear gradient in
vertical rectilinear Stokes flows, as shown in fig. 1. This
dependence of the CSM-direction on the shear gradient
direction is obtained by approximate analytical calcula-
tions and by numerical simulations for soft capsules and
ring polymers. We also provide a plausible qualitative
explanation of CSM of non-neutral particles: It is based
on the interplay between the shear-induced orientation of
the elliptically shaped soft capsule (ring) together with its
anisotropic friction coefficients.

Model and approach. – To investigate the cross-
stream migration of non-neutrally buoyant soft particles

64003-p1
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Fig. 1: (Colour online) Impact of the gravitational force Fg

on migration trajectories rc(t) of a heavy capsule in a vertical-
plane Poiseuille flow u0(x) and channel width 2d. The simu-
lations reveal that the capsule displays (a) a migration to the
channel center when u0 ↓↓ Fg or (b) a migration to the wall
when u0 ↑↓ Fg . Parameters: see footnote 1.

under the impact of a vertical gravitational force
Fg = Fgey in rectilinear flows, we use the capsule and ring
as particle representatives, exposed to a vertical 3D, plane
Poiseuille flow along the y-axis

u0(x) = u0

[
1 − (x/d)2

]
ey (1)

with its two confining boundaries at xd = ±d and u0 ≷ 0
the maximum flow velocity at the channel center.

The capsule and ring are described by a bead-spring
model consisting of N beads. The surface of the cap-
sule is triangulated with the beads at the vertices (see
Supplementarymaterial.pdf given as Supplementary
Material (SM)). Their Stokesian dynamics [27] is described
by the coupled equations (1 ≤ i ≤ N),

ṙi = u0(ri) +

N∑

j=1

Hij · Fj , (2)

whereby the inertia of the beads is neglected due to the
small Stokes number (see SM). The particle center is given

by rc =
∑N

i=1 ri/N .
The force on bead j is given by Fj = −∇jV (r) + Fg

with V (r) referring to the total potential, and Hij denot-
ing the mobility matrix, as specified in the following.

For a capsule, the total potential is V (r) = VNH+Vb+Vv

with the Neo-Hookean potential VNH , suited to describe
rubber-like materials with a constant surface shear-elastic
modulus G [28,29], and a bending potential Vb

Vb = −κc

2

∑

i,j

(1 − cosβi,j) (3)

with bending elasticity κc. The angle βi,j is formed by
the two normal surface vectors of nearest-neighbor trian-
gles with beads at the triangle corners [30]. The potential

Vv = − kv

V0
(V(t) − V0)

2 keeps the capsule’s instantaneous

volume V(t) close to the reference volume V0 = 4
3πR3 of

a spherical capsule of radius R with volume stiffness kv.

The total potential of the ring of radius R reads
V (r) = Vh + Vb, using a harmonic potential Vh =
k
2

∑N
i=1(Ri − b)2 with spring constant k, equilibrium bond

length b, and Ri = |Ri| the magnitude of the bond vec-
tor Ri = ri − ri+1 of the next-neighbor beads i and i + 1.
The bending potential Vb with a bending stiffness κr is
given by

Vb = −κr

2

N∑

i=1

ln (1 + cosβi) , (4)

with the angle βi defined via cosβi = eRi−1 · eRi by the
bond unit vectors eRj = Rj/Rj .

The Blake tensor Hij , describing the hydrodynamic in-
teraction (HI) between beads i and j in the presence of a
single plane boundary within the yz-plane [31], reads

Hij(ri, rj) = SHij(ri, rj) − SHij(ri, r
′
j)

+ DHij(ri, r
′
j) − SDHij(ri, r

′
j) (5)

with r′
j = (xj + 2hj , yj, zj) the position of the mirror-

particle of bead j at a wall distance hj . The first term in
eq. (5) describes the bulk HI via the Oseen tensor [27]

SHαβ
ij (ri, rj) =

⎧
⎪⎪⎨
⎪⎪⎩

1

8πηRij

[
δαβ + eα

Rij
eβ

Rij

]
, i �= j,

1

6πηa
δαβ , i = j,

(6)

with eRij = Rij/Rij and Rij = ri−rj ; η and a refer to the
viscosity, respectively, bead radius, and α, β ∈ {x, y, z}.

The term SHij(ri, r
′
j) is the source singlet due to the

HI of the mirror bead j, given by eq. (6) for i �= j with
Rij replaced by R̄ij = ri − r′

j and ēR̄ij
= R̄ij/R̄ij . The

last two terms in eq. (5) refer to the Stokes doublet (D)

DHαβ
ij (ri, r

′
j) =

h2
j(1 − 2δβx)

4πηR̄3
ij

[
δαβ − 3ēα

Rij
ēβ

Rij

]
, (7)

and source doublet (SD)

SDHαβ
ij (ri, r

′
j) =

1

4πηR̄2
ij

hj (1 − 2δβx)

×
[
δαβ ēx

Rij
− δαxē

β
Rij

+ δβxē
α
Rij

− 3ēα
Rij

ēβ
Rij

R̄
x
ij

]
. (8)

Screening effects of a second wall are included by super-
position of the HI of the single walls, and provide rea-
sonable results for a channel width to particle size ratio
larger than 5 [32]. In simulations where wall-HI is turned
off, the mobility Hij in eq. (5) reduces to the Oseen

tensor SHij .
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We use throughout this work (dimensionless) parame-
ters given in footnote 1. τc = ηR/G and τR = ηR3/κr are
the typical relaxation time of a capsule and a ring, respec-
tively. In both cases the capillary number Ca = γ̇τ (with
τ = τc or τR) is a measure for the particle deformation,
with the shear gradient γ̇ = ∂xuyêx. Further information
on the modeling is provided in the SM.

Explanation of Fg-induced CSM. – We provide at
first a qualitative picture of the Fg-induced migration,
with the generic results of the simulation already shown
in fig. 1, and derive subsequently the Fg-induced CSM
velocity, obtained for small capsule deformations.

A. Qualitative analysis of CSM. Figure 2 shows how
a soft heavy capsule and ring (Fg < 0) are deformed by
the local shear gradient γ̇ of plane Poiseuille flows u0(x),
whereby the snapshots are from Stokesian dynamics sim-
ulations: (a) u0 ↓↓ Fg and (b) u0 ↑↓ Fg. For moderate
γ̇, their shape is nearly ellipsoidal or elliptic, respectively,
with their major axis being inclined at an angle θ with u0

and Fg; the sign of θ depends on the sign of the local γ̇ [29],
as shown in fig. 2(a) and (b). The drag coefficients ζ‖,⊥
of the distorted capsule and ring are different along and
perpendicular to their major axis with ζ‖ < ζ⊥. Therefore
a vertical force Fg acting on the obliquely oriented bodies
causes a slanted migration velocity v with an angle α to
Fg and with its transverse component vm. The sign of vm

and, hence, the CSM direction depends on the sign of the
local shear rate γ̇(xc), which is controlled by the direction
of u0. The resulting migration to the center (vm < 0) for
down-flow (u0 ↓) or away from center (vm > 0) for up-flow
(u0 ↑), is illustrated in fig. 2(a) and (b), respectively.

We note that the Fg-driven CSM of soft particles oc-
curs for any kind of vertical flow with a finite local γ̇,
including linear shear flow. This is to be contrasted to
the well-known CSM of neutrally buoyant soft particles
(Fg = 0), where a spatial-dependent shear gradient is re-
quired to drive the bulk migration [12,13]. When soft par-
ticles migrate towards the wall, the CSM gets balanced
by lift forces due to the wall-HI [9], so that the migration
stops at a certain wall distance, as shown below.

B. Analytical approximation of CSM. We now de-
rive an analytical expression of the CSM velocity vm for
the case where a total force F̄g = F̄gey acts on a shear-
distorted capsule. Motivated by our simulations, including
the snapshots in fig. 2, we approximate the spatially vary-
ing γ̇(x) by a constant γ̇(xc) across the capsule, i.e., the

1Model parameters: a) Flow: u0 = 0.5, d = 60, η = 1.0; (b) Cap-
sule: G = 0.1, κc = 0.1, kv = 3.0, a = 0.2, N = 642, b = 1.0,
R = 6.6; c) Ring: a = 0.5, k = 0.175, κr = 6.0, N = 16, b = 2.5,
R = 6.36; d) Gravitational force Fg = Fgey with Fg = −0.03. We
use throughout dimensionless parameters and simulation data can be
converted to SI-units by multiplying them by the s-factors for length
sm = 7.58 μm, time ss = 717 μs, and mass skg = 5.43·10−12 kg. The
parameters above then read in SI-units: R = 50 μ m, G = 1 μN/m,
u0 = 5mm/s, η = 1 mPas, and Fg = −0.01 corresponds via
F̄g ≡ NFg = gV Δρ to a density difference Δρ of about 10% for
water.

(a) (b)

u0 g u0 Fg

vm

v
Fg

vm

v
Fg

xc xc

Fig. 2: (Colour online) Explanation of the gravitational (Fg-)
driven CSM of a heavy capsule and ring in a vertical Poiseuille
flow u0: (a) CSM to the flow center when u0 ↓↓ Fg (vm < 0) or
(b) away from it for u0 ↑↓ Fg (vm > 0). The capsule (ring) is
deformed by the flow’s (local) shear gradient γ̇(rc) towards an
approximate ellipsoid (ellipse) with different drag coefficients
ζ‖ < ζ⊥ along and perpendicular to the major axis, which is
inclined to u0 and Fg at an angle θ, as depicted. Since ζ‖ < ζ⊥,
the force Fg on the oblique capsule (ring) leads to a skew mi-
gration velocity v at an angle α and a CSM component vm.
Important: A reversal of u0 with respect to Fg reverses the
CSM direction vm, as shown in (a) and (b).

Poiseuille flow is locally replaced by a linear shear flow.
The assumption of a linear shear flow entails that the cap-
sule shape is an ellipsoid with a major axis.

Under these prerequisites, the respective anisotropic
drag coefficients can be obtained by calculating first the
three different axes of a Neo-Hookean capsule from [28,29]

r2 = x2 + y2 + z2 = R2 +
25

3

Ca

γ̇
rT · J · r + O(Ca2) ,

J =
1

2

[
(∇ ⊗ u0) + (∇ ⊗ u0)

T
]

(9)

with the lengths d1 of the major and d3 of the minor axis.
They deviate from the radius R of a spherical capsule,

d1,3 =

[
1 ∓ 25

6
Ca

]−1/2

R, d2 = R, (10)

with the d1-axis inclined to u0 at an angle θ ≈ π/4 [29,33].
To obtain an analytical expression for the drag coeffi-

cients, we further assume rotational symmetry along the
capsule’s major a-axis [33] with a = d1 and approximate
the minor axis by b = (d2 + d3)/2. Using Perrin’s formu-
las [33], the drag coefficients associated with the a-major
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and b-minor axis are given by

ζ‖ = 16πηb

⎡
⎣

(2β2 − 1) ln
(

β+
√

B

β−
√

B

)

B
3
2

− 2β

B

⎤
⎦

−1

, (11)

ζ⊥ = 16πηb

[
(2β2 − 3) ln(β +

√
B)

B
3
2

+
β

B

]−1

(12)

with B = β2 − 1 and β = a/b. Decomposing F̄g into its
components F̄g,‖ and F̄g,⊥ , parallel and perpendicular to
the major a-axis, the CSM velocity along the x-axis is

vm = v · ex with v =
F̄g,⊥
ζ⊥

+
F̄g,‖
ζ‖

. (13)

A Ca-expansion of ζ‖,⊥ provides the leading order of the
Ca-dependence of vm, and is given by

vm =
5

96

F̄g

πηR
Ca + O(Ca2) (14)

with vm ∼ γ̇ being constant in linear shear flow. Equa-
tion (14) gives for the spatial-dependent Ca(x) of a plane
Poiseuille flow, Ca(xc) = − 2u0xc

d2
ηR
G , the CSM velocity

vm ≈ − 5

48

F̄gu0xc

πGd2
, (15)

showing how the migration direction can be controlled by
the relative orientation of u0 and F̄g = F̄gey, depending
on the location of the capsule center rc within the channel.

The F̄g-induced migration velocity vy = v ·ey along the
streamlines is determined by the Stokes drag and a defor-
mation dependent correction term ∝ Ca. For Poiseuille
flow it is given by

vy ≈ F̄g

6πηR
− 5

144

F̄gu0xc

πd2G
. (16)

When u0 ↑↓ F̄g and F̄g sufficiently large, the capsule’s
vy-velocity can become antiparallel to the flow direction
with the onset obtained from vy ≥ u0(xc, yc), i.e.,

F̃g ≥ 144πηRd2Gu0

24d2G − 5Rηu0xc

[
1 − x2

c

d2

]
. (17)

Simulations of CSM in unbounded flow. – With
our basic understanding of the Fg-driven CSM from the
previous section, we extend our study of the CSM of non-
neutrally buoyant soft particles by Stokesian dynamics
simulations of heavy soft capsules and rings (Fg < 0),
at first in unbounded Poiseuille flow.

Figure 3 shows for up (u0 ↑) and down flow (u0 ↓)
the CSM velocity vm for a capsule (left panel) and a ring
(right panel), extracted from the slope of the transverse
trajectory xc(t), as a function of xc ∼ Ca. Here and in
the following sections vm is a superposition of the con-
ventional CSM and the Fg-induced one. The capsule’s
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Fig. 3: (Colour online) Migration velocity vm vs. center posi-
tion xc ∼ |Ca| for a heavy capsule (left panel) and a ring (right
panel), mediated by the interplay between a gravitational force
Fg and an unbounded Poiseuille flow, streaming up- (u0 ↑) or
downwards (u0 ↓). For both particles, the vm-Ca characteris-
tics is similar, reflecting the generic feature of the Fg-driven
CSM. For u0 ↓↓ Fg ((a) and (c)), the capsule and ring always
migrate towards the center (vm < 0), even if Fg = 0; the fi-
nite Fg-value just enhances the CSM. For u0 ↑↓ Fg ((b) and
(d)), the CSM can be reversed towards the wall (vm > 0) once
Fg exceeds a certain threshold Fth

g . Further parameters: see
footnote 1.

Fg-values are varied in the range [0.01; 0.03] and corre-
spond to 10%–30%higher density than the surrounding
liquid2. Note, that vm is shown in fig. 3 only in the posi-
tive range 0 < xc < d, because vm changes only the sign
for −d < xc < 0.

For comparison the conventional CSM velocity for neu-
trally buoyant particles is also shown in fig. 3(a)–(d) (solid
lines), which is directed to the flow center for up and
down flow [12–14]. With a parallel force u0 ↓↓ Fg as
in fig. 3(a) and (c) a capsule and a ring exhibit increased
center-migration (vm < 0). This is no longer the case when
u0 ↑↓ Fg, as in fig. 3(b) and (d), where the capsule and
ring migrate away from the flow center, vm > 0, if Fg is
sufficiently large. This is the case in the range Fg > 0.001
for the parameters in footnote 1 and a capsule at least 1%
heavier than the liquid; otherwise the conventional center
migration takes over. Importantly, the Fg-induced CSM

2A number of biological cells are about 5%–15% heavier than
water [34] and salt-loaded capsules are even heavier.
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Fig. 4: (Colour online) Dependency of the trajectory rc =
(xc, yc) on the Neo-Hookean stiffness G for a capsule, sedi-
menting in a resting fluid (u0 = 0) between walls. Soft capsules
(small G), initially located at xc/d ≈ 0.9, depart faster from
the wall towards the channel center while rigid ones sediment
parallel to the wall.

velocity vm can be by a factor 10 larger than for neutrally
buoyant particles (solid lines), as shown in fig. 3.

As explained above, the Fg-driven CSM relies on the
interplay between Fg and the anisotropic friction of soft
particles, once they are deformed and obliquely oriented
by a local shear gradient. This means firstly that we get
a similar dependence of vm on Ca for soft capsules and
rings, which shows the generic feature of the Fg-driven mi-
gration. Secondly it means the Fg-driven migration works
also in a vertical linear shear flow indicated in fig. 2; fig. 3
may also be used to read off the expected CSM velocities
vm for known Ca-values of the linear shear rate.

For a capsule or a ring lighter than the fluid one has
Fg > 0, i.e., the migration is reversed for a given u0, as
predicted by eq. (15). The important point to bear in
mind is that the direction of the CSM is solely controlled
by the relative orientation of u0 and Fg, resulting in a
migration towards the center when they are parallel or to
the wall in the anti-parallel case.

Wall effects on CSM. – The previous exploration
of CSM of heavy particles in unbounded vertical-plane
Poiseuille flow allowed us to identify the key mecha-
nism of the Fg-induced CSM in bulk flow. In a bounded
Poiseuille flow lift forces induced by the hydrodynamic
wall-interaction (wall-HI) are expected [9] and their effects
on CSM are analyzed now.

CSM of a soft sedimenting capsule. We first look at a
heavy capsule, freely sedimenting in a vertical-plane chan-
nel when u0 = 0. In the absence of inertia, it is well-known
that rigid particles sedimenting between the two walls do
not display any CSM [26]. This changes once the particle
has a certain softness (measured for a Neo-Hookean cap-
sule by the parameter G) with trajectories yc-xc shown in
fig. 4 for various values of G; the capsule always migrates
away from the wall towards the center. It migrates the
faster the softer the capsule is (small G). For example,
a capsule of diameter 100 μm and 10% more dense than
the liquid migrates from xc = 0.36 mm to xc = 0.23 mm
in fig. 4 (red curve) away from the wall, while covering a
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Fig. 5: (Colour online) Migration velocity vm vs. center posi-
tion xc ∼ |Ca| for a heavy capsule (left panel) and a ring (right
panel), as in fig. 3, but now exposed to a bounded Poiseuille
flow, showing how the wall-HI modifies the Fg-driven CSM.
When u0 ↓↓ Fg ((a) and (c)), capsules and rings still migrate
to the center (vm < 0), but vm is now amplified by the repulsive
wall-HI and pronounced near the wall (large Ca). In turn, when
u0 ↑↓ Fg ((b) and (d)), wall-HI weakens the outward migration
and may even stop (vm = 0) at a finite wall distance, depend-
ing on the strength of Fg; near the wall the vm-reduction is
quite strong such that the CSM is reversed from the wall back
towards the center (vm < 0). Further parameters as in fig. 3.

vertical distance of ∼2.7 mm. Hence, the sedimentation or
elevation of heavy and light soft particles leads to particle
focusing in the channel center.

It may surprise that the capsule migrates at all, consid-
ering that u0 = 0. Recall, that the Fg-induced CSM re-
quires 1) a particle deformation (leading to an anisotropic
friction), accompanied by its inclination andb 2) a finite
Fg driving the oblique particle relative to the (resting)
flow. Indeed, all these requirements are met: the defor-
mation and inclination of the sedimenting particle is me-
diated by the wall-HI, which is stronger for those parts
of the capsule in proximity to the wall; as a result, the
parts further away from the wall experience less wall fric-
tion. The different drag forces across the capsule causes
its deformation towards an ellipsoid with its major axis
being oblique to the wall, while Fg drives the CSM of the
anisotropic body.

CSM in bounded Poiseuille flow. The wall-induced
repulsive lift forces cause a sustained center-migration. We
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Fig. 6: (Colour online) (a) Trajectories yc vs. xc when u0 ↑↓ Fg

for a capsule migrating towards the wall with wall-HI turned
off (solid) or on (dashed). With wall-HI the capsule migrates
towards an equilibrium position xeq at a finite wall distance
xc/d ≈ 0.85 due to the repulsive lift force. (b) The halt position
xeq is tuneable across the channel width d by varying the flow
velocity u0 and the force Fg. With larger Fg the capsule can
be navigated away from the channel center closer to the wall.

expect that this affects the interplay of Fg and u0, and,
therefore, the Fg-induced CSM of soft particles, as shown
in fig. 5 for the capsule (left panel) and ring (right panel).
When u0 ↓↓ Fg, cf. fig. 5(a) and (c), capsules and rings
continue to migrate to the center (vm < 0), but now at
a higher CSM velocity as a result of the repulsive wall-HI
and distinct in proximity of the wall.

In turn, for u0 ↑↓ Fg in fig. 5(b) and (d) the migration
to the wall of both particles gets slowed down by wall-
HI. Moreover, the repulsive lift forces may become strong
enough that the CSM halts (vm = 0) at a certain equi-
librium distance to the wall, at xeq < d, that decreases
with decreasing Fg. Figure 6(a) shows the capsule trajec-
tory in an unbounded and bounded Poiseuille flow, in the
latter case the capsule approaches its stationary position
xc = xeq ≈ 0.85 d. However, both trajectories are rather
close as long as the capsule is sufficiently far away from
the wall until wall-HI becomes strong enough. Interest-
ingly, the halt position xeq of the CSM can be controlled
by the flow strength u0, as demonstrated in fig. 6(b) for
different values of Fg with xeq being located further away
from the wall the larger u0. For sufficiently small Fg, the
ordinary CSM mechanism due to a spatial shear gradient
may become dominant, in which case the capsule migrates
towards the center xeq = 0 when u0 > 0.7.

Comparison of different approaches. – For the
Fg-driven CSM of soft particles in (un)bounded Poiseuille
flow we relied up to now on assumptions: For the ana-
lytics leading to eq. (15), we used a body force. For our
Stokesian dynamics the wall-HI is included via a modified
mobility matrix in eqs. (5)–(8) [31] and the external forces
Fg act onto the beads on the capsule’s surface.

We now check the validity of these approximations.
Therefore we compare in fig. 7 the vm-Ca characteristics
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Fig. 7: (Colour online) Comparison of the vm-xc behavior for
a capsule, obtained analytically through eq. (15) (long-dashed)
or numerically by Stokesian dynamics (dash-dotted) and LBM
simulations with the gravitational force Fg acting in the LBM-
approach on the volume (short-dashed) or surface (solid) of
the capsule. The analytical solution, valid for small capsule
deformations, agrees well with the numerics upto Ca � 0.1.
Parameters different from footnote 1: u0 = 0.01, G = 0.001,
kv = 0.01, κc = 0.001, Fg = −10−4ey. LBM parameters:
τ = 1.0, ρ = 1.0, Grid points Nx = 120, Ny,z = 100.

of a soft heavy capsule, obtained by both approaches, with
results from the Lattice Boltzmann method (LBM) for a
sufficiently small Reynolds number Re = 0.8. The LBM
solves the Navier-Stokes equation and therefore natively
captures wall-HI [35]. We model Fg within LBM either as
a surface (dashed line) or a force on fluid inside the capsule
(solid line). This leads to a quantitatively slightly different
capsule dynamics, but gives qualitatively a similar migra-
tion behavior, as shown in fig. 7.

All approaches in fig. 7 show a good quantitative agree-
ment for small capillary numbers up to Ca � 0.1 with
vm ∝ Ca consistent with eq. (15). Beyond linear re-
sponse the analytical vm deviates from the simulations as
expected. The vm obtained via Stokesian dynamics and
LBM display the same qualitative behavior over the entire
range of Ca and, importantly, reproduce the stop of the
CSM (vm = 0) due to wall-HI at a similar wall distance
xc ≈ 0.85 d.

Conclusions. – We identified and explained a novel
cross-streamline migration (CSM) for soft microparticles
that is driven by the vertical gravitational force Fg acting
on particles heavier (Fg ↓) or lighter (Fg ↑) than the fluid
in vertical Poiseuille (or linear shear) flows at low Reynolds
number. It complements the CSM driven by the spatially
varying shear gradient across a soft particle in Poiseuille
flow [12–14]. We analyzed this CSM for soft capsules and
ring polymers.

The shear gradient in Poiseuille or linear shear flow leads
to elliptically shaped soft particles and to their oblique
orientation to Fg and the streamlines. Fg causes via the
anisotropic drag of the particle its CSM velocity vm and
the sign of vm depends on the shear-gradient direction.
The Fg-driven CSM is expected to apply for non-neutrally
buoyant soft microparticles in general. Heavy particles in
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downward Poiseuille flow (Fg ↓↓ u0) migrate to the flow
center and sufficiently light particles (Fg ↑↓ u0) away from
it up a stationary point apart from the wall. Reversing
the downward Poiseuille flow into an upward one reverses
the migration directions too. This allows a flow-controlled
particle positioning in the range 0 < xc < d. For small
capsule deformations vm is proportional to the product of
Fg and the local capillary number Ca, vm ∝ FgCa. This
trend is confirmed by numerical results for finite Ca.

Since the Fg-driven contribution to CSM is considerably
larger than the conventional CSM [12–14], it opens effi-
cient strategies for manipulation and sorting methods of
non-neutrally buoyant soft particles in fluid flows, comple-
menting those for neutrally buoyant particles of different
dynamical properties [36]. For instance, many biological
cells have about a 5%–15% higher mass density than wa-
ter [34]. Healthy or malignant cells often have the same
mass density but a different stiffness (different Ca) [37].
Therefore, they can be separated by the Fg-driven CSM.
Furthermore, soft particles can be focused at different
Ca- (stiffness-) dependent positions xeq between the flow
center and the channel wall. This CSM mechanism is ex-
pected to work also at finite values of the Reynolds number
(see also ref. [22]).

Having a tool of positioning soft particles according to
their weight or stiffness along the entire channel cross-
section via the vertical flow enables studies e.g. on the
dynamics of non-neutrally buoyant soft particles under
conditions of high or low shear rates via micro-focused
synchrotron XSAS or optical microscopy [38].
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This supplementary note provides further information about the Stokesian Dynamics

and the Lattice Boltzmann Method (LBM) as used in this work for simulations of soft

microparticles in vertical flows as well as the modeling of the capsule by a bead-spring

model.

STOKESIAN DYNAMICS

At first we give further intermediate steps leading to the equation of motion (2) of the

main text (see [6, 7]). We investigate small particles (a capsule and a ring polymer) of

µm size immersed in a flow and one has a small Reynolds number. Inertia effects can be

neglected (see below) and the Stokes equation is the appropriate approach for calculating

the pressure driven flow with an immersed, deformable particle like a capsule or a ring,

which are composed of N equally distributed beads over the surface of the capsule or along

the circumference of the ring polymer.

The velocity ṙi of a single spherical particle results from the flow velocity at the bead

position, u(ri), and the force F i acting on the particle:

ṙi =
1

6πηa
F i + u(ri) (1)

with the Stokes friction 6πηa and the particle radius a.

Moving particles in the neighborhood induce via the Oseen-tensor O

O(r) =
1

8πηr

(
1 +

rrT

r2

)
. (2)

flow perturbations at ri. Taking them into account the dynamical equation takes the fol-

lowing form:

ṙi = u0(ri) +
1

6πηa
F i +

∑

i,j,i6=j
O(ri − rj)F j . (3)



2

This equation is often rewritten in a form as in the main text

ṙi = u0(ri) +
∑

i,j

H ijF j (4)

with the so-called mobility matrix

H ij =





O(ri − rj) : i 6= j

1
6πηa

: i = j
(5)

The effects of walls are taken into account via the Blake tensor as given in the main text.

INERTIA EFFECTS ARE NEGLIGIBLE

The negligibility of particle inertia in Equation (2) can be estimated: Assume a rigid

sphere (instead of a deformable capsule) in a fluid with constant flow u0, initially at rest

and accelerated by a force F. We obtain approximately the following equation of motion,

mr̈ = 6πηa(u0 − ṙ) + F , (6)

with the radius a and the mass m = 4
3
πa3ρintern = π

6
d3ρintern of the sphere, where ρintern is

the density inside the capsule and d = 2a its diameter [to estimate the effect of inertia we

neglect here the Basset history force and the added mass, see M. R. Maxey and J. J. Riley,

Phys. Fluids 26, 883, (1983)]. The solution is

ṙ(t) =

(
u0 +

F

6πηd

)(
1− e− 6πηa

m
t
)
. (7)

The typical timescale of the velocity changes is therefore τi = m
6πηa

= ρinternV
3πηd

= ρinternd
2

18η
.

We can neglect inertia, because this timescale is small against all other timescales, which is

the timescale of the flow τf = 1
γ̇

and the relaxation time of the capsule τc = ηR
G

.

Let’s assume typical values of a capsule in a channel to estimate the Stokes number St =

τiγ̇ for the capsule’s diameter d = 10µm, a viscosity η = 1mPas (water), a density of the

capsule 30% higher than water, i. e. ρ = 1.3 ·103 kg
m3 (typical value used our work), a channel

with diameter w = 100µm and a flow velocity of u0 = 1 cm
s

which means γ̇ ≈ 102 1
s
. For

these parameters one obtains τf = 10−2 s and τi ≈ 7.2 · 10−6. This gives St = 7.2 · 10−4 � 1.

A typical relaxation time of a capsule is τc = 10−3s, which means τi
τc
≈ 7.2 · 10−3 � 1.

Therefore, our neglect of the capsule’s inertia is well justified.



3

THE LATTICE-BOLTZMANN METHOD

In order to take boundary effects directly into account, we use as a complementary

simulation approach the lattice-Boltzmann method (LBM) in 3D with a standard velocity

discretization D3Q19 (see Fig. 1). As model for the collision we utilize the Bhatnagar-Gross-

Krook (BGK) collision operator for the evolution of the probability-distribution fi(r, t) in

velocity-direction i at position r of the form [3, 5]

fi(r + ci∆t, t+ ∆t) = fi(r, t)−
∆t

τ
(fi(r, t)− f ei (r, t)) . (8)

Here ci are the unit vectors along the i-th velocity direction, τ is a typical relaxation time,

which is set to τ = 1 as usual, and f ei (r, t) is the equilibrium distribution at the given

position in i-direction:

f ei (r, t) ≈ ρwi

[
1 +

(ci · u)

c2s
+

(ci · u)2

2c4s
− u2

2c2s

]
+ O(u3) . (9)

The weighting factors wi as well as the speed cs = 1√
3

are chosen as usual [3].
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FIG. 1: Graphical representation for the different velocity directions in the D3Q19 model used for

lattice-Boltzmann simulations.

The macroscopic density ρ(r, t) and mean velocity u(r, t) are determined by the leading

two moments

ρ(r, t) =
∑
i

fi(r, t) , (10)

ρ(r, t)u(r, t) =
∑
i

cifi(r, t) . (11)
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The dynamic fluid-viscosity is given by

ν = c2s

(
τ − 1

2

)
. (12)

For simulating a Poiseuille-flow, volume-forces are applied to the fluid-particles and the

coupling to the probability-distribution is implemented using the suggested method given

in Ref. [4]. To couple the forces acting on the surface of the continuously moving objects to

the discrete LBM-mesh, we use the immersed-boundary method [2] with the approximate

delta-function φ(∆r) = φ̃(∆x)φ̃(∆y)φ̃(∆z) and

φ̃(R) =





1
4

(
1 + cos(πR

2
)
)

if |R| ≤ 2

0 else
, (13)

where ∆r = (∆x,∆y,∆z) is the distance between the object nodes and the neighboring

grid points. This functions is used to couple the force from the Lagrangian system to the

neighboring discrete grid nodes of the LBM and to calculate the velocity of the nodes at the

position of the nodes of the capsule.

MODEL OF THE CAPSULE

To simulate the capsule via the Stokesian dynamics method and with the LBM we first

discretize the surface of the capsule, which is shortly described here.

To discretize the surface of a sphere we begin with a regular icosahedron (see [1] ), which

consists of 20 equilateral triangles and 12 nodes. This body can be refined by adding new

nodes in the middle of each edge and then shifting the new nodes radially outwards to the

surface of the sphere. This leads to a greater amount of nodes and triangles. This procedure

is repeated until we have N = 642 nodes. This scheme is used for the LBM and for the

Stokesian dynamics simulations, whereby in case of the Stokesian dynamics the beads are

located at the nodes. The resulting capsule discretization is shown in Fig. 2.

The forces on the nodes (LBM) or at the beads (Stokesian Dynamics) are calculated

for both simulation methods the same way. We use three forces: A force that ensures

volume conservation of the capsule, a force resulting from the bending of the surface and

a Neo-Hookean force, which describes rubber-like materials with a constant surface shear-

elastic modulus [8–10]. The forces can be calculated by the corresponding potentials via

Fj = −∇j(VNH + Vb + Vv).
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FIG. 2: The used discretization of the capsule model resulting from the subdivision of a regular

icosahedron. The N = 642 nodes are marked by red dots and the triangles by black lines.

β
i,j

n i
n j

Fb

(a)
b

Rij

FNH

(b)

FIG. 3: The modeling of the capsules forces resulting from bending of the surface (a) and defor-

mation (b). The bending force depends on the angle βi,j between two normal vectors ni and nj of

neighbouring triangles. The Neo-Hookean law describes the elastic restoring force of a deformed

triangle with side length Rij between bead i and j (solid lines) towards the equilibrium shape with

equilateral side length b (dashed line).

The potential Vv = − kv
V0 (V(t)−V0)2 keeps the capsule’s instantaneous volume V(t) close

to the reference volume V0 = 4
3
πR3 of a spherical capsule of radius R with volume stiffness
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kv.

The bending potential is given by

Vb = −κc
2

∑

i,j

(1− cos βi,j) (14)

and depends on the angle βi,j between two normal vectors ni and nj of neighbouring triangles

(see Fig. 3 (a)). It describes the resistance to bending.

The Neo-Hookean law describes the elastic force that results from the deformation of the

equilibrium shape of the triangle and describes the resistance to deformations of the capsule

surface.
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Measurement of the magnetic 
moment of single Magnetospirillum 
gryphiswaldense cells by magnetic 
tweezers
C. Zahn1, S. Keller1, M. Toro-Nahuelpan2,3, P. Dorscht1, W. Gross1, M. Laumann4, S. Gekle5,  
W. Zimmermann4, D. Schüler2 & H. Kress1

Magnetospirillum gryphiswaldense is a helix-shaped magnetotactic bacterium that synthesizes iron-
oxide nanocrystals, which allow navigation along the geomagnetic field. The bacterium has already 
been thoroughly investigated at the molecular and cellular levels. However, the fundamental physical 
property enabling it to perform magnetotaxis, its magnetic moment, remains to be elucidated 
at the single cell level. We present a method based on magnetic tweezers; in combination with 
Stokesian dynamics and Boundary Integral Method calculations, this method allows the simultaneous 
measurement of the magnetic moments of multiple single bacteria. The method is demonstrated 
by quantifying the distribution of the individual magnetic moments of several hundred cells of M. 
gryphiswaldense. In contrast to other techniques for measuring the average magnetic moment of 
bacterial populations, our method accounts for the size and the helical shape of each individual cell. 
In addition, we determined the distribution of the saturation magnetic moments of the bacteria from 
electron microscopy data. Our results are in agreement with the known relative magnetization behavior 
of the bacteria. Our method can be combined with single cell imaging techniques and thus can address 
novel questions about the functions of components of the molecular magnetosome biosynthesis 
machinery and their correlation with the resulting magnetic moment.

The magnetic field of the earth plays a role in the orientation and navigation of a wide variety of organisms 
including bacteria, algae, bees, pigeons and mice1. Magnetic navigation in bacteria was discovered more than 40 
years ago2. Magnetotactic bacteria, such as the α-proteobacterium Magnetospirillum gryphiswaldense3 synthesize 
magnetosomes, unique intracellular organelles that comprise membrane-enclosed magnetite (Fe3O4) nanopar-
ticles that allow the cells to align and to navigate along the geomagnetic field4. M. gryphiswaldense generates 
cuboctahedron-shaped magnetite crystals with a diameter of approximately 30 to 50 nanometers5. The magneto-
somes assemble into an intracellular chain, which is positioned at midcell by a dedicated cytoskeletal structure, 
the actin-like MamK filament6, 7. The bacteria are helically shaped with a length of several micrometers and a 
diameter of approximately half a micrometer (Fig. 1).

M. gryphiswaldense has been well investigated previously at the molecular and cellular levels. For example, its 
motility8, its swimming behavior in magnetic fields9, 10 and its magnetotaxis and aerotaxis11 have been recently 
investigated. Furthermore, the molecular mechanisms underlying magnetosome biosynthesis and intracellular 
alignment have been explored thoroughly4, 5, 7, 12–20. However, the fundamental physical property enabling M. 
gryphiswaldense to perform magnetotaxis, its magnetic moment, remains to be elucidated at the single cell level. 
A characterization of the total magnetic moment of a large and unknown number of bacteria as a function of an 
external magnetic field showed that the remanent magnetic moment has a value of approximately 40% of the 
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saturation magnetic moment and that a magnetic moment of approximately 95% of the saturation magnetization 
is reached at an external field of approximately 100 mT21.

In several studies the average magnetic moment of multiple M. gryphiswaldense cells was measured from a 
bacterial population. In these cases, it was assumed that the cells were identical in size and their helical shape was 
simplified as a cylindrical or ellipsoidal geometry. These studies yielded average magnetic moments that differ by 
more than one order of magnitude10, 22, 23 despite the fact that the measurements were performed with external 
magnetic fields below 2 mT, which should lead to comparable magnetic moments that differ only by approxi-
mately 2%21. In one of these studies, the average magnetic moment was measured using light scattering and the 
assumption that the bacteria have a cylindrical shape23. This approach yielded an average magnetic moment of 
(25 ± 2) × 10−16 A m2 at external magnetic fields below 0.9 mT. The length of the model cylinder in this study was 
determined by a fit to the scattering data and had a value of 1.6 µm which was considered by Reufer et al.10 to be 
“unrealistically short”. In their study, Reufer et al. determined the average magnetic moment of the bacteria by 
tracking the motion of nonmotile bacteria in a magnetic field and by assuming that the bacteria had an ellipsoidal 
shape10. This approach yielded a magnetic moment of (2.0 ± 0.6) × 10−16 A m2 at a magnetic field of 1.5 mT. In 
a different type of study the bacterial cell dynamics in rotating magnetic fields was measured to determine the 
ratio of the magnetic moment of the bacteria to their rotational drag coefficient9. For this study, it was stated that 
a magnetic moment of 43 × 10−16 A m2 would be in agreement with a bacterium that possesses a rotational drag 
coefficient of an ellipsoid with a long axis of 4 µm and a short axis of 0.5 µm. The large spread of the reported 
values for the magnetic moment of M. gryphiswaldense raises the question of the underlying reasons for these 
discrepancies. Possible reasons include the approximation of the helical cell shape by ellipsoids and cylinders, the 
usage of average cell dimensions instead of the individual dimensions of each measured cell or systematic errors 
in the used measurement techniques.

Besides the abovementioned studies about the magnetic moment of M. gryphiswaldense, there are various other 
characterizations of the magnetic moments of closely related bacterial species such as M. magnetotacticum24, 25  
and M. magneticum26. The latter article addresses the question of potential systematic errors in various measure-
ment techniques and presents a comparison of six different methods to determine the magnetic moments of bac-
teria. The authors showed that the use of different methods led to magnetic moments that varied by almost one 
order of magnitude. They found that methods relying on viscous relaxation of the cell orientation gave results that 
were comparable to magnetosome measurements, whereas methods relying on statistical mechanics assumptions 
gave systematically lower values. Since living cells were used in the study of Nadkarni et al., the authors suggested 
that the non-thermal noise induced by the living cells is a potential source of error in measurements of the mag-
netic moment of bacteria.

In summary, the magnetic moments of M. gryphiswaldense ensembles have not yet been measured at the 
single cell level. Furthermore, there are multiple open questions concerning the large discrepancies between the 
magnetic moments that were reported so far for these and other magnetotactic bacteria: Is it - in the case of M. 
gryphiswaldense - necessary to take the helical shape of the cells into account or is it sufficient to approximate 
them with a simplified geometry such as a cylinder or an ellipsoid? Is it necessary to take the dimension of each 
individual cell into account or is it sufficient to use the average dimensions of a bacterial ensemble? Does the use 
of dead (chemically fixed) cells that do not induce non-thermal noise lead to more consistent results if different 
methods are compared?

Here we present a method for measuring the magnetic moments of multiple single cells of magnetotactic 
bacteria simultaneously by analyzing their dynamics in various magnetic fields. We demonstrate the method by 
quantifying the magnetic moments of more than 350 individual cells of M. gryphiswaldense. Inhomogeneous 
switchable magnetic fields were created using magnetic tweezers (MT). Magnetic tweezers and the comparable 
technique of magnetic twisting cytometry are versatile biophysical methods for force and torque generation on 
small length scales and have been applied in single molecule and cellular studies27–33. The translational motion 
of cells was measured in static magnetic field gradients, whereas the rotational motion of cells was measured in 
alternating magnetic fields. For each bacterium, these measurements yielded the ratio of its magnetic moment to 
its translational and rotational viscous drag coefficients, respectively.

Figure 1. The magnetotactic bacterium Magnetospirillum gryphiswaldense. The bacteria possess a helical shape 
with a length of several micrometers and a diameter of approximately half a micrometer. An intracellular chain 
of magnetosomes allows them to navigate along magnetic fields. (a) Transmission electron microscopy image 
of a cell with a chain of approximately thirty magnetosomes (white arrows). The inset shows a high resolution 
image of magnetosomes from another cell. (b) We parameterize the helical shape of the cells by the end-to-end 
length Lee, the diameter d, the arc length s and the amplitude A of the helix.
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The translational and rotational viscous drag coefficients were calculated for each bacterium by two methods 
in the low Reynolds number limit of Stokes flow, both taking into account the helical shape of the bacteria and 
their individual dimensions. In a Stokesian dynamics approach the bacterial shape was approximated by several 
thousand small spheres and the hydrodynamic interaction between the spheres was calculated using the Oseen 
tensor. The second approach was the Boundary Integral Method (BIM) where the bacterium’s surface was dis-
cretized as a large set of flat triangles, and no-slip boundary conditions for the flow were used at their surfaces. 
The flexibility of the two methods allows the application of our approach not only in the case of helically-shaped 
bacteria but also for the general case of arbitrary cell shapes. In addition to our measurements of the magnetic 
moments of a large number of bacteria in various external magnetic fields, we also determined the saturation 
magnetic moment of 50 individual bacterial cells by estimating their magnetosome crystal volume from trans-
mission electron microscopy (TEM) images. Our measurements show that for a typical bacterial population with 
a length distribution in the range of approximately 2 to 6 µm, the use of mean cell dimensions and the approxima-
tion of the cell shape by a simple geometry are sufficient if only population averages of the magnetic moment are 
needed and if uncertainties on the order of about 10% are acceptable. However this approach leads to an over- or 
underestimation of up to more than a factor of 2 if it is used to determine the magnetic moment of an individual 
single bacterium. To determine the magnetic moments of individual single bacteria correctly, their particular 
shape and size has to be taken into account. Finally, we show that different measurement techniques yield consist-
ent results if dead cells are used, which do not induce non-thermal noise.

Materials and Methods
Cell culture and sample preparation. The M. gryphiswaldense MSR-1 wild type strain was grown under 
microoxic conditions in 2% oxygen aerated modified flask standard medium (FSM)34 containing 50 μM ferric 
iron citrate. Cultures were incubated at 30 °C with moderate agitation (120 rpm). Exponentially growing cells 
were fixed in 1.5% formaldehyde for 2 h. Subsequently, 1 ml of culture was centrifuged at 5,000 rpm for 5 min, 
and the cell pellet was resuspended in a highly viscous solution containing 85% v/v glycerol and 15% v/v water 
for further analysis.

Polyacrylamide gel preparation. The polyacrylamide (PAA) substrates were prepared according to a pro-
tocol that was published previously35, which we adapted for use in our laboratory36. Briefly, 40 × 22 mm sized 
coverslips (Glaswarenfabrik Karl Hecht, Sondheim v. d. Rhön, Germany) were cleaned by sonicating them suc-
cessively for 10 minutes in 0.2 M EDTA, 10% w/v hydrogen chloride, and 1% v/v 7X-O-Matic (MP Biomedicals 
Germany, Eschwege, Germany). After each single sonication step, the coverslips were washed in deionized water 
(DI). The coverslips were air-dried before surface-activation, which was performed to covalently bind the cover-
slips to PAA. The details of the reaction were described previously37. We spread 20 µl 0.1 M sodium hydroxide by 
rolling a glass Pasteur pipette over each coverslip. When the coverslips were dry, 15 µl (3-aminopropyl)trimethox-
ysilane (Sigma-Aldrich, St. Louis, MO) was spread and the coverslips were allowed to dry for 5 minutes. The cov-
erslips were washed 3 times in DI and incubated in 200 µl 0.5% glutaraldehyde solution (from 8% stock solution, 
Sigma-Aldrich) for 30 minutes and washed in DI 3 times again. The coverslips were stored up to 1 month together 
with desiccant beads (Neolab Migge Laborbedarf-Vertriebs, Heidelberg, Germany). To cover the gels during 
polymerization and achieve a flat top surface, we coated coverslips with a diameter of 15 mm (Menzel-Gläser, 
Braunschweig, Germany) hydrophobically with RainX (Krako Car Care International, Altrincham, WA) accord-
ing to the manufacturer’s protocol to facilitate better detachment of the substrates38. To remove dust, the covers-
lips were cleaned with canned air directly prior to substrate polymerization.

To polymerize PAA substrates, a monomer solution of 5% w/v acrylamide (AA, from 40% w/v stock solu-
tion, Sigma-Aldrich) and N,N′methylenebisacrylamide (BIS, from 2% w/v stock solution, Sigma-Aldrich) 
at a concentration of 0.06% w/v in phosphate-buffered saline (1xPBS, 0.2 g l−1 KCl, 8.0 g l−1 NaCl, 1.44 g l−1 
Na2HPO4, and 0.24 g l−1 KH2PO4 in DI) was prepared. N,N,N′,N′-tetramethylethylenediamine (Thermo Fisher 
Scientific, Waltham, MA) at a final concentration of 1/2000 v/v was added to catalyze the polymerization reac-
tion. The polymerization reaction was started by the addition of 1/200 v/v freshly prepared 10% w/v aqueous 
ammonium-persulfate (APS) solution.

To prepare thin substrate layers, 15 µl of the monomer solution was pipetted on a RainX-coated coverslip. 
A surface-activated coverslip was lowered from the top with the activated side facing downwards until surface 
tension kept both coverslips in place. This sandwich configuration was suspended on a pair of Pasteur pipettes to 
polymerize at room temperature and high air humidity of approximately 60–80% to minimize evaporation effects. 
After polymerization, the round coverslips were removed carefully with forceps and the substrates were washed 3 
times in 1xPBS to remove unreacted monomers. The substrates had a thickness that ranged from approximately 
30 to 110 µm. Even though the thickness of every substrate varied quite significantly the surface still remained 
horizontal with inclination angles well below 1°, thus not influencing the measurement. Before the measurement, 
superparamagnetic beads with a diameter of 4.5 µm (Dynabeads® M-450 Epoxy, Thermo Fisher Scientific) were 
sedimented on the substrates.

Magnetic tweezers setup and calibration. The magnetic tweezers (MT) setup is based on an inverted 
light microscope (Nikon Eclipse Ti-U, Nikon, Tokyo, Japan) with a 20× magnification objective for calibration 
measurements (CFI Plan Achromat 20× objective, NA 0.4, Nikon) and a 60× magnification objective (CFI Plan 
Apochromat λ 60× oil objective, NA 1.40, Nikon) for measurements of the bacteria. Image sequences were 
acquired with a CMOS camera (Orca-flash 4.0 v2, Hamamatsu, Shizuoka, Japan) under bright-field illumination.

The MT consists of a solenoid with a high permeability soft iron core and a power supply with a maximum 
output power of 10 A (Elektro Automatik, Viersen, Germany). The coil consists of 1420 turns of a copper wire 
with a diameter of 0.5 mm and the resulting solenoid has a dimeter of 20 mm and a length of 50 mm. The core 
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material is the nickel-iron alloy Mumetall (Vacuumschmelze GmbH, Hanau, Germany), which possesses a mag-
netic permeability up to µmax = 250000. The core has a cylindrical shape and a conical sharp tip with a core length 
of 163 ± 2 mm and a tip diameter of 35 ± 2 µm. To increase the magnetic permeability of the Mumetall and there-
fore the magnetic field that can be generated, the rod was annealed in a magnetic field in hydrogen atmosphere 
at the Vacuumschmelze Hanau. The coil including the soft iron core can be positioned in x-, y- and z-direction 
using single-axis translation stages (Mitutoyo, Sakado, Japan and Thorlabs, Newton, USA). The inclination angle 
of the tip within the sample can be adjusted by a manual rotation stage (Suruga Seiki, Tokyo, Japan). Before and 
after the usage of the MT the remanent magnetization of the core was reduced by a demagnetizer (Analogis, 
Falkensee, Germany).

The magnetic forces generated by the MT were calibrated by analyzing the movement of super-paramagnetic 
particles (Dynabeads M-450) with a diameter of d = 4.5 μm within a highly viscous fluid consisting of glycerin 
and water. We determined the exact concentration of the glycerin in the glycerin-water stock solution by measur-
ing the viscosity of the solution with an Ostwald viscometer. At a temperature of 21.1 °C, we measured a viscosity 
of ηG(21.1 °C) = 1.23 ± 1.0 Pa s which corresponds to a glycerin concentration of 99.79%. For sample preparation, 
0.012 ml of the particle-water stock solution was suspended in 1.5 ml of the 99.79% glycerin stock solution. The par-
ticle concentration of the resulting solution was 3.2 · 106 particles per ml. For the temperature of T = 22.5 ± 1.0 °C  
at which the MT calibration measurements were performed, we determined a viscosity of ηG = 0.95 ± 0.25 Pa s. 
The motion of the particles in the magnetic field was measured by bright-field time-lapse microscopy using the 
20× objective and an acquisition rate of 20 frames per second. The particle positions were determined by apply-
ing a centroid-based tracking algorithm39. The viscous drag force Fd exerted on each particle was calculated by 
using Stokes law Fd = 3π · ηG · d · v, where v is the velocity of the particle.

Magnetic tweezers experiments. For the characterization of the magnetic moments of single M. 
gryphiswaldense cells with the MT, fixed bacteria suspended in the 85% (v/v) glycerol solution (dynamic vis-
cosity of 135 mPa s at a temperature of 22.5 °C) were placed on a glass coverslip (No. 1, 18 mm diameter, 
Marienfeld-Superior, Lauda-Königshofen, Germany) which was mounted into a custom-built aluminum holder. 
The MT tip was immersed into the sample and the bacterial motion in the magnetic field was monitored with 
bright-field time-lapse microscopy at room temperature with the 60× objective.

For measuring the translational motion of the bacteria in temporally constant magnetic fields, the current 
through the MT coil was set to I = 0.1 A and the image acquisition rate was 20 frames per second. The motion of 
the center of mass of each bacterium was tracked manually. Only bacteria with a distance of more than 8 µm from 
the MT tip surface were tracked to ensure positioning within the well-calibrated area of the MT.

For measuring the rotational motion of the bacteria in temporally varying fields, the magnitude of the current 
through the coil was set to I = 0.008 A, and the direction of the current was alternated periodically. The periodic-
ity of the alternations was sufficiently low to allow all rotating bacteria to finish their motion before the current 
direction was switched. The image acquisition rate was set to 2 frames per second. For bacteria that were rotating 
mainly in the image plane, the longitudinal axis of the bacteria was identified manually in each image, and the 
angle θ of the bacterium relative to the magnetic field direction was determined. For bacteria that were rotating 
mainly perpendicular to the image plane, the time that was need for a full rotation was determined.

Transmission electron microscopy (TEM). For conventional TEM analysis, cells were grown at 28 °C 
under microaerobic conditions, fixed in formaldehyde (1.5%) and concentrated by centrifugation. Next, 
unstained cells were absorbed on carbon-coated copper mesh grids (Plano, Wetzlar). Bright-field TEM was per-
formed on a FEI CM200 (FEI; Eindhoven, The Netherlands) transmission electron microscope using an acceler-
ating voltage of 160 kV. Images were captured with an Eagle 4 k CCD camera using EMMenu 4.0 (Tietz) and FEI 
software. Fiji software was used to obtain data regarding the cell dimensions.

Calculation of the viscous drag coefficients via Stokesian dynamics. The Stokesian dynamics 
method calculates the flow at zero Reynolds number around an object and its drag by discretizing the surface 
of the object and by using the flow field of point forces. For details see the Supporting Information and work by 
Leal40.

Calculation of the viscous drag coefficients by Boundary Integral Method. The Boundary Integral 
Method solves the Stokes flow at zero Reynolds number by expressing the flow field as integrals over arbitrarily 
shaped domain boundaries. For details see the Supporting Information and work by Daddi-Moussa-Ider et al.41 
and Guckenberger et al.42.

Results
Magnetic tweezers calibration. The MT system was calibrated using superparamagnetic microparticles 
with a diameter of 4.5 µm as described in the Materials and Methods section. Briefly, the motion of a large number 
of particles towards the tip of the MT in a highly viscous liquid environment (Fig. 2a) was tracked microscopi-
cally using digital image processing. The magnetic forces exerted on the particles as a function of their positions 
(Fig. 2b) were calculated from the particle velocities and their Stokes drag coefficient (Fig. 2c). At a given electric 
current I through the coil of the MT, the force F exerted on a particle depends on the distance r between the tip 
and the particle. The polar angle α of the particle position had no detectable influence on the force-distance rela-
tionship F(r) as long as α ≤ 40° was fulfilled. The angle α = 0° defines the symmetry axis of the MT (Fig. 2b). We 
therefore limited the tweezers calibration and the subsequent measurements on bacteria to polar angles of α ≤ 40° 
and considered only the distance of the particles and of the bacteria, respectively, for the subsequent data analysis.

The force-distance relationship F(r) can be described by the equation,
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a modified version of the force-distance relation described by Kollmannsberger and Fabry43, which has the 
property that F(r0F) = F0. For a current of I = 0.5 A through the coil of the MT, fitting Eq. 1 to the data yielded 
F0 = 5.5 ± 0.1 nN, r0F = 9.6 ± 0.2 µm and cF = 1.87 ± 0.02 (Fig. 2c).

A particle with a magnetic moment µ in an inhomogeneous magnetic field B experiences the force

µ∇=F B( ) (2)

The known relationship between the magnitude B of the external field and the magnitude µ of the magnetic 
moment of the superparamagnetic particles, i.e., the function µ(B)44 allowed us to derive the magnetic field B as 
a function of the distance r (Fig. 2d) from the measured relation between the force F and the distance r (Fig. 2c). 
We found that the equation

Figure 2. Magnetic tweezers calibration and characterization. The MT were calibrated by tracking the 
motion of superparamagnetic microparticles towards the MT tip in a highly viscous liquid environment. (a) A 
maximum projection of a time-lapse image sequence with a constant frame rate shows directly the direction 
of the applied force and the acceleration of the particles towards the tip on the left side. (b) The position of a 
particle is characterized by its distance r from the tip and its polar angle α with respect to the symmetry axis of 
the MT. (c) The data for the force F exerted by the MT on the particles as a function of r are shown by the blue 
circles. The red line shows the fit of Eq. 1 to the data. The current through the coil of the MT was I = 0.5 A in this 
measurement. (d) The known magnetization behavior of the superparamagnetic particles allows the calculation 
of the magnetic field B as a function of the distance r. (e) The field switching time was characterized by tracking 
the motion of a superparamagnetic particle that was bound to an elastic substrate in a magnetic field that was 
turned on and off periodically. The data shows the lateral displacement of the bead in the direction of the field. 
The motion of the particle as a function of time indicated an upper limit for the characteristic times for turning 
the fields on and off.
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is suitable to describe the relationship between the magnetic field and the particle distance. For a current of 
I = 0.5 A through the coil of the MT, the resulting parameters were B0 = 147 mT, r0B = 7.5 µm and cB = 0.62. The 
corresponding field-distance-relation is shown in Fig. 2d. At distances of r = 10 … 250 µm, magnetic fields of 
approximately B = 130 … 25 mT can be achieved. The magnetic H-field of the MT coil scales linearly with the 
current I. However, the magnetic B-field scales less than linearly with the H-field in our parameter range since the 
permeability of the annealed Mumetall core material decreases with increasing current for H-fields in the range 
of approximately 0.1 … 10 A cm−1 45. With the lowest current (I = 0.008 A) that we used, we were able to generate 
magnetic fields of B = 6 … 55 mT at distances of r = 10 … 250 µm.

For experiments in which the magnetic field of the tweezers is abruptly altered (e.g., by changing the direction 
of the current), it is necessary to know the timescale for changing the field rapidly. To measure an upper limit of 
this time scale, we placed the tip of the MT close to a superparamagnetic microparticle bound to the surface of an 
elastic polyacrylamide gel. The MT were turned on and off sequentially and the resulting motion of the particle 
was tracked microscopically (Fig. 2e). The observed time scale for turning the tweezers on was lower than the 
time scale for turning them off. An upper limit τmax for the tweezers switching time τ can be defined as the time 
after which 95% of the total particle displacement is reached. This definition yields τmax,on = (100 ± 10) ms and 
τmax,off = (290 ± 50) ms for turning the tweezers on and off, respectively. These time scales represent upper limits 
for the switching time because they include the finite response time of the gel to a sudden force that is exerted on 
the gel.

Rotation of bacteria. Bacteria with a given magnetic moment µ experience a torque T = μ × B in a mag-
netic field B which leads to a rotation of the bacteria if µ and B are not exactly parallel or antiparallel to each other. 
Chemically fixed bacteria (i.e. dead and thus incapable of active swimming) were immersed in a highly viscous 
glycerol-water mixture (85% v/v glycerol) to slow the rotation to a time scale on the order of ten seconds. This step 
facilitated tracking of the rotation by time-lapse microscopy with an image acquisition rate of 2 Hz. The bacteria 
aligned with the field of the MT when the tweezers were turned on for the first time in the sample. After the mag-
netic field direction was switched by changing the direction of the electric current through the coil, the bacteria 
rotated 180° to align with the new field direction. Although bacteria that are aligned exactly antiparallel to the 
magnetic field experience no field-induced torque, thermal fluctuations of the orientation lead to deviations from 
the instable antiparallel equilibrium orientation. For multiple subsequent measurements, we switched the field 
with periods that were significantly longer than the time period of a full 180° rotation. These measurements were 
performed at magnetic field strengths between 6 mT and 23 mT. Measurements in such relatively low magnetic 
fields yield magnetic moments that are close to the remanent moments of the bacteria. The lower boundary of 
6 mT was given by the lowest field strength that we generated in the field of view of the microscope. The upper 
boundary of 23 mT was given by the highest field strength for which we were able to observe rotation of the bacte-
ria. These magnetic fields were sufficiently low to not alter the direction of the magnetic moments of the bacteria 
with respect to the bacterial orientation. In contrast, upon application of higher magnetic fields with strengths 
above 23 mT, we observed that the bacteria did not rotate upon field reversal.

The rotation of individual bacteria after switching the magnetic field was measured by bright-field time-lapse 
microscopy (Fig. 3a). For bacteria that were rotating mainly in the image plane, the angle θ of each bacterium 
relative to the magnetic field direction was tracked manually, and the resulting time course of the angle θ(t) 
(Fig. 3b) was fitted to the solution of the overdamped rotational equation of motion µ θ γ θ=B sin d

dtrot :
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The parameter γrot is the rotational viscous drag coefficient of the bacterium, and θ0 is the angle of the bac-
terium at the beginning of the data acquisition at t = 0. The value for γrot was calculated for each individual 
bacterium from its shape parameters as described in the Materials and Methods section. The remaining free fit 
parameters were the magnetic moment μ and the value θ0. An overview over multiple time series of the rotation 
angle θ as a function of time t and the corresponding fits to Eq. 4 can be seen in Fig. 3c.

For bacteria that were mainly rotating perpendicular to the image plane, the time Δt that was needed for a 
complete rotation was determined. According to Eq. 4, this time is
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where θs is the angle of the bacterium at the start of the rotation, and θe is the angle of the bacterium at the end of 
the rotation (see also Penninga et al.46). The rotation time Δt diverges for a rotation from 0° to 180°. The limited 
optical resolution47 leads to a limited precision in the determination of the orientation of a rotating object32, 33, 48, 49.  
We found that the tracking precision for the orientation of the bacteria was approximately 4°. Consequently 
orientation angles of up to 4° were indistinguishable from an angle of 0° and orientation angles of down to 176° 
were indistinguishable from an angle of 180°. We therefore used the boundary values of θs = 4° and θe = 176° for 
the calculation of ∆t. The value for γrot was also in this case determined for each individual bacterium from its 
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shape parameters, as described in the Materials and Methods section and the resulting magnetic moment µ was 
calculated directly.

The rotation experiments were performed at magnetic field strengths that were sufficiently small to neglect 
the translational motion of the bacteria in the inhomogeneous field of the MT. The translational motion of the 
bacteria during their rotation was typically approximately 1 µm, which resulted in changes of the local mag-
netic fields of approximately 0.1 mT. These changes correspond to relative changes between 2% and 0.4% for the 
used magnetic fields between 6 mT and 23 mT, which was considered to be negligible. However, for sufficiently 
large magnetic fields, a strong translational motion of the bacteria along the gradient of the magnetic field was 
observed. These translational motions were used as a second method for the determination of the magnetic 
moment of the bacteria.

Translation of bacteria. Bacteria with a magnetic moment µ experience a force F = ∇(μ · B) in a magnetic 
field B. For a bacterium with a constant magnetic moment with the absolute value µ, which is aligned along a 
magnetic field with the magnitude B, the resulting overdamped translational equation of motion is γ∇ =B rd

dttrans , 
where γtrans is the translational viscous drag coefficient and r is the distance of the bacterium to the MT tip. For the 
known magnetic field B(r) (Eq. 3) the solution of this equation is
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The parameter r0 is the distance of the bacterium to the MT tip at the beginning of the data acquisition at t = 0. 
This equation was fitted to the experimental data of the bacterial position as a function of time r(t), which was 
determined by manual tracking of the translational bacterial motion. The value for γtrans was calculated for each 
individual bacterium from its shape parameters as described in the Materials and Methods section. For each bac-
terium, the remaining free fit parameters were its magnetic moment µ and the value r0. An overview of multiple 
time series of the displacement of the bacteria as a function of time and the corresponding fits to Eq. 6 is shown 
in Fig. 3d. The bacteria were tracked for several seconds, and the displacement during this time was on the order 
of up to ten micrometers (instead of absolute time- and space-axes, temporal and spatial scale bars were used in 
this figure to allow the representation of multiple displacement data sets).

These measurements were performed at magnetic fields ranging between 90 mT and 130 mT. The resulting 
magnetic moments of the bacteria were therefore induced magnetic moments that were expected to have values 
closer to the saturation moment than to the remanent moment21. The upper boundary of 130 mT was given by 

Figure 3. Rotation of M. gryphiswaldense in reversed magnetic fields and translation of the bacteria in static 
magnetic fields. (a–c) Data for the rotation of bacteria in reversed magnetic fields. (a) Frames of a time-lapse 
microscopy series of a rotating cell. (b) Angle θ of a rotating cell as a function of time t (points) and fit of Eq. 4 
to the data (red curve). (c) Multiple time series of the rotation angle θ as a function of time t (dashed curves) 
and the corresponding fits to Eq. 4 (solid curves). (d) Data for the translation of bacteria in static magnetic 
fields. Multiple time series of the bacterial displacements as a function of time (dashed curves) and the 
corresponding fits to Eq. 6 (solid curves).
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the maximal field strength that was created close to the MT tip, whereas the lower value of 90 mT was set by the 
boundary condition that a significant translational motion of the bacteria in the highly viscous fluid needed to be 
detectable within the measurement time.

Viscous drag coefficients. The translational and rotational viscous drag coefficients were determined 
for each bacterium individually as described in the Materials and Methods section. To this end, we used two 
approaches that both take the helical shape and the dimensions of an individual bacterium into account. The 
end-to-end-length Lee and the amplitude A (Fig. 1) were determined for each cell individually from light micros-
copy images. The diameter d of the bacterium is close to the resolution limit of diffraction-limited light micros-
copy47. We therefore analyzed the dimensions of 111 bacteria by TEM, and we found that the spread of the 
diameter values was very small. The average diameter was 420 nm, and the standard deviation was 30 nm; thus, 
we considered the mean diameter for the calculation of the drag coefficients of each bacterium. Similarly, the arc 
length s was difficult to determine by light microscopy. Consequently, we also determined this value from TEM 
micrographs from a sample of 125 bacteria. We found that the ratio of the arc length to the end-to-end-length was 
relatively well defined with a value of s/Lee = 1.1 ± 0.1. Thus, we used this value to further calculate the arc length 
of each bacterium from its light-microscopically determined end-to-end-length: s = 1.1 Lee.

With the given dimensions for each bacterial cell, we determined the translational and rotational drag coef-
ficients in a Stokes flow. Within the Stokesian dynamics, the surface of the bacteria was divided and represented 
by up to N = 10,000 particles interacting hydrodynamically via the Oseen tensor. The Boundary Integral Method 
uses a surface discretization of approximately 24,000 flat triangles and solves the Stokes equation by computing 
the surface velocities from a specified boundary traction.

The values of the viscous drag coefficients calculated by the two different methods provided quantitatively 
very similar results for each bacterium. For the rotational viscous drag coefficients, the two methods had an 
average discrepancy of 0.7% while the translational viscous drag coefficients differed by an average of 1.5%. We 
therefore used the mean value of the two methods as the drag coefficient for each bacterium. The calculated drag 
coefficients are shown in Fig. 4 as a function of the end-to-end length of the bacteria. The color code of the data 
points represents the amplitude A of the bacteria. Longer bacteria, i.e., bacteria with a larger end-to-end length 
Lee tended to have a larger amplitude. The drag coefficients shown in Fig. 4 are normalized to the viscosity of the 
liquid η, which varied slightly from experiment to experiment because the temperature in the laboratory varied 
slightly in the range of 20.8 °C to 23.3 °C.

Both drag coefficients are larger than the drag coefficients of cylinders with a diameter that equals the diam-
eter of the bacteria which had an average value 0.42 µm. For a long cylinder with a length L, a diameter d and 
L ≫ d/2, the normalized rotational viscous drag coefficient can be approximated50 by
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and the normalized translational viscous drag coefficient can be approximated by

Figure 4. Normalized viscous drag coefficients of individual M. gryphiswaldense cells as a function of bacterial 
dimensions. The rotational (a) and translational (b) viscous drag coefficients were both calculated with 
Stokesian dynamics and with a Boundary Integral Method. Shown are the mean values of both methods, which 
deviate only negligibly from each other. The viscous drag coefficients are normalized by the viscosity of the 
medium η and plotted as a function of the end-to-end length Lee of the bacteria. The amplitude A of the bacteria 
is indicated by the color of the data points. For comparison purposes, the normalized viscous drag coefficients 
of cylinders with various diameters are also shown.
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Furthermore, both drag coefficients are always smaller than the drag coefficients of cylinders with a diam-
eter that corresponds to the average value of the amplitude of the bacteria. These average amplitudes were 
Aavg = 0.62 µm and Aavg = 0.53 µm for the bacteria that were investigated in the rotational and translational exper-
iments, respectively.

Magnetic moments. With the calculated rotational viscous drag coefficients, the magnetic moment of each 
bacterium was determined by fitting Eq. 4 to the tracked rotational motion for the case that the rotation was 
taking place mainly in the image plane. For the case that the rotation was mainly occurring perpendicular to the 
image plane, the magnetic moment of each bacterium was calculated by directly applying Eq. 5. As expected, the 
resulting distributions of magnetic moments were indistinguishable from each other, and we therefore pooled 
the data. We tracked the rotational motion of N = 265 bacteria and found an average magnetic moment of the 
cells of μ = 2.4 · 10−16 A m2 with a standard deviation of σμ = 1.1 · 10−16. The maximal magnetic moment was 
μmax = 6.3 · 10−16 A m2, and the minimal moment was μmin = 0.58 · 10−16 A m2. The magnetic field strengths for the 
rotational measurements were between B = 6 mT and B = 23 mT. The distribution of the magnetic moments from 
the rotational measurements is shown in Fig. 5a.

Figure 5. Distributions of the magnetic moments of single M. gryphiswaldense cells. (a) Magnetic moments 
determined by measuring the rotation of N = 265 cells in alternating magnetic fields. The field strengths ranged 
from B = 6 mT to 23 mT. (b) Magnetic moments determined by measuring the translation of N = 86 cells in 
static magnetic fields. The field strengths ranged from B = 90 mT to 130 mT. (c) Saturation magnetic moments of 
N = 50 cells determined by measuring the total magnetosome volume of each cell with TEM.
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With the calculated translational viscous drag coefficients, the magnetic moment of each bacterium was 
determined by fitting Eq. 6 to the tracked translation motion. We tracked the translational motion of N = 86 
bacteria and found an average magnetic moment of the cells of μ = 7.7 · 10−16 A m2 with a standard deviation of 
σμ = 3.4 · 10−16 A m2. The maximal magnetic moment was μmax = 16 · 10−16 A m2, and the minimal moment was 
μmin = 1.2 · 10−16 A m2. The magnetic field strengths for the translational measurements were between B = 90 mT 
and B = 130 mT. The distribution of the magnetic moments from the translational measurements is shown in 
Fig. 5b.

For a comparison, we determined the saturation magnetic moment for N = 50 bacteria by determining the 
total magnetosome volume Vmag for each cell by TEM. This value was multiplied by the saturation magnetization 
of magnetite51 = . ⋅ −M 4 8 10 22 A m

nm

2

3  to determine the saturation magnetic moment for each cell μ = Vmag · M. The 
average number of magnetite crystals per magnetosome chain was 43 ± 10 (N = 50 cells) with chains harboring 
between 23 and 62 crystals (Fig. 6a). Overall we found magnetosomes with edge lengths between 3 nm and 43 nm 
with a mean of (26 ± 6) nm for N = 2,143 crystals (Fig. 6b). The average saturation magnetic moment of the cells 
was μsat = 9.9 · 10−16 Am2 and the standard deviation was σ = . ⋅µ

−2 6 10 A m16 2
sat

. The maximal saturation mag-
netic moment was μsat,max = 16.7 · 10−16 Am2 and the minimal moment was μsat,min = 4.9 · 10−16 Am2. The distribu-
tion of the saturation magnetic moments from the TEM measurements is shown in Fig. 5c. An overview of the 
magnetic moments determined by the three different methods (bacterial rotation, bacterial translation and mag-
netosome volume) is shown in Table 1.

Discussion and Conclusions
We present a magnetic tweezers-based method for measuring the magnetic moments of individual bacteria, and 
we demonstrate the method by quantifying the individual magnetic moments of a large number of M. gryph-
iswaldense cells. Our method takes into account the helical shape of the bacteria and it can be adapted to allow the 
investigation of arbitrarily-shaped bacteria. Key parameters that describe the size and the shape of the bacteria, 
their end-to-end length and amplitude, were measured for each individual cell for the determination of its mag-
netic moment. Furthermore, our method is based on biologically inert (dead) yet well-preserved cells to avoid 
the non-thermal noise induced by living cells. In addition to characterizing the magnetic moment on a single cell 
level, our approach can also address various questions concerning the large spread of magnetic moments that 
were previously reported.

One of these questions was whether it is necessary to take the helical shape of M. gryphiswaldense into account 
or whether it is sufficient to approximate them with a simplified geometry, such as a cylinder. We found (Fig. 4) 

Figure 6. Distributions of the magnetite crystal numbers and sizes in M. gryphiswaldense cells. (a) Distribution 
of the number of magnetite crystals per cell. The data from 50 cells are represented in a box and whiskers plot. 
The box represents 50% of the central data, and the whiskers represent the 10–90 percentile. The central line 
depicts the median, and the cross indicates the average. (b) Distribution of the magnetite crystal edge length 
of 2,143 crystals from 50 cells. The box represents 50% of the central data and the whiskers show the 1–99 
percentile. The central line depicts the median, and the cross indicates the average.



www.nature.com/scientificreports/

1 1Scientific RepoRts | 7: 3558  | DOI:10.1038/s41598-017-03756-z

that for the rotational measurements, the measured end-to-end lengths of the bacteria varied from Lee,min = 2.2 µm 
up to Lee,max = 5.9 µm with a mean value of 〈Lee〉 = 3.7 ± 0.7 μm. A cylinder with a length of L = 3.7 µm and a diam-
eter of d = 0.42 µm (which is the average diameter according to our TEM measurements) has a normalized rota-
tional viscous drag coefficient of approximately = .

γ

η
µ35 2 m3rot . Our exact calculations of the viscous drag, which 

take the helical shape and the individual dimensions of the cells into account, yield an average normalized rota-
tional viscous drag coefficient of 〈 〉 = . ± .

γ

η
µ38 7 17 0 m3rot . Therefore, calculating the average magnetic moment 

of the cells using the mean value 〈Lee〉 and approximating the cells as cylinders instead of taking the real helical 
cell shape into account, leads to an error of approximately 9%. Similarly for the translational measurements, the 
measured end-to-end lengths of the bacteria varied from Lee, min = 2.4 µm up to Lee,max = 5.7 µm with a mean value 
of 〈Lee〉 = 3.8 ± 0.7 μm. A cylinder with a length of L = 3.8 µm and a diameter of d = 0.42 µm has a normalized 
translational viscous drag coefficient of approximately = .

γ

η
µ11 9 mtrans . Our exact calculations of the viscous drag, 

which take the helical shape and the individual dimensions of the cells into account yield an average normalized 
translational viscous drag coefficient of 〈 〉 = . ± .

γ

η
µ12 8 1 4 mtrans . Therefore, calculating the average magnetic 

moment of the cells using the mean value 〈Lee〉 and approximating the cells as cylinders instead of taking their 
real helical shape into account, leads to an error of approximately 7%. From these observations, we can conclude 
that for the given bacterial population, the approximation of the cell shapes by a single cylinder with a length and 
a diameter given by the average length and diameter of the population is a reasonable approach if systematic 
errors on the order of magnitude of approximately 10% are acceptable.

Another raised question was whether it is necessary to take the dimension of each individual cell into account 
or whether it is sufficient to use average dimensions of a bacterial ensemble. If the study is purely focused on the 
average magnetic properties of a bacterial ensemble and if an uncertainty of 10% is acceptable, using the average 
dimensions is sufficient as stated above. However if individual magnetic moments of single bacteria are relevant, 
using the individual dimensions of the cells is necessary as discussed below. Figure 4 shows that the individual 
length and amplitude of the bacteria is important for determining the individual viscous drag and thus the mag-
netic moment of each bacterium. The rotational viscous drag varies by more than a factor of 10 between the 
smallest value of = .

γ

η
µm10 5 3rot  for the shortest bacterium and the largest value of =

γ

η
µm114 3rot  for the longest 

bacterium. If the average rotational viscous drag value was used instead of the drag value based on the individual 
size of the cells, the magnetic moment of the shortest bacterium would be overestimated by +270% and the mag-
netic moment of the longest bacterium would be underestimated by −64%. In addition, Fig. 4 shows that the 
translational viscous drag varies between a value of = .

γ

η
µ9 96 mtrans  for the shortest bacterium and a value of 

= .
γ

η
µ16 4 mtrans  for the longest bacterium. Thus, if the average translational viscous drag value was used instead of 

the drag value based on the individual size of the cells, the magnetic moment of the shortest bacterium would be 
overestimated by +29% and the magnetic moment of the longest bacterium would be underestimated by −22%. 
The observation that the rotational measurement of the magnetic moment is more sensitive to the length of the 
bacteria than the translational measurement can be understood by the circumstance that the rotational viscous 
drag coefficient scales approximately with the cube of the bacteria’s length, whereas the translational drag coeffi-
cient scales approximately only linearly with the length of the bacteria.

The last question was whether the use of dead cells (ruling out the induction of non-thermal noise) leads to 
more consistent results than the use of living cells if different methods for determining the magnetic moments are 
applied. Since we only used dead cells in our measurements, we cannot provide a final answer to this question. 
However, we are able to contribute to an answer by testing whether the three different methods that were applied 
in our study are consistent with previous measurements on ensembles of non-motile bacteria. Fischer et al. meas-
ured the relative magnetization behavior of a large ensemble of dead M. gryphiswaldense cells21. These measure-
ments provide information about the change of the average magnetic moment of the bacteria as a function of an 
external magnetic field. Their data indicate that the direction of the bacterial magnetization is reversed if external 
fields with an absolute value of more than approximately 20 mT are applied in the direction that is antiparallel 
to the magnetic fields of the bacteria. In agreement with this magnetic coercivity, we observed a rotation of the 
bacteria after a reversal of the magnetic field direction only for magnetic field strengths of less than 23 mT. For 

B (mT) µ (10−16 A m2) Method

6–23 2.4 ± 1.1 Bacterial rotation in alternating fields with a 
strength ranging between 6 mT and 23 mT

90–130 7.7 ± 3.4 Bacterial translation in constant fields with a 
strength ranging between 90 mT and 130 mT

∞ 9.9 ± 2.6 Magnetosome volume determination by TEM

Table 1. Magnetic moments of the bacteria measured by the three different methods and the corresponding 
external magnetic fields. Average magnetic moments μ (±standard deviations) determined by the three 
different experimental methods: Measurement of the bacterial rotation in alternating external magnetic 
fields, measurement of the bacterial translation in constant external magnetic fields and determination of the 
magnetosome volume by TEM. The corresponding external field strengths B were in the range between 6 and 
23 mT for the rotation measurements and between 90 and 130 mT for the translational measurements. The TEM 
measurement of the magnetosome volume provides the saturation moment for very large external magnetic 
fields.
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larger magnetic fields, the bacteria did not rotate suggesting a reversal of the direction of their magnetic moment 
relative to the orientation of the bacteria.

Furthermore we derived magnetic moments with a mean value of μ = 7.7 · 10−16 A m2 and a standard deviation 
of σ = 3.4 · 10−16 A m2 from our measurements of the bacterial translation in constant external fields (field 
strength: 90 mT–130 mT). Given the N = 86 translation measurements, the standard error of the mean is therefore 

⋅ . ⋅ = . ⋅− −3 4 10 A m 0 4 10 A m1
86

16 2 16 2. The TEM measurements of the saturation magnetic moment for 
N = 50 cells yielded a mean value of μ = 9.9 · 10−16 A m2, a standard deviation of σ = 2.6 · 10−16 A m2 and therefore 
a standard error of the mean of ⋅ . ⋅ = . ⋅− −2 6 10 A m 0 4 10 A m1

50
16 2 16 2. A combination of these two measure-

ments shows that in external magnetic fields in the range between 90 mT and 130 mT the cells have magnetic 
moments that correspond to a value of 78% ± 5% of the saturation magnetic moment. For these field strengths, 
the measurements of Fischer et al.21 yielded magnetic moments that correspond to 95% ± 3% of the saturation 
magnetic moments. Although these measurements are not completely in agreement, they agree relatively well 
compared to the large discrepancies on the order of one magnitude that were reported so far. Furthermore, our 
results are in agreement with the work of Reufer et al.10 who investigated M. gryphiswaldense and found an 
ensemble average of the magnetic moment of (2.0 ± 0.6) × 10−16 A m2 at a magnetic field of 1.5 mT. Based on the 
bacterial magnetization behavior21, an extrapolation of this magnetic moment from an external field of 1.5 mT to 
external fields in the range of 6 mT to 23 mT would result in a magnetic moment of (2.7 ± 1.2) × 10−16 A m2. This 
value is in very good agreement with the value of (2.4 ± 1.1) × 10−16 A m2 that we found for magnetic fields 
between 6 mT to 23 mT. Altogether, the agreement of our three methods with several previous measurements that 
were also based on dead cells indicates that the use of such cells leads to more consistent results than the use of 
living cells.

The possibility of measuring the magnetic moments of a large number of single bacteria by tracking their 
motion close to the tip of MT and by considering their individual shape and size allows addressing novel ques-
tions for the investigation of magnetotactic bacteria. In our study, we used MT in combination with bright-field 
microscopy. However MT can also be combined with other imaging modes such as fluorescence microscopy. 
Fluorescence labeling of the magnetosome chain to directly image the chain motion in vivo was recently estab-
lished7 and can be used in future in combination with the single cell magnetic moment measurements presented 
here. Moreover, deleting genes that are involved in magnetosome biosynthesis can, for example, be used to inves-
tigate quantitatively the effects of these genes on the magnetic moments of the bacteria. Although our results 
indicate that the use of dead cells provides more robust results that the use of living cells, our MT-based methods 
can be extended to allow the use of living cells. In this case, our method can be used for example to correlate the 
magnetic moments of individual bacteria with their behavioral response to obtain a deeper understanding of 
magnetotaxis as a navigational mechanism.
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Materials and Methods 
 
Calculation of the viscous drag coefficients via Stokesian dynamics 

The centerline 𝒓cl of the bacteria’s helix with diameter 𝐴, length in axial direction 𝐿 and helical pitch 𝜆 
is given by 

𝒓cl(𝑢) =  

⎝

⎜
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𝐴
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 cos(2𝜋 𝑢)
𝐴
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 sin(2𝜋 𝑢)

𝜆 𝑢 ⎠

⎟
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 (1) 

 

where u is varied between 0 and 𝐿
𝜆
  to describe the complete helix centerline. Any position 𝒓H on the 

bacteria’s surface, other than the ends, can be described by 

𝒓H(𝑢, 𝑣) =  𝒓cl(𝑢) + 𝑑 𝑫�̂�t(𝑣)�̂�n (2) 

since every position has the same distance d to the centerline (except the ends). The unit vector �̂�n is 
the vector normal to the centerline and  𝑫�̂�t(𝑣) denotes the rotation matrix by an angle 𝑣 𝜖 [0, 2𝜋] 
about an axis in direction of the local unit tangent vector �̂�t of the helix centerline. Through variations 
in the parameters 𝑣 and 𝑢 the bacteria’s surface is parameterized. The both ends of the bacteria can be 
represented, in a similar manner, by fixing 𝑢 = 0 or 𝑢 = 𝐿

𝜆
  and by varying 𝑑 and 𝑣. 

 
The diameter A is measured directly in the experiment. The quantities 𝐿 and 𝜆 are determined by the 
experimentally measured arc length s 

𝑠 =  ∫ 𝑑𝑢𝐿/𝜆
0 �𝜕𝒓𝐜𝐜(𝑢)

𝜕𝑢
� =  �(𝜋 𝐴)2 + 𝜆2) (𝐿/𝜆)   (3) 

and the measured end-to-end distance 𝐿ee = �𝒓cl �
𝐿
𝜆
� − 𝒓cl(0)�.  

 
The surface of the helix is divided and represented by 𝑁 point-like beads with an identical effective 
radius a. They are located at positions 𝒓𝑘 with  = 1, … ,𝑁 . A force 𝑭𝑘 is required to move the point-
like particle at a position 𝒓𝑘 through the fluid because the beads have a drag coefficient 𝜁 = 6𝜋 𝜂 𝑎 in a 
solvent of viscosity 𝜂. The beads generate a flow field by moving through the fluid. The flow  𝒖𝑘(𝒓) 
induced by the particle located at 𝒓𝑘 at an arbitrary point in space 𝒓 is given by 

 

𝒖𝑘(𝒓) = 𝑶(𝒓 − 𝒓𝑘)𝑭𝑘 (4) 

with the Oseen tensor1 

𝑂𝑖𝑖(𝒓 − 𝒓𝑘) =
1

8𝜋 𝜂
𝐺𝑖𝑖(𝒓 − 𝒓𝑘) .  (5) 

and the tensorial free space Greens function 𝐺𝑖𝑖  (𝒓) = 1
𝑟
�1 + 𝑟𝑖 𝑟𝑗

𝑟2
�. The parameters 𝑖 = 1, . .3 and 

𝑗 = 1, . . ,3 denote the entries of the matrices 𝑶 and 𝑮 . 



[3] 
 

The flow field 𝒖𝑘(𝒓), which is caused by particle 𝑘 influences via the fluid, respectively via the Oseen 
tensor, the motion of all other particles at 𝒓𝑖 with 𝑗 = 1, . . ,𝑁 and 𝑗 ≠ 𝑘. For a helix moving with the 
velocity 𝒗, all 𝑁 beads fixed on its surface move with the same speed �̇�𝑘 = 𝒗  (𝑘 = 1, … ,𝑁). Every 
moving particle influences via the hydrodynamic interaction all other particles. Therefore, the forces  
𝑭1, … ,𝑭𝑁  required to move the beads with a given velocity 𝒗  are determined by the 𝑁 coupled linear 
equations1 

𝒗 =
𝑭𝑖
ζ

+ � 𝑶(𝒓𝑖 − 𝒓𝑘)
𝑵

𝑘=1,≠𝑖

𝑭𝑘. (6) 

 
For one solution with the velocity 𝒗 nearly parallel to the helical axis and with the total force acting on 
the helical bacterium, 𝑭 = ∑ 𝑭𝑘𝑘  is parallel to 𝒗 . The friction coefficient 𝛾trans  describes the 
proportionality between both quantities: 

𝛾trans 𝒗 = 𝑭. (7) 

For a helix rotating with a frequency 𝜔 around the axis of 𝝎 through its center 𝒓𝐜 = 1
𝑁
∑ 𝒓𝑘𝑘  , the 

velocity of each bead is given by 

�̇�𝑘 = (𝒓𝑘 − 𝒓c) × 𝝎. (8) 

Eq. 6 can be used to determine the relation between the bead velocities and the required forces. The 
torque 𝑴  acting on the helix can be expressed in terms of the forces:  
𝑴 = ∑ (𝒓𝑘 − 𝒓c)𝑘 × 𝑭𝑘. For the case in which the rotational axis is nearly perpendicular to the helix 
axis, the two vectors 𝝎 and 𝑴 are related via the rotational friction: 𝛾rot 𝝎 = 𝑴. 
 
 
 
Calculation of the viscous drag coefficients by Boundary Integral Method 
 
The Boundary Integral Method (BIM) exploits the fact that the Stokes equation is linear and can 
therefore be rewritten as an integral equation2 for the flow velocity u(r) at an arbitrary point r inside 
the infinite and initially quiescent fluid: 

𝑢𝑖(𝒓) =  1
4𝜋 𝜂

 ∮ 𝐺𝑖𝑖(𝒓 − 𝒚) 𝑓𝑖(𝒚) 𝑑𝒚𝑆 , (9) 

where summation over the repeated index j is implied, y is a point on the surface S of the bacterium, η 
is the fluid viscosity and f is the surface traction.  
 
When the observation point r is moved to the surface, Eq. 9 can be converted to a linear system of 
equations2 which in our implementation is solved by GMRES3,4. The surface integral in Eq. 9 is 
computed by discretizing the bacterial surface using flat triangles to interpolate between the surface 
nodes. To allow a direct comparison, the nodes of the triangles are taken at the same positions as in the 
Stokesian dynamics calculations (see above).  
 
 



[4] 
 

To impose a rotation/translation on the bacterium, each node is coupled by a harmonic spring to an 
auxiliary anchor point. During the simulation, these imaginary anchor points are translated/rotated 
with a prescribed (angular) velocity. By distributing the force of these springs over the local area 
surrounding each node, the force is converted into a surface traction f, which is a term in Eq. 9. The 
solution of the linear system resulting from Eq. 9 then yields the surface velocity u from which the 
desired drag coefficients 𝛾rot and 𝛾trans and can be directly obtained. The translational/rotational 
velocities have been chosen to be small enough that the relation between force and velocity remains 
linear. 
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Abstract Microflows are intensively used for investigating and controlling the dynamics of particles, in-
cluding soft particles such as biological cells and capsules. A classic result is the tank-treading motion of
elliptically deformed soft particles in linear shear flows, which do not migrate across straight stream lines
in the bulk. However, soft particles migrate across straight streamlines in Poiseuille flows. In this work we
describe a new mechanism of cross-streamline migration of soft particles. If the viscosity varies perpendic-
ular to the stream lines then particles migrate across stream lines towards regions of a lower viscosity, even
in linear shear flows. An interplay with the repulsive particle-boundary interaction causes then focusing of
particles in linear shear flows with the attractor stream line closer to the wall in the low viscosity region.
Viscosity variations perpendicular to the stream lines in Poiseuille flows leads either to a shift of the par-
ticle attractor or even to a splitting of particle attractors, which may give rise to interesting applications
for particle separation. The location of attracting streamlines depend on the particle properties, like their
size and elasticity. The cross-stream migration induced by viscosity variations is explained by analytical
considerations, Stokesian dynamics simulations with a generalized Oseen tensor and Lattice-Boltzmann
simulations.

1 Introduction

The success of the interdisciplinary field of microfluidics
and its numerous applications in life science and applica-
tions are based also on a thorough understanding of the
dynamics of particles and their distribution in microflows.
[1,2,3,4,5,6] One of the important applications is parti-
cle sorting where besides structured channels also optical,
electrical or magnetic fields are used.[3] Several sorting
strategies rely merely on the interplay between basic hy-
drodynamics of microflows and particle properties, that
cause, for instance, cross-streamline migration (CSM) of
particles. CSM may depend on fluid inertia,[5] on particle
deformability, [7,8,9,10,11,12,13,14,15,16,17] on channel
modulations[18] or on non-Newtonian fluid effects.[19,20,
21,22,23,24] In non-Newtonian flows the action of elastic
effects and spatially varying shear viscosity on particles
come often simultaneously into play, but little is known
about the action of a spatially dependent shear viscosity
on the particle dynamics alone. We describe in this work
a surprising viscosity-gradient driven CSM and the result-
ing focusing of soft-particles, which occurs even in linear
shear flows as indicated in Fig. 1.

Segré and Silberberg found quite early that rigid par-
ticles can migrate across straight streamlines to off-center
streamline positions in pipe flows [25]. This type of cross-
streamline migration (CSM) is inertia driven in the range
of intermediate Reynolds number (∼ 1 < Re <∼ 100) and
it is extensively used for sorting of rigid particles (see e.g.

u0(y)

U

x

y

0

d

∇η

η0

Figure 1. The two solid lines sketch two trajectories of a soft
capsule (enlarged) in a shear flow u0(y) driven by a moving
upper boundary. The shear viscosity of the fluid increases from
top to bottom (for instance induced by a temperature gradient)
and the capsule migrates towards the region of low viscosity.
Along the attractor (dashed line) the migration to a smaller
viscosity is in balance with the particle repulsion by the upper
boundary.

Ref. [5]). In contrast, deformable particles like capsules
or cells show CSM already on the scale of microchannels
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and in the limit of Stokes flows at very small values of the
Reynolds number. The tank-treading motion of vesicles
or capsules causes near walls the so-called lift force that
drives them away from channel walls in Poiseuille and lin-
ear shear flows [7,8,9,10]. Further away from the walls
in Poiseuille flows one still has a spatially varying shear
rate, which breaks the fore-aft symmetry of deformed par-
ticles, so that dumbbells [26,27,28], droplets [11,12], vesi-
cles and capsules [13,14,15,16] exhibit bulk CSM, even
in unbounded Poiseuille flows where the interaction with
the channel boundaries is neglected. Surprisingly, CSM of
soft particles can be driven also by gravitational effects,
whereby the migration direction depends on relative di-
rections between the flow and the gravitational force [17].
Migration in Newtonian fluids was also found for non-
symmetric soft particles in time-periodic linear shear flows
[29] and even shaken liquids when particle inertia is con-
sidered [30].

Recent studies of particle CSM use besides Newtonian
carrier fluids also visco-elastic fluids. They also break the
fore-aft symmetry and may cause already CSM of rigid
particles.[24] CSM in viscoelastic liquids is often faster
than in Newtonian liquids, which makes non-Newtonian
liquids attractive for applications such as in health care or
biological and chemical analysis.[19,20,21,22,23,24] Par-
ticles in non-Newtonian liquids are sometimes also focused
to positions aside of the channel center even in the limit
of low Reynolds number flows (see e.g. Ref. [21]). Since
in such non-Newtonian liquids shear thinning, leading to
a non-constant viscosity, comes often simultaneously into
play with a fluid elasticity, the specific contribution of a
non-constant viscosity to particle CSM is not clear.

Here we study the effects of viscosity gradients on the
flow profiles and on the particle dynamics, whereby vis-
cosity gradients may be imposed in a controlled way, for
instance, by applying a temperature gradient to fluids [31].
Our modeling approach is described Sec. 2, where also an-
alytical expressions for certain flow profiles and a general-
ized Oseen tensor are given. In Sec. 3 and Sec. 4 we show
by symmetry arguments and numerical simulations, how
a viscosity varying perpendicular to the stream lines of a
linear shear breaks symmetries and induces CSM of cap-
sules already in simple shear flows, in contrast to liquids
with constant viscosity. Two types of viscosity profiles are
investigated for plane Poiseuille flows in Sec. 5, where we
find also a new scenario for particle stream splitting with
interesting applications for particle sorting.

2 Models and Methods

In Sec. 2.1 we consider a constant viscosity gradient per-
pendicular to the flow lines in linear shear flows and plane
Poiseuille flow. We provide for both cases analytical ex-
pressions for the flow profile as solutions of the Stokes
equation with non-constant viscosity. In Sec. 2.2 we present
a generalized Oseen tensor, which takes the first correc-
tion of the viscosity gradient into account. It is used in
the Stokesian dynamics simulations of the capsule and

is derived without the hydrodynamic capsule-wall inter-
actions. The wall effects are taken into account by the
Lattice Boltzmann Method described in Sec. 2.3.

2.1 Stokes-flows

We consider fluids between two boundaries located at y =
0, d and a spatially varying viscosity

η(r) = η0 + Gη · r (1)

with a constant gradient vector

∇η = Gη . (2)

We investigate low Reynolds number flows that are deter-
mined by the Stokes equation

−∇p+∇ ·
{
η[∇u + (∇u)T]

}
=0 , (3)

with the pressure p and two choices of boundary condi-
tions at y = 0, d.

For a classical shear cell with one moving boundary
the flow field fulfills the boundary conditions:

u(y = 0) = 0 and u(y = d) = Uex . (BC I) (4)

For a pressure driven plane Poiseuille flow with a constant
pressure gradient in x-direction, ∇p = p0ex, we use the
boundary conditions

u(y = 0, d) = 0 . (BC II) (5)

If not stated otherwise, we consider further on a viscosity
gradient in y-direction

η(r) = η0 +Gη,yy (6)

which may be imposed, for instance, by a temperature
gradient perpendicular to the two bounding plates. For
the viscosity gradient, Gη,y 6= 0, and the solution of the
Stokes equation (3) for the boundary conditions BC I gives
a nonlinear y-dependence of the velocity in x-direction

u0(y) = U
ln[y Gη,y/η0 + 1]

ln[dGη,y/η0 + 1]
ex . (7)

It reduces in the limit Gη,y = 0 to the well known linear
shear profile

u0(y) = U
y

d
ex . (8)

For a pressure driven flow between two flat boundaries
with the boundary conditions in Eq. (5) the y-dependence
of the flow u0(y) parallel to the x-axis is given by

u0(y) = U
Cy − d ln

(
Gη,yy
η0

+ 1
)

d
[
1 + ln

(
Cη0
dGη,y

)]
− Cη0

Gη,y

ex ,

with C = ln

(
dGη,y
η0

+ 1

)
. (9)

This gives in the limit Gη,y = 0 the well known parabolic
profile u0(y) = 4Uyd(d− y)ex .
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2.2 Stokesian particle dynamics

The surface of the capsule is discretized with N beads at
the positions ri (i = 1, . . . , N). Their Stokesian dynamics
is described by[32]

ṙi = u0(ri) +

N∑

j=1

Hij · Fj . (10)

The capsule center is given by rc =
∑N
i=1 ri/N . The force

on bead j is calculated via Fj = −∇jV (r) with V (r)
denoting the total potential (given in the following) and
Hij means the mobility matrix. The mobility matrix is
given by

Hij =

{
1

6πηia
1 if i = j ,

O(ri, rj) otherwise .
(11)

with the Oseen tensor O, the Greens function to the Stokes
equation (3). For a spatially varying viscosity, i. e. Gη 6= 0,
we take the leading correction with respect to the small

quantity
(ri−rj)·Gη

ηj
into account

O(ri, rj) =
1

8πηjRi,j

[(
1− Ri,j ·Gη

2ηj

)

(
1 + R̂i,jR̂i,j

)
+

1

2ηj

(
Ri,jGη −GηRi,j

)]
.

(12)

Herein we use ηj = η(rj), Ri,j = ri − rj , ri,j = |Ri,j | and

R̂i,j =
Ri,j

ri,j
. A small value of

(ri−rj)·Gη

ηj
means that the

spatial deviation of the viscosity on the size of the capsule
is small compared to the local viscosity at the position
of the capsule. It can be estimated by the dimensionless
number

G̃η =
Gη2Rc

ηc
(13)

with the viscosity at the center of the capsule ηc = η(rc)
and the capsule’s radius Rc. In this form of the Oseen ten-
sor the interaction with the walls is neglected. The deriva-
tion of the expression in Eq. (12) is given in SI.

To calculate the forces and the velocity of the cap-
sule on its surface, which is spherical in its equilibrium
shape, it must be discretized (see Fig. 1). We begin with
a regular icosahedron, which has 12 nodes, and refine the
surface iteratively [33]: We add new nodes at the middle
of each edge and shift them to the surface of the sphere,
until we obtain a good resolution. With this discretiza-
tion we can calculate the forces at the surface whereby
we use an elastic force, a bending force and a penalty
force that ensures volume conservation. The elastic force
is modeled by the neo-Hookean law that describes a thin
plate with a constant surface shear elastic modulus Gs
with a potential VNH (for details see Refs. [34,35]). The
bending force follows from the potential Vb [36] with Vb =
κ
2

∑
i,j

(1− cosβi,j) whereby κ describes the bending stiff-

ness and βi,j denotes the angles of the normal vectors

between two neighboring triangles. Furthermore we use
a penalty force that ensures that the volume is approxi-
mately conserved during the simulations [37]. Its potential
is given by Vv = kv

V0 (V(t) − V0)2 with the instantaneous

volume V(t), the reference volume V0 and the rigidity kv.
It is useful to measure the capsule’s stiffness with a di-
mensionless number, the capillary number

Ca =
η0Rc

Gs
γ̇ (14)

with (mean) shear rate

γ̇ =
U

d
. (15)

If not stated otherwise we use the following parameters
for the Stokesian dynamics. Parameters of the flow: d=50,
U=0.5, η0=3, Gη = 0.03 êy. Parameters of the capsule:
initial position x0=0, y0=d/2, z0=0, forces: kv=3.0, κ =
0.2, Gs = 0.2 (linear shear flow) and Gs = 0.4 (Poiseuille
flow), mean bead distance b = 1.0, Radius Rc = 6.6, bead
radius a = 0.2, time step ∆t = 0.05. This leads to Ca ≈ 1,

|G̃η| = 0.18 at the initial position.
A conversion of the parameters to SI units is obtained

by multiplying them with:

um = 37.88µm, us = 1.89 ms, ukg = 2.39 · 10−11 kg .
(16)

The radius of the capsule is Rc ≈ 250µm, and the plate
distance is d ≈ 2 mm. The viscosity of the fluid at the
boundaries (if Gη ‖ −êy) corresponds to water at 20◦C
with η(y = 0) = 1 mPas and 60◦C with η(y = d) =
0.5 mPas [38,39]. This is a temperature gradient compa-
rable to one discussed in Ref. [31]. The maximal velocity
is U = 1 cm / s.

2.3 The lattice-Boltzmann method

To investigate the particle dynamics without the constraint
of a small viscosity gradient as for the Stokesian dynam-
ics and in order to take also the effects of the bound-
aries on particle dynamics into account we use the lattice-
Boltzmann method (LBM).

We use a LBM with 19 discrete velocity directions
(D3Q19), cf. fig. 2 [40], with the Bhatnagar-Gross-Krook
(BGK) collision operator [41,42]. The equation of the prob-
ability distribution fi(r, t) in velocity-direction i at posi-
tion r is then given by

fi(r + ci∆t, t+∆t) = fi(r, t)−
∆t

τ
(fi(r, t)− f ei (r, t))

+ ∆tFi , (17)

whereby τ is a typical relaxation time related to the vis-
cosity of the fluid and Fi contains the external forces[43].
f ei (r, t) is the equilibrium distribution:

f ei (r, t) ≈ ρwi

[
1 +

(ci · u)

c2s
+

(ci · u)
2

2c4s
− u2

2c2s

]

+ O(u3) (18)
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with the unit vectors ci along the discrete directions for
the i-th velocity. Furthermore we use the equilibrium fluid
density ρ0, the speed of sound in the LBM-system, cs =
1√
3
, and the weighting factors wi [42].

Figure 2. Sketch of the discretized velocity directions of the
D3Q19 model for lattice-Boltzmann simulations.

The probability distribution function allows to calcu-
late the density and the velocity of the fluids via

ρ(r, t) =
∑

i

fi(r, t) , (19)

ρ(r, t)u(r, t) =
∑

i

cifi(r, t) +
1

2
∆tF (r) , (20)

whereby F (r) is the external force density[43]. The vis-
cosity of the fluids is given by

ν(r) = c2s

(
τ(r)− 1

2

)
∆t . (21)

We use a spatial dependent τ(r) to simulate the viscosity
gradient given by Eq. (6).

The external forces are coupled to the flow via the
immersed boundary method [44]. Thereby one has to con-
sider that the nodes on the membrane of the capsule do
not lie on the discrete grid points of the fluid. The force
acting on a node of the capsule’s surface is distributed
to neighbouring fluid nodes with the function φ(∆r) =

φ̃(∆x)φ̃(∆y)φ̃(∆z) and

φ̃(R) =

{
1
4

(
1 + cos(πR2 )

)
if |R| ≤ 2

0 else
. (22)

It is also utilized to calculate the velocity at the nodes of
the capsule’s surface with the velocity of the neighboring
fluid nodes. We use periodic boundary conditions in x and
z-direction and a standard bounce back scheme at the
walls to drive the flow [42].

We use the following parameters for the linear shear
flow: Parameters of the flow: density ρ0=1.0, viscosity
η0 = 1/6 at x = 0, y = 0, z = 0, viscosity gradient

Gη = 0.002 êy, velocity of the upper boundary or max-
imum velocity U=0.005, number of nodes in x-direction
Nx=400, number of nodes in z-direction Nz=100, wall dis-
tance is d = 100. Parameters of the capsule: initial posi-
tion x0=0, y0=51.5 and z0=49.5, coefficient of the volume
preserving force kv=0.01, bending potential κ = 10−4,
neo-Hookean coefficient Gs = 10−4 node distance b = 1.0,
which leads to a radius R = 6.6, number of nodes N = 642
or R = 13.2 with N = 2562. The time step is ∆t = 1.0. For
comparison between LBM and Stokesian dynamics simu-
lations besides the same parameters a bead radius a=0.2
is used.

We use the following parameters for the Poiseuille flow.
Parameters of the flow: density ρ0=1.0, viscosity η0 =
1/6 at x = 0, y = 0, z = 0, viscosity gradient |Gη| =
0.009, velocity of the upper boundary or maximum ve-
locity U=0.15, number of nodes in x-direction Nx=400,
number of nodes in z-direction Nz=100, wall distance is
d = 300. Parameters of the capsule: coefficient of the vol-
ume preserving force kv=0.01, node distance b = 1.0 which
leads to a Radius R = 3.3, number of nodes N = 162 or
R = 13.2 with N = 2562, time step ∆t = 1.0, bending
potential κ = 0.17 (large R), bending potential κ = 0.02
(small R), neo-Hookean coefficient Gs = 10−3 (large R),
neo-Hookean coefficient Gs = 5× 10−4 (small R).

3 Explanation of ∇η-induced CSM

We develop at first a qualitative explanation of the CSM
induced by a viscosity gradient perpendicular to stream
lines. A viscosity gradient modifies the flow profiles as in-
dicated in Eq. (7) and Eq. (9), i.e. the shear rate across the
particle is not constant but is slightly varying. This varia-
tion of the shear rate is neglected for the qualitative expla-
nation here. We show that the CSM is directly caused by
the ∇η-induced modifications of the friction forces acting
on the particle’s surface and not indirectly by the varying
shear rate (this is also confirmed by simulations, cf. SI).

We consider at first a spherical capsule. Without a
viscosity gradient, the capsule rotates due to the linear
shear flow (see Eq. (8) and Fig. 3 (a)) and its center rc
follows a flow line. [32,16,13] The velocity at the capsule’s
surface in the comoving frame is given by ũs(r̃) = ω × r̃
with r̃ = r − rc, ω = 1

2∇ × u0 and the shear flow in the
comoving frame ũ0(ỹ) = Uỹ/dex . The friction forces F(r̃)
between the capsule and the fluid can be calculated by
solving Eq. (10) for the forces Fj = F(r̃j) . In the following
we show how this friction force is affected if this rotation
is performed in the presence of a viscosity gradient.

A spherical capsule in a linear shear flow without vis-
cosity gradient has symmetries: The spherical capsule is
invariant under a reflection at the x̃z̃- or ỹz̃-plane. Also
the flow’s magnitude is equal after these reflections, but
the flow changes its sign, cf. Fig. 3 (a). Therefore the ve-
locity and the friction at the surface of the capsule have
the same symmetries: At the mirrored position r̃′ of r̃ at
the x̃z̃-plane we get Fx(r̃′) = −Fx(r̃) and Fy(r̃′) = Fy(r̃)
(analogously at the ỹz̃-plane). The direction of the friction
forces from the fluid on the capsule is indicated in Fig. 3
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Figure 3. A rigid capsule is rotating due to the shear flow
ũ0(y) with velocity ũs(r) at its surface (comoving frame, with-
out gradient) (a). This leads to friction forces F(r̃) (orange
arrows), but the sum of these forces is zero because of the
symmetry to the x̃z̃- and ỹz̃-plane. This motion in presence
of a viscosity gradient Gη ‖ êy (black) leads to higher friction
forces on one half than on the other (orange arrows and color
of surface) (b). This asymmetry causes a net force Fnet (red)
which is oriented in flow direction, i.e. it causes no CSM. A soft
capsule is deformed and performs a tank-treading motion (c)
in a linear shear flow (shown without a gradient). Due to its
ellipsoidal shape it is not symmetric to the x̃z̃- and ỹz̃-plane,
but has a point symmetry that prevents a net force. A gradient
(d) breaks the point symmetry and leads to a net force with
a component perpendicular to the flow. This results in a CSM
towards regions with a lower viscosity.

(a). As example at the point of the capsule with the high-
est y-value the friction force points in positive x-direction
and at the point with the lowest y-value the force points
in negative x-direction and has the same magnitude. This
symmetry determines the net force via

Fnet,x =

∮
FxdA =

∫

y>yc

FxdA+

∫

y<yc

FxdA

=

∫

y>yc

FxdA−
∫

y>yc

FxdA = 0 , (23)

Fnet,y =

∮
FydA =

∫

x>xc

FydA+

∫

x<xc

FydA

=

∫

x>xc

FydA−
∫

x>xc

FydA = 0 , (24)

whereby
∫
y>yc

dA denotes an integration over the half

sphere on the side of the xz-plane with y > yc. The sym-
metries show that the force on one half of the sphere has
the opposite direction of the force on the other half. Thus
the net forces is zero for a constant viscosity. Furthermore
the system is symmetric to the x̃ỹ-plane which prevents a
force in z-direction:

Fnet,z = 0 . (25)

We discuss now the effect of a viscosity gradient oriented
perpendicular to the flow direction and in the shear plane,

i. e. Gη ‖ êy as shown in Fig. 3 (b). With the viscosity
gradient the friction at the upper half of a rigid spherical
capsule (y > yc), which is directed in positive x-direction,
is higher due to the higher viscosity than at the lower
half (y < yc), which is directed in negative x-direction.
Because the magnitude of the friction is not equal at both
halves the symmetry used to derive Eq. (23) is broken.
Thus a net force is caused by the rotation in presence of
the viscosity gradient, even in a linear shear flow.

But the magnitude of the friction still has a symmetry
to the ỹz̃-plane. This can be seen with Fig. 3 (b) by com-
paring the left part of the capsule (x < xc) and the right
part (x > xc). Both halves are symmetric because the
viscosity increases in y-direction and not in x-direction.
Thus the symmetry used in Eq. (23) is broken, but eqs.
(24) and (25) are still valid. Therefore, the net force is ori-
ented in x-direction, i.e. Fnet is parallel to the flow. Thus a
rigid sphere shows migration along the flow direction but
no CSM. The effects of further possible directions of the
viscosity gradient on rigid particles are discussed in SI.

The behavior of a deformable capsule is different. Its
tank-treading motion and shape obtained by simulations
in a linear shear flow without a viscosity gradient is shown
by Fig. 3 (c). The capsule adopts an ellipsoidal shape with
its major axis inclined with respect to the flow direction.
The capsule’s center follows the flow direction. The fric-
tion forces are calculated in the same way as for a rigid
capsule. The main difference to the rigid capsule is the
ellipsoidal shape, which has no mirror symmetries with
respect to the x̃z̃- and ỹz̃-plane. But the deformed shape
and the shear flow have both a point symmetry to the
capsules center (see Fig. 3 (c)) and a symmetry to the
x̃ỹ-plane. The friction force has the same symmetry. As
example the friction force at two points is shown in Fig.
3 (c). At the points with the highest y-value the friction
force from the flow on the ellipsoidal, tank-trading parti-
cle points in positive x- and negative y-direction. At the
mirrored points with the lowest y-value the force points in
negative x- and positive y-direction. Thus eqs. (23), (24)
and (25) can also be used in case of a deformable capsule,
which means Fnet = 0 for a constant viscosity.

We discuss now the effect of a viscosity gradient per-
pendicular to the flow direction and in the shear plane
Gη ‖ êy (other orientations: see SI). The symmetry with
respect to the center is broken and eqs. (23) and (24) are
not valid in this case. This is shown in Fig. 3 (d): The force
at the point with the highest y-value at the high viscosity,
which points in positive x- and negative y-direction, has
a higher magnitude than the mirrored force. This leads to
a non-zero net force Fnet which is oriented in positive x-
and negative y-direction. The system still has a symmetry
to the x̃ỹ-plane, so that Eq. (25) is still valid and the net
force has no z-component. The negative y-component of
the net force leads to a CSM towards the lower viscos-
ity. Note that this is different to the rigid capsule, whose
symmetry to the ỹz̃-plane prevents a force in y-direction.
Thus a CSM due to a viscosity gradient is found only if
the capsule is soft.
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4 CSM in a shear flow

Here we confirm by simulations the qualitative reasoning
described in the previous section, that a finite viscosity
gradient, ∇η, causes a CSM of deformable particles al-
ready in simple shear flows. We use a generalized Oseen
tensor given by Eq. (12), which takes the leading order
effects of ∇η into account, and determine in Stokesian-
dynamics simulations the capsule’s CSM velocity as func-
tion of parameters. By LBM simulations of a capsule we
evaluate the validity range of these approximate results
and we show that capsules in shear flows with ∇η 6= 0 are
focused to an attractor streamline.

4.1 Numerical results on ∇η-induced bulk migration
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Figure 4. The migration velocity vm,y in units of 2γ̇Rc as
function of the dimensionless viscosity gradient G̃η,y. The CSM
is directed towards the lower viscosity as sketched in Fig. 3 and
it is independent of the sign of U , i. e. independent of the flow
direction.

In Stokesian dynamics simulations we use the nonlin-
ear shear flow profile given by Eq. (7) and the generalized
Oseen tensor given in Eq. (12). We simulate trajectories
yc(t) of the capsule and determine by linear fits to the
slope of capsule trajectories yc(t) the cross-stream migra-
tion velocity vm,y. The resulting vm,y of capsules is shown
in Fig. 4 as function of the dimensionless viscosity gra-

dient G̃η,y. The CSM velocity in Fig. 4 decreases nearly

linearly with |G̃η,y| and is oriented as explained in the
previous section, cf. Fig. 3. In addition, the migration is
directed towards the lower viscosity and does not depend
on the flow’s direction, i.e. it is independent on the sign
of U . The nonlinear y-dependence of the flow velocity in
Eq. (7) and therefore the spatially varying velocity gradi-
ent causes in Fig. 4 only a slight deviation of vmy from

a linear dependence on G̃η at small values of |G̃η,y| (a
more detailed comparison of the CSM in both flow pro-
files is given in the SI). This justifies the assumption of a

constant velocity gradient across the capsule used in the
previous section 3.
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Figure 5. The migration velocity vm,y is given in units of 2γ̇Rc

and as function of the capillary number Ca given by Eq. (14).
The migration vanishes at a high capsule-stiffness Ca� 1 and
increases with Ca.

Fig. 5 shows the dependence of the migration velocity
on the stiffness of the capsule: The CSM decreases with
increasing stiffness and vanishes at small values of the cap-
illary number Ca� 1 given in Eq. (14). This underlines
the importance of the deformability of particles for their
cross streamline migration (see also Fig. 3).

The generalized Oseen tensor in Eq. (12) takes into
account the first order correction with respect to the vis-

cosity gradient, i.e. it is valid for small values of |G̃η|.
To estimate the validity range of this approximation we
compare the CSM velocity vm,y as obtained by Stokesian
dynamics simulations using the generalized Oseen tensor
in Eq. (12) with that obtained by Lattice-Boltzmann sim-
ulations of capsules. In order to keep in LBM simulations
the interaction of the capsule with the boundary small,
we positioned it in the middle of the flow cell between the
two boundaries. In addition we have chosen a small ra-
tio between the capsule’s diameter and the wall distance
2Rc

d ≈ 0.13. Furthermore a sufficiently small Reynolds

number Re=ρURc

η0
≈ 0.2 was chosen in LBM simulations

to match the low Reynolds number regime of the Stoke-
sian dynamics simulations. The flow is simulated for the
boundary condition given by Eq. (4) and the viscosity gra-
dient points into the direction perpendicular to the bound-
aries.

The migration velocities resulting from both simula-
tions are shown in Fig. 6. The simulation results for the
capsule with the generalized Oseen tensor and those ob-
tained via the LBM agree well in the range of small values

of |G̃η| and the deviation increases with |G̃η|. For exam-

ple at |G̃η| / 0.15 the relative error is below 10% and at

|G̃η| / 0.18 the error is below 20%.
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Figure 6. The CSM velocity vm,y is determined by Stoke-
sian dynamics simulations (dashed) and by Lattice-Boltzmann
simulations (solid). The expansion up to leading order of the
viscosity gradient G̃η, as used in Stokesian dynamics simula-

tions, leads for vm,y to an error less than 10% if |G̃η| / 0.15
compared to the LBM.

4.2 Particle focusing to an attractor streamline
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Figure 7. The migration velocity of a soft capsule in a flow
with viscosity gradient and the boundary conditions in Eq. (4)
is determined by the LBM as function of the initial position
yc for two different particle radii Rc. Far away from the walls
the particle migrates due to the viscosity gradient towards the
lower viscosity, i.e. towards the plate at y = 0. Close to the
walls the repulsive wall interaction dominates, which leads to a
migration away from the walls. Hence there is a stable position,
i.e. an attractor off center, that depends on the particle’s size.
It is located at y ≈ 0.37d with 2Rc/d = 0.13 and at y ≈ 0.41d
with 2Rc/d = 0.26.

The LBM includes the hydrodynamic interaction of
the capsule with the walls, which causes a so-called lift
force that repels the capsule from walls and that depends
on the capsule-wall distance [7,8,9]. The interplay with

the lift force causes a y-dependent migration velocity as
shown for two capsules with two different radii in Fig. 7.
The dimensionless gradient ranges in this case from Gy =

0.16 (at y = 0) to G̃y = 0.07 (y = d) with Rc = 6.6 and

with Rc = 13.6 from G̃y = 0.14 to G̃y = 0.32. The CSM
caused by ∇η and the wall repulsion balance each other
in the range of the lower viscosity and at this value of y
the migration velocity vm,y vanishes. The location of this
attractor position depends on the capsule size. We find the
attractor at y ≈ 0.37d for 2Rc/d = 0.13 and y ≈ 0.41d for
2Rc/d = 0.26.

5 Simulation of CSM in Poiseuille flow

Capsules and red blood cells migrate in a Poiseuille flow,
driven by the spatial varying shear gradient across a soft
particle, usually to the center of the flow channel. [13,14,
15,16] If one has a viscosity gradient perpendicular to the
boundaries across a plane Poiseuille flow, the ∇η induced
migration has in the whole cell the same direction i. e. the
∇η induced migration either supports or acts against the
common center directed migration. This interplay is inves-
tigated by Stokesian dynamics simulation in unbounded
(bulk) Poiseuille flows and by LBM simulations, where
boundary effects are included.

If a constant ∇η is used, e.g. induced by a tempera-
ture gradient across the flow, then the maximal velocity
of a Poiseuille flow is shifted towards the lower viscosity.
We study here the migration in such a flow profile. How-
ever, also with shear thinning fluids a viscosity gradient
can be generated. It is well known from shear thinning
fluids, that the viscosity has its maximum in the center
of a Poiseuille flow and decreases towards the walls. Par-
ticle migration is recently studied also in Non-Newtonian
fluids, whereby in these works besides shear-thinning ef-
fects also elastic effects are considered to be important.
In order to contribute to the understanding of CSM of
soft particles in shear thinning fluids, we mimic also shear
thinning fluids by studying the effects of a viscosity on the
migration behavior of a capsule, where the viscosity has
its maximum in the channel center and decays linearly to
the boundaries.

5.1 Migration in unbounded Poiseuille flow induced by
∇η = const.

Here we consider as in the previous section a capsule in
a fluid with constant viscosity gradient along the y-axis (
e.g. generated by a temperature gradient) given by Eq. (6)
but now with a Poiseuille flow profile given by Eq. (9).
We simulate the capsule’s Stokesian dynamics by using
the generalized Oseen tensor given in Eq. (12). With the
flow profile in Eq. (9) the simulations focus on the behav-
ior of the capsule in the bulk of a Poiseuille flow, where
the hydrodynamic interactions between the capsule and
the wall are negligible. This allows a direct comparison
between the well known bulk CSM in Poiseuille flow (see
e.g. Refs. [14,16]) and the ∇η induced CSM.
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Figure 8 shows the migration velocity of the capsule
as function of its y position with and without a viscosity

gradient. For G̃η,y = 0 the capsule migrates to the center
and the related CSM velocity vm,y is indicated by the
dashed line.
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Figure 8. The migration velocity vm,y/(2γ̇Rc) of a capsule in
the distorted Poiseuille flow profile given by Eq. (9) is shown.
It is obtained by Stokesian dynamics simulation as function
of the capsule position y/d. The CSM is calculated for two
viscosity gradients, one pointing to negative and the other into
the positive y-direction as well as with a vanishing viscosity
gradient. Without a gradient the capsule migrates towards the
center as expected (see e.g. Refs. [14,16]). In the case of a
viscosity gradient the capsule migrates again towards the lower
viscosity, besides a small region close to the center, where the
shear rate of the flow profile in Eq. (9) vanishes.

With a gradient in negative y-direction, i.e. G̃η,y < 0,
the viscosity ranges from η(y = 0) = 3 to η(y = d) = 1.5.
The CSM velocity for this case is given by the solid line in
Fig. 8. The ∇η effect enhances in a range of smaller y the
CSM velocity to the center, i.e. in positive y-direction.
Near the channel center at y = 0.54d the flow has its
maximal velocity and the shear rate of the flow field given
by Eq. (9) vanishes. At this position the ∇η induced mi-
gration vanishes too and the migration directed to the
channel center dominates. Thus capsules with an initial
position y0 / 0.7 d migrate until they reach the attrac-
tor near the center. At initial positions y0 ' 0.7 d the ∇η
induced outward migration dominates and the capsules
migrate away from the center. This outward migration is
near y = d approximately up to 8 times faster than the
center oriented one.

With a gradient in positive y-direction the viscosity
ranges from η(y = 0) = 3 to η(y = d) = 4.5. The situation
is similar and the migration is also directed to the region
of the lower viscosity, which is now located at the plate
at y = 0. Therefore we get vm,y < 0 again besides the
region close to the center. Capsules with an initial position
y0 ' 0.25 d migrate to the attractor close to the center at
y = 0.44 d and capsules with y0 / 0.25 d migrate to the
wall at y = 0.

5.2 Migration in bounded Poiseuille flow induced by
∇η = const.

Here we describe results of LBM simulations of a capsule
for ∇η = const. and the flow field boundary conditions
given in Eq. (5). Figure 9 (a) shows the spatial dependence
of the flow velocity and the linear increase of the viscos-
ity. This demonstrates that the maximum flow velocity in
Poiseuille flow is shifted towards the lower viscosity.
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Figure 9. (a) The spatial dependence of the flow velocity
u0,x(y) (solid line) and the viscosity for a linear increase of the
viscosity between both boundaries (dashed line). The maximal
velocity is shifted towards the region with the lower viscosity.
(b) The spatial dependence of the migration velocity with wall
interaction for two different capsule radii Rc. The attractor
with vanishing vm,y is shifted towards the lower viscosity due
to the shift of the maximal flow velocity.

The Fig. 9 (b) shows the migration velocity vm,y as
function of yc/d. In contrast to the case without wall in-
teraction (cf. Fig. 8) only the attractor at the maximal
flow velocity and no repeller is found. The reason is that
wall induced repelling lift force is stronger than the ∇η in-
duced migration to large values of y, even at higher values
of G̃y. The shift of the attractor with vm,y = 0 to smaller
values of y than the channel center has its origin in the
shift of the maximal flow velocity to smaller values of y.
Hence, in the presence of walls the capsule migrates always
to one attractor that is shifted away from the flow center
by the constant viscosity gradient. However, the migration
velocity is larger in the presence of the viscosity gradient.

5.3 Particle attractor splitting induced by ∇η 6= const.

Here we study the capsules dynamics by LBM simulations
in a viscosity profile that is maximal at the channel center
and decreases linearly towards the walls, as indicated by
the dashed line in Fig. 10 (a). A decay of the shear viscos-
ity in Poiseuille flow is known for shear thinning fluids and
the viscosity profile in Fig. 10 (a) is a very simple mimicry
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of the shear viscosity of shear thinning fluids. For this vis-
cosity profile one obtains in simulations a Poiseuille flow
profile, cf. solid line in Fig. 10 (a), which is flattened near
the channel center similar as for shear thinning fluids.
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Figure 10. (a) The spatial variations of the shear viscosity
(dashed line) and the flattened velocity profile u0,x(y) (solid
line). (b) The y-dependence of migration velocity as obtained
by LBM simulations of a capsule for two different radii. For
the smaller particle radius a second attractor emerges.

The migration velocity of capsules in this viscosity pro-
file is shown in Fig. 10 (b) for two different radii of the
capsule. The attractor at the channel center is not shifted
by this viscosity profile, because the shear rate vanishes at
the channel center and the ∇η induced migration as well.
In this region close to the center the center directed mi-
gration dominates. However, for the smaller capsule with
2Rc/d = 0.02 the migration velocity, represented by the
solid line in Fig. 10 (b), changes on each side of the chan-
nel center two times its sign. At the outer zero of vm,y
an additional particle attractor has emerged. It is caused,
similar as for the linear shear flow in the previous section
4.2, by the interplay between outward directed∇η induced
migration, which outweighs here the center directed mi-
gration, and the wall repulsion. This is similar also to the
unbounded flow, where the outward directed ∇η induced
migration can overcome the center migration (cf. Fig. 8).
Between two neighboring attractors the vanishing migra-
tion velocity vm,y marks a particle repeller.

The emergence of the off-center attractors enables in-
teresting applications. If in a viscosity profile, similar as in
Fig. 10 (a), particles of different sizes are injected near one
boundary, the larger ones migrate to the attractor at the
channel center and the smaller ones may stay along the
off-center attractor. I. e. at the end of the channel particles
of different size or elasticity (cf. Fig. 3 and Fig. 5) are sep-
arated. This is a interesting new concept in microfluidics
for the separation of different soft particles.

In investigations with viscoelastic fluids a particle mi-
gration to off-center attractors has been reported before
[19,20,21,22,23,24] and it is not always clear whether this

type of migration is driven more by elastic or viscosity ef-
fects. Here the mechanisms of an outward directed migra-
tion to an off-center attractor, driven by the ∇η effects,
are rather clear. Therefore, our model with the viscosity
profile shown Fig. 10 (a), may help for an improved un-
derstanding of CSM in viscoelastic fluids.

6 Discussion and conclusions

We investigated the effects of a spatially varying viscosity
on the flow profile in shear and Poiseuille flow and we de-
scribed a novel viscosity-gradient driven cross-streamline
migration (CSM) of soft capsules, which represents de-
formable particles. A viscosity gradient in microfluidic de-
vices may be induced, for instance, by a temperature gra-
dient [31].

For the Stokesian dynamics simulations of capsules we
determined flow profiles that take a constant viscosity gra-
dient into account. We also derived for these simulations a
generalized Oseen tensor that includes the viscosity gradi-
ent. These results may be also utilized in other approaches
such as the boundary integral method [45] or in simula-
tions of microswimmers [46], polymers [47] and colloids
[32].

Rigid and soft particles in liquids of constant viscos-
ity do not migrate across the streamlines in linear shear
flows [16]. We have shown by symmetry arguments how
the interplay between the particle deformability and the
Stokes-friction forces, that vary according to a viscosity
gradient across a particle, leads to cross-streamline migra-
tion of deformable capsules in simple shear flows towards
the region of lower viscosity. This reasoning may also ap-
ply to the particle dynamics in non-Newtonian fluid flows,
whereby in this case often elastic effects have to be taken
into account as well. Our prediction on the basis of sym-
metry arguments are confirmed by Stokesian dynamics
simulations. By Lattice Boltzmann simulations, where the
particle wall interactions are taken into account, we also
show that the interplay between this viscosity-gradient
induced migration and the hydrodynamic wall repulsion
causes even in linear shear flows a focusing of particles
to an attractor streamline in the low viscosity region as
indicated in Fig. 1. The location of the attractor depends
on the strength of the viscosity gradient and the particle
properties. This predicted focusing may have interesting
applications.

We investigated CSM also in Poiseuille flows for two
different viscosity gradients. A constant viscosity gradient
across plane Poiseuille flow may be induced again by a
temperature gradient across a flow cell. CSM in the pres-
ence of a viscosity gradient is much faster than without
a gradient. As example we showed that the viscosity gra-
dient, that corresponds to water with a temperature dif-
ference of 40◦C between the boundaries at a distance of 2
mm, can already enhance the migration velocity by up to
a factor 8. Such gradients are reported from experiments
[31], also higher viscosity gradients can be achieved with
e.g. sucrose in water [48]. Besides the faster migration, also
the location of the particle attractor in Poiseuille flow is
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affected by the viscosity gradient: It is shifted away from
the center of a Poiseuille flow. The major reason for this
shift is, that the location of the maximum of flow profile
and therefore the position of zero shear rate is shifted to-
wards the region of lower viscosity, which also shifts the
position of the attractor. Thus the location of the particle
attractor can be controlled by the viscosity gradient in a
Poiseuille flow as well.

Shear thinning fluids in Poiseuille flows display a vari-
ation of the viscosity gradient with a maximum of the
viscosity at the channel center. We described the viscosity
landscape of shear thinning fluids in a simplified manner.
At the channel center we also have chosen the viscosity
maximum and a linear decay towards the channel bound-
aries. In order to focus to the effects of viscosity gradi-
ents, we have neglected further possible effects in complex
fluids, such as elastic forces. The assumed viscosity land-
scape changed the CSM velocity as function of the dis-
tance from channel center considerably, compared to flu-
ids with constant viscosity. Moreover, the CSM induced
by stronger viscosity gradients dominates and drives in a
larger off-center region of the channel cross section par-
ticles towards the boundaries. In this range the interplay
with particle-wall repulsion may even cause, besides the
particle attractor at the channel center, two further off-
center particle attractors. These attractors are found for
smaller but not for larger soft particles. A similar behav-
ior was also found in experiments with visco-elastic liquids
[24,21]. Here we can identify the appearance of off-center
particle attractors in a unique manner with the viscosity
gradient. Our insights may contribute to a further under-
standing of cross-streamline migration in complex liquids
in straight and possibly in wavy channels [18].
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Abstract

Here we describe the derivation of the generalized Oseen tensor up to the first order
correction with respect to the viscosity gradient. In addition we demonstrate that the
cross-streamline migration of capsules in a simple shear flow is mainly directly induced by
the viscosity gradient and the contribution by the nonlinearity of the flow profile provides
only corrections to it. We also discuss the influence of other directions of the viscosity
gradient on the migration.

1 Oseen tensor up to first order of the viscosity gradient

We derive in the presence of a viscosity gradient a generalized Oseen tensor that includes first
order corrections with respect to viscosity gradient by solving the following two eqns (1a) and
(1b)

−∇p+∇ ·
{
η[∇u + (∇u)T]

}
+ fδ(r− rf) =0 , (1a)

∇ · u =0 , (1b)

whereby fδ(r− rf) is a point force located at rf . A Taylor expansion of the viscosity around
the point rt is used which is given by eqn (2c) with

η0 =η(rt) , (2a)

Gη = ∇η|r=rt
, (2b)

η(r) ≈η0 + Gη · (r− rt) . (2c)

With eqns (1a) and (2c) one obtains

0 =−∇p+ Gη · [∇u + (∇u)T] + [η0 + Gη · (rf − rt)︸ ︷︷ ︸
=η(rf)=ηf

+Gη · (r− rf)]∆u + fδ(r− rf) ,

0 =−∇p+ Gη · [∇u + (∇u)T] + [ηf + Gη · (r− rf)]∆u + fδ(r− rf) (3)

whereby ηf denotes the viscosity at the location of the point force. Next eqn (3) and eqn (1b)
are solved for the velocity field and the pressure. We expand the flow field and pressure as
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follows

u =u(0) + u(1) + ... , (4)

p =p(0) + p(1) + ... . (5)

u(0) and p(0) denote the velocity and the pressure without a gradient. u(1) and p(1) are
proportional to the gradient. We use the boundary condition that the force does not disturb
the fluid at an infinite distance to the force, which means the pressure must vanish at an
infinite distance to the force

p(0)(r)→ 0 at |r− rf | → ∞ , (6)

p(1)(r)→ 0 at |r− rf | → ∞ . (7)

1.1 The equations of the zeroth order

The equations of the zeroth order are

0 =−∇p+ ηf∆u + fδ(r− rf) , (8)

0 =∇u(0) . (9)

A Fourier-transformation of these linear equations

u(r) =
1

(2π)3

∫
u(k)e−ik·rd3k , (10)

u(k) =

∫
u(r)eik·rd3r . (11)

give

0 =k · u(0) , (12)

0 =− ikp(0) − ηfk2u(0) + feik·rf , (13)

Solving for u(0) gives

u(0) =
1

ηfk2

(
1− k̂k̂

)
feik·rf . (14)

The back transformation leads to

u(0) =
1

(2π)3

∫
1

ηfk2

(
1− k̂k̂

)
e−ik·(r−rf)d3k · f , (15)

=
1

8πηfR

(
1 + R̂R̂

)
· f (16)

with R = r− rf . The pressure is given by

p(0) =
f ·R
4πR3

, (17)

∇p(0) =
1

4πR3

(
1− 3R̂R̂

)
· f . (18)

The derivation of the zero order Oseen tensor, i.e. without viscosity gradient is e.g. given in
Ref. [1].
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1.2 The equations at first order

The equations of the first order (the terms proportional to Gη) are

0 =−∇p(1) + Gη · [∇u(0) + (∇u(0))T] + ηf∆u(1) + Gη · (r− rf)∆u(0) , (19)

0 =∇u(1) . (20)

The Fourier-Transformation yields

0 =

∫ [
−∇p(1) + Gη · [∇u(0) + (∇u(0))T] + ηf∆u(1) + Gη · (r− rf)∆u(0)

]
eik·rd3r , (21)

0 =k · u(1) . (22)

An integration by parts leads to

0 =ikp(1)(k)− iGη · [ku(0)(k) + (ku(0)(k))T]− ηfk2u(1)(k)

+

∫
Gη · (r− rf)∆u(0)eik·rd3r. (23)

To calculate the last term we use the equations of the zeroth order eqn (9) which leads to

∆u(0) =
1

ηf

(
∇p(0) − fδ(r− rf)

)
. (24)

Using this with the last term in eqn(23) one obtains

∫
Gη · (r− rf)∆u(0)eik·rd3r =

∫
Gη · (r− rf)

[
1

ηf

(
∇p(0) − fδ(r− rf)

)]
eik·rd3r ,

=
1

ηf

∫
Gη · (r− rf)∇p(0)eik·rd3r =

1

ηf

∫
Gη ·R
4πR3

(
1− 3R̂R̂

)
eik·rd3r · f ,

=
1

ηf

∫
Gη ·R
4πR3

(
1− 3R̂R̂

)
eik·Rd3R

︸ ︷︷ ︸
:=M(k)

·feik·rf . (25)

Now the Fourier transformation of the tensor M must be calculated. We use the ansatz

M(k) = a11 + a2k̂k̂ + a3Gηk̂ + a4k̂Gη + a5GηGη , (26)

which follows from the linear dependence on Gη and the right behavior at a transformation
of the coordinate system. The coefficients ai are unknown and must be determined. This
ansatz gives

1

ηf

∫
Gη ·R
4πR3

(
1− 3R̂R̂

)
eik·Rd3R = a11 + a2k̂k̂ + a3Gηk̂ + a4k̂Gη + a5GηGη . (27)
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The coefficients ai are determined by calculating the trace and tensor contractions of eqn (27)
which yields

tr(M) =0 = 3a1 + a2 + a3G·ηk̂ + a4k̂ ·Gη + a5Gη ·Gη ,

k̂ ·M · k̂ =0 = a1 + a2 + (a3 + a4)k̂ ·Gη + a5k̂ ·G2
η ,

Gη ·M · k̂ =− i
G2
η − (k̂ ·Gη)

2

kηf
= a1k̂ ·Gη + (G2

ηa5 + a2)k̂ ·Gη + a3G2
η + a4(k̂ ·Gη)

2 ,

k̂ ·M ·Gη =− i
G2
η − (k̂ ·Gη)

2

kηf
= G2

ηa5k̂ ·Gη + G2
ηa4 + a3(k̂ ·Gη)

2

+ a1k̂ ·Gη + a2k̂ ·Gη ,

Gη ·M ·Gη =2i
−G2

η + (k̂ ·Gη)
2)k̂ ·Gη

kηf
= a1G

2
η + a2(k̂ ·Gη)

2

+ (a3 + a4)G
2
ηk̂ ·Gη + a5G4 . (28)

Solving this system of equations gives

a1 = 0, a2 =
2ik̂ ·Gη

kηf
, a3 = − i

kηf
, a4 = − i

kηf
, a5 = 0 .

With this results and eqn (14), eqn (23) is rearranged to

0 =ikp(1)(k)− ηfk2u(1)(k)− iGη

k2ηf
· [kf + fk− 2(k̂ · f)k̂k̂k]eik·rf

︸ ︷︷ ︸

+

[
2ik̂ ·Gη

kηf
k̂k̂− i

kηf
Gηk̂−

i

kηf
k̂Gη

]
· feik·rf

︸ ︷︷ ︸
=B

.

0 =ikp(1)(k)− ηfk2u(1)(k) + B . (29)

The expression of B can be simplified:

B =

{
− i

ηfk

[
(Gη · k̂)1 + k̂Gη − 2(Gη · k̂)k̂k̂

]

+

[
2ik̂ ·Gη

kηf
k̂k̂− i

kηf
Gηk̂−

i

kηf
k̂Gη

]}
· feik·rf ,

=− i

ηfk

{
(Gη · k̂)1 + 2k̂Gη + Gηk̂− 4(Gη · k̂)k̂k̂

}
· feik·rf . (30)

We calculate the pressure by multiplying (29) with k and using eqn (22)

p(1)(k) = −k ·B
ik2

, (31)

=
2

ηfk2

[
Gη −

(
Gη · k̂

)
k̂
]
· f . (32)

The back transformation is given by

p(1)(R) =
1

4πηfR

[
Gη +

(
Gη · R̂

)
R̂
]
· f (33)
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with R = r− rf .
We can now calculate the velocity via eqn (29) and and eqn (31). Solving for u(1) leads

to

u(1) =
1

ηfk2

(
1− k̂k̂

)
·B , (34)

u(1) = − i

k3η2f

{(
Gη · k̂

)(
1− 2k̂k̂

)
+ Gηk̂

}
· feik·rf . (35)

The back transformation is given by

u(1) =
1

(2π)3

∫
− i

k3η2f

{(
Gη · k̂

)(
1− 2k̂k̂

)
+ Gηk̂

}
e−ik·rd3k · feik·rf ,

=
1

(2π)3

∫
− i

k3η2f

{(
Gη · k̂

)(
1− 2k̂k̂

)
+ Gηk̂

}
e−ik·Rd3k

︸ ︷︷ ︸
=O(1)(R)

·f . (36)

Again we choose the ansatz

O(1)(R) = a11 + a2R̂R̂ + a3GηR̂ + a4R̂Gη + a5GηGη (37)

and we calculate the trace and the tensor contractions of eqn (36) and eqn (37) to determine
the coefficients ai of the ansatz. This gives

tr(O(1)) =− R̂ ·Gη

4πη2f
= 3a1 + a2 + a3G·ηR̂ + a4R̂ ·Gη + a5Gη ·Gη ,

R̂ ·O(1) · R̂ =
R̂ ·Gη

8πη2f
= a1 + a2 + (a3 + a4)R̂ ·Gη + a5R̂ ·G2

η ,

Gη ·O(1) · R̂ =−
G2
η + (R̂ ·Gη)

2

16πη2f
= a1R̂ ·Gη + (G2

ηa5 + a2)R̂ ·Gη

+ a3G
2
η + a4(R̂ ·Gη)

2 ,

R̂ ·O(1) ·Gη =
G2
η − 3(R̂ ·Gη)

2

16πη2f
= G2

ηa5R̂ ·Gη + G2
ηa4 + a3(R̂ ·Gη)

2

+ a1R̂ ·Gη + a2R̂ ·Gη ,

Gη ·O(1) ·Gη =R̂ ·Gη

G2
η + (R̂ ·Gη)

2

16πη2f
= a1G2

η + a2(R̂ ·Gη)
2

+ (a3 + a4)G
2
ηR̂ ·Gη + a5G4 .

The solution of the system of equations is

a1 = −R̂ ·Gη

16πη2f
, a2 = −R̂ ·Gη

16πη2f
, a3 = − 1

16πη2f
, a4 =

1

16πη2f
, a5 = 0

and we find

O(1)(R) = −R̂ ·Gη

16πη2f
1− R̂ ·Gη

16πη2f
R̂R̂− 1

16πη2f
GηR̂ +

1

16πη2f
R̂Gη . (38)
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1.3 The result and discussion

The complete Oseen tensor with the corrections up to first order in the viscosity gradient is
given by

O(0) + O(1) =
1

8πηfR

[(
1− R ·Gη

2ηf

)(
1 + R̂R̂

)
+

1

2ηf

(
RGη −GηR

)]
(39)

With this result the flow field induced by a point force located at rf is up to first order of a
Taylor expansion (around point rt) with respect to the viscosity gradient given by

u =u(0) + u(1) =
[
O(0) + O(1)

]
· f (40)

=
1

8πηfR

[(
1− R ·Gη

2ηf

)(
1 + R̂R̂

)
+

1

2ηf

(
RGη −GηR

)]
· f , (41)

p =p(0) + p(1) =

[
R

4πR3
+

1

4πηfR

{
Gη +

(
Gη · R̂

)
R̂
}]
· f (42)

R =r− rf , R = |R| , R̂ =
R

R
, (43)

η0 =η(rt) , Gη = ∇η|r=rt
, η(r) ≈ η0 + Gη · (r− rt)

ηf =η(rf) = η0 + Gη · (rf − rt) . (44)

The expression u(1) given by eqn (41) and p(1) given by eqn (33) solves the Stokes equation of
first order in the gradient, cf. 19) and eqn (20. Furthermore the pressure vanishes at infinite
distance to the force, which means the boundary condition eqn (7) is fulfilled.

Figure 1: Comparison of the flow field (black) of a point force (red) without (left) and with
(middle, right) a nonzero viscosity gradient (green). Also two stream lines are shown (blue).
The velocity decays faster in direction of the gradient than in opposite direction and the
stream lines are bend towards regions with lower viscosity. Therefore the symmetry of the
stream lines is broken if the gradient is included. Parameters: η0 = 1, f = êx, rt = rf = 0,
Gη = −0.2êx (left) or Gη = 0.2êy (right)

In the main text we describe how we simulate the dynamics of a capsule represented by
beads with the Oseen tensor derived here (see eqn (12) main text). We have chosen in the
main text rt = 0. The force acts on the position of the bead rj and the flow is evaluated at the
position of another bead ri which leads to rf = rj , ηf = η(rf) = η(rj) = ηj and R = ri − rf .
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We give two examples to illustrate how the gradient influences the flow field. The flow
fields of a point force with a viscosity gradient are shown in fig. 1: The velocity of the fluid
decays with the distance to the point force. This decay is faster in regions with higher viscosity
(in direction of the gradient) than with a lower one (in opposite direction of the gradient).
Furthermore the stream lines are bend towards regions with lower viscosity by the gradient,
because the fluid can flow more easily at lower viscosity. Moreover, the viscosity gradient
breaks the symmetry, which the Oseen tensor has without a gradient: Figure 1 shows that
the flow without a gradient has symmetric stream lines: Mirroring both stream lines along
the axis parallel or perpendicular to the force (x- and y-direction in the plot) does not change
the stream lines. With a gradient the stream lines lose their symmetry axis perpendicular to
the gradient.

1.4 Validity range of the approximations

We derived the Oseen tensor in first order of the gradient. Thus we must determine at
which conditions this approximation is valid. Therefore we use a nondimensional form of
the velocity given by eqn (41). To receive this, we use the magnitude of the force f , the
viscosity at the location of the force ηf and a typical length scale L, which is the diameter
of the capsule L = 2Rc in the main text. With these quantities we define the dimensionless
viscosity gradient G̃η =

GηL
ηf

and R̃ = R
L . The velocity is then given by

ũ =u
Lηf
f

=
1

8πR̃

[(
1− R̃ · G̃η

2

)(
1 + R̂R̂

)
+

1

2

(
R̃G̃η − G̃ηR̃

)]
· f̃ . (45)

This allows to discuss the error at locations with R̃ ≈ 1 or R ≈ L, i.e. at the surface of the
capsule in the main text with L = 2Rc. With R̃ ≈ 1 the error due to the neglected second
order is determined by the dimensionless gradient G̃η. This means the Oseen tensor in first
order can be used if ∣∣∣G̃η

∣∣∣� 1 .

Another important criterion is that the Taylor expansion of the viscosity must be a good
enough approximation of η(r). At least the viscosity must not be negative. This means the
used Taylor expansion given by eqn (2c) and also the calculated velocity u(r) (eqn (41)) can
only be valid at locations with

η(r) ≈η0 + Gη · (r− rt) > 0 . (46)

2 Influence of the nonlinear shear flow

Driving a flow by a moving plate without a viscosity gradient results in a linear shear flow
(eqn (8) main text)

u0(y) = U
y

d
ex . (47)

But if the viscosity gradient has a component in direction from on plate to the other it affects
the flow which results in a nonlinear flow

u0(y) = U
ln[y Gη,y/η0 + 1]

ln[dGη,y/η0 + 1]
ex (48)
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Figure 2: The migration velocity as function of the dimensionless viscosity gradient in the
correct, nonlinear flow (which is influenced by the gradient in y-direction) and a linear shear
flow. Both simulations show nearly the same migration velocities. Thus the migration is
mainly caused directly by the gradient.

given by eqn (7) in the main text.
It is well known that a nonlinear flow with a spatially dependent shear rate can cause a

cross-streamline migration (see e.g. Ref. [2]). Therefore we examine whether the migration
with the viscosity gradient pointing from one plate to the other is caused directly by the
viscosity gradient or indirectly by the nonlinear flow. This is done by comparing the migration
in the nonlinear flow with a simulation in a linear flow, where the influence of the gradient
on the flow is neglected. Figure 2 shows the migration velocity as function of the viscosity
gradient for both the linear and the nonlinear flow. Both simulations give nearly the same
velocities at the used magnitudes of Gη so that the migration is mainly caused directly by
the viscosity gradient.

3 Explanation of ∇η-induced CSM for all
directions of ∇η

We explain why a particle migrates in a simple shear flow with a viscosity gradient and
consider here all directions of the gradient, i.e. firstly a gradient in flow direction, secondly
perpendicular to the flow direction and in the shear plane and thirdly perpendicular to the
shear plane. As in the main, the effect of the viscosity gradient on the flow is neglected here to
show that the migration is caused directly by the gradient (and not indirectly by the influence
of the gradient on the flow, cf. fig. 2). We discuss at first the rigid capsule with spherical
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shape. The friction force is calculated as explained in the main text
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Fnet

(b)

(c)
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|Fj|

0
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Fnet

Fnet

Fnet

Gη

Gη Gη

~

(r)

x
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Figure 3: A rigid capsule is rotating due to the shear flow ũ0(y) and a soft capsule performs
a tank-treading motion (a) with velocity ũs(r) at its surface (comoving frame). A viscosity
gradient Gη (black) leads to higher friction forces F(r) between capsule and fluid on the
half than on the other (color of surface). This asymmetry causes a net force Fnet (red).
If the capsule is rigid then the direction of the viscosity gradient and êz define a plane of
symmetry (see (b) and (c)) and the net force is oriented perpendicular to this plane. This
means Gη ‖ u0(r) causes a CSM but not Gη ⊥ u0(r) (lateral migration). The soft capsule is
deformed and shares therefore no plane of symmetry with the flow. Thus the net force has
in both cases (b) and (c) a component perpendicular to the flow, which results in a CSM in
both cases.

The system, i.e. the spherical capsule and the shear flow, has symmetries without a
viscosity gradient (cf. fig. 3 (a)). The flow does not change if it is mirrored at the xz- or
yz-plane and its sign is changed subsequently. Therefore the velocity and the friction at the
surface of the capsule have the same symmetries: For example at the mirrored position r′ of r
at the yz-plane we get Fx(r′) = Fx(r), Fy(r′) = −Fy(r) and Fz(r

′) = −Fz(r) and analogously
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at the xz-plane. This symmetry determines the net force via

Fnet,x =

∮
FxdA =

∫

y>yc

FxdA+

∫

y<yc

FxdA

=

∫

y>yc

FxdA−
∫

y>yc

FxdA = 0 (49)

Fnet,y =

∮
FydA =

∫

x>xc

FydA+

∫

x<xc

FydA

=

∫

x>xc

FydA−
∫

x>xc

FydA = 0 (50)

Fnet,z =

∮
FzdA =

∫

x>xc

FzdA+

∫

x<xc

FzdA

=

∫

x>xc

FzdA−
∫

x>xc

FzdA = 0 (51)

whereby
∫
y>yc

dA denotes an integration over the half sphere on the side of the xz-plane with

y > yc (other integrals analogue). The symmetries show that the force on one half of the
sphere is minus the force on the other half, so that the net forces is zero without a gradient.
Thus the capsule displays no CSM.

If a gradient is applied the symmetry is broken: If the gradient is oriented parallel to the
flow Gη ‖ êx (cf. fig. 3 (b)) then the friction at the upstream half of the capsule is smaller
than at the downstream half. But the magnitude of the friction still has a symmetry plane
given by êz and êx. Thus the symmetry used in eqn (50) is broken, but eqns (49) and (51) still
hold true. Therefore the net force is oriented in y-direction Fnet ‖ êy which is perpendicular
to the flow. Hence a net forces acts on a capsule in presence of a gradient if we assume that
the capsule moves as it does without gradient. This leads to a CSM. If the viscosity gradient
is oriented perpendicular to the flow Gη ‖ êy the situation is similar (see fig. 3 (c)): The
symmetry used in eqn (49) is broken by the gradient but not eqns (50) and (51). Thus the
resulting force is parallel to the flow. This leads to a migration in the flow’s direction, which
means no CSM is found. If the viscosity gradient is oriented perpendicular to the shear plane
Gη ‖ êz the symmetries to the xz- or yz-plane are not broken. Hence all the eqns (49), (50)
and (51) hold true in this case and the symmetry prevents a net force.

The behavior of the capsule differs if it is soft. The main difference to the rigid capsule is
the elliptical shape, because the deformed shape is not symmetric to the xz- or yz-plane. But
the deformed shape and the shear flow have both a point symmetry to the capsules center and
a symmetry to the xy-plane. These both symmetries lead also to a symmetry to the z-axis.
Thus the friction force has the same symmetry: At the position r and is mirrored position at
the capsules center r′ the friction force fulfills Fx(r′) = −Fx(r) and Fy(r′) = −Fy(r). Thus
eqns (49) and (50) can also be used in case of a deformable capsule. Furthermore the flow is
invariant in z-direction which prevents a force in z-direction. Thus Fnet = 0 without gradient.

If a gradient parallel to the flow Gη ‖ êx is applied then the point symmetry is broken,
eqns (49) and (50) do not apply and a net force with x- and y-component is found. The
translational invariance in z-direction is not broken so that the net force has no z-component.
Thus we also find a CSM of a soft capsule in y-direction (cf. fig. 3 (b)). Also if the gradient
is perpendicular to the flow Gη ‖ êy the point symmetry is broken and eqns (49) and (50)
can not be used: Both the x- and y-component of Fnet are not zero (cf. fig. 3 (c)). The
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force is oriented towards the lower viscosity which leads to a CSM towards the lower viscosity.
This is different to the rigid capsule whose symmetry prevented a force in y-direction and a
CSM. Also the behavior in presence of a gradient perpendicular to the shear plane Gη ‖ êz
is different. The symmetry to the z-axis exists also with a gradient in z-direction. Therefore
eqns (49) and (50) still hold true, so that the net force has no x- and y-component. But
Gη ‖ êz breaks the translational invariance and the ellipsoidal shape prevents the symmetry
to the xz- and yz-plane used in case of the rigid, spherical capsule to derive eqn (51). This
makes a net force in z-direction possible.

4 Simulations of CSM in a shear flow driven by a moving plate
with different orientations of the gradient

In the main text we showed the results obtained with a gradient in the shear plane and
perpendicular to the flow. Here we show also the other orientations, i.e. a gradient parallel
to the flow and perpendicular to the shear plane.

The CSM velocity vm,y as function of the gradient is shown in fig. 4. We discuss at first

a gradient in flow direction G̃η = G̃η,xêx. We use here a stiff capsule to demonstrate that in
this case also a migration with a rigid capsule is found. The migration velocity is determined
at xc = 0 with η(rc) = η0. Figure 4 shows that we find a migration of a stiff capsule which is
induced by the gradient (cf. fig 3). The direction of the CSM depends on the flow’s direction
in this case.

Besides the viscosity gradient in flow direction also a gradient perpendicular to the flow
can be applied, either in the shear plane (y-direction) or perpendicular to it (z-direction). We
use a soft capsule in these cases. For the sake of completeness we use the flow given by eqn
(7) if the gradient is pointing from one plate to the other, but the influence of the flow’s small
nonlinearity on the migration is negligible (see fig. 2). A gradient inside the shear plane and
perpendicular to the flow G̃η = G̃η,yêy leads also to a CSM inside the shear plane vm,y 6= 0
and is directed towards the lower viscosity (see main text). A viscosity gradient perpendicular
to the shear plane G̃η = G̃η,zêz induces a CSM perpendicular to the shear plane vm,z 6= 0.
The CSM is also directed towards the lower viscosity.

Furthermore fig. 5 shows the dependence of the migration on the stiffness of the capsule
for different orientations of the viscosity gradient. If the gradient is parallel to the flow the
migration velocity increases with the stiffness. The effect occurs both for stiff, i.e. spherical
and soft capsules. This is different in case of a gradient perpendicular to the flow: The
CSM decreases with increasing stiffness and vanishes at a high stiffness Ca� 1. Thus the
deformation is necessary for the migration if the gradient is perpendicular to the flow, but
not if the gradient is parallel (cf. fig. 3).
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Figure 4: The migration velocity vm,α as function of the viscosity gradient Gη,β in flows in
positive and negative x-direction. The plot shows the nonzero component of the CSM velocity.
If the gradient is parallel to the flow G̃η = G̃η,xêx we find a CSM of a stiff capsule in the shear
plane vm,y 6= 0 and the sign of vm,y depends on the flow’s direction. If the capsule is soft
and the gradient is perpendicular to the flow and we find a CSM towards the lower viscosity,
which means vm,y 6= 0 with G̃η = G̃η,yêy and vm,z 6= 0 with G̃η = G̃η,zêz. The direction of

the CSM is independent of the flows direction if G̃η is perpendicular to the flow. We use the
parameters: Gs = 0.2 (soft capsule), Gs = 10.0 (stiff capsules)
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Abstract. The dynamics of semi-flexible bead-spring models, which are a model of

semi-flexible polymers or fibers, in plane and circular Poiseuille flows is investigated.

In unbounded plane Poiseuille flows, semi-flexible polymers migrate either to a stable

distance to the center of the flow profile, i.e. to an attractor, or keep migrating away

from the center, depending on the initial conditions. This stable distance exists in the

limit of small noise only below a certain bending stiffness, which increases with the

shear rate. Surprisingly, the parameter range of the existence of the attractors increases

with increasing noise strength, what can be explained by the increased deformations

of the polymer. If the hydrodynamic interactions with bounding walls are taken into

account, additional attractors emerge. In the limit of medium values of the bending

elasticity and small noise amplitudes one finds three attractors coexisting in each half

of a plane Poiseuille flow. With increasing thermal noise two of these attractors are

connected to one so that two attractors are found in this case. Therefore, noise is

an essential key to understand the dynamics of semi-flexible polymers and fibers in

Poiseuille flows. A possible application of the coexistence of different attractor is the

sorting of semiflexible polymers or fibers, e.g., with respect to their stiffness.
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1. Introduction

Understanding the behavior of small particles in flows, including spheres, vesicles, fibers

and macromolecules plays a central role in fundamental and applied science for a long

time. Therefore, many studies deal with inhomogeneous particle distributions in flows.

We discuss here a surprising example.

One reason of an inhomogeneous particle distributions was early reported by

Silberberg. Particles focus between the wall and the center of the pipe flow [1, 2] due to

the so-called Silberberg-effect, which depends strongly on inertia [3, 4, 5]. Furthermore

observations about enhanced polymer concentrations near channel walls [6] triggered

early polymer kinetic theories for bead-spring chain models in inhomogeneous flows,

including hydrodynamic interactions between beads, but not accounting for the change

in hydrodynamic interactions due to the presence of walls [7, 8, 9]. For the overdamped

motion of vesicles near walls in shear flows lift forces were predicted [10, 11] and measured

[12] and later on also for flexible polymers in simulations [13] and experiments [14]. In

the range where wall effects can be neglected, droplets are expect to migrate away from

the center of an unbounded Poiseuille flow [15], whereas for vesicles it was shown that

they migrate to the center [16].

There are also many examples of particles that migrate in a Poiseuille flow to a

stable distance to the center. For vesicles also a symmetry breaking transition to the

so-called slipper state was found with the center of mass slightly aside the center of

the Poiseuille flow [17]. For Brownian fibers a small off-center concentration peak was

predicted [18, 19] and recently an off-center distribution of actin filaments was reported

[20, 21]. The distribution of the center of mass of semi-flexible polymers with off-center

distribution maxima were found in simulations [22, 23, 24, 25] where the boundary

effects are expected to be important for the location of these maxima.

Also non-Brownian flexible fibers of constant length display a cross-stream

migration in a planar Poiseuille flow [26, 27, 28]. The fibers migrate to one of up to two

stable off-center attractor stream lines (two in each half of the channel). It is possible

that the presence of a thermal noise affects the migration of the fibers. Furthermore some

polymers and certain fibers are extensible and can change their lengths [29]. Therefore

it is an important question from the fundamental point of research as well as with

regards to applications how the migration of semi-flexible fibers and polymers to defined

distances to the center of a Poiseuille flow is affected by thermal noise and whether the

extensibility influences the migration.

To answer these questions, we simulate Brownian fibers or polymers with a bead-

spring model. This is explained in section 2.

We explore in section 3.1 the cross-stream migration of a semi-flexible bead-spring

model in unbounded Poiseuille flow. In the absence of boundary effects it either reaches

a stationary distance to the center of the plane Poiseuille flow or keeps migrating away

from the center, depending on the initial condition. We show that this attractor exists

only below a threshold of the bending stiffness without or with small thermal noise
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but exists at a large range of values of the bending stiffness with higher thermal noise.

Hence the thermal noise can extend the range of existence of an attractor. Besides

this attractor we find surprisingly at low noise a repeller. We furthermore show how

the attractor and repeller depend on the parameters by varying the thermal noise, the

bending stiffness and the flow velocity. Furthermore we show that the bending angle

determines the migration direction, which allows to explain the number of attractors

and repellers.

In section 3.2 we show the existence of three attractors (in each half of the channel)

in presence of walls in Poiseuille flows at low noise. Also the dependence of all attractors

on the bending stiffness is shown, as well as the vanishing of an attractor in case of

stronger noise.

2. Model

We analyze the motion and the shape deformation of a single semi-flexible polymer,

moving freely either in a plane Poiseuille flow in x̂ direction:

u(r) = u0

(
1− z2

d2

)
x̂ (1)

with two planes at z = ±d or in circular Poiseuille flow

u(r) = u0

(
1− y2 + z2

d2

)
x̂ (2)

through a pipe with radius d.

For the N beads at the positions of the bead spring model

ri = (xi, yi, zi) = rir̂i with ri = |ri| (i = 1 . . . N) , (3)

we assume a harmonic potential with respect to the distances between next nearest-

neighbor beads along a chain,

Vstr =
k

2

N−1∑

i=1

[b− rij]2 with j = i+ 1 (4)

This includes the bead-bead connection vector

rij = ri − rj , (5)

and the related bead-bead distance rij = |ri − rj|, the spring constant k and the

equilibrium distance b between two neighboring beads.

A semi-flexible bead-spring model resists bending and we describe this by the

bending potential [30]

Vb = −κ
2

N−1∑

i=2

ln (1 + cos βi) (6)

with the bending constant κ and relaxation time τ = ζb2/κ, the inner product

cos(βi) = r̂(i−1)i · r̂i(i+1) (7)
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and the unit vectors r̂i = ri/|ri|. In addition, a truncated Lennard-Jones potential

[30, 31]

VLJ = ε
N−1∑

i=1

N∑

j=i+1

[
1

2

(
rLJ
rij

)12

−
(
rLJ
rij

)6
]

Θ(rLJ − rij) (8)

with the strength ε and the cut-off length rLJ is used in order to avoid overlapping

beads.

These potentials are the sources of the three deterministic forces, i.e., the stretching

force F str
j , the bending force F b

j , and the short range repulsion force F LJ
j which act on

the beads. Together with the flow field u(ri) at the bead-positions ri the over-damped

dynamics of the bead spring model is described by the Langevin equations

ṙi = u(ri) + Hij
[
F str
j + F b

j + F LJ
j

]
+ F s

j (9)

with the mobility matrix Hij and the stochastic contribution F s
j as described in the

following.

In the presence of a plane wall with no-slip boundary condition for the fluid at the

wall, we use the mobility matrix as given by the Blake tensor [32]

Hij(ri, rj) = SHij(ri, rj)− SHij(ri, r
′
j) + DHij(ri, r

′
j)− SDHij(ri, r

′
j) , (10)

where r′j = (xj, yj,−zj) is the position of the mirror image of a bead j at the opposite

side of the boundary. The first contribution to Hij accounts for the hydrodynamic

interaction (HI) in the bulk of an unbounded domain described by the Oseen tensor

[33],

SHαβij (ri, rj) =





1
8πηrij

(
δαβ +

rαijr
β
ij

r2ij

)
for i 6= j ,

1
6πηa

δαβ for i = j

(11)

with α, β = x, y, z, the viscosity η and the Stokes friction coefficient ζ = 6πηa. The

second contribution to the HI between the beads includes the mirror images of the beads

SHαβij (ri, r
′
j) =

1

8πηr̃ij

(
δαβ +

r̃αij r̃
β
ij

r̃2ij

)
. (12)

with the distances

r̃ij = ri − r′j = r̃ij ˆ̃rij (13)

between the beads and their mirror images, where the components of the vectors rij
and r̃ij are denoted by rαij and r̃αij with α = x, y, z. In eq. (10) the contribution

DHαβij (ri, r
′
j) =

1

4πηr̃3ij
z2j (1− 2δβz)

(
δαβ − 3

r̃αij r̃
β
ij

r̃2ij

)
(14)

is the Stokes doublet (D) and

SDHαβij (ri, r
′
j) =

zj(1− 2δβz)

4πηr̃3ij

(
δαβ r̃

z
ij − δαz r̃βij + δβz r̃

α
ij − 3

r̃αij r̃
β
ij r̃

z
ij

r̃2ij

)
(15)
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is the source doublet (SD). In our numerical calculations higher order corrections to

Hij due to the finite size of the spheres are included via the method of reflections and

Faxén’s law [33, 34, 35, 36].

In order to take the effects of hydrodynamic interactions with two opposing

parallel and no-slip walls into account in a plane Poiseuille flow, we consider the linear

superposition of the effects of two single walls. According to [37], this is a reasonable

approximation, when the ratio between the wall-wall distance and the particle extension

becomes larger than 5.

The thermal noise [33, 38, 39] has a vanishing mean value and the amplitude is

determined by the fluctuation dissipation theorem [40, 41]
〈
F s
j (t)

〉
= 0 ,

〈
F s
i (t)F s

j (t′)
〉

= 2kBTHijδ(t− t′) (16)

with Boltzmann’s constant kB and the temperature T .

We choose the effective bead radii a = 1, the equilibrium bead-bead distance b = 5,

the bending constant κ = 8 and the Hookean spring constant k = 5. Furthermore, we

set the Stokes friction coefficient ζ = 0.5, which implies the viscosity η = 1
12π

of the fluid.

For the parabolic flow profile, we use the maximal flow velocity u0 = 900 and d = 100 as

the half width of the channel, respectively the channel radius. The typical chain lengths

in our considerations are 2b with N = 3. For the cut-off length of the Lennard-Jones

potential we have chosen rLJ = 1.1 an for the strength ε = 100 in order to prevent

overlapping of the beads. We solve the equations numerically with an Euler algorithm

with a timestep of ∆t = 0.0005. If not stated otherwise we use these parameters.

It is useful to utilize dimensionless parameters. The bending stiffness κ acts

against the bending caused by the curvature of the flow profile, which is given by

c = |∂2yu0(y)| = 2u0/d
2. Therefore a dimensionless measure of the bending stiffness

is given by

S =
κ

ζb3
2u0
d2

. (17)

It is varied via κ in this study. The strength of the thermal noise is given by ET = kbT/κ

(determined with the reference value κ = 8) and is varied with kbT .

Since the major focus of this work is the exploration of the cross-stream migration,

we restrict the bead dynamics for reasons of simplicity to the shear plane in the case

of a plane Poiseuille flow. However, the chains are free to move in all directions in the

case of an unbounded circular Poiseuille flow.
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3. Results on cross-stream migration of semi-flexible bead-spring polymers

In section 3.1 the cross-stream migration of semi-flexible bead-spring models, which are

a model of semi-flexible polymers and fibers, are investigated in absensence and in the

presence of noise. We show the migration to a stable distance to the center, how this

distance depends on the presence of low or high noise and we explain the direction of the

migration with the maximal deformation of the particle. The effects of hydrodynamic

interactions between the particle and the boundaries on the cross-stream migration are

analyzed in section 3.2.

3.1. Cross-stream migration in unbounded Poiseuille flow

Figure 1 (a) shows the lateral position yc / 2b as a function of time with the noise

amplitude ET = 1.3 ·10−12 for three different lateral initial positions. A particle initially

oriented parallel to the flow lines becomes inclined due to the thermal noise. This

inclination leads to a flip of the particle because of the shear rate. These flips cause a

cross stream line migration: Particles with initial positions closer to the center migrate

to an attractor located at yc / 2b ≈ 2. Particles located further away from the center of

an unbounded parabolic flow migrate even further away from it. The positions where

particles migrate to the attractor or just further away from the flow center are separated

by an repeller at yc / 2b ≈ 6. Particles initially started in the other half of the flow profile
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Figure 1. The lateral position yc / 2b of a bead-spring model as a function time in

parabolic flow profiles is shown for three different initial positions (green ——) with

S = 0.48. (a) shows the motion at lower thermal noise ET = 1.3 · 10−12. The both

particles closer to the center migrate to an attractor located at yc / 2b ≈ 2 (black

——). The particles further away migrate even further away from the center. This

shows the existence of an off-center repeller (red - - - -), which is located at yc / 2b ≈ 6.

(b) shows a different behavior in case of higher thermal noise ET = 6 · 10−8 (green

——). All initial positions lead to a migration to the attractor at yc / 2b ≈ 2 (black

- - - -line) and the off-center repeller does not exist at a higher thermal noise. Also the

radial positions rc / 2b (yellow ——) in a circular tube flow are shown. The attractor

is slightly shifted but the qualitative behavior is the same as in a planar flow.
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(at yc < 0) migrate to an attractor located at yc / 2b ≈ −2 due to the symmetry (or

migrate further away from the center). This implies that the center is also a repeller.

Figure 1 (b) shows a different behavior in case of a higher thermal noise ET =

6 · 10−8. All initial positions lead to a migration to the attractor at yc / 2b ≈ 2. This

means the off-center repeller does not exist in case of the higher thermal noise. We also

show the radial position rc / 2b in case of a circular tube flow. The attractor is slightly

shifted away from the center but the qualitative behavior is similar to a planar flow.

Thus the result is robust and does not rely on the planar Poiseuille flow.
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Figure 2. (a) shows the position yc / 2b of the attractor (blue ——) and the repellers

(red - - - -) in an unbounded plane Poiseuille flow as a function of the stiffness S

without thermal noise and with a higher thermal noise ET = 6 · 10−8 (black ——).

Without thermal noise, the attractor and the off-center repeller exist only below a

critical value S < Sc with Sc ≈ 0.5. The dynamics of particle at the positions marked

by (1)-(3) are shown in figure 3. Particles with a stiffness above Sc migrate at all

positions away from the center. With ET = 6 · 10−8, no off-center repeller is found

and the attractor is found at all values of S. (b) shows how the attractor with S = 0.7

depends on the noise strength ET : The attractor is shifted towards the center with

increasing noise amplitude.

We further investigate how the position of the attractor and repeller depend on

the parameters. In case of low thermal noise or without thermal noise, the position of

the attractor and the repeller can be determined with single flips. At higher values of

the thermal noise the position is determined with full trajectories, as shown in figure 1

(cf. Appendix A.1). The position of the attractor and repellers in dependence of S

are depicted in figure 2 (a). We discuss at first the case without thermal noise: With

increasing values of S the attractor’s distance to the center increases and the off-center

repeller’s distance to the center decreases. Above a critical value of S > Sc ≈ 0.5 the

attractor and off-center repeller vanishes and the particles migrate at all positions away

from the center. This behavior changes with an increased value of ET = 6 · 10−8. We

find no off-center repeller and the attractor exists at all values of S. The positions of the

attractor and the repellers without noise agree with lower thermal noise ET = 1.3 ·10−12

(used in figure 1).

Figure 2 (b) shows how the attractor with S = 0.7 depends on the noise strength

ET : With increasing values of ET the attractor is shifted towards the center. This
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means the strength of the noise has a high influence on the migration of the particle.
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Figure 3. The stages of a flip for different initial positions without thermal noise with

S = 0.48 (cf. figure 2). Also the angle β is given that measures the deformation and

its maximal value βm during the flip. The particle turns around and is bent by the

spatially dependent shear rate. At yc / 2b = 0.7 we find βm = −0.45π and a migration

away from the center, at yc / 2b = 4.0 we get βm = −0.55π and a step towards the

center and yc / 2b = 9.5 results in βm = −0.47π and a step away from the center. This

reflects the migration to the attractor or away from the repeller shown in figure 2. The

reason of the different migration steps are the different maximal deformation angles

βm.

We further give an explanation why the attractor and the off-center repeller vanishes

at high values of S. For this purpose, we study the deformation of the particle during

a flip without thermal noise. Figure 3 shows the stages of a flip of a particle for three

different initial positions: below the attractor, above the attractor and above the off-

center repeller (marked in figure 2). The shear rate rotates the particle which has

initially a small inclination. The spatially dependent shear rate leads also to a bending

of the particle and not merely to a simple rotation. We number the beads to describe

the rotation whereby bead 1 is the closest to the center (cf. figure 3). At the beginning

of a flip bead 3 moves behind bead 2 in x-direction due to the lower flow velocity at its

position. The difference of the flow velocity of bead 1 and 2 is lesser than of bead 3 and

2 because of the spatially dependent shear rate. This leads to a bending of the particle.

The bending potential acts against the bending by moving bead 1 past bead 2. At the

end of the flip all beads are aligned with the streamline.

To measure the deformation we define the angle β as shown in the figure, which

measures the deviation from a straight line. The angle βm is defined as the value of β(t)

with the maximal absolute value during the flip. We find that the values of the maximum
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deformation angle βm are closely connected to the direction of the migration. The values

of βm and the migration direction at the three initial positions (with increasing distance

to the center) are βm = −0.45π with a migration away from the center, βm = −0.55π

with a migration towards the center and βm = −0.47π with a migration away from the

center. We get a migration away from the center if approximately −0.5π / βm / 0 and

a migration towards the center if βm / −0.5π. In the other half of the flow profile (at

yc < 0) βm is positive and the direction of the migration follows from the symmetry of

the flow profile. This results in

∆yc > 0 at − 0.5π / βm / 0 , 0.5π / βm ,

∆yc < 0 at βm / −0.5π , 0 / βm / 0.5π . (18)

This means the migration is directed away from the center at small deformations

|βm| < 0.5π and towards the center at high deformations |βm| > 0.5π.

This interplay between the maximum deformation angle βm and the sign of the

migration step is shown in figure 4. The figure shows the angle βm of the maximum

deformation and the migration step after one flip ∆yc as function of the initial position

of yc. With S = 0.35 < Sc (see figure 4 (a)), the bending angle βm is small |βm| < 0.5π

close to the center and the particle migrates away from the center. Further away from

the center the deformation is larger with |βm| > 0.5π and the migration step ∆yc is

directed towards the center. This explains the attractor. Also the behavior with the

high value of S can be understood with this criterion (see figure 4 (b)). Due to high

value of S = 0.58 > Sc the deformation is always small and |βm| < 0.5π holds true at

all initial positions. This means that the migration is always directed away from the

center. This explains that the attractor vanishes at high values of the stiffness S.

We can now compare S = 0.58 > Sc with and without thermal noise (see figure 4

(b) and (c)). With thermal noise we calculate the average of the maximal deformation

〈βm〉 with a sufficient number of flips. The deformation during the flip is increased by

the noise: Values of | 〈βm〉 | > 0.5π occur, despite of S = 0.58 > Sc, which lead to the

attractor.

If the number N of the beads is increased we find similar dynamics of the particle

(see supplementary information).
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Figure 4. The angle βm (green ——, cf. figure 3) and the migration step ∆yc (yellow

——) after one flip as function of yc with S = 0.35 < Sc (a) and S = 0.58 > Sc (b)

without thermal noise. With S < Sc (a) the deformation is small with |βm| < 0.5π

close to the center and the migration is directed away from the center. Further away

the deformation is strong with |βm| > 0.5π and the migration is directed towards the

center. This produces the attractors at yc/b ≈ ±0.8 (blue circle) and the repeller at

the center (red circle). Figure (b) shows the dynamics with high value of S > Sc which

lead to small deformations at all positions, i.e. |βm| < 0.5π. Hence the migration

is always directed away from the center and the attractor vanishes. (c) shows the

migration velocity vm (linear fit to yc(t)) with noise ET = 6.3 ·10−8 and S = 0.58 > Sc

and the averaged angle 〈βm〉. The thermal noise increases the deformation during the

flip: High values of |〈βm〉| > 0.5π occur, despite S > Sc, which lead to the attractor.

3.2. Cross-stream migration including the effects of walls

In the previous section 3.1 we found at certain parameters a migration out of the channel

without wall interaction, e.g. above the off-center repeller without thermal noise (see

figure 1 and figure 2). In this section we include the wall interaction, which is repulsive

[10, 11, 12, 13, 42]. Hence the wall interaction prevents a migration out of the channel,

which therefore could be expected to lead to one new attractor in the case without

thermal noise.
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Figure 5. The lateral position yc / 2b of the attractor (blue ——) and the repeller

(red - - - -) in a bounded plane Poiseuille flow as a function of S with ET = 1.3 · 10−12

is shown. Also the attractor with higher thermal noise ET = 1.3 · 10−9 (black ——) is

shown. The motion at positions marked with o are shown in figure 6. Without noise we

find surprisingly two new attractors and a new repeller compared to the case without

wall-interaction. The attractors closest to the wall and closest to the center exist only

at values of S below a threshold. The dynamics of the particle at point marked by

o are shown in figure 6. At higher thermal noise only two attractors are found. Two

attractors at lower noise are connected to one attractor at higher noise.

Surprisingly we find up to two new attractors. The attractors and repellers are

determined the same way as in the previous section. Figure 5 shows the lateral position

yc / 2b of the attractor and the repeller in a bounded plane Poiseuille flow as a function of

the dimensionless bending stiffness S with lower thermal noise and with higher thermal

noise. In case of a lower noise we find three attractors and three repellers. The attractors

closest to the wall and closest to the center exist only at values of S below thresholds.

The attractor in the middle of the others is found at all values of S and its position

changes less with increasing values of S. The attractors with lower thermal noise agree

well with the ones without thermal noise.

At higher thermal noise only two attractors are found, i.e. only one new attractor

compared to the case without wall. It is close to the wall and matches the one found

with a lower noise. The other attractor at higher noise closer to the center corresponds

to the attractor found without wall interaction. But different from the unbounded flow

it does not leave the channel due to the repulsive wall interaction. Here two attractors at

lower noise are connected to one attractor at higher noise. The attractor at yc / 2b ≈ 5

at small values of S and at lower noise is not found with higher noise. It is close to two

repellers which means its basin of attraction is very small. The higher thermal noise

ET = 1.3 ·10−9 is strong enough to move the particles out of the basin of attraction and

the attractor vanishes.
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Figure 6. The stages of a flip for different initial positions (marked in figure 5)

without thermal noise and with wall interaction. The angle βm measures the maximal

deformation during a flip. The initial positions yc / 2b = 0.4 and yc / 2b = 3.0 behave

as in case without wall due to the high distance to the wall (compare figure 3). Bead

3 passes at first bead 2 (before bead 1) and the particle is bent due to the spatially

dependent shear rate, which results in angles βm < −0.5π and −0.5π / βm / 0. But

at initial positions closer to the wall bead 3 is slowed due to the wall interaction. At

positions close enough to the wall bead 3 passes bead 2 after bead 1 does what results

in positive angles 0 / βm / 0.5π and even 0.5π / βm. According to eq. (18) this leads

to attractors and repellers at βm = −0.5π, 0, 0.5π. Very close the the wall (above the

third attractor at yc ≈ 8) the particle moves towards the center despite 0.5π / βm.

The wall interaction is stronger than the migration due to the bending of the particle,

which results in the third attractor.

The existence of up to three attractors and their location can be explained as in the

case without the wall interaction (cf. section 3.1) by the motion of the particle during

a flip and the angle βm for different initial positions, which is shown in figure 6. The

migration step and the maximal bending angle as function of the initial position is shown

in figure 7. We discuss only one half of the channel with yc > 0 due to the symmetry.

The initial positions yc / 2b = 0.4 and yc / 2b = 3.0 behave as in the case without wall

due to the high distance to the wall (compare figure 3). Bead 3 falls behind bead 2 and

the particle becomes bent due to the spatially dependent shear rate. At yc / 2b = 0.4 we

get −0.5π / βm / 0 and according to eq. (18) a migration to the wall. At yc / 2b = 3.0
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Figure 7. The angle βm (green ——, cf. figure 3) and the migration step ∆yc (yellow

——) after one flip as function of the initial position of yc. In the region close to the

center, at yc/2b / 5, the particle behaves like in the case without wall (cf. figure 4). At

higher values of yc/2b / 5 the flip of the particle is affect by the wall and the angle βm
increases from βm < −0.5π to βm > 0.5π (cf. figure 6). The direction of the migration

follows then with eq. (18) which explaines the attractors (blue) and repellers (red).

Hence the wall interaction influences the migration by affecting βm. Close to the wall

at yc/2b ' 8 the particle migrates away from the wall despite βm > 0.5π. This shows

the direct influence of the wall repulsion, i.e. the wall interaction is stronger than the

migration due to spatially dependent shear rate.

the shear rate is higher and we get with βm / −0.5π a migration to the center. This

explains the first attractor (marked by a circle) which is also found in case without wall

interaction. But already at yc / 2b = 4.8 the behavior differs from the case without wall.

Bead 3 is closer to the wall and is hindered by the wall interaction. Thus, bead 3 falls

behind bead 2 but much slower than without the walls (cf. figure 3) and nearly as fast

as bead 1 passes bead 2. Hence the motion is much closer to a simple rotation and the

particle becomes lesser bent with βm closer to zero and −0.5π / βm / 0. This means

again a migration to the wall. At even closer distances to the wall yc / 2b = 5.2 bead 3

becomes even slower due to the wall interaction. Here bead 1 passes bead 2 before bead

3 falls behind bead 2. This means βm becomes positive with 0 / βm / 0.5π and the

migration direction becomes negative. This is the second attractor. This effect becomes

stronger at yc / 2b = 7.0. Here bead 1 passes bead 2 and comes very close to bead 3

before bead 3 can overcome the wall interaction and falls behind bead 2. Therefore βm
becomes large with 0.5π / βm and the migration becomes positive. Closer to the walls

the migration becomes negative because the wall interaction becomes stronger than the
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migration due to the spatially dependent shear rate and the particle is repelled by the

wall, which explains the third attractor.

If the number N of the beads of the polymer model is increased the attractor and

the repeller are shifted to different values but the qualitative behavior is similar (As in

case of the unbounded flow). This is shown in the supplementary information.

4. Summary and discussion

In this work we investigated the dynamics and the cross-streamline migration of semi-

flexible bead-spring chains, which are a model of polymers and fiber, in Poiseuille flows.

We carried out simulations for bead spring models without and with wall interaction as

well as in the cases of very weak and medium noise amplitudes.

In parabolic flow profiles, we find in the absence of noise a migration towards an

off-center attractor streamline (one attractor in each half of the flow profile), with initial

positions between the flow center and an off-center repeller. If the polymers are initially

positioned beyond the off-center repeller then they keep migrating away from the center.

Above a critical value of the bending rigidity both the attractor and the repeller vanish

and the particles migrate at all positions away from the center of the parabolic flow

profile. We find that noise stabilizes this attractor in unbounded parabolic flow, i.e. the

attractor persists at higher values of the bending rigidity. The off-center repeller does

not exist with sufficiently high noise amplitudes, which means the polymers migrate to

the attractor independently of the initial position.

This behavior can be explained by the bending of the semiflexible polymer because

the direction of the migration is connected with the bending. The maximal bending

angle during a flip decides about the direction of cross-streamline migration. We find

that a small bending leads to a migration away from the center and a strong bending

leads to a migration towards the center. This explains that the attractor vanishes at

high values of the bending rigidity. If the particle is stiff it is less bent and the migration

is directed away from the center. The thermal noise increases the bending angle, so that

despite of high values of the bending rigidity the deformation is large and the migration

is directed towards the center. Therefore the attractor is stabilized by the noise.

Considering semiflexible polymers in wall bounded flow and without thermal noise

we find up to three attractors (in each half of the channel). Two of them vanish at high

values of the bending stiffness. With thermal noise we find only two attractors and one

vanishes at a high bending stiffness.

These results and especially the dynamics (e.g. the turning procedure in the shear

flow) bears resemblance to the tumbling motion of polymers in Poiseuille flow as for

example shown in [20, 21, 23, 24, 25] and may thus be useful to analyze cross-stream

migration in that case. The effects described in this work can be also compared to

the simulations of fibers, which show off-center attractors or peaks of their distribution

[19, 28]. The presented results for the simple bead-spring model indicate, that the

migration may strongly depend on the dimensionless stiffness S and on the ratio between
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the polymer length and the diameter of a pipe flow (due to the shown wall interaction).

The attractors found with thermal noise and the importance of the bending on the

migration agree with [28], even though [28] uses a constant length of the bead model and

we allow a small extension of the springs. Hence we conclude that a change in the length

does not change the qualitative behavior. Furthermore, it is interesting that the results

with noise agree with [28], despite that [28] does not include thermal noise. However,

[28] uses a rotation of the beads which creates a nonlinear flow field. We assume that

the rotation of many beads has a similar effect as the thermal noise included in our

simulations, which may explain this agreement. This is also a possible explanation that

the results without noise differs much from [28], e.g. the repeller without wall or the

three attractors with walls found here. Thus we conclude that thermal noise can have a

high influence of the qualitative behavior of the polymers and fibers, e.g. by extending

the range of existence of attractors and the location of the attractor.

The lateral migration may be exploited to separate polymers or fibers with different

properties, e.g stiffness, because the existence and the positions of the attractors depend

strongly on the parameters.
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Appendix A. Supplementary information

Appendix A.1. Determination of the position of the attractor and the repellers

We determine the position of the attractors and reppelers as follows: Every trajectory

in figure 1 (a) is the result of a sequence of turns and related migration steps of the

particles. The trajectories in part (a) are very smooth and every subsequent migration

step is directed in the same direction. In that sense the noise with ET = 1.3 · 10−12

is small. It just inclines the particle out of the orientation parallel to the stream line

but does not disturb the dynamics of the flip and the direction of the migration. As

these turns are the foundation of the cross-stream migration, the essential information

about the direction of the migration in case of a weak thermal noise can be obtained

by studying single turns of the particles without noise for continuously varied initial

positions across the channel, at which the objects are slightly inclined with respect to

the flow direction. In this way we determine for different initial positions yc/2b the

direction of the migration step during one turn in the flow. The stationary points are

located at positions leading to a vanishing migration step. The migration steps can lead

to a movement towards or away from these stationary points, which allows to distinguish

between attractors and repellers.

In case of higher thermal noise ET = 6 · 10−8 the noise disturbs the dynamics and

the direction of the migration. Figure 1 (b) shows that the trajectories move up and

down in y-direction, which means that subsequent flips do not lead to a migration in

the same direction. Hence at high noise we can not study single deterministic flips and

therefore the position of the attractor must be determined directly from the trajectories.

Appendix A.2. Results with five beads

We show here that we find with a higher resolution of the particle with five beads similar

results as with only three beads. We use wall interactions and the following parameters:

number of beads N = 5, viscosity η = 1
12π

, wall to center distance d = 100.0, flow

velocity u0 = 900.0, Stokes friction coefficient ζ = 0.5, bending constant κ = 7.8,

spring constant k = 5.0, equilibrium bead distance b = 2.5 (Length l = 10), strength

of the Lennard-Jones potential ε = 100.0, cutoff radius of the Lennard-Jones potential

rc = 1.1, bead radius a = 1.0, and Euler step width ∆t = 0.0005.

The results with five beads shown in figure A1 and the findings with three beads

given in figure 5 are similar: Both models with three and five beads show three attractors

at low values of the bending stiffness. Two of them vanish if the bending stiffness is

increased above threshold values. The position of the attractor in the middle changes

its position less in dependence of the bending stiffness and is found at all values of S.

We find with three beads that the migration is determined by the maximal bending

angle during one flip of the particle which is given by eq. (18) and figure 7. A similar

criterion can be given with the five beads, but one has to consider that the bending of

the five bead particle is not determined by one angle. Instead we measure the bending
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Figure A1. Attractors (blue ——) and repellers (red - - - -) for N = 5 beads with

wall interaction and without thermal noise. Up to three attractors exist. Two vanish

above critical values of the bending stiffness and one is found at all values which is

located between the center and the wall.

of the particle by utilizing a parabolic function through the both beads at the ends and

the one in the middle, i.e. we use the curve

r(y) =




ay2 + by + c

y

0


 (A.1)

This allows to calculate the curvature C of the particle via

C = ±|∂yr × ∂
2
yr|

|∂yr|3
(A.2)

whereby the sign means a curvature to the left or right and we evaluate the expression

at the position of the bead in the middle. We measure the curvature in units of the

particle length l. Similar to the bending angle in case with three beads the curvature

determines the migration direction. This is shown in figure A2 without noise. The

migration step and the maximal bending as function of the lateral coordinate of the

particle’s center is similar to the case with three beads shown in figure 7. If the particle

has a curvature with Cl < −12 and 0 < Cl < 12 we find a migration towards the center

and at −12 < Cl < 0 and 12 < Cl we find a migration towards the wall.
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Figure A2. The curvature C of the maximum deformation and the migration step

∆yc after one flip as function of the initial position of yc with S = 0.27 < Sc without

thermal noise and with wall interaction. Similar to the results with three beads (see

figure 7) the migration steps changes its direction at certain values of the curvature,

namely at Cl = −12, 0, 12. Close to the wall, at yc/l > 8, the wall repulsion is stronger

than the migration induced by the bending. The migration is directed away from the

wall despite the high values of the curvature.
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Bead-spring models are often used to describe the dynamics of deformable particles in microfluidic
flows: The variety of these models ranges from basic models, like a tetrahedron which allows to
demonstrate elementary principles in a lucid way, to more complex but efficient models of flexible
fibers, vesicles, capsules and red blood cells. In this work we give most simple models, e.g. a triangle
or a ring, to describe the cross-stream migration (CSM) of an elastic particle in a flow and discuss the
minimal requirements that a model must fulfill to describe CSM. We give furthermore a simple model
of a capsule and discuss the different models. This bead capsule shows also quantitative agreement
with other, more complex methods. After we demonstrated that the bead-spring models can describe
the migration well, we show that a bead capsule is helpful for semi-analytical calculations: It allows
to give a simple explanation why cross-stream migration occurs. We show in an easy way that the
tank-treading motion and the spatial dependence of the flow lead to forces that drive the migration,
what agrees with previous results. Also the finite size of the capsule can lead to a CSM in curved
flows. Furthermore we give an semi-analytical approximation of the migration velocity of a capsule
in an arbitrary flow at small deformations, which allows to discuss the general requirements of
cross-streamline migration.

I. INTRODUCTION

Microfluidics is a fast developing field with a wide spec-
trum ranging from basic physics to many applications in
life science and technology [1–9]. A large branch of Mi-
crofluidics deals with the dynamics of soft particles in
suspension and especially their cross-streamline migra-
tion (CSM) at small Reynolds numbers. Here important
results are obtained in understanding blood flow, sorting
(blood) cells and DNA or processing polymers, among
many others examples [8–13].

The first example of CSM was reported in 1961 by
Segré and Silberberg who studied the motion of rigid
particles in finite Reynolds-number flows through pipes
[14]. But micrometer sized particles often have negligi-
ble Reynolds numbers, which means inertial effects can
be discarded and CSM occurs on this length scale not
for rigid but for soft particles. Examples are particles
immersed in curved flows [15–17] or in rectilinear flows
[18–20]. In rectilinear flows however, the flows fore-aft
symmetry must be broken to observe a CSM which re-
quires hydrodynamic interaction [18, 19]. The symme-
try is broken e.g. by near boundaries via wall-induced
lift forces [9, 20–24]. But even without walls a symme-
try breaking can occur due to spatially dependent shear
rates: Examples are dumbbells [18, 19], droplets [25, 26],
vesicles and capsules [27–30]. This may be also accom-
panied by a viscosity contrast [31] or chirality [32].

To understand this multi-faceted phenomenon of CSM
it can be desirable to use most simple models, which fo-
cus on the essentials. Such an approach was e.g. used by
Watari and Larson to describe the above mentioned ef-
fect of chirality [32]: They showed that particles with an
intrinsic chirality already migrate in an linear shear flow
by using an elementary bead-spring tetrahedron, which
showed the effect in a lucid way. But bead spring models
are not only limited to easy models used in [16, 32]. It

was shown recently that bead spring models can describe
the dynamics of vesicles (even with a viscosity contrast)
[13, 33], of capsules [34] and even of red blood cells [35] in
an efficient way. Further recent examples of the useful-
ness of bead spring models in microfluidic simulations are
the description of DNA [36], cilia [37], flexible filaments
[38], proteins [39, 40], general colloidal particles [41] and
microswimmers [42–44]. Also conceptual work was done
in the last years to improve bead models further [45, 46].

y

x
z

FIG. 1. (color online) The dynamics and the cross-stream
migration of bead models in increasing complexity is inves-
tigated in Poiseuille flow and compared: The used mod-
els are a triangular and a ring shaped bead-spring model
(two-dimensional), a tetrahedron and a capsule (three-
dimensional). The capsule is also used to semi-analytically
calculate the migration velocity in an arbitrary flow (with
translational invariance in one direction), which allows to
discuss the mechanism of migration and the general require-
ments.

In this work we show at first minimal bead spring mod-
els, e.g. a triangle or a ring sketched in Fig. 1, which
display a CSM in a Poiseuille flow and demonstrate that
they are sufficient to determine the basic properties of
CSM. Furthermore they allow to determine the minimal
requirements that a bead model must fulfill to display a
CSM (compare [19]). We then give a simple but improved
bead model of a more realistic particle, a capsule and
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show that it agrees quantitatively well with other more
complex methods like the work of Helmy and Barthès-
Biesel [27, 47] or the Lattice-Boltzmann method (LBM).
We are thus able to give an overview of models rang-
ing from the basic triangle to a capsule and discuss the
advantages of each model. Note that we focus in this
work on the basic effects, which may be modified e.g.
by viscosity contrasts in vesicles, capsules or red blood
cells or slip condition in drops. Beyond that we show
a further advantage of bead-spring models: They allow
semi-analytical calculations. We derive the migration ve-
locity of an elastic, spherical bead particle (e.g. the cap-
sule) in an arbitrary flow (with translational invariance
in one direction) at small deformations. This allows to
calculate also the forces that drive the migration in an
arbitrary, unbounded flow: The calculations show in an
easy way that the spatial dependence of the flow and the
tank-treading motion lead to forces which are the source
of CSM in a rectilinear flow. Up to now the CSM and the
driving forces are analytically calculated with more exact
models but in special flows, e.g. for capsules in a pipe
flow [27], drops in unidirectional flows [48] or vesicles in
Poiseuille flows between flat walls [49] among many other
examples.

II. MODELS

A. Bead Spring Models

To describe the cross-stream migration of soft particles
(without viscosity contrast) in a most simple way, we use
bead spring models: A triangle, a ring, a tetrahedron
and a bead-spring capsule as particle representatives (see
fig. 1). The models are exposed to a vertical 3D, plane
Poiseuille flow along the x-axis

u0(y) = U
[
1− (y/d)2

]
ex (1)

with its two boundaries at y = ±d. The maximum flow
velocity at the channel center is given by U . We also use
a pipe flow

u0(r) = U
[
1− (r/d)2

]
ex, r =

√
y2 + z2 (2)

with a wall at r = d and a maximal velocity U and a
linear shear flow, which is given by

u0(y) = γ̇yex (3)

with the shear rate γ̇.
The bead-spring models consist of N beads located at

ri and the particle’s center is given by rc =
∑N
i=1 ri/N .

We use the Stokesian dynamics model [50] to describe
the motion of the models. The equation of motion of the
beads is given by the coupled equations (1 ≤ i ≤ N),

ṙi = u0(ri) +

N∑

j=1

Hi,j · Fj , (4)

The force acting on bead j is given by Fj = −∇jV (r)
where V (r) denotes to the total potential, and Hi,j

means the mobility matrix, as specified in the following.
The triangle model uses springs between the three

beads and the used potential is given by V (r) = Vh =
k
2

∑N
i=1(Ri−b)2 with spring constant k, equilibrium bond

length b, and Ri = |Ri| the magnitude of the bond vector
Ri = ri − ri+1 of the next-neighbor beads i and i+ 1.

The total potential of the ring reads V (r) = Vh + Vb.
It consists of the harmonic potential Vh also used by the
triangle and a bending potential Vb given by

Vb = −κr
2

N∑

i=1

ln (1 + cosβi) , (5)

with the bending stiffness κr. The angles βi are defined
via cosβi = eRi−1

· eRi with the bond unit vectors eRj =
Rj/Rj .

The total potential of the capsule is V (r) = VNH+Vb+
Vv with the Neo-Hookean potential VNH [47, 51] which
describes rubber-like materials with a constant surface
shear-elastic modulus Gs, and a bending potential Vb [52,
53]

Vb =
κc
2

∑

i,j

(1− cosβi,j) (6)

with bending elasticity κc. The angle βi,j is formed by
the two normal surface vectors of adjacent triangles with
beads at the triangle corners. The penalty potential
Vv = kv

V0 (V(t) − V0)2 [53] with volume stiffness kv en-

sures that the capsule’s instantaneous volume V(t) re-
mains close to the reference volume V0 = 4

3πR
3 of a

spherical capsule of radius R. To treat the capsule as a
bead model we have to discretize the surface of a sphere
to determine the equilibrium positions of the beads. To
receive a homogeneous distribution of beads on the sur-
face of a sphere we begin with a regular icosahedron [54].
A icosahedron consists of 20 equilateral triangles and 12
nodes. The discretization is then refined iteratively: We
add new nodes in the middle of each edge and shift them
radially outwards to the surface of the sphere. We receive
a greater amount of nodes and triangles. We repeat this
until we have N = 642 nodes. The result is shown in fig.
1.

The mobility matrix Hi,j consists of the Oseen tensor
[50] or the Blake tensor [55]. The Oseen tensor describes
the hydrodynamic interaction (HI) of the beads i and j
immersed in an unbounded fluid and the Blake tensor
takes also the interaction with a flat wall into account.

The Blake tensor Hi,j reads

Hi,j(ri, rj) = SHi,j(ri, rj)− SHi,j(ri, r
′
j)

+ DHi,j(ri, r
′
j)− SDHi,j(ri, r

′
j) (7)

where r′j = (xj , yj +2hj , zj) is the position of the mirror-
particle of bead j with a wall distance hj . The first term
in eq. (7) denotes the Oseen tensor, which describes the
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HI without walls

S
Hαβ
i,j (ri, rj) =

{
1

8πηRi,j

[
δαβ + eαRi,je

β
Ri,j

]
(1− δi,j)

1
6πηaδαβδi,j

(8)

with the unit vector eRi,j = Ri,j/Ri,j , the bead distance
Ri,j = ri − rj , the viscosity η, the bead radius a and
α, β ∈ {x, y, z}.

The further terms in eq. (7) describe the wall inter-

action. The SHi,j(ri, r
′
j) is the source singlet, which

means the HI with the mirror bead j and is given by
Eq. (8) for i 6= j with Ri,j replaced by R̄i,j = ri−r′j and

ēR̄i,j = R̄i,j/R̄i,j . The last two terms in Eq. (7) refer to

the Stokes doublet (D)

D
Hαβ
i,j (ri, r

′
j) =

h2
j (1− 2δβy)

4πηR̄3
i,j

[
δαβ − 3ēαRi,j ē

β
Ri,j

]
, (9)

and source doublet (SD)

SD
Hαβ
i,j (ri, r

′
j) =

1

4πηR̄2
i,j

hj (1− 2δβy) (10)

×
[
δαβ ēyRi,j − δαyē

β
Ri,j

+ δβyē
α
Ri,j − 3ēαRi,j ē

β
Ri,j

R̄y
i,j

]
.

The effects of a second wall are described by superpo-
sition of the HI of the single walls, which leads to rea-
sonable results for a channel width to particle size ratio
larger than 5 [56]. In simulations with neglected wall-HI,
the mobility Hi,j in Eq. (7) reduces to the Oseen ten-

sor SHi,j . In the free draining case, where also the HI
between the beads is neglected only the diagonal part of
SHi,j is taken into account, which describes the Stokes
friction.

In case of the triangle and the tetrahedron we use a
correction of the Oseen-tensor, which takes the finite size
of the beads into account: The Rotne-Prager-Yamakawa
tensor [57, 58]. It is given by

Hαβ
i,j (ri, rj) = (11)




1
8πηRi,j

[
(1 + 2a2

3R2
i,j

)δαβ + (1− 2a2

R2
i,j

)eαRi,je
β
Ri,j

]
, Ri,j > 2a

1
6πηa

[
(1− 9Ri,j

32a )δαβ +
3Ri,j
32a eαRi,je

β
Ri,j

]
, Ri,j ≤ 2a

(12)

The Rotne-Prager tensor is useful if the beads come close
to each other, i.e. at high deformations.

In the simulations with the two dimensional models we
suppress the degrees of freedom of the particle perpen-
dicular to the shear plane and restrict its dynamics to the
x−y plane. This allows to regard them as a cross-section
of a 3D particle.

As not stated otherwise, we use the (dimensionless)
parameters:

(a) Plane flow and pipe flow: U = 3, 4 and 5, d = 70,
η = 1

(b) Triangle a = 5, k = 5, N = 3, b = 11, R = 6.4
y0 = 35;

(c) Ring: a = 0.75, k = 12, κr = 180.0, N = 20, b = 2,
R = 6.4, y0 = 35;

(d) Tetrahedron: a = 5.0, k = 15.0, N = 4, b = 11.0,
R = 6.7 y0 = 35;

(e) Capsule: Gs = 5.0, κc = 0.1, kv = 3.0, a = 0.3,
N = 642, b = 1.0, R = 6.6, y0 = 35;

Here y0 denotes the initial position. The values of b are
chosen so that all models have approximately the same
equilibrium radius R, which means in case of triangle
and tetrahedron the radius of the circumcircle or circum-
sphere. The dimensionless capillary number Ca=|γ̇|τ is
a measure for the particle deformation. The relaxation
time τ depends on the model, so that the capillary num-
bers are denoted by Catri, Car and Catet for the triangle,
the ring and the tetrahedron respectively. The capil-
lary number of the capsule is termed Ca. The relaxation
times are denoted with the same indexes and are given by
τtri = 6πηa

k = 18.8 (triangle), τr = 6πηR
k = 10.0 (ring),

τtet = 6πηa
k = 6.3 (tetrahedron), τ = ηR

Gs
= 1.3 (capsule).

The shear rate is given by γ̇ = ∂u0

∂y = −2u0
y
d in a plane

flow or γ̇ = ∂u0

∂r = −2u0
y
r in a pipe flow.

B. Lattice Boltzmann Method

In order to compare the bead-spring models with
another model we use a second method, the lattice-
Boltzmann method (LBM) [59]. We choose a 3D LBM
with a standard velocity descretization D3Q19. The
collision are described by the Bhatnagar-Gross-Krook
(BGK) collision operator [60, 61]. The evolution of the
probability-distribution fi(r, t) in velocity-direction i at
position r is given by

fi(r + ci∆t, t+ ∆t) =

fi(r, t)−
∆t

τLBM
(fi(r, t)− fei (r, t)) . (13)

Here ci denote the unit vectors, τLBM is a typical re-
laxation time (which is set to τLBM = 1 as usual) and
fei (r, t) is the equilibrium distribution

fei (r, t) ≈ ρ0wi

[
1 +

(ci · u)

c2s
+

(ci · u)
2

2c4s
− u2

2c2s

]
,(14)

with the equilibrium density ρ0, the weighting factors wi
and cs = 1√

3
[61].

The local density ρ(r, t) and mean velocity u(r, t) are
given by the leading two moments

ρ(r, t) =
∑
i

fi(r, t) , (15)

ρ(r, t)u(r, t) =
∑
i

cifi(r, t) . (16)

The dynamic fluid-viscosity is given by

ν = c2s

(
τLBM −

1

2

)
. (17)
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To drive the Poiseuille-flow we apply volume-forces. The
coupling to the probability-distribution is implemented
using the method given in [62].

We use further the immersed-boundary method [63]
to couple the forces acting on the particle to the LBM-
mesh. The delta-function used here is given by φ(∆r) =

φ̃(∆x)φ̃(∆y)φ̃(∆z) and

φ̃(R) =

{
1
4

(
1 + cos(πR2 )

)
if |R| ≤ 2

0 else
. (18)

This method allows to couple the force from the La-
grangrian system to the neighbouring discrete grid nodes
of the LBM and to calculate the velocity of the nodes at
the position of the nodes of the capsule.

The Lattice Boltzmann simulations requires U � cs
and τLBM ≈ 1 ensures a stable simulation, hence we
choose the parameters:

Plane Flow: U = 0.01, d = 70, η = 1
6

LBM: τLBM = 1, ρ = 1.0
Capsule: Gs = 10−4, κc = 10−4, kv = 10−3, a = 0.3,

N = 642, b = 1.0, R = 6.6;

III. CROSS-STREAM MIGRATION OF A
TRIANGULAR AND A RING-LIKE

BEAD-SPRING MODEL

In this section we show that simple models, a trian-
gle and a ring of beads, can qualitatively describe the
cross-streamline-migration and discuss the minimal re-
quirements that a model must fulfill to display a CSM.
We furthermore compare the models qualitatively with
the two dimensional vesicle presented in [28].

A. Triangle

Figure 2 shows the evolution of the lateral coordinate
of the triangle’s center, yc(t) in an unbounded plane
Poiseuille flow. The triangle is initially positioned off-
center at yc/d = 0.9. It moves over time to the center
of the flow at y = 0, where a stable position is reached.
Thus the triangle displays a cross-stream migration to
the center of the flow. The figure shows also the dynam-
ics with three different bead radii a and with and without
hydrodynamic interaction (HI), i.e. the flow disturbance
due to the presence of the particle. In the free-draining
limit (HI is neglected) the center yc(t) is constant as
indicated in Fig. 2, i. e. there is no cross-streamline-
migration (CMS) in the free draining limit. If we include
HI the triangle migrates and moves towards the center
of the flow at y = 0. When the ratio a/b between the
effective bead radius a and the equilibrium bead-bead
distance b is increased, then HI effects are enhanced and
simultaneously the cross-stream migration is faster. This
illustrates the hydrodynamic interaction is necessary to
describe the cross-streamline migration of a particle in a
Poiseuille flow.

A magnification of Fig. 2 shows oscillations around a
mean value. This oscillation vanishes with an increasing
number of beads and is not important for the analysis of
the net migration.

We also simulated the triangle in a linear shear flow.
In this case no migration is found, which means that the
spatial-dependent shear rate is crucial to the migration
in a flow with parallel stream lines, which corresponds to
the findings in [19].

 0

 0.3

 0.6

 0.9

 0  2  4  6
y

c 
/ 

d

t / τtri 10
4

a / b = 0.45
a / b = 0.40
a / b = 0.3
free draining

 0.08

 0.09

 4  4.1

FIG. 2. The temporal evolution of the lateral position yc(t)
of the center of a triangular bead-spring model for three dif-
ferent bead radii and with and without hydrodynamic inter-
action (HI) at U τtri

R
= 3. In the simulations including HI

the particle moves from its initial position close to a wall to
the center of the flow at y = 0: Thus a migration is found.
This migration is faster with higher ratios of the bead radii
a to the equilibrium bead distance b. The particle with the
ratio a/b = 0.45 reaches the center faster than the one with
a/b = 0.4 and with a/b = 0.3. In the free-draining limit (no
HI) the triangle follows the flow completely and no migration
occurs.

After we found a CSM in a Poiseuille flow, we inves-
tigate how it depends on the parameters. The cross-
streamline migration velocity vm,y is obtained by the
slope of a straight line fitted to yc(t). Figure 3 shows how
the velocity depends on the lateral position and therefore
the local capillary number Catri = τtri|γ̇|. At all posi-
tive values of the position of the triangle vm,y is negative,
which means a migration towards the center of the flow
at y = 0. At the center the velocity vanishes vm,y = 0.
At positions with yc < 0 (not shown in fig. 3), i.e. in the
other half of the channel, the migration is positive and
has the same absolute value as at the positions shown
here (with yc > 0). Thus the migration is everywhere
directed to the center. Figure 3 also shows the migration
velocity as function of Catri. It’s absolute value |vm,y|
vanishes at Catri = 0, grows for small values of Catri lin-
early with Catri and reaches a maximum at Catri ≈ 0.5.
At values of Catri ' 0.5 the migration velocity’s magni-
tude |vm,y| decreases with increasing values of Catri and
vanishes at Catri � 1. This behavior is found at all
used values of the flow velocity U τtri

R = 9, 12, 15. The
dependence of the migration velocity on U at an initial
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FIG. 3. The cross-stream migration velocity vm,y for the tri-
angle is given as a function of the lateral position of its center
and therefore of its local capillary number Catri = |γ̇|τtri
for three different values of the flow velocity U . The mi-
gration velocity is negative which means a migration to the
center. The migration velocity’s magnitude |vm,y| is maximal
at Catri ≈ 0.5 (shown for U τtri

R
= 15) and vanishes for values

of Catri ≈ 0 and Catri � 1. The inset shows the migration
velocity of the triangle as function of the flow velocity at a
constant initial position yc/d = 0.5. The migration velocity’s
magnitude |vm,y| is maximal at U τtri

R
≈ 10 at yc/d = 0.5 and

becomes smaller at increasing distance to U τtri
R
≈ 10.

position yc/d = 0.5 is shown at the inset of fig.3. The mi-
gration velocity’s magnitude grows with increasing values
of U up to U τtri

R ≈ 10 reaches a maximal magnitude at
U τtri

R ≈ 10 and becomes smaller again at growing values
of U at U τtri

R ' 10.

Hence already the easy triangle allows to determine the
three main requirements of cross-streamline migration in
a flow with parallel stream lines: At first the particle
must be deformable, i.e. the capillary number must be
larger than zero. Second, the shear rate must change
over the size of the particle: We find a migration in a
Poiseuille flow, but not in a linear shear flow. Third the
flow disturbance due to the particle, the HI, is necessary.

We can compare this results qualitatively with the two
dimensional vesicle in a Poiseuille flow given in [28]: Also
the vesicle must be deformable, i.e. needs a capillary
number larger than zero to migrate. It needs a varying
shear rate across its size and it also disturbs the flow (in-
cludes HI). Thus the requirements to find a migration is
the same for the easy triangle and the vesicle. We can
also compare the direction of the migration and the quan-
titative dependence on the capillary number: The migra-
tion velocity of the vesicle [28] is directed to the center
and it shows, as function of Ca, a linear increase at small
values of Ca until a nearly constant value of the migration
velocity is reached at higher values of Ca. The triangle
model reproduces the migration to the center. It also
displays a nearly linear increase of vm,y at low values of
Catri. But at high values of Catri the migration becomes
slower with increasing Catri which is different to the vesi-

cle. The reason is that the vesicle model includes an area
conservation, which limits the deformations at high val-
ues of Ca. This is not used in the triangle model, which
leads to high deformations at Catri > 1. This means the
very simple triangle can reproduce the qualitative fea-
tures of a deformable particle: The requirements of the
migration, the migration direction and the quantitative
dependence on the capillary number (linear growth) as
long as too high deformations, i.e. too high values of Ca
are avoided.

B. Ring

We investigate the cross-streamline migration of a fur-
ther simple model, the ring of beads. In a linear shear
flow no migration is found, hence we use the Poiseuille
flow. We also find in a Poiseuille flow without the HI no
migration, therefore we include the HI (compare [19]).
Figure 4 shows the migration velocity of the ring as func-
tion of the lateral position of its center and the accord-
ing local capillary number for three different values of
the flow velocity. Also the ring displays a migration to
the center. The migration velocity’s magnitude |vm,y|
increases with the distance to the center until a value
of the local capillary number Car ≈ 1 is reached. At
higher distances to the center, i.e. higher values of Car,
the migration velocity’s magnitude becomes nearly con-
stant. The inset of fig. 4 shows also vm,y as function of
the flow velocity: The migration’s magnitude increases
with the flow velocity. Also the deformation of the ring
is shown in fig. 4. At low shear rates, i.e. close to the
center, the ring is nearly undeformed. Closer to the wall
the ring adopts approximately more and more the shape
of an ellipse with the long half axis roughly oriented with
an angle of π

4 to the stream lines.
This means also the ring shows the three requirements

for cross-streamline migration in a flow with parallel
stream lines: deformability, spatial-dependent shear rate
and HI. Thus the migration of the ring and the trian-
gle are qualitatively similar, because they show the same
requirements and both display a motion to the center
of the flow. But the triangle displays a maximum at
Catri ≈ 0.5, whereas the ring does not show a maximum
when vm,y is plotted against Car. The reason is that
the triangle undergoes very high deformations. In case
of the ring this is prevented by the bending potential.
This holds true as long as the capillary number of the

bending is not too high, i.e. as long as Caκr = 6πηR3

κ |γ̇|
is not much higher than one. Here the highest value was
Caκr = 4 with U τr

R = 8 at y = d.
The result of the simple ring model is similar to the

behavior of the vesicle described in [28]. It has the same
conditions for the migrations. Also the qualitative de-
pendence on the capillary number is similar: The migra-
tion of the vesicle grows almost linear with Car until it
reaches a plateau at higher values of Car, which is also
found with the ring model. This is case despite the area
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FIG. 4. (color online) The cross-stream migration velocity
vm,y for the ring of beads is given as a function of the lat-
eral position of its center and therefore of its local capillary
number for three different values of the flow velocity U . The
migration velocity increases with the rings distance to the
center up to Car / 1 and remains approximately constant at
Car ' 1 (shown for U τr

R
= 8). The inset shows yc/d = 0.5

that the migration velocity of the ring increases with increas-
ing flow velocity. Also the shape of a bead-spring ring-model
is shown at different positions along yc(t) in Poiseuille flow, as
indicated by a)-d): Close to the channel center, at a), the ring
is less deformed due to the low shear rate. The ring becomes
the more deformed the closer it is to the wall. Its shape is
then nearly elliptic and the long half axis forms roughly an
angle of π

4
with the stream lines.

and circumference conservation used in [28] is missing in
case of the ring of beads.

The simple ring also agrees qualitatively well with the
results found with the capsule (see fig. 9), which allows
to regard the ring as a cross-section of the capsule.

IV. CROSS-STREAM MIGRATION OF A
TETRAHEDRON AND A CAPSULE

We show a simple tree dimensional model that al-
lows to investigate the cross-streamline migration of a
deformable particle qualitatively: The bead spring tetra-
hedron. We also give an example of how a realistic parti-
cle, a capsule, can be described easily with a bead model.
We also show that we receive a quantitative agreement
with other methods: For this purpose we compare the
results of the bead capsule with the results of Helmy and
Barthès-Biesel (see [47] and [27]) and a lattice-Boltzmann
simulation.

A. Tetrahedron

Here we show the cross-stream migration of a most
simple three dimensional particle, the tetrahedron. Also
the tetrahedron shows no migration in a linear shear flow,
hence we use a Poiseuille flow in the following. Further-
more no migration in a Poiseuille flow is found in the
free draining limit, therefore we include the HI (compare
[19]).

Figure 5 shows the migration velocity of the bead-
spring tetrahedron in a plane Poiseuille flow in depen-
dence of the lateral position and the corresponding local
capillary number Catet. The migration of the tetrahe-
dron is everywhere directed to the center of the flow,
which can be seen with vm,y < 0 at the shown half of the
channel with y > 0. The CSM vanishes at the center at
yc = 0 and Catet = 0. It becomes stronger at increas-
ing values of Catet up to Catet ≈ 0.3, where it reaches a
maximum. At higher values Catet ' 0.3 to migration be-
comes slower. The inset of fig. 5 displays the migration
velocity at y = 0.5d as function of the flows velocity U .
A maximum of the migration’s absolute value is found at
U τtet

R ≈ 5 and the migration vanishes at very high or low
values of U .
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FIG. 5. The migration velocity vm,y of the tetrahedron in a
plane Poiseuille-flow is given as a function of the lateral po-
sition of its center and therefore of its local capillary number
Catet for three different values of the flow velocity U . The
migration speed vanishes at Catet = 0 and at Catet � 1 and
displays a maximum at Catet ≈ 0.3 (shown for U τtet

R
= 5).

The inset shows the migration velocity of the tetrahedron as
function of the flow velocity at yc/d = 0.5. A maximum is
found at U τtet

R
≈ 5.

We also determined the migration velocity of a tetra-
hedron in case of a pipe flow, which is shown in fig. 6.
The only difference to the planar flow is that the migra-
tion velocity is higher, approximately by a factor of 1.5
(compare fig. 6 with fig. 5). The reason is that the flow
profile is not only curved in radial direction due to the
parabolic flow profile, but the pipe has a second curva-
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ture due to the cylindrical shape of the pipe. But the
results in a pipe flow are qualitatively very similar to the
results in a plane Poiseuille flow shown in fig. 5.
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FIG. 6. The migration velocity vm,r for the tetrahedron in
a pipe flow is given as a function of the lateral position of
its center and therefore of its local capillary number for three
different values of the flow velocity U . The inset shows the
migration velocity of the tetrahedron as function of the flow
velocity. The result is qualitatively similar to the results in a
plane Poiseuille flow (compare fig. 5). The migration velocity
is approximately 1.5 times faster in the pipe flow than in the
plane flow but otherwise the curves have a very similar shape.

Thus the migration of a simple tetrahedron is qualita-
tive very similar to the one of the triangle (compare figs.
3, 5 and 6).

B. Capsule

1. Migration in Bulk and comparison with results of
Barthès-Biesel

We show that the migration of a capsule in a plane
Poiseuille flow and a pipe flow can be described well with
an easy bead model. To proof this, we compare our re-
sults with the analytical work of Barthès-Biesel.

At first we show that the deformation of our simple
bead capsule gives the correct results by comparing our
results with the analytical expression given in [47], which
describes the deformation of a capsule in a linear shear
flow. To describe the deformation the Taylor parame-
ter D= L−B

L+B is used whereby L and B are the long and
the short half axis of the deformed capsule. This mea-
sure of the deformation is given analytically as function
of the capillary number as D = 25

12Ca in case of small
deformations in [47], i.e. as long as D< 0.15. We can
now compare the bead capsule model with this analyt-
ical results. We simulated the capsule in a linear shear
flow and determined the values of D in dependence of

 0

 0.1

 0.2

 0.3

 0.4

 0  0.1  0.2  0.3  0.4

D

Ca

simulation

Barthes-Biesel

FIG. 7. A benchmark of the bead capsule model: The Taylor
parameter D, which measures the deformation of the capsule,
as function of the capillary number Ca. Barthès-Biesel has
shown [47], that D is given by D = 25

12
Ca in case of small

deformations, i.e. D/ 0.15. Our simulations of the bead
capsule agree very well with this result at small deformations.

Ca by varying the shear rate. Both the simulations and
the analytical expression is shown in fig. 7. One can
see that the simulations and the analytical expression of
Barthès-Biesel agree well in case of the assumed small
deformations at D/ 0.15. Thus we see that the simple
bead model gives the right values of the deformation of
a capsule.

We show now that also the migration of a capsule can
be described well with the bead model. We find no migra-
tion in a linear shear flow and no migration in a Poiseuille
flow, if the HI is neglected (compare [19]). Therefore
we investigate the migration in a plane Poiseuille flow
and a pipe flow with HI. We can compare the migration
with the results of Helmy and Barthès-Biesel, who cal-
culated the cross-stream migration velocity of a capsule
in a pipe flow in case of small deformations [27]. For
a Neo-Hookean capsule the migration velocity in radial
direction is given in [27] as

vm,r = −29

36

ηU2R3rc
GsD4

(19)

at small deformations, whereby rc denotes the radial dis-
tance of the capsule’s center to the center of the flow. A
negative velocity means a migration to the center of the
flow. We can compare now the simulations of a capsule
with eq. (19). We determine therefore the migration ve-
locity as function of the initial position (and also of the
local capillary number) at three different values of the
flow velocity U and also as function of U . The compari-
son of the simulations and the analytical expression (19)
is shown in fig. 8 at a value of U τ

R = 1. At small de-
formations the simulation and eq. (19) agree well, hence
we see that the simple bead capsule model can correctly
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describe the migration velocity.
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FIG. 8. The migration velocity vm,r of the capsule in a pipe
flow is given as a function of the lateral position of its center
and therefore of its local capillary number for three different
values of the flow velocity U . The negative values of vm,r
mean a migration to the center. Also the analytical calcu-
lation of Barthès-Biesel for small values of Ca is given as a
benchmark of the model for U τ

R
= 1. Both simulations and

the analytical expression agree well. The migration is also
shown at higher values of Ca: The migrations magnitude in-
creases linearly with an increasing value of Ca at Ca/ 0.06,
shows a maximum at Ca≈ 0.06 and then a constant value at
Ca' 0.15 (shown for U τ

R
= 1). The inset shows at rc/d = 0.5

that |vm,r| increases with the flow velocity U .

We also determined the migration velocity of the cap-
sule at higher values of Ca. With increasing distance
to the center the migration’s absolute value increases at
first linearly. Then the migration’s magnitude displays a
maximum at Ca≈ 0.06 and becomes smaller at Ca' 0.06
until the migration becomes approximately constant at
values of Ca' 0.15. Figure 8 shows also the migration
velocity as function of the flow velocity U : The migra-
tion’s absolute value increases with U . We also see that
the migration is always directed to the center.

We determine also the migration of the capsule in a
plane Poiseuille flow so that we can on the one hand
compare the pipe flow and the plane flow and on the
other hand the capsule model with the tetrahedron and
the two dimensional ring. The migration velocity of a
capsule in a plane flow is given in fig. 9 as function
of the lateral position, the local capillary number and
in the inset as function of the flow velocity U . Here
the migration’s absolute value also increases linearly at
small deformations, i. e. low values of Ca, and becomes
constant at larger values of Ca' 0.1. This is the same
behavior as found for a vesicle given in [28] or a capsule
given in [30] (Note that [30] defines Ca differently). The
inset of fig. 9 shows that the migration becomes faster
with increasing values of U . The migration is directed
towards the center.

Figure 9 shows also the shape of the capsule at different
lateral positions and local capillary numbers. The cross
section of the capsule is close to a circle at low values
of Ca and becomes more and more an ellipsis at higher
values of Ca.
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FIG. 9. (color online) The migration velocity vm,y of the
capsule in a plane Poiseuille flow is given as a function of the
lateral position of its center for three different values of the
flow velocity U . The migration’s absolute value grows almost
linear with Ca until it reaches a plateau at higher values of
Ca' 0.15 (shown for U τ

R
= 1). The inset shows at yc/d = 0.5

that the migration’s absolute value increases with the flow
velocity U . Also the shape of the capsule is shown at different
positions along yc(t) in Poiseuille flow, as indicated by a)-d).
The higher the value of Ca is the more the cross section of
the capsule is deformed to an ellipse.

These results are similar compared with the pipe flow,
where the migration’s magnitude as function of Ca also
increases linearly at low values of Ca and reached a con-
stant value at higher values of Ca. The only difference is
that in a plane flow no maximum is found and that the
migration velocity in a plane flow is faster than in pipe
flow approximately by a factor of two (compare figs. 8
and 9).

We can now compare the other models with the cap-
sule in plane flow, at first with the tetrahedron and the
triangle and secondly with the two dimensional ring. The
tetrahedron and the capsule displayed both a migration
to the center and showed the same three requirements
of the occurrence of a migration in a flow with parallel
stream lines: The particle must be deformable, the shear
rate must vary across the particle and the HI is needed.
Furthermore both particles showed a linear increase of
the migration’s magnitude with the capillary number at
low values of the capillary number. Thus both models
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showed qualitatively the same results for small defor-
mations. But at larger values of Catet we found with
the tetrahedron a maximum of the migration’s absolute
value at Catet ≈ 0.3 and a vanishing migration at high
values of Catet. Here the result is different to the capsule,
which displayed a constant migration velocity at higher
values of Ca' 0.15. Thus in general both models display
a migration to the center and show a qualitative agree-
ment as long as the capillary number is not too high. At
high capillary numbers the details of the dependency of
the migration velocity on the capillary number is differ-
ent for both models. The reason is that the volume of
the capsule is conserved, whereas the tetrahedron is only
connected by springs and can undergo very high deforma-
tions at large values of Catet. This constant migration at
high values of Ca is also reported in case of a 2D vesicle
[28] or a 3D capsule [30] with area or volume conserva-
tion, so that the bead capsule is more comparable to a
realistic particle at high values of Ca. The behavior of
the triangle is similar to the tetrahedron.

Secondly, we can also compare the migration velocity
as function of the capillary number found for capsule with
the results of the ring (compare figs. 4 and 9). We find in
both cases the same three requirements of the migration
in a flow with parallel stream lines and that the migration
is directed to the center. We see also that the migration’s
magnitude as function of the capillary number grows lin-
early at small values of the capillary number and becomes
constant at higher values. This agrees qualitatively well
with the vesicle described in [28] or the capsule given in
[30]. Furthermore figs. 4 and 9 show the shapes of ring
and the capsule. Both ring and capsule show a similar
deformation: The ring becomes nearly an ellipse at off
center positions and also the capsule displays an elliptic
cross section at values of Ca> 0. Thus the ring gives
qualitatively the same results as the capsule for both the
migration velocity and the shape and can be seen in this
sense as a cross section of the capsule.

2. including Wall-repulsion and a comparison with
lattice-Boltzmann simulations

Up to now we neglected the wall interaction. Here we
show that the wall interaction can easily be taken into
account with a bead model. We discuss also how the
wall influences the migration and at which distance to
the wall the influence of the wall can be neglected. This
is done by comparing simulations with the Blake tensor,
which includes the wall interaction with simulations with
the Oseen tensor, which neglects the wall. We also give
a third benchmark of the bead model by comparing the
bead capsule with a full lattice Boltzmann simulation.

At first we discuss the differences between the bead
models with and without wall interaction: Figure 10
shows the migration velocity as function of the distance
to the wall. One sees that up to a distance of approxi-
mately three diameters distance to wall the wall interac-
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FIG. 10. The migration velocity vm,y of the capsule in a
bounded and unbounded flat Poiseuille-flow is given as a func-
tion of the lateral distance to the wall. The simulations are
conducted with the bead model with the Oseen tensor without
wall interaction and with Blake tensor with wall interaction.
At distances to the wall lesser then three diameters of the cap-
sule the migration to the center with wall interaction (Blake)
is much higher than with neglected wall interaction (Oseen).
Thus the wall is repulsive and this repulsion is clearly domi-
nant compared with the bulk migration described by the Os-
een tensor. At distances higher then 4 diameters the wall
repulsion is negligible and the bulk migration is dominant:
Blake and Oseen tensor approximately lead to the same mi-
gration velocity.

tion is dominant: The migration to the center with wall
interaction is more than two times faster than without
the wall. This repulsion of the wall decays with the dis-
tance to the wall. At a distance of approximately four
diameters away from the wall the difference in the veloc-
ities is less than 10% and the wall Hi becomes negligible.
This strong wall repulsion was also reported in [30].

We can also compare the result of the bead model with
a Lattice-Boltzmann simulation. As described in sec. II
the lattice Boltzmann simulation solves the full Navier-
Stokes Equation on a grid and the moving capsule is cou-
pled with this grid via the immersed boundary method.
In contrast the bead model uses point particles and solves
the stokes equation with the Blake tensor, which is an
approximation of the wall interaction. This means also
that in one case the Reynolds Number is 0 for the bead
model and for the LBM simulation the Reynolds Num-
ber is small but finite with a value of Re=0.78. Despite
these differences in the modeling of the capsule the re-
sults agree well, which is shown in fig. 11: It shows the
migration velocity in dependence of the distance of the
capsule center and the wall. Both models show the strong
wall repulsion close to the wall, the slower migration in
bulk further away from the wall, which vanishes at the
center. Thus the results are similar.
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FIG. 11. Top: A comparison of the Blake simulations
(dashed) with a Lattice Boltzmann simulation (solid). The
plot shows the migration velocity as function of the distance
to the wall. Both methods show a strong repulsion close to
the wall. Further away from the wall the simulations show a
slower migration in bulk. Thus the qualitative behavior is the
same in both simulations. Also the quantitative agreement is
good, which is between 0% and 35%.

V. MIGRATION MECHANISM EXPLAINED
BY BEAD-SPRING MODELS AND

SEMI-ANALYTICAL RESULTS

Here we give an explanation of the migration of de-
formable particles with the help of bead-spring models.
At first, in section V A, we explain the basic mechanism:
We show that the migration is driven by forces due to the
tank-treading motion and the spatial dependence of the
flow and by the particle’s finite size if the stream lines
are not parallel. We also compare these results with [27].

In section V B we give an analytic expression for the
migration velocity of the bead capsule and explain the
approximations used to derive the expression. This al-
lows to determine the conditions under which a migra-
tion of this capsule model occurs: We show that a cross-
streamline migration is found in flow with parallel stream
lines if the flow has a finite first and second spatial deriva-
tive and if Hi is included (compare [19]). The finite
shear rate means a finite capillary number and the sec-
ond derivative means a shear rate that changes over the
size of the particle, so that this agrees with the numerical
findings in the Poiseuille flow. We further show that also
non-parallel stream lines can lead to a migration. In this
case the HI is not necessary. The used plausible approx-
imations are then justified by a comparison and a good
agreement with the numeric simulations.

A. The mechanism of cross-streamline migration in
bulk

Here we explain the main migration mechanism of a
spherical and deformable bead-spring particle in an arbi-
trary, unbounded flow, e.g. the capsule described in sec
II. Let

p(φ, θ, t) = ρ(φ, θ, t)êr + rc(t) (20)

describe the surface of the particle. It is chosen in a way,
that all beads are located on p. Here rc(t) is its center
at

rc(t) =
1

N

∑

i

ri(t) (21)

and ρ(φ, θ)êr describes the distance between the center
and the surface in spherical coordinates. Also the coor-
dinates φi(t) and θi(t) of a bead are time-dependent due
to its motion. The velocity of a bead located at ri is
therefore given by

ṙi =
d

dt
p(φi(t), θi(t), t) (22)

=
d

dt
[ρ(φi(t), θi(t))êr]

︸ ︷︷ ︸
=vtti

+ṙc(t) (23)

=vtti + ṙc(t) , (24)

If the temporal change of the surface ∂ρ
∂t is negligible then

vtt is a motion parallel to the surface, the so-called tank-
treading motion, and ṙc(t) is the motion of the center of

the particle. This derivative ∂ρ
∂t vanishes if the shape is

approximately stationary. This is the case e.g. in a plane
Poiseuille flow, where the shape changes only due to the
lateral migration, which is magnitudes smaller than the
motion in flow direction (compare e.g. [30] or fig. 9).

We use the equation of motion (4) and eq. (24), which
leads to

vtti + ṙc(t) = ui +
∑

j

Hi,jFj . (25)

We further assume an external force Fext (e.g. a buoy-
ancy force). Therefore the sum of all forces is Fext, be-
cause the sum of the internal forces must vanish. We
receive with this definition

∑

j

Hi,jFj = ṙc − ui + vtti , (26)

∑

i

Fi = Fext , (27)

This set of linear equations allows to determine the origin
of the forces Fi. To see this we have a closer look at eq.
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(26) and define the forces

∑

j

Hi,jF
tr
j = ṙc − um , (28)

∑

j

Hi,jF
u
j = − (ui − um) , (29)

∑

j

Hi,jF
tt
j = vtti , (30)

with um =
1

N

∑

i

ui , ui = u0(ri). (31)

This implies that eq. (26) is fulfilled and yields

Fi = Fui + Ftri + Ftti , (32)

so the force acting on the particle consists of three con-
tributions: The source of three contributions Fui , Ftri ,
Ftti are the right hand side of eqs. (28), (29) and (30):
The force Ftri describes the Stokes friction of the particle
that occurs if the particles velocity differs from the mean
external flow velocity. The force Fui is a modification of
the stokes friction and describes how the stokes friction
is changed if the external flow changes at the surfaces of
the particle, i.e. if the flow is not homogeneous. The last
force Ftti describes the friction force between the fluid and
the particle due to the particle’s tank-treading motion.

With the definition
∑

Ftri = Ftr (other forces ana-
logue) and the linearity of eq. (28) we can express the
solution as

Ftr = ζζζ(ṙc − um) , (33)

which represents the stokes friction with the friction ma-
trix ζζζ.

The sum over all forces (over eq. (32) with eqs. (27),
(33)) can now be written as

Ftr + Fu + Ftt =Fext (34)

ζζζ(ṙc − um) =− Fu − Ftt + Fext (35)

ṙc =um + ζζζ−1(−Fu − Ftt + Fext) (36)

ṙc =um + uu︸︷︷︸
=−ζζζ−1Fu

+ utt︸︷︷︸
=−ζζζ−1Ftt

+ζζζ−1Fext

(37)

This means the force due to the spatial dependence of the
flow −Fu and the force due to the tank treading −Ftt

contribute to the motion of the particle in the same way
as the external force Fext. We can define the migration
velocity vm as the difference of the particle velocity to
the flow velocity at its center

vm =ṙc(t)− u(rc) (38)

=um − u(rc) + ζζζ−1(Fext − Fu − Ftt) (39)

The eq. (39) allows to identify the three mechanism of
migration in bulk: The first term um−u(rc) means that

a particle can migrate if the average velocity over its sur-
face is not the same as the velocity at its center. If all
streamlines of the flow are parallel and the flow is directed
everywhere in the same direction, it follows that um is
parallel to u(rc). This means in this case um can not
contribute to the cross-streamline-migration. But it can
contribute if the flow’s direction is spatially dependent,
which means if the streamlines are non-parallel. This
term is caused by the finite size of the particle, which
means its motion is influenced by the flow on its com-
plete surface, not on its center. The second term in eq.

-Ftr

-Fu

-Ftt

um - u(rc)

- (Ftt+Fu)

FIG. 12. The forces −Ftr, −Ftt and −Fu (red) acting on a
capsule in a plane Poiseuille flow (sketched in blue). Both the
tank-treading and the spatial dependence of the flow lead to a
force, which leads to the migration to the center −ζ(Ftt+Fu)
(blue, scaled by a factor 103, see eq. (39)). Together with the
force due to the translation of the particle the sum of all forces
is zero. The contribution of the mean flow to the migration
um−u(rc) (see eq. (39)) leads to a migration (shown in blue)
anti-parallel to the flow direction, a lag behind, and does not
contribute to the cross-streamline migration (compare also
[30]). The forces and velocities are determined by simulations
and with eqs. (28), (29), (30), (40) and (41) (with U τ

R
= 1,

yc = 65 and Fext = 0, compare fig. 9).

(39) describes that a spatially dependent flow can exert a
force Fu on the particle, even if the particle moves with
the mean velocity of the flow. This force leads to the
velocity −ζζζ−1Fu. This term vanishes in a homogeneous
flow (see eq. (29)). The third term describes the motion
due to the force Ftt caused by the friction of the tank-
treading motion, which leads to the velocity −ζζζ−1Ftt.
The last term ζζζ−1Fext describes the motion due to an
external force with the the stokes friction matrix ζζζ.

The forces Ftr, Ftt and Fu and the contribution of the
mean velocity um − u(rc) to the migration velocity (see
eq. (39)) can now be calculated with numerical data:
With ri and ṙi determined with simulations one can use
eqs. (21) and (24) which yield

ṙc =
1

N

∑

i

ṙi, (40)

vtti = ṙi − ṙc (41)

and the equations (28), (29) and (30) to determine um,
Ftr, Fu, Ftt and ζζζ with the help of the numerical data.
Figure 12 gives an example of these forces in case of a
capsule in a plane Poiseuille flow. One can see clearly
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that both the tank treading and the spatial dependence
of the flow lead to the forces Fu and Ftt, which cause the
migration to the center in the plane Poiseuille flow. The
contribution of the mean flow um − u(rc) is parallel to
the flow and leads to a migration in flow direction (a lag
behind, compare also [30]).

We did not assume a certain flow. This allows to com-
pare this results with the analytical calculation of Helmy
and Barthès-Biesel given in [27], where the cross stream
migration velocity was calculated in a pipe flow at small
deformations. They also give a force as reason of the
migration, which is caused by the interaction of the flow
and the particle. The Poiseuille flow is of course spa-
tially dependent and the calculation of [27] considers the
tank-treading motion, so that the force found by Helmy
and Barthès-Biesel is in this sense comparable to the
forces Fu and Ftt given here. As stated above the term
um−u(rc) does not contribute to the cross-streamline mi-
gration in case of a pipe flow, due to the parallel stream-
lines. Conformable to this result Helmy and Barthès-
Biesel do not give a contribution like um − u(rc) to the
cross-stream migration. Thus the explanation of the mi-
gration in a pipe flow given here agree with the results
of Helmy and Barthès-Biesel.

Note that the source of these forces Fu, Ftt is the
hydrodynamic interaction, which means these forces are
caused by the flow disturbance of the particle. This can
be seen as follows: Without HI the equation of motion
(4) becomes

ṙi = u0(ri) +
1

6πηa
Fi , (42)

If the equation is averaged over all beads and if we con-
sider that the sum of all forces is zero (assuming no ex-
ternal force) we get

ṙc =
1

N

∑

i

u0(ri) , (43)

ṙc = um . (44)

and

vm = um − u(rc) . (45)

This is similar to the migration velocity with HI given by
eq. (39), but without the forces Fu, Ftt that drive the
migration in flows with parallel stream lines. Therefore
in case of parallel stream lines the HI is necessary to
receive a cross-streamline migration. As explained above
the term um−u(rc) can only lead to a migration in flows
with non-parallel stream lines, so that for non-parallel
stream lines a migration can also occur without HI, which
means due to the undisturbed flow.

B. Semi-analytical approximation of the migration
velocity

We have showed in the previous section that the mi-
gration is caused in general by three contributions: the

finite size of the particle and the forces due to the tank-
treading and spatially dependent flow. We now calculate
the migration velocity with approximations and give an
expression of these contributions in dependence of the
flow. This allows also to determine under which con-
ditions a migration occurs. We give here just the used
assumptions and the result. The complete calculation
can be found in the appendix.

1. Derivation of the migration velocity and assumptions

We use a flow with translational invariance in one di-
rection, but otherwise arbitrary. This means the flow is
3D but depends only on two coordinates, we choose on x
and y. We assume at first that the flow changes slightly
at the size of the particle, so that we can represent it by
a Taylor expansion of second order

u0 ≈
2∑

n=0

1

n!
[(x− xc)∂x + (y − yc)∂y]

n
x=xc,y=yc

u0 , (46)

=

k+l≤2∑

k,l=0

bk,l(x− xc)k(y − yc)l . (47)

The bk,l represent the Taylor coefficients of the flow. We
use σ as an abbreviation of m, k, l and define

aσ := (ak,l)m = Rk+l(bk,l)m , (48)

whereby (ak,l)m denotes the m-component of ak,l and R
the radius of the particle. We determine now approxi-
mately the particles velocity ṙc as function of the aσ. At
first we assume that no external torque is applied, which
means the particle is torque free. In this case the tank-
treading motion can be approximated with the rotation
of the flow (see e.g. [27])

ωωω =
1

2
∇× u0|r=rc

. (49)

Thus the tank-treading motion of all beads vtti has the

same axis ωωω with the same angular velocity |ωωω| = φ̇. The
angle θi is chosen to be the angle between ri − rc and ωωω
hence θi is not changed by the rotational motion. With
this we get for the expression of the tank-treading motion
eq. (23)

vtti =
d

dt
[ρ(φi(t), θi)êr,i] (50)

=φ̇
∂

∂φ
[ρ(φ, θi)êr]φ=φi

(51)

=φ̇ ρ(φi, θi) sin θêφ,i + φ̇
∂ρ

∂φ

∣∣∣∣
φ=φi

êr,i (52)

=ωωω × (ri − rc) + φ̇
∂ρ

∂φ

∣∣∣∣
φ=φi

êr,i (53)
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Furthermore we assume that the equilibrium shape is
a sphere with radius R and that the deformation of the
sphere is small. Therefore we define

ri = r
(0)
i + ∆ri + rc, with |∆ri| � R (54)

The r
(0)
i are the equilibrium positions at the spherical

shape without deformations. We also need an equa-
tion that relates the deformation and the forces on the
sphere. Due to the small deformations we assume that
elastic restoring forces of the particle are linear, hence we
can assume that beads are connected with springs. We
use a Taylor expansion around small deformations of the
springs. But springs between the beads alone do not lead
to a stable shape, e.g. it is possible to reduce the volume
to zero without changing the length of the springs. In
the simulations this is prevented by the conserved vol-
ume and the bending force (see sec. II). We therefore
add a spring between the bead and its equilibrium po-
sition, which leads to a stable shape and mimics in this
sense the effect of a bending force. This leads to

Finti =− fk
∑

j

b̂i,jb̂i,j · (∆ri −∆rj)− fb
∆ri
N

, (55)

b̂i,j =
r

(0)
i − r

(0)
j

|r(0)
i − r

(0)
j |

, (56)

whereby the summation is over next neighbors. The
spring stiffness of the springs to the equilibrium posi-
tion is scaled with N , because the number of springs
and therefore the restoring force to the equilibrium posi-
tion is proportional to the number of the beads. For the
sake of simplicity we chose fb = fk, so that both forces
have approximately the same magnitude. Furthermore
the springs connected with the equilibrium position en-
sures that the average deformation is zero, because sum
of the internal forces is zero

0 =
∑

i

Finti = −fb
∑

i

∆ri
N

⇒ 1

N

∑

i

∆ri = 0 (57)

This means the average deformation is zero and the in-
ternal forces do not shift the center of the particle.

These spring forces are internal forces. As above the
entire external force is given by Fext and the force on a
bead by

Fi = Finti + Fexti , Fexti =
1

N
Fext (58)

Thus the external force is equally distributed over the
surface of the particle. The same assumption was made
in [34] to describe the effect of an external force in sim-
ulations.

This allows to determine under which conditions the
deformations are small. The deformation is caused by the
change of the external flow velocity on the scale of the
particle, which is measured by aσ. The force resulting

from the external flow on the particle is also determined
by the viscosity. This must be compared with the spring
stiffness, because a high spring stiffness leads to a small
deformation. A dimensionless number Df that measures
the deformation due to the flow is therefore

Df =
η

fk

∑

σ,k+l>0

|aσ| . (59)

The constant part of the flow a0,0 is not included in the
sum because it does lead to a deformation. The Df in
a linear shear flow represents the usual definition of the
capillary number. The deformation is small if Df � 1.
Also the external force deforms the sphere, which is mea-
sured by

Dfext =
|Fext|
fkR

. (60)

Also Dfext must be small enough to avoid large deforma-
tions Dfext � 1. We can also compare the friction forces
due to the flow and the external force with the number

V =
|Fext|

ηR
∑

σ,k+l>0

|aσ|
. (61)

We consider only small external forces and neglect the
deformation caused by the external force. This means
the external force is assumed to be much smaller than
the friction due to the flow, i.e. we assume

V� 1 , (62)

which is equal to Dfext � Df (A similar assumption was
made in [34]). We neglect contributions of higher than
first order of these numbers Df and Dfext.

The small deformations allow furthermore a Taylor ex-
pansion of the Oseen tensor around the equilibrium po-
sitions of the beads

Hi,j =O(r
(0)
i − r

(0)
j + ∆ri −∆rj︸ ︷︷ ︸

ε

) , i 6= j (63)

≈O(r
(0)
i − r

(0)
j ) +

∑

p

Op
i,jεp (64)

=O(r
(0)
i − r

(0)
j ) +

∑

p

Op
i,j (∆ri −∆rj)p (65)

=H
(0)
i,j +

∑

p

Hp
i,j (∆ri −∆rj)p (66)

Op
i,j =

∂

∂εp
O(r0,i − r0,j + ε)

∣∣∣∣
ε=0

(67)

With these assumptions and the eqs. (26) and (27) we
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get a set of equations

∑

j

Hi,jFj = ṙc − ui + vtti , (68)

∑

i

Fi = Fext, Fi = Finti +
1

N
Fext,

∑

i

Finti = 0

(69)

Finti =− fk
∑

j

b̂i,jb̂i,j · (∆ri −∆rj)− fb
∆ri
N

(70)

ωωω =
1

2
∇× u0|r=rc

, φ̇ = |ωωω| (71)

vtti = ωωω ×
(
r

(0)
i + ∆ri

)
+ φ̇

∂ri
∂φ

êr,i (72)

This set of equations allows to determine the forces,
the shape and the tank-treading and translational mo-
tion. But due to the product of the Oseen Tensor and
the forces the system is nonlinear. We solve it therefore
in an iterative way. The shape and the resulting hy-
drodynamic forces are calculated alternating, which can
be done until all equations are fulfilled. This leads to a
system of linear equations, which can be solved (semi-)
analytically. A similar approach is used in [64], where
also the shape and the forces are calculated alternating
until a self-consistent solution is found, but with a purely
numerical boundary integral method. We use only one it-
eration step for the analytical calculation, which already
agrees with the simulations in case of small deformations
(what we show in the following sections). The full calcu-
lation is given in the SI. Here we show the result

ṙc =um + uu + utt + ζ−1Fext , vm = ṙc − u(rc) (73)

um =
∑

k,l

ak,l

(
meanMk,l +

η

fk

∑

σ′

aσ′ meanMk,l,σ′

)

(74)

uu =
η

fk

∑

σ,σ′
uMσ,σ′ aσaσ′ (75)

utt =
η

fk

∑

σ,σ′
ttMσ,σ′ aσaσ′ (76)

ζ−1 = 0.0527︸ ︷︷ ︸
≈ 1

6π

1

ηR
1 +

1

fkR

∑

σ

aσ ζMσ , (77)

The velocity of the particle is given by the terms um, uu,
utt, ζ

−1 which represents the contribution of the mean
flow, the spatial dependency of the flow, the tank tread-
ing motion and the stokes friction (cf. eq. (37)). This
solution is a polynomial in the Taylor coefficients of the
flow. The dimensionless prefactors meanMk,l, uMσ,σ′ ,

ttMσ,σ′ and ζMσ are calculated numerically. Their val-
ues are given in the appendix (sec. 1.3).

2. Results: Requirements for cross streamline migration
and direction of the migration

With the help of the eqs. (73), (74), (75), (76), (77)
and the prefactors given in the appendix (sec. 1.3) we
can determine under which conditions a CSM occurs and
in in which direction it takes place (in an unbounded flow
with translational invariance in one direction and in case
of small deformations).

The term um represents the undisturbed flow averaged
over the surface of the particle. Therefore it can not con-
tribute to the cross-streamline migration if all stream-
lines are parallel: In this case the term points in flow
direction. Furthermore it can only contribute to the mi-
gration if the flow depends nonlinear on the spatial coor-
dinates. In an linear flow the averaged velocity over the
surface is exactly the velocity at the particle’s center, i.e.
um − u(rc) = 0 (compare eq. (39)). Thus this term
leads to a migration in a spatially nonlinear flow with
non-parallel stream lines. As we have seen with the help
of eq. (45) this term also occurs without HI, therefore it
is an effect of the undisturbed flow. Furthermore it does
not require a deformation of the particle, but is affected
by it.

The migration due to the spatially dependence of the
flow uu and the migration due to tank-treading utt occur
only if the flow has both a non vanishing first and second
derivative (in other cases the prefactors uMσ,σ′ ttMσ,σ′

are zero in eq. (75), see SI sec. 1.3). As example if
the flow has one non vanishing first derivative given by
bσ and one non vanishing second derivative bσ′ the eqs.
(75) and (76) becomes

uu + utt = ( uMσ,σ′ + ttMσ,σ′)
ηR

fk
bσ

︸ ︷︷ ︸
=Ca

R2 bσ′︸ ︷︷ ︸
=C

, (78)

=CaC ( uMσ,σ′ + ttMσ,σ′)︸ ︷︷ ︸
=const. given in appendix

, (79)

⇒ (uu + utt) ∝ CaC , (80)

whereby Ca = ηR
fk
bσ represents the capillary number and

C = R2 bσ′ measures the flow profile’s curvature (which
means the second derivative) of the flow on the size of the
particle (note that Ca and C include here the sign of the
shear rate bσ and the flow profile’s curvature bσ′). Thus
in general the migration is proportional to the capillary
number and the flow profile’s curvature. If the flow has
more than one non vanishing first and second derivative
more terms in the sum in eq. (75) contribute, whereby
each term is proportional to its corresponding capillary
number and flow profile’s curvature. The direction of
the migration is given by the symmetry of the flow. An
examples is given in the SI sec. 1.4:

These requirements of the migration are similar to the
numerically found conditions given in sec. III and IV and
the ones found in [19]. With the numeric results we found
three requirements for migration in a flow with parallel
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stream lines: The particle must be deformable, i.e. Ca
must be larger than zero. This is also found with this
calculation here, because the migration is proportional
to Ca (see. eq. (80)). The numeric solution showed also
that the shear rate must vary across the particle. This is
also the case here, because the migration is proportional
the flow profile’s curvature and this curvature means a
spatially dependent shear rate. At last we have seen with
the simulations that the HI is important in the Poiseuille
flow. As discussed above also the semi-analytical cal-
culation includes the Oseen-tensor. The only term that
does appear without is the finite size contribution um
(see eq. (45)), which can only lead to a migration with
non-parallel stream lines, but not in flow with parallel
stream lines as the Poiseuille flow. Thus the general re-
quirements here are the same as found numerically for
the Poiseuille flow.

3. Comparison of the semi-analytical results and the
simulations

We made various assumptions to derive the expression
of the migration velocity (eq. (73)). To justify these
assumptions we compare the result with simulations and
with the results of Helmy and Barthès-Biesel [27].

For the semi-analytical results we used a linearized de-
pendence of the force on the deformation with stiffness
fk, whereas capsules are described by the Neo-Hookean
law with stiffness Gs. Therefore we have to find the
right value of fk to compare the calculations with a Neo-
Hookean capsule. To do this we compare the deforma-
tions in a shear flow. The complete deformation, which
means the displacement of each bead, is not given here,
because of the large number of coefficients due to the high
amount of beads. We give instead the Taylor parameter
in a linear shear flow. It is defined as D = L−B

L+B with the
length of the long and the short half axis. We find for
the semi-analytical model

D = 4.7910 γ̇ηR/fk (81)

(see appendix). This can be compared with the values of
a capsule with the Neo-Hookean law with surface shear
elastic modulus Gs given by

D =
25

12
γ̇ηR/Gs (82)

(given in [47] and cf. fig. 7). It allows to determine a
value of fk that leads to the same Taylor parameter as
that of a capsule

fk = 2.2997 Gs . (83)

This allows to compare Neo-Hookean capsules with this
model, because both models show with this choice similar
deformations in case of a small capillary number.

(i) linear shear flow: At first we show the results
of the migration velocity in a linear shear flow given by

eq. (3) and compare it with the simulations to justify
the assumptions used to derive the migration velocity eq.
(73). The values of aσ (see eq. (48)) are (a0,0)1 = γ̇yc,
(a0,1)1 = γ̇R and zero else. The contributions of um,

utr, utt and ζ−1 are in this case (with eqs. (73), (83)
and appendix sec. 1.3)

um =γ̇yc , (84)

uu =0 , (85)

utt =0 , (86)

ζ−1 =
0.0527

ηR
1 +

γ̇

Gs




0 0.0194 0
0.0194 0 0

0 0 0


 (87)

with the coefficients given in the appendix in sec 1.3.
Thus the particle’s velocity is with eq. (73)

ṙc = γ̇ycêx+


0.0527

ηR
1 +

γ̇

Gs




0 0.0194 0
0.0194 0 0

0 0 0




Fext

(88)
Here one can see, that in a linear shear flow no migration
is found, which means that the tank-treading motion and
the spatially dependent flow does not contribute to the
particles translational velocity. This fits the simulations
of the capsule in sec IV B, where also no migration was
found in a linear shear flow. We can also compare the
stokes friction matrix with known values. The Stokes
friction without deformation, at γ̇ = 0 is given by 0.0527

ηR

in eq. (88) differs from the correct value 1
6πηR less than

one percent, which means the Stokes friction without de-
formation is well reproduced. Furthermore the Stokes
friction matrix in case of deformation at γ̇ 6= 0 has off-
diagonal elements, which reflects the ellipsoidal shape of
the particle. Here the stokes drag depends on the direc-
tion of the force (see e.g. [65] for the drag of an ellipsoid).
These off-diagonal elements are the stronger the higher
the shear rate is because the deformation towards an el-
lipsoid increases with the shear rate.

(ii) plane Poiseuille flow: Here we give the migra-
tion velocity in a plane Poiseuille flow derived with eq.
(73) and compare it with the simulations. In a Poiseuille
flow at the particles center position yc (given by eq. (1))
the values of aσ (see eq. (48)) are

(a0,0)1 = U

(
1− y2

c

d2

)
, (a0,1)1 = −2U

yc
d2
R, (89)

(a0,2)1 = −U 1

d2
R2 , (90)

which results (with eqs. (73), (83) and appendix sec. 1.3)
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in

um =êxU

[
1− y2

c

d2
− 0.3333

R2

d2

]
, (91)

uu =− 0.7212 U2 ηycR
3

Gsd4
êy , (92)

utt =− 0.1663 U2 ηycR
3

Gsd4
êy , (93)

ζ−1 =
0.0527

ηR
1− Uyc

Gsd2




0 0.0388 0
0.0388 0 0

0 0 0


 . (94)

Thus the migration velocity is with eq. (73)

vm,x =− 0.3333
UR2

d2
+ 0.0527

F extx

ηR
− 0.0388

UycF
ext
y

Gsd2
,

(95)

vm,y =− 0.8875 U2 ηycR
3

Gsd4
+ 0.0527

F exty

ηR
− 0.0388

UycF
ext
x

Gsd2
,

(96)

vm,z =0.0527
F extz

ηR
. (97)

This equation describes the migration well. Without an
external force the migration velocity in flow direction is
negative: This is the lag behind due to um ,i.e. the finite
size of the particle, and the parabolic flow profile, as also
found e.g. in [30]. Furthermore the migration perpen-
dicular to the flow without external force is proportional
to −yc which results in the migration to the center of
the flow at y = 0. Moreover we can see the effect of
an external force: A force in flow direction leads to an
additional motion perpendicular to the flow, because of
the ellipsoidal shape of the particle and the anisotropic
friction coefficients. A force in flow direction leads to a
faster migration to the center and a strong enough force
anti-parallel to the flow leads to a migration to the walls.
This effect was also reported in [34], where the velocity
due to the external flow vext,y was calculated with differ-
ent approximations. It is given as

vext,y =− 5

48π

UycF
ext
x

Gsd2
≈ −0.0332

UycF
ext
x

Gsd2
, (98)

which agrees well with eq. (97) despite the different
methods.

We can now compare the analytical result eq. (97)
with the simulations above by using eq. (83). Figure 13
shows the migration velocity as function of the lateral
position of the capsule for both the simulations and cal-
culated with the eq. (97). The eq. (97) agrees well with
the simulations and shows the linear dependency of the
migration velocity of the lateral positions. Simulation
and the analytical eq. (97) corresponds in case of small
values of Ca because of the assumed small deformations.

Figure 14 shows the migration velocity as function of
the flows velocity at the center U for both simulations
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FIG. 13. The migration velocity vm,y of a capsule in a plane
Poiseuille flow with U τ

R
= 1 as function of its lateral coordi-

nate yc obtained by simulations (compare fig. 9) and eq. (97).
Both simulations and eq. (97) display at small deformations
a linear dependency of vm,y on yc and agree well.
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FIG. 14. The migration velocity vm,y of a capsule in a plane
Poiseuille flow in dependence of the flow velocity at the cen-
ter U for simulations (compare fig. 9) and the eq. (97). The
eq. (97) shows vm,y ∝ U2 which is confirmed by the simu-
lations: Both simulations and eq. (97) corresponds well at
small deformations, i.e. small values of U .

and eq. (97). Again the dependency of vm,y ∝ U2 is
shown both by the simulations and the eq. (97), so that
the eq. (97) agrees with the simulations. Again the error
between simulations and eq. (97) is small at small values
of U which means at small deformations.

Thus the simulation shows the same dependencies on
the parameters as the eq. (97), which means the analyt-
ical eq. (97) can describe the motion of the capsule.

(iii) pipe flow: At last we give the migration velocity
in a pipe flow derived with eq. (73) and compare it the
simulations and with the results of Helmy and Barthès-
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Biesel given in [27], which allows to justify the assump-
tions used to derive eq. (73). The pipe flow is given by
eq. (2). We chose the particles center position at xc = 0,
so that the radial direction is the y-direction.The aσ (see
eq. (48)) are in this case

(a0,0)3 = U

(
1− y2

c

d2

)
, (a0,1)3 = −2U

yc
d2
R, (99)

(a2,0)3 = −U 1

d2
R2, (a0,2)3 = −U 1

d2
R2 , (100)

We get the migration velocity with eq. (73), appendix
sec. 1.3 and with eq. (83), which allows to use Gs instead
of fk. We get

vm,x =0.0527
F extx

ηR
(101)

vm,y =− 0.8706 U2 ηycR
3

Gsd4
+ 0.0527

F exty

ηR
− 0.0388

UycF
ext
z

Gsd2

(102)

vm,z =− 0.6667
UR2

d2
+ 0.0527

F extz

ηR
− 0.0388

UycF
ext
y

Gsd2

(103)

As expected, we see that without an external force the
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FIG. 15. The migration velocity vm,r of a capsule in a pipe
flow with U τ

R
= 1 as function of its position yc (with xc = 0)

obtained by simulations (see fig. 8) and the eq. (103). Both
simulations and the eq. (103) display a linear dependency of
vm,r on yc and agrees well at small deformations. Also the
expression (103) agrees well with the analytical results derived
by Helmy and Barthès-Biesel for capsules in pipe flow (given
in [27]).

migration velocity in flow direction is negative: This is
the lag behind um due the finite size of the particle and
the parabolic flow profile, as also found e.g. in [30]. Also
the migration perpendicular to the flow meets the ex-
pectations: Without external force the cross streamline
migration is proportional to −yc which results in the mi-
gration to the center of the flow at y = 0.

We can compare this result in case of no external force
with eq. (19), i.e. with the result of Helmy and Barthès-
Biesel given in [27]

vm,y = −29

36
U2 ηycR

3

Gsd4
= −0.8056 U2 ηycR

3

Gsd4
. (104)

Both results agree well and show the same dependence
on the parameters and have less than ten percent differ-
ence. We can compare this result also with the simula-
tions (without external forces), which is shown in fig. 15.
The expression (103) agrees well with the simulations as
long as the capillary number is small.

VI. CONCLUSIONS

We showed that elementary bead spring models can
describe the migration of deformable particles (without
viscosity contrast) well. To show this we investigated the
migration of simple bead-spring models in an (at first)
unbounded Poiseuille flow. Very easy models like three
beads connected by springs or a ring of beads display
already a cross-streamline migration to the center of a
Poiseuille flow. They also allow to determine the require-
ments of a cross-streamline migration in an unbounded
flow with parallel stream lines (compare [19]): The parti-
cle must be deformable, the shear rate must vary across
the particle and the model must include the flow distur-
bance due to the particle. We compared the models with
the two dimensional, more complex vesicle model given
in [28]: The vesicle showed the same requirements of the
migration. Also the dependence of the migration on the
capillary number can be compared: The migration ve-
locity of the vesicle as function of the capillary number
displayed at first a linear increase with the capillary num-
ber and reached then a constant value at higher capillary
numbers. This behavior was also found with the ring of
beads, which means that a simple bead-spring ring can
describe the migration qualitatively well.

We also showed a three dimensional easy bead model
of a capsule. Here we compared the results also with
[30] and quantitatively with the analytical calculations of
Barthès-Biesel [27] and [47]. We received a good agree-
ment. We also included the interaction of the capsule
with the walls and compared the results with the results
of a lattice-Boltzmann simulation, which also showed a
good agreement.

After we demonstrated that the elementary bead-
spring models can describe cross-streamline migration we
gave a simple analytical explanation why deformable par-
ticles migrate in an arbitrary flow (with translational in-
variance in one direction) with the help of bead models.
We showed that in an arbitrary flow there are three con-
tributions to the migration: A contribution due to the
finite size of the particle and forces caused by the tank-
treading motion and by the spatial dependency of the
flow, which drive the migration. This explanation fits
the explanation found in case of a pipe flow given in [27]
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well, where the driving forces and the migration was cal-
culated with a more exact model, but in a special flow.
This allows a more detailed explanation of the migra-
tion than the often used discussion on the basis of the
symmetry alone, e.g. given in [28].

We also gave an analytical expression for the migra-
tion of a capsule in an unbounded, arbitrary flow (with
translational invariance in one direction) for small capil-
lary numbers. We used plausible approximations, which
are justified by a good agreement with the results of the
simulations. We compared the results also with the re-
sults of Barthès-Biesel for a pipe flow and found a good
agreement with a small deviation of 10% due to the made
approximations. The results showed that one has to dis-
tinguish between flows with parallel stream lines and non-
parallel stream lines. In flows with non-parallel stream

lines we find a migration due to the finite size of the par-
ticle, even if the particle is rigid and even without hydro-
dynamic interaction. In flows with parallel stream lines
a cross-streamline migration can occur if the particle is
deformable, if HI is included and if the shear rate changes
on the size of the particle, which fits the results of [19].
The calculations showed that in this case the migration
(at small deformations) is proportional to the product of
the capillary number, which measures the deformation,
and the second spatial derivative of the flow, which mea-
sures how the shear rate varies across the particle’s size.
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[14] G. Segré and A. Silberberg, Nature 189, 209 (1961).
[15] R. H. Shafer, Biophy. Chem. 2, 185 (1974).
[16] L. C. Nitsche, AIChE J. 42, 613 (1996).
[17] G. Ghigliotti, A. Rahimian, G. Biros, and C. Misbah,

Phys. Rev. Lett. 106, 028101 (2011).
[18] G. Sekhon, R. Armstrong, and M. S. Jhon, J. Polym.

Sci., Polym. Phys. Ed. 20, 947 (1982).
[19] P. O. Brunn, Int. J. Multiphase Flow 9, 187 (1983).
[20] M. S. Jhon and K. F. Freed, J. Polym. Sci., Polym. Phys.

Ed. 23, 955 (1985).
[21] I. Cantat and C. Misbah, Phys. Rev. Lett. 83, 880 (1999).
[22] U. Seifert, Phys. Rev. Lett. 83, 876 (1999).
[23] M. Abkarian, C. Lartigue, and A. Viallat, Phys. Rev.

Lett. 88, 068103 (2002).
[24] X. Grandchamp, G. Goupier, A. Srivastav, C. Minetti,

and T. Podgorski, Phys. Rev. Lett. 110, 108101 (2013).

[25] L. G. Leal, Annu. Rev. Fluid Mech. 12, 435 (1980).
[26] S. Mandal, A. Bandopadhyay, and S. Chakraborty, Phys.

Rev. E 92, 023002 (2015).
[27] A. Helmy and D. Barthès-Biesel, J. Mecanique theorique

appliquee 1, 859 (1982).
[28] B. Kaoui, G. H. Ristow, I. Cantat, C. Misbah, and W.

Zimmermann, Phys. Rev. E 77, 021903 (2008).
[29] G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah,

Phys. Fluids 20, 111702 (2008).
[30] S. K. Doddi and P. Bagchi, Int. J. Multiphase Flow 34,

966 (2008).
[31] A. Farutin and C. Misbah, Phys. Rev. E 89, 042709

(2014).
[32] N. Watari and R. G. Larson, Phys. Rev. Lett. 102,

246001 (2009).
[33] I. Mourad and L.-L. Aline, Int. J. Numer. Methods Fluids

76, 835 (2014).
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1 Supplementary information

1.1 Calculation of the migration velocity

In the main text, sec. V, we derived equations (eqs. (68), (69), (70), (71) and (72))
and approximations which allow to calculate the migration velocity of a deformable
particle in an arbitrary flow (with translational invariance in one direction) at small
deformations. We gave only the results in the main text. Here we show the complete
calculation.

The equations

For the sake of completeness we list at fist the equations (given main text) which allow
to calculate the migration velocity. The flow is given as eq. (47) in the main text as
the Taylor expansion of a flow with translational invariance in one direction

u0 ≈
2∑

n=0

1

n!
[(x− xc)∂x + (y − yc)∂y]

n
x=xc,y=yc

u0 , (1)

=

k+l≤2∑

k,l=0

bk,l(x− xc)k(y − yc)l . (2)

The bk,l represent the Taylor coefficients of the flow. We use further the definition eq.
(48) given in the main text

aσ := (ak,l)m = Rk+l(bk,l)m , (3)

where σ as an abbreviation of m, k, l and (ak,l)m denotes the m-component of ak,l.
We solve approximately eqs. (53), (54), (68), (69), (70), (71) and (72) of the main

text, which are there given as

∑

j

Hi,jFj = ṙc − ui + vtti , (4)

∑

i

Fi = Fext, Fi = Finti +
1

N
Fext,

∑

i

Finti = 0 , (5)

Finti =− fk
∑

j

b̂i,jb̂i,j · (∆ri −∆rj)− fk
∆ri
N

, (6)

ri = r
(0)
i + ∆ri + rc , (7)

ωωω =
1

2
∇× u0|r=rc

, φ̇ = |ωωω| , (8)

vtti = ωωω ×
(
r

(0)
i + ∆ri

)
+ φ̇

∂ρ

∂φ

∣∣∣∣
φ=φi

êr,i . (9)

1



Before we solve the equations we simplify them. To do this we show a first that the
mean tank-treading velocity is zero. We use here

1

N

N∑

i

vtti ≈
1

N

∫ N

1

vttdn , (10)

whereby dn means the number of beads located in a surface element dA. With the
density of the beads ρ we get dn = ρdA. If the surface of the particle is deformed
the number of beads stays the same, only the density of the beads changes due to
the assumed small deformations. This means dn = ρdA = ρ(0)dA(0) whereby ρ(0)

and dA(0) is the density and the surface element in the non deformed state. Here the
beads are distributed equally and the shape is a sphere which means ρ(0) = N

A with

the number of beads N and dA(0) = R2 sin θ. So we get

dn = ρdA = ρ(0)dA(0) =
N

A(0)
R2 sin θdφdθ (11)

With the tank-trading motion given in eq. (51) (main text) we get finally

1

N

N∑

i

vtti ≈
1

N

∫ N

1

vttdn =
R2φ̇

A(0)

∫ π

0

sin θ

∫ 2π

0

∂

∂φ
[ρ(φ, θ)êr] dφdθ = 0 (12)

So the mean tank-treading velocity is zero if the discretization of the surface is dense
enough, so that it can be approximated by the integral.

Now we can simplify the equations. Averaging eq. (4) over all beads yields with eq.
(5)

ṙc =
1

N

∑

p

up +
1

N

∑

p,j

Hp,jFj (13)

=
1

N

∑

p

up +
1

N

∑

p,j,p 6=j
Hp,jFj +

1

N

∑

p

Hp,p︸︷︷︸
=ζ−1

Fp (14)

=
1

N

∑

p

up +
1

N

∑

p,j,p 6=j
Hp,jFj +

Fext

ζN
(15)

Substituting this in eq. (4) results in

∑

j

Hi,jFj =
1

N

∑

p

up +
1

N

∑

p,j,p 6=j
Hp,jFj +

Fext

ζN
− ui + vtti

(16)

∑

j




Hi,j −

1

N

∑

p,p 6=j
Hp,j


Fj


 =

1

N

∑

p

up − ui +
Fext

ζN
+ vtti (17)

2



This ensures that the sum of all forces is given by Fext, which can be seen by a
summation of eq. (17) over all beads i

∑

i,j




Hi,j −

1

N

∑

p,p 6=j
Hp,j


Fj


 =

Fext

ζ
(18)

∑

i

Hi,iFi =
Fext

ζ
(19)

1

ζ

∑

i

Fi =
Fext

ζ
(20)

∑

i

Fi = Fext (21)

So eqs. (13) and (17) are equivalent to eqs. (4) and (5). The set of equation we
want to solve consists of eqs. (13) and (17) and eqs. (6), (8), (9).

But these equations are nonlinear and are therefore solved in an iterative way (see
main text and compare [1]). The iteration step is denoted by (s). This leads to the
equations

∑

j




H

(s−1)
i,j − 1

N

∑

p,p 6=j
H

(s−1)
p,j


F

(s)
j




=
1

N

∑

p

u(s−1)
p − u

(s−1)
i +

Fext

ζN
+ v

tt,(s−1)
i (22)

F
(s),int
i = −fk

∑

j

b̂i,jb̂i,j ·
(

∆r
(s)
i −∆r

(s)
j

)
− fk

∆r
(s)
i

N
(23)

r
(s)
i = r

(0)
i + ∆r

(s)
i + rc (24)

ṙ(s)
c =

1

N

∑

i

u
(s)
i +

1

N

∑

i,j

H
(s)
i,jF

(s)
j , (25)

ωωω =
1

2
∇× u0|r=rc

, φ̇ = |ωωω| (26)

v
tt,(s)
i = ωωω ×

(
r

(0)
i + ∆r

(s)
i

)
+ φ̇

∂r
(s)
i

∂φ
êr,i (27)

This means the forces are determined approximately with the shape of the previous
iteration step (eq. 22). With the known forces the shape is calculated (eq. 23) and
with the forces and the shape follows the new velocity of the particle (eq. 25). After
this a new iteration can be started which can be done until a self-consistent solution is
reached. But we assume here only small deformations. So we can assume that the force
distribution does not change due to the small deformations and use only one iteration
step. This approximation is justified by a comparison with the numeric simulations.
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Because we assume small deformations we start the iteration with zero deformation,
which results in

∆r
(0)
i = 0 (28)

v
tt,(0)
i = ωωω × r

(0)
i =

1

2




(b0,1)3

−(b1,0)3

(b1,0)2 − (b0,1)1


×



x0,i

y0,i

z0,i




=
1

2



−(b1,0)3z0,i − [(b1,0)2 − (b0,1)1]y0,i

[(b1,0)2 − (b0,1)1]x0,i − (b0,1)3z0,i

(b0,1)3y0,i + (b1,0)3x0,i


 (29)

With these start values the first iteration reads

∑

j




H

(0)
i,j −

1

N

∑

p,p 6=j
H

(0)
p,j


F

(1)
j




=
1

N

∑

p

u(0)
p − u

(0)
i +

Fext

ζN
+ v

tt,(0)
i , (30)

F
(1),int
i =− fk

∑

j

b̂i,jb̂i,j ·
(

∆r
(1)
i −∆r

(1)
j

)
− fk

∆r
(1)
i

N
, r

(1)
i = r

(0)
i + ∆r

(1)
i (31)

ṙ(1)
c =

1

N

∑

i

u
(1)
i +

1

N

∑

i,j,

H
(1)
i,j F

(1)
j , (32)

In the following we drop the superscript (1) of the first iteration step.

Calculation of the internal forces

Equation (30) allows to determine the internal forces. By using eq. (30) and the
equation of the flow (2) we get

∑

j




H

(0)
i,j −

1

N

∑

p,p 6=j
H

(0)
p,j


Fintj




=
∑

k,l


−bk,lxk0,iyl0,i +

1

N

∑

j

bk,lx
k
0,jy

l
0,j


+ v

tt,(0)
i +

Fext

ζN
(33)

We define r
(0)
i = Rr

′(0)
i , whereby the values of r

′(0)
i are dimensionless and represent

discrete points on the unit sphere. We use the same discretization as used for the

simulations in the main text (see sec. II). Especially the values of r
′(0)
i do not depend

on any parameter or on the flow. This allows in the following to calculate occurring

4



sums numerically. The mobility matrix is then expressed as

for i 6= j : H
(0)
i,j =

1

8πη|r(0)
i − r

(0)
j |

(
1 + ê

(0)
i,j ê

(0)
i,j

)
=

1

Rη

1

8π|r′(0)
i − r

′(0)
j |

(
1 + ê

′(0)
i,j ê

′(0)
i,j

)

=
1

Rη
H
′(0)
i,j , (34)

for i = j : H
(0)
i,j =

1

6πηa
=

1

Rη

1

6πva
=

1

Rη
H
′(0)
i,j , with va =

a

R
(35)

whereby also H
′(0)
i,j does not depend on any parameter. We determine va as follows:

The surface of the sphere is 4πR2, which means the average area per bead is 4πR2

N and

the average distance to a neighbor bead is approximate b =
√

4π
N R. We chose the same

ratio a
b as in the simulations in the main text (see sec. II) a = 0.3b = 0.042R = vaR.

With this definitions and eq. (29) we get the equation

∑

j




H

′(0)
i,j −

1

N

∑

p,p 6=j
H
′(0)
p,j


Fintj


 =

∑

σ

Rηaσ( uCσ,i + ttCσ,i) +
Fext

6πvaN
(36)

with

uCσ,i =


x′k0,iy′l0,i −

1

N

∑

j

x′k0,jy
′l
0,j


 êm , (37)

ttCσ,i = −1

2



−δk,1δl,0δm,3z′0,i − (δk,1δl,0δm,2 − δk,0δl,1δm,1)y′0,i
(δk,1δl,0δm,2 − δk,0δl,1δm,1)x′0,i − δk,1δl,0δm,3z′0,i

δk,0δl,1δm,3y
′
0,i − δk,1δl,0δm,3x′0,i


 . (38)

With the assumption eq. (62) given in the main text we get

|Fext|∑
σ ηR|aσ|

� 1 (39)

⇒ |Fext| �
∑

σ

ηR|aσ| (40)

⇒ |Fext|
6πvaN

�
∑

σ

ηR|aσ| (41)

Therefore we can neglect the external force in eq. (36). Equation (36) is a linear
system of equations, which allows to determine the forces in dependence of the Taylor

coefficients of the flow. We can regard
(
H
′(0)
i,j − 1

N

∑
p,p 6=jH

′(0)
p,j

)
as one large matrix

with entries i, j. This matrix depend only on the r
′(0)
i and not on any parameter. This

allows to invert the complete matrix numerically. We denote the inverse matrix as M′

5



with the entries M′i,j . So the complete solution of the forces can be expressed as

Finti =
∑

σ

Rηaσ

(∑

j

M
′(0)
i,j uCσ,j

︸ ︷︷ ︸
=: uAσ,i

+
∑

j

M
′(0)
i,j ttCσ,j

︸ ︷︷ ︸
=: ttAσ,i

)
(42)

Finti = Rη
∑

σ

aσ( uAσ,i + ttAσ,i︸ ︷︷ ︸
:=Aσ,i

(43)

Finti = Rη
∑

σ

aσAσ,i (44)

This is a linear relation between the forces acting on the beads and the coefficients

of the Taylor expansion of the flow. The coefficients Aσ,i depend only on r
′(0)
i and

not on any parameter or the flow, which allows to calculate them numerically: The
summation over j in eq. (42) can be calculated numerically. Due to the high number
of beads, we do not give here each value of Aσ,i (we show instead in the next section
how the Taylor parameter depends on the variables in a linear shear flow). The terms
proportional to uAσ,i describe the forces due to the translational motion and the ones
proportional to ttAσ,i the forces due to the tanktreading.

Calculation of the deformation of the particle

The eq. (31) gives the relation of the internal forces and the deformation. Because
we know the forces on each bead we have now a system of linear equations which be
solved for the deformations. By solving eq. (31) for the deformations we get

∆ri =
1

fk

∑

q

M
(∆r)
i,q Fintq , (45)

whereby the M
(∆r)
i,q are numerical coefficients that does not depend on any parameter

(analogue to the solution of the system of linear equations of the forces). This allows
to determine the deformation with eqs. (44) and (45)

∆ri =
Rη

fk

∑

σ

aσ
∑

q

M
(∆r)
i,q Aσ,q

︸ ︷︷ ︸
=Bσ,i

, (46)

∆ri =
Rη

fk

∑

σ

aσBσ,i . (47)

This shows that the dimensionless number

Df =
η

fk

∑

σ,k+l>0

|aσ| (48)

given in the main text as eq. (59) measures the deformation (compared the the radius,

i.e. |∆ri|
R ) as stated in the main text.
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Calculation of the velocity of the particle

With the known forces, the shape and the Taylor expansion of Hi,j (as given in eq.
(66) in the main text) the velocity of the particle can be calculated by eq. (32)

ṙc =
1

N

∑

i


u0(ri) +

∑

j

Hi,j

(
Fintj +

Fext

N

)
 (49)

=
1

N

∑

i

u0(ri) +
1

N

∑

i,j

([
H

(0)
i,j +

∑

p

Hp
i,j (∆ri −∆rj)p

](
Fintj +

Fext

N

))
(50)

=
1

N

∑

i

u0(ri)

︸ ︷︷ ︸
I

+
1

N

∑

i,j

H
(0)
i,j

(
Fintj +

Fext

N

)

︸ ︷︷ ︸
II

(51)

+
1

N

∑

i,j,p

Hp
i,j (∆ri −∆rj)p

(
Fintj +

Fext

N

)

︸ ︷︷ ︸
III

(52)

In the following we calculate the terms I to III. The first term I represents the
averaged undisturbed flow um over the surface of the particle. It is given as

um = I =
1

N

∑

i

u0(ri) (53)

=
1

N

∑

i

[b0,0 + b1,0R(xi − xc)′ + b0,1R(yi − yc)′ (54)

+ b2,0R
2(xi − xc)′2 + b1,1R

2(xi − xc)′(yi − yc)′ + b0,2R
2(yi − yc)′2] (55)

=a0,0 +
1

N

∑

i

[
a2,0(xi − xc)′2

+a1,1(xi − xc)′(yi − yc)′ + a0,2(yi − yc)′2
]

(56)
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Here we give the calculation for the term proportional a2,0 (the other parts are calcu-
lated analogously)

a2,0

N

∑

i

(xi − xc)′2 =
a2,0

N

∑

i

(x′0,i + ∆x′i)
2 (57)

=
1

N

∑

i

(a2,0x
′2
0,i + 2a2,0x

′
0,i∆x

′
i + a2,0∆x′2i︸ ︷︷ ︸

≈0

) (58)

=a2,0

( ∑

i

x′20,i
N

︸ ︷︷ ︸
=: meanM2,0

+
η

fk

∑

σ′

aσ′
∑

i

2
x′0,i
N

(Bσ′,i)1

︸ ︷︷ ︸
=: meanM2,0,σ′

)
(59)

=a2,0

(
meanM2,0 +

η

fk

∑

σ′

aσ′ meanM2,0,σ′

)
, (60)

where we have neglected the terms of second order in Df. The coefficients meanMk,l

and meanMk,l,σ′ do not depend on the parameters and can be calculated numerically.
Their values are given in sec. 1.3. In total um (eq. (53)) can be expressed as results
in

um =
∑

k,l

ak,l

(
meanMk,l +

η

fk

∑

σ′

aσ′ meanMk,l,σ′

)
(61)

The second term II yields

II =
1

N

∑

i,j

Hi,j

(
Fintj +

Fext

N

)
(62)

=
1

N

∑

i,j

Hi,jF
int
j

︸ ︷︷ ︸
IIA

+
1

N

∑

i,j

Hi,j

(
1

N
Fext

)

︸ ︷︷ ︸
IIB

(63)

IIA =
∑

σ

1

N
aσ
∑

i,j

H′i,jAσ,i (64)

IIB =
1

ηR


 1

N2

∑

i,j

H′i,j


Fext (65)

Again the sums can be calculated numerically. One gets

IIA =0 (66)

IIB =
0.0527

ηR
Fext (67)
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The third term III is

III =
1

N

∑

i,j,p,σ

Hp
i,j (∆ri −∆rj)p

(
ηRaσ (uAσ,j + ttAσ,j) +

1

N
Fext

)
. (68)

We calculate at first the term proportional to uAσ,j , which is named uu in the following

uu =
1

N

∑

i,j,p,σ

Hp
i,j (∆ri −∆rj)p (ηRaσ uAσ,j) (69)

=Rη
∑

σ

aσ
∑

i,j,p

Hp
i,j (∆ri −∆rj)p

1

N
uAσ,j (70)

=
η

fk

∑

σ,σ′

aσaσ′
∑

i,j,p

H′pi,j (Bσ′,i −Bσ′,j)p
1

N
uAσ,j

︸ ︷︷ ︸
:= uM′σ,σ′

(71)

=
η

fk

∑

σ,σ′

aσaσ′ uM
′
σ,σ′ . (72)

The values of the coefficients are given in sec. 1.3. The term in III proportional to

ttAσ,j are named utt and are calculated analogously

utt =
1

N

∑

i,j,p,σ

Hp
i,j (∆ri −∆rj)p (ηRaσ ttAσ,j) (73)

=Rη
∑

σ

aσ
∑

i,j,p

Hp
i,j (∆ri −∆rj)p

1

N
ttAσ,j (74)

=
η

fk

∑

σ,σ′

aσaσ′
∑

i,j,p

H′pi,j (Bσ′,i −Bσ′,j)p
1

N
ttAσ,j

︸ ︷︷ ︸
:= ttM′σ,σ′

(75)

=
η

fk

∑

σ,σ′

aσaσ′ ttM
′
σ,σ′ . (76)

The values of the coefficients are given in sec. 1.3. The term in III proportional to

9



Fext is

1

N

∑

i,j,p

Hp
i,j (∆ri −∆rj)p

1

N
Fext (77)

=
∑

i,j,p

Hp
i,j (∆ri −∆rj)p

1

N2
Fext (78)

=
1

fkR

∑

σ

aσ
∑

i,j,p

H′pi,j (Bσ,i −Bσ,j)p
1

N2

︸ ︷︷ ︸
:= ζMσ

Fext (79)

=
1

fkR

∑

σ

aσ ζMσF
ext (80)

It represents the change in the stokes friction matrix due to small deformations. The
values of ζMm,k,l are given in sec. 1.3 So in total the velocity of the particle is

ṙc =um +
1

6πηR
Fext + uu + utt +

1

fkR
a

(m′)
k′,l′Mm′,k′,l′F

ext (81)

=um +

(
1

6πηR
1 +

1

fkR
a

(m′)
k′,l′Mm′,k′,l′

)

︸ ︷︷ ︸
ζ−1

Fext + uu + utt (82)

=um + uu + utt + ζ−1Fext (83)

The migration velocity is obtained by subtracting the velocity at the center of the
particle

vm = ṙc − u(rc) = um − a0,0 + uu + utt + ζ−1Fext (84)

These are the results given in the main text (eq. (73) in the main text).
Note that we simplify the eqs (72) and (76) to reduce the number of coefficients.

We can define

uMσ,σ′ = uM
′
σ,σ′ + uM

′
σ′,σ (85)

uMσ′,σ = 0 (86)

ttMσ,σ′ = ttM
′
σ,σ′ + ttM

′
σ′,σ (87)

ttMσ′,σ = 0 (88)

so that eqs. (72) and (76) do not change

uu =
η

fk

∑

σ,σ′

aσaσ′ uM
′
σ,σ′ =

η

fk

∑

σ,σ′

aσaσ′ uMσ,σ′ , (89)

utt =
η

fk

∑

σ,σ′

aσaσ′ ttM
′
σ,σ′ =

η

fk

∑

σ,σ′

aσaσ′ ttMσ,σ′ . (90)
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This means hat each pair of aσaσ′ occuring in the sum has only one nonzero coefficient,
which reduces the number of nonzero coefficients uMσ′,σ and ttMσ′,σ. Note further

that all the prefactors are calculated 20 times with a discretization r
′(0)
i rotated around

the z-Axis to minimize the discretization errors.

1.2 Measurement of the deformation

Here we give a measurement of the deformation of the particle in a linear shear flow
with the shear rate γ̇, which is show in fig. 1. The Taylor parameter is defined as
D = L−B

L+B , whereby L and B are the length of the long and the short half axis. The
shape is calulated with eq. (47). We find here

D = 4.7910 γ̇ηR/fk . (91)

 0

 0.25

 0.5

 0  0.03  0.06  0.09

D

γ
.
ηR / f

k

Figure 1: The Taylor parameter as function of γ̇ηR/fk in a linear shear flow. It grows
linear and is described by D = 4.7910 γ̇ηR/fk. The shape is calculated with
eq. (47).

This can be compared with e.g. a capsule described with the neo-hookean law with
surface shear elastic modulus Gs. In this case one finds (see [2])

D =
25

12
γ̇ηR/Gs . (92)

This means one receives the same Taylor parameter in a linear shear flow if one chooses

fk = 2.2997 Gs , (93)

which allows to compare the spring’s stiffness fk used in the calculation and Gs used
in the simulations.
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1.3 Numerically determined coefficients

Here we give a table of the numerically calculated prefactors. All entries not listed
here are zero.

k l meanMk,l

0 0 1
0 2 0.333333
2 0 0.333333

k l m’ k’ l’ meanMk,l,σ′

2 0 1 1 0 24.594873
2 0 2 0 1 20.149046
1 1 1 0 1 2.222914
1 1 2 1 0 2.222914
0 2 1 1 0 20.149046
0 2 2 0 1 24.594873

m k l m’ k’ l’ ttMσ,σ′

1 0 1 1 0 2 (0 , -0.191180 , 0 )
1 0 1 1 1 1 (-0.286938 , 0 , 0 )
1 0 1 1 2 0 (0 , 0.382696 , 0 )
1 0 1 2 0 2 (-0.382696 , 0 , 0 )
1 0 1 2 1 1 (0 , 0.286938 , 0 )
1 0 1 2 2 0 (0.191180 , 0 , 0 )
2 1 0 1 0 2 (0 , 0.191180 , 0 )
2 1 0 1 1 1 (0.286938 , 0 , 0 )
2 1 0 1 2 0 (0 , -0.382696 , 0 )
2 1 0 2 0 2 (0.382696 , 0 , 0 )
2 1 0 2 1 1 (0 , -0.286938 , 0 )
2 1 0 2 2 0 (-0.191180 , 0 , 0 )
3 0 1 1 1 1 (0 , 0 , -0.287106 )
3 0 1 2 0 2 (0 , 0 , -0.382696 )
3 0 1 2 2 0 (0 , 0 , 0.191516 )
3 0 1 3 0 2 (0 , -0.191180 , 0 )
3 0 1 3 2 0 (0 , -0.191516 , 0 )
3 1 0 1 0 2 (0 , 0 , 0.191516 )
3 1 0 1 2 0 (0 , 0 , -0.382696 )
3 1 0 2 1 1 (0 , 0 , -0.287106 )
3 1 0 3 0 2 (-0.191516 , 0 , 0 )
3 1 0 3 2 0 (-0.191180 , 0 , 0 )
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m k l m’ k’ l’ uMσ,σ′

1 0 1 1 0 2 (0 , -0.829265 , 0 )
1 0 1 1 1 1 (0.503804 , 0 , 0 )
1 0 1 1 2 0 (0 , 0.623211 , 0 )
1 0 1 2 0 2 (1.388603 , 0 , 0 )
1 0 1 2 1 1 (0 , -0.070072 , 0 )
1 0 1 2 2 0 (-1.211625 , 0 , 0 )
1 0 1 3 1 1 (0 , 0 , 0.238674 )
1 1 0 1 0 2 (-0.425331 , 0 , 0 )
1 1 0 1 1 1 (0 , -0.594487 , 0 )
1 1 0 1 2 0 (0.845778 , 0 , 0 )
1 1 0 2 0 2 (0 , 0.426584 , 0 )
1 1 0 2 1 1 (1.431865 , 0 , 0 )
1 1 0 2 2 0 (0 , 0.022939 , 0 )
1 1 0 3 0 2 (0 , 0 , -0.449524 )
1 1 0 3 2 0 (0 , 0 , 0.027824 )
2 0 1 1 0 2 (0.022939 , 0 , 0 )
2 0 1 1 1 1 (0 , 1.431865 , 0 )
2 0 1 1 2 0 (0.426584 , 0 , 0 )
2 0 1 2 0 2 (0 , 0.845778 , 0 )
2 0 1 2 1 1 (-0.594487 , 0 , 0 )
2 0 1 2 2 0 (0 , -0.425331 , 0 )
2 0 1 3 0 2 (0 , 0 , 0.027824 )
2 0 1 3 2 0 (0 , 0 , -0.449524 )
2 1 0 1 0 2 (0 , -1.211625 , 0 )
2 1 0 1 1 1 (-0.070072 , 0 , 0 )
2 1 0 1 2 0 (0 , 1.388603 , 0 )
2 1 0 2 0 2 (0.623211 , 0 , 0 )
2 1 0 2 1 1 (0 , 0.503804 , 0 )
2 1 0 2 2 0 (-0.829265 , 0 , 0 )
2 1 0 3 1 1 (0 , 0 , 0.238674 )
3 0 1 1 1 1 (0 , 0 , 0.785233 )
3 0 1 2 0 2 (0 , 0 , 1.393488 )
3 0 1 2 2 0 (0 , 0 , -0.176978 )
3 0 1 3 0 2 (0 , -0.824381 , 0 )
3 0 1 3 1 1 (-0.515218 , 0 , 0 )
3 0 1 3 2 0 (0 , 0.206054 , 0 )
3 1 0 1 0 2 (0 , 0 , -0.176978 )
3 1 0 1 2 0 (0 , 0 , 1.393488 )
3 1 0 2 1 1 (0 , 0 , 0.785233 )
3 1 0 3 0 2 (0.206054 , 0 , 0 )
3 1 0 3 1 1 (0 , -0.515218 , 0 )
3 1 0 3 2 0 (-0.824381 , 0 , 0 )
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m k l ζMσ

1 0 1




0 0.044642 0
0.044642 0 0

0 0 0




1 1 0



−1.586555 0 0

0 −1.675839 0
0 0 −1.675839




2 0 1



−1.675839 0 0

0 −1.586555 0
0 0 −1.675839




2 1 0




0 0.044642 0
0.044642 0 0

0 0 0




3 0 1




0 0 0
0 0 0.044642
0 0.044642 0




3 1 0




0 0 0.044642
0 0 0

0.044642 0 0
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1.4 Direction of the migration

Furthermore we can discuss the direction of the migration. If the stream lines are
straight lines the migration is always directed in the direction in which the flow has
no symmetry at the position of the particle. As an example the Poiseuille flow given
by eq. (1) in the main text does not depend on the x- or the z-coordinate, hence if
we transform the coordinates (with respect top the center of the particle) x− xc −→
−(x−xc) or z−zc −→ −(z−zc) the flow does not change. Thus positive and negative
x and z- direction can not be distinguished. But a transformation y−yc −→ −(y−yc)
does change the flow, therefore it has no symmetry with respect to y. This leads to
an asymmetric shape and to the migration in y-direction. A y-symmetry is only found
at yc = 0, where no migration occurs. Generally the migration in a flow with straight
stream lines is directed in the direction with no symmetry, which can be seen by
comparing all the Taylor coefficients of the flow and the resulting migration directions
given in the SI (see sec. 1.3).

If the flow is two dimensional the stream lines lie in a plane. If the stream lines have
an axis of symmetry in this plane then the migration is directed along this axis. In
this case the flow left and right to the symmetry axis can not be distinguished.

We give here as an example the migration in a Taylor-Couette flow (the flow between
two rotating cylinders). The flow is given by

u =

(
Ar +

B

r

)
êφ =

(
A+

B

x2 + y2

)(
−y
x

)
. (94)

Without the loss of generality we assume that the particle is located at xc = 0, so that
the radial direction is the y-Axis. This leads to the Taylor coefficients

b0,0 =

( −Ayc − B
yc

0

)
,b1,0 =

(
0

A+ B
y2c

)
, (95)

b0,1 =

( −A+ B
y2c

0

)
,b2,0 =

( B
y3c
0

)
, (96)

b1,1 =

(
0
− 2B
y3c

)
,b0,2 =

( − B
y3c
0

)
(97)

We get now the migration velocity with the help of eqs. (73), (74), (75), (76), (77) in
the main text and the prefactors given sec. 1.3. We find

um =b0,0 − 8.8917
B2R3η

y5
cfk

êy (98)

uu + utt =3.1852
B2R3η

y5
cfk

êy , (99)

ṙc =um + uu + utt , vm = ṙc − b0,0 . (100)

Thus indeed the migration caused by uu + utt is directed in y-direction (radial direc-
tion), because the stream lines are symmetric to the y-Axis. We can also see that the
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averaged flow um is not completely directed in direction of u0(rc) = b0,0 and therefore
also leads to a migration. The reason is that the stream lines are curved and the flow
is nonlinear in the coordinates.

In an arbitrary flow the sums in the eqs. (75) and (76) (main text) can have many
contributions. The direction of each contribution is given by the symmetry of the flow
which consists only of the parts including the contributions of aσ and aσ′ . This means
of the flow

u0,part =(bk,l)m(x− xc)k(y − yc)lêm
+ (bk′,l′)m′(x− xc)k

′
(y − yc)l

′
êm′ (101)

which is a part of the flow that leads to a migration. This flow can be one or two
dimensional. If this part of the flow contributes to the migration (i.e. has non-vanishing
values of uMσ,σ′ or ttMσ,σ′) it has a nonzero first and second derivative. This leads
to a symmetry axis (even if the complete flow may has none). This symmetry axis
defines the direction of the migration, which is caused by this part of the flow.
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