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Abstract—We present a novel multi-view 3D reconstruction
algorithm which unifies the advantages of several ecent

reconstruction approaches. Based on a known enviroment

causing occlusions and on the cameras' pixel gridistretization,

an irregular partitioning of the reconstruction space is chosen.
Reconstruction artifacts are rejected by using plasibility checks

based on additional information about the objects @ be

reconstructed. The binary occupancy decision is sally performed

in reconstruction space instead of fusing back-prejcted

silhouettes in image space. Hierarchical data strtares are used
to reconstruct the objects progressively focusing ro boundary

regions. Thus, the algorithm can be stopped at angme with a

certain conservative level of detail. Most parts othe algorithm

may be processed in parallel using GPU programming
techniques. The main application domain is the sueillance of

real environments like in human/robot coexistence rad

cooperation scenarios.

Keywords — Inferred Visual Hull; Multi-View Reconstction;
Occlusions; Visibility; Static Environment; Dynami&nvironment;
Computer Vision; Color cameras; 3D Scene Analysistegular
Space Partitions

. INTRODUCTION

The multi-view reconstruction
environment is useful for surveillance tasks sushirathe
domain of human/robot coexistence and cooperafioday's
safety fences and light barriers in industrial isgt become
dispensable since humans can be geometrically sacmted
in 3D and added to the robot's environment modéusT
dangerous collisions can be avoided for
dynamically limiting the speed of the robot or bgrferming
path re-planning in the vicinity of the human.

Multi-view reconstruction and visual hull [10] algitlnms
have been investigated for many years with diffefecus,
e.g. creating exact models including coloring [13ndling
occlusions [4, 6, 9, 11] or, automatically recounsting
occluding objects [7, 8]. Different representatidres/e been
used, e.g. polyhedra [4, 6, 7], voxels [9, 11],conexels [1,
12]. Several optimizations like octrees applieddael spaces
[9], m-trees applied to irregular partitioned sgad¢é] and
parallel processing aspects [9]
Occupancy decisions have been carried out in récamti®n

space [12]. The use of plausibility checks to rejec [11]

reconstruction artifacts based on additional infation about
the objects to reconstruct has been proposed [11].

example by

have been discusse( [4

human/robot coexistence and cooperation esbustness,
correctness, speed, andany-time ability. Correctness requires
considering the known environment with its occlasio
Robustness of the reconstruction can be achieved by deciding
on occupancy in reconstruction spafpeed is achieved by
optimized data structures and parallel algorithisy-time
ability provides conservative results at any tifRetthermore,

a camera-based space partitioning also improve th&pects.

Il.  STATE-OFTHE-ART

These key aspects are now discussed for some retetet
of-the-art approaches. The following Table (Figuig
summarizes the result of the comparison.

In [2] a voxel-based approach with an octree-likat b
dynamical decomposition is used. Due to efficieregsons,
the area a voxel projects to is sampled by eiglmtpoThe
likelihood that a pixel belongs to foreground ockground is
measured. The voxel is classified Mackground, edge,
foreground and unknown by considering all samples of all
views. On demand, the voxel is decomposed. Thailegion
of the used Mahalanobis distance is described tpavellel
processable by SIMD instructions like SSE (Int8tssaming

in-between a knownSIMD Extension), leading to an effective speedugidaof 2
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[2] (Cailette) + - + | - -
[1, 12] (Casas, + - + | - -
Salvador)
9 (Ladikos) o - + | + | o |-
(Franco) - + - - o | -
7 (Guan) - + - - o | -
(Kuhn) - - - - + |+
This paper + + + [+ [+ |+
Figure 1: Table, summarizing properties of stat¢hefar

The main requirements in surveillance tasks as inapproaches.



to 3.

A camera-based space partitioning is proposed byl
The camera images are sub-divided into quadramsth®
basis of epipolar geometry and by using the eddeth®
guadrants of different views, a volume can be ifiedt This
volume can be analyzed by an arbitrary analysistfon using
the pixels within the according image quadrantsalbfviews
[1]. A consistency check determines whether a veldras to
be sub-divided. The sub-division is achieved byidiihg the
image quadrants into four smaller image quadrdnt$l2] a
reconstruction method based on
probability maps is presented.

In [9] two similar voxel-based methods which areqgassed
in parallel using Nvidia's CUDA are presented. Atree data
structure is used. The first approach considergpiked areas a
voxel projects to, while the second approach carsidnly
the projection of the center of a voxel but intdGaussian
image pyramid. Occlusions are considered by medrso-o
called occlusion masks. Occlusion masks identifyelsi in
image space where objects can be occluded. Theslesrage
simply added to the detected foreground and thtesgreted
as objects before reconstructing the silhouettasceSpixel
areas of all views a voxel projects to are considefor
decision in reconstruction space, an '0' is indem#¢o Table
(Figure 1) although the images are binary.

A polyhedral and thus implicitly camera-based apptois
presented by [4]. Occlusions are only considereteims of

this approach usin
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Figure 2 Irregular space partitioning (white and red geby foul
cameras (circles) with eight pixels each and aicst&khowr
environment (blue). The visibility is exemplifiedrfthreepartitions
The partition on the left at the bottom is visibdeCamera 1 (Pixel
and Camera 4 (Pixel 5). The red partitions are vigible to an
camera. Yellow in the camera images represfeegsredoccluded.

is extended to be suitable to static known enviremis (e.g.
tables, racks, etc.) and also outside the caméeaging cones
and thus correctly handling occlusions as discuss§gnl].

In a static known environment, i.e. static obje®&l R",

inside andoutside the camera viewing cones. Hence, region;pnearances, and static lightning conditions, tlaes ¢ of

seen by only a fraction of all cameras are alsaectly
reconstructed.

In [6] occlusion masks are introduced and used i

conjunction with a polyhedral approach.

An exact occlusion handling is discussed in [11hick
proposes a voxel-based approach and mentions gstbpity
of the use of the conexels approach [1]. In itsculsion,
objects can be detected in front of an occludingticst
environment contrary to the concept of occlusionsksa
Furthermore, information about the objects to retact can
be specified such that reconstruction artifactskenrejected.

None of the approaches above can be directly used
satisfy all of the requirements of Section 1. Tim af this
paper is to present a novel approach, which fslfill
requirements. The reconstruction space is paréiddaking the
cameras' pixel grid and the known environment iatcount
(Section 3). The basic algorithm uses occupancysides
solely in reconstruction space. The improved versises
hierarchical data structures enabling efficientalations and
any-time ability (Section 4). In Section 5, parajeocessing
aspects of the algorithm are discussed. Finallyti@e 6
describes the integration of plausibility checks.

Ill.  IRREGULARSPACEPARTITIONING

The main drawback of using voxel spaces is thabxel
located near a camera usually projects onto maxsigivhile
many voxels located farther away project onto omgle
pixel. The camera-based space partitioning approash
described in [1] is adapted in different ways. Haetitioning

all pixelsi O1 of all cameras are static apart from noise. A
oint e of the n-dimensional (typically nO{2,3})
econstruction spac& = R'\O is visible to a pixel, if a

dynamic object located at that pomtirectly may change the

value of the pixel. This excludes indirect changasgsed e.g.
by shadows or caustics.

The setP O F of all pointse visible to the same set of pixels
VOI of all cameras describes one irregular spacetiparti
The pixel setV is calledvisibility and can be applied to an
elemente 0 F or to a whole partitio® O F.

t The following equation summarizes the visibility afpoint

e F (Figure 2).

V(e) ={i O | c(i) maybechangedy adynamicobjectat e
The irregular space partitioning of the reconstacspace
F can be described by the &f all partitionsP.

S={POF |Oa,b0OP,cOP:V(a) =V (b) OV(b) #V(c)}

An irregular space partition is the union of alire visible
to the same set of pixels. Thus, the partitiongesgnt the
logical connection between the cameras' pixels.

Note, this irregular space partitioning works usthgtorted
images, thus undistorting images is not necessitlyar while
creating the partitions nor while performing theawmstruction
process online.

V.
Change detection and background subtraction teaksiq

RECONSTRUCTION
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Figure 3: lllustration of combiningwo binary decisions in ima
space (left) compared to the decision function damb twc
probabilities in the reconstruction space (right)e circles should |
classified adlue, while the rectangles should be classifiedyasn.
The classification is more flexible and thus marewaate.

are used to determine regions in images which lchamged
compared to a set of previous image frames or avkno
background model. Usually, a binary image is crate
image space describing foreground and backgrounde $he
reconstruction consists of multiple perspective® dhe same
regions in reconstruction space, it is reasonabldeicide on
foreground and background, i.e. occupancy in recoction
space based on a kind of probabilities in imageepa

The probability that a pixel sees foreground canbhek-
projected into the reconstruction space. More pedgj all
partitions visible to this pixel may contain an etij to be
reconstructed with the determined probability fbatt pixel.
Taking the probability of several views into accumore
accurate decisions about occupancy can be madwtith
reconstruction space as stated above. The dedsittion
based on the probabilities for each associated pae freely
be chosen. This enables for example a differenghtizig of
the different views dependent on the according afebglity
(Figure 3).

Now, a basic reconstruction algorithm can be foated,
working on the pre-calculated irregular space tants
(Figure 4):

01 for each partition

02 get associated foreground probabilities

03 decide on occupancy: occupied, free

04 if decided to occupied

05 append partition to tiset of occupied partitions
06 endif

07 end for

This algorithm reconstructs the objects in-betwdabe
known environment on a logical base. All occupiedtiions
are contained by thset of occupied partitions determined by
the algorithm. An arbitrary geometrical descriptioan be
attached to each partition. Thus, the partition dam
represented as polyhedron, spheres or voxels.

Using high camera resolutions result
calculation times, since each partition has to e&stedd on
occupancy. This issue can be solved by using hkieal data
structures that allow stepwise refinement only loé thon-
homogeneous regions, i.e. object boundary regioms

in  enormou
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Figure 4: lllustration of the cametmsed reconstruction (all light 1
regions) of an object (dark red region) between a know
environment (blue) using the simple algorithm whiehates over &
partitions. Formally, the reconstruction is theioegof the spac
where an object to reconstruct has to be assumntads, There al
several regions contained to the reconstruction.

reconstruction space starting at a coarse paiitiiptevel.
Therefore, trees are used for both image and rétmtion
space (Figure 5a).

The trees in image space are built by combiningoreggon
different levels (Figure 5a, left). For exampleadttrees can
be used, combining each four pixel region of a éigh
resolution into one single pixel in a lower reswmat until
images with one-pixel-resolutions are obtained. The
combination should consider both, a kind of maximum
foreground probability and a minimum foregroundlbility.
These two values can be used as homogeneity oriteA
combined region with a high maximum and a low munim
foreground probability signals an inhomogeneity #mas two
different types of sub-regions. Of course, furtivatues to
describe a region in image space can be attachedctonode
of the tree enabling a more complex decision famctin
reconstruction space.

The tree on reconstruction space side (Figure igaf)r
describes the irregular space partitioning as ¢htced in the
previous section, but for each layer in the image.t Thus,
many small partitions in a lower layer of the restonction
space tree caused by a higher image resolutiomarbined
to a single partition in a higher layer of the nestuction
space tree caused by the lower image resolutioris Th
approach of building up the reconstruction spaee tras the
advantage that also distorted images can be used small
valid partitions are composed to one single valaitifion
implicitly including the information about distooti. All
Qodes caused by the one-pixel-resolution imagdékdrimage
trees are combined to the root of the reconstmcjmce tree.
Each node contains the visibility of this partitio®. the set of
pixels in the according layer of the image treastiermore,
ieach node has three statescupied, free, mixed.



a) Tree structures and creation (based on camera-/pixel parameters and a known static environment)
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b) Reconstruction, using the tree structures from (a)

State: Mixed

\_ 5. Setto 'Mixed'

ﬁxed?

Probabilities:
Max Q:?eﬁne! l \

:‘E Min - %’ State: Free ‘g
2 X o
] £ . o
= i<l 4. Combine 8 Mixed? Z.

g \;Refme’ i)

- 9| Decide! =
c 7 <_ g
o 173 - i3
= & o
= o 10 Mixed? <)
(=] v = T o
i = | M :
[v4 o State: Occupied g

2 11 Dec:de’ 2

= S
5 g (2. Combine 2 Mixed? [ \ o
T o => Refme’

v 1. Determine probabilities

Figure 5: Illus‘tration of the tree structures, th@eation, and the interrelation between imagerandnstruction space at initialization time
and reconstruction time (b). The built trees (&) @sed to reconstruct objectshiatween a known environment. The tree structurfésctehe
camera- and environmehgsed partitioning linked with the associated impigels. The values and states of the nodes reftecturrent sta
of the observed scene. At image space probabiéitiesised (horizontal divided circles). In recandipn space (b) the statEsee, Occupied
andMixed are used (red-white circles). The values in imsggce are calculated bottarp; the states in reconstruction space are caém

top-down by considering only the mixed nodes.

The structures and the interconnection of thessstoan be
calculated off-line or are known in advance (cfadtrees),
since the irregular space partitioning does notngha— it

directly depends on the static known environmentlyQhe
states of the nodes, describing the current sceust toe
calculated on-line.



b)
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Figure 6: Top and second row: Comparison between kasi
algorithm (a) and the improved algorithm (b) ushigrarchical dai
structures. Red circles represeotcupied, while white circle
representree. The lasic algorithm has to process all partition
high resolution, while the efficient algorithm onhgfines mixe
nodes (whitered circles) of the tree. If the efficient algorithis
stopped, a valid layer can be used as reconstru@iattom: Numbe
of partitions to check for occupancy dependent on theaber o
pixels per camera in our example scene (second row)

Thus, the reconstruction process is performed ma-li
(Figure 5b), and can be roughly described by twepst
Assigning the values attached to the image tre¢otmtip
(Figure 5b, left) and then assigning the valueascad to the
reconstruction space tree top-down layer-by-layenereby
only mixed nodes have to be refined by analyzidgats until
the highest resolution is reached or the algoritarstopped
(Figure 5b, right):

01 calculate image (quad-) trees values

02 use coarsest reconstruction space tree node

03 set reconstruction space tree roahiteed

04 append reconstruction space tree root teethaf
occupied nodes

05 while not at highest reconstruction tree resolution

06 for eachnode at current layer set to mixed

07 for each child of this node

08 get associated foreground probaltslitie

Extended Reconstruction
Space Tree

Multi-Level
Neighborhood

e Volume ‘
* Distance to ground

Figure 7: Reconstruction space trextended by additior
information per partition/node to enable plausipilchecks: Th
multi-level neighborhood describes connected partitionsr @l
levels, such that clustering in a partially exptbteee is possibl
Furthermore, the volume of apition, its distance to the groul
etc. can be calculated in the initialization st€pus, reconstructic
artifacts can be fast identified and rejected.

09 decide on occupanogcupied, free, mixed

10 if decided tamixed or occupied

11 append child to thket of occupied nodes

12 end if

13 end for

14 remove current node from thet of occupied nodes
15 end for

16 use next layer

17 end while

All nodes contained by theet of occupied nodes represent
the logical reconstruction. If the algorithm istarrupted, also
mixed nodes are contained by this set. These megessent a
conservative approximation of the highest recowsion
resolution since all occupied regions and addiliofrae
regions are covered by it.

Compared to the basic algorithm, now it is reastn#i
attach a geometrical representation to each nogleto each
partition in each level-of-detail, since the oc&gbregions are
not necessarily refined. The difference betweenbthsic and
the current algorithm is illustrated in Figure 5hN# the basic
algorithm needs to iterate over all high resolufiantitions, the
second algorithm only needs to refine mixed nodesther,
the any-time ability is given, since the algorithcan be
interrupted any time.

V. PARALLEL PROCESSING

Optimization of algorithms does not only concerficefnt
data structures, but also concerns the ability nacgss the
calculations in parallel. Thus, above algorithme analyzed
with respect to being parallelizable. The main folies on the
parallelization on the GPU, for example using Naisli



CUDA.

The object probability for each pixel in each imagea be
calculated using Gaussian distributions as backgtaunodel
and comparing it to the current pixel values. Sirbe
calculations are independently among each pixé,tiivial to
parallelize this part of the algorithm. More sopicisted
background subtraction and change detection teabsiq
taking regions and illumination changes into ac¢otan be
modified such that a more accurate probability dam
specified for each pixel. Some existing backgrosulbtraction
approaches are specialized for being performedhenGPU

[5].

3-d reconstructions as the objects to be recortstitu¢e.g.
human) [11]. Thus, if the robot speed should byasyitally

limited dependent on the distance to the human, the

reconstructed hull has to be rejected if possiBid.if none of
the plausibility checks is able to reject this hudl zero-
distance must be assumed. Another, special plditsitheck
is very useful for these kinds of objects: The hhickness
check. If a geometrical model is available for btith known
dynamic object and the partitions, this thickness de
calculated. If the largest thickness between hotl &nown
dynamic object is smaller than the minimum thiclene$ a
human, the hull can be rejected, too — the humanatahide

Building up the quad-tree on image side based @ thwithin this hull.

probabilities can easily be parallelized on the Gitide again
the region combination process is completely inddpat
among each region.

The refinement process of the reconstruction
similar parallelizable, but in contrast to the iradgee, not the
whole tree is explored. Thus at each step, a fisiodes to
refine must be extracted, which then can be preceparallel
in the succeeding step.

Thus, the whole algorithm is parallelizable upttis tstep.

VI.

Plausibility checks are used to reject artifactsciwitannot
contain an object, due to the information given wbthe
objects to be reconstructed [11]. The plausibitityecks work
on whole objects. Thus, a clustering of connectecupied
partitions must be performed. This can be donestbging the
neighbourhood of a partition and by using a 3-cddldill
algorithm. Since the tree is not completely refindd is
necessary to store the neighbouring partitiondl déels.

The clustered patrtitions are checked for plausybilising
e.g. minimum volume and/or maximum distance to gcou
information. For example, if humans should be rstarted,

PLAUSIBILITY CHECKS

a certain minimum volume can be assumed and thus a

artifacts with a smaller volume can be safely rgdc
Furthermore, if the application allows us to assutim& a

human does not jump higher than one meter withi@ th

observed volume, all artifacts with a larger disamhan one
meter to ground can also be safely removed. Inrotde
perform these plausibility checks fast, volumes disfances
for each partition in each level-of-detail can ve-palculated.
The volumeA of a clusterC containing a set of partitions
POS (cf. Section 3), providing its volume via a fumcti
vol(p O P) can be calculated by

A=) ,vol(p)

The minimum distance to groumd of this cluster, whereby
the distance to ground of a partition can be qdefy
dist(p O P) can be calculated by

D =min s (p)

Usually, dynamic known objects like robots cause ghme

Note, the plausibility checks can be applied athdawel-
of-detail while reconstructing. This enables eargjecting
artifacts, i.e. setting partitions to non-occupiedd thus

ispeeding up the process in only detailing actugdabé.

VILI.

A multi-view reconstruction algorithm, which unifiethe
advantages of many different approaches has besened:
It reconstructs 3D objects with pixel accuracy taka known
environment into account; it decides in reconstauncspace; it
uses efficient data structures which focus on bauncegions;
it allows parallel calculations; it rejects recansted artifacts;
furthermore, undistorted images can be used djrectl

Future work may focus on the analysis of suitalblange
detection methods for describing object probab#iton image
side. For example, the method of [3, 5] could btemded.
Since [5] uses a mask to estimate the succeedickgtmaund
model, a projection of the actual reconstructionpissible.
Additionally, the min and max determination for each image
region in the image tree can be transformed to eergeneral
upper/lower bound description, not fixed to the minimum or
maximum of probabilities. Finally, appropriate dgcn
flunctions in reconstruction space may be invesitjat
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