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Abstract

In this thesis, we consider the automorphisms and stable degenerations of surfaces

isogenous to a product.

First we consider the action of the automorphisms on cohomology in the case

where the group G is abelian. It is shown that, if the irregularity of the surface is

≥ 2, the action of (G×G)/G on the second cohomology is mostly faithful (Theorems

2.3 and 2.4). For surfaces with irregularity 0 or 1, examples are given (Examples 2.7

and 2.8).

Then we consider the stable degenerations of surfaces isogenous to a product

and classify the possible singularities on them (Corollaries 3.12 and 3.20). As a

result, we show that the Q-Gorenstein deformations of the degenerations with certain

singuarities are unobstructed and get some connected components of the moduli space

of stable surfaces (Corollary 4.6).
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Zusammenfassung

Komplexe algebraische Flächen isogen zu einem Produkt von Kurven wurden von

Catanese in [Cat00] einführt. Diese Flächen sind von der Form (C ×D)/G, wobei C

und D zwei glatte Kurven von Geschlecht ≥ 2 sind und G eine endliche Gruppe ist,

die auf C×D frei wirkt. Eine besondere Eigenschaft von einer Fläche isogen zu einem

Produkt von Kurven ist folgende: die Fläche kann durch die topologischen Invarianten

charakterisiert werden. Gegeben sei eine Fläche S isogen zu einem Produkt, dann

ist der Modulraum M top
S = Mdiff

S von Flächen homömorph zu S entweder irreduzibel

und zusammenhängend oder er enthält zwei zusammenhängende Komponenten, die

durch komplexer Konjugation ineinander übergeführt werden (Theorem 1.7). Diese

Flächen geben viele ziemlich einfache Beispiele von Flächen, die diffeomorph aber

nicht deformationsäquivalent sind. Es gibt auch andere Anwendungen, zum Beispiel

sind sie wichtig, um Flächen mit kleinen Invarianten zu studieren. Viele Autoren

haben Flächen isogen zu einem Produkt studiert.

In dieser Dissertation betrachten wir Wirkung der Automorphismengruppen von

Flächen isogen zu einem Produkt auf der Kohomologie, und stabile Degeneration

von solchen Flächen. Wir bemerken, dass es eine starke Beziehung zwischen Auto-

morphismen und der Existenz von feinen Modulräumen gibt, und zwischen Degen-

erationen und Kompaktifizierungen von Modulräumen von Flächen mit kanonischen

Singularitäten auch. Im Fall, dass die Irregularität q(S) ≥ 2 ist und G ist abelsch,

zeigen wir, dass die Wirkung von (G × G)/G auf der zweiten Kohomologiegruppe
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meistens effektiv ist. Wir klassifizieren alle möglichen Singularitäten auf diesen sta-

bilen Degenerationen. Als weitere Ergebnisse können wir zeigen, dass die Deforma-

tionen von den Degenerationen mit besonderen Singularitäten ohne Obstruktionen

sind, und wir bekommen einige Zusammenhängskomponenten des Modulraums von

stabilen Flächen.

Der Inhalt dieser Dissertation ist in 4 Kapitel gegliedert. In Kapitel 1 geben wir

eine Einleitung über Flächen isogen zu einem Produkt, und über stabile Flächen.

Wir erinnern an Cartans Lemma, das unerlässlich zum Studium von Glättung von

Varietäten mit Gruppenwirkung ist. Wir erklären die notwendige Theorie über Q-

Gorenstein Deformationen, die später für die Kompaktifizierung von Modulraum be-

nutzt wird. In Kapitel 2 betrachten wir Untergruppen der Automorphismengruppe

einer Fläche isogen zu einem Produkt, die auf die Kohomologiegruppen wirken. Falls

die Gruppe abelsch ist und falls die Irregularität q(S) groß ist, dann zeigen wir, dass

der Kern der Wirkung trivial ist. In Kapitel 3 geben wir eine vollständige Klassifika-

tion von Singularitäten auf Degenerationen von Flächen isogen zu einem Produkt.

Wir studieren in Sektion 3.1 die Glättung von stabilen Kurven mit einer Gruppen-

wirkung, in den Sektionen 3.2 und 3.3 die Glättung von einem Produkt von zwei sta-

bilen Kurven mit einer Gruppenwirkung. Die Glättbarkeit ist charakterisiert durch

möglichen Stabilisatoren der Wirkung, und die Singularitäten der Degeneration sind

nur Quotienten von gewissen vollständigen Durchschnittsingularitäten, modulo die

Stabilisatoren. In Kapitel 4 betrachten wir Q-Gorenstein Deformationen der Degen-

erationen, die wir im Kapitel 3 bekommen haben. Wir sehen, dass die Q-Gorenstein

Deformationen ohne Obstruktion sind, falls die stabile Fläche, die wir betrachten,

keine Singularitäten von Typ (U2c) oder (M) enthält (Korollar 3.12 und 3.20). Damit

können wir zeigen, dass die stabile Kompaktifizierung von manchen Modulräumen

von Flächen isogen zu einem Produkt schon eine Zusammenhangskomponenten des

Modulraums von stabilen Flächen ist.
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Introduction

Surfaces isogenous to a (higher) product were introduced by Catanese [Cat00]. These

are surfaces of the form (C ×D)/G, where C,D are two smooth curves of genus ≥ 2

and G is a finite group acting freely on C × D. A remarkable property of surfaces

isogenous to a product is that they can be characterized by topological invariants.

Given a surface isogenous to a product S, the moduli space M top
S = Mdiff

S of surfaces

with the same topological type as S is either irreducible and connected or contains

two connected components which are interchanged by complex conjugation (Theorem

1.9). These surfaces give a rather simple series of examples of surfaces which are

diffeomorphic but not deformation equivalent. There are also other applications, for

example, in the study of surfaces with small invariants. Intensive efforts are being

made in the topic of surfaces isogenous to a product.

In this thesis, we are interested in the automorphisms of a surface isogenous to a

product, their action on cohomology, and also the stable degenerations of such sur-

faces. Note that automorphisms are related to the existence of certain fine moduli

spaces (cf. [Po77, Lecture 10]), while stable degenerations concern the compactifi-

cation of the moduli space of surfaces with only canonical singularities and ample

dualizing sheaf. It is shown in this work that, if the group G is abelian and the irreg-

ularity of the surface is ≥ 2, the action of (G × G)/G on the second cohomology is

mostly faithful. For the degenerations of surfaces isogenous to a product, we classify

the possible singularities on them. As a result, we can show that the Q-Gorenstein

deformations of the degenerations with certain singularities are unobstructed and

hence get some connected components of the moduli space of stable surfaces.
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The content of the thesis is as follows. Chapter 1 gives first some preliminaries on

surfaces isogenous to a product and stable surfaces. We also recall Cartan’s lemma

which is indispensable in the smoothings of varieties with group actions. For the later

compactification of moduli space, we include the necessary Q-Gorenstein deformation

theory which has already been used by Hacking to compactify the moduli of plane

curves. Then we define a moduli stack of stable surfaces for which we can use the

Q-Gorenstein deformation theory.

In Chapter 2 we consider the automorphism group of a surface isogenous to a

product and its action on cohomology. We restrict our attention to the case when the

group G is abelian. In this case G ∼= (G×G)/G is a subgroup of automorphisms and

we can consider the action of G on cohomology. We show among other things that

the kernel of this action is trivial if the irregularity of the surface is large (Theorems

2.3 and 2.4). We also construct surfaces with irregularity 1 or 0 such that the kernel

of the action is ∼= Z⊕2
2 , giving examples of one extremal case in [Cai04, Theorem A]

(Examples 2.7 and 2.8).

Chapter 3 gives a complete classification of singularities on the stable degener-

ations of surfaces isogenous to a product. In Section 3.1, we study the smoothings

of stable curves with a group action and, in Sections 3.2, 3.3, the smoothing of a

product of two stable curves with a group action. The smoothability is characterized

in term of the possible stabilizers of the action (Propositions 3.10 and 3.18) and the

singularities on the degenerations are just quotients of certain complete intersection

singularities by the stabilizers (Corollaries 3.12 and 3.20). Then we give examples for

each type of singularity (Examples 3.13–3.16 and 3.21).

Chapter 4 considers the Q-Gorenstein deformations of the degenerations obtained

in Chapter 3. We see that the Q-Gorenstein deformations are unobstructed if the

stable surface under consideration does not contain singularities of type (U2c) or (M)

(Theorem 4.5). Therefore we can show that the stable compactifications of some

moduli spaces of surfaces isogenous to a product already yield connected components

of the moduli space of stable surfaces.



Chapter 1

Preliminaries

1.1 Notation

The following are some notations and conventions that we will use in the text.

Let G be a finite group acting on a set A.

|G| is the order of G. For σ ∈ G, |σ| is the order of σ.

For a subset A′ ⊂ A and a subset G′ ⊂ G, G′A′ := {ga|g ∈ G′, a ∈ A′}. If

GA′ ⊂ A′, we say that A′ is G-invariant.

For a ∈ A, Ga := {g ∈ G|g · a = a} is the stabilizer of a.

If Ga 6= {1}, we say that a is a fixed point of the action, or that the action of G

is not free in a.

If Ga = {1} for every a ∈ A, we say that G acts freely on A.

C∗ is the group of nonzero complex numbers.

For a finite abelian group G, G∗ denotes the character group HomZ(G,C∗).
Zn denotes the cyclic group of order n.

A variety is a projective, reduced, connected scheme of finite type over C. A

surface (resp. curve) is a variety of pure dimension two (resp. one).

S usually denotes a surface isogenous to a product while X usually denotes a

singular surface.

A one-parameter family of varieties means a flat family over the unit disk.

Finally, we work over the field C of complex numbers.

3
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1.2 Surfaces isogenous to a product

Definition 1.1 ([Cat00], Definition 3.1). A smooth projective surface S is isogenous
to a (higher) product if it is a quotient S = (C×D)/G, where C,D are smooth curves
of genus at least two, and G is a finite group acting freely on C ×D.

The following rigidity lemma is important in studying the action of G on C ×D
and the automorphism group Aut(S).

Lemma 1.2 ([Cat00], Lemma 3.8). Let f : C1×C2 → B1×B2 be a surjective holomor-
phic map between products of curves. Assume that both B1, B2 have genus ≥ 2. Then,
after possibly interchanging B1 and B2, there are holomorphic maps fi : Ci → Bi such
that f(x, y) = (f1(x), f2(y)).

Remark 1.3. With the same proof as in [Cat00], this lemma is still valid if the curves
Ci, Bi are stable curves (see [vO05, Lemma 4.1]).

Corollary 1.4 ([Cat00], Corollary 3.9). Assume that C,D are curves of genus ≥ 2.
Then the inclusion Aut(C)×Aut(D) ⊂ Aut(C ×D) is an equality if C � D, whereas
Aut(C × C) is a semidirect product of Aut(C)2 with the Z2 given by the involution
interchanging the two factors.

Let S = (C×D)/G be a surface isogenous to a product. Let G◦ := G∩(Aut(C)×
Aut(D)); then G◦ acts on the two factors C,D and acts on C ×D via the diagonal

action. If G◦ acts faithfully on both C and D, we say that (C ×D)/G is a minimal

realization of S. By [Cat00, Propostion 3.13], a minimal realization exists and is

unique, i.e., if (E × F )/Γ ∼= S is another minimal realization, then Γ ∼= G,E ∼=
C,F ∼= D (up to relabelling), and the actions of Γ and G are the same under the

above identifications. In the following we always assume S = (C × D)/G is the

minimal realization.

Definition 1.5. Let S = (C × D)/G be a surface isogenous to a product. Let G◦

be the subgroup of G defined above. We say that S is of nonmixed type if G = G◦.
Otherwise S is said to be of mixed type.

Remark 1.6. Let KS be a canonical divisor of S and χ(OS) the holomorphic Euler
characteristic of S. Then we can see that

K2
S =

8(g(C)− 1)(g(D)− 1)

|G|
and χ(OS) =

(g(C)− 1)(g(D)− 1)

|G|
,

where g(C), g(D) are the genus of C,D respectively.
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To construct surfaces isogenous to a product of unmixed type with group G, we

start with two smooth curves C ′ and D′ and then try to find G-coverings C → C ′

and D → D′ such that G acts freely on C ×D via the diagonal action. For this, we

recall how to construct a covering of a curve following [BCGP09].

Definition 1.7 ([BCGP09], Definition 0.11). An orbifold surface group of genus g′

and multiplicities m1, . . . ,mr is the group presented as follows:

T(g′;m1, . . . ,mr) := 〈a1, b1, . . . , ag′ , bg′ , c1, . . . , cr|

cm1
1 , . . . , cmrr ,

g′∏
i=1

[ai, bi] · c1 · . . . · cr〉.

If m1 ≥ · · · ≥ mr, the sequence (g′;m1, . . . ,mr) is called the signature of the
orbifold surface group.

By Riemann’s existence theorem, to give a smooth curve C with a G-action and

with quotient C ′ of genus g′ is equivalent to giving:

(1) the branch point set {P1, . . . Pr} ⊂ C ′,

(2) a surjection of the fundamental group π1(C ′\{P1, . . . Pr}) onto T(g′;m1, . . . ,mr)

such that a1, b1, . . . , ag′ , bg′ ∈ T(g′;m1, . . . ,mr) are image elements of a symplectic ba-

sis of the fundamental group of C ′, while each ci is the image of a simple geometric

loop around the point pi.

(3) a surjective homomorphism ϕ : T(g′;m1, . . . ,mr)→ G such that

(4) ϕ(ci) is an element of order exactly mi and

(5) Hurwitz′s formula holds: 2g − 2 = |G|
(

2g′ − 2 +
∑r

i=1

(
1− 1

mi

))
.

If the above data exist, we say that (ϕ(a1), . . . , ϕ(bg′);ϕ(c1), . . . , ϕ(cr)) is a gener-

ating vector for G of type (g′|m1, . . . ,mr) ([Pe09R, Definition 2.1]). Let σi := ϕ(ci).

Then the sets {σ〈σi〉σ−1}σ∈G are just the stabilizers of the points lying over Pi ∈ C ′

and Σ :=
⋃
σ∈G

⋃∞
k=0{σσk1σ−1, . . . , σσkrσ

−1} is the set of all the elements of G fixing

some point of C.

If G is abelian, then the situation is much simpler: σσiσ
−1 = σi and the set of

stabilizers is just Σ =
⋃∞
k=0{σk1 , . . . , σkr}; moreover, since

∏g′

i=1[ai, bi] · c1 · · · cr = 1, we
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have
∏g′

i=1[ϕ(ai), ϕ(bi)] · ϕ(c1) · · ·ϕ(cr) = 1 and hence

σ1 · · ·σr = 1. (1.1)

Now, suppose C → C ′ and D → D′ are two G-coverings of smooth curves. By the

above construction, we have two generating vectors for G, say (λ1, . . . , λ2g′1
;σ1, . . . , σr)

and (ψ1, . . . , ψ2g′2
; τ1, . . . , τs). And we can also consider the two subsets of G

Σ1 =
⋃
σ∈G

∞⋃
k=0

{σσk1σ−1, . . . , σσkrσ
−1},

Σ2 =
⋃
σ∈G

∞⋃
k=0

{στ k1 σ−1, . . . , στ ks σ
−1}.

Note that Σ1 (resp. Σ2) consists of the elements of G fixing some point on C (resp.

D). Let G act on C ×D via the diagonal action. Then the fact that G acts freely on

C ×D amounts to saying that

Σ1 ∩ Σ2 = {1} (1.2)

and in this case S := (C ×D)/G is a surface isogenous to a product. On the other

hand, every surface isogenous to a product of unmixed type can be obtained in this

way from two sets of data as above satisfying (1.2).

In the mixed type case, we have C ∼= D and there is an exact sequence of groups

1→ G◦ → G→ Z2 → 1.

We have the following description of surfaces of mixed type:

Proposition 1.8 ([Cat00]). Surfaces S isogenous to a product and of mixed type are
obtained as follows. There is a (faithful) action of a finite group G◦ on a curve C of
genus at least 2 and a nonsplit extension

1→ G◦ → G→ Z2 → 1,

yielding a class [ϕ] in Out(G◦) = Aut(G◦)/Int(G◦), which is of order ≤ 2. Once we
fix a representative ϕ of the above class, there exists an element τ ′ in G \ G◦ such
that, setting τ = τ ′2, we have:
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(I) ϕ(γ) = τ ′γτ ′−1,

(II) G acts, under a suitable isomorphism of C and D, by the formulae: γ(P,Q) =
(γP, (ϕγ)Q) for γ in G◦; whereas the lateral class of G◦ consists of the trans-
formations

τ ′γ(P,Q) = ((ϕγ)Q, τγP ).

Let Γ be the subset of G◦ consisting of the transformations having some fixed point.
Then the condition that G acts freely amounts to:

(A) Γ ∩ ϕ(Γ) = {1}.

(B) there is no γ in G◦ such that ϕ(γ)τγ is in Γ.

The structure of the moduli space of surfaces isogenous to a product is illustrated

in the following theorem:

Theorem 1.9 ([Cat03]). Let S be a surface isogenous to a product. Then any surface
S ′ with the same fundamental group and Euler number as S is diffeomorphic to S.
The corresponding moduli space M top

S = Mdiff
S is either irreducible and connected or it

contains two connected components which are interchanged by complex conjugation.
There are infinitely many examples of the latter case, and moreover these moduli
spaces are almost all of general type.

1.3 Cartan’s lemma

The following lemma is used throughout Chapters 2 and 3 for the (analytically) local

analysis of the group actions.

Lemma 1.10 (Cartan’s lemma). Let (X,x) be an analytic singularity with Zariski
tangent space T and let G be a finite group of automorphisms of (X, x). Then there
exists a G-equivariant embedding (X, x)→ (T, 0).

Proof. See [Cat87] or [M08, Lemma 2.5].

1.4 Q-Gorenstein deformation theory of semi log

canonical surfaces

We recall the Q-Gorenstein deformation theory of semi log canonical surfaces set

out by Hacking ([Hac01], [Hac04]). This section is mostly taken from Hacking’s two

aforementioned articles.
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Let F be a coherent sheaf on a variety X satisfying Serre’s condition S2. If n is

a positive integer, we define the n-th reflexive power of F by

F [n] := (F⊗n)∨∨,

the double dual of the n-th tensor product. If n is negative, we define the n-th

reflexive power of F by

F [n] := (F⊗(−n))∨.

Definition 1.11. A surface X is said to have semi log canonical (slc) singularities if

(i) X is Cohen–Macaulay.

(ii) X has at most normal crossing singularities in codimension 1.

(iii) The dualizing sheaf ωX is a Q-line bundle, i.e., there is some n ∈ N such that

ω
[n]
X is an invertible sheaf.

(iv) if X̃ → X is the normalization and D̃ ⊂ X̃ is the preimage of the part of Xsing,

then the pair (X̃, D̃) is log canonical, i.e., for any resolution µ : X̂ → X̃, we
have

KX̂ + µ−1
∗ D̃ ≡ µ∗(KX̃ + D̃) +

∑
aiEi

with all ai ≥ −1.

Remark 1.12. Since a slc surface X has at most normal crossing crossing singularities
in codimesion 1, X is Gorenstein in codimension 1. So we can associate a Weil divisor
KX to the dualizing sheaf ωX , which does not contain any double curve of X as an
irreducible component. In general, for n ∈ Z, ω

[n]
X is a divisorial sheaf and nKX is

its associated Weil divisor (see [Har77, Chapter II.6] and [R80, Pages 281–285]). We

usually write OX(nKX) for ω
[n]
X .

Let P ∈ X be a slc surface germ. Let n be the index of P , i.e., the smallest positive

integer such that ω
[n]
X is invertible. We define the canonical covering π : Z → X by

Z = Spec
X

(OX ⊕OX(KX)⊕ · · · ⊕ OX((n− 1)KX)),

where the multiplication is given by fixing an isomorphism OX(nKX)→̃OX ([R87,

Proposition 3.6]). It is characterized by the following properties:

(1) The morphism π is cyclic quotient of degree n which is étale in codimension 1.
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(2) The surface Z is Gorenstein; that is, it is Cohen–Macaulay, and the Weil divisor

KZ is Cartier.

ForX a slc surface, the canonical covering at a point P ∈ X is uniquely determined

in the étale topology. Hence the data of canonical coverings everywhere locally on

X defines a Deligne–Mumford stack X with coarse moduli space X, the canonical

covering stack of X.

Definition 1.13 (The usual deformations). Let X be a scheme and (R,C) a noethe-
rian local C-algebra. A deformation X/R of X over R is a flat morphism f : X →
SpecR with an isomorphism X ⊗RC ∼= X, where C is the residue field of R. Similarly
we can define the deformations of a family of schemes X/A, where A is a noetherian
C-algebra.

Let B = SpecR and 0 ∈ B the closed point. Then we also denote a deformation
X/R by X/(0 ∈ B).

Let C be the category of noetherian C-algebras. Given an infinitesimal extension

(i.e., a surjection with a nilpotent kernel) A′ → A in C, write DefX/A(A′) for the

set of deformations of X/A over A′. Given a family X ′/A′ extending X/A, write

AutX/A(X ′/A′) for the group of automorphisms of X ′/A′ over A′ which restrict to the

identity on X/A.

Definition 1.14. Let A ∈ C and let X/A be a family of schemes over A. Let LX/A
be a cotangent complex for X/A. For a finite A-module M , we define

T i(X/A,M) = Ext i
OX (LX/A,OX ⊗AM),

T i(X/A,M) = ExtiOX (LX/A,OX ⊗AM).

Remark 1.15. These vector spaces and OX -modules govern the usual deformations of
X/A. There is a local-to-global spectral sequence relating the T i and the T i:

Epq
2 = Hp(X , T q(X/A,M))⇒ T p+q(X/A,M).

Theorem 1.16. Let X/A be a family of schemes and let M be a finite A-module.
Then

(1) T 0(X/A,M) = HomOX (ΩX/A,OX ⊗AM).

(2) T 1(X/A,M) is supported on the locus where X/A is not a smooth morphism.
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(3) T 2(X/A,M) is supported on the locus where X/A is not a local complete inter-
section morphism.

Theorem 1.17. Let A0 ∈ C, let A→ A0 be an extension, and A′ → A an infinitesi-
mal extension with kernel M , where M is a finite A0-module (i.e., writing N for the
kernel of A′ → A0, we have MN = 0 in A′). Let X0/A0 be a family of schemes and
X/A a family extending X0/A0.

(1) There exists a canonical element oX/A(A′) ∈ T 2(X0/A0,M) such that
DefX/A(A′) 6= ∅ if and only if oX/A(A′) = 0.

(2) If oX/A(A′) = 0, DefX/A(A′) is a principal homogeneous space under
T 1(X0/A0,M).

(3) Given X ′/A′ extending X/A, AutX/A(X ′/A′) is naturally isomorphic to
T 0(X0/A0,M).

Hacking exploited the so-called Q-Gorenstein deformation theory of slc surfaces

(Definitions 1.18 and 1.19). It turns out that this has good properties similar to

those of the usual deformation theory above (Theorems 1.25 and 1.26). This new

deformation theory enables the construction of Deligne–Mumford stacks for a moduli

problem of stable surfaces.

Definition 1.18. Let X/A be a family of slc surfaces. We say that X/A is weakly
Q-Gorenstein if the relative dualizing sheaf ωX/A is Q-Cartier.

Definition 1.19. Let X/A be a family of slc surfaces. We say that X/A is Q-

Gorenstein if ω
[i]
X/A commutes with base change for all i ∈ Z.

Given a Q-Gorenstein family of slc surfaces X/A and an infinitesimal extension
A′ → A in C, write DefQGX/A(A′) for the set of Q-Gorenstein deformations of X/A
over A′.

Let X/R be a Q-Gorenstein deformation over a local noetherian C-algebra with

residue field C. We say that X/R is versal if the natural map λA : Hom(R,A) →
DefQGX/C(A) is surjective for any local Artin C-algebra A. We will see that every stable

surface X admits a veral Q-Gorenstein deformation (cf. Page 13). If, in addition, the

map λA is an isomorphism for A = C[ε]/(ε2), then we say that X/R is semiuniversal.

A semiuniversal Q-Gorenstein deformation is unique up to isomorphism, provided it

exists. If it does exist, we denote its base by DefQGX . When we refer to the usual

deformation of X, we denote the base of the semiuniversal deformation by DefX .
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Remark 1.20. If a stable surface X is Gorenstein, then the Q-Gorenstein deformation
theory of X coincides with the usual one. This is because in this case every defor-
mation X/(0 ∈ B) of X has invertible relative dualizing sheaf ωX/B. So we have

DefQGX = DefX . Note also that DefX always exists for a stable surface X.

Remark 1.21. The Q-Gorenstein deformations of a slc surface germ X are precisely
those deformations which lift to deformations of the canonical covering Z → X. So we
can transform the Q-Gorenstein deformations of a slc surface X into the deformations
of its canonical covering stack.

Lemma 1.22 ([Hac04], Lemma 3.3). Let P ∈ X be a slc surface germ of index n. Let
X/(0 ∈ B) be a Q-Gorenstein deformation of X. Then X/B is weakly Q-Gorenstein
of index n.

Lemma 1.23 ([Hac04], Lemma 3.5). Let P ∈ X be a slc surface germ of index n,
and let Z → X be the canonical covering with group G ∼= Zn. Let Z/(0 ∈ B) be a
G-equivariant deformation of Z inducing a Q-Gorenstein deformation X/(0 ∈ B) of
X. Then there is an isomorphism

Z ∼= SpecX (OX ⊕ ωX/B ⊕ · · · ⊕ ω[n−1]
X/B ),

where the multiplication is given by fixing a trivialization of ω
[n]
X/B. In particular, Z/B

is determined by X/B.

Let X/B be a Q-Gorenstein family of slc surfaces. For P ∈ X/B a point of index

n, we define the canonical covering π : Z → X of P ∈ X/B by

Z ∼= SpecX (OX ⊕ ωX/B ⊕ · · · ⊕ ω[n−1]
X/B ),

where the multiplication is given by fixing a trivialization of ω
[n]
X/B at P . The canonical

covering of P ∈ X/B is uniquely determined in the étale topology. Hence the data

of canonical coverings everywhere locally on X/B defines a Deligne–Mumford stack

X/B with coarse moduli space X/B, the canonical covering stack of X/B.

The stack X/B is flat over B by the above lemma. Moreover, for any base change

B′ → B, let XB′ denote the canonical covering stack of X ×B B′; then there is a

canonical isomorphism XB′→̃X×B B′.
We consider sheaves on X. Let π : Z → X be a local canonical covering at

P ∈ X/B, with group G ∼= Zn. Then X has local patch [Z/G] over P ∈ X . Sheaves
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on [Z/G] correspond to G-equivariant sheaves on Z. Let p : X → X be the induced

map to the coarse moduli space. Thus, locally, p is the map [Z/G] → Z/G. If

F is a sheaf on [Z/G] and FZ is the corresponding G-equivariant sheaf on Z, then

p∗F = (π∗FZ)G. In particular, the functor p∗ is exact because the map π is finite and

(π∗FZ)G is a direct summand of π∗FZ .

Let A be a noetherian C-algebra, and let A′ → A be an infinitesimal extension.

Let X/A be a Q-Gorenstein family of slc surfaces, and let X/A be the canonical

covering stack of X/A. A deformation of X/A over A′ is a Deligne–Mumford stack

X′/A′, flat over A′, together with an isomorphism X′ ×SpecA′ SpecA ∼= X. Observe

that, since the extension A′ → A is infinitesimal, we may identify the étale sites

of X′ and X. Thus, equivalently, a deformation X′/A′ of X/A is a sheaf OX′ of flat

A′-algebras on the étale site of X, together with an isomorphism OX′ ⊗A′ A ∼= OX.

In our calculations, we use the local-to-global spectral sequence for Ext and the

Leray spectral sequence for stacks. In particular, if X/A is the canonical covering stack

of a Q-Gorenstein family X/A and p : X → X is the induced map, then H i(X,F) =

H i(X , p∗F) for F a sheaf on X since p∗ is exact.

Let A be a noetherian C-algebra, and let M be a finite A-module. For X/A a flat

family of schemes over A, let X/A be the canonical covering stack and p : X→ X the

induced map. Then a cotangent complex LX/A is defined. Set

T iQG(X/A,M) = ExtiOX
(LX/A,OX ⊗AM),

T iQG(X/A,M) = p∗ExtiOX
(LX/A,OX ⊗AM).

Proposition 1.24 ([Hac04], Proposition 3.7). Let X/A be a Q-Gorenstein family
of slc surfaces, and let X/A be the canonical covering stack. Let A′ → A be an
infinitesimal extension of A. For a Q-Gorenstein deformation X ′/A′ of X/A, let
X′/A′ denote the canonical covering stack of X ′/A′. Then the map X ′/A′ 7→ X′/A′

gives a bijection between the set of isomorphism classes of Q-Gorenstein deformations
of X/A over A′ and the set of isomorphism classes of deformations of X/A over A′.

Theorem 1.25 ([Hac04], Lemma 3.8). Let X/A be a Q-Gorenstein family of slc
surfaces, and let M be a finite A-module. Then the natural map T 0

QG(X/A,M) →
T 0(X/A,M) is an isomorphism.
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Theorem 1.26 ([Hac04], Theorem 3.9). Let X0/A0 be a Q-Gorenstein family of slc
surfaces. Let M be a finite A0-module.

(1) The set of isomorphism classes of Q-Gorenstein deformations of X0/A0 over
A0+M is naturally an A0-module and is canonically isomorphic to T 1

QG(X0/A0,M).
Here A0 +M denotes the ring A0[M ] with M2 = 0.

(2) Let A→ A0 be an infinitesimal extension, and let A′ → A be a further extension
with kernel the A0-module M . Let X/A be a Q-Gorenstein deformation of
X0/A0.

(a) There is a canonical element o(X/A,A′) ∈ T 2
QG(X0/A0,M) which vanishes

if and only if there exists a Q-Gorenstein deformation X ′/A′ of X/A over
A′.

(b) If o(X/A,A′) = 0, the set of isomorphism classes of Q-Gorenstein defor-
mations X ′/A′ is an affine space under T 1

QG(X0/A0,M).

The above theorems for Q-Gorenstein deformations over general noetherian al-

gebras guarantee that there are versal Q-Gorenstein deformations of our surfaces

([Hac01, Sections 9-11]) and we can construct an algebraic stack out of the Q-

Gorenstein deformation theory (cf. [Ar74]). In practice, we need only calculate

first-order deformations of a slc surface X/C. So we may assume that A0 = C and

M ∼= C in Theorems 1.25, 1.26 and define T iX , T iX , T iQG,X , T iQG,X by T iX = T iX(X/C,C),

etc. By the above theorems, first-order Q-Gorenstein deformations of X/C are iden-

tified with T 1
QG,X , and the obstructions to extending Q-Gorenstein deformations lie

in T 2
QG,X . By Theorem 1.25, we also have T 0

QG,X = T 0
X = Hom(ΩX ,OX), the tangent

sheaf of X. Working locally at P ∈ X, let π : Z → X be the canonical covering, with

group G; then T iQG,X = (π∗T iZ)G. Finally, very important is a local-to-global spectral

sequence

Epq
2 = Hp(T qQG,X)⇒ T p+qQG,X ,

given by the local-to-global spectral sequence for Ext on the canonical covering stack

of X. In particular, we have an exact sequence ([Hac04, Page 227])

0→ H1(TX)→ T 1
QG,X → H0(T 1

QG,X)→ H2(TX).
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We refer to [T09, Definition 2.3] and the discussion thereafter for a similar sequence

of weakly Q-Gorenstein deformations (in our sense).

1.5 Stable surfaces and their moduli

Definition 1.27. A stable surface is a slc surface with an ample dualizing sheaf.

We are mostly interested in stable surfaces that are quotients of a product of two

stable curves.

We reproduce a proof of the following proposition to get a feeling what a product

of two stable curves is.

Proposition 1.28 ([vO05], Proposition 3.1). Let C,D be stable curves. Then Z :=
C ×D is a stable surface.

Proof. To start with, we note that C,D are local complete intersections, which implies
that Z is a local complete intersection and hence Cohen–Macaulay.

Now pick a point (P,Q) ∈ Z. There are three cases:

(1) P,Q are both smooth points of the respective curves. Then (P,Q) is a smooth
point of Z.

(2) One of P,Q is a node. Then the local equation of Z around (P,Q) can be taken
as xy = 0 in C3 with (P,Q) = (0, 0, 0) and Z has normal crossing singularities
around (P,Q).

(3) Both of P,Q are nodes. Then the set {(P,Q)|P,Q are both nodes} is finite.
The local equation of Z around (P,Q) are xy = 0, zw = 0 in C4 with (P,Q) =
(0, 0, 0, 0). So locally

Z = Z1 ∪ Z2 ∪ Z3 ∪ Z4

where Z1 : y = w = 0, Z2 : y = z = 0, Z3 : x = w = 0, Z4 : x = z = 0. Take the
normalization Z̃ → Z. Then

Z̃ =
⊔

1≤i≤4

Z̃i and Z̃i→̃Zi ∼= C2, 1 ≤ i ≤ 4.

The inverse image of the 1-dimensional part of Zsing is D̃ =
⊔

1≤i≤4 D̃i ⊂ Z̃

where D̃i ⊂ Z̃i, e.g., D̃1 : xz = y = w = 0 under the identification of Z̃1

with Z1. Now look at the connected components (Z̃i, D̃i), (1 ≤ i ≤ 4). Let
σi : Ẑi → Z̃i be the blow-up at Qi := (0, 0) ∈ Z̃i. Let D̂i be the strict transform
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of D̃i and Ei the exceptional divisor. Then D̂i ∪ Ei is simple normal crossing
and

KẐi
+ D̂i = σ∗i (KZ̃i

+ D̃i)− Ei,

so the pair (Z̃i, D̃i) is log canonical.

For the ampleness of KZ , we note that KZ = π∗1KC+π∗2KD, where πi : Z → Ci, i =
1, 2 are the projections. Since C,D are stable curves, KC and KD are ample. So KZ

is ample by Segre embedding. This concludes the proof of Propostition 1.26.

For lack of appropriate reference, we also prove the following more or less known

statement.

Proposition 1.29. Let Z be a stable surface and G a finite group acting on Z with
finitely many fixed points. Then Z/G is also a stable surface.

Proof. Let X = Z/G. We proceed in several steps according to the definition of a
stable surface.

Step 1: X is Cohen–Macaulay.
For any affine open U = SpecA ⊂ X, we show that A is Cohen–Macaulay. If

π : Z → X denotes the quotient map, then π−1(U) is a G-invariant open affine subset
of Z, say π−1(U) = SpecB. Note that G acts on B and A = BG. Now the assertion
follows from a theorem of Eagon–Hochster ([BH93, Theorem 6.4.5]).

Step 2: X has normal crossing singularities in codimension 1.
This is because Z has normal crossing singularities in codimension 1 and Z → X

is étale in codimension 1.
Step 3: ωX is Q-Cartier.
By the GAGA principle, we can prove this assertion analytically. Since Z is a

stable surface, KZ is Q-Cartier, i.e., there is m ∈ N such that ω
[m]
Z is Cartier. Pick

a point x ∈ X. Suppose π−1(x) = {z1, · · · , zk}. Taking an open neighborhood V of
x, which is small enough, we can assume that U := π−1(V ) =

⋃
1≤i≤k Ui satisfies the

following three conditions:

(1) zi ∈ Ui and Ui is Gzi-invariant;

(2) the Ui’s are pairwisely disjoint;

(3) ω
[m]
Z |U = OU · s ∼= OU , for some s ∈ Γ(U, ω

[m]
Z ).

Now let n := |G| and consider the invertible sheaf (ω
[m]
Z )⊗n. We have

(ω
[m]
Z )⊗n|U = OU · s′
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where s′ := ⊗τ∈Gτ(s) ∈ Γ(U, (ω
[m]
Z ))⊗n is G-invariant. So the isomorphism

(ω
[m]
Z )⊗n|U →̃ OU
s′ 7→ 1

is G-equivariant and

(π∗((ω
[m]
Z )⊗n)|U)G ∼= (π∗OU)G = OV .

Therefore (π∗((ω
[m]
Z )⊗n))G is invertible.

Since π : Z → X is étale in codimension 1, (π∗((ω
[m]
Z )⊗n))G and ω

[mn]
X coincide

in codimension 1. On the other hand, ω
[mn]
X and (π∗((ω

[m]
Z )⊗n))G are both S2 OX-

modules, so we have (π∗((ω
[m]
Z )⊗n))G ∼= ω

[mn]
X . Therefore ω

[mn]
X is invertible and X is

Q-Gorenstein.
Step 4: X has semi log canonical singularities.
Since we have already seen that X has normal crossings in codimension 1, by

[KoSB88, Propostion 4.30] X is semi log canonical if and only if (X̃, D̃) is log canon-
ical, where X̃ → X is the normalization, and D̃ ⊂ X̃ is the inverse image of the
1-dimensional part of Xsing. Similarly the fact that Z is stable implies that (Z̃, Ẽ) is
log canonical, where Z̃ → Z is the normalization, and Ẽ ⊂ Z̃ is the inverse image of
the 1-dimensional part of Zsing. Note that the group action of G on Z lifts to Z̃ and
Z̃/G = X̃. Let π̃ : Z̃ → X̃ be the quotient map. We have KZ̃ + Ẽ = π̃∗(KX̃ + D̃).
Now we can apply [KoM98, Proposition 5.20]: the pair (Z̃, Ẽ) is log canonical if and
only if (X̃, D̃) is log canonical. So X has semi log canonical singularities.

Step 5: ωX is ample.
We know from the proof of Step 3 that ω

[mn]
X is Cartier, where m is the index of

Z and n = |G|. Since π : Z → X is étale in codimension 1, we have

π∗(ω
[mn]
X ) = ω⊗mnZ .

Since π is a finite morphism, the fact that ω⊗mnZ is ample implies that ω
[mn]
X is ample.

In conclusion, X = Z/G is a stable surface.

Corollary 1.30. Let C,D be stable curves. Let Z := C × D and G a group acting
on Z with finitely many fixed points. Then Z/G is a stable surface.

Definition 1.31. Let C,D be two stable curves and G a finite group acting on C×D
with finitely many fixed points. We shall say that X := (C×D)/G is a surface stably
isogenous to a product. As in the case of surfaces isogenous to a product, X is said
to be of unmixed type if G < Aut(C)× Aut(D), and of mixed type otherwise.

We also say that the pair (C ×D,G) is of unmixed type if G < Aut(C)×Aut(D),
and of mixed type otherwise.



17

The stable degenerations of surfaces isogenous to a product are surfaces stably

isogenous to a product, as the following result shows:

Theorem 1.32 (van Opstall). Suppose X → ∆∗ is a family of surfaces isogenous to
a product over a punctured disk. Then, possibly after a finite change of base, totally
ramified over the origin in the disk, X can be completed to a family of stable surfaces
over the disk whose central fibre is a quotient of a product of stable curves (under a
possibly nonfree group action.)

According to the proof of the above theorem in [vO06b, Theorem 3.1], we give

an explicit description of the stable degenerations of surfaces isogenous to a product

here. There are two cases:

(i) (unmixed case) In this case, the general fibre Xt of X → ∆∗ in the above

theorem is a surface isogenous to a product of unmixed type. We have, up to

finite base change, G-equivariant smoothings of stable curves (cf. Section 3.1)

C → ∆ and D → ∆ such that the completion X̃ → ∆ of X → ∆∗ is of the form

(C ×∆ D)/G → ∆. In particular, setting C := C0, D := D0, the central fibre of

the completion is of the form (C ×D)/G where G acts faithfully on C,D and

acts diagonally on C ×D.

(ii) (mixed case) In this case, there exists a finite group G◦, a G◦-equivariant

smoothing C → ∆ of stable curves and a nonsplit extension

1→ G◦ → G→ Z2 → 1

yielding an automorphism ϕ of G◦, such that the pairs (Ct, G) with t 6= 0 satisfy

all the properties, namely (I), (II), (A), (B) in Proposition 1.7. On the central

fibre C0 of C → ∆, we still have a G-action on C0 × C0 that enjoy properties

(I), (II) in propostion 1.7, but not necessarily (A), (B), i.e., the action of G on

C0×C0 is not necessarily free. Now the completion X̃ → ∆ of X → ∆∗ is of the

form (C ×∆ C)/G→ ∆.

In both cases, the degeneration X0 is of the form (C×D)/G, where C,D are stable

curves and G acts in the way described above. Tautologically the pair (C × D,G)
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admits a free smoothing, i.e., a one-parameter family C ×∆ D → ∆ such that the

following hold:

(i) C0 ×D0
∼= C ×D;

(ii) The fibre Ct ×Dt over t 6= 0 is smooth;

(iii) G acts on C ×∆ D preserving the fibres and the action of G on the central fibre

coincides with the given action of G on C ×D;

(iv) G acts freely on the general fibres Ct ×Dt for t 6= 0.

Now we consider the following moduli stack of stable surfaces over the category

(Sch)/C of noetherian C-schemes: for any B ∈ (Sch)/C,

Mst
a,b(B) = {X/B | X/B is a Q-Gorenstein family of stable surfaces over B

and for any closed point t ∈ B,K2
Xt = a, χ(OXt) = b}.

Theorem 1.33. Mst
a,b is a separated and proper Deligne–Mumford stack of finite type.

The underlying coarse moduli space M st
a,b is compact and it contains the moduli space

of stable surfaces X with at most canonical singularities and K2
X = a, χ(OX) = b.

Proof. The proof for the assertion that Mst
a,b is a Deligne–Mumford stack of finite

type is the same as [Hac04, Theorem 4.4]. For the separatedness and properness of
Mst

a,b, we refer to the arguments of [HK04, Remark 2.13].

Remark 1.34. By [KeM97, Corollary 1.3], a separated Deligne-Mumford stack has a
separated algebraic space as coarse moduli space. In particular, ourM st

a,b is a separated
algebraic space of finite type. Moreover it is complete. [Ko90, Theorem 4.12] says
that M st

a,b is in fact a projective scheme. We shall get some connected components of
this moduli scheme by studying the Q-Gorenstein deformations of degenerations of
surfaces isogenous to a product in Chapter 4.

On the other hand, there is Viehweg’s moduli functor of stable surfaces

MV
a,b : (Sch)/C→ (Sets)
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such that, for any B ∈ (Sch)/C,

MV
a,b(B) = { isomorphism classes of families of stable surfaces X/B

such that the relative dualizing sheaf ωX/B is Q-Cartier

and for any closed point t ∈ B,K2
Xt = a, χ(OXt) = b}.

Viehweg’s moduli functor also turns out to have a projective scheme MV
a,b as coarse

moduli space ([HK04]).

Since the condition of Q-Gorenstein family is a priori stronger than Viehweg’s,

there is an inclusion of moduli spaces M st
a,b ⊂MV

a,b which induces a bijection between

their closed points. This already implies that (M st
a,b)red = (MV

a,b)red, i.e., they have

the same reduced scheme structure. So the topological structures of M st
a,b and MV

a,b

are the same. In particular, the connected components are the same for both moduli

spaces. We refer to [Kov09, Section 7] for a nice discussion of the two moduli spaces.



Chapter 2

Automorphisms and their action
on cohomology

Let V be a variety. We can consider the induced action of Aut(V ) on H∗(V,R) and

get a homomorphism ϕ : Aut(V ) → Aut(H∗(V,R)). Here R = Q,R,C or Z. We

have the following questions: Is ϕ injective? If not, what is the kernel? We can

also consider the actions ϕi : Aut(V )→ Aut(H i(V,R)) on the i-th cohomology. The

problem is closely related to the existence of fine moduli space of varieties with level-n

structures ([Po77, Lecture 10]).

It is well known that, if V = C is a smooth curve of genus ≥ 2, then Aut(C) acts

faithfully on H1(C,C), i.e., ϕ1 is injective for R = C.

For smooth surfaces V = S, the above problem has been studied by many authors

(cf. [Cai04]). In the case of K3 surfaces and Enriques surfaces, ϕ2 is injective if the

ring of coefficients is R = Z ([BR75, U76]). However if R = C, then there is an

example of Enriques surface S such that ϕ2 is not injective ([P79]). In the following,

we will assume the ring of coefficients R = C. For surfaces of general type with base

point free |KS|, Peters [P79] proved among other things that, if ϕ2 is not injective,

then either K2
S = 8χ(OS) and Ker(ϕ2) is a 2-group, or K2

S = 9χ(OS) and Ker(ϕ2) is a

3-group. Then in a series of papers ([Cai04, Cai06a, Cai06b, Cai07]), Cai studied the

case of surfaces of general type more systematically. He showed that if χ(OS) > 188,

then |Ker(ϕ2)| ≤ 4 ([Cai04, Theorem A]). If the surfaces have a fibration of curves

20
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of genus 2 and χ(OS) is ≥ 5, then |Ker(ϕ2)| ≤ 2 and he can effectively classify the

surfaces with |Ker(ϕ2)| = 2 ([Cai07, Theorems 1.1 and 1.2]).

In this chapter, I study the action of automorphisms on the second cohomology

(with C-coefficient) in the case of surfaces isogenous to a product. Moreover we only

consider a subgroup of automorphisms of the surface which is easily derived from the

construction of the surface S = (C ×D)/G with G abelian.

Back to the general situation, if V is a variety and G < Aut(V ) is a subgroup of the

automorphism group, then we have the action of G on H∗(V,C), i.e., a homomorphism

φ : G→ Aut(H∗(V,C)). We can also consider the action of G on the i-th cohomology

φi : G→ Aut(H i(V,C)).

Assuming G is abelian, then H i(V,C) decomposes into
⊕

χH
i(V,C)χ, where χ ∈

G∗ runs through the characters of G and H i(V,C)χ is the eigenspace of χ. Denote

hi(V,C)χ := dimCH
i(V,C)χ.

Theorem 2.1 ([B87], Proposition 2, or [B91], p.244). Let C be a smooth curve of
genus g(C) ≥ 2 and G < Aut(C) a finite abelian group of automorphisms. Let
π : C → C/G be the quotient map and r the number of branch points on C/G. Then,
for 1 6= χ ∈ G∗,

h1(C,C)χ = (2g(C/G)− 2 + r)−
r∑
j=1

lσj(χ) (2.1)

where 〈σ1〉, · · · , 〈σr〉 are the stabilizers of the points lying over the r branch points of
C → C/G and for any σ ∈ G,

lσ(χ) =

{
1 if χ(σ) = 1;
0 if χ(σ) 6= 1.

For the automorphism group of a surface isogenous to a product, we have the

following result.

Proposition 2.2. Let S = (C × D)/G be (the minimal realization of) a surface
isogenous to a product. Then

Aut(S) = NG/G,

where NG is the normalizer of G in Aut(C ×D).
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Proof. Let π : C ×D → S be the quotient map. Given a σ ∈ G, we have a lift σ̃ of σ
with σ̃ ∈ Aut(C ×D) such that

C ×D σ̃−−−→ C ×D

π

y yπ
S

σ−−−→ S

is commutative. This is simply because of the uniqueness of minimal realization of
S. On the other hand, given σ̃ ∈ Aut(C × D), σ̃ descends to an automorphism
σ ∈ Aut(S) if and only if it is in the normalizer NG of G in Aut(C × D). Hence
we have a surjective homomorphism of groups NG � Aut(S) and the kernel is easily
seen to be G. So Aut(S) = NG/G.

Now we assume S = (C ×D)/G is a surface isogenous to a product of unmixed

type and G is abelian. Let NG be the normalizer of G in Aut(C×D). By Proposition

2.2, Aut(S) = NG/G. Since G is abelian, it is easy to see that G × G < NG. So we

have G ∼= (G×G)/G < NG/G = Aut(S).

Consider the induced action of G on H2(S,C), i.e., the homomorphism φ2 : G→
Aut(H2(S,C)). Note that

H2(S,C) = H2(C ×D,C)G

=
(
H2(C,C)⊗C H

0(D,C)
)⊕(

H0(C,C)⊗C H
2(D,C)

)
⊕
χ∈G∗

(
H1(C,C)χ ⊗C H

1(D,C)χ
−1
)
.

For any σ ∈ (G×G)/G, σ acts trivially on the summands(
H2(C,C)⊗C H

0(D,C)
)⊕(

H0(C,C)⊗C H
2(D,C)

)
.

So σ acts nontrivially on H2(S,C) if and only if σ acts nontrivially on H1(C,C)χ ⊗C

H1(D,C)χ
−1

for some χ ∈ G∗. The above condition further translates to the existence

of χ ∈ G∗ such that

χ(σ) 6= 1, H1(C,C)χ 6= 0 and H1(D,C)χ
−1 6= 0.

Theorem 2.3. Assume the genus g(C/G) of C/G is ≥ 2. Then φ2 : G→ Aut(H2(S,C))
is injective.
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Proof. We have to show that for any σ ∈ G, φ2(σ) 6= 1, i.e., σ acts nontrivially on
H2(S,C). By the above discussion, it suffices to find a χ0 ∈ G∗, such that

χ0(σ) 6= 1, H1(C,C)χ0 6= 0 and H1(D,C)χ
−1
0 6= 0.

For any χ ∈ G∗, we have

h1(C,C)χ = (2g(C/G)− 2 + r)−
r∑
j=1

lσj(χ) ≥ 2g(C/G)− 2 ≥ 2

by Theorem 2.1. On the other hand, since
∑

χ h
1(D,C)χ = 2g(D) > 2g(D/σ) =∑

χ(σ)=1 h
1(D,C)χ, there is at least one χ0 such that h1(D,C)χ

−1
0 > 0 and χ0(σ) 6= 1.

This χ0 is what we want and the proof is complete.

Theorem 2.4. Assume g(C/G) = g(D/G) = 1. For the two quotient maps C →
C/G and D → D/G, we have two respective generating vectors, say (a, b;σ1, . . . , σr)
and (c, d; τ1, . . . , τs) (cf. Page 5). Then either

(i) φ2 : G→ Aut(H2(S,C)) is injective, or

(ii) σ1 = · · · = σr, τ1 = · · · = τs and |σ1| = |τ1| = 2. In this case, Ker(φ2) = 〈σ1τ1〉.

Proof. By the previous discussion, given 1 6= σ ∈ G, σ acts nontrivially on H2(S,C)
if and only there is a χ ∈ G∗ such that

χ(σ) 6= 1, h1(C,C)χ > 0 and h1(D,C)χ
−1

> 0. (2.2)

Now Broughton’s formula (2.1) gives

h1(C,C)χ = (2g(C/G)− 2 + r)−
r∑
i=1

lσi(χ)

= r −
r∑
i=1

lσi(χ).

Similarly

h1(D,C)χ = s−
s∑
j=1

lτj(χ).

Taking the definition of lσi(χ) (cf. Theorem 2.1) into consideration, we see that
h1(C,C)χ > 0 if and only if χ(σi) 6= 1 for at least one i. A similar argument using the
definition of lτj(χ) proves that h1(D,C)χ

−1
> 0 if and only if χ(τj) 6= 1 for at least

one j. So (2.2) is equivalent to the following conditions:

χ(σ) 6= 1, χ(σi) 6= 1 and χ(τj) 6= 1, for some i and j. (2.3)
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Set
Gij := 〈σi, τj〉, 1 ≤ i ≤ r, 1 ≤ j ≤ s.

The fact that G acts freely on C ×D means 〈σi〉 ∩ 〈τj〉 = {1}, for any 1 ≤ i ≤ r, 1 ≤
j ≤ s (cf. (1.2) on Page 6). So Gij is in fact isomorphic to the direct sum 〈σi〉 ⊕ 〈τj〉.
As a result, we can always find a χ′ij ∈ G∗ij such that

χ′ij(σi) = ξi and χ′ij(τj) = ηj

where ξi and ηj are roots of unity of order |σi| and |τj| respectively.
Consider the exact sequence

1→ Gij → G→ G/Gij → 1.

Since C∗ is an injective Z-module, we get the dual exact sequence

1→ (G/Gij)
∗ → G∗ → G∗ij → 1,

by applying HomZ(·,C∗). In particular, we can find a χij ∈ G∗ restricting to χ′ij by
the surjection G∗ → G∗ij. So we have χij ∈ G∗ such that

χij(σi) = ξi and χij(τj) = ηj.

If σ is in some 〈σi〉 or 〈τj〉, then at least one of the χij’s satisfies (2.3) and hence
σ acts nontrivially on H2(S,C).

In the following, we assume σ /∈ 〈σi〉 or 〈τj〉, for any 1 ≤ i ≤ r and 1 ≤ j ≤ s.
Suppose σ /∈ Gi,j for some i, j. Then the image σ of σ in G/Gij is nontrivial, so

we have a character χ0 ∈ (G/Gij)
∗ such that χ0(σ) 6= χij(σ)−1. Let χ0 ∈ G∗ be the

image of χ0 under the natural lifting map (G/Gij)
∗ → G∗. Setting χ = χij · χ0, we

have
χ(σ) = χ0(σ) · χij(σ) 6= 1, χ(σi) = ξi 6= 1, χ(τj) = ηj 6= 1.

So this χ satisfies (2.3) and hence σ acts nontrivially on H2(S,C)..
In the following, we assume further that σ ∈ Gi,j for every i, j.
Assume |σi| = |τj| = 2 for any 1 ≤ i ≤ r, 1 ≤ j ≤ s. Due to the assumption

that σ /∈ 〈σi〉 or 〈τj〉, for any 1 ≤ i ≤ r and 1 ≤ j ≤ s, this is only possible when
σ1 = · · · = σr, and τ1 = · · · = τs, i.e., we are in case (ii) of the theorem. In this case,
σ = σ1τ1. For any χ ∈ G∗ such that χ(σ1) 6= 1 and χ(τ1) 6= 1, we have

χ(σ1) = −1, χ(τ1) = −1.

Hence χ(σ) = χ(σ1τ1) = 1 and σ is in Ker(φ2). Moreover there is no other nontrivial
element in Ker(φ2) as we have seen above. So Ker(φ2) = 〈σ1τ1〉.
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If there is some σi or τj, say σi whose order is ≥ 3, then we can adjust χ′ij of the
value at σi to find a χ′ ∈ (Gij)

∗ such that χ′(σ) 6= 1, χ′(σi) = ξ′i and χ′(τj) = ηj where
ξ′i is a |σi|-th root of unity. More precisely, if χ′ij(σ) 6= 1, we simply set χ′ = χij;
otherwise χ′ij(σ) = 1. In the later case, we write σ = σai τ

b
j . Since σ /∈ 〈σi〉 by

assumption, we have a 6= 0. Let χ′ ∈ (Gij)
∗ be such that χ′(σi) = ξ′i := ξ−1

i and
χ′(τj) = ηj. Then it is easily seen that χ′(σ) 6= 1. By the surjection G∗ → (Gij)

∗, we
can get a χ such that χ(σ) 6= 1, χ(σi) = ξ′i and χ(τj) = ηj. In particular, χ satisfies
(2.3) above and the proof is complete.

Remark 2.5. When case (ii) of the above theorem occurs, we have σ1 · · ·σr = τ1 · · · τs =
1 by (1.1) on Page 5. So both r and s are even.

We will give examples of case (ii) in Theorem 2.4.

Example 2.6. Let G = 〈σ, τ〉 ∼= Z2 ⊕ Z2 : so σ and τ are elements of order 2. Let
C ′, D′ be two elliptic curves and {P1, · · · , P2r′} ⊂ C ′ (resp. {Q1, · · · , Q2s′} ⊂ D′) be
a set of distinct 2r′ (resp. 2s′) points. Then the fundamental group of the punctured
curve C ′ \ {P1, · · · , P2r′} is

π1(C ′ \ {P1, · · · , P2r′}) = 〈α, β, γ1, · · · , γ2r′| [α, β]γ1 · · · γ2r′ = 1〉.

where α, β is the standard basis of π1(C). There is a surjective homomorphism

π1(C ′ \ {P1, · · · , P2r′})→ G

α, β 7→ τ

γi 7→ σ, for all 1 ≤ i ≤ 2r′.

By Riemann’s existence theorem (cf. Page 5), we have a G-covering of smooth curves
C → C ′ such that P1, · · · , P2r′ are the branch points and the stabilizer of the points
lying over Pi is 〈σ〉 for any 1 ≤ i ≤ 2r′.

Similarly we can construct a G-covering D → D′ such that Q1, · · · , Q2s′ are the
branch points and the stabilizer of the points lying over Qj is 〈τ〉 for any 1 ≤ j ≤ 2s′.

Let G act diagonally on C×D. Since 〈σ〉∩〈τ〉 = {1}, G acts freely on C×D and
hence S := (C ×D)/G is a surface isogenous to a product in case (ii) of Theorem 2.4
(cf. Pages 5 and 6). By Hurwitz’s formula, we have

2g(C)− 2 = |G|(2g(C ′)− 2) + |G| · r′,

hence

g(C) =
|G| · r′

2
+ 1 = 2r′ + 1.

Similarly g(D) = 2s′ + 1. Then it is easy to see that (cf. Remark 1.6)

K2
S =

8(g(C)− 1)(g(D)− 1)

|G|
= 8r′s′,
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which can be arbitrarily large as r′, s′ grow. So such surfaces S form an infinite series
of surfaces of general type.

Now we consider examples with g(C/G) = 1 and g(D/G) = 0.

Example 2.7. Let G = 〈e1, e2, e3〉 ∼= Z⊕3
2 . We have

|e1| = |e2| = |e3| = 2 and 〈ei〉 ∩ 〈ej〉 = 1, for all 1 ≤ i < j ≤ 3.

Let C ′, D′ be two smooth curves of genera g(C ′) = 1, g(D′) = 0. Let {P1, · · · , P2r′} ⊂
C ′ be a set of distinct 2r′ points. Then

π1(C ′ \ {P1, · · · , P2r′}) = 〈α, β, γ1, · · · , γ2r′| [α, β]γ1 · · · γ2r′ = 1.〉

and we have a surjective homomorphism

f : π1(C ′ \ {P1, · · · , P2r′})→ G

such that f(α) = e2, f(β) = e3 and f(γi) = e1 for any 1 ≤ i ≤ 2r′. By Riemann’s
existence theorem, we get a G-covering C → C ′ such that P1, · · · , P2r′ are the branch
points and 〈e1〉 is the stabilizer of the points lying over Pi for any 1 ≤ i ≤ 2r′.

Let Q1, · · · , Q6 be six distinct points on D′. Then

π1(D′ \ {Q1, · · · , Q6}) = 〈δ1, · · · , δ6| δ1 · · · δ6 = 1〉.

So we have a surjective homomorphism

h : π1(D′ \ {Q1, · · · , Q6})→ G

such that

h(δ1) = h(δ2) = e2, h(δ3) = h(δ4) = e3, h(δ5) = h(δ6) = e1 + e2 + e3.

Again by Riemann’s existence theorem, we get a G-covering D → D′ such that
Q1, · · · , Q6 are the branch points and the stabilizers of the points lying over Q1, Q2

(resp. Q3, Q4, resp. Q5, Q6) are both 〈e2〉 (resp. 〈e3〉, resp. 〈e1 + e2 + e3〉).
Let G act on C ×D diagonally. Since

〈e1〉 ∩ 〈e2〉 = 〈e1〉 ∩ 〈e3〉 = 〈e1〉 ∩ 〈e1 + e2 + e3〉 = {1},

we see that G acts freely on C ×D (cf. Pages 5 and 6), and hence S := (C ×D)/G
is a surface isogenous to a product.

Set
τ1 = τ2 = e2, τ3 = τ4 = e3, τ5 = τ6 = e1 + e2 + e3.
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By Theorem 2.1, given a χ ∈ G∗, H1(C,C)χ 6= 0 (resp. H1(D,C)χ
−1 6= 0) if and only

if χ(e1) 6= 1 (resp. χ(τi) 6= 1 for at least three i, 1 ≤ i ≤ 6) (see the proof of Theorem
2.4). Consider the character χ such that χ(e1) = χ(e2) = χ(e3) = −1. This is the
only character χ satisfying the following conditions:

H1(C,C)χ 6= 0 and H1(D,C)χ
−1 6= 0.

Let Gχ = Ker(χ : G→ C∗). Then

Ker(φ2 : G→ H2(S,C)) = Gχ = 〈e1 + e2, e1 + e3〉 ∼= Z⊕2
2 .

By Hurwitz’s formula,

2g(C)− 2 = |G|(2g(C ′)− 2) + |G| · r′,

hence g(C) = 4r′ + 1. Similarly g(D) = 5. So

K2
S =

8(g(C)− 1)(g(D)− 1)

|G|
= 16r′,

and our surfaces S form an infinite series as r′ varies, giving the existence of one case
in [Cai04, Theorem A]. Note that the irregularity of S is q(S) = g(C ′) + g(D′) = 1.

Following the line of Example 2.7, we give examples with g(C/G) = g(D/G) = 0.

Example 2.8. Let G = 〈e1, e2, e3〉 ∼= Z⊕3
2 . Let C ′, D′ be two smooth curves of genus

0. Let {P1, · · · , P2r′+6}, r′ ≥ 1 be a set of distinct 2r′ + 6 points on C ′. Then

π1(C ′ \ {P1, · · · , P2r′+6}) = 〈γ1, · · · , γ2r′+6| γ1 · · · γ2r′+6 = 1.〉

and we have a surjective homomorphism

f : π1(C ′ \ {P1, · · · , P2r′+6})→ G

such that

f(γ1) = · · · = f(γ2r′+2) = e1 + e3,

f(γ2r′+3) = f(γ2r′+4) = e3,

f(γ2r′+5) = f(γ2r′+6) = e1 + e2 + e3.

By Riemann’s existence theorem, we get aG-covering C → C ′ such that P1, · · · , P2r′+6

are the branch points and 〈e1 + e3〉 (resp. 〈e3〉, 〈e1 + e2 + e3〉) is the stabilizer of the
points lying over Pi for 1 ≤ i ≤ 2r′ + 2 (resp. P2r′+3 and P2r′+4, P2r′+5 and P2r′+6).
We have g(C) = 4r′ + 5.
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Let Q1, · · · , Q5 be five distinct points on D′. Then

π1(D′ \ {Q1, · · · , Q5}) = 〈δ1, · · · , δ5| δ1 · · · δ5 = 1〉.
So we have a surjective homomorphism

h : π1(D′ \ {Q1, · · · , Q5})→ G

such that

h(δ1) = h(δ2) = e2 + e3, h(δ3) = e1, h(δ4) = e2, h(δ5) = e1 + e2.

Again by Riemann’s existence theorem, we get a G-covering D → D′ such that
Q1, · · · , Q5 are the branch points and the stabilizers of the points lying over Q1 and
Q2 (resp. Q3, Q4, Q5) are 〈e2 + e3〉 (resp. 〈e1〉, 〈e2〉, 〈e1 + e2〉). We have g(D) = 3.

Let G act on C ×D diagonally. We see that G acts freely on C ×D (cf. Pages 5
and 6), and hence S := (C ×D)/G is a surface isogenous to a product.

Set

σ1 = · · · = σ2r′+2 = e1 + e3,

σ2r′+3 = σ2r′+4 = e3, σ2r′+5 = σ2r′+6 = e1 + e2 + e3;

τ1 = τ2 = e2 + e3, τ3 = e1, τ4 = e2, τ5 = e1 + e2.

By Theorem 2.1, given a χ ∈ G∗, H1(C,C)χ 6= 0 (resp. H1(D,C)χ
−1 6= 0) if and only

if χ(σi) 6= 1 for at least three i, 1 ≤ i ≤ 2r′ + 6 (resp. χ(τj) 6= 1 for at least three
j, 1 ≤ j ≤ 5). Consider the character χ such that χ(e1) = χ(e2) = χ(e2 + e3) = −1.
This is the only character χ satisfying the following conditions:

H1(C,C)χ 6= 0 and H1(D,C)χ
−1 6= 0.

Let Gχ = Ker(χ : G→ C∗). Then

Ker(φ2 : G→ H2(S,C)) = Gχ = 〈e1 + e2, e3〉 ∼= Z⊕2
2 .

We have

K2
S =

8(g(C)− 1)(g(D)− 1)

|G|
= r′ + 1,

and the surfaces S form an infinite series as r′ varies, giving the existence of one case
in [Cai04, Theorem A]. Since q(S) = g(C ′) + g(D′) = 0, the surfaces are regular.

Remark 2.9. It seems that the picture is far from being complete. It is very interesting
to know when G × G = NG in Aut(C × D). In that case, the group G considered
in Theorems 2.3 and 2.4 will be the whole automorphism group of S (Theorem 2.2)
and our results will contribute more to the problem posed in the beginning of this
chapter.

It is also interesting to consider the case where G is not abelian, but the situation
there is much more complicated. For example, G × G is not contained in NG any
more and we cannot get an automorphism group of S as in the abelian case.



Chapter 3

Stable degenerations of surfaces
isogenous to a product

In this chapter I will classify the possible singularities on a stable degeneration of

surfaces isogenous to a product.

3.1 Smoothings of stable curves with group ac-

tions

Our surfaces can be constructed by taking finite quotients of products of two stable

curves, so their geometry is closely related to that of stable curves. In this section,

we will establish some facts about smoothings of stable curves with group actions.

More precisely, in the case when the group action admits a smoothing, we will show

what the stabilizers on the central fibre can be and how they act locally analytically.

These facts are used in Sections 3.2 and 3.3 for the smoothing of a product of stable

curves.

We will recall the definition of stable curves first ([DM69]):

Definition 3.1. Let g ≥ 2 be an integer. A stable curve of genus g is a reduced,
connected, 1-dimensional scheme C over C such that:

(i) C has only ordinary double points as singularities;

(ii) if E is a non-singular rational component of C, then E meets the other compo-
nents of C in more than 2 points;

29
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(iii) dim H1(OC) = g.

Then we give the definition of smoothing of a stable curve with a group action.

Definition 3.2. Let G be a finite group acting faithfully on a stable curve C. A
smoothing of the pair (C,G) is a (flat) family of stable curves C → ∆ over the unit
disk such that

(i) the central fibre C0 is isomorphic to C;

(ii) The fibre Ct of the family over t 6= 0 is smooth;

(iii) G acts on C preserving the fibres, and the action on C0 coincides with the given
one on C under the isomorphism of (i).

Remark 3.3. We also call C → ∆ a G-equivariant smoothing of C.

Now let (C,G) be as in the definition and assume C → ∆ is a smoothing of (C,G).

Lemma 3.4. There are only finitely many points on C having non-trivial stabilizers,
or, equivalently, there are only finitely many fixed points for the G-action.

Proof. Otherwise there is a τ 6= 1 ∈ G acting as identity on some irreducible compo-
nent D of C. Pick a smooth point P of D, the germ of C around P can be viewed
as a deformation of the germ of C around P . Since this deformation must be trivial,
C is smooth around P and we can take local coordinate z of D and local coordinate
t of ∆ such that (z, t) form local coordinates of C around P and C → ∆ is given by
(z, t) 7→ t. Therefore τ acts as (z, t) 7→ (z, t), i.e., τ acts as identity on C around P .
So τ = 1 ∈ G, a contradiction.

Lemma 3.5. If P ∈ C is a smooth point, then GP is cyclic.

Proof. There is an embedding GP ↪→ GL(TPC), where TPC ∼= C is the tangent space
of C at P . Since TPC is a 1-dimensional vector space, GL(TPC) ∼= C∗. So GP , being
a finite subgroup of C∗, is cyclic.

Lemma 3.6. If P ∈ C is a smooth point, and 1 6= τ ∈ GP , then τ also fixes points
on Ct, for t 6= 0.

Proof. As in the proof of Lemma 3.4, we can find local coordinates (z, t) for C around
P such that τ acts as (z, t) 7→ (ξ(τ)z, t), where ξ(τ) ∈ C∗ is a primitive |τ |-th
root of unity. So τ fixes z = 0 ⊂ C, which maps onto ∆. Now it is evident that
Ct ∩ {z = 0} 6= ∅, i.e., τ fixes points on Ct, for t 6= 0.

Lemma 3.7. If P ∈ C is a node, then GP is either cyclic or dihedral.
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Proof. The germ of C around P can be seen as a deformation of a node. We can
find an embedding of the germ into (C3, 0) such that the equation of the germ is
xy − tk = 0, k ≥ 1. In fact, let

{xy − s = 0} → ∆
(x, y, s) 7→ s

be the semiuniversal family of a node. Then locally around P , C → ∆ is just the
pull-back by

∆ → ∆
t 7→ s = tk

where k ≥ 1.
By Cartan’s lemma, we can assume the action of GP is given by

τ : (x, y, t) 7→ (a1x+ a2y, b1x+ b2y, t).

for any τ ∈ GP . Since GP acts on the central fibre C0 : xy = 0, it is easy to see that(
a1 a2

b1 b2

)
=

(
ξ(τ) 0

0 ξ(τ)−1

)
or

(
0 η(τ)

η(τ)−1 0

)
where ξ(τ) is a primitive |τ |-th root of unity and η(τ) is some non-zero number. So
we have an exact sequence of groups

1→ H → GP
π−→ Z2

where for any τ ∈ GP ,

π(τ) := det(τ) =

{
1, if τ does not interchange the branches at P,

−1, if τ interchanges the branches at P.

and H := Ker(π). Note that H consists of τ ∈ GP whose action is given by(
ξ(τ) 0

0 ξ(τ)−1

)
.

So H embeds into C∗:
H → C∗
τ 7→ ξ(τ),

which implies that H is cyclic. Let τ0 be a generator of H.
If im(π) = {1}, then GP = H is cyclic.
If imπ = Z2, then there exists τ1 ∈ GP such that

τ1(x, y, t) = (η(τ1)y, η(τ1)−1x, t).
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Obviously τ 2
1 = 1 and τ1 · τ0 · τ−1

1 (x, y, t) = (ξ(τ0)−1x, ξ(τ0)y) = τ−1
0 (x, y, t). So if

imπ = Z2,

GP =

{
a dihedral group, if |H| ≥ 2;

Z2, if |H| = 1.

Lemma 3.8. Let P ∈ C be a node. Suppose 1 6= τ ∈ GP : then τ fixes points on Ct
near P , for t 6= 0 if and only if π(τ) = −1, where π : GP → Z2 is as in the proof of
the previous lemma.

Proof. We adopt the notation in Lemma 3.7, so the germ of C around P is defined
by xy − tk = 0, k ≥ 1 and the action of GP is a linear one.

Let τ ∈ GP . If π(τ) = 1, then

τ(x, y, t) = (ξ(τ)x, ξ(τ)−1y, t)

where ξ(τ) ∈ C∗ is a |τ |-th primitive root of unity. Suppose (x, y, t) ∈ C is a fixed
point of τ . Then

τ(x, y, t) = (ξ(τ)x, ξ(τ)−1y, t) = (x, y, t)⇒ x = y = 0.

and xy = tk implies t = 0. So τ fixes only (0, 0, 0) on C and does not fix any point on
Ct for t 6= 0.

On the other hand, if π(τ) = −1, then τ(x, y, t) = (η(τ)y, η(τ)−1x, t) with η(τ) ∈
C∗. So τ(x, y, t) = (x, y, t) if and only if η(τ)y = x. Taking the equation xy = tk

into consideration, τ fixes 2 points: (η(τ)
√

tk

η(τ)
, t) and (−η(τ)

√
tk

η(τ)
, t) on Ct, for

t 6= 0.

Now we can state our main theorem in this section:

Theorem 3.9. A pair (C,G) admits a smoothing if and only if for any node P ∈ C,
we can find local (analytic) embedding of C : (xy = 0) ⊂ C2 such that, for any τ ∈ GP ,
the action of τ is given by either

(i) (x, y) 7→ (ξ(τ)x, ξ(τ)−1y) where ξ(τ) is a |τ |-th root of unity; or

(ii) (x, y) 7→ (η(τ)y, η(τ)−1x) where η(τ) ∈ C∗ is a nonzero number.

Proof. The “only if”part is shown in the proof of Lemma 3.7.
For the “if ”part, we divide the proof into two steps.
Step 1: The germ P ∈ C has a local G-equivariant smoothing. More precisely,

let U ⊂ C be a neighborhood around P defined by xy = 0 ⊂ C2 as in the hypothesis,
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we will show that the pair (U,GP ) is GP -smoothable. In fact we can consider the
family U : (xy−s = 0 ⊂ C2×∆)→ ∆ with s ∈ ∆ as the parameter. For any τ ∈ GP ,

τ(x, y) = (ξ(τ)x, ξ(τ)−1y) or (η(τ)y, η(τ)−1x),

and it is easily seen that the action of GP on U extends to the family U → ∆.
Note that U → ∆ is the semiuniversal deformation of the node P ∈ U and the

tangent space of the base space at 0 is

Ext1OU (ΩU ,OU) ∼= T0∆ ∼= C.

The fact that (U,GP ) is smoothable means exactly that Ext1OU (ΩU ,OU) isGP -invariant.
Step 2: We will use the local-to-global exact sequence

0→ H1(C, TC)→ Ext1
OC (ΩC ,OC)

π−→ H0(C, Ext1OC (ΩC ,OC))→ 0

to prove that local smoothings of nodes with stabilizers lift to smoothings of (C,G).
To do this, first note that

H0(C, Ext1OC (ΩC ,OC)) =
⊕
P node

Ext1
OC,P (ΩC,P ,OC,P ), (3.1)

where, for any coherent sheaf F on C, FP denotes the stalk of F at P . For any
τ ∈ G, τ acts on H0(C, Ext1OC (ΩC ,OC)) and maps the Ext1

OC,P (ΩC,P ,OC,P ) summand

isomorphically to the Ext1
OC,τ(P )

(ΩC,τ(P ),OC,τ(P )) summand.

Let n(P ) := |G/GP | and τ1, · · · , τn(P ) ∈ G representatives of elements of G/GP .
Then τ1(P ), · · · , τn(P )(P ) is the orbit of P under the action of G. And G acts on the
vector space

VP :=

n(P )⊕
j=1

Ext1
OC,τj(P )

(ΩC,τj(P ),OC,τj(P )).

The invariant subspace V G
P is 1-dimensional, spanned by

(τ1(σ), · · · , τn(P )(σ))

where σ is an element spanning Ext1
OC,P (ΩC,P ,OC,P ) ∼= C. In view of (3.1), the

dimension of H0(C, Ext1OC (Ω1
C ,OC)) is exactly the number of node orbits under the

action of G. Taking the G-invariants of the local-to-global sequence, we get

0→ H1(C, TC)G → Ext1
OC (ΩC ,OC)G

π−→ H0(C, Ext1OC (ΩC ,OC))G → 0.

In particular, there exists λ ∈ Ext1
OC (ΩC ,OC)G such that the π(λ)’s P -summand is

nonzero for any node P ∈ C. Then λ gives a smoothing of (C,G).
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3.2 Singularities of degenerations of surfaces isoge-

nous to a product of unmixed type

We can study smoothings of a product of two stable curves with a group action in a

similar way as the G-equivariant smoothings of curves in Section 3.1.

We treat the unmixed case first. Let C,D be two stable curves. Assume a finite

G acts (faithfully) on C,D and acts diagonally on C×D. Suppose (C×D,G) admits

a free smoothing (C ×∆ D, G) → ∆, where C → ∆ and D → ∆ are smoothings of

C,D respectively (cf. the discussion after Theorem 1.32). Let (P,Q) ∈ C ×D, and

G(P,Q) the stabilizer as usual. First observe that

τ ∈ G(P,Q) ⇔ τ(P,Q) = (P,Q)

⇔ (τP, τQ) = (P,Q)

⇔ τP = P, τQ = Q

⇔ τ ∈ GP ∩GQ,

hence G(P,Q) = GP ∩GQ.

Proposition 3.10 (Criterion for free smoothings in the unmixed case). Let C,D
be two stable curves and let G be a finite group acting on C and D. Let G act on
Z := C ×D diagonally. Then the pair (Z,G) admits a free smoothing if and only if
for any (P,Q) ∈ C ×D, we have one of the following:

(U0) if both P,Q are smooth points on C,D respectively, then G(P,Q) = {1}.

(U1) if one of P,Q, say P , is a node and the other is a smooth point, then G(P,Q) = 〈τ〉
is cyclic, and we can find a local embedding of C : (xy = 0) ⊂ C2 as well as
a local coordinate z of D such that τ(x, y, z) = (ξx, ξ−1y, ξqz), where ξ is a
primitive root of unity of order |τ | and (q, |τ |) = 1.

(U2) if both P,Q are nodes of respective curves, then G(P,Q) = 〈τ〉 is cyclic and τ
interchanges the branches of at most one of C and D. In this case, we have one
of the following

(U2a) G(P,Q) = {1}.
(U2b) if τ does interchange the branches of C or D, say C, then the order of τ

is 2 and we can choose local embeddings C : (xy = 0) ⊂ C2 and D : (zw =
0) ⊂ C2 such that τ(x, y, z, w) = (y, x,−z,−w).
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(U2c) if τ does not interchange any branches of C,D, then we can choose lo-
cal embeddings C : (xy = 0) ⊂ C2 and D : (zw = 0) ⊂ C2 such that
τ(x, y, z, w) = (ξx, ξ−1y, ξqz, ξ−qw), where ξ is a primitive root of unity of
order |τ | and (q, |τ |) = 1.

Proof. For the “ ⇒ ” direction, suppose Z = C ×∆ D → ∆ is a free smoothing of
(C×D,G). Let (P,Q) be any point on C×D. We divide our further discussion into
3 cases:

(U0) P,Q are both smooth points on C,D respectively.

We will show in this case that G(P,Q) = {1}. Suppose 1 6= τ ∈ G(P,Q): then
P,Q are both fixed points of τ . Since P,Q are both smooth points on C,D
respectively, τ fixes points on Ct,Dt for t 6= 0 by Lemma 3.6. So τ fixes points
on Ct × Dt for t 6= 0, which contradicts the assumption that G acts freely on
Ct ×Dt for t 6= 0.

(U1) One of P,Q, say P , is a node and the other is a smooth point.

Suppose G(P,Q) 6= {1}. By Lemma 3.5, GQ is cyclic and hence its subgroup
G(P,Q) is also cyclic. Let G(P,Q) = 〈τ〉, τ 6= 1. By Lemma 3.6, τ fixes points of
Dt for t 6= 0. Since G acts freely on Ct ×Dt for t 6= 0, τ does not fix any point
of Ct, t 6= 0. By Lemma 3.8, τ does not interchange the (analytic) branches of C
around P . Hence there are local embeddings C : (xy = 0) ⊂ C2 with P = (0, 0)
and local coordinate z of D around Q such that the action of τ on C ×D is

(x, y, z) 7→ (ξ(τ)x, ξ(τ)−1y, ξ(τ)qz)

where ξ(τ) is a primitive root of unity of order |τ | and (q, |τ |) = 1.

(U2) P,Q are both nodes on C,D.

Suppose G(P,Q) 6= {1}. By Lemma 3.7, we have that GP and GQ are either cyclic
or dihedral. This implies that G(P,Q) = GP ∩ GQ is either cyclic or dihedral.
Suppose G(P,Q) is dihedral. Then GP and GQ are both dihedral and, by the
proof of Lemma 3.7, there is τ1 ∈ G(P,Q) (resp. τ2 ∈ G(P,Q)) such that τ1 (resp.
τ2) interchanges the branches of C at P (resp. the branches of D at Q). By
Lemma 3.8, τ1 (resp. τ2) fixes points of Ct (resp. Dt) for t 6= 0. Since neither τ1

nor τ2 fixes points on Ct×Dt, τ1 (resp. τ2) does not fix points on Dt (resp. Ct).
Again by Lemma 3.8, τ1 (resp. τ2) does not interchange the branches of D at
Q (resp. the branches of C at P ). Now set τ := τ1τ2, then τ interchanges the
branches of C as well as those of D. This implies that τ fixes points on Ct×Dt
for t 6= 0, a contradiction.
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So G(P,Q) is cyclic and we can assume that G(P,Q) = 〈τ〉. Since τ does not fix any
point on Ct×Dt for t 6= 0, τ interchanges the branches of at most one of C and
D. If τ does interchange the branches of one of C and D, say C, then the order
of τ is 2 (Lemma 3.7) and we can choose local embeddings C : (xy = 0) ⊂ C2

and D : (zw = 0) ⊂ C2 such that τ acts as

(x, y, z, w)→ (y, x,−z,−w).

If τ does not interchange any branches of C,D, then we can choose local em-
beddings C : (xy = 0) ⊂ C2, D : (zw = 0) ⊂ C2 such that

τ(x, y, z, w) = (ξ(τ)x, ξ(τ)−1y, ξ(τ)qz, ξ(τ)−qw)

where ξ(τ) is a primitive root of unity of order |τ | and (q, |τ |) = 1.

For the other direction, note that C and D admit G-equivariant smoothings C →
∆,D → ∆ by Theorem 3.9. In each of the cases (U0), (U1), (U2), any non-trivial
element τ k ∈ G(P,Q) = 〈τ〉 interchanges at most the local branches of one of the
factors. This guarantees that τ k acts locally freely on at least one of the factors of
Ct×Dt for t 6= 0 (Lemma 3.8). So Z := C×∆D → ∆ is a required free smoothing.

Remark 3.11. In the unmixed case, G(P,Q) is always cyclic.

According to Theorem 1.32 and the discussion thereafter, a surface X is a stable

degeneration of surfaces isogenous to a product of unmixed type if and only if X =

Z/G where Z := C ×D is a product of 2 stable curves and G is a finite group acting

diagonally on Z such that (Z,G) admits a free smoothing. So we have

Corollary 3.12. The possible singularities of a surface X which is a stable degener-
ation of surfaces isogenous to a product of unmixed type are as follows:

(U1a) Normal crossing singularities: (xy = 0) ⊂ C3. These are the general singulari-
ties of X.

(U1b) Quotients of the above singularities under the group action:

(x, y, z) 7→ (ξx, ξ−1y, ξqz)

where ξ is a primitive n-th root of unity, (q, n) = 1. In this case, the index of
the singularity is n and the canonical covering is a singularity of type (U1a).

(U2a) The degenerate cusp: (xy = 0, zw = 0) ⊂ C4.
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(U2b) A Z2-quotient of the degenerate cusp in (U2a) under the group action:

(x, y, z, w) 7→ (y, x,−z,−w)

In this case, the index of the singularity is 2 and the canonical covering is the
degenerate cusp in (U2a).

(U2c) Other quotients of the degenerate cusp in U2a) under the group action:

(x, y, z, w) 7→ (ξx, ξ−1y, ξqz, ξ−qw),

where ξ is a primitive n-th root of unity, (q, n) = 1. In this case, the singularity
is still a (Gorenstein) degenerate cusp.

We give some examples of singularities in Corollary 3.12.

Example 3.13. Let G = 〈σ〉 ∼= Z2. Let C,D′ be two hyperelliptic curves. Suppose σ
acts on C and D′ as the respective hyperelliptic involutions. Let {Q′1, . . . , Q′2k} be the
fixed points of σ on D′. We obtain a stable curve D from D′ by identifying Q′2i−1 and
Q′2i for any 1 ≤ i ≤ k. Note that σ also acts on D. Let G act on C ×D diagonally.
Then the quotient (C ×D)/G has singularities of type (U1a) or (U1b).

Example 3.14. Let C,D be two stable curves. Let G be a finite group acting freely on
C ×D. Then (C ×D)/G has singularities of type (U1a) or (U2a) (Proposition 1.28).

Example 3.15. Let G = 〈σ〉 ∼= Z2. Let C ′ and D′ be two smooth curves of genera
≥ 1 such that G acts (faithfully) on both. Assume σ fixes 2k points P ′1, P

′
2, · · · , P ′2k

on C ′. Let C be the stable curve obtained by identifying P ′2i−1 and P ′2i for 1 ≤ i ≤ k.
Denote by Pi the image on C of P ′2i−1 and P ′2i for 1 ≤ i ≤ k. Then σ acts on C and
P1, · · · , Pk are the fixed points. Note that σ does not interchange the local branches
of C around Pi for any 1 ≤ i ≤ k.

Assume σ acts freely on D′. Pick a point Q′ ∈ D′. Let D be the stable curve
obtained by identifying Q′ and σ(Q′). Denote by Q the image on D of Q′ and σ(Q′).
Then σ acts on D and Q is the only fixed point. Moreover σ interchanges the local
branches of D around Q.

Now let G acts on C×D diagonally. Then (P1, Q), · · · , (Pk, Q) are the fixed points
and the quotient (C ×D)/G only has singularities of type (U1a) or (U2b).

Example 3.16. Let G = 〈σ〉 ∼= Z2. Let C ′ and D′ be two smooth curves of genera ≥ 1
such that G acts (faithfully) on both. Assume σ fixes 2k points P ′1, P

′
2, · · · , P ′2k on

C ′. We obtain a stable curve C from C ′ by identifying P ′2i−1 and P ′2i for 1 ≤ i ≤ k.
Similarly, we can obtain a stable curve D from D′. Note that σ also acts on C and
D. Let G acts on C ×D diagonally. Then the quotient (C ×D)/G has singularities
of type (U1a) or (U2c).
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Remark 3.17. In general, we can consider the singular locus Xsing of a surface stably
isogenous to a product X = (C×D)/G as in Definition 1.31. Suppose {P1, · · · , Pm1}
(resp. {Q1, · · · , Qm2}) is the set of nodes of C (resp. D). Then the singular locus of
Z is

Zsing = ∆1 ∪∆2

where ∆1 = C×{Q1, · · · , Qm2} and ∆2 = {P1, · · · , Pm1}×D. And the singular locus
of X is

Xsing = π(∆1) ∪ π(∆2) = π(Zsing)

where π : Z → X is the quotient map. Note that Zsing is a one-dimensional variety
and G has an action on Zsing. We have Xsing = Zsing/G. Since X is of unmixed
type, π(∆1) and π(∆2) do not have common components. Note that X always has
singularities of type (U1a), i.e., normal crossing singularities.

3.3 Singularities of degenerations of surfaces isoge-

nous to a product of mixed type

Now we consider the mixed case.

Proposition 3.18 (Criterion for free smoothings in the mixed case). Let C be a
stable curve and G◦ < Aut(C) a finite group. Let

1→ G◦ → G→ Z2 → 1,

be a non-split extension, yielding a class [ϕ] in Out(G◦) = Aut(G◦)/Int(G◦), which
is of order ≤ 2. Fix a representative ϕ of the above class. Suppose there exists an
element τ ′ ∈ G \G◦ such that

(I) ϕ(γ) = τ ′γτ ′−1,

(II) G acts on Z := C × C by the formulae: γ(P,Q) = (γP, (ϕγ)Q) for γ in G◦;
whereas the lateral class of G◦ consists of the transformations

τ ′γ(P,Q) = ((ϕγ)Q, τγP ),

where τ := τ ′2 ∈ G◦.

Then (Z,G) admits a free smoothing Z = C ×∆ C → ∆ if and only if the following
hold:

(i) The pair (Z,G◦) satisfies one of the properties (U0), (U1), (U2) for any point
on Z, as described in Proposition 3.10.
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(ii) There are only finitely many points with nontrivial stabilizers on C × C.

(iii) If (P,Q) ∈ C × C is such that G(P,Q) * G◦, then P,Q are both nodes on C.

Proof. “⇒ ”If (Z,G) admits a free smoothing Z → ∆, then Z → ∆ is also a free
smoothing of (Z,G◦). Hence (Z,G◦) satisfies (U0), (U1), (U2) in Proposition 3.10.

Let Γ be the subset of G◦ consisting of the transformations having fixed points on
Ct for t 6= 0. Since C ×∆ C → ∆ is a free smoothing of C × C, we have

(A) Γ ∩ ϕ(Γ) = {1}.

(B) there is no γ in G◦ such that ϕ(γ)τγ is in Γ. In particular, ϕ(γ)τγ 6= 1.

The above two conditions simply say that G acts freely on Ct × Ct for t 6= 0 (cf.
Proposition 1.8).

If there were infinitely many points with non-trivial stabilizers on C × C, then
some 1 6= σ ∈ G fixes infinitely many points. If σ ∈ G◦, then σ acts on C and σ must
fix a component of C. Now Lemma 3.4 implies that σ = 1, which is a contradiction.
Hence σ = τ ′γ ∈ G \ G◦ for some γ ∈ G◦. Since σ2 ∈ G◦ also fixes infinitely many
points, we have ϕ(γ)τγ = σ2 = 1 by Lemma 3.4 again, which contradicts (B) above.
This proves (ii).

For (iii), we discuss the possible stabilizer of a point (P,Q) ∈ C×C in the following
2 cases.

(M0) P,Q are both smooth points of C.

We will show G(P,Q) = {1} in this case. Since G◦ acts freely on Ct×Ct for t 6= 0.
We see that G◦∩G(P,Q) = {1} by the claim for the unmixed (U0) case. Suppose
on the contrary that there is a 1 6= τ1 ∈ G(P,Q), then τ1 = τ ′γ ∈ G \G◦ for some
γ ∈ G◦. Now τ 2

1 ∈ G◦ ∩G(P,Q) implies that τ 2
1 = 1 and hence

τ ′γτ ′γ = 1⇒ (τ ′γτ ′−1)τ ′2γ = 1⇒ ϕ(γ)τγ = 1.

This contradicts (B) above.

(M1) One of P,Q is a node, while the other is a smooth point.

We will show that G(P,Q) ⊂ G◦ in this case. Otherwise (P,Q) is fixed by
τ ′γ ∈ G \G◦ for some γ ∈ G◦, i.e.,

(P,Q) = τ ′γ(P,Q) = ((ϕγ)Q, τγP ),

so P = (ϕγ)Q,Q = τγP . In particular, either P,Q are both nodes or they are
both smooth points of C, a contradiction.

Hence (iii) follows.
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“⇐ ”By Theorem 3.8, condition (i) implies that (C,G◦) has a free smoothing
C → ∆. Set Z := C ×∆ C → ∆. We can introduce an action of G on Z → ∆ by the
formulae in (II): for any (P,Q) ∈ Ct × Ct, γ(P,Q) = (γP, (ϕγ)Q) if γ ∈ G◦; whereas
for τ ′γ ∈ G \G◦,

τ ′γ(P,Q) = ((ϕγ)Q, τγP ).

It remains to check that G acts freely on Zt for t 6= 0. Note that G◦ acts freely
by hypothesis (i) and Proposition 3.10. Now let τ ′γ ∈ G \ G◦ for some γ ∈ G◦. If
τ ′γ does not fix points on C × C, then obviously τ ′γ does not fix points on Ct × Ct
for t 6= 0. If τ ′γ ∈ G(P,Q) for some (P,Q) ∈ C ×C, then both P,Q must be nodes by
(iii) and we can find local embeddings of the first factor: xy = tn (resp. of the second
factor: zw = tm) such that the action of τ ′γ around (P,Q) is given by:

(x, y, z, w, t) 7→ (az, bw, x, y, t)

where a, b ∈ C∗ are nonzero numbers.
Hence

(τ ′γ)2(x, y, z, w, t) = (ax, by, az, bw, t).

If t 6= 0, then xy = tn, zw = tm implies that xyzw 6= 0. Suppose τ ′γ fixes some
(x, y, z, w, t) ∈ Ct × Ct for t 6= 0, then

az = x, bw = y, x = z, y = w

and this implies that
a = 1, b = 1.

So (τ ′γ)2 = 1. Now, for any (P ′, Q′) ∈ Zt, (τ ′γ)2(P ′, Q′) = ((ϕγ)τγP ′, τγ(ϕγ)Q′), so
we have τγ(ϕγ) = (ϕγ)τγ = 1. This implies that

{((ϕγ)Q′, Q′)|Q′ ∈ C0} ⊂ C × C

is fixed by τ ′γ, which contradicts hypothesis (ii) that there are only finitely many
points with nontrivial stabilizers.

This contradiction shows that τ ′γ does not fix any points on Ct × Ct, t 6= 0 and
hence G acts freely on Ct × Ct for t 6= 0.

Remark 3.19. Let the notation be as in Proposition 3.18. Then the statement (ii)
in the proposition is equivalent to the assertion that any τ ′γ ∈ G \ G◦ has order
> 2. This equivalence can be proved as follows: if there are infinitely many points
with nontrivial stabilizers, then some 1 6= σ ∈ G fixes infinitely many points. Note
that σ ∈ G \ G◦ by Lemma 3.4. Since σ2 ∈ G◦ also fixes infinitely many points, we
have σ2 = 1 by Lemma 3.4 again. On the other hand, suppose σ = τ ′γ ∈ G \ G◦
is of order 2. Then (ϕγ)τγ = τγ(ϕγ) = 1 and σ fixes every point on the curve
{((ϕγ)Q,Q)| Q ∈ C}.
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According to Theorem 1.32, a surface X is a stable degeneration of surfaces isoge-

nous to a product of mixed type if and only if X = Z/G where Z = C×C is a product

of two identical stable curves and G is a finite group acting in the way described in

Proposition 3.18.

Corollary 3.20. The possible singularities of a surface X which is a stable degener-
ation of surfaces isogenous to a product of mixed type are as follows:

(U) The singularities of type (U1a), (U1b), (U2a), (U2b), (U2c) occurring on a stable
degeneration of surfaces isogenous to a product of unmixed type (see Corollary
3.12).

(M) A quotient of the degenerate cusp of type (U2a) under an action of automor-
phisms τ1 and τ2:

τ1 : (x, y, z, w) 7→ (ξx, ξ−1y, ξqz, ξ−qw),

τ2 : (x, y, z, w) 7→ (az, a−1w, bx, b−1y),

where ξ is a primitive n-th root of unity, (q, n) = 1 and ab ∈ 〈ξ〉 \ 〈ξq+1〉. In
this case, the index of the singularity is 2 and the canonical covering is the
singularity of type (U2c).

Proof. Let (Z,G) be as in Proposition 3.18 such thatX = Z/G. If (P,Q) ∈ Z = C×C
is such that G(P,Q) ⊂ G◦, then the singularity π(P,Q) ∈ X is of type (U1a), (U1b),
(U2a), (U2b) or (U2c), where π : Z → X is the quotient map.

If (P,Q) ∈ Z = C × C is such that G(P,Q) * G◦, then P,Q are both nodes of
C. We want to know the action of G(P,Q) around (P,Q). Note that (C × C,G◦) is
of unmixed type and G◦ ∩ G(P,Q) is just the stabilizer of (P,Q) ∈ C × C under the
action of G◦. By the analysis done for the unmixed type, G◦ ∩G(P,Q) = 〈τ1〉 for some
τ1 ∈ G◦ and τ1 interchanges at most the branches of one factors of C × C. We will
show that τ1 does not interchange any branches at P or Q.

By assumption there is a γ ∈ G◦ such that σ := τ ′γ ∈ G(P,Q). Suppose τ1

interchanges the branches at one of P,Q, say P , then |τ1| = 2 (Propostion 3.10, Case
(U2b). Note that (τ ′γ)2 ∈ G(P,Q) ∩G◦ = 〈τ1〉 and for any (P ′, Q′) ∈ C × C,

(τ ′γ)2(P ′, Q′) = (τ ′γ)((ϕγ)Q′, τγP ′) = ((ϕγ)τγP ′, τγ(ϕγ)Q′),

so (ϕγ)τγ ∈ 〈τ1〉. By condition (B) in the proof of Proposition 3.18, (ϕγ)τγ 6= 1. On
the other hand |τ1| = 2, so (ϕγ)τγ = τ1. Since τ ′γ ∈ G(P,Q), we have τ ′γ(P,Q) =
(P,Q), i.e., (ϕγ)Q = P and (τγ)P = Q. Now the fact that τ1 interchanges the
branches of C at P implies that τγ(ϕγ) = τγτ1(τγ)−1 interchanges the branches of
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the first factor C at Q. Since τ1 acts on the second factor of C × C via τγ(ϕγ), τ1

also interchanges the branches of the second factor C at Q, a contradiction.
So the actions of τ1, σ are of the form

τ1 : (x, y, z, w) 7→ (ξx, ξ−1y, ξqz, ξ−qw),

σ : (x, y, z, w) 7→ (az, a−1w, bx, b−1y),

where C : (xy = 0) ⊂ C2 and C : (zw = 0) ⊂ C2 are suitable local embeddings
of C around P,Q and ξ is a primitive n-th root of unity with n = |τ1|, (q, n) = 1.
Since τ2 ∈ 〈τ1〉 and (τ k1 τ2)2 6= 1 for any k (cf. Remark 3.19), we can easily see
that ab ∈ 〈ξ〉 \ 〈ξq+1〉. Let π : Z → X be the quotient map. Then the singularity
π(P,Q) ∈ X is of type (M).

We give an example of singularity of type (M).

Example 3.21. Let G = 〈σ〉 ∼= Z4. Then τ1 := σ2 has order 2. Let C ′ be a smooth
curve of genus ≥ 2. Suppose τ1 acts on C ′ so that there are exactly two fixed points
P ′1 and P ′2. We obtain a stable curve C from C ′ by identifying P ′1 and P ′2. Let P ∈ C
denote the image of P ′1 and P ′2. Then τ1 also acts on C and has exactly one fixed
point P .

We can give an action of G on C × C as follows:

σ(P1, P2) := (P2, τ1P1), for any point (P1, P2) ∈ C × C.

Then τ1(P1, P2) = (τ1P1, τ1P2) and στ1(P1, P2) = (τ1P2, P1). It is easy to see that
(P, P ) ∈ C×C is the only point with a nontrivial stabilizer which is G. The quotient
(C × C)/G has singularities of type (U1a) or (M).



Chapter 4

Connected components of the
moduli space

In this chapter we will study the Q-Gorenstein deformations of surfaces stably isoge-

nous to a product. As a result, we get some connected components of the moduli space

of stable surfaces M st
a,b defined in Section 1.5. We use the Q-Gorenstein deformation

theory which is carefully recalled in Section 1.4.

Let Z := C × D be a product of stable curves and X = Z/G a surface stably

isogenous to a product. Let π : Z → X be the quotient map. For any G-equivariant

OZ-module F , we define an OX-module πG∗ F := (π∗F)G. Note that both π∗ and πG∗

are exact functors from the category of G-equivariant OZ-modules to the category of

OX-modules.

Lemma 4.1. Let F be a G-equivariant OZ-module. Then for any p ≥ 0, we have
Hp(Z,F)G = Hp(X, πG∗ F).

Proof. Let
(·)G : {G-vector spaces} → {vector spaces}

V → V G

be the (exact) functor taking G-invariants. Let Γ be the global section functor from
the category of OX-modules to the category of vector spaces. We can define a com-
posite functor

F := (·)G ◦ (Γ ◦ π∗) : {G-equivariant OZ-modules} → {vector spaces}
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Note that there is another decomposition of F into two functors: F = Γ ◦ πG∗ . So
there are two spectral sequences corresponding to the two decompositions:

Hp(G,Hq(X, π∗F))⇒ Rp+qF (F)

Hp(X,RqπG∗ F)⇒ Rp+qF (F), for all p, q ≥ 0.

Since (·)G is an exact functor, Hp(G,Hq(X, π∗F)) = 0, for all p > 0. Hence

RpF (F) = H0(G,Hp(X, π∗F)) = Hp(X, π∗F)G. (4.1)

Similarly, since πG∗ is an exact functor, RpπG∗ F = 0, for all p > 0. Hence

RpF (F) = Hp(X, πG∗ F). (4.2)

We also have
Hp(X, π∗F) = Hp(Z,F). (4.3)

Combining (4.1), (4.2) and (4.3), we get, for any p ≥ 0,

Hp(Z,F)G = Hp(X, πG∗ F), for any G-equivariant OZ-module F .

Lemma 4.2. If all the (possible) singularities on X are of type (U1a), (U1b), (U2a) or
(U2b), then

πG∗ T iZ = T iQG,X , i = 0, 1, 2.

Proof. Let P be a point on X and let {Qj}j = π−1(P ) be the inverse image of P .
Let Q ∈ {Qj}j be a point over P . By the description of singularity types given in
Corollary 3.12 or 3.20, the germ Q ∈ Z is the canonical covering of P ∈ X with group
GQ, given that the singularity P ∈ X is of type (U1a), (U1b), (U2a) or (U2b). Moreover
G/GQ acts transitively on the set of germs {Qj ∈ Z}j.

Let X be the canonical covering stack of X. Then we have a morphism π̃ : Z → X

by the disccussion in the previous paragraph. Since X = Z/G, it is easy to see that
X = [Z/G] is the quotient stack and π̃ is an étale morphism. Now, as in the situation
of a germ P ∈ X (cf. Page 13), we have πG∗ T iZ = T iQG,X .

Corollary 4.3. Suppose all the (possible) singularities on X are of type (U1a), (U1b),
(U2a) or (U2b). Then πG∗ TZ = TX and πG∗ T 1

Z = T 1
QG,X .

Proof. This is part of the statement in Lemma 4.2, noting that TZ = T 0
Z and TX = T 0

X .
We give an alternate proof here.
First observe that both πG∗ TZ and TX are S2-sheaves of OX-modules ([AbH09,

Lemma 5.1.1]). Since π : Z → X is étale off a finite subset, πG∗ TZ and TX coincide off
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the finite subset. Then the S2-property guarantees that πG∗ TZ and TX are isomorphic
on the whole of X.

For πG∗ T 1
Z = T 1

QG,X , we view πG∗ T 1
Z (resp. T 1

QG,X) as the sheaf of first-order G-
equivariant local deformations of Z (resp. first-order Q-Gorenstein local deformations
of X). Let P be any point on X and let π−1(P ) = {Qj}j be inverse image of P .
Every germ Qj ∈ Z is a canonical covering of P ∈ X and they are permuted under
the action of G, because the possible singularities on X are of type (U1a), (U1b), (U2a)
or (U2b). Since Q-Gorenstein deformations of the germ P ∈ X are precisely those
deformations which lift to deformations of the canonical covering (cf. Remark 1.21),
we have a natural identification πG∗ T 1

Z = T 1
QG,X sending a first-order G-equivariant

local deformations of Z to its quotient under G.

We give a more down-to-earth proof of the following proposition.

Proposition 4.4 ([vO05], Corollary 2.3). DefZ = DefC ×DefD.

Proof. First we will show that

Ext1
OZ (ΩZ ,OZ) ∼= Ext1

OC (ΩC ,OC)⊕ Ext1
OD(ΩD,OD). (4.4)

Let π1 : Z → C and π2 : Z → D be the projections. We have ΩZ = π∗1ΩC ⊕ π∗2ΩD, so

Ext1
OZ (ΩZ ,OZ) = Ext1

OZ (π∗1ΩC ,OZ)⊕ Ext1
OZ (π∗2ΩD,OZ).

We want to identify Ext1
OZ (π∗1ΩC ,OZ) (resp. Ext1

OZ (π∗1ΩD,OZ)) with Ext1
OC (ΩC ,OC)

(resp. Ext1
OD(ΩD,OD)) in a natural way.

An element of Ext1
OZ (π∗1ΩC ,OZ) is given by an extension of π∗1ΩC by OZ

0→ OZ → F → π∗1ΩC → 0. (4.5)

Applying π1∗, we get the derived long exact sequence of OC-modules:

0→ π1∗OZ → π1∗F → π1∗π
∗
1ΩC → R1π1∗OZ . (4.6)

Note that, for any coherent sheaf G on C, we can use Čech cohomology to show that

Riπ1∗π
∗
1G = G ⊗OC Riπ1∗OZ

= G ⊗OC (OC ⊗C H
i(D,OD))

= G ⊗C H
i(D,OD).

Therefore

π1∗OZ = OC , π1∗π
∗
1ΩC = ΩC , R

1π1∗OZ = OC ⊗C H
1(D,OD),
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and we have

HomOC (π1∗π
∗
1ΩC , R

1π1∗OZ) = HomOC (ΩC ,OC ⊗C H
1(D,OD))

= H0(C, TC)⊗C H
1(D,OD) = 0.

The last equation is because of the fact that C is a stable curve. So any morphism
π1∗π

∗
1ΩC → R1π1∗OZ is a zero morphism and (4.6) gives an exact sequence of OC-

modules
0→ OC → π1∗F → ΩC → 0, (4.7)

namely an element of Ext1
OC (ΩC ,OC). Now we have a map

f : Ext1
OZ (π∗1ΩC ,OZ)→ Ext1

OC (ΩC ,OC)

sending an extension of OZ-modules (4.5) to an extension of OC-modules (4.7).
Conversely, an element of Ext1

OC (Ω1
C ,OC) is given by an exact sequence of OC-

modules
0→ OC → G → ΩC → 0. (4.8)

Applying π∗1, we get an exact sequence of OZ-modules

0→ OZ → π∗1G → π∗1ΩC → 0, (4.9)

since π1 : Z → C is a flat morphism. So we also establish a map

h : Ext1
OC (ΩC ,OC)→ Ext1

OZ (π∗1ΩC ,OZ)

sending an extension of OC-modules (4.8) to an extension of OZ-modules (4.9).
It is readily seen that f and h are inverse to each other and hence

Ext1
OZ (π∗1ΩC ,OZ) ∼= Ext1

OC (ΩC ,OC).

Similarly, we can prove that Ext1
OZ (π∗1ΩD,OZ) ∼= Ext1

OD(ΩD,OD) and the isomor-
phism (4.4) is established.

Now let λ1 : C → DefC be a semiuniversal deformation of C and λ2 : D → DefD a
semiuniversal deformation D. Then λ1× λ2 : C ×D → DefC ×DefD is a deformation
of Z = C ×D, inducing a morphism

g : DefC ×DefD → DefZ .

The corresponding tangential map dg is just the natural isomorphism

Ext1
OC (ΩC ,OC)⊕ Ext1

OD(ΩD,OD) ∼= Ext1
OZ (ΩZ ,OZ).

established above. Since DefC × DefD is smooth (cf. [DM69, Page 79]) and the
tangential map dg is an isomorphism, we have DefZ = DefC ×DefD.



47

Theorem 4.5. If all the (possible) singularities of X are of type (U1a), (U1b), (U2a)
or (U2b), then

(i) a semiuniversal Q-Gorenstein deformation of X exists, hence the base DefQGX
is defined;

(ii) G acts on DefZ and there is an isomorphism (DefZ)G ∼= DefQGX ;

(iii) DefQGX is smooth.

Proof. Note that (iii) is a consequence of (ii) and Proposition 4.4.
Since Z = C ×D is Gorenstein, DefQGZ exists and is just DefZ (cf. Remark 1.20).

Let f : Z → DefZ be a semiuniversal deformation of Z. Then the action of G on Z
induces actions of G on Z and DefZ such that f becomes a G-equivariant morphism.
Taking the G-invariant part DefGZ of DefZ and the G-quotient of f−1(DefGZ), we get
a deformation

fG : (f−1(DefZ)G)/G→ (DefZ)G (4.10)

of Z/G = X.
Since all the possible singularities of X are of type (U1a), (U1b), (U2a) or (U2b),

for any P ∈ X and Q ∈ π−1(P ), the germ Q ∈ Z is the canonical covering of
P ∈ X (cf. Corollary 3.12). So (4.10) is in fact a Q-Gorenstein deformation of X (cf.
Remark 1.21). To prove the theorem, it suffices to show that (4.10) is a semiuniversal
Q-Gorenstein deformation of X.

Note that DefZ = DefC × DefD is smooth (cf. the proof of Proposition 4.4), so
(DefZ)G is also smooth by Cartan’s lemma. By the infinitesimal lifting property of
a smooth variety ([Har77, Chap. II, Exercise 8.6]), if we can show that the natural
map

dλ : (T 1
Z)G → T 1

QG,X

is an isomorphism, then fG : (f−1(DefZ)G)/G → (DefZ)G is an unobstructed semiu-
niversal Q-Gorenstein deformation of X and hence DefQGX

∼= (DefZ)G.
Consider the following commutative diagram

0 −−−→ H1(Z, TZ)G −−−→ (T 1
Z)G −−−→ H0(Z, T 1

Z )G −−−→ H2(Z, TZ)Gyα ydλ yβ yγ
0 −−−→ H1(X, TX) −−−→ T 1

QG,X −−−→ H0(X, T 1
QG,X) −−−→ H2(X, TX)

in which the rows are exact. We will prove that α, β, γ are isomorphisms, then
dλ : (T 1

Z)G → T 1
QG,X is also an isomorphism by the Five Lemma.
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Let F = TZ or T 1
Z in Lemma 4.1, we get the following three equations

H1(Z, TZ)G = H1(X, πG∗ TZ),

H0(Z, T 1
Z )G = H0(X, πG∗ T 1

Z ),

H2(Z, TZ)G = H2(X, πG∗ TZ).

By Corollary 4.3, we have

πG∗ TZ = TX , πG∗ T 1
Z = T 1

QG,X .

So

H1(Z, TZ)G = H1(X, TX),

H0(Z, T 1
Z )G = H0(X, T 1

QG,X),

H2(Z, TZ)G = H2(X, TX),

and α, β, γ are isomorphisms.

Corollary 4.6. Let S be a surface isogenous to a product of unmixed type with min-
imal representation (C × D)/G. Assume the pair (C,G) is a triangle curve (i.e.,
C/G ∼= P1, and C → C/G is branched over 3 points). Let M top

S be the moduli space

of smooth surfaces with the same topological type of S and M top
S the stable compact-

ification in M st
a,b with a = K2

S, b = χ(OS). Then for any surface [X] in M top
S , DefQGX

is defined and is smooth, hence M top
X is already a connected component of the moduli

space M st
a,b.

Proof. By [Cat03], every point in M top
S corresponds to a surface S ′ isogenous to a

product with minimal representation (C ′ × D′)/G. Moreover, (C ′, G) is a triangle
curve. In fact, (C ′, G) = (C,G) or (C,G). Since a triangle curve is rigid, in the

process of degeneration, it remains the same. If [X] is in M top
S , then X = (C ′×D)/G,

where D is a stable curve. By Proposition 3.10 and Corollary 3.12, the possible
singularities of X are of type (U1a) or (U1b). Now Theorem 4.5 applies.

Remark 4.7. It remains to address the case where X has singularities of type (U2c)
or (M). The canonical coverings of these two types of singularities are not complete
intersections, which results in a more difficult Q-Gorenstein deformation theory. In
contrast to the infinitesimal consideration, there might be some hope for good prop-
erties of a one-parameter family of such singularities.
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