THE $[46,9,20]_{2}$ CODE IS UNIQUE

SASCHA KURZ

Abstract. The minimum distance of all binary linear codes with dimension at most eight is known. The smallest open case for dimension nine is length $n=46$ with known bounds $19 \leq d \leq 20$. Here we present a $[46,9,20]_{2}$ code and show its uniqueness. Interestingly enough, this unique optimal code is asymmetric, i.e., it has a trivial automorphism group. Additionally, we show the non-existence of $[47,10,20]_{2}$ and $[85,9,40]_{2}$ codes.
Keywords: Binary linear codes, optimal codes

1. Introduction

An $[n, k, d]_{q}$-code is a q-ary linear code with length n, dimension k, and minimum Hamming distance d. Here we will only consider binary codes, so that we also speak of $[n, k, d]$-codes. Let $n(k, d)$ be the smallest integer n for which an $[n, k, d]$-code exists. Due to Griesmer [7] we have

$$
\begin{equation*}
n(k, d) \geq g(k, d):=\sum_{i=0}^{k-1}\left\lceil\frac{d}{2^{i}}\right\rceil \tag{1}
\end{equation*}
$$

where $\lceil x\rceil$ denotes the smallest integer $\geq x$. As shown by Baumert and McEliece [1] for every fixed dimension k there exists an integer $D(k)$ such that $n(k, d)=g(k, d)$ for all $d \geq D(k)$, i.e., the determination of $n(k, d)$ is a finite problem for every fixed dimension k. For $k \leq 7$, the function $n(k, d)$ has been completely determined by Baumert and McEliece [1] and van Tilborg [11]. After a lot of work of different authors, the determination of $n(8, d)$ has been completed by Bouyukliev, Jaffe, and Vavrek [4]. For results on $n(9, d)$ we refer e.g. to [5] and the references therein. The smallest open case for dimension nine is length $n=46$ with known bounds $19 \leq d \leq 20$. Here we present a $[46,9,20]_{2}$ code and show its uniqueness. Interestingly enough, this unique optimal code is asymmetric, i.e., it has a trivial automorphism group. Speaking of a Δ-divisible code for codes whose weights of codewords all are divisible by Δ, we can state that the optimal code is 4 -divisible. 4-divisible codes are also called doubly-even and 2divisible codes are called even. Additionally, we show the non-existence of $[47,10,20]_{2}$ and $[85,9,40]_{2}$ codes.

Our main tools - described in the next section - are the standard residual code argument (Proposition 2.2, the MacWilliams identities (Proposition 2.3), a result based on the weight distribution of Reed-Muller codes (Proposition 2.4, and the software package Q-Extension [2] to enumerate linear codes with a list of allowed weights. For an easy access to the known non-existence results for linear codes we have used the online database [6].

2. Basic tools

Definition 2.1. Let C be an $[n, k, d]$-code and $c \in C$ be a codeword of weight w. The restriction to the support of c is called the residual code $\operatorname{Res}(C ; c)$ of C with respect to c. If only the weight w is of importance, we will denote it by $\operatorname{Res}(C ; w)$.

Proposition 2.2. Let C be an $[n, k, d]$-code. If $d>w / 2$, then $\operatorname{Res}(C ; w)$ has the parameters

$$
[n-w, k-1, \geq d-\lfloor w / 2\rfloor]
$$

Some authors call the result for the special case $w=d$ the one-step Griesmer bound.
Proposition 2.3. ([8], MacWilliams Identities) Let C be an $[n, k, d]$-code and C^{\perp} be the dual code of C. Let $A_{i}(C)$ and $B_{i}(C)$ be the number of codewords of weight i in C and C^{\perp}, respectively. With this, we have

$$
\begin{equation*}
\sum_{j=0}^{n} K_{i}(j) A_{j}(C)=2^{k} B_{i}(C), \quad 0 \leq i \leq n \tag{2}
\end{equation*}
$$

where

$$
K_{i}(j)=\sum_{s=0}^{n}(-1)^{s}\binom{n-j}{i-s}\binom{j}{s}, \quad 0 \leq i \leq n
$$

are the binary Krawtchouk polynomials. We will simplify the notation to A_{i} and B_{i} whenever C is clear from the context.

Whenever we speak of the first l MacWilliams identities, we mean Equation (2) for $0 \leq i \leq l-1$. Adding the non-negativity constraints $A_{i}, B_{i} \geq 0$ we obtain a linear program where we can maximize or minimize certain quantities, which is called the linear programming method for linear codes. Adding additional equations or inequalities strengthens the formulation.

Proposition 2.4. ([5], Proposition 5], cf. [9]) Let C be an [$n, k, d]$-code with all weights divisible by $\Delta:=2^{a}$ and let $\left(A_{i}\right)_{i=0,1, \ldots, n}$ be the weight distribution of C. Put

$$
\begin{aligned}
\alpha & :=\min \{k-a-1, a+1\} \\
\beta & :=\lfloor(k-a+1) / 2\rfloor \text {, and } \\
\delta & :=\min \left\{2 \Delta i \mid A_{2 \Delta i} \neq 0 \wedge i>0\right\}
\end{aligned}
$$

Then the integer

$$
T:=\sum_{i=0}^{\lfloor n /(2 \Delta)\rfloor} A_{2 \Delta i}
$$

satisfies the following conditions.
(1) T is divisible by $2^{\lfloor(k-1) /(a+1)\rfloor}$.
(2) If $T<2^{k-a}$, then

$$
T=2^{k-a}-2^{k-a-t}
$$

for some integer t satisfying $1 \leq t \leq \max \{\alpha, \beta\}$. Moreover, if $t>\beta$, then C has an $[n, k-a-2, \delta]$ subcode and ift $\leq \beta$, it has an $[n, k-a-t, \delta]$-subcode.
(3) If $T>2^{k}-2^{k-a}$, then

$$
T=2^{k}-2^{k-a}+2^{k-a-t}
$$

for some integer t satisfying $0 \leq t \leq \max \{\alpha, \beta\}$. Moreover, if $a=1$, then C has an $[n, k-t, \delta]$ subcode. If $a>1$, then C has an $[n, k-1, \delta]$-subcode unless $t=a+1 \leq k-a-1$, in which case it has an $[n, k-2, \delta]$-subcode.
A special and well-known subcase is that the number of even weight codewords in a $[n, k]$ code is either 2^{k-1} or 2^{k}.

3. Results

Lemma 3.1. Each $[\leq 16,4,7]_{2}$ code contains a codeword of weight 8 .
Proof. Let C be an $[n, 4,7]_{2}$ code with $n \leq 16$ and $A_{8}=0$. From the first two MacWilliams identities we conclude

$$
A_{7}+A_{9}+\sum_{i \geq 10} A_{i}=2^{4}-1=15 \quad \text { and } \quad 7 A_{7}+9 A_{9}+\sum_{i \geq 10} i A_{i}=2^{3} n=8 n
$$

so that

$$
2 A_{9}+3 A_{10}+\sum_{i \geq 11}(i-7) A_{i}=8 n-105
$$

Thus, the number of even weight codewords is at most $8 n / 3-34$. Since at least half the codewords have to be of even weight, we obtain $n \geq\lceil 15.75\rceil=16$. In the remaining case n we use the linear programming method with the first four MacWilliams identities, $B_{1}=0$, and the fact that there are exactly 8 even weight codewords to conclude $A_{11}+\sum_{i \geq 13} A_{i}<1$, i.e., $A_{11}=0$ and $A_{i}=0$ for all $i \geq 13$. With this and rounding to integers we obtain the bounds $5 \leq B_{2} \leq 6$, which then gives the unique solution $A_{7}=7, A_{9}=0, A_{10}=6$, and $A_{12}=1$. Computing the full dual weight distribution unveils $B_{15}=-2$, which is negative.

Lemma 3.2. Each even $[46,9,20]_{2}$ code C is isomorphic to a code with generator matrix

$$
\left(\begin{array}{l}
1001010101110011011010001111001100100100000000 \\
1111100101010100100011010110011001100010000000 \\
1100110100001111101111000100000110101001000000 \\
0110101010010110101101110010100011001000100000 \\
0011101110101101100100101001010001011000010000 \\
0110011001111100011100011000110000111000001000 \\
000111100001110000001111100000111111000000100 \\
000000011111110000000000011111111111000000010 \\
0000000000000011111111111111111111111000000001
\end{array}\right) .
$$

Proof. Applying Proposition 2.2 with $w=20$ on a [45, 9, 20] code would give a $[25,8,10]$ code, which does not exist. Thus, C has full length $n=46$, i.e., $B_{1}=0$. Since no $[44,8,20]$ code exists, C is projective, i.e., $B_{2}=0$. Since no $[24,8,9]$ code exists, Proposition 2.2 yields that C cannot contain a codeword of weight $w=22$. Assume for a moment that C contains a codeword c_{26} of weight $w=26$ and let R be the corresponding residual $[20,8,7]$ code. Let $c^{\prime} \neq c_{26}$ be another codeword of C and w^{\prime} and $w^{\prime \prime}$ be the weights of c^{\prime} and $c^{\prime}+c_{26}$. Then the weight of the corresponding residual codeword is given by $\left(w^{\prime}+w^{\prime \prime}-26\right) / 2$, so that weight 8 is impossible in $R(C$ does not contain a codeword of weight 22). Since R has to contain a $[\leq 16,4,7]_{2}$ subcode, Lemma 3.1 shows the non-existence of R, so that $A_{26}=0$.

With this, the first three MacWilliams Identities are given by

$$
\begin{aligned}
A_{20}+A_{24}+A_{28}+A_{30}+\sum_{i=1}^{8} A_{2 i+30} & =511 \\
3 A_{20}-A_{24}-5 A_{28}-7 A_{30}-\sum_{i=1}^{8}(2 i+7) \cdot A_{2 i+30} & =-23 \\
5 A_{20}+21 A_{24}-27 A_{28}-75 A_{30}-\sum_{i=1}^{8}\left(8 i^{2}+56 i+75\right) \cdot A_{2 i+30} & =1035 .
\end{aligned}
$$

Minimizing $T=A_{0}+A_{20}+A_{24}+A_{28}+A_{32}+A_{36}+A_{40}+A_{44}$ gives $T \geq \frac{6712}{15}>384$, so that Proposition 2.4 3) gives $T=512$, i.e., all weights are divisible by 4. A further application of the linear programming method gives that $A_{36}+A_{40}+A_{44} \leq\left\lfloor\frac{9}{4}\right\rfloor=2$, so that C has to contain a $[\leq 44,7,\{20,24,28,32\}]_{2}$ subcode.

Next, we have used Q-Extension to classify the $[n, k,\{20,24,28,32\}]_{2}$ codes for $k \leq 7$ and $n \leq 37+k$, see Table 1 . Starting from the 337799 doubly-even [$\leq 44,7,20$] codes, Q-Extens ion gives 424207 doubly-even $[45,8,20]_{2}$ codes and no doubly-even $[44,8,20]_{2}$ code (as the maximum minimum distance of a $[44,8]_{2}$ code is 19.) Indeed, a codeword of weight 36 or 40 can occur in a doubly-even $[45,8,20]_{2}$ code. We remark that largest occurring order of the automorphism group is 18 . Finally, an
application of Q -Extension on the 424207 doubly-even $[45,8,20]_{2}$ codes results in the unique code as stated. (Note that there may be also doubly-even $[45,8,20]_{2}$ codes with two or more codewords of a weight $w \geq 36$. However, these are not relevant for our conclusion.)

k / n	20	24	28	30	32	34	35	36	37	38	39	40	41	42	43	44
1	1	1	1	0	1	0	0	0	0	0						
2				1	1	2	0	3	0	3	0					
3							1	1	2	4	6	9				
4										1	4	13	26			
5												3	15	163		
6														24	3649	
7															5	337794

TABLE 1. Number of $[n, k,\{20,24,28,32\}]_{2}$ codes.

We remark that the code of Lemma 3.2 has a trivial automorphism group and weight enumerator $1 x^{0}+235 x^{20}+171 x^{24}+97 x^{28}+8 x^{32}$, i.e., all weights are divisible by four. The dual minimum distance is $3\left(A_{3}^{\perp}=1, A_{4}^{\perp}=276\right)$, i.e., the code is projective. Since the Griesmer bound, see Inequality $\sqrt{1}$, gives a lower bound of 47 for the length of a binary linear code with dimension $k=9$ and minimum distance $d \geq 21$, the code has the optimum minimum distance. The linear programming method could also be used to exclude the weights $w=40$ and $w=44$ directly (and to show $A_{36} \leq 2$). While the maximum distance $d=20$ was proven using the Griesmer bound directly, the $[46,9,20]_{2}$ code is not a Griesmer code, i.e., where Inequality $\sqrt[11]{ }$ is satisfied with equality. For the latter codes the 2^{2}-divisibility would follow from [12, Theorem 9] stating that for Griesmer codes over \mathbb{F}_{p}, where p^{e} is a divisor of the minimum distance, all weights are divisible by p^{e}.

Theorem 3.3. Each $[46,9,20]_{2}$ code C is isomorphic to a code with the generator matrix given in Lemma 3.2

Proof. Let C be a $[46,9,20]_{2}$ with generator matrix G which is not even. Removing a column from G and adding a parity check bit gives an even $[46,9,20]_{2}$ code. So, we start from the generator matrix of Lemma 3.2 and replace a column by all $2^{9}-1$ possible column vectors. Checking all $46 \cdot 511$ cases gives either linear codes with a codeword of weight 19 or the generator matrix of Lemma 3.2 again.

Lemma 3.4. No $[47,10,20]_{2}$ code exists.
Proof. Assume that C is a $[47,10,20]_{2}$ code. Since no $[46,10,20]_{2}$ and no $[45,9,20]_{2}$ code exists, we have $B_{1}=0$ and $B_{2}=0$, respectively. Let G be a systematic generator matrix of C. Since removing the i th unit vector and the corresponding column (with the 1-entry) from G gives a $[46,9,20]_{2}$ code, there are at least 1023 codewords in C whose weight is divisible by 4. Thus, Proposition 2.4 (3) yields that C is doubly-even. By Theorem 3.3 we have $A_{32} \geq 8$. Adding this extra inequality to the linear inequality system of the first four MacWilliams identities gives, after rounding down to integers, $A_{44}=0, A_{40}=0$, $A_{36}=0$, and $B_{3}=0$. (We could also conclude $B_{3}=0$ directly from the non-existence of a $[44,8,20]_{2}-$ code.) The unique remaining weight enumerator is given by $1 x^{0}+418 x^{20}+318 x^{24}+278 x^{28}+9 x^{32}$. Let C be such a code and C^{\prime} be the code generated by the nine codewords of weight 32 . We eventually add codewords from C to C^{\prime} till C^{\prime} has dimension exactly nine and denote the corresponding code by $C^{\prime \prime}$. Now the existence of $C^{\prime \prime}$ contradicts Theorem 3.3 .

So, the unique $[46,9,20]_{2}$ code is strongly optimal in the sense of [10, Definition 1], i.e., no $[n-$ $1, k, d]_{2}$ and no $[n+1, k+1, d]_{2}$ code exists. The strongly optimal binary linear codes with dimension at most seven have been completely classified, except the $[56,7,26]_{2}$ codes, in [3]. The next open case is the existence question for a $[65,9,29]_{2}$ code, which is equivalent to the existence of a $[66,9,30]_{2}$ code.

The technique of Lemma 3.2 to conclude the 4 -divisibility of an optimal even code can also be applied in further cases and we given an example for $[78,9,36]_{2}$ codes, whose existence is unknown.
Lemma 3.5. Each $[\leq 33,5,15]_{2}$ code contains a codeword of weight 16.
Proof. We verify this statement computationally using Q-Extension.
We remark that a direct proof is possible too. However, the one that we found is too involved to be presented here. Moreover, there are exactly $3[\leq 32,4,15]_{2}$ codes without a codeword of weight 16.
Lemma 3.6. If an even $[78,9,36]_{2}$ code C exists, then it has to be doubly-even.
Proof. Since no $[77,9,36]_{2}$ and no $[76,8,36]_{2}$ code exists, we have $B_{1}=0$ and $B_{2}=0$. Proposition 2.2 yields that C does not contain a codeword of weight 38 . Assume for a moment that C contains a codeword c_{42} of weight $w=42$ and let R be the corresponding residual $[36,8,15]_{2}$ code. Let $c^{\prime} \neq c_{42}$ be another codeword of C and w^{\prime} and $w^{\prime \prime}$ be the weights of c^{\prime} and $c^{\prime}+c_{42}$. Then the weight of the corresponding residual codeword is given by $\left(w^{\prime}+w^{\prime \prime}-42\right) / 2$, so that weight 16 is impossible in R (C does not contain a codeword of weight 38). Since R has to contain a $[\leq 33,5,15]_{2}$ subcode, Lemma 3.5 shows the non-existence of R, so that $A_{42}=0$.

We use the linear programming method with the first four MacWilliams identities. Minimizing the number T of doubly-even codewords gives $T \geq \frac{1976}{5}>384$, so that Proposition 2.4.3 gives $T=512$, i.e., all weights are divisible by 4.

Two cases where 8-divisibility can be concluded for optimal even codes are given below.
Theorem 3.7. No $[85,9,40]_{2}$ code exists.
Proof. Assume that C is a $[85,9,40]_{2}$ code. Since no $[84,9,40]_{2}$ and no $[83,8,40]_{2}$ code exists, we have $B_{1}=0$ and $B_{2}=0$, respectively. Considering the residual code, Proposition 2.2 yields that C contains no codewords with weight $w \in\{42,44,46\}$. With this, we use the first four MacWilliams identities and minimize $T=A_{0}+\sum_{i=10}^{21} A_{4 i}$. Since $T \geq 416>384$, so that Proposition 2.4.3 gives $T=512$, all weights are divisible by 4 . Minimizing $T=A_{0}+\sum_{i=5}^{10} A_{8 i}$ gives $T \geq 472>384$, so that Proposition 2.4 (3) gives $T=512$, i.e., all weights are divisible by 8 . The residual code of each codeword of weight w is a projective 4 -divisible code of length $85-w$. Since no such codes of lengths 5 and 13 exist, C does not contain codewords of weight 80 or 72 , respectively ${ }^{1}$

The residual code \hat{C} of a codeword of weight 64 is a projective 4 -divisible 8 -dimensional code of length 21. Note that \hat{C} cannot contain a codeword of weight 20 since no even code of length 1 exists. Thus we have $A_{64} \leq 1$. Now we look at the two-dimensional subcodes of the unique codeword of weight 64 and two other codewords. Denoting their weights by a, b, c and the weight of the corresponding codeword in \hat{C} by w we use the notation $(a, b, c ; w)$. W.l.o.g. we assume $a=64, b \leq c$ and obtain the following possibilities: $(64,40,40 ; 8),(64,40,48 ; 12),(64,40,56 ; 16)$, and $(64,48,48 ; 16)$. Note that $(64,48,56 ; 20)$ and $(64,56,56 ; 24)$ are impossible. By $x_{8}, x_{12}, x_{16}^{\prime}$, and $x_{16}^{\prime \prime}$ we denote the corresponding counts. Setting $x_{16}=x_{16}^{\prime}+x_{16}^{\prime \prime}$, we have that x_{i} is the number of codewords of weight i in \hat{C}. Assuming $A_{64}=1$ the unique (theoretically) possible weight enumerator is $1 x^{0}+360 x^{40}+138 x^{48}+12 x^{56}+1 x^{64}$. Double-counting gives $A_{40}=360=2 x_{8}+x_{12}+x_{16}^{\prime}, A_{48}=138=x_{12}+2 x_{16}^{\prime \prime}$, and $A_{56}=12=x_{16}^{\prime}$. Solving this equation system gives $x_{12}=348-2 x_{8}$ and $x_{16}=x_{8}-93$. Using the first four MacWilliams identities for \hat{C} we obtain the unique solution $x_{8}=102, x_{12}=144$, and $x_{16}=9$, so that $x_{16}^{\prime \prime}=9-12=$ -3 is negative - contradiction. Thus, $A_{64}=0$ and the unique (theoretically) possible weight enumerator is given by $1 x^{0}+361 x^{40}+135 x^{48}+15 x^{56}\left(B_{3}=60\right)$.

Using Q-Extension we classify all $[n, k,\{40,48,56\}]_{2}$ codes for $k \leq 7$ and $n \leq 76+k$, see Table 2 . For dimension $k=8$, there is no $[83,8,\{40,48,56\}]_{2}$ code and exactly $106322[84,8,\{40,48,56\}]_{2}$

[^0]codes. The latter codes have weight enumerators
$$
1 x^{0}+(186+l) x^{40}+(69-2 l) x^{48}+l x^{56}
$$
($B_{2}=l-3$), where $3 \leq l \leq 9$. The corresponding counts are given in Table 3 Since the next step would need a huge amount of computation time we derive some extra information on a $[84,8,\{40,48,56\}]_{2^{-}}$ subcode of C. Each of the 15 codewords of weight 56 of C hits 56 of the columns of a generator matrix of C, so that there exists a column which is hit by at most $\lfloor 56 \cdot 15 / 85\rfloor=9$ such codewords. Thus, by shortening of C we obtain a $[84,8,\{40,48,56\}]_{2}$-subcode with at least $15-9=6$ codewords of weight 56. Extending the corresponding 5666 cases with Q-Extension results in no $[85,9,\{40,48,56\}]_{2}$ code. (Each extension took between a few minutes and a few hours.)

| k / n | 40 | 48 | 56 | 60 | 64 | 68 | 70 | 72 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 |
| ---: |
| 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | | | | |
| 2 | | | | 1 | 1 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | | | | | |
| 3 | | | | | | | 1 | 1 | 2 | 0 | 3 | 0 | 5 | 0 | | | | |
| 4 | | | | | | | | | | 1 | 1 | 2 | 3 | 6 | 10 | | | |
| 5 | | | | | | | | | | | | | 1 | 3 | 11 | 16 | | |
| 6 | | | | | | | | | | | | | | | 2 | 8 | 106 | |
| 7 | | | | | | | | | | | | | | | | | 7 | 5613 |

TABLE 2. Number of $[n, k,\{40,48,56\}]_{2}$ codes.

A_{56}	3	4	5	6	7	8	9
	25773	48792	26091	5198	450	17	1

TABLE 3. Number of $[84,8,\{40,48,56\}]_{2}$ codes per A_{56}.

Lemma 3.8. Each $[\leq 47,4,23]_{2}$ code satisfies $A_{24}+A_{25}+A_{26} \geq 1$.
Proof. We verify this statement computationally using Q-Extension.
We remark that there a $1[44,3,23]_{2}, 3[45,3,23]_{2}$, and $9[46,3,23]_{2}$ codes without codewords of a weight in $\{24,25,26\}$.

Lemma 3.9. Each even $[\leq 46,5,22]_{2}$ code contains a codeword of weight 24 ..
Proof. We verify this statement computationally using Q -Extension.
We remark that there a $2[44,4,22]_{2}$ and $6[45,4,22]_{2}$ codes that are even and do not contain a codeword of weight 24 .

Lemma 3.10. If an even $[117,9,56]_{2}$ code C exist, then the weights of all codewords are divisible by 8 .
Proof. From the known non-existence results we conclude $B_{1}=$ and C does not contain codewords with a weight in $\{58,60,62\}$. If C would contain a codeword of weight 66 then its corresponding residual code R is a $[51,8,23]_{2}$ code without codewords with a weight in $\{24,25,26\}$, which contradicts Lemma 3.8. Thus, $A_{66}=0$. Minimizing the number T_{4} of doubly-even codewords using the first four MacWilliams identities gives $T_{4} \geq \frac{2916}{7}>384$, so that Proposition 2.4 gives $T_{4}=512$, i.e., all weights are divisible by 4 .

If C contains no codeword of weight 68 , then the number T_{8} of codewords whose weight is divisible by 8 is at least $475.86>448$, so that Proposition 2.4 (3) gives $T_{8}=512$, i.e., all weights are divisible
by 8 . So, let us assume that C contains a codeword of weight 68 and consider the corresponding residual [49, 8,22$]_{2}$ code R. Note that R is even and does not contain a codeword of weight 24 , which contradicts Lemma 3.9. Thus, all weights are divisible by 8 .

Lemma 3.11. If an even $[118,10,56]_{2}$ code exist, then its weight enumerator is either $1 x^{0}+719 x^{56}+$ $218 x^{64}+85 x^{72}+1 x^{80}$ or $1 x^{0}+720 x^{56}+215 x^{64}+88 x^{72}$.
Proof. Assume that C is an even $[118,10,56]_{2}$ code. Since no $[117,10,56]_{2}$ and no $[116,9,56]_{2}$ code exists we have $B_{1}=0$ and $B_{2}=0$, respectively. Using the known upper bounds on the minimum distance for 9 -dimensional codes we can conclude that no codeword as a weight $w \in\{58,60,62,66,68,70\}$. Maximizing $T=\sum_{i} A_{4 i}$ gives $T \geq 1011.2>768$, so that C is 4 -divisible, see Proposition 2.4. 3. Maximizing $T=\sum_{i} A_{8 i}$ gives $T \geq 1019.2>768$, so that C is 8 -divisible, Proposition 2.4 33. Maximizing A_{i} for $i \in\{88,96,104,112\}$ gives a value strictly less than 1 , so that the only non-zero weights can be $56,64,72$, and 80 . Maximizing A_{80} gives an upper bound of $\frac{3}{2}$, so that $A_{80}=1$ or $A_{80}=0$. The remaining values are then uniquely determined by the first four MacWilliams identities.

The exhaustive enumeration of all $[117,9,\{56,64,72\}]_{2}$ codes remains a computational challenge. We remark that it is not known whether a $[117,9,56]_{2}$ code exists.

References

[1] L. Baumert and R. McEliece. A note on the Griesmer bound. IEEE Transactions on Information Theory, pages 134-135, 1973.
[2] I. Bouyukliev. What is Q-extension? Serdica Journal of Computing, 1(2):115-130, 2007.
[3] I. Bouyukliev and D. B. Jaffe. Optimal binary linear codes of dimension at most seven. Discrete Mathematics, 226(1-3):51-70, 2001.
[4] I. Bouyukliev, D. B. Jaffe, and V. Vavrek. The smallest length of eight-dimensional binary linear codes with prescribed minimum distance. IEEE Transactions on Information Theory, 46(4):1539-1544, 2000.
[5] S. Dodunekov, S. Guritman, and J. Simonis. Some new results on the minimum length of binary linear codes of dimension nine. IEEE Transactions on Information Theory, 45(7):2543-2546, 1999.
[6] M. Grassl. Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www. codetables.de 2007. Accessed on 2019-04-04.
[7] J. H. Griesmer. A bound for error-correcting codes. IBM Journal of Research and Development, 4(5):532-542, 1960.
[8] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes, volume 16. Elsevier, 1977.
[9] J. Simonis. Restrictions on the weight distribution of binary linear codes imposed by the structure of reed-muller codes. IEEE transactions on Information Theory, 40(1):194-196, 1994.
[10] J. Simonis. The [23, 14, 5] Wagner code is unique. Discrete Mathematics, 213(1-3):269-282, 2000.
[11] C. van Tilborg Henk. The smallest length of binary 7-dimensional linear codes with prescribed minimum distance. Discrete Mathematics, 33(2):197-207, 1981.
[12] H. Ward. Divisible codes-a survey. Serdica Mathematical Journal, 27(4):263-278, 2001.
Sascha Kurz, University of Bayreuth, 95440 Bayreuth, Germany
Email address: sascha.kurz@uni-bayreuth. de

[^0]: ${ }^{1}$ We remark that a 4 -divisible non-projective binary linear code of length 13 exists.

