# THE $[46, 9, 20]_2$ CODE IS UNIQUE

### SASCHA KURZ

ABSTRACT. The minimum distance of all binary linear codes with dimension at most eight is known. The smallest open case for dimension nine is length n = 46 with known bounds  $19 \le d \le 20$ . Here we present a  $[46, 9, 20]_2$  code and show its uniqueness. Interestingly enough, this unique optimal code is asymmetric, i.e., it has a trivial automorphism group. Additionally, we show the non-existence of  $[47, 10, 20]_2$  and  $[85, 9, 40]_2$  codes.

Keywords: Binary linear codes, optimal codes

## 1. INTRODUCTION

An  $[n, k, d]_q$ -code is a q-ary linear code with length n, dimension k, and minimum Hamming distance d. Here we will only consider binary codes, so that we also speak of [n, k, d]-codes. Let n(k, d) be the smallest integer n for which an [n, k, d]-code exists. Due to Griesmer [7] we have

$$n(k,d) \ge g(k,d) := \sum_{i=0}^{k-1} \left\lceil \frac{d}{2^i} \right\rceil,\tag{1}$$

where  $\lceil x \rceil$  denotes the smallest integer  $\geq x$ . As shown by Baumert and McEliece [1] for every fixed dimension k there exists an integer D(k) such that n(k, d) = g(k, d) for all  $d \geq D(k)$ , i.e., the determination of n(k, d) is a finite problem for every fixed dimension k. For  $k \leq 7$ , the function n(k, d) has been completely determined by Baumert and McEliece [1] and van Tilborg [11]. After a lot of work of different authors, the determination of n(8, d) has been completed by Bouyukliev, Jaffe, and Vavrek [4]. For results on n(9, d) we refer e.g. to [5] and the references therein. The smallest open case for dimension nine is length n = 46 with known bounds  $19 \leq d \leq 20$ . Here we present a  $[46, 9, 20]_2$  code and show its uniqueness. Interestingly enough, this unique optimal code is asymmetric, i.e., it has a trivial automorphism group. Speaking of a  $\Delta$ -divisible code for codes whose weights of codewords all are divisible by  $\Delta$ , we can state that the optimal code is 4-divisible. 4-divisible codes are also called doubly-even and 2divisible codes are called even. Additionally, we show the non-existence of  $[47, 10, 20]_2$  and  $[85, 9, 40]_2$ codes.

Our main tools – described in the next section – are the standard residual code argument (Proposition 2.2), the MacWilliams identities (Proposition 2.3), a result based on the weight distribution of Reed-Muller codes (Proposition 2.4), and the software package Q-Extension [2] to enumerate linear codes with a list of allowed weights. For an easy access to the known non-existence results for linear codes we have used the online database [6].

### 2. BASIC TOOLS

**Definition 2.1.** Let C be an [n, k, d]-code and  $c \in C$  be a codeword of weight w. The restriction to the support of c is called the residual code  $\operatorname{Res}(C; c)$  of C with respect to c. If only the weight w is of importance, we will denote it by  $\operatorname{Res}(C; w)$ .

**Proposition 2.2.** Let C be an [n, k, d]-code. If d > w/2, then  $\operatorname{Res}(C; w)$  has the parameters

$$\begin{bmatrix} n-w, k-1, \ge d - \lfloor w/2 \rfloor \end{bmatrix}.$$

#### SASCHA KURZ

Some authors call the result for the special case w = d the one-step Griesmer bound.

**Proposition 2.3.** ([8], MacWilliams Identities) Let C be an [n, k, d]-code and  $C^{\perp}$  be the dual code of C. Let  $A_i(C)$  and  $B_i(C)$  be the number of codewords of weight i in C and  $C^{\perp}$ , respectively. With this, we have

$$\sum_{j=0}^{k} K_i(j) A_j(C) = 2^k B_i(C), \quad 0 \le i \le n$$
(2)

where

$$K_i(j) = \sum_{s=0}^n (-1)^s \binom{n-j}{i-s} \binom{j}{s}, \quad 0 \le i \le n$$

are the binary Krawtchouk polynomials. We will simplify the notation to  $A_i$  and  $B_i$  whenever C is clear from the context.

Whenever we speak of the first l MacWilliams identities, we mean Equation (2) for  $0 \le i \le l - 1$ . Adding the non-negativity constraints  $A_i, B_i \ge 0$  we obtain a linear program where we can maximize or minimize certain quantities, which is called the linear programming method for linear codes. Adding additional equations or inequalities strengthens the formulation.

**Proposition 2.4.** ([5, Proposition 5], cf. [9]) Let C be an [n, k, d]-code with all weights divisible by  $\Delta := 2^a$  and let  $(A_i)_{i=0,1,\dots,n}$  be the weight distribution of C. Put

$$\begin{aligned} \alpha &:= \min\{k-a-1, a+1\}, \\ \beta &:= \lfloor (k-a+1)/2 \rfloor, \text{ and} \\ \delta &:= \min\{2\Delta i \mid A_{2\Delta i} \neq 0 \land i > 0\}. \end{aligned}$$

Then the integer

$$T := \sum_{i=0}^{\lfloor n/(2\Delta) \rfloor} A_{2\Delta i}$$

satisfies the following conditions.

(1) T is divisible by  $2^{\lfloor (k-1)/(a+1) \rfloor}$ .

(2) If  $T < 2^{k-a}$ , then

$$T = 2^{k-a} - 2^{k-a-t}$$

for some integer t satisfying  $1 \le t \le \max\{\alpha, \beta\}$ . Moreover, if  $t > \beta$ , then C has an  $[n, k - a - 2, \delta]$ -subcode and if  $t \le \beta$ , it has an  $[n, k - a - t, \delta]$ -subcode.

(3) If  $T > 2^k - 2^{k-a}$ , then

$$T = 2^k - 2^{k-a} + 2^{k-a-t}$$

for some integer t satisfying  $0 \le t \le \max\{\alpha, \beta\}$ . Moreover, if a = 1, then C has an  $[n, k - t, \delta]$ -subcode. If a > 1, then C has an  $[n, k - 1, \delta]$ -subcode unless  $t = a + 1 \le k - a - 1$ , in which case it has an  $[n, k - 2, \delta]$ -subcode.

A special and well-known subcase is that the number of even weight codewords in a [n, k] code is either  $2^{k-1}$  or  $2^k$ .

### 3. RESULTS

**Lemma 3.1.** Each  $[\leq 16, 4, 7]_2$  code contains a codeword of weight 8.

PROOF. Let C be an  $[n, 4, 7]_2$  code with  $n \le 16$  and  $A_8 = 0$ . From the first two MacWilliams identities we conclude

$$A_7 + A_9 + \sum_{i \ge 10} A_i = 2^4 - 1 = 15$$
 and  $7A_7 + 9A_9 + \sum_{i \ge 10} iA_i = 2^3n = 8n$ ,

so that

$$2A_9 + 3A_{10} + \sum_{i \ge 11} (i-7)A_i = 8n - 105.$$

Thus, the number of even weight codewords is at most 8n/3 - 34. Since at least half the codewords have to be of even weight, we obtain  $n \ge \lceil 15.75 \rceil = 16$ . In the remaining case n we use the linear programming method with the first four MacWilliams identities,  $B_1 = 0$ , and the fact that there are exactly 8 even weight codewords to conclude  $A_{11} + \sum_{i\ge 13} A_i < 1$ , i.e.,  $A_{11} = 0$  and  $A_i = 0$  for all  $i \ge 13$ . With this and rounding to integers we obtain the bounds  $5 \le B_2 \le 6$ , which then gives the unique solution  $A_7 = 7$ ,  $A_9 = 0$ ,  $A_{10} = 6$ , and  $A_{12} = 1$ . Computing the full dual weight distribution unveils  $B_{15} = -2$ , which is negative.

**Lemma 3.2.** Each even  $[46, 9, 20]_2$  code C is isomorphic to a code with generator matrix

| (100101010111001101101000111100110010010    | ١ |
|---------------------------------------------|---|
| 1111100101010100100011010110011001100010000 |   |
| 11001101000011111011110001000001101010000   |   |
| 011010101001011010110111001010001100100     |   |
| 00111011101011011001001010010100010110000   |   |
| 01100110011111000111000110001100001110000   |   |
| 00011110000111000000111110000011111110000   |   |
| 000000011111110000000000011111111111110000  |   |
| 000000000000001111111111111111111111111     | / |

PROOF. Applying Proposition 2.2 with w = 20 on a [45,9,20] code would give a [25,8,10] code, which does not exist. Thus, C has full length n = 46, i.e.,  $B_1 = 0$ . Since no [44,8,20] code exists, C is projective, i.e.,  $B_2 = 0$ . Since no [24,8,9] code exists, Proposition 2.2 yields that C cannot contain a codeword of weight w = 22. Assume for a moment that C contains a codeword  $c_{26}$  of weight w = 26and let R be the corresponding residual [20,8,7] code. Let  $c' \neq c_{26}$  be another codeword of C and w' and w'' be the weights of c' and c' +  $c_{26}$ . Then the weight of the corresponding residual codeword is given by (w' + w'' - 26)/2, so that weight 8 is impossible in R (C does not contain a codeword of weight 22). Since R has to contain a [ $\leq 16, 4, 7$ ]<sub>2</sub> subcode, Lemma 3.1 shows the non-existence of R, so that  $A_{26} = 0$ .

With this, the first three MacWilliams Identities are given by

2

$$A_{20} + A_{24} + A_{28} + A_{30} + \sum_{i=1}^{8} A_{2i+30} = 511$$
$$3A_{20} - A_{24} - 5A_{28} - 7A_{30} - \sum_{i=1}^{8} (2i+7) \cdot A_{2i+30} = -23$$
$$5A_{20} + 21A_{24} - 27A_{28} - 75A_{30} - \sum_{i=1}^{8} (8i^2 + 56i + 75) \cdot A_{2i+30} = 1035.$$

Minimizing  $T = A_0 + A_{20} + A_{24} + A_{28} + A_{32} + A_{36} + A_{40} + A_{44}$  gives  $T \ge \frac{6712}{15} > 384$ , so that Proposition 2.4.(3) gives T = 512, i.e., all weights are divisible by 4. A further application of the linear programming method gives that  $A_{36} + A_{40} + A_{44} \le \lfloor \frac{9}{4} \rfloor = 2$ , so that C has to contain a  $\lfloor \le 44, 7, \{20, 24, 28, 32\} \rfloor_2$  subcode.

Next, we have used Q-Extension to classify the  $[n, k, \{20, 24, 28, 32\}]_2$  codes for  $k \leq 7$  and  $n \leq 37+k$ , see Table 1. Starting from the 337799 doubly-even  $[\leq 44, 7, 20]$  codes, Q-Extension gives 424207 doubly-even  $[45, 8, 20]_2$  codes and no doubly-even  $[44, 8, 20]_2$  code (as the maximum minimum distance of a  $[44, 8]_2$  code is 19.) Indeed, a codeword of weight 36 or 40 can occur in a doubly-even  $[45, 8, 20]_2$  code. We remark that largest occurring order of the automorphism group is 18. Finally, an

application of Q-Extension on the 424207 doubly-even  $[45, 8, 20]_2$  codes results in the unique code as stated. (Note that there may be also doubly-even  $[45, 8, 20]_2$  codes with two or more codewords of a weight  $w \ge 36$ . However, these are not relevant for our conclusion.)

| k / n | 20 | 24 | 28 | 30 | 32 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42  | 43   | 44     |
|-------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|------|--------|
| 1     | 1  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |    |    |    |     |      |        |
| 2     |    |    |    | 1  | 1  | 2  | 0  | 3  | 0  | 3  | 0  |    |    |     |      |        |
| 3     |    |    |    |    |    |    | 1  | 1  | 2  | 4  | 6  | 9  |    |     |      |        |
| 4     |    |    |    |    |    |    |    |    |    | 1  | 4  | 13 | 26 |     |      |        |
| 5     |    |    |    |    |    |    |    |    |    |    |    | 3  | 15 | 163 |      |        |
| 6     |    |    |    |    |    |    |    |    |    |    |    |    |    | 24  | 3649 |        |
| 7     |    |    |    |    |    |    |    |    |    |    |    |    |    |     | 5    | 337794 |

TABLE 1. Number of  $[n, k, \{20, 24, 28, 32\}]_2$  codes.

We remark that the code of Lemma 3.2 has a trivial automorphism group and weight enumerator  $1x^0 + 235x^{20} + 171x^{24} + 97x^{28} + 8x^{32}$ , i.e., all weights are divisible by four. The dual minimum distance is 3 ( $A_3^{\perp} = 1$ ,  $A_4^{\perp} = 276$ ), i.e., the code is projective. Since the Griesmer bound, see Inequality (1), gives a lower bound of 47 for the length of a binary linear code with dimension k = 9 and minimum distance  $d \ge 21$ , the code has the optimum minimum distance. The linear programming method could also be used to exclude the weights w = 40 and w = 44 directly (and to show  $A_{36} \le 2$ ). While the maximum distance d = 20 was proven using the Griesmer bound directly, the  $[46, 9, 20]_2$  code is not a *Griesmer code*, i.e., where Inequality (1) is satisfied with equality. For the latter codes the  $2^2$ -divisibility would follow from [12, Theorem 9] stating that for Griesmer codes over  $\mathbb{F}_p$ , where  $p^e$  is a divisor of the minimum distance, all weights are divisible by  $p^e$ .

**Theorem 3.3.** Each  $[46, 9, 20]_2$  code C is isomorphic to a code with the generator matrix given in Lemma 3.2.

PROOF. Let C be a  $[46, 9, 20]_2$  with generator matrix G which is not even. Removing a column from G and adding a parity check bit gives an even  $[46, 9, 20]_2$  code. So, we start from the generator matrix of Lemma 3.2 and replace a column by all  $2^9 - 1$  possible column vectors. Checking all  $46 \cdot 511$  cases gives either linear codes with a codeword of weight 19 or the generator matrix of Lemma 3.2 again.

Lemma 3.4. No [47, 10, 20]<sub>2</sub> code exists.

PROOF. Assume that C is a  $[47, 10, 20]_2$  code. Since no  $[46, 10, 20]_2$  and no  $[45, 9, 20]_2$  code exists, we have  $B_1 = 0$  and  $B_2 = 0$ , respectively. Let G be a systematic generator matrix of C. Since removing the *i*th unit vector and the corresponding column (with the 1-entry) from G gives a  $[46, 9, 20]_2$  code, there are at least 1023 codewords in C whose weight is divisible by 4. Thus, Proposition 2.4.(3) yields that C is doubly-even. By Theorem 3.3 we have  $A_{32} \ge 8$ . Adding this extra inequality to the linear inequality system of the first four MacWilliams identities gives, after rounding down to integers,  $A_{44} = 0$ ,  $A_{40} = 0$ ,  $A_{36} = 0$ , and  $B_3 = 0$ . (We could also conclude  $B_3 = 0$  directly from the non-existence of a  $[44, 8, 20]_2$ -code.) The unique remaining weight enumerator is given by  $1x^0 + 418x^{20} + 318x^{24} + 278x^{28} + 9x^{32}$ . Let C be such a code and C' be the code generated by the nine codewords of weight 32. We eventually add codewords from C to C' till C' has dimension exactly nine and denote the corresponding code by C''. Now the existence of C'' contradicts Theorem 3.3.

So, the unique  $[46, 9, 20]_2$  code is strongly optimal in the sense of [10, Definition 1], i.e., no  $[n - 1, k, d]_2$  and no  $[n + 1, k + 1, d]_2$  code exists. The strongly optimal binary linear codes with dimension at most seven have been completely classified, except the  $[56, 7, 26]_2$  codes, in [3]. The next open case is the existence question for a  $[65, 9, 29]_2$  code, which is equivalent to the existence of a  $[66, 9, 30]_2$  code.

The technique of Lemma 3.2 to conclude the 4-divisibility of an optimal even code can also be applied in further cases and we given an example for  $[78, 9, 36]_2$  codes, whose existence is unknown.

#### **Lemma 3.5.** Each $[\leq 33, 5, 15]_2$ code contains a codeword of weight 16.

**PROOF.** We verify this statement computationally using Q-Extension.

We remark that a direct proof is possible too. However, the one that we found is too involved to be presented here. Moreover, there are exactly  $3 \leq 32, 4, 15 \leq 20$  without a codeword of weight 16.

### **Lemma 3.6.** If an even $[78, 9, 36]_2$ code C exists, then it has to be doubly-even.

PROOF. Since no  $[77, 9, 36]_2$  and no  $[76, 8, 36]_2$  code exists, we have  $B_1 = 0$  and  $B_2 = 0$ . Proposition 2.2 yields that C does not contain a codeword of weight 38. Assume for a moment that C contains a codeword  $c_{42}$  of weight w = 42 and let R be the corresponding residual  $[36, 8, 15]_2$  code. Let  $c' \neq c_{42}$  be another codeword of C and w' and w'' be the weights of c' and  $c' + c_{42}$ . Then the weight of the corresponding residual codeword is given by (w' + w'' - 42)/2, so that weight 16 is impossible in R (C does not contain a codeword of weight 38). Since R has to contain a  $[\le 33, 5, 15]_2$  subcode, Lemma 3.5 shows the non-existence of R, so that  $A_{42} = 0$ .

We use the linear programming method with the first four MacWilliams identities. Minimizing the number T of doubly-even codewords gives  $T \ge \frac{1976}{5} > 384$ , so that Proposition 2.4.(3) gives T = 512, i.e., all weights are divisible by 4.

Two cases where 8-divisibility can be concluded for optimal even codes are given below.

## **Theorem 3.7.** No [85, 9, 40]<sub>2</sub> code exists.

PROOF. Assume that C is a  $[85, 9, 40]_2$  code. Since no  $[84, 9, 40]_2$  and no  $[83, 8, 40]_2$  code exists, we have  $B_1 = 0$  and  $B_2 = 0$ , respectively. Considering the residual code, Proposition 2.2 yields that C contains no codewords with weight  $w \in \{42, 44, 46\}$ . With this, we use the first four MacWilliams identities and minimize  $T = A_0 + \sum_{i=10}^{21} A_{4i}$ . Since  $T \ge 416 > 384$ , so that Proposition 2.4.(3) gives T = 512, all weights are divisible by 4. Minimizing  $T = A_0 + \sum_{i=5}^{10} A_{8i}$  gives  $T \ge 472 > 384$ , so that Proposition 2.4.(3) gives T = 512, i.e., all weights are divisible by 8. The residual code of each codeword of weight w is a projective 4-divisible code of length 85 - w. Since no such codes of lengths 5 and 13 exist, C does not contain codewords of weight 80 or 72, respectively.<sup>1</sup>

The residual code  $\hat{C}$  of a codeword of weight 64 is a projective 4-divisible 8-dimensional code of length 21. Note that  $\hat{C}$  cannot contain a codeword of weight 20 since no even code of length 1 exists. Thus we have  $A_{64} \leq 1$ . Now we look at the two-dimensional subcodes of the unique codeword of weight 64 and two other codewords. Denoting their weights by a, b, c and the weight of the corresponding codeword in  $\hat{C}$  by w we use the notation (a, b, c; w). W.l.o.g. we assume  $a = 64, b \leq c$  and obtain the following possibilities: (64, 40, 40; 8), (64, 40, 48; 12), (64, 40, 56; 16), and (64, 48, 48; 16). Note that (64, 48, 56; 20) and (64, 56, 56; 24) are impossible. By  $x_8, x_{12}, x'_{16}$ , and  $x''_{16}$  we denote the corresponding counts. Setting  $x_{16} = x'_{16} + x''_{16}$ , we have that  $x_i$  is the number of codewords of weight i in  $\hat{C}$ . Assuming  $A_{64} = 1$  the unique (theoretically) possible weight enumerator is  $1x^0 + 360x^{40} + 138x^{48} + 12x^{56} + 1x^{64}$ . Double-counting gives  $A_{40} = 360 = 2x_8 + x_{12} + x'_{16}$ ,  $A_{48} = 138 = x_{12} + 2x''_{16}$ , and  $A_{56} = 12 = x'_{16}$ . Solving this equation system gives  $x_{12} = 348 - 2x_8$  and  $x_{16} = x_8 - 93$ . Using the first four MacWilliams identities for  $\hat{C}$  we obtain the unique solution  $x_8 = 102, x_{12} = 144$ , and  $x_{16} = 9$ , so that  $x''_{16} = 9 - 12 = -3$  is negative – contradiction. Thus,  $A_{64} = 0$  and the unique (theoretically) possible weight enumerator is  $1x^0 + 361x^{40} + 135x^{48} + 15x^{56}$  ( $B_3 = 60$ ).

Using Q-Extension we classify all  $[n, k, \{40, 48, 56\}]_2$  codes for  $k \le 7$  and  $n \le 76 + k$ , see Table 2. For dimension k = 8, there is no  $[83, 8, \{40, 48, 56\}]_2$  code and exactly  $106322 [84, 8, \{40, 48, 56\}]_2$ 

<sup>&</sup>lt;sup>1</sup>We remark that a 4-divisible non-projective binary linear code of length 13 exists.

codes. The latter codes have weight enumerators

$$1x^{0} + (186 + l)x^{40} + (69 - 2l)x^{48} + lx^{56}$$

 $(B_2 = l - 3)$ , where  $3 \le l \le 9$ . The corresponding counts are given in Table 3. Since the next step would need a huge amount of computation time we derive some extra information on a  $[84, 8, \{40, 48, 56\}]_2$ subcode of C. Each of the 15 codewords of weight 56 of C hits 56 of the columns of a generator matrix of C, so that there exists a column which is hit by at most  $\lfloor 56 \cdot 15/85 \rfloor = 9$  such codewords. Thus, by shortening of C we obtain a  $[84, 8, \{40, 48, 56\}]_2$ -subcode with at least 15 - 9 = 6 codewords of weight 56. Extending the corresponding 5666 cases with Q-Extension results in no  $[85, 9, \{40, 48, 56\}]_2$ code. (Each extension took between a few minutes and a few hours.)

| k/n | 40 | 48 | 56 | 60 | 64 | 68 | 70 | 72 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82  | 83   |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|------|
| 1   | 1  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |    |    |    |    |     |      |
| 2   |    |    |    | 1  | 1  | 2  | 0  | 2  | 0  | 0  | 2  | 0  | 0  |    |    |    |     |      |
| 3   |    |    |    |    |    |    | 1  | 1  | 2  | 0  | 3  | 0  | 5  | 0  |    |    |     |      |
| 4   |    |    |    |    |    |    |    |    |    | 1  | 1  | 2  | 3  | 6  | 10 |    |     |      |
| 5   |    |    |    |    |    |    |    |    |    |    |    |    | 1  | 3  | 11 | 16 |     |      |
| 6   |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 2  | 8  | 106 |      |
| 7   |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | 7   | 5613 |

TABLE 2. Number of  $[n, k, \{40, 48, 56\}]_2$  codes.

| $A_{56}$ | 3            | 4     | 5     | 6       | 7   | 8  | 9 |
|----------|--------------|-------|-------|---------|-----|----|---|
|          | 25773        | 48792 | 26091 | 5198    | 450 | 17 | 1 |
| 1 /      | <b>) )</b> 1 | 0 0 1 | 0 (40 | 10 5011 | 1   |    | 4 |

TABLE 3. Number of  $[84, 8, \{40, 48, 56\}]_2$  codes per  $A_{56}$ .

**Lemma 3.8.** Each  $[\leq 47, 4, 23]_2$  code satisfies  $A_{24} + A_{25} + A_{26} \ge 1$ .

PROOF. We verify this statement computationally using Q-Extension.  $\Box$ We remark that there a 1 [44, 3, 23]<sub>2</sub>, 3 [45, 3, 23]<sub>2</sub>, and 9 [46, 3, 23]<sub>2</sub> codes without codewords of a weight in {24, 25, 26}.

**Lemma 3.9.** Each even  $[\leq 46, 5, 22]_2$  code contains a codeword of weight 24..

**PROOF.** We verify this statement computationally using Q-Extension.  $\Box$ We remark that there a 2 [44, 4, 22]<sub>2</sub> and 6 [45, 4, 22]<sub>2</sub> codes that are even and do not contain a codeword of weight 24.

### **Lemma 3.10.** If an even $[117, 9, 56]_2$ code C exist, then the weights of all codewords are divisible by 8.

PROOF. From the known non-existence results we conclude  $B_1 = \text{and } C$  does not contain codewords with a weight in {58, 60, 62}. If C would contain a codeword of weight 66 then its corresponding residual code R is a [51, 8, 23]<sub>2</sub> code without codewords with a weight in {24, 25, 26}, which contradicts Lemma 3.8. Thus,  $A_{66} = 0$ . Minimizing the number  $T_4$  of doubly-even codewords using the first four MacWilliams identities gives  $T_4 \ge \frac{2916}{7} > 384$ , so that Proposition 2.4.(3) gives  $T_4 = 512$ , i.e., all weights are divisible by 4.

If C contains no codeword of weight 68, then the number  $T_8$  of codewords whose weight is divisible by 8 is at least 475.86 > 448, so that Proposition 2.4.(3) gives  $T_8 = 512$ , i.e., all weights are divisible by 8. So, let us assume that C contains a codeword of weight 68 and consider the corresponding residual  $[49, 8, 22]_2$  code R. Note that R is even and does not contain a codeword of weight 24, which contradicts Lemma 3.9. Thus, all weights are divisible by 8.

**Lemma 3.11.** If an even  $[118, 10, 56]_2$  code exist, then its weight enumerator is either  $1x^0 + 719x^{56} + 218x^{64} + 85x^{72} + 1x^{80}$  or  $1x^0 + 720x^{56} + 215x^{64} + 88x^{72}$ .

PROOF. Assume that C is an even  $[118, 10, 56]_2$  code. Since no  $[117, 10, 56]_2$  and no  $[116, 9, 56]_2$  code exists we have  $B_1 = 0$  and  $B_2 = 0$ , respectively. Using the known upper bounds on the minimum distance for 9-dimensional codes we can conclude that no codeword as a weight  $w \in \{58, 60, 62, 66, 68, 70\}$ . Maximizing  $T = \sum_i A_{4i}$  gives  $T \ge 1011.2 > 768$ , so that C is 4-divisible, see Proposition 2.4.(3). Maximizing  $T = \sum_i A_{8i}$  gives  $T \ge 1019.2 > 768$ , so that C is 8-divisible, Proposition 2.4.(3). Maximizing  $A_i$  for  $i \in \{88, 96, 104, 112\}$  gives a value strictly less than 1, so that the only non-zero weights can be 56, 64, 72, and 80. Maximizing  $A_{80}$  gives an upper bound of  $\frac{3}{2}$ , so that  $A_{80} = 1$  or  $A_{80} = 0$ . The remaining values are then uniquely determined by the first four MacWilliams identities.

The exhaustive enumeration of all  $[117, 9, \{56, 64, 72\}]_2$  codes remains a computational challenge. We remark that it is not known whether a  $[117, 9, 56]_2$  code exists.

#### REFERENCES

- [1] L. Baumert and R. McEliece. A note on the Griesmer bound. IEEE Transactions on Information Theory, pages 134–135, 1973.
- [2] I. Bouyukliev. What is Q-extension? Serdica Journal of Computing, 1(2):115–130, 2007.
- [3] I. Bouyukliev and D. B. Jaffe. Optimal binary linear codes of dimension at most seven. *Discrete Mathematics*, 226(1-3):51–70, 2001.
- [4] I. Bouyukliev, D. B. Jaffe, and V. Vavrek. The smallest length of eight-dimensional binary linear codes with prescribed minimum distance. *IEEE Transactions on Information Theory*, 46(4):1539–1544, 2000.
- [5] S. Dodunekov, S. Guritman, and J. Simonis. Some new results on the minimum length of binary linear codes of dimension nine. *IEEE Transactions on Information Theory*, 45(7):2543–2546, 1999.
- [6] M. Grassl. Bounds on the minimum distance of linear codes and quantum codes. Online available at http://www.codetables.de, 2007. Accessed on 2019-04-04.
- [7] J. H. Griesmer. A bound for error-correcting codes. IBM Journal of Research and Development, 4(5):532-542, 1960.
- [8] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes, volume 16. Elsevier, 1977.
- [9] J. Simonis. Restrictions on the weight distribution of binary linear codes imposed by the structure of reed-muller codes. *IEEE transactions on Information Theory*, 40(1):194–196, 1994.
- [10] J. Simonis. The [23, 14, 5] Wagner code is unique. Discrete Mathematics, 213(1-3):269-282, 2000.
- [11] C. van Tilborg Henk. The smallest length of binary 7-dimensional linear codes with prescribed minimum distance. Discrete Mathematics, 33(2):197–207, 1981.
- [12] H. Ward. Divisible codes-a survey. Serdica Mathematical Journal, 27(4):263-278, 2001.

SASCHA KURZ, UNIVERSITY OF BAYREUTH, 95440 BAYREUTH, GERMANY *Email address*: sascha.kurz@uni-bayreuth.de